

AN INVESTIGATION OF ELECTRICAL PROPERTIES OF POROUS MEDIA

S.W. Wheatcraft K.C. Taylor J.G. Haggard

September 1984

WATER RESOURCES CENTER

PUBLICATION #41098

AN INVESTIGATION OF ELECTRICAL PROPERTIES OF POROUS MEDIA

by

Stephen W. Wheatcraft Kendrick C. Taylor John G. Haggard

Water Resources Center
Desert Research Institute
University of Nevada System
Reno, Nevada 89506

Contract No. CR8 10052-01

Project Officer Leslie G. McMillion

Environmental Monitoring Systems Laboratory
P.O. Box 15027
Las Vegas, Nevada 89114
U.S. Environmental Protection Agency

ABSTRACT

The problem of ground-water contamination has provided a need for detailed information on ground-water quality. Well drilling and sampling provide limited information, especially when trying to delineate a ground-water contamination plume. D.C. electrical geophysical methods are being increasingly used to help delineate contaminated ground water, however, these methods provide only resistivity data. Simple resistivity is affected by many different parameters* and it is often not possible to develop a unique interpretation of the data. Complex resistivity (CR) is a method that provides considerably more information about the saturated porous medium, thus introducing the possibility of reducing the unknown parameters that affect the electrical properties of the porous medium and thereby providing a unique interpretation.

The CR method provides two curves: impedance amplitude (related to resistivity) and phase shift (related to capacitive effects), both as a function of frequency. Although CR provides much more information than a single resistivity measurement, there is not much known about how the CR responses are affected by pore geometry, pore fluid chemisty and clay content.

In this study, a laboratory measurement system is set up to allow systematic variation of parameters of interest, in order to determine their effect on amplitude and phase data. The laboratory apparatus consists of a sample holder, appropriate electrodes, and a data collection and analysis system. Experiments were conducted to vary grain size, concentration of NaCl and clay content.

*Such as pore geometry, pore fluid chemistry and clay content

Results indicate that grain size has little to no effect on amplitude or phase at any frequency for clay-free samples. Phase-shift becomes increasingly negative over the range of frequency investigation for a clay-bearing sample (3% clay content). The amplitude also becomes increasingly smaller with increased frequency for a clay-bearing sample.

Comparison of amplitude versus salinity for the clay and nonclay samples show that it may be possible to develop a modified version of Archie's Law for low salinity samples that contain clay.

CONTENTS

Fi	stra gure bles		ii V V
	1.	Introduction	1
	2. 3.	Objectives Theory and Background of Electrical Measurements	4 6
	٠.	The Need for Complex Electrical Measurements	6
		Calculation of Complex Amplitude and Phase	8
	4.	Experimental Design and Equipment	· 13
		Sample Holder	13
		Electrical Equipment	16
		Porosity and Clay Content Determination	17
	-	Method of Sample Saturation	17
	5.		18
	6.		21 21
		Coupling Errors A/D Converter	21
		Low Frequency Effects	22
		D.C. Offset	22
		Clays	22
		Current Density	23
		Data Recording	23
	7.	Results	25
		Data Analysis Procedures	25
		Summary of Experiments	25
		Experimental Errors and Interference	27
		Comparison of Experimental Results with other	2.1
		Research	31 34
		Effects of Grain Size on Amplitude and Phase Effects of Clay on Amplitude and Phase	34
	8.	Conclusions	40
		nces Cited	42
	lecto pend	ed References ices	45
<u>c</u> - 1	-		
	1.	Graphs of each run.	55 79

FIGURES

Num	<u>ber</u>	Page
1.	Electrical response of porous medium.	7
2.	Experimental setup.	14
3.	Sample holder.	15
4.	Calibration runs: sample holder filled with salt solution of indicated molarity.	20
5.	Large glass beads sample, without clay.	28
6.	Medium glass beads sample, without clay.	29
7.	Small glass beads sample, without clay.	30
8.	Sample of large glass beads with 3% Na-Montmorillonte.	32
9.	Selected results of sample of large glass beads and 3% Na-Montmorillonite.	33
10.	Effect of grain size on phase and amplitude, without clay.	35
11.	Effect of 3% Na-Montmorillonite and phase and amplitude.	36
12.	Effect of clay content on the impedance vs. salinity relationship.	38
	TABLE	
1.	Summary of the Samples Used.	26

INTRODUCTION

The use of geophysical techniques has become common in invesjations of the character and extent of the ground-water
source. This is especially true with respect to electrical
thods. In general these techniques rely on detecting the elecical response of subsurface units and then correlating this with
her geologic information such as well logs, geology, and water
alysis to obtain information such as the depth to ground water,
alitative estimates of occurrence and distribution of groundter contamination, and even estimates of the hydraulic conducvity of aquifers (Zody et al., 1974; Keys and MacCary, 1971;
ott, 1980).

In general past measurements of the electrical response have en limited to the D.C. resistivity of the medium, which is only e portion of the electrical response. Additional information out the system can be obtained by more fully characterizing the ectrical response of a medium, which consists of two parts, real dimaginary. This can be represented by amplitude and phase. e impedance represents the total resistance (measured in ohms) flow of an alternating current and the phase shift represents e difference between the current and voltage waveforms voltage is measured in radians, or milliradians. The impedance and hase shift can be affected by numerous properties of the porous edium and the fluid within the porous medium, and in general, oth are frequency dependent.

Although measurements of the complex electrical signal are common to ground-water investigations, they have been used by minerals exploration industry since the late 1940's (Brent,). The techniques go by such names as "complex resistivity" (Zonge, 1972) or "spectral IP" (induced polarization) (Pelton 11., 1978).

In the past few years, emphasis in the ground-water disciphas shifted from ground-water quantity to concern about
ind-water quality. Traditional D.C. resistivity techniques
i in conjunction with other methods usually provide adequate
prmation about ground-water head levels (for unconfined
ifers). However, D.C. methods are inadequate for many probin which the contaminant plume location, distribution, and
nical nature are of interest because so many parameters affect
D.C. resistivity. For instance, a relatively low resistivity
ue can be indicative of high salinity and/or high moisture
tent.

Complex resistivity investigations conceptually have the ential to reduce the number of unknowns by providing more eleccal information. Because many parameters affect the resistivof a saturated porous medium it is not possible to separate individual effects with resistivity data alone. 1 advantage of the CR technique arises because two sets of bers (impedance and phase shift) for a suite of frequencies are erated for a particular porous medium, instead of a single ue of resistivity that is obtained with D.C. techniques. ause of this additional information, it may be possible to :ain actual concentration values and/or type of chemical species it are present in a contaminated ground-water system. eresting possible use for CR is that organic pollutants may emically interact with earth materials to create a complex sistivity anomaly which would not be detected by D.C. resisity measurements alone.

Carefully controlled laboratory experiments represent an portant step in isolating and determining the complex response the fluid and chemical constituents contained within a porous

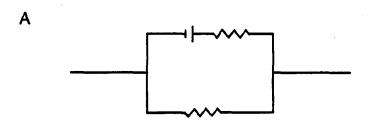
medium. As a first step towards this long range goal, this study is an attempt to characterize the complex, frequency dependent electrical response of a saturated porous medium when certain parameters are varied. The parameters to be varied in these experiments include grain size, salinity and clay content. There already exists a large body of literature characterizing the complex electrical response of rocks due to the occurrence and distribution of ore materials (Wong and Strangway, 1981; Wong, 1979; Zonge, 1972; Marshall and Madden, 1959). Although most of this information is not directly transferable to the problem of groundwater contamination, it has been very helpful in the design of the present study.

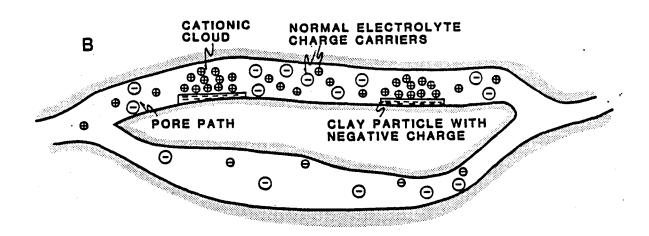
OBJECTIVES

This publication was produced as part of a cooperative agreement between the Desert Research Institute, University of Nevada System and the U.S. Environmental Protection Agency (EPA CR810052-01). The objectives of this task are as follows:

- Design and build laboratory equipment to measure complex frequency dependent electrical response of a saturated porous media with accuracy and repeatability.
- 2) Calibrate the experimental apparatus and compare calibration results to similar experiments by other researchers.
- 3) Measure complex electrical response of porous media as a function of frequency for: a) samples of several different grain sizes; b) samples of saturated porous media with a range of solutions of an electrolytic solute; and c) samples with and without clay.
- 4) Analyze the collected laboratory data for relationships between the varied parameters and the complex electrical response.

To achieve these objectives, the project was divided into four tasks. Task one consisted of a thorough search of the literature to assess the applicability of field CR methods to groundwater quality and contamination investigations. Since these methods were developed primarily for sulphide ore body and other ore-related investigations, interpretation of field data was not expected to be directly applicable to ground-water problems. A literature search was also conducted to determine what other


experimental laboratory equipment had been used for complex parameter estimation. Information gleaned from this search provided the basis for the experimental design that was chosen.


Task two consisted of building, testing and calibrating the laboratory equipment. Task three was the actual suite of experiments for the numerous parameters that were varied. Task four was the analysis and interpretation of the experimental results.

THEORY AND BACKGROUND OF ELECTRICAL MEASUREMENTS

THE NEED FOR COMPLEX ELECTRICAL MEASUREMENTS

The most commonly made electrical measurement is the D.C. resistivity of a material, which represents only a portion of the electrical characteristics of a medium. There is also a capacative property which causes a phase lag between the current and This phase lag makes it convenient to describe the electrical properties as a complex number represented as amplitude and phase. In the most general case both of these properties of the sample are considered to be frequency dependent. One simplified example of this is the electrical circuit shown in Figure 1a. We see in this case that the D.C. resistance alone is not sufficient to characterize the circuit. To fully investigate the circuit both phase and amplitude must be measured as a function of fre-Ward and Fraser (1967) discuss that a similar situation can occur in a porous medium. Figure 1b shows two pore paths, the upper one with a clay particle and the lower one without clay. The cations are attracted to the vicinity of the clay because of its excess negative surface charge when current is applied (Figure 1c). Cations can move freely through the cation cloud but anions are blocked. This forms an ion-selective membrane and a buildup of charge. The charge buildup is analogous to the charge built on the capacitor in Figure 1a.

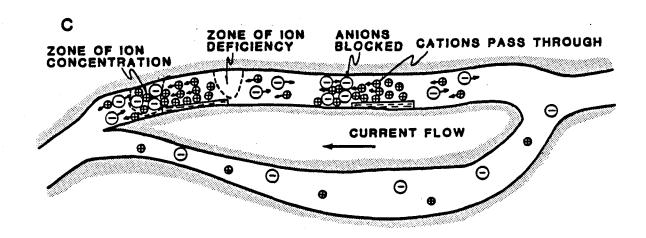


Figure 1. Electrical response of porous medium:

- A. Analogous electrical circuit.
- B. Charge distribution in pore without current flow.
- C. Charge distribution with current flow.

(After Ward and Frazier, 1967).

CALCULATION OF COMPLEX AMPLITUDE AND PHASE

To determine the complex impedance of the sample the voltage waveform across a known resistance (V_r) and across the sample (V_s) are digitized (see Section 4). By measuring the voltage drop across the known resistance (R_r) , the current can be determined utilizing Ohm's law. To characterize the sample impedance independent of the sample geometry, it is necessary to multiply by the sample length (L) and divide by the sample cross section (A_r) . This is referred to as the material's intrinsic resistivity.

To obtain the complex electrical response of the sample, a sine wave was used as an input and the digitized voltages were recorded and analyzed for up to 10 harmonics. This was repeated until the frequency range of interest was covered. An alternate technique employed by Zonge and Hughs (1981) utilizes a waveform that contains numerous harmonics such as a square wave. By doing this they were able to obtain results at many frequencies by only doing one measurement. This technique can save time but it requires more data points per waveform to obtain reliable results, which causes problems in non-linear systems.

To measure the voltage waveforms across the sample and resistor, digital recording is necessary. The equipment used to do this is discussed in Section 4.

To reduce the digital data a matrix inversion method was chosen instead of a fast Fourier transform because it provides a method to calculate the variance to check data quality (Olhoeft, 1979). The data is in a series of voltages and times:

$$v_{s_1}, v_{s_2}, v_{s_3}, \dots, v_{s_n}$$
 $v_{r_1}, v_{r_2}, v_{r_3}, \dots, v_{r_n}$
 $t_1, t_2, t_3, \dots, t_n$
(1)

where:

n = number of digitized points

ti = time at the ith sample

 V_{s_i} = voltage reading from across the sample at t_i

 V_{r_i} = voltage reading from across the resistor at t_i

These data were fitted to the following model (Olhoeft, 1979);

$$V_{r}(t) = V_{r}dc + \sum_{i=1}^{k} V_{r_{i}} \sin \left(\omega_{i}t + \phi_{r_{i}}\right)$$

$$V_{s}(t) = V_{s}dc + \sum_{i=1}^{k} V_{s_{i}} \sin \left(\omega_{i}t + \phi_{s_{i}}\right)$$

$$i=1 \quad V_{s} \quad (2)$$

where:

t = time

 $\omega_i = 2\pi f_i$

 f_i = frequency of ith harmonic

 ϕ_{r_i} = phase shift of the ith harmonic of the voltage waveform across the resistor relative to time 0

 ϕ_{S_i} = phase shift of the ith harmonic of the voltage waveform across the sample relative to time 0

V_r = amplitude of the ith harmonic for the voltage waveform across the resistor

 V_{s_i} = amplitude of the ith harmonic for the voltage waveform across the sample

 $V_{r}dc$ = zero frequency component of the voltage waveform across the resistor

 $V_{\rm S}dc$ = zero frequency component of the voltage waveform across the sample

k = number of harmonics considered

These equations are Fourier series and can be used to reconstruct any periodic waveform. In this study a sine wave input was used and therefore the ideal calculated response would contain only 1 harmonic (k = 1). However, Olhoeft (1981b) suggests that measuring the change in harmonic content of the waveforms can give an indication of the linearity of the sample's response. Therefore even though a sine wave input was used, up to 10 harmonics were analyzed to check the linearity of the sample's electrical response.

Equation 2 can be set up in the following matrix form (Olhoeft, 1979).

$$\underline{X} = \underline{T} \underline{A} \tag{3}$$

where \underline{T} is n by (1+2k), \underline{A} is (1+2k) by 2, \underline{X} is n by z where n is the number of digitized points and k is the number of harmonics. The components of the matrices are as follows:

$$\underline{x} = \begin{bmatrix} v_{s(t_1)}, & v_{r(t_1)} \\ v_{s(t_2)}, & v_{r(t_2)} \\ v_{s(t_n)}, & v_{r(t_n)} \end{bmatrix} \tag{4}$$

$$\underline{\mathbf{T}} = \begin{bmatrix} 1, \sin(\omega t_1), \cos(\omega t_1), \sin(2\omega t_1), \cos(2\omega t_1)...\sin(k\omega t_1)...\cos(k\omega t_1) \\ 1, \sin(\omega t_2), \cos(\omega t_2), \sin(2\omega t_2), \cos(2\omega t_2)...\sin(k\omega t_2)...\cos(k\omega t_2) \\ 1, \sin(\omega t_n), \cos(\omega t_n), \sin(2\omega t_n), \cos(2\omega t_n)...\sin(k\omega t_n)...\cos(k\omega t_n) \end{bmatrix}$$
(5)

$$\underline{A} = \begin{bmatrix}
V_{s}dc & , & V_{r}dc \\
V_{s_{1}}\cos\phi_{s_{1}} & , & V_{r_{1}}\cos\phi_{r_{1}} \\
V_{s_{1}}\sin\phi_{s_{1}} & , & V_{r_{1}}\sin\phi_{r_{1}} \\
V_{s_{2}}\cos\phi_{s_{2}} & , & V_{r_{2}}\cos\phi_{r_{2}} \\
V_{s_{2}}\sin\phi_{s_{2}} & , & V_{r_{2}}\sin\phi_{r_{2}} \\
\vdots & \vdots & \vdots & \vdots \\
V_{s_{(1+2k)}}\cos\phi_{s_{(1+2k)}} & , & V_{r_{(1+2k)}}\cos\phi_{r_{(1+2k)}} \\
V_{s_{(1+2k)}}\sin\phi_{s_{(1+2k)}} & , & V_{r_{(1+2k)}}\sin\phi_{r_{(1+2k)}}
\end{bmatrix} (6)$$

Examination of these matrices reveals that the unknown quantities are all in Matrix \underline{A} . As given by Olhoeft (1979) this matrix can be determined as follows:

$$\underline{\mathbf{A}} = (\underline{\mathbf{T}}^{\mathbf{T}} \underline{\mathbf{T}})^{-1} \underline{\mathbf{T}}^{\mathbf{T}} \underline{\mathbf{X}} \tag{7}$$

where T^T means the transpose of \underline{T} and the $^{-1}$ refers to the inverse matrix. From the components of the A matrix the following quantities can be obtained.

$$\phi_{s_i} = \text{Arc tan } (A_{(1+2i,1)}/A_{(2i,1)})$$
 (8)

$$\phi_{r_i} = \text{Arc tan } (A_{(1+2i,2)}/A_{(2i,2)})$$
 (9)

$$V_{s_i} = A_{(2i,1)}/\cos\phi_{s_i} \tag{10}$$

$$V_{r_i} = A_{(2i,2)}/\cos\phi_{s_i}$$
 (11)

These components are then utilized to obtain the magnitude of the intrinsic impedance ($|z_{in}|_i$) and the phase shift (ϕ_i) as follows:

$$|z_{in}|_{i} = \frac{v_{s_{i}}}{v_{r_{i}}} (R_{r}) (K)$$
 (12)

$$\phi_{i} = \phi_{s_{i}} - \phi_{r_{i}} \tag{13}$$

The average harmonic distortion is also calculated as a measure of the linearity of the sample's electrical response by:

where, % THD is referred to as the total harmonic distortion.

EXPERIMENTAL DESIGN AND EQUIPMENT

The basic electrical measurement system utilized in this study is shown in Figure 2. The operation of the system is basically the same as the system described by Olhoeft (1979). The set-up has also been employed in the study by Nelson et al. (1982). To determine the complex impedance it is necessary to provide a current of the desired frequency in the sample. This is done by connecting a function generator to the current electrodes in the sample holder. The voltage waveform is measured by digitizing the signal at the voltage electrodes and the current waveform is measured by digitizing the voltage drop across a known resistor. The digitized data can then be processed.

SAMPLE HOLDER

An important feature of the system is the sample holder (Figure 3) and its four-electrode arrangement. The unit consists of two plexiglass reservoirs that are connected via a cylindrical plexiglass sample tube. The sample is held in place by plexiglass plates. The cylinder and sample can be removed from the reservoirs without disturbing the sample.

