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PREFACE

In February 1971, Aeronautical Research Assoclilates of
Princeton, Inc. (A.R.A.P.) wés awarded a small contract by the
Environmental Protection Agency to assess the practicality of
developing a theory for the dispersal of pollutants by the
atmosphere - a theory which would be more fundamental than
existing eddy diffusion or K methods. The method to be used
was a second-order closure scheme under development at A.R.A.P.
by Dr. Coleman duP. Donaldson and his colleagues. Since it
appeared, on first application of this method, that a powerful
new technique might be successfully developed for computing the
dispersive power of the atmosphere under arbitrary meteorological
conditions, a further contract was awarded to A.R.A.P. to continue
the development of the method. A portion of this extension of
the effort was to be applied towards a partial funding of the
preparation of a monograph which would bring together a connected
account of the derivation of the appropriate equations for the
model of atmospheric turbulence and transport. The task is a
difficult one for our work is not complete. Although the basic
equations will not change, it is expected that, as our investiga—
tion proceeds, changes will be made in the nature and/or complex-
ity of the models that are used to obtain.a closure of the basic
equations. A great deal remalns to be done before a completely
satisfactory model with associated programs is in hand. It is
felt, however, that a working paper which gives a detailed
progress report on the present state of A.R.A.P.'s atmospheric
model will be useful. It should be pointed out that the work
reported here has been the result of funding from many sources,
including internal corporate support. Particular acknowledge-
ment should be made of the support received from the National
Aeronautics and Space Administration and the Air Force 0Office of
Scientific Research, in addition to the Environmental Protection

Agency.
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NOMENCLATURE

a, b, C1s Coo c3, cé, cé constants

A, B, Q general dependent variables

Aik constant tensor

Cl, C2, 03, CM constants A

Ca general species concentration

Cp specific heat at constant pressure

L diffusion coefficient

f Coriolis parameter, 2 sin ¢

g acceleration due to gravity

84 general acceleration vector

h enthalpy

k conductivity

L local integral scale; Monin-
Obukhov length scale

La typlcal atmospheric length scale

Ls typical motional length scale

M Mach number

p pressure .

P superequilibrium solution para-
meter defined in Eq. (7.45)

Pr = uCp/k Prandtl number

qQ = Kl/2 : /-uéué

r, ¢ , z : cylindrical coordinate system

R gas constant

Re = pOuJ.Ls/uo Reynolds number

ReAl qul/u

oT /(31 \
Ri = %— = //(—3) Richardson number
o 92 2 _
1+ b
R1i critical Richardson number for

crit  4b(1 + 3b) superequilibrium flow

Sc = pd7u Schmidt number
t time
temperature
Tij’ Tijk %ﬁneral.tensors of rank two and
ree, respectively

iv
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Subscripts
A, B
c

char
g
J, k

velocity components
general velocity vector

nondimensional representations of
utu', v'v', w'w', etc. (c.f.,

Eq. (7.30))
Carteslan coordinate system

general coordinate system

average length vector

constant slope of A1 near z = 0
constant

ratio of specific heats

spread

characteristic mean motion scale
Kronecker delta

difference

small distance

constant

von Karman's constant

scalar length scales

-first and second coefficients of

viscosity, respectively
kinematic viscosity
length difference vector
density

stress tensor

turbulent shear stress
latitude

Earth's angular rotation

general vector position notation
concentration correlatioﬁ value
characteristic value

geostrophic wind condition

distance discretization designation
time discretization designation
background turbulence value
atmospheric equilibrium condition

v



1. INTRODUCTION

In 1967, the author, in order to study some aspects of
the problem of boundary layer transition, constructed a model
of transition [Ref. 1] by a rather simple second-order closure
of the time-averaged equations for an incompressible fluid
whose motion consists of a mean and a fluctuating part. While
the study of the growth of disturbances during transition was
of some interest in itself, the aspect of the transition model
that most intrigued the author was the fact that it produced,
if let run long enough so that transition was complete, a
turbulent boundary layer that had some of the characteristics
of real boundary layers. This result started the writer and
his colleagues on an effort to construct a viable computational
model of turbulent shear layers along the general lines of the
model of transition. It was recognized that the method of
approach was not new. Indeed, the 1dea was surely understood
by Reynolds, who first formulated the equations upon which it
is based [Ref. 2]. At that time, however, it was quite beyond
practical application since no computational technology was
available to provide solutions to the equations involved, even
had a closure scheme been formulated.

In 1942, Kolmogorov [Ref. 3] and in 1945, Prandtl and
Wieghardt [Ref. 4] specifically formulated the method along
the lines that are pursued by a number of investigators at the
present time, Two of the earliest to follow these leads were
Chou [Ref. 5] and Rotta [Ref. 6]. All of these early formula-
tions and discussions fell short of any practical results for,
again, computational facilities and téchniques were not avail-
able to solve the sets of equations which resulted.

With the advent of the 1960's, the development of digital
computers had advanced to the point where one could reasonably
expect to develop a practical means of computing turbulent
shear layers by means of some sort of second-order closure
techniques. A rather large group of related methods appeared
within a short time from 1965 through 1970 [Refs. 7 through 15].
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Since 1970 the development of computer programs which exploit
some form of second-order closure scheme to compute turbulent
shear flows or boundary layer transition has proceeded apace,
and no attempt will be made here to summarize these efforts.

In January of 1970, the author and Dr. Harold Rosenbaum
presented a paper on the generation of atmospheric clear air
turbulence [Ref. 16]. In this paper, the first invariant model
of an incompressible turbulent shear layer developed at A.R.A.P.
was extended to the case of a thin atmospheric shear layer with
arbitrary stability. It was mentioned in that paper that there
would be no real difficulty in extending the model and program
that had been developed to permit the calculation of the
dispersal of passive atmospheric pollutants in the atmospheric
boundary layer under arbitrary stability conditions.

Subsequently, A.R.A.P. received moderate support from both
EPA and NASA to develop programs for computing the dispersal of
pollutants in the atmospheric boundary layer. The support
from EPA was directed towards the solution of the dispersal of
pollutants from a line source, while that from NASA was directed
towards the dispersal from a point source of pollutant material.
While these efforts were underway, additional studies at
A.R.A.P. were carried out; these were aimed at further under-
standing and improvement of the models used in the closure of
the equation of motion at second order.

In this paper we. will present the derivation of the set of
equations on which the A.R.A.P. model of atmospheric turbulence
and transport is based and, in addition, discuss. the process
which was used to obtain the present closure model and the values
of the basic parameters which appear therein. Following these
discussions, the relationship of the present second-order closure
method for computing turbulent transport to eddy diffusivity or
K theory models will be discussed by showing that what is essen-
tially K theory can be obtained from a second-order closure
scheme as a well-defined limiting case. Finally, some typical

examples of computations using the present model will be presented.



2. EQUATIONS FOR AN ATMOSPHERIC SHEAR LAYER

The equations which we shall take to govern the motion of

a compressible, nonchemically-reacting perfect gas are:

the perfect gas law

p = PRT (2.

b, 3 ~
W + ax'j (Duj

the momentum equation

apu ~
1,0 5.1 = -2 423 _3 (2
st oax, (Puyly) - 3x, T 9%, ‘iy T P8y Le
J 1 J
where the stress due to molecular diffusion is given by
3l ol ol ’
Ty =@ e ) 8y 0% 55t (2.
: J i m
the energy equation
3ph , 3 _ (Pii,h) = 3 , 5 3B .2 (oL, « oy (2
3t ax, ‘PYjy 3t 3 3x 3% 3% 1 3% :
J J J J J
and the speciles conservation equation
9 % ) o % _ 9 ~% 0 p
3T (pCa) + 5;; (OUJCd) = 5;;(00' 3}; Ca> (2

In what folloWs, we will be interested in the development of
turbulence and the transport of matter in a thin layer of the
atmosphere. We will assume that the matter to be transported

) =0 (2.

1)

2)

.3)

4)

5)

.6)

in

the atmosphere is not too highly concentrated, so that it makes

no first-order effect upon the heat capacity or gas constant of

the air in which 1t is carrled. 1In this case, if we designate

the heat capaclty as Cpo and the gas constant as Ro s we may

%In this equation and those that follow, the summation convention
of tensor analysls 1s used; 1.e., repeated indices in any expres-

sion indicate that one 1s to sum over these indices.



write (2.1) as

B =pRT (2.7)
and (2.5) as

9 ~m o, D an P . ~ P 9 =~ aT
Cp,, [at pT + 0% (pujT):] 5t * Y5 3x. T oax. K ax,

P R 1 (2.8)

Since the Mach number M of the flow in which we will be
interested is small, we may neglect the last term on the right-
hand side of (2.8) since this term represents the heat generated
by the dissipation of the motion and is of order M2 compared
with the other terms in the equation. The final form of the

energy equation is, then,

~

Cp, L-git’l ¥ 'g_X; @GJT)J = 224 i gg; ¥ .g_gJ_<f< -g—ii]—) (2.9)
Following the usual practice for obtaining the equations

for the motion of an atmospheric shear layer [Refs. 17 and 18],

we will consider the atmosphere to be in a state slightly removed

from an adiabatic atmosphere at rest. We consider then an expan-

sion of the equations presented above according to the following

scheme:

~ +

p po p

p = DO + p
T=T + 7T

0

U, = 0 + u,.

J J
Ca = Cao + Ca
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w* = u; + p¥
k =k +k
Pl =p o, t P, + p Dt pl (2.10)
If we expand the gas law (2.7) according to this scheme,
we have
Py = PRI, (2.11)
and
p = Ro(po‘l‘ + pT_ + pT> (2.12)

The continuity equation (2.2) yields

Bpo ) '
Se° = O (2.13)

which agrees with our assumption, and

dp , 9 -
St t 523-<pouj + puy ) = 0 (2.14)
The momentum equation (2.3) yields
Bpo
5;;'= - P8y (2.15)
and
du du
i o % .9
(Po* P) g * o * Py 57 ”i[at " 5%, (Poy * p“j)]
du, .,
= _9 d e S |
T 5&;._ pey ¥ 523'{}uo ) (ij ¥ Bxi> *
Bum
*osjlug *oux) 5%, (2.16)

This equation may be simplified further by noting that 1n the
first two terms on the left-hand side of the equation we may
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neglect p compared to Py - Likewise on the right-hand side,
we may neglect M compared to My and u¥ compared to ug
In addition, the term on the left-hand side in curly brackets is

zero by virtue of (2.14) so that we may write

Bui Sui 3
°o 3t T PoYy 3x. ~ T Bx. ~ P8y
J i
5 Sui Buir 3 aum
A %
x| Yo lax x|t ek Mo o (2-1T)
R B i i m

Expansion of the energy equation (2.9) yields

5 BTO 3To .
0X . ko ox. | (Cpo - Ro) Po 3 =0 (2.18)
J J
and
aT aT
C = S
p, Py * P) 3T * Cpo(p + plu 3
90 , 9
+ Cpo(’I‘o + T) [ et BXJ.' (pouJ + puJ):l

xJ po o] 9X ot J axj
oT
3 9T 0
+ 3;; [(ko + k) 5;; + k 5;3] (2.19)

In this equation, as in the momentum equation, we may neglect p
compared to po in the first two terms, and the term in curly
brackets is zero by virtue of (2.14). On the right-hand side

of the equation, the term in square brackets may be neglected
since the basic atmosphere is isentropic; l.e.;

p aT p. C aT
o _,¢ -—©°..02P "0 (2.20)

and, by the thin layer approximation we are using, the remaining
term in the square brackets is small compared to the term kept
in the second term on the left-hand side of the equation.
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The two terms on the right-hand side containing p , namely,

L,y B
J

represent the heating of the fluid due to the motion and are of
order M2 compared to the other terms in the equation and so
may be neglected. Finally, by neglecting k compared with ko
in the last term on the right-hand side, the energy equation
becomes
oT + k égg) (2.21)

AT AT d
- ¢ P - :
CpPo 3t * CpyPoYy 3x; 3%, <‘o 3% 3% 4

Substitution of the expansion (2.10) into the species conserva-

tion equation (2.6) results in
dC oC -
a Q op . 9
Po gt * (Po * Py 5 Y (Cao ' Ca)LSE’* S (pony * puj{
J .

d BCQ oCy BCa SCa
= —— —_— —_— —_— 4 .
JX 4 P ol X s * pi% JX ¥ poirbx pITgx. (2.22)
J J J J J
Since the basic atmosphere is all air, BCG /Bxlj = 0 . Using
o]

this result, (2.22) may be written to the same order of accuracy
as the other equations we have derived as

3C,, 3C, 3 3¢,
Po 5t T Poly ax, a—g[%«% a—xﬂ (2.23)

We now return to the equations that result from the perfect

.gas law, namely, (2.11) and (2.12), and note that we may write

B_ -
P

+ 0 4 _pT (2.24)
O (0] pO pOTO

l—]l'—H

or to the order of accuracy of our other equations

L:‘ I—-—i— 9— 2.2
pO rI‘O pO ( 5)
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Now we note that the changes in p will be of the order of
u® , so that
po J' 3

T .o u? 2
o o o o

We will, therefore, neglect the effects of motion-induced
pressure changes on the variation of density and take

pO
p=-7T (2.27)
(o]

This latter assumption is related to, and entirely consistent
with, our neglect of the pressure work terms in the energy
equation.

We may now combine (2.14), (2.21), and (2.27) to find an
expression for the divergence of the velocity field. If (2.27)
is substituted into (2.1&)? we obtain, after some manipulation,

T 3T > r 9T,
—. pO 5? - pouj B_XF + (TO - T) a—X-J— (pOuJ) + pouj T;- BXJ =0
(2.28)

Neglecting T compared with TO in the third term on the right-
hand side of this expression allows us to write
T au. T aﬂnpo . T aﬁnTo _ BT . aT
Polo 5x; T Poto%y| 3x T3 ~ Fo3t T PoYs s
J J o °Xj XJ
(2.29)

In (2.29) we may neglect the term (T/TO)(BZnTO/ij) compared to
Bﬂnpo/axj . If the resulting equation is compared with (2.21),
one finds that

du u. Bp R AT
—J._d o, 0 109 [k 9T, g O] (2.30)
ij Po 5xj Cpo P, ij 0 ij 5xj

This equation states that there must be a divergence of velocity
at a point where a volume of air is moving in the vertical
direction (the direction of the gradient of po) so that air can
expand or. contract to the pressure level of the equilibrium
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atmosphere., It also states that any atmospheric element gaining

or losing heat by conduction to the air immediately surrounding

it must expand or contract so as to maintain its pressure at

that of the equilibrium atmosphere.

It may be useful to gather together the equations we have

Just discussed. For the atmosphere at rest, we have

T
]

(0%
O

3 aTO_
553'(ko §;_> B

and

For the. disturbed flow, we
du du
__i+pu —_— =

Po 5t 0"J 3x

AT T  _

and

(2.11)

(2.15)

(2.18)

(2.20)

Bum
Xy

(2.17)

(2.21)

(2.23)

(2.27)

(2.30)
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One recognizes immediately an inconsistency in the
equations for the basic atmosphere. Combination of (2.15) and
(2.20) yields

aTo gi
—2 = _ 1 (2.31)
axi CpO
which gives, if g = géi3 ,
oT JT
O - o - 0 (2 32)
and
JT
3;9 = - 65— = constant (2.33)
3 Py

which 1s the normal adiabatic lapse rate., Since by (2.18) we
must also have

aTO ,

—— = constant

0 5X3

the equations for the basic atmosphere are slightly inconsistent
since ko is, in general, a function of To . This inconsist-
ency is such that the assumption of no time variation of TO is
negated, since (2.18) states that, in general,

aTo 3 aTo
pO(Cpo _RO)B_t_=§;JT kOSX—J- (2.18)

The inconsistency, however, is of small practical consequence
since (2.18) yields a time rate of change of T, which is
enormously slower than the rates of change involved in practical
computations of atmospheric motion,

The equations given above are greatly simplified if one
considers that the region of the atmosphere in which one is
interested is of small extent compared to the scale of the atmos-
phere. In this case, the variations in the molecular transport

coefficients can, indeed, be neglected in the equations and, in
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addition, as will be shown below, the divergence of the velocity
field does not play a significant role in controlling the
motions that occur.-

We begin with an order of magnitude analysis of (2.30).
Let us define a typical scale of the atmosphere as

dp -1
L = | = -2 (2.30)
a Po 92z
and a much smaller scale typical of the motion in question as
LS . Equation (2.30) may then be written
k AT kT
0 + 0
du u R, L, L L
st - t- ol e — & (2.35)
) a Po 45 Po Ls
which may be written
du, u, k " ’ ar L
P e el L (2.26)
BXJ La Ko pg poujLs To g o

In general we will have LaAT/LSTo of order ten or less¥* and,

since the Prandtl number ubcpo/ko is of order unity and K7k
is small, (2.36) may be written

- du, u, 10
—d - d - o(-—) (2.37)
dx L Re
J a :
Here the Reynolds number Re 1is defined as pOuJ.I_,S/u,O . We

see then that unless the scale in question 1s so small that Re
is of order ten the primary cause of divergence of the velocity
field is the basic density gradient in the undisturbed atmosphere,

and we may write (2.30) as

du , u, apo _
—d = - L S<. (2.38)
BXJ po XJ

¥ T,/L is of order 1°/100 meters and, in general, we will be
interes%ed in atmospheric flows with lapse rates up to the crder
of 10°/100 meters



In the equations of motion, the velocity divergence enters

through the viscous term

Bu du d
é__. [:U« < + __.l> + (51 u* _...u_k:]
ij ij 5xi J7o Bxk

RN ?__i_igq A
o iJ pO Bxk

(2.39)

The order of magnitude of the term on the left in the square
brackets is uouj/LS while that on the right is of order
uj/L . It is clear then that we may neglect the effect of
velocity divergence in the viscous terms of the momentum
equation;
It will be convenient to write terms in the equations of

motion such as pouj(Bui/ij) and p_u (3T/3x,), etc., in the

J J
form
du
3qQ _ d ]
PO 3 aﬁj PO Sx. (Quj) - POQ ij

0 Wy
= - — Qu, + 2.40
pO(BXJ Q J pO aXJ) ( )
Here again it is clear that the first term on the right-hand
side of (2.40) is of order uJ.Q/Ls while the second term on
the right-hand side is of order uJQ/La . We may, therefore,

write

9Q

)
O« - 2.4

Poly axj Po 5;3 (uJQ) ( 1)
in manipulating the equations. In view of the foregoing dis-
cussion, we may further simplify (2.38) to

du
— =9 (2.42)

BXJ
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In what follows, we will adopt the shear layer approximation
with the result that the coefficients of molecular diffusion can
be taken constant in the equations of motion and the velocity-
field is effectively divergence free. We will make one more
simplification, a simplification that is often made in analyses
of aerodynamic heat and mass transfer phenomena. In view of the
fact that the Prandtl number uCp/k and the Schmidt number u/pd
for air are of order one (see Table 2.1 below), we will greatly
simplify the equations of motion i1f we assume that these numbers

are indeed equal to one, and write

ko = uOCpO (2.43)
and
Pl = Mg (2.4b)

Table 2.1 Prandtl and Schmidt Numbers for Several Gases at 0°C
and 1 Atmosphere

Gas. Pr = qu/k Sc = u/pb
Ne 0.66 0.73
A 0.67 0.75
N2 0.71 0.74
CH, 0.74 0.70
02 0.72 0.74
CO» 0.75 0.71
H, 0.71 0.73
Au 0.71 0.74



3. EQUATIONS FOR TURBULENT SHEAR LAYERS

If the assumptions listed in the previous section are

adopted, the equations for an atmospheric shear layer may be

written:
P, = PRI, (3.1)
op
o _
% - T Po8; (3.2)
i
Bpo 8TO
90Xy - Cpopo ax,  ~ PoBi (3.3)
2
aui aui 5 s 3 Uy
Po 38 T Py 3%, T Toax. T T BT tHy T3 (3.4)
J i o . X
Po 3t o J 9x, Mo 2 :
J 90X,
J
3C,, 3C,, a2ca |
s ot * pouj 3x. Mo 2 (3.6)
J 90X
p
p=-z=T , (3.7)
o _
and
au,
<_J_BXJ. =0 (3.8)

A set of equations, generally referred to as the Boussinesq
equations for a stratified fluid, is usually found in treatises
on atmospheric motion. That set reduces to (3.1) through (3.8)
when 1t is assumed that the Prandtl number and the Schmidt number
are both equal to one, as discussed 1n Section 2.

Following the technique used by Reynolds [Ref. 2], we now
develop the equations for the mean properties of a turbulent
atmospheric shear layer. To do this, we express the physical

variables as the sum of a mean value of the variable and an



instantaneous fluctuation about that mean according to the

following scheme:

p=p+p'
T =T+ T
p=p+ p' (3.9)
= 1 1
ul ui + l.li
c =C_+¢C!
a a

In these expressions, a bar over a quantity indicates the
average value of that quantity, while the prime denotes the
instantaneous fluctuation of the quantity about its mean.

The continuity equation (3.8) immediately yields the two

results:
ou.
§~L = 0 (3.10)
X J :
and
du!
BXJ = 0 (3.11)
(3.11) implies the further result
- 3(u!lqQ")
wr 290 . 1 (3.12)
J ij ij

This relation is used frequently in the manipulations that follow.

