Emission Tests on a Vespa 125 cc Primavera Scooter

November 1975

Thomas Cackette

Standards Development and Support Branch Emission Control Technology Division Office of Mobile Source Air Pollution Control Environmental Protection Agency

BACKGROUND

In the fall of 1975 EPA contacted a local Vespa motorcycle dealer with the intention of leasing a Vespa for testing purposes. The Vespa scooter models were of interest to EPA because of their unique body design (and thus possibly different road load characteristics), and because of recent advertised claims of 'exhaust pollutants almost entirely eliminated' (Ref. 1 and 2). As a result of our inquiry, the local dealer contacted the distributor and a 1974 Vespa 125 Primavera was made available to EPA for testing.

The Environmental Protection Agency receives information about many systems which appear to offer potential for emission reduction or fuel economy improvement compared to conventional engines and vehicles. EPA's Emission Control Technology Division is interested in evaluating all such systems, because of the obvious benefits to the nation from identification of systems that can reduce emissions, improve economy, on both. Tests are performed at the EPA Emissions Laboratory in Ann Arbor, Michigan, and the results of all such tests are set forth in a series of reports.

The conclusions from the EPA evaluation tests can be considered to be quantitatively valid only for the specific test vehicle used, however, it is reasonable to extrapolate the results from the EPA test to other types of vehicles in a directional or qualitative manner, i.e., to suggest that similar results are likely to be achieved on other types of vehicles.

VEHICLE DESCRIPTION

The motorcycle tested was a 1974 Vespa 125 Primavera scooter with 195 miles on the odometer. The engine is a single horizontal cylinder, two stroke, carbureted engine of 121.17cc displacement. A tag on the vehicle certifies the power does not exceed 5 brake horsepower (no specific power is specified.)

The motorcycle was inspected and tuned by a Vespa factory representative prior to delivery to EPA.

TEST PROCEDURE -

The test procedure for this motorcycle consisted of coast down tests to determine road load horsepower, followed by emission tests.

The Vespa was taken to the Transportation Research Center of Ohio (TRC) for coast down tests. In a coast down test, the vehicle is accelerated to a constant speed, the clutch is disengaged, and the vehicle is allowed to coast with the road, vehicle, and aerodynamic forces slowing the vehicle. Ten coast downs, five in each direction, were performed. The velocity was measured by a radar unit and was recorded on magnetic tape along with the time and wind history. The data were processed using

a least squares curve fitting method which yielded a composite equation for the road load force.

The road load power determined from the coast down tests is shown in Figure 1. Also shown in this figure is the dynamometer power absorption curve which results from using the road load power value specified in the NPRM (Reference 3) for the Vespa's inertia category (2.53 kw at 65 kph for a 160 kg equivalent inertial mass). The curves show that the Vespa has a slightly lower road load power requirement in the 40-60 kph range than a 'standard' 160 kg equivalent inertial mass motorcycle.

For the Vespa emissions tests, a lower total absorbed power than specified in the NPRM was used. The lower absorbed power is based on the actual road power determined from the coast down tests. The normal procedure is to set the dynamometer power at 65 kph, however for the Vespa the power was set at 50 kph. The top speed of the Vespa, as determined at TRC, is 76 kph. Limited by the top speed, the coast downs occurred over a usable range of 65 to 25 kph. To avoid extrapolation of the coast down results, the road power at 50 kph was determined and this value, minus the dynamometer friction was set on the dynamometer power absorber. A summary of the road load powers is presented in Table I.

TABLE I

Road Load Power at 50 kph

As specified in NPRM

1.25 kw⁽¹⁾

As determined from coast downs 1.15 kw

Power used for dyno tests

1.15 kw

Figure 2 presents a comparison of the road load power of the motorcycle and the power absorbed by the dynamometer. The absorbed power in both cases is 1.15 kw at 50 kph. The comparison shows that the dynamometer absorbed power is slightly less at most velocities than the road load power determined from the coast downs.

