Test Number FA-3

# AIRCO Alloys and Carbide Niagara Falls, New York

by T.E. Eggleston

RESOURCES RESEARCH, INC.

A SUBSIDIARY OF TRW INC.
WESTGATE PARK • 7600 COLSHIRE DRIVE • McLEAN, VIRGINIA 22101

### TEST NUMBER TAS 71-PC-14

AIRCO ALLOYS AND CARBIDE NIAGARA FALLS, NEW YORK

by T.E. Eggleston

Revised
DECEMBER, 1971

Resources Research, Inc. A Subsidiary of TRW Inc. 7600 Colshire Drive McLean, Virginia 22101

Contract Number CPA 70-81

#### EPA-RTP LIBRARY

#### I TABLE OF CONTENTS

|       | <u>Page</u>                                               |
|-------|-----------------------------------------------------------|
|       | •                                                         |
| II.   | INTRODUCTION 2                                            |
| III.  | SUMMARY OF RESULTS 4                                      |
| IV.   | PROCESS DESCRIPTION                                       |
| v.    | LOCATION OF SAMPLING POINTS 10                            |
| VI.   | PROCESS OPERATION 12                                      |
| VII.  | SAMPLING PROCEDURES                                       |
| VIII. | CLEANUP AND ANALYTICAL PROCEDURES 14                      |
| IX.   | DISCUSSION                                                |
|       | A. Results 15                                             |
|       | B. Operating Conditions 18                                |
|       | C. Test Conditions 19                                     |
| х.    | APPENDIX 20                                               |
|       | A. Complete Particulate Results with Example Calculations |
|       | B. Complete Gaseous Results with<br>Example Calculations  |
|       | C. Complete Operation Results                             |
|       | D. Field Data                                             |
|       | E.1 Sampling Procedures                                   |
|       | E.2 Cleanup and Analytical Procedures                     |
|       | F. Laboratory Report                                      |
|       | G. Test Logs                                              |
|       | H. Related Reports                                        |
|       | I. Project Participants and Titles                        |
|       | J. Particle Sizing Data and Results                       |
|       | K. Chemical Analysis of Emissions                         |

#### LIST OF TABLES

| Table No. | Title              | <u>Page</u> |
|-----------|--------------------|-------------|
| 1         | Summary of Results | 5           |

#### LIST OF FIGURES

| Figure No. | Title                  | Page |
|------------|------------------------|------|
| 1          | Block Diagram          | 3    |
| 2          | Process Flow Diagram   | 9    |
| 3          | Sample Point Locations | 11   |

#### II. INTRODUCTION

Source emission tests are being performed on a series of electric furnace installations, known as reactive metals or ferroalloys, for the Office of Air Programs, Environmental Protection Agency. The tests include grain loading measurements, particle size analyses, and chemical analyses for a variety of furnace formulations and control devices. This report covers the tests performed at the AIRCO Alloys and Carbide Plant, Niagara Falls, New York, during the week of August 30, 1971.

Emissions for this particular plant were determined for a ferrochrome silicon furnace (No.9). The furnace was provided with a hood with an induced draft exhaust fan. This hood collected most of the dust and fumes, except during the alloy "tapping" process. Sample point locations are located in Figure 2. Further detailed diagrams and descriptions are included in Section IV and V (Process Description and Location of Sampling Points).

During this particular survey particulate matter was sampled using the standard OAP train. Sulfur oxides were sampled using the Shell Development method and integrated combustion gases were sampled in a gas bag with analysis by standard Orsat. Particle size was measured in situ with Brink Samplers. Samples for metals analysis were collected using the standard EPA train.

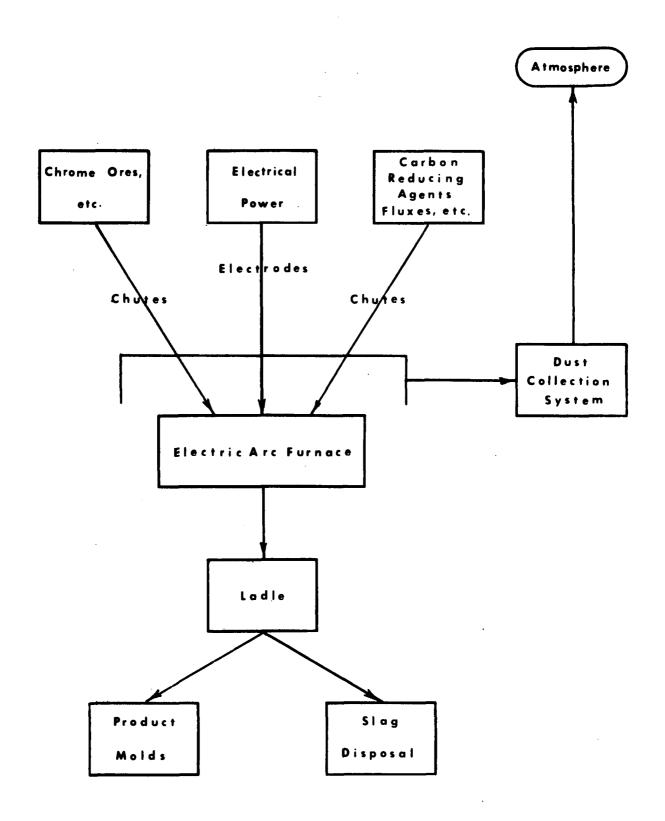



FIGURE 1. BLOCK DIAGRAM

#### III. SUMMARY OF RESULTS

Table I contains a summary of the results for particulate sampling. They indicate an efficiency for the baghouse of approximately 96.5%. This figure is probably a little low due to the particulate matter entering the baghouse exhaust with the induced air. See the discussion for a more thorough explanation. The average level of emission from the baghouse is approximately 30 pounds per hour. The inlet carries an average of approximately 1,827 pounds per hour.

The duct-work captures most of the fumes during the normal operation of the furnace. During tapping, however, as much as 50% of the fumes generated by tapping escape the duct-work.

Sulfur dioxide emissions from the baghouse averaged 8.8 ppm.

Particle sizing was carried out using BRINK cascade impactors. The mass median diameter (MMD) for the baghouse exhaust was approximately 0.7 to 0.8 microns. The MMD for the furnace exhaust ranged from 0.3 to 3.2 microns during taps and between taps, respectively. Complete results are contained in Appendix J.

Metals analysis revealed a heterogeneous particulate material for the furnace exhaust. Indications are that the material was a mixture of oxides. The majority constituent of all the samples was silicon dioxide. The only other large constituent was manganese. Complete results are contained in Appendix J.

#### SUMMARY OF RESULTS BAGHOUSE OUTLET

|                                              | ·        | ,        | ı————    | T                | ·        |          |
|----------------------------------------------|----------|----------|----------|------------------|----------|----------|
| Run Number                                   | ANE-1    | ACE-1    | ASE-1    | ANE-2            | ACE-2    | ASE-2    |
| Date                                         | 8-31-71  | 8-31-71  | 8-31-71  | 9-1-71           | 9-1-71   | 9-1-71   |
| Stack Flow Rate - SCFM * dry                 | @383,000 | 0383,000 | @383,000 | @383,000         | @383,000 | @383,000 |
| % Water Vapor - % Vol.                       | 1.00     | 0.22     | 1.88     | 0.55             | 0.42     | 0.61     |
| 2 CO <sub>2</sub> - Vol % dry                | 0.5      | 0.5      | 0.5      | 0.5              | 0.5      | 0.5      |
| % 0 <sub>2</sub> - Vol % dry                 | 20.6     | 20.6     | 20.6     | 20.6             | 20.6     | 20.6     |
| % Excess air @ sampling point                | 5318     | 5318     | 5318     | 5318             | 5318     | 5318     |
| SO <sub>2</sub> Emissions - ppm dry          | **       | -        | -        | _                |          | -        |
| NO <sub>x</sub> Emissions - ppm dry          | N/A      | -        | -        | -                | -        | -        |
| Particulates                                 |          |          |          |                  |          |          |
| Probe, Cyclone, & Filter Catch               |          |          |          | ·                |          |          |
| gr/SCF <sup>*</sup> dry                      | .0035    | .0042    | .0023    | .0038            | .0028    | .0020    |
| gr/CF @ Stack Conditions                     | .0029    | .0035    | .0019    | .0031            | .0023    | .0017    |
| lbs./hr.                                     | 11.49    | 13.79    | 7.55     | 12.47            | 9.19     | 6.56     |
| Particulate from impinger train (% of total) | 71:      | 69 ·     | 74       | ,69 <sup>.</sup> | 71       | 74       |
| Total Catch                                  |          |          |          |                  | -        |          |
| gr /SCF * dry                                | .0120    | .0135    | .0090    | .0121            | 0098     | .0078    |
| gr /CF @ Stack Conditions                    | .0099    | .0112    | .0073    | .0100            | .0082    | .0064    |
| lbs./hr.                                     | 39.83    | 44.31    | 29.54    | 39.72            | 32.17    | 25.60    |

<sup>@</sup> Calculated from inlet volume and induced air

<sup>\* 70°</sup>F, 29.92 " Hg
\*\* Not applicable for these specific samples: See Appendix B for individual results.

## SUMMARY OF RESULTS BAGHOUSE OUTLET/INLET

| Run Number                                   | ANE-3    | ACE-3    | ASE-3    | ABD-1    | ABD-2    | ABD-3    |
|----------------------------------------------|----------|----------|----------|----------|----------|----------|
| . Date .                                     | 9-1-71   | 9-1-71   | 9-1-71   | 9-1-71   | 9-1-71   | 9-1-71   |
| Stack Flow Rate - SCFM * dry                 | @383,000 | 0383,000 | @383,000 | @174,979 | @176,09  | @181,083 |
| % Water Vapor - % Vol.                       | 0.54     | 0.52     | 0.15     | 1.94     | 2.2      | 2.17     |
| % CO <sub>2</sub> - Vol % dry                | .5       | .5       | .5       | 1,2      | 1.2      | 1.2      |
| % 0 <sub>2</sub> - Vol % dry                 | 20.6     | 20.6     | 20.6     | 19.8     | 19.8     | 19.8     |
| % Excess air @ sampling point                | 5318     | 5318     | 5318     | 1631     | 1631     | 1631     |
| SO <sub>2</sub> Emissions - ppm dry          | **       | -        | -        | _        | . –      | -        |
| NO <sub>X</sub> Emissions - ppm dry          | N/A      | -        | -        | -        | <b>-</b> | -        |
| Particulates Probe, Cyclone, & Filter Catch  |          |          |          | •        |          |          |
| gr/SCF <sup>*</sup> dry                      | .0023    | .0014    | .0016    | .5334    | .1189    | .3983    |
| gr/CF @ Stack Conditions                     | .0019    | .0011    | .0013    | .3486    | .0785    | .2587    |
| . lbs./hr.                                   | 7.55     | 4.60     | 5.25     | 799.9    | 173.2    | 594.4    |
| Particulate from impinger train (% of total) | 63       | 71       | 70       | 16.6     | 70.3     | 32.7     |
| <u>Total Catch</u>                           |          |          |          |          |          |          |
| gr /SCF * dry                                | 0062     | .0049    | .0054    | .6397    | . 4001   | .5917    |
| gr /CF @ Stack Conditions                    | .0051    | .0040    | .0045    | .4180    | .2641    | .3842    |
| lbs./hr.                                     | 20.35    | 16.08    | 17.72    | 959.3    | 603.8    | 918.2    |

<sup>@</sup> Calcuated from inlet volume and induced air

<sup>\*\*</sup> Not applicable for these specific samples: See Appendix B for . individual results.

<sup>\* 70°</sup>F , 29.92 " Hg

#### IV. PROCESS DESCRIPTION

The reactive metals are generally ferroalloys which are produced in submerged arc electric furnaces. The facilities under consideration in this report are open furnaces, with hooding, and emissions are ducted through a baghouse after cooling. Figure 1 is a block diagram indicating the inlet and outlet materials.

The electric arc is employed as a concentrated source of heat. Chrome and other ores are added to the surface of the furnace through mechanized equipment and chutes. Additional carbon in the form of coke, wood chips, etc., is an integral part of the furnace mix, along with specialized fluxes, etc. The mix is added directly to the surface of the furnace through chutes and is then spread over the surface with stoking machines.

The very high temperatures produced initiate a reaction in the bottom of the furnaces and form a layer of metal which is tapped at appropriate times. As the ore and carbonaceous materials settle to the bottom of the furnace, the heat, in conjunction with a lack of oxygen, react with the oxide ores to produce carbon monoxide which reacts further chemically, as a reducing agent, in order to remove oxygen from the original ores and thus produce the elemental metal. Escaping gases are burned at the surface of the furnace in the so-called open units. In closed furnaces, these gases may be burned in such a manner so as to salvage their heat value.

The furnace under test produced a ferrochrome silicon product.

Soderberg type electrodes are formed in place from a "paste" rather than using prebaked carbon electrodes. Induced draft fans are employed to pull fumes from the hooding into the cooling system and baghouse. Any escaping

fumes rise to louvers or monitors in the roof where they are discharged.

The furnaces are tapped at intervals of somewhat less than two hours into ladles. The slag is removed from this ladle and disposed of by various means. Molten product is poured into molds, after which it is broken into usable sizes.

FURNACE

FIGURE 2. PROCESS FLOW DIAGRAM

#### V. LOCATION OF SAMPLING POINTS

Sample port locations were selected where most satisfactory during a presurvey inspection trip, and approved by the OAP Project Officer. On the collector inlet side four ports were selected on the top side of the rectangular horizontal ducting, in the middle of a long, straight section. On the outlet side three ports were selected at the top of the baghouse. These locations were not ideal, but were in the only available location. The location should have no significant effect on the results due to the particle size and low concentration of emissions from the baghouse. The inlet side required a framework to suspend the sampling train over the ports, capable of moving the train horizontally and vertically. Platforms were required on the outlet side due to the slope of the roof. Sampling ports and platforms were provided by the plant. Figure 2 (page 9) shows a simplified cross-section of the system under test and indicates the relative location of sampling ports.

On the inlet side each of the cross-sections was divided for 5-position sampling, giving a total of 20 equal-area sampling points. On the outlet side three trains were used, one at each port. Only one point was sampled at each port, six feet into the port. Figure 3 shows a sketch of the location of the sample points.

The downstream sampling locations were agreed upon as acceptable, although they did not meet the criteria as established by EPA/OAP. Further discussion of this subject can be found in Section IX.

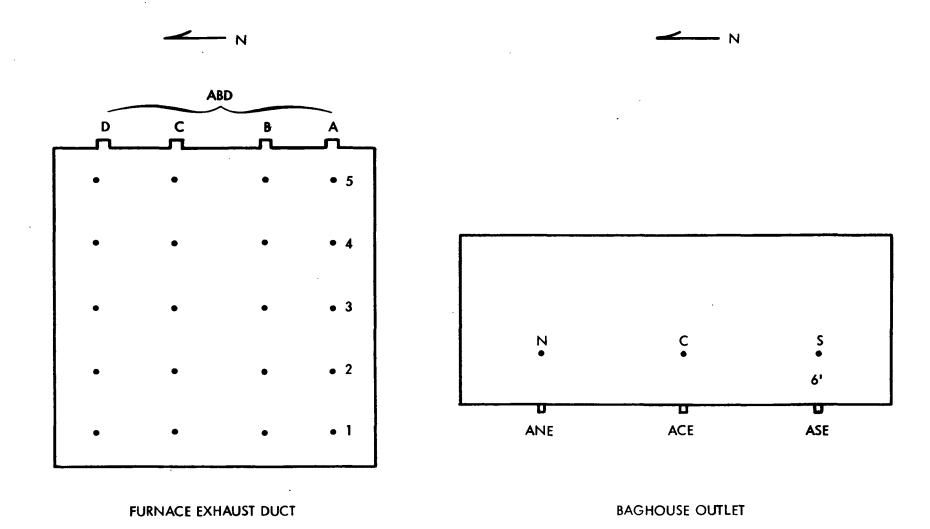



FIGURE 3. SAMPLE POINT LOCATION

#### VI PROCESS OPERATION

Process operations were within normal parameters throughout the testing period.

Actual operating data for the plant is contained in Appendix C.

The furnace was operating at 20,000 KW during the test periods.

The feed rate of materials was 25,000 lb./hr. producing ferrochrome silicon (36 parts chrome and 40 parts silicon).

The toal dust collected from the baghouse storage hopper in a 47-3/4 hour period was 44,620 pounds. This indicates an emission rate of approximately 935 lb./hr.

#### VII. SAMPLING PROCEDURES

All test procedures were discussed with the Project Officer in advance. All procedures were essentially the same as those being issued by the Environmental Protection Agency for source sampling.

Preliminary velocity and temperature readings were obtained in order to select nozzle sizes for isokinetic sampling. Particulate sampling was conducted using the OAP train as described in Appendix E-1.

Gas sampling was also conducted in accordance with the proposed EPA Standard Source testing methods. Sulfur dioxide was sampled with midget impingers using isopropyl alcohol and hydrogen peroxide solutions. Combustion gases were sampled in plastic bags for immediate analysis with an Orsat analyzer.

Particle sizing was carried out using Brink dascade impactor collectors.

Sampling for metals analysis was conducted using the OAP train with glass probe, without the cyclone collector. Only the material collected on the filter was saved for analysis.

#### VIII. CLEANUP AND ANALYTICAL PROCEDURES

Clean-up of the EPA particulate train was conducted in accordance with the procedures as outlined in the standard EPA source testing methods. Basically the clean-up is accomplished using acetone and water rinsing, placing the various portions of the samples in separate containers, and then drying the samples, and extracting organic material from the water. These procedures are outlined in detail in Appendix E-2.

Sulfur dioxide was analyzed for using the Modified Shell Development Method.

Combustion gases were analyzed on site by Orsat measurement using a Burrell Industrial Gas Analyzer.

Particle size determination was carried out in the plant laboratory using a recently calibrated Mettler scale.

Metals analysis is accomplished using various methods, including electron beam microanalysis and atomic absorption.

See Appendix E-2 for further details.

#### IX DISCUSSION

#### A. Results

Continued problems were encountered with the filter of the EPA smapling train plugging during sampling. (See related report FA-1 for previous problems). After experiencing rapid plugging of the filters on sample ABD-1, possible solutions were discussed with the EPA representatives. The decision was made to place the filter after the first three impingers. Therefore, the data resulting from the particulate split is not reliable for samples ABD-2 and ABD-3. It is, however, representative of total emissions. This fix improved the situation and only one other related problem was encountered at this location. During sample ABD-2 one impinger orifice plugged. The train was shutdown and the tip was carefully cleared before continuing the sample.

The outlet samples taken on the baghouse were run non-isokinetically at a high sampling rate. The reason for this was to allow a larger sample volume to be collected. Due to the high efficiency of the baghouse, it was agreed that the concentration of particulate matter would be very low and that the particle sizes would be very small. This would necessitate a large sample volume and would allow representative sampling without iso-kinetic flow. The data collected supported these conclusions. Therefore, the data is considered representative and reliable. Each sample was calculated to give an emission rate in pounds per hour based on the entire air flow through the baghouse.

The computed baghouse efficiency of approximately 96.5% is not

necessarily correct. Actual efficiency is probably in excess of 98%. Induced air is over half of the volume of air leaving the baghouse. The air being induced at the bottom of the baghouse is heavily laden with dust from the surrounding area, including the emissions from a near-by-plant. Although the sample locations sampled the air leaving the bags proper, some induced air was probably sampled also, causing the sample not to be completely representative of the emissions from the bags. A high volume air sample taken (not by RRI) near the bottom, but not in, the baghouse during the sampling program supports the belief that a significant amount of what is emitted from the baghouse exhaust is introduced by induced air. Personal experience with baghouse operations and past history support the conclusion that the baghouse is probably a little more efficient than the calculated value.

The induced air was measured using a rotary vane anemometer to measure the air flow around the bag compartments. Three of the total of twelve compartments were measured. Multiple points were measured in each compartment and they indicated a very uniform flow rate from point to point and compartment to compartment. The open area around each compartment was estimated by first measuring the area, then an 80% open area in the grating surface was estimated, using this fraction as effective area. The volume estimated from this information was then added to the average volume measured on the baghouse inlet duct. No correction was made for possible leakage in the system prior to the baghouse.

The samples taken for combustion gas analysis by Orsat showed very low  $\mathrm{CO}_2$  and high  $\mathrm{O}_2$  concentrations. The calculations indicate that perhaps the Orsat measurement of combusion gases and calculation of "excess air" is not completely representative for this particular process.

The filterable particulate at the outlet of the baghouse ranged from 26% to 37%. Thus the majority of the emissions from the bags are either very fine particulate or "condensible" fumes. This further supports the decision to use non-isokinetic sampling. The only sampling taken on the furnace exhaust with the sampling train in a normal configuration was ABD-1. This sample indicates that this gas carries an approximate 15-85 split between "condensible" and filterable material. Previous tests (FA-1 and FA-2) have indicated the "condensible" portion of the fumes to be less than 5% of the total catch. No feasible explanation can be made as to why this apparent discrepancy exists.

The particle size measurements taken indicate a very small mass median diameter (MMD) at the baghouse outlet. Very long samples were required at this location in order to insure adequate sample deposition on the plates for weighing. Sampling ranged from 2 to 4 hours. The furnace exhaust sampling presented the opposite problem. Sampling time had to be reduced to 5 minutes to avoid overloading the impactor plates. The MMD at this location varied widely between samples (indicative of the nature of the process) and was distinctly larger during non-tapping periods. This would indicate that the tapping process released

a finer particulate or fumes than normal non-tapping operation.

Chemical analysis of the particulate emissions revealed that the emissions were largely oxides and primarily silicon dioxide. The results present no new or unexpected information.

#### B. Operating Conditions

The operation of furnace # 9 is nonuniform, involving a series of feeding, spreading and tapping operations. This would explain at least part of the variation in emission data gathered.

In conjunction with the tests performed by Resources Research, Airco Alloys and Carbide measured the amount of collected dust from the baghouse during a period of almost two days. The material collected came to approximately 935 lb./hr. This correlates closely with the measured amount at the furnace exhaust duct, and very closely with samples ABD-1 and ABD-3 (959.3 lb./hr and 918.2 lb./hr.).

The hood and duct work used to collect the furnace emissions was very efficient during between tap operation, collecting approximately 95% of the emissions. The hood and duct work for the tapping area was far less efficient and collected only about half of the tapping emissions.

#### C. Sampling and Analytical Procedures

All sampling methods, and analytical procedures where appropriate, were essentially the same as those methods being issued by the Environmental Protection Agency for source sampling. Any deviations are indicated at the appropriate location in this report and were carried out with permission of the EPA project officer.

The sample ports on the furnace exhaust duct presented a minor sampling problem. Their location required vertical traverses at a slight angle from the true vertical. Thus the sample box and probe had to be held in place at all times while being suspended by a block and tackle arrangement. The ports were in the middle of a long straight duct, at least 10 pipe diameters from any bends or obstruction up or downstream.

X APPENDICES

# APPENDIX A COMPLETE PARTICULATE RESULTS WITH EXAMPLE CALCULATIONS

## SUMMARY OF RESULTS BAGHOUSE OUTLET

|                                              | <del></del> |          |          | · · · · · · · · · · · · · · · · · · · |          | <u> </u>         |
|----------------------------------------------|-------------|----------|----------|---------------------------------------|----------|------------------|
| Run Number                                   | ANE-1       | ACE-1    | ASE-1    | ANE-2                                 | ACE-2    | ASE-2            |
| Date                                         | 8-31-71     | 8-31-71  | 8-31-71  | 9-1-71                                | 9-1-71   | 9-1-71           |
| Stack Flow Rate - SCFM * dry                 | @383,000    | @383,000 | @383,000 | @383,000                              | @383,000 | @383 <b>,</b> 00 |
| % Water Vapor - % Vol.                       | 1.00        | 0.22     | 1.88     | 0.55                                  | 0.42     | 0.61             |
| 2 CO <sub>2</sub> - Vol % dry                | 0.5         | 0.5      | 0.5      | 0.5                                   | 0.5      | 0.5              |
| % 0 <sub>2</sub> - Vol % dry                 | 20.6        | 20.6     | 20.6     | 20.6                                  | 20.6     | 20.6             |
| % Excess air @ sampling point                | 5318        | 5318     | 5318     | 5318                                  | 5318     | 5318             |
| SO <sub>2</sub> Emissions - ppm dry          | **          | _        | •        | _                                     |          | -                |
| NO <sub>X</sub> Emissions - ppm dry          | N/A         | -        | •        | -                                     |          | -                |
| Particulates Probe, Cyclone, & Filter Catch  |             |          |          | •                                     |          |                  |
| gr/SCF <sup>*</sup> dry                      | .0035       | .0042    | .0023    | .0038                                 | .0028    | .0020            |
| gr/CF @ Stack Conditions                     | .0029       | .0035    | .0019    | .0031                                 | .0023    | .0017            |
| lbs./hr.                                     | 11.49       | 13.79    | 7.55     | 12.47                                 | 9.19     | 6.56             |
| Particulate from impinger train (% of total) | 71          | 69       | 74       | .69                                   | 71       | 74               |
| Total Catch                                  |             |          |          |                                       |          |                  |
| gr /SCF * dry                                | .0120       | .0135    | .0090    | .0121                                 | 0098     | .0078            |
| gr /CF @ Stack Conditions                    | .0099       | .0112    | .0073    | .0100                                 | .0082    | .0064            |
| lbs./hr.                                     | 39.83       | 44.31    | 29.54    | 39.72                                 | 32.17    | 25.60            |

<sup>@</sup> Calculated from inlet volume and induced air

<sup>\* 70°</sup>F, 29.92 " Hg

<sup>\*\*</sup> Not applicable for these specific samples: See Appendix B for individual results.

## SUMMARY OF RESULTS BAGHOUSE OUTLET/INLET

| <del></del>                                               | <b></b>  |          | <del></del> |          |                   |          |
|-----------------------------------------------------------|----------|----------|-------------|----------|-------------------|----------|
| Run Number                                                | ANE-3    | ACE-3    | ASE-3       | ABD-1    | ABD-2             | ABD-3    |
| . Date                                                    | 9-1-71   | 9-1-71   | 9-1-71      | 9-1-71   | 9-1-71            | 9-1-71   |
| Stack Flow Rate - SCFM * dry                              | e383,000 | @383,000 | @383,000    | @174,979 | @1 <b>7</b> 6,093 | @181,083 |
| % Water Vapor - % Vol.                                    | 0.54     | 0.52     | 0.15        | 1.94     | 2.2               | 2.17     |
| % CO <sub>2</sub> - Vol % dry                             | .5       | .5       | .5          | 1,2      | 1.2               | 1.2      |
| % 0 <sub>2</sub> - Vol % dry                              | 20.6     | 20.6     | 20.6        | 19.8     | 19.8              | 19.8     |
| % Excess air @ sampling point                             | 5318     | 5318     | 5318        | 1631     | 1631              | 1631     |
| SO <sub>2</sub> Emissions - ppm dry                       | **       | -        | -           | _        | . <b>-</b>        | -        |
| NO Emissions - ppm dry                                    | N/A      | -        | -           | _        | <b>-</b>          | _        |
| Particulates  Probe, Cyclone, & Filter Catch  gr/SCF dry  | .0023    | .0014    | .0016       | .5334    | .1189             | . 3983   |
| gr/CF @ Stack Conditions                                  | .0019    | .0011    | .0013       | .3486    | .0785             | .2587    |
| lbs./hr.                                                  | 7.55     | 4.60     | 5.25        | 799.9    | 173.2             | 594.4    |
| Particulate from impinger train (% of total)  Total Catch | 63       | 71       | 70          | 16.6     | 70.3              | 32.7     |
| gr /SCF * dry                                             | .0062    | .0049    | .0054       | .6397    | .4001             | .5917    |
| gr /CF @ Stack Conditions                                 | .0051    | .0040    | .0:45       | .4180    | .2641             | . 3842   |
| lbs./hr.                                                  | 20.35    | 16.08    | 17.72       | 959.3    | 603.8             | 918.2    |

<sup>@</sup> Calcuated from inlet volume and induced air

<sup>\*\*</sup> Not applicable for these specific samples: See Appendix B for individual results.

<sup>\* 70°</sup>F, 29.92 " Hg

0F

## SOURCE TESTING CALCULATION FORMS

| Test. No                      |                         | i                    | No. Runs_   | 6                  |
|-------------------------------|-------------------------|----------------------|-------------|--------------------|
| Name of Firm_AIRCO            |                         |                      |             |                    |
| Location of Plant NI          | AGARA FALLS, N. Y.      |                      |             |                    |
| Type of Plant REACTIVE        | METAL                   |                      | •           |                    |
| Control Equipment             | BAG FILTERS -           |                      |             |                    |
| Sampling Point Location       | TS - BAGHOUSE EXHAUST   |                      |             |                    |
| Pollutants Sampled PA         | RTICULATE               | 4                    |             |                    |
| Time of Particulate Te        | st:                     |                      |             | •                  |
| Run No. ANE-1                 | Date 8-31-71            | Begin <u>17:19</u>   |             | End 19:19          |
| ACE-1<br>Run,No. <u>ASE-1</u> | Date 8-31-71<br>8-31-71 | 17:23 Begin 17:22    |             | 19:23<br>End 19:22 |
| ANE-2 Run No. ACE-2           | . 9-1-71<br>Date 9-1-71 | 09:02<br>Begin 09:15 | •           | 13:10<br>End 13:02 |
| Run No. ASE-2                 | Date 9-1-71 ·           | Begin 09:10          |             | End 12:49          |
|                               | PARTICULATE EMIS        | SION DATA            | •           |                    |
|                               |                         |                      | <del></del> | <del></del>        |

| Run No.                                                                            | ANE-1 | ACE-1 | ASE-1 | ANE-2 | ACE-2  | ASE-2  |
|------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|--------|
| P <sub>b</sub> barometric pressure, "Hg Absolute                                   |       | :     |       |       | 29.8   |        |
| P orifice pressure drop, "H <sub>2</sub> O                                         |       | !     |       |       | 4.0    |        |
| <pre>V<sub>m</sub> volume of dry gas sampled @ meter     conditions, ft.3</pre>    |       |       |       |       |        | 136.94 |
| T <sub>m</sub> Average Gas Meter Temperature, <sup>O</sup> F                       | 92    | 114   | 112   | 116   | 122    | 112    |
| V <sub>m</sub> Volume of Dry Gas Sampled @ Standard std. Conditions, ft.3          | 88.72 | 86.13 | 87.97 | 109.1 | 118.27 | 127.54 |
| <pre>v Total H<sub>2</sub>O collected, ml., Impingers     &amp; Silical Gel.</pre> | 18.9  | 4.0   | 35.7  | 13.7  | 11.4   | 16.5   |
| V Volume of Water Vapor Collected<br>Wgas ft.3 @ Standard Conditions* -            | .90   | .19   | 1.69  | 0.6   | 0.5    | 0.78   |

## PARTICULATE EMISSION DATA (cont'd)

|                                                                              | <del></del>  | . ~   |       |       |          | ·            |
|------------------------------------------------------------------------------|--------------|-------|-------|-------|----------|--------------|
| Run No.                                                                      | ANE-1        | ACE-1 | ASE-1 | ANE-2 | ACE-2    | ASE-2        |
| %M - % Moisture in the stack gas by volume                                   | 1.00         | .22   | 1.88  | 0.55  | 0.42     | .61          |
| M <sub>d</sub> - Mole fraction of dry gas                                    | 0.99         | 1.00  | 0.98  | 0.99  | 1.0      | .99          |
| % CO <sub>2</sub>                                                            | 0.5          | 0.5   | 0.5   | 0.5   | 0.5      | 0.5          |
| % 0 <sub>2</sub>                                                             | 20.6         | 20.6  | 20.6  | 20.6  | 20.6     | 20.6         |
| % N <sub>2</sub>                                                             | 78 <b>.9</b> | 78.9  | .78.9 | 78.9  | 78.9     | 78.9         |
| M W d - Molecular weight of dry stack gas                                    | 28.9         | 28.9. | 28.9  | 28,9  |          | 28.9         |
| M W - Molecular weight of stack gas                                          | 28.8         | 28.9  |       |       | 28.8     |              |
| △Ps - Velocity Head of stack gas, In.H <sub>2</sub> 0                        |              |       |       |       |          |              |
| T <sub>s</sub> Stack Temperature, <sup>O</sup> F                             | 175          | 175   | 175   | 172   | 172      | 172          |
| Δ <sub>P<sub>s</sub></sub> X(T <sub>s</sub> +460)                            | -            | _     | -     | -     | _        | _            |
| Ps - Stack Pressure, "Hg. Absolute                                           | 29.8         | 29.8  | 29.8  | 29.8  | 29.8     | 29.8         |
| V <sub>s</sub> - Stack Velocity @ stack conditions, fpm                      | _            | -     | _     | -     | _        | _            |
| A <sub>s</sub> - Stack Area, in. <sup>2</sup>                                | -            | -     | -     | -     |          | _            |
| Qs - Stack Gas Volume 0 * Standard Conditions. SCFM                          | 383,         | 383,  | 383,  | 383,  | 383,<br> | 383 <b>,</b> |
| T <sub>t</sub> - Net Time of Test, min.                                      | 120          | 120   | ·120  | 138   | 120      | 120          |
| D <sub>n</sub> - Sampling Nozzle Diameter, in.                               | .50          | .50   | .50   | .50   | .50      | .50          |
| %I - Percent_isokinetic                                                      | _            | -     | -     | -     | -        | _            |
| <pre>m<sub>f</sub> - Particulate - probe, cyclone      and filter, mg.</pre> | 20.4         | 23.4  | 13.0  | 26.6  | 21.8     | 16.9         |
| m <sub>t</sub> - Particulate - total, mg.                                    | 69.5         | 75.3  | 51.3  | 85.6  | 71.2     | 64.5         |
| Can - Particulate - probe, cyclone, and filter, gr/SCF                       | .0035        | .0042 | .0023 | .0038 | .0028    | .0020        |
| C <sub>ao</sub> - Particulate - total, gr/SCF                                | .0120        | .0135 | .0090 | .0121 | .0098    | .0078        |
| Cat - Particulate - probe; cyclone, & filter gr/cf 0 stack conditions        | .0029        | .0035 | .0019 | .0031 | .0023    | .0017        |
| gifer & stack conditions                                                     | 1.0029       | .0035 | .001  | .0031 | 1.0023   | 1.001        |

<sup>\*</sup> Calculated from inlet volume plus induced air

# PARTICULATE EMISSION DATA (cont'd)

| Run Ho.                                                           | ANE-1     | ACE-1 | ASE-1 | ANE-2 | ACE-2 | ASE-2 |
|-------------------------------------------------------------------|-----------|-------|-------|-------|-------|-------|
| Cau - Particulate, total, gr/cf<br>@ stack cond.                  | .0099     | .0112 | .0073 | .0100 | .0082 | .0064 |
| C <sub>aw</sub> - Particulate, probe, cyclone, and filter, lb/hr. | 11.49     | 13.79 | 7.55  | 12.47 | 9.19  | 5.56  |
| C <sub>ax</sub> - Particulate - total, lb/hr.                     | <br>39.83 | 44.31 | 29.54 | 39.72 | 32.17 | 25.60 |
| % EA - % Excess air @<br>sampling point                           | <br>5318  | 5318  | 5318  | 5318  | 5318  | 5318  |

<sup>\*70°</sup>F. 29.92" Hg.

