U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EUTROPHICATION SURVEY

WORKING PAPER SERIES

REPORT

ON

CONSTANTINE RESERVOIR
ST. JOSEPH COUNTY
MICHIGAN

WORKING PAPER No. 218

EPA REGION V

PACIFIC NORTHWEST ENVIRONMENTAL RESEARCH LABORATORY

An Associate Laboratory of the NATIONAL ENVIRONMENTAL RESEARCH CENTER - CORVALLIS, OREGON and

NATIONAL ENVIRONMENTAL RESEARCH CENTER - LAS VEGAS, NEVADA

REPORT
ON
CONSTANTINE RESERVOIR
ST. JOSEPH COUNTY
MICHIGAN
EPA REGION V
WORKING PAPER No. 218

WITH THE COOPERATION OF THE

MICHIGAN DEPARTMENT OF NATURAL RESOURCES

AND THE

MICHIGAN NATIONAL GUARD

FEBRUARY, 1975

CONTENTS

		Page
For	rward	ii
Lis	st of Michigan Study Lakes	iv
Lak	ke and Drainage Area Map	V
Sec	ctions	
I.	Introduction	1
II.	Conclusions	1
III.	Lake Characteristics	2
IV.	Lake Water Quality Summary	3
٧.	Literature Reviewed	7
VI.	Appendices	8

FOREWORD

The National Eutrophication Survey was initiated in 1972 in response to an Administration commitment to investigate the nation-wide threat of accelerated eutrophication to fresh water lakes and reservoirs.

OBJECTIVES

The Survey was designed to develop, in conjunction with state environmental agencies, information on nutrient sources, concentrations, and impact on selected freshwater lakes as a basis for formulating comprehensive and coordinated national, regional, and state management practices relating to point-source discharge reduction and non-point source pollution abatement in lake watersheds.

ANALYTIC APPROACH

The mathematical and statistical procedures selected for the Survey's eutrophication analysis are based on related concepts that:

- a. A generalized representation or model relating sources, concentrations, and impacts can be constructed.
- b. By applying measurements of relevant parameters associated with lake degradation, the generalized model can be transformed into an operational representation of a lake, its drainage basin, and related nutrients.
- c. With such a transformation, an assessment of the potential for eutrophication control can be made.

LAKE ANALYSIS*

In this report, the first stage of evaluation of lake and watershed data collected from the study lake and its drainage basin is documented. The report is formatted to provide state environmental agencies with specific information for basin planning [§303(e)], water quality criteria/standards review [§303(c)], clean lakes [§314(a,b)], and water quality monitoring [§106 and §305(b)] activities mandated by the Federal Water Pollution Control Act Amendments of 1972.

^{*} The lake discussed in this report was included in the National Eutrophication Survey as a water body of interest to the Michigan Department of Natural Resources. Tributaries and nutrient sources were not sampled, and this report relates only to the data obtained from lake sampling.

Beyond the single lake analysis, broader based correlations between nutrient concentrations (and loading) and trophic condition are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation's fresh water lakes. Likewise, multivariate evaluations for the relationships between land use, nutrient export, and trophic condition, by lake class or use, are being developed to assist in the formulation of planning guidelines and policies by EPA and to augment plans implementation by the states.

ACKNOWLEDGMENT .

The staff of the National Eutrophication Survey (Office of Research & Development, U. S. Environmental Protection Agency) expresses sincere appreciation to the Michigan Department of Natural Resources for professional involvement and to the Michigan National Guard for conducting the tributary sampling phase of the Survey.

A. Gene Gazlay, former Director, and David H. Jenkins, Acting Director, Michigan Department of Natural Resources; and Carlos Fetterolf, Chief Environmental Scientist, and Dennis Tierney, Aquatic Biologist, Bureau of Water Management, Department of Natural Resources, provided invaluable lake documentation and counsel during the course of the Survey. John Vogt, Chief of the Bureau of Environmental Health, Michigan Department of Public Health, and his staff were most helpful in identfying point sources and soliciting municipal participation in the Survey.

Major General Clarence A. Schnipke (Retired), then the Adjutant General of Michigan, and Project Officer Colonel Albert W. Lesky, who directed the volunteer efforts of the Michigan National Guardsmen, are also gratefully acknowledged for their assistance to the Survey.