The four-electrode arrangement has been used for low frequency measurements below 1000 Hz (Olhoeft, 1979; Nelson et al., 1982). Platinum mesh electrodes were chosen to minimize electrolytic action and were placed at each end of the sample tube where they measured the voltage drop across the sample. The current electrodes are contained in the end reservoirs. The major

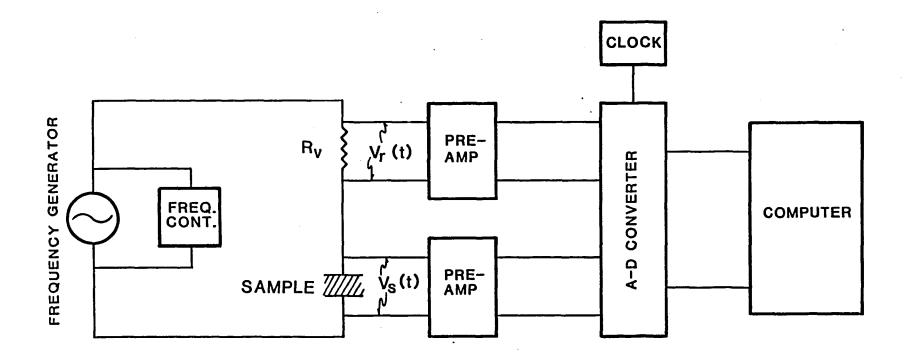
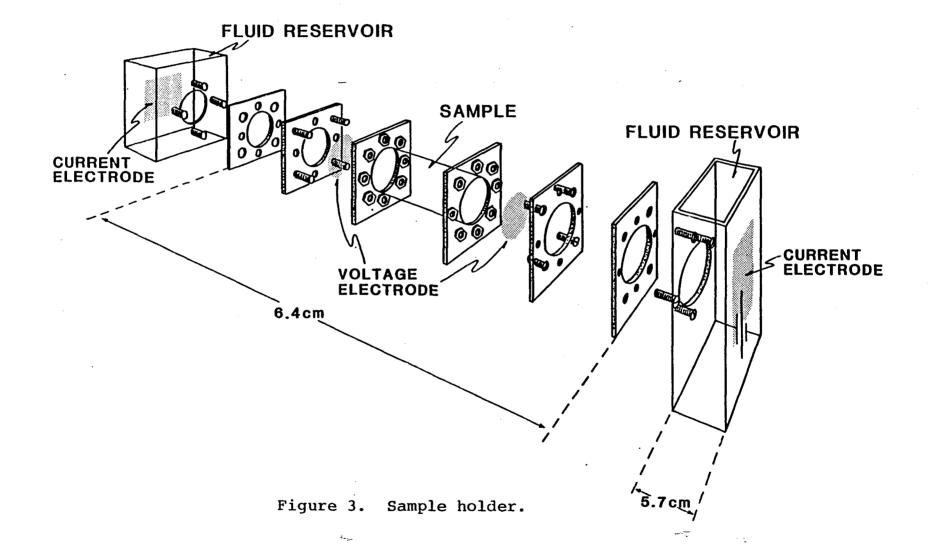



Figure 2. Experimental setup.

advantage of this system is that it circumvents the problems associated with electrode polarization and other problems (Fuller and Ward, 1970).

The voltage electrodes located outside of the cylindrical sample tube can polarize if the voltage measuring device draws an appreciable current. However, the preamplifiers draw negligible current and electrode polarization is not a problem with this The problem with the four-electrode system is that mutual inductance occurs between the electrode and leads and may become serious above 100 Hz if the sample impedance is greater than 5000 ohm-cm. Although capacitive coupling is expected in samples with high impedance, the inductive coupling inherent in the equipment overshadows the capacitive coupling. Because resulting instrument errors are the net effect of both capacitive and inductive coupling, the instrument error will generally be referred to simply as coupling errors or interference for the remainder of this report. The resistivity of the samples used in this study effectively limits the frequency range of the measurement system to less than 5000 Hz. This is not a serious problem because CR measurements taken in the field presently fall within this range.

ELECTRICAL EQUIPMENT

A function generator was employed as the voltage source and a frequency counter was used to determine the output frequency.

A decade resistor box was constructed from resistors whose values were determined on a commercial bridge. The resistors act as the known resistance in the measuring circuit and the unit contained values from 10 ohm to 1×10^6 ohms.

Because the current density had to be kept low to ensure a linear electrical response, the resulting voltage drops were too small to be accurately detected by the A/D converter. This is especially pronounced for samples with low impedances and at low frequencies. To overcome this problem, a preamp was used.

After the voltage waveforms were amplified, they were digitized and recorded with a resolution of 0.002 volts. The A/D converter (Andromeda Systems Model ADC 11) is interfaced to an LSI 11/03 computer that controls the sampling and recording.

To minimize noise pickup, all leads were coaxial cables with grounded shields and the decade resistance box, function generator and sample holder were surrounded by a Faraday cage.

POROSITY AND CLAY CONTENT DETERMINATION

Porosity measurements were made by weighing the dry sample holder both empty and full of glass beads, the weight difference is the weight of glass, which by knowing the glass density can be converted into the volume of glass. The porosity is found by taking one minus the fraction of the volume of glass to the volume of the sample holder.

Clay content was measured as percent weight of the sample. The clay was powdered and heated at 105°C for 12 hours before weighing to insure that all free water was driven out.

METHOD OF SAMPLE SATURATION

The sample was saturated by filling the fluid reservoirs. Saturation was considered to be complete when the reservoir level remained constant and the pore fluid conductivity, temperature and pH were constant in both reservoirs, which took a few days. This process could have been accelerated had vacuum saturation been available.

TESTING AND CALIBRATION

A cell constant (K), which is equivalent to L/A (defined in Section 3), was calculated based on electrical measurements of a KCl solution with known electrical properties. This was necessary since the measurement of the sample geometry was not believed to be as accurate as the electrical measurements. The resulting cell constant utilized in the measurements was 0.257 (cm⁻¹) and was frequency independent. It is interesting to note that based on geometric measurements the cell constant was calculated at 0.251 (cm⁻¹). An error of 0.03 cm in the measurement of the radius could account for this difference and it appears that the K determined by electrical measurements is a reasonable value and is probably superior to actual dimension measurements.

In order to determine lead effects, the system was calibrated by replacing the sample with a parallel resistance-capacitance (R-C) network with known values. However, the system agreed quite well with the measured values of the R-C network for resistances less than 1000 ohms. The tests with resistances greater than approximately 1000 ohms had a phase shift and impedance magnitude that deviated from the measured values. The phase shift was positive indicating inductive effects (Olhoeft, 1975). Since it was uncertain if this result was due to the mutual inductance between the leads and wiring necessary for R-C network, it was decided to test the system with NaCl solutions of varying concentrations. This better approximated the system error expected for actual samples since component leads and wires were not present.

The results of these tests are given in Figure 4. In this calibration, the coupling errors were also found above 100 Hz in samples with impedivity above about 3000 ohms-cm. On a log-log plot the slope of these lines were very close to 1.0 which is the expected result of both capacitance and inductance effects (Olhoeft, 1975).

From the standard deviation of the calibration it appears that below 100 Hz the accuracy of the phase shift measurement is within 2 milliradians of the known value. The precision of the impedance magnitude measurements appears to be within 1 percent of the reading below 100 Hz. When the impedivity magnitude is less than approximately 1000 ohms-cm these values apply up to approximately 3500 Hz. Then at 1000 ohms-cm the measurements deteriorate and the precision of the system is basically unknown, except that the precision deteriorates as impedance increases since the coupling errors cannot be removed with the equipment used in this study.

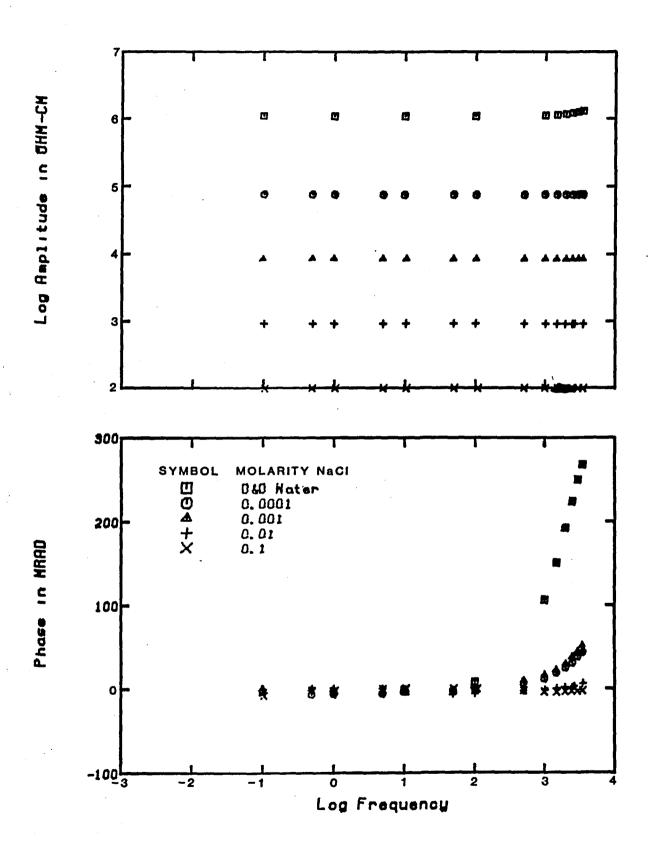


Figure 4. Calibration runs: sample holder filled with salt solution of indicated molarity.

PROBLEMS ENCOUNTERED AND POSSIBLE SOLUTIONS

Once calibration was completed, the experiments were run. As problems were encountered, it was sometimes possible to make minor modifications in the equipment set up and design. (For example, a Faraday cage was installed around the sample holder to help eliminate electromagnetic inteference.) This section deals with problems encountered which required solutions that were beyond the scope of this project to solve, thus alerting future researchers to the expected problems so that they can be dealt with appropriately.

COUPLING ERRORS

At frequencies above 100 Hz there were problems with inductive coupling between the current and voltage electrodes. This was especially true when the sample impedance was above 5000 ohmomor because the current densities were low. These effects could be reduced by an improved amplifier design and a source that would allow higher current densities.

A/D CONVERTER

The A/D converter limited the frequency range of the measurements. The maximum sample rate of 25,000 samples/second caused waveforms above 3,500 Hz to be undersampled. This undersampling increased the error and set a practical upper limit on the frequencies measured.

LOW FREQUENCY EFFECTS

The results below 0.1 Hz are of uncertain reliability. The current density was low during these readings, possibly due to the characteristics of the signal generator and/or increased interfacial impedance at the current electrodes. In either case this could have resulted in the voltage drop across the sample being to small to be accurately digitized. Other possible problems are thermal drift and slow chemical reactions. A function generator that provided constant current would help eliminate these problems.

D.C. OFFSET

A D.C. offset voltage was commonly present, probably caused by spontaneous potential, and at times this reached values exceeding 0.5 volts, which when amplified exceeded the voltage level accepted by the A/D converter (±10 volts). Much of this effect was eliminated by soldering the platinum connections with a palladium-platinum alloy; however, after amplification a D.C. offset of ±5 volts was not uncommon. This could be further reduced with a D.C. bucking circuit.

CLAYS

The clay mixtures also presented some problems. When the clay-bearing samples were initially saturated with a high salinity solution, the clays flocculated and tended to remain in place in the sample. When lower salinity solutions were added, the clay began to disperse, and it is estimated that by the time the lowest salinity solution was used, well over half of the clay had been washed from the sample.

The clay washing problem can be solved by using a recirculating reservoir and pump attached to the sample holder. The

reservoir would be filled with water at the desired salinity and clay concentrations and would have a mixer to keep the clay in suspension. The pump would circulate the water-clay mixture into the sample holder (already filled with porous material). After the mixture had been recirculated through the reservoir several times, the sample holder and reservoir should have the same concentrations of salinity and clay. The pump would then be stopped and the sample holder would be disconnected from the reservoir apparatus and connected to the electrical measurement system. The procedure would be repeated for multiple clay samples. The sample holder designed for the present study would be suitable for this process because of its modular design, allowing quick connection and disconnection from the electrical and reservoir systems.

CURRENT DENSITY

During the course of the experiment a range of current densities from $0.001-10~\mu amp/cm^2$ were used. Some problems with data collection at low current densities were noted. The voltage drop across the sample was low, which might have caused the waveform to be poorly sampled. In future studies a constant current source of variable frequency should help eliminate this problem.

DATA RECORDING

The data recording system relies on two computers operating at the same time. The data processing computer was a DEC PDP11/23 with a UNIX-based operating system, which is not capable of collecting real-time data. Therefore, the data was collected with an A/D converter that was run by a DEC PDP11/03. Frequently one of the computers went down, and measurements could not be made. The amount of time it took to prepare, measure and analyze the voltage data was also large. Each run took about one and one-half days to obtain a complete data set. Most of this time (24 hrs)

was spent equilibrating the sample with the saturating solution. Future studies should allow the lengthy sample preparation and data collection times necessary for each experiment.

RESULTS

DATA ANALYSIS PROCEDURES

The first step in the interpretation of the results was to evaluate and identify errors in the data that were the result of experimental procedures and equipment. This was done by examining all the data collected for individual samples and comparing them to the calibration runs. Sample data which displayed experimental and equipment errors or interference were not considered further in the analysis. (The specific data that were ignored and the rationale for doing so are discussed below.) The second step was to compare data from experiments where only one parameter had been changed, thus allowing the effect of that parameter to be investigated. This analysis is presented in the sections dealing with effects on varying parameters.

SUMMARY OF EXPERIMENTS

There were a total of 24 different experiments (or "runs") made, on four different porous medium samples. Table 1 is a summary of these runs. Appendix 1 is a set of graphs of amplitude and phase shift for each run, and Appendix 2 contains the actual data that are shown graphically in Appendix 1. In addition, Appendix 2 contains the standard deviation and total harmonic distortion data for the amplitude and phase shift data. The first three porous medium samples were pure glass beads of different grain sizes. As can be seen from Table 1, sizes of beads within

TABLE 1. SUMMARY OF THE SAMPLES USED

Experiment Run	Glass Bead dia. (mm)	% Na-Mont. by Weight	Molarity of NaCl Sat. Sol.
GB1	2.8~2.0	0	0.0001
GB2	2.8~2.0	0	0.0005
GB3	2.8-2.0	0	0.001
GB4	2.8-2.0	0	0.005
GB5	2.8-2.0	. 0	0.01
GB6	2.8-2.0	0	0.05
GB7	2.8-2.0	0	0.1
GB8	2.8-2.0	0	0.5
GB9	0.85-0.60	0	0.0005
GB10	0.85-0.60	0	0.001
GB11	0.85-0.60	0	0.005
GB12	0.85-0.60	0	0.01
GB13	0.85-0.60	0	0.005
GB14	0.85-0.60	0	0.1
GB15	0.15-0.106	0	0.0005
GB16	0.15-0.106	0	0.001
GB 18	0.15-0.106	0	0.01
GB19	0.15-0.106	0	0.05
GB 20	0.15-0.106	0	0.1
CG1	2.8-2.0	3.0	0.1
CG2	2.8-2.0	3.0	0.05
CG3	2.8-2.0	3.0	0.01
CG4	2.8-2.0	3.0	0.005
CG5	2.8-2.0	3.0	0.001
CG6	2.8-2.0	3.0	0.0005

each sample varied slightly, but the variation was limited enough so that each sample could be considered essentially uniform in size. The fourth sample was prepared as a clay-bearing porous medium, containing 3% Na-Montmorillonite by weight, mixed uniformly with large (2.2-2.8 mm) glass beads. The clay was mixed with the glass beads in such a way as to cause the clay to adhere to the surface of the glass beads. Another way to mix the clay is to fill the voids with a clay-water mixture. These two methods may give different results, as it is important to specify which is used. A number of different experiments was run on each sample, varying the salinity concentrations, as shown in Table 1.

EXPERIMENTAL ERRORS AND INTERFERENCE

In Figure 5 all of the runs for the large grain size sample have been plotted together. Similarly, all runs for the medium grain size and the small grain size are plotted in Figures 6 and 7, respectively. All the runs with an impedance greater than 5000 ohm-cm show the effects of coupling errors at frequencies greater than 100 Hz. This can be seen in Figures 5-7 as an exponential increase in phase at higher frequencies and was expected because the calibrations behaved in a similar fashion (see Section 5, Testing and Calibration). The observed phase increases are caused by coupling errors within the equipment and should not be attributed to true sample response.

The runs that have the inductance problem are the very low salinity runs, below 0.001 molarity (about 50 ppm). The coupling interference of this equipment limits the useful range of investigation to pore fluids above 50 ppm total salinity.

The total salinity found in most ground waters is higher than 50 ppm, therefore the equipment is able to measure pore fluids in and above the range found in most natural ground-water systems. The runs with serious coupling interference are therefore not considered further in the analysis.

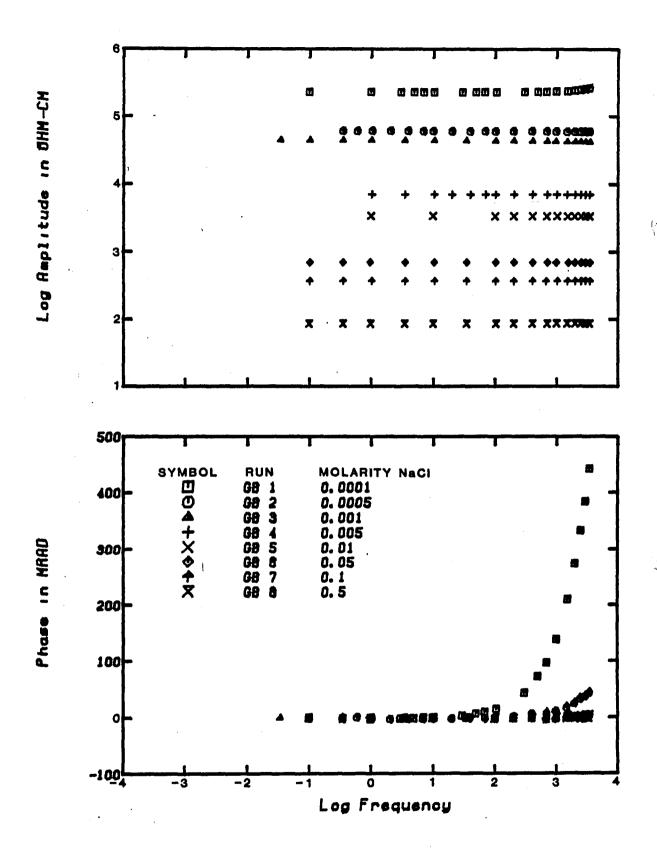


Figure 5. Large glass beads sample, without clay.

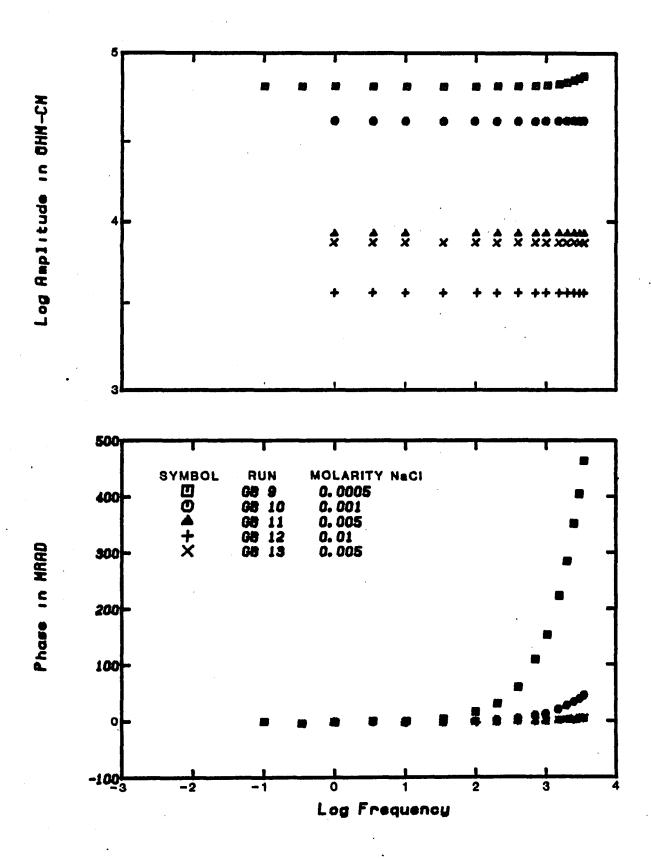


Figure 6. Medium glass beads sample, without clay.