## SOURCE TESTING CALCULATION FORMS

| lest. No.                                                                                           |                |          | 110.        | uns    |                                         | <del></del> |
|-----------------------------------------------------------------------------------------------------|----------------|----------|-------------|--------|-----------------------------------------|-------------|
| Name of Firm AIRCO                                                                                  |                |          |             |        | • .                                     | •.          |
| Location of Plant NIAGARA FALLS, N.Y.                                                               |                | •        | ·           |        |                                         |             |
| Type of Plant REACTIVE METAL                                                                        | • . •          | ·        | •           |        | ·                                       |             |
| Control Equipment BAG FILTERS -                                                                     | -              |          | :           |        | •                                       |             |
| Sampling Point Locations BAGHOUSE EXHAUST/FURNA                                                     | ACE EXH        | AUST     | <del></del> |        |                                         |             |
| Pollutants Sampled _ PARTICULATE                                                                    |                |          |             | ·<br>· |                                         |             |
| Time of Particulate Test:  ANE-3  Run No. ACE-3  Date $\frac{9-1-71}{9-1-71}$                       | Begin          | 14:3<br> | 34<br>12    | 1      | End_17:                                 | 34          |
| Run No. ASE-3       Date 9-1-71         ABD-1       8-31-71         Run No. ABD-2       Date 9-1-71 | Begin<br>Begin | 17:1     | .7          |        | End <u>17:</u><br>18:<br>End <u>10:</u> | 57          |
| Run No. ARD-3 Date 9-1-71  PARTICULATE EMISS                                                        | Begin_         |          | 0           | 1      | End_16:                                 | 20          |
| Run No.                                                                                             | ANE-3          | ACE-3    | ASE-3       | ABD-1  | ABD-2                                   | ABD-3       |
| P <sub>b</sub> barometric pressure, "Hg Absolute                                                    |                | 29.8     | 29.8        |        |                                         | 29.8        |
| P orifice pressure drop, "H <sub>2</sub> 0                                                          | 3.3            | 4.8      | 4.3         | 86_    | .86                                     | 0.9         |
| V <sub>m</sub> volume of dry gas sampled 0 meter conditions, ft.3                                   | 184.0          | 214.06   | 216.26      | 52.75  | 51.35                                   | 52.01       |
| T <sub>m</sub> Average Gas Meter Temperature, <sup>O</sup> F                                        | 131            | 1 38     | 130         | 93     | 85                                      | 100         |
| V <sub>m</sub> Volume of Dry Gas Sampled @ Standard std. Conditions, ft.3                           | 165.3          | 191.34   | 195.28      | 50.42  |                                         | 49.15       |
| V Total H <sub>2</sub> O collected, ml., Impingers & Silical Gel.                                   | 18.9           | 20.4     | 7.3         | 21.7   | 23.7                                    | 23.0        |
| V Volume of Water Vapor Collected Wgas ft.3 @ Standard Conditions* -                                | 0.9            | 0.97     | 0.3         | 1.0    | 1.1                                     | 1.09        |

# PARTICULATE EMISSION DATA (cont'd)

| Run No.                                                                     | ANE-3       | ACE-3       | ASE-3       | ABD-1       | ABD-2       | ABD-3       |
|-----------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| %M - % Moisture in the stack gas by volume                                  | 0.54        | 0.52        | 0.15        | 1.94        | 2.2         | 2.17        |
| M <sub>d</sub> - Mole fraction of dry gas                                   | 1.0         | 0.99        | 1.0         | 1.0         | 0.98        | 0.98        |
| % CO <sub>2</sub>                                                           | 0.5         | 0.5         | 0.5         | 1.2         | 1.2         | 1.2         |
| % <sup>0</sup> 2                                                            | 20.6        | 20.6        | 20.6        | 19.8        | 19.8        | 19.8        |
| % N <sub>2</sub>                                                            | 78.9        | 78.9        | 78.9        | 79.0        | 79.0        | 79.0        |
| M W d - Molecular weight of dry stack gas                                   | 28.9        | 28.9        | 28.9        | 29.0        | 29.0        | 29.0        |
| M W - Molecular weight of stack gas                                         | 28.9        | 28.8        | 28.9        | 28.8        | 28.8        | 28.8        |
| ΔPs - Velocity Head of stack gas, In.H <sub>2</sub> 0                       | -           | -           | _           | .89         | . 89        | .96         |
| T <sub>s</sub> Stack Temperature, <sup>O</sup> F                            | 178         | 178         | 178         | 331         | 323         | 336         |
| $\sqrt{\Delta P_s X(T_s + 460)}$                                            | _           | _           | -           | 26.5        | 26.4        | 27.6        |
| Ps - Stack Pressure, "Hg. Absolute                                          | 29.8        | 29.8        | 29.8        | 29.8        | 29.8        | 29.8        |
| V <sub>s</sub> - Stack Velocity 0 stack conditions, fpm                     | _           | _           | _           | 3935        | 3920        | 4098        |
| A <sub>s</sub> - Stack Area, in. <sup>2</sup>                               | -           | _           | -           | 9792        | 9792        | 9792        |
| Q <sub>s</sub> - Stack Gas Volume 0 * Standard Conditions. *SCFM            | 383,<br>000 | 383,<br>000 | 383,<br>000 | 174,<br>979 | 176,<br>093 | 181,<br>083 |
| T <sub>t</sub> - Net Time of Test, min.                                     | 180         | 180         | 180         | 100         | 100         | 100         |
| D <sub>n</sub> - Sampling Nozzle Diameter, in.                              | .500        | . 500       | .500        | .1875       | .1875       | .1875       |
| %I - Percent isokinetic                                                     | -           | _           | -           | 107.1       | 120.8       | 102.3       |
| <pre>m<sub>f</sub> - Particulate - probe, cyclone     and filter, mg.</pre> | 24.7        | 17.6        | 20.6        | 1,746.<br>5 | 385.0       | 1,271.<br>2 |
| m <sub>t</sub> - Particulate - total, mg.                                   | 66.1        | 60.9        | 68.1        | 2,094.      | 1,297       | 1,888<br>6  |
| Can - Particulate - probe, cyclone, and filter, gr/SCF                      | .0023       | .0014       | .0016       |             | .1189       |             |
| C <sub>ao</sub> - Particulate - total, gr/SCF                               | .0062       | .0049       | .0054       | .6397       | .4001       | .5917       |
| Cat - Particulate - probé, cyclone, & filter gr/cf 0 stack conditions       | .0019       | .0011       | .0013       | .3486       | .0785       | . 2587      |

## PARTICULATE EMISSION DATA (cont'd)

| Run Ho.                                                           | · · · · · · · · · · · · · · · · · · · | ANE-3 | ACE-3 | ASE-3 | ABD-1 | ABD-2 | ABD-3 |
|-------------------------------------------------------------------|---------------------------------------|-------|-------|-------|-------|-------|-------|
| C <sub>au</sub> - Particulate, total, gr/cf<br>@ stack cond.      | •                                     | .0051 |       |       | .4180 |       | .3842 |
| C <sub>aw</sub> - Particulate, probe, cyclone, and filter, lb/hr. |                                       | 7.55  | 4.60  | 5.25  | 799.9 | 179.4 | 618.1 |
| C <sub>ax</sub> - Particulate - total, lb/hr.                     |                                       | 20.35 | 16.08 | 17.72 | 959.3 | 603.8 | 918.2 |
| % EA - % Excess air 0 sampling point                              |                                       | 5318  | 5318  | 5318  | 1631  | 1631  | 1631  |

<sup>\*70°</sup>F. 29.92" Hg.

#### SAMPLE PARTICULATE CALCULATIONS

#### ABD-1

1. Volume of dry gas sampled at standard conditions -  $70^{\circ}$ F,  $29.92^{\circ}$ Hg,  $ft^3$ .

$$V_{m_{std}} = \frac{17.7 \times V_{m} \left(\frac{P_{B} + \frac{P_{m}}{13.6}}{(T_{m} + 460)}\right)}{(T_{m} + 460)} = Ft.^{3} = \frac{17.7 \times 52.75 (29.8 + \frac{0.86}{13.6})}{(93 + 460)}$$

2. Volume of water vapor at  $70^{\circ}$ F and 29.92'' Hg, Ft.  $^3$ 

$$V_{\text{wgas}} = 0.0474 \text{ X } V_{\text{w}} = \text{ft.}^3$$
  
= 0.0474 X 21.7 =

3. % moisture in stack gas

$$%M = \frac{100 \times V_{\text{wgas}}}{V_{\text{mstd}} + V_{\text{wgas}}} = %$$

$$= \frac{100 \times 1.0}{50.42 + 1.0} = 1.94$$

4. Mole fraction of dry gas

$$M_{d} = \frac{100 - \%M}{100}$$

$$\frac{100 - 1.94}{100} = 0.98$$

5. Average molecular weight of dry stack gas

M W <sub>d</sub> = 
$$(\%CO_2 \times \frac{44}{100}) + (\%O_2 \times \frac{32}{100}) + (\%N_2 \times \frac{28}{100})$$
  
 $(1.2 \times \frac{44}{100}) + (19.8 \times \frac{32}{100}) + (79.0 \times \frac{28}{100}) = 28.98$ 

6. Molecular weight of stack gas

$$M W = M W_d X M_d + 18 (1 - M_d)$$
  
 $28.98 \times 0.98 + 18 (1 - 0.98) =$   
 $28.76$ 

3935

7. Stack velocity @ stack conditions, fpm  $V_{S} = 4350 \text{ X} \sqrt{\Delta P_{S} \text{ X} (T_{S} + 460)} \left[ \frac{1}{P_{S} \text{ X M W}} \right]^{1/2} = \text{fpm}$   $= 4350 \text{ X} \sqrt{.89 \text{ X} (331 + 460)} \left[ \frac{1}{29.8 \text{ X} 28.76} \right] = 1/2$ 

8. Stack gas volume @ standard conditions, SCFM

$$Q_{S} = \frac{0.123 \times V_{S} \times A_{S} \times M_{d} \times P_{S}}{(T_{S} + 460)} = SCFM$$

$$= \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 3935 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 9792 \times 0.98 \times 29.8}{(331 + 460)} = \frac{0.23 \times 9792 \times$$

9. Percent isokinetic

$$%I = \frac{1032 \times (T + 460) \times V_{m}}{V_{s} \times T_{t} \times P_{s} \times M_{d} \times (D_{n})^{2}} = %$$

$$= \frac{1032 \times (331 + 460) \times 52.75}{3935 \times 100 \times 29.8 \times 0.98 \times 0.035} = 107.1$$

10. Particulate - probe, cyclone, and filter, gr/SCF

$$C_{an} = 0.0154 \times \frac{M_f}{V_{mstd}} = gr/scf$$

$$= 0.0154 \times \frac{1746.5}{50.42} = 0.5334$$

11. Particulate total, gr/SCF

$$C_{ao} = 0.0154 \text{ X } \frac{M_t}{V_{mstd}} = gr/SCF$$

$$= 0.0154 \text{ X } \frac{2094.3}{50.42} = 0.6397$$

12. Particulate - probe, cyclone and filter,
 gr/CF at stack conditions

$$C_{at} = \frac{17.7 \times C_{an} \times P_{s} \times M_{d}}{(T_{s} + 460)} = gr/CF$$

$$= \frac{17.7 \times 0.5334 \times 29.8 \times 0.98}{(331 + 460)} = 0.3486$$

13. Particulate - total, gr/CF @ stack conditions

$$C_{au} = \frac{17.7 \times C_{ao} \times P_{s} \times M_{d}}{(T_{x} + 460)} = gr/CF$$

$$= \frac{17.7 \times 0.6397 \times 29.8 \times 0.98}{(331 + 460)} = 0.4180$$

14. Particulate - probe, cyclone filter filter, lb/hr.

$$C_{aw} = 0.00857 \times C_{an} \times Q_{s} = 1b/hr.$$

15. Particulate - total, lb/hr.

$$C_{ax} = 0.00857 \text{ X } C_{ao} \text{ X } Q_{s} = 1b/hr.$$

16. % excess air at sampling point

% EA = 
$$\frac{100 \times \% O_2}{(0.266 \times \% N_2) - \% O_2} = \%$$
  
=  $\frac{100 \times 19.8}{(0.266 \times 79.0) - 19.8} =$   
= 1631

#### BAGHOUSE EXHAUST VOLUME (Qg)

#### **DETERMINATION**

AVERAGE  $Q_s$ , INLET: 178,000 cfm

NUMBER OF BAG COMPARTMENTS: 12

AREA AROUND EACH COMPARTMENT (including grating) 88 ft<sup>2</sup>

AREA OPEN AROUND BAG COMPARTMENTS: 853 ft<sup>2</sup> (estimated 80% open area)

VELOCITY (avg.) AROUND BAG COMPARTMENTS: 240.1 fpm (3 compartments measured and averaged)

Qs INDUCED: 205,000cfm

Q<sub>s</sub> TOTAL: 383,000cfm

EFFECTIVE AREA =  $88ft^2$  X .80 X 12 = 853 ft<sup>2</sup>

AVG. VELOCITY =  $\frac{237.4 + 239.1 + 243.8}{3}$  = 240.1 fpm

 $Q_s$  INDUCED = 240.1 ft/min. X 853 ft<sup>2</sup> = 204,805 cfm = app. 205,000 cfm

 $Q_s$  TOTAL = 205,000 cfm + 178,000 cfm = 383,000 cfm

# APPENDIX B COMPLETE GASEOUS RESULTS WITH EXAMPLE CALCULATIONS

| Run No.  BAGHOUSE EXHAUST                                                       | ANE-1  | ACE-1  | ASE-1  | •       |   | } |
|---------------------------------------------------------------------------------|--------|--------|--------|---------|---|---|
| Date                                                                            | 9/2/71 | 9/2/71 | 9/1/71 |         |   |   |
| mg SO <sub>2</sub>                                                              | 2.5    | 2.4    | 10.8   |         | , |   |
| T <sub>m</sub> - Average Gas Meter Temperature, <sup>O</sup> F                  | 84     | 84     | 107    |         |   |   |
| P <sub>b</sub> - Barometric Pressure, "Hg abs.                                  | 29.8   | 29.8   | 29.8   |         |   |   |
| V <sub>m</sub> - Volume of dry gas sampled @ meter conditions, ft. <sup>3</sup> | 3.96   | 3.82   | 17.78  |         |   |   |
| ppm SO <sub>2</sub>                                                             | 9.0    | 8.9    | 8.5    | • • • • |   |   |

\_\_\_\_0.7332 X mg 
$$SO_2$$
 X  $(T_m + 460)$ 

NOT USED ON ACE-1, ANE-1
DUE TO VACUUM ON METER

$$\frac{\text{mg SO}_{2}}{\text{VSTD}} \times 13.1 = \text{ppm SO}_{2} = \frac{2.5}{3.64} \times 13.1 = 9.0$$

$$\text{VSTD} = \text{Vm}_{2} \left( \frac{530}{\text{TM} + 460} \right) \left( \frac{\text{Pb} - \text{Pm}}{29.92} \right)$$

$$= 3.96 \left( \frac{530}{84 + 460} \right) \left( \frac{29.8 - 1.6}{29.92} \right) = 3.64$$

# DETERMINATION OF SO<sub>2</sub> EMISSIONS\* ACE & ANE-1

| Sample Location  | Date<br>Sampled | Time<br>Sampled | Sample<br>Number | milligrams | Vstd-Metered Gas Vol.<br>(dry, STD) | milligrams/cu ft | **<br>factor | ppm |
|------------------|-----------------|-----------------|------------------|------------|-------------------------------------|------------------|--------------|-----|
| Baghouse Exhaust | 9/2/71          | 1239-1339       | ANE-1            | 2.5        | 3.64                                | .69              | 13.1         | 9.0 |
|                  | 9/2/71          | 1032-1208       | ACE-1            | 2.4        | 3.52                                | .68              | 13.1         | 8.9 |

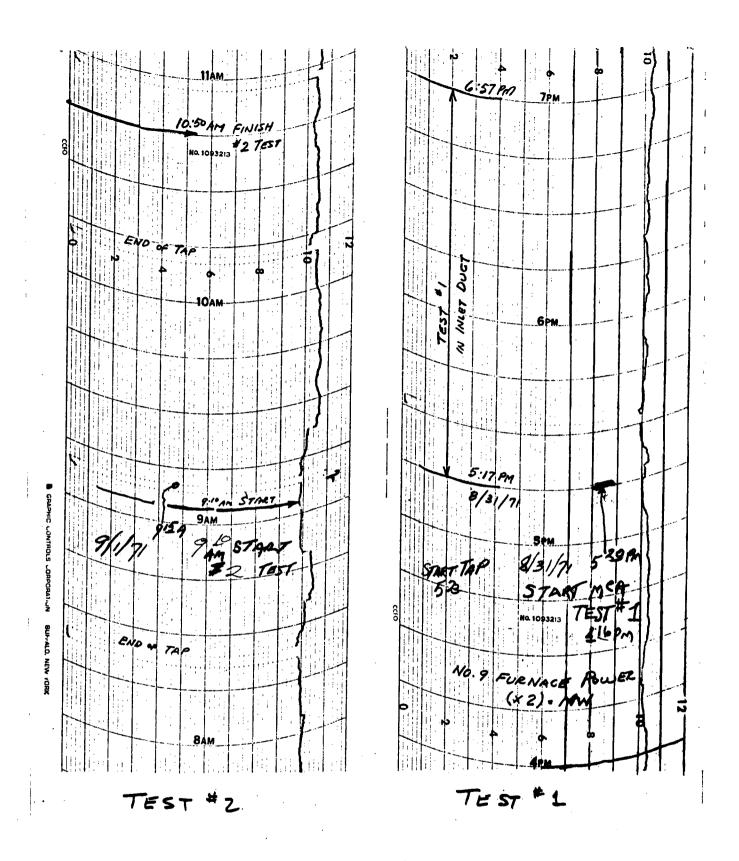
<sup>\*</sup> This special format was used instead of the OAP forms for samples ANE-1 & ACE1 because the meter was kept under vacuum, that is before the pump.

<sup>\*\*</sup> From page 173, Source Testing Manual, County of Los Angeles, California.

# ORSAT FIELD DATA

| Location | OUTLET   | Comments:         |
|----------|----------|-------------------|
| Date     | 9/2/71   | - non-manufacture |
| Time     | A.M.     |                   |
| Operator | BLESSING |                   |

| Test<br>Run | (CO <sub>2</sub> )<br>Reading 1 | (0 <sub>2</sub> )<br>Reading 2 | (CO)<br>Reading 3 |
|-------------|---------------------------------|--------------------------------|-------------------|
| . 1         | 0.5                             | 21.2                           | 0                 |
| 2           | 0.5                             | 21.4                           | 0                 |
| 3           | 0.5                             | 20.8                           | 0                 |
| Avg.        | 0.5                             | 21.13                          | 0                 |
|             |                                 |                                |                   |
|             | ·                               |                                | ·                 |
|             |                                 |                                |                   |
|             | ·                               |                                |                   |


# ORSAT FIELD DATA

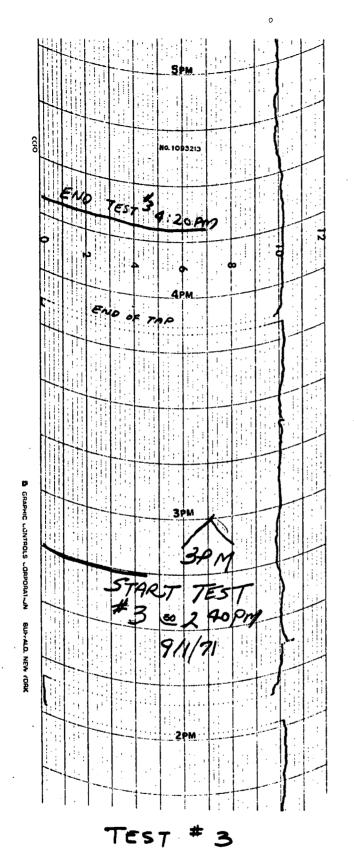
| Location | INLET    | Comments: |
|----------|----------|-----------|
| Date     | 9/1/71   | -         |
| Time     | P.M.     | •         |
| Operator | Blessing |           |

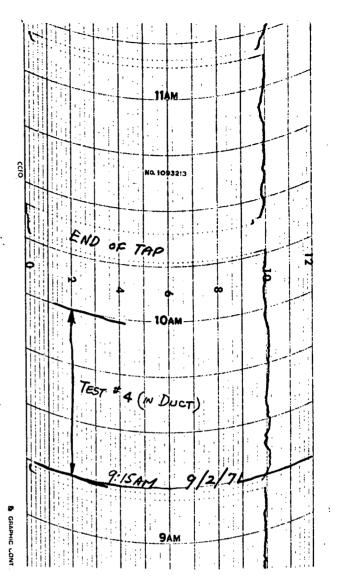
| Test<br>Run | (CO <sub>2</sub> )<br>Reading 1 | (0 <sub>2</sub> )<br>Reading 2 | (CO)<br>Reading 3 |
|-------------|---------------------------------|--------------------------------|-------------------|
| 1           | 1.2                             | 21.4                           | 0                 |
| 2           | 1.2                             | 21.4                           | 0                 |
| 3           | 1.2                             | 20.2                           | · 0               |
| Avg.        | 1.2                             | 21.0                           | 0                 |
|             |                                 |                                |                   |
|             |                                 |                                |                   |
|             |                                 | •                              |                   |
|             | ,                               |                                |                   |

#### APPENDIX C

COMPLETE OPERATION RESULTS




NO. 9 FURNACE LOADS


EMISSION TESTS

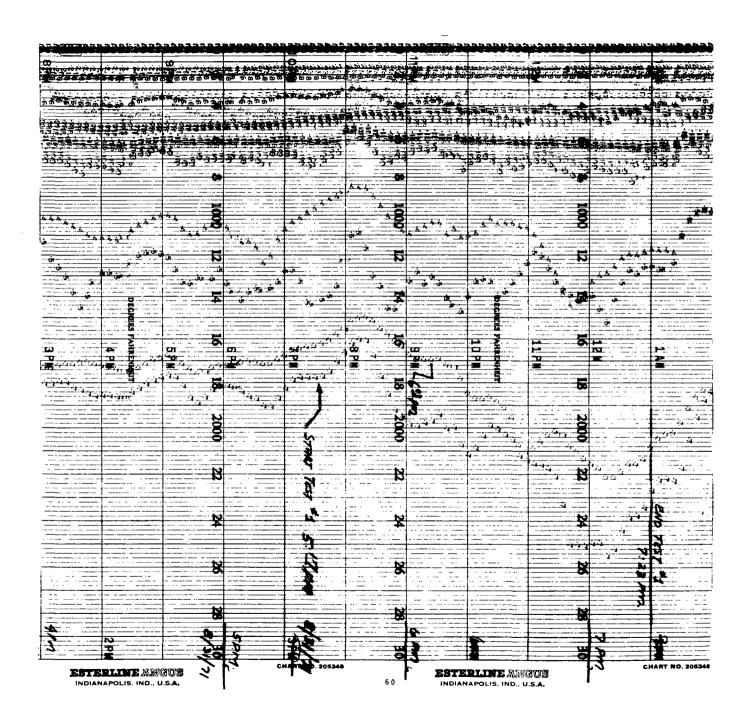
AIRCO ALLOTS & CARBIDE,

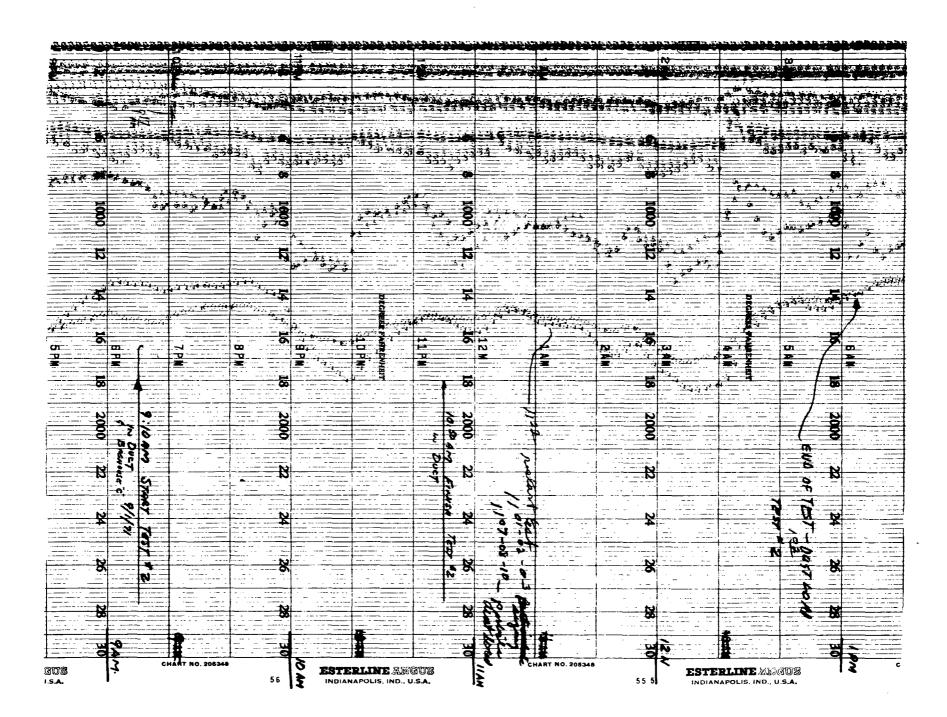
NIAGARA FALLS,

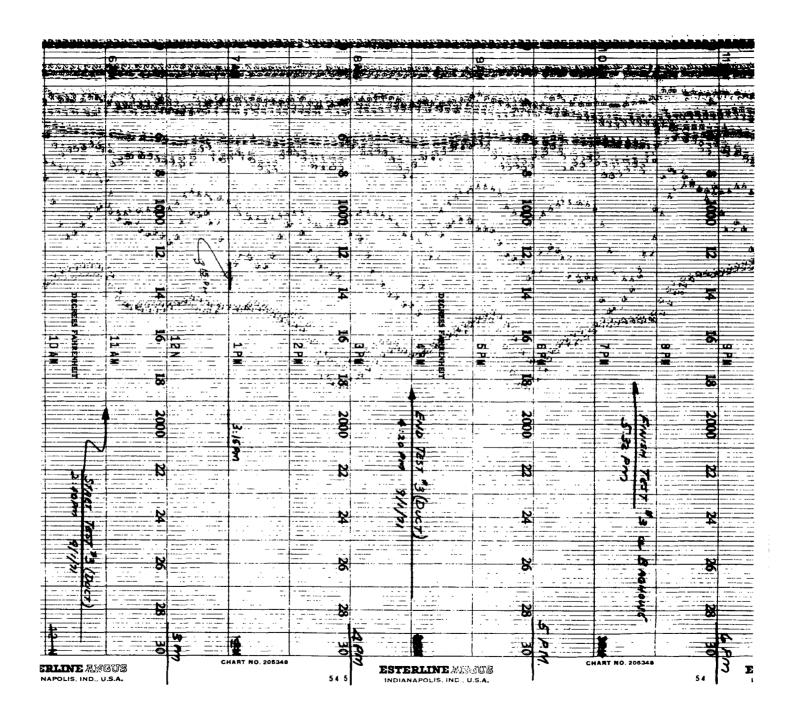
N.Y.

