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The information in this document has been funded wholly or in part by the
United States Environmental Protection Agency under Interagency Agreement
Number DW 930078-01-1 to the National Aeronautics and Space Administration,
Langley Research Center. It has not been subjected to the Agency's peer and
administrative review, and therefore does not necessarily reflect the views of
the Agency. Mention of trade names or commercial products does not constitute
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ABSTRACT

This project was undertaken to determine the feasibility of using pattern
classification techniques and infrared spectroscopy to screen hazardous waste
samples in the field. The technique would require a portable IR spectrometer
and a microcomputer to perform a binary pattern classification of the spectra.
The classification scheme requires "training" on a main frame computer to pro-
duce weighting vectors from infrared library spectra. The weighting vectors,
when applied to pattern vectors obtained from sample spectra, could classify
samples in the field as being likely or not likely to contain hazardous sub-
stances as defined by the spectral library.

Preliminary tests of the scheme using 50 compounds from the U.S. Environ-
mental Protection Agency Priority Pollutant List are encouraging. The ability
of the simple, linear, binary pattern classification scheme to predict whether
a compound is in the class known as hazardous pollutants appears feasible.

This report was submitted in partial fulfillment of Interagency Agreement
No. DW89930548-01-1 by Colorado State University (CSU) under the sponsorship of
the EPA. CSU was a subcontractor to Martin-Marietta, the prime contractor for
this project. The contract was administered by the National Aeronautics and
Space Administration under the Agreement with EPA. This report covers a period
from March 7, 1983 to December 1, 1983 and work was completed as of December 1,
1983.
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SECTION 1
INTRODUCTION

This feasibility study was part of a larger project jointly funded by EPA
and NASA under an interagency agreement entitled Electronic Methods for In-Situ
Monitoring of Hazardous Wastes. Two approaches were under investigation, x-ray
fluorescence spectroscopy and infrared spectroscopy. Martin-Marietta, Denver
Division, was the prime contractor (to NASA) and was responsible for both
efforts. The infrared feasibility study was subcontracted to Coloraado State
University and composed only 5% of the total project budget, the major effort
being the development of x-ray fluorescence spectrometry as a viable field

screening technique for hazardous wastes.

The goal of thislproject was to perform a feasibility study to determine
whether it is possible to screen environmental samples, especially industrial
wastes and sludges in the field, and thus to determine if hazardous pollutants
are likely present. The proposed instrumental technique is infrared spectroscopy,
most likely some form of Fourier transform infrared spectroscopy. The proposed

decision making technique is pattern recognition or pattern classification.



SECTION 2
CONCLUSIONS

By using a limited data set of infrared spectra and limited time, it has
been determined that the ability of a simple, linear, binary, pattern clas-
sification scheme to predict whether a compound is in the class known as

hazardous pollutants appears feasible.

This study also has shown that preliminary investigations using infrared

spectra and pattern classification schemes can be conducted on a microcomputer.



SECTION 3
INFRARED SPECTROSCOPY

The coupling of infrared and pattern classification has precedents in the

literature (1,2). A brief introduction will be given for each.

INFRARED SPECTROSCOPY

Organic molecules contain a variety of forms of energy. One of these
is that manifested as vibration of the chemical bonds. The absorption of
electromagnetic radiation in the region known as infrared (2.5-15 micrometer
wavelengths) can cause transitipns in the level or state of these vibrations.
Scanning through this wavelength range results in a plot of absorption versus
wavelength, or an infrared spectrum, which is characteristic of the compound or
mixture of compounds in a sample. Fourier transform infrared spectroscopy is
an instrumental and mathematical method of collecting many such scans in a
short period of time, thus improving the signal-to-noise ratio. The signal-to-
noise ratio increases proportionally to the square root of the number of repet-
itive scans. Thus, for example, by scanning 100 times, improvement by a factor
of 10 is usually realized experimentally. As a result of Fourier transform
techniques, it is reasonable to expect to obtain a spectrum from less than
microgram quantities of many types of organic molecules. Thus, infrared spec-

troscopy has found use in environmental analyses (3). It is expected that in



many types of matrices, a few hundred parts per billion of several molecular
types can be detected, but not quantitatively determined. The detection 1limit
will depend upon the type of infrared chromophore (color producing group) in

the molecular structure.