If (3.9) is used in the momentum equation, the result is

duy  du! _oduy o odu du, out
pO S-E—-"l'*a—t—— +pO ujgj-+uj-5—x—j—+uj§£—+ujg}q

J
__ 3} _ 3, Pofi (T + T')
3%y Bxi T,
Bgﬁi Bgui
+ Ky 3x2 + HO Bxg (3.13)

J J
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If this equation is averaged, we obtain

_ _ o
aui _ aui ¥ Py _ 3 u, auiul
% 38 T PoYy ax, T T ax. T T 8T T Hy T2 T Po ax, (3.18)
J i o] axj J

This 1s the usual equation for the mean motion of an atmos-

pheric layer. It is seen that the turbulence has introduced

an effective stress, the Reynolds stress, which is of magnitude
We may obtain an equation for the velocity fluctuations by

subtracting (3.14) from (3.13); thus,

Bui oul du, Bui oul
p + e, O, == + u! == + u! —= - u! =

o ot i 98X, i 9X. 9X . X .
J 3 J j J j J 3
op' o ' 82ui
= — 1
sx. T T 85T T M, T3 (3.15)
i o} axj

From this equation we can obtain an equation for the Reynolds
stress correlation uiuﬁ . If (3.15) is multiplied through by
u! and time averaged, one obtains

k
Jul _ ul ' Bﬁi au;
o u! —/— + s u,u! = + ulu! z=— + u'u! —

90X k ox k 9x
J J J i/
2
—_— o) 2 u!
= -y %%- * Tg BiupT' * Moly 2l (3.16)
i o} oX

If the indices 1 and k in (3.16) are interchanged and the
resulting equation added to (3.16), there results, after some

rearrangement
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sulu’ outu! ou ou.
i’k -~ i’k - _ t [} kK - t ! _.__l
Po 3% * pouj 90X pouiuj X, poukug X,
J J J
- o (@D - 2~ ) - 3 D)
0 9X k 9X, k 9x
J i k
au! au, P
eo (st + ) ¢ o (B - BET)
k i o}
Bzu!ui dul duy
g - 2, 3% 5%, (317
90X, J

This 1s the standard equation for the Reynolds stress correla-
tidn and has been discussed at great length in various texts on
atmospheric motion [see, for example, Ref. 17].

We will briefly review the nature of this equation. The
two terms on the left-hand side represent p times the

o
substantive derivative (rate of change following the motion) of

the correlation uiui . On the right-hand side, the first two
terms .
du du.,
k i
- !t —2 ty, v =
Potil; 3% Potit; 7%

are called the procduction terms. They represent the production
of new correlations by the interaction of the turbulence with

the variation of the mean velocity field as well as the modifica-
tion of existing correlations by the variation of the mean field
(stream tube stretching effects).

The term ,

8___. t 1 1
Po 3% <uiujuk

represents the diffusion of the correlation uiu& by the

turbulent velocity fluctuations and is called, appropriately,

the velocity diffusion term.
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The next two terms

é.___. Tl _a_. 1
o, (P') * g (U
i k

are called the pressure diffusion terms. They are the least

)

!
i

understood of all the terms in (3.17) because of the great
difficulty associated with experimentally measuring a pressure-
velocity correlation. In general, they have been found not to
play a dominant role in the development of a two-dimensional,
truly incompressible, turbulent shear layer.

The sixth expression on the right-hand side of (3.17)

aui Sui

1] PRl ey
p 9X +'8x.
lo

e

is called the tendency-towards-isotropy term. This nomencla-
ture stems from the fact that, while the term appears in each

of the equations for the separate energy components in a truly

incompressible turbulent flow, i.e., in the equations for uig s

ué2 , and uég , it drops out of the equation for the total
energy ui2 + ué2 + uég by virtue of the vanishing of the diver-

gence of the turbulent velocity field. The term must then, for

incompressible flows, represent a. rearrangement of the turbulent
energy among the various components of velocity.
The seventh term on the right-hand side of (3.17), namely,

Po
| | ! |
T (g.u]T + g]u.T )

represents the production or reduction of the- correlation uiui
due to the interaction of fluctuations in velocity with fluctua-

tions in temperature.

The term 5
9 ulu!
17k
uo B
ij
in (3.17) is obviously the diffusion of the correlation uiu&
by the action of molecular viscosity.
Finally, the term a7 T
O 99X, 9X,

J J
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is called the dissipation term and represents, in the equations

of uig s ué2 , and uéz , the conversion of these energies to
heat by the action of molecular viscosity.

We will return to a discussion of the nature of these
terms later in this paper when we discuss how some of these
terms might be modeled.

If the Reynolds scheme (3.9) 1s applied to the energy

equation, the result 1is

3T  aT! - 93T - T , 9T , 9!
po< + >+ po <u. + u, — + uj = + uj §§T)

3t = 3t j 9x, j ox, 90X,
J J J J
2= 2.,
= Mg é—% g 9 g (3.18)
0x 9X,
J J

When this equation is averaged, one obtains

—_ — 2_
3T = 3T _ 37T 9 T .
ot t Po¥s5 3%, T Mo T2 T Po X, (ujT ) (3:19)
J ax J
J
Here again, the turbulence produces an increased heat transfer
whose magnitude is pOCp ujT' . The equation for the temperature
fluctuation is ©
UL (a OT' e AT, 4 AT AT 3o
o dt o i 9X. i 9X. i 9x.  j ox. | To ..2
J j J j J 3 J j axj

(3.20)

We can obtain an equation for the heat transfer- correlation

EKTT in the following way. First, multiply (3.20) by ul  and

time average to obtain

3T ! - 9T’ 3T AT
r Y= R B 1,1t 2+ tygt 2o
Pl 3t * Po <ujuk 5%, T Y3%k 3x. T UiYk ax.)
J J J
2
3T
= uoui 5 (3.21)
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Next multiply the equation for aui/at [i.e., (3.15)] with 1
replaced by k, by T' and obtaln

ou, ou, du ou,
k = k k k
| B | 1 1 ] | B
poT t * o <ujT X. * ujT X . * ujT 0X . )
J J
2
—_— P R au'
= - T §2_+_Og;Tv2 + p T k (3.22)
90X T k o] 2
k o) 90X
J
If (3.21) and (3.22) are added, one obtains, after some
rearrangement,
— 3u
3__ Tt I §__ TTTTY = o 7 9T - 1 v_.lﬁ
Po 3T (ukT ) °s J 9x (ukT ) pouJuk X, poujT X,
J J J
9 0 oT"'
- p = (uluw'T'") = =— (p'T'") + p' =—
0 ij Jk Bxk axk
o, —= 2T duy a1
0
+ T—-ng' + UO > - 2“0 X. X . (3.23)
o] BXJ J J

By analogy with the Reynolds stress equation, we may identify
the various terms in this equation for the heat transport corre-
lation. The two terms on the left-hand side represent DO
times the derivative following a particle trajectory of the
correlation EETT . The first two terms on the right-hand side
are production terms.- The first of these represents production
of E;TT by the interaction of the turbulent velocities and the
variation of the mean temperature field, while the other term
represents. production due to the interaction of heat transport
correlations and the variation of the mean veloclty field.

The third term on the right-hand side of (3.23) is the
diffusion of the correlation HETT by the turbulent velocity.

The fourth term is the equivalent of the pressure diffu-.
sion term in the Reynolds stress correlation equation and will

be referred to as the pressure diffusion term. Similarly, the
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term p’aT'/gxk represents a "tendency towards isotropy" or a
tendency for the pressure fluctuations to eliminate any corre-
lation between u! and T'!

k
The term

represents the production of temperature transport correlation
in the direction of gravitational acceleration due to the
fluctuations in temperature of the flow. '

The term -

82u}'(T'

© 8x§

is obviously the diffusion of u&T' by molecular action, while

1L

the final. term

—2“0?1_12%‘]1

J %
represents the role played by molecular viscosity in correlating
or uncorrelating the velocity and temperature fluctuations. 1In
most cases, the effect 1is. one of uncorrelation. 1In spite of the
fact that this last term is not always dissipative, it is none-
theless referred to as the dissipative term.
In (3.23), the correlation T'2 occurs. It is easy to

obtain an equation for this second-order correlation. To do SO,

we multiply (3.20) by 2T' and average. The result is

—— ————

2

32 - QT'® _ T oT 3 1 2
Po 8t — T Poly 557 T T 2Pyt o ~ Po bx, (uJT )
+ QEILE 2 QEL EZL (3 2“)
Ho ax% - eHo ij an : ’

J

This equation is simlilar to the two previous equations for
second-order correlations with the exception that there are no
pressure diffusion or tendency-to-isotropy terms. It is clear
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then that the only way that temperature fluctuations can be
destroyed in a flow of constant temperature is by the action:
of molecular diffusivity.

When the Reynolds scheme is applied to the species

conservation equation, one obtains

oC oCc! aC ac! 3C 3c!
a a - Q - Qa a ' __9
po(g-{;—+5—£—>+ po<uj a—)‘(';'f‘ U.j 5;"’*'1).5 g}z—*‘ uJ. a >

J J 3
3¢ % |
= p —F+ L (3.25
0 3x? ° 3x°2
J J
Averaging the equation results in
—_— — 2_
dC oC d°C
_a Goe_ ., _“a_ o 9  (Tior
J
As before, we can obtain equations for C&u& and CéF . They
are
STCT X 3
k”a - 3 _ k
Po gt ¥ Poly Bxy (MCa) T T Poljtk B T Po%ia Bk
— Cl
- 9 grery - O C') 4+ p! i_g'
Po 3% (ujugCl) Y (p'Cl) +p Xy
2
Po d7usct du T
+ — g, C'T' + —= 2 —s = .
TO gk a l‘LO aXJ? 2“'0 an aXJ (3.27)
and
— _
oc! —_— 0
a - 0 2 a
Po It + P oty axj (Ca ) - 2poujc& X
¥Pcr2 3CT oC
- 9 1012 a —_a _C
Po axj (ujca ) * o 3x2 - Ay axj ij (3.28)
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It will be seen that because of the gravitational term
(po/To)gkC&T' in (3.27) it will be necessary to have.an
equation for C&T' if a closed set of equations is to be

realized. This equation is derived in the usual manner and is

9_. tmot "a_. Ty —
Po 3T (CaT )+ pouj ij (CaT ) =
= aC
aT a d ————
= - tY - tmY = - T tmt
poujca 09X, poujT 90X, po 90X . (ujCaT )
J J J
82C&T' aC; a7
t g 52 - 2“0 3X. 0X. (3.29)
xj J J

We need not discuss these last three equations in detail
for they are almost identical in form to the equations for
T and T'°

Let us now collect the equations we have derived for-the
production of turbulence and the dispersal of pollutants in an
atmospheric shear layer.

Making use of the notation

D _3 , - 2 ,
Dt - 3t T Yy X (3.30)
and writing uo/pO =V, , we have
- o
Du - a " u
i 1 2 i 2 o1 = .
—t = . = 2P 4y - ulu! + = g.T {(3.31)
Dt s Bxi o 3x§ BxJ i7] TO 1
DT _ , 2°T _ 3 g (3.32)
Dt 0 5x2 | 3%, " 3.
X J
J
- 2
DC 3 C
___U.= a‘_a tot -
T v, . 5 e ujCa (3.33)
xj 3
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0 (3.34)

- uju& SES - ujui 5X3 i%j7k
I - p— o8 O
po.axk (P ui) Po OX4 (p uk) ' Po <8xk ' oxy
L (o 5T + g GTTT)
T €54k x4
2
3°u'u! du! ou/
v 21 k o, 1 _k (3.35)
© dx*© O oxjy oxy
J
— ou
o) K
- uluy! ==— - u!T' — - —— (ulw!'T")
J7k BXJ J BXJ o j Jk
13 i
= £ _ TT1) 4 o
Po OXy () Po OXk
2
—_— 3°u' T ou,
1 2 k k oT!
= g T'" + v -2V @ == (3.36)
Tok 05X§ o} Xj XJ
e 9T 3 2
T AT EG T Wt
2=
T JT' JT!'
Yo 527 Po S5 O (3.37)
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ct——

DuCY oC Y
ka: — t '.__.9"._ 1 !___E_a___ Ty, 177 1
Bt "3 BE, usCy X, T ax, (ujupCl)
3C!
1
kb e B
0 k o} k
. 3%y 3y 807
— ] 1] — = —_— =
+ T gkcaT + vo 2 2\)o 9X. 09X, -(3‘38)
o BXJ J J
DC'TY - oC
o aT o 3 —_—
= = - ulC'! =— - ulT' =— - z=— (ulC'T")
Dt X X, 9X .
J a j J i 3 J a
32C&T' 3C) oT!
+ ——— —_ .
Vo ax2 2\)o X . 9X. (3.39)
J
2 —
DC! aC
pe = - 20508 5 - 5 (ugea’)
J J
320&2 3C7 aCT
-i-\)oa 5 -2\)0—}(;"—}(—5 (3.”0)

It will be noted that if some means can be found to model
in (3.35) through (3.40)
(1) the velocity diffusion terms
(2) the terms containing pressure fluctuations, i.e.,
(a) the tendency-towards-isotropy terms
(b) the pressure diffusion terms
and (3) the dissipation terms
in terms of the mean variables and/or the second-order correla-
tions of the variables, then the set of equations given above is
closed and a solution can, in principle, be found for the mean

T, and C,, as well as for all the second-order

—_— 2

guantities ﬁi, :
correlations except p'!

In the following sections we shall discuss the problem of
choosing such a model. Before golng on to this, however, a

discussion of the solutions of the above equations is in order.
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First, let us assume that the motion in question is laminar.
In that case, all the fluctuations are zero and the equations
needed to solve for the motion alone, i.e.; for the five unknowns
al, 62 s 63 , T, and p are (3.31), (3.32), and (3.34). Since
(3.31) is ‘a vector equation, it yields 3 scalar equations for ﬁl,
3 SO that, together with (3.32) and (3.34), there are

five equations for the five unknowns. Once the motion is known,

52, and U

the mass fraction (concentration) field for each species a may
be found from the o equations given by (3.33).

If the motion is turbulent and a viable second-order closure
model. can be found, the unknowns involved in the solution for the

motion are ﬁl, ﬁz, 33, T, D, ujuy, uul, uéué, ujul = wlur ,
ujugy = ujug o, Ujuy = ujug

2
143 341 3 Jub > uiT', ulT', uiT', and T' There
are then 15 unknowns. One obtains the 15 equations required to

1 2 3

solve for the motion as follows:

from (3.31) 3 equations
from (3.32) 1 equation
from (3.34) 1 equation
from (3.35) 6 equations
from (3.36) 3 equations
from (3.37) 1 equation

for a total of 15 equations.
Once the motion is solved for the concentration field for
any of the o , each species involved may be solved by solving

five simultaneous equations for the unknowns 5& s C&ui s
T ! Ty ormr +
Cau s Cau , and CaT obtained

2 3
from (3.33) 1 equation
from (3.38) 3 equations
and from (3.39) 1 equation

Once this solution has been obtained, the variance of the
fluctuations of mass fraction of the a species may be obtained
from a solution of (3.40).



4, SELECTION OF MODELS

In order to construct models of the four types of terms
referred to in Section 3 so as to form a closed set of equations
for solving for the motion of the atmosphere and its ability to
disperse pollutants, one can be guided by some very general
principles which reduce the number of models that might be
investigated. Once models that adhere to these general principles
have been selected, resort must be had to a comparison of computed
results with experimental data in order to refine the models or
to determine the numerical values of certain parameters which
occur in the construction of the models. At the present time,
there are more models for closure of the equations of motion at
the second-order correlations than there are principal investiga-
tors working on the problem. This occurs because each investiga-
tor generally has an option or two that he is currently trying
out. In our own work, we have tried to start from the simplest
model that would satisfy the general prinéiples and increase the
complexity of the model only if experimental data indicate that
more complexity is needed. |

The basic principles that must be observed in selecting a
model are the following: .

(1) The model must be of tensor form so that it is invar-
iant under an arbitrary transformation of coérdinate systems.

The model must have all the tensor properties and, in addition,
all the symmetries of the term which it replaces.

(2) The model must be invariant under a Galilean transform-
ation.

(3) The model must have the dimensional properties of the
term it replaces.

(ﬂ) The model must be such as to satisfy all the conserva-
tion relationships known to govern the variables in question.

With these basic principles, let us try to determine the
simplest models possible for the various terms that must be
modeled in (3.35) through (3.40).
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We will start with the velocity diffusion terms. We wish
to model the tensor uiuju' in terms of the second-order

k
correlations uiu& . The simplest tensor of rank three that
can be obtalned from the second-order correlation uiui that
s 5 P EETRE Nttt
is of the form Tijk is B(uiuk)/axj . The tensor uiujuk is

symmetric in all three indices so that our model must be
symmetric in these indices. We therefore choose
0

u'uju' ~ — (uju&) + 5;; (uiu&) + 5;; (uiuj) (4.1)

Q/

jun
~
Q/
™

[

This expression has all the tensor character necessary for the
model but is not dimensionally correct. To make the dimensions
correct, we must multiply the right-hand side of (4.1) by a
scalar with dimensions of length times velocity. The simplest
scalar velocity we can form from the second-order velocity

correlations is

= u,'u'
9 m m

If we multiply this expression by a scalar length, say, A2 s
which is to be related to the scale of the mean motion or to
the scale of the turbulence, we can form a simple model of the

triple correlation uiuju& . Thus,
) o) o)
T33! = - BT [ETNU — (utu!
ujusup A2g| 3%y (uJu]) + S J.(ulu]) + S (uiuJ)

(4.2)

In (4,2) we have included a minus sign to ensure that turbulent
energy will be diffused down the gradient or from regions of
high turbulent intensity to regions of low intensity.

Let us consider a model for the triple correlation E}E;TT.

From the second-order correlation uﬁT' we . can form a tensor of

form T,

ik with the necessary symmetfy. Thus,

9 —=Ty 4 O (oTET
Tjk = g‘)‘(‘;‘ (U.kT ) + axk (uJ.T ) (4.3)
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This expression does not have the dimensions of uju&T', SO

we write
ulu!'T!' = - A g é—— (u'T') + 0 (u!lT") (4.4)
i’k 2 ij k Bxk J )
Here we might have chosen a scale length other than A2 . But,

as we shall see later, in order to keep the model simple it
will be necessary to choose as few scale lengths as possible.
We therefore take A2 as the scale for all velocity diffusion
terms unless experimental results later show that the model must
be more complicated.

In modeling the term JEHETT we might have chosen a term

of the following form:

const ulu! T'2
1°J

We have chosen not to do this since we want this diffusion term
to be a gradient type of diffusion. '

By analogy with the velocity diffusion expressions (4.2)
and (4.4), we will choose to model the four remaining triple

correlations that appear in the velocity diffusion terms as

Y0 = _5____ ' a__ '
ym 2 = _ é__ 2
uJ.T A g axj T! (4.6)
alC!'T' = - A q é__. cro (14 7)
hige) 27 dxy @ )
o1l _5__.__ |2
uiCy” = - Asq 5% cl (4.8)

Consider now the tendency-towards-~isotropy term in the

equation for uiu& . We wish to model



Ly

y [ou! au!
p' (1, 'k
s Bxk axi

This expression 1s a second-order tensor of form Tik . The
simplest tensor of this form that can be formed from the second-
order correlations is obviously the second-order correlation
ulut itself. We therefore start by taking
ou! ou,!
E_'. .__].'_+_...._k_\~u!ul (L. 9)
0 (axk axi/ ik :

The correlation uiui has all the tensor and symmetry properties

we wish, but it does not have the proper dimensions. We can.

remedy this by multiplying uiu&

is a new scale length. We then have

gu! su
ik

Po axk axi Al

by the scalar q/Al where A1

This cannot be correct, for if we set 1 equal to k , the left-
hand side of the supposed equation vanishes in an incompressible
fluid while the right-hand side does not. This can be remedied
by ‘taking

pd axk axi

p' (3% " au};) - - ﬂ—(u.u' ED q2> (4.10)
The minus sign in this expression is chosen so that in the
absence of other influences, the turbulent energy will be equil-
ibrated between the various components of velocity. The model
was first given by Rotta [Ref. 6]. We could have included a
term in (4.10) proportional to the mean strain [Crow, Ref. 43],
but for our initial simple model, we choose not to do so.

We must now model the "tendency-towards-isotropy" terms

that appear in the equations for u&T' and uic& . By analogy

with the tendency towards isotropy of the stress correlation for
i # k , we adopt the following models:
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1 ]
P_p ___gi = - 9._A oI (h.11)
o} k 1
and
p' %0 _ g
— = - u'c! (4.,12)
pO axk A1 k7o

Here again, more generality can be put into the model by Selecting
the scales in these last two equations to be different than the
Al of the isotropy term for the stress correlation equation.
Whether this should be done or not will depend upon the agreement
between computed results and experimental data. For the time
being, we will use the same scale 1in each of the isotropy terms.
As mentioned previously, the pressure diffusion terms are
difficult to model since so little is known concerning them.¥ We
will, however, choose a model of the terms which will be essen-
£ially nonproductive; i.e., the model will depend upon the grad-
ient of the quantity in the equation for which we are trying to

model the pressure diffusion term. Thus, we choose

_ 9
pvul'{ = - quA3 ——~axi u:i'.ul'( (_4.13)
- 3 _
T = _ 9 _ Jimt
p'T poqA3 3%, ufT (h.14)
a3
. ! = o Pl
and p'Cl poqA3 %, usct (4.15)

In these expressions, since we expect the pressure diffusion

effect to be small, we expect that A3 will be small compared,

say, to Al . We have chosen a negative sign so that the -model,

as written, will represent a transfer of the quantity in question

down the gradient.ft

*Our knowledge of these terms 1s limited for, to date, it has
not been possible to simultaneously measure the fluctuation of
pressure and velocity at a point in a flowing medium.