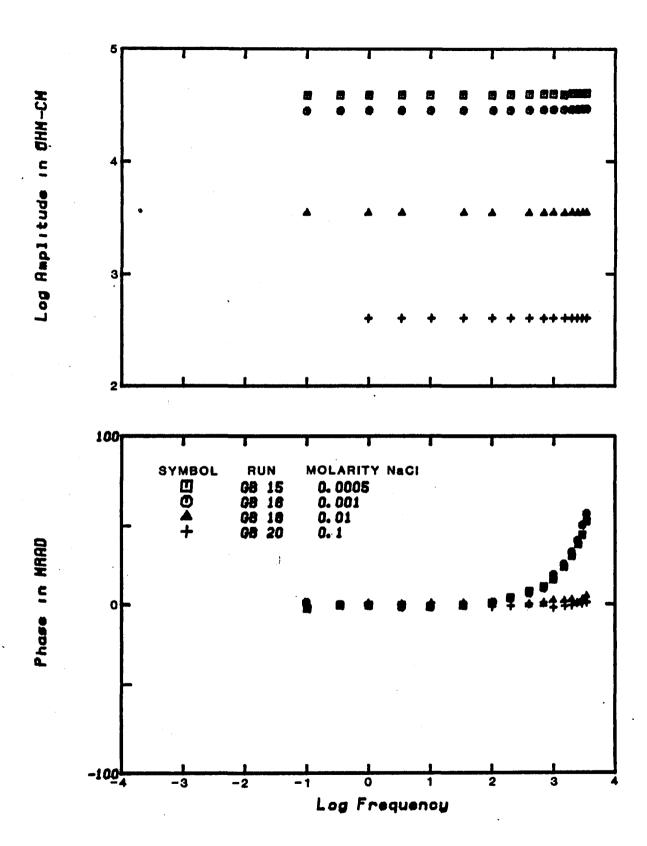


Figure 7. Small glass beads sample, without clay.

For the remaining runs on the non-clay samples, Figures 5-7 show little dependency on frequency for the phase or amplitude. This is expected because there are no polarization mechanisms in the sample and it demonstrates that the experimental setup is working quite well. The experimental results from the fourth (clay) sample in Figure 8 show the data for several runs with different concentrations of NaCl in the pore fluid. Once again the coupling errors can be seen above 100 Hz for low salinity solutions. Below 0.1 Hz there is a wide scatter in the data which can be attributed to low current densities (see appendix 2) at those frequencies, thus the voltages were too small to be adequately digitized by the equipment. In addition, at these low frequencies, the time required to make the measurements increases greatly so that temperature drift and slow electrochemical effects can also contribute to errors. There are methods that will improve the low-frequency data, such as signal stacking. One algorithm was devised to average the signal, but it proved unsatisfactory. In future studies, consideration should be given to some sort of signal processing for the important low frequency data. For these reasons the low frequency data are not considered reliable, and Figure 9 shows the data for the clay sample that are acceptable. These data will be discussed further in the following sections.

COMPARISON OF EXPERIMENTAL RESULTS WITH OTHER RESEARCH

The most obvious effect of the clay is to cause a reduction of the phase at frequencies above 10 Hz. This is expected because of membrane polarization effects and agrees favorably with Olhoeft (1981). The trend and magnitude of the effect agree with Klein and Sill (1982), however they report a positive phase shift which is in disagreement with this work and Olhoeft (1981). It is possible that the discrepancy is due to an opposite definition of the phase. The phase shift also increases with decreasing salinity, which is attributed to an increase in the effectiveness of

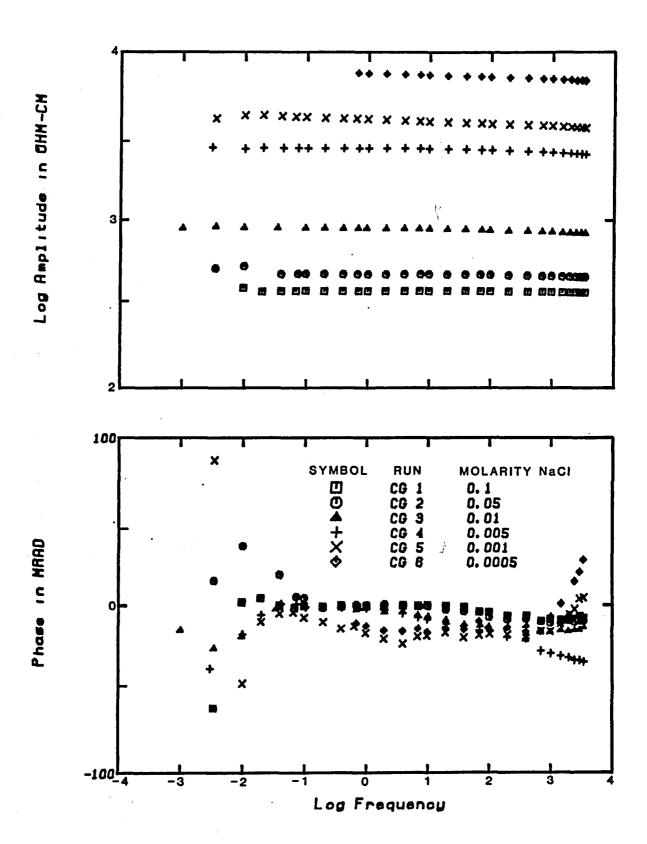


Figure 8. Sample of large glass beads with 3% Na-Montmoril-lonite.

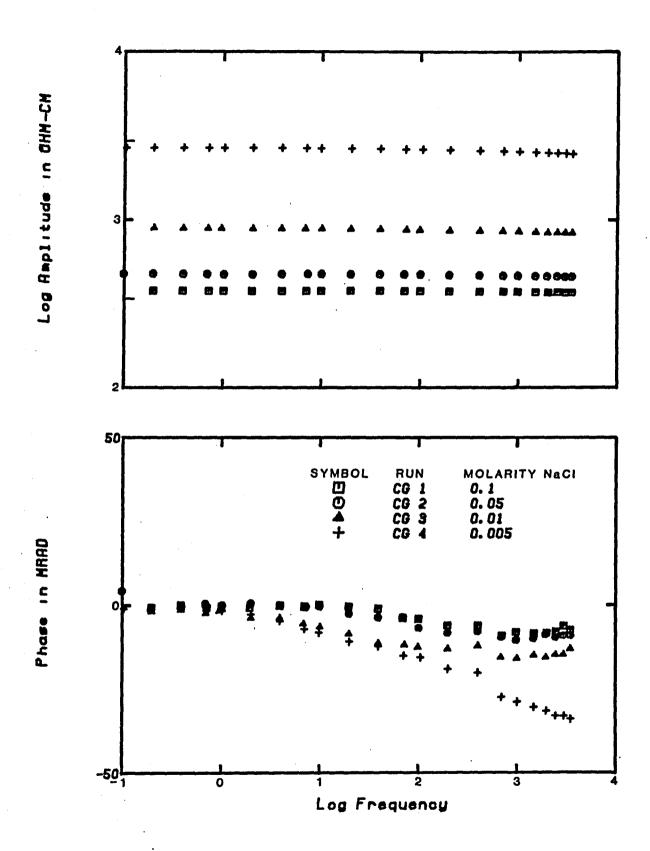


Figure 9. Selected results of sample of large glass beads and 3% Na-Montmorillonite.

clay particles to set up ion selective membranes in low salinity solutions (Ward, 1967). Another observed effect which only occurs in the clay-bearing sample is that the phase peak is shifted to lower frequencies as the salinity is decreased. This can be observed in Figure 9 and corresponds to a similar observation made by Sill and Klein (1981). There is also a small effect of frequency on amplitude. At the higher frequencies the amplitude decreases slightly. Although the small change of only a few percent is difficult to see on the logarithamic plots, it can be verified by examining the actual values in Appendix 2. This trend is in agreement with Klein and Sill (1982) and is caused by capacitive losses at the higher frequencies.

EFFECTS OF GRAIN SIZE ON AMPLITUDE AND PHASE

To investigate the influence of grain size, Figure 10 shows the results of the three clay free samples with a pore fluid concentration of 0.01 molar NaCl. The differences in amplitude are believed to be caused by a difference in the porosity of the samples due to slight differences in the grain sorting. The scale of the phase shift plot is expanded compared to the other phase graphs, thus exaggerating the scatter and the relatively small coupling errors which begin to appear above 1000 Hz. The scatter is within the expected errors of the experiment, so it is concluded that there is no effect of grain size on the phase shift in clay-free samples. This is an expected result, since the phase shift should always be small in a clay-free sample.

EFFECTS OF CLAY ON AMPLITUDE AND PHASE

In a clay bearing sample the phase shift may depend, among other things, on the distance between the ion selective membranes, which is influenced by the grain size (Ward 1967). Figure 11 is a comparison of the response of two samples of the same grain size both with and without clay. The results are shown for runs of 3

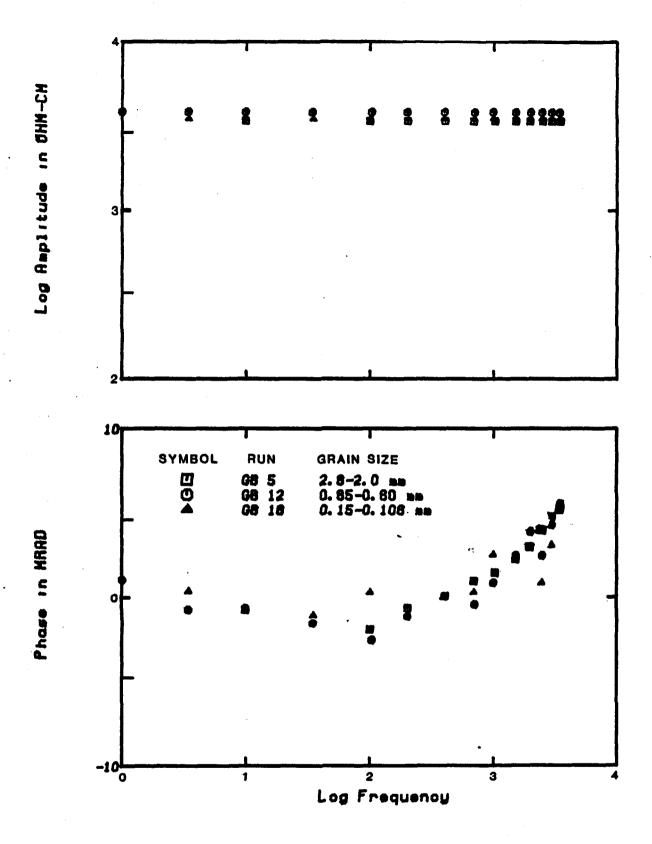


Figure 10. Effect of grain size on phase and amplitude (without clay).

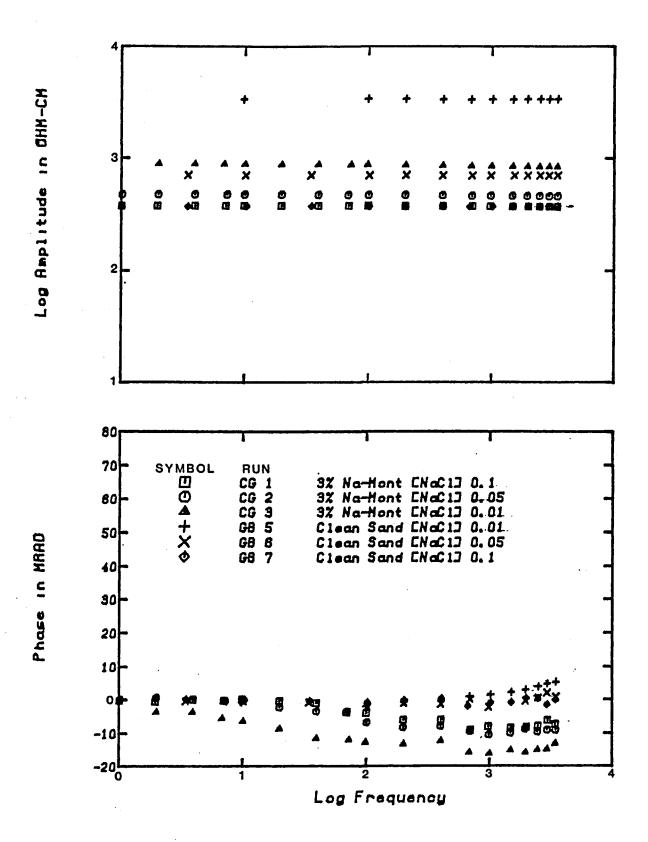


Figure 11. Effect of 3% Na-Montmorillonite on phase and amplitude.

different salinities. The clay-free sample has essentially zero phase shift while the clay sample has negative shifts. This provides encouragement for the use of the CR method to identify clay zones. Traditional resistivity methods which only measure the amplitude at D.C. cannot differentiate between a saline sand and a formation containing clay. The results here indicate that under favorable circumstances, the CR method may be able to make such a distinction. Because the method is sensitive to low clay content, which can have significant effects on the hydraulic conductivity of a formation, it is anticipated that CR may be of significant importance for hazardous waste site evaluation and other groundwater studies.

Figure 12 indicates the effect of clay content on amplitude as a function of salinity for samples of the same pore size. Because the effect of frequency on amplitude is small at low frequencies, a frequency of 10 Hz was chosen for this analysis. The clean sample plots as a straight line on the log-log plot, in agreement with Archie's Law. The clay-bearing sample also plots as a straight line, but with a smaller slope. Run CG4 falls above the straight line, however it is believed that about one-half of the clay was lost from the sample between run CG3 and CG4, thus causing the shift (see Section 6-clays). The smaller slope associated with CG4 implies that a new form of Archie's Law may be developed for porous media containing clay with pore fluid of low salinity. This form of Archie's Law may have the form:

$$\rho_{B} = a\phi^{-m} \left(\rho_{f}\right)^{n} \tag{15}$$

where:

a = empirical constant

φ = porosity

m = cementation factor

 ρ_B = bulk (formation) resistivity

ρ_f = fluid resistivity

n = constant which depends on the formation clay content

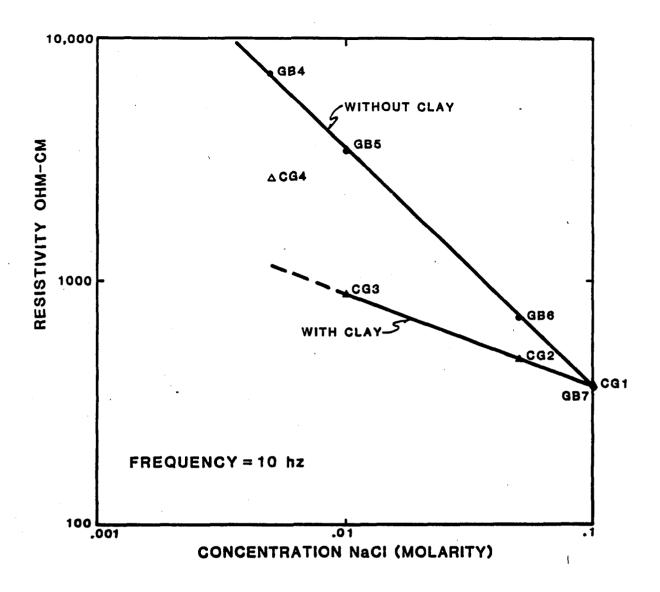


Figure 12. Effect of clay content on the impedance vs. salinity relationship.

The data from these results suggest that the fluid resistivity has an exponent greater than one for clay-bearing samples. However, because there were only three valid data points, an attempt was not made to calculate a value for n. Archie's Law is semi-empirical in nature whereas Waxman-Smits (1968) proposed a model that is physically-based. Future experiments to compare models would be simplified relative to this study because the results of this study show little to no dependence of impedance amplitude over the range of frequency normally used in the field. Thus future experiments could be conducted at one frequency.

Another significant result is that the samples have nearly identical response for pore fluids of 0.1 molarity NaCl. Unfortunately, there are no data beyond where the curves meet, so it is not possible to say what will happen at higher NaCl concentrations. It is generally assumed that clay-containing formations will have a lower resistivity than clean formations due to the additional surface conductance on the clay. Salinity may influence this effect because volume conduction through pores dominates surface conduction at high salinities.

SECTION 8

CONCLUSIONS

CONCLUSIONS

Analysis of the data collected in these experiments leads to three primary conclusions:

- 1. The impedance amplitude and phase data as a function of frequency agree quite well qualitatively with similar experiments by Olhoeft (1981). The agreement between this study and some experimental data by Klein and Sill (1982) is somewhat ambiguous because they report positive phase shifts in the presence of clay. This may be due to a difference in definition, rather than a real difference.
- 2. Amplitude/phase data are not affected by variation in grain size for clay-free samples. This result implies that hydraulic conductivity cannot be determined by amplitude/phase data because hydraulic conductivity is a function of porosity and grain size.
- 3. Clay-free samples have zero phase shift over the range of frequency measurement, whereas the clay-bearing sample showed increasingly negative phase shifts from about 10 Hz through 3500 Hz. The amount of clay in the sample was only 3%, which is an indication that CR measurements may be quite sensitive to clay content and therefore useful for detecting changes in hydraulic conductivity that are due to the presence of clay. Downhole CR data would be more useful than surface CR for clay-content determination for two reasons: a) the vertical changes in hydraulic conductivity are very useful in deter-

mining contaminant migration in groundwater, and b) surface measurements cannot provide the detailed resolution necessary to delineate important changes in hydraulic conductivity over a small vertical distance.

Results of this study show that the presence of clay has a significant effect on frequency dependent electrical properties of a saturated porous medium. Most well log interpretation strategies that have been used in hydrologic investigations ignore or avoid this problem, thus making the interpretations subject to significant error. The electrical effects of clay on a saturated porous medium need to be understood so that clay content and variation can be determined. Amplitude/phase data taken over a range of frequencies show promise for being able to make these determinations. Further quantitative laboratory work needs to be done to more fully understand the relationships between amplitude/phase information and clay content.

Clay content information can be derived from nuclear logging techniques. However, to apply this information in interpreting the electrical response requires an indirect relationship involving the cation exchange capacity of the clay. A model accounting for the effect of clay on amplitude that is based on phase information may be more direct. An additional advantage of CR over techniques using active sources is the elimination of the logistical problems associated with the radioactive source. The potential advantages to downhole CR over other methods may lend further weight to the recommendation to develop a better understanding of the relationship between amplitude/phase information and clay content.

The insensitivity of amplitude and phase to grain size variation provides a strong indication that hydraulic conductivity variations resulting purely from grain size variations will be detectable with downhole CR methods. It should be noted that this is true only for non-reactive surfaces. Information on grain size variation is very important for the determination of hydraulic conductivity variations, and it is recommended that other downhole methods be examined to determine their potential in this area.

