U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EUTROPHICATION SURVEY

WORKING PAPER SERIES

REPORT

ON

BLACK LAKE

NATCHITOCHES AND RED RIVER PARISHES

LOUISIANA

EPA REGION VI

WORKING PAPER No. 531

CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON and ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA

REPORT

ON

BLACK LAKE
NATCHITOCHES AND RED RIVER PARISHES
LOUISIANA

EPA REGION VI

WORKING PAPER No. 531

With the cooperation of the
Louisiana Wild Life and Fisheries Commission

and the
Louisiana National Guard

March, 1977

REPORT ON BLACK LAKE NATCHITOCHES AND RED RIVER PARISHES, LOUISIANA EPA REGION VI

by

National Eutrophication Survey

Water and Land Monitoring Branch
Monitoring Applications Laboratory
Environmental Monitoring & Support Laboratory
Las Vegas, Nevada

and

Eutrophication Survey Branch Corvallis Environmental Research Laboratory Corvallis, Oregon

Working Paper No. 531

OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY

March, 1977

CONTENTS

		<u>Page</u>
Forew	vord	ii
List	of Louisiana Study Lakes	iv
Lake	and Drainage Area Map	V
Secti	ons	
I.	Introduction	1
II.	Conclusions	2
III.	Lake Characteristics	3
IV.	Lake Water Quality Summary	4
٧.	Literature Reviewed	8
VI.	Appendices	9

FOREWORD

The National Eutrophication Survey was initiated in 1972 in response to an Administration commitment to investigate the nation-wide threat of accelerated eutrophication to freshwater lakes and reservoirs.

OBJECTIVES

The Survey was designed to develop, in conjunction with state environmental agencies, information on nutrient sources, concentrations, and impact on selected freshwater lakes as a basis for formulating comprehensive and coordinated national, regional, and state management practices relating to point source discharge reduction and nonpoint source pollution abatement in lake watersheds.

ANALYTIC APPROACH

The mathematical and statistical procedures selected for the Survey's eutrophication analysis are based on related concepts that:

- a. A generalized representation or model relating sources, concentrations, and impacts can be constructed.
- b. By applying measurements of relevant parameters associated with lake degradation, the generalized model can be transformed into an operational representation of a lake, its drainage basin, and related nutrients.
- c. With such a transformation, an assessment of the potential for eutrophication control can be made.

LAKE ANALYSIS

In this report, the first stage of evaluation of lake and watershed data collected from the study lake and its drainage basin is documented. The report is formatted to provide state environmental agencies with specific information for basin planning [§303(e)], water quality criteria/standards review [§303(c)], clean lakes [§314(a,b)], and water quality monitoring [§106 and §305(b)] activities mandated by the Federal Water Pollution Control Act Amendments of 1972.

Beyond the single lake analysis, broader based correlations between nutrient concentrations (and loading) and trophic condition are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation's freshwater lakes. Likewise, multivariate evaluations for the relationships between land use, nutrient export, and trophic condition, by lake class or use, are being developed to assist in the formulation of planning guidelines and policies by the U.S. Environmental Protection Agency and to augment plans implementation by the states.

ACKNOWLEDGMENTS

The staff of the National Eutrophication Survey (Office of Research and Development, U.S. Environmental Protection Agency) expresses sincere appreciation to the Louisiana Wild Life and Fisheries Commission, Division of Water Pollution Control for professional involvement, to the Louisiana National Guard for conducting the tributary sampling phase of the Survey, and to those Louisiana wastewater treatment plant operators who provided effluent samples and flow data.

Robert A. Lafleur, Chief; J. Dale Givens, Assistant Chief; Lewis R. Still, Biologist; Louis Johnson, Biologist; Lee Caubarreaux, Biologist; Darrell Reed, Engineer; Dempsey Alford, Biologist; and Elwood Goodwin, Water Quality Control Technician, all of the Louisiana Wild Life and Fisheries Commission, Division of Water Pollution Control reviewed the preliminary reports and provided critiques most useful in the preparation of this Working Paper Series.

Major General O'Neil Daigle, Jr., the Adjutant General of Louisiana, and Project Officer Colonel Lawrence P. Dupre, who directed the volunteer efforts of the Louisiana National Guardsmen, are also gratefully acknowledged for their assistance to the Survey.

