PITTSBURGH METROPLITAN AREA AIR POLLUTANT EMISSION INVENTORY

PITTSBURGH METROPOLITAN AREA AIR POLLUTANT EMISSION INVENTORY

Prepared by:

Michael J. M^CGraw Charles S. Holt

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
PUBLIC HEALTH SERVICE

Consumer Protection and Environmental Health Service
National Air Pollution Control Administration

Air Quality and Emission Data Division

Durham, North Carolina

November, 1968

TABLE OF CONTENTS

INTRO	DDUCTIO	ON .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
STUDY	Y AREA	•	•	•	•	•		•	. •	•	•	٠		•	•	•	•	-
TOPOC	GRAPHY			•	•		•		•		•	•			•	•		10
GRID	COORD	INAI	E SY	STE	EM	•	•		٠	•	•	•	• .	•	:	•	•	10
SUMM	ARY OF	RES	SULTS	5.	•	•	•	.•	•	•	•	•		•	•		•	1.
EMISS	SIONS I	3 Y C	CATE	SORY		•	•		•	•	•	•		•	•	•	•	2
Fue	el Coml	oust	ion	in	Sta	t.i.o	nar	y S	our	ces	.•	•	•	•	•	•	•	23
3	Emissio	ons	from	n Fu	el	Com	bus	tio	n	•	•	•	•	•	•		•	24
I	Data So	ourc	es				٠.	•	•	•	•			:	•			24
Tra	ansport	tati	on .		•	•			•	•	•	•	•	•	•		•	20
I	Road Vo	ehic	les	•	•	•	•	•	• •	•	٠.	•	•	•	•			26
£	Aircrat	Et		•	-	•	•	•	•	•	•	•	•	•	•	•	•	2.5
I	Railroa	ads	and	Ves	sel	s	•	•	•	•	•	•	•	•	•		•	28
So	lid Was	ste	Disp	posa	1	•	•	•	. •	•	•	•	•	•	. •	• .		28
Ind	dustria	al F	roce	ess	Los	ses	•	•	•	•	•	•	•	•	•.	•		. 32
EMIS:	SIONS I	ву б	GRID	•		•		•		•	•	•		•	•	•		32
EMIS	SION D	ENSI	TIES	S BY	' GR	ID	•	•	•	•	•	٠.	. • •	•	•	•	•	36
REFE	RENCES	٠.	•	. •	•	. •	•	•	•	•	•	•	•,	•	•	•	•	53
																		_

LIST OF TABLES

	Page '	
Table 1	11	Pittsburgh Study Area Characteristics, 1967
Table 2	16	Summary of Air Pollutant Emissions in Pittsburgh Study Area
Table 3	17	Summary of Emissions in Allegheny County
Table 4	18	Summary of Emissions in Beaver County
Table 5	19	Summary of Emissions in Washington County
Table 6	20	Summary of Emissions in Westmoreland County
Table 7	22	Annual Fuel Consumption in Political Subdivisions of the Pittsburgh Study Area
Table 8	23	Summary of Domestic Heating by Number of Dwelling Units in Pittsburgh Study Area
Table 9	23	Sulfur and Ash Content of Fuels
Table 10	25	Air Pollutant Emissions from Combustion of Fuels in Stationary Sources in Pittsburgh Study Area
Table 11	27	Vehicle Miles of Travel for Road Vehicles in Study Area
Table 12	27	Air Pollutant Emissions from Transportation Sources in Pittsburgh Study Area
Table 13	29	Air Traffic Activity at Greater Pittsburgh Airport and Pittsburgh Allegheny Airport
Table 14	29	Air Traffic Activity by Engine Type
Table 15	30	Solid Waste Balance for Pittsburgh Study Area
Table 16	33	Air Pollutant Emissions from Solid-Waste Disposal in Pittsburgh Study Area

· .:	· . :			
-		Table 17	34	Selected Manufacturing Establishments in Pittsburgh Study Area
		Table 18	35	Air Pollutant Emissions from Industrial Processes in Study Area
-		Table 19	38	Summary of Point Source Emissions by Season for the Pittsburgh Study Area
<u>.</u> .		Table 20	43	Summary of Emissions from All Sources by Season for the Pittsburgh Study Area

‡

LIST OF FIGURES

		*	•
		Page	
Figure	1 .	S	Map of the State of Pennsylvania Showing the Pittsburgh Study Area
Figure	2	9	Detailed Map of Pittsburgh Study Area
Figure	3	12	Population Density for Pittsburgh Study Area, 1967
Figure	4	14	Grid Coordinate System for Pittsburgh Air Pollutant Study Area
Figure	5	31	Solid Waste Disposal Sites in Pittsburgh Study Area
Figure	6	37	Point Source Location for Pittsburgh Study Area
Figure	7	48	Sulfur Oxides Emission Density Map from All Sources
Figure	8	49	Particulate Emission Density Map from All Sources
Figure	9	50	Carbon Monoxide Emission Density Map from All Sources
Figure	10	51	Nitrogen Oxides Emission Density Map from All Sources
Figure	11	52	Hydrocarbon Emission Density Map from All Sources

ACKNOWLEDGMENTS

We acknowledge with appreciation the many contributions of cooperating agencies in the gathering of the data for this report. In particular, we are grateful for the use of data and personnel assistance furnished by the following:

- 1. Bureau of Air Pollution Control, Allegheny County Health Department,
- Pennsylvania Division of Air Pollution Control,
 Department of Health.

INTRODUCTION

This report presents the results of an emission inventory of air pollutant sources in the Pittsburgh metropolitan area. A modified version of the rapid survey technique was employed in this survey. The objectives of this study were to determine the total quantities of the various air pollutants emitted and to estimate their seasonal and geographical variation. To accomplish this task, the study area was divided into a grid coordinate system, and the emission quantities were reported in terms of tons of pollutant per grid for a summer, winter, and average day.

The pollutants considered in the survey were sulfur oxides, particulates, carbon monoxide, nitrogen exides and hydrocarbons. Data presented herein should be representative, for the most part, of 1967 and were mainly gathered by the acknowledged State and local agencies. All major source categories except solvent evaporation were included in the survey.

STUDY AREA

The emission survey of the Pittsburgh area was confined to the Pittsburgh Standard Metropolitan Statistical Area (SMSA). This area consists of four counties: Allegheny, Beaver, Washington, and Westmoreland. The four county area is located in the southwest corner of the state, west of the Appalachian mountains (Figure 1). The Steubenville SMSA is located directly west of the Pittsburgh Study Area and borders Beaver and Washington counties.

Figure 2 represents a more detailed drawing of the Pittsburgh Study Area. The urbanized portion of Pittsburgh is located at the confluence of the Allegheny and the Monongahela Rivers, which form the Ohio River. The Study Area occupies 5,054 square miles and contains an estimated 1967 population of 2,522,000 which is

Figure 1. Map of the State of Pennsylvania Showing Pittsburgh Study Area.

Figure 2 Pittsburgh Study Area

approximately a 5 percent increase since 1960 (Table 1). The population density map (Figure 3) shows that the heaviest population is concentrated along the rivers.

TOPOGRAPHY

The industry and population of the Study Area have developed along the river valleys of the Monongahela, Allegheny, and Ohio Rivers. The flatlands of the river valleys have provided ideal locations for steel mills and other heavy industry. The rivers themselves are used extensively for the transport of raw materials and finished products. Away from the river valleys the land rises steeply. The topography is rugged and hilly. The elevation increases toward the eastern edge of the Study Area, forming the foothills of the Appalachian mountains.

The hilly terrain and deep river valleys in the Study Area provide a sort of "air drainage" system³. Cool air follows the topographical "sinks" in the region. These sinks are often capped by local temperature inversions, which cause air pollutants to build up. Air pollution problems are intensified by the fact that industry has concentrated in the deep river basins, hindering lateral dispersion of pollutants.

GRID COORDINATE SYSTEM

The grid reference system used in the emission survey of Pittsburgh is based on the Universal Transverse Mercator Projection (UTM). Using a basic unit grid square - 5,000 feet on a side - \$1 grid squares of several sizes were defined for the Study Area.