NATIONAL EUTROPHICATION SURVEY

STUDY LAKES

STATE OF MICHIGAN

LAKE NAME

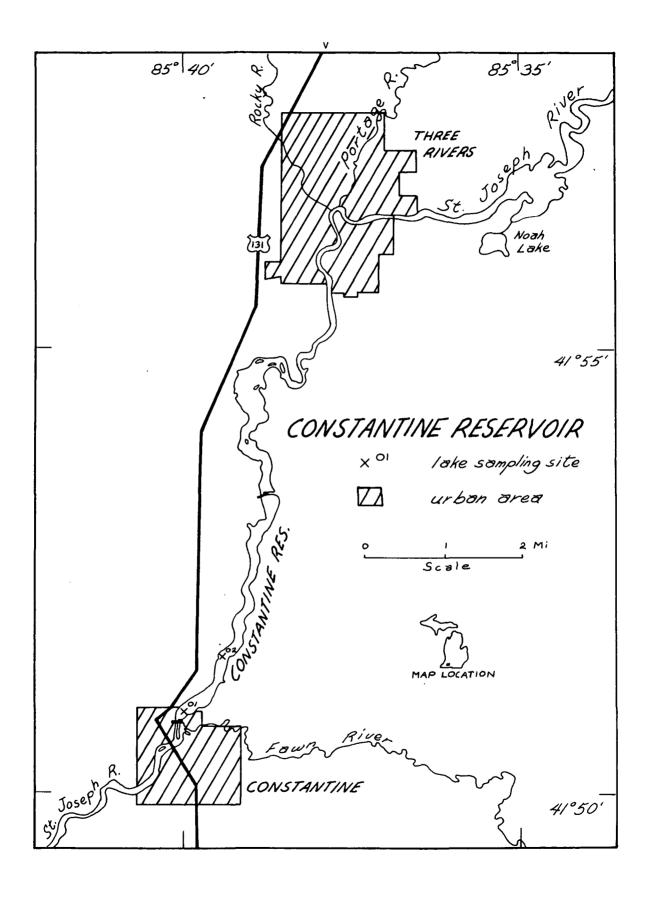
Allegan Res. Barton Belleville Betsie Brighton Caro Res. Charlevoix Chemung

Constantine Res.

Crystal Deer Ford Fremont Higgins Holloway Res. Houghton Jordon Kent Long Macatawa Manistee Mona Muskegon Pentwater

Pere Marquette Portage: Randall Rogers Pond Ross

St. Louis Res.


Sanford Strawberry Thompson Thornapple Union White

COUNTY

Allegan Kalamazoo Wayne Benzie Livingston Tuscola Charlevoix Livingston St. Joseph Montcalm Marquette Washtenaw Newago Roscommon Genesee, Lapeer Roscommon Ionia, Barry 0akland St. Joseph Ottawa Manistee Muskegon Muskegon Oceana Mason Houghton Branch Mecosta Gladwin Gratiot Midland Livingston Livingston Barry

Branch

Muskegon

CONSTANTINE RESERVOIR

STORET NO. 2621

I. INTRODUCTION

Constantine Reservoir was included in the National Eutrophication

Survey as a water body of interest to the Michigan Department of

Natural Resources. Tributaries and nutrient sources were not sampled,

and this report relates only to the data obtained from lake sampling.

II. CONCLUSIONS

A. Trophic Condition:

Survey data show that Constantine Reservoir is eutrophic.

Of the 35 Michigan lakes sampled in the fall when essentially all were well-mixed, nine had less mean total phosphorus, four had less mean dissolved phosphorus, and 20 had less mean inorganic nitrogen; of all 41 lakes sampled, 39 had less mean chlorophyll a, and 27 had a greater mean Secchi disc transparency*.

Survey limnologists noted rooted aquatic vegetation along the north shore and observed algal blooms in June and September.

B. Rate-Limiting Nutrient:

The algal assay results indicate that Constantine Reservoir was phosphorus limited at the time the sample was collected (09/17/72). The reservoir data indicate phosphorus limitation in November but a marginal nitrogen limitation in June.

^{*} See Appendix A.

III. LAKE CHARACTERISTICS

- A. Lake Morphometry:
 - 1. Surface area: 555 acres*.
 - 2. Mean depth: unknown.
 - 3. Maximum depth: >10 feet.
 - 4. Volume: unknown.
- B. Precipitation**:
 - 1. Year of sampling: 40.7 inches.
 - 2. Mean annual: 32.2 inches.

