U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EUTROPHICATION SURVEY

WORKING PAPER SERIES

REPORT
ON
SPIRITWOOD LAKE
STUTSMAN COUNTY
NORTH DAKOTA
EPA REGION VIII
WORKING PAPER No. 576

CORVALLIS ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS, OREGON and ENVIRONMENTAL MONITORING & SUPPORT LABORATORY - LAS VEGAS, NEVADA

REPORT
ON
SPIRITWOOD LAKE
STUTSMAN COUNTY
NORTH DAKOTA
EPA REGION VIII
WORKING PAPER No. 576

WITH THE COOPERATION OF THE

NORTH DAKOTA STATE DEPARTMENT OF HEALTH

AND THE

NORTH DAKOTA NATIONAL GUARD

OCTOBER, 1976

CONTENTS

٠		Page
For	eword	ii
Lis	t of North Dakota Study Lakes and Reservoirs	iv
Lak	e and Drainage Area Map	V
Sec	tions	
I.	Introduction	1
II.	Conclusions	1
III.	Lake Characteristics	3
IV.	Lake Water Quality Summary	4
٧.	Literature Reviewed	8 7
VT	Annendices	9

FOREWORD

The National Eutrophication Survey was initiated in 1972 in response to an Administration commitment to investigate the nation-wide threat of accelerated eutrophication to freshwater lakes and reservoirs.

OBJECTIVES

The Survey was designed to develop, in conjunction with state environmental agencies, information on nutrient sources, concentrations, and impact on selected freshwater lakes as a basis for formulating comprehensive and coordinated national, regional, and state management practices relating to point-source discharge reduction and non-point source pollution abatement in lake watersheds.

ANALYTIC APPROACH

The mathematical and statistical procedures selected for the Survey's eutrophication analysis are based on related concepts that:

- a. A generalized representation or model relating sources, concentrations, and impacts can be constructed.
- b. By applying measurements of relevant parameters associated with lake degradation, the generalized model can be transformed into an operational representation of a lake, its drainage basin, and related nutrients.
- c. With such a transformation, an assessment of the potential for eutrophication control can be made.

LAKE ANALYSIS

In this report, the first stage of evaluation of lake and watershed data collected from the study lake and its drainage basin is documented. The report is formatted to provide state environmental agencies with specific information for basin planning [§303(e)], water quality criteria/standards review [§303(c)], clean lakes [§314(a,b)], and water quality monitoring [§106 and §305(b)] activities mandated by the Federal Water Pollution Control Act Amendments of 1972.

Beyond the single lake analysis, broader based correlations between nutrient concentrations (and loading) and trophic condition are being made to advance the rationale and data base for refinement of nutrient water quality criteria for the Nation's freshwater lakes. Likewise, multivariate evaluations for the relationships between land use, nutrient export, and trophic condition, by lake class or use, are being developed to assist in the formulation of planning guidelines and policies by EPA and to augment plans implementation by the states.

