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ABSTRACT

A theoretical study of the heat and momentum transfer resulting
from a flow of power plant condenser effluent discharged vertically to
shallow, quiescent coastal receiving water is presented. The complete
partial differential equations governing steady, incompressible, tur-
bulent flow driven by both initial momentum and buoyancy are solved
using finite -difference techniques to obtain temperature and velocity
distributions in the near field of the thermal discharge.

Turbulent quantities were treated through the use of Reynolds
stresses with further simplification utilizing the concept of eddy
diffusivities computed by Prandtl's mixing length theory. A Richardson
number correlation was used to account for the effects of density
gradients on the computed diffusivities.

Results were obtained for over 100 cases, 66 of which are reported,
using the computer program presented in this manuscript. These results
ranged from cases of pure buoyancy to pure momentum and for receiv-
ing water depths from 1 to 80 discharge diameters deep. Various com-
puted gross aspects of the flow were compared to published data and
found to be in excellent agreement. Data for shallow water plumes
and the ensuing lateral spread are not readily available; however, one
computed surface temperature distribution was compared to proprietary
data and found also to be in reasonable agreement.

This report was submitted in fulfillment of Grant No. 16130-DGCGM
between the Environmental Protection Agency and the Department of

Mechanical Engineering, Oregon State University.
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Variables which are not listed in this nomenclature are defined
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Subscripts

The following subscript definitions hold unless otherwise

defined in the text.
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port

Refers to slot jet width
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E1Tiptic partial differential equation

Refers to heat

Tensor index

Tensor index, also computational grid index in
the horizontal (radial) direction
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Maximum value

Computational grid index

Refers to conditions at outfall port
Computational grid index

Refers to radial direction, or reference condition
for scalar quantities

Refers to condition at surface

Refers to turbulent conditions, or transport
equation

Refers to x (horizontal) direction

Refers to z (vertical) divection
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Q Refers to vorticity

Other Subscripts
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-

v Gradient operator, del

A Finite-difference operator

) Summation except where otherwise specified
61j Kronecker delta function

eijk Permulation tensor

Log Natural Togarithm

H Absolute value

Hat, unit vector

- Overbar, time or space averaging
sinh, cosh, Hyperbolic functions

tanh, coth
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A NUMERICAL MODEL FOR PREDICTING ENERGY DISPERSION
IN THERMAL PLUMES ISSUING FROM LARGE, VERTICAL OUTFALLS
IN SHALLOW COASTAL WATER

CHAPTER 1
INTRODUCTION

The growing demand for electric power in the United States has
set the stage for an additional environmental concern; the enormous
quantities of waste heat discharged to our natural waterways by
existing and planned large thermal power plants. The concern, of
course, is the impact of the waste heat on the resident ecosystem.

The answer to the underlying question, "are thermal effects a detri-
ment to the environment?", is largely a matter of philosophy since
certain species of the flora and fauna are apt to thrive under the
altered conditions whereas others would doubtless perish.

The central issue is, however, that these large quantities of
discharged waste heat will in fact alter the environment and certain
changes in the ecosystem will occur. Just what changes will take
place and the nature of the shift in the ecosystem are open to numer-
ous questions. Preservation of species, the impact on the overall
food chain, and the encroachment of undesirable species are certainly
compromising aspects. These questions and many others of equal im-
portance are certainly not unattended, but the interaction of the eco-
system with the environment and the complexity of ecodynamics as
influenced by artificial shifts in the environment presents an ana-
Tytical and empirical task to arrive at reliable predictive methods of

monumental proportions.



Although the ultimate concern of so-called "thermal pollution®
1ies in the ecological impact, it is necessary as a first step to
assess the receiving water temperature changes. Prediction of the
temperature distribution in natural waters is in itself a formidable
task owing to the complexity of such natural phenomena as hydro-
dynamics, dispersion, and atmospheric interaction (transport process-
es). To date, no analytical or empirical tool has been devised to
predict thermal distributions with any degrce of confidence for gen-
eral situations. The state-of-the-art has been developed along the
lines of applying the most appropriate simplified analytical or empir-
ical model to an immediate situation. Unfortunately, some situations
are complicated to the extent that simplified methods are a hopeless
exercise and can lead to a valueless or grossly overrestrictive
assessment.

Such complexities lead to methods involving more elaborate
nunerical models or physical scale modeling. In this work, we take
the former approach, that of numerical modeling.

As is pointed out in Chapter 2, previous analytical plume
modeling efforts have dealt primarily in two areas which are:

e The initial mixing zone where, in certain cases, simil-

arity solutions apply, and

e The far field where heat transfer is governed by turbulent

diffusion and atmospheric interchange.



The past research has largely neglected an areaof prime impor-
tance, that being the near field of large, vertical outfalls in shal-
low coastal waters. This neglect is in part due to the complexity of
the flow region in question and the fact that it is a new problem.
The near thermal field for such outfalls is, nevertheless, a very

important aspect of plume analysis, and is in need of analytical

attention.
1.1 Objectives

The primary objective of the work contained in this thesis is
the investigation and application of finite-difference methods in ana-
lyzing the dispersion of thermal effluents issuing from large single
port vertical outfalls in shallow coastal receiving water. Such sys-
tems are typical of several existing and/or planned thermal power
plant reject-heat discharge systems. This analysis, constitutes
research needed for future thermal discharge management. Since we are
interested primarily in the hydrodynamics and energy transport for a
shallow water, vertically confined plume, simplified analytical
methods cannot be applied with confidence. Physical modeling holds
some promise as an alternative to numerical modeling, at least in the
near field and in the absence of stratification. Since the numerical
modeling devised in this study was a considerable effort in itself,
physical modeling was not attempted. Verification of the numerical
techniques was rather carried out by testing the computer program for
several cases that could be checked with data published in the

literature.



The secondary objective of the work was to develop a computer
program for analytical study of the above mentioned outfall systems
which would also include use of similarly solutions where applicable,

along with the more elaborate numerical techniques.

1.2 Summary

In the initial scoping of the vertical plume problem it was
planned to investigate both the transient and steady state operation
of the outfall system. Initially, several transient cases were run
which were academically quite interesting but it was soon ascertained
that the application of steady flow techniques was more efficient in
obtaining the desired results--the quasi-steady flow distributions.
Consequently, the transient techniques were abandoned. In general,
the scope of the study encompasses nearly all of the real quasi-
steady flow complication expected in actual situations which conform
to axisymmetric assumptions. The most notable complication is that of
plume induced turbulence.

One exception to the modeling of observed phenomena was the
surface boil; the surface was assumed flat and free-slip in all
instances. This assumption averted the problem of modeling a dis-
torted surface which is thought to be of small importance to the
overall plume characteristics. Other complications accounted for
include the possible existence of a potential core, ambient strati-
fication, and non-homogeneous, anisotropic turbulence in both the

vertical rise and lateral plume spreading. Flows for the entire



-range of densimetric Froude numbers were investigated, including

cases of pure natural convection.

The solution method deemed most practical for purposes of this

study was the stream function-vorticity, finite-difference approach,

in axisymmetric coordinates. The transport equations were used in

their conservative forms and special upstream differencing techniques

were employed for the convective terms.

The finite-difference computation technique verification study

was carried out for three deep water fiow categories:

pure momentum jets,
pure buoyant plumes, and
forced plumes where both initial momentum and buoyancy

play important roles.

Results from this portion of the study were compared to data

reported in the literature or valid similarity solutions. These com-

parisons involved:

centerline distributions of velocity and buoyancy (or
temperature),

spread of the half-radius,

radial distributions of vertical velocity and buocyancy
(or temperature),

radial velocities,

entrainment trends, and

eddy diffusivities.



The effects of several different computational aspects were

inctuded which involved effects of the:

» boundary conditions and their computation,

e various models for eddy diffusivities,

e Prandtl (or Schmidt) number effects,

e Richardson number modification of vertical diffusivities,

e potential core,

e ambient turbulence,

o vertical turbulence within the plume, and

o Vvarious factors involving numerical stability and con-

vergence.

The general results of this portion of the study showed excel-
lent agreement with experimental data where the eddy diffusivities
are well modeled. Plume generated turbulence was modeled using
Prandtl's mixing length hypothesis in all cases.

In Chapter 8 the plume model is extended to shallow water cases.
Verification is not presented since there are no readily available
appropriate or reliable data.* Here we rely on the extensive veri-

fication study of Chapter 7 mentioned above.

*Verification of the surche temperature distribution was obtained
for one case. The data is proprietary, hence no details of operating
conditions are disclosed.



CHAPTER 2
DISCUSSION OF THERMAL PLUMES AND PROBLEM DESCRIPTION

The dynamical behavior of heated water issuing to the marine
environment from an ocean outfall is influenced by a number of variables
which fall into two general categories. The first of these categories
encompasses engineered variables such as outfall design, effluent temp-
erature, etc; and, the second, those variables which we cannot control,
such as the oceanographic and meteorlogical parameters. In this chapter,
we shall illustrate and discuss how ambient and engineered variables
influence the gross behavior of a thermal plume, briefly discuss the
analytical "state-of-the-art," and qualitatively describe the problem

undertaken in this research.

2.1 The Nature of Thermal Plumes in Marine Surroundings

In the following discussion the terms jet flow and plume flow
will be used, and to avoid confusion it is appropriate to outline the
meaning of each at this time. A convective flow in a free environment
caused solely by buoyancy is commonly called a simple plume. In this
case, the general pattern of motion is caused by a density disparity
between the flow and the surrounding environment. Such instances are
atmospheric thermal and the smoke plumes generated by field fires.
A jet, on the other hand, is characterized by scurce flow inertia where
the flow may not involve a density difference.

The flow which is of primary concern in this discussion is a com-
bination of the above where both initial momentum and buoyancy have

significant influence on the flow behavior. Such a flow might be termed



a forced plume. However, in this work the flow field will be called a

thermal plume or plume. Reference will be made to jet flow from time

to time, which will imply that conditions near the outfall, where
jnitial momentum dominates the dynamic behavior, is the subject of dis-
cussion or that the effluent is neutrally buoyant.

A temperature differeﬁce is not the only factor which must be con-
sidered as a buoyancy source in a thermal plume. Differential salt con-
centration is certainly a factor. Salinity differences must be consid-
ered if the power plant condenser coolant is drawn from an estuary and
rejected off-coast,in which case, the effluent would most likely be Tess
saline than the receiving water and contribute to the overall buoyant

force.

2.1.1 Discharge Magnitude

The volumetric flow rate required by a thermal power station
depends on plant size, steam cycle thermodynamic efficiency, and coolant
temperature rise. Typical installations range from 1000 to 2000 Mw, and
operate at a coolant temperature rise between 15 and 20 °F. Plant
efficiency depends largely on whether the heat source is nuclear or
fossil. The steam cycle thermodynamic efficiency for a typical fossil
fired plant will be in the neighborhood of 42% for optimum conditions,
whereas typical efficiency for a modern nuclear plant operating under
similar conditions is about 32%. Hence, the nuclear plant will reject
about 50% more heat than a fossil fired plant having the same net
electrical output.

The condenser coolant volumetric flow rate required by power sta-



tions in the 1000 to 2000 Mwe range is impressive by any standards,
regardless of whether the plant is nuclear or fossil fired. Figures 2.1
and 2.2 illustrate this fact. It is possible that in the future a
particular site will consist of a number of individual units. Thus

the cooling load on a certain ocean locale may result from the produc-

tion of perhaps 10 Gwe.
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2.1.2 Outfall Configuration

Condenser coolant may be rejected to the ocean either at the

shoreline or offshore through a submerged outfall.

Examples of such existing systems are the following fossil fired plants

The shoreline discharge may be either by canal or conduit.

owned by Pacific Gas and Electric [113].
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1) Contra Costa, 1298 Mwe, rejecting heat to the San Francisco

Bay Delta.

2) Pittsburgh, 1340 Mwg, rejecting heat to the San Francisco Bay
Delta.

3) Morro Bay, 1030 Mwe, rejecting heat to the Pacific Ocean.
Numerous other examples might be cited since the shoreline outfall
system has widespread use.

Submerged, offshore outfalls may be designed in two general
fashions:

1) a single port (dual in some cases) outlet situated either

vertical or horizontal, or

2) a diffuser section at the end of the pipeline consisting of
numerous ports. The diffuser is typical of municipal waste
outfalls.

Some examples of large vertical port outfalls are:

1) Moss Landing fossil fired plant. Reject heat from 1500 Mw,
generation, discharged about 800 feet offshore. Dual ports.

2) San Onofre nuclear plant. Reject heat from approximately
450‘Mwe generation, discharged through a 14-foot diameter
pipe 2600 feet offshore, about 15 feet below sea surface.

3) Redondo Beach fossil fired plant. Reject heat from 1612 Mwe
generation. Two offshore outfall systems: a) two 10-foot
diameter pipes discharging vertically about 2100 feet offshore;
and b) a single 14-foot diameter pipe discharging vertically

300 feet off, about 16 feet beneath water surface.

11



4) E1 Segundo fossil fired plant. Reject heat from 1020 Mwg
generation. Two offshore outfall systems: a) two 10-foot
diameter pipes, discharging 2100 feet offshore, vertically.

20 feet beneath ocean surface; and b) two 12-foot diameter
pipes, discharging 2070 feet offshore, vertically. 20 feet
beneath ocean surface.
To this author's knowledge, no large power plant uses diffusers for off-
shore ocean discharge at present, although such a system is proposed for

the Shoreham plant [95], discharging to Long Island Sound.

2.1.3 Hydrodynamic Regimes

Experimental observations of forced plumes issuing from submerged
ports have revealed the existence of four distinct fiow regimes, as
follows (Figure 2.3):

e Zone of flow establishment (jet flow)

e Zone of established flow (mixed flow)

e Transition from established to drift flow, and

e Zone of drift flow.
The zone of flow establishment is in effect a transition zone from pipe
flow to an established forced plume. Consider fluid issuing from an
outfall port of diameter D (Figure 2.3), to the surrounding ocean, with
a turbulent velocity profile. For the sake of analysis, this profile
is usually assumed uniform with velocity Vo- Immediately the velocity
begins to deteriorate at the flow boundary as a result of turbulent
mixing with the surrounding ocean water. This region of mixing spreads

both inward toward the center of the plume and outward into the sur-
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roundings. Within a short distance, z,, from the outfall port, the

interchange of momentum due to mixing has spread to the center of the
plume. At this point, it is generally assumed that the plume vertical
velocity profile is fully developed, or established.

In the zone of established flow, velocity profiles are approxi-
mately similar at all axial Tocations and the driving force may be
either initial momentum, buoyancy, or both (mixed flow). As distance
from the outfall increases, the effective width of the plume and the
amount of plume flow increases as a result of lateral mixing or turbu-
lent diffusion (commonly called entrainment). Momentum of the plume at
successive cross-sections is changing according to the density differ-
ence between the plume and surroundings. Maximum velocity, Vi of the
plume will decrease, except if the buoyancy is large compared to initial
momentum, in which case the maximum velocity may increase momentarily
near the outfall.

The transition from established flow to drift flow is caused by
the plume encountering the ocean surface or by the plume attaining a
neutrally buoyant condition in a density stratified sea. Here velocity
profiles change drastically with essentially all mean vertical motion
vanishing. The motion at the transition zone termination may be dom-
inated by prevailing ocean currents.

In the zone of drift flow, prevailing ocean currents will generally
dominate the plume motion, although a lateral density flow will persist
if the plume is situated on the ocean surface with buoyancy. Lateral
mixing is dominated by ocean turbulence, whereas vertical mixing depends

on both the plume and environment driving forces.
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Under certain conditions, all of the above hydrodynamic regimes
will not prevail. For instance, in the case of a large diameter port
issuing in shallow water, the zone of established flow will most 1ikely
be absent. This situation is usually termed a "confined plume"

(Figure 1.4) and the hydrodynamics are characterized by a continuous
transition from pipe flow to drift flow.

An example of a typical confined plume is the thermal effluent of
the Southern California Edison power plant located at San Onofre,
California, discharging approximately 15 feet beneath the sea surface.
The port is vertical and 14 feet in diameter. Based on experiments by
Albertson, et al. [4] concerning neutrally buoyant jets, this depth is
less than the length for flow establishment.

For shoreline outfalls, the same flow regimes exist. However,
the zone of established flow may be less distinct depending on the
relative magnitudes of initial momentum and buoyancy (initial densi-
metric Froude number). This zone will assert itself if buoyancy is
small or initial momentum is large. In the case of small initial
momentum and moderate or large buoyancy, the initial mixing zone will
be a continuous transition from the outfall to drift flow without

established flow in the sense of similar velocity profiles.

2.1.4 Oceanographic Effects

The nature of the surrounding ocean can have a dramatic. effect on

the behavior of a thermal plume. Probably the most influential of these

oceanographic variables are the following:
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e density stratification,
e cCurrents, and

e turbulence.

2.1.4.1 Density Stratification

In all discussions concerning ambient density stratification,
stable stratification is implied. One effect of stratification is
stabilization of the ambient flow field insofar as vertical convection
and mixing are concerned. However, the discussion in this chapter will
be confined to the direct effect of limitation of height of rise for
plumes issuing from submerged outfalls.

The maximum height that the thermal plane will attain (and whether
the plume will reach the surface or not) depends largely on the ambient
density structure. Obviously, this discussion does not apply to con-
fined plumes, but to cases where the outfall port size is small com-
pared to the ocean depth, as for example, diffuser ports. Both theory
and experiment have shown that the plume will always reach the surface
if the ocean is homogeneous with respect to density.

The ocean, however, is rarely homogeneous, except perhaps in very
shallow coastal waters where good vertical mixing occurs. The reason
that a thermal plume may not penetrate to the ocean surface in a density
stratified environment is that the plume entrains the heaviest water
nearest the outfall. This water causes dilution to some extent and is
carried upward with the plume. As the plume ascends, the density dif-
ference between the plume and surroundings steadily decreases because

the flow is being diluted and cooled through entrainment, and because
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the density of the surroundings is decreasing upwards.

If the density stratification has sufficient magnitude (among
other considerations which will be discussed later), the plume will
eventually reach a level of neutral buoyancy some distance below the
water surface. At this point the flow continues upward only by virtue
of the vertical momentum it possesses at that point. As the plume con-
tinues upward, it continues to entrain liquid that is now less dense
than the plume flow; hence, the flow is negatively buoyant. Eventually,
all upward vertical momentum is lost and, since the plume liquid is
denser than the surroundings at that depth, the pollutants will cascade
downward around the upward flow.

Small oscillations in the vertical motion will follow and when
these oscillations vanish the plume is said to be "trapped" (Figure 2.5j).
At the trap level all mean motion is horizontal since the flow is
neutrally buoyant (assuming that environmental isosteric surfaces are

horizontal).

2.1.4.2 Effect of Currents

Currents have a dramatic effect on plume behavior in nearly all
flow regimes. The types of currents that might have influence are tidal
currents, longshore currents, upwelling, wind driven surface currents,
and persistent currents that are peculiar to a certain locale.

The zone of flow establishment is essentially unaffected by cross
currents; but, in the zone of established flow (deep water), a cross
current will cause the plume to be "bent-over" (Figure 2.6). The most

significant effect of this bending is a decrease in the height of rise,
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also, the dynamics within the plume are changed.

When the plume is bent over, two distinct counter rotating vor-
tices are formed (Figure 2.6). These vortices are quite apparent in
atmospheric smoke plumes discharging into a cross wind; the same
phenomenon occurs in the ocean.

In the drift flow regime, the plume flow is carried along with
the ocean current nearly as though it were the ambient water. Thus,
ocean currents play a dominant hydrodynamic role on the eventual fate of

the pollutant. Upwelling causes a persistent offshore surface current,
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thus, a surface plume could be carried out to sea. Wind driven surface
currents and tidal currents can cause the pollutant to be carried on-

shore or out to sea, and longshore currents can cause the poliutant to

be distributed along the shoreline.

2.1.4.3 OQcean Turbulence

The origin of oceanic turbulence is not fully understood,
although in the surface zone it is probably caused mostly from wind=
generated wave action. As such, the turbulence is neither homogenous
nor isotropic, and only the gross behavior can be described.

Ocean turbulence has some effect on all regimes of piume flow.
Turbulence scales that are on the same size or larger than the plume
creoss-section will have an effect similar to a crosscurrent, and all
scales should have some influence on the plume entrainment rate
(although it is thought that the influence is small in all zones except
the drift regime, since turbulence generated by the plume dominates
the ocean turbulence). In the zone of drift flow scales of motion
larger than the flow field result in action similar to oceanic currents,
and the pollutant field simply flows along with the turbulent motion.
Smaller scales of motion add to the eddy diffusion of the pollutant;
thus, as the pollutant field spreads, larger and larger scales of eddy
mixing come into play.

Another factor complicating oceanic turbulence is that it is
highly anisotropic, at least in the larger scales of motion. Since
most oceanic waters are density stratified to some degree (except per-

haps in shallow water), vertical mixing is suppressed to a great
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extent. Thus, a pollution field diluted by eddy diffusion will spread

much more rapidly in the lateral direction than in the vertical.

2.1.4.4 Air-Sea Interactions

Wind and heat transfer are the major air-sea interface phenomena
which may significantly affect thermal plume dynamics. Wind stress at
the sea surface causes two local effects which have previously been men-
tioned: wind driven surface current, and turbulence. And, on a larger
scale, wind is responsible for coastal upwelling. We will only point
out these wind stress effects here and refer the interested reader to
such references as Neumann and Pierson [63] or Wada [107] for addi-
tional details and references.

Heat transfer at the interface is carried on by atmospheric con-
vection, radiation, and evaporation. Evaporation is probably the most
significant of these modes and is materially affected by the surface
temperature and conditions in the atmospheric boundary layer such as
temperature, humidity and turbulence. Again, wind plays an impertant
role here through promotion of atmospheric turbulence and convective
currents. Radiation heat transfer depends on the sea surface tempera-
ture and albedo, atmospheric conditions such as turbidity, and position
of the sun.

The effect of surface heat transfer is more complicated than
merely heating or cooling of the plume. For instance, if heat is lost
at the surface, convective downcurrents of cooler water may occur,
tending to homogenize the plume vertically. If heat is gained at the

surface, the plume will become more stable and suppress vertical mixing.
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Atmospheric heat transfer will affect the plume dynamics predomin-
ately in the drift flow regime when the plume is situated at the surface.
The area exposed to the atmosphere in the surface transition (zone 3)
is small on a comparative basis and will 1ikely be unaffected by sur-

face heat transfer.

2.2 Plume Analysis State-of-the-Art

There has been a great deal of theoretical and experimental work
carried out in the past 20 years or so dealing with the dynamics of
buoyant plumes. Most of this work has dealt directly with either atmos-
pheric smoke plumes or ocean plumes caused by submerged offshore indus-
trial and municipal waste outfall systems: (cf. Baumgartner and Trent
[12]). Much lesser and more recent efforts have treated horizontal shore-
line discharges (cf. Stolzenbach and Harleman [94]). More basic studies
concerned with turbulent transport quantities in jet flow have also
received much attention.

In this section we will briefly outline the state-of-the-art and
past studies dealing with plume calculations. Table 2.1 summarizes a
good share of the work related to plume investigations both theoretical
and experimental. This table is by no means all inclusive and the
particular categories may not be completely descriptive of the work
accomplished in the cited references. However, it does serve to illus-
trate where research emphasis has been placed on problems which are
related both directly and indirectly to thermal outfall analysis.

A brief discussion of Table 2.1 will be given separately for

smeerged and horizontal shoreline outfalls.
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TABLE 2.71. SUMMARY OF WORK PERTINENT TO OCEAN OUTFALL PLUME ANALYSIS

Principal
Zone
Type of { Ambient | Inves- | ISolutiog______ §
Geometry | Flow {Condition|tigated Methodms
°
>
® (2-D
< [Finite
— Diff.
¥ s g [
3 i~ 2 s
2 2 2l 2
= -
- © o o
» & ® E| §
222 2 cea| &
2235 Y | .25|e$
w558 o 5 |<33| 82
ST T AP 5| 285|523
=4 S|l o A
2osd|252 | 83 ¢k P e
sEE8| 85| Bced g21T23) 1%
sgg': - YT U @) —0N ) = -4 o N - O
=N N cr— @ O 2N o >y — 3 & o -
o= @ av cow | ey | U~ | =% | O
Principal 5553 | BE5|EESE 85558 |52 Btk 2k
Investigator Ref. Application 2228 ARl 28851 Rl2R | I ReE[ 52
Aibertson 4 Sub. Jets X L [X X X X XX X
Albertson 4 Sub. Jets X L |X X X X XX |X
Baines 8 Sub. Jets X L |X X X X X X
Hinze 4] Sub. Jets X L [X X X X X
Schmidt 85 Thermals L X X X X XX iX
Rouse 31 Thermals L X X X X Xx [X
Priestley 73 Plumes X L X [ XXX X XX 1X
Priestley 74 Plumes X L X[ x X X X jxx
Morton 60 Thermals L X X X X X X
Morton 58 Plumes X L X XX X XX
Aoraham 1 Waste vutfail KX L Kk X | Aan L3 AL LA
Abraham J Jets L | X X X X X | X
Fan 26 Jaste Outfall XX L X XXX X XX X
Fan 27 Waste Outfall X L X 1X XX X XX |x
Keffer 50 Plume X L X 1Xx Xx X XX |X
Cederwall 17 Waste OQutfall XX L X | XXX X XX X
Brooks 16 Haste Qutfall X L X XX X X 1X X
Tomich 99 Jets X L X X X X X X X
Zeller nz Thermal Qutfall X X [ X X X XX X
Jen 48 Thermal Outfall X X |X X X XX X
Tamai 96 Thermal Outfall X X 1x % X Xx |y
Hayashi 38 Thermal Ouifall X X (X X X XX
Sharp ,89 Thermal Qutfall XL X | X X X X X
Franke) 30 Waste OQutfall X I X |x X X X X X
Sami 83 Jets % X X X XX X
4 Stolzenbach 94 Thermal Outfall X X IX XX jxxxX XX X X
Hart 37 Waste Outfall X L X IXxx X X
Bosanquet 14 | Waste Qutfall X L X (XXX X Xx |x
Hoult 45 Plumes X L X |X XX [XX X X X
Wada 106 Thermal Qutfall X X 1X X X X X X
Wada 108 Therma) Outfall X X (X X X X X
Manabe 56 Thermal Qutfali X X1 X X X X
Okubo 64 Dispersion NA NA X X X X
Okubo 65 Thermals L X XX X X X
Leenderste 53 Tidal Hydraulics NA NA X X [xx X
Ramsey 75 Heated Jet X X | X X XXX X
Fay 29 Plumes X L X X XX [XX X X
Murota 62 Jets X I I X X X XX X X
Masch 57 Tidal Hydraulics NA NA X X [XX X
Fox 28 Plumes X L X 11X XX X XX iX
Murgai 61 Thermals L X XXX X X X
Hirst 44 Plumes X XL X XX XX X XX
Schmidt 86 Smoke Plumes X L X XXX X X |X X
Hirst 43 Plumes XX L X [ XXxXxx |x X Ix X
Scorer 87 Plumes X L XX XX X % X
Morton 59 Plunes X L X X xx X XX
Csanady 22 Plumes X L X XX X X X X
Anwar 5 Waste OQutfall XX L X 1x X X XX X
Abraham 2 Waste Qutfall X L X |X X X X X
Turner 102 Waste OQutfall X L X 1x X XXX XX oix
Rawn 76 Waste Outfal) X L X 1x X X X X \
Harremoes 36 Waste Qutfall X L X |
Tulin 101 Waste Qutfall X L X 1X XXX XX X ik !
Baumgartner il Waste Qutfall X L X X X b4 XX X |
|

*The L/D ratio applies only to submerged outfalls: S, L/D <5: I, 5<L/D<15; I, L/D 15,
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2.2.1 Submerged Outfalls

For submerged outfalls the depth of discharge dictates the method
of analysis. Deep water cases are substantially simpler to analyze
than the shallow water counterparts (at least in the absence of cross
currents) which is a result of the applicability of similarity solutions.
Similarity analysis has expedited the theoretical analysis in this zone
and resulted in mathematical models that are sufficiently accurate for
engineering calculations.

Zone 1 has received substantial attention but is of minor impor-
tance in deep water analysis because it is a relatively short-distance
effect (approximately six port diameters or less). Most of the work
involving this zone has been carried out in the absence of buoyant forces.
Abraham [1] presents a mathematical model for cases where buoyant forces
have a significant affect on the zone length. Recently, Hirst [43]
has presented a more thorough analysis.

There has been essentially no theoretical work done for zone 3 of
the deep water plume (i.e., near the surface or in the region of the
maximum height of rise). It is generally assumed that the similarity
solutions of zone 2 hold in zone 3; but, this is a very poor assumption.
Frankel and Cumming [30] have shown through experiment that this is the
case. Sharp [88,89] has experimentally investigated the surface spread
of a hot water plume, and Murota and Muraoki [62] have investigated the
effect of a free surface on plume hydrodynamics.

Very 1ittle theoretical work has been done on deep water plumes

in the presence of a crosscurrent. This lack of effort is undoubtedly
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a result of the solution difficulty since similarity principles are not
strictly valid for this case. However, Fan [26] has treated the cross-
flow problem for a vertical plume using similarity assumptions and
obtained reasonable results. There are serious theoretical questions
concerning the use of similarity profiles in the presence of a cross-
current. Hirst [44] presents analysis for crosscurrents which includes
a stratified ambient medium. Various experimental studies coupled with
dimensional analysis have been carried out for the crossflow problem,
but as yet no generally proven computational model has been published
which relates details of the plume dynamics.

Deep water plume analysis is particularly applicable to waste out-
falls having small ports, common to diffuser systems. Typical submerged
thermal outfalls such as those off the Southern California coast cited
by Zeller and Rulifson [113] utilize very large, vertical single ports.
The amount of receiving water between the port and sea surface may be
on the order of 1-3 port diameters. No published theoretical studies
have treated plumes with such L/D ratios. In this case zone 2 does not
exist and there is no delineation between zones 1 and 3. All that may
be said is that the flow undergoes a transition from pipe flow to drift
flow.

The following general conclusions are made concerning submerged
outfall state-of-the-art computational models.

1. Acceptable computational models are available for deep water

plumes except for;

o Zone 3, the surface or maximum-height-of-rise transition

zone, and
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e plumes issuing in crosscurrent (existing models to be
proven).
2. There is no acceptable computation model or technique available
for shallow water plumes such as those typical of large thermal

power plant outfalls.

2.2.2 Horizontal Shoreline Outfalls

Horizontal shoreline discharge is also utilized by a number of
thermal power plants throughout the United States. Table 2.1 illustrates
that there has been only modest effort made to analyze this problem.
From a mathematical modeling standpoint the horizontal surface discharge
of a thermal plume is extremely complex since the phenomena involved
are inherently three-dimensional (the same is true for horizontal sub-
merged ports in shallow water, and the case of a crosscurrent in deep
water).

In spite of the three-dimensional aspects of the shoreline plume,
various solutions have been formed using similarity princples (e.g.,
Zeller [112], Jen, et al. [48], Hayashi, et al. [38], Tamai, et al.[96]
and Stolzenbach, et al. [94]. Except for the work of Stolzenbach,
none of these methods are, in this author's opinion, acceptable for
engineering computations. Before a completely acceptable model is con-
structed for general application, three-dimension flow characteristics
will need to be accounted for in some manner along with crosscurrent

effects.
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2.3 Work Description

The previous section delineates several areas of outfall analysis
which need attention. As a practical matter it is not feasible to
incorporate all of these areas into a general mathematical model which
would apply to all outfall configurations and oceanographic conditions.

The scope of this manuscript is limited to vertical plumes.

We are primarily interested in large single port vertical thermal
outfalls issuing in shallow water (Figure 2.4). Typical existing
configurations are those located at Moss Landing, San Onofre and
Redondo Beach, cited earlier. However, the ultimate objective of the
work is to provide a complete program which mathematically models the
temperature and velocity distribution in a vertical thermal plume, from
outfall port to the drift flow regime (zone 4), regardless of ocean
Q¢ptﬁ. The transition region, as defined here, refers to any part of
the flow field for shallow water plumes. This region is the portion of
the program which must be treated by finite-difference techniques and
constitutes the principle effort of this work.

In addition we also set down the difference equations appropriate
for a line plume, but do not include these in the modeling program.

In summary, the work covered by this manuscript deals with the
problem of mathematically modeling velocity and temperature distribu-
tions in the locale of vertical thermal outfalls. The techniques for
analysis are as follows:

e Shallow water plumes : finite-differences
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e Deep water plumes
1. Zone 1 - existing empirical
2. Zone 2 : similarity solution
3. Zone 3 : finite-differences
The primary task described in this manuscript is the finite-dif-
ference application to the confined plume and computation of the entire
flow field dynamics for zones I, II, and III. The circulation of the
ambient is also included. Although there have been various related
studies, none have dealt with the numerical solution of a confined,
vertical plume and radial surface spread. Tomich [99] numerically
modeled the compressible free jet problem, Ma and Ong [55] investigated
an impulsively started momentum jet, but paid Tittle attention to the
more complicated features of the dynamics. Recently, Pai and Hsieh [68]

have carried out numerical work with laminar jets.
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CHAPTER 3
TRANSPORT EQUATIONS - GENERAL THEORY

In this chapter the fundamental laws and equations which govern
marine hydrodynamics and energy transport are set down. We begin by con-
sidering the fundamental equations for laminar, incompressible flow and
modify these equations so they are appropriate for marine considerations.

These equations are written in various forms which are appropriate
for later discussion concerning theory review, similarity solutions, and

numerical considerations.
3.1 Coordinate System

The governing differential equations are given in Cartesian
tensoral form with coordinates X; (Figure 3.1). For analysis of the

Tocal sea, the geopotential surface is assumed to be flat.

Q* (EARTH ROTATION)

‘-_MERTICAL X3

S(LATITUDE)

} | EARTH

Figure 3.1

\ Rectangular
y Coordinate
System
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3.2 Conservation Laws

The differential equations governing the heat and momentum trans-
port of a thermal plume in the oceanic environment may be derived from
the following physical laws:

e Continuity (conservation of mass)

e Newton's Second Law (conservation of momentum). and

e The first law of thermodynamics (conservation of energy)

In addition, an appropriate equation of state is needed to relate sea
water density in terms of local temperature and salinity. .

Detailed derivation of the primitive conservation equations will
not be discussed here but may be found in such texts dealing with fluid
dynamics (cf. Bird, Stewart and Lightfoot [13], Welty. Wicks and
Wilson [115], Hinze [40]). A few modifications of the standard form of
the conservation equations must be made so that they apply in general
to a thermal plume in the sea. These modifications are chiefly con-
cerned with turbulent approximations, incorporation of coriolis effects,
and the Boussinesq approximation concerning small density variations.
Additional detail concerning these approximations may be found in
standard references dealing with marine hydrodynamics (cf. Hi1l [39],
Phillips [70]) and the general subject of turbulence (e.g. Hinze [40]).

The primitive equations appropriate for our analysis are pre-

1
sented in Cartesian tensoral form as follows:

lEinsteinian notation is used where repeated indices imply summation
over all three index values (i = 1,2,3).
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Continuity:
3.,

Do _1 . !
bt *° ax; 0. (3.1)

The operator D/Dt in the above equation is the substantial deriva-

tive and has the usual meaning:

D _ o 5
bt - 3t | uj_axj’

where t is time and Uj is velocity along the jth coordinate. In Equa-

tion (3.1) the quantity p is density.

Momentum:

Du. 3T .
L ] _1J
oot * eijkz"“<93f X PgS;3 +axj (3.2)

where Qg is the component of planetary angular velocity along the jth

coordinate, P is pressure, g is the local gravitational constant and T4
is the fluid molecular stress tensor. The symbol eijk is the usual
cartesian permutation tensor which takes values of zero if any two of
the three subscript are identical, +1 for even permutations and -1 for

odd permutations. The symbol 61 is the Kronecker delta which is equal

J
to 1 when i = j, and otherwise 0. Coriolis effects are incorporated
into the momentum equation by the term eijk2puk9§ and, according to
the specified coordinate system, (Figure 3.1) gravitational forces act
only along the X3 direction; hence, Gij = 83.
In any fluid dynamic system, variations of density may cause

fluid motion due to the action of gravity. In the ocean, these density
variations may be caused by temperature differences and variation of

local salt content, or concentrations of other materials whether in
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solution or not. Hence, in Tieu of the heat transport equation we will
consider at this point a transport equation for a general scalar
quantity, I', where I may be heat, salinity or other dilute transferable

constituents. The T transport equation is:

Dr _ 9 aT :
Dt = —BX- (KY SX—> + ¢ . (303)
i i
Constituent sources, sinks and dissipative mechanisms are incorporated

in the term ¢ and the symbol <y is the molecular diffusion coefficient

for the I quantity.
3.2.1 Continuity

In the ocean, and especially in the case of the thermal plume,

-

the density field, p, varies with both space and time,
o = alx;Ht). (3.4)

However, essentially all density variation is caused by distributions
of heat content, salinity, etc., as opposed to compressibility effects
(i.e. high speed compressible effects). The local density anomally is
very small compared to the local value of density, and the conservation
of mass (Equation 3.1) may be approximated with sufficient accuracy by

the volume continuity equation

_i . o (3.5)

We point out here that although %%7 = 0 may be an acceptable approxi-
i

mation with regard to mass conservation, this quantity cannot be
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ignored in the momentum equation (see Section 3.3), and is precisely

the coupling between momentum transport and I transport.
3.2.2 The Equations of Motion for Turbulent Flow

Within the framework of assumptions concerning continuous fluid
properties, constant gravitational force, and negligible earth curva-
ture, the momentum transport equations (3.2) are valid regardless of
the nature of the flow or fluid. The usual additional assumptions in
hydrodynamics are that the fluid is Newtonian, incompressible and that
Stokes viscosity relationships are a valid description of the fluid
stress rate-of-strain (cf. Welty et al.). Thus, the stress terms
(Equation 3.2), .., may be replaced by

1J

BU.i
T.ij = UW 3 (3.6)
J

where u is dynamic viscosity.

For the purpose of treating turbulent flow, it is assumed that
the velocity components,ui, pressure, P, and density, o, are composed of
mean or average parts and superimposed random fluctuating parts

(cf. Hinze [40]). Symbolically,

U, = u. + uy-

i YT
P =P+ P, and
P =pto7,

where the everbar represents mean of values and the prime, random
values. These definitions are substituted into the equations of

motion and the result is time averaged term-by-term over a sufficiently

long period of time to obtain
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P 9T . .
S N AT o 7 = e T 1J
Plor Tt X (umumy) + ‘eiijjUkJ ax; P93t g 37)

which is seen to be identical in the mean motion with Equation (3.2)

except for the appearance of the term

d
—— (U"Lu".).
X

i

A new quantity is now defined:

which is called the Reynolds stress. Finally the complete equations

of motion in the rotating Earth reference frame are written as

Du.
1 _ aP +._.§__ (T--"’R--) 39)
o) —_— 1+ 2e.. 0%u = v - pgd K 1 i ( .
( Dt igk™] E) X i3 axJ J J
for the mean flow. Here the overbars denoting average quantities have
been omitted since mean, or average, quantities are implied. The tur-
bulent stress terms may be related to mean flow quantities through the

Prandtl mixing length theorem (cf. Neumann and Pierson [63]) to obtain

T
Terms envolving fluctuations of pressure and density have been ignored.
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Rij = "PU§U7; = P45 ox, (3.10)

Hence, using Equations (3.6) and (3.10) in (3.9) yields

(3.11)
1

Du. ou,

i - 3P 9 el ) —
O(TE ¥ Zeijk%‘“k) ToTax; P9 T [olv + e45) axj]’

where €43 is the eddy diffusion coefficient for momentum, a second order
tensor, and v is kinematic viscosity.

In the case of a thermal plume, €457V except where velocity

gradients are small and the flow has strong stratification. We will

assume that Eij

tum equations as

includes molecular viscous effects and write the momen-

Duy . P 3 au1 3.12)
Q(W M Y BT el E kI Pl T ‘a‘xg) : (3.

3.3 The Boussinesq Approximation

In this work, four quantities of density are defined as follows:

p = p(Xi,t). the density at a point in the thermal plume.
e 0= pm(x3), the density distribution which would exist in
the local sea in the absence of the plume.
° Py = Constant, a reference density for the receiving water.
® 0, " Constant, the density of the effluent issuing from
the outfall port.

! The summation convention for repeated tensoral indices does not apply
to underscored indices in this text.
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The density distribution of the reference ocean, pm(x3), is assumed to
be independent of time and vary with X3 alone.

Buoyant forces on a fluid element are established by the density

difference

Ap = p = op (3.13)

So that,
o = poo + AD- (3.]4)
According to the Boussinesq approximation, (cf. Phillips [70])
when density variations, Ap, are small,(i.e. |ap/p|<<1) these varia-
tions may be ignored as they influence inertial and viscous terms in

the equations of motion, but must be accounted for in the gravitational

term. In view of Equation (3.14), the equations of motion may be

written
Du. Ap+p U,
i 1 9P ( o ) p) i
—_—+ 20,. 0%u = - — ——— - U6q: + —— (es. =) (3.15)
Dt 13Kk Py X5 Py 31 axj ij axj

Now, let P° be the pressure difference between a point in the plume

and outside the plume located on the same geopotential surface, so that

0
PP p J o (3.16)

1 .
Hereafter, we will refer to pm(x3) as simply p_, keeping in mind the
dependence on xj3.
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Here, we have assumed that the pressure distribution in the reference

ocean is hydrostatic. Hence, Equation (3.15) may be reduced -to:

Du. ° - U,
i aP Pe"P 3 ( 1)

—_ + 2e,.,0%, = -— + [—] g6y + —=— le,.—— (3.17)

Dt 13k537k 39X ( o ) i3 3X 4 lgaxj
Equation (3.17) is the so-called "advective" form of the equations of
motion. This name has become popular among oceanographers and meterol-
ogists and is so called because the convective terms are expressed in
the form ujaui/axj.

The convective terms may be written in slightly different form

by noting that

au .U, au. U,

_a!]_1_ = u.a_-l. + u. a_n]_
X. X 1 X
J J 9% J

However, by Ecuation (3.5)

so that for an incompressible flow

au. au.u,
i _ UJUT

TR =
ox. - X .
; J J

’

Thus, Equation (3.17) may also be expressed as

ou . oU.sU. -
i 1 i spe PP
- + + .. 0% = - —_—
ot X, 2e1JkQJuk X4 + 0 9513
J r
. o . u;
ax | iJ ax.
J H J

(3.18)
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which is called the "conservative" form of the equations of motion.

3.4 The Pressure Equation

Equation (3.17), or (3.18) contains four unknown quantities;
Upsloslgs and P°. Since only three scalar equations are involved, an
additional relationship is required.

An equation for pressure, PO, may be derived by taking the diver-

gence of Equation (3.17). This operation yields:

cpe g o) 5 [_3- 9“_1] -
dX.oX o ax3 axi axj 1] Xj
(3.19)
By continuity
U
w0 (3.20)

sc that Equation (3.19) is reduced to

s2po auj) ( au1> e o au . a8
-7 . N > X
Bxisxi ax1 axJ 1JP 3 ax R

ae-:
3 [ 1 o
-FSZ; [(3X1 ) (SX; )] ’ -21)

where B is the buoyancy parameter, defined as

)

Pr (3.22)
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For the case where coriolis forces are neglected and quantities involv-
ing derivatives of eddy viscosity are small compared to other terms,
the presssure equation is

32p° - E_u_'l _a_li‘]_> + o
ax; 8X; 3X; 3x; 3X3 (3.23)

3.5 1 Transport

The T transport Equation (3.3) may be modified for turbulent flow
by considering the transported quantity, I', to be composed of a mean
part, T, and a fluctuating part, T'', or

r=T+T',
Then in a manner analogous to the method applied to the equations of

motion, the turbulent I transport equation becomes

_.DE. = _8_. _a_r.‘_ + ;p
bt ox; |\ “vd 3%; ’ (3.24)

Where € is the eddy diffusion coefficient and is assumed to include

molecular effects.
3.5.1 Transport of Heat, Salinity and Buoyancy
Letting r = T, in Equation (3.24), where T is temperature, the

heat transport equation is

gzzga_e,é;)
Dt Xj HJ X; (3.25)
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In this case ¢ corresponds to heat sources and sinks and/or viscous
dissipation. Since none of these effects are significant in an ocean
plume, & is neglected. The quantity €hj is the turbulent heat diffusion
coefficient and is assumed to include molecular effects. For salt trans-

port, we let T = S, when S is salinity; hence,

%,5:— - 2 (esj%)s(—:). (3.26)

J J

Salinity is a conservative property, thus & is omitted. The quantity
€5 j is the combined molecular and turbulent mass diffusion coefficient.
The equations for heat and salinity transport are coupled to the
Equations of motion (3.17) or (3.18) through the buoyancy term
(p4=p)/e,.. For that matter, any I constituent, which when transported
in the system of interest causes density variations to occur, is
coupled in the same fashion. Thus, it is not the absolute value of
temperature, salinity, etc., which is important to the system dynamics,
but resulting density variations in a lateral plane caused by the trans-
port of these quantities. For this reason it is necessary only to deal
with the transport of buoyancy in analyzing the dynamical behavior of
the system. However, we must solve the equation for heat or salinity
transport (in a system where differences of salinity and temperature
are the causes of density variations) in order to establish the magni-
tude of temperature and salt content, and to treat certain boundary
conditions. Once the density and temperature (or salinity) distribution
is known, salinity (or temperature) may be calculated from an equation

of state for sea water.
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A "density transport" equation may be derived by combining Equa-
tions (3.25) and (3.26) [assuming that an equation of state, p=p(S,T)

holds] after the independent variables, T and S, have been changed to p

Hence,
D - ) ( 9p ) + ! _35..) . (39._), (3 27)
- . &0, aX. €pj Plax, X, :
ﬁ%' axJ 0 3xJ pJ axJ xJ
where
_oT , 38
A r (3.28)

and the appropriate transport equation for 4&; is

3l ang \
et we Cgw) epQ-(‘g'i-.)'(Kx‘.) (3.29)
J J J J

A second paraneter A, which incorporates p_ Mmay be defined as

A2=Al'(p—'—£)=———' (3.30)

The transport of 4, is described by
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—_ = g d ©
Dt U3 3X3 BXJ- (Epi ij ) X 3 (503 ™ )
e l(%E.)(gL> ’ (3.31)
pJ o xj Xj
where o = o /(o -0 )

If density is a linear function of both temperature and salinity, that

o -p =-a(T- To) + b(s-so),

o]

then ¢ = constant and ac/axj = 0.

Equations (3.27), (3.29) and (3.21) become

Dp . 3 ., ey,

Dt 90X, (Ep\l X ) (3.32)
J J

DA, ; 34,

T O B R (3.33)
J J

*

Da op BAZ 5 Bpm

5t el PRl Il el o ) 3.34

bt Y3 Taxs o (Epg o ) 33 TPy 8Xg ( )

respectively.
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The quantity ¢, is seen to be a correction term which accounts for
nonlinearities in the equation of state, p = p (S,T). As it turns out,
sea water density does vary approximately linearly with salinity
(See Section 3.6) so that p = f (T) for.constant S.

In the remainder of this manuscript, by and L will be referred

to as
P = P
o n = T > buoyancy parameter,
Pp = P
o}
p(x3) - p
o Ay = —s - Ay - 81|, » density disparity parameter.
r o

The motivation for defining two buoyancy quantities is that it is more
convenient to use B4 in the numerical analysis (Chapter 5), whereas A,

is convenient for similarity analysis. For consideration of salinity

transport, a third buoyancy term is defined as

where Sr and So are the reference and outfall effluent salinities,

respectively.