NATIONAL EUTROPHICATION SURVEY

STUDY LAKES

STATE OF OKLAHOMA

LAKE NAME

Anacoco Lake

Lake Bistineau

Black Bayou

Black Lake

Bruin Lake

Bundicks Lake

Caddo Lake

Cocodrie Lake

Cocodrie Lake (Lower)

Concordia Lake

Cotile Lake

Cross Lake

D'Arbonne Lake

False River Lake

Indian Creek Reservoir

Saline Lake

Turkey Creek Lake

Lake Vernon

Lake Verret

PARISH

Vernon

Bienville, Webster

Caddo

Natchitoches and Red River

Tensas

Beauregard

Caddo (Menon and Harrison

in Texas)

Concordia

Rapides

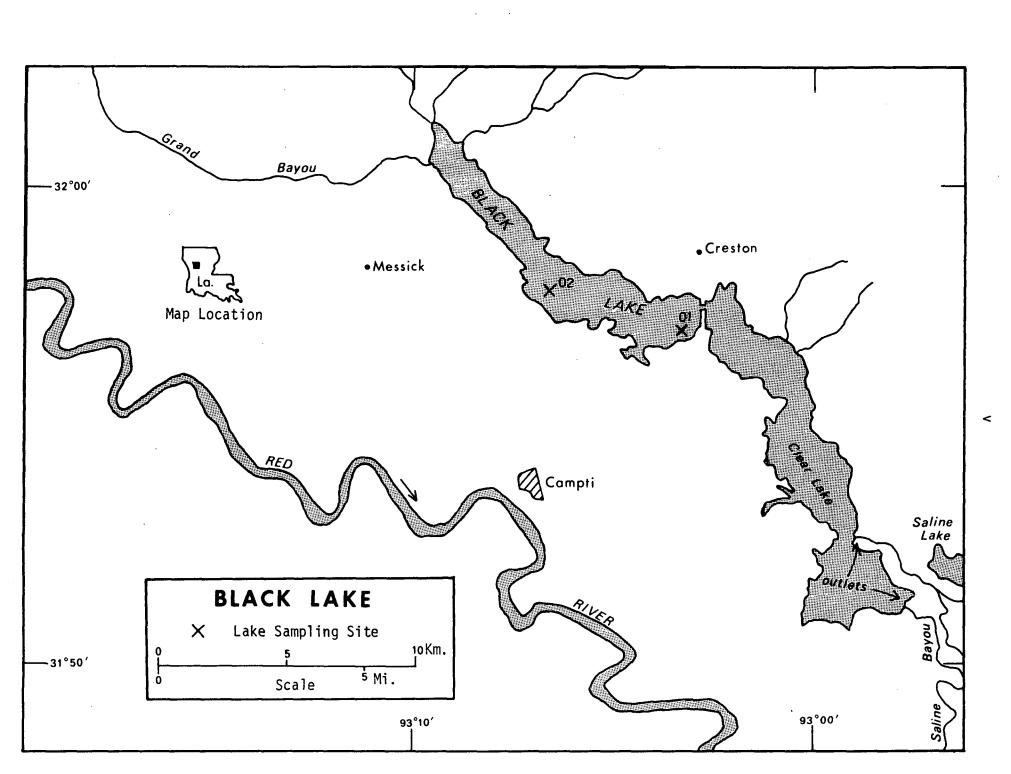
Concordia

Rapides

Caddo

Union

Pointe Coupee


Rapides

LaSalle

Franklin

Vernon

Assumption

REPORT ON BLACK LAKE, LOUISIANA STORET NO. 2219

I. INTRODUCTION

Black Lake was included in the National Eutrophication

Survey (NES) as a water body of interest to the Louisiana Stream

Control Commission and Louisiana Wild Life and Fisheries Commission.

Tributaries and nutrient sources were not sampled, and this report relates only to the data obtained from lake sampling.

Black Lake is a reservoir located in Natchitoches and Red River Parishes in Northwestern Louisiana. Most of the area known as Black Lake is thick with vegetation, while much of the adjacent area known as Clear Lake is open water. The lakes, which have been designated the Northwest Game and Fish Preserve, are used heavily for recreation, and there exist numerous camps in the south shore of Clear Lake. The remainder of the Black-Clear shoreline is sparsely developed (Shampine, 1971).

