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I OVERVIEW

In this report, the term "microscale" refers to all phenomena that
have characteristic temporal or spatial scales that are too small to be
resolvable in an explicit, deterministic.manner in urban-scale air pol-
Tution simulation models. Turbulence, concentration fluctuations, and
subgrid-scale concentration variations are examples of microscale phe-
nomena. In this chapter, we outline theoretically the way in which each
of these important microscale features arises; in subsequent chapters of
this volume, we propose techniques for dealing with each in air pollution
modeling studies.

Consider the case of two pollutant species, A and B, that undergo the
reaction

A+B~C

The fundamental equation governing the concentrations of each species is
the so-called mass continuity equation, which in the case of A has the ‘

form
Ay 3 (un) =« oA +S_ - kAB (1)
st ax i 358X A ?
where
A = the instantaneous concentration of A at the point
(xp5 Xp» X35> ) >
u. = the i-th component of the instantaneous fluid
! velocity at the same point,
S = the source strength (mass/volume/time),

= the molecular diffusivity (of both A and B),
k = the rate constant of the chemical reaction.



In an application of Eq. (1) to a simulation of A in the atmosphere,
information concerning the instantaneous fluid velocity, u, is available
only from a few widely scattered meteorological stations. It can be shown
using the sampling theorem that from such a finite set of discrete obser-
vations, only the features of the velocity field with spatial scales
larger than about twice the average distance between sampling points can
be described explicitly [see Lamb and Seinfeld (1973)]. All smaller fea-
tures are unresolvable and must be treated as stochastic variables. Thus,
in an atmospheric simulation, u; must be expressed in the form

where Gi is the mean velocity component, which embodies all of the large,
resolvable features of the wind field, and u% represents all of the unre-
solvable features. The latter, which is usually called the turbulent
velocity component, represents a microscale phenomenon according to our
definition. Because of the stochastic nature of u%, both A and B are sto-
chastic; consequently, only their averaged properties have meaning. In air
pollution studies, one of the most important averaged properties of the con-
centration is the mean, or first moment, which we denote by angular paren-
theses. Taking the mean of Eq. (1), we find that <A>'is governed by the
equation (assuming an incompressible atmosphere)

-il u ax +ax (uiRy = +s -k<A><B> G B . (2)

In this equation, we have taken { »to be an ensemble average, which can be
regarded loosely as a time average. The quantities A' and B' represent in-
stantaneous departures of the concentrations of species A and.B, respectively,
from each one's.mean values. Induced by the velocity fluctuations u%, both

A' and B' are unresolvable and have definitions similar to that of u}:

-t

Al

A-CB>
B - {B)

B '



It is readily apparent from Eq. (2) that the microscale velocity vari-
ations u% affect the mean concentration (A) both directly, through the
transport term <y%Ai>, and indirectly, through the concentration fluctuation
tern1<ﬁ'Bj>. Both of these effects must be expressed in terms of (A, <B>,
or other known variables before Eq. (2) can be solved, because otherwise the
equation contains three unknown quantities: d{A>, <p'Ai>, and <?'BC>.

In the case where u% is caused solely by turbulence in the planetary
boundary layer, the most well-known method for approximating the fluctuating
transport term <@%Ai> is the so-called gradient transport approximation, pro-
posed originally by Boussinesq in the nineteenth century. Under this hypothesis,

<u‘1. A'> = -K1.j %%2 > (4)
where Kij is an empirical quantity called the turbulent diffusivity tensor.
Theoretical expressions (based on similarity theory) are available for some
of the components of Kij’ but these are restricted to the surface layer,
which usually represents only a small portion of the layer into which pollu-
tants mix under typical urban atmospheric conditions. In Chapter II, we
discuss this diffusivity in more detail and present new expressions for the
diffusivity--applicable to the entire mixed layer--which we derived using a

new approach.

