SOURCE TEST REPORT

EPA TEST NO.: 71-CI-23

PLANT TESTED: Southeastern Kusan, Inc.

Gaffney, South Carolina

TESTOR: Environmental Engineering, Inc.

2324 Southwest 34 Street Gainesville, Florida AC 904/372-3318 32601

CONTRACT NO.: CPA 70-82, Modification No. 1 to

Task Order No. 2, Third of three plants.

TABLE OF CONTENTS

,	Page No.
INTRODUCTION	1
SUMMARY OF TEST RESULTS	2
PROCESS DESCRIPTION AND OPERATION	5
LOCATION OF SAMPLING POINTS	7
SAMPLING AND ANALYTICAL PROCEDURES	10
 Procedure for Sampling and Analyzing Beryllium from Stationary Sources 	. •
APPENDIX	
Code to Sample Designations	12
Complete Beryllium Test Results	13
Sampling Procedures Used for Beryllium Sampling	17
Sampling and Analytical Procedures Prescribed by EPA	22
Results of Laboratory Analyses for Beryllium	28
Project Participants	29
Field Data	30

INTRODUCTION

Beryllium emission tests were performed at Southeastern Kusan, Incorporated, located in Gaffney, South Carolina. The tests were conducted on August 25 and 30, 1971.

The purpose of these tests was to determine beryllium emissions from a baghouse controlled beryllium smelting operation.

Southeastern Kusan performs the secondary smelting of beryllium - copper alloys. Emissions from the process are filtered through a bag collector. Emission tests were performed at the inlet and outlet of the central unit. Two separate sampling trains were used simultaneously at the inlet, and one train at the outlet. Two separate test runs were performed at the inlet and outlet.

SUMMARY OF TEST RESULTS

Summarized test results of stack parameters and beryllium emission rates for all three plants tested are included in Tables 1 and 2. Complete stack parameter and beryllium emission test results are included in the appendix. The tests indicate that Southeastern Kusan, Inc. emits 0.09 grams of Beryllium per 8-hour day.

The following code was used to characterize sample data:

- SK Southeastern Kusan, Inc., Division of Beth. Steel, Gaffney, South Carolina
- 0 Outlet stack from baghouse
- 1 Run #1
- 2 Run #2
- 3 Run #3
- MP Millipore AA filter
- W Whatman 41 filter
- WB Whatman 41 filter (when used as a backup)
- Be Beryllium sample
- IGB Impinger and back half acetone and water and rinses, and backup filter combined.
 - I Impinger and back half acetone and water rinses combined
 - P Probe particulate and probe acetone wash combined
 - F Filter
 - HI Horizontal Inlet
 - VI Vertical Inlet

TABLE I
SUMMARY OF BERYLLIUM EMISSION DATA

SOUTHEASTERN KUSAN, INC. Gaffney, South Carolina BAGHOUSE INLET AND OUTLET

BAUNOUSE THEE		Inlet, Complete Test		
	0 ⁰ Traverse	90 ⁰ Traverse	Outlet Test	
Run Number	VI-1-MP	HI-1-MP	0-1-MP	
Date	8/25/71	8/25/71	8/25/71	
Stack Flow Rate @ Stack Conditions, CFM	18,543	19,462	20,348	
Stack Gas Moisture, % Volume	0.4	0.5	0.4	
Stack Gas Temperature, ^O F	109.5	113	111	
Test Time, Minutes	312	312	320	
Beryllium Emissions, Total Catch µg/m³ @ Stack Conditions grams/8-hr. day	8.12 2.03	14.67 3.84	0.38 0.10	

TABLE 2
SUMMARY OF BERYLLIUM EMISSION DATA

SOUTHEASTERN KUSAN, INC. Gaffney, South Carolina BAGHOUSE INLET AND OUTLET

	Inlet, C		
	First Half of Test O Traverse	Second Half of Test 90 Traverse	Outlet Test
Run Number	VI-2-MP	HI-2-MP	0-2-MP
Date	8/30/71	8/30/71	8/30/71
Stack Flow Rate @ Stack Conditions, CFM	18,698	20,466	20,523
Stack Gas Moisture, % Volume	1.4	0.9	0.7
Stack Gas Temperature, ^O F	152	100	125
Test Time, Minutes	. 168	168	320
Beryllium Emissions, Total Catch µg/m³ @ Stack Conditions grams/8-hr. day	10.86 2.74	1.78 0.51	0.24 0.07

PROCESS DESCRIPTION AND OPERATION

Southeastern Kusan, Incorporated, is engaged in the production of beryllium-copper molds for plastic casting. Tests were conducted to determine the extent of beryllium emissions produced by melting and pouring beryllium-copper alloy. No tests were conducted for grinding and finishing operations, which are presently uncontrolled. A Wheelabrator baghouse, fed by numerous hoods, is employed in controlling Beryllium emissions at Southeastern Kusan.

The production of plastic casting molds begins with the melting of as much as 2,000 lbs. of beryllium-copper (approximately 2% Be) ingots in a crucible enclosed by a furnace. On 8/25/71, 1,000 pounds of alloy were melted. The crucible was heated with a natural gas flame to roughly 1,900°F. The process required approximately two hours, during which time a several foot high copper (green) hale was observed over the crucible. Air flow however, was sufficient to pull all visible green emissions into the crucible area hood.

Once the correct temperature was attained the molten alloy was poured into a transfer pot and dressed (i.e. skimmed to remove oxides and impurities). The transfer pot was then moved to the pouring cart where the molten material was screened through two-inch openings into molds. The pour hole and risers were covered to retain heat during the setting process, and a movable hood was installed over the molds during cooling to prevent beryllium emissions into work areas.

Beryllium emission control was obtained by hooding each work area except grinding, for which a hood is planned in the near future. The furnace area emissions were ducted to a cyclone and joined with the hood emissions from the transfer crucible area, two small open sided cooling areas, and the pouring table area. The combined emissions were routed to a three section Wheelabrator baghouse operated at 22,900 CFM. Air movement in the building was moderate during the test period and was provided by two three-foot exhaust fans and three open doors.

LOCATION OF SAMPLING POINTS

At Southeastern Kusan a square plywood stack extension was connected to the existing effluent stack from the baghouse so that the sampling location would be further downstream from the curved section of stack. The sampling location could not be located eight stack diameters downstream, therefore, more sampling points were used. Inlet sampling to the baghouse was accomplished by locating sampling ports in the existing horizontal duct. Two ports were located 90° apart from each other. Schematic diagrams of the inlet and outlet sampling locations are shown in Figures 1, 2, and 3 respectively.

LOCATION OF SAMPLING PORT AND POINTS AT BAGHOUSE INLET (HORIZONTAL STACK) SOUTHEASTERN KUSAN, INC.

FIGURE 1

LOCATION OF SAMPLING PORT AND POINTS AT BAGHOUSE EXHAUST SOUTHEASTERN KUSAN, INC.

FIGURE 2

FIGURE 3

SAMPLING AND ANALYTICAL PROCEDURES

All sources were tested in such a manner as to comply with the Environmental Protection Agency's (EPA) Proposed Regulations on National Emission Standards for Five Stationary Source Categories, published in the Federal Register (36 F.R. 5931, March 31, 1971). A copy of these procedures from the August 20, 1971 Environment Reporter is presented in the appendix.

Specific testing procedures and modifications of the prescribed EPA method are also included in the appendix.

All samples collected were sent to EPA personnel in North Carolina for Beryllium analysis. Laboratory results are presented in the appendix following.

APPENDIX

CODE TO SAMPLE DESIGNATIONS

- SK Southeastern Kusan, Inc., Division of Beth. Steel, Gaffney, South Carolina
- O Outlet stack from baghouse
- 1 Run #1
- 2 Run #2
- 3 Run #3
- MP Millipore AA filter
- · W Whatman 41 filter
- WB Whatman 41 filter (when used as a backup)
- Be Beryllium sample
- IGB Impinger and back half acetone and water and rinses, and backup filter combined.
 - I Impinger and back half acetone and water rinses combined
 - P Probe particulate and probe acetone wash combined
 - F Filter
- HI Horizontal Inlet
- VI Vertical Inlet

SOURCE TEST DATA

No. of Runs 2
et

Run No.	VI-1-MP	HI-I-MP	0-1-MP
Date	8/25/71	8/25/71	8/25/71
Time Began	0745	0750	0752
Time End	1257	1302	1312
Barometric Pressure, "Hg. Absolute	29.9	29.9	29.9 .
Meter Orifice Pressure Drop, "H ₂ O	1.812	1.796	3.150
Volume of Dry Gas Meter @ Meter Cond., ft ³	260.477	265.329	338.730
Ave. Meter Temp., ^O F	83.9	122.6	83.8
Volume of Gas Sampled @ Stack Cond., ft ³	272.65	261.15	354.35
Volume of H ₂ O Collected in Impingers & Silica Gel, m1 ²	22	24.7	28.3
Volume of Water Vapor Collected & Stack Cond., ft ³	1.12.	1.27	1.44
Stack Gas Moisture, % Volume	0.41	0.49	0.41
Mole Fraction of Dry Stack Gas	0.9959	0.9951	0.9959

Run No.		(Same)	
Molecular Weight of Stack Gas, @ Stack Cond.	28.92	28.92	28.92
Molecular Weight of Stack Gas, Dry	28.97	28.97	28.97
Stack Gas Sp. Gravity, Ref. to Air	1.00	1.00	1.00
Ave. Sq. Root of Velocity Head, "H ₂ O	0.744	0.778	0.986
Ave. Stack Gas Temp., ^O F	109.5	113.2	111.0
Pitot Corr. Factor	0.85	0.85	0.85
Stack Pressure, "Hg Absolute	29.9	29.9	29.9
Stack Gas Velocity @ Stack Cond., fpm	2625	2755	3484
Stack Area, ft ²	7.06	7.06	5.84
Stack Gas Flow Rate @ Stack Cond., cfm	17976	17613	19664
Net Time of Test, min.	312	312	320
Sampling Nozzle Diameter, in.	0.250	0.250	0.250
Percent Isokinetic	97.7	89.1	93.2
Beryllium Catch, Probe, μg	23.18	77.60	1.45
Beryllium Catch, Filter, μg	36.27	24.18	0.39
Beryllium Catch, Total, μg	62.70	108.50	3.83
Beryllium Concentration, Probe, Stack Cond., µg/m ³	3.00	10.49	0.14
Beryllium Concentration, Filter, Stack Cond., µg/m ³	4.70	3.27	0.04
Beryllium Concentration, Total, Stack Cond., μg/m ³	8.12	14.67	0.38

SOURCE TEST DATA

E.P.A. lest No	No. of Runs 2
Name of Firm	Southeastern Kusan, Inc.
Location of Plant	Gaffney, South Carolina
Type of Plant	Beryllium Smelting Operation
Control Equipment	Baghouse
Sampling Point Location	Baghouse inlet and outlet
Pollutants Sampled	Beryllium

	•		
Run No.	VI-2-MP	HI-2-MP	0-2 - MP
Date	8/30/71	8/30/71	8/30/71
Time Began	0720	1015	0717
Time End	1008	1303	1237
Barometric Pressure, "Hg. Absolute	29.55	29.55	29.55
Meter Orifice Pressure Drop, "H ₂ O	1.636	2.215	3.716
Volume of Dry Gas Meter @ Meter Cond., ft ³	134.098	155.587	383.625
Ave. Meter Temp., ^o F	69.4	91.4	83.3
Volume of Gas Sampled @ Stack Cond., ft ³	156.95	158.89	412.45
Volume of H ₂ O Collected in Impingers & Silica Gel, m1 ²	39.6	29.0	51.1
Volume of Water Vapor Collected & Stack Cond., ft ³	2.20	J.48	2.71
Stack Gas Moisture, % Volume	1.37	0.93	0.66
Mole Fraction of Dry Stack Gas	0.9863	0.9907	0.9934

Run No.		(Same)	·
Molecular Weight of Stack Gas, @ Stack Cond.	28.76	28.81	28.84
Molecular Weight of Stack Gas, Dry	28.91	28.91	28.91
Stack Gas Sp. Gravity, Ref. to Air	0.99	0.99	1.00
Ave. Sq. Root of Velocity Head, "H ₂ O	0.723	0.828	0.982
Ave. Stack Gas Temp., ^O F	152.4	100.0	124.7
Pitot Corr. Factor	0.85	0.85	0.85
Stack Pressure, "Hg Absolute	29.5	29.5	29.5
Stack Gas Velocity @ Stack Cond., fpm	2647	2898	3514
Stack Area, ft ²	7.06	7.06	5.84
Stack Gas Flow Rate @ Stack Cond., cfm	18449	19354	19625
Net Time of Test, min.	168	168	320
Sampling Nozzle Diameter, in.	0.250	0.250	0.250
Percent Isokinetic	102.1	94.5	106.2
Beryllium Catch, Probe, μg	10.52	6.33	0.77
Beryllium Catch, Filter, μg	37.30	0.72	0.43
Beryllium Catch, Total, μg	48.29	7.99	2.79
Beryllium Concentration, Probe, Stack Cond., μg/m ³	2.37	1.41	0.07
Beryllium Concentration, Filter, Stack Cond., µg/m ³	8.39	0.16	0.04
Beryllium Concentration, Total, Stack Cond., μg/m ³	10.86	٦.78	0.24

COMPLETE SAMPLING PROCEDURES USED FOR BERYLLIUM SAMPLING

Prior to performing the actual beryllium particulate runs, certain preliminary stack and stack gas parameters had to be determined for each source. This preliminary data included the average temperature, velocity head, moisture content, and the stack diameter at the point where the tests were being performed.

