EPA% 850‘&-- oov 2.
B Voo ,

‘ |7 80

ADP SYSTEM DOCUMENTATION STANDARDS

‘ U.S. Environmental Protection Agency
Prepared by:
Manaaement Information and Data Systems Division

»

U.S. Envirenmental Protection Agency
Lidrary, Room 2404 PN-211-A
401 M Streat. S.W.

: o Washington, Dc 20460

-

a s! S

rebmry 1980

TABLE OF CONTENTS

Page
Section 1 - Introduction
1.1 Objectives o 1=l
T - 1.2 Software Development wWithin EPA . . . o « 1=2
Section 2 -~ Functional Description
2.1 Summary » 2=1
2,2 Table of Contents. - - o 2=2
2.3 Description. . . » 2~3
Section -~ Data Dictionary
3.1 Summary - . » . » » - - . . 3_1
3.2 Table of Contents. . - - e 3=2
3.3 Description. . - » . - . - . . « 3-3
Section 4 - User®s Guide
4.1 Summary . . . » » 6"1
4.2 Table of Contents. L3 » . . . « 4~2
4.3 Description. 4=3
. Section 5 ~ Design Document
A 5.1 Summary - - v 5~1
I 5.2 Table of Contents. » . o 5~2
5. 3 Descr iption. . . Y ™ . - . - 5-3
i ; Section 6 - Implementation and Test Plan
6.1 Sumary. ® & & o o 0 o - s & s & 6-1
6.2 Table of Contentss « « « ¢« o« o « . . - . .« 62
6.3 Description. « &8 ° 8 2 8 e & e @ 6-3
Section 7 - Prqg;ammer°s Maintenance Manual
7.1 Summary - » . 7"1
7.2 Table of Contents. . . . » . 'y - » 7-2
! 7.3 Descr ipt ion. o 7=4
f Section 8 - Coding Guidelines
§
' - 8.1 Introduction) .« 8~1
. ! 8.2 Choice of Language « a2 s . « & & & e s e e o« 81
. : 8.3 Programming Style- . . - « 8~2
8.3.1 What 1is Style?- . 'y - . . - 82
i
= - -l — -

TABLE OF CONTENTS (continued)

Page
8.3.2 Good Program Constructs. . . . - - . 8=3
8.3.3 Consistent Language Usage « « o o ¢ o ¢ o o o« « o 83
8s3.4 Use of Meaningful Mnemonics <« ¢ ¢ ¢ « ¢ ¢ o « o« « 8=3
8.3.5 Good Commeni‘.ing - O . . - 8-3
8.4 Progr&m Layout- - - . . - . - . . « 84
8.4.1 Prologs . . . » » . - » . . . 8=4
Bobo2 Annotation » o . . . 8=7
8.&-3 Blocking Of Statements o o o o ¢ o o o ¢ o a s o o a4 o » s o 8-7
8.4.4 FOrmat o« s o ¢ o o s o & ¢ o & 4 6 6 » 6 5 4 0 o » 8 8 v & & 8-12
8.5 Coding Practices « o o o ¢ ¢ o ¢ ¢ o 6 ¢ o s o o & s o o o & 812
8.5.1 EffiCIEHCY * o 6 o @ 6 9 6 o 4 4 o o 8 8 4 o 06 o s o s s & o 8-12
8.5.2 Naming and Labeling Conventions e o & 5 & ¢ 6 a8 o s o s s » 817
8.5.3 Expression and Computational Accuracy .« « +» « o » 2 s » o « 8-17
8.5.4 Acceptable Program Structures « « s o ¢ o o s s o o o o o o 8-21
845.5 Language Usage and Restrictions .« « « o+ ¢ o« o s o o o o « o 8=28
Appendix A - Glossary
Appendix B ~ Charting Conventions for System Development
Appendix C - Biblography
List of Illustrations
Figure Page
1 Prolog (Full Form) S
2 Unseparated Code + » s o o o o » o 5 ¢ 5 » o 8 2 s ¢ o « ¢« « 8~8
3 Code Divided Into Blocks and Separated by Headers « o + « o 89
4 Code Separated Into BlockS « o ¢ o 2 s s ¢ ¢« s o« o« ¢ o ¢ o« &« 8~10
5 Unacceptable Use =~ Copy Lines of Code + « « o ¢ ¢ ¢ & o o« o 8«11
6 Uncommented Poorly Formatted Code o o« » « o ¢ ¢ o o & ¢ « o« 8~13
7a,b Well-Formatted and Commented Code o o o« ¢ o « s o ¢« o o o o 814,15
8 Imptoving Readability e & ® % 9 & & 8 # & e 5 6 & & w & ® @ 8‘16
9 Improving Readability e 8 & ® @ € % e w & 6 & % 5 B & & ® » 8'18
10 Improving Readability * 5 5 & % o &6 5 » 2 s » s s 0 ¢ s o s 8-19
11 Program Structure Types e ¢ a8 5 5 2 6 4 8 o 3 4 e e o a s o B=22
lh,b Sequence Structures $ o ¢ 6 & 8 6 & 6 4 O & e @ o e v s o » 8"23,24
13 Repetition SCTUCTULEE o o -9 ¢« o s o o ¢ s a # 5 s ¢« ¢« & o« 8-25
1108,b Case Structures € 8 5 6 o & 5 6 o % 5 % 8 B e B 4 8 s b s & 8“26,27
List of Tables
Table Page
1 " Overview of System Development Phases « + « ¢ o s o o o & o 1=4

i1

1. INTRODUCTION
1.1 OBJECTIVES

Although the need for documentation has been recognized for many years, it
was often felt that annotated program listings and some form of user's guide
would satisfy the documentation needs of a program or system of programs. It
has recently become evident, however, that such an approach to documentation
is so inadequate as to be practically worthless. This is most apparent when
maintenance or enhancement 1s required or when a program or system is
transferred to a computer different from that on which it was developed.

There have been many attempts to address this problem by establishing guidelines
for documenting programs and systems, and indeed, these guidelines resulted

in documentation far superior to previous efforts. They failed, however, in

one major aspect - they addressed documentation typically as a final discrete
step that was carried out after the subject system or program was completed.

Recent advances in software development methodologies, however, have demonstrated
that proper documentation is not only an essential aspect of a system
development, but is also an integral part of the development process itself.

In light of these advances, the EPA has developed standards (based for the

most part on those published by the National Bureau of Standards in FIPS PUB 38)
for the key documentation products of Agency software development efforts.

It is the intention of the Agency to include these standards in the EPA ADP
Manual either by direct inclusion or by reference. EPA data processing
personnel should use these standards when developing information systems in-
house, by contract, or by grant. The standards included herein apply to

the various system development phases that follow a feasibility study.

Each phase has one or more documents associated with it as described below.
Standards for each of these documents are presented in subsequent sections

in the form of a sample Table of Contents, followed by descriptions of the
sections to be included in the document. It is important to note that, although
each document is presented section by section, the primary purpose of these
standards 1s to indicate information that should appear in the subject
documents. In addition to these standards, program coding guidelines for
COBOL, PL/1, and FORTRAN have been included below as a separate section.
These guidelines should be used by programmers during the implementation
phase. Use of these standards is intended to provide EPA with more effective
information systems, and will provide a better basis on which to ensure
system viability during computer center changes or upgrades.

1.2 SOFTWARE DEVELOPMENT WITHIN EPA

The development and maintenance of software systems within EPA has become a
complex activity involving many organizations. Development activities usually
span a number of months and the resulting systems may be used in normal
production for years. Because of the large investment by the Agency in
software, guidelines are essential to ensure that relfable and maintainable
software is produced. These guidelines must be flexible enough to be applicable
to the wide variety of development activities == from infrequently used batch
reporting systems to high use, on-line interactive systems. In keeping with
this, MIDSD has established guidelines for the development of software systems
that include the phases described on the following page. Table 1 provides a
brief overview of a typlcal system development effort, including the processes
involved and approximate resources required.

] Initiation

. Feasibility
(Also commonly referred to as a Concept Study, Functional
Requirements and Alternatives Analysis, or a Definition
Stage)

» System Design
(Also commonly referred to as Functional Design, General
Design, External Design, or System Architecture)

] Program Design
(Also commonly referred to as Detailed Design, or Internal
Design)

. Implementation

] Approval

* Evaluation

The Initiation Phase 1s begun when a user identifies a problem that requires
solving and, together with a system analyst, defines the scope of the
problem and the objectives of its solution. The brief written report
produced in this phase is commonly referred to as a "System Concept

Report.”

The purpose of the Feasibility Phase is to define and scope out a particular
problem, to define and evaluate various alternative solutions, and to
recommend a selected alternative. This work is documented in a Feasibility
Study report. Guidelines for preparing and evaluating feasibility study
reports are available from MIDSD in a separate document. Please note that,
when referring to the "Guidelines for Preparing and Reviewing Feasibility
Studies” document, Sections II.7 though 11.9, which deal with system design,
have been superceded by standards included herein.

1-2

[R oy A

Generally speaking, the guidelines presented below complement the feasibility
study guidelines, and provide standards for the system development process
that would logically begin after completion and management approval of a
feasibility study recommending development of an ADP system.

The system development process begins with a need to take the general
concepts of the feasibility study and to make them more concrete. This is
analagous to an architect's first rendering of a house, and marks the
beginning of the System Design Phase for the proposed ADP systeme. In this
phase, the system requirements are documented in a Functional Description,
Data Dictionary, and a draft User's Guide. Guidelines for these documents
are included herein.

Next comes the Program Design Phase in which the detailed intermal structure
of the system programs are developed and presented in a Design document.

To continue the analogy one more step, this is comparable tc the detailed
construction drawings for a house. This structure should be developed

using an established design methodology (e.g., Jackson, Yourdon, HIPO,

etc). The Program Design Phase is completed by the production of a unified
Implementation and Test Plan.

The Implementation Phase consists of coding, testing, and demonstrating the
system as well as any other steps necessary to produce an operational system
(e.g., data conversion, or capturing new data and establishing required manual
procedures for the new system). During this phase, the Programmer's Maintenance
Manual is produced.

The Approval Phase consists of demonstrating, through separate system demonstrations
and/or parallel operations with an old system, that the system operates as
expected. The final User's Guide 1is produced during this phase.

The Evaluation Phase is performed shortly after the system has been placed
into full production use. A report should be produced that examines how
well the original objectives, budgets, and schedules have been met. Areas
that exceed or fall short of expectations should also be included.

Table 1.

(1 of 2) Overview of System Development Phases

Phase Products of Phase Action at End Personnel
of Phase Involved
Initiation System Concepts and Management Decision to Management
Objectives Report Go or No-Go With Program Analysts
and Management Plan Feasibility Study System Analysts
Feasibility Feasibility Study Report Management Decision Management
to Go or No=Go With Users

System Design

Program Design

Implementation
{See Note)

Approval

Evaluation

Functional Description
Data Dictionary
Draft User's Guide

Program Design Report
Test and Implementation

Programmer's Maintenance
Manual

Final User's Guide

Post~Implementation
Audit Report

System Development

System Manager and

Users Approve Functional
Design and Authorize
Further Development

System Manager and
Programming Manager
Agree on Design,
Plans for Test and
Project Control

System Manager Receives
a System Ready for Final
Test

System Manager and
Users Accept System

Management Recelves an
Evaluation of Project
Objectives, Schedules
and Budget

Program Analysts
System Analysts

System Manager
Users

Program Analysts
System Analysts

System Manager &
Programming Manager
Progranmmers

System Manager
Programming Manager
Programmers

System Manager
Users

Programming Manager
Programmers

Management
Program Analysts

]

B

s ek

Table 1. (2 of 2) Overview of System Development Phases

Estimated Time and Personnel Resources To Complete

Small System Large System
Phase Time Work-Months AWM Time Work-Months WM
(Months) (WM) (Months) (W)

Initiation i/2 -1 1 8 2-3 6 4
Feasibility 1-2 2 17 6 -9 36 22
System Design 1 -2 2 17 4 -6 30 19
Program Design 1 -2 2 17 3 -4 24 15
Implementation 1 1/2-3 3 25 6 -9 54 33
(See Note)

Approval /2 -1 1 8 2-3 6 4
Evaluation 1/2 -1 1 8 1=-2 6 4
Total 6 - 12 12 100 24 ~ 36 162 100

{Note: The cost of computer time during implementation is commonly estimated as
being equal to the implementation personnel cost.)

1-5

2. FUNCTIONAL DESCRIPTION

The system's Functional Description is produced during the System Design
Phase and is used to describe the external characteristics of the subject
systems This description provides a basis of understanding between users
and designers with respect to the initial problem, system requirements,

and development plan.

2-1

‘ FUNCTIONAL DESCRIPTION

TABLE OF CONTENTS

Page

Section 1 ~ Introduction « « ¢« o o o s s o ¢ ¢ ¢ 3 ¢ s o o« s o o 2=3

1.1 Overview « o s « o s o ¢ s ¢« ¢ o o o s o o o s o » & 2=3
1.2 Environment © o 8 s s & s 8 e s 8 s v e s 8 s 0 e o 2=3

Section 2 -~ System Summary « ® & 4 & & @ 6 & ¢ & ¢ & & & 3 e & o 2-4

Background e o 6 o 6 o o s » & o o v v 8 e s e e o & 2=4
Objectives D
Existing Methods and Procedures o« o « ¢ ¢ s o o o « 2=4
Proposed Methods and Procedures « « o ¢ o o« ¢ s o » 2«4
Summary of Improvements o « « o o s s s o s o o o & 25
Summary Of Impacts ¢ & o ¢ ® 6 e € ¥ 8 & 8 & =8 e ¢ o 2-5
Assumptions and Constraints .« « « o o« ¢ ¢ ¢ o« s ¢ s 2-6
Cost Considerations e o s 8 s 1 2 s s s s e s s e e 2=6

. e ¢« 9 ® e
.
N -

[?>k:horulu
[« V. BF A R VNS N
L

Section 3 ~ Detailed Characteristics « « o » o o ¢« o o o « = o o« 2~7

System Functions ¢« o o o o o s s & 2 s o 5 s s o & »
Per formance Characteristics « o« « o o o ¢ o s s o o
Accuracy and Validity =« ¢ ¢« o o o o ¢ o o o o o o &
Timing ¢ ® © 5 5 o 3 * & e 3 % & & B 8 2 B B 5 e s »
Flexibility s & o o o 2 e » =
Inputs e ¢ & % 8 & 2 % 6 6 5 A 4 & ° s e s " @ 8 & =
Outputs e @ & ¢ & ¢ & 8 2 @ 2 3 8 4 & e & 8 B B SV ®
Data CharacteristicsS « « o » 4« ¢ o ¢ 5 o o ¢ s o o »
Failure Contingencies =+ « ¢ « o o s ¢ s 2 s s s & s

.
.

W N
1

LW W W W w W
ombwngmmv—
-

-

-

L]

L]

L]

.

L]

.

.

.

NN RN RN NN RO
GJG)GJG>&'N s~

Section 4 — Operational Environment =« ¢ o« o 2 o s o o o o & « & 2-9

4o1 Equipment e o 58 s 8 2 o 5 8 s 4 8 e s e e e s s s s 2-9
4a2 Support SOftWAYEe ¢ o o o o s = a a o« o o s o o« » » « 2=9
4.3 INterfaces « o o o o o o o » 4 s 2 » % s & & o o s o 2-9
4.4 Security 8nd Privacy 4 8 e 8 & 8 & & & 5 * & 8 s 8 » 2 9
4.5 CONLYoOls « « s o o o 5 o« o o 4 5 58 & o o o o 2 ¢ o o 2-9

’ Section 5 - Development Plan « « = « « o ¢« ¢ o 5 o o 2 o « & s » 2-10

AEEendixeS « & 4+ & 5 5 s 8 a s & s e s 8 8 e s 8 e e v v s e e e 2-11

Appendix A = Project References .« « ¢« o ¢« ¢ ¢ s o o ¢ s o ¢ o o 2-12

Agpéndix B -~ Glossatx e & s s o 8 o s s s s e e e a e s e s e s 2-13

2-2

FUNCTIONAL DESCRIPTION

SECTION 1 -~ INTRODUCTION

1.1 OVERVIEW

This subsection identifies the agency mission addressed by the system to be
developed and summarizes the general nature of the system.

1.2 ENVIRONMENT

This subsection identifies the project sponsor or organization, user, develop-
er (if known), and the computer center or network where the system is to be

implemented.

2=3

SECTION 2 - SYSTEM SUMMARY

2.1 BACKGROUND

This subsection gives background information about the purpose and uses of
the system so as to orient the reader. It explains relationships with other
software or procedures.

2.2 OBJECTIVES

This subsection contains concise, quantified statements about the major
performance requirements of the system. Anticipated operational changes that
will affect the system and its use are identified.

2.3 EXISTING METHODS AND PROCEDURES

This subsection describes existing methods used to satisfy current requirements.
Included is information on:

Organizational and personnel responsibilities
Required and available equipment

Inputs and outputs - their volume and frequency
Deficiencies/limitations

Pertinent cost information.