REFERENCES CITED

- Archie, G.E. (1942) The electrical resistivity log as as aid in determining reservior characteristics. AIME Trans., V. 146, p. 54-62.
- Brant, A.A. (1981) A History of Induced Polarization as seen from the Perspective of the Newmont Mining Group, 1946-1960 (The Jerome Period). In: Advances in Induced Polarization and Complex Resistivity, Univ. Arizona, pg. 1-18.
- Fuller, B.D. and Ward, S.H. (1970) Linear system description of the electrical parameters of rocks. IEEE Trans. Geos. Elect., V. 8, p.7-18.
- Keys, W.S., MacCary, L.M. (1976) Application of borehole geophysics to water-resources investigations. Techniques of Water-Resources Investigations, U.S.G.S. Book 2, Chapter E1.
- Madden, T.R. and Marshall, D.J. (1958) A laboratory study of induced polarization. USAEC Rept. RME-3156.
- Nelson, P.H., Hansen, W.H. and Sweeney, M.J. (1982) Induced-polarization response of zeolitic conglomerate and carbonaceous siltstone. Geophy., V. 47, p. 71-88.
- Olhoeft, G.R. (1981b) Non-linear behavior of molecules, stems and ions in electric, magnetic or electromagnetic fields. In: Proceedings of the 31st International meeting of Societe De Chimie Physioquo, Elsever Sci., pg. 395-410.
- Olhoeft, G. (1975) The electrical properties of permafrost. Unpub. Ph.D. Thesis, Dept. of Phy., Univ. of Toronto.
- Olhoeft, G.R., Hunt, G.R., Johnson, G.R., Watson, D.E. and Watson, K. (1979) Initial Report of the Petrophysics Laboratory, U.S. Geological Survey circular 789.
- Pelton, W.H., Ward, S.H., Hallof, D., Sill, W. and Nelson, P.H. (1978) Mineral discrimination and removal of inductive coupling with multifrequency I.P. Geophy., V. 43, p. 588-609.
- Scott, D. (1980) Investigation of a surface resistivity technique for the estimation of hydraulic conductivity in stratified drift aquifers: National Technical Information Service, PB81-120594, 98 p.
- Strangway, D.W., Chapman, W.B., Olhoeft, G. R. and Carnes, J. (1972) Electrical properties of lunar soils dependence on frequency, temperature and moisture. Earth Planet. Sci. Lett., V. 16, p. 275-281.

- Ward, S.H. and Fraser, D.C. (1967) Conduction of electricity in rocks. In: Mining Geophysics, V. II, Theory., Soc. Exp. Geophy., p. 197-223.
- Wong, J. and Strangeway, D.W. (1981) Induced-polarization in disseminated sulfied ores containing elongated mineralization. Geophy., V. 46, p. 1258-1268.
- Zohdy, A.A.R., Eaton, G.P. and Mabey, D.R. (1974) Application of surface of geophysics to ground-water investigations. Techniques of Water-Resources Investigations, U.S.G.S. Book 2, Chapter D1, 116 pgs.
- Zonge, K.L. (1972) Electrical properties of rocks as applied to geophysical prospecting. Ph.D thesis, Univ. Arizona, Elec. Eng., 156 pgs.
- Zonge, K.L. and Hughs, L.J. (1981) The Complex Resistivity Method. In: Advances in Induced Polarization and Complex Resistivity, Univ. Ariz., pg. 140-163.

SELECTED REFERENCES

- Adamson, A.W. (1976) Physical Chemistry of Surfaces. John Wiley and Sons, 698 pgs.
- Ahmed, S.M. and Maksimov, D. (1969) Studies of the double layer on cassiterite and rutile. J. Coll. Interface Sci., V. 29, p. 97-104.
- Alvarez, R.O. (1973) Complex dielectric permittivity in rocks: A method for its measurement and analysis. Geophy., V. 38, p. 920-940.
- Anderson, L. and Keller, G.V. (1964) A study in induced polarization. Geophy., V. 29, p. 848-864.
- Angoran, Y. and Madden, T.R. (1977) Induced polarization: A preliminary study of its chemical basis. Geophy., V. 42, p. 788-803.
- Archie, G.E. (1942) The electrical resistivity log as as aid in determining reservior characteristics. AIME Trans., V. 146, p. 54-62.
- Arulanandan, S. and Smith, S. (1973) Electrical dispersion in relation to soil structure. ASCE J. Soil Mech. and Found. Div., V.99, p. 1113-1133.
- Arulanandan, K. and Mitchell, J.K. (1968) Low frequency dielectric dispersion of clay-water-electrolyte systems. Clay and Clay Min., V. 16, p. 337-351.
- Balasanyan, S. (1980) The mechanism of induced polarization of geological medium. Phy. Solid Earth, V. 16, p.543-545.
- Baldwin, M.G. and Morrow, J.C. (1962) Dielectric behavior of water adsorbed on alumina. J. Chem. Phy., V. 36, p. 1591-1593.
- Bodmer, R. Ward, S.H. and Morrison, H.F. (1968) On induced electrical polarization and groundwater. Geophy., V. 33, p. 805-821.
- Bolt, G.H. (1979) Electrochemical phenomena in soil and clay systems. In: Soil Chemistry Part B., Physico-Chemical Models., Ed. Bolt, G.H., Elsevier Scientific, p. 387-432.
- Brant, A.A. (1981) A History of Induced Polarization as seen from the Perspective of the Newmont Mining Group, 1946-1960 (The Jerome Period). In: Advances in Induced Polarization and Complex Resistivity, Univ. Arizona, pg. 1-18.

- Brodd, R.J. and Hackerman, N. (1957) Polarization capacity at solid electrodes and true surface area values. J. Electrochem. Soc., V. 104, p. 704-709.
- Calvet, R. (1975) Dielectric properties of montmorillonites saturated by bivalent cations. Clay and Clay Min., V. 23, p. 257-265.
- Cambell, M. and Ulrichs, J. (1969) Electrical properties of rocks and their significance for lunar radar observations. J. Geophy. Res., V. 74, p. 5867-5881.
- Caplan, R. and Mikulecky, D. (1966) Transport processes in membranes. In: Ion Exchange, A Series of Advances, Vol. 1, Ed. Marinsky, J., Marcel Dekker, Inc. N.Y., p. 1-64.
- Chung, D.H., Westphal, W.B. and Simmons, G. (1970) Dielectric properties of Apollo 11 lunar samples and their comparsion with Earth materials. J. Geophy. Res., V. 75, p. 6524-6531.
- Cohen, M.H. (1981) Scale invariance of the low frequency electrical properties of inhomogenous materials. Geophy., V. 46, p. 1057-1059.
- Cole, K.S. and Cole, R.H. (1941) Dispersion and adsorption in dielectrics: I. Alternating current characteristics. J. Chem. Phy., V. 9, p. 341-351.
- Collett, L.S. and Katsube, T.J. (1973) Electrical parameters of rocks in developing geophysical techniques. Geophy., V. 38, p. 76-91.
- Davis, E.L. (1955) Electrochemical properties of clays. In: Clay and Clay Technology, 1st National Conference on Clay and Clay Technology, Ed. Pask, J. A., Calif. Dept. Natural Res., Div. of Mines, Bull. 169, p. 47-53.
- Doods, A.R., Raiche, A.P. and Vozoff, K. (1977) A parametric study of induced polarization models. Geophy., V. 42, p. 623-641.
- Eberle, W. and Bigelow, R. (1973) Electrical dispersion characteristics of selected rock and soil samples from the Nevada Test Site. U.S.G.S. Open-file rept. 474-162, 46 pgs.
- Eskola, L. (1978) Comments on papers discussing the principles underlying the computation of IP parameters in a heterogeneous medium. Geophy. Prosp., V. 26, p. 644-653.
- Frische, R.H. and von Buttlar, H. (1957) A theoretical study of induced electrical polarization. Geophy., V. 22, p. 688-706.

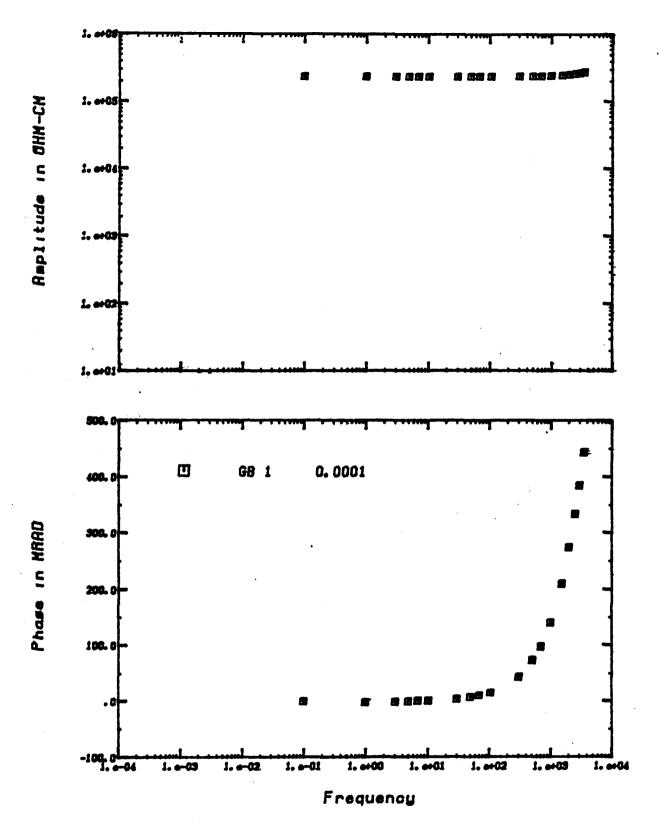
- Fuller, B.D. and Ward, S.H. (1970) Linear system description of the electrical parameters of rocks. IEEE Trans. Geos. Elect., V. 8, p.7-18.
- Gennadinik, B.I. (1981) Thermodynamic models of the induced, low-frequency polarization of a medium. Phy. Solid Earth, V. 17, p. 767-772.
- Grahame, D.C. (1952) Mathmatical theory of the Faradaic admittance. J. Electrochem. Soc., V. 99, p. 370-385.
- Grahame, D.C. (1947) The electrical double layer and the theory of electrocapillarity. Chem. Rev., V. 41, p. 441-501.
- Guest, P.G. (1961) Numerical Methods of Curve Fitting. Cambridge at the Academic Press, 420 p.
- Hall, P.G. and Rose, M.A. (1978) Dielectric properties of water adsorbed by kaolinite clays. JCS, Faraday Trans. I., V. 74, P. 1221-1233.
- Halloff, P.G. and Klien, J.D. (1982) Electrical parameters of volcanogenic mineral deposits in Ontario. S.E.G 52nd Annual meeting, Dallas, Tex.
- Hasted, J.B., Millany, H.M. and Rosen, D. (1981) Low-frequency electrical properties of multilayer preparations of haemoglobin. J. Chem. Soc., Faraday Trans. 2, V. 77, P. 2289-2302.
- Howel, B.F. and Licastro, P.H. (1961) Dielectric behavior of rocks and minerals. Am. Min., V. 46, p. 269-288.
- Hunt, G.R., Johnson, G.R., Olhoeft, G..R., Watson, D.E. and Watson, K. (1979) Initial Report of the Petrophysics Laboratory, U.S. Geological Survey circular 789.
- Ishido, T. and Mizutani, H. (1981) Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics. J. Geophy. Res., V. 32, p. 1763-1775.
- Jackson, P.D., Smith, D.T. and Stanford, P.N. (1978) Resistivity porosity-particle shape relationships for marine sands. Geophy., V. 43, p. 1250-1268.
- Johnson, J.F. and Cole, R.H. (1951) Dielectric polarization of liquid and solid formic acid. J. Am. Chem. Soc., V. 73, p. 4536-4540.

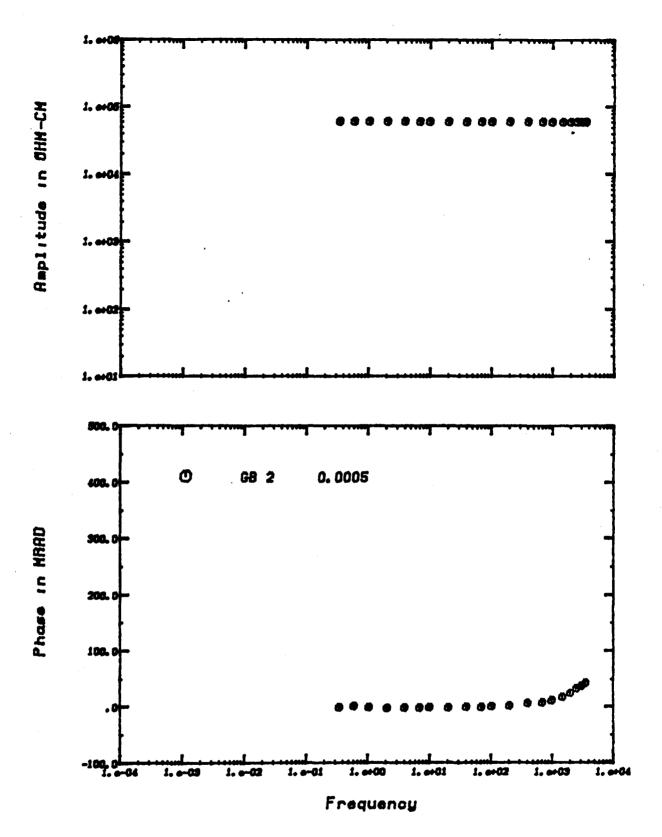
- Jones, G. and Davies, M. (1975) Dielectric studies of zeolite systems. JCS Faraday Trans., V. 71, p. 1791-1808.
- Katsube, T.J., Ahrens, R.H. and Collett, L.S. (1973) Electrical non-linear phenomena in rocks. Geophy., V. 38, p. 106-124.
- Katsube, T.J. and Collett, L.S. (1973) Measuring techniques for rocks with high permittivity and high loss. Geophy., V. 38, p. 92-105.
- Keevil, N.B. Jr. and Ward, S.H. (1962) Electrolyte activity: Its effect on induced polarization. Geophy., V. 27, p. 677-690.
- Keller, G.V. (1982) Electrical properties of rocks and minerals. In: CRC Handbook of Physical Properties of Rocks, Vol. I, Charmichael, R. S. Ed., P. 217-293.
- Keller, G.V. (1966) Electrical properties of rocks and minerals. In: Geol. Soc. Mem. 97, Handbook of Physical Constants., Ed. Clark, S.P., p. 557-577.
- Keller, G.V. and Licastro, P.H. (1959) Dielectric constant and electric resistivity of natural-state cores. USGS Bull. 1052-H.
- Keys, W.S., MacCary, L.M. (1976) Application of borehole geophysics to water-resources investigations. Techniques of Water-Resources Investigations, U.S.G.S. Book 2, Chapter E1.
- Klein, J.D. and Sill, W.R. (1982) Electrical properties of artifical clay-bearing sandstone. Geophy., V. 47, p. 1593-1605.
- Koops, C.G. (1951) On the dispersion of resistivity and dielectric constant of some semi-conductors at audio-frequencies. Phy. Rev., V. 83, P. 121-124.
- Lambe, T.W. (1958) The structure of compacted clay. ASCE Soil Mech. and Found. Div., V. 2, p. 1-34.
- Lee, T. (1981) The Cole-Cole model in time domain induced polarization. Geophy., V. 46, p. 932-933.
- Loeb, J. (1972) A new combined resistivity and induced polarization-instrument and a new theory of the induced polarization phenomenon: A discussion. Geoexp., V. 10, p. 121-122.
- Lytle, J.R. (1974) Measurement of earth medium electrical characteristics: Techniques, results, and applications. IEEE Trans. Geoscience Elec., V. 12, p. 81-101.
- MacDonald, J.R. (1974) Simplified impedance/frequency response results for intrinsically conducting solids and liquids. J. Chem. Phy., V. 61, p. 3977-3966.

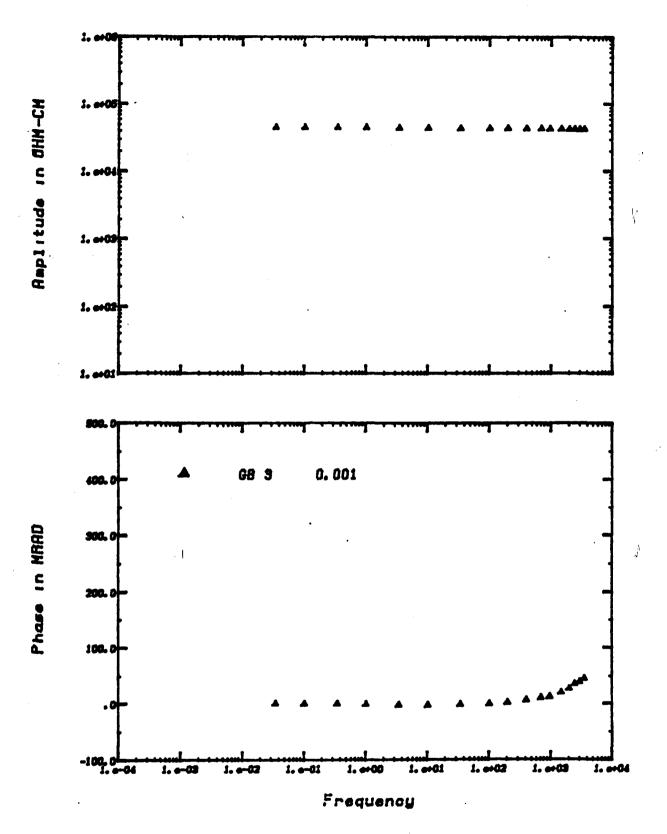
- Macdonald, J.R. and Barlow, C.A. (1963) Relaxation, retardation and superposition. Rev. Mod. Phy., V. 35, p. 940-946.
- Madden, T.R. and Marshall, D.J. (1959) Induced polarization: A study of its causes and magnitudes in geologic materials. USAEC Rept. RME-3160.
- Madden, T.R. and Marshall, D.J. (1959) Electrode and membrane polarization. USAEC Rept. RME-3157.
- Madden, T.R. and Marshall, D.J. (1958) A laboratory study of induced polarization. USAEC Rept. RME-3156.
- Marshall, D.J. (1959) Induced polarization, A study of its causes. Geophy. V. 24, p. 790-816.
- Marshall, D.J., Fahlquist, D.A., Neves, A. S. and Madden, T.R. (1957) Background effects in the induced polarization method in geophysical exploration. USAEC Rept. RME-3150.
- Mendelson, K.S. and Cohen, M.H. (1982) The effect of grain anisotrophy on te electrical properties of sedimentary rocks. Geophy., V. 47., p. 257-263.
- Mohamed, S.S. (1970) Induced polarization; Amethod to study the water-collecting properties of rocks. Geophy. Pros., V. 18, p. 654-665.
- Moore, C.A. and Mitchell, J.K. (1974) Electromagnetic forces and soil strength. Geotech., V. 24, p. 627-640.
- Nadler, A. and Frenkel, H. (1980) Determination of soil solution electrical conductivity from bulk soil electrical conductivity measurements by the four-electrode method. Soil Sci. Soc. Amer. J., V. 44, p. 1216-1221.
- Nelson, P.H., Hansen, W.H. and Sweeney, M.J. (1982) Induced-polarization response of zeolitic conglomerate and carbonaceous siltstone. Geophy., V. 47, p. 71-88.
- Nilsson, B. (1972) A new combined resistivity and induced polarization instrument and a new theory of the induced polarization phenemenon: A reply. Geoexp., V. 10, p. 123-124.
- Nilsson, B. (1971) A new combined resistivity and induced polarization instrument and a new theory of the induced polarization phenomenon. Geoexp., V. 9, p. 35-54.
- Ogilvy, A.A. and Kuzmina, E.N. (1972) Hydrogeologic and engineering -geologic possibilities for employing the method of induced potentials. Geophy., V. 37, p. 839-861.

