Air

Ammonium Sulfate Emission Test Report Occidental Chemical Company Houston, Texas

SOURCE EMISSIONS TEST REPORT

OCCIDENTAL CHEMICAL COMPANY Houston, Texas

AMMONIUM SULFATE DRYER BAGHOUSE EXHAUST STACK

Barry L. Jackson

Supervisor Air Testing

Peter J. Marks Department Manager Laboratory Services

for: ROY F, WESTON

RFW W.O. #0300-81-04 Contract No. 68-02-2816 Work Assignment No. 3

Prepared by:

ROY F. WESTON
ENVIRONMENTAL CONSULTANTS-DESIGNERS
Weston Way
West Chester, Pennsylvania 19380
(215) 692-3030

TABLE OF CONTENTS

	PAGE
LIST OF TABLES AND FIGURES	i
SUMMARY	}
INTRODUCTION	2
DESCRIPTION OF PROCESS	4
DESCRIPTION OF TEST LOCATION	6
Ammonium Sulfate Dryer Baghouse Exhaust Stack	6
DESCRIPTION OF SAMPLING TRAIN	8
Particulate Sampling Train	8
TEST PROCEDURES	10
Preliminary Tests Ammonium Sulfate Dryer Baghouse Exhaust Stack	10 10
ANALYTICAL PROCEDURES	12
Particulate Sample Recovery Particulate Analyses	12 13
DISCUSSION OF TEST RESULTS	14
APPENDIX A - Raw Test Data	
APPENDIX B - Laboratory Reports	
APPENDIX C - Sample Calculations	
APPENDIX D - Equipment Calibration Data	
APPENDIX E - Detailed Baghouse Information	
APPENDIX F - Project Participants	

LIST OF TABLES AND FIGURES

TABLE NO.	TITLE	PAGE NO.
1	Ammonium Sulfate Dryer Exhaust Stack Summary of Test Data	15
2	Ammonium Sulfate Dryer Exhaust Stack Summary of Test Results	16
FIGURE NO.	TITLE	PAGE NO.
1	Ammonium Sulfate Dryer and Baghouse	5
2	Ammonium Sulfate Dryer Baghouse Exhaust Stack Port and Sampling Point Locations	7
3	Particulate Sampling Train EPA Method 5 Baghouse Exhaust Stack	9

The Emission Measurement Branch of the U.S. Environmental Protection Agency contracted Roy F. Weston, Inc. to conduct a source testing and analysis program at Occidental Chemical Company's Houston, Texas Ammonium Sulfate Plant.

The primary objective of the testing program was to quantify the particulate emissions to the atmosphere from the Ammonium Sulfate Dryer Baghouse Stack. This objective was achieved by performing a series of three particulate tests utilizing EPA Method $5^{(1)}$ procedures at the baghouse exhaust stack location. In addition, visual determinations of plume opacities were made simultaneously with each particulate test at the source discharge point according to EPA Method $9^{(2)}$ protocol.

The particulate matter emission results are summarized below:

Ammonium Sulfate Dryer Baghouse

Test No.	Test <u>Location</u>	Particulate Grains/DSCF	Concentration Pounds/Hour
1	Exhaust Stack	0.016	0.16
2	Exhaust Stack	0.023	0.23
3	Exhaust Stack	0.026	0.25

No visible emissions were observed emanating from the baghouse exhaust stack during the test program by the certified observer.

Detailed summaries of test data and test results are presented in Tables 1 and 2 of this report, respectively.

⁽¹⁾ Code of Federal Regulations, Title 40, Part 60, Appendix A, "Standards of Performance for New Stationary Sources," August 18, 1977.

⁽²⁾ Federal Register, Vol. 39, No. 219, November 12, 1974.

The Emission Measurement Branch of the U.S. Environmental Protection Agency contracted Roy F. Weston, Inc. to conduct a source testing and analysis program at Occidental Chemical Company's Houston, Texas Ammonium Sulfate Plant. The objective of the testing program was to measure various emission parameters from Oxychem's Ammonium Sulfate Dryer Baghouse.

The location tested, plus the number and types of tests performed at the site are listed below:

- 1. Ammonium Sulfate Dryer Baghouse Exhaust Stack.
 - a. Three one-hour particulate tests by EPA Method 5.
 - b. Three opacity tests by EPA Method 9. Visual determinations of plume opacities were determined simultaneously with the particulate tests.

These tests were conducted on 26 October 1978 by Weston personnel. Tests performed previously at the exhaust stack indicated emissions greater than might be expected from a bag collector used in this application and were attributed to leaking bag(s).

The baghouse inlet duct location was not tested during this period since most of the internal area of the duct was filled with an irregular buildup of product solids (which prevented representative sampling) as shown below:

A decision was made not to test the inlet duct since the entire unit would have been required to shut down to enable the duct to be cleaned.

Test data and test results of the outlet testing program are presented in Tables 1 and 2 of this report, respectively. Also, incorporated herein is a description of the test location, test equipment, test procedures, sample recovery, and analytical methods used during the test program. Raw test data, laboratory reports, sample calculations, equipment calibration data, baghouse details, and a list of project participants are provided in Appendices A through F, respectively.

DESCRIPTION OF PROCESS

Ammonium Sulfate Dryer

Anhydrous ammonia and sulfuric acid are combined to yield granular ammonium sulfate at a rate of 14 to 18 tons/hour. The heat of reaction causes the desired moisture loss in the dryer to produce the final product. The final product drops from the dryer and is then conveyed to storage. The moist hot air from the dryer, which contains ammonium sulfate fines, is drawn through a baghouse to effect additional product recovery while reducing particulate emissions.

A schematic diagram of the Ammonium Sulfate Dryer and Baghouse is presented in Figure 1.

OCCIDENTAL CHEMICAL COMPANY Houston, Texas

FIGURE 1

AMMONIUM SULFATE DRYER AND BAGHOUSE

DESCRIPTION OF TEST LOCATION

Ammonium Sulfate Dryer Baghouse Exhause Stack

Two 3" 1.D. test ports were placed on one side of the 7-1/2" x 8-5/8" rectangular exhaust stack serving the baghouse. The ports were located 15 diameters downstream and 10 diameters upstream from the nearest flow disturbances. Since the eight and two diameter criterion were met, a minimum of eight traverse points were required by EPA Method 1 regulations. Figure 2 illustrates duct geometry plus port and sampling point locations.

OCCIDENTAL CHEMICAL COMPANY Houston, Texas

FIGURE 2

AMMONIUM SULFATE DRYER BAGHOUSE EXHAUST STACK

METAL STACK

DESCRIPTION OF SAMPLING TRAIN

Particulate Sampling Train

The test train utilized for particulate sampling at the baghouse exhaust duct location was the standard EPA Method Five Train (see Figure 3).

A stainless steel nozzle was attached to a heated (\$\sigma 250^{\text{O}} \text{F}\$) 3' borosilicate glass probe which was connected directly to a borosilicate filter holder containing a 4" Reeve Angel 900 AF glass fiber filter. The filter holder was maintained at approximately 250°F in a heated chamber, and was connected by a section of borosilicate tubing to the first of four Greenburg-Smith impingers which were included in the train to condense the moisture in the gas stream. Each of the first two impingers contained 100 ml of distilled water, the third was dry and the final impinger contained 200 grams of dry pre-weighed silica gel. The first, third, and fourth impingers were modified Greenburg-Smith type; the second was a standard Greenburg-Smith impinger. All impingers were maintained in a crushed ice bath. A RAC control console with vacuum pump, dry gas meter, a calibrated orifice, and inclined manometers completed the sampling train.

Flue gas temperature was measured by means of a Type K thermocouple which was connected to a direct readout pyrometer. The thermocouple sensor was positioned adjacent to the sampling nozzle.

Gas velocity was measured using a calibrated "S" type pitot tube provided with extensions and fastened alongside the sampling probe. Gas stream composition (carbon dioxide, oxygen, and carbon monoxide content) was determined utilizing Orsat apparatus to analyze stack gas samples. Gas stream composition proved to be ambient air since no combustion products were found in any of the stack gas effluent samples.