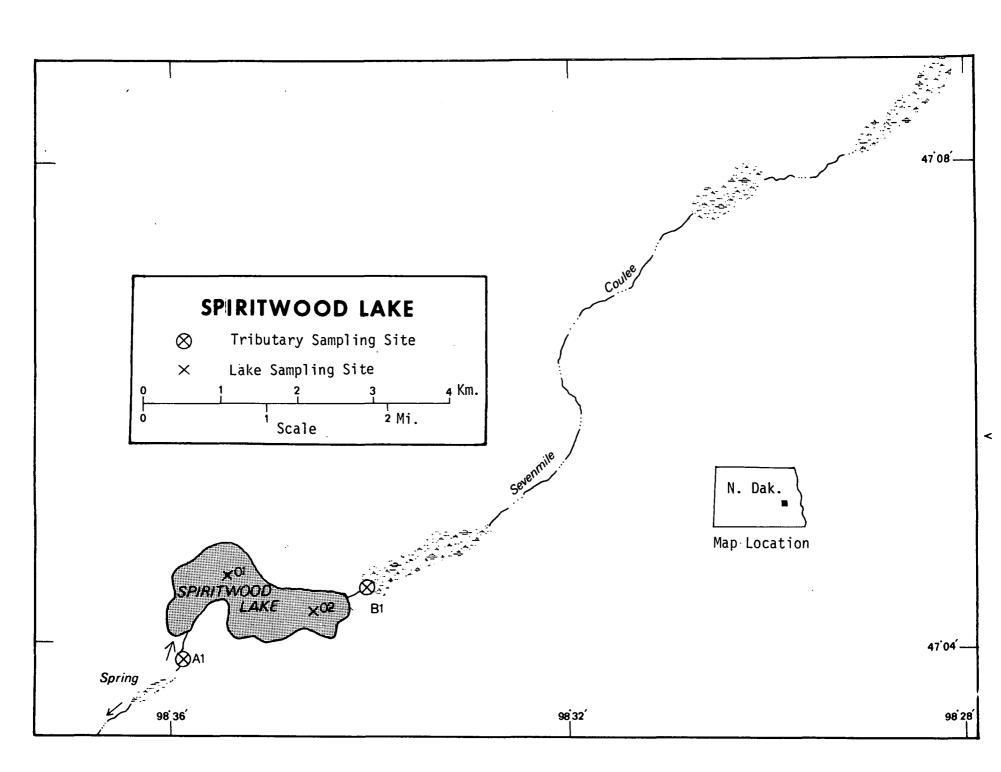
ACKNOWLEDGMENT

The staff of the National Eutrophication Survey (Office of Research & Development, U. S. Environmental Protection Agency) expresses sincere appreciation to the North Dakota State Department of Health for professional involvement, to the North Dakota National Guard for conducting the tributary sampling phase of the Survey, and to those North Dakota wastewater treatment plant operators who voluntarily provided effluent samples and flow data.

Norman L. Peterson, Director, and the staff of the Division of Water Supply and Pollution Control of the Department of Health, provided invaluable lake documentation and counsel during the Survey, reviewed the preliminary reports, and provided critiques most useful in the preparation of this Working Paper series.

Major General LaClair A. Melhouse, the Adjutant General of North Dakota, and Project Officer Colonel Irvin M. Sande, who directed the volunteer efforts of the North Dakota National Guardsmen, are also gratefully acknowledged for their assistance to the Survey.

NATIONAL EUTROPHICATION SURVEY STUDY LAKES AND RESERVOIRS STATE OF NORTH DAKOTA


NAME

Ashtabula
Audubon
Brush
Darling
Devils
Jamestown
LaMoure
Matejcek
Metigoshe
Pelican
Sakakawea

Spiritwood Sweet Briar Whitman

COUNTY

Barnes, Griggs McLean McLean Renville, Ward Benson, Ramsey Stutsman LaMoure Walsh. Bottineau Bottineau Dunn, McKenzie, McLean, Mercer, Mountrail, Williams Stutsman Morton Nelson, Walsh

STORET NO. 3813

I. INTRODUCTION

Spiritwood Lake was included in the National Eutrophication Survey as a water body of interest to the North Dakota Department of Health. Because of little or no flow, only one tributary sample (station A-1) was collected; therefore, this report relates only to the lake sampling data. However, the tributary sampling data are included in Appendix D for the record.

Spiritwood Lake is a typical prairie lake. The primary uses of the lake include recreation and fishing. A major source of water to the lake is a watershed to the northeast and one to the northwest of the lake. The lake has no outlet except for overflow discharge into Seven Mile Coulee. Nutrients reaching the lake are from agricultural activities in the drainage and from lakeshore dwellings (Peterson, 1974).

