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INTRODUCTION

The accurate measurement of levels of environmental pollutants is a
matter of central importance to the United States Environmental Protection
Agency. However, the level of radioactivity encountered in samples of
man-related nuclide pollutants is typically exceedingly Tow, and the highly
sensitive state-of-the-art instrumentation employed in detection work be-
comes (because of its very sensitivity) affected not only by the radiation
of interest but also by many other background radiation effects, as well
as random effects. Currently, then, it may often be desirable to apply
data enhancement techniques (of an analytical nature) to the raw instru-
mentation data.

There are two types of enhancement of the data which may be considered
in any given application. First of all, any instrument data record typi-
cally shows the presence of two signal components: a deterministic com-
ponent, which reflects the "genuine" informational content of the data
record, and a random component which results from stochascic behavior of
the basic phenomenae. Usually one would like to separate these "signal"
and "noise" components and retain only the former. It is often possible to
partially achieve this objective using methods described in Section 1.
Secondly, even assuming that a noise-free data record from the analyzer
has been produced, there still may be an unsatisfactory level of resolution
of the recorded signal due to simple inadequacy of the resolving capacity
of the detector and instrument system. In such a case, if quantitative
measurements are to be obtained then resolution improvement of the record
through analytical means must be achieved; this is, both in principle and

practice, a much more difficult proposition, as the details of this report



will amply demonstrate.

This report contains an outline of work accomplished under EPA
Contract Number 68-02-3049 during the year beginning with September 27,
1978. Under the provisions of this contract, into which Auburn University
at Montgomery and the Eastern Environmental Radiation Facility ("EERF") of
the U. S. Environmental Protection Agency entered, the author was con-
tracted to devote approximately two-thirds of the year mentioned to an
investigation of the characteristics of gamma radiation data from Ge(Li)
spectrometers and the applicability of data enhancement techniques (of
the two types outlined above) to this data. Under the provisions of this
contract the author travelled the short distance from the university to
EERF after completing classes, office hours, etc. Thus the actual contract
work was largely accomplished at the Taboratory site, with immediate access
to not only the instrumentation of interest but also the computing and
library facilities of EERF and, most importantly, the continual coordination
and supervision of the Project Officer. It is felt that this was a most
efficient manner of administering the project, both in terms of minimizing
costs and maximizing the effectiveness of the technical supervision. In
particular, the contract overhead rate was only twenty per cent.

Work done jointly by the author and the Project Officer during their
investigations related to the contract research topic have resuited in a
number of accomplishments. These are summarized in the following:

(1) D.A. Chambless and J.A. Broadway, Fourier Transform Methods for

Analysis of Ge(Li) Spectral Data, Presented to the Health Physics
Society, Atlanta, GA, July 6, 1979.
(2) D.A. Chambless and J.A. Broadway, Digital Filtering of Speckle



Interferometric Data, Presented to the Society for Experimental
Stress Analysis, San Francisco, CA, May 23, 1979.

Jon A. Broadway and Don A. Chambless, Spectral Resolution Improve-
ment via Regularization Methods and Singular Value Decomposition,
Presented to the Health Physics Society, Philadelphia, PA, July
11, 1979.

D.A. Chambless and J.A. Broadway, Digital Filtering of Speckle-
Photography Data, Published in Experimental Mechanics, Vol. 19,
pp. 286-289, August, 1979.

J.A. Broadway and D.A. Chambless, Resolution Improvement of

Gamma Radiation Spectrometer Data, Presented to the International
Symposium on I11-Posed Problems: Theory and Practice, Newark,
DE, October 2, 1979.

J.A. Broadway and D.A. Chambless, Constrained Regularization
Methods for Spectral Resolution Improvement (manuscript in

preparation).

Finally, it should perhaps be noted that the original proposal sub-

mitted contained also a proposal for an optional one-year extension of the
contract effort. At this writing, the O0ffice of Radiation Programs has
exercised its option and effected such an extension. Therefore, the work
begun under this contract arrangement will be continued for another two-
thirds man-years and a report pursuant to that work and extending the work

reported herein will be forthcoming in September 1980.



SUMMARY

As mentioned in the Introduction, the work conducted in this contract
effort consisted primarily of feasibility studies concerned with the reduc-
tion of noise levels and the improvement of resolution of radiation spectra
recorded by Ge(Li) gamma spectrometers. The methods investigated in the
course of this work included a number of techniques already recognized in
the literature as well as some not yet appearing (to the knowledge of the
author). Closely related problems in other fields ranging from photo-
graphic enhancement to forensic science to historical document restoration
have been considered in certain instances. These efforts were made so as
to allow comparison of the methods considered under this contract activity
with other existing methods and to provide a background of results with
"well-known" problems for consideration.

The noise reduction problem is considered in Section 1 of the main
body of this report. In this section the foundations of a frequency domain
approach to noise suppression are described. Under the assumptions con-
cerning the data detailed in this section, considerable increase of signal-
to-noise ratio is often achieved through the application of the methods
described, especially when the deterministic component of the composite
signal represents a function which can be well approximated by low order
trigonometric polynomials. On the other hand, if a signal should be
qualitatively characterized as, say, the superposition of a linear back-
ground and a low order trigonometric polynomial plus noise then one would
expect that the removal of the linear trend (through standard least squares
methods) would be necessary as a preprocessing procedure before the filter-

ing methods of Section 1 are applied; this expectation is based on the fact



that the linear carrier signal is not at all well approximable through
Tower order Fourier expansions.

In any case, the methods of Section 1 are found to be very inexpensive
to implement due to the availability of very efficient ("fast") Fourier
transform algorithms. In actual application, the speed and convenience of
the use of the techniques are very dependent upon access to efficient
graphics equipment and software. Unhappily. there has been no opportunity
for such use of high-speed graphics during the course of this study, and
so the number of applications actually included herein is rather small.
Nonetheless, some rather striking results were obtained, as a comparison of
Figures 1.1 and 1.5, for example, reveals, and the quality of these en-
hancements has been recognized through the publication of [6].

In Section 2 the mathematical generalities concerning the problem of
attempting to analytically enhance an analyzer data record by correcting
for limitations in instrument resolution characteristics are given and the
specific conceptual problems of interest are stated. In Section 3 the
futility of straightforward quadrature approaches to this exceedingly
difficult problem is suggested (although specific indication of this is de-
layed until Section 7), and the singular value decomposition of a matrix
is formulated and its importance discussed. In particular, the singular
value analysis approach to the solution of il11-posed linear problems,
which has found considerable popularity among those investigators consid-
ering the processing of photographs [23, 241, is motivated and described.

The major concentration of effort in this contract endeavor came to
be the study and application of the family of "regularization" methods

(22, 27-30] for the solution of il1-posed linear operator equations. The



general conceptual framework of regularization methods is given in Section
4, and a number of discrete implementations of regularization are formu-
lated in Section 5. A1l of the methods of Section 5 are basically matrix-
theoretic. Some employ the difference operator in order to allow (discrete)
considerations of the first (or higher) derivatives of the functions of
interest to be included while the most basic form of discrete reqularization
does not. Later (in Section 7) the effect of this higher generality is
examined. Although there appears to be some advantage in including consid-
eration of one or more derivatives in regularization calculations, there
was not a generally marked improvement in the quality of the results noticed
while, on the other hand, the cost of doing "differential regularization"
was significantly higher. It is known that more efficient algorithms for
these advanced methods can be developed (with an additional expenditure of
time) but there seemed to be no justification for embarking on such an
effort at this point.

In Section 6 a form of regularization [32] ("CDR regularization")
which represents a very significant conceptual advance over the discrete
methods of Section 5 is discussed at some length. During the course of
this contract year this was actually the first form of regularization
which was considered, and considerable time and effort were devoted to
this aspect of the project. In particular, the method was discretized (as
any computational method must eventually be) and applied to model problems
such as those in Sections 7 and 8. Results from these efforts showed a
striking improvement over the singular value analysis (and harmonic
analysis) solution attempts which had been previously conducted. Similarly,

the subsequent discrete regularization calculations (using Simpson's rule



to perform quadratures as previously) were not nearly of the quality of
the results using the methods of Section 6. Sometime later it was dis-
covered that Simpson's rule itself was causing significant degradation of
the results obtained through singular value analysis or discrete regular-
ization (as compared to those achieved by means of the simple rectangle
rule, for example). Of course, one ordinarily thinks of Simpson's rule

as being generally more accurate than the rectangle rule for most usual
types of functions, and hence an adequate explanation of this phenomenon

is not immediately apparent. (An indication of the reason for this is
given in Section 7.) In any case, the CDR method was found to give results
of about the same quality with either quadrature rule and therefore appears
much more powerful (for the types of problems being considered) than the
methods of Sections 3 or 5. A fairly extensive effort was made to lower
the initially high cost of the CDR computations and a good deal of success
was achieved in this regard; details are given in Section 6.

Sections 7 and 8 are devoted to outlining an indication of typical re-
sults obtained with resolution enhancement problems during the course of
this contract effort. Two basic types of problems were considered. The
first problems, which are discussed in Section 7, are derivatives of the
original problem of D. Phillips which was considered in his 1962 paper [22].
In this model problem, which has come to be a classic example in the 1it-
erature of the field, the resolution improvement of noisy pulse-like data
is considered. Since the data of this problem is somewhat typical of the
gamma spectral data of ultimate interest in this contract effort and since,
also, this problem of Phillips is one of the few prototypes of the field,

there was a considerable amount of effort devoted to "sorting out" the



methodology considered during the contract year by means of analytical
investigation of Phillips' problem. It was in the course of this work that
the sensitivity of the calculations to the selection of the quadrature rule
was noticed. Clear indication of this phenomenon is included in Section 7.
It is of considerable interest to note that the degradation generally intro-
duced by Simpson's rule was largely overcome by the DER and CDR methods
described in Sections 5 and 6, respectively. On the other hand, all of
the methods considered (with the notable exception of the simple quadrature
and Fourier deconvolution methods) were found to be reasonably capable of
handling Phillips' problem when the rectangle rule is used for quadratures.

