OFF-SITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1977 by Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 July 1978 This work performed under a Memorandum of Understanding No. EY-76-A-08-0539 for the U.S. DEPARTMENT OF ENERGY This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. AVAILABLE FROM THE NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA 22161 PRICE: PAPER COPY \$8.00 MICROFICHE \$3.00 OFF-SITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1977 by R. F. Grossman Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 July 1978 This work performed under a Memorandum of Understanding No. EY-76-A-08-0539 for the U.S. DEPARTMENT OF ENERGY #### PREFACE The Atomic Energy Commission (AEC) used the Nevada Test Site (NTS) from January 1951 through January 19, 1976, as an area for conducting nuclear detonations, nuclear rocket-engine development, nuclear medicine studies, and miscellaneous nuclear and non-nuclear experiments. Beginning on January 19, 1976, these responsibilities were transferred to the newly-formed U.S. Energy Research and Development Administration (ERDA), which was later merged with other energy-related agencies to form the U.S. Department of Energy on October 1, 1977. Atmospheric nuclear tests were conducted periodically from 1951 through October 30. 1958, at which time a testing moratorium was implemented. September 1, 1961, all nuclear detonations have been conducted underground with the expectation of containment except for four slightly above-ground or shallow underground tests of Operation Dominic II in 1962 and five nuclear earth-cratering experiments conducted under the Plowshare program. The U.S. Public Health Service (PHS), from 1954 through 1970, and the U.S. Environmental Protection Agency (EPA), from 1970 to the present, have maintained facilities at the NTS or in Las Vegas, Nevada, for the purpose of providing an Off-Site Radiological Safety Program for the nuclear testing program. In addition, off-site surveillance has been provided by the PHS/EPA for nuclear explosive tests at places other than the NTS. Prior to 1953, the surveillance program was performed by the Los Alamos Scientific Laboratory and U.S. Army personnel. The objective of the Program since 1954 has been to measure levels and trends of radioactivity in the off-site environment surrounding testing areas to assure that the testing is in compliance with existing radiation protection standards. To assess off-site radiation levels, routine sampling networks for milk, water, and air are maintained along with a dosimetry network and special sampling of food crops, soil, etc., as required. For the purpose of implementing protective actions, providing immediate radiation monitoring, and obtaining environmental samples rapidly after a release of radioactivity, mobile monitoring personnel are also placed in areas downwind of the NTS or other test areas prior to each test. Analytical results showing radioactivity levels above naturally occurring levels have been published in reports covering a test series or test project. Beginning in 1959 for reactor tests, and in 1962 for weapons tests, surveillance data for each individual test which released radioactivity off site were reported separately. Commencing in January 1964, and continuing through December 1970, these individual reports for nuclear tests were also summarized and reported every 6 months. The individual analytical results for all routine or special milk samples were also included in the 6-month summary reports. In 1971, the AEC implemented a requirement (now referred to as the DOE Manual, Chapter 0513) for a comprehensive radiological monitoring report from each of the several contractors or agencies involved in major nuclear activities. The compilation of these various reports since that time and their entry into the general literature serve the purpose of providing a single source of information concerning the environmental impact of nuclear activities. To provide more rapid dissemination of data, the monthly report of analytical results of all air data collected since July 1971, and all milk and water samples collected since January 1972, were also published in Radiation Data and Reports, a monthly publication of the EPA which was discontinued at the end of 1974. Beginning with the first quarter of 1976, air and milk sample data have been reported quarterly. Dosimetry data were included beginning with the third quarter 1976. Since 1962, PHS/EPA aircraft have also been used during nuclear tests to provide rapid monitoring and sampling for releases of radioactivity. Early aircraft monitoring data obtained immediately after a test are used to position mobile radiation monitoring personnel on the ground, and the results of airborne sampling are used to quantify the inventories, diffusion, and transport of the radionuclides released. Beginning in 1971, all monitoring and sampling results by aircraft have been reported in effluent monitoring data reports in accordance with the DOE Manual, Chapter 0513. ## TABLE OF CONTENTS | | Page | |---|--| | PREFACE | iii | | TABLE OF CONTENTS | V | | LIST OF FIGURES | vi | | LIST OF TABLES | ix | | ACKNOWLEDGMENT | хi | | INTRODUCTION | 1 | | NEVADA TEST SITE Site Location Climate Geology and Hydrology Land Use of NTS Environs Population Distribution | 1
1
2
3
4
5 | | OTHER TEST SITES | 7 | | SUMMARY | 8 | | MONITORING DATA COLLECTION, ANALYSIS, AND EVALUATION | 11 | | AIR SURVEILLANCE NETWORK NOBLE GAS AND TRITIUM SURVEILLANCE NETWORK DOSIMETRY NETWORK MILK SURVEILLANCE NETWORK LONG-TERM HYDROLOGICAL MONITORING PROGRAM Nevada Test Site Other Test Sites WHOLE-BODY COUNTING DOSE ASSESSMENT | 13
14
17
19
22
22
23
26
28 | | REFERENCES | 29 | | APPENDIX A. TABLES | 59 | | APPENDIX B. RADIATION PROTECTION STANDARDS FOR EXTERNAL AND INTERNAL EXPOSURE | 104 | | APPENDIX C. DETECTION OF AIRBORNE RADIOACTIVITY FROM THE ATMOSPHERIC NUCLEAR TESTS BY THE PEOPLE'S REPUBLIC OF CHINA | 106 | | APPENDIX D. LIST OF ABBREVIATIONS AND SYMBOLS | 138 | ## LIST OF FIGURES | Number | | Page | |--------|--|------| | 1 | Nevada Test Site Location | 31 | | 2 | Nevada Test Site Road and Facility Map | 32 | | 3 | Groundwater Flow Systems - Nevada Test Site | 33 | | 4 | General Land Use, Nevada Test Site Vicinity | 34 | | 5 | Location and Number of Family Milk Cows and Goats | s 35 | | 6 | Location and Number of Dairy Cows | 36 | | 7 | Distribution of Beef Cattle by County | 37 | | 8 | Distribution of Sheep by County | 38 | | 9 | Population of Arizona, California, Nevada, and Utah Counties Near the Nevada Test Site | 39 | | 10 | Air Surveillance Network - Nevada | 40 | | 11 | Air Surveillance Network - Outside Nevada | 41 | | 12 | Noble Gas and Tritium Surveillance Network | 42 | | 13 | Dosimetry Network | 43 | | 14 | Milk Surveillance Network | 44 | | 15 | On-Site Long-Term Hydrological Monitoring Program, Nevada Test Site | 45 | | 16 | Off-Site Long-Term Hydrological Monitoring Program, Nevada Test Site | 46 | | 17 | Long-Term Hydrological Monitoring Program, Carlsbad, New Mexico, Project Gnome/Coach | 47 | | 18 | Long-Term Hydrological Monitoring Program, Fallon, Nevada, Project Shoal | 48 | # LIST OF FIGURES (continued) | Number | | Page | |--------|---|------| | 19 | Long-Term Hydrological Monitoring Program, Project Dribble/Miracle Play (vicinity of Tatum Salt Dome, Mississippi) | 49 | | 20 | Long-Term Hydrological Monitoring Program, Project Dribble/Miracle Play (Tatum Salt Dome, Mississippi) | 50 | | 21 | Long-Term Hydrological Monitoring Program, Rio Arriba County, New Mexico, Project Gasbuggy | 51 | | 22 | Long-Term Hydrological Monitoring Program, Rulison, Colorado, Project Rulison | 52 | | 23 | Long-Term Hydrological Monitoring Program,
Central Nevada Test Area, Faultless Event | 53 | | 24 | Long-Term Hydrological Monitoring Program, Project Rio Blanco, Rio Blanco County, Colorado | 54 | | 25 | Long-Term Hydrological Monitoring Program, Project Cannikin, Amchitka Island, Alaska | 55 | | 26 | Long-Term Hydrological Monitoring Program, Project Milrow, Amchitka Island, Alaska | 56 | | 27 | Long-Term Hydrological Monitoring Program,
Project Long Shot, Amchitka Island, Alaska | 57 | | 28 | Long-Term Hydrological Monitoring Program,
Background Sampling, Amchitka Island, Alaska | 58 | | C-1 | Gross Beta Radioactivity Concentrations in Air at Vernal, Utah | 110 | | C-2 | Gross Beta Radioactivity Concentrations in Air at Ely, Nevada | 110 | | C-3 | Infant Thyroid Dose Equivalents (mrem) Estimated from Air Sampling Results of Air Surveillance Network (Nevada),
September-October 1977 | 111 | # LIST OF FIGURES (continued) | Number | | <u>Page</u> | |--------|--|-------------| | C-4 | Infant Thyroid Dose Equivalents (mrem) Estimated from Air Sampling Results of Air Surveillance Network (Western United States), September-October 1977 | 112 | | C-5 | 131I Concentrations in Milk Samples Collected in Las Vegas, Nevada | 113 | | C-6 | 131I Concentrations in Air Samples Collected in Las Vegas, Nevada | 113 | ## LIST OF TABLES | Number | | <u>Paqe</u> | |--------|---|-------------| | 1 | Characteristics of Climatic Types in Nevada | 2 | | 2 | Total Airborne Radionuclide Releases at the Nevada Test Site | 11 | | 3 | Annual Average Concentrations of 85Kr 1972-1977 | 15 | | 4 | Concentrations of Airborne 133Xe Detected
On and Off NTS | 16 | | 5 | Dosimetry Network Summary for the Years 1971-1977 | 18 | | 6 | Summary of Radionuclide Concentrations for Milk Surveillance Network and Standby Surveillance Network | 21 | | 7 | Detectable Concentrations of 90Sr and 238Pu
in Water Samples | 25 | | 8 | Estimated Dose Commitment from ¹³³ Xe Concentrations | 28 | | A-1 | Underground Testing Conducted Off the Nevada
Test Site | 60 | | A-2 | Summary of Analytical Procedures | 62 | | A-3 | 1977 Summary of Analytical Results for the Noble Gas and Tritium Surveillance Network | 64 | | A-4 | 1977 Summary of Radiation Doses for the Dosimetry Network | 67 | | A-5 | 1977 Summary of Analytical Results for the Milk Surveillance Network | 71 | | A-6 | Analytical Criteria for Long-Term Hydrological Monitoring Program Samples | 7 6 | # LIST OF TABLES (continued) | Number | | <u>Page</u> | |--------|---|-------------| | A-7 | 1977 Summary of Analytical Results for the Nevada Test Site Monthly Long-Term Hydrological Monitoring Program | 77 | | A-8 | 1977 Analytical Results for the Nevada Test Site
Semi-Annual Long-Term Hydrological Monitoring
Program | 79 | | A-9 | 1977 Analytical Results for the Nevada Test Site
Annual Long-Term Hydrological Monitoring Program | 84 | | A-10 | 1977 Analytical Results for the Off-NTS Long-
Term Hydrological Monitoring Program | 86 | | C-1 | Air Sampling Stations Having Maximum Radio-
nuclide Concentrations in Air | 108 | | C-2 | 1977 Summary of Analytical Results for Air Surveillance Network, Active Stations | 114 | | C-3 | 1977 Summary of Analytical Results for Air Surveillance Network, Standby Stations | 122 | | C-4 | Special Milk Sampling Results for Las Vegas, Nevada | 134 | ### **ACKNOWLEDGMENT** I would like to acknowledge the contribution of Mr. Philip C. Nyberg, who prepared the section of this report pertaining to the Dosimetry Network. #### INTRODUCTION Under a Memorandum of Understanding, No. EY-76-A-08-0539*, with the U.S. Energy Research and Development Administration (ERDA) and the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), Environmental Monitoring and Support Laboratory-Las Vegas (EMSL-LV), continued its Off-Site Radiological Safety Program within the environment surrounding the Nevada Test Site (NTS) and at other sites designated by the DOE during CY 1977. This report, prepared in accordance with the DOE Manual, Chapter 0513, contains summaries of the EMSL-LV dosimetry and sampling methods and analytical procedures, and the analytical results of environmental samples collected in support of the DOE nuclear testing activities. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures to ionizing radiation. In addition, a brief summary of pertinent, including demographical, features of the NTS and the NTS environs is presented for background information. #### NEVADA TEST SITE The major programs conducted at the NTS in the past have been nuclear weapons development, proof-testing and weapons safety, testing for peaceful uses of nuclear explosives (Project Plowshare), reactor-engine development for nuclear rocket and ram-jet applications (Projects Pluto and Rover), basic high-energy nuclear physics research, and seismic studies (Vela Uniform). During this report period these programs were continued with the exception of Project Pluto, discontinued in 1964, Project Rover, which was terminated in January 1973, Project Plowshare nuclear tests which were terminated in 1970, and Vela Uniform studies which ceased in 1973. All nuclear weapons tests since 1962 were conducted underground to minimize the possibility of the release of fission products to the atmosphere. #### Site Location The Nevada Test Site (Figures 1 and 2) is located in Nye ^{*}Previously, this memorandum was with the U.S. Energy Research and Development Administration (ERDA). On October 1, 1977, the ERDA was merged with other energy-related agencies to form the DOE. County, Nevada, with its southeast corner about 90 km northwest of Las Vegas. The NTS has an area of about 3500 km² and varies from 40-56 km in width (east-west) and from 64-88 km in length (north-south). This area consists of large basins or flats about 900-1200 m above mean sea level (MSL) surrounded by mountain ranges rising to 1800-2100 m above MSL. The NTS is surrounded on three sides by an exclusion area collectively named the Nellis Air Force Range. The Range, particularly to the north and east, provides a buffer zone between the test areas and public lands. This buffer zone varies from 24-104 km between the test area and land that is open to the public. Depending upon wind speed and direction within the accepted range of testing criteria, this provides a delay of from 1/2 to more than 6 hours before any accidental release of airborne radio-activity could pass over public lands. ## Climate The climate of the NTS and surrounding area is variable, primarily due to altitude and the rugged terrain. Generally, the climate is referred to as Continental Arid. Throughout the year, there is not sufficient water to support tree or crop growth without irrigation. The climate may be classified by the types of vegetation which grow under these conditions. According to Houghton et al. (1975), this method, developed by Koppen's classification of dry conditions, is further subdivided on the basis of temperature and severity of drought. Table 1, from Houghton et al., summarizes the different characteristics of these climatic types in Nevada. TABLE 1. CHARACTERISTICS OF CLIMATIC TYPES IN NEVADA | | | perature
C | | cipitation | | | |--------------------------|-------------------------|--------------------------|-----------------------|--------------------|----------------------------|---------| | Climate | (° | F) | (inc | :hes) | Dominant | Percent | | Type | Winter | Summer | Total* | Snowfall | Vegetation | of Area | | Alpine
tundra | -18°9°
(0° - 15°) | 40 - 100
(400 - 500) | 38 - 114
(15 - 45) | Medium to
heavy | Alpine
meadows | | | Humid
continental | -12°1°
(10° - 30°) | 10° - 21°
(50° - 70°) | 64 - 114
(25 - 45) | Heavy | Pine-fir
forest | 1 | | Subhumid
continental | -12°1°
(10° - 30°) | 10° - 21°
(50° - 70°) | 30 - 64
(12 - 25) | Moderate | Pine or scrub woodland | 15 | | Mid-lati-
tude steppe | -70 - 40
(200 - 40°) | 18° - 27°
(65° - 80°) | 15 - 38
(6 - 15) | Light to moderate | Sagebrush,
grass, scrub | 57 | | Mid-lati-
tude desert | -7° - 4°
(20° - 40°) | 18° - 27°
(65° - 80°) | 8 - 20
(3 - 8) | Light | Greasewood,
shadscale | 20 | | Low-lati-
tude desert | 4° - 10°
(40° - 50°) | 27° - 32°
(80° - 90°) | 5 - 25
(2 - 10) | Negligible | Creosote
bush | 7 | ^{*}Limits of annual precipitation overlap because of variations in temperature which affect the water balance. As pointed out by Houghton et al., 90 percent of Nevada's population lives in areas with less than 25 cm of rain per year or in areas which would be classified as mid-latitude steppe to low-latitude desert regions. According to Quiring (1968), the NTS average annual precipitation ranges from about 10 cm at the 900-m altitude to around 25 cm on the plateaus. During the winter months, the plateaus may be snow-covered for periods of several days or weeks. Snow is uncommon on the flats. Temperatures vary considerably with elevation, slope, and local air currents. The average daily high (low) temperatures at the lower altitudes are around 10° (-4°) c in January and 35° (12°) C in July, with extreme daily averages of 44° and -26° C. Corresponding temperatures on the plateaus are 2° (-4°) C in January and 26° (18°) C in July with extremes of 38° and -29° C. Temperatures as low as -34° C and higher than 46° C have been observed at the NTS. The direction from which winds blow, as measured on a 30-m tower at an observation station on Yucca Flat, the location of many past nuclear tests, is predominantly northerly except for the months of May through August when winds from the south-south-west predominate. Because of the prevalent mountain/valley winds in the basins, south to southwest winds predominate during day-light hours during most months. During the winter months southerly winds have only a slight edge over northerly winds for a few hours during the warmest part of the day. These wind patterns may be quite different at other locations on the NTS because of local terrain effects and differences in elevation (Quiring, 1968). ### Geology and Hydrology Geological and hydrological studies of the NTS have been in progress by the U.S. Geological Survey and various other organizations since 1956. Because of this continuing effort, including subsurface studies of numerous boreholes, the surface and underground
geological and hydrological characteristics for much of the NTS are known in considerable detail. This is particularly true for those areas in which underground experiments are conducted. A comprehensive summary of the geology and hydrology of the NTS was edited and published by Eckel (1968). There are two major hydrologic systems on the NTS (Figure 3). Groundwater in the northwestern part of the NTS or in the Pahute Mesa area has been reported (ERDA-1551, September 1977) to travel somewhere between 2 and 80 m per year to the south and southwest toward the Ash Meadows discharge area in the Amargosa Desert. It is estimated that the groundwater to the east of the NTS moves from north to south at a rate not less than 2 nor greater than 220 m per year. Carbon-14 analyses of this eastern groundwater indicate that the lower velocity is nearer the true value. At Mercury Valley, in the extreme southern part of the NTS, the groundwater flow direction shifts to the southwest toward the Ash Meadows discharge area in the southeastern Amargosa Valley. The water levels below the NTS vary from depths of about 100 m beneath the surface at valleys in the southeastern part of the site to more than 600 m beneath the surface at highlands to the north. Although much of the valley fill is saturated, downward movement of water is extremely slow. The primary aquifer in these formations is the Paleozoic carbonates which underlie the more recent tuffs and alluviums. ## Land Use of NTS Environs Figure 4 is a map of the off-NTS area showing general land use. A wide variety of uses, such as farming, mining, grazing, camping, fishing, and hunting, exist due to the variable ter-For example, within a 300-km radius west of the NTS, elevations range from below sea level in Death Valley to 4420 m above MSL in the Sierra Nevada Range. Additionally, parts of two valleys of major agricultural importance (the Owens and San Joaquin) are included. The areas south of the NTS are more uniform since the Mojave Desert ecosystem (mid-latitude desert) comprises most of this portion of Nevada, California, and Arizona. The areas east of the NTS are primarily mid-latitude steppe with some of the older river valleys, such as the Virgin River Valley and Moapa Valley, supporting small-scale but intensive farming of a variety of crops by irrigation. Grazing is also common in this area, particularly to the northeast. The area north of the NTS is also mid-latitude steppe where the major agricultural-related activity is grazing of both cattle and sheep. Only areas of minor agricultural importance, primarily the growing of alfalfa hay, are found in this portion of the State within a distance of 300 km. In the summer of 1974, a brief survey of home gardens around the NTS found that a majority of the residents grow or have access to locally grown fruits and vegetables. Approximately two dozen of the surveyed gardens within 30-80 km of the NTS boundary were selected for sampling. These gardens produce a variety of root, leaf, seed, and fruit crops (Andrews and Vandervort, 1978). The only industrial enterprises within the immediate off-NTS area are 28 active mines, as shown in Figure 4, and several chemical processing plants located near Henderson, Nevada (about 23 km south of Las Vegas). The number of employees for these operations varies from one person at several small mines to several hundred workers for the chemical plants at Henderson. Most of the individual mining operations involve less than 10 workers per mine; however, a few operations employ up to 100-250 workers. The major body of water close to the NTS is Lake Mead (100 km southeast) a man-made lake supplied by water from the Colorado River. Lake Mead supplies about 60 percent of the water used for domestic, recreational, and industrial purposes in the Las Vegas Valley and a portion of the water used by southern California. Smaller reservoirs and lakes located in the area are primarily for irrigation and for livestock. In California, the Owens River and Haiwee Reservoir feed into the Los Angeles Aqueduct and are the major sources of domestic water for the Los Angeles area. As indicated by Figure 4, there are many places scattered in all directions from the NTS where such recreational activities as hunting, fishing, and camping are enjoyed by both local residents and tourists. In general, the camping and fishing sites to the northwest, north, and northeast of the NTS are utilized throughout the year except for the winter months. Camping and fishing at locations southeast, south, and southwest are utilized throughout the year with the most extensive activities occurring during all months except the hot summer months. All hunting is generally restricted to various times during the last 6 months of the year. Dairy farming is not extensive within the 300-km-radius area under discussion. From a survey of milk cows during this report period, 8800 dairy cows, 419 family milk goats, and 464 family milk cows were located. The family cows and goats are found in all directions around the test site (Figure 5), whereas the dairy cows (Figure 6) are located southeast of the test site (Moapa River Valley, Nevada; Virgin River Valley, Nevada; and Las Vegas, Nevada), northeast (Lund area), and southwest (near Barstow, California). Grazing of beef cattle and sheep is the most common use of the land in this area. Approximately 330,000 beef cattle and 267,000 sheep were produced within the 300-km radius surrounding the test site during this report period. Figures 7 and 8, respectively, show the distribution of the beef cattle and sheep by county. ## Population Distribution The populated area of primary concern around the NTS which is sampled and monitored by surveillance networks is shown in Figure 9 as the area within a 300-km radius of the NTS Control Point (CP-1), except for the areas west of the Sierra Nevada Mountains and in the southern portion of San Bernardino County. Based upon the projections for the year 1976 by the U.S. Bureau of the Census and the 1977 projections for Washoe and Clark Counties by the University of Nevada (Reno), Figure 9 shows the current population of counties in Nevada and pertinent portions of the States of Arizona, California, and Utah. Las Vegas and vicinity is the only major population center within the inscribed area of Figure 9. With the assumption that the total populations of the counties bisected by the 300-km radius lie within the inscribed area, there is a population of about 528,800 people living within the area of primary concern, about 70 percent of which lives in the Las Vegas urbanized area. If the urbanized area is not considered in determining population density, there are about 0.6 people per km² (1.5 people per mi²). For comparison, the United States (50 states, 1970 census) has a population density of 22 people per km², and the overall Nevada average from the 1976 projection is 2.3 people per km². The off-site areas within about 80 km of the NTS are predominantly rural. Several small communities are located in the area, the largest being in the Pahrump Valley. This growing rural community, with an estimated population of about 3500, is located about 72 km south of the NTS. The Amargosa Farm area has a population of about 400 and is located about 50 km southwest of the center of the NTS. The Spring Meadows Farm area is a relatively new development consisting of approximately 10,000 km² (4000 m²) with a population of about 130. This area is about 55 km southsouth-west of the NTS. The largest town in the near off-site area is Beatty with a population of about 500; it is located about 65 km to the west of the site. In the adjacent states, the Mojave Desert of California, which includes Death Valley National Monument, lies along the southwestern border of Nevada. The population within the Monument boundaries varies considerably from season to season with fewer than 200 permanent residents and tourists in the area during any given period in the summer months. However, during the winter as many as 15,000 tourists and campers can be in the area on any particular day during the major holiday periods. The largest town in this general area is Barstow, located 265 km south-southwest of the NTS, with a population of about 18,200. The Owens Valley, where numerous small towns are located, lies about 50 km west of Death Valley. The largest town in Owens Valley is Bishop, located 225 km west-northwest of the NTS, with a population of about 3800. The extreme southwestern region of Utah is more developed than the adjacent part of Nevada. The largest town, Cedar City, with a population of 10,000, is located 280 km east-northeast of the NTS. The next largest community is St. George, located 220 km east of the NTS, with a population of 8500. The extreme northwestern region of Arizona is mostly undeveloped range land with the exception of that portion in the Lake Mead Recreation Area. Several small retirement communities are found along the Colorado River, primarily at Lake Mojave and Lake Havasu. The largest town in the area is Kingman, located 280 km southeast of the NTS, with a population of about 7500. #### OTHER TEST SITES Table A-1 lists the names, dates, locations, yields, depths, and purposes of all underground nuclear tests conducted at locations other than the NTS. No off-NTS nuclear tests were conducted during this report period. #### SUMMARY During 1977, the monitoring of gamma radiation levels in the environs of the NTS was continued through the use of an off-site network of radiation dosimeters and gamma-rate recorders. Concentrations of radionuclides in pertinent environmental media were also continuously or periodically monitored by established air, milk, and water sampling networks. Before each underground nuclear detonation, mobile radiation monitors, equipped with radiation monitoring instruments and sampling equipment, were on standby in off-NTS locations to respond to any
