

TEMPERATURE PREDICTION IN STRATIFIED WATER:

MATHEMATICAL MODEL-USER'S MANUAL

U.S. ENVIRONMENTAL PROTECTION AGENCY

WATER POLLUTION CONTROL RESEARCH SERIES

The Water Pollution Control Research Series describes the results and progress in the control and abatement of pollution in our Nation's waters. They provide a central source of information on the research, development and demonstration activities in the Environmental Protection Agency, through inhouse research and grants and contracts with Federal, State, and local agencies, research institutions, and industrial organizations.

Inquiries pertaining to Water Pollution Control Research Reports should be directed to the Chief, Publications Branch (Water), Research Information Division, R&M, Environmental Protection Agency, Washington, D.C. 20460.

TEMPERATURE PREDICTION IN STRATIFIED WATER: MATHEMATICAL MODEL-USER'S MANUAL (Supplement to Report 16130DJH01/71)

by

RALPH M. PARSONS LABORATORY
FOR WATER RESOURCES AND HYDRODYNAMICS

Department of Civil Engineering

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

for

ENVIRONMENTAL PROTECTION AGENCY

Research Grant No. 16130 DJH

April 1971

EPA Review Notice

This report has been reviewed by the Environmental Protection Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Environmental Protection Agency nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

ABSTRACT

The annual cycle of temperature changes in a lake or reservoir may be quite complex, but predictions of these changes are necessary if proper control of water quality is to be achieved. Many lakes and reservoirs exhibit horizontal homogeneity and thus a time-dependent, one-dimensional model which describes the temperature variation in the vertical direction is adequate. A discretized mathematical model has been developed based on the absorption and transmission of solar radiation, convection due to surface cooling and advection due to inflows and outflows. The mathematical model contains provision for simultaneous or intermittent withdrawal from multi-level outlets and time of travel for inflows within the reservoir. Heat transport by turbulent diffusion in the hypolimnion is neglected.

Good agreement has been obtained between predicted and measured temperatures in both the laboratory and the field. Field verification consisted of the simulation of the thermal structure of Fontana reservoir during a nine-month period. Criteria for the applicability of the model are given. The mathematical model is a predictive one, since the required data is that which would normally be available before the construction of a reservoir.

Emphasis has been placed on a detailed explanation of the physical basis for the mathematical model and on the computer program inasmuch as the report is intended primarily as a user's manual.

This report was submitted in fulfillment of Research Grant No. 16130 DJH between the Water Quality Office, Environmental Protection Agency and the Massachusetts Institute of Technology.

Key words: reservoir temperature distribution; thermal stratification in reservoirs; reservoir water quality.

TABLE OF CONTENTS

				Page
ABSTRAC	T			iii
TABLE C	TABLE OF CONTENTS			
LIST OF	FIGURES	ı		viii
FORWARD)			X
1.	INTRODUC	TION		1
	1.0	Thermal S	tratification in Reservoirs	1
	1.1	Proposed	Model	3
2.	DESCRIPT	CION OF PH	YSICAL BASIS OF MODEL	4
	2.0	Introduct	cion	4
	2.1	Schematiz	zation of Reservoir	4
	2.2	Assumption	ons	4
	2.3	Important	Model Characteristics	8
		2.3.1	Variable Area	8
		2.3.2	Direct Absorption	8
		2.3.3	Convection	10
		2.3.4	Inflow and Outflow	10
		2.3.5	Calculation of Inflow Velocity Distribution	10
		2.3.6	Calculation of Outflow Velocity Distribution	12
			2.3.6.1 Laboratory Case	14
			2.3.6.2 Field Case	15
			2.3.6.3 Outlet Geometry	16
			2.3.6.4 Multiple Outlets	16
		2.3.7	Vertical Advective Velocity	17
		2.3.8	Travel Time for Inflows	17
		2.3.9	Variable Surface Level	21
		2.3.10	Entrance Mixing	21
		2.4.1	Derivation of Basic Equation	27
		2.4.2	Initial and Boundary Conditions	28

			Page
3.	DESCRI	IPTION OF NUMERICAL MODEL	29
	3.0	Solution of Heat Transport Equation	29
		3.0.1 Choices of Numerical Scheme	29
		3.0.2 Description of Numerical Scheme	29
		3.0.3 Limitations on Explicit Scheme	30
	3,1	Formulation of Explicit Finite Difference Scheme	30
		3.1.1 Internal Element	30
		3.1.2 Surface Element	34
		3.1.3 Bottom Element	37
	3.2	Convective Mixing	39
	3.3	Energy Check	40
	3.4	Numerical Dispersion	40
4.	DETERN	MINATION OF PARAMETERS	43
	4.1	Net Solar Radiation	43
	4.2	Net Longwave Radiation	43
	4.3	Evaporation and Conduction Losses	
		4.3.1 Field Evaporation	45
		4.3.2 Laboratory Evaporation	46
		4.3.3 Negative Evaporation	47
	4.4	Required Input Data	47
	4.5	Selection of Time and Distance Steps	47
		4.5.1 Variable Time Step	48
		4.5.2 Lower Limit on Δy in Field Reservoir	49
	4.6	Possible Program Changes	49
		4.6.1 Cut-Off Gradient	49
		4.6.2 Entrance Mixing	49
<u>5.</u>	CRITE	RIA FOR APPLICABILITY OF MODEL	50
	5.1	Wind Mixing Criterion for Lakes and Reservoirs	50
	5.2	Flow Through Criterion for Reservoirs	51
6.	VERIF	ICATION OF MATHEMATICAL MODEL FOR FIELD RESERVOIR	53
	6.1	Description of Reservoir	53
	6.2	Input Data	53
	6.3	Results	54
	6 4	Verification from Other Sources	54

		Page
7. TH	E COMPUTER PROGRAM	61
7.	1 Main Program - Flow Chart	61
7.	2 Function FLXOUT - Surface Losses	69
7.	3 Subroutine TOUT - Outflow Temperatures	71
7.	4 Subroutine SPEED - Velocities	72
7.	5 Subroutine AVER - Convective Mixing	74
7.	6 Remaining Subprogram	75
7.	.7 Input Variables	75
7.	8 Program Listing	81
7.	9 Input Data	108
ACKNOWLED	DGEMENT	119
BIBLIOGRA	120	
DEEINITIO	N OF NOTATION	122

List of Figures

Figure		Page
1.1	Seasonal Variation of Temperature Profiles in Fontana Reservoir, 1966	2
2.1	Schematization of Reservoir	5
2.2	Control Volume	6
2.3	Effect of Variable Area on Temperature Predictions in a Clear Lake	9
2.4	Transmission of Solar Radiation Vs. Depth	11
2.5	Dye Concentration Profiles in a Tributary of Fontana Reservoir	13
2.6	Outflow Temperatures. Alternate Withdrawal from Multiple Outlets	18
2.7	Outflow Temperatures. Simultaneous Withdrawal from Multip Outlets	^{Le} 19
2.8	Calculation of Vertical Velocity	17
2.9	Effect of Entrance Mixing on Outflow Temperatures. No Insolation. Constant Inflow, Outflow	23
2.10	Effect of Entrance Mixing on Outflow Temperatures. Variable Insolation. Constant Inflow, Outflow	24
2.11	Effect of Entrance Mixing on Outflow Temperatures. Variable Insolation. Variable Inflow, Outflow	25
2.12	Effect of Entrance Mixing on Outflow Temperatures. Fontana Reservoir, 1966	26
3.1	Internal Element	31
3.2	Surface Element	34
3.3	Bottom Element	37
3.4	Effect of Numerical Dispersion on Outflow Temperatures	42
5.1	Effect of Wind on Thermocline	51
6.1	Map of Fontana Reservoir and Watershed	55
6.2	Measured and Predicted Outflow Temperatures Through Fontana Dam	56

Figure		Page
6.3	Measured and Predicted Temperature Profiles, Fontana Reservoir, June 22, 1966	57
6.4	Measured and Predicted Temperature Profiles, Fontana Reservoir, July 20, 1966	58
6.5	Measured and Predicted Temperature Profiles, Fontana Reservoir, September 15, 1966	59
6.6	Measured and Predicted Temperature Profiles, Fontana Reservoir, November 10, 1966	60

FOREWORD

This is the fourth report issued in conjunction with a continuing research program on thermal stratification and water quality in lakes and reservoirs. The previous reports are as follows:

- 1. Dake, J.M.K. and D.R.F. Harleman, "An Analytical and Experimental Investigation of Thermal Stratification in Lakes and Ponds", M.I.T. Hydrodynamics Laboratory Technical Report No. 99, September 1966. (Portions of this report have also been published by the same authors under the title: "Thermal Stratification in Lakes: Analytical and Laboratory Studies", Water Resources Research, Vol. 5, No. 2, April 1969, pp. 484-495.)
- 2. Huber, W.C. and D.R.F. Harleman, "Laboratory and Analytical Studies of the Thermal Stratification of Reservoirs", M.I.T. Hydrodynamics Laboratory Technical Report No. 112, October 1968.
- 3. Markofsky, M. and D.R.F. Harleman, "A Predictive Model for Thermal Stratification and Water Quality in Reservoirs", M.I.T., Department of Civil Engineering, Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Technical Report No. 134, January 1971. (Also published in Water Pollution Control Research Series No. 16130 DJH 01/71 by Environmental Protection Agency, W.Q.O., Wash. D.C.) This report is intended as a user's manual for the transient temperature distribution model developed in the second report (Technical Report No. 112). The computer program presented herein supersedes that given in Technical Report No. 112. The numerical scheme has been changed from an implicit to an explicit scheme. Other changes include the option of accounting for the travel time of inflows within the reservoir, simultaneous or intermittent withdrawal from multi-level outlets in the reservoir and the continuous variation of the water surface elevation. The emphasis in this report is placed on an explanation of the computer program rather than on the development and testing of the theory.

1. Introduction

1.0 Thermal Stratification in Reservoirs

Thermal stratification occurs in almost all lakes and reservoir impoundments. In shallow "run of the river" reservoirs the stratification may be relatively weak and in certain seasons the isotherms may be tilted in the downstream direction. In deep lakes and in reservoirs in which the storage volume is large compared to the annual through-flow, the isotherms are horizontal during most of the year and strong stratification is generally developed during the late summer and autumn seasons. The mathematical model developed in this study is concerned with the latter situations in which the water temperature is a function of depth and time.

The primary causes of thermal stratification are the low thermal conductivity of water, the limited penetration of radiant heat and light, and the fact that stream inflows in late spring and early summer tend to be warmer than the reservoir surface waters. These warm inflows spread out over the reservoir surface. Furthermore, virtually all heat, apart from advected heat, enters the reservoir through the surface in the form of radiant energy. A large percentage is absorbed in the first few meters and thus the water near the surface is heated more quickly than that in the lower layers. This warm water tends to remain at the surface, absorbs more heat, and thus a stable condition tends to be set up. However, evaporation will always cool the surface layer, setting up convection currents. Surface cooling and hence convection will be enhanced by back radiation and conduction losses, especially at night. Wind stresses on the water surface will cause mixing whenever a neutral or unstable density gradient is set up by surface cooling. These processes of heating, cooling, and wind action lead to the development of a warm, freely circulating, turbulent upper region, called the epilimnion. This overlays and to a great extent insulates a colder, relatively undisturbed region called the hypolimnion. The generality of thermal stratification in temperature climates has been established since the end of the 19th century (Hutchinson (13)).

A typical annual thermal cycle in a reservoir is illustrated in Figure 1.1 which shows the nearly isothermal condition in early spring, the development of thermal stratification in spring and summer, and the return to the initial condition in winter. The destruction of thermal stratification is accompanied by vertical mixing throughout the reservoir, and is usually referred to as the overturn.

Under thermally stratified conditions, with the hypolimnion insulated from the atmosphere by the epilimnion, renewal of oxygen in the lower layers cannot take

Figure 1.1 Seasonal Variation of Temperature Profiles in Fontana Reservoir, 1966

place. This can lead to anaerobic conditions and low quality water. Anaerobic decomposition may produce undesirable tastes and odors, and occasionally toxic effects. During the overturn the mixing of these bottom waters with the rest of the reservoir may pollute all the water for a short period. Furthermore, release of this poor quality water could cause a deterioration of water quality downstream of the impoundment. For these reasons, knowledge of thermal profiles in impounded waters is essential for water quality control, and prediction of the profiles is necessary for proper design of outlet works, and a systematic approach to water quality management.

1.1 Proposed Model

The emphasis has been placed on the development of a predictive model which uses only such data as is available before the reservoir exists. In the case of existing lakes or reservoirs, the model can be used to predict future behavior under various meteorological conditions or due to man-made changes in inflow and/or outflow conditions.

A discretized mathematical model has been developed, based on the absorption and transmission of solar radiation, convection due to surface cooling, and on a realistic treatment of inflows and outflows. The initial verification of the mathematical model was carried out in the laboratory. Details of the laboratory physical model are given by Huber and Harleman (12). The mathematical model was then extended to the field case and verified using data from Fontana Reservoir. The model has also been verified by other investigators using data from Lake Norman in North Carolina (23). The thermal behavior of reservoirs has been simulated over a complete year allowing for inflow and outflow, and calculating surface heat losses daily as a function of meteorological data, and the surface temperature generated by the mathematical model. Good agreement has been obtained for both laboratory and field cases. The mathematical model has been extended to include withdrawal from multi-level reservoir outlets.

The annual thermal cycle of lakes, with little inflow or outflow, has also been simulated using a simplified form of the model. This option is available in the present computer program. The option of using the mathematical model for a laboratory reservoir has been retained in the computer program. Wherever specific allowance is made for the laboratory case, this will be pointed out so as to avoid confusion.

2. Description of Physical Basis of Model

2.0 Introduction

A comprehensive temperature prediction model must account for internal radiation absorption, boundary heat sources and sinks, and heat transport by advection, convection and diffusion. The geometrical simplifications and assumptions leading to the development of a comprehensive mathematical model will be presented. The important characteristics of the model are discussed and the equation governing the temperature distribution T(y,t) in a stratified reservoir will be derived.

2.1 Schematization of Reservoirs

The reservoir is schematized, as shown in Figures 2.1 a,b,c, by considering it as a series of horizontal elements similar to that in Figure 2.2. The element at elevation y has a horizontal area A(y) and thickness Δy . A portion of the river inflow enters the element at the upstream end, and a portion of the outflow through the dam leaves the element at the downstream end. Heat also enters the element through the horizontal surface by transmission of radiation, by vertical advection and by diffusion. The equation governing the temperature distribution will be formulated by considering the conservation of mass and heat within a typical element. However, before this can be done it is necessary to make certain simplifying assumptions, and to consider the mechanisms of radiation absorption, heat advection, convection and diffusion.

2.2 Assumptions

- 2.2.1 The two principal assumptions involved in the model are:
- (a) The isotherms in a stratified reservoir are horizontal, and hence thermal gradients exist in the vertical direction only. This assumption has the effect of reducing the problem from a three-dimensional to a one-dimensional, variable area problem. Observations both in the field and in the laboratory have shown that horizontal isotherms occur in many lakes and reservoirs. However, this assumption limits the applicability of the model, and certain criteria should be satisfied before using it. These criteria are discussed in Chapter 5.
- (b) Heat transport by turbulent mixing is accounted for only in the epilimnion region and only during times at which the temperature induced density profile is unstable. Previous mathematical models for thermal stratification in lakes and reservoirs have usually included turbulent diffusion coefficients for heat as important numerical parameters. In general, these diffusion coefficients are functions

(b) Control Volume Slice

Figure 2.1 Schematization of Reservoir

Internal Radiation Absorption Heat Source

Control Volume Illustrating Heat Conservation

Figure 2.2 Control Volume

of depth and time, and since these functional relations cannot be specified a priori, such mathematical models tend to lose their predictive value. For any given model it is always possible to find turbulent diffusion coefficients which will match field data. However, it is difficult to determine to what extent these coefficients represent diffusion or merely the effect of simplifications or inaccuracies in the basic formulation of the mathematical model.

The temperature prediction model developed in this study does not require assigned values for turbulent diffusion coefficients. Whenever the temperature profile in the epilimnion develops an unstable density gradient, vertical mixing is induced to produce a surface layer of uniform temperature. Thus, even though turbulence may exist in the surface layer due to wind shear and wave motion, the heat transfer will be dominated by convection currents and surface cooling effects. These currents tend to eliminate near surface temperature gradients and nullify the role of gradient driven turbulent diffusion.

In the hypolimnion region vertical temperature gradients are small and diffusive heat transport will not be significant even if turbulence does exist. In the thermocline region, the density stratification will tend to inhibit turbulence, although it will not necessarily remove it altogether. It should be noted, however, that calculations of thermal diffusivity in the thermocline region of lakes often give values of the same order as the molecular diffusivity. Examples are given by Hutchinson (13), Orlob (19) and Sweers (26). (See Table 1) These values are obtained by assuming that all heat transport, not accounted for by other methods, takes place by turbulent diffusion. Since vertical advective transport is not considered in any of the above cases, these values are probably too high.

 $\frac{\text{Table 1}}{\text{Molecular Diffusivity of Heat}} = 0.0014 \text{ cm}^2/\text{sec}$

Lake	Eddy Diffusivity at	Reference
	Thermocline (cm ² /sec)	
Sodon	0.007	Hutchinson (13)
Linsley Pond	0.0033	Hutchinson (13)
Mendota	0.025	Hutchinson (13)
Castle Lake	0.02	Orlob (19)
Ontario	0.02 - 0.07 (seasonal average)	Sweers (26)

The approach adopted in this study is to neglect turbulent diffusion as a first approximation, and to take all other known forms of heat transport into account as accurately as possible. If marked discrepancies occur, which cannot be explained by other factors, e.g., mixing of the inflow as it enters the reservoir, then allowance should be made for turbulent diffusive transport. However, in both laboratory and field reservoirs good agreement has been obtained between predicted and measured temperatures, and thus it appears that this approach is justified.

Since turbulent diffusion is neglected, it would seem only reasonable to neglect molecular diffusion as well. This process is included in the general model for three reasons: 1) Molecular diffusion may be significant in the laboratory case; 2) If accurate values of vertical turbulent diffusivity become available, they may be included in the model at a later date; 3) A numerical solution to the heat transport equation will be presented, and numerical schemes, regardless of type, behave better when diffusion is present. It should be mentioned here that numerical schemes involving advective terms introduce errors which have the same effect as an additional diffusive term. This effect is discussed in Section 3.4.

- 2.2.2 Other assumptions, less fundamental than (a) and (b) are:
- (c) Solar radiation is assumed to be transmitted in the vertical direction only. This assumption is not exact but, due to refraction at the water surface and the fact that when the solar angle is small a large proportion of the short wave radiation comes from the sky; this should not lead to large errors.
- (d) The sides and bottom of the reservoir are assumed to be insulated, the only heat crossing the boundaries (apart from the surface) is via inflow and outflow.
- (e) The density (ρ), specific heat (c) and the coefficient of molecular diffusivity (α) are assumed constant in all heat budget and heat transport calculations.
- (f) Solar radiation energy, transmitted by the water and intercepted by the reservoir sides, is assumed to be distributed uniformly over the cross section at the depth of interception. This effect may be quite significant in lakes and reservoirs, which have both clear water and a rapid change of area with depth near the surface (see Figure 2.3).

2.3 Important Model Characteristics

2.3.1 Variable Area

Variation of area with depth is taken into account. This affects both the vertical advection of heat, and the distribution of the solar radiation energy.

2.3.2 Direct Absorption

Solar radiation is absorbed directly in the body of the fluid, as well as

Figure 2.3 Effect of Variable Area on Temperature
Predictions in a Clear Lake

at the surface. Transmission of radiation at elevation y is given (as per Dake and Harleman (5)) by

$$\phi(y) = \phi_0 (1 - \beta) e^{-\eta(y_S - y)}$$
 (2.1)

where

 y_s = water surface elevation

 ϕ_0 = net incident solar radiation (gross-reflected)

 β = fraction of ϕ_{Ω} absorbed at the surface (~0.4 - 0.5)

 η = extinction coefficient of reservoir water. η varies for different reservoirs and may also vary in time and space. This flexibility is included in the model. See Figure 2.4 for examples of measured and theoretical curves.

2.3.3 Convection

Convection in the epilimnion is accounted for by allowing mixing to take place whenever the temperature gradient $(\partial T/\partial y)$ is negative (y is elevation, positive upwards). Since surface losses (due to evaporation, back radiation, etc.) are generally greater than surface absorbed energy (due to solar radiation, $\beta \phi_0$, and atmospheric long wave radiation) this leads to a mixed zone at the surface in most cases, although in spring and early summer this mixed zone may be rather shallow.

2.3.4 Inflow and Outflow

To include inflow or outflow in heat transport calculations, two separate items of information are required, namely the level of entry or discharge, and the distribution of flow about that point.

It is assumed that inflow enters the reservoir water column at the level at which its density matches that in the water column. If entrance mixing (see Section 2.3.10) is allowed to take place, the mixed inflow temperature is then taken as the criterion. Outflow is assumed to be centered about the level of the outlet. This assumes a linear temperature gradient in the vicinity of the outlet, which may not be the case. However, Elder and Wunderlich (8) point out that even for non-linear gradients near the outlet, the flow is fairly symmetrical about the outlet centerline.

2.3.5 Calculations of Inflow Velocity Distribution

The fact that warm inflows flow directly over the surface, and dense inflows (whether cold or sediment laden) flow along the bottom is accepted in the literature

Fig. 2.4 Transmission of Solar Radiation Vs. Depth

on reservoir flows (Howard (11), Goda (10)). However, the evidence for flows at intermediate depth is sparse. Elder and Wunderlich (8) give the results of dye tests in Fontana Reservoir (see Figure 2.5). These dye profiles also show that the inflow velocity profile may be approximated by a Gaussian curve. It is assumed that

where

 $u_i(y) = inflow velocity at elevation y$

 u_{i} (t) = maximum value of the inflow velocity at time t u_{i}

 $y_{in}(t)$ = elevation of inflow at time t

 σ_i = inflow standard deviation

Little is known about the value of $\sigma_{\bf i}$. In this model it is held constant and related to the depth of the entering stream.

 \mathbf{u}_{imax} (t) is found by equating the sum of the inflows into each layer to

the total inflow, i.e.,

$$Q_{i}(t) = \int_{y_{b}}^{y_{s}} B(y) u_{i}(y) dy$$
 (2.3)

where

 y_s = surface elevation

 $y_b = bottom elevation$

B(y) = width of the reservoir at elevation y, and can be included in the input data, or as in this case calculated from the horizontal cross-sectional areas and reservoir lengths, i.e., B(y) = A(y)/L(y). This assumes a rectangular basin.