The grids defined for the reference system are of three sizes - 5,000, 10,000, and 20,000 meters squared. The smaller grids were used on the densest areas of population and industry in order to

Political Jurisdiction	Land Area . (sq. mi.)	Popul 1960	ation <u>1967</u>	Population Density (1967)
Allegheny County	731	1,629,000	1,699,000	2,324
Beaver County	441	207,000	225,000	510
Washington County	857	217,000	221,000	258
Westmoreland County	1,025	353,000	377,000	368
Total Study Area	-3,054	2,406,000	2,522,000	826

Figure S. Population density for Pittsburgh study area, 1967.

Monongahela and the Allegheny Rivers in central Allegheny county and along the Ohio River Valley in the Southeast corner of Beaver county, 5,000 meter squares were used. In Areas low in population such as eastern Westmoreland and southern Washington counties, 20,000 meters squares were used. In those cases where sections of outlying counties are omitted, the air pollutant emissions are considered negligible.

Figure 4 shows the grid reference system utilized for the Pittsburgh emission survey.

SUMMARY OF RESULTS

The following is a brief-summary of pollutant emissions and sources in the Study Area:

- 1. Sulfur oxides (over 930,000 tons per year) are emitted primarily from fuel combustion in stationary sources (77 percent). The combustion of coal by industrial sources contributed 46 percent and steam electric utilities accounted for 25 percent of the total sulfur oxides emitted. Industrial process losses accounted for another 21 percent and transportation sources 2 percent.
- 2. Stationary fuel combustion sources contributed 73 percent of the total particulate emissions of about 386,000 tons per year. Transportation sources contributed 2 percent; industrial processes 24 percent; and refuse burning 1 percent.
- 3. The major source of carbon monoxide (915,000 tons per year) was the operation of gasoline powered motor vehicles which emitted 91 percent of the total. Diesel powered vehicles and air traffic emit 1 percent

Figure 4 Grid Coordinate System for Pittsburgh
Air Pollutant Study Area

of the total emissions. Of the remaining 8 percent, 6 percent comes from stationary fuel combustion and 2 percent from refuse burning. Information was not available on carbon monoxide emissions from industrial processes.

- 4. Oxides of nitrogen (266,000 tons per year) were discharged primarily from coal combustion in steam electric utilities (29 percent) and in industrial plants (41 percent).

 Natural gas consumption accounted for 7 percent of the total emissions; and transportation sources 19 percent.

 Sources such as residential and institutional fuel consumption, refuse burning and industrial process losses accounted for the remaining 4 percent.
- 5. Motor vehicles emit approximately 54 percent and stationary fuel combustion 16 percent of the total hydrocarbons included in this survey. Total hydrocarbon emissions were approximately 95,000 tons per year (excluding solvent evaporation and industrial process losses).

The emissions of pollutants discharged to the air in the Study Area are summarized in Table 2. The breakdown of all emissions on a county basis are summarized in Tables 3-6. The validity of these results are dependent on the accuracy and applicability of the emission factors used. These factors, for the most part, represent the average emission rates for a particular industry or fuel group. Because of the inherent differences in type of equipment, operating rates, and efficiency of operation among the plants or fuel users within a given category, the application of the emission factors to any individual plant or even a smaller number of similar plants or processes may result in a discrepancy between the actual and the estimated emissions. However, the estimates of total pollutants from all sources in the study area should be fairly accurate since the emission factors are based on average conditions.

Table 2 SUMMARY OF AIR POLLUTANT EMISSIONS IN PITTSBURGH STUDY AREA, 1967 (TONS/YEAR)

Source Category	Sulfur Oxides	Partic- ulstes	Carbon Monoxide	Nitrogen Oxides	Hydro- carbons
Transportation		7/1			
Road Vehicles	4,300	7,000	833,200	46,400	75,700
Other	650	2,300	16,000	4,570	5,100
Total	4.950	9,300	848,700	51,000	79,900
Combustion of Fuels Stationary Sources					
Industry	435,100	126,400	15,700	119,600	6,000
Steam-Electric Util.	235,600	130,300	1,000	76,500	800
Residential	25,800	16,400	15,800	9,200	3,200
Commercial & Institutional	29,600	8,700	24,700	5,200	4,000
Total	726,100	281,800	58,100	210,500	14,900
Refuse Disposal					
Incineration	478	2,010	250	480	80
Open Burning	196	1,570	8,380	1,080	495
Total	675	3,580	8,630	1,560	575
Industrial Process Emissions	202,200	91,900	NA	3,500	NA
Totals	933,900	386,600	915,400	266,600	95,400
	1	1		l	!

NA = Information not available or not reported

Table 3 SUMMANY OF EMISSIONS IN ALLEGHENY COUNTY, 1967 (TONS/YEAR)

			,	.,	
- Source Category	Sulfur Oxides	Partic- ulates	Carbon Monoxide	Nitrogen Oxides	Hydro- carbons
Transportation		,			
Road Vehicles	2,600	4;400	509,800	25,400	46,300
Aircraft	N	5 3 5	14,490	1,040	2,945
Railroads	505	1,300	760	2,800	1,770
Vessels	130	360	-200	730	.145
Total	3,200	6,700	525,300	50,000	51.400
Combustion of Fuels Stationary Sources					
Industry	49,300	22,600	1,500	16,600	1,200
Steam-Electric Util.	137,100	35,000	900	36,030	351
Residential	4,200	3,190	2,520	4,910	515
Commercial & Institutional	9,250	3,530	5,790	2,430	1,150
Total	199,900	112,300	10,700	60,000	3,200
Refuse Disposal					
Incineration	450	1,890	230	450	75
Open Burning	, 100	790	4,190	545	350
Total	550	2,630	4,420	1,000	528
Industrial Process Emissions	179,000	68,400	X	3,500	
Totals	382,600	190,100	- 540,400	94.500	54,900
					·

N = Negligible

Table 4 SUMMERY OF EMISSIONS IN BEAVER COUNTY, 1967 (TORS/YEAR)

Source Category	Sulfur Oxides	Partic- ulates	Carbon Monoxide	Nitrogen Oxides	Hydro- carbons
Transportation					
Roád Vehicles	350	620	2,400	4,300	7,000
Other	15	40	20	70	45
Total	350	600,	77,400	4,400	7,000
Combustion of Fuels Stationary Sources					
Industry	158,900	46,000	√5,700	43,000	1,000
Steam-Electric Util.	. 0	0	0.	0	0
Residentia1	4,330	2,660	2,650	890	540
Commercial & Institutional	7,450	1,840	4,650	1,120	9.50
Tptal	170,700	50,500	13,000	45,000	3,400
Refuse Disposal					
. Incineration	20	90	10	` 20	5
Open Burning	25	220	1,160	150	70
Total	. 45	310	1,170	170	. 75
Industrial Process Emissions	14,200	21,500	NA	NA	NA
Totals	185,300	73,000	91,600	50,000	10,500

NA = Information not available or not reported

Table 5 SUMMARY OF EMISSIONS IN WASHINGTON COUNTY, 1967 (TONS/YEAR)

Source Category	Sulfur Oxides	Partic ulates	Carbon Monoxide	Nitrogen Oxides	Hydro- carbons
Transportation					
Road Vohicles	500	1,900	100,700	5,600	9,200
Other	: N	N	N	N	• •
'fotal	500	1,900	100,700	5,600	9,200
Combustion of Fuels St. Lionary Sources	***************************************				1979 Persian nama diadah melandiri
Industry	163,400	30,800	6,110	41,900	2,1^^
Steam-Flootrie Util.	76,400	40,700	870	34,800	3.
Residential	7,260	4,430	4,500	1,060	9.13
Commercial & Institutional	8,600	2,170	10,400	1,810	2,000
Total	255,700	87,100	21,500	79,600	5,41.
Refuse Disposal					
Incineration	5	30	5	.5	N
Open Burning	25	195	1,050	135	60
Total	30	225	1,055	140	60
Industrial Process Emissions	NA	NA .	NA ·	NΛ	NA.
Totals	256,200	89,200	123,700	85,300	14,200

N = Negligible

NA = Information not available or not reported

Table 6 SUPPARY OF EMISSIONS IN WESTMORELAND COUNTY, 1967 (TONS/YEAR)

Source Category	Sulfur Oxides	Partic- ulates	Carbon Monoxide	Nitrogen Oxides	Hydro- carbons
Transportation	200	1 200	145 500	. 100	17 200
Road Vehicles	800	1,200	145,500	8,100	13,200
Other	И.	N	, N	N	N
Total	800	1,200	145,500	8,100	13,200
Combustion of Fuels Stationary Sources					
Industry	65,500	18,000 -	12,400	13,000	cox
Steam-Electric Util.	22,100	6,560	130	5,530	55
Residential	10,000	6,100	6,150	1,700	1,250
Commercial & Institutional	. 3,700	1,180	3,870	650	775
Total	99,300	31,800	12,500	25,900	2,900
Refuse Disposal	ı		·		
Incineration	0	0	0	0	0
Open Burning	50	370	1,970	255	115
Total	50	370	1,970	255	. 115
Industrial Process Emissions	9,000	2,050	, NA	NA	NA
Totals	109,100	35,400	160,000	34,300	16,200

NA = Information not available or not reported

EMISSIONS BY CATEGORY

For the purposes of compiling the basic data and emission estimates, the air pollutant sources were classified into the following four categories:

- 1. Fuel combustion in stationary sources
- 2. Transportation
- 3. Solid-waste disposal
- 4. Industrial process losses

Fuel Combustion in Stationary Sources

Although all of the three major fuels are consumed within the Study Area, coal is the most significant. As shown in Table 7 approximately 35 million tons of coal (15 million tons for coke production), 179 million gallons of fuel oil, and 225 billion cubic feet of natural gas were consumed in the Study Area. The breakdown of fuel consumption by user category and by jurisdiction is shown in this same table.