accidental release of airborne radioactivity. An airplane was airborne near the test area at detonation time to undertake tracking and sampling of any release which might occur. All radioactivity from the underground nuclear tests was contained except for a total of about 36 curies (Ci) of radioactivity which was reported by DOE/NV as being released intermittently throughout the year and small undetermined amounts of radioxenon, tritium, and 85Kr which slowly seep to the surface from the underground test areas. The only off-NTS indication of this radioactivity was 133Xe in several air samples of the Noble Gas and Tritium Surveillance Network collected at Beatty, Diablo, Hiko, Las Vegas, and Tonopah during the period August 2 to Sep-The highest concentration of 133Xe detected (1.4x $10^{-11} \mu \text{Ci/ml}$) was in a sample collected at Beatty. The estimated whole-body dose to a hypothetical receptor at this location was calculated as 2.5 microrem (µrem), which is 0.001 percent of the Radiation Protection Standard of 170 millirem (mrem) to a suitable sample of the exposed population. Based upon this dose and the population of Beatty, the estimated dose commitment(1) within a 80-km radius of the NTS Control Point was estimated to be Due to the greater population density within 0.0013 man-rem. the Las Vegas area, the highest dose commitment, 0.36 man-rem, was for this area, which is approximately 100 km from the NTS. This dose commitment is small compared to the 26,000 man-rem, which residents of Las Vegas and nearby communities received from natural background radiation. All other measurements of radioactivity made by the Off-Site Radiological Safety Program were attributed to naturally occurring radioactivity or worldwide fallout and not related to underground nuclear test operations during this report period. ⁽¹⁾Product of estimated average dose equivalent and population. Radioactivity from the atmospheric nuclear test by the People's Republic of China on September 17, 1977, at 0300 hours, EDT, was detected on filter samples of the Air Surveillance Network beginning on samples collected on September 21 and continuing throughout this report period. The tests resulted in increases of airborne radioactivity which were identified by the Air Surveillance Network as the radionuclides 95Zr, 99Mo, 103Ru, 131I, 132Te, 140Ba, 141Ce, 144Ce, and 147Nd. The Long-Term Hydrological Monitoring Program used for the monitoring of radionuclide concentrations in surface and ground-waters which are down the hydrologic gradient from sites of past underground nuclear tests was continued for the NTS and eight other sites located elsewhere in Nevada, Alaska, Colorado, New Mexico, and Mississippi. Beginning this year, the EPA began the annual collection and analysis of water samples from Project Rio Blanco near Meeker, Colorado, and Projects Long Shot/Milrow/Cannikin, on Amchitka Island, Alaska, which were previously collected by the U.S. Geological Survey. Higher than normal concentrations of radioactivity were observed in samples collected at wells known to be contaminated by the injection of radioactivity for tracer studies (Wells C and C-1 at the NTS and USGS Wells 4 and 8 near Malaga, New Mexico); however, no migration of the radioactivity was observed in samples collected from other wells nearby. Above background levels of ³H radioactivity were also observed in water samples collected from Wells U3CN-5 and B at the NTS, from the Half Moon Creek Overflow (Project Dribble) near Baxterville, Mississippi, and from several locations at the Project Long Shot site on Amchitka Island, Alaska. Three out of eleven water samples collected from Well U3CN-5 had ³H concentrations of $2.0 \times 10^{-7} \mu \text{Ci/ml}$, $1.6 \times 10^{-7} \mu \text{Ci/ml}$, and 2.3 $x10^{-7}$ µCi/ml; the concentration average of all samples was <7.0x 10-8 µCi/ml. The six samples collected this year from Well B were consistently higher than other well samples with a concentration range of 1.5x10-7 µCi/ml to 3.3x10-7 µCi/ml. All samples from U3CN-5 Well B were <0.01 percent of the Concentration Guide (3x 10-3 µCi/ml) for occupational exposures and <3 percent of the maximum contaminant level of the EPA Drinking Water Regulations As the water from these wells is not used for for this nuclide. human consumption, these concentrations were compared to the regulatory guides only as an aid in interpreting the significance of The annual sample collected from Half Moon the concentrations. Creek had a 3H concentration of 1.8x10-6 µCi/ml, (<0.06 percent of the Concentration Guide for 3H), which was again higher than other surface water samples, as samples have been from this location for the previous 3 years. Further exploratory surveys during this year identified sub-surface soil contaminated with 3H from post-shot drill-back operations. An investigation to determine whether the contamination reached an acquifer used for drinking water is continuing. A report on the findings of these surveys will be reported separately at a later date. At five locations near the Project Long Shot GZ, 3H attributed to the Long Shot test and/or post-shot operations was found in water samples collected from shallow wells or surface waters. The range in concentrations was $1.8\times10^{-6}~\mu\text{Ci/ml}$ to $5.3\times10^{-6}~\mu\text{Ci/ml}$, the highest being 0.2 percent of the Concentration Guide. The concentrations of 3H at both locations, Project Dribble and Project Long Shot, were also <27 percent of the maximum contaminant level of the EPA Drinking Water Regulations for this nuclide. None of the sampled water sources are used for drinking purposes. ## MONITORING DATA COLLECTION, ANALYSIS, AND EVALUATION The major portion of the Off-Site Radiological Safety Program for the NTS consisted of continuously operated dosimetry and air sampling networks and scheduled collections of milk and water samples at locations surrounding the NTS. Before each nuclear test, mobile monitoring personnel were positioned in the off-site areas most likely to be exposed to a possible release of radioactive These monitors, equipped with radiation survey instrumaterial. ments, gamma exposure-rate recorders, thermoluminescent dosimeters (TLD's), portable air samplers, and supplies for collecting environmental samples, were prepared to conduct a monitoring program directed from the NTS Control Point (CP-1) via two-way radio communications. In addition, for each event at the NTS, a U.S. Air Force aircraft with two Reynolds Electrical and Engineering Company monitoring personnel equipped with portable radiation survey instruments was airborne near surface ground zero to detect and track any radioactive effluent. One EMSL-LV cloud sampling and tracking aircraft was also available to obtain in-cloud samples, assess total cloud volume, and provide long-range tracking in the event of a release of airborne radioactivity. During this report period, only underground nuclear detonations were conducted. All detonations were contained. However, during re-entry drilling operations, occasional low level releases of airborne radioactivity, primarily radioxenon, did occur. According to information provided by the Nevada Operations Office, DOE, the following quantities of radionuclides were released into the atmosphere during CY 1977: TABLE 2. TOTAL AIRBORNE RADIONUCLIDE RELEASES AT THE NEVADA TEST SITE | Radionuclide | Qua | antity Released (Ci) | |--------------|-------|----------------------| | зн | | 6.880 | | 133Xe | | 28.286 | | 133mXe | | 0.621 | | 135Xe | | 0.849 | | 131] | | 2.6 (pCi) | | | Total | 36.636 | Continuous low-level releases of ³H and ⁸⁵Kr occur on the NTS. Tritium is released primarily from the Sedan crater and by evaporation from ponds formed by drainage of water from tunnel test areas in the Rainier Mesa. Krypton-85 slowly seeps to the surface from underground test areas. The quantities of radio-activity from seepage are not quantified, but are detected at onsite sampling locations and sometimes at off-NTS locations. Contained within the following sections of this report are descriptions for each surveillance network and interpretations of the analytical results which are summarized (maximum, minimum, and arithmetic average concentrations) in tables. Where appropriate, the arithmetic averages in the tables are compared to the applicable DOE Concentration Guides (CG's) listed in Appendix B. Unless specifically stated otherwise, all concentration averages are arithmetic averages. For "grab" type samples, radionuclide concentrations were extrapolated to the appropriate collection date. Concentrations determined over a period of time were extrapolated to the midpoint of the collection period. Concentration averages were calculated assuming that each concentration less than the minimum detectable concentration (MDC) was equal to the MDC, except for the airborne radionuclide concentration averages determined for the Air Surveillance Network. Due to the large number of airborne radionuclides that can be present below the MDC, those concentrations less than the MDC were assumed to be zero for the computation of concentration averages, and only those radionuclides detected above the MDC sometime during the year were averaged and reported. All radiological analyses referred to within the text are briefly described in Table A-2 and listed with the minimum detectable concentrations (MDC's). To assure validity of the data, analytical personnel routinely calibrate equipment, split selected samples (except for the Air Surveillance Network) for replicate analyses, and analyze spiked samples prepared by the Quality Assurance Branch, EMSL-LV, on a bi-monthly, quarterly, semi-annual, and annual basis (EPA, in press). None of the quality assurance checks for the year identified problems which would affect the results reported here. For the purpose of routinely assessing the sampling replication error plus
analytical/counting errors associated with the collection and analysis of the different types of network samples, a replicate sampling program for all sample types was initiated at the end of CY 1975 and continued through 1977. A description of the procedures and results for 1976 was presented in last year's report (EMSL-LV, 1977). An evaluaion of this year's results will be reported at a later date. From the results of the program in 1976, the variances observed in all surveillance data were found to be greater than the sampling and analytical/counting errors except for the *5Kr sampling and the monitoring of environmental gamma radiation with TLD*s. Apparently the majority of the variation in *5Kr concentrations observed in the past has been primarily due to the sampling and analytical/counting errors. As there are not sufficient TLD data for any given station in 1 year, a proper assessment of total variances in TLD results for a given station could not be made to compare to the precision error determination of this program. #### AIR SURVEILLANCE NETWORK The Air Surveillance Network (ASN) was operated by the EMSL-LV to monitor environmental levels of radioactivity and to detect any airborne releases of radioactivity from NTS operations. Network consisted of 48 active and 73 standby sampling stations located in 21 Western States (Figures 10 and 11). Samples of airborne particulates were collected continuously at each active station on 10-cm diameter, glass-fiber filters at a flow rate of about 400 m³ of air per day. The filters, which are 99.9 percent efficient for particles ≤0.3 µm in diameter, were collected three times per week, resulting in 48- or 72-hour samples from each active station. Activated charcoal cartridges directly behind the glass-fiber filters were used regularly for the collection of gaseous radioiodines at 21 stations near the NTS. cartridges could have been added to all other stations and all standby stations could have been activated, if necessary, by a telephone request to station operators or by field personnel. air samples (filters and cartridges) were mailed to the EMSL-LV for analysis. Special retrieval could have been arranged at selected locations in the event a release of radioactivity occurred. During the year, the standby stations were activated quarterly to check the operation of the samplers and to maintain an understanding of Network procedures by station operators. In anticipation of airborne radioactivity from the atmospheric nuclear tests by the People's Republic of China on September 17 at 0300 hours EDT, 67 of the standby stations were activated with filters and charcoal cartridges during the period September 18 through October 19. During the report period, no airborne radioactivity related to the underground nuclear testing program at the Nevada Test Site was detected on any sample from the ASN. However, radioactivity from the nuclear test by the People's Republic of China was detected on filters and charcoal cartridges. Appendix C summarizes the analytical results of those samples containing radioactivity from this test. #### NOBLE GAS AND TRITIUM SURVEILLANCE NETWORK The Noble Gas and Tritium Surveillance Network, which was first established in March and April 1972, was operated to monitor the airborne levels of radiokrypton, radioxenon, and tritium (³H) in the forms of tritiated hydrogen (HT), tritiated water (HTO), and tritiated methane (CH₃T). The Network consists of four on-NTS and seven off-NTS stations shown in Figure 12. Area 51, which appears to be off NTS, is considered to be on NTS as it is an access-controlled area with radiological safety support provided by NTS personnel. The equipment used in this Network is composed of two separate systems, a compressor-type air sampler and a molecular sieve sampler. The compressor-type equipment continuously samples air over a 7-day period and stores it in two pressure tanks. The tanks together hold approximately 2 m3 of air at atmospheric They are replaced weekly and returned to the EMSL-LV where the tank contents are separated and analyzed for *5Kr, radioxenons, and CH3T by gas chromatography and liquid-scintillation counting techniques (Table A-2). The molecular sieve equipment samples air through a filter to remove particulates and then through a series of molecular sieve columns. Approximately 5 m3 of air are passed through each sampler over a 7-day sampling From the HTO absorbed on the first molecular sieve colperiod. umn, the concentration of 3H in µCi/ml of recovered moisture and in µCi/ml of sampled air is determined by liquid-scintillation counting techniques. The 3H, passing through the first column as free hydrogen (HT), is oxidized and collected on the last molecular sieve column. From the concentration of 3H for the moisture recovered from the last column, the 3H (in µCi/ml of sampled air) as HT is determined. Table A-3 summarizes the results of this Network by listing the maximum, minimum, and average concentrations for *5Kr, total Xe or '33Xe, '3H as CH3T, '3H as HTO, and '3H as HT. The annual average concentrations for each station were calculated over the time period sampled assuming that all values less than MDC were equal to the MDC. All concentrations of *5Kr, Xe or '33Xe, '3H as CH3T, '3H as HTO, and '3H as HT are expressed in the same unit, µCi/ml of air. Since the '3H concentration in air may vary by factors of 15-20 while the concentration in µCi/ml of atmospheric water varies by factors up to about 7, the '3H concentration in µCi/ml of atmospheric moisture is also given in the table as a more reliable indicator in cases when background concentrations of HTO are exceeded. As shown by Table A-3, the average *5Kr concentrations for the year were nearly the same for all stations, ranging from 1.9x 10^{-11} µCi/ml to $2.1x10^{-11}$ µCi/ml, with an overall average of $1.96x10^{-11}$ µCi/ml. As shown by the following table, the *5Kr levels for all stations have been gradually increasing. Since this happened for all locations, the increase is probably a result of an increase in the ambient concentration worldwide, primarily as a result of nuclear reactor operations. Based upon the Network average concentrations over a 5-year period, this increase amounts to $3x10^{-13}$ to $1.5x10^{-12}$ µCi/ml/y. TABLE 3. ANNUAL AVERAGE AIR CONCENTRATIONS OF *5KR, 1972-1977 | | Concentration, | | ation, | 10-11 µCi/ml | | | |---------------------------|----------------|------|--------|--------------|------|------| | Location | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | | Death Valley Jct., Calif. | 1.6 | 1.5 | 1.8 | 1.7 | 2.0 | 2.0 | | Beatty, Nev. | 1.6 | 1.6 | 1.7 | 1.9 | 2.0 | 2.0 | | Diablo, Nev. | 1.6 | 1.6 | | 1.8 | 1.9 | 1.9 | | Hiko, Nev. | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.9 | | Indian Springs, Nev. | - | - | - | 2.0 | 2.0 | 2.0 | | Las Vegas, Nev. | 1.6 | 1.6 | 1.7 | 1.8 | 1.8 | 2.0 | | Mercury, NTS, Nev. | 1.6 | 1.6 | 1.8 | 1.8 | 1.9 | 2.0 | | Area 51, NTS, Nev. | 1.6 | 1.6 | 1.7 | 1.8 | 2.0 | 1.9 | | BJY, NTS, Nev. | 1.7 | 1.8 | 1.9 | 1.9 | 2.0 | 2.1 | | Area 12, NTS, Nev. | 1.6 | 1.6 | 1.8 | 1.8 | | 1.9 | | Tonopah, Nev. | 1.6 | 1.6 | 1.8 | 1.7 | 1.9 | 1.9 | | Total Network | 1.62 | 1.61 | 1.76 | 1.81 | 1.93 | 1.96 | The maximum concentrations of \$5Zr for all stations ranged from 2.3x10⁻¹¹ μ Ci/ml to 3.5x10⁻¹¹ μ Ci/ml (Table A-3). From the expected geometric standard deviation resulting from the sampling and analytical/counting errors, as determined from the Replicate Sampling Program (EMSL-LV, 1977), the 99 percent upper confidence limits (UCL's) on the geometric mean concentrations of \$5Kr would be 3.4x10⁻¹¹ μ Ci/ml or 3.8x10⁻¹¹ μ Ci/ml depending upon whether one is considering the location having the lowest geometric mean concentration (1.89x10⁻¹¹ μ Ci/ml at Diablo and Hiko) for the year or the location with the highest geometric mean concentration (2.09x10⁻¹¹ μ Ci/ml at BJY). Based upon the UCL's, all the Network stations had variations one would expect from the total errors of sample collection and analysis determined from the Replicate Sampling Program. Xenon-133 was detected above its MDC of about $2x10^{-12}$ μ Ci/ml at the locations, periods, and concentrations shown in the following table. TABLE 4. CONCENTRATIONS OF AIRBORNE 133XE DETECTED ON AND OFF NTS | Sampling
Period | 133Xe Concentration
±2-Sigma Counting Error
(10-12 μCi/ml) | |--------------------|--| | | | | 08/02-09 | 12 ± 4.0 | | 09/20-27 | 14 ± 5.2 | | 09/21-28 | 12 ± 4.3 | | 09/21-28 | 11 ± 4.6 | | 09/21-28 | 10 ± 8.2 | | 08/08-15 | 7.1 ± 4.0 | | 10/25-31 | 100 ± 4.0 | | 11/14-21 | 30 ± 4.0 | | 08/22-29 | 18 ± 7.5 | | 09/20-27 | 15 ± 7.8 | | | Period 08/02-09 09/20-27 09/21-28 09/21-28 09/21-28 08/08-15 10/25-31 11/14-21 08/22-29 | As shown by the table, detectable concentrations occurred only in one or two samples at each location. The highest of these concentrations at an off-NTS location was 1.5×10^{-11} µCi/ml at Tonopah, Nevada. If this level had persisted throughout the year, the result would have been 0.02 percent of the CG (Appendix B). As in the past, concentrations of $^3\mathrm{H}$ as HTO in atmospheric moisture were generally at background levels at all off-NTS stations and at the on-NTS stations Mercury and Area 51 except for occasional increases in individual samples. The on-NTS stations of BJY and Area 12 continued to have concentrations consistently above background; the concentration averages for these stations for this year were about a factor of 5 greater than the average concentrations for all off-NTS stations. All of the off-NTS stations had concentrations of $^3\mathrm{H}$ as HTO in atmospheric moisture which were below the expected upper limit of background (approximately $1.0 \times 10^{-6}~\mu \text{Ci/ml}~\text{H}_2\text{O}$) used in the past. The average
concentrations of 3H as HT (Table A-3) at off-NTS Network stations were comparable to the averages for these locations last year. This year the averages ranged from $^{6\times10^{-13}}$ 13 Concentrations of 3H as CH_3T were generally below the MDC at all locations as normally observed. Detectable concentrations did occur at Diablo, Hiko, Las Vegas, and Tonopah during the months of January, March, August, and December. The maximum concentrations for all locations ranged between 5.0×10^{-12} μ Ci/ml to 1.4x10⁻¹¹ μ Ci/ml. The total of the average ³H concentrations (HTO+HT+CH₃T) for the locations having the highest CH₃T concentration (1.4x10⁻¹¹ μ Ci/ml at Indian Springs) was <0.009 percent of the CG for exposure to a suitable sample of the exposed population. Since the detectable concentrations occurred generally throughout the Network both on NTS and off NTS at the same level, the concentrations were not attributed to NTS operations. #### DOSIMETRY NETWORK During 1977, the Dosimetry Network consisted of 78 locations surrounding the Nevada Test Site which were monitored continuously with thermoluminescent dosimeters (TLD's). The function of the Dosimetry Network is to measure the radiation dose, if any, due to releases of radioactivity from the NTS. To do this task accurately requires an accurate estimate of the environmental background radiation rate at each monitoring location so that any exposure in excess of background may be noted. The ability to measure the background rate, while both interesting and necessary, is of secondary importance to the measurement of radiation doses due to NTS activities. As shown in Figure 13, all the stations are located within a 270-km radius of the center of the NTS and these include both inhabited and uninhabited locations. Each Dosimetry Network station was routinely equipped with three Harshaw Model 2271-G2 (TLD-200) dosimeters which were exchanged on a quarterly basis. Within the general area covered by the dosimetry stations, 25 cooperating off-site residents each wore a dosimeter which was exchanged at the same time as the station dosimeters. No radiation exposures due to the current nuclear testing program at the NTS were detected by the Dosimetry Network during 1977. The Model 2271-G2 dosimeters consist of two small "chips" of dysprosium-activated calcium fluoride, designated TLD-200 by the manufacturer, mounted in a window of Teflon plastic attached to a small aluminum card. An energy compensation shield of 1.2-mm thick cadmium metal is placed over the chips, and the whole card is then sealed in an opaque plastic container. Three of these dosimeters are placed in a rugged plastic housing located 1 meter above the ground at each station location to standardize the exposure geometry and to prevent tampering or pilferage. After appropriate corrections were made for background exposure accumulated during shipment between the laboratory and the monitoring location, the dosimeter readings for each station were averaged, and this average value for each station was compared to the values from the past year to determine if the new value was within the range of previous background values for that station. Any values significantly greater than previous values would have led to calculations of net exposure, while values significantly less than previously would have been examined to determine possible reading or handling errors. The results from each of the personnel dosimeters were compared to the background value of the nearest station to determine if a net exposure had occurred. The smallest exposure in excess of background radiation which may be determined from these dosimeter readings depends primarily on variations in the natural background exposure rate at the particular station location. In the absence of other independent exposure rate measurements, it is necessary to compare present exposure rates with past data which have been accepted as representing the natural background. Typically, the smallest net exposure observable for a 90-day monitoring period would be 5-15 mR in excess of background, which ranges from 15-35 mR depending on location. The term "background," as used in this context, refers to naturally occurring radio-activity plus a contribution from residual man-made fission products. Table A-4 lists the maximum, minimum, and average dose equivalent rate (mrem/day) measured at each station in the Network during 1977 due to penetrating gamma radiation. No allowance was made for the small additional dose due to the neutron component of the cosmic ray spectrum. No station exhibited an exposure in excess of background, which under present criteria is defined as the 99 percent confidence limit of the environmental background. It was noted in the 1976 report (EMSL-LV, 1977) that the station at Mammoth Mountain, California, may have shown a small net exposure. Additional data have continued to show the unusually large and cyclic variation at that location which is believed to be due to the heavy winter snow cover. TABLE 5. DOSIMETRY NETWORK SUMMARY FOR THE YEARS 1971-1977 | Environme | | | Rate (mrem/y) | |-------------|---------|-----------------|---------------| | <u>Year</u> | Maximum | <u> Minimum</u> | Average | | | | | | | 1971 | 250 | 102 | 160 | | 1972 | 200 | 84 | 144 | | 1973 | 180 | 80 | 123 | | 1974 | 160 | 62 | 114 | | 1975 | 140 | 51 | 94 | | 1976 | 140 | 51 | 94 | | 1977 | 170 | 60 | 101 | | | | | , | As shown in the above table, the average annual dose rate for the Dosimetry Network increased in 1977 over 1976. Part of this increase, approximately 3 mrem per year, was due to the addition of eight new stations in 1977, most of which exhibit dose rates above the average. The station with the highest dose rate was one of these: Stone Cabin Ranch, Nevada, with 170 mrem per year. Part of this increase may have resulted from biased data due to equipment problems. During the readout of the data for the second calendar quarter, severe mechanical problems were encountered in the automatic TLD reader, causing many invalid readings. This is believed to have resulted in a data set for that quarter which is noticeably dissimilar from the remaining three quarters. There has been insufficient time to analyze the effect of these problems, but preliminary indications are that the dose estimates for that quarter may have been inflated. In order to assure the continuing validity of the data from the Dosimetry Network, dosimeters were submitted to the Third International Intercomparison of Environmental Dosimeters, conducted at the Oak Ridge National Laboratory in July and August For dosimeters given a controlled exposure in the laboratory, the calculated exposure was 91.7±7.3 mR; the mean exposure estimated by all participants was 86.2±12.0 mR; the average for the EMSL-LV dosimeters was 86.3±8.9 mR, essentially equal to the mean for all participants and about 6 percent below the calculated value. For dosimeters exposed under rather unusual field conditions, the calculated exposure was 34.9±2.4 mR: the mean exposure for all participants 31.5±6.5 mR; the average for the EMSL-LV dosimeters was 29.1±2.2 mR, 7 percent less than the mean value for all participants and 17 percent less than the calculated These results tend to indicate that the present calibration techniques used by EMSL-LV underestimate the exposure. vestigations are continuing into the source of this bias. A network of 11 full-time and 19 standby stationary gamma exposure rate recorders (Figure 13) was also used at selected air sampling locations to document any changes in the ambient exposure rate. These units use a 2.5- by 30.5-cm constant-current ionization chamber (filled with methane) as the detector, operate on either 115V a.c. or a self-contained battery pack, and record on a paper strip chart. They have a range from 0.004 mR/h to 40 mR/h with an accuracy of about ±10 percent. The standby recorders were exercised at the same time as the standby air sampling stations, and were run continuously during the expected periods of fallout from the atmospheric nuclear tests by the People's Republic of China. No increase in exposure rates attributable to current NTS operations was detected by these recorders. ## MILK SURVEILLANCE NETWORK Milk is only one of the sources of dietary intake of environmental radioactivity. However, it is a very convenient indicator of the general population's intake of biologically significant radionuclide contaminants. For this reason it is monitored on a routine basis. Few of the fission product radionuclides become incorporated into the milk due to the selective metabolism of the cow. However, those that are incorporated are very important from a radiological health standpoint and are a very sensitive measure of their concentrations in the environment. The six most common fission product radionuclides which can occur in milk are ³H, ⁸9Sr, ⁹0Sr, ¹³¹I, ¹³⁷Cs, and ¹⁴⁰Ba. A seventh radionuclide, ⁴⁰K, also occurs in milk at a reasonably constant concentration of about 1.2x10⁻⁶ µCi/ml. Since this is a naturally occurring radionuclide, it was not included in the analytical results summarized in this section. The milk surveillance networks operated by the EMSL-LV were the routine Milk