2.3.6 Calculation of Outflow Velocity Distribution

The outflow velocity distribution is treated in a manner similar to that of

FIGURE 2-5. DYE CONCENTRATION PROFILES IN TRIBUTARY OF FONTANA RESERVOIR (After Elder and Wunderlich, 1968)

the inflow, with one important difference; namely, the standard deviation is calculated using the results of either Koh (16) or Kao (14). The problem of withdrawal from a stratified reservoir is treated rather extensively in the literature. The solutions have been summarized by Brooks and Koh (4). Huber and Harleman (12) also have a rather lengthy discussion of Koh and Kao's work.

2.3.6.1 <u>Laboratory Case</u>

Koh's solution(16)for a steady two-dimensional case involving both viscosity and molecular diffusion is applicable. The thickness of the withdrawal layer δ is given by

$$\delta = \frac{7.14 \times \frac{1}{3}}{(\epsilon g/\alpha v)^{1/6}}$$
 (2.4)

where

x = horizontal distance from the outlet

 ε = normalized density gradient, $\frac{1}{\rho} \frac{\partial \rho}{\partial y}$

 α = molecular diffusion coefficient

v = kinematic viscosity

For given values of x, g, α and ν , Eq. (2.4) can be put in the form

$$\delta = \frac{\text{const}}{1/6} \tag{2.5}$$

For the laboratory case, using standard values g, ν , D,

g = 980 cm/sec^2 v = $0.01 \text{ cm}^2/\text{sec}$ α = $0.0014 \text{ cm}^2/\text{sec}$

and x chosen at the mid-point of a horizontal line between the outlet and the reservoir bottom (x = 240 cm)

$$\delta = 2.2 \varepsilon^{-1/6} \tag{2.6}$$

Huber and Harleman (12) note that the operating conditions in the laboratory reservoir were in the range of Koh's experiments, and that the calculated values of δ agreed well with those observed during experimental runs. Equation 2.6 was used in the model verification involving the laboratory reservoir.

2.3.6.2 Field Case

Kao (14) obtained a solution for the case of a diffusionless flow towards a line sink at the bottom of the end of a uniform channel. Huber and Harleman (12) have modified Kao's solution for the unbounded case, and substituted a Gaussian velocity profile instead of the uniform one proposed by Kao. They obtained the following formula

$$\delta = 4.8 \left(\frac{q^2}{g_E}\right)^{1/4} \tag{2.7}$$

where q = outflow/unit width, the width being taken as the average width of the reservoir at the elevation of the outlet. This is very close to the formula proposed by Elder and Wunderlich (9), based on some field measurements in Fontana Reservoir. They suggest

$$\delta = 5.0 \left(\frac{q^2}{g_{\epsilon}}\right)^{1/4} \tag{2.8}$$

Equation 2.7 has been used in the verification of the model using field data. The units used for the field case were meters, kgms, days, and for these units Equation 2.7 can be written as

$$\delta = 0.0092 \frac{q^{1/2}}{\epsilon^{1/4}} \tag{2.9}$$

where

 δ = thickness of withdrawal layer (m)

q = outflow/unit width (m²/day)

 ε = normalized density gradient (m⁻¹)

The outflow standard deviation, $\sigma_{\rm o}$, is calculated on the basis that 95% of the outflow comes from the calculated withdrawal layer. Thus

$$\sigma_{o} = \frac{\delta/2}{1.96} \tag{2.10}$$

$$u_{o}(y) = u_{o}(t) e^{-\frac{(y-y_{out})^{2}}{2\sigma_{o}}}$$
 (2.11)

where

$$u_{\underset{\text{omax}}{\text{o}}}$$
 (t) = velocity at y = $y_{\underset{\text{out}}{\text{out}}}$ = maximum velocity

y = elevation of reservoir outlet centerline.

In the above calculations, the density gradient is determined from the temperature gradient at the outlet. Early in the warming period, this gradient may be very small, and may lead to withdrawal over the full depth of the reservoir. However, in many cases a warmed surface layer may have already developed and it is unrealistic to expect this lighter water to be drawn down to any extent. To avoid this, a cut-off gradient has been specified, which limits the thickness of the withdrawal layer. A further refinement could be included which would lead to an asymmetrical withdrawal layer, the asymmetry being a function of the temperature profile on each side of the outlet. This asymmetry was observed in the laboratory reservoir. However, when this refinement was incorporated in the model, no significant improvement was noticed and it has been deleted from the final program.

2.3.6.3 Outlet Geometry

The actual outlet geometry is not usually significant. In the model the outlet appears as a line sink, while in practice it is usually rectangular. However, measurements in Fontana (7) have shown that at a relatively short distance upstream of the dam, withdrawal takes place over the full width of the reservoir. Similarly, as long as the calculated withdrawal layer thickness is large compared to the outlet height, then the latter may be neglected. If, however, the outlet height is similar to, or larger than, the withdrawal layer thickness, then a minimum thickness, say 1-2 times the outlet height, should be postulated.

2.3.6.4 Multiple Outlets

In many reservoirs, withdrawal can take place from several levels. This facility has been included in the mathematical model. The number of outlets, the level of each outlet and the individual outflow rates, are specified in the input data. Withdrawal may take place from one or all outlets at any time. The velocity field of each outlet is calculated as in Section 2.3.6.2, and superimposed on one

another. No field verification has been carried out for the multiple outlet case, but the comparison with laboratory results is quite promising. See Figures 2.6, 2.7.

2.3.7 <u>Vertical Advective Velocity</u>

The vertical advective velocity, V, is obtained by requiring that the continuity condition is satisfied at each level. Starting at the bottom element of the reservoir, and setting the inflow across the bottom equal to zero, each element was considered in turn and the vertical velocity calculated so that continuity was exactly satisfied. See Figure 2.8.

Figure 2.8 Calculation of Vertical Velocity

$$V_{n+1} = \frac{1}{A_{n,n+1}} \left(V_n A_{n,n-1} + B_n \Delta y (u_{i_n} - u_{o_n}) \right)$$
 (2.12)

2.3.8 Travel Time for Inflows

In previous field and laboratory studies it was observed that the measured values of outlet temperature lagged the predicted values. The most obvious cause is that some time elapses between the time the inflow enters the reservoir and the

Figure 2.6 Outflow Temperatures. Alternate Withdrawal from Multiple Outlets

Figure 2.7 Outflow Temperatures. Simultaneous Withdrawal from Multiple Outlets

time its effect is observed in the measured temperature profile. This effect is enhanced by the fact that temperature profiles are usually taken near the outlet. This time lapse has been called the travel, or lag time, and is calculated as follows. The inflow entering on day N is calculated and labelled QQIN(N). The time lag is calculated by estimating the velocity of a uniform underflow, or density current, travelling down the upstream slope of the reservoir. The equations for the velocity and depth of the density current are given by

$$\bar{u} = \left(0.375 \left(\frac{g's}{v}\right)^{1/2} q\right)^{2/3} \tag{2.13}$$

and

$$d = 1.92 \left(\frac{q \ v}{g's}\right)^{1/3} \tag{2.14}$$

where

 $g' = g \Delta \rho / \rho$

q = mixed inflow rate per unit width (see Section 2.3.10)

s = bottom slope of reservoir

ν = kinematic viscosity

d = thickness of density current

These formulae are obtained using Keulegan's (15) approach, under the assumption of laminar flow. The velocities and thicknesses predicted for Fontana were similar to those measured in the field by Elder and Wunderlich (8), and hence it seems reasonable to use these formulae for both the field and laboratory cases.

The density difference, $\Delta\rho$, and the travel distance are calculated as follows. The entering inflow QQIN(N), temperature TTIN(N) is allowed to mix with the surface waters. On the basis of the mixed temperature, the final position of the inflow in the water column is established. The downslope distance to this level, and the average density difference between the mixed inflow and the surrounding water are then easily established. Once the time lag LAGTIM(N) is known we have

QIN[N + LAGTIM(N)] = QQIN(N)

TIN[N + LAGTIM(N)] = TTIN(N)

i.e., an inflow entering the reservoir during time period N is not taken into account in the heat transport equations until time period [N + LAGTIM(N)]. The possibility of several days inflow affecting the temperature profiles at the same time is allowed for.

Alternatively, lag times were taken directly from laboratory observations of dye traces. A significant improvement in the predicted results followed, showing that discrepancies between predicted and measured occurrence times can be at least partly accounted for by this method. In the final analysis, however, it was decided that the improvement in results was more than offset by the non-predictive nature of the modifications. The facility has been kept in the model as part of the main program, but is usually bypassed.

2.3.9 Variable Surface Level

The surface level is calculated as a function of the initial surface level and the cumulative inflow and outflow. This was done to avoid the accumulation of roundoff errors. The continuous variation in the surface level is accounted for by allowing the thickness of the surface layer to vary between 0.25 Δy and 1.25 Δy where Δy is the layer thickness. The reason behind the lower limit on the thickness will become clearer when the overall schematization of the model, and the method of heat transport into the surface layer is discussed. Briefly, however, an extremely thin layer ($\Delta y/100$) can lead to the calculation of very high surface temperatures, and unrealistic long wave radiation and evaporation losses. Within the range specified above, the model is not sensitive to the layer thickness.

In this model, there is no attempt to include the direct rainfall and evaporation into the calculation of surface level. This could be easily incorporated, if desired.

In the calculation of the surface level, an initial approximation is used, in that the surface element is considered to have vertical instead of sloping sides. A correction for the surface element thickness is later included to correct this approximation. The maximum correction observed was less than 1% of Δy . This procedure was used to simplify calculations, as the surface area, and hence the volume of the surface element is a function of the surface element thickness.

2.3.10 Entrance Mixing

When a river enters a reservoir it will entrain some of the reservoir water.

The amount of this entrainment is one of the biggest unknowns in the present knowledge

of reservoir behavior. It was found that changes in the amount of entrance mixing had a very significant effect on the computed temperature profiles and outflow temperatures. In fact it is possible to bracket the measured laboratory results with quite reasonable changes in the entrance mixing, as shown in Figures 2.9, 2.10, 2.11 and it therefore seems unreasonable to be concerned with heat transport due to eddy diffusion until more is known about the entrance mixing effect.

Direct measurements of entrainment in the laboratory reservoir gave the following results.

Inflow at surface (i.e. warm water) 50% entrainment Inflow at intermediate depth 200% entrainment

Use of these values in the mathematical model for the laboratory case led to significant improvements in the correlation between predicted and measured results. See Figures 2.9 - 2.11.

Modification of the entrance to the laboratory flume reduced entrance mixing to between 10% and 50%, and this indicates that the geometry of the river entering the reservoir will probably be very significant.

No field measurements of entrance mixing were available, and hence the choice of an entrance mixing coefficient is somewhat arbitrary. Work in this laboratory on buoyant surface jets (28) indicates that an entrance mixing of 100% is realistic. This value gave excellent results (see Figure 2.12) but field studies should be undertaken.

Entrance mixing is simulated in the mathematical model by withdrawing a specified amount of water from a selected depth, d_m , and mixing this water with the inflow. The amount of water entrained per unit of inflow, is called the mixing ratio r. The mixed inflow rate Q_{in}^t is therefore given by

$$Q'_{in} = (1 + r) Q_{in}$$
 (2.15)

where

 Q_{in} = stream inflow rate.

For the Fontana case, with an entrance mixing of 100%, r is equal to unity, and the mixed inflow rate is twice the stream inflow rate.

Figure 2.9 Effect of Entrance Mixing on Outflow Temperatures

Figure 2.10 Effect of Entrance Mixing on Outflow Temperature

Figure 2.11 Effect of Entrance Mixing on Outflow Temperature

Figure 2-12. Effect of Entrance Mixing on Outflow Temperatures in Fontana Reservoir

The mixed inflow temperature T' is

$$T'_{in} = \frac{rQ_{in}T_{m} + Q_{in}T_{i}}{Q'_{in}} = \frac{rT_{m} + T_{i}}{1 + r}$$
 (2.16)

where T_{m} is the average temperature of the water over the depth d_{m} and T_{i} is the temperature of the inflowing stream. The outflow velocity from the surface layer due to the entrained flow is

$$u_{o_{m}}(y) = \frac{r Q_{in}}{B(y) d_{m}}$$
 (2.17)

Thus entrance mixing affects both the inflow and outflow velocity profiles and hence the vertical advection terms. This simple method of allowing for entrance mixing is probably reasonable for warm water inflows, but for cold inflows it is probably not realistic to assume that the mixing water comes only from the surface layer. It is assumed here that d_m is equal to the depth of the entering stream. However, the model is not sensitive to moderate variations in d_m .

2.4.1 Derivation of the Basic Heat Transport Equation

The reservoir is schematized as shown in Figures 2.1 a,b,c. Using the assumptions and model characteristics discussed in Sections 2.1 - 2.3, a basic heat transport equation can be obtained from consideration of heat flow through a control volume bounded by the reservoir sides (Fig. 2.2).

We obtain

$$\frac{\partial T}{\partial t}(y) = \frac{\alpha}{A(y)} \frac{\partial}{\partial y} \left(A(y) \frac{\partial T}{\partial y}(y) \right) - \frac{1}{\rho c A(y)} \frac{\partial}{\partial y} \left(A(y) \phi(y) \right) - \frac{1}{A(y)} \frac{\partial}{\partial y} \left(V(y) A(y) T(y) \right)$$

+
$$\frac{1}{A(y)}$$
 $\left(u_{i}(y) B(y) T_{i} - u_{o}(y) B(y) T(y)\right)$ (2.18)

where

T(y) = temperature at elevation y

V(y) = vertical velocity at elevation y

 $u_{i}(y) = inflow velocity at elevation y$

 $u_{o}(y)$ = outflow velocity at elevation y

 T_i = inflow temperature

A(y) = area at elevation (y)

t = time

 α = molecular diffusivity

y = elevation (positive upwards)

2.4.2 Initial and Boundary Conditions

Equation 2.18 requires one initial and two boundary conditions. At the beginning of spring (t=0), the reservoir is assumed to be in an isothermal state, and this provides the initial condition

$$T = T_0$$
 for all y at t = 0 (2.19)

Conservation of heat at the water surface and the reservoir bottom give the two boundary conditions.

The detailed formulation of these boundary conditions is given in Sections 3.1.2 and 3.1.3.

3. Description of the Mathematical Model

3.0 Solution of the Heat Transport Equation

It was not possible to solve Equation 2.18 analytically, subject to the prescribed initial and boundary conditions, and thus a numerical solution was sought.

3.0.1 Choice of Numerical Scheme

Three basic finite difference methods are applicable to the convective-diffusion equation under consideration: (1) an explicit or forward difference scheme, (2) an implicit or backward difference scheme, (3) a combination of the first two which results in an implicit method also. In general, explicit schemes have the advantage in ease of formulation, and often in reduction in computer time. However, they are subject to certain stability requirements, which can restrict the size of the time step used in the solution. Implicit methods are unconditionally stable for any time step, but require more complicated methods of solution.

It will be shown, Section 3.0.3, that the limitations imposed by an explicit scheme are not unduly restrictive for the reservoir model. Furthermore, this type of scheme has the advantage of keeping separate the various terms in the heat transport equation, which facilitates alterations and corrections to the mathematical model.

It is recognized that the explicit scheme lacks the accuracy of a mixed scheme, such as that proposed by Stone and Brian (24) and used by Huber (12). This lack of accuracy, however, appears only in the treatment of the high frequency harmonics, and since the temperature profiles tend to be relatively smooth, these harmonics should not be too important. Furthermore, results of the explicit scheme have been compared with those from the Stone and Brian scheme, and the differences were insignificant.

3.0.2 Description of Numerical Scheme

The general mechanism of an explicit finite difference scheme is to find the value of a variable (e.g. temperature), as a function of space (e.g. depth), at a time step (n + 1), when the spatial distribution of the variable at time step (n) is known. The usual approach is to put previously derived differential equations such as Equation (2.18) in a finite difference form and to obtain approximate solutions for specific input data. Under some conditions, notably when large gradients exist, either in the dependent variable (e.g. temperature) or in coefficients (e.g. velocity), many finite difference formulations may lead to significant errors in

heat or mass conservation. These errors may be avoided if the problem is formulated in terms of a control volume, such as in Figure 2.2. This approach is used here.

3.0.3 Limitations on Explicit Scheme

The use of an explicit finite difference scheme entails some limitations if numerical stability is to be maintained. The stability criteria for this case may be Written

$$D \frac{\Delta T}{(\Delta y)^2} \leq \frac{1}{2} \tag{3.1}$$

$$V \frac{\Delta T}{\Delta y} < 1 \tag{3.2}$$

where

 ΔT = time increment

 Δy = distance increment

D = diffusion coefficient

V = magnitude of velocity in y direction

As long as turbulent diffusion is neglected, Equation (3.1) is not at all restrictive. However, Equation (3.2) can lead to a rather small Δt because of inflow conditions which usually occur only a small percentage of the time. This was remedied by use of a variable time step Δt . See Section 4.5.

3.1 Formulation of Explicit Finite Difference Scheme

This scheme is formulated by applying the heat balance approach to a typical reservoir control volume or element. The elements used were horizontal sections of the reservoir, bounded by the reservoir sides (see Figure 2.2). An internal element will be treated first, followed by surface and bottom elements.

3.1.1 Internal Element

The jth internal element for both the laboratory and field case is rectangular in plan, average length L_j , average width B_j , average area A_j and height Δy . In the field case the sides are considered to be insulated, i.e., $\frac{\partial T}{\partial n} = 0$ where n = n normal to the side. In the laboratory case, however, heat losses through the sides

are accounted for.

The rate of temperature change within the jth element (see Figure 3.1) is equal to the difference between the heat flow rate into and out from the element. The heat flow is made up of five terms, the direct absorption term, the diffusion term, the vertical advection term, the horizontal advection term, and the side loss term (laboratory case only).

Figure 3.1 Internal Element

3.1.1.1 Direct Absorption

The temperature change due to the direct absorption of transmitted radiation is given by

$$\Delta T_{1} = \frac{1}{\rho c A_{j} \Delta y} \cdot \left(\phi_{j+1,j} A_{j+1,j} - \phi_{j,j-1} A_{j,j-1} \right) \cdot \Delta t$$
 (3.3)

The transmission of radiation has been discussed in Section 2.3.2.

3.1.1.2 Diffusion Term

$$\Delta T_{2} = \frac{\alpha}{A_{j} \Delta y} \left(\frac{(T_{j+1}^{-T_{j}})}{\Delta y} \cdot A_{j+1,j} - \frac{(T_{j}^{-T_{j-1}})}{\Delta y} \cdot A_{j,j-1} \right) \cdot \Delta t$$
 (3.4)

 α = molecular diffusion coefficient.

3.1.1.3 Vertical Advection Term

The vertical advection terms are of particular interest in this problem due to the configuration of the vertical velocity field. Depending on the elevation of the inflow, vertical velocities may be all positive (upwards), all negative, or positive at some elevations and negative at others. Thus the formulation of the vertical advection term is not straightforward. Four separate combinations of vertical velocities are possible and each combination requires a separate formulation, or serious errors result (Bella (3)).

Taking upwards as the positive direction and noting that $\mbox{\tt V}_{\mbox{\tt j}}$ is defined at the bottom of the jth element we have

(a)
$$V_{j}, V_{j+1} > 0$$

$$\Delta T_{3} = \frac{1}{A_{j} \Delta y} \left(V_{j} T_{j-1} A_{j,j-1} - V_{j+1} T_{j} A_{j+1,j} \right) \cdot \Delta t \qquad (3.5)$$

(b)
$$V_{i}, V_{i+1} < 0$$

$$\Delta T_{3} = \frac{1}{A_{j}\Delta y} \left(V_{j}T_{j}A_{j,j-1} - V_{j+1}T_{j+1}A_{j+1,j} \right) \Delta t$$
 (3.6)

(c)
$$V_{i} > 0, V_{i+1} < 0$$

$$\Delta T_{3} = \frac{1}{A_{j} \Delta y} \left(V_{j} T_{j-1} A_{j,j-1} - V_{j+1} T_{j+1} A_{j+1,j} \right) \Delta t \qquad (3.7)$$

(d)
$$V_{j} < 0, V_{j+1} > 0$$

$$\Delta T_{3} = \frac{1}{A_{j}\Delta y} \left(V_{j}T_{j}A_{j,j-1} - V_{j+1}T_{j}A_{j+1,j} \right) \Delta t \qquad (3.8)$$

3.1.1.4 Horizontal Advection Term

$$\Delta T_4 = \frac{1}{A_i \Delta y} \qquad (u_{i_i} T_i - u_{o_i} T_j) \cdot B_j \Delta y \cdot \Delta t \qquad (3.9)$$

3.1.1.5 Side Heat Loss Term - Laboratory Case Only

Huber and Harleman (12) assume that the outside wall of the plexiglas flume is at the same temperature as the inside and that radiation is the prime mechanism for heat loss. Both the reservoir sides and the laboratory surroundings are assumed to radiate almost as black bodies, leading to a net radiation loss rate for the sides of the jth element.

$$\phi_{\rm m} = 0.97 \ k \left(T_{\rm i}^{4} - T_{\rm a}^{4} \right) \tag{3.10}$$

where

T_a = room temperature

 T_i , T_a are in K

k = Stefan Boltzmann constant

This side heat loss term does not appear to have an important effect on the calculated temperature profiles, and Huber's treatment is deemed sufficient. The side heat loss term is

$$\Delta T_{5} = -\frac{1}{\rho c A_{j} \Delta y} \left[\phi_{m} (L_{j} + B_{j}) . 2\Delta y \right] . \Delta t$$
 (3.11)

$$\Delta T_{5} = -\frac{1}{\rho c A_{j}} \left[2\phi_{m} (L_{j} + B_{j}) \right] \cdot \Delta t \qquad (3.12)$$

3.1.1.6 Total Temperature Change

For the case of the field reservoir the total temperature change $\Delta T_{\mbox{\it f}}$, in time increment Δt , is given by

$$\Delta T_{f} = \Delta T_{1} + \Delta T_{2} + \Delta T_{3} + \Delta T_{4}$$

$$(3.13)$$

For the special case of the laboratory reservoir the extra side heat loss term must be added to the above Equation (3.13).