PATTERN CLASSIFICATION

The availability of high-speed computers for processing large amounts of
data has led to the consideration of volumes of data which were previously
implausible to treat. One outcome of this ability has been the use of pattern
recognition or pattern classification techniques in chemistry. According to
Jurs and Isenhour (4), pattern recognition "includes the detection, perception,
and recognition of regularities (invariant properties) among sets of measure-
ments describing objects or events." Pattern recognition is normally used by
chemists and others to classify a set of experimental data as a member of a

class. This technique has been applied to many types of problems.

A basic pattern recognition system usually contains the units shown in

Figure 1 (4, p.3).

Transducer Preprocessor L—-b Classifier

Iteration

Figure 1. Block diagram of a basic pattern recognition system.
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The transducer converts information from the laboratory format into the pattern
space of the pattern recognition system. Often, this entails no more than
converting the raw data into a suitable computer format. The preprocessor
accepts the data and converts it into a form which is dealt with more easily by
the classifier. The c1assifief treats the data by some algorithm to produce a
classification decision. The classifier may be based on various branches of
applied mathematics, statistical decision theory, information theory, or geom-
etric theory. There exists a variety of pattern classification systems includ-
ing those for multicategory classification. However, in this report only a

binary classification system is considered and discussed.

The object of this feasibility study is to determine whether the presence
of hazardous organic pollutants such as, but not limited to, those on the
Environmental Protection Agency Priority Pollutant List can be predicted from
an infrared spectrum of industrial waste samples. Thus, only a binary classi-
fier is required to determine whether or not the samples contain such compounds.
The hazardous pollutants often contain such organofunctional groups as C-Ci
bonds, phenolic groups, polyaromatic hydrocarbons (PAH's) and other structural
units represented in infrared spectra. Usually, determining even the likely
presence of such compounds requires extensive preanalytical separation for
successful detection by IR spectroscopy. A fast inexpensive method of sample

classification could be an effective cost-saving aid.

Chemical data such as infrared spectral information may be represented as

a d-dimensional pattern vector:



X = X1,X25e0eX(d (1)

The components xj are observable quantities such as the wavelength of a peak in
an infrared spectrum of a compound. Alternatively, the spectral region may be
divided into subregions, and the X values would then represent the intensity

of the absorption in each subregion. If there were 100 such subregions, there
would be 100 dimensions of data, or a set of vectors in 100-space, one set for
each of the subregions of the infrared spectrum. If thousands of compounds are

considered, clearly a vast amount of data could result.

For a binary classifier, the two classes of data should fall on either
side of a decision surface. For a simple two-Space case, this amounts to
tracing a line (not necessarily a straight one) that runs between the two
classes of data. In hyperspace, the analogy is a hyperplane that may or may
not be linear and separates the two classes of data. The case is simpler if a
linear hyperplane can be used as it can be represented by a vector from the
origin. In such a case, the sign of the dot product of the normal vector W and
a pattern vector X defines on which side of the hyperplane a given pattern

point lies (4, p.11):
W-X = [W| |X| cos @ (2)

where O is the angle between the two vectors. Since the normal vector is
perpendicular to the hyperplane, all patterns having dot products that are
positive lie on the same side of the plane as the normal vector, and all those

with negative dot products lie on the opposite side. Although decision



surfaces need not be linear, their simplicity is appealing.

Often a concept called Threshold Logic Units (TLU) is used for linear,
binary classification. This method uses some function which generates one of
two results based on the input data. A decision is based upon whether the
result is greater or less than the threshold value. The result may be computed
by weighted components, wq, of the normal vector, W, applied to each term in

the data set

WeX = [W] |X] cos @ = wyx+WoXote .o tWyXq+Wy,q (3)

where W44 is added to project the vector from the origin. The weight compo-
nents are determined by "training" the classifier with a set of data of known
classification. These data are known as the "training set" which is considered
by the classifier one set at a time. The weight vector components wq are
adjusted until the prediction is correct. All pattern points in the training
set are iterated until the discriminate function converges on one that success-
fully classifies all the points. Fiqure 2 shows a two-space representation of

a linear, binary classifier using a TLU.