[3 R BN N 1

Included also are figures and appropriate narrative to help the reader better
understand the existing system. At least one chart should be included which
illustrates the overall processing flow for the existing system. It should
{dentify inputs, functions performed, and outputs. Major inadequacies of the
current system are described.

2.4 PROPOSED METHODS AND PROCEDURES

This subsection describes the proposed system. A chart depicting the proposed
data flow and processing should be included with appropriate narrative.

Other illustrations should be included as necessary to provide a more thorough
understanding of that which is being proposed. Information on the following
should also be included:

Organizational and personnel responsibilities

Required and available equipment

Inputs and outputs - their volume and frequency
Deficiencies/limitations

Pertinent cost information (developmental as well as operational).

Techniques and procedures borrowed from other systems are identified.
Operational functions available to the user are explained.

-~

2.4.1 Summary of Improvements

This subsection gives a summary of the benefits to be obtained from the

proposed system,

in Section 2.3 and additional capabilities provided by the proposed system.
The improvements may be categorized as:

. New capabilities
. Improved existing capabilities
. Timeliness (response time, processing time)
. Elimination of existing deficiencies
. Elimination or reduction of existing capabilities that are no
longer needed.
2.,4,2 Summary of Impacts

This subsection lists the anticipated impacts and associated costs of the
proposed system on the present system as follows:

*

Equipment Iwpacts = Changes to current equipment and build-
ings.

Software Impacts - Changes to existing software in order to
adapt them to the proposed system. If the proposed system
eliminates or degrades any capabllities in the existing
system, these capabilities must also be described, as well
as the reasons for their elimination or degradation.

Organizational Impacts - Personnel impacts as a result of
implementing the proposed system. Discuss any modifi-
cations in positional responsibilities as a result of imple-
menting the new system.

Operational Impacts — Changes required in both staff and
operations center procedures. Discuss impacts on the
relationship of the operating center and the user; new data
sources; quantity, type, and timeliness of data to be pro-
vided; data retention and data retrievals; methods of report-
ing; and modes of user access. Also include recommended
methods for providing input data if these data are not
already available.

Developmental Impacts - User efforts required prior to
installation of the system, such as manpower required to
develop a data base, and operator and computer time necess-
ary for testing. Also identified are requirements for
conversion efforts. Exceptlional levels of staffing or
computer time required for the parallel operation of the
new and existing systems should be discussed.

2-5

It should include a comparison between deficiencies identified

TRTY

2.5 ASSUMPTIONS AND CONSTRAINTS

Any assumptions and constraints that will affect development and operation of
the system will be discussed. Any limitations affecting the desired capability
and explicit identification of any desired capabilities that will not be
provided by the proposed system are discussed. Examples of assumptions

include organizational actions, budget decisions, operational environment and
staffing requirements. Examples of constraints include operation environment,
operator skill level, human factors (man/machine interface), budget limitations
or development schedules.

2.6 COST CONSIDERATIONS

This subsection describes resource and cost factors that may influence the
development, design, and continued operation of the proposed software. Also
discussed are other factors which may determine requirements, such as interfaces
with other systems.

k] A

hp rae e
AR S S Ao T IS

3.1 SYSTEM UNCYVIONS

This subsection briefly crserilas all functions =204 opr-ational capabilities
provided by the proposed syatem. Each is I:sted with a unique ldentifying
number for easy correlation with individual requirement+w described in other
project referenc.s such as the design document and test plan.

3.2 PERFORMANCE CHARACTERISTICS
This subsection describes the specific performance characteristics of the
proposed system. Each characteristic should be listed with an identifying

number to facilivate referencing from other system documents. The performance
characteristics should be organized according to the following categories.

3.2.1 Accuracy and Validity

Briefly describe the accuracy considerations of the proposed system. The
following must be considered:

. Accuracy requirements of mathematical calculations
. Accuracy requirements of data
. Data validation requirements.

3.2.2 Timing

Briefly describe the timing characteristics of the proposed system. The
following should be considered:

° Throughput time

® Response time to queries and to updates of data files
. Response time of major functions
® Priorities imposed by types of inputs and changes to modes

of operation

. Sequencing and interleaving programs and systems (including
the requirements for interrupting a program without loss
of data).

~
|
~

3.2,3 Flexibility

Describe the capability for adapting to changes in requirements, such as:

Changes in mode of operation
Operating environment
Interfaces with other software
Accuracy and validation timing
Planned changes or 1lmprovements.,

® o 000

3.3 INPUTS

This subsection provides examples and explains the various data inputs,
specifying medium, format, range of values, accuracy, etc.

3.4 OUTPUTS

This subsection provides examples and explains the outputs of the proposed system.
Included are quality control outputs that may have been identified, descriptions
and examples of hardcopy reports, and display outputs.

3.5 DATA CHARACTERISTICS

This subsection discusses the storage of the data elements to be used by the
application. It includes information on specific data elements by name and
size, if known. It also discusses dictionaries, tables, and reference files,
if applicable. It includes estimates of total storage for the data and
related components based on a summation of the requirements. It describes
the expected growth of the data and related components.

3.6 FAILURE CONTINGENCIES

This subsection discusses possible failures of the hardware or software system,
the consequences of such failures, and the alternative courses of action that
may satisfy the information requirements. It includes, as appropriate:

® Backup = Specify backup techniques. For example, a backup
technique for disk would be to periodically copy the disk
to a tape.

e Fallback - Explain the fallback techniques, f.e., the use of
other weans to accomplish some portion of requirements. For
example, a fallback technique for an automated system might
be manual manipulation and recording of data.

® Recovery and Restart -~ Discuss recovery and restart techniques,
i.e., the capability to resume execution of software from
a point at which a problem occurred.

———

" 269ATIUNAL ENVIRONMENT

4.1 OULPHENT

This suosaciion descvib.s tiir _gu.pmant capabilities required by the system.
Equipment should be descrih- - 2¢ follows:

. Frocessur{s), including number of each on/off-line and size
of Iunterual scurage.

' Storage media, including number of disk units, tape units,
etc.
. Input/output devices, including number of each on/off-line
* Conmunications net, including line speeds.
4,2 SUPPORT SOFTWARE

This subsection describes support software with which the computer programs
to be developed must interact. Included will be both support software, input
and equipment simulators, and test software, if needed. 1In addition, the
language, operating system, and any Data Base Management System (DBMS) used
will be identified.

4.3 INTERFACES

This subsection describes the interfaces with other systems and subsystems.
For each interface, the following shall be specified:

. Operational considerations of data transfer, such as security

. General description of data transfer requirements and procedures
to and from the subject system

. Formats and volumes of data to be interchanged.

4.4 SECURITY AND PRIVACY

This subsection describes overall security and privacy requirements imposed
on the software. If no specific requirements are imposed, & statement to
that effect should be made.

4.5 CONTROLS

This subsection describes any procedures or authorizations required to access
the system.

2-9

SECTION 5 - DEVELOPMENT PLAN

This section discusses the overall management approach to the development and
implementation of the proposed system. It includes a list of the documentation

to be produced, time frames and milestones for the development of the system,

and necessary participation by other organizations to assure successful development.

APPENDIXES

These sections contain supporting information and lists which for the sake
of convenience and readability are left out of the main sections of this
document. The two described here (Project References and Glossary) are
required. Additional appendixes may be added as appropriate. The order
in which the appendixes occur is incidental.

APPENDIX A - PROJECT REFERENCES

This appendix contains a summary of related pertinent documents or monographs.
Examples are:

. Operating system reference manuals

° System processor reference manuals (e.g., Text Editor)

Requirements documents

Mission definition documents.

APPENDIX B -~ GLOSSARY

The glossary is an alphabetic list of special terms, initials, and
acronyms {and their definitions) that are used in this document.

2-13

i

3. DATA DICTIONARY

The Data Dictionary is produced during the Sys.em Design Phase and is
intended to present the various data items required by the system so that
they may be readily identified, defined, represented, and structured. It
should be noted that the Data Dictionary describes only those data items that
enter the system from the outside world or those items that are produced by
the system for use outside the system« Data icems that exist wholly

within the system are of nc concern at this time.

ar

DATA DICTIONARY

TABLE OF CONTENTS

Page

Section 1 - Introduction e B 8 2 B ® 8 6 % e ® B ° 8 ® 6 € ¢ & & @ 3“3

Section 2 - Data Dictionary ® o o 8 & & 8 & s % s s 8 s e« e s w e 3=4

AEEEHdiXES........--..-..-....oa..o.--3—9
Appendix A - Group/Cateégory Cross—Reference o« + ¢ ¢ o» s« ¢ ¢« » « » 3-10

Aeeendix B - Record CrOBS"Reference e & » » & ¢ B & 8 8 & & & o 3-11

Appendix C - File Cross~Reference .« o« ¢ o « ¢ ¢ o ¢ s o & o o o » 3-12

éppendix D - Data Item Cross—Reference « ¢« o« +« o =« s « s » 5 s » & 3-13

32

o,

SECTION 1 - INTRODUCTION

i This section describes the content and organization of this document. It
also identifies the data base being addressed and describes its organization.

g
H
¢

‘ n

SECTION 2 - DATA DICTIONARY

This section contains a description for each named data entity in the data
base. Each description must not exceed one page in length, There are four
general, organizational entities for which description formats are provided.
They are the individual data item, the data group or category, the record,
and the file. A data item is a single element of data - the smallest unit of
data that can be accessed. A data group or category is a number of data
items or groups of data items which are grouped together logically but which
may be distributed over more than one physical entity of a file or data base.
A record is a collection of data items which are physically grouped together
and form a constituent entity in a file or in a data base. A file is an
organized collection of records.

Some systems allow for the naming of each of these entities and others permit
the naming of only a subset of these. Each named entity is described according
to one of the formats which follow. They are presented in this section in
alphabetic order regardless of entity type. To faciitate rapid reference,
the entity name may also appear in the upper right corner of each page.

TR

DATA ITEM DESCRIPTION

Data Item Name -~ The name by which the item is most commonly known. In
some cases, this name is different from that by which it is
referred to in the data base dictionary. The DBMS dictionary
name can be mentioned separately or with the aliases mentioned
below and flagged in some way to identify it as the DBMS
dictionary name.

Alias Names (Synonyms) — A list of other names, in alphabetical order,
by which the item is known.

Description - A brief (one- or two-sentence) English language statement
describing the meaning of the item.

Type and Length - A designation of the item as being alpha, numeric,
alphanumeric, blank, or speclal character string and the
maximum length of the item in number of characters.

Security/Accessibility - Information regarding access to instances of the
item in a file or data base.

Source = The source(s) from which the data item is obtained.

Validation - A specification of validation criteria (e.g., a range of
values).

Category/Group ~ The name of a group or set of data items in which the item
falls.

File(s) - The name of the file(s) in which the item appears.

Edit Considerations -~ Information regarding the addition, deletion, and
modification of the data item.

GROUP DESCRIPTION

Group Name ~ The name by which a group or category of data items is
most commonly known. In some cases, this is different from
that by which it is referred to in the data base dictionary.
The DBMS dictionary name can be mentioned separately or with the
aliases mentioned below and flagged in some way to identify it
as the DBMS dictionary name.

Alias Names (Synonyms) - A list of other names, in alphabetic order, by
which the group is known.

Description - A brief English language statement describing the meaning
of the group or category.

Securitv/Accessibility - Information regarding access to the group of data
. items in a file or data base.

Source - The source(s) from which ftems in the group are obtained.

File -~ The names of files containing data items in the group.

Content - An alphabetic list of data items and/or groups that make up
the group.

3-6

RECORD DESCRIPTION

Record Name ~ The name by which the record is most commonly known.

Alias Names (Synonyms) = A list of other names in alphabetic order by
which the record is known.

Description - A brief English language statement describing the record.

Content = An alphabetical list of data items and/or groups contained within
the record.

File - The name of the file in which the record occurs.

Source - The source(s) from which data items are obtained for inclusion
in the record.

Edit Considerations - Information regarding addition and deletion of the
record type and modification of the data within the record.

3-7

Bdeoot gl

[

B e

FILE DESCRIPTION

F{le Name - The proper name by which the file is known.

Alias Names (Synonyms) -~ A list of other names by which the file 1s known.

Description - A brief English language statement of the purpose of the
file.

Security/Accessibility - Information regarding access to and update of
the file.

Source - The sources of data for inclusion in the file.

Content ~ An alphabetic list of named records which make up the file.

Media - Disk, magnetic tape, card, etc.

Organization -~ Physical organization of the file (i.e., random,
sequential, indexed sequential, ete.)

APPENDIXES

Various cross-references of data entities are presented in the appendixes.
They faciljtate the identification of related and constituent data entities
from the name of a single entity. The cross-references described in the
following pages are examples of the types of cross-references that may be
developed for a particular system; others may be developed as appropriate.

3-9

g

PR

APPENDIX A ~ GROUP/CATEGORY CROSS~REFERENCE

This appendix lists in alphabetic order the names of all data groups and
gives in alphabetic order the proper names for each data item or subgroup in

each group.

3-10

APPENDIX B - RECORD CROSS~REFERENCE

This appendix lists in alphabetic order the names of all records and gives
in alphabetic order the names of all data items in each record.

3-11

APPENDIX C - FILE CROSS-REFERENCE

This appendix lists in alphabetic order the names of all files and gives
in alphabetic order the names of all records in each file.

ol .

IS A

i

ROl L

3~12

APPENDIX D -~ DATA ITEM CROSS-REFERENCE

This appendix lists in alphabetic order all possible names, proper and

alias, for all possible data entities. The proper names have no cross-
reference presented. The alias names are cross-referenced to the appropriate
proper name.

4e USER'S GUIDE

A draft User's Guide is produced during the System Design Phase and is
finalized during the Approval Phase. A prime consideration for producing
a draft User's Guide is that it allows the user to determine his/her

role in the final system before any serious misconceptions are implemented.

T

Section 1

USER'S GUIDE

TABLE OF CONTENTS

- Introduction a e e e

1.1
1.2

Section 2

Purpose « ¢ o o s o o o
User Profile « o « ¢« « &

= System Summary « o o o

2.
2.
2

.

W N b

Section 3

Dverview v« o« o o« o o o »
Operational Environment
System Configuration . .

~ System Operation . . .

3.1

. L L L
2 a ®

- .
WN!\"‘\)N:\)NI‘JNNP\)

.

W00 S B RO e

Common System Initiation
are described) « « . o« &
Process 1 Description .
Security « ¢« o o ¢ s o o
Initiation Procedures .
Operational Procedures .

Error and Recovery Procedures .« . .

Constraints/Limitations
Data Base + ¢ ¢ s o o &
Control Language « « «
Input « o+ o & ¢ ¢ 4 ¢ &
Output « o o o o o o » &

Procedures {if several processes

® 8 & & 8 ® 8 & & 5 o e & 2 2 s =

s & & 2 e

-
.
.
.
.
L]

* o & 9
.
.
.
.
.
.
»
.
.
.

o o o 2 ° @

¢ & = @ e ® % 3 & > &8 e S 2 9 s @

- 4 & & B & &+ 82 * e 5 B 4 & a e @

& & 4 92 5 O B 2 ° 9 s s =2 s 0

Process 2 Description (each described system process
includes the subsections given for Section 3.2)

AEEendixeS-noa..o.ooou

Appendix A - Project References .
Appendix B = Glossary « o« ¢ s « o
Appendix C - Diagnostic Messages .
Appendix D - Control Instructions
Appendix E -

®» ® & 2 ® & ® & 6 5 5 s & & s &

Input Vocabulary/Query Language « « « o o s s » » o o o

Page
4=3

4=3
4-3

44
4=4
4=~4
44

4-5

b«l-\b&\:“li\bbb&\b
NGO b

4-8

4-10
4-11
4-12

4-13

'

e

"

USER'S GUIDE

SECTION 1 ~ INTRODUCTION

1.1 PURPOSE

This subsection briefly describes the purpose of the system being discussed -
the reason for its existence. It relates the system to a particular agency
mission.

1.2 USER PROFILE

This subsection identifies the organization for which the use of this system
is intended. It describes the person{s) for whom this document is intended.
It expresses whatever assumptions are made about the users, their capabilitie
and their level of expertise. It also identifies related systems, programs
and/or operational procedures with which the user should be familiar.

4-3

SECTION 2 - SYSTEM SUMMARY

2.1 OVERVIEW

This subsection is a high-level description of what the system does. It
identifies and summarizes the input and relates the processing that is
performed to the output that is produced. Types of input are identified as
either required or optional. If a system with several operational capabilities
is being described, all such capabilities are briefly described, as are the
relationships between them, A system flow diagram is included and the
substance of this subsection may consist entirely of a narrative description

of that diagram.

2,2 OPERATIONAL ENVIRONMENT

This subsection identifies the host computer(s), operating system(s), executive
software system, and other major system components with which the system must
interface. If it is part of a sequentlal processing environment, the processing
that {mmediately precedes and/or prepares input for this process is identified,
as 1s the processing which immediately follows,.