3.1.2 Surface Element

The surface boundary condition is obtained in a similar manner to the equation for the internal element, namely, by writing a heat balance equation for a specified control volume. In this case, however, the thickness of the control volume varies, and extra heat sources and sinks have to be considered. (See Figure 3.2)

Figure 3.2 Surface Element

The new surface level is calculated before any heat flow is considered. Once $\Delta y_{\mbox{sur}}$ is known, velocities are calculated such that

$$u_{i_{jm}}^{B_{jm}} \Delta y_{sur} + V_{jm}^{A_{jm,jm-1}} = u_{o_{jm}}^{B_{jm}} \Delta y_{sur}$$
 (3.14)

An average surface area, S area, is also calculated such that

$$S_{area} = (A_{ysur} + A_{jm,jm-1})/2$$
 (3.15)

3.1.2.1 Direct Absorption Term

$$\Delta T_{1} = \frac{1}{\rho \, cS_{\text{area}} \Delta y_{\text{sur}}} \left(\phi_{y \, \text{sur} \, y \, \text{sur}} - \phi_{j \, \text{m, jm-1}} \, A_{j \, \text{m, jm-1}} \right) . \Delta t \qquad (3.16)$$

where

$$\phi_{ysur} = (1-\beta) \phi_{o}$$
 (3.17)

3.1.2.2 Diffusion Term

$$\Delta T_2 = -\frac{\alpha}{S_{\text{area}} \Delta y_{\text{sur}}} \left(\frac{(T_{jm} - T_{jm-1})}{\Delta y} \cdot A_{jm, jm-1} \right) \cdot \Delta t \qquad (3.18)$$

where

 α = molecular diffusion coefficient.

3.1.2.3 Vertical and Horizontal Advection Terms

$$V_{im} > 0$$

$$\Delta T_{3,4} = \frac{1}{S_{area}^{\Delta y} sur} \left(V_{jm} T_{jm-1}^{A} A_{jm,jm-1} + u_{jm}^{B} B_{jm}^{\Delta y} sur^{T} i \right)$$

$$- u_{o_{jm}^{B} jm}^{\Delta y} sur^{T} jm \cdot \Delta t \qquad (3.19)$$

Substituting from Equation (3.14)

$$\Delta T_{3,4} = \frac{1}{S_{\text{area}} \Delta y_{\text{sur}}} \left(V_{jm}^{A}_{jm,jm-1} (T_{jm-1}^{-T}_{jm}) + u_{i_{jm}}^{B}_{jm} \Delta y_{\text{sur}} (T_{i}^{-T}_{jm}) \right) \Delta t$$

$$\Delta T_{3,4} = \frac{1}{S_{\text{area}} \Delta y_{\text{sur}}} \left(V_{jm}^{A}_{jm,jm-1} T_{jm} + u_{i_{jm}}^{B}_{jm} T_{i}^{\Delta y}_{\text{sur}} \right)$$

$$- u_{o_{jm}}^{B}_{jm} T_{jm}^{\Delta y}_{\text{sur}} \cdot \Delta t$$
(3.21)

Substituting from Equation (3.14) the v_{im} term disappears and

$$\Delta T_{3,4} = \frac{1}{S_{\text{area}}} \left(u_{i_{jm}} B_{jm} \left(T_{i} - T_{jm} \right) \right) . \Delta t \qquad (3.22)$$

3.1.2.4 Side Loss Term - Laboratory Reservoir Only

This term is independent of layer thickness, and is therefore given by Equation (3.12)

3.1.2.5 Surface Absorbed Solar Radiation Term

In Section 2.3.2 it was pointed out that a fraction, β , of the solar radiation can be considered to be absorbed at the surface

$$\Delta T_{6} = \frac{1}{\rho c S_{area} \Delta y_{sur}} \left(\beta \phi_{o} A_{ysur} \right) \cdot \Delta t$$
 (3.23)

3.1.2.6 Surface Heat Loss Term

All heat losses from the field reservoir, apart from advective losses, take place from the reservoir surface. The total heat loss rate per unit area, ϕ_L , can be written as

$$\phi_{L} = \phi_{e} + \phi_{c} + \phi_{ra} \qquad (3.24)$$

where

 ϕ_{Ω} = rate of heat loss due to evaporation

 ϕ_{o} = rate of heat loss due to conduction

 ϕ_{ra} = rate of heat loss due to net longwave radiation

See Chapter 4 for further discussion of these parameters.

The surface heat loss term is given by

$$\Delta T_7 = \frac{1}{\rho c S_{area} \Delta y_{sur}} \left(\phi_{L} A_{ysur} \right) . \Delta t \qquad (3.25)$$

3.1.2.7 Total Temperature Change

For the case of the field reservoir, the total temperature change in the surface element ΔT_c , in time increment Δt , is given by

$$\Delta T_s = (\Delta T_1 + \Delta T_2 + \Delta T_3, 4 + \Delta T_6 + \Delta T_7)_{j=jm}$$
 (3.26)

For the laboratory case the side loss term (ΔT_5) must also be included. j=jm

3.1.3 Bottom Element

Figure 3.3 Bottom Element

The bottom element differs from the internal elements in two ways. Firstly, it is half as thick, so that the point j=1 coincides with the bottom. Secondly, there is no heat flow through the lower interface. The average area is defined as

$$A_{b} = (A_{2,1} + A_{1})/2 \tag{3.27}$$

3.1.3.1 Direct Absorption Term

$$\Delta T_{1} = \frac{1}{\rho c A_{b} \Delta y/2} \left(\phi_{2,1} \cdot A_{2,1} \right) \cdot \Delta t \qquad (3.28)$$

3.1.3.2 Diffusion Term

$$\Delta T_2 = \frac{1}{A_b \frac{\Delta y}{2}} \left(\alpha \frac{T_2 - T_1}{\Delta y} \cdot A_{2,1} \right) . \Delta t \qquad (3.29)$$

3.1.3.3 Vertical and Horizontal Advection Terms

 $V_2 > 0$

$$\Delta T_{3,4} = \frac{1}{A_{b} \frac{\Delta y}{2}} \left(u_{i_{1}}^{T} u_{i_{1}}^{B} - v_{2}^{T} u_{2,1}^{A} - u_{o_{1}}^{T} u_{1}^{B} \frac{\Delta y}{2} \right) \cdot \Delta t$$
 (3.30)

But V_2 is defined by

$$V_{2}^{A}_{2,1} = B_{1}^{\Delta y} \left(u_{i_{1}} - u_{o_{1}}\right)$$
 (3.31)

$$\Delta T_{3,4} = \frac{1}{A_{b} \frac{\Delta y}{2}} \cdot u_{i_{1}} B_{1} \frac{\Delta y}{2} (T_{i} - T_{1}) . \Delta t$$
 (3.32)

For $V_2 < 0$

$$\Delta T_{3,4} = \frac{1}{A_b \Delta y/2} \left(u_{i_1} B_1 \frac{\Delta y}{2} \left(T_i - T_1 \right) - V_2 A_{2,1} \left(T_2 - T_1 \right) \right) . \Delta t$$
 (3.33)

3.1.3.4 Side Loss Term

$$\Delta T_5 = \frac{-1}{\rho c A_b} [2\phi_m (L_1 + B_1)] . \Delta t$$
 (3.34)

3.1.3.5 Total Temperature Change

For the case of the field reservoir the total temperature change for the bottom element ΔT_h , in time increment Δt , is given by

$$\Delta T_{b} = (\Delta T_{1} + \Delta T_{2} + \Delta T_{3,4})$$
(3.35)

For the laboratory reservoir, the side loss term (ΔT_5) must be included. j=1

3.2 Convective Mixing

As discussed in Section 2.3.3 convective mixing is allowed to take place whenever the temperature gradient $\frac{\partial T}{\partial y}$ is negative. Under most conditions this instability should occur only in the surface layer, where the heat loss due to evaporation and back radiation often exceeds the heat input due to surface absorbed radiation. However, in shallow or very clear reservoirs, some solar radiation reaches the bottom, where it is absorbed. This leads to a warm bottom layer, which then mixes with the colder water above it. It is thought that only instabilities with a physical origin will occur, but it is possible that under some conditions of inflow and outflow small numerical instabilities may appear, although these have not been observed. For this reason the whole profile is examined for instabilities, and these are eliminated by mixing.

The mixing is controlled by a simple energy balance equation, e.g.,

$$\int_{y_{mix}}^{y_{s}} (T(y) - T_{m}) \cdot A(y) \cdot dy = 0$$
 (3.36)

where y_{mix} = the elevation of the bottom of the mixed layer $T_m = T_m(t) = mixed temperature at time t$

This procedure is carried out in subroutine AVER. The surface layer is examined. If the temperature is lower than that of the next layer, the top two layers are mixed. The mixed temperature is compared with that of the third layer, and if necessary, the top three layers are mixed. This process continues until a stable profile is obtained.

3.3 Energy Check

Since the surface losses are a function of the surface temperature, it is possible for large errors to occur in the overall energy balance without this being evident from the calculated profiles, since any error tending to increase or decrease the surface temperature, causes an increase or decrease, respectively, in the heat loss from the surface, and thus a compensating effect is introduced. For this reason a check is made on the energy balance for each time period. The most sensitive check is the ratio between the increase in stored energy and the net energy inflow. However, when the net energy inflow approaches zero, this ratio can be misleading, and for this reason, a second ratio is given, which compares the total energy stored plus the energy outflow, with the initial energy plus the energy inflow.

3.4 Numerical Dispersion

One of the drawbacks of numerical schemes involving advection terms, is that inaccuracies tend to be introduced. These take the form of an additional diffusion or dispersion effect, and are called numerical dispersion. A detailed treatment of this effect is given by Bella (3). For the one-dimensional variable area case, the numerical dispersion coefficient can be written as

$$D_{n_{j}} = \frac{V_{j}}{2} \left(\Delta y - V_{j} \frac{A_{j}}{A_{j,j-1}} \cdot \Delta t \right)$$
 (3.37)

where

 A_{j} = horizontal cross section area at center of jth element

 $A_{j,j-1}$ = horizontal cross section area at interface between jth and (j-1)th element, see Figure 3.1.

For most reservoir cases the one-dimensional constant area form is sufficient i.e.

$$D_{n_{j}} = \frac{V_{j}}{2} (\Delta y - V_{j} \Delta t)$$
 (3.38)

By differentiating Equation (3.38) with respect to V, it can be shown that D $_{\rm max}^{\rm n}$ occurs for V = $\Delta y/2\Delta t$. The maximum numerical dispersion is therfore given by

$$D_{n_{\text{max}}} = \frac{(\Delta y)^2}{8\Delta t}$$
 (3.39)

For the field case Δt = 1 day, Δy = 2 meters, this results in D equal to 40 times the molecular diffusion coefficient, which is still a relatively small value. For the laboratory case, Δy = 2 cm, Δt = 1 minute, this results in D equal to ~7 times the molecular value.

Since this model uses a very small diffusion coefficient, it is not possible to minimize the effect of numerical dispersion by replacing α with $(\alpha - D_n)$ in the diffusion term. However, it seems reasonable to use the opposite procedure, namely replacing α by $(\alpha + D_n)$, thus doubling the numerical dispersion, to see if this error has a significant effect. From Figure 3.4 it can be seen that the effect of doubling the error is a minor one, and hence it seems likely that numerical dispersion is not significant in this case.

Figure 3.4 Effect of Numerical Dispersion on Outflow Temperatures

4. Determination of Parameters

The principal heat budget parameters, used in the model, are net solar radiation, net longwave radiation, evaporation and conduction. These parameters are the same as those used by Huber, and for further details the reader should consult (12). A short discussion of each parameter is given below.

4.1 Net Solar Radiation (ϕ_0)

Several formulae are available for obtaining the solar radiation ϕ_s in terms of the solar constant (198 cal/cm²/min), solar angle, cloud cover and other atmospheric factors. These formulae were examined by Andersen (U.S.G.S. - 1954) as part of the Lake Hefner studies, and he concluded that indirect methods of evaluating solar radiation are accurate only within about 15%, and therefore measured values of ϕ_s should be used whenever available. A reasonable value for albedo is 7% (1). Values of $\phi_o = \phi_s (1 - a_r)$ are required as input data in this model.

4.2 Net Longwave Radiation ϕ_{ra}

The net longwave or back radiation is defined as the difference between the longwave radiation emitted by the water, and that emitted by the atmosphere, and absorbed by the water.

4.2.1 Longwave Radiation from Water $\boldsymbol{\phi}_{\text{rw}}$

The longwave radiation emitted by the water, $\phi_{\text{rw}},$ is known accurately (within + 1/2% (1)), and is given by

$$\phi_{rw} = 0.97 \text{ k T}_{w}^{4}$$
 (4.1)

where
$$T_w$$
 = water surface temperature in °K
k = Stefan Bolzmann constant = 1.171 10⁻⁶ kcal/m² - °K⁴ - day

The values of $\varphi_{\mbox{rw}}$ are calculated by the mathematical model as a function of the surface temperature(T $_{\!\!\!W}^{}$ K) generated within the model.

4.2.2 Atmospheric Longwave Radiation ϕ_a

If available, measurements of atmospheric radiation should be used, and values of $\boldsymbol{\varphi}_a$ may be read in as input data.

If measurements are not available, reasonable values of ϕ_a may be calculated as a function of air temperature and cloud cover. The best approach appears to be that of Wunderlich, who uses Swinbank's (27) clear sky formula, modified for cloudiness.

$$\phi_a = 0.937 \cdot 10^{-5} \text{ k T}_a^6 (1.0 + 0.17 \text{ c}^2)$$
 (4.2)

where

c = fraction of sky covered by clouds

 $T_a = air temperature °K, 2 meters above the water surface.$

Thus for the field case, assuming 3% reflection of ϕ_a by the water surface

$$\phi_{ra} = 0.97k \left[T_{w}^{4} - 0.937 T_{a}^{6} \left(1.0 + 0.17 c^{2}\right)\right]$$
 (4.3)

The option of calculating the net longwave back radiation $\phi_{\mbox{ra}}$ as a function of air temperature, water temperature and cloud cover is included in the model.

For the laboratory case, the room containing the model is assumed to radiate as a grey body at air temperature. Thus we have

$$\phi_{ra} = 0.97k \ (T_w^4 - T_a^4)$$
 (4.4)

This calculation is incorporated in the model.

4.3 Evaporation and Conduction Losses

Field evaporation and conduction losses are difficult to predict, or for that matter to measure. Most formulae are based on Dalton's law of mass transfer, modified to allow for the effect of wind. A general form is

$$E_{\rm m} = \rho (a + b \, W) \, (e_{\rm s} - \psi e_{\rm a})$$
 (4.5)

where

 $E_{m} = mass flux$

a,b = empirical constants

W = wind speed

 e_s = saturation vapor pressure at the temperature of the water surface

 e_a = saturation vapor pressure of the air at temperature T_a

 ψ = relative humidity

The heat loss is given by

$$\phi_e = E_m \left(L_v + cT_s \right) \tag{4.6}$$

where $L_v = 1$ at ent heat of vaporization $= 595.9 - 0.54 T_s$

(4.7)

 T_s = surface temperature in °C

$$R = N \frac{(T_s - T_a)}{(e_s - \psi e_a)}$$
(4.8)

where N = constant

Thus,

$$\phi_e + \phi_c = \rho(a + bW) (e_s - \psi e_a) \left(L_v + cT_s + N \frac{(T_s - T_a)}{(e_s - \psi e_a)} \right)$$
 (4.9)

Note - T_a is in °C

4.3.1 Field Evaporation

The model contains the option of using the Rohwer (21) or the Kohler (17) formula, both of which are based on Equation 4.9. In the field case used to verify the model (Fontana Reservoir) best results were obtained with the Rohwer formula, and thus this formula is recommended.

4.3.1.1 Rohwer Formula

The value of $(\phi_e + \phi_c)$ is in kcal/m² - day and the units are as follows: in kg/m³,

a = 0.000308 m/day-mm Hg,

b = 0.000185 sec/day-mm Hg,

W in m/sec (measured six inches above the surface),

e in mm Hg,

e in mm Hg,

ψ is expressed as a fraction,

L in kcal/kg,
c in kcal/kg-°C,

N = 269.1 kcal-mm Hg/kg-°C

No specification of the elevation for the measurement of T_a is given. Rohwer's formula can thus be expressed in the form of Equation 4.9 as

$$\phi_{e} + \phi_{c} = \frac{\text{Rohwer - Field}}{(0.000308 + 0.000185W)} \rho(e_{s} - \psi e_{a}) \left(L + cT_{s} + \frac{269.1(T_{s} - T_{a})}{(e_{s} - \psi e_{a})}\right) (4.10)$$

4.3.1.2 Kohler Formula

This field evaporation formula is due to Kohler (1954) as given by Wunderlich. The quantity ϕ_e + ϕ_c will have units of kcal/m² -day where

 ρ in kg/m³,

a = 0,

b = 0.000135 sec/day-mb,

W in m/sec (not less than 0.05 m/sec),

W is measured two meters above the surface,

e and e in mb (milli-bars),

 ψ is expressed as a fraction,

L, in kcal/kg,

c in kcal/kg-°C

 $N = 372 \text{ kcal-mb/kg-}^{\circ}\text{C}$

 $\mathbf{T}_{\mathbf{a}}$ is measured two meters above the surface.

The Kohler formula is expressed in the form of Equation 4.9 as

$$\phi_{e} + \phi_{c} = \frac{\text{Kohler - Field}}{0.000135 \text{Wp} (e_{s} + e_{a})} \left(L_{v} + cT_{s} + \frac{372 (T_{s} - T_{a})}{(e_{s} - \psi e_{a})} \right)$$
(4.11)

where all quantities have the units cited.

4.3.2 Laboratory Evaporation

For laboratory conditions, the wind dependent term can be neglected, and the

value of the constant (a) was found to depend on the mode of surface heating. Values of (a) were obtained from laboratory measurements and applied in Rohwer's formula.

4.3.3 Negative Evaporation

In some cases the vapor pressure gradient given by the term $(e_s - \psi e_a)$ is negative which leads to a negative evaporation loss. While it is known that this phenomenon occurs in nature, in the formation of dew, nevertheless little is known about the process when it occurs over a water surface, and the constants in Equations 4.10, 4.11, apply only in the case of a positive vapor pressure gradient. For this reason, when the evaporation is found to be negative, it is put equal to zero. The conduction term is kept, however, although since it was initially obtained as a function of evaporation, the accuracy of the formula used is open to question.

4.4 Required Input Data

For best results the following parameters should be measured in the field:

- 1. Solar radiation
- 2. Atmospheric radiation
- 3. Air temperatures
- 4. Relative humidities
- 5. Wind speeds
- 6. Streamflow rate
- 7. Streamflow temperature

If necessary, solar radiation and atmospheric radiation can be calculated, and in this case the cloud cover should be known. Inflow rates and temperatures can be obtained from streamflow records. The extinction coefficient of the water (η) can be obtained either from Secchi disk, or underwater photometer readings taken in the lake, reservoir, (or river, if the reservoir is not yet built). However some change in η may be expected when the reservoir is built. It should be noted that the required input data is such that it would be available if a reservoir were planned.

4.5 Selection of Time and Distance Steps

An important step in the use of the model is the choice of the distance increment Δy , and the time step Δt . Both Δy and Δt are restricted by the two stability criteria

$$D \frac{\Delta t}{(\Delta y)^2} \leq \frac{1}{2} \tag{4.12}$$

and

$$V \frac{\Delta t}{\Delta y} \leq 1 \tag{4.13}$$

where

D = diffusion coefficient

V = vertical velocity

Other factors such as the input data, and depth of reservoir may also be important. A reasonable approach would be to choose Δy first, based on the depth of the reservoir. A minimum of twenty (20) increments is recommended. Approximately fifty (50) increments have been used in the model verification runs. Too small a Δy leads to very costly runs and the possibility of instabilities near the surface. See Section 4.5.4. Once Δy is chosen, Δt_{max} may be obtained from the stability criteria. A value of V_{max} for use in Equation (4.13) may be taken as

$$V_{\text{max}} = \frac{Q_{\text{out}}}{A_{\text{out}}} \tag{4.14}$$

where

Q_{out} = outlet discharge

A ent = horizontal area of reservoir at outlet

Once Δt_{max} is known, a reasonable value of Δt , based on the input data, may be chosen. For a field reservoir, a Δt of one day is a reasonable choice.

4.5.1 Variable Time Step

Under certain inflow conditions, in particular high inflow rates and low inflow temperatures, $V_{\rm max}$ may be considerably larger than that given by Equation (4.14) and thus the stability criterion (4.13) may be violated. These inflow conditions may exist for a very small percentage of the annual cycle, and it is unrealistic to base the choice of Δt on them. This is remedied by reducing Δt during the critical period. For each time period the vertical velocity profile is scanned and the maximum velocity (in either direction) is selected. The criterion (4.13) is now considered and if violated, a new Δt is selected such that the smallest integer number of new Δt 's is equal to the previous time interval. In the cases considered the extra time involved

was insignificant, but in some reservoirs with a high inflow/capacity ratio this could lead to very expensive runs. However, a basic assumption of the model, namely that isotherms are planar and horizontal, restricts the model to reservoirs with a low inflow/capacity ratio.

4.5.2 Lower Limit on Δy in Field Reservoir

It has been found that if the surface layer is much less than 0.5 meters, oscillations may occur in the surface temperature under some conditions. This is due to the fact that when there is a net positive heat flux into a thin surface layer, large temperature increases result. This is followed in the next time step by unrealistically large surface heat losses, which lower the surface temperature, thus increasing the likelihood of a large positive heat flux in the next time step. Large oscillations in the surface temperature may result. The usual case of a net negative heat flux into the surface layer is not affected by the layer thickness as mixing with the lower layers occurs, and the layer thickness is accounted for here. To eliminate these oscillations, a lower limit of 0.5 meters is applied to the surface layer thickness.

4.6 Possible Program Changes

Apart from the redefining of the minimum surface layer thickness to allow for a smaller Δy , other changes may be found necessary when the program is applied to different field cases.

4.6.1 Cut-Off Gradient

As discussed in Section 2.3.6.2, to avoid the withdrawal of warm surface waters when this would be physically unrealistic, the width of the withdrawal layer is limited by means of a cut-off gradient. The choice of the limiting gradient is somewhat arbitrary, and if unrealistic outflow temperatures are obtained, this value may have to be changed.

4.6.2 Entrance Mixing

The present method of allowing for dilution of the streamflow as it enters the reservoir is considered unsatisfactory, and should be changed as soon as information about this process becomes available.

5. Criteria for Applicability of Model

The assumption of horizontal isotherms is basic to the mathematical model developed in this study. The following criteria may be used to determine whether this assumption is valid.