II. CONCLUSIONS

A. Trophic Condition:

Survey data indicate that Spiritwood Lake is eutrophic. It ranked eighth in overall trophic quality when the 14 North Dakota lakes sampled in 1974 were compared using a combination of six water quality parameters*. Seven of the lakes had less median total and dissolved phosphorus, ten had less median inorganic nitrogen, nine had less mean chlorophyll <u>a</u>, and three had greater mean

^{*} See Appendix A.

Secchi disc transparency. Depletion of dissolved oxygen occurred with depth at both stations in July.

Survey limnologists noted a heavy algal bloom in July and shoreline macrophytes in July and September. Severe impairment of use of the lake due to heavy algal blooms and excessive weed growths has been reported (Peterson, 1975).

B. Rate-Limiting Nutrient:

The algal assay results indicate that Spiritwood Lake was limited by nitrogen at the time the samples were collected (04/26/74 and 09/17/74). The lake data indicate nitrogen limitation at all sampling stations and times.

III. LAKE AND DRAINAGE BASIN CHARACTERISTICS[†]

- A. Lake Morphometry^{††}:
 - 1. Surface area: 1.67 kilometers².
 - 2. Mean depth: 8.8 meters.
 - 3. Maximum depth: 16.2 meters.
 - 4. Volume: $14.696 \times 10^6 \text{ m}^3$.
 - 5. Mean hydraulic retention time: Unknown.
- B. Precipitation*:
 - 1. Year of sampling: 60.7 centimeters.
 - 2. Mean annual: 47.7 centimeters.

⁺ Table of metric conversions--Appendix B.

^{††} Henegar, 1975.

^{*} See Working Paper No. 175, "...Survey Methods, 1973-1976".

IV. LAKE WATER QUALITY SUMMARY

Spiritwood Lake was sampled three times during the open-water season of 1974 by means of a pontoon-equipped Huey helicopter. Each time, samples for physical and chemical parameters were collected from a number of depths at two stations on the lake (see map, page v). During each visit, a single depth-integrated (4.6 m to surface) sample was composited from the stations for phytoplankton identification and enumeration; and during the April and September visits, an 18.9-liter depth-integrated sample was composited for algal assays. Also each time, a depth-integrated sample was collected from each of the stations for chlorophyll <u>a</u> analysis. The maximum depths sampled were 12.2 meters at station 1 and 10.7 meters at station 2.

The sampling results are presented in full in Appendix C and are summarized in the following table.

A. SUMMARY OF PHYSICAL AND CHEMICAL CHARACTERISTICS FOR SPIRIT WOOD LAKE STORET CODE 3813

1ST SAMPLING (4/26/74) 2ND SAMPLING (7/17/74) 3RD SAMPLING (9/17/74) 2 SITES 2 SITES 2 SITES PARAMETER RANGE MEAN MEDIAN HANGE MEAN MEDIAN RANGE MEAN MEDIAN TEMP (C) 3.1 = 5.8 4.4 3.8 11.2 - 24.9 20.5 24.1 14.8 - 15.7 15.1 15.0 DISS OXY (MG/L) 5.4 -10.6 8.0 7.6 9.7 0.0 - 11.4 6.6 8.0 -9.6 8.9 9.1 CNDCTVY (MCROMO) 1716. - 1766. 1737. 1736. 2130. - 2898. 2635。 2837。 2313. - 2369. 2333. 2329. PH (STAND UNITS) 8.5 -8.6 8.6 8.6 8.6 9.0 8.8 8.9 8.9 8.9 ~ 8.9 8.9 TOT ALK (MG/L) 339. 322. -376. 347. 255. - 402. 346. 345。 500. - 730. 624. 618. TOT P (MG/L) 0.171 - 0.2080.183 0.181 0.133 - 0.4140.210 0.174 0.103 - 0.1410.116 0.110 ORTHO P (MG/L) 0.077 - 0.1530.115 0.125 0.059 - 0.356 0.149 0.101 0.039 - 0.056 0.046 0.046 0.180 - 0.220 NO2+NO3 (MG/L) 0.191 0.185 0.030 - 0.1400.076 0.055 0.020 - 0.0300.024 0.020 AMMONIA (MG/L) 0.515 0.560 0.200 - 0.280 0.246 0.250 0.360 - 0.680 0.040 - 1.0200.312 0.130 KJEL N (MG/L) 2.200 - 2.700 2.450 2.500 2.200 - 3.000 2.510 2.400 2.100 - 2.700 2.490 2.500 INORG N (MG/L) 0.580 - 0.860 0.706 0.750 0.070 - 1.1300.388 0.185 0.220 - 0.300 0.270 0.270 TOTAL N (MG/L) 2.380 - 2.880 2.641 2.695 2.230 - 3.110 2.586 2.485 2.120 - 2.730 2.514 2.525 CHLRPYL A (UG/L) 2.5 - 12.4 7.4 7.4 77.4 - 84.3 80.8 80.8 15.6 - 15.8 15.7 15.7 SECCHI (METERS) 2.7 -3.7 3.2 3.2 0.9 -1.2 1.1 101 2.0 2.0 2.0 -2.0