The stack gas temperature was determined by using bimetallic thermometers and mercury bulb thermometers.

Velocity head measurements were determined across the stack diameter by using a calibrated S-type pitot tube with an inclined manometer. This data was used to select the sampling nozzle diameter.

The approximate moisture content of the stack gas was determined by the wet-bulb and dry-bulb thermometer technique since the stack gas temperature was below $212^{\circ}F$.

The sampling traverse points were selected so that a representative sample could be extracted from the gas stream. The traverse points for circular stacks were located in the center of the annular equal area circles selected, which were dependent upon diameter and duct diameters downstream from flow disturbances.

The basic modification of the EPA particulate sampling train for beryllium sampling was the selection of filter media. Tests were performed with Millipore "AA" filters backed up by a Whatman #41 filter. A schematic diagram of the sampling train is shown in Figure A-1.

FIGURE A-1 BERYLLIUM SAMPLING TRAIN

The gases sampled were collected through the following train: a stainless steel nozzle; a glass probe; a filter; two impingers with 100 ml of distilled water; one dry impinger; one impinger with 180 grams of silica gel (the second impinger had a standard tip, while the first, third, and fourth impingers had modified tips with 1/2-inch ID opening); a flexible sample line; an air-tight pump; a dry test meter; and finally, a calibrated orifice.

Duplicate tests were performed at both the inlet and outlet of the baghouse. Inlet sampling consisted of using a sampling train in a vertical position (port opening located at bottom of existing horizontal duct) and a sampling train in a horizontal position. Both inlet trains were run at the same time at the same inlet position during the first test. A test run for each train consisted of traversing through only one position -- vertical or horizontal. During the second test, the vertical sample traverse was performed with the first train and the horizontal traverse second with the second train. An orsat analysis of the stack gas was performed during the second test.

Outlet sampling was conducted with a third sampling train at the fabricated plywood stack in a horizontal position. Both outlet test runs occurred simultaneously with all inlet sampling runs.

Sample recovery for all beryllium tests was accomplished by the following procedure:

- 1. Each filter was removed from its holder and placed in Container No. 1 and sealed.
- All sample-exposed surfaces prior to the filter were washed with acetone and placed into Container No. 2 and sealed.

- 3. The volume of water in the first three impingers was measured and then placed into Container No. 3. The water rinsings of all sample-exposed surfaces between the back half of the filter holder and fourth impinger were also placed into Container No. 3 prior to sealing.
- 4. The used silica gel from the fourth impinger was transferred to the original tared container and sealed.
- 5. All sample-exposed surfaces between the back half of the filter holder and the fourth impinger were rinsed with acetone and the rinsings were placed into Container No. 5 and sealed.

PARTICULATE TEST CALCULATIONS

```
Plant Southeastern Kusan, Inc. Stack Inlet - Vertical Port, Date 8-25-72
  r. Press. <u>29.90</u> "Hg, Stack Press. <u>29.9</u> "Hg, Stack Dia. <u>36</u> in., Stack Area <u>7.06</u> ft<sup>2</sup>
Ave. Stack Temp. 109. 5 F, Ave. Meter Temp. 83.9 F, Ave. Nh 0.744 "H20, Nozzle Dia. 0.25 in.
C_0.85, Meter Vol. 260.477 ft3, Moisture plus Silica Gel 22 ml, Sample Time 3/2 min.
C sat Analysis: CO_2 - \%, O_2 - \%, CO_2 - \%, N_2 - \%
                                                                       Ave. Orifice AH /. 8/ "H20
Nozzle Dia. and Area: 1/4 in.---0.000341 ft<sup>2</sup>, 3/8 in.---0.000767 ft<sup>2</sup>, 1/2 in.---0.0013 ft<sup>2</sup>
) V_{wv} = (0.0474) \times (Moisture + Silica Gel)ml
                                                                                         = 1.04 scf
 1) V_{\text{stpd}} = (17.71) \times (P_0 + \frac{\Delta H}{13.6}) \times (V_m) \times (\frac{1}{\bar{T}_m + 460})
                                                                                         = 252.527 sef
                                                                                         =253.567 scf
 \overline{3}) V_t = (V_{wv}) + (V_{strd})
W = \frac{\Lambda^{4}}{\Lambda^{4}}
                                                                                         = 0.004
                                                                                         = 0.996
5) FDA = (1.0) - (W)
= 28.97
= 28.92
8) G_s = \frac{M_s}{28.99}
                                                                                         = 1.0
x 100
10) \bar{U} = (174) \times (C_p) \times (\sqrt{h}) \times (\sqrt{\frac{\bar{T}_s + 460}{G_s}}) \times (\sqrt{\frac{29.92}{p_s}})
                                                                                           2625 fpm
 (\bar{U}) Q_s = (\bar{U}) \times (A_s) 
                                                                                        = 18543
                                                                                                          cfm
\overline{12}) Q_d = (Q_s) \times (FDA)
                                                                                         = 18466
                                                                                                           cfm
 ) Q_{stpd} = (Q_d) \times (\frac{70 + 460}{T_c + 460})
                                                                                         = 17173
14) V_i = (\bar{U}) \times (A_n) \times (FDA) \times (Time) \times (\frac{70 + 460}{T_0 + 460})
                                                                                         = 258.558 sci
Percent Isokinetic = \frac{(V_{strd})}{(V_1)} x 100
                                                                                              927
                                                  (5.626) \times (T_s + 460) \times (V_m)
b) Percent Isokinetic by the EPA Method = \overline{(\bar{\mathbf{U}})} x (Time) x (P_s) x (FDA) x (A_n)
                                                                   19) E_{50} = \frac{(E_{stp}) \times (100 + EAS)}{150}
                              18) E_{12} = \frac{(12) \times (E_{stp})}{(CO_{co})}
17) E_{stp} = \frac{(15.43) \times (Y)}{y_{stp3}}
b) E_{m} = (E_{stp}) \times (Q_{stpd}) \times (0.00857)
                                  Particulate Concentrations, \mathcal{M}_{9}/m^{3} (\Xi_{12}) (\Xi_{50})
  Particulate Lab Analysis
                                                                                     Emission Rate, lbs/hr
                    (Y) Mg
                                          (E<sub>stp</sub>)
                                                         (\Xi_{12})
Be-SK-VI-1-MPP 23.18
                                         3.24
e-SK-VI-HMP-F 36,27
                                        3.07
Be-SK-VI-1-NIP-I
                                        0.37
Pe-SK-VI-1-MP-WB 0.00
                    62.70
                                        8.68
  Total
```

Subpart E—Standards of Performance for Nitric Acid Plants

§ 166.50 Applicability and designation of affected facility.

(a) The provisions of this subpart are applicable to nitric acid plants.

(b) For purposes of § 466.11(e), the entire plant is the affected facility.

§ 466.51 Definitions.

As u.ed in this part, all terms not defined herein shall have the meaning given them in the Act:

(a) "Nitric acid plant" means any facility producing weak nitric acid by either the pressure or atmospheric pressure process.

(b) "Weak nitric acid" means acid which is 50 to 70 percent in strength.

§ 466.52 Standard for nitrogen oxides.

No person subject to the provisions of this subpart shall cause or allow the discharge into the atmosphere of nitrogen oxides in the effluent which are:

(a) In excess of 3 los, per ton of acid produced (1.5 Kgm. per metric ton), maximum 2-hour average, expressed as NO2

(b) A visible emission within the meaning of this part.

§ 466.53 Emission monitoring.

(a) There shall be installed, calibrated, maintained, and operated, in any nitric acid plant subject to the provisions of this subpart, an instrument for continuously monitoring and recording emissions of nitrogen oxides.

(b) The instrument installed and used pursuant to this section shall have a confidence level of at least 95 percent and be accurate within ±20 percent and shall be calibrated in accordance with the method(s) prescribed by the manufacturer(s) of such instrument; the instrument shall be calibrated at least once per year unless the manufacturer(s) specifies or recommends calibration at shorter intervals, in which case such specifications or recommendations shall be followed.

(c) The owner or operator of any nitric acid plant subject to the provisions of this subpart shall maintain a file of all measurements required by this subpart and shall retain the record of any such measurement for at least 1 year following the date of such measurement.

§ 466.54 Test methods and procedures.

(a) The provisions of this section are applicable to performance tests for determining emissions of nitrogen oxides from nitric acid plants.

(b) All performance tests shall be conducted while the affected facility is operating at or above the acid product rate for which such facility was designed.

(c) Test methods set forth in the appendix to this part shall be used as follows:

(1) For each repetition the NO_x concentration shall be determined by using Method 7. The sampling location shall be selected according to Method 1 and the sampling point shall be the centroid of

the stack or duct. The sampling time shall be 2 hours and four samples shall be taken during each 2-hour period.

(2) The volumetric flow rate of the total effluent shall be determined by using Method 2 and traversing according to Method 1. Gas analysis shall be performed by Method 3, and moisture content shall be determined by Method 4.

(d) Acid produced, expressed in tons per hour of 100 percent weak nitric acid, shall be determined during each 2-hour testing period by suitable flow meters and shall be confirmed by a material balance over the production system.

(e) For each repetition, nitrogen oxides emissions, expressed in lb./ton of weak nitric acid, shall be determined by dividing the emission rate in lb./hr. by the acid produced. The emission rate shall be determined by the equation, lb./ hr.= $Q \times C$, where Q = volumetric flow rate of the effluent in ft. 3 /hr. at standard conditions, dry basis, as determined in accordance with \$466.54(d)(2), and $C = NO_x$ concentration in lb./ft. 3 , as determined in accordance with \$466.54(d)(1), corrected to standard conditions, dry basis

Subpart F—Standards of Performance for Sulfuric Acid Plants

§ 466.60 Applicability and designation of affected facility.

(a) The provisions of this subpart are applicable to sulfur acid plants.

(b) Flow purposes of \$ 156 11(a) the are

(b), For purposes of § 466.11(e) the entire plant is the affected facility.

§ 466.61 Definitions.

As used in this part, all terms not defined herein shall have the meaning given them in the Act:

(a) "Sulfuric acid plant" means any facility producing sulfuric acid by the contact process by burning elemental sulfur, alkylation acid, hydrogen sulfide, organic sulfides and mercaptans, or acid sludge.

(b) "Acid mist" means sulfur acid mist, as measured by test methods set forth in this part.

§ 466.62 Standard for sulfur dioxide.

No person subject to the provisions of this subpart shall cause or allow the discharge into the atmosphere of sulfur dioxide in the efluent in excess of 4 lbs. per ton of acid produced (2 kgm. per metric ton), maximum 2-hour average.

§ 466.63 Standard for acid mist.

No person subject to the provisions of this subpart shall cause or allow the discharge into the atmosphere of acid mist in the effluent which is:

(a) In excess of 0.15 lb, per ton of acid produced (0.075 Kgm, per metric ton), maximum 2-hour average, expressed as H.SO.

(b) A visible emission within the meaning of this part.

§ 166.61 Emission monitoring.

(a) There shall be installed, calibrated, maintained, and operated, in any sulfuric acid plant subject to the provisions of this subpart, an instrument for continu-

ously monitoring and recording emissions of sulfur dioxide.