2.3 SYSTEM CONFIGURATION

This subsection briefly relates the computer type and model and the required
input -and output devices., If the hardware configuration may vary, both ideal
and minimal configurations are described. Any support equipment (such as
plotters) that may be needed is also included,

L

SECTION 3 - SYSTEM OPERATION

3.1 COMMON SYSTEM INITIATION PROCEDURES

Procedures that must be followed to Initiate system operation will be detailed
in this subsection. It may include information such as job request forms,
control card formats, or log-on procedures for on-line operations. If these
procedures are standard or are detailed in another manual, that manual will

be referenced.

For a system with several operational capabilities, this subsection describes
preliminary operational procedures that are common to the various system
capabilities. If a single program or operational capability is being described
in this document, this subsection may be omitted.

3.2 PROCESS 1
The function(s) of the first process whose operational characteristics aée

described in the subsections that immediately follow. Section 3.2 (including
3.2.1 through 3.2.9) will be repeated for each process that is described.

3.2.1 Security

The procedures that should be followed to use input, files, data bases,
output, or computer progranms to which access is restricted are included.

3.2.2 Initiation Procedures

A step-by-step description of the operational procedures for starting up the
program or particular operational capability, including the same type of
information discussed in Section 3.1 as it pertains to the program

or system capability. Examples of job deck construction, setup information,
loading procedures, and instructions for input data preparation would be included.

3.2.3 Operational Procedures

Step-by-step procedures for Interfacing with this system capability are presented.

4=5

3.2.4 Error and Recoverv Procedures

All known anomalous conditions are described with references to the corresponding
diagnostics listed in Appendix C. Appropriate recovery procedures for
each condition are alsc described.

3.2.5 Constraints/Limitations

This subsection discusses any restrictions that may be imposed.
3.2.6 Data Base

This subsection describes data base files that are referenced, supported, or
kept current by the systems They are referred to in operational or functional
terms rather than by program designation, The description {includes the type
of data in the files, the uses made of the data, and the various keys by which
data can be accessed.

3.2.7 Control Language

This subsection describes the control language used to control the initiation

and sequencing of runs in either batch or on-line mode and the query language

used to reference the data base. The description includes the requirements

for, and the preparation of, control cards which may be required by the systenm
. or application process. If this information is contained in other support I

documentation, that source may be referenced. The syntax of a query language '

is described in detail sufficient for the uninitiated to develop the full

range of data base inquiry that is permitted. Summaries of the control language

and of the query language may be included as appendixes (see Appendixes D and E)

for easy reference.

3.2.8 Input

This subsection discusses all inputs for this process and any interrelation-

ships which may be helpful to its understanding. A clear, detailed description

of each valid input is given in separate subsections., Valid input is

that set of data which is recognized by the system {(although it may contain
erroneous fields); it is to be clearly defined. 1Invalid data is that which is not
valid - that is, data which is not recognized by the system and which may

either crash the system or produce unpredictable results. Such invalid data
should be discussed to whatever extent is both possible and meaningful. -
Valid data is described in terms of the characteristics listed below.

Samples of completed data layout forms and input data formats and sequences will
be included. The data characteristics to be included are given below,

TP VICRrTY

. Medium = The physical form of the input

. Length - Maximum number of characters per line or per record

. Content

. Format

. Punctuation - Spacing and use of symbols (e.g., slash, asterick,

character combinations) to denote start and end of input,
lines, or data groups, etc.

® Sequencing - Order of items in the input

. Labeling - Use of tags or identifiers to denote major data
sets

. Combinations - Rules forbidding use of particular characters
or combinations of parameters.

3.2.9 Qutput

This subsection describes all nondiagnostic output., Each type of output
is described in a separate subsection which contains the following
information:

. Purpose - The way in which the output is utilized

. Medium - The physical form of the output

. Format
. Examples

™ Security ~ Distribution and access considerations

® Files - content, organization, record structure
® Data Base - content, key information.

APPENDIXES

These sections contain supporting information and lists which for the sake of
convenience and readability are left out of the main sections of this document.
The first three described here {Project References, Glossary, and Diagnostic

1 Messages) are required. Any of the others can be eliminated if not pertinent

k and additional appendixes may be added as appropriate. The order in which

the appendixes occur is incidental.

1 e

4-8

APPENDIX A — PROJECT REFERENCES

This appendix contains a summary of related pertinent documents or monographs.
Examples are:

° Operating system reference manuals

. Systen processor reference manuals (e.g., Text Editor)
. Requirements documents

° Mission definition documents.

4-9

APPENDIX B -~ GLOSSARY

The glossary is an alphabetic list of special terms, initials, and acronyms
(and their definitions) that are used in this document,

o e

1 g

4~10

APPENDIX C ~ DIAGNOSTIC MESSAGES

All diagnostic and error messages that are output by the software described
in this document are listed in this appendix. Each diagnostic will have a

unique identifying reference number by which it can be referred to in other
sections of this document.

APPENDIX D - CONTROL INSTRUCTIONS

Described in this appendix are specific references of input commands or
operational procedures that perform a single function and which might, for
the sake of convenience, be better referred to by a single term in Sectiocns

3.1, 3.2.2, or 3.2.3 (Common System Initifation, Initiation, and Operational
Procedures).

4-12

APPENDIX E - INPUT VOCABULARY/QUERY LANGUAGE

This appendix lists the verbs and keywords that are required to interface
with the software described in this document. A brief descriptiom of the
function and/or meaning of each word is included.

T

Se DESIGN DOCUMENT

The Design Document is produced during the Program Design Phase. This docume

- is intended for use by analysts and programmers during the Implementation
Phase and contains precise specifications relating to the internal structure
of the subject system or program.

B TN

et

.

¥
i

1 Pt

DESIGN DOCUMENT

TABLE OF CONTENTS

Section 1 - Introduction ® ® 6 & 8 e @+ & B = T & 2 A e & & ° ¥ o s » & 5-3

Section 2 - Summary Df Rgﬂuirements & & 9 & & & 2 » e+ e s s = 2 & v 5-4

System Description s]
System Requirements o+ « o « o o o ¢ ¢ o o ¢ 5 s » s s s &« » =4
1 Performance Requirements ¢« « s « o o o « o o s » s a o & o « 54
2 Functional Requirements « a2 o & o o & s % o s n s e s a s e 54
3 User Requirements * ¢ 2 s 8 & a2 & 8 2 s 4 8 s a s v o8 s e & 54
4 System Interface Requirements « o+ « o ¢ s s o = o o s o o o 34

Section 3 - Environment ® o & % s 8 s e 8 8 s 8 s s e e s s e s e s s 55

3.1 Equiment Environment e & o & o 2 2 & » = & 2 e @

3.2 Support Software Environment « o o 2 2 o s o ¢ o » o ¢ ¢« & & 5=5
3.3 INnterfaces o « » o o o o o 5 s ¢ o & & 2 o 5 s s & o o s s » b
3.4 Security and PfiVaCy v ¥ 6 e s B 8 8 8 8 8 8 & B * s e » = 5'6
3.5 CONLrols ¢« o o o o a4 = & o s 5 4 o &8 & o s & o 4 & ¢ s v o & 5-6

Section 4 - Design Characteristics S ¢ a2 4 & & s e ¢ & 4 " 8 e s s 5”7

4.1 Operations o « o o s o o o o » o o o ¢ o o« &« s o 8 ¢ o s o o 57
4,2 System Logical FlOW o o ¢ ¢ 2 o ¢ 8 ¢ 8 s 5 o 6 s ¢ 5 » & o 57
4,3 System DAata o o s o ¢ ¢ o 4 ¢ o 6 2 6 6 5 s 6 ¢ 0 s 6 o & 5~7
4.3.1 INPULS o o o o o ¢ 2 s & o o o 5 o o & s s ¢ o s s & o s s o« 37
4,3,2 Outputs ® o 5 © 8 e o % o s & % s w s s a s e 2 s a s e s a 58
4.3.3 Data Base © o & » 5 o ® s 6 B s e 4 8 6 8 6 s s e s s s s & 58

Section 5 =~ Program Specifications « . « o o o ¢ + o o s ¢ ¢ o o s s . 5.9

5.1 Subsystem A e v & 0 & & 4 s 6 8 & v 8 4 s s 2 s s 2 u o e « 59
5-1.1 Program (Identify) Specification » & @ ® @ 8 5 & € * 8 0 & e 5-9
5010n Program (Identify) Specification a e 6 ® & ® ® & ® &6 & e » = 5_9

AEEERdiX&S " @ & o & © 2 & 6 & & 82 * S & @ B B B 3 = P & e & s 2 0 ' 5-10

Appendix A - Project References .« ¢ « o« o o ¢ s = o s o o s o s = =« « 511

AEpendix B - Clossgzzr e s s & 8 8 8 s s s e s 8 s 8 s v e e s s e e s 512

DESIGN DOCUMENT

SECTION 1 = INTRODUCTION

This section summarizes the circumstances and events leading to the development
of this design. It identifies the agency mission that is being addressed aund

the project sponsor or organization. It summarizes the general nature of the
system, briefly describing the operational preoblem that is being solved. Any
studies or reports which bear significantly on the design approach are referenced.

SECTION 2 - SUMMARY OF REQUIREMENTS

This section provides a summary of the system characteristics and requirements.
It is an extension of the Functional Description document. Any changes to

the characteristics or requirements set forth in the Functional Description
must be specifically identified.

2.1 SYSTEM DESCRIPTION

This subsection provides a general description of the system to establish a
frame of reference for the remainder of the document. Higher order and
parallel systems and their documentation will be referenced as required to
enhance this general description. Also included will be a8 chart showing the
relationships of the user organizations to the major components of the system
and a chart showing the interrelationships of the system components. These
charts shall be based on or be updated versions of the charts included in the
Functional Description document. The detailed charts included in Section 4
are based on the charts included here.

2.2 SYSTEM REQUIREMENTS .
£

This subsection lists the requirements which must be addressed by the system ' /

being designed. The requirements must be stated to permit a discernable

means of proving that each has been fulfilled. For ease of reference, each

requirement should have a unique identifying number. General requirements

should be stated and then broken down into appropriate lower levels of detail.

A cross-reference table or chart which relates requirements to subsystem,

subroutine, module, or component is desirable. The requirements should be

categorized. Some possible categories are suggested below.

2.2.1 Performance Requirements

2.2.1.1 Timing

2.2.1,2 Accuracy and Validity

2.2.1.3 Flexibility

2.,2.2 Functional Requirements

2.2.2.1 Function 1 -

2.2.2.1.1 Subfunction !

2.2,2.1.2 Subfunction 2

2.2.2.2 Function 2 .

2.2.2.n Function n

2,2.3 User Requirements

2.2.4 System Interface Requirements

SECTION 3 - ENVIRONMENT

This section provides an expansion of the environment given in the Functional
Description document. Changes in the environment that do not affect the
scope of the project as described in the Functional Description and are the
result of ongoing analysis and design will be explicitly identified within
the appropriate subsections of this section. These changes will be discussed
in terms of the impacts on the currently available environmental components
(equipment, software, etc.) as well as the impacts on estimates and functions
which were based on the original planned environment.

3.1 EQUIPMENT ENVIRONMENT

This subsection provides a description of the equipment required for the
operation of the system. Included will be descriptions of the equipment

presently available as well as a more detailed discussion of the characteristics

of any new equipment necessary. Equipment requirements will be related to
the requirements stated in the Functional Description document. A guideline
for equipment to be described follows:

1. Processor(s), including number of each on/off-line and size of
internal storage

2 Storage media, including number of disk units, tape units, etc.
3. Input/output devices, including number of each on/off-line

4. Communications net, including line speeds.

3,2 SUPPORT SOFTWARE ENVIRONMENT

This subsection provides a description of the support software with which the
computer programs to be developed must interact. Included will be both
support software and test software, if needed. The correct nomenclature and
documentation references of each such software system, subsystem, and program
shall be provided. Included must be a reference to the languages {compiler,
assembler, program, query, etc.), the operating system, and any Data Base
Management System (DBMS) to be used. This description must relate to and
expand on the information provided in the Functional Description document.

If operation of the computer programs to be developed is dependent upon
forthconing changes to support software, the nature, status, and anticipated
availability date of such changes must be identified and discussed.

3.3 INTERFACES

This subsection provides a description of the interfaces with other applicatiouns
programs, including those of other operational capabilities and from other

EPA organizations.

3.4 SECURITY AND PRIVACY

This subsection describes the overall security and privacy considerations of
the system. If none are imposed, a statement to that effect must be made.

3.5 CONTROLS

This subsection describes anyv operational controls imposed on the system and
jdentifies the sources of these controls.

p—

SECTION 4 - DESIGN CHARACTERISTICS

4.1 OPERATIONS

This subsection describes the operational characteristics of the system and
the computer centers where the software will be installed.

4.2 SYSTEM LOGICAL FLOW

This subsection presents a high-level discussion of inputs, processing
performed, and outputs produced. The logical flow of the system is depicted
in high-level charts which provide an integrated presentation of system
dynamics, entrances and exits, interfaces with other programs, support
software, controls, and data flow.

If the scope of this document is the design of a system, this subsection will
describe the orderly set of subsystems that make up the system. If the scope

of this document is an individual subsystem or program, this subsection
relates lower level functions to an orderly set of named routines.

4.3 SYSTEM DATA

This subsection describes the inputs, outputs, and data used. Optionally,
these may be described with the individual programs to which they relate,

4.3.1 Inputs

Each input will be described as follows:

* Title and tag

. Format and acceptable range of values

. Number of items

(] Means of entry and input initiatién procedures

. Expected volume and frequency, including special handling
{such as queuing and priority handling) for high-density
periods

° Priority (e.g., routine, emexrgency)

® Sources, form at source, and disposition of source documents

. Privacy and security considerations

. Requirements for timeliness,

4.3.2 Outputs

é Each output will be described as follows:
‘3 . Title and tag
! ® Format, including headings, line spacing, arrangement,
totals, etc.
. Number of items
. Preprinted form requirements

. Means of display (e.g., CRT, printer, typewriter, projector,
alarm type, internal)

%] Expected volume and frequency, including special handling (such
‘ as queuing and priority handling) for high-density periods
° Priority (e.g., routine, emergency)
.' . Tining requirements (e.g., response time)
® Requirements for accuracy
. User recipients and use of displays, such as notificationm,
trends, or briefings
* Privacy and security considerations.
4.3.3 Data Base
Each data file, table, dictionary, or directory will be described as follows:
* Title and tag
] Description of content
; ;) Estimate of number of records or entries
' , ° Storage, including type of storage, estimates of amount of
3 storage and, if known, beginning and ending addresses
E. - () Privacy and security considerations
. Data retention.

SECTION 5 — PROGRAM SPECIFICATIONS

This section identifies and describes the individual software units constituting
the system, subsystem, or program. If the scope of this document is the
design of a system, the program descriptions which follow are grouped according
to subsystem. Utility routines are to be grouped as a utility subsystenm.

5.1 SUBSYSTEM A

This subsection describes the aggregate functions performed by the programs
or subroutines that are described in the subsections which follow. It alsoc
identifies the requirements listed in Section 2.2 that are addressed by this
software. If the scope of this document is the design of a system, this and
the following subsections are repeated for each subsystem. Programs which do
not fall into the category of any specific subsystem should be grouped under
a general category such as Library Routines or Utility Routines.

5.1.1 Program (Identify) Specification

This subsection identifies the functions performed by the program and describss
the procedures employed to provide those functions. The types of information
to be provided are as follows:

° Calling sequence and argument description
® Inputs/outputs

. Program logic

] Error conditions and their disposition

® Significant design considerations

5.1.n Program (Identify) Specification

A subsection, as described above, is provided for each program (1 through n)
within the system.

5-9

APPENDIXES

These sections contaln supporting information and lists which for the sake of
convenience and readability are left out of the main sections of this document.
The two described here (Project References and Glossary) are required.
Additional appendixes may be added as appropriate. The order in which the
appendixes occur is incidental.

5-10

‘..

RprIrys Y

APPENDIX A - PROJECT REFERENRCES

This appendix contains a summary of related pertinent documents or monograp
Examples are:

. Operating system reference manuals
. System processor reference manuals (e.g., Text Editor)
[Requirements documents
] Mission definition documents.
5-11

APPENDIX B - GLOSSARY

The glossary is an alphabetic list of special terms, initials, and
acronyms (and their definitions) that are used in this document,

{
|

| e o aide:

6. IMPLEMENTATION AND TEST PLAN

High quality software is easy-to-use, accurate, robust, understandable, simple

efficient. This list may not be complete (it also may not be minimal) but, rou
achievement of these characteristics would have far reaching impact on EPA syst
and mission.

The ease~of-use of a system has to do with the "friendliness" of the user inter
Friendly interfaces insulate the user from many of the vagaries of the computer
system. Such interfaces, which are written in user terminology, reduce the num
of errors committed by the user and make the process of getting the user's work
more reliable. A side benefit 1s that users have less vested interest in the s
system and are able to change from computing system to computing system more fr

The accuracy of a system is the degree to which it satisfies its intended requi
Not only does an accurate system contain few errors, but its design supports th
requirements, and its documentation is also accurate. In other words, it solve
right problem correctly. An accurate system embedded in & good working environm
makes for high reliability.