Runoff from logging operations, salt water and septic tank contributions from shoreline campgrounds are the major causes of water quality deterioration in Black Lake. In addition, future strip mining for lignite may result in further lake degradation (Leslie Johnson, personal communication).

II. CONCLUSIONS

A. Trophic Condition:*

Survey data indicate that Black Lake is eutrophic, i.e., nutrient rich and highly productive. Whether such nutrient enrichment is to be considered beneficial or deleterious is determined by its actual or potential impact upon designated beneficial water uses of each lake.

Chlorophyll <u>a</u> levels ranged from 8.2 μ g/l to 19.1 μ g/l with a mean of 12.7 μ g/l. Of the 19 Louisiana water bodies sampled in 1974, 7 had greater median total phosphorus, 7 had greater median orthophosphorus, 4 had greater median inorganic nitrogen, and 12 had lower mean Secchi disc transparency than Black Lake.

Survey limnologists did not report any nuisance conditions in the lake. However, the Louisiana Wild Life and Fisheries Commission (Leslie Johnson, personal communication) reports that Black Lake has had chronic submerged weed problems which were temporarily suppressed at the time of sampling by a water draw-down program completed a short time before.

B. Rate-Limiting Nutrient:

No algal assay samples were collected at Black Lake. However, the lake data suggest phosphorus limitation during the May sampling round and nitrogen limitation in August.

^{*}See Appendix C.

III. LAKE CHARACTERISTICS

- Lake Morphometry:* Α.
 - Surface area: 52.24 km². Α.
 - Mean depth: 2.6 meters. В.
 - С. Maximum depth: 4.6 meters. Volume: $134.450 \times 106 \text{ m}^3$.
- Precipitation: В.
 - Year of sampling: 179.9 cm. Mean annual: 128.1 cm. Α.
 - В.

^{*}Provided by the State of Louisiana.

IV. LAKE WATER QUALITY SUMMARY

Black Lake was sampled two times during the open-water season of 1974 by means of a pontoon-equipped Huey helicopter. Each time, samples for physical and chemical parameters were collected from two stations on the lake and from one or more depths at each station (see map, page v). During each visit, depth-integrated samples were collected from each station for chlorophyll <u>a</u> analysis and phytoplankton identification and enumeration. Maximum depths sampled were 1.5 meters at Station 01 and 0.6 meters at Station 02. For a more detailed explanation of NES methods, see NES Working Paper No. 175.

The results obtained are presented in full in Appendix B and are summarized in IV-A for waters at the surface and at the maximum depth for each site. Results of the phytoplankton counts and chlorophyll \underline{a} determinations are included in IV-B. Results of the limiting nutrient study are presented in IV-C.