In Section 8 the second basic type of resolution improvement problem is
considered. Here Ge(Li) spectral data from radium sources as recorded by
a Nuclear Data ND100 spectrometer are investigated by means of the method-
ology of Sections 5 and 6 in two basic situations. In the first group of
calculations the data used were realized by the superposition of 5% random
noise on the impulse response of the spectrometer (as defined by the data
record resulting from a monochromatic radium energy line); this was refer-
red to as the "spectral data". The other group of calculations was per-
formed using data from a different radium peak; this data was called the
"cross-spectral data". It should be pointed out that although Ge(Li)
spectrometers are not generally thought of as shift-invariant devices, it
was felt that this was a reasonable assumption herein due to the small
energy ranges considered in Section 8.

With both of these sets of data it was found to be exceedingly diffi-
cult to produce a result sharply approximating the ideal discrete pulse for

which one might hope under perfect circumstances. The instability of the



basic problem per se is such that even a few per cent noise superposed on
the impulse response causes extremc :Cnputational difficulty and results
closely approximating the ideal one seem impos-““le to obtain without some
further modification of the problem statement beyond that provided by the
various regularization techniques. Two such modifications were considered,
the first representing a compromise" problem statement and the other
involving the imposition of constraints on the computed solution.

The compromise used was effected by selecting a Gaussian pulse with
half-width significantly smaller than that of the impulse response of the
analyzer and then modifying the problem statement such that the ideal solu-
tion of the modified problem* consists of this selected Gaussian. Philo-
sophically, one may view this as solving for a certain moment of the solu-
tion instead of the solution, per se. This "data spreading" method was
found to increase the stability of the calculations in Section 8 while not
causing any large increase in the computational costs. The relevant com-
parison can be drawn from Figures 8.8 and 8.11, for example. On the other
hand, a second modification of the problem was constructed by explicitly
incorporating the a priori knowledge of nonnegativity of the solution.

Very striking improvements in the stability and sharpness of fhe results
obtained were found to be gained through this type of consideration as

Figures 8.38 and 8.40 reveal. There was no remaining time in which to

*C. Nelson of the Environmental Analysis Division, Office of Radiation

Programs, suggested that such a modification be considered.



conduct further calculations of this type and thus spectra larger and more
complex than those indicated in Section 8 have not yet been considered at
this writing. The conduct of such larger scale investigations will be an

early topic in the work of the year of continuation of this contract effort
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CONCLUSIONS

Two types of enhancement procedures for Ge(Li) gamma spectral data have
been considered under this contract effort: noise reduction techniques and
resolution improvement methods. In the case of noise reduction the results
of Section 1 (as observed, for example, by comparison of Figures 1.6 and 1.7)
show that very significant increases in signal-to-noise ratio can be obtain-
ed by means of fast (and inexpensive) frequency domain procedures (under
certain hypotheses concerning data and noise characteristics). One does
have to make a significant effort in software development in this regard
and high-speed graphics equipment is an almost essential component when
processing data using this methodology. In this regard it is implicit,
of course, that the analyzer being used is calibrated to sample along a
sufficiently fine energy grid so as to allow the difference between signal
and noise characteristics to be discerned in the frequency domain. The
results shown in Section 1 were obtained using high gain settings over a
limited energy band. Since analyzers with larger storage capacity are be-
coming available, it should become a routine matter to use high gain cali-
brations over broad energy ranges, and jncreasingly successful separation
of signal and noise in Ge(Li) data should become possible.

In Sections 7 and 8 the extremely unstable nature of the resolution
improvement problem is clearly revealed and some promising developments are
in evidence. The family of regularization methods has been found to offer
some promise for controlling the degrading effects of noise, roundoff
error, etc., and, in particular, the CDR method outlined in Section 6
appears to be especially capable of resisting the oscillatory effects of

noise. In all of these methods there appear in the basic formulation one
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or more parameters which effect the compromise between the considerations
of residuals and size or smoothness. For the present time the inclusion
of these parameters appears to be indispensable but one would, of course,
prefer that such need not be chosen in an interactive fashion. There is
some encouraging evidence in the literature [32-34] which suggests that
one may eventually be able to devise mathematical routines which allow a
good selection of the smoothing parameters from the data of the problem.
This would have the most desirable effect of eliminating human interaction
with the program and permit routine production-like application of the
methods to take place.

The imposition of nonnegativity constraints which was further required
in order to stabilize the resolution improvement calculations in Section 8
seems to be completely necessary at the present time. Without the use of
such a priori information none of the methods considered thus far is capable
of yielding significant Tevels of resolution improvement of the spectral
analyzer data without incurring degradation (due to noise effects) un-
acceptable for the applications eventually desired. Happily, this causes
only minor inconvenience and small additional expense in conducting compu-
tations. It should be noted that the principle of imposing nonnegativity
constraints in order to achieve a higher level of numerical stability
should find beneficial applications in a wide variety of physical measure-
ment and data transmission problems in which positive-valued intensity
data are the subject of concern. Larger scale calculations with these

methods will be conducted during the coming year of extension of this

contract endeavor.
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RECOMMENDATIONS

An overall analysis of the results of work conducted under this con-
tract effort suggests certain general recommendations concerning the
direction of work dealing with improvement of techniques for processing of
gamma radiation data. First of all, continued progress in the power of the
Ge(Li) analyzers is of central concern in regard to the problem of enhancing
gamma data since increased analyzer power is reflected in an increased
ability to define the photopeaks distinctly and thereby allow successful
separation of signal and noise (through methods such as those described in
Section 1). A somewhat paradoxical consequence of these observations,
which has not yet been adequately considered in the literature of nuclear
detection, is that although the achievement of very high levels of system
resolution typically leads one to anticipate that a photopeak will be re-
corded in only a few (perhaps one) data channels, the requirement for compu-
tational tractability necessitates that photopeaks be instead recorded in a
significantly larger number of channels. Similar comments apply to the
resolution improvement methods in Sections 5 and 6. Therefore, it is im-
portant to include the instrumentation capability, both in terms of system
resolution (keV at FWHM) and system gain (keV per channel), explicitly when
discussing any path to progress in gamma data reduction techniques.

In regard to mathematical and computational aspects of continued work,
it would seem that the constrained regularization methods represent the
most versatile and promising family of techniques for resolution improve-
ment of the gamma spectral data among those methods considered thus far.
Thus it is recommended that the methods of Sections 5 and 6 be tested on a
larger scale using, in particular, more complex gamma spectra as the sub-

ject data. In order to make such increased level of complexity of test
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computations practicable it will be necessary to make a software conversion
of all procedures from the M-LAB language to a less versatile but more in-
expensive language such as FORTRAN. This unfortunate situation is due to
the small size of the matrix calculations permitted by M-LAB and, espe-
cially, due to the exorbitantly high cost of using this program on the ADP,
Inc. network. In the course of this work the capabilities and limitations
of the data spreading and constrained regularization techniques should be
investigated more thoroughly and alternate methods of stabilizing the calcu-
lations considered if necessary.

Throughout this contract work only single step and finite iterative
methods (singular value analysis) have been considered. This is in accord-
ance with the major emphasis of the literature of the field of resolution
improvement problems in general. There are, however, certain iterative
procedures which could be advantageous, and it is recommended that these
be given some consideration. In this case it is anticipated that M-LAB
computational costs may prove to be not unduly excessive and thus this
path of quick feasibility study of iterative schemes is recommended.

For many types of early stage software development processes the M-LAB
program can be extremely beneficial. The matrix capabilities are so con-
venient and facility with the Tanguage so easy to acquire that initial
feasibility studies concerning linear methods can often be conducted ex-
tremely quickly. It is very unfortunate that the use of M-LAB is currently
confined to the PDP-10 family of computers and it is recommended that
support be given to the structuring of an M-LAB program in a more portable
compiler.

Finally, due to the basically visual nature of the enhancement task

14



addressed in this contract work, graphics capability is a simple necessity.
As mentioned previously, the lack of high speed graphics capability at the
laboratory site has constituted a severe limitation and major obstacle of
progress of the contract work. Therefore it is recommended that the
Eastern Environmental Radiation Facility be fully supported in its attempt
to acquire quality high speed graphics with large color screen capability
and the associated software services. This equipment would also, of course,
prove extremely beneficial in countless other aspects of the work of the

laboratory besides those related to gamma data reduction.
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SECTION 1. NOISE REDUCTION VIA FREQUENCY DOMAIN ANALYSIS
In this report, the term "linear filter" is used to refer to a process
L which operates upon a given input signal f to produce the output signal

g = Lf in accordance with the following model :

3(9.\=% \"\&,E)Y(U‘-\&E 3 (1.1)

here the kernel function h is characteristic of the particular linear
filter in question. In this section the additional hypothesis that h is a
difference kernel will be stipulated; thus h(e,E) = k(e-E) for some
function k. Under this latter hypothesis (1.1) becomes an equation of con-
volution type and one often writes g = k*f to represent this situation. If
k(x) = 0 for all x < 0 then the process L is called "realizable" since then
the output signal level g(e) (at a given energy level e) is dependent only
on the behavior of the input signal at energy levels less than e. Although
this assumption of reaiizability is almost always made in usual filtering
work concerned with time-variant signals, it is not applicable to the pre-
sent endeavor and, in fact, none of the filters which are of interest here
are such realizable ones. General background on linear filters can be
found in [2, 17, 18]; work related to that in this section has appeared in
(3, 16, 33].

The Fourier transformation concept holds the key to the filter design
process which has proved fruitful in this work. If g = k*f and capitol
letters are used to denote the respective Fourier transforms then one has

G = KF [2]. Specifically. if

G Ce) = \w 3&&\ exp (~2%Lee) de
16



then

Gle) =KeeyFLey | (1.2)

thus the unwieldy convolution process originally indicated can be replaced
by the much more tractable multiplication operation, as indicated, by pass-
ing to the "frequency" domain via the Fourier transform.