When convergence is obtained, weight vector components for each element in
the data set are available. To execute the training set, it is obviously best
to use a large, fast computer. However, especially for projects of the type
considered here, it is important to note that once the training is complete,
the weight vector components can be stored in a very small microcomputer, and
prediction can be made on new data acquired using an instrument such as an FTIR

spectrometer. It is conceivable that small, single-board microcomputers could
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be used with a single Read Only Memory (ROM) for the program and data.
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Figure 2. Example of a two-space, linear, binary classification.
Two classes of data represented by x and o, respectively,
fall on either side of the decision plane represented by
the dashed 1ine. An upper and lower threshold (TLU) are
represented by dotted lines. Data which fall between
the threshold limits are not classified.
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SECTION 4
EXPERIMENTAL

This feasibility study was performed with limited resources. However, the
success that was obtained illustrates the possibility of using small computers
for the application of using pattern classification and infrared spectrometry
to screen hazardous waste samples in the field. Appendix A shows the listing
of a computer program for linear, binary pattern classification written in
Apple Computer Applesoft language. This program was translated from the FORTRAN
program given in the appendix of the book by Jurs and Isenhour (4). The program

was executed on an APPLE 11+ (Apple Computer, Cupertino, CA) computer.

The original plan for this study was to use a computer data station from a
vendor of infrared instrumentation along with infrared data on diskette.
Several unfortunate events occurred. The liaison from the vendor failed for
several months to arrange the loan of a data station. Once obtained, no soft-
ware support or manuals were available. The form of the data on the diskettes
was found to be unsatisfactory for use in a classification program. Therefore,
as described below, an alternative was found. Although not considered to be
completely satisfactory, a meager amount of data were utilized which shed some

insight to the question at hand.

The spectra for 100 compounds were encoded for use in this study. Fifty



compounds were selected from the Environmental Protection Agency Priority
Pollutant List. An additional 50 compounds were selected which are not on
either the EPA Priority Pollutant List or in Appendix VIII, 40CFR261 (RCRA).
Data for the Priority Pollutants were derived from spectra published by Sadtler
(5) and data for the other compounds were derived from spectra published by the
Aldrich Chemical Co. (6). The infrared spectra of these compounds were divided
into eight regions (Table 1). Each region is in units of cm-l, and the data
entry is a one (1) if a peak is present in the region and zero (0) if no peak

is present in the region.

TABLE 1.

Spectral Range of Wave Spectral Range of Wave
Region Numbers (cm-1) Region Numbers (cm-1)
1 200-500 5 2001-2500
2 501-1000 6 2501-3000
3 1001-1500 7 3001-3500
4 1501-2000 8 3501-4000

The data set was assigned a "dot product" or class of one (1) if the compound
were a hazardous pollutant, or a negative one (-1) if it were not. A training
set was made up from 80 of the 100 compounds, 40 from the Priority Pollutant
List (hazardous), and 40 from the Aldrich library (nonhazardous). This left
the spectra of 20 compounds (10 from each classification) to be used as test
data. Although this is a meager and greatly simplified data set, the results

are encouraging. These data were analyzed using the program shown in Appendi x
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A, requiring approximately 45 seconds to execute on the APPLE II+ computer.

11



SECTION 5
RESULTS

The results of the use of the data described above executed in the
Applesoft program are shown in Appendix B. The first line indicates that 60
data sets are to be used in training, that there are eight data in each set,
and that the TLU has been set to 0.75 on each side of a linear surface. The
nine weight vectors (including the wy4+1 component) are the weight vectors for
each datum. There were 26 feedback iterations to determine the weight vectors;
each were set initially at 0.1 in line 130 of the program. With a deadzone
(TLU) about the decision surface of 0.75, 13 of the 20 data sets were predicted
and 7 were not. Of the 13 predicted, 1 was predicted incorrectly. With a
deadzone (TLU) about the decision surface of 0, 20 of the 20 data sets were
predicted and 5 predicted incorrectly. Thus, with this simple set of data, 75
percent of the test set were correctly predicted with a training of 26 feed-

backs.