5.1 Wind Mixing Criterion for Lakes and Reservoirs

Shallow lakes and reservoirs in exposed conditions tend to have tilted isotherms during periods of high wind velocity. Since this effect is only a temporary one, it can probably be neglected, except in the case where the thermocline reaches the surface. In this case, the hypolimnion is mixed with the epilimnion by direct wind action, and Mortimer (18) considers that it is this mechanism which accounts for the increases in depth of the epilimnion after a windy spell. The inclination of the thermocline (here defined as the bottom of the surface mixed layer) can be obtained as follows.

Sverdrup (25) gives the inclination (i_s) of the surface due to wind effects as

$$i_s = 4 \times 10^{-7} \cdot \frac{W^2}{h}$$
 (5.1)

where

h = average depth of water (m)

W = wind speed (m/sec) (use mean of the maximum wind speed)

The inclination of the thermocline \mathbf{i}_{+} is given by

$$\mathbf{i}_{\mathsf{t}} = \mathbf{i}_{\mathsf{s}} \frac{\rho}{\Delta \rho} \tag{5.2}$$

The maximum displacement d_{t} of the thermocline by the wind is therefore

$$d_t = i_t \cdot \frac{L_t}{2}$$

where

 L_t = average length of lake in the thermocline region, in the direction of the wind (m).

Figure 5.1 Effect of Wind on Thermocline

The criterion for use of the model is that the mixed depth (h_m) , calculated in the model for midsummer, should be greater than the thermocline displacement (d_t) for mean maximum wind conditions, i.e.,

$$h_{m} > \frac{4.10^{-7} \text{W}^2}{\text{h}} \cdot \frac{\rho}{\Delta \rho} \cdot \frac{L_{t}}{2}$$
 (5.3)

 $\Delta \rho$ = density difference between epilimnion and hypolimnion

If the inequality (5.3) is satisfied, the mathematical model is applicable in the case of a lake. For a reservoir, however, the following criterion must also be satisfied.

5.2 Flow Through Criterion for Reservoirs

When the flow through the reservoir is large in comparison to the reservoir capacity, the best criterion is that of Orlob (20), who introduces a densimetric Froude number which is a function of the flowthrough rate, the reservoir geometry

and a density difference. The criterion is

$$\mathbb{F}_{D} = \frac{LQ}{h\Psi} - \sqrt{\frac{1}{g\varepsilon}} < \frac{1}{\pi}$$
 (5.4)

where

 ϵ = average normalized density gradient in reservoir and is taken by Orlob to be $10^{-3}~\text{m}^{-1}$

L = length of reservoir (m)

h = mean reservoir depth (m)

 \forall = reservoir volume (m³)

Q = flow through rate m³ sec⁻¹

This leads to

$$\mathbb{F}_{\mathbf{p}} = 320 \, \frac{\mathbf{L}}{\mathbf{h}} \, \frac{\mathbf{Q}}{\mathbf{Y}} \tag{5.5}$$

For Fontana $\mathbb{F}_D \approx \frac{1}{100}$. Other strongly stratified reservoirs e.g. Hungry Horse and Detroit reservoirs show similar results.

Lake Roosevelt ($F_D^{\sim} \frac{1}{2}$) exhibits weak stratification only.

The above criteria tend to limit the model to the deeper reservoir, with a low discharge/capacity ratio. However, a large percentage of the reservoirs fall into the above category, and this is particularly true for those reservoirs for which water quality predictions are required.

6. Verification of Mathematical Model for Field Reservoirs

The mathematical model was verified for the field case using data from Fontana Reservoir. During 1966 the TVA Engineering Laboratory at Norris, Tennessee, conducted an extensive field study of the reservoir in which all pertinent hydrological and meteorological parameters were measured. These data are among the best presently available with which to compare predicted and measured temperature distributions for the field reservoir situation.

6.1 Description of Reservoir

Fontana Reservoir, shown in Figure 7.1, is located on the Little Tennessee River in western North Carolina. It is approximately twenty-nine (29) miles long and is fed by three rives, the Little Tennessee, the Tuckasegee, and Nantahala rivers as well as many smaller streams. The reservoir is highly stratified during the summer.

6.2 <u>Input Data</u>

All data used in the program are listed in Section 7.9 in the form of computer input. Certain data were available on an hourly basis and other data on a daily basis. The program was run with time steps of one day and all hourly data were reduced to daily averages.

Air temperatures, relative humidities and wind speeds were available on an hourly basis. The latter were measured at a reservoir shore location and transformed to mid-lake values by an empirical correlation provided by the TVA Engineering Laboratory.

Inflow data was available on a daily basis for the three tributaries listed above and for runoff from the watersheds bordering the north and south shorelines. The sum of these sources is used as the reservoir inflow, and the inflow temperature was taken as the weighted average of the inflow temperatures from each of the five sources. The outflow rate and temperature were available on a daily basis.

The solar radiation values were computed by Huber (12) and correlated for a limited number of cases with measured values obtained by TVA. There is some doubt as to the accuracy of these values. See Huber (12) for details. Values of atmospheric radiation were computed by Equation 4.2 for each hour and averaged on a daily basis.

Geometric data, namely areas and lengths of the reservoir were available at fifty foot intervals. These values are used as input data, and values at intermediate elevations are found by linear interpolation.

The values of the absorption coefficient, η , and surface absorption fraction.

 β , were obtained from photometer measurements in Fontana Reservoir (29).

6.3 Results

The comparison of predicted versus measured values for outflow temperature as a function of time is given in Figure 6.2. Predicted versus measured temperature profiles are given in Figures 6.3 - 6.6.

The measured temperature data was taken during the 1966 study (29).

The agreement between predicted and measured values for both outflow temperature and temperature profiles is very good. As noted previously, the effect of entrance mixing is significant, at least towards the end of the yearly cycle.

6.4 Verification from Other Sources

A modified version of this model has been checked against data from Lake Norman in North Carolina with good results (23). The modifications were necessary because of a thermal power station which uses Lake Norman as a source of cooling water.

A simplified version of the model has been checked against data from Lake Tahoe, and Castle Lake, California, and from Manton Reservoir in Northern Australia (22). Good agreement was obtained in all cases, but the quality of the available meteorological and hydrological data was much lower than for Fontana Reservoir, and these results are not presented here.

Figure 6.1 Map of Fontana Reservoir and Watershed

Figure 6.2 Measured and Predicted Outflow Temperatures Through Fontana Dam

Figure 6.3 Measured and Predicted Temperature Profiles

Figure 6.4 Measured and Predicted Temperature Profiles

Figure 6.5 Measured and Predicted Temperature Profiles

Figure 6.6 Measured and Predicted Temperature Profiles

7. The Computer Program

The basic logic of the computer program is given by the following flow charts. However, little attempt is made to reproduce details, particularly where these have already been discussed.

7.1 Main Program

This program contains the input and output commands, initializes variables, and carries out the heat flow calculations.

-64-

7.2 Function FLXOUT (N)

Calculation of Surface Losses $\boldsymbol{\phi}_L$ due to Evaporation, Conduction, and Radiation. If Evaporation Losses are Negative, Assume Zero.

7.3 Subroutine TOUT (HEATOT, FLOWOT) Compute Outflow Temperature

7.5 SUBROUTINE AVER

Convective Mixing in Region of Instabilities. Complete Profile Checked

7.6 Remaining Subprograms

FUNCTION TTIN(N), FUNCTION FLXIN(N), FUNCTION QQIN(N) and FUNCTION QOUT(N,I) all calculate the appropriate values of inflow temperature, solar radiation, inflow rate and outflow rate at time $t = N\Delta t$. These values are obtained by linear interpolation from the input data.

7.7 Input Variables

Sample input to the program is provided in Section 7.9 to clarify the input formats. Note that surface elevations, apart from an initial elevation, are not essential, and can be ignored, if necessary.

In the following, input variables are grouped according to the cards on which they appear.

Where options are available, asterisks are put in front of the option recommended for the field reservoir. Where constants are used, recommended values of the constant for the field reservoir are given.

Card 1, FORMAT 20A4

WH = Alphanumeric variable used to print a title at beginning of output. Anything printed on this card will appear as the first line of output.

Card 2, FORMAT 20A4

Card 3, FORMAT 1615

JM = Initial number of grid points = number of the surface grid point.

** KATRAD = 1 Atmospheric radiation is read in.

= 2 Atmospheric radiation is calculated in the program.

KSUR = 1 for a constant surface elevation.

** = 2 for a variable surface elevation.

KOH = 1 for use of Koh's Equation 2.6 or 2.7, for computing the withdrawal thickness.

** = 2 for use of Kao's Equation 2.10.

** KQ = 1 for computations with inflow and outflow.

= 2 for computation with no inflow or outflow.

KLOSS = 1 for Rohwer laboratory evaporation formula.

= 2 for Kohler field evaporation formula (Equation 4.11).

**

**

**

= 3 for Rohwer field evaporation formula (Equation 4.10).

NPRINT = Number of time steps between print outs of calculations.

KAREA = 1 for laboratory reservoir calculations.

= 2 for calculations for any other reservoir.

KMIX = 1 for no entrance mixing.

KILK - F 10

= 2 to include entrance mixing.

MIXED = Number of grid spaces in surface layer for entrance mixing = 4.

**

KTRAV = 1 travel time of water within reservoir is neglected.

= 2 travel time of water within reservoir is accounted for.

Card 4, FORMAT 8F10.5

YSUR = Surface elevation at beginning of calculations.

DY = Distance increment Δy .

DT = Time step, Δt .

TSTOP = Time at which program ceases calculations.

TZERO = Initial isothermal reservoir temperature.

EVPCON = Constant, a, in evaporation formulas of Chapter 4 for KLOSS=1 or 2. For KLOSS=3, EVPCON = 0.01.*

Card 5, FORMAT 8F10.5

SPREAD = Number of outflow standard deviations, σ_0 , equal to half the withdrawal thickness (see discussion of Equation 2.10) = 1.96.

SIGMAI = Inflow standard deviation, σ_1 , Equation 2.2.

ETA = Radiation absorption coefficient, n, Equation 2.1.

BETA = Fraction of solar radiation absorbed at the water surface, β , Equation 2.1.

RHO = Water density, ρ , = 997 kg m⁻³.

HCAP = Water specific heat, c, = 0.998 kcal/kg.

DELCON = Half the value of the constant of Equation 2.5 used to predict the withdrawal thickness, δ. For KOH=2, DELCON=0.00461.*

RMIX = Mixing ratio, r_m , (Equation 2.15) = 1.0

Card 6, FORMAT 1615

NTI = Number of inflow temperatures to be read in.

NTA = Number of air temperatures to be read in.

NSIGH = Number of relative humidities to be read in.

NFIN = Number of insolation values to be read in.

NSURF = Number of surface elevations to be read in.

NDD = Number of values of the diffusion coefficient
to be read in = 2.

NQI = Number of inflow rates to be read in.

NQO = Number of outflow rates to be read in.

NOUT = Number of outlets.

Card 7, FORMAT 8F10.5

DTTI = Time interval between input values of TI.

DTTA = Time interval between input values of TA.

DTSIGH = Time interval between input values of SIGH.

DTFIN = Time interval between input values of FIN.

DSURF = Time interval between input values of SURF.

DTDD = Time interval between input values of DD(= TSTOP for constant diffusion coefficient.)

DTQI = Time interval between input values of QI.

DTQO = Time interval between input values of QO.

Card Group 8, FORMAT 8F10.5

TI = Values of inflow temperatures, T_{in}.

Card Group 9, FORMAT 8F10.5

TA = Values of air temperature, T_a.

Card Group 10, FORMAT 8F10.5

SIGH = Values of relative humidities, ψ , in decimal form.

Card Group 11, FORMAT 8F10.5

FIN = Values of insolation, ϕ_0 .

Card Group 12, FORMAT 8F10.5

SURF = Values of surface elevations, y_s .

Card Group 13, FORMAT 8F10.5

DD = Values of diffusion coefficients, D = $0.0125 \text{ m}^2/\text{day}$.

Card Group 14, FORMAT 8F10.5

 $QI = Values of inflow rates, Q_i$.

Card Group 15, FORMAT 8F10.5

 $QO = Values of outflow rates, Q_O$.

Card Group 16, FORMAT 1615

LOUT = Numbers of grid points corresponding to outlet elevations.

Card Group 17, FORMAT 8F10.5

ELOUT = Outlet elevations.

Card Group 18, FORMAT 3F12.2

SLOPE = Slope of reservoir bottom = 0.0 if KTRAV = 1.

GRAV = Acceleration due to gravity = $7.315 \times 10^{10} \text{ m/day}^2$.

VISCOS = Kinematic viscosity = 0.0864 m²/day,

Card Group 19, FORMAT 8F10.5

THICKI = Observed thickness of inflow layer when traveling along the reservoir bottom = 0.0 if KTRAV = 1.

THICK2 = Observed thickness of inflow layer when traveling horizontally = 0.0 if KTRAV = 1.

The following parameters are read in when KAREA = 2. (i.e. for field reservoir) Card 20, FORMAT 1615

NAA = Number of areas to be read in.

NXXL = Number of lengths to be read in.

NWIND = Number of wind values to be read in.

NATRAD = Number of atmospheric radiation values to be read in.

JMP = Number of grid points for which program variables should
 be initialized. (This should be the maximum value of JM
 expected to occur in the calculations.)

Card 21, FORMAT 8F10.5

DAA = Vertical distance interval between input values of AA.

DXXL = Vertical distance interval between input values of XXL.

DTWIND = Time interval between input values of WIND.

DATRAD = Time interval between input values of ATRAD.

AAB = Elevation of first (lowest) value of AA.

XXLB = Elevation of first (lowest) value of XXL.

Card Group 22, FORMAT 8F10.5

AA = Values of horizontal cross-sectional areas, A.

Card Group 23, FORMAT 8F10.5

XXL = Values of reservoir lengths, L.

Card Group 24, FORMAT 8F10.5

WIND = Values of wind speeds, W.

Read in Card Group 25 when KATRAD = 1

Card Group 25, FORMAT 8F 10.5

ATRAD = Values of atmospheric radiation, ϕ_a .

Read in Card Groups 26, 27 when KATRAD = 2.

Card Group 26, FORMAT F10.5, 15

DCLOUD = Time interval between input values of CLOUD.

NCLOUD = Number of cloud percentages to be read in.

Card Group 27, FORMAT 8F10.5

CLOUD = Percentage of sky covered by clouds.

```
$108
                 RYAN, KP=29, TIME=5, PAGES=99, RUN=CHECK
 C RESERVOIR STRATIFICATION PROGRAM. 1971.
      MAIN PROGRAM
       COMMON T(102.2).EL(102).XL(102).A(102).TI(366).TA(366).SIGH(366)
       COMMON FIN(366), WIND(366), DD(366), QT(366), QD(366,5)
       COMMON UOMAX(5).UIMAX(1).DTTI.DTTA.DTSIGH.DTFIN.DTWIND.DTDD.DTQI
        COMMON DTOO.JM.JOUT.JIN.KSUR.KOH.KQ.KLOSS.YSUR.YOUT.DT.DY
       COMMON TSTOP. EVPCON. SPREAD. SIGMAI. SIGMAO
       COMMON EVAP.RAD.TAIR.PSI.DERIV.HAFDEL.EPSIL
        COMMON YBOT. BETA. DELCON. V(132.1). UI(102.1). DTT
       COMMON RHO. HCAP. KMIX. RMIX. JMIXB. MIXED. QMIX. KAREA. DATRAD, ATRAD(366)
       COMMON AR.WINDY.B(102).S(102).EX(102).EXO(102).UO(102.1)
       COMMON QIN(460), TIN(460), QQMIX(152), MIXH, DMIX, EXI(152), OX(162)
       COMMON NOUT.LOUT(5).ELOUT(5).TOUTC(5).UDT(102.5)
       COMMON SURF(366).GRAV.SLOPE.VISCOS.LAGTIM(366).E0,E1,E2,E3,ET
<u>6</u>
       COMMON THICK1. THICK2. KTRAV. DYSUR. AYSUR
       COMMON DCLOUD, CLOUD(366), KATRAD, III
        DIMENSION WH(20), AA(102), XXL(102)
 C READ IN ALL DATA FOR PROGRAM.
       READ (5.90^{\circ}) (WH(I), I=1.2%)
        WRITE(6.935) (WH(I).I=1.20)
        READ (5,900) (WH(I), I=1,20)
        READ (5.9%1) JM.KATRAD.KSUR.KOH .KQ.KLOSS.NPRINT.KAREA.KMIX.
      1MIXED.KTRAV
        READ (5,982) YSUR, DY, DT, TSTOP, TZERO, EVPCON
        READ (5.902) SPREAD.SIGMAI.ETA.BETA.RHO.HCAP.DELCON.RMIX
        READ (5.901) NTI.NTA.NSIGH.NFIN.NSURF.NDD.NOI.NQO.NOUT
        READ (5.902) DTTI.DTTA.DTSIGH.DTFIN.DSURF.DTDD.DTQI.DTQ0
        READ (5,902) (TI(I),I=1,NTI)
        READ (5.902) (TA(I), I=1,NTA)
        READ (5.902) (SIGH(I).I=1.NSIGH)
        READ (5.992) (FIN(I).I=1.NFIN)
        READ (5.962) (SURF(I), I=1, NSURF)
        READ (5.902) (DD(I).I=1.NDD)
        READ (5,902) (OI(I),I=1,NQI)
        DO 3331 I=1.NOUT
```

```
3571 READ(5.902)(QB(N.I).N=1.NQD)
        READ(5.901)(LOUT(I).I=1.NOUT)
        READ(5,962)(FLOUT(I), I=1, NOUT)
        READ(5.9%3) SLOPE.GRAV.VISCOS
        READ (5.902) THICK1.THICK2
        YBDT=ELDUT(1)-DY*FLOAT(LOUT(1)-1)
        GO TO (4.2). KAREA
  C READ IN DATA FOR OTHER THAN LABORATORY RESERVOIR IF INDICATED.
      2 READ(5.901) NAA.NXXL.NWIND.NATRAD.JMP
        READ (5.902) DAA.DXXL.DTWIND.DATRAD.AAB.XXLB
        READ (5.902) (AA(I).I=1.NAA)
        READ(5, 902)(XXL(I), I=1, NXXL)
        READ (5.902) (WIND(I).I=I.NWIND)
        GD TO (9.10).KATRAD
      9 READ (5,902) (ATRAD(I), I=1, NATRAD)
        GO TO 11
82
     19 READ(5.991) DCLOUD.NCLOUD
        READ(5.9%2)(CLOUD(I).I=1.NCLOUD)
     11 DO 3 I=1,JMP
        FI(I) = YBOT+DY **FLOAT(I-1)
        RA = (EL(I)-AAB)/DAA
        L = RA
        A(I) = AA(L+1)+(RA-FLOAT(L))*(AA(L+2)-AA(L+1))
        RA = (EL(I)-XXLB)/DXXL
        I = RA
        XL(T)=XXL(L+1)+(RA-FLOAT(L))*(XXL(L+2)-XXL(L+1))
      3 B(I)=A(I)/XL(I)
        GO TO 5
      4 \text{ JMP} = \text{JM+IFIX}((33.0-YSUR)/DY+0.5)
  C CALCULATION OF LONG WAVE RADIATION IN LABORATORY
        AR = 3.7888E-10
                           で(TA(1)+273。16)参率4
        DO 8 I=1.JMP
        B(1) = 30.48
        EL(I) = YBOT+DY*FLOAT(I-1)
        IF (EL(1)-22,4) 6,7,7
      6 \times (I) = 10.9 \times (EL(I) + 87.9)
```

```
GD TO 8
      7 \times (1) = 1993.5
      8 \text{ A(I)} = \text{XL(I)} * 3 \% 4 8
      5 CONTINUE
         WRITE (6.967) (WH(I).I=1.27)
         WRITE (6.984) JM.YSUR.RHD
         WRITE(6,9°5)(LOUT(I), ELOUT(I), I=1, NOUT)
         WRITE (6.906) DY.YBDT.ETA
         WRITE (6.907) DT. TZFRO. BETA
         WRITE (6.908) KTRAV.SIGMAI, HCAP
         WRITE (6.939) TSTOP.SPREAD
        WRITE (6.913) KATRAD. KSUR. KOH . KQ. KLOSS. KAREA, EVPCON, DELCON, KMIX
         WRITE (6.923) MIXED.RMIX
  C INITIALIZE MANY VARIABLES.
         00 850 N=1.360
-83-
         QIN(N) = 0.0
         TIN(N)=0.5
    850 CONTINUE
         DO 851 I=1.JMP
         T(1.1) = TZERO
    851 QQMIX(I)=0.2
         DTT=DT
         NPR=3
         ML=MXL
         N = 0
         JMIXB = JM-MIXED
         OMIX = 0.0
         FT = 0.0
         RAD = 0.0
         EVAP = 0.0
         TAIR = 0.0
         EPSIL = 0.0
         HAFDEL = 0.00
         JIN = JM
         CUMQIN=" on
         CUMQOT=0.5
```

```
IF(YSUR-EL(JM)) 858.858.859
  858 AYSUR=A(JM)-(DY/2.Q-DYSUR)*(A(JM)-A(JM-1))/DY
      60 TO 865
  859 AYSUR=A(JM)+(DYSUR-DY/2.6)*(A(JM+1)-A(JM))/DY
  860 SAREA=(AYSUR+(A(JM)+A(JM-1))/2.0)/2.0
      SARFAL = SAREA
      DYSUR1=DYSUR
      ML=IML
C INITIALIZE VARIABLES USED IN ENERGY CHECK
      E2=2.3
      F3=0.0
      JMM=JM-1
      DO 13 I=2.JMM
   13 E = E + A(I)
      EC=E@#DY*TZERO@RHO#HCAP
      IF(JM-60) 15,15,16
   15 JP = JM
      GO TO 17
   16 JP=60
   17 GO TO (20,18), KO
   18 UIMAX(1)=0.3
      UOMAX(1) = 0.3
      TS=0.)
      DO 19 J=1.JM
      UI(J_{\bullet}1) = f_{\bullet}0
      UO(J.1)=0.6
   19 \ V(J,1) = 0.0
      SIGMAD = 1.0
C STATEMENT 20 IS BEGINNING OF MAIN ITERATION LOOP OF PROGRAM.
   20 N=N+1
      ET=ET+DT
      GO TO (21.503).KQ
   21 GO TO (24,22), KMIX
C MIX INFLOW WATER IF INDICATED.
```