Surveillance Network (MSN) and the Standby Milk Surveillance Network (SMSN). The MSN, during 1977 (Figure 14), consisted of 23 different locations where 3.8-liter milk samples were collected to represent family cows, commercial pasteurized milk producers, Grade A raw milk intended for pasteurization, and Grade A raw milk for local consumption. In the event of a release of activity from the NTS, intensive sampling would have been conducted in the affected area within a 480-km radius of CP-1, NTS, to assess the radionuclide concentrations in milk, the radiation doses that could result from the ingestion of the milk, and the need for protective action. Samples are collected from milk suppliers and producers beyond 480 km within the SMSN. During 1977, 85 milk samples were collected from the MSN on a quarterly collection schedule. During this report period, two changes were made in the Network. The Stanford Ranch at Trona, California, replaced the Riley Ranch in Olancha, California. Also, a family cow located in Alamo, Nevada, was added to the Network. Each MSN milk sample was analyzed for gamma-emitters and *9,90Sr. Samples collected at six locations from the MSN were also analyzed for 3H. Table A-2 lists the general analytical procedures and detection limits for these analyses. The SMSN consisted of about 140 Grade A milk processing plants in all States west of the Mississippi River. Managers of these facilities could be requested by telephone to collect raw milk samples representing milk sheds supplying milk to the plants. Since there were no releases of radioactivity from the NTS or other test locations, this network was not activated except to request one sample from most of the locations to check the readiness and reliability of the network. During the months of April and May, 116 milk samples were collected and analyzed by gamma spectrometry. Samples selected from all Western States were also analyzed for 3H and \$9,90Sr. During the months of September and October, an additional 69 milk samples were collected from the same SMSN stations in the States of Arizona, Arkansas, California, Colorado, Minnesota, and Nevada, due to concern for the fallout from the atmospheric nuclear test conducted by the People's Republic of China on September 17, 1977. These samples were analyzed only by gamma spectrometry. The analytical results of milk samples collected from the MSN during 1977 are summarized in Table A-5, where the maximum, minimum, and average concentrations of the 137Cs, 131I, 89, 90Sr, and 3H in samples collected during the year are shown for each sampling location. As shown by the following table, the average radionuclide concentrations for the whole Network are comparable to those for the SMSN, if not slightly lower. TABLE 6. SUMMARY OF RADIONUCLIDE CONCENTRATIONS FOR MILK SURVEILLANCE NETWORK AND STANDBY SURVEILLANCE NETWORK | | | | Concentration (10-9 µCi/ml) | | | |---------|--------------|---------|-----------------------------|---------------|---------------| | | | No. of | c ` | c | C | | Network | Radionculide | Samples | Max | Min | Avg | | MSN | 140Ba | 21 | <20 | < 3 | <6 | | | 137CS | 85 | <13 | < 3 | ₹6 | | | 131T | 85 | 140 | <4 | <10 | | | 895r | 84 | 4.0 | <0.6 | <2 | | | 90Sr | 64 | 2.5 | <0.5 | <2 | | | 3H | 20 | <400 | <300 | <10 | | SMSN | 140Ba | 116 | 22 | < 2 | <8 | | | 137CS | 116 | 8.2 | <2 | < 5 | | | 131 I | 69 | 100 | < 5 | <14 | | | 89Sr | 21 | < 5 | <2 | <4 | | | 90Sr | 21 | 7.1 | <0.7 | <3 | | | зН | 21 | 450 | <300 | <400 | The concentrations of 137Cs, 131I, 89Sr, 90Sr, and 3H for the MSN shown in Table 6 were for all samples collected during the entire year. The 137Cs, 89Sr, 90Sr, and 3H results for the SMSN are for samples collected during April and May 1977, during the annual Network activation. The 131I levels for the SMSN are for samples collected during September and October 1977. The only 131I results for the MSN were for samples collected in October during the fourth quarter routine collection. As similar levels of 131I were observed in the samples from the SMSN, all 131I concentrations were attributed to the Chinese test of September 17, 1977. #### LONG-TERM HYDROLOGICAL MONITORING PROGRAM During this reporting period, EMSL-LV personnel continued the collection and analysis of water samples from wells, springs, and spring-fed surface water sources which are down the hydrologic gradient of the groundwater at the NTS and at off-NTS sites of underground nuclear detonations to monitor for any migration of test-related radionuclides through the movement of groundwater. The water samples were collected from wellheads or spring discharge points wherever possible. Prior to each sampling at a wellhead, water was pumped from the aquifer to assure the collection of representative samples. If pumps were not available, an electrical-mechanical water sampler capable of collecting 3-liter samples at depths to 1800 m was used. ## Nevada Test Site For the NTS, attempts were made to sample 10 locations monthly and 20 locations semi-annually (Figures 15 and 16). Additionally, samples were collected annually from 12 locations. Not all stations could be sampled with the desired frequency because of inclement weather conditions and inoperative pumps. During the year, sampling at Test Well B was changed from semi-annual to monthly collection, sampling at Watertown No. 3 was terminated, Shoshone Spring was changed from semi-annual collection to annual, and the Union Carbide Well at Tempiute was added to the annual collection. For each sampled location, samples of raw water, filtered water, and filtered and acidified water were collected. The raw water samples were analyzed for ³H. Portions of the filtered and acidified samples were given radiochemical analyses by the criteria summarized in Table A-6. Table A-2 summarizes the analytical techniques used. Each filter was also analyzed by gamma spectrometry. Tables A-7, A-8, and A-9 list the analytical results for all samples collected and analyzed during this reporting period and compare them to the CG's (Appendix B). As indicated by Table A-6, the analyses for 89,90Sr, 226Ra, 234U, 235U 238U, 238Pu, and 239Pu, which were normally done at least once during the year on a sample from each location, were not made unless the levels of gross alpha and gross beta radioactivity in any sample showed an unexpected increase. As no increases were observed in the gross alpha and gross beta radioactivity during the year, no additional analyses were required. The ranges in radioactivity were $(2x10^{-9} \mu \text{Ci/ml} \text{ to } 1.9x10^{-8} \mu \text{Ci/ml} \text{ and } (3x10^{-8} \mu \text{Ci/ml} \text{ to } 2.0x10^{-8} \mu \text{Ci/ml}, \text{ respectively.}$ As in the past, 3H was detected in NTS Wells C (Table A-7) and C-1 (Table A-8) due to tracer experiments conducted prior to the commencement of this surveillance program. All ³H concentrations were below 0.01 percent of the Concentration Guide for an occupationally exposed person. As observed last year, those locations from which samples were collected having ³H concentrations greater than normal were Well U3CN-5 and Well B (Table A-7) located on NTS. Well U3CN-5 had three out of eleven samples during the year which had ³H concentrations of 2.0x10-7 µCi/ml, 1.6x10-7 µCi/ml, and 2.3x10-7 µCi/ml; all other concentrations ranged from <8x10-9 µCi/ml to 2.5x 10-8 µCi/ml. The six samples from Well B consistently had ³H concentrations higher than normal, ranging from 1.5x10-7 µCi/ml to 3.3x10-7 µCi/ml. No explanation for the levels is available. All ³H concentrations were below 0.0l percent of the Concentration Guide for an occupationally exposed person. All ³H concentrations were also <3 percent of the maximum contaminant level of the EPA Drinking Water Regulations for this nuclide (Appendix B). ## Other Test Sites The annual collection and radiological analysis of water samples were continued for this program at all off-NTS sites of underground nuclear detonations. The project sites at which samples were collected are Project Gnome near Carlsbad, New Mexico; Project Faultless in Central Nevada; Project Shoal near Fallon, Nevada; Project Gasbuggy in Rio Arriba County, New Mexico; Project Rulison near Rifle, Colorado; Project Dribble at Tatum Dome, Mississippi; Project Rio Blanco near Meeker, Colorado; and Projects Long Shot/Milrow/Cannikin on Amchitka Island, Alaska. The latter four sites, which were previously sampled by the U.S. Geological Survey, were sampled by the EPA for the first time in 1977. Figures 17 through 28 identify the sampling locations, and Table A-1 lists additional information on the location of each site and tests performed at these locations. All samples were analyzed in accordance with the same criteria (Table A-6) as for samples collected on and around the NTS. Samples were collected for the first time at the Project Rio Blanco site and Projects Long Shot/Milrow/Cannikin sites, and therefore were analyzed for 89,90Sr, 226Ra, 234,235,238U, and 238,239Pu. The results of all analyses are listed or summarized in Table A-10 and compared to the appropriate CG's (Appendix B) except for Project Rio Blanco. As the special analyses (89,90Sr, 226Ra, 234,235,238U, and 238,239Pu) for samples from this location were not initiated until the latter part of the year, the analyses were not completed in time for this report. The ranges in concentrations of gross alpha radioactivity, gross beta radioactivity, and ^{3}H in samples collected from all project sites were $<8\times10^{-10}$ µCi/ml to $<2\times10^{-9}$ µCi/ml, $<4\times10^{-9}$ μ Ci/ml to 4.7x10-8 μ Ci/ml, and <7x10-9 μ Ci/ml to 5.3x10-6 μ Ci/ml, respectively. The observed radioactivity concentrations were similar to those observed in the past. No analytical results of samples collected previously at Project Rio Blanco were available: however, the
concentrations of gross alpha radioactivity, gross beta radioactivity, and 3H in this year's samples were comparable to those observed in the samples collected at the Project Rulison site near Rifle, Colorado. The gross alpha and gross beta radioactivity concentration in samples collected at the Projects Long Shot/Milrow/Cannikin sites were comparable to those observed in samples from other sites and in samples collected in August 1973, May 1974, and August 1974 by the U.S. Geological Survey (Ballance, 1974; Thordarson and Ballance, 1976) and in samples collected in August 1976 by University of Washington (Nelson and Seymour, 1977). The 3H concentrations in several samples collected at the Project Long Shot site were higher than normal, i.e., 5.3×10^{-6} μ Ci/ml at Well GZ No. 1, 1.8×10^{-6} μ Ci/ml at Well GZ No. 2, 2.0x10-6 µCi/ml at Mud Pit No. 1, 2.5x10-6 µCi/ml at Mud Pit No. 2, and 3.4x10-6 μ Ci/ml at Mud Pit No. 3. The highest of these concentrations, 5.3x10-6 µCi/ml, was 0.2 percent of the of the CG for 3H. As these samples were collected near the Long Shot GZ, the higher than normal levels of 3H were attributed to the Long Shot test. The U.S. Geological Survey (Ballance, 1974; Thordarson and Ballance, 1976) also reported 3H concentrations of this magnitude (concentration range of 1.3x10-6 µCi/ml to 1.3x 10- µCi/ml) in surface water and well samples collected at three locations near the Project Long Shot GZ. The University of Washington (Nelson and Seymour, 1977) reported 3H concentrations as high as 1.13×10^{-5} µCi/ml in surface waters near the GZ. One surface water sample from Half Moon Creek Overflow, near Baxterville, Mississippi, had a 3H concentration (1.8x10-6 μ Ci/ml) higher than concentrations observed in other surface water samples collected near the Project Dribble site. The 3H concentrations at this location have been consistently high (2.4x10-6 μ Ci/ml in 1976, 2.2x10-6 μ Ci/ml in 1975, 5.1x10-6 μ Ci/ml in 1974) over the previous 3 years. Further exploratory surveys during this year identified sub-surface 3H soil contamination left from post-shot drill-back operations as the source of the 3H . A report on the findings of these surveys will be reported separately at a later date. As reported in previous annual reports, concentrations of radioactivity above background were observed in samples collected from USGS Wells 4 and 8 near Malaga, New Mexico (Table A-10). These wells, which are fenced, posted, and locked to prevent their use by unauthorized personnel, were contaminated by the injection of high concentrations of ³H, ⁹⁰Sr, and ¹³⁷Cs (USGS Well No. 8 only) for a tracer study. Several samples collected from the Projects Long Shot/Milrow/Cannikin sites had concentrations of 90Sr and 238Pu that were above the MDC's for these radionuclides. The locations and results for these samples are as follows: TABLE 7. DETECTABLE CONCENTRATIONS OF 90SR AND 238PU IN WATER SAMPLES | | | Concentration ±3-Sigma | | | |-------------------------------|---------|---|--|--| | | Radio- | Counting Error | | | | Location | nuclide | (10-9 μCi/ml) | | | | Project Cannikin | | | | | | South End of | 90Sr | 1.8 ± 0.80 | | | | Cannikin Lake | 236Pu | $0.041 \pm 0.045*$ | | | | | • • - | | | | | North End of
Cannikin Lake | 90Sr | 2.2 ± 3.3* | | | | Well HTH-3 | 90Sr | 1.7 ± 0.77 | | | | | 238 Pu | 0.040 ± 0.039* | | | | | | | | | | Ice Box Lake | 90Sr | 1.6 ± 0.93 | | | | | saebn | 0.029 ± 0.033* | | | | White Alice Creek | 90Sr | 2.3 ± 0.98 | | | | | saspu | 0.042 ± 0.024 | | | | | | | | | | Pit South of | 90Sr | 2.3 ± 0.90 | | | | Cannikin GZ | saebn | 0.043 ± 0.036 | | | | | | | | | | Project Milrow | | | | | | Heart Lake | 90Sr | 2.0 ± 0.92 | | | | | 238Pu | 0.046 ± 0.035 | | | | | | 4 5 9 9 9 | | | | Rifle Range Creek | 90Sr | 1.5 ± 0.77 | | | | | 238Pu | 0.034 ± 0.027 | | | | | | | | | | Project Long Shot | | | | | | Reed Pond | 90Sr | 2.1 ± 1.0 | | | | Well GZ No. 1 | 90Sr | 1.5 ± 0.77 | | | | | 238Pu | 0.042 ± 0.039* | | | | | | 2 | | | | Well WL-1 | 238 Pu | 0.042 ± 0.051* | | | | Mud Pit No. 1 | 238pu | 0.030 ± 0.041* | | | | riud PIC NO. I | ru | (continued) | | | | | | (0002204) | | | TABLE 7. (continued) | Location | Radio-
nuclide | Concentration ±3-Sigma Counting Error (10-9 µCi/ml) | |----------------------------|-------------------|---| | Mud Pit No. 3 | 238 Pu | 0.032 ± 0.038* | | Amchitka Background Sample | 2 | | | Jones Lake | 90Sr
236Pu | 0.70 ± 0.67
0.042 ± 0.032 | Several of these concentrations annotated with an asterisk (*) were less than or sufficiently close to the three-sigma counting error whereby they were considered to be the result of statistical error and not necessarily a true indication of the presence of these radionuclides. Those concentrations which were greater than the three-sigma counting error were for samples from surface waters and shallow wells which could possibly have been affected by atmospheric fallout. ## WHOLE-BODY COUNTING Twenty families consisting of 60 residents from 13 locations near the NTS were examined twice during the year to determine their body burdens of radioactivity and to watch for any physiological changes that could be attributable to the effects of acute or chronic exposure to radiation or radioactivity. When possible, all members of a family were included in the examinations. The home locations of these individuals were Pahrump, Lund, Beatty, Caliente, Pioche, Nyala, Round Mountain, Ely, Tempiute, Goldfield, Lathrop Wells, Tonopah, and Spring Meadow Farms, Nevada. Each examination consisted of a measurement of the body burden of radioactivity with the whole-body counting facility described previously (NERC-LV, 1974), a complete hematological examination, and a thyroid profile. A urine sample was also collected from each individual for ³H analysis, and a composite of urine samples from each family was analyzed for ²³⁸Pu and ²³⁹Pu. From the results of the whole-body counting, the fission product 137Cs was detected above the detection limit in 94 out of 117 measurements. The maximum, minimum, and average body burdens for this radionuclide were 3.9x10-8, 5.0x10-9, and 1.4x10-8 μ Ci/g body weight, respectively, which were similar to last year's concentrations (maximum of 2.8x10-8 μ Ci/g; minimum of 5.0x10-9; and average of $1.2 \times 10^{-8} \mu \text{Ci/g}$ body weight). In regard to the hematological examinations and thyroid profiles, no abnormal results were observed which could be attributed to past or present NTS testing operations. From the analytical results for urine samples, 236 Pu concentrations slightly above the detection limit were observed in four composite samples, which had a maximum concentration and two-sigma counting error of $1.0 \times 10^{-10} \pm 0.56 \times 10^{-10}$ µCi/ml, a minimum of 2.2×10^{-11} $\pm 2.2 \times 10^{-11}$ µCi/ml, and an average of 5.5×10^{-11} µCi/ml. Plutonium-239 was reported in only one composite sample. Its concentration was $2.9 \times 10^{-11} \pm 1.8 \times 10^{-11}$ µCi/ml. The concentrations of 3 H observed in urine samples (average of 7.0×10^{-7} with a range of 2.0×10^{-7} to 2.0×10^{-6} µCi/ml) were within the range of background concentrations normally observed in surface waters or atmospheric moisture. ## DOSE ASSESSMENT The only radionuclide ascribed to NTS operations detected off-NTS was ¹³³Xe at Beatty, Diablo, Hiko, Las Vegas, and Tonopah, Nevada, where the ¹³³Xe concentrations in air occurred during the months of August and September. The highest whole-body dose calculated for these locations was at Beatty, Nevada, where the dose equivalent was estimated to be $(7 \text{ days}) (1.2 \times 10^{-11} \mu \text{Ci/ml} + 1.4 \times 10^{-11} \mu \text{Ci/ml}) (500 \text{ mrem/year}) = 2.5 \mu \text{rem} (10^{-7} \mu \text{Ci/ml}) (365 \text{ days/year})$ which is 0.001 percent of the Radiation Protection Standard of 170 mrem (Appendix B). The estimated doses for all locations are shown in Table 8 with the estimated dose commitment (product of estimated average dose equivalent and population). TABLE 8. ESTIMATED DOSE COMMITMENT FROM 133XE CONCENTRATIONS | Location | Population | Estimated
Dose
Equivalent
(µrem) | Dose
Commitment
(man-rem) | Dose
Commitment
Within 80 km
(man-rem) | |-----------------|------------|---|---------------------------------|---| | | 500 | | | 0.0040 | | Beatty, Nev. | 500 | 2.5 | 0.0013 | 0.0013 | | Diablo, Nev. | 6 | 1.2 | 0.0000072 | 0.0 | | Hiko, Nev. | 60 | 1.1 | 0.000066 | 0.0 | | Las Vegas, Nev. | 370,500* | 0.96 | 0.36 | 0.0 | | Tonopah, Nev. | 2,000 | 1.4 | 0.0028 | 0.0 | | Total | | | 0.36 | 0.0013 | ^{*}Population is for Las Vegas and nearby communities within Clark County. Due to the greater population density within the Las Vegas area, the highest dose commitment (0.36 man-rem) was for this area, which is approximately 100 km from the NTS. This dose commitment is small compared to the 26,000 man-rem, which residents of Las Vegas and nearby communities received from natural background radiation during this reporting period. ## REFERENCES Andrews, V. E., and J. C. Vandervort. "Fruit and Vegetable Radioactivity Survey, Nevada Test Site Environs." EMSL-LV-0539-13. U.S. Environmental Protection Agency, Las Vegas, Nevada. April 1978. Ballance, W. C. "Radiochemical Monitoring of Water After the Cannikin Event, Amchitka Island, Alaska, August 1973." USGS-474-205. Available from Dept. of Commerce, NTIS, Springfield, VA. October 1974. Eckel, E. B., ed. <u>Nevada Test Site</u>. Memoir 110. The Geological Society of America, Inc. Boulder, Colorado. 1968. EMSL-LV. "Environmental Monitoring Report for
the Nevada Test Site and Other Test Areas Used for Underground Nuclear Detonations." EMSL-LV-0539-12. U.S. Environmental Protection Agency, Las Vegas, Nevada. May 1977. EPA. "Environmental Radioactivity Laboratory Intercomparison Studies Program," Environmental Monitoring and Support Laboratory, Environmental Protection Agency, Las Vegas, Nevada. Available from U.S. Dept. of Commerce, NTIS, Springfield, VA 22161. (In preparation). ERDA Manual, Chapter 0513. "Effluent and Environmental Monitoring and Reporting." U.S. Energy Research and Development Administration. Washington, D.C. March 20, 1974. ERDA. "Final Environmental Impact Statement, Nye County Nevada." ERDA-1551. Nevada Operations Office, U.S. Energy Research and Development Administration, Las Vegas, Nevada. Available from U.S. Dept. of Commerce, NTIS, Springfield, VA, 22161. September 1977. Houghton, J. G., C. M. Sakamoto, and R. O. Gifford. <u>Nevada's Weather and Climate</u>. Special Publication 2. Nevada Bureau of Mines and Geology, Mackay School of Mines, University of Nevada-Reno, Reno, Nevada. pp 69-74. 1975. Nelson, V. A., and A. H. Seymour. "Amchitka Radiological Program Progress Report January 1976 to December 1976." NVO-269-31. University of Washington, Seattle, Washington. Available through U.S. Dept. of Commerce, NTIS, Springfield, VA, 22161. May 1977. NERC-LV. "Environmental Monitoring Report for the Nevada Test Site and Other Test Areas Used for Underground Nuclear Detonations." NERC-LV-539-31. U.S. Environmental Protection Agency, Las Vegas, Nevada. May 1974. Quiring, Ralph E. "Climatological Data, Nevada Test Site, Nuclear Rocket Development Station (NRDS)." ERLTM-ARL-7. ESSA Research Laboratories. August 1968. University of Nevada (Reno). Population projections for Washoe and Clark Counties and the State of Nevada for 1977, according to telephone conversation between D. L. Wait, U.S. Environmental Protection Agency, Las Vegas, Nevada, and Dr. Chu, Bureau of Business and Economic Research. April 13, 1978. - U.S. Bureau of the Census. "Estimates of Population of California Counties and Metropolitan Areas, July 1, 1975 and 1976." <u>Federal-State Cooperative Program for Population Estimates</u>. Series P-26. No. 76-5. U.S. Department of Commerce. Washington, D.C. September 1977. - U.S. Bureau of the Census. "Estimates of the Population of Nevada Counties and Metropolitan Areas, July 1, 1975, and July 1, 1976." Federal-State Cooperative Program for Population Estimates. Series P-26. No. 76-28. U.S. Department of Commerce. Washington, D.C. July 1977. - U.S. Bureau of the Census. "Estimates of the Population of Arizona Counties and Metropolitan Areas, July 1, 1975, and July 1, 1976." Federal-State Cooperative Program for Population Estimates. Series P-26. No. 76-3. U.S. Department of Commerce. Washington, D.C. August 1977. - U.S. Bureau of the Census. "Estimates of the Population of Utah Counties and Metropolitan Areas, July 1, 1975, and July 1, 1976." Federal-State Cooperative Program for Population Estimates. Series P-26. No. 76-44. U.S. Department of Commerce. Washington, D.C. August 1977. Thordarson, W., and W. C. Ballance. "Radiochemical Monitoring of Water After the Cannikin Event, Amchitka Island, Alaska, May 1974." USGS-474-225 and USGS-474-226. Geological Survey. Available from U.S. Dept. of Commerce, DTIS, Springfield, VA, 22161. March 1976. Figure 1. Nevada Test Site Location Figure 2. Nevada Test Site Road and Facility Map Figure 3. Groundwater Flow Systems - Nevada Test Site Figure 4. General Land Use, Nevada Test Site Vicinity Figure 5. Location and Number of Family Milk Cows and Goats Figure 6. Location and Number of Dairy Cows Figure 7. Distribution of Beef Cattle by County Figure 8. Distribution of Sheep by County Figure 9. Population of Arızona, Calıfornia, Nevada, and Utah Counties Near the Nevada Test Site Figure 10. Air Surveillance Network - Nevada Figure 11. Air Surveillance Network - Outside Nevada Figure 12. Noble Gas and Tritium Surveillance Network Figure 13. Dosimetry Network Figure 14. Milk Surveillance Network Figure 15. On-Site Long-Term Hydrological Monitoring Program, Nevada Test Site Figure 16. Off-Site Long-Term Hydrological Monitoring Program, Nevada Test Site Figure 17. Long-Term Hydrological Monitoring Program, Carlsbad, New Mexico, Project Gnome/Coach Figure 18. Long-Term Hydrological Monitoring Program, Fallon, Nevada, Project Shoal Figure 19. Long-Term Hydrological Monitoring Program, Project Dribble/Miracle Play (vicinity of Tatum Salt Dome, Mississippi) Figure 20. Long-Term Hydrological Monitoring Program, Project Dribble/Miracle Play (Tatum Salt Dome, Mississippi) Figure 21. Long-Term Hydrological Monitoring Program, Rio Arriba County, New Mexico, Project Gasbuggy Figure 22. Long-Term Hydrological Monitoring Program, Rulison, Colorado, Project Rulison Figure 23. Long-Term Hydrological Monitoring Program, Central Nevada Test Area, Faultless Event Figure 24. Long-Term Hydrological Monitoring Program, Project Rio Blanco, Rio Blanco County, Colorado Figure 25. Long-Term Hydrological Monitoring Program, Project Cannikin, Amchitka Island, Alaska Figure 26. Long-Term Hydrological Monitoring Program, Project Milrow, Amchitka Island, Alaska Figure 27. Long-Term Hydrological Monitoring Program, Project Long Shot, Amchitka Island, Alaska Figure 28. Long-Term Hydrological Monitoring Program Background Sampling, Amchitka Island, Alaska ## APPENDIX A. TABLES Table A-1. Underground Testing Conducted Off the Nevada Test Site | Name of Test,
Operation or
Project | Date | Location | Yield(*)
(kt) | Depth
m
(ft) | Purpose of
the Event(* 5) | |---|----------|---|------------------------------|--|---| | Project Gnome/
Coach(1) | 12/10/61 | 48 km (30 mi) SE of Carlsbad, N. Mex. | 3,1(6) | 360
(1184) | Multi-purpose experiment. | | Project Shoal(2) | 10/26/63 | 45 km (28 mi) SE of Fallon, Nev. | 12 | 366
(1200) | Nuclear test
detection re-
search experi-
ment. | | Project Dribble(2)
(Salmon Event) | 10/22/64 | 34 km (21 mi) SW of
Hattiesburg, Miss. | 5.3 | 823
(2700) | Nuclear test
detection re-
search experi-
ment. | | Operation Long
Shot(2) | 10/29/65 | Amchitka Island,
Alaska | 80 | 716
(2350) | DOD nuclear
test detection
experiment. | | Project Dribble(2)
(Sterling Event) | 12/03/66 | 34 km (21 mi) SW of
Hattiesburg, Miss. | 0.38 | 823
(2700) | Nuclear test
detection re-
search experi-
ment. | | Project Gasbuggy(1) | 12/10/67 | 88 km (55 mi) E of Farmington, N. Mex. | 29 | 1292
(4240) | Joint Government-
Industry gas
stimulation ex-
periment. | | Faultless Event(3) | 01/19/68 | Central Nevada Test
Area 96 km (60 mi) E
of Tonopah, Nev. | 200 -
1000 | 914
(3000) | Calibration
test. | | Project Miracle
Play (Diode Tube)(2) | 02/02/69 | 34 km (21 mi) SW of
Hattiesburg, Miss. | Non-
nuclear
explosion | 823
(2700) | Detonated in Salmon/Sterling cavity. Seismic studies. | | Project Rulison(1) | 09/10/69 | 19 km (12 mi) SW of Rifle, Colo. | 40 | 2568
(8425) | Gas stimulation experiment. | | Operation Milrow(3) | 10/02/69 | Amchitka Island,
Alaska | 1000 | 1219
(4000) | Calibration test. | | Project Miracle
Play (Humid
Water) ⁽²⁾ | 04/19/70 | 34 km (21 mi) SW of
Hattiesburg, Miss. | Non-
nuclear
explosion | 823
(2700) | Detonated in Salmon/Sterling cavity. Seismic studies. | | Operation
Cannikin ⁽³⁾ | 11/06/71 | Amchitka Island,
Alaska | <5000 | 1829
(6000) | Test of war-
head for
Spartan
missile. | | Project Rio
Blanco(1) | 05/17/73 | 48 km (30 mi) SW of
Meeker, Colo. | 3x30 | 1780
to
2040
(5840
to
6690) | Gas stimula-
tion experi-
ment. | ### Table A-1. (continued) #### (1)Plowshare Events - (2) Vela Uniform Events - (3) Weapons Tests - (*)Information from "Revised Nuclear Test Statistics," dated September 20, 1974, and "Announced United States Nuclear Test Statistics," dated June 30, 1976, distributed by David G. Jackson, Director, Office of Public Affairs, Energy Research & Administration, Nevada Operations Office, Las Vegas, Nevada. - (5) News release AL-62-50, AEC Albuquerque Operations Office, Albuquerque, New Mexico. December 1, 1961. - (*) "The Effects of Nuclear Weapons," Rev. Ed. 1964. Table A-2. Summary of Analytical Procedures | Type of
Analysis | Analytical
Equipment | Counting
Period
(Min) | Analytical
Procedures | Sample
Size
(Liter) | Approximate Detection Limit(2) | |--|--|--|--|--|--| | Gamma
Spectroscopy(1) | Gamma spectro- meter with 10-cm-thick by 10-cm-di- ameter NaI (T1-activated) crystal cali- brated at 10 keV per channel (0-2 MeV range). | 100 min for milk, water, Long-Term Hydro. suspended solids; 10 min. for air charcoal cartridges and air filters. | Radionuclide concentra- tions quan- titated from gamma spec- trometer data by com- puter using a least
squares technique | 3.5 for routine milk and water samples; 800-1200 m³ for air filter samples; 7.3 liter for Long-Term Hydro. Water suspended solids. | For routine milk and water generally, 5x10-9 µCi/ml for most common fallout radionuclides in a simple spectrum. For air filters, 2x10-14 µCi/ml. For Long-Term Hydro. suspended solids, 3.0x10-9 µCi/ml. | | 89-90Sr(3) | Low-background thin-window, gas-flow proportional counter with a 5.7-cm diameter window (80 µg/cm²). | 50 | Chemical separation by ion exchange. Separated sample counted successively; activity calculated by simultaneous equations. | 1.0 | **Sr = 2x10-* µCi/ml **QSr = 1x10-* µCi/ml. | | 3H(3) | Automatic
liquid
scintillation
counter with
output printer. | 200 | Sample pre-
pared by
distillation. | 0.005 | 2x10-7 μCi/ml | | 3H Enrichment
(Long-Term
Hydrological
Samples)(3) | Automatic scintillation counter with output printer. | 200 | Sample concen-
trated by
electrolysis
followed by
distillation. | 0.25 | 6x10-9 μCi/ml | | 236 239Pu
234 235
236U(3) | Alpha spectro-
meter with 450 mm², 300-µm depletion depth, silicon surface barrier detectors operated in vacuum chambers. | 1000 -
1400 | Sample is digested with acid, separate by ion exchangelectroplated on stainless steel planchet and counted by alpha spectrometer. | e, | 238pu = 4x10+11
µCi/ml
239pu, 23+U, 235U
236U = 2x10-11
µCi/ml | | 226 _{Ra} (3) | Single channel analyzer coupled to P.M. tube detector. | 30 | Precipitated with Ba, con- verted to chloride. Stored for 30 days for 222Rn 226Ra to equilibrate. Radon gas pumped into scintillation cell for alpha scintillation counting. | | 1x10-10 µCi∕ml | Table A-2. (continued) | Type of
Analysis | Analytical
Equipment | Counting
Period
(Min) | Analytical
Procedures | Sample
Size
(Liter) | Approximate Detection Limit(2) | |--|--|-----------------------------|---|---------------------------|---| | Gross alpha
Gross beta
in liquid
samples(3) | Low-background thin-window, gas-flow proportional counter with a 5.7-cm-diameter window (80 µg/cm²). | 50 | Sample eva-
porated;
residue
weighed and
counted;
corrected for
self-attenu-
ation. | 0.2 | $\alpha = 3x10^{-9} \mu Ci/ml$
$\beta = 2x10^{-9} \mu Ci/ml$ | | Gross beta
on air
filters(1) | Low-level end window, gas flow proportional counter with a 12.7-cm-diameter window (100 mg/cm²). | 20 | Filters counted at 7 and 14 days after col- lection; two counts can be used to extrapolate concentration to mid-col- lection time assuming T-1.2 decay or using experimentally derived decay. | !
' | 2x10-15 μCi/ml | | *5 Kr
Xe
CH ₃ T(3) | Automatic
liquid scintil-
lation counter
with output
printer. | 200 | Physical separation by gas chroma-tography; dissolved in toluene "cocktail" for couning. | | 05Kr = 2x10-12
μCi/ml
Xe = 2x10-12
μCi/ml
CH ₃ T = 2x10-12
μCi/ml | ⁽¹⁾Lem, P. N., and Snelling, R. N. "Southwestern Radiological Health Laboratory Data Analysis and Procedures Manual," SWRHL-21. Southwestern Radiological Health Laboratory, U.S. Environmental Protection Agency, Las Vegas, NV. March 1971 ⁽²⁾The detection limit for all samples is defined as that radioactivity which equals the 2-sigma counting error. ⁽³⁾Johns, F. B. "Handbook of Radiochemical Analytical Methods," EPA 680/4-75-001. U.S. Environmental Protection Agency, NERC-LV, Las Vegas, NV. February 1975. Table A-3. 1977 Summary of Analytical Results for the Noble Gas and Tritium Surveillance Network | Sampling
Location | No.
Days
Sampled | Radio-
nuclide | Radioac
Units | tivity (
C
Max | Concentra
C
Min | tions
C
Avg | % of
Conc.
Guide* | |----------------------------|--|--|---|--------------------------------------|---|---|-----------------------------| | Death Valley Jct., Calif. | 335.7
349.6
315.5
342.7
315.5 | Total Xe The as HTO He as CH ₃ T The as HTO | 10-12µCi/ml air
10-12µCi/ml air
10-6µCi/ml H ₂ O
10-12µCi/ml air
10-12µCi/ml air | 25
15
0.6
10
< 5 | 14 < 4 < 0.3 < 2 0.5 | 20
< 6
< 0.4
< 3
< 2 | 0.02
<0.01
-
<0.01 | | Beatty,
Nev. | 308.5
337.6
337.6
324.7
337.6
324.7 | 3H as HT 85Kr 133Xe 3H as HTO 3H as CH ₃ T 3H as HTO 3H as HTO | 10-12µCi/ml air
10-12µCi/ml air
10-12µCi/ml air
10-6µCi/ml H ₂ O
10-12µCi/ml air
10-12µCi/ml air
10-12µCi/ml air | 2.3 26 14 0.6 12 < 4 1.2 | 15 < 4 < 0.3 < 2 | 20
< 6
< 0.4
< 3
< 2
< 0.6 | 0.02
<0.01
-
<0.01 | | Diablo,
Nev. | 350. 4
350. 4
325. 4
343. 4
325. 4
325. 4 | ## as HTO ## as HT | 10-12µCi/ml air
10-12µCi/ml air
10-6µCi/ml H ₂ O
10-12µCi/ml air
10-12µCi/ml air
10-12µCi/ml air | 29
12
0.8
5
< 5 | 12
< 4
< 0.3
< 2
< 0.5
0.4 | 19
< 5
< 0.4
< 3
< 2
< 0.7 | 0.02
<0.01
-
<0.01 | | Hiko,
Nev. | 358.6
364.5
329.3
364.4
329.3
329.3 | eskr
133Xe
3H as HTO
3H as CH ₃ T
3H as HTO
3H as HT | 10-12µCi/ml air
10-12µCi/ml air
10-6µCi/ml H ₂ O
10-12µCi/ml air
10-12µCi/ml ai4
10-12µCi/ml air | 23
11
0.4
< 2
< 5
26 | 13 < 4 < 0.3 < 2 0.7 < 0.3 | 19
< 5
< 0.3
< 2
< 2
< 2 | 0.02
<0.01
-
<0.01 | | Indian
Springs,
Nev. | 350.2
350.2
316.5
350.2
316.5
316.5 | Total Xe The as HTO He as CH3T He as HTO He as HTO He as HT | 10-12µCi/ml air
10-12µCi/ml air
10-6µCi/ml H ₂ O
10-12µCi/ml air
10-12µCi/ml air
10-12µCi/ml air | 30
< 6
0.8
14
3.6
3.2 | 14 < 4 < 0.3 < 2 < 0.5 < 0.2 | 20
< 5
< 0.4
< 3
< 2
< 0.9 | 0.02
<0.01
-
<0.01 | Table A-3. (continued) | Sampling
Location | No.
Days
Sampled | Radio-
nuclide | Radioac
Units | tivity
C
Max | Concentra
C
Min | tions
C
Avg | % of
Conc.
Guide* | |-----------------------|--|---|---|--------------------------------------|---|---|------------------------------| | Las Vegas
Nev. | | %5Kr
133Xe
3H as HTO
3H as CH ₃ T
3H as HTO
3H as HT | 10-12µCi/ml air
10-12µCi/ml air
10-6µCi/ml H ₂ O
10-12µCi/ml air
10-12µCi/ml air
10-12µCi/ml air | 23
10
0.7
< 6
4.5
2.2 | 15
< 4
< 0.3
< 2
< 0.3
< 0.3 | 20
< 5
< 0.4
< 3
< 2
< 0.7 | 0.02 | | NTS, Nev.
Mercury | 345.6
358.5
323.6
358.6
323.6
323.6 | *5Kr
133Xe
3H as HTO
3H as CH ₃ T
3H as HTO
3H as HT | 10-12 μ Ci/ml air
10-12 μ Ci/ml air
10-6 μ Ci/ml H ₂ O
10-12 μ Ci/ml air
10-12 μ Ci/ml air
10-12 μ Ci/ml air | 24
7.1
4.4
9
7.6
4.5 | 13 < 2 < 0.3 < 2 < 0.3 < 0.3 < 0.3 | 20
< 5
< 0.5
< 3
< 2
< 0.8 | <0.01
<0.01
-
<0.01 | | NTS, Nev.
Area 51# | 343.4
364.5
323.7
344.5
323.7
316.7 | 85Kr
Total Xe
3H as HTO
3H as CH ₃ T
3H as HTO
3H as HT | 10-12 μ Ci/ml air
10-12 μ Ci/ml air
10-6 μ Ci/ml H ₂ O
10-12 μ Ci/ml air
10-12 μ Ci/ml air
10-12 μ Ci/ml air | 28
< 6
10
7
45
6.5 | 14 < 2 < 0.3 < 2 < 0.4 0.2 | 19
< 5
< 0.6
< 3
< 3
< 0.7 | <0.01
<0.01
-
<0.01 | | NTS, Nev.