FIGURE 3 PARTICULATE SAMPLING TRAIN-EPA METHOD 5

TEST PROCEDURES

Preliminary Tests

Preliminary test data was obtained at the sampling location. Stack geometry measurements were recorded and sampling point distances calculated. A preliminary velocity traverse was performed utilizing a calibrated "S" type pitot tube and a Dwyer inclined manometer to determine velocity profiles. Stack gas temperatures were observed with a direct read-out pyrometer equipped with a chromel-alumel thermocouple. Gas stream composition and moisture content values were estimated from previous stack testing reports.

Preliminary test data was used for nozzle sizing and nomagraph set-up for isokinetic sampling procedures.

Calibration of the probe nozzles, pitot tubes, metering systems, probe heaters, temperature gauges and barometer were performed as specified in Section 5 of EPA Method 5 test procedures (see Appendix E for calibration data).

Ammonium Sulfate Dryer Baghouse Exhaust Stack

A series of three EPA Method 5 tests were performed at the Ammonium Sulfate Dryer Baghouse exhaust stack. Twelve points were traversed, six per port axis for five minutes each yielding a test period 60 minutes in length.

During particulate sampling, gas stream velocities were measured by inserting a calibrated "S" type pitot tube into the stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each point, and sampling rates were adjusted to maintain isokinetic sampling. Stack gas temperatures were also monitored at each point with the pyrometer and thermocouple. Additional temperature measurements were made at the final impinger and at the inlet and outlet of the dry gas meter.

Test data was recorded every five minutes during all test periods. Table 1 presents a summary of test data for each of the three runs. Test result summarization appears on Table 2.

Visible emissions observations were recorded concurrently with each particulate test repetition by a certified observer according to EPA Method 9 procedures. See Table 2 for result summary.

Particulate Sample Recovery

At the conclusion of each test, the sampling train was dismantled, openings sealed, and the components transported to the field laboratory. Sample integrity was assured by maintaining chain of custody records which will be supplied upon request.

A consistent procedure was employed for sample recovery:

- The glass fiber filter(s) was removed from its holder with tweezers and placed in its original container (petri dish), along with any loose particulate and filter fragments (Sample 1).
- The probe and nozzle were separated and the internal particulate rinsed with distilled water into a borosilicate container while brusting a minimum of three times until no visible particles remained. Particulate adhering to the brush was rinsed with distilled water into the same container. The front half of the filter holder was rinsed with distilled water while brushing a minimum of three times. The rinses were combined (Sample 2) and the container sealed with a Teflon lined closure.
- The total liquid in impingers one, two and three was measured,
 the value recorded, and the liquid discarded.
- The silica gel was removed from the last impinger and immediately weighed.
- A distilled water sample was retained for blank analysis.

Particulate Analyses

The filters (Sample 1) and any loose fragments were desiccated for 24 hours and weighed to the nearest 0.1 milligram to a constant weight.

The distilled water wash samples (Sample 2) were evaporated at 105° C and ambient pressure in tared beakers, and desiccated to constant weight. All sample residue weights were adjusted by the water blank value.

The weight of the material collected on the glass fiber filter(s) plus the weight of the residue of the nozzle/probe/front-half filter holder washes represents the "total" EPA Method 5 catch. Complete laboratory results are presented in Appendix B of this report.

DISCUSSION OF TEST RESULTS

Particulate test data and test result summaries are presented in Tables 1 and 2 of this report.

No unusual process operating conditions were encountered during any of the test periods.

The amount of particulate matter discharged to the atmosphere from the baghouse was low (\$0.026 grains/dscf and \$0.25 pounds/hour). The certified observer further corroborated the particulate test findings since no visible emissions were recorded emanating from the stack during the test program.

OCCIDENTAL CHEMICAL COMPANY

Houston, Texas

TABLE I

AMMONIUM SULFATE DRYER BAGHOUSE EXHAUST STACK

Summary of Test Data

Test Data			
Test Number	1	2	3
Test Date	10-26-78	10-26-78	10-26-78
Test Period	0850 - 0953	1044 - 1146	1222 - 1325
Sampling Data			
Sampling Duration, minutes	60.0	60.0	60.0
Nozzle Diameter, inches	0.250	0.250	0.250
Barometric Pressure, inches mercury	29.91	29.91	29.91
Average Orifice Pressure Differential, oinches water Average Dry Gas Temperature at Meter, of	2.54	2.77	2.74
Sample Volume at Meter Conditions, cubic feet	96.	99.	98.
Sample Volume at Standard Conditions, 1 cubic feet	54.43 50.55	54.15 50.09	54.08 50.04
Gas Stream Moisture Content	24.22	3 0.03	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Total Water Collected by Train, ml	84.	139.	113.5
Standard Volume of Water Collected, cubic feet	3.95	6.54 11.6	5.34
Moisture in Gas Stream, percent by volume Mole Fraction of Dry Gas	7.3 0.927	0.884	9.6 0.904
,	0.327	0.004	0.504
Gas Stream Composition			
CO ₂ , percent by volume	0.0	0.0	0.0
O ₂ , percent by volume	20.9	20.9	20.9
CO, percent by volume	0.0	0.0	0.0
N2, percent by volume	79.1	79.1	79.1
Molecular Weight of Wet Gas Molecular Weight of Dry Gas	28.17 28.97	27.70 28.97	27.91 28.97
notecotal weight of bry das	20.97	20.37	20.97
Gas Stream Velocity			
Static Pressure, inches water	4.2	4.2	4.1
Absolute Pressure, inches mercury	30.22	30.22	30.21
Average Temperature, ^O F	114.	114.	121.
Pitot Tube Calibration Coefficient	0.843 12.0	0.843	0.843
Total Number of Sampling Points Velocity at Actual Conditions, feet/second	51.4	12.0 50.1	12.0 50.8
Gas Stream Volumetric Flow	21.4	50.1	70. 0
das stream vorumetric i row			
Stack Cross-Sectional Area, square feet	0.45	0.45	0.45
Volumetric Flow at Actual Conditions, cubic feet/minute	1,390.	1,380.	1,370.
Volumetric Flow at Standard Conditions, cubic feet/minute	1,200.	1,130.	1,140.
Percent Isokinetic	93.0	97.5	96.9
Process Operations Data			
		1	
Product Production Rate, Tons/hour	17.	17.	17.

 $^{^{1}}$ Standard Conditions = 68° F, 29.92 inches mercury, dry basis.

OCCIDENTAL CHEMICAL COMPANY

Houston, Texas

TABLE 2

AMMONIUM SULFATE DRYER BAGHOUSE EXHAUST STACK

Summary of Test Results

Test Data			
Test Number Test Date Test Time	1 10-26-78 0850 - 0953	2 10-26-78 1044 - 1146	3 10-26-78 1222 - 1325
Gas Flow			
Standard Cubic Feet/minute, dry Actual Cubic Feet/minute, wet	1,200. 1,390.	1,130. 1,380.	1,140. 1,370.
<u>Particulates</u>			
Nozzle, Probe and Front Half Filter Holder Catch Fraction,g Filter Catch Fraction, \ensuremath{g}	0.0401 0.0115	0.0569 0.0187	0.0809 0.0024
Total Particulates, g	0.0516	0.0756	0.0833
Particulate Emissions			
Grains/dry standard cubic foot ²	0.016	0.023	0.026
Pounds/hour	0.16	0.23	0.25
Visible Emissions			
> 5 percent opacity, minutes observed 0 percent opacity, minutes observed No visible emission, minutes observed	0. 0. 60.	0. 0. 60.	0. 0. 60.

Based on Total Particulates captured by train.

 $^{^{2}}$ Standard Conditions = 68° F and 29.92 inches mercury.

