U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EUTROPHICATION SURVEY

WORKING PAPER SERIES

REPORT
ON
GRAND LAKE
CHICOT COUNTY
ARKANSAS
EPA REGION VI
WORKING PAPER No. 488

CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON and ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA

REPORT
ON
GRAND LAKE
CHICOT COUNTY
ARKANSAS
EPA REGION VI
WORKING PAPER No. 488

WITH THE COOPERATION OF THE
ARKANSAS DEPARTMENT OF POLLUTION
CONTROL AND ECOLOGY
AND THE
ARKANSAS NATIONAL GUARD
JANUARY, 1977

CONTENTS

	Page
Foreword	ii
List of Arkansas Study Lakes	iv
Lake and Drainage Area Map	v
Sections	
I. Introduction	1
II. Conclusions	1
III. Lake Characteristics	3
IV. Lake Water Quality Summary	4
V. Literature Reviewed	9
VI. Appendices	10

FOREWORD

The National Eutrophication Survey was initiated in 1972 in response to an Administration commitment to investigate the nation-wide threat of accelerated eutrophication to freshwater lakes and reservoirs.

OBJECTIVES

The Survey was designed to develop, in conjunction with state environmental agencies, information on nutrient sources, concentrations, and impact on selected freshwater lakes as a basis for formulating comprehensive and coordinated national, regional, and state management practices relating to point source discharge reduction and nonpoint source pollution abatement in lake watersheds.

ANALYTIC APPROACH

The mathematical and statistical procedures selected for the Survey's eutrophication analysis are based on related concepts that:

- a. A generalized representation or model relating sources, concentrations, and impacts can be constructed.
- b. By applying measurements of relevant parameters associated with lake degradation, the generalized model can be transformed into an operational representation of a lake, its drainage basin, and related nutrients.
- c. With such a transformation, an assessment of the potential for eutrophication control can be made.

LAKE ANALYSIS

In this report, the first stage of evaluation of lake and watershed data collected from the study lake and its drainage basin is documented. The report is formatted to provide state environmental agencies with specific information for basin planning [\$303(e)], water quality criteria/standards review [\$303(c)], clean lakes [\$314(a,b)], and water quality monitoring [\$106 and \$305(b)] activities mandated by the Federal Water Pollution Control Act Amendments of 1972.

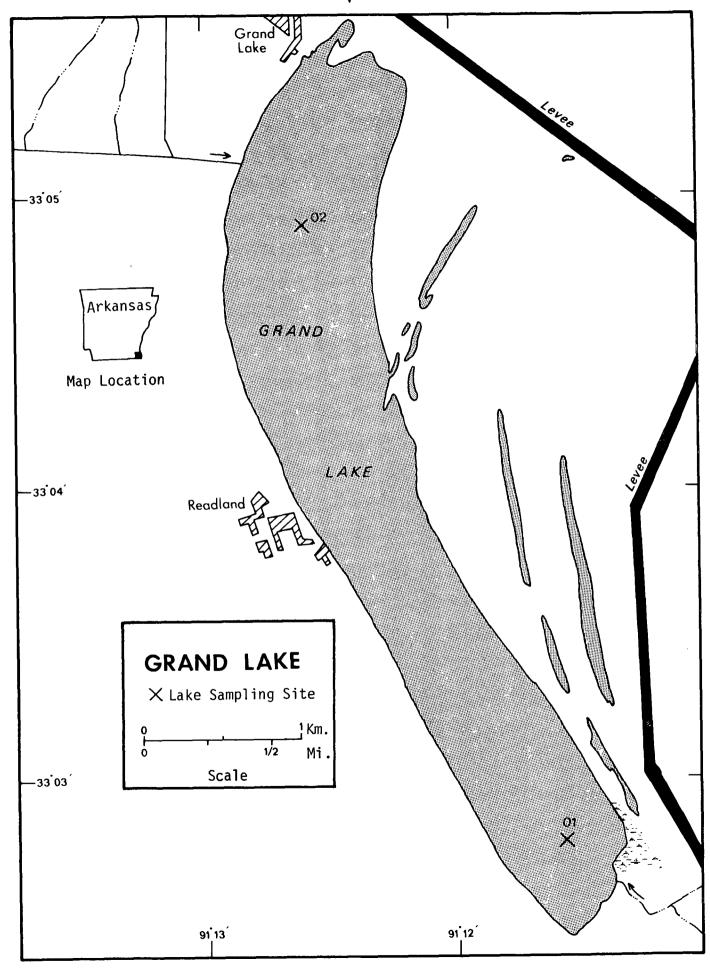
Beyond the single lake analysis, broader based correlations between nutrient concentrations (and loading) and trophic condition are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation's freshwater lakes. Likewise, multivariate evaluations for the relationships between land use, nutrient export, and trophic condition, by lake class or use, are being developed to assist in the formulation of planning guidelines and policies by the U.S. Environmental Protection Agency and to augment plans implementation by the states.