The seven steam-electric generating plants within the Study Area consumed 22 percent of the total coal utilized by all sources. Industry is the other prime user of coal consuming 74 percent of the total.

Fuel oil is consumed mainly in industrial operations (75 percent) and for residential heating purposes (18 percent).

Industrial sources consume 40 percent of the natural gas in the Study Area; residential heating 45 percent; and commercial and institutional 15 percent. Natural gas is not utilized in the steam-electric generating plants.

Approximately 85 percent of the dwelling units in the Study Area use gas as the heating fuel (Table 8). Coal was used in 11 percent and fuel oil 4 percent of the total dwelling units. Close to 100 percent of the residences in the urbanized portion of the

Table 7 ANNUAL FUEL CONSUMPTION IN POLITICAL SUDDIVISIONS OF THE

PITTSBURGH STUDY AREA, 1997

Fuel	Jurisdiction	Industry	Stedu-elect ric Plants	Residential	Commercial & Institutional	Totals
Coal, tons/year	Allegheny County, Boaver County Mashington County Westmoreland County TOTALS	16,400,000* 3,710,000 4,200,000 1,650,000 25,800,000	3,730,000 3,400,000 0:7,000 7,790,000	96,000 106,040 180,000 245,000 627,000	232,000 163,600 211,000 80,600 709,000	20,478,000 4,002,000 8,001,000 2,522,000 35,000,000
Funl cil 1010 gal/year	Allegheny County Beaver County Washington County Westmoreland County TOTALS	33,100 73,000 15,200 3,600 134,900	170 250 1,150 1,600	10,900 6,100 3,290 12,100 33,000	3,100 1,730 1,100 3,480 9,400	47,300 85,800 20,400 25,300 178,900
Gad, million cubic feet/year	Allegheny County Beaver County Washington County Westmoreland County TOTALS	40,300 27,000 9,300 13,400 90,000		76,700 7,500 5,400 11,200 100,800	26,000 2,900 1,700 3,700 34,300	143,000 37,400 16,400 20,300 225,000

^{* 15.000,000} Tons/year consumed for coke production

Table 8 SUMMARY OF DOMESTIC HEATING BY NUMBER OF DWELLING UNITS IN PITTSBURGH STUDY AREA, 1967

Type Fuel	Allegheny County	Beaver County	Washington County	Westmoreland County	Study Area	Percent of total .
Coal	13,400	14,400	13,700	37,600	79,100	10.7
Fuel Oil	9,620	5,490	3,500	10,700	29,310	4.0
Utility Gas	474,500	47,200	45,200	64,700	631,600	85.3
Totals	497,520	67,090	62,400	113,000	740,010	100.0

Table 9

SULFUR AND ASH CONTENT OF FUELS, 1967

FUEL	% Sulfur	% Ash
Coal	2.1	9.7
Residual Fuel Oil	1.25	<u>-</u>
Distillate Fuel Oil	0.23	-
Natural Gas	0.0008	-

Study Area are served by natural gas. The outlying areas are partially heated by distillate fuel oil and coal as well as natural gas.

Average values for the sulfur and ash contents of the fuels used in the Study Area are summarized in Table 9. 5,6

Emissions from Fuel Combustion

Air pollutant emissions resulting from fuel combustion in stationary sources are listed in Table 10. The emissions are presented for industrial, steam-electric utility, residential, and commercial and institutional sources.

Coal accounts for approximately 99 percent of the sulfur exides cmitted from fuel combustion in stationary sources; 99 percent of the particulates, 100 percent of the carbon monoxide, 91 percent of the nitrogen exides, and 100 percent of the hydrocarbons.

The emissions resulting from the combustion of fuel oil and natural gas are minor compared to that from coal combustion.

Data Sources

Fuel consumption data for the Study Area were obtained from diverse sources. Natural gas numbers were obtained from the gas companies in the area and are the most accurate. They were provided on a county basis with a breakdown by industry, residential, commercial and institutional source categories.

Residual fuel oil figures were obtained from the Bureau of Census for 1963 and were updated by the increase in manufacturing employment. Residual fuel oil was distributed on a county basis by manufacturing employment and on a grid basis by means of land use maps.

Of the total distillate fuel oil consumed, approximately 45 percent was used for residential purposes and 45 percent for industrial purposes. Distillate fuel oil totals were also obtained from the Bureau of Census.

Table 10 AIR POLLUTANT EMISSIONS FROM COMBUSTION OF FUELS IN STATIONARY SOURCES IN PITTSBURGH STUDY AREA, 1967 (TONS/YEAR)

Fuel	User Category	Sulfur Oxides	Partic- ulates	Carbon Honoxide	Nitrogen Oxides	Hydro- carbons
Coal	Industrial	433,400	125,400	15,700	109,300	6,000
	Steam-Electric	235,500	130,200	1,900	76,400	800
-	Residential	25,200	15,300	15,800	3,150	3,100
	Commercial & Institutional	28,300	s,200	24,700	2,840	4,900
	Total	722,400	279,100	58,100	191,700	14,800
Fuel Gil	Industrial	1,670	170	10	730	10
	Steam-Bleatric	125	10	N.	75	N
	Residential	600	130	30	195	50
	Cormercial & Institutional	1,340	220	N	330	N
{ \	Total	3,700	530	40	1,300	60
Gas	Industrial	10	810	10	9,620	N
	Steam-Electric	0	0	0	0	o
	Residential	20	955	20	5,850	N
	Commercial & Institutional	5	. 330	5	1,990	.;
•	Total	, 35	2,095	. 35	17,460	N
	Grand Totals	726,100	281,800	58,100	210,500	14,900

N = Negligible

Coal consumption data in the four county area was obtained through personal contact with the National Coal Association. Residential coal by county was found from the number of dwelling units using coal and the total number of degree days for the area. This method is described in detail in the Rapid Survey Technique publication.

Transportation

Four types of transportation sources of air pollution are considered in this survey - road vehicles, aircraft, vessels and railroads. Road vehicles which are by far the most significant source of air pollution in this category are further subdivided according to type of fuel - gasoline or diesel.

Road Vehicles

The miles of travel by motor vehicles in the Study Area are summarized in Table 11. Wehicle mile data for major arterials and highways was obtained from a transportation study performed by the Pennsylvania State Highway Department for 1964. Through the Research Division of the Pennsylvania State Highway Department estimates were made in order to include the traffic on secondary and rural roads in each county. The 1964 data was updated to 1967 by the increase in vehicle registrations. The vehicle miles were apportioned onto grids by traffic flow maps provided by the Highway Department.

Road vehicles accounted for 87 percent of the sulfur oxides;
75 percent of the particulates; 98 percent of the carbon monoxide;
91 percent of the nitrogen oxides; and 95 percent of the hydrocarbons from all transportation sources (Table 12). Gasoline powered
road vehicles contributed a greater percentage of all pollutants
than diesel powered road vehicles.