In cases where u% is caused both by ambient boundary layer turbulence
and by perturbations of other origins, such as buoyancy forces (when the
pollutant is hot) or turbulence generated in the wake of a Targe building
or hill, methods other than the simple transport theory [Eq. (4)] must be
used. The well-known plume rise formulas are examples of attempts to compen-
sate for buoyancy effects on u%. In Chapter VI, we outline a technique for
obtaining refined estimates of the transport term<<u%A:> in problems where

buoyancy forces play an important role.



Mathematical approximations for the fluctuation term <A‘Bi> have not
been used heretofore in urban-scale air pollution models; such terms have
simply been omitted. It is known, however, that this simplification is
unjustified, especially for small-scale modeling and for fast chemical
reactions. In Chapter III, we discuss some of the approximations that
previous investigators have proposed for these terms, and we develop and
test our own formulation. For the time being, Tet us write

QB = Fpy . (5)

Using Egs. (4) and (5), we obtain the model equation:

COVIE 5 s>

_ m _ _
3t U BX; T, Kij 3X; t Sy k<A>m<B‘>m kFps . (6)

It is important to realize that this equation is actually a model of the
"true" equation [Eq. (2)] because it contains approximations of the terms
<@%Af>»and <@'B'>>. To emphasize this point, we have designated the solu-
tion of Eq. (6) as (A)h to distinguish it from the true mean value {A).
These two quantities are related as follows:

(D = KD e (K oFpg) s (7)

where ¢ is an error term whose value is a function of the model approxima-
tions used for <@%Ai} and <A'Bi> . Note also that we have dropped the
molecular diffusivity term from Eq. (6) because it is known that relative
to turbulent diffusion, molecular diffusion is negligible insofar as the

mean (A) is concerned.

Figure 1, which summarizes the analyses presented up to this point,
illustrates how A, <A>, and <A>m would relate to actual datavgathered from

pollution monitoring stations.
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Since Eq. (6) and its counterpart governing <B>m are closed, and hence
solvable, they can be used as the basis of an air pollution model. How-
ever, because these equations are nonlinear and because they contain vari-
able coefficients, numerical integration methods must be used to obtain
approximate forms of their solutions. To implement numerical techniques
using a digital computer, we must first discretize the independent variables.
But as we pointed out earlier, a finite set of samples of a continuous
function is sufficient to describe only certain large-scale features of that
function. Consequently, before Eq. (6) can be integrated numerically, it
must first be "filtered" to remove all small-scale variations, both in <A>m
and in the independent parameters, such as Kij and Us s that the grid system
cannot resolve. The necessary filtering can be accomplished by averaging
the equation at each point over a volume equivalent to that of the grid cells
and over a period, At, equal to that of the time step used.

Let the required space averaging operation be denoted by the tilde (~)
and be defined by

1

fx.t) = BAXAYAZ

where x = (x,y,z) and where 4x, Ay, and Az represent the half-widths of the
grid cell faces. Averaging Eq. (6) in this manner and assuming, as is usually
true in practice, that neither Gi nor Kij possesses spatial variations of a
scale smaller than the grid, we obtain

o8 S N KA>
5t U

m - < . A R - X - -
i Taxg g i3 e + 5, - KA (BY - KATB" - kF ,

AB

where N
RO NERCY N
(10)
B = B> - B>



The variables A" and B" represent variations in (A)m and <B>m, respec-
tively, that are of a scale smaller than the grid size. Accordingly, A"
and B" constitute a new microscale phenomenon with which we must deal in
the development of an air pollution model. Note that A" and B" affect the
chemical behavior of<:ﬂ>h in much the same way in which the turbulent con-
centration fluctuations A' and B' influence {A> [compare Eqs. (9) and (2)].
Hereafter we refer to A" and B" as subgrid-scale concentration variations
(SSVs).

To complete our filtering of Eq. (6), we must next perform a time
averaging of Eq. (9) over the period at of one time step. In practice,
the size of the time step At required to maintain computational stability
and to minimize truncation errors in the numerical integration of the model
equations is much smaller than the characteristic time scale of any of the
variables entering in Eq. (9). For this reason, the time average of<<A>h
is equivalent to<(A>h itself. The same holds for §A, Kij’ FAB’ and Gi.
Consequently, we can regard Eq. (9) as having been averaged in both space
and time and as therefore representable in the required discrete form.