APPENDIX A

RAW TEST DATA

TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS

PLANT DETERMINE - LANGE	
DATE / / / /	
SAMPLING LOCATION CONTROL	
INSIDE OF FAR WALL TO OUTSIDE OF PORT, (DISTANCE A)	
INSIDE OF NEAR WALL TO OUTSIDE OF PORT. (DISTANCE B)	
STACK I.D., (DISTANCE A - DISTANCE B)	, <u>, , , , , , , , , , , , , , , , , , </u>
NEAREST UPSTREAM DISTURBANCE 8 /	(10.52a)
NEAREST DOWNSTREAM DISTURBANCE	15dia)
CALCULATOR Gallania .	SCHEMATIC OF SAMPLING LOCATION

TRAVERSE POINT NUMBER	FRACTION OF STACK I.D.	STACK I.D.	PRODUCT OF COLUMNS 2 AND 3 (TO NEAREST 1 8 INCH)	DISTANCE B	TRAVERSE POINT LOCATION FROM OUTSIDE OF PORT (SUM OF COLUMNS 4 & 5)
UX-1		7/2×83/8	5/8 17/8 3/3 4 ³ /8 5 ⁵ /8 67/8	3/8	574
2			17/8		5.0
2 3			3/8	Ì	6/4
4 5	`.		43/8		7/2 83/4
			5 %		834
6			678	4	10.0
·					
			*		
			· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		•		
					·
				ţ	

PRELIMINARY VELOCITY TRAVERSE

PLANT Oxiv Chimical - Hous	5 Con
DATE	
LOCATION	April 187
STACK I.D. 7/2"	ž į
BAROMETRIC PRESSURE, in. Hg	,
STACK GAUGE PRESSURE, in. H ₂ 0	
OPERATORS O'Noill / Celiano	SCHEMATIC OF TRAVERSE POINT LAYOUT

		•
TRAVERSE POINT NUMBER	VELOCITY HEAD (\(\Delta p_s\)), in. H2O	STACK TEMPERATURE (T _s), °F
XI	.30	137
ર	.3 5	142
3	.40	145
4	.45	.147
5	.53	150
6	.54	150
	,	
-	-	· · ·
	•	
		·
AVERAGE	. 445	145.16

TRAVERSE POINT NUMBER	VELOCITY HEAD (کوچ), in.H ₂ O	STACK TEMPERATURE (T _S), °F
y I	.31	135
3	.37	140
3	.39	143
7	.42	145
	.51	177
6	154	149
·		
	1 .	
•		
		·
1		•
AVERAGE		

NOMOGRAPH DATA

PLANT DECE -	Wine. (Cons	، برسه
DATE	10-25-79	
SAMPLING LOCATION	outle & Fronc	Bankerin
CONTROL BOX NO	2253	

CALIBRATED PRESSURE DIFFERENTIAL ACROSS ORIFICE, in. H ₂ O	7 H [@]	1.81
AVERAGE METER TEMPERATURE (AMBIENT + 20 °F). °F	T _m avg.	90
PERCENT MOISTURE IN GAS STREAM BY VOLUME	B _{wo}	12
BAROMETRIC PRESSURE AT METER. in Hg	Pm	
STATIC PRESSURE IN STACK, in. Hg (Pm±0.073 x STACK GAUGE PRESSURE in in. H ₂ 0)	Ps	
RATIO OF STATIC PRESSURE TO METER PRESSURE	Ps Pm	1.0
AVERAGE STACK TEMPERATURE, °F	T _{Savg.}	145.2
AVERAGE VELOCITY HEAD. in. H ₂ 0	∆pavg.	1.0 145.2 .445
MAXIMUM VELOCITY HEAD. in. H ₂ O	Δp _{max} .	,5 4
C FACTOR	0.90	
CALCULATED NOZZLE DIAMETER. in.		,
ACTUAL NOZZLE DIAMETER. in.	. 250	
REFERENCE 4p. in. H ₂ O	.250	

Bachouse Outlit SAMPLING LOCATION Backouses RUN NUMBER OIL STATIC PRESSURE (Ps) 24351-A 000-15

PROBE LENGTH AND TYPE NOZZLETO. 250 ASSUMED MOISTURE, " 1 . . SAMPLE BOX NUMBER
METER BOX NUMBER
METER 14 3 1 C FACTOR PITOT TUBE FACTOR REFERENCE Ap 0.56

	L DATA EVERY 5.0	
READ AND RECORD AL	L DATA EVERY	MINUTES

TRAVERSE POINT NUMBER	CLOCK TIME (24 hr CLOCK) TIME min OR 50	GAS METER READING (V _m). 11 ³	VEFOCITA HEVD (76 ²)' iu' H ⁵ 0	DIFFER	PRESSURE ENTIAL n. H ₂ O) ACTUAL	STACK TEMPERATURE (T _S)."F		S METER RATURE OUTLET (T _{m out})."F	PUMP VACUUM, in Hg	SAMPLE BOX TEMPLRATURE, "F	IMPINGER TEMPERATURE. °F
XI	5	7/4,200	,33	1.78	1.78	112	17	111	1	2.50 1 25	601 10
2	10	7118,500	172	2,40	2.40	/20	91	60	j		
3	15	723,400	,57	2.90	2.90	118	100	2.7	/		
4	<u>20</u>	728,500	197	3,2	3.2	117	11:3	80	_/		
	२ऽ	133-100	1,00	3,3,	3.3	127_	134	875	/		
6_	30	738.5/4	.97_	3.2	3.2	1110	117	88.	/.		
1	5 0926	742,300	147	1.65	1,65		75	57	1	-	
Y 2	/0	746.300	.57	1.88	1.88	113	1//	57	/ _.	ļ 	
3		750,700	173	2,43	2,43	11-1	-43-	70	(
. 5	20 '	755,600	.78	2.62	2.62			90		ļ	
	2.5	760,100	.8/				1/0	90 -	';		
6	30	764.612	.73	2,43	2,43	108	10.7	70			
	0953	54.433/	0.869	2.54	1	113,52	96.	167			
	្រាលាចាស់ល	0.000000, 40 00000000000000000000000000000	海边森顶	10 A 10 * 14 * A 10 40 W							

READ AND RECORD ALL DATA EVERY _____ MINUTES

			READ AND REC	CORD ALL D	ATA EVERY	MINUT	ES	•		(.*
TRAVERSE POINT NUMBER	CLOCK TIME (74-hz CLOCK) TIME, min	GAS METER READING (V _m 1. 11 ³	VELOCITY HEAD (Jps), in. H2O	DIFFER	PRESSURE ENTIAL n. H ₂ 0)	STACK TEMPERATURE (T _s)."F	1	S METER RATURE OUTLET	PUMP VACUUM, in. Hg	SAMPLE BOX 1EMPERATURE. "F	IMPINGER TEMPERATURE, "F
	0 1044			DESIRED	ACTUAL		(I _{m in}), of	(Im out). "F			
4-1	5	768,500	.42	1.61	1.61	117	81	81	1.5	250 110	60±10
7 7 3	10	773,100	,60	2.25	2.25	113	98	84	2		
	15	777.800	,70	2.61	2.61	1/5	104	85	2.5_		
4	20	782.380	,72	2.70		111	10:1	87	3		
	2.5	784.400	.77	290		110	11.1	89	3.5		
ع _	39	791,452	.69	2.58	258	109	114	92	3.5		
	5/08/1114										
X-1	5 1116 ⁵¹⁴¹	795,700	, 55	2.10	2.16	1//	100	21	3,5		at.
2	10	800.200	174	2.78	2.78	112	112	93			OL.
3	15	809.800	182	3.05			116	94	4		
4	20	809.500	.91	3.4	3.4	113	115	95	4		l·
	25	814,300	1,0	3.7	3.7	122	114	24	4.5		
6	30	818.932	195	3.5	3.5	12-1	115	94	4/		
	;									&	<u> </u>
		54.199	0.854	1	65	114.000	45.	00		 	
	1146										
						0~,/	ر الريفيرية	10-1	(- ') i	·	
	,	് ക്രിക്കി	1001 d		. 47	,	κи,	•			
		* Öğünen-	ប្រកាបាស្ត		, ,		γ-ω,			·	
		TOWNOON NOW ON THE	ប្រាក្ស (•		ro t	00 40 00 40 00	NФ			
	ļ	្ំី់ សហ⊬លស	O 100 HH 44 VI	ე" ~ქ⊆		ந்திற்ற நடைப் நடித்திற்ற நடைப்	று ு ் ச	tt tt	•		
		្រុំ	0 UN 4-00 C) 4 (N N	"	A NO NO DE COLE	OF ALCOHOL	թ. գու վո	i		
		A MANORE	люююю	្រហាប	io. a	П] " п п п		OA	• •	· 	
	·				:						

 % 60
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

PLANT OKY Cham.
DATE 10-26-78
SAMPLING LOCATION Bartouse oulles
SAMPLE TYPE Portio
RUN NUMBER
OPERATORCOLLANIO
AMBIENT TEMPERATURE
BAROMETRIC PRESSURE
STATIC PRESSURE. (Ps)
FILTER NUMBER (s) 24353 M