Table 11 VEHICLE MILES OF TRAVEL FOR ROAD VEHICLES IN STUDY AREA PER DAY, 1967

-		Vehicle Hiles						
Type Road	Allegheny	Beaver	Washington	Westmore land	Study Area			
State Rural Urban	9,660,000 253,000 6,235,000	1,746,000 143,000 560,000	2,545,000 311,000 337,000	.3,352,000 612,000 650,000	17,303,000 1,334,000 7,782,000			
TOTALS	16,150,000	2,454,000	3,193,000	4,614,000	26,419,000			

Table 12 AIR POLLUTANT EMISSIONS FROM TRANSPORTATION SOURCES IN PITTSBURGH

STUDY AREA. 1967 (Tons/veer)

Source	Sulfur Oxides	Partic- ulates	Carbon Monoxide	Nitrogen Oxides	Hydrocarbons	
Road Vehicles	4,300	7,000	833,700	46,400	75,700	
Gasoline Diesel	3,280 1,000	4,340 2,700	831,700 1,500	40,900 5.500	72,300 3,400	
Aircraft	. Neg.	535	14,490	1,040	2,945	
Jet Piston.	Heg.	475 60	670 1 13,320	385 655	385 2,530	
Railroad	520	1,430	. 780	2,890	1,770	
Vessels	130	360	200	730	445	
TOTALS	4,900	9,300	848,700	51,000	79,900	

Aircraft

Table 13 shows the air traffic activity at the two largest airports in the Study Area. Total aircraft operations were supplied by the Tederal Aviation Administration. ¹¹ An operation is defined as either a takeoff or a landing.

The breakdown of all flights at each airport by engine-type is shown in Table 14. A flight is defined as a combination of a landing and a takeoff. The values in these tables are reported to as many as five significant figures but should be considered accurate to no more than two. Aircraft accounted for less than 6 percent of the total transportation emissions for any pollutant.

Railroads and Vessels

Railroads consume about 26 million gallons of diesel fuel per year in the Study Area. These figures were obtained from the various railroads in the Study Area. River vessels consume about 7 million gallons of diesel fuel per year. The air pollutant emissions arising from railroad and vessel sources are insignificant when compared to other transportation sources.

Solid Waste Disposal

Approximately 2.1 million tons of refuse were generated during 1967 in the Study Area. This was determined by assuming a per capita refuse generation rate of 4.5 pounds of refuse per day. 13 Table 15 presents a, solid waste balance for the Pittsburgh Study Area, showing the various methods of disposal and the quantities disposed of by each method.

Landfills accounted for 57 percent; municipal incineration 11 percent; open dumps 7 percent; on-site incineration 11 percent and on-site open burning 8 percent of the total refuse disposed. The remaining 6 percent of the total refuse generated was transferred out of the Study Area. Figure 5 shows the location of the various

Table 13

AIR TRAFFIC ACTIVITY AT GREATER PITTSBURGH AIRPORT, AND PITTSBURGH ALLEGHENY AIRPORT FOR CABUNDAR YEAR 1967

	·				
		Greater -	Pittsburgh	Pittsburgh	- Allegheny
	,	Itinerant Operations	Local Operations	Itinerant	Local
	Air Carrier	145,293	-	122	-
	General Aviation	42,956	16,290	105,629	72,606
٠.	Military	12,535	17,087	1,151	1,098
	Totals	200,784	33,377	106,902	73,704

Table 14

AIR TRAFFIC BY ENGINE TYPE

	Greater - Pittsburgh Number of Flights	Pittsburgh - Allegheny Number of Flights	
Fan - Jet Conventional Jet Two Engine Piston Four Engine Piston	29,059 20,595 50,605 16,822	24 1,019 71,427 17,832	·
Totals	117,081	90,302	

Table. 15 SOLID WASTE BALANCE FOR PITTSBURGE STUDY AREA, 1967

Total Refuse Generated	' I : i	Incineration				Open- Burning	
	Municipal	On-Site	Landfills	Dumps	On-Site	Transferred	
Allegheny	1,395,000	213,500	229,900	474,500	146,000*	62,000	+269,000
Beaver	185,000	14,400		99,100	5,800	26,000	+ 39,700
Washington	181,000	6,600	· · · · · · · · · · · · · · · · · · ·	295,100		24,900	-145,600
Westmoreland	310,000			313,900		46,500	- 50,400
Totals	2,071,000	234,500	229,900	1,132,600	151,800	159,400	+112,700

This includes only industrial dumping. The remaining dumps in Allegheny County are included in the landfill total.

^{**} The + sign refers to transferred out of area and the - sign refers to transferred into area.

Figure 5. Solid-waste disposal sites in Pittsburgh Study Area.

- Landfill
- Municipal incinerator
 - Dump

disposal sites throughout the Study Area. 14

A total of 8,600 tons of carbon monoxide, 3,600 tons of particulate matter and 1,500 tons of nitrogen oxides were emitted from solid waste disposal practices in the Study Area (See Table 16).

Industrial Process Losses

The resources of the Study Area have been conducive to the development of many types of heavy industry. Chief among these are primary metal products, fabricated metal products, and machinery. Table 17 shows selected manufacturing establishments in the area by county for 1966.

It may be noted from the table that Allegheny County accounts for the largest single percentage of almost every type of manufacturing. Fifty percent of "Stone, Clay and Glass" establishments, forty-seven percent of "primary metals" seventy percent of "fabricated metal products," and fifty eight percent of "machinery" establishments are located in Allegheny County.

Emissions from industrial process losses are shown in Table 18. By-product coke ovens account for 95 percent of the sulfur oxides emissions from industrial processes and 28 percent of the particulates.

Data for industrial process losses were supplied by the local and state Air Pollution Departments.

EMISSIONS BY GRID

For the purpose of modeling the air pollutant emissions in the Study Area the resulting emissions were apportioned on the grid reference system shown in Figure 4.

The emissions of each pollutant were divided into two source subgroups - point and area sources. The 68 point sources were

Table 16 AIR POLLUTANT EMISSIONS FROM CHLD-WASTE DISPOSAL IN AIR POLLUTION STUDY ANDA, 1967 (Tons/Year)

Category	Sulfur Oxides	Particulates	Chulma Mercual do	llydrocarbons	W.trogon Oxidos
Incineration	478	2,008	2:0	81	473
Municipal	244	1,030	131	.44	244 -
On-Site	234	. 978	117	37	234
Open Burning	196	1,573	8,000	495	1,083
Dumps	36	303	1,613	95	208
On-Site	160	1,270	6,770	400	875
Total	675	3,580	. 8,620	575	1,560

TABLE 17 SELECTED MANUFACTURING ESTAM INMEMOS IN PITTEBURGH STUDY AREA, 1964

		: Number of Establishments			
Type of Establishment	Allegheny	Boar ar	Was bington	Westmoreland	Study Area
Food and Kindred Products	270	40	54	78	442
Transportation Equipment	18	2	4	7	. 31
Instruments & Related Products	34	ì	2	3	40
Apparel & Related Products	49	3	5	19	76
Lumber & Wood Products	31	3	. 12	32	78
Furniture & Fixtures	48	2	15	15	8 0
Paper & Allied Products	23	2	7	5	37
Printing, Publishing	239	21	. 27	51	388
Chemicals & Allied Products	73 ·	3	4	חר	'95
Petroleum & Coal Products	19	3	2	2	26
Rubber & Miscellaneous Plastics	27	.3	G	7	43
Stone, Clay & Glass Products	103	3.3	30	40	206
Primary Hotal Products	74	25	15	43	157
Fabricated Metal Products	235	23	31	49	338
Machinery	223	25	. 34	103	335
Totals	1,516	704	248	464	2,422

Table 18
AIR POLLUTANT EMISSIONS FROM PROCESS LOSS SOURCES IN THE PITTSBURGH STUDY AREA
1967 (Tons/Year)

	Type of Industry	so _X	PART.	NOX
Fer	rous Metal Cherations			
	Blast Furnaces	••••	10,800	
	Lasic Oxygen Plants .	57 57 ba	1,200	
	Upen-Hearth Furnaces	** ·- ·- ·	15,300	
	Electric Arc Furnaces	68 Dr 6p	3,600	
	Sintering Plants	400.	13,000	1,500
	Cupola Furnaces	~~~	2,300	** **
	Dy-Product Coke Ovens	194,000	26,500	88 91 No
Non	-Netallurgical			
	Cement Plants	, 7,8 00	15,300	1,950
	Asphalt Plants ,		600	
0th	er		2,000	ger sjak gak ger sjakgagilen dak er de sjekkliken folke folke sjak gak
TOT	Al.	202,200	91,900	3,500

identified by source category, grid number and horizontal and vertical coordinates. Figure 6 shows the location of all major point sources in the Study Area. The point sources are presented in Table 19, along with emissions for the five pollutants for an average annual, winter and summer day. The appendix presents the method for calculating these three averages.