+It should be noted that in some recent studies using a model
which 1s essentially that described here, Prof. Paul Libby has
reported somewhat better agreement of computations with experi-
mental results 1f a small A is used and the signs of the
right-hand sides of (4.13), %M.lu), and (4.15) are reversed.
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To model the correlations appearing in the dissipation

terms, namely,

aul! ou au' oT' oT' 3T! ou' aC!
k o

i k. k
9x, 9x. > 939X, 9ox. ? 9x, 9xX. > 9¥x, 9x. °
J J J J J J J J
AT amt At At
BCa aT and BCa BCG
o9x., 9x. ° 39X, 90X,
J J J J

it would appear that the simplest model that can account for

all of these terms is

U R h6)
J J A
where X 1s another scalar length.

Here again we have the same question that was raised
before; i.e., should not the A's in each term be different?
The answer to this must again be "yes" if comparison between
computed results and experimental data. requires it. As in the
other cases, we will, for the present, try to develop the
simplest possible model and will therefore make use of only one
A in all the dissipation terms. In later sections of this
report, we will return to the question of modeling these dissi-
pation terms in light of the results found with the model
adopted here. '

If the models we have described above are placed into the
equations for a turbulent atmospheric shear layer, (3.31)
through (3.40), we obtain the following set of modeled equations:

Duy 270, 1 = 1 9

—_— = - 1 1 — — r—

DI x, Yivs o8yl - o 5xs (4.17)
X3 J o o) i

QT.: v 32_T_.a__ule ()4 18)

Dt 6] o *
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Q|
Q

(W
ct

Du/T'
Dt

PO

DT!
Dt

h-7

9 6@ d I
- Tt .
Vg 2 axj ujCa (4.19)
J
0 (4.20)
du du
1 k1 T Tl
- T a0 o A (BT e T
J J 0
oulu! autu auu!
d [A q iJ ., Jj 'k + k71 ]
axj 2 Bxk axi BXJ
) ) )
=— [ A,q z=— ulu! | + 5= [ A,q F7— ulu
axi ( 3 ij J k) axk < 3 axJ J71i
ik 2 2“uluy U
%— uup - 5 a )+ v, = - 2v 5 (4.21)
1 9X A
J
5T g 5
- uly! ==— - ull' =— + 7= g, T'
'k xj J xJ TO k
) ) ) ) )
— | Aq | 50— u!lT" + =— u/'T" + ==— [ A,q §o— ulT!
axj [ 2 <8xk J BXJ k )] Bxk ( 3 axJ J
2
o u'T! uw'T!
q T k k
== u!T' + v - 2V (4.22)
by Tk © 3X§ 0 )2 '
3T d 3 2
- ewiT! 55—+ 5% <A2q 3%, L
J J J
2 12 !
© Bx? DY
J
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aaa a_k 1
Lttt G0y B = tmt
uJ.uk xj uqu Xj + To gkCaT
9 O TvEv 4 9 A
axj {A2q <8xj ukcu * axk ujca
3 9 =va
axk <A3q axj ujcu)
CRTRIoR uiCo
%— WCr v 5 & _ 2y 5 (4.,24)
1 © 9% A
— 5C ‘
0T "o ] 0
- MY —¥=— - n'm = 4 —_— (YYTUY
ujCa Xj ujT Xj + ij (A2q 3xj c'T )
82C&T' CITT
v - 2V (4.25)
o 3x§ G
aC —_—
_ ro__ & .90 3__ m?2
Zujca Xj * axj (Azq ij Ca
320&2 ,0&2 |
v -2V — (4.26)
© 8x§ © A

re diffusion terms, has been taken out of the

p
o)
the same reasoning that led to (2.41) from (2.40).

odeled equations is solved according to the proced-

at the end of Section 3.

shear layers, these equations can be further
making"boundary layer" assumptions. First we
notation
X, =¥ x3 = o
U, = u3 =y (4.27)
g, = 0 g3 = 8
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Then we assume that the vertical component of the mean velocity

is small compared to the other components

W << u or v (4,28)

and that derivatives with respect to 2z are large

29 ,, % 20
8,88, K o (4.29)

The equations are of particularly simple form if, for
example, the problem 1s time dependent and all mean variables

(excepting p) are independent of x and y ; that is, if

u = u(z,t), T'=T(z,t), u'w' = u'w'(z,t), etc. In this case we
must have (l/po)(aﬁ/ax) and (l/po)(aﬁ/ay) (which are
functions of 2z alone) specified as functions of time, and we

find that the vertical momentum. equation becomes

3 = - rg (4.30)

z
while continuity gives w = 0.

For this problem, since the pollutants involved have been
assumed to be passive, we have a coupled set of thirteen

partial differential equations for the thirteen variables:
u(z,t) , v(z,t) , T(z,t) , u'u'(z,t) , v'v'(z,t) ,

w'w'(z,t) , u'w'(z,t) , v'w'(z,t) , u'v'(z,t) ,

u'T'(z,t) , vt (z,t) , w'T'(z,t) , T'2(z,t)
If initial conditions on these quantities as functions of =z
are given at some time, say, t = 0, the equations can be solved
for the development in time of the mean quantities and the
correlations. Once the turbulence characteristics of the atmos-
phere are known as functions of 2z and t , one is then able to
solve for the transport of the pollutants by solving a coupled
set of five equations for C_(z,t) , Clu'(z,t) , EE?T(z,t) R
C&WT(z,t) , and EgTT(z,t) . Once these quantities are known,

the variance of the fluctuation in Ca can be determined by
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solving the final equation for 0&2(z,t). These sclutions can
be obtained, of course, providing that initial conditions on
these quantities as functions of 2z are provided at some time.

Of particular interest is the steady dispersal of passive
pcllutants in an atmosphere that has reached a given steady
state of turbulence. Since the equations for the atmospheric
motion and for the dispersal of pollutants are decoupled, one
can first solve for the atmospheric turbulence that would be
generated by known profiles of velocity and temperature, say,
a=u(z) ,v=0,w=20, and T = T(z), and then solve for
the steady dispersal of pollutant material in this atmosphere.
The turbulence characteristics of the atmosphere used for these
latter computations are those found by holding U(z) and T(z)
fixed in the_equations for the second-order correlations E;ﬁ; >
E;TT , and 712 (these equations are (4.21), (4.22), and (4.23),
respectively) and observing the resulting distributions at large
times. These distributions, as we shall see, are independent of
the initial conditions on these variables used to state the
calculations at t = 0

It must be borne in mind that in order to perform the
calculations just mentioned, it is necessary to have equations
for the scales Al s A2 s A3 , and A or have these scales
given as functions of 2z and ¢

' Before we can proceed further, it is necessary to make more

precise the details of the model of turbulent atmospheric flow
that has just been presented. To do this, we must construct
models for some well-known flows and compare the results with
experimental data. In this way we will determine relationships
between the various scales Aq and X , by choosing these
parameters so as to give the best results for the widest number
of' experimental observations and determine in this way the
property of these flows which is related to these scales.

To make the calculations necessary to carry out the compar-

ison between experimental results and calculations suggested
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above, it 1s necessary to have computer programs which accurately
solve the sets of equations we have discussed. A general tem-
plate for the solution of such systems of equations has been
developed at A.R.A.P. over the past few years. A description of
these numerical techniques 1s contained in Appendix A.



5. SEARCH FOR MODEL PARAMETERS

It is easy to verify that equations (4.17) through (4.26)

reduce to the equations for a low Mach number, constant density

medium if we assume T = 0, T' = 0, C! 0. They may there-
fore be used to calculate the generation of turbulence in a
classical incompressible shear layer for which a great deal of
detailed experimental data are available. The detailed model
of turbulent flow that we will use in later sections of this
report was developed by comparing computations with experi-
mental results for three shear flows:

(1) the axially symmetric free jet;

(2) the two-dimensional free shear layer; and

(3) the flat plate boundary layer.

To .calculate the first of these flows in c¢ylindrical
coordinates (r,¢,z) with velocities (u,v,w), one finds that

in the approprlate boundary layer form the equations are

93U , U , oW _

-ﬁ+;+_—z—_0 (5.1)
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For the second and third flows, if

free stream velocity in the X

u

direction and
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is taken as the

z the direction

normal to x 1in which large gradients in u exist, the
appropriate equations are
ou , ow _
s + S - 0 (5.7)
30, -3l _, 3% _ W’ (5.8)
u 3x wgz— 822 oz )
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It 1s a fact established by careful experimental observa-
tion that both the free jet and the two-dimensional free shear
layer become, after a transient due to initial conditions, self-
similar turbulent flows at high Reynolds numbers. If (5.1)
through (5.6) and (5.7) through (5.12) are to permit self-
similar solutions for the free jet and the free shear layer,
respectively, it is necessary that certain relationships exist
-between the scale length Aa , A , and the characteristic scale
of the mean motion ¢ . It can be shown that these rela-

. char
tions are

Al = Cléchar (5-13)
Ay = cohy = e38 phar (5.14)
A3 = c3A1 "Céschar (5.15)
and
A=Ay Voa + bReAl (5.16)
where ReAl = qul/u (5.17)

The relation (5.16) between the dissipative scale A and the
isotropy scale Al i1s required so ‘that as the Reynolds number
of the flow increases, dissipation will keep pace with the other
productive and diffusive terms in the equation so that a self-
similar flow can result. This form of the relationship between
A and Al has been used in the past by Glushko [Ref. 7].

For self-similar free turbulent flows, the structure given
above is all that is needed to compute a turbulent shear layer:
or a free jet, provided the five constants, Cq s cé s 03 , a
and b , are given. To find these constants, we must resort to
the comparison of calculated flow fields with experimental
results. '

If we wish to compute a boundary layer flow, we must
consider an additional problem. When a wall is present in a
shear flow, we wish to apply the boundary condition at the wall

that
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atul' =
(Wjug)peg = 0

where 2z 1s measured normal to the surface. In addition,

there should be no diffusion of uiu& through the surface so

that the flux of uiu due to viscosity, namely, uauiu&/az s
= and thus Buiui/az =0 at =z =0

Thus it is reasonable to assume that near the wall

must be zero at 2

u! = A 1+n

ui p o= Az - (5.18)

where Aik is a constant and n is a positive constant. But
if there is no diffusion through the wall, then all that is
diffused towards the wall.by viscosity at =z = € is dissipated

in the region between 2z = ¢ and” z = 0 . (It is easily

verified that all other terms in the model equation for uiuﬁ
are negligible if- € is small enough.) Thus,

£ (Y] Dt T
uiuk Buiuk
2u dz Hi5g
Y0 A Z=€

2

or, using (5.18)

€ Zl+n '
2 5 dz (1 + n)en

o A

If this relation is to hold for all € » 0, we must have

A= oz (5.19)

where a2 = 2/(1 + n)n . Thus, near a solid surface, we always
assume, in applying our model, that (5.19) holds in the region
riear the wall.
It 1s convenient to express this result in terms of Al
Near a wall, (5.16) becomes
' A

Al//a (5.20)
Using (5.19) we may write

Ay = avaz (5.21)
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Thus, for boundary layer flows, o 1is another number which must
be found from experimental results.

In our first attempts to construct a model of turbulent
shear flows [Refs. 10 and 16], the following assumptions were
made in order to construct the simplest possible model of
boundary layer flows:

(1) It was assumed that all the. large lambdas. associated
with inviscid modeling were equal; i.e., Al = A2 = A3 = A.

(2) It was assumed that o was equal to one.

(3) In the outer portion of a boundary layer, A was
(8 is the value

§
_ .99 .99
of =z for which u 1is 99% of the free stream velocity). This

taken to be a constant cl times

value was assumed to hold, independent of z , as the wall was
approached, until A Dbecame equal to va times =z . For
smaller values of =z, A was taken equal to Va z.

With these assumptions, (5.7) through (5.12) were solved
. 1 = A8 g9
to produce a developing turbulent boundary layer on a flat plate.

with various choices for the parameters a, b, and ¢

It was determined that the following choice of parameters

¢ = l\/G.99 = 0706M
a = 2.5 (5.22)
b = 0.125

yielded a fair representation of a turbulent boundary layer. The
mean velocity profile and the behavior of skin friction with
Reynolds number were adequately represented. The distributions
of the second-order correlations within the boundary. layer were
reasonable.

The results of this original parameter search were used to
compute a number of other turbulent flows in order to demonstrate
the method [Refs. 19 and 20].

Before proceeding with further applications, it was
considered necessary that -a more detalled parameter search be
made. In particular, two free turbulent flows - the free jet
and the free shear layer - should be calculated to determine
a and Db that would best

the values of the parameters c c

2, 3}
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fit the experimental results for both flows. The value of cq
being the ratio of Al to some arbitrarily defined character-
istic length in each case 1s not an invariant of the problem
and was to be chosen with fixed values of the other parameters
to obtain best results in each case. Once these studies were
complete, the model would be used to compute turbulent boundary.
layer flows so that, by comparison with experimental results,
values for c¢3 and a could be made for this flow. Hopefully,
all flows could be described in a reasonable way by a single
choice of the basic model parameters Css 03, a, and b, and
(where appropriate) o . The values of local A1 determined

from the values of ¢ in each case were then to be compared

1
with the local magnitude of the integral scale L in each case.
If it was found that the value of ¢

amounted to

1 represented a choice that

A = const L = BL (5.23)

then it would be assumed that a reasonably invariant model had
been determined.

Application of Model to Free Shear Flows

Our search for a new model of turbulent shear layers began
with an attempt to describe the axially symmetric free jet with
the original turbulence model obtained for a boundary layer flow.

This model, as mentioned previously, was one for which Al = A2 =
A3 = A . This choice leaves three parameters to be determined.
They are c, = A/Gchar~ and the two constants a and Db in the

expression-

A=A/ a+b - ReA

The method of searching for values of these parameter was as
follows. The equations for a free jet were programmed so as to
solve the system of equations for a free jet developing in the
axial direction. At an arbitrary initial station in the axial
direction, a mean velocity profile and profiles of the pertinent
second-order correlations were arbitrarily assumed. For a given

choice of model parameters (in this case, a, b, and ¢, = A/r

1 5



5-8

where r.5 is the radius for which u is one-half the center-
line value), the free jet equations were solved for the develop-
ment of the jet downstream of the initial distributions. In all
cases, essentially self-similar solutions were obtained far down-
stream of the start of the calculation. If a.set of parameters
could be found so that the resulting self-similar flow agreed
with experimental measurements with respect to the rate of
spread, as well as with respect to mean velocity and correlation
distributions, it would then be assumed that a reasonable- turbu-
lence model had been achieved.

Actually such calculations were carried out for both free
jets and two-dimensional free shear layers. With the single A
model, it was found that no combinations of parameters a, b,

and ¢ could produce an adequate description of either a free

1
jet or a free shear layer. In general, it was found that if the

parameters were adjusted so as to give an adequate rate of
spread of the mean profile (i.e., if the level of the turbulent

shear correlation was large enough) the spread of the correla-
. Tttt
tions Ugup

result is illustrated in Figure 5.1 where it is seen that, if the

by diffusion was always too large. This general

reneral level of the shear correlation u'w' were to match the
experimental data of Wygnanski and Fiedler [Ref. 21] in the region
of maximum shear, it is clear that far too long a tail of u'w'

at large r would result. This was a very general result for
free shear flows and forces us to consider a more complicated
model.

The difficulty. that was experienced with the constant A
model was the existence of too much diffusion relative to the
rate of loss of correlations, either by dissipation or the
tendency towards isotropy. To correct this difficulty in the
studies reported here, the diffusion lengths A and A were

made smaller than Al' An idea of the effect o? reduciné the

diffusion lengths relative to the isotropy length can be seen

from Figure 5.2, Here the rms value of the longitudinal velo-
¢city fluctuation w' <that has been calculated for several

choices of model parameters 1s plotted versus radius in a self-
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Figure 5.1. Result of a free jet computation wilth
a single A model of turbulence
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Figure 5.2. Behavior of solutions for a self-similar free
jet when the parameter c, = A,/A = A / A
: 2 1 371
is varied
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similar free jet. Note that as the diffusion lengths A2 and

A
3 2
is obviously reduced and the levels of turbulence on the jet

(which are c, times Al) are reduced, the amount of diffusion
centerline are appreciably increased.

The effect of the choice of the scale of the isotropy
length Al can be seen from Figure 5.3. The distribution of
longitudinal turbulence intensity is shown as a function of
radius for two choices of A1 relative to the local value of

5 It is seen that the levels are much lower for the smaller
A.l than for the larger value. This is what one might expect
because of the increased dissipation as well as the increased
loss of shear correlation by the tendency towards isotropy when
the scale Al

The effect of neglecting pressure diffusion can be seen in
Figure 5.4; the longitudinal velocity fluctuations in a free jet
are shown as a function of radial position for a given choice of

r

and, hence, A 1s made smaller.

model parameters a , b , Cq > and Cy for two choices of c3
One choice is c3 = Cy and the second is c3 =0, 1.e., neglect
of pressure diffusion. It is seen that for this choice of the
other parameters the effect of neglecting pressure diffusion is
not large.

Having given some idea of how some of the various para-
meters entering the model for turbulent shear layers affect the
solutions, we must now discuss the selection of an actual set of
parameters. If one considers only a single type of shear flow
that one wishes to model, say, the free jet, it 1s possible to
choose a whole spectrum of models which will give a good
description of the mean spread of the free Jet and the distribu-
tion of, say, the longitudinal turbulent velocity fileld. To
illustrate this point, we may refer to Figure 5.5. Here we see
that two profiles of longitudinal velocity fluctuation can be
obtained with radically different choices of b and A1 . It
is observed that if one chooses small b one must also choose
a small value of Al relative to a characteristic scale of the
jet. What then 1s the basic difference between these two solu-
tions? It is this. For the solution with small Db and small
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Wygnanski & Fiedler
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Figure 5.3. Effect of variation of the isotropy scale A

on characteristics of a self-similar free
jet
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Figure 5.4, The effect of neglecting pressure diffusion
when calculating a self-similar free jet
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Figure 5.5. Two choices of model parameters that yield
almost the same distributions of w'w' for
a self-similar free jet
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A1 , the balance of the production of turbulence is more by
dissipation and less by diffusion than for the other case. Also
for the case of small b and small A.1 , the solutions are more
isotropic on the jet centerline than for the other case.

The choice between the two models exhibited in Figure 5.5
must be made on the basis of the degree of diffusion and the
degree of isotropy desired in the calculated result. This is a
difficult decision to make, for existing experimental data do not
agree as to how isotropic free jets are on their centerline, as
will be seen later. There is another way that one can decide
between two different models. If one uses the same model to
compute two different turbulent flows having essentially differ-
ent geometries, the model which gives the best results for both
flows 1s, since we are seeking an invariant model, the one to
choose.

As mentioned previously, we have computed self-similar
solutions for a free shear layer as well as for an axially
symmetric free jet. Actually a search for model parameters for
each type of flow was carried out. As a result of these studiles,
it was determined that, insofar as the parameter studies have
proceeded at this point, the following model for free turbulent

shear flows gave the best results:

a = 2.5
b = 0.125 .
- (5.24)
Cy, = 0.1
03 = 0.1
Also, the value
c, = Ay/8,, .. = 0.50 (5.25)
was found best for both flows, although it was not part of the
plan to have a common value of Cq - As menticoned above, for
the free jet,
6char =g (5.26)
The characteristic length for the free shear layer was taken as
®char = %.25 ~ %.75 (5.27)
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which is the distance normal to the flow in the shear layer from
the point where the velocity is one-quarter the external driving
velocity to where it is three-quarters this velocity.

In Figures 5.6 through 5.13, we show comparisons with
experimental data of the velocity correlation profiles computed
for both a free jet and a free shear layer using the model para-
meters given above. The experimental results are taken from the
work of Wygnanski and Fiedler [Refs. 21 and 22], Gibson [23],
and Donaldson, Snedeker, and Margolis [24].

Figures 5.6 and 5.7 show the longitudinal fluctuations in
a free jet and free shear layer, respectively. The agreement
between model calculations and experiment is good in both cases.
For the free jet in Figure 5.6, it would perhaps have been
desirable to have a little more diffusion (larger Al and larger

b) in the model in an attempt to reduce the overshoot in w'w'
near the centerline of the jet.

Figures 5.8 and 5.9 show distributions of normal fluctua-
tions in both the free jet and the free shear layer. Here we note
the agreement with experimental data is not so good. There
appears to be a little too much diffusion for these cases. Also
note the very large discrepancy between measured normal fluctua-
tions on the centerline, as reported in three separate experiments.,
The data of Gibson show the components of turbulent velocity to be
essentially isotropic on the jet centerline, while those of
Wygnanski and Fiedler and Donaldson, Snedeker, and Margolis do
not. From the results shown in Figure 5.8, it would appear that
if one were to desire more isotropy, one would wish to choose a
smaller value of Al and, hence, a smaller value of b . This 1is
opposite to the conclusion drawn from Figure 5.6.

Figures 5.10 and 5.11 show the sidewise components of turbu-
lence for the free jet and free shear layer, respectively. The'
agreement between experiment and computed results is better for
the free jet than for the free shear layer. The reason for this
behavior is not known.

In Figures 5.12 and 5.13, we show the shear correlations for

the free jet and the free shear layer. The agreement in both cases
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Figure 5.6. Comparison of experimental results and model
predictions for the longitudinal velocity
correlations in a free jet
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Comparison of experimental results and model predictions
for the longitudinal velocity correlations in a free
shear layer
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in a free jet
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Figure 5.9. Comparison of experimental results and model predictioné
for the normal velocity fluctuations in a free shear layer
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Figure 5.10. Comparison of experimental results and model
predictions for the sidewise fluctuations in
a free jet
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Figure 5.11. Comparison of experimental results and model predictions
for the sidewise fluctuations in a free shear layer
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Comparison of experimental results and model
predictions for the shear correlation in a
free jet
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Figure 5.13. Comparison of experimental results and model computatidns

for the shear correlation in a free shear layer
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is fair. It should be noted that the experimental values of
shear correlation from Ref. 21 have been shown as reported (the
open circles) in Figure 5.13 and also as corrected by us (the
solid symbols) so as to agree with the measured rate of spread
of the free shear layer. A comparison of the measured shear and
that inferred from the mean velocity profiles was reported by
Wygnanski and Fiedler but apparently their computations contained
an error. Also shown in Figure 5.13 is the level of shear that
may be inferred from the mean spread of the free shear layer
studied by Tollmien [Ref. 25] and Prandtl [Ref. 26] many years
ago. It 1s seen from the results presented 1n Figures 5.12 and
5.13 that the model gives a fairly good representation of the
shear in both the free jet and the free shear layer.