It is assumed that the signal f, representing the output from a spec-
tral analyzer, is the sum f = d + n where d is the desired "pure" spectral
information and n is the noise superposed on d due to random variations in
the analyzer behavior, etc. Again following the above convention with
respect to capitol letters and Fourier transforms one obtains F =D + N
(due to the linearity of the transform). It is to be expected that F(e) is
approximately equal to N(e) for larger values of e; this is due to the
expectation that D(e) will be negligibly small for large e due to the
highly correlated nature of d. This expectation forms the basis of the
following procedure for increasing the signal-to-noise ratio.

The impulse response k of the filter is constructed by means of the

following considerations relative to its transform K:

(1) For small values of e, K(g) =1
(2) For large values of ¢, K{(e) = 0
(3) Beginning at a specified "cutoff frequency" €cs the values of
K change from 1 to 0 along some very smooth curve.
(This last consideration is motivated by the desire to avoid introducing
oscillation related to the Gibbs phenomenon in the graph of the output

signal g.) Then forming the product G = KF (which is equivalent to per-

forming the convolution g = k*f) will sharply attenuate the values F(e)

17



for ¢ significantly larger than € while retaining those values F(e) corre-
sponding to e < €c By interactive choice of €c and the transition para-
meter described below, one hopes in applying this method to increase the
signal-to-noise ratio of f while suffering no significant loss of resolution
(This enhanced version of f is the g above.)

Details of the Filter Construction and Application

Given the data signal f (as recorded by the spectral analyzer) one
first chooses evenly spaced samples fj thereby determining the sample

vector f = [fo, f . fN-l]' Then, 1in principle, the discrete Fourier

1, .o
=

transform ("DFT") F = [Fo, F , FN-l] defined by

17 -

\'-'& = ék: 'Qk gx?(l'ﬂ.\.'x\\IN)

is determined. (This is one of a number of trivially different forms of
the DFT which could be used.) Due to the large computational times in-
curred in the indicated formulation of the DFT (for large N) the actual
computation is carried out by means of a fast Fourier transform ("FFT")
[26]; this is true of all transforms and inverse transforms referred to in
this report and no further explicit mention of this point will be made.

The numbers Fj are complex but the object of interest in the present
context is the plot of the quantities [Fj[ (the complex modulus) versus
the index ("frequency number") j; in some instances it may be more appro-
priate to plot the logarithm of the modulus in Tieu of the modulus due to
the large range of values typically of interest. If the hypothesis that
f is the sum of a highly correlated signal d and a noise signal n is

satisfied then one will typically observe a transition from the higher

18



power associated with the smaller frequency numbers to lower levels of

power at the larger frequency values. This region of transition is the
Tikely Tocation of the optimum values of the cutoff parameter [18]; the
specific choice finally settled upon for a given set of data is accom-

plished interactively.

The final filter design consideration involves the specific manner in
which the transition of the values of K from 1 to O takes place. The
method which was finally selected for use calls for this transition to
occur along a cumulative normal distribution curve with standard deviation
given by the parameter o. Thus, given the choices of the parameters €c

and ¢ the (piecewise continuous) description of K is given by

1 8 e < e,
K ()= 0 il € > e . t6r (1.3)

L - —é;—-«- &eux\- :‘;«.U- ec-’)o‘\lk dx  else.

In the program written to accomplish the filtering process the discrete
sampling of K is accomplished using a "look-up table" to obtain approximate
values of the cumulative normal distribution curve ordinates.

Finally, the DFT E'of the enhanced version § of ? is obtained by
forming the products Gj = Kij, and a'is then determined by means of the
inverse DFT as

1
35 =N 2 Qb. exr(—l'\t'&S\k{N\ .

k

Under the indicated hypothesis, E will comprise an enhancement of ¥ having

increased signal-to-noise ratio. The optimum values of €¢ and o are found
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interactively; one finds that the results obtained are normally quite in-
sensitive to small variations in these parameters.

This methodology was first applied to the 1024 channels of light
intensity data indicated in Figure 1.1. (This data was kindly provided by
W. F. Ranson; it resulted from work conducted in the preparation of [25]).
The behavior of the 513 values of the discrete Fourier transform F of this
data is indicated by Figure 1.2. In this figure one may observe the ex-
pected tendency for the modulus (which is associated with the power of the
signal) to steadily decrease with increasing frequency number until a
"leveling off" is eventually experienced in the vicinity of approximately
frequency number 15 to 25. This behavior suggests that the cutoff frequency
€. for the filter to be applied to this data be chosen in the region from
15 to 25. After some experimentation the value €. = 15 was chosen as
appropriate. (The results finally obtained are quite insensitive to small
changes in ec.) Similarly the standard deviation o specifying the sharpness
with which the transition in the values of K occurs was selected inter-
actively. The value o = 2 was found to be adequate but, again, the results
are very insensitive to perturbations in the values of ¢. The transfer
function K corresponding to this choice of the parameters £e and o is in-
dicated graphically in Figure 1.3, and the modulus of the corresponding
result G from (1.2) is shown by Figure 1.4. This G represents the result
of the filtering process in the transform domain, and its inverse DFT g
(Figure 1.5) thus comprises the end product of the smoothing process.

The noise reduction technique was also applied to a noisy gamma
photopeak; the raw data is shown in Figure 1.6. In this case there were

60 channels of data and thus 31 Fourier transform values (figures detailing
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the intermediate steps have not been included in this instance). The same
sort of consideration of the modulus of the transform as was previously
employed suggests that cutoff frequency number be taken at channel 6. In
this case a simple truncation of the subsequent values of the transform

was sufficient to yield very acceptable results. The results of this
smoothing is shown in Figure 1.7. The results achieved in these two

examples (and in other applications which were not included here due to

their entirely similar nature) are especially good because of several
factors. First of all, the modeling assumption that the raw data signal f
should consist of a very smooth deterministic component d with a much smaller
amplitude, highly erratic noise signal n superposed is especially well satis-
fied in these example problems as is rather clearly revealed by the plots

of raw data (Figures 1.1 and 1.6). Secondly. the signal d (which may be
assumed to be accurately approximated by the result g indicated in Figure

1.5 and 1.7, respectively) is one which lends itself especially nicely to
approximation by trigonometric polynomials of low degree, and thus the
Fourier approach is exceedingly appropriate. In any case, the noise re-
duction technique outlined in this section has been amply demonstrated to

be a powerful tool for certain types of data, and this fact has been

recognized by the appearance of the article [6].
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Figure 1.2 Modulus of the transform of data from Figure 1.1
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Figure 1.4  Attenuation of transform shown in Figure 1.2.
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SECTION 2. GENERAL CONSIDERATIONS IN RESOLUTION IMPROVEMENT
The operational characteristics of a radiation spectrometer are

usually modeled by the equation*

\Y
%(e\ = %“\n(e,E) L) de (2.1)

where g(e) is the recorded intensity of the radiation at energy level e,
f(E) is similarly representative of the incident radiation, and h is a
function determined by the particular spectrometer (including its settings
and calibration, etc.). Often one makes the further assumption that h is
a difference kernel (i.e., h(e,E) = k(e-E) for some function k); it is well-
known, however, that this assumption is likely to be a good approximation
over only a limited energy range. With this assumption the equation be-
comes one of convolution type and one may often write g = k*f (or some
similar notation) to denote this convolution process.

Equations such as (2.1) are categorized as "Fredholm integral
equations of the first kind." There is a large amount of Tliterature devoted
to the problem of generating reliable approximate solutions of such equa-
tions and, in this literature, the many perversities of this problem are
evident. The essential point, however, is easily seen by examining the
following considerations [22].

For any integrable kernel h it can be shown that the values of the

function 9o, given by

*In practical applications there is typically no loss of generality in

specifying a finite upper limit U for the indicated integral.
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\J

%MLQ = So \\Le.,E) sm(me) de

approach 0 as m becomes large. This means, assuming that the map of f onto
g given by (2.1) is one-to-one, that replacing the data g by g + g (for
some large m) yields an equation whose solution differs from that of (2.1)
by the signal sin(mE). Th .n extremely small pertubation 9 in the data
of the problem gives rise io a very significant oscillatory disturbance in
the (theoretically correct) solution.

In practice, of course, one will never have data g which agrees
exactly with that which the analyzer model would describe for the given
incident signal f. Furthermore, even if such "exact" data were available,
computer roundoff errors will be incurred in any practical calculation.
Even though these errors will generally be small ones, the result of their
presence will often be a very significant (usually oscillatory) disturbance
of the true solution f. This difficulty causes any "straightforward"
attempt to achieve an approximate solution to (2.1) to be generally unsatis-
factory. and thus methods which are (at first glance) quite unintuitive are
entirely predominant in this field. The next several sections will discuss
the various methods which have been applied to the spectral resolution
improvement problem of (2.1). The following notation and specific problem
statement will be relevant to a reading of these sections.

Consider the linear operator W defined by

AY

W = &Q Wie,B) &(&) &E (2.2)
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then the formal problem associated with (2.1) can be stated as

Problem P*: Given g and h, solve the operator equation Hf = g for f.
On the other hand, any practical computational version of this problem
would have to be phrased more nearly as

Problem P: Given noisy samples from g and samples from h, estimate

sample values of f given that Wf = g.