A'C.
PROBE LENGTH AND TYPE 1 1
NOZZLETO
ASSUMED MOISTURE, % 🖔
SAMPLE BOX NUMBER
METER BOX NUMBER ? 24 3
METER AH 1.51
C FACTOR 40_
PITOT TUBE FACTOR
REFERENCE AP
NOTE 1.C.7 = .000 fin

READ AND RECORD ALL DATA EVERY 5 MINUTES

4.C. r = ,000 gin

TRAVERSE POINT NUMBER	CLOCK TIME (24 hr SAMPLING CLOCK) TIME, min	GAS METER READING (V _m). II ³	VELOCITY HEAD (Ap _s), in. H ₂ O	ORIFICE F DIFFER IAH), II	ENTIAL n. H ₂ O)	STACK TEMPERATURE (T _s)."F	TEMPE INLET	S METER RATURE OUTLET	PUMP VACUUM, in. Hg	SAMPLE BOX TEMPERATURE, "F	IMPINGER TEMPERATURE. °F
	0 1222	819.035		DESIRED	ACTUAL	<u> </u>	(1 _{m in})."F	(Im out), "F			
1-1	5	823.200	,51	1,92	1.92	121	87	86	2	250±10	60±10
2.	10	827.800	,72	2.71	2.71	121	102	88)	
3	15	832.500	.8/	3.02	3.02	120	105	88	2		
q	20	837.400	.90	3.30	3.30	122	109	89	2.5		
3	25 stop	842.400	.95	3,55	3.55	123	1//	89	3.5		
6	30 1252	847.142	.97	3,63	3,63	124	112	90	4		
	START 1255										
4-1	5	851.300	.46	1.75	1.75	117	98	89	2.5		
12	10	855,500	,58	2.20	2,20	124	106	90	[3]		
3	15	8 59.950	,66	2,50	2,50	121	107	90	_3		
4	20 3	864.600	,72	2.71	2.71	121	112	91	3.5		
5	25	869.300	.76	2.90	2.90	172	118	92	3.5		
6	30	873.110	,72	2.71	2,71	120	120	94	3	12/	
	26										:
	eno 1325		1,]] jant. p	· Of Gara	ኒ የ ኒ ነ)_F}		Oxych	e. \	0-16/1	;
			Office production		1.0 "	Ē		, }			3
	·	:		17 7 7 4 - CO NO NO		лĠ			10.11	`\$;
		54,073							ധിയ	ја 3 Род	2
		<u> </u>	_ Ծան	் அட் அட் ரூ		\$ 05 CD 50		`_i	for Jacob	** 10 D	. ;
			ೇ ಹಟ್ಟ	0000	N 00 4	ia a comercial de la comercia de la comercial de la comercial de la comercial	ja ja	operation of the court of the c) "	100 miles - 5	. : (]
			1 44 OO U	$) \oplus \cup \cup \odot$	i ⊷ iji ↓	្រុមស្រួល ក្រុសស្រួស		<u></u> " " <u></u>	rapid di	Cit da fa	
				e rectal tyles falle	· ····································	re elementatur hazre hazre		or half half	· :"! !"!"!	Mar 1 St 703	
			*								[
L	L		ee	1			uñ:	·1	~~ <u>~</u> .!		ş

SUMMARY RECORD OF VISIBLE EMISSIONS

Type of Plant	Date
Company Name	Hours of Observation <u>Oil Post</u>
Plant Address	Observer The Administration
Type of Discharge STACK OTHER	
Discharge Location (1993)	
Height of Point of Discharge	
Observer's Location:	
Distance to Discharge Point	
Height of Observation Point	
Direction from Discharge Point	
Background Description Solid gray o	of buildin
Weather: Clear Overcast Partly Cloudy On	
Wind Direction Wind \	Velocity mi/hr
Plume Description:	
Detached: Yes No Not Visib	ple
Color: Black White Other	
Plume Dispersion Behavior: Looping Coming	Fanning
Lofting Fumigat	ting Other
Estimated Distance Plume Visible —	

					<u>) x y </u>				Date						-
	Pla	ant A	ddres	s	Hois.	tan	Te	Χ	Observe	r _ <u>J</u>	-, [). ()/· C	<u>رون</u>	<u> 1</u> 7
	Sta	ack L	ocati	on I	<u>: </u>		·	1. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Observe Observe Locati	r's on <u>/</u>	: <u>/=</u>	<u>ے ہ</u>		٠.	
	Wea	ather	Conc	lition	is <u>-50</u>	<u> 10 0</u>	<u> </u>		7000	ءدر ت	o		5 ^		
		TIM	Ε						COMMENTS						
HR	ми	00	SE0 15	0HDS 30	45										
	31)		· · · ·			-	21		r.e						
	31						,								
	32														
	33														
	34										·				
	35				<u> </u>				··· · · · · · · · · · · · · · · · · ·						
	36										······································				
	37						,								
	38									_			- , 		
	39					 									
	40														
	41									-					
	42														
	43														
	44														
	45														
	46								١						
	47									,					
	48						•								
	49														
08	50	0	,O	.0	0		Sta	ant.	teat_	1	0	85	0		
	51	0	0	0	0										
1	:52	0	0	0	0										
-	53	0	0	0	0										
	54	0	0	0	0										
	55	0	0	0	0										
	56	0	0	0	0										
	57	0	0	0	Q							· · · ·			
	58	0	0	0	U									:	····
	59	0	O	O	O										

	Co	nipany	/ Name	<u> </u>	٠.٠.,	Date
	PI	ant /	\ddres	5 \$	eri. Tanansa	Observer 3. 1. 0. 12.
	St	ack l	_ocat	ion	1	· · · · · · · · · · · · · · · · · · ·
						Observer's Location
HR	भाम		COND	TI:	ME	COMMENTS
	1,114	00	15	30	45	
	00					
	01	159	`	`		
	02	•.	•			
	03		^	1	`.	
	04	`	.,			
	05	1	• (\	1.	
	06	,	*1	\		
	07	7	١,	· ·		
	08	5	~	٠.		
	09	1	*	1		
	10				\ \ \	
	11	~	~	-	٠,	
	12		*3,		- ,	
	13	6	\\	\		
	14		0	5	5	
	15		0	5	5	
	16		0	0	0	
	17	0	0	0	0	
		0	0	S	()	
09	18	0	0			
4	19	<u> </u>		0	0	End x port Test one
	20			<u> </u>	-	tend x port leat and
	21			 	-	
	22					
	23	 				
<u> </u>	24	_		_		
09	25	Ö	Ő	Ć	Ó	Start y port Test one
	26	18	0	Ú,	2	
	27	0	0	Û	0	
	28	0	0	0	ŏ	
05	29	10	0	0	0	

	Con	npany	Name	·	<u> </u>	Chem					٧ - ٠ د	<u> </u>	
	Pla	ant A	ddres	s	4000	ton I	<u> </u>	0bser	ver J	01	<u>/Uzi</u>	<u> 11 </u>	
	Sta	ack L	ocati	on		6958 <u>8</u>	<u> </u>		ver's .				,
	Wea	ather	Conc	lition	s			Loca	ition				-
	 •								· · · · · · · · · · · · · · · · · · ·				
HR	MIN	TIM	E SEC	OHDS				COMMEN	ITS				
		00	15						·				
<u> ٠</u>	31)	0	0	0	0		····	· .	···········				
	31	0	0	0	0								
	32	0	0	0	0	····							
	33	0	0	0	0								
	34	0	Ô	0	0					· · · · · · · · · · · · · · · · · · ·			
	35	0	0	0	0								
	36	0	0	0	0	•							
	37	0	0	Ó	0				,				
	38	0	0	0	0								
	39	0	0	0	0								
	40	0	0	0	0								
	41	0	0	0	0		•	<u></u>					
	42	0	0	0	0				·	 			
	43	0	0	0	0								
	44	0	0	0	0								
	45	Ö	0	0	0								
	46	0	0	0	0								
	47	0	0	0	0					· · · · · · · · · · · · · · · · · · ·			
	48	0	0	0	0								
	49	0	0	0	0	•							
	50	0	0	0	0		-						
	51	0	0	0	0							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	52	0	0	0	0								
	53	O	0	0	0	· · · · · · · · · · · · · · · · · · ·							
- 9	54	0	0	0	0.	End	Tes	+ ~	n e				
	55			-				· · · · ·	<u></u>				
	56						•						······································
	57												
•	58	 										 ;	
		 											