(b) The instrument installed and used pursuant to this section shall have a confidence level of at least 95 percent and be accurate within ±20 percent; and shall be calibrated in accordance with the method(s) prescribed by the manufacturer(s) of such instrument, the instrument shall be calibrated at least once per year unless the manufacturer(s) specifies or recommends calibration at shorter intervals, in which case such specifications or recommendations shall be followed.

(c) The owner or operator of any sulfuric acid plant subject to the provisions of this subpart shall maintain a file of all measurements required by this subpart and shall retain the record of any such measurement for at least I year following the date of such measurement.

§ 466.65 Test methods and procedures.

(a) The provisions of this section are applicable to performance tests for determining emissions of acid mist and sufur dioxide from sulfuric acid plants.

(b) All performance tests shall be conducted while the affected facility is operating at or above the acid production rate for which such facility was designed.

(c) Test methods set forth in the appendix to this part shall be used as follows:

(1) For each repetition the acid mist and SO₂ concentrations shall be determined by using Method 8 and traversing according to Method 1. The sampling time shall be 2 hours, and sampling volume shall be 40 ft.° corrected to standard conditions.

(2) The volumetric flow rate of the total effluent shall be determined by using Method 2 and traversing according to Method 1. Gas analysis shall be performed by Method 3. Moisture content can be considered to be zero.

(d) Acid produced, expressed in tons per hour of 100 percent sulfuric acid shall be determined during each 2-hour testing period by suitable flow meters and shall be confirmed by a material balance over the production system.

(e) For each repetition, acid mist and sulfur dioxide emissions, expressed in lb./ton of sulfuric acid shall be determined by dividing the emission rate in lb./hr. by the acid produced. The emission rate shall be determined by the equation, lb./hr.=Q×C, where Q=volumetric flow rate of the effluent in ft.*/hr. at standard conditions, dry basis, as determined in accordance with § 466.65(d) (2), and C=acid mist and SO₂ concentrations in lb./ft.* as determined in accordance with § 466.65(d) (1), corrected to standard conditions, dry basis.

APPENDIX-TEST METHODS

METHOD 1--SAMPLE AND VELOCITY TRAVERSES FOR STATIONARY SOURCES

1. Principle and applicability.

1.1 Principle. A sampling site and the number of traverse points are selected to aid in the extraction of a representative sample.

1.2 Applicability. This method should be applied only when specified by the test procedures for determining compliance with

ENVIRONMENT REPORTER

New Source Performance Standards. This method is not intended to apply to gas streams other than those emitted directly to the atmosphere without further processing.

2. Procedure.

Environment Reporter

- 2.1 Selection of a sampling site and minimum number of traverse points.
- 2.1.1 Select a sampling site that is at least eight stack or duct diameters downstream and two diameters upstream from any flow disturbance such as a bend, expansion, contraction, or visible flame. For a rectangular cross section, determine an equivalent diameter from the following equation:

2.1.2 When the above sampling site criteria can be met, the minimum number of traverse points is twelve (12).

- 2.1.3 Some sampling situations render the above sampling site criteria impractical. When this is the case, choose a convenient sampling location and use Figure 1-1 to determine the minimum number of traverse points.
- 2.1.4 To use Figure 1-1 first measure the distance from the chosen sampling location to the nearest upstream and downstream disturbances. Determine the corresponding number of traverse points for each distance from Figure 1-1. Select the higher of the two numbers of traverse points, or a greater value, such that for circular stacks the number is a multiple of four, and for rectangular stacks the number follows the criteria of section 2.2.2.
- 2.2 Cross sectional layout and location of traverse points.
- 2.2.1 For circular stacks locate the traverse points on two perpendicular diameters according to Figure 1-2 and Table 1-1.

Figure 1-2. Cross section of circular stack showing location of traverse points on perpendicular diameters.

Figure 1-3. Cross section of rectangular stack divided into 12 equal areas, with traverse points at centroid of each area.

(DISTANCE B)

Figure 1-1. Minimum number of traverse wints.

Table 1-1. Location of traverse points in circular stacks (Percent of stack diameter from inside wall to traverse point)

Traverse point number		•	. Nur	nber of	travers	e points	s on a d	iameter		
on a diameter	6	8	10	12	14	16	18	20	22	24
1	4.4	3.3	2.5	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	14.7	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3	29.5	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4	70.5	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5	85.3	67. 7	34.2	25.0	20.1 -	16.9	14.6	12.9	11.6	10.5
6	95.6	80.6	65.8	35.5	26.9	22.0	18.8	16.5	14.6	13.2
7		89.5	77.4	64.5	36. 6	28.3	23.6	20.4	18.0	16.1
8	1	96.7	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
9	ł		91.8	82.3	73.1	62.5	38.2	30.6	26.1	23.0
10			97.5	88.2	79. 9	71.7	61.8	38.8	31.5	27.2
11				93.3	85.4	78.0	70.4	61.2	39.3	32.3
12	1			97.9	90.1	83.1	76.4	69.4	60.7	39.8
13 -					94.3	87.5	81.2	75.0	68.5	60.2
14					98.2	91.5	85.4	79.6	73.9	67.7
15	}					95.1	89.1	83.5	78.2	72.8
16						98.4	. 92.5	87.1	82.0	77.0
17							95.6	90.3	85.4°	80.6
18	!						98.6	93.3	.88.4	83.9
19								96.1	91.3	86.8
20						,		98.7	94.0	8 9. 5
21	}				•				96. 5	92.1
22			•						98.9	94.5
23										96.8
24										98.9

2.2.2. For rectangular stacks divide the cross section into as many equal rectangular areas as traverse points, such that the ratio of the length to the width of the elemental areas is between one and two. Locate the traverse points at the centroid of each equal area according to Figure 1-3.

3. References. Determining Dust Concentration in a Gas Stream. ASME Performance Test Code #27. New York, 1957.

Devorkin, Howard, et al. Air Pollution Source Testing Manual. Air Pollution Control District. Los Angeles. November 1963.

Methods for Determination of Velocity, Volume, Dust and Mist Content of Gases. Western Precipitation Division of Joy Manufacturing Co. Los Angeles. Bulletin WP-50. 1968. Standard Method for Sampling Stacks for Particulate Matter. In: 1971 Book of ASTM Standards, Part 23. Philadelphia, 1971. ASTM Designation D-2928-71.

METHOD 2—DETERMINATION OF STACK GAS VELOCITY (TYPE S PITOT TUBE)

1. Principle and applicability.

1.1 Principle. Stack gas velocity is determined from the gas density and from measurement of the velocity head using a Type S (Stauschelbe or reverse type) pitot tube.

1.2 Applicability. This method should be applied only when specified by the test procedures for determining compliance with New Source Performance Standards. Being a directional instrument, a pitot tube should

not be used in the case of nondirectional flow.

2. Apparatus.

2.1 Pitot tube—Type S (Figure 2-1), or equivalent.

2.2 Differential pressure gauge—Inclined manometer, or equivalent, to measure velocity head to within 10 percent of the minimum valve.

2.3. Temperature gauge—Thermocouples, bimetallic thermometers, liquid filled systems, or equivalent, to measure stack temperature to within 1.5 percent of the minimum absolute stack temperature.

2.4 Pressure gauge—Mercury-filled U-tube manometer, or equivalent, to measure stack pressure to within 0.1 in. Hg.

2.5 Barometer—To measure atmospheric pressure to within 0.1 in. Hg.

2.6 Gas analyzer—To analyze gas composition for determining molecular weight.

2.7 Pitot tube—Standard type, to callbrate Type S pitot tube.

3. Procedure.

3.1 Set up the apparatus as shown in Figure 2-1. Make sure all connections are tight and leak free. Measure the velocity head at the traverse points specified by Method 1.

3.2 Measure the temperature of the stack gas. If the total temperature variation with time is less than 50° F., a poin measurement will sufflee. Otherwise, condect a temperature traverse.

3.3 Measure the static pressure in the stack.

3.4 Determine the stack gas molecular weight by gas analysis and appropriate calculation as indicated in Method 3.

4. Calibration.

4.1 To calibrate the pitot tube, measure the velocity head at some point in a flowing gas stream with both a Type S pitot tube and range.

a standard type pitot tube with known coefficient. The velocity of the flowing gas stream should be within the normal working range.

4.2 Calculate the pitot tube coefficient using Equation 2-1.

$$C_{p_{test}} = C_{p_{std}} \sqrt{\frac{\Delta P_{atd}}{\Delta P_{test}}} \quad \text{equation } 2\text{--}1$$

where: CPtest=Pitot tube coefficient of Type S

pitot tube.

Cpetd = Pitot tube coefficient of standard type pitot tube (if unknown, use 0.99).

ΔP. td=Velocity head measured by standard type pitot tube.

ΔP = Velocity head measured by Type S pitot tube.

4.3 Compare the coefficients of the Type S pitot tube determined first with one leg and

then the other pointed	dow	vnstream.	Use the
pitot tube only if the	two	coefficient	is differ
by no more than 0.01.		•	

5. Calculations.

Use Equation 2-2 to calculate the stack gas velocity.

$$V_p = K_p C_p \sqrt{\frac{T_* \Delta_p}{P_* M_*}}$$
 equation 2-2

where:

V.=Stack gas velocity, feet per second (f.p.s.).

$$K_p = $5.48 \frac{\text{ft.}}{\text{sec.}} \left(\frac{\text{lb.}}{\text{lb. mole} = {}^{c}R} \right)^{1/2}$$
 when these units are used.

= Pitot tube coefficient, dimensionless.

 C_p = Pitot tube coefficient, annensionals. T_* = Absolute stack gas temperature, 9R . Δ_p = Velocity head of stack gas, in 11:0 (see fig. 2-2). P_* = Absolute stack gas pressure, in 11g. P_a= Absolute stack gas pressure, in Hg. M_a= Molecular weight of stack gas, 1b./ib.-mole.

PLANT	
DATE	
RUN NO	
STACK DIAMETER, in.	
BAROMETRIC PRESSURE, in. Hg.	·
STATIC PRESSURE IN STACK (Pq), in. Hg.	
OPERATORS	SCHEMATIC OF STACK CROSS SECTION

Traverse point	Velocity head, · in. H ₂ O	√∆ _P	Stack Temperature (T _S), ° F
,			
		<u> </u>	
	<u> </u>	<u>-</u>	
			
		•	
	<u> </u>		
	AVERAGE:		

Figure 2-2. Velocity traverse data.

Figure 2-2 shows a sample recording sheet for velocity traverse data. Use the averages in the last two columns of Figure 2-2 to determine the average stack gas velocity from Equation 2-2.

6. References.

Mark, L. S. Mechanical Engineers' Hand-book, McGraw-Hill Book Co., Inc., New York, 1951.

Perry, J. H. Chemical Engineers' Handbook. McGraw-Hill Book Co., Inc., New York, 1960.

Shigehara, R. T., W. F. Todd, and W. S. Smith. Significance of Errors in Stack Sampling Measurements. Paper presented at the Annual Meeting of the Air Pollution Control Association, St. Louis, Mo., June 14-19, 1970.

Standard Method for Sampling Stacks for Particulate Matter. In: 1971 Book of ASTM standards, Part 23. Philadelphia, 1971. ASTM Designation D-2928-71.

Vennard, J. K. Elementary Fluid Mechanics. John Wiley and Sons, Inc., New York, 1947.

METHOD 3-GAS ANALYSIS FOR CARBON DIOXIDE, EXCESS AIR, AND DRY MOLECULAR WEIGHT

1. Principle and applicability.

- 1.1 Principle. An integrated or grab gas sample is extracted from a sampling point and analyzed for its components using an Orsat analyzer.
- 1.2 Applicability. This method should be applied only when specified by the test procedures for determining compliance with New Source Performance Standards.
- 2. Apparatus.
- 2.1 Grab sample (Figure 3-1).
- 2.1.1 Probe-Stainless steel or Pyrex glass, equipped with a filter to remove particulate matter.
- 2.1.2 Pump-One-way squeeze bulb, or equivalent, to transport gas sample to analyzer.
 - 2.2 Integrated sample (Figure 3-2).
- 2.2.1 Probe-Stainless steel or Pyrex 1 glass equipped with a filter to remove particulate matter.
- 2.2.2 Air-cooled condenser-To remove any excess moisture.
 - 2.2.3 Needle valve-To adjust flow rate.
- 2.2.4 Pump-Leak-free, diaphragm type, or equivalent, to pull gas.
- 2.2.5 Rate meter-To measure a flow range from 0 to 0.035 c.f.m.
- 2.2.6 Flexible bag-Tedlar, or equivalent, with a capacity of 2 to 3 cu. ft. Leak test the bag in the laboratory before using.
- 2.2.7 Pitot tube-Type S, or equivalent, attached to the probe so that the sampling flow rate can be regulated proportional to the stack gas velocity when velocity is varying with time or a sample traverse is conducted.
 - 2.3 Analysis.
 - 2.3.1 Orsat analyzer, or equivalent.
 - 3. Procedure.
 - 3.1 Grab sampling.
- 3.1.1 Set up the equipment as shown in Figure 3-1. Place the probe in the stack at a sampling point and purge the sampling line.