Figure 3.2 illustrates the relationship between the quantities

and A] and AZ at elevation X3 = constant.
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RELATIVE DENSITY DIFFERENCE
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Figure 3.2 Relationship Between the Buoyancy Parameter, A4 and
Density Disparity, B,

3.6 The Equation of State for Sea Water

The density of sea water is a function of pressure, temperature

and salinity, in the absence of other pollutants. Hence, the equation

of state has the form
p = p(P,S,T). (3.35)

Since we are dealing only with rather shallow water on an oceanographic

scale, pressure effects are negligible; therefore,

p = p(S,T). | (3.36)



If other contaminants, having concentration,C, are present, then

p = po(S,T,C) . (3.37)

In this work, we will deal only with Equation (3.36).
Since density variations are small in the sea, oceanographers

deal with a modified density called sigma-t, defined as
oy = (p-1) x 1000,

which has cgs units and is a measure of the deviation in density from
1.0 gm/m1. The equation of state in general use by oceanographers may
be found in U.S. Navy Hydrographic Office publication number 615 [103]

(or in Hi11 [39]) and has the form:

op = Lg* (o, +.1324) [1 - A, + B, (o - .1324)] (3.38)

where

2
J. = (T - 3.98) T +283
t 503.370 X T767.76

>
]

-3
t 10 T(4.7867 - .098185T + .0010843T2)

[ae)
1]

-6
t 10" T(18.030 - .8164T + .01667T2)

Q
1]

o -.093 + .8149S - .00048252 + 000006852,
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In the above equations,T is in degrees Celsius, and salinity in
parts per thousand. The quantity % is the density of sea water, in
sigma-t units at zero pressure énd temperature. % is usually expressed
in terms of chlorine content instead of salinity, S, but for purposes

here, salinity will suffice.
3.7 Vorticity Transport - An Alternate Approach

In dealing with geophysical fluid dynamic problems it is frequently
difficult, if not impossible, to set realistic boundary conditions
required for the solution of Equation (3.21). Pressure, and consequently
associated boundary conditions, may be eliminated entirely from consid-
eration by introducing the quantity, vorticity.

A brief summary of the general theory will be presented here for
a homogeneous, isotropic turbulent flow field (i.e., ejj = €° constant)
in three dimension. Additional information concerning vorticity trans-
port may be found in Batchelor [10].

As demonstrated by Batchelor, a conservative fluid velocity field

may be defined by vector addition of an irrotational contribution, Uy

and a solenoidal contribution Ugs Or
> _ >
The solenoidal part satisfies
+ —
V ¢ uS = 0

whereas the irrotational part satisfies

vV x UI = 0.
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In addition the irrotational part of the velocity field, up, may be

described in terms of a scalar potential ¢ so that
-
UI-VQ
and the solenoidal part in terms of a vector potential, V, or
+=
Ug = v x 7.
Hence, the total velocity field is described by the vector and scalar

potential as

U=ve+vxV, (3.40)
Vorticity, w, is defined as

w=vxU.

Taking the curl of Equation (3.40} and use of the above expression for

vorticity, yields

¢ =9 x (uxd). (3.41)
However, by vector identity

v x (vx¥) = v(v.¥) - v¥T ,
which for an incompressible flow gives

VT = -3 (3.42)
since v.¥ = 0.

Equation (3.42) is a Poisson type partial differential equation

relating the vector potential to the distribution of vorticity in the
flow field.
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The divergence of Equation (3.40) gives
o mv. U

In view of the incompressibility condition,

V'-l:'-'o,

and satisfies LaPlace's equation
v'e = 0. (3.43)

Hence, the velocity field may be established through solution of
Equations (3.42), (3.43) and (3.40).

Hirasaki and Hellums [42] have shown that Equation (3.43) is
extremely useful for the purpose of prescribing inflow-outflow boundary
conditions in a three dimensional velocity field. In fact, they have
demonstrated that the flux boundary condition may be prescribed
entirely by the scalar potential, ¢ (velocity potential), or ur.
Hence, one is permitted to set tangential components of ¥ = 0and the
normal derivative of ¥ = 0 at all boundaries. The utility of this
theory lies in the fact that vector potential boundary condition may
be intractable without consideration of the scalar potential, ¢. One
exception is the case of flow in a closed system where the boundary
conditions on ¥ remain as described above and since there is no
boundary mass flux,v¢ = 0 everywhere (cf. Aziz [7]).

An equation for vorticity transport may be derived by taking the
curl of the Equations of motians (3.17) (after setting €5 " e). This
operation yields

-* ~
D—‘;’ = (f%+0) + WU+ vx Be, + ev’a (3.44)
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where é3 is a unit vector in the vertical direction.

The vorticity transportation equation was simplified appreciably
by assuming a homogeneous, isotropic turbulence field. If the turbu-
lence field were not treated as such, numerous terms involving the

gradient of €5 would appear. These terms will be investigated in

J
Section 3.10, which covers two-dimensional flow fields. The two

dimensional counterpart to Equation (3.44) is

Dg _ BA + 2>
bt -V X Bes eV w , (3.45)

where one coordinate is vertical (x3) and the other 1ies in the

lateral plane.
3.8 Non-dimensional Form of the Equations of Motion

A non-dimensional formulation of the equations of motion permits
the investigation of the magnitude of the various forces exerted on a
fluid element in terms of similarity parameters. The importance of
the various parameters may then be analyzed on an order-of-magnitude
basis and the results used to justify simplification of the governing
equations under certain flow conditions. To this end, we define the

following dimensionless variables:

U_i = Ui/Vo, y
* = po
p P pr/APo’
= 2a%/¢
J j* 0’
. ’ (3.46)
t" = tv /D, 1
O i
i = %/0,
* —-—
&5 T /%0
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In the above,

Yo

reference velocity (for the thermal plume we will use the
effluent velocity at the outfall port),

AP - reference dynamic pressure (may be taken as 1/2 pOVOZ)

fo - characteristic coriolis parameter

D - characteristic length (may be taken as the outfall port

diameter)

m
]

characteristic eddy diffusion coefficient for momentum

(may be set to Cv,D, where C is a constant).

Substituting the set (3.46) into Equation (3.18) yields,

. . *
Wi 200, () e (2P ) e
ijk i "k '

* X, v /Y] 2 Xz
ot J o} prv0 1
+ L os ) - less =t (3.47)
( Py )v02 i3 (VoD) aXJ. iJ Bj
The dimensionless groups in Equation (3.47) are:
v 2
?95 = Ro, Rossby number (ratio of inertial forces to coriolis
0
forces),
2
Prvo , .
P = Eu, Euler nuymber (ratio of inertial forces to pressure
)
forces),
v 2
0 =

FO, densimetric Froude number (ratio of inertial forces

PP
( op ) 90 to internal buoyant forces),
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— = R turbulent Reynolds number (ratio of inertial

€ -

forces to turbulent shear forces).

In terms of the above similarity parameters Equation (3.47) becomes:

aUj 3U3U4 1 *k -
T PR R F S I
*
18P 1 18 (.* 221)
S 4 =843 + v (e
Eu BX-i FO 13 RET BXJ ( 1Qan

(3.48)

Equation (3.48) represents a gross non-dimensionalization.
Ideally., we should treat each component of momentum separately and use
length scales which correspond to the particular coordinates. However,
for purposes here the form of Equation (3.48) is sufficient.

At middle latitudes, the characteristic coriolis parameter, fo’ is

approximately equal to 107

, and vo/D has magnitude on the order of 1
for a large outfall part. Hence, the Rossby number for the thermal
plume is on the order of 10,000. Where smaller ports are considered
vO/D may be from 10 to 100, giving Rossby numbers from 105 to 106.

The densimetric Froude number, Fo’ for a large thermal outfall will be

on the order of 10-50 and the reference Reynolds number Re, will be of

T
the same order. Also, we cannot neglect pressure effects. A1l other

terms are on the order of 1 except eddy coefficients in some portions
of the flow field. Hence, it follows that for a thermal plume and the
scales of motion to be considered here, the coriolis term is suffic-

iently small to neglect by virtue of the apparaent size of the Rossby
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number. In consideration to follow we will deal with the equations of

motion in the general form of

3U;  oUsU; *
i J1 1 3P ]
-_ + - = - ——-v—+—6.i3
ot 8X; Eu aXi Fo
3 fer. 2!3.)
tRer 3 (¢33 2/ (3.49)

and dimensional variations of the same.

3.9 Further Comments on the Concept of "Eddy Viscosity"

In Section 3.22, we introduced velocity fluctuation, uj, as a
means of describing turbulent flow. Without the coriolis term,
Equation (3.9) is known as Reynolds' equation, after Osborne Reynolds
[78] who first expressed the turbulent equations of motion in this
fashion. Reynolds' equation for the mean flow differs from the laminar
flow counterpart only by the Reynolds stress terms, Rij'

The Reynolds equation represents a vast simplification (at least
outwardly) of extremely complex flow conditions. However, the task
still remains in relating the turbulent or "apparent" stresses to mean
flow quantities.

Boussinesq (cf. Hinze [40]) was evidently the first to use the
concept of "apparent" viscosity, in his studies of two-dimensional flow.

He assumed that turbulent stress, t_ could be expressed in a manner

e
analogous to molecular viscous stress or

1. = -p UV =¢ du | (3.50)



In the above, ¢ is the "apparent" or eddy viscosity, u' and v' are x
and y components of the velocity fluctuation, respectively, and u is
the mean velocity in the x direction.

Prandtl [72] introduced the concept of "mixing Tengths" to
describe the turbulent exchange coefficient. This idea was motivated
by the mean free path concept of molecular motion and has turned out
to be a fruitful hypothesis in spite of obvious physical questions.

The idea of mixing length theory is that a small parcel of fluid
containing any transferrable property is transported, unchanged, by
velocity fluctuation from one position, a distance 2 to a new position
where it is absorbed in the flow field. The distance 2 is the mixing
length.

Let u](x],xz,x3) be the mean velocity at the origin of the
exchanged fluid parcel, and u1(x] + 2],x2 + 22,x3 + 23) be the mean
velocity at the absorbed position. Then the velocity fluctuation is

(cf. Neumann and Pierson).

u](x],xz,x3) - u](x] t Xyt ouXg * 23)

Bu] au] au]

Ly — =%, =— = R, —o

1 ax] 2 3x2 3 ax3
. auy
Then u](]) = - z] 3;;
ou
! _ 1

u-l(z) - = 22 —a‘)‘(‘g (3.5])

, 3uy
Y1(3) T " %3 g
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Here, the fluctuating velocity ui(j) is shown as a second order ten-
sor where the subscript j indicates the particular turbulent component

of up - Hence, in a somewhat nebulous fashion:

Bu_i
19T

(3.52)

Mixing length theory is rather unsatisfying because of the physical
basis; nevertheless, it does accomplish the purpose of relating mean
flow behavior to the Reynolds stresses. Actually, the concept of an
eddy viscosity requires a fourth order tensor quantity (Hinze, Pond
[71]) to satisfy theoretical treatment of the Reynolds stresses.

Such a quantity would be completely unmanageable from a practical
standpoint. Even the second order tensor €43 is difficult, if not
impossible, to calculate from measurable quantities such as frictional
forces and velocity gradients.

Hot wire and laser techniques offer a method for direct mea-
surement of the fluctuating velocities and hence correlation of the
Reynolds stresses through statistics. However, statistical theory has
not yet provided a means for evaluating €43 in practical engineering
calculations.

As a result of our lack of understanding and inability to cal-
culate or measure €55 further assumptions must be made. In the ocean
we must deal with at Jeast two values of eddy viscosity, a lateral
value and a vertical one. Gross measurements have shown that these

two values are vastly different. Fofonoff (cf. Hill) suggests using

a form from Saint-Guily which gives
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T au.i Bui
R.. = =~ p(u.i'uj) = EJ- -a_x; + E.i 'a—x'-l_ ’ (3'53)

where €; is the lateral eddy viscosity for i,j#3 and the vertical
for i,j=3.
For the work presented in this thesis, we will use three

components given by ej.

3.10 Two-Dimensional Forms of the Transport Equations in Rectangular

and Axisymetric Coordinates

In the previous sections of this chapter, the appropriate differ-
ential equations for solving the thermal plume problem in three-space
were layed out. Ideally, we would prefer to solve the plume problem in
this manner since the nature of the flow is distinctly three-dimensional.
Howewver, computational requirements necessary to obtain proper resolu-
tion of desired quantities in three dimensions are prohibitive from a
practical standpoint in view of available computer hardware and
economics.

Two-dimensional considerations which demand significantly less
computation time and computer capacity, are appropriate in cases where
flow symmetry is approximately realized. Such cases are the vertical
plume and 1ine thermal investigated in this thesis. Hopefully, compu-
tation economics will permit practical, three-dimensional engineering
calculations in the near future, thus avoiding certain restrictions
inherent with pwo-dimensiona] approximations. Table 3.1 gives a sum-
mary of general requirements for two- and three-dimensional forms of

the velocity-pressure and Vorticity-Vector potential equations.
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TABLE 3.1.

Parabolic
Parabolic
Parabolic
Elliptic

Parabolic

(1 or more)

Parabolic
Parabolic
Parabolic
Elliptic
Elliptic
Elliptic
Elliptic

DIFFERENTIAL EQUATIONS REQUIRED FOR VELOCITY-
PRESSURE AND VECTOR POTENTIAL-VORTICITY
METHODS IN TWO AND THREE DIMENSIONS

Velocity-Pressure
Equation Set

3-Dim.
i=1,2,3

> > X >x x>

Total of Required
Equations (minimum) .5

2-Dim.
i=1,2

X
X

*Used only in the case of open boundaries.
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Vector Potential-
Vorticity
Equation Set

3-Dim. 2-Dim.
i=1,2,3 i=1,2
X X

X

X

X X
X

X

X X
(X)*
7(8) 3



3.10.1 Two-Dimensional Transport Equations in Rectangular Geometry

The two-dimensional rectangular coordinate system which will be con-
sidered 1n this study is defined as a plane normal to the geopotential
surface (Figure 3.1). The two coordinates are defined as x and z, where
x is in the x;,x, plane, with no particular orientation, and z is aligned
with the vertical x3; axis. Corresponding velocity components u and v are

in the x and z directions, respectively.

Velocity-Pressure Equations:

The velocity-pressure equations are as follows.

Continuity:

du v _

i T3z ° 0O (3.54)
Momentum transport:

x~-direction,

Du -a_P3+§.[ a_uJ+a_ au

Dt ax ax ("Xax) T 3z %z 3z)? (3.55)

obv _ _ aP° 5 AL 3V

bt - "3z T8 % [Ex ﬁ] *57[€z E] (3.56)

In the above momentum transport equations, e, is the lateral eddy diffu-
sivity coefficient and e, is the corresponding vertical value. The

substantial derivative is given in two dimensions as

Constituent transport:

oro_ 'e_[ Aq . 2 2y
Dt ax [ 5YX 3x 3z vz 37| (3.57)
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Equations for the transport of specific constituents such as & S,

'I: AZ!
etc. will be developed where appropriate.
The appropriate pressure equation may be obtained from Equatipn

(3.20) by letting i=2,3 and j=2,3. Hence

92p0 = -{(3—%2 + 220 (30 + (2—2—)2} + 2B

£ 2 [EXy Ry 4 2 (252 (2Y))

X ax oX 9z X 9z
LI J€E
9 Xy (3V. 3 r(Zzy v (3.58)
+ o5 L33 (501 + 57 (53 ) (5701
2 2
where v2 = =+ 2
ax2  5z2

If turbulent contributions are neglected,
- Uy 2 3Vy /13U 3Vy2 3B
v2pe = -{(-37> + 2303 +(az)} + 22 (3.59)

Recall that by Equation (3.16),

PO = Plo,. - 9 [Jewlor dz-

The most notable work in obtaining numerical solution to the
laminar form of the velocity-pressure equations given above was per-
formed at the Los Alamos Scientific Laboratory by Welch and colleagues
(cf. the "MAC Method" [109]). Based on these pioneering efforts at
LASL, numerous other investigations have employed MAC techniques to

viscous flow problems [6, 23, 46]. Pagnani [67] applied the MAC
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techniques successfully to natural circulation in an enclosed cell.
Stream Function - Vorticity Equations:

An expression for the stream function in (x-z) coordinates may be
obtained by considering only the X3 component of the vector Equation
(3.43), or

2
VY = - w, (3.60)

where: v (stream function) = ¥y and w = w3

Velocity relationships are obtained by using only the ¥q component of

Equation (3.40)

N " 3.61
u = vx(yey) ( )
which yields
d
uos -2 (3.62)
-
v oy (3.63)

If the eddy diffusivity e;, is constant, Equation (3.45) may be used to

obtain ws as

0E ° " ax T Ve (3.64)
where again we let w = w3.

However, in general we must consider the two anisotropic, nonhomo-
geneous components e, and e,. In this case, numerous terms involving
derivatives of ey and ey appear. The vorticity equations are derived
for this case by cross differentiating Equations (3.54) and (3.56), ther

subtracting the latter result from the former to obtain
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Duw 3B 32w 2y
= - —— + + €
Dt X X ;))(2 z 322
N B8y a2y |, %%z a2y %%y 32y 9%; 32y
92 9x2  8Z 8z%  9X gax2 39X 472
L Bex U . Sez 8_u]
9Z |oX ax 0Z 0z
T i O av]
3X (3x  ax 3z 3z (3.65) -

If the structure of the turbulent field is homogeneous, and isotropic,

Equation (3.65) simplifies to

Dw - ﬂ e 32(» BZw

Dt x T &x g;; + g Pl (3.66)

Stream function-vorticity transport solution methods have been
employed for a number of years by oceanographers in computing such geo-
physical phenomena as western boundary currents (e.g. the Kuro Shio and
the Gulf Stream, cf. Neumann and Pierson). But these techniques have
become popular in engineering application onily in the past few years, a
result due in part to the recognition that these methods are extremely
well adapted to problems involving natural convection. Solution to the
laminar form of the stream function - vorticity equations given above
have been carried out by a number of researchers [7, 31, 82, 100, 104,
106, 108, 111]. The most notable work being carried out on the turbulent

form of the equations is at the Imperial College by Spalding and
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colleagues [69, 82, 90, 91, 92, 93].
3.10.2 Two-Dimensional Transport Equations in Axisymmetric Coordinates

Again referring to Figure 3.1, the axisymmetric coordinate system
is oriented such that the radial coordinate, r, may be considered a
rotating line in the Xys Xo plane. The vertical coordinate, z, is again

aligned with the Xq direction, normal to a geopotential surface.

Velocity-Pressure Equations:

The velocity-pressure equations are as follows:

Continuity:
du.r
1 "y V. _
F’ 'a'r"' + 52 = Os (3.67)
where u_ is the radial velocity.
Momentum transport:
r - direction,
e S R S Lol W Y s
Dt ar ar \r ar 3z \“Z%z) (3.68)
The substantial derivative in axisymmetric coordinates is:
D . 3 4u, 3 42 3.69
t e v TV az (3.69)
z-direction:
v _ P 13 [pe 2v) 42 (. 3V 70
bt - “az T8t raw [rer ar] MY [EZ az] ) (3.70)



In the above equations, e¢,. is the radial eddy diffusivity coefficient

r

for momentum.

Constituent transport:

br . 13 fre 20} 43 ar
Dt r ar[ew ar) MY [EYZ az] . (3.71)
where eyp is the radial coefficient for turbulent r diffusivity.

The pressure equation may be derived by differentiating Equations
(3.88) and (3.70), then adding these two results to Equation (3.68).

Hence,

2 2 2
2p0 - B _ Jfu du v u v
vep 9z {[r] ¥ [ar] * [azJ t25 Br‘} (3.72)

where the operator

2 2
4 + 2 (3.73)

y2 = l 3__

Vorticity in (r-z) coordinates is given as

I 11
¢T3z ar ° (3.74)

Also we define a stream function y according to

.1l
u, = - -2 (3.75)
and
_ 1y (3.76)
V % Yoar
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Substitution of Equations (3.75) and (3.76) into Equation (3.74)

yields
3%y _Law, % o (3.77)
3\"2 roar 522

for the stream function ¥. Note that Equation (3.77) is not the usual
Laplacian for (r-z) coordinates (e.g. Equation 3.73).

The vorticity transport equation is derived by cross-differ-
entiating Equations (3.68) and (3.70) and then subtracting the latter
result from the former. This operation leads to

. QU L ovw _ _ 3B

ot ar ¥4 ar

e a1l amr] + o, %
rar Lr ar

3z Lr or v T 3z 5z . 8z ar Lr “ar
3e_ 9%y d¢e de
z.,__Tr 2_.[21 S 1) __Jé]
32 3,2 or lar T or T 8z Bz
%y [32v l_av] %€, . 32y
or  Lyp2 " roar ar 572 (3.78)

If the turbulent structure of the flow field is homogeneous, and isotro-

pic, derivatives of €, and e, vanish and the vorticity transport

equation becomes

ou w

dw r VW aB 3 (1 swr 320

—_— FRNRAL . - + iR

. ot ar Y ar | °r 3y [ ] t ey . (3.79)
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CHAPTER 4

PLUME THEORY - SIMILARITY SOLUTIONS
As an integral part of the thermal plume dispersion program, this
chapter is concerned with flow regimes 1 and 2, which may adequately

be described by empirical correlations and similarity solutions.
4.1 General Description

The zone of "flow establishment" (Figure 2.3) is a region of
transition from essentially a pipe flow at the outfall orifice to a
fully developed velocity profile some distance downstream. This
situation occurs only in deep water, and when velocity profiles
become fully developed, the flow field is said to be "established."
This zone is characterized by velocity profiles which are very similar
in shape at each axial location.

The zone of flow establishment is a region of intense turbulent
mixing between the plume flow and surrounding water. The mixing
process which starts at the periphery of the outfall port spreads
inward toward the center of the plume and outward into the surround-
ings. Eventually mixing will spread to the plume centerline where
the centerline velocity will begin rapid diminution. Upstream frem
this point, flow in an approximate conical section is relatively
unaffected by the mixing process. This zone is called the "potential
core" and is characterized by relatively flat velocity profiles at all
axial locations.

Figure 4.1 illustrates a precise change from one flow regime to

the next. In reality, however, before the velocity field becomes
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fully established in the sense of similar velocity profiles, the
centerline velocity will begin to deteriorate giving a transition
zone between the two regimes. This transition is apparent from the
data of Albertson et al. [4]. Although Murota and Muraoki [62] have
proposed a correlation for this zone, according to Hinze [40] this
distance is relatively short and is generally excluded from analysis.

In the case of a momentum jet (neutrally buoyant flow, or
FO + =) velocity in the potential core is that of the issuing jet and
analysis is based on the assumption that momentum is conserved at
each axial cross-section. However, in the case of buoyant plumes,
momentum is generated by the density disparity and velocity will
actually increase in the potential core (as indicated in Figure 4.2B).

As mentioned previously, the zone of established flow is
typified by velocity profiles which have nearly the same shape at all
axial locations. For this reason similarity analysis has played an
important role in analysis of this flow regime. Numerous experimental
and analytical studies have been carried out for both the momentum jet
and buoyant plume in the absence of restraining boundaries.

In this manuscript, the work of Albertson and Abraham [1] is
used for modeling Zone 1, and Abraham's work for the established flow

regime is extended for the analysis of Zone 2.
4.2 Simplified Equations for a Vertical Plume

Governing equations for a vertical plume issuing from a round
port are more convenient to derive in axisymmetric coordinates. Thus,

with reference to Figure 2.3 and the coordinate system given in
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Figure 4.2. Coordinate system for axisymmetric vertical plume.
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Figure 4.2, the following assumptions are posed:

e Steady flow

o flow is axisymmetric

e coriolis effects are neglected

o flow field is assumed hydrostatic throughout: %Eg =0

e density difference between the plume and surroundings is
assumed small compared to the density at any point in the
flow field: |p_-p| << p

o plume is fully turbulent

e €eddy transport of momentum and heat is only effective in
the lateral direction (normal to jet axis)

e molecular heat conduction and viscosity are ignored.

With the above simplifications and assumptions it is possible to

disregard a number of terms in cylindrical governing Equations (3.69)

through (3.73) and arrive at the following equation set:

Continuity:

1 a(urr) V. _

r sk T 3z 0. (4.1)
Momentum:

Employing "order of magnitude" analysis common to boundary layer
theory (e.g. Schlichting [84])and incorporating previous assumptions,

we see a need for the z-direction momentum Equation (3.72) only. This
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equation reduces to

p_-p
v 3V _ m) 1 3 -
—-—+ — = - —— m—— r
Vosz T ( ‘(T

)» (4.2)

where Trz is the turbulent shear stress.

Energy transport may be accounted for by the appropriate

ax{symmetric form of the density transport Equation (3.34) or

3 34 ap* 3l
i 24 = .12 le. 22V (4.3)
Up o7 Y V37 " V32 r { Hr }

f

r ar ar

For salinity we use Equation (3.71), withr = Ags
3A 3A 3A
3 3 1 3}« 3 (4.4)
Yr Ir +V’az 'rar{Sr ar}’

with the buoyancy parameter, A3 defined as

r
3 S.-5, - (4.5)

Using the continuity relationship Equation (4.1), Equations (4.2),

(4.3) ‘and (4.4) may be rearranged to yield the following:

2 -
ave 1 o _ [ P="P ) 13
5zt 7 or (rurv) - (p_o— g - _p?: ar (”rz)’ (4.6)
ava *

2,1 2 oy - v 2e L e e 22} (a)
3Z r ar r °2 ¥4 T or ar Hr 5r
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34
1a 1o fe,
i (VAB) v oor (rur A3) r ar { Sr ar }, (4.8)

respectively.

4.3 Radial Velocity and Temperature Profiles

A large amount of experimental work has been carried out in the

past concerning radial velocity and temperature profiles for free
jets. Earlier work was concerned primarily with momentum jets.
Schmidt [85] in 1941 was evidently the first to consider the mechanics
of convective plumes, such as convective currents over fires, etc.
Schmidt's work was reported in the German literature, and apparently
because of the war, went unnoticed until Rouse et al. [81] carried out
similar work in the early 1950's. Since then a number of researchers
[8, 26, 41, 77, 83] have investigated velocity profiles and associated

transport coefficients for both momentum jets and buoyant plumes.

4.3.1 Zone of Established Fiow

The experimentai studies have established that velocity and
temperature profiles are approximately similar at all axial locations
in the zone of established flow for all vertical piumes in a stagnant,
free environment. Also, profiles are nearly Gaussian and may be

adequately described by the normal distribution curve:

e

r2
v(r,z) = v e’ 5 (3 (4.9)

for velocity. and
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A (1)2
e(r,z) =96 e 2 ‘o (4.10)

for the temperature distribution. In the above equations the sub-
script m refers to condition at the plume centerline, 1 is the eddy
Prandt] number, and o is the standard deviation.

The standard deviation has been found to relate to the vertical

coordinate, z, by

2
2 _ 1
=5 % (4.11)
where K is an experimentaT entrainment parameter. Hence,
2
r
vir,z) = v e K (E) (4.12)
and
" 2
8(r,z) = eme'K A (29. (4.13)

It is important to remember that these profiles have no theoretical
basis and are merely the result of curve fitting.
The values K and A must be determined by measurement and have
been found to depend on the extent of buoyancy. For instance, in
the case of a simple plume (pure buoyancy, F0=0) Schmidt found that
K =48
A=1.2

The data of Rouse yields
K= 96

and
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for a buoyant point source. Abraham in his analysis of a simple
plume used values
K= 92
and
A= .74,
For the momentum jet case, (neutral buoyancy) Albertson found
K= 77.
Abraham used
A= .80
for this case.
Baines [8] observed in his investigations that the initial
Reynolds number affected the results. He found the fcllowing best

fit for his experimental results:

r \
v(r,z) = vme'K (2) (4.14)
where K = 43.3 and N = 1.82 for R, = 2.1x10%

for R, = 7x10%.

, and K = 64.4 and N = 1,84

Where values for K and A are needed in the present work, the
following are used:
simple plume (pure buoyancy, or F0+0),

K= 92

x = .74, and
momentum jet (neutral buoyancy, or F, - ),

K=77
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A= .80

4.3.2 Zone of Flow Establishment

Figure 4.3 illustrates a typical velocity distribution in
this zone. Albertson estimated this distribution for a momentum jet
by assuming a flat profile across the potential core and a Gaussian
distribution for the mixing zone. Albertson derived an integral
expression for momentum flux across a lateral plane in this zone by

integrating Equation (4.6) with p_=p, for r =0 tor » =, or

M- 2 . - 1. (4.15)

The quantity M is total momentum flux crossing a plane normal to the
mean flow and A is cross-sectional area. Thus, Equation (4.15) states
that momentum is conserved with M0=V§A0 the momentum source strength.
By letting C1 = ¢/z, the momentum flux relationship above yields

Ze _ 1 (4.16)
D 2C,
where C] is an experimental constant. By approximating the potential

core diameter, Dc’ according to

Ec_ =1 - Z (4.17)
D z
e

the mean velocity distribution in this region takes the form
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Figure 4.3. Typical velocity profile in the zone of flow
establishment for a momentum jet.
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Equation (4.18) above will be used in the following work when a
velocity distribution near the outfall port is required. Note that
this equation is not correct for buoyant plumes since density dif-
ferences have been ignored. However, very near the outfall port (say
one port diameter downstream), inertial effects are assumed to domi-
nate the flow behavior regardless of the degree of buoyancy. Evalua-

tion of the empirical constant C, and the length z, are dealt with in

1
the next section.

4.4 Zone of Flow Establishment

For a plume issuing from a small diameter port in deep water
the length for flow estabiishment, Zgs has relatively small influence
on conditions far downstream except as it enters in the established
flow solutions as a boundary condition. On the other hand, for large
outfall ports, the theoretical zone may extend over a good portion
of the flow field, or even to the ocean surface. In this section, we
will discuss methods for evaluating z, in deep water for both the
neutrally buoyant and buoyant cases.

Many experiments have been carried out by various investigators
in an effort to establish the length of the potential corefor turbulent
round jets issuing into stagnant fluids. Good reviews of this work
are given by Hinze [40] and by Gaunter, Livingwood, and Haycak [32].

Gaunter et al. in their review, state that values for ze/D vary from
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about 4.7 to 7.7. For instance, Albertson et al. found that z,= 6.2
for their work. Baines reports that jet Reynolds number had
considerable effect on ze/D for his experiments. In fact for ReO =

4 _ _ 100 -
1.4x10°, Ze/D = 5 and for Re0 107, ze/D 7.

Where buoyancy affects the potential core length, Abraham bases

z, on the concentration distribution. Hence, Z, for concentration is

given by

3 2

z z 2
1,42 (T)_e_> +(_D_e_> RECIERS b (4.19)
0

where A and K take values .8 and 77, respectively. The limiting value
of Ze/D in Equation (4.19) for F0 > o is approximately 5.6. The value

ofze/Dfor concentration profile establishment is about 10% less than

the value of 6.2 for velocity profiles found by Albertson.

4.5 Governing Differential Equations

To derive the equations governing the dynamics of a vertical
plume in Zone 3 we integrate Equations (4.6),(4.7) and (4.8), in a
lateral plane, fromr = 0 to r » ». Thus, the following expressions
apply as indicated,

Vertical momentum transport:

Ies) oo poo_ 0
.‘(jE f verdr f ( ) grdr (4.20)
0 0 o
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Density disparity transport:

* ~

@ apm / ©
'/; Vaordr - — vrdr = 0 (4.21)

0

ajo
N

Salinity or concentration transport:

Q_fw
dz 0 VA3Y‘dY‘ =0. (4.22)

Equation (4.20) may be written in terms of A2 by rearranging the gravi

tational contribution to yield,

5 P, 0 o
g_f verdr = g (_r___o_)/ s rdr (4.23)
) o o 0

Integration of Equations (4.21) through (4.23) may be completed by
utilizing profiles given by Equations (4.12) and( 4.13) (4.13) for Ay
and By. Hence, the resulting expressions are

Vertical momentum:

d Vm323 - \ z3
z\ 37 )" 39 (QY‘ pO) m®2m (4.24)
K o \k3/2

2 2
d_{vaZmZ )}zf%f _dp_: (4.25)
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Salinity or concentration:

Cast in dimensionless form, the above equations become

where,

? 2

z D VoA3o

m) =
K{x + 1) 4

dE* 3 { T+x
T S F |—=) =,
dZ F0 \A4@Z)
PR WA
dz VK i
= YK(I) 1
Im 1 %1733
£ = 2/D
Vm = vm/v0
(vz) 3
Ex = M
'3
1/3
Ex By Z d
R* = ___2m ,an
YK (142)
8o T ]
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4.5.1 Initial Condition

The solutions of Equations (4.27) and (4.28) are begun at
£=4£,, orin the beginning of the established flow regime. Abraham's
relationship (4.19) may be used to evaluate this distance for the
entire range of densimetric Froude numbers, Fo. Once Ze is known,

e

the initial values E*, and R*, may be established. We assume that

ambient stratification may be neglected over £_, then

e,
82 I = 1, and
Z=Ze
%*
do =0 .
dZ Z=Ze
Hence, by Equations (4.30) and (4.31)
R* = o
e T - (4.32)

The initial value of E* may be found by considering Equation (4.30).

For large initial Froude numbers (Fo + =)V > 1, so that
3

E* = %e . (4.33)

me

However, for low Fo’ Vme is typically larger than 1 and unknown. To
avoid estimation of Vme’ we use Equations (4.29) and (4.30) with

A = 1, to obtain

2me
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Ee* = [%ﬂ] (4_34)

e

For large Fo, Equation (4.34) reduces to
ex =2 (4.35)
in which case Ze = 5.6. This result agrees with Equation (4.19).

4.5.2 Evaluation of Terms Involving K and

Listed in Table 4.1 below are limiting values of K and X as
suggested by Abraham along with limiting and mean values of terms
involving K and i.

TABLE 4.1 VALUES OF TERMS INVOLVING K AND A

Momen tum Simple Max .
Jet E]“meo) Mean Error
Term (Fo ) (Fy = Value (%)
K 77 92
X .80 74
140 256 245 1/4 2.4%
AVK
il 14 104 1109 4.8%
YK
4 .253 .239 .245 2.9%
VK(2+1)

Using convenient values for the above terms, the governing equations

and initial conditions are:

dE* Z R*, (4.36)

3
. aF,
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do *

géi - nE3 g, (4.37)
A = __ 4 (4.38)
im ]/3 ’

£ E*

and the initial conditions are:

Ex = b, | (4.39)
e z°
e

Re* = 1/4 . (4.40)

4.5.3 Homogeneous Receiving Water

For the case of homogeneous receiving water the above equations
may be solved analytically since dp_/dZ = 0. Therefore, from Equa-

tion (4.37)

R* = 1/4, | (4.41)

and Equation (4.36) becomes

dEx  _ 32 (4.42)
dz T6F °

Equation (4.42) may be integrated immediately to yield

. _[64 3 2 .2
E {.2.3 s -3?-F;[z -ze]} : (4.43)
e

Centerline concentration is then given by Equation (4.41) as

-1/3

, ={£ 64 3 (22 .12 /

m 64 |3 + 32F " e ' (4.44)
e
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Apparently, the stratified case must be solved numerically.
4.6 Lateral Velocity, u,.

Once the plume centerline velocity, v,has been calculated,
and the lateral distribution of axial velocity has been established,

it is a simple matter to calculate U, from the continuity equation,

1 a(rur) + vV
L L
r ar r (4.45)

Since v(r,z) is known, Equation (4.45) may be written as

& Lurl = rf(v) (4.46)

or

r
u. = -% J{: f(v) xdx. (4.47)
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CHAPTER 5
FINITE-DIFFERENCE MODELS

The finite-difference models developed in this chapter are applic-
able to the following two situations:

. Vertical round ports issuing into quiescent receiving

water, and
o Line plumes which may include ambient current effects.
From a practical standpoint, the vertical round port in shallow water
js of foremost importance because this configuration is typical of pres-
ent and planned installations. The line thermal model would find appli-
cation in analyses of the plume which develops over a diffuser line once
the individual round plumes have interferred with one another.

The numerical models are formed in two dimensions for steady flow
conditions. In the case of a vertical round plume, a two-dimensional
model will not accommodate any ambient cross flow which would destroy
the plume symmetry. Hence, the solution is strictly valid only during
slack tide conditions in the absence of prevailing local currents.
However, cross currents, tidal or otherwise, have 1ittle effect on the
initial mixing (near-port locale) of plume flow from large outfalls in
shallow water. The reason for this is that the affluent momentum
dominates the ambient flow. At the San Onofre outfall, data show that
isotherms in the near vicinity of the outfall are reasonably concentric
even in the presence of tidal currents [24]. In view of available data
it appears that a two-dimensional axisymmetric model for the vertical

round plume should give adequate results for the initial mixing region,
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in spite of ambient cross flow.

The Tine thermal model may accommodate ambient flow perpendicular
to the plume since in this case the phenomenon remains two-dimensional.
End affects are, of course, ignored in this case.

Difference models are based on the vorticity-stream function equa-
tion described in Chapter 3. Where the finite-difference solution is
started some distance above the outfall port, boundary conditions are
obtained from available data or similarity solutions as described in
Chapter 4. As indicated by Table 3.1, the minimum number of equations
required is three. We will also consider salinity transport so that
four partial differential equations are required, these being one
Poisson type equation for the stream function and a total of three

transport equations for vorticity and two I constituents.
5.1 Physical System for the Vertical Round Port

The physical system of primary concern is a large, single port,
submerged vertical thermal outfall issuing to stagnant receiving
water. Figure 5.1 illustrates this system in axisymmetric coordinates
(r, z). Later, conditions for a line plume will be discussed in an
appropriate cartesian coordinate system. The receiving water has
depth, L, and is assumed stratified with density o_(z). Flow enters
the system along the bottom boundary (z = zb) with some known velocity
and temperature distribution. In all cases to be analyzed the inflow
will occur only over a small portion of this boundary, which extends
from the plume centerline to a point Y the nominal plume boundary.

For the shallow water cases, ry = R0 the outfall port radius
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(Figure 5.2). It is assumed that no flow crosses that portion of the
bottom boundary extending from LN tor .

" The plume centerline and ocean surface form no-flow boundaries,
or a reference streamline. A free-slip condition is assumed at the
ocean surface, but this surface is not allowed to distort vertically.
The flow boundary condition at r = r_ is free except that Stream]ines
are assumed to have constant slope. Flow will both enter and exit
over portions of this boundary; the exact distribution is a part of
the numerical computation. The mean velocity might be assumed wholly
horizontal since r_ is a large distance compared to hs and since
density stratification will impede vertical flow. This assumption
would lead to level streamlines.

For shallow water geometry, (Figure 5.2) the ocean bottom is
assumed flat and z, = 0. The port side and ocean floor are assumed

no-slip boundaries.
5.2 Governing Differential Equations

For incompressible, turbulent flow in axisymmetric coordinates,
the differential equations describing continuity, Tinear momentum
and buoyancy transport were given in Section 3.10.2 and are reiterated
be]éw.

Continuity:

1 our v
F W— +"a-—z" 0, (5.])
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where u and v are radial and vertical velocity components, respectively

(note that u is used instead of u. as in Section 3.10.2).

Momentum transport:

r = direction,
0 2
Du _ _ 3P o ¢l aur )
0t - " ar T crav [y 571+, 3 22 ' (5.2)
z = direction,
p.Y.=-3P0+ (ow-p E_r._.a_(ra_v)+s i?.Y. (5.3)
t Y2 %0 )9+t ¥ 5r ar’’ 'z 552 :

In Equations (5.2) and (5.3) above, derivatives of e, and e, have
been ignored.
Buoyancy transport:

In lieu of the energy equation, the transport equation for b is

considered,

where again derivatives of the eddy buoyancy diffusivities, € r and 3

have been ignored. The buoyancy parameter, 4, as defined in chapter 3

is
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5.3 Vorticity Equations

For the problem at hand, it is more convenient to deal with
vorticity transport rather than linear momentum transport. In dealing
with vorticity, we need not be concerned about pressure and need to
consider one less partial differential equation. The appropriate
vorticity-stream function equations were given in Section 3.10.2 and

as a matter of convenience are listed below.

Stream function, V¥:

2 2
3y 1 3y 3y
I QUL B (5.5)
ar,2 r ar 322
Vorticity, w:
_8_w+_8_l4_l_ui+8__V&=_8_B_+ _E)_(]_EB(JJ_Y‘)+ 32‘” (379)
at | ar 3z ar  frar V¥ ar Ez;;? ’
where vorticity is defined as
_ au oV
wE o= e (3.74)

Once having soived for the stream function distribution (Equation 5.5)

the velocity field is found by the relationships,

3y (5.6)

_ _1
us= =% 3z

and

' Q2
.

V=g (5.7)

Q2
-

In the remainder of this work we will consider only steady flow. Hence,

the vorticity transport Equation (3.81) has the form

90



3(p - o)
°o r 32

where B has been replaced by the definition Equation (3.22). Steady

flow transport of the buoyancy parameter by is given by

l_a(ruA]) . S(VA]) _ €or é—-(r iﬁl) .. 3°n
r ar Y4 r 3 ar pz2 . 2 (5.9)

The convective terms in Equation (5.9) are in "conservative" form
which was obtained from Equation (5.4) through the use of the contin-
uity Equation (5.1).

In summary, the equations to be solved for the axisymmetric
plume dispersion are (5.4), (5.8) and (5.9) along with (5.5) and (5.6).
Equation (3.76) will be considered to evaluate vorticity boundary con-
ditions. To account for salinity transport (if applicable) a second
Equation (5.9) will be solved with by defined as a salinity parameter,

A3,where

Sr -5

83753,
Temperature distributions may be calculated from the Equation of State
(3.38) once A, and A3 have been established. Hereafter only the con-
servative form of the transport equations will be considered. Although

the pressure distribution is not considered in this work, it could be

calculated through Equation (3.74).
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5.4 Dimensioniess Forms

To cast the governing equations in dimensionless form consider

the following dimensionless variables:

R = r/ro,
Z = z/r,, !
U = u/vo,
vV = v/vo,

v o= y/(rdv),

Q = w/(VO/PO);

and, the dimensionless parameters:

rv
REr = 2 0 , (radial, turbulent Reynolds number)
r
oV
REZ == , (vertical, turbulent Reynolds number)
z
. €
PRr =T (radial, turbulent Prandtl number)
r
€z
PRZ " (vertical, turbulent Prandtl number)
z
2
Yo
Fo = {densimetric Froude number).
Pr~Po 5
r.g
Do o

INote that a second dimensionless vertical distance is used.in this
manuscript defined as # = z/D and should not be confused with Z.
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In the above definitions s is the outfall port radius and Vo
is the effluent velocity issuing from the port.

With these variables, the system of governing equations is written
as

stream function:

2 2
3 ¥ 1 3y 3 Y
—_—_— = = == 4+ = - RQ’ (5.10)
8R2 R &R aZz
vorticity:

Note that in Equation (5.8) the Boussinesq term may be rewritten as

) 9_8(000‘0) . g9 (Dr'p) . 9 a(pr'pm) ,
po ar o o or

since p_ is a function of £ alone. Hence,

A
3 3 _ 1 1
() g (V)= -
2 2
1 [3 @ 130 @ 1 370
| S tm i -yt e (5.11)
REr<8R2 R R> Ez 3z
buoyancy parameter:
v sk (RUB) + 53 (Vay)
2
— t = + s .
RErPRz 3R R 3R REzPRz 57
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along with

oY
I (5.13)

| —

and

oY
= . (5.14)

| —

5.5 Coordinate Transformation

When solving partial differential equations numerically, it is
desirable to have fine grid space resolution where large derivatives
of the dependent variables are expected. In the present problem, a
fine grid spacing is needed in the radial direction near the outfall
port and plume centerline. At large distances from the centerline,
large grid spacing may be used since radial changes in the dependent
variablies are expected to be small. To this end, a non-linear trans-

formation is employed on the radial coordinate, of the form
R = sinh ¢ . (5.15)
This transformation has the desirable properties:

R

24

£, AR = Af for small R,

and

eg, AR = %5- et for large R.

No| —

In terms of transformed coordinates, the governing equations are:

stream function:

2. {32y 2
sech “g — - (tanh & +coth ¢) &X| + 3 ¥ = _ sinp £ . (5.16)
g3 S YL
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vorticity:

sech £ - %EQ_M, ngﬁ) - . (sech z;) T

ro |3t
, 1. 3% 5.1
Rez 322 ’

buoyancy parameter:

t

| 2 2 2
sech &).9_ |lsi o{Vr) _sech” g 13°T _ sech® , 3T
(sinh E) 3% [(S”‘“ 5) UTJ 7 E— ng * Tanh £ an
ror

T
5
RE, PR, 5Z (5.18)

Transformed expressions for velocity are given by:

= 1 oY
U= smmE " 57 (5.19)

T sinhe e (5.20)
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Finite-difference calculations will be based on even increments of the
transformation coordinate, ¢.

In the vertical direction, fine resolution is needed in the
region where the plume spreads laterally. In all thermal plume cases
of interest, this region is in the vicinity of the receiving water sur-
face. However, for other pollutants, such as municipal and industrial
wastes, lateral spread may take place below the surface and pollutant
concentration information is needed in the vicinity of this plane.
Since methods presented here are also applicable to these pollutant
plumes, a fine grid arrangement near the surface is not specified as a
general case. Rather, the vertical grid spacing will be treated as
node-wise variable and exact specification left to the discretion of

the computer program user.
5.6 Finite-Difference Grid System

The finite-difference grid layout consists of two grid systems.
One grid is usedto calculate the stream function, ¥, which provides
information to compute velocity components, U and V. This system
coincides with the physical boundaries and is illustrated by the wider
Tines on Figure 5.3. The stream function is calculated at the interior
intersection points designated by the solid round symbols. Solid box
symbols represent boundary points.

Velocities are not calculated at these same points. The U com-
ponents are computed at vertical midpoints which are designated by open
circle symbols; whereas, the V components are computed at horizontal

midpoints (£ coordinate) and designated by open box symbols. In this
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Figure 5.3 Computational Grid for Difference Equations
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manner, the stream function grid layout defines a system of cells with
the stream function, ¥, computed at each corner point (or set by
boundary conditions, as the case may be) and velocities defined at the
center of the cell face (see Figure 5.4).

The second grid system is used to calculate vorticity, @, and
buoyancy parameter, Aqs (also A3) and is illustrated in Figures 5.3
and 5.4 by the narrow lines. This layout completely overlaps the
grid (and physical system) with interior intersection points centered
in the cells defined by the ¥ grid system. These interior grid points
are indicated by crosses with boundary values at cross-and-box points.

The reason this staggered grid system is used is for computa-
tional convenience in treating boundary conditions and to permit con-
vective transport terms to be evaluated at cell faces.