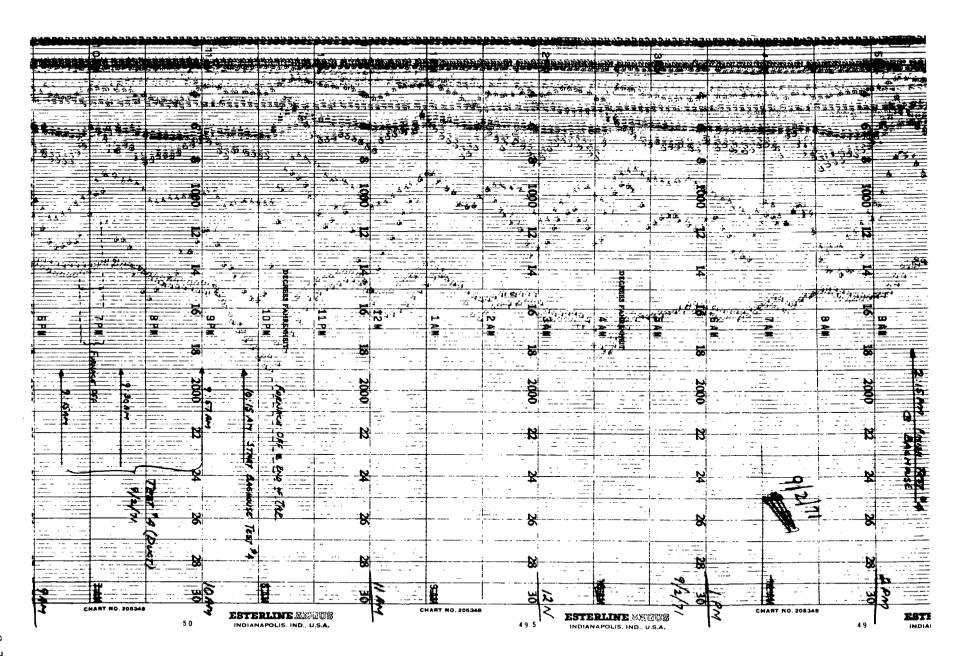





TEST #4


NO.9 FURNACE LOADS EMISSION TESTS


A.A. & C. NIAGARA FALLS


# Temperature Recorder List of thermocouples

|                                           | TIST OF THEFT TO COUNTY                                                                                                  |            |                                        |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------|
| Point                                     | · Location                                                                                                               |            | .7                                     |
| TC · 1<br>TC · 2<br>TC · 3<br>TC · 4      | L Hood temp. between North & Hood temp. between West & Hood temp. between East & West doghouse temp.                     | East       | electrodes<br>electrodes<br>electrodes |
| 17C-8                                     | _ South doghouse temp.<br>_ East doghouse temp.<br>_ Center of Hood temp.<br>_ By-pass duct temp.                        |            |                                        |
| TC 10 1<br>TC 10 1<br>TC 12 1<br>TC 13 1  | Furnace Ga3 duct temp.  Ceater inlet Gas temp.  Nº 1 Gooler Outlet Gas temp.  Nº 2 Caoler Outlet Gas temp.  SPARE        |            |                                        |
| TC-14 -<br>TC-15 :<br>TC-16 :<br>TC-17 :  | - Nº 1 Exhaust Fan Outlet temp.<br>- Nº 2 Exhaust Fan Outlet temp.<br>- Collector inlet temp.<br>- Collector Outlet temp |            |                                        |
| TC 18<br>TC 19<br>TC 20<br>TC 21<br>TC 22 | _ Dust bin temp.<br>_ Fume duct temp<br>_ SPARE<br>_ Air Inlet to Cooler temp.<br>_ Nº1 Air Outlet from Cooler temp      | <b>5</b> . |                                        |
| TC - 23                                   | Nº 2 Air Outlet from Cooler temp<br>Spare                                                                                |            |                                        |









APPENDIX D
Field Data

| Run No. ANE-1                   | VERY IMPORTANT - FILL IN ALL BLANKS              | Ambient Temp °F 720 - 820  |
|---------------------------------|--------------------------------------------------|----------------------------|
| Location Baghouse North Exhaust | Read and record at the start of each test point. | , Bar. Press. "Hg 29.8     |
| Date 8-31-71                    | each test point.                                 | Assumed Moisture % 2       |
| Operator Eggleston              |                                                  | Heater Box Setting, °F 250 |
| Sample Box No. 2                |                                                  | Probe Tip Dia., In. 1/2    |
| Meter Box No. 51047             |                                                  | Probe Length               |
|                                 |                                                  | Probe Heater Setting       |

|            | Clock | Dry Gas   | Dry Gas | Pitot<br>in. H <sub>2</sub> O | Orifice<br>in H |            | Dry Ga   |       | Pump<br>Vacuum<br>In. Hg | Box<br>Temp. | Impinger<br>Temp | Stack<br>Press | Stack<br>Tcmp |
|------------|-------|-----------|---------|-------------------------------|-----------------|------------|----------|-------|--------------------------|--------------|------------------|----------------|---------------|
| Point      | Time  | Meter, CF | ΔΡ      | Desired                       | Actual          | Inlet      | Outlet   | Gauge | °F                       | °F           | in. Hg           | °F             |               |
| 6 <b>¹</b> | 17:19 | 915.36    |         |                               | 2               | 72         | 72       | 7     | 250                      | 85           | 29.80            | 170            |               |
|            | 17:25 | 919.6     |         |                               | 2               | 74         | 72       | 7     | 250                      | 90           | 11               |                |               |
|            | 17:37 | 928.1     |         |                               | 2               | 82         | 71       | 7     | 250                      | 85           | 11               | 155            |               |
|            | 17:45 | 934.6     |         |                               | 2               | 91         | 75       | 7     | 250                      | 85           | 11               |                |               |
|            | 17:55 | 942.0     |         |                               | 2               | . 98       | 88       | 7     | 250                      | 90           | "                |                |               |
|            | 18:05 | 949.6     |         |                               | 2               | 108        | 94       | 7     | 250                      | 90           | 11               |                |               |
|            | 18:20 | _         |         |                               | 11              | 120        | 92       | 7     | 111                      | 93           | 71               |                |               |
|            | 18:30 | _         |         |                               | 11              | 96         | 90       | 7     | 11                       | 95           | 11               |                |               |
|            | 18:40 |           |         |                               | 11              | 110        | 92       | 7     | 11                       | 95           | **               | _              |               |
|            | 18:50 | -         |         |                               | 11              | 105        | 92       | 7     | 11                       | 90           | 11               |                |               |
|            | 18:60 | -         |         |                               | 11              | 107        | 90       | 7     | 11                       | 80           | 11               |                |               |
|            | 19:10 |           |         |                               | 11              | 100        | 02       |       |                          | 80           |                  |                |               |
|            | 19:19 | 1007.9    |         |                               | 11              | 109<br>105 | 93<br>95 | 7     | 11                       | 80           |                  | -              |               |
|            |       |           |         |                               |                 |            | ļ        |       |                          |              |                  |                |               |

Comments:

NCAP-37 (12/67)

D-1

| Run No. ACE - 1                 | VERY IMPORTANT - FILL IN ALL BLANKS              | Ambient Temp °F 75°          |
|---------------------------------|--------------------------------------------------|------------------------------|
| LocationBaghouse Center Exhaust | Read and record at the start of each test point. | , Bar. Press. "Hg 29.8       |
| Date 8-31-71                    | caen test point.                                 | Assumed Moisture % $2.0$     |
| Operator Blessing               |                                                  | . Heater Box Setting, °F 250 |
| Sample Box No. 4                |                                                  | Probe Tip Dia., In. 0.50     |
| Meter Box No. 4                 |                                                  | Probe Length                 |
|                                 |                                                  | Probe Heater Setting         |

| Point | Clock<br>Time | Dry Gas<br>Meter, CF | Pitot<br>in. H <sub>2</sub> O<br>ΔP | Orifice<br>in H<br>Desired |      | Dry Gas<br>°F<br>Inlet |     | Pump<br>Vacuum<br>In. Hg<br>Gauge | Box<br>Temp. | Impinger<br>Temp<br>°F | Stack<br>Press<br>in. Hg | Stack<br>Tcmp<br>°F |
|-------|---------------|----------------------|-------------------------------------|----------------------------|------|------------------------|-----|-----------------------------------|--------------|------------------------|--------------------------|---------------------|
| 61    | 17:23         | 963, 30              |                                     |                            | 2.0  | 91                     | 91  | 7.7                               | 250          | 70                     | 29.8                     | 170                 |
|       | 17:43         | 979.20               |                                     |                            | 2.0  | 106                    | 90  | 7.5                               | 250          | 75                     |                          | 11                  |
| •     | 17:53         | 987.38               |                                     |                            | 2.0  | 114                    | 94  | 7.5                               | 250          | 75                     |                          | 11                  |
|       | 18:03         | _                    |                                     |                            | 11   | 124                    | 104 | 7.5                               | 11           | 75                     | 11                       | 11                  |
|       | 18:13         | -                    |                                     |                            | 11   | 123                    | 115 | 7.5                               | 11           | 78                     | 17                       | 11                  |
|       | 18:23         | -                    |                                     |                            | - 11 | 130                    | 110 | 7.5                               | 11           | 78                     | 11                       | 11                  |
|       | 18:33         |                      |                                     |                            | 11   | 130                    | 112 | 7.5                               | 11           | 78                     | 11                       | 11                  |
|       | 18:43         | _                    |                                     |                            | 11   | 132                    | 116 | 7.5                               | 11           | 79                     |                          |                     |
|       | 18:53         | _                    |                                     |                            | 11   | 132                    | 116 | 7.5                               | ] ,,         |                        | 11                       | 11                  |
|       | 19:03         |                      |                                     |                            | 11   | 120                    | 112 | 7.5                               | 11           | <del>70</del><br>70    | 11                       | 11                  |
|       | 19:13         | _                    |                                     |                            | 11   | 127                    | 112 | 7.5                               | 11           | 72                     | 11                       | 11                  |
|       | 19:23         | 1056.72              |                                     |                            | 11   | 130                    | 112 | 7.5.                              | 11           | 74                     | -11                      | 11                  |
|       |               |                      |                                     |                            |      |                        |     |                                   |              |                        |                          |                     |
|       | T             | T                    |                                     |                            |      |                        |     |                                   |              |                        |                          |                     |

Comments:

NCAP-37 (12/67)

| Run No.                              | VERY IMPORTANT - FILL IN ALL BLANKS                  | Ambient Temp °F 86         |
|--------------------------------------|------------------------------------------------------|----------------------------|
| Location ASE-1 Baghouse Exhaust - So | uth Read and record at the start of each test point. | , Bar. Press. "Hg 29.8     |
| Date                                 | cuon coso pormo.                                     | Assumed Moisture % 2%      |
| Operator Blessing                    |                                                      | Heater Box Setting, °F 250 |
| Sample Box Now H                     |                                                      | Probe Tip Dia., In. 50     |
| Meter Box No. H                      |                                                      | Probe Length 6.5           |
|                                      |                                                      | Probe Heater Setting250    |

| Point | Clock<br>Time | Dry Gas<br>Meter, CF | Pitot<br>in. H <sub>2</sub> O<br>ΔP | Orifice<br>in H<br>Desired |           | Dry Gas<br>°F<br>Inlet |     | Pump<br>Vacuum<br>In. Hg<br>Gauge     | Box<br>Temp.<br>°F | Impinger<br>Temp<br>°F | Stack<br>Press<br>in. Hg | Stack<br>Tcmp<br>°F |
|-------|---------------|----------------------|-------------------------------------|----------------------------|-----------|------------------------|-----|---------------------------------------|--------------------|------------------------|--------------------------|---------------------|
| 61    | 17.22         | 815 91               |                                     |                            | 2.0       | 85                     | 85  | 5.0                                   | 250                | 88                     | 29.8                     | 175                 |
|       | 17.42         | 831 30               | <u> </u>                            |                            | 2.0       | 103                    | 88  | 5.0                                   | 250                | 75                     | 20.8                     | 160                 |
|       | 17:52         | 839 88               |                                     |                            | 120       | 114                    | 93  | 5.0                                   |                    | 75                     |                          | 160                 |
|       | 18:02         |                      | <u> </u>                            |                            | 11        | 120                    | 100 | 5.0                                   | 11                 | 80                     | 11                       | 160                 |
|       | 18:12         | <u> </u>             | <u> </u>                            |                            | 11        | 120                    | 112 | 5.0                                   | 111                | -80                    | 11                       | 160                 |
|       | 18:72         | <u> </u>             |                                     |                            | <u>''</u> | 126                    | 106 | 5.0                                   | <u> </u>           | 80                     | 111                      | 160                 |
|       | 18:32         | 1                    | <u> </u>                            |                            | 11        | 125                    | 108 | 5.0                                   | 111                | _80                    | 1 7                      | 155                 |
|       | 18:42         | <u> </u>             | 1                                   | <u></u>                    | H         | 129                    | 110 | 5.0                                   | 111                | 80                     | 11                       | 170                 |
|       | 18952         |                      | <u> </u>                            | ·                          |           | 130                    | 113 | 5.0                                   | 1,,                | 77                     |                          | 165                 |
|       | 19:02         |                      | <u> </u>                            |                            | 11        | 125                    | 112 | 5.0                                   | 11                 | 73                     | 11                       | 160                 |
|       | 19:12         |                      | <u> </u>                            | <u></u>                    | 11        | 128                    | 112 | 5.0                                   | 111                | 75                     | 11                       | 160                 |
|       | 19:22         | 911.0                |                                     |                            | 11        | 130                    | 114 | 5.0 -                                 | 11                 | 75                     | 11                       | 160                 |
|       |               |                      |                                     |                            |           |                        |     |                                       | <del> </del>       |                        |                          |                     |
|       |               |                      |                                     |                            |           |                        |     | · · · · · · · · · · · · · · · · · · · |                    |                        |                          |                     |

Comments:

NCAP-37 (12/67)

D-3

| Run No. ANE-2       | VERY IMPORTANT - FILL IN ALL BLANKS              |   | Ambient Temp °F 80         |             |
|---------------------|--------------------------------------------------|---|----------------------------|-------------|
| Location Bag Exh    | Read and record at the start of each test point. | ; | Bar. Press. "Hg 29.8       | <del></del> |
| Date 9-1-71         | each test potht.                                 |   | Assumed Moisture % 2       |             |
| Operator McReynolds |                                                  |   | Heater Box Setting, °F 170 |             |
| Sample Box No       |                                                  |   | Probe Tip Dia., In. 5      |             |
| Meter Box No. 2     |                                                  |   | Probe Length 6             |             |
|                     |                                                  |   | Probe Heater Setting 70    |             |

|             | Clock<br>Time | Dry Gas<br>Meter, CF | Pitot<br>in. H <sub>2</sub> O<br>ΔP | Orifice AH<br>in H <sub>2</sub> O |          | Dry Gas Temp. |        | Pump<br>Vacuum<br>In. Hg | Box<br>Temp. | Impinger<br>Temp    | Stack<br>Press | Stack<br>Tcmp |
|-------------|---------------|----------------------|-------------------------------------|-----------------------------------|----------|---------------|--------|--------------------------|--------------|---------------------|----------------|---------------|
| Point       |               |                      |                                     | Desired                           | Actual   | Inlet         | Outlet | Gauge                    | °F           | °F                  | in. Hg         | °F            |
| 6 <b>•</b>  | 09:02         | 08.08                |                                     |                                   | 3.2      | 88            | 84     | 19.0                     | 170          | 75                  | 29.8           | 175           |
| *           | 11:11         | <u> </u>             |                                     |                                   | 3.1      | 102           | 100    | 10.2                     | 170          |                     | 11             | 11            |
|             | 11.20         | 17.51                |                                     |                                   | 3.Q      | 119           | 110    | 19.2<br>2.0              | 170<br>170   | <del>75</del><br>75 | 11             | 11            |
|             | 11:30         | 37.48                |                                     |                                   | 3.0      | 122           | 106    | 19.5                     | 11           | _80                 | 11             | 11            |
|             | 11:40         |                      |                                     |                                   | 3.0      | 130           | 108    | 19.5                     | 17           | 75                  | 11             | 11            |
|             | 11.50         |                      |                                     |                                   | 3.0      | 128           | 109.   | 19.5                     | 11           | 75                  | 11             | 11            |
|             | 12.00         |                      |                                     |                                   | 3.0      | 129           | 109    |                          | Ju           | 75                  |                | 11            |
|             | 12:10         |                      |                                     |                                   | 3.0      | 130           | 110    | 19.5<br>19.5             | 11           | <del>75</del>       | 11             | "             |
|             | 12:20         |                      |                                     |                                   | 3.0      | 134           | 112    | 19 5                     | 11           | _ 75                | 11             | 11            |
|             | 12:30         |                      |                                     |                                   | 2.9      | 132           | 112    | 19.2                     | 11           | 70                  | 11             | 11            |
|             | 12,40         |                      |                                     |                                   | 2.9      | 132           | 112    | 19.1                     | 11           | 70                  | 11             | 11            |
|             | 12.50         |                      |                                     |                                   | 2.9      | 130           | 112    | 19.1                     | 11           | 75                  | 11             | 11            |
|             | 13.00         |                      |                                     |                                   | 2.9      | 136           | 112    | 19.1                     | 11           | 75                  | *1             | "             |
|             | 13:10         | 126,49               |                                     |                                   | 2.9      | 138           | 112    | 19.1                     | 11           | 75                  | "              | 11            |
| <del></del> | <u> </u>      | 1                    | 1                                   | i                                 | <u> </u> |               |        |                          | <del> </del> |                     | <u> </u>       |               |

Comments: Off @ 9:21 power failure

NCAP-37 (12/67)

ħ

| Run No. ACE-2       | VERY IMPORTANT - FILL IN ALL BLANKS              |   | Ambient Temp °F            |
|---------------------|--------------------------------------------------|---|----------------------------|
| Location Bag Exh    | Read and record at the start of each test point. | ; | Bar. Press. "Hg 29.8       |
| Date9-1-71          | cach test point.                                 |   | Assumed Moisture % 2%      |
| Operator McReynolds |                                                  |   | Heater Box Setting, °F 250 |
| Sample Box No. H    |                                                  |   | Probe Tip Dia., In. 5      |
| Meter Box No4       |                                                  |   | Probe Length 6             |
|                     | ·                                                |   | Probe Heater Setting 65    |

| Clock<br>Time | Dry Gas<br>Meter, CF                                                                | Pitot<br>in. H <sub>2</sub> O<br>ΔP | Orifice<br>in H <sub>2</sub><br>Desired                                                                                                 |                                  | Dry Gas<br>°F<br>Inlet                  |                                               | Pump<br>Vacuum<br>In. Hg<br>Gauge                    | Box<br>Temp.<br>°F                                                | Impinger<br>Temp<br>°F                                        | Stack<br>Press<br>in. Hg                                                | Stack<br>Tcmp<br>°F                                                            |
|---------------|-------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|-----------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 09:15         | 057-71                                                                              |                                     |                                                                                                                                         | 4.0                              | 0.2                                     | 92                                            | 15.0                                                 | 175                                                               | 70                                                            | 29.8                                                                    | 175                                                                            |
|               | _                                                                                   |                                     |                                                                                                                                         | 11                               | 100                                     | 96                                            |                                                      | 11                                                                | 70                                                            | ti i                                                                    | 11                                                                             |
| 11:18         |                                                                                     |                                     |                                                                                                                                         | 11                               | 121                                     | 100                                           | 16.0                                                 | 11                                                                | 70                                                            | 11                                                                      | 11                                                                             |
| 11:28         |                                                                                     |                                     |                                                                                                                                         | 11                               | 129                                     | 103                                           | 16.0                                                 | 11                                                                | 70                                                            | 11                                                                      | 11                                                                             |
| 11.38         |                                                                                     | <u> </u>                            |                                                                                                                                         | .,,                              | 133                                     | 102                                           |                                                      | 11                                                                | 1                                                             | 11                                                                      | 11                                                                             |
| 11:48         | _                                                                                   |                                     |                                                                                                                                         | 11                               | _136                                    |                                               |                                                      | 11                                                                |                                                               | tt                                                                      | 11                                                                             |
| 11.58         |                                                                                     |                                     |                                                                                                                                         |                                  | 134                                     | 112                                           |                                                      |                                                                   | 7Ŏ                                                            | 11                                                                      | 11                                                                             |
| 12:08         |                                                                                     |                                     |                                                                                                                                         | 11                               | 138                                     | 117                                           |                                                      | 11                                                                | 70                                                            | 1                                                                       | 11                                                                             |
| 12:18         |                                                                                     |                                     | <del></del>                                                                                                                             | 11                               |                                         | 4                                             |                                                      | <u> </u>                                                          |                                                               | 1                                                                       |                                                                                |
| 12:28         | <u> </u>                                                                            |                                     |                                                                                                                                         | 11                               |                                         |                                               |                                                      | 11                                                                |                                                               | 1                                                                       | 11                                                                             |
| 12138         | <u></u>                                                                             |                                     |                                                                                                                                         | <u> </u>                         |                                         | 116                                           | 16.5                                                 | 11                                                                | 65                                                            | 11                                                                      | 11                                                                             |
| 12.48         |                                                                                     | <u> </u>                            |                                                                                                                                         |                                  | 1                                       | 116                                           | 16.5                                                 | 11                                                                | 65                                                            | 11                                                                      | 11                                                                             |
| 12:48         | <u> </u>                                                                            | 1                                   |                                                                                                                                         | 11                               | <u> </u>                                |                                               |                                                      | 111                                                               |                                                               | 111                                                                     | 11                                                                             |
| 13:02         | 186.93                                                                              |                                     |                                                                                                                                         |                                  | 142                                     | - 117                                         | 165                                                  | 11                                                                | -65                                                           |                                                                         | ·u                                                                             |
|               | Time  09:15 11:08 11:18 11:28 11:38 11:48 11:58 12:08 12:18 12:28 12:38 12:48 12:48 | Time Meter, CF  09:15               | Time Meter, CF ΔP  09:15 057.71  11:08 - 11:18  11:28 - 11:38 - 11:48 - 11:58 - 12:08 - 12:18 - 12:28 - 12:18 - 12:28 - 12:18 - 12:28 - | Time Meter, CF ΔP Desired  09:15 | Time Meter, CF ΔP Desired Actual  09:15 | Time Meter, CF ΔP Desired Actual Inlet  09:15 | Time Meter, CF ΔP Desired Actual Inlet Outlet  09:15 | Time Meter, CF ΔP Desired Actual Inlet Outlet Gauge  09:15 057.71 | Time Meter, CF ΔP Desired Actual Inlet Outlet Gauge °F  09:15 | Time Meter, CF ΔP Desired Actual Inlet Outlet Gauge °F °F  09:15 057.71 | Time Meter, CF ΔP Desired Actual Inlet Outlet Gauge °F °F in. Hg  09:15 057.71 |

Comments: Off 09:21 power failure

NCAP-37 (12/67)

ب ی . .

| Run No. ASE-2      | VERY IMPORTANT - FILL IN ALL BLANKS              | , , | Ambient Temp °F 80          |
|--------------------|--------------------------------------------------|-----|-----------------------------|
| Location Bag Exh   | Read and record at the start of each test point. | ,   | Bar. Press. "Hg <u>29.8</u> |
| Date <u>9-1-71</u> | cuen cese porner                                 | ı   | Assumed Moisture % 2%       |
| Operator Blessing  |                                                  | 1   | Heater Box Setting, °F 250  |
| Sample Box No. 4   |                                                  | i   | Probe Tip Dia., In5         |
| Meter Box No. H    |                                                  | 1   | Probe Length 6*             |
|                    |                                                  | 1   | Probe Heater Setting65      |

| Point | Clock<br>Time | Dry Gas<br>Meter, CF | Pitot<br>in. H <sub>2</sub> O<br>ΔP | Orifice<br>in H<br>Desired |     | Dry Gas<br>°F<br>Inlet | •    | Pump<br>Vacuum<br>In. Hg<br>Gauge | Box<br>Temp.<br>°F | Impinger<br>Temp<br>°F | Stack<br>Press<br>in. Hg | Stack<br>Tcmp<br>°F |
|-------|---------------|----------------------|-------------------------------------|----------------------------|-----|------------------------|------|-----------------------------------|--------------------|------------------------|--------------------------|---------------------|
| 61    | .09:10        | 911:06               |                                     |                            | 4.0 | 80                     | 80   | 10 5                              | 250_               | 65                     | 29.8                     | 150                 |
|       | 11:05         |                      |                                     |                            | 11  | 86                     | 86   | 19.5                              | 11                 | -60                    | 11                       | 175                 |
|       | 11:15         |                      |                                     |                            | 11  | 118                    | 92   | 18.0                              | 11                 | .60                    | 11                       | 175                 |
|       | 11:25         | _                    |                                     |                            | 11  | 124                    | 95   | 17.5                              | 11                 | 65                     | 11                       | 175                 |
|       | 11:35         | -                    |                                     |                            | 11  | 131                    | 100  | 17.5                              | 11                 | 65                     | 11                       | 175                 |
|       | 11:45         | _                    |                                     |                            | 11  | 135                    | 104  | 17.5                              | 11                 | 65                     | 11                       | 175                 |
|       | 11:55         |                      |                                     |                            | 11  | 135                    | 108  | 17.5                              | 11                 | 65                     | 11                       | 175                 |
|       | 12.05         |                      |                                     |                            | 11  | 136                    | 1.10 | 17.5                              | 11                 | 70                     | 11                       | 175                 |
|       | 12 • 15       |                      |                                     |                            | 11  | 135                    | 110  | 17.5                              | 11                 | 65                     | 11                       | 175                 |
|       | 12.25         |                      |                                     |                            | 11  | 135                    | 110  | 17.5                              | 11                 | 65                     | 11                       | 175_                |
|       | 12:35         |                      |                                     |                            | 11  | 135                    | 110  | 17.5                              | 11                 | 70                     | 111                      | 175                 |
|       | 12.45         |                      |                                     |                            |     |                        |      |                                   | 11                 | _                      | 1111                     |                     |
|       | 12:49         | 1048.00              |                                     |                            | 11  | 136                    | 110  | 17.5                              | 11                 | 70                     | 11                       | 175                 |
|       | -             |                      | <del> </del>                        |                            |     |                        |      |                                   | <del> </del>       |                        | <u> </u>                 |                     |

Comments: Off @ 09:26 power failure

NCAP-37 (12/67)

<del>P</del>

| Run No. ANE-3    | VERY IMPORTANT - FILL IN ALL BLANKS              |   | Ambient Temp °F 85                    |
|------------------|--------------------------------------------------|---|---------------------------------------|
| Location Bag Exh | Read and record at the start of each test point. | , | Bar. Press. "Hg 29.8                  |
| Date 9-1-71      | cuen cest points.                                |   | Assumed Moisture % 2                  |
| Operator Hall    |                                                  |   | Heater Box Setting, °F <sub>250</sub> |
| Sample Box No. 2 |                                                  |   | Probe Tip Dia., In5                   |
| Meter Box No. 2  |                                                  |   | Probe Length 6                        |
|                  | ·                                                |   | Probe Heater Setting                  |
|                  |                                                  |   |                                       |

| Point       | Clock | Dry Gas<br>Meter, CF | Pitot<br>in. H <sub>2</sub> 0 | Orifice AH<br>in H <sub>2</sub> O |        | Dry Gas Temp.<br>°F |        | In. Hg |      | Impinger<br>Temp | Stack<br>Press | Stack<br>Temp |
|-------------|-------|----------------------|-------------------------------|-----------------------------------|--------|---------------------|--------|--------|------|------------------|----------------|---------------|
|             | Time  |                      | ΔΡ                            | Desired                           | Actual | Inlet               | Outlet | Gauge  | °F   | °F               | in. Hg         | °F            |
| 61          | 14:34 | 126.46               |                               |                                   | 3.4    | 118                 | 114    | 20.0   | 250  | 100              | 29.8           | 175           |
|             | 14:44 | _                    |                               |                                   | 3,6    | 133                 | 114    | 19.3   | 11   | 95               | 11             | 11            |
|             | 14:54 |                      |                               |                                   | 3.4    | 137                 | 116    | 19_2   | 11   | 93               | 11             | 11            |
|             | 15:04 |                      |                               |                                   | 3.4    | 143                 | 119    | 19.0   |      | 85               | 11             | 11            |
|             | 15:14 | <u> </u>             | <u> </u>                      |                                   | 3.4    | 140                 | 122    | 18.9   | 11   | 80               | 11             | 11            |
|             | 15:24 | <u> </u>             |                               |                                   | 3.4    | 142                 | 122    | 19_0   | 11   | 80               | "              | 11            |
|             | 15:34 |                      |                               |                                   | 3.4    | 141                 | 123    | 19.0   | 11   | 80               | 11             | 11            |
|             | 15.44 |                      |                               |                                   | 3.4    | 146                 | 125    | 19.0   | 111  | 85               | <u> </u>       | 11            |
|             | 15.54 |                      |                               |                                   | 3.4    | 139                 | 125    | 19.0   | 11   | 80               | ''             | 11            |
|             | 16:04 | <u> </u>             | <u> </u>                      |                                   | 3.4    | 144                 | 125    | 19.0   | 11   | 85               | 11             | 11            |
|             | 16+14 |                      | <u> </u>                      |                                   | 3.4    | 146                 | 126    | 19.0   | 11   | 85               | 11             | 11            |
|             | 16:24 |                      | ļ                             |                                   | 3.2    | 146                 | 128    | 19.0   | 11   | 90               | 111            | 11            |
|             | 16.34 | <u> </u>             | <u> </u>                      |                                   | 3.2    | 148                 | 130    | 19.0   | 11   | 90               | 11             | 11            |
|             | 16:44 | <u> </u>             | ļ                             |                                   | 11     | 146                 | 132    | 19.0   | 11   | 95               | 11             | "             |
|             | 16:54 | <u></u>              |                               |                                   | 11     | 140                 | 130    | 19.0   | 11   | 95               | "              | 11            |
|             | 17:04 | <u> </u>             | 1                             | <u></u>                           | 11     | 150                 | 130    | 18.5   | 11   | 75               | 11             | 11            |
|             | 17:14 | _                    |                               |                                   | 11     | 146                 | 134    | 19.0   | tt   | 75               | 11             | 11            |
| omments:    | 17:24 | -                    |                               |                                   | 11     | 120                 | 115    | 19.0   | 11   | 75               | 11             | 17            |
| ICAP_37 · ( |       | 310.46               |                               |                                   | 11     | 119                 | 109    | 19.0   | 11 . | 85               | 11             | 11            |

| Run No. ACE-3     | VERY IMPORTANT - FILL IN ALL BLANKS              | , Ambient Temp °F 86    |     |
|-------------------|--------------------------------------------------|-------------------------|-----|
| Location Bag Exh  | Read and record at the start of each test point. | , Bar. Press. "Hg 29.8  |     |
| Date9_1_71        | caen cest point.                                 | Assumed Moisture % 2    |     |
| Operator Blessing |                                                  | Heater Box Setting, °F_ | 170 |
| Sample Box No. H  |                                                  | Probe Tip Dia., In.     | .5  |
| Meter Box No. 4   |                                                  | Probe Length            | 6   |
|                   | ·                                                | Probe Heater Setting    | 60  |

|           | Clock | Dry Gas   | Pitot<br>in. H <sub>2</sub> O | in H.    | 0        | °     |        | Pump<br>Vacuum<br>In. Hg | Box<br>Temp. | Impinger<br>Temp | Stack<br>Press | Stack<br>Temp |
|-----------|-------|-----------|-------------------------------|----------|----------|-------|--------|--------------------------|--------------|------------------|----------------|---------------|
| Point     | Time  | Meter, CF | ΔΡ                            | Desired  | Actual   | Inlet | Outlet | Gauge                    | °F           | °F               | in. Hg         | °F            |
| 61        | 14:32 | 187.10    |                               |          | 4.0      | 110   | 110    | 10                       | 250          | 80               | 29.8           | 175           |
|           | 14:42 | _         | <u> </u>                      |          | 11       | 126   | 110    | 10                       | 11           | 78               | 11             | 11            |
|           | 14:57 |           | <u> </u>                      |          | 11       | 140   | 116    | 10                       | 11           | 80               | 11             | 11            |
|           | 15:02 | <u> </u>  |                               |          | 111      | 142   | 120    | 10                       | 11           | 80               | 11             | 11            |
|           | 15:17 | <u> </u>  |                               |          | 111      | 145   | 122    | 10                       | 111          | -80              | 17             | 11            |
|           | 15:22 | <u> </u>  |                               |          | "        | 146   | 124    | 10                       | 11           | 75               | 11             | 11            |
|           | 15:32 |           |                               |          | <u> </u> |       |        |                          | <u> </u>     |                  |                |               |
|           | 15.42 | <u> </u>  |                               | <u> </u> | 4.0      | 144   | 126    | 10                       | 11           | 70               | 11             | 11            |
|           | 15:52 |           |                               |          | 5.5      | 144   | 126    | 18                       | 11           | 70               | 11             | 11            |
|           | 16:02 | <u> </u>  | <u> </u>                      |          | 5.5      | 150   | 125    | 18.1                     | 11           | 70               | 11             | 11            |
|           | 16:12 |           | <u> </u>                      | <u> </u> | 5.5      | 152   | 124    | 18.1                     | 11           | 70               | 11             | 11            |
|           | 16:22 |           |                               |          | 5.5      | 156   | 130    | 18.1                     | Ų            | 70               | 11             | 11            |
|           | 16:32 | <u> </u>  | 1                             |          | 5.5      | 156   | 130    | 18.0                     | 11           | 70               | 11             | 11            |
|           | 16:42 |           |                               |          | 11       | 158   | 132    | 18.0                     | 11           | 70               | 11             | "-            |
|           | 16:52 |           |                               |          | 11       | 158   | 132    | 18.0                     | 11           | 70               | 11             | 11            |
|           | 17:02 |           | <u> </u>                      |          | 11       | 166   | 136    | 18.0                     | 11           | 65               | 11             | 11            |
|           | 17:12 | _         |                               |          | 11       | 166   | 136    | 18.0                     | 11           | 65               | 11             | 11            |
| Comments: | 17:22 | _         |                               |          | **       | 164   | 134    | 18.0                     | 11           | 65               | 11             | **            |
| NCAD 27./ | 17:32 | 401.16    |                               |          | 5.5      | 170   | 140    | 18.0                     | 11 .         | 70               | 11             | *1            |