¹ Trade name.

Figure 3-1. Grab-sampling train.

Figure 3-2. Integrated gas - sampling train.

3.1.2 Draw sample into the analyzer.

3.2 Integrated sampling.

3.2.1 Evacuate the flexible bag. Set up the equipment as shown in Figure 3-2 with the bag disconnected. Place the probe in the stack and purge the sampling line. Connect the bag, making sure that all connections are tight and that there are no leaks.

3.2.2 Sample at a rate proportional to the stack gas velocity.

3.3 Analysis.

3.3.1 Determine the CO2, O2, and CO concentrations as soon as possible. Make as many passes as are necessary to give constant readings. If more than 10 passes are necessary, replace the absorbing solution.

3.3.2 For integrated sampling, repeat the analysis until three consecutive runs vary no more than 0.2 percent by volume for each component being analyzed.

4. Calculations.

4.1 Carbon dioxide. Average the three consecutive runs and report result to the nearest 0.1 percent CO:.

4.2 Excess air. Use Equation 3-1 to calculate excess air, and average the runs. Report the result to the nearest 0.1 percent excess air.

% EA=

$$\frac{(\% O_2) - 0.5(\% CO)}{0.264(\% N_2) - (\% O_2) + 0.5(\% CO)} \times 100$$

equation 3-1

where:

%EA = Percent excess air.

%O2=Percent oxygen by volume, dry basis.

% Na = Percent nitrogen by volume, dry basis.

CO=Percent carbon monoxide by volume, dry basis.

0.264=Ratio of oxygen to nitrogen in air by volume.

4.3 Dry molecular weight. Use Equation 3-2 to calculate dry molecular weight and average the runs. Report the result to the nearest tenth.

> $M_d = 0.44(\% CO_a) + 0.32(\% O_s)$ +0.28(% N2+% CO) Equation 3-2

where:

Md=Dry molecular weight, lb./lb.mole.

%CO,=Percent carbon dioxide by volume, dry basis.

%O, = Percent oxygen by volume, dry basis.

% Na = Percent nitrogen by volume, dry basis.

0.44 = Molecular weight of carbon diexide divided by 100.

0.32 = Molecular weight oxygen divided by 100.

0.28 = Molecular weight of nitrogen divided by 100.

5. References

Altshuller, A. P., et al. Storage of Gases

and Vapors in Plastic Bags. Int. J. Air & Water Pollution, 6:75-81, 1963.

Conner, William D., and J. S. Nader. Air Sampling with Plastic Bags. Journal of the American Industrial Hygiene Association. 25:291-297. May-June 1964.

Devorkin, Howard, et al. Air Pollution Source Testing Manual. Air Pollution Control District. Los Angeles. November 1963.

METHOD 4-DETERMINATION OF MOISTURE IN STACK GASES

1. Principle and applicability.

1.1 Principle, Moisture is removed from the gas stream, condensed, and determined gravimetrically.

1.2 Applicability. This method is applicable for the determination of moisture in stack gas only when specified by test procedures for determining compliance with New Source Performance Standards. This method does not apply when liquid droplets are pres-

ent in the gas stream.²
Other methods such as trying tubes, wet bulb-dry bulb techniques, and volumetric condensation techniques may be used subject to the approval of the Administrator.

2. Apparatus.
2.1 Probe—Stainless steel or Pyrex 1 glass sufficiently heated to prevent condensation and equipped with a filter to remove particulate matter.

2.2 Impingers—Two midget impingers, each with 30 ml. capacity, or equivalent.

2.3 Ice bath container-To condense moisture in impingers.

2.4 Silica gel tube-To protect pump and dry gas meter.
2.5 Needle valve—To regulate gas flow

rate.

2.6 'Pump-Leak-free, diaphragm type, or equivalent, to pull gas through train.

2.7 Dry gas meter—To measure to within

1 percent of the total sample volume.

2.8 Rotameter—To measure a flow range from 0 to 0.1 c.f.m.

2.9 Balance-Capable of measuring to the nearest 0.1 g.
2.10 Barometer—Sufficient to read to

within 0.1 in, Hg.

2.11 Pilot tube-Type S, or equivalent, attached to probe so that the sampling flow rate can be regulated proportional to the stack gas velocity when velocity is varying with time or a sample traverse is conducted.

3. Procedure.

3.1 Place about 5 ml. distilled water in each impinger and weigh the impinger and contents to the nearest 0.1 g. Assemble the apparatus without the probe as shown in Figure 4-1. Leak check by plugging the inlet to the first impinger and drawing a vacuum. Insure that flow through the dry gas meter is less than 1 percent of the sampling rate.

3.2 Connect the probe, and sample at a constant rate of 0.075 c.f.m. or at a rate proportional to the stack gas velocity not to exceed 0.075 c.f.m. Continue sampling until the dry gas meter registers 1 cu. ft. or until visible liquid droplets are carried over from the first impinger to the second. Record temperature, pressure, and dry gas meter reading as required by Figure 4-2.

3.3 After collecting the sample, weigh the impingers and their contents again to the nearest 0.1 g.

2 If liquid droplets are present in the gas stream, assume the stream to be saturated, determine the average stack gas temperature (Method 1), and use a psychrometric chart to obtain an approximation of the moisture percentage.

4. Calculations.

4.1 Volume of water collected.

$$V_{\text{wo}} = \frac{(W_t - W_t) RT_{\text{std}}}{P_{\text{std}} M_{\text{w}}} = \frac{\left(0.0474 \frac{\text{ft.}^3}{\text{g.}}\right) \left(w_t - W_i\right)}{\left(0.0474 \frac{\text{ft.}^3}{\text{g.}}\right) \left(w_t - W_i\right)}$$

equation 4-1

where: Vwe=Volume of water vapor collected (standard conditions), cu. ft.

We=Final weight of impingers and contents, g.

Wi=Initial weight of impingers and contents, g.

R=Ideal gas constant, 21.83-in, Hg—cu. ft./lb, moie-* R.

Tata = Absolute temperature at standard conditions, 530° R.

Patd=Pressure at standard conditions. 29.92 in. Hg.

M-=Molecular weight of water. 18 lb./lb. mole.

Figure 4-1. Moisture-sampling train.

LOCATION	COMMENTS
7EST	
DATE	
OPERATOR	
BAROMETRIC PRESSURE	

CLOCK TIME	GAS VOLUME THROUGH METER, (Vm), ft ³	ROTAMETER SETTING, ft ³ /min	METER TEMPERATURE,		
	·				
	•				

Figure 4-2. Field moisture determination.

4.2 Gas volume,

$$V_{mo} = V_m \left(\frac{P_m}{P_{std}}\right) \left(\frac{T_{std}}{T_m}\right) = \frac{\left(17.71 \frac{^{\circ}R}{\text{in. Hg}}\right) \frac{V_m P_m}{T_m}}{\text{equation } 4-2}$$

where:

Vme=Dry gas volume through meter at standard conditions, cu. ft.

 $V_m = Dry$ gas volume measured by meter, cu. It.

Pm=Barometric pressure at the dry gas meter, in. Hg.

P.td=Pressure at standard conditions. 29.92-in, Hg.

Teta=Absolute temperature at standard conditions, 530° R.

Tm=Absolute temperature (°F.+460), °R.

4.3 Moisture content.

$$B_{wo} = \frac{V_{wo}}{V_{wo} + V_{mo}} + B_{wm} = \frac{V_{wo}}{V_{wo} + V_{mo}} + (0.025)$$

Bwo=Proportion by volume of water vapor in the gas stream, dimensionless.

equation 4-3

Vwe=Volume of water vapor collected (standard conditions), cu. ft.

Vme=Dry gas volume through meter

(standard conditions), cu. it.

Bwm=Approximate volumetric proportion of water vapor in the gas stream leaving the impingers, 0.025.

5. References.

Air Pollution Engineering Manual, Danielson, J. A. (ed.). U.S. DHEW, PHS, National Center for Air Pollution Control. Cincinnati, Ohio, PHS Publication No.

999-Ap-40. 1967.

Devorkin, Howard, et al. Air Pollution
Source Testing Manual. Air Pollution Control District. Los Angeles, Calif. November 1963.

Methods for Determination of Velocity, Volume, Dust and Mist Content of Gases. Western Precipitation Division of Joy Manufacturing Co., Los Angeles, Calif. Bulletin WP-50. 1968.

METHOD 5.—DETERMINATION OF PARTICULATE EMISSIONS FROM STATIONARY SOURCES

1. Principle and applicability.

1.1 Principle, Particulate matter is withdrawn isokinetically from the source and its weight is determined gravimetrically after removal of uncombined water.

1.2 Applicability. This method is applicable for the determination of particulate emissions from stationary sources only when specified by the test procedures for determining compliance with New Source Performance Standards.

2. Apparatus.
2.1 Sampling train. The design specifications of the particulate sampling train used by EPA (Figure 5-1) are described in APTD-0581. Commercial models of this train are available.

2.1.1 Nozzle-Stainless steel (316) with

sharp, tapered leading edge.
2.1.2 Probe—Pyrex I glass with a heating system capable of maintaining a gas temperature of 250° F. at the exit end during sampling. When temperature or length limitations are encountered, 316 stainless steel, or equivalent, may be used, as approved by the Administrator.

2.1.3 Pitot tube-Type S, or equivalent, attached to probe to monitor stack gas velocity.

2.1.4 Filter holder-Pyrex 1 gleen with heating system capable of maintaining any temperature to a maximum of 225° F.

2.1.5 Impingers-Four impingers connected in series with glass ball joint fittings. The first, third, and fourth impingers are of the Greenburg-Smith design, modified by replacing the tip with a 1/2-inch ID glass tube extending to 12-inch from the bottom of the flask. The second impinger is of the Greenburg-Smith design with the standard tip.

2.1.6 Metering system-Vacuum gauge, leak-free pump, thermometers capable of measuring temperature to within 5° F., dry gas meter with 2 percent accuracy, and related equipment, or equivalent, as required to maintain an isokinetic sampling rate and to determine sample volume.

Figure 5-1. Particulate-sampling train.

- 2.1.7 Barometer-To measure atmospheric pressure to : 0.1 in. Hg.
- 2.2 Sample recovery. 2.2.1 Probe brush-At least as long as
- probe. 2.2.2 Glass wash bottles-Two.
 - Glass sample storage containers.
 - 2.2.4 Graduated cylinder-250 ml.
 - 2.3 Analysis. 2.3.1 Glass weighing dishes.
 - 2.3.2 Desiceator.
- Analytical balance—To measure to 2.3.3
- 2.3.4 Beakers-250 ml.

- 2.3.5 Separatory funnels-500 ml. and 1,000 ml.
- 2.3.6 Trip balance-300 g. capacity, to measure to ± 0.05 g.
 - 2.3.7 Graduated cylinder-25 ml.
 - 3. Reagents.
- 3.1 Sampling
- 3.1.1 Filters-Glass fiber, MSA 1106 BH, or equivalent, numbered for identification and preweighed.
- 3.1.2 Silica gel—Indicating type, 6 to 16 mesh, dried at 175° C. (350° F.) for 2 hours.
 3.1.3 Water—Deionized, distilled.
 3.1.4 Crushed ice.

 - 3.2 Sample recovery
 - 3.2.1 Water-Delonized, distilled.

- 3.2.2 Acctone-Reagent grade.
- 3.3 Analysis
- Water-Delonized, distilled. 3.3.1
- Chloroform-Reagent grade. 3.3.2Ethyl ether-Reagent grade.
- 3.3.3 Desiceant-Drierite, indicating. 3.3.4
- 4. Procedure.
- 4.1 Sampling.

4.1.1 After selecting the sampling site and the minimum number of sampling points, determine the stack pressure, temperature, moisture, and range of velocity head.