In Figure 5.3, the ¥ grid system is sized by NJ and NK grid
points in the £ (or R) direction and vertical direction, respectively.
The @, by system has size NJ + 1 and NK + 1 in the respective direc-
tions. Points on the v grid are indicated by j, k, whereas points on
the @, Ay grid are indicated by p, q. In this figure, Zb defines the
bottom boundary of the stream function grid (physical boundary) and Zh
the top (sea surface). Vertical spacing for the system is defined by
AZk and may be variable. Grid spacing along the £ coordinate is even,
designated by aAg. System boundary points for the @, A grid are

1 1 ‘ ]
located at Zb - ?’AZZ for the bottom Zh + ?’AZNK-l at the top, - 7 AE

on the left and £, % At at the right boundary, where £, is the
assumed right hand physical boundary. Figure 5.4 also illustrates
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indices, computed quantities, cell size and radial distances for a

typical interior cell.
5.7 Difference Equations

Standard difference representation is used wherever possible in
this work. Central differences are used for both first and second
partials except for convective terms where a special donor-cell method
is wused. Techniques for uneven spacing are used for the vertical

differences.
5.7.1 Stream Function and Velocity

Consider the stream function grid system illustrated in
Figures 5.3 and 5.4. The finite difference representation of Equa-
tion (5.16) based on central differences for both first and second

partials is as follows:

sech2 Ej 1
2 vl

Ag k=7k+1

>
(2
<

|

~N

ol . + . .o
5 1 Ganh gJ + coth E{) ] -1,k

a b

+——d ] - .+ coth ¢, . L&
5 (tanh EJ + gj> 5

Y541k

YR g T

2 _

+ ° VY. + Q. ., sinh ¢.
5Z, [AZk+] T AZk] Jok=1 T gk Sy

(5.21)
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In the above difference equation, the quantity éj K is the average
value of @ at point (j,k), hence the overbar. This average value must
be used since Qp q does not lie on the ¥ computational grid points.

9

Vorticity is averaged for the four cells neighboring point (j,k) as

follows:
_ _ AZk 5 5
Q: L = Q + ————— (0,-04), (5.22)
Jsk 1 AZk + Azk+1 2"
where
= 1
= + - -
N %, YT P ,q7%-1,q),
and

bol]

- 1 -
2 Qp,q+1 t3 (Qp+1,q+1 Qp—l,q+12.

Velocity is calculated in first-order manner as

-1

Uj,k " Sinh 5 bZ, (wj,k'wj,k-]) (5.23)
and
sech g
Vj,k ~ “sinh Eplt (Wj,k’wj-1,k)- (5.24)

Thus far, we have discussed differencing the governing equations
only in transformed radial coordinate, £. To permit more versatile
computation we also include provision for calculation directly in
(R,Z) coordinates. This is easily done by collapsing the hyperbolic

functions so that
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sinh £ > £ = R, (also set tanh ¢ = 0)
and

cosh & » 1
giving

AE = AR,

Hence, for linear radial coordinates Equations (5.21), (5.22),

(5.23) and (5.24) collapse to

1 1 S (.
2<AR2 "7, AZk+1> kTR (] ) 'Zj) Fi+1 .k

1 1
+ — = |v.
AR (1 " 7] )WJ']’k

s 2

- ¥,
Jok+l
Azk+1(AZk+1 + Azk)
+ 2 y
j!k-.'
AZk( YA Azk)
+ JAR ﬁj‘k (5.25)
Velocity:
R-component
- =1
Uj,k'jARAZk (wj,k"yj’k_]) (5.26)
Z-component
1
ik =TT (Y Vi) (5.27)
Jrk (j‘f)ARZ J.k J'],k
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In Equations (5.25) through (5.27) sinh Ej is replaced by jaR

. _—
and sinh gp by (J - 50 AR.

5.7.2 Transport Equations

Except for the convective transport terms, central differences
are used to approximate all derivatives in the transport Equations
(5.17) and (5.18). Special consideration is given the convective
terms which involves basing numerical approximations on transport
integral techniques (see Appendix A).

Referring to the p,q grid system illustrated in Figures 5.3 and
5.4 the difference representation of the steady flow vorticity trans-

port Equation (5.17) is written as (after collecting terms)

2 . 1 + 1 +sech . [2 + AEZ coth2 E}
LI A Y T :

Bm

sech EE

1 -V, Q
* 20T, \i"lj,k‘ ¥ VJ',k * |Vj,k-1l VJsk'{l} P-q

2
sech & sech £ sech &
= ———E . ____.__.—.—E- - g—————g-
{ SAE [luj-1,k| * Uj-],k] t o [1 2 Tamh g, :|}Qp-1,q

Equation (5.28) continued on next page.
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sech & sech sech E
—-E . - ! ——-——-——E—
G 'Uj,kl Uikt 2 tan p+1,q
RE AE

R Prvetill \PSORTILR P R @ a7 9,9-1
2AZk J.k-1 J.k-1 REZAZk A AL P,q

..]_— . - + 2 b ] Q

+{2AZk ﬁvj PURAY ,k] REAZ, [AZ,(+AZ,<+1 H psa+l  (5.28)

sech €
- (Mg ,q70p-
4F 8¢ p+1,9 " 'p=1.9

The turbulent Reynolds numbers, REr and REz’ in the above difference
equation are point variables of the form REr(p,q) and RE, (p,q).
Derivatives of these quantities are neglected in the above equations
but are accounted for in the computations.

Equation (5.28) may be collapsed to radial coordinates in the
same fashion as illustrated in Section 5.7.1. Hence, in non-
transformed radial coordinates the vorticity transport difference

equation, after collecting terms, is (note that numerically p = j-1/2)
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2 { 1 ' 1 } . 1
T 2 + —
[REZAZk Y. AL +8Z) 4 RErARé ( ;2‘)

!
+ g (105, *+ s+ 105 ] - Uj-],k)

2 1

+ [fz;; (V3,1 * V5 ) RE,8Z, (37I:ZTE:T)]QP’Q']

1 2 1
+ e IV | -V, + = ] 0
[ZAZk ( ik J,k) RE,AZ, (Azk+Azk+1) P,q+i

iF R A - A .
4F iR ( p+l,q p-1,q) (5.29)

The convective terms are formed in a manner such that vorticity con-

vected out of cell (p,q) has the value £ _ and vorticity flowing into

P9
the same cell is convected in with the value of the cell where it

originated, regardless of the directional sense of fluid motion. This
character of convective transport is essential in properly conserving
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the transported quantity and in avoiding certain computational
difficulties.
The difference formutation of the buoyancy equation after col-

lecting terms is written as

2 .
2 sech sinh ¢, . sech
I N S B o, & %
PRRE_AZ,  |DZ, 1 +DZ, AZk_]+AZkJ PRrRErAEZ 208 sinh &,

|U v, s1nh Ej-1 -'sech %p i o
-k .k 2AE sinh Ep J-1,k -1,k

] -
* 2T, ﬂvj,k' Vit Vel - Vj,k-{]}ﬂ]p,q

2
s1nh£ - sech. Ep sech £
= 2A£ s1nh £ ) pu k| * Uik 2
3- PR RE.AZ
ror
. EseCh £ s1nh£j .~s1nh4£E
"2 tanh & Mpa1.9” 20E sTnh g,

2 2
sech™ ¢ sech

d BU kI - U kJ + ———&2— . ] + .Aj____ EE A-l

I JoX PR RE Af 2 tanh £ p+1.g

rer
1 2 1
+{z5=— * ||V, | + V. + . A
{ZAZk [ Jok-1 J,k-]} PRZREZAZk [Azk 1+Azk}]. ]p,q-l

+ {;lz . [)Vj S k} R | Blp gt

k ] Y z ZA k Azk+]+AZk p’q

(5.30)
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In linear radial coordinates, Equation (5.30) reduces to

2 1 + |
PR,RE,AZ, | 8Ly q+0Z) AL, _*BZ,

S J-1 (\u\. U,
+ + U, | + U, + . -1,k75-1,k
PRrRErARZ 2pAR ( i,k J,k) 2pAR J

-+

1 + V. +|V. | -V, A

|1 1 (-L
2pAR (|UJ-],k| * Uj-],k) * PR RE AR2 (] Zp) A]p'] »q
L rr
+ __J__(IU I - U, )+—J—‘— (]+J—)A]
2pAR \"7§,k 3K/ " pr RE AR? ep /|7 Tptl,q
L rr

[ 4 2 1\
+ |5 (|V. | + v, + mome——— [} | 8]
2AZk ( j.k=1 J,k-l) PRZREZAZk (AZk_]+AZk}] p,q-1

1 ¢ 1 1
¥ LZTA ) Wikl - "',k)+ PRRE, 47, (AZk+]+AZk)JA]p,q+1 _ (5.31)

The Aq transport difference equation corresponding to Equations
(5.30) and (5.31) are obtained simply by replacing By with 4, and noting
that the eddy Schmidt number, SC, should be used in the case of material
transport, instead of the eddy Prandtl number, PR. Materials other than

salt may be treated in a similar fashion.
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5.7.3 Summary of required difference equations

The difference equations to be solved are:

Transformed coordinates (£, Z),

y - Equation (5.21)
Q - Equation (5.28)
by - Equation (5.30)
Ay - Equation (5.30)
U - Equation (5.23)
V - Equation (5.24)

Linear Coordinates (R, Z)

¥ - Equation (5.25)
Q - Equation (5.29)
by - Equation (5.31)
by - Equation (5.31)
U - Equation (5.26)
V - Equation (5.27)

5.7.4 Vertical Grid Space Restrictions

Although the vertical grid spacing is variable, there are three
locations where an exception is expedient for the treatment of bound-
ary conditions (Section 5.8). These exceptions are as follows:

1. At the grid system bottom boundary AZ2 = AZ]

2. At the sea surface AZNK+1 = AZNK
NK
where Zh = :E: AZK
k=2
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3. At the level of the plume inflow boundary

A,y = AL = A

KP KP+1 KP+2

where KP is the grid boundary location.

These exceptions place no serious limitation on vertical grid spacing
and are incorporated only to expedite computer bookkeeping in treating

the various boundary conditions.
5.8 Boundary Conditions

Attention is now focused on evaluation of boundary conditions
necessary to carry out solution of the equation sets summarized in
Section 5.7.3.

Referring to Figures 5.1 and 5.2, the sea surface (Z = Zh) is
considered a free-slip boundary which is vertically rigid. A specified
flow enters the bottom inflow boundary where R j_Ro. Depending on the
water depth, this boundary may constitute the outfall port orifice
(shallow water case, see Figure 5.2) or an arbitrary lateral plane
through the plume (deep water case, see Figure 5.1) at elevation
L= Zb. In the former case, the port geometry must be considered along
with the ocean floor. The radial velocity distribution, Vo’ depends
on R and the port side and ocean floor are no-slip surfaces. In the
latter instance, the velocity distribution is obtained either directly
from data (hydraulic model or prototype) or calculated by the similarity
techniques described in Chapter 4. Outside the plume nominal boundary

(Figure 5.1) the bottom boundary is assumed slip-free.
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Surface heat transfer is neglected in this study since the sea
surface area is relatively small and surface heat exchange will have
very little effect on the overall temperature distribution. Boundary
condition sets a and b given below refer to the physical systems
shown in Figures 5.1 (deep water) and 5.2 (shallow water) respectively.
To eliminate confusion, the boundary conditions are stated in terms
of R (in lieu of the transformed coordinate, £).

1. Sea Surface ( O<R<R_, Z = Z)

a. ¥ = Constant = W],
Q=0 (5.32)
BA]
57~ = 0 (adiabatic condition)
A
3 _
z -0

b. Same as above.
2. Plume Centerline

a. R

0, 2, <71 <1,

y = Constant = W]

Q= 0 (5.33)
2A
1
w0
24
3
w® -0

b. R=0,2,<Z<1,

Same as above.

110



3.

4.

Inflow Boundary

a.

a.

L=17.,0=<R< Ry
R
y W] +j; V(R,Zb)RdR
3y avY
T3 TR
By A]b
A3 = 83,
Z Zo’ 0 <R=<R,
R
y w]+f0 V(R,Z,)RAR
AU ay
“TT W
Ay = A
1 ]0
b3 = B3,
Port Side (R=R, Z, = 0<Z <Z)
Not applicable
V R
- 00 _ 1_
L T I

Where the reference velocity, V

(no slip)
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1.

(5.34)

(5.35)

(5.36)



® -0
38

3 _
= = 0

5. Bottom Boundary
a. L= Zb’ Rb <R<R,

Rp
w=\v]+f V(R,Z, )RdR = ¥, (5.37)
o}
2= 0
3A
1.
= =0
A
3 _
= =0
b. Z=2,=0,R <R<R,
Y=y, bk
172° %
Y
Q= = (no slip) (5.38)
94
1 .
T 0
A
3 _
7 -0

6. Inflow-Outflow Boundary (R =R _, Z <7 < Zh)

The distance to the inflow-outflow (or free-flow) boundary, R_,

must be chosen in advance and this distance must be large enough such
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that boundary conditions Tisted below prevail approximately.

2

a. 9y LR
x=0or — =0
°R 3R

Meaning that streamlines are level, or the streamlines do not change

slope, respectively.

Q= a—z' = ﬁs (5.39)
pY‘ - Py

by = ——— (Ambient condition),
pr = po
S, - Se

A3 = Sr—_—s; (Ambient condition)

The conditions on Ay and by are valid so long as convection
dominates the transport at the boundary and upstream differencing is
used.

Now consider the difference form of these equations. Again,
refer to Figure 5.3 and note that boundary values for the (j,k) grid
(ygrid) fall on the boundary of the physical system; whereas, on the
(p,q) grid (grid for g, B and A3) the boundary cells are fictitious
in that they fall outside of the physical system. These cells are for
the purpose of obtaining specific conditions at the real boundary.
Again conditions a and b refeé to cases given in Figures 5.1 and 5.2,
respectively. The difference forms are given in terms of the trans-

formed variable, ¢, for computer application.
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1. Sea Surface (k = NK, q = Ng + 1)

a. Deep Water (Refer to Figure 5.5)

Velocity:
Us ket = Yy (Free S1ip) (5.40.1)
Vink =0 (5.40.2)

Stream Function:

wj,NK = 1 (Arbitrary) (5.40.3)

Vorticity:

Let 2 be the vorticity at point (p, Nk). By the free

slip velocity condition above and the fact Vj Nk 0,
o = (57 - 3R )INK = 0.
Hence, 2 is the nodewise average value at Zh, or
Q = 1 (@ +Q ) =0,
“s ©Z ' p,Na - Tp,Natl
so that
o Ngt1 T 7 “p,Na (5.40.4)

114



IR | PR D SR
4

g

q = Ng+l

boundary |cell

#Wi—].NK L Vi ¥oonk k= NK
T {r (sea surface)

interior {cell

r U.
Y. V. ¥,
3']’NK']f{E, Jj,NK-1 1' J,NK-1 kK = NK-1
J p J+1

Figure 5.5 Typical Sec Surface Boundary and Interior Cells

[Pp g indicate any of the cell centered
quantities , b, and A3.]
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Buoyancy:

Since the adiabatic cendition prohibits heat transport

across the surface,

30
oy,
2y
Hence,
L (s - A ) =0
By Tp,Ng+1 1p,Ng ’ (5.40.5)

or

Bp,Ng+1 T 21p,Ng.

Salinity:

Likewise,
A3p’Nq+] = A3p’Nq . (5.40.6)

b. Shallow Water

Same as deep water case above.
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2.

Plume Centerline (R = Q)

Deep Water Case (Refer to Figure 5.6)

Velocity:
Uk = Yo g (velocity gradient vanishes) (5.41.1)
V]’k =0. (5.41.2)

Stream Function:

Yy T 1 (Must be consistent with condition 1.a). (5.41.3)

Vorticity:

From the conditions on velocity given above, the centerline

vorticity, «. = 0, or averaging across the centerline,

¢
n¢==]/2( Q1M +§b,q)= 0.
Hence,
29,0 %2.q. (5.41.4)
Buoyancy:

At the centerline, the buoyancy gradient must vanish.

Hence,
o (8 by =0,
o 2,k 1,k

or

/_‘\'i = A-I (5.4].5)
1,k 2.k"
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R =0, 7
v y v y
Lk 4 1,k L2,k J 2,k )
boundary cell interior cell
A r] »q j\Uk’k *FZ,Q ,\U2,k
\( WI q
1 ke V2 k4 k-1
i T !

Figure 5.6 Typical Centerline Boundary and Interior Cells
[rp q indicates any of the cell centered
quantities, @, 4, and a5.]
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Salinity:
Since the same conditions hold for salinity and buoyancy

transport at the centerline,

4 = A (5.41.6
.00 2.k )
b. Shallow Water Case
Same as deep water case above.
3. Plume Inflow Boundary
a. Deep Water Case (Z =2, 0= R : R
(Refer to Figure 5.7)
Velocity:
s p = Ul 2, - % Z;) (5.42.1)
Calculated by methods in Chapter 4.
_ (5.42.2)
Vj"] - V(é’ Zb),
Data function, or calculated by methods in
Chapter 4.
Stream Function:
j
i = S ¢ sinh - £ . (5.42.3)
5 1+ ggz V(n,1)A¢ sinh peosh &y
p=2
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>
n
(V]

i\"j-l.z J‘J:"i.z *‘"i.;

U, r

interior cell

‘,

. Y.
f’wi-].l 4‘1.]:v'l.] 4“:] - k=]
boundary cell
r U.
Uj‘]l] {F p)] ﬂ} J’] q = 'I
J-1 p J

Figure 5.7 Typical Inflow Boundary and Interior Cell
(deep water case only).

[rp q indicates any of the cell centered
quantities @, ) and 4;.]
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Vorticity:

Vorticity at the inflow boundary, Qp b is calculated from,

p.b 2 %2+ %) *G7 - B,
Hence,
P12t T AZ [Us5,27U51 + Yso1,27Y500 1]
- 'A'é'é‘o—lﬁz" [VJ'+'|,]'VJ°_]’]]' (5.42.4)
p
Buoyangy:
o0 = L1728, 7p-172 az)]. (5.42.5)

Data, function,or calculated by methods in Chapter 4.

Salinity:

A3p . a5L(3-1/2)2¢, 2,-1/2 22,)] (5.42.6)

Data, function,or calculated by methods in Chapter 4.

b. Shallow Water Case (Z= L, O<R<R,; Refer to Figure 5.8)

Velocity:

Ujkp = 0 (5.43.1)

vj,KP =V, = Constant; or, Vj,kp = V(E’Zb)‘ (5.43.2)

Stream Function:

Y =T Y AE;; V(n,KP) sinh £ cosh &, (5.43.3)
p=
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J-1,KP

Usa,kp

Uso1,kp

1WJ-LKP+2 Vi Kp+2 JWj,KPi

r U.
+ ’ P+2 § sKP+2
-2—<P P,Q J( J
interior cell
¥i1,kp41 15 kP00 < ¥ ,KP+2
T U.
tl<\ p,QP+1 A "J,KP+]
" 4
interior cell for A]&A3
boundary cell for @
Yisake Vike i.wj,KP
boundary cell
r U,
,QP ,KP
j-1 p J

k = KP+2
q = QP+2
k = KP+1
q = QP+1
k = KP

(port orifice)

q=QP

Figure 5.8 Typical Inflow Boundary and Interior Cell
(shallow water case only).

[Fp’q
Q, 4y and A3.]
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Vorticity:

Since in one case, V = V0 is assumed constant over the port

3,1

radius, we choose to evaluate vorticity at QP+1, instead of at

the port orifice. Q will then become the boundary value.
P,QP+1

Convenience is the primary reason for doing this, because to

remain consistent with Vo = constant, Qj QP is impossible to

define correctly at the port edge. This procedure is also help-

ful in using power law profiles for V(g,Zb) (see Chapter 7).
Vorticity at a point (p,k) is given by

1
= = +
%k = 7 (9,q41%%,q)

Hence,

+2Q

o, = 7 Tp,g+l P,k

QP+ 1,

at q

1

QP+l T T TpLape2 T TTpy; [U 5, kP2 31 kpe2¥ 5 kped

1
- U5y ka1 - TEcoshe, [Vier,kpe17V5-1, kP41

(5.43.4)
Buoyancy:
8 = Constant = &, (5.43.5)
paQP 0
Salinity:
B = Constant = , (5.43.6)
p’QP 0
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4., Port Vertical Side

a. Deep Water Case - Not applicable

b. Shallow water case (R = Ry 0<Z=<17; Refer to
Figure 5.9)
Velocity:
UNP,k =0 (5.44.1)
VNP,k = - VNP+1,k (No-s1ip condition), (5.44.2)

Stream Function:

V(n,KP) sinh Ep cosh gp, (5.44.3)

=3
=
o
-
i
i
—
+
>
m.
"o =
I'\)NM =

n
P 1
» _ 1 2
Although the exact value of WNP,k =1+ 3 R0 Vo, the

difference approximation will lead to a slight deviation.

Vorticity:
1
We,g =7 ( Ouperg t T ,g)-

Hence,

i 2
“Mp,q =~ “MP+1,q T BECosh Epp (Vpa it Vnpa k-1 (5-48.4).

Buoyancy:

A = 4 (Adiabatic condition) (5.44.5)
MP,q MP+1,q
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’/,Port side, R=R0, £= NPaE

v v
I NP,k nPH,k  f¥np+
a4 wa ?NP Lk
boundary cell interior cell
r
gt ANk Fweii,g M
71 ‘7’
v ¥ v
4 NP k-1 LINP k-1 AVNP+1.k-1 APNP+T k-
3 L 8 fT Lol gotlabel o
p=MP j=NP p=MP+1 j=NpP+1

Figure 5.9 Typical Vertical Port Side Boundary and Interior Cell
(shallow water case only).
[rp q indicates cell centered quantities @,
87 and 44.]
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5.

Salinity:

A 'A3

3p.q SMp+l.q (5.44.6)

Bottom Boundary

a. Deep Water Case (R, < R <R, Z=2Z.; Refer to Figure 5.10)

Velocity:
Uj,] = UJ.’2 (free-slip condition) (5.45.1)
Vj ;=0 (Tevel stream line condition) (5.45.2)

Stream Function:

NB
¥sq® ]4-AE}S V(n,1)sinh gp cosh gp, (5.45.3)
n=2
p=2
where NB is the number of inflow cells to the nominal plume
boundary.
Vorticity:

Q =- %, (free-slip condition) (5.45.4)

psl

Buoyancy:
= .45.5
b, 5, (5.45.5)

(5.45.6)
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2] 'p,2
o

interior cell

ﬂ_“ﬁ-l,l V5,

boundary cell

1k o1 A%
Y w
31 p j

Figure 5.10

["o.q
R, Ay and 44.]
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k =2
q=2
k =1
(boundary)
q=1

Typical Bottom Boundary and Boundary Cell
indicates cell centered quantities



6.

b. Shallow Water Case (R <R <R,Z=17 =0;

Refer to Figure 5.10)

Velocity:
Uj 1° - Uj 2 (No-s1ip condition) (5.46.1)
Vj,] =0 (5.46.2)

Stream Function:

v, =1+ % R 2y (5.46.3)

+ —— (UJ.’2 + Uj-],z)’ (No-s1ip Condition) (5.46.4)

= 0 (Adiabatic condition) (5.46.5)

Salinity:

= Ay (5.46.6)

A
3 0,2

p,1

Inflow-Outflow Boundary

o

a. Deep Water Case (R=R |, Zy <1 = 1,; Refer to Figure 5.11)

J=N, p=Np

Velocity:

U 2 .__..___]____.__ (\y

NJ, k SThey 82, “Ng Lk T Na k1) (5.47.1)
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l,,R=Rm, £ = NJag

-1k LIk Jﬁha,k 1Vna+1,k y
T u T
NJ-1,k | NP,q N,k NP+1,q
_d( 4* é} q
interior | cell boundary cell
¥ v % v
Nd-1,k=-1 NJ k-1 NJd, k-1 rLNJ+1,k-]
= {} - T k-1

j=NJ-1 p=NP j=NJ p=NP+1 j=NI+1

Figure 5.11  Typical Inflow-Outflow Boundary
and Interior Cells

[rp q indicates cell centered
quantities @, 4, and b3-]
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Vngst .k = Yok (5.47.2)

Condition 5.47.2 results follow from the stream function

condition given below.

Stream Function:

wNJ,k = WNJ—],k (Level stream lines) (5.47.3)
WNJ,k = 2wNJ-],k - ¥NJ-2.k (No change of slope) (5.74.4)
Vorticity:

Since %% = 0 (Equation 5.47.3)

the vorticity, QNP+1,k is given by

- ol

QNP+Lq" 321N K

sinh 2
Q = W
NP+1, ( 57— ) (U -u 47,
1,9 2 bz, s1nthP+] NJ,k+1 NJ,k-])(s 47.5)

Note that (aU/aZ)NJ K has been replaced by a central difference
form using even spacing of aZ. For the more general case of

uneven AZk , refer to Appendix B

Buoyancy:
0. =P
A = (L4 5.47.6
1NP+],q °r "Po Ambient (5. )
Salinity:
( Sr - S
8 = (—)
3NP+1,q Sr - So Ambient (5.47.7)
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6. Shallow Water Case

Same as above.

A number of assumptions and restrictions are involved with the
above boundary values. For instance, the sea surface is restricted
to remain flat, although visual observation indicates that a slight
"boil" will occur at the plume centerline. At the bottom boundary
of the deep water case, beyond Rb, it is assumed that there is neither
a vertical component of mean velocity nor any change in the horizontal
velocity profile. Additionally it is assumed that neither b1 (nor T)
is diffused across this boundary.

Transported quantities are assumed constant at R = R_. Within
the framework of the difference scheme, this is a perfectly valid
assumption if convective terms, acting normal to this boundary,
dominate the diffusion terms. Any quantity convected into the system
is assumed to have the ambient value. Stream lines are assumed flat
or having constant slope at this point and recirculation of flow out
of the system is prohibited.

Many of the above assumptions are a result of ignorance with
regard to processes outside the chosen system boundary. Since there
is no way of regulating these processes, assumptions based on physical
insight are the only viable alternative. Fortunately, the more
nebulous assumptions occur at points far removed (at R = R_ and
bottom boundary) from the region of prime interest. And there is some
recourse, in that numerical experiments are possible which give in-
sight to the importance and effect of these assumptions. Results
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given in Chapter 7 reveal that the boundary specifications at R
have little influence on the numerical solution as long as R is a

reasonable distance from the port (approximately two plume diameters).
5.9 Rectangular Coordinates

The previous sections have dealt exclusively with (R,Z)
coordinates or transformed, (£,Z) coordinates. In this section we
treat the governing differential and difference equations in rectang-
ular (X,Z) coordinates.

Detailed derivation of these forms are omitted; only the
results are presented. In contrast to previous considerations neither
transformed coordinates or unequal grid spacing will be considered.

The physical problem which we wish to analyze is a two-
dimensional Tine plume that forms over a multiport diffuser line.
This condition is approximately realized once the flows from a series
of single round ports spread and interfere with one another parallel
to the diffuser line. In dealing with the single round port, we were
restricted to stagnant environment because any cross-current would
destroy the problem symmetry and require a three-dimensional analysis.
In the line plume case we may consider environmental velocity com-
ponents which fall in the (X,Z) plane. Figure 5.12 illustrates the

physical system for the line plume considered here.

5.9.1 Governing Differential Equations

Differential equations for the X,Z coordinate system comparable

to Equations (5.10), (5.11), (5.12), (5.13), and (5.14) given in
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to Flowing Receiving Water

133



Section 5.4 are:

Stream Function:

2 2
LA
X YA
Vorticity:
34
) d ] 1 ]
= (ua) + (Vo) = - = = + =7
aX L F, 2 RE,
1 aa
t - =
RE, 5z
Buoyancy Parameter:
2
3°A
d ) ] 1
= (Ua,) + == (Va,) = 7
aX 1 Y 1 PEXPRx 3%
2
1 8 &

Velocity:
I
U=-37
. A
V= aX

In the above set of equations,

X = x/b,
L = z/b0
Uu = u/v0
vV = v/vo
¥ o= y/{bov,)
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R = w/(VO/bO) .
where Vo and bo are reference plume velocity and width, respectively.

Dimensionless parameters are:

v.b
REx _ 00
X
v b
. 00
REZ = =
z
x
PR = 2
X kx
>
ya
PR = =
z kZ
2
F o= kS

0 Pn=0
r "o
——1 gb
defined as in Section 5.4, keeping in mind that the radial direction

is simply the "X" direction in this section.
5.9.2 Rectangular Difference Equations

Rectangular difference equations are formulated on a grid iden-
tical to that iilustrated in Figures 5.3 and 5.4 with the corresponding
change from the £ coordinate to the X coordinate.

Here we consider only a regular grid, which has spacing AX and

alZ. Difference equations are given below.
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Stream Function:

ik T Y,k

Yok * g(giz + Z%Z) ax? 2(—15 + —lf) 2z’

+ Lok (5.55)
(o * o)

Vorticity, ﬁj K? is the average value for the four surrounding cells
’

(see Figure 5.4) and given as
Qi = ](Q +Q +Q + 0 )
Jok  EVUpag T Ypugtl T Vptl,g T Yptl,gHl (5.56)

Velocity is calculated by

_ ]
Uik = - Zi'(wj,k - Wj,k-l) (5.57)

- -
n

3ok X (wj,k § Wj-1,k) (5.58)

and vorticity by
——] |U |+U +lU |-U
2K oK Jj-1,k -1,k

1
* o (lVJ kP V50t Vel - Vj,k-])

2 2 _
REC RE ZZJ T T
x5 28

| 1]
= ﬂ ‘U_ l + U._ + — o)
[ A ( J 1 ’k J 1 ,k REXAXZ p-] »q
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('Uj,k' - U5 )

('Vj,k-1' gk

1

p)
RE, AX

)

Q|3+1 »q

1
+———1a
‘) RE 02" ] P9

Vo ) -v, Y 1
(I iok! ,k) . AZZ] p,q+1
4

2F AX (A]p+1,q'A]p-1,

q)'

The buoyancy parameter, A], is calculated by,

+

+

1
2X

1
Y4

(5l * Yy * Mg il = Y31

('Vj,kl PV Yy k- Vj,k-1)

2 2

+

2
REXPRXAX REZPRZAZ

-

.-

]
24X

L?l—x(luj-l,k' TR
(o * U
:%z‘(l"j,k-ﬂ + V5 )t

Li%z(lvj’kl - Vj,k) +
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1
RE,PR,AZ

2 | &
] Psq

1

]

2
REXPRXAX ] 'p-l,q9

o 7
REXPRXAX J Tp+l,q

2 ] 8
REZPRZAZ P,q-1

A
] Tp,q+1
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The salinity or Ag transport equation is given exactly by

Equation (5.60) with PR replaced by SC, the eddy Schmidt number.
5.9.3 Rectangular Boundary Conditions

Boundary conditions for the rectangular problem are substantially
the same as in the axisymmetric problem. Notable differences are pro-
vision for crossflow and lack of problem symmetry.

Referring to Figure 5.12 boundary conditions are as follows:

1. Sea surface (0<X<X_, Z=Z,)

¥ = constant = W]

@ = 0 (free slip condition)
38,
7 = 0 (adiabatic condition)
9A

3 _
37 -0

2. Inflow boundary (X=0, ZbEZ£Zh)

A
y = w]-fum(Z) dz
Zy
au_
@ = 57
p. =P
8y = r .=
r p0
- Sp = S,
A3- =
r 0
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. ] -
3. Bottom boundary (0X<X. - 7 Xp» I=1)

Z
¥ o=y -f b u, (2) dZ=constant=\P2
Zp
Q@ = 0 (free slip condition)
A
1
w5z -0
A
3 .
5 -0

. ] 1 =
4. Plume inflow boundary (X, - 7 Xp<X<Ko + 5 Xp» =1,)

Assume that V, M and A are known from data or empirical

relationships.
X
Xe =7 %
= U _ 3V
8= 377X

5. Bottom boundary (X_ + 3 X< X<X_, ZZ,)

1
X + -2- Xb
dX = constant = ¥3

=3
"
-~
o
+
x'\.
o

0 (free slip condition)

Q
L]
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|
1l
[ew)

g
3L

Inflow-outflow boundary (X=X_, Zbizizh)

By
¥ -0
. U
& = 37
o = B,
by = —
! Pr = Po
Sr-a0
by = -
r (0]
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CHAPTER 6
CODE DESCRIPTION AND ORGANIZATION

The computer program described herein obtains the solution of
the transformed difference Equations (5.21), (5.23), (5.24), (5.28),
and (5.30) for the quantities v, U, V, @, and bys (or 1), respectively.
Through input option one may also obtain these solutions in ordinary
radial coordinates (see summary Section 5.7.3). A program which
obtains the solutions through the use of the density disparity param-
eter A, (as opposed to A]) has been used but is not presented in this
manuscript.

The program consists of 20 subroutines and/or functions which in
part are managed by an executive routine called "SYMJET®. Initially,
the code was set up for the Oregon State University CDC 3300 time
sharing system. This system, although extremely handy for program
development, is too small in terms of available core and too slow for
economically treating large problems. The code version presented
here is adapted to the Computer Science Corporation Univac 1108
located in Richland, Washington. This version of the code has also
been successfully executed on the Control Data Cerporation 6600
located in Palo Alto, California, and on the CDC 6400 system at the

Battelle Memorial Institute in Columbus, Ohio.
6.1 Computational Procedure

The primary task at hand involves the simultaneous solution of

one elliptic partial differential equation for the stream function, v,
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(Equation 5.21) and two parabolic transport equations for the
vorticity, @, and the buoyancy, By [Equations (5.28) and (5.30),
respectively]. Equations for U and V (5.23 and 5.24, respectively)
may be considered as auxiliary. but are, nevertheless, essential and
need to be solved along with (5.21), (5.28), and (5.30) during itera-
tion. In the case of neutral buoyancy, only Equations (5.21) and
(5.28) need to be solved simultaneously.

The iterative procedure is built about the equations for ¥, @,
and Ay- The technique used in the Gauss-Seidel method for all quanti-
ties defined by second order partial differential equations. Liebmann
acceleration is employed with the alternatives of both under and over
relaxation. Assuming all boundary conditions are set and pertinent
variables are initialized, the procedure is as follows:

1. Compute A]p q and T using Equation (5.30) based on

P.q

previously calculated values of Uj ,Vj K and appropriate

.k
transport coefficients.
2. Compute Qp q using Equation (5.28) and the previously

computed values of uj,k,vj k> A1 and appropriate trans-

p.q
port coefficients.

3. Update necessary boundary values for & T, and Q.

4. Use the newly computed values of o to compute the stream
function distribution from Equation (5.21). One or more
iterations may be required to arrive at a satisfactory
solution for ¥. Compute a new velocity field Vj,k and Uj,k

from the newly calculated ¥ distribution.
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5. If the eddy transport terms are not constant, compute multi-
pliers FR and FZ from new velocity field (for definition of
the FR and FZ multiplier, see Chapter 7).

6. Repeat Steps 1 through 5 until a preset convergence criter-
ion is satisfied or a specific number of iterations has been

completed.
6.2 Executive Program and Subroutine Description

As mentioned previously, the computer code consists of an execu-
tive routine called "SYMJET" and 20 subroutines and/or functions. The
following discussion relates the primary duties served by each of

these routines.

SYMJET

Executive routine

1. Reads case header and integer case set-up information.

2. Reads alphanumeric data for line printer output array
option, plot tape options, isoline interpolation options,
and program control.

3. Calls subroutines for data input, problem set-up and
initialization, and problem execution. The subroutines

called are (in the calling sequence):

e INPUT
o READY
e PLABAK

o STREAM (for inviscid flow solution)

e SSCOMP
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e INTERP
4. Performs other miscellaneous tasks such as clock initial-

jzation, tape rewind, presetting variables, etc.

SUBROUTINE INPUT
General data input routine
1. Reads restart tape if required.
2. Reads remaining input data from cards.
3. Converts portions of input data to appropriate quantities
and units (e.g., temperature data to density data).

Subroutine is called once during execution.

SUBROUTINE READY
Problem set-up routine
1. Sets all computed constants.
Sets constant boundary conditions.

Presets turbulence multipliers.

W N

Option to call SUBROUTINE SIMJET.
Option to call SUBROUTINE GAUSS.

Subroutine called once during execution.

SUBROUTINE PLABAK
General information and debug output
1. Writes to Tine printer various computed and input supplied
variables and the operation modes of current case.

2. MWrites to line printer constant arrays used in the difference

equation computations.

Subroutine is called once or not at all at the user's option.
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SUBROUTINE STREAM (IT, NSKIP)
Solves for stream function, v
1. Computes the viscous or inviscid stream function (Equation
5.21) by Gauss-Siedel iteration. When called, this sub-
routine iterates on vy (PSI) "IT" times.
2. Upon completion of "IT" iterations the velocity components
Uj,k and Vj,k are computed by the auxiliary Equations (5.23)
and (5.24).
For an inviscid flow computation (the inviscid flow solution
may be called for the purpose of initializing the viscous flow
computation if desired) STREAM is called and returns control to
the executive routine. When STREAM is called from SSCOMP,
which computes the viscous flow field, control is then returned
to SSCOMP. Subroutine STREAM constitutes what is referred to
in this manuscript as the "inner iteration loop" (subroutine
SSCOMP constitutes the "outer iteration loop") and is called at
least once for each "outer iteration".
SUBROUTINE SSCOMP
Computes steady flow solution of all transport equation

1. Solves transport equations for

° A-l
o T and
o

using Gauss-Siedel iteration with Liebmann acceleration

(deceleration).
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Updates boundary values of ., I, and .

Computes convergence rate information and the cell

indices having the slowest convergence.

Calls subroutine STREAM to compute velocity field.

Calls subroutine EDDY to compute eddy transport multipliers
as required.

Writes out monitor node values.

Calls subroutine OUTPUT for either interim or final array

‘output.

Generates plot data tape.

Computes surface area above Tamb in 1 OC increments.
Performs a Gamma constituent balance error, (Fin-rout)/rin’
for the overall system and then returns control to the

executive routine.

This subroutine is referred to as the "outer iteration loop" and

is called but once during a case execution. The code spends

the majority of the execution time in this routine.

SUBROUTINE EDDY (M)

Computes eddy transport multiplier FR and FZ

1.
2.

Computes potential core.
Computes plume half radius, R]/2 and nominal plume boundary,
R g5» at each vertical grid point.

Computes FR from mixing length theory.

FR=Voax Ry
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4. Computes FZ based on mixing length theory and incorporates
Richardson number modification (computes point Richardson
number, RI, and calls function RCHMOD for modifier).

If eddy multipliers are computed based on the velocity distri-

bution, this subroutine is called once during each "outer

iteration". Either FR, FZ or both may be computed selectively.

(Parameter M in the call list specifies the option). Details

of the particular eddy transport models used and regions of

applicability are discussed in Chapter 7. Also, this sub-
routine may be bypassed a set number of iterations for computa-

tion stability purposes (discussed in Chapter 7).

SUBROUTINE OUTPUT (MODE)

Primary 1ine printer output call routine

1. The primary purpose of this routine is to call selectively
the output array writer subroutine, AROUT, based on the
alpha input read in through the executive routine. The
arrays and array header Holleriths are aligned in the call
1ist of AROUT. This subroutine may be called selectively
for array writing through the input Fortran variable NOUT.
That is, every time that the "outer iteration" number is
divided by NOUT and yields a whole number, the array
writing routine is called. The parameter, MODE, is an out-
put option.

2. The secondary purpose of subroutine QUTPUT is to write out

selectively the convergence rate information computed in
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subroutine SSCOMP, that is, maximum changes in V¥, Ap and Q
and the nodal location of these changes, during successive
iterations. The iteration numbers selected for output are
specified by the input Fortran variable NTTY, in the exact
manner that NOUT is used in 1. above.
SUBROUTINE AROUT (1ist)
General array writer
This subroutine is used to write out all computed arrays speci-
fied for printing. The appropriate array. header and grid
coordinates are aligned in the call list at subroutine OQUTPUT.
Miscellaneous computations are also performed here as necessary.
For instance, if normalized arrays are desired, these are
normalized in AROUT and if temperature arrays are required the
buoyancy parameter (A]) array is converted to a temperature
array through successive calls to function TEMP.
SUBROUTINE INTERP
Calling routine for isoline interpolation
The only job performed by this subroutine is selectively setting
up arrays to be interpolated by the general interpolator
routine, ISOGEN. Selection is made through input of the Fortran
alpha array TERP during execution of the executive routine. The
particular array, header and other appropriate data are aligned
in the call list of ISOGEN. This subroutine is optionally
called through the executive routine following execution of

SSCOMP.
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SUBROUTINE ISOGEN (1ist)
General isoline interpolator
The function of ISOGEN is to interpolate a given array, aligned
in memory through the subroutine call list, for isolines whose
values are selected at input and specified by the Fortran
array, ISOLN. For a specific array (say the stream function
array) the coordinates of an isoline (streamline) are quad-
ratically interpolated and coordinates printed. Contouring may
be accomplished by hand plotting the results. Automated
plotting of the computed points would be quite difficult since
the points are not ordered.1

SUBROUTINE GAUSS (N)
Optionally computes Gaussian distributions for inflow
This subroutine computes Gaussian boundary distributions for V,
Ays and T in either the zone of flow establishment or the zone
of established flow. The particular option is determined by the
parameter, N. These computations are based on the Albertson
et al. [4] data and theoretical results given by Abraham [1].
The routine is called once from subroutine READY.

SUBROUTINE SIMJET (1ist)
This routine computes the centerline distributions of V, Ay and
I from the similarity solutions of a vertical plume given in
Chapter 4. For the homogeneous problem, V is calculated from

Equation (4.43) and by from (4.4). In the case of stratification

1 . . . . .
Automated contouring is accomplished using a special contouring
routine.
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these quantities are computed from Equations (4.36), (4.37),
and (4.38) using the fourth order Runge-Kutta technique.
Results from this routine may be used for inflow boundary
information in the more elaborate finite—difference method for
the confined plume. Calling is through subroutine READY and
is performed at most once.

FUNCTION SIGMAT (SAL, T, N)
Given the salinity, SAL, and temperature, T, this function com-
putes Sigma-t (ot, see Section 3.6) based on algebraic equations
given in the U.S. Navy Hydrographic publication number 615 [103]
or as given in Hi11 [39].

FUNCTION TEMP (SALT, SIGMA)
Given the salinity, SALT, and the density in Sigma-t units,
SIGMA, this function solves the equations referenced above for
the temperature in degrees centigrade by the Newton-Raphson
method. The function SIGMAT (SAL, T, N) is repeatedly called
during the iteration process.

FUNCTION SANH (X, N)
Hyperbolic sine coordinate transformation function which yields
Sinh (X) for N =1 and X for N = 0 (linear radial coordinates,
no transformation).

FUNCTION CASH (X, N)
Hyperbolic cosine transformation function which yields COSH (X)

for N =1, and 1.0 for N = Q.
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FUNCTION RCHMOD (N, RICH)

Computes Richardson number (RICH) modification of the vertical
eddy viscosity coefficient by one of five different models

(option given by N). These models are given in Chapter 7

(cf. Table 7.5).
6.3 Flow Charts

Detailed flow charts of all subroutines in the SYMJET computer
code would require an extensive amount of space. For this reason
only the main subroutines and the executive program will be illus-
trated. The charting of these will also be somewhat abbreviated.

A partial bibliography of the computer variables may be found in the

program listing (Appendix E).
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SYMJET FLOW CHART
(Executive Routine)

Read alpha case header
Read integer set-up data

Read alpha TLIST option
Set write option arrays
AQUT, PLOT, TERP, AND CONT

Blank
Card? @

Set auxiliary indices
Initialize arrays and constants
Compute monitoring arrays

Generate array
instruction vectors from

TLIST Options: NRITE{J
N3DPT8J), SOPT(J) CONTéL?J)

&
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CALL INPUT: Reads
main data file from
cards and optionally

initializes arrays from tape

)

CALL READY: Completes
inttializations, computes
constants, and sets
fixed boundary values.
Positions output tape.

()

CALL PLABAK:
Write out computed
and suppiied constants,
and debug arrays.

CONTRL(10

CALL STREAM: Compute
inviscid flow solution

le

&
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CALL SSCOMP : Compute
solution to transport
and auxiliary equations

CALL INTERP : Compute
contour coordinates

REWIND output

tape
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SUBROUTINE INPUT FLOW CHART

CONTRL (8) C

READ LUN 7
ITNO, 9, 84, U, V, v and T
Data from prlvious computation
for initialization or
continued iteration.

READ data card
DATA, JI, KI, NI

GO TO (N]. NZ'-'NIZ)' NI+

Ny : RETURN

Ni : Replace appropriate
variables with DATA

]
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SUBROUTINE READY FLOW CHART

Set up various computed

Constants: e.g., SC(J,L), SZ(K,L)
Preset variables: e.g., FZ(J,K)

FR(J,K)

Set up coordinate systems: Z(K),
ZC(K), X(J), XR{J), R(J}, RC(J)

Set inflow boundary
velocity according to
" INMODE"

CALL
GAUSS (1)

73

CALL
BAUSS (2)

CALL
SIMJET
(35=-%y)

CALL
GAUSS
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INMODE J;E;\ Inflow
=4 =/ velocity
vV =C{1-R)
NO

Compute and set all
fixed or initialized
boundary condition not
treated above

|RETURN|
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SUBROUTINE STREAM FLOW CHART

/

SET STREAM FUNCTION
Inflow-cutflow boundary
condition, ¥ (NJ,K)

Compute vorticity, f
at cell corners (OMEGA 3)

!

Compute ¥ (J,K
Equation (5.27

!

Accelerate (or decelerate)
Solution, ¥ (J,K)

Compute U(J.K) and V{J,K)
from ¥ (J,K), Eqs. (5.23) and (5.24)

CALL
OUTPUT(0)

[
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SUBROUTINE SSCOMP FLOW CHART

Reset iteration
CONTRL(8) " 0 Timits;

initialize eddy
factors, FR & FZ

Set
iteration
clock

MJET
=17

Compute 4, (p.q), Eq. (5.30)
Compute T {p,q), Eq. (5.30)

!

Accelerate (or decelerate)
8y(p,a) and 1 (p,q)

‘ .

Set boundary values for
next iteration on 8y, T and @

S 6

159



o Compute @ kp.q by
Equation (5.28

o Compute maximum change in
2 (p,q) and value
of p and q for location

o Accelerate or decelerate
solution a (p.q)

Compute updated boundary
conditions for o (p,q)

Write out monitor
node information

CALL EDDY
Computes eddy
transport multipliers
FZ(J,K) and FR{J,K)

®
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a

CALL OUTPUT (1)

OD(ITNO,NOUT)
=0 Calls array writer

CALL OUTPUT (2)

OD(ITNO,NTTY)
=0 Call intermediate output

Write to LUN 8 (MAG. TAPE)
ITNO, g, 8y U, v, v, T
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Create plot files
LUN 8 according
to N3DPT(J)

Compute surface
{sotherms in
increment of 1 °C

Perform GAMA
Sum convergence
check

[Print GAMA'Sum er;é;]

/

l RETURNI
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CHAPTER 7
CODE VERIFICATION AND NUMERICAL EXPERIMENTS

In this chapter we are concerned with verification of the
numerical model. Ultimately, the program is to be used in describing
the plume resulting from large vertical thermal outfalls in shallow
water, and, as previously mentioned, published field data concerning
velocity and temperature distributions along with other pertinent data
needed for evaluation or verification are essentially non-existent for
these cases. Even laboratory data from hydraulic models are scant and
steady flow experiments to model quasi-steady oceanic conditions with
stratification are essentially impossible.

Verification of the numerical techniques will be carried out by
using the code described in Chapter 6 to simulate various problems
which have been well studied, both experimentally and analytically,
and for which much information has been published in the literature.
One such problem which the code can easily handle is the deep water
momentum jet. In this case much knowledge has been compiled concern-
ing velocity distributions, concentrations, and turbulence parameters.
The computer code can easily handle interacting buoyancy for the same
geometry. Although there is a lesser amount of experimental data pub-
lished in the open literature for buoyancy cases, especially on turbu-
lent parameters, there is enough information for meaningful comparisons

with the numerical model.
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Once the computer program is verified using this published infor-
mation, the program can be applied with confidence to conditions of
more interest and practical value, such as shallow water and stratified
ambient cases. Having checked the program againsf experimental results
for simple cases, we know at least that the numerical procedures are
working correctly, although auxiliary models (e.g., turbulence) may not
be entirely correct.