The emissions for area sources on the annual, winter and summer bases are shown in Table 20. The calculation of these averages is similar to that presented in the appendix for point sources.

EMISSION DENSITIES BY GRID

Emission densities on a grid basis were obtained by survivathe annual area and point source emissions for each grid. This total, divided by the grid area, gives an emission density in tons per square mile per average day. Figures 7 through 11 present the emission density maps for the five surveyed pollutants.

The emission density maps for sulfur oxides, nitrogen oxides and particulates show that the highest density grids are located along the river valleys. This would be expected since all of the largest industries are located along the river valley. Also they show that Allegheny County has the greatest emissions of all four counties.

The emission density maps for carbon monoxide and hydrocarbon show that the greatest emissions occur around the center of Allegheny County. Since transportation sources are by far the biggest single source of these two pollutants, it would seem logical that at and near the city of Pittsburgh carbon monoxide and hydrocarbon emissions should be the highest.

Figure 6

Point Source Location for Pittsburgh Study Area 1967

Figure 7. Suitar exides emission density from all some.s.

Figure 8 . Particulate emission density from all sources.

Figure 9. Carbon monoxide emission density from all sources.

Figure &C. Mitrogen exides emission density from all sources.

Figure 11. Hydrocarbon emission density from all sources.

TABLE 19
SUMMARY OF AIR POLLUTANT EMISSIONS FROM POINT SOURCES BY SEASON FOR PITTSBURGH STUDY AREA, 1967 (TONS/DAY)

			•															
manifestigam producernicim codes and review date on the constitution of the constitution of the constitution of the code of th	=======================================				S0 _x			PART			CO	Par pain y and Salaman and y as	o magnificação de Partir de America de Ameri	NO _x			HC	
Source Category	Grid	НС	vc	· S	W	Α	S	W	Α	·S	14	Α	S	W	Α.	S	W	A
			<u>:</u>		·					unte coloni di					· · · · · · · · · · · · · · · · · · ·			
Industrial	2	5565	45150	2.3	15.7	11.4	0.1	0.6	0.5	0.1	0.4	0.3	0.4	3.1	2.2		0.1	0.1
Industria!	5	5555	45020	5.1	49.4	25.6	0.4	4.0	2.0	0.1	1.3	0.7	.0.9	9.2	4.8		0.4	0.2
Industrial	5	5570	45030	4.9	99.5	48.7	0.2	3.6	1.8	0.2	3.3	7.6	1.1	22.0	10.8	0.1	1.1	0.5
Industrial	5	5575	4505 0	0.4	1.9	1.1	0.8	3.6	2.1		0.1		0.1	0.3	0.2		,	
Industrial	7	5465	44900	71.8	71.8	71.8	25.6	25.6	25.6	1.8	1.8	1.3	12.3	12.3	12.3	0.6	0.6	0.6
Industrial	9	5645	44930	69.7	169.3	115.8	48 .1	96.8	70.6	1.1	4.5	2.8	9.3	39.2	23.2	0.4	1.7	1.0
Industrial	. 12	5660	44945	0.1	. 2.5	1.3	0.1	1.3	0.6		0.1	0.1		0.7	0.3			
Industrial	12	5660	44940	1.1	3.5	2.2	0.2	2.1	1.1	400 May 1844	0.1	0.1	0.1	0.6	0.3			
S. E. Utility*	12	5652	44911	137.1	137.1	137.1	23.0	23.0	23.0	0.9	0.9	0.9	36.1	36.1	36.1	0.4	. 0.4	0.4
Industrial	16	6084	44969				1.3	1.3	1.3		ma em es-							
Industrial	16	6083	44968			· • • • •	5.1	5.1	5.1									
Industrial	16	6083	44968	·		**************************************	5.5	5.5	5.5		+- -, -							
Industrial	16	6034	44919	3.7	4.6	4.1	2.3	2.8	2.5	0.1	0.2	0.2	0.9	1.2	1.0	0.1	0.1	0.1
I. Power Gen.**	16	6046	44946	1.3	1.3	2.7	0.8	0.8	1.6				0.3	0.3	0.7			

TABLE 19
SUMMARY OF AIR POLLUTANT EMISSIONS FROM POINT SOURCES BY SEASON FOR PITTSBURGH STUDY AREA, 1967 (TONS/DAY)
(Continued)

					S0x			PART		er den	CC	emengapan na ngunggapan nganapan na ngunggapan na ngunggapan nganapan na ngunggapan na		NOx			HC	
Source Category	Grid	НС	VC	S	W	А	S	M	A	S	W	A	S	M	А	, S	W	A
Airport	19	5662	44825		en en en '		1.3	1.3	1.3	18.6	18.6	18.6	1.8	1.8	1.8	4.2	4.2	4.2
Industrial .	20	5704	44855	2.2	2.2	2.2	0.3	0.3	-0.3	0.1	0.1	0.1	0.6	0.6	0.6		÷	
Industrial	27	5782	44328	8.2	8.2	8.2	15.1	15.1	15.1				2.1	2.1	2.1	0.1	0.1	0.1
Industrial	-27	5780	44834	25.2	25.2	25.2	3.3	3.3	3.3									
Industrial	23	5812	44806	1.9	1.9	1.9	0.9	0.9	0.9	0.1	0.1	0.1	0.5	0.5	0.5			·
Industrial	29	5898	44823			:	1.2	1.2	1.2					·				
Industrial	29	5882	44312	1.5	1.9	1.7	0.2	0.3	0.3	0.1	0.1	0.1	0.4	0.5	0.4			
S. E. Utility*	32	6023	44878	38.8	38.8	38.8	130.5	130.5	130.5	0.3	0.3	0.3	10.2	70.2	10.2	0.1	0.1	0.1
S. E. Utility*	32	6023	44878	44.0	44.0	44.0	20.7	20.7	20.7	0.3	0.3	0.3	11.6	11.6	11.6	0.1	0.1	0.1
S. E. Utility	32	6043	44387	92.9	92.9	92.9	19.2	19.2	19.2	0.6	0.6	0.6	24.5	24.5	24.5	0.2	0.2	0.2
S. E. Utility*	32	6043	44837	5.9	.5.9	5.9	24.5	24.5	24.5				1.6	1.6	1.6			
Industrial	33	6300	44860	0.7	1.1	0.9	0.4	0.7	0.5				0.2	0.3	0.2			
S. E. Utility*	37	5813	44792	57.4	57.4	57.4	9.7	9.7	9.7	0.4	0.4	0.4	15.1	15.1	15.1	0.2	0.2	0.2
I. Power Gen.**	. 37	5849	44764	1.0	1.7	1.3	0.1	0.2	0.1		0.1		0.3	0.5	0.4		- -	

TABLE 19
SUMMARY OF AIR POLLUTANT EMISSIONS FROM POINT SOURCES BY SEASON FOR PITTSBURGH STUDY AREA, 1967 (TONS/DAY)
(Continued)

										-								·
	***		!		S0 _X			PART			CO	The second second		· 110 _x			НС	
Source Category	Grid	HC	vc	S	W	Α	S	W	Α	S	W	Α	. \$	W	Α	\$	M	Α
I. Power Gen.**	37	5829	44778	8.0	0.8	0.8	2.0	2.0	2.0			~ ~ *	. 0.2	0.2	0.2			
Industrial	38	5880	44762				3.1	3.1	3.1			man that the				~		
Industrial	38	5862	44790	- -			1.2	1.2	1.2	* - -								
Incineration	38	5368	44790	0.4	0.4	0.4	1.8	1.8	1.8	0.2	0.2	0.2	0.4	0.4	0.4	0.1	0.1	0.1
Industrial	38	5866	44793	2.1	2.1	2.1	0.3	0.3	0.3	0.1	0.1	0.1	0.5	0.5	0.5			
I. Power Gen.**	38	5896	44771	1.7	5.3	3.4	0.3	0.8	0.5	0.1	0.2	0.1	0.4	1.3	0.9	. ===	0.1	
Industrial	38	5861	44758	2.0	2.4	2.2	0.3	0.4	0.3	0.1	0.1	0.1	0.5	0.6	0.5			
Industrial	38	5870	44800	2.9	2.9	2.9	0.4	0.4	0.4	0.1	0.1	0.1	0.7	0.7	0.7			
Institutional	38	5898	44770	0.4	2.8	1.8	0.1	0.4	0.3	0.3	1.8	1.1		0.3	0.2	0.1	0.4	0.2
I. Power Gen.**	38	5861	44783	1.1	1.9	1.4	0.1	0.2	0.2		0.1		0.3	0.5	0.4			
I. Power Gen**	38	5336	44753	24.4	24.4	24.0	14.2	14.2	14.0	0.2	0.2	0.2	6.1	6.1	6.0	0.1	0.1	0.1
I. Power Gon.**	38	5860	4478 7	2.8	2.8	2.7	1.0	1.0	1.0				0.7	0.7	0.7			
Industrial	39	5943	44755	1.2	2.0	1.5	0.1	0.2	0.2		0.1	0.1	0.3	0.5	0.4			·
Institutional	42	5753	44706	2.1	3.5	2.7	0.3	0.5	0.4	1.3	2.2	1.7	0.2	0.4	0.3	0.3	0.4	0.3

.