4.1.2 Preparation of collection Weigh to the nearest gram approximately 200 g. of silica gel. Label a filter of proper diameter, desiccate 3 for at least 24 hours and weigh to the nearest 0.5 mg. in a room where the relative humidity is less than 50 percent. Place 100 ml. of water in each of the first two impingers, leave the third impinger empty, and place approximately 200 g, of preweighed silica gel in the fourth impinger. Save a portion of the water for use as a blank in the sample analysis. Set up the train without the probe as in Figure 5-1. Leak check the sampling train at the sampling site by plugging the inlet to the filter holder and pulling a 15-in. Hg vacuum. A leakage rate not in excess of 0.02 c.f.m. at a vacuum of 15-in. Hg is acceptable, Attach the probe and adjust the heater to provide a gas temperature of about 250° F. at the probe outlet. Turn on the filter heating system. Place crushed ice around the impingers. Add more ice during the run to keep the temperature of the gases leaving the last impinger at 70° F. or less.

4.1.3 Particulate train operation. For each run record the data required on the example sheet shown in Figure 5-2. Take readings at each sampling point at least every 5 minutes and when significant changes in stack conditions necessitate additional adjust-ments in flow rate. To begin sampling, position the nozzle at the first traverse point with the tip pointing directly into the gas stream. Immediately start the pump and adjust the flow to isokinetic conditions. Maintain isokinetic sampling throughout the sampling period. Nomographs are available which aid in the rapid adjustment of the sampling rate without other computations. APTD-0576 details the procedure for using these nomographs. Turn off the pump at the conclusion of each run and record the final readings. Remove the probe and nozzle from the stack and handle in accordance with the sample recovery process described in section

Dry using Drierite 1 at 70° ±10° F.

¹ Trade name.

PLANT				1		1	AMBIENT TEMPERATURE			
LOCATION	٧		ı	1 .		1		BAROMETRIC	PRESSURE	
OPERATOR	·		•	}				ASSUMED M	OISTURE, %	
DATE	·		•	Ì				. HEATER BOX	SETTING	
RUN NO				ļ				PROSE LENG	TH, in	
SAMPLE B	OX NO <u>.</u>			1				NOZZLE DIA	METER, in	
METER BO	x NO		•	1			PROBE HEATER SETTING			
METER A H	æ 					1				
				SCHEMAT	IC OF STACK CRO	SS SECTION				
	SAMPLING	STATIC	STACK	VELOCITY	PRESSURE DIFFERENTIAL ACROSS ORIFICE AIETER	GAS SAMPLE		TEMPERATURE GAS METER	SAMPLE BOX	IMPINGER
TRAVERSE POINT NUMBER	TIME (o), min.	PRESSURE (P _S), in. Hg.	TEMPERATURE	HEAD (& P _S),	(<u>A</u> H), in. H ₂ O	VOLUME (Vm), 1t ³	INLET (Tm in.), ° F	OUTLET (Tm out), "F	TEMPERATURE,	TEMPERATURE.
					. 1					
		<u> </u>						 		
					· · · · · · · · · · · · · · · · · · ·		<u> </u>	 		
		l						· · · · · · · · · · · · · · · · · · ·		
TOTAL		ļ					Avg.	Avg.		
AVERAGE				<u> - </u>	`		Avg.			<u> </u>

Figure 5-2. Particulate field data.

4.2 Sample recovery. Exercise care in moving the collection train from the test site to the sample recovery area to minimize the loss of collected sample or the gain of extraneous particulate matter. Set aside portions of the water and accione used in the sample recovery as blanks for analysis. Place the samples in containers as follows:

Container No. 1. Remove the filter from its holder, place in this container, and seal.

Container No. 2. Place loose particulate matter and acetone washings from all sample-exposed surfaces prior to the filter in this container and seal. Use a razor blade, brush, or rubber policeman to loosen adhering particles.

Container No. 3. Measure the volume of water from the first three impingers and place the water in this container. Place water

rinsings of all sample-exposed surfaces between the filter and fourth impinger in this container prior to sealing.

Container No. 4. Transfer the silica gel from the fourth impinger to the original container and seal. Use a rubber policeman as an aid in removing silica gel from the impinger.

Container No. 5. Thoroughly rinse all sample-exposed surfaces between the filter and fourth impinger with acetone, place the washings in this container, and seal.

4.3 Analysis. Record the data required on the example sheet shown in Figure 5-3. Handle each sample container as follows:

Container No. 1. Transfer the filter and any loose particulate matter from the sample container to a tared glass weighing dish, des-

sicate, and dry to a constant weight. Report results to the nearest 0.5 mg.

Container No. 2. Transfer the acetone washings to a tared beaker and evaporate to dryness at ambient temperature and pressure. Dessicate and dry to a constant weight. Report results to the nearest 0.5 mg.

Container No 3. Extract organic particulate from the impinger solution with three 25 ml. portions of chloroform. Complete the extraction with three 25 ml. portions of ethyl ether. Combine the ether and chloroform extracts, transfer to a tared beaker and evaporate at 70° F, until no solvent remains. Dessicate, dry to a constant weight, and report the results to the nearest 0.5 mg.

Evaporate the remaining water portion at 212°F.

Dessicate the residue, dry to a constant weight, and report the results to the nearest 0.5 mg.

Container No. 4. Weigh the spent silica gel and report to the nearest gram.

PLANT	
DATE	
RUN NO.	

CONTAINER	WEIGHT OF PARTICULATE COLLECTED, mg										
NUMBER	FINAL WEIGHT	TARE WEIGHT	WEIGHT GAIN								
1											
2											
3a*											
3b*#											
5		·									
TOTAL											

*3a - ORGANIC EXTRACT FRACTION. **36 - RESIDUAL WATER FRACTION.

	VOLUME OF LIQUID . WATER COLLECTED					
	IMPINGER . VOLUME, ml	SILICA GEL WEIGHT, 9				
FINAL						
INITIAL						
LIOUID COLLECTED						
TOTAL VOLUME COLLECTED		9*	ml .			

*CONVERT WEIGHT OF WATER TO VOLUME BY DIVIDING TOTAL WEIGHT INCREASE BY DENSITY OF WATER. (1 g/ml):

$$\frac{\text{INCREASE. g}}{\text{(1 g/m!)}} = \text{VOLUME WATER, m!}$$

Figure 5-3. Analytical data.

Container No. 5. Transfer the acetone washings to a tared beaker and evaporate to dryness at ambient temperature and pressure. Desiceate, dry to a constant weight, and report the results to the nearest 0.5 mg.

5. Calibration.

Use standard methods and equipment approved by the Administrator to calibrate the orifice meter, pitot tube, dry gas meter, and probe heater.

6. Calculations.

6.1 Sample concentration method.

6.1.1 Average dry gas meter temperature. See data sheet (Figure 5-2).

6.1.2 Dry gas volume. Correct the sample

volume measured by the dry gas meter to standard conditions (70° F., 29.92 in. Hg) by using Equation 5-1.

$$V_{m_{atd}} = V_{m} \left(\frac{T_{atd}}{T_{m}} \right) \left(\frac{P_{bar} + \frac{\Delta ll}{13.6}}{P_{atd}} \right) =$$

$$\left(17.71 \frac{\circ R}{\text{in. Hg}} \right) (V_{m}) \left(\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_{m}} \right)$$
equation 5-1

where:

Vmstd=Volume of gas sample through the dry gas meter (standard conditions), cu. ft.

Vm = Volume of gas sample through the dry gas meter (meter conditions),

T. Absolute temperature at standard conditions, 530 °R.

Tm = Average dry gas meter temperature,

Pbar=Barometric pressure at the orifice meter, in. Hg.

AH=Pressure drop across the orifice

meter, in H₂O.

13.6=Specific gravity of mercury.

P.td=Absolute pressure at standard conditions, 29.92 in. Hg.

6.1.3 Volume of Water vapor.

$$\begin{aligned} V_{\text{watd}} = V_{\text{I}_c} & \left(\frac{\rho_{\text{H}_2} O}{M_{\text{H}_2} O} \right) \left(\frac{RT_{\text{std}}}{P_{\text{ad}}} \right) = \\ & \left(0.0474 \frac{\text{cut. ft.}}{\text{ml.}} \right) V_{\text{I}_0} \\ & \text{equation } 5-2 \end{aligned}$$

where:

Vw,td=Volume of water vapor in the gas sample (standard conditions), cu. ft.

Vic=Total volume of liquid collected in impingers and silica gel (see Figure 5-3), ml.

pugo = Density of water, 1 g./ml. Mu₂0 = Molecular weight of water, 18 lb./lb. mole.

R=Ideal gas constant, 21.83 in Hg-cu. ft./lb. mole-°R.

T.td=Absolute temperature at standard

conditions, 530° R.

Pata = Absolute pressure at standard conditions, 29.92 in. Hg.

6.1.4 Total gas volume.

$$V_{total} = V_{m_{atd}} + V_{w_{atd}}$$
 equation 5-3

where:

V_{total}=Total volume of gas sample (standard conditions), cu. ft.

 $V_{m_{atd}} = Volume$ of gas through dry gas meter (standard conditions), cu. ft

 $V_{w_{*td}} = Volume$ of water vapor in the gas sample (standard conditions), cu.

6.1.5 Total particulate weight. Determine the total particulate catch from the sum of the weights on the analysis data sheet (Figure 5-3).

6.1.6 Concentration.

$$\mathbf{c_e'} = \left(0.0154 \, \frac{\mathbf{gr.}}{\mathbf{mg.}}\right) \left(\frac{\mathbf{M_n}}{\mathbf{V_{total}}}\right)$$

where:

c'==Concentration of particulate matter in stack gas (Sample Concentration Method), gr./s.c.f.

 $M_n = Total$ amount of particulate matter collected, mg.

V total = Total volume of gas sample (standard conditions), cu. ft.

6.2 Ratio of area method.

6.2.1 Stack gas velocity. Collect the necesequation 5-1 sary data as detailed in Method 2. Correct the suck gas velocity to standard conditions (29.92 in. Hg, 530° R.) as follows:

$$\begin{aligned} V_{s_{std}} &= V_{s} \left(\frac{P_{s}}{P_{std}} \right) \left(\frac{T_{std}}{T_{s}} \right) = \\ & \left(17.71 \frac{\circ R}{\text{in, Hg}} \right) \left(\frac{V_{s}P_{s}}{T_{s}} \right) \quad \text{equation 5-5} \end{aligned}$$

where:

V. Stack gas velocity at standard conditions, ft./sec.

V₂=Stack gas velocity calculated by Method 2, Equation 2-2, ft./sec. P₂=Absolute stack gas pressure, in. Hg. P_{2,1d}=Absolute pressure at standard con-

tions, 29.92 in. Hg.

T_{std}=Absolute temperature at standard conditions, 530° R.

T.=Absolute stack gas temperature (average), "R.

6.2.2 Concentration.

$$\mathbf{c}_{s} = \frac{\mathbf{M}_{s}}{\mathbf{Q}_{s}} = \frac{\frac{\mathbf{M}_{s}}{\theta}}{\mathbf{A}_{s}V_{s_{std}}} \frac{\mathbf{A}_{s}}{\mathbf{A}_{n}} = \left(2.57 \times 10^{-4} \frac{\mathrm{gr.} = \mathrm{min.}}{\mathrm{mg.} = \mathrm{sec.}}\right) \left(\frac{\mathbf{M}_{n}}{\theta V_{s_{std}} \mathbf{A}_{n}}\right) \quad \text{equation 5-6}$$

where:

c.=Concentration of particulate matter in the stack gas (Ratio of Area Method), gr./s.c.f.

M.=Particulate mass flow rate through the stack (standard conditions), mass/time.

Q.=Volumetric flow rate of gas stream through the stack (standard conditions), volume/time.

 M_n =Total amount of particulate matter collected by train, mg.

 $\theta = \text{Total sampling time, min.}$

A_s=Cross-sectional area of stack, sq. ft.
A_n=Cross-sectional area of nozzle, sq. ft.
V_{s,td}=Stack gas velocity at standard conditions, ft./sec.

6.3 Isokinetic variation.

$$I = \frac{c_{\bullet}}{c_{\bullet}'} \times 100 = \frac{T_{\bullet} \left[\frac{V_{1e} \rho_{H_{2}O} R}{M_{H_{2}O}} + \frac{V_{m}}{\Gamma_{m}} \left(P_{bar} + \frac{\Delta H}{13.6} \right) \right]}{\theta V_{\bullet} P_{\bullet} \Lambda_{n}} \times 100 = \frac{\left(1.667 \frac{\min.}{\text{sec.}} \right) \left[\left(0.00267 \frac{\text{in. Hg-cu. ft.}}{\text{ml.-}^{\circ} R} \right) V_{1e} + \frac{V_{in}}{\Gamma_{iu}} \left(P_{bar} + \frac{\Delta H}{13.6} \right) \right] T_{\bullet}}{\theta V_{\bullet} P_{\bullet} \Lambda_{n}}$$

where:

I=Percent of isokinetic sampling.