Also presented in this chapter are some of the code operating
experiences, turbulence modeling, solution convergence and stability,

and discussion of some of the more troublesome boundary conditions.

7.1 Deep Water Plumes

By deep water plumes we are implying that the effluent is dis-
charging into a semi-infinite water body. although as a practical
matter computational boundaries must be finite. For program verifica-
tion, we use the following deep water flow categories:

e Momentum Jet - the fluid motion is induced entirely by the

effluent initial momentum. Buoyancy is also calculated but
is decoupled from the momentum equation and may be used as

a measure of concentration. This case is indicated by

Fo->°°.

e Pure Buoyant Plume - in this instance there is no effluent and,
consequently, no initial momentum. The driving force is pure
buoyancy caused by a source of heat located in the position

of the outfall port. An arbitrary reference velocity is used
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along with a length scale that corresponds to a port radius.
This case is indicated by F0 = 0.
o Mixed Flow - both initial momentum and buoyancy have varying
degrees of importance. In this case 0 < Fo < o,
Various cases of the above categories have been checked against avail-
able experimental data and similarity solutions. These cases are
itemized in Tables 7.1, 7.2, and 7.3.
Four different effluent velocity profiles and concentrations (or
temperature) have been used in this work which are:
o Typel : Gaussian profiles, established at 4.5 diameters
from the port exit,
o Types 2, 3 : Power law velocity profile at the port exit with
a constant radial concentration (or temperature)
distribution, and
o Type 4 : Constant radial distribution of all quantities
at the port exit.
Equations for these profiles are given in Table 7.1.
Figure 7.1 illustrates a typical grid system in R-Z coordinates.
Note the effect of the hyperbolic sine transformation in stretching
the cell widths as the distance R is increased. The computation grid

(g,Z-coordinates) has uniform radial cell widths as illustrated in

Figure 5.3.

165



991

TABLE 7.1. SUMMARY OF MOMENTUM JET VERIFICATION CASES (Fo + o)

PRr = .80, PRz = .80

Case Grid Z R Boundary r , 2
No. Size AE YA (Surface) T Type Type
1 26 x 40 2 2 43.5 74.2 1 3 .0001
2 35 x 40 1 2 43.5 14,96 1 1 .0001
3 26 x 40 2 2 43.5 74.2 1 1 .0001
2
4 40 x 33 . 12591 2 64 67.85 N=7 3 .0001
3
5 40 x 33 .12591 2 64 67.85 N=7 3 .0001
P 3
6 40 x 33 . 12591 2 64 67.85 N=10 3 .0001
2
7 40 x 33 . 12591 2 64 67.85 N=10 3 .0001
3
8 40 x 33 .12591 2 64 67.85 N=7 4 .0001
2
9 40 x 33 . 12591 2 64 67.85 N=6.6 3 .0001
3
10 40 x 33 .12591 2 64 67.85 N=10 3 €,%€
1 30 x 26 .2 2 43.5 74.2 1 Inviscid
Test
12 30 x 26 .2 2 43.5 74.2 1 Creeping

Test
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1
Inlet velocity profile type:

1LvRZ) = V(0,2) &7 (D

2. V(R,0) = {N+1) (2N+1) (1-r) /N
2N2

3. V(R,0) = (1-R)!/N

4. V(R,0) = V_ = Constant

0

2
Radial eddy viscosity calculation type:

1. e, = .0295 roVo = Constant

2. e = . 0256 "1/2mt Prior specification of "2 from Gaussian distribution of velocity,
Vi calculated iteratively.

3. € = .0256 r1/2%mt Iterative calculation of both r1/2 and Vrr

4, € = .0263 r]/zvm: Same as Type 3.
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1
TABLE 7.2. SUMMARY OF PURE BUOYANT PLUME VERIFICATION CASES (F0 = 0)
PRr = 714, PRz = .714

Heat
Case Grid yA R €p ) Source
No. ~ Size AE Iy 4 (Surface) w Type Condition
13 40 x 33 . 12591 2 64 67.85 3 1
14 40 x 33 .12591 2 64 67.85 3 2

1
Reference densimetric Froude number is not zero but based on a reference velocity since there
is no inflow at the source.

2
See Table 7.1.

3
Heat Source Type:

1. Weak Source: Simulated heated plate maintained at aT = 25 OcC.
Heat transferred to fluid by conduction alone over range 0 <R<1.

2. Stronger Source: Simulated source in first fluid node to maintain fluid temperature at
AT = 25 9C. Heat transferred by both conduction or convection.
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TABLE 7.3. SUMMARY OF MIXED FLOW VERIFICATION CASES

Case Grid z Boundary r €
No. Size AE Y4 (Surface) E: fg Typer Type1 %o PR, PR,
15 26 x 40 .2 2 43.5 74.2 52 1 1 .0001 714 714
16 26 x 40 .2 2 43.5 74.2 52 1 2 .0001 714 714
17 26 x 40 .2 2 43.5 74.2 52 1 3 .0001 714 714
18 26 x 40 .2 q 82.5 74.2 52 1 3 .0001 714 714
19 26 x 40 .2 2 43.5 74.2 35 1 3 .0001 714 714
20 26 x 40 .2 2 43.5 74.2 106 1 3 .0001 714 714
21 26 x 40 .2 2 43.5 74.2 52 1 3 #See 714 .714
Below
2
22 40 x 33 12591 2 64 67.85 45.5 =7 3 .0001 714 714
2
23 40 x 33 .12591 2 64 67.85 45.5 N=7 3 .0001 .80 .80
. 2
24 40 x 33 12591 2 64 67.85 1 =7 3 .0001 .80 .80
2
25 40 x 33 .12591 2 64 67.85 1000 =7 3 .0001 .80 .80
2
26 40 x 33 .12591 2 64 67.85 45.5 N=10 3 .000? 714 J14
2
27 40 x 33 .12591 2 64 67.85 45.5 N=10 3 . 0001 714 .714
1
See Tabte 7.1. ) )
4e_ = 1.0, Gaussian distribution e, =¢ e A (ZsZ)

z

z Z
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7-1.1 The Momentum Jet

A vast amount of information has been gathered concerning the
dynamic behavior of momentum jets dating back to Tollmien's [98] work
of 1926. Hence, there is sufficient data reported in the literature
to check all of the gross aspects of the jet structure computed. In
verifying the computational technique with the published data we use
the following jet characteristics:

e Centerline velocity and concentration,

e Radial distribution of axial velocity and concentration,

e Rate of jet spread, and

e Radial velocity.

Although there is a vast amount of published data available for veri-
fication, the primary data used is from Albertson, et al. [4], Baines
[8], Abraham [1] and information obtained from several researcher's
published in Chapter 24 of Schlichting's text "Boundary Layer Theory"
[84]. Additional information is obtained from reviews by Gauntner
et al. [32] and Chapter 6 of Hinze's text "Turbulence" [40].

Some of the relevant restrictions in this section are:

e Vertical turbulence is negligible; one case is run to

verify this fact.

o The computational grid system has an impermeable upper
boundary. Hence, velocity profiles begin to "feel" the
boundary some distance before it is reached.

Aside from the quantitative verification mentioned above, illustrations

of streamlines, concentration, and vorticity contours, and three-
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dimensional plots of the same information are provided for additional
qualitative assessment. Table 7.1 summarizes the momentum jet cases

run.
7.1.1.1 Centerline Velocity and Concentration {or Momentum Jets

A similarity solution for vertical plumes was given in Chapter 4

as
_ 64 3 2 2
E*x = ;j + ToF (2 - Ze) (4.43)
o}
e
In the case of a momentum jet Fo + « g0 that,
64
E*= = . 7.1
23 (7.1)
e
Then by definition
vK Ze )

where again Vm is the centerline velocity, K is related to the plume
entrainment (see Table 4.1), numerically equal to 77, and 2o is the
potential core length based on concentration (cf. Abraham [1]).

By Equation (7.2)

According to Abraham Ze ~ 5.6; hence,
Vi, = 6.2/2 (7.4)

which is also the result obtained by Albertson.
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Equation (7.4) implies that a plot of the dimensionless center-
line velocity, Vm’ versus axial distance in port diameters Z has slope
of -1 when plotted to Log-Log scale, and has an intercept of 6.2 on the
2-coordinate when V= 1. Experiments carried out by Albertson are
probably the most frequently quoted data bearing out Equation (7.4).
Various other researchers have carried out similar experiments (e.g.,
Baines, Tollmien and Reichardt [77]). Although there seems to be
general agreement that Vm N Z'], there is some disagreement on the
potential core length (hence, the constant of proportionality), or the
Log-Log plotted intercept value mentioned above. A review of a portion
of this work is given by Gauntner. It is noteworthy to point out here
that the potential core length (see Figure 4.1) is assumed to be the

centerline velocity plot intercept (Vm=1, 2=6.2; see Figure 7.2),

v v v L LA AL B | ] L | v L] LEEh B i
Z=26
1.0

8f )
.6} .
= 4 -
.2k 4

0.] I I F U | PRREN W S T | 1 i [ A becd

1 10 100

AXIAL DISTANCE, Z

Figure 7.2. General Features of Momentum Jet Centerline
Velocity (Based on Albertson's data)
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although the actual potential core length may be somewhat smaller.

For instance, Albertson measured an actual length of approximately 4.5
whereas their similarity solution is based on 6.2. The reason for
using the value 6.2 is that it is more representative of downstream
data than 4.5. As a matter of fact, similarity solutions are not valid
out to approximately ]0‘to 12 diameters. In Figure 7.2 , the distance
Z = 4.5 is the approximate distance where deterioration of centerline
velocity is first apparent.

Figure 7.3 illustrates centerline velocity, V_, and concentration,

m?’
Cm, comparisons for

e Similarity theory

e Experiment, and

e The present computational technique.
The similarity theory concentration distribution along the centerline
is

¢, = 5.6/2 (7.5)

as given by Abraham.

Figure 7.3 indicates remarkable agreement between the computed
and measured centerline velocity distribution. Concentrations agree
with the similarity curve almost identically past Z »~ 20. These results
are based on the Type 1 boundary conditions (Section 7.1). Computa-
tional runs 1 and 3 also use the Type 1 boundary condition, for differ-
ent water depths and node spacing; although these cases are not plotted,
centerline distributions nearly identical to those depicted in Figure

7.3 were obtained. The only deviation found between experimental and

174



VELOCITY

»« EXPERIMENTAL RESULTS ALBERTSON ET AL. [4]
« COMPUTED
—SIMILAR SOLUTION V- %

O

N CONCENTRATION
3 o COMPUTED
- SIMILARITY. SOLUTION
S ABRAHAM [1) C = 2P
'\
3s
[

o TYPE | BOUNDARY CONDITION
N\ )g

G/LL
Vm
>

V(R, 4.5) = e"77(R/Z

Ny

w

CONCENTRATION, Cm

VELOCITY,

%%\ i

‘k
q\\
N
N
{ 1 )] | 1 | i | § \l
2 3 4 5 10 20 30 40 50 100

AXIAL DISTANCE , Z

Figure 7.3. Comparison of Experimental Data and Similarity Solution with Computed
Results for a Momentum Jet. Centerline Velocity and Concentration for Case 2.



computed centerline velocity in these cases is that a very slight dif-
ference in slope was noted, whereby the computed slope was very
slightly less steep than -1.

Similar results for Case 4, which uses the Type 2 boundary condi-
tion, are given in Figure 7.4. Note that the 1/7 power velocity pro-
file gives a centerline value of 1.22 for an average jet exit velocity
of Vo = 1. These centerline velocity results are somewhat higher than
Albertson's data, but agree well with the data obtained by Baines for
an initial Reynolds number of 7 x ]04. Baines contends that there is
a Reynolds number effect on the potential core length and offers data
which apparently substantiates his assertion. According to Gauntner,
this facet of jet theory is apparently still unresolved.

The computed data for this case reveals the relationships:

Vo, ~ 7/1. (7.6)
and

C, » 5.1/2. (7.7)

Again, the computed velocity distribution is very slightly less steep
than a slope of -1.

Figures 7.5 and 7.6 illustrate centerline velocity and concentra-
tion distributions for Cases 5 and 6. Both of these cases again use a
Type 2 boundary condition with the inflow velocity distributions given
by

1/N.

V(R,0) = (1-R) (7.8)

Case 5 uses N equal to 7 whereas N in Case 6 is equal to 10.
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According to Schlichting, these profiles correspond to pipe Reynolds
numbers of 1.1 x 10° and 3.2 x 106, respectively. The computing tech-
nique shows a marked difference between the asymtotic centerline veloc-
ities for these two cases, that is, for large 2,

Case 5: V_~ 5.8/Z (7.9)

Case 6: V.~ 6.2/2 (7.10)
Although the slope is still approximately -1 and the asymtotic concen-
tration for both cases is given by,

€, ~ 5.1/2. (7.11)
Note that

V(0,0) =1
which results in an average inflow velocity less than unity.

From these resuits it is tempting to conclude that since the

inflow velocity profile has an effect on the -1 slope intercept,
a Reynolds number effect on the potential core length is demonstrated.
However, it is felt that the lack of finite difference resolution and
shortcomings in modeling turbulence in the zone of flow establishment,

are sufficient to shadow such a conclusion. Comparing Case 4 where,

V(R,0)

1.22 (1-R)V/7 (7.12a)

and Case 7 (Figure 7.7) where

V(R,0) = 1.155 (1-r)!/10 (7.12b)

reveals asymtotic velocity profiles,
Vo 7/2 (7.13)
and concentration

C, ~ 5.1/2. (7.14)

180



1.

VELOCITY:
e COMPUTED
—_—_ = 7/2
CONCENTRATION:
o COMPUTED
——C = 5.1/2
TYPE 2 BOUNDARY CONDITION
V(R,0) = 1.155(1-Rr)1/10 %

T B . |\.%°d

5 10
AXTAL DISTANCE, #
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It is important to note that the jet exit average velocity in both
Cases 5 and 6 is unity whereas it is 1.22 in Case 4 and 1.155 in
Case 7.

In all computer runs cited thus far, the radial eddy viscosity
has been computed from Prandtl mixing length theory. This particular
aspect of the work is discussed in more detail in Section 7.2.

Essentially, the eddy viscosity is calculated by

€r = € Vpay T/23 (7.15)

where Vmax is the centerline velocity. r]/z is the jet half radius and
¢ is a constant having the value .0256 for an axisymmetric momentum jet
(cf. Schlichting [84], p. 699); all cases thus far use ¢ = ,0256.
Case 8 (see Figure 7.8) uses ¢ = .0263 (picked quite arbitrarily and
as a fraction is 1/38 = l/REr) and is to be compared to Case 5,
Figure 7.5. The net effect of this change is a slight shift in the
velocity slope toward -1 (difficult to see slope shift from compared
figures, but numerical results bear out the change). Although the
higher value of c appears to yield a velocity slope nearer -1, the
value ¢ = .0256 is used for all following computations in this
manuscript.

Case 9 (Figure 5.9) represents an additional case using Type 2

boundary conditions with a velocity profile at the jet exit given by

)606

V(R,0) = 1.24 (1-R (7.16)

Note that all cases (4, 7 and 9) use the boundary velocity profile
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]
V(R,0) = N+‘2N§N+] (1-r)V (7.17)

for the jet. In all of these cases the asymptotic centerline velocity

profiles are essentially identical and represented quite accurately by
Vo, ~ 7/2 (7.18)
and concentration given by

C, ~ 5.1/2. (7.19)

Figure 7.10 illustrates these cases where the distribution is
normalized by dividing each value by the corresponding value of V(0,0).
The net result of this operation is that the solution collapses to the
cases using corresponding values of N and where V(R,0) is set by
Equation (7.8). Although this result was certainly expected, it serves
to illustrate that the computer program is functioning correctly in
this sense and to bear out again the velocity profile effect on the
asymptotic centerline velocity distribution (Figure 7.10). Computa-
tionally, this condition is apparently caused by the differences of the
jet exit vorticity distribution.

Vertical eddy diffusion, which should be of minor importance in
the jet mainstream, has also been ignored in cases cited to this point.
By ignored, it is meant that the value has been set to compare with
molecular viscosity which is perhaps three orders of magnitude smaller
than the jet induced eddy viscosity. The primary reason for vertical

diffusion being set to a very small value in these verification studies
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is so that vertical entrainment near the surface where the Jet is
spreading laterally will be minimized.

With a Targe value of vertical diffusion, in nonstratified
media, streamlines outside the jet would be distorted upward because of
the vertical entrainment in the lateral spread and would not be a
realistic representation of deep water conditions.

In Case 10 (Figure 7.11) the vertical eddy viscosity has been

accounted for by setting

Figure 7.11 is to be compared with Figure 7.5 (Case 6). Case 10
shows a slight increase of centerline velocity over Case 6 which is an
effect to be expected if vertical diffusion has any importance, since
the shape-preserving vorticity will be transported downstream at a
slightly higher rate.

As further discussion of the above statement, Case 11 has been
run where the fluid was considered as inviscid, although rotational.
The numerical fluid reacted in a manner such that the jet exit velocity
profile was completely shape preserved until the surface effects were
encountered (see Figure 7.12). Considering the opposite extreme of
a hypothetical fluid where vertical diffusion completely dominates
radial transport, the same shape preserving nature would exist. Case

11 also served to illustrate the computational stability of the differ-

encing technique used for cases where Rer = ReZ > @,
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7.1.1.2 Spread of the Momentum Jet
The rate of spread of the half radius, 12 is illustrated in
Figure 7.13-A and compared to measurements in Figure 7.13-B. The com-

puted rate of spread is given by

"2 = C]z (7.20)
where
C] = ,0875.
For the several momentum jet computations carried out, the above

equation holds. Table 7.4 compares some of the reported values of C].
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TABLE 7.4. COMPARISON OF THE SPREADING CONSTANT REPORTED BY
VARIOUS INVESTIGATORS

Investigator | Comment C]
Albertson et al. [4] .095
Baines [8] Reynolds Number ~ . 085

7 x 104 -
Baines [8] Reynolds Number

2.1 x 104 A .095
Reichardt [77] .0848
Taylor et al. [97] .0854
Corrsin and Uberoi [20]* .0814
Keagy and Weller [49]* .0888
Present numerical computation .0875

*Based on momentum measurements.

As Table 7.4 indicates, there is no universal agreement of the
value for C] among the cited investigators. These discrepancies are
possibly due to measurement methods and/or flow condition dependence.
Again, Baines offered data which tends to confirm the role of the
latter. Hence, the computed value of .0875 seems to be a realistic
value in view of reported measurement, but cannot be compared as an
absolute because of experimental discrepancies. Variations in the

half-radius may also be observed from Figure 7.12.
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7.1.1.3 Radial Distribution of Vertical Velocity, Concentrations

and Vorticity for the Momentum Jet

The radial distribution of vertical velocity for a momentum jet
is essentially Gaussian. For instance the data obtained by Albertson

is adequate expressed by

V=1V e s (7.21)

where

K=77.
Likewise, concentration distributions are adequately given by

2
-k (§)

C=¢C e (7.22)
where A is the eddy Schmidt number and equal to .8. The coefficient
K will vary from experiment to experiment similar to the variation in

data measured to establish the length of the potential core. As given

in Chapter 4, Baines found

R 1.84
-64.4(7)
V=V e (7.23)
for a Reynolds number of 7 x 104 and
1.82
-43.3(3)
V=V e (7.24)

for a Reynolds number of 2.1 x 104. Gortler [34] found K = 100. For
a summary of additional experimental data on the value of K one may

refer to Abraham [1].

192



One should bear in mind that the use of the Gaussian distribution
has no theoretical basis, but is a result of curve fitting. Figures
7.14 through 7.18 all illustrate the vertical velocity profiles plotted
against different coordinates. Figure 7.14 illustrates the distribu-
tion of computed velocity for comparison with the data of Albertson
for Case 2 which uses the Type 1 boundary condition. Figure 7.15
relates this same type of information for Case 4 compared to the data
of Reichardt (cf. Schlichting). Figures 7.14 and 7.15, along with
Figure 7.16 (Case 6) provide a comparison with the Gaussian distribu-
tion. Computed information shows excellent agreement with the data and
essentially the same deviation from the Gaussian curve. Unfortunately,
correct numerical modeling at the jet boundary is practically unob-
tainable because of numerical smearing and inability to correctly model
turbulence at the jet boundary. These facets account for deviations
at the boundary and the fact that the computed velocity does not
attain zero at a finite radius.

Figures 7.16 and 7.18 also bear out the similarity of the com-
puted velocity profiles whereby the computed velocity at elevation
Zz = 10 shows the only appreciable deviation from complete similarity.
Baines' data is also illustrated in Figure 7.15. The various other
momentum jet case runs showed, upon spot check, that these curves are
typical of all cases run with similar assumptions.

Typical computed concentration profiles are shown in Figures 7.19
and 7.20. Again, as in the case of velocity, striking similarity is
evidenced in the radial distributions at all elevations. One noticable

fact is the deviation from a Gaussian distribution is more pronounced
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for these profiles. As in the case of velocity, concentration is
smeared to some extent across the Jet boundary.

Figure 7.21 illustrates the vorticity profiles at several loca-
tions and Figure 7.22 compares the computed vorticity to the Gaussian
vorticity at elevations Z = 11, 31 and 41. Note that the computed
vorticity maxima occur nearer the jet centerline than similar maxima
for the Gaussian velocity profile. This fact is also revealed by the

experimental velocity data presented in the literature (cf. Figure 7.15).
7.1.1.4 Distribution of Radial Velocity for the Momentum Jet

A typical normalized distributional of radial velocity is illus-
trated in Figure 7.23 (Case 6). The solid line represents the Albertson
et al. theory and the dashed line represents an approximate envelope of
their experimental data. Albertson was unable to resolve clearly the
difference between the theory and his data. Misinterpretation of the
collected data may have been the cause of such a large discrepancy for
it hardly seems logical that his theory (based largely on empirical
results) could be so far in error. The radial velocities computed in
this study show good agreement with Albertson's empirical model, at
least over the range of positive velocities. Again, Albertson's data
shows gross disagreement with computed and experimental results for the
distributions of vertical velocity. The effect of this discrepancy
should be revealed most clearly along the jet centerline which is not
apparent from results (cf. Figure 7.6).

Figure 7.23 also reveals the similarity of radial velocity. It

is difficult to compare computed entrainment rates with the result
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for Momentum Jet

204

T T y T T T T T T T
‘. COMPUTED AT ELEVATIORS :
[ ]
s Z:1
o 2:21
P o 2:31 -
o o Z=41
Iy
o
5Fa 7]
)
a
4l 7
a
.O
[+]
°A
3k 7]
s
a
4
iA
2k Ny
1 \ \—
ALBERTSO(!)\JNS \qu ) APPROXIMATE BAND \
PREDICTI A _7  OF DATA REPORTED /
‘} - BY ALBERTSON .~
a /// ,/,
AA /’ — -
8 — __.———”
, lg,_ﬁ'!f e —r " | 1 | L
0.1 0 0.1 0.2 0.3 0.4
Uz




given in the literature because we have typically assumed a jet nozzle
extending into the fluid, whereas reported data is usually for wall
flush jets. 1In Case 6, this distance is four port diameters. Typical

experimental data may be correlated by

%__= C]Z , (7.25)

where C] is an empirical constant, Q is the total vertical flow at
elevation £, and Q0 is the jet flow. Albertson gives C] as .32.
Equation (7.25) indicates a constant entrainment rate for momen-

ﬂ. = ; 6
Z C]Q - ( ‘2 )

Figure 7.24 is a plot of the computed stream function vertical distri-
bution at the inflow-outflow boundary (i.e., ¥(R_,Z))for Case 6. By
definition the differential stream function along this vertical plume

is a measure of the entrained flow; that is,

Ay = - URAZ. (7.27)
The total flow through the plane Z = 4 is given by

y(R,4) - v¥(R,0) =1.919 - 1.0 = .919

Based on Qo = .919

8; = 32200t (7.28)

Where 2 4.

port N
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The straight line fit of the computations illustrated in

Figure 7.24 is

Y(R , Z) = .233 (z-zp

oo ?

ort) + 1.75. (7.29)

Then,based on the intercept with Z = 4,

Q. 33 (z-2

o ) . (7.30)

port

Hence, using Qo as the total of the jet effluent plus entrainment
from below the port gives a lateral entrainment rate comparable to the

reported work where the fluid issues from a wall-flush jet.

T T T T T
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r: -
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[an] —
(o
— 8 L -~
M [an)
= -
o <
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Figure 7.24. Vertical Distribution of Stream
Function¥ , Case 6
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7.1.1.5 Typical Contours and Three-Dimensional Plots for a Momentum
Jet
Additional information may be obtained by inspecting the level

Tines and distribution surfaces of the stream function, concentration
and vorticity. The centerline and surface streamlines are set at

¥ = 1.0. This information is illustrated in Figures 7.25 through 7.31.
The three dimensional plots (Figures 7.28 through 7.31) have been arbi-
trarily scaled to fit a prescribed data box and are valuable for quali-

tative reasons alone.
7.1.2 Two Cases of Pure Buoyancy

To check thq computer program and computational techniques where
buoyancy is the sole driving force, twn cases were run where the out-
fall port or jet was replaced by a heat source (see Table 7.2). In the
case of pure buoyancy, we are checking the same general featurg; of the
plume as in the case of the momentum jet. However, there is much less
information published. Here we check the computed

e Centerline velocity and temperature,

o« Radial distribution of axial velocity and temperature, and

o Rate of plume spread
for a very weak and intermediate strength buoyant source. Both cases
are well within the validity of the Boussinesq approximation. Solution

restrictions are the same as those pointed out in Section 7.1.1.

7.1.2.1 Centerline Velocity and Temperature

For a purely buoyant source (and also for effluent cases where

Fo = 0) it has been established by Rouse et al. [8]] and Schmidt [85]
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that

-1/3
Vo~ 2 / (7.31)

and

-5/3
AT~ 2 / (7.32)

In the case of an effluent with Tittle initial momentum and strong

buoyancy, Abraham [1] gives

v

-1/3
m = 4-4(F 2) (7.33)

1/3 ,-5/3

AT = 9.5 F0

m £

(7.34)

based on Rouse's data.

Figure 7.32 illustrates the centerline velccity and temperature
for Case 13. In this case, the source is very weak and gives a maxi-
mum fluid temperature rise of only .95 OC. The maximum velocity is a
little above .09 ft/sec occurring at an elevation of about seven
source diameters above the source. The flow apparently does not
become established until an elevation of 15 to 20 diameters has been
reached. Above this approximate region the computed centerline
velocity shows decay very closely approximating the -1/3 law given by
Equation 7.31. Velocities computed above Z = 50 (surface at Z = 64)
show influence of the free surface.

Temperature decay, on the other hand, begins to follow Equation
(7.32) at approximately 2 = 10 and computed values are extremely closg

to a - 5/3 slope. However, there is no apparent surface effect on

temperature, whereas Case 14 (Figure 7.33) reveals noticeable change
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in slope near the surface. It is felt that continued iteration would
have shown somewhat larger deviation from the -5/3 slope near the sur-
face in both of these cases.

Figure 7.33 (Case 14) illustrates similar results for a‘situation
where the fluid directly in contact with the heat source was maintained
at a 25 OC temperature rise. Under these conditions the maximum
velocity was about 0.8 ft/sec occurring at approximately 8 diameters
above the source. The shape of the centerline velocity distribution is
very nearly the same as in Case 13 and achieves the -1/3 slope at
approximately 20 diameters above the source. The temperature distribu-
tion, however, shows some differences in that the -5/3 decay is not
attained until about 20 diameters and, as mentioned previously, there
is demonstrated a marked surface effect. Results for both of these
cases could be improved somewhat by continued iteration in the vicinity
of the surface. Convergence was slow in this region for both runs, but
temperature changes indicated an increased surface effect. Another
aspect is that vertical turbulence has been essentially neglected, a
poor assumption in the surface effects region. A realistic approxima-
tion of vertical turbulence here would also tend to increase the sur-

face temperature.
7-1.2.2 Spread of the Pure Buoyant Plume

The rate of spread of the half radius, r]/z, for pure buoyancy is
demonstrated in Figure 7.34 for Case 13. Case 14 was found to be
essentially identical to Case 13. Based on Rouse's data, Abraham ascer-

tained that the half radius is approximated by

218



AX1AL DISTANCE, Z

e
D

Figure 7.34. Computed Rate of Spread of Half-Radius, r]/Z/D.
Pure Buoyancy, Case 14 (D=2r0)

r

12 _ &9 . _

—D—L = V222 2= .0866 2 (7.35)
where K = 92.

The data obtained by Rouse revealed K = 96, at least for the
selected curve fit. Abraham's theory and experiments yield K = 92,
and according to him, no major discrepancy in results is obtained in

either case. Figure 7.34 reveals a computed spread of approximately
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.092 Z. Not only is this rate of spread different from the rate based
on a Gaussian profile, but the rate is greater than in the case of
pure momentum (r]/z/D ~ was computed). Gaussian profiles show the
opposite to be true. The reason for these discrepancies has not been
completely resolved.

Barring difficulties with the computer code, which has been
checked, the discrepancy may be caused by incorrect modeling of the
turbulence in the presence of buoyancy. It is also possible that the
data obtained from flame sources in air may be significantly influenced
by effects not accountable through the Boussinesq approximations. That
is, the Boussinesq approximation would not be valid for modeling plumes
over diffusion flame plumes because of the large density variations
compared to the reference density, even though temperature will decay
quite rapidiy. In both Cases 13 and 14, the density variations may
influence the rate of spread and explain the present discrepancy.
Additional data for a low Froude number flow case is presented in

Section 7.1.3.2.

7.1.2.3 Radial Distribution of Vertical Velocity, Temperature and

Vorticity for Pure Buoyancy

The data obtained by Rouse and Schmidt demonstrate that the
normal distribution curve again fits the buoyant plume radial profiles
quite well.

In this case, data obtained by Rouse gives
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k()
Vo= Ve (7.36)
where K = 96, and
2
-AK(%)
AT = Tme (737)

where

However, the Gaussian curves used for comparisons here will be based on
Abraham's value of K = 92 which yields AK = 68.1. As in the case of
the momentum jet, these distributions have no theoretical basis, but
are a result of curve fitting.

Radial distributions for Case 13 arc illustratad in Figures 7.35,
7.36 and 7.37, for various elevations. Computed results show excellent
similarity at all elevations except near the source (Figures 7.35 and
7.36).

Figure 7.37 shows the velocity profiles for Case 13 as computed.
Figure 7.38 again shows excellent similarity at all elevations except
near the source for Case 14.

A normalized temperature profile is illustrated in Figure 7.39
and vorticity at various elevations is plotted in Figure 7.40. One
notable feature revealed by Figure 7.39 is that the temperature distri-
bution is in considerably closer agreement with the Gaussian curve in

the case of a momentum jet (cf. Figure 7.20}.
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7.1.2.4 Radial Velocity and Entrainment for Pure Buoyancy

The normalized distribution of radial velocity for Case 14 is
given in Figure 7.41. As opposed to momentum jet results (Figure 7.23),
similarity of the radial flow is not apparent using the coordinates
R/Z and UZ. Also note that, compared to the corresponding momentum
jet data, the magnitude of negative radial flow is somewhat larger,
indicating an increased radial entrainment rata. Although it has not
been plotted, the radial flow below about six source diameters is
negative over the entire flow field.

From similarity theory it has been established (cf. Abraham)

that

%% = Vi, (7.38)
By Equation (7.31)

EERE R LA (7.39)
Then integrating Equation (7.39) yields

Q¢ = C, 25/3 (7.40)

The values C], C2 and C3 are appropriate constants; magnitudes are
unimportant since we are interested only in how Q varies with E.

Figure 7.42 illustrates the value of w(Rm,Z) as a function of 2, and
since ¥(R_,Z) is directly proportional to the entrainment Q, this plot
reveals the variation of Q with Z for pure buoyancy. The computed data
in Figure 7.42 is obviously represented by a functional relationship

more complicated than Equation (7.40). At lower elevations (Zv 6 to 15)
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Thus, in this range the plume entrains ambient fluid proportional to a
momentum jet. The 5/3 slope is never indicated by the data, but
Figure 7.42 shows that the entrainment data would apparently approach
a 5/3 slope asymtotically for sufficient depth.

Figures 7.43 through 7.45 illustrate streamlines, isotherms and
vorticity level Tines for Case 14. As in all cases reported, the cen-
terline value of the stream function is 1.0. Three-dimensional illus-

trations of the same information is displayed in Figures 7.46 - 7.48.
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7.1.3 Mixed Flow - Forced Plumes

In Sections 7.1.1 and 7.1.2 we have checked in some detail the
computed flow characteristics at both ends of the dynamic spectrum--
pure momentum and pure buoyant flows. This section deals with flows
having dynamic characteristics of both which are appropriately classi-
fied as "forced plumes' as coined by Morton [58]. Cases used to com-
pare with similarity solutions and experimental data are summarized in
Table 7.3. To this end, a variety of effluent boundary conditions have
been investigated.

The cases here are too numerous to treat each in full detail so
that only the general characteristics of

e Centerline velocity and temperature, and

e Rate of spread and entrainment
will be illustrated, along with selected contour and three-dimensional
plots. The similarity solution discussed in Chapter 4 will be used for

comparison.
7.1.3.1 Centerline Velocity and Temperature for Forced Plumes

In Chapter 4 the following similarity solution was given for

vertical forced plumes:

64 3 2 .2

E* = 2 4+ 2 (2°-29) (7.42)
3 3%, e
e

and
3 -1/3

22 le4, 3 2. 2}

A]m _{-6— ['2'3'+_32F (2°-2, (7.43)

e 0



the variable

Eo= 2, (7.44)

and Ze is based on Equation (4.19).

The above equations, except for (7.44), do not reveal variations
in the values of K and x. These values and their effect on the govern-
ing equations have been discussed in Chapter 4 and are summarized in
Table 4.1. The largest error in velocity is seen to be introduced by
1//K (4.8% deviation from the mean value) but is absorbed in E*.

Equations (7.42) and (7.43) reveal the use of simple fractions
which simplify the equations and are very close to the mean values
given in Table 4.1. Since these variations are small, and in view of
experimental data scatter, it does not seem justified to use more
complicated relationships for K and ) as did Abraham, at least for the
vertical plume. At any rate, the subject equations yield results that
are in good agreement with Abraham's computations and yield excellent
agreement with Fan's [27] data concerning the maximum height of rise
where stratification is of concern (cf. Baumgartner and Trent [12] )-
Thus Equations (7.42) and (7.43) will be used to compare with the finite
difference results.

Cases 15, 16 and 17 compare the effect of three different methods
of computing the radial component of eddy momentum diffusiviity, c..

r
In all cases €p is computed from

= .0256 V. Ry/o = 0256 FR (7.45)
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however, different methods for computing FR are used. A detailed dis-

cussion for this computation is given in Section 7.2.

Case 15:

FR = constant = 1.178
Case 16:

FR = .180 V 2.

where Vm is the currently .aiculated value of centerline

velocity at elevation Z.

Case 17:

FR = VmR1/2

with running calculation of both Vrn and R]/z;
all other conditions for these cases remain fixed.

Figure 7.49 illustrates the centerline velocity, V_, and buoyancy.,

m’
Ayme for these three cases. The significant feature of results shown
in this figure is that using a constant value for €y (Case 15) gives
results with appreciable error in buoyancy (or temperature). The use
of a pre-calculated half-radius (mixing length) based on a Gaussian
velocity distribution gives somewhat better results (Case 16). The
similarity solution is found to give quite accurate results for £ > 15-
20 and Case 17 shows buoyancy results in excellent agreement with the
similarity solution, although the velocity distribution shows a sizable
difference. The large discrepancies in both velocity and buoyancy at

Tower elevations (Z v~ 10) are expected since similarity solutions are

not valid in this range.
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These three cases also represent progressively more difficult
_computational problems owing to the non-linearity of the eddy
diffusivity.

Case 15, where a constant value of €y is used, caused no compu-
tational difficulties and is of course the fastest with regard to com-
puter time. This problem is quite similar to the laminar flow plume
problem, but €, can be several orders of magnitude larger than the
counterpart molecular momentum diffusivity. Case 17, where Vm and
R]/2 are computed iteratively is the most difficult and requires the
most computer time. The computational difficulty stems from the fact
that velocity profiles at the initiation of the FR computation cannot
be too far in error or a numerical instability will result. In addi-
tion, the convergence rate is siowed by continuous updating of FR.

Returning to the discussion of momentum jets (Section 7.1.1),
only Cases 2 and 3 used €, = constant, all other cases used FR calcu-
lated as in Case 17. However, in the case of a momentum jet, FR is
indeed constant so that any of the three methods for computing €p
should yield essentially identical results (see Section 7.2). Only in
the case where buoyancy is present will variations in FR become appar-
ent, and for this reason, demonstration of results was deferred to
cases dealing with mixed flow.

Case 18 is identical to Case 17, except the vertical grid spacing
has been doubled giving an overall depth of 82.5 port diameters.
Figure 7.50 illustrates centerline buoyancy for the case compared with
the results of Case 17 along with the similarity solution. Slightly

higher values for buoyancy were calculated in Case 18 compared to
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Case 17, an effect of doubling the vertical grid spacing.
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Figure 7.50. Centerline Buoyancy Distribution
for Cases 17 and 18

Figure 7.51 illustrates the centerline velocity and buoyancy
distributions for Cases 17, 19 and 20 where the densimetric Froude
numbers are 52, 35 and 106, respectively. A1l other variables are
fixed for these cases. Case 21 is identical to Case 17 except the
vertical eddy momentum diffusivity, €,5 Was assumed to have the form

2 2
-A%(z,-7)

e, = € 08 (7.46)
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where A is a constant, ZS is the surface elevation and ezo is a
reference eddy diffusivity. The objective of this case was to illus-
trate the effect, on the plume flow, of substantial eddy diffusion
confined near the surface. Although the exact values of e, and A are

0
of little importance to this end, they have values: e, = 1 and A = .2.

The only significant effects caused by this treatment gf e, are in the
radial spread and vertical diffusion of vorticity and radial velocity
at the surface. In the case of negligible vertical momentum diffusion,
vorticity tends to accummulate in the surface nodes and the mass tends
to spread frictionlessly within these surface nodes at high velocities.
The presence of significant vertical eddy transport diffuses the
vorticity and velocity further downward into the ambient fluid.

Figure 7.52 shows a vorticity ridge near the surface for an essentially
frictionless flow (Case 17), whereas Figure 7.53 (Case 21) illustrates
ccnsiderable mitigation of this ridge through vertical diffusion.

Cases 22 and 23 differ from the preceding mixed flow computation
in that a Type 2 boundary condition is used with N equal to 7 (refer to
Equation 7.17). Various other differences are noted from Table 7.3
(e.g. the Froude number and finite-difference grid). These two cases
are identical to one another except the eddy Prandtl number in Case 22
is .714 whereas in Case 23, .80 is used. These computations were per-
formed primarily to determine the effect of the Prandtl number on the
rate of spread (Section 7.1.3.2). However, an appreciable effect is

also noted on the centerline buoyancy distribution (Figure 7.54),

whereas 1ittle difference was found in centerline velocity for the two
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cases. Since the power law effluent velocity profile is used, with N
equal to 7, the maximum centerline velocity is approximately 1.2.

This boundary condition indicates much better agreement with the simi-
larity solution for downstream velocity than was obtained using the
Gaussian profile (Type 1 boundary condition) in preceding mixed flow
cases.

Figure 7.55 shows centerline distributions for Case 24 which is
identical to Case 23 except the densimetric Froude number is 1.0 as
opposed to 46. Unfortunately, the eddy Prandtl number for this case
was not reset to .714 (.8 was used). This error was not discovered
until the contents of the restart tape were destroyed; hence, for
economic reasons the case was not rerun (cases for very Tow F0 are
slow in converging). However, the slope of the buoyancy curve is
essentially identical to the similarity solution and, borrowing the
trends of Cases 22 and 23, the buoyancy curves would nearly coincide if
PRr equal to .714 had been used. Also, from Figure 7.54 we would
expect no appreciable change in the velocity distribution of Figure
7.55.

Figure 7.55 illustrates that for low Fo’ the velocity initially
increases due to the large relative buoyancy, reaching a maximum at
about 5 diameters downstream. The velocity distribution then tends to
a - 1/3 slope as in the case of pure buoyancy. Likewise, the buoyancy
distribution tends to a - 5/3 slope as in purely buoyant plumes.

Figure 7.56 illustrates centerline distributions for F0 = 1000

(Case 25) compared to computed results for a momentum jet (Case 4).
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7.1.3.2 Rate of Spread and Entrainment

Results from momentum jet computation revealed that the jet half

radius spreads according to

"2 = .0875 z. (7.47)

and pure buoyant plume calculations yielded

rye .092 z. (7.48)

Although these results showed a reverse trend from experimental
observation, absolute values are not in large disagreement with experi-

ment. Figure 7.57 illustrates the rate of half-radius spread for

Fo

Fo

0, 1, 46 and ». The effect of different eddy Prandtl numbers for

46 is revealed by Figure 7.58 (Cases 22 and 23). As pointed out
earlier, the case for F0 = 1 was inadvertently run using PRr = .8 and
Figure 7.57 shows that this case has the same spread rate as the case
where F0 + o, Thus, the fact that one case is dominated by initial
inertia and the other by buoyancy seemed to have no effect on the
half-radius spread rate. This being a fact of the computational tech-
nique then explains why the plume has a larger computed spread rate
where PRr = .714 as opposed to PRr = .8. It is expected that had

PRr = .714 been used in the F0 = 1 computation, the half-radius curve
would have coincided with the curve for Fo = 0. Case 22 where

Fo = 46 shows that the half-radius begins to spread as a momentum
jet (Z < 10-12), passes through a transition and then spreads at the
same rate as a purely buoyant plume, at far downstream points. Case

23 begins to spread as a momentum jet, then passes through a
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transition to a wider spread, and at far downstream points, again
spreads like a momentum jet (but wider).

Figure 7.59 shows the variation of y(R_,Z), a measure of entrain-
ment, with elevation. Again we cannot expect good correspondence with
wall-flush jets at lower elevation since for the cases illustrated the
outfall port has finite height above the bottom. At higher elevations
we note that for Fo = 1000 a slope of 1 is attained which is appropriate
for momentum jets. The case for F0 = 1 has obtained a slope of
approximately 1.4 and is increasing. Had the solution been carried to
higher elevations, the experimental value of 5/3 would perhaps be
attained. For F0 = 46 we find intermediate values of y(R_,Z) with the
slope tending toward that of the case for F0 = 1. Again the slope is
increasing and would perhaps attain the value of 5/3 as in pure
buoyancy, at increased axial distance.

Figures 7.60 through 7.62 illustrate streamlines, isotherms and
level 1ines of vorticity, respectively, for Case 22. Figures 7.63

through 7.65 show this same information in three-dimensional plots.
7.2 Transport Coefficients

In obtaining the results presented thus far, we have made use of
certain transport coefficient models which describe the required compo-
nents of radial and vertical turbulent diffusion. This thesis, in the
main, is not a study of modeling these coefficients but through neces-
sity one must utilize reasonable methods for modeling these quantities
if reliable results are to be obtained. For the momentum jet issuing

to a semi-infinite medium, the important transport coefficient models
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turn out to be trivial since they are constant. However, where
buoyancy plays a role and the buoyant surface spread in stratified
media is of concern these models are quite complicated and in certain
instances (surface spread) the theoretical and experimental efforts
are sadly lacking.

In this work it is necessary to model the momentum diffusion

coefficients for the radial and vertical directions, ¢, and €, along

r
with the corresponding Prandtl (or Schmidt) numbers, PRr and PRz'
Turbulence contributions may be considered to fall into the following
two categories:
1. that generated by the effluent stream, and
2. the ambient contribution which has origin from
e Wwind stress and wave action,
e shear flow at solid boundaries, and
e contributions depending on the local history
and/or convection across system boundaries.
In general, the effluent generated turbulence will dominate the
ambient contribution within the plume except in the surface zone
where plume velocities may be low and wind and wave action under a
high sea state dominate the effluent induced effects. However, in
the circulating portion of the flow field, ambient contributions will
dominate.
The turbulence models used in the present work are based on
Prandtl's second hypothesis which is appropriately modified to include

the influence of stratification. Experience has found that Prandtl's
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hypothesis may be applied with good results where mean velocity grad-
jents have reasonable magnitude and a mixing length may be easily
defined, but breaks down entirely, at least computationally, where
velocity gradients are very small, or confused, and the mixing length
has dubious interpretation (e.g., the circulating flow). Prandtl's

hypothesis, as stated by Schlichting [84], is

)BV

v _
o - et ar

r ar ]b(v

max_'min

where t is fluid stress, C] is an empirical constant, and b is the

width of the mixing zone. The eddy diffusivity for momentum € is

then

e, = C-llr (v ) (7.49)

max” 'min

where zris the mixing length of an axisymmetric plume and assumed to
be the width of the half-radius in established flow. An equivalent
relationship may be written for €,» the vertical component, in the
zone of surface spread. In the mainstream of the plume, the usual
case is that-only one or the other of the transport coefficients will
have a significant effect on the flow dynamics. For instance, in the

vertical rise, e, is of utmost importance ,whereas €, may be neglected

r
as a practical matter. However, €, is included in the computations,

and may in fact be important near the surface where vertical velocity

may be small. In the lateral spread, the opposite is true where €p

has relatively small influence. The value Vinax in the zone of plume

rise is easily defined as the centerline velocity. Unax in the lateral

spread will occur at the surface for a buoyant flow in homogeneous
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surroundings. In both cases the maximum velocity has sufficient magni

tude compared to velocities outside the plume so that v___>>v_. and

max”~ "~ min
Unax””Ymin- Hence,
€. = C]Rr Vmax (7.50)
and
€y = szz Unax ? (7.51)

where L, is an as yet undefined vertical mixing length in the vertical
direction. Note, that Equation (7.51) includes no compensation for
stratified flow.

Equations (7.50) and (7.51) are adequate for modeling the tur-
bulence inside the plume and are relatively convenient to use, but
only because we have prior knowledge of the plume geometry. Outside
the plume, in the region of flow induced circulation, these expres-
sions are useless because we have no adequate criterion for mixing
lengths and, in fact, velocity gradients may have nothing to do with
the primary contribution to the field of turbulence. Fortunately, for
the problem at hand, turbulence in the circulating field is of nominal
importance, and except for the fact that some degree of viscosity in
this region helps to speed the numerical computation, we could assume
the fluid as inviscid.

It is recognized that Prandtl's second hypothesis has 1limited
application in the numerical computation of circulating and recircu-
lating fluid flow. Prandtl recognized the shortcomings of this
hypothesis in that it could be applied with confidence only to rea-

sonably simple, steady-state flows. Various other investigators also
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recognized that a more fundamental approach needed to be employed.
Such an approach needed to consider such various aspects as

e convection,

o diffusion,

e Creation, and

e dissipation
of the turbulence which could be related in some fashion or another to
mean flow quantities. Earlier models were based on the transport of
turbulent energy. However, these models still depended on the defini-
tion of a mixing length to relate the dissipation or decay. Chou [18,
19] sought to overcome this difficulty by introducing a second trans-
port equation for decay scale. Rotta [79,80] developed these ideas
even further and set down the transport equations for the complete
Reynolds stress tensor.