A careful study of Figures 5.6 through 5.13 shows that it
really 1s necessary to study further the problem of choice of
model parameters. However, before this 1is done, it appears
desirable to have at hand experimental data which one can rely
on to be truly representative of the basic flow which is beilng
calculated. It is difficult to choose a more sophisticated
model until the question of the degree of isotropy on the center-
line of a free jet ‘is settled. 1In addition, one should at this-
point determine if the model just found for free shear layers can
be used for a model of the outer regions of a boundary layer and
give reasonable results.

Before turning to the problem of the turbulent boundary
layer, it will be instructive to find a relationship between the
values of Al used in the free shear layer and the free jet
calculations and the general magnitude of the integral scales
measured for such flows. In the computations that have been
made, it has been assumed that Al is constant across a free jet
or a free shear layer at any given longitudinal position and,
in magnitude, proportional to the local scale of the mean flow.
It is well known that the integral scales of such flows are, in
general, proportional to the locai mean scales, but the actual’
value of the integral scale varies across the‘layer.
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In Table 5.1 we present the values of integral scale within
a free jet, as reported by Wygnanski and Fiedler. The integral
scale tabulated 1s the longitudinal integral scale

L = ——_l___—l/’ w'(zl)w'(z2) d(22 - zl) (5.28)
0

w'w'(zl)

for the free jet.

Table 5.1. Integral Scales in a Free Jet [Ref. 21]

Radial Position Dimensionless Scale Scale Ratilo
r/x L/r'.5 Al/L
0 - 0.448 1.12
.05 0.595 0.84
.10 0.726 0.69
.15 0.850 0.59
.20 0.855 0.58

Also shown in Table 5.1 1s the ratio of the computational scale

Al to the local integral scale L . Thus a typical value for
this ratio for the free jet is
A{/L = 0.69 (5.29)

For the free shear layer, similar results are given 1in
Table 5.2. These experimental values are also due to Wygnanski
and Fiedler. The longitudinal integral scale is, in this case,

def'ined by

L = ———l————j: u'(xl)u'(Xz) d(X2 - Xl) (5.30)

u'u'(xl)

Table 5.2. Integral Scales in a Free Shear Layer [Ref. 22]

Location in Jet Dimensionless Scales Scale Ratio
L/x L/(Z.zs—'z.75) Al/L
Inner Region 0.098 0.846 0.59
Center 0.103 0.883 0.57

Quter Region 0.147 1.27 0.39
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A typical value of Al/L for a free shear layer appears to be
approximately
A /L = 0.55 (5.31)

Before proceeding further, it must be demonstrated that if
the present model is applied to a boundary layer, useful results
will be obtained for the same choice of model parameters that has

been made for free turbuient shear flows.

Application of Model to Boundary Layers

If the model of turbulent shear flows is to be applied to
a boundary layer, the parameters s 03, a , and b are known,
But, since the characteristic length in a boundary layer 1s
arbitrary (as it is in the free jet and the free shear layer),

we are at liberty to choose ¢ i.e., the ratio between Al

l 3
and the characteristic length (which, in this case, we take

equal to the thickness of the layer in which the

°.99 >
velocity reaches 99% of its free stream value).

As discussed previously, one other parameter enters the
problem, namely, & , the coefficient appearing in (5.19). We
have, then,

A= ava z (5.32)

for 0< z < c15.99/(d/§) and

for z > cy ¢ 99/(a/5)
With only these two parameters @ and cq to determine,

the search is not difficult. The model that has been found is

the following:

a = 2.5

b = 0.125
02 = 0.1 (5.34)
03 = 0.1
¢, = Al/6.99 = 0.15

a=0.7/vV a = 0.443
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The ability of this model of a turbulent shear layer to
predict the known mean properties of turbulent boundary layers is
shown in Figures 5.14 through 5.16. 1In Figure 5.14, we show the
skin friction developed by our model as it proceeds from a
disturbed laminar layer to a fully turbulent layer. Also shown
are the laminar skin friction law and ghe turbulent law proposed
by Coles [Ref. 27] which is a good fit to experimental data. It
is no great surprise that the general levels of skin friction we
computed agree well with experimental findings inasmuch as the

values of o and c¢ were chosen to get these levels correct.

Of more importance ii the nearly exact following of the trend of
skin friction with Reynolds number by the model computations.

Figure 5.15 shows a comparison of the computed mean velocity
profiles developed by the model in the vicinity of the wall and
the well-known law of the wall as proposed by Coles [27]. It may
be seen that the law of the wall is not quite achieved by the
present selection of model parameters. However, the results are
sufficiently accurate to be encouraging.

In Figure 5.16, we compare the experimentally determined
velocity defect law proposed by Coles [27] with the results of
our model computations. It is seen that once the turbulent
boundary layer is well established, the computational model
gives a fairly good representation of the outer regions of the
turbulent boundary layer.

With these results in hand, we must now consider the
relationship of the computational scales used to the longitudi-
nal integral scales that are found in the outer regions of
turbulent boundary layers. For this purpose, we may use the
measurements of Grant [Ref. 28]. When the experimental correla-
tions reported by Grant for y/éO = 0.66 * in a turbulent boundf
ary layer are integrated to give the longitudinal integral scale,
one obtains L/é0 > 0.3. Since for our calculations, 60/6'99 =

0.83, we find that L/& 99 = 0.25. Since the computational scale

¥Grant defined 0o as that height in the boundary layer where the
velocity defect was equal to the friction velocity.
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COMPUTED VALUES FOR
a=2.5 b:0.125 A;=0.15844

1072 — C2=O.| C3:O.l Q=0.443
TABLE II OF COLES
5% 0”3
Ct
LAMINAR
2x1073F
|0—3 l l 1 l J 1 _J
2x104 5%104 108 2x108% 5%103 108 2x108 5x10€
Re,

Figure 5.14. Computed variation of coefficient of friction with
Reynolds number
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COMPUTED VALUES FOR L B

0=2.5 b=0.25 A;=0.15844 a
25r  ¢,=0.1 ¢3=0.l @=0.443 o of

o a
o Rey=0.277x10° o @
20F o Rey=1.62XxI0® . a
6 o a
U/ur A Re,=6.76X10 o a0
15F 0,0
DAO

TABLE IV /o

ok OF COLES e
o
A
5}
A 1 1 —
ol 10 102 103 104
Zu./v
Figure 5.15. Computed velocity profiles for three Reynolds numberé.

Computation started at Rey = 20,000. The reference
velocity u, is defined by Teall - pu,r
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002 0.05 0.1 0.2
Z/Zedge 0.5

Figure 5.16. Computed velocity defects for three Reynolds numbers.

Computation started at Rey = 20,000. ghe reference

velocity u, 1is defined by Twall - puT
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used was Al/é 99 = 0.15, we find that

A,/L =0.6 (5.35)

This 1s a most welcome resulf since it shows that, for all the
turbulent flows we have investigated, the ratio of the proper
computational scale to the longitudinal integral scale is approx-

imately the same.

Some Comments on Second-Order Modeling Technigues

The method of modeling turbulent shear flows which we have
just described was developed, as we have previously pointed out,
in order to attempt calculations of turbulent flows other than
the classical shear layers that were discussed in the previous
sections. The author and his colleagues have applied the model
to the calculation of the decay of a turbulent line vortex [Ref.
29], to the generation of turbulence in the earth's atmosphere
[Refs. 16 and 20], and to the dispersal of pollutants by the
atmosphere [Ref. 30]. Since these computations were carried out
with the original oversimplified constant A model discussed
previously, one must not take the numerical values obtained too
seriously; nevertheless, these computations did give some most
interesting results and insights. Certainly the utility of the
method was demonstrated and it appears that 1t, and others like
it, should be carefully studied and refined in the next few years.
The first order of business should be a continuance of the types
of parameter studiles that we have just described, for as large a
spectrum of shear flows as can be reliably measured. In this
way, we would hope to develop a model with the broadest capa-
bility possible.

It is here that one runs into the difficulties that were .
touched upon previously in connection with the free jet and the
free shear layer. It would be very helpful indeed if the
research community could agree on canonical free jet and free
shear layer experiments which could be performed by several

investigators. The purpose of these experiments would be to
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strive for agreement between experimentalists as to what the
characteristics of such flows were and to explain any discrep-
ancies that might exist. Before very much refinement of
turbulent shear flow models can be accomplished, it appears that
we are going to have to have a more precise definition of what

the models must predict.



6. AN EQUATION FOR THE SCALE A]

Although our work has not proceeded so far as to cocuple
an equation for the scale Al to the rest of the model equations
when making shear layer computations, it is our intention to do
so in the near future. For the sake of completeness, then, we
outline here the derivation of an equation for the scale length

&

We have seen in Section 5 that Al is related to the
integral scale L defined by (5.30). Since this scale depends

on an integral of the two-point correlation

ui(xl)ul'{(x23 = <ui')A<uL'<)B (6.1)

we will start with an equation for this quantity.
Starting with (3.15), equations for (uf), and (ul'{)B
may be written. Much as in the derivation of (3.17), these may

be combined to give

3 ouy o[ 2
§€_<u ) (UQ)B + (uﬁ)B(uj)A §§3>A + (U (U ) 3% 5

+ M(&)W A(HLL’B"‘(GJ)(S—XJ“) () (upp
() G, ey + (&) G,
STchui uJAu 5_x: ujlytusiglygiy

) Paluglp l (g—)B g(Uily

-

k
52 52
* vo<5xj5xj A 1)A(u ) o dx 52. B(ui)A(u&)B

>y 16%)
=
H%1

i k
7 Tpluplg + 7
(@] @]

+

Té(ui')A (6.2)



In this notation, a variable at one point is considered a
constant with respect to differentiation at another point. For

example,

! a_.._ ' = .@__.._ ! t
(uJ)B<5xJ)A(ui)A <5xj)A[(uJ)A(uJ)B] (6.3)

We introduce new variables. Let
1
Vi = 50(x0, + (x)5]) (6.4)
and
(6.5)

L}

te = (g = (%),

In terms of these variables, the contraction of (6.2) can be

written

e S O
+[(ﬁ.) —(ﬁ)]a (ul),(ul) +-l-l;(u') (ut), -
{uy)p gla) SE; Mt T 2 MMB MY A
a(uy) d(u,) d(u,)
14 e L N e —— U}
d(u,)
1 ] i A l a ] ] t

y
S NOTNCID ] v [}u') CHNCID
/24378 B | T SE 1744378 44/

- (ui)A(uj)A(ui)é}=

1 9 ' 1 ] ' 1.9 1 '
20, 3y, [pA(“i)B * pB(ui)A:| " b, 3t [pB(ui)A
] L Yo 32
- pB(ui)B] t s Eyjéyj(ui)A(“i)B

+ 2 éi____( 'Y ( 1) + %l T ( ) + Tr(ul!)
Vo D€, OF 5 i 50 S S5 BN U IV St £ T - D 0
(6.6)
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This equation may now be ‘integrated with respect to gk
from 0 to +« ., The process is discussed in Ref. 31 and the
reader is referred to this paper for more detail. The result-
ing equation is very complex and it is not necessary to repro-
duce it here, since it is clear from the structure of (6.6)
that the simplest model equation for Al , for the case of a
simple parallel shear flow, will be of the form

2

Dg~A
1. 3 I
Dt = - Cjulw'ih,y == (qA 3z Al)
2 q A
Vo 1 g =
+ 3 — (q°A 1) - €32y " +cy 8 T WITTA, (6.7)

Here the C's are constants that remain to be determined by
matching computed solutions with experimental data.

This equation is almost identical to that used by Rodi and
Spalding . [Ref. 15] in their calculation of turbulence in free
jets. There is, of course, an additional term, namely,

g T mr
CM To w'T'A

1

which represents the tendency of atmospheric stability to
increase or decrease the scale of atmospheric turbulence
depending on whether the atmosphere is unstable, with w'T' > 0,
or stable, with w'T' < 0.

It is clear that one might derive equations for a whole
host of scales. For example, equations might be derived for
the integral scale of the temperature fluctuations by writing
the equation for TATé and proceeding as above, or the integral
scale of the concentration fluctuation by use of the equation

for (C&)A(C&)B

How might these equations be used? Since, as we have seen,
we always need to have available in our calculations a length
(or several Al's, 1f a more complicated model of turbulence
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is desired), we could, rather than relate these Al's directly
to some locally defined mean scale of the motion, carry along
equations, such as (6.7) for the required Al's and add these
equations to the group of equations that are to be solved
simultaneously.

Although such a procedure should be the ultimate aim of
any second-order closure scheme, we will not try, in this report,
to couple an equation for the scale Al to the equations for the
second-order correlations. We have chosen to proceed in this way,
as mentioned previously, because it permits one to observe the
sensitivity of the modeled equations to various cholces of Al
An ability to observe this sensitivity has been and contilnues to
be useful in studying the general characteristics of solutions to

turbulent shear flows by 1nvariant modeling.



7. RELATION OF SECOND-ORDER MODELS TO K THEORY

Before we begin a discussion of the calculation of
atmospheric flows using the invariant second-order modeling
scheme that has been described here, it is instructive to relate
this model to the classical eddy diffusivity or K models of
turbulent transport. To do this, we first write out the model
equations [(4.17) through (4.26)] for an essentially parallel
shear flow in the atmosphere; that is, we assume u = u(z) ,
V=0Ry =0, w<u, and 3/9x << 93/9z . The result is

Du _ 3%% _ou'w' (7
Dt 0 522 dz
dp _ 8p T _ dw'w! (7
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Equations (7.1) through (7.5) define the mean variables

u, w, T, C and p . In these equations the second-order

a >
transport correlations u'w' , w'T' , and w'C& appear. In

older methods of turbulent transport calculations, these correla-
tions are related, by analogy to molecular transport, to the
gradients of the mean velocity, temperature, and concentration
fields. This assumption is equivalent to saying that the second-
order transport correlations have no "memory," i.e., do not have
dynamic or rate equations which govern their behavior. This
assumption also implies that the second-order correlations at a
point have no knowledge of what is going on in contiguous elements
in the flow. Since we may look at each of (7.6) through (7.16) as
a rate equation for the particular species in question (in the
sense of chemical kinetic equations), we should be able to recover
traditional turbulent transport theory (eddy transport theory or

K theory) by a suitable limiting process applied to (7.6) through
(7.16).

The suitable limiting process requires the folloWing
assumptions:

(1) Since the dynamics of the correlations (species) are
not important, we will make the assumption that the correlations
(species) are in local equilibrium. That is, we will assume, in
a manner precisely analogous to the assumption of local chemical
equilibrium in a flowing gas, that

D_

Bt =0 (7.17)

(2) In view of the fact that in eddy diffusivity theories
the turbulent transport at a point has no knowledge of the value
of transport at another point, we must neglect all the diffusive
terms in the dynamic equations for the correlations.

(3) Since eddy diffusivity or K theory is a large
Reynolds number theory, we must assume in arriving at our equa-
tions that the Reynolds number is large. We will assume, there-
fore, that |
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(7.18)

Thus, to relate our present model to K theories, we
must seek the equilibrium, nondiffusive limit of (7.6) through
(7.16). Because of the high Reynolds number, nondiffusive, and

equilibrium assumptions, we refer to the resulting equations as

the "superequilibrium" equations.

flow we are studying.

This word aptly describes the

The superequllibrium equations for the correlations are

0 =

(@]
|

o

=+ ou _ q_ o
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(7.20)

(7.21)

N
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(7.

(7.24)

(7.25)

(7.26)

(7.27)
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= dC
0= - wer & _ T 8 . o LT (7.28)
a Jdz dz A1 a
C -
= - T % a4 2
0 2w'C 5o 2b i ca (7.29)

(7.19) through (7.29) are algebraic equations for all of
the correlations. It is easily seen that (7.19) through (7.25)
are a coupled set of equations for the local state of turbulence
and turbulence transport in the absence of pollutants. This
occurs because we have assumed, in the derivation of the basic
equations from which the present set was obtained, that the
pollutants are passive. Knowing the state of turbulence from a
solution of (7.19) through (7.25), we can obtain the vertical
contaminant transport correlation GEWT from a simultaneous
solution of (7.27) and (7.28). The correlation HTEE is obtained
directly from (7.26) once WTﬁg is known and, finally, the
variance of the contaminant fluctuation is found directly from
(7.29).

The solution of (7.19) through (7.29) can be obtained in
a particularly elegant fashion if the following definitions are
introduced into the equations. Let (for the case when Jdu/dz > 0)

= \2 ' — =
T o 2 [ du T 2 du oT
u'u’ = UUAl (BZ ) u'T! = UTAl 3z 5;
T = vl (W : W = wrp 8
113z 1 3z 3z
(7.30)
Twr ! = 2 ?_1_?1_ 2 2 _ 2 §: 2
whwto= WA, (52 ) T = TTA (82)
- 2 2
! ' o= 2 -5—.9— 2 = 2 é.l'.l_
u'w UWA1 (bz ) q QQA1 (az



-7

and likewise for the concentration correlations

Note that

u'c

w'C

[
o

[
o

2

UCA1

WCA

[ AY)

|21

Q>
N

Q
o] |

Q
N

QQ

3C = aC
a YT o 2 3T _ "o
3z CuT' = CTAy 37 32
(7.31)
3T — T\
o '2 = 2 _S._'.
A c CCAl (az )
= Q%= UU + VV + WW (7.32)

Substitution of the definitions given in (7.30) and (7.31) into
(7.19) through (7.29) results

Q(1
Q(1
Q(1
Q(1
Q(1

Q(1

for the atmospheric

we

have

Q(1

Q(1

+ 2b)UU

+ 2b)VV

+ 2b)WW

+ 2b)UW

+ 2b)UT

+ 2b)WT

Q(2b)TT

equations

+ 2b)UC

+ 2b)WC.

Q(2b)CT

Q(2b)CC

in

%3 - 2UW (7.33)
%z (7.34)
%z + 2RiWT (7.35)
- WW + RiUT (7.36)
- UW - WT (7.37)
- WW + RiTT (7.38)
- 2WT (7.39)

while for the contaminant equations,

- UW _ WC (7.40)

- WW + RiCT (7.41)
- WT - WC | (7.42)
- 2WC
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In these equations, Ri 1is the Richardson number

2
Ri gl (%) (7.41)

It is immediately obvious from (7.33) through (7.43) that all the
nondimensional second-order correlations are a function only of
the Richardson number and the parameter b from the second-order
closure model. It will be remembered that the value of b
determined in the parameter search reported previously is 0.125.
It is convenient to express the solution of (7.33) through

(7.43) in terms of the parameter

211/2

p = 1= (4 + 150)R1 + [1 + 2(2 - 9b)R1 + (4 + 90)°Rt

- (7.45)

In terms of this parameter, the various correlations may be

written
a1 R (7.46)
b(1 + 2b) '
yy = (B + DRI[P + (1 + Ub)Ri] + 2b[P + (1 + bIRI] o2 (o 47)
3(1 + 2b)(P + bRi)[P + (1 + 4b)Ri] ‘ ’

_ 1 2

W= sty oy @ (7.48)
- P + (1 + 2b)Ri Q2

W= T )P ¥ (1 + To)RIT © (7-49)
_ b P + (1 + b)Ri Q3

W = -3 v orDP + (1 + Io)RIT ¢ (7.50)

T = b 2P + (1 + 2b)Ri Q2 (7.51)

3(1 + 2b) (P + bRi)[P + (1 +‘Hb)R1]
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_ b 3
WD = - 551 ¥ §5)RIT © (7.52)

= T & (7.53)
Ut = 313 : 25y (P +2£RI)E% : %?)31457Rij c (7.5%)
We = - 3re% AR @ (7.55)
T = ST T IR & (1.56)
cc = L Q° (7.57)

3[P + (1 + Lb)Ri]

It is clear from these equations that when the parameter
P = 0, there is no turbulence (Q2 = 0) and all the second-order
correlations vanish. The critical value of the Richardson number
for which this occurs is a function of b and is given by

. 1+ b
Rlopit = To(I ¥+ 300 (7.58)

For b = 0.125, we find that the critical Richardson number is

R = 1.636 (7.59)

icrit
The behavior of all the nondimensional second-order correl-
ations as functions of the Richardson number are plotted in
Figures 7.1 through 7.5. From these figures the profound differ-
ence between turbulence and turbulent transport in stable and
unstable atmospheres is obvious. Note particularly that the non-
dimensional vertical transport of matter and heat fall off far
more rapidly than do the nondimensional turbulent energy compon-
ents when a stable atmospheric situation is approached. In fact,
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Figure 7.1. Superequililibrium values of the turbulence
components as a function of the Richardson
number for b = 0.125
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Superequilibrium value of the sum of the
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squares of the turbulent velocity fluctuations

as a function of the Richardson number for

b = 0.125 -
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Figure 7.3. Superequilibrium values for shear and longitu=
dinal heat and mass transfer correlations as
functions of the Richardson number for b = 0,125.
Note UT and UC approach the value 1.328 for
Ri=—oo.
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tions as a function of the Richardson number
for b = 0.125
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Figure 7.5. Superequilibrium values for TT, CT, and CC
as functions of the Richardson number for
b = 0.125. Note that these functions approach
the limit 9.387 for Ri = - .
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above a Richardson number of one, vertical turbulent transport
has almost ceased to exist although there is still some atmos-
pheric turbulence.