	59	ı	1 .]		1								

						RECORD OF VISIBLE			
	Con	npany	Name		<u>)xy</u>	Chem.	Date	10-26-78	
	Pla	ant A	ddres	s	Hour	ton Texas	Observer _	J. 01/Veill	
	Sta	ack L	ocati	on _	2421	1126 17	Observer's	5.0/Veill	
							Location		
									
HŘ	MIN	MIT	E SEC	ONDS		<u> </u>	COMMENTS		
		00	15		45				
· ·	31)	_			<u> </u>	Run S.			
	31								
	32				ļ				
	33			ļ	ļ <u>.</u>		· · · · · · · · · · · · · · · · · · ·		
	34								
	35								
	36								
	37								
	38								
	39								
	40								
	41					,			
	42								
	43								
10	44	Ö	0	0	6	Care	Short	1044	
	45	1	٥	0	7	7			-
	46	Ó	Ö	0	3				
	47	0	0	0	0				
	48	0	0	٥	0				
	49	(2)	0	0	0				
	50	0	0	0	0				
		0	0	0	0				
	51	0		0	6				
	52	0	0						
	53	0	0	0	0				
	54	0	0	0					
	55	~	ÿ	0	Ó				
	56	0	0	0	0		······································		
	57	0	Ď	0	0				
	58	0	0	0	0		,		
	59	U	101	V	()		• •		

	Co	пірапу	/ Name	:	<u>) </u>	<u>ه دنگ م</u>	·]m		Date	<u>:</u>	<u>- 🔍 S</u>		_	
	P1	ant /	\ddres	is	المرا	· Chi	3 .V.		Observe	r	· · · ·	<u>.)''</u>	31.,	_
	St	ack l	_ocati	on _	1 *, *	5,50	<u> </u>	<u>. :</u>	Observe	r's ,	Y •••	** :	, ,	. 1
									Locati	on				
														
HR .	MIN	<u>_</u>	CONDS	T !!	·IE				COMMENT	S				
		00	15	30	45									
	00													
	_01	•	~\											
	02	-	0	· ·							· · · · · · · · · · · · · · · · · · ·			
	03	•	^	-	,									
	04		·											
	05		, ,											
	06	••									···			
	07		^											
	08	-	ζ.		``						·····			
	09	\Box	()	3.	~.									
	10	0	0	0	0									
	11	C	0	0	3									
	12	5	C			_								
	13	0	0	()	1.1									
11	14	\mathcal{O}	(6	1.	Enc	LY	コハナ	-					
	15													
11	16	-7,	Ω	\mathcal{O}	()		(۴ أ	×				
	17)	Ω	C	C									
	18	J	O	0	C									
	19	5	Ô	0	0							-		
	20	5	0	0	C	,								
	21	S	0	C	0									
	22	5	0	5	Ô	1		 						
	23	5	0	C	0									
	24	٠.٠٠	5	N						•				
	25	2,	0	`	~									
	26	Ĉ.	3	-				•	··					
	27	7	C	4.	^			,—,,—,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			-			
		0	Ö	C	0			 -						
11	28	3	0	0	0	<u> </u>								
1	29	<u> </u>	1	<u> </u>	<u> </u>	ļ		مستبسوني د						

RECORD OF VISIBLE EMISSIONS Chem Date 10 - 25 - 78

						1 210			Date				
	Pla	int A	ddres	s	015	n	<u> </u>	<u>. S.</u>	Observer _	7. (Mei	11	
	Sta	ack L	ocati	on 🚉	ا مي مدوق			<u> </u>	Observer's Location	1 (4		
									Location				
			·										
нŔ	MIN	TIM	E SEC	ONDS		 			COHHENTS				
		00	15	30	45								
	31)	<u> </u>	0	<u>``</u>		7. 7.				····			
	31	C	0		0								
	32	0	C	2	0								······
	33	0	0	0	Ò								
	34		0	Ò	0								
	35	3	Ü	2	0								
	36	5	0	0	0								
	37	0	0	0	()								
	38	0	0	0	0					•			
	39	0	Ŏ	0	0								
	40	0	0	0	0								
	41	0	0	0	0_			·					
	42	Ò	0	0	<u>ර</u>								
	43	े		0									
•	44	0			C								
11	45		0	<u>ث</u>	0	En		CS	- Tu	<u> </u>			
	46												
	47							·					
	48								·····				
	49					•			······································				
	50												
	51								· ····	· · · · · · · · · · · · · · · · · · ·			
	52												
	53						•		<u> </u>				
	54												
-	55									·· - ··			
	56												
· 	57												
	58												
	59									,			

	Co	прапу	/ Name	2			07A		Date		<u>'3'</u>	
Plant Address Stack Location							ار سور (در) ای سور (در)	<u>) </u>	Observer	,	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	St	ack l	ocati	ion _		·	<u> </u>		Observer's Location			1
								•	Location _			
IR]	MINI	5	conos	TI!	1E				COMMENTS			 ,
_		00	15	30	45							
	00											
_	01				ļ							
	02											
	03											
	04											
	05											
	06											
	07											
	08											
	09											
	10											
	11											
	12											
	13											
	14											
	15											
	16											
	17											
	18							· · · · · · · · · · · · · · · · · · ·				
	19											
	20										*******	
	21							·		···		
2	22	0	0	0	٥	CI.	1	۲۰۰۶ :	, 7	102		
	23	2	0	C	0	1 () ()	<u> </u>	7 3 3	5° \ \	19 4		
		<u>;;</u>	0	0	0				•			·
	24	0	Ó	7	0							
	25	^			~							
	26	0	25	_	~ ~							
	27	3	3	0	0				· · · · · · · · · · · · · · · · · · ·		•	
	28			0								
	29	0	0	10	0							

Plant Address Houston 10 va.							Observer							
	Pla	ant A	idres	s	toist	on Teral	Observ	er	Σ	011	10/1	1		
	Sta	ack L	ocati	on			0bserv							
				-			Locat	er's . ion	·		<u> </u>	•		
														-
		TIM	E				COMMENT	<u> </u>						_
HR	MIN	00	15	0HDS 30	45									-
12	3()	Ó	۵	0	0	Run 3	•							
	31	0	0	0	0				***					
	32	Ó	Ö	0	0									-
	33	0	0	0	0			··· · · · · · · · · · · · · · · · · ·						-
	34	0	0	0	Ö						· · · · · · · · · · · · · · · · · · ·			-
		Ö	0	0	0								·	_
	35	0	0	0	0									-
	36	0	0	0	0									-
	37				0									-
	38	0	0	0	0			 -				·		_
	39	0	$\frac{2}{0}$		1		·							_
	40	0	0	0	0									_
	41		0	0	O									_
	42	0	0	0	0					 				_
	43	0	0	0	0							····		-
·	44	0	Q	0	0		·····							_
	45	0	0	Ö	0									_
	46	0	0	0	0									_
	47		0	0	0									
	48	0	0	0	0	· .								_
	49	0	٥	0	0	-						····		
	50	0	0		0									
12	51	0	0	0	0									
·	52													
12	53	0	0	0	0	Stant	Pont	Ÿ	R	un)	3			_
	54	0	0	0	0									_
	55	Ŏ	0	0	0									
	56	0	0	0	0		· · · · · · · · · · · · · · · · · · ·							-
	57	Ö	0	Ò	0					· · ·				
	58	0	Ŏ	0	0							•		-
	50	5	D	Õ	0		•							-

RECORD OF VISIBLE EMISSIONS

	Co	mpany	/ Name	? (3	بهر	. Chem	Date
	P1	ant /	\ddres		200	Hon Toxas	Observer J. Oilipill
	St	ack l	ocati	ion !	. مر ا	chem Hon Texas	Observer's
							Observer's Location
					<u> </u>		
HR]	MINI		CONDS	TI	18		COMMENTS
		00	15	30	45		
	00		~	^	`	K1100	
	01		~		\		
	02		^	~	7		
	03		``	`	`		
	04		. ` `	5	>		·
	05	• ,	1	">	,		
	06	0		->			
	07	٥	٠, مر	2	4		
	08	٥	7	()	1		
	09	0	0	5	0		
	10	0	0	0	()		
	11	0	0	•	^		
	12	0	0	0	0		
	13	0	0	0	0		
	14	0	D	0	0		
	15	0	3	٥	0		
	16	0	0	0	0		
	17	Ô	0	0	0		
	18	Ò	0	0	0		
	19	0	Ō	0	0		
	20	Ö	Ò	0	0		
	21	5	0	0	O		
13		<u>\(\)</u>	~		0		2
<u>ر د</u> ا	22	V	U	U	U	Incl r	m 3
	23						-
	24						
	25	 					
	26						
	27	_					
	28			 	l		
	29	l					•