B. Biological Characteristics:

1. Phytoplankton -

Sampling Date	Dominant <u>Genera</u>	Algal Units per ml
04/26/74	 Chlamydomonas sp. Melosira sp. Chroomonas sp. Dactylococcopsis sp. Flagellates Other genera 	3,738 1,869 353 176 176 670
	Total	6,982
07/17/74	 Aphanizomenon sp. Microcystis sp. Lyngbya sp. 	10,245 162 40
	To tal	10,447
09/17/74	 Chroomonas sp. Stephanodiscus sp. Cryptomonas sp. Aphanizomenon sp. Microcystis sp. 	376 226 150 113 <u>75</u>
	Total	940

2. Chlorophyll \underline{a} -

Sampling Date	Station Number	Chlorophyll <u>a</u> (µg/l)
04/26/74	1 2	12.4 2.5
07/17/74	1 2	77.4 84.3
09/17/74	1 2	15.8 15.6

C. Limiting Nutrient Study:

- 1. Autoclaved, filtered, and nutrient spiked
 - a. April sample -

Spike (mg/l)	Ortho P Conc. (mg/l)	Inorganic N Conc. (mg/l)	Maximum yield (mg/l-dry wt.)
Control	0.095	0.598	15.9
0.050 P	0.145	0.598	15.4
0.050 P + 1.0 N	0.145	1.598	36.3
1.0 N	0.095	1.598	31.4

b. September sample -

Spike (mg/l)	Ortho P Conc. (mg/1)	Inorganic N Conc. (mg/l)	Maximum yield (mg/l-dry wt.)
Control	0.055	0.292	9.8
0.050 P	0.105	0.292	9.6
0.050 P + 1.0 N	0.105	1.292	32.2
1.0 N	0.055	1.292	23.5

2. Discussion -

The control yields of the assay alga, <u>Selenastrum capricornutum</u>, indicate that the potential primary productivity of Spiritwood Lake was high at the times the samples were taken (04/26/74 and 09/17/74). Also, the lack of growth response in both samples with the addition of phosphorus until nitrogen was also added indicates that the lake was limited by nitrogen at those times. Note that in both samples, the addition of nitrogen alone resulted in a yield significantly greater than that of the control.

The lake data indicate nitrogen limitation as well. The mean inorganic nitrogen/orthophosphorus ratios were 7/1 or less at both stations and all sampling times, and nitrogen limitation would be expected.

V. LITERATURE REVIEWED

- Henegar, Dale, 1975. Personal communication (lake morphometry). ND Game & Fish Dept., Bismarck.
- Peterson, Norman L., 1974. Personal communication (information on Spiritwood Lake). ND Dept. of Health, Bismarck.
- , 1975. Personal communication (North Dakota State lake classification). ND Dept. of Health, Bismarck.
- Vollenweider, R. A., and P. J. Dillon, 1974. The application of the phosphorus loading concept to eutrophication research. Natl. Res. Council of Canada Publ. No. 13690, Canada Centre for Inland Waters, Burlington, Ontario.