It should be noted that the superequilibrium results just
obtained specify the nondimensional values of second-order
correlations. For example, assuming the value of b = 0,125 to
be correct, a Richardson number of 0.10 would give

UW = - 0.2712 (7.60)

WL = WC = - 0.2631 (7.61)

The transports of momentum, heat, and matter would then be given
by (for du/dz > 0)

2 /30 V
- pou'w' = 0.2712001&1(—-—32) (7.62)
B 2 du aT
- pocpo wi'T! = O.263lpoA1 5% 35 (7.63)
- 3C
_ 2 du o
pO wlC' = O.263lpOAl % 3z (7.64)

It is clear from these expressions that the actual transport is
not defined until the length scale Al is known. This 1is a
difficulty with atmospheric flows, for unless Al is determined
at a given altitude and the local Richardson number specified
there, the transports are not known. In general, Al will depend
at a given altitude on the Richardson number but can assume a
range of values depending on the past history of the motion.
While this range of values is limited so that the order of magni-
tude of the transport might be determined, there will always be a
variation in transport proportional to the square of the varlation
in Al at any fixed Richardson number,

For classical laboratory flows, this problem does not
exist. In this case, it is generally found that A1 is propor-
tional to the characteristic breadth of the layer under consider-

ation while the gradients are proportional to a characteristic
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velocity, temperature, or concentration difference divided by

this characteristic breadth. Thus, for the classical shear

flows
=\2 Au 2
2 (du 2 char . D
AV ST = 0 —_— = consti{Au ) (7.65)
. (Bz) char ( 6char) \*"char
and likewise
2 du 9T _ A _
A} 57 55 = const Au, . AT, (7.66)
and
3= dC
251,1 Q - - —
Al Syl const Auchar Acchar (7.67)

For each type of flow, these constants are well defined. This
type of simplicity is, alas, not true of the atmosphere,as we
will try to demonstrate presently.

Before considering the problem of the scale Al , it 1s
instructive to compare the results of superequilibrium theory
with certain well-known results from classical turbulent trans-
port theory fTor the case when no gravitational effects are
involved. To do this, we place the Richardson number equal to
zero in the expressions given in (7.45) through (7.57). We
obtain, for b = 0.125,

P = 0.3333 (7.68)
Q° = ———— = 1.7066 (7.69)
31 + 2b)
U = —2F 60 4 7qpy (7.70)
9b(1 + 2b)3 '
VV = WW = 1 5 = 0.4551 (7.71)
9b(1l + 2b)
UW = TW = oW = - —¥37P = -0.2786 (7.72)

9(1 + 2b)3
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ue = .2 = 0.3413 (7.73)

uT
3(1 + 2p)3

1
3b(1l + 2b)

TT = CT CC = 1.7066 (7.74)

2

First we note that superequilibrium theory indicates that

v'v! = w'w' and, further, that
T1g ! TR
ulul ulul U0 Wy 46y =1.75 (7.75)
viv! w'hw! A WwW
Second, we note that the value of - u'w'/qz, which

Bradshaw, Ferriss, and Atwell [Ref. 8] assume to be a constant
equal to 0.15, is defined by superequilibrium theory to be

uw _ 1 o,
-Q—2—-T-—+—2-b-/§-o.163 (7.76)

This is a rather surprisingly accurate result in view of the
fact that the value of b was determined from very different
considerations during the parameter search reported in Section 5.
We may also derive from superequilibrium theory the value
of von Karman's constant « 1in his expression for the turbulent

shear near a surface, namely,

-\2
Ty = -pu'w' =Plc2z2 (g——g—) (7.77)
From our results
' —\2
_ 2 [ou
Tt = - pUWAl (52)
-\2
_ ., _ Y3 3pA§(§-9-) (7.78)
9(1 + 2b) 3z

In Section 5 it was found that near a surface, Al is of
the form A1 = a2z , where the parameter search finds that
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o 0.7. Letting

A B 0.7z (7.79)

we find that (7.78) gives

—1\2
(- LAV () (7.80)
9(1 + 2b) 2

Comparison of (7.77) and (7.80) reveals that

K2 = LAy 3;b3 = 0.137 (7.81)
9(1 + 2b).
or
kK = 0.37 (7.82)

The value of von KArmé&n's constant is actually 0.4. Again, the
agreement between results obtained by taking the equilibrium,
nondiffusive 1limit of our second-order closure model of turbu-
lent shear flow and classical mixing length theory is rather
remarkable.

We now return to a discussion of the scale A1 . We ask
whether superequilibrium theory might give some useful informa-
tion about this scale. The answer is obtained by considering
the equilibfium, high Reynolds number, nondiffusive form of
(6.7). The result is

0 = -C,u'w'A u 3 (7.83)

1 L3, 2bC g

g = mT
At Gy T T

Substitution in (7.83) of the definitions given in (7.30) results
in

0 = - C.UNAS - 2bC 3A§ + CMWTRiA% (7.84)

19wy 39

We note that the scale Ai may be cancelled from this equation.

We may imply from this that the scale of turbulence cannot
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depend upon purely local conditions but must depend to some
extent upon the nearby elements of the flow. In the classical
laboratory free shear flows (which are self-similar), the scale
at two equivalent points is tied to the scale of the mean motion
at these points, because the neighboring regions about these two
points are equivalent; thus the effects of past history and
diffusion are equivalent. This is not so in the atmosphere and,
hence, the scale Al is not well defined.

In dealing with the atmosphere with classical K theories,
we must then not only know the effect of local Richardson number
on the nondimensional parameters UW , WI , WC, etc., but must
also have some general information about nearby elements of the
flow so that -a scale can be determined.

The fact that the scale is undetermined under superequili-
brium conditions is consistent with the experimental results of
Rose [Refs. 33 and 34] who examined the behavior of turbulence
introduced into regions of uniform shear. In these experiments
it was found that the scale length tended to increase contin-
uously as the observation station was moved downstream [Ref. 33]
and that the level of turbulence, when the scale was large
enough so that the turbulence was not dissipated, followed the
scale of turbulence introduced into the shear layer.

A characteristic length used in similarity theory of atmos-
pheric flows is the Monin-Obukhov length defined [see Ref. 32]
as

T T |32
L=~ =2 (7.85)

Kgw'T!

Substitutions of the definition given as (7.30) into (7.85)

gives

3/2 A
_ Low] e (7.86)
WT KRi
If we substitute the expressions for UW and WT from (7.50)
and (7.52) into (7.86), we obtain an equation for the ratio of

L =
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the Monin-Obukhov length to the scale Al , hamely,

b

This relationship is plotted in Figure 7.6.

1/2 [P + (1 + b)Ri]3/2

R
wio

(7.87)
) Ri(P + bR1)372[P + (1 + Ub)Ri]y/?

The singular character of the relationship between L and
Al at Ri = 0 and the very rapid variation of L/Al in the
range of a Richardson number of general interest is apparent.
The results presented are interesting but do not, alas, permit
any further insight into that elusive parameter - the Monin-
Obkuhov length.

For those familiar with atmospheric turbulence, the critical
Richardson number of 1.636 found in this superequilibrium study
is obviocusly too high. We have investigated the cause of this
result in considerable detail. It seems clear from the excell-
ent results of superequilibrium theory for neutral flows that
this method of looking at the model equations is a powerful one,.
Indeed, it has been found that it is an excellent basis from
which to decide upon the basic modeling that is to be used. We
are presently changing our model so that the superequilibrium
limit of the modified model will yield critical Richardson

numbers more in agreement with experimental observations.
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Figure 7.6. Relationship between Monin-Obukhov length L
and the isotropy scale Ay as a function of
the Richardson number as given by superequili-
brium theory for b = 0.125



8. APPLICATION OF SECOND-ORDER MODELING TO THE ATMOSPHERIC
BOUNDARY LAYER

We will now take up the application of the second-order
ciosure mecdel of turbulent flow developed in Sections 4 and 5
tw the problem of computing the atmospheric boundary layer.
Before doing this, however, it is important to point out once
again that the model used contains a minimal number of scale
lengths. It is felt that the results obtained with this simple
model are most instructive. One of the goals of our present
studies is to oktain an answer to the question of just how
sophisticated in the specification of the scale lengths one
rmust get to obtain reliable predictions of the properties of
turbulent flows 1in which the profiles of the mean velocity,
temperature, and concentration are not related in a simple
fashion as they are in the classical free turbulent flows.

To demonstrate the method, we will compute the state of
atmospheric turbulence for several cases of motion in the
atmospheric boundary layer for which measurements have been
made of the mean velocity and the mean temperature profiles
and of the average values of the second-order correlations
uv'u', v'v', w'w', u'w', u'T', w'T', and T'2 These data
obtained for the Air Force Cambridge Research Labqratories

were provided by Messrs. Wyngaard and Coté of AFCRL. The pro-

files of mean velocity and mean temperature for the three cases
considered here are shown in Figures 8.1, 8.2, and 8.3.

To calculate by means of our model the turbulent energy
and the fluxes of momentum and heat associated with these
profiles, we will assume the mean velocity to be parallel to
the surface in the xz plane. Thus, v = w = 0. We will also
consider the motion to be independent of x and y and hence:
a function only of =z (height) and t (time). Consequently,
d/3y = 9/3x = 0, and it is seen that the substantial (total)
derivative D/Dt = 90/9t . The mean velocity and temperature

equations are then analogous to Egs. (7.1) and (7.2) and are
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Figure 8.1. Mean velocity and mean temperature profiles for a stable
atmospheric boundary layer (Wyngaard & Coté, Run 25).
The solid lines are faired through the data points; the
dashed curves are assumed continuations of the
measured profiles for computational purposes.
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atmospheric boundary layer that i1s neutrally stable
except for a small unstable region near the surface

(Wyngaard & Coté, Run 54).
through the measured data points;
assumed continuations of the measured data for

computational purposes.

The solid 1lines are faired
the dashed lines are
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Figure 8.3. Mean velocity and mean temperature profiles for an
unstable atmospheric boundary layer (Wyngaard &
Coté, Run U40). The solid lines are faired through
the measured data points; the dashed lines are
assumed continuations of the measured profiles for
computational purposes.
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- o _— -
i ., 3% _ W _ 1 3% -
5t Vo 3.2 T a2 oo 3x (8.2)
— o —_—

37 3%F  3TET | -

SE VO 522 - Sz + Q (8.2)

In (8.1) the pressure gradient Jdp/dx is included. Addi-
tionally, in (8.2) a term é(z,t) has been added which repre-
sents any local source of heat that might be present in the
atmosphere. The purpose of this term will be explained below.

The equations for the turbulent quantities are identical
with (7.6) through (7.12) except of course that D/Dt = 3/dt
on the left-hand side of all the equations.

In order to calculate the turbulence produced for the
three cases of atmospheric motion given in Figures 8.1, 8.2,
and 8.3, we may proceed as follows. First, we note that the
profiles given were steady, at least on a time scale large
compared to the time required for turbulent adjustment accord-
ing to our model, as will be demonstrated later. If this is
so, we may, in the equations for the double correlations, assume
that u(z) and T(z) are the given profiles. These equations
can then be solved for the time variations of these correlations
assuming any initial distributions for the turbulent correla-
tions themselves. The solution 1is continued until the deriva-
tives of the correlations with respect to time approach zero.
The resulting distributions of the second-order correlations are
then taken to be the appropriate distributions for an atmosphere
whose mean profiles of u(z) and T(z) are those given.
Equations (8.1) and (8.2) may then be solved, assuming du/dt = 0
and 3dT/dt = 0 for the distributions in =z of the driving
force (1/po)(5p/5x) and the heat source é necessary to maintain
the atmosphere in its assumed state.

It is found that the steady state or equilibrium distribu-
tions of the second-order correlations found in this manner are

independent of the assumed initial conditions on these variables.
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For this reason, computations are generally run with a small
level of isotropic turbulence introduced into the system, while

the other correlations u'w', u'T', w'T', and T'2 are assumed
to be zero initially.

These calculations can be illustrated by considering the
case of the almost neutrally stable atmosphere shown in Figure
8.2. Tor this case, we choose the scale length Ay in the
following way. Near the surface (the flow is unstable only
very near the surface), we choose Al = 0.7z in accordance
with the findings of our parameter search for the incompressible
boundary layer. Also in accordance with the parameter search
for the flat plate boundary layer, we take Al constant in the
outer layers of the atmospheric boundary layer and, as a first
guess, equal to 0.15 times a characteristic height of this layer.
This is a somewhat difficult and arbitrary dimension to choose
since the actual measurements of the mean velocity profile do
not permit such a height to be chosen, and one must do the best
one can with a continuation of the measured data. For this
case it would appear that a characteristic height might be
chosen as something like 110 to 120 meters. For this reason,
we take, as a first guess at the scale length in the outer
region, Al = 17 meters. With these assumptions, a computation
of the turbulence and transport properties of the atmospheric
boundary layer may be made according to the scheme outlined
above. The results obtained are shown by the solid lines in
Figures 8.4 and 8.5. It is seen that the order of magnitude of
all quantities is estimated correctly. The agreement between
the calculated and measured values of u'w' and w'w' is
reasonably good. The agreement for u'u' and V'v' is not
so good. It is interesting to note in this regard that the
magnitudes of u'u' and Vv'v' as measured are alike,with viv'
more than twice w'w' . In view of the structure of the govern-
ing equation, this latter experimental result is certainly

surprising. The agreement between the measured results and

computed values for the temperature correlations u'T', w'T',
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and T'2 1s poor. The measured correlations are, however,

very small and the accuracy of these results may be somewhat
questionable. For example, the measured vertical heat flux

correlation is constant with height and extends far past the
region where any significant potentlal temperature gradient

exists. .

An idea of the sensitivity of the computed results to
the choice of the outer or maximum value of Al can be had by
referring to the dashed lines in Figures 8.4 and 8.5. These
results were obtained for an outer Al of 30 meters. The
a = Al/z near the wall was maintained at 0.7. It 1s seen that
there is not a great change in the computed results below a
height of 20 meters, as might be expected, since the Al 's in
both cases are equal below 17/0.7 = 24,3 meters. For the
temperature correlations, there is essentially no chance since
all potential temperature gradients are confined to the region
below 24.3 meters.

An idea of the sensitivity of the computed results to the
choice of a = Al/z near the surface can be had by reference
to Figures 8.6 and 8.7. Here the results shown by dashed curves
were obtained with Al/z = a = 1.0 near the surface and
A1 max - 17 meters. For reference the results obtained with
a= 0.7 and Ay max - 17 meters are again shown as solid:
curves. The effect of increasing a 1is very pronounced, as
might be expected. It 1s interesting to note that even with
this choice of parameters it was impossible to match the magni-
tude of Vv'v' and the temperature correlations. The magnitudes
of u'w' and . w'w' are now greatly overpredicted. Before making
a comment on the accuracy of these results, 1t will be well to
compare computed results for the profiles shown in Figures 8.1
and 8.3 with experimental data. First, however, some further
discussion of the results that have been presented is in order,

First we note that the effect of increasing o is to in-
crease the level of the correlations near the surface. For a

fixed A1 max ° the effect of increasing a 1s generally to
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draw out and sharpen the maxima of the correlation distributions
near the surface. Second, the effect of increasing A1 max is
to increase the correlations in the region above the height

given by A /a . Both of these results are expected in view

1 max
of the very strong role played by the scale A in the super-

equilibrium theory discussed in Section 7. '

We may obtain information about the dynamics of atmospheric
turbulence from the details of the steady state computations that
are carried out to obtain the curves shown in Figures 8.4 through
8.7. Figure 8.8 shows the behavior of the shear correlation with
time at two heights for the computations shown in Figures 8.4 and
8.5 with a=0.7 and Ay . = 17 meters. It is seen that
the shear correlation, starting from a zero value, has been able
to reach a near-equilibrium value in about 20 to 40 seconds.

This characteristic time of the atmospheric profile in question

is most interesting, for it indicates that the correlations should
be able to track, in the sense of approximating the equilibrium
solutions, changes in the mean profile which are accomplished in
times large compared to 20 seconds. Since the measured mean
profiles under consideration were essentially constant over a
period of the order of thousands of seconds, one would expect

that equillibrium calculations such as those we have made should

be permissible. '

Let us now turn to the effect of coupling the equations for
the mean profiles to the equations for the second-order correla-
tions. We may investigate this for the case we have been
considering by choosing an appropriate A1 max and «, computing
out to equilibrium with the mean velocity and temperature pro-
files fixed, and then using the resulting turbulence profiles as
initial conditions for considering the coupled equations. As an
example of such a run, we consider the results shown in Figures
8.9 and 8.10. Here an equilibrium solution for the case shown
in Figure 8.2 was obtained for the case when a = 0.7 and
A = 15 meters. This result is shown as the reference lines

1 max
in Figures 8.9 and 8.10. With these initial conditions, we then
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ran with all of the equations solved in a coupled mode for a
time of the order of the characteristic time of the turbulence,
namely, 10 seconds. A uniform driving force of 2 millibars/
100 kilometers was assumed to act. The results of this computa-
tion are shown as the solid lines in Figures 8.9 and 8.10. It
is seen that for this case a very small change in the velocity.
profile. caused a rather significant change in the distributions
of the turbulent correlations close to the surface, i.e., within
the first 5 meters. There was essentially no effect on the
correlation profiles above a height of 10 meters. The results
are identical for the mean temperature profile and the profiles
of the temperature correlations although plots of these results
are not presented. Additional calculations similar to those just
discussed have been carried out for somewhat different conditions,
including an attempt to add effects of surface roughness to the
model., While these studles are not yet complete, it appears that,
except for a region very close to the surface, it is possible to
estimate the turbulent structure of an atmospheric boundary layer
on the basis of an equilibrium solution, knowing the mean
velocity and temperature profiles. Near the surface, this is
also possible but, in this case, it is absolutely necessary to
have some adequate model of the effect of surface roughness. A
method for including the effects of roughness will be developed
in Section 12 of this report.

We turn now to the calculation of the state of turbulence
for the velocity and temperature profiles shown in Figure 8.1.
For this case of a stable atmosphere, it is found that, if one
assumes o = 0.7 as seemed appropriate for neutral atmospheres,
and if, further, one assumes Al max of the order of 0.15
times an estimate of the shear layer thickness, one greatly
overestimates the level of turbulence and the magnitudes of the

turbulent transport correlations. The answer is, as might be



8-17

expected, that the stable character of the atmosphere has greatly
reduced the scale of the turbulent motion compared to the scale
of the mean profiles. A search for values of o and Almax
which gave reasonable agreement of the computed results with
experimental results yielded the values of o = 0.5 and

Almax = 5 meters. The equilibrium distributions computed for
these values are shown in Figures 8.11 and 8.12. It can be seen
that this choice of parameters gives the correct magnitude of

all the correlations. In this case, the vertical heat transfer
correlation w'T' as well as the turbulent shear and vertical
velocity fluctuations are in agréement with experimental results.
The temperature correlation u'T' is underpredicted, while 712
is overpredicted. ‘

The mean profiles for the case of an unstable atmosphere are
given in Figure 8.3. Results of such calculations are shown in
Figures'8.13 and 8.14. Here, reasonable agreement between experi-
mental results and computations was found when o = 0.7 and
was téken to be 30 meters. The results show that all

A max
correlations. are predicted within an order of magnitude. The

predictions for w'w' , w'T' , and ETZ are good. That for u'w'
is of the right magnitude, but the predicted distribution is poor.
The predictions of u'u' and v'v' are low, as they have been in
all cases. Of particular note here is the fact that the ekperi-
mental results show Vv'v' to be larger than w'w' for an un-
stable shear layer! This is difficult to understand on the basis
of the equations of motion, and there is certainly no way the
model equations can yield this result. It 1s conceivable that the
large values of u'u' and v'v' that were measured might have
been due to a very slight torsional oscillation of the measuring
tower. A comment 1s in order concerning the distribution of

u'w'. For this unstable case, the fairing of the mean velocity
profile between the data points has a profound effect upon the
outcome of the computations in view of the very large changes 1in
the value of du/9z that can result from the different fairings.
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Steady state distributions of the velocity correlations
for the profiles of mean velocity and temperature
given in Figure 8.1. Near the surface, Al/z = g = 0.5
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tions for the profiles of mean velocity and temperature
given in Figure 8.1. Near the surface, Al/z = a = 0.5

and Al max = 5 meters.
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Steady state distributions of the velocity correlations
for the profiles of mean velocity and temperature
given in Figure 8.3. Near the surface, Al/z = q= 0.7
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Steady state distributions of the temperature correla-
tions for the profiles of mean velocity and temperature

given in Figure 8.3. Near the surface, Al/z =a = 0.7

and A.1 max - 30 meters.
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Such fine points are rather academic in view of the profound
effect of stability on the scale Al max We note here that
A is, for this unstable case, far larger in relation to

tiemiﬁaracteristic thickness of the mean profile than it was for
the neutral or stable case.