BJY | 306.4
336.6
323.2
330.5
323.2
317.3 | 85Kr
133Xe
3H as HTO
3H as CH ₃ T
3H as HTO
3H as HT | $10^{-12}\mu\text{Ci/ml}$ air $10^{-12}\mu\text{Ci/ml}$ air $10^{-6}\mu\text{Ci/ml}$ $H_2\text{O}$ $10^{-12}\mu\text{Ci/ml}$ air $10^{-12}\mu\text{Ci/ml}$ air $10^{-12}\mu\text{Ci/ml}$ air | 35
100
7.1
6
35
7.7 | 13 < 2 < 0.3 < 2 < 2 < 0.5 | 21
< 7
< 2
< 3
<11
< 2 | <0.01
<0.01
-
<0.01 | | NTS, Nev.
Area 12 | 337.7
351.6
343.7
351.6
343.7
350.7 | 85Kr
133Xe
3H as HTO
3H as CH ₃ T
3H as HTO
3H as HT | $10^{-12}\mu\text{Ci/ml}$ air $10^{-12}\mu\text{Ci/ml}$ air $10^{-6}\mu\text{Ci/ml}$ H ₂ O $10^{-12}\mu\text{Ci/ml}$ air $10^{-12}\mu\text{Ci/ml}$ air $10^{-12}\mu\text{Ci/ml}$ air | 25
18
14
6
50 | 12 < 4 < 0.3 < 2 < 2 < 0.2 | 19
< 5
< 2
< 3
<10
< 2 | <0.01
<0.01
-
<0.01 | Table A-3. (continued) | No. | | | Radioactivity Concentrations | | | | % of | |-------------------|-----------------|-------------------|------------------------------|----------|----------|----------|-----------------| | Sampling Location | Days
Sampled | Radio-
nuclide | Units | C
Max | C
Min | C
Avg | Conc.
Guide* | | Tonopah, | 357.8 | asKr | 10-12µCi/ml air | 23 | 14 | 19 | 0.02 | | Nev. | 364.5 | 133Xe | 10-12µCi/ml air | 15 | < 4 | < 5 | <0.01 | | | 336.7 | TH as HTO | 10-6 µCi/m1 H2O | 0.5 | < 0.3 | < 0.4 | - | | | 356.6 | ³H as CH₃T |
10-12µCi/ml air | < 7 | < 2 | < 3 | | | | 336.7 | 3H as HTO | 10-12 µCi/ml air | < 5 | < 0.7 | < 2 | <0.01 | | | 329.7 | 3H as HT | 10-12 µCi/ml air | 1.8 | < 0.4 | < 0.8) | | ^{*} Concentration Guides used for NTS stations are those applicable to exposures to radiation workers. Those used for off-NTS stations are for exposure to a suitable sample of the population in an uncontrolled area. See Appendix B for Concentration Guides. [#] Also known as Groom Lake. Table A-4. 1977 Summary of Radiation Doses for the Dosimetry Network | | | Fouri w | Dose
alent | Dato | Annual
Adjusted
Dose
Equiv- | |---------------------------|-------------------|---------|---------------|------|--------------------------------------| | station | Measurement | (| mrem/d |) | alent | | Location | Period | Max. | Min. | Avq. | (mrem/y) | | Adaven, Nev. | 1/10/77 - 1/10/78 | 0.40 | 0.38 | 0.39 | 140 | | Alamo, Nev. | 1/04/77 - 1/09/78 | 0.33 | 0.25 | 0.28 | 100 | | Area 51-NTS, Nev. | 1/10/77 - 1/09/78 | 0.21 | 0.18 | 0.19 | 72 | | Austin, Nev. | 1/12/77 - 1/11/78 | 0.44 | 0.38 | 0.42 | 150 | | Baker, Calif. | 1/10/77 - 1/09/78 | 0.24 | 0.23 | 0.23 | 84 | | Barstow, Calif. | 1/10/77 - 1/09/78 | 0.27 | 0.25 | 0.26 | 96 | | Beatty, Nev. | 1/04/77 - 1/31/78 | 0.32 | 0.28 | 0.28 | 120 | | Bishop, Calif. | 1/11/77 - 1/10/78 | 0.31 | 0.26 | 0.27 | 100 | | Blue Eagle Ranch, Nev. | 1/13/77 - 1/11/78 | 0.23 | 0.17 | 0.18 | 67 | | Blue Jay, Nev. | 1/13/77 - 1/10/78 | 0.39 | 0.32 | 0.35 | 120 | | Cactus Springs, Nev. | 1/03/77 - 1/16/78 | 0.19 | 0.16 | 0.17 | 64 | | Caliente, Nev. | 1/06/77 - 1/10/78 | 0.39 | 0.34 | 0.37 | 140 | | Carp, Nev. | 1/05/77 - 1/10/78 | 0.34 | 0.27 | 0.30 | 110 | | Casey's Ranch, Nev. | 1/10/77 - 1/11/78 | 0.22 | 0.19 | 0.20 | 75 | | Cedar City, Utah | 1/11/77 - 2/01/78 | 0.25 | 0.21 | 0.22 | 87 | | Clark Station, Nev. | 1/13/77 - 1/10/78 | 0.33 | 0.30 | 0.32 | 120 | | Complex I, Nev. | 1/10/77 - 1/10/78 | 0.32 | 0.29 | 0.30 | 110 | | Coyote Summit, Nev. | 1/10/77 - 1/09/78 | 0.34 | 0.31 | 0.33 | 120 | | Currant, Nev. | 1/12/77 - 1/11/78 | 0.29 | 0.25 | 0.28 | 98 | | Death Valley Jct., Calif. | 1/13/77 - 1/12/78 | 0.23 | 0.20 | 0.21 | 79 | | Desert Game Range, Nev. | 1/03/77 - 1/16/78 | 0.21 | 0.16 | 0.17 | 64 | | Desert Oasis, Nev. | 1/10/77 - 1/31/78 | 0.21 | 0.18 | 0.18 | 72 | Table A-4. (continued) | | | Dose
Equivalent | Rate | Annual
Adjusted
Dose
Equiv- | |---------------------------|-----------------------|---------------------|--------------------|--------------------------------------| | Station
Location | Measurement
Period | (mrem/
Max. Min. | d)
<u>Avg</u> . | alent (mrem/y) | | Diablo Maint. Sta., Nev. | 1/10/77 - 1/12/78 | 0.36 0.34 | 0.35 | 130 | | Duckwater, Nev. | 1/12/77 - 1/11/78 | 0.32 0.29 | 0.30 | 110 | | Elgin, Nev. | 1/05/77 - 1/10/78 | 0.36 0.33 | 0.35 | 130 | | Ely, Nev. | 1/13/77 - 1/11/78 | 0.29 0.21 | 0.23 | 84 | | Enterprise, Utah | 1/11/77 - 2/01/78 | 0.31 0.28 | 0.30 | 110 | | Eureka, Nev. | 1/12/77 - 1/11/78 | 0.39 0.30 | 0.33 | 120 | | Furnace Creek, Calif. | 1/13/77 - 1/12/78 | 0.19 0.16 | 0.17 | 65 | | Garrison, Utah | 1/11/77 - 1/09/78 | 0.26 0.20 | 0.21 | 78 | | Geyser Maint. Sta., Nev. | 1/11/77 - 1/09/78 | 0.35 0.28 | 0.30 | 110 | | Goldfield, Nev. | 1/10/77 - 1/09/78 | 0.29 0.26 | 0.27 | 97 | | Hancock Summit, Nev. | 1/10/77 - 1/09/78 | 0.47 0.38 | 0.42 | 150 | | Hiko, Nev. | 1/04/77 - 1/09/78 | 0.24 0.20 | 0.21 | 81 | | Hot Creek Ranch, Nev. | 1/13/77 - 1/10/78 | 0.26 0.25 | 0.25 | 91 | | Independence, Calif. | 1/11/77 - 1/10/78 | 0.29 0.27 | 0.28 | 100 | | Indian Springs, Nev. | 1/03/77 - 1/16/78 | 0.21 0.18 | 0.18 | 69 | | Kirkeby Ranch, Nev. | 1/11/77 - 1/09/78 | 0.26 0.20 | 0.22 | 81 | | Koynes, Nev. | 1/10/77 - 1/12/78 | 0.28 0.24 | 0.26 | 95 | | Las Vegas (Airport), Nev. | 1/03/77 - 2/06/78 | 0.19 0.14 | 0.16 | 64 | | Las Vegas (Placak), Nev. | 1/05/77 - 2/06/78 | 0.22 0.14 | 0.17 | 60 | | Las Vegas (USDI), Nev. | 1/03/77 - 2/06/78 | 0.17 0.15 | 0.17 | 67 | | Lathrop Wells, Nev. | 1/04/77 - 1/16/78 | 0.26 0.26 | 0.26 | 98 | | Lida, Nev. | 1/10/77 - 1/09/78 | 0.30 0.28 | 0.28 | 100 | Table A-4. (continued) | | | | | | Annual
Adjusted | | |---------------------------|-------------------|-------|---------------|------|--------------------|--| | | | Faniv | Dose
alent | Pato | Dose
Equiv- | | | Station | Measurement | | mrem/d | | alent | | | Location | Period | Max. | | Avq. | (mrem/y) | | | Lone Pine, Calif. | 1/11/77 - 1/10/78 | 0.31 | 0.25 | 0.27 | 99 | | | Lund, Nev. | 1/10/77 - 1/10/78 | 0.29 | 0.21 | 0.24 | 87 | | | Mammoth Mtn., Calif. | 1/12/77 - 1/11/78 | 0.39 | 0.28 | 0.31 | 110 | | | Manhattan, Nev. | 1/11/77 - 1/10/78 | 0.36 | 0.33 | 0.35 | 130 | | | Mesquite, Nev. | 1/10/77 - 1/31/78 | 0.20 | 0.18 | 0.18 | 71 | | | Nevada Farms, Nev. | 1/10/77 - 1/12/78 | 0.35 | 0.30 | 0.33 | 120 | | | Nuclear Eng. Co., Nev. | 1/05/77 - 1/31/78 | 0.40 | 0.32 | 0.35 | 140 | | | Nyala, Nev. | 1/10/77 - 1/11/78 | 0.27 | 0.20 | 0.24 | 87 | | | Olancha, Calif. | 1/11/77 - 1/10/78 | 0.26 | 0.24 | 0.25 | 91 | | | Pahrump, Nev. | 1/06/77 - 1/17/78 | 0.21 | 0.18 | 0.18 | 70 | | | Pine Creek Ranch, Nev. | 1/10/77 - 1/10/78 | 0.37 | 0.33 | 0.36 | 130 | | | Pioche, Nev. | 1/05/77 - 1/11/78 | 0.28 | 0.22 | 0.24 | 88 | | | Queen City Summit, Nev. | 1/10/77 - 1/09/78 | 0.44 | 0.33 | 0.39 | 140 | | | Reed Ranch, Nev. | 1/10/77 - 1/09/78 | 0.34 | 0.31 | 0.32 | 120 | | | Ridgecrest, Calif. | 1/11/77 - 1/10/78 | 0.26 | 0.22 | 0.24 | 84 | | | Robinson's Tr. Park, Nev. | 1/10/77 - 1/12/78 | 0.36 | 0.32 | 0.34 | 130 | | | Round Mountain, Nev. | 1/11/77 - 1/10/78 | 0.34 | 0.30 | 0.32 | 120 | | | Rox, Nev. | 1/10/77 - 1/31/78 | 0.26 | 0.23 | 0.24 | 92 | | | Scotty's Junction, Nev. | 1/10/77 - 1/09/78 | 0.35 | 0.29 | 0.31 | 110 | | | Selbach Ranch, Nev. | 1/05/77 - 1/31/78 | 0.32 | 0.28 | 0.30 | 120 | | | Sherri's Bar, Nev. | 1/04/77 - 1/09/78 | 0.23 | 0.21 | 0.22 | 81 | | | Shoshone, Calif. | 1/13/77 - 1/12/78 | 0.33 | 0.27 | 0.30 | 110 | | Table A-4. (continued) | Station | Measurement | Equivale | ese
ent Rate
em/d) | Annual
Adjusted
Dose
Equiv-
alent | |--------------------------|-------------------|----------|--------------------------|---| | Location | Period | | n. Avg. | | | Springdale, Nev. | 1/04/77 - 2/01/78 | 0.35 0. | 31 0.32 | 130 | | Spring Meadows, Nev. | 1/04/77 - 1/17/78 | 0.18 0. | 17 0.17 | 69 | | St. George, Utah | 1/12/77 - 2/02/78 | 0.22 0. | 18 0.20 | 76 | | Stone Cabin Ranch, Nev. | 1/13/77 - 1/11/78 | 0.50 0. | 45 0.47 | 170 | | Sunnyside, Nev. | 1/10/77 - 1/10/78 | 0.23 0. | 18 0.20 | 72 | | Tempiute, Nev. | 1/10/77 - 1/12/78 | 0.31 0. | 27 0.30 | 110 | | Tenneco, Nev. | 1/04/77 - 1/17/78 | 0.30 0. | 29 0.29 | 110 | | Tonopah, Nev. | 1/10/77 - 1/09/78 | 0.31 0. | 29 0.30 | 110 | | Tonopah Test Range, Nev. | 1/11/77 - 1/10/78 | 0.28 0. | 26 0.27 | 100 | | Twin Springs Ranch, Nev. | 1/10/77 - 1/12/78 | 0.32 0. | 29 0.30 | 110 | | Warm Springs, Nev. | 1/13/77 - 1/11/78 | 0.32 0. | 30 0.31 | 120 | | Young's Ranch, Nev. | 1/11/77 - 1/10/78 | 0.27 0. | 25 0.26 | 95 | Table A-5. 1977 Summary of Analytical Results for the Milk Surveillance Network Radioactivity Conc. (10-9 µCi/ml) No. of Sampling Sample Radio-C C C Location Type(1) Samples nuclide Ma x Min Ava Hinkley, Calif. 12 4 1 37Cs <8 <4 <5 Bill Nelson Dairy 4 89Sr **<**2 <0.6 <2 4 90Sr 2.5 <0.7 <2 Keough Hot Spgs., 13 4 137Cs 7.6 <4 **<6** Calif. Yribarren Ranch 4 89Sr 4 <1 <3 90Sr 3.1 1.8 2.3 Trona, Calif. 3 137Cs <4 <5 13 <7 Stanford Ranch 3 89Sr <2 <2 <2 3 90Sr 2.5 <0.7 <2 14 1 137Cs <6 **<6 <**6 Alamo, Nev. A. J. Sharp(2) <3 1 89Sr <3 **<3** <0.9 <0.9 <0.9 1 90Sr 4 137Cs <12 <4 <6 13 Austin, Nev. Young's Ranch 4.1 <1 <3 4 89Sr 2.8 1.2 2. 1 4 90Sr <300 <400 зH 550 137Cs <6 <4 <5 13 4 Caliente, Nev. June Cox Ranch <0.6 <2 4 <3 89Sr 90Sr <1 4 <0.6 <0.8 Table A-5. (continued) | | | | | | Radioactivity Conc. (10-9 µCi/ml) | | | | |--------------------------------------|-------------------|----------------|-------------------|---------------|-----------------------------------|---------------|--|--| | Sampling
Location | Sample
Type(1) | No. of Samples | Radio-
nuclide | C | C
Min | C
Avg | | | | Currant, Nev. Blue Eagle Ranch | 13 | 4 | 137CS | 6 | <4 | < 5 | | | | bide Lagie Ranch | | 4 | 89Sr | <2.6 | <0.9 | <2 | | | | • | | 4 | 90Sr | 2.3 | 0.9 | <2 | | | | Currant, Nev.
Manzonie Ranch | 13 | 2 | 137CS | < 5 | <4 | <4 | | | | | | 2 | 89Sr | <1 | <1 | <1 | | | | | | 2 | 90Sr | 1.2 | 1 | 1 | | | | Hiko, Nev.
Darrel Hansen
Ranch | 13 | 4 | 1 37CS | < 6 | <4 | < 5 | | | | | | 4 | 89Sr | <3 | <2 | <2 | | | | | | 4 | 90Sr | 1.7 | <0.7 | <1 | | | | | | 4 | зН | <300 | <300 | <300 | | | | Las Vegas, Nev. | 12 | 4 | 1 37Cs | < 6 | <4 | < 5 | | | | LDS Dairy Farm | | 4 | 89Sr | <2 | <0.9 | <2 | | | | | | 4 | 90Sr | 2.3 | <0.7 | <2 | | | | | | 4 | зН | <400 | <300 | <300 | | | | Lathrop Wells, | 13 | 4 | 137CS | < 5 | <4 | < 5 | | | | Nev.
Kirker Ranch | | 4 | 89Sr | <3 | <2 | <3 | | | | | | 4 | 90Sr | 1.1 | <0.7 | <2 | | | | Lida, Nev. | 13 | 4 | 1 37CS | < 5 | <3 | <4 | | | | Lida Livestock Co | 0. | 4 | 89Sr | <3 | <0.7 | <2 | | | | | | 4 | 90Sr | 2.5 | <1 | <2 | | | Table A-5. (continued) Radioactivity Conc. $(10^{-9} \mu \text{Ci/ml})$ C Sampling Sample No. of Radio-C Location Type(1) Samples nuclide Max Min Avg 137CS 4 <6 <4 <5 Logandale, Nev. 12 Vegas Valley Dairy 4 **<**3 <1 <2 89ST 90Sr 2.4 0.7 <2 <4 **<**6 137CS <12 Lund, Nev. 12 4 McKenzie Dairy 3 89Sr <3 <1 <2 <2 90Sr 2 <0.8 3 <400 <300 <300 4 ЗH <6 <4 <5 4 137Cs Mesquite, Nev. 12 Hughes Bros. Dairy <0.7 69Sr <3 <2 4 90Sr <0.9 <0.5 <0.7 4 <300 <300 <400 4 3 H 4 137Cs <10 <4 <6 12 Moapa, Nev. Agman Seventy-Five, <1 <2 89Sr <3 4 Inc. <2 <0.8 2.8 4 90Sr 137Cs <5 <4 <4 4 13 Nyala, Nev. Sharp's Ranch <2 89Sr <4 <1 4 <0.9 <0.7 4 90Sr <2 ЗH 4 <400 <300 <300
Table A-5. (continued) Radioactivity Conc. (10-9 µCi/ml) Sampling Sample No. of Radio-C C C Location Type(1) Samples nuclide Ma x Min _pvA 3 Pahrump, Nev. 13 137CS <4 <4 <4 Burson Ranch(3) 3 89Sr <2 <0.6 <2 3 90Sr <0.7 <0.7 <0.7 13 1 137 Pahrump, Nev. <6 <6 <6 Oxborrow Ranch 1 89Sr <2 <2 <2 1 90Sr 1.3 1.3 1.3 Round Mountain, 13 2 137CS <13 **<**5 <9 Nev. 2 89Sr <2 <2 <2 Berg Ranch 2 90Sr 1.5 1.6 1.4 137CS <6 <5 13 4 <4 Shoshone, Nev. Kirkeby Ranch 4 89Sr <3 <1 <2 4 90Sr 2.2 <1 <2 4 137CS <6 <4 **<**5 13 Springdale, Nev. Boiling Pot Ranch <1 <2 4 89Sr <2 <0.9 1.2 <0.7 4 90Sr <4 <4 4 137Cs <5 Cedar City, Utah 12 Western General Dairy <0.7 <3 4 89Sr <3 2.1 <1 <2 4 90Sr Table A-5. (continued) Radioactivity Conc. (10-9 µCi/ml) No. of Radio-C Sampling Sample Type(1) Location Samples nuclide Ma x Min Avq St. George, Utah 12 1 37Cs <6 <4 <5 R. Cox Dairy <2 <0.9 <2 89Sr 90Sr 1.1 <0.7 <0.8 ^{(1)12 =} Raw Milk from Grade A Producer(s) ^{13 =} Raw Milk from family cow(s) 14 = Other than Grade A Producer (Raw) ⁽²⁾A. J. Sharp replaced Alamo Dairy. ⁽³⁾ Burson Ranch replaced by Oxborrow Ranch, Pahrump, Nev. ## Table A-6. Analytical Criteria for Long-Term Hydrological Monitoring Program Samples Gross alpha All samples Gross beta All samples Gamma scan All samples 3H(1) All samples 89,90Sr Only samples collected at locations for the first time during CY77. 226Ra Only samples collected at locations for the first time during CY77 if gross alpha exceeded 3x10-9 μCi/ml. U Only samples collected at locations for the first time during CY77. 238,239Pu Only samples collected at locations for the first time during CY77. ⁽¹⁾All samples were first analyzed by the more rapid conventional technique (MDC of about $2x10^{-7} \mu \text{Ci/ml}$). Those samples having tritium concentrations <MDC were then analyzed by the enrichment technique (MDC of about $6x10^{-9} \mu \text{Ci/ml}$). Table A-7. 1977 Summary of Analytical Results for the NTS Monthly Long-Term Hydrological Monitoring Program | Sampling
Location | (1)No.
Samples
Collected | No.
Samples
Analyzed | | | dioactivity
(10-9 µCi/
Min | | % of
Conc.
Guide(2) | |---------------------------|--------------------------------|----------------------------|---------------------------|-------------------|----------------------------------|------------------|---------------------------| | NTS
Well 8 | 11 | 11
11
11 | Gross α
Gross β | <3
<4
<10 | <2
<4
<7 | <3
<4
<9 | <7
<20
<0.01 | | NTS
Well U3CN- | 11
5 | 11
11
11 | Gross α
Gross β | 9.7
20
230 | <3
<4
<8 | <5
<20
<70 | <20
<40
<0.01 | | NTS
Well A | 11 | 11
11
11 | Gross α
Gross β | 7.5
7.5
<9 | <3
<4
<7 | <6
<5
<8 | <20
<20
<0.01 | | NTS
Well C | 11 | 11
11
11 | Gross α
Gross β
3H | 15
20
150 | <4
7.0
33 | <9
11
58 | <30
40
<0.01 | | NTS
Well 5c | 11 | 11
11
11 | Gross α
Gross β
3 H | 8.5
15
13 | 3.6
<3
<7 | <6
<5
<9 | <20
<20
<0.01 | | NTS
Army Well
No. 1 | . 11 | 11
11
11 | Gross α
Gross β | 6.1
<4
9.5 | <3
<3
<7 | <4
<4
<9 | <20
<20
<0.01 | | NTS
Well 2 | 11 | 11
11
11 | Gross α
Gross β
³H | 4.4
5.5
<10 | <3
<4
<7 | <3
<4
<8 | <10
<20
<0.01 | | NTS
Test Well | 6
B | 6
6
6 | Gross α
Gross β
3 H | 5.5
6.3
330 | <3
<4
150 | <3
<4
230 | <10
<20
<0.01 | | NTS
Well J-13 | 10 | 10
10
10 | Gross α
Gross β | 8.5
<4
<10 | <3
<3
<7 | <4
<4
<8 | <20
<200
<0.01 | Table A-7. (continued) | Sampling | (1)No.
Samples | No.
Samples | Type of Radio- | Radioactivity Conc.
(10-9 µCi/ml) | | | % of
Conc. | |------------------|-------------------|----------------|--------------------|--------------------------------------|----------------|-----------------|---------------------| | Location | Collected | Analyzed | activity | Ma x | Min | Avq | Guide(2) | | NTS
Well U19c | 5 | 5
5
5 | Gross α
Gross β | 4.9
8.1
48 | <2
<4
<7 | <4
<5
<20 | <20
<20
<0.01 | ⁽¹⁾Samples could not be collected every month due to weather conditions or inoperative pumps. (2)Concentration Guides for drinking water at on-NTS locations are the same as those for off-NTS locations. See Appendix B for Concentration Guides. Table A-8. 1977 Analytical Results for the NTS Semi-Annual Long-Term Hydrological Monitoring Program | Sampling
Location | Date | Depth (m)(1) | Sample
Type(2) | Type of Radio-
activity | Radioactivity
Conc.
(10 ⁻⁹ µCi/ml) | % of
Conc.
Guide | |----------------------|------|--------------|-------------------|--------------------------------------|---|------------------------| | NTS
Well UE15d | 1/04 | | 23 | Gross α
Gross β
³ H | 19
<3
44 | 63
<10
<0.01 | | NTS
Well UE15d | 6/08 | | 23 | Gross α
Gross β
3H | 10
14
<9 | 33
47
<0.01 | | NTS
Test Well D | 1/25 | 571 | 23 | Gross α
Gross β
3H | <3
<4
31 | <10
<20
<0.01 | | NTS
Test Well D | 6/09 | 571 | 23 | Gross α
Gross β
3H | <3
<4
17 | <10
<20
<0.01 | | NTS
Well UE1c | 1/27 | 500 | 23 | Gross α
Gross β
3H | <3
8.5
<7 | <10
28
<0.01 | | NTS
Well UE1c | 6/09 | 500 | 23 | Gross α
Gross β
3H | 8.6
9.7
<8 | 29
32
<0.01 | | NTS
Well C-1 | 1/04 | | 23 | Gross a
Gross b | 4.0
12
22 | 13
40
<0.01 | | NTS
Well C-1 | 6/13 | | 23 | Gross a
Gross b | 6.5
11
20 | 22
37
<0.01 | | NTS
Well UE5C | 2/02 | | 23 | Gross α
Gross β | 8.9
<4
<9 | 30
<20
<0.01 | Table A-8. (continued) | Sampling
Location | Date | Depth (m)(1) | Sample
Type(2) | Type of
Radio-
activity | Radioactivity
Conc.
(10 ⁻⁹ µCi/ml) | % of
Conc.
Guide | |--------------------------------------|------|--------------|-------------------|-------------------------------|---|------------------------| | NTS
Well UE5C | 6/13 | | 23 | Gross α
Gross β
3H | 5.1
<4
<8 | 17
<20
<0.01 | | NTS
Well UE18r | 1/26 | 507 | 23 | Gross α
Gross β
3H | <3
<4
8.2 | <10
<20
<0.01 | | NTS
Well UE18r | 6/08 | 507 | 23 | Gross α
Gross β
3H | 3.7
<4
<9 | 12
<20
<0.01 | | NTS
Well 5B | 2/02 | | 23 | Gross α
Gross β
3H | 4.0
6.4
<9 | 13
21
<0.01 | | NTS
Well 5B | 6/13 | | 23 | Gross α
Gross β
3H | 5.5
8.5
<9 | 18
28
<0.01 | | NTS
Test Well F | 1/24 | 1006 | 23 | Gross a
Gross b | <3
<4
7•3 | <10
<20
<0.01 | | NTS
Test Well F | 6/06 | 1006 | 23 | Gross α
Gross β | 7.2
8.6
<9 | 24
29
<0.01 | | Ash Meadows,
Nev.
Crystal Pool | 1/18 | | 27 | Gross a
Gross b | 9-1
11
<8 | 30
37
<0.01 | | Ash Meadows,
Nev.
Crystal Pool | 6/15 | | 27 (| Gross α
Gross β
3H | 12
15
<10 | 40
50
<0.01 | Table A-8. (continued) | Sampling
Location | Date | Depth Sampl (m) (1) Type(| | Radioactivity
Conc.
(10-9µCi/ml) | % of
Conc.
Guide | |--|---------------|---------------------------|--------------------------|--|------------------------| | Ash Meadows,
Nev.
Well 185/51E-7 | 1/18
7DB | 23 | Gross α
Gross β
3H | <4
4.9
<8 | <20
16
<0.01 | | Ash Meadows,
Nev.
Well 18S/51E-7 | 6/15
7DB | 23 | Gross α
Gross β
3Η | 5.8
16
<20 | 19
53
<0.01 | | Ash Meadows,
Nev.
Well 17S/50E- | 1/18
14CAC | 23 | Gross α
Gross β
3Η | <3
<4
<9 | <10
<20
<0.01 | | Ash Meadows,
Nev.
Well 17s/50E- | 6/15
14CAC | 23 | Gross α
Gross β
³Η | 6.7
<4
<10 | 22
<20
<0.01 | | Ash Meadows,
Nev.
Fairbanks
Springs | 1/18 | 27 | Gross α
Gross β
3Η | 8.1
<4
<8 | 27
<20
<0.01 | | Ash Meadows,
Nev.
Fairbanks
Springs | 6/15 | 27 | Gross α
Gross β
3Η | <3
<4
<8 | <10
<20
<0.01 | | Beatty,
Nev.
City Supply | 1/20 | 23 | Gross α
Gross β
3H | 15
<3
<8 | 50
<10
<0.01 | | Beatty,
Nev.
City Supply | 6/16 | 23 | Gross α
Gross β
³H | 15
10
20 | 50
33
<0.01 | | Beatty,
Nev.
Nuclear
Engineering | 1/20
Co. | 23 | Gross α
Gross β | 12
<3
<8 | 40
<10
<0.01 | Table A-8. (continued) | Sampling
Location | Date | Depth (m) (1) | Sample
Type(2) | Type o
Radio-
activi | | adioact
Conc
10-9µCi | • | % of
Conc.
Guide | |---|------|---------------|-------------------|----------------------------|---|----------------------------|------------|------------------------| | Beatty,
Nev.
Nuclear
Engineering Co. | 6/14 | | 23 | Gross
Gross
3H | | | . 4
. 8 | 28
26
<0.01 | | Beatty,
Nev.
Coffers Well | 6/15 | | 23 | Gross
Gross | - | 3
13
<9 | | 12
43
<0.01 | | Indian Springs,
Nev.
USAF No. 2 | 1/17 | | 23 | Gross
Gross | | 7
<3
17 | | 26
<10
<0.01 | | Indian Springs,
Nev.
USAF No. 2 | 6/14 | | 23 | Gross
Gross | | <4
5
<8 | . 3 | <20
18
<0.01 | | Indian Springs,
Nev.
Sewer Co. Inc.