APPENDIX B

LABORATORY REPORTS \circ

ANALYTICAL DATA

PLANT_ DAY Chem DATE_ /O - 26-78 SAMPLING LOCATION	COMMENTS:
FRONT HALF	LABORATORY RESULTS
ACETONE WASH OF NOZZLE, PROBE, CYCLONE (BYPASS). FLASK, FRONT HALF OF FILTER HOLDER	CONTAINER OCO-!P 40.1 mg
FILTER NUMBER	CONTAINER CCO-1F 11.5 mg
	FRONT HALF SUBTOTAL 51.6 mg
BACK HALF	
IMPINGER CONTENTS AND WATER WASH OF IMPINGERS. CONNECTORS, AND BACK HALF OF FILTER HOLDER	CONTAINERmg ETHER-CHLOROFORM EXTRACTIONmg
ACETONE WASH OF IMPINGERS, CONNECTORS, AND BACK HALF OF FILTER HOLDER	CONTAINERmg
AND BACK HALF OF FILTER HOLDER	BACK HALF SUBTOTALmg
	TOTAL WEIGHTmg
MOISTURE IMPINGERS FINAL VOLUME 200 mi NET VOLUME 1 mi	72 .
SILICA GEL FINAL WEIGHT INITIAL WEIGHT NET WEIGHT SUBTOTAL	TOTAL MOISTURE

ANALYTICAL DATA

PLANT_OCI Chem	COMMENTS:	
DATE		
SAMPLING LOCATION		
SAMPLE TYPE		
RUN NUMBER		
SAMPLE BOX NUMBER 2755		
CLEAN UP MAN 2001		
•		
FRONT HALF	LABORATORY RES	SULTS
ACETONE WASH OF NOZZLE, PROBE, CYCLONE (BYPASS), FLASK, FRONT HALF OF FILTER HOLDER	CONTAINER 50.9	mg
FILTER NUMBER 2-1352-A	CONTAINER 18.7	mg
	FRONT HALF SUBTOTAL 75.6	mg
BACK HALF		
IMPINGER CONTENTS AND WATER WASH OF IMPINGERS, CONNECTORS, AND BACK HALF OF FILTER HOLDER	CONTAINER ETHER-CHLOROFORM	mg
ACETONE WASH OF IMPINGERS, CONNECTORS,	CONTAINER	mg
AND BACK HALF OF FILTER HOLDER	BACK HALF SUBTOTAL	mg
·	TOTAL WEIGHT	mg
MOISTURE		
IMPINGERS FINAL VOLUME $\frac{325}{260}$ mI NET VOLUME $\frac{125}{125}$ mI 13	25 14 9	
SILICA GEL FINAL WEIGHT $\frac{214}{200}$ g g g NET WEIGHT $\frac{14}{200}$ g g g	TOTAL MOISTURE 139	-

ANALYTICAL DATA

PLANT	COMMENTS:
FRONT HALF	LABORATORY RESULTS
ACETONE WASH OF NOZZLE, PROBE, CYCLONE (BYPASS), FLASK, FRONT HALF OF FILTER HOLDER	CONTAINER 3 90,9 mg
FILTER NUMBER 24353-P	CONTAINER
BACK HALF	FRONT HALF SUBTOTAL 83.3 mg
IMPINGER CONTENTS AND WATER WASH OF IMPINGERS, CONNECTORS, AND BACK HALF OF FILTER HOLDER	CONTAINERmg ETHER-CHLOROFORMmg EXTRACTIONmg
ACETONE WASH OF IMPINGERS, CONNECTORS, AND BACK HALF OF FILTER HOLDER	CONTAINERmg BACK HALF SUBTOTALmg TOTAL WEIGHTmg
MOISTURE IMPINGERS FINAL VOLUME 30/ mi INITIAL VOLUME 200 mi NET VOLUME 101 mi	101.0 12.5 13.5
SILICA GEL FINAL WEIGHT 212.5 8 8 8 INITIAL WEIGHT 200 8 8 8 NET WEIGHT 12.5 8 SUBTOTAL	TOTAL MOISTURE 1/3.5 8

1			To Page No
Witnessed & Understood by me.	Date	Invented by	Date
J. D. O.	11-3-78	Recorded by	1
J 0 1 8 , 3 .	1	1	1

1 1

TITLE .

From Page No.__ CLICAT ISOMPLE oxy-chem 3842 24351 -A .3843 (3842) (3727) 3728 0.01 ,4296 Houston ,42954 .4296 1435Q-A .4108 .4/08 0,01 set(2) ,41376 .4/39 24353-A .4137v ,4113 .4113 4 0,00 24354-A .4122 .4122 4132-24355-A .4132 0.497=5 24356-A 0.4992 .4110 .41/2 1.085 Auchor 0.4878 0.4877 4114 24357-A 0.070 Hocking Balt. Nd 11-78 4114 0.4700 / 0.4801 4142 4143 5005E 24358-A . 4/09~ 24359-A .4109 .4048 24387 .4050 74388 , 4023 4023~ ,4046 .4046-24389 24390 -,4054 ,4052 24391 4048 .4049 24392 4043 , 4043 24393 ,4035 . 4034 24394 ,4048 , 4047-24395 ,4075 ,4075-.4050 24396 .4051 24397 . 3757 .3756 24398 .3762-,3764 24399 . 3760-,3761 24400 ,37812 .3782 ,3789-.3792 24401 24402 .3801 ,3798-.3806 .3803-24403 74404 .3812 ,38110 24405 .3827 .3826 24406 .3820 4 .3821 .3827 .3831 24407 24408 . 3840 .3838 -.3823 24409 .3821 3801 .3803 24410 0.4296 20.4297 24411 0.4435 0.4434 24412 0.4378 0.439740 24413 Invented by Date Recorded by

APPENDIX C
SAMPLE CALCULATIONS

SAMPLE CALCULATIONS

Test Run 1 - Ammonium Sulfate Dryer Baghouse Exhaust Stack

1. Volume of dry gas sampled at standard conditions $(68^{\circ}F, 29.92 \text{ in. Hg})$, dscf.

$$V_{m(std)} = \frac{17.647 \times Y \times V_{m} \times \left(P_{b} + \frac{\triangle + 13.6}{13.6}\right)}{\left(T_{m} + 460\right)}$$

$$V_{m(std)} = \frac{17.647 \times 0.973 \times 54.43 \times \left(29.91 + \frac{2.54}{13.6}\right)}{96.2 + 460} = 50.55$$

Where:

 $V_{m(std)}$ = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf.

V_m = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.

P_b = Barometric pressure, in. Hg.

 $\triangle H$ = Average pressure drop across the orifice meter, in. H_2O .

 T_m = Average dry gas meter temperature, ^{O}F .

17.647 = Factor that includes ratio of standard temperature (528°R) to standard pressure (29.92 in. Hg). OR/in. Hg.

Y = Dry gas meter calibration factor.

2. Volume of water vapor in the gas sample corrected to standard conditions, scf.

$$V_{w(std)} = (0.04707 \times V_{wc}) + 0.04715 \times W_{wsg}$$

$$V_{w(std)} = (0.04707 \times 72) + (0.04715 \times 12) = 3.95$$

Where:

 $V_{w(std)}$ = Volume of water vapor in the gas sample corrected to standard conditions, scf.

 v_{wc} = Volume of liquid condensed in impingers, ml.

Wwsg

= Weight of water vapor collected in silica gel, g.

0.04707

Factor which includes the density of water (0.002201 %/ml), the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant [21.85 (in, Hg) (ft³)/(lb-mole)(OR)]; absolute temperature at standard conditions (528OR), absolute pressure at standard conditions (29.92 in. Hg), ft³/ml.