DYSUR=YSUR-EL(JM)+DY/2.0

```
22 TP= ". 3
      DD 23 J=JMIXB.JM
   23 TP = TP+T(J-1)
      TP = TP/FLOAT(MIXED+1)
      TS=(TTIN(N)+TP>RMIX)/(1.8+RMIX)
      GO TO 25
   24 TS=TTIN(N)
25
      CONTINUE
C LOCATE ACTUAL LEVEL OF DAYS INPUT
      D0 27 I=1.JM
      J = JM+1-I
      IF (TS-T(J.1)) 27.39.39
   27 CONTINUE
   30 JIN=J+1
      IF(JIN-JM) 32.32.33
   33 JIN=JM
   32 CONTINUE
      GD TO (46,47), KTRAV
C CALCULATION OF TRAVEL TIME
C VELF=DOWNSLOPE VELOCITY.HVELF=HORIZONTAL VELOCITY
   47 JXM=JM
      QLIT=QQIN(N)*(1,0+RMIX)/B(JM)
      IF(JM-2-JIN) 870.870.871
  870 VELF=QLIT/THICK1
      JIN=JM
      XLAG=XL(JM)/VELF
      GD TO 872
  871 DELRHO=6。6E-(6年((T(JM,1)-4。*)**2-(TS-4。*)**2)/2。()
      GPRIME=GRAV*DELRHO
      GO TO (873.874).KAREA
  874 SLOPE=(EL(JM)-EL(JIN))/(XL(JM)-XL(JIN))
873
      CONTINUE
      DFLOW=1。92年(QLIT*VISCOS/GPRIME/SLOPE)中華日。33
      VELF=QLIT/DFLOW
      HVELF=QLIT/THICK2
      SLDIST=FLOAT(JM-JIN)*DY/SLOPE
```

```
XLAG=SLDIST/VELF+XL(JIN)/HVELF
  872 LAGTIM(N)=XLAG/DT
      ML=N+LAGTIM(N)
      QIN(ML)=QIN(ML)+QQIN(N)
      TIN(ML) = (TIN(ML)*(OIN(ML)-QOIN(N))+TTIN(N)*QOIN(N))/OIN(ML)
      WRITE(6.875) VFLF.QIN(N).LAGTIM(N).TIN(N)
  875 FORMAT(2F12, 3, 15, F12, 3)
      TP=0.0
      DO 1023 J=JMIXB.JM
 1023 TP=TP+T(J.1)
      TP=TP/FLOAT(MIXED+1)
      TS = \{TIN(N) + TP \notin RMIX\}/(1 \circ \emptyset + RMIX)
C RE LOCATE LEVEL OF INFLOW WATER,
      DO 4745 I=1.JM
      J = J M + 1 - 1
      IF(TS-T(J,11) 4745,4746,4746
4745 CONTINUE
4746
      JIN=J+1
      IF(JIN-JM) 4747,4747,4748
4748 JIN=JM
4747 CONTINUE
      GO TO 48
   46 QIN(N)=QQIN(N)
      TIN(N)=TTIN(N)
C COMPUTATIONS WHEN SURFACE ELEVATION VARIES WITH TIME.
   48 GO TO (45.31).KSUR
   31 JJM=JM
      CUMQIN=CUMQIN+QIN(N)*DT
       DO 332 I=1.NOUT
  332 CUMONT=CUMONT+QOUT(N.I)*DT
      QIO=CUMQIN-CUMQOT
      IF(QIQ) 34.34.35
   35 SUM=-SAREA1*DYSUR1
      DD 36 M=1.JM
      SUM=SUM+A(JM1+M-1)*DY
      IF(QID-SUM) 37.37.36
```

```
36 CONTINUE
      34 SUM=DYSUR1*SAREA1
         DD 38 M=1.JM
         IF(ABS(QIQ)-SUM) 39.39.38
      38 SUM=SUM+A(JM1-M)*DY
      37 YSUR=EL(JM1)+(M-0.5)*DY+(QID-SUM)/A(JM1+M-1)
         GO TO 4"
      39 YSUR=EL(JM1)-(M-3.5)*DY+(QID+SUM)/A(JM1-M+1)
      40 DYS=YSUR-EL(JM1)+DY/2.0
         IF(DYS) 41,42,42
      42 M=IFIX(DYS/DY)
         GC TO 43
      41 M=IFIX(DYS/DY)-1
      43 JM=JM1+M
         DYSUR=YSUR-EL(JM)+DY/2.6
   C
       CALCULATE MEASURED SURFACE LEVEL
-87-
         R=ET/DSURF
         L = R
         RR=R-FLOAT(L)
         SURMES=SURF(L)+RR*(SURF(L+1)-SURF(L))
   C CALCULATE SURFACE AREA
         IF(YSUR-EL(JM)) 58,58,59
      58 AYSUR = A(JM) - (DY/2 \cdot 0) - DYSUR \cdot (A(JM) - A(JM-1)) / DY
         GO TO 61
      59 AYSUR=A(JM)+(DYSUR-DY/2.0)*(A(JM+1)-A(JM))/DY
      61 SAREA=(AYSUR+(A(JM)+A(JM-1))/2.0)/2.0
   C CHECK ACCURACY OF SURFACE LEVEL
          SUM V= 0.0
          JMM=JM-1
          IF(JM-JM1) 513,511,512
     512 DO 513 J=JM1.JMM
     513 SUMV=SUMV+A(J)*DY
     511 SUMV=SUMV+SAREA#DYSUR-SAREA1#DYSUR1
         GD TO 515
     510 JMM1=JM1-1
         DO 514 J=JM, JMM1
```

```
514 SUMV=SUMV+A(J)参DY
      SUMV = - (SUMV + SAREAL * DY SUR1 - SAREA * DY SUR)
  515 ERROR=SUMV-QIO
      DYCOR=ERROR/SAREA
      DYSUR=DYSUR-DYCOR
      IF(DYSUR-0.5) 506.506.507
  506 DYSUR = DYSUR+DY
      JM=JM-1
 . 567 MM=JM-JJM
      IF (MM) 44.44.50
   50 DO 51 I=1.MM
      J=JM+1-I
   51 T(J_{\bullet}1) = T(JJM_{\bullet}1)
   44 T(JM,1)=T(JJM,1)
      JMIXB=JM-MIXED
      IF(JM-60) 53.53.54
   53 JP=JM
      GO TO 45
   54 JP=6<sup>6</sup>
   45 CONTINUE
C SUB SPEED COMPUTES WITHDRAWAL THICKNESS AND VELOCITIES AT EACH TIME STEP.
      CALL SPEED(N)
C STABILITY CHECK VEDT IS LESS THAN DY
      VVV = ABS(V(2.1))
      DO 501 J=3.JM
      IF(VVV-ABS(V(J.1)))502,501,501
  502 VVV=ABS(V(J.1))
  501 CONTINUE
      VM=DY/DTT
      IF(VVV-VM) 503.504.504
  504 DT=DY/VVV
      IDT=DTT/DT+1
      DT=DTT/IDT
      GO TO 595
  503 IDT=1
  505 DO 79 M=1.IDT
```

```
C HEAT TRANSPORT CALCULATIONS
      1MM = 1M - 1
      DO 1114 J=2.JMM
C DIRECT ABSORPTION TERM
      C_{\bullet}(1+L)A+(L)A)=LAA
      ARJ2=(A(J)+A(J-1))/2
      DELTA=(1.5)-BETA)*FLXIN(N)*(EXP(-ETA*(YSUR-EL(J)-DY/2,0))*ARJ1-
     1FXP(-ETA%(YSUR-EL(J)+DY/2.6)))*ARJ2)/A(J)/DY/HCAP/RHO
C VERTICAL ADVECTION TERM
      IF(V(J.1)) 116°.1163.1161
 1165 IF(V(J+1,1))1173.1176.1171
 1170 DELTB=(V(J_1))*T(J_1)*(A(J)+A(J_1))/2*0-V(J+1*1)*T(J+1*1)*(A(J+1)+1)*(A(J+1))
     1A(J))/2,5)/A(J)/DY
      GO TO 1162
 1171 DELTB=(V(J,1)*T(J,1)*(A(J)+A(J-1))/2;0-V(J+1,1)*T(J,1)*(A(J+1)+
     1A(J))/2-3)/A(J)/DY
      GO TO 1162
 1161 IF(V(J+1,1))1172,1172,1173
 1173 DELTB=(V(J.1)*T(J-1.1)*(A(J)+A(J-1))/2.0-V(J+1.1)*T(J.1)*(A(J+1)+
     1A(J))/2~(1/A(J)/DY
      GO TO 1162
 1172 DEL TB=(V(J•1)率T(J-1•1)*(A(J)+A(J-1))/2。5-V(J+1•1)*T(J+1•1)*(A(J+1)
     1+A(J))/2.3)/A(J)/DY
C HORIZONTAL ADVECTION TERM
 1162 DELTC=(UI(J.1)@TS-UO(J.1)@T(J.1))@B(J)@DY/A(J)/DY
C DIFFUSION TERM
      DELTD=DD(1) \neq ((T(J+1,1)-T(J,1))/DY*ARJ1-(T(J,1)-T(J-1,1))/DY*ARJ2)
     1/A(J)/DY
      DELT=(DELTA+DELTB+DELTC+DELTD)*DT
 1114 T(J.2) = T(J.1) + DELT
C CALCULATIONS FOR SURFACE LAYER
      IF (V(JM.1))1163.1164.1164
 1164 DELTJM=DT**((1, G-BETA)*FLXIN(N)*(AYSUR-EXP(-ETA*DYSUR)*
     1 (A(JM)+A(JM-1))/2.6)/SAREA/DYSUR/HCAP/RHO+
     1V(JM.1)@(T(JM-1.1)-T(JM.1))@(A(JM)+A(JM+1))/2@@/SAREA/DYSUR
     1+UI(JM-1)※(TS-T(JM-1)) 8B(JM)/SAREA
```

```
1-DD(1)*(T(JM,1)-T(JM-1,1))/DY*(A(JM)+A(JM-1))/2.0/SAREA/DYSUR
     1+(BETA*FLXIN(N)-FLXOUT(N))*AYSUR/RHO/HCAP/DYSUR/SAREA)
      GO TO 1165
 1163 DELTJM=DT※((1。②-BETA)®FLXIN(N)®(AYSUR-EXP(-ETA®DYSUR)®
     1 (A(JM)+A(JM-1))/2.0)/SAREA/DYSUR/HCAP/RHO+
     1 UI(JM-1)*(TS-T(JM-1))*B(JM)/SAREA
     1-DD(1)@(T(JM,1)-T(JM-1,1))/DY*(A(JM)+A(JM-1))/2.@//SAREA/DYSUR
     1+(BFTA*FLXIN(N)-FLXOUT(N))*AYSUR/RHO/HCAP/DYSUR/SAREA)
1165 T(JM.2)=T(JM.1)+DELTJM
      FLUXOT=FLXOUT(N)
C CALCULATIONS FOR BOTTOM HALF LAYER
      IF(V(2,1)) 1166,1167,1167
 7167 DELT1=DT※((1≈0-BETA)®FLXIN(N)®EXP(-ETA®(YSUR-EL(1)-DY/2。◎))®
     1 (A(2)+A(1))/2.8/RHO/HCAP
     2 +UI(1.1) $\alpha B(1) $\alpha DY/2.0 $\alpha (TS-T(1.1))
     3+DD(1) *(T(2,1)-T(1,1))*(A(2)+A(1))/2.2/DY)/A(1)/DY*2.0
      GO TO 1168
1166 DELTI=DT&((I.O-BETA)&FLXIN(N)&EXP(-ETA&(YSUR-EL(I)-DY/2.0))&
     1 (A(2)+A(1))/2.0/RHO/HCAP
     2+UI(1+1)*B(1)*DY/2*3*(TS-T(1+1))-V(2+1)*(A(2)+A(1))/2*0
     28(T(2,1)-T(1,1))
     3+DD(1) *(T(2.1)-T(1.1))*(A(2)+A(1))/2.0/DY)/A(1)/DY*2.0
1168 T(1.2)=T(1.1)+DFLT1
C SIDE HEAT LOSSES FOR LABORATORY RESERVOIR
      GO TO (1115,1117), KAREA
1115 DO 1116 J=1.JM
      PHIM=0。79E-10家(T(J-1)+273。0)**4-AR
      DELT=(2,0次(XL(J)+B(J))*PHIM/RHO/HCAP/A(J))*DT
      FIUXOT=FIUXOT+PHIM#2。*D*(XL(J)+B(J))*DY/AYSUR
1116 T(J_{\bullet}2) = T(J_{\bullet}2) - DELT
1117 DO 1118 J=1.JM
1118 T(J \cdot 1) = T(J \cdot 2)
C CHECK REASONABLENESS OF RESULTS.
      IF (ABS(T(JM.2))-153.6) 60.57.57
   57 TSTOP = ET
      GO TO 80
```

```
C SUB AVER MIXES SURFACE LAYERS IN THE EVENT OF A SURFACE INSTABILITY.
   6h IF (T(JM-2)+0.01-T(JM-1.2)) 63.79.79
   63 CONTINUE
      CALL AVER(N)
   79 CONTINUE
      DT=DTT
      DO 78 I=1.NOUT
      I = I I I
      GO TO (115,116), KO
  116 TOUTC(I)=0.0
      GO TO 78
  115 CALL TOUT (HEATOT.FLOWOT)
      TOUTC(I)=HEATOT/FLOWOT
   78 CONTINUE
C
         ENERGY CHECK
      E1=A(1)*DY/2,0*T(1.1)
      JMM=JM-1
      DO 111 J=2,JMM
  111 E1=E1+A(J)*DY*T(J.1)
      E1=E1+SAREA*DYSUR*T(JM.1)
      E1=E1*RHO*HCAP
      E2=E2+FLXIN(N) #AYSUR*DT+QIN(N)*DT*TIN(N) #RHO*HCAP
      E3=E3+FLUXOT *AYSUR*DT
      DO 112 I=1.NOUT
  112 E3=E3+QOUT(N,I)*DT*TOUTC(I)*RHO*HCAP
      ENRAT = (E1 - E^*)/(E2 - E3)
      TENRAT=(E1+E3)/(E2+E0)
      IF(N-NPR) 100.100.80
   8<sup>th</sup> NPR = NPR+NPRINT
      WRITE (6.9%)(WH(I).I=1.20)
      WRITE (6,912) ET, SURMES, TIN(N)
      WRITE (6,913) N.YSUR, TAIR
      WRITE (6,914) JM.EL(JIN), PSI
      WRITE (6.915) JIN.EVAP.FLXIN(N)
      WRITE(6.925) DMIX.AR.WINDY
      WRITE (6.916) FLUXOT, RAD, QIN(N)
```

```
-92-
```

```
GO TO (85.89). KO
 85 F = 2.5 THAFDEL
    WRITE (6.918) EPSIL.F.SIGMAD
    DO 88 I=1.NOUT
 88 WRITE (6.917) ELOUT(I), QOUT(N,I), TOUTC(I)
    WRITE(6.926) ENRAT.E1.E2.F3
    GO TO (89,86), KMIX
 86 WRITE (6.924) TP.TS.TENRAT
 89 WRITE (6.920)
    DO 90 I=1.10
 90 WRITE (6.921) (J.EL(J).T(J.1).J=I.JP.10)
    IF(JM-60) 100.100.91
 91 WRITE (6.92%)
    IF(JM-70) 92,93,93
 9211 = 1M
    GO TO 94
 93 LL=70
 94 DO 95 I=61.1L
 95 WRITE (6.921) (J.FL(J).T(J.1).J=I.JM.10)
100 IF (ET-TSTOP) 20.1.1
  1 CONTINUE
900 FORMAT (20A4)
991 FORMAT (1615)
902 FDRMAT (8F13.5)
903 FORMAT(3F12.2)
904 FORMAT ( NUMBER OF GRID POINTS='13.17x.'SURFACE ELEVATION='F7.2.
   118X. 'DENSITY=' E12.5)
905 FORMAT (* OUTLET LEVEL=*13. 26X.*OUTLET ELEVATION=*F8.2)
906 FORMAT (' DY='F6.2.33X, BOTTOM ELEVATION='F8.2.18X, ETA='F6.3)
907 FORMAT. (* DT=*F6.2.33X.*INITIAL TEMPERATURE=*F6.2.17X.*BETA=*F5.2)
968 FORMAT (* KTRAV=*15 .31X,*INFLOW STD. DEV.=*F6.2.21X,
   1'HEAT CAPACITY='F8.5)
909 FORMAT (' STOP AT TIME='F7.2.22X.OUTFLOW SPREAD CONST.='F5.2)
910 FORMAT (' KATRAD='12,15X,'KSUR='12,13X,'KOH ='12,15X,'KQ='12,16X,
   1'KLOSS='I2.13X.'KAREA='I2/' EVAPORATION CONSTANT='E11.4.10X.
   2 'CONST IN EQN FOR OUTFLOW DELTA=*F5,2,7X,*KMIX=*12)
```

911 FORMAT ('MN='13,', ABOUT TO ENTER SUBROUTINE AVER.') 912 FORMAT (* ELAPSED TIME=*F7.2.22X.*ACTUAL SURFACE ELEVATION=* 1F7,2.11X. INFLOW TEMPERATURE= 1F6.2) 913 FORMAT (' NO. OF TIME STEPS="14.20x, SURFACE ELEVATION USED=" 1F9.2.11X. 'ATR TEMPERATURE= 'F6.2) 914 FORMAT (' NO. OF GRID POINTS='I3.2)X. 'ELEVATION OF INFLOW='F7.2. 116X. RELATIVE HUMIDITY= 1F5, 21 915 FORMAT (' LEVEL OF INFLOW='I3,23X,'EVAPORATION FLUX='E12.5.14X, 1'INSOLATION FLUX='E12.5) 916 FORMAT (' HEAT LOSS FLUX='E12.5,15x,'RADIATION FLUX='E12.5, 116X, INFLOW RATE= F11.1) 917 FORMAT (OUTLET ELEVATION= F10.5,15x, OUTFLOW RATE= F10.1,19x, 1 ' OUTFLOW TEMPERATURE= 1F6 2'C') 918 FORMAT (PPSILON='E11.4.23X.'WITHDRAWAL THICKNESS='F7.2.15X. 1'OUTFLOW STD, DEV.='F6.2) 920 FORMAT (/7(' J ELEV TEMP(C) ')) 921 FORMAT(7(13.F6.1.F6.2.3X)) 922 FORMAT (/' TIME FROM BEGINNING OF CALCULATIONS FOR THIS DATA SET=! 113. MINUTES. 13. SECONDS. 1) 923 FORMAT (NO. GRID SPACES IN MIXED LAYER= 13,8x, MIXING RATIO= 1 1F5.21 924 FORMAT (' TEMP OF MIXING LAYER="F6">2,15%, "MIXED INFLOW TEMP=" 1F6.2.19X. TOTAL ENERGY RATIO= F9.5) 925 FORMAT (* MIXING DEPTH="F5.2,24X."ATMOSPHERIC RADIATION="E12.5. 1 9X. WIND SPEED= 1F5, 2) 926 FORMAT(* ENERGY RATIO=*F7.3, 5X. *ENERGY STORED=*E12.5, 5X. *ENERGY