From the results presented above, it is clear that one will
need a great deal of reliable and detailed experimental data on
the atmospheric boundary layer if a completely satisfactory
model is to be developed. Some of the work of developing this
model to its ultimate form can be done by considering laboratory
flows in which different gases are mixed in classical free jet
and free shear layer experiments. Some headway can be made by
considering the case of the compressible turbulent boundary
layer. In the long run, however, it is golng to be necessary. to
have many good sets of data from feal atmospheric boundary layers
if a high degree of confidence in the detailed prediction of any
such model is to be developed.
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9. DISPERSAL OF POLLUTANTS FROM A LINE SOURCE

We have already seen in Section 3 that the equations for
the dispersal of a pollutant in a turbulent medium, under the
assumptions made in this study, are decoupled from the
equations for the generation of the turbulence field itself.
If, then, one is given or can cdmpute the turbulent structure
of the earth's boundary layer, one can use the equations given
in Section 3, namely, (3.33), (3.38), and (3.39) to compute the
mean concentration field of the species o downstream from
some source of pollutant. The uncoupled equation (3.40) may be
solved at the same time for the varlance of the concentration
fluctuations 0&2 . In this section we will demonstrate the
nature of such calculations by discussing the dispersal of
pollutants downstream of a line source for a few specially
chosen cases of turbulent motion,

Let us assume that the mean and turbulent velocity:and
temperature fields are steady and of the form u = u(z),

V=0,w=0,T-=T(z), ujuf = ufuf(z), wT" = ufT'(z), and
2 2 | * |
T'" = T'"(z). These are turbulent fields similar to the equi-
librium atmospheric motions discussed 1n the previous sectlon.

Let us further assume that at x = 0 and iIn the vicinity of

the height =z = Z> there exlsts a line source of a single
pollutant species o =p . Thus, at x = 0 we willl assume
that pollutant is introduced into the velocity fileld u(z)
through the existence of an initial distribution of pollutant
6b(x,z) given by

Cp(O,z) = Cpo(z) (9.1)

This assumption requires us to specify, since [ C_ = 1, that
o

o
the background or atmospheric species has, at x = 0 , the
distribution '

Cao = Ca(O,z)=l - Cpo(z) (9.2)
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We should note here that it is quite possible, using the equations
we have developed, to assume that at x = 0 the distribution of
u 1is disturbed by the introduction of pollutants. In this case,
we must solve for the mean and turbulent velocity and tempera-
ture fields downstream of x = 0 which are now of the form
u(x,z), T(x,z), E;ﬁ;(x,z), etc., before calculating the dispersal
of pollutants in this turbulent field. In what follows, in order
to keep the exposition of the method as simple as possible, we
will neglect the effect upon the background turbulent field of

. the introduction of the pollutants. In this case our problem
becomes that of solving for the mean fields Eb(x,z) and
052(x,z) by using (3.33), (3.38), (3.39) and. (3.40) when the
mean and turbulent velocity and temperature fields are known
functions of =z . Before displaying the forms that (3.33) and
(3.38) through (3.40) take for the particular problem we have
set, we will make one more simplifying assumption.

This final assumption is the usual-thin layer or boundary-
layer assumption; i.e.; that the gradients of varlables in which
we are interested are far larger in the =z direction than in
the x direction. Thus, in the equations, we will neglect
derivatives with respect to x compared to those with respect
to z . Since we are dealing with the dispersal of a line source
located on the line x = 0, z = zo in a flow for which deriva-
tives with respect to y are zero, we may also set 3/3y = 0 in

our equations. With these assumptions, our equations become

2

_3C 3°C .
P _ E___ (Kl
Y 3% Vo 3 2 3z " Cp (9.3)
zZ
dw'C —= oC. -, 9C!
3 D _ _ ¢ p_?__( '21>_L_3___ SiET p’ P
Y 3% W 9z 5z \ " Cp g 3z (p Cp) * Py 3%
1 82w'C' dw' oC!
fnal 1 ! —
tFECT v, L2 2V 3%, X (9.4)



9-3

aCcIT! = aC.
= = aT _P _ 9 (=@
u 3y = - w'Cé Sy " w'T! 55 " 3z (w'C!'T?")
8% 3CT i,
I ———33 (9.5)
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To this point, our equations are exact. In order to solve
our problem, we introduce the models discussed in Section 4
into (9.4), (9.5), and (9.6) to obtain a closed set of equations.

The modeled equations are

_aw'c! aC 3 aw'C’ 9
- = w'lw! — —_
U = W' 555+ 5 {(2A2 Mg 55 2} A wies
3%WTCT T7
L ST 4y oo By LB (9.7)
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3°CTT CrT
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In these equations, we recognize the scales Al’ A2, A3,
and A that were used in the equations which generated the
turbulent velocity and temperature fields. In what follows we
will use the same general model form as was used in the turbulence

calculations; namely, A2 = A3 = O.lAl and

A= Al// 2.5 + 0.125ReA (9.10)
1

but we will investigate the consequence of various choices of the

scale Al . In Section 4 it was pointed out that to choose A

the same for both the calculation of turbulent velocity and

1

concentration fields would, of course, be the simplest choice.
Thus, following our rule of trying to find the simplest model,
the consequence of such a choice should be studied. It 1s not
hard to argue that this might cause some difficulty in the
calculations. Consider, for example, the introduction of a thin
stream of pollutant, say of the order of 0.1 meters thick, into
a region of the atmosphere where the integral scale L of the
velocity fluctuations was known to be of the order of 30-meters.
Since Al for this velocity field is of the same order as L R
we might guess that some difficulty would be experienced in the
use of so large a Al in the equations for the concentration
correlations. On the other hand, if the thickness of the pollu-
tant layer was much larger than the scale of the atmospheric
turbulence, it is difficult to see how the scale of, say, the
velocity-concentration fluctuations could exceed by very much
the scale of the background turbulence. With these preliminary
thoughts 1In mind, let us turn to some actual calculations to see
Just how the choice of A1 affects the solution of our equations.
To do this, let us consider a special case of turbulent
diffusion. Let us consider the diffusion of a line source of
pollutant into a region of homogeneous isotropic turbulence in
a neutral atmosphere that is moving by the source at uniform
velocity, i.e., u(z) = constant.  We will consider the conse-

quences of making three choices of Al
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(a) Al is a constant and'équal to the Al of the back-

ground turbulence into which the pollutant is dispersed.
(b) Al is proportional to the half-breadth of the
concentration profile. 1In the calculations presented here, Al

is taken equal to the half-breadth defined as the distance

between the 2z for C_ = 3/.4C and the z for C_ = C /h.
p Pmax p Pmax
(c) A1 is proportional (equal in these calculations) to
the half-breadth of the concentration profile while the A1 SO

defined is less than the background Al and thereafter is

constant and equal to the background A1

For the purposes of these expository calculations, we have
chosen a background Al ~equal to 15 meters. The turbulent fleld
is assumed to pass the line source of pollutant material at 10
meters per second. The initial mean concentration of pollutant
at x = 0 is taken to be a Gaussian profile with Eb(o,zo) =1
The ratio of the square root of the second moment of this distri-
bution to the zeroth moment was chosen to be 1 meter. This
results in an initial half-breadth of .929 meters. It was
assumed that at x = 0 the background turbulent field extended
throughout the region occupied by the initial distribution of
pcllutant. In addition, it was assumed that initially H;Eg =0
and 052 = 0

Some results of solving for the mean concentration field
downstream of the source described above in a turbulent field

1/2 “—H\1/2 / 1/2 _
having <u'2) = <V'2> = &w'2> = 0.1lu are given in

/

FPigures 9.1 and 9.2. These calculations were made under the
assumption that A was constant and equal to the A of the

1 1
background turbulence, namely, Al = 15 meters.
Figure 9.1 exhibits the behavior of the maximum concentra-
tion of pollutants abmax downstream of the source at x = 0

Figure 9.2 depicts the mean concentration profiles at various
distances downstream of the line source. It will be noted in
FPigure 9-.1 that very little reduction of concentration is appar-

ent for some ten to twenty meters downstream of the source.
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This is because we have assumed that no turbulent transport
WTE; existed at x = 0, and the dynamic equations for the
production of this turbulent transport are such that for a mean
concentration profile with a spread of approximately 1 meter
and for a turbulence level of roughly 1 meter/second, it requires
of the order of 1 second for the turbulent transport terms to
adjust to their proper values. In the region from 60 to 300
meters downstream of the source, the decay of the centerline
distribution is rapid and approaches a rate somewhat greater
than x ' . At some U420 meters downstream of the source, the
half-breadth b of the concentration profile is equal to 15
meters. For larger distances than this, the rate of decay of
the centerline concentration continues with the x~' behavior.
Eventually, when the half-breadth of the profile is considerably
larger than the Al used in the computation, the rate of decay
of the centerline concentration'falls off as x 2. This sort
of behavior i1s to be expected at large distances from the source
and has been observed in experimental studies [Ref. 35]. We
will defer a detailed discussion of this phenomenon to the next
section when we will discuss dispersion from a point source.
Here we will take up the mid-range behavior of pollutant disper-
sal following the period of initial formation of the turbulent
exchange correlation WTEE .

To what do we ascribe the unrealistic behavior of Cpmax

in the mid-range 100 < x < 300 meters where the decay of

Ebmax is greater than x~'? This behavior has been traced to
the unrealistic profiles of Eb that are initially generated
due to the choice of A, = 15 meters in Egs. (9.7), (9.8), and

1
(9.9) when the half-breadth of the concentration profile is

consderably less than this figure, These unrealistic profiles
are evident in Figure 9.2. Note in this figure that for x = 100
meters and for x = 336 meters, the concentration profiles have
a bump or '"nose" near the region of maximum concentration. It

is the elimination of this unrealistic nose in the region between
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100 meters, where it is very pronounced, and 336 meters, where
it has almost been eliminated, that causes 6bmax
faster than x_'. Once the half-breadth of the pollution profile

has exceeded 15 meters, this difficulty is eliminated and the

to decay

concentration profiles behave properly.

A close examination of the details of the computation of
the profiles in the formative and mid-range regions of concentra-
tion decay was made. This examination showed that the cause of
the unrealistic profiles and decay behavior was the existence of
too much diffusion in the equations for the correlations in the
formative and mid-range regions of decay. The amount of this
error was dependent on the ratio of the Al ‘used in the calcula-
tions to the local half-breadth of the concentration profiles.
For this reason, a second solution of this dispersal problem was
run under the assumption that the Al_ in the calculations was
always equal to the local half-breadth b of the concentration
profile. The results of such a computation are shown in Figures
9.3 and 9.4,

From Figure 9.3, we see immedliately that after a formative
distance of the order of tens of meters, the decay of the maximum
concentration of pollutant approaches a decay rate exactly
proportional to x~ ', By extrapolating this decay rate back to
Ebmax = 1, one obtains an effective source position X4 of
26.5 meters which is really indicative in these calculations of
a characteristic time for the formation of turbulent transport
correlations, namely, xo/ﬁ as 26.5/10 = 2.65 seconds.

Examination of Figure 9.4 shows that with the present choice

of A no difficulty in profile shape is encountered. We do

1
note, however, that this choice of Al will never permit a far
region decay where Ebmax 1s proportional to x_L/z. Since we
wish our decay rates to ultimately approach X_L/z as well as

behave properly in the formative and mid-ranges of decay, it
appears that the proper choice for Al is that Al be propor-
tional to the concentration half-breadth b for all cases when
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b 1s less than the Al used in the background turbulence

computations and equal to this background A1 when b is

much larger than ./\.1

At this point it would appear that it is necessary to

abandon the assumption of a universal Al for all the correla-

tion equations and distinguish between the Al 's 1in the

equations for the various correlations. Therefore, we will
identify a different A1 for the concentration correlation
equations, say, Alc , and foy the background turbulence, say
Alt . In terms of these new definitions, we may write the
choice of Alc that has been suggested previously as follows:
Ay, = b for b < kAlt and Ay, = kAlt for b > kAlt
In Pigure 9.5 we show the behavior of the maximum concentra-
tion for the problem that has previously been discussed, using
the above-noted choice of Alc when the constant of proportion-
ality k Dbetween Alc and Alt is one. This figure shows the
kind of. decay that we desire. After a formative period of decay
which depends entirely on the initial conditions applied to the
problem, a mid-region of decay is found where Ebmax falls off
-1

as x . At very large distances, C.
o Pmax

rate of x . We will not present here a separate figure

approaches a decay

showing the concentration profiles for this case since, as might
be expected, the profiles are identical to those of Figure 9.4
for most of the range of x considered.

It may be instructive to compare the results of all three
of the calculations we have just discussed. Figure 9.6 shows
the behavior of Ebmax(x) for each of these calculations. The
results shown in this figure may be compared with those shown
in Figure 9.7 where we have plotted the results of pocllution
dispersal computations using the three Alc models for the case

of a higher relative level of turbulence, namely, u = 10 meters/

= e
second and Ju'? =/v'?2 =/w'? = 3 meters/second. It is easy to
see that while the effect of higher turbulence level affects the
rate of spread, it does not affect the general character of the

solutions.
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Before going on to present a calculation of the dispersal
of pollutants for a more realistic atmospheric condition, a
presentation of the nature of the solutions for the second-order
correlations C'w' and C'° is in order. Figure 9.8 exhibits
plots of both Cp and Céw' at 100 meters from the source for
the calculations presented 1in Figure 9.3. For this same condi-
tion, the variance of the fluctuation in pollutant mass fraction
052 1is shown in Figure_9.9. Note that the actual variance is a
maximum near where the transport of pollutant is a maximum. If
one computes the ratio of ¥ Egi to Eb , 1t is interesting to
ncte that this ratio has a value of 0.847 at the point where
052 i1s maximum. As the mean concentration faiii off towards
the outer edges of the sheet of pollutants, v C!? falls off
less rapidly than Eb so that the ratio of Céz/ab tends to
approach large values. This is what is to be expected when
there is an occasional "blob" of pollutant in an otherwise
unpolluted background. This behavior of v 6;7/5b is also
shown in Figure 9.9.

Having studied the nature of diffusion calculations by
second-order modeling for a very simple case, let us now turn to
the calculation of pollutant dispersal from a line source under
more realistic conditions. Let us consider an atmospheric
boundary layer having the mean velocity and mean temperature
distributions shown in Pigure 9.10. We have assumed that a
stabilized region exists in the region between 88 and 140 m
above the earth's surface. Also shown in Figure 9.10.is an
assumed distribution of the background turbulence scale Alt
In order to calculate the dispersal of pollutants in this layer,
we first compute the field of atmospheric turbulence produced by
this combination of conditions. To do this, we use the methods
described in Section 8 to obtain profiles of all the turbulent
correlations necessary for the solution of Egs.(9.3), (9.7),
(9.8), and (9.9). The results of such calculations are shown in
Figures 9.11 and 9.12. With these results in hand, Egs. (9.3),
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(¢.7) and (9.8) may be solved simultaneously for the mean
concentration of pollutant Eb(x,z) downstream of a line source
located at x = 0 and 2z = Z,

As in our previous calculations, we assume an initial
scurce of pollutants that has a Gaussian distribution with
Ebmaéo,zo) = 1 . The half-breadth of this distribution is again
assumed to be .929 meters.

In view of our experience with the spread of pollutant into
uniform turbulence where, for pocllutant spreads less than Alt s
we found that Alc must be chosen proportional to the spread b
rather than equal to Alt , we may anticipate a difficulty with
the computation we are contemplating. Since the spread above
and below the maximum concentration will not remain equal because
the problem is no longer symmetric, we must have a way of choosing
Alc differently on the two sides of the concentration profile.
We have selected a method for doing this which appears to be
appropriate for the problem under discussion here, as well as for
mere complex pollutant concentration distributions. Consider for
the moment the concentration distribution shown in Figure 9.13.
This distribution has five extrema: 2 maxima, 1 minimum, and 2
zeroes. The range of z 1s broken into 4 regions which are
defined by the ranges of z separating these extreme values. In
each region, Alc is assumed to be constant and equal in magni-
tude to the distance betwien where the change in Cp is 0.25
and where the change in Cp i1s 0.75 times the change between the
two extreme values that define the region under consideration.
The Alc so defined are identical to the half breadth b
when this method is used for the symmetric dispersals we have
discussed previously, and we will use it for the computation under
conslideration here.

Figure 9.14 shows the behavior of solutions for the mean
concentration profiles downstream of the line source we have
discussed when the pollutants are injected into the atmospheric
boundary layer described in detail by Figures 9.10 through 9.12,
Note that the spread is initially almost symmetric, but at
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distances of the order of 500 meters from the source which is at
a height of 50 meters, the ground has played an important role

in increasing the levels of concentration. Between 500 and 2000
meters from the source, it 1s easy to see that the region of
stable air has formed an effective 1id on the dispersal of
pollutants, and the distribution of pollutants has become almost
uniform below this stable region at 2000 meters from the source.
In order to see a significant decrease in this level of pollutant
concentration, the computations would have to be run to enormous
distances downstream from the scurce because of the very slow
leakage of pollutants through the stabilized region. Indeed, for
strongly stabilized regions, calculations such as those described
here show that the only real hope for reduction of pollution
levels is a change in atmospheric conditions.

It is hoped that this brief description of the calculation
of pollutant dispersal by invariant modeling of the second-order
correlation equations has served to demonstrate the power of this
new method. While there are several improvements that must be
added before this second-order closure method can be considered
complete, there is no question but what the model will enable one
to make computations of pollutant dispersal for a number of cases
for which no reliable methods have been available in the past.
Before discussing what some of these improvements in the. overall
model might be, we will complete our discussion of pollutant
dispersal by considering the problem of dispersal from a point

source of pollutant.
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10. DISPERSAL OF POLLUTANTS FROM A POINT SOURCE

In this section we will consider the dispersal of pollutants
from a point source. We will assume that the background atmcs-
phere is given. For atmospheric boundary layers, we may again

use solutlons of the form used in the previous section, namely,

|CI

=u(z), v=0,w-=0, ujup = uiu&(z), ufT’ = uiT'(z), and
12 2 T’2(z). If we consider a point source of pollution for

3

such flows, the distribution of pollutant downstream of the

source is steady (if the source is steady) and is of the form

Eb = Eg(x,y,z). If we again make the boundary layer or, in this
case, the thin plume assumption, we may neglect derivatives of quan-
tities with respect to x 1n comparison with the same deriva-

tives with respec¢t to y and z . In this case the equations

which govern our problem are

— o o
aC 9 C 3a°C
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A digital computer program has been developed which can
simultaneously solve (10.1), (10.2), (10.3), and (10.4) for the
mean concentration Eb(x,y,z) downstream of a steady source when
the background mean and turbulence fields are known. In the
process, of course, the distributions EEVT(x,y,z), GEWT(x,y,Z)
and CéT'(x,y,z) are obtained. With these_results in hand,
(10.5) may be solved for the distribution Céz(x,y,z).

As is the case for the other digital programs mentioned in
this report, an outline of the numerical techniques used to
construct the program is given in Appendix A which is dedicated
to this subject. Here we must note that the program required to
accomplish this task is a very large one and, in its development
and check out, an uncommonly large number of "bugs" emerged.

Mcst of these bugs have been eliminated, but the program is not
yet operational in all possible modes and options. 1In particular,
the existence of the cross-derivative terms in the equations for
the second-order velocity-concentration correlations still leads
to certain difficulties in obtaining smooth solutions.

We may demonstrate the nature of the solutions that are
generated by second-order modeling at this time, however, by the
choice of a special turbulence model. It is clear from an exam-
ination of (10.2) and (10.3) that if we choose a turbulence model
in which A2c = O.lAlC and A3c = - AQC, the cross-derivative
terms in (10.2) and (10.3) are eliminated. This assumption, for
the two-dimensional concentration layers studied in the previous
section, has an effect almost analogous to making A2c and A3c
somewhat smaller compared to Alc than the usual value of 0.1.
For this reason, it is felt that the solutions that will be
discussed below are representative solutions and should exhibit
the nature of pollution dispersal solutions generated by invariant
modeling techniques. At present, every effort is being made to
clear up the difficulty that is occasioned by the retention of the
cross-derivative terms in the equations. It is hoped that this

difficulty will be resolved in the very near future.
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To examine the nature of these solutions and to enable one
to compare the results of computations of both line and point
source dispersal, we shall compute the dispersal of an initially
Gaussian concentration of pollutants into the same homogeneous
and isotropic turbulent background atmosphere that was used in
the calculations presented in Figure 9.5. For this case,

10 meters/second, u'2 = v V'2 = w'2 = 1 meter/second,

u
and Alt = 15 meters. We will again assume that no transport
correlations Cév' or Céw' exist at x = 0 . The initial
Gaussian profile used has the same half-breadth as before, namely,
0.929 meters.

In Figure 10.1 we show the behavior of the maximum concentra-
tion Ebmax as a function of distance from the source of
pollutants. For the case shown here, in order for the results to
be comparable to one of the line source dispersals presented in
Figure 9.5, we have again chosen Alc = b for Alc < Alt and
Alc = Alt for b > Alt . It is seen from Figure 10.1 that after
an initial formative stage of essentially the same duration as that
for the line source, the maximum concentration drops off as x_2.
In this mid-region of decay, the half-breadth of the plume is less
than Alt . At a point x = 429 meters from the source, the half-
breadth becomes equal to Alt . Shortly thereafter, the fall off
in Ebmax becomes proportional to x—l . This is analogous to the
behavior found for the line source when Cpmax as initially propor-
tional to x_l and finally proportional to x_l/2 . In both cases,
this behavior is due to the fact that the half-breadth of the sheet
or plume in question grows initially as x and finally as xl/2
In Figure 10.2, we show this behavior for both the line source and
the point source by plotting the effective spread o, of the sheet
or plume of pollutants as a function of x for the same background
furbulent conditions used for Figure 10.1. Here o, is defined as
1/2

—00 2
[T (z - ZO) Cp(x,O,z) dz

g = |22 (10.6)

4 co
i Cp(x,O,z) dz

~oo
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Figure 10.1. Decay of pollutant concentration downstream of a point source
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The results shown in Figure 10.2 show the very great similarity
between the spreading rates for line and point sources that is
predicted by the present model of turbulent diffusion.

In Figure 10.3 are shown the central mean concentration
profiles for this case of point source dispersal. Figure 10.4
shows the behavior on a traverse through the center of the plume.
of Eb(z) and ESWT(Z) at 100 meters from the source.