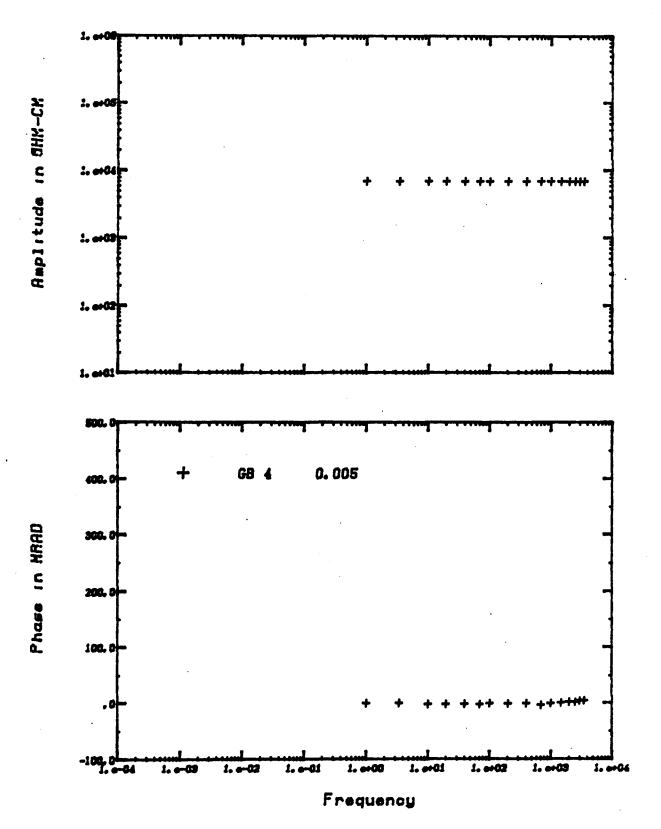
- Olhoeft, G.R. (1981a) Electrical properties of rocks, In: Physical Properties of Rocks and Minerals, Vol. II-2, Touloukian, Y. S. and Ho, C. Y. Ed., McGraw-Hill Inc., P 257-297.
- Olhoeft, G.R. (1981b) Non-linear behavior of molecules, stems and ions in electric, magnetic or electromagnetic fields. In:
 Proceedings of the 31st International meeting of Societe De Chimie Physioquo, Elsever Sci., pg. 395-410.
- Olhoeft, G.R. (1981c) Electrical Properties of Rocks and Minerals. In: Advances in Induced Polarization and Complex Resistivity. Univ. Ariz. pg. 39-102.
- Olhoeft, G.R. (1981) Electrical properties of granite with implications for the lower crust. J. Geophy. Res., V. 86, p. 931-936. Olhoeft, G.R. (1980) Initial report of the petrophysics laboratory--1977-1979 addendum. USGS open file rept. 80-522, 9 pgs.
- Olhoeft, G.R. (1979) Nonlinear electrical properties, In:
 Nonlinear Behavior of Molecules, Atoms and Ions in Electric,
 Magnetic or Electromagnetic Fields. Neel, L., Ed., Elsevier
 Scientific, P. 395-410.
- Olhoeft, G.R. (1977) Non-linear complex resistivity for the characterization of sedimentary uranium deposits. USGS Circ. 753, p. 12-13.
- Olhoeft, G.R. (1977) Electrical properties of natural clay permafrost. Can. J. Earth Sci., V. 14., p. 16-24.
- Olhoeft, G. (1975) The electrical properties of permafrost. Unpub. Ph.D. Thesis, Dept. of Phy., Univ. of Toronto.
- Palmer, C.J. and R.W. Blanchar (1980) Prediction of diffusion coefficients from the electrical conductance of soil. Soil Sci. Soc. Am. J., V. 44, p. 925-929.
- Parkhomenko, E.I. (1971) Electification phenomena in rocks. Trans. by Keller, G. V., Plenum Press, 285 pgs.
- Parkhomenko, E.I. (1971) Electrical Properties of rocks. Trans. by Keller, G.V., Plenum Press, 314 pgs.
- Patella, D. (1979) Definition and application of the frequencyeffect transform function to the interpretation of I. P. soundings. Geophy. Pros., V. 27, p. 628-639.
- Pearce, D.C., Hulse, W.H. and Walker, J.W. (1973) The application of the theory of heterogenous dielectrics to low surface area soil system. IEEE Trans. Geos. Elect., V. 11, p. 167-170.

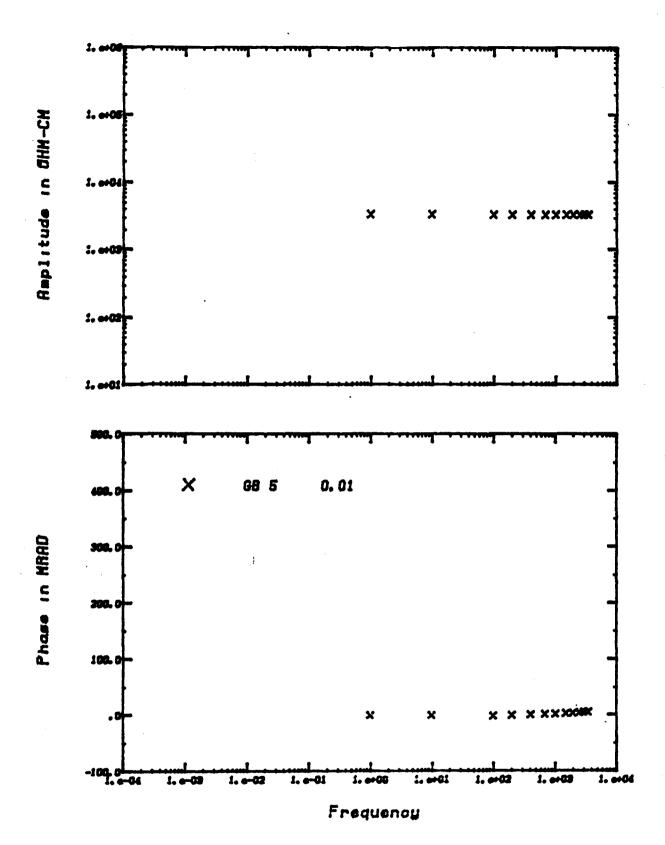
- Pelton, W.H., Ward, S.H., Hallof, D., Sill, W. and Nelson, P.H. (1978) Mineral discrimination and removal of inductive coupling with multifrequency I.P. Geophy., V. 43, p. 588-609.
- Pelton, W.H., Smith, B.D. and Sill, W.R. (19??) Interpretation of complex resistivity and dielectric data. ??
- Perez-Roscles, C. (1982) On the relationship between formation resistivity factor and porosity. J. Soc. Pet. Eng., V. 22, p. 531-536.
- Piwinskii, A.J. and Weed, H.C. (1976) A study of rock-solution interaction and its effect on Archie's Law. IEEE Trans. Geos. Elect., V. 14, p. 221-223.
- Ramachandran, M. Sanyal, N. (1980) Electromagnetic coupling in IP measurements using some common electrode arrays over a uniform half space. Geoexp., V. 18, p. 97-109.
- Roy, K.K. and Elliot, H.M. (1980) Resistivity and IP survey for delineating saline water and fresh water zones. Geoexp., V. 18, p. 145-162.
 - Roy, K.K. and Elliott, H. (1978) Comments on "An interpretive theory for IP vertical sounding (time domain)" and "A new parameter for the interpretation of IP field prospecting (time domain)". Geophy. Prosp., V. 26, p. 638-642.
 - Rust, C.F. (1952) Electrical resistivity measurement on reservoir rock samples by the two-electrode and four electrode methods. AIME Trans., V. 195, p. 217-224.
 - Sachs, S.B., Raziel, A., Eisenberg, H. and Katchalsky, A. (1969)
 Dielectric dispersion of aqueos polyelectrolyte solutions.
 Faraday Soc. Trans., V. 65, p.77-90.
 - Sachs, S.B. and Spiegler, K.S. (1964) Radiofrequency measurements of porous conductive plugs; Ion-exchange resin-solution systems. J. Phy. Chem., V. 68, p. 1214-1222.
 - Saint-Amant, M. and Stangeway, D.W. (1970) Dielectric properties of dry geologic materials. Geophy., V. 35, p. 624-645.
 - Saydam, A.S. and Duckworth, K. (1978) Comparison of some electrode arrays for their IP and apparent resistivity responses over a sheet like target. Geoexp., V. 16, p. 267-289.
 - Scheiber, D.J. (1961) An ultra low frequency bridge for dielectric measurements. J. Res. N.B.S., V. 65C, P. 23-42.
 - Schufle, J.A. (1959) Cation exchange and induced electrical polarization. Geophy., V. 24, p. 164-166.

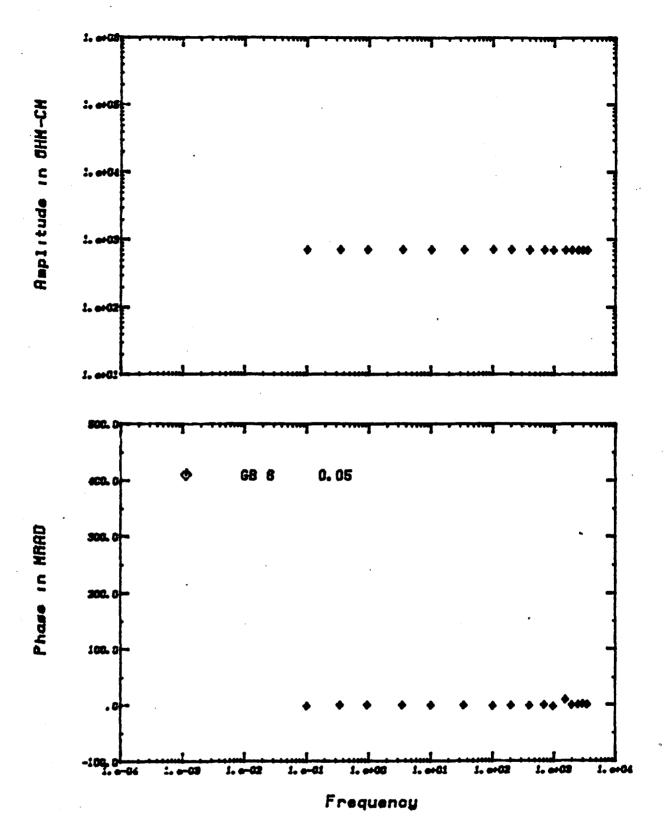

- Schurr, J.M. (1964) On the theory of the dielectric dispersion of spherical colloidal particles in electrolyte solution. J. Phy. Chem., V. 68, p. 2407-2413.
- Schwan, H.P., Schwarz, G., Maczak, J. and Pauly, H. (1962) On the low frequency dielectric dispersion of colloidal particles in electrolyte solution. J. Phy. Chem., V. 66, p. 2626-2635.
- Schwarz, G. (1962) A theory of the low-frequency dielectric behavior of colloidal particles in electrolyte solution. J. Phy. Chem., V. 66, p. 2636-2642.
- Scott, D. (1980) Investigation of a surface resistivity technique for the estimation of hydraulic conductivity in statified drift aquifers. M.S. Thesis, Conn. Univ., Dept. Geology/Geophysics, 98 pgs.
- Scott, D. (1980) Investigation of a surface resistivity technique for the estimation of hydraulic conductivity in stratified drift aquifers: National Technical Information Service, PB81-120594, 98 p.
- Scott, J.H., Carrol, R.D. and Cunningham, D.R. (1967) Dielectric constant and electrical conductivity measurements of moist rock: A new laboratory method. J. Geophy. Res., V. 72, p. 5101-5115.
- Seigel, H.C. (1959) Mathmatical formulation and type curves for induced polarization. Geophy., V. 24, p. 547-565.
- Selig, E.T. and Manskhani, S. (1975) Relationship of soil moisture to the dielectric property. ASCE Geotech. Eng. Div., V. 101, p. 755-770.
- Sen, P.N. (1981) Relation of certain geometrical features to the dielectric anomaly of rocks. Geophy., V. 46, p. 1714- 1720.
- Sen, P.N., Scala, C. and Cohen, M.H. (1981) A self-similar model for sedimentary rocks with applications to the dielectric constant of fused glass beads. Geophy., V. 46, p. 781-795.
- Shankland, T.J. and Waff, H.S. (1974) Conductivity in fluid-bearing rocks. J. Geophy. Res., V9 708 p. 4863-4868.
- Sheuey, B.T. and Johnston, M. (1973) On the phenemenology of electrical relaxation in rocks. Geophy., V. 38, p. 37-48.
- Sluyters-Rehbach, M. and Sluyters, J.H. (1969) Sine wave methods in the study of electrode processes. In: Electroanalytical Chemistry, V. 4, A Series of Advances., Ed. Bard, A. J., Marcel Dekker, Inc., p. 1-128.

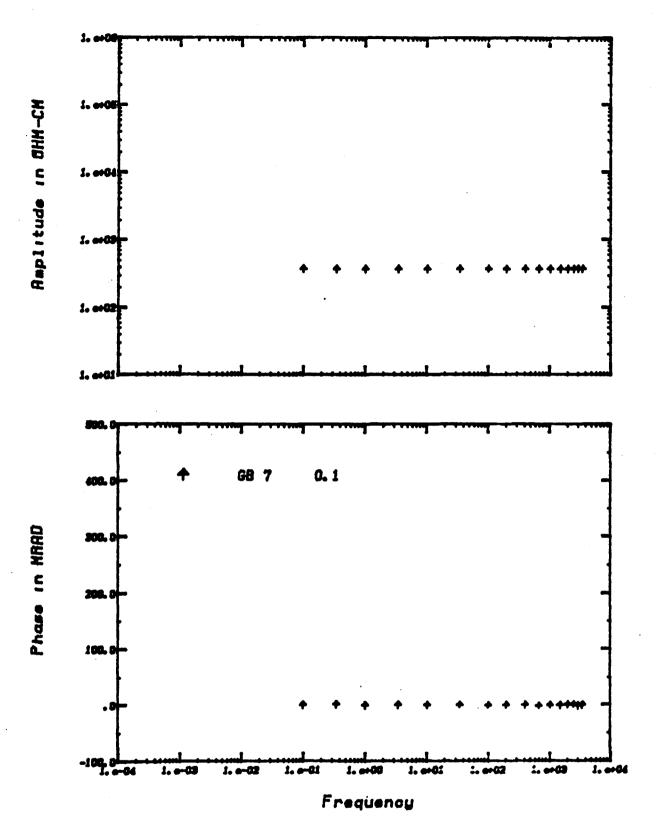

- Smith, S.S. and Arulanandan, K. (1981) Relationship of electrical dispersion to soil properties. ASCE J. Geotech. Eng. Div., V. 107, p. 591-604.
- Strangway, D.W., Chapman, W.B., Olhoeft, G. R. and Carnes, J. (1972) Electrical properties of lunar soils dependence on frequency, temperature and moisture. Earth Planet. Sci. Lett., V. 16, p. 275-281.
- Sumner, J.S. (1979) The induced-polarization exploration method. In: Geophysics and Geochemistry in search for metallic ores. Ed. Hood, J., Geol. Survey Can. Econ. Geol. Rept. 31, p. 123-133.
- Sumner, J.S. (1976) Principles of Induced Polarization for Geophysical Exploration. Elsevier Scientific, 277 pgs.
- Urish, D.W. (1981) Electrical resistivity-hydraulic conductivity relationships in glacial outwash aquifers. Water Resource. Res., V. 17, p. 1401-1408.
- Vaquier, V., Holes, C.R., Kintzinger, P.R. and Lavergne, M. (1957) Prospecting for ground water by induced electrical polarization. Geophy., V. 22, p. 660-687.
- Vogelsang, D. (1981) Relations of IP decay-curve, statistics and geology. Geophy. Pros., V. 29, p. 288-297.
- von Hipple, A.R. (1954) Dielectrics and Waves. John Wiley and Sons, Inc., 284 pgs.
- Wait, J.R. (1981) Towards a generalized theory of induced polarization in geophysical exploration. IEEE Trans. Geos. Remote Sensing, V. 19, p. 231-234.
- Wait, J.R., Ed. (1959) Overvoltage Research and Geophysical Applications. Pergamon Press, 158 pgs.
- Ward, S.H. and Fraser, D.C. (1967) Conduction of electricity in rocks. In: Mining Geophysics, V. II, Theory., Soc. Exp. Geophy., p. 197-223.
- Waxman, M.H. and Thomas, E.C. (1974) Electrical conductivities in shaly sands-I. The relationship between hydrocarbon saturation and resitivity index; II. The temperature coefficient of electrical conductivity. J. Pet. Tech., V. 26, p. 213-225.
- Waxman, M.H. and Smiths, L.J.M. (1968) Electrical conductivities in oil-bearing shaly-clays. AIME Trans., V. 243, p. 107-122.
- Winsauer, W.O. and McCardell, W.M. (1953) Ionic double-layer conductivity in reservior rock. AIME Trans., V. 198, p. 129-134.

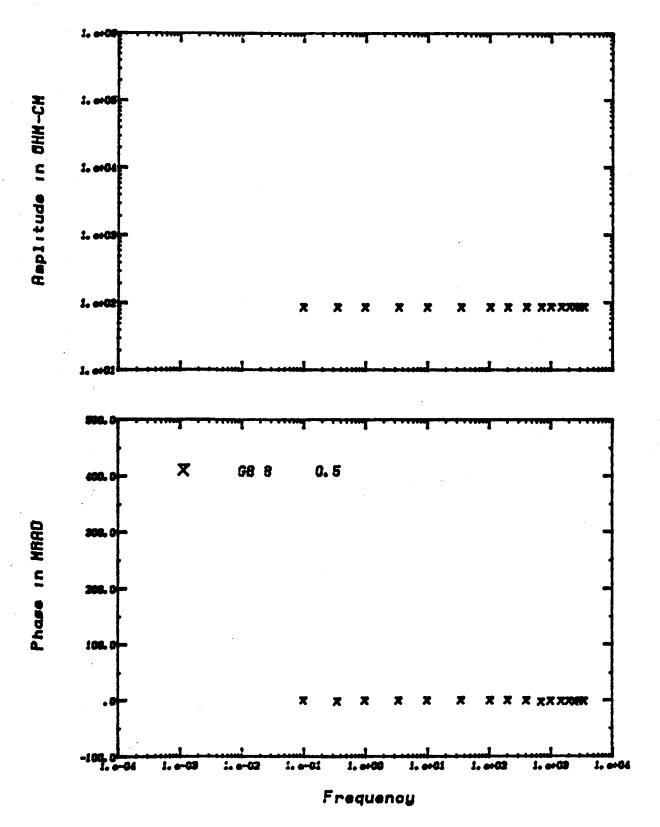

- Winsauer, W.O., Shearin, H.M. Jr., Mason, P.H. and Williams, M. (1952) Resistivity of brine-saturated sands in relation to pore geometry. Bull. AAPG, V. 36, p. 253-277.
- Wobscall, D. (1977) A theory of the complex dielectric permittivity of soil containing water: The semi-dispersive model. IEEE Trans. Geos. Elect., V. 15, p. 49-58.
- Wong, J. and Strangeway, D.W. (1981) Induced-polarization in disseminated sulfied ores containing elongated mineralization. Geophy., V. 46, p. 1258-1268.
- Wong, J. R. and Schmugge, T.J. (1980) An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geos. Elect., V. 18, p. 288-295.
- Wong, J. (1979) An electrochemical model of the inducedpolarization phenomena in disseminated sulfide ores. Geophy., V. 44, p. 1245-1265.
- Worthington, P.F. (1976) Hydrogeophysical equivalence of water salinity, porosity and matrix conductivity in arenaceous aquifers. Groundwater, V. 14, p. 224-232.
- Wyllie, M.R. and Gregory, A.R. (1953) Formation factors of unconsolidated porous media: Influence of particle shape and the effect of cementation. AIME Trans., V. 198, p. 103-110.
- Wynn, J.C. (1974) Electromagnetic coupling in induced polarization. Ph.D. Thesis, Univ. Arizona, Geophy., 137 pgs.
- Wynn, J.C. and Zonge, K.L. (1975) EM coupling, its intrinsic value; its removal and the cultural coupling problem. Geophy., V. 40, p. 831-850.
- Yevjevich, V. (1972) Probability and Statistics in Hydrology. Water Resources Pub., Fort Collins, Co.
- Zohdy, A.A.R., Eaton, G.P. and Mabey, D.R. (1974) Application of surface of geophysics to ground-water investigations. Techniques of Water-Resources Investigations, U.S.G.S. Book 2, Chapter D1, 116 pgs.
- Zonge, K.L. (1976) Method using induced polarization for ore discrimination in disseminated earth deposits. U.S. Patent 3,967,190.
- Zonge, K.L. (1972) Electrical properties of rocks as applied to geophysical prospecting. Ph.D thesis, Univ. Arizona, Elec. Eng., 156 pgs.
- Zonge, K.L. and Hughs, L.J. (1981) The Complex Resistivity Method. In: Advances in Induced Polarization and Complex Resistivity, Univ. Ariz., pg. 140-163.