In the course of this contract effort a great deal of Titerature re-
lated to the solution of problems similar to that given in (2.1) was sur-
veyed and the many techniques for solution of problems such as Problem P
presented in this Titerature were considered vis-a-vis the enhancement
problem for gamma radiation spectral data. In the following sections the
main types of solution procedures are described and implemented on proto-
typal example problems (in Section 7 and Section 8). In particular, the
necessity for some type of stabilizing procedure and even a priori assump-

tions (based on physical interpretation of the problem) will become evident
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SECTION 3. QUADRATURE METHODS AND SINGULAR VALUE ANALYSIS
The most immediate (and least successful) method for Problem P involves

choosing quadrature weights WS and replacing (2.1) by

where g. is an approximate observation of g(e.), f. = f(E.) and h,, =
i i iJ

J J
h(ei’Ej)’ (Here the e, and Ej are the sample points.) This can be written
> >
g=aA (3.2)

where A = [Aij] is the MxN matrix determined by Aij = thij’ M is the num-
ber of samples of g observed and N is the number of quadrature nodes E..

In this context M = N will always hold, and it will be further assumed that
A has rank N although more will be said concerning this assumption later.
In all sections following this one the assumption that M = N will be made
for simplicity.

If M =N then one has ? = A'lg as the formal solution. More generally.
when M 2 N the usual least squares criterion would be the natural sense in
which to consider the solution of the possibly overdetermined system A? = g.
In.either case, one may use the concept of the singular value decomposition
[19] of a matrix to computational advantage. Under this decomposition A be-
comes factored into the form UDV~ where U is an MxN matrix with orthonormal
columns, D is an NxN diagonal matrix whose diagonal entries are the (posi-
tive) singular values of A, and V is an NxN orthogonal matrix; here the

prime () symbol is used to denote the transposition operation. The normal

. - - > >
equations for the system Af = g are A“Af = A°g. The latter is a non-
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1 o fN but the

coefficient matrix A”A is expected to be very ill-conditioned and thus the

singular system of N equations in the indeterminants f

sofution of this system must be approached with great care. Using the
singular value decomposition A = UDV” and changing the variables f to % =
V-F and the data § to é = U°g, one obtains the diagonal system D% = é.
This can be easily solved for %; ? is then available from ? = V%.

Reliable solutions are generally not available from this procedure due
to the ill-conditionedness of A. The singular values o of A (which comprise
the diagonal entries of D - we assume, without loss of generality that they
are in decreasing order) will typically approach zero rapidly as i approaches
N. Since a consists of noisy samples, one will find that the components of
é are sums of the form di + n, where di is representative of the pure spec-
tral information and n. results from the noise. One hopes that the di
approach zero faster than the o; but the same is certainly not to be ex-
pected of the n- When the respective components of % are computed from
the diagonal system D% = é the quantities di/ai + ni/ci result. For larger
values of i the ratio ni/ci will tend to increase wildly and hence the
noise component of the data will dominate the solution.

This analysis of the situation suggests also the following possible
remedy. If Vj is the j th column of V and % has components cj as described,
thenthe least squares solution to nf = 5 can be expressed as ¥ =

N >
Z c.v.. As mentioned above, it is anticipated that the latter summands

21 J
J=1

in this expression will be dominated by the effects of the noise
component of the data § and thus one may wish to consider deleting some of
these. The term "singular value analysis" refers to the process of inter-

k

-~

actively considering the behavior of the partial sums fk =7 cjvj
j=1 3
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k=1, 2, ... N. In this regard the positive integer k can be considered
as a "smoothing parameter" with smaller values of k giving high signal-to-
noise ratio but low resolution level while the larger values of k yield the
reverse compromise situation. It should be observed that this process
amounts to the truncation of the last N-k singular values of A thereby
producing a computational version of A having rank k.

This technique was applied to several relevant resolution enhancement
problems during the course of this contract effort. The program of Golub
and Reinsch [12] was used to perform the singular value decompositions of
the various matrices as required while the software otherwise necessary
was implemented on the M-LAB program of the ADP, Inc. Network. Typical re-

sults obtained by this means are indicated in detail in Sections 7 and 8.
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SECTION 4. GENERAL PHILOSOPHY OF REGULARIZATION METHODS

There are a number of methods in the literature which may be loosely
identified as "regularization methods." Roughly speaking, each of these
methods attempts to provide a compromise between the residual in (2.1)
on the one hand, and the size of some norm of the solution f, on the other.
(This norm may be a reflection of the size of f or one of f's derivatives,
or some combination of these.)

The philosophy of regularization methods is fairly well revealed by
the statement of the following problem.

Problem R: Given the operator %, the data g (possibly contaminated

by noise), the norm ||-||,, and the number A > 0,
determine f = fx so as to minimize the expression

| lg- f||2 + x2[|fl|;. Here the expression ||-||2 refers
to the L2 (RMS) norm given by

‘o
A\Y

ke, = | Y, T e

In this class of methods the "smoothing parameter" X is often chosen
interactively (as was true for the singular value analysis parameter k of
the previous section). However, there has also been some fairly recent
work [32] in which the choice of this regularization parameter is made by
means of specific considerations concerning the data § and assumptions
relative to the characteristics of the noise which is contained within
this data signal. Due to the fact that the noise models considered thus

far in this type of work are not appropriate for the noise encountered in
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the spectral data from the analyzers of interest in this contract endeavor
and to the preliminary nature of the work reported herein, these methods
for the choice of the "optimum" value of A were not actively considered in
the computations which were carried out. The interested reader is referred
to [32, 33, 34] and the references contained therein.

In Section 8 it will be demonstrated that the application of the a
priori knowledge of the nonnegativity of the functions being considered can
have a most powerful effect on the quality of the solutions obtained. Thus
one may find it beneficial to modify the statement of Problem R to require
the minimization of the indicated form among functions f which have no
negative values. In such a case as this the problem of attempting to
select the "optimum" value of the regularization parameter is one of active

current research interest.
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Section 5. Discrete Implementations of Regularization

In this report the term "discrete regularization" (the terminology of
this field is not at all standardized) will be used to refer to a form of
regularization in which the quantities in the statement of Problem R
(Section 4) are all calculated using discrete operations. In this section
several methods based on the discrete regularization concept will be formu-
lated and their application to sample problems studied.

Euclidean Regularization

The term "Euclidean Regularization" ("ER") will be applied to methods
based on the following idea. Considering again the discretized version
E = A? of (2.1) (which one obtains by applying a quadrature formula to the
indicated integral) one may consider the problem: given 220, minimize the
expression
[1g-AF| |5 + 22| [F]12 (5.1)

> >

by properly selecting f = f In this (discrete) context the norm ll-||E

A
is that of the Euclidean length in N-space, i.e., ||f||E is defined as

Lzl

This problem may be solved rather efficiently [31] by realizing that
> > 2 2

the terms [[g-Af[[; and lel?IlE can be thought of as the total square
residuals in the linear systems A = 5 and AI? = 6, respectively. It
follows, therefore, that the minimization problem stated above is identical
with that of determining the least squares solution to the linear system

AlT - 1Y

»1 0
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and hence the solution, in principle, is available from the associated normal

equations
Woalh ] T - ol s

which can be written as
+

[A“A + A21]f = A”g . (5.2)
It is advantageous to write A (again as in Section 3) in the form

UDV-. Then A“A + 221 = V[D2 + A2I]V~, and so if one sets T = Vf and
E = Ué then (5.2) can be written

(D2 + 321]f = Dg . (5.3)
Due to the diagonal character of this latter system the components of % are
immediately available by performing the obvious divisions; then one easily
calculates ? = ?k by the multiplication of V and %. In this way repeated
calculation of ?A (for the various values of A which one may want to consi-
der in a typical interactive situation) can be very quickly and inexpensive-

ly generated.

Differential Euclidean Reqularization

Other forms in which discrete implementations of regularization may be
advantageously cast involve formulations dependent upon the difference
operator A given by (A¥)i = fi+1 - fi' It should be observed that A is a
lTinear transformation from N space onto (N-1) space and, thus, that the
second order operator A2 given by a2f = A(A?) maps N space linearly onto
N-2 space. 4 and A2 are, of course, often used in constructing discrete
approximations to the first and second derivatives, respectively, of a

function whose samples fi at equally spaced grid points have been determined.
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Due to the widely observed fact that approximate solutions to (2.1)
are often subject to pathological oscillation, it may be helpful to regu-
larize the solution of the discrete approximation AT = E in one of the
following ways. First, one may consider the optimization problem: given
A, g and &, x>0, minimize the expression

113 - AFL1Z + 0217112 + ()2 |oFl ] (5.4)
One could view this as the method which results from the replacement of the
second Euclidean norm in (5.1) by the norm ||-|] . given by |!?|[6 =
[||?[]é + 62||A?||E]%. Thus, this "First Order Differential Euclidean
Regularization Method" ("DER1") is concerned with the minimization of
[15 - A?]]é + Azll?llz (given g, A and A, 520) and hence results from a
small, formal (although important) alteration of (5.1). The same sort of
consideration as was given to the ER optimization problem now shows that

the DER1 solution to A? = E can be realized as the least squares solution

to the system A X -5.
»1 (&= {0
\§ A 0 (5.5)

where, in this context, "A" now denotes the matrix of the linear transforma-
tion A relative to the standard bases of the Euclidean spaces of dimension
N and N-1, respectively. (Specifically, then the jth column of the matrix
A is the image Agj of the jth column of the NxN idertity matrix I under

the transformation A.)

To solve tkis problem one may write the singular value decompositicn
of the 3N-1 by N coefficient matrix of the system (5.5) as UDV”. In this
case, the three factors are functions of the parameters X and §; U is 3N-1
by N with orthonormal columns while D and V are both N by N. If ? is

formally set to be Vf and g is defined as the product of U~ and the vector
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on the right hand side of (5.5) then the normal equations for (5.5) can be
transformed to the diagonal system Df = g. (Here U-U yields the N by N
jdentity matrix due to the fact that the columns of U are orthonormal.)

->

~ >
Then the coordinates of f can be easily found by division and f = fk s

generated as the product V%.