Well No. 1 | 1/17 | | 23 | Gross
Gross
3H | | 12
<3
<8 | | 40
<10
<0.01 | | Indian Springs,
Nev.
Sewer Co. Inc.
Well No. 1 | 6/14 | | 23 | Gross
Gross
3H | | 4
<4
<7 | | 13
<20
<0.01 | | Lathrop Wells,
Nev.
City Supply | 1/18 | | 23 | Gross
Gross
3H | | <3
<4
<9 | ļ. | <10
<20
<0.01 | | Lathrop Wells,
Nev.
City Supply | 6/14 | | 23 | Gross
Gross
3H | | <3
<4
<10 | } | <10
<20
<0.01 | | Springdale,
Nev.
Goss
Springs | 1/20 | | 27 | Gross
Gross
3H | | 11
<3
<9 | 3 | 37
<10
<0.01 | Table A-8. (continued) | Sampling
Location | Date | Depth (m) (1) | Sample
Type(2) | Type of
Radio-
activity | Radioactivity
Conc.
(10-9µCi/ml) | % of
Conc.
Guide | |--|------|---------------|-------------------|-------------------------------|--|------------------------| | Springdale,
Nev.
Goss Springs | 6/14 | | 27 | Gross α
Gross β
3H | <4
5-2
<8 | <20
17
<0.01 | | Springdale,
Nev.
Goss Springs | 8/11 | | 27 | эн | <9 | <0.01 | | Springdale,
Nev.
Road D Windmill | 2/02 | | 23 | Gross α
Gross β
3H | 5.1
4.3
<9 | 17
14
<0.01 | | Springdale,
Nev.
Road D Windmill | 6/14 | | 23 | Gross α
Gross β
3H | <4
4.4
11 | <20
15
<0.01 | ⁽¹⁾ If depth not shown, water was collected at surface ^{(2)23 -} Well 27 - Spring Table A-9. 1977 Analytical Results for the NTS Annual Long-Term Hydrological Monitoring Program | Sampling
Location | Date | Sample
Type(1) | Type of
Radio-
activity | Radioactivity Conc. (10-9 µCi/ml) | % of
Conc.
Guide(2) | |---|------|-------------------|-------------------------------|-----------------------------------|---------------------------| | Shoshone, Calif.
Shoshone Spring | 6/23 | 27 | Gross α
Gross β
3H | <5
13
<7 | <20
43
<0.01 | | Hiko, Nev.
Crystal Springs | 6/21 | 27 | Gross α
Gross β
3H | 6.5
19
<20 | 22
63
<0.01 | | Alamo, Nev.
City Supply | 6/21 | 23 | Gross α
Gross β
3H | 5.5
20
<8 | 18
67
<0.01 | | Warm Springs, Nev.
Twin Springs Ranch | | 27 | Gross α
Gross β
3H | 4.8
20
<7 | 16
67
<0.01 | | Diablo, Nev.
Highway Maint.
Station | 6/21 | 23 | Gross α
Gross β
3H | <3
17
<7 | <10
57
<0.01 | | Nyala, Nev.
Sharp Ranch | 6/22 | 23 | Gross α
Gross β
3H | <3
9.2
<10 | <10
31
<0.01 | | Adaven, Nev.
Adaven Spring | 6/22 | 27 | Gross α
Gross β
3H | 5.9
<4
110 | 20
<20
<0.01 | | Pahrump, Nev.
Calvada Well 3 | 6/23 | 23 | Gross α
Gross β
3H | 7.4
<4
<9 | 25
<20
<0.01 | | Tonopah, Nev.
City Supply | 6/22 | 23 | Gross α
Gross β | 2.9
17
<7 | 10
57
<0.01 | Table A-9. (continued) | Sampling
Location | Date | Sample
Type(1) | Radio- | Radioactivity Conc. (10-9 µCi/ml) | % of
Conc.
Guide(2) | |--|------|-------------------|--------------------------|-----------------------------------|---------------------------| | Clark Station,
Nev.
Tonopah Test
Range Well 6 | 6/22 | 23 | Gross α
Gross β
3H | <3
17
<7 | <10
57
<0.01 | | Las Vegas, Nev.
Water District
Well No. 28 | 6/23 | 23 | Gross α
Gross β
3Η | 2.7
<4
<8 | 9.0
<20
<0.01 | | Tempiute, Nev.
Union Carbide Well | 6/21 | 23 | Gross α
Gross β | <3
13
36 | <10
43
<0.01 | ^{(1)23 -} Well 27 - Spring (2)See Appendix B for Concentration Guides. # Table A-10. 1977 Analytical Results for the Off-NTS Long-Term Hydrological Monitoring Program | Sampling
Location | Date | Depth
(m)(1) | Sample
Type(2) | Type of Radio-
activity | Radioactivity
Conc.
(10-9 µCi/ml) | % of
Conc.
Guide(3) | |--|------|-----------------|-------------------|--|---|---------------------------| | | | ; | PROJECT (| GNOME | | | | Malaga,
N. Mex.
USGS Well
No. 1 | 4/28 | 161 | 23 | Gross a
Gross b
3H
89Sr
90Sr | <20
<20
<7
<4
0.84 | -
<0.01
<2
0.03 | | Malaga,
N. Mex.
USGS Well
No. 4 | 4/28 | 148 | 23 | Gross a
Gross b
3H
89Sr
90Sr | 15
18,000
830,000
<110
10,000 | 28
<0.4
3,300 | | Malaga,
N. Mex.
USGS Well
No. 8 | 4/28 | 144 | 23 | Gross & Gross B 3H 89Sr 90Sr 137Cs | <8
23,000
750,000
<110
12,000
87 | -
25
<0.4
4,000 | | Malaga,
N. Mex.
PHS Well No. 6 | 4/27 | | 23 | Gross α
Gross β | <3
8.8
110 | -
-
<0.01 | | Malaga,
N. Mex.
PHS Well No. 8 | 4/27 | | 23 | Gross α
Gross β
3H | <7
<5
10 | -
-
<0.01 | | Malaga,
N. Mex.
PHS Well No. 9 | 4/27 | | 23 | Gross α
Gross β | <3
<4
<8 | -
-
<0.01 | Table A-10. (continued) | Sampling
Location | Date | Depth (m)(1) | Sample
Type(2) | Radio- | Radioactivity
Conc.
y (10-9 µCi/ml) | Conc. | |---|------------|--------------|-------------------|----------------------|---|-----------------| | Malaga,
N. Mex.
PHS Well No. 10 | 4/27 | | 23 | Gross α
Gross β | | -
-
<0.01 | | Malaga,
N. Mex.
Pecos River
Pumping Statio | 4/28
on | | 23 | Gross α
Gross β | | -
-
<0.01 | | Loving,
N. Mex.
City Well No. 2 | 4/27 | | 23 | Gross α
Gross β | | -
-
<0.01 | | Carlsbad,
N. Mex.
City Well No. 7 | 4/27 | · | 23 | Gross α
Gross β | | -
-
<0.01 | | | | | PROJECT | SHOAL | | | | Frenchman,
Nev.
Frenchman
Station | 3/22 | | 23 | Gross of
Gross fi | | -
-
<0.01 | | Frenchman,
Nev.
Well HS-1 | 3/23 | | 23 | Gross of Gross p | | -
-
<0.01 | | Frenchman,
Nev.
Well H-3 | 3/22 | | 23 | Gross of | | -
-
<0.01 | | Frenchman,
Nev.
Flowing Well | 3/22 | | 23 | Gross of Gross f | | -
-
<0.01 | Table A-10. (continued) | Sampling
Location | Date | Depth (m)(1) | | Type of
Radio-
activity | Radioactivity
Conc.
(10-9 µCi/ml) | % of
Conc.
Guide(3) | | | | |--|------|--------------|----|-------------------------------|---|---------------------------|--|--|--| | Frenchman,
Nev.
Hunts Station | 3/22 | | 23 | Gross α
Gross β
3H | <4
<4
<9 | -
-
<0.01 | | | | | PROJECT DRIBBLE | | | | | | | | | | | Baxterville,
Miss.
City Supply | 4/22 | | 23 | Gross a
Gross b | <0.9
<4
89 | -
-
<0.01 | | | | | Baxterville,
Miss.
Lower Little
Creek | 4/22 | | 22 | Gross a
Gross b
JH | <0.4
<4
55 | -
<0.01 | | | | | Baxterville,
Miss.
Well HT-1 | 4/23 | 378 | 23 | Gross α
Gross β | <4
<4
39 | -
<0.01 | | | | | Baxterville,
Miss.
Well HT-2c | 4/16 | 108 | 23 | Gross a
Gross b | <2
<4
28 | -
-
<0.01 | | | | | Baxterville,
Miss.
Well HT-4 | 4/17 | 122 | 23 | Gross α
Gross β | <3
<4
9.0 | -
-
<0.01 | | | | | Baxterville,
Miss.
Well HT-5 | 4/17 | 183 | 23 | Gross α
Gross β
3H | <2
<4
<9 | -
-
<0.01 | | | | | Baxterville,
Miss.
Well E-7 | 4/16 | 282 | 23 | Gross α
Gross β | <4
<4
13 | -
-
<0.01 | | | | Table A-10. (continued) | Sampling
Location | Date | Depth (m)(1) | | Type of Radio-
activity | Radioactivity Conc. (10-9 µCi/ml) | % of
Conc.
Guide(3) | |--|------|--------------|----|--------------------------------------|-----------------------------------|---------------------------| | Baxterville,
Miss.
Well Ascot
No. 2 | 4/19 | 651 | 23 | Gross α
Gross β
3H | <30(5)
<20(5)
7.8 | -
-
<0.01 | | Baxterville,
Miss.
Half Moon
Creek | 4/20 | | 22 | Gross α
Gross β
³H | <0.9
<4
80 | -
-
<0.01 | | Baxterville,
Miss.
Half Moon
Creek Overflow | 4/20 | | 22 | Gross α
Gross β
³ H | <3
<4
1,800 | 0.06 | | Baxterville,
Miss.
T. Speights
Residence | 4/21 | | 23 | Gross α
Gross β
3H | <0.8
<4
130 | -
<0.01 | | Baxterville,
Miss.
R. L. Anderson
Residence | 4/19 | | 23 | Gross α
Gross β
3H | 1.6
<4
(6) | - | | Baxterville,
Miss.
Mark Lowe
Residence | 4/22 | | 23 | Gross α
Gross β
3H | <0.7
<4
71 | -
-
<0.01 | | Baxterville,
Miss.
R. Ready
Residence | 4/22 | | 23 | Gross α
Gross β | 0.78
<4
54 | -
-
<0.01 | Table A-10. (continued) | Sampling
Location | Date | Depth (m) (1) | | Type of
Radio-
activity | Conc. | % of
Conc.
Guide(3) | | | |---|------|---------------|----|-------------------------------|------------------|---------------------------|--|--| | Baxterville,
Miss.
W. Daniels
Residence | 4/16 | | 23 | Gross α
Gross β
3H | <0.9
<4
54 | -
<0.01 | | | | Lumberton, Miss. City Supply Well No. 2 | 4/22 | | 23 | Gross α
Gross β
3H | <3
<4
<7 | -
<0.01 | | | | Purvis,
Miss.
City Supply | 4/20 | | 23 | Gross α
Gross β
3H | <2
<4
<7 | -
-
<0.01 | | | | Columbia,
Miss.
City Supply | 4/22 | | 23 | Gross α
Gross β
3H | <2
26
11 | -
-
<0.01 | | | | Lumberton,
Miss.
North Lumberton
City Supply | 4/22 | | 23 | Gross α
Gross β
3H | | -
-
<0.01 | | | | Baxterville,
Miss.
Pond W of GZ | 4/17 | | 21 | Gross α
Gross β | | -
-
<0.01 | | | | PROJECT GASBUGGY | | | | | | | | | | Gobernador,
N. Mex.
Arnold Ranch | 5/24 | | 27 | Gross α
Gross β | _ | -
-
<0.01 | | | Table A-10. (continued) | Sampling
Location | Date | Depth (m)(1) | | Type of
Radio-
activity | Conc. | % of
Conc.
Guide(3) | |---|-------------|--------------|----|-------------------------------|-----------------|---------------------------| | Gobernador,
N. Mex.
Apache Reservat
Well South | 5/23
ion | | 23 | Gross α
Gross β
3H | <6
<4
93 | -
-
<0.01 | | Gobernador,
N. Mex.
Lower Burro
Canyon
 5/23 | | 23 | Gross α
Gross β
3H | <6
<5
<9 | -
<0.01 | | Gobernador,
N. Mex.
Fred Bixler
Ranch | 5/24 | | 23 | Gross α
Gross β
3Η | <5
<4
11 | -
-
<0.01 | | Gobernador,
N. Mex.
Cave Springs | 5/23 | | 27 | Gross α
Gross β | 5.8
<4
12 | -
<0.01 | | Gobernador,
N. Mex.
Windmill No. 2 | 5/23 | | 23 | Gross α
Gross β | <6
<4
<30 | -
-
<0.01 | | Gobernador,
N. Mex.
Bubbling Spring | 5/24
rs | | 27 | Gross α
Gross β | <4
<4
110 | -
-
<0.01 | | Gobernador,
N. Mex.
La Jara Creek | 5/24 | | 22 | Gross α
Gross β | . <u> </u> | -
<0.01 | | Gobernador,
N. Mex.
EPNG Well 10-36 | 5/22 | 1097 | 23 | Gross α
Gross β | . <u> </u> | -
-
<0.01 | Table A-10. (continued) | Sampling
Location | Date | Depth (m) (1) | Sample
Type(2) | Type of
Radio-
activit | Conc. | Conc. | |---|-----------|---------------|-------------------|------------------------------|-------|-----------------| | | | P | ROJECT R | ULISON | | | | Rulison,
Colo.
Lee L. Hayward
Ranch | 5/20 | | 23 | Gross of
Gross f | · · | -
0.01 | | Rulison,
Colo.
Glen Schwab
Ranch | 5/20 | | 23 | Gross of
Gross of
3H | • | 0.01 | | Grand Valley,
Colo.
Albert Gardner
Ranch | 5/20 | | 23 | Gross (| | -
0.01 | | Grand Valley,
Colo.
City Water
Suppy | 5/19 | | 27 | Gross (
Gross (| | -
-
<0.01 | | Grand Valley,
Colo.
Spring 300 Yds.
NW of GZ | 5/19 | | 27 | Gross (
Gross (| | -
-
<0.01 | | Rulison,
Colo.
Felix Sefcovic
Ranch | 5/20 | | 23 | Gross (
Gross) | | -
0.02 | | Grand Valley,
Colo.
Battlement Cree | 5/19
k | | 22 | Gross (
Gross) | | -
-
<0.01 | Table A-10. (continued) | Sampling
Location | Date | Depth (m)(1) | Sample
Type(2) | Type of
Radio-
activity | Radioactivity Conc. (10-9 µCi/ml) | % of
Conc.
Guide(3) | |--|------|--------------|-------------------|-------------------------------|-----------------------------------|---------------------------| | Grand Valley,
Colo.
CER Well | 5/19 | | 23 | Gross α
Gross β
3H | <2
<4
560 | 0.02 | | Rulison,
Colo.
Potter Ranch | 5/20 | | 27 | Gross α
Gross β
3Η | 6-1
5-6
460 | 0.02 | | | | PR | OJECT FA | ULTLESS | | | | Blue Jay,
Nev.
Highway Maint.
Station | 6/15 | | 23 | Gross α
Gross β
3H | 3.4
<4
<8 | -
<0.01 | | Blue Jay,
Nev.
Sixmile Well | 6/15 | | 23 | Gross α
Gross β | <3
<4
<9 | -
-
<0.01 | | Blue Jay,
Nev.
Jim Bias Well | 3/04 | | 27 | Gross α
Gross β
³H | 5.5
<4
<10 | -
-
<0.01 | | Blue Jay,
Nev.
Well HTH-1 | 3/03 | 259 | 23 | Gross α
Gross β
3H | <3
<4
<9 | -
-
<0.01 | | Blue Jay,
Nev.
Well HTH-2 | 3/03 | 184 | 23 | Gross α
Gross β | 14
<4
<9 | -
-
<0.01 | ### Table A-10. (continued) | Sampling
Location | Date | | Sample
Type(2) | Type o
Radio-
activi | | Radioactivity
Conc.
(10-9 µCi/ml) | Conc. | |--|-------------------|-----|-------------------|----------------------------------|----|---|-----------------| | | | PRO | JECT RIC |) FLANC | :0 | | | | Rio Blanco,
Colo.
Fawn Creek
6800 ft Upstre | 5/17
am | | 22 | Gross
Gross
³ H | | <5
<4
85 | -
<0.01 | | Rio Blanco,
Colo.
Fawn Creek
500 ft Upstrea | 5/17
m | | 22 | Gross
Gross
3H | | <4
<4
51 | -
<0.01 | | Rio Blanco,
Colo.
Fawn Creek
500 ft Downstr | 5/17
eam | | 22 | Gross
Gross
3H | | <5
<4
52 | -
-
<0.01 | | Rio Blanco,
Colo.
Fawn Creek
8400 ft Downst | 5/17
:ream | | 22 | Gross
Gross
3H | | <5
<4
53 | -
-
<0.01 | | Rio Blanco,
Colo.
Fawn Creek No. | 5/18
1 | | 27 | Gross
Gross
3H | | <5
<4
36 | -
-
<0.01 | | Rio Blanco,
Colo.
Fawn Creek No. | 5/ 17
3 | | 27 | Gross
Gross | | <5
<4
42 | -
-
<0.01 | | Rio Blanco,
Colo.
CER No. 1
Black Sulphur | 5/18 | | 27 | Gross
Gross
3H | | <5
<4
64 | -
-
<0.01 | Table A-10. (continued) | Sampling
Location | Date | Depth (m) (1) | Sample
Type(2) | | Conc. | Conc. | |--|-----------------|---------------|-------------------|--|--------------|--| | Rio Blanco,
Colo.
CER No. 4
Black Sulphur | 5/18 | | 27 | Gross α
Gross β
JH | | -
-
<0.01 | | Rio Blanco,
Colo.
B-1 Equity Camp | 5/18 | | 27 | Gross α
Gross β | ` <u>` `</u> | -
-
<0.01 | | Rio Blanco,
Colo.
Brennan Windmil | 5/18 | | 23 | Gross α
Gross β | | -
<0.01 | | Rio Blanco,
Colo.
Johnson Artesia | 5/18
in Well | | 23 | Gross a
Gross fi | • | -
-
<0.01 | | Rio Blanco,
Colo.
Well RB-D-01 | 5/17 | | 23 | Gross of 3H | | -
-
<0.01 | | Rio Blanco,
Colo.
Well RB-S-03 | 5/18 | | 23 | Gross 6 | | -
-
<0.01 | | | | E | PROJECT C | CANNIKIN | | | | Amchitka, Alas
South End of
Cannikin Lake | . 10/1 | | 21 | Gross of Gro | | -
<0.01
<0.07
0.6
<0.01
<0.01
<0.01
<0.01 | Table A-10. (continued) | Sampling
Location | Date | Depth (m)(1) | Sample
Type(2) | Type of
Radio-
activity | Radioactivity
Conc.
(10-9 µCi/ml) | % of
Conc.
Guide(3) | |--|-------|--------------|-------------------|---|--|--| | Amchitka, Alas.
North End of
Cannikin Lake | 10/11 | | 21 | Gross α Gross β 3H 89Sr 90Sr 234U 235U 236Pu 239Pu | <4 <4 40 <2 2 • 2 <0 • 04 <0 • 02 <0 • 03 <0 • 06 <0 • 06 | -
<0.01
<0.07
0.7
<0.01
<0.01
<0.01
<0.01 | | Amchitka, Alas.
Well HTH-3 | 10/11 | 41 | 23 | Gross α Gross β 3H 89Sr 90Sr 234U 235U 238U 238Pu 239Pu | <3 <4 <6 <2 1.7 0.057 <0.02 0.040 <0.02 <0.03 | -
<0.01
<0.07
0.6
<0.01
<0.01
<0.01
<0.01 | | Amchitka, Alas.
Ice Box Lake | 10/11 | | 21 | Gross α Gross β 3H 89Sr 90Sr 234U 235U 238U 238Pu 239Pu | <2 <4 68 <3 1.6 0.049 <0.02 0.060 0.029 <0.02 | -
<0.01
<0.1
0.53
<0.01
<0.01
<0.01
<0.01 | Table A-10. (continued) | Sampling
Location | Date | Depth (m)(1) | Sample
Type(2) | Type of Radio-activity | Radioactivity
Conc.
(10-9 µCi/ml) | % of
Conc.
Guide(3) | |--|-------|--------------|-------------------|--|---|--| | Amchitka, Alas.
White Alice
Creek | 10/11 | | 22 | Gross α Gross β 3H 89Sr 90Sr 234U 235U 238U 238Pu 239Pu | <2 <4 83 <3 2.3 0.019 <0.02 0.023 0.042 <0.02 | -
<0.01
<0.1
0.77
<0.01
<0.01
<0.01
<0.01 | | Amchitka, Alas.
Pit South of
Cannikin GZ | 10/11 | | 21 | Gross a
Gross b
3H
89Sr
90Sr
234U
235U
238U
238Pu
239Pu | <2 <4 31 <2 2.3 0.034 <0.02 0.034 0.043 <0.02 | -
<0.01
<0.07
0.8
<0.01
<0.01
<0.01
<0.01 | | | | | PROJECT | MILROW | | | | Amchitka, Alas.
Heart Lake | 10/12 | | 21 | Gross α Gross β 3H 89Sr 90Sr 234U 235U 236U
236Pu 239Pu | <2 <4 45 <2 2.0 0.042 <0.03 <0.03 0.046 <0.03 | -
<0.01
<0.07
0.7
<0.01
<0.01
<0.01
<0.01 | Table A-10. (continued) | Sampling
Location | Date | | Sample
Type(2) | Type of
Radio-
activity | Radioactivity
Conc.
(10-9 µCi/ml) | Conc. | |------------------------------|-------|------|-------------------|---|--|--| | Amchitka, Alas.
Well W-5 | 10/12 | 0.83 | 23 | зн | 35 | <0.01 | | Amchitka, Alas.
Well W-6 | 10/12 | 0.94 | 23 | зн | 91 | <0.01 | | Amchitka, Alas.
Well W-8 | 10/12 | 1.6 | 23 | 3 H | 96 | <0.01 | | Amchitka, Alas.
Well W-15 | 10/12 | 1.1 | 23 | зн | 53 | <0.01 | | Amchitka, Alas.
Well W-10 | 10/12 | 2.0 | 23 | 3H | 27 | <0.01 | | Amchitka, Alas.
Well W-11 | 10/12 | 1.5 | 23 | 3H | 88 | <0.01 | | Amchitka, Alas.
Well W-3 | 10/12 | 1.1 | 23 | 3H | 79 | <0.01 | | Amchitka, Alas
Well W-2 | 10/12 | 0.30 | 0 23 | ЗĦ | 77 | <0.01 | | Clevenger
Creek | 10/12 | | 22 | Gross α Gross β 3H 89Sr 90Sr 234U 235U 238U 238Pu 239Pu | <3 <4 72 <2 1.5 0.038 <0.02 0.044 0.034 <0.008 | -
<0.01
<0.07
0.5
<0.01
<0.01
<0.01
<0.01 | Table A-10. (continued) | Sampling
Location | Date | Depth (m)(1) | Sample
Type(2) | Type of
Radio-
activity | Radioactivity
Conc.
(10-9 µCi/ml) | % of
Conc.
Guide(3) | | | |-------------------------------|-------|--------------|-------------------|---|---|---|--|--| | PROJECT LONG SHOT | | | | | | | | | | Amchitka, Alas.
Well WL-2 | 10/12 | 3.0 | 23 | эН | 730 | 0.02 | | | | Amchitka, Alas.
EPA Well-1 | 10/12 | 7.9 | 23 | Gross α
Gross β
3H | <2
<4
1200 | -
-
<0.01 | | | | Reed Pond | 10/12 | | 21 | Gross α Gross β 3H 89Sr 90Sr 234U 235U 238U 238Pu 239Pu | 2.2 <4 220 <3 2.1 <0.03 <0.01 <0.02 <0.03 <0.03 | -
<0.01
<0.1
0.7
<0.01
<0.01
<0.01
<0.01 | | | | Well GZ No. 1 | 10/12 | 30 | 23 | Gross α Gross β 3H 89Sr 90Sr 234U 235U 238U 238Pu 239Pu | <3
<4
5300
<2
1.5
0.11
<0.01
0.048
0.042
<0.02 | -
0.2
<0.07
0.5
<0.01
<0.01
<0.01
<0.01 | | | Table A-10. (continued) | Sampling
Location | Date | Depth (m) (1) | Sample
Type(2) | Type of
Radio-
activity | Radioactivity Conc. (10-9 µCi/ml) | % of
Conc.
Guide(3) | |----------------------|-------|---------------|-------------------|---|---|---| | Well GZ No. 2 | 10/12 | 15 | 23 | Gross α Gross β 3H 89Sr 90Sr 234U 235U 238U 238Pu 239Pu | <3 <4 1800 <5 <0.7 <0.03 <0.02 <0.03 <0.03 <0.02 | -
0.06
<0.2
<0.3
<0.01
<0.01
<0.01
<0.01 | | Well WL-1 | 10/12 | 1.7 | 23 | Gross α Gross β 3H 89Sr 90Sr 226Ra 234U 235U 238U 238Pu 239Pu | 7.1 <4 120 <5 <0.7 0.15 <0.08 <0.04 <0.08 0.042 <0.03 | -
<0.01
<0.2
<0.3
0.5
<0.01
<0.01
<0.01
<0.01 | | Mud Pit No. 1 | 10/12 | | 21 | Gross α Gross β 3H 89Sr 90Sr 234U 235U 238U 238Pu 239Pu | <2 <4 2000 <5 <0.8 <0.03 <0.02 <0.03 <0.04 0.030 | -
0.07
<0.2
<0.3
<0.01
<0.01
<0.01
<0.01 | Table A-10. (continued) | Sampling | | Depth | Sample | Type o | | ioactivity Conc. | % of Conc. | |----------------|---------|---------|----------|--------------|--------|------------------|------------| | Location | Date | (m) (1) | Type(2) | activi | ty (1 | 0-9 μCi/ml) | Guide(3) | | | | | | | | | | | Mud Pit No. 2 | 10/12 | | 21 | Gross | ~ | <2 | - | | Mud PIC NO. 2 | 107 12 | | 21 | Gross | | <4 | _ | | | | | | 3H | P | 2500 | 0.08 | | | | | | 89Sr | | <5 | <0.2 | | | | | | 90Sr | | <0.7 | <0.3 | | | | | | 234U | | <0.03 | <0.01 | | | | | | 235U | | <0.02 | <0.01 | | | | | | υ 8ες | | <0.03 | <0.01 | | | | | | 238 Pu | | <0.03 | <0.01 | | | | | | 239Pu | | <0.02 | <0.01 | Mud Pit No. 3 | 10/12 | | 21 | Gross | α | <2 | - | | | | | | Gross | β | <4 | - | | | | | | зн | | 3400 | 0.1 | | | | | | 89ST | | < 5 | <0.2 | | | | | | 90Sr | | <0.7 | <0.3 | | | | | | 234U | | <0.04 | <0.01 | | | | | | 2 3 5 U | | <0.02 | <0.01 | | | | | | 5 3 8 A | | <0.03 | <0.01 | | | | | | 238 Pu | | 0.032 | <0.01 | | | | | | 239 Pu | | <0.02 | <0.01 | | | | | | | | | | | | | AMCHITK | A BACKGR | ROUND S | AMPLES | | | | Amchitka, Alas | . 10/13 | 3 | 27 | Gross | α | < 3 | - | | Constantine | | | | Gross | β | <4 | - | | Spring | | | | зН | • | 100 | <0.01 | | ~ P+ +•• y | | | | 89Sr | | <4 | <0.02 | | | | | | 90Sr | | <0.7 | <0.3 | | | | | | 234U | | 0.046 | <0.01 | | | | | | 235U | | 0.014 | <0.01 | | | | | | 2 38 U | | 0.037 | <0.01 | | | | | | 238 Pu | | <0.03 | <0.01 | | | | | | 239 Pu | | <0.02 | <0.01 | Table A-10. (continued) | Sampling
Location | Date | Depth (m)(1) | Sample
Type(2) | Type of
Radio-
activity | Radioactivity
Conc.
(10-9 µCi/ml) | % of
Conc.
Guide(3) | |-------------------------------|-------|--------------|-------------------|---|---|--| | Amchitka, Alas.
Jones Lake | 10/13 | | 21 | Gross α Gross β 3H 89Sr 90Sr 234U 235U 238U 238Pu 239Pu | <2 <4 77 <5 0.70 <0.02 <0.02 <0.02 <0.02 <0.042 <0.04 | -
<0.01
<0.2
0.3
<0.01
<0.01
<0.01
<0.01 | | Duck Cove
Creek | 10/13 | | 22 | Gross α Gross β 3H 89Sr 90Sr 234U 235U 236Pu 239Pu | <3 <4 86 <5 <0.8 0.030 <0.02 0.030 <0.03 <0.03 | -
<0.01
<0.2
<0.3
<0.01
<0.01
<0.01
<0.01 | | Mile 27 Stream | 10/14 | | 22 | Gross α Gross β 3H 89Sr 90Sr 234U 235U 238 Pu 239 Pu | <2 <4 77 <6 <0.7 <0.05 <0.02 <0.03 <0.03 <0.03 | -
<0.01
<0.2
<0.3
<0.01
<0.01
<0.01
<0.01 | Table A-10. (continued) | Sampling
Location | Date | Depth (m) (1) | Sample
Type(2) | Type of
Radio-
activity | Radioactivity
Conc.
(10-9 μCi/ml) | % of
Conc.