Based on the pioneering work of Rotta, Spalding [92] and his
colleagues at the Imperial College in London, have had considerable
success in applying these ideas to generalized numerical computation
in recirculating flow fields. Spalding's model for computing turbu-
lence quantities involves transport equations (cf. Reference [93])for

e Kk, the kinetic energy of turbulent motion,

e W, which may be considered as the average value of the

fluctuations of the fluid vorticity, and

e §, the average value of the square of the fluctuating

component of the mass fraction of injected fluid.
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Spalding defines a length scale as:

5 = (kw)V/2, (7.52)

hence,
]/22.

m
1

= C3pk (7.53)

Thus, in addition to equations for the stream function, vorticity,
buoyancy, and/or other required constituents, transport equations of

the following types are also required:

ok ok 135 € ok
PUSY TV oy ’Fa_r(E]—E o)
3/2
] ’
= ¢ o /2, (—o - ¢ ok (7.54)

where the C's are constants defined by Spalding. Similar equations
are required for W and g. As testimony to these and similar methods
the reader is referred to the following work carried out at the
Imperial College: Patankar and Spalding [69], Gosman, Pun, Runchal,
Spalding and Wolfshtein [35], Bradshaw and Ferriss [15], and Spalding
[89].

Although solving additional transport equation for turbulence
quantities, such as Equation (7.54), appears to be a considerable
effort in itself, this approach offers a realistic and negotiable
compromise to otherwise unapproachable problems in turbulent flow.
These, or similar methods have not been employed in the present study,
but only because the flow field offered enough a priori knowledge to

justify and permit the use of simpler mixing length models.
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7.2.1 The Radial Transport Coefficient, €p

To model the piume and circulating flow fields, the radial
component of eddy diffusion must be modeled throughout the fluid
system. To this end, four flow regions are defined which are illus-
trated in Figure 7.66.

These regions are defined as follows:

Region I:  Zone of established plume flow
Region II: Zone of flow establishment
Region III: Circulating ambient
Region IV: Lateral surface spread
Each of these regions has special characteristics and must receive

special attention.

Region 1

Equation (7.50) relates the radial component of momentum trans-
port as

e. = Ca. v (7.55)

For Region I (established flow), C] = .0256, L = r]/z, the plume

half-radius, and Vmax 25 the centerline velocity. Tomich [99] used a

a
similar relationship for his analysis of a compressible free jet. In

dimensionless form

r _
where
_Nye
R]/Z o
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and

As a reference value for e, we set

e = .0256 (7.57)
Yo
where R]/2 = R0 = 1.0 and Vmax = V0 = 1.0.
So that
Er
0 1
= = ,0256.
rovo REr
(0]

RE. = 39, (7.58)

the value used in all computations except Case 8.
To obtain the point Reynolds number REr(j K) (the indices on REr
will be omitted hereafter with the point value always implied), we

define

ep = EroFRjk (7.59)
where, e, May be viewed as the point value of eddy diffusivity with

subscripts omitted. With the definition Equation (7.59)

FRjk - R1/2 Vmax’ (7.60)

and

RE.. RE.. /FRjk . (7.61)

0

For the momentum jet, in the zone of established flow (cf. Sec-

tion 7.1), it has been established that

Viax =12.4/1 (7.62)
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and at the half radius 2

R
v -K( %Lz)
vV =.b=e (7.63)
max
or
R
;/2 - /‘L_q__oK z (7.64)

Using the value K = 77 from Abraham [1],

FRjk = 1.176, (7.65)

for a momentum jet (subscripts on FR will be omitted hereafter, with
the point value implied).

Equation (7.65) represents an empirical value for FR. Two
numerical experiments were carried out for the momentum jet, one case
where FR = 71.176 was heid constant and the other where tR was computed
according to Equation (7.60). The centerline velocity distributions
for both cases were found to be essentially identical. Figure 7.67
illustrates the result of iteratively computing FR = R]/ZVmax' In
both of these cases a Gaussian profile at Z = 4.5 was used for the
inflow boundary condition (Type 1 boundary condition - Region II does
not enter into compution). Figure 7.68 illustrates FR for cases having
varying degrees of buoyancy using the Type 2 inflow boundary condition
(power law velocity profile). Note that in this instance FR ~ 1 for
the momentum jet (FO + ») and is owed to a slightly higher centerline

velocity, the ratio approximately equal to the value of Equation (7.65).
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For the cases dominated by buoyancy, Equation (7.33) gives

-1/3

v

max 4.4 (FOZ)

or

= 1/3 -1/3
Vinax = 4.4(2) (FOZ) (7.66)

The radial velocity distribution is again given by Equation (7.63) with
K= 92.

In this instance

(2)'3a.4(r 2)71/3 1L E 1,

FR =
(12)'/% 4.4 1p%§g 2/3
FR = 73 Z
F
0
_ .A481 2/3
FR - 'F 1/3 Z [ (7-67)
0
based on
= z/ro.

Equation (7.67) is also plotted on Figure 7.68 for comparison of
the empirical approximation and computed value of FR for Fo =1,

Aside from merely illustrating how the radial eddy transport
coefficient € varies as a function of the degree of buoyancy,
Figure 7.69 also reveals that the use of a constant transport coeffic-
jent is untenable in buoyant plume flow computations and can lead to

order-of-magnitude errors. A numerical experiment was carried out to
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ascertain these differences for F0 = 52 using the Type 1 boundary
condition. Figure 7.69 illustrates that large errors will occur in
both the centerline velocity and buoyancy distribution if €. = con-
stant is used. The curves corresponding to Cases 15 (FR = constant)
and 16 (FR = Vmale/Z)‘ Also refer to Figure 7.49.

In the early development of the computer program, how to effect

the variable transport computation iteratively was unknown and such
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attempts led to numerical instability. Although this problem was sur-
mounted later (see Section 7.3 for stability problems related to var-
iable €p and ez), as an interim step, the mixing length R]/z was com-
puted prior to computation from similarity assumptions for the given
Froude number. With R]/2 fixed, FR was computed from Equation (7.60),
and eliminated this source of numerical instability. However, the
solution was only nominally more accurate than using FR = constant.

Hence, this method was adjudged inadequate and, as mentioned earlier,

later abandoned.

Region II

The zone of flow establishment is characterized by turbulence
regimes (see Figure 7.70), 1) the potential core, a roughly conical
region, where mixing is dictated by the convected pipe flow turbulence,
and 2) the zone of intense mixing lying outside the potential core,
spreading into the ambient, and created by the shear between the
effluent and the ambient fluids. A mixing length, %os May be philos-
ophically defined as being proportional to the width of the shear
region. However, the geometry is difficult to define and the criterion
as to thelwidth of the mixing zone is quite arbitrary. Also the ]ength
of the mixing zone, Ze’ that is, the point where the zone of intense
mixing reaches the plume centerline, is also quite arbitrary'and cer-
tainly is not defined by a sharp point as Figure 7.70 indicates.

Tomich [99] bypassed the mixing length problem in the region by

setting e, = .2 times the value in the established flow regime. For a
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momentum jet, this value was found to yield downstream results in good

agreement with experimental results.

MIXING
ZONE

POTENTIAL
CORE

Figure 7.70. Concentration Distribution in the Zone
of Flow Establishment

In this study, we have not followed Tomich's method since we
deal with cases of high relative buoyancy (low densimetric Froude
numbers).

To set up a turbulence model for this regime we need:

1) a mixing length, and

2) a definition of the region of application:

e radial region

e Vvertical extent.
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To compute a mixing length, a reasonable criterion is

e T My2 T e

where re is the radius of the potential core and /2 is again the

half-radius. The transport coefficient is then defined by,

e = -0256 (r]/2 - rc) Vinax - (7.68)

Physically, e_. would apply over the region S P where y is the

rc
mixing zone outer boundary.

The next problem then is to define re based on some relevant
mean flow quantity. In the present work, the concentration profile
was used for such a criterion. Velocity could not be used because of

power law boundary profiles and because buoyancy tends to distort the

velocity profile. The criterion was set as

re =T g5 (7.69)

or r. extended to the point where the concentration was decreased to

95% of the centerline value. The outer boundary was set as

e * ' o5 (7.70)

or where the concentration had decreased to 5% of the centerline value.

The length of the potential core was computed from the criterion

e = 2 g0 (7.71)
where the concentration at the plume centerline is reduced to 90% of

the initial value. The numerical model does not account for
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derivatives resulting from variations in erl, and where convection
terms dominate transport, this deletion is valid. However, in the flow
establishment region, this treatment can lead to large constituent
discrepancies if the gradients of €. are not accounted for. For this
reason and other computational difficulties, Ep has been assumed
radially constant at a given elevation, laterally to the plume cut-off.

Based on Equation (7.68) along with criterion Equations (7.69)
and (7.71) a typical computed potential core and half-radius is illus-
trated in Figure 7.71 for Fo = 46. This method for computing the

Q transport coefficient was felt to

4&

be unsatisfactory in that the

3.0
| computations were slowed down

l’ compared to preset specification,

and definition of the potential

N

o

1
|

core appears to have questionable

accuracy. However, one fact was

[ty

AXIAL DISTANCE, 2

established as a result of these
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o

experiments in that R]/2 ~ 1.0

for all cases run. The method

finally used was to define the

= (1}__
|

o

o

Y Tength, Ze’ based on a criterion

R
Figure 7.71. Computed Potential similar to Equation (7.71), use a
Core and Half-
Radius F0 = 46 straight line fit between the

1

Refer to Equations (3.73) and (3.80) and note the computer program
does not contain any viscous terms envolving derivatives of ep. It
may be shown that such terms are small except in Region II.
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points (O,Ze) and (1.0,20) to define the potential core, and set
R]/2 = 1.0 up to Z (see dashed lines on Figure 7.71). This procedure
was found to be satisfactory and added speed to the computation.

The remaining problem, in computing quantities within Region II,

is that the computer model treats e¢__. constant across a lateral plane,

rc
where, in fact, there is considerable variation. Treating ¢ . constant
in this fashion is to overestimate the diffusion coefficient within the'
core since the value used is typical of the turbulent mixing region.
The net result of this procedure is to effectively reduce the computed
core length which can result in downstream errors. One way to bring
the computed core length more in line with experimental results con-
cerning the core lenth is to reduce the value of € e
One such model, which is based solely on numerical experiment is

given by,

€

e ° .0256 (lr']/z--\r‘c)(lr']/Z-lr'o)/r']/2 Vinax (7.78)

which is the same as Equation (7.68) except for the multiplication fac-
tor (r]/2-rc)/r]/2. This factor has the effect of reducing the eddy
diffusion, given by Equation (7.68), near the outfall and has decreas-
ing importance as the end of the potential core is approached. This
model for radial eddy diffusivity gives good results over the entire
range of Froude numbers for deep water plumes (see Figure 7.72) and is
the preferred method of computing € A1l cases discussed earlier are
based on Equation (7.68) where applicable. The case for Fo = 1 illus-
trated in Figure 7.72 may be compared with Figure 7.55 (Case 24).

Cases displayed in Figure 7.72 were computed on a 26x25 grid.
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For the purpose of comparing results using the two different
methods for computing €y in the core, refer to Figure 7.73, which
illustrates the centerline temperature distributions for intermediate
water depth cases. A summary of these four cases may be found in
Chapter 8, Table 8.1 listed as Cases 48, 49, 50 and 51 for Froude
numbers 100, 25, 5 and 1, respectively. Note that Equation (7.68)
(Figure 7.73) yields much more rapid deterioration of the centerline
temperature than Equation (7.72) (Figure 8.1, Chapter 8).

Results from Figure 8.1 may also be compared to Figure 7.72.
Note that for the deep water cases at low Froude number, the centerline
temperature distribution again decays more rapidly near the source
than for corresponding cases at intermediate depths. This discrepancy
is caused by lack of axial finite difference resolution in the core

region of the deep water results.

Region III

In the region outside the plume, the value of €p is set to a
reference constant that is descriptive of the ambient conditions.
Reasonable variations of this value have been found to have little
effect on the circulation patterns or on the plume computed quantities.
In fact, several early runs were made letting €p in the ambient take
the same value as computed within the plume. Only slight differences
were noted in the plume size when the value of the ambient was set to
1% of the plume interior value.

Most calculations and the present version of the computer program

use a "cut-off" point (see Figure 7.66) for ¢  at a point just outside
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the plume where radial convective effects dominate radial transport

(again radial derivatives in e _ are neglected). The first attempt to

r
establish a radial cut-off was based on I (concentration) dropping to
5% of the centerline value. This seemed to be a reasonable criterion
but proved to be gomputationally unacceptable because oscillation of
the cut-off point position between nodes, near the plume boundary,
dramatically slowed convergence and grossly added to the computation
time. The convergence problem was eliminated by extending the cut-off
point two nodes beyond the I = 5% criterion, but resulted in a
"ragged" plume edge, the raggedness being unrelated to flow physics
(Figure 7.74). The next step was to preset an envelope in which the
plume would always exist and €p could be held constant at a particular
elevation. This envelope extends two to five nodes beyond the r = 5%

criterion but is computationally very attractive because convergence

is significantly speeded with no real loss of accuracy.

Region IV

In the lateral surface spread, the plume boundary is defined by
the presence of the circulating or reverse flow field. For a vertical
cut-off point, the boundary is extended two nodes below this region of
negative radial velocity. The value of € is set to the value com-
puted within the vertical rise region and being held radial constant.
For all cases run, the convective effects are reasonably large in this

region; hence, €y is of minor importance.
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7.2.2 The Vertical Transport Coefficient, e,

Referring to Figure 7.66, the unique regions of vertical eddy
diffusion computation are identical to those of the radial component.
However, it is generally true that for the present model only one of
the coefficients, €p and €, will be of major importance in a given
region. For instance, in Regions I and II, €, Was found to play a
major role in computing the plume dynamics, whereas, for all intents
and purposes, e, may be ignored. This statement is proved by numerical
experiment (Case 10, Figure 7.11) where e, was set to e, in the mixing
zone. Only minor differences were noted between Case 10, and Case 6
where €, was set to a constant value of .001. From our knowledge of
jet induced turbulence we expect that point-wise, € and e, should be
nearly the same in Regions I and II. (cf. Hinze [40]). Some differ-
ences may be noted near the surface where larger vertical mixing
scales are suppressed.

The fact that vertical mixing is of 1ittle importance in Regions
I and II may be ascertained on theoretical grounds by comparing the
order of magnitude of the various vertical transport terms in the
Equations of motion (3.67). Although the details are not presented
here, one finds that vertical convection dominates vertical diffusions
in these regions, an expected result, except near the surface where the
two transport mechanisms may play equally important roles.

Hence, we may dispatch concern for g, in Regions I and Il remote

from the surface, without further investigation. However, numerical

experiments have shown that e, is very important in Region IV and there
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is, nevertheless, incentive for extending the vertical cut-off to the

plume centerline to overlap that portion of Region II.

Region II1

The vertical transport coefficient associated with Region III is
that of the ambient sea, and as such, €, depends on water depth,
currents, sea state and ambient stratification. Extensive work has
been carried out by the Oceanographic community to determine e, @S
influenced by the above mentioned variables. Summaries and discussions
of this work may be found in work by Koh and Fan [52], and Wada [107].

The presence of vertical stratification can dramatically impede
vertical mixing, whereas shear force tends to enhance this mixing.
Hence, the vertical mixing coefficient must depend on, in some fashion,
the relative importance of the stabilizing effect of stratification
and the destabilizing forces of shear flow. The local Richardson
number, RI, relates the relative importance of these forces through

the ratio

R} = Stabilizing forces
destabilizing forces °

© ka
o.|o.
NiO

RI = -

(7.73)

—

[aRFal

N
~

In terms of the dimensionless quantities defined in this manuscript,
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-1 @

RI = »— (7.74)
(&9)°
dz

2F0
If RI < 0, the flow is obviously unstable. Various researchers have
proposed methods for computing £, using a Richardson number correla-
tion. The most notable of the efforts are summarized in Table 7.5.
Note that in this discussion we are speaking of a general vertical
eddy transport coefficient with no distinction between the transport
of material, heat or momentum. Since any correlation for general
application is at best a rough approximation, we are assuming that the
vertical Prandtl (or Schmidt) number is unity.

The various correlations given in Table 7.5 are essentially
Richardson number modifications of the neutral diffusion coeffic%ent
ezo. Thus, the first task lies in determining Ez for a neutral am-
bient (RI=0). Kent and Pritchard [51] give one sgch correlation for

the wave induced component, for the James river estuary, as

4oy -2nd/e

Ezo = .01d (1 - EJ T e (7.75)
where

d = distance from the surface,

L = depth of the water body,

H = wave height,

T = wave period, and

2 = wave length.

For a well mixed surface layer only, Golubeva [33] and Isayeva
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TABLE 7.5. CORRELATION OF THE VERTICAL DIFFUSION COEFFICIENT
€, WITH THE LOCAL RICHARDSON NUMBER, RI

(extracted from Koh and Fan [52])
Note: e, =& at RI = 0, i.e., the neutral case, 8: proportionality
0
constant; varies from case to case.

Rossby and Montgomery e, = €, (1 +8 RI)']
(1935)* 0
Rossby and Montgomery e, = g, (1 +8 RI)—2
(1935)* 0
_ L
Holzman (1943)* e, = EZO (1 - B8 RI) RI E‘B
Yamamoto (1959)* e.=c. (1-sRDYZ Rl
z Z0 B
Mamayev (1958)* e, = €, e B RI
0
Munk and Anderson e, T €, (1 +8 RI)'3/2
(1948 )** 0
B = 3.33 based upon data by

Jacobsen (1913) and
Taylor (1931)

*As given by Okubo (1962)
**As given by Bowden (1962)

287



and Isayev [47] give
2
. (7.76)

Figure 7.75 (extracted from Reference [52]) illustrates the

relationship between €5 and the local sea state.

400 | T ! [
300
(8
]
(7]
~
o
E 200 |-
R Figure 7.75. Dependence of
" €, on Sea
N Z
@ State
100 |
0
0
SEA STATE
For the case of tidal currents, Wada [107] gives
K2US vd z
€ =
z, P (7.77)
L/ log ——>
/r- /E?E;
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where K is the Karman constant, US is the surface current, L0 is the
scale of the bottom roughness. Where both components, tidal currents

and wind waves, are acting, Wada gives

2
K2(d+L0) 72 /L ug gy -2nd/1
€ = 5 + T e (7.78)
Z, L y/d + L, Z

Various measured values of pe, are given in Table 7.6 (extracted from
Reference [107]).

In the absence of ambient currents Harremoes [36] gives

-2/3
-3 do/p
_5x107° [ 9e/pg 2
e, = o < iz ) cm®/sec (7.79)

where z is in meters. This correlation was obtained off the coast of

Denmark. Koh and Fan have cobtained the relationship

1078

e = -
Z do/oo
dz

cm2/sec (7.80)

where again z is in meters. Data used in obtaining this result is dis-

played in Figure 7.76.

Any estimate of e, Or ezo in the -ambient sea has questionable
accuracy. At best, these correlations, and measurements for that
matter, are accurate only for the observed conditions, conditions
which may change drastically with time and location. Aside from this
complication, just how the researcher deduced the transport coefficient

value from physical measurements may shadow the validity of results
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Current or Sea
Region

A1l oceans

North Siberian Shelf
North Siberian Shelif
North Siberian Shelf

Schultz Grund
Caspian Sea
North Sea
Danish Waters
Kuroshio
Japan Sea

off San Diego

a)
b)
c)

TABLE 7.6.

VALUES OF VERTICAL EDDY VISCOSITIES IN THE SEA

PE, in g/cm/sec

Layer
Surface a)pez = 1.02uw3
(W 6m/sec)
= 4,3W2
(W 6m/sec)
0 to 60m 75-260
0 to 60m 10-400
0 to 22n P) 740.1.3/4
385(—§§ff)
0 to 15m 1.9-3.8
0 to 100m 0-224
0 to 3Im 75-1720
0 to 15m €)1.9-3.8
0 to 200m d)680-7500
0 to 200m 150-1460
Near the e) 93-(z+0.02)
sea bottom

W = wind velocity in m/sec
z = distance from sea bottom in meters
Very great stability

pe, Derived From

Thickness of upper
homogeneous layer
(wind currents)

Tidal currents
Tidal currents
Wind currents

Strong tidal currents
A1l currents

A1l currents

A1l currents

Tidal currents

d) Very strong currents

Reference

Thorade, 1914
Eckman, 190%

Sverdrup, 1926
Fijeldstad, 1936
Fjeldstad, 1929

Jacobson, 1913
Stochman, 1936
Thorade, 1928
Jacobson, 1928
Suda, 1936

Suda, 1936
Revelle & Fleming

e) z = distance from sea bottom in meters



and the application to numerical modeling. ‘Generally, these coeffi-
cients are deduced from concentration measurements and back-calculated
through an analytical diffusion equation. Hence, the values are valid
only for the diffusion equation used to calculate them in the first
place. Just how appropriate these values are as they enter into more
elaborate numerical computation is open to question in this author's
opinion. It is felt that the determination of ambient diffusion coef-
ficients is an area that needs extensive research.

In the present computer model for Region III diffusion coeffi-
cients, various of the models discussed above were tried. Very little
difference was noted in the Region III circulation patterns in any case.
Influence on the plume was noted only when the value of e, was unreal-
istically large, in which case the flow dynamics took on the charac-
teristics of a creeping flow. For this reason e, was set to a value

4

on the order of 107" to ]0'3 ftz/sec in Region III for succeeding

computation, a value corresponding to moderate stratification, low sea

state, and low ambient current.

Region IV_

In modeling the plume lateral spread, the vertical turbulence
component is of utmost importance. As the plume encounters the surface
and begins the radial surface spread, plume induced turbulence dominates
the mixing phenomena. At increased radial distance, the induced turbu-
lence decays and is suppressed by stratification. Generation of tur-
bulent energy by virtue of the lateral shear flow is also declining

because of smaller velocity gradients. At some larger radial distance
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the field of turbulence will be dominated by ambient effects such as
sea state.

We have just discussed the ambient contribution to e, and indi-
cated rough methods for such calculation. The plume induced turbulence
in the zone of initial spread (or the transition zone) is the important
feature of Region IV. Unfortunately there is very little data avail-
able in the literature which is directly applicable to the problem of
turbulence modeling in this zone.

From a theoretical point of view, we assume that Prandtl's second
hypothesis holds, or that

ezo = Cyip Ynay (7.81)
for the neutrally buoyant case. We also expect that a Richardson
number modification of Equation (7.81) would suffice for the case of a

spreading thermal layer, of the form

e, = Cqg, Unax f(RI) (7.82)

For the neutrally buoyant situation we may gain some insight as
to how the produce %5 Ynax behaves by assuming the flow can be approxi-
mated by a radial jet similarity solution. The appropriate similarity
equations for a radial jet following the methods devised by Morton, et

al. [60] for a vertical jet, are
Continuity:

g—r (umrr) = otuU (7-83)

m
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Radial momentum:
%;'(ui rt) = 0. (7.84)

In the above equation a "top-hat" velocity profile has been
assumed, where u, is the mean radial velocity, t is the characteristic
thickness of the jet and o is the usual entrainment constant. The use
of the top-hat velocity profile is entirely satisfactory for purposes

here, since we are only interested in the relative behavior of t and

Un> which is insensitive to the similarity profile used.
Solving these equations, one finds

u.r = constant (7.85)
and

2. _

u.rt = constant (7.86)
Hence,

(uyr)(u t) = constant,
and

u,t = constant. (7.87)

Equation (7.87) reveals that if the velocity field is approxi-
mately similar then the eddy coefficient €, must be constant in view of
Prandt1's second hypothesis (a result identical to the axisymmetric
jet). Hence

e, =0

2 1%7%ax = C1°Constant (7.88)

The remaining problem lies in evaluation of C; and (s_u__.)
1 Z'max’"’

In the present work, C] is assumed to take the value .0256 as in
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the case of the axisymmetric flow region.

The quantity 2_u

2Ymax Was treated by four different methods during

numerical experiments as listed below.

Method 1:
Compute the value of %, from the local velocity profile based on
the distance from the level of maximum lateral velocity to the level

where lateral velocity is 1/2 the maximum value. That is,

This method is identical to that used to compute FR, but in the instance
of lateral flow was found to be unsatisfactory because of numerical

instability. A1l attempts to compute FZO, where

FZ0 = Z]/2Umax’ (7.89)

iteratively from local information were found to be unstable and the
method was abandoned.

Method 2:

Use a constant value of Z]/2 based on the value of R]/2 at the
point of lateral spread. This method proved to yield diffusivities

which were too large.
Method 3:

Use a constant value of FZ0 = Z]/2 Umax where Z]/2 and Umax for
the entire system are computed in the vertical plane where the maximum
lateral velocity occurs. This method, based on the insight given by

the similarity solution, also yielded diffusivities which were
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too large. This method was applied only to cases having buoyancy;
hence, the failure may have been due to an inappropriate Richardson

number modification of FZO.
Method 4:

Use the method given immediately above, except scale the result

by the local ratio (U As in the two methods

max): (Umax)system'
jmmediately above, this calculation proved to be numerically stable

under all conditions once a reasonably realistic lateral velocity dis-
tribution was established. But, unlike the above methods, local dif-

fusivities are computed which give more realistic velocity fields.

Hence,

REZO = REz(ref)/FZo (7.90)
and

FZo - Z1/2 Umax

where Z]/2 is calculated at the system maximum lateral velocity and
Unax is the local maximum lateral velocity. The subscript o again
indicates the condition of neutral buoyancy.

To account for local stratification, the local Richardson number

model due to Mamayev (cf. Reference [108]) was employed,

-BRI
7 e, & (7.91)
0
where RI is again the local Richardson number as defined by Equation
(7.76) and g is an empirical constant. Wada [108] used Equation (7.91)
in his study of planar thermal outfalls discharging horizontally, but

used a constant value of €20°
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Although there is no data known to the author relating point
eddy diffusivities to the point Richardson number in turbulent jets,
data has been obtained which relates the entrainment of such flow to
the overall Richardson number (cf. Ellison and Turner [25]). Stolzen-
bach and Harleman [94] have illustrated that the data of Ellison and

Turner may be adequately represented by the form,

o '
Z e-5RI

%

(7.92)

QR

where o, and a, are the entrainment coefficients for buoyant and
(o

neutral spreading surface flows, respectively, and RI' is the gross
Richardson number. Stolzenbach also illustrates the relationship

between eddy viscosity and entrainment as

&2 _ %

€ a
2y Z

Thus, based upon the data of Ellison and Turner, and the func-
tional relationship, Equation (7.92), derived from this data, the
Manayev Equation (7.91) is apparently a credible method for modifying
point-wise neutral eddy diffusion coefficients for application in
laterally spreading buoyant plumes. In the computer program, we use

the form,

€. = ¢ + € e-BRI (7.93)

z Zambient %

The computer program is also set up to use the various other

models given in Table 7.5. These models have not been used owing
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primarily to lack of appropriate information concerning the empirical
constant 8.

The value of B (for Equation 7.93) used by Wada [108] was .8 for
momentum diffusivity and .4 for heat diffusivity based on ambient
conditions. According to work done by Stolzenbach this value should
be appreciably higher for plume flow. Computations using various
values of B for the present work are illustrated in Chapter 8.

In the present work, another form of €, has been used, primarily
for starting solutions where Equation (7.93) results in numerical

instability. This form is given by the equation

. -(Ad)?
€E_ = ¢ e (7-94)
z zref

where d is depth or distance from the surface. The result is a
Gaussian depth decay of eddy momentum diffusivity from a surface
reference value. Equation (7.94) is used in computation merely as a
computational aid and is abandoned in favor of Equation (7.93) once
reasonable velocity and temperature profiles are established, or a

numerically stable situation is attained.
7.3 Numerical Stability and Convergence

During the course of this investigation various experiments were
performed dealing with solution stability and convergence. For each
case run, at least five node points were monitored for convergence
rates of U, V and I'. Additionally, the program computes the maximum

change of ¥, @, and A4 throughout the system at selected iterations,
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and an overall T balance error is computed at the end of each run.
Liebmann relaxation factors were employed to each of the equations for

Vs A], and T to either accelerate or decelerate solutions.
7.3.1 Numerical Stability

To define what is meant by numerical stability in this manu-
script, we take the opposite view--that of numerical instability. The
reasoning for this view is that it is entirely possible that the
system of buoyant fluid may have physical instabilities which are not
divergent. The solution which we are trying to attain may, in fact,
be physically unsteady, and may never be attained by steady flow
methods. Since the Gauss-Seidel method with under/over-relaxation is
not unlike certain transient methods (see Appendix E), continued
iteration may reveal a cyclic behavior of the computations. This
situation cannot be termed a numerical instability. It merely illus-
trates the inability of steady flow techniques to simulate transitory
flow physics.

To demonstrate this idea, the computer program was set to a
different task, that of predicting the flow field past the end of a
cylinder contained in a larger bipe. From experiments we know that,
at low Reynolds numbers, streamlines past the end simply are distorted
toward the centerline, much as the case of irrotational flow (Figure
7.77-A). At much higher Reynolds numbers, vortex shedding from the
end of the cylinder will occur and the flow field is termed unsteady
although patterns may be repeated in time or in a cyclic fashion

(Figure 7.77-B).
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We expect that the steady flow computer program would converge
to a steady solution at low Reynolds number, and, in fact, this was
the result as illustrated in Figure 7.78-A. At a high Reynolds number,
however, a converged solution could not be attained. Computed quanti-
ties demonstrated quite the same behavior that one would expect from a
transient solution to this problem. Generally, as computation pro-
ceeded, a recirculation pattern formed behind the cylinder, grew by
elongation, and collapsed to nearly circular form, and elongated again
(see Figure 7.78-B). This process occurred repeatedly as computation
continued. Although it is impossible to quantify the physics from
these results, it is reassuring to know that the numerical technique
will reveal the presence of a physical instability, or unsteady flow,
and not converge to an erroneous steady solution.

Thus, it is entirely possible to have non-converging (although
not diverging) solutions that are not associated with numerical
instability. Hence, we define numerical instability as that situation
which upon repeated iteration leads to increasingly divergent and
physically ridiculous results.

As a general observation, involving perhaps a hundred or more
computer runs of various duration, the numerical techniques used were
found to be unconditionally numerically stable provided that:

o All Liebmann acceleration factors were less than unity,

e All eddy diffusion coefficients were constant, or the

velocity field at the beginning of computatiorn has at least

reasonable similarity to the final solution.
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These observations are a result of flows having Reynolds numbers
from 0 to infinity and a variety of other testing conditions. Based
on these numerous experiments, difficulties encountered by other
authors, the accuracy outlined in Section 7.1, and comments made by
Spalding [91], the present difference formulations and grid system used
is extremely attractive.

At an early date in this investigation it was discovered that
solutions invariably became unstable if the acceleration factor, Lts
for the o and Ay transport equations was greater than unity. However,
the value Lg = 1.6 was used for the stream function, v, elliptic equa-
tion without difficulty. Later, it was discovered that under some
flow condition, the value of Lg also needed to be less than unity to
avoid instability. For cases involving constant eddy coefficients,
only the transport equations needed to be decelerated. After these
initial investigations, the general rule used was to decelerate all

equations or set Lg and Ly < 1.0. The general form of the decelerated

solutions is

n+1l n ''n
= + -
T L(rp rp) (7.95)

Tp p

where the subscript p indicates the nodal point in question, n is the
nth jteration and rp is the result of the n+1 unaccelerated Gauss-
Seidel iteration.

A value

Lg = Ly = .999 (7.96)
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was found to be satisfactory for nearly all cases. In a few instances
of very shallow water and non-linear € and €5 values as low as

LT = .80 were used. In all cases, the acreleration factor is applied
as soon asT' is computed at a node.

No attempt of a theoretical analysis of stability will be pre-
sented here since the presence of non-linear eddy coefficients negate
meaningful analysis and the case of constant diffusion coefficients
has been presented by various authors, [7,111], at least for time
dependent problems. Some insight to stability of steady state computa-
tions is given in Appendix A. Further insight into this question may
b; gained by the analysis given in Appendix D which compares the Gauss-
Seidel iteration technique to an appropriate (similar) transient
solution,

It was, perhaps, propitious that a superior grid system was
devised at the outset of this study (see Figures 5.3 and 5.4). In a
recent publication, Spalding [91] points out that making vorticity
adjustments in a cluster of five adjacent points and the stream func-
tion at the central point has a striking effect on divergence removal
for reasons unknown. Unlike the grid system to which Spalding refers
where vorticity and the stream function are computed at the same space
points, the present grid system is staggered. The vorticity values
which interact as a source for the stream function elliptic equation is
averaged from the four adjacent neighbor points, which is closely akin
to the method referred to by Spalding and may be responsible in part

for the seemingly inherent stability of the present method.
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Another aspect of the present computational technique is that
linear gradients are always used for flux terms whether on the boundary
or in the interior, by the use of fictitious boundary cells., Spalding
again points out that higher order methods for treating boundary con-
ditions may in fact lead to less accurate results due to violation of
reciprocity and conservation principles at boundaries. In the present
method, through the use of the correct conservative difference equa-
tions and fictitious boundary cells, quantities are identically con-
served. This feature may also contribute to the success of the tech-

nique in avoiding instabilities propagated from system boundaries.
7.3.2 Convergence

The question of solution convergence has been partially answered
in the preceding section. It is obvious that solutions which are
numerically unstable will not converge. On the other hand, it is also
possible that a solution which is numerically stable will not converge
as demonstrated in the example of flow past the end of a cylinder at
high Reynolds number (Section 7.3.1).

The condition for convergence used in this work is defined by

g1 en

o vog (7.97)

P

where Gf is the convergence criterion for the quantity f. The sub-
script p again indicates the nodal point in question and n is the nth

iteration. The condition for 8¢ approaching zero is not a sufficient
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condition to guarantee solution accuracy. however, since the numerical
procedure may in fact converge to an erroneous solution. The method
used in this work to decrease the probability of erroneous solutions
was to check the continuity of matter by evaluating net flux of
matter at the system boundaries and selected interior planes. This
check is subsequently referred to as the r-balance error (ér),T
referring to a conservative constituent. This quantity is effectively

given as a surface integral for the system in the form of

Jrtn) as+ [ (-ve,T)-n ds

St ST
ér = 100% (7.98)
[ r(@-n) as + / (-ve r)-n) ds|
S, S,
n mn

where ST represents a vertical plane in the flow field and Sinis a
radial plane at the inflow boundary extending to Ro‘ Equation (7.98)
gives 8T as a percent error of the system inflow.

Typical results showed the r-balance error to be on the order
of 1%.

General observation of the various numerical experiments illus~
trated the following:

e The convergence rate decreased significantly with increased

grid size.
e The stream function distribution converged with respect to

Gw more rapidly than vorticity and buoyancy (or T).
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Vorticity was the slowest to converge and also the most
erratic.

Convergence of all quantities near the outfall was much
more rapid than in the far field. Thus, sizable errors in
the far field did not influence the validity of solutions
near the outfall.

The relative magnitude of buoyant forices compared to inertial
forces played a significant role in the rate of convergence.
Highly buoyant effluents (low Fo) converged much slower than
pure inertial flows.

Runs made with constant eddy diffusivities converged much
more rapidly than those runs using variable coefficients.
One inner iteration (stream function elliptic equation) was
sufficient. Increasing the number of inner iterations
served to aggravate the convergence rate.

Deeply stratified cases (as opposed to surface layer strati-
fication) significantly aggravated the convergence rate.
This item is discussed further in Chapter 8.

Neglecting derivaties of €, in the transport equations led .
to r-balance errors on the order of 10-20% where variable €,
was employed.

Beginning a solution from an irrotational flow solution as
opposed to zero velocity everywhere, appeared to have no

particular advantage, and in some instances tested, actually

slowed convergence.
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Most computer runs were initialized from a restart tape gener-
ated by a previous case. There was considerable economy in this
action since a solution would need to be started from a zero initial
velocity distribution (or irrotational distribution) only when the
grid layout was changed. Unfortunately. from another aspect however,
not many solutions beginning at iteration number one and ending at
convergence are available for comparison. To illustrate the conver-
gence behavior, some of the computational aspects will be compared for
identical grid layouts. :This information is displayed in Tables 7.7,
7.8 and 7.9 for grid layouts of (JxK) 40x33, 31x34, and 26x25,
respectively.

The four cases cited in Table 7.7 constitute the worst lot as
far as convergence lethargy is concerned. The starting run was the
momentum jet case which took 800 iteration cycles to converge properily.
A1l succeeding cases used the momentum jet solution as initializing
information. Of these succeeding cases, the run for F0 = 1 (buoyancy
dominated) was the most reluctant to converge. Convergence lethargy
in this lot is laid chiefly to grid size although there is some
suspicion that cell aspect ratio and position of the inflow-outflow
boundary also have some effect. Figure 7.79 shows the convergence
history of v, Ay and @ for the 40x30 grid layout. This illustrates
the behavior of 8 ax for these variables where again the momentum jet
is used as a starting solution (first 800 iterations) for the succeed-
ing runs F0 = 46 and Fo = 1. As noted previously, S max is the maxi-

mum relative change in the entire system and does not always occur
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TABLE 7.7 CONVERGENCE BEHAVIOR, 40x33 GRID

Starting Succeeding Cases
Case A B C
A E .12591 .12591 .12591 .1259]
A Z 2.0 2.0 2.0 2.0
F, ® 46* 1.0% 1000*
Start Variable
€ and €75 Iterations 75 801 801 801
Total Iterations 800 1100 1400 1200
Incremental Iterations 800 300 600 400
r - Balance Error - .1281 734 - 4641 - .9133
519, Stream Function 1.195x10°% | 6.571x10°° | 2.92x107° 6.989x10™>
at Node 37,10 20,37 14,32 37,9
5.2, Vorticity 7.221x1073 | 3.191x107% | 1.466x107% | 9.422x1073
at Node 32,6 26,5 37,12 32,6
s, Buoyancy Parameter 3.210x1073 | 7.380x107% | 3.345x107% | 1.508x1073
at Node 37,2 2,33 2,33 37,2

*Indicates variable changed in restart case.
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at the same cell. Figure 7.80 illustrates the convergence history of
the starting solution for V at nodes (2,20) and (2,30) and T at node
(10,33).

Table 7.8 illustrates similar data for a 31x34 grid layout.
Convergence in this Tot is rather slow also. Note that the values for
Smax are considerably larger in this lot than in the lot given in
Table 7.7, although the T-balance error is about the same. The explan-
ation is that Gmax gives a relative change, and these changes are
occurring where the absolute value of the quantity is very small. For
instance, the maximum relative change of vorticity in the starting
case is .1595, whereas the value of vorticity at this point is
-9.76x107° ( the maximum value in the flow field is 2.944). Figure
7.81 shows convergence history of selected data.

Table 7.9 illustrates the convergence characteristics for the

26x25 grid. Note that each case is not finely converged with respect

to §

max’ whereas the T'-balance error is less than 1% in all cases.

Thus, this table illustrates that the system may be reasonably well
converged with regard to absolute quantities although relative changes
in part of the system may be comparatively large. Also, only 150
iterations were required to obtain each solution using the starting
run initialization.

For this case, the primary concern was plume centerline condi-
tions. Changes of velocity and temperature were occurring only in
the fourth and fifth significant figures along the centerline, indi-

cating that computation time may be saved by using a regional
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TABLE 7.8 CONVERGENCE BEHAVIOR, 31x34 GRID

Starting Succeeding Cases
Case A
AE .14690 .14690
AZ .2 .175%
Fo 51 105*
Start Variable 150 601
€p and €7 Iterations
Total Iterations 600 900
Incremental Iterations 600 300
r-Balance Error - .4381 .2778
61y Stream Function 1.350 x 1073 [1.115 x 1073
at Node 28,25 26,12
Snay> Vorticity 1.595 x 10~" |1.455 x 10~
at Node 23,24 23,23
Smax® Buoyancy Parameter 2.918 x 1072 |4.126 x 1072
at Node 20,5 30,13

*Indicate changed variable
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TABLE 7.9 CONVERGENCE BEHAVIOR, 26x25 GRID
Starting Succeeding Cases
Case A B C

AE .14690 . 14690 . 12591 * .14690*
AZ .50 .50 .50 .50
F0 1.0 5.0% 25.0* 100*
Start Variab]eer and €, Iterations 100 400 600 800
Total Iterations 400 550 600 750
Incremental Iterations 400 150 150 150
r -Balance Error .8035 .3700 - .9936 - .3203
5nay> Stream Function 1.688x10°0 | 1.011x1073 | 2.135x1073 | 2.210x1073

at Node (24,9) (24,10) (24,12) (24,11)
§nay> VOrticity 1.776x1073 9.350"2 | 5.345x10% | 5.435x10"

at Node (20,14) (20,20) (22,20) (22,17)
Snax® Buoyancy Parmater 1.976x1073 4.683x1072 4.850x10™2 3.440x10"2

at Node (24,6) (21,20) (24,3) (24,5)

*Indicates changed variable.



convergence criterion. In the computer program one has some control
over this criterion by applying the convergence check only out to a
set radius.

As a final illustration of numerical convergence behavior,
Figure.7.82 shows the iteration history of V and By at one cell for
Case 2 (see Table 7.1). The significance of this plot is that the
velocity initialization is the irrotational flow solution (for the
other cases cited, U and V are zero everywhere except the inflow
boundary). Note that velocity V shows considerable oscillation.

The theoretical development of difference equations in this
manuscript is based on Equations (5.8) for vorticity, Equations (5.9)
for the transport of buoyancy and equations similar to (5.9) for the
transport of materials. These equations make no allowance for contri-
butions, or more accurately, corrections, issuing from variable eddy dif-
fusivities. In the instance of Equation (5.9). these'corrections may be

made rather straightforwardly by adding the terms

3 3 oL YA

r r
However, in Equation (5.8) the appropriate correction terms add con-
siderable complication as noted by comparing Equations (3.80) and
(3.81). Fortunately not all of the terms involving derivatives of €
and €, need to be incorporated into the numerical model either

because they are zero in accordance with assumptions concerning the

eddy coefficient model, or transported quantities are minute where
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the variations occur. For instance, we may neglect all terms involv-

ing aer/ar since ¢ is constant where diffusion is important, and

r
convective terms dominate the transport where step changes in Ep
occur. Likewise, other order-of-magnitude approximations may be made.
Having eliminated these second order factors one is left with the cor-
rection terms for vorticity of:

2 2
1, FZ . 2, 3 aFL
REZ YA Z 3z 322

where FZ is again the vertical eddy diffusion multiplier (cf. Section

7.2).
Similar approximation for Equation (5.9) yields the correction
term,
1 7 |
REZPRZ LY L

with a similar correction for r transport.

The importance of these terms was ascertained by the system TI-
balance. Without the corrections, the r-balance error ran as high as
20%. For the same conditions, addition of the correction terms
reduced the error to less than 1%.

Before closing the subject of convergence, the author wishes to
note that in all cases run where the transpori equations were decel-
erated and turbulence modeling did not lead to numerical instability,
the stream function convergence was extremely well behaved. This
behavior was obtained by iterating only once on the ¥ elliptic equa-

tion; additional iterations were noted to aggravate the convergence of
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¥ as well as the transported quantities Q, A, and T. It is entirely
possible that the system would have converged equally well if even
fewer ¥ iterations were performed, that is, iteration on ¥ only once
for every two, three or perhaps five outer iterations. This facet
was not investigated in the present study, but such experimentation

could yield fruitful results in terms of computer time.
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CHAPTER 8
NUMERICAL EXPERIMENTS FOR SHALLOW WATER CASES

Material presented in this chapter deals with application of the
numerical techniques discussed earlier in shallow water situations.
A1l computer runs presented here are for cases where the assumed water
depth is ten or less port diameters above the outfall discharge. The
techniques used are identical to those applied for the verification
studies presented in the previous chapter.

Unlike cases in Chapter 7, however, applicable data are not
available except for one case where surface temperature field data are
available. Hence, we rely substantially on the verification study
as an indicator of the validity of the comnutational techniques.

Table 8.1 summarizes the cases to be discussed and illustrated in this
chapter; those listed are only a portion of the total shallow water
computer runs made during the course of the present research. None-
theless, these cases are typical and space limitations preclude further

illustrations.
8.1 Modeling the Vertical Eddy Diffusivity Multiplier, FZ

In the region of the lateral surface spread of shaliow water
plumes, modeling the vertical component of the pointwise eddy diffus-
ivity plays an important role in determining the flow behavicer. Con-
siderable effort was devoted to this subject in Section 7.2.2; the
computational methods used to obtain results presented in this chapter

will be briefly reviewed.
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TABLE 8.1 SUMMARY OF SHALLOW WATER CASES
Case  Grid Depth o . D Yo Boundary 2To %tr Stratifi-
No. Size AE AZ Z o 0 ft ft/sec Type* 0oC (amb) cation**
48  26x25 14690 .5 10 19.66 100 10 10.15 2,N=10 18.12 27.98 None
49  26x25 .14690 .5 10 19.66 25 10 5.075 2,N=10 18.12 27.98 None
50 26x25 .14690 .5 10 19.66 5 10 2.270 2,N=10 18.12 27.98 None
51 26x25 .14690 .5 10 19.66 ] 10 1.015 2,N=10 18.12 27.98 None
52  26x25 .12591 .25 5 11.62 100 10 10.15 2,N=10 18.12 27.98 None
53  26x25 .12591 .25 5 11.62 25 10 5.075 2,N=10 18.12 27.98 None
54  26x25 .12591 .25 5 11.62 5 10 2.270 2,N=10 18.12 27.98 None
55 26x25 12591 .25 5 11.62 1 10 1.015 2,N=10 18.12 27.98 None
56 31x34 14690 .20 5.6 41.00 51 14 7.25 2,N=7 8.33 18.01 None
57 31x34 .14690 .20 5.6 41.00 51 14 7.25 2,N=7 8.33 18.01 None
58 31x34 .14690 175 4.97 41.00 105 16 11.10 2,N=7 8.33 18.01 None
59  31x34 .14690 .175 4.97 41.00 105 16 11.10 2,N=7 8.33 18.01 None
60 30x26 .14690 .40 8.4 35.40 45 10 7.00 4 11.10 27.78 None
61 30x26 .14690 .40 8.4 35.40 45 10 7.00 4 11.10 24.78 2 oC
62  30x26 .14690 .40 8.4 35.40 45 10 7.00 4 11.10 24.78 3 0C
63  30x26 14690 .40 8.4 35.40 45 10 7.00 4 11.10 24.78 4 OC
64  30x26 .14690 .40 8.4 35.40 45 10 7.00 4 11.10 24.78 5 OC
65 30x26 .14690 .40 8.4 35.40 45 10 7.00 4 11.10 24.78 5 0C
66 29x20 .12591 .15 1.42 16.97 111 21 574  2,N=10 13.80 25.57 None

* See Table 7.1
** Stratification extends somewhat deeper than in Case 63.



The general form of the vertical diffusion coefficient is

€, € + ¢ (8.1)
z Zambient Zp]ume

In the region of plume flow the ambient contribution will be insigni-

ficant; hence,

e,V E . (8.2)
z zplume

The plume generated turbulence is a function of both mean flow char-
acter and thermal character.

Recall from Section 7.2.2,

€z= €, f(RI), (8.3)
0

where €, is the vertical diffusion coefficient for neutrally buoyant
0
conditions and f is a function of the point Richardson number, RI.