1 INFLOW= "E12.5. 3X. "ENERGY OUTFLOW= "E12.5)

CALL EXIT

END

```
FUNCTION FLXOUT(N)
C CALCULATION OF SURFACE LOSSES DUE TO EVAPORATION. CONDUCTION. AND RADIATION.
      COMMON T(102.2).EL(102).XL(102).A(102).TI(366).TA(366).SIGH(366)
      COMMON FIN(366).WIND(366).DD(366).QI(366).QD(366.5)
      CGMMON UOMAX(5).UIMAX(1).DTTI.DTTA.DTSIGH.DTFIN.DTWIND.DTDD.DTQI
      COMMON DIQO.JM.JOUT.JIN.KSUR.KOH.KO.KLOSS.YSUR.YOUT.DT.DY
      COMMON TSTOP, EVPCON, SPREAD, SIGMAI, SIGMAD
      COMMON EVAP.RAD.TAIR.PSI.DERIV.HAFDEL.EPSIL
      COMMON YBOT.BETA.DELCON.V(102.1).UI(162.1).DTT
      COMMON RHO. HCAP. KMIX. RMIX. JMIXB. MIXED. OMIX. KAREA. DATRAD. ATRAD(366)
      COMMON AR.WINDY.B(102).S(102).EX(102).EXO(102).UD(102.1)
      COMMON QIN(460).TIN(460).QQMIX(102).MIXH.DMIX.EXI(102).QX(102)
      COMMON NOUT, LOUT (5), ELOUT (5), TOUT (5), UOT (102,5)
      COMMON SURF(366).GRAV.SLOPE.VISCOS.LAGTIM(366).E0.E1.E2.E3.ET
      COMMON THICK1. THICK2. KTRAV. DYSUR. AYSUR
      COMMON DCLOUD. CLOUD (366) . KATRAD
  KLOSS = 1 FOR LABORATORY USING ROHWER FORMULA.
           2 FOR FIELD USING KOHLER FORMULA.
C
           3 FOR FIELD USING ROHWER FORMULA.
      ET=DTT*FLOAT(N)
      R = ET/DTTA
      1 = R
      RR = R-FLOAT(L)
      TAIR=TA(L)+RR*(TA(L+1)-TA(L))
      R = ET/DTSIGH
      I = R
      RR = R-FLOAT(L)
      PSI=SIGH(L)+RR本(SIGH(L+1)-SIGH(L))
      TS = T(JM \cdot 1)
      H = 597.3-1.56*TS
C PARABOLIC APPROXIMATION FOR VAPOR PRESSURES IN MM HG.
      FS = 0.0418 * TS * TS - 0.6216 * TS + 13.0068
      FA = PST*(C.0418*TAIR*TAIR-0.6216*TAIR+13.0068)
      DE = ES-EA
      GO TO (15.20.20). KLOSS
C CALCULATIONS FOR LABORATORY USE ROHWER FORMULA.
```

```
15 CHI = RHOW (HMDE+TS#HCAPMDE)
      EVAP = CHIMEVPCON
      CONDUC=RHO*EVPCON*269.1*(TS-TAIR)
      IF(EVAP)1.1.2
   1 EVAP=O.O
    2 EVAP=EVAP+CONDUC
C UNITS OF RADIATION ARE CAL/CM-CM-MIN.
      AR = 0.7888E-10 *(TAIR+273.16)**4
      RAD = 0.7888E-10 *(273.16+TS)**4-AR
      W = 0.0
      FL XOUT = EV AP + R AD
      RETURN
C FOR FIELD DATA, WIND SPEED IS IN M/SEC.
   20 R = ET/DTWIND
      L = R
      W=WIND(L)+(R-FLOAT(L))*(WIND(L+1)-WIND(L))
      WINDY=W
C CALCULATION OF ATMOSPHERIC RADIATION
C UNITS OF RADIATION ARE KCAL/M-M-DAY.
      GD TO (7.8), KATRAD
    7 R=ET/DATRAD
      L = R
      AR = ATRAD(L) + (R - FLOAT(L)) * (ATRAD(L+1) - ATRAD(L))
      RAD = 1.13587E - 6*(TS + 273.16) **4 - AR
      GD TO 9
    8 R=ET/DCLDUD
      1 = R
      CC=CLOUD(L)+(R-FLOAT(L))*(CLOUD(L+1)-CLOUD(L))
      RAD=1。13587F-6和((TS+273。16)如#4-@。937E-5#(TAIR+273。16)和#6本(100+
     1 (% 约17%CC**2))
    9 GD TD (15,25,30), KLOSS
C CALCULATION OF FIELD EVAPORATION USING KOHLER FORMULA.
C VAPOR PRESSURES IN MB.
   25 DE = DE/0.750062
      EVAP = H&DE+HCAP®DE&TS
      FVAP = FVPCON®RHOWWMEVAP
```

```
CONDUC=RHO#EVPCON#W#372.0年(TS-TAIR)
      IF(EVAP13.3.4
    3 EVAP=0.0
    4 EVAP=EVAP+CONDUC
      FLXOUT=EVAP+RAD
      RETURN
C CALCULATION OF FIELD EVAPORATION USING ROHWER FORMULA.
   30 CHI = RHOM (HADE+TS*HCAP*DE)
      FW = 0.03(8+0.0185*W
      EVAP = CHISEWSEVPCON
      CONDUC=RHOSEVPCON$269.18 (TS-TAIR) *FW
      IF(EVAP)5,5,6
    5 EVAP=0.7
    6 EVAP=EVAP+CONDUC
      FLXOUT =EVAP+RAD
      RETURN
      END
```

```
-97-
```

```
SUPROUTINE TOUT (HEATOT. FLOWOT)
C COMPUTE WEIGHTED AVERAGE OF OUTFLOW TEMPERATURE.
      COMMON T(102.2), EL(102), XL(102), A(102), TI(366), TA(366), SIGH(366)
      COMMON FIN(366), WIND(366), DD(366), QI(366), QD(366,5)
      COMMON UOMAX(5).UIMAX(1).DTTI.DTTA.DTSIGH.DTFIN.DTWIND.DTDD.DTDI
      COMMON DIQUEJM.JOUT.JIN.KSUR.KOH.KQ.KLOSS.YSUR.YOUT.DT.DY
      COMMON TSTOP, EVPCON, SPREAD, SIGMAI, SIGMAC
      COMMON EVAP. RAD. TAIR. PSI. DERIV. HAFDEL, EPSIL
      COMMON YBOT.BETA.DELCON.V(132.1).UI(132.1).DTT
      COMMON RHO. HCAP. KMIX. RMIX. JMIXB. MIXED. QMIX. KAREA. DATRAD. ATRAD(366)
      COMMON AR, WINDY, B(162), S(102), EX(192), EXO(192), UO(192,1)
      COMMON QIN(46), TIN(460), QQMIX(102), MIXH, DMIX, EXI(102), QX(102)
      COMMON NOUT, LOUT(5), ELOUT(5), TOUTC(5), UOT(102,5)
      COMMON SURF(366).GRAV.SLOPE.VISCOS.LAGTIM(366).E0.E1.E2.E3.ET
      COMMON THICK1.THICK2.KTRAV.DYSUR.AYSUR
      COMMON DCLOUD, CLOUD(366), KATRAD, III
      I = I I I
      HEATOT=T(JM.1)*B(JM)*UOT(JM.I)*DYSUR+T(1.1)*B(1)*UOT(1.I)*DY/2.0
      FLDWOT=B(JM) *UOT(JM,I)*DYSUR+B(1)*UCT(1,I)*DY/2.0
      I-ML=MML
      DO 2 J=2.JMM
      HEATOT=HEATOT+UOT(J.I) #B(J) #DY*T(J.1)
    2 FLOWOT=FLOWOT+UOT(J.I)*B(J)*DY
      IF(FLOWOT.EQ.O.O) FLOWOT=1.0
      CONTINUE
      RETURN
      END
```

```
SUBROUTINE SPEED(N)
C COMPUTATION OF VERTICAL AND SOURCE AND SINK VELOCITIES.
C ALSO, COMPUTATION OF WITHDRAWAL THICKNESS.
C SOURCE AND SINK VELOCITIES ARE ASSUMED TO HAVE GAUSSIAN DISTRIBUTION.
      COMMON T(102.2).EL(102).XL(102).A(102).TI(366).TA(366).SIGH(366)
      COMMON FIN (366) .WIND (366) .DD (366) .QI (366) .QQ (366.5)
      COMMON UDMAX(5).UIMAX(1).DTTI.DTTA.DTSIGH.DTFIN.DTWIND.DTDD.DTQI
      COMMON DIGG.JM.JOUT.JIN.KSUR.KOH.KQ.KLOSS.YSUR.YOUT.DT.DY
      COMMON TSTOP. EVPCON. SPREAD. SIGMAI. SIGMAO
      COMMON EVAP.RAD.TAIR.PSI.DERIV.HAFDEL.EPSIL
      COMMON YBOT.BETA.DELCON.V(132.1).UI(102.1).DTT
      COMMON RHD. HCAP. KMIX. RMIX. JMIXB. MIXED. QMIX. KAREA. DATRAD. ATRAD(366)
      COMMON AR.WINDY.B(102).S(102).EX(102).EXO(102).UO(102.1)
      COMMON QIN(460).TIN(460).QQMIX(102).MIXH.DMIX.EXI(102).QX(102)
      COMMON NOUT.LOUT(5).FLOUT(5).TOUTC(5).UOT(102.5)
      COMMON SURF(366), GRAV. SLOPE, VISCOS, LAGTIM(366), ED, E1, E2, E3, ET
      COMMON THICKI, THICK2, KTRAV, DYSUR, AYSUR
      COMMON DCLOUD, CLOUD (366), KATRAD
C COMPUTE INFLOW VELOCITY
C COMPUTE EXPONENTIAL FACTOR
      DO 1 I=1.JM
      S(I) = (DY*FLDAT(I-1))**2
      ARGI=S(I)/2.0/SIGMAI/SIGMAI
      IF(ARGI-20.0)4.4.5
    4 EX(I) = EXP(-ARGI)
      GO TO 1
    5 FX(I)=5.0
    1 CONTINUE
      DO 2 J=1.JM
      II = IABS(J-JIN) + 1
    2 EXI(J)=EX(II)
C COMPUTE MAX INFLOW VEL.
      VOLIN=EXI(1) $B(1) *DY/2.6+EXI(JM) *B(JM) *DYSUR
      JMM = JM - 1
      DO 3 J=2.JMM
    3 VOLIN=VOLIN+EXI(J) #B(J) #DY
```

```
UIMAX(1)=QIN(N)/VOLIN
       GO TO (8,7), KMIX
     7 UIMAX(1)=UIMAX(1)*(1.0)+RMIX)
     8 DO 6 J=1.JM
     6 UI(J.1)=UIMAX(1)\%EXI(J)
    COMPUTE DUTFLOW VELOCITIES
        DO 10 LT=1.NOUT
        JOUT=LOUT(LT)
  C COMPUTE WITHDRAWAL THICKNESS.
  C NOTE THAT ONLY HALF THE WITHDRAWAL THICKNESS IS COMPUTED.
        DERIV = (T(JOUT+1,1)-T(JOUT-1,1))/2.0/DY
        IF (DER IV-0.010) 11.11.15
     11 JOUT1=JOUT+2
  C CUTOFF DUE TO SHARP CHANGE IN DENSITY GRADIENT
        DO 12. J=JOUT1.JMM
        IF((T(J+1,1)-T(J,1))/DY-,95)12,13,13
     12 CONTINUE
-99-
        SIGMAD=100.0*DY
        GO TO 19
    13 HAFDEL=FLOAT(J-JOUT)*DY
        SIGMAD=HAFDEL/SPREAD
     19 JOUT2=JOUT-2
        DO 21 I=1.JOUT2
        J=J0UT2+2-I
        IF((T(J,1)-T(J-1,1))/DY-0.05) 21,21,22
     21 CONTINUE
        GD TO 14
     22 HAFD1=FLDAT(JOUT-J)*DY
        SIGM1=HAFD1/SPREAD
        IF(SIGMI.LT.SIGMAD) SIGMAD=SIGM1
        GO TO 14
  C APPROXIMATING FORMULA USED FOR DENSITY IS RHO=1.0-5.00050663*(T-4.0)**2.
     15 FPSIL= 2.0%(T(JOUT.1)-4.0)/(151000.0-(T(JOUT.1)-4.0)%*2)%DERIV
        GO TO (17,16), KOH
  C CALCULATION OF WITHDRAWAL THICKNESS USING KAO FORMULA.
     16 QPUW=QDUT(N.LT)/B(JDUT)
```

```
HAFDEL = DELCON®SORT(OPUW)/EPSIL®®D. 25
      GO TO 18
C CALCULATION OF WITHDRAWAL THICKNESS USING KOH FORMULA.
   17 HAFDEL = DELCON/EPSIL***0~1666667
   18 SIGMAO = HAFDEL/SPREAD
      IF(SIGMAD) 20,20,14
   27 SIGMAD=1.7
   14 CONTINUE
   COMPUTE EXP. FACTOR
      DO 100 I=1.JM
      S(I)=(DY#FLOAT(I-1))##2
      ARGO=S(I)/200/SIGMAO/SIGMAD
      TF(ARGO-20.0) 104.105.105
  184 DX(I)=EXP(-ARGO)
      GO TO 180
  105 OX(I)=0.0
 190 CONTINUE
      DO 110 J=1.JM
      IO=IABS(J-JOUT)+1
  110 EXO(J) = OX(IO)
C FIRST COMPUTE MAXIMUM VELOCITIES. THEN OTHERS.
      VOLOUT=EXO(1) #8(1) *DY/2.0+EXO(JM) *B(JM) *DYSUR
      JMM=JM-1
      DO 120 J=2.JMM
  120 VOLOUT=VOLOUT+EXO(J)*B(J)*DY
      UDMAX(LT) = QOUT(N.LT)/VOLOUT
      DO 139 J=1.JM
  130 UDT(J.LT)=UDMAX(LT)家EXD(J)
  10 CONTINUE
      DO 36 J=1.JM
      GO TO (31.32).KMIX
   32 IF(J-JMIXB) 31,33,33
  33 QQMIX(J)=QIN(N)*RMIX/(MIXED+1)
     UO(J \cdot 1) = QOMIX(J)/B(J)/DY
      IF(J.EQ.JM) UO(JM.1)=UO(J.1)*DY/DYSUR
      GO TO 36
```

```
31 UO(J.1)=0.0

DO 35 LT=1.NOUT

35 UO(J.1)=UO(J.1)+UOT(J.LT)

36 CONTINUE

C COMPUTE VERTICAL ADVECTIVE VELOCITY

V(1.1)=0.0

V(2.1)=(UI(1.1)-UO(1.1))*B(1)*DY/(A(1)+A(2))

JMX=JM+1

DO 500 J=3.JMX

V(J.1)=(V(J-1.1)*(A(J-2)+A(J-1))/2.0+(UI(J-1.1)-UO(J-1.1))*B(J-1)

1*OY)/(A(J)+A(J-1))*2.0

500 CONTINUE

RETURN

FND
```

```
SUBROUTINE AVER(N)
C PERFORMS CONVECTIVE MIXING OF SURFACE LAYERS.
      COMMON T(102.2).EL(102).XL(102).A(102).TI(366).TA(366).SIGH(366)
      COMMON FIN (366) WIND (366) DD (366) OI (366) OI (366.5)
      COMMON UOMAX (5).UIMAX(1).DTTI.DTTA.DTSIGH.DTFIN.DTWIND.DTDD.DTDI
      COMMON DIOG.JM.JOUT.JIN.KSUR.KOH.KO.KLOSS.YSUR.YOUT.DT.DY
      COMMON TSTOP. EVPCON. SPREAD. SIGMAI. SIGMAO
      COMMON EVAP.RAD.TAIR.PSI.DERIV.HAFDEL.EPSIL
      COMMON YBDT.BETA.DFLCON.V(102.1).UI(102.1).DTT
      COMMON RHO.HCAP.KMIX.RMIX.JMIXB.MIXED.QMIX.KAREA.DATRAD.ATRAD(366)
      COMMON AR, WINDY, B(102), S(102), EX(102), EXO(102), UO(102,1)
      COMMON QIN(460).TIN(460).QQMIX(102).MIXH.DMIX.EXI(102).QX(102)
      COMMON NOUT.LOUT(5).ELOUT(5).TOUTC(5).UOT(102.5)
      COMMON SURF (366) .GRAV.SLOPF.VISCOS.LAGTIM(366) .ED.E1.E2.E3.ET
      COMMON THICK1. THICK2. KTRAV. DYSUR. AYSUR
      COMMON DCLOUD, CLOUD (366), KATRAD
      AV1=3.3
      AV2=0.0
      JMM=JM-I
      DD 5 I=1.JMM
      J=JM-T+1
      JJ=J-1
      IF(T(J,1)-T(JJ,1)) 6,7,7
    6 CONTINUE
      IF(J-2) 8.8.9
    8 T(2.1) = (T(2.1) * A(2) + T(1.1) * A(1) / 2.0 / (A(2) + A(1) / 2.0)
      T(1.1) = T(2.1)
      GO TO 7
   9 DO 10 K=1.JJ
      KJ=J+1-K
      KJJ=KJ-1
      TF(JM-KJ) 2.2.3
   2 AREA=(AYSUR+(A(JM)+A(JM-1))/2.0)/2.0*DYSUR/DY
     GO TO 4
   3 AREA=A(KJ)
   4 AV1=AV1+T(KJ.1)*AREA
```

AV2=AV2+AREA
TAV=AV1/AV2
IF(TAV-T(KJJ,1)) 10,20,25

10 CONTINUE
20 IF(J.EQ.JM) MIXH=K
DMIX=(MIXH-1)*DY+DY/2.7
DD 30 L=KJ.J

30 T(L.1)=TAV
7 AV1=0.0
AV2=0.0
5 CONTINUE
RETURN
END

```
FUNCTION TTIN(N)
C COMPUTE INFLOW TEMPERATURE FROM READ IN VALUES.
C LINFAR INTERPOLATION BETWEEN READ IN VALUES.
      COMMON T(102,2).EL(102).XL(162).A(102).TI(366).TA(366).SIGH(366)
      COMMON FIN(366).WIND(366).DD(366).QI(366).QU(366.5)
      COMMON UOMAX(5), UIMAX(1), DTTI, DTTA, DTSIGH, DTFIN, DTWIND, DTDD, DTOI
      COMMON DIGG.JM.JOUT.JIN.KSUR.KOH.KQ.KLOSS.YSUR.YOUT.DT.DY
      COMMON TSTOP. EVPCON. SPREAD. SIGMAI. SIGMAD
      COMMON EVAP.RAD.TAIR.PSI.DERIV.HAFDEL.EPSIL
      COMMON YBOT.BETA.DELCON.V(132.1).UI(102.1).DTT
      COMMON RHO, HCAP, KMIX, RMIX, JMIXB, MIXED, QMIX, KAREA, DATRAD, ATRAD(366)
      COMMON AR, WINDY, B(102), S(102), EX(102), EXO(102), UO(102,1)
      COMMON QIN(460).TIN(460).QQMIX(102).MIXH.DMIX.EXI(102).QX(102)
      COMMON NOUT-10UT(5).FLOUT(5).TOUTC(5).UOT(102.5)
      COMMON SURF(366).GRAV.SLOPE.VISCOS.LAGTIM(366).ED.E1.E2.E3.ET
      COMMON THICK1. THICK2. KTRAV
      ET=DTT#FLOAT(N)
      R = ET/DTII
      L = R
      RR = R-FLOAT(L)
      TTIN=TI(L)+RR@(TI(L+1)-TI(L))
      RETURN
      FND
```

```
FUNCTION FLXIN(N)
C COMPUTE INCCMING SOLAR RADIATION FROM READ IN VALUES.
C READ IN VALUES TREATED AS A STEP FUNCTION.
      COMMON T(102.2).EL(102).XL(102).A(102).TI(366).TA(366).SIGH(366)
      COMMON FIN(366).WIND(366).DD(366).QI(366).QD(366.5)
      COMMON UOMAX(5), UIMAX(1), DTTI, DTTA, DTSIGH, DTFIN, DTWIND, DTDD, DTQI
      COMMON DIQO, JM, JOUT, JIN, KSUR, KOH, KQ, KLQSS, YSUR, YOUT, DT, DY
      COMMON TSTOP, EVPCON, SPREAD, SIGMAI, SIGMAD
      COMMON EVAP, RAD, TAIR, PSI, DERIV, HAFDEL, EPSIL
      COMMON YBOT.BETA.DELCON.V(102.1).UI(102.1).DTT
      COMMON RHO, HCAP, KMIX, RMIX, JMIXB, MIXED, QMIX, KAREA, DATRAD, ATRAD(366)
      COMMON AR.WINDY.B(102).S(102).EX(102).EX0(102).U0(102.1)
      COMMON QIN(463).TIN(460).QQMIX(102).MIXH.DMIX.EXI(102).OX(102)
      COMMON NOUT.LOUT(5).ELOUT(5).TOUTC(5).UOT(102.5)
      COMMON SURF(366), GRAV.SLOPE.VISCOS, LAGTIM(366), E0, E1, E2, E3, ET
      COMMON THICK1, THICK2, KTRAV
      ET=DTT*FLOAT(N)
      R = ET/DTFIN
      L = R
      FLXIN = FIN(L)
      RETURN
      END
```

```
FUNCTION QQIN(N)
C COMPUTE INFLOW RATE FROM READ IN VALUES.
C READ IN VALUES TREATED AS A STEP FUNCTION.
      COMMON T(102.2).EL(102).XL(102).A(102).TI(366).TA(366).SIGH(366)
      COMMON FIN (366).WIND(366).DD(366).QI(366).QD(366.5)
      COMMON UOMAX(5), UIMAX(1), DTTI, DTTA, DTSIGH, DTFIN, DTWIND, DTDD, DTQI
      COMMON DIOC.JM.JOUT.JIN.KSUR.KOH.KO.KLOSS.YSUR.YOUT.DT.DY
      COMMON TSTOP. EVPCON. SPREAD, SIGMAI, SIGMAD
      COMMON EVAP.RAD.TAIR.PSI.DERIV.HAFDEL.EPSIL
      COMMON YBOT.BETA.DELCON.V(102.1).UI(162.1).DTT
      COMMON RHO.HCAP.KMIX.RMIX.JMIXB.MIXED.QMIX.KAREA.DATRAD.ATRAD(366)
      COMMON AR.WINDY.B(102).S(102).EX(102).EX0(102).U0(102.1)
      COMMON DIN(460), TIN(460), QDMIX(102), MIXH, DMIX, EXI(102), DX(102)
      COMMON NOUT.LOUT(5), ELOUT(5), TOUTC(5), UOT(132.5)
      COMMON SURF (366), GRAV, SLOPE, VISCOS, LAGTIM (366), E3, E1, E2, E3, ET
      COMMON THICK1. THICK2.KTRAV
      FT=DTT&FLOAT(N)
      R = ET/DTQI
      L = R
      QQIN=QI(L)
      RETURN
      END
```

```
FUNCTION QOUT(N.I)
C COMPUTE OUTFLOW RATE FROM READ IN VALUES.
C READ IN VALUES TREATED AS A STEP FUNCTION.
      COMMON T(102,2),EL(102),XL(102),A(102),TI(366),TA(366),SIGH(366)
      COMMON FIN (366), WIND (366), DD (366), QI (366), QO (366,5)
      COMMON UDMAX(5), UIMAX(1), DTTI, DTTA, DTSIGH, DTFIN, DTWIND, DTDD, DTQI
      COMMON DIOO.JM.JOUT.JIN.KSUR.KOH.KQ.KLOSS.YSUR.YOUT.DT.DY
      COMMON TSTOP, EVPCON, SPREAD, SIGMAI, SIGMAO
      COMMON EVAP.RAD.TAIR.PSI.DERIV.HAFDEL.EPSIL
      COMMON YBOT.BETA.DELCON.V(102.1).UI(102.1).DTT
      COMMON RHO. HCAP. KMIX. RMIX. JMIXB. MIXED. QMIX. KAREA. DATRAD. ATRAD(366)
      COMMON AR-WINDY-B(102)-S(102)-EX(102)-EXO(102)-UD(132-1)
      COMMON QIN(46°).TIN(46°).QQMIX(102).MIXH.DMIX.EXI(102).QX(102)
      COMMON NOUT, LOUT(5), FLOUT(5), TOUTC(5), UOT(122.5)
      COMMON SURF(366).GRAV.SLOPE.VISCOS.LAGTIM(366).E0.E1.E2.E3.ET
      COMMON THICK1.THICK2.KTRAV
      ET=DTT*FLOAT(N)
      R = ET/DTQO
      L = R
      DDUT = DD(L \cdot I)
      PETURN
```

END

16.03

15,95

13,94

16,28

16.36

13.97

15.85

16.32

13.80

16.00

15.20

13.98

16,10

13.84

14.28

IFIELD DATA FOR FONTANA RESERVOIR FOR MARCH 1 TO DECEMBER 31, 1966.