Guide(3) | |------------------------------------|------|---------------|-------------------|---|--|---| | Amchitka, Alas.
Base Camp Maint | | • | 26 | Gross α Gross β 3H 89Sr 90Sr 95Zr(5) 234U 235U 238U 238Pu 239Pu | <0.6
45
78
<5
<0.7
19
<0.03
<0.02
<0.02
<0.02 | -
<0.01
<0.2
<0.3
<0.01
<0.01
<0.01
<0.01
<0.01 | ⁽¹⁾ If depth not shown, water was collected at surface ^{(2)21 -} Pond, lake, reservoir, stock tank, or stock pond ^{22 -} Stream, river, or creek ^{23 -} Well ^{26 -} Rain ^{27 -} Spring ⁽³⁾Concentration Guides (CG) for drinking water at on-site locations are the same as those for off-site locations. See Appendix B for Concentration Guides. As gross α and gross β radioactivity concentrations were used only for identifying gross radioactivity concentration increases and as more complete radionuclide analyses were made in the past, the calculation of % CG's was not considered appropriate. ⁽⁴⁾ High MDC due to high concentration of dissolved solids. ⁽⁵⁾Observed in suspended solids only. ⁽⁶⁾ Sample lost in analysis. # APPENDIX B. RADIATION PROTECTION STANDARDS FOR EXTERNAL AND INTERNAL EXPOSURE # DOE ANNUAL DOSE COMMITMENT(1) | . Type of Exposure | Dose Limit to Critical Individuals in Uncontrolled Area at Points of Maximum Probable Exposure (rem) | Dose Limit to Suitable Sample of the Exposed Population in an Uncontrolled Area (rem) | |--------------------------------------|--|---| | Whole Body, gonads
or bone marrow | 0.5 | 0.17 | | Other organs | 1.5 | 0.5 | # DOE CONCENTRATION GUIDES (CG's) (1) | Network or Program | Sampling
Medium | Radio-
nuclide | CG
(µCi/ml) | Basis of Exposure | |--------------------------|--------------------|-------------------------|-----------------------|--------------------------------| | Air Surveillance Network | air | ⁷ Be
952r | 1.1x10-6
3.3x10-10 | Suitable sample of the exposed | | | | 131 I | 3.3x10-11 | population in | | | | 132Te | 1.0x10-9 | uncontrolled area. | | | | 137Cs | 1.7x10-10 | | | | | 140Ba | 3.3x10-10 | | | Noble Gas and Tritium | air | 85Kr | 1.0x10-5 | Individual in | | Surveillance Network, | | эн | 5.0x10-6 | controlled area. | | On-NTS | | 133Xe | 1.0x10-5 | ′ | | Noble Gas and Tritium | air | esKr | 1.0x10-7 | Suitable sample | | Surveillance Network, | | эН | 6.7x10-8 | of the exposed | | Off-NTS | | 133Xe | 1.0x10-7 | population in | | | | | | uncontrolled area. | | Long-Term Hydrological | water | зн | 3.0x10-3 | Individual in a | | Program | | 89Sr | 3.0x10-6 | controlled or an | | | | 90Sr | 3.0x10-7 | uncontrolled area. | | | | 137Cs | 2.0x10-5 | | | | | 226Ra | 3.0x10-0 | | | | | 234U | 3.0x10-5 | | | | | 235ប | 3.0x10-5 | | | | | 53 eA | 4.0x10-5 | | | | | 238Pu | 5.0x10-6 | | | | | 53 9 PU | 5.0x10-6 | | # EPA DRINKING WATER REGULATIONS FOR RADIONUCLIDES(2) Maximum Contaminant Levels for Beta Particles and Photon Radioactivity from Man-Made Radionuclides in Community Water Systems(3) (a) The average annual concentration of beta particle and photon radioactivity from man-made radionuclides in drinking water shall not produce an annual dose equivalent to the total body or any internal organ
greater than 4 millirem/year. ### APPENDIX B. (continued) (b) Except for the radionuclides listed in Table B-1, the concentration of man-made radionuclides causing 4 mrem total body or organ dose equivalents shall be calculated on the basis of a 2-liter per day drinking water intake using the 168 hour data listed in "Maximum Permissible Body Burdens and Maximum Permissible Concentration of Radionuclides in Air or Water for Occupational Exposure," NBS Handbook 69 as amended August 1963, U.S. Department of Commerce. If two or more radionuclides are present, the sum of their annual dose equivalent to the total body or to any organ shall not exceed 4 millirem/year. TABLE B-1. AVERAGE ANNUAL CONCENTRATION ASSUMED TO PRODUCE A TOTAL BODY OR ORGAN DOSE OF 4 MREM/YR | Radionuclide | Critical Organ | pCi
per liter | |--------------|----------------|------------------| | Tritium | Total body | 20,000 | | Strontium-90 | Bone marrow | 8 | ^{(1)&}quot;Radiation Protection Standards," DOE Manual, Chapter 0524. (2)"Drinking Water Regulations Radionuclides." Title 40 Code of Federal Regulations, Chapter 1, Part 141. Federal Register, Vol. 41, No. 133. U.S. Government Printing Office, Washington, D.C. July 9, 1976. (3)Community water system is a public water system which serves a population of which 70 percent or greater are residents. A public water system is a system for the provision to the public of piped water for human consumption, if such system has at least 15 service connections or regularly serves an average of 25 individuals daily at least 3 months out of the year. # APPENDIX C. DETECTION OF AIRBORNE RADIOACTIVITY FROM ATMOSPHERIC NUCLEAR TEST BY THE PEOPLE'S REPUBLIC OF CHINA Following the atmospheric nuclear test by the People's Republic of China on September 17, 1977, at 0300 hours EDT, samples of airborne radioactivity within the Western United States were obtained from the Air Surveillance Network of the Environmental Monitoring and Support Laboratory, Las Vegas. Samples were collected to determine the effect of the Chinese test on ambient levels of airborne radioactivity, which are routinely monitored around the Nevada Test Site in support of underground nuclear tests. Special samples of raw milk and cow feed were also collected from a local milk producer to determine whether radioiodine from the test could be detected in From the concentration of radioiodine observed in the air and milk samples, an estimate of the radiation dose equivalent to the thyroid gland of a hypothetical infant receptor at each sampling location was calculated. The following is a summary of the procedures and results. ### **PROCEDURE** In addition to the 48 active stations of the Air Surveillance Network (ASN), 67 of the 73 standby stations were activated for the period September 18 through October 19, 1977. All operators of active and standby stations were requested to use a charcoal cartridge behind the particulate filter for the collection of gaseous radioiodine. Complete sampling over the desired period was performed by 89 out of the 115 total stations; 26 of the stations had equipment problems or did not mail in one or more samples during the period. The particulate filters from all stations were counted for gross beta radioactivity at 7 days and 14 days after collection to allow for the decay of naturally occurring radioactivity and for the purpose of extrapolating the concentration to the midtime of collection. About 5 days after collection, the filters from each station were analyzed for gamma-emitting radionuclides by gamma spectrometry techniques. The charcoal cartridges were initially counted for gross gamma radioactivity; those cartridges having a count rate greater than 300 cpm were then quantitated for specific radionuclides. During the period September 27 to October 31, raw milk samples were collected daily from the LDS Dairy Farm, a local milk producer in Las Vegas, and analyzed for gamma-emitters by gamma spectrometry. Three samples were also selected for radiostrontium analysis. Cow feed samples were collected; however, the presence of radioiodine could only be qualitatively determined. ### RESULTS The airborne concentration of gross beta radioactivity estimated from the analysis of filters collected from the ASN stations over the period September 18 through October 19 was detected at most stations throughout the Network and reached its peak over the period September 21-30. Typical time series plots of the gross beta radioactivity concentrations in air are in Figures C-1 and C-2 for Vernal, Utah, and Ely, Nevada, where the maximum individual concentration of gross beta radioactivity occurred (1.2x10-10 μ Ci/ml) and the maximum quarterly average concentration of gross beta radioactivity occurred (3.5x10-12 μ Ci/ml) at a continuously operating active station. As indicated by the results of gamma spectrometry analyses on air samples, airborne fresh fission products from the Chinese test were first detected on September 21-22 in Idaho and Utah. The ASN stations in Washington, Oregon, and southeastern California first detected the radioactivity during the period September 22-23 (Washington and California). Air sampling stations farthest to the east in the Network (Minnesota, Iowa, Missouri, Arkansas, and Louisiana) first detected radioactivity in samples collected during the period September 23-26 (Missouri). Fresh fission products (95 Zr, 99 Mo, 103 Ru, 131], 132Te, 137Cs, 140Ba, 141Ce, 144Ce, and 147Nd), an activation product (239Np), and naturally occurring 7Be were detected in various combinations on the filters. Only 131I was detected on the charcoal cartridges. Due to the counting workload and interferences within the gamma spectra, only the radionuclides 7Be, 95Zr, 131I, 132Te, 137Cs, and 140Ba were Tables C-2 and C-3 summarize the radionuclide concentrations detected in filter samples collected at all sampling locations for CY 1977. The locations and sampling periods during which the maximum concentrations of each radionuclide was detected are shown in the following table: TABLE C-1. AIR SAMPLING STATIONS HAVING THE MAXIMUM RADIONUCLIDE CONCENTRATIONS | Location | Sampling
Period | Radio-
nuclide | Half
Life
(days) | Maximum
Conc.
(pCi/m³) | % CG* | |--------------------|--------------------|-------------------|------------------------|------------------------------|-------| | Ely, Nev. | 09/20-09/21 | 9 5 Z r | 65 | 8.5 | 3 | | Ridgecrest, Calif. | 09/28-09/29 | 1311 | 8.04 | 8.8 | 30 | | Vernal, Utah | 09/23-09/24 | 1 32Te | 3.3 | 14 | 1 | | Milford, Utah | 09/05-09/07 | 137Cs | 30.1 (y) | 0.031 | 0.02 | | Ely, Nev. | 09/26-09/28 | 1 40 Ba | 13 | 17 | 5 | ^{*}Percents of Concentration Guides (CG), as specified in DOE Manual, Chapter 0524 for suitable sample of the exposed population, were determined assuming that the maximum concentration persisted for a full year. From the concentrations of ¹³¹I and ¹³²Te determined in samples from each air sampling location, the radiation dose equivalent (D.E.) to the thyroid gland of a hypothetical 1-year-old infant receptor was calculated for each sampling location*. The resultant D.E.'s for each sampling location are shown in Figures C-3 and C-4 with isopleth lines for the D.E.'s of 0.5 mrem, 1.0 mrem, and 1.5 mrem. The highest infant thyroid D.E. from air was estimated to be 1.6 mrem from the samples collected at Lund and Hiko, Nevada. This dose is 0.3 percent of the Radiation Protection Standard of 500 mrem for the general population, as specified by the DOE Manual, Chapter 0524. Table C-4 lists the gamma spectrometry results for the milk samples collected at the LDS Dairy Farm near Las Vegas, Nevada. As indicated by this table, 131I was detected in 26 of the total of 31 samples collected; the maximum concentration measured was 57 pCi/l in the sample collected September 29. Samples of cow feed (green chop) were collected during the period September 27 through October 31. Those samples collected during the period September 27 through October 23 were qualitatively positive for 131I. Two of the three milk samples selected for radiostrontium analysis had concentrations of radiostrontium that were barely above the minimum detectable concentration. One sample collected on September 29 had a 39Sr con- ^{*}Calculational procedures were the same as those specified in Appendix B, "Final Report of Off-Site Surveillance for the Baneberry Event," Report No. SWRHL-107r. WERL/EPA, Las Vegas, Nevada. Feb. 1972. centration and two-sigma counting error of 6.2±3.3 pCi/l. The other collected on October 1 had a 90Sr concentration and counting error of 1.3±0.78 pCi/l. Figures C-5 and C-6, respectively, show how the 131I concentrations in milk and air samples from Las Vegas varied with time. Decay curves for 8-day and 5-day half-lives are superimposed on the graph for comparison. Normally the decrease in 131I concentrations in milk following a single contaminating event follow the curve for a 5-day half-life. Due to the fact that significant airborne concentrations of 131I (≥ 1 pCi/m³) persisted for 5 consecutive days, the decrease of the 131I concentration in milk samples initially followed the curve for the 8.04-day half-life. The noticeable departure from this curve observed for samples collected October 9 and 12 and during the period October 14-19 cannot be explained by the 131I concentrations in air samples. The air concentrations of 131I were well below the level (3-5 pCi/m³) required on or after October 7 to have caused the levels observed in milk (19-42 pCi/l). Based on the time-integrated concentrations of ¹³¹I in the Las Vegas milk and the air samples, the estimated D.E. to the thyroid gland of a hypothetical 1-year-old infant receptor was 12 mrem and 1.2 mrem, respectively. These doses, collectively, are 3 percent of the Radiation Protection Standard of 500 mrem for exposures to the general population. The estimated D.E. from milk is 0.1 percent of the
Protective Action Guide* of 10 rads (or rem) at which protective actions would be necessary to reduce human intake of the radioiodine. ^{*&}quot;Background Material for the Development of Radiation Protection Standards," Report No. 2, Federal Radiation Council, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., September 1961, P. 8. Figure C-1. Gross Beta Radioactivity Concentrations in Air at Vernal, Utah Figure C-2. Gross Beta Radioactivity Concentrations in Air at Ely, Nevada Figure C-3. Infant Thyroid Dose Equivalents (mrem) Estimated from Air Sampling Results of Air Surveillance Network (Nevada), September-October 1977 Figure C-4. Infant Thyroid Dose Equivalents (mrem) Estimated from Air Sampling Results of Air Surveillance Network (Western United States), September-October 1977 Figure C-5. 131I Concentrations in Milk Samples Collected in Las Vegas, Nevada Figure C-6. 131 Concentrations in Air Samples Collected in Las Vegas, Nevada Table C-2. 1977 Summary of Analytical Results for Air Surveillance Network Active Stations | Sampling | No. | Type of | Rā | dioactivi | ty | |---|-----------------|-----------------|----------|------------|-----------| | | Days | Radio- | Concentr | ation (10 | -9µCi/ml) | | Location | <u>Detected</u> | activity | Max | <u>Min</u> | Avq | | Kingman Ari- | 44.0 | | | | | | Kingman, Ariz. | 14.0 | ⁷ Be | 0.36 | 0.20 | 0.011 | | | 325.1 | 95Zr | 3.0 | 0.013 | <0.2 | | | 27.0 | 131 I | 3.2 | 0.029 | 0.039 | | | 14.0 | 132Te | 2.6 | 0.036 | 0.022 | | | 11.0 | 137CS | 0.027 | 0.020 | <0.001 | | | 38.0 | 140Ba | 7.1 | 0.037 | 0.067 | | Colimna Auto | | _ | | | | | Seligman, Ariz. | 25.0 | ⁷ Be | 0.49 | 0.15 | 0.021 | | | 282.0 | 95Zr | 1.4 | 0.015 | <0.2 | | | 14.0 | 131 I | 1.4 | 0.074 | 0.027 | | | 10.0 | 132Te | 1.5 | 0.14 | 0.014 | | | 2.0 | 137CS | 0.020 | 0.020 | <0.001 | | | 14.0 | 140Ba | 4.3 | 0.18 | 0-041 | | Dalai | | | | | | | Baker, Calif. | 34.0 | ⁷ Be | 0.53 | 0.13 | 0.026 | | | 271.4 | 95Zr | 2.4 | <0.02 | <0.2 | | | 26.7 | 1 31 I | 2.2 | 0.032 | 0.034 | | | 10.0 | 132Te | 2.0 | 0.05 | 0.020 | | | 4.9 | 137CS | 0.017 | 0.0073 | <0.001 | | | 35.7 | 140Ba | 4.3 | 0.061 | 0.056 | | | | | | | | | Barstow, Calif. | 27.9 | ⁷ Be | 0.72 | 0.15 | <0.03 | | | 273.5 | 95Zr | 2.6 | 0.016 | 0.13 | | | 23.7 | 131 I | 2.2 | 0.054 | 0.026 | | | 10.7 | 132Te | 2.2 | 0.089 | 0.019 | | | 4.0 | 137CS | 0.023 | 0.015 | <0.001 | | | 35.7 | 140Ba | 3.9 | 0.056 | 0.051 | | | | | | | V | | Bishop, Calif. | 20.9 | ₹Be | 0.6 | 0.043 | <0.02 | | | 305.9 | 95Zr | 5.4 | 0.021 | 0.17 | | • | 22.0 | 131 I | 5.3 | 0.068 | 0.055 | | | 11.0 | 132Te | 6.0 | 0.087 | 0.042 | | | 2.0 | 137CS | 0.028 | 0.028 | <0.001 | | | 31.0 | 140Ba | 9.2 | 0.046 | 0.077 | | B - 13 - 12 - 13 - 15 - 15 - 15 - 15 - 15 - 15 - 15 | . | _ | | | | | Death Valley Jct., | 33.8 | ⁷ Be | 0.28 | 0.11 | 0.019 | | Calif. | 284.8 | 95Zr | 3.6 | <0.02 | <0.2 | | | 21.0 | 131 I | 2.7 | 0.037 | 0.044 | | | 11.0 | 132Te | 2.8 | 0.056 | 0.026 | | | 4-0 | 137CS | 0.023 | 0.016 | <0.001 | | | 32.0 | 140Ba | 5.3 | 0.049 | 0.059 | | | | | | | | Table C-2. (continued) | Sampling | No.
Days | Type of Radio- | Radioactivity
Concentration (10-9 µCi/r | | | |-----------------------|-------------|-----------------|--|--------|--------| | Location | Sampled | activity | Max | Min | Avq | | | | GOULTEY | | | 7374 | | Furnace Creek, Calif. | 33.0 | 7Be | 0.91 | 0.12 | 0.032 | | • | 264.1 | 95Zr | 3.4 | 0.015 | <0.2 | | | 23.1 | 131 I | 2.1 | 0.029 | 0.029 | | | 7.0 | 1 32 Te | 2.1 | 0-40 | 0.020 | | | 13.7 | 137CS | 0.030 | 0.021 | <0.001 | | | 30.6 | 140Ba | 5.3 | 0.071 | 0.055 | | | | | | | | | Lone Pine, Calif. | 2.7 | ⁷ Be | 0.52 | 0.52 | 0.0071 | | • | 179.9 | 95Zr | 0.63 | 0.02 | 0.15 | | | 9.0 | 131 I | 0.35 | 0.019 | 0.004 | | | 4.0 | 132Te | 0.20 | 0.031 | 0.0015 | | | 6.0 | 137CS | 0.034 | 0.0066 | <0.001 | | | 18.0 | 140Ba | 0.78 | 0.019 | 0.011 | | | | | | | | | Needles, Calif. | 8.4 | ₹Be | 0.22 | 0.22 | 0.0059 | | • | 246.0 | 95Zr | 3.2 | 0.014 | <0.2 | | | 21.1 | 131 I | 1.9 | 0.031 | 0.045 | | | 7.3 | 132Te | 1.5 | 0.25 | 0.023 | | | 7.4 | 137CS | 0.023 | 0.014 | <0.001 | | | 32.8 | 140Ba | 4.1 | 0.046 | 0.076 | | | | | | | | | Ridgecrest, Calif. | 31.9 | 7Be | 0.46 | 0.14 | 0.025 | | • | 299.5 | 95Zr | 1.5 | 0.016 | <0.2 | | | 17.9 | 131 I | 8.5 | 0.023 | 0.046 | | | 12.9 | 132Te | 1.6 | 0.11 | 0.019 | | | 4.0 | 137CS | 0.03 | 0.024 | <0.001 | | | 34.9 | 140Ba | 2.7 | 0.033 | 0.038 | | | | | | | | | Shoshone, Calif. | 12.9 | 7Be | 0.32 | 0.15 | 0.0085 | | | 308.1 | 95Zr | 3.5 | 0.013 | <0.2 | | | 26.0 | 131 I | 2.4 | 0.028 | 0.035 | | | 12.9 | 132Te | 2.2 | 0.033 | 0.020 | | | 2.0 | 137CS | 0.024 | 0.024 | <0.001 | | | 32.5 | 140Ba | 6.2 | 0.045 | 0.064 | | | | | | | | | Alamo, Nev. | 19.9 | 7Be | 0.43 | 0.15 | 0.015 | | - | 302.7 | 952r | 4.1 | 0.010 | <0.2 | | | 26.0 | 131 I | 3.8 | 0.026 | 0.051 | | | 12.1 | 132Te | 3.1 | 0.097 | 0.032 | | | 1.9 | 137CS | 0.025 | 0.025 | <0.001 | | | 38.0 | 140Ba | 8.4 | 0.025 | 0.080 | Table C-2. (continued) | | No. | Type of | Radioactivity | | | |------------------------|---------|-----------------|---------------|-------|-----------| | Sampling | Days | Radio- | | | -∮µCi/ml) | | Location | Sampled | activity | Max | Min | Ávg | | | | | | | | | Austin, Nev. | 21.9 | ⁷ Be | 0.35 | 0.11 | 0.017 | | | 226.2 | 95Zr | 3.4 | 0.011 | 0.13 | | | 19.8 | 131 I | 2.9 | 0.024 | 0.031 | | | 7.0 | 1 32 Te | 3.2 | 0.039 | 0.028 | | | 7.0 | 137CS | 0.027 | 0.020 | <0.001 | | | 27.7 | 140Ba | 6.3 | 0.043 | 0.068 | | | | | | | | | Beatty, Nev. | 29.9 | ⁷ Be | 0.45 | 0.15 | 0.018 | | - | 282.8 | 95Zr | 3.5 | 0.012 | <0.2 | | | 26.0 | 131 I | 3.7 | 0.027 | 0.049 | | | 15.1 | 132Te | 3.7 | 0.056 | 0.035 | | | .0 | 137CS | - | _ | - | | | 33.0 | 140Ba | 5.3 | 0.056 | 0.063 | | | | | | | | | Blue Eagle Ranch, Nev. | 20.0 | 7Be | 0.39 | 0.15 | 0.012 | | • | 275.6 | 95Zr | 4.0 | 0.016 | 0.12 | | | 23.3 | 131 I | 3.5 | 0.036 | 0.065 | | | 15.5 | 1321e | 3.0 | 0.036 | 0.033 | | | 2.0 | 137CS | 0.024 | 0.024 | <0.001 | | | 32.1 | 140Ba | 8.6 | 0.027 | 0.079 | | | | | | | | | Blue Jay, Nev. | 12.0 | ₹Be | 0.25 | 0.16 | 0.0069 | | • • | 317.0 | 952r | 3.4 | 0.001 | <0.2 | | | 28.0 | 131 I | 5.8 | 0.025 | 0.063 | | | 14.0 | 132 Te | 8.5 | 0.030 | 0.062 | | | 3.8 | 137CS | 0.028 | 0.024 | 0.062 | | | 38.0 | 140 Ba | 6.9 | 0.043 | 0.077 | | | | | | | | | Caliente, Nev. | 28.7 | ⁷ Be | 0.46 | 0.19 | 0.023 | | · | 295.0 | 95Zr | 2.6 | 0.014 | <0.2 | | | 22.0 | 131 I | 3.1 | 0.030 | 0.026 | | | 7.0 | 132Te | 2.7 | 0.073 | 0.022 | | • | 2.0 | 137Cs | 0.037 | 0.037 | <0.001 | | | 32.8 | 140 Pa | 6.8 | 0.049 | 0.059 | | _ | | | 0.01 | 0 10 | 0 007 | | Currant Ranch, Nev. | 17.6 | ⁷ Be | 0.81 | 0.13 | 0.027 | | | 184.8 | 95Zr | 0.49 | 0.018 | 0.015 | | | 5.1 | 131 I | 0.11 | 0.069 | 0.0019 | | | .0 | 132Te | - | - | - | | | 2.5 | 137CS | 0.033 | 0.033 | <0.001 | | | 5.1 | 140Ba | 0.29 | 0.15 | 0.0047 | Table C-2. (continued) | | No. | Type of | Radioactivity | | | | |-----------------------|---------------|-----------------------|---------------|------------|-------------|--| | Sampling | Days | Radio- | Concentr | ation (10 |)-9 µCi/ml) | | | <u>location</u> | Sampled | activity | Max | <u>Min</u> | Avq | | | | | | | | | | | Diablo, Nev. | 11.1 | 7Be | 0.41 | 0.20 | 0.015 | | | | 162.6 | 95Zr | 1.4 | 0.015 | 0.095 | | | | 21.6 | 131 I | 1.6 | 0.031 | 0.039 | | | | 7.3 | 132Te | 1.4 | 0.12 | 0.025 | | | | .0 | 137CS | - | - | - | | | | 27.2 | 140Ba | 2.4 | 0.030 | 0.055 | | | | | | | | | | | Duckwater, Nev. | 20.0 | 7Be | 0.37 | 0.15 | <0.02 | | | | 245.2 | 95Zr | 4.9 | 0.015 | 0.16 | | | | 21.0 | 131 I | 4.5 | 0.029 | 0.064 | | | | 13.0 | 132Te | 5.1 | 0.088 | 0.053 | | | | .0 | 137CS | - | - | - | | | | 29.0 | 140Ba | 10.0 | 0.04 | 0.099 | | | | | | | | | | | Ely, Nev. | 17.7 | 7 Be | 0.41 | 0.12 | <0.02 | | | • • | 278.0 | 952r | 8.5 | 0.014 | <0.2 | | | | 21.0 | 131 I | 7.0 | 0.046 | 0.068 | | | | 10.1 | 132Te | 6.7 | 0.030 | 0.066 | | | | 16.9 | 137CS | 0.024 | <0.01 | <0.001 | | | | 31.0 | 140Ba | 17 | 0.044 | 0.16 | | | | | | | | | | | Eureka, Nev. | 20.0 | 7Be | 0.35 | 0.17 | 0.014 | | | • | 285.1 | 952r | 0.41 | 0.015 | <0.09 | | | | 15.0 | 131 I | 0.11 | 0.045 | 0.0035 | | | | 2.0 | 132Te | 0.12 | 0.12 | <0.001 | | | | 1.0 | 137Cs | 0.041 | 0.041 | <0.001 | | | | 24.0 | 140Ba | 0.21 | 0.047 | 0.0081 | | | | | | | | | | | Fallini's Ranch, Nev. | 20.4 | 7Be | 0.37 | 0.16 | 0.014 | | | | 305.2 | 95Zr | 5.7 | 0.012 | <0.2 | | | | 17.2 | 131 I | 6.8 | 0.027 | 0.071 | | | | 15.2 | 132Te | 7.6 | 0.071 | 0.055 | | | | .0 | 137Cs | - | - | - | | | | 28.4 | 140Ba | 9.9 | 0.027 | 0.083 | | | Geyser Ranch, Nev. | 15.7 | ⁷ Be | 0.4 | 0.13 | 0.009 | | | ocyper manony neve | 286.6 | 95Zr | 4.2 | 0.014 | <0.2 | | | | 28.0 | 131 I | 4.3 | 0.02 | 0.066 | | | | 12.0 | 132Te | 7.0 | 0.06 | 0.05 | | | | 7.0 | 137Cs | 0.024 | 0.011 | <0.001 | | | | 39 . 1 | 140Ba | 7.3 | 0.026 | 0.072 | | | | J7. I | - · · · · · · · · · · | 1.5 | 0.020 | | | Table C-2. (continued) | | No. | Type of | of Radioactivity | | | | |------------------------|---------------|-------------------------|------------------|---------------|---------------|--| | Sampling | Days | Radio- | Concentra | tion (10 | -9 μCi/ml) | | | Location | Sampled | activity | Max | <u>Min</u> | Avg | | | 6.1.161.13.15 | | | | | | | | Goldfield, Nev. | 27.0 | ⁷ Be | 0.49 | 0-14 | 0.020 | | | | 294.4 | 95Zr | 3.6 | 0.012 | <0.2 | | | • | 26.0 | 131 I | 3.1 | 0.033 | 0.036 | | | | 10.0 | 1 35 Te | 3.2 | 0.071 | 0.027 | | | | 8.0 | 137C8 | 0.025 | 0.021 | <0.001 | | | | 34.0 | 140Ba | 6.0 | 0.050 | 0.061 | | | Area 51, NTS, Nev. (1) | 13.7 | ₹Be | 0.44 | 0.20 | 0.012 | | | med 31, Mis, Nev. | 245.4 | 95Zr | 2.6 | 0.014 | 0.014 | | | | 16.9 | 131 I | 1.9 | 0.023 | 0.063 | | | | 15.1 | 132Te | 1.6 | 0.041 | 0.031 | | | | 4.1 | 137Cs |