Another type of differential Euclidean regularization which can some-
times be used to advantage in suppressing oscillation in the solution of
(2.1) employs consideration of the growth of the second order difference
A2¥ in the formulation of the solution. This "Second Order Differential
Euclidean Regularization Method" calls for replacing the problem of solving
At = 3 with that of minimizing the expression

> > 2 5 -> 2 > 2
119 - AFT1g + 221 [Fl1g + (e)? [107F] g (5.6)
In a manner completely analogous to that used following (5.4), one could
consider this "DER2" method to consist of the minimization of the quantity
- x>0, 2 > g2 £ . . 2 €
llg - Af||E + [A]]f]]|71 where the norm ||+||” is defined by ||f]|™ =
2 2 1
[ FLE + 2l [2f] 1%
. > e -> > R > .
The solution f = fx to Af = g (given A, g and A, e20) is, of course,

the least squares solution to the system

J
0
v

where, here, A2 denotes the N-2 by N matrix whose columns are the respective
images of the second order difference operator on the standard basis vectors

for N space. This is a system of 3N-2 equations in the indeterminant coor-
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>
dinates of f and, using exactly the same sort of procedures as was followed
in deriving the DER1 solution, one can transform the normal equations for

~

(5.7) to a diagonal form such as Df = é. Then the solution ? = ?i is avail-
able as the product V%. (Here, of course, the singular value decomposition
of interest is that of the coefficient matrix of (5.7) into the form UDV~
where, in this instance, U is a 3N-2 by N matrix with orthonormal columns.)
Obviously, many other variations along the lines which have been illus-
trated here could be similarly formulated and implemented, but there does
not seem to be any justification in the context of the present study for
persisting further in this. It seems intuitively clear that the differ-
ential Euclidean regularization methods yield a significant generalization
of Euclidean regularization and that in some types of problems this added
generality may bring welcome improvement of quality to the solution. It
should also be clear that this increased capability has not been achieved
without the cost of additional computational inconvenience. The singular
value decompositions must now be performed on matrices which have almost
three times the number of entries as previously; also, there are now two
regularization parameters to consider instead of the previous one. Further-
more, the differential methods (as implemented) require that a singular
value decomposition be performed for each choice of the smoothing parameters
whereas the Euclidean method needs only one such decomposition {for a given
coefficient matrix A). Therefore the cost incurred in typical interactive
computations with these three discrete regularization methods is normally
significantly lower when using the first of them (Euclidean regularization),
although it would be possible to reduce the cost of the differential methods

by employing constructions due to Elden or van Loan [31] (as mentioned in
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the Summary).

Finally. it should be observed that any of these regularizations can
be implemented with one or more constraints imposed. In Section 8 it is
demonstrated that Euclidean regularization with nonnegativity constraints

can be a very attractive alternative.
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Section 6. Continuous/Discrete Regularization

The term "Continuous/Discrete Regularization Method" ("CDR") will be
used to refer to a practical computational method [32] based on a theoreti-
cal formulation which represents a compromise between the exact solution of
(2.1) (which would be normally totally impracticable) and the discrete
regularization methods. The basic idea of this method and the approach to
its solution are indicated in the following.

If & denotes the linear integral operator defined in (2.2) then given
(noisy) approximate observations g; = gle;). 1 < i <Nand x» > 0 one con-

i
siders the problem of minimizing the expression

\YJ

N 2
ﬁ Z \(‘MHep - 33\ 4 )S {(e) A€ (6.1)
Q

.\'l‘

by appropriately selecting the function f = fx' If ; denotes the vector of

residuals given by ry = (#&f)(ej) - 9; and ||-||2 denotes the usual L,
functional norm (defined in Section 4), then the problem becomes that of
minimizing ||?||E + NA||f||2 and hence the mixture of discrete and continuous
considerations becomes apparent. The solution f of this problem can be
determined (in closed form) by considerations which will now be briefly

outlined. (The kernel h of (2.2) is assumed to satisfy the hypothesis

stipulated in [32].) If the functions h, are defined by hk(E) = h(ek,E)

k
then the solution f = fA can be written as the linear combination
n
f= 3 Ckhk' Therefore the problem becomes that of determining the
k=1
scalars Cis veen Cy which minimize the function ¢ given by the expression
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N
(1
k=1

The guantities Cy of interest can, in principle, be determined from the

N 5 2
= )-g.1 + h
o(cys wuvs ¢y jzl[ ckhk)(eJ) gJ] Nx||Eck k||2'
extremal conditions requiring that all the partial derivatives of ¢ be
zero when evaluated at the points Cys »ees Cye
In determining the solution to these equations the following notation
is employed. 3 and ¢ denote the N vectors whose components are the

observations 9, and the coefficients Cs being sought, respectively. Also,

the N by N matrix M is that given by

N
.. = . . .2
M1J Soh(ei,E)h(eJ E)dE (6.2)
- > > >
Then the extremal conditions are reflected by the system M(Mc - g + Nac) = 0
and, using the assumption that M is nonsingular, this becomes
—}

M+ Nallc = g. (6.3)

Solutions of this system of equations for the ¢, then yields the CDR

k
solution f = fx to (2.1) in the form f = Z ckhk. This is in marked con-
trast to the results generated in Section 5, of course, since one 1S now
determining not approximate samples of the solution f, but, instead, a
closed form expression approximating f.

A significant computational improvement over the obvious least squares
solution of (6.3) as ¢ = [M+ N A I]+§ (where the plus sign denotes the
pseudoinverse) can be achieved in the following manner. Since the matrix
M is symmetric, the spectral theorem of Tinear algebra guarantees the
existence of a decomposition of the form VDV~ where V 1s an orthogonal
matrix and D is a diagonal matrix (the diagonal entries of D are the
eigenvalues of M). Using this decomposition, (6.3) can be written as
V[D+NxI]V‘E = 6 and so if one lets ¢ = Vé and a = Vé then the diagonal

system
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[DHNAI]C = ¢ (6.4)
results. The entries of ¢ are then immediately available by division, one

gets ¢ = VC and then generates the solution f = f. in the form f = Y Ckhk'

A
This allows extremely efficient interactive regularization iterations since,
for a given kernel function h, the decomposition calculation (of M as VDV”)
is performed only once; then the procedure indicated by (6.3) is repeated
for the various values of A which are to be considered.

In many cases a closed form expression for the kernel function h may
not be available. In such a case it will, of course, not be possible to
determine the entries of the matrix M in the fashion indicated above;
neither will the functions hk be available in closed form and so the repre-
sentation

f = chhk (6.5)
must be viewed in a different light. It is assumed that one does at least
have available the samples hit = h(eiﬁt) for 1< i sNandl <t s N and
that a quadrature rule with weights Wy and nodes Et has been selected (as a
replacement -for integrations in the variable E). Then the description of
the entries in (6.2) will be replaced by the approximate calculation

Mij S % wthithjt. (6.6)
Also, the availability of only the samples hit will dictate that (6.5) now
describe only a sampling of the solution f = fx' Letting ft denote the

approximation to f(E,) thus generated, (6.5) will be replaced by the

-+

equation f, = ) ¢ h
t K k 'k
improved by letting

E.) =) ch .. This sampling of f can be notationally
t i k 'kt

= ?A denote the vector of samples ft and defining a

-t =

. . _ - . +=_> 3
matrix H whose entries are Htk = hkt h(ek, Et)‘ Then if ¢ c, is the

solution to (6.3)(in which M has now been replaced by the approximation
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generated as indicated in (6.6)) one has the compact description
> >
f = e (6.7)

The notation chosen here emphasizes the fact that the matrices M and H are
entirely determined by the kernel function h (and the choice of grid points
e, and Et) and, thus, the selection of various values of X to be considered
in interactive iteration merely requires that the (inexpensive) repeated
solution of (6.4) be carried out. It follows, therefore, that the cost of
such application of CDR consists preponderantly of the cost of calculating
the entries of the matrix M (H is obvioysly a trivial matter in comparison).

Since the determination of M by (6.2) will seidom be possible in
applied work, the cost associated with (6.6) must be considered very seri-
ously. During this contract endeavor the calculation of such M's of the
order of approximately 40 by 40 has required an expenditure of more than one
thousand dollars on the ADP, Inc. Network. (Of course, this cost could be
cut tremendously by an eventual development of Fortran routines for execu-
tion on the Comnet system.) It was possible, however, to partially solve
this economic problem in a manner which will be described next.

In this discussion it will be assumed that h is a difference kernel
given by h(e,E) = k(e-E) where e and E take on values between 0 and U;
then k(s) is defined for s between -U and U and this definition may be
extended to all other real s by setting k(s) = 0. In this situation (6.2)
becomes

AV
Mij = gok(ei-E)k(ej-E)dE.
For many pairs i,j the two functions multiplied here, when considered as
functions of the variable E are such that the intersection of their supports

is included within the interval of integration. (This condition will be
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referred to as the "support hypothesis“ ) In such a case the formulation
S k( e;- e -E)dE
is appropriate and, using the change of var1ab1e s = ei-E, this can be
written as
S k(s s+A .e)ds (6.8)

where Aije = ej—ei.

Any quadrature rule could be applied to the approximate computation

of Mij in (6.8) but it is of interest here to use equally-spaced nodal

points s_ and equal quadrature weights w, = As. Then (6.8) is replaced by

t
Mij = AS % k(st)k(st+Ai,je)' (6.9)

The important fact here is that sums of the form of (6.9) can be computed

t

extremely efficiently through the use of the FFT algorithms previously

mentioned in Section 1. Specifically, letting k, denote k(st) it is known

t
[2] that the sums %-2 k. k are the values of the inverse Fourier trans-

t t t+r
form of the (discrete) power spectrum of the sequence ks t =1, oy N
provided that the nontrivial samples from k are augmented with a sufficient
number of zero samples. (Additional details concerning convolution and
correlation are given in [4].) Furthermore, the power spectrum seguence
required can also be efficiently found using the FFT since its values are
the squares of the moduli of the (complex) discrete Fourier transform values
Kt' It should also be mentioned that this indirect method of determining
the Mij satisfying the support hypothesis is not necessarily more efficient
than the direct calculation of (6.9) for smaller numbers of nodes Sgs but
for larger and larger problems the use of this technique provides increas-

ingly more important savings. Those entries Mij not satisfying the support

hypothesis have been computed using (6.9) although for very large numbers
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of quadrature nodes a calculation based on a convolution formulation could
provide significant savings through the use of the FFT as above.