Appendix C shows a modified run of the program in which 70 data sets were
used as the training set and a TLU of 1 was specified. The increased TLU
increased the magnitude of the weight vector components which has the effect of
spreading the vectors in hyperspace. All 10 compounds of the test set were
predicted when 500 feedbacks were allowed, but when the TLU was reduced to

zero, 3 were incorrectly predicted.
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Appendix D shows the results of a run in which 80 data sets were used to
train for the prediction of 20 data sets, all of which were known to fall into
one of two classes. All 20 compounds of the test set were predicted correctly

with 100 iterations and the TLU set at both 0.75 and zero.

Although this feasibility study was not as extensive as desired because of
a variety of problems including limited funding and delays in the loan of equip-
ment, some encouraging results were obtained. If an appropriate number of
training data were to be used, the execution time on a microcomputer would be
prohibitively long, but this study shows that preliminary work can be conducted
on such a computer. The majority of the computer time is spent in the training
session. Once the weight vectors are obtained, the prediction takes only a few
seconds to determine, as this is a direct, not an iterative computation.
Clearly, a small microcomputer such as those associated with modern spectrom-
eters can perform this computation. Most importantly, although the data set
used was small, the ability of the simple, linear, binary pattern classifica-
tion scheme to predict whether a compound is in the class known as hazardous

pollutants appears feasible.
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SECTION 6
SUGGESTED FURTHER RESEARCH

The results and conclusions of th{s feasibility study suggest the probable
success of further research., Provided that an infrared spectrometer containing
even the most basic microcomputer can be designed with sufficient sensitivity
and portability, a research plan to develop a system for the rapid, inexpensive,
and reliable screening of hazardous waste samples for as little as a few micro-
grams of organic pollutant is recommended. First, a large data file of infrared
spectra suitable for use in a pattern recognition scheme would be obtained on a
lease basis. The most obvious of these data bases is that from Sadtler. The
general pattern classification program “ARTHUR"3/ would be obtained for execu-
tion on a large mainframe computer. This program permits the use of a wide
variety of pattern classification techniques. Therefore, one would not be
restricted to the linear, binary classification used here. However, linear,
binary classificgtion would be explored in detail first because of its mathe-
matical simplicity. The judicious use of asymmetric TLU's would be explored to
"bias" the decision to predict the presence of probable pollutants even when

they might not be present, if that were a desired result.

a/ ARTHUR is a generalized pattern classification program available from
Infometrix, Seattle, Washington. It is planned to be made available in
a microcomputer version.

14



These studies would be required on pure compound spectra first. Then,
computer-generated spectra of mixtures simulated by linear addition of the
spectra of pure compounds would be investigated. For example, the reliability
of the prediction when a trace of pollutant was mixed with a large amount of
some other compound would be tested. This would be a severe and critical test.
Fortunately, it can be performed using computer-generated data. Preparation of

laboratory mixtures would only be necessary to test the instrumentation.

It is estimated that this research could be conducted during one year at a

cost of approximately $70,000.
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PPENDIX A

I>
e

REM 3333332332338 RINARY PATTERN RECOGNITION $3333335333333333333343112

REM
REM
REM EERXTANBRBERARABASRISALEISENSISSRIRXEISAIRISNILS
REM THIS PROGRAM WAS TRANSLATED FROM
REM A FORTRAN VERSION IN THE ROOK
REM “CHEMICAL AFPLICATIONS OF PATTERN RECOGNITION®
REM P.C. JURS AND T.L. ISENHOUR
REM WILEY INTERSCIENCE, NY, 1975
REM TRANSLATION BY D.E. LEYDEN
REM DEPT. OF CHEMISTRY
REM COLORADD STATE UNIVERSITY
REM FORT COLLINS CO 80523
REM 133 2223280222223 2232333223223 332232333222 832233
RESTORE
HOME
FRINT CHR$ (4);"FR#1"
FRINT CHR$ (%) "BON"
DIM D(S,100),W(6),L{(100),ID(10G), IC(100) ,NS(100),KP (20)