VI. APPENDICES

APPENDIX A

LAKE RANKINGS

· LARE DATA TO BE USED IN RANKINGS

CODE	LAKE NAME	MEDIAN TOTAL P	MEDIAN Inorg n	500- MEAN SEC	MEAN CHLORA	15- MIN DO	MEDIAN DISS ORTHO P
3901	LAKE ASHTABULA	0.260	0.160	472.250	40.892	10.600	0.170
3802	LAKE AUDUHON	0.087	0.220	446.222	11.322	11.000	0.015
3803	BRUSH LAKE	0.066	0.095	449.143	29.114	9.000	0.010
3804	LAKE DARLING	0.274	0.250	466.750	60.075	11.600	0.180
3805	DEVILS LAKE	0.630	0.140	449.333	38.508	14.600	0.469
3806	JAMESTOWN RESERVOIR	0.144	0.365	438.667	19.400	8.800	0.078
3807	LAKE LA MOURE	0.438	0.380	421.400	19.720	15.000	0.290
3808	MATEJCEK LAKE	0.228	0.440	475.167	2.683	14.400	0.179
3809	LAKE METIGOSHE	0.032	0.080	389.167	10.367	9.000	0.010
3811	PELICAN LAKE	0.034	0.070	364.500	10.950	12.800	0.006
3812	LAKE SAKAKAWEA IGARRISON	0.016	0.150	408.733	6.883	10.800	0.007
3813	SPIRIT WOOD LAKE	0.156	0.290	417.833	34.667	15.000	0.082
3814	SWEET BRIAR RESERVOIR	0. 092	0.090	440.800	39.000	8.800	0.031
3815	WHITMAN LAKE	0.260	0.260	478.333	27.067	9.200	0.185

PERCENT OF LAKES WITH HIGHER VALUES (NUMBER OF LAKES WITH HIGHER VALUES)

CODE	LAKÉ NAME	MEDIAN TOTAL P	MEDIAN Inorg n	500- MEAN SEC	MEAN CHLORA	15- MIN 00	MEDIAN DISS ORTHO P	INDEX NO
3801	LAKE ASHTABULA	27 (3)	54 (7)	15 (2)	8 (1)	62 (8)	38 (5)	204
3802	LAKE AUDUBON	69 (9)	46 (6)	46 (6)	69 (9)	46 (6)	69 (9)	345
3803	BHUSH LAKE	77 (10)	77 (10)	38 (5)	38 (5)	81 (10)	81 (10)	392
3804	LAKE DARLING	15 (2)	38 (5)	23 (3)	0 (0)	38 (5)	23 (3)	137
3805	DEVILS LAKE	0 (0)	69 (9)	31 (4)	23 (3)	15 (2)	0 (0)	138
3806	JAMESTOWN RESERVOIR	54 (7)	15 (2)	62 (8)	62 (8)	96 (12)	54 (7)	343
3807	LAKE LA MOURE	8 (1)	8 (1)	69 (9)	54 (7)	4 (0)	8 (1)	151
3808	MATEJCEK LAKE	38 (5)	0 (0)	8 (1)	100 (13)	23 (3)	31 (4)	200
3809	LAKE METIGOSHE	92 (12)	92 (12)	92 (12)	85 (11)	81 (10)	81 (10)	523
3811	PELICAN LAKE	85 (11)	100 (13)	100 (13)	77 (10)	31 (4)	100 (13)	493
3812	LAKE SAKAKAWEA (GARRISON	100-(-13)	62 (8)	85 (11)	92 (12)	54 (7)	92 (12)	485
3813	SPIRIT WOOD LAKE	46 (6)	23 (3)	77 (10)	31 (4)	4 (0)	46 (6)	227
3814	SWEET HRIAR RESERVOIR	68 (8)	85 (11)	54 (7)	15 (2)	96 (12)	62 (8)	374
3815	WHITMAN LAKE	27 (3)	31 (4)	0 (0)	46 (6)	69 (9)	15 (2)	188

LAKES RANKED BY INDEX NOS.