^{*} Fetterolf, 1973.

^{**} See Working Paper No. 1, "Survey Methods, 1972".

IV. LAKE WATER QUALITY SUMMARY

Lake Constantine was sampled three times during the open-water season of 1972 by means of a pontoon-equipped Huey helicopter. Each time, samples for physical and chemical parameters were collected from two stations on the reservoir and from a number of depths at each station (see map, page v). During each visit, a single depth-integrated (near bottom to surface) sample was composited from the stations for phytoplankton identification and enumeration; and during the second visit, a single five-gallon depth-integrated sample was composited for algal assays. Also each time, a depth-integrated sample was collected from each of the stations for chlorophyll <u>a</u> analysis. The maximum depths sampled were 10 feet at station 1 and 10 feet at station 2.

The results obtained are presented in full in Appendix B, and the data for the fall sampling period, when the reservoir essentially was well-mixed, are summarized below. Note, however, the Secchi disc summary is based on all values.

For differences in the various parameters at the other sampling times, refer to Appendix B.

A. Physical and chemical characteristics:

FALL VALUES

(11/12/72)

Parameter	<u>Minimum</u>	Mean	<u>Median</u>	<u>Maximum</u>
Temperature (Cent.) Dissolved oxygen (mg/l) Conductivity (µmhos) pH (units) Alkalinity (mg/l) Total P (mg/l) Dissolved P (mg/l) NO ₂ + NO ₃ (mg/l) Ammonia (mg/l)	7.0 10.4 500 7.8 194 0.025 0.006 0.810 0.080	7.0 10.5 500 7.9 196 0.027 0.008 0.820 0.090	7.0 10.5 500 7.9 196 0.027 0.008 0.820 0.090	7.1 10.6 500 8.0 197 0.029 0.010 0.820 0.110
		ALL VAL	UES	
Secchi disc (inches)	35	44	36	60

B. Biological characteristics:

1. Phytoplankton* -

Sampling Date	Dominant Genera	Number per ml
09/17/72	 Lyngbya Melosira Raphidiopsis Scenedesmus Synedra Other genera 	6,847 5,586 1,532 991 901 7,747
	Tota1	23,604
11/12/72	 Cyclotella Melosira Asterionella Stephanodiscus Achnanthes Other genera 	1,501 226 127 126 115 608
	Total	2,703

2. Chlorophyll \underline{a} - (Because of instrumentation problems during the 1972 sampling, the following values may be in error by plus or minus 20 percent.)

Sampling Date	Station <u>Number</u>	Chlorophyll <u>a</u> (µg/l)
06/13/72	01 02	72.3 53.5
09/17/72	01 02	24.3 26.0
11/12/72	01 02	26.4 33.4

^{*} The June sample was lost in shipment.

C. Limiting Nutrient Study:

1. Autoclaved, filtered, and nutrient spiked -

Spike (mg/l)	Ortho P Conc. (mg/1)	Inorganic N Conc. (mg/l)	Maximum yield (mg/l-dry wt.)	N/P Ratio
Control 0.010 P 0.020 P 0.050 P 0.050 P + 5.0 N 0.050 P + 10.0 N 10.0 N	0.023 0.033 0.043 0.073 0.073 0.073 0.023	0.460 0.460 0.460 0.460 5.460 10.460	8.7 10.3 10.9 11.9 29.0 33.6 8.5	20/1 14/1 11/1 6/1

2. Discussion -

The control yield of the assay alga, <u>Selenastrum capri-cornutum</u>, indicates that the potential primary productivity of Constantine Reservoir was quite high at the time the assay sample was collected (09/17/72). Also, the increased yields with increased levels of orthophosphorus indicate phosphorus limitation (note the lack of yield response when only nitrogen was added).

The lake data indicate phosphorus limitation in November as well (N/P ratio = 114/1) but a marginal nitrogen limitation in June (N/P = 13/1).

V. LITERATURE REVIEWED

Fetterolf, Carlos, 1973. Personal communication (area of reservoir). MI Dept. of Nat. Resources, Lansing.