NCAP-37 (12/67)

| Run No. ASE-3     | VERY IMPORTANT - FILL IN ALL BLANKS              | Ambient Temp °F 86         |
|-------------------|--------------------------------------------------|----------------------------|
| Location Bag Exh  | Read and record at the start of each test point. | Bar. Press. "Hg 29.8       |
| Date 9-1-71       | Coon sees permen                                 | Assumed Moisture % 2       |
| Operator Blessing |                                                  | Heater Box Setting, °F 170 |
| Sample Box No. 4  |                                                  | Probe Tip Dia., In5        |
| Meter Box No. H   | ,                                                | Probe Length 6             |
|                   |                                                  | Probe Heater Setting 60    |

|                   | Clock | Dry Gas   | Pitot<br>in. H <sub>2</sub> O | Orifice<br>in H                       | 20                                           | Dry Gas         | <u> </u> | Pump<br>Vacuum<br>In. Hg | Box<br>Temp. | Impinger<br>Temp | Stack<br>Press | Stack<br>Temp |
|-------------------|-------|-----------|-------------------------------|---------------------------------------|----------------------------------------------|-----------------|----------|--------------------------|--------------|------------------|----------------|---------------|
| Point             | Time  | Meter, CF | ΔΡ                            | Desired                               | Actual                                       | Inlet           | Outlet   | Gauge                    | °F           | °F               | in. Hg         | °F            |
| 6 <b>'</b>        | 14:30 | 48.04     |                               |                                       | 4.0                                          | 96              | 96       | 19,0                     | 170          | 85               | 29.8           | 170           |
|                   | 14:40 |           |                               |                                       | 11                                           | 118             | 100      | 17.0                     | 11           | 95               | 11             | 170           |
|                   | 14.50 |           |                               |                                       | 11                                           | 137             | 106      | 16.5                     | 11           | . 85             | 11             | 160           |
|                   | 15.00 | <u> </u>  | <u> </u>                      |                                       |                                              | 142             | 112      | 16.5                     | 11           | 80               | 11             | 160           |
|                   | 15:10 |           | <u> </u>                      | ·                                     | <u>                                     </u> | 142             | 112      | 16.5                     | 11           | 75               | 11             | 170           |
|                   | 15.20 | <u> </u>  |                               |                                       | 11                                           | 144             | 116      | 16.5                     | 11           | 70               | 11             | 180           |
|                   | 15.30 |           | <u> </u>                      |                                       | 11                                           | 146             | 118      | 16.0                     | 11           | 65               | 11             | 180           |
| 1 IIR             | 15:40 |           | J                             |                                       | 11                                           | 148             | 120      | 16.0                     | 11           | 65               | 11             | 180           |
| 1 1110            | 15.50 | <u> </u>  |                               | · · · · · · · · · · · · · · · · · · · | 4.5                                          | 146             | 120      | 19.5                     | 11           | 65               | 11             | 180           |
|                   | 16.00 |           | <u> </u>                      |                                       | 111                                          | 147             | 122      | 19.5                     | 11           | 65               | 11             | 175           |
|                   | 16:10 | <u> </u>  | ļ                             |                                       | 11                                           | 146             | 122      | 19.5                     | 11           | 65               | 11             | 190           |
|                   | 16:20 | <u> </u>  |                               |                                       | 11                                           | 147             | 122      | 19.5                     | 11           | 70               | 11             | 200           |
| 2 HRS             | 16:30 | <u> </u>  | <u> </u>                      |                                       | 11                                           | 146             | 122      | 19.5                     | 111          | 70               | 11             | 185           |
|                   | 16:40 | <u> </u>  | <u> </u>                      |                                       | 11                                           | 146             | 122      | 19.5                     | 11           | 70               | 11             | 185           |
|                   | 16:50 | <u> </u>  | <u> </u>                      |                                       | 11                                           | 146             | 123      | 19.5                     | 11           | 70               | 11             | 185           |
|                   | 17:00 | <u> </u>  |                               |                                       | 111                                          | 146             | 123      | 19.5                     | 11           | 70               | 11             | 180           |
|                   | 17:10 | -         |                               |                                       | 11                                           | 150             | 126      | 19.5                     | **           | 70               | 11             | 180           |
| omments:          | 17:20 | _         |                               |                                       | 11                                           | <del>1</del> 52 | 125      | 19.5                     | 11           | 70               | 11             | 180           |
| 3 HRS<br>CAP-37 ( | 17:30 | 264.30    |                               |                                       | ff                                           | 155             | 125      | 19.5                     | ff .         | 76               | 11             | 180           |

| Run No. 1        | VERY IMPORTANT - FILL IN ALL BLANKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • | Ambient Temp °F 86     |       |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------|-------|
| Location ABD-1   | Read and record at the start of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , | Bar. Press. "Hg 29.8   |       |
| Date             | each test point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | Assumed Moisture % 4.1 |       |
| Operator Baxley  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | Heater Box Setting, °F | 250   |
| Sample Box No. 3 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | Probe Tip Dia., In.    | 3/16" |
| Meter Box No. 3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | Probe Length           | 114   |
|                  | , in the second |   | Probe Heater Setting   | 65    |

| A<br>Point  | Člock<br>Time | Dry Gas<br>Meter, CF | Pitot<br>in. H <sub>2</sub> O<br>ΔP | Orifice<br>in H<br>Desired |      | Dry Gas |     | Pump<br>Vacuum<br>In. Hg<br>Gauge | Box<br>Temp. | Impinger<br>Temp<br>°F | Stack<br>Press<br>in. Hg | Stack<br>Temp |
|-------------|---------------|----------------------|-------------------------------------|----------------------------|------|---------|-----|-----------------------------------|--------------|------------------------|--------------------------|---------------|
| <del></del> | 17:17         | 766.83               | 80                                  | 80                         | . 80 | 86      | 86  | 5                                 | 250          | 65                     | 29.8                     | 330           |
| 5           | 17:22         | 770.04               | 1.00                                | 96                         | 96   | 86      | 86  | 5                                 | 250          | 65                     |                          | 316           |
| A 4         | 17:27         | 773.10               | 1.00                                | 96                         | 96   | 88      | 84  | 11                                | 250          | 65                     |                          | 310           |
| 3           | 17:32         | 776.27               | 1.00                                | 96                         | 96   | 88      | 84  | 24                                | 250          | 70                     |                          | 315           |
| * 2         | 17:37         | 778.49               | .98                                 | .95                        | .95  | 88      | 84  | 5                                 | 250          | 70                     |                          | 300           |
| 1           | 17:42         | 780.55               | .80                                 | .76                        | .76  | 96      | 86  | 5                                 | 250          | 70                     |                          | 320           |
| 1           | 17:47         | 783.50               | -90                                 | 88                         | .88  | 100     | 88  | 20                                | 250          | 70                     |                          | 355           |
| <b>*</b> 2  | 17:52         | 786 60               | 1 02                                | 1 15                       | 1 15 | 100     | 88  | 10                                | 250          | 70                     |                          | 310           |
| 3           | 17.57         | 789 37               | 90                                  | 92                         | .92  | 100     | 88  | 17                                | 250          | 70                     |                          | 315           |
| 4           | 18:02         | 792.07               | 1.00                                | .96                        | .96  | 102     | 100 | 25                                | 250          | 70                     |                          | 335           |
| 5           | 18:07         | 794.68               | 95                                  | 90                         | 90   | 102     | 93  | 10                                | 250          | 75                     |                          | 355           |
| * 1         | 18:12         | 797.25               | 85                                  | . 82                       | .82  | 102     | 93  | 15                                | 250          | 75                     |                          | 325           |
| 2           | 18:17         | 799.82               | 92                                  | 88                         | .88  | 100     | 92  | 5                                 | 250          | 75                     |                          | 330           |
| C 3         | 18:22         | 802.53               | 95                                  | .92                        | .92  | 100     | 92  | 15                                | 250          | 75                     |                          | 335           |
| * 4         | 18:27         | 805.30               | 95                                  | 92                         | 92   | 100     | 92  | 20                                | 250          | 75                     |                          | 330           |

Comments: \* Filter changed

NCAP-37 (12/67)

D-10

ADB-1 Run #1 Page 2 of 2 pages

|               | Clock        | Dry Gas                                          | Pitot<br>in. H <sub>2</sub> 0 | Orifice<br>in H | ,0          | Dry Gas      | Temp.        | Pump<br>Vacuum<br>In. Hg | Box<br>Temp. | Impinger<br>Temp | Stack<br>Press | Stack<br>Tcmp<br>°F |
|---------------|--------------|--------------------------------------------------|-------------------------------|-----------------|-------------|--------------|--------------|--------------------------|--------------|------------------|----------------|---------------------|
| Point         | Time         | Meter, CF                                        | ΔΡ                            | Desired         | Actual      | Inlet        | Outlet       | Gauge                    | °F           | °F               | in. Hg         | °F'                 |
| * 5           | 18:32        | 808.46                                           | .85                           | , 82            | .82         | 100          | 92           | 15                       | 250          | 75               |                | 330                 |
| 1             | 18:37        | 810.88                                           | .55                           | .56             | .56         | 100          | 92           | 10                       | 250          | 75               |                | 350                 |
| 2             | 18:42        | 812.80                                           | 95                            | . 92            | 92          | 100          | 92           | 13                       | 250          | 70               |                | 350                 |
| <u>D 3</u>    | 18:47        | 815:40                                           | 85                            | 80              | 80          | 100          | 92           | 12                       | 250          | 70               | ļ              | 360                 |
|               | 18:52        | 817.88                                           |                               | 80              | 80          | 100          | 90           | 15                       | 250          | 70               |                | 340                 |
| 5             | 18:57        | 819.58                                           | - 80                          | 78              | 78          | 100          | -90          | _15                      | 250          | 70               | <del> </del>   | 350                 |
|               | -            |                                                  |                               |                 |             |              |              |                          |              |                  | <del> </del>   |                     |
|               |              |                                                  |                               |                 |             |              |              |                          |              |                  |                |                     |
|               |              |                                                  |                               | <del></del>     |             |              |              |                          |              |                  |                | ļ                   |
|               |              | <del> </del>                                     |                               |                 |             |              | ļ            | ļ                        | <del> </del> |                  | <del> </del>   | <b> </b>            |
|               |              | <del> </del>                                     |                               | <u> </u>        |             | <del> </del> |              |                          | <del> </del> |                  | <del> </del>   |                     |
|               |              |                                                  | <del> </del>                  | <del></del>     |             |              |              |                          |              |                  | <del> </del>   | ·                   |
|               |              |                                                  |                               |                 |             |              |              |                          |              |                  |                |                     |
| <u></u>       |              |                                                  |                               |                 |             |              |              |                          |              |                  |                |                     |
|               | ļ            | <del> </del>                                     | <del> </del>                  |                 |             | <b> </b>     | ļ            |                          |              |                  |                |                     |
|               |              |                                                  |                               |                 |             | ļ            |              |                          |              |                  | ļ              |                     |
|               |              |                                                  |                               |                 |             |              |              |                          |              | <u> </u>         |                |                     |
| - <del></del> | <del> </del> | <del> </del>                                     |                               |                 |             |              |              |                          | <del> </del> |                  | <del> </del>   |                     |
| <del></del>   | <del> </del> |                                                  | <del> </del>                  |                 |             |              | <del> </del> | <del></del>              | <b>†</b>     | -                |                | <u> </u>            |
|               |              |                                                  |                               |                 |             |              |              |                          |              |                  |                |                     |
|               |              |                                                  |                               |                 |             |              |              |                          |              |                  |                |                     |
|               |              |                                                  |                               |                 |             |              |              |                          |              |                  |                |                     |
|               |              | <u> </u>                                         | ļ                             |                 |             |              |              | ļ                        |              |                  |                | ļ                   |
|               | -            | <del> </del>                                     | -                             |                 |             |              | <u> </u>     |                          | <b> </b>     |                  | 1              | <b> </b>            |
|               | <del> </del> | <del> </del>                                     | <del> </del>                  |                 |             | <del> </del> | ļ            | <del> </del> -           |              |                  | <del> </del>   | <del> </del> -      |
|               |              |                                                  | <del> </del>                  |                 |             |              | <del> </del> |                          | <del> </del> |                  | l              | <b> </b> -          |
|               | <del> </del> | <del>                                     </del> | <del> </del>                  |                 |             |              |              | <del> </del>             |              |                  | <del> </del>   |                     |
|               | <del> </del> | <del> </del>                                     |                               |                 | <del></del> |              |              |                          | <del> </del> |                  |                | · · · · · · · · ·   |
|               |              |                                                  |                               |                 |             |              |              |                          |              |                  |                |                     |

>mments: \* Filter Change

CAP-37 (12/67)

| Run No. ABD-2                  | VERY IMPORTANT - FILL IN ALL BLANKS              | •          | Ambient Temp °F 90        |             |
|--------------------------------|--------------------------------------------------|------------|---------------------------|-------------|
| Location <u>AIR CO NIAGARA</u> | Read and record at the start of each test point. | <i>7</i> , | Bar. Press. "Hg 29.8      |             |
| Date 9-1-71                    |                                                  |            | Assumed Moisture % 4.1    | <del></del> |
| Operator Baxley                | <del>_</del>                                     |            | Heater Box Setting, °F 25 | 50          |
| Sample Box No3                 | · ·                                              |            | Probe Tip Dia., In.       | 3/16*       |
| Meter Box No3                  | <del></del>                                      |            | Probe Length              | 11'4"       |
|                                |                                                  |            | Probe Heater Setting      | 50          |

| Point       | - Clock<br>Time | Dry Gas<br>Meter, CF | Pitot<br>in. H <sub>2</sub> O | Orifice<br>in H<br>Desired |      | Dry Gas | s Temp.<br>F<br>Outlet                           | Pump<br>Vacuum<br>In. Hg<br>Gauge | Box<br>Temp.<br>°F | Impinger<br>Temp<br>°F | Stack<br>Press<br>in. Hg | Stack<br>Tcmp<br>°F |
|-------------|-----------------|----------------------|-------------------------------|----------------------------|------|---------|--------------------------------------------------|-----------------------------------|--------------------|------------------------|--------------------------|---------------------|
| <del></del> | 09:10           | 819.62               |                               |                            |      | İ       | <del>                                     </del> | 1                                 |                    |                        | 1                        |                     |
|             | 09:15           | 821.98               | 78                            |                            | .75  | 74      | 74                                               | 5                                 | 250                | 60                     | 29.8                     | 325                 |
|             | 109.20          | 824.62               | 95                            | 92                         | 92   | 80      | 74                                               | _ 5                               | 11                 | 60                     |                          | 300                 |
|             | 09.25           | 827 32               | 95                            | 92                         | 92   | 84      |                                                  | 5                                 | 11                 | 60                     | 1                        | 30.5                |
| 4           | 09:30           | 829.88               | 90                            | 87                         | 87   | - 86    | 74                                               | 5                                 | 11                 | 60                     |                          | 302                 |
| 5           | 09:35           | 832 41               | 82                            | 80                         | 80   | 90      | 74                                               | 6                                 | 11                 | - 60                   |                          | 325                 |
| 1_          | 09:40           | 834.93               | 82                            | -80                        | 80   | 92      | 76                                               | 6                                 | 11                 | 60                     |                          | 310                 |
| 2           | 09.45           | 837 65               | 1.01                          | 1.00                       | 7 00 | 94      | 80                                               | 18                                | 11                 | 60                     |                          | 365                 |
| R 3         | 09:50           | 840 39               | 1 01                          | 1.00                       | 1:00 | 94      | 80                                               | 24                                | 11                 | 60                     |                          | 365_                |
| 4           | 09 - 55         | 843.00               | 90                            | 87                         | 87   | 94      | 80                                               | 24                                | 11                 | 60                     |                          | 340                 |
| 5           | 10.00           | 8/5 /6               | 75                            | 74                         | 7.4  | 96      | 82                                               | 25                                | 11                 | 60                     |                          | 338                 |
| 1           | 10:05           | 847.35               | 90                            | 86                         | 86   | 96      | 90                                               | 24                                | 11                 | 60                     |                          | 310                 |
| * 2         | 10:10           | 850.35               | 90                            | . 86                       | . 86 | 96      | 90                                               | 25                                | 11                 | 60                     |                          | 310                 |
| 3           | 10:15           | 852.92               | 90                            | . 86                       | .86  | 90      | 88                                               | 20                                | 11                 | 60                     |                          | 325                 |
| C 4         | 10:20           | 855.62               | 1.00                          | 95                         | .95  | 90      | 88                                               | 17                                | 11                 | 60                     |                          | 340                 |

\*\* #3 imp. clogged at 10:30 \* Filter Change

:AP-37 (12/67)

Air Co Niagara Page 2 of 2 .

|             | Clock                                            | Dry Gas                                          | Pitot<br>in. H <sub>2</sub> O | Orifice<br>in H |              | Dry Ga       | s Temp.      | Pump<br>Vacuum<br>In. Hg | Box<br>Temp. | Impinger<br>Temp | Stack<br>Press | Stack<br>Temp |
|-------------|--------------------------------------------------|--------------------------------------------------|-------------------------------|-----------------|--------------|--------------|--------------|--------------------------|--------------|------------------|----------------|---------------|
| Point       | Time                                             | Meter, CF                                        | ΔP                            | Desired         | Actual       | Inlet        | Outlet       | Gauge                    | °F           | °F               | in. Hg         | °F            |
| 1           |                                                  |                                                  |                               |                 |              |              |              | -1                       | -            |                  |                |               |
| - F         | 10:25                                            | 858.37                                           | 1.00                          | .95             | .95          | 90           | 88           | 18                       | 11           | 65               |                | 330           |
| 1           | 10:30                                            | 860.74                                           | .62                           | .60             | .60          | 90           | 88           | 18                       | 11           | 65               |                | 330           |
| 2           | 10:35                                            | 863.30                                           | .95                           | .92             | .92          | 90           | 88           | 3                        | 11           | 65               |                | 308           |
| 3           | 10:40                                            | 866.10                                           | 1.00                          | 95              | .95          | 90           | 88           | 4                        | 11           | 65               |                | 318           |
| 4           | 10.45                                            | 868.57                                           | 85                            | 82              | 82           | 90           | 86           | 5                        | 11           | 65               |                | 315           |
| 5           | 10:50                                            | 870.97                                           | 85                            | 82              | 82           | 90           | 86           | 14                       | 11           | 65               |                | 315           |
|             |                                                  |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
|             |                                                  |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
|             |                                                  |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
|             |                                                  |                                                  |                               |                 | <del> </del> | <del> </del> |              |                          | <del> </del> |                  | <del> </del>   |               |
|             |                                                  |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
| <del></del> |                                                  |                                                  |                               |                 |              |              |              | <del> </del>             |              |                  | <u> </u>       |               |
|             |                                                  |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
|             |                                                  |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
| -           |                                                  |                                                  |                               |                 |              | <u> </u>     |              |                          |              |                  |                |               |
|             |                                                  |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
|             |                                                  | ļ                                                |                               |                 | <del> </del> | <del> </del> |              |                          | -            |                  | <del> </del>   |               |
|             |                                                  |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
|             |                                                  | <del> </del>                                     |                               |                 | -            | <del> </del> | <del> </del> |                          |              |                  | ļ              |               |
|             |                                                  |                                                  | <u> </u>                      |                 |              | <u> </u>     |              |                          |              |                  |                |               |
|             |                                                  |                                                  |                               |                 | <del> </del> | <del> </del> |              |                          |              |                  |                |               |
| <del></del> | <del>                                     </del> | <del>                                     </del> | 1                             |                 | 1            | <del> </del> | <del> </del> | <del></del>              |              |                  |                |               |

omments:

CAP-37' (12/67)

D-13

| Run No      | ABD-3 .               | VERY IMPORTANT - FILL IN ALL BLANKS | ٠  | Ambient Temp °F 90         |
|-------------|-----------------------|-------------------------------------|----|----------------------------|
| Location _  | AIRCO - Niagara Falls | Read and record at the start of     | i, | Bar. Press. "Hg 29.8       |
| bate        | 9-1-71                | each test point.                    |    | Assumed Moisture % 4.1     |
| Operator _  | Baxley                |                                     |    | Heater Box Setting, °F 250 |
| Sample Box  | No. <u>3</u>          |                                     |    | Probe Tip Dia., In. 3/16"  |
| Meter Box I | No3                   |                                     |    | Probe Length 11'4"         |
|             |                       |                                     |    | Probe Heater Setting 60    |

|       | Clock | Dry Gas   | Pitot<br>in. H <sub>2</sub> O | Orifice<br>in H |        | Dry Ga |        | Pump<br>Vacuum<br>In. Hg | Box<br>Temp. | Impinger<br>Temp | Stack<br>Press | Stack<br>Temp |
|-------|-------|-----------|-------------------------------|-----------------|--------|--------|--------|--------------------------|--------------|------------------|----------------|---------------|
| Point | Time  | Meter, CF | ΔΡ                            | Desired         | Actual | Inlet  | Outlet | Gauge                    | °F           | °F               | in. Hg         | °F            |
|       | 14.40 | 870.98    |                               |                 |        |        |        |                          |              |                  |                |               |
| 1     | 14:45 | 873.53    |                               | .86             | 86     | 86     | 86     | 5                        | 250          | 60               | 29.8           | 335           |
| A 2   | 14.50 | 876.19    | .90<br>.95<br>.90             | .92             | 92     | 88     | 86     | 6                        | 11           | 60               | L              | 350           |
| 3     | 14:55 | 878.75    | 90                            | . 86            | 86     | 94     | 86     | 11                       | 111          | 60               |                | 355           |
| 4     | 15.00 | 881.35    | .98                           | 95              | 95     | 100    | 90     | 15                       | 11           | 11               |                | 360           |
| 5     | 15.05 | 883.80    | .80                           |                 | 76     | 102    | 92     | 18                       | 11           | 11               |                | 325           |
| 1     | 15.10 | 886.56    | 1.10                          | 1.05            | 1.05   | 104    | 92     | 25                       | 11           | 11               |                | 355           |
| 2     | 15.15 | 889.00    | 1.10                          | 1.05.           | 1.05   | 102    | 96     | 18                       | 11           | 11               |                | 335           |
| в.3   | 15.20 | 891.81    | .95                           | .92             | .92    | 100    | 94     | 17                       | 11           | 11               |                | 330           |
| 4     | 15.25 | 894.20    | 1.00                          | .94             | .94    | 108    | 98     | 20                       | 11           | 11               |                | 355           |
| 5     | 15:30 | 896.89    | .95                           | .92             | .92    | 110    | 100    | 6                        | 11           | - 11             |                | 355           |
|       | 15.35 | 899.40    | .85                           | 84              | . 84   | 110    | 100    | 6                        | 11           | 11               |                | 270           |
| á     | 15:40 | 902.20    | 1.10                          | 1.05            | 1.05   | 112    | 102    | 8                        | 11           |                  |                | 330           |
|       | 15:45 | 905.03    | 1.10                          | 1.05            | 1.05   | 112    | 102    | 10                       | 11           |                  |                | 330           |
| 4     | 15:50 | 907.71    | 1.00                          | .94 —           | 94     | 110    | 100    | 15                       | 11           | 65<br>65         |                | 360           |
| 5     | 15:55 | 910.00    | 1.00                          | 88-             | .88    | 110    | 100    | 2                        | 11           | 65               | 1              | 328           |

mme ts:

:AP-37 (12/67)

Air Co, Niagara Fallspage 2 of 2

|             | Clock        | Dry Gas                                          | Pitot<br>in. H <sub>2</sub> 0 | Orifice<br>in H |              | Dry Gas      | Temp.        | Pump<br>Vacuum<br>In. Hg | Box<br>Temp. | Impinger<br>Temp | Stack<br>Press | Stack<br>Temp |
|-------------|--------------|--------------------------------------------------|-------------------------------|-----------------|--------------|--------------|--------------|--------------------------|--------------|------------------|----------------|---------------|
| Point       | Time         | Meter, CF                                        | ΔΡ                            | Desired '       | Actual       | Inlet        | Outlet       | Gauge                    | °F           | Temp<br>°F       | in. Hg         | Tcmp<br>°F    |
| 1           | 16:00        | 912.38                                           | .70_                          | .64             | .64          | 110          | 100          | 2                        | 250          | 65               |                | 305           |
| 2           | 16:05        | 915.14                                           | 1.10                          | .98             | .98          | 110          | 100          | 3                        | <b>"</b>     | 65               |                | 310           |
| D3          | 16:10        | 917.84                                           | 1.05                          | .95             | .95          | 110          | 102          | 4                        | 11           | 65               |                | 325           |
|             | 16:15        | 920.40                                           | 95                            | . 86            | .86          | 110          | 102          | 9                        | 11           | 65               |                | 365           |
| 5           | 16+20        | 922,99                                           | -80                           | .74             | 74           | 110          | 102          | 12                       | f1           | 65               |                | 345           |
|             |              |                                                  |                               |                 |              |              |              | <u> </u>                 |              |                  |                |               |
|             |              |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
|             |              |                                                  |                               |                 |              |              |              |                          | <del></del>  |                  |                |               |
|             |              |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
|             |              |                                                  |                               |                 |              |              |              |                          |              | ·                |                |               |
| <del></del> | 1            |                                                  |                               |                 |              | 1            |              | ]                        |              |                  |                |               |
|             |              |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
|             |              |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
|             |              |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
|             |              |                                                  |                               |                 |              | ļ            |              |                          |              |                  |                |               |
|             |              |                                                  |                               |                 |              |              |              |                          |              |                  |                |               |
|             | <del> </del> | <u> </u>                                         | ļ                             | <u> </u>        |              | ļ            |              |                          |              |                  | ļ              |               |
|             |              | ļ                                                |                               |                 |              | <b> </b>     | <del> </del> |                          | ļ            |                  |                | ļ             |
|             | <del> </del> | <del> </del>                                     | <del> </del>                  |                 | <del> </del> | <del> </del> | <del> </del> | <del> </del> -           |              |                  | <del> </del>   |               |
|             |              |                                                  |                               |                 |              | <del></del>  | <del> </del> |                          |              |                  |                | <del></del>   |
|             | <del> </del> | <del> </del>                                     |                               |                 | <del></del>  | <del> </del> | <del></del>  | <del> </del>             | <del> </del> |                  |                | <del> </del>  |
|             | <del> </del> | <del>                                     </del> |                               |                 | <del> </del> |              | <del> </del> |                          |              |                  |                |               |

omments:

CAP-37 (12/67)

D-15

| Run No. Metals/Part. | VERY IMPORTANT - FILL IN ALL BLANKS              | • | Ambient Temp °F 80          |
|----------------------|--------------------------------------------------|---|-----------------------------|
| Location ANE - 4M    | Read and record at the start of each test point. | ; | Bar. Press. "Hg <u>29.8</u> |
| Date9-2-71           | each test point.                                 |   | Assumed Moisture % 2        |
| Operator McReynolds  | ,                                                | ! | Heater Box Setting, °F 170  |
| Sample Box No. 2     |                                                  |   | Probe Tip Dia., In          |
| Meter Box No. 2      |                                                  | 1 | Probe Length 5              |
|                      |                                                  | i | Probe Heater Setting60      |

| Point    | Clock<br>Time | Dry Gas<br>Meter, CF | Pitot<br>in. H <sub>2</sub> O<br>ΔP | Orifice<br>in H<br>Desired |     | Dry Gas | Temp. | Pump<br>Vacuum<br>In. Hg<br>Gauge | Box<br>Temp. | Impinger<br>Temp<br>°F | Stack<br>Press<br>in. Hg | Sta <b>ck</b><br>Temp<br>°F |
|----------|---------------|----------------------|-------------------------------------|----------------------------|-----|---------|-------|-----------------------------------|--------------|------------------------|--------------------------|-----------------------------|
| 4        | 10:12         | 311-04               |                                     |                            | 3.3 | 82      | 78    | 19.5                              | 170          | - 60                   | 29.8                     | 170                         |
|          | 10:27         | _                    |                                     |                            | 3.3 | 100     | 80    | 19 5                              | 11           | 75                     | 11                       | 11                          |
|          | 10:42         | _                    |                                     |                            | 3.3 | 106     | 86    | 19.5                              | 11           | 75                     | 11                       | 11                          |
|          | 10:57         |                      |                                     |                            | 3.3 | 108     | 88    | 19.5                              | 11           | 80                     | 11                       | 11                          |
| 1        | 11:12         |                      |                                     |                            | 3.3 | 105     | 88    | 19.5                              | 11           | 70                     | 11                       | 11                          |
|          | 11:27         |                      |                                     |                            | 3.3 | 108     | 90    | 19.2                              | 11           | 70                     | 11                       | 11                          |
|          | 11:42         |                      |                                     |                            | 3.3 | 108     | 92    | 19.5                              | 11           | 70                     | 11                       | 11                          |
|          | 11:57         |                      |                                     |                            | 3.3 | 108     | 92    | 19.3                              | 11           | 70                     | 11                       | 11                          |
| 2        | 12:12         |                      |                                     |                            | 3.3 | l io3   | 90    | 19.3                              | 11           | 70                     | 11                       | 11                          |
|          | 12:27         | _                    |                                     |                            | 3.3 | 102     | 90    | 19.3                              | 11           | 70                     | 11                       | 11                          |
| -        | 12:42         |                      | <u> </u>                            |                            | 3.3 | 102     | 90    | 19.3                              | **           | 70                     | 11                       | 11                          |
|          | 12:57         |                      |                                     |                            | 3.3 | 102     | 90    | 19.3                              | 11           | 70                     | 11                       | 11                          |
| 3        | 13:12         |                      |                                     |                            | 3.3 | 102     | 90    | 19.3                              | 11           | 65                     | 11                       | 11                          |
|          | 13:27         |                      |                                     |                            | 3.3 | 108     | 90    | 19.3                              | - 11         | 65                     | 11                       | 11                          |
|          | 13:42         |                      | <u> </u>                            | <u></u>                    | 3.3 | 106     | 90    | 19.3                              | - 11         | 65                     | 11                       | 11                          |
|          | 13:57         | T                    | <u> </u>                            | <u> </u>                   | 3.3 | 106     | 92    | 19.3                              | 11           | 65                     | 11                       | 11                          |
| omments: | 14:12         | 550.50               |                                     |                            | 3.3 | 102     | 90    | 19.3                              | 170          | 70                     | ***                      | 11                          |

Comments: 14:12

NCAP-37 (12/67)

| Run No. ACE 4M         | VERY IMPORTANT - FILL IN ALL BLANKS              |   | Ambient Temp °F 80        | · |
|------------------------|--------------------------------------------------|---|---------------------------|---|
| Location Center Chaust | Read and record at the start of each test point. | Ţ | Bar. Press. "Hg 29 8      |   |
| Date9-2-71             | cuen cese poine.                                 |   | Assumed Moisture % 2      |   |
| Operator Blessing      |                                                  |   | Heater Box Setting, °F 17 | 0 |
| Sample Box No. 4       |                                                  |   | Probe Tip Dia., In.       |   |
| Meter Box No. 4        |                                                  |   | Probe Length              | 5 |
| •                      |                                                  |   | Probe Heater Setting 70   |   |

| Point | Clock<br>Time | Dry Gas<br>Meter, CF | Pitot<br>in. H <sub>2</sub> O | Orifice<br>in H |       | Dry Gas    |     | Pump<br>Vacuum<br>In. Hg<br>Gauge | Box<br>Temp. | Impinger<br>Temp<br>°F | Stack<br>Press<br>in. Hg | Stack<br>Temp |
|-------|---------------|----------------------|-------------------------------|-----------------|-------|------------|-----|-----------------------------------|--------------|------------------------|--------------------------|---------------|
|       | 10:10         | 403-42               | <del> </del>                  |                 | 1 , , | 00         | 00  | 20.5                              | 170          | 65                     | 29.8                     | 175           |
|       | 10:25         |                      | <del></del>                   |                 | 4.4   | 90         | 80  | 20.5                              | 11/11        | 70                     | 11                       | 11            |
|       | 10:40         | <u> </u>             |                               |                 | 4.4   | 107<br>120 | 89  | 20.5                              | 1,           | 70                     | 11                       | 11            |
|       | 10:55         | _                    | 1                             |                 | 4.4   | 125        | 94  | 20.5                              | 1,,          | 70                     | 11                       | 11            |
|       | 11:10         | -                    |                               |                 | 4.4   | 128        | 98  | 20.5                              | 11           | 70                     | 11                       | 11            |
|       | 11:25         |                      |                               |                 | 4.5   | 133        | 102 | 11                                | 11           | 65.                    | 11                       | 11            |
|       | 11:40         | _                    |                               |                 | 4.5   | 137        | 103 | 20.5                              | 11           | 65                     | 11                       | 11            |
|       | 11:55         | -                    |                               |                 | 11    | 128        | 102 |                                   | 11           | 65                     | 11                       | 11            |
|       | 12:10         | _                    |                               |                 | 11    | 123        | 101 | 20.5                              | 11           | 65                     | *1                       | 11            |
|       | 12:25         | _                    |                               |                 | 11    | 122        | 99  | 20.5                              | 11           | 65                     | 11                       | 11_           |
|       | 12:40         | _                    |                               |                 | 4.5   | 121        | 98  | 20.5                              | 11           | 70                     | 11                       | 11            |
|       | 12:55         |                      |                               |                 | 4.4   | 125        | 98  | 20.5                              | 11           | 70                     | 11                       | 11            |
|       | 13:10         | _                    |                               |                 | 4.4   | 122        | 98  | 20.5                              | 11           | 60                     | 11                       | 11            |
|       | 13:25         | _                    |                               |                 | 4.4   | 124        | 98  | 20.5                              | 11           | 60                     | 11                       | 11            |
|       | 13:40         | _                    |                               | ]               | 4.4   | 120        | 100 | 20.5                              | 11           | 65                     | 11                       | 11            |
|       | 13:55         |                      | 1                             | <u> </u>        | 4.4   | 120        | 100 | 20.5                              | 11           | 65                     | 11                       | 11            |