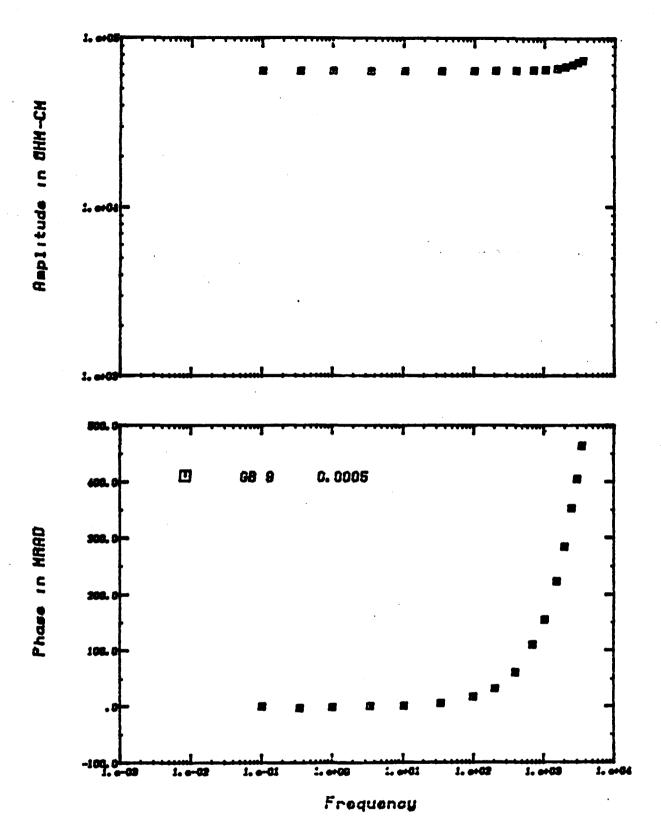

- Zonge, K.L. and Wynn, J.C. (1975) Recent advances and applications in complex resistivity measurements. Geophy., V. 40, p. 851-864.
- Zonge, K.L., Sauck, W.A. and Sumner, J.S. (1972) Comparison of time, frequency, and phase measurements in induced polarization. Geophy. Pros., V. 20, p.626-648.
- Zonge Eng. and Res. Organ. and Internat. Resource Consultants, Inc. (1979) The use of complex resistivity to assess ground water quality degredation resulting from oil well brine disposal. Tech. Rept. IRC-02-79. Submitted to the U.S. E.P.A., 63 pgs.