VI. APPENDICES

APPENDIX A

LAKE RANKINGS

LAKE DATA TO BE USED IN RANKINGS

			FALL VALUES				
CODE	LAKE NAME	MEAN TOTAL P	MEAN DISS P	MEAN INORG N	500- Mean Sec	MEAN Chlora	15- MIN UO
26A0	HOLLOWAY RESERVOIR	0.062	0.043	1.461	439.375	10.678	9.200
2641	CARO RESERVOIR	0.117	0.022	3.835	473.000	11.967	9.500
26A2	BOARDMAN HYDRO POND	0.006	0.005	0.358	363.500	1.267	6.600
2603	ALLEGAN LAKE	0.123	0.057	1.168	470.222	20.311	12.600
2606	BARTON LAKE	0.121	0.086	1.489	456.167	27.800	14.850
2609	BELLEVILLE LAKE	0.118	0.048	1.420	465.250	28.262	8.200
2610	BETSIE LAKE	0.025	0.008	0.273	461.667	4.567	7.400
2613	BRIGHTON LAKE	0.109	0.073	1.015	456.000	44.233	7.500
2617	LAKE CHARLEVOIX	0.007	0.006	0.230	351.250	3.008	9.240
2618	LAKE CHEMUNG	0.044	0.014	0.132	404.333	13.483	14.800
2621	CONSTANTINE RESERVOIR	0.027	0.008	0.910	456.167	39.317	7.500
2629	FORD LAKE	0.105	0.058.	1.536	456.167	14.733	14.000
2631	FREMONT LAKE	0.372	0.342	1.406	441.667	28.500	14.800
2640	JORDAN LAKE	0.180	0.144	1.998	427.667	20.517	14.900
2643	KENT LAKE	0.040	0.015	0.417	455.000	33.944	13.000
2648	LAKE MACATAWA	0.197	0.120	2.358	477.600	25.600	12.200
2649	MANISTEE LAKE	0.018	0.010	0.304	451.333	6.317	11.380
2659	MUSKEGON LAKE	0.087	0.043	0.469	436.444	9.511	14.800
2665	PENTWATER LAKE	0.027	0.017	0.496	430.667	16.083	14.800
2671	RANDALL LAKE	0.246	0.183	0.816	457.333	27.217	8.020
2672	ROGERS POND	0.026	0.015	0.183	435.500	8.133	9.600
2673	ROSS RESERVOIR	0.034	0.021	0.460	465.333	10.383	8.200
2674	SANFORD LAKE	0.016	0.008	0.307	458.750	13.791	8.300
2683	THORNAPPLE LAKE	0.042	0.032	1.737.	442.833	14.650	10.800
2685	UNION LAKE	0.083	0.064	1.252	455.500	15.667	8.200
2688	WHITE LAKE	0.027	0.019	0.367	417.778	9.211	13.400
2691	MONA LAKE	0.307	0.241	0.963	451.667	27.783	14.100
2692	LONG LAKE	0.163	0.148	0.749	418.400	10.067	13-600

LAKE DATA TO BE USED IN RANKINGS

			FALL VALUES	5	ALL VALUES			
LAKE		MEAN	MEAN	MEAN	500-	MEAN	15-	
CODE	LAKE NAME	TOTAL P	DISS P	INURG N	MEAN SEC	CHLORA	MIN DO	
2693	ST LOUIS RESERVOIR	0.134	0.093	1.227	462.667	5.583	8.420	
2694	CRYSTAL LAKE	0.009	0.006	0.164	380.000	2.986	13.000	
2695	HIGGINS LAKE	0.007	0.005	0.058	268.500	1.043	9.400	
2696	HOUGHTON LAKE	0.018	0.008	0.136	420.833	9.217	8.200	
2697	THOMPSON LAKE	0.043	0.029	0.436	407.889	11.967	14.800	
2698	PERE MARQUETTE LAKE	0.032	0.024	0.346	448.667	11.833	8.600	
2699	STRAWBERRY LAKE	0.069	0.050	0.567	419.800	11.117	13.600	

PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)