Robustness of a system is the degree to which small changes in the requirements
rise to small changes in the system. Robust systems are easy to maintain. Rob
is achieved primarily by designing the system as a model of the problem enviro
as seen through the eyes of the user,

Understandability of a software system is achieved through good documentation,
adherence to good coding standards, and programming in well-known languages.

Simplicity is a virtue in its own right but 1s implied by the other characteris
above.

Efficiency is by far the most abused notion on this list. Consequently it has

fashionable to put all efficiency considerations aside while in reality we want
the efficiency we can afford. In other words, we want that amount of efficienc
that will minimize (not lessen) the system life cycle cost.

The Implementation and Test Plan addresses the last five of these considerations

IMPLEMENTATION AND TEST PLAN

TABLE OF CONTENTS

1.1 Overviewe ¢« » o ¢ # & o o o o o & o 6 5 5 6 8 8 6 5 858 ¢ 4 0 o o o

2.1 Implementation Plan « « « o o o o s o o« o ¢ o # & s ¢« o o 5 6 s o » 6=3 -
2.1.1 Hardware Environmente o « o o ¢ » ¢ ¢ » o 5 s o o s ¢ 6 o ¢ » s ¢ & 6=3

2.1.2 Software Environmente « » o o o s s o o 8 o o ¢ v ¢ o o o & ¢ o s s 6=3

2.1.3 Implementation Strategy e o o 8 6 5 s o 5 s a2 8 s v a8 s s e s s s s 6=3

2.1.4 Configuration Control o o o ¢ o o 5 s o o« ¢ ¢ o ¢ ¢ ¢ 6 06 6 o o ¢ » 6=3

2.1.5 Change Controle o o o o s o 2 a s ¢ o o o 6 o 35 6 6 8 6 o o o o s » 6=3

2.1.6 Schedules o « o o o 5 o o 2 o o # o 2 5 5 ¢ ¢ & 2 ¢ s 2 4 2 5 o o o 6-3

2.1.7 Resource Ut1lizations o« o« o o 5 o ¢ o o o ¢ o ¢ s o ¢ o s s 6 o o » 6-3

2.1.8 Reporting e & 8 s % o v 4 & 2 s s e w s s st s e s s e v s s s s s 6-4

2.2 TeSt Plafl « « o« o o o o 5 & 2 s s o« 5 & o 6 @« 5 s « o o o o » s o & 5-4

2, 2.1 Testing OVErvieWs « o + ¢ o o o o o o 5 o 2 s o6 o » o o 5 s o s + o« 6=4

2,2.2 Types Of FALlUres + « » o o o o o ¢ ¢ o ¢ o ¢ o 5 ¢ 8 2 o o ¢ o » o b4

2.2.2.1 System Design FailuresSe « » ¢ o ¢ o o o ¢ ¢ o s o o s s s o ¢ s o & 64

2.2.2.2 Detailed Design FailuresSe o« o « ¢ o s o o 5 ¢ » s ¢ s s s o s s « o 6=4

2.2.2.3 Program FallureSs s+ + s « o s o ¢ o« o 5 o o » s ¢ s s s s s o s o s 6=4

202424 System FA1llures o+ » » s s o ¢ o o o 2 s s s 5 ¢ s o ¢« s s ¢ ¢ o o o 65

2.2.2.5 Performance Falluress + « o« o o o o « o o o o » s 5 o s s 2 s s o o 6=5

g

IMPLEMENTATION AND TEST PLAN

1.1 OVERVIEW

The purpose of this document is to describe those implementation and testing efforts
designed to result in high-quality software.

2.1 IMPLEMENTATION PLAN
2.1.1 Hardware Environment

In this section include a description of the hardware that 1s available for the
implementation of this system.

2.1.2 Software Environment

In this section, describe any software tools that will be used such as pre-processors,
library systems, code analyzers, test data generators. Also state language selections
and data base management systems.

2.1.3 Implementation Strategy

Describe the implementation strategy, "Will the system be developed 'bottom-up' with
lower level components belng combined to form higher—level components? Will it be
developed 'top~down' with high level componeats being expanded in terms of lower-
level components? Will the system be developed in versions with an ever—increasing
set of implemented features or will only the final version be delivered?”

2.1.4 Configuration Control

Describe procedures for ensuring that completed components are “"frozen"” and protected
from future change.

2.1.5 Change Control

Describe change control procedures. These procedures should allow for two kinds of
changes. Those that originate from the user in the form of changed requirements and
those that originate during the implementation in the form of errors or weaknesses
in the detailed design. These procedures should contain provisions for decision-
making and record keeping that are assocliated with these changes.

2.1.6 Schedule

Include in this section a list of all components {modules, programs) of the system

as defined by the detailed design in the order that they must be completed. Include
resource estimates for both the implementation and testing of each component, including
the system testing that goes with each delivered version.

2.1.7 Resource Utilizatfon

Present estimates of computing resources required along with procedures for controlling

computing resource usage.

6-3

2.1.8 Reporting

Progress reporting procedures will be described in this section including chart
formats, rules for declaring components complete and reporting frequency. Progress
should only be reported in terms of completed activities.

2,2 TEST PLAN
2.2.1 Testing Overview

The ultimate objective of any testing process during implementation is to attain a
certain level of confidence that the subject of the test is performing according to
specifications. We reach this objective by designing a set of test procedures that
will demonstrate the existance of errors. Note that we do not try to find all errors
in a program or system (that being much like trying to catch the last fish in a lake
without knowing how many fish there are or how good our bait 1s); rather, we try to
find those errors which are most likely to occur or which would be most costly should
they occur,

In light of the above comments, this section should describe the overall testing
strategy for this system as well as which kinds of errors are most important to
detect for this system.

2,2.2 Types of Failures
A system may fail (i.e., not satisfy user requirements) in the following ways:

e The System Design (Functional Description, Draft User Guide, Data
Dictionary) does not accurately reflect requirements.

e The Detalled Design is not a faithful elaboration of the System Design.
(Frequently referred to as a specification error.)

e A program within the system fails to meet its specifications. This
fatlure can occur in two ways: (1) Wrong operations are performed onm
program path; (2) The path taken is the wrong one for some data.

o The performance (response time, turn around time, etc.) of the system
may not be as specified.

e The system design may not be implementable in the chosen environment.

This section should indicate those types of failures considered applicable and the
following subsections should discuss the steps taken to detect these errors.

2.2.2.1 System Design Failures
The conformance of the System Design to the requirements will have been certified by
a design review prior to the beginning of Detail Design. This section should discuss

the findings of this design review in terms of the robustness and simplicity of this
system.

64

2.2.2.2 Detéiled Design Failures

The Detailed Design can best be shown to be a faithful representation of the System
Design by a technical review team made up primarily of data processing personnel.
This section will describe procedures for performing that review and will dictate the
makeup of the team.

2.2.2.3 Program Failures

0f the two kinds of program failures mentioned above, the first kind is best detected
through the use of "coverage” tests which ensure that each statement of the program
has been executed and the result observed (either explicitly or implicitly). Fallures
of the second kind are best detected through a formal review of the subject code by
disinterested programmers (also ensuring adherence to coding guidelines).

This section should, therefore, describe all applicable test cases (including how
to run them, their expected results, and procedures to follow should they fail) and
describe the findings of the code review.

2.2.2.4 System Failures

This section will describe procedures for conducting the system test. It will consist
of three parts: (1) a review of the user documentation to ensure that it faithfully
represents the System Design and the Detailed Design; (2) & re-run of all program tests
on the completed system or version; and (3) a set of randomly selected tests to
determine if there has been a gross misunderstanding of the problem. All test cases
will be developed from user documentation and will be documented prior to running

with the expected results. There must be a system test for every delivered version.

2.2.2.5 Performance Failures

This section will describe procedures for doing a volume test to determine timings
and to estimate operational costs.

7. PROGRAMMER'S MAINTENANCE MANUAL

The Programmer's Maintenance Manual is produced during the Implementation
Phase. This document is intended for use by analysts and programmers when
performing maintenance or enhancement activities in order to increase thelr
understanding of the subject program. Even when programs are written according
to current standards, a well written maintsnance manual will invariably
decrease the amount of time required to understand both the program and its
role within the system.

7-1

PROGRAMMER 'S ~ MAINTENANCE MANUAL

TABLE OF CONTENTS

Sectionl-lntroduction......-......-..o..-...7—4

1 Summary OVerview o« s o s o s o ¢ o ¢ » o o ¢ s o 8 s » ¢« ¢ & I=4
2 HIStOTY + o s 5 » o o 5 o 5 5 o v 2 8 ¢ s 2 ¢« o ¢ o ¢ o o o« I=4
3 Environment =« o o o s o o o o o 8 s ¢ ¢ 2 o s o = s = a o« o I-4
4 Document Organization .+ o o o o o o o s ¢ a ¢ o o s o o =« o« 1-4

Section 2 ~ System OVErview « s » o 2 2 » s o o 2 s s ¢ ¢« o s o o & s I=5

Applicationn « » o o 5 o 5 6 6 s b e s e 6 2 6 s e s s e e e I=5
Requirements e " P B 9 8 & & 8 & & & & 0 6 s B * " " P e * @ 7'5
Software FunctionNs o « o« « s o 2 o o « 2 « s s o« ¢ o o« o ¢ o I=5
Program Hierarchy « « o ¢ o ¢ ¢ ¢ ¢ ¢ ¢ « o« o« o o« o« o s o s 715
INPDUES o 4 o s s & » s & » o » 2 o & s s 2 s s s s« s o o o o I=5
Processing + « ¢« o o ¢ o o o o 5 s o o ¢ ¢ o s o s s ¢ ¢ & » I=5
Outputs ® 6 5 8 8 8 &6 & & & 8 & & ¥ ¥ S5 B & ® 6 8 6 5 o & @ 7“5
INterfaces + o + o o o o o o o 4 o o s o 2 o s s s s o 6 o o I-6

e @

RN DN
[] L]
00~ O LN B Wy

~
!
~

Section 3 = Program Descriptions L T T T S S S R S S R T S S S

3.1 Identification of Program 1 « u o « o ¢ o ¢ o o ¢ o« o s o o =7
) 3.1.1 Software Function .« + o ¢ ¢ o o o s « o s » s ¢ s o s & o o I=7
3.102 Inputs @ ® e e e s e e B B P N N 6 & &6 F e & & & & & 2 s s & 7-7
3.1.3 Processing o o o o 5 s o o o o s s o o« 0 o s v s s 2 s o « o I=7
3.1.4 OUCPUCS T
3.1.5 Interface Requirements s o ¢ & s v u s e o s 8 e s s s s e s I8
3.1.6 Data Description « ¢« ¢ o o s ¢ o o o o o o o e + o o o 7-8
3.1.7 Program Execution Requirements « « » « s s » s ¢ ¢ o« « s & o /-8
3.2 Identification of Program 2 .« « « « o s ¢ ¢ » o o ¢« « s s « /=8

-
.

Section 4 ~ System Environment « o« « o« o o + s » s 5 « a o s 2 s o & & 7—9

Hardware Configuration « « ¢ « o o o ¢« o s ¢ ¢ s o s = o o &

PN
\J'?J'\J
O 0w

1
.2 Software Configuration « « ¢ o o o s o ¢ o o 6 ¢ « o o o 2
3 Data Base Requirements e 8 e ® 2 s 5 8 s o » E B s . x s & o

@

TABLE OF CONTENTS (Cont'd)

Section 5 - Maintenance Tools and Procedures « « « &«

1 Configuration Control and Management . . .
2 Programming Conventions « « « o« o ¢ » &
3 Documentation Conventions . . .
oh Test Tools and Procedures « « « o« o o o o
5 Error Procedures « « o« o« o s s o« s s o s o
6 Special Maintenance Procedures « « « o & o

AEEendiXES..--....-.......-...o

Appendix A - Project References .+ s o o » » & & & &

.“_[‘EndixB-Glossary e & & o & ¢ 2 o * e & o * s @

7-13

7-14

PROGRAMMER'S MAINTENANCE MANUAL

SECTION 1 - INTRODUCTION -

l.1 SUMMARY OVERVIEW

This subsection introduces the reader to the software system described in
this manual. The general nature and application of the processing performed
by the software to be maintained are presented. Any security or privacy
requirements are included in this subsection.

1.2 HISTORY

This subsection presents the history of the development of the software
system. All major events are summarized and the applicable reference material
is identified and discussed, including all significant source documents.

(Al]l references will be identified in Appendix A, Project References.)

1.3 ENVIRONMENT
. This subsection identifies the environment of software described in this £
document. Items such as the following are included: - }
® Program sponsor
® Software developer
) Computer center or network where software is implemented
® Normal user(s).
1.4 DOCUMENT ORGANIZATION

This subsection presents the purpose of the Program Maintenance Manual, the
intended users, and a summary statement on the contents of each section

ﬁ of the manual.

——

SECTION 2 - SYSTEM OVERVIEW

2.1 APPLICATION
This subsection describes the purpose of the software system and the functio

it performs. This description is presented in terms of user—oriented
requirements as opposed to software functions performed within the system.

2.2 REQUIREMENTS

This suhsection 1lists all the user requirements fulfilled by the software
system. Requirements are related to programs in order to aid the individual
making modifications in relating the program structure to specific requireme
(see the following subsections).

2.3 SOFTWARE FUNCTIONS

This subsection summarizes all software functions and relates the software
functions to the requirements fulfilled by the software system.

2.4 PROGRAM HIERARCHY

This subsection presents a top~down structure of the software system and
relates each software function to the individual program(s) satisfying the
software function.

2.5 INPUTS

This subsection lists all software inputs and provides a summary description
of the inputs, including examples, formats, or references to other documents
for details about the input.

2.6 PROCESSING

This subsection summarizes all processing performed by the software system
and relates all inputs and outputs to the given process.

2,7 OUTPUTS

This subsection lists all software outputs and provides a summary description

of the outputs, including examples, formats, or references to other documents
for details about the output.

2.8 INTERFACES

This subsection describes all interfaces with other software sy<t.:a. .l
lists references for additional information about each {av=f

[

[S

SECTION 3 - PROGRAM DESCRIPTION

3.1 IDENTIFICATION OF PROGRAM 1

This subsection identifies the program by name, tag or label, and programming
language. A version number of the program is also included as appropriate.

3.1.1 Software Function

This subse.tion identifies the software function{(s) performed by this program.
A description of the problem and corresponding solution is given. The solutio)
is given in terms of the methods used within the program.

3.1.2 Inputs

This subsection describes in detail the inputs used by this program and includ
° All data used by the program during its execution
. Data types and location(s) required to begin progran exe..ri.
. All entry requirements concerning program initiy-’ ...

3.1.3 Processing

This subsection describes all processing performed on the input listed in
Section 3.1.,2., The description of the processing includes:

] Description of each major operation of the program

] Ma jor branching or decision points within the program flow

® Constraints or limitations on the processing

° Program exit requirements for terminating execution
® Transition to the next program element

] Error processing

] Qutput media and types

) Storage requirement

L Execution time requirements.

3.1.4 OutEutS

This subsection describes in detail all outputs produced by this program and
includes: .

e All data modified by this program during execution
. All additional data generated

® Data types and location(s) resulting from program execution.

3.1.5 Interface Requirements

This subsection describes all interface requirements to execute this program
if it is not a stand-alone program, including other programs, special test
drivers, and data generators, etc.

3.1.6 Data Description

This subsection describes all data items used within the program, including
data arrays, tables, COMMON locations, temporary work areas and buffers, etc.
The following will be provided for each data item:

'
. Tag, label, or symbolic name
(] Purpose of data item
. Other programs that use data item

° Logical divisions within data

. Basic data structure.
3.1.7 Program Execution Requirements

This subsection summarizes the operating procedures to run the program,
including compiling, loading, operating, terminating, and error handling.
Any unique run features not included in the Operations Manual are included in -

this subsection.

3.2 IDENTIFICATION OF PROGRAM 2

A subsection, as described above, is provided for each program within the
system.

7-8

SECTION 4 - SYSTEM ENVIRONMENT

4,1 HARDWARE CONFIGURATION

This subsection provides a description of the equipment required for operating
the system. The hardware requirements are related to each program described
in Section 3, and include the following items:

] Internal storage required for processor

° On~1ine or off-line storage, media, form, and devices
° Input and output devices, both on-line and off-line
. Data communications devices.

A hardware diagram will also be included.
4,2 SOFTWARE CONFIGURATION

This subsection provides a description of all support software required for
the execution of each program. Areas covered are as follows:

) Operating System — Identification, version or release, and any
unusual features used for each program

] Compiler/Assembler - Identification, version or release, and
any unusual features used for each program

. Other Software -~ Identification of any other support software
used, including data base management systems, utilities,
macros, report generators, etc.

4.3 DATA BASE REQUIREMENTS

This subsection provides a description of each data base, file, table, or
data dictionary used by each program. The following information will be

included:

) Format
® Units of measurement
® Codes

® Range of values

If the information required is extensive, a reference may be used for details
about each data base, file, table or data dictionary used by the program.