(1) Determined from Figure 1. The NPRM specified 2.53 kw at 65 kph.

TEST RESULTS AND CONCLUSIONS

Two tests accomplished per the NPRM procedures were performed. Test conditions were 1.15 kw total absorbed power at 50 kph with 160 kg inertia. The modified driving cycle for motorcycles with displacements less than 170 cc was used. The motorcycle was capable of following all portions of the driving cycle. The average mass emissions are presented in Table II along with the proposed interim and final motorcycle emission standards.

<u>TABLE II</u>

Mass Emissions - Vespa 125

(Grams per kilometer)

	HC	co	NO _x	Economy, Km/1
Test # 2605	4.71	13.3	.04	33
Test # 2619	4.82	12.3	.03	34
Average	4.77	12.8	.03	34
1978 Standard	5.0	17	1.2	· ;
1980 Standard	0.25	2.1	0.25	-

The motorcycle tested meets the 1978 interim standardsbut exceeds the 1980 standards by factors of 19 for HC and 6 for CO.

Table III compares the Vespa test data with similar motorcycles and with light duty vehicles.

TABLE III

Comparisons with Other Vehicles

(Grams per Kilometer)

,	HC	СО	$\mathtt{NO}_{\mathbf{x}}$
Vespa 125	4.8	12.8	.03
Range for similar motorcycles (1)	4.6-8.5	5–15	.0210
1972 LDV Standard	2.1	24	1.9
1975 LDV Standard	93	0.3	1.9

(1) Range is for other single cylinder 2 stroke motorcycles of approximately 125 cc displacement, based on EPA and industry test results.

Table III indicates that the Vespa's emissions are typical of other single cylinder two stroke engines of similar displacement. When compared to controlled light duty vehicle standards, the Vespa emits 5 times more HC and 1.4 times more CO than the 1975 Light Duty Standard. NO_X emissions are only one sixth the standard, and fuel economy is much better than most light duty vehicles. The claim, however, that Vespa emissions are almost entirely eliminated is not justified when compared to other similar motorcycles or controlled light duty vehicles.

REFERENCES:

- 1. Wall Street Journal Eastern Edition, Friday, August 15, 1975, Page 3.
- 2. T.V. Guide Southeast Michigan Edition, September 6-12, 1975, Page A-49.
- 3. Federal Register, Vol. 40, No. 205, October 22, 1975, pages 49496-49530.

APPENDIX I

TEST VEHICLE DESCRIPTION

1974 VESPA 125 PRIMAVERA SCOOTER

ENGINE	

Type	2 cycle, horizonal single cylinder
Bore X Stroke	55 mm x 51 mm
Displacement	121.17 cc
Compression Ratio	8.2:1
Maximum Power	Specified as less than 5 hp (3.7 KW)
Fuel Metering	1 barrel carburetor
Fuel Requirement	Petrol with a 2 percent mixture of
	2 stroke motor oil (RON not specified)
Cooling	Air cooled by centrifugal fan
DRIVE TRAIN	
Transmission Type	4 speed manual
Final Drive Ratio	5.31:1
CHASSIS	
Type	Monocoque type of pressed steel sheet
Tire Size	3.10-10"
Time Pressure	Front 123 kPa (17 PSIG)
	Rear 157 kPa (22.7 PSIG)
Weight As Tested	162 Kg
Inertia Weight	.160 Kg