14:10 Comments:

671.49

NCAP-37'(12/67)

D-17

| Run No.ASE 4M        | VERY IMPORTANT - FILL IN ALL BLANKS              | Ambient Temp °F 80         |
|----------------------|--------------------------------------------------|----------------------------|
| Locationouth Bag Exh | Read and record at the start of each test point. | Bar. Press. "Hg 29.8       |
| Date 9-2-71          | cuen cest point.                                 | Assumed Moisture % 2       |
| Operator Blessing    | ·                                                | Heater Box Setting, °F 170 |
| Sample Box No. 4     |                                                  | Probe Tip Dia., In         |
| Meter Box No. H      |                                                  | Probe Length 5             |
|                      |                                                  | Probe Heater Setting       |

| Point | Clock<br>Time | Dry Gas<br>Meter, CF | Pitot<br>in. H <sub>2</sub> 0 | Orifice<br>in H<br>Desired |      | Dry Ga | s Temp.<br>F<br>  Outlet | Pump<br>Vacuum<br>In. Hg<br>Gauge | Box<br>Temp. | Impinger<br>Temp | Stack<br>Press<br>in. Hg | Stack<br>Tcmp |
|-------|---------------|----------------------|-------------------------------|----------------------------|------|--------|--------------------------|-----------------------------------|--------------|------------------|--------------------------|---------------|
| 4 in  | 10:10         | 264.35               |                               |                            | 4.5  | 76     | 77                       | 20.0                              | 170          | 80               | 29.8                     | 170           |
| 7 44  | 10:25         | -                    | <del> </del>                  | f                          | 4.5  | 106    | 82                       | 20.0                              | 1.11         | 80               | 11                       | 155           |
|       | 10:40         |                      |                               |                            | 4.5  | 116    | 89                       | 20.0                              | 11           | 80               | 11                       | 155           |
|       | 10:55         | -                    |                               |                            | 4.5  | 120    | 94                       | 20.0                              | 11           | 75               | 11                       | 155           |
|       | 11:10         | _                    | 1                             |                            | 4.5  | 121    | 96                       | 20.0                              | 11           | 70               | 11                       | 130           |
|       | 11:25         | _                    |                               |                            | 4.6  | 122    | 98                       | 19.0                              | 11           | 65               | 11                       | 170           |
|       | 11:40         | _                    |                               |                            | 4.6  | 126    | 100                      | 19.0                              | 11           | 65               | 11                       | 165           |
|       | 11:55         | _                    |                               |                            | 4.6  | 127    | 101                      | 19.0                              | 11           | 65               | 11                       | 165           |
|       | 12:10         | <b>_</b>             |                               |                            | 4.6  | 127    | 101                      | 19.0                              | 11           | 65               | 11                       | 165           |
|       | 12:25         | -                    |                               |                            | 4.6  | 129    | 102                      | 19.0                              | 11           | 65               | 11                       | 150           |
|       | 12:45         | _                    |                               |                            | 4.6  | 126    | 101                      | 19.0                              | 11           | 65               | 11                       | 170           |
|       | 12:55         | _                    |                               |                            | 4.6  | 125    | 101                      | 19.0                              | 11           | 70               | 11                       | 170           |
|       | 13:10         |                      | <u></u>                       |                            | 4.6  | 128    | 100                      | 19.0                              | 11           | 60               | 11                       | 170           |
|       | 13:25         |                      | 1                             |                            | 4.6  | 126    | 100                      | 19.0                              | 11           | 60               | 11                       | 160           |
|       | 13:40         |                      | <u> </u>                      |                            | 4.6  | 127    | 98                       | 19.0                              | 11           | 60               | 11                       | 165           |
|       | 13:55         | <u> </u>             | 1                             | <u> </u>                   | 14.6 | 126    | 101                      | 19.0                              | 11           | 65               | 11                       | 180           |
|       | 14:10         | 558.32               |                               |                            | 4.6  | 127    | 100                      | 19.0                              | 11           | 65               | 11                       | 175           |

Comments:

NCAP-37 (12/67)

| Run No. 1-2-3                  | VERY IMPORTANT - FILL IN ALL BLANKS              | Ambient Temp °F 90       |
|--------------------------------|--------------------------------------------------|--------------------------|
| Location INLET ABD Metals 45-6 | Read and record at the start of each test point. | , Bar. Press. "Hg 29.8   |
| Date                           | · · · · · · · · · · · · · · · · · · ·            | Assumed Moisture %       |
| Operator Baxley                |                                                  | Heater Box Setting, °F   |
| Sample Box No. 3               |                                                  | Probe Tip Dia., In       |
| Meter Box No. 3                |                                                  | Probe Length5'           |
|                                |                                                  | Probe Heater Setting 65' |

| Point        | Clock<br>Time                         | Dry Gas<br>Meter, CF | Pitot<br>in. H <sub>2</sub> O<br>ΔP | Orifice<br>in H <sub>2</sub><br>Desired |              | Dry Gas<br>°F<br>Inlet |              | Pump<br>Vacuum<br>In. Hg<br>Gauge | Box<br>Temp.<br>°F | Impinger<br>Temp<br>°F | Stack<br>Press<br>in. Hg | Sta <b>ck</b><br>Tcmp<br>°F |
|--------------|---------------------------------------|----------------------|-------------------------------------|-----------------------------------------|--------------|------------------------|--------------|-----------------------------------|--------------------|------------------------|--------------------------|-----------------------------|
| - <u>B-1</u> | 09:15                                 | 922.90               | 1.30                                |                                         |              | 70                     | 70           | 2                                 | 250                | 60                     |                          | 320                         |
|              | 09:30                                 | 935.72               | 1.30                                |                                         |              | 86                     | 86           | 22                                | -                  |                        |                          |                             |
| B-2          | 09:35                                 | 935.72               | 1.30                                |                                         |              | 84                     | 78           | 2                                 |                    |                        |                          |                             |
|              | 09:41                                 | 939.65               | 1.00                                |                                         |              | 86                     | 80           | 22                                |                    |                        |                          |                             |
| R-3          | 09:50                                 | 939.65               | 1.30                                |                                         |              | 76                     | 76           | 2                                 |                    |                        |                          |                             |
|              | 09.57                                 | 946.17               | 1.30                                | <del> </del>                            |              | 88                     | 80           | 22                                | ļ                  |                        |                          |                             |
|              |                                       |                      |                                     |                                         |              |                        |              | l                                 |                    |                        |                          |                             |
|              | · · · · · · · · · · · · · · · · · · · |                      |                                     |                                         |              |                        |              |                                   |                    |                        |                          |                             |
| ļ            |                                       | <u> </u>             | <del> </del>                        |                                         | <del> </del> |                        | <del> </del> | <del> </del> -                    | <del> </del>       |                        | <del> </del>             |                             |
|              |                                       |                      | <b></b>                             |                                         |              |                        |              |                                   |                    |                        |                          |                             |
|              |                                       |                      | <del> </del>                        | <u> </u>                                |              |                        |              |                                   |                    |                        |                          |                             |

Comments:

NCAP-37 (12/67)

#### PARTICULATE CLEANUP SHEET

| Date 8-31-71                                      |             | Plant: AIRCO                                                 |              |                                       |             |  |  |  |  |  |
|---------------------------------------------------|-------------|--------------------------------------------------------------|--------------|---------------------------------------|-------------|--|--|--|--|--|
| Run number: ANE-1 ACE-1 ASE-1                     |             | Location of sample port: <u>EXHAUST</u> Barometric pressure: |              |                                       |             |  |  |  |  |  |
| Operator: Blessing, Eggleston                     |             |                                                              |              |                                       |             |  |  |  |  |  |
| Sample box number: 1                              |             |                                                              |              |                                       |             |  |  |  |  |  |
| Impinger H <sub>2</sub> 0 195/195/203             |             |                                                              | <del> </del> |                                       |             |  |  |  |  |  |
| Volume after samplingml                           | Container   | No.                                                          | Ether-ch     | loroform extraction                   |             |  |  |  |  |  |
| Impinger prefilled with 200 ml                    |             |                                                              | of imn       | inger water                           | m           |  |  |  |  |  |
| Volume collected -5/-5 ml                         |             |                                                              |              | water residue                         | m           |  |  |  |  |  |
| Impingers and back half of                        | Container   | No                                                           |              |                                       |             |  |  |  |  |  |
| filter, acetone wash:                             | Extra No.   | <del></del>                                                  | Weight re    | esults                                | mo          |  |  |  |  |  |
| Dry probe and cyclone catch:                      | Container   | No                                                           |              |                                       |             |  |  |  |  |  |
|                                                   | Extra No.   | <del> </del>                                                 | Weight re    | results                               |             |  |  |  |  |  |
| Probe, cyclone, flask, and                        | Container   | No                                                           |              |                                       |             |  |  |  |  |  |
| <pre>front half of filter, acetone wash:</pre>    | Extra No.   |                                                              | Weight r     | esults                                | m           |  |  |  |  |  |
| Filter Papers and D<br>Filter number Container no | _           |                                                              |              | ·<br>•                                |             |  |  |  |  |  |
| 000085_ANE:-1                                     | 1           |                                                              |              |                                       |             |  |  |  |  |  |
| 000096_ACE=1                                      | . [         | <del></del>                                                  |              |                                       | -           |  |  |  |  |  |
| 000100 ASE-1                                      | .           |                                                              | woight       | weight                                | m           |  |  |  |  |  |
|                                                   | Total part  | Liculate                                                     | werght       |                                       | m           |  |  |  |  |  |
| Silica Gel                                        | ANE-1 ACE-1 | ASE-1                                                        |              |                                       |             |  |  |  |  |  |
| Weight after test: Weight before test:            | 172.3 196.  | 3 194 6                                                      |              |                                       |             |  |  |  |  |  |
| Moisture weight collected:                        | 1/2.5 190.  | 3 194.0                                                      |              | Moisture total                        |             |  |  |  |  |  |
| -                                                 | 2.          | 3.                                                           | 4.           | norscare cocar                        | 9           |  |  |  |  |  |
|                                                   |             |                                                              |              |                                       |             |  |  |  |  |  |
| Sample number:                                    |             |                                                              |              |                                       |             |  |  |  |  |  |
| Method determination:                             | ····        | · · · · · · · · · · · · · · · · · · ·                        |              |                                       |             |  |  |  |  |  |
| Comments:                                         | ·           |                                                              |              |                                       |             |  |  |  |  |  |
|                                                   |             |                                                              |              |                                       | <del></del> |  |  |  |  |  |
|                                                   |             |                                                              |              | · · · · · · · · · · · · · · · · · · · |             |  |  |  |  |  |

| Date: 9-1-71                                                                               | Plant: <u>ATRCO</u>                                  |              |
|--------------------------------------------------------------------------------------------|------------------------------------------------------|--------------|
| Run number: ANE-2 ACE-2 ASE-2                                                              | Location of sample port: EXHAUST                     |              |
| Operator: Blessing, McReynolds                                                             | Barometric pressure:                                 |              |
| Sample box number: 2                                                                       | Ambient temperature:                                 |              |
| Impinger H <sub>2</sub> 0 190/186/195                                                      |                                                      |              |
| Volume after sampling ml Contain                                                           | ner No. Ether-chloroform extraction                  |              |
| Impinger prefilled with 200 ml Extra N                                                     | ner No Ether-chloroform extraction of impinger water | _mg          |
| Volume collected -10/-14 ml -5                                                             | Impinger water residue                               | _mg          |
|                                                                                            | ner No                                               |              |
| filter, acetone wash: Extra N                                                              | No Weight results                                    | _mg          |
| Dry probe and cyclone catch: Contain                                                       | ner No                                               |              |
| Extra A                                                                                    | No Weight results                                    | _mg          |
| Probe, cyclone, flask, and front half of filter, acetone wash:  Contain Extra              | ner No<br>No Weight results                          | mg           |
| Filter Papers and Dry Filter Filter number Container no. Filte  0104 ANE-2   ACE-2   ACE-2 | er number Container no.                              |              |
| 2FN-M ASE-2                                                                                | weight                                               | mg           |
| Total r                                                                                    | particulate weight                                   | mg           |
| Weight after test:                                                                         | 2E-1 ANE-1<br>181.8 184.4                            |              |
| Moisture weight collected:                                                                 | Moisture total                                       | an           |
| -                                                                                          | 34                                                   | <del>.</del> |
|                                                                                            | Analyze for:                                         | <u> </u>     |
| Method determination:                                                                      |                                                      |              |
| Comments:                                                                                  |                                                      |              |
|                                                                                            |                                                      | <del></del>  |
|                                                                                            |                                                      |              |

| Date: 9/1/71                                                        | Plant: AIRCO                            |
|---------------------------------------------------------------------|-----------------------------------------|
| Run numberANE-3 ACE-3 ASE-3                                         | Location of sample port: <u>EXHAUST</u> |
| Operator: Blessing, McReynolds                                      | Barometric pressure:                    |
| Sample box number: 5                                                | Ambient temperature:                    |
| Impinger H <sub>2</sub> 0 187/180/181                               |                                         |
| Volume after samplingml Container                                   | No. Ether-chloroform extraction         |
| Impinger prefilled with 200 ml Extra No.                            | of impinger water me                    |
| Volume collected -13/-20 ml-19                                      | Impinger water residuemg                |
| Impingers and back half of Container                                | No                                      |
| filton acotono wach.                                                | Weight results mo                       |
| Dry probe and cyclone catch: Container                              | No                                      |
| Extra No.                                                           | Weight resultsmg                        |
| front half of filton                                                | NoWeight resultsmg                      |
| Filter Papers and Dry Filter Pa Filter number Container no. Filter  | number Container no.                    |
| Weight after test:  Weight before test:  Moisture weight collected: | -3 ASE-3 -7 175.6                       |
| Sample number:                                                      | Analyze for:                            |
| Method determination:                                               |                                         |
|                                                                     |                                         |
|                                                                     |                                         |

| Date: 8-31-71                                                                          |                        | Plant:      | AIRCO            |                                             |    |
|----------------------------------------------------------------------------------------|------------------------|-------------|------------------|---------------------------------------------|----|
| Run number: ABD-1                                                                      |                        | Locatio     | n of sample p    | ort: INLET DUCT                             |    |
| Operator: GONZALEZ                                                                     |                        | Baromet     | ric pressure:    |                                             |    |
| Sample box number:3                                                                    |                        |             |                  |                                             |    |
| Impinger H <sub>2</sub> 0                                                              | <del></del>            | <del></del> |                  |                                             |    |
| Volume after sampling 205 ml Impinger prefilled with 200 ml Volume collected 5 ml      |                        |             | of impir         | oroform extraction nger water water residue |    |
| Impingers and back half of filter, acetone wash:                                       | Container<br>Extra No. |             |                  | sults                                       | mg |
| Dry probe and cyclone catch:                                                           | Container<br>Extra No. |             |                  | sults                                       | mg |
| Probe, cyclone, flask, and front half of filter, acetone wash:                         | Container<br>Extra No. |             | •                | sults                                       | mg |
| Filter Papers and Dry Filter number Container no. 000087 000088 2FN-43A 2FN-27A 000086 | Filter n               | umber C     | ontainer no.<br> | Filter particulate<br>weight                | mg |
| Moisture weight collected:                                                             | 9.0                    | 3           | 4                | Moisture total                              | gm |
| Sample number:  Method determination:  Comments:                                       | <del></del>            |             |                  |                                             |    |
|                                                                                        |                        |             |                  |                                             |    |

| Date: 9-1-71                                                                                       |              | Plant:      | AIRCO                                  |                                                                                                               |             |  |  |
|----------------------------------------------------------------------------------------------------|--------------|-------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------|--|--|
| Run number: ABD-2                                                                                  |              | Location    | of sample                              | port: <u>INLET</u>                                                                                            |             |  |  |
| Operator: GONZALEZ                                                                                 |              |             |                                        |                                                                                                               |             |  |  |
| Sample box number: 4                                                                               |              |             |                                        | :                                                                                                             |             |  |  |
| Impinger H <sub>2</sub> 0                                                                          | <del></del>  |             | ************************************** |                                                                                                               | <del></del> |  |  |
| Volume after sampling 206 ml                                                                       | Container    | No          | Ether-ch1                              | oroform extraction                                                                                            |             |  |  |
| Impinger prefilled with 200 ml                                                                     | Extra No.    | ·           | · of impi                              | nger water                                                                                                    | <b>m</b> g  |  |  |
| Volume collected 6 ml                                                                              |              |             | Impinger                               | water residue                                                                                                 | mg          |  |  |
| Impingers and back half of                                                                         | Container    | No          |                                        |                                                                                                               |             |  |  |
| filter, acetone wash:                                                                              | Extra No.    | <del></del> | Weight re                              | sults                                                                                                         | mg          |  |  |
| Dry probe and cyclone catch:                                                                       | Container    | No.         |                                        |                                                                                                               |             |  |  |
|                                                                                                    |              |             | Weight re                              | sults                                                                                                         | mg          |  |  |
| Probe, cyclone, flask, and front half of filter,                                                   | Container    | No          |                                        | sults                                                                                                         | ma          |  |  |
| acetone wash:                                                                                      |              |             | neight re                              |                                                                                                               |             |  |  |
| Filter Papers and Dry Filter number Container no.                                                  | Filter  <br> | number Co   |                                        | Filter particulate<br>weight                                                                                  | mg          |  |  |
|                                                                                                    | Total part   | ticulate v  | eight                                  |                                                                                                               | mg          |  |  |
| Silica Gel Weight after test: Weight before test: Moisture weight collected: Container number:  1. |              | 3           | 4                                      | Moisture total                                                                                                | gm          |  |  |
| Sample number:                                                                                     |              | Analy       | /ze for:                               |                                                                                                               | · · · ·     |  |  |
| Method determination:                                                                              |              |             |                                        |                                                                                                               |             |  |  |
| Comments: FILTER AFTER IMPINGE                                                                     |              |             |                                        | an and an analysis of the second |             |  |  |
|                                                                                                    |              |             |                                        |                                                                                                               |             |  |  |
|                                                                                                    | ·            |             |                                        |                                                                                                               |             |  |  |

| Date: <u>9-1-71</u>                                            |                                       | Plant:      | AIRCO                                 | ·              |                                       |  |  |
|----------------------------------------------------------------|---------------------------------------|-------------|---------------------------------------|----------------|---------------------------------------|--|--|
| Run number:ABD_3                                               |                                       | Locatio     | n of sample                           | port:          |                                       |  |  |
| Operator: GONZALEZ                                             |                                       |             |                                       |                |                                       |  |  |
| Sample box number:4                                            |                                       |             |                                       | 2:             |                                       |  |  |
| Impinger H <sub>2</sub> O                                      | ···                                   |             |                                       |                |                                       |  |  |
| Volume after sampling 206 ml                                   | Container                             | No.         |                                       |                |                                       |  |  |
| Impinger prefilled with 200 ml                                 | Extra No.                             |             | of imp                                | inger water    | mg                                    |  |  |
| Volume collected 6 ml                                          |                                       |             | Impinger                              | water residue  | mg                                    |  |  |
| Impingers and back half of                                     | Container                             | No          | •                                     |                |                                       |  |  |
| filter, acetone wash:                                          | Extra No.                             | -           | . Weight re                           | esults         | mg                                    |  |  |
| Dry probe and cyclone catch:                                   | Container                             | No.         |                                       |                |                                       |  |  |
|                                                                | Extra No.                             |             | . Weight re                           | esults         | mg                                    |  |  |
| Probe, cyclone, flask, and front half of filter, acetone wash: |                                       | <del></del> |                                       | esults         | mg                                    |  |  |
| Filter Papers and Dr Filter number Container no.               | Filter r                              | number C    | ontainer no                           | ·              | mg                                    |  |  |
| Silica Gel                                                     |                                       |             |                                       |                |                                       |  |  |
| Weight after test:                                             |                                       |             |                                       |                |                                       |  |  |
|                                                                | 83.5                                  |             |                                       |                |                                       |  |  |
| Moisture weight collected:                                     |                                       |             |                                       | Moisture total | gm                                    |  |  |
| Container number: 1                                            | 2                                     | 3           | 4                                     |                |                                       |  |  |
| Sample number:                                                 |                                       | Anal        | yze for:                              |                | · · · · · · · · · · · · · · · · · · · |  |  |
| Method determination:                                          | · · · · · · · · · · · · · · · · · · · |             | · · · · · · · · · · · · · · · · · · · |                |                                       |  |  |
| Comments: FILTER AFTER IMPIN                                   |                                       |             |                                       |                |                                       |  |  |
|                                                                | ,                                     |             |                                       |                |                                       |  |  |
|                                                                |                                       |             |                                       |                |                                       |  |  |

## GAS SAMPLING FIELD DATA

| Material Sampled for  | so <sub>2</sub> | <del></del> | •             |     |
|-----------------------|-----------------|-------------|---------------|-----|
| Date 9-1-71 ·         |                 | •           | ٠.            |     |
| Plant AIRCO           | • .             | Location _  | NIAGARA FALLS | ·   |
| Bar. Pressure 29.8    | "Hg             | Comments:   |               | ٠.  |
| Ambient Temp. 85      | °F              |             | •             | •   |
| Run No. ASE-1         |                 |             |               |     |
| Power Stat Setting NA |                 |             |               | • • |
| Filter Used: Yes x No | _ GLASS .V      | NOOL        |               | •   |
| Operator BLESSING     | •               |             | ·             |     |

| CLOCK<br>TIME | METER (Ft. <sup>3</sup> ) | VACUUM<br>IN Hg *** | METER TEMPERATURE |
|---------------|---------------------------|---------------------|-------------------|
| 1539 :        | 60.60                     | NA.                 | 105               |
| 1551          | 64.50                     |                     | 106               |
| 1603          | 67.52                     | 4                   | 108               |
| 1615          | 70.62                     |                     | 108               |
| 1627          | 74.30                     |                     | 108               |
| 1639          | 78.38                     |                     | . 108             |
|               |                           |                     |                   |
|               |                           |                     |                   |

### Comments:

PUMP WAS BEFORE METER IN THE SAMPLE TRAIN

## GAS SAMPLING FIELD DATA

| Material Sampled for  | S0 <sub>2</sub> |            | ,       |       |     |
|-----------------------|-----------------|------------|---------|-------|-----|
| Date                  | ··              |            |         | •     |     |
| Plant AIRCO           |                 | Location _ | NIAGARA | FALLS |     |
| Bar. Pressure 29.8    | "Hg             | Comments:  |         | ,     | · . |
| Ambient Temp. 85      |                 |            |         | ÷     | •   |
| Run No. ACE-1         | <del></del>     |            |         |       |     |
| Power Stat SettingNO  | ·<br>           |            |         | :     | • ' |
| Filter Used: Yes x No | GLAS            | SS WOOL    |         |       |     |
| Operator BIRSTNO      |                 |            |         | •     |     |

| CLOCK<br>TIME | METER (Ft. <sup>3</sup> ) | VACUUM<br>IN Hg | METER TEMPERATURE |
|---------------|---------------------------|-----------------|-------------------|
| 1032          | 155.50                    | 1.5             | . 84              |
| 1044          | 156.05                    | 1.5             | 84                |
| 1056          | 156_60                    | 1.5             | 84                |
| 1108          | 157.14                    | 1.5             | 84                |
| 1120          | 157.60                    | 1.5             | .84               |
| 1132          | 158.10                    | 1.5             | 84                |
|               |                           |                 |                   |
|               |                           |                 |                   |

Comments:

#### GAS SAMPLING FIELD DATA

| Material Sampled  | for          | SO <sub>2</sub> |           |         | •        |   |     |
|-------------------|--------------|-----------------|-----------|---------|----------|---|-----|
| Date              | 9-2-71       |                 |           |         | • .      |   | •   |
| Plant             | AIRCO        |                 | Location  | NIAGARA | FALLS    |   |     |
| Bar. Pressure     | 29.8         | "Hg             | Comments: |         |          |   | •   |
| Ambient Temp      | -85          |                 |           |         |          | ÷ |     |
| Run No.           | -ANE-1       |                 | ,         |         |          |   |     |
| Power Stat Settin | ng <u>NA</u> | <del></del>     |           |         | <i>;</i> |   | • ' |
| Filter Used: Yes  | s_x_No       | GLASS W         | 100L      |         |          |   |     |
| Operator          | - DI EGGINA  |                 |           |         | •        |   |     |

| CLOCK<br>TIME | METER (Ft. <sup>3</sup> ) | VACUUM<br>IN. Hg. | METER TEMPERATUPE                     |
|---------------|---------------------------|-------------------|---------------------------------------|
| 1239          | 158.82                    | 1.6               | 82                                    |
| 1251          | 160.60                    | 1,6               | 84                                    |
| 1315          | 161.75                    | 1.6               | 84                                    |
| 1327          | 162,33                    | 1.6               | 84                                    |
| 1.339         | 162.78                    | 1.6               | 86                                    |
|               |                           |                   | · · · · · · · · · · · · · · · · · · · |
| -             |                           |                   |                                       |
|               |                           |                   |                                       |

Comments:

#### APPENDIX E

- 1. STANDARD SAMPLING PROCEDURES
- 2. CLEANUP AND ANALYTICAL PROCEDURES

## APPENDIX E. 1 STANDARD SAMPLING PROCEDURES

#### PARTICULATE SAMPLING

In an unstable operation a trial run is conducted. Otherwise, preliminary data are obtained for gas velocity, temperature and other variables which might affect the isokinetic sampling rate. Four 5-point, equal area traverses were selected as being most appropriate for the conditions encountered at the exhaust duct. Three single points were selected at the baghouse exit. Each sampling was designed to cover one complete operating and tapping cycle, as a minimum.

Particulate samples were obtained using the equipment and test procedures as stipulated in "Sample Collection Procedures," published by OAP. The sampling train was basically the same as that designed by the Control Development Program of OAP (formerly the Air Pollution Control Office), "Gas Stack Sampling Improved and Simplified with New Equipment," and described in Paper No. 67-119, presented at the Air Pollution Control Association meeting in June 1967, Cleveland, Ohio.

The sample gases were drawn into the all-glass sampling train through a button-hook stainless steel nozzle with a diameter of 0.1875 inch. An incoloy probe was fitted inside the stainless steel sheath with a probe heating element. The probe was connected to a glass cyclone and an Erlenmeyer flask to collect the solids from the cyclone. The sampled gases passed from the cyclone through a tared 2-1/2 inch diameter MSA 1106BH glass fiber filter. This filter and the cyclone

were enclosed in a heated box which was maintained near 250°F.

After the first test the filter was moved to a position after the first three impingers (See discussion). The filter holder was connected to an impinger train consisting of four Greenburg-Smith impingers with the high velocity tip removed from the first impinger. The second impinger was used with the tip while the third and fourth impingers were modified as the first. The first two impingers each contained a measured volume (100 ml) of distilled, deionized water. The third impinger was used dry and the fourth impinger contained approximately 175 grams of silica gel. The sampling train exit was connected, in line, to a vacuum gauge, a leakless vacuum pump, a dry gas meter, and a calibrated orifice. The calibrated orifice differential was measured with an inclined-vertical manometer. Velocity variations at the sampling point were constantly monitored by a pitot tube connected to the probe sheath. The sampling train, with probe and nozzle attached, was leak tested prior to each test.

Isokinetic sampling was maintained at the exhaust duct by appropriate adjustment of the sampling rate as indicated by the pressure drop across the orifice following the dry gas meter. The necessary orifice pressure differential was determined by using the nomographs presented in APCA Paper No. 67-119. This nomograph related stack gas velocity, temperature, and moisture content to the flow rate required for isokinetic sampling. Isokinetic sampling was not attempted on the baghouse outlet (see discussion).

#### SULFUR DIOXIDE SAMPLING

Sulfur dioxide emission tests were conducted at the same location as the particulate tests. The sample gas was drawn through a glass wool filter into a probe followed by a coarse frit midget impinger and a second glass wool filter. The filter led to three midget impingers in an ice bath followed in turn by a silica gel tube drier, vacuum gauge, valve, leakless pump with by-pass valve, dry gas meter, rate meter, and pitot tube with manometer.

The midget bubbler contained 15 ml of 80 percent isopropyl alcohol. The first two midget impingers contained 15 ml of 3 percent  $\mathrm{H_2O_2}$  solution and the third was operated dry. A dry gas meter with vacuum gauge and a pump followed the impingers. Temperatures, vacuum and gas meter readings were taken and tabulated in order to calculate standard volumes. After sampling, the train was purged with clean air in order to carry over any  $\mathrm{SO_2}$  trapped in the isopropyl.

#### ORSAT SAMPLING

An integrated gas sample was obtained with a mylar bag and a peristaltic pump with adjustable flow rate. The gases were filtered and cooled prior to reaching an all plastic and glass flow meter where the sampling rate was monitored. Gas samples were taken during the same period during which velocities, temperatures, and particulate samples were obtained. Analyses were performed at the site immediately after each sample was collected. PARTICLE SIZING

The Brinks cascade impactor, followed by a 47 millimeter glass fiber filter, was mounted on a probe and connected to a vacuum pump by a length

of rubber tubing. The inlet side of the pump was fitted with a vacuum gauge calibrated in inches of mercury and a flow controlling valve. The outlet side of the pump was connected to a dry gas meter when samples were collected longer than 5 minutes.

Prior to collecting samples, the Brinks impactor was calibrated to determine air flow rates by connecting it in series with a vacuum pump with a vacuum gauge, and a dry gas meter.

The collector was grounded to prevent electrostatic deposition of particles. It was placed into the stack with the nozzle covered to allow it to thermally equilibrate prior to sampling. The sample was then collected.

#### APPENDIX E.2

#### CLEANUP AND ANALYTICAL PROCEDURES

CLEANUP (EPA PARTICULATE TRAIN)

#### Probe, Nozzle, Cyclone, and Front Half of Filter Holder

The nozzle, probe, cyclone, flask, and front half of the filter holder were washed with reagent grade acetone. Washings were collected in a container and transported to the laboratory for analysis. A rubber policemen was used with the acetone to remove and particles adhering to the cyclone walls or the flask. The reagent acetone used for washing was tested to determine the blank or residue upon evaporation.

#### Filter

The tared circular MSA type 1106BH filter paper was carefully removed from the fritted glass support and transferred to a glass petri dish for later weighing.

#### Impingers

Water in the first three impingers (the original water plus the condensate) was measured, then emptied into a polyethylene container. The impingers were then water washed; the washings were combined with the condensate and the original water.

#### Acetone Train Wash

The rear half of the filter holder, including the fritted glass support, the impingers, and impinger connections up to but excluding the fourth impingers, were washed with acetone. These washings were collected in a glass bottle and sealed for later analysis. On those samples where the filter was after the impingers, the filter holder washings were added to this portion of the sample.

#### Silica Gel

Silica gel was transferred (dry) from the fourth impinger to an airtight container and sealed. The impinger was then washed with acetone, the acetone being discarded because it contained fine silica gel particles.

### CLEANUP (SO<sub>2</sub> TRAIN)

The impinger containing 80 percent isopropyl alcohol was discarded and the impingers containing 3 percent  ${\rm H_2O_2}$  saved. These contained  ${\rm SO_2}$  gas in the form of  ${\rm H_2SO_4}$ . A glass jar was used as a sample container for transportation to the laboratory for analysis.

ANALYTICAL PROCEDURES (EPA PARTICULATE TRAIN)

#### Acetone Washings

The acetone washings from the nozzle, probe, cyclone and flask; from the front and back of the filter; and from the impinger train were analyzed separately by evaporation and drying at ambient temperatures.

#### Filter Particulate

The filter and particulate collected thereon were dried for 24 hours in a desiccator at ambient temperature and weighed. Tare weight of the filter was then deducted.