ACKNOWLEDGMENTS

The staff of the National Eutrophication Survey (Office of Research and Development, U.S. Environmental Protection Agency) expresses sincere appreciation to the Arkansas Department of Pollution Control and Ecology for professional involvement, to the Arkansas National Guard for conducting the tributary sampling phase of the Survey, and to those Arkansas wastewater treatment plant operators who provided effluent samples and flow data.

The staff of the Water Division of the Arkansas Department of Pollution Control and Ecology provided invaluable lake documentation and counsel during the Survey, reviewed the preliminary reports and provided critiques most useful in the preparation of this Working Paper series.

Major General Thomas C. Armstrong, the Adjutant General of Arkansas, and Project Officer Colonel Lavaun M. James, who directed the volunteer efforts of the Arkansas National Guardsmen, are also gratefully acknowledged for their assistance to the Survey.


NATIONAL EUTROPHICATION SURVEY

STUDY LAKES

STATE OF ARKANSAS

LAKE NAME COUNTY Benton, Carroll, Washington Beaver Crittenden, St. Francis Blackfish Blue Mountain Logan, Yell Bull Shoals Baxter, Boone, Marion (Taney, Ozark in MO) Garland, Hot Spring Catherine Chicot Chicot Clark, Hot Spring DeGray Lafayette Erling Chicot Grand Greer's Ferry Van Buren, Cleburne Hamilton Garland Hempstead, Howard, Little River, Millwood Sevier Perry, Yell Nimrod Norfork Baxter, Fulton (Ozark in MO) Ouachita Garland, Montgomery Table Rock Boone, Carroll (Barry,

Taney in MO)

REPORT ON GRAND LAKE, ARKANSAS STORET NO. 0509

I. INTRODUCTION

Grand Lake was included in the National Eutrophication
Survey (NES) as a water body of special interest to the
Arkansas Department of Pollution Control and Ecology. Tributaries and nutrient sources were not sampled, and this report relates only to the data obtained from lake sampling.

II. CONCLUSIONS

A. Trophic Condition:*

Grand Lake is considered eutrophic, i.e., nutrient rich and highly productive, on the basis of Survey data and field observations. Whether such nutrient enrichment is to be considered beneficial or deleterious is determined by its actual or potential impact upon designated beneficial water uses of the lake.

Chlorophyll <u>a</u> levels ranged from 30.2 μ g/l in the spring to 103.0 μ g/l in the summer with a mean of 62.9 μ g/l. Mean Secchi disc visibility was 51.6 cm (20 inches). Of the 16 Arkansas lakes sampled in 1974, 2 had greater median total phosphorus levels, 15 had greater median inorganic nitrogen values, and 2 had greater median orthophosphorus levels than Grand Lake.

^{*}See Appendix C

Survey limnologists reported an algal bloom during autumn sampling and many submerged, emergent and floating aquatic macrophytes along the shoreline areas during all three sampling seasons.

B. Rate-Limiting Nutrient:

Algal assay results indicate that Grand Lake is limited by available nitrogen. Spikes with nitrogen alone or nitrogen and phosphorus simultaneously resulted in increased assay yields. The addition of orthophosphorus alone did not produce a growth response. The ratios of total inorganic nitrogen to orthophosphorus (N/P) in the lake data further substantiate nitrogen limitation.

III. LAKE CHARACTERISTICS

- A. Lake Morphometry:*
 - 1. Surface area: 5.67 km^2 .
 - 2. Mean depth: 2.1 meters.
 - 3. Maximum depth: 4.0 meters.
 - 4. Volume: $12.088 \times 10^6 \text{ m}^3$.
- B. Precipitation:
 - 1. Year of sampling: 161.3 cm.
 - 2. Mean annual: 160.3 cm.