AXLE N/V MANUFACTURE SPECS. IDLE/MANUFACTURE DATA/ TIRES DRIVE SOURC RATIO RATIO RORE STROKE C.R. TIMING RPM % CO GEAR RPM HC CO NOX EVAP SIZE RIM CYCLE CODE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 1 PEQUESTOR FUEL EXHAUST SYSTEM EVAP EGN CRANK FUEL FUEL INIT. BRANCH DATE INJ. SHIT. #CAPR #BBLS CARR MODEL TYPES NAME SYS. TYPE CASE TYPE TANK MAINT ODOM GV		TEST #	18-	-2605													PR	OCFSSE	D1 1	5:50:5	9 001	15.	197
ANLE NAVE PARTID PATIO RORE STROKE C.P. TIMING PPH % CO. GEAR RPH HC CO NOX TEVAP SIZE RIM CYCLE CODE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					•	 -																	
RATIO PATIO RARE STROKE C.P. TIMING PPM % CO. GEAR PPM NC CO NOX EVAP SIZE RIM CYCLE CODE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-																						T Y F
PEOUESTOP FUEL INJ. SHIT. PCAPR #BBLS CAPR MODEL TYPES NAME EVAP EGN CRANK FUEL FUEL INIT. BRANCH DATE INJ. SHIT. PCAPR #BBLS CAPR MODEL TYPES NAME EVAP EGN CRANK FUEL FUEL INIT. BRANCH DATE INJ. SHIT. PCAPR #BBLS CAPR MODEL TYPES NAME EVAP EGN CRANK FUEL FUEL INIT. BRANCH DATE INJ. SHIT. PCAPR #BBLS CAPR MODEL TYPES NAME EVAP EGN CRANK FUEL FUEL INIT. BRANCH DATE INJ. SHIT. PCAPR #BBLS CAPR MODEL TYPES NAME EVAP EGN CRANK FUEL FUEL TOOL OF 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					one	6700					~ .												
INT. RPANCH DATE INJ. SHIT. PCAPR #BRLS CAPR MODEL TYPES NAME SYS, TYPE CASE TYPE TANK MAINT ODON OF TO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									_						**		0.0	.0.0	2176	. KIM			
LARORATORY COMMENTS : HP R1=1461283 R2=227455] R3=1680900	Ţ	NIT. BE	PANCE			1J. 5	HHT. #	CARR #				TYPE	:S . M	IAME	SYS	TYPE	CASE	TYPE	TAT	IK MAI			GVI
TEST DATE ODOMETER H.P. "HG O. 2.4 29.90 74.0 59.0 101.0 1.75 IN 22.20 20.60 TLC DCS MC 11C 10-15-75 0. 2.4 29.90 74.0 59.0 101.0 1.75 IN 22.20 20.60 TLC DCS MC 11C													1.53VES	PA 74	SCOOTER	ł	•		-		:		