RANK	LAKE CODE	LAKE NAME	INDEX NO
1	3809	LAKE METIGOSHE	523
2	3811	PELICAN LAKE	493
3	3812	LAKE SAKAKAWEA (GARRISON	485
4	3803	BRUSH LAKE	392
5	3814	SWEET BRIAR RESERVOIR	374
6	3802	LAKE AUDUBON	345
7	3806	JAMESTOWN RESERVOIR	343
8	3813	SPIRIT WOOD LAKE	227
9	3801	LAKE ASHTABULA	204
10	3808	MATEJCEK LAKE	200
11	3815	WHITMAN LAKE	188
12	3807	LAKE LA MOURE	151
13	3805	DEVILS LAKE	138
14	3804	LAKE DARLING	137

APPENDIX B

CONVERSION FACTORS

CONVERSION FACTORS

Hectares x = 2.471 = acres

Kilometers \times 0.6214 = miles

Meters x = 3.281 = feet

Cubic meters $\times 8.107 \times 10^{-4} = acre/feet$

Square kilometers x = 0.3861 = square miles

Cubic meters/sec x 35.315 = cubic feet/sec

Centimeters $x \ 0.3937 = inches$

Kilograms x 2.205 = pounds

Kilograms/square kilometer x = 5.711 = 1bs/square mile

APPENDIX C

TRIBUTARY FLOW DATA

LAKE CODE 3813 SPIRITWOOD LAKE

TOTAL	DRAINAGE	ARFA	OF	LAKE (SQ KM)	42.0

TRIBUTARY	SUB-DRAINAGE AREA(SQ KM)	JAN	FEB	MAR	APR	MAY	NÚRMAL: UN	IZED FLO: JUL	NS (CMS) AUG	SEP	υςτ	NOV	DEC	MEAN
3813A2	42.0	0.0	0.0	0.028	0.113	0.057	0.023	0.011	0.003	0.0	0.0	0.0	0.0	0.020
3813B1	28.7	0.0	0.0	0.028	0.113	0.057	0.025	0.017	0.006	0.003	0.003	0.003	0.003	0.021
3813ZZ	13.2	0.0	0.0	0.008	0.028	0.017	0.008	0.006	0.003	0.0	0.0	0.0	0.0	0.006

SUMMARY

TOTAL DRAINAGE AREA OF	LAKE	= 42.0	TOTAL FLOW IN =	= 0.33
SUM OF SUB-DRAINAGE AR	REAS	= 42.0	TOTAL FLOW OUT =	= 0.24

MEAN MONTHLY FLOWS AND DAILY FLOWS (CMS)

TRIBUTARY	MONTH	YEAR -	MEAN FLOW	VAV	FLOW	DAY	FLOW DAY	FLOW
3813A2	9	74	0.0	21	0.0			
	10	74	0.0	20	0.0			
	1 i	74	0.0	16	0.0			
	12	74	0.0	22	0.0			
	1	7 5	0.0	18	0.0			
	2 3 4	7 5	0.0	22	0.0			
	3	75	0.0	22 5	0.0			
		75	0.0	5	0.0			
	5	75	0.0	3	0.0	18	0.0	
	6	75	0.0	22	0.0			
	7	75	0.0	19	0.0			
	8	75	0.0	22	0.0			
381381	9	74	0.0	21	0.0			
	10	74	0.0	20	0.0			
	11	74	0.0	16	0.0			
	12	74	0.0	22	0.0			
	1	7 5	0.0	18	0.0			
	2 3	75	0.0	22	0.0			
	3	7 5	0.0	22 5	0.0			
	4	75	0.176	5	0.0	20	0.566	
	5	75	0.001	3	0.0			
	6	75	0.133	22	0.0			
	7	7 5	0.150	19	0.099			
	8	75	0.034	55	0.023			
3813ZZ	9	74	0.0					
	10	74	0.0					
	11	74	0.0					
	12	74	0.0					
	1	7 5	0.0					
	2	7 5	0.0					
	3	75	0.0					
	4	75	0.051					
	5	75	0.0					
	6	75	0.040					
	7	75	0.045					
	8	75	0.011					