0.0085 | 0.0085 | <0.001 | | | | 28.1 | 140Ba | 4.6 | 0.038 | 0.083 | | | | 20.1 | - то <u>Ба</u> | 4.0 | 0.030 | 0.003 | | | Hiko, Nev. | 20.9 | 7Be | 0.47 | 0.14 | 0.015 | | | | 299.1 | 95Zr | 5.3 | 0.015 | 0.16 | | | | 21.8 | 131 I | 7.8 | 0.032 | 0.073 | | | | 8.9 | 1 32 Te | 11 | 0.060 | 0.074 | | | | 8.0 | 137CS | 0.027 | 0.019 | <0.001 | | | | 32.7 | 140Ba | 9.4 | 0.54 | 0.085 | | | Indian Caringa Nov | 24 0 | 700 | 0 42 | 0 11 | 0 015 | | | Indian Springs, Nev. | 24.0
299.9 | ⁷ Be
95Zr | 0.42
3.9 | 0.11
0.013 | 0.015
<0.2 | | | | 26.0 | 131 I | 4.2 | 0.030 | 0.057 | | | | 7.0 | 132Te | 3.7 | 0.030 | 0.037 | | | | 4.0 | 137C8 | 0.021 | 0.020 | <0.001 | | | | 33.0 | 140Ba | 9.0 | 0.020 | 0.083 | | | | 33.0 | - чова | 9.0 | 0.032 | 0.003 | | | Las Vegas, Nev. | 23.0 | 7Be | 0.42 | 0.25 | 0.030 | | | • | 168.1 | 95Zr | 5.1 | 0.017 | 0.13 | | | | 24.0 | 131 I | 4.5 | 0.033 | 0.084 | | | | 12.0 | 132Te | 4.9 | 0.045 | 0.057 | | | | .0 | 137C8 | - | - | - | | | | 31.0 | 140Ba | 10 | 0.038 | 0. 12 | | | Lathrop Wells, Nev. | 19.0 | ⁷ Be | 0.38 | 0.21 | 0.016 | | | TWCHTOP METTO WEAT | 290.0 | 95Zr | 2.3 | 0.020 | <0.2 | | | | 19.0 | 131 I | 2.6 | 0.034 | 0.042 | | | | 10.0 | 132Te | 3.7 | 0.082 | 0.030 | | | | 5.0 | 137C8 | 0.013 | 0.012 | <0.001 | | | | 30.0 | 140Ba | 3.4 | 0.054 | 0.048 | | | | | | | | | | Table C-2. (continued) | Sampling | No. | Type of | Radioactivity
Concentration (10-9 µCi/m | | | |-----------------|---------|-----------------|--|-------|--------------| | - - | Days | Radio- | | | <u> </u> | | <u>Mocation</u> | Sampled | activity | Max | Min | Avg | | Lida, Nev. | 22.0 | 7Be | 0.49 | 0.15 | 0.016 | | • | 289.8 | 952r | 6.7 | 0.015 | <0.2 | | | 28.0 | 131 I | 3.7 | 0.026 | 0.044 | | | 9.0 | 132Te | 3.3 | 0.053 | 0.028 | | | .0 | 137C8 | - | - | _ | | | 37.0 | 140Ba | 7.5 | 0.041 | 0. 10 | | | 37.00 | Da | 7.5 | 0.041 | 0. 10 | | Lund, Nev. | 21.8 | 7Be | 0.35 | 0.17 | 0.018 | | • | 295.6 | 952r | 7.0 | 0.018 | 0.20 | | | 28.0 | 131 I | 7.7 | 0.027 | 0.080 | | | 12.0 | 132Te | 6.2 | 0.055 | 0.057 | | | 4.0 | 137CS | 0.027 | 0.019 | <0.001 | | | 36.0 | 140Ba | 15 | 0.042 | 0.14 | | | 3444 | | | | | | Mesquite, Nev. | 34.0 | ₹Be | 0.37 | 0.12 | 0.025 | | | 280.5 | 95Zr | 1.7 | 0.016 | <0.2 | | | 27.0 | 131 I | 1.6 | 0.023 | 0.030 | | | 9.0 | 132Te | 1.9 | 0.078 | 0.021 | | | 2.0 | 137CS | 1.6 | 0.016 | <0.001 | | | 36.0 | 1 + 0 Ba | 3.5 | 0.019 | 0.056 | | | 3333 | | | | | | Moapa, Nev. | 13.1 | ₹Be | 0.38 | 0.24 | 0.034 | | • • | 96.3 | 95Zr | 2.4 | 0.018 | 0. 17 | | | 21.0 | 131 I | 1.9 | 0.037 | 0.12 | | | 9.0 | 132Te | 2.3 | 0.22 | 0.085 | | | -0 | 137Cs | - | - | - | | | 25.9 | 140Ba | 4.8 | 0.059 | 0. 20 | | | | | | | | | Nyala, Nev. | 22.0 | ₹Be | 0.33 | 0.10 | 0.014 | | | 283.0 | 95Zr | 3.6 | 0.015 | <0.15 | | | 24.0 | 1 31 I | 3.9 | 0.037 | 0.064 | | | 9.0 | 135.LG | 4.6 | 0.17 | 0.063 | | | 5.0 | 137Cs | 0.022 | 0.013 | <0.001 | | | 33.0 | 140Ba | 6.6 | 0.035 | 0.096 | | - 1 | 24 4 | 700 | 0.40 | 0.14 | 0.018 | | Pahrump, Nev. | 24.0 | ⁷ Be | 0.40 | 0.012 | <0.1 | | | 225.7 | 95Zr | 0.34 | 0.012 | 0.0048 | | | 6.1 | 131 <u>T</u> | V•34
_ | 0.14 | - | | | -0 | 132Te | - | _ | - | | | .0 | 137CS | - | - | _ | | | -0 | 140Ba | - | - | • | Table C-2. (continued) | | No. | Type of | Radioactivity | | | |---|-------------|-----------------|---------------|----------------|---------------| | Sampling | Days | Radio- | Concentra | ation (10 |)-9 µCi/ml) | | Location | Sampled | <u>activity</u> | Max | Min | Avq | | | | _ | | _ | | | Pioche, Nev. | 24.0 | 7Be | 0.36 | 0.17 | <0.02 | | | 281.8 | 95Zr | 0.49 | 0.011 | <0.2 | | | 7.0 | 131 I | 0.10 | 0.037 | 0.0013 | | | .0 | 135.LG | - | - | - | | | 9.0 | 137CS | 0.025 | 0.013 | <0.001 | | | 15.0 | 140Ba | 0.28 | 0.048 | 0.0052 | | Round Mountain, Nev. | 22.8 | 7Be | 0.43 | 0.17 | 0.016 | | • | 293.3 | 95Zr | 3.3 | 0.02 | <0.2 | | | 22.5 | 131 I | 3.4 | 0.047 | 0.047 | | | 11.1 | 132Te | 3.7 | 0.082 | 0.030 | | | 3.0 | 137CS | 0.014 | 0.014 | <0.001 | | | 32.3 | 140Ba | 5.7 | 0.034 | 0.057 | | | | | | | | | Scotty's Junction, Nev. | 19.8 | ⁷ Be | 0.51 | 0.13 | 0.014 | | | 298.9 | 95Zr | 3 .7 | 0.016 | <0.2 | | | 22.0 | 131 I | 4.6 | 0.048 | 0.05 8 | | | 17.0 | 1 32 Te | 5.3 | 0.075 | 0.046 | | | .0 | 137Cs | - | - | - | | | 33.0 | 140Ba | 6.1 | 0.044 | 0.067 | | Stone Cabin Ranch, Nev. | 30.7 | ₹Be | 0.48 | 0.16 | 0.023 | | | 297.7 | 952r | 3.4 | 0.014 | <0.2 | | | 15.6 | 131 I | 3.2 | 0.027 | 0.040 | | | 6.7 | 132Te | 3.6 | 0.53 | 0.026 | | | 5.0 | 137CS | 0.024 | 0.022 | <0.0001 | | | 26.2 | 140Ba | 6.9 | 0.027 | 0.055 | | Cumunido No- | 22.0 | 7P.0 | 0 34 | 0.13 | 0 017 | | Sunnyside, Nev. | 23.9 | ⁷ Be | 0.34 | | 0.017
<0.2 | | | 290.6 | 95Zr | 5.2
4.6 | 0.016
0.041 | 0.071 | | | 24-2 | 131 I
132 Te | 5.4 | 0.073 | 0.049 | | | 10.0 | 137Cs | 0.031 | 0.073 | <0.001 | | | 8.8
33.0 | 140Ba | 11.0 | 0.039 | 0.11 | | | 3340 | Du | | | ••• | | Tonopah, Nev. | 23.0 | 7Be | 0.26 | 0.14 | 0.014 | | | 294.8 | 95Zr | 3.2 | 0.013 | <0.2 | | | 18.0 | 131 I | 2.5 | 0.040 | 0.031 | | | 8.0 | 1 32 Te | 2.5 | 0.10 | 0.016 | | | 8.0 | 137Cs | 0.024 | 0.019 | <0.001 | | | 31.1 | 140Ba | 4.1 | 0.058 | 0.039 | Table C-2. (continued) | | No. | Type of | Radioactivity | | | | |--------------------------|---------|-----------------|---------------|--------|------------|--| | Sampling | Days | Radio- | | | -9 µCi/ml) | | | <u>Location</u> | Sampled | activity | Max | Min | Avq | | | Tonopah Test Range, Nev. | 10.1 | 7 _{Be} | 0.49 | 0.15 | 0.010 | | | ionopun rese kange, nev. | 236.0 | 95Zr | 2.9 | 0.012 | 0.14 | | | | 22.9 | 131 I | 4.0 | 0.012 | 0.42 | | | | 10.8 | 132Te | | | | | | | | | 4.7 | 0.086 | 0.037 | | | | 1.9 | 137Cs | 0.028 | 0.028 | <0.001 | | | | 28.9 | 140Ba | 6.0 | 0.040 | 0.062 | | | Cedar City, Utah | 11.8 | 7Be | 0.31 | 0.18 | 0.0089 | | | | 274.2 | 95Zr | 3.6 | 0.015 | <0.2 | | | | 27.0 | 131 I | 3.0 | 0.021 | 0.074 | | | | 16.0 | 132Te | 4.6 | 0.041 | 0.056 | | | | . 0 | 137CS | _ | - | - | | | | 35.8 | 140Ba | 0.057 | 0.035 | 0.095 | | | Delta, Utah | 16.1 | 7Be | 0.32 | 0.16 | 0.018 | | | 70 - 000 | 161.8 | 95Zr | 4.2 | 0.017 | <0.3 | | | | 8.6 | 131 I | 4.6 | 0.19 | 0.069 | | | | 4.0 | 132Te | 5.7 | 2.7 | 0.069 | | | | 3.7 | 137CS | 0.045 | 0.027 | <0.001 | | | | 10.5 | 140Ba | 8.7 | 0.23 | 0. 14 | | | Carriage III.ah | 28.0 | 7De | 0 52 | 0.17 | 0.020 | | | Garrison, Utah | | ⁷ Be | 0.53 | | <0.2 | | | | 269.1 | 952r | 0.53 | 0.013 | | | | | 12.0 | 131 <u>T</u> | 0.057 | 0.026 | 0.0016 | | | | 2.0 | 132Te | 0.087 | 0.087 | <0.001 | | | | 9.0 | 137Cs | 0.020 | 0.0089 | <0.001 | | | | 16.8 | 140Ba | 0.26 | 0.066 | 0.0064 | | | Milford, Utah | 19.9 | ₹Be | 0.37 | 0.14 | 0.002 | | | | 214.2 | 95Zr | 3.2 | 0.018 | <0.2 | | | | 12.1 | 131 I | 2.5 | 0.05 | 0.042 | | | | 7.0 | 132Te | 2.8 | 0.98 | 0.043 | | | | 4.7 | 137CS | 0.031 | 0.012 | <0.001 | | | | 13.7 | 140Ba | 5.5 | 0.073 | 0.094 | | | St. George, Utah | 25.8 | 7Be | 0.31 | 0.15 | 0.018 | | | | 297.0 | 95Zr | 1.7 | 0.015 | <0.2 | | | | 20.9 | 131 I | 1.5 | 0.034 | 0.025 | | | | 12.7 | 132Te | 1.4 | 0.038 | 0.023 | | | | .0 | 137CS | _ | - | - | | | | 34.9 | 140Ba | 3.3 | 0.029 | 0.060 | | | | | | | | | | ⁽¹⁾ Also known as Groom Lake. Table C-3. 1977 Summary of Analytical Results for Air Surveillance Network Standby Stations | | No. | Type of | Radioactivity | | | |---------------------------------------|----------|-----------------|---------------|-------|--------| | Sampling | Days | Radio- | Concentra | | • | | Location | Detected | activity | Max | Min | Avq | | Phoenix, Ariz. | 6.0 | ₹Be | 0.18 | 0.18 | 0.023 | | Filoenia, Aliz. | 35.3 | 95Zr | 0.18 | 0.18 | 0.15 | | | | | | | | | | 22.1 | 131 <u>I</u> | 0.65 | 0.029 | 0.13 | | | 8.1 | 132Te | 0.55 | 0.039 | 0.045 | | | - 0 | 137CS | - | - | - | | | 24.1 | 140Ba | 1.8 | 0.065 | 0.23 | | Winslow, Ariz. | .0 | 7Be | _ | _ | - | | • | 35.8 | 95 Zr | 0.61 | 0.029 | 0.12 | | | 26.0 | 131 T | 0.56 | 0.023 | 0.099 | | | 5.0 | 132Te | 0.49 | 0.21 | 0.033 | | | .0 | 137CS | - | - | - | | | 24.0 | 140Ba | 1.2 | 0.044 | 0.18 | | | 24.0 | - · · · Da | 162 | 0.044 | 04 10 | | Little Rock, Ark. | 1.5 | 7Be | 0.22 | 0.22 | 0.0077 | | | 30.6 | 95Zr | 0.89 | 0.039 | 0.081 | | | 9.1 | 131 <u>T</u> | 1.0 | 0.048 | 0.061 | | | 11.8 | 132Te | 1.4 | 0.019 | 0.076 | | | .0 | 137CS | - | - | - | | | 19.9 | 140Ba | 1.7 | 0.022 | 0.12 | | | 13.3 | ССОВА | 1. | 0.022 | 0.12 | | Indio, Calif. | .0 | 7Be | - | - | - | | | 36.7 | 95Zr | 1.4 | 0.089 | 0.25 | | | 23.0 | 131 <u>T</u> | 1.3 | 0.032 | 0.21 | | | 14.0 | 132Te | 1.2 | 0.03 | 0.12 | | | .0 | 137CS | - | - | - | | | 26.0 | 140Ba | 2.7 | 0.092 | 0.35 | | Danner Colo | . 0 | 7 Be | _ | - | - | | Denver, Colo. | 40.7 | 95Zr | 2.3 | 0.017 | 0.23 | | | | 1311 | 2.9 | 0.017 | 0.35 | | | 18.0 | | | | | | | 11.0 | 132Te | 4.0 | 0.075 | 0.26 | | | .0 | 137CS | - " | 0.063 | 0 46 | | | 25.8 | 140Ba | 6.4 | 0.063 | 0.46 | | Durango, Colo. | 4.0 | 7 _{Be} | 0.21 | 0.19 | 0.015 | | · · · · · · · · · · · · · · · · · · · | 38.4 | 95Zr | 1.4 | 0.024 | 0.17 | | | 20.8 | 131 <u>T</u> | 2.0 | 0.036 | 0.22 | | | 13.5 | 132 <u>Te</u> | 2.6 | 0.076 | 0.19 | | | .0 | 137CS | - | _ | _ | | | 25.9 | 1 4 0 Ba | 3.7 | 0.072 | 0.33 | | | | | | | | Table C-3. (continued) | Sampling | No.
Days | ays Radio- C | Radioactivity Concentration (10-9µCi/ml) | | | |------------------|-------------|-----------------|--|-------|-------| | Location | Detected | activity | <u>Max</u> | Min | Avg | | Cwand Tungkian | F 0 | 7 n . | 2 22 | 0.40 | 0.047 | | Grand Junction, | 5.0 | ⁷ Be | 0.22 | 0.13 | 0.017 | | colo. | 37.0 | 952r | 1.4 | 0.05 | 0.22 | | | 22.9 | 131 I | 1.7 | 0.026 | 0.28 | | | 13.1 | 132Te | 1.7 | 0.086 | 0.19 | | | - 0 | 137CS | - | - | - | | | 27.0 | 140Ba |
3.0 | 0.085 | 0.42 | | Pueblo, Colo. | . 0 | 7Be | - | _ | - | | | 36.0 | 95Zr | 1.9 | 0.043 | 0.30 | | | 18.2 | 131I | 2.2 | 0.036 | 0.32 | | | 8.0 | 132Te | 2.7 | 0.33 | 0.29 | | | .0 | 137Cs | - | - | - | | | 27.1 | 140Ba | 4.0 | 0.048 | 0.56 | | | 21.1 | отора | 4.0 | 0.040 | 0.50 | | Boise, Idaho | -0 | 7Be | | _ | - | | · | 41.8 | 95Zr | 0.29 | 0.016 | 0.12 | | | 19.4 | 131 I | 0.16 | 0.019 | 0.038 | | | 9.4 | 132Te | 0.15 | 0.032 | 0.023 | | | .0 | 137CS | - | _ | - | | | 23.4 | 140Ba | 0.32 | 0.042 | 0.078 | | | | | | | | | Idaho Falls, | 6.8 | ⁷ Be | 0.26 | 0.20 | 0.033 | | Idaho | 35.1 | 952r | 1.4 | 0.037 | 0.18 | | | 18.0 | 131 I | 1.3 | 0.035 | 0.11 | | | 10.0 | 132Te | 1.2 | 0.026 | 0.091 | | | . 0 | 137CS | - | - | - | | | 26.0 | 140Ba | 2.3 | 0.033 | 0-24 | | Mannhain Nome | 0 | 7Be | _ | _ | _ | | Mountain Home, | .0
38.2 | 95Zr | 0.48 | 0.045 | 0.12 | | Idaho | 16.2 | 131 I | 0.37 | 0.043 | 0.036 | | | 10.4 | 132Te | 0.34 | 0.063 | 0.030 | | | | | - | 0.003 | 0.030 | | | .0 | 137Cs | | 0.056 | 0.068 | | | 24.0 | 140Ba | 0.62 | 0.056 | 0.000 | | Pocatello, Idaho | 4.8 | 7Be | 0.32 | 0.22 | 0.024 | | • | 37.5 | 95Zr | 2.4 | 0-044 | 0.25 | | | 23.8 | 131I | 2.5 | 0.029 | 0.25 | | | 16.3 | 132Te | 2. 1 | 0.056 | 0.16 | | | .0 | 137CS | _ | - | - | | | 25.8 | 140Ba | 5.2 | 0.069 | 0.38 | Table C-3. (continued) | Compline | No. | Type of | Radioactivity | | | |-------------------|----------|-----------------------|-------------------------|-------|----------------| | Sampling | Days | Radio- | Concentration (10-9µCi/ | | -9µCi/ml) | | Location | Detected | activity | Max | Min | Avq | | Preston, Idaho | 6.0 | 7Be | 0.41 | 0.29 | 0.042 | | | 38.9 | 95Zr | 3. 2 | 0.015 | 0.32 | | | 19.0 | 131 <u>I</u> | 2.7 | 0.015 | 0.32 | | | 7.0 | 132Te | 3.0 | 0.023 | 0.20 | | | .0 | 137Cs | - | | | | | 24.0 | 140Ba | 6.3 | - 07 | 0.54 | | | 24.0 | - V Da | 0.3 | 0.07 | 0.51 | | Twin Falls, Idaho | 3.0 | 7Be | 0.21 | 0.21 | 0.013 | | • | 37.0 | 95 Zr | 0.62 | 0.059 | 0.14 | | | 24.0 | 131 <u>I</u> | 0.53 | 0.031 | 0.076 | | | 13.0 | 132Te | 0.66 | 0.087 | 0.060 | | | .0 | 137CS | - | - | - | | | 26.0 | 140Ba | 1. 1 | 0.045 | 0.13 | | | 20.0 | - · · · · · · · · · · | ** 1 | 0.043 | 0.13 | | Iowa City, Iowa | . 0 | 7Be | - | _ | - | | | 23.0 | 95Zr | 0.23 | 0.03 | 0.051 | | | 7.0 | 131 <u>T</u> | 0.25 | 0.055 | 0.017 | | | 7.0 | 132Te | 0.18 | 0.083 | 0.018 | | | •0 | 137CS | - | - | - | | | 10.0 | 140Ba | 0.42 | 0.059 | 0.037 | | | 1040 | Du | V 42 | 0.033 | 0.057 | | Sioux City, Iowa | 3.0 | ₹Be | 0.15 | 0.15 | 0.0085 | | - ' | 31.0 | 95 Zr | 0.15 | 0.03 | 0.038 | | | 11.0 | 131 T | 0.18 | 0.031 | 0.014 | | | 7.0 | 132Te | 0.21 | 0.042 | 0.012 | | | .0 | 137CS | - | - | - | | | 18.0 | 140Ba | 0.42 | 0.041 | 0.039 | | | | | | | | | Dodge City, Kans. | .0 | ₹Be | - | - | - | | | 33.0 | 95Zr | 0.77 | 0.021 | 0 .07 5 | | | 15.0 | 131 I | 0.53 | 0.019 | 0.039 | | | 10.0 | 132Te | 0.79 | 0.026 | 0.046 | | | - 0 | 137CS | - | - | - | | | 24.0 | 140Ba | 1.3 | 0.024 | 0.098 | | - 1 - 1 | • | 3 - | | | | | Lake Charles, La. | .0 | ⁷ Be | - 47 | - | 0.050 | | | 25.3 | 95Zr | 0.17 | 0.019 | 0.052 | | | 4.0 | 131 <u>T</u> | 0.067 | 0.059 | 0.0071 | | | 6.9 | 132Te | 0.068 | 0.042 | 0.0098 | | | .0 | 137CS | - | _ | - | | | 11.9 | 140Ba | 0.21 | 0.05 | 0.038 | Table C-3. (continued) | Sampling | No. | Type of Radio- | Radioactivity
Concentration (10-9µCi/m | | | |----------------------------|-------------------------|-----------------|---|-------|--------| | Location | Days
<u>Detected</u> | | | | • | | 2004 (2011 | Decected | accivity | <u>Max</u> | Min | Avq | | Monroe, La. | .0 | 7 Be | _ | - | - | | 4 4 4 4 4 4 4 4 4 4 | 26.9 | 95 Zr | 3.5 | 0.039 | 0.29 | | | 13.0 | 131 <u>T</u> | 4.0 | 0.021 | 0.28 | | | 10.9 | 132Te | 3.7 | 0.041 | 0.25 | | | .0 | 137CS | - | - | - | | | 17.9 | 140Ba | 7.7 | 0.025 | 0.54 | | | | | ••• | 00000 | | | New Orleans, La. | .0 | 7Be | - | _ | - | | • | 26.1 | 95 Zr | 1.6 | 0.022 | 0.16 | | | 8. 1 | 131I | 1.9 | 0.047 | 0.12 | | | 6.0 | 132Te | 2.8 | 0.062 | 0.15 | | | . 0 | 137CS | - | - | - | | | 13.0 | 140Ba | 4.8 | 0.096 | 0.30 | | | | | | | | | Minneapolis, Minn. | . 0 | 7Be | - | - | - | | - | 9.0 | 95Zr | 0.14 | 0.027 | 0.018 | | | 2.0 | 131 I | 0.038 | 0.038 | 0.0024 | | | 2.0 | 132Te | 0.061 | 0.061 | 0.0033 | | | .0 | 137CS | - | - | - | | | 4.0 | 140Ba | 0.17 | 0.07 | 0.013 | | | | | | | | | Clayton, Mo. | 3.0 | 7Be | 0.15 | 0.15 | 0.0092 | | - | 34.0 | 95Zr | 0.22 | 0.023 | 0.057 | | | 16.0 | 131I | 0.16 | 0.037 | 0.037 | | | 10.0 | 1 32Te | 0.17 | 0.11 | 0.026 | | | . 0 | 137CS | - | - | - | | | 21.0 | 140Ba | 0.3 | 0.02 | 0.057 | | | | | | | | | Joplin, Mo. | • 0 | 7Be | - | - | - | | - | 31.5 | 95 Zr | 0.3 | 0.034 | 0.073 | | | 15.0 | 131 <u>I</u> | 0.39 | 0.022 | 0.040 | | | 10.0 | 135.LG | 0.50 | 0.042 | 0.034 | | | .0 | 137CS | - | - | - | | | 19.9 | 1 4 0 Ba | 0.99 | 0.068 | 0.096 | | | | | | | | | St. Joseph, Mo. | . 0 | ⁷ Be | _ | - | - | | | 35.9 | 952r | 0.17 | 0.026 | 0.066 | | | 19.0 | 131I | 0.010 | 0.024 | 0.022 | | | 10.7 | 132Te | 0.13 | 0.063 | 0.024 | | | . 0 | 137Cs | - | - | • | | | 20.7 | 1 4 0 Ba | 0.21 | 0.035 | 0.046 | | | | | | | | Table C-3. (continued) | 0 | No. | Type of | Radioactivity | | | |------------------|----------|-----------------|---------------|--------------|--------| | Sampling | Days | Radio- | Concentra | | • | | <u>Location</u> | Detected | activity | Max | <u>Min</u> | Avg | | Billings, Mont. | 3.0 | ₹Be | 0.34 | 0.34 | 0.022 | | | 35.9 | 95 Zr | 0.26 | 0.034 | 0.083 | | | 11.7 | 131 I | 0.19 | 0.059 | 0.026 | | | 10.0 | 132Te | 0.32 | 0.06 | 0.034 | | | .0 | 137Cs | - | - | - | | | 24.0 | 140Ba | 0.37 | 0.031 | 0.066 | | | 2400 | - · · · Du | 0. 37 | 0.051 | 0.000 | | Bozeman, Mont. | 5.0 | 7 _{Be} | 0.28 | 0.22 | 0.030 | | • | 34.1 | 95 Zr | 1.3 | 0.036 | 0.13 | | | 19.1 | 131 T | 1.4 | 0.022 | 0.097 | | | 9.1 | 132Te | 1.8 | 0.094 | 0.10 | | | .0 | 137CS | - | - | - | | | 26.2 | 140Ba | 3.5 | 0.027 | 0.22 | | | 2012 | <u> </u> | 3.3 | 0.027 | 0.22 | | Missoula, Mont. | .0 | 7Be | _ | _ | - | | | 32.1 | 95 Zr | 0.21 | 0.045 | 0.083 | | | 15.7 | 131 <u>T</u> | 0.92 | 0.034 | 0.070 | | | 7.1 | 132Te | 0.12 | 0.062 | 0.015 | | | . 0 | 137CS | - | - | - | | | 25.0 | 1 4 0 Ba | 0.18 | 0.03 | 0.053 | | | 2300 | Du | 0. 10 | 0. 05 | 0.033 | | North Platte, | . 0 | 7Be | - | - | - | | Nebr. | 34.9 | 95Zr | 0.49 | 0.028 | 0.089 | | | 20.0 | 131I | 0.50 | 0.029 | 0.057 | | | 10.0 | 132Te | 0.47 | 0.047 | 0.043 | | | .0 | 137CS | - | - | - | | | 21.9 | 1 4 0 Ba | 1.2 | 0.046 | 0.11 | | | | | | | | | Battle Mountain, | 2.0 | 7 Be | 0.17 | 0.17 | 0.034 | | Nev. | 2.0 | 95Zr | 0.82 | 0.10 | 0.087 | | | . 9 | 131I | 0.73 | 0.73 | 0.068 | | | . 9 | 132Te | 0.85 | 0.85 | 0.080 | | | - 0 | 137CS | - | - | - | | | • 9 | 140Ba | 1.0 | 1.0 | 0.094 | | Currant Maint. | 2.3 | 7Be | 0.15 | 0.15 | 0.0099 | | Sta., Nev. | 27.9 | 95Zr | 1.3 | 0.093 | 0.28 | | ocae, move | 24.2 | 131 I | 1.7 | 0.039 | 0.40 | | | 3.0 | 132Te | 1.1 | 1.1 | 0.094 | | | .0 | 137Cs | - | - | - | | | 26.9 | 140Ba | 1.7 | 0.071 | 0.36 | | | 20. 3 | - · · · · · · · | 10/ | 3.071 | 3.30 | Table C-3. (continued) | Sampling | No. Type of
Days Radio- | | Radioactivity Concentration (10-9µCi/ml) | | | | |-----------------|----------------------------|----------|--|-------|-------|--| | Location | Detected | | | | | | | 200402011 | Decected | accivity | Max | Min | Avg | | | Currie, Nev. | 2.9 | 7Be | 0.72 | 0.33 | 0.048 | | | • | 20.6 | 95Zr | 4.1 | 0.083 | 0.53 | | | | 10.0 | 131 I | 4.5 | 0.04 | 0.65 | | | | 10.0 | 132Te | 3.7 | 0.11 | 0.48 | | | | .0 | 137CS | - | - | - | | | | 10.0 | 140Ba | 9.0 | 0.11 | 1.06 | | | | 1040 | Du | 3.0 | 0.11 | 1.00 | | | Elko, Nev. | . 0 | 7Be | - | - | - | | | | 40.5 | 95Zr | 2.0 | 0.017 | 0.23 | | | | 23.9 | 131T | 2.4 | 0.027 | 0.21 | | | | 10.0 | 132Te | 1.9 | 0.032 | 0.13 | | | | . 0 | 137CS | - | _ | - | | | | 25.9 | 140Ba | 4.7 | 0.077 | 0.37 | | | | | | | | | | | Fallon, Nev. | 2.0 | 7Be | 0.32 | 0.32 | 0.018 | | | • | 24.9 | 95Zr | 1.0 | 0.069 | 0.19 | | | | 14.0 | 131 I | 0.91 | 0.075 | 0.20 | | | | 9.0 | 132Te | 1.1 | 0.079 | 0.12 | | | | .0 | 137Cs | _ | - | - | | | | 14.0 | 140Ba | 2.0 | 0.14 | 0.26 | | | | | | | | | | | Frenchman Sta., | 1.9 | 7Be | 0.19 | 0.19 | 0.014 | | | Nev. | 13.0 | 95Zr | 1.8 | 0.071 | 0.21 | | | | 4.9 | 131I | 1.8 | 0.13 | 0.19 | | | | 4.9 | 132Te | 1.8 | 0.58 | 0.19 | | | | .0 | 137CS | - | - | - | | | | 4.9 | 140Ba | 3.3 | 0.61 | 0.30 | | | Torrelogh Non | ^ | 7Be | | _ | _ | | | Lovelock, Nev. | .0