NT = 80

NP = 220

Wl = .1

75 = .75

NO = NT + NP
NA = 1000

NU = 5

REM READ DATA SET

FOR 1 = 1 70 NO

READ L (1)

FOR J = 1 TO NU

READ D(J, 1)

NEXT J

NEXT I

REM SET UP TRAINING SET
FOR I = 1 TO NT

ID(D =1

NEXT 1

REM SET UP PREDICTION SET
FOR I =1 TO NP

1IC(Iy = 1

NEXT 1

REM INITIALIZE WEIGHT VECTOR
FOR J = 1 70O NU
W(3) = Wl

NEXT J ’

WINU + 1) = WI

REM GOTO TRAINING SUBROUTINE

 GOSUB 1000

REM GO TO FREDICTION ROUTINE WITH DEADZONE OF .75
GOSUB 22000

I8 = O

REM GO TO PREDICTION ROUTINE WITH DEADZONE OF 0.0
G0SUR 2000

PRINT CHR$ (4);"PR#0"

END



1000
1010
1020
1030
1040
105Q
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1185
1190
1200
1210
122
1230
1240
1250
255
1260
12865
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1375
1380
1390
1400
1410
1420
1430
1440
1450
14460
1470
1480
1490
1500
1310
1520
1530
1540
1550

REM SOURROUTINE TRAIN

NC = ©
FRINT "TRAINING ":NT.NU,TS
NV = NU + 1
NF = 0
KK = 0
KV = 0
REM STARTING POINT OF MAIN LOOP & RETURN FROM LINE NUMEER 1520
KZI =0 :
IF KV < = 0 60TO 1120
ND = KV
GOTOD 1170
ND = NT
FOR I = 1 TO NT
NS(I) = ID(I)

NEXT 1

REM THE NEXT LOOP CLASSIFIES THE ND MEMEERS OF THE CURRENT SURSET
FOR IR = 1 TO ND

I = NS(IR)

REM THE NEXT LOOP CALCULATES THE DDT PRODUCT
S = W(NV)

FOR J = 1 TO NU
S =6+ DWJ.I) % W(J)

NEXT J

REM THE NEXT THREE STATEMENTS TEST FOR CORRECT ANSWER
IF L(I) > O GOTO 1260

IF (8 + TS) < = O GOTO 1420

GOTO 1290

IF (S - TS) > O GOTO 1420

REM 1270 OR 1290 CALCULATES THE CORRECTION INCREMENT
C=21% (IS - 9)

6070 1300
C=23%(-78 - 98)

XX = 1.0

FOR J = 1 TO NU
XX = XX + D(J,I) ~ 2

NEXT J
C=C7 XX

RKEM THE NEXT LOOFP PERFORMS THE FEEDRACK

FOR J =1 TO NU
W(J) = W) + C % D(JI,. 1)

NEXT J
WINV) = WINV) + C
KZ = KZ + 1
NS(KZ) = [
NF = NF + 1 .,
NEXT IR
KV = K1
KK = KK + 1
KP(KK) = KV

IF (KK - 20) < O GOTO 1500
PRINT KP(KK)