#### Impinger Water

Water collected in the impingers, along with the water washings of the impingers, was extracted with ether and chloroform. The extracts were transferred to a tared dish and evaporated to dryness at room temperature. After extraction, the remaining water and solvent were evaporated to dryness on a steam bath and this additional net weight was added to the total weight of particulate matter.

#### Analysis-Orsat Measurements

Orsat measurements for determination of carbon dioxide, oxygen and carbon monoxide were made using a Burrell Industrial Gas Analyzer.

Analysis-(SO, Train)

SO<sub>2</sub> samples were analyzed by the Shell Development method except that barium perchlorate was used instead of barium chloride (as in the EPA proposed source testing Method 7) because of the sharper titration end point obtainable with the former reagent.

#### Analysis - Particle Sizes

The individual pre-weighed impactor plates were removed and weighed to the nearest 0.1 milligram. The tared glass fiber filter was also weighed. The weight gains represent particle size fractions.

APPENDIX F
LABORATORY REPORT

SAMPLES AIRCO - NIAGARA FALLS

| CR | LOCATION and SAMPLE NO. |                                | Sample<br>Weight | TIT.  | Reading. | MG in ALIQ. |                        | Total<br>Gait |
|----|-------------------------|--------------------------------|------------------|-------|----------|-------------|------------------------|---------------|
|    | ANE-3                   | 311.6 -<br>-196.0 -<br>175.6 - | WH. 1 デゴ         | r+ Li | Silica   | JE/         | 403,5<br>371.6<br>31.9 | 31.9          |
|    | ACE-3                   | 382,1<br>-195.8<br>186.3       | - 11             |       |          |             | 422,5<br>382.1<br>40,4 | 40.4          |
|    | ASE-3                   | 382.7                          |                  |       |          |             | 409.0<br>382.7<br>26.3 | 26.3          |
|    | ANE-2                   | 383,2<br>- 198.8<br>194.4      | 11               |       |          |             | 406.9                  | 23.7          |
|    | ACE- 7                  | 377.3                          |                  |       |          |             | 402.7<br>377.3<br>25.4 | 25.4          |
|    | ASE-2                   | 368.5<br>- 202.8<br>165.7      | 11               |       |          |             | 390.0                  | 21.5          |
|    | ANE-1                   | 368.4<br>- 196.1<br>172.3      | 11               |       |          |             | 392.3                  | 23.9          |
|    | ACE-1                   | 384.5<br>-196.3<br>188.2       | 11               | -     |          |             | 393,5<br>384,5<br>9.0  | 9.0           |
|    | ASE-1                   | 371.2<br>194.6<br>176.6        | ''               |       |          |             | 403.9<br>371.2<br>32.7 | 32.7          |
|    | ABD-1                   | 363.8<br>- 194.8<br>169.0      | / /              |       |          |             | 380.5<br>363.8<br>16.7 | 16.7          |
|    | -2                      | 386.2.<br>- 203.1<br>183.1     | , ,              |       |          |             |                        | 17.7          |
|    | -3                      | - 384./<br>- 200.6<br> 83.5    | , ,              |       |          |             | 384.1                  | 17.0          |
|    |                         |                                |                  |       |          |             |                        |               |
|    |                         |                                |                  |       |          |             |                        |               |
|    |                         |                                |                  |       |          |             |                        |               |

Project No. 859490 Collection Date 8/31-9/1

Analysis Date Subtem 16, 1971.

## SAMPLES AIRCO - NIHEARA FALLS

|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | <del></del> |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |           |
|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-----------|
| 0        | R        | LOCATION and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.) 1   | SAMPLE      | TIT.                                           | Readilienk      | MG ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          | Total     |
| NO.      |          | SAMPLE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volum-C | WEIGHT      | ALIQ.                                          | Readificate     | ALIQ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          | W.        |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       | 77.5367     |                                                | 77.5358         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.0201   | 1         |
|          | -        | ANE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60 mls. | 0.0217      | THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER. | 0.0201          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1< -   | 0,000"   | 00194     |
|          | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                                                | 79.3774         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 0.0174   |           |
| 2        | _        | ACE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250     | 79.3659     | 79.3659                                        | 79.3659         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -       | 0.0030   | 10000     |
| ۷.       |          | 706.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 0.0125      |                                                | 9,0115          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.0083   | 0.0085    |
|          | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50      | 92.6567     |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _       | 0.0183   |           |
| 3        | ٦        | ASE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - JU    | 0.0180      |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _       | 0.0177   | 0.6177    |
| 1        | <u>`</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 68.9182     |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.0217   |           |
| 4 -      | -        | ANE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50      | 0.0216      | 01219                                          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.0006   | 0.0013    |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 84.1027     |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.02/3   | (35,1)    |
| , . L    |          | ACE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35      | 84.0885     | 84,8855                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _       | 0.0004   | X 4 1 2 / |
| 5        |          | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 0.0142      | 0150                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.0146   | 0.0146    |
|          | 1        | 4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35      | 80.1048     | 86.1117                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.0069   |           |
| 6        | $\neg$   | ASE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 0.0079      |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.0065   | 0.6065    |
|          | 一        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 85,0230     | 95,0189                                        | 85.0212         | 85,0160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85.0197 | 0.0110   |           |
| 71       |          | ANE-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95      | 85,0087     | 85.00×7                                        | 85.0087         | 35,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85,0687 | 0.0011   | 00099     |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 74.5529     |                                                | 9,0125          | × 2.32.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0113  | 0.0099   |           |
|          | _        | ACE-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 74.5365     |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.0009   | 1         |
| 8 -      |          | 1100-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0.0164      |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0,0165   | 0.0165    |
|          | 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 78.3655     | 78.3645                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.0119   |           |
| 7 -      |          | ASE-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 145     |             | 78.3526                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.0017   | 0.0102    |
| -        | }        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                                                | 77.3852         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.34 4.3 |           |
| 10       | ∤        | ABD-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 385     | 77.2411     | 77.8411                                        | 77.34!          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _ ]     | 0.004    | 4000      |
| UU       |          | 7100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 0.3445      | 0.5429                                         | Anna management | CONTRACTOR OF THE PARTY OF THE |         |          | a3376     |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 82,2265     | 82.4100                                        | 82,4 27         | 82,4118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 0.1853   |           |
|          |          | _ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200     |             |                                                | 0.1862          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _       | 5.1814   | 0.1814    |
| -        | }        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |           |
| 12       | }        | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 440     | 79.3305     |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.1838   | 01785     |
| `~       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             | 1838                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.1785   | 0         |
|          |          | Bulin ACS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200     | 86,2939     | 86,2962                                        | 0               | DOLLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |           |
| AB       |          | Blank 100 m1=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0026  | 0.0021      |                                                | DX-4            | 0011/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mud,    | ·        |           |
|          | 1        | The same of the sa |         |             |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |           |
| <b>-</b> | -        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |             |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |           |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |           |
|          | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |           |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          | <u> </u>  |
|          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 121 61   |           |

Project No. 859490 Collection Date 8/31-9/1Analysis Date 9/28/71

## SAMPLES AIRCO - NIAGARA FALLS

|               |                | -            | <del>,</del> | · • · · · · · · · · · · · · · · · · · · | <del></del>   |         |         | <del></del>        |        |
|---------------|----------------|--------------|--------------|-----------------------------------------|---------------|---------|---------|--------------------|--------|
| CR            | LOCATION and   | WI           | SAMPLE       | TIT.                                    | Read Link     | MG ir   |         |                    | Total  |
|               | SAMPLE NO.     | Volame       | WEIGHT       | ALIQ.                                   | Readirant     | ALIQ.   |         |                    | lut.   |
| NO.           |                |              | 02 1261      | ŧ .                                     | 1.5           | <b></b> |         |                    | 10     |
|               | 1              | 150          | 83,4351      | 49 HIAH                                 |               | ĺ       | ٠,٠     | 0,02.5             |        |
| 13            | ANE-3          | 1,30         | 0.0247       |                                         |               | 1       | 18'r    | 0.0018             | 0.0233 |
|               |                | <del> </del> |              | 79.4643                                 | <b>/</b>      | ļ       |         | 0.0233             | 0,000  |
|               | 44.5           | 95           | 79:4436      | 79.4456                                 |               |         | _       | 0.0369             | 1      |
| 1.14          | ACE-3          | 1-13         |              | 83259                                   |               |         |         | 0.0011             | 0.0198 |
| <del> </del>  |                |              |              | 1".                                     | 772748        | 77.2745 |         | 0.0198             | 0.0.70 |
| l . L         | 3 300          | 80           | 77.2551      | 77.2551                                 |               | 77.2551 | _       | 0.0194             | 1      |
| 15            | ASE - 3        |              | 0.0223       | 0.0180                                  | 0,0197        | 0.0194  |         | 0.0184             | 0.0184 |
|               | <del></del>    |              | 74.1009      | 78.0993                                 | 28.1010       |         |         | 0.0304             |        |
|               | ANE-2          | 190          | 78.0706      | 78.0706                                 | 78.0780       |         | _       | 1 1 2 2 2 1        |        |
| 1.6           | I AIDC 2       |              | 0.0303       | 0.0287                                  | 9,5304        |         |         | 3. 243             | 0.0293 |
|               |                |              | 77.7355      | 77.7343                                 | 77.79 11      |         |         | 0.0183             |        |
| 17 -          | ACE-2          | 2.5          | 77.7/64      | 77.7/64                                 | 77.7164       |         |         | 0.0003             | ANCA   |
| 17            | 1100           |              | 0.0199       | 0.0179                                  | 9/0183        |         |         | 0.0180             | 0.0180 |
|               |                |              | 86.1852      |                                         |               |         |         | 0.0004             |        |
| 18            | ASE-2          | 65           | 84.1749      |                                         |               |         | ****    | 0.0008             | 1000   |
| 10            |                |              | 0.0103       |                                         |               |         |         | 6.0086             | 0.0086 |
|               |                |              | 76.4912      |                                         |               |         |         | 0.0240             |        |
| 19 -          | ANE-1          | 150          | 76.4670      |                                         |               |         |         | 0.00 18            | 1/122  |
|               |                |              | 0.0242       |                                         |               |         |         | 0.0078             | 0,0,0  |
|               |                | 100          | 84,9214      |                                         |               |         |         | $(D, Q \ni D = f)$ |        |
| 20            | ACE-1          | 130          | 84.9008      |                                         |               |         |         | 0.0016             | h02891 |
|               |                |              | 0.0206       |                                         |               |         |         | 0.0016             |        |
|               |                | 125          | 75,7569      | 75.7562                                 |               |         | _       | 0.0157             | 27     |
| 21            | ASE-1          | 123          |              |                                         |               |         |         | 8 64 6 6           | 0.013  |
| 4-1           | <del></del>    |              |              | 0152                                    | 20 51 514     |         |         | 0.00 15            |        |
|               |                | 250          | 82.5185      | 91 4167                                 | 82,5154       | 1       |         | 0.0907             | .66    |
| 22            | ABD-1          | 230          | 0.1028       | 0-1001                                  | 0,0997        | }       | _       | 0.0000<br>0.0000   | V.01   |
|               |                |              |              | ********                                |               |         | -       | 0.0967             |        |
| 12            | <u> </u>       | 3/5          | 79.0396      |                                         |               |         |         | 0.1278             | 1240   |
| 23 -          | PROBLE WISH    | <u> </u>     | 0.1285       |                                         |               |         | }       | 0.1240             | 0.1240 |
|               | 7.00/1 3/3/    |              |              |                                         | 7.1210        |         | <u></u> | 01295              |        |
| 24            | - 3            | 200          | 78.37 63     | 78.23.54                                |               | İ       | -       | 0.13954            | 0.1370 |
| 27            | PROBE WYSH     |              |              | 0.1395                                  |               | 1       | f       | 0.1371             | 0.1    |
| <del></del> - |                |              |              |                                         |               |         |         | - 11 2 1 1         |        |
| <u> </u>      | 4              |              |              |                                         |               |         | i       |                    |        |
|               |                |              |              |                                         |               | i       | [       |                    |        |
|               |                | }.           |              |                                         |               |         |         |                    |        |
| <b> </b>      | +              |              |              | .                                       |               |         | (       |                    |        |
|               |                |              | ,            |                                         | /             | 1       |         |                    |        |
|               |                |              |              | -                                       |               |         |         |                    |        |
| <b></b>       | <del>-</del> } |              |              |                                         |               |         |         |                    | 1      |
|               |                |              |              |                                         |               | [       |         |                    |        |
|               |                |              |              |                                         | , <del></del> |         |         | 21 6/1             |        |

Project No. 859490 Collection Date  $\frac{8/31-9/1}{4}$ Analysis Date  $\frac{9/28/71}{4}$ 

## Netals

## SAMPLES AIRCO - NIAGARA FALLS -

Project No. 859490

| CR<br>NO. | LOCATION and SAMPLE NO. |        | Sample<br>Weight | TIT.<br>ALIQ.                | Read 1102<br>3 1 20 76 | MG in             |      |      | Tota Wt. |
|-----------|-------------------------|--------|------------------|------------------------------|------------------------|-------------------|------|------|----------|
|           | # 000156                | 0,1779 | 28.7222          | 28.9001                      | 28,922                 | 28,9001           |      |      | 0.007    |
|           | Exhaud-Center           | 0,1760 | 25.7900          | 25.9660<br>0.8667<br>26.3584 | 25.9160                | 25.9660           |      |      | 0.0067   |
| <u> </u>  | Exhaust South           | 0.1787 | 26.1738          | 26,3525<br>0,0019            | 26.365 £               | 26.3625<br>2.6036 |      |      | 0.0036   |
| <u> </u>  |                         |        |                  |                              |                        |                   |      |      |          |
|           |                         |        |                  |                              |                        |                   |      |      |          |
|           |                         |        |                  |                              |                        |                   |      |      |          |
|           |                         |        |                  |                              |                        |                   |      |      |          |
|           |                         |        |                  |                              |                        |                   |      |      |          |
|           |                         |        |                  |                              |                        |                   |      |      |          |
|           |                         |        |                  |                              |                        |                   |      |      |          |
|           |                         |        |                  |                              |                        |                   |      |      |          |
|           | ·                       |        |                  |                              |                        |                   |      |      |          |
|           |                         |        |                  |                              |                        |                   |      |      |          |
|           |                         |        |                  |                              |                        |                   |      |      |          |
| <b>5</b>  | E No. 859490            | -      | •                |                              | Collect                | ion Da            | te_9 | 2/11 |          |

**F**-4

Analysis Date 9/27/7/

SAMPLES AIRCO - NIAGARA FALLS

|             |                    |              | <b>.</b> | TareWt.                      |                                   | ·                           | -                           |                              | ·         | عبيدن بيونيا |
|-------------|--------------------|--------------|----------|------------------------------|-----------------------------------|-----------------------------|-----------------------------|------------------------------|-----------|--------------|
| CI          | LOCATION<br>SAMPLE |              | Tare wt. | SAMPLE WEIGHT                | TIT.                              | Reading Reading             | MG in                       | I .                          |           | Total Wt.    |
| NO.         | 4RI                |              | D. 1788  | 6.1788<br>27.4114            |                                   |                             |                             | -                            |           | <del> </del> |
|             | t                  | 000088       | ļ        | 0.1803                       | 28.8677                           | 28.871                      | 28,8713                     |                              |           | 0,22         |
|             | GFF#               | •            | 0.1803   | 28.5987                      | 0.2690                            | 0,3729                      | 1,2726                      | •                            |           | 0,272        |
|             | GFF#               | 0-2          | 0.1759   | 26.9112                      | 27.0871                           | 27.1229                     | 27.0871                     |                              |           | 0.039        |
| T.          | AB                 | 0.3          | 0.1753   | 0.1753                       | 27,9928                           | 27.9947                     | 27.4942                     |                              | ,         | 101          |
| <del></del> | GFF#               | _            |          | 27.4827                      | 26.7723                           | 26.7745                     | 0.3115                      |                              |           | 0.3/         |
|             | 2 FN-              | 1314         | 0.1783   | 26.5785                      | 0.1938                            | 1960                        | 1933                        | 28.5153                      | 28,8152   | 0193         |
|             | GEF#               | 000086       | 0.1774   | 28.1912                      | 29.3686                           | 28.3186                     | 18.3686                     | 28,3686                      | 28.36 8 6 | 0.44         |
|             | ABD<br>GFF#        | -3           | 0.1761   | 0,1761                       | 27.5604<br>27.158<br>04023        | 27.5631<br>27.1581<br>24050 | 27.1581                     | 27.5596<br>27.1581<br>0.4015 |           | 0.40         |
|             | 480-less<br>2FN-   | 2031         | 0.1786   | 27.3607                      | 17.5393<br>17.5393                | 27.53                       | 27.8039<br>27.53 <b>9</b> 3 |                              |           | 0.264        |
|             | A30-               |              |          | 0,1768<br>27.8124            | 29.3686                           | 28.8689                     | 92646                       |                              |           |              |
| -           | GFF#               | 000/85       |          | 27.9892                      | 03.794                            | 28.9613                     |                             |                              |           | 0,379        |
|             | GFF#               | 00095        | 0.1793   | 29.6133                      | 28.7926<br>0.1682                 | 28.7926                     |                             |                              | 71170770  | 0.168        |
|             |                    |              |          |                              |                                   |                             |                             |                              |           |              |
|             | GFF# Blan          | 000103<br>K  | 0.1780   | 0,1780<br>25,7500<br>26,1180 | ella üllüreri py ésséri – ve<br>r |                             |                             |                              |           |              |
| L           | -                  |              |          |                              |                                   |                             |                             |                              |           |              |
| I           | <del> </del>       |              |          |                              |                                   |                             | •                           |                              |           |              |
|             |                    | <del> </del> |          |                              |                                   |                             |                             |                              |           |              |
| <del></del> |                    |              |          | <u> </u>                     |                                   |                             |                             | ,                            | 3/31-91   |              |
| Proje       | et No 8:           | 59490        |          |                              |                                   | Collect<br>Analysi          |                             | re                           | 9/27/-    | <br>21       |

| AMPLES      | <del> </del>            | <del></del> | <del></del>     |                 | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                             |          |
|-------------|-------------------------|-------------|-----------------|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------|----------|
|             |                         |             | Tarcut.         | ·               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ******                       |                                             |          |
| CR          | LOCATION and SAMPLE NO. |             | SPIPE<br>WEIGHT | TIT.            | Reading. | MG 11<br>ALIQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                                             | Tot      |
|             | ANE-3                   | 0.1757      | 27.9/01         | 28.0858         | 28.088   | 28.0858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                             |          |
| 00106       |                         |             | 28.0858         |                 |          | 0.0053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                       |                                             | 0.00     |
| 20091       | ACE-3                   | 0.1795      | 0.1795          | 31,0859         | 21.08.9  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                             | 0.009    |
|             | ASE - 3                 | 0.1771      | 26.7219         | 26.9990         | 26.899 0 | 26.5973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.8970                        |                                             | 0.002    |
| 0092        |                         |             | 11759           | 23,8062         | 23,8099  | 23.8057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                       |                                             | 0,00     |
| 0 104       | ANE-Z                   | 0.1759      | 23.4004         | 0.0058          | 98090    | 23.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                             | 0.005    |
| 0/07        | ACE- 2                  | 0.1758      | 256545          | 158303          | 25.8379  | 248303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25,8353                        |                                             | 100%     |
| FN-21       | ASE - Z                 | 0.2938      | 129.65 63       | 29,9,50/        |          | 29.9501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i                              |                                             | 0.010    |
| PN-41       |                         |             | 0.1778          | 27.4053         | 27.4060  | 27.4.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                             | 0.010    |
| 0085        | ANE-1                   | 0.1778      |                 | .0086           | 0/0113   | 0.0105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                             | 0.010    |
| 0/00        | ACE-1                   | 0.1765      | 29.52.52        | 29,7017         | 29.7092  | 29.7017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | 10, 100 10 10 10 10 10 10 10 10 10 10 10 10 | 0.006    |
|             | ASE-1                   | 0,1808      | 0.1808          | 26.5679         | 26.5727  | 26.5677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 262676                         |                                             | 2002     |
| 0096        |                         |             | 65676           | 7,0001          | 0,0051   | 1,0021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,8028                          |                                             | 1        |
|             |                         |             |                 |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | versider                       |                                             |          |
|             |                         |             |                 |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                             |          |
|             |                         |             |                 | 4-1             |          | -7-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                             |          |
| <del></del> |                         |             |                 |                 |          | and the second state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | da to the second second second |                                             | <u> </u> |
|             |                         |             |                 | عدالت بروسي دود |          | Planticulary from Sparit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                             |          |
|             |                         |             |                 |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                             |          |
|             |                         |             |                 |                 |          | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | -0                             |                                             |          |
|             | No. 85949               |             | L               | L               |          | o aprilira a columbiada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | 7/31 - 9/<br>1/27/71                        | <u> </u> |

9/27/71

Analysis Date

## SAMPLES AIRCO - NIAGARA FALLS

| NO.         | CR   | LOCATION and SAMPLE NO. |   | Sample<br>Weight    | TIT.   | Read Ins.          | ng in<br>Allq.<br>So. |                                        |       | Total<br>mg<br>SO2 |
|-------------|------|-------------------------|---|---------------------|--------|--------------------|-----------------------|----------------------------------------|-------|--------------------|
|             |      | ANE-1                   |   | 0,00482<br>30(104)2 | 25/100 | 2.                 | 0.62                  |                                        |       | 2.5                |
|             |      | ACE-1                   |   |                     | 15/    | 1.9                | 0,59                  |                                        |       | 2,4                |
|             |      | ASE-1                   |   | -                   | 2 100  | 8.65               | 2,69                  | У                                      |       | 10.8               |
| -           |      |                         |   |                     |        |                    |                       |                                        |       |                    |
|             |      |                         |   |                     |        |                    | -                     |                                        |       |                    |
|             |      |                         |   |                     |        |                    |                       |                                        |       | -                  |
|             |      |                         |   |                     |        |                    |                       |                                        |       |                    |
|             |      |                         |   |                     |        |                    |                       | ······································ |       |                    |
|             |      |                         |   |                     |        |                    |                       |                                        |       |                    |
|             |      |                         |   | ,                   |        |                    |                       |                                        |       | her grann state    |
|             |      |                         |   |                     |        |                    |                       |                                        |       |                    |
|             |      |                         |   |                     |        |                    |                       |                                        |       |                    |
| <del></del> |      |                         |   |                     |        |                    |                       |                                        |       |                    |
|             |      |                         |   |                     |        |                    |                       |                                        |       |                    |
|             |      |                         |   |                     |        |                    |                       |                                        | 12/21 |                    |
| Pro         | ject | No. 859 49              | 0 |                     |        | Collect<br>Analysi | ion Da                | e                                      | 6/71  |                    |

Analysis Date 9/16/71

| m | 0.00482 M Bac 102 = 0.31 mg SO2

SAMPLES AIRCO- NIAGARA FALLS

| <del></del>    |                                         | 1. 1     | <del></del>                  | <del></del>                   |                             | 1                                       | 7                                         | <del></del> | ر د جو جو          | ~   |
|----------------|-----------------------------------------|----------|------------------------------|-------------------------------|-----------------------------|-----------------------------------------|-------------------------------------------|-------------|--------------------|-----|
| CR<br>NO.      | LOCATION and SAMPLE NO.                 | Volumic. | SAMPLE<br>WEIGHT             | TIT.                          | Reading<br>Stank            | MG in                                   |                                           |             | Total              |     |
| 37             | A NE - 3                                | 260      | ٠ . نما                      |                               | 81.487                      |                                         |                                           | 0.0167      | 0.0154             |     |
| 38             | ACE -3                                  | 265      |                              | 82.4509                       | 82.4459                     | 10,452 <u>0</u><br>10,32 8 8<br>0 2 1 6 |                                           | 0.0216      | 0.0203             |     |
| 39             | ASE-3                                   | 265      | 75,1749                      | 75.1779<br>75.1491            | 75.173                      | 75,1802-                                | 75.1750<br>75.1471                        | 0.0277      | 0,0266             |     |
| {o             | ANE-2                                   | 285      | 85.1260                      | 030 8<br>85,1624<br>85,1260   | 85,1547                     |                                         | 95,1562<br>85,1562<br>85,1260<br>8,53 552 | 0.0266      | 535 85.<br>260 85. | 260 |
|                | ACE-2                                   | 280      | 0.033<br>91.2083<br>91.1824  | 91.2189                       | 91.2066                     | 91.2085                                 | -                                         | 0.0261      | 0.0247             | 7/3 |
| f <sub>2</sub> | ASE-2                                   | 275      | 0.0259                       | 75,4528<br>75,4528<br>75,4129 | 96242<br>75.4497<br>76.4459 | 76.4507<br>76.415?                      | J                                         | 0.0378      | 0.0364             |     |
| 12             | ANE-I                                   | 310      | 0.0352<br>71.0370<br>71.0146 | 71.0146                       | 71.035H<br>71.035H          | 71.0378<br>71.0323<br>71.0143           | 21.0350                                   | 0.0364      | 0.0188             |     |
|                | ACE-1                                   |          | 0.0224<br>81.5179<br>81.5004 | 81.5177                       | 0,0208                      | (3) (1)                                 | 10204                                     | 0.0188      |                    |     |
| 14             | ASE-1                                   | 320      | 0.0175<br>15,6925<br>16,6761 | 0.3167<br>85,6978             |                             | 85.69 88<br>88.6761                     |                                           | 0.0227      | 0.0150             |     |
| 15             |                                         |          | 0.0164                       | 75,9502                       | 9,0196                      |                                         |                                           | 0.0016      | 0,6211             |     |
| 16             | ABD-1                                   | 270      | 75.8431                      | 32.5824                       | 87.3768                     | 825/32                                  |                                           | 0.0014      | 0.1057             |     |
| 171            | - 2                                     | 550      | 86.9664<br>0.4072<br>18.8093 | 86.9664<br>94165              | 94124                       | 86.7664<br>94148                        | -<br>28.294:                              | 0.4140      | 0.4140             | -   |
| 8              | - 3                                     | 325      | 78.5720                      | 18,5720                       | 78.5240                     | 17:5720                                 | 78.5720                                   | 0.2675      | 0.2102             |     |
|                | ABD-3(con                               | <u>(</u> | 0.2122                       | 92118                         | 9/102                       | 21                                      |                                           |             |                    |     |
| WB1            | Ether - Caloro<br>H20 remander<br>Blank | 445      | 77.5680                      | 77.5675<br>77.5683<br>0.0015  | (KV                         | e e volas                               | 100                                       | ml = 0.000  | )5-                |     |
| WB 2           |                                         | 470      |                              |                               |                             | 84.9585<br>84.9556<br>0.0029            |                                           |             | 4                  |     |
|                | No. 859 490                             |          | ·                            | <u> </u>                      | Collect                     | ion Da                                  |                                           | 131-9/1     |                    |     |

Analysis Date 9/30/7/

Project No. \_\_\_\_859 490

|     |    |                         |        |                                       | 1                   | 1 22        | T           |     | <del></del>         | ) - J        |
|-----|----|-------------------------|--------|---------------------------------------|---------------------|-------------|-------------|-----|---------------------|--------------|
| NO. | CR | LOCATION and SAMPLE NO. | Volume | Sample<br>Weight                      | TIT.                | Reading     | MG in ALIQ. |     |                     | Total<br>Wt. |
| 25  | ·  | ANE-3                   | 150    | 710394                                | 71,8885             |             |             | Bk+ | 0.0004              | 0.027        |
| 26  |    | ACE-3                   | 125    | 77.4580                               | 77.4574<br>77.4561  |             |             | +   | 0.0013              | 0.6032       |
| 27  |    | ASE - 3                 | 125    | 77.1430                               | 77.1406             |             |             | +   | 0.0006              | 0.0025       |
| 28  |    | ANE - 2                 | 125    | 87.660                                | 87.6650             | /           |             | +   | 0.0049              | 0,0068       |
| 29  |    | ACE - 2                 |        | 0.0059<br>80.7324<br>80.7272          | 80.7320<br>80.7277. |             |             |     | 0.0068              |              |
| 30  |    | ASE-Z                   | 125    | 79.3530                               | 79.9563<br>123,9530 | 79.3630     | 79.3530     |     | 0.0007              | 0.0067       |
|     |    | AUE-1                   |        | 79.3676                               | 79.3737             | 79.3687     | 79.3737     | +   | 0.0026              | 0,0026       |
| 31  |    | ACE-1                   |        | 0,0027<br>83,5980<br>83,5347          |                     | 83.3409     | 20381       | L.  | 0.0062              | 0,6081       |
| 32  |    |                         |        | 0.0033<br>84.7175<br>84.7156          | 84.7172             | 2562        |             |     | 0.0016              |              |
| 33  |    | ASE-1                   |        | 823221                                | 82,9264             | 82.3218     |             |     | 0.0019              |              |
| 34  |    | ABD-1                   |        | 82.1787<br>0.1434<br>82.9445          | 82.9482             | 82.94481    |             |     | 0.1454              | 0.1454       |
| 35  |    | - 2                     |        | 82,5731<br>0.3714<br>84.5366          | 93751               | 0,3712      |             | +   | 0.8030              | 0.3742       |
| 36  |    | - 3                     | 125    | 4.5366<br>84.3673<br>0.2699           | 84.2676<br>0.2731   | 94.2/93     |             | +   | 0,2782              | 0.2702       |
|     |    |                         |        | \$6.17.5U                             | 86 PES              | 11. 15 ( 5) | 86.1765     |     | <i></i>             | 1            |
| ΕB  | 1  | Blank                   | -      | 36.17.54<br>36.17.78<br>0.0024        | 2.5527              | 86,1778     | 0,0010      |     | -0,0015<br>Add tris | (00 m)       |
| EB  | 2  |                         | 150    | 71.9816<br><b>77.983</b> 3<br>0.8817. | 15.28.33            | <i>-</i>    |             |     |                     |              |

Collection Date 8/31 - 9/1Analysis Date 9/30/71

APPENDIX G

TEST LOGS

#### TEST LOG

| <u>Date</u> | Samples Performed                                                                                                                                                                                                                                                                    |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8-30-71     | Arrive. Equipment unpacked                                                                                                                                                                                                                                                           |
| 8-31-71     | Equipment set up. One set particulate samples completed, inlet and outlet. One series of three particle size samples completed on baghouse outlet.                                                                                                                                   |
| 9-1-71      | Two sets of particulate samples completed at inlet and outlet. Three baghouse outlet and 5 furnace exhaust particle size samples taken. Combustion gas samples (inlet and outlet) taken and analyzed. One SO <sub>2</sub> sample taken at baghouse outlet. Part of crew return home. |
| 9-2-71      | Two SO <sub>2</sub> samples taken at baghouse outlet and 4 furnace exhaust particle size samples taken. Three baghouse outlet and 3 furnace exhaust particulate samples taken for metals analysis. Equipment packed and remainder of crew returned home.                             |

Furnace number 9 was within normal operating parameters during testing.

Tapping schedule each day was: 10:00 A.M.

11:50 A.M.

1:40 P.M.

3:30 P.M.

5:20 P.M.

7:10 P.M.

9:00 P.M.