17.1 | 95Zr | 1. 2 | 0.066 | 0.24 | | | | 10.9 | 131I | 1.1 | 0.043 | 0.27 | | | | 9.0 | 132Te | 0.80 | 0.11 | 0.14 | | | | | 137CS | - | 0.11 | 0.14 | | | | .0
10.9 | 140Ba | 1.7 | 0.077 | 0.26 | | | | 10.5 | • • • ba | 1. / | 0.077 | 0.20 | | | Reno, Nev. | 4.8 | 7Be | 0.70 | 0.18 | 0.037 | | | | 34.1 | 95 Zr | 1.6 | 0.03 | 0.19 | | | | 25.7 | 131I | 0.75 | 0.027 | 0.12 | | | | 11.8 | 132Te | 0.72 | 0.073 | 0.091 | | | | -0 | 137CS | - | - | - | | | | 25.7 | 140Ba | 2.0 | 0.061 | 0.22 | | | | | | | | | | Table C-3. (continued) | | No. | Type of | Radioactivity | | | | |--------------------|----------|--------------------------|----------------------------|------------|-------|--| | Sampling | Days | Radio- | Concentration (10-9µCi/ml) | | | | | Location | Detected | activity | Max | <u>Min</u> | Avq | | | User Comings Nos | • | 7n - | | | | | | Warm Springs, Nev. | - 0 | ⁷ Be
95 Zr | - | | - 70 | | | | 24.9 | | 5.5 | 0.044 | 0.70 | | | | 16.0 | 131 <u>I</u> | 6.3 | 0.45 | 0.76 | | | | 10.0 | 132Te | 7.4 | 0.053 | 0.72 | | | | .0 | 137Cs | - | - | - | | | | 16.0 | 140Ba | 9.1 | 0.12 | 0.11 | | | Wells, Nev. | 3.0 | 7Be | 0.58 | 0.38 | 0.044 | | | | 17.7 | 95Zr | 3.2 | 0.054 | 0.41 | | | | 8.0 | 131 <u>T</u> | 3.2 | 0.16 |
0.49 | | | | 7.0 | 132Te | 3.2 | 0.38 | 0.32 | | | | .0 | 137Cs | - | - | - | | | | 8.0 | 140Ba | 7.3 | 0.29 | 0.74 | | | | 0.0 | СТОВА | 7.5 | 0.29 | 0.74 | | | Winnemucca, Nev. | .0 | 7Be | _ | - | - | | | | 29.7 | 95 Zr | 1.6 | 0.053 | 0.19 | | | | 18.0 | 131] | 1.3 | 0.043 | 0.15 | | | | 12.3 | 132Te | 1.2 | 0.071 | 0.10 | | | | •0 | 137Cs | - | _ | - | | | | 24.9 | 140Ba | 2.7 | 0.046 | 0.22 | | | | | | | | 0.040 | | | Albuquerque, | 3.0 | 7Be | 0.20 | 0.20 | 0.012 | | | N. Mex. | 33.7 | 95Zr | 0.75 | 0.030 | 0.12 | | | | 20.1 | 131I | 1.2 | 0.018 | 0.16 | | | | 10.0 | 135Te | 1.7 | 0.058 | 0.12 | | | | . 0 | 137CS | - | - | - | | | | 25.9 | 1 4 0 Ba | 2.6 | 0.067 | 0.25 | | | Carlsbad, N. Mex. | . 0 | 7Be | | _ | | | | carronal in items | 8.1 | 95 Zr | 1.2 | 0.062 | 0.15 | | | | 4.1 | 131I | 1.7 | 0.078 | 0.24 | | | | 4.1 | 132Te | 2.4 | 0.16 | 0.25 | | | | - 0 | 137CS | | - | _ | | | | 4. ĭ | 1 4 0Ba | 3.4 | 0.25 | 0.35 | | | _ | • | | | | | | | Muskogee, Okla. | .0 | 7Be | - | - | 0.000 | | | | 34.9 | 95 Zr | 0.27 | 0.049 | 0.069 | | | | 14.0 | 131I | 0.36 | 0.031 | 0.03 | | | | 7.0 | 132Te | 0.59 | 0.031 | 0.03 | | | | - 0 | 137Cs | - | - | - | | | | 21.0 | 140Ba | 1.2 | 0.028 | 0.099 | | Table C-3. (continued) | 0 | No. | Type of | | Radioactivity | | | |---|------------|-----------------|------------|---------------|------------|--| | Sampling | Days | Radio- | | | -9µCi/ml) | | | Location | Detected | activity | <u>Max</u> | <u>Min</u> | <u>pvA</u> | | | Norman, Okla. | 2.0 | 7Be | 0.55 | 0.55 | 0.022 | | | • | 34.6 | 95 Zr | 0.44 | 0.05 | 0.12 | | | | 14.9 | 131 T | 0.24 | 0.041 | 0.048 | | | | 10.9 | 132Te | 0.36 | 0.075 | 0.052 | | | | .0 | 137CS | - | _ | - | | | | 24.9 | 140Ba | 0.63 | 0.042 | 0.14 | | | | | | | | | | | Burns, Oreg. | . 0 | 7Be | _ | - | - | | | - · · · · · · · · · · · · · · · · · · · | 30.0 | 95Zr | 0.27 | 0.053 | 0.095 | | | | 14.0 | 131I | 0.26 | 0.043 | 0.034 | | | | 12.0 | 132Te | 0.29 | 0.049 | 0.035 | | | | .0 | 137CS | - | _ | - | | | | 21.0 | 140Ba | 0.63 | 0.044 | 0.081 | | | | | | | | | | | Medford, Oreg. | . 0 | 7Be | - | - | - | | | | 23.8 | 95Zr | 0.17 | 0.041 | 0.053 | | | | 4.9 | 131 I | 0.085 | 0.048 | 0.0069 | | | | 1.0 | 132Te | 0.16 | 0.16 | 0.0034 | | | | .0 | 137Cs | - | _ | - | | | | 10.8 | 140Ba | 0.19 | 0.058 | 0.030 | | | | | | | | | | | Aberdeen, S. Dak. | . 0 | 7Be | - | - | - | | | | 26.0 | 95 Zr | 0.15 | 0.024 | 0.039 | | | | 5.0 | 131I | 0.17 | 0.044 | 0.0088 | | | | 4.0 | 132Te | 0.14 | 0.087 | 0.0088 | | | | .0 | 137CS | - | - | - | | | | 7.0 | 140Ba | 0.16 | 0.06 | 0.013 | | | | | | | | | | | Rapid City, S. Dak. | - 0 | 7Be | - | - | - | | | | 34.7 | 95 Zr | 0.17 | 0.016 | 0.063 | | | | 14.1 | 131 I | 0.23 | 0.020 | 0.023 | | | | 7.2 | 132Te | 0.11 | 0.064 | 0.012 | | | | - 0 | 137Cs | - | - | - | | | | 20.1 | 140Ba | 0.48 | 0.047 | 0.052 | | | | | | | | | | | Abilene, Tex. | 1.9 | ⁷ Be | 0.29 | 0.29 | 0.011 | | | | 35.9 | 95 Zr | 0.77 | 0.047 | 0.13 | | | | 17.8 | 131 <u>I</u> | 0.81 | 0.049 | 0.014 | | | | 10.0 | 132Te | 1.0 | 0.092 | 0.083 | | | | - 0 | 137CS | - | - | - | | | | 25.9 | 140Ba | 1.9 | 0.045 | 0.22 | | | | | | | | | | Table C-3. (continued) | | No. | Type of | Radioactivity | | | | |--------------------|-----------------|-----------------|---------------|-----------|-----------|--| | Sampling | Days | Radio- | | ation (10 | -9μCi/ml) | | | Location | <u>Detected</u> | activity | Max | Min | Avg | | | Amarillo, Tex. | 5.0 | 7Be | 0.32 | 0.16 | 0.024 | | | imarring fext | 36.0 | 95 Zr | 0.26 | 0.035 | 0.024 | | | | 20.0 | 131 I | 0. 52 | 0.018 | 0.080 | | | | 9.0 | 132Te | 0.19 | 0.042 | 0.022 | | | | .0 | 137Cs | | | 0.022 | | | | | 140Ba | _
_ = 1 | - | 0 007 | | | | 26.0 | · V Da | 0.54 | 0.028 | 0.097 | | | Austin, Tex. | 3. 1 | 7 Be | 0.12 | 0.12 | 0.010 | | | | 17.0 | 95Zr | 0.20 | 0.05 | 0.05 | | | | 12.0 | 131 I | 0.41 | 0.032 | 0.056 | | | | 7.1 | 132Te | 0.15 | 0.11 | 0.023 | | | | . 0 | 137CS | - | - | - | | | | 14.0 | 140Ba | 0.29 | 0.053 | 0.053 | | | Fort North Mon | 0 | 7D.a | _ | | | | | Fort Worth, Tex. | .0 | ⁷ Be | 0.26 | - | 0.067 | | | | 17.0 | 95Zr | 0.26 | 0.026 | 0.067 | | | | 7.0 | 131 <u>T</u> | 0.22 | 0.05 | 0.043 | | | | 5.0 | 132Te | 0.31 | 0.15 | 0.039 | | | | .0 | 137CS | 0.66 | 0.042 | 0 075 | | | | 7.0 | 140Ba | 0.66 | 0.042 | 0.075 | | | Bryce Canyon, Utah | 3.5 | 7Be | 0.27 | 0.17 | 0.015 | | | | 32.2 | 95 Zr | 1.7 | 0.046 | 0.26 | | | | 20.1 | 131 I | 2.5 | 0.039 | 0.34 | | | | 13.0 | 132Te | 2.6 | 0.084 | 0.24 | | | | - 0 | 137CS | - | - | - | | | | 21.9 | 1 4 0 Ba | 3.7 | 0.047 | 0.46 | | | Capitol Reef, Utah | .0 | ⁷ Be | - | - | _ | | | capitor Reel, ocan | 37.6 | 95Zr | 1.6 | 0.025 | 0.26 | | | | 15.9 | 131 I | 1.7 | 0.044 | 0.27 | | | | 7.0 | 132Te | 1.8 | 0.14 | 0.18 | | | | .0 | 137Cs | - | - | - | | | | 23.8 | 140Ba | 3.5 | 0.10 | 0.39 | | | | | | | | | | | Dugway, Utah | 3.0 | 7Be | 0.47 | 0.43 | 0.056 | | | | 12.5 | 95 Zr | 3.9 | 0.063 | 0.50 | | | | 6.5 | 131 I | 4.3 | 0.27 | 0.50 | | | | 4.5 | 132Te | 4.0 | 0.54 | 0.40 | | | | .0 | 137Cs | - | - | - | | | | 6.5 | 140Ba | 8.7 | 0.61 | 0.96 | | | | | | | | | | Table C-3. (continued) | Complian | No. | Type of | | dioactivi | | |------------------|------------|--------------|------|-----------|-----------| | Sampling | Days | Radio- | | | -9µCi/ml) | | Location | Detected | activity | Max | Min | Avg | | Enterprise, Utah | 7.1 | ₹Be | 0.21 | 0.15 | 0.025 | | • | 37.8 | 95 Zr | 2.9 | 0.063 | 0.32 | | | 26.0 | 131I | 2.4 | 0.027 | 0.28 | | | 7.0 | 132Te | 2.6 | 0.83 | 0.21 | | | • 0 | 137CS | - | - | - | | | 26.0 | 140Ba | 5.2 | 0.056 | 0.51 | | | | | | | | | Logan, Utah | 5.0 | 7Be | 0.21 | 0.098 | 0.028 | | • | 18.2 | 95Zr | 3.5 | 0.035 | 0.46 | | | 6.9 | 131 I | 2.9 | 0.071 | 0.51 | | | 6.9 | 132Te | 3.1 | 0.12 | 0.33 | | | • 0 | 137CS | _ | - | - | | | 7.9 | 140Ba | 6.2 | 0.056 | 0.74 | | | | | | | | | Monticello, Utah | . 0 | 7Be | - | - | - | | · | 33.3 | 95 Zr | 0.58 | 0.034 | 0.13 | | | 22.0 | 131I | 0.84 | 0.043 | 0.11 | | | 8.0 | 132Te | 0.49 | 0.068 | 0.029 | | | - 0 | 137CS | - | - | - | | | 26.0 | 140Ba | 1.3 | 0.06 | 0.16 | | Parowan, Utah | 3.0 | 7Be | 0.28 | 0.28 | 0.033 | | ratowan, ocan | 7.9 | 95 Zr | 0.44 | 0.046 | 0.045 | | | 1.9 | 131] | 0.46 | 0.11 | 0.021 | | | 1.9 | 132Te | 1.1 | 0.32 | 0.052 | | | -0 | 137CS | _ | _ | _ | | | 1.9 | 140Ba | 0.66 | 0.26 | 0.034 | | | ,,,, | | | 0020 | | | Provo, Utah | 4.0 | 7Be | 0.24 | 0.20 | 0.019 | | | 37.4 | 95Zr | 3.8 | 0.065 | 0.37 | | | 24.8 | 131 <u>T</u> | 3.6 | 0.028 | 0.44 | | | 8.8 | 132Te | 4.3 | 0.055 | 0.32 | | | . 0 | 137CS | - | - | - | | | 24.8 | 140Ba | 8.5 | 0.087 | 0.70 | | Salt Lake City, | 4.9 | ₹Be | 0.21 | 0.18 | 0.022 | | Utah | 29.8 | 95 Zr | 3.1 | 0.062 | 0.29 | | | 17.3 | 131 I | 3.6 | 0.033 | 0.36 | | | 7.3 | 132Te | 3.5 | 0.11 | 0.23 | | | .0 | 137Cs | - | - | _ | | | 19, 2 | 140Ba | 6.3 | 0.093 | 0.50 | | | | | | | | Table C-3. (continued) | Campling | No. Type of
Days Radio- | | Radioactivity Concentration (10-9µCi/ml) | | | | |----------------------|----------------------------|-----------------|--|-------|--------|--| | Sampling
Location | Days
Detected | | | | • | | | LOCACION | Decected | activity | Max | Min | Avq | | | Vernal, Utah | 6.0 | 7Be | 0.27 | 0.16 | 0.028 | | | • | 31.5 | 95 Zr | 5.2 | 0.026 | 0.25 | | | | 16.5 | 131 I | 7.6 | 0.037 | 0.38 | | | | 9.5 | 132Te | 14 | 0.078 | 0.40 | | | | • 0 | 137CS | · · - | _ | - | | | | 20.5 | 140Ba | 15 | 0.059 | 0.55 | | | | | | | | - | | | Wendover, Utah | 2.0 | 7Be | 0.21 | 0.21 | 0.016 | | | • | 14.0 | 952r | 0.25 | 0.031 | 0.058 | | | | 5.0 | 131I | 0.045 | 0.02 | 0.0059 | | | | .0 | 132Te | - | | - | | | | .0 | 137Cs | - | - | - | | | | 7.0 | 140Ba | 0.093 | 0.037 | 0.014 | | | | | | | | | | | Seattle, Wash. | - 0 | 7Be | - | - | - | | | • | 35.7 | 95 Zr | 0.14 | 0.038 | 0.046 | | | | 2.0 | 131 <u>T</u> | 0.094 | 0.051 | 0.003 | | | | 2.0 | 132Te | 0.15 | 0.092 | 0.0051 | | | | . 0 | 137CS | - | - | - | | | | 12.1 | 140Ba | 0.11 | 0.032 | 0.012 | | | | | | | | | | | Spokane, Wash. | - 0 | ⁷ Be | - | - | - | | | • | 33.0 | 95 Zr | 0.80 | 0.019 | 0.090 | | | | 4.0 | 131] | 0.054 | 0.023 | 0.0027 | | | | 3.0 | 132Te | 0.022 | 0.022 | 0.0015 | | | | - 0 | 137CS | - | - | - | | | | 7.0 | 1 4 0 Ba | 0.80 | 0.02 | 0.021 | | | | | | | | | | | Casper, Wyo. | 2.0 | ⁷ Be | 0.37 | 0.37 | 0.015 | | | | 37.0 | 95 Zr | 1.3 | 0.097 | 0.18 | | | | 21.0 | 131I | 1.4 | 0.032 | 0.25 | | | | 11.0 | 132Te | 1.3 | 0.064 | 0.12 | | | | - 0 | 137CS | - | - | - | | | | 26.0 | 140Ba | 3.0 | 0.072 | 0.30 | | | Rock Springs, Wyo. | .0 | 7Be | - | - | | | | | 10.0 | 95 Zr | 0.1 5 | 0.045 | 0.037 | | | | - 0 | 131I | - | - | - | | | | - 0 | 132Te | - | - | - | | | | . 0 | 137CS | - | - | - | | | | . 0 | 1 4 0 Ba | - | - | - | | | | | | | | | | Table C-3. (continued) | Sampling | No.
Days | Type of
Radio- | Radioactivity Concentration (10-9µCi/ml) | | | |---------------|-------------|-------------------|--|-------|--------| | Location | Detected | activity | Max | Min | Avq | | Worland, Wyo. | 3.0 | 7Be | 0.25 | 0.25 | 0.019 | | • | 32.0 | 95Zr | 2.0 | 0.053 | 0.20 | | | 13.0 | 131 <u>T</u> | 1.9 | 0.018 | 0.12 | | | 3.0 | 132Te | 0.12 | 0.077 | 0.0071 | | | - 0 | 137CS | - | - | - | | | 19.0 | 140Ba | 3.8 | 0.055 | 0.29 | Table C-4. Special Milk Sampling Results for Las Vegas, Nevada | Sampling
Location | Collection
Date | Sample
Type(1) | Radio-
nuclide | Radionuclide
Concentrations
(10-9 µCi/ml)(2) | |-----------------------------------|--------------------|-------------------|--|--| | Las Vegas, Nev.
LDS Dairy Farm | 09/27/77 | 12 | 131
<u>T</u>
137Cs
140Ba | 12 ± 4.6
<6
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 09/29/77 | 12 | 89Sr
90Sr
131I
137Cs
140Ba | 6.2 ± 3.3 <2 57 ± 5.3 <5 <4 | | Las Vegas, Nev.
LDS Dairy Farm | 09/30/77 | 12 | 89Sr
90Sr
131I
137Cs
140Ba | <3
<1
51 ± 5.1
<5
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/01/77 | 12 | 89Sr
90Sr
131I
137Cs
140Ba | <2 1.3 ± 0.78 49 ± 5.4 <5 <4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/02/77 | 12 | 131 <u>T</u>
137Cs
140Ba | 44 ± 5.5
<5
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/03/77 | 12 | 131 T
137Cs
140 Ba | 44 ± 5.0
<5
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/04/77 | 12 | 131 I
137 Cs
140 Ba | 35 ± 6.4
<7
5.2 ± 4.7 | | Las Vegas, Nev.
LDS Dairy Farm | 10/05/77 | 12 | 131 <u>T</u>
137Cs
140Ba | 33 ± 4.0
<5
<3 | Table C-4. (continued) | Sampling
Location | Collection
Date | Sample
Type(1) | Radio-
nuclide | Radionuclide
Concentrations
(10-9 µCi/ml)(2) | |-----------------------------------|--------------------|-------------------|--|--| | Las Vegas, Nev.
LDS Dairy Farm | 10/06/77 | 12 | 131 <u>1</u>
137Cs
140Ba | 29 ± 4.6
<6
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/07/77 | 12 | 131 <u>T</u>
137 Cs
140 Ba | 21 ± 5.0
<6
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/08/77 | 12 | 131 _I
137 _{Cs}
140 _{Ba} | 26 ± 5.3
<5
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/09/77 | 12 | 131 I
137Cs
140Ba | 42 ± 6.3
<6
<5 | | Las Vegas, Nev.
LDS Dairy Farm | 10/10/77 | 12 | 131T
137Cs
140Ba | 23 ± 6.0
<6
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/12/77 | 12 | 131 <u>T</u>
137Cs
140Ba | 35 ± 11
<20
<9 | | Las Vegas, Nev.
LDS Dairy Farm | 10/14/77 | 12 | 131 T
137 Cs
140 Ba | 28 ± 7.6
<6
<5 | | Las Vegas, Nev.
LDS Dairy Farm | 10/15/77 | 12 | 131 I
137Cs
140Ba | 22 ± 7.6
<7
<5 | | Las Vegas, Nev.
LDS Dairy Farm | 10/16/77 | 12 | 131 <u>T</u>
137 Cs
140 Ba | 36 ± 7.4
<6
<6 | Table C-4. (continued) | Sampling
Location | Collection
Date | Sample
Type(1) | Radio-
nuclide | Radionuclide
Concentrations
(10-9 µCi/ml)(2) | |-----------------------------------|--------------------|-------------------|----------------------------------|--| | Las Vegas, Nev.
LDS Dairy Farm | 10/17/77 | 12 | 131 <u>I</u>
137Cs
140Ba | 19 ± 6.2
<7
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/18/77 | 12 | 131 I
137Cs
140 Ba | 26 ± 4.0
<5
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/19/77 | 12 | 131T
137Cs
140Ba | 19 ± 4.5
<5
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/20/77 | 12 | 131 <u>1</u>
137Cs
140Ba | 8.8 ± 6.2
<8
<5 | | Las Vegas, Nev.
LDS Dairy Farm | 10/22/77 | 12 | 131 <u>T</u>
137Cs
140Ba | 8.5 ± 4.9
<5
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/23/77 | 12 | 131 I
137Cs
140Ba | 15 ± 5.1
<5
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/24/77 | 12 | 131 <u>I</u>
137Cs
140Ba | 6.5 ± 4.6
<6
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/25/77 | 12 | 131 I
137 Cs
140 Ba | <6
<7
<5 | | Las Vegas, Nev.
LDS Dairy Farm | 10/26/77 | 12 | 131 <u>T</u>
137 Cs
140 Ba | 12 ± 4.2
<5
<4 | Table C-4. (continued) | Sampling
Location | Collection
Date | Sample
Type(1) | Radio-
nuclide | Radionuclide
Concentrations
(10 ⁻⁹ µCi/ml) ⁽²⁾ | |-----------------------------------|--------------------|-------------------|--|--| | Las Vegas, Nev.
LDS Dairy Farm | 10/27/77 | 12 | 131 <u>1</u>
137 _{Cs}
140 _{Ba} | 8.2 ± 4.4
<6
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/28/77 | 12 | 131 <u>T</u>
137Cs
140Ba | 9.1 ± 4.1
<5
<4 | | Las Vegas, Nev.
LDS Dairy Farm | 10/29/77 | 12 | 131 <u>1</u>
137Cs
140Ba | <9
<9
<7 | | Las Vegas, Nev.
LDS Dairy Farm | 10/30/77 | 12 | 131 <u>T</u>
137Cs
140Ba | <8
<8
<6 | | Las Vegas, Nev.
LDS Dairy Farm | 10/31/77 | 12 | 131 <u>T</u>
137 Cs
140 Ba | <5
<6
<4 | ^{(1)12 =} Raw Milk from Grade A Producer (s) ⁽²⁾All concentrations above the minimum detectable concentration (MDC) are shown with their 2-sigma counting error. ### APPENDIX D. LIST OF ABBREVIATIONS AND SYMBOLS μm micrometer micro-röntgen-equivalent-man µrem microcurie per gram μCi/q microcurie per milliliter µCi/ml Atomic Energy Commission AEC ASN Air Surveillance Network C temperature in Celsius CG Concentration Guide Ci Curie centimeter CM CP-1 Control Point One CY Calendar Year Dose Equivalent D. F. DOE U.S. Department of Energy EMSL-LV Environmental Monitoring and Support Laboratory-Las Vegas **EPA** U.S. Environmental Protection Agency **ERDA** Energy Research and Development Administration Energy Research and Development Administration/ ERDA/NV Nevada Operations Office ft feet GZ Ground Zero h hour kilogram kq kilometer km kt kiloton lower confidence limit LCL LLL Lawrence Livermore Laboratory Long-Term Hydrological Monitoring Program LTHMP meter minimum detectable concentration MDC millimeter mm milli-röntgen-equivalent-man per year mrem/y milli-röntgen-equivalent-man per day mrem/d milli-röntgen mR milli-röntgen per hour mR/h MSL Mean Sea Level Milk Surveillance Network MSM nanocurie nCi Nevada Test Site NTS Public Health Service PHS picocurie pCi Standby Milk Surveillance Network SMSN thermoluminescent dosimeter TLD Upper Confidence Limit UCL USGS United States Geological Survey WSN Water Surveillance Network Y ЭH tritium or hydrogen-3 tritiated hydrogen HT tritiated water HTC CH₃T tritiated methane barium Ba Ве berylium Cs cesium iodine Ι K potassium Kr krypton plutonium Pu radium Ra Ru ruthenium strontium Sr Te tellurium U uranium Хe xenon zirconium Zr #### DISTRIBUTION - 1 25 Environmental Monitoring & Support Laboratory, Las Vegas, NV - 26 Mahlon E. Gates, Manager, DOE/NV, Las Vegas, NV - 27 Troy E. Wade, DOE/NV, Las Vegas, NV - 28 David G. Jackson, DOE/NV, Las Vegas, NV - 29 Paul B. Dunaway, DOE/NV, Las Vegas, NV - 30 31 Bruce W. Church, DOE/NV, Las Vegas, NV (2) - 32 Mary G. White, DOE/NV, Las Vegas, NV - 33 Roger Ray, DOE/NV, Las Vegas, NV - 34 Chief, NOB/DNA, DOE/NV, Las Vegas, NV - 35 36 Robert R. Loux, DOE/NV, Las Vegas, NV (2) - 37 Arthur J. Whitman, DOE/NV, Las Vegas, NV - 38 Elwood M. Douthett, DOE/NV, Las Vegas, NV - 39 Shed R. Elliott, DOE/NV, Las Vegas, NV - 40 Ernest D. Campbell, DOE/NV, Las Vegas, NV - 41 Thomas M. Humphrey, DOE/NV, Las Vegas, NV - 42 43 Peter K. Fitzsimmons, DOE/NV, Las Vegas, NV (2) - 44 Robert W. Newman, DOE/NV, Las Vegas, NV - 45 Harold F. Mueller, ARL/WSNSO, DOE/NV, Las Vegas, NV - 46 Virgil Quinn, ARL/WSNSO, DOE/NV, Las Vegas, NV - 47 49 Technical Library, DOE/NV, Las Vegas, NV (3) - 50 Mail and Records, DOE/NV, Las Vegas, NV - 51 R. S. Brundage, CER Geonuclear Corporation, P.O. Box 15090, Las Vegas, NV 89114 - 52 Hattie V. Carwell, DOE/SAN, San Francisco Operations Office, 1333 Broadway, Oakland, CA 94616 - 53 57 Hal Hollister, DSSC, DOE, Washington, D.C. (5) - 58 Major General J. K. Bratton, AGMMA, DOE, Washington, D.C. - 59 A. J. Hodges, DMA, DOE, Washington, D.C. - 60 Gordon Facer, MA, DOE, Washington, D.C. - 61 Andrew J. Pressesky, RDD, DOE, Washington, D.C. - 62 James L. Liverman, BER, DOE, Washington, D.C. - 63 Gilbert J. Ferber, ARL/NOAA, Silver Springs, MD - 64 65 William Horton, Bureau of Environmental Health, State of Nevada, 505 E. King St., Carson City, NV 89710 (2) - 66 Stephen J. Gage, Assistant Administrator for Research & Development, EPA, Washington, D.C. - 67 William D. Rowe, Deputy Assistant Administrator for Radiation Programs, EPA, Washington, D.C. - 68 William A. Mills, Director, Division of Criteria & Standards, ORP, EPA, Washington, D.C. - 69 David S. Smith, Director, Division of Technology Assessment, ORP, EPA, Washington, D.C. - 70 71 Floyd L. Galpin, Director, Environmental Analysis Division, ORP, EPA, Washington, D.C. (2) - 72 Gordon Everett, Director, Office of Technical Analysis, EPA, Washington, D.C. - 73 Regional Administrator, EPA, Region IV, Atlanta, GA - 74 Regional Radiation Representative, EPA, Region IV, Atlanta, GA - 75 State of Mississippi - 76 Regional Administrator, EPA, Region VI, Dallas, TX - 77 Regional Radiation Representative, EPA, Region VI, Dallas, TX - 78 State of New Mexico - 79 Regional Administrator, EPA, Region VIII, Denver, CO - 80 Regional Radiation Representative, EPA, Region VIII, Denver, CO - 81 State of Colorado - 82 State of Utah - 83 Regional Administrator, EPA, Region IX, San Francisco, CA - 84 Regional Radiation Representative, EPA, Region IX, San Francisco, CA - 85 State of Arizona - 86 State of California - 87 State of Nevada - 88 Eastern Environmental Radiation Facility, EPA, Montgomery, AL - 89 Library, EPA, Washington, D.C. - 90 Kenneth M. Oswald, LLL, Mercury, NV - 91 Roger E. Batzel, LLL, Livermore, CA - 92 James E. Carothers, LLL, Livermore, CA - 93 John C. Hopkins, LASL, Los Alamos, NM - 94 Jerome E. Dummer, LASL, Los Alamos, NM - 95 B. P. Smith, REECo, Mercury, NV - 96 Arden E. Bicker, REECo, Mercury, NV - 97 A. W. Western, REECo, Mercury, NV - 98 Savino W. Cavender, M.D., REECo, Mercury, NV - 99 Carter D. Broyles, Sandia Laboratories, Albuquerque, NM - 100 George E. Tucker, Sandia Laboratories, Albuquerque, NM - 101 Albert E. Doles, Eberline Instrument Co., Santa Fe, NM - 102 Robert H. Wilson, University of Rochester, Rochester, NY - 103 Richard S. Davidson, Battelle Memorial Institute, Columbus, OH - 104 J. P. Corley, Battelle Memorial Institute, Richland, WA - 105 John M. Ward, President, Desert Research Institute, University of Nevada, Reno, NV - 106 DOE/HQ
Library, Attn: Eugene Rippeon, DOE, Washington, D.C. - 107-134 Technical Information Center, Oak Ridge, TN (for public availability) - 135-136 T. F. Cornwell, DMA, DOE, Washington, D.C.