TEST DATE ODOMETER H.P. "HG O. 2.4 29.90 74.0 59.0 101.0 1.75 IN 22.20 20.60 TLC DCS MC 11C 10-15-75 0. 2.4 29.90 74.0 59.0 101.0 1.75 IN 22.20 20.60 TLC DCS MC 11C					1	IND.	AB	80 /-	TEA	1P. •0F-		-/	-MANOME	TER	-/(VS PR	ES	 -/IN	ITIA	S/	DYNO	o. cv:	S
PER REV.					FR I	1.P. 2.4	11H 29	е •90	DRY 74.0	WFT 59.0	CVS	s st	PEC.GR.	UNIT	S IN	1	OUT	OPER	. DI	RIVER	NO.	UN	ΙT
### BAG 1 4-612 KM		CUBIC	FT	CAL	CULATE	ED	NOX		IGN		,	*		IDLE	EVAP.	LOSS	TIRE	1					
BAG 1 4.612 KM 12174. COUNTS 2867.7 CU. FT. D/FACTOR=46.183 EXHAUST SAMPLE RANGE METER CONC. CONCENTRATIONS GMS GMS/KM HC-FID 7 18.4 579.08 7 0.1 3.43 575.73 PPM 26.96 5.85 CO 8 34.7 730.60 8 0.4 8.13 722.64 PPM 68.32 14.81 CO2 1 18.4 0.159 1 4.9 0.042 0.118 \$ 175.08 37.96 CO2 1 18.4 0.159 1 4.9 0.042 0.118 \$ 175.08 37.96 EXHAUST SAMPLE PACKGROUND SAMPLE CORRECTED MASS EMISSIONS EXHAUST SAMPLE PACKGROUND SAMPLE CORRECTED MASS EMISSIONS CO 8 23.3 461.53 8 0.4 8.13 473.52 PPM 76.48 12.38. CO 8 23.3 461.53 8 0.4 8.13 473.52 PPM 76.48 12.38. CO 1 14.3 0.124 1 5.0 0.043 0.081 205.72 33.31 NOX CHEM 4 1.0 1.00 4 0.2 0.20 0.80 PPM 0.19 0.03 BAG 3 4.667 KM 12119. COUNTS RANGE METER CONC. CONCENTRATIONS GMS GMS/KM ACKGROUND SAMPLE CORRECTED MASS EMISSIONS RANGE METER CONC. CONCENTRATIONS GMS GMS/KM SKM/L HC-FID 7 10.6 342.92 7 0.2 6.85 336.17 PPM 26.99 4.35 NOX CHEM 4 1.0 1.00 4 0.2 0.20 0.80 PPM 0.19 0.03 BAG 3 4.667 KM 12119. COUNTS RANGE METER CONC. CONCENTRATIONS GMS GMS/KM SKM/L HC-FID 7 14.9 474.10 7 0.1 3.43 470.74 PPM 21.95 4.70 CO 8 33.9 712.68 8 0.0 0.0 712.68 PPM 67.08 14.37 CO 8 33.9 712.68 8 0.0 0.0 712.68 PPM 67.08 14.37 CO 8 33.9 712.68 8 0.0 0.0 712.68 PPM 67.08 14.37 CO 1 1 18.0 6.156 1 4.9 0.040 1.14 PPM 0.19 0.04 WEIGHTED VALUES(1) HC CO CO2 NOX													EAR					*					
RANGE METER CONC. RANGE METER CONC. CONCENTRATIONS GMS GMS/KM KM/L HC-FID 7 18.4 579.08 7 0.1 3.43 575.73 PPM 26.96 5.85 CO 8 34.7 730.60 8 0.4 8.13 722.64 PPM 68.32 14.81 CO2 1 18.4 0.159 1 4.9 0.042 0.118 175.08 37.96 29.4 NOX CHEM 4 1.7 1.70 4 0.2 0.20 1.50 PPM 0.21 0.05 BAG 2 6.176 KM 20797. COUNTS 4899.0 CU. FT. 1377.5 SECUMDS D/FACTOR=65.054 ACT RPM= 