C.=Concentration of particulate matter in the stack gas (Ratio of Area Method).gr./s.c.f.

C!=Concentration of particulate matter in the stack gas. (Sample Concentration Method), gr./s.c.f.

Vi_e=Total volume of liquid collected in impingers and silica gel (see Figure 5-3), ml.

on o=Density of water, 1 g./ml.

R=Ideal gas constant, 21.83 in. Hg-cu. ft./lb. mole-'R.

Mago=Molecular weight of water, 18 lb./lb. mole.

 $V_m = Volume$ of gas sample through the dry gas meter (meter conditions), cu. ft.

Tm=Absolute average dry gas meter temperature (see Figure 5-2), *R.

P_{bar}=Barometric pressure at sampling site, in Hg.

ΔH=Average pressure drop across the orifice (see Figure 5-2), in H_.O.

T. = Absolute average stack gas temperature (see Figure 5-2), °R. θ =Total sampling time, min.

V*=Stack gas relocity calculated by Method 2, Equation 2-2, ft./sec. P.=Absolute stack gas pressure, in. Hg. An=Cross-sectional area of nozzle, sq. ft.

6.4 Acceptable results. The following range sets the limit on acceptable isokinetic sampling results:

If 82 percent <1<120 percent, the results are acceptable; otherwise, reject the results and repeat the test.

6.5 Average particulate concentration. If the criteria for acceptability are met, calculate the average concentration of particulate in the stack from the following equation:

$$= \frac{c_* + c_*}{2}$$
 Equation 5-8

equation 5-7

where:

c.=Average particulate concentration in the stack gas, gr./s.c.f.

c.=Concentration of particulate matter in the stack gas (Ratio of Area Method), gr./s.c.f. c's=Concentration of particulate matter in the stack gas (Sample Concentration Method), gr./s.c.f.

7. References

Addendum to Specifications for Incinerator Testing at Federal Facilities, PHS, NCAPC, Dec. 6, 1967.

Martin, Robert M. Construction Details of Isokinetic Source Sampling Equipment. Environmental Protection Agency, APTD-0591.

Rom, Jerome J. Maintenance, Calibration, and Operation of Isokinetic Source Sampling Equipment. Environmental Protection Agency, APTD-0576.

Smith, W. S.; R. T. Shigehara, and W. F. Todd. A Method of Interpreting Stack Sampling Data. Paper presented at the 63d Annual Meeting of the Air Pollution Control Association, St. Louis. June 14-19, 1970.

Smith, W. S., et al. Stack Gas Sampling Improved and Simplified with New Equipment. APCA Paper No. 67-119, 1967.

Specifications for Incinerator Testing at Federal Facilities, PHS, NCAPC, 1967.

METHOD 6—DETERMINATION OF SULFUR DIOXIDE EMISSIONS FROM STATIONARY SOURCES

1. Principle and applicability.

1.1 Principle. A gas sample is extracted from the sampling point in the stack, and the acid mist including sulfur trioxide is separated from the sulfur dioxide. The sulfur dioxide fraction is measured by the barium-thorin titration method.

1.2 Applicability. This method is applica-

ble for the determination of sulfur dioxide emissions from stationary sources only when specified by the test procedures for determining compliance with New Source Performance Standards.

. 2. Apparatus.

2.1 Sampling, See Figure 6-1

2.1.1 Probe—Pyrex' glass, approximately 5-6 mm. ID, with a heating system to prevent condensation and a filter to remove particulate matter including sulfuric acid mist.

2.1.2 Midget bubbler—One, with glass wool packed in top to prevent sulfuric acid mist carryover.

2.1.3 Glass wool.

2.1.4 Midget impingers-Three.

2.1.5 Drying tube—Packed with 6 to 16 mesh indicating-type silica gel or equivalent, to dry the sample.

2.1.6 Pump-Leak-free, vacue a type,

2.1.7 Rate meter—Rotameter, or equivalent, to measure a 0-10 s.c.f.h. flow range.

2.1.8 Dry gas meter—Sufficiently accurate to measure the sample volume within 1 percent.

2.1.9 Pitot tube—Type S, or equivalent, necessary only if a sample traverse is required or if stack gas velocity varies with time.

2.2 Sample recovery.

2.2.1 Glass wash bottles-Two.

2.2.2 Polyethylene storage bottles—To store impinger samples.

2.3 Analysis.

¹ Trade name.

Figure 6-1. SO₂ sampling train.

RESULTS OF LABORATORY ANALYSES FOR BERYLLIUM

Sample No.	Code	μg Be		*Total μg Be
75	Be-SK-HI-1-MP-P	77.60		
73	Be-SK-HI-1-MP-F	24.18	*	700 50
76	Be-SK-HI-1-MP-I	1.45	×	108.50
74	Be-SK-HI-1-MP-WB	5.27		(.
80	Be-SK-VI-1-MP-P	23.18		*.
78	Be-SK-VI-1-MP-F	36.27	*	60.70
81	Be-SK-VI-1-MP-I	3.25	*	62.70 <i>)</i>
79	Be-SK-VI-1-MP-WB	0.00		
85	Be-SK-O-1-MP-P	1.45		
83	Be-SK-O-1-MP-F	0.39	*	2 02
86	Be-SK-O-1-MP-I	1.72	^	3.83
84	Be-SK-O-1-MP-WB	0.27		
90	Be-SK-HI-2-MP-P	6.33		
88	Be-SK-HI-2-MP-F	0.72	*	7 00
91	Be-SK-HI-2-MP-I	0.59		7.99
89	Be-SK-HI-2-MP-WB	0.35)		ζ,
95	Be-SK-VI-2-MP-P	10.52		('
93	Be-SK-VI-2-MP-F	37.30 (*	40.20
96	Be-SK-VI-2-MP-I	0.47	^	48.29 J
94	Be-SK-VI-2-MP-WB	0.00丿		
100	Be-SK-0-2-MP-P	0.77		
98	Be-SK-0-2-MP-F	0.43	*	2 70
101	Be-SK-O-2-MP-I	1.59 (2.79
99	Be-SK-O-2-MP-WB	0.00ノ		
103	Be-SK-HiVol-l-W	22.67~	*	25.38
104	Be-SK-HiVol-Acetone	2.71 \$. 	23.30
105	Be-SK-HiVol-2-W	26.86		
106	Be-SK-HiVol-3-W	2.41 (
107	Be-SK-HiVol-	>	*	31.81
	2 & 3 Acetone	2.54		
108	Be-SK-Sample l-			•
	Baghouse Catch	93.73 μ <u>g</u>		
109	Be-SK-MP-Blank	0.00 9		
110	Be-SK-W-Blank	0.00		

^{*} Total µg Be per run

^{**} Denotes that the two particulate runs were accomplished at the same time, in the same stack with a separate probe (two probes total) for each run.

^{***} Denotes that the vertical traverse was performed during the first half of the test and that the horizontal traverse was performed during the second half of the test.

-28-

PROJECT PARTICIPANTS

NAME

John Koogler, P.E., Ph.D.
John Dollar, E.I.T., M.S.
Ray Black, B.S.
Robert Durgan, Technician
George Allen, Technician
Larry Wurts, Technician

Mike Jackson, Technician

TITLE

Project Director

Project Manager

Environmental Specialist

Environmental Specialist

Environmental Specialist

Environmental Specialist

Environmental Specialist

Plant So	UTHEASTERA	1 KUSI	9NINC GA	FFREY SC			M	at'l Pro	cessing	Rate		
			ET - (VERT		Sketch Of	Stack!	F	inal Gas	Meter	Reading	992	0// ft3
Date	3-25-7	71	_, Ilun No	/							ne 73/. c	
			ne End /2:		•						ingers	
	-	_	point = 3			1					+ 74	gm
• _			VF 3 DP	1	٠.						66.Filte	r No
			ensity Factor						C02	. 1	1	<u> </u>
			ick Press.		HORIZO	WTAL ST			02 ·			
Weather	Clear	Eup	1m		d				CO			
			_, w/s	_	7				N ₂			
		-	Box No. #5		,	R			Excess			·
			factor 0	3	Veilie	ol Sample	lane		Λir			
			Length 6				т	est Cond	ucted E	Ву:	R. Dura	m
	er Setting						·					
			neter 3	in						******		
Jeack Dime			7.069	ft ² L			R	emarks:	,	milli	pore ful	ter with
. •				ſt		·.		WHOL	man 7	F 41	Backup	- felter
		70 -					-				·	
	*= assu	most m	roisture				-		·			
Port Ami	Distance	Clock	Gas Meter	Stack	Meter		Stack Gas	Gas S	ample	Sample	Last	Vacuum On
Traverse :	From End	Time	Reading	Velocity	Orific		Temperatur	e Temp.	@ Dry	Eox	Impinger	Sample Train
Point No.	Of Port		(ft ³)	Head	Press.		(°F)	Gas M		Temp. (F)	Temp. (F)	("Hg)
	(in)			("H ₂ 0)		Actual		In	Out	(1)	(1)	
0.14 1												
10u"		07:45	731.534	0.50	1/5	1	120	62	(2)	 		231/
建 /2	35.25	07:55	738.9	0.50	1.60	1.60	130	62	62			2311
*		08:05	746,3	0.50		1.60	130	70	65			5"
	·	08:11	750.0	0.45	1.48	1.48	150	70	67			5"
	3.3.6	08:24	760.9	0.45	1.48	1.48	150	70	67	ļ		3''
		08:57	770-1	0.47	1.55	1.55	150	70	67	<u> </u>		3"
	·					<u> </u>	<u> </u>		 	<u> </u>	<u> </u>	<u> </u>

					· · · · · · · · · · · · · · · · · · ·							
Port And Traverse Point No.	Distance From End Of Port (in)	Clock Time	Gas Moter Reading (ft ³)	Stack Velocity Head ("H ₂ 0)	Meter Orific Press. ("H2 Calc.	Diff.	Stack Gas Temperaturo - (°F)	Gas Sa Temp. Gas Me (°F	@ Dry otor	Sample Box Temp. (F)	Last Impinger Temp. (F)	Vacuum On Sample Train ("Hg)
2429 V 642-22-22-22-22-22-22-22-22-22-22-22-22-2		***************************************	Annual Marchael Charles									
							·		·			
10'	31.8	08:30	780.9	0.47	1.55	1.55	150	75	70			3.2"
		69:03	791.3	0.47	1.55	1.55	160	76	22			3.2
9	29.8	09:16	801.2	0.50	1.60	1.60	120	78 80	73 74			3.5
		19:29	812.1	0.60	1.85	1.85	120	20	74			3.6 3.8
8	27.0	09:42	824.0	0.65	2.00	2.00	104	82	76 78			3-8
(July)	Canana	69:55	*****	0.65	2.00	2.00	104	83	78			4.0
	23.2	10:08	948.9	0.90	2.95	2,95	92	.84	29		<u> </u>	5.00
		10:21	883.5	0.90	2.95	2.95	97	87	81		<u> </u>	5.0
6	12.8	10:34	875,1 887.7	0.75	2.42	3.42	95	88	32		 	4.5 4.3 3.5,
		10:47	887.	0.75	2.42	2.42	95	88	83			43
	9.00	11:00	898.3	0.55	1.75	1.75		891	84		 	3.4
	126	11:13	·	050	1.60	1.60	94	91	85			3. 4 3.0
	6.36	11:26	920.0	0.40	1.33	1.30	93	94	87		 	3.0
3	4.25	11:39	929.1	0.40	1.30	1.30	93	96	88		 	3.2
	7.25	11:52	939.2	6.45	1.48	1.48	43	97	90		92	3.2
2	2.41	12:18	959,2		1.48	1.35	93		92			3.6
		12:31	971.5	0.60	2.25	225	93	101	93		 	40
1	0.75	12:44	982.2	0.45	1.48	1.48	. 93	103	94		·	4.0 3.0
		12:57	992.011	0.40	1.30	1.30	93	103	95		90	2.8
		150/	7 1 30 011	0,, 10		1,,,,,,	7/3	700				
			- '						-			
			260,477		30	ς						
					€ ن							
				,	15	197						
		1			767.				,			
					. '							
				,		<u> </u>		' 		· .		
		 	·								ļ	
		{										
-		1		'	•	4			ļ ,		I	l