7-9

SECTION 5 — MAINTENANCE TOOLS AND PROCEDURES

5.1 CONFIGURATION CONTROL AND MANAGEMENT

This subsection presents all formal procedures to be followed in making
modifications to the system, including all applicable forms and documentation.

5.2 PROGRAMMING CONVENTIONS

This subsection summarizes and/or references all applicable programming
conventions used in developing the software system. Items included are

e Coding conventions

) Documentation within the code, such as prologs and inline comments
° Design scheme for mnemonic identifiers and labels

. All sumbols and conventions used in preparing the code, such as

charts, listings, serialization of cards, abbreviations used
in statements and remarks, etc.

5.3 DOCUMENTATION CONVENTIONS

This subsection will contain, or provide a reference to, the location of the :]
program listings. All documentation conventions used within the listings to

describe the code will be explained or reference will be made to the appropriate

software standards document. An example will be included if applicable. All

programs will have two levels of comments: one in the form of a prolog and

the other as inline comments. These levels are summarized below:

. Prolog - The prolog will contain as a minimum (1) the program
name, EPA organization responsible for the program, author's
name, and name of the system of which the program is part;

(2) the relationship of the program to other programs, files,
and control cards; {3) a description of all principal symbolic
names used in the program, including the meaning of different
values of switches, etc.; and (4) a description of the overall
logic of the program, including method of solution used.

° Inline comments ~ The comments, located throughout the program
at major sections, shall contain (1) a description of the logic
of the section in more detail than given in the system-level
comments, including the symbolic names affected; (2) a state~ -
ment as to which conditions cause the section to be entered;
and (3) a statement as to which section or subsections follow
the execution of this section.

7-10

5.4 TEST TOOLS AND PROCEDURES

This subsection describes all test tools and procedures used to verify the
execution of the program at the unit level. This information includes:

] Test procedures and expected results

. A description of required test data, test drivers, simulators,
etce, including test data ranges, limits, and error conditions
for each

. A description of all test tools available, including special
options such as debug statements and dumps, execution counters,
timing devices, etc.

5¢5 ERROR PROCEDURES

This subsection describes all error conditions, including identification of

the error, explanation of the source, and recommended methods to correct the
error. Each error will be related to the program(s}) in which it can occur.

5.6 SPECIAL MAINTENANCE PROCEDURES

This subsection contains an inventory and description of any special programs
used to maintain the system and all related maintenance procedures. Procedures

include requirements, processing, and verification necessary to maintain
system input/output components, such as data base and system library support,

7-11

These sections contain supporting information and lists which for the sake of
convenience and readability are left out of the main sections of this document.
The two described here (Project References and Glossary) are required. Additional
appendixes may be added as appropriate. The order in which the appendixes

occur is incidential.

P R

o~

7~12

APPENDIX A -~ PROJECT REFERENCES

This appendix contains a summary of related pertinent documents or monographs.
Examples are:

. Operating system reference manuals

° System processor reference manuals (e.g., Text Editor)
® Requirements documents

o Mission definition documents.

7-13

APPENDIX B -~ GLOSSARY

The glossary is an alphabetic list of special terms, initials, and acronyms
(and their definitions) that are used in this document.

8. CODING GUIDELINES

8.1 INTRODUCTION

The source code is one of the most important forms of documentation for any
system or program; the quality of that code can depend, to a large extent,

on the time and effort speut during the preceding phases of system or program
development. Since other types of documentation used for software maintenanc
(such as programmer's manuals) are frequently out of date within six months
of their release, the source code, which is usually current, can enjoy undue
prominence. The relative excellence, however, of important coding character-
istics - such as efficiency; freedom from errors; and the degree of difficult
posed by maintenance, modification, and/or enhancement - can be traced, at
least in part, to earlier stages in software development, and in particular
to the design stages. In turn, good documentation of the earlier phases
provides a valuable historical record of the software design that may facilit
the debugging, maintenance, modification, or enhancement of the program or
system. Each successive phase of software development should be thought of
as part of an ongoing process contingent upon the preceding phases, and not
as a discrete set of problems, choices, and decisions confronted and resolved
without regard to the previous and subsequent phases. In short, careful
development and review of software design should result in source code that
is efficient, free of errors, easy to maintain, and flexible enough to be
compatible with any future modifications or enhancements.

The principal beneficiaries of software documentation are the software
malntenance personnel. The malintenance programmer relies heavily on the
source code for the most accurate, detailed information about the software.
Consequently, it is not sufficient for the source code listings to be simply
a list of the source statements. If all necessary information is in the code
itself and if the code 1s readable, maintenance and modification become much
easier. A well-written, intelligible, and readable program is usually more
reliable and free of errors. The gross inefficiencles and errors inherent in
sloppy, confused logic are eliminated. The logical structure of a readable
program is apparent, which facilitates the recognition of inefficient code
and the detection of errors.

This standard is intended to provide suggestions and guidelines for developi
source code of good quality that will serve as an effective documentation for

8.2 CHOICE OF LANGUAGE

The selection of a source language is usually either made by the system
designer or imposed by the user. Whoever makes the selection should choose
the language that is best able to express the functions of the problem in
terms which lead to efficient machine execution. The greatest influence on
machine execution 1is program design. If an efficient design has been
formulated, the language used for coding is usually of secondary importance.

High~level languages are preferred over assembly language code (ALC). Programs
written in high-level languages are generally easier to debug, maintain, and
modify. They contain logical and control structures that facilitate programming.
With respect to source code as a documentation form, they are more readable.

The current tools available for analyzing and optimizing source code have
relegated the use of assembly languages to extreme situations. Assembly

language should only be used for utilities which provide operating system or
hardware interfaces that are unavailable in high-level languages.

8.3 PROGRAMMING STYLE

8.3.1 What is Style?

Style is typically defined as a characteristic or distinctive form of expressing
thought in writing or speaking which is often considered exemplary inm nature.
This definition holds equally well for programming - the coding phase of a
project should be nothing more than writing a previously defined algorithm in
some programming language.

The most important result of good style is program readability. Since most
production programs are read by considerably more people than write them,
program readability and understandability are of primary importance. Program
readability also becomes of paramount importance when one considers that
program source listings are usually the best technical documentation available
to the maintenance programmer.

Although programming style will vary from programmer to programmer, the basic
conponents of all good styles are:

* Good program constructs

. Consistent language usage
° Use of meaningful mnemonics
] Good comments.

It is considered good programming practice to use the simplest, most straight-
forward coding possible, even if this is not the most efficient coding from a
hardware point of view.

1f efficlency becomes a major concern, a program evaluator should be used

after the program is debugged and working. The relevant areas of code should
then be optimized, comparing the results with the original, working version.

The use of short cuts or reliance on the side effects of instructions should

be avoided. Similarly, clever or tricky coding is shunned by these guidelines
because it obscures processing, causes problems in maintenance, and can

create hard-to-detect side effects. Writing a simple, straightforward,
understandable program i{s an intellectual and creative challenge. Although
initially more difficult than the alternative, it will result in easier debugging
and maintenance and greater reliability.

8-2

8.3.2 Good Program Constructs

Good program constructs are largely a result of sound initial design and
consist of graphically presenting a program in a form similar to that of the
design. This includes effective use of modularization and appropriate
indenting of source code. For example, at the beginning of a program,

PERFORM INITIALIZE.
PERFORM PROCESS-RECS UNTIL END~OF~INPUT.
PERFORM CLEANUP.

is far more readable than

OPEN INPUT FILE~IN.

OPEN OUTPUT FILE-OUT.

MOVE @ TO RECS~IN RECS-OQUT.
LooP. READ FILE-IN AT END GO TO DONE.

. record processing

GO TO LOOP.
DONE.

Acceptable program constructs are discussed further in Section 8.5.4.

8.3.3 Consistent Language Usage

Consistent language usage calls for coding similar tasks in a similar manner.
Doing so not only eases the burden of the maintenance programmer, but also
improves the reader's ability to understand the intent of a piece of code.
For example, the use of binary integers for all counters underscores the use
of these items as counters better than if some were character strings.

Use of dissimilar approaches to similar problems in the same program is
frequently an indication that the original programmer may not have fully
understood what he was doing.

8.3.4 Use of Meaningful Mnemonics

Use of meaningful mnemcnics for item names cannot be overemphasized. It is
sufficient to note that INPUT-REC-COUNT is far superior to CNTl and that
PROCESS-ERROR 1is clearer than OOPS.

8.3.5 Good Commenting

Good commenting is absolutely necessary if the time spent by the maintenance
programmer in understanding a program is to be minimized. Program comments
(in particular the Prolog) should correctly state the intent of a block of
code, thereby simplifying the debugging process 1f errors exist in the code.

8=3

Good comments describe what is being done in a block of code = not how a
block of code works. If the programmer feels it necessary to describe how a
block of c¢ode works, the code in question is unnecessarily complicated,
long, and/or obscure.

Good commenting implies quality, not quantity, of comments. Comments on every
line of code detract from program readability.

8.4 PROGRAM LAYOUT

8.4.1 Prologs

A prolog is a block of comments that precedes a unit of scurce code. It
contains essential information for debugging, maintenance, and modification
and greatly facilitates these activities. Having this information easily
accessible in the source code is much more useful than having it scattered
among isolated notes, manuals, and other individuals. Writing a prolog before
starting to code helps clarify program requirements for the programmer. When
programming is finished, the prolog must be checked for accuracy, since it is
one form of the final documentation of the program. Because other programmers
will use the prolog for interface information, it should be checked and
updated each time the routine is compiled.

A full prelog, as illustrated in Figure 1, should be included for every
software unit capable of being separately compiled. An abbreviated form can
be used for internal subroutines. An outline of a prologlis presented below.
A blank line (beginning with the comment character) separates each item. The
items in a prolog are as follows:

1. IDENTIFICATION LINE - This line indicates the name of the program
to which the routine belongs and possibly an index or version
nunmber.

2. ENGLISH NAME - The English name of the routine should be
indicated.

3. LANGUAGE USED - The computer model, compiler or assembler version
(number), and operating system version or level number should
be noted.

4. PURPOSE OF ROUTINE - Describes the net effect of one execution
of the code, not an explanation of how the routine accomplishes
its effect. A routine should have one purpose.

Se CALLING SEQUENCE - Formal arguments or other linkage should be
described.

6. NOTES - These include restrictions, requirements, and references.

A description of access conditions or execution environment
should be provided.

8—4

\\ SUBROUTINE TAPTYP(EQCOD, MODSET, TRKS, DENSTY)
Cx*x**SUBR: TAPTYP VERSION: 2 SAT: SMS-GOES PROGRAM: VISSR #*¥*kkxx

ENGLISH NAME: TAPE ASSIGNMENT TYPE
LANGUAGE: UNIVAC 1108 FORTRAN V VERSION E3. EXEC8 LEVEL 33.

PURPOSE: DETERMINE DENSITY AND NUMBER OF TRACKS FOR A MAGNETIC TAPE
ASSIGNMENT.

c
c

C

c

c

C

c

c

C CALLING SEQUENCE:
c ARGUMENT 1/0 DESCRIPTION

C EQCOD I SIX~BIT EQUIPMENT CODE FROM FITEM PACKET
c MODSET 1 EIGHTEEN LOW ORDER BITS CONTAIN THE MODE SETTINGS
c FROM THE FITEM PACKET

c TRKS 0 NUMBER OF TAPE RECORDING TRACKS, BINARY

c DENSITY O TAPE RECORDING DENSITY (FRAMES PER INCH, BINARY)
c

c

c

c

c

C

NOTES: 1., VALID RESULTS ARE ONLY RETURNED FOR UNISERVO 12/16/20
TAPE ASSIGNMENTS.
2. CALLING PROGRAM OBTAINS FITEM PACKET FROM SUBRCUTINE UFITEM.

3. SEE PP. 7-8, 7-9 OF 1108 P.R.M. ON FITEM PACKET FOR
DESCRIPTION OF EQUIPMENT CODES, MODE SETTINGS.

VARIABLES: (LOCAL)
DMASK = BIT MASK FOR DETERMINING DENSITY.

ERROR HANDLING: IF 'EQCOD' DOES NOT INDICATE A UNISERVO 12/16/20
TAPE UNIT THEN 'TRKS' AND 'DENSTY' ARE SET TO ZERO.

CALLS: NONE.

CALLED BY: TAPHND.

METHOD: TAPTYP USES THE EQUIPMENT CODE TO DISTINGUISH BETWEEN
7 AND 9 TRACK UNITS. USING BIT MASK DMASK, THE DENSITY 1S THEN
EXTRACTED FROM THE MODE SETTINGS.

PROGRAMMER: S. SANDERS, CSC, NOVEMBER 1975.

MODIFIED: R. BIERI, CSC, JULY 1977. ERROR HANDLING CHANGED.

C
C
C
c
C
c
C
c
c
C
c
C
C
C
c
C
c
C
c .
CRIERARTAKAKAAXRIRRIRKAKAAKAAR Kk Ik kAR kKA R Rk kEAKLRRARRK R AR kAR dkkkkh ke

Figure 1. Prolog (Full Form)

8-5

7.

8.

9,

10.

11.

12.

13,

VARIABLES =« Information should include descriptions of variable
functions and indications of which variables in COMMON blocks
are changed, which variables are local, and which are input

and output. File usage may also be described. Calling
arguments are described under CALLING SEQUENCE (item 5, above).
Some items to be included are:

a. Itemized lists and descriptions

be Summaries (1f a whole COMMON block is used, the block
should be identified)

Ce Lists of exceptions

d. References to the source code location of the information
(some COMMON block listings include detailed variable
descriptions; local variables might be flagged in the code).

Another programmer must be able to easily determine the
function of each variable used in the routine.

ERROR HANDLING - The types of errors that are detected and
how they are handled should be noted. If ro checking is
performed, "None” should be indicated.

CALLS - Required subroutines (or entry points to large utilities)

should be listed. If no subroutines are required, "None"
should be indicated.

CALLED BY =~ Routines which call this routine should be listed.
Most routines are called by only one or two other routines.

If this 1s a utility (called by many other routines), "Utility”
should be indicated.

METHOD = The specific software operations that are used to
accomplish the purpose of the routine should be indicated.

A short general description should be given. The method
description, along with the comments in the code, should allow
another programmer to easily understand the processing algorithm.
Program design language (PDL) could be substituted for narrative.

PROGRAMMER AND DATE -« The programmer or analyst, locatiom,
and date (month/year) should be noted.

MODIFIED -~ This section, used to list important changes,
should include references to change control procedures and
the programmer's name.

~®

A bound set of prologs can make up most of the detailed design and program
documentation for a system. By putting this information in the code where
it is most useful, much of the detailed material in formally published
documents can be eliminated. Documentation costs are substantially reduced,
and the published documentation, which contains only high-level descriptions,
is less subject to change.

8e4.2 Annotation

Annotating code is not a simple process. The objective is to give enough
information so that another programmer can understand the routine and at the
same time avoid unnecessary comments. The nature of high-level languages is
that they are descriptive of the very processes they perform. However, they
are frequently inadequate to describe what 1is accomplished by the process.
It is in this context that comments can be used most effectively - to supply
meaning to source code when the source language falls short.

8.4.3 Blocking of Statements

High-~level languages, while being more readable than assembly language, are
not so readable as to be self-documenting.

However, the technique of blocking source code statements can improve the
readability of high-level languages (see Figures 2, 3, and 4) by approximating
paragraphs. A block is a group of related statements which perform a specific
function. Within these guidelines, subroutines must be divided into blocks of
related statements. Examples of large blocks would be initialization,
input/output, error processing, or alternative processing sections. Smaller
blocks within these sections might be loops, a few arithmetic statements
which make a single computation, or a conditional statement with its alternative
groups of instructions. If these groups are large enough, they might become
smaller blocks within the conditional block. Examples of blocks are presented
in Figures 3 and 4.

Monclithic program listings do not group statements into blocks and do not

set the blocks apart with blank comment lines, indentation, or other technigues
described in this section. Such undivided listings are difficult to read (see
Figure 2). The smallest blocks in a routine should be set off with a blank
comment line before and after; larger blocks can be set off with a number of
blank lines and prominent comments or headers (see Figure 3).

A block of any size should have only one purpose. A few lines of code should
be duplicated (copied in line where they will be sequentially executed) 1if
this will bring together all statements related to one function. The use of
GO TOs or jumps to pick up several isolated statements (to avoid copying them
in line) leads to logic errors and creates confusion (see Figure 5).

A block should have only one entry point (at the top) and one exit point (at
the bottom), with the exception of error and loop exits.