		(=	/30/74)				(8	/23/74)	•
				MAX					XAM
		5000	> = 2	DEPTH			5000	= 2	DEPTH
				PANGE					HANGE
PARAMETER	No	MANGE	MEDIAN	(METE	43)	N₽	RANGE	MEDIAN	(METERS)
TEMPERATURE (DEG CENT				_					
01.5 M DEPTH	4	25.4- 28.5	26.1	0.0-	1.5	3	30.0- 30.0	30.0	0.0- 0.6
MAX DEPTHOS	5	25.4- 26.8	26.1	0.6-	1.5	2	30.0- 30.0	30.0	0.0- 0.6
DICCOLVED DAYGEN AND									
DISSOLVED DXYGEN (MG/ 01.5 M DEPTH	2 ر	4 4 C	9 0	n 4 -	, ,	2	.	4.3	0 0 0 4
* -	_	3.4- 4.4	3.9	0.6-	1.5	3	5.6- 6.4	6.2	0.0- 0.6
MAX DEPTHOS	2	3.4- 4.4	3.9	0.6-	1.5	2	5.6- 6.4	6.0	0.0- 0.6
CONDUCTIVITY (UMHOS)			•						
01.5 M DEPTH	4	110 127.	112.	0.0-	1.5	3	125 175.	125.	0.0- 0.6
MAX DEPTHON	ż	110 113.	115.	0.6-	1.5	5	125 175.	150.	0.0- 0.6
MAX DEFINE	_	110 115.	110.	.,.0-	1.0	۲.,	1234- 1754	150.	0.0- 0.6
PH (STANDARD UNITS)									
01.5 M DEPTH .	4	6.2- 7.0	6.3	0.0-	1.5	3	6.9- 7.1	7.0	0.0- 0.6
MAX DEPTHAP	2	6.2- 6.4	6.3	0.6-	1.5	ž	6.9- 7.0	6.9	0.0- 0.6
					_	_			
TOTAL ALKALINITY (MG/	L)								
01.5 M DEPTH	4	10 10.	10.	0.0-	1.5	3	15 16.	15.	0.0- 0.6
MAX DEPTH##	2	10 10.	10.	0.6-	1.5	2	15 15.	15.	0.0- 0.6
TOTAL P (MG/L)									
01.5 M DEPTH	4	0.064-0.077	0.066	0.0-	1.5	3	0.120-0.134	0.127	0.0- 0.6
MAX DEPTH##	2	0.054-0.077	0.070	0.6-	1.5	5	0.120-0.127	0.123	0.0- 0.6
DISSOLVED ONTHO P (MG									
01.5 M DEPTH		0.010-0.015		0.0-	1.5	3		0.086	0.0- 0.6
MAX DEPTHOS	2	0.010-0.015	0.012	0.6-	1.5	2	0.086-0.089	0.087	0.0- 0.6
NO2+NO3 (MG/L)		0.030 // 1/0		• •		_			
01.5 M DEPTH		0.070-0.140		0.0-	1.5	3		0.020	0.0- 0.6
MAX DEPTH##	ς.	0.080-0.140	0.116	0.6-	1.5	S	0.020-0.020	0.020	0.0- 0.6
AMMONIA (MG/L)									
01.5 M DEPTH	4	0.080-0.120	0.090	0.0-	1.5	3	0.040-0.070	0.050	0.0- 0.6
MAX DEPTHON		0.080-0.120	0.100	0.6-	1.5	2		0.055	0.0- 0.6
MAX DEF (TT-	۲.	0.000-0.120	0.100	·/ • U =	1.0	4	0.0-0-0.010	0.035	0.0- 0.0
KJELDAHL N (MG/L)									
01.5 M DEPTH	4	0.500-0.800	0.500	0.0-	1.5	3	0.400-1.200	0.600	0.0- 0.6
MAX DEPTHER		0.500-0.500		0.6-	1.5	Š		0.500	0.0- 0.6
v v verment v v v	-					-	· · · · · · · · · · · · · · · · · ·		
SECCHI DISC (METERS)									
·	2	0.9- 1.4	1.1			1	1.2- 1.2	1.2	

* N = NO. OF SAMPLES

** MAXIMUM DEPTH SAMPLED AT EACH SITE

*** S = NO. OF SITES SAMPLED ON THIS DATE

.

B. Biological Characteristics:

1. Phytoplankton -

Sampling Date	Domin Gener		Algal Units per ml
05/30/74	2. 3. 4.	Flagellates Kirchneriella Attheya Blue-green filament Cryptomonas	1,199 1,133 1,066 799 666
		Other genera	5,131
		Total	9,994
08/23/74	2. 3. 4.	Lyngbya Dactylococcopsis Anabaenopsis Aphanothece Spermatozoopsis	9,900 2,903 1,340 670 670
		Other genera	3,420
•		Total	18,903

2. Chlorophyll <u>a</u>

Sampling Date	Station Number	Chlorophyll <u>a</u> (µg/liter)
05/30/74	01 02	19.1 8.2
08/23/74	01 02	10.9

C. Limiting Nutrient Study:

Black Lake was not sampled in either March or November 1974. Consequently, no algal assay sample for this lake was obtained. However, the lake data indicate that Black Lake was phosphorus limited in May; i.e., the mean inorganic nitrogen to orthophosphorus (N/P) ratio was 16/1. Nitrogen limitation was indicated in August (the mean N/P ratio was less than 2/1, and nitrogen limitation would be expected). The overwhelming dominance of the algal flora by blue-green forms in August substantiates nitrogen limitation at that time.

V. LITERATURE REVIEWED

- Johnson, Leslie. 1977. Personal Communication. (water quality of Black Lake). Louisiana Wild Life and Fisheries Commission. New Orleans, Louisiana.
- Shampine, W.J. 1971. Chemical Biological and Physical Data for the Major Lakes and Reservoirs in Louisiana. Louisiana Dept. of Public Works, Report #5. Baton Rouge, La.
- U.S. Environmental Protection Agency 1975. National Eutrophication Survey Methods 1973-1976. Working Paper No. 175. Environmental Monitoring and Support Laboratory, Las Vegas, Nevada and Corvallis Environmental Research Laboratory, Corvallis, Oregon.