APPENDIX H

RELATED REPORTS

Related reports covering emissions from reactive metals furnaces, under this same contract for the Environmental Protection Agency are as follows:

| Test Number | Survey Location (                                      | Emission<br>Control Device    | Status            |
|-------------|--------------------------------------------------------|-------------------------------|-------------------|
| FA-1        | Foote Mineral Co.,<br>Steubenville, Ohio               | None                          | Issued Aug., 1971 |
| FA-2        | Union Carbide Corp.,<br>Marietta, Ohio                 | Venturi<br>Scrubber           | Issued Oct., 1971 |
| FA-3        | AIRCO Alloys and<br>Carbide, Niagara Falls<br>New York | Baghouse<br>3,                | This Report       |
| FA-4        | AIRCO,<br>Charleston, S. C.                            | Electrostatic<br>Precipitator | In progress       |
| FA-5        |                                                        |                               | Future            |

# APPENDIX I PROJECT PARTICIPANTS AND TITLES

- R. N. Allen, P. E., Project Leader
- N. A. Blessing, Chemist
- C. C. Gonzalez, Chemist
- T. E. Eggleston, Project Engineer
- G. B. Patchell, Test & Development Specialist (Partcle Size Determination)
- L. W. Baxley, Technician
- J. Avery, Technician
- J. McReynolds, Technician
- W. Hall, Technician

#### METALS ANALYSIS

- J. R. Ogren, Program Manager
- D. F. Carroll
- M. L. Kraft
- W. B. Hewitt

APPENDIX J

PARTICLE SIZING DATA & RESULTS

#### EXPLANATION OF DATA

The field data sheets are included in Appendix J-2. The characteristic diameter of an aerosol particle for each impactor stage (i.e., Dpc) has been calculated for pressure drops across the impactor of five inches of mercury and 10 inches of mercury, assuming particles of unit density (1 gram/cubic centimeter), using the equation described by J. A. Brink, Jr. \* The characteristic diameters are as follows:

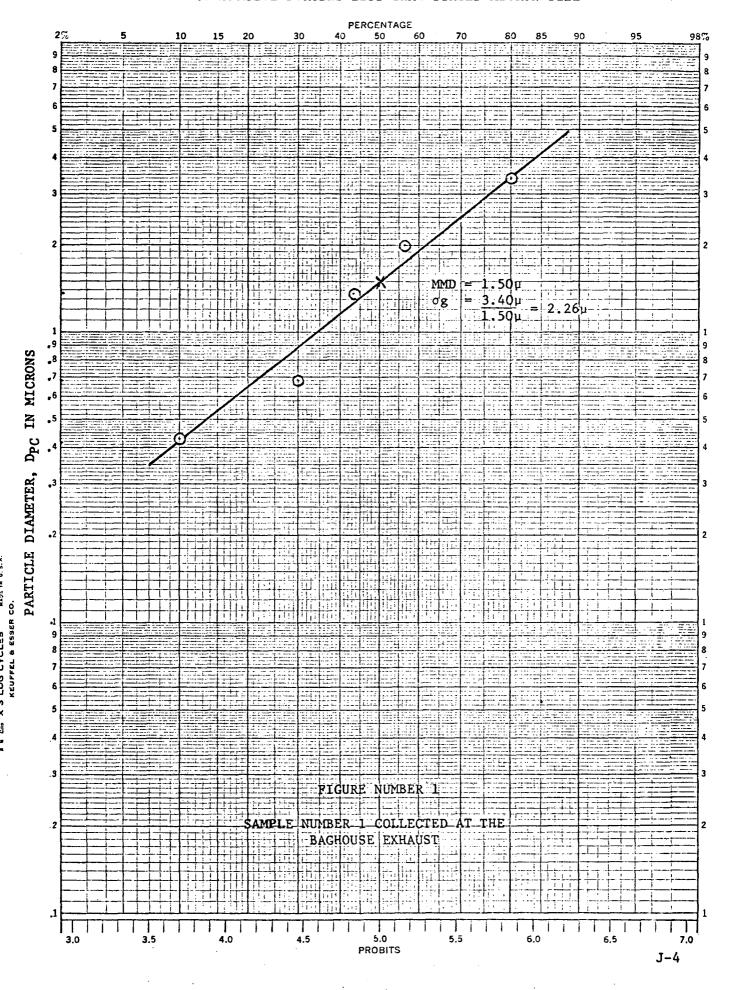
For a Pressure Drop of Five Inches
Of Mercury Across the Impactor

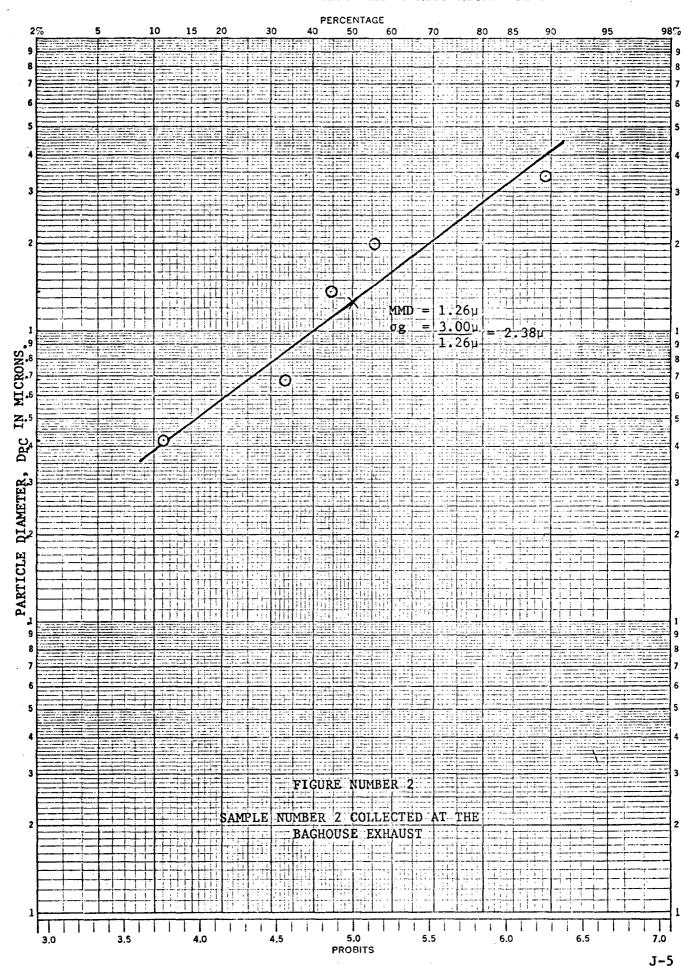
For a Pressure Drop of Ten Inches Of Mercury Across the Impactor

| Stage No. | Dpc<br>micron | Stage No. | Dpc<br>micron |
|-----------|---------------|-----------|---------------|
| 1         | 3.40          | 1         | 3.06          |
| 2         | 2.00          | 2         | 1.80          |
| 3         | 1.36          | 3         | 1.23          |
| 4         | 0.69          | 4         | 0.63          |
| 5         | 0.42          | 5         | 0.38          |

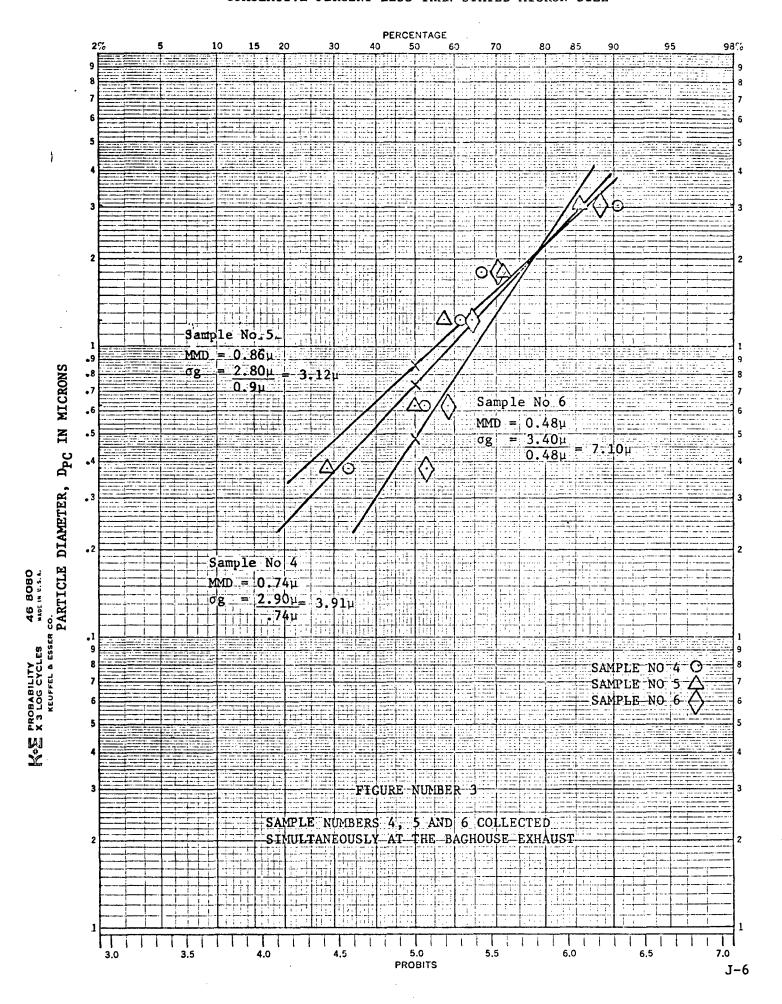
Graphical presentation of the data, that is, log-probability plots of cumulative precent less than stated micron size versus the Dpc for each stage in microns, is included in this appendix. A graphically determined mass median diameter (MMD) and geometric standard deviation ( $\sigma g$ ) for each sample are presented in the following Table 1.

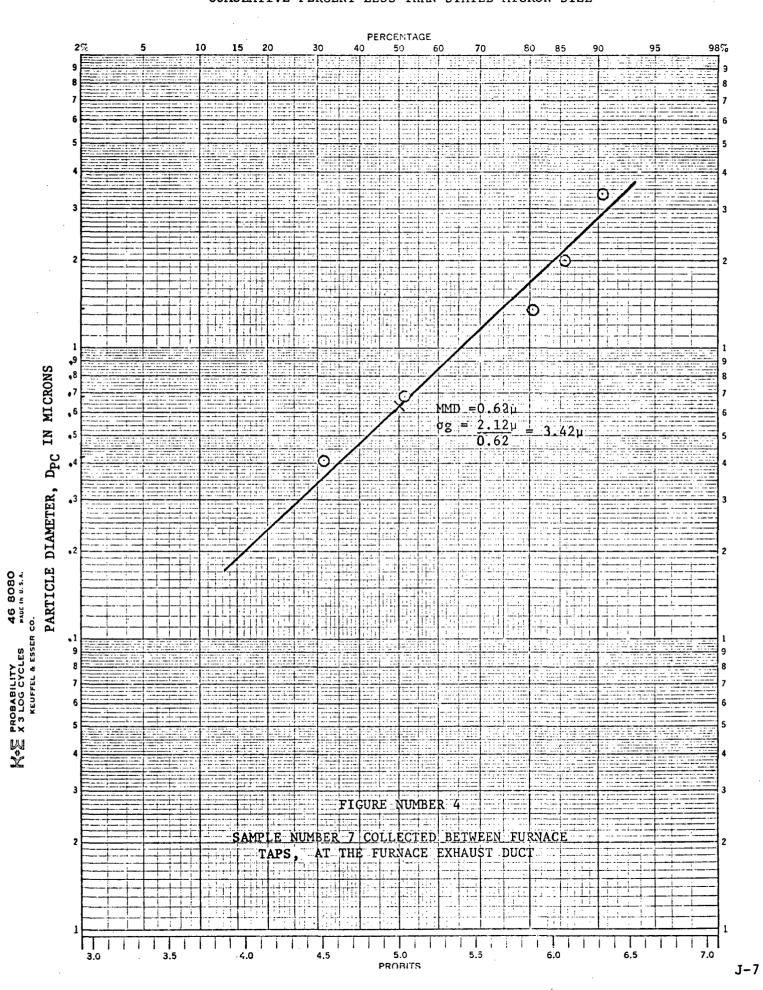
<sup>\*</sup> Industrial Engineering and Chemistry, Vol. 50, April 1958, pp 645-648


TABLE 1

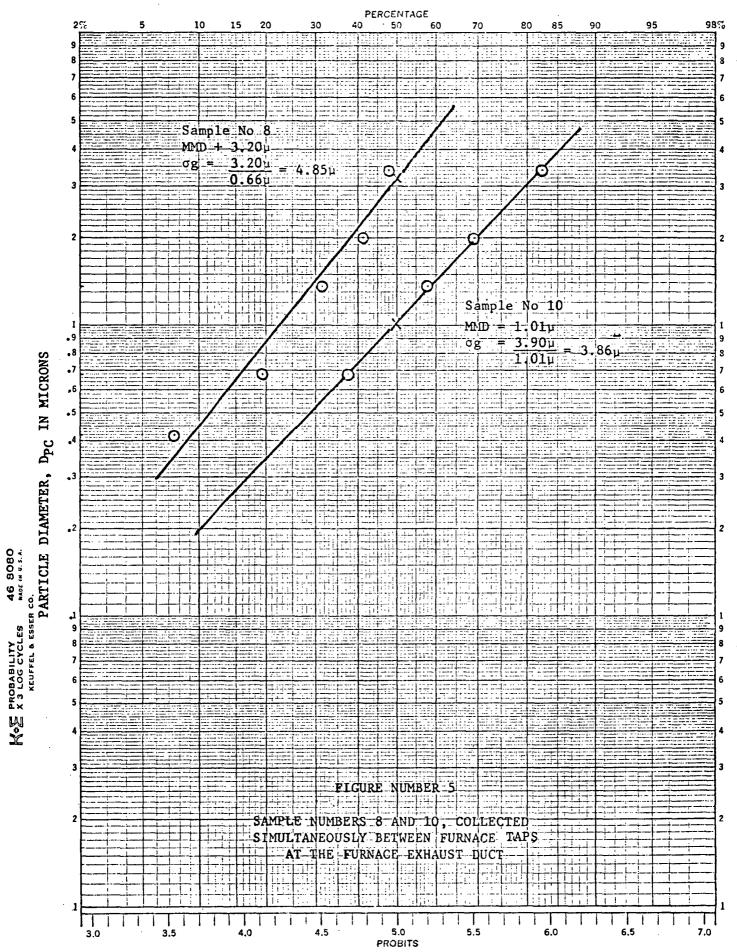

| DATE    | SAMPLE<br>NO. | LOCATION<br>SAMPLI |         | PORT<br>NO. | DURATION OF<br>SAMPLE<br>(MINUTES) | $\triangle$ P ACROSS IMPACTOR (IN. $H_g$ ) | <b>Μ</b> ΜD<br>(μ) | ο <b>8</b><br>(μ) | REMARKS                |
|---------|---------------|--------------------|---------|-------------|------------------------------------|--------------------------------------------|--------------------|-------------------|------------------------|
| 8/31/71 | 1             | BAGHOUSE           | EXHAUST | SE          | 120                                | 5                                          | 1.50               | 2.26              |                        |
| 11      | 2             | 11                 | 11      | CE          | 11                                 | 11                                         | 1.26               | 2.38              |                        |
| 11      | 3             | 11                 | 11      | NE          | 11                                 | 11                                         | * .                | *                 |                        |
| 9/1/71  | 4             | 11                 | 11      | 11          | 180                                | 10                                         | 0.74               | 3.91              |                        |
| 11      | 5             | 11                 | 11      | CE          | 11                                 | 11                                         | 0.86               | 2.80              |                        |
| 11      | 6             | н                  | 11      | SE          | 11                                 | 11                                         | 0.48               | 7.10              |                        |
| 11      | . 7           | FURNACE 1          | EXHAUST | В           | 5                                  | 5                                          | 0.62               | 3.42              | Sampled between taps   |
| 11      | 8             | ti                 | 11      | С           | H                                  | 11                                         | 3.20               | 4.85              | Sampled simultaneously |
| 11      | 10            | 11                 | 11      | В           | 11                                 | 11                                         | 1.01               | 3.86              | between taps           |
| 11      | 9             | 11                 | 11      | В           | tt                                 | 11                                         | 0.79               | 3.79              | Sampled simultaneously |
| 11      | 11            | 11                 | 11      | C           | u.                                 | 11                                         | 0.26               | 3.81              | during tap             |
| 9/2/71  | 12            | BAGHOUSE           | EXHAUST | SE          | 240                                | 10                                         | <b>≁</b> *         | *                 |                        |
| 11      | 13            | 11                 | n       | CE          | F1                                 | 11                                         | 0.83               | 2.17              | Simultaneous samples   |
| 11      | 14            | "                  | 11      | ĽE          | 51                                 | 1.1                                        | 0.84               | 3.06              | Jimoremine do dempres  |
| 11      | 15            | FURNACE            | EXHAUST | С           | 5                                  | 5                                          | 0.30               | 8.47              | Sampled simultaneously |
| 11      | 16            | 11                 | 11      | В           | ***                                | 11                                         | 0.59               | 3.59              | during tap             |
| 11      | 17            | 11                 | 11      | В           | ****                               | 11                                         | 1.30               | 5.51              | Sampled simultaneously |
| 11      | 18            | 11                 | 11      | С           | 11                                 | 11                                         | 0.73               | 7.70              | between taps           |

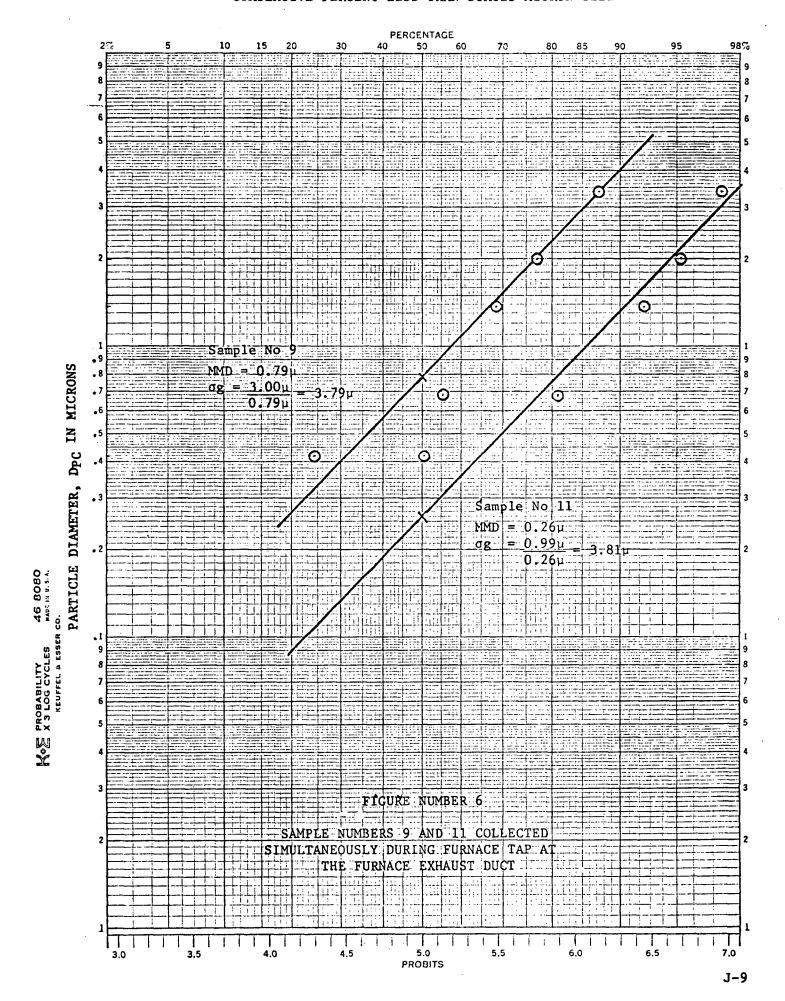
<sup>\*</sup> AN INSUFFICIENT QUANTITY OF PARTICLES DEPOSITED ON THE COLLECTOR PLATES TO DETERMINE MMD AND og

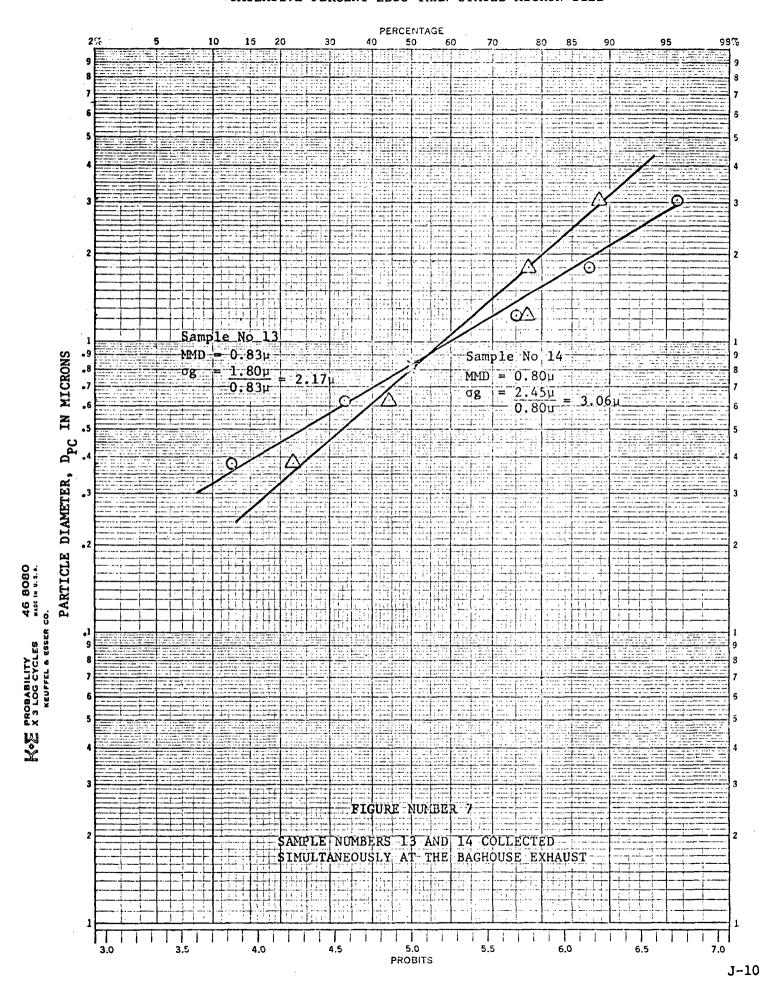

SUB-APPENDIX J-1

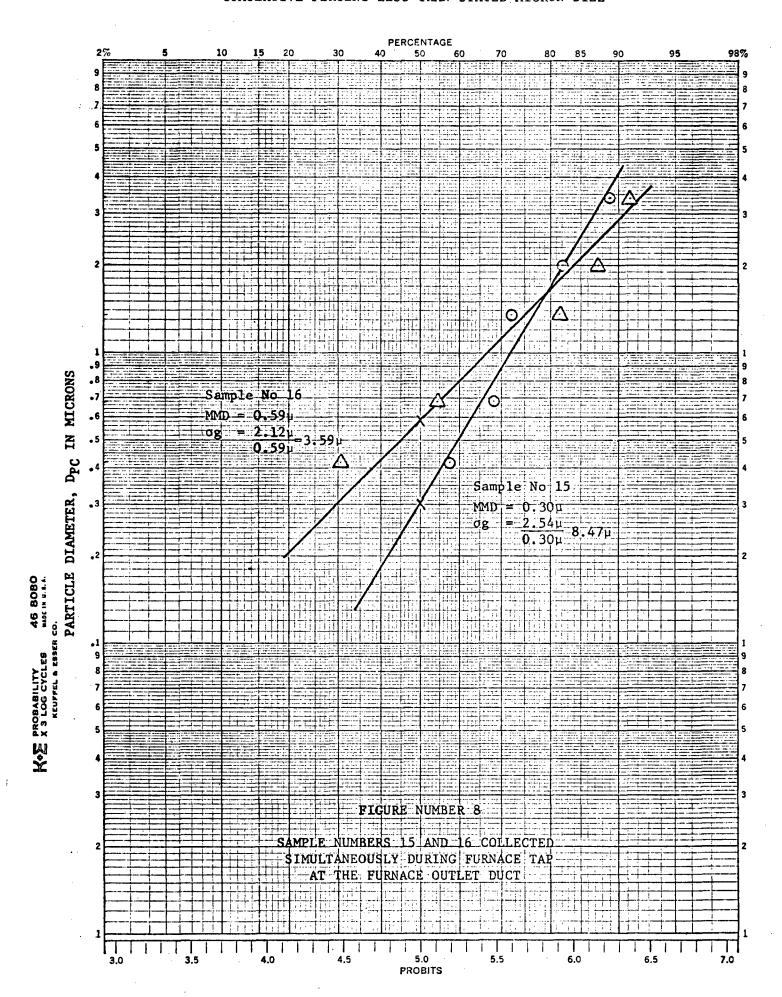

GRAPHICAL PRESENTATION OF RESULTS

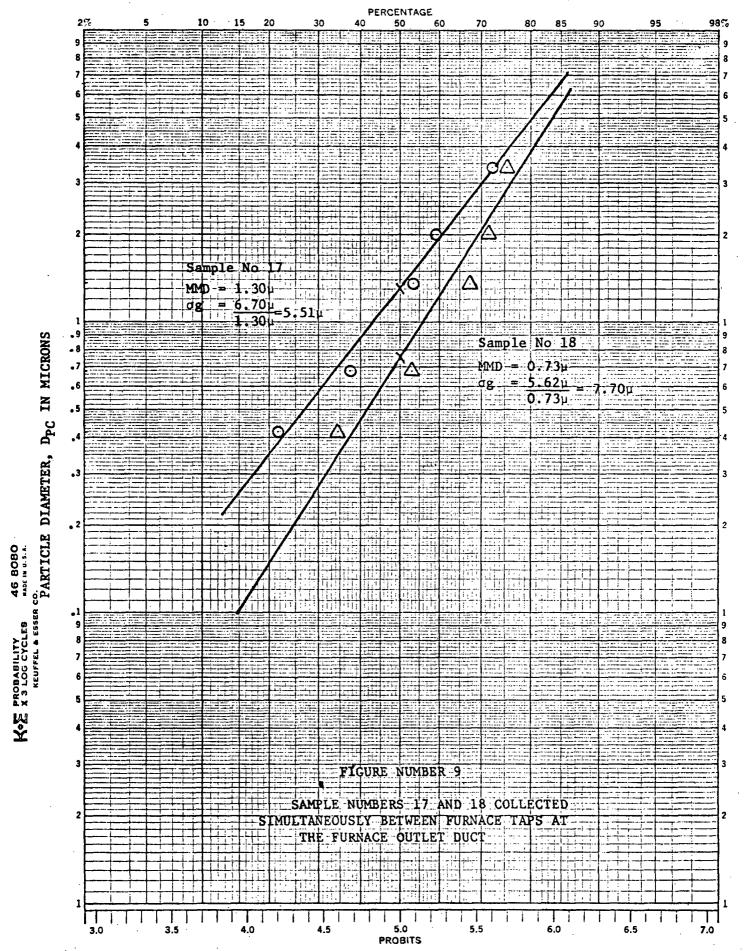






K¢E X 3 LOG CYCLES MADE IN U.S.A. KEUFFEL & ESSER CO.





#### CUMULATIVE PERCENT LESS THAN STATED MICRON SIZE











SUB-APPENDIX J-2

FIELD DATA

Date 8-31-71

| Stack No. Bashbuse Exhaust |                  |                |             | •          |                         |  |  |
|----------------------------|------------------|----------------|-------------|------------|-------------------------|--|--|
| Samp]                      | SE PORT<br>e No/ |                | .g1         | ·          |                         |  |  |
| • -                        |                  | •              |             | · ·        |                         |  |  |
|                            |                  | ,              |             |            |                         |  |  |
| Stage                      | Post Wt.         | Pre Wt.        | Wt Gain Mg. | <u>\$</u>  | Cum. %<br>less than Doc |  |  |
| 1                          | 3.6342.          | 3.6336         | 0.6         | 20.0       | 80,0                    |  |  |
| 2                          | 3.5897           | <b>3.5</b> 890 | 0.7         | 23.4       | 56.6                    |  |  |
| 3                          | 3.2424           | 3.2430         | 0.4         | 13.3       | 43.3                    |  |  |
| <u>4</u>                   | 3.6846           | <i>3.684</i> 2 | 0.4         | /3.3       | 30.0                    |  |  |
| . 5                        | <i>3.532</i> 3   | 3.5317         | 0.6         | 20.0       | 10.0                    |  |  |
| filter                     | 0.1283           | 0.1280         | 0.3         | 10.0       |                         |  |  |
|                            |                  | TE             | TAL 3.0     |            | •                       |  |  |
| TIME                       | METER REA        | POING          | VAC. PRES   | <b>'</b> S | ,                       |  |  |
|                            | (CF)             | ~              | ACROSS SAM  |            | . •                     |  |  |
| 12:50                      | 009.60           |                | 5.0         |            | STNRT TEST              |  |  |
| 1410                       | 025.16           | •              | 5.0         | •          |                         |  |  |
| 1425                       | 028.88           |                | 5.0         |            |                         |  |  |
| 1436                       | 031.50           |                | 5.0         |            | STOP TEST               |  |  |
| 1450                       | 035.10           |                | 5.0         |            | •                       |  |  |
|                            | AM = +31.50      |                |             |            |                         |  |  |
|                            |                  | .25.50 CF      |             |            | · · ·                   |  |  |

| Stack No. BAG HOUSE EXPAUST |              |              |                    | Mile <u>8-37-7</u> 7 |                                   |  |
|-----------------------------|--------------|--------------|--------------------|----------------------|-----------------------------------|--|
| Sample                      | No2          | <del>-</del> | ":                 |                      |                                   |  |
| _                           |              |              |                    |                      | •                                 |  |
| Stage                       | Post Wt.     | Pre Wt.      | Wt Gain            | *                    | Cum. %<br>less than Doc           |  |
| <u>1</u>                    | 3.1320       | 3.1319       | 0.1                | 11.1                 | 89.9                              |  |
| <u>2</u> 3.                 | 6193         | 3.6190       | 0.3                | <i>33</i> .3         | 55.6                              |  |
| 3 3,                        | 5909         | 3.5908       | 0.1                | 11.1                 | 44.5                              |  |
| <u>ų 3.</u>                 | 6656         | 3.6655       | 0.1                | 11.1                 | <i>33.4</i>                       |  |
| 5 3.                        | 4734         | 3.4732       | 0.2                | 22.3                 | //./                              |  |
| filter                      | 0.1284       | 0.1283       | 0.1                | 11.1                 |                                   |  |
|                             |              | TOTAL        | 0.9                |                      |                                   |  |
| TIME                        | METER<br>(CA | READING      | A P A CA<br>SAMPLE |                      |                                   |  |
| /300                        |              |              |                    | <del>.</del>         | Sec. 21                           |  |
| 1307                        | o.s<br>Meta  |              | 5.0                | •                    | SIMPLING<br>START <del>TEST</del> |  |
| 1507                        |              | NETIONED     | 5.0                | •                    |                                   |  |
|                             | •            |              | 5.0                |                      | STOP Samour                       |  |

Date 8-3/-7/

|           | Stack No. <u>Bag Hoo</u><br>NE Por | ISE EXHAUS | T .       | Date        | 8-31-71       |     |
|-----------|------------------------------------|------------|-----------|-------------|---------------|-----|
| . :       | Sample No. 3                       | -          | :         |             |               |     |
|           |                                    |            |           |             | Cum. %        | ٠   |
| <u>s</u>  | tage Post Wt.                      | Pre Wt.    | Wt Gain   | *           | less than Doc |     |
|           | 1 3.4032                           | 3,6032     | 0.0       | I Here's    | matil here    |     |
|           | 2 3.6440                           | 3.6433     | 0.7       | <del></del> |               |     |
|           | 3 3,6399                           | 3.6400     | -0.1      | There's     | mat's here    |     |
|           | 4 <i>3.455</i> 6                   | 3.4557     | -0.1      | I peri      | 's mat's here |     |
| ·         | 5 3 6024                           | 3.6021     | 0,3       |             |               |     |
| <u>fi</u> | lter <i>0./271</i>                 | 0.1260     | . 1.1     |             |               |     |
|           |                                    | 0/07       | CHIANGL D | ATA TO Z    | DETERMINE     |     |
| TIME      | METER<br>READING                   | ALDACO     |           |             | · .           |     |
|           | (CF)                               | (IN. 14    |           |             |               |     |
| 1259      | 0.0                                | <i>5.0</i> |           | 57          | TART SAMPLIA  | 16, |
| 1408      | 16.00                              | 5.0        |           | •           |               |     |
| 426       | 19.78                              | 5.0        |           |             |               |     |
| 437       | 21.82                              | 5.0        |           |             |               |     |
| 451       | 24.52                              | . 5.0      |           |             |               |     |
| 459       | 26.10                              | 5.0        |           | 570         | p SAMPLING    | • • |
|           | AM = 26.10                         | OF.        |           |             |               |     |

Date 9/1/71

Stack No BAGHOUSE EXPROUST NE PORT

Sample No. 4

| Stage      | Post Wt.        | Pre Wt. | Wt Gain | <u>*</u>    | Cum. %<br>less than Doc |
|------------|-----------------|---------|---------|-------------|-------------------------|
| 1          | 3.6339          | 3.4436  | 0,2     | 9.5         | 90.5                    |
| 2          | 3,5895          | 3.5890  | 0.5     | 23.8        | 66.7                    |
| <u>3</u> · | 3.243/          | 3.2430  | 0.1     | 4.9         | 61.8                    |
| 4          | 3.6844          | 3.6842  | 0.2     | 9. <i>5</i> | 52,3                    |
| 5          | 3.5 <b>3</b> 2/ | 3.53/7  | 0.4     | 19.1        | 33,2_                   |
| filter     | 0.1273          | 0.1266  | 0.7     | 33.2        |                         |
|            |                 | TOTAL   | 2.1     |             |                         |

| TIME | METER        | AP       |                |
|------|--------------|----------|----------------|
|      | READING      | ACROSS   | ·              |
|      | (CF)         | SAMPLER  |                |
|      |              | (IN. Ng) |                |
| 0810 | 04.85        | 10.0     | START SAMPLING |
| 0837 | 07.70        | 10.0     |                |
| 0850 | 69.21        | 10.0     |                |
| 0919 | 12.51        | 10.0     |                |
| 0921 | ELECTR ICI,  |          |                |
| 1103 | ELECTRICITY  |          | Who Bear       |
| 1/3/ | 16.21        | ,        | NG RESTARTED   |
| 1156 | /Q           | 10.0     |                |
|      | 19.20        | 10.0     |                |
| 1243 | 25.00        | 10.0     | 57452 50.00    |
|      | AM = 20.150F |          | STOP SAMPLING  |