IV. LAKE WATER QUALITY SUMMARY

Grand Lake was sampled three times during the open-water season of 1974 by means of a pontoon-equipped Huey helicopter. Each time, samples for physical and chemical parameters were collected from two stations on the lake and from a number of depths at each station (see map, page i). During each visit, depth-integrated samples were collected from each station for chlorophyll <u>a</u> analysis and phytoplankton identification and enumeration. During the first visit, 18.9-liter depth-integrated samples were composited for algal assays. Maximum depths sampled were 2.4 meters at Station 01 and 1.5 meters at Station 02. For a more detailed explanation of NES methods, see NES Working Paper No. 175.

The results obtained are presented in full in Appendix B and are summarized in III-A for waters at the surface and at the maximum depth for each site. Results of the phytoplankton counts and chlorophyll <u>a</u> determinations are included in III-B. Results of the limiting nutrient study are presented in III-C.

A. PHYSICAL AND CHEMICAL CHARACTERISTICS

			(3	/26/74)) ((6/ 4/74)				(10/16/74)			
			5000	= 2	DEPT			5000	s = 5	MAX DEPTH		Seed	= 2	MAX UEPTH		
PARAMETER	No	PAN	IGE	MEDIAN	OMETE		۷ø	HANGE	MEU I AN	HANGE (METERS)	Ио	HANGE	MEDIAN	RANGE (METE		
TEMPERATURE (DEG CEN	Ŧ)															
01.5 M DEPTH	6	12.2-	12.3	12.2	0.0-	1.5	4	26.0- 27.2	26.6	0.0- 1.5	4	18.6- 19.1	18.7	0.0-	1.5	
MAX DEPTHAN	٤	12.2-	_	12.2	1.5-		2	26.0- 26.5	26.3	1.2- 1.5	5	18.5- 19.1	18.8	1.5-		
DISSOLVED OXYGEN (MG.	/L)															
01.5 M UEPTH	4	10.8-	11.0	10.9	0.6-	1.5	1	13.0- 13.0	13.0	0.0- 0.0	4	6.6- 7.8	7.3	0.0-	1.5	
MAX DEPTH##	2	10.8-	11.0	10.9	1.5-	1.5	0	*****	****	0000-0000	2	6.6- 7.6	7.1	1.5-	2.4	
CONDUCTIVITY (UMHOS)																
01.5 M DEPTH	- 6	158	158.	158.	0.0-	1.5	4	236 247.	242.	0.0- 1.5	2	161 161.	161.	0.0-	1.5	
MAX DEPTHOO	5	158	158.	158.	1.5-	1.5	ے	243 247.	245.	1.2- 1.5	1	161 161.	161.	1.5-	1.5	
PH (STANDARD UNITS)																
01.5 M DEPTH	4	8.3-	8.5	8.5	0.0-	1.5	4	8.2- 9.1	8.9	0.0- 1.5	4	7.8- 7.9	7.9	0.0-	1.5	
MAX DEPTH##	5	8.3-	8.5	8.4	1.5-	1.5	S	8.2- 9.0	8.6	1.2- 1.5	5	7.9- 7.9	7.9	1.5-	2.4	
TOTAL ALKALINITY (MG	/L)															
01.5 M DEPTH	4	96	_	97.	0.0-		4	89 95.	91.	0.0- 1.5	4	94 97.	95.	0.0-		
MAX DEPTHOS	S	96	97.	97.	1.5-	1.5	2	91 95.	93.	1.2- 1.5	2	95 95.	95.	1.5-	2.4	
TOTAL P (MG/L)																
01.5 M DEPTH		0.069-0			0.0-			0.073-0.120		0.0- 1.5		0.120-0.136	_	0.0-		
MAX DEPTHOO	2	0.069-0	.101	0.085	1.5-	1.5	2	0.081-0.088	0.084	1.2- 1.5	2	0.120-0.134	0.127	1.5-	2.4	
DISSOLVED OFTHO P (M				_												
01.5 M DEPTH		0.027-0	-		0.0-	_		0.018-0.025	0.020	0.0- 1.5		0.014-0.021	0.015	0.0-		
MAX DEPTHON	2	0.028-0	.030	0.029	1.5-	1.5	5	0.019-0.025	0.022	1.2- 1.5	5	0.014-0.015	0.014	1.5-	2.4	
NO2+NO3 (MG/L)			. 1													
01.5 M DEPTH		0.030-0			0.0-			0.070-0.140	0.080	0.0- 1.5		0.020-0.020	0.020	0.0-		
MAX DEPTHER	2	0.030-0	0.030	0.030	1.5-	1.5	2	0.070-0.080	0.075	1.2- 1.5	2	0.020-0.020	0.020	1.5-	2.4	
AMMONIA (MG/L)																
01.5 M DEPTH		0.040-0			0.0-			0.050-0.090	0.060	0.0- 1.5		0.040-0.080	0.040	0.0-		
MAX DEPTH##	2	0.040-0	.070	0.055	1.5-	1.5	5	0.050-0.090	0.070	1.2- 1.5	5	0.030-0.040	0.035	1.5-	2.4	
KJELDAHL N (MG/L)												. 200 2 4				
01.5 M DEPTH		0.900-1		1.000	0.0-			1.100-1.800		0.0- 1.5		1.200-3.000	1.400	0.0-		
MAX DEPTH##	2	0.900-1	.000	0.950	1.5-	1.5	2	1.200-1.300	1.250	1.2- 1.5	2	1.100-1.200	1.150	1.5-	2.4	
SECCHI DISC (METERS)	•							0.5			_		•			
	2	0.6-	0.6	0.6			2	0.5- 0.6	0.5		Š	0.4- 0.5	0.4			