Likewise, the vertical component multiplier, FZ, may be expressed as
FZ = FZ, f(RI), (8.4)

where FZ0 is the neutral buoyancy multiplier. The model for FZo may

be expressed as (See Section 7.2.2)

FZ, = 872 (UpaxUnin) (8.5)

where 21/2 is the radial plume half-depth,and the radial velocity

difference,

U u =

max_ -min max *

. n,
since Umin Y 0. Then
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If we followed the same method used for computing the radial

multiplier,

R (8.7)

= Ry/2 Vmax®

z]/2 and Vmax would be computed iteratively and pointwise to establish
FZ, (Method 1, Section 7.2.2). However, all attempts to calculate
FZO based on local values of Z]/2 and UmaX led to numerical instability.
Exactly why this condition persisted, especial]y in view of excellent
success with Equation (8.7), was never ascertained. After several
numerical experiments and correctional efforts without success, it -
was decided to stabilize the computation by restricting the computed
value of the plume half-depth, 21/2, since this value seemed to ex-
hibit the most unstable character in previous experiments. This
decision led to Methods 2, 3 and 4, described in Section 7.2.2.

Method 2 used Z]/2 based on R]/2 computed at the elevation of
lateral flow. 21/2 was then held constant for that iteration but the

local value of Uma was used. This method led to eddy diffusion coef-

X
ficients which were quite large and a correspondingly unrealistic
flow field; hence, the method was quickly abandoned.

Method 3 computed a constant value of FZ  to be applied every-
where in the lateral plume spread. The value of FZO in this method
was set by computing 21/2 at the radial positicn corresponding to the

maximum radial velocity; the value of Uma at this point along with

X
2179 wWas used in Equation (8.6). Results from this method are pre-

sented in Section 8.4. Again, this method yielded diffusivities

of excessive magnitude.
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However, experimentation with this method was carried out, in
every case, in conjunction with thermal flows (as opposed to neutrally
buoyant conditions). It is possible that the Richardson number
modifier, f(RI), was inaccurate.

Finally, the most realistic results were obtained by Method -4
which in principle uses the technique of computing Z]/2 of Method 3,
but bases Umax on the local value. This method was found to be always
stable once the general, but approximate, flow patterns were
established.

Table 7.5 summarizes several models for f(RI); however, the

Mamayev correlation has been employed exclusively in this work which

has the form,
f(RI) = e BRI, (8.8)

where g is an empirical constant.

The value of 8 to be used presents an additional uncertainty in
computing FZ. Wada [108] used the value g = .8. However, Stolzen-
bach [94], based on the data of Ellison and Turner [25], suggests the
value B ~ 5.0 when using the gross Richardson number. We have used
values ranging from .4 to 2.0 in this work (Table 8.2).

Table 8.2 below summarizes the computation of FZ for results

presented in this chapter.
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TABLE 8.2 SUMMARY OF FZ COMPUTATION

Case Method 8
48-55 4 1.0
56 3 .4
57 3 .8
58 3 1.0
59 4 1.0
60-65 4 .8
66 4 2.0

Actual computation of FZ proceeds as follows: (sequence of
operaticns for one outer iteration).

Based on the computed values of U, V and A5 for the present
iteration:

¢ Compute the array of local Richardson numbers,

dA] 2

RI(J,K) = - 5%; = //(9%0

J,K

» Scan the U array to establish the maximum value of U and the
corresponding index, J.
o Compute the piume half-depth, Z]/Z’ at index J.

e Use this value of Z]/2 to compute

FZO(J’K) B Z1/2 Umax

where Umax takes on different values at each radial grid
point.
e Compute

FZ(3,K) = FZ,(3,K) " BRI(DK)

o Use the above value of FZ in computing transported quantities

for the next iteration.
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8.2 Results for Homogeneous Receiving Water 10 Port Diameters Deep

Results for plumes issuing in homogeneous receiving water at a
depth of ten port diameters are reported as Cases 48 through 51. For
these cases, the initial temperature excess is 18.12 OC and the value
of sigma-t for both the effluent and reference ambient is 27.98.

Each case represents a different densimetric Froude number as indi-
cated in Table 8.1. Changes in the Froude number were effected by
varying the effluent velocity. A1l initial velocity profiles are
assumed to be turbulent and follow a profile given by Equation (7.17)
with the exponent equal to 1/10. The port diameter is held constant
at 10 feet and the lateral spread is computed out to about 10 port
diameters.

Centerline distributions of velocity and temperature excess are
illustrated in Figure 8.1 for all four cases. Note that the plume
accelerates for low Froude numbers (Fo = 1,5), but for Froude numbers
of 25 and above, very little acceleration is noted even though tur-
bulent mixing (as a function of distance from the port) is decreased
(temperature excess curves). Velocity of the lateral surface spread
is illustrated in Figure 8.2 for these same cases. Maximum velocity
in each case occurs at radial distance between 1.5 and 2.0 diameters.
In the highly buoyant Case 51, the maximum lateral velocity is nearly
as great as the initial velocity. Note that these results are norm-
alized to the average effluent velocity; hence, for Fo = 1 the maximum
lateral velocity is about 1 fps, whereas for F0 = 1, the corresponding

velocity is about 3.5 fps. Vertical profiles of lateral velocity for

325



() N
FO Vm ATm/ATO CASE [}
_1 o 51 \.ﬁ
a)
A

50

49

48 N\
_ | \;
v =1.15(1-Rr) 10

0.15 1 1 1 I 1 1 1 |

o
o
<
4 » B O

AXTAL DISTANCE, Z

Figure 8.1. Computed Centerline Velocity and Temperature
Excess for Intermediate Depth, Cases 48
Through 51 (10 diameters deep)

326



XA

U

RADIAL VELOQOCITY,

DIMENSIONLESS

1.

Figure 8.2.

RADIAL DISTANCE, r/D

Surface Distribution of Radial Velocity,
Cases 48 Through 51 (see Table 8.1)



Case 50 are illustrated in Figure 8.3.

Comparison of the radial velocity profiles are illustrated by
Figures 8.4 and 8.5. Figure 8.4 is for a radial position of r/D=1.9,
which corresponds approximately to the pésition of maximum velocity
in all four cases. This figure also illustrates that radial entrain-
ment occurs below the depth of about 10.5 (1.5 diameters from the
surface) for these cases. At 7.32 diameters (Figure 8.5) the spread-
ing surface layer is slightly thinner.

The small cross-hatched rectangle shown in Figure 8.5 illustrates
the variation of the spreading depth for these cases. Greater penetra-

tion is noted at Froude number 100; Fo = 1 shows the least penetration.

The distributions of temperature excess at the surface
(ATS/ATO) are illustrated by Figure 8.6. Vertical profiles of excess
temperature (ATS/ATO) for Cases 48 and 50 are shown in Figure 8.7
(A and B). Note that the temperature profiles penetrate slightly
deeper than the velocity profiles and indicate some minor recircula-
tion of the heated water takes place.

A complete set of contour plots and three-dimensional illustra-
tions for the stream lines, temperature and vorticity for Cases 48

through 51 are given in Figures 8.8 through 8.32.
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8.3 Results for Homogeneous Receiving Water 5 Port Diameters Deep

Results for outfalls issuing to receiving water 5 port diameters
deep are given as Cases 52 through 55 for Froude numbers of 100, 25,
5 and 1, respectively (See Table 8.1). A1l boundary conditions and
parameters for these cases correspond to those of similar Froude
numbers for the 10 diameter deep cases given in Section 8.2. Actual
water depth here is 6 diameters with the outfall port rising one diam-
eter above the bottom.

Centerline distributions of velocity and temperature excess are
shown in Figure 8.33 for Cases 52 through 55. As was illustrated by
Case 50 and 51, the plume also accelerates for Cases 54 and 55 as a
result of dominant buoyant forces. For Froude numbers of 25 and
above the centerline velocity remain essentially constant until sur-
face effects are encountered. On comparing Figure 8.1 with 8.33, one
notes that at 5 diameters the temperature excess given in Figure 8.33
is slightly higher than for corresponding cases given in Figure 8.1.
The decreased dilution is a result of the surface proximity.

The vertical distribution of radial velocity, U, is illustrated
by Figure 8.34 for Case 52. The lateral spread is seen to be quite
thin (approximately .8 D) at least out to 4 diameters. Figure 8.35
shows that temperature effects somewhat deeper (approximately 1.2 D)
and some recirculation of heated water is indicated. At r/D = 1.0,
the temperature distribution lies within the rising portion of the

plume above Z ~ 2.5 (1.5 above the port) and is not to be interpreted

as penetration of the lateral spread.
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Contour plots and 3-dimensional illustrations of the stream
function, temperature and vorticity are given in Figures 8.36

through 8.41.
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8.4 Results for Two Different Methods of Computing FZ

Cases 56 through 59 are results illustrating the effects of
using Methods 3 and 4, and different values of the constant g, for
computing the vertical eddy diffusivity multiplier, FZ (refer to
Tables 8.1 and 8.2). Cases 56 and 57 are for receiving water 5.6
diameters deep, using Method 3 to compute FZ with Froude number,

F0 = 51. Case 58 has F0 = 105, with 4.97 diameter deep water using
Method 3. Case 59 is the same as Case 58 except Method 4 is used to
compute FZ,

Cases 56 and 57 were run to observe the effect of changing
B = .4 to B = .8, respectively. Comparative results are not shown,
but this change of g did not alter the computed velocity and tempera-
ture profile a great deal.

It was observed, however, that computation of FZ0 by Method 3
resulted in excessive vertical diffusivities. Case 58 also emplioyed
Method 3 and exhibited excessive vertical diffusivities (in this
Case 8 = 1.0). As pointed out in Section 8.2, Stolzenbach suggests
the value of g = 5.0 based on the gross Richardson number; however,
values using g > 1.0 were not tried in these cases. Using the larger
value of g could have a major effect on the velocity and thermal dis-
tributions computed by the present techniques using Method 3. The
use of large g would significantly reduce vertical mixing in the
thermal boundary region, but allow substantial vertical exchange

within the spreading plume where thermal gradients are expected to be

small.
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Figure 8.42 shows the comparison of surface spread velocity
between Cases 58 and 59. The difference here is not of major impor-
tance, but Figures 8.43 and 8.44 illustrate a significant difference
in vertical entrainment. Significant differences between stream-
line patterns is revealed by comparing Figures 8.45 and 8.46. The
contours shown in Figure 8.45 (Case 58) are more indicative of
creeping flow in the spreading portion of the plume than a high
Reynolds number flow (Case 59, Figure 8.46).

The distribution of surface temperature excess is shown in
Figure 8.47 for Cases 57, 58 and 59. Case 57 shows lower temperature
at the centerline as a result of the port being in deeper water.

Case 58 may be compared to Case 59 and exhibits a lower surface temp-
erature (also, refer to Figures 8.48 and 8.49). This result is due
to the larger values of vertical mixing employed in the computation

of Case 58. Isotherms for Case 59 are illustrated by Figure 8.50.
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8.5 Numerical Experiments Involving Ambient Stratification

Results involving the effects of stratification are given by
Cases 60 through 65. Case 60 is a base case to be used for comparison
and is for a homogeneous ambient. The remaining cases have different
degrees of ambient stratification. In all cases the ambient (also,
effluent) salinity is constant at 35 ppt, hence the ambient density
structure is a function of the temperature distribution alone. In
this section, all results use Method 4 to compute FO and g = 1.0.
Unlike all previous cases presented in this chapter, the effluent
velocity profile is assumed flat.

Figure 8.51 illustrates the assumed ambient density structure
for the six cases.

Results for the base Case 60 are illustrated by Figures 8.52
through 8.59. One significant feature of the Case 60 results concern
velocity distribution and may be noted in Figures 8.52 and 8.54.
Figure 8.52 illustrates that radial velocity profiles for the spreading
plume continue to penetrate deeper into the ambient with increasing
radial distance from the outfall. For this case, temperature differ-
ences are small between the plume flow and ambient as illustrated by
Figure 8.53. The upward-distorted streamlines illustrated in Figure
8.54 indicate that there is significant upward entrainment into the
plume lateral spread.

The influence of a 2 9C ambient thermocline situated as shown
by Figure 8.51 is illustrated by Figures 8.60 through 8.64. Comparison

of Figures 8.62 and 8.54 shows that the presence of the thermocline
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causes significant flattening of the streamlines, or reduced vertical
entrainment by the spreading plume. This reduction of vertical entrain-
ment is caused by suppression of vertical mixing by the presence of the
thermocline. In this case the plume flow spreads above the thermo-
cline, Also, the plume destroys the thermocline in the discharge

locale but the "convecting in" of the ambient density structure has a
significant effect beginning at distances approximately 5 diameters
out. Note the diverging of isotherms in Figure 8.63 and the tendency
for the isotherms to attain the ambient condition.

Increasing the magnitude of the thermocline results in further
reducing the vertical entrainment and stream 1line flattening as
illustrated by the results of Case 63 (Figures 8.65 through 8.71,
respectively). In this case the vertical location of the thermocline
is the same as in Case 61, but the magnitude of the thermocline is
4 9C instead of 2 °C.

The effects of a thermocliine on the temperature structure are
most clearly revealed by Figures 8.66 and 8.67. Also note that out
to about 5 diameters the ambient density structure is again completely
destroyed by the plume flow. This feature coupled with the upwelling
of cooler water from beneath the thermocline results in a phenomenon
whereby there is a thermal peak above the outfall, but this peak
rapidly deteriorates radially to a temperature which is cooler than
the surface (see Figure 8.67). Unlike the base Case 60 where

vertical entrainment cools the plume, vertical entrainment warms the
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lateral spreading flow since the cooler water is now on the surface

in the region of radial spread. This is, of course, a thermally
unstable situation, but the configuration is maintained by the flow
dynamic forces. This phenomenon is not uncommon and has been observed
on several occasions by Eliason [24] through areal infrared photog-
raphy. We would expect, however, that once dynamic forces are
mitigated to the point where buoyant forces (if they still persist)
dominate, local upwelling within the lateral spread would occur. OQur
steady flow computer program cannot reveal these local time dependent
effects, but they are indicated by numerical cycling and reluctance te
converge. Since the case converged without difficulty, we conclude
that the flow field is dynamically stable, at least for the parameters
used.

Figures 8.69 and 8.72 again show the thermal effects of "con-
vecting in" or recirculating the ambient thermal structure and the
tendency of the thermal distribution to attain the ambient structure.

Figures 8.74 through 8.81 show results for Case 64 where the
thermocline is 5 OC, although the thermal gradient is identical to
Case 63 (see Figure 8.51). Comparison with appropriate results of
Case 63 shows little influence from this change.

In Case 65 the shape of the thermocline was assumed to be the
same as in Case 64 except situated at a somewhat greater depth
(Figure 8.51). Figures 8.82 through 8.90 illustrate results for this
case. For the problem posed, computation could not be carried out

to achieve a steady flow converged solution. Instead numerical
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cycling occurred. Results after 1000 iteration cycles are shown by
Figures 8.84 through 8.86. Figures 8.87 through 8.89 reveal results
after 300 additional iterations.

Although, the case as posed may not conform to a physically real
situation (in particular, the ambient density structure), a thermal
instability is suspected which may be either real or perhaps incited
by numerical perturbations. Inspecting Figure 8.86 illustrates a
large region of cooler water above the thermocline. Continued itera-
tion showed that the ambient isotherms, within the circulating ambient,
begin to fluctuate vertically out to about 7 diameters. Further itera-
tion resulted in the development of two recirculating regions: one
above the thermocline and the other below (see Figure 8.87). That is,
some of the plume flow attempts to spread beneath the thermocline. If
the iterative computation is continued, streamline patterns closely
resembiing those shown in Figure 8.84 will redevelop (single recircu-
lating region).

The investigation of Case 65 was carried out through approximately
three cycles of the flow changing from one recirculating region, to
two regions and back to one region again. These computations showed
neither the tendency for the solution to converge or diverge numeric-
ally. It is difficult to derive much incite from steady flow computa-
tions possessing such behavior except that a thermal instability is
either present or close at hand. A transient computation of the same
flow conditions would doubtless reveal similar oscillations during the
initial transient, caused by the pulsed plume flow starting condition.

However, we would expect the oscillations to damp out with time except
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if a true thermal instability were present. For our steady flow
computation, real conditions may be near to those for a real thermal
instability and the nature of the steady flow numerical techniques
may be perturbing the solution to a point which prevents a converging
result. |
It is noteworthy to mention that the solution would diverge !
numerically with the acceleration factor, L = .999, but displayed fhé
oscillatory nature discussed above with L = .50. Further reduction

of L may have eliminated the cycling problem altogether, but would

have come at the expense of greatly increased required computer time.
8.6 Discharge at Very Shallow Depth

In concluding the numerical experiments presented in this manu-
script, results are illustrated for a large outfall discharging one
diameter below the ocean surface (Case 66). This case represents a
rather extreme situation, but not unlike several outfalls located off
the Southern California Coast. The port diameter is assumed to be
21 feet, the initial densimetric Froude number is 0.111 based on a
.574 fps discharge velocity, and initial temperature excess of the
effluent is 13.8 OC with salinity 35 PPt. Computation was carried
out laterally to about 10 port diameters.

Figures 8.90 and 8.91 show the spreading velocity and tempera-
ture excess at the ocean surface. Note that the maximum surface
spreading velocity is about 2.5 times larger than the discharge
velocity (2.5 x .574 ~ 1.4 fps) indicating that the effluent has

undergone considerable acceleration caused by buoyancy. Maximum
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computed velocity occurs about 0.7 diameter from the plume centerline,
which is about the edge of the "boil" for a real outfall of these pro-
portions. Figure 8.91 indicates that the plume has undergone only
ﬁlight cooling on reaching the surface (v 3/4 OC), but cools very
rapidly out to about 2 diameters and decreases to about 2 °C above
ambient at 8 diameters.

The radial velocity profiles at selected locations are shown in
Figure 8.92 which shows that the plume along with entrained flow,
spreads in a fairly shallow sheet at the surface, penetration being
1e§s than 0.4 diameter. Temperature profiles (Figure 8.94) penetrate
slightly deeper. In fact, the computation shows that plume thermal
effects penetrate into the negative flow region, hence there is some
indication of piume heat recirculation.

Streamlines, isotherms and level lines of vorticity are illus-
trated in Figures 8.94, 8.95 and 8.96, respectively. The inward
bending of the streamlines (Figure 8.94) above the discharge port
indicates considerable acceleration of the effluent. Maximum vorticity
for this case occurs near the surface and near the point of maximum
lateral spread. This region of high vorticity is also the region where
one would expect the edge of the surface boil to occur in a real flow.
Three-dimensional surfaces are plotted in Figures 8.97 through 8.101

for the stream function, temperature excess and vorticity.
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8.7 Comparison with Field Data

At a late-date in this study, the author was able to obtain
reliable field data for one shallow water application. This data,
obtained for a customer by Battelle-Northwest, is proprietary and
details cannot be disclosed. However, the discharge depth is less
than one port diameter and the densimetric Froude number is on the
order of 2.5.

Figure 8.102 shows a comparison between the computed results and
the field measurements. As can be seen, there is reasonably good
agreement between data and computation. The computer program predicts
surface temperatures which are about 50% high out to about 10 diameters.
Temperatures equal to the effluent temperature are predicted at the
surface directly over the outfall, whereas the field data indicates
an average of about 70% of this value. This discrepancy illustrates
that an improved turbulence model is needed for the transition region
and perhaps a better representation of the cascading caused by the boil
formation. Nonetheless, this result is very encouraging because the
computation was performed before the infra-red field data were reduced
to temperature information, indicating that at least for very shallow
water cases the computer code is a useful predictive device which
requires little use of empirical constants.

This result is only one check point and additional field or
laboratory data are certainly needed for further verification. Such
information could also be used for improvement of the eddy diffusivity

model--which is sorely needed.
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CHAPTER 9
CONCLUSIONS

The work contained in this manuscript represents an extensive
numerical study of axisymmetric plume flow. Various computational
details dealing with practical app]icafions have been investigated
along with an extensive verification study comparing numerical
results with available published data.

The objective of developing a computer code for general use for
vertical plume rise in shallow water and the ensuing lateral spread
was not entirely realized. The code developed is more of a research
tool than a design tool. The primary reason for this result was the
difficulty in modeling turbulent diffusivities. Such models are well
established for the vertical rise, but relatively little is known
about vertical diffusivities in the lateral spread. Hence, for this
aqd other investigative reasons the computer code suffered through
various changes and adaptions during the study; the code listed in
Appendix E is one of these later versions.

The more significant conclusions from this study are as
follows:

e The steady flow vorticity-stream function technique

along with the use of a coupled buoyancy transport equa-
tion is an effective and accurate method for computing
buoyant plume hydrodynamics up to our ability to model
turbulent transport coefficients.

o The iterative use of Prandtl mixing length theory

(Prandtl's second hypothesis) is entirely satisfactory
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for computing radial eddy transport coefficients in
the plume-rise regime. In addition

- the computations predicted e, to be essentially
constant for a pure initial inertial flow which is
also demonstrated by published experimental data,

- depending on the extent of buoyancy, the computations
predicted e, to vary a great deal with axial position,
and that using a constant value of € in a buoyant
flow can lead to large errors in the computed plume
velocity and temperature distributions.

e The iterative use of Prandt]l mixing length theory for the
vertical eddy transport coefficient was used in this work
but was found not to be entirely satisfactory for the plume
lateral surface spread. That is, limitations had to be
imposed on the maximum size of the computed mixing length
to prohibit numerical instability resulting from an unstable
mixing length computation. Vertical eddy diffusion was found
to have little effect on computed quantities within the plume
vertical rise.

Mixing length theory was found to be entirely unsatisfactory

for the circulating (ambient) flow field.
o Solution convergence was slowed dramatically by:
- Iterative computation of eddy transport coefficient
(as opposed to constant values),

- flow coupled with buoyancy transport (as opposed to a
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pure inertial flow),
- multiple iteration on the stream function elliptic equa-
tion between each iteration of the transport equations.
In addition to the third point mentioned immediately above, in
every case tried one psi inner iteration (stream function) per out-
ter iteration (vorticity and buoyancy transport) was found to
be satisfactory for convergence. It is strongly suspected that
once the approach to convergence for the stream function has
become smooth more than one outer iteration per inner itera-
tion would not significantly affect the convergence rate.
This action would, however, result in decreased computation time.
The numerical techniques were found to be stable for every case
tried except for the following two instances:
- over relaxation of the transport equations,
- use of iteratively computed eddy transport coefficients
, before reasonable velocity profiles were obtained by
using constant coefficients.
It was found that over-relaxation of the vorticity equation
always led to a numerical instability for the cases tried.
This problem was rectified by using LT = .999. In no case
using constant transport coefficients and LT < .999, was anv

instability noted.

The stream function elliptic equation could be over-relaxed

in some cases (deep water cases) using LE = 1.6.
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However, in the shallow water cases (ZS < 5) numerical insta-
bilities were noted using LE = 1.6. Subsequently, L < 1 was
used with general success.

Based on results shown in Figure 8.102, it is concluded that
the computational methods presented herein can be a very accur-
ate mechanism for computing the surface temperature distribu-
tion in the near field of a large, vertical, shallow water
coastal thermal outfall. Hence, the primary objective of this

study is successfully accomplished.

The result shown in Figure 8.102 is very encouraging since

the computed surface temperature distribution was found to be
in excellent agreement with field measurements and the fact
that this agreement was obtained without prior knowledge of
the field results. However, this is the only case where
computation was compared to field data and other situations
may reveal discrepancy. Obviously, complete validity of the
model can only be ascertained by further comparison with field

measurement.

From the results of this study it is generally concluded that the

numerical techniques used are a viable and practical method for comput-

ing thermal dispersion in confined steady-flow plumes up to our ability

to model the plume-generated turbulence. The numerical approach is

extremely attractive from the viewpoint that important complexities

can be incorporated in the analysis which cannot be accommodated with
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similarity techniques.Hence, the numerical model, which may be cali-
brated with field éata, will yield reliable computed information and
permit a more competent thermal analysis. However, this study has
shown that there is indeed a great need for research in turbulence

modeling and the application of these models in numerical computation.
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APPENDIX A
CONVECTIVE TRANSPORT DIFFERENCE APPROXIMATION

Differencing the convective terms is the most troublesome
aspect of solving transport equations numerically. The mathematical
principles for treating these quantities are available, but one must
exercise extreme caution when applying these principles or grossly
inaccurate solutions will result if not numerical instabilities.

When forming difference equations for convective transport, prime
consideration must be given to the directional nature of these terms.
A number of papers have been written and studies made con-

cerning numerical convection experiments. Perhaps one of the best
studies on higher order methods has been carried out by Crowley [21].
Crowley carried out numerical experiments using a number of difference

techniques in solving the "color equation" due to R. Lelevier,

3T 5
o+
5t T Y

—

ol
+ — = . A-
v m 0 (A-1)

Q
>

Here T is a scalar quantity transported with the flow in a manner
such the total derivative is zero along an instantaneous streamline.
Crowley refers to Equation (A-1) as the advective form of the T trans-

port equation. An alternative way to write Equation (A-1) is

aur ovr (_éy_ + BV)

ol - EAS
sttt iy TGty (A-2)

which Crowley refers to as the "conservative" form of the transport

equation. By continuity,

400



9

| ot
QL

l

LA 0. (A'3)

+ 2
3y

o5
x

However, in numerical approximation,
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but never zero. For this reason, the right hand side of Equation
(A-2) is sometimes included with the analysis in an attempt to reduce
accumulating numerical error.

As a point of criticism, in view of transport physics, it is

correct to write

ol _a_r. EL ﬂ"-a_v =0
sTrtUNtT VT Gy 5y)
and
ar . afur) . a(vr) _
5T T ax T dy 0

instead of Equations (A-1) and (A-2), respectively.

In the paper cited, Crowley carried out various numerical
experiments with first, second and fourth order approximations for
Equations (A-1) and (A-2), and the one-dimensional counterpart of
these equations. For the one-dimensional tests, he concluded that a
second order process using the "conservative" Equation (A-2) was the
most accurate. In two dimensions he found that fourth order methods
were the most accurate but could not ascertain which equation gave
the best results. However, he does recommend that the conservative
equation be used.

Reference [66] reports results of numerical experiments con-

cerning the one-dimensional transport equation,
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3T ar _
st U =0 (A-4)

Unlike Crowley's work, this work was concerned with the directional
nature of u and the proper method for differencing ar/ax (forward,
backward or central) to minimize numerical error and achieve stable
computation.

For these experiments u was assumed positive and steady, with

the corresponding explicit difference equation written as:

n+1 n _ uat n n n_.n
P -y = o LU (g q-ry) +, (T ‘Fm)] (A-5)

where the superscript n refers to the nth time step. The parameter
§, varies from 0 to 1. The following difference techniques are

obtained from Equation (A-5) for the corresponding values of fy:

6x = 0 backwards or upstream method

fy = -25 so-called “"quarter point" method
fy = o central method

§x = 1. 0 forward or downstream method

The results of these numerical experiments are compared with the
analytical results for various time steps and total elapsed time, and
found that the upstream difference (backward to the direction of flow)
gave the superior results.

Note, that in all but the upstream method, downstream qyantities,
to some extent, are used to establish upstream results. In the case

of pure convection these formulations are physically incorrect.
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Lelevier (cf. [21]) was evidently the first to introduce the
upstream differencing technique. Crowley reports that a great deal
of numerical damping results with this method, applied to the
"advective" equation, over long integration periods. Nevertheless,
the upstream method (also called, unidirectional or one-sided deriva-
tive), has been used extensively in solving transport equations.

For instance, Van Sant [104] used the “"advective" form to solve the
vorticity transport equation. Torrance and Rockett [100] solved the
"conservative" form of the vorticity equation in this fashion, and
Runchal and Wolfshtein [84] used upstream differencing to solve for
steady flow vorticity transport in "advective" form. Van Sant [105]
stated that he was unable to obtain a solution to the steady flow
vorticity equation using central differences.

One trouble with using any method except the upstream method
is that truncation and numerical round off can cause serious errors
and even destroy the solution through numerical instability. Higher
order methods (central difference, for instance) in spite of their
purported higher degree of accuracy may be inferior if the direction
nature of the flow is not considered. Runchal and Wolfshtein present
some clarification of this subject. We will pursue the matter here
by formulating convective difference schemes using one-sided and
central techniques.

Consider the incompressible steady flow transport equations, with
constant eddy coefficients for a conservative scalar quantity T in

(x,y) coordinates:
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where NR is the Reynolds number and

N = momentum diffusivity
r I diffusivity )

The finite difference grid system (Figure A-1) has constant and equal

spacing in the x and y directions.

5 ——

L—# +

= -1 j §*1

Figure A-1: Finite-Difference Grid System
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Suppose we now apply a general difference scheme to the convec-
tive terms of Equation (A-6) which, for the time being, disregards the

directional sense of the velocity components u and v. Then,

uy [-600,-054) + 6, (r540-1)]
# vy (-6 q) + 6y (Tygqr)]

-1 .
= F [(rj_]+rj+]+rk_]+r_k+]-4rp)], (A-7)

where the constant subscript has been suppressed and point (j,k) is
replaced by p for convenience. In the above equation, 6x and 6y are
factors corresponding to difference schemes in the x and y directions.
These quantities (5x and 6y) take values of 0, 1/2 and 1 for backward,
central, and forward differences, respectively. The quantity F is

equal to NRth‘ Solving for rp yields

)
[(1-26x)up + (126 v, + ] r,

= u [(1-6x)1"j-1'6xr.]'+1] * Y [(]'6y)rk-1'6yrk”]

1 ]
i (CPIRE SRR AL )] (A-8)

NO| =~

Case 1. Central difference scheme, 6x and 6y =

Equation (A-8) reduces to
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rp = g-[hp(rj_]-rj+]) + Vp(Pk-l'Fk+1)]
] .
(5T T ) - (A-9)
If F is very small, implying a very small Reynolds number
(creeping flow) or a very small grid spacing, h, Equation (A-9) will

usually converge. However, for large F,

. E 3 oy
'n * 8 [up(rj-l Pis) * V(T Fk+1)]' (A-10)

Hence, small errors in the differences are magnified by a large coef-
ficient, F, which will eventually destroy the computation through
instability. For this reason the central difference scheme is not
desirable for either transient or steady state application for inter-

mediate and large values of F.
Case 2. Forward difference scheme, ¢, and 6y = 1.

Equation (A-8) reduces to

F : = - Fo +

£l

AT T T ) - (A1)

Equation (A-11) poses additional complications because of the presence
of the negative sign in the coefficient multiplying rp. For positive

up and vp and

F
T (up+vp) = 1,
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Equation (A-11) is unmanageable. For large values of F, the differ-

ence scheme becomes
"o e gl (A-12)

If either up or vp is positive, this equation is physically incorrect
because we would be basing upstream computation on downstream informa-
tion. On the other hand, if both u_ and vp are negative, then

p
Equation (A-11) becomes

LT (lugl vl #1) 1, = E (luy 7547+ 1Vp) Tya)

+ +T (A-13)

1
7 (T3 5#1T1 Tt

which may be shown to be computationally stable for all values of F
and is a preferred scheme. This equation is also physically correct

since upstream quantities are used for downstream computation.

Case 3. Backward difference scheme, 6x and 6y = 0.

Equation (A-8) reduces to
i = E N +y T
(& (”pr)H] A

:
# g (T3 T 31 * k1) (A-14)

If velocities up and vp are both positive we have a computationally
stable scheme which is posed physically correct. However if either
velocity component is negative, we have the same type of situation

discussed in Case 2 where the scheme may be unstable and is not posed
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correctly with regard to transport physics.

Clearly, it is necessary to have a computationally stable and ~
correctly posed difference scheme for all values of F. It is impos-
sible to meet this criterion in a general flow system without cogniz-
ance of velocity directional sense and magnitude at each and every
boundary and computation point in the difference network. A sound
scheme may be obtained by choosing 6x and 6y according to the sign of
the velocity components. We disregard 6x and 6y = 1/2 because of

instability at large F.

Up vp

Figure A-2 Values of 6x and ﬂy for a Preferred Difference Scheme

Figure A-2 summarizes the upstream difference method. Since the
velocity sign must be checked at each point in order to decide which
value of 6x and 6y is to be used, an alternate method is formed which
is well adapted to computer application. Consider Equation (A-6),
specifically the term

up [-4)(rpr5 1) = 6 (rpo1y )]

408



Let
u_ ,if u_ is positive
= p! Y
up(] 8x) = 7 ( Iupl Uy ) '{O,if up is negative °*

1 0,if u_ is positive
u g, =% ( Ju | -u)= P . ;
pix 2 p up,if u, is negative °*
hence,
L _1 - -
Up 3x| = EZ.x[( |up| u )(rp j- ] + ( |up| up)(rp rj+])]
p

which always gives the correct difference regardless of the sign of up.
The upstream difference technique applied to Equation (A-8) yields

4 .1
(ugl * Ivpl * ) Tp =7 (Ul * 4 Ty

1 1

1 ]
7 UVl = VIl * F DT 5ag ¥ The *Tends (A-18)

Solving for rp yields

B -E{(I upl + up)rj-] + (lupl - l"p)r‘j+'l * (|vp| + Vp)rk-'l
+ (v - vp)rk+]} (0 T3 T i) (A-16)

4+ F (Jupl + vl )
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Upstream Differencing for Conservative Forms

Previous discussion of upstream differencing has dealt entirely
with convective differences in the "advective" form, ujar/axj.
However, this form is a result of mathematical manipulation of
the correct "conservative" form, a(ujr)/axj. The conservative form
is a direct result of a T balance in terms of infinitesimal quantities
and is the correct method for proper conservation of a transported
quantity in numerical analysis.

Consider the convective balance of r in r,z coordinates

(Figure A-3).

‘1

Az

| T

->." p >
fr(v n)dA —f— .( | ———*f r(v-n)dA

A r,z
1 A2
z 1 Az
¥ zZ-7

Figure A-3 Convective T Flux for an Infinitesimal
Axisymmetric Volume Element
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The steady flow convective balance equation for volume element

p is given by

fr(V-ﬁ)dA=f r(v-n)dA + fr(?-ﬁ)dA
A

T A Ay

+f r(V-ﬁ)dA+f r(v-n)dA = 0.

A3 A4

(A-17)

In Equation (A-17) and Figure A-3, A], A2, etc., are element
areas corresponding to side 1, 2, etc., and 6 is a unit normal vector,
with outward, the positive sense and inward, negative. Like direc-
tional sense is used for the boundary velocity vector v.

Now refer to the grid system shown in Figure A-4. This grid has
constant Ar and Az, and velocities u and v are specified at the cell
face, whereas I is cell centered at point p (also see Figure A-2).

In setting up the difference scheme based on Equation (A-17) we want
to:

1) convect into the cell, p, the value of T at the upstream

neighbor, and

2) convect out of cell p, the value of T at p.

Hence, the value of T to be used in Equation (A-17) is given by

Io» for |Ven| = ven

value at upstream neighbor for |V-n| # V-n. (A-18)
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J-1 L j+1 T
Oj_x/zl B ﬂj+1,2. AZ
"j-1 e A1 —
®
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Figure A-4 Axisymmetric Finite-Difference Cell,
p, with the Four Immediate Neighbor
Cells
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Unlike typical difference schemes, Equation (A-17) provides
flexibility of convecting into or out of any cell face. For the ele-

ment, Equation (A-17) may be written as

2r(r- 2)azr (3.B)l v 2n(rsdlyazr (Vo)

-é% r+§%
> ~© 5>
+ r Ar F(v.n1 +Tr Ar r(v-n? =Q.
AZ AZ
== =y
Dividing by volume (2nraraz) yields
Ar +* Ar > 7
(r- ~§J r(ven) AP (r+ -§J r(ven Ap
r- — r+ S
Z ., 2
rATY rar
- ° 3>~
rven)| r(vem)t
Tz 2 (A-19)
' AZ * AZ =0

In accordance with Equation (A-18) and Figure A-4, Equation (A-19) may

be expressed as ‘

]
?‘rj-l/z{rp"uj-l/zi S R A L “1-1/2)}

r_Ar
P

]
, 2 rj+1/2{Pg(| Uiyl t Use1/0) - _‘fjﬂ““jﬂ/ﬂ - ”j+1/z)}
r_Ar
p

] |
?{rp Uveoryol = vieaya) = Ty HYgpgol * Vk-l/z)}
' &z
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)
7{% Viaiz2! = Vka1s2) = Tat Vigagal * Vk+1/2)}
v AZ -
= {]_ afrur) . ajvr)} ] (A-20)
r ar 8Z
p

The above form is used throughout in this thesis for convective dif-
ferences. Vorticity transport has a slightly different form in the

convective terms,

which amounts to deletion of ri-1/2° Ti+1/2 and "o in the first two

terms of Equation (A-20).
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APPENDIX B
FINITE-DIFFERENCES FOR IRREGULAR NODE SPACING

A.1 General

Consider the irregular grid shown in Figure B-1 below.

i i+

‘..__AXi_]_—-‘—— A, ot AX.H_] —_—e]

Figure B-1. Irregular Spaced Grid

The width of node i is designated AXi and the nodal points are all
cell centered. Finite-difference approximations for the first and
second derivatives at node i are developed as follows.

Let,

=
L]

]
7 (%54 * aky)

and

1
Bh = = (aX; + aXy44).

Then a Taylor series expansion of a function f about point i is

given by the equations:
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2,2 3,3 4 4
- v, BhS 8o M, ghT o IV i
frap= i+ Bhfy + S5 fy 4 S fy + S e (B-1)
and,
2 3 4
, , .- h " h e h IV -
fla=fi-My Y -gh fahe (8-2)

Now, divide Equation (B-1) by B and add the result to Equation (B-2)

to obtain the difference approximation for the second derivative of f:

2f 2f 2f,

=i i+1 i1 i 2 2
- + - + (8°-1) Oh + Oh% (B-3)
x| i nla(st1) hl(st1)  hls
For 8 = 1, Equation (B-3) reduces to the familiar central difference
form:
325 Fietfi-2fy 2
h—?- = 2 + oh . (B'4)
oX 3 h

A finite<difference approximation for the first derivative of f at

point 1 may be found by subtracting Equation (B-2) from (B-1), up to

and including terms involving f"'. Hence,
= f‘—',’,](s—%i - (g-1) Oh + On%, (B-5)
;
Again with 8 = 1 the familiar central difference form results:
al . fier-fian on? (8-6)
i
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Equation (B-5) is a first order approximation of %%-. A second order
method may be developed by reducing the coefficients of fi" to 1 in

Equations (B-1) and (B-2). Equation (B-2) is then subtracted from

(B-1) to obtain:
of | _

1 2 g-1 2
oX|4= TEryER Ly ® Fipd + DGR £y + 60h% (a7)
Equation (B-7) collapses to (B-6) for g8 = 1.
A.2 Computer Application

For computer application, irregular spaced first and second
derivatives difference forms are needed for both points (j,k) and (p,q)

in the vertical direction (Figure B-2).

t jnk'ﬂ

AZk‘H X — | P»g+]

T : : 3ok

AZ

k-1 X — P»q-]

Figure B-2. Grid Layout for Vertical Differences

417



The following forms are used for differencing a general quantity, F(the

subscripts p and j have been suppressed).

Point (j,k

First derivative of F:

fﬁi i} AZk Fk+] ) AZk+]Fkr] ) Azk'AZk+1)F
Y K AZk+-|(AZ.k+AZk+-|) AZk(AZk+AZk+]) AZk+-|AZk
(B-8)
Second derivative of F:
2%F| Fa1Fi _ Fe=Fi -1 . (8-9)
2 1 . 1
il R R AN M U RN WIRLEN
Point (p,q)
First derivative of F:
ol - z—F"T_z ‘—z—F'q;L-- S R B
3 A A + -
. ke 1 K A k-1 AZk AZk+AZk_] AZk+AZk+] q
(B-10)
Second derivative of F:
2 F .- -
% T 7 a1 7 - "q Fg-1 (B-11)
T -
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The required partial differential equations are given in

APPENDIX C

COORDINATE TRANSFORMATION

Chapter 5 by Equations (5.10) through (5.14) and are restated here

for reference.

Stream Function:

2

a Yy _ 1 3y L, a3y R
- —— — __7 1 - Q,
aRz R 3R 57
Vorticity:
3A
A a_ N I
1 ? 1 1 329
d 0 3R 9)
+ g I xR o,
REr aR2 R 3 R REz ol
Buoyancy Parameter:
13 3
R 3R (RUAl) + 3z (VAl)
2 2
] Al 3A1 ] 9 A'l
= ] + l— + PR . 5 N
RErPRz 3R2 R aR REZ z 31
along with
= .1y
U=-w37 °
and
=1 8y
V=R W
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These same expressions are given in transformed coordinates by
Equations (5.16) through (5.20), respectively. The transformation

to £ coordinates by setting
R = sinh ¢ (C-1)

has the desirable properties mentioned in Section 5.5. Details of
the transformation are given in the following discussion.

Consider a quantity F and first and second derivatives of this
quantity in R coordinates. The general transformation of these deriva-

tives to £ coordinates is derived as follows:

df _dF dg _ -
®R-F- @® -6 (C-2)
Then
¢°F . do_ d6 de _ d [ dF dey de
e @R dcdR T ENdE R R’
or
o7 (25)2 QE£.+ (9Fy ( 42y d_ (dg,
g2 R L7 N VR dE R
Now,
d_dey _di_dH dR
dg ‘dR/ “dge @R ° dz
- dR d%
de dR2
Hence,
2 2 2 2 ‘
d°F _ ,de d°F d7 g dF
—5 = (58) - + (%) - = (c-3)
g2 IR g7 Rt T d
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From Equation (C-1),

dg _ 1 -

dR = cosh ¢ (C-4)
and

d25 = (35 & (&%) - . tanh ¢ | (c-5)

EE? 5R7 8 "oR cosh“t
Then,

dF _ dF i

i sech ¢ r (C-6)
and

2 2
d°F 2 (d°F , oF
= seche ( -tanh & &) (C-7)
dr? de? B

Substitution of Equations (C-1),(C-6) and (C-7) into Equations (5.10)
through (5.14) yields the transformed set (5.16) through (5.20).

One discomforting feature of non-linear transformations
is that small errors are introduced in calculating areas and dis-
tances in the transformed coordinates. For instance the distance AR

in real coordinates is given by

ARy = sinh (¢ +Ag) - sinh (g) .
In the difference computation,

AR; = cosh (& +A2—€) AE

Taking the ratio of these two expression yields, after manipulation of

identities:
A _ Actual spacing
R

g (C-8)
C Computed spacing

=2 ¢ AT
oy Sinh ( 3= ).
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As Figure C-1 indicates, At should be kept as small as possible.

.05
‘ S S N A N B B
1.04 .
1.03 -
<] O
o |oz
<] I
1.02 - -
1.01 - —
0 N N I I N I |
0 .2 .4 .6 .8 1.0

AE

Figure C-1. Ratio of Actual to Computed
Node Spacing
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APPENDIX D
SOME RELATIONSHIPS BETWEEN TIME
DEPENDENT AND STEADY STATE NUMERICAL
METHODS IN HEAT TRANSFER AND FLUID FLOW
The general transport equation for a conservative quantity,

T, is written in tensor form as:

3U.T
oT , _J - 3 (a; 3T}y, (D-1)

where the summation convention does not extend over the underscored
indices and source and sink terms are negligible. The symbols in

the above equations are:

t = time

xj = jth spatial coordinate

Uj = jth velocity component

aj = diffusion coefficient along the jth coordinate

For simplicity in this discussion, we will ignore the convective

terms, consider a as a constant, and write Equation (D-1) as
aT _ _ [9°T
3t - 3| 3x. ax.) . (D-2)
J J

For steady flow,

5T .y (D-3)
aXy oX; .

The usual technique for solving the above equation is either by

Gauss-Seide] or Gauss iteration, where the former is much faster
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than the latter and,consequently, the most popular technique. In '
both cases successive over-relaxation (SOR, extrapolated Liebmann
method) is employed.

It is the task here to illustrate that certain methods for solving
Equations (D-2) and {D-3) above are identical up to the Liebmann
extrapolation factor, L[, in the steady state technique ard the time

scale factor, o, in certain time dependent methods.
D.1 Correspondence Between the Classical Explicit and Gauss Methods

The classical explicit and most common method for solving Equa-
tion (D-2) is given in difference form for an evenly spaced grid as
follows:

n+1

no_ n n n R _ 4.0
Tok Tk ™ @ Tk * Tyenk ¥ Tk ¥ Ty - 4 Ty (D-4)

ap

where o = — .
AX

The superscript n denotes the nth time step. One may rearrange

Equation (D-4) to give

n+1 _ n n n n n
Tik =@ Tk * Tienk * Tyear * Tk d +0-40) T5 0 (0-5)

Equation (D-5) may be further simplified by letting

TN _ N n n n
ok = Tkt Tienk * Tien * Tk
So that
n+l _ *n n
Tjk =4 q T&k + (1-4 o) Tjk . (D-6)
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An algorithm for Gauss iteration of Equation (D-3) may be written as

s+1 _
jk

*g

S
T LT + (-0 TS (0-7)

where s denotes the sth iteration and L is again the Liebmann
extrapolation (or SOR) factor. We note that Equations (D-6) and

(D-7) are identical insofar as

L=14aq. (D-8)
In Equation (D-7), L is greater than 1, but must be less than 2
to prevent solution divergence; that is, for over-relaxation

1 <tL=<2

Hence, as a maximum value

4 apt aat
— < 2, < 1/2.
xS T ;;3?

which is exactly the explicit method stability criterion.

D.2 Correspondence Between ADEP Transient Methods and the Gauss-
Seidel Technique

Alternating direction explicit procedures (ADEP) are relative
newcomers to the field of applied numerical analysis. The prototype
ADEP was conceived by the Russian mathematician, Saul 'ev, in 1957.
Since then other methods have been presented such as those proposed
by Larkin [53] and Barakat [9]. These methods, which have been
demonstrated to have good accuracy and incredible stability, have

basic algorithms identical to the Gauss-Seidel method with SOR.
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A. Saul ‘ev Method

The Saul ‘ev method consists of alternate directional sweep-

ing of the grid system. A forward sweep is written as

n+] n _ n+1 n+l n n PR LR UMY
T ~Tie o Thk *Ter P Ta e Tienn ~ 2 Toie w2 Ty
(D-9)

Note that there is equal weighting on the n and n+1 time levels.
Rearranging Equation (D-9) into the context of Gauss-Seidel iteration

with SOR yields
[}

n+1 *n+1
(1+2a) Tl =4aTy™ + (1-2a) Ty,

jk
2+ *n+l _ .n+l N+ n n
n+l _ (4 o *n+l (1-2 a| N
Hence, Tjk T \T+2a Tjk HT9 . Tjk' (D-10)

Comparing Equation (D-10) to the Gauss-Seidel algorithm,

s+l _ *s+] s
Tjk LTjk + (1-L1) Tjk, (D-11)

again shows equivalence insofar as

L= &2 (D-12)
or
L = _ET_.i 2.
Gy
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Now Lim "4T* 2:

2+—
o > o

hence, the upper 1imit of the Liebmann extrapolation constant is

satisfied from the standpoint of stability irregardless of the

size of the time step, at. Forga = .5,
ntl _ . *n+l

which is identical to the Gauss-Siedel method without SOR.
For the Saul 'ev method, the next time level coaputation involves a

similar backward sweep.
B. Larkin's ADEP

Larkin's ADEP is actually one of several methods discussed by
Larkin in the cited reference. The method here is very similar in
the mechanics to the prototype Saul 'ev ADEP, except that the for-
ward and backward sweeps are averaged to form a time level.
Larkin's methods yield the same relationship between L and o given

in Equation (D-12).

D.3 Further Comparisons Between Larkin's ADEP And The Gauss-Seidel
Iterative Technique

Consider the two-dimensional form of Equation (D-1),

2 2
aT . aUT VT _ 3°T + 3°T). (D-13)
T S R 22

Based on upstream differencing of the convective terms, the forward

sweep ADEP finite-difference equation would be,
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Tn+] T 1 1 +1
ik " ik L N
S *m{(l”jﬂ + Ujk) (IUJ PURELE 1k) 51k

n+1 n
(‘UJ ]kl J ]k) (IUJKI - UJ TJ+1k}
] | n+1
{(IV | +V3k) (|V3k1| * V1] Tik-1
n+'|
('VJK 1= Ve 1) (IVJkI " Vik] TJk+1}

n+1 n n+1 n+l n _ ontl
N AT Tk = T3k - Tik , k-1t Tt = Tik - Tik }
aX? aY?