Stack No. BAGHOUSE EXPAUST
CE PORT

Sample No. 5

Date 9/1/71

| Stage      | Post Wt. | Pre Wt. | Wt Gain | <u>*</u> | Cum. % less than Doc |
|------------|----------|---------|---------|----------|----------------------|
| 1          | 1.6034   | 3.6032  | 0.2     | 14.3     | 85.7                 |
| 2          | . 6435   | 3.6433  | 0.2     | 14.3     | 71.4                 |
| 3. /       | 1.6402   | 3.6400  | 0.2     | 14.3     | 57.1                 |
| <u>ų 3</u> | . 4558   | 3.4557  | 0.1     | 7./      | 50.0                 |
| <u>ق 5</u> | 2.6024   | 3.6021  | 0.3     | 21.4     | 28.6                 |
| filter     | 0./27/   | 0.1267  | 0.4     | 28,6     |                      |
|            |          | TOTAL   | 1.4     | •        |                      |

| TIME | METER<br>READING<br>(CF) | AP<br>ACROSS<br>SAMPLER<br>(IN. Hg) |                |
|------|--------------------------|-------------------------------------|----------------|
| 0808 | 26.10                    | 10,0                                | START SAMPLING |
| 0836 | 30,00                    | 10.0                                | • ,            |
| 0849 | 31.82                    | 10,0                                |                |
| 0918 | 35.80                    | 10.0                                | •              |
| 0926 | POWER OF                 |                                     |                |
| 1102 | POWER ON                 | - RESUME SA                         | moling         |
| 1125 | 40.50                    | 10.0                                |                |
| 1206 | 45.98                    | 10.0                                |                |
| 1247 | . <del>-</del>           | 10.0                                | STOP SAMPLING  |

Date 9-1-7/

Stack No. BACHOUSE EXPAUST

SE PORT

Sample No. 6

| Stage  | Post Wt. | Pre Wt. | Wt Gain | <u>*</u>            | Cum. %<br>less than Doc |
|--------|----------|---------|---------|---------------------|-------------------------|
| 1      | 3.1321   | 3.1319  | 0,2     | 11.7                | <i>88.</i> 3            |
| 2      | 3,6193   | 3.6140  | 0.3     | 17,6                | 70.7                    |
| 3      | 3.5909   | 3.590B  | 0.1     | 5,9                 | 64.8                    |
| 4      | 3.6656   | 3.6655  | 0.1     | <i>5</i> , <b>3</b> | <i>58</i> .9            |
| 5      | 3.4732   | 3.473 Z | 0.1     | 5.9                 | 53.6                    |
| filter | 0.1278   | 0.1269  | 0.9     | 53,0                |                         |
|        |          | TOTA    | 4 1.7   |                     | . ,                     |

| 711116 | READING (CF) | ALROSS<br>SAMPLER<br>(IN.Hg) |                    |
|--------|--------------|------------------------------|--------------------|
| 0804   | 35.12        | 10.0                         | START SAMPLING     |
| 0834   | 38.00        | 10.0                         | •                  |
| 0848   | 40.71        | 10.0                         |                    |
| 0915   | 44.37        | 10.0                         |                    |
| 0926   | POWER OFF    |                              | ,                  |
| 1101   | POWER ON     | RESUME                       | SAMPLING           |
| 1129   | 49.16        | 10,0                         |                    |
| 1148   | 57.48        | 10.0                         |                    |
| 1205   | 53.60        | 10.0                         |                    |
| 1225   | 56.18        | 10.0                         | •                  |
| /251   | 59.20        | 10.0                         | STOP SAMPLING J-19 |

Date 9-1-71

Stack No. FURNACE EXHAUST,
POST B - BETWEEN TAPS

Sample No. 7

| Stage  | Post Wt. | Pre Wt. | Wt Gain | <u>*</u> | Cum. %<br>less than Doc |
|--------|----------|---------|---------|----------|-------------------------|
| 1      | 3.6280   | 3.6266  | 1.4     | 9.5      | 90.5                    |
| 2      | 3.4636   | 3.4629  | 0.7     | 4.7      | 85.8                    |
| 3      | 3.4521   | 3.4513  | 0.8     | 5.4      | 80.4                    |
| 4      | 3.6398   | 3.6355  | 4.3     | 29.8     | 51.4                    |
| 5      | 3.2184   | 3.2154  | 3.0     | 20.3     | 3/./                    |
| filter | 0.1312   | 0.1266  | 4,6     | 31.1     |                         |
|        |          | TOTAL   | 14.8    |          |                         |

1942 hes - START SAMPLING

A Pacross sampler = 5"hg

FURNACE EXHAUST, Stack No. PORT C, BETWEEN TAPS

Date 9/1/71

Sample No. 8

| Stage        | Post Wt. | Pre Mt. | Wt Gain mg | <u>\$</u> | Cum. % less than Doc |
|--------------|----------|---------|------------|-----------|----------------------|
| 1            | 3.6005   | 3.5473  | 12.2       | 52.0      | 48.0                 |
| 2            | 3.6200   | 3.6184  | 1.6        | 6.8       | 41.2                 |
| <u>3 - 3</u> | 3.5817   | 3.5795  | 2.2        | 9.4       | 3/.8                 |
| <u>4</u> -   | 3.5682   | 3.5653  | 2.9        | /2.3      | 19.5                 |
| 5            | 3.610Z   | 3.6074  | 2.8        | 11.8      | 7.7                  |
| filter       | 0./3//   | 0.1293  | 1.8        | 7.7       |                      |
|              |          | 707     | AL 23.5    |           | • .                  |

1750 MRS - START SAMPLING AParross sampler = 5" Ag 1755 has. STOP SAMPLING

SAMPLING SIMULTANEOUSLY WITH NO. 10

FURNACE EXHAUST,
Stack No. PORT B, DURING TAP

Date 9-1-71

Sample No. 9

| Stage       | Post Wt.        | Pre Mt.        | Wt Gain | %    | Cum. %<br>less than Doc |
|-------------|-----------------|----------------|---------|------|-------------------------|
| <u>1</u> .  | 3.5945          | 3,59/9         | 2,6     | 12.6 | 87.4                    |
| 2           | 3.3857          | <i>3.383</i> 6 | 2./     | 10.2 | 77.2                    |
| ئے <u>3</u> | 3.595/          | 3.5933         | 113     | 8.7  | 68.5                    |
| <u> 4</u>   | 3.24 <b>8</b> 3 | 3.2456         | 2,7     | 13,0 | 55.5                    |
| 5           | 3,292 <u>8</u>  | 3.2863         | 615     | 31.4 | 24.1                    |
| filter      | 0.1359          | 0.1309         | 5.0     | 24./ |                         |
|             |                 | TOT            | 46 20.7 |      |                         |

1722 hes - START SAMPLING

spacross sampler = 5" kg

Sampling simultaneously with 76.11

FURNACE EXPAUST
Stack No. PORT B. BETWEEN TAPS

Date 9-1-71

Sample No. 10

| Stage  | Post Wt. | Pre Wt. | Wt Gain | *             | Cum. % less than Doc |
|--------|----------|---------|---------|---------------|----------------------|
| 1      | 3.1508   | 3.1480  | 2.8     | 17.3          | 82.7                 |
| 2      | 3.6240   | 3.6218  | 2. z    | 13.6          | 69.1                 |
| 3      | 3,6178   | 3,6160  | 118     | 11.1          | <b>58.</b> 0         |
| 4      | 3.6004   | 3,597/  | 3.3     | 20.4          | 37.6                 |
| 5      | 3.4630   | 3,458/  | 4,9     | <i>3</i> 0. z | 7.4                  |
| filter | 0.1281   | 0.1269  | 1,2     | 7.4.          |                      |
|        |          | TOTAL   | 16.2    |               |                      |

1750 hrs - start sampling 1755 hrs - stop sampling

at arross sample = 5 "hg

Sampling simultaneously with No. 8

Stack No. FURNACE EXHAUST

DURINGTAP

Date 9 - 1 - 71

Sample No. //

| Stage  | Post Wt. | Pre Wt.        | Wt Gain | <u>%</u>     | Cum. % less than Doc |
|--------|----------|----------------|---------|--------------|----------------------|
| 1      | 3.6268   | 3.6264         | 0.4     | 2,6          | 97.4                 |
| 2      | 3,4636   | <b>3</b> .4633 | 0.3     | 2,2          | 95.Z                 |
| 3 -    | 3.4521   | 3.4517         | 0.4     | 2.6          | 92,6                 |
| 4      | 3,6389   | <i>3.6</i> 372 | 1.7     | 11.6         | B1.0                 |
| 5      | 3.2197   | 3.2152         | 4.5     | <i>3</i> 0.6 | 50,4                 |
| filter | 0.1348   | 0.1274         | 7.4     | 50,4.        |                      |
|        |          | TOTAL          | L 14.7  |              | •                    |

1722 hrs - Start sampling 1727 hrs - Stop sampling spacross sampler = 5" hg

Sampling simultaneously with m. 9

BAGHOUSE EXPAUST

Date y-2-7/

Stack No. SE PORT

Sample No. /2

| Stage  | Post Wt.       | Pre Mt. | Wt Gain | Sum. % less than Doc |
|--------|----------------|---------|---------|----------------------|
| 1      | 3.4688         | 3.4688  | 0.0     | 1                    |
| 2      | <i>3,55</i> 22 | 3.5522  | 0.0     | eficien              |
| 3      | 3.638/         | 3.6382  | -0.1    | INSULA. MILYDOG      |
| 4      | 3.2844         | 3.2843  | 0,1     | Deter 1.             |
| 5      | 3.6194         | 3.6193  | 0.1     | μ"                   |
| filter | 0.1267         | 0./270  | -0.3    |                      |

| TIME | METER<br>READING | AP<br>ACROSS        |                                       |
|------|------------------|---------------------|---------------------------------------|
|      | (CF)             | SAMPLER<br>(IN. Hg) |                                       |
| 0821 | 78.78            | 10.0                | San pleia Nove                        |
| 0909 | 85,04            | 10.0                | Sampling Simu<br>with 13 and          |
| 0914 | 89.70            | 10.0                | week 13 and                           |
| 1014 | 94.20            | 10.0                | •                                     |
| 1047 | 98.80            | 10:0                | \$ S                                  |
| 1059 | 100.52           | 10.0                | •                                     |
| 1114 | 102.80           | 10.0                | · ,                                   |
| 1/32 | 105.34           | . 10.0              |                                       |
| 1217 | 112.10           | 10.0                | N.                                    |
| 1225 | 112.20           | 10.0                | · · · · · · · · · · · · · · · · · · · |

| 1 3.2886 3.2885 0.1 4.2 95.8  2 3.59/0 3.5908 0.2 8.3 87.5  3 3.068/ 3.0678 0.3 /2.5 75.0  3.6/57  4 3.46157 3.6/47 1.0 41.7 33.3  5 3.3584 3.3579 0.5 20.8 12.5  Filter 0.1294 0.129/ 0.3 12.5  FILTER DP  REPUNG ACROSS (OF) SAMPLER (IN. 149) | Samp       | le No. /3      |                   | 4:             |          |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|-------------------|----------------|----------|----------------------|
| 2 3.59/0 3.5908 0.2 8.3 87.5  3 3.068/ 3.0678 0.3 /2.5 75.0  3.6/57  1 3.6/57 1.0 4/.7 33.3  5 3.3584 3.3579 0.5 20.8 12.5  filter 0./294 0./29/ 0.3 12.5  TOTAL 2.4  THE METER DP  REDDING ACROSS SAMPLER (N. 149)                              | Stage      | Post Wt.       | Pre Wt.           | Wt Gain        | <u>%</u> | Cum. % less than Doc |
| 3 3.068/ 3.0678 0.3 12.5 75.0  3.6157  1. 3.46157 3.6147 1.0 41.7 33.3  5 3.3584 3.3579 0.5 20.8 12.5  filter 0.1294 0.1291 0.3 12.5  TOTAL 2.4  THE METER AP  READING ACROSS SAMPLER (IN. 149)                                                  | 1          | 3.2886         | 3.2885            | 0.1            | 4.2      | 95.8                 |
| 3.6157<br>1. 3.6157<br>2. 3.6147 1.0 41.7 33.3<br>5 3.3584 3.3579 0.5 20.8 12.5<br>Filter 0.1294 0.1291 0.3 12.5<br>TOTAL 2.4<br>TOTAL 2.4<br>THE METER DP<br>READING ACROSS<br>(OF) SAMPLER<br>(IN. 149)                                        | 5          | 3.59/0         | 3.5908            | 0.2            | 8.3      | 87.5                 |
| \$ 3.3584 3.3579 0.5 20.8 12.5  Silter 0.1294 0.1291 0.3 12.5  TOTAL 2.4  THE METER OF READING ACROSS SAMPLER (IN. 119)                                                                                                                          | <u>3 ·</u> | 3.0681         | 3.0678            | 0.3            | 12.5     | 75.0                 |
| filter 0.1294 0.1291 0.3 12.5  TOTAL 2.4  THE METER OP  READING ACROSS  (OF) SAMPLER  (IN. 49)                                                                                                                                                   | 4          |                | 3.6147            | 1.0            | 41.7     | 33.3                 |
| TOTAL 2.4  METER OP  RENDUNG ACROSS  (CF) SAMPLER  (IN. 49)                                                                                                                                                                                      | 5          | 3.3584         | 3.3579            | 0.5            | 20.8     | 12.5                 |
| TOTAL 2.4  TOTAL 2.4  TOTAL 2.4  TOTAL 2.4  TOTAL 2.4                                                                                                                                                                                            | filter     | 0.1294         | 0.1291            | 0.3            | 12.5     |                      |
| RENDING ACROSS  (CF) SAMPLER  (IN. 49)                                                                                                                                                                                                           |            |                | TOTAL             | 2.4            |          |                      |
| 5 52.68 10.0 Sampled since 170.0                                                                                                                                                                                                                 | me         | READING        | ACROSS<br>SAMPLER | •              | -        |                      |
|                                                                                                                                                                                                                                                  | ? S - **   | 52.68          | 10.0              | <del>-</del> . | Sample   | d semultane          |
|                                                                                                                                                                                                                                                  | /          | 65,10          | 10.0              |                | win      | 12 and 14            |
| , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                          |            | 70,00<br>75,00 | 10.0              |                |          |                      |

1059

1116

1137

1214

1225

77,12

79.50

82.00

88.44

90.39

10.0

10.0

10.0

10.0

10.0

# BAGHOUSE EXHAUST

Stack No. NE PORT

Date 9-2-71

Sample No. /4

| Post Wt.       | Pre Wt.                                        | Wt Gain                                                                           | <u> %</u>                                                                                                        | Cum. % less than Doc                                                                                                                        |
|----------------|------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| <i>3,337</i> 2 | 3.3371                                         | 0,1                                                                               | 11.1                                                                                                             | 88.9                                                                                                                                        |
| 3.3101         | 3.3100                                         | 0.1                                                                               | 11.1                                                                                                             | 77.8                                                                                                                                        |
| 3.1375         | 3:1375                                         | 0.0                                                                               | 0                                                                                                                | 77.8                                                                                                                                        |
| 3.1561         | 3./558                                         | 0.3                                                                               | <br>33.4                                                                                                         | 44,4                                                                                                                                        |
| 3.5790         | 3.578B                                         | 0.2                                                                               | 22.2                                                                                                             | 22.2                                                                                                                                        |
| 0.1269         | 0.1269                                         | 0,2                                                                               | 22.2                                                                                                             |                                                                                                                                             |
|                | 3,3372<br>3.3101<br>3.1375<br>3.1561<br>3.5790 | 3.3372 3.5371<br>3.3101 3.3100<br>3.1375 3.1375<br>3.1561 3.1558<br>3.5790 3.5788 | 3.3372 3.3371 0.1  3.3101 3.3100 0.1  3.1375 3.1375 0.0  3.1561 3.1558 0.3  3.5790 3.5788 0.2  0.1269 0.1269 0.2 | 3.3372 3.3371 0.1 11.1  3.3101 3.3100 0.1 11.1  3.1375 3.1375 0.0 0  3.1561 3.1558 0.3 33.4  3.5790 3.5788 0.2 22.2  0.1269 0.1269 0.2 22.2 |

| TIME | METER<br>READING | AP<br>ACROSS<br>SAMPLER |                                    |
|------|------------------|-------------------------|------------------------------------|
| 0827 | 27.04            | 10.0                    | Sampled Simultan<br>with 12 and 13 |
| 0911 | 32.00            | 10.0                    | with 12 and 13                     |
| 0945 | 36.20            | 10.0                    |                                    |
| 1101 | 46.44            | 10.0                    | •                                  |
| 1129 | 50.20            | 10.0                    |                                    |
| 122/ | 56.90            | 10.0                    |                                    |
| 1228 | 58.00            | 10.0                    |                                    |

FURNICE EXPLOST
Stack No. PORTC, DURING TAP

Date 2-2-71

Sample No. 15

| Stage    | Post Wt.              | Pre Mt. | Wt Gain | 8      | Cum. %<br>less than Doc |      |
|----------|-----------------------|---------|---------|--------|-------------------------|------|
| 1        | 3.5643                | 3.5625  | 1.8     | 11.0   | 89.0                    |      |
| 2        | 3 5794                | 3.5183  | 1.1     | 6.8    | 82.2                    |      |
| 3        | 3, 5783               | 3,5772  | 1.6     | 9.8    | 72.4                    |      |
| 4_       | 3,6563                | 3.6476  | 0.7     | 4.3    | 68.1                    |      |
| 5        | 3.5943                | 3.5866  | 1.7     | 10.5   | 57,6                    |      |
| filter   | 0.1357                | 0.1263  | 9.4     | 57,6   |                         |      |
| 15<br>15 | 525 Ars -<br>30 Ars - |         | mpling, | apacro | es sampler z            | 5 hg |

Sampling Simultaneously with no. 16

FURNACE EXPAUST Stack No. PORT B, DURING TAP Date 2-2-7/

Sample No. 16

| Stage       | Post Wt.    | Pre Wt.     | Wt Gain          | <u>\$</u> | Cum. % less than Doc |
|-------------|-------------|-------------|------------------|-----------|----------------------|
| 1           | 3.6117      | 3.6091      | 2,6              | 8.8       | 91.2                 |
| 2           | 3.6072      | 3.6061      | 1.1              | 3.7       | 87.5                 |
|             | 3.6047      | 3.6030      | 1.7              | 5.8       | 81.7                 |
| <u>4</u>    | 3.5960      | 3.5879      | 8.1              | 27.6      | 54.1                 |
| 5           | 3.6585      | 3.6515      | 7.0              | 23.7      | 30,4                 |
| filter      | 0./372      | 0.1283      | 8,9<br>5742 29.4 | 30.4      |                      |
| 152<br>1530 | 5 hrs - sta | et sampling | 9, 2Pac          | ross sa   | mpler = 5" kg        |

Sampling Simultaneously with 15

FURNACE EXHAUST
Stack No. PORT B., BETWEEN TAPS

Date 9-2-7/

Sample No. /7

| Stage  | Post Wt. | Pre Wt. | Wt Gain | *    | Cum. % less than Doc |
|--------|----------|---------|---------|------|----------------------|
| 1      | 3.6398   | 3.6374  | 2,4     | 27,3 | 72.7                 |
| 2      | 3.6655   | 3.6643  | 1,2     | 13,5 | 59.2                 |
| 3 .    | 3.6260   | 3,6255  | 0.5     | 5.8  | . 53.4               |
| 4      | 3,5773   | 3.5759  | 1,4     | 15.9 | 37.5                 |
| 5      | 3,601Z   | 3.5998  | 1.4     | 15.9 | 21.6                 |
| filter | 0.1288   | 0.1269  | 1.9     | 21.6 |                      |
|        |          | 70:     | TAL 8.8 |      | • •                  |

1600 hrs - start sampling, spacross tampler = 5 Hy 1605 hrs - stop sampling Sampled Simultaneously with 18

FURNACE EXHAUST
Stack No. PORTC, BETWEEN TAPS

Date 9-2-7/

Sample No. 18

| Stage    | Post Wt. | Pre Wt.        | Wt Gain      | <u>%</u> | Cum. % less than Doc |
|----------|----------|----------------|--------------|----------|----------------------|
| 1        | 3,6120   | 3.6108         | <i>1</i> , Z | 24.5     | 75.5                 |
| 2        | 3.1990   | 3.1988         | 0.2          | 4.1      | 71.4                 |
| 3        | 3.2744   | 3.2742         | 0.2          | 4.1      | 67.3                 |
| <u>4</u> | 3.4615   | 3.4608         | 0.7          | 14.3     | 33.0                 |
| <u>5</u> | 3.3921   | <i>3.39</i> /2 | 0.9          | 18.3     | 34.7                 |
| filter   | r 0.1296 | 0.1279         | 1.7          | 34.7     | •                    |
|          |          | TOTAL          | 4.9          |          |                      |

1600 hrs - start sampling, of across sampler = 5" Ag 1605 hrs - stop sampling

Sampled simultaneously with 17.

APPENDIX K
CHEMICAL ANALYSIS OF EMISSIONS

# CHEMICAL ANALYSES OF EMISSIONS FROM REACTIVE METALS SMELTING OPERATIONS

#### 1. INTRODUCTION

Particulate fumes and gaseous emissions are generated during the processing of a commercially important class of ferroalloy materials called reactive metals. The particulate portion of these emissions is collected on glass fiber filters strategically placed in the air stream of a ventilation system. Six such filters from Airco (Niagara Falls, New York) were analyzed by atomic absorption and qualitative electron beam X-ray microanalysis. Each of the six filters prior to compositing was examined microscopically.

#### 2. TEST RESULTS

# 2.1 Optical Examination

The loaded filters were examined at magnifications up to 30%. Under tungsten filament illumination the separate filters appeared as follows:

| ABD-1M | Dark gray powder with black particles-no quartz fibers from the collector pad visible.               |
|--------|------------------------------------------------------------------------------------------------------|
| ABD-2M | Light gray powder with very few black particles-<br>no quartz fibers from the collector pad visible. |
| ABD-3M | Dark gray powder with black particles-quartz fibers from the collector pad visible.                  |
| ANE-1M | Light gray powder with black particles-quartz fibers from the collector pad visible.                 |
| ACE-1M | A few black particles among the quartz fibers.                                                       |
| ASE-1M | A few black particles among the quartz fibers.                                                       |

The optical examination revealed that:

- 1. Four filters had trapped a heterogeneous particulate material consisting predominantly of a gray powder and a minor amount of black particles.
- 2. The amount of sample collected in four cases was so small that the fibers from the filters could still be seen. In fact, in two such samples, only a small amount of the black particles could be seen against a background that was predominantly the filter material.

Two different techniques were necessary to form composite samples:

1. Simple Blending of Loose Powders

Samples ABD-1M, ABD-2M, and ABD-3M were shaken, lightly scraped and copious amounts of loose gray material were gathered, blended, and designated as Niagara Falls Airco Inlet Duct Sample ABD-M. A negligible amount of the collector filter material was included in the blended sample.

2. Dissolution in a Common Reagent

Samples ANE-IM, ACE-IM, and ASE-IM were submerged (particulate matter and filter pads) in a common solution of sulfuric acid. A control experiment was also run on a unused filter pad to determine the contributions of the filter. The composited sample in this case was labeled Niagara Falls Airco Stack Sample ABE-M.

Small samples for electron beam X-ray microanalysis were cut from every specimen prior to formation of any composite samples.

## 2.2 Electron Beam X-Ray Microanalysis

The electron microprobe is an advanced piece of equipment which uses a small beam of electrons to produce characteristic X-ray emissions from a sample volume with a radius of ~l micron. Curved crystal X-ray spectrometers are used to analyze the resultant characteristic X-ray spectra. An examination was made of the complex spectrum of X-rays given off by the specimen under electron beam excitation, and it was found that the entire spectrum could be identified uniquely. All portions of the X-ray spectrum in the wavelength range l-looA covering all elements except H, He, Li, and Be were taken into account.

In these analyses, the electron beam was defocused to a diameter of ~150 microns (0.006 inch) to cover a relatively large area of the specimen and to insure that both the gray condensate and the black particles were analyzed. The electron beam impinged in vacuum on the untouched surfaces of three specimens:

#### 1. Sample ABD-1M

In this sample, the layer of particulate material was far too thick to allow penetration of the electron beam into the collector (filter) pad. In other words, only the condensed particulate material was analyzed in this case.

## 2. Sample ABD-3M

The layer of particulate was sufficiently thin that a contribution from the collector pad may be present.

#### 3. Sample ANE-1M

A contribution from the collector was definitely present in this case because the fibers from the collector could be seen in the optical microscope viewing system attached to the electron microprobe.

The qualitative results are compiled in Table 1 and provide the basis for selection of elements for quantitative analyses. Note that a total of 15 elements were found\* and that the stack sample (ANE-1M contained a small but distinct amount of both sulfur and chlorine. Special mention is made of these

The spectral scans were conducted in a manner such that all elements except H, He, Li, Be, B, N could be detected.

Table 1. Qualitative Electron Beam X-Ray Microanalyses

| Specimen<br>No.                      | Cr | Mn | Mg | Fe | Al | Ca | Ba | Na | К | Zn | C1 | S | Si | 0 | С |
|--------------------------------------|----|----|----|----|----|----|----|----|---|----|----|---|----|---|---|
| ABD-3M                               | М  | Т  | Н  | Т  | Ľ' | Т  | -  | Ţ  | М | Ŧ  | _  | - | Н  | н | L |
| ABD-2M<br>Airco Inlet<br>Duct Sample | М  | Т  | Н  | T  | L  | Т  | -  | Τ. | L | Т  | -  | - | н  | Н | L |
| ANE-IM<br>Airco Stack<br>Sample      | Т  | -  | Н  | Т  | М  | Н  | L  | М  | М | Т  | Τ  | Т | н  | Н | L |

KEY: H = greater than 20 wt%

M = 10-20 wt%

L = 1-10 wt%

T = less than 1 wt%

elements because they were not included in the quantitative analyses which will be described in the next paragraph. Note also that oxygen was detected at about the 50%, thereby suggesting that the particulate material was a mixture of oxides.

## 2.3 Atomic Absorption Analyses

Atomic Absorption (A.A.) means that a cloud of atoms in the un-ionized and unexcited state is capable of absorbing radiation at wavelengths that are specific in nature and characteristic of the element in consideration. The atomic absorption spectrophotometer used in these analyses consists of a series of lamps which emit the spectra of the elements determined, a gas burner to produce an atomic vapor of the sample, a monochromator to isolate the wavelengths of interest, a detector to monitor the change of absorption due to the specimen, and a readout meter to visualize this change in absorption.

As stated previously, the two sets of samples were composited two different ways for the atomic absorption analyses. The detailed procedures for the physically blended powders are as follows:

- The particulate material from three specimens was either shaken loose or scraped from the filter pads with a wood tongue depresser and blended in a polyethylene container.
- 2. Duplicate portions of the blended powder were digested in hot  ${\rm HC1-HN0}_3.*$  After cooling, the suspension was filtered.
- 3. The filtrate (soluble portion) was analyzed for the elements-of-interest by atomic absorption. The precipitate (non-soluble portion) was analyzed by "large beam" electron microprobe analysis and flame photometry and found to be free of sodium or potassium. This action was done because potassium acid sulfate (KHSO<sub>4</sub>) was used in the next step.
- 4. The precipitate was blended with a known quantity of KHSO<sub>4</sub> and ignited in a 850°C muffle furnace to form a fused mass which subsequently was dissolved in HCl. Solution was not complete, and a filtration step was needed to separate the solution from a precipitate.
- 5. The solution was analyzed for the elements of interest by atomic absorption, and the results from this step were added to those from Step 3 to yield the total percentage of each element in the particulate sample.

The hot solution used was 8 ml concentrated HCl, 32 ml concentrated  $HNO_3$  and 40 ml distilled water.

6. The precipitate from Step 4 was checked for SiO<sub>2</sub> by a gas evolution technique.\* This technique selectively decomposes and volatilizes SiO<sub>2</sub> through reaction with hot H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub> and HF in a platinum crucible. The portion of the sample that still remained after all these steps was labeled an insoluble residue in Table 2.

A different procedure was needed for those samples in which the quantity of condensable particulate was insufficient for a physical separation. In this case the following procedure was used:

- 1. Three entire collector pads, with material in and on them, were digested in a common hot H<sub>2</sub>SO<sub>4</sub> solution. An unused collector pad was submerged in a second identical solution.
- 2. The steps described previously were followed for both the unknown and the unused sample. The results for the latter were corrected to account for the fact that three used pads were used with the unknown samples but only one unused pad was employed as a blank.
- 3. The concentrations of elements in the condensable particulate material was obtained by subtracting the results for the "blank" from the total.

The results of the atomic absorption analyses are compiled in Table 2. The following are observations.

1. Both samples are predominantly silicon dioxide, SiO2. This conclusion is directly seen in the results for the Inlet Duct Sample where 76.4% of the material is SiO2. The concentrations of the remaining elements are all low in comparison, and magnesium is the highest at an average 5.44% level. The sum of all the percentage values is 100%, and this indicates excellent closure (mass balance). The 100% value is achieved when all the metal percent values are converted to their equivalent oxide percent values.\*\*

N. H. Furman, Editor, Standard Methods of Chemical Analysis, 6th Edition, Volume 1, D. Van Nostrand Company, Princeton, N. J., p. 950.

<sup>\*\*</sup> Equivalent oxide percentages are obtained by multiplying the weight percent metal in Table 2 by the ratio Mo/Mm where Mo is the molecular weight of the metal oxide and Mm is that of the metal.

4742.3.71-15; Page 7

Table 2. Elemental Analysis of Particulate Matter

|                                     |      | Element wt%  |                |              |      |              |              |              |              |             |     |                  |                             |  |
|-------------------------------------|------|--------------|----------------|--------------|------|--------------|--------------|--------------|--------------|-------------|-----|------------------|-----------------------------|--|
| Sample                              | Na   | К            | Мn             | Fe           | Zn   | Cr           | Ca           | Mġ           | Al           | Ba          | Ti  | SiO <sub>2</sub> | Insoluble<br>Residue<br>(b) |  |
| ABE-M<br>Airco Stack<br>Sample      | 12.7 | 0.9          | 0.1            | 1.0          | 0.6  | <.4          | 4.0          | 0.6          | 8.0          | < <b>4.</b> | <8. | (a)              | -                           |  |
| ABD-M<br>Airco Inlet<br>Duct Sample | 0.23 | 0.25<br>0.25 | 0.054<br>0.050 | 0.10<br>0.08 | 0.32 | 0.46<br>0.42 | 0.59<br>0.27 | 5.28<br>5.59 | 0.38<br>0.35 | <.4         | <.8 | 76.8<br>76.0     | 11.5<br>13.2                |  |

- (a) No SiO<sub>2</sub> quantitative results were determined for this sample which was a composite of three filters and their condensable particulate samples. The sample was known in advance to be predominantely SiO<sub>2</sub>.
- (b) The residue that seemed to defy attempts at dissolution was analyzed on the electron beam X-ray microanalyzer and found to be primarily (~50%) platinum (from the platinum crucibles used) with lesser amounts of aluminum, sodium, and fluorine. The latter group of elements probably are evidence of incomplete digestion in the hot acid steps conducted early in the analysis-separation scheme.

- 2. The Stack Sample, in comparison with the Inlet Duct Sample, contains relatively more of every metal cation except magnesium. The absolute amount of the Stack Sample was far less and this had an impact on the sensitivity values. Thus the lower limits for barium and titanium are 4% and 8% in the Stack Sample (rather than 0.4 and 0.8%) because the total sample mass was limited to all milligrams.
- 3. It must be emphasized that the values have been corrected to account for the contributions from the filter pads. In other words, the 12.7% Na value is for the particulate matter collected on a filter and not for the filter pad.