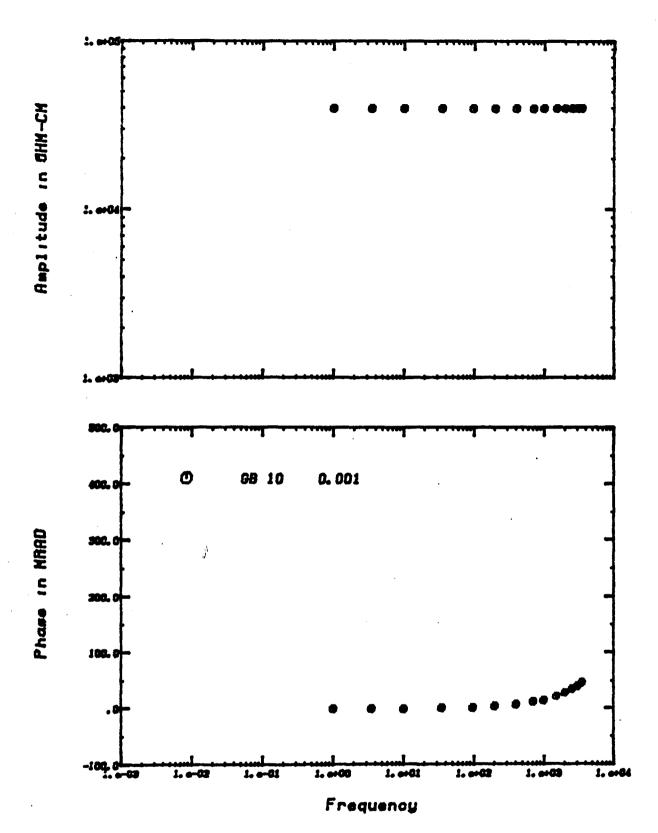

APPENDIX 1 GRAPHS OF EACH RUN

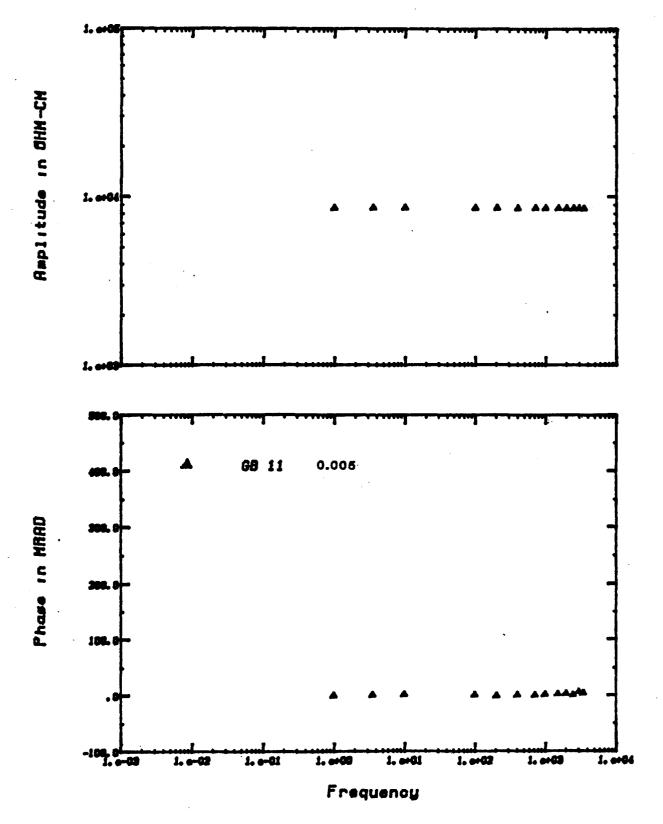


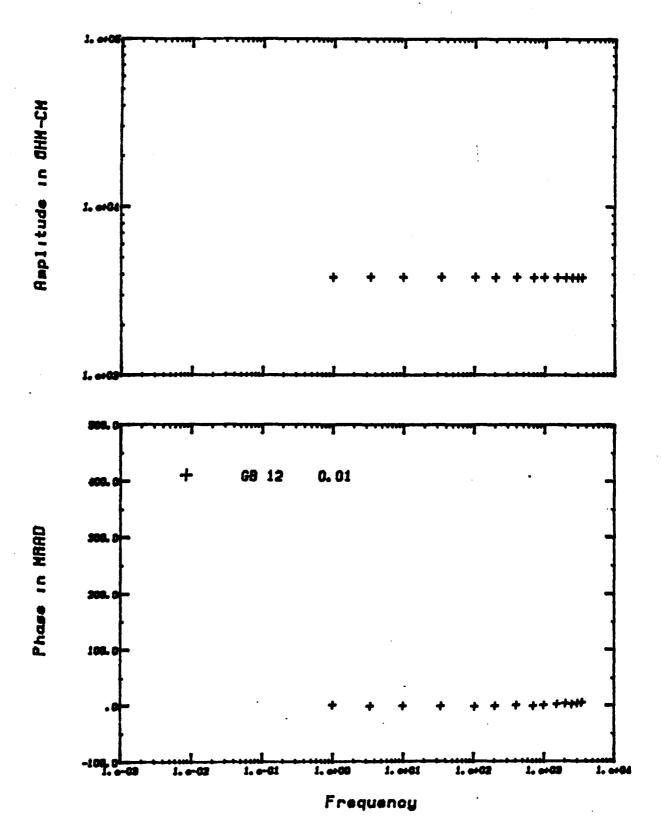


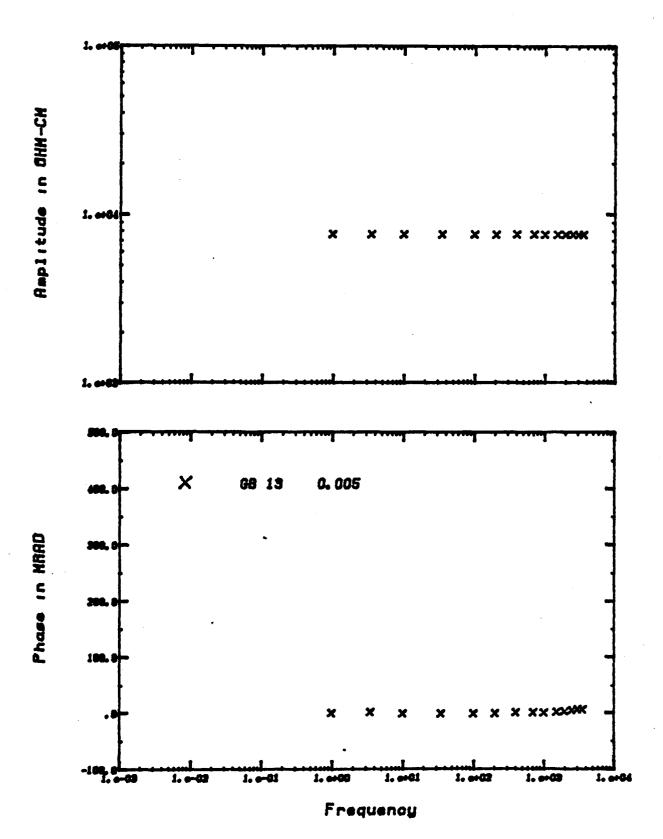


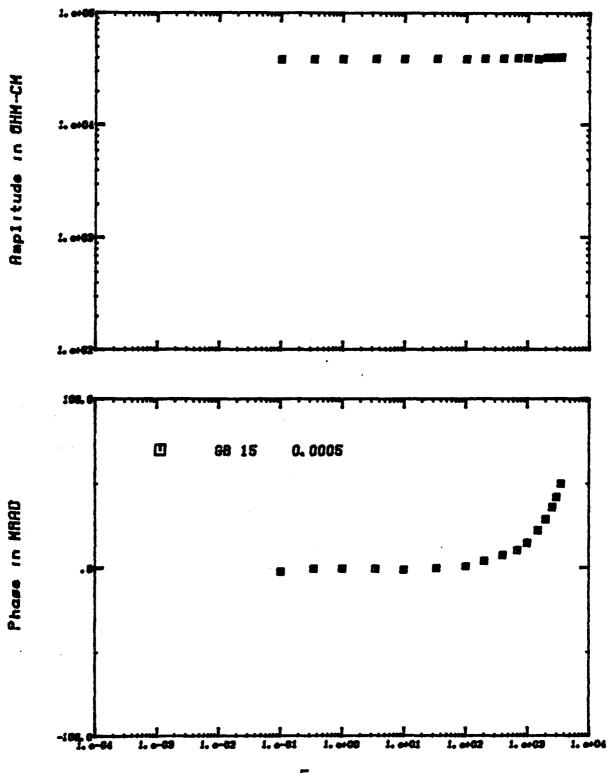


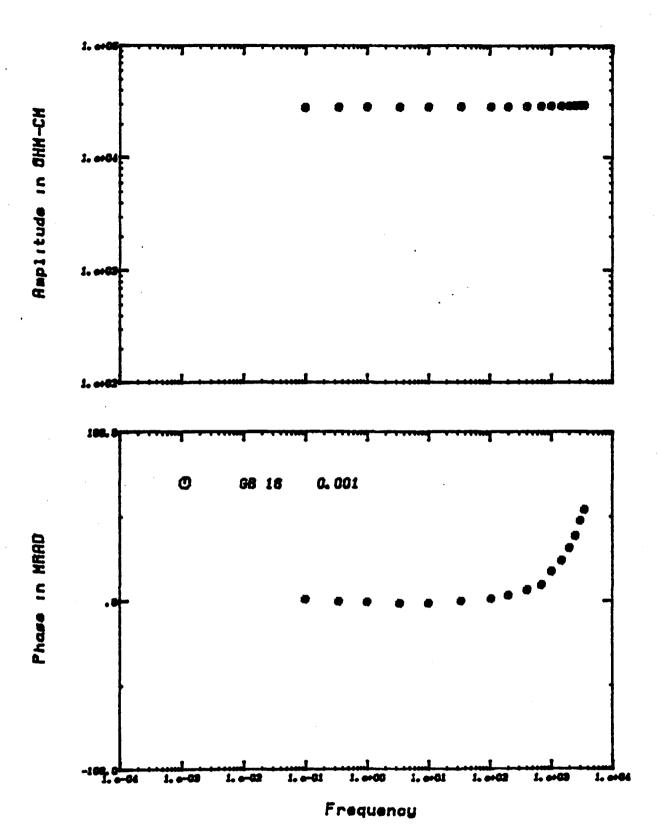


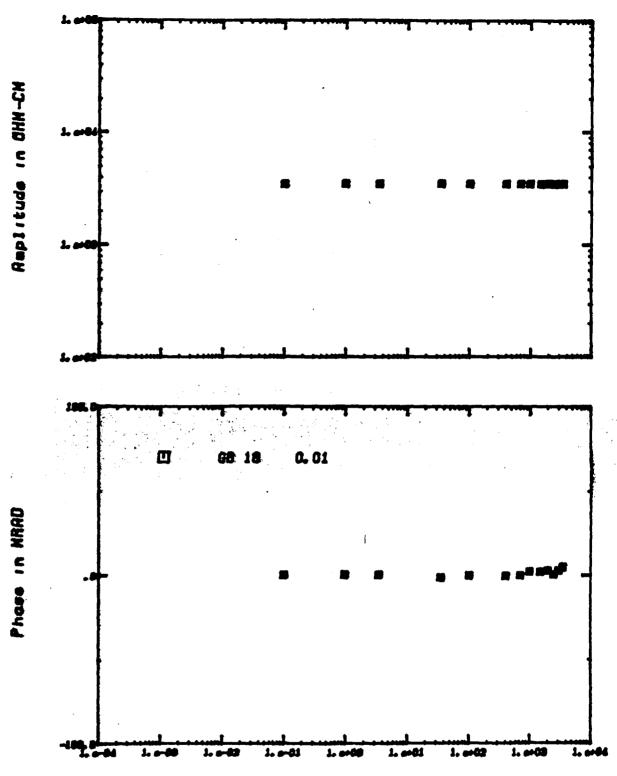


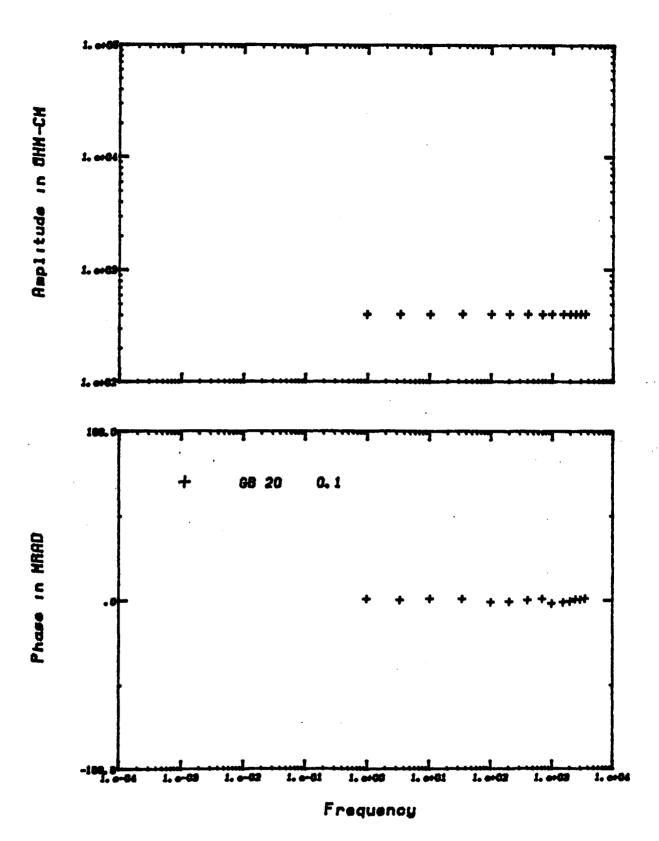


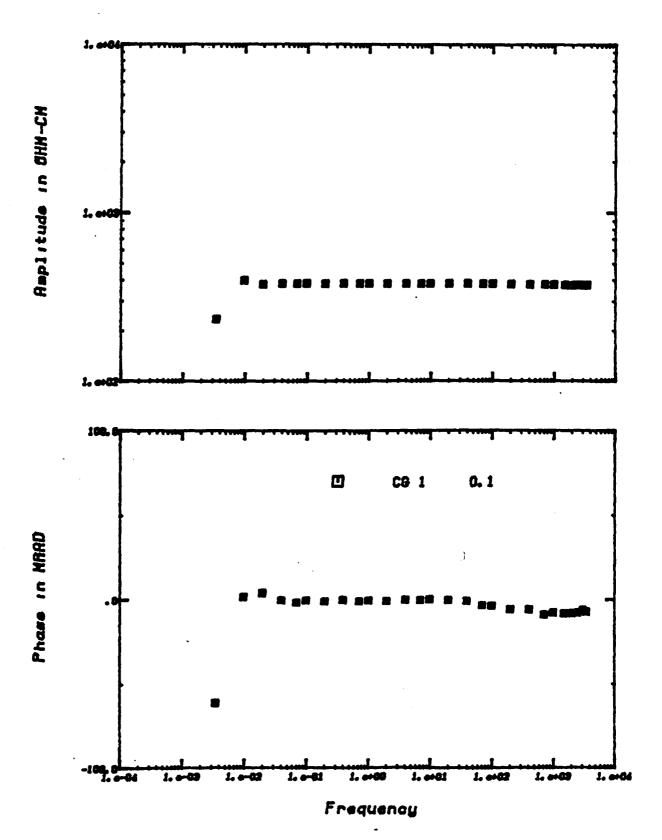


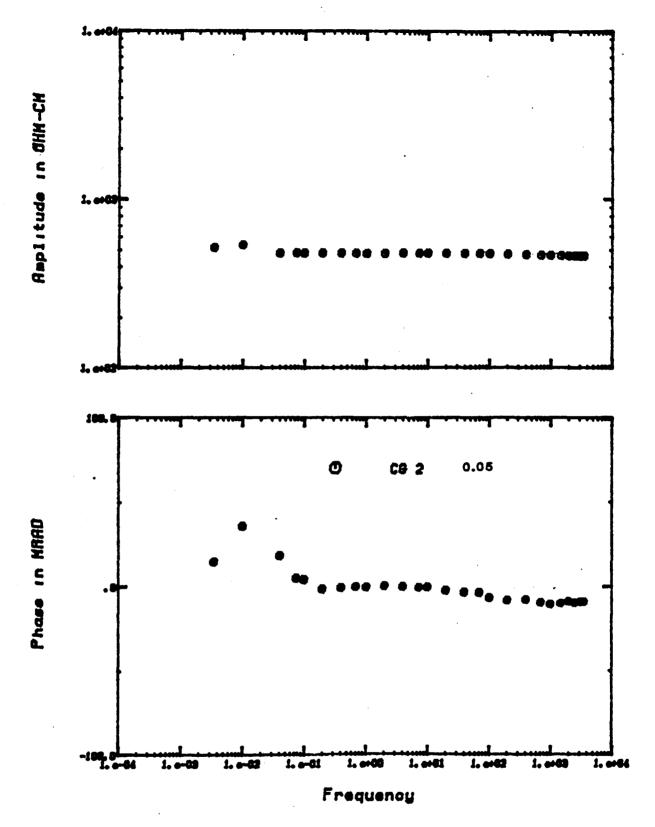


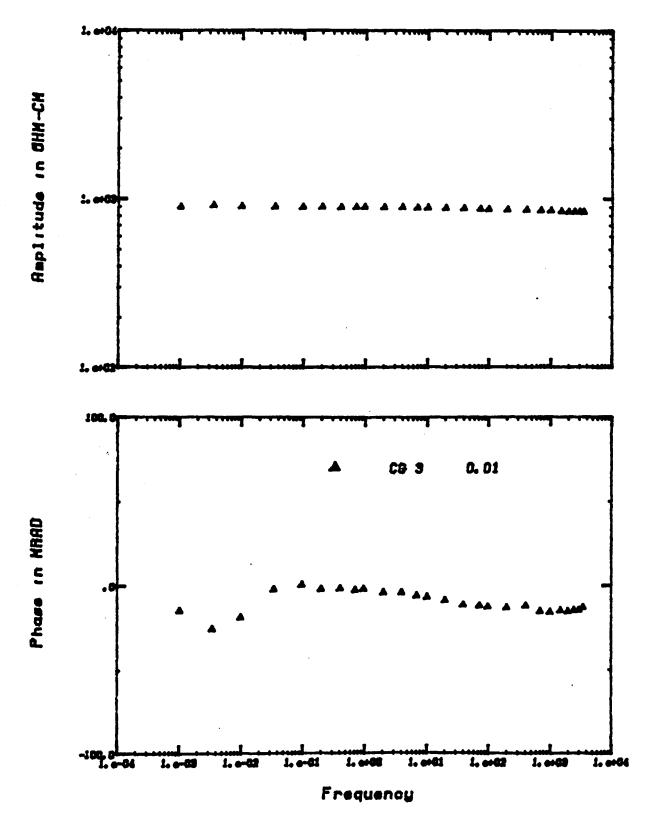


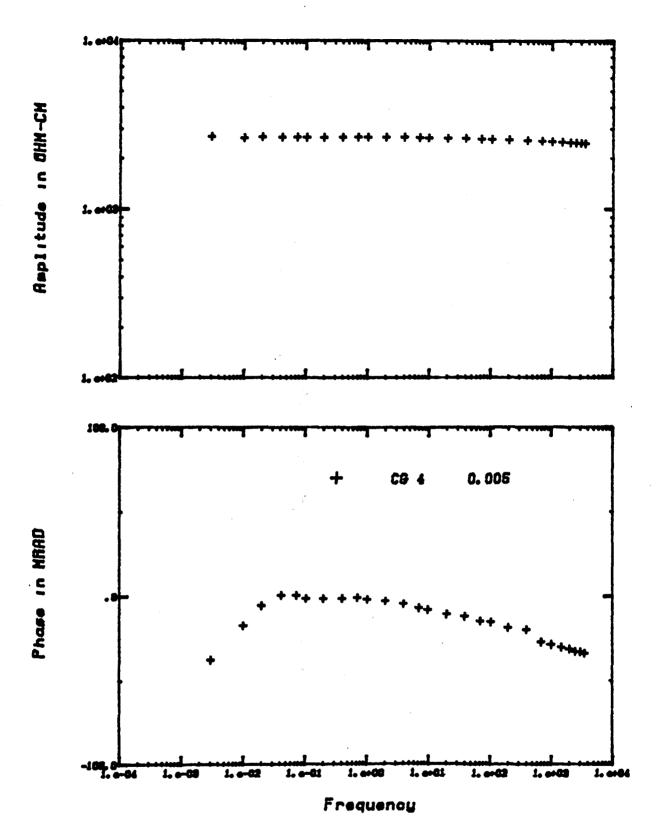


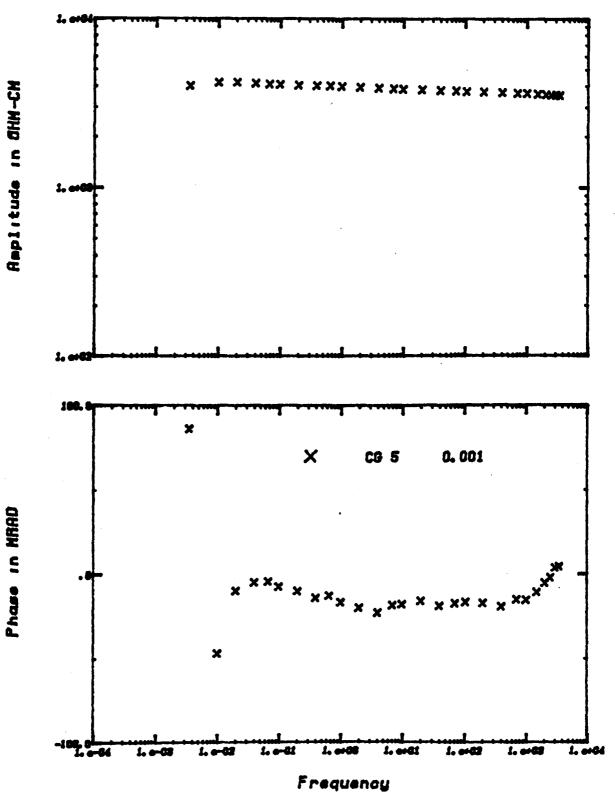


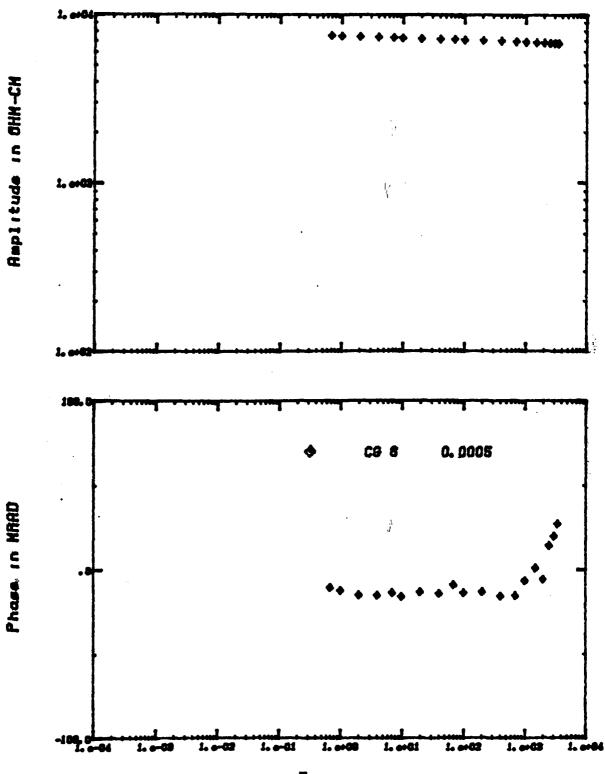

Frequency






Frequency





Frequency

APPENDIX 2 LISTING OF EACH RUN

GB1

GLASS BEADS 2.8-2.2 MM DIA. FILE GB1 .0001 MOLAR NACL RK=101820. 8/23/83 2100 HRS

FREQ (hz)	IMP MAG (ohm-em)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
349e++04 -349e++04 -349e++04 -349e++04 -349e++04 -349e++04 -2977ee++04 -2977ee++04 -251ee++04 -251ee++04 -251ee++04 -251ee++04 -251ee++04 -251ee++04 -100ee++04	273841.50 273841.50 273841.50 273841.50 27384.50 27384.50 265336.52 265336.52 265339.15 26	604.72 604.72 604.73	188542 188542 142.9542 142.9542 143.42 143.42 143.42 143.42 143.42 143.42 143.42 143.42 143.42 143.43 143.4	.088.098.006.0076.0078.008.0098.006.0076.0078.0098.006.0098.006.0098.006.0098.0098.0	1082 1082 1082 1093	.11e-07 .11e-07
.300e+02 .104e+02	234134.86 234070.33	.00 .00	3.64 .54	.05 .03	.040 .033	.11e-07 .11e-07

.104e+02	233795.06	.00	1.07	.03	.040	.11e-07
.703e+01	233986.30	.00	.27	.03	.031	.11e-07
.703e+01	233418.50	.00	21	.03	.029	.11e-07
.496e+01	233796.41	.00	54	.03	.051	.11e-07
.496e+01	233504.81	.00	77	.03	.021	.11e-07
.302e+01	233180.92	.00	- .85	.03	.033	.11e-07
.302e+01	233534.88	.00	-1.45	.03	.026	.11e-07
.998e+00	233093.09	.00	-2.83	.04	.036	.11e-07
.998e+00	233250.84	.00	96	.03	.041	.11e-07
.999e-01	233642.45	.00	37	.03	.021	.11e-07
.999e-01	233751.17	.00	.28	.03	.039	.11e-07

GB2

GLASS BEADS 2.8-2.2 MM .0005 MOLAR NaCl rk=10004.ohms 8/23/83 2200 HRS $_{\prime}$

FREQ (hz) ·	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD (%)	J (amp/cm^2)
	_					(amp/cm ²) .65e-07
.101e+02 .701e+01 .701e+01 .399e+01 .399e+01	61405.42 61454.14 61492.22 61517.72 61556.09 61628.27	.00 .00 .00 .00	66 -1.78 -2.25 -1.80 -2.47 -2.06	.03 .03 .03 .03	.029 .033 .027 .036 .039	.64e-07 .64e-07 .64e-07 .64e-07 .64e-07

.209e+01	61609.22	.00	-2.25	.03	.019	.63e-07
.106e+01	61636.32	.00	91	.03	.020	.63e-07
.106e+01	61781.59	.00	-1.61	.03	.035	.63e-07
.352e+00	61752.16	.00	-1.06	.03	.041	.62e-07
.353e+00	61870.18	.00	-1.32	.07	.029	.62e-07
.970e-01	61767.32	.00	2.35	.03	.017	.62e-07
.105e+00	61899.63	.00	•53	.03	.024	.62e-07
.349e-01	58176.28	.00	6.49	1.30	2.318	.65e-07

GB3

GLASS BEADS 2.8-2.2 MM .001 MOLAR NACL RK=10004. 8/24/83 1515 hrs

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
1354e+04 1354e+	7 8 3 1 0 8 4 1 1 0 8 1 1 5 1 1 1 5 1	7754.599539953995399539953995399539953995399	Tada 73283 33 33 33 33 33 33 33 33 33 33 33 33 3	.08 .07 .07 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06	10000000000000000000000000000000000000	.82e-07 .82e-07 .82e-07 .82e-07 .82e-07 .82e-07 .82e-07 .81e-07 .81e-07 .81e-07 .81e-07 .81e-07 .81e-07 .81e-07 .81e-07 .81e-07 .81e-07 .81e-07 .81e-07 .80e-07 .80e-07 .80e-07 .80e-07 .79e-07 .79e-07 .72e-07 .76e-07
.103e+00 .350e-01 .350e-01	45117.96 45206.58 45275.36	.00 .00 .00	03 .10 1.20	.02	.048 .033 .010	.76e-07 .76e-07 .76e-07

GLASS BEADS 2.8-2.0 MM .005 MOLAR NACL RK=996.72 FILE GB4 8/24/83 1925 HRS

FREQ (hz)	IMP MAG (ohm-em)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD (%)	J (amp/cm^2)
	205749.0514.0514.0514.0514.0514.0514.0514.0514	10.951 10.951	31537873599717148564695773146613593981 41551617029717148564695773146613593981 11317148564695773146613593981 11317148564695773146613593981	.0787777764331111899977016533553333334444 .0000000000000000000000000000	.05566861110031590412207152081120330820000000000000000000000000000	• • • • • • • • • • • • • • • • • • •
5	,	-	_			

GB5

GLASS BEADS .01MOLAR NACL 2.8-2.0 MM DIA. RK=996.72 8/24/83 2200 HRS

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
.352e+04 .352e+04 .352e+04 .352e+04 .300e+04 .300e+04 .253e+04 .253e+04 .253e+04 .199e+04 .199e+04 .199e+04 .152e+04	3401.33 3394.71 3398.16 3394.56 3391.31 3394.58 3395.97 3397.93 3395.19 3395.19 3396.81 3392.88	5.63 4.89 5.75 4.97 4.91 4.91 4.39 10.11 10.12 8.23 8.33	5.23 5.23 5.56 5.96 6.96 8.58 4.69 8.78 2.78 2.19 2.39	.07 .08 .07 .07 .07 .06 .13 .13 .13	.091 .051 .034 .036 .121 .113 .016 .066 .061 .039 .066 .041	.91e-06 .91e-06 .91e-06 .91e-06 .91e-06 .91e-06 .91e-06 .91e-06 .91e-06 .91e-06

GB6

GLASS BEADS 2.8-2.0 MM DIA 0.05 MOLAR NACL RK=100.35 8/25/83 0810 HRS

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD (%)	J (amp/cm ²)
44444444444444444444444444444444444444	707.248 707.248 707.248 707.896 707.80.39 708.39 708.39 708.39 709.39 709.41 709.70 709.70 709.70 709.71 709.71 709.71 711.67 711.67 711.65 711.67 711.67 711.67	1.08 1.06 1.05 1.08 1.05 1.08 1.08 1.09 1.09 2.13 2.09 2.13 2.09 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13	30203364895321288953213.58895321288953213.68953213.68953213.68953213.689532288822550417.689392288822550417.6993.699392288822550417.6993.6993.6993.6993.6993.6993.6993.699	.07 .07 .07 .07 .07 .07 .07 .07 .07 .07	90421130003108760633400887300088 01069411300031087666334000351233429068730088 0106933468686845334290683323318 0106934666334686845334290683323318	
.102e+00 .102e+00	712.21 711.75	.00	.18 -2.52	.04	.053 .066	.33e-05 .33e-05

GB7

GLASS BEADS 2.8-2.0 MM DIA 0.1 MOLAR NACL RK=100.35 8/25/83 1220 HRS

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
.351e+04 .351e+04 .351e+04 .351e+04 .298e+04 .298e+04 .298e+04 .251e+04 .251e+04 .251e+04 .251e+04 .200e+04 .200e+04 .151e++04 .103e++03 .103e++03 .407e++03 .407e++03 .407e++03 .202e++03 .202e++03 .350e++01 .353e+01 .353e+01 .353e+00 .353e+00 .353e+00 .353e+00 .353e+00 .353e+00 .353e+00	378.20 377.65 377.65 377.65 377.55 377.55 377.55 377.57 377.55 377.56 377.56 377.69 377.69 377.69 377.59 377.59 377.59 377.59 377.59 377.59 377.59 377.69 377.59 377.69	.60 .60 .60 .65 .49 .49 .49 .49 .40 .00 .00 .00 .00 .00 .00 .00 .00 .00	1.40 1.40	.08 .08 .07 .06 .07 .06 .07 .06 .07 .07 .08 .07 .07 .03 .07 .03 .07 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03	00926514433594609479213732074347517884 00000000000000000000000000000000000	.71e-05 .71e-0
.102e+00	377.07	.00	.08	.04	.054	.39e - 05

GB8

GLASS BEADS 2.8-2.0 MM DIA .5 MOLAR NACL RK=100.35 8/25/83 1450 HRS

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD (%)	J (amp/cm^2)
44444444444444444444444444444444444444	87.422 87.4323 87.4335 87.4335 87.4335 87.4335 87.4336 87.4	.18 .17 .17 .16 .15 .16 .12 .16 .17 .11 .10 .10 .10 .10 .10 .10 .10 .10 .10	9867077127350459352076285546996183936119 -1.5.49367459352076285546996183936119 -1.5.49367459352076285546996183936119	.08 .08 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07	.04100 .0100 .0100 .0	.11e-04 .11e-05 .11e-05 .11e-06 .11e-0
- 1000100	50.70				•	·

GB9

GLASS BEADS 850-600 UM DIA .0005 MOLAR NACL RK=101820 OHMS 8/26/83 1230 HRS

FREQ (hz)	IMP MAG (ohm-em)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
349e++04 	744822773448227774872776937286877553566775535667755356677553566775535667753687779887798877988779887798877988779887	284.21 28	7 7411349928 441349928 2.6736079059068840471720520793421 4660707624.8336.9788819921885208993421 4660707624.833604.88171746.2933588822222155110663311746.293311 	.10 .13 .19 .11 .14 .14 .14 .14 .14 .15 .14 .14 .16 .17 .16 .17 .16 .17 .17 .18 .19 .11 .19 .11 .10 .10 .10 .10 .10 .10 .10 .10 .10	2 165328764548946342571045868177153085 11110996453653656445868177153085 111103112000000000000000000000000000000	.16e-07 .16e-07
.352e+00 .103e+00 .103e+00	63831.72 63787.81 63703.52	.00 .00 .00	-5.30 2.03 -1.23	.06 .05 .07	.085 .054 .042	.16e-07 .16e-07 .16e-07

GB10

GLASS BEADS 850-600 UM DIA. .001 MOLAR NACL RK=10004 OHMS 8/26/83 1510 HRS

FREQ (hz)	IMP MAG (ohm-em)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
.348 e + + + 0 4 + + 0 4 + + 0 4 + + 0 4 + + 0 4 - 348 e e + + 0 4 - 302 e e + + 0 4 - 302 e e + + 0 4 - 252 e e + + 0 4 - 199 e e + + 0 4 - 199 e e + + 0 3 - 199 e e + 0 3 - 199 e	40055.81 3965.81 3965.81 3965.81 3965.81 3965.81 3976.81 3988.81 39	73.57 87.50 1.50	35196 47.49.59 47.40.550 47.40	.08 .08 .07 .08 .07 .08 .07 .08 .07 .08 .07 .08 .07 .08 .07 .09 .08 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09	.0585129291081443581650089410528446 .05861299108144358165008941052846 .000000000000000000000000000000000000	.88e-07 .88e-07
.352e+01 .102e+01 .102e+01	39758.77 39808.27 39806.02	.00 .00 .00	36 82 67	.03 .04 .03	.013 .052 .021	.86e-07 .84e-07 .85e-07