* N = NO. OF SAMPLES

** MAXIMUM DEPTH SAMPLED AT EACH SITE

*** S = NO. OF SITES SAMPLED ON THIS DATE

B. Biological Characteristics:

1. Phytoplankton -

Sampling Date		ninant nera	Algal Units per ml
03/26/74	1. 2. 3. 4. 5.	Nitzschia Stephanodiscus Flagellates Chlamydomonas Melosira	4,635 3,813 2,467 2,093 1,794
		Other genera	8,298
		Total	23,100
06/04/74	1. 2. 3. 4. 5.	Dactylococcopsis Stephanodiscus Merismopedia Microcystis Lyngbya	52,408 23,206 16,165 11,472 10,429
		Other genera	39,112
		Total	152,792
10/16/74	1. 2. 3. 4. 5.	Dactylococcopsis Oscillatoria Centric Diatom Microcystis Merismopedia	3,523 3,030 2,924 2,537 2,008
		Other genera	3,171
		Total	17,193

2. Chlorophyll \underline{a} -

Sampling Date	Station Number	Chlorophyll <u>a</u> $(\mu g/1)$
03/26/74	01 02	30.2 36.3
06/04/74	01 02	103.0 103.0
10/16/74	01 02	55.7 49.0

C. Limiting Nutrient Study:

1. Autoclaved, filtered, and nutrient spiked - 03/26/74

Spike (mg/l)	Ortho P Conc. (mg/1)	Inorganic N Conc. (mg/l)	Maximum Yield (mg/l-dry wt.)
Control	0.020	0.039	3.8
0.05 P	0.070	0.039	3.3
0.05 P + 1.0 N	0.070	1.039	29.3
1.00 N	0.020	1.039	13.2

2. Discussion -

The control yield of the assay alga, <u>Selenastrum capricornutum</u>, indicates that the potential for primary production was high on Grand Lake during the spring sampling period.

The lake was nitrogen limited at that time as indicated by the increased yield of the test alga in response to an addition of nitrogen. Spikes with nitrogen and phosphorus simultaneously resulted in maximum yield. Spikes with orthophosphorus alone did not produce a response significantly beyond the control yield.

The autumn algal assay results are not considered reliable because of a significant change in the nutrient levels between the time the sample was collected and the assay was begun.

The mean total inorganic nitrogen to orthophosphorus ratios (N/P) in the lake data were 3/1 in the spring, 8/1 in the summer and 4/1 in the fall, suggesting primary limitation by nitrogen (an N/P ratio of 14/1 or greater generally reflects phosphorus limitation).

V. LITERATURE REVIEWED

- U.S. Environmental Protection Agency. 1975. National Eutrophication Survey Methods 1973-1976. Working Paper No. 175. National Environmental Research Center, Las Vegas, Nevada, and Pacific Northwest Environmental Research Laboratory, Corvallis, Oregon.
- Woomer, Neil. 1974. Personal Communication (morphometry data of Arkansas water bodies). Department of Pollution Control and Ecology, Little Rock, Arkansas.