IF PWS—-NORMAL~CAPACITY = '§ '
MOVE DEFAULT-ACTION TO BLD-INV=-ACT
MOVE § TO BLD-C186

ELSE IF PWS-NORMAL~CAPACITY NOT = SPACES
MOVE DEFAULT-ACTION TO BLD=-INV=ACT
MOVE PWS-NORMAL-CAPACITY TO BLD-C186;
IF PWS~DESIGN-CAPACITY = '¢ '
MOVE DEFAULT-ACTION TO BLD-INV=-ACT
MOVE @ TO BLD~C187

ELSE IF PWS~-DESIGN-CAPACITY NOT = SPACES
MOVE DEFAULT-ACTION TO BLD-INV-ACT
MOVE PWS-DESIGN=-CAPACITY TO BLD~C187.
IF PWS-EMER-POWER = ¢

MOVE DEFAULT-ACTION TO BLD=-INV-ACT

MOVE @ TO BLD~C188

ELSE IF PWS-EMER-POWER NOT = SPACES
MOVE DEFAULT-ACTION TO BLD-INV=-ACT

MOVE PWS-EMER~POWER TO BLD-C188.

IF PWS-S TOR-CAPACITY = '§ '
MOVE DEFAULT-ACTION TO BLD=INV-ACT

MOVE @# TO BLD-C189

ELSE IF PWS-S TOR~CAPACITY NOT = SPACES
MOVE DEFAULT=-ACTION TO BLD-INV=-ACT

MOVE PWS-S TOR-CAPACITY TO BLD-C189.

I¥ PWS-MAX-PROD = 'S

MOVE DEFAULT-ACTION TO BLD=-INV=-ACT

MOVE @ TO BLD-C19¢

ELSE IF PWS-MAX-PROD NOT = SPACES

MOVE DEFAULT=-ACTION TO BLD-INV-ACT

MOVE PWS-MAX-PROD TO BLD~C19(¢.

Figure 2. Unseparated Code
8~8

»*

»>

*

Update PWS-NORMAL~CAPACITY (C186 in database)

IF (PWS-NORMAL~CAPACITY = '§ ")
MOVE DEFAULT-ACTION TO BLD-INV-ACT

MOVE @

TO BLD~C186

ELSE 1IF (PWS-NORMAL-CAPACITY NOT = SPACES)
MOVE DEFAULT-ACTION TO BLD~INV-ACT
MOVE PWS-NORMAL-CAPACITY TO BLD-C186.

Update PWS~-DESIGN-CAPACITY (C187 in database)

IF (PWS-DESIGN~CAPACITY = '§ ")
MOVE DEFAULT<ACTION TO BLD~INV-ACT

MOVE ¢

TC BLD-C187

ELSE IF (PWS-DESIGN-CAPACITY NOT = SPACES)
MOVE DEFAULT-ACTION TO BLD-INV-ACT
MOVE PWS~DESIGN-CAPACITY TO BLD-C187.

Update PWS-EMER-POWER (C188 in database)

IF (PWS-EMER-POWER = '¢ ")
MOVE DEFAULT~ACTION TO BLD-INV-ACT

MOVE §

TO BLD-C1838

ELSE IF (PWS~EMER-POWER NOT = SPACES)
MOVE DEFAULT-ACTION TO BLD-INV-ACT
MOVE PWS-EMER-POWER TO BLD-C188.

Update PWS-STOR-CAPACITY (C189 {n database)

IF (PWS=-STOR-CAPACITY = '§ ")
MOVE DEFAULT-ACTION TO BLD-INV=-ACT

MOVE ¢

TO BLD=C189

ELSE IF (PWS-STOR-CAPACITY NOT = SPACES)
MOVE DEFAULT-ACTION TO BLD-INV=ACT
MOVE PWS-STOR-CAPACITY TO BLD-C189.

* Update PWS-MAX-PROD (Cl19§ in database)

*

IF (PWS-MAX~PROD = '§ "
MOVE DEFAULT-ACTION TO BLD-INV-ACT

MOVE @

TO BLD-C190

ELSE IF (PWS-MAX-PROD NOT = SPACES)
MOVE DEFAULT~ACTION TO BLD~INV-ACT
MOVE PWS-MAX-PROD TO BLD~C194.

Figlﬂ'e 3.

Code Divided Into Blocks and Separated by Headers
8-9

c SETUP BEGIN AND END POINTER
IB=ISTART
IE=IEND
C
c SEARCH FOR IDP BETWEEN TABLE (IB),..., TABLE (IE)

1002 INDEXP=IB
IF (IDP .EQ. IPLANT(IB)) RETURN

C
C IDP FALLS IN FRONT OF IPLANT (IB), INSERT IDP INTO IPLANT.
IF (IDP .LT. IPLANT(IB)) GO TO 1099
c
c IDP FALLS BEHIND IPLANT (IB)
C
c IF IB IS THE SAME AS IE, INSERT IDP.
IF (IB .EQ. 1E) THEN
INDEXP=IE+1
GO TO 1099
END IF
C
C IB AND IE ARE ADJACENT TO EACH OTHER
IB1=IB+1 -
IF (IRl .EQ. IE) THEN
INDEXP=IE
IF (IDP .EQ. IPLANT(IE)) RETURN
IF (IDP ,LT. IPLANT(IE)) GO TO 1099
INDEXP=I1E+1
GO TO 1099
END IF
C
c OTHERWISE, DETERMINE THE MIDDLE POINT OF IB and IE.
IMID=(1B+IE)/2.
IF (IDP .EQ. IPLANT(IMID)) THEN
INDEXP=IMID
RETURN
END IF
c
C IDP FALLS INTO UPPER HALF OF THE TABLE, RESET IE AND SEARCH AGAIN.
1F (IDP .LT. IPLANT(IMID)) THEN
1E=IMID
GO TO 1002
END IF
c
C IDP FALLS INTO LOWER HALF OF THE TABLE, RESET IB AND SEARCH AGAIN.
IF (IDP .GT. IPLANT(IMID)) THEN
IB=IMID
GO TO 1002
END IF

1099 CONTINUE

Figure 4. Code Separated Into Blocks

8-10

“ (: poor usage to avoid code duplication:

IF(FIRST .EQ. 1)GO TO 20
10 eee« block A
IF{FIRST «EQ. 1)GO TO 30
20 «s« block B
- - IF(FIRST .EQ. 1)GO TO 10
-+ 30 ess block ¢
FIRST=0

duplication improves understanding

IF(FIRST .EQ. 1)G0 TO 10
«ss block A
++s block B
GO TO 20

10 ses copy of block B
ese copy of block A
FIRST=0

20 ese block C

.

s

1

Figure 5. Poor Usage = Copy Lines of Code

(8-11

8.4.4 Format

As discussed in the previous subsection, routines consist of blocks of related
statements that are linked together in some logical way. Filgures 6 and 7
iliustrate the techniques of blocking combined with indentation.

Horizontal indentation 1s most useful for languages like FORTRAN. Statements
or comments on the same logical level must be evenly indented. A consistent
number of spaces should be used, either four or five for each level. This
enables programmers to determine which statements are within the range of a
loop. Debugging statements or logically subordinate statements can be further
indented from more important code. Comments (other than inline) should precede
the code they describe and be indented to the right of the code. Exceptions
would be headers or very important comments, which should be set off with a
border or with leading asterisks or other characters. It should be easy

to distinguish the executable instructions from the comments (Figures 6 and 7).

If code is indented to show logic structure (whether by the programmer or by
structured programming macros), the indentation must be consistent. Assembly
language code must also be separated vertically into blocks.

Part of the art of programming lies in the aesthetics of a clean program
listing. Although a c¢lean layout does not guarantee a correct program, a
program with a clean, readable format is more often correct than one with a
messy, confusing format (Figure 8).

8.5 CODING PRACTICES

8.5.1 Efficiency

Efficiency, which was a major concern with second-generation hardware, has
been the cause of more badly written code than any other factor. Various
studies have shown that fewer than four percent of the statements in a typical
FORTRAN program account for more than half of the execution time. Worrying
about minor savings in individual code statements or instructions is a waste
of the programmer's time. The fact that execution time is critical does not
mean a program must be written in assembly language. The greatest influence
on execution time is program design. If an efficient design has been
formulated, the language used for coding is of secondary importance. If a
higher level language is used for its readability and programming efficiency
and the program written in this language executes fast enough, the problem is
solved. If the object program is too siow, the bottlenecks can be located and
improved. If the original design is inefficient, however, no language will
compensate for this deficiency.

The proper method for writing an efficfent program involves constructing an
efficient design and then writing a logically sound and readable program.

8-12

~ (: S2: DO K=N TO 2 BY ~1;

MAXV=AR(1); MP=1; DO I=2 TO K BY 1;
IF AR(I)D>MAXV THEN DO: MAXV=AR(I); MP=I; END;
END; TMP=AR(K); AR{K)=AR(MP); AR(MP)=TMP; END S2;

VALEAF-SETUP.
IF VALEAF-REC-HELD = 1 MOVE SPEC~EAF~HOLD TO VAL-EAF
GO TO NO-READ.
READ VALEAF AT END MOVE 1 TO EAF-EOFEOQF.
NO-READ.
MOVE O TO VALEAF-REC-HELD EAF-RECS-BCNT.
SAVE-LOOP.
IF EAF-EQOFEOF = 1 OR VALEAF-REC-HELD = 1 GO TO SETUPDUN.
IF VEAF-ID < SAVE-ID MOVE VEAF~ID TO RPT-PWS
MOVE EAF-ID TO RPT-REC

N , MOVE EAF-TYPE TO RPT-TYPE
4 i GENERATE DETL
5 ELSE GO TO NO~READ2,

READ VALFEAF AT END MOVE 1 TO EAF-EOFEOF.
GO TO SAVE-LOOF.

| NO-READ2.
IF VEAF-ID > SAVE-ID MOVE 1 TO VALEAF~REC-HFLD
(MOVE VAL-EAF TO SPEC-EAF=-HOLD GO TO SAVE~LOOP.
| ADD 1 TO EAF-RECS—BCNT.
MOVE 1 TO SUMM—-EA-~UPD.
ADD 1 TO SUMM-EA-CNT.
. IF EAF-RECS-BCNT > EAF-RECS-BMAX PERFORM WRITE-EAF~EXCESS
Sy ELSE MOVE VAL-EAF TO VAL-EAF~BUF (EAF-RECS-BCNT).
e READ VALEAF AT END MOVE 1 TO EAF-EOFEOF.
b GO TO SAVE~LOOP.

SETUPDUN. EXIT.

Figure 6. Uncommented Poorly Formatted Code

e~

8~13

/* */
/* SORT ARRAY AR */

[* */
SORTAR: DO K= = N TO 2 BY -1;
/% */
/* FIND GREATEST VALUE IN AR(1)...AR(M) */
Iz */
MAXVAL = ARR(1);
MAXPOS = 1;

DO I = 2 TO K BY 1;
IF AR(I) > MAXVAL THEN DO; MAXVAL = AR(I)

MAXPOS = I;
END;
END;
/* %/
/* MOVE GREATEST VALUE TO END OF AR(1l)...AR(M) */
/% */
TEMP = AR(K);
AR(K) = AR(MAXPOS);
AR(MAXPOS) = TEMP;
END SORTAR;

Figure 7a. Well-Formatted and Commented Code

8-14

VALEAF-SETUP SECTION.
SECT-ENTRY.
IF VALEAF-REC-AVAILBL
MOVE SPEC~EAF-HOLD TO VAL-EAF
ELSE
PERFORM READ-NEXT-VALEAF.
MOVE ¢ TO VALEAF~-REC-AVAILBL-INDIC.
MOVE O TO EAF-RECS-BCNT.
PERFORM SAVE-VALEAF-RECS UNTIL EAFEOF
OR VALEAF-REC-AVAILBL.

SECT-EXIT. EXIT.

THIS SECTION SAVES THE NEXT VALEAF REC INTO COR OR ONTO

THE SCRATCH FILE EAF-EXCESS IF THE CORE BUFFS ARE FULL.
EAF~-RECS-BCNT IS USED TO COUNT THE TOTAL NUMBER OF

RECORDS SAVED FOR THIS PWS,

VALEAF=-REC~AVAILBL-INDIC IS USED TO INDICATE THAT A RECORD NOT
BELONGING TG THIS PWS HAS BEEN FOUND.

THIS SECTION ALSO ACCUMULATES SUMMARY INFO FOR SUBSEQUENT
INASERTION INTO PWS~SUMMARY.

¥ X % X ¥ X N X X *

SAVE-VALEAF~-RECS SECTION.
SECT-ENTRY.
IF VEAF-ID < SAVE-ID MOVE VEAF-ID TO RPT~PWS
MOVE EAF-ID TO RPT-REC
MOVE EAF-TYPE TO RPT-TYPE
GENERATE DETL
PERFORM READ-NEXT-VALEAF
GO TO SECT-EXIT.
IF VEAF-ID > SAVE-ID MOVE 1 TO VALEAF-REC-AVAILBL-INDIC
MOVE VAL-EAF TO SPEC-EAF~HOLD
GO TO SECT=EXIT.
MOVE 1 TO SUMM-EA-UPD.
ADD 1 TO EAF-RECS-BCNT.
ADD 1 TO SUMM-EA-CNT.
IF EAF-RECS-BCNT > EAF-RECS-BMAX
PERFORM WRITE-EAF~EXCESS
ELSE
MOVE VALEAF TQ VALEAF-BUP (EAF-RECS-BCNT).
PERFORM READ-NEXT-VALEAF.
SECT-EXIT. EXIT.
*
READ~NEXT-VALEAF SECTION.
SECT-ENTRY.
READ VALEAF AT END MOVE 1 TO EAF-EOFEOF.

SECT-EXIT. EXIT.
*

Figure 7b. Well-Formatted and Commented Code

8-15

IMPROVING READABILITY

UNCLEAR:
MOVE O TO ACCT-TIME-TOTAL ACCT-CAU-TOTAL ACCT-ALL-CNT. -
MOVE ACCOUNT~-KEY TO CURRENT-ACCT.
PERFORM PTERM UNTIL EOF-ACCOUNT CR ACCOUNT-KEY NOT = CURRENT-ACCT.
PERFORM CLEANUP.
STOP RUN.

PTERM.

MOVE O TO TERM-CNT.
MOVE TERM-KEYX TO CURRENT-TERM.
PERFORM PREC UNTIL EOF-ACCOUNT OR ACCOUNT-KEY NOT = CURRENT-ACCT
OR TERM-KEYX NOT = CURRENT=-TERM.

CLEARER:
MOVE O TO ACCT-TIME-TOTAL
ACCT~CAU-TOTAL
ACCT-ALL=CNT.
MOVE ACCOUNT-KEY TO CURRENT-ACCT.
PERFORM PTERM UNTIL EOF=-ACCOUNT
OR ACCOUNT-KEY NOT = CURRENT-ACCT.
PERFORM CLEANUP, Fa
STOP RUN. ‘
PTERM.
MOVE O TO TERM-CNT.
MOVE TERM-KEYX TO CURRENT-TERM.

PERFORM PREC UNTIL EOF-ACCOUNT

OR ACCOUNT-KEY NOT = CURRENT-ACCT
OR TERM~KEYX NOT = CURRENT-TERM.

Figure 8

8-16

@

e

Programmers should be aware of the optimizations that are done automatically
by the compiler. This information is in the programmer's reference manual
for the language. Along with program evaluation tools, this knowledge will
enable programmers to write more straightforward source code. Misapplied
optimization frequently leads to unclear code.

8.5.2 Naming and Labeling Conventions

All names and labels in a program should be used to convey information such as
the function of the variable, routine, or label. They may also convey order or
indicate logical relationships to other variables, routines, or labels. Some
examples are as follows:

Type of Name Informative Uninformative
Flag PARITY OOPS
Variable FILENO XX
Label INLOOP §-3
Eatry point EDIT THERE

Mnemonics should be meaningful to other programmers. In the examples provided
above, OOPS is probably meaningful to the original programmer, but it is
meaningless to others. Use of 6-letter names in FORTRAN is encouraged;

other languages allow 12-, 32-, and even 132-character names. Acronyms should
be defined somewhere in the code or external documentation. Without a
definition, SRDPPR is almost as meaningless as XXXXXX.

If mnemonic statement labels are permitted, they should suggest the function
of ad jacent code or the reason for referencing the statement. In assembly
languages, all transfers of control should be directly to a label. Relative
addressing should not be used because changing the number of instructions
alters program logic.