1436.1 RPM RATIO(C/A)=0.9954 EXHAUST SAMPLE RACKGROUND SAMPLE CORRECTED MASS EMISSIONS PANGE METER CONC. PANGE METER CONC. CONCENTRATIONS GMS GMS/KM KM/L HC-FID 7 10.6 342.62 7 0.2 6.85 336.17 PPM 26.89 4.35 CO2 1 14.3 0-124 1 5.0 0.043 0.081 9 205.72 33.31 35.2 NOX CHEM 4 1.0 1.00 4 0.2 0.20 0.80 PPM 0.19 0.03 BAG 3 4.667 KM 12119. COUNTS 2854.8 CU. FT. 507.4 SECONDS D/FACTOR=48.839 ACT RPM= 1433.1 RPM RATIO(C/A)=0.9933 EXHAUST SAMPLE BACKGROUND SAMPLE CORRECTED MASS EMISSIONS RANGE METER CONC. RANGE METER CONC. CONCENTRATIONS GMS GMS/KM KM/L HC-FID 7 14.9 474.10 7 0.1 3.43 470.74 PPM 21.95 4.70 1 CO. 8 33.9 712.68 8 0.0 0.0 712.68 PPM 67.08 14.37 1 CO. 1 18.0 0.156 1 4.9 0.042 0.114 % 169.05 36.22 31.8 WEIGHTED VALUES(1) HC CO CO2 NOX	BAG	1 4.	612	км	121	174.	COUNTS	286	7.7 CÚ	J. FT.								ž.					
HC-FID 7 18.4 579.08 7 0.1 3.43 575.73 PPM 26.96 5.85 CO 8 34.7 730.60 8 0.4 8.13 722.64 PPM 68.32 14.81 CO2 1 18.4 0.159 1 4.9 0.042 0.118 % 175.08 37.96 NOX CHEM 4 1.7 1.70 4 0.2 0.20 1.50 PPM 0.21 0.05 BAG 2 6.176 KM 20797. COUNTS EXHAUST SAMPLE CORRECTED MASS EMISSIONS PANGE METER CONC. PANGE METER CONC. CONCENTRATIONS GMS GMS/KM HC-FID 7 10.6 342.92 7 0.2 6.85 336.17 PPM 26.89 4.35 CO 8 23.3 461.53 8 0.4 8.13 473.52 PPM 76.48 12.38 CO 1 14.3 0.124 1 5.0 0.043 0.081 % 205.72 33.31 35.2 NOX CHEM 4 1.0 1.00 4 0.2 0.20 0.80 PPM 0.19 0.03 BAG 3 4.667 KM 12119. COHOLS 2854.8 CU. FT. 507.4 SECONDS D/FACTOR=48.839 ACT RPM= 1433.1 RPM RATIO(C/A)=0.9933 EXHAUST SAMPLE BACKGROUND SAMPLE CORRECTED MASS EMISSIONS RANGE METER CORC. RANGE METER CORC. CONCENTRATIONS GMS GMS/KM HC-FID 7 14.9 474.10 7 0.1 3.43 470.74 PPM 21.95 4.70 CO 8 33.9 712.68 8 0.0 0.0 712.68 PPM 67.08 14.37 CO 1 1 18.0 6.156 1 4.9 0.042 0.114 % 169.05 36.22 31.8 WEIGHTED VALUES(1) HC CO COZ NOX	•							BAC	KGROUN E MET	ID SAME	ONC.	CONCEN		NS	GMS	GMS	ZKM	KM/	L				
CO2 1 18.4 0.159 1 4.9 0.042 0.118 % 175.08 37.96 29.4 BAG 2 6.176 KM	mge merin. Me	HC-FID		7	18.0	• !	579.08	7	0.	1 3	.43	575	.73 PP	· "" :	26.96	~~ 5.	85	*	- • ·				