APPENDIX D

PHYSICAL and CHEMICAL DATA

0.112

0.107

0.117

0.130

11 05 0015

11 05 0020

11 05 0030

11 05 0040

381301 47 04 35.0 098 35 42.0 3 SPIRIT WOOD LAKE 38093 NORTH DAKOTA

11EPALES 2111202 0040 FEET DEPTH CLASS 00

					0040 FEET DEPTH CLASS 00						
DATE FROM IO	TIME DEPTH OF DAY FEET	00010 WATER TEMP CENT	00300 DO	00077 TRANSP SECCHI	00094 CNDUCTVY FIELD	00400 PH	00410 T ALK CACO3	00610 NH3-N Total	00625 TOT KJEL N	00630 N026N03 N-TOTAL	00671 PHOS-DIS ORTHO
10	DAT FECT	CENT	MG/L	INCHES	MICROMHO	SU	MG/L	, MG/L	MG/L	MG/L	MG/L P
74/07/17	14 50 0000 14 50 0005 14 50 0020 14 50 0037 13 20 0000 13 20 0005 13 20 0025 13 20 0037	5.8 5.8 3.7 24.6 24.6 23.9 16.9	10.2 10.6 8.2 10.6 10.2 9.2 2.2 0.0	108	1723 1716 1723 2861 2850 2824 2382 2130	8.60 8.60 8.55 8.90 9.00 8.70 8.60	332 328 322 376 335 375 255 355 325	0.360 0.400 0.400 0.540 0.050 0.040 0.060 0.330 1.000	2.200 2.200 2.300 2.500 2.300 2.200 2.300 2.200 3.000	0.220 0.180 0.180 0.200 0.050 0.030 0.050 0.140	0.077 0.087 0.089 0.121 0.062 0.091 0.094 0.173 0.356
74/09/17	11 05 0006 11 05 0010 11 05 0015 11 05 0020 11 05 0030 11 05 0040	15.4 15.3 15.1 14.9 14.9	9.4 9.6 9.2 9.0 8.8 8.2	78	2343 2341 2333 2325 2319 2313	8.87 8.89 8.89 8.89 8.89	500 730 600 575 650 700	0.220 0.240 0.250 0.240 0.250 0.270	2.700 2.400 2.500 2.400 2.500 2.600	0.030 0.020 0.020 0.030 0.030 0.030	0.039 0.042 0.046 0.047 0.051 0.056
DATE FROM TO	TIME DEPTH OF DAY FEET	00665 PHOS-TOT MG/L P	32217 CHLRPHYL A UG/L	00031 INCOT LT REMNING PERCENT							
	14 50 0000 14 50 0005 14 50 0020 14 50 0037	0.184 0.175 0.171 0.185	12.4								
74/0//17	13 20 0000 13 20 0005 13 20 0009 13 20 0015 13 20 0025 13 20 0037	0.191 0.137 0.157 0.217 0.414	77.4	1.0							
74/09/17	11 05 0000	0.107 0.103	15.8								