0.04715

Factor which includes the molecular weight of water (18.0 lb/lb-mole), the ideal gas constant $[21.85 \text{ (in. Hg)}(\text{ft}^3)/(\text{lb-mole})(^{\text{OR}})]$. absolute temperature at standard conditions (528^{OR}) , absolute pressure at standard conditions (29.92 in. Hg), and 453.6 g/lb, ft^3/g .

3. Moisture content.

$$B_{ws} = \frac{V_{w(std)}}{V_{w(std)} + V_{m(std)}}$$

$$\frac{B_{\text{ws}}}{3.95 + 50.55} = 0.073$$

Where:

Bws

Proportion of water vapor, by volume, in the gas stream, dimensionless.

4. Mole fraction of dry gas.

$$M_d = 1 - B_{ws}$$

$$M_d = 1 - 0.073 = 0.927$$

Where:

 M_d = Mole fraction of dry gas, dimensionless

5. Dry molecular weight of gas stream, lb/lb-mole.

$$MW_d = 0.440(\%co_2) + 0.320(\%o_2) + 0.280(\%n_2 + \%co)$$

$$MW_d$$
 = $(0.440 \times) + (0.320 \times) + [0.280 (+)]$
= 28.97 (Ambient air)

MW_d = Dry molecular weight, lb/lb-mole.

%CO₂ = Percent carbon dixoide by volume, dry basis.

%N₂ = Percent nitrogen by volume, dry basis.

CO = Percent carbon monoxide by volume, dry basis.

0.440 = Molecular weight of carbon dioxide, divided by 100.

0.320 = Molecular weight of oxygen, divided by 100.

0.280 = Molecular weight of nitrogen or carbon monoxide, divided by 100.

6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.

$$MW_s = (MW_d \times M_d) + [18 (1 - M_d)]$$

$$MW_S$$
 = (28.97×0.927) + $[18 (1 - 0.927)]$ = 28.17

Where:

 MW_e = Molecular weight of wet gas, 1b/1b-mole.

= Molecular weight of water, lb/lb-mole.

7. Average velocity of gas stream at actual conditions, ft/sec.

$$= 85.49 \times C_{p} \times (/..p) \text{ avg. } \times \left[\frac{T_{s \text{ (avg)}}}{P_{s} \times MW_{s}} \right]^{\frac{1}{2}}$$

$$= 85.49 \times 0.843 \times 0.869 \times \frac{(113.9 + 460)}{30.22 \times 28.17}$$

Average gas stream velocity, ft/sec.

85.49 Pitot tube constant, ft/sec x $\frac{(1b/1b-mole)(in.Hg)}{(OP)} = \frac{1}{2}$

C_D = Pitot tube coefficient, dimensionless.

 \triangle p = Velocity head of stack gas, in H₂O.

 T_s = Absolute gas stream temperature, ${}^{O}R$.

P_e = Absolute gas stack pressure, in. Hg.

8. Average gas stream dry volumetric flow rates, dscf/min.

$$Q_{s(std)} = \frac{1058.8 \times v_{s} \times A_{s} \times M_{d} \times P_{s}}{T_{s}}$$

$$Q_{s(std)} = \frac{1058.8 \times 51.4 \times 0.45 \times 28.97 \times 30.22}{(1 + 460)}$$

$$= 1,200.$$

Where:

Qs(std) = Volumetric flow rate of dry stack gas, corrected to standard conditions, dscf/min.

 A_{2} = Cross-sectional area of stack, ft².

1058.8 = Factor which includes standard temperature (528°R), standard pressure (29.92 in. Hg), and 60 sec/min, $\frac{(^{\circ}R)}{(\text{in. Hg})}$ (min)

9. Isokinetic variation calculated from intermediate values, percent.

$$I = \frac{17.316 \times T_s \times V_{m(std)}}{v_s \times \theta \times P_s \times M_d \times (D_n)^2}$$

$$= \frac{17.316 \times 573.9 \times 50.55}{51.4 \times 60 \times 30.22 \times 0.927 \times (0.250)^{2}}$$

$$= 93.0$$

= Percent of isokinetic sampling.

θ = Total sampling time, minutes.

D_n = Diameter of nozzle, inches.

17.316 = Factor which includes standard temperature (528°R), standard pressure (29.92 in. Hg), the formula for calculating area of circle $\frac{\text{TD}^2}{4}$, conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg) (in^2) (min).

10. Particulate concentration, gr/dscf.

$$c_1 = 0.015432 \times \frac{M_t}{V_{m(std)}}$$

$$c_2 = 0.015432 \times \frac{51.6}{V_{m(std)}}$$

$$c_1 = 0.015432 \times \frac{51.6}{50.55} = 0.016$$

Where:

c₁ = Particulate concentration, gr/dscf.

 M_{+} = Total weight of particulate caught by train, mg.

0.015432 = Conversion factor of gr/mg.

11. Particulate mass emission rate, lb/hr.

PMR_t =
$$0.0085714 \times C_1 \times Q_{s(std)}$$

= $0.0085714 \times 0.016 \times 1,196 = 0.16$

PMRt = Particulate mass emission rate, lb/hr.

Conversion factor relating minutes to hours (60), and grains to pounds (7,000), (1b) (min)/(gr) (hr). 0.0085714

APPENDIX D
EQUIPMENT CALIBRATION DATA

17 = 28" 200 - 001 cm. Do-on 1 ck = cm.

Date	Box 110. 2253
Barometric pressure, P _b =in. Hq	Dry gas meter No. OxiGin 21.

				Tempe	rature				
Orifice	Gas volume wet test	Gas volume dry gas	Wct test	ct test Dry gas meter					
manometer setting, ΔH, in. H ₂ O	meter Vw. ft3	meter Vd, ft3	Meter t _w , °F	Inlet t _{di} , °F	1	Average t _d , °F	Time 0. min	Υ	οна
0.5	5.000	5.182	67	70	57 72	74.50	12.733	.980	1.783
1.0	5.201	5.256	676	20	75	80,25		1 ——	
2.0	10-1.7.7	5.237	6.5	102	74	84.00	6,65	.981	1,911
2.5 1.0	10.000	10.463	66	108	25	88.25	11.74-	.989	1.857
1.5 6.0	204.995	5.355	67	103	5.3	89.75			1,545
8.0	10								
		•				Average		279	1.856

Calculations

•		Υ	هاله
ΔΗ	ΔH 13.6	$\frac{V_{W} P_{b} (t_{d} + 460)}{V_{d} (P_{b} + \frac{311}{13.6}) (t_{w} + 460)}$	$\frac{0.0317 \text{ AH}}{P_b \text{ (td + 460)}} \left[\frac{\text{(tw + 460) e}}{V_w} \right]^2$
0.5	0.0368		
1.0	0.0737		
2.0	0.147		
4.0	0.294		
6.0	0.431		
8.0	0.588		

 $[\]gamma$ = Ratio of accuracy of wet test meter to dry test meter. Tolerance = \pm 0.01

 $[\]Delta H_0$ = Orifice pressure differential that gives 0.75 cfm of air at 70° F and 29.92 inches of mercury, in. H_2O . Tolerance - \pm 0.15

VAC. = 28" Ha

Date $\frac{70-30-76}{30.65}$ Barometric pressure, $P_b = _in. Hg$

		_		Tempe	rature				
Orifice	Gas volume wet test	Gas volume dry gas	Wet test	D	ry gas	meter			
manometer setting,	moter V _w ,	meter V _d ,	Meter t _w ,	Inlet t _{di} ,	Outlet t _{do} .	Average t _d ,	Time		
in. H ₂ 0	ft ³	ft3	۰F	۰F	۰F	°F	min	Y	AHO
0.5	5.00/	5.165	65°	74	66 70	79.5C	12.90	.985	1.771
1.0	5.00/	5.10-7	69	39	75	78.25	9.45	1.004	1,88-1
2.0	10,002	10.289	64 64	101	75	83.75	13,183	1.004	1.815
5 s.o.	185.00	5.775	87	66	35	85.50	7.630	.9724	-1,818
5 5 A	40 S.	2 5.293	64,	90	77 79	86,50	7.616	9820	1,807
8.0	10								
						Average		.974	1.819