GLASS BEADS 850-600 UM DIA .005 MOLAR NACL RK=10004. OHMS 8/26/83 1720 HRS

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
-					(%) .0593 .0188 .0591 .0188 .0591 .0188 .0199 .0191 .0193 .019	
.348e+02	*******	.00	2674.10	4.59	****	.59e-07
.348e+02	32089.28	.00	745.45 .23	2.20	.061	.57e-07 .15e-06
.100e+02 .100e+02	8629.19 8624.74	.00 .00	1.89	.04	.048	.15e-06
.354e+01	8619.15	.00	2.23	.04	.035	.15e-06
.354e+01	8637.03	.00	. 37	.04	.067	.15e-06
.100e+01	8618.91	.00	.94	.03	.050	.15e-06
100e+01	8620.16	.00	-1.29	.04	.090	.15e-06

GB12

GLASS BEADS 850-600 UM DIA. 0.01 MOLAR NACL RK=996.72 8/26/83 1950 HRS

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
.349e+04 .349e+04 .349e+04 .302e+04 .302e+04 .302e+04 .251e+04 .251e+04 .251e++04 .202e++04 .202e++04 .153e++04 .153e++04 .100e++03 .100e++03 .405e+03 .405e+03 .405e+03 .405e+03 .345e+01 .346e+01	899122 899122 899122 899122 899122 80912 809122 809122 809122 809122 809122 809122 809122 809122	22062423073355329928835700000000000000000000000000000000000	1819549688554395930420706443379537 466623-62514322-143-1221-1-387 	.08 .07 .06 .07 .06 .07 .06 .07 .06 .07 .06 .07 .06 .07 .07 .08 .09 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07	.068 .075 .089 .0075 .008 .008 .008 .008 .008 .008 .008 .00	.97e-06 .97e-06
.101e+01 .101e+01	3836.99 3841.02	.00 .00	.70 1.43	.03 .03	.029	.95e-06 .95e-06

GB13

GLASS BEADS 850-600 UM DIA 0.005 MOLAR NACL RK=996.72 OHMS 8/28/83 1610 HRS

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
.354 e + 04 .354 e + 04 .3500 e e + 04 .3000 e e + 04 .3000 e e + 04 .252 e e e + 04 .196 e e + 04 .196 e e + 04 .196 e e + 04 .152 e e + 04 .101 e e + 03 .101 e e + 03 .101 e e + 03 .102 e e + 04 .101 e e + 03 .101 e e + 04 .101 e e e e + 04 .101 e e e e + 04 .101 e e e e e + 04 .101 e e e e e e e e e e e e e e e e e e	7636.28 7636.28 7636.29.61 7637.62 7628.65 7628.65 7628.65 7628.76 7631.65 7631.65 7631.65 7631.76	13.13 12.86 12.52 8.94 10.95 11.45 8.55 10.42 21.49 22.19 22.37 20.27	28297794044787777779975676258342121.4455671999210790 200979940447877777779975671999210790	.099.088.088.007.0133.121.1999.033.007.0033.111.099.033.007.003.030.009.003.009.003.009.003.009.003.009.003.009.003.009.003.009.003.009.003.009.003.009.003.009.003.009.003.009.003.009.003.009.003.009.009	880 0810 0810 0810 0810 0810 09986 09	-06 -06 -06 -06 -06 -58e06 -58e06 -58e06 -58e06 -58e06 -58e06 -58e06 -58e06 -06 -58e06 -06 -06 -06 -06 -06 -06 -06 -06 -06
.991e+00 .991e+00	7636.86 7638.60	.00 .00	.31 65	.03 .03	.016 .032	.55e-06 .55e-06

GB14

GLASS BEADS 850-600 UM DIA 0.1 MOLAR NACL RK=100.35 OHMS 8/28/83 1825 HRS

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
.3538 e++04 .3538 e++04 .3538 e++04 .3538 e++04 .3538 e++04 .3538 e++04 .2988 e++04 .2989 e++04 .2999 e++04 .2000 e++04 .151e e++03 .104 e++04 .104 e+++04 .104 e+++03 .105 e++01 .104 e+++03 .2000 e+++01 .104 e+++03 .2000 e+++01 .105 e+++01 .106 e+++01 .106 e+++01 .106 e+++01 .106 e+++01 .107 e+++01 .108 e+++01 .1097 e+++01 .1099 e+++01 .1099 e+++01 .101 e+++01 .101 e+++01 .102 e+++01 .103 e+++01 .104 e+++01 .105 e+++01 .106 e+++01 .106 e+++01 .107 e+++01 .108 e+++01 .1099 e+++	12745 .81745	1.21 1.21 1.21 1.21 1.28 1.28 1.28 1.28	5220540792638740348606113832725442 52224.92838740348606113832725442 2222357054422 2222357054422	.09 .09 .09 .09 .09 .09 .09 .09 .09 .09	.091 .091 .091 .0937 .09	.5555555555555555555555555555555555555

GB15

GLASS BEADS 150-106 UM DIA .0005 MOLAR NACL ACIDIFIED RK=10004. OHMS 8/29/83 1800 HRS

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
.353e++04 +04 +04 +04 +04 +04 +04 +04 +04 +04	40694.825 40694.825 40694.825 40694.825 40694.825 40694.836 40694.831	2560385638 2060363856744062 20683956744062 206839567442068 208849	633946362079900936489245241773057321986 0.9.2.7865.92341.53140.3841.6046657321986 0.9.2.7865.92341.196.9341.6057321986 0.9.2.7862079009364892452417773057321986	.07876666333291198886610773337733333333333333333333333333333	1587775822964 00457758229641222132572064 00000000000000000000000000000000000	144 e
.103e+00	38526.02	.00	2.02	.03	.010	.13e-06

GLASS BEADS 150-106 UM DIA .001 MOLAR NACL RK=10004. OHMS 8/29/83 2010 HRS

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
.352e+04 .352e+04 .352e+04 .352e+04 .301e+04 .301e+04 .301e+04 .249e+04 .199e+04 .199e++04 .199e++04 .199e++04 .149e++04 .101e++03 .101e++03 .101e++03 .101e++03 .101e++03 .101e++03 .101e++04 .101e++03 .101e++03 .101e++03 .101e++03 .101e++03 .101e++03 .101e++04 .101e++03 .101e++04 .101e++03 .101e++04 .101e	29535.99 29535.97 295	8427204373565145348709300000000000000000000000000000000000	99381226051691634243396075920023564112 555485.4605163142.683936075920023564112 555485.33332221188.36072411	.08 .08 .08 .07 .07 .07 .07 .07 .07 .14 .11 .09 .05 .07 .07 .03 .03 .03 .03 .03	844116 1076167 1076	.16e-06 .16e-06 .16e-06 .16e-06 .16e-06
.349e+00 .100e+00 .100e+00	28285.52 28155.29 28035.94	.00	2.37 .61	.04	.026 .014	.16e-06 .16e-06

GLASS BEADS 150-106 UM DIA 0.01 MOLAR NACL RK=996.72 OHMS 8/30/83 1315 HRS JGH

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
100000 10000000 100000 100000 100000 100000 100000 100000 100000 1000000 100	3284918 21.884918 221.884918	5.87708879 5.87708879 5.870.6871788879 5.870.6871788879 5.870.687130 5.870.6871 6.998.6.99440 6.998.6.99440 6.998.6.99440 6.998.6.99440 6.998.6.99440 6.998.6.99440 6.998.6.99440 6.998.6.99440	2291899958563036484214346392439220694 55.31878059684415923200246392439220694 55.31878059684415923200246392439220694	.08 .07 .06 .07 .06 .06 .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07	807654017774333018563699380644142033591 000000000000000000000000000000000000	.12e-05 .11e-05 .11e-05 .11e-05 .11e-05
.101e+00 .101e+00	3501.77 3498.16	.00 .00	.56 .36	.03 .03	.009	.11e-05 .11e-05

GB19

GLASS BEADS 150-106 UM DIA 0.05 MOLAR NACL RK=100.35 OHMS 8/30/83

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
-353e++04 -404 -353e++04 -	788545 788545 788545 788545 788545 788545 788545 788556	1.14 1.14 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	13777735571.098511734012175259414015460294 1.09851177340121752594140154603294 1.0985117340121752594140154603294	.0677.066.055.05433111.28888662.066.057733333333333333333333333333333333333	19997310943314298 00097310943314298 000000000000000000000000000000000000	
.100e+01	783.59	.00	.81	.03	.018	.60e-05

GLASS BEADS 150-106 UM DIA 0.1 MOLAR NACL RK=100.35

FREQ	IMP MAG	S.D.	PHASE	S.D.	THD	J
(hz)	(ohm-cm)	(ohm-cm)	(mrads)	(mrads)	(&)	(amp/cm ²)
3540.	407.1	0.6	1.3	0.1	0.07	10.
2980.	407.2	0.6	0.9	0.1	0.05	10.
2470	406.9	0.5	1.0	0.1	0.05	10.
2010.	407.2	1.2	-0.3	0.1	0.04	10.
1540.	407.1	1.0	-0.8	0.1	0.02	10.
1000.	407.0	0.8	-1.6	0.1	0.02	10.
702.	405.4	0.6	1.2	0.1	0.02	10.
404.	407.0	4.75	0.5	0.5	0.02	10.
205.	407.1	0.0	-0.6	0.2	0.02	10.
103.	407.5	0.0	-1.0	0.0	0.02	10.
35.0	407.0	0.0	0.9	0.1	0.03	10.
10.5	406.4	0.0	1.0	0.0	0.03	1.0.
3.47	406.4	0.0	0.2	0.0	0.03	9.7
1.00	405.7	0.0	0.9	0.0	0.03	8.6

GLASS BEADS 2.8-2.0 MM 3 % WT NA MONT 0.1 MOLAR NACL RK=100.35 8/31/83 1410 HRS

			•			
FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
.347e+04 .347e+04 .300e+04 .300e+04 .250e+04 .250e+04 .201e+04 .150e++03 .706e++03 .706e++03 .706e++03 .706e++03 .704e++03 .704e++03 .704e++03 .704e++01 .101e++02 .704e++01 .704e++01 .704e++01 .704e++01 .704e++01 .708e++01 .709e++01	374183332192192558891553192648731731295 37756531926487317377799800.515531926487333333333333333333333333333333333333	95446832333443172200000000000000000000000000000000000	56585115289688871777346018216925087738759 -64.7950.0525809977099839841025250346230152 	.00667600 .0076607600 .007667006700670 .00766700670000000000	298650824845990455000000000000000000000000000000	.73e 05 .73e 05 .70e - 0
	*					

.396e+00	382.11	.00	16	.04	.018	.62e - 05
.198e+00	381.42	.00	-1.19	.04	.025	.51e-05
.198e+00	381.58	.00	.07	.04	.026	.51e-05
.993e-01	382.59	.00	61	.06	.039	.35e - 05
•993e-01	382.41	.00	. 15	.05	.021	.35e - 05
.696e-01	380.34	.00	.86	.07	.041	.28e - 05
.696e-01	382.16	.00	-3.50	.07	.060	.27e-05
.398e-01	380.99	.00	3.10	.13	. 183	.18e-05
.398e-01	382.29	.00	-3.12	.11	. 164	.18e-05
.197e-01	386.21	.00	17.39	.31	.210	.95e-06
.197e-01	372.65	.00	-8.38	. 32	.254	.95e-06
.985e-02	398.54	.00	2.07	.82	.501	.51e-06
.347e-02	234.94	.00	-61.21	7.42	8.024	.19e-06
.101e-02	485.23	.00	3274.90	6.73	****	.55e-07

CG2

GLASS BEADS 2.8-2.0 MM 3 % NA-MONT 0.05 MOLAR NACL RK=100.35 8/31/83 2300HRS JGH

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD (%)	J (amp/cm^2)
-350 e + + 04 -4 + 04 -4 + 04 -350 e + + 04 -299 e e + + 04 -299 e e + + 04 -299 e e + + 04 -197 e e + + 03 -197 e e + + 03 -101 e e + 01 -101 e + 01 -	2411643590215153997216958636882496646656678.08172244567888.0999.099999999999999999999999999999	.86 .75 .65 .53 1.41 .88 .55 .00 .00 .00 .00 .00 .00 .00 .00 .00	4892024632648222258684362214893074805947 -7098.44028824822258684362214893074805947 -198.991.9.59592748705312306548805947 -198.991.9.59592744.05312306548805947 -198.991.971.8678.36574805947 -198.991.971.8678.3657480594748050500000000000000000000000000000000	.09 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07	.08307115093723948 .082071055093723948 .0005422723948 .0005422723948 .0005000000000000000000000000000000000	55555555555555555555555555555555555555
.693e+00 .400e+00	480.72 481.11	.00 .00	. 34 . 12	.04 .04	.022	.56e-05 .53e-05

.401e+00	480.91	.00	48	.06	.047	.53e-05
.198e+00	481.82	.00	-1.46	.04		
.198e+00	482.45	.00	78	1 1 1	.041	.45e-05
.100e+00	481.75	.00	4.42	• 04	.025	.45e-05
·745e-01	481.99		· · · · 	.07	.039	•33e-05
•398e-01		.00	5.15	1.34	.059	.24e-05
T. C	480.09	.00	18.38	.11	108	.17e-05
.101e-01	536.68	.00	35.50	.98	.927	.17e-05
.348e-02	517.39	6.04	14.75	.40	.501	.18e-05

.400e+00 .201e+00 .201e+00 .984e-01 .348e-01	897.84 898.97 898.82 898.84 902.80 905.11	.00 .00 .00 .00	67 -1.50 -1.96 .98 -1.83 -18.58 -25.65	.03 .03 .03 .06 .20	.025 .006 .015 .015 .085 .140	.22e-05 .22e-05 .21e-05 .17e-05 .85e-06
.353e-02	917.06 809.14	.00 .00	-25.65 -14.79	.32 .71	.381	.87e-06

CG4
GLASS BEADS 2.8-2.0 MM 3% NA-MONT 0.005 MOLAR NACL RK=996.72
9/6/83 1145 HRS

FREQ (hz)	IMP MAG (ohm-cm)	S.D. (ohm-cm)	PHASE (mrads)	S.D. (mrads)	THD	J (amp/cm^2)
.352e+04 .352e+04 .301e+04 .301e+04 .249e+04 .249e+04 .200e+04 .149e+04 .149e+04 .102e+03 .403e+03 .403e+03 .201e+03 .106e+03 .201e+01 .705e+01 .398e+01 .705e+01 .398e+01 .705e+01 .705e+00 .105e+00 .105e+00 .105e+00 .105e-01 .738e-01	2468.815 2468.460 2478.460 2478.478.49 2478.49 2478.49 2478.49 2478.49 2478.49 2478.49 2479.49 2507.16.13 2507.16.19 2507.16.19 2507.16.19 2507.16.19 2507.16.19 2507.16.19 2507.16.19 2607	3.52 3.92 3.92 3.92 3.92 3.92 3.94 4.52 9.000 0.	mrads) 93425985622459688936567117856326889319656711785698561	(mrads) .07 .06 .05 .05 .05 .13 .11 .08 .06 .507 .02 .02 .02 .03 .03 .03 .07 .08	(%) 1555751838293433509 .0257.004565951838293696428999433509 .00000000000000000000000000000000000	.25e-05 .25e-05 .25e-05 .25e-05 .25e-05 .25e-05 .25e-05 .25e-05 .25e-05 .20e-05 .20e-05 .20e-05 .19e-05 .18e-05 .18e-05 .18e-05 .18e-05 .13e-05 .13e-05
.200e-01 .102e-01 .304e-02	2693.43 2654.64 2703.55	.00 .00 .00	-17.31 -37.72	.21 5.28	.169	.94e-06 .65e-06 .16e-06

CG5
GLASS BEADS 2.8-2.0 MM 3% NA-MONT 0.001 MOLAR NACL RK=10004
9/6/83 1440 HRS

(hz) $(ohm-cm)$ $(ohm-cm)$ $(mrads)$ $(iff conditions)$	mrads)	(%)	. J (amp/cm^2)
.348e+04	.14 .15 .11 .11 .11 .12 .14 .11 .11 .12 .14 .11 .11 .12 .14 .11 .14 .15 .16 .16 .06 .06 .06 .06 .06 .07 .18 .18 .19 .19 .19 .19 .19 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10	235270005562242699971258223326117717 .0050000000000000000000000000000000000	.36e - 06 .36e - 06 .35e - 06 .36e - 06 .36e - 06 .37e -

GLASS BEADS 2.8-2.0 MM 3% NA-MONT. 0.0005 MOLAR NACL RK=10004. 9/6/83 1900 HRS

CG6

FREQ	IMP MAG	S.D.	PHASE	S.D.	THD	J
(hz)	(ohm-em)	(ohm-em)	(mrads)	(mrads)	(%)	(amp/cm ²)
(hz) .346e+04 .346e+04 .299e+04 .299e+04 .250e+04 .250e+04 .200e+04 .150e+04 .150e+04 .101e+04 .101e+04 .101e+03 .403e+03 .403e+03	(ohm-em) 6768.23 6770.44 6778.58 6770.28 6772.49 6768.51 6750.28 6841.57 6851.46 6851.46 6890.70 6931.44 6998.57 7047.54 7169.39	(ohm-em) 12.86 17.43 16.93 12.42 12.61 19.45 22.13 24.24 19.85 17.65 15.35 13.72 18.46 83.04 .00 .00	(mrads) 26.49 27.78 19.55 20.70 15.81 4.80 6.280 -6.28 -15.86 -15.86 -13.84 -9.33	(mrads) .07 .09 .08 .07 .07 .10 .13 .14 .12 .11 .09 .08 .09 .51 .17 .06 .16 .06	(%) .069 .095 .078 .181 .077 .049 .069 .078 .040 .023 .030	(amp/cm ²) .29e-06 .28e-06 .28e-06
.400e+02 .199e+02 .991e+01	7169.39 7212.22 7278.14	.00	-14.33 -13.47 -16.08	.06	.021	.28e-06 .28e-06
.704e+01	7303.92	.00	-13.91	.06	.028	.28e-06
.399e+01 .199e+01	7356.75 7415.41	.00	-15.40 -15.01	.06 .06	.023	.28e-06 .27e-06
.101e+01	7466.27	.00	-12.32	.06	.018	.27e-06
.684e+00 .396e+00	7504.33 7534.48	.00	-10.50 -7.82	.06 .06	.022	.27e-06 .26e-06
.198e+00	7557.36	.00	-5.46	.03	.038	.26e-06
.102e+00 .706e-01	7608.34 7610.44	.00	-2.81 -2.48	.03 .03	.032 .045	.26e-06 .26e-06
.700e=01	7639.37	.00	31	.03	.015	.26e-06
.211e-01	7701.75	.00	6.47 6.48	1.21 .08	.031 .077	.24e-06 .25e-06
.992e-02 .347e-02	7808.69 8275.25	.00 .00	-69.97	1.01	1.034	.21e-06