VI. APPENDICES

APPENDIX A CONVERSION FACTORS

CONVERSION FACTORS

Hectares x = 2.471 = acres

Kilometers \times 0.6214 = miles

Meters x 3.281 = feet

Cubic meters $\times 8.107 \times 10^{-4} = acre/feet$

Square kilometers x = 0.3861 = square miles

Cubic meters/sec x 35.315 = cubic feet/sec

Centimeters $x \ 0.3937 = inches$

Kilograms x 2.205 = pounds

Kilograms/square kilometer x 5.711 = 1bs/square mile

APPENDIX B PHYSICAL AND CHEMICAL DATA

STORET RETRIEVAL DATE 75/12/11 - NATE EUTROPHICATION SURVEY EPA-LAS VEGAS

221901 31 5H 00.0 U93 03 00.0 BLACK LAKE 22 LOUISIANA

					00300 00.		00094 CNDUCTVY FIELD MICROMHO	11EPALES 4		2111202 0010 FEET DEHTH				
DATE FROM TO	TI-E OF DAY	DEPTH FEET	00010 MATER TEMP CENT	00077 THANSP SECCHI INCHES		00400 Ph SU		00410 T ALK CACO3 MG/L	00610 NH3-N TOTAL MG/L	MG/L N 00455	00630 NU28NO3 N-TOTAL MG/L	00671 PHOS-DIS ORTHO MG/L P		
74/09 74/09		14 3 16 5	0 0000 0 0005 0 0000 0 0002	28.5 25.8 30.0 30.0	4.4 6.2 6.4	54	127 113 125 125	7.00 6.40 7.10 7.00	10K 10K 16 15	0.080 0.080 0.050 0.070	0.800 0.500 1.200 0.400	0.070 0.080 0.020K 0.020K	0.011 0.010 0.086 0.086	

DATE FROM TO	TIME OF DAY	DEPTH FEET	00665 PHOS-TOT MG/L P	32217 CHLRPHYL A UG/L	00031 INCDT LT REMNING PERCENT
74/05/30	-	0 0000	0.065 0.064	19.1	1.0
74/08/23	16 5		0.134	10.9	
	-	0 0005	- • •		1.0

K VALUE KNOWN TO BE LESS THAN INDICATED

STOPET RETPIEVAL DATE 75/12/11 NATH EUTROPHICATION SURVEY EPA-LAS VEGAS

221902 31 59 00.0 093 06 00.0 BLACK LAKE 22 LOUISIANA

11EPALES

2111202 0005 FEET - LE-TH

DATE FPOM TO	TIME OF DAY	DEPTH FEET	00010 WATER TEMP CENT	00300 DO MG/L	00077 THANSP SECCHI INCHES	00094 CNDUCTVY FIELD MICROMHO	00400 PH StJ	00410 F ALK CACO3 MG/L	00610 NH3-N TOTAL MG/L	00625 TOT KJEL N MG/L	0630 EONXSON LATOT-N UNDM	00h71 PHOS-DIS ORTHO MG/L P
74/05/30	14 4	5 0002	25.4 25.4	3.4	36	110 110	6.20 6.20	10K 10K	0.100	0.500 0.500	0.110 0.140	0.011
74/08/23	16 0	5 0000	30.0	5.6	48	175	6.90	15	0.040	0.600	0.020K	0.059

DATE FROM	TIME DEPTH	00665 PHOS-TOT	32217 CHLRPHYL A	00031 INCUT LT REMNING
ТО	DAY FEET	MG/L P	UG/L	PERCENT
74/05/30	14 45 0000 14 45 0002	0.068 0.077	8.2	
74/08/23	16 05 0000 16 05 0005	0.127		1.0L