				SOUR	RCE SAMPLII	NG FIELD	DATA SHEET	r F	actor			
	. ,		10-	,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	-				
Plant So	utheastern	Kusar	, Inc. Ga	Tiney				Mat'l Pro	raccina	Rate		
Sampling L	ocation la	tet /h	prizantal:)	Sketch Of	Stack:			_		304.59	4 ft.3
-		•	_, Itun No	- i			1		-		39.26	_
	7:50 A					,	1				ngers	
			(3/2 min	total	• .						34.7	
			VF @ DP	•	·						/03,Filte	
			ensity Factor				ļ		CO ₂	1	ا ا	1
			ack Press. <u>«</u>			•			02 ·			
Weather_		_ 1.5, 000				·			02 00			
			_, w/s						N_2 .			
			Box No.	ľ	•				Excess			
•		•	Factor					•	Air			
			Length			-		Test Cond	ucted E	By: R	zy Block	· ·
	er Setting		2011G 911									
			meter36	in								
Stack Dime			a 7.06					Remarks:	Mil	lipore	filter w	rith
				ft				Whatn	34 #	41 80	filter w ckup Fil	ter
· ***	Assumed M	nisture			•						·	
•	bleeningd. i h	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					•					
	·	<u> </u>		[T	····		700	~	<u> </u>		1:
Port And Traverse	Distance From End	Clock Time	Gas Meter Reading	Stack Velocity	Meter Orific	A	Stack Gas Temperatu	- 1		Sample Box	Last Impinger	Vacuum On Sample Train
Point No.	Of Port		(ft ³)	Head	Press.	Diff.	(°F)	Gas M	eter	Temp.	Temp.	("Hg)
	(in)	}		("H ₂ 0)	("H ₂	0) Actual		(° I	·	(F)	(F)	·
					Calc	ACCUAL		In	Out	<u> </u>		
		0750	39.265			ļ						
/12		0800	· !	0.40	1.2	1.2	150	67	75		81	4.5
12-	The second secon	0816	55.5	C/ 8	1.2	1.2	150	- 6. S	88	Can Esperadorillo Spikersy 1974 2. nejpo o Pilipinguelor 1930	86	5.0
///	· · · · · · · · · · · · · · · · · · ·	0829	64.8	0.45	1.3	1.3	150	35	97		88	7.5
11		0842	74.5	0.45	1.3	1.3	156	92	114		92	85
[/		0855	86.8	0.72	2./	2.1	160	108	132		95	150
ΔC	· · · · · · · · · · · · · · · · · · ·	0908	99.1	0.70	2.0	2.0	160	120	147		72	160
•			1	1	•	•	2	1	1	7	5	Ţ.

		 ,			,	···			,	,	<u>,,</u>	
Port And Traverse Point No.	Distance From End Of Port (in)	Clock Time	Gas Neter Reading (ft ³)	Stack Velocity Head ("H ₂ 0)	Meter Orific Press. ("H ₂) Calc.	Diff.	Stack Gas Temperature (°F)	Gas Sa Temp. Gas Me (°F	@ Dry eter	Sample Box Temp. (F)	Last Impinger Temp• (F)	Vacuum On Sample Train ("Hg)
					,			İ		, ,		
19	amort français dans tips of the products	09.21	1137	0.82	2.4	2.40	155	132	157		65	21.0
9		0934	125.7	0.80	g. 3	2.30	120	140	166		65	22.0
19	The state of the s	0947	137.7	0.75	2.2	220	104	148	172	•	64	22.0
18	wheth for a training around the grades	1000	149.5	0.65	1.9	1.90	102	154	176	,400,000	64	22.5
17		1013	164.4	1.00	2.9	2.90	92	102	155	-	66	27.5
12	and the same of a substitution of the same	1026	178.1	0.98	2.8	280	97	130			70	27.0
		1039	190.0	0.65	19	1.90	94	120	137		73	21.0
56		1052	200.6	0.65	1.9	1.90	94		130		75	21.0
(5		1105	212.7	0.60	1.8	1.80	94 93 93	4	126		76	25.5
5	د و موسوده و المحمد الدادي در الدادي المادي . موسود المادي	1118	222.9	0.55	1.6	1.60	9.3	110	122		87-	18.5
-4-		1/3/	232.6	0.53	1.35	1.55	9.3	110	127	67779	84	18.5
->4	<u> </u>	11 44	242.3	0.53	1.55	1.55	93	110	12-3-		88	18.5
(3			253.7	0.53	1.55	1.55	93	110	124	-	887	18.5
		1210	164.4	0.53	1.55	1.55	93	110	124		90	185
-(2	· · · · · · · · · · · · · · · · · · ·	12.23	274.5	0.53	155	1.55	93	110	120		82	18.5
2		1236	284.6	0.50	1.50	1.50	93	106	118		84	17.5
		1249	295.4	0.50	1.50	1.50	93	106	118		88	17.5
		1302	304.5	0.50	1.50	1.50	93	106	118		108,	13.5
				ļ	ļ				ļ		 	
									ļ			
		ļ		·				 	ļ		 	
		ļ ———			<u> </u>					·		
			·			<u> </u>		 -			 	
			· · · · · · · · · · · · · · · · · · ·	 		 					 	
					ļ				ļ		 	
i	·	 		<u> </u>	ļ	 					}	
						 			 		 	· · · · · · · · · · · · · · · · · · ·
		1		 								
	• ;											
-		1										
n in Names and an artist of the second												
•		r	r	•	ı	I		,	1		ī ·	S

ant 500	UTHERSTARN	KUSAN	I ME. GOTTO	MEX.S.C.			7 Mat	'1 Prod	essing	Rate		
impling L	ocation fr	LET (Verticac).		Sketch Of Stack	(1)	Fin	al Gas	Meter	Reading	1/26.	113 ft3
ite 8	-30-71		_, Run No	2-0		4						· 0/5 ft3
			e End /0:0		•						ngers_#	
impling T	ime/Point_/	tonin 6	sint		•	•						3.2 = 28.6gm
8/50°F, 1	WB - °F, DF	- °F,	VF @ DP	"Hg	•				l Conta	iner No.	14.Filte	
oisture	. 08, FDA 6.9	8,Gas De	nsity Factor				1.		20 ₂	333		
arometric	Press 7.53	Hg, Sta	ck Press			•			02 ·	19.9		
	Clear						1.		20	سد		
emp. Se	0 °F, W/D_		_, w/s		12		1	1	V ₂	79.4		
ample Éox	110. 45	, Meter E	Pox No. #5	·		•	1	1	Excess			
eter Alia_	1.72, Pitot	t Corr. F	actor 0.	85					Air		11	
			Length_	<i>4</i> • • • • • • • • • • • • • • • • • • •		•	Tes	t Condi	ucted E	y:	K. Aller	an
robe Heat	er Setting_	***************************************						-			- {/	
tack Dime	nsions: In	side Diam	neter 36	in			}		4	,	· · · · · · · · · · · · · · · · · · ·	
			7.069	ft2			Ren	arks i		pore	7 4 hot	in 41 fillers
• .	He	ight		ft		•			KUP	ber do	stered h	icider)
• .	•			1	. 4	•	-					
	, in		The assu	med Mi	redure					·		
Port Ami	Distance	Clock	Gas Meter	Stack	Meter	Stack		Gas S	-	Sample	Last	Vacuum On
Traverse	From End	Time	Reading	Velocity	Orifice Press.Diff	Temper		Temp.		Eox	Impinger	Sample Train
Point No.	Of Port (in)		(ft ³)	Head ("H ₂ 0)	("H ₂ 0)	· CF	')	Gas In		Temp. (F)	Temp.	("Hg)
	(211)				Calc. Acti	ıal		In	Out			
	•	07:20	992015	0.60				25				
12-	35.25	07:27	992.015		1.88 1.8	8 10	5	61	6/			3.2
		07:34	1013.3	0.50	1.62. 1.6	2 /0	5	6	61			3.2-
	33.6	87:41	1009.1	0.48			5	62-	50			3.3
	310	07:48	1014.3	0.50	1.62 1.6			620	62-			3.2.
10	31.8	07:55	1025.9	0.50. 0.50.	1.68 1.6		(3	63	62.			3.2
9	29.8	08:09		0.54		12- 14	3	65	62	_	_	3.2.
		08116	10354	ტ.66	1162. 60	12- 14	3	67	63		-	3.2

Port And Traverse Point No.	Distance From End Of Port (in)	Clock Time	Gas Neter Reading (ft ³)	Stack Velocity Head ("H ₂ 0)	Meter Orific Pressal ("H ₂ 0	Diff.	Stack Gas Temperature (°F)	Gas S Temp. Gas M	@ Dry eter	Sample Box Temp. (F)	Last Impinger Temp• (F)	Vacuum On Sample Trair ("Hg)
						Actual		In	Out			
-					Compression of the second contract of the sec							
8	27.0	08:23	1042.5	0.55	1.75	1.75	150	68	64			3.4
		08:30	1048.5	0.58	7.84	1.84	154	19	64		82.	3.4
2	25.2.	63:37	16.55.0	0.75	2.40	2.40	154		65			4.2-
		03:4-4	10CH.5	0.72	2,35	2.35	154	7/	65			4.0
6	12.8	08:51	1067.7	0.65	2.60	2.00	154	1 73	67		! -	3.3
	<i>A</i>	08:58	1074.1	0.65	3.00	200	154	74	63		<u> </u>	3.8 3.5
	9.00	09:05	1083.1	0.50	1.62	1.62	172	75	69			3.5
	696	09:12	1685.0	0.45	1.48	1.48	177	75	69		000	3.5
	6.36	09:19	1696.5	0.40	1.30	1.30	177	76	7/		920	3.2
3	4.25	07:26	1695.4	0.40	1.33	1.30	17.7	76	7/			3.2
2	7063	69:33	100.0	0.30	0.93	0.93	1/77	77	72		-	2.8
	- a ell	09:40	184.5	0.35	1.10	610	177	78	73			2.8
2	2.41	69:47	109.1	0.35	1.10	1.10	164	79 79 80	74		 	2.8 2.8 3.6
· · · · · · · · · · · · · · · · · · ·		09:54	114.2	0.35	10 10	1.10	164	19	75			3.0
	0.75	10:01	119.9	0.35	11.75	155	168		76			4.0
		10:08	126.113	0.52	1.94	1.84	168	82	77	<u> </u>	-	4,0
					· · · · · · · · · · · · · · · · · · ·						 	
						ļ ·	<u> </u>	 			 	
								 	 		 	
		<u> </u>		· · · · · · · · · · · · · · · · · · ·								
	·	 							-			
			<u>:</u>	·				l. 	-			
		 					·				 	
		}									 	
		 									 	
		1										
												
								<u> </u>		· · · · · · · · · · · · · · · · · · ·		
		<u> </u>					· · · · · · · · · · · · · · · · · · ·	_ 				
		 									<u> </u>	
,										<u> </u>	-	
•		1 1	•			:			ž j	1	i'	

Sampling Lo Date 8-30 Time Start Sampling T DB/SO°F, Weisture Barometric Weather Temp. 80 Sample Box Neter Align	ocation / /O:/5 imo/Point	Tim Vermin G. Gas De Warn Heter B. Corr. F	VF @ DP	AL) 3 2-14 3 pm — "Hg — "Hg — "Hg	iketch Of S	Stack	Fin Ini Tot Moi Sil Ors	tial Gas al Com sture l ica Gel at: (Meter Is Mete In Sili Conta CO2 CO N2 Excess Air	In Impica Gel Ziner No.	ngers	12 ml 23 = 44.0gm
	• •		Length	ft		٠	Tes	t Condi	ucted E	Д	K. Keer	Par
•	er Setting_ nsions: In:		neter <u>36</u>	in					ا م	-		7, 57
		side Area lght	2.069	ft ²	,		Rem	narks	Victor	pore +		er inholder
9	A = Assume		isture	·								
Port And Traverse	Distance From End	Clock Time	Gas Meter Reading	Stack Velocity	Meter Orifice	9	Stack Gas Temperature	Gas Sa Temp•	mple @ Dry	Sample Eox	Last Impinger	Vacuum On Sample Train
Point No.	Of Port (in)		(ft ³)	Head ("H ₂ 0)	Press. ("H20 Calc.		(°F)	Gas Mo OF		Temp. (F)	Temp. (F)	("Hg)
Ort#2	Olosino de la mo	10:15	126.113									
1	0.75	10:23	130.8	030		0.93		82	79			8.0
2	2.41	10:29	136.0	0.38 0.55	1.25	1.75		84	79			8.2 13.5
·	- c4.71	10:36	143.1	0.55	1.75	1.75	102	85	81	-		6.5
3	4.25	10:50	154.2	0.65	2.00	2.00	102	86	21			5.0
	- 15-	10:57	161.0	0.75	2,40	240	102	87	35		- :	5.2
4	6.36	11:11	175.3	0.90	2.95	2.95	101	89	83			6.2
			123		Carlot Co	mot 10		<u> </u>	OT			6.4