TABLE 19
SUMMARY OF AIR POLLUTANT EMISSIONS FROM POINT SOURCES BY SEASON FOR PITTSBURGH STUDY AREA, 1967 (TONS/DAY) (Continued)

					SO _x			PART			CO	**************************************		NO _x		· · · · · · · · · · · · · · · · · · ·	нс	
Source Category	Grid	KC.	VC	Š	W	А	S	W	A	S	W	A	S	W	A	S	W	Α .
Industrial	44	5891	44737	90.6	90.6	90.6	11.7	11.7	11.7			The state of the s						:
Industrial	44	5896	44725	1.4	1.4	1.4	0.2	0.2	0.2	0.1	0.1	0.1	0.4	0.4	0.4			
I. Power Gen.**	44	5885	44745	3.3	3.3	3.3	1.0	1.0	1.0				0.8	0.8	0.8			
Industrial	45	5903	44720				1.8	1.8	1.8		****							
Industrial	46	5970	44717				3.2.	3.2	3.2		•							
Industrial	46	5951	44731				2.2	2,2	2.2									
Industrial	46	5972	44722				27.4	27.4	27.4		~~ -				· 			
Industrial	46	5970	44717	0.3	0.3	0.3	20.6	20.6	20.6		******		1.2	1.2	1.2	·		
Industrial	46	5951	44732	0.5	0.5	0.5	1.3	1.3	1.3				1.8	1.8	1.8		·	
I. Power Gen.	46	5990	44725	16.4	16.4	16.4	9.7	9.7	9.7	.1.0	1.0	1.0	4.0	4.0	4.0		en. 140 180	
Industrial	47.	6003	44793	13.1	13.1	13.1	26.9	26.9	26.9				3.3	3.3	3.3	0.2	0.2	0.2
Industrial	47	6010	44721	2.8	3.4	3.1	0.4	0.5	0.5	0.1	0.1	0.1	0.7	0.9	0.8			
Airport	54	5910	44654				0.1	0.1	0.1	21.1	21.1	21.1	1.0	1.0	1.0	3.9	3.9	3.9
Industrial	55	5934	44694				3.5	3.5	3.5	~	~~-							

.

TABLE 19
SUMMARY OF AIR POLLUTANT EMISSIONS FROM POINT SOURCES BY SEASON FOR PITTSBURGH STUDY AREA, 1967 (TONS/DAY)
(Continued)

		*														·		
·					so_x			PART			CO			NOx			НС	
Source Category	Grid	IIC	VC · · ·	; S	. W	Α	S	M	Α	\$	Ų	Α	S	. M	А	S	W	A
Institutional	57	5 755	44645	1.7	3.0	2.3	0.7	1.1	0.9	1.1.	1.9	1.4	0.2	0.3	0.2	0.2	0.4	0.3
Industrial	61	5958	44618	352.2	352.2	352.2	45.1	45.1	45.1			***						
I. Power Gen.**	61	5954	44620	6.5	6.5	6.5	1.9	1.9	1.9				1.7	1.7	1.6			
Industrial	63	6170	44650	4.1	6.3.	5.1	2.5	3.9	3.2	0.2	0.2	0.2	1.4	2.1	1.7	0.1	0.1	0.1
I. Power Gen.**	É4	6440	44650		29.5	13.7		10.1	4.7		1.1	0.5		7.4	3.4		0.4	0.2
Industrial	64	6390	44680	0.4	0.6	0.5	1.1	1.6	1.3		* - *		0.1	0.2	0.2	00 mm 00		
Industrial	64	6380	44610	1.4	2.1	1.7	0.5	0.5	0.5	0.1	0.1	1.0	0.3	0.5	0.4	~		
Industrial	64.	6390	44630	3.2	4.9	4.0	2.9	4.4	3.6	0.2	0.4	0.3	1.5	2.4	1.9	0.1	0.1	0.1
S. E. Utility*	65	6620	44703	60.1	60.1	60.1	18.0	18.0	18.0	0.4	0.4	0.4	15.2	15.2	15.2	0.2	0.2	0.2
S. E. Udility*	67	5920	44561	178.0	178.0	178.0	62.4	62.4	62.4	1.2	1.2	1.2	46.8	46.8	46.8	0.5	0.5	0.5
S. E. Utility*	71	5877	44523	30.5	30.5	30.5	49.0	49.0	49.0	1.2	1.2	1.2	48.6	48.6	48.6	0.5	€.5	0.5
Institutional	71	5852	44592	1.2	3.0	2.4	0.1	0.3	0.2	8.0	1.9	1.5	0.1	0.3	0.2	0.2	C.4	0.3
Industrial	71	5720	44580	1.1	1.1	1.1	0.7	0.7	0.7				0.3	0.3	0.3			
Industrial	72	5950	44450	12.6	19.4	15.8	2.3	3.5	2.9	0.5	0.7	0.6	3.2	4.9	4.0	0.2	€.2	0.2
Industrial	72	5945	44409	27.8	28.5	28.2	6.5	6.9	6.7	0.1	0.2	0.1	1.0	1.1	1.1		0.1	0.1

^{*} Steam Electric Utility

^{**} Industrial Power Generation

TABLE 20% SUMMARY OF AIR POLLUTANT EMISSIONS FROM ALL SOURCES BY SEASON FOR PITTSBURGH STUDY AREA, (TONS/DAY)

	•					•										
	LAND		SO _x			PART.			CO			х			HC	
RID	. AREA (sq.mi)	S	. W	Α	S	W	A	S	W	A	3	W	· A	S	W	Α
1	38.60	0.2	0.6	0.4	0.5	0.7	0.6	10.9	10.0	10.7	0.6	0.6	0.6	0.9	. 0.9	0.9
2	38.60	12.7	32.3	26.2	4.3	8.5	6.4	46.7	45.2	45.7	5.7	8.5	3.4	4.3	1.4	4.5
3	38.60	14.8	23.7	19.0	4.5	7.1	5.8	26.5	25.4	26.2	5.3	7.4	6.4	2.6	2.7	2.6
4	38.60	24.3	37.5	30.5	6.1	9.6	7.8	6.2	7.3	6.7	6.8	10.3	8.5	0.9	1.2	1.1
5	38.60	59.5	229.3	138.5	15.0	33.3	23.5	47.4	52.4	49.9	16.1	52.2	32.9	5.0	7.1	6.0
6	38,60	49.1	73.0	62.7	13.4	21.8	17.4	43.7	44.1	47.2	13.8	20.5	17.1	4.6	5.3	5.0
7	38.60	72.0	73.1	72.5	26.3	26.9	26.6	17.7	16.7	17.3	11.9	12.1	12.0	2.0	2.0	2.1
8	38.60	0.1	1.0	0.5	0.4	0.9	0.6	7.8	7.5	7.7	0.5	0.6	0.5	0.7	0.8	0.7
9	9.65	94.2	209.3	147.7	54.8	108.3	79.7	23.8	27.9	25.8	17.1	50.9	32.9	2.8	4.6	3.0
10	9.63	24.3	. 38.3	30.9	6.2	10.1	8.1	7.9	10.1	8.5	7.0	10.4	8.7	1.1	1.3 .	1.2
11	9.65	0.3	2.5	1.3	0.8	2.1	1.4	16.1	15.7	16.0	1.2	1.6	1.2	1.6	1.7	1.7
12γ	9.65	138.5	145.2	141.6	23.8	28.0	25.7	.8.9	9.4	9.2	36.6	38.2	37.4	1.2	1.5	1.3
13 °	38.60	0.6	0.8	0.7	1.5	1.6	1.6	35.1	31.6	33.7	2.2	2.2	2.2	3.3	3.)	3,1
14 .	38.60	1.3	1.6	1.4	3.2	3.2	3.2	80.6	72.5	77.3	4.6	4.6	4.6	7.3	6.3	7.1
-15	38.60	0.8	0.9	0.8	0.6	0.7	0.6	46.7	42.0	44.8	2.8	2.8	2.8	4.2	3.9	4.1