K VALUE KNOWN TO BE LESS THAN INDICATED

APPENDIX C

PARAMETRIC RANKINGS OF LAKES SAMPLED BY NES IN 1974

STATE OF LOUISIANA

LAKE DATA TO BE USED IN BANKINGS

LAKE	LAKE NAME	MEDIAN TOTAL P	MEDIAN N DRONI	500+ MEAN SEC	MEAN Chlora	15+ MIN 00 (MEDIAN ISS ORTHO P
2201	ANACOCO LAKE	0.131	⊍•დჟე	455.833	8.700	10.400	0.007
5515	BRUIN LAKE	0.057	0.250	450.333	16.350	15.000	0.012
2203	LAKE BISTINEAU	0.061	0.100	45%.000	12.933	13.200	0.018
2204	BLACK BAYOU	0.045	0.090	453.417.	17.818	12.200	0.009
2205	BUNDICK LAKE	0.157	0.135	464.667	20.467	10.600	0.073
2207	COCODUIE LAKE	0.090	0.400	479.000	35.300	7.700	0.026
8085	COTILE LAKE	0.037	0.100	442.333	12.650	14.000	0.011
5509	CONCORDIA LAKE	0.076	0.080	468.333	32.950	14.800	0.009
2210	CROSS LAKE	0.057	0.080	475.250	38.385	11.400	0.010
2211	D.ARBONNE LAKE	0.038	0.100	458.250	6.800	13.200	0.011
5515	FALSE RIVER LAKE	0.082	0.130	442.500	24.550	14.900	0.023
2213	INDIAN CREEK	0.031	0.150	458.333	21.467	14.800	0.010
2214	SALINE LAKE	0.111	0.350	493.000	15.333	9.600	0.025
2215	TURKEY CREEK LAKE	0.176	0.170	477.833	21.967	14.600	0.033
5519	LAKE VERRET	0.163	0.100	481.428	62.028	12.000	0.056
2217	LAKE VERNON	0.018	0.120	436.667	4.900	14.400	0.007
2219	BLACK LAKE	0.077	0.150	454.000	12.733	11.600	0.015
9220	COCODRIE	0.106	0.050	478.333	33.433	11.800	0.014
4807	CADDO LAKE	0.049	0.070	463.562	20.125	10.000	0.008

PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)

CODE	LAKE NAME	MEDIAN TOTAL P	MEDIAN INORG N	500- MEAN SEC	MEAN CHLOPA	15- MIN DO	MEDIAN DISS ORTHO P
2201	ANACOCO LAKE	92 (16)	83 (14)	47 (12)	89 (16)	83 (15)	94 (17)
2202	BRUIN LAKE	61 (11)	11 (2)	83 (15)	61 (11)	0 (0)	50 (=)
2203	LAKE BISTINEAU	50 (9)	58 (9)	61 (11)	72 (13)	42 (7)	33 (4)
2204	BLACK BAYOU	72 (13)	72 (13)	78 (14)	56 (10)	50 (9)	81 (14)
2205	BIJNDICK LAKE	11 (2)	33 (6)	33 (6)	44 (8)	78 (14)	0 (0)
2207	COCODRIE LAKE	28 (5)	0 (0)	11 (2)	11 (2)	100 (18)	17 (3)
8055	COTILE LAKE	83 (15)	58 (9)	94 (17)	83 (15)	33 (6)	61 (11)
2209	CONCORDIA LAKE	44 (8)	83 (14)	39 (7)	22 (4)	14 (2)	81 (14)
2210	CROSS LAKE	56 (10)	83 (14)	28 (5)	6 (1)	72 (13)	69 (12)
2211	D.ARBONNE LAKE	78 (14)	58 (9)	56 (10)	94 (17)	42 (7)	56 (10)
2212	FALSE RIVER LAKE	33 (6)	39 (7)	89 (16)	28 (5)	6 (1)	28 (5)
2213	INDIAN CREEK	92 (16)	28 (5)	50 (9)	39 (7)	14 (2)	69 (12)
2214	SALINE LAKE	17 (3)	6 (1)	0 (0)	67 (12)	94 (17)	22 (4)
2215	TURKEY CREEK LAKE	0 (0)	17 (3)	22 (4)	33 (6)	22 (4)	11 (2)
2216	LAKE VERRET	6 (1)	58 (9)	6 (1)	0 (0)	56 (10)	6 (1)
2217	LAKE VERNON	100 (18)	44 (8)	100 (18)	100 (18)	28 (5)	100 (18)
2219	BLACK LAKE	39 (7)	22 (4)	72 (13)	78 (14)	67 (12)	39 (7)
2220	COCODRIE	22 (4)	100 (18)	17 (3)	17 (3)	61 (11)	44 (8)
4807	CADDO LAKE	67 (12)	94 (17)	44 (8)	50 (9)	89 (16)	89 (16)