We may compare the results of computations such as those
just presented with experimental data. In Figure 10.5, we have
plotted the behavior of the spread of pollutants downstream from
the source we have described for three cases of atmospheric

turbulence: 065 = 2, ceﬁ = 1, and ceﬁ = 0.2. Here

Oy = u'2/ﬁ = V'2/ﬁ = w'2/ﬁ . The results of these computa-
tions are compared in Figure 10.5 with the experimental results
of Fuquay, Simpson, and Hinds [Ref. 35]. It is seen that the
rates of spread predicted by the computations are within a factor
of two of the experimental results in the mid-range of decay. The
departure of the computed results from experiment for breadths
greater than 15 meters might be due to two causes. It might be
that the background scale of turbulence Alt was greafter than

15 meters or it might be, if Alt is actually of the order of

15 meters, that one must assume that the proper Alc to use in
the computations should be equal to the half-breadth of the plume
until Alc is quite a bit larger than Alt before setting Alc
equal to a constant times Alt . In view of our calculations of
atmospheric turbulence in Section 8, it would appear that Alt
for the experiments in questions was not greater than 15 meters.
We must therefore conclude that the second reason for the depar-
ture 1s the correct one. In future studles it will be necessary
to pin down the precise point at which‘the scale Alc departs
from the half-breadth b and becomes proportional to the scale
of' the background turbulence and to determine the magnitude of
this constant of proportionality.
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Figure 10.1
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11. CRITIQUE OF ATMOSPHERIC TURBULENCE AND POLLUTION DISPERSAL
CALCULATIONS

In the previous three sections, we have outlined the charac-
teristics of a new method of handling the computation of the
structure of atmospheric turbulence near the surface of the earth
and the dispersal of a passive pollutant in such a turbulent field.
It is clear that in order to carry out such calculations, it is
necessary to know the magnitude of certain scalar lengths (the
Al 's) that enter into the formulation of. the equations for the
second-order correlations necessary to calculate the mean fields
of velocity, temperature, and species concentration. It was
pointed out in Section 6 that it is possible to obtain equations
for these lengths that can be solved simultaneously with the sets
of' equations we have solved in the previous three sections so as
to have a closure of the turbulent problem. - The construction of
such equations and their incorporation into our computational
programs is, of course, an item of high priority in the further
development of our method. For the time being, however, we will
continue to study the nature of turbulent flows by invariant
second-order modeling under the assumption that we can find suit-
able scales associated with the distributions of the mean
variables u , T , and 5& that will enable us to make meaning-
ful calculations of turbulent flows that are of importance in
engineering and which have heretofore been intractable. In all
the problems, except one, that we have discussed 1in the previous
sections, there have always been lengths associated with the mean
profiles that were avallable on which to base the Al 's that are
required for the computations. For a free jet and a two-dimen-
sional shear layer, there were the half-breadths of the layers in
question. For the classical boundary layer, the boundary layer
thickness was availlable. Near a solid surface it was shown that
the A1 's 1involved must behave in a particular manner, namely,
proportional to the distance from the surface. For the spread of
a pollutant, we always have available a local breadth associated
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with the mean concentration profile. Only in the case of the
atmospheric surface layer, as studied in Section 8, was there no
scale available on which to base a calculation as one moved away
from the surface to a region where Al was no longer proportional
to 2z , the distance from the earth's surface. Surely there must
be some appropriate length. It is not the Monin-Obukhov length,
for this length does not determine a solution but merely correlates
solutions once the magnitudes of heat transfer and shear are known.
The answer to this question is not to be found in the equations we
have studied to date. It must be sought in the more complete
equations that govern the motion of the atmosphere on our rotating
earth. Indeed, the missing outer scale required for the surface
layer calculations discussed in Section 8 must be determined by

the balance of centrifugal (Coriolis) and pressure forces that
determine the thickness of the Ekman layer. For planetary bound-
ary layer calculations, it is the scale of the Ekman layer that
ultimately determines, in conjunction with surface roughness, the
actual values of surface shear and heat transfer under any given
conditions of surface heating or cooling. The lowest surface
layer can then exhibit Monin-Obukhov similarity based on the
length determined from the relative magnitudes of w'T' and u'w'
near the surface. This behavior is very similar to the behavior
of the classical turbulent boundary layer on a flat plate. 1In
this case, there is a similarity near the wall (the law of the
wall) which is based on the level of shear near the wall (see
Figure 5.15). The actual magnitude of this shear is not determined
until the whole boundary layer thickness § 1is known even though
this thickness may be orders of magnitude larger than the region
of the boundary layer where the law of .the wall is wvalid.

In view of the abové discussion, we shall take up in the next
section the calculation of the entire Ekman layer by the methods
discussed in this report. Before going on to this, however, we
should discuss what might be done to improve the accuracy of the
basic model with which the calculations reported here have been

carried out.
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It is clear from the way in which the model was constructed
that the model was carefully tailored to give good results for
the mean and turbulent velocity fields that have been carefully
measured for certain classical shear flows. Due to the paucity
of experimental data on the behavior of temperature fluctuations
in turbulent shear flows, it was assumed that the model valid for
velocity fields could, for the purposes of evaluating the poten-
tial of the method, be taken over directly to the calculation of
temperature-velocity and temperature-temperature correlations.

An indication that this is not true is the inability of the
atmospheric turbulence calculations presented in Section 8 to
properly account for the magnitude of T'2, Also, the very high
value of critical Richardson number obtained in the discussion of
superequilibrium theory in Section 7 is an indication that the
modeling may not be quite right. It has been found that a slight
reduction in the magnitude of the tendency-towards-isotropy term
EETT equation compared to this tendency in the ﬁ;ﬁg equation
has a pronounced lowering effect upon the critical Richardson
number found by superequilibrium calculation.

The high value of critical Richardson number obtained by
superequilibrium analysis cannot be taken too seriously by itself,
for this analysis neglects the effect of diffusion which actually
does play an important role in determining the balance .of produc-
tion.and loss of a given correlation at a point in actual computa-
tions. All that we can say at this time is that a further study
of the modeling of the temperature correlation equations needs to
be made. How might this be accomplished? If, indeed, the equations
we have been using contain an adequate description of atmospheric
turbulence, then one should be able to obtain from these equations
the Monin-Obukhov similarity theory. If:this can be done, the
agreement of the computed Monin-Obukhov functions with the functions
derived from actual measurements might be used to select a more

appropriate model.
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My colleague, Dr. W. Stephen Lewellen, has recently
succeeded in deriving the whole of Monin-Obukhov similarity
theory and the Monin-Obukhov functions from the model equations
given in the previous sections [see Ref. 36]. A complete discus-
sion of this development is beyond the scope of this report; the
reader is referred to Ref. 36 for details. It is sufficient to
say here that this new development opens up a very fruitful
approach to the problem of improving the modeling of the temper-
ature correlation equations.

Let us turn now to a discussion of the calculation of the
Ekman layer and the dispersal of passive pollutants in such a

layer.
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12. INVARIANT MODELING OF THE EKMAN LAYER

In- this section we will discuss the calculation of the .
complete planetary boundary layer and the dispersal of passive
pollutants in such a layer by the technigue of invariant
modeling. We will start by writing, as is customary, the
equations of motion for the planetary atmosphere with respect
to a Cartesian coordinate system at rest relative to a point on
the earth's surface. The x axis is taken to be the direction
of constant latitude and positive in an easterly direction, the
y- axlis 1is taken positive in the direction of north, and the =z
axis positive in a direction normal to a geopotential surface at
the surface of the earth. In this coordinate system (x, y, z),
let the velocities be (u, v, w). The equations of motion for
velocities small compared to the surface rotational speed of the

earth are then [see, for example, Ref. 37],

5+t oax (Pu) + 3y (bv) + 77 (Pw) =0 (12.1)
0 Du _ _ 3 + 200 (v sim¢ - w cos ¢)
Dt 9x
R R (12.2)

SDV LB oag
Pt = "3y " 2692 u sin ¢

3 3 3

*ox Ty ¥ 3y 'yy * 37 Tyz (12.3)
LD 3B Al . e
P T = — 355 — P& * 208 u cos ¢

0 ] 3

¥ 3% 'xz * 3y Tyz * 3z ‘zz (12.4)
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o
p Dt ~ 3t J ax 3 X

=W, , B ax <k 8T ) (12.5)
J J J

In these equations, € 1s the angular velocity of the earth, ¢
is the latitude, and

ou, au Buk
T, = p| ==t =L | + 6, .2 — (12.6)
ij ij Bxi ij axk

In order to make contact with the studies we have made in the
previous sections, we will not use these equations directly but
will assume that the Boussineéq approximation that the Prandtl
and Schmidt numbers are one holds, and that variations of the
coefficients of viscosity will not seriously affect any computa-
tion we will make so that (12.1) through (12.6) may be approxi-
mated by

ou av oW

Du _ 1 39p -
ot = - oo Bx + 20 (v sin ¢ W cos ¢)
2 2 2
+ v, 3 g + 9 g + 3 g (12.8)
X oy 92
2 2 2
DYoLl B _sgusing v (2L+2T 2 (12.9)
Po oY ax dy 3z
> 2 2
%% N %% - pg + 2Qu cos ¢ + v 9 g + a-g + 9 g (12.10)
o ©\ sx oy 9z
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2 2 2
%% = v, d g + 0 g + 9 g (12.11)
X oy 0z
Po
o = - T_T (12.12)

where we recall (see definition (2.10)) that

T="T-T, (12.13)

These equations are identical to the basic eduations used
earlier in this report (see Section 3, Egs. (3.4), (3.5), (3.7),
(3.8)) to describe the atmospheric motion in the surface layer
except for the Coriolis terms which contain the earth's rotation
£ . This being the case, we may very easily derive the terms we
must add to our second-order closure model of turbulence to
account for the effect of these terms.

It is clear that the terms that are added to the three mean

momentum equations by the inclusion of Corioclis forces are:
In the équation for U , a term on the right-hand side equal to

2Q(v sin ¢ - W cos ¢)

In the equation for Vv , a term on the right-hand side equal to

-2Qu sin ¢

In the equation for W , a term on the right-hand side equal to
2Qu cos ¢

To obtain the term to be added to the u'u' equation, it will
be recalled that the equation for u'u' was obtained from the
equation for u' by multiplying this equation by 2u' and
averaging the result. It is clear, then, that the term to be
added to the right-hand side of the u'u' equation is

4o(u'v' sin ¢ - u'w' cos ¢)
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Likewise the terms to be added to the right-hand sides of the
v'v' and w'w' -equations are, respectively,

-4Qu'v' sin ¢
bou'w' cos ¢
To obtain the term to be added to the right-hand side of the
equation for u'w', recall that this equation was obtained by
multiplying the equation for u' by w' and the equation for
w!' by u' and adding the resulting equations. Following this
procedure with the new terms that must be included, we find that

we must include a term on the right-hand side of the u'w'
equation equal to

———— ——

29 (v'w' sin ¢ - w'2 cos ¢ + u'2 cos ¢)

Likewise for the equation for u'v', we have

29 (v'2 sin ¢ - v'w' cos ¢ - u'2 sin ¢)
and for the v'w' equation

2Q(-w'u' sin ¢ + u'v' cos ¢)

The equation for T 1s unchanged slnce no Coriolis terms
aprear in this equation. However, in the equations for u'T!
v!'T' , and w'T' , there will be terms that result from the

earth's rotation. These terms are:
In the equation for u'T'
2Q(Vv'T' sin ¢ - w'T' cos ¢)
In the equation for Vv'T'.
_20T7TT sin ¢
In the equation for Ww'T'
2Qu'T' cos L0}

Since the equation for E 1s unchanged, there willl be no
new terms appearing in the equation for T'2 as a result of the
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It is evident from an inspection of all the terms that must
be added to our system of equations to account for the rotation
of the earth that only second-order correlations themselves appear.
Therefore, the inclusion of these terms requires no additional
modeling.

If these additional terms are added to the modeled equations
derived in Section 4, we obtain a set of equations suitable for

computing the planetary boundary layer. These equations are

du , dv L W _ (12.14)

%% = - %— %% + 2Q(v sin ¢ - W cos ¢)
o
2- 2~ 2-
v (20, 270, 2%
© 1\ sx dy 3z
S @ - L @y - & @ (12.15)
9% 3y 32 <
Dv _ 1 9p =
ot T T o 3y " 20u sin ¢
. 397 . 3°7 . 8°%
v > >t T3
°\sx dy 3z
9 (T 9 9 v
- 5% (vtu') - 5y (v'v') - 2 (v'w') (12.16)
Dw 1 3p -
5% = -5 5% - %— g + 20u cos ¢
o o
2— 2- 2=
+ v a¥+a"2v+3"2’
©\ ox ay 9z
- 3__ (w'u') - §__ (wlvt) - §__ (W'W') (12 17)
9X 9y 9z T
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= 2= 2= 2=
D_ - 8 T a T a T —_ _a_ 1 ] - ?__ ! 1 - L t !
bt = Vo < >t ot T2 9x (u'T") dy (v'T") oz (w'T")
0X oy 0%z -
(12.18)
Duiu’ _ i - ! §:_
5T = 4Q(u'v' sin ¢ - u'w' cos ¢) 2uju ij
ou'u!
0 g ou'u'
* 3%, [Aetq <2 5% T 3x )]
J J
sulu! 2
+ 2 8_ A q - __g_. u|uV - 94-
9x 3% 9x Al 3
t
82 u'u’
+ v e u."ul -2V (12.19)
o] 2 2
09X, A
J t
DV'Vv' _  omToT a —_— 3V
S 4Qu'v' sin ¢ - 2v‘u3 —;;
av'u!
9 [ av'v! ]
+ =— | A, q (2 +
axX 2 3 9x
J £ ( y J )
+ 2 - A, Q - viv'! -
9 90X . A
v 3¢ XJ 1¢ 3
32 v'v!
+ v = V'vl - 2v (12.20)
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J J
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J 1¢
2
+ v §~§ wl'w! - 2v w'g'
© 9x© A
J t

28 (v'2 sin ¢ = v'w' cos ¢ - u'2 sin ¢>

- u'y! .g_.___ - v'u! g_—_
i X, ) X.
J 0% J oy
av'u! au'u! —_—
3 | 3 i sutv!
Y [A%q (Bx T3y T oax
J J
3 ou'v' 3 au'lu!
A LI ol IR <A3tq .
J J
2
+ v §—§ u'v! - 2v u'g'
© 5x° A
J €

l2-7

(12.21)



12-8

NEEYID —
gz v_ o= 2Q<v'w' sin ¢ - w'2 cos ¢ + u'2 cos ¢)
— u'u' 3—‘;—_— W'u‘ §_:_+ &—-u'T'
90X J 9ox,
J J o
aw'u! su'tu!
0 J j ow'w'
*ax, [Ath <ax * ez T oax, )]
J J
5 sulw! 5 au'lu'!
—_— _.J__ — - 9 1
* 3% A3tq X, * 57 03¢ 3% rutw’)
J lt
82 u'w'
+ Vo T3 u'w! ~ 2v 5 (12.23)
aX . A
J t
Dv'w! - -
Dt =2QCw'u' sin ¢ + u'v' cos ¢)
dw 3V g
- Y e ! t [ =2, 1
v'u X w uJ T + T vIT!
J J o
dv'u! dw'u!
+ 2 |a q J 4 ov'w'
3% 2¢ dz 3y ij

(12.24)
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Tt _ —_— ——— 9T —— 23U
gz T = 20(V'T' sin ¢ - w'T' cos ¢) - utus 5o - Thuy 5;;
R VY i Tl
0x , 2tq oXx 0X .
J J
5 au'T!
- ;] - g 1] 1
+ X A3tq 90X . Al u'T
, J t
3° u'r
+ v —> u'T' - 2VO 5 (12.25)
© 3x< A
J t
gz'T' = - 2007T" sin ¢ - v'u! %%— - Tu] é%—
T—
) ouiT!h 5T
J J
5 au!'T!
e - g, 1 t
+ v A3tq 3% n v'T
J 1,
82 v'T!
+ v —5 vIiIT! - 2vo 5 (12.26)
© 9x< A
J t
Dw'T! _ Py BE 3_ g 12
Bt = 20u'T' cos ¢ - w'u! 3T T'uj T + m T
J J o
1
. a_— A SujT' N W' T!
ax 2¢% | 3z 35X
5 sulT!
— - 1 1
* 3z | P39 5%, K, T
J t
32 w'!'T!
+ vo — w'T!' - 2vo 5 (12.27)
ij At
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2 = —
DL - o 4 (Ath - T'2)
] J

Dt 90X,
J j J
22 >
T L N S (12.28)
e} 2 0 2
90X, A
J t

At this point it is appropriate that we present the equations
for the dispersal of a passive pollutant species Ca . Since the
equation for C_ =, namely, (3.6), will not be cEanged_g% the
inclusion of Coriolis forces, the equations for Ca s C& , and

'C&T' will be those we have previously used. We must, however,

add new terms to the equations for u'C& s v'C& s, and w'C& . The
terms to be added to the right-hand sides of these equations are,

respectively,

To s - Tt
29(v Ca sin ¢ w Ca cos ¢)
-2Qu'C' sin ¢

o

and 2Qu'C& cos ¢

With these additional terms added to our previous equations,
namely, (4.24), (4.25), and (4.26), we obtain the following model

equations for the dispersal of a passive pollutant:

2.._.

DC, 9C, 3 3
— = -— ! | - ——— t 1] —_ —— 1] 1
Dt vo 8x2 9X (u Ca) 3y (v Ca) 37 (w Ca) (12.29)
J
Du'ct aEa 5T
T = 2Q(V'C& sin ¢ - w'C& cos ¢) -~ ulu! Y ujC& 'Y
J J
au'c! au!c! au!'c!? q
d /v a Jj o 9 J a — AT
T [A%QKBX. * X )il 3% <A3cq 90X . >- 4Gy
J J oJ 1,
82u'C& TRk
+ v - 2V (12.30)
e} 8x2 o) >‘2
J c
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aC -
_oOTT AT i _ Trar & _ Tgier v
2Qu'Ca sin ¢ ujv K ujca TS
J J
3 BV'C& aujc& :
* % [A%q % * 5y :|

(12.31)

ou!cC'
J o

97z

ow'C
. [A2Cq 0X, *
J J

(12.32)

5 (12.33)
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DC&Z C, 3¢ 12
= - ! e ——
Bt cusCy ax. *oax, | A2 .9 5%
J J
82C&T' 0&2
+ v — 2\) —_— (l2.3u)
° 3x° 0,2
J c

We may now turn to the problem of computing the planetary
boundary layer or Ekman layer by means of the equations we have
set forth above. The simplest case we may compute in order to
demonstrate the method is that of a planetary boundary layer
such that all derivatives with respect to x and y vanish,
and the atmospheric quantities are functions of 2z and t alone,
For this case, in view of the continuity equation (12.14), we may
take w = 0.

The equations for this speclal case of motion in the
planetary boundary layer are then

- - _ 2= — ,

%% = - %— %% + v(2Q sin ¢) + vy 9 g - g; L (12.35)
A o) 87z

- - o- —_—

ov 1 dp = . Vv ov'w'
_= - = - u(2Q sin ¢) + v - (12.36)
3t s oy o} az2 07

D - - 7L

D - _pg + p (20 cos ¢) - p 4 (12.37)
oT _, 9°T _ T (12.38)
at 0,2 3z ' o

p

- _ o =
p = - T_—T (12.39)
(¢)
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gz'u' = 4Q(u'v' sin ¢ - u'w' cos ¢)
du 3 du'u'
-2utwl 5t 5z <A2t 3z )
2 2 1 t 1
- Kg—-(u'u' - %—) + voa g'u -2vo 4 g
1t 92 A
(12.540)
3V v ! _ Vv 3 ov'v!'
T = =4Qu'v' sin ¢ - 2v'w' == + 3z (Agtq 3z )
2 2
_ Ag (V'V' _ gL) + v 9 g'v' _oy V'g'
' o
lt \ 32 >\t
(12.41)

(s34
ct

(W' _ o= 2g e L 9 B!
= UQu'w' cos ¢ + To w'T?! 5—-[(3A2t + 2A3t) q 37

2 2—— Tor 1
- KL(w'w' - %—-) + \)O 9 g W -2V W‘g
1 3z At
(12.42)
1 t —
gz V- 2q (v'2 sin ¢ - v'w' cos ¢ - u'2 sin ¢>
AV du d . du'v'
_ tygt 9V tyy! 242 -
u'w - v'w - + 5 (A2tq % )
320V u'v’
L W R E - 2V (12.43)
1\.l o) 2 2
£ 0z At
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w'™ cos ¢ + u'2cos ¢)- w'w! u + %—u'T'
o
) u'w'
32 [(2A2t * A3t>q 37 ]
q 82u'w' u'w'
i u'w' + v, 5 - 2vo 5 (12.44)
1g 3z A
t
u'v' cos ¢) - w'w' LA -3 v'T!
9z T
o
9 ov'w!
0Z [(2A2t * A3t)q 9z ]
B2v'w' viw'!
viwT o+ v S - 2v 5 (12.45)
lt 0Z A
t
3T du
1 1 - t —_— - —
w'T' cos ¢) u'w' . = Ttw! N
3 duTT?
3z (Ath 3z )
‘g 32u'T' u'T?
I u'T' + v 5 - 2V 5 (12.46)
lg 92 AL
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OV'T' ST TFT af =7 3T _ &7 3V
T 20u'T' sin ¢ viwl == T'w N
P ov'T!
+ E(A2tq 3z )
—_— 32V'T' vIiIT!
- A yTr ey 22X 2 oy (12.47)
Ay 572 AS
t t
gX'T' = 2Qu'T' cos ¢ - w'w' %% + %— T2
0
P ow'T!
t 55 [(2A2t + A3t)q 3z ]
—_— 82W'T' w!T!
-4 wTr 4y 2 W - oy (12.48)
A o) 2 0 2
and
aT' . —OW'T!' E + 9 A BT'2
3t 3z | 2.7 3z
272 2
sy 2T o, T (12.49)
o) 2 o} 2
97 ‘At

We will discuss solutions for the complete atmospheric
boundary layer using (12.35) through (12.49) by first considering
the case of a steady neutrally stable atmospheric motion. 1In
order to obtain a solution, it is necessary for one to specify
the driving forces (1/po)3§/ax and (l/po)aﬁ/ay which, if the
flow.1s to be steady, must be independent of time and must be

functions of 2z alone. Let us assume for simplicity, although
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the assumption is not necessary, that these driving forces are
constant and independent of height. 1In this case, if the surface
of the earth were frictionless, a geostrophic wind would exist
that would be constant and independent of height. The components
of this geostrophic wind would be

= - 1 1 3p_ _ _1 3p_

ug 29 sin ¢ s oy pof oy o} (12.50)
- 11 3p._ 1 3p_

Vg 292 sin ¢ P X pof X Yo (12.51)

To find the boundary layer due to friction at the earth's surface,
we may start wilith this geostrophic wind condition as an initial
condition at, say, t = 0, on our equations for the mean velocities
0 . We put 1in the
0 and v(0,t) = 0.
For the neutral atmospheric case we are considering here, we

must solve (12.35) and (12.36) subject to the initial conditions
we have specified in conjunction with (12.40) through (12.45).