\$FNTRY

17.21

15.75

13,69

16.43

15,14

14, 29

15,36

15.89

14.44

<u>ن</u>
$\overline{}$
ಹ
T

	14.12	13.78	13,84	14.25	14.28	72 04	10 80	11 74
	11.23	1 . 82				13.74	13.02	11.74
			10.84	11,11	11.58	12,46	12.79	12.56
	12.11	11.81	11.49	10.93	11.38	12.03	10.81	9.20
	8.43	8,81	10.01	16.92	11.14	11.87	11.14	12.52
	12,22	12, 74	11,6m	16.71	9.91	9. 64	10.14	10.27
	9,72	8.55	8,61	8.53	8.04	8,55	9.47	9. 38
	8,55	6.68	6.29	6, 33	6,46	6.27	5.68	5,26
	6,21	7.78	8,84	9,88	9.19	8,24	7.22	7.72
	6,82	6,47	6,24	6,46	6.49	6.59	6.46	6.31
	6,45	6,63	5 , 82	4. 08	3.76	4.12	5 • 0 5	5.38
	4, 69	4, 82						
	6°°34	5.248	8.752	11.746	C. 281	-3,432	-2.560	-1.432
	1 4 7 9 7	4.579	5.834	7,473	9,306	12.868	11,472	11.233
	11,451	10,478	13, 325	10.118	10.673	15.065	13.138	4, 17, 7
	2,285	1.821	2.808	1.612	2.176	6,157	6.616	7,283
	7. 706	9 📲 62	7. U. 9	4. 49f	4.038	6.449	5, 253	6.247
-109	3,872	8,892	14, 836	14,995	16.948	9.377	7.864	9,398
9	14,503	14.329	15.785	16.072	15,669	15.946	16,830	16.717
ı	15,288	15。481	17.253	15.828	16.199	16,398	14.063	12,950
	12,769	14.871	16,124	17.406	16,865	13.359	9.056	12.2)4
	13.813	14.753	16.77	14,543	12.711	19.122	17.264	18.814
	18,252	15.990	18,244	19.780	15,585	17.954	17.391	17,497
	19.289	16.884	15,868	11.156	10.545	12,878	15.439	17,855
	19,189	18,346	20.051	20.130	20.709	20,640	19.662	20,296
	19,782	17,334	18,962	18,722	18.485	16,408	18.199	18.628
	19,587	19.119	20.022	2% 839	21,466	20.298	21.017	21.295
	20,961	20.126	19.251	21.147	22.369	20.963	22.457	21,289
	20.705	20.616	21.225	22.387	24.086	24.779	23.719	24.490
	21.894	21,837	21,199	23,723	21.759	22.718	20.908	21.449
	20,201	20.539	22,264	22,816	23,756	23.990	22.134	20,767
	19.991	20,521	20.838	20.266	24,037	25.121	20.964	20.303
	21.359	25,835	2*.423	21,372	20.924	22,145	22.389	22,619
	23, 398	24, 336	22.829	21.810	22,092	22.846	21.757	20.887
	18,303	18,157	18,172	17.669	19,054	20.546	18.785	19.387
	19,851	19,873	25,279	20.783	20.950	18.379	18.892	18.478
	18,398	17,527	18,019	16,330	16,854	18.640	15.742	17.059
	•				- · ·	·= - - *	-	

15,840	14.965	16.749	18.101	16,357	14.567	15.396	13.470
13,559	14,258	18,583	17.673	16.044	15,379	10.724	8.225
10,174	13,469	13.655	8,635	9,879	11,651	13.383	16.243
9.510	9.866	12.215	14.964	17.684	14.084	6,452	10.002
8,749	8.107	7,193	10.727	14,354	14.866	13.859	11.152
8.25	7。339	8 _* 6€2	8.783	9.233	10.010	2.928	-1.490
್ತಿ 428	5.304	10.523	10.444	10,746	12,747	14.179	12,162
13,076	10,286	10.962	6.450	5,769	6,126	9.373	10.375
6.940	3,493	4, 233	4,929	5.454	7.803	11,906	10.372
-0 n 207	-1.522	1.251	ै•795	2, 252	0.443	-0.513	1.178
5.543	9. 435	13,233	16,696	19.667	3,067	2.058	1.567
497	-0 a 226	1.092	1.279	2,979	3.898	3.705	3,997
5.695	5.164	-4.045	-4.841	-0.781	0,409	4.788	-1.212
-3,691	1.718			,			, , ,
್ರಿ 687	6.707	್ಮಿ 899	0.800	C. 845	0 ,9 89	0.992	0.807
6	6.674	0.660	0.688	0.767	0.730	0.943	0.841
0.512	0.73)	0.661	0.544	0.696	0.669	0.797	0.637
ಿ 655	្រែ 852	₿ ₀ 654	0.609	0.658	0.569	0.609	0,652
6,480	6,618	J. 835	0.546	0.583	0.597	∂.785	0.567
្ចិត្ត 592	0.568	0.681	0.769	0.793	0.795	0.715	0.653
ಿ. 629	0.757	0.7 55	0.852	0,922	0.796	≎.699	0.750
3.8 9 9	©₀ 9t 7	6.857	0.924	G. 96D	0.929	0.888	0.684
0.62 0	n 643	0.670	0.647	0.738	L. 767	0.562	ಿ.565
₫ • 849	Pa 951	∂.7 89	0.739	5,945	0.781	0.915	0.806
0,693	0.818	0.861	0.746	ũ. 882	0.871	0.948	0.950
0.811	ಿ₀856	6.671	3.666	0.668	0.683	0,739	0.730
0.784	Oa 775	0.771	0.806	6.858	2.806	0.751	0.697
្. 751	∂ , 905	0.744	0.825	9.798	0.906	0.774	0.753
0.740	0,771	0.741	₽ . 765	ੂ, 77 8	0.825	0.848	0.846
್ಕ 878	0.886	∂.951	0. 860	0.819	D.848	0.833	0.874
0.851	₽₀827	**************************************	0,811	Ŭ . 772	0.778	३ 828	0.847
0.901	J. 847	⊍ ₀ 888	0.827	0.900	0.761	0.801	0.743
ಿ, 741	0.707	0.703	0,779	0.764	0.775	0.920	0.912
0,818	0.816	₿.832	0.850	0.825	0.859	0.858	0.878
0.876	0.873	0.888	0.920	0.931	3,886	0.875	0.853
≎ ₆ 855	0 , 832	0.875	9,912	Ü. 882	0.837	0.917	0.807
	· · · · · · · · · · · · · · · · · · ·	-		-	~ * ~ * .	~ •	5500

0.818	ಿ ≈876	7.834	0.840	D. 852	0.818	0.901	0.878	
0,855	5.854	G.859	0.888	Ø ₊ 853	0.824	0.786	0.804	
0.829	0.837	t. 837	Q. 897	(/. 951	0.846	2.899	0.823	
ಿ. 87೨	0.945	¢∙ 960	C.876	0.858	0.873	9.793	0.851	
⊙₀873	₹.978	ુ∘ 915	0.937	0.789	0.859	9.9°4	0.846	
0.8%	r . 862	೧.7 85	ا 828 و 1	0.836	0.867	0.971	0.809	
0,751	0,800	ಿ. 748	6.850	l.880	0.832	0 . 920	0.969	
%846	े•72ी	₽•769	0.842	0.887	0.925	9.895	0.937	
^ 855	G. 815	3.816	\$ ₆ 80€	0.814	C.861	⊘. 951	0. 869	
0.794	℃。731	0.816	0.838	₿•866	U.937	}.967	5,949	
∿.873	6.932	0.851	ಿ. 87೧	0.812	O. 849	0.894	0.873	
).79 5	r ₁ 891	ិ.878	0.816	0.858	€ 843	0.981	0.940	
್ಮಿ 917	1,500	↔ 866	0.814	0.816	3.874	?∙749	9.639	
0.812	5.991	° • 921	©₃ 782	0.937	O. 831	0.883	O. 917	
ឹ 🕯 854	€.892	2,860	0.887	G. 887	Q.B53	0.745	0.739	
ិ , 848	5 , 979	^ 822	1.300	O. 776	0.825	0.964	0.906	
° , 965	្ធ.988							
3641,306	3936.242	1455.145	2366.663	3389.045	3178,336	3706.230	4183.367	
4230 8 95	4277,375	4975,889	4121.945	21 84, 633	3463,941	2257.337	3540.808	
3885,664	4477.632	4458.66U	4787,433	4797.453	46U0.5°7	4120.648	4480,558	
5/68,949	3517.081	4882 , 3 90	5104.730	5294.582	5027.503	5256.492	5147.203	
4949,656	5221.113	3312.271	4769,916	4474.335	5474, 967	3506.479	5315.125	
5826 <u>,</u> 902	5365.847	4677.152	4125,269	2184.112	3667,411	4911.644	6003,707	
5734, 128	3084,714	3109.574	3135.408	3160.601	5932.941	6309,335	5197.585	
2403.948	3279.037	3591.128	4542, 375	5541.695	3717.163	2535.267	6769.914	
7044,164	6846。023	6056.968	6851.671	6596.136	6674.550	7490.031	7076.789	
7048,488	3290,461	4516.882	6450.632	3038.519	4536.125	3737.138	5331.566	
7015,250	6038°246	6572.835	6089.093	2816.871	5467.761	3833.682	3703.543	
5559 , 43 3	6334,777	7410.359	7421,414	8283,511	8105.983	7436.792	7040.878	
7924。957	6920.195	5703.226	4914.359	4918.878	5014.085	5628 . 733	8528, 562	
6625, 542	3973,746	7676.363	5991.449	6541,578	3080,518	5969.429	7752.050	
7283,171	7374,636	8255, 234	6878.277	7389.199	6626.492	3079.269	3083.042	
3086,595	3089.930	3593 • ₹43	4223,714	5660.726	3504.713	3103.319	6212.761	
5713.582	5293,636	7111.915	4933.843	7870.976	7483,988	3743.357	5742.476	
4666.128	6914,285	4290.578	7004.328	6108.664	7893.617	7362.968	8674.496	
8765,753	7922.957	8499.023	8256.128	7379.195	8731,785	4827.902	4752.949	

73 52 , 761	8427.151	4519,984	5979,816	6725。464	4487,539	6729.617	3054, 296
3576.029	6027.887	6161.382	3859.921	5848.308	3224.782	6898.829	6777.746
7157, 363	7423.613	2982.816	2974.871	6760.871	7236.601	4727.816	7908,640
71 76. 195	3184,957	6643, 335	2902.418	2931.037	3847.717	3647.945	3789.301
5692,394	6765.558	7256,316	5962.216	6051,398	7635,425	6418,589	7223,468
7688,058	6005 , 988	5875.125	4150,406	2694,489	5788-476	3130.831	6886,993
2635.14	2626.025	3766, 197	5512.746	4632.312	3936.839	7065.171	6485.597
6453,460	2491.281	4745,866	4966, 289	6499.613	4273,535	3538,553	5879,285
4987,582	6679,195	6059,664	6013.750	5967.421	5920.703	2255.749	5331.382
6296,011	6163.191	6183,347	4702.656	2139,097	4582.531	5443.476	2079.610
2783.813	4513,261	4534,425	5081.917	1979,24)	1959.093	1938.940	2338,230
1898。651	5133 ₃ 597	5162.824	5926 . 875	4445。445	2977.059	1778.650	4176,777
4913,996	4644,339	3883,798	3627.605	1662,454	1644.110	1625.914	1607,875
4285, 332	1572,299	3816,518	2723,992	3480.351	2300.179	1486.542	1469,986
3541,468	1755.187	35₿6•288	3187,323	3431,694	1375,295	2689.957	1345.624
1331,164	1316,963	2519,199	362%,786	2712,884	3135,385	3103.937	1237.375
1225, 685	1213.083	1201.373	2190,775	1178.839	1168.023	2306.022	1147.303
2561.500	2825,626	3129,675	1427, 263	1706, 272	2733.521	2160.580	2702.813
1824, 208	1062,705	2111.588	2846,838	1778.112	1768.080	1032.739	2868.579
1623,124	1618.830						
492,493	492,928	493,355	495。123	496,147	496。845	497.354	497,848
498,287	498,644	498。948	499, 238	499.596	499,790	499,991	500.277
500 582	500,631	500,908	501.122	501.256	501.481	501.554	501.746
501.771	571,646	551,524	501.399	501.387	501.365	501.375	501.311
501.298	501,451	591 , 487	501.408	501.317	501.228	501.061	500.911
50 🐪 856	500.673	560 . 737	500.737	500.619	500.667	500.719	500.868
500 , 7 92	500,591	500.442	500.341	500.649	500.829	501.042	501,094
501.109	501.478	501.886	502 . 493	503 . 383	504.334	505.124	505.739
506,218	506,632	5७7•025	507.349	50 7。 623	507 . 897	507 . 986	508.175
508.382	5∂8 ₆ 687	598 , 958	509.125	509.183	509.312	509.406	509,507
539.522	599,659	509.760	509°766	569 . 900	509.924	510.107	510.229
510.555	510.769	510,945	511.052	511.082	511.064	511.028	511.003
511.101	511.098	511.040	511.076	511.189	511.399	511,357	511.375
511,308	511.253	511.186	511.082	511.015	511.076	511.156	511,012
510.863	510,769 .	510.677	510.570	510.540	510.521	510.339	510.198
510.752	539,936	509,939	510.034	510.000	510.022	509.973	509.936

```
519,979
             5 9,939
                        509.836
                                   509.823
                                                         509.586
                                                                    509.491
                                                                               509.357
                                              539, 686
   509, 253
             5" 9.125
                        51.9.162
                                              538.946
                                                         5L8.860
                                                                    508.799
                                                                               508.684
                                   539,028
   508,580
              508.571
                        508, 333
                                   508, 153
                                              587.937
                                                         507.693
                                                                    507.501
                                                                               507.260
                                                                               594.617
   506.977
              506,641
                        506.245
                                   535,885
                                              5.5.572
                                                         505.279
                                                                    504.947
   534,267
              503.950
                                                                               503.225
                        533,694
                                   5.3.578
                                              503.511
                                                         503.301
                                                                    503.289
   513,161
              503.119
                         533.084
                                   503.103
                                              5"3.212
                                                                    503.135
                                                                               503.030
                                                         503.206
   502,911
              502.764
                         502.678
                                   5 2,578
                                              502,603
                                                         502.457
                                                                    562.280
                                                                               502.136
   501.941
              511,832
                         5, 1, 670
                                   5:11,518
                                              591.341
                                                         501.143
                                                                    501.021
                                                                               500.829
              550,469
   500.646
                        501,289
                                   500.021
                                              499, 902
                                                         499.854
                                                                    499,686
                                                                              499.521
   499, 323
             499,396
                        499,323
                                                                    498, 951
                                                                              498,735
                                   499,323
                                              499, 241
                                                         499.149
   498,615
              498,418
                        498.352
                                   498.119
                                              497.979
                                                         497.650
                                                                    497.372
                                                                              497.193
                                              495, 355
   496,818
              496,45
                        496,001
                                   495.632
                                                         495,144
                                                                    494.919
                                                                              494.794
   494,568
              494.303
                        494.102
                                   493.833
                                              493,547
                                                         493,431
                                                                    493-160
                                                                              493.105
   494.554
              495.095
                         495, 553
                                   495, 909
                                              496,159
                                                         496.120
                                                                    496.092
                                                                              496.050
   495, 912
              495,859
                        495.729
                                   495.742
                                              495.537
                                                         495, 385
                                                                    495, 723
                                                                              495.894
   495, 928
              496, 214
                        495, 979
                                   495, 983
                                              495.94
                                                         495.912
                                                                    496.229
                                                                              496.757
   497,491
              498, 386
                                   498.787
                                              499, 189
                                                         499.445
                                                                    499.671
                                                                              499,823
                         498.415
   499,951
              499.674
                        499,421
                                   499.146
                                              498.835
                                                         498.372
                                                                    497.994
                                                                              497.671
   497.4%
              497.199
                         497-168
                                   496, 799
                                              496, 580
                                                         496.330
                                                                   496.034
                                                                              495.635
   495, 330
              495, 29
                         494, 751
                                   494,641
                                              495.193
                                                         495.550
                                                                   495.650
                                                                              495.611
                                   494,678
                                              494, 446
                                                         494.206
                                                                   493.983
                                                                              493.754
   495, 361
              495.174
                         494,867
              493,282
                         493.111
                                   492,834
                                              492.551
                                                         492,264
                                                                   492.163
                                                                              492.380
   493,514
   492,343
              492.264
(a) 1245
          5. £1245
14679452。112111548。114748618。145212688。128991888。119939568。116636713。114679452。
13700822.012942384.012122780.0 9859698.0 9847465.010911726.010177753.010520274.0
10165521.0 9737370.0 8734274.0 7645548.0 7241862.0 8171561.0 8196027.010520274.0
1 336781. £ 9761834. 717226685. @ 9272520. € 837952€. $ 8134862. @ 78902Q5. Q 7951369. Q
 76~8849, 6 6728381, 6 9847465, 3 8849233, 6 7646136, 3 7821672, 6 6923886, 0 7241862, 8
 5853409,0 6483424.0 6605752.0 8012533.0 8514081.0 8318355.0 6923807.0 6581287.0
 5969643.0 6189835.0 6728082.0 6972739.010887261.0 9541643.0 7951369.0 8196026.0
 8196027, ^12355256。^12783357, 017615328。026545328。028624912。025566672。020356560。0
16636713.015413425.013823151.011988219.010141055.010887260.010838329.010226685.0
10226685.010948424.01f764931.6 9125725.0 8636410.0 9541643.0 9052328.0 9052328.0
 8318355.0 7278561.0 6373328.0 7596616.0 7486519.0 7780109.0 9248055.011743562.0
```

12844521。616092123。3 8685342。0 7388658。0 722963D。0 7462054。0 6728081。0 7119534。0

5896246.0 6147903.0 6373327.0 6923807.0 9125726.0 7829041.0 6972738.0 5015478.0 5504794.6 6605752.0 6226533.0 5945178.0 7975834.0 6434492.0 5039944.0 5076643.0 5309067a0 5186738a0 5003244.0 5492560a0 5150040a0 4660724a0 5321300a0 6140903a0 5564794。© 5749450。© 7608849。© 7339725。© 4403835。© 5504794。© 5431396。© 5773917。O 5822848, 0 5932944, 0 5125574, 0 4146943, 0 3731024, 0 3792190, 0 3559765, 0 4110245, 0 4293738.0 5357998.0 4171408.0 3767724.0 4403834.0 4966547.0 4257040.0 4330437.0 4293738.5 3352875.0 3376273.0 3865588.0 4110246.0 4171410.0 4721890.0 8477384.0 6874876. © 5455862. © 5272368. © 5198971. © 8269424. © 8281657. © 5884©12. © 5529259. © 5578191,0 5945177.0 8391753.013015782.015046440.010826095.0 9321451.0 9431548.0 8269423。5 7963652。5 7658849。5 8549232。5 8857671。5 7767876。5 6851478。6 7229630。6 6312163.3 6067506.0 7413122.0 6091971.0 4770820.0 4342670.0 4991012.0 4819752.0 4991012.0 4893149.0 4770820.0 4305971.0 4648492.0 4991012.0 5688285.0 4379370.0 4337438.0 4330438.0 3498601.0 3449670.0 7706712.010642602.0 6752548.0 5406930.0 5162273.0 5211204.010030957.011205315.0 8514083.0 6899342.0 6287698.0 5406933.0 4501697.5 4893149.0 5627122.0 6752547.0 7046137.0 6079739.0 9052329.0 8440683.0 6361 (194. (1956) 6263232. (1956) 5822847. (1956) 5564793. (1952) 52846(1950) 51378(1950) 5015478. (1956) 6581287. (1956) 6018573.b 5504793.0 5565958.0 5431396.0 5003245.0 7486521.0 6544588.0 9908631.0 29236544。@16881360。@12355206.@ 9969794.@ 7@95067.@ 8@73697.@ 893@@1.@11865891.@ 17948425.B 9597576.B 8954466.B 6238766.B 672808D.D 8134863.D2018424D.D18716288.D 13896549。011131918。0 9676204。0 9431548。0 9113493。0 9419313。018055712。020*2*57632。0 2551232,616716111,014924110,013333836,612366274,611804725,610948425,610397945,0 7462953.6 8196926.0 8991163.0 8832137.0 6891479.0 7254096.0 7474288.9 6617985.0 9296986。© 9345917、0 8807671。0 8709808。0 8440685。0 7095066。0 6238766。0 6728081。0 6853416.6 7192931.0 7767877.0 8318355.027279296.019633760.014924110.012905685.0 11621233。019532587。@ 9125726。@ 8538547。@ 7315259。@ 7168464。@ 7706711。@ 7278560。@ 7192936.0 7657780.0 8624177.0 6544588.0 6165369.0 6165369.0 9174657.018716288.0 12416370.011254247.0 1223287.5 1150959.0 1223287.9 978636.3 1957260.0 1467945.0 2691233.0 1345616.0 1223287. © 2935891. © 3180548. © 1957260. © 1957260. ° 1957260. © 3865589. © 2446575. © 1712603.0 9663974.6 978630.3 978630.3 3180548.0 1467945.0 6605755.0 5627124.0 8563015,013333838,013211510,012722194.0 9052330.0 8563015.0 8318358.0 9296988.0 8673766.0 2446575.0 9052338.010764934.010275618.0 9296988.010642605.010642605.0 8318358, 911743564, 0 4893151, 0 8073700, 011743564, 0 6605755, 0 5382467, 0 2691233, 0 7339727, 012232879, 010764934, 010030961, 0 1957260, 0 4159179, 0 1223287, 0 6361097, 0 0.0 7829642.0 2446575.0 1467945.0 0.0 0.9 0.0 183493.2 0.0 733972.7 489315.1 733972.7 7584385.0 3302877.0 856301.6 733972.7

```
2691233.0 244657.6 733972.7 3914521.0 6361097.7 5137809.0 5627124.0 4893151.0
 6859412.0 2446575.0 2446575.0 6850412.0 2446575.0 6605755.0 4648494.0 7339727.0
   97863(5.3 1467945.0 17126(3.J 3180548.0 5871782.0 7951371.0 7829042.0 7829042.0
  2201918.0 6116439.0 8673700.0 6116439.0 7339727.0 1345616.0 8318358.0 4159179.0
  8673700.0 8445686.5 8563615.6 9786363.61U520276.5 3669863.3 1957260.6 9908632.6
13528276.0 8318358.0 8196629.5 8867673.0 6361097.0 4893151.011498906.011009591.0
19529276.0 9786303.0 5627124.0 2935891.0 5260138.9 4770823.0 7095070.0 7584385.0
  4403836.0 6361097.0 8563015.0 4159179.3 8073700.0 7095070.1 7095070.0 8563015.0
  8196029.0 9786303.0 3302877.0 7706714.0 7217398.0 7584385.0 6361097.0 7829042.5
  7829042,0 3425206,011009591,010030961,011254249,011865893,011743564,014190140,0
15535757。016392058。017370688。016881360。016881360。016514387。016881360。016147491。0
16881360。016636716。015658085。015168770。015168770。316881360。0 9052330。010275618。0
  9952336.3 88~7673.0 9541646.3 7829842.0 7895878.4 8563815.8 9296988.018830961.0
 97863^3。01^^37961。> 9541646。0 8807673。C 4159179。O 8807673,G1@275618。O 9296988。A
10397947. 8 8673769.0 9541646.0 9541646.010275618.010764934.0 8073700.0 9786303.0
  9541646.° 9296988.0 8807673.011254249.011621235.011498906.011449975.010275618.0
.10397947。↑ 4159179。₹10520276。}10≙30961。© 9786303。& 9296988。D11254249。B11254249。
 ~7829042,010764934,00 8563015.]12232879,010764934,014679455.015902743.012232879.0
16147401.016392058.015658885.014190140.011254249.010397947.010642605.0 9752330.0
11743564,611988222,319764934,912232879,011254249.0 8857673,911988222,010275618,0
                                               (* • **
                                                                    Pa • •
 1467945.6 489315.1
                                                                                     -0.1 8318358.0 9296988.012232879.0
13700825.612232879.010520276.0 5871782.011988222.010520276.010764934.0137008825.0
12232879。** 8553*15。** 97863*3.** 8685344.** 9419317.** 9541646.** 7339727.** 4893151.**
                               0.9 4648494.9 1957260.0 489315,1 3547535.0 3669863.0 5504795.0
  4159179.015658085.015658085.015658085.017658085.017126016.016392058.017370688.014801784.0
15413428。~14924113。~12966852。&14924113。&1321151&。J1419@14@。@13945482。&14924113。&
.13945482.714195145.313945482.3 97863C3.C15C37961.6 9296988.310033961.₽12232879.€
.17083696, 017863696, 014679455, 012232879, 012232879, 012232879, 012232879, 012232879, 012232879, 0
12232879, \$12232879, ?12232879, ?12232879, ?12232879, ?1211<math>0550, ?12110550, ?12110550, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?12232879, ?1222879, ?1222879, ?1222879, ?1222879, ?1222879, ?1222879, ?1222879, ?1222879, ?12228
12477537。 12477537。 1
      22
          443.
              0.0 73156698000 . .0864
             1, 1
                               A 3
             9 336 386 58
15.24
            15.24
                               l. n
                                                       1.0
                                                                          396,24
                                                                                            396, 24
```