VI. APPENDICES

APPENDIX A
CONVERSION FACTORS

CONVERSION FACTORS

Hectares x = 2.471 = acres

Kilometers \times 0.6214 = miles

Meters x = 3.281 = feet

Cubic meters $\times 8.107 \times 10^{-4} = acre/feet$

Square kilometers x 0.3861 = square miles

Cubic meters/sec x 35.315 = cubic feet/sec

Centimeters \times 0.3937 = inches

Kilograms x 2.205 = pounds

Kilograms/square kilometer x 5.711 = 1bs/square mile

APPENDIX B PHYSICAL AND CHEMICAL DATA

CONTRACT FE TIL TE UTTE I TO THE NATE EUTPOPHICATIO SHIPT EPA-LAS VEGAS

650901 33 03 05.0 091 11 50.0 GHAND LAKE US ARKANSAS

UATE FROV TO							1164 3	116MALES 3		2111202 0003 FEET DEPTH		
	TIME UF DAY	FELT	TOTALS FEMP CENT	98799 90 467 <u>1</u>	UHUTT THENSP SECCHI INCHES	00054 CNDUCTVY FIELD MICHOMHO	00400 Pri Su	00410 1 4LK CACU3 MG/L	UUSIO NMB-N TUTAL MG/L	00625 TOT KJEL N MG/L	00630 NO28NO3 N-TOTAL MG/L	00571 PHOS-DIS ORTHO MG/L P
74/03/25		5 0000 5 0002	5.51	10.0	24	158 158	£.45	98	0.050	1 • 4 0 0	0.040	0.030
		25 0005	12.2	10.0		158	8.35	47	0.040	0.900	0.030	0.028
74/05/04	•	30 0000	27.2		18	236	8.80	89	0.060	1.800	0.140	0.021
		30 0005	26.0			247	8.20	95	0.090	1.200	0.080	0.025
74/10/16	10 2	5 0000	18.8	7.6	18		7.85	94	0.080	3.000	0.020	0.014
		24 0005	10.6	7.0			7.77	97	0.040	1.200	0.020K	0.021
	10 8	5~ 0008	10.5	7.5			7.84	45	0.030	1.100	0.020	0.015

			00665	32217	00031
DATE	TIME OF	LPTH	PHOS-TOT	CHLAPAYL	INCOT LI
FROM	0ř			Д	REMNING
TO	DAY F	EET	MG/L P	UG/L	PERCENT
74/03/26	10 25	0000	0.100	30. <i>č</i>	
	10 25	0005	(1.063		
74/06/04	10 30	0000	0.120	103.0	
	10 30	0004			1 • ü
	10 30	0005	0.088		
74/10/16	10 25	0000	0.136	55.7	
. ,	10 25	0005	0.122		1.0
	10 25	0004	0.134		

K VALUE KNOWN TO BE LESS THAN ____

050902 33 04 45.0 091 12 40.0 GHAND LAKE 05 ARKANSAS

11EPALES 2111202 3 0007 FEET UENTE

											• •			
DATE FROM TO	TIME OF DAY	DEPTH FEET	00010 WATEH TEMP CENT	00 3 0 5 00 40 6	00077 TRANSP SECCHI INCHES	00094 CNDUCTVY FIELU MICHOMHO	00400 PH St	U0410 T ALK CACO3 MG/L	00610 NH3-N TOTAL MG/L	00h25 TOT KJEL N MG/L	06300 6004500 NATOTAL MG/L	00671 PHOS-DIS ORTHO MG/L P		
74/03/26		5 0000	12.3 12.3	11.0	2+	158 158	м.55	96	0.040	1.000	0.030	0.027		
74 404 404	10 4	5 0005	12.2	11.7		158	8.50	96	0.070	1.000	0.030	0.030		
74/06/04	11 0	0 0000	26.7 26.5	13.0	24	241 243	4.10 9.05	90 91	0.060 0.050	1.100	0.080 0.070	0.018 0.019		
74/10/18		0000 000	19.1 19.1	7.8 6.5	14	161 161	7.95 7.87	94 95	0.040 0.040	1.600 1.200	0.020	0.017 0.014		

DATE FROM TO	TIME OF DAY	DEPTH FEET	00665 PHOS-TOT	32217 CHLRPHYL A UG/L	00031 INCOT LT PEMNING PERCENT
74/03/26	10 4	5 0000	0.097	35.3	
74/06/04	10 4	5 0005 0 0000	0.101 0.073	103.0	
	11 0		0.081		1.0
74/10/18	10 5	0 0000	0.128	49.Û	, ,
	10 5 10 5		0.120		1.0