SUPPLIES OF AIR POLLUTANT EMISSIONS FROM ALL SOURCES BY SEASON FOR LATTSECT UP STUDY AREA, (TONS/DAY)

					· ·	<u></u> .,				•						
:	T AND AREA		. SO _x			PART.			СО			NO X			HC	
GRIL' -	(sq.mi)	S	W	A	S :	W	· A	" <i>\$</i> ~	W	A	S	IA.	Λ	S	W	A
16 -	38.60	11.8	23.2	18.4	19.5	26.2	23.4	42.9	44.3	43.9	6.5	9.7	. 8.3	4.4	5.3	4.8
17	38.60	0.1	0.3	0.2	0.3	0.4	0.3	5.3	4.9	5.1	0.3	0.3	0.3	0.4	0.4	0.4
18	38.60	0.1	0.2	0.1	0.1	0.2	0.2	2.3	2.1	2.2	0.2	0.2	0.2	0.2	0.1	0.1
19 .	38.60	3.1	4.8	3.9	3.9	4.9	4.4	47.0	44.8	46.1	5.0	6.1	. 5.5	7.0	6.9	7.1
20	9.65	2.6	2.7	2.7	1.2	1.2	1.2	13.2	11.9	12.7	1.7	1.1	1.5	1.0	1.0	1.0
21	9.65	2.5	2.9	1.6	1.1	1.5	1.3	9.4	8.3	9.2	1.3	1.7	1.5	1.0	1.0	1.0
22	9.65	0.4	0.6	0.5	1.0	1.1	1.1	21.7	19.6	20.9	1.4	1.6	0.5	2.0	1.8	2.0
23	9.65	0.6	0.9	0.8	0.9	1.1	1.0	18.0	16.4	17.4	1.4	1.6	1.4	1.8	1.8	1.7
24	9.65	0.8	1.1	0.9	1.5	1.0	1.0	14.1	12.8	13.5	1.2	1.4	1.3	1.4	1.3	1.3
25	9.65	0.3	1.1	0.9	1.5	1.6	1.6	30.5	27.5	29.3	2.1	2.2	2.2	2.9	2.6	2.8
26	9.65.	2.2	2.8	. 1.6	1.5	1.4	0.7	10.1	9.4	9.8	1.5	1.8	1.6	1.2	1.1	1.2
27	9.65	34.7	36.0	35.3	20.4	21.1	20.7	16.4	15.3.	16.0	3.8	4.8	4.2	1.8	.8	1.8
28.	9.65	2.8	3.6	3.2	2.7 .	3.1	2.9	32.1	29.3	31.0	3.9	4.9	4.3	3.0	2.8	2.9
29 t	9,65	4.3	6.1	4.2	4.4	5.3	4.8	42.7	39.1	41.3	3.7	4.8	4.3	4.1	:.9	4.0
30	9,65	1.2	2.1	1.7	1.8	2.4	2.1	34.0	31.2	33.0	2.5	3.1	2.8	3.3	5.0	3.1
31	9.65	2.4	3.3	1.9	1.6	2.0	1.8	20.6	18.8	19.9	1.9	2.4	2.2	2.1	2.0	2.0

TABLE 20. SUMMARY OF AIR POLLUTANT EMASSIONS FROM ALL SOURCES BY SEASON FOR DITTSHURGE STUDY AREA, (TONS/DAY)

	LAND	· · · · · · · · · · · · · · · · · · ·	Sox			PART,			СО			NO _N	······································	······································	ilC	
G' . ` <u>'</u> .	AREA (sq.mi)	S	W	Α	S	W	A	S	W	A	· ·\$	V_{i}	Α	S	W	Α
52_	38.60	185.7	187.6	186.6	199.5	200.3	199.9	78.9	71.6	72.0	53.7	54.6	54.2	7.8	7.3	7.8
3.3	154.40	38.0	63.1	49.9	10.6	18.8	14.4	31.2	34.1	32.7	11.9	18.1	14.9	3.5	4.5	3.9
34	38.60	0.5	0.8	0.4	0.4	0.8	0.6	10.1	9.5	9.9	0.6	0.6	0.6	0.8	0.9	0.9
33	9.65	0.2	0.5	0.4	0.7	0.8	0.7	11.8	10.8	11.4	0.8	1.1	0.9	1.2	1.1	1.1
36	9.65	0.6	1.4	1.0	1.4	1.9	1.6	19.2	17.7	18.7	1.5	2.1	1.8	1.9	1.8	1.9
37	9.65	60.8	63.1	61.9	15.4	16.8	16.0	66.7	61.0	64.5	20.0	21.8	20.9	6.4	6.0	6.3 .
38 -	9.65	40.2	. 49.3	44.3	29.0	31.1	29.8	114.4	105.5	111.1	16.6	19.4	17.9	13.4	10.2	10.5
39	9.65	5.0	. 8.5	6.6	4.7	6.2	5.4	79.1	72.2	76.4	6.2	8.2	7.2	7.3	7.0	7.2
40	9.65	1.3	2.1	1.7	2.2	2.5	2.3	43.7	39.6	42.1	3.0	3.4	3.2	4.1	3.7 ;	3.9
41	9.65	0.3	0.2	0.2	0.4	0.5	0.5	6.4	5.8	6.2	0.5	0.6	0.6	0.7	0.6	0.7
42	9.65	4.5	7.3	4.9	2.0	3.0	2.5	28.2	30.0	27.8	2.6	3.6	3.1	2.9	3.0	2.9
43	9.65	1.5	3.3	2.4	2.7	.3.8	3.2	60.3	55.1	58.3	3.9	5.4	4.7	5.6	5.2	5.4
4.4	9.65	97.5	98.8	98.1	16.6	17.2	16.8	80.2	72.5	77.1	6.4	7.1	6.8	7.5	6.9	7.2
4 5 5	9.65	3.4	5.8	4.6	7.3	8.6	7.3	52.0	47.7	50.4	4.3	5.8	5.1	5.0	4.8	5.0
46	9.65	19.2	20.6	19.9	68.6	69.4	69.0	42.2	38.7	40.8	10.3	11.3	10.7	4.0	3.8	3,9
47	38.60	13.6	21,2	19.9	32.1	33,1	32.6	109.0	98.9	105.0	10.5	11.3	10.9	0.6	1.9	1.3

•			_													
	LAND AREA		SO _x			PART.		v	СО	A STATE OF THE PARTY OF THE PAR		NO A			IIC	
GR-ID	.(sq.mi)	S	W	A	S	W	A	S	W	Α	5	1,2 1.	Α	S	W	A
. 48	38.60	0.1	0.4	0.2	0.1	0.3	0.2	2.6	2.6	2.6	0.2	0.2	0.2	0,2	0.2	0.2
. 49	154.40	81.6	126.9	103.1	21.5	33.5	27.2	55.4	56.3	56.2	23.2	34.4	28.5	6;2	7.0	6.7
50	9.65	0.2	0.5	0.2	0.4	0.5	0.4	4.7	4.3	4.5	0.5	0.7	0.6	015	0.5	0.5
51	9.65	2.3	3.2	1.8	1.4	1.9	1.7	15.3	14.2	14.9	1.6	2.2	2.0	1.6	1.5	1.5
. 52	9.65	0.5	1.1	0.8	1.3	1.7	1.5	28.8	26.7	27.8	1.8	2.4	2.1	2.7	2.5	2.6
53	9.65	0.5	1.0	0.7	1.2	1.6	1.4	27.7	25.2	26.7	1.7	2.8	2.0	2.6	2.4	2.5
54	,9.65	1.3	2.19	2.4	2.2	2.7	2.5	48.4	46.1	47.5	3.6	4.2	3.8	6.7	6.5	6.6
55	19.65	1.4	2.4	1.9	6.0	6.6	6.3	33.6	28.6	31.3	3.5	4.3	4.0	3.1	2.9	3.0
56	9.65.	0.1	0.46	.0.3	0.2	0.6	0.4	3.0	3.1	3.1	0.2	0.4	0.2	0.3	0.3	0.3
57.	9.65	1.9	3.16	2.7	1.3	2.5	1.6	11.8	11.7	11.8	0.9	1.2	1.0	1.2	1.4	1.3
58	9.65	0.2	0.3	0.3	0.6	0.6	0.6	10.2	9.2	9.8	0.7	0.8	0.8	1.0	. 0.9	1.0
59	9.61	0.3	0.4	0.3	0.7	0.8	0.7	.12.9	11.7	12.5	1.0	1.0	1.0	1.3	1.2	1.2
60	9.65	1.7	28	2.2	1.9	2.4	2.2	19.2	16.8	17.6	2.0	2.7	2.3	1.9	1.8	1.9
\hat{b}_1	9.65	359.5	3601	359.8	.48.3	48.7	48.5	13.3	12.3	12.9	3.0	3.4	3.2	1.3	1.4	1.4
62	38.60	9.6	16.15	12.9	3.4	5.7	4.5	27.5	26.7	27.3	4.2	5.7	5.0	2.6	2.7	2.6
63	154.40	151.6	92.74	70.8	17.1	33.1	24.5	91.4	94.4	93.3	17.4	26.0	21.5	8.9	10.7	9.9