		F	ALL VALUES		*******	ALL VALUES	
LAKE	LAKE NAME	MEAN TOTAL P	MEAN UISS P	MEAN INORG N	500- Mean sec	MEAN 15- CHLORA MIN DO	NO INDEX
26A0	HOLLOWAY RESERVOIR	46 (16)	43 (15)	17 (6)	57 (20)	60 (21) 63 (22)	286
26A1	CARO RESERVOIR	29 (10)	54 (19)	0 (0)	3 (1)	49 (17) 54 (19)	189
26A2	BOARDMAN HYDRO POND	97 (34)	97 (34)	69 (24)	91 (32)	94 (33) 97 (34)	545 ·
2603	ALLEGAN LAKE	20 (7)	31 (11)	31 (11)	6 (2)	29 (10) 40 (14)	. 157
2606	BARTON LAKE	23 (8)	20 (7)	14 (5)	29 (9)	14 (5) - 3 (1)	103
2609	BELLEVILLE LAKE	26 (9)	37 (13)	20 (7)	11 (4)	11 (4) 79 (* 26)	184
2610	BETSIE LAKE	77 (27)	77 (27)	80 (28)	17 (6)	86 (30) 94 (33)	431
2613	BRIGHTON LAKE	31 (11)	23 (8)	34 (12)	34 (12)	0 (0) 90 (31)	212
2617	LAKE CHARLEVOIX	91 (32)	91 (32)	83 (29)	94 (33)	89 (31) 60 (21)	508
8165	LAKE CHEMUNG	49 (17)	71 (25)	94 (33)	86 (30)	46 (16) 11 (2)	357
2621	CONSTANTINE RESERVOIR	71 (25)	83 (29)	40 (14)	29 (9)	3 (1) 90 (31)	316
2629	FORD LAKE	34 (12)	29 (10)	11 (4)	29 (9)	37 (13) 23 (8)	163
2631	FREMONT LAKE	0 (0)	0 (0)	23 (8)	54 (19)	9 (3) 11 (2)	97
2640	JORDAN LAKE	11 (4)	11 (4)	6 (2)	69 (24)	26 (9) 0 (0)	123
2643	KENT LAKE	57 (20)	69 (24)	63 (22)	40 (14)	6 (2) 36 (12)	271
2648	LAKE MACATAWA	9 (3)	14 (5)	3 (1)	0 (0)	23 (8) 43 (15)	92
2649	MANISTEE LAKE	80 (28)	74 (26)	77 (27)	46'(16)	80 (28) 46 (16)	403
2659	MUSKEGON LAKE	37 (13)	40 (14)	54 (19)	60 (21)	69 (24) 11 (2)	271
2665	PENTWATER LAKE	69 (24)	63 (22)	51 (18)	66 (23)	31 (11) 11 (2)	291
2671	RANDALL LAKE	6 (2)	6 (2)	43 (15)	23 (8)	20 (7) 86 (30)	184
2672	ROGERS POND	74 (26)	66 (23)	86 (30)	63 (22)	77 (27) 51 (18)	417
2673	ROSS RESERVOIR	60 (21)	57 (20)	57 (20)	9 (3)	63 (22) 79 (26)	325
2674	SANFORD LAKE	86 (30)	80 (28)	74 (26)	20 (7)	43 (15) 71 (25)	374
2683	THORNAPPLE LAKE	54 (19)	46 (16)	9 (3)	51 (18)	40 (14) 49 (17)	249
2685	UNION LAKE	40 (14)	26 (9)	26 (9)	37 (13)	34 (12) 79 (26)	242
2688	WHITE LAKE	66 (23) ·	60 (21)	66 (23)	80 (28)	74 (26) 31 (11)	377
2691	MONA LAKE	3 (1)	3 (1)	37 (13)	43 (15)	17 (6) 20 (7)	123
2692	LONG LAKE	14 (5)	9 (3)	46 (16)	77 (27)	66 (23) 27 (9)	239

PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)

-		FA	LL VALUES		ALL VALUES			
LAKE	A AVE NAME	MEAN	MEAN	MEAN	500-	MEAN	15-	INDEX
CODE	LAKE NAME	TOTAL P	DISS P	INORG N	MEAN SEC	CHLORA	MIN DO	ИО
2693	ST LOUIS RESERVOIR	17 (6)	17 (6)	29 (10)	14 (5)	83 (29)	69 (24)	229
2694	CRYSTAL LAKE	89 (31)	89 (31)	89 (31)	89 (31)	91 (32)	36 (12)	483
2695	HIGGINS LAKE	94 (33)	94 (33)	97 (34)	97 (34)	97 (34)	57 (20)	536
2696	HOUGHTON LAKE	83 (29)	86 (30)	91 (32)	71 (25)	71 (25)	79 (26)	481
2697	THOMPSON LAKE	51 (18)	49 (17)	60 (21)	83 (29)	51 (18)	11 (2)	305
2698	PERE MARQUETTE LAKE	63 (22)	51 (18)	71 (25)	49 (17)	54 (19)	66 (23)	354
2699	STRAWBERRY LAKE	43 (15)	34 (12)	49 (17)	74 (26)	57 (20)	27 (9)	284