APPENDIX C

PARAMETRIC RANKINGS OF LAKES SAMPLED BY NES IN 1974

STATE OF ARKANSAS

LAKE CODE	LAKE NAME	MEDIAN TOTAL P	MEDIAN INORG N	500- MEAN SEC	MEAN CHLOHA	15- MIN 00	MEDIAN 9 OHTPO PRIC
0501	BEAVER LAKE	0.122	0.330	415.667	3.421	14.900	0.006
0502	HLACKFISH LAME	0.424	1.470	496.125	19.775	12.000	0.040
0503	BLUE MOUNTAIN LAKE	0.05%	0.160	434.000	8.983	14.500	0.010
0504	BULL SHOALS LAKE	0.015	0.380	343.969	3.995	15.000	0.004
0505	LAKE CATHEPINE	0.029	0.180	451.667	14.042	11.800	0.006
0505	LAKE CHICOT	0.162	0.450	486.000	13.722	14.800	0.089
0507	DEGRAY RESERVOIR	0.015	0.130	419.050	12.300	15.000	0.004
0508	LAKE EPLING	0.054	0.120	454.667	13.389	14.600	0.000
0509	GOAND LAKE	0.101	0.090	479.667	62.867	8.400	150.0
0510	LAKE HAMILTON	0.024	0.130	428.111	10.889	14.400	0.006
0511	MILLWOOD LAKE	0.040	0.120	466.778	14.967	9.800	0.008
0512	NIMROD LAKE	0.039	0.160	469.000	15.833	8.800	0.006
0513	NORFOLK LAKE	0.015	0.320	356.321	3.441	15.000	0.005
0514	LAKE OUACHITA	0.015	0.155	389.144	4.344	15.000	0.006
0515	TABLE ROCK LAKE	0.022	0.350	410.778	9.103	15.000	0.007
0516	GREER'S LAKE	0.012	0.140	370.875	3.762	15.000	0.004

PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)

CODE	LAKE NAME	MEDIAN TOTAL P	MEDIAN INOHG N	500- MEAN SEC	MEAN CHLOHA	15- MIN DO	MEDIAN DISS OPTHO P
0501	BEAVE- LAKE	67 (9)	27 (4)	67 (10)	87 (13)	40 (6)	63 (8)
0502	BLACKFISH LAKE	0 (0)	0 (0)	0 (0)	7 (1)	73 (11)	0 (0)
0503	HLUE MOUNTAIN LAKE	20 (3)	47 (7)	13 (2)	67 (10)	57 (8)	27 (4)
0504	BULL SHOALS LAKE	90 (13)	13 (2)	100 (15)	80 (12)	17 (0)	93 (13)
0505	LAKE CATHERINE	47 (7)	40 (6)	47 (7)	27 (4)	80 (12)	63 (8)
0506	LAKE CHICOT	7 (1)	7 (1)	7 (1)	33 (5)	47 (7)	7 (1)
0507	DEGRAY RESERVOIR	73 (11)	77 (11)	60 (9)	47 (7)	17 (0)	93 (13)
0508	LAKE ERLING	27 (4)	90 (13)	40 (6)	40 (6)	57 (8)	20 (3)
0509	GRAND LAKE	13 (2)	100 (15)	20 (3)	0 (0)	100 (15)	13 (2)
0510	LAKE HAMILTON	53 (8)	77 (11)	53 (8)	53 (8)	67 (10)	63 (A)
0511	MILLWOOD LAKE	33 (5)	90 (13)	33 (5)	20 (3)	87 (13)	33 (5)
0512	NIMPOD LAKE	40 (6)	53 (8)	27 (4)	13 (2)	93 (14)	47 (7)
0513	NOPFOLK LAKE	80 (12)	33 (5)	93 (14)	100 (15)	17 (0)	80 (12)
0514	LAKE OUACHITA	90 (13)	60 (9)	80 (12)	73 (11)	17 (0)	63 (8)
0515	TABLE ROCK LAKE	63 (9)	20 (3)	73 (11)	60 (9)	17 (0)	40 (6)
0516	GREER'S LAKE	100 (15)	67 (10)	87 (13)	93 (14)	17 (0)	93 (13)