In principle the CDR method is applicable when the solution f lies 1in
either the space L2 of functions which are square integrable on the interval
[0,U] or in a reproducing kernel Hilbert space with reproducing kernel
satisfying certain regularity conditions as detailed in [32]. In the next
section the results of the application of this method to a well-known il11-
posed problem of D.L. Phillips are presented. The high quality of these
results (compared to those obtained with totally discrete methods) is
apparent. Further, in Section 8, the application of this method to sample
resolution improvement problems for gamma spectra is considered. In
Section 8 the problems of estimating a certain moment of the incident
spectrum f as well as the spectrum f itself are considered. The spectrum
f is modeled as a linear combination of delta functions and thus the latter
problem does not fall within the conceptual framework of the CDR method as
formulated, per se. However, sample calculations of this type were per-
formed to gain some insight concerning the robustness of the discretizations

of the method as applied in Section 7, and good (comparative) results were

still obtained.
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Section 7. The Problem of D.L. Phillips

A classical problem in the Tliterature of first kind Fredholm integral
equations is that stated by Phillips in 1962 [22]. In fact, the methodo-
logy devised by Phillips for the approximate solution of these types of
equations can be considered one of the original regularizations methods.
The problem of interest is the following. First one sets k and g to be

the functions defined by

{rcos(Rr/3) 8 -3 ¢ v ¢y,
\\(x\ =

(7.1)
0 else
and
A
u-wh* T ()] ¢ (7.2)
-;-‘-:(—ig'\v\&'l\\*/';) L 0 ¢ r ¢ b

3(¥\=
ﬂk-x) elve .
Then the problem of Phillips can be stated in the following way: determine

the function f, defined on the interval [-6,6] such that

.
S Wiy, s) feoy &y = AR A A (7.3)
-6

where g is as given by (7.2) and where h(x,s) is defined to be k(s-x). It
can be shown that the exact solution of this problem is the function f given
by f(s) = k(s); Figure 7.1 shows the comparison between g and f. It should
be noted that h is a difference kernel and thus (7.3) is an equation of
convolution type; therefore a number of computational "shortcuts" are avail-

able for the solution of this problem.
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In Section 2 general qualitative remarks concerning the unstable
nature of the first kind integral equations were made, but some useful in-
sight may be afforded to a reader having no direct experience with such
problems by considering the results of a straight-forward approach to the
solution of (7.3) using the quadrature methods. To furnish such an indica-
tion of the nature of this problem the following exercise was conducted.

The integral of (7.3) was approximated through the use of both
Simpson's rule and the rectangle rule (thereby furnishing the appropriate
discretization of this equation); in both cases there were 41 quadrature
nodes taken (equally spaced) on the interval [-6,6]. Furthermore, since
in any real problem the data are likely to be obtained from experiment, it
is not reasonable to include the exactly computed corresponding samples from
g and so these sample values (which range in size from O to 8) were all
rounded to one fixed-point decimal place accuracy. The resulting discrete
problems then have the form of (3.1) and (3.2) wherein the quadrature
weights Wj correspond to Simpson's rule and the rectangle rule, respectively.
Here N = 41, and one wants to solve for the vector ?.

The singular value decomposition was used (as described in Section 3)
to compute the solutions ? to the two respective equations (3.2); the re-
sults obtained for the sample values of f have been included as Figures 7.2
and 7.3. These figures show that the computed "solutions" are totally
dominated by the effects of noise. (The noise results from the finite
arithmetic of the computer, the truncation errors in the quadrature rules
and the initial data errors due to the data rounding.) In particular,
while the true solution f forms a smooth cosine bell varying between O and

2, the computed samples are totally wildly dispersed ranging from about -88
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to 46 with Simpson's rule and -16 to 18 when using the rectangle rule.
Furthermore, it is important to note that the discrete "solutions" are
actually quite good in the usual sense of residuals. Thus the vector ;
which is plotted in Figure 7.2 satisfies equation (3.1) to what would
ordinarily be considered a very good "level of accuracy" since, for each
value of i, the difference between the quantities on the two sides of (3.1)
is quite small. The fact that this smallness of residuals does not reflect
high accuracy of the approximate solution is characteristic of i1l-
conditioned linear problems. Similar comments can be also made with regard
to the approximate solution indicated in Figure 7.3.

The singular value analysis described in Section 3 was carried out
for the problem of Phillips using both exact data and data rounded to one
fixed point decimal place; in each of these instances both Simpson's rule
and the rectangle rule were used to supply the quadrature weights W in (3.1).
To lower the cost of computation the numbers of grid points were reduced to
N = 13. The results are indicated by Figures 7.4 through 7.14; in these
figures the theoretically correct solution to the integral equation is indi-
cated by a trace of stars(*) while the thirteen computed sample values of f
are superposed by plotting zero's (0). Whenever two points are found to
overlie one another (to the resolution level of the plotter used) the two
symbols are superposed - this convention remains in effect throughout this
report.

It is very interesting to note that Simpson's rule (which would
ordinarily be considered generally superior to the rectangle rule) gives
oscillatory results (Figures 7.4 through 7.7) which eventually (Figure 7.7)

considerably "overshoot" the correct peak maximum. This pathology is evident
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even with exact samples from g and the rounding of the data merely causes a
further slight deterioration of the same qualitative features (Figure 7.8
and 7.9). On the other hand, using the rectangle rule with the same exact
and rounded data gave much more regular and accurate results (Figures 7.10
through 7.13) with the optimum approximations obtained using k = 9 and k = 7,
respectively. (Note that the smaller value of the optimum k when higher
levels of noise are present is in accordance with the theory outlined in
Section 3.) Previously, (when using Simpsons' rule and exact data) the
optimum value of k was also 9 but the results (Figure 7.6) were not nearly
as acceptable as with the rectangle rule (Figure 7.11). The explanation

is that when using the latter quadrature method the resulting eigenvectors
35 as described in Section 3 represent discrete versions of eigenfunctions
shaped much more compatibly with the solution f than is true when using
Simpson's rule. For this reason most of the emphasis in the remaining
computations to be discussed herein will be placed upon solutions in which
the rectangle rule is used for performing quadrature calculations (whenever
such are needed).

The various discrete forms of regularization discussed in Section 5
were also applied to Phillips' problem. Both types of quadrature methods
were applied for comparison; also, both exact and rounded data were con-
sidered. The results obtained using Euclidean regularization (Figures 7.14
through 7.20) show that the same sort of oscillatory pathology is incurred
when using Simpson's rule (Figures 7.14 through 7.17) as was previously
experienced when using singular value analysis with this quadrature method
(Figures 7.4-7.9). Similarly. the results obtained using the rectangle

rule (Figures 7.18-7.20) are much more stable with very high quality being
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obtained with zero regularization when exact data is used (Figure 7.18) with
only a slight degradation occurring as a result of rounding of the data
(Figure 7.20).

The alternate forms of regularization were also applied to this pro-
btem and some typical results are included (Figures 7.21-7.37). The compari-
sons here with previous results are quite interesting. Figures 7.22 and
7.25 show that the first order differential regularization is quite capable
of suppressing the pathological oscillation in the computed solution which
was previously invariably present (Figures 7.4-7.9 and 7.14-7.17) when using
Simpson's rule to perform the quadratures. Unfortunately, this increased
power comes at the cost of higher computational expense (as compared to the
Euclidean regularization method, for example). As previously mentioned, it
is possible to develop more efficient computational methods for performing
DER1 regularization, but it was not felt appropriate to expend any develop-
mental effort on this since no advantage over the ER regularization method
was observed (on these types of problems) when using the rectangle rule.

Similar comments apply to the use of the second order differential
regularization method (Figures 7.26-7.29). The previous pathology associated
with the use of Simpson's rule is largely eliminated (Figures 7.27 and 7.29),
but the computational expense is higher and no real advantage over less
expensive techniques was noted when using the rectangle rule.

A considerable amount of effort was expended on the continuous/discrete
regularization technique; typical results are displayed in Figures 7.30
through 7.37. It was found that the oscillation associated with the use of
Simpson's rule was very effectively resisted (Figure 7.31 and 7.33) and

that very nice results were also obtained if the rectangle rule was used
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instead (Figure 7.35 and 7.37). Moreover, as described in Section 6, very
dramatic reductions in computational costs were achieved by various means.
Although only a slight increase in quality of results over the Euclidean
regularization method was observed when using the rectangle rule, it is

felt that the CDR method deserves further considerations.
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Simpson’s rule; k = 13.
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Simpson’s rule; k = 13.
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Figure 7.10 Singular value analysis with exact data and rec-
tangle rule; k = 1.
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Singular value analysis with exact data and rec-
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Figure 7.12 Singular value analysis with rounded data and rec-
tangle rule; k = 7.
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Figure 7.13 Singular value analysis with rounded data and rec-
tangle rule; k = 13.
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Figure 7.14 Euclidean regularization with exact data and
Simpson’s rule; A = 0.

68



.97

.77

.57

.36

+955

751

.548

- 344

140

Figure 7.15 Euclidean regularization with exact data and
Simpson’s rule; A = .030.
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Figure 7.16 Euclidean regularization with rounded data and
Simpson’s rule; A = 0.
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Figure 7.17 Euclidean regularization with rounded data and
Simpson’s rule; A = .030.
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Figure 7.18 Euclidean regularization with exact data and rec-
tangle rule; A = 0.
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Figure 7.19 Euclidean regularization with rounded data and
rectangle rule; A = 0.
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Figure 7.20 Euclidean regularization with rounded data and
rectangle rule; A = .030.
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Figure 7.21 DERI regularization with exact data and
Simpson’s rule; A = .050, 6 = 1.
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Figure 7.22 DERI regularization with exact data and
Simpson’s rule; A = .100, 6 = 1.
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Figure 7.23 DERI regularization with exact data and
Simpson’s rule; A = .150, 6 =1.