(D-14)
Figure D-1 illustrates a finite-difference cell and the relative

Tocations of the quantities T, U, and V.

X ﬁ?Ujk

Tjk

Figure D-1. Finite-Difference Cell
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Note that in Equation (D-14) if velocity is negative T1.j is evalu-
uated at n, whereas for positive velocity Tij is evaluated at n+l.
The backward sweep would use the opposite sense. Also, this
convention is not a necessity and other time level evaluation schemes
may be used as long as they are computationally explicit.

Solving for Tg;] yields

st
1+ m(“’jk' g+ Uyl - Uj-]k)

aat |, aat Tn+1

At
*m( Wikl * Vi + Vil - ij-1) taxz T v ik
_Jat ant n+1
- m(luj-lkl + Uj-]k) + o7 0 Tislk
A N, | - v, |+ 28R

ZaX V7 ik jk a2 ( 3k

At aat | -n+l
*{m\l"jk-ﬂ * ij-]) * oz Tik-l

287 |' ik jk AYZ[ ik+1

1 1 |Ln
B} 1 . D-15

+{] a At [sz + A_Yf] TJk ( )
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For a short hand notation let:

o
Cik = zox 150l * Vg * 1yqd = U5

]
t 7y

- 1

Then,

{1 + (cjk + Djk) At}

X

n+]
Tjk

J
1

AY?

a ‘n+1
- {m “Uj-lk| U )t (A Tk

1 a n
zax [Vl = U] + 53zp 8t T

-+

a n
Zav ('ijl - ij) * 27 8t Tk

1 . a n+1
{m‘ [yl * Vi) + oot Ty

(D-16)
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The Gauss-Seidel scheme yields

*s+l _ 1

(cjk + 2D, k) T,

-+

28X ( JkI

-+

2aY (IVJkI

Substituting Equation (D-17) into (D-16) yields,

[1 + (Cjk ) At] "+] (CJk + ZD ) At T

or in terms of iterations s,

7% (Y50l *+ V5] +

ENe

s+l _ (Cjk + ZDjk)At T*S+] . (T’DjkAt)
-jk T+ (Cjk+Djk)At jk ]+(Cjk+Djk)At

Comparing to

s+1 *s+] S
TJk =L T, 5k + (1-L) Tjk

Yields
(Cjk + 2D, k)At

L= Titkﬂ)HAt
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* e Ti+ik

{

-
{A(Jk]l-ka]) 2 0T5e
{ , .

J

S

T -

(D-17)

+ 1 - DjkAt) Tgk

(D-18)

(D-19)

(D-20)



Thus ,

. C., + 2D. C,, + 2D, k
Lim k jk k ik (D-21)
P :

L * Dy

The condition

C.
]Jk k < §

Kf'+ Cjk + Djk

+ 2D,
J

leads to some restrictions on the over-relaxation factor L.
For the case where convection effects are very small, characteristic of

a creeping flow,
ZDjk

i LS (0-22)
7T+ Dk

The question is what values of & are possible in Equation (D-22).

For At +«, 6§ = 2 and for at + 0,6 = Q.

0<L<2,

For very high Reynolds number flow, viscous effects become relatively

small and
C.

for at »+=, 6§ -+ 1 and for

at = 0, § = 0; hence,
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This preceding analysis indicates that it is impossible to accelerate
the Gauss-Seidel technique for flows where viscous effects are
negligible. In the general case there will be regions in the flow
field where the local Reynolds number will be such that Djk v 0.

If the condition 0 < L < 1 is violated, then an instability will propa-

gate from this local point.
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DENSITY DIFFEKENCE BETWEFEN PLUME AT PORT AND REF<AMBIENT
CENTERLINE VALUE OF CELTA AT Z=£3
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OO OO o000 00 COOCONONOrRAONO ™

DSIGT VERTICAL DENSITY CHANGE OVFR DZ IF CONSTANT(SIGMA UNITS

DZ VERTICAL NODE THICKNESS IF CONSTANT!DELTAZ/DIA

X WIOTH OF NOUEe X=DIRFCTICN

pxe DX *DX

0z wIDIH OF NoLE» Z-DIRECTINN

DZ2 DZ*D2Z

DIAC DIAMETER OF OUTFALL PORT

£2 VERTICAL EDDY THANSPORT COEFFI IENT

FO DENSIMETRIC FROUNE NUMBER AT OUTFALL PORT

G LINEAR STRATIFICATION PARAMETEP+ SIMILARITY SOLUTION
GMB CEMTERLINE GAMMA (GAMM/GAMO) AT 7 = 2B

Re5 RADIAL DISTANCE TO HALF VELOCITY (MIXING LENGTH APPROX)
REK RADIAL REFERENCE TURRULEMT REYNOLLS NUMBER

REZ VERTICAL PEFERENCE TURBULEMT REYNOLDS MUMBER

RRP RADIAL REFERENCE PrAIDTL MUMREPR

RO RACIUS OF QUTFALL PORT

SALJ SALINITY oF PLUME AT OUTFALL PORT

SALR SALINITY OF ReFEREMCE AMPIENT (ASSUMED CONTSTANT WITH Z
DSALT SALR=SALJ

sIGTY DENSITY OF PLUME AT QUTFALL (SIGMA 1INITS)

SIGTR DENSITY OF REFEREMCE AMBIENT(SIGMA UNITS)

SIGTB DEiSe OF REFe AMRIENY AT 2 = ZR (SIGMA UNITS)

TLABEL (U)ALPHANUMERIC CASE HEADER ARRAY
TLIST(U) ALPHANUMERIC DATA INPUT FOP CERTAIN CONTROLS AS FOLLOWS:
TLIST = AOuUTs» SET UP ARRAY WRITER WITH OLIST(I)
OPTIONS.

TLIST = TEKP» INTERPOLATE ARRAYS GIVEN BY ELIST(I)
FINDS ISOLINES OF VALUE ISOLN(K!N) FOR
ARRAY MATCHING ELIST(I)r» BUT DOES NOT
ORDEs COMToUR POINT(MUST BE HAND PLOT)

TLIST = PLOTe WRITE TO LUN 8 (MAG TAPE) ARRAYS MATCH-

ING FLIST(TI), THIS DATA TO RE SAVED
FOR POSSIBLE FUTURE PLOTTING USING
SPECIAL CONTQUR ApnD 3=D PLOTTING ROUT=
INES.



8ey

OO OCOoO0C OO0 0ONO0CO00O00CO0O0

vo
VME
B
ZRP

IPMAX
INMODE

ITHMAX
ITARE

ITewmP

KASE
KT

nNEODY

NEU

NCR
NJ

TLIST = cONTe SET P PROGRAM LOGICAL CONTROL FROM
DIRECT(I) CATA.

CENTERLINE VELOCITY THERWAL pLUME AT SYSTEM IN=-BOUNDARY
CENTERLINE VELOCITY (VM/Vv0) AT Z=7R

ELEVATION TO GRID POTTOM PHYSICAL BOUNDARY¢Z/DIA
VERTICAL REFERENCE PrPANDTL NUMRER

MAXIMUM NUMBER OF TTFRATIONS FOR pSI ITERATION
INFLOW BOUNDARY INPUT DATA MnDE +
INMODE=0 +» INPUT FROM DATA

INMODE=1 ¢ GAUSSIAN=FLOW ESTARLISHMENT ZONE

INMODE=2 » GAUSSIAN=ESTABL ISHMENT

INMODE=3 » INPUT CALCULATED FrRoOM SIMILARITY SOLUTION
INMODE=4 ¢ INFLOW DATA AT PORT ORIFICF

TGTAL NUMBER OF ITERATIONS
SIGNAL FOR CONTINUED ITERATIAN OF oLD CASE+
ITAPES0 ¢ NEw CASFE
ITAPE=1 v CONTIMUE ITERATIONS QF OLD CASE
SIGHAL FOR DENSITY Or TEMPERATURE INPUT
ITEMP = Gr SIGMA=-T INPUT
ITEMP = 1+ TEMPERATURE INPUT
CASE NUMBER
SIGNAL FOR TRANSFORM OF LINEAR RADIAL COORDINATES+
KT = Ur LINEAR RADIAL COORDIMNATES
KT 1» TRANSFORMED ACCORDING TO R=SANH(X)
SIGIWAL FOR TYPE OF RADIAL EDDY TRAMSPORT COEFF CALCULAT
NEDDYZ(Q ¢ ER = CONSTANT
NMEDDYS1 ¢ ER = FO#R«5%xVMAX'PRICQR SPECIFICATION OF R.
NEDDY=2 » ER = FOxR.S5S*VMAX*RUMNING CALCULATION OF R.
NUNBER OF ITERATIOMS PERFORMED AT ERZEO0#%1.178 BEFORE
RUNNING MIXING LENGTH CALCULATIONS
USED WHEN NEDDY = 2
RALIAL CONVERGEN E RANGE
NURBER OF NODESe RADIAL DIRECTIONM

1"
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OO0 000000 NOCOCOO0COONO00

NJJ

NK
NKK
NL

NH

NOX (J)
NOUT
NMAD

NTTY

NPI
NRITE(Y)
NX
oLIsT (W)

DIRECT(I)

NJd=-1
NUMBER OF NODESe VERTICAL DIRPECTION
NK=1
NJU+1
NK+1
NUVBERING FOR QUTPUT HEARIMGy SET IN MAIN PROGRAM
NUMBER OF ITERATIONS FOR LINE PRINTER OUTPUT
SIGNAL TO CaALL RICHARDSON MODIFIER ROUTINE
NMAD = 0. DONOT CALL
NMAD = 1=-6 SEE SURROUTIME RCHMQOD
NUMBEP OF ITERATIONS FOR CALCULATINN MONITORING OUTPUT
NPT =1 » CALL PLARAK
MUMBER OF ITERATIONS ON STREAM FUNCTION IN MAIN COMP
SIGHNAL TO CALL OUTPU™ OF SPECIFIC DATA
MAXTIMUM VALUE OF INDEX J FOR PLOTTING
CHAKACTER DATA INPUT SIenNAL QUTPUT ARRAYS DESIRED
OPLIST(J) MATCHES IMREDDED DATA DLIST(JU)
TO SET VALUE OF NRITg(J)

OLIST(1) = PsSIPs» yRITE POTENTIAL FLOW STREAM FUNCT
OLIST(2) = PSIVe wRITF VISCOUS FLOW STREM FUNCT,
OLIST(3) = DELT,» “RITE DENSITY NISPARITY

oLIST(4) = OMEGe wRITE VORTICITY

oLIST(8) = VELVs wRITE VERTICAL VELOCITY

oLIST(6) = VELRs wRITE RADIAL yFLOCITY

OLIST(7) = GAMA» “RITE GAMMA COMSTITUENT

OLIST(R) = TEMP. wRITE TEMPERATURES

oLIST(9) = NDEL» WRITF NORMALIZED DENSe DISP.

OLIST(10)= NVELs WwRITF NORMALIZED VERT. VELOCITY
OLIST(11)= NTEMe» +RITF NORMALIZED TEMPERATURE
oLIsT(12)= RFAC» “RITE RADIAL EDDY FACTORS
oLIST(13)= VFAC» 4RITE VERTICAL EDDY FACTORS
oLIST(14)= RICH» WRITE RICHARDSNON NUMRERS
oLIST(15)= BLANK AT PRESENT

LAsICAL CHARACTER DATA FOR PROGRAM CONTROL

READ IN UNDER TLIST 2PTICN CONTe,
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sNalslelalaslololoRaloN ol aNaN oo o NaN el NeRsRalakeRaiaReRais s R Rl ek

DIRECT (1)

DIRECT (2)

LIPECT(3)

UIRECT (4)

DIPECT(5)

OIRECT(5)

DIRECT(7)

GRAD
Bl ANK

TRAN? :

BLANK

TEMPe:

BLANK

MONT :

BLANK

NPCHre

BLANK

BUOYAMCY COUPLED FLOW.
CONTRL(1) = .TRUE.

MOMENTUM £L OW ONLY? NO BUOYANCY
CONTRL (1) = FALSE.

NO BUQYANT INTERACTIOMs, BUT BOTH
TEMPERATURE AND SALINITY OR
CONCENTRATiON ARE COMPUTED.
CoONTRL(2) = TRUE,

AVBTENT STRATIFICATION
CONTRL(B) = +TRUE,.

IF HOMOGEMEOUS AMBIENT
CONTRL(3) = FALSE.

TRANSFORN RADIAL COORDINATE
ACCORDING TO R = SINH(XI)
CONTRL(4) = .TRUE.

FeR LINEAR RADIAL COORDINATES
CONTRL(4) = FALSE.

FLUTID STATE INPUT DATA TO BE
GIVEN IN TERMS OF TEMPERATURE
(CEG. C OR F) AMD SALINITY (PPT)
IF TEMP» OpPTION USED WITH INPUT
IN DEGRFES Cv¢ THEN CENI» OPTION
MUST ALSO BE USED.

CoONTRL(5) = .TRUE,

FLUID STATE GIVEN IN TERMS OF
SIGMA~T ANp SALINITY.

CONTRL(%) = .FALSFE.
MONITOR TKRFORMATION TO BE PRINTED
AT EACH ITERATION,

CONTRLL{&) = +TRUE,

D0 NOT MONITOR.

PUNCH RESTART DATA TO CARDS
CONTRL(7) = TRUE.,

D0 NOT PUMNCH



Lyt

DIRECT(8) = TAPEr: INITIALTZE ARRAYS FROM RESTART
DATA FILE oR TAPE. MUST EQUIP OR
ASSIGN LUM 7.
CONTRL(R) = TRUE.
BLAMK D0 NOT READ RESTART DATA FILE
DIRECT(9) = SAVFe: SAVE ARRAYS FOR RESTART FILEe OR
PLOT FILE. MUST EQUIP OR ASSIGN
CONTRL(9) = .TRUE.
BLANK DO NOT SAVE
GIRECT(10)= INVSe: PERFOPM INVISCID FLOW COMPUTATIO
FOR CASF InITIALIZATION
CONTRL(10)= «TRUE,
BLANK NO INVISCID COMPUTATION
DIRECT(11)= TURRe: COMPUTE AVMSIENT TURBULENCE AND/O
CONSIDER ngrRIVATIVES OF THE EDDY
TRANSPORT TERMS,
CANTRL(11)= .TRUE.
DIRECT(12)= CEMI*: TEMPERATURE INPUT DATA SPECIFIED
It! DEGRFES CENTIGRADE.
CONTRL(12)= «TRUE.
BLANK TEMPERATURE INPUT DATA SPECIFIED
IN PEGREES FAHRENHEIT.,
DIRECT(13)= CENOr: TFMPERATURE OUTPUT RESULTS
SPECIFIFD 1M DuiRéES CEMTIGRADE
CONTRL(13)= TRUE.
BLANK  TEMPERATURE OUTPUT RESULTS

SPECIFIED 1M DEGRFES FAHRENHEIT,

UNUSEC CONTRL OPTIONS ¢ CL14reCL1S?eCL162¢CL17

OO0 00O OO OO0 OC OO0 On

IN CaPL READER LOGICAL UNIT
ouT LINE PRINTER LOGICAL UNIT
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fo =

DIMENSIAN OLIST(15),DLIST(1S) vpLISTI(E) ,ELLIST(S) PRLISTI(S)

DIMENSINN OPTIONU4) ,DATA(LR) »CLIST(17),DTRECT(17)

INCLUDE COMLSTrLIST

DATA(DLIST(I) »i=1+¢15)/5HPSIPr» o StPSIVe s SHDEL T, » SHOMEG» # SHVELV ¢ 4

1 SHVELR » ¢ SHGAMA» ¢ SHTENMP 9 » SHNDEL s » SHMVEL 0 0

1 SHMTEM 2 » SHRFAC r r SHYF ACr o SHRICH? ¢ 514 /

UATACELIST(I) yI=1¢5) /SHPSIV e v SHOELT » » SHGAMA » s SHTEMP » # SHOMEG » /

DATACOPTION(I) »I=1v4) /SHAOUT » # SHPLOT» t SHTERP »  SHCONT ¢ /

DATA(DIRECT(I)»I=1917)/SHBUQY ¢ SHUNCP » » SHGRAL ¢ ¢ SHTRAN» ¢ SHTEMP o ¢
SHMONT ¢ ¢ EHNPC i » SHTAPE » ¢ SHSAYVE ¢ » SHINVS» » SHTURB# »
SHCENI » t SHCENC » ¢ SHCL 149 ¢+ SHCL 1S9 1 SHCL16 e ¢ SHCL 170/

CALL ETIME

CALL TOD(TIM)

CALL DOY(DATE)

ouT -6

IN =5
GAMEND = .9

EXT = 1.6
KPLOT =0

Do 4 1 = 1011
CONTRL(1)= +FALSE.

" READ(INS,100U2) TLABEL

READCINS,LOCGN) KASEsNJsiNK e INMODE ¢ NPT » IPMAX e NCR o NX
IF(NPIOEQ.U) tPl = 1

IF(IPMAXeEwsC) IPMAX = 100

IF{NCR.FQ.U) MNCR = NyY=1

IF(NXeEGe0) NX = NJ=1

IF(KASE.EG.0) STOP

WRITE(QUT»1004) TLABEL'DATETIM
REAN(TiN»1000) NOUT NTTYr ITMAX»NFDDY »NED
READ(IN,1001) TLIST'DATA
JF(TLIST«EG.OPTIGN(L)) GU TO 7
IF(TLIST«FuL.OPTION(2)) GU TO 9
IF(TLIST«EW.OPTION(3)) GU Tn 11
IF(TLIST«FG.OPTION(4)) GO TO 13



472

GO 70 1%
po 81 =
oLIsT(IY =
G0 T0 b
DO 10 1
RLIST(I)
KPLOT

60 70 6
pe 12 1
PLIST(L)
GO 70 6
DO 14 1
CLIST(1)
GO 70 ©
NJJ

NKK

NH

NL

JPORT
KPORT

NB

ITERS
ITNOQO
ITNO

Do 18
NOX (M)
0o 20 U
0o 20 ¥
PSI(JrK)
DELT(JrK)=
OMEG(Jrp )=
FZ{JrK)
FR(J?*K) =
ux(urkK) =
uztlurk) =

N

1elb

DATAC(I)

1v8
CATA(I)
1

1.5

DATA(TI)

1017
DATAC(T)

ted=1
NK=1
MK+1
NJ+1
1
1
1
IPMAX
0
(¢
1oHL
M
1eNJ
11K
1.
O
Ce
1.
1.178
Oe
O
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20

30

100

105

107

UGRAD (J,K)= 0,
LERAD(UPK)= 0,

CONTINUFT

DO 30 ;1 = 1,3

K = (N-1)x*1Q
MON(K+1) = 2
MOIN(K+2) = NK/3
MON(Kt3) = 2
MOW(KHL)Y = 2RMON(K+2)
MGN(K+5) = 2
MON(K+6) = hK
MON(K+7) = nJd/s2
MON(K+8) = 1iK
MON(K+9) = t;Jd=-1
MON(K+10)= 1K
CONTINUL

00 100 T = 1415

DO 100 4 = 1¢15
IFOLIST(TI) dEQ.GLIST(J)) NRITE(Y)
CONTINUE

DG 105 1 = 1»5

DO 105 U = 1+%

IF(ELIST(T) EQ.RLIST(J)) N3DPT(.)
IF(ELIST(I) JEQ.PLIST(J)) ISOPT(W)
CONTINUE

Lo 107 1 1017

po 107 U 1017

IF(DIRECT(L) «EQeCLIST(J)) CONTRL(T)
CONTINUE

g Pt

[ 4 TRUE .

IF(KPLOTeFGe1aAND s e NCTCUNTRL(9)) G0 TO 160

KT =0

ITENP -0
IF(CONTRL(4)) KT = 1
IF(CONTRL(5)) ITEMP = 1
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110

120
150
160
1000
1001

1002
1003

1004

1005 FORMAT(//@
+VE FILE TO LUN 8R/®

1 35H %35 %% %35 % % %
2/26H PROGRAM SET=UP TIME = FS5e2»
3/35H $$¢%3%%5%%9% 9

* B8R/

CALL INPUT

CALL READY

CALL PLABAK

CALL ETIMEF (START)
WRITE(QUT»1002) START
IF(CONTRL(10)) CALL STREAM(ITFRS¢0)
EXT = EXS

CALL SScomp

DO 110 1 = 1,5
IF(ISOPT(T)«NE.0) GO TO 120
CONTINUFE

G0 71O 150

CALL INTERP

CONTINUE

GO0 70 5
wRITE(OUT,1005)

STOF

FORMAT(1415)
FORMAT{16A5)

FORMAT (12A6)
FORMAT(// /7

<,

FORMAT(///12A695X4A6)

ENU

SUBROUT INE INPUT
DIMENSION DATA(10)
INCLUDE COMLSTLIST

T A /

5H SFC /

S % ¢ % /777)

YOU CAN NOT SAVE A PLOT FILE wITHOUT ASSIGNING A SA
EITHER PELETE PLOT FILE CALLL OR EQUIP LUN
RuUt! ABORTED = = TRY AGAINR)



9

10

20

25

30

IF(.NOT.CCWTRL(8)) GO TO 10
REAG(7) ITNOYOMEGDELTIUXrUZePST»GAN

GO TO (100020+30040°60060¢60+60,70070¢702R0),MI1

ITiNQO = ITMO

REWIND 7

B =0
READ(INSL1000) DATAPJIPKIWNI
NI =M + 1

DIA = PATALL)

DX = DATA(2)

DZC = OATA(3)

ZB = DATA{H)

vQ = GATA(S)
JPORT = DATA(HI+.0]
KPORT = DATA(7)+.01

IF(DATA(B)«E£Q.0«) VMR =
IF(DATA(9) .FQR.0.) DMB =

1
i

IF(DATA(lO)QEQ'OO) GNB =

1.

SIGMAT(DATA(6) vDATAL1) ¢ ITEMP)

'DATA(2) o YTEMP)
'DATA(3) ¢ ITEMP)

RO = «S4DIA

IF(DZCOEQOO) GO T0 10

DO 25 ¥ = 1eMH

p2 (k) = DZC*2.

60 10 1n

180T = DATA(3)

T0 = DATA(1)

TR = DATA(3)

IF (CONTRL(12)) GO TO 32

IF(ITEMP.EQ.0) GO TO 32

DATA(1) = S,/9.%(DATA(1)=32,)

DATA(2) = Se/9.%(DATA(2)=32.)

DATA(3) = 5./9.¥(DATA(3)=32,.)
¢ CONTINUE

UDATA(L) =

DATA(2) = SIGMAT(DATALS)

DATA(3) = SIGMAT(DATA(S)
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Ly

45

60

SIGeTd
S5IGTR
sIeTB
OSIGT
SALP

SALY

£XS

EXR
IF(EXS.‘:Q

0

DATA(L)
CATA(2)
NPATA(Z)
DATA (W)
DATA(S)
NATA(6)
NATA(T)
DATAI®)
o} EXS

—

IF(EXROEQ.OQ)‘ﬂXR -
SALK=SALJ
SIGIR=SICTY

USALT
GELTY
KSEa(l)

W H

TBNT

. 999
«999

IF(CONTRL(S)) GO TU 10

TC
TR
T0
TR
60 TO 10
NMAD
BETA

FLX

RRP

ZRP

gZ
ERATIO

DATA(T)
DATA(2)

DATALS)

DATA(Y)
NATA(S)
DATA(E)
DATA(T)

IF(PLX.CQe0.) PLX =

IF(ERATIOEQ.C.) ERATIO = .01

IF(EZeECeDs) EZ =
IF{RRP.FQ.U.) RRP
IF(ZRP.CQ.U«) ZRP

CONT INuUg
60 7O 1n
po 65 -«
KAT

JIyKI
N=Jl+1

TEYP(SALJrSIGTY)
TEMP(SALRYSIGTR)
1.2%70+32,
1e4xTR+32,

t.01

10.

1.7.714
l./'?l“
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IF(NTIEneS) UZ (Nel ) = DATA(KAT)
IF(RnIeEYe6) DELTINGL ) = DATA(KAT)
IF(MTeEne7) RSEA(N) = DATA(KAT)
IF(NIEe8) DZ(N) = DATA(KAT)*2.
65 CONTINUE
IF(:1eEQeS) ik = KI
GG 10 10
70 JI = (N1=-9)%104)
KI = JI+9
DO 75 1 = JI.KI
KAT = N=JlI+1
MON (N) = DATA(KAT)+.,0001
75 CONTINUE
6C TO 10
60 NN = JI=-1
00 85 1 = 1,10
NA = NN+N

ISOLN(KIeMA)= DATA(N)
85 CONTINUE
60 10 11
1000 FORMAT(10F5.0,315)
100 RETURN
ENU

SUBROUTINE RFADY
INCLUDE COMLST,LIST

MNOTEMP = |

IF(KPORT+Ew.0) KPORT= 1

IF (INMONE EGel4+s AND.CONTRL(4)) DOy = ,8R137359/(JPORT~))

RER = 39,
REZ = ROxv0/EZ
2(1) = 7B

2¢c(1) 2(1)=.25*%p2(1)
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10
15

20

ZPORT = 0.
po S K = 2eNH
IF(KeLE+KPORT) ZPORT = ZPORT+.5+«DZ(¥)

Z2{K) = Z(K=1)4DZ(K)*.5

Z2C(K) = Z(k)=.25*¥DZ2 (K)

R3(K) S 1e5+2C{K)=ZPOKT

CONTINuUE

DZToT = Z(NK)=2ZB

IFCINMODE +£Qe4) DZTOT = Z(NK)=ZPORT
CZT5 = DRZTOT*e5

IF(DSIGT.EQ.0) GO TO 15

RSEA(1) = SIGTR

DO 10 « = 2eNH

RSEA(K) = RSEA(K=1)+DSIGT*5Z(KV/(Z(NK)=ZR)*,5
CONTINUE

LO 20 K = 1sNH

IFC.NOT.CONTRL(3)) RSEA(K) = SInTR
IF(CONTRL(3)) RSEA(K) = STIGMAT(GALR,RSEA(K), ITEMP)
RSEA(K) = RSEA(K)+1000.

CONTINUE
DXe = DXxDX
FO = VO*VO/ (DELTU/Z(SIGTUH1000G,)%2,%P0%32,2)

IF(PELTJ.EQeD.) FO =0,

DO 50 ¥ = 2,NH

DELTINL K)= (SIGTR+1000+~(RSEA(F)I+RSEA(K=1))%.5)/DELTY
GAM(NLK)= Q.

IF(.NOT.CONTRL(11)) 6O TO S0

Z1 = (ZINK)=2{K)+e25%DZ (K ) *2,

EDL = (RSEA(K)=RSEA(K=1))/ !RSEA(1)xROXDZ(K)*.3048)
IF(ED1.EG.0.) ED1=-1,E~4

IF(.NOT.COILTRL(3)) ED1 = =1,.E=-4

ED = =1,E=7/D1

FZ(1*K) = FO/EZ
FZNLeK) = FZ(10K)
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OO0

AK1 = W5*PZTOT*GAKT («689) / (Z(NK ) =2R)
CC 40 U = 2eMNJ
FZLUrK) = EXP(=(AK1%xZ1)%x*2)+F2 (1K)
40 CONTINUE
50 CONTINUE
IF(KPORT.LE.1.0R.CONTRL(11)) GO TO 60
DO 55 J = 1r0L
00 55 K = 1eNH
FZ{J*K) = ,0001
55 CONTINUF
60 CONTINUE

G = ARS((SIGTR=SIGTR)/7B)/DELTY
IF(7B«EneN) G = Do
GZ (nH) = Z (NK)

SET-UP FOR Z=DIRECTION CONSTANTS

DO 70 ¢ = 21K

SZ(Kel) = 2./REZ* (1, /7(DZ(K+1)4DZ(K))+1e/(DZ(K=1)4nZ(K))/DZ(K)
SZ(Kt2) = 2./REZ*(l./(DZ(K)+D2(K=1))/DZ(K))

SZIK?3) = 2./kEZ*(1./(DL(K+1)+1Z(K))/DzZ(K))

SZ(Kel) = 1./(2.%p2(K))

SZ{K?*S) = SZ(Kel)*ZRP

SZ(Kr6) = SZ(Kr2)*ZRP

SZIK*T7) = SZ(ne3)*ZRP

52 (K*8) 2/ (DZ(K)*DZ(K+1))

SZEK?9) = 2./ (DZ2K)*¥(DLIK)I+DZ(K+1)))

SZ(K?10) = 2./7(D2(K¥ 1) *(PZ2(K)+DZ (K+1)))
SZ({kell) = SZ(Ke8)/H,

$Z{Kk?12) = DZ(KI/(DZ(K)I+DZ(K+1))

6Z(Kr13) = SZ(Kel4)/FO

gZ(Krld) = 1./(DZ(K)+DZ2(K=1))

SZIK?15) = 1./(DZ(K)I+DL(K+1))

SZ(K?16) = DZ(K=1)%SZ(Kelt)=DZ(p+1)%S2(Kr15)

70 CONTINUF
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SET=UP FOR R=DIRECTION CUNSTAMTS

R(1) = Qo

XX = 0.

x(1) T —.nxDX

XR(1) = D.

O 80 4 = 2.nL

xX(J) = X(JU=1)+DX

IFCUEG.2) X(1) = Qe

XX = XX+pX

XR{W) = XX

RC(y) = SAHHIX(Y) oKT)

K (J) T SAMHIXXKT)

CCiNC = W5*DXHF(ROY)*KT/CASH XX o KTI+CASH (XX o KT) /i1 4))
sCl S 1./ ((CASHIX(J) 1KT)*DY)%%x2) /RER
sce = «S5*DX/ICASHIX(J) yKT) «RC(J))
SClUrl) = SCI¥(2.+4DX2%(CASHIX( ) 1KT)/RC(J) ) %%2)
SC(Ur2) = sCcI*(1.=-SC2)

SC(Ur3) = sSC1*(1.+SC2)

SC(Url) = 14/7(CASHIX(UYsKT) *24.%0X)
SC(UrH) = 2, 4RRP*5CT

SCJrS) = sC(Jrl)/(2,%F()

SC(Jr7) = SC(Jrlt) *R(J=1)/RC(J)

SC(JUr8) = SC(url) *R(JU ) /RC(U)

SC(JUr9) = RRPxSC(Ur2)

SC(Jrl0) = RRP*SC(Jr3)

SC(Urll) = 24/({CASH(XX?KT)*DX)2%2)
SC(Ur12) = SC(UPL1)*(1e+CONC)*o5

SC(Url3) = SC(J211)*(1e=CONC) %ot

SCUUrIL) = 1¢/(RCULIYRCASHIX(J) rx TY%NX)

IF(CONTPL(2)) sC(JeD) = p.
IFC.NOT.CONTRL (1)) SC(urS)= 0,
CONTINUE

RC(1) = =RC(2)
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100
150

le0

170

180

200

Do 90 U 19000

DO 90 ¥ = 1eMH
IF(EBIKY eLToRC(J) eOReKeLTKPORT) FR{JIK) = EKATIO
CONTINUE

IF(INMOrE.NELD) GO TO 15U

DO 100 U = 2¢NJ

PSL(Jrl) = PSI(J=1,1) + UZ(Jr1)*xRCEJI*CASHIX (J) PKT) «DX
CONTINUE

IF CINMOBE W20+ 3) CALL SIMUET (1'CeZBeDZ(1) »GorFO0¢ VMR VMRL e MBrDMB)
IFCINMODE.LO.1) CALL GAUSS(1)
IFCINMOPE eEQe2 e ORINIIODEEQ.3) CALL GAUSS(2)

uziir1) = uZ2,1)

DO 160 U = 1eJFOPT '

DELT(JrKPCRT)= 1.0

GAM(JPKPORT) = 1.0

IF(JeEQ.L) GO TO 160

UZ (JrKPNRT) = (PLX41)%(2xpLY+1) /7 (2%PLX*PLX) ¥ (1e=RC(J)) % (1./PLX)
PSI(JeKPORT) = PSI(JU-L e KPORT)I+RC(J)*CASHIX (J) +KT) *NX*UZ (JoKPORT)
CONTINUE

PSIAi = PSI{JPORTIKPORT)

UZ(1'KPORT) = UZ(2/)KPOKT)

LO 170 K = 1+kKPORT
PSI(JPORTIK)= PSIB
00 180 | = JPARTINJ
PSI(Jr1) PSIB
CONTINUE
NB
CONTINUF
RETURN
END

JPORT

SUBROUTINF  PLABAK



esb

INCILUDE COMLSToLIST

DATA/DF/1HF /CF/1
TU = 0F

HC/

IF(CONTPL(12)) TU = CF
EFR = l«/KRFP
EPZ = 1./Z2RP

WRITE(QUT»1001)
ARITE(ONT»1002)
1
wRITE(OLT»1:07)
5 wRITE(OUT1010)
DO 180 J = 11y
WRITE(QUT»1012)
140 CONTINUE
WRITE(OUT»1010)
0O 145 J = 1eMmJ
WRITE(QOUT»1012)
145 CONTINUE
WJRITE(QUT,»1013)
WwRITE(OUT»1014)
- DO 150 v = 1lergi
150 wRITE(QOUT,»1012)
WRITE(OUT P 101y)
DO 155 v = 1,NH
WRITE(OUT1012)
155 CONTINUFE
WRITE(OUT,1016)
DO 165 K = 1snNH
WRITE(QIT,»10086)
1 RSEAL
165 CONTINUE
WRITE(OUT»31003)
WRITE(QULT»1004)
190 DO 200 U = 1epnd
L = KPORT

KASE
NJDNKvDX!RUoVﬂ'FODTU'TU'TU'TROSALJ'SALR'SIGTJ'

SIGTRIRERYREZyPLXrUZ{2¢/KPORT)

NMAD » KPORT ¢ JPORT Y NEDDY rEXSeRETAPAKL
DATE s T1IMy (NOX(K)rK=1,8)

Jrx () rRCLI) REY) 0 (SC(UyL) 1L=1+8)
CATE » TIMy (NOX(K)1K=99195)

JeX (D) PRCOD) 2RI e (SC(JPL) 1 L=9015)

DATE e TIMy INOX(K) s K=108)

KoDZ(K) #Z2C(K) v Z(K) 9 (SZ (KoL) ,»1L=118)
DATE»TIMy (NOX(K)/K=9r16)

KeDZ(K) P ZCIK) »Z(K) s (SZ (KoL) +LL=9¢16)
CATE ¢+ TIMy (INOX(K)»K= 17¢20)

KeUZ(K) P ZCUK) 9 Z(K) v (SZ(KeL) o L=17920) v DELT(NL¢K) »
K)

ZBrFOeGr VMB, GMB,»DMB
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1

WRITE(ONT1005) PSI(JeL) s UL(JeL) rUX(JeL) P DELT(JL) vAMIJ,L)

200 CONTINUF

1001 FORMAT(/// LOH FARAMETERS FOR THERMAL PLUME CASE 13)

1002 FORMAT(///
1/55H NUMBER OF RADIAL NODFS (X=DIRECTION) = = = = = = 17
3/ 55H NUMEBER OF VERTICAL NODES (Z=DIRECTIOM) = = = = = = 17
4/55H RADIAL NODE THICKNESS (X=DIRECTION), DX= = = = = = F13.5
6/ 551 PLUME OUTFALL PORT RADTUS (X=COORD)y RO= = = = = = F13.5
7/55H4 PLUME CUTFALL PORT VELACITY!FT/SEC)y = = = = = = F13.5
£/554 DENSIMETRIC FROUDE MOe AT OQUTFALL PORT(VN%x2) = = F13.5
A/SXRTEMPERATURE OF REFERENCE AMRIENT(DEGe fAly R) = = = = = RF13.5
9/SXeTEMPERATURE OF EFFLUENT (DEGe RAlr Q) = = = = = = = =« =RF13.5
B/55H SALINITY OF EFFLUENTs PARTS/THOUSAND = = = = = = = F13.5
C/5bH SALINITY OF REFERENCF AMBIENT» PARTS/THOUSAND = = F13.5
U/ 55t S1GMA=T OF EFFLUENT = = = = = = = 0 = = = = = = - F13.5
£ /55H SIGMA=T OF REFERENCF AMBIFNT = = @ = = = = = = = F13.5
F/55H RADIAL PEFERENCE REYNOLDS NUMBFR = = = = = - = = = F13.5
G/ 55H VERTICAL REFERENCE REY*OLDS MUMBFR = = = = = = = = F13.5
H/55H INFLOW POWER=-LAW VELOCITY PROFILE EXPONENT = = = = F13.5
1/55H CENTERLINE VELOCITY AT OUTFALL PORT, V/V0 = = = = F13.5)

1007 FORMAT(
1 55H TYPE OF RICHARDSON NUMyER MODIFICATIONC(O = NONE) = I7
&/ 55H GRID POINT AT INFLOW BOUNDARY? KPORT = = = = = = = 17
3/554H GRID POIMT AT INFLOW BOUNDARYe JPORT = = = = = = = 17
4/55H TYPE OF EDDY DIFFUSIVITY COMPUTATION = = = = =~ = - 17
5/55H OUTER LOOP ACCELERATIO! FACTOR = = = = = = = = = = F13.5
o/ 55H VALUE OF CONSTANT?» BETA = = = = = oo = = = = = « = F13e5
7755k VALUE OF CONSTANT? AKl = = o = = 0 = = = = = = = F13.5
8//7)

1003 FORMAT(1H1 7/ INFLOW BOUNDARY CENTERLINE VALUES B/
*/53H FLEVATION OF GRID ROUNCARY(PORT NIARS) ¢7B = F9.3
1/53H DENSIMETRIC FROUDE NUMBER AT OUTFALL PORT!FO = F9.3
2/53H STRATIFICATION PARAMETER 'G = Fll.5
3/53H CEMTERLINE VELOCITY fUMB = F9.3
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4/ 53H CENTERLINE VALUL OF GAVMA=CONSTIULNT 'GMB = F9e3
5/93H CeTERLINE VALUE OF BU~2YANCY PARAMETER 'NMB = F9.3)
1004 FORMAT (/R RADIAL DISTRIBUTIONS R/
1/78X6SHPSI VERT vELO RAr VELLO NELT GAMMA
2 /7)
10095 FORVAT(IPA(F13.,301X))
1006 FORMAT(13¢F7.2¢2F10e391PSF11.%rC13,5)
1010 FOKMAT(1H1ef CATE QR2A6ris TIMC Q2767
1 6UH COMPUTED CONSTARNTS FOR RADTAL DIFFERENCES = =SC(Jrl) //
s 30 J X{J) R/RO R(J) ' 8(1645X)/)
1012 FORMAT(T39)F742¢2F10v201PoFl1.3) .
1013 FORMAT(/)
1014 FORMAT(IH1»0Q DATE R2Abrls TIME R2A6/
1 60H COMPUTED COMSTANTS FOR VERTICAL NIFFERENCES = =SZ(KeL) /s
c JUH K L2 (K) Z/00 2 () ra3(16,9%)7)
1016 FORZAT(1HL1 0 SATE W2A6¢R TIVE R2A6/
1 60H COUMPUTED CONSTANTS FOR VERTICAIL DIFFERENCES = =SZ(KeL)//
2 30H K DZ(K) 2/D0 20) r4(THr5Y)
3 3UF DELT(L k) KseEA(K) }
RETURN
ENU

SUBROUTINE STREAM (ITeNSKIP)
SUBROUT INE CALCULATES THE TwO nIMENSIONAL STREAM FUNCTIONe PSI(y
INCLUDE COMLSTeLIST

OMEGA3= 0,
10 DO 120 1 = 1.1
DPMAX = 0.

SET OUT=-BOUMDARY STREAM FUNCTIOr FOR MNEXT ITERATION CYCLE
DO 20 K = 2,NKK
PSI(NJI¥)= 2. %PST(yJ=1+K)=PSI(NJ=2¢K)
20 CONTINUF
DO 100 U = 2» iNUJ

— AL



96t

45

50 PSI(JrK)

95
100

120
130

150

1
2

Al = SC(urll)

A2 = SC(Je12)

A3 = sCls,13)

LUC 100 K = 2eiiKe

IF(JeLE ,JUPGRT AN o KeLE«KPORT) Gn TO 10U
CON = A1+52(K.8)

PSiICG = PSI(JeK)

IF(NSKIreFwe0) GO TO 50

OMEGAL = JS*(OMEG(U+1eK)+OMEG(JrK) )
OMEGA2 = S5k (OMEG(JU+1rK+1)+0OMEG(JrK+1))
CONTINUE

CMEGAS OMEGALI+SZ(Ke12) * (OMEGA2=0MEGAL)

(A2%PSI{(J=1'K)+AZXPST(J+]1rK) +
SZ(K19)*xPSTI(JrK=1)4S7(K+10)%*PST(JyK+1)+OMEGA3
*R(J))/7CON

DEL = ABS((PSIC=-pP3I(JrK)I/FSI(UeK))

IF(UeGT.NCK) 6O TO 95

ODPMAX = AMAX1 (DPMAX'DEL)

IF{LPMAYG1.DEL) GO TO 95

NODE(S) = U
NODE(6) = K

PS1(JrK) = PSIQ+EXT *(PSI(JeyK)=PSIO)
CONTINUE

IF(GPMAY.LE..0005) GO TO 130
CONTINUF

IF(SKIPeFEG.1) GC TO 150

ITNG =1

CALCULATE VELGCITY FIELD

DO 250 U = 2eNU

Al = SC(Jrll)

0O 250 ¥= 2¢NK

IF(JeLT JPORT.AME +KeLT«KPORT) GG TO 250
UX(JrK) = =(pSI(JrK)=PSI(JsK=1))/(R(JI*DZ(K))
UZ{JrK) = (PSI(JrK)=pPSI(JU=10K))*AY

IF(JeE@.2) UZ(1eKT = p2(2¢K)
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250

270

1000

IF(KeEQeNK) UX(JeNH) = UX(JsNK)
IF(KeEQe2.AMND INMOUE cEQe %) UX(Jr1l) = =Ux{de2)
IF(K.EQOZOAND.IP'IMODEONE""’.AND.J.GT.'\!R) UX(\J'I) = UX(J'Z)
CONTINUE

CALL ETIMEF(TIME)

IF(MSKIPeti£.0) RETURM

TINT = TIME-START

IFUSKIPeEU.N) CALL QUTPUT(D)

RETURN

FORMAT(1S»£12,.3)

END

SUBROUTINE SSCOMP
INCLUDE COMLSTeLIST
DIMENSION TRELT(LJ) v AMON(1S)

DATA/DF/71uF/Dc/71HC/

GZCON = ZRP/REZ

DOMEG = 0.

DOELT = 0.

DGAM = Q.