APPENDIX B

PHYSICAL and CHEMICAL DATA

STORET RETRIEVAL DATE 75/02/04

262101 41 50 30.0 085 40 00.0 CONSTANTINE RESERVOIR 26 MICHIGAN

							11EPALES		2111202 0010 FEET DEPTH				
DATE FROM	OF	DEPTH	00010 WATER TEMP	00300 DO	00077 TRANSP SECCHI	00094 CNDUCTVY FIELD	00400 PH	00410 T ALK CACO3	00630 NO2&NO3 N-TOTAL	00610 NH3-N TOTAL	00665 PHOS-TOT	00666 PHOS-DIS	
TO	DAY	FEET	CENT	MG/L	INCHES	MICROMHO	SU	MG/L	MG/L	MG/L	MG/L P	MG/L P	
72/06/13	14 0	1 0000	22.0	11.0	36	500	8.40	193	0.320	0.060	0.042	0.025	
		1 0005	20.2	8.6		510	8.40	192	0.360	0.050	0.048	0.028	
		1 0010	19.8	7.6		480	8.35	193	0.380	0.090	0.047	0.036	
72/09/17	14 10	0 0000			35	445	8 • 25	166	0.280	0.070	0.057	0.018	
	14 10	0 0004	19.3	8.7		445	8.15	159	0.310	0.070	0.055	0.022	
72/11/12	12 40	0 0000			. 60	500	7.80	197	0.810	0.080	0.028	0.006	
	12 4	0 0006	7.0	10.6		500	7.90	195	0.820	0.080	0.025	0.007	

DATE FROM TO	OF	-	DEPTH FEET	32217 CHLRPHYL A UG/L
72/06/13 72/09/17 72/11/12	14	10	0000	72.35 24.35 26.45

J VALUE KNOWN TO BE IN ERROR

STORET RETRIEVAL DATE 15/02/04

262102 41 51 30.0 085 39 30.0 CONSTANTINE RESERVOIR 26 MICHIGAN

,						11EPALES 4		2111202 0010 FEET DEPTH				
DATÉ FROM	OF	ОЕРТН	00010 WATER TEMP	003u0	00077 TRANSP SECCHI	00094 CNDUCTVY F1ELD	00400 PH	0041u T ALK CACU3	-00630 NO26NO3 N-TOTAL	00610 NH3-N TOTAL	00665 PHOS-TOT	00666 PH0S-DIS
TO	DAY	FEET	CENT	MG/L	INCHES	WICKOWHO	SU	MG/L	MG/L	MG/L	MG/L P	MG/L P
72/06/13			22.8	10.6	36	505	8.50	194	U.350	0.060	U.046	0.033
	_	0 0005	21.0	9.0		505	8.40	195	0.370	0.020	0.052	0.031
	_	0 ûu10	20.6	8.2		510	8.30	195	0.340	0.050	0.050	0.036
72/09/17	14 2	6 0000			36	445	8.35	168	0.310	0.100	0.057	0.020
	14 2	6 0004	19.4	7.5		455	8.05	170	0.350	0.110	0.052	0.018
	14 2	6 0007	19.5	7.7		450	8.08	170	0.340	0.070	0.052	0.016
72/11/12	15 5	0 0000			60	500	7.90	194	0.820	0.100	0.027	0.008
	15 5	0 0006	7.1	10.4		500	8.00	197	u.820	0.110	0.029	0.010

				32217
DATE	TIM	E	DEPTH	CHLKPHYL
FROM	OF			Á
10	DAY	(FEET	UG/L
72/06/13	14	30	0000	53 . 5J
72/09/17	14	26	0000	26.0J
72/11/12	12	20	0000	33.4J

J VALUE KNOWN TO BE IN ERROR