8.5.3 Expression and Computational Accuracy

Arithmetic, logical, and FORMAT statements should be properly punctuated and
written for human readability (Figures 9 and 10). Expressions such as those in the
unclear examples do not conform to these guidelines for the following reasons.
First, different compilers evaluate logical expressions in different orders;
parentheses should be used to make the order of evaluation explicit. Similarly,

8-17

IMPROVING READABILITY

UNCLEAR:
BMOFF (1)=(JTIME-IBTAB(1))/(IBTAB(2).IBTAB(l))*(BMTAB(I+9)-BMTAB(1ID)
CLEARER:
BMOFF (1) = (JTIME - IBTAB(1)) / (IBTAB(2) - IBTAB(l))
1 * (BMTAB(I+9) =~ BMTAB(l1l))
UNCLEAR:
Y(1)=C(1,1)*Y{1 4C(2,1)*Y(2)*Y{2)1C(3,1)*Y(3)
CLEARER:
Y(1) = C(1,1) *Y(1)
1 + C(2,1) *Y(2) * Y(2)
2 + C(3,1) *Y(3)
UNCLEAR: IF CNT1 = 3 OR CNT2 < D AND CNT4 > CNTS AND FLG > O GO TO DONE
CLEARER:

IF (CNT2 < DY AND (CNT4 >CNTS) AND (FLG > 0)
OR (CNT1 = 3)
GO TO DONE

Figure 9

8-18

IMPROVING READABILITY

UNCLEAR:
IF I <=1 THEN P = O; ELSE IF I = 2 THEN P =];
ELSE DO; S = SORT(I); J = 3;
DO WHILE (J <= S); IF MOD (1,J) = O THEN DO; P = 0; GO TO DONE;
J=J+ 2; END; P = 1; END;
DONE ¢
CLEARER:
IF I <=1 THEN
= 0:
ELSE
IF I = 2 THEN
P =1;
ELSE
DO; S =~ SORT(I);
J = 3;
DO WHILE (J <= §);
IF MOD (I,J)=0 THEN
DO; P = 0;
GO TO DONE;
END;
J=J+ 2:
END;
P =1
Figure 10

8-19

o

defaulting to precedence rules in arithmetic and logical statements inevitably

causes errors. These can be avoided simply by writing the expression in

standard mathematical notation. Also, because of binary hardware, floating

point arithmetic is not associative in all cases; (A + B) + C does not always

equal A + (B + C). When operations on either very large or very small numbers .
are involved, programmers must specify an order of evaluation to avoid

numerical errors. Proper use of parentheses increases computational accuracy.

There 1s also a much greater chance of typographical and logical errors when

arithmetic, logical, or FORMAT expressions are packed together. Without -
spaces between operators and operands, floating point logical expressions can

be very difficult to read. It is much easier to verify the correctuness of

the properly formatted expressions, as shown in Figures 9 and 10.

Problems arise when quantities of greatly differing orders of magnitude are
combined. Some of these problems result because many decimal fractions do
not have exact binary representations. Also, differences in machine aceuracy
(due to differing word length and internal floating point representations)
make many high~level language programs machine dependent. It should be noted
that there are two representations for zero on one's complement computers
(such as the UNIVAC 1100 series). Parentheses should be used to specify an
order of evaluation, giving the best accuracy. Users of certain types of
mainframes have experienced problems with mixed-mode arithmetic involving
double-precision variables. These problems can be eliminated by using explicitly
declared double-precision variables instead of relving on the compiler to
propagate double-precision results through mixed-mode expressions.

8-20

8.5.4 Acceptable Program Structures

The formalization of programming disciplines has produced three basic program
control structures by which any program function can be performed. It is
recommended that all programs follow these constructs so as to promote uniform
coding practices and avoid the difficulties so frequently associated with
unstructured code. The three basic constructs - sequence, repetition, and
case - are illustrated in Figure 1! and are represented by COBOL, PL/!, and
FORTRAN examples in Figures 12, 13, and 14.

|
: SEQUENCE : L
’f I
'
REPETITION:
or
® —
CASE:
| 1

—O

T

Figure 11. Program Structure Types

8-22

bR

+
B
C
COBOL +
PERFORM PROCESS-A.
PERFORM PROCESS-B.
PERFORM PROCESS-C.
FORTRAN .
aall statement al
. The prefixes aa, bb, and cc are used to
. uniqguely identify each block.
aa99 CONTINUE
pbll statement bl The suffix 0l indicates the beginning
. of a sequence block.

. The suffix 99 indicates the end of a block.
bb99 CONTINUE
cc01 statement cl

cc99 CONTINUE

L4

PL/1 .

CALL PROCESS-A;
CALL PROCESS-B;
CALL PROCESS-C;

Figure 12a. Sequence Structures

8-23

Rt

COBOL PL/1

[

A-BODY~-SEQ. A BODY SEQ: DO; statement 1;
statement 1 .
. statement n;
statement n END A BODY SEQ;
A-BODY-END. EXIT.
*
B-BODY-SEQ. B BODY SEQ: DO; statement 1;
statement 1 .
. statement n;
statement n END B BODY SEQ;
B-BODY-END., EXIT.
*
C-BODY-SEQ. C_BODY SEQ: DO; statement 1;
statement 1 .
. statement n;
statement n END C_BODY_SEQ;

C-BODY~END. EXIT.

These alternate coding sequence schemes are provided for those cases when it
may be considered undesirable to branch to a separate part of the program.

Figure 12b. Sequence Structures

8-24

-

1

N

ok

» ,»zwkim’ll

evidetie s

COBOL

PL/1
DO WHILE (e); -
CALL PROCESS_A;
END;
P _BODY ITR: IF (e) THEN
DO; statement 1;
statement n;
END;
GO TO P_pODY_;TR;
P_BODY END:
FORTRAN
aa02 IF(.NOT. &)GO TO aa99
statement 1
statement n
GO TO aal2
aa%9 CONTINUE

PERFORM PROCESS-A UNTIL NOT e.

A-BODY-ITR.
IF NOT e GO TO A~BODY-END.
statement 1.

statement n.
GO TO A-BODY-ITR.
A~-BODY-END. EXIT.

Figure 13. Repetition Structures

8-25

4

.

PERFORM PROCESS-A,
PERFORM PROCESS-4 UNTIL e.

A-BODY~ITR.
statement 1.

statement n.
IF NOT e GO TO A-BODY-ITR.
A-BODY-END., EXIT.

CALL PROCESS A;
DO UNTIL (e);

CALL PROCESS_A;
END;

P BODY ITR: DO; statement 1;

statement nj;
END;
IF (—e) THEN
GO TO P_BODY ITR
P_BODY END:

aal2 statement I

statement n
IF(.NOT. e) GO TO aa02
aa%9 CONTINUE

R

g COROL ' '
k. IF (case-l-condition) PERFORM-CASE-1. -
- IF (case-2-condition) PERFORM-CASE-2.

1F (case-3-condition) PERFORM-CASE-3.

or
A-BODY~SEL.
IF (NOT case-l-condition)GO TO A-BODY-ALT-0l.
" (body of case 1)
GO TO A-BODY-END.
A-BODY~ALT-01.
IF {NOT case~2-condition)GO TO A-BODY-ALT-02.
(body of case 2)
GO TO A-BODY-END,
A-BODY-ALT-02,
IF (NOT case-3-condition)GO TO A-BODY-END.
(body of case 3)
GO TO A-BODY-END. (Note: inclusion of this GO TO facilit-
. A-~BODY-END. EXIT ates the addition of future alternatives.) &
PL/]
IF (case~condition-1) THEN CALL PROCESS CASE_l;
IF (case-condition-2) THEN CALL PROCESS_! " CASE . 2'
IF (case-condition-3) THEN CALL PROCESS_| "CASE 3,
or
A_ﬁODY_ﬁEL: IF(case~l-condition) THEN
DO; statement 1;
(body of case 1)
statement n,
END;
ELSE IF (case-2-condition) THEN
_ DO; statement 1;
i (body of case 2)
§ statement n;
¢ END;
ELSE IF (case=~3~condition) THEN
DO; statement 1;
- (body of case 3)
statement n;
. END;
A_BODY_END:

-

Figure l4a. CASE Structures

8-26

' ' FORTRAKN (1977 ANSI Standard)

aa03 IF (case—f-condition) THEN
i ELSE IF (case-%-condition) THEN
’ ELSE IF (case-%-condition) THEN
END IF :
aa9%9 CONTINUE

FORTRAN {(alternative)

aal3 IF (.NOT, case-l-condition) GO TO aal4
GO TO aa9%99
. aal4 IF {.NOT. case-2-condition) GO TO aa05
GO TO aa99
aals IF (.NOT. case-3-condition) GO TO aa%9
GO TO aa99
aa9%9 CONTINUE

Figure l4b. CASE Structures

8-27

8.5.5 Language Usage and Restrictions

There are a number of features and programming liberties provided or allowed
by high-level and assembly languages which have caused a disproportionate
number of errors and which tend to cause new bugs when compiler or operating
system versions change. In the interest of more dependable systems, which
are easier to debug and maintain, the use of many of the practices or features
discussed herein is discouraged.

It is considered poor programming practice to rely on defaults provided by

the language. Although these seem to speed up Initial development (by saving
the few seconds it takes to write something out fully), they may not be

obvious to the maintenance programmer, and default parameters change. Debugging
and maintenance are simplified if all processing procedures and parameters

are completely written out. The general rule is to be explicit. This includes
parenthesizing arithmetic and logfical expressions to force the desired order

of evaluation. All subscripts should be written out even though some languages
allow them to be omitted. The arguments passed between routines must agree

in number (none should be omitted), order, and type.

8.5.5.1 FORTRAN

The following considerations should be taken when coding in FORTRAN. Most of
these points apply as well to PL/I.

o Subscripts - All subscripts must be explicitly written out;
none should be omitted. Exceptions include situations in which
an entire array is referenced in an output list, data state-
ment, or calling sequence.

. Internal subroutines - With some compilers the definitions of
local and global entities are complicated in internal subroutines.
Use of this feature may degrade reliability; therefore, it
should be used with caution.

. Multiple subroutine entry points and nonstandard returns - Use
of this feature confuses program logic because control flow
between subroutines 1s obscured, which results in systems that
are several times more difficult to debug. A unit of code
should have only one entry point and one exit point. Non-
standard entry points and returns should not be used.

8-28

Branching statement = The FORTRAN logical IF statement, as in
IF (IFILES .LT. LIMIT) CALL MASTHD

is superior to the arithmetic IF or any of the nonstandard
variations currently on the market because it clearly states
decision c¢riteria and has simple, predictable branching
effects, The arithmetic IF, as in

IF (NTERMS) 10,6,23

is not self-explanatory, and it forces at least two GO TOs
and two more statement labels on the programmer. It is
unnecessary and should not be used.

The assigned GO TO, as in

ASSIGN 6 TO SWITCH

GO TC SWITCH
confuses program logic, complicates debugging, and can easily
be abused without generating compiler diagnostics.

The computed GO TO, as in
Go 10 (10,20,30,40), INDEX

may be used to implement decision tables and case structures.
When the index is negative, zero, or out of limits, the results
may be unpredictable. For this reason, computed GC TOs should
be preceded by a test for a valid index.

Every upward GO TO in a program creates a potential loop.
Therefore, they should be used solely for the purpose of
implementing loops and not for picking up a few lines of code
or for patching faulty logic.

PAUSE and STOP — The FORTRAN PAUSE statement should not be used
because it requires operator intervention. STOP statements

must have assoclated messages that identify the program elements
to which they belong.

8-29

. vty

8.545.2

8.5.5.2.1

° LOOPS = All program loops should be explicit; that 1is, the
loop body should be separated from surrounding code and should be
preceded by a prominent comment. All FORTRAN DO loops should erd
with a CONTINUE statement, one for each loop. All programmer-—
implemented loops (DO WHILE, DO UNTIL) should begin with a
CONTINUE statement. The contents of a loop are indented one
level (four or five spaces) for each level of nesting (see
Figures 4 and 7).

° IMPLICIT - The variables affected by this feature must be
consistent for every routine in a program.

. PARAMETER - There are other means of parameterization in
FORTRAN; again, unless used consistently (the user should be
wary of COMMON), it can lead to confusion. Before using this
feature, the FORTRAN mariual should be read carefully, giving
attention to the numerous important restrictions. It may be
desirable to use another method, even if it takes more work
initially.

® MIXED-MODE EXPRESSION - These should be made explicit. Mode
conversions should be performed by calls to the appropriate
conversion routine so as to avoid misunderstandings with implied
conversion.

& EQUIVALENCE = This is a standard feature which can be easily
abused: It must not be used to extend the length of arrays.
Use of EQUIVALENCEs can alsc complicate debugging because
subscripts must be mapped lnto their corresponding locations.
The FORTRAN manual should be read carefully before using
this feature.

COBOL
General COBOL Guidelines

. Use ANSI Standard COBOL as much as possible - this will greatly
facilitate transporting the program between computer facilities
as well as improve understanding on the part of programmers
from other installations.

. Division headers should appear at the top of the page and
should be separated from the body of the division by one or
more blank lines.

Y There should be at least one blank line between a section
header and the body of a section.

. Use of columns !=6 and 73-80 should be consistent throughout
all programs and subroutines of a system.
8.5.5.2.2 IDENTIFICATION DIVISION Guidelines

. This division should include the PROGRAM-ID, AUTHOR, INSTALL-
ATION, and DATE-COMPILED paragraphs.

) This DIVISION should contain the prolog described in
Section 4.1 with appropriate modifications pertinent to COBOL.

] Once a program has been placed into production, every modifi-
cation should include comments that contain the following:

a. an index of the current modification
b. a description of and the rationale for the changes made
Co the date and person making the change.
. The AUTHOR paragraph should list the names of all persons who
have made changes to the program.
8.5.5.2.3 ENVIRONMENT DIVISION Guidelines

e Internal file names, the ASSIGN TO, and external file names
within SELECT statements should be aligned in columns.

° Each clause subordinate to a SELECT/ASSIGN TO statement should
appear on a separate line underneath the ASSIGN TO, as follows:

SELECT MAéTER—IN ASSIGN TO MASS-STORAGE OLD-MASTER.
SELECT MASTER-OUT ASSIGN TO MASS-STORAGE NEW-MASTER.
SELECT SUMM-RPT ASSIGN TO PRINTER SUMMARY.
SELECT XREFFILE ASSIGN TO MASS-STORAGE XREFFILE
ORGANIZATION IS INDEXED
ACCESS IS RANDOCM

ACTUAL KEY IS XREF-1D.

8-31

8. S. 5. 2.4

DATA DIVISION Guidelines

Clauses within an FD should appear on separate lines under the
FD file name and FDs should appear in the same order as the
corresponding SELECT statements.

FD MASTER-IN
LABEL RECORDS ARE STANDARD
RECORDING MODE IS F
BLOCK CONTAINS 153 RECORDS

RECORD CONTAINS 473 CHARACTERS.

Each 0l level item should be preceded by one or more blank
lines.

Item names, PICTURE, USAGE, and VALUE clauses for items at the
same level should all be aligned in columns.

If an item has both USAGE and VALUE clauses, align the VALUE
clause beneath the USAGE. If a VALUE literal will not fit on
one line, it should be placed on a separate line beneath

the item name.

Each level in a2 data structure definition should be indented
four spaces from the previous level. This greatly facilitates
the understanding of the structure.

String lengths within PICTURE clauses should always be specified
in parentheses — even if the length i1s a single character. This
reduces the probability of errér and eases the checking of

group lengths.

The use of 88 level items is highly encouraged. This simplifies
the understanding of Procedure Division code.

The use of 77 level items should be avoided.
Constants should appear at the beginning of WORKING-STORAGE
along with thelr associated VALUEs. Variables should not be

initialized with VALUE clauses = they should be initialized
by the program.

8§-32

8.5.5.2.5

0ol

0l

01

01

PROG-VERSION PIC X(4) VALUE 'V3.2°'.

RECS~IN PIC 9(10) USAGE COMP.
RECS~0UT PIC 9(10) USAGE COMP.
HOLD-REC.
02 HOLD-REC-ID PIC 9(4).
02 HOLD-REC~TYPE PIC X(1).
02 HOLD-REC-DATE.

03 HOLD-REC~YY PIC 9(2).

03 HOLD~REC-MMDD PIC 9(4).
02 HOLD-REC-QUANT PIC ¥{5)V9(l).

PROCEDURE DIVISION Guidelines

Multiple objects of a single statement should be lined up in
columns with cne object per line.

OPEN INPUT MASTER-IN
PARM-FILE
XREF-ADDR-FILE.

MOVE O TO REC~CNT

LINES-OUT
TAB-PTR.

Operators and operands in continued statements or groups of
similar statements should be aligned in columas.

MOVE OLD-ID TO PRT-LINE-ID.
MCOVE ID-TOTAL TO PRT-LINE-TGTAL.
MOVE ZEROES TO ID~TOTAL.

COMPUTE YEARLY-TOTAL = QTR1-TOTAL + QTR2-TOTAL
+ QTR3-TOTAL + QTR4-TOTAL.

IF statements should not be nested deeper than three levels.
Deeper nesting is usually very difficult to understand. If
deeper nesting is required by the problem at hand, then the
lower level nesting should be performed elsewhere.

Each ELSE should be aligned with its corresponding IF.
Each condition of compound IFs sheuld appear on a separate
line. Parentheses should be used to simplify understanding

of the relationships between the conditions.

Subjects of IFs and ELSEs should be aligned in columns after
the object conditions.

8-33

IF (EMP-TENURE > 40)
AND (EMP~AGE < 60)
ADD 1 TO TYPE1-CNT
PERFORM PROCESS-TYPEA
ELSE
PERFORM CHECK-TYPES-B-F.

STOP RUN should appear only in the driver SECTION.
PERFORM THRU should not be used.

The VARYING FROM, BY and UNTIL clauses on a PERFORM should
appear on separate lines aligned under the PERFORMed section
name. The VARYING index should not, of course, be altered
by the PERFORMed section.