Calculations

	·		
		Υ	۵۱۱۵
ΔH	ΔH 13.6	$\frac{V_{w} P_{b} (t_{d} + 460)}{V_{d} (P_{b} + \frac{\Delta H}{13.6}) (t_{w} + 460)}$	$\frac{0.0317 \text{ AH}}{P_b (t_d + 460)} \left[\frac{(t_w + 460) \text{ e}}{V_w} \right]^2$
0.5	0.0368		
1.0	0.0737		
2.0	0.147		
4.0	0.294		
6.0	0.431		
8.0	0.588		

 $[\]gamma$ = Ratio of accuracy of wet test meter to dry test meter. Tolerance = \pm 0.01

 $[\]Delta H_0$ = Orifice pressure differential that gives 0.75 cfm of air at 70° F and 29.92 inches of mercury, in. H_2O . Tolerance - \pm 0.15

BY	BLJ	DATE S	1217	7 EMPROMENTAL		OLSOMERS S	SHEET_			O F	_
CHKD	B Y	_DATE				,	w.o. i	NO			
. ROJI	ectP	ritot	Tuk	se Ca	ali br-	atio.	~ F	etor	<u>S</u>		-
	Pitot	•	` A '1	si de				•	``B''	Sile	
	•			0.192	0.024	Avg.	0.90			· · · · · · · · · · · · · · · · · · ·	A Au
	E	.948	, 832	0.68,	,844	CE8,	.848	.83Z	.837	.832	,838
	G	.821	, «ZI	,813,	،۷۷۵	e18,	,815	,825	,818,	, 820	, 82
	Н	, 839	,8 4 0	. જનજ	.8 44	(843)	.843	.830	. 837	,894	, 83°,
	I	, 839	. 841	. 828	.832	.835	.830	.834	.828	. 832	.831
	2			.820		.827		_		.820	,826
	.	. 65	.330	,125			.45	.330	,125		
	w	.818	. 852	. 851		.850	.846	, 850	, 8 4	9	. 848
	x	,856	.857	, 841		, 858	. 85 8	3 .857	. 854	4	, 859
	7	,841	, 848	.837		_842	. 841	,841	.84		. 845
	2	, 85L	.855	,859		. 857	. 841	.85	, 89	9	847

THE PENNSYLVANIA STATE UNIVERSITY

226 FENSKE LABORATORY
UNIVERSITY PARK, PENNSYLVANIA 16802

Center for Air Environment Studies

Area Code 814 865-1415

June 5, 1978

Mr. Jeffrey D. O'Neill Roy F. Weston, Incorporated Weston Way West Chester, Pennsylvania 19380

Dear Mr. O'Neill:

Please be advised that you successfully completed the "Visible Emissions" course given June 1, 1978. You are certified to evaluate visible emissions since you met the standards described as Method 9 in the Federal Register of November 12, 1974. These standards are:

- To maintain an average deviation of less than
 7.5% for a set of 25 white smoke plumes and a set of 25 black smoke plumes.
- 2) To have no single reading of the 50 plumes to be in error by more than 15%.

Sincerely,

Robert Jennings Heinsohn

Professor of Mechanical Engineering

Project Director

RJH/cb

Enclosure

THE CONTINUING CONTINUING EDUCATION

This certifies that

JEFFREY D. O'NEILL

has completed

VISIBLE EMISSIONS EVALUATION SEMINAR

Recertified:	Date:	Cortifled	Jun' 18	Recertified:	Date:
Tobert J	. Hemaul	_		<i>i</i>	3. Fischer

CONTINUING EDUCATION

CENTER FOR AIR ENVIRONMENT STUDIES

APPENDIX E DETAILED BAGHOUSE INFORMATION

Syser atic way

Efficient, low-maintenance filters for any air volume.

Carter-Day type "CS" filter

Exclusive combined shock design. Efficiency up to 99.99+%!

Designed to operate at higher air-tocloth ratios on difficult applications. Requires only 80 PSIG of compressed air. Can be supplied with individual hoppers or trough type hoppers for multiple installations. For complete information, ask for Bulletin No. L-1126R2. These diagrams illustrate the unique Dual Reverse air cleaning system of the "CS" filter.

Carter-Day type "RJ" filter

Performance proven in hundreds of installations.

Versatile — handles air streams with light, medium or heavy material concentrations. Efficient—up to 99.99+%. Simple design. Automatic, continuous, low-cost operation. Can be supplied with individual hoppers or trough type hoppers for multiple installations. For complete information, ask for Bulletin No. G-464R.

CAPACITY TABLE - DAY "RJ" FILTERS

Filter No.	Cloth Area Sq. Ft.	Cubic Feet of Air/Min. (CFM) Air to Media Ratio				No.	Sleeve	Blower	Blower	Drive	
											5
		12RJ26	57.5	285	570	855	1140	12	26	3A1	1
12RJ36	83.5	418	835	1252	1670	12	36	3A3	11/2	14	
12RJ48	105	525	1050	1575	2100	12	48	3A3	2	i i	
12RJ60	131	655	1310	1965	2620	12	60	3A6	2	1/4	
18RJ36	125	625	1250	1875	2500	18	36	SAS	11/2	-14	
18RJ48	165	825	1650	2475	3300	18	48	- 3A3	2	14	
18RJ60	208	1040	2080 -	3120	4160	18	60	3A6	3	14	
24RJ37	200	1000	2000	3000	4000	24	37	3A3	2	1/4	
24RJ48	255	1300	2600	3900	5200	24	48	3A6	2	1/4	
24RJ60	320	1600	3200	4800	6400	24	60	3A6	3	14	
24RJ72	385	1925	3850	5775	7700	24	72	48	5	14	
24RJ84	448	2240	4480	6720	8960	24	84	4A	71/2	Ÿ.	
72RJ37	600	3000	6000	9000	12000	72	36	4A	5	35	
72RJ48	765	3825	7650	11475	15300	72	48	44	71/2	1/2	
72RJ60	960	4800	9600	14400	19200	72	60	44	71/2	1/2	
72RJ72	1155	5775	11550	17325	23100	72	72	4A	10	1/3	
72RJ84	1340	6700	13400	20100	26800	72	84	4B	15	7,	
72RJ96	1530	7650	15300	22950	30600	72	96	4B	15	75	

CAPACITY TABLE - DAY TYPE "CS" DUST FILTER

Filter No.	Cloth Area Sq. Ft.	Cubic Feet of Air/Min. (CFM) Air to Media Ratio				No.	Sleeve	Blower	Blower	Drive	
		12CS26 12CS36 12CS48 12CS60	57.5 83.6 105 131	575 835 1050 1310	865 1250 1575 1965	1150 1670 2100 2620	1440 2080 2620 3280	12 12 12 12	26 36 48 60	3A1 3A1 3A1 3A1	1 1/2 1 1/2 2 2
18CS36 18CS48 18CS60	125 167 208	1250 1670 2080	1875 2500 3110	2500 3340 4160	3120 4170 5200	18 18 18	36 48 60	3A1 3A1 3A1	2 2 3	14 14 14	5.6 5.6 5.6
24CS37 24CS48 24CS60 24CS72 24CS84	200 255 320 384 448	2000 2550 3200 3840 4480	3000 3820 4800 5750 6700	4000 5100 6400 7680 8960	5000 6370 8000 9600 11200	24 24 24 24 24 24	37 48 60 72 84	3A1 3A1 3A1 3A1 3A3	3 3 3 3 5	14 14 14 14	6.6 6.6 6.6 6.6 6.6
72CS37 72CS48 72CS60 72CS72 72CS84 72CS96	600 765 960 1150 1340 1530	6000 7650 9600 11500 13400 15300	9000 11500 14400 17250 20100 23000	12000 15300 19200 23000 26800 30600	15000 19100 24000 28800 33500 38300	72 72 72 72 72 72 72	37 48 60 72 84 96	3A3 3A3 3A3 3A6 3A6 3A6	5 5 7 7 7 7 7	*****	13.9 13.9 13.9 13.9 13.9

*Compressed air consumption may be reduced through use of a timer, available when applicable at extra cost.

APPENDIX F
PROJECT PARTICIPANTS

PROJECT PARTICIPANTS

The following Weston employees participated in this project:

Peter J. Marks

econENVIRONomics Division

Laboratory Manager

Barry L. Jackson

econENVIRONomics Division

Supervisor, Air Testing

Jeffrey D. O'Neill

econENVIRONomics Division

Project Scientist Assistant

Gregory Celiano

econENVIRONomics Division

Assistant Project Scientist

David D. Maloney

econENVIRONomics Division

Laboratory Technician