381302 47 04 23.0 098 34 40.0 3 SPIRIT WOOD LAKE 46057 NORTH DAKOTA

11EPALES 2111202 0037 FEET DEPTH CLASS 00

0.75	**	00010	90300	00077	00094	00400	00410	00610	00625	00630	00671
DATE	TIME DEPTH	WATER	DO	THANSP	CNDUCTVY	PH	T ALK	NH3-N	TOT KJEL	NO2&NO3	PHOS-DIS
FROM	OF	TEMP		SECCHI	FIELD		CACO3	TOTAL	N	N-TOTAL	ORTHO
TU	DAY FEET	CENT	MG/L	INCHES	MICROMHO	SU	MG/L	MG/L	MG/L	MG/L	MG/L P
74/04/26	15 15 0000	3.8		144	1748	8.60	346	0.580	2.600	0.200	0.131
	15 15 0005	3.8	7.0		1746	8.55	324	0.580	2.500	0.190	0.129
	15 15 0025	3.7	6.4		1746	8.55	374	0.580	2.600	0.180	0.130
	15 15 0032	3.1	5.4		1766	8.50	376	0.680	2.700	0.180	0.153
74/07/17		24.9	11.0	37	2877	9.00	320	0.050	2.800	0.040	0.059
	13 50 0005	24.8	11.4		2877	9.00	390	0.040	2.500	0.050	0.068
	13 50 0015	24.4	10.2		2898	8.90	400	0.200	2.500	0.060	0.109
	13 50 0025	18.0	1.6		2508	8.80	300	0.330	2.300	0.120	0.159
	13 50 0035	11.5	0.0		2138	8.60	402	1.020	3.000	0.110	0.318
74/09/17	11 40 0000	15.7	9.6	78	2369	8.89	665	0.200	2.600	0.020	0.039
	11 40 0005	15.2	9.2		2339	8.89	595	0.250	2.100	0.020K	0.044
	11 40 0015	14.9	8.2		232 5	8.89	590	0.260	2.500	0.020	0.046
	11 40 0025	14.8	8.0		2319	8.89	635	0.280	2.600	0.020	0.050

TIME DEPTH OF DAY FEET	00665 PHOS-TOT MG/L P	32217 CHLRPHYL A UG/L	00031 INCDT LT REMNING PERCENT
15 15 0000 15 15 0005	0.177 0.182	2.5	
15 15 0025	0.180		
,,		84.3	
	0.133		١.
	0 155		1.0
11 40 0000	0.109	15.6	
11 40 0005	0.104		
11 40 0015	0.129		
11 40 0025	0.141		
	OF DAY FEET 15 15 0000 15 15 0005 15 15 0025 15 15 0032 13 50 0000 13 50 0005 13 50 0015 13 50 0025 13 50 0035 11 40 0000 11 40 0005 11 40 0015	TIME DEPTH PHOS-TOT OF DAY FEET MG/L P 15 15 0000 0.177 15 15 0005 0.182 15 15 0025 0.180 15 15 0032 0.208 13 50 0000 0.140 13 50 0005 0.133 13 50 0006 13 50 0015 0.155 13 50 0025 0.203 13 50 0035 0.355 11 40 0000 0.109 11 40 0005 0.129	TIME DEPTH PHOS-TOT CHERPHYL OF DAY FEET MG/L P UG/L 15 15 0000 0.177 2.5 15 15 0005 0.182 15 15 0025 0.180 15 15 0032 0.208 13 50 0000 0.140 84.3 13 50 0005 0.133 13 50 0006 13 50 0015 0.155 13 50 0015 0.155 13 50 0025 0.203 13 50 0035 0.355 11 40 0000 0.109 15.6 11 40 0005 0.104 11 40 0015 0.129

K VALUE KNOWN TO BE LESS THAN INDICATED APPENDIX E

TRIBUTARY DATA

3813A1
47 04 00.0 098 36 03.0 4
SEVENMILE COULEE
38 7.5 SPIRITWOU LK
T/SPIRITWOOD LAKE
BROG ON FAS RU 654 4 M1 NE OF FRIED
11EPALES 2111204
0000 FEET DEPTH CLASS 00

75/06/22	09 3	0	0.010	1.750	0.090	0.210	0.270
TO	DAY	FEET	MG/L	MG/L	MG/L	MG/L P	MG/L P
DATE FROM	OF	DEPTH	NO26NO3	TOT KJEL N	NH3-N TOTAL	PHOS-DIS ORTHO	PHOS-TOT
			00630	00625	00610	00671	00665