ij,

TABLE 2008 SUMBARY OF AIR POLLUTANT EMISSIONS FROM ALL SOURCES BY SEASON FOR PATTSBURGH STUDY AREA, (TONS/DAY)

						·· · · · · · · · · · · · · · · · · · ·										
	LAND AREA		SQ _x			PART.			СО		•	NO x			IIC	,
GRID	(sq.mi)	S	W.	Α	S	W	A	S	W	A	S	W	A	S	W	Α .
6.1	154.40	24.1	72.4	46.6	10.7	29.1	19.2	45.7	47.7	46.9	9.7	21.7	15.2	4.5	5.6	5.0
65	154.40	60.2	62.3	61.2	18.3	19.6	18.9	6.5	7.2	6.9	15-6	15.9	15.7	0.7	0.9	0.8
J 66 -	38.60	0.1	0.2	0.2	0.2	0.3	0:2	3.6	3.3	3.5	0.2	0.2	0.2	0.3	0.3	0.3
67	38.60	173.5	179.0	179.2	63.8	64.5	64.2	29.3	27.3	28.5	48.5	48.8	48.7	3.0	3.0	3.0
68	38.60	0.4	1.5	0.9	0.4	1.4	0.9	9.2	8.5	8.4	0.6	0.8	0.7	0.7	0.9	0.7
69	38.60	0.4	0.4	0.3	0.3	0.5	0.4	7.4	6.9	7.2	0.5	0.4	0.4	0.6	0.7	0.7
70	154.40	82.8	· 137.8	108.9	23.5	41.2	31.8	105.6	107.3	107.1	26.0	38.0	31.7	10.7	12.4	11.6
. 71	154.40;	51.3	75.4	64.6	58.1	65.9	61.8	92.2	90.6	92.2	59.1	62.7	60.8	9.1	9.8	9.5
7.2	38.60	204.1	308.2	253.4	50.2	79.4	64.0	65.6	76.0	70.9	48.3	73.2	60.1	8.5	11.6	10.0
73	- 38.60	0.4	1.1	0.7	0.9	1.3	1.1	22.6	20.8	21.9	1.3	1.2	1.3	4.8	4.4	4.6
74	154.40	1.5	9.0	5.0	3.6	7.9	5.6	93.8	88.8	92.1	5.3	5.9	5.6	8.4	3.4	8.5
7 5	154.40	0.9	3.5	2.2	2.3	3.7	3.0	58.4	54.0	56.7	3.2	3.4	3.4	5.2	5.0	5.1
76	154.40	0.1	1.5	0.8	0.4	1.3	0.8	8.4	8.5	8.5	0.5	0.7	0.6	0.7	0.8	0.8
7 7	38.60	0.1	0.1	0.1	0.2	0.2	0.1	2.3	2.1	2.2	0.2	0.1	0.2	0.2	0.1	0.2
78	38.60	40.8	64.4	. 52.0	10.2	17.2	13.4	13.5	16.1	14.8	10.9	16.2	13.6	1.9	2.0	2.2
79	38.60	0.0	0.1	0.0	0.1	0.1	0.1	0.5	0.5	0.5	0.1	0.1	0.14	0.0	0.1	0.0
80	154.40	0.1	1.3	0.5	0.2	0.8	0.5	5.2	5.2	5.2	0.3	0.4	0.4	0.5	0.5	0.5
81	154.40	0.3	3.5	1.8	0.6	2.6	1.5	14.8	15.3	15,1	. 0.8	1.2	1.1	1.4	1.0	. 1.4

REFERENCES

- 1. Ozolins, Guntis, and Raymond Smith: Rapid Survey Technique for Estimating Community Air Pollution Emissions, DHEW, PHS, October 1966.
- 2. United State Census of Housing, U.S. Department of Commerce, Bureau of the Census, 1960.
- 3. Physical and Man-Made Features of the Region, Southwestern Pennsylvania Regional Planning Commission, pp. 20-21, May 1965.
- 4. Duprey, R.L.: Compilation of Air Pollutant Emission Factors, U.S. DHEW, PHS, 1968.
- 5. Smith, W.S., and C.W. Gruber: Atmospheric Emissions from Coal Combustion, U.S. DHEW, PHS, April 1966.
- 6. Smith, W.S.: Atmospheric Emissions from Fuel Oil Combustion, U.S. DHEW, PHS, November 1962.
- 7. Fuels and Electric Energy Consumed in Manufacturing Industries, U.S. Bureau of the Census, 1963.
- 8. Personal Communication with National Coal Association Representative, September, 1968.
- 9. op. cit., Ozolins, Guntis, pp. 43-45.
- 10. Personal Communication with Pennsylvania State Highway Department, September 1968.
- 11. FAA Air Traffic Activity, Calendar Year 1967, Department of Transportation, Federal Aviation Administration, Feb. 1968.
- 12. Emission Inventory 1967, Allegheny County Health Department Bureau of Air Pollution Control.
- 13. Municipal Refuse Disposal, American Public Works Association, Public Administrative Service, Washington, D. C., 1961.
- 14. Personal Communication with Pennsylvania State Health Department, September 1968.
- 15. 1966 County Industry Report, Allegheny, Beaver, Washington, Westmoreland, Release No. M-5-66, Department of Internal Affairs, Bureau of Statistics.

METHOD FOR CALCULATING SUMMER, WINTER AND ANNUAL

AVERAGE EMISSIONS FOR FUEL CONSUMPTION IN STATIONARY SOURCES

YEARLY AVERAGE (A)

A = Fuel Consumed x Emission Factor (E.F.)

Days of Cocration

e.g. A plant consumed 100,000 tens of coal in 1967 while operating 365 days. The total degree days for the area was 4,800 and 2,800 for the three winter months. The plant was estimated to use 15 percent of the fuel for space heating and 85 percent for precess heating. From this information, the annual average emission for carbon monomide would be the following:

A = 100,000 Tons/year x 3 lbs. Cu/Ton coal 565 Days/year x 2,000 lo./105

A = 0.43 Ton/Day

WINTER AVERAGE (W) .

W = Furl Consumed x H.F. x Winter Degree Days x % Lucl Used Days of Winter Operation x Total Degree Days x for space heating

+ Fuel Consumed x E.F. x % Fuel used for process heating

$$W = \begin{bmatrix} 100,000 & x & 2,800 \\ \hline 50 & x & 4,800 \end{bmatrix} \times 0.15 + \frac{100,000}{365} \times 0.65 \frac{3}{2,000}$$

W = 0.49 Ton/Day

SUPPLER AVERAGE (S)

S = Fuel Consumed x E.F. x Suppor Degree Days x Fuel Used Total Degree Days x for space heating

* Fuel Consumed x E.F. x % Fuel used for process heating

$$S = \sqrt{\frac{100,000}{90}} \times \frac{0}{4,800} \times 0.15 + \frac{100,000}{365} \times 0.85 \sqrt{\frac{3}{2,600}}$$

S = 0.35 Ton/Day