1.780

2.190

2.428

283279.9 1699680. 4249199. 7243872, 10643231, 14487744, 21286463, 30027672, 40468560a 1770.28 10863,07 16077,34 23480.33 28211.80 34552.62 41038.27 43259.17 45737.56 2.47.5 8,193 1,921 3.429 6.911 7.768 3.086 5,466 5,992 1,618 2.853 1.035 1,644 0.889 9.642 3.361 6.938 2,653 3 × 775 4.893 1,839 2,643 3.134 10.144 6.633 1,949 6.137 5.487 3,184 8.166 6.914 6,889 9.852 3.328 5. 95 6.488 3.390 4.515 2.674 8.374 2.68 3.288 4.248 5.726 5, 434 3.313 2.674 1,958 3.187 1,969 0.756 2.649 5.322 2,455 4.126 2.821 **7.788** 1,355 1.731 U. 721 2.521 4.524 0. 43 û 0.972 1.235 4,386 2.721 2,281 1.862 1,942 1.666 2.672 0.152 4.120 @. 259 **3.533** 2.256 0.454 1.541 2.054 2.899 0.844 5.721 1.734 2.097 1.191 0.217 0.202 3.277 1,586 1,550 4.391 2,774 1.630 0.903 1.006 0.979 0.887 1.967 1,293 0.875 2.457 2.107 1.478 7,848 0.251 1.081 0.382 1.029 1.094 1.867 1,564 1,558 0.802 0.534 0.586 1,413 1.089 1.268 0.721 1.043 0.639 0.418 1.129 1.561 Cs 163 2.760 2.133 2.386 1.435 0,929 1.309 1.676 1.550 1.329 1,735 1,359 1,516 2.642 1.517 2.137 U. 909 1,157 C. 727 1.464 1.181 0.909 1.291 1,662 6.891 1.927 0.482 1,257 0.849 1.628 0.885 2.238 0.777 0.843 0.789 3.623 1,211 0.824 1.176 **9.724** 0.462 1.483 1.681 1,345 1.215 1,028 0.717 1.313 0.733 2,076 1.690 2,250 0,842 1,151 0.876 0.390 0.654 ٥.497 0.714 7,691 0.819 1.134 1.564 1.654 0.646 1,488 0.924 0.328 0.456 0.346 7, 741 **0.592** 2.400 0.745 1.705 0.729 6.121 1.802 **~.229** 1.180 2.178 2.115 1.302 1,526 f . 241 9.439 4,610 3.110 1.121 0.635 1.279 1.315 1.378 2.961 0.650 **७.328** 1.881 0.439 4.608 2.737 1,000 1.324 1.934 2.138 1.951 2.234 0.515 3,889 2.956 1,661 C. 962 0.555 0.381 0.956 1.208 1,394 1.261 1,455 2.289 2.372 5.438 7.725 1.284

0,763

0.500

0.471

1.273

0.713

1,655	1.234	1.435	♡•875	·0.753	0.960	7.631	1.459	
1.729	6.414	1.619	0.373	Pa 415	0.474	0.381	2,876	
10,253	12,457	6.320	∂.787	4,825	2.617	1.822	つ。319	
ு. 332	(5 69	1,388	3.839	3.772	4,136	€.841	1.305	
3,984	1.179	13.346	0.423	Ů₃ 32 ħ	1.207	3,952	1.731	
n.596	ി , 966	6, 726	6,212	3.251	0.388	1.767	7,885	
9.592	∜₀745							
5359,863	5688.148	6561,992	6726.355	4716.891	4418.652	4470,258	4479.535	
4751,516	5168,273	5329,066	5536,418	6547, 926	6811.750	68@3.648	6515.793	
6059.133	5946.843	586⊕. 254	5818.348	6395, 285	6877,489	6804.529	5295, 733	
4844, 613	5268,578	4951,293	4768,641	4901.270	565L。805	5523.246	5532,844	
5563.699	6222.957	6089 . 039	5304.258	5186,629	5403.684	5479.039	5328.777	
5065.172	6249 648	6990,779	7127,250	6657。328	6409,637	5656.371	5769.660	
6647,836	7204.191	7469.715	7473.594	7352。336	7115,891	6959.629	7336。344	
7476,668	7381.379	7621.145	7414,383	7334.086	7499,074	7236.090	6135.754	
6121,16	6517.695	7202.363	7320.734	7075 。 352	6282,387	5659,367	6227,539	
6784, 889	7338。68章	7170.375	6572.730	6812.238	7898,969	7567.121	7732.457	
7229.883	7303.203	7506,473	7809,570	7539, 875	7616. B16	7670.324	7732,340	
7679, 789	7924,758	653C。402	5955 . 070	5804,230	6149,875	6748.168	6984。199	
6979, 182	7283.179	7931.371	8076.301	8137,871	7906.078	7472.082	7157.809	
7456, 3.79	7296,387	7184.180	7413.969	7594。602	7555 。77 0	7352, 023	7167,137	
7371,631	7024,192	7124.500	7408.723	7457.172	79¢7。836	8425 .7 34	8442.891	
8397.141	8236,129	8159,238	8148,437	8150.547	8 28 3。8 2 4	8697.852	7919,339	
7948,527	7782,415	7603.152	8224,410	8191,645	8113。930	8 767.75 8	8595 . 437	
8385,234	7933 ₈ 770	8112.779	81 57. 992	7899°594	7615.902	7695.609	7329.574	
7111,285	743 🗫 93 🤊	7484。895	7619,887	80 73. 980	7767,598	8149.699	7942,430	
7484, 746	7312,430	8139,949	765 7. 551	7533。656	8923.031	7916.973	8248,227	
8456°773	7911,742	791 ه 191	8286,695	8554 . 516	8446.711	7904.047	8006.719	
8951,590	8111.734	8672,945	8511,437	7937。574	8026,980	8064.906	7314, 211	
7172,234	7778,113	7246, 906	7823.852	8°33。828	8120.164	7847.305	7812.555	
7612,547	7500578	7621,980	7872,359	7780.195	7038.840	7214.689	7055.676	
6904, 562	7334,477	7337,852	7252,727	7731.456	7522.094	7469.223	7047.305	
7492.859	7426-194	7384.020	7559.039	7437.426	6908.430	6482.023	6458.586	
6446.547	7223,926	7535,242	7093.656	6696, 422	7397.156	6460.887	5851,910	
6689.328	6254, 922	6492,477	5860.102	6032.348	6270.711	7118.867	6726, 227	
5683。 © 39	5787.139	6088 . 355	6770,586	7805.184	6690.336	5657.578	6612.137	

```
6212, 452
            5745.551
                                  6197,914
                                            7323,012
                                                                  7231.988
                                                                             6738.133
                       5771,695
                                                       7402,449
                                                                            4758,484
  6428,273
                       5842, 367
                                  5840.879
                                            5997, 723
                                                       6459.695
                                                                  5706.117
            5739,641
            5601, 938
                       6322,152
                                  6285,121
                                            6800.262
                                                       7113,973
                                                                  7264.023
                                                                             7015.832
  469Ca 746
                                                       5947,832
                                                                  6686,859
  6455,687
            6696,348
                       6213.141
                                  5854.039
                                            5677, 031
                                                                             6690.953
                                            5514,562
                                                       6404.789
  5789,590
            5732,281
                       5407, 797
                                  5575,625
                                                                  6588, 035
                                                                             6673.324
                                                                             5500.930
  5342, 922
            5226,633
                       5153.184
                                  4706, 953
                                            5340.715
                                                       4976,117
                                                                  4839.344
                       7186.574
                                  7554.059
                                            6732,836
                                                       5731,562
                                                                  5346.113
                                                                             5550.945
            6626.082
  6122, 422
                                                                  5526.586
                                            5605,648
                                                       5335,344
                                                                             5338.875
  5075.309
            4825,215
                       4758,594
                                  5431.008
                                                                  5878.484
            6006,320
                       4583, 145
                                  4200.000
  5729,340
                                            4903.750
                                                       5178,578
                                                                             4487,641
  4974, 989
            5551.0666
$STOP
```

ACKNOWLEDGEMENT

This investigation was supported, in part, by the Water Quality Office, Environmental Protection Agency, under Research Grant No. 16130 DJH entitled "Thermal Stratification and Reservoir Water Quality". The project officer was Mr. Frank Rainwater, F.W.Q.A. Pacific Northwest Water Laboratory, Corvallis, Oregon.

A portion of the laboratory experiments were carried on in 1967 by Dr. Wayne C. Huber, then a graduate research assistant in the Hydrodynamics Laboratory. Computations were made at the M.I.T. Information Processing Service Center. Our thanks to Miss Kathleen Emperor who typed the report.

Bibliography

- Anderson, E. R., "Energy Budget Studies", part of "Water Loss Investigations ~ Lake Hefner Studies", Technical Report, U.S.G.S., Professional Paper 269, 1954.
- 2. Bachmann, R. W. and Goldman, C. R., "Hypolimnetic Heating in Castle Lake, California", Limnology and Oceanography, Vol. 10, No. 2, April 1965.
- 3. Bella, D. A. and Dobbins, W. E., "Difference Modelling of Stream Pollution", Proc. ASCE, SA5, October 1968.
- 4. Brooks, N. H. and Koh, R. C. Y., "Selective Withdrawal from Density Stratified Reservoirs", ASCE Specialty Conference on Current Research into the Effects of Reservoirs on Water Quality, Portland, Oregon, January 1968.
- 5. Dake, J. M. K. and Harleman, D. R. F., "An Analytical and Experimental Investigation of Thermal Stratification in Lakes and Ponds", Technical Report No. 99, M.I.T. Hydrodynamics Laboratory, September 1966.
- 6. Dake, J. M. K. and Harleman, D. R. F., "Thermal Stratification in Lakes, Analytical and Laboratory Studies", Water Resources Research, Vol. 5, No. 2, April 1969.
- 7. Elder, R. A. and S. Vigander, "Capability and Potential of USACE's Current Meter for Ultra Low Velocity Measurements", Isotopes in Hydrology, Proc. Symposium, November 1966, International Atomic Energy Agency, Vienna, Austria, 1967.
- 8. Elder, R. A. and Wunderlich, W. O., "Evaluation of Fontana Reservoir Field Measurements", ASCE Specialty Conference on Current Research into the Effects of Reservoirs on Water Quality, Portland, Oregon, January 1968.
- 9. Elder, R. A. and Wunderlich, W. O., "The Prediction of Withdrawal Layer Thickness in Density Stratified Reservoirs", TVA Division of Water Control Planning, Engineering Laboratory Report No. 0-6781, March 1969.
- 10. Goda, T., "Density Currents in an Impounding Reservoir", Eighth Congress, I.A.H.R., 1959.
- 11. Howard, C. S., "Density Currents in Lake Mead", Proceedings, Minnesota International Hydraulics Convention, September 1953.
- 12. Huber, W. C. and Harleman, D. R. F., "Laboratory and Analytical Studies of Thermal Stratification of Reservoirs", M.I.T. Hydrodynamics Laboratory Technical Report No. 112, October 1968.
- 13. Hutchinson, G. E., "A Treatise on Limnology Vol. 1", Wiley & Sons, 1957.
- 14. Kao, T. W., "The Phenomenon of Block in Stratified Flow", J.G.R., Vol. 70, No. 4, February 1965.

- 15. Keulegan, G. H., "Laminar Flow at the Interface of Two Liquids", J. Research for the National Bureau of Standards, Vol. 32, June 1944.
- 16. Koh, R. C. Y., "Viscous Stratified Flow Towards a Line Sink", W. M. Keck Laboratory, Report KH-R-6, Caltech, 1964.
- 17. Kohler, M. A., "Lake and Pan Evaporation" in "Water Loss Investigations, Lake Hefner Studies", Technical Report, U.S.G.S., Professional Paper 269, 1954.
- 18. Mortimer, C. H., "Water Movements in Lakes During Summer Stratification", Phil. Trans. of Royal Society of London, Vol. 236, 1952.
- 19. Orlob, G. T. and Selna, L. G., "Progress Report on Development of a Mathematical Model for Prediction of Temperatures in Deep Reservoirs Phase 3: Castle Lake Investigation", Water Resources Engineers, Inc., Lafayette, California, January 1967.
- 20. Orlob, G. T., "Mathematical Models for Prediction of Thermal Energy Changes in Impoundments", Final Report to FWQA by Water Resources Engineers, Inc. December 1969.
- 21. Rohwer, C., "Evaporation from Free Water Surfaces", U.S. Department of Agriculture, Technical Bulletin No. 271, December 1931.
- 22. Ryan, P. J., "Thermal Stratification and Overturn in Lakes and Reservoirs", M. Eng. Sc. Thesis, University of Melbourne, June 1968.
- 23. Slotta, L., Personal Communication, August 1970.
- 24. Stone, H. L. and Brian, P. L., "Numerical Solution of Convective Transport Problems", Journ. A.I. Ch. E., Vol. 9, No. 5, 1963.
- 25. Sverdrup, H. U., "Oceanography for Meteorologists", George Allen and Unwin Ltd., London, 1945.
- 26. Sweers, H. E., "Vertical Diffusivity Coefficient in a Thermocline", Limnology and Oceanography, Vol. 15, No. 2, March 1970.
- 27. Swinbank, W. C., "Long-Wave Radiation from Clear Skies", Quart. Jour. of the Royal Met. Soc. of London, Vol. 89, July 1963.
- 28. Stolzenbach, K. D. and Harleman, D. R. F., "An Analytical and Experimental Investigation of Surface Discharges of Heated Water", Technical Report No. 135, Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, M.I.T., February 1971.
- 29. Tennessee Valley Authority, "Fontana Reservoir 1966 Field Data, Part I, Temperature and Flow Data", Report No. 17-91, TVA, Division of Water Control Planning, Engineering Laboratory, Norris, Tennessee, March 1969.

Definition of Notation

Representative units of variables are given in m, kgm, days, kcal and °C.

```
Small Roman Letters
```

```
constant in evaporation formula (m/day - millibar)
а
        constant in evaporation formula (millibar 1)
Ъ
        specific heat (kca1/kgm^2C) = 0.998
С
        depth of layer for entrance mixing (m)
d_{\mathfrak{m}}
        displacement of thermocline due to wind (m)
d,
        saturated water vapor pressure at air temperature (millibars)
        saturated water vapor pressure at temperature of water surface (millibars
es
        gravitational acceleration m/day<sup>2</sup> = 7.315 \times 10^{10}
g
        mean depth of reservoir (m)
h
        depth of mixed layer (m)
h_{m}
        subscript denoting inflow
i
is
        slope of water surface
        slope of thermocline
i,
j
        number of grid point
        number of surface grid point
jm
        flow per unit width(m^2/day)
q
        entrance mixing ratio
r
        slope of reservoir bottom
s
        time (day)
t
        inflow velocity (m/day)
u,
        outflow velocity (m/day)
        horizontal distance from outlet (m)
x
        elevation (m)
У
```

```
y_b elevation of reservoir bottom (m)
```

$$y_{mix}$$
 elevation of bottom of mixed layer (m)

$$y_s$$
 elevation of water surface (m)

Roman Capitals

A horizontal cross-sectional area (m²)

 A_b average area of bottom element (m²)

A surface area (m²)

B width of reservoir (m)

D coefficient of thermal diffusivity (m²/day)

 D_{n} coefficient of numerical dispersion (m^{2}/day)

 E_{m} evaporation mass flux (kgm/m^2-day)

 ${\bf F}_{\rm D}$ densimetric Froude number

H heat flux $(kca1/m^2-day)$

L length of reservoir (m)

 L_{t} length of reservoir at elevation of thermocline (m)

 L_{v} latent heat of vaporization (kcal/kgm)

N ratio of heat conduction coefficient to mass transfer coefficient

(kcal - millibar/kg°C)

Q reservoir flow through rate m³/sec

 Q_{in} inflow m^3/day

Q out outflow rate m³/day

R Bowen ratio

S average area of surface element (m^2)

T temperature (°C)

T air temperature (°C) (unless otherwise specified)

```
inflow temperature
T,
T'in
         mixed inflow temperature (°C)
         temperature of mixing water (°C)
         temperature of surface water (°C)
Ts
         temperature of surface water (°K)
T_{w}
         vertical advective velocity (m/day)
V
         volume of reservoir (m<sup>3</sup>)
¥
         wind speed (m/sec)
W
Greek
         coefficient of molecular conductivity (m^2/day) = 0.0125
α
         fraction of solar radiation absorbed at the water surface 0.4 - 0.5
β
         thickness of withdrawal layer (m)
δ
         increment
Δ
         normalized density gradient (m<sup>-1</sup>)
ε
         radiation absorption or extinction coefficient (m<sup>-1</sup>)
η
         kinematic viscosity (m^2/day) = 0.0864
         density (kgm/m^3) = 997
ρ
         reference density (kgm/m^3) = 1000
         standard deviation of inflow velocity distribution
σi
         standard deviation of outflow velocity distribution
         heat flux (kcal/m<sup>2</sup>-day)
         longwave atmospheric radiation (kcal/m<sup>2</sup>-day)
\phi_{\mathbf{a}}
         heat loss flux due to conduction (kcal/m<sup>2</sup>-day)
\phi_{c}
         heat loss flux due to evaporation (kcal/m²-day)
φe
         short wave radiation at element j (kcal/m²-day)
^{\phi}i
```

```
\begin{array}{lll} \phi_L & \text{total surface heat loss flux } (\text{kcal/m}^2\text{-day}) \\ \phi_m & \text{long wave radiation from sides of laboratory flume } (\text{kcal/m}^2\text{-day}) \\ \phi_o & \text{net short wave radiation at water surface } (\text{kcal/m}^2\text{-day}) \\ \phi_{ra} & \text{net longwave back radiation from water surface } (\text{kcal/m}^2\text{-day}) \\ \phi_{rw} & \text{longwave radiation from water surface } (\text{kcal/m}^2\text{-day}) \\ \phi_s & \text{shortwave radiation reaching water surface } (\text{kcal/m}^2\text{-day}) \\ \phi_{ysur} & \text{shortwave radiation transmitted through water surface } (\text{kcal/m}^2\text{-day}) \\ \end{array}
```

1	Accession Number	2 Subject Fi	eld & Group	
V	V	050	G	SELECTED WATER RESOURCES ABSTRACTS INPUT TRANSACTION FORM
5	Organization	1		
	Department of Civil Cambridge, Massachu	l Engineerin usetts 02139	ng, Massac)	chusetts Institute of Technology,
6	TEMPERATURE PREDIC (Supplement to Re			
10	Author(s) Patrick J. Ryan		110	ct Designation
	Donald R.F. Harle			nt 16130 DJH 04/71
	ponara K.r. narie	aman	21 Note	
22	Citation Environmental Prot OL/71, pp. 125,	tection Ager January 1971	ncy, Water , 6.6 fig	r Pollution Control Research Series, 16130 DJH g., 29 references.
23	Descriptors (Starred First)			
	*Reservoir temperat	ture distrit	oution; *T	Thermal stratification in reservoirs;
	*Reservoir water qu	uality.		
25	Identifiers (Starred First)			
		and sectors actives the	uxtxixoxxxxxik	K SZYK SAKKONOK KINGK KONOK KINGK
	*ABKASKAKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	ack ictox x		
27	Abstract		···	
	J The annual cycle of			s in a lake or reservoir may be quite complex,
				ary if proper control of water quality is to be t horizontal homogeneity and thus a time-dependent
one-	-dimensional model wh	hich descrit	oes the te	emperature variation in the vertical direction is
aded	quate. A discretized	d mathematic	cal model	has been developed based on the absorption and
flow	ismission of solar ra	ldiation, co e mathematic	onvection cal model	due to surface cooling and advection due to in- contains provision for simultaneous or inter-
mitt	tent withdrawal from	multi-level	outlets	and time of travel for inflows within the reser-
voir	 Heat transport by 	/ turbulent	diffusion	n in the hypolimnion is neglected. Good agreement
nas fiel	been obtained betwee	en predicted	and meas	sured temperatures in both the laboratory and the simulation of the thermal structure of Fontana
rese	ervoir during a nine-	-month perio	od. Crite	eria for the applicability of the model are given.
The	mathematical model i	is a predict	tive one.	since the required data is that which would
norm	mally be available be	etore the co	onstructio ical basis	on of a reservoir. Emphasis has been placed on s for the mathematical model and on the computer
prog	gram inasmuch as the	report is i	intended p	primarily as a user's manual.

Donald R.F. Harleman WR:102 (REV. JULY 1969) WRSIC

Institution Massachusetts Institute of Technology

SEND, WITH COPY OF DOCUMENT, TO: WATER RESOURCES SCIENTIFIC INFORMATION CENTER U.S. DEPARTMENT OF THE INTERIOR WASHINGTON, D. C. 20240

* GPO: 1970-389-930