NV =2

DELT (UPORTIKPORT) DELT(JUPORT+1 +KPORT)

GAM (JUPORTeKPGRT) GAM (JPORT+1KPORT)
IFCINMODE.EQ.4) NV = 3

MASK =0
NSTART = JPORT+1
N2 = ITiAX
ITNO = ITNQO
ITERS = NPT

N1 -1

IF(.NOT.CONTRL (8)) GO TO 15
N1 = ITNO*1
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15

20

30

ITMAX = ITNO+ITMAX
Ne = IT™AX
NEU = NEH + ITNO

IF(NED«GTITHO«ORWNEDDYeEQ.Q) GO TO 15
CALL EDRY(HEDDY)
CALL ETIMEF (START)

LC 800 L. = N1sN2

I1ThNO - L

DDMAX = Qo
IFCNOTLCONTRL(1) e AlD, e NOT«CONTRL(2)) GO TO 290
0O 200 J = 2,NJ

DO 200 K = 2¢jlK

IF CINMONEJNEWst4) GO To 20

IF(JeLE+JPORT ,ANGeKsLEKPORT) Gn TO 200
MASK =0

IF(UEG. JPURT AND oK sEQeKPORT+1) MASK = 1
Al = SC(Jr7)

A2 = SC(Je8)

A3 = SC(JUr9)*FR(JPK=1)

A4 = GC(JUr10)*FR(JrK=1)

AS = SC(JUre)*FR(UrK-1)

uPGsl = ARS(UX(U™1eK)) + UY()=19K)
uP0s2 = ABS(UX(JrK)) + UX(JrK)
UNEGL = ABS(UX(JU=1¢K)) = UX(J=1rK)
UNEG2 = ABS(UX(J?2K)) - Ux(JrK)
VPOS1 = ABS(UZ(JrK=1)) + UZ{(jrK=1)
VPOSs2 = ARS(UZ(JrK)) + Uz (JeK)
VNEG1 = AQG(UZ(Jrk=1)) = UZ(JrK=1)
VNEG2 = ABS(UZ(JrK)) =1)2(JsK)

IF(CONTRL(11) OR.NECDYEQ.4) GO TO 30
GO TO 5n

pMl = SZ(Krell)
OR1 = SZ2(Krl5)
DCO = GZ(Krl6)

UFZ

DPI*FZ(JrK+1)=DMLI*¥FZ2(JrK=1)=nCOXF2 (JrK)



(317

50

195

200

LCAR

OGRAD(UyK)

COELT
CONT INUT
B0

Gl
AJ1
AJ2
AK1
AK2
DJ1
DJ2
OJ3
DJ4
GJ1
GJ2
6J3
GJ4
GAMO
CELTO

DELT (UK )=

GAM (Jek)=
DEL

(R R I I A O A T IO I A A I AT

GZCOMXDFZ* (DPL*¥GAM(JyK+1)=NMI*GAM (JrK=1) =NCO*x . AM(JsK))
= DPI*DELT(UrK+1)=DM1IADELT(UrKk~1)=DCO*DELT(JrK)
GZCON*DFZ*DGRAD(JrK)

F2(JrK)*SZ(K»S)
1./(BO+ALXUNEGL1+A2+UP0S2+SZ (K et ) % (YPOS2+YNEG] ) +AS)
(A1 *UP0OS1+A3)

(A2XUNEG2+A4)
(SZ(Krl)*VPOS1+S2(Kea)%F2(Jrk))
(SZ(Ke ) *WNEG2+SZ(Ke7)xF2(Jrk))
AJI*DELT (U=1+K)

AJ2*DELT (U+LeK)

AK1* (CELT(JrK=1) % (1=*ASK)+MASK)
AK2*DELT(Urk+1)

AJ1*GAM (J=1rK)

AJ2*GAM(J+1 1K)

AK1* (GAMUJrK=1) % (1-MASK ) +MASK)
AK2*GANM(J,K+1)

CA(JrK)

DELT(JeK)
(DUL+DJ2+DU3+LJY+DNELT) *R1
(GJL1+GJU2+GUI+GJ4+NGAM) *xB1
ABSU(DELT (UrK)=DELTO)/DELT(JsK))

IF(J«GT, NCR) G0 T0 195

ODmMAX

AMAX1 (DDMAX#DEL)

IF(DDMAY-GT.DEL) G0 TO 195

NODE (1)
1OLE (2)
CELT(Jri)
GAM (JrK)
CONTINUE

-—
-
-
-—

J

K

CELTO+EXR* (DELT(JrK)=DELTO)
GANMOHEXR* (GAM(JrK ) =GAMO)

SET BOUMDARY vALUES FOR UELTA(J,K)
0O 230 U = 2.ty

GAM(JPNH) = GAM(JeNK)

DELT(Jr iH)= DELT(JeNK)
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IF(ULT.NR) Gy TO 230
DELT(Jr)= DELT (e )
GAM(Jr1l) = Gav(Jr2)
230 CONTINUE
IFCINMONENEL4) GO TO 250
DO 240 ¥ = 2,KPORT
DELT (JUPCRTvK) DELT(JPOKT+1¢K)
GAM (JPORTIK) GAMUUPORT+1/,K)
240 COWTINUE
250 CONTINUS

Hoi

O 260 ¥ = 1,.K
DELT(1,k)= DELT(2¢K)
GANM(L1eK) = GANM(2¢K)
260 CONTINUE
290 poOmpX = 0,
DO 300 U = 2rpiy
U0 300 w = NVWNK

IF(UeLE JPURT ,ANU K¢ LE«KPORT+1) GO TO 300
IF(J-EQ. dPOPT+1. AND <K oLE «KPORTY GO TO 300

Al = SC{Jr1)2FR(JrK=1)

A2 = SC(J*2)Y*FR{JrK-1)

A3 = SC(JUr3)*FR(JPK=1)

A4 = SCluelt)

AS = &C{ur5)

yPoOs1 = ABS(UX(J=1,K}) + UX( t=1¢K)
UPo0s2 = ABG(UX(JrK)) + Uy (JrK)
UNEG1 = ABS(UX(J=1rK)) = UX(Jg=1rK)
UMEG2 = ABS(UX(JrK)) - Ux(JerK)
VPOsS1 = ABS(UZ(JrK=1)) + UZ(JrK=1)
vP0S2 = ARG (UZ(Jrk)) + Uz (geK)
VNEG1 = ABS(UZ(urk=1)) = UZ(JrK=1)
VhEGZ2 = ARG(UZ(J?K)) - yz(JeK)
IF(CONTnL(ll).OR NEODYEwe&) GO TO 291
GO TO 293

291 UMl = SR UXTUrK=1)+UX(J=1,K=1))
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1

UrP1

uco

DFZ

UGRAD (UsK
OOMEG
SOMEG

293 CONTINuUR

295
300

310

320

BO

1
AJl
Ade
AK1
AKZ
ADELT

IF(UEGNY)

OMEGO

i~ n

(L I I N I AN AR ]

¢5¥ (UX(JPK+1)+UX (J=1,K+1))

oOR(UX(JUrK I+UX(J=1,K )

SZIKP1SI¥FZ(JyK+1)=S2 (K18 *FZ(Jyk=1)=S2 (K216, *¥FZ(JrK)
S SZ(Ky15)*UP1=SZ(Ke 1) *UML1=S7 (K, 16) *JCO

2e*DFZ*(SZ2(Ke3)*(UP1=UCO)=SZ(K12) % (UCO=UV1))

DOMEG+ISZIK 1 3)* (FZ(JWK+1)=F2(JrK))=SZ(Ke2) % (FZ(JrK) =

FZ(JrK=1)))%UGRAD(JrK)

FZ(JrKIXSZ(Ke 1)

1,/ (BO+AL+AG*(UPOS2+UNEGL)+SZ2(Kr ) % (VPOS2+VNEG1))
(A2+AL* (UPOS1) ) *OMEG (J=1,K)
(AZ+ALX (UNEG2) ) ¥OMEG (J+1 1K)
(FZ(JrKI*SZ(Ke2)+SZ (K2 4) %xVPOS1) xOpEG(JrK=1)
(FZCJrK)*SZ(K»3)+SZ(Kel) *UNEG2) *xOMEG(JrK+1)
~AS*(DELT(U+1vK)=DFLT(J=1+K))

ADELT = Q.
OMEG(JrK)

OMEG{JrK) = (AUL+AJZHAKL+AKZ+ADEL THDOMEG) *R 1

DEL

-

ABRS ((OMEG(J*K)=OMEGO) /OMEG (JrK) )

IF(JeGT.NCR) 50 TO 295

DOMAX

AMAX1(DOMAXDEL)

IF(DOMAX.GT.DFL) GO TO 295

NOGE (3)
NODE (4)
OMEG(Jrk)
CONTINUE

J
K
OMEGO+EXR* (OMEG(JrK ) ~OMEGO)

CALL STREAM(ITERS1)
SET CENTERLINE AND CuT BOUNDARY VORTICITY
DO 310 K = 2K

OMEG (NL »K
OMEG(1rK)
CONTINUE

)

= 0o
~OMEG(2°'K)

SET SURFACE BOUNDARY VORTICITY
DO 320 J = 2,0y

oMEG (JrNH

)

= =~OMEG(JINK)



29

330

340

350

360

370

SET BOTTOM

BOUNDARY YORTICITY

IF (INMODE.EG.4) GO TO 35u
SET SLIr ROUNDARY

DO 230 4 =
oMeGgldr1) =
CONTINUE
SET INF}L OWw
VORTZ

DO 340 J
puz

DVR
oOMEG(Jr2) =
oMEG(Jr1) =

[T IR I )|

1B e NJ
-OMEG(JeE)

FOUNDARY VORTICITY

1./02(KPORT+1)

2 NB

«26%VORT2* (UX(Je3)+UXx (J=1¢3)=UX(Jr1)=UX(4=1+1))
WHR(UZ(UH192)+UZ(J+1,1)=0Z2(J=1+2)=UZ(U=1+1))%SC(Jr4)
DpLZ=DVR

O

OMEG(J,1) FOR J LESS THAN Ngr DOES nOT EnTER IN CALCULATIONS

CONTINUE
GO TO 400
CONTINUE

SET NO=-SLIP

NSTART
5O 3606 U
bus

DVR
OMEG(Jr2) =
CONTIMNUR

ROTTOM BOUNDARY
JPORT+1
NSTART 'NJ
e 25% (UX (Je3)F+UX(J=193)=UX(Jr1)=UX(J=1r1))/D2(2)
Sx(UZ(J+192)=UZ(J=1+2))/7(RC(J+1)=RC(U=-1))
DUZ=DVR

SET PORT <IDE NO=SLIP BOUNUDARY

DO 370 X
UKP1
UKM1
UKC
pus
DVR

1IN

CONTINUE
SET INFL_OW

2/KPORT

S5k (UX(JPORTPK+1)+UX(JPORT+1,K+1))

W S5* (UX(JPORTPK=1) +UX(JPORT+1,K=1))

Sx(UY (JPORTPK M +UX(JPORT+1,K ))

SZ (Kr15) xUKP1=5SZ (K 14)*UKM1=SZ (K, 16) *¥UKC

S5k (UZ (JPORT+2 1K) +UZ (JPORT+2,K=1)+UZ(JPORT+1rK) +
UZ (JPORT+1+K=1))/(RC(JPORT+2)=RC (JPORT))

1
OMEG (JPORT+1,K) = DUZ=DVR

ROUNDARY VORTICITY
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LO 380 J = 2/yJPORT :

DVR = (UZ(J+1 o RPORTI=UZ (U=1 v KPORT) )/ (RC(J+1)=RC(J=1))

OVK = «5%0OVF

IF(JeEQ.JPORT)

1 CVR = ob *(UZ(J+1 +KPORT)=UZ(JrKPURT) ) /Z(RC(J+1)=RC(J))
OVR = DVR+S5*¥(UZ(J+LeKPORT +1)=UZ(J=1+KPORT+1))
1 /(RC(J+1)=RC(U=1))

ue T «25% (UX(JrKPORT+2)+Ux (U=1»KPORT+2)4+UX(JrKPORT+1)
1 +UX(J=1 v KPORT+1))

buZ = U2/DZ(KPORT+1)

OMEG(JrKPORT+1) = pUZ=pVK
380 CONTINUE
400 CONTINUF

DELT(1y1H) = DELT(2¢NK)
GAM (1, H) = GAM (2¢Nh)
IF(.NOT.CONTRL(6)) GO TO 41n
JK =0

DO 40S v¥K = 1+10e2

Lt MON(KK)

L2 MON (KK+1)

L3 MON(KK+10)

Ly MO (KK+11)

o

LS MO (KK+20)

L6 MOt (KK+21)

JK JK+1

Ao CUK) = uztg,L2)
AMON(UK+5) = UX(L3,Ll4)
AMOM (JK+10) =pELT(LSrLo)

405 CONTINUE
WRITE(OUT1000) TTNCe» (AMON(KK) rkK=1,15)
410 CONTINUE
IF(NEDDYeFQe0,ORMNEDDYGE.5) GO TO 750
IF (HED.GE.L) GO TO 750
CALL EDDY(NEDOY)
750 IF(MOD(LrNOUT)«EG.0) CALL OQUTRUT (1)



v9Y

800

810

820
830

IF(MOD(LPNTTY) «EG.0) CALL GUTPUT (2)

CONTINUE

IF(INMONELEC.u4) TEMPER(JPORT+KPORT) =TEMPER (JPORT=1¢KPORT)
1IF(.NOT.CONTRL(9)) GO TO 88n

WRITE(8) ITHOYOMEGYDELTrUXrUZ2sPSIeGAM

WN3LPTS =0

50 810 0 = 1.8

IF(3DPT(J) EQ.0) GO TO 810

N3DFTS = N3CPTS+1
CONTINUC
Y4 = K

IF (113DPTS.EQ.C) GO Tc 830

ARITE(8) KASE(DATE»TIuve TLABEL e NIDPTSrJPORTYKPORTINX»NZ
DO 820 U = 1,5

L = N39PT(J)

IF(L+EQ@.,0) GO TO 820

IF(LeEG.1) WRITE(8) Le(R (N)PNT1yNX) 2 (Z (N)yN=12NZ),

i ((PS1 (NeM) ¢N=1,NX),M=1,nN2Z)
IF(LeEG.2) WRITE(8) Lo (RCIN)rr=19NX) 9o (ZCIN) ynN=27NH) »
1 ((OELT(NeM) o N=1,NX) ¢ M=2,NH)
IF(LEQ+3) wRITE(8) Lo (RCIN) s NT1oNX)? (ZCIN) rnN=2?NH) »
1 ((GAM (nNeM) gN=1,NX) yM=2,NH)
IF(LeEG.4) HRITE(8) Lo (RCIN)M=1eNX) ¢ (ZC(N) o y=2?NH)»
1 ({CTEMPER(MeM) g N=1,)NX) rM=2,yNH)
IF(LeEG.S) WRITE(8) Lo (RCUN) oNT1oNX) 2 {ZCIN) »iy=2?NH) s
1 ((OMEG(NsM) ¢ NZ1,NX) ¢y M=2,NH)
LL =L

IF(L.EQ.1) WRITE(OUT,»1004) LL
IF(L.EG.2) WRITE(OUT»1005) L
IF(L.EQ@.3) %WRITE(QUT»10006) LL
IF(L+EQ.4) WRITE(OUT,»1007) LL
IF(L<EG.5) WRITE(OUT,1u08) LL
CONTINUE

CONTINUE

NRITE(OUT»1003) N3DPTSYNXrNZ
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C*

850
855

864
870

880

895

=

IF(TEMPER(ZoNK)=TEMPER(NL*NK) .LTeel) GO TO 850
IF(CONTPL(13)) WRITE(OUT»1001) nC
IFCNOTLCONTRL(13)) WRITE(QUT.10n01) DF

0O 850 4 = 1,80

TOELT(U) = TEYPEPIHL NK)+J
IF(TRDELT(U) LT TEMPER(2¢eNK) ) GO TO 850

LAST = \J-l

GO0 TO 855
CONTINUE

DO 870 . = 1sLAST

DO 860 J = 2en0d
IF(TEMPER(UINK) «GT.TNDELTI(L)) GO TO 860

RAD = (RC(J=1)H(TDELT(L)=TEMPER(JU=1 o NK) ) Z{TEMPER (J e .K)
=“TEMPER (J=1+/NK) ) *(RC(J)=RC(J=1))) %R0

AREA = 3.141%RADRxRAD

WRITE(QuUT»1002) LrAREAYRAD

GC TO 870

CCNTINUE

CONTINUE

GAMER SUM COMNVERGENCE CHECK
WRITE(OUT»1010)

GAMIN = 24%(PSI(JPORTIKPORT)=1,)

NSTART = JPORT+5

DO 900 J = MSTART/NJe 3

NCK = J

GAMC = 2.*R(NCR)*RRP/ (RER* (2C(NCR+1)=RC(NCR)))
GAMCONM = 0,

GAMDIF = 0o

D0 495 K = 1.5:K

UFACE = UX(NCReK)

IF(UFACE e5T o D0 ) GAMCONZGAMCON+2 e ¥R INCR) *DZ (K ) *GAM(NCR ¢+ K) *| ,FACE
IF(UFACE «LT+0, ) GAMCON=GAMCON+2+ xR (NCR) *DZ (K ) *xGAM(MNCR+1 1K) *UFACE
GAMDIF = GAMC*FR(NCReK)*DZ (K} 2 (GAMINCR v K) =GAMINCR+1:K) ) +GAMDIF
CONT INue

GAMCON = 100+*GAMCON/GAMIN
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GAMDIF = 100.*GAMDIF/GAMIN
GAMSUM = GAMCON+GAMDIF
GAMERR = GAMSUM=1G0,
WRITE(OUT,1011) JrGAMCONPGAMDIF » GAMFRR
900 CONTINUE
RETURN-
1000 FORMAT(IG U4X1S5(FEagqr2X))
1001 FORMAT(//30H SURFACE ISOTHERPM DATA //
1/15H DEGREES *Alr35H AREA TN RADIUS (F
2/60H ARNOVE AMB SQ@. FEET ISOTHERM? FEET
3/)
1002 FORMAT(ILIrs2(1uXF10+1))
1003 FORIMAT(///5%x1I5e @ THREE~U PLOT RECORDS WRTITTE' ON TAPER/
1 ] SET PLUT PARAZETERS NJ = B13,0 NK = RI3)
1004 FORMAT (2 STREAM FUNCTION PECOPD WRITTEN TO TAPE = RECORD NO RI3)
1005 FORMAT(2 BUQYANCY PAPAMETER RECHRD WRITTEN TO TAPE - RECORD NORI3)
1006 FORMAT(: GAMMA=CONSTITUENT RECORD WRITTEN TO TAPE = RECORD NO RI3)
1007 FORMAT(Q TEMPERATURE RECURD WRITTEN TO TAPE - RECORD NO RI3)
1008 FORMAT(® VURTICITY RECURD WPITTEN TO TAPE = KFCORD NO @WI3)
1010 FORMAT(1H1//2 GAMMA=CONSTITUENT BALANCE ERROR o rs7/7/
1 3 NET CUNVECTIVE MET DIFFUSIVE GAMMA BALANCE
2R/ i QUTFLOWe PERCENT OUTFLOYWe PERCENT ERROR» PERCEN
AT/ J2)
1011 FORMAT(ISy5(5xsFL10.495X))
END

SUBROUTINE EDDY (M)

INCLUDE coMLSTeLIST

DIMENSION ECORE(LK) +R5(LK) WKR{LY)

RATIO = REZ/REPR

VELC = L0135

GO TO (10s200120020°20¢500r500) /M

CALCULATE RADIAL EDDY FACTORS USING PRESCRIBED MIYING LENGTH
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10 DO 15 K = 2,nK
VMAX = W52 (UZI20K)=UZ(20K=1))
FROJPK=1)= .180%(2(K)=e25%3Z(K))*VMAX
15 CONTINuE
20 CONTINuUr
CALCULATE RALIAI. EUDY FACTORS BASED OM & RUNMITNG CALCe OF MIXING L
BASE LE"'6Th OF PCTENTIAL CORE O+ PEPCENT GAMMA DECREASE AT CENTERL
IFCENMODELLT.4) GO TO 40
DC 25 ¥ = kPORTsNH
IF(GAM(2+K) LT .GAMEND) GO TO 20
25 CONTINuUC
IF (MODCTTNO»NOUT) «EG.0) wRITE(OUT»1000Q)

30 KCORE = K
2COKE = Z(K)=Z(KPORT)

40 CONTINUF
DO 100 . = KPORTsNKK
IF(M«EQ.1) GO TO 60
VMAX = 11Z2(2eK)
VS0 = JS50%xVMAX
V05 = JO05%xVMAX
RCORE(KY = (o
GO 50 g = 3,4Jd
IF(VS0.6T.UZ(UrK)) GO TO 4%
NSO = J

45 IF(v05.nT U7 (JeK)) GO TO 55
105 =N

50 CONTINUF
55 CONTINUE
CALCULATE PLUME GEOMETRY AT LFVEL K
IF(KeLT,KCORE) RCCRE(K) = AMAXI(O&.(1.-(Z(K)-Z(KPORT))/ZcORE))
R5(K) = 1.
IF(K+LT.KCURE) GO TO 60
RS (1) = RCINSC)Y+{1ZINSOrK)=VE0) /(UZ(NSOrK)=UZ(NSO+1rK) ) *
1 (RC(NS50+1)«=RC(NSC))
60 RO5S(K) = RCINOS)I+(UZINUSPK) =V05) /7 (U2 (NOS»K) =UZ(MNOS+] rK) ) %
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1 (RC(NNS+1)=RC(NOS))
70 CONTINUE
IF(NeEQ.L1) GO TO 100
DO 90 J = 2NJ
IF(MeEQ@.2) GO TO 75
FR(JPK) = FRATIO
IF(kB(K)Y«LToRC(J=1)) GO TO 100
75 CONTINUE
FR{J*'K) = (Rs(K)=RCORE(K))*xVMAX
IF (K eEG,KPCRT) GO TO 90
FR{JIK=1)= 5% (FR(JPK=1)+FR(JrK))
90 CONTINUE
100 CCNTINUE
IF(M-EQ.]- .OR-M.EQ.Z) GO TO 4n0
CALCULATE VERTLCAL EDDY FACTORS FZ(ur¥) IM SyURFACE SPREAD
120 CONTINUE
0O 140 Kk = KPORTeNK
DO 130 U = 2.0MJ
IF(RC(U=-1).GT.RR(K}?! GO TO 140
FZ(J*K) = RATIO*FR{JrK=1)
130 CONTINUFE
1406 CONTINUE
CALCULATE VERTICAL EDDY FACTORS FOR LATERAL FLOW RAGED On LENGTH 2Z

UMA X = Q.

DO 145 U = 2rnid
IFCUMAX . GTUX(J?NK)) GO TO 1uS
UMAX = UX(JeNK)

JMAX = J

145 CONTINUF
0O 152 < = 1eNK
IF CUXCUMAX oK) LT s e S¥UMAX) GO TO 152
ZLEN = Z(NK)=ZC(K=1)=(5¥UMAX=UX (UMAX?#K=1))/
1 (UX (UMAX P K =UX (UMAX P K=1) ) *(ZC(K)=,C(K=1))
IF(ZLEN.GT.DZTS) ZLEN = p275
GO TO 153
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(e

152 CONTINUE
155 CONTINUF

FZC T OVEDC*ZLEN*UMAXXREZ 2,
DO 200 U = 2en4d
00 150 K = 1epH
UAVE T WS (UX(J=1 K +UX(JrKY)

IF(UAVE.LT,Ge) KB(J) = K

1506 CONTINUE
DO 160 ¥ = 2, K
IF(RCUU=1) +LELRB{K) e ANDeK+GT«KPNRT) GO TO 155
FZUUrK) = FEZ(nNLeK)
IF(UeNENJ) Fri(JrK=1) = FR(2:k=1)
FZUUPK) = FZ(JrK) + FZCRUX(JrNK) ZUMAX

18% IF(,MAD.EQ.Q) GO TO 160

MODIFY RY KICHARDSON NUMBER M0DEL (IN LATEFRAL PLUME SPREAD ONLY)
RICHNO = +.5/F0xDGRAC(UrK )/ (UGRAD(JrK) *%2)
IF(RICH10sLTe0e) RICHNO = G
RICH{JrK)= RICHNO
IF(RICHYN0.GTs1%«) RICHNO = 15,
FZ(JrK) = FZ(JrK)*RCHMOD (INMAD e 2 ICHNOWBETA)
166 CONTINUFE
FZ2(Jrl) = FZ(Jr2)
FZCJrNHY = FZ(JeNK)

200 CONTINUE
400 TF(OD(TTMOINOUT) o NELO) RETURM
wRITE(CUT»1001) ITNO

DO 450 K = 2snK

KN = MNK+2=K

o1 = +5*RCCORE (KN)
D2 = J5%RS(KN)

C3 = «5%ROS5(KN)
D4 = «5*KB(KN)

WRITE(OUT»1002) KNeZ(KN)eD1sD290n3rD4
450 COINTINUE
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500 RETURN

1000 FORMAT(1HI//lw PLUME CORE EXTENDS TO SUKFACE R
1/ fa CORE ASSUMEN TO END AT K = tiH FOR PURPHSES OF Ei
DY CALCHLATION, FR(Jek=1) @)
1001 FORMAT(// @ pLIME LATERAL SECTION GFOsETRY» ITERATION NOe
115/7/R K 2/5 RCOR:/D EHALF/D RBOUNMD /N PR/D 1)
1002 FORGAT(TI0IF G 2e2X4 (F3.3924))
END

SUBROUT INE oQUTPUT (MODE)
INCLUDE CoMLSTLIST
IF(ODE.NFE.2) 60 TO 10
WRITEOUT1000) TTNOSNPI+DPMAX Y ODL(5) e NODE () »

1 DO AXPNGRE(3) o NODF (4) o+ NDVAX #MODE (1) e NODE(2)
DO 50 = 1e:id
514, 5 K = 1eh¥

IFUZ0UrK) eLELS5e)G60 TO 5
WRITE(LGUT1003)

I1STCP = °g0gg
GO 10 1n
5 CONTINUF
aITECOUT»1I002) (MONIKK) KK 19070)
RE TURYN

1U CALL ETTIMFFA{TIME)

IF (HODELEC M) WRITE(OUTP1001) ITNOWPPMAX e ITNC TINT
TINT = (TIME=START)/NOUT

DO 106 U = 1915

L HPTITE ()

IF (L elGs8) NOTEMP =i

IF(LeEGs0) GO 10 100

XF(MODEOEOOI) GO TO an

[F(LeEwel) CALL APOUT(LeLr RePSTH
1 420STREAM FUNCTION - TRROTATIONAL FLOW

1
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IF CAODE LE0.0) 0 TO 10UV
Gy IF(L+EQ.2) CALL AROUT(L?ZIRsPSI,

] 42HSTREAM FUNCTION - VISCOUS FLOW
IF(LeEQ.3) CALL ARQUT(L*Z2CeRCsDZLT,

1 42rBUOYANCY PARAMETER = DFLT
IF(LeEG.4) CALL ARQUT(LrcCrRCIOMEGY

1 42HVORTICITY = OMEG

IF(LEQ.5S) CALL AROUT(L?Z2eRCUZ,

1 42HVERTICAL VFLOCITY COMPONENT = U2
IF(L+EG+G) CALL ARQUT(LrcCr RoUX»

i 4U2HRADIAL VELOCITY COMPONENT = UX
IF(LeEQ.7) CALL AROUT(L?ZC*RCrGAMr

i 42HGAMMA=CONSTITUENT
IF(.NOT.COTRL(13)) 60 Tu 92

IF(LEQ@.8) CALL ARQUT(L*ZCrRCsDELT

1 42HTEMPERATURE » DEGREFS CENTIGRADE
GO TO 94
92 IF(L.EQ.8) CALL ARQGUT(L»<cCrRCoDFLT,
1 U2HTEMPERATURF ¢ DEGREFS FAHREMHEIT

94 CONTINUE
IF(LeEG.9) CALL AROUT(L?ZCrRCoDr LTy

1 42HNORMALIZED BUOYANCY PARAMETER
IF(LEG,1D0CALL ARQUT(L?ZeRCrUZ,

i 42HNORMALIZED VIFRTICAL VELOCITY COMPONENT
IF(LeEG.11)CALL AROUT(L»ZCrRCDELTY

1 Y2HNORMALIZED TEMPERATURE DISTRIBUTION
IF(LsEW.12)CALL AROQUT(LL#Z2CrRCoF12e

1 42HRADIAL EDDY " IXING FACTORS
IF(LeEG.12)CALL AROUT(L»ZCrRCeF 7y

1 42HVERTICAL EDDY MIXING FACTORS
IF(LeEG.14)CALL AROUT(L?ZCIRCIRTCHY»

1 42HRICHARDSON Ni:MBERS

IF(LEG.15)60 7O 100
100 CONTINUF
IF(ISTOPeFE@en999G) STOP
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CALL ETIMEF (START)

KETURH

1000 FORMAT(1H1 26H RESULTS FOR ITERe NO. 15/
1/ 35H NOe OF PS] ITERATIONGS= = = = = 17¢10X44NODE
2/ 35H MAX CHANGL I PS]I = = = = = = iPE10.3
%o TH (I2¢1Hr e I201H)
3/ 35H MAXY CHANGE IN OMEG = = = = = - E103
*0 TH (I2¢1HreI201H)
4/ 35H MAX CHANGE IN DELT = = = = = = £10+3
*¢ TH (I2v1He s I271H) )

1001 FORMAT(1H1 usy STREAM FUNCTION RESULTS FoR ITERATION Is/

. 1/ 30H MAXIMUM RELATIVE ERROR IS  1PF12.3/
N o/ 23H TIME REQUIRED FOR I3s14H JTERATIONS = F6.2s

35H SEC 777) _

1002 FORMAT(/ 1CH ITERATION
1 YO0H eseveeovse, VERTICAL VELOCITY RN
2 UOH ¥kxkxkxky RADIAL VELOCITY wksoksdxkkkiokk
3 QOH [ FEEEEEE RS BUOYANCY PARAMETFR seveceveee
4/10H NUMBER 15(2H (I2¢1H2T2,1H))//)
1003 FORMAT( ///R " THIS CASE IS APPARENTLY UNSTABLEe* RUN ARORTED R)
END

SUBROUTINE ARGUT (Ne VCOORD * RCOGRD » ARNAME » LASEL )

INCLUDE cowLST.LIST

DIMENSION ARMAME (LJrLK) » ANORMILK) o AREL (7) s HCOORD(LLJ) » VCOORD (LK)

GIMENSION RCQORD(LJ)

REAL

DO 10 U

HCOCRD ()
10 COWNTINULE

N2 '
60 N1

2




€LY

€5
70

100

150

160

le5

167

170
175

200

1000

IF(N2«GTeNLINZ2ZNL

WRITE(OUT+1000) DATE«TIMeLABEL » 1 TNQ»TINY
WRITEC(OUT»1004)

WRITE(OUT»1001) (NOX(K)esK=NLeN2)

WRITE(OUT»1002) (HCOORDIK) vk = N1#N2)

DO 200 Kk = 1oNH

KN = NH=K+1

IF(NeEQ.8.0ReN.EQ.11) GO TO 160
IF(NeNE«9«AND.NeNEL.10) GO TO 150

AMAX = ARNAME(2°rKN)

IF (ARNAIE(3sKN) « CTAAMAX) AMAX=ARNAME (32kN)

DO 100 U = N1.N2

ANORM(J)Y = ARMAME(JrrN)/AMAX

WRITECOUT»1003) KNeVCOORD(KN) » CANORM(J) ¢ J=N1 o 12)
60 70 200

WRITE(QUT»1003) KN+VCOORU (KN) » (ARNAME (JrKN) » J=N1eN2)
60 TO 2n0 -
CONMPUTE ARSOLUTE CENSITY AND SALINITY

U0 165 U = M1sN2

SAL = SALR=GAM(JeKN)*DSALT

SIGT = SIGTR=ARNAME (UrKN)*DELTY

COMPUTE TEMPFRATURE FROM DENSITY AND SALINZuY
TEMPER(JPKN) = TEMP(SAL(SIGT)

IF(.NOT.CONTRL (13)) TEMPER(JPKN) = 1.8%TEMPER(JIKN)+32.
CONTINUE

TMAX = TEMPER(2¢KN)

IF(MeEQ.11) 6O TO 170

WRITE(QUT1002) KMe VCOORD (KN) ¢ (TEMPER (JoKM) » J=N1#N2)
GO TO 200

0O 175 U = tilenN2

ANORM(U) = TEMPER(JrKN)/TMAX

WRITE(QUT»1003) KN» VCOORU (KN) » (ANORM(J) yJ=N1,N2)
CONT INUFE

IF(N2eNESNL) O TO 60

FORMAT(1H1 0 DATE QAo TIVE W2R6/
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1 5X7A6¢7 ITERATION SUMBER @ r15
1 25H COMPLIT-TION SPEED = F6.,3915H SEC/ITERATION )
1001 FORMAT(/17x3HJ = 10(18°3X))
1002 FORMAT(12X1sRCOORD =0910(F9¢2¢2X)712XRZCOORDSA)
1003 FORMAT( SH K = 12y SH Z = F6,2,2X1P10E11.3)
1004 FORMAT (R COOFDINATES GIVEN IN PORT DIAMETFRSe Z/D OR R/D @)
EHU

FUNCTIO SIGUAT(SAL?TeN)
IF(MNeEwW.0) GO TO 10

SIGU T (((6«BE~O*SAL) =4 ,22E-4) *SAL +,8149)*SAL=-.093
3} = 1ef=6*T*((,01067#T=e2164)*%¥T+18,.03)
A = L0n1*Tx((,0010843%T=,09618)*T+4,7557)
SUMT = (T=3,98)*(T=3.98)*(T+283.)/(503.57«(T+A7.26))
SIGMAT = (SIGN+.1324)%(1e=A4B*{(SIG0=+1324) )=SUMT
KETURM

10 SIGMAT =7
KETURM
END
FUNCTIO TEMP(SALT»SIGMA)

CRERERRRFRRRRRRN EYTON RAPHSON METHOD FOR CALCULATING TEMP.
Cx**kdopk ki ¥ xdakxFROM SALINITY AND REFERENCE DENSITY

ERRCR = .01

T = 20,

sIGo T =e093+.8149*SALT~,0n0482%SALT*SALT
SIGG = SIGO+6.8E-6*SALT*SAL T*SALT

GO 100 I = 1,50

T5Q0 = THT

TQABEG = TSWD*T

F = SIGMAT(SALT*Tr1)=SIgMA

DSUILT (21574*(T=3,08)%%2)/(503¢570%(T+AT26) x%x2)
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C*

C*

Cx

100
150

10
10

20
20

30
30

40
40

S0
50

60

psumT DGUMT=2% (T=3.98)%(T+233,)1/(503,579%(T+67.2A),

DA T J001%(47867=419637xT+.0032529%T5AD)
DB S 1.e-6%(18.03-1,A328xT+.,05%xT5QN)

DF = (SIGO+.1324) % (= A4Dn*(SIGO=e1224))+DSUMT
T1 = T=-F/DF

ER = T1-T

ER = ABS(ER)

T = T1

IF(ER+LT.ERROR)GO TO 150

CONTINUE

TEMP =7

RETURN

£ NU

FUNCTIO" RCHMAD(M*RICHYRETA)

CHOGSE ZETA CONSTANT FOR APPROPRIATE MODEL AT INPUT
GO TO (10+,20020+40+50:60) M
ROSSBY AND MOMTGOMERY (1935)

RCHMOD = 1e/(1++BETAXRICH)
RETURN

ROSSBY AND MONTGOMERY (1935)
RCHMOD = 1e/(1e+BETA®RICH) *x2
RETURM

HOLZMAN (1935)

RCHMOD = AMAX1(0erl.-BETAXRICH)
RETURN

YAMAMOT» (19%9)

RCH»OD = SaRET{AMAXL1 (Uer 1 o=RETAXRICH))
RETURN

MAMAYEV (198s)

RCHMOD T EXP(=RETA*RICH)

RETURN

MUNK AN{ ANDERSOMN (1948)
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60

(el §1)

30

RCHHOD = (1,+BETA¥RTICH) x*]1 ,&
RETURN
END

SUBROUTINF ISOGEM(Z'RePSIrISOLNILeNJPNKLABEL)

INCLUDE ARDIMPLIST

DIMENSIGH  2(LK) fRILJ) PPSI(LUPLK) v ISOLN(S5¢30) »LABEL(6)
CIMENSION  XP(200)¢2P(200) ¢ROQT(3)

REAL LAREL » ISOLN
INTEGEK ouT

ouT = 6
WwRITEC(OUT»1000) LABEL
JIN =2

KN =2

IF(L+EQ.1) KN
IF(LEQ.1l) UN
NOL INE =0
CO 3 1 = 1030
IFCISOLN(LII) sEG.O) GO TOU 3
NOL INE = NOLINE+1
CONTINUE

U0 200 11T = 1.nOLINKE

PSic = 1SOLN(LYNT)
KounT =N

CO 85 JzuNiNJ
K =1

IF(PSI(urK)=P5]IC Ylure209 30
K=n+1

IF(K+GT.NK}GO TO RS
IF(PSI(JrK)}=PSIC Y10020040
K=k+1

IF(keGT.NK)IGO TO BS
IF(pSI(UrK)=PSIC Y40»20¢ 30

" u
—



LLy

o0

o000

40

41

43

45

4y

x¥kxkkkxx [INTERPCLATION xkkaky*xxk

MZK=1

$3D25955%D QUADRATIC INTERPOLATION $%%%%%3%%

EQUATION FOR INTERPOLATION IS OF FORM Y = AxXx#2+BX+n
IFO(NK=K)=1)047Z,43,41

IFUK=1)=1)45r45042

IFU(PSIC =PSICdeM)N) /7 (PSI(JeK)I=PST(JrM))=0,5)143,45,45
ML CORRCSPONDS TO I-1

MM CORRESPONDS TO I

MH CORRESPUNDS TO I+1

GRANCH TO 43==yUSE PCINTS K=2+K=19AND K FOR THE
QUADRATIC INTERPOLATION

mL=k=2

MM=K=1

MH=K

GO TO 44

DRANCH TO 45==USE POINTS K=1eke AND K+1 FOR THE
QUADRATIC INTERPOLATION

MLZK=1

MMZK

MH=K+1

CENOM=(Z2 (MM) %% 2=2 (ML) x%2) % (2 (MH) =Z (M) ) = (Z (M}4) x¥2=2 (MM) *,2)

1¥ (2 (MM) =2 (ML)

ANUMZ (PST (U rMM) =PST (JyML) )% (Z (M) =Z (MM) )= (PST (JPMH) =PSI (JeMM))

12 (Z(MM)=Z (ML)

BNUMS(PSI(JsMH)=PSTI(JUeMM) ) % (7 (Mn1) kk2=7Z (ML) %42 ) =(PSI (JerMM)

1=PST(JrmL) )% (Z (MH) %%2<2 (M) *%2)

AA = ANUM/DENOM
BB = BNUM/UENAM
D=PSI(UrMM) =ALXZ (MM) % x2=BR*Z (M)
TERMISQRT (BR**2=4 s %xAA (D=PSIC))
ROOT (L) =(=GR+TERMI/ (2, %AA)
ROOT(2) = (=yR=TERMY/ (2, %AA)

DO 87 l=l.2

IF(MMeEQeK)GO TO 61
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ae

C

61

54
55

57
60

20
80

85

90
100

300

400

410
420

IF(ROOT(I) LT, Z2(MH) e ANDeROOT(I),GT«Z(MM))GO TO 60
IF(ROOT(I) oL T+ Z(MM) s ANDeROOT(I) ,GT+Z(MH))GO TO 60
GO 10 514 ,
IF (KOOT(I) oL ToZ(MM) e ANUCROOT(T),GT.2(ML))IGO TN 60
IF(ROOT(I) el TeZ(ML)epNDeROOT(I),6T.Z2(MM)IGO TO 60
IF(1EQ.2)PRINT 55

FORMAT(RURrRERROR IN PROGRAM FOR COMPUTING RZ(J!N)@.
10BY QUARRATIC INTERPOLATION®R)

CONTINUE

IF(I+EQ.2)G0 TU 825 |
ZP(KOUNT+1) = ROOT(I)

G0 TO 8n

ZP(KOUNT+1) =-Z(K)

KounT = XKOUNT + 1

XP (KOUMT)= XCOORDI(R{U))

GO 10 5

CONTINUE

DO 185 K=KpeNK

J -1

IF(PSI(JeKI)=PSIC )100,200¢300

J=Ju+l

IF(UeGTNJUIGO TO 185

IF(PSI(JrK)=PSIC 100,200,400

J=d+l

IF(Je6T.NUIGO TO 185

IF(PSI(JrK)=pPSIC )4u0,2000300

wkkxkrxak®k IMNTERPOLATION *kXkkk¥ ok

M=J=1

$55555%% OQUADRATIC IMNTERPOLATION $3%3%3%%
IFC(NJ=J)=1)430,L30°410

IF{(J=1)=1)u5G,450,420

IF ((PSIC —pST (oK) )/ (PST(JrK)=PST (MrK) ) =0,5)430r 450040

ML CORRESPONDS TO I-1
MM CORRESPONDS TO I
MH CORRESPONDS TO I+1
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430

450

44y

0l0

54y
555

570

BRAHCH YO 430-=USE PoINTS J=2,J=1+AND J FOR THE
GUADRATIC INTERPOLATION

ML=y=2

MM=Jg=1

MH=J

GO 10 u40

BRAMCH TO 450-=USE POINTS J=1,J, AND J+1 FOR THE
GUADRATIC IMTERPOLATION

ML=u=1

MMz

MH=J+1

DENCMZ (2 (MM *£2=R (ML) %*2) x (R (MH) =R (MM) ) = (R (1) ¥ 2=R (MM ) *%2)
1% (K (MM) =R (ML) )

ANUME(PST (MM oK) =PSTIMLPK) ) % (R(M-1) =R (MM) ) =(PST(MH/K)=PST (MM¢K))
1*# (RIMM) =R (ML)

BNUMZ(PSI (M eK)=PST(MMeK) )% (R(M*) kx2=R (ML) k%2 )= (PST (MMsK)
1=-PSTIMLIK) ) x (R(MH) x¥2=R(MM) x%2)

AA = ANUM/DENCOM

BB = BNM/ZDENQOM

D=PST (M rK ) =AL%kR (M) xx2=BR*R (MM)
TERMESGRT (BR*+2-4 « xAax (D=PSIC))

ROOT (1) z(~pR+TERM) / (2, *AA)

ROUT(2)=(=BR=TERM)/ (2,%AA)

DO 570 1=1.2

IF(MMeENeJIGO TO 610

IFCROOT(I) eLT R(MH) « ANDeROOT(I) GT.R(MM))GO TN 615
IF(ROOT(I)elLToR(MM) e ANDeROOT(I) (GT.R(MH)IGO TN 615

GO 7O 540

IF(ROOT(I) LT« R(MM) s AND+ROOT(T) ,GT.R(ML))GO TO 615
IF(ROOT(I) oL T.R(ML) s ANDeROOT(I) ,GT.P(MM)}GO TO 615
IF(1+EQ.2) WRITE(6,555) KOUNT

FORKMAT (R0 RERROR IN PROGRAM FO» COMPUTING Xp(RI2,@+1)0
1EBY QUADRATIC INTERPOLATLIONM@)

CONTINUF

IF(I.EG.2)6C TO 825



08Y

615 XP(KOUNT+1) = XCGORD(ROOT(IY))
GO TO &n0
200 XP(KOUNT+1) = XCOORD(R(J))
800 KOUNT = KOUNT+1
ZP(KOUNT) = Z(K)
GO TO 90
185 CONTINUE
WRITE(OUT»31001) NI+PSICrKOUNT
wWRITE(CUT»1002)
DO 500 xK= 1+KQUNTr1ln
KT = ABS(KK=-1)
KS = KT+10
IF(KS«GE«KOUNT) KS = KOUNT
WRITE(OUT»1003) KTr (XP(KK)PKR = KK¢KS)
WRITE(QUT»1004) (ZP(KR)*KR = KK/,KS)
S0G CONTINUE
900 CONTINUE
WRITE(OUT»100%) NJeMK
825 RETURN
1000 FORMAT(1H1//5X6A6)

1001 FORMAT(/@ UATA FOR ISOLIME MUMBER RI2¢@ AT VALUF RF1pelr m - R
1I13¢i DATA pOINTS LOCATEDW)

1002 FORMAT(/ a0 1 2 3 5 5 Ry
1 R 6 7 8 % 10 @)

1003 FORMAT(13+,2X10(FB8.2r2X))

1004 FORMAT(5X10(Fr,2r2X))

1005 FORMAT(//G **#+*xSET PLOT PARAMETERS, NJ=RrI3,Q NKZRIZeR #*%kxQ)
END

SUBROUTINE INTERP
INCLUDE COMLSTPLIST
PO 100 U = 1%

L = 1SoPT(W)
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IF(L.E¢,.0) GO TO 100
IF(LeEG.1) CALL ISOGEN(ZeXRiPST s ISOLNsLoNJI?MNK»

i I6GHVISCOUS STREAMLINES )
IF(LeEG.2) CALL ISOGEN(ZCeXeDFLTeISOLNIL ¢NJ2tiK,y

1 36HBUCYANCY PARAVMETER ISOLINESe 140PYCS )
IF(LeEQ.3) CALL ISOGEN(ZCerArGAMy ISOLNsLyNJrMKY

1 I6HSALINITY ISOLINES,PARTS PER THOUSAND )

IF(LEQs4) CALL TISOGENM(ZCeXe TEMPERe ISOLMrL rNUeNKy

i 36HTEMPERATURE CONTO1:RSe DFG CENTIGRADE )

100 CONTINUE
RETURN
END

SUBROUTTNFE GALUSS(N)
INCLUDE coMLST LIST
DIMENSINAN PSz(LJ)

DELB = (SIGTR=SIGTB)/DELTY
ZR T 2.%Z2B

ZpP = ZR=-DZ(2)*,5
ZR1 = 2.%(Z2B=pZ(2))
pPSB(1) = PSI(1le1)
IF(NeNE.1) GO TO 100
RMIND = 10’ZP/80

RMIN = 1.=2R/9,
RMIi1 = 1e~2R1/9.

c = 1./9.

Cl = le/8s

DO 10 4 = 2.nJ

uzldrel) = 1.0

uB = 1.

IF(RCIU) e GERMIN) UZ(Jrl) = EXP(=840,5%(C+(RC(J)~=1.)/ZR) *x2)
IF(RC(G) eGE RMINL) Up = EXP(=00,5%(C+(RC(U)=1+)/ZR1)*%x2)
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10

50

100

l1iv
120

150
160

170

IF([)Z(J'l)OLEtOOI) UZ(J'].) = N

IF(UB«LTeo01) ye = 0,

PSI(JerlY = PSTI(J=1o1)+UZ(Jr 1) *¥RC (I *CASHIY () pKT) %DX

PSB(J) = Pea(J=1)+Un*RL (J) *CAGHIX (J) kK T) %N

CONTINUE

LG 50 U0 = 2end

DELTJr1)= 1.0

IF(RCUJ) oG +RMIND) DELT(Url) = eXP(=32%(CL1+(RC(J)=1.)/2ZP)**2)
IF(DELT(Jr1) ot Eee01) DELT(Jr1) = 0o

GAM(Jr 1) = DELT(Jr1)

CONTINUT

GO TO 120

DO 110 U = 2yNJ

UZ(Jrl) = EXP(=92.*%(RC(J)/ZR)**2)*xyMR

UB = EXP(=92¢%(RC(J)/ZR1)**%2)*xvMpl
IF((UZ(Jr1)/UMB) oLE.01) UZ(Jrl) = 0o
IF(UB/VMH]..LE_.OO].) ug = 0.
PSI(Jrl) = PSI(J=1¢1)+UZ(Jr1) xR (J)*CASHIX(U) e KT) *DX
PSB(J) = PsB(J=1)+UB*RC{U) «CASH(X (J) 4 KT) x0X
EXPART = EXP(=68.*%(RC(U)/ZP)*%2)
IF(EXPART.LE..01) EXPART = 0.
CELT(Jr1)= EXPART*DMR+DELR
GAM(Jr1) = EXPART*GMR
CONTIMuE
00 150 U = 2eMd
NE = J
JPORT = J
GO TO 160
CONTINUE
Do 170 J
uxX(Jrl)
CONTINUE
RETURN
END

1vMB
- (PST(Je 1) =pSg(U)) /7 (2 (J)xDZ(2))
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sSUBFOUT INE
SUBROUTTNE

SIMJET(NCDoZBrDZM'T'fo'VNBpVMBl'GMR'DMB)
ORTAINS SIMILARITY SCLUTION FOR vERTICAL PLUME

DIMENSION  A(4) e AE(H) P AR(L) ¢ DZ1(4) p M1 ()
AK = 84, !

all) = 0.

Al2) = 5

A(3) = .5

AlY) = 1.

FRACT T le/0e

£x1 = 1e/30

CELZ = «5xpZM

2R3 = ZB

ZB2 = ZB=.25%0IM

281 = Zr=pELZ

FIG LEMGTH Fok FLGW ESTABLISHMENT
20 = S

DO 10 ¥ = 1+10

ZE = 5.57/((1-42/F0*ZO*1)k*.5)
DEL = ABS((ZE=Z0)/ZE)
IF(OEL.LE++Q0Q1) GO TO 1b

10 CONTINUE
gBl
£Ebp2
£B3
vMB1l
SB
VMB
OMg
GMB
RETURM

30 pZ1l(1)

TN T

0) 0 TO 30
(4./ZE)**3+3-/32./FOx(ZBl**Z-ZF**a)
(4./ZE)%*343e/32. /F0x(ZB2x+2=ZE**2)
(u./ZE)**3+3./3z./r0*(283**3-25**2)
FRI**EX1¥AK**.5/2781 J
25X ZB2¥ER2X*EXL
EBIk*EX1*AK** 5/ ZB3
1./5B
OMB

INT(ZE+1+)=2E
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50

100

150

160

200

DZ1(2)
D21¢(3)
DZ1(4)
11(1)
N1(2)
N1(3)
N1g)

£

R

l

0o 200 L
DZ
NSTEPS
Lo 100 J
0O S50 «
AE (K)
AR(K)
CONTINUE
Z

E

R
CONTINUE
IF(LeNE.3)
OMb

GMB

GO TO 140
IF(LsEQ.L)
vMB =
CONTINUE
CONT INUF
RETURN

END

TR R R U T R R L T O A T O T I IR R A T ]

itn

o1
DELZ/10.
£21(3)

1

10.x(ZB1=2E)

5

S

(4,/ZE) %3

25

43

14

DZ1(L)

N1(L)

1+ NSTEPS

1ry
DZ*FE(A(K)*UZ+Z!A(K)*AE(K-1)+E.A(K)*AR(K-1)+R.FO)
GZAFRUA(KI*DZHEr ALK) XAE(K -1) +E2 A(K) *AR(K=1)+R»T)

Z+DZ
E4+FRKACT*(AE (1) +2 % (Ac (2) +AE(3) ) +AE(4))
R+FRACT*(AR(1)+42,*x(An(2)+AR(3))+AR(4))

GO TO 150
16, ¥R/ (E**EX1%2)
1./(-245*2#6**EX1)

G0 TO 160
E**EXl*AK**oS/Z
yMe1 = VvMB
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FUNCTION MCL(NeM)

FETURNS ZERO WHENEVER N IS EVENLY DIVISIBLE BY M
MO = M= (N/M) M
END

FUNCTIOM  SANH(XeN)

SANH T WSk (EXP(X)=EXP (=X))
IF(1eEG.0) SANHEX
END

FUNCTION CASHI(XeN)

CASH S WS (EXPIX)Y+EXP(~X))
IF(N.EG,0) CASH=1.
END

FUNCTION XCOORD(X)
xCOORD T «S5*SINH(X)
RETURN

END

FUNCTION FROZ'E'R*T)

FR = -.109*E**(1./3.)*T*Z
RETURN

END
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FUNCTION
FE
RETURN
END

FE(Z'E*R?FO)
= .75%x2*R/FQ
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