We take as boundary conditions on (12.40) through (12.49) the
viscous condition for a solid surface that all second-order corre-

U and VvV that is true at all =z except =z

viscous condition at =z = 0, namely, u(0,t)

lations must vanish at 2z = 0 . We will also assume that these
correlations vanish at 2z = «, for we will assume that, initially,
there 1s no turbulent production so that all second-order correla-
tions are zero. Actually, some disturbance or turbulence (it does
not matter what the disturbance is) must be'introduced to start a
turbulent solution to this boundary layer problem. This can be
done by introducing a turbulent "spot" into the flow at time

t = 0 or, alternatively, waiting for round-off errors in the
solution of the equations to build up into a full-fledged turbu-
lence as the simultaneous solution of the equations proceeds. The
solution will proceed until, at large times, the derivatives with
respect to time become infinitesimal as a balance of centrifugal,
viscous, and pressure forces is reached at each point in the flow.
The resulting boundary layer is the steady-state Ekman layer for
the driving pressure gradients that have been assumed.
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Let us consider a specific case. We wish to compute the
planetary boundary layer for a case when

_ 1 3p _ —
vo(z).— 5F ax - vg =0
o
= _ L 9p _ =
uo(z) = - pof 3y " ug 10 meters/second

We will assume that the surface at z = 0 1is smooth and, further,
that 28 sin ¢ = lO_Ll rad/sec. In order to carry out a solution
of our equations, we must specify the length scale Alt . We will
assume here that Alt may be tﬁgen equal to 0.15 times the height
at which the wind speed v u? + v? becomes equal to the geo-
strophic value u; + Vé = lugl. This assumption is very much
akin to the assumption made for an ordinary boundary layer in
Section 5, namely, Al = 0.156.99
A calculation of the character of the Ekman layer on an
absolutely smooth earth under the condition ug = 10 m/sec and
Vg = 0 carried out as described above is shown in Figures 12.1
through 12.5. PFigures 12.1 and 12.2 show the computed u and v
profiles, respectively. Figure 12.3 depicts the Ekman spiral for
this case. It will be noted that the wind speed first reaches
the geostrophic at an altitude of approximately 150 meters. It
will also be noted, from Figure 12.2, that the total thickness of
the Ekman layer is approximately 1500 meters. For this case, the
surface angle is computed to be 13.8°. Figures 12.4 and 12.5
show the values of all the second-order velocity correlations.
One notes in Figures 12.4 and 12.5 that the distributions of u'u'
and uU'w' are not smooth but have a "bump" between a height of
50 and 150 meters. Whether this bump is a physical reality or due
to some bug in the computer program is unknown at present. As we
shall see, this "bump" did not appear in the calculations carried
out for a rough earth. Of some interest, insofar as the dispersal
of pollutants in the atmosphere is concerned, is the fact that the
root-mean-square values of the vertical and lateral velocity

fluctuations run about 2% of the geostrophic wind velocity for
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some 200 meters above the immediate surface layer where these
velocltles are roughly constant for some 20 meters above the
surface at about 3% of the geostrophic wind. »

The angle of the flow at the surface is related to the
amount of surface friction. For this particular calculation,
the nondimensional friction velocity defined by

u*/ﬁg = /,To/po(o)ﬁé

is computed to be 0.02. Both this value and the surface angle
of 13.8° are considerably lower than one usually finds. This is
because we have computed our planetary boundary layer for the
ideal case of an absolutely smooth earth. If we are to obtain
results that are more realistic, we must compute the planetary
boundary layer on a rough earth.

In order to take account of surface roughness in the calcu-
lations, we may proceed as follows. First we assume that the
drag of the surface elements will remove momentum from the lowest
layers of the boundary layer in such a way that for a region

between the true surface 2z = 0 and the small height =z = Z,,

there is no mean velocity; i.e., we assume u =v = 0 for
0 < z i,zr . In this region, although the mean velocity 1s zero,
there certainly may be small turbulent eddies. Therefore, we
will assume that the viscous boundary condition of EIEE =0
still applies at the true surface 2z = 0 . We may further
assume that the scale of the eddies is still proportional to the
distance from this true surface, so that in making the calcula-
tions, we specify that Alt = 0.7z as we have done in the past.
If these new boundary conditions are applied to our equations,
the flow over a rough surface may be calculated.

In Figures 12.6 through 12.10 the results of such a calcula-
tion are presented for a roughness height z, of 0.01 meters.
As in the previous example, the results are presented for the
case when ﬁg = 10 m/sec and Gg = 0 . It will be noted from
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Figure 12.8 that the height at which the wind speed first becomes
equal to the geostrophic value Vv ué + vé is now roughly 250 m.
The height of the total Ekman layer 1s, according to Figure 12.7,
approximately 2000 m. For this roughneés condition, the nondimen-

sional friction velocity was computed to be
u*/ag = 0.0281

The surface angle was found to be 22°. These results are more in
line with typical experimental results, and we shall presently
compare these results with those found by other investigators.
"Figures 12.9 and 12.10 show the distributions of the second-
order velocity correlations that were computed. It will be noted
that the level of the root—meén—square vertical and lateral
velocity fluctuations in the surface layer where v v'v' = ¥V w'w'
= 0.37 are about 4% of the‘geostrophic wind speed. At about
100 meters above the surface, these fluctuations have fallen off
to about 3% of the geostrophic wind speed. It will also be noted
in Figure 12.10 that no "bump" appears in the energy or shear
correlations for the rough earth where this "bump" had been found
for the smooth earth calculations shown 1in Figure 12.5.

We may compare the results of these calculations with those
of other investigators. For this purpose, we choose the theoret-
ical results of Blackadar [Ref. 38], Lettau [Ref. 39], and
Appleby and Ohmstede [Ref. 40]. In order: to make the comparison,
it 1s necessary for us to find the relationship between our
roughness height Z., and the usual roughness height z, defined
by .other investigators. The equation for the mean velocity in
the immediate neighborhood of the surface when considering the
classical roughness height Z, is

jeg o]
< 1°
[

et
+
<1
]
A

z
in - (12.52)
o

where k 1is von K4rmén's constant. Thils may be used to compute
Z from the local mean veloclty and the surface frictlion expressed
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through uy, viz,,

-kq/u
z =z * ©(12.53)
(o] r

If we use the results of our calculations for the case just
described where z, = 0.01 meters, we find from the mean velocity
profile and the friction velocity that the effective z, was
0.0071 meters. ' '

We may now compare our results with those of Refs. 38, 39,
and 40 from which the nondimensional friction velocity
Uy /v ﬁé + Vé and surface turning angles may be plotted as
functions of the roughness Rossby number

R = & £ (12.54)
2Q sin ¢ z,

The results of our calculations are compared in Figures
12.11 and 12.12 with those of Refs. 38, 39, and 40. It is seen
that our results are in good agreement with those of previous

investigators.

Now let us consider the planetary boundary layer when there
are departures from neutral stability, and it 1s necessary to
include the temperature equations in the solution. With our
present equations, 1f there exists a steady source or sink of
heatvat‘the boundary of our flow at 2z = 0 , then there will
never be a steady state solution of the equations in the sense
we have Just described for the neutral atmosphere. One can,
however, find time-dependent solutions which are steady state in
the sense that they are cyclic if heat transfer at the boundary
of the flow is cyclic and the net heat added to the atmosphere
is zero. Such a cyclic heating might be representative of the
diurnal effect of the sun on the earth's surface. To obtain
such solutlons, one may start at time -t = 0 with initial condi-
tions obtained from a neutral solutlon of the atmospheric boundary
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Figure 12.11. Comparison of calculated friction velocities
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12-32

logio Ro

Figure 12.12. Comparison of calculated surface angles in
radians with results obtained by Blackadar [38],
Lettau [39], and Appleby & Ohmstede [40]
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layer and apply at the surface for t > 0 a cyclical heat transfer.
After several cyéles of such heat transfer, the characteristics of
the atmospheric boundary layer at each =z will become cyclic in
time and independent of the initial conditions that were chosen.
In this way, representative atmospheric boundary layers under a
very wide spectrum of stability conditions can be found. We have
not, as of this writing, obtained solutions of this type to present
here. Studies of this type will comprise part of our effort under
EPA sponsorship during the coming year.

Before leaving this discussion of atmospheric boundary
layers, we should present the equations for the dispersal of a
passive pollutant in such layers that are equivalent to those
which were solved in Section 10, The thin layer equations appro-
priate for use with (12.35) through (12.49) are the following:

¢, _aC, _ aC, 2°C,  aw'C]
.___..+u.__+V___=\) - (12-55)
ot X y o] BZ2 97
sutC; _ du'Cl _ su'C] - L
= * U 33 + v 55 = 2Q(V'C& sin ¢ - w'C& cos o)
3T, 2= PTTCT
_ Yog ! o Tt 94 =z
u'w Z W Ca z * 27 A2q 9%
2
o u'c! u'c!
- %— wCl t v, — o 2v 2“ (12.56)
1 37 A
3viCy _av'Cl _ av'Cl
FEa— + u " + 5y = —2Qu'C& sin ¢
°C - - oavey
- T O [ réﬁ. é_
vow Z w Ca Z * 97 <A2q 3z )
2
a-v'C! v'C!
- TCT + 0y % _ 2y & (12.57)
A1 o o) g e} AZ
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aw'C! Bw'Cl  _ 8w'C]
g+ u X + 5y = 2Qu'C! cos ¢
aﬁa - ) aw'c&‘w
- 1] —_ ] 1 —
w'w N + To T COL + o (2/\2 + A3>q 5 _J
3w Ty wioT
- L FTTT o+ v © _ 2y o (12.58)
Al o o 4, o AZ
AT'C! 3T 'C! dT'C! = 5C
o= o,z o o v 9T _ T oo
5t T Uix o T Vg wiCl 5z ~ W' T 37
; 2] 32T'C& 7]
+ 5= A0 5 v 5—5——— -2y, (12.59)
Z A
aci® _aci® _ac? ’T
— = 1 —_
at tu 90X v ay ow C& 3z
; ac&2 agc&2 0&2
t= (A0 522 |+ v, - 2v 5 (12.60)

We have not as yet generated any solutions to these equa-
tions. The development of such solutions is a task that will be

carried out under future funding from EPA.
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13. CONCLUSIONS AND RECOMMENDATIONS

This monograph has presented in considerable detail the work
carried out to date by A:R.A.P. towards the development of an
invariant model of the motion in the atmospheric boundary layer
and the dispersal of pollutants in such a layer. While it 1is
clear that much remains to be done before a final model, complete
with operational programs, is available for production studies of
atmospheric pollutant dispersal, it is clear that a powerful new
tcol for the study of such atmospheric problems is emerging. A
great déal of effort over the past two years has been devoted to
the coding and debugging of the programs required for the exer-
cise of the method. Most of the programs required for such
studies are now complete. It is felt that the exercise of these
programs can lead to & detailed . understanding of the results of
many experimental studies of pollutant dispersal, many of which
have been difficult to interpret in terms of the simple diffu-
sivity models that have been used in the past. It is strongly
recommended that EPA continue to support the study of atmospheric

pollution dispersal by the method of invariant modeling.
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APPENDIX A. NUMERICAL INTEGRATION TECHNIQUE

The equations discussed in this report are parabolic partial
differential equations. They are parabolic in the sense that the
time derivative ©98/9t 1is first-order in time and is present in
every equation with at most a second-order derivative 82/322 in
a spatial dimension. In this appendix, we will explain the
approximate numerical technique used by A.R.A.P. to obtain reason-
able solutions to these differential equations.

Various numerical techniques are, of course, available to
solve the types of equations we have discussed in this report.
For our purposes, the implicit technique [Refs. 41 and 42] seems
to be best, for a number of reasons. Its mailn attraction is its
strong stability. The computerized equations should converge to
a solution, even though it may not be the correct one. The
simplicity of our boundary conditions, with all values going to
zero at the earth's surface or to given known values at the upper
surface, makes the application of the implicit technique almost
straightforward. Another reason is computer environment.
A.R.A.P.'s present computer is a 16K core (16 bits/word) Digital
Scientific Corp. META-4 with secondary storage on a CalComp DS-12
disk drive. The relatively slow speed of computatioh (as demon-
strated below) requires us to use a technique that permits
solution as quickly as possible to the time-dependent problem.
The implicit technique gives us that solution in a time that is
faster (for the number of equations we typically handle) than a
standard iterative technique.

To apply any of these several numerical techniques to a
continuous differential equation, we first replace the differen-
tlal equation with a finite difference equation. We represent
the continuum spatial dimension by a series of discrete points.
Three such points in the 2z direction are represented in Figure
A.1 by the pointé at j-1, j, and Jj+l1. 1In the same manner, we
replace continuous time with discrete time, as with the time

points n and n+l , as shown.



n

|

Figure A.1l. The discretized time-space plane for the two-
dimensional implicit solution technique
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We solve the differential equations by starting with a
given set of initial conditions at all =z values, and then
follow the solution for increasing time. We form an approxima-
tion to the continuous derivatives present in our equations.
These difference approximations are then substituted into the
differential equations to obtain a difference equation involving
the values of theldependent variables as--a function of the j
and n positions. To solve this equation, we assume that the

n

solution at ¢t is known (computed from the last step or a

given initial condition) and use the implicit technique given

below to obtain the solution at time tn+l.

As we stated before,
this technique is unconditionally stable, but it may not be
consistent in that the difference equation may not relax to the
differential equation in the 1limit of Az, At - 0 . To ensure
some success in solving our equation (since existence and unique-
ness of our solutions have never been proven), we attempt
internally within the computer program to maintain an "optimum"
number of points in the profile in 2z at any one time step (a
test based on curvature criterion) and an "optimum" step size in
t based on maximum permitted change per step. This optimization
enables us to compromise between accuracy and time considerations;
as the time step decreases, the accuracy of the results increases,
up to a point, but the toftal computation time increases accord-
ingly. We know that our solutions are 1% accurate for the various
laminar cases we have checked, and we strive to keep our turbulent
solutions to an accuracy of 5%.

We must then approximate the four possible differentials
3/t , 98/dz , 32 /82° , and 03(f(z)3/9z)/3z .. They become

n+1l n
Su . uj - u, (5.1)
9 tn+l _ tn )

h h

h, U541 h_ \Yj j-1
¥ h

( n+l _ u?+1) + + (un+l _ un+l)
(A.2)
h,
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2 (un+l _ n+1> _ 2 (un+1 n+l)
32u . h+ j+1 J h J J-1
0% h+ + h_
fye1 ¥ 14 (L -y Iy 0 e
h J+1 J ) h J J-l)
9 Ju\ . + / -
57 (£(2) 32) = .
h, + h_
(A.4)
where
h, = 2 - Z

and u represents the dependent variable. With Egs. (A.1)
through (A.4) substituted into the differential equation of
interest, we have replaced the equation by a forward-time-centered-
space differencing that is first-order accurate in time and second-
order accurate 1in space.

To get a feel for this technique, we now use Eq. (10.5) for
Céa as a very simple application. .Since v'Cé s w'Cé , and 5;
are presumably computed elsewhere, Eq. (10.5) contains only one

dependent unknown, 052 , and may be rewritten as

3012 ; 3052 ; 3012
5t~ - ~H Y3yl h gy * gz | Mg
32012 320 '
t v, 2p + 2p - 2v, —%— (A.5)
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where
aC aC
= o1 P gt __P
H AT Cp 3y + 2w Cp 5 (A.6)

and is known (in general, several equations will be coupled
together to form a vector of unknowns, as shown below). For
the one-space-dimensional problem, we may look at only the =z
and t dependence and assume that 38/39y = 0 in Eq. (A.5). The
substitution of Egqs. (A.1l) through (A.4) into (A.5) yields the

form

nn+l _ _n

n nt+l n _n+l
Xou, + Y.u, Z.,u, = D, A.
J -1 JJ J i+l J (4.7)
where
XU = - L Aq. + Ag v 2y (A.8)
J h_(hg + h_) J j-1 o ¥
/0 1 . 1 qu+l + Aq, . qu + Ag 1
J gl _on hy +h h, h_
2v
1 1 0
o] h+ h_ A2
A 1 A ¥ Ag, + 2v (A.10)
j h,(h, + h_) | 3+l 9y o y
n
n uj n ( )
D. = - H, A.11
J tn+l - ¢h J
n+l n+1 n+l ' 2
and uj—l R uj , and - uj+l are the unknown values of Cp
at j-1 , j , and Jj+1 . A similar linear eguation may be

written for every other interior point in our discrete space.
Thus, if we have m points in the profile, we will have m

difference equations (A.7) with m+2 unknowns. Since both
n+1l n+1l

0 and um+1

boundaries are known, u are known values. We,
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therefore, have a sufficient number of equations to solve for
all of the u?+l at the new time step.

We choose to use the general tridiagonal algorithm (called
the Thomas algorithm in Ref. 41) to systematically solve for
these unknowns. This method requires a double sweep of the =z
profile and is actually a straightforward Gaussian elimination.
We begin at J = 0 knowing u8+l

J = m+l Dby successively solving the following set of algebraic

and work towards the point

equations.
n+l n n,n+l
S, =Y, - X.G, A.12
J J JJ-1 ( )
entl (Sn+l>—l N (A.13)
J J J )
n+l n+1\"t /.n n, n+l
W = (S ) (D. - X,W ) A.14
j j 5 7 XMy (A.18)
Since u8+l is known, the first term in Eq. (A.7) is known for

J = 1 and may be combined with D? , enabling us to write
n _ ‘
Xl 0 .

The sweep 1is continued until J = m where we downsweep
back to j = 1 wusing the formula

n+l n+1l

n+l n+1l
u = W, - G, "u Al
J J J i+l (A.15)
Since ugii is known and all the w?*l and G?+1 are also
known, the downsweep give the successive values of u at all
the discrete =z points Jj for the time £9*1  Phe procedure
1s then repeated for the next time tn+2 and so on. For other

boundary conditions, the technique needs some modification at
the end points.
If u, 1s a vector of.unknowns 55 (as, for example, Eb,

VTEE s w'Cé , and T'Cé in Section 10), then Xj R Yj , and
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Zj are square matrices and Dj is a vector. The inversion in
Egs. (A.13) and (A.14) is then a matrix inversion. The implicit
technique is seen to be defeating if the size of the matrix (the
number of unknowns) is abnormally high. In our facility, a
matrix size of about 15 would appear to be prohibitive.

A typical 'running time for our various computer programs
is one hour. If the program is small enough to fit into the 16K
core, its running time would be reduced to 1/2 hour. Comparable
running times on an 1108 Univac and CDC 6600 would be 5 and 2
minutes, respectively. The number of machine operations per
second on the META-4 is approximately 200,000.

Equation (A.5) may also be used to demonstrate the Alter-
nating Direction Implicit (ADI) method used to solve the spatial-
pollutant dispersal equations of Section 10. We now have the
additional spatial dimension y with discrete points ..., k-1,
k, k+1, ... as shown in Figure A.2. Our aim is to advance the
plane of solution at t" and all y and z to the time t°1TL,
A straightforward substitution of the finite difference approxi-
mations (substituting y and k where appropriate) into (A.5)
gives the form

n n+1l n n+1l n n+l
Tee1,3%-1,5 7 Tk,i%k, st Tk, g%k, g

k,j-17"k,j-1 k,J+17k,j+l k,J

where the I's involve the spacing factors and other known values.
Each equatlon now contains five unknowns. With the known bound-
ary conditions, there are as many equations as unknowns, but the
difficulty of the problem has increased considerably. An elimina-
tion technique could be employed at this point, but it is far
easier from our point of view to use the ADI method. In this
method, every time step 1is split and two half-steps are performed.
In the first half-step, one of the spatial dimensions is swept up
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Figure A.2.
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and down; in the second half-step, the other dimension is swept.

During the first sweep (say, z) from ™ to tn+l/2 , the vy
derivatives are held fixed at their t" values. During the second
+
sweep in y from tm’l/2 to t" 1 , the 2 derivatives are held

n+l/e values. It can be shown [Ref. 417 that

while this double sweep (alternating direction) uses two sets of

fixed at their ¢t

equations similar to Eq. (A.7), its full-step results are equivalent
to using Eq. (A.16). Of course, the complexity of the computer

program and its running time are increased significantly.
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