PERFORM LOAD-REC-BUFF
VARYING BUFF-PTR FROM 1 BY 1
UNTIL BUFF-PTR > BUFF-SIZE
OR REC-ID-CHANGE
OR END-OF-MASTER.

All 1/0 operations should be isolated into separate SECTIONs.
This makes the details of such operations more transparent to
the program and simplifies the reading and modification of
the program.

All arithmetic computations involving more than one operation
should be performed with the COMPUTE verb. The only exception
is that the DIVIDE verb may be used if a remainder is required.
In this case, DIVIDE BY should be used and not DIVIDE INTO.

Parentheses should be used to simplify the understanding of
complex arithmetic statements or wherever confusion may arise
as to the order of evaluation of a statement.

COMPUTE ROOT = (DISC - B) / (A + A).

COMPUTE ADJUSTED-INT = BASE-INT * (NUM-PDS - 1)
+ BASE-VAL / (NUM-PDS + 1).

8-34

8‘ 5. 5.3

8.5.5.3.1

8¢5.5.3.2

PL/1

General Guidelines

Each PROCEDURE should appear at the top of a page. If a
particular implementation of PL/l does not allow this, then
sufficient blank lines should be used to clearly separate the
PROCEDURE from other PROCEDURESs.

Each PROCEDURE should be followed by a prolog as described in
Section 7.4.1, followed by the procedure's DECLAREs, followed
the body of the procedure.

Nested statements should be indented several spaces for each
level of nesting. The degree of indenting should be chosen so
as to align the indented statements in a reasonable manner.

Avoid the use of columns 1 and 73-80 for program text.

DECLARE Guidelines

DECLARE procedure arguments before local variables and in the
order they appear in the PROCEDURE statement.

Constants should appear before variables. Constants should
be initialized in their DECLARE statements whereas variables
should be initialized in the body of the procedure.

Unrelated items should be placed in separate DECLARE statements

Related items appearing in the same DECLARE should be placed
on separate lines with item names and attributes aligned in
columns.

Structured definitions should appear with one item per line
and each level of the structure indented an appropriate number
of spaces.

DECLARE PI FLOAT INITIAL(3.14159),
TAB SIZE FIXED INITIAL(139);
DECLARE 1 TIME CARD,
2 NAME CHARACTER(30),
2 SSN FIXED(9)

2 HOURS_CHARGED,
3 STRAIGHT FIXED(3),
3 OVERTIME FIXED(3),
2 BASE_PAY FIXED(2,2);

8-35

. ® Avoid the use of DECLAREs with factored attributes:

DECLARE (I, J, K) FIXED;

8.5.53.3.3 PROCEDURE Body Guidelines

. Each procedure should be entered only at its top and exited
at its ENDs, Do not use ENTRYs.

. Each END should appear on a line by itself and should be
aligned under the beginning of the statement with which
it is assocciated .

. Avoid the use of BEGIN blocks. Use separate procedures
insteade Since a BEGIN block is logically a discrete
procedure, the text of the BEGIN block can only impede
understanding the program flow.

] Avoid the use of subscripted labels. They may appear to be
a convenient feature, but their use is often unfathomable by
the maintenance programmer.

.) Do not use local variables whose names duplicate global { '
variables. ' J
. Do not nest IF statements deeper than three levels. If deeper

nesting 18 required by the problem at hand, separate IFs
or procedures should be used instead.

7 Each IF THEN ELSE should have the THEN and ELSE aligned under
. the IF, as shown below.

IF condl
THEN DO;
statementll;
statementln;
END;
ELSE DO;
statement 21;

statement 2n;
END;

. (' APPENDIX A

GLOSSARY

]
s

APPENDIX A - GLOSSARY

Accuracy « Precision or exactness, or freedom from error, of the results of
a computation or a program.

Component, Hardware - Any of the main constituent parts of the physical equip-
ment included in the computer systen.

Component, Software - A discrete set of program instructions which may be
handled as a unit for compilation and loading.

Configuration — A particular combination of hardware (CPU, disks, tapes,
etc.) and software (operating system, utilities, etc.). Typically
used in "minimal configuration”, i.e., the minimal hardware and
software requirements for a particular application.

Control Language - A language used to specify job level processing requests
to an operating system. This language will vary from computer
to computer (e.g., ECL on UNIVAC 1100, JCL on IBM 360/370).

Data Base — A collection of data, usually integrated and organized for ease
of retrieval and maintenance.

Data Base Management System ~ A collection of software that provides a wide
variety of data manipulation capabilities that allow a user to
organize data in a weaningful and useful nmanner.

Data File - A collection of related data records, usually organized to meet
a specific purpose and often sequenced in accordance with a key
contained in each record.

Data Group - A collection of related data items within a data record.
Data Item - A specific unit of information to which meaning can be assigned,
Tepresented in signs or symbols which can be interpreted by a

person or by a machine.

Data Record = A collection of related data items treated as a unit, specifi-
cally for input-output purposes.

Design Methodology - An orderly, logical procedure or approach to the design
of a computer system,

Developmental Impact — The effect of a system change, enhancement, or redesign
on the implementation schedule of a svstem or program.

Diagnostic - A message from a program (user or system) indicating that the
program has detected a possible error conditiom.

APPENDIX A ~ GLOSSARY (continued)

Documentation — A collection of written or printed items that aid in the
understanding of a system or program.

Enhancement - An extension and improvement in the features and capabilities
of an existing computer preogram or system,

EPA ADP Manual - The document issued by the Environmental Protection Agency
that details data and informatfion processing policies and procedures. .

FIPS (Federal Information Processing Standards) - Publications of the
National Bureau of Standards relating to automated data systems.

Hardware - The physical components (mechanfical, magnetic, electronic, or
electrical) of a computer system.

Host Computer - The primafy computer used by a particular system.

Interactive — A mode of communication between a computer system and a person
via a terminal, fn which a query/response “"dialogue" is conducted.

Interface -~ Linkage or other arrangement or convention established for
communication between hardware and/or software components, such as
progran~program, compuier system-operator, and computer system-
terminal user.

® i
Job -~ A specific amcunt of work to be performed by a computer, involving cne '
or many processes, programs, etc.

Key ~ One or more characters used to uniquely identify a data item or a
data record within a data file.

Log-On - The process of establishing a communications link with e computer
and identifying oneself for accounting purposes.

Macro - A block of source code text that is used by certain system utilities
as a template for generating source code.

Maintenance - Performance of support functions to modify, update, and correct
computer programs; also to update, correct, and purge data files;
also to maintain hardware on a scheduled or corrective basis.

Medium (Media) - The physical manifestation of stored data or programs such
as punch cards, magnetic tape, disk, paper tape, cassettes, etc.

Mnemonic - A device or technique intended to help the memory.

Modularization - The organization of a program into sets of instructions which
may be treated as discrete units.

APPENDIX A - GLOSSARY (continued)

Module - A discrete set of program instructions which may be treated as a unit.

On-Line - The direct communication of a particular hardware component with
another, especially with one under control of the other; also
access to a computer system by a person via a terminal.

Operating Environment - The conditions under which a program or system operates.
This includes the physical state of hardware as well as conditions
such as job and user mix.

Operating System — The software components which provide control of all
elements of computer system functions, including executive, call,
and loading routines; hardware assignment; multiprocessing; and
input—-output operations.

Operational Characteristic - A distinguishing feature or quality of the
method by which a data processing function is performed.

Operational Controls - Procedures, usually manual, which effect the continued
processing of a system, such as approval procedures, confirmation
of successiul completion of one program before initiation of the
next, and file cycle validation.

QOperational Function - A defined action by the computer systex which controls
data recording, transmission, interpretation, or other processing.

Operational Impact -~ The effect of a system change, enhancement, or redesign
on the way in which a program or system is used.

Operational Procedure — The steps and actions performed in accordance with
user policies in the functioning of a computer system.

Organizational Impact - The effect of a system change, enhancement, or re-
design on the personnel structure under which a system or program
functions.

Output, Display - A visual representation of information, such as on a CRT
screen, usually read and acted upon before a subsequent action
is to take place.

Qutput, Graphic = Data written in representational or pictorial form, such
as mathematical curves, histograms, contour plots, or maps.

Portability - The ease with which data or programs may be transferred from
one conmputer system to another.

il

¥y o il

APPENDIX A - GLOSSARY (continued)

Program — A sequence of data processing instructions or statements in a
form acceptable to, and intended for execution on, a computer,

Query Language - A language used to specify interactive processing requests
to a Data Base Management System.

Reference File - A data file used by a program for reference purposes such
as validating data items or retrieving detailed information about
a data item.

Report Generator - A program whose primary purpose is to produce a report
or reports based upon provided input parameters. Most computer
sites have a report generator utility that can produce reports
from many types of input files.

Response Time - Elapsed time between the sending of a signal or message and
the receipt of an answering signal or message. This is typically
a measure of how quickly an operating system can react to a
processing request from an on~line terminal.

Responsiveness - The ability of the computer system to meet the needs of the
user on a timely basis, especially in interactive mode.

Software - Computer data, information, programs, compilers, routines, etc.,
that work in conjunction with the hardware tc accomplish data
processing functions.

Software, Application - Computer software used for specific user needs, such
as payroll, accounting, scientific¢ calculations, or inventory
control.

Software, System or Support - Computer software used to provide common data

processing functions to many users.

Source Code - The symbolic text of a program. This is the form in which
programs are written and read by programmers.

Subroutine - A set of coded instructions that performs a certain function
within a program or that exists in a library and may be referenced
by other programs for incorporation therein.

Subsystem — A related set of programs that function together to perform a
portion of a data processing application; linked with other
subsystems to form a system.

Svstem - An integrated set of programs or subsystems that function together
to perform a data processing application.

APPENDIX A - GLOSSARY (continued)

Svstern Flow Diagram ~ A pictorial representation of the overall flow of data
and control through the system; its purpose is to graphically
represent the relationships between programs, subsystems, files,
and major I/0 functions.

Testing Tools - Utility programs or semi-automated procedures intended to
aid in the testing or debugging of a system or program. These
include items such as test. data generators, program execution
monitors, and dump analyzers.

Throughput - The amount of work produced by a computer system, normally
measured in jobs per day or per hour.

Top-Down - A method of design in which the general design is presented first,
followed bv successive refinements of detail, until a final precise
design is reached. This is also termed "step-wise refinement”.

User - A person or organization who enploys or applies, for his own needs,
the hardware or software components of a computer system.

Utilities - Programs in the systen library that are frecuently used by most

of the system's users. These include items such as sort, copy,
and dump utility programs.

A-5

’ [

N
'
g

A NDIX B

CHARTING CONVENTIONS FOR SYSTEM DEVELOPMENT

EASIC SYMBOLS. A basic symbol is estzblished for each
function and can be always used to represent that function.
Specialized symbols are established which may be used in
Place of a basic symbol to give additionzl information.

SYMBOL USZ

~-—aa

INPUT/OUTPUT This symbol represents the input/

output (I/0) Zunction, i.e., the

making available of information
Z// for processing {input) or

recording processed information
(output).

PROCZSS This symbol represents the pProcessing

function i.e., the Process of
executing a defined operation or
group of operations resulting in a
change in value, form, or location
of informztion or in +he determinatid
of which of several flow directions
are to be taken.

FLOWLIXE This symbol represents the flowline

function, i.e., the indication of
~_ the sequence of available infor-
' mation and executable operations.

ANYNOTATION. This symbol represents the annotation

function, i.e., the addition of

descriptive comments or explanatory
notes as clarification,

KZYING This symbol represents an operation
using a key driven device - such as
punching, verifying, typing.

PZCIALIZED I/0 SYMROLS. Specialized I/0 svmbols may represent

L=
the I/0 Zunction and, in acdition, denote the nrecium on which
the information is recorded or the nanner of handling the

informatién or both. £ no specialized symbol exit , the basic

I/0 symbol may be used,

5=-1

SYMBOL USE

l. PUNCHED CARD For an I/0 function in which the '
. medium is punched cards, including)
mark sense cards, partial cards, stub
cards, etc.

2. MAGNZTIC TAPES. For z2n 1I/0 function in which the
medium is magnetic tape.

3. PUNCHED TAPZ. For an I1/0 functionip which the
mediun is punched tape.

4. DOCUMENT. For an I/0 function in which the
mediun is a document.

N g

S, MEIXNURL INPUT. For an I/0 function in which the
inforrmation is entered manually

at the time of processing, by means
of online keyboards, switch settings,
push buttons, card readers,etc.

6. DISPLAY. For an I/0 function in which the
inforrmation is displayed £for human

use at the time of processing, by
means of online indicators, video
devices, console printers, plotters,
etc.

7. COMMUNICATION LIXNK. For an I/0 function in which infor-
mation is transmitted automatically

from one location to another.

N

£. M2EXTTIC DRUM. For an I/0 function in which infor-
maticn for processing (input) or the

(output} is stored online on magnetic

drunm,
B-2

' recording of processed information

'.

SYMBOL USE

9. MaGNETIC prsk. Ko | For an I/0 function in which info

R’ mation for processing (input) or ¢

., - recording of processed information
(output) is stored online on magne
disc.

\n——‘/
10. TRANSMITTAL TADE

Proof or Adding Machine tape, or
other katch control information.

11. ONLINT STORAGE.

For an I/0 function utilizing
auxiliary mass storage of infor-

T — mation that can be accessed online,
e.g. magnetic drums, magnetic discs
magnetic tape, automatic magnetic

.

card systemrs, or automatic chip or
strip systems,

12. OFFLINE STORAGE

For any offline storage of infor-
mation, regardless of the medium on
which the information is recorded.

13. CORE,

Represents an I/0 function in which
the medium is magnetic core.

C. SPECIALIZED PROCESS SYMBOLS. Specialized process symbols
may represent the processing function, and in addition,
identify the specific type of operation to be performed on

the information. If no specialized symbol exists, the
basic process symbol may be used.

SYMBOL USE

1. DECISION. Represents a decision or switching

type operation that determines which

of a2 number of zlternate paths it is
to be followed.

SYMBOLS

USE

2.

3.

PREDEFTINED PROCESS.

AUXILIARY OPEZRATION.

MANUAL OPZRATION.

CONNECTOR.

O

TERMINAL.

D

PREPARATION.

COLLATE.

Represents a named process consistir
of one or more operations or progranm
steps that are specified elsewhere.

e.g., subroutine or logical unit.

Represents an offline operation
performed on equipment not under
direct control of the central pro-~
cessing unit.

Represents any offline process
geared to the speed of a human
being.

Represents a junction in a line
of flow.

Represents a terminal point in a
systen or comnunication network
at which data can enter or leave.
e.g., start, stop, halt, delay ox
interrupt.

Represents mocdification of an in-
struction or group of instructions
which change the program itself

for example, set a switch, modify or
index register, and initialize a
routine.

Represents merging with extracting,
that is, the formation of two or
more other sets.

Represents the combining of two
or more sets of items into one

set.

SYMBOLS

Usz

10. EXTRACT.

1l. SORT.

Represents the removal of one or
more specific sets of items from
2 single set of items.

Represents the arranging of a set _
of items into a particular sequence.

Represents the beginning or end
of two or more simultaneous
operations.

B=5

»

®(

APPENDIX C

BIBLIOGRAPHY

@

2.

3.

4.

5.

6.

7.

8.

9.

10.

13.

12.

13.

APPENDIX C

BIBLIOGRAPHY

Auerbach Publishers, Inc., "Objectives of Structured Programming”,
Auerbach Programming Management, Section 14-02-01, 1974

N. Wirth, "Program Development by Stepwise Refinement”, Communica~
tions of the ACM, vol. 14, no. 4, April 1971

J. Aron, The Program Development Process (Parts I and II). Reading,
Massachusetts: Addison-Wesley, 1974

C. McGowan and J. R. Kelly, Top-Down Structured Programming
Techniques. Reading, Massachusetts: Addison-Wesley, 1975

S. H. Caine and E. K. Gordon, "PDL -~ A Tool for Software Design”,
Proceedings of 1975 AFIPS National Computer Conference

We P. Stevens, G. Js Myers, and L. L. Constantine, "Structured
Desfign”, 1BM Systems Journal, no. 2, 1974

D. L. Parnas, "“On the Criteria To Be Used in Decomposing Systems
into Modules"”, Communications of the ACM, vol. 15, no. 12,
December 1972

D. L. Parnas and D. P. Siewiorek, "Use of the Concept of Transparency
in the Design of Hierarchically Structured Systems"”, Communications
of the ACM, vol. 18, no. 7, July 1975

E. Yourdon, Techniques of Program Structure and Design. Englewood
Cliffs, New Jersey: Prentice Hall, 1975

B. W. Kernighan and P. J. Plauger, The Elements of Programming
Style. New York, New York: McGraw-Hill, 1974

G. Lowrimore, Applications Systems Development: A Better Way.
EPA DATA TALK, May 1978

M. H. Weik, Standard Dictionary of Computers and Information
Processing. Rochelle Park, New Jersey: Hayden Book Company, Inc.,
1977

M. A. Jackson, Principles of Program Design. New York, New York:
Academic Press, 1975