BAG 2 6.176 KM 20797. COUNTS		COS		1	18.4	•	0.15	9 1	4.	9 0	.042	0.	. 11 18 %	1	75.08			29.4					
EXHAUST SAMPLE RACKGROUND SAMPLE CORRECTED MASS EMISSIONS PANGE METER CONC. PANGE METER CONC. CONCENTRATIONS GMS GMS/KM HC-FID 7 10.6 342.92 7 0.2 6.85 336.17 PPM 26.89 4.35 CO 8 23.3 461.53 8 0.4 8.13 473.52 PPM 76.48 12.38 CO2 1 14.3 0.124 1 5.0 0.043 0.081 % 205.72 33.31 35.2 NOX CHEM 4 1.0 1.00 4 0.2 0.20 0.80 PPM 0.19 0.03 BAG 3 4.667 KM 12119. COULLS 2854.8 CU. FT. 507.4 SECONDS D/FACTOR=48.839 ACT RPM= 1433.1 RPM RATIO(C/A)=0.9933 EXHAUST SAMPLE BACKGROUND SAMPLE CORRECTED MASS EMISSIONS RANGE METER CONC. RANGE METER CONC. CONCENTRATIONS GMS GMS/KM HC-FID 7 14.9 474.10 7 0.1 3.43 470.74 PPM 21.95 4.70 CO 8 33.9 712.69 8 0.0 0.0 712.68 PPM 67.08 14.37 CO2 1 18.0 6.156 1 4.9 0.042 0.114 % 169.05 36.22 31.8 NOX CHEM 4 1.8 1.80 4 0.4 0.40 1.41 PPM 0.19 0.04 WEIGHTED VALUES(1) HC CO CO2 NOX WEIGHTED VALUES(1) HC CO CO2 NOX	• •	NOX CHE	M .	4	1.	7	1.70	4	0.	S , C	1.20	1.	.50 PP	١.	0.21	. 0.	05	,	•				
RANGE METER CONC. RANGE METER CONC. CONCENTRATIONS GMS GMS/KM KM/L	BAG	2 6.	176					489 BAC	9.0 CL	FT.	1377	-5 SEC	COMPS	D/FAC	TOR=65.0	54 AC	T RPM=	1436.1	RPM	RATIO	C/A)=0	•9954	٠ <u>`</u>
CO						R ·	CONC.	PANG	E MET									έ κ Μ ∕	L				
CO2 1 14.3 0-124 1 5.0 0.043 0.081 % 205.72 33.31 35.2 NOX CHEM 4 1.0 1.00 4 0.2 0.20 0.80 PPM 0.19 0.03 BAG 3 4.667 KM 12119. COHUIS 2854.8 CU. FT. 507.4 SECONDS D/FACTOR=48.839 ACT RPM= 1433.1 RPM RATIO(C/A)=0.9933 EXHAUST SAMPLE BACKGROUND SAMPLE CORRECTED MASS EMISSIONS RANGE METER CORC. RANGE METER CONC. CONCENTRATIONS GMS GMS/KM KM/L HC-FID 7 14.9 474.10 7 0.1 3.43 470.74 PPM 21.95 4.70 CO 8 33.9 712.68 8 0.0 0.0 712.68 PPM 67.08 14.37 CO2 1 18.0 0.156 1 4.9 0.042 0.114 % 169.05 36.22 31.8 NOX CHEM 4 1.8 1.80 4 0.4 0.40 1.41 PPM 0.19 0.04 WEIGHTED VALUES(1) HC CO CO2 NOX KM/L		HC-FID		-														1					
BAG 3 4.667 KM 12119. COURTS 2854.8 CU. FT. 507.4 SECONDS D/FACTOR=48.839 ACT RPM= 1433.1 RPM RATIO(C/A)=0.9933 EXHAUST SAMPLE BACKGROUND SAMPLE CORRECTED MASS EMISSIONS RANGE METER CORC. RANGE METER CONC. CONCENTRATIONS GMS GMS/KM HC-FID 7 14.9 474.10 7 0.1 3.43 470.74 PPM 21.95 4.70 CO 8 33.9 712.68 8 0.0 0.0 712.68 PPM 67.08 14.37 CO2 1 18.0 0.156 1 4.9 0.042 0.114 % 169.05 36.22 31.8 NOX CHEM 4 1.8 1.80 4 0.4 0.40 1.41 PPM 0.19 0.04 WEIGHTED VALUES(1) HC CO CO2 NOX KM/L KM/L										.0 .0	0+13 1+043	4/3						3					
EXHAUST SAMPLE BACKGROUND SAMPLE CORRECTED MASS EMISSIONS RANGE METER COMC. RANGE METER CONC. CONCENTRATIONS GMS GMS/KM KM/L HC-FID 7 14.9 474.10 7 0.1 3.43 470.74 PPM 21.95 4.70 CO 8 33.9 712.68 8 0.0 0.0 712.68 PPM 67.08 14.37 CO2 1 18.0 0.156 1" 4.9 0.042 0.114 % "169.05 36.22 31.8 NOX CHEM 4 1.8 1.80 4 0.4 0.40 1.41 PPM 0.19 0.04 WEIGHTED VALUES(1) "HC CO CO2 NOX KM/L KM/L			M	-						S d	.20	, ŏ.						ä					
RANGE METER CORC. RANGE METER CONC. CONCENTRATIONS GMS GMS/KM KM/L HC-FID 7 14.9 474.10 7 0.1 3.43 470.74 PPM 21.95 4.70 7 0.0 3.43 470.74 PPM 21.95 4.70 7 0.1 3.43 470.74 PPM 21.95 4.70 7 0.1 7 0.1 3.43 470.74 PPM 21.95 4.70 7 0.1 7	BAG	3 4.	667															1433•1	RPM	RATIO	C/A)=0	•993	3
HC-FID 7 14.9 474.10 7 0.1 3.43 470.74 PPM 21.95 4.70 CO 8 33.9 712.68 8 0.0 0.0 712.68 PPM 67.08 14.37 CO2 1 18.0 0.156 1 4.9 0.042 0.114 % 169.05 36.22 31.8 NOX CHEM 4 1.8 1.80 4 0.4 0.40 1.41 PPM 0.19 0.04 WEIGHTED VALUES(1) THC CO CO2 NOX KM/L KM/L																							
CO 8 33.9 712.68 8 0.0 0.0 712.68 PPM 67.08 14.37 \$ CO2 1 18.0 6.156 1 4.9 0.042 0.114 % 169.05 36.22 31.8 NOX CHEM 4 1.8 1.80 4 0.4 0.40 1.41 PPM 0.19 0.04 WEIGHTED VALUES(1) THC CO CO2 NOX KM/L KM/L		HC-FID																i NM/	L .				
CO2 1 18.0 0.156 1 4.9 0.042 0.114 % 169.05 36.22 31.8 NOX CHEM 4 1.8 1.80 4 0.4 0.40 1.41 PPM 0.19 0.04 75 WEIGHTED VALUES(1) HC CO CO2 NOX KM/L KM/L		CO .			33.9	•	712.68	. 8	0.	0 0	0 .	712	68 PPN	1 7 7 7	67.08			*					
75 WEIGHTED1 FUEL-WEI WEIGHTED VALUES(1) HC CO CO2 NOX KM/L KM/L KM/L				-														31.8					
			-	•		5					٠		•41 PP	•	0.17						F		

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•			•	· Moor signed	
MEG.	•	. MOD. DISPL.	INERTIA CURB	NO. ACT. DY	NO A	TEST TEST
CODE MODEL	VEHICLE 1.0			CYL. H.P. HP # 65		
415 125 SCOOTER			160 0	1 .0 3.0	0 0 0	0 76 5
413 11 30/0/12	¥**3** * * * * * * * * * * * * * * * * *	20 , 14 12340	100	1 ,0 340	0 0 0	0 70 3
		OTHER COPES	*0.5			
AXLE NZV		ACTURE SPECS.		/MANUFACTURE DAT		
		TIMING PPM	% CO GEAR RPM	HC CO NOX	,	RIM CYCLE CODE
0.0 0.0 (0.0 0.0 0.0	- 0 • 0 • 0 •	0.0	0.0 0.0 0.0	0.0	2 1
	•	•		•		•
PEQUESTOR	FUEL		EXHAUST SYS		ANK FUEL FUFL	
INIT. PRANCH DAT	E . INJ. SHIT. #CAF	RR #BBLS CARR MODI	EL TYPES NA	ME SYSL TYPE C	ASE TYPE TANK	MAINT ODOM GVW
TC . FCT 10-15	-75 0 n		0000	. n 1	0 1 0	0 0 0
					•	
PEQUESTOR COMMEN	ITS : HP SET @ SOKE	PH BASED ON COAST	DOWNS.=1.53HPVFSP	A 74 SCOOTER	ENGINE FA	MILY I
LARGRATORY COMME		5 R2=2206972 R3=16			CVS HOUPS	
Enterior Contract	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,				
•	IND. BAPO	/TEMP OF	MANOMETI	ER/CVS PRES	/INITIALS	P DYNO. CVS
TEST DATE ODOMET		DRY WET	CVS SPEC.GR.		OPER ORI	
	6. 2.4' 29.0			IN 22.11 20.75		SH MC 11C
10-10-13	DILUTION		10.3	TESTI EVELS	, , ,	JII 110
•	OIL OIL ON A	414 0.0 0.0	•	•	•	A STATE OF THE STATE OF THE STATE OF
CUPIC FT CAL	CULATED NOX	IGN		DLE EVAP. LOSS TIR	<u> </u>	
PER REV.	RPM FACTOR			RPM GRAMS PRE		
0.27631	1443. 0.8575	00 . 0.	0.0	0	0	
		•			1	
BAG 1 4.610 KM	12231, COUNTS	278712 CH. FT.		/FACTOR=49.534		
· E)	HAUST SAMPLE	BACKGROUND SAMPLE	CORRECTED	MASS EMISSIONS		
PANGE	METER - CONC. F	RANGE METER COL	IC. CONCENTRATION	S GMS GMS/KM	KM/L	
HC-FID 7	16.9 534.24	7 0.3 10.5	7 524.18 PPM	23.86 5.18	*	
CO 8	32.6 623.73	8 0.1 2.0		62.65 13.59	in ∲ in the sign of the	and the state of the state of the state of
C02 1	17.2 0.149		142 0.1407 %	154.96 33.61	32.8	
NOX CHEM 2	5.9 1.47			0.18 0.04	32.40	
NUA CHEM E	3.9	2 0.5 , 17.6	11.40 PEM	0.010 0.04	- }	
010 0 : (107 44	20704 - 50, 1170	4770 0 00 55	1370 6 5500405 0	/FACTOD=(F FO4 ACT DD		ATINIC (A) = 0 0001
BAG 2 6.127 KM				/FACTOR=65.584 ACT RP	M= 1437.0 RPM R	A118(C/A)=0.9961
	HAUST SAMPLE	BACKGROUND SAMPLE		MASS EMISSIONS	·	the second second second second
			VC. CONCENTRATION		KM/L	
HC-FID 7	11.6 373.70	7 0.2 6.0		28.40 4.63	}	,
CO 8	22.7 458.75	8 0.4 8.		71.99 11.75		•
F 2 C02	13.9 0.120		136 0±084 %	207.18 33.81	35.0	
NOX CHEM 2	3.3 0.83	5 0.1 0.0	13 / 0.80 PPM	0.18 0.03	!	
•					1	
BAG 3 4.607 KM	12341. COUNTS	2812.3 CH. FT.	517.2 SECONDS D	/FACTOR=52.209 ACT RP	M= 1431.7 RPM R	ATIO(C/A)=0.9924
E)	HAUST SAMPLE	RACKGROUND SAMPLE	CORRECTED	MASS EMISSIONS	á	
RANGE	METER CONC. F		C. CONCENTRATION	S GMS GMS/KM	i KM/L	•
HC-FID 7	16.0 507.23	7 0.2 6.4		22.00 4.00		•
CO 8	30.7 641.73	8 0.4 8.1		58.76 12.76		and the second of the second o
C05 1	16.4 0.142		0.110 %	160.96 34.94	33.1	表到他们, 在1000年
NOX CHEM 2	5.7 1.42	2 0.2 0.0		0.18 0.04	3341	
NUA CHEM . Z	347 146	E 0.2 0.0	10 PPM	0.10 0.04	TE DETCHTER.	FUEL-WEIGHT1
METCHTED MANUEAUS		602		• •		1
WEIGHTED VALUES(1)	. HC CO		אַר		! KM/L	KH/L
GRAMS/KM	4.82 12.3	34.1 0.4			34.	0.0
BEFORE ROUNDING	4.8213 12.3352	2 34.0519 0.03	3321		34.1042	er en
			•		•	