					**************************************		·	 	····	,		
Port Amd Traverse Point No.	Distance From End Of Port (in)	Clock Time	Gas Neter Reading (ft ³)	Stack Velocity Head ("H ₂ 0)	Meter Orifice Press.l ("H20 Calc.	Diff.	Stack Gas Temperature (°F)	Gas Sa Temp. Gas Mo (°F	@ Dry oter	Sample Box Temp. (F)	Last Impinger Temp. (F)	Vacuum On Sample Trair ("Hg)
5_	9.00	11:18	184.5	1.10	3.65	3.65	160.0	94	85			7.5
6	12.9	11:35	203 3	1.10	3.65	5.65	100.0	97	87	.0000		7.4
7_	23.2	11:39 11:46 11:53	215.9	0.70	3.45	3.65	160.0	100	90	<u></u>		52
8	27.0	12:00	228.0	0.60	2.25 1.88 1.88	1.88	99.0	100	91	in		4.5
9_	29.8	12:14	241.2	0.60	1.88	1.88	99.0	100	91			4.5
10	31.8	12:28	252.8	0.63	1.83	1.28	99.0	49	73 73	Grana Grana		4.2
	33.6	12:42	264.5	0.55	1.75	1.75	99.0	100	94		0403	3.8
12	35.25	12:56	276.2	0.50	1.62	1.62	99.0	100		,-		3. 3 3. 3 3. 3
			7-35									
									•			
					·							
										·		
the season of th				· Value (1920 - 1924) - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 19								

Sample Box Meter AH3_ Nozzle Dia Probe Heat	oF, W/D_No. EET/A. No. EET/A. Pitology er Setting ensions: Instance Instance	Meter Internation of the Correlation of the Correla	Gas Meter Reading	/9ft /ft 29in	Meter Orifice	Ren		Sample
Time Start Sampling T DB_F, Moisture Barometric	7.5.2 ime/Point_ WB°F, DI 3 8,FDA_ Press 29.9	Smed of, Gas De	, Run No •	/	Sketch Of Stack	Fin Ini Tot Moi	"I Processing al Gas Meter tial Gas Meter al Condensate sture In Silica Gel Contest CO2	Reading er Readi In Imp ica Gel_

Initial Gas Meter Reading 140.100 ft Total Condensate In Impingers -5 Moisture In Silica Gel 4 33.3	_ [t :3 nl
Silica Gel Container No 105, Filter No. Milif	5
Orsat: CO ₂ O ₂ CO N ₂ Excess Air	
Remarks: Millipare filter with whatman 41 back-up filter	

Port And Traverse Point No.	Distance From End Of Port (in)	Clock Time	Gas Meter Reading (ft ³)	Stack Velocity Head ("H ₂ O)	Pressel ("H2	e Diff. O)	Stack Gas Temperature (°F)	Gas S Temp. Gas M (°)	@ Dry cter	Sample Box Temp. (F)	Last Impinger Temp• (F)	Vacuum On Sample Trai ("Hg)
			140.100					-				
	3.6"	7.52	147.4	0.82	28	28	110	63	62	0	7/	9.0
2	7.2"	8.00	155.7	0.86	29	2.9	130	64	43	8	80	9.3
3_	10.8	8.08	163.1	0.76	2.5	2,5	135	66	63	1.	85	8.9
4	14.0	18,16	168.0	0.3	0.93	0.93	135	68	64	9	8 5	9.1
	17.6	8,24	172.6	0.28	0.87	0.87	137	69	65	2	8.5	8.2
6	21.2	8.32	176.8	026	0.80	0.80	.140	70	67	10	87	7.3
7	24.8	840	181-1	0.26	080	0.80	139	7!	68	3	88	7.0
8		8.48	1188.3	0.66	1.9	1.9	140	72	1.69	11	88	10.7
		4				1			1	1	1	

Fort And Traverse Point No.	Distance From End Of Port (in)	Clock Time	Gas Neter Reading (ft ³)	Stack Velocity Mead ("H ₂ 0)	Meter Orifice Press.I ("H ₂ C Calc.	Diff.	Stack Gas Temperature (°F)	Gas Sa Temp• Gas Me (°F	@ Dry	Sample Box Temp. (F)	Last Impinger Temp• (F)	Vacuum On Sample Tra ("Hg)
2) 877 6 574 32 1 3 4 5 6 7 8 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 1 5		856 9.04 9.12 9.20 9.28 9.36 9.44 9.52 10.00 10.08 10.16 10.24 10.32 10.40 10.32 10.40 10.32 10.40 10.32 10.40 11.12 11.28 11.12 11.28 11.12 11.20 12.00 12.08 12.16 12.00 12.08 12.16 12.00 12.0	194.8 202.2 209.2 216.1 223.4 230.5 234.5 236.5 237.0 255.8 297.2 297.2 297.2 364.8 237.3 345.4 355.4 364.2 372.8 364.2 372.8 364.2 372.8 364.2 372.8 364.2 372.8 364.5 407.2 407.3 407.3 407.3	5.76 0.76 0.76 0.74 0.65 0.94 1.2 0.95 0.92 1.72 1.73 1.95 0.95 1.35 1.55 1.55 1.55 1.55 1.55 1.55 1.5	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.05 2.05 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.3	140 140 140 122 108 108 100 100 100 100 100 100 100 100	74 76 79 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9	71727777790012334557799099999999999999999999999999999999	12 13 13 14 17 18 19 20 3 11 14 17 15 8 19 20 3 11 14 17 15 8 19 20 3 11 14 17 15 8 19 20 10 10 10 10 10 10 10 10 10 10 10 10 10	8 9 0 0 7 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9	12.0 12.0 10.9 3.2 3.2 7.9 9.0 9.1 11.1 9.8 8.2 9.0 9.1 11.3 11.2 18.0 14.8 10.6 10.3 9.7 9.4 10.3 14.8 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.0
Aven	000 m				P. 15					3		

,

Plant SE	KUSan	. ,		٦			Mat	'l Pro	cessing	Rate		
Sampling L	pcation <u>OU</u>	+1/e+			Sketch Of	Stack	Fin	al Gas	Meter	Reading	8 62.1.	57 ft ³
Date 8	30/21		, Run No	2		٠.	Ini	tial G	as Mete	r Readin	c478.53	2 ft3
	, -		me End	1							ngers + 16	
Sampling T	ime/Point	& min)		•	$\langle \cdot \rangle$	i i				3	6/= 35.1 gm
		-	VF @ DP	1		\ \triangle \ \tri						No.MilliPare
	_		ensity Factor			;	/ · · · · · · · · · · · · · · · · · · ·			Liter 1.0 •	1 1	1
	_	_	ack Press.	and the second s			Ors		co ₂	·		
Weather		ng, sc	ack Fress.	ng					02 ·			
			17/0						co 			
			, W/S						N ₂			
			Box No. EE			٠,	·	•	Excess Air			
			Factor O.B.49	4 .						y:	Marca	
Nozzle Dia	i	n., Prob	e Length_4	ft.			les	t Cona	ucted f		nike Jac	Koff
	er Setting_		٠			•					<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Stack Dime	ensions: In	side Dia	meter <u>29 X2</u>	9 _in	•				. 4:41			71
	In	side Are	a	ft ² -			Rem	arks	1/1///	pore -	t upatma	n 41 filters
	He	ight		ft		•			5/055	gaske	ted hold	er)
•			•									
•												
Port And	Distance	Clock	Gas Meter	Stack	Meter		Stack Gas	Gas S	ample	Sample	Last	Vacuum Cn
Traverse	From End	Time	Reading	Velocity	l	е	Temperature	Temp.	@ Dry	Pox	Impinger	Sample Train
Point No.	Of Port		(ft ³)	Head	Press		(°F)	Gas M		Temp.	Temp.	("Hg)
	(in)			("H ₂ 0)	Calc.	Actual		In	Out	(F)	(F)	
										17///		
57		7.17	478.532								10	
1	·	7.25	489.5	11.4	5.4	5.0	92	60	60	0	68	10.5
$\frac{2}{2}$		7.33	5120	1.5	5.75	5.4	110	6/	60	16	84	77.0
3 4		7.41	513.2	1.5	5.75	5.75	119	64	61	124	84	7.0
5		157	1	1.5	5.75	3.75	12/	68	62	32	82	7.2
	l	1101	Walle T	of high	100/00	1. 1-	y r. J	122	100		1 0 -	
ل ا ا		1805	552.4	18	575	575	129	70	63	1 4/25	23	21
		805	563.6	1.3	505	5.75 505	130	74	63	43	83	8.1 5.0 6.2

'ort And 'raverse 'oint No.	Distance From End Of Port (in)	Clock Time	Gas Neter Reading (ft ³)	Stack Velocity Head ("H ₂ 0)	Meter Orifice Press.l ("H ₂ 0 Calc.	Diff.	Stack Gas Temporature (°F)	Gas S. Temp. Gas M. (°F	@ Dry oter	Sample Box Temp. (F)	Last Impinger Temp. (F)	Vacuum On Sample Train ("Hg)
4)8		82.9	586.5	1.2	4.6	4.6	140	77	67	04	85	5.2
7		8:37	597.7	1.2	4.6	4.6	155	78	68	12	85	5.5
6		8:45	605.2	0.95	3.7	3.7	155	80	70	20	80	4.2
5		8:53	615,1	0.85	3.3	3.3	1.59	80	70	28	78	3.8
4		9'.01	623,5	0.75	2.95	2.95	157	81	172	36	77	3.8
3		9:09	632,9	0.78	3.05	3.05	158	81	72	44	78	3.9
2		9:17	641.7	0.92	3.65	3.65	157	82	74	52	77	4.4
/	·	9:25		1.2	4.6	4.6	156	84	7.5	60	80	6.1
3)/		9:33	664.0	1.2	4.6	4.6	143	86	77	8	80	5.9
2	•	9:41	672,0	0.72	2.9	2.9	150	88	78	16	82	3.2
3	to a describe source or a suppression	9:49	679.3	0.6	2.35	2.35	153	87	79	24	85	3.0
4		9:57	687.7	0.65	2.6	2.6	149	88	80	32	86	38
5]		10:05	696.7	0.8	3.15	3.15	150	89	8/	40	86	4.1
6		10:13	705.5	0.8	3.15	3.15	144	91	83	48	87	3.8
7		10:21	715-1	0,95	3.7	3: 7	1//	92	84	56	86	<u> </u>
8		10:29	725.8	1./	4.3	4.3	1/9		85	04	85	5.5
2) 8	····	10:37	735,5	0.92	3.65	3.65	108	94	87	12	86	4.5
7		10:45	744,3	0.85	3.30	3,30	106			20		4.0
	,	10.53	752.9	0.78	3.10	3.10	106	95 95	89	2.8	85	3.8
5		11:01		0.72	2,90	2.90	106	~ ~~~~	90	36	88	
3		11:09	769.3	0.6	2.35	235		96	91	52	39	3.0
2		11:17 11:25	777.7	0.68	2.7 3.3	3,3	106	97	92.	60	93	3.2
		11:33	795.6	1.0	3.9	3.9	104	98	93	8	89	4.8
(1)		11:41	804.2	0.75	2.95	2 95	106	10.0	94	16	90	
2	···	11:49	812.0	0,75	2.95	2.95	1	100	95	24	88	3.2
3		11:57	821.5	0.78	3.10	3.10	105	101	95	32	92	3.9
4		12.05	830,1	0.75	2,95	2 95		101	96	40	88	
5		12:13	538.2	0,7	2.75	2.75		100	96	48	87	3.2
6		12:21	846.2	0.7	2.75	2.75	102	99	96	56	94	1 3.5
7		12.29	855-1	0.65	26	2.6	102	100	96	04	9.5	3./
8		12:37	862.157	0:6	2.35	2.35		101	97	12.	95	30
		1	×					1.0/	 		<u> </u>	
	-	1						1	1	}		1