DOCUMENTATION FOR OUTFALL

A COMPUTER PROGRAM FOR THE CALCULATION OF OUTFALL LENGTHS BASED UPON DILUTION REQUIREMENTS

REGION II
26 FEDERAL PLAZA
NEW YORK CITY, NEW YORK 10007

OCEAN OUTFALL ANALYSIS

June, 1975

Prepared by:
David L. Guthrie
U.S. Environmental Protection Agency
San Juan Field Office
1225 Ponce de Leon Avenue
Santurce, Puerto Rico 00907

PREFACE

This report has been prepared to illustrate the use of oceanographic data and a digital computer program developed by the San Juan Field Office of the U.S. Environmental Protection Agency to aid in the location and analysis of ocean outfalls. The report has been reviewed by the U.S. Environmental Protection Agency and approved for publication. This approval does not signify concurrence or approval of any procedures or results contained herein.

ACKNOWLEDGEMENTS

The art work contained in this report was illustrated by Robert Rauenbuhler of the Environmental Protection Agency in Edison, New Jersey.

The initial concept for the OUTFALL Program was advanced by Dr. Donald R. Washington, former director of the Region II San Juan Field Office. Much appreciation is extended to him for his cooperative work and assistance with the theoretical aspects of the program. Thanks is also given to Mr. Donald J. Baumgartner and Mr. Calloway, of the National Environmental Research Center in Corvallis, Oregon.

Thanks must be extended to Ethan T. Smith, Chief, Data Systems Branch for his encouragement and support of this effort and to Steve Chapra of that same section for his many hours of assistance in debugging the computer program.

Finally, I would like to thank Ms. Marie Smith and Mrs. Carmen Lydia Martin for their typing of the report.

David L. Guthrie

TABLE OF CONTENTS

	<u>Pa</u>	ge
INTRODUCTION		1
THE SYSTEM: DEFINITION OF TERMS	•	2
THEORY	•	4
THE COMPUTER PROGRAM		9
Flow Chart	.1	.6
NOMENCLATURE	.2	2
REFERENCES	. 2	:4
APPENDIX A (listing of source deck) APPENDIX B (example problem) APPENDIX C (output)		

INTRODUCTION

After wastewater is treated, a method may be used to convey it to offshore waters, where natural processes break it down further. A common mechanism is the ocean outfall.

Basically, the philosophy of the disposal of wastewater through a submarine outfall is to maximize the initial dilution of discharged wastewaters so to minimize any adverse impact(s) on the receiving waters. Beneficial uses of receiving waters vary greatly from water supply to aesthetic beauty, but usually the most important reference point is the maintenance of the water quality standards which have been defined for the applicable water usage.

The chemical biological and hydrodynamic characteristics of the receiving waters are critical considerations in determining the actual outfall routine and the ultimate disposal site.

OUTFALL is a computer program which can be used to evaluate a coastal system under consideration as a disposal site. It is designed to evaluate and/or predict the length of outfall needed to adequately dilute a proposed discharge in order to provide compliance with coastal water quality standards.

Any coastal system is extremely complex, and as such requires many considerations in its investigation. Some of the most important factors which can be evaluated in OUTFALL include the effects of onshore currents, tides, density and salinity gradients, ambient surface and hypolimnetic velocities, the initial jet velocity, the quantity of discharge, the slope of the ocean bottom, and coliform die-off rates in the vicinity of outfall locations.

Analytical expressions are used to calculate the factors of dilution, diffusion, and die-off in order to compute the total dilution, taking into account the aforementioned variables. This value is then compared to a dilution value needed to meet water quality standards and iterated until an outfall length is reached where the calculated dilution value meets that which is required to meet the applicable water quality standards both at the maximum point of plume rise above the diffuser and the more stringent nearshore standards at a specified distance offshore.

This documentation consists of a description of the program as well as its input. A listing of OUTFALL, which is compatible with the IBM 370/155 system, a case study, and a sample output from the program are included in the appendices.

THE SYSTEM: DEFINITION OF TERMS

- INITIAL DILUTION occurs when a wastewater is discharged through a diffuser into a receiving water of greater density; it is diluted by turbulent jet mixing. Due to its buoyancy, the plume rises toward the surface, and a turbulence and mixing action is caused by the velocity gradient between the edge of the plume and the surrounding water.
- DISPERSION takes place after initial dilution, when a rather homogenous mixture forms above the diffuser section, and the sewage field begins to move according to prevailing ocean currents.
- DECAY is the apparent die-off of bacteria in the sewage including flocculation and sedimentation of the microorganisms as well as mortality.
- TOTAL DILUTION is the product of the initial dilution, the dispersion, and decay factors.

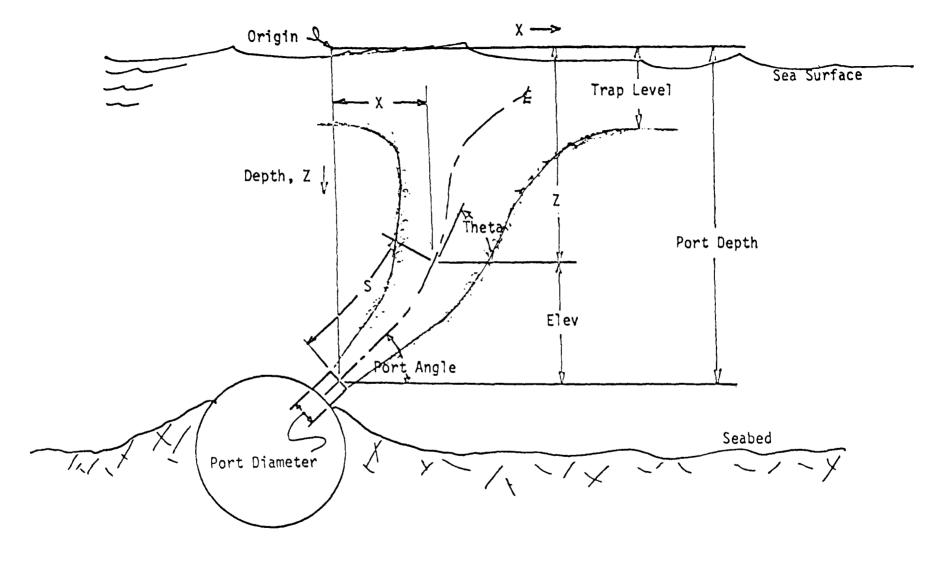
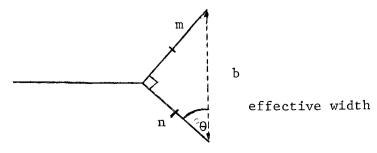


FIGURE 1. Definition Sketch for Input Specification and Output Interpretation.

THEORY

In the calculation of optimum outfall length, X, a development of total dilution D_T , which is composed of initial dilution, D_1 , dispersion, D_2 , and die-off or decay, D_3 , is necessary. These factors are multiplicative because as an initial concentration, C_0 , is multiplied by an initial dilution, D_1 , a secondary concentration, C_1 , results which is then multiplied by a secondary dilution factor, dispersion, D_2 , resulting in a new concentration, C_2 , and so forth until the final concentration, C_3 , is obtained. Mathematically, the expressions are: $C_1 = D_1 C_0$, $C_2 = D_2 C_1$, and $C_3 = D_3 C_2$, Substituting and rearranging by the associative law, $C_3 = D_3 (D_2 (D_1 C_0))$ or $C_3 = D_1 D_2 D_3 C_0$. Hence, it follows that

$$D_{T} = D_{1} \times D_{2} \times D_{3} \tag{1}$$


which has also been mentioned by Burchett, et. al.

When moderately strong currents are encountered, the initial dilution may be estimated from a continuity relation between the sewage flowrate and the flowrate of fresh seawater over the outfall diffuser as proposed by Pearson and mentioned by Metcalf and Eddy:

$$D_1 = (V_1 \text{ bd}) / Q$$
 (2)

It should be noted that the initial dilution value, D_1 , as presented in equation (2) is subject to much controversy. As in most cases, density gradients exist in the surrounding seawater, and the turbulence caused by the velocity gradient between the edge of the plume and the surrounding seawater must be incorporated. Also, the continuity equation requires that the combining of the wastewater flow and the seawater flow is the perfect mixing of the two flows at some distance above the diffuser section. However, this approach is fairly simplified and neither takes density stratification nor quiescent media into account. Therefore, a different approach developed by Baumgartner, Trent, and Byram entitled "PLUME" was used to find D_1 in the OUTFALL program. This method is based on similarity prinicipals as presented by Baumgartner and Trent Solution is carried out by a fourth-order Runga-Kutta technique, and calculation of the potential core length is based on Abraham's method and is an integral part of the results.

The effective diffuser system length is an important term in outfall design. In this publication, it will be developed according to the design value of 14 ft. diffuser/mgd wastewater⁵. The outfall is represented diagramatically as having two legs as follows:

Because it is an isoceles triangle, m=n and m+n=14 ft/mgd xQ_W , where b is the effective width of the diffuser. Therefore, the effective width can be determined by the following:

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{m}{b} \tag{3}$$

.5 (14 ft/mgd)
$$Q_{\overline{W}}$$

$$\cos \theta = \frac{}{b} \tag{.4}$$

.5 (14 ft/mgd)
$$Q_{\overline{W}}$$

$$b = \frac{1}{1000}$$

Hence,

$$b = 9.9 \text{ ft/mgd}$$
 , $Q_w = 6.4 \text{ ft/cfs}$, Q_w (6)

$$D_1 = (.03281 \text{ ft/cm}) V_1 \text{ bd/Q}$$
 (7)

and substituting equation (6) for b, the following expression for \mathtt{D}_1 results in:

$$D_1 = \frac{.03281 \quad (6.4 \, Q_w) \, V_1 d}{Q_w} = (.210) \, V_1 d}$$
 (8)

The theory of dispersion of the sewage field after it is initially diluted has been developed by Brooks² and has resulted in the following equation, derived on the basis of the "4/3-law", in which the coefficient of eddy diffusion, E, is a function of the diffuser length raised to the four-thirds power. Thus, the following equations result; from Brooks²:

$$D_2 = 1/erf(\sqrt{1.5 / ((1 + 2/3 B X /b)^3 -1)})$$
 (9)

and

$$E = 0.001 \text{ (b)}^{4/3} \tag{10}$$

It has also been determined by Brooks² that:

$$B = 12E/V_2b \tag{11}$$

This term was developed to take into account the horizontal diffusivity of the spreading plume, as entrainment of the wastewater becomes important in the dispersion mechanism.

In order to find (2/3) BX/b in equation (9), equation (10) is substituted in equation (11) to obtain B:

$$B = \underbrace{(12) \ (0.001) \ (b)}_{V_2b} = \underbrace{(1.2 \times 10^{-2})b}_{V_2}^{1/3}$$
 (12)

Therefore,

$$(2/3) BX/b = \underbrace{(1.2 \times 10^{-2}) b^{1/3}}_{V_2} (2X) = \underbrace{8 \times 10^{-3} b^{-2/3} X}_{(.03281 \text{ ft/cm})V_2}$$

$$= \underbrace{(2.438 \times 10^{-1}) b^{-2/3} X}_{V_2}$$

$$(13)$$

But equation (14) can be simplified even further, by substituting equation (6):

$$(2/3) BX/b = \underbrace{(2.438 \times 10^{-1})}_{V_2} (6.4 Q_w)^{-2/3} X$$

$$= \underbrace{(2.438 \times 10^{-1})}_{V_2} (.290) Q_w^{-2/3} X$$

$$= \underbrace{(7.071 \times 10^{-2})}_{V_2} Q_w^{-2/3} X$$

$$(15)$$

Hence, the final expression for dispersion is obtained:

$$D_2 = 1/\text{erf}\left(\sqrt{1.5/\left((1 + \frac{(7.071 \times 10^{-2})Q_w^{-2/3}X)^3 - 1\right)}{V_2}}\right) (17)$$

Bacterial decay, the third significant factor in waste dilution, is patterned after a first - order relationship as follows:

$$D_3 = e^{kt} = \exp((K(\overline{V_2})))$$
 (18)

This equation results from an expression defining reduction in bacterial concentration from initial dilution to time t as follows:

$$D_3 = \frac{C_0}{C_+} \tag{19}$$

In the relationship in equation (18), K is actually a logarithmic conversion to relate T_{90} , the time required in hours for a 90 percent reduction in bacterial concentration, to a time constant as follows:

$$K = 2.3/ (3600 \text{ sec/hr})T_{90} = 6.39 \times 10^{-4} / T_{90}$$
 (20)

Therefore, expanding the decay term,

$$D_3 = \exp (K(X/V_2)) = \exp (KX/V_2 (.03281 ft/cm))$$
 (21)

and substituting equation (20) for K:

$$D_3 = \exp ((6.39 \times 10^{-4}) \text{ X/ } (.03281) \text{ T}_{90}\text{V}_2)$$

= $\exp ((1.95 \times 10^{-2}) \text{ X/T}_{90}\text{V}_2)$ (22)

For convenience, constant values can be assigned as:

$$\theta_1 = 2.10 \times 10^{-1}$$
 $\theta_2 = 7.071 \times 10^{-2}$
 $\theta_3 = 1.95 \times 10^{-2}$

Therefore, equations (8), (17), and (22) become:

$$D_{1} = \theta_{1} V_{1} d$$

$$D_{2} = 1/\text{erf} \left(\sqrt{\frac{1.5}{\left[\left(1 + \frac{\theta_{2} Q_{w}^{2/3} X_{3}}{V_{2}} \right)^{3} - 1 \right]}} \right)$$
(23)

$$D_3 = \exp (\theta_3 X/T_{90} V_2)$$
 (25)

Substituting (8), (17), and (22) into equation (1) yields the final expression for total dilution, utilizing the continuity expression for D_1 :

$$\frac{\theta_1 \, V_1 \, de^{-\theta_3 \, X/T_{90} \, V_2}}{\sqrt{1.5 / \left[\left(\frac{1 + \theta_2 Q_w^{-2/3} X}{V_2} \right)^3 - 1 \right]}}$$
(26)

In the model, the expression θ_1 V_1 d, or D_2 , is replaced by program "PLUME" as a subroutine. However, the expression given here can yield a rapid estimation of D_1 and thus D_T , without conducting complex iterative techniques. For a more concise discussion of these primary equations and ocean outfall design criteria, see Beckman¹, Brooks², Burchett³, Frankel⁴, and Metcalf and Eddy⁵.

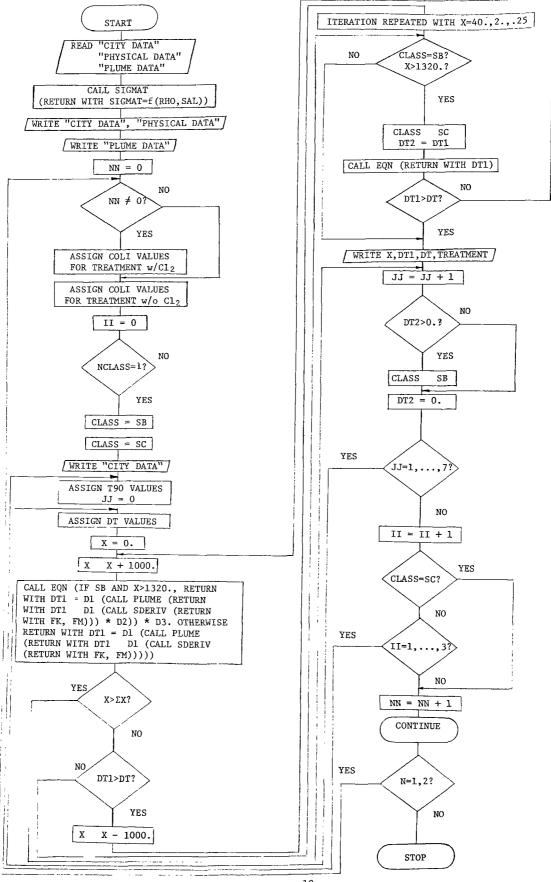
EXPLANATION VARIABLE $D_{\mathbf{T}}$ Total dilution Initial dilution D₁ Dispersion D_{2} Decay D_3 Ocean current velocity Effective width of the diffuser system Ъ d Average depth of the sewage field $\boldsymbol{Q}_{\boldsymbol{W}}$ Sewage flowrate В Interim variable X Distance along the plume centerline Ε Coefficient of eddy diffusion Ocean current velocity K Bacterial decay constant T₉₀ Time required for a 90 percent

reduction in bacterial concentration.

The program begins by reading the "city data", "physical data", and the "plume data". Then the "density data" is read in and subroutine SIGMAT is called to find the density. At this point, the number of ports (FN) is found by the following formula:

$$FN = 14 \frac{\text{ft.}}{\text{mgd}} * .646 \frac{\text{mgd}}{\text{cfs}} * Q_{\text{w}}(\text{cfs}) * \underbrace{1}_{10 \text{ ft diffuser spacing}}$$
(27)

where 14 ft/mgd and 10 ft diffuser spacing are design criteria. 5 The values of 14 ft/mgd and 10 ft. diffuser spacing were those chosen by the author. If new values are desired, these must be changed in the program itself. The "plume data" are then written. Having read the initial values, a range of effluent coliform concentrations are assigned by a test of NN, which is initially assigned to be equal to 0. The class is then assigned by a test of NCLASS, and the "city data" is written. The first T_{90} value is assigned to be equal to 1 hour, and JJ, the counter for the different respective treatment levels, is initialized at 0. The first part of the program then ends with the computation of the total dilution (D_T) necessary to meet a given water quality standard by the following formula:


*coliforms/100ml for a
$$\frac{\text{corresponding treatment level}}{\text{Corresponding treatment level}}$$
 (28)

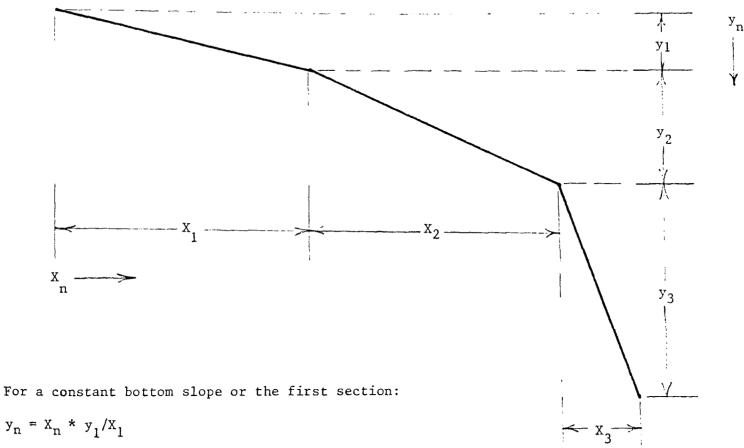
 D_{T} (required)=

In equation (28), the number of coliform organisms pertaining to the corresponding treatment level must be known in order to calculate the required dilution. Lower and upper coliform limits must be taken into account when designing an outfall length, hence that outfall's dilution ability. Table B-4 presents a summary of effluent coliform data obtained from five different wastewater treatment plants in Ohio and New Jersey. These data are presented herein because there are few data indicating the range of effluent coliform values for different wastewater treatment processes, although there are many data indicating mean values. A final summary of the data presented in Table 1 is shown as Table 2, these data are used in the example problem.

Having assigned the D_T values, the program now iterates the outfall length (X) by 1000 feet from the shoreline. Subroutine EQN is called, which calculates D_1 by the PLUME subroutine. PLUME must, in turn, call subroutine SDERIV to complete its calculations of D_1 . It is obvious in an ocean situation that the depth of the bottom is some function of its distance from shore. Therefore, in subroutine EQN, depth (DEPTH) is computed as shown diagramatically in Figure 2. For more than three changes in bottom slope, the following equation can be used:

*A listing of the program is in Appendix A and a flow chart is on page 10.

$$Y_{n} = Y_{1} + Y_{2} + \dots + Y_{m-1} + X_{n} - (X_{1} + X_{2} + \dots + X_{m-1})) * Y_{m} / X_{m}$$
(29)


where m and n are integers. After D_1 is calculated by EQN and PLUME, the generated X value is tested to see if it exceeds the total distance from shore read into the program. If this occurs, a message indicating this is the case is printed and the program goes to the next level of treatment.

The dilution calculated is then compared to the dilution required. If the dilution at the first depth (i.e. - 1000 feet) is greater than that needed, the 1000 is subtracted and the same iteration proceeds with X=40 feet. This iteration is repeated in the same manner with X=2 feet and X=0.25 feet, until the outfall length needed is within 0.25 feet of that required.

Now, the water quality classifications play an important role. The program can evaluate two different situations: (1) where water quality standards must be met directly over the end of the outfall, and (2) where water quality standards must be met over the end of the outfall but when part of the wastewater field is carried onshore by the currents where a stricter water quality standard exists, that stricter standards must be met at the boundary line between the two standards. For example, if a standard of 70 coliforms/100ml exists from the shore to 0.1 mile in the ocean and after the 0.1 boundary a standard of 10,000 coliforms exists, and the outfall is longer than 0.1, the number of coliforms in the wastewater must be reduced from 10,000 to at least 70 if the field drifts inside the 0.1 mile interface.

The model tests for this by the mechanism of SB, which can be any coliform value (SB is the lower standard, SC is the higher standard). If the class is SB (inside of the boundary because the higher standard is assumed to be used outside the boundary). If X is greater than the boundary limit, then the standard is changed to SC and Xl is stored in X2. DT1 is again computed by EQN and PLUME and a second test is con-However, this time EQN uses subroutine PLUME and ERF to compute D_{π} as presented in equation(1). If D1 is greater than DT, the values are printed and the next higher level of treatment is investigated. (JJ is increased by 1). If DT1 is still less than DT, X is again increased by 1000 feet, and the iteration begins again. For clarification, the D₁ value is calculated for the port closest shore. The program also assumes that the plume from each individual port does not overlap with any adjacent plume during its period of rise. Any overlap may tend to reduce the dilution. Therefore, the required outfall length would have to be longer than the program indicated in cases of significant plume overlap.

FIGURE 2. BOTTOM PROFILE: DISTANCE FROM SHORE VS. DEPTH

$$y_n = x_n * y_1/x_1$$

For the second section or change in bottom slope:

$$y_n = y_1 + (x_n - x_1) * y_2/x_2$$

For the third section or change in bottom slope:

$$y_n = y_1 + y_2 + (x_n - (x_1 + x_2)) * y_3/x_3$$

TABLE 1

E. COLI CONCENTRATIONS IN THE EFFLUENTS OF SEWAGE TREATMENT PLANTS

PLANT	LOCATION	TREATMENT	NO. SAMPLING DAYS	MEMBRANE LOW	FILTER MEDIAN	RESULTS HIGH
Keasby	Raritan, N.J.	Primary+C1 ₂	39	10	7,224	10,000
Keasby	Raritan, N.J.	Primary+Cl ₂	5	20	4,042	10,000
Coleran	Cincin., Ohio	Second.+C1 ₂	11	1	21	99
Hgts. Coleran	Cincin., Ohio	Secondary _	11	8700 2	17,391	677,000
Hgts. Norbrook	Cincin., Ohio	Second.+C1 ₂	10	1	12,759	113,000
Norbrook	Cincin;, Ohio	Secondary	10	17,600 1	62,830	546,000
Florence	Cincin., Ohio	Second.+C1 ₂	9	2	445	1888
Florence	Cincin., Ohio	Secondary	9	36,180 2	51,620	587,000
Keyport	Keyport, N.J.	Primary+Cl ₂	106	10	18,545	1,000,000

Sources of Information: Mr. Edwin Geldrich, National Environmental Research Center, Cincinnati, Ohio.
U.S. Environmental Protection Agency

Mr. Francis Brezenski, National Environmental Research Center, Edison, N.J. U.S. Environmental Protection Agency

TABLE 2

EFFLUENT COLIFORM DATA

TREATMENT LEVEL	E. COLI CONC. WITH CHLORINATION	REFERENCE
Raw: upper Raw: lower Primary: upper Primary: lower Secondary: upper Secondary: lower Tertiary: upper Tertiary: lower	1.0 x 10 ⁷ 5.0 x 10 ⁵ 1.0 x 10 ⁶ 10.0 1.13 x 10 ⁵ 2.0 1.0 x 10 ³ 2.0	(1) (2) (3) (4) (5) (5) (7) (7)
E. COL	I CONC. WITHOUT CHLORINATION	
Raw: upper Raw: lower Primary: upper Primary: lower Secondary: upper Secondary: lower Tertiary: upper	2.2 x 10^{8} 1.2 x 10^{5} 1.65 x 10^{8} 9.0 x 10^{4} 6.77 x 10^{5} 8.7 x 10^{3} 1.0 x 10^{5} 1.0 x 10^{3}	(1) (2) (8) (8) (6) (6) (7) (7)

References:

- (1) Keyport, N.J. Plant Sampling Days = 4
- (2) Keyport, N.J. Plant Sampling Days = 30
- (3) Keyport, N.J. Plant Sampling Days = 106
- (4) Keasby Plant, Raritan, N.J. Sampling Days = 39
- (5) Norbrook Plant, Cincinnati, Ohio Sampling Days = 10
- (6) Coleran Hgts Plant, Cincinnati, Ohio Sampling Days = 11
- (7) Personal Communication with Dr. Don Reasoner, EPA-NERC, Cincinnati, Ohio
- (8) Calculated using 25 percent as reduction in coliform concentration resulting from primary treatment without chlorination.

In the event, JJ is increased by 1 and DT2 is tested for being greater than 0. If it is, the CLASS is reassigned as SB and DT2 is set equal to 0. The next higher level of treatment then is investigated. II is increased by 1 and the class is again tested. If the water has the higher standard, CLASS=SC, then NN is increased by one, the program continues once more and stops. If CLASS=SC, II is then used to increase the T_{90} value, and the program starts over.

Any T_{90} values can be used. If only one T_{90} value is desired, statements OUTFL062-OUTFL069 and OUTFL169-OUTFL171 can be eliminated from the program. Only the maximum coliform values were used (MAX) because they generated longer outfall lengths, based on public health constraints.

SUBROUTINE EQN

The CALL and SUBROUTINE statements for EQN are:

CALL EQN(X,V1,V2,V1,X1,Y2,X2,Y3,X3, QW,T90,DT,CLASS, DT1, XSTOR1,SC,SB,DT2)

SUBROUTINE EQN (X,V1,V2,Y1,X1,Y2,X2, Y3,X3,QW,T90,DT,CLASS,DT1, XSTOR1,SC,SB,DT2)

Equations for DEPTH are computed using those given in Figure 2, and D_1 is computed by subroutine PLUME. D_2 is computed using the distance, X-1320 feet to equal the distance from the end of the outfall to the boundary demarkation. D_2 * D_3 is computed by multiplying equations (17) and (20) and D_T is found by using equation (1). The erf (as shown in equation (17) is calculated by subroutine ERF.

RESTRICTIONS

If the Σx is less than the iterative value of X, a termination of that

$$x_1 \rightarrow x_n$$

step in the program will result. If this happens, X has been extrapolated in the following manner:

IF(X.GT. (X1+X2)) DEPTH = Y1+Y2+(X-(X1+X2))*Y3/X3

SUBROUTINE PLUME

The CALL and SUBROUTINE statements for PLUME are:

CALL PLUME (DEPTH, DT1)

SUBROUTINE PLUME (DEPTH, DT1)

This subroutine has been described in the Theory section, and more information can be gleamed in detail from reference (7). Basically, it calculates D_1 based on the behavior of a plume in density stratified surroundings. These type of conditions are very common in most aquatic environments. Hence, PLUME gives more reliability to D_1 than does equation (2). If desired, the program can be easily modified to convert to the Pearson formula as follows:

IF(CLASS.EQ.SC) DT1=THETA1*V1*DEPTH (30)

and so forth.

SUBROUTINE SDERIV

The CALL and SUBROUTINE statements for SDERIV are:

CALL SDERIV (SPDS2,E+.5*FK,R+.5*FM)
CALL SDERIV (S+DS,E+FK,R+FM)
CALL SDERIV (S,E,R)

SUBROUTINE SDERIV (S,E,R)

Subroutine SDERIV calculates the derivatives de/ds and dr/ds which are the incremental changes of bouyancy and monentum as the plume develops. Incremental angle changes of the centerline are also a by-product of this subroutine.

FUNCTION ERF

The FUNCTION and call statements for FUNCTION are:

ERF (ARG)

FUNCTION ERF (ARG)

This program calculates the error function, which is a mathematical series expansion based on the following formulas: 23

Case I, $0 \le X \le 3$:

erf x = 1 - erfc x
erfc x =
$$1/(1+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5)^8$$
 (31)

where $a_1 = 0.14112821$

 $a_4 = 0.00039446$

 $a_1 = 0.08864027$

 $a_5 = 0.00328975$

 $a_{3} = 0.02743349$

and Case II, $X \ge 3$:

erfc x =
$$\frac{e^{-x^2}}{\sqrt{\pi}}$$
 $(1 - \frac{1}{2x^3} + \frac{3}{2^2x^5} - \frac{15}{2^3x^7} + \frac{105}{2^4x^9} - \frac{945}{2^5x^{11}} + \frac{10365}{2^6x^{13}})$ (33)

This function subroutine was developed for the use in several oceanographic computer programs by ${\rm EPA.}^{24}$

INPUT REQUIREMENTS AND DATA DESCRIPTION

Column	<u>Variable</u>	Description	Format
Card One:	"City Data"		
1-64	A	Degree of treatment	16A4
65-67	NCIT	Number of Cities	13
Card Two:	"City Data"		
1-12	CIT(1-3)	City Names 1-3	3A4
13-14	NCLASS	Water Quality CLASS: SB=1; SC=⅓	12
Card Three	: "Physical Data	a"	
1-4	V1	Avg. velocity of ocean water in effective mixing region	F4.1
6-9	V2	Ocean current velocity	F4.1
11-20	X1	Distance from shore to first slope change	E9.3
22-26	Y1	Depth at first slope change	F4.0
28-33	QW	Design Discharge	F5.1
35-39	Y2	Depth at second slope change	F4.0
40-49	Х2	Distance from shore to second slope change	E9.3
51-56	Y3	Depth at third slope change	F5.0
58-67	х3	Distance from shore to third slope change	E9.3
Card Four:	"Plume Data"		
1	NDC	(Blank)	Ll
2	METERS	Logical: T=MKS Units; %=FPS Units	L1
3–5	NPTS	Number of ambient density points	13

<u>Column</u>	<u>Variable</u>	Description	Format
6-10	ANGLE	Port Angle from horizontal	F5.0
21-30	DIA	Port Diameter	F10.0
31-40	RHOJ	Density of Effluent	F10.0
41-50	RFD	(BLANK)	F10.0
51-60	Q	Design Discharge	F10.0
61-70	FN	Number of Ports (BLANK)	F10.0
71-80	PS	Desired data Printout along Centerline	F10.0

Card Five through Card NDP: "Density Data"

Cards are read until the number of density points is reached. Example card:

1-10	DP	Depth corresponding to its respective density point	F10.0
11-20	RHO	Ambient density of seawater	F10.0

NOMENCLATURE

Variat Program	Other	Description	<u>Units</u>
A		Degree of treatment	
ANGLE		Angle of port orientation from horizontal	Degrees
ARG	Equation(24)	Error Function Argument	
CIT		City Name	
CLASS		Water Quality Classification	E Coli/100 ML
COL		Coliform Number Corresponding to various degrees of treatment	
DEPTH	ď	Depth of water over the diffuser	ft
DIA		Port Diameter	ft
DP		Depth corresponding to its respective density point	ft
DT	$ extsf{D}_{ extsf{T}}$	Total dilution required to meet water quality standard	
DT1	$D_{\overline{T}}$	Total dilution calculated in subroutine EQN with varying X valu	es
DT2	$ extsf{D}_{ extsf{T}}$	Total dilution calculated if different water quality standard exists past a given distance from	shore
METERS		If "T", MKS units used If """, FTS units used	
NCIT		Number of cities included in model	
NCLASS		Number designating water quality classification	
NPTS		Number of density profile points	
PS		Printout interval	ft
Q, QW	$Q_{\overline{\mathbf{w}}}$	Design Discharge	ft ³ /sec

NOMENCLATURE -cont.-

Variabl	e Name		
Program	Other	Description	Units
RHO	ρ	Ambient Density of water	gm/cm ³
RHOJ	ρj	Density of wastewater plume	gm/cm ³
Т90	^T 90	Time required for a 90 percent reduction in bacterial concentration	hrs.
V1	v_1	Average velocity of ocean water in effective mixing region	cm/sec
V2	v_2	Ocean current velocity	cm/sec
X	X	Distance from shore to end of outfall along water surface	ft
X1	x_1	Distance from shore to first slope change	ft
X2	\mathbf{x}_2	Distance from shore to second slope change	ft
Х3	^x 3	Distance from shore to third slope change	ft
XXX		X - 1320 ft (1/4 mile)	ft
Y1	у ₁	Depth at first slope change	ft
Y2	у ₂	Depth at second slope change	ft
Y3	у ₃	Depth at third slope change	ft

REFERENCES

- 1. Beckman, W.J. "Engineering Considerations in the Design of an Ocean Outfall". JWPCF. 42,10, 1805 (1970).
- 2. Brooks, N.H. "Diffusion of Sewage Effluent in an Ocean Current".

 Proceedings First International Conference on Waste Disposal in

 The Marine Environment. University of California. Berkeley,

 Pergamon, New York, 1960. pg. 246
- 3. Burchett, M.E. Tchobanaglous, G. and Burdoin, A.J. "A Practical Approach to Submarine Outfall Calculations". Public Works. 5, 95 (1967).
- 4. Frankel, R.J. and Cumming, J.D. "Turbulent Mixing Phenomena of Ocean Outfalls". JASCE, Sanitary Engineering Division. SA2, 4, 33 (1965).
- 5. Metcalf and Eddy Engineers, eds. Wastewater Engineering: Collection, Treatment, Disposal. McGraw-Hill, Inc. New York. pp. 691-705.
- 6. Pearson, E.A. "Marine Waste Disposal". The Engineering Journal. Engineering Institute of Canada. November, 1961.
- 7. Baumgartner, D.J., Trent, D.S., and Byram, K.V. "User's Guide and Documentation for Outfall Plume Model". Working Paper #80: EPA Pacific Northwest Water Laboratory. May, 1971.
- 8. Baumgartner, D.J. and Trent, D.S. "Ocean Outfall Design: Part I, Literature Review and Theoretical Development". FWPCA, April, 1970.
- 9. Abraham, G. "Jet Diffusion in Stagnant Ambient Fluid". <u>Delft Hydrau-lics Laboratory Publication Number 29</u>, Delft, Holland, 1963.
- 10. Lin, Shundar. "Evaluation of Coliform Tests for Chlorinated Secondary Effluent". <u>JWPCF</u>. 45, 3, 498 (1973).
- 11. Kaye, C.A. "Shoreline Features and Quaternary Shoreline Changes, Puerto Rico". U.S.G.S. Professional Paper 317-B. 1959.
- 12. Puerto Rico Department of Natural Resources and Engineering Science, Inc. Puerto Rico Oceanographic Study: Data. 1972.
- 13. Puerto Rico Aqueduct and Sewer Authority. <u>Ten-Year Construction</u>
 <u>Grant Program for Wastewater Treatment Facilities.</u> EQB, EPA,
 PRASA. April 30, 1971.
- 14. Weston, R.F. and Sarriera, R.E. <u>Wastewater System and Ocean Outfall</u>, Aguada-Aguadilla. PRASA. 1970. p. 20.

REFERENCES (CONTINUED)

- 15. Bogert-Spectrum Associates, Engineers. Arecibo Oceanographic Study. PRASA. October, 1972. P. 21.
- 16. Black and Veach, Engineers. Report on OCean Outfall and Wastewater Treatment Plant Location at Barceloneta. PRASA. 1971. p. 37.
- 17. O'Kelly, Mendez, and Brunner. <u>Wastewater Treatment and Ocean Disposal for the Humacao Area.</u> Camp, Dresser, and McKee, Engineers. Boston, Mass. PRASA. 1971. pp. 3-17.
- 18. Bogert-Spectrum Associates, Engineers. <u>Isabela Oceanographic Study.</u> PRASA. 1970. p. 14.
- 19. Ramon M. Guzman and Associates, Sanitary Survey and Oceanographic Study for Proposed ET Main Wastewater Treatment Plant at Mayaguez, Puerto Rico. PRASA. 1970. p. 47.
- 20. Black and Veatch, Engineers. Report on Ocean Outfall and Wastewater Treatment Plant Location at Barceloneta, Puerto Rico. Prepared for PRASA. February, 1971. p. 27.
- 21. Hazen and Sawyer, et. al. Engineering Investigation of a Sewage Outfall for the City of Ponce. PRASA. 1970. p. 19.
- 22. Herez, Alfredo. <u>Preliminary Wastewater Report.</u> PRASA. March, 1971. p. V-6.
- 23. Lerman, Abraham. "Time to Chemical Steady-States in Lakes and Oceans".

 Adv. in Chem. Series Reprint No. 106 "Non-Equilibrium Systems in Natural Water Chemistry". A.C.S. 1971. pp. 30-76.
- 24. Callaway, R.J. "Computer Program to Calculate ERF". EPA Pacific Northwest Environmental Research Laboratory, Cowallis, Oregon. July 17, 1973.

APPENDIX A

(Listing of Source Deck)

```
COMMON/CRITCH/NPTS, ANGLE, DIA, RFD, Q, FN, PS, RHCJ
                                                                             DUTFLCOO
      COMMON/WOOD/ZD(50), DG(50), RHO(50), DP(50)
                                                                             OUTFL001
      DIMENSION A(16)
                                                                             OUTFLC02
      LCGICAL NDC, METERS
                                                                             OUTFL003
      NOCASE=0
                                                                             OUTFLC04
      READ(5, 103)(A(I), I=1, 16), NCIT
                                                                             OUTFL005
  103 FORMAT(16A4,13)
                                                                             OUTFL006
      DO 9000 KK=1,NCIT
                                                                             OUTFL007
      DT2=0.
                                                                             OUTFL008
      ASSIGNING T90 CONSTANT VALUES
С
                                                                             OUTFLC09
С
      MECHANICAL LOOP
                                                                             GUTFL010
    7 READ(5,1111)CIT1,CIT2,CIT3,NCLASS
                                                                             OUTFL011
      READ(5,5000) V1, V2, X1, Y1, Qw, Y2, X2, Y3, X3
                                                                             OUTFL012
   20 READ(5,73,END=74)NCC,METERS,NPTS,ANGLE,DIA, RHOJ,RFD,Q,FN,PS OUTFL013
   73 FORMAT(2L1, I3, F5.0, 10X, 6F10.0)
                                                                             OUTFL014
                                                                             OUTFL015
      DO 102 I=1.NPTS
      READ(5,75)DP(I),RHC(I),SAL
                                                                             OUTFL016
       IF(SAL.EQ.0.)GO TO 102
                                                                             OUTFL017
                                                                             OUTFL018
      RHO(I)=1.+.001*SIGMAT(SAL,RHO(I))
  102 CONTINUE
                                                                             OUTFL019
   75 FCRMAT(8F10.0)
                                                                             DUTFL020
      WRITE(6,888)CIT1,CIT2,CIT3,V1,V2,X1,Y1,QW,Y2,X2,Y3,X3
                                                                             OUTFL021
  888 FORMAT('1',4CX,'INPUT DATA FOR THE CITY OF ',3A4,/// ,25X,
                                                                            OUTFL022
                                                            Y2
                                                                      X2
                                                                             OUTFL023
     1 V.1
                 V 2
                            X 1
                                      Υ1
                                                 QW
     1
                     X31,//,20X,9(E9.4,1X))
                                                                             OUTFL 024
 1111 FORMAT(3A4, I2)
                                                                             0UTFL025
                                                                             OUTFL026
      Q = QW
                                                                             OUTFL027
      FN=14.*.646*Q/10.
       IF(NDC)WRITE(6,104)
                                                                             OUTFL028
  104 FORMAT( O
                    UNITS
                            NON DIMENSICNAL')
                                                                             OUTFL029
       IF(.NOT.NCC.AND.METERS)WRITE(6,105)
                                                                             OUTFL030
                                                                             OUTFL031
  105 FORMAT('0
                    UNITS
                            MKS!)
       IF(.NOT.NDC.AND..NOT.METERS)WRITE(6,106)
                                                                             0UTFL032
  106 FCRMAT( '0
                    UNITS
                           FPS!)
                                                                             OUTFL033
                                       PS,
                                                RHOJ
      WRITE(6,108)ANGLE,
                                                                             OUTFL034
                                                                             0UTFL035
  108 FORMAT(
     *40H-
              PORT ANGLE . . . .
                                                 • • • F7•1/
                                                                             OUTFL 036
     *40H
              PRINTOUT INTERVAL
                                               • • • F8•2/
                                                                             0UTFL037
                                                 • •,F11.5)
              DISCHARGE CENSITY
                                                                             OUTFL038
     *40H
      IF(.NOT.NDC)WRITE(6,62)Q,FN,
                                      DIA
                                                                             OUTFL039
   62 FORMAT(
                                                                             OUTFL040
                                             • • • • ,E15•5/
                                                                             OUTFL041
     *40H
              FLOWRATE .
                                                • •,F5.0/
              NUMBER OF PORTS . . . . .
                                                                             OUTFL042
     *40H
                                                 • •,E15.5)
     *4CH
              PORT CIAMETER. .
                                                                             OUTFL043
      WRITE(6,24)((DP(I),RHO(I)),I=1,NPTS)
                                                                             OUTFL044
   24 FORMAT( !- DENSITY STRATIFICATION DEPTH RHC !//10(23X, F7.2, F11.5/))OUTFLO45
                                                                             OUTFL046
 1038 FORMAT('1')
      WRITE(6,1038)
                                                                             OUTFL047
                                                                             OUTFL048
      NN = C
                                                                             0UTFL049
      DO 9000 N=1,2
      IF(NN.NE.O) GC TC 8990
                                                                             OUTFL050
      ESTABLISHING A LCOP TO CALCULATE TOTAL DILUTION FACTORS FOR
                                                                             OUTFL051
C
      DIFFERENT LEVELS OF SEWAGE TREATMENT, WITH A CORRESPONDING
                                                                             OUTFL052
C
      EFFLUENT COLIFORM CONCENTRATION. NOW, E. COLI VALUES WILL BE
                                                                             0UTFL053
C
```

```
OUTFL054
С
      CEFINEC
                                                                               OUTFL 055
  500 COL1=2.2E+8
                                                                               OUTFL056
  510 COL2=1.2E+5
                                                                               OUTFLC57
  520 COL3=5.5E+7
                                                                               OUTFI 058
  530 CCL4=3.0E+4
                                                                               OUTFL059
  540 COL5=6.77E+5
                                                                               OUTFL060
  550 CCL6=8.7E+3
                                                                               OUTFL 061
  560 COL7=1.CE+5
                                                                               OUTFL062
  570 COL8=1.0E+5
                                                                               OUTFL063
      GO TO 8980
                                                                               OUTFL064
 8990 COL1=1.0E+7
                                                                               OUTFL065
      COL2=5.0E+5
                                                                               OUTFLO66
      COL3=1.0E+6
                                                                               OUTFL067
      CCL4=10.0
                                                                               OUTFL068
      COL5=1.13E+5
                                                                               DUTFL069
      COL6=1.0
                                                                               OUTFL070
      COL7=1.0E+3
                                                                               OUTFL071
      COL8=1.0
                                                                               OUTFL072
 8980 II=0
                                                                               OUTFL073
      SC=1CCOC.
                                                                               OUTFL074
      SB=70.
                                                                               OUTFL075
    8 IF(NCLASS.EQ.1)GC TC 33
      IF(NCLASS.EQ.O)CLASS=SC
                                                                               OUTFL076
      WRITE(6,11) CIT1,CIT2,CIT3
                                                                               OUTFL077
   11 FORMAT( '1', 'THIS PROGRAM CALCULATES THE CORRECT OUTFALL LENGTH COROUTFL078
     RESPONDING TO DIFFERENT DEGREES OF TREATMENT FOR THE CITY OF 1,3A4OUTFL079
                               CLASS=SC 1)
     1,/1
                                                                               GUTFL080
      GO TO 23
                                                                               OUTFL081
   33 CLASS=SB
                                                                               OUTFL082
      WRITE(6,12) CIT1, CIT2, CIT3
                                                                               OUTFL083
   12 FORMAT('1', 'THIS PROGRAM CALCULATES THE CORRECT OUTFALL LENGTH COROUTFL084
     1RESPONDING TO DIFFERENT DEGREES OF TREATMENT FOR THE CITY OF 1,3A4OUTFL085
     1,/
                               CLASS=SB!)
                                                                               OUTFL086
   23 IF(NN.EQ.C) PRINT 9500
                                                                               OUTFL087
      IF(NN.GT.O) PRINT 9600
                                                                               OUTFL088
9500 FORMAT('0','E.COLI. VALUES ARE FOR EFFLUENTS RECEIVING NO CHLORINAOUTFL089
     1TION')
                                                                               OUTFL 090
9600 FORMAT('0','E.COLI. VALUES ARE FOR EFFLUENTS RECEIVING CHLORINATICOUTFL091
     1N')
                                                                               OUTFL092
      IF(CLASS.EQ.SC)GO TO 7001
                                                                               OUTFL093
      PRINT 7002
                                                                               DUTFL094
      GO TO 886
                                                                               OUTFL095
7001 PRINT 7000
                                                                               OUTFL096
7CO2 FORMAT('-', 'DISTANCE(SB)
                                                                     DILUTION OUTFL097
                                   DILUTION
                                                    DISTANCE(SC)
         T90',31X,'LEVEL OF TREATMENT')
                                                                               OUTFL098
7000 FORMAT('-', 'DISTANCE', 5X, 'DILUTION CALCULATED', 5X, 'DILUTION KNOWN OUTFLO99
     1
                     ',30X,'LEVEL OF TREATMENT')
                                                                               OUTFL 100
 886 T90=2.
                                                                               DUTFL101
      1.1 = 0
                                                                               OUTFL 102
      GO TO 1
                                                                               OUTFL 103
   2 T90=4.
                                                                               OUTFL104
      JJ=0
                                                                               DUTFL 105
     GO TO 1
                                                                              OUTFL106
   3 T90≈5.
                                                                              OUTFL107
```

```
JJ=0
                                                                             OUTFL 108
      GO TO 1
                                                                             OUTFL109
    4 T90=10.
                                                                             OUTFL110
      JJ=0
                                                                             OUTFL111
    1 CCNTINUE
                                                                             OUTFL112
C.
      FINDING TOTAL DILUTION FACTORS
                                                                             OUTFL113
  200 DT=COL1/CLASS
                                                                             OUTFL114
      IF(DT.LT.1.0) GC TO 9CC
                                                                             OUTFI 115
      GO TO 201
                                                                             OUTFL116
  202 DT=COL2/CLASS
                                                                             OUTFL117
      IF(DT.LT.1.0) GO TO 900
                                                                             OUTFL118
      GC TC 201
                                                                             OUTFL119
  203 DT=COL3/CLASS
                                                                             OUTFL 120
      IF(CT.LT.1.0) GO TO 9CO
                                                                             OUTFL121
      GO TO 201
                                                                             OUTFL 122
  204 DT=COL4/CLASS
                                                                             OUTFL123
      IF(DT.LT.1.0) GC TC 9CC
                                                                             OUTFL124
      GO TO 201
                                                                             OUTFL 125
  2C5 DT=COL5/CLASS
                                                                             OUTFL126
      IF(CT.LT.1.0) GO TO 9CC
                                                                             OUTFL 127
      GG TO 201
                                                                             OUTFL128
  206 DT=COL6/CLASS
                                                                             OUTFL 129
       IF(DT.LT.1.0) GC TC 9C0
                                                                             OUTFL130
      GO TO 201
                                                                             OUTFL131
  207 DT=COL7/CLASS
                                                                             OUTFL 132
      IF(DT.LT.1.0) GO TO 900
                                                                             OUTFL133
      GO TC 201
                                                                             0UTFL134
  208 DI=COL8/CLASS
                                                                             0UTFL135
      IF(DT.LT.1.0) GO TO 900
                                                                             OUTFL136
  201 CONTINUE
                                                                             OUTFL137
С
      ESTABLISHING THE ITERATION SERIES TO CALCULATE DT EQUAL TO THE
                                                                             OUTFL 138
C
      KNOWN DT, WHICH WAS CALCULATED ABOVE.
                                                                             OUTFL139
      X = 0.
                                                                             OUTFL140
   28 DO 25 I=1,50
                                                                             OUTFL141
      X = X + 1000.
                                                                             OUTFL 142
      CALL EQN(X,V1,V2,Y1,X1,Y2,X2,Y3,X3,QW,T90,DT,CLASS,DT1,XSTOR1,SC,SOUTFL143
     1B, DT2)
                                                                             OUTFL144
      IF(X.GT.(X1+X2+X3)) GC TO 304
                                                                             OUTFL145
      IF(CT1.GT.CT) GO TO 3C
                                                                             CUTFL 146
      IF(DT1.EQ.DT) GG TC 905
                                                                             OUTFL147
      D = DT1
                                                                             OUTFL 148
   25 CONTINUE
                                                                             OUTFL149
      LM=2*JJ+1
                                                                             OUTFL150
                                                                             OUTFL151
      LL=LM+1
      WRITE(6,4000) X,A(LM),A(LL)
                                                                             OUTFL152
 4000 FORMAT('O OUTFALL LOCATION EXCEEDS', F7.0, FEET WHICH IS THE PRESOUTFL153
     1ENT LIMIT OF THIS INVESTIGATION , 9X, 2A4)
                                                                             OUTFL154
      GO TO 210
                                                                             OUTFL 155
  3C4 LM=2*JJ+1
                                                                             OUTFL156
                                                                             OUTFL157
      LL = LM + 1
      WRITE(6,6000) X,A(LM),A(LL)
                                                                             0UTFL158
6000 FORMAT( 'O CUTFALL IS LCCATED AT', F7.0, ' FEET , WHICH IS BEYOND THEOUTFL159
     1 POINT AT WHICH DEPTHS HAVE BEEN INPUT', 2X, 2A4)
                                                                             OUTFL160
                                                                             OUTFL161
      GC TO 210
```

```
OUTFL162
  3C X = X - 1000.
                                                                              OUTFL163
     00 50 J=1.25
                                                                              OUTFL164
     X = X + 40.
     CALL EQN(X,V1,V2,Y1,X1,Y2,X2,Y3,X3,QW,T90,DT,CLASS,DT1,XSTOR1,SC,SOUTFL165
                                                                              OUTFL166
    1B.DT2)
                                                                              OUTFL 167
     IF(CT1.GT.DT) GC TC 60
                                                                              OUTFL168
     IF(CT1.EQ.CT) GO TO 905
                                                                              OUTFL169
  5C CONTINUE
                                                                              OUTFL 170
  60 X = X - 40.
                                                                              OUTFL171
     CC 80 K=1.20
                                                                              OUTFL 172
     X = X + 2.
     CALL EQN(X,V1,V2,Y1,X1,Y2,X2,Y3,X3,QW,T90,DT,CLASS,DT1,XSTOR1,SC,SOUTFL173
                                                                              OUTFL174
    18,DT2)
                                                                              OUTFL175
     IF(CT1.GT.DT) GO TO 90
                                                                              OUTFL176
     IF(DT1.EQ.DT) GC TC 905
                                                                              OUTFL 177
  80 CONTINUE
                                                                              OUTFL178
  90 X=X-2
                                                                              OUTFL179
     DG 110 L=1.8
                                                                              OUTFL180
     X = X + 0.25
     CALL EQN(X,V1,V2,Y1,X1,Y2,X2,Y3,X3,QW,T90,DT,CLASS,DT1,XSTOR1,SC,SOUTFL181
                                                                              OUTFL182
    18.DT21
     IF(DI1.GF.DT) GC TC 9C5
                                                                              OUTFL183
 110 CONTINUE
                                                                              OUTFL184
                                                                              OUTFL185
 900 X=1.
                                                                              OUTFL186
     DT1=DT
 905 IF(CLASS.EQ.SB.ANC.X.GT.1320.) GO TO 901
                                                                              OUTFL187
                                                                              OUTFL188
     GO TO 6990
 901 CLASS=SC
                                                                              OUTFL189
     Y = X
                                                                              OUTFL190
     RT = DT
                                                                              OUTFL191
     DT=CT*SB/CLASS
                                                                              OUTFL192
     DT2=DT1
                                                                              OUTFL193
     CALL EQN(X,V1,V2,Y1,X1,Y2,X2,Y3,X3,QW,T90,DT,CLASS,DT1,XSTOR1,SC,SOUTFL194
    18,DT2)
                                                                              OUTFL195
     IF(DT1.GE.DT)GO TO 6990
                                                                              OUTFL196
     GO TO 28
                                                                              OUTFL197
6990 LM=2*JJ+1
                                                                              OUTFL198
     LL = LM + 1
                                                                              OUTFL199
     IF(CLASS.EQ.SC.AND.DT2.LE.C.) WRITE(6,8000)X,DT1,DT,A(LM),A(LL)
                                                                              DUTFL200
     IF(CLASS.EG.SB.ANC.DT2.EQ.O.)WRITE(6,8888)X,DT1,T90,A(LM),A(LL)
                                                                              OUTFL 201
                      IF(DT2.GT.C.)WRITE(6,8889)Y,DT2,X,DT1,T90,A(LM),A(OUTFL202
    1LL)
                                                                              OUTFL203
8CCO FORMAT( 'O', 3(E11.5, 10X), 33X, 2A4)
                                                                              OUTFL204
8888 FORMAT( *0 *, 2E13.5, 31X, F6.0, 32X, 2A4)
                                                                              OUTFL205
8889 FCRMAT('0',2(2E13.5,5X),F6.0,32X,2A4)
                                                                              DUTFL206
     ESTABLISHING END OF ITERATION
                                                                              OUTFL 207
 210 JJ = JJ + 1
                                                                              CUTFL208
     IF(DT2.GT.O.)CLASS=SB
                                                                              OUTFL209
     DT2=0
                                                                              OUTFL210
     IF(JJ.EQ.1) GO TC 203
                                                                              OUTFL211
     IF(JJ.EQ.2) GO TO 205
                                                                              OUTFL212
     IF(JJ.EQ.3) GG TC 207
                                                                              OUTFL213
     ENDING INITIAL LCOP
                                                                              OUTFL214
     NOW, THE MAIN PROGRAM IS ENDED BY FINISHING THE PRINCIPAL
                                                                              OUTFL215
```

C

C

```
MECHANICAL DC-LCOP.
                                                                               DUTFL 216
 1000 II=II+1
                                                                               OUTFL 217
      IF(CLASS.EQ.SC) GC TO 89
                                                                               OUTFL218
      IF(II.EQ.1) GO TC 2
                                                                               OUTFL219
      IF(II.EQ.2) GO TO 3
                                                                               OUTFL220
 5000 FORMAT(F4.1,1X,F4.1,1X,E9.3,1X,F4.0,1X,F5.1,1X,F4.0,1X,E9.3,1X,F5.0UTFL221
     $0,1X,E9.3)
                                                                               OUTFL222
   89 CENTINUE
                                                                               OUTFL 223
      NN = NN + 1
                                                                               DUTFL 224
 9000 CONTINUE
                                                                               DUTFI 225
   74 STOP
                                                                               OUTFL226
      END
                                                                               OUTFL227
      SUBROUTINE EQN(X, V1, V2, Y1, X1, Y2, X2, Y3, X3, QW, T90, DT, CLASS, DT1, XSTOREQN
                                                                                     000
     $1,SC,SB,DT2)
                                                                               ECN
                                                                                     0.01
                                                                               EGN
                                                                                     002
      COMMON/CRITCH/NPTS, ANGLE, DIA, RFD, Q, FN, PS, RHOJ
      THETA1=.210
                                                                               FON
                                                                                     0.03
                                                                               ECN
                                                                                     004
      THETA2=
                 .07071
      THETA3=.0195
                                                                               EQN
                                                                                     C 0 5
                                                                               EGN
      KK = 0
                                                                                     006
      LL = C
                                                                               EQN
                                                                                     C07
       IF(X.LE.X1) DEPTH=X*Y1/X1
                                                                               EQN
                                                                                     800
                                                                                     009
      IF(X.LE.(X1+X2).AND.X.GT.X1) DEPTH=Y1+(X-X1)*Y2/X2
                                                                               EQN
                                X.GT.(X1+X2)) DEPTH=Y1+Y2+(X-(X1+X2))*Y3/X3EQN
                                                                                     010
       IF(CLASS.EQ.SC) CALL PLUME(DEPTH.DT1)
                                                                               FCN
                                                                                     011
       IF(CLASS.EU.SB.AND.X.LE.1320.) CALL PLUME(DEPTH.DT1)
                                                                               EON
                                                                                     012
       IF(CLASS.EQ.SB.AND.X.GT.1320.) GO TO 35
                                                                               EQN
                                                                                     013
       GC TC 39
                                                                               EQN
                                                                                     014
   35 XXX=X-1320.
                                                                               EQN
                                                                                     015
       ARG=1.+THETA2*CW**(-2./3.)*XXX/V2
                                                                               ECN
                                                                                     016
                                                                               EQN
                                                                                     017
       ARG=ARG**3
                                                                               ECN
       ARG=ARG-1.
                                                                                     018
      ARG=1.5/ARG
                                                                               EQN
                                                                                     019
      ARG = ARG **(1./2.)
                                                                               EQN
                                                                                     020
      CALL PLUME (DEPTH, DT1)
                                                                               EQN
                                                                                     021
                            *EXP(THETA3*XXX/(T90*V2)))/ERF(ARG)
                                                                               EGN
      DT1 = (DT1)
                                                                                     022
   39 RETURN
                                                                               EQN
                                                                                     023
      END
                                                                               FON
                                                                                     024
      FUNCTION ERF(ARG)
                                                                               ERF
                                                                                     000
С
      THE ERROR FUNCTION
                                                                               ERF
                                                                                     001
    **** THIS IS A FUNCTION SUBPROGRAM ****
C
                                                                               ERE
                                                                                     002
                                                                               ERF
                                                                                     003
      XX = ARG
      NEG=0
                                                                               ERF
                                                                                     004
      IF(XX.LT.C.C) NEG=1
                                                                               ERF
                                                                                     C 0 5
      IF(XX.GE.3.0.OR.XX.LE.(-3.C)) GO TO 10
                                                                               ERE
                                                                                     006
                                                                               ERF
                                                                                     007
      SUM = XX
      Y = X X
                                                                               ERF
                                                                                     800
                                                                               ERF
                                                                                     0.09
      FMULT=1.0
                                                                               ERF
                                                                                     010
      DC 5 N=1,50
                                                                               ERF
                                                                                     011
      FMULT=FMULT+2.0
                                                                               ERF
                                                                                     012
      FN=N
                                                                               ERF
                                                                                     013
      Y=-Y*XX*XX/FN
      TERM=Y/FMULT
                                                                               ERF
                                                                                     014
      SUM=SUM+TERM
                                                                               ERF
                                                                                     015
      IF( ABS(TERM/SUM).LT.1.E-7) GO TO 6
                                                                               ERF
                                                                                     016
```

```
FRF
                                                                                        017
    5 CONTINUE
                                                                                   ERF
                                                                                         018
      STOP 5
                                                                                   ERF
                                                                                         019
    6 ERF=1.1283792*SUM
                                                                                   ERF
                                                                                         020
      GC TO 20
                                                                                   FRE
                                                                                         021
   10
           SUM=1./XX
                                                                                   ERF
                                                                                         022
      Y = 1./XX
                                                                                   ERF
                                                                                         023
      YLAST=1./XX
                                                                                   ERF
                                                                                         C24
      FNLM=1.0
                                                                                   ERF
                                                                                         025
      DC 15 N=1,50
                                                                                   ERF
                                                                                         026
      Y = -Y * FNUM / 2 \cdot / X \times / X \times
      IF( ABS(Y/YLAST).GT.1..CR. ABS(Y/SUM).GT.1.E-7) GC TO 16
                                                                                   ERF
                                                                                         C27
                                                                                   ERF
                                                                                         028
      YLAST=Y
                                                                                   FRF
                                                                                         029
      SUM=Y+SUM
                                                                                   ERF
                                                                                         030
      FNUM=FNUM+2.0
                                                                                   ERF
                                                                                         031
   15 CONTINUE
                                                                                   ERF
                                                                                         032
      STOP 15
                                                                                   FRE
                                                                                         033
   16 IF(XX.GT.3C.) GD TO 18
   17 ERFC=(.5641896*EXP(-(XX*XX)))*SUM
                                                                                   ERF
                                                                                         034
                                                                                   ERF
                                                                                         035
      GC IO 19
                                                                                   FRF
                                                                                         036
   18 ERFC=0.
                                                                                   ERF
                                                                                         037
   19 ERF=1.-ERFC
                                                                                   ERF
                                                                                         038
   20 IF(NEG.EQ.1) ERF=-ERF
                                                                                   ERF
                                                                                         039
      RETURN
                                                                                   ERF
                                                                                         040
       END
                                                                                   PLUMECO0
       SUBROUTINE PLUME (CEPTH,
                                    D1)
                                                                                   PLUMECO1
      COMMON/CRITCH/NPTS, ANGLE, DIA, RFD, Q, FN, PS, RHCJ
                                                                                   PLUME002
      COMMON/WOOD/ZD(5C), DG(5C), RHO(5C), DP(50)
                                                                                   PI UMF003
      COMMON/BLECH/G, FK, FM, COSTH, SINTH, COSTHE, DS, C1, C2, E13, FLAG, GRAV
                                                                                   PLUMECC4
      LOGICAL NDC, TRAPPD, FLAG, CHGDEN, METERS
C
                                                                                   PLUME005
                                                                                   PLUME006
С
   PROGRAM PLUME, VERSION OF 4/6/72
                                                                                   PLUMECO7
C
                                                                                   PLUME008
      FD=ABS(RFD)
      METERS=.FALSE.
                                                                                   PLUME009
      NDC=.FALSE.
                                                                                   PLUME010
      IF(NPTS.NE.1)GO TO 76
                                                                                   PLUME011
                                                                                   PLUME012
      NPTS=2
      DP(2)=DEPTH
                                                                                   PLUME013
                                                                                   PLUME014
      RHC(2)=RHO(1)
                                                                                   PLUME015
   76 NOCASE=NOCASE+1
                                                                                   PLUME016
   75 FORMAT(8F10.0)
                                                                                   PLUMEC17
      GRAV=32.172
                                                                                   PLUME018
      IF(METERS)GRAV=9.80665
      DC 55 I=1.NPTS
                                                                                   PLUME019
      IF(CP(I).GE.DEPTH)GO TO 56
                                                                                   PLUME020
   55 CCNTINUE
                                                                                   PLUME021
      WRITE(6,59)NGCASE
                                                                                   PLUME022
   59 FORMAT( '-NO DENSITY INFORMATION FOR JET LEVEL. EXECUTION FOR ,
                                                                                   PLUME023
     * CASE NC.', I2, DELETED.')
                                                                                   PLUME024
      GO TO 20
                                                                                   PLUME025
   56 NP=I
                                                                                   PLUME026
      NM = I - 1
                                                                                   PLUME027
      RHOB = (DEPTH - DP(NM)) * (RHO(NP) - RHO(NM)) / (DP(NP) - DP(NM)) + RHO(NM)
                                                                                   PLUME028
      DISP=RHCJ-RHCB
                                                                                   PLUME029
```

```
PLUMEC30
      DO 54 I=1.NM
                                                                           PLUME031
      J=NP-I
      ZC(I) = (DEPTH-DP(J))/DIA
                                                                           PLUME032
   54 DG(I)=(RFO(J+1)-RHC(J))*DIA/(DISP*(DP(J+1)-DP(J)))
                                                                           PLUME033
      IF(NDC)GO TO 58
                                                                           PLUME034
      UO=Q/(FN*.7853982*DIA*DIA)
                                                                           PLUME035
                                                                           PLUME036
      RFC=U0*U0*RHCJ/(-CISP*CIA*GRAV)
      FC=ABS(RFC)
                                                                           PLUMEC37
                                                                           PLUME038
   58 IF(FC.LE.4.01.OR.FC.GE.9.99)GO TO 61
                                                                           PLUMEC39
      S=.113*FD+4.
                                                                           PLUME040
      GC TC 62
   61 IF(FD.LE.4.C1)S=2.8*FC**.333333
                                                                           PLUME041
                                                                           PLUME042
      IF(FD.GT.1C.)S=5.6*FD/SQRT(FD*FD+18.)
                                                                           PLUME043
   62 TEMP=ATAN(1.416667*S/FD)
                                                                           PLUME 044
      THETA0=.0111*ANGLE*(1.5708-TEMP)+TEMP
                                                                           PLUME045
      CCSTHE=COS(TEETAO)
                                                                           PLUME046
      SINTHE=SIN(THETAC)
                                                                           PLUME047
      DSI=DEPTH/(177.*CIA)
      IF(DG(1).EQ.C.)GC TC 77
                                                                           PLUME048
      CGTEMP=.01/DG(1)
                                                                           PLUME049
      IF(DGTEMP.LE.O.)DGTEMP=-DGTEMP
                                                                           PLUME050
      DSI=.12*1.6**(ALCG10(FD/10.))*2.**(ALCG10(DGTEMP))
                                                                           PLUMEC51
                                                                           PLUME052
   PLUME053
      N = 0
      Z=S*SINTHE
                                                                           PLUME054
                                                                           PLUME055
      X=S*COSTHE
                                                                           PLUME056
      E = (4./S) **3
                                                                           PLUMEC57
      R = .25
      C1=E**.6666667
                                                                           PLUME058
                                                                           PLUME059
      C2=.75/RFU
                                                                           PLUME060
      IPTS=1
      G=DG(IPTS)
                                                                           PLUME061
                                                                           PLUME062
      ZLIM=ZD(IPTS)
                                                                           PLUMF063
      CHGCEN=.FALSE.
                                                                           PLUMEC64
      FLAG=.FALSE.
                                                                           PLUME065
      TRAPPD=.FALSE.
      XP = X * DIA
                                                                           PLUMEC66
      ZP=CEPTH-Z*DIA
                                                                           PLUME067
                                                                           PLUME068
      DSIP=DSI*DIA
                                                                           PLUME069
      SP=S*CIA
                                                                           PLUME070
C * *
                                                                           PLUME071
  SET INITIAL CONCITIONS
C
                                                                           PLUME072
C**
      CS=CSI
                                                                           PLUME073
                                                                           PLUME074
      GC TC 16
                                                                           PLUME075
   11 DS=DSI
                                                                           PLUME076
   45 DELX=CCSTH*CS
                                                                           PLUMEC77
      DELZ=SINTH*DS
                                                                           PLUME078
      DELE=FK
                                                                           PLUMEC79
      DELT=FM
                                                                           PLUME080
      SPDS2=S+DS/2.
                                                                           PLUME081
      DO 10 I=1.2
      CALL SDERIV(SPDS2, E+.5*FK, R+.5*FM)
                                                                           PLUME082
                                                                           PLUME083
      DFLX=DELX+2.*CCSTH*DS
```

```
PLUME084
      DELZ=DELZ+2.*SINTH*DS
                                                                               PLUME085
      DELF=DELE+2.*FK
                                                                              PLUME086
      DELT=DELT+2.*FM
                                                                              PLUME087
   10 CONTINUE
                                                                              PLUME088
      CALL SDERIV(S+DS,E+FK,R+FM)
                                                                              PLUME089
      ZLAST=Z
                                                                               PLUME090
      ZINCR=(DELZ+SINTH*DS)/6.
                                                                               PLUME091
      Z=Z+ZINCR
                                                                               PLUME092
      IF(CHGDEN)GC TC 41
                                                                              PLUMEC93
      IF(Z.GT.ZLIM)GO TO 40
                                                                               PLUME094
   43 X=X+(DELX+COSTE*DS)/6.
                                                                               PLUME095
      E=E+(DELE+FK)/6.
                                                                               PLUME096
      R=R+(DELT+FM)/6.
                                                                               PLUMEC97
      S = S + DS
                                                                               PLUME098
      IF(E.LE.O.)FLAG=.TRUE.
                                                                               PLUMF099
C
                                                                              PLUME100
   THIS STOPPING CRITERIA IS BASED ON VELOCITY GOING TO ZERO
C
                                                                               PLUME101
C
                                                                               PLUME102
      IF(FLAG)GO TO 13
                                                                               PLUME103
   16 CALL SCERIV(S, E, R)
                                                                               PLUME104
      IF(TRAPPD)GC TC 14
                                                                               PLUME105
      IF(R.GT.O.)GO TO 15
                                                                               PLUME106
      RAT=R/(RO-R)
                                                                               PLUME107
      E13TRP=E13+(E13-E130)
                                                                               PLUME108
      ZTRAP=DEPTH-(Z+ZINCR*RAT)*DIA
                                                                               PLUME109
      SMTRAP=.245*(S+DS*RAT)*E13TRP
                                                                               PLUME110
      TRAPPD=.TRUE.
      GC TC 14
                                                                               PLUME111
   15 R0=R
                                                                               PLUME112
      E130=E13
                                                                               PLUME113
   14 N = N + 1
                                                                               PLUME114
      IF(N-(N/NPO)*NPO.NE.O)GC TC 11
                                                                               PLUME115
   13 XP=X*DIA
                                                                               PLUMF116
      ELEV=Z*DIA
                                                                               PLUME117
      ZP=CEPTH-ELEV
                                                                               PLUME118
      SP=S*DIA
                                                                               PLUME119
      DILN=.245*S*E13
                                                                               PLUME 120
      THETA=ARCGS(COSTF)*57.2958
                                                                               PLUME121
      IF(.NOT.TRAPPD)GC TO 72
                                                                               PLUME122
      C1=
                SMTRAP
                                                                               PLUME123
   71 IF(.NOT.FLAG) GC TC 11
                                                                               PLUME124
      GC TG 20
                                                                               PLUME125
   72 D1=D1LN
                                                                               PLUME126
      GO TO 71
                                                                               PLUME127
C
                                                                               PLUME128
C
   FIND NEXT STRATIFICATION AND RECOMPUTE LAST STEP IF NECESS)
                                                                               PLUME129
C
                                                                               PLUME130
   4C DS=DS*(ZLIM-ZLAST)/(Z-ZLAST)
                                                                               PLUME131
      CALL SDERIV(S, E, R)
                                                                               PLUME132
      CHGDEN=.TRUE.
                                                                               PLUME133
      Z=ZLAST
                                                                               PLUME134
      GC TO 45
                                                                               PLUME135
   41 CHGDEN=.FALSE.
                                                                               PLUME 136
      IPTS=IPTS+1
                                                                               PLUME137
```

```
IF(IPTS.GT.NM)GC TC 42
                                                                             PLUME138
      G=DG(IPTS)
                                                                             PLUME139
      ZLIM=ZD(IPTS)
                                                                             PLUME140
      GC TO 43
                                                                             PLUME141
                                                                             PLUME142
   42 FLAG=.TRUE.
      GO TO 43
                                                                             PLUME143
   20 RETURN
                                                                             PIUMF144
   74 STOP
                                                                             PLUME 145
                                                                             PLUME146
      END
      SUBROUTINE SCERIV(S,E,R)
                                                                             SDERVC00
      COMMON/BLECH/G, FK, FM, COSTH, SINTH, COSTHE, DS, C1, C2, E13, FLAG, GRAV
                                                                             SDFRV001
                                                                             SDERVC02
      LCGICAL FLAG
      E13=0.
                                                                             SDERVOG3
      IF(E.LE.O.)GC TO 3
                                                                             SDERV004
                                                                             SDERV005
      E13=E**.3333333
      CCSTH=CCSTHE*C1/(E13*E13)
                                                                             SDERV006
      IF(COSTH.LT.1.)GO TO 1
                                                                             SDERVOO7
C
                                                                             SDERVO08
С
   THIS STOPPING CRITERIA IS BASED ON PLUME BECOMING HORIZONTAL
                                                                             SDERV009
С
   AGAIN
                                                                             SDERV010
                                                                             SDERV011
      FLAG=.TRUE.
                                                                             SDERV012
                                                                             SDERV013
      SINTH=0.
                                                                             SDERV014
      CCSTH=1.
      GC TC 3
                                                                             SDERV015
    1 SINTH=SQRT(1.-COSTH*COSTH)
                                                                             SDFRV016
    3 FK=C2*S*R*SINTH*DS
                                                                             SDERV017
      FM=.109*S*E13*C*CS
                                                                             SDERV018
      RETURN
                                                                             SDERV019
      END
                                                                             SDERV020
      FUNCTION SIGMAT(SAL,T)
                                                                             SIGMTOOO
      SIGO
                = (((6.8E-6*SAL)-4.82E-4)*SAL+.8149)*SAL-.093
                                                                             SIGMT001
      B
                = 1.F-6*T*((.C1667*T-.8164)*T+18.03)
                                                                             SIGMTC02
                = .C01*T*((.C010843*T-.09818)*T+4.7867)
                                                                             SIGMT003
      Δ
                = (T-3.98)*(T-3.98)*(T+283.)/(503.57*(T+67.26))
      SUMT
                                                                             SIGMTC04
                = (SIGO + .1324)*(1.-A+B*(SIGO - .1324)) + SUMT
                                                                             SIGMT005
      SIGMAT
                                                                             SIGMT006
      RETURN
      END
                                                                             SIGMT007
```

APPENDIX B

(Example Problem)

The design of outfalls for ten different coastal cities on the Island of Puerto Rico can be modelled using OUTFALL. The cities chosen are listed as follows: Aguadilla, Arecibo, Barceloneta, Carolina, Guayanilla, Humacao, Mayaguez, Ponce, San Juan, and Yabucoa. As shown in Figure B-1, the current patterns for Puerto Rico flow basically from east to west except for a recirculation current which appears during the summer near the northern coast. During the summer, the southeast winds cause the current to run northward through Vieques Passage, but in the winter, the northeast wind produces a southern current through the Passage. Table B-1 indicates the location of the proposed outfalls and their true azimuth in degrees perpendicular from their respective location on shore. Basic outfall sites, also shown in Figure B-1, are located in areas of widely differing environmental conditions. Water quality standards, promulgated by the Puerto Rico Environmental Quality Board, change the amount of the dilution of the wastewater needed to meet those standards in each area. This factor is incorporated within OUTFALL as the variable CLASS, as indicated in the section concerning the computer program. SB class waters are defined as those waters having less than 70 coliform organisms per 100 milliliters of seawater, and SC class waters are defined as those waters having less than 10,000 coliform organisms per 100 milliliters of seawater.

In equation (26), the final expression for total dilution involving the Pearson, Brooks and first order decay equations, D_T is a function of six variables: the average velocity of ocean water in the effective mixing region (V_1), the ocean current velocity (V_2), the distance from the shore to the end of the outfall along the water surface (X), the design discharge of the treatment plant (Q_W), the depth of water over the diffuser (d), and the T_{90} decay value. These variables are presented in Table B-2, along with the water quality classification for each outfall location.

As sources for the data given in Table B-2, V_1 and V_2 were taken from a recent study conducted by the Puerto Rico Department of Natural Resources and Engineering Science, Incorporated 12 , and Q_{W} values were obtained from the Puerto Rico Aqueduct and Sewer Authority. 13 The T_{90} values presented a special problem, as several conflicting studies have been conducted. summary of the results of ten different studies encompassing seven geographical locations is presented as Table B-3. In the Puerto Rico situation, standards must be met at the maximum point of rise over the end of the outfall in the areas, regardless of the type of water quality standard. only initial dilution (D_1) needs to be calculated in these cases. boundary of one-quarter mile (1320 feet) was assumed for the Puerto Rico water quality standards (in other words, the standard would extend from the shoreline out to a distance of one-quarter mile). After that distance is reached, it is assumed that all waters outside of one-quarter mile limit would be SC class waters, i.e., discharges must comply with the lowest water quality standards (Class SC). If the outfall extends greater than this boundary, D2 and D3 must be also calculated. \overline{T}_{00} values must be assumed for SB class waters. The outfall locations at Barceloneta, Carolina, and Humacao have SB class standards. extrapolated from Table B-3 and are presented in Table B-2.

Density data and water depth used in the PLUME subroutine are presented in Table B-4 for each city. RHO is inputed as gm/cm^3 , and the depth is in feet. ¹¹ Other data used in the PLUME subroutine were assumed as indicated in Table B-5.

Finally, the data are punched onto computer cards as described on page and as shown in Table B-6, and OUTFALL is run. The resulting output is attached.

The necessary outfall length needed to meet the water quality standard and corresponding to a certain level of treatment is listed in the "DISTANCE" column. The dilution calculated (essentially a modification of equation 26) and the known dilution (equation 28 appear in their respective columns. Three other messages may appear in the output. If either "OUTFALL IS LOCATED AT \underline{X} FEET, WHICH IS BEYOND THE POINT AT WHICH DEPTHS HAVE BEEN INPUT" or "OUTFALL LOCATION EXCEEDS \underline{X} FEET, WHICH IS THE PRESENT LIMIT OF THIS INVESTIGATION" appears, it means that either in-plant chlorination must be added or a higher degree of treatment must be attained in order to meet water quality standards within the limit of \underline{X} . If the following message appears in the output, it indicates that more bottom slope (depth/distance) data is needed to be inputed: "NO DENSITY INFORMATION FOR JET LEVEL EXECUTION FOR CASE NO. **DELETED".

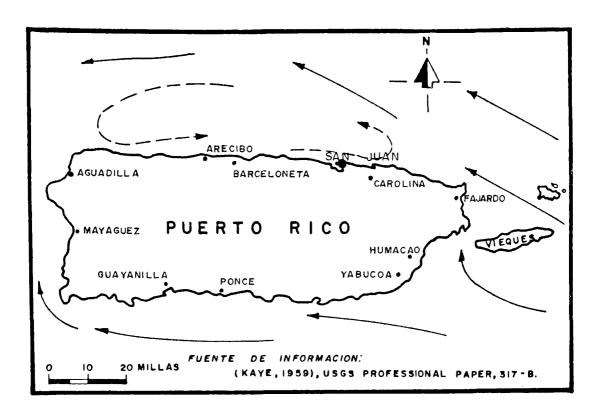


FIGURE B-1

TABLE B - 1

OCEAN OUTFALL LOCATIONS

City	Outfall Location	True Azimuth from Point on Shore
Aguadilla	0.22 mi. NE of Río Culebrinas	331°
Arecibo	3.78 mi. SW of Pta. Caracoles	335°
Barceloneta	3.78 mi. E of Pta. Palmas Altas	357°
Carolina	0.018 mi. W of Río Grande de Loíza	9.5°
Guayanilla	8.2 mi. NE of Pta. Ventana	177°
Humacao	7.58 mi. NE of Río Humacao	137°
Mayaguez	0.01 mi. N of Quebrada del Oro	279°
Ponce	0.125 mi. W of Río Matilde	178°
San Juan	From Puerto Nuevo Plant	1 st Sect 312° 2 nd Sect 331°
Yabucoa	3.79 mi. SW of Cano Santiago	135°

TABLE B-2
PHYSICAL AND BIOLOGICAL PARAMETERS

CITY	V V	7 2 cm/sec	Q _{w cfs}	T ₉₀ hrs	X /y 1 l feet	X /y 2 2 feet	X /y 3 3 feet	Class (Water Quality)
Aguadilla	`10.0	19.0	27.8		3160/60	1425/60	4250/480	SC
Arecibo	8.5	17.5	46.4		4390/120	2630/180	1760/300	SC
Barceloneta	8.5	17.5	46.4	5	1770/60	1770/60	6130/480	SB
Carolina	22.0	33.0	92.8	2,4	6350/18	1600/42	13400/540	SB
Guayanilla	9.5	15.5	92.8		3530/108	48400/12	4860/1200	SC
Humacao	11.0	14.0	18.6	2,4	24700/60	3490/60	2690/1255	SB
Mayaguez	12.0	16.0	46.4		14700/120	2800/78	6500/402	SC
Ponce	21.5	27.5	46.4		10800/60	7610/1	1900/540	SC
San Juan	10.0	15.5	290.8		20300/30	5600/60	5020/480	SC
Yabucoa	11.0	14.0	18.6		30800/30	4840/12	1795/558	SC

TABLE B-3

ESTIMATES OF COLIFORM

DIE-OFF (T₉₀) BY LABORATORY

AND FIELD STUDIES IN PUERTO RICO

CITY	T ₉₀ (hrs)	STUDY
AGUADILLA	2.1 - 4.9	Weston (1970) ¹⁴
ARECIBO	18	Bogert (1972) ¹⁵
BARCELONETA	5	Black & Veatch (1971) 16
HUMACAO	0.95 - 4.0	0'Kelly (1971) ¹⁷
ISABELA	18	Bogert (1970) ¹⁸
MAYAGUEZ	0.9 - 1.3	Engineering Science (1972) 12
MAYAGUEZ	2.9	Engineering Science $(1972)^{12}$
MAYAGUEZ	1.5	Guzman (1970) ¹⁹
MAYAGUE Z	1.3 - 3.1	Black & Veatch (1971) ²⁰
PONCE	1.45 - 1.55	Hazen & Sawyer (1970) ²¹
GUAYAMA	(Apparent Regrowth)	Engineering Science (1972)
GUAYAMA	11	Heres (1971) ²²

TABLE B - 4

DENSITY STRATIFICATION DATA FOR

VARIOUS COASTAL CITIES IN PUERTO RICO

	DEPTH (feet)	RHO (gm/cm^3)
AGUADILLA:	0	1.02267
	2.00	1.02300
	8.00	1.02310
	20.00 44.00	1.02320 1.02330
		1.02340
	54.00 62.00	1.02340
	96.00	1.02400
	120.00	1.02400
	137.00	1.02430
	149.00	1.02500
	158.00	1.02600
	200.00	1.02600
	200.00	1.02000
ARECIBO:	0	1.02310
	6.00	1.02330
	17.00	1.02340
	26.00	1.02350
	54.00	1.02400
	72.00	1.02450
	92.00	1.02500
	119.00	1.02550
	200.00	1.02550
BARCELONETA:	0	1 00000
DARGELONEIA:	0 6.00	1.02300
	13.00	1.02310
	26.00	1.02320
	38.00	1.02340
	76.00	1.02350
	98.00	1.02400
	118.00	1.02450
	200.00	1.02500
	200.00	1.02500

	TABLE	B - 4 (CONT.)	3
	DEPTH (feet)		RHO (gm/cm ³)
CAROLINA:	0		1.02370
	2.00		1.02380
	10.00		1.02390
	37.00		1.02410
	56.00		1.02420
	70.00		1.02430
	84.00		1.02440
	92.00		1.02450
	102.00		1.02460
	112.00		1.02470
	119.00		1.02480
	123.00		1.02490
	130.00		1.02500
	134.00		1.02510
	138.00		1.02520
	142.00		1.02530
	144.00		1.02540
	148.00		1.02550
	152.00		1.02560
	154.00		1.02570
	158.00		1.02580
	160.00 200.00		1.02590
	200.00		1.02600
GUAYANILLA:	0		1.02307
	6.00		1.02310
	18.00		1.02320
	24.00		1.02330
	31.00		1.02340
	40.00		1.02350
	90.00		1.02400
	122.00		1.02450
	144.00		1.02500
	200.00		1.02500
MAYAGUEZ:	0		1.02299
	6.00		1.02300
	20.00		1.02310
	40.00		1.02320
	58.00		1.02330
	66.00		1.02340
	74.00		1.02350
	100.00		1.02400
	120.00		1.02450
	136.00		1.02500
	156.00		1.02550
	200.00		1.02550

TABLE B - 4 (CONT.)

	DEPTH (feet)	RHO (gm/cm ³)
PONCE:	0	1.02169
	10.00	1.02186
	24.00	1.02200
	59.00	1.02250
	76.00	1.02300
	84.00	1.02350
	88.00	1.02400
	90.00	1.02450
	108.00	1.02500
	124.00	1.02550
	200.00	1.02550
SAN JUAN:	0	1.02208
	4.00	1.02300
	6.00	1.02320
	8.00	1.02340
	10.00	1.02360
	12.00	1.02380
	23.00	1.02400
	32.00	1.02410
	38.00	1.02420
	49.00	1.02430
	58.00	1.02440
	67.00	1.02450
	76.00	1.02460
	84.00	1.02470
	91.00	1.02480
	98.00	1.02490
	104.00	1.02500
	110.00	1.02510
	116.00	1.02520
	121.00	1.02530
	126.00	1.02540
	131.00	1.02550
	136.00	1.02560
	140.00	1.02570
	145.00	1.02580
	149.00	1.02590
	200.00	1.02590
YABUCOA/HUMACAO:	0	1.02267
	2.00	1.02300
	10.00	1.02350
	42.00	1.02400
	70.00	1.02450
	92.00	1.02500
	115.00	1.02550
	153.00	1.02600
	200.00	1.02600

TABLE B-5

SUBROUTINE PLUME

ASSUMPTIONS OF INITIAL CONDITIONS

VARIABLE	<u>VALUE</u>
METERS	4=FPS units used.
ANGLE	0 degrees
DIA	1.0 ft.
RHOJ	0.999 gm/cm^3
PS	2.0 ft.

Appendix C

INPUT DATA FOR THE CITY OF BARCELONETA

V1 V2 X1 Y1 QW Y2 X2 Y3 X3

•8500E+01 •1750E+02 •1770E+04 •6000E+02 •4640E+02 •6000E+02 •1770E+04 •4800E+03 •6130E+04

UNITS FPS

DENSITY STRATIFICATION DEPTH RHO

0.0 1.02300 19.68 1.02310 42.65 1.02320 85.30 1.02340 124.67 1.02350 249.35 1.02400 321.53 1.02450 387.15 1.02500 656.19 1.02500 THIS PROGRAM CALCULATES THE CORRECT OUTFALL LENGTH CORRESPONDING TO DIFFERENT DEGREES OF TREATMENT FOR THE CITY OF BARCELONETA CLASS=SB

E.COLI. VALUES ARE FOR EFFLUENTS RECEIVING NO CHLORINATION

DISTANCE(SB) DILUTION	DISTANCE(SC)	DILUTION	T 90		LEVEL	OF TREATMENT	
OUTFALL IS LOCATED AT 10000.	FEET . WHICH IS	S BEYOND THE	POINT AT	WHICH DEPIHS HA	YE BEEN INPUT.	RAW MAX	
OUTFALL IS LOCATED AT 10000.	FEET , WHICH IS	S BEYOND THE	POINT AT	WHICH DEPTHS HA	VE BEEN INPUT	PRI MAX	
0.74595E+04 0.96746E+04	0.74595E+04	0.87529E+0	2	2.		SEC MAX	
0.46845E+04 0.14287E+04	0.46845E+04	0.10276E+0	3	2.		TER MAX	
OUTFALL IS LOCATED AT 10000.	FEET , WHICH IS	S BEYOND THE	POINT AT	WHICH DEPTHS HA	VE BEEN INPUT	RAW MAX	
OUTFALL IS LOCATED AT 10000.	FEET , WHICH IS	S BEYOND THE	POINT AT	WHICH DEPTHS HA	VE BEEN INPUT	PRI MAX	
0.85997E+04 0.96742E+04	0.85997E+04	0.29644E+0	3	4.		SEC MAX	
0.72895E+04 0.14286E+04	0.72895E+04	0.77042E+0	2	4.		TER MAX	
OUTFALL IS LOCATED AT 10000.	FEET . WHICH IS	S BEYOND THE	POINT AT	WHICH DEPTHS HA	VE BEEN INPUT	RAW MAX	
OUTFALL IS LOCATED AT 10000.	FEET , WHICH IS	S_BEYOND THE	POINT AT	WHICH DEPTHS HA	VE BEEN INPUT	PRI MAX	
0.89352E+04 0.96728E+04	Q.89352E+04	0.39357E+0	3	5.		SEC MAX	
? 0.75620E+04 0.14289E+04	0.75620E+04	0.96787E+0	2	5.		TER MAX	

THIS PROGRAM CALCULATES THE CORRECT DUTFALL LENGTH CORRESPONDING TO DIFFERENT DEGREES OF TREATMENT FOR THE CITY OF BARCELONETA CLASS=SB

E.COLI. VALUES ARE FOR EFFLUENTS RECEIVING CHLORINATION

DISTANCE(SB)	DILUTION	DISTANCE(SC)	DILUTION	T90					LEVEL OF	TREA	TMENT
OUTFALL IS LO	CATED AT 10000.	FEET . WHICH IS	BEYOND THE	POINT AT	MHICH	DEPTHS	HAVE E	EEN I	NPUT RAW	. MAX	
0.76815E+04	0.14286E+05	0.76815E+04	0.11026E+0	3	2.					PR1	MAX
0.48392E+04	0.16146E+04	0.48392E+04	0.10291E+03	3	2.					SEC	MAX
0.63950E+03	0.14294E+02			2.					TER	XAM	
OUTFALL IS LO	CATED AT 10000.	FEET , WHICH IS	BEYOND THE	POINT AT	WHICH	DEPTHS	HAVE 8	EEN I	NPUT RAW	MAX	
0.89042E+04	0.14289E+05	0.89042E+04	0.38532E+0	3	4.					PRI	MAX
0.73960E+04	0.16146E+04	0.73960E+04	0.83079E+02	2.	4.					SEC	MAX
0.63950E+03	0.14294E+02			4.					TER	MAX	
OUTFALL IS LO	CATED AT 10000.	FEET , WHICH IS	BEYOND THE	POINT AT	WHICH	DEPTHS	HAVE E	SEEN II	NPUT RAW	MAX	
OUTFALL IS LO	CATED AT 10000.	FEET WHICH IS	BEYOND, THE	POINT AT	WHICH	DEPTHS	HAVE E	BEEN I	NPUT PRI	MAX	
0.76437E+04	0.16144E+04	0.76437E+04	0.10600E+0	3	5.					SEC	MAX
C 0.63950E+03	0.14294E+02			5.					TER_	MAX	