KK = 0
REM TEST FOR NUMBER OF FEEDEACKS
IF (NF - NA) = > O 60TO 1550

REM TEST WHETHER CURRENT SUERSET 1S INTIRE TRAINING SET
IF (ND - NT) < > O GOTO 1080

REM TEST FOR ZERO ERROR

IF KV < > 0 GOTO 1080
NC =1



1760 REM  SUMMARY OUTPUT OF TRAINING ROUTINE
1570 FOR K =1 TO KK

1580 FRINT INT (KP{(K)):

1590 NEXT K

1595 FRINT

1500 FRINT "WEIGHT VECTOR"

1610 FOR J = 1 TO NV

1620 PRINT W)

1630 NEXT J

1640 PRINT “FEEDRACKS ":NF

1650 RETURN

2000 REM SUEBROUTINE FREDICTION

2010 L1 =0
2020 L2 = ©
2030 KW = 0
2040 N1 = 0
2050 N2 = 0

2060 FOR II = 1 TD NP

2070 I = IC(ID)

2080 S = W(NU + 1)

2090 FOR J =1 7O NU

2100 S =S + DI, 1) & W)

2110 NEXT J

2120 1F ( ARS (S) -~ TS) = > @ GOTO 2150
2130 KW = KW + 1

2140 GOTO 2230

2150 IF L(I) > O 6GOTO 2200

2160 N2 = N2 + §

2170 IF ( - S - TS) > 0 GOTO 2230
2180 L1 = L1 + 1

2190 GOTO 2230

2200 Nif = Nt + 1

2210 1IF (S - TS) > O GOTO 2230

2220 L2 = L2 +

2230 NEXT 11

2240 FRINT "PREDICTION WITH DEADZONE = ";3;7TS
2250 LT = L1 + L2

2260 JW = N1 + N2

2270 PW = 100 - (100 % LT / JW)

2280 P1 = 100 - (100 % L1 / N2)

2290 P2 = 100 - (100 % L2 / NI1)

2300 PRINT "NUMRER FREDICTED = ";JW

2310 PRINT "NUMBRER NOT FREDICTED = ";KW
2320 FPRINT "NUMBER FREDICTED INCORRECTLY = ";LT
2330 FRINT

2340 PRINT LT;"/";JWs" "3 INT (FW)

23S0 PRINT L1;"/"3N2;" "3 INT (PD)

2260 FPRINT L2;"/";N1;"  "; INT (P2)

2365 FPRINT
2370 RETURN



APPENDIX B

TRAINING 60 8 .73

WEIGHT VECTOR
-2.32670578
1.93840788
=2.80500923
-2.90653334
1.72147704

-. 949600764
1.82722324
1.7296907

- 512025906

FEEDBACKS 26

FREDICTION WITH DEADZONE = .73
NUMEBER FREDICTED = 13

NUMEER NOT FREDICTED = 7
NUMBER PREDICTED INCORRECTLY

n
[

1/13 92
/4 75
0/9 100

PREDICTION WITH DEADZONE = O
NUMRER FREDICTED = 20

NUMEER NOT PREDICTED = O
NUMBER PREDICTED INCORRECTLY

]
u

5/20 75
s/8 37
©0/12 100



APPENDIX C

1FAINTNG 70 8
8 8
LEIGHT VECTOR
-14. 1103004

S0.9810323
-46.4651364
-48. 2468018
2.36107728
-7.01234953
S$.69704767 -
12.8294714
~-4,55528285

FEEDRACKS 500

FREDICTION WITH DEADZONE = 1
NUMBER FREDICTED = 10

NUMBRER NOT FREDICTED = O
NUMEBER FREDICTED INCORRECTLY

3/10 70
1/S 80
2/S 60

FREDICTION WITH DEADZONE = 0
NUMBER FREDICTED = 10

NUMEBER NOT PREDICTED = ©
NUMBRER FREDICTED INCORRECTLY

3/10 70
1/S 80
2/5 &0



" APPENDIX D

IEAINING 80 S

8

3

1
0322104333332222100
WEIGHT VECTOR

., 405293118

. 959874479

. 299292939
-.71388B4741

-. 409657794
.0221140133
FEEDBRACKS 254
FREDICTION WITH DEADZONE = .75
NUMBER PREDICTED = 20

NUMBER NOT PREDICTED = ©
NUMEER PREDICTED INCORRECTLY

0/20 100
0/9 100
0/11 100

FREDICTION WITH DEADZONE = ©
NUMRER PREDICTED = 20

NUMERER NOT FREDICTED = O
NUMEER FREDICTED INCORRECTLY

0720 100
a/9 100
0/11 100

.75