Like its analogue [Eq. (2)], Eq. (9) is not solvable because it con-
Egips, in addition to the dependent variab]e‘<A>ﬁ, the unknown quantity
A"B". To our knowledge, this term has never before been considered in air
pollution modeling studies. Apparently, this omission is due not to the
belief that this term is small, but rather to a lack of awareness of the
existence of the term. In Chapter IV, we consider this SSV term in more
detail, both qualitatively and quantitatively, and we develop a mathematical
method for representing it in pollution models. For the time being, let us

write

S

G = A'B" (11)

where G denotes a known function. Equation (9) now takes the form

~

a<z>m ; , 3<K>m >y a<'-A>m

= N s K13 %] + 5, k(A <B>m K6 -kFpp (12)




Through a series of operations and approximations, each motivated by
necessity, we have arrived at an equation [Eq. (12)] that can feasibly be
used as the basis for a simulation model of urban air pollution. A natural
question at this point is whether the solution <ﬁ>m of this equation pro-
vides an adequate representation of the desired mean concentration <A>. To
answer this questions, we plotted in Figure 2(b) the values of <A>m that
Eq. (12) would yield at the two sample sites under the conditions of the
problem depicted in Figure 1(a) [and 2(a)]. After comparing these values
with the corresponding values of {A> shown in Figure 1(b), one might con-
clude that <A>m bears no resemblance to the desired quantity (A> and that,
consequently, an air pollution model based on Eq. (12) would be of no value
whatsoever. However, a totally different picture emerges when the global
features of <ﬂ>m are compared with those of (A>. Figure 2(c), which presents
this comparison, demonstrates that on scales that are large compared with the
grid scale, a positive correlation exists between (A)m and (A>s (A)m repro-
duces the overall features of the regional distribution of (A> quite well.
Only on scales comparable to and smaller than the grid size does Eq. (12)
break down. This fact raises a second question: What degree of spatial
resolution is required of an airshed model?

The answer to this question must be inferred from the nature of the
task for which the model is intended. For example, one such task is the
delineation of long period trends and regional patterns in urban air qual-
ity. For this purpose, a model based on Eq. (12) should suffice. However,
models are a]so»required that assess whether particular control strategies
can achieve air quality standards. To serve in this capacity, an airshed
model must possess point spatial resolution, since the standards for some
pollutants are currently expressed in terms of specific, short-period con-
centrations. Thus, techniques for simulating urban pollution are required
that can reproduce the entire spectrum of spatial variations in the concen-

tration field.

The basic model equation [Eq. (6)] from which Eq. (12) was derived
possesses the desired range of resolution; but, as the reader will recall,
the integration of this equation with point resolution over an entire urban
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region would require a prohibitive amount of computer time and storage.
This constraint is what motivated the spatial averaging, or small-scale
filtering, process that led to Eq. (12). 1In Chapter V. we develop what
we call a subgrid-scale model that can be used in conjunction with an
airshed model based on Eq. (12) to obtain point resolution--in particular,
the quantity (A)h-—at any arbitrary point. An alternative to the approach
presented in Chapter V Swhich we do not gi§cuss in this report) is to cal-
culate in addition to <A>m the quantity A“Z. By virtue of the definition
of A" [Eq. (10)], the quantity[A” ]% is a measure of the amplitude of de-
xigtions of <A>h from <A>h that one can expect within the grid cell where
A"" is evaluated. From the modeling standpoint, this approach has certain
operational advantages, but it does not provide the preciseness that is
often required.

In summary, our research into microscale phenomena has focused on-all
aspects of air pollution modeling that are attributable to mechanisms whose
spatial or temporal scales are too small to be resolvable in a simulation
model of an urban-scale region. Figure 3 summarizes these research areas
schematically. Because of the broad scope of this project, our efforts have
not yet produced working solutions to all of the problems that we have con-
sidered. Our primary concern in this portion of our contract effort has
been to explore each of the microscale problem areas in some detail, to
assess the relative importance of each to the overall problem of air pollu-
tion modeling, and to design techniques for dealing with problem areas as
needed. Only the implementation of our proposed techniques remains. We
present a technical summary of the work described in this volume in Chapter
VII and a discussion of the work and problems remaining in Chapter VIII.
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IT  ESTIMATION OF EDDY DIFFUSIVITY, WIND SHEAR PROFILES, AND
DISPERSION PARAMETERS IN THE PLANETARY BOUNDARY LAYER

A.  INTRODUCTION

The term'UEKT entering into Eq. (2) represents the mean flux of the
material A arising from turbulent fluctuations in the fluid velocity field.
The physical significance of this flux can be illustrated by the following
example.

Suppose that a fluid is placed in a closed container and that turbulent
motions are subsequently induced in the fluid by some mechanical means. Sup-
pose further that numerous infinitesimal velocity and concentration probes
are placed uniformly throughout the fluid. Let u (x,t) denote the functional
form of the expression that best describes the instantaneous signals gathered
from all the velocity probes, and similarly let c(x,t) denote the expression
that best represents the concentration measurements. Let us assume that at

some instant t, a steady point source of unit strength of the material c is

0
introduced into the fluid at the point X092 and that no matter how many times the
experiment is repeated, the measured field c(§,t) is always found to be identical
to the solution of the continuity equation

¢, ,

ot Uiax; 8{x - x

)
where u; is the measured velocity field and where molecular diffusion does

not affect c.

Suppose that many of the velocity probes are now withdrawn and that the
velocity fields sensed by the remaining probes is described by the function
U(x,t). [If the above experiment were repeated, one would find that the
measured concentration field c(x,t) spreads out more than is predicted«by

the equation

aC aC
=+
at U
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A greater degree of spreading would be observed if still fewer velocity
probes were used to obtain u. This apparent spreading is the phenomenon
known as turbulent diffusion.

Our example illustrates that turbulent diffusion is actually an arti-
fact of our lack of knowledge of the true velocity field. The example also
suggests that the magnitude of the diffusion phenomenon is related to the
density of velocity probes with which the fluid motions are monitored.

Since this aspect of diffusion and its potential significance to pollution
modeling have been discussed by Lamb (1971), and we do not elaborate upon
them here. The primary concern in this section is to develop a mathematical
description of the diffusion phenomenon caused by turbulence in the planetary
boundary layer.

There are basically two approaches to deriving such a description--
Eulerian and Lagrangian. The starting point of the Eulerian method is the
mass continuity equation:

5t oy UiC = S . (13)

where S is a known function describing the distribution of sources of the
scalar quantity. This same equation was introduced above but in a slightly
less general form. In a turbulent fluid, such as the atmosphere, the lack
of a total description of the velocity field u, makes it necessary to treat
ui—-and hence c--as stochastic variables. These are customarily decomposed

into mean (<ui> and <c>) and fluctuating (ui and c') components. Then, from

Eq. (13), one can see that <c>is governed by the equation

9<C > 3 8. 10
4+ —_— . 4+ —— . =
ot T <uy><c> T <uzc’> S R (14)

which is unsolvable because of the presence of the additional unknown quantity

<u%c'> . -



This problem, known as the closure problem, is a fundamental obstacle
that impedes the progress of all Eulerian-type approaches to the analytical
study of turbulent diffusion. One of the oldest and best known attempts to
circumvent the closure problem is the so-called gradient transport hypothe-
sis, which dates back to Boussinesq in the nineteenth century. In the con-
text of Eq. (14), this hypothesis states that

<u%c'> = -K1.j 3%%? , (15)
J

where Kij is a turbulent diffusivity tensor that must be evaluated using

empirical data. In Volume II, we discussed some of the attempts made by

previous investigators to relate certain components of Kij to measurable

properties of the boundary layer. We review some of these later in this

chapter.