77



20 + 0 +

3 * .

.97 + +

* *
<74 + * * +
52 + * * +
0 0
.29 + +
* *
.06 + +
. 834 + * * +
.607 + +
* *
. 380 + +
. (o] [¢] .
* *
153 + +
(o] 0
0 * * 0
@ % % @ * * * % % * * % &k % % * @ %x *x @
Foeeoes Feeoen +eeooo Foeoens +oeeens +eoooeas Heeoon Foseee Feoeons +eoenn +eeenn 4eeens +eeens +oe
~-6.00 ~4.20 -2.40 -.600 1.20 3.00 4.80

Figure 7.24 DERI regularization with rounded data and
Simpson’s rule; A = .075, 6 = 1.
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Figure 7.25 DERI regularization with rounded data and
Simpson’s rule; A = .150, 6 = 1.
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Figure 7.26 DER2 regularization with exact data and
Simpson’s rule; A = .010, e = 1.
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Figure 7.27 DER?2 regularization with exact data and
Simpson’s rule; A = .100, e = 1
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Figure 7.28 DER2 regularization with rounded data and
Simpson’s rule; A = .010, e = 1.
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Figure 7.29 DER2 regularization with rounded data and
Simpson’s rule; A = .100, e = 1.
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Figure 7.30 CDR regularization with exact data and
Simpson’s rule; A = 0.
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Figure 7.31 CDR regularization with exact data and
Simpson’s rule; A = .025.
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Figure 7.32 CDR regularization with rounded data and
Simpson’s rule; A =0
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Figure 7.33 CDR regularization with rounded data and
Simpson’s rule; A = .030.
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Figure 7.34 CDR regularization with exact data and rec-
tangle rule; A = 0.
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Figure 7.35 CDR regularization with exact data and rec-
tangle rule; A = .025.
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Figure 7.36 CDR regularization with rounded data and rec-
tangle rule; A = 0.
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Figure 7.37 CDR regularization with rounded data and rec-
tangle rule; A = .030.
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Sectijon 8. Application to Ge(Li) Spectrometer Data

The final problems to which the methods developed under this contract
were applied dealt with the attempt to achieve resolution improvement of
actual spectral records recorded by a Nuclear Data ND100 spectrometer during
an analysis of radium samples. In conducting these computations it was
assumed that the model of (2.1) is valid and that h can be modeled as a
difference kernel, as previously mentioned in the Summary. The recorded
response of the instrument to a single radium peak was therefore accepted
as comprising samples of the impulse response of the spectrometer; this
record will hereafter be referred to as "PT4". The data used in the first
series of these calculations was constructed by superposing 5% random
noise on the PT4 data. (Throughout this discussion the records which are
described all consist of 31 data points. In this section all curves are
shown in normalized form.) This record was given the notation "PT4N0O5";
it is referred to as "spectral data" in the figures in this section. By
dealing with data generated in this way it was possible to initially avoid
any tendency of the spectrometer to violate the shift-invariant hypothesis
and the resulting difficulty associated with such pathology of the instrument.

The results of the singular-value analysis of the spectral data are
shown in Figures 8.1 through 8.7. In these figures it can be observed that
values of k large enough to yield any significant resolution improvement in
the data yield also accompanying contamination by noise effects which is
unacceptably Targe for many purposes. This situation is typical of the
results obtained in all calculations with actual analyzer data using the

singular value analysis approach.
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Figures 8.8 through 8.12 indicate the type of results obtained with
Euclidean regularization and various values of the smoothing parameter A.
Here some improvements over the results obtained using singular value
analysis are noted. For example, Figure 8.11 (1 = .001) reveals a fairly
significant level of resolution improvement with the degrading effects
lTimited primarily to some "undershooting" of the zero count level in the
immediate vicinity of the peak tip location.

The other figures indicating results obtained using the spectral data
(Figures 8.13 through 8.21) show typical behavior of the differential and
continuous/discrete regularization methods as applied to spectrometer data.
No clear superiority of these methods (over Euclidean regularization) is
apparent in these results and, due to the larger costs incurred with their
use, there seems to be 1ittle to recommend them (in this type of problem).

The lower quality of the results observed to this point in this
section (as compared with the previous one) seems to be due to an inherent
instability in the process of attempting to deconvolve the analyzer peak
data so as to produce the (theoretically correct) extremely sharp peak
comprising the presumed incident data signal. One knows, of course, that
deconvolution is normally an unstable process in any case, but the results
obtained thus far (compared to those produced in Phillips' problem, for
example) indicate that the problem at hand is especially unstable. The
following compromise problem formulation was suggested by C. Nelson,
Environmental Analysis Division, Office of Radiation Programs, as previously
mentioned. With the viewpoint that the impulse response k of the analyzer
is of an approximately Gaussian nature, one may select a Gaussian pulse p

of half-width significantly less than that of k. Then a resolution improve-
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ment calculation which yields the result p (with Tow superposed noise) from
the spectral data would be a highly acceptable, though not ideal, achieve-
ment.
Continuing in the above vein, one may write (2.1) as g = k*f where the
star (*) denotes the operation of convolution. Convolving with p gives
g*p = k*f*p or
k*fp = gp (8.1)
where, through the rest of this section, a subscripting with the name of a
function will be used to indicate the result of convolution with that
function. (Since convolution is commutative there is no need to insist on
a given order in which the operands are listed.) If one replaces the pro-
blem of solving (2.1) for f with that of solving (8.1) for fp then the
compromise mentioned above has been conceptually effected. From the
theoretical point of view one may regard the compromise problem in the
following manner. The problem of solving (2.1) for f (as stated) has proven
to be a quite ill-conditioned one so that significant levels of resolution
improvement are being found extremely difficult to obtain (in the absence
of such a priori information as will be mentioned momentarily) without un-
acceptable contamination due to noise effects. Therefore one has now re-
placed the original problem with that of determining the moment fp given
by -
fp(E) = %of(x)p(E—x)dx. (8.2)
The tacit hope, of course, is that the solution of (8.1) for the moment fp
defined by (8.2) will prove to be a significantly more stable problem (when

discretized for actual computation, as usual) than that of solving (2.1) for

f, as originally posed.
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The pulse p chosen for the data being considered in this section is a
Gaussian of standard deviation 4/3. The convolution required to produce the
data gp for the problem of (8.1) was, of course, implemented in a discrete
fashion. Although it is perhaps possible to obtain some reduction in com-
putational costs on the ADP, Inc. system through the use of the Fourier
approach to convolution outlined in Section 1, the savings would not be
significant enough in the present problem to justify the additional time
required for software development and so the straight-forward approach was
taken. Specifically, a matrix PM with entries given by PMij = p(E§Ej) was
generated; then the product of PM and the vector E consisting of samples
from g yields the sample vector Ep appropriate for a discrete implementation
of (8.1). The approximate solution of the resulting discrete version of
(8.1) was then approached using the Euclidean regularization method.
(Other methods of solution were not considered due to cost considerations
and the prior indications that no significant improvement in the results
obtained is likely.)

When the data g consisted of the previously considered spectral data
PT4NO5 the Ep resulting was referred to as the "spread spectral data"; the
results obtained are indicated in Figures 8.22 through 8.26. A comparison
of these plots with the previously obtained Figures 8.8 through 8.12 (in
which Euclidean regularization was used with the same spectral data) shows
that very significant improvement of the stability of the problem has been
achieved by using the data spreading technique while only very minimal
losses of resolution level have been incurred.

The remaining consideration of interest in this section has to do

with the application of these methods to other actual photopeak data taken
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from the analyzer {(as opposed to the previous spectral data which was
generated by superposing random noise on the impulse response "PT4" of the
analyzer). This second data, which will be called the “cross spectral®
data, resulted from the recorded response of the spectrometer to a second
radium peak; it will be denoted as "PT3". For reasons previously indicated,
only the Euclidean regularization method was applied to the approximate
solution of equations (2.1) and (8.1) with the data g = PT3. (The impulse
response k = PT4 and the choice of the Gaussian pulse p remained as before.)

The results obtained with this cross spectral, and spread cross
spectral, data are shown by a comparison of Figures 8.27 through 8.31 with
Figures 8.32 through 8.36, respectively. The greatly increased stability
of the latter group of solutions is most vivid and, in particular, Figure
8.34 shows that acceptable quality results are beginning to become avail-
able through the combined use of the regularization and data spreading
techniques, whereas the regularization methods alone (Figure 8.29) do not
yield results of stability sufficient for many purposes. One further con-
sideration of gamma spectral data resolution improvement was studied, how-
ever, and found to be of great potential.

One knows, of course, that the solutions f of the problems being con-
sidered in this section are necessarily nonnegative ones. It has become
obvious, however, that the effects of small amounts of noise and large
tendency toward instability combine to give computed results fA having
significantly Targe negative values. It is therefore very reasonable to
hope that one might obtain some improvement in the results of solving both
(2.1) and (8.1) by using the constraint f(x) 2 0 for all x. Computation-

ally this was effected by reconsidering the problem of (2.1) in the
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Euclidean regularization framework where the a priori information of non-
negativity was now imposed through the appropriate constraints. Thus the
statement of the problem of (5.1) was modified to:

Minimize ||§ - A?||2 + A2||?[|2 subject to fj >0 (8.3)

In solving (8.3) coEputationa]%y an approach analogous to that indi-
cated in Section 5 (following (5.1)) was taken; the well-known subroutine
ANLS of Lawson and Hanson [19] was used in conjunction with a "driver
program” written* for the EERF computer system. Again considering both
the spectral data PT4NO5 and the cross-spectral data PT3, resclution
improvement calculations were carried out; the results of these computations
are indicated by Figures 8.37 through 8.40. These final results appear
most promising. It is very evident that a great increase in the stability
and sharpness of the enhancements has been obtained in these sample calcu-
lations and, in fact, even setting A = 0 (no regularization at all) appears
to be a completely reasonable alternative. Using the usual FWHM criterion
one finds that in Figure 8.37, for example, resolution improvement by a
factor of approximately five is in evidence. Due to lack of time there
were no further calculations conducted with this "ERNN" approach but it is
clear that larger scale investigation of this method should be a high

priority item in the second phase of work under this contract effort.

*Juanita Coley of EERF provided a great deal of expert assistance with

programming and systems analysis during the course of this work.
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Euclidean regularization with spectral data;
A =.001.
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Figure 8.15 DER2 regularization with spectral data,;
A =.100, e = 1.
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Figure 8.18 CDR regularization with spectral data; A = .001.
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Figure 8.20 CDR regularization with spectral data; A = .100.
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Figure 8.21

CDR regularization with spectral data; A = 1.00.
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Figure 8.22

Euclidean regularization with spread spectral
data; A = 0.
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Figure 8.23

Euclidean regularization with spread spectral
data; A = .00001.
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Figure 8.24

Euclidean regularization with spreac spectral
data; A = .0001.
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Euclidean regularization with spread spectral
data; A = .001.
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Figure 8.26  Euclidean regularization with spread spectral
data; A = .010.

123



«975

.777

579

.381

.183

-.145@-1

-.212

-.410

-.608

-.806

et eoseseteseneticcectecesetecoscstecccstercestirrnetriiccetecniietiiiieteceieteiiant.

+ * o +
. * * -
+ * +
: * :
+ +
: . * .
. 0 .
+ +
. 0 0 .
3 * * -
+ 0 +
* 0 0 *

B 0 * o] 0 0 0 .
. 0 * ® o @ % % * .
+9 *x @ % x * x x x k k Kk k4
. o] 0 0 .
. 8] 0 .
. 0 0 .
+ 0 0 +
. o} .
+ o+
+ +
+ +
. 0 .
et et et i it it ceticiirstiecsoeteineietieccetircsaticnsateccaetecceetecsocotornnetaon
1.00 5.50 10.0 14.5 19.0 23.5 28.0

Figure 8.27

Euclidean regularization with cross-spectral
data; A = 0.
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data; A = .00001.
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Figure 8.29  Euclidean regularization with cross-spectral
data; A = .0001.
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Figure 8.30

Euclidean regularization with cross-spectral
data; A = .001.
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Figure 8.32
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spectral data; A = 0.
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Figure 8.33  Euclidean regularization with spread cross-
spectral data; A = .00001.
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Figure 8.34  Euclidean regularization with spread cross-
spectral data; A = .0001.
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Figure 8.35 Euclidean regularization with spread cross-
spectral data; A = .001.
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Euclidean regularization with spread cross-
spectral data; A = .010.
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Figure 8.37 ERNN regularization with spectral data; A = 0.
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.001.

135



«957 +

764 +

«667 +

«376 +

.182 +

.8480@~1 +

Figure 8.39 ERNN regularization with cross-spectral data;
A=0.

136



. 861

.570

+376

. 279

Figure 8.40 ERNN regularization with cross-spectral data;
A = .003.

137



10.

BIBLIOGRAPHY

Baker, C.T., Fox, L., Mayers, D.F. and Wright, K., Numerical Solution
of Fredholm Integral Equations of First Kind, Comput. J. 7 (1964)
141-148.

Bendat, J.S. and Piersol, A.G., Random Data: Analysis and Measurement
Procedures, Wiley-Interscience, 1971.

Blinowska, K.J. and Wessner, E.F., A Method of On-Line Spectra Evaluation
by Means of a Small Computer Employing Fourier Transforms, Nucl.
Inst. and Meth. 118(1974) 597-604.

Bloomfield, P., The Fourier Analysis of Time Series, John Wiley and
Sons, 1977.

Brillinger, D.R., Time Series: Data Analysis and Theory, Holt,
Rinehart and Winston, 1975.

Chambless, D.A. and Broadway, J.A., Digital Filtering of Speckle-
photography Data, Experimental Mechanics 19 (1979) 286-289.

Clark, E.L., Jr. and Croll, R.H., Jr., Applications of Digital
Spectral Analysis and Filtering to Aerodynamic Testing, Technical
Report SLA-73-7048A, Sandia Laboratories, Albuquerque, NM.

Cooley, T.W. and Tukey. J.W., An Algorithm for Machine Calculation of
Complex Fourier Series, Math. Comp. 19, (1965) 297-301.

Cullum, Jane, Numerical Differentiation and Regularization, SIAM J.
Numer. Anal. 8 (1971) 254-265.

Dines, K.A. and Kak, A.D., Constrained Least Squares Filtering, IEEE
Trans. Acoust., Speech, Signal Processing ASSP-25 (1977) 346-350.

138



11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

Ekstrom, M.P., A Numerical Algorithm for Identifying Spread Functions
of Shift Invariant Imaging Systems, IEEE Transactions on Computers
C-22 (1973) 322-32%.

Golub, G.H. and Reinsch, C., "Singular Value Decomposition and Least
Squares Solutions" in J.H. Wilkinson and C. Reinsch (editors)
Handbook for Automatic Computation, Vol. II: "Linear Algebra",
Springer, 1971.

Hanson, R.J., A Numerical Method for Solving Fredholm Integral Equations
of the First Kind Using Singular Values, SIAM J. Numer. Anal. 8
(1971) 616-622.

Hilgers, J.W., On the Equivalence of Regularization and Certain
Reproducing Kernel Hilbert Spaces Approaches for Solving First
Kind Problems, SIAM J. Numer. Anal. 13 (1976) 172-184.

Inouye, T., The Super Resolution of Gamma-Ray Spectrum, Nucl. Inst.
and Meth. 30 (1964) 224-228.

Inouye, I., Harper, T. and Rasmussen, N.C., Application of Fourier
Transforms to the Analysis of Spectral Data, Nucl. Inst. and
Meth. 67 (1969) 125-132.

Koopmans, L.H., The Spectral Analysis of Time Series, Academic Press,
1974.

Lanczos, C., Applied Analysis, Prentice Hall, 1961.

Lawson, C.L. and Hanson, R.J., Solving Least Squares Problems, Prentice
Hall, 1974.

Perry, W.L., Approximate Solution of Inverse Problems with Piecewise

Continuous Solutions, Radio Science 12 (1977) 637-642.

139



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Peterson, G.E. et. al., Singular Value Decomposition and Boron NMR
Spectra in Glass, Journal of Non-Crystalline Solids 23 (1977)
243-259.

Phillips, David L., A Technique for the Numerical Solution of Certain
Integral Equations of the First Kind, J. Assoc. Comput. Mach 9
(1962) 84-87.

Rosenfeld, A., Picture Processing by Computer, Academic Press, 1969.

Rosenfeld, A. and Kak, A.C., Digital Picture Processing, Academic
Press, 1976.

Schaeffel, J., Mullinix, B., Ranson, W. and Swinson, W.F., "Computer
Aided Optical Nondestructive Flaw Detection System for Composite
Materials", U.S. Army Missile Research and Development Command,
Redstone Arsenal, AL, Technical Report T-78-5.

Singleton, R.C., An Algorithm for Computing the Mixed Radix Fast
Fourier T1ransform, IEEE Trans. Audio Electroacoust. AU-17 (1969)
93-103.

Tihonov, A.N., Regularization of Incorrectly Posed Problems, Soviet
Math. 4 (1963) 1624-1627.

Tihonov, A.N., Solution of Incorrectly Formulated Problems and the
Regularization Method, Soviet Math 4 (1963) 1035-1038.

Tihonov., A.N. and Glasko, V.B., An Approximate Solution of Fredholm
Integral Equations of the First Kind, USSR Comp. Math, and Math.
Phys. 4 (1964) 236-247.

Twomey, S., On the Numerical Solution of the Fredholm Integral Equations
of the First Kind by the Inversion of the Linear System Produced by

Quadrature, J. Assoc. Comput. Mach 10 (1963) 97-101.

140



31.

32.

33.

34.

35.

Varah, J.M., A Practical Examination of Some Numerical Methods for
Linear Discrete I11-Posed Problems, SIAM Review 21 (1979) 100-111.

Wahba, G., Practical Approximate Solutions to Linear Operator
Equations When the Data are Noisy, SIAM J. Numer. Anal. 14 (1977)
651-667.

Wahba, G., "Optimal Smoothing of Density Estimates" in Classification
and Clustering, Academic Press, 1977.

Wahba, G. and Wolc, S., A Completely Automatic French Curve: Fitting
Spline Functions by Cross Validation, Communications in
Statistics 4 (1975) 1-17.

Yule, H.P., Mathematical Smoothing of Gamma Ray Spectra, Nucl, Inst.
and Meth. 54 (1967) 61-65.

141

*U .S . GOVERNMENT PRINTING OFFICE:1980-647-854/5062.Region &



EJED EPA 520/5-80-003
Chambless, Donald A.
Radiological data analysis
in the time and...
— Due Name and Phone$ Mcode —_

EJED EPA 520/5-80-003
| Chambless, Donald A. _
—— Radiological data analysis

in the time and...
Due Name and Phone# Mcode

U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Prevention, Pesticides & Toxic Substances
OPPTS Chemical Library (7407)

401 M Street SW
Washington DC 20460
(202) 260-3944



United States

Environmental Protection
Agency

Office of Radiation Programs

Eastern Environmental
Radiation Facility

P.0. Box 3009
Montgomery AL 36193

Postage and
Fees Paid
Environmental
Protection
Agency
EPA-G35

Official Business
Penalty for Private Use $300

Third Class