Since Eq. (15) implies that turbulent diffusion behaves like molecular
diffusion, the validity of this equation cannot be universal. In recent
years, several more advanced closure schemes have been developed, primarily
for the turbulent momentum and energy equations (see, for example, Hanjalic
and Launder, 1972; Lumley, 1970; Donaldson , 1969); but none has yet
been demonstrated to be widely applicable to problems of atmospheric diffu-

sion.

In contrast, the Lagrangian approach, starting from basic principles,
leads directly to the closed equation

t
<c(r,t)>=ff pr,tlr',t) S(r't) dt' dr' (16)
0

where p(r,tlr‘,t') is the conditional probability density that a particle of
the scalar released at (r',t') will be found at (r,t). [The derivations of
Eq. (16) and the equations governing all of the higher order stochastic mo-
ments of c¢ can be found in Lamb (1974)]. 1In principle, p is a measurable
Lagrangian property of the turbulence velocity field and the molecular dif-
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fusivity of the scalar particles, but in practice the exact form of p is
virtually unattainable because of the extreme difficulty of tracking in-
dividual particles in turbulent fluid, especially the atmosphere. Conse-
quently, just as the closure problem impairs the utility of Eq. (14), the
lack of information regarding the exact form of p hampers the use of its
Lagrangian counterpart, Eq. (16). And just as various schemes have been
advanced for rendering Eq. (14) solvable, several hypotheses have been pro-
posed for implementing Eq. (16). Among the latter, the most well known is the
assumption that p is Gaussian. With this approximation and the assumptions
that the turbulence is isotropic and stationary, it can be shown that the
widely used Gaussian plume and puff models are derivable from Eq. (16).
Similarly, under the assumption that p describes a Markov process, as would
be true in a study of pure molecular diffusion, it can be shown that Eq. (16)
reduces to the diffusion equation, represented by Egs. (14) and (15) (see
Chapter V of this volume). Unfortunately, none of these models in their
current forms provide a wholly adequate description of atmospheric diffusion.

Recognizing the difficulties in cbtaining actual field data to test and
implement turbulence theories, some investigators pursued the problem of sim-
ulating turbulent flows computationally (Deardorff, 1970, 1972; Orszag and
Israeli, 1974). 1In particular, Deardorff developed a model that simulates
the turbulent planetary boundary layer, under various stability conditions,
below an inversion base of constant height (Deardorff, 1970). This model
opens up new avenues, through Eq. (16), to applied studies of atmospheric
diffusion, because in the atmosphere, where molecular diffusion has a negli-
gible effect on the distribution of the mean concentration <c>, the proba-
bility density p that enters in Eq. (16) can be regarded as a function solely
of the turbulence velocity field and can accordingly be calculated from the
numerically simulated turbulence fields. In this chapter, we describe some
of our preliminary work along these lines using the turbulence model of

Deardorff described above.

The main objective of our study was to use the mean concentration pro-
files computed from the numerically derived values of p [referred to as the
numerico-empirical profiles] to assess the adequacy of conventional atmos-
pheric diffusion theories. First, we assessed the atmospheric diffusion



equation, Eq. (14) with Eq. (15), by determining the profile of vertical
eddy diffusivity that produces the closest fit of the predicted mean con-
centrations with the numerico-empirical profiles. Second, we compared the
numerico-empirical profiles with those predicted by (1) the Gaussian plume
formula with Pasquill-Gifford dispersion parameters and (2) the Gaussian
puff equation with McElroy-Pooler travel-time-dependent dispersion parame-
ters. Additional studies of the plume and puff models that we carried out
are relevant to the work described in some of the later chapters of this
volume,

B.  DESCRIPTION OF THE NUMERICAL EXPERIMENTS

We considered the three-dimensional dispersion of marked particles in
an atmospheric flow between the ground (z = 0) and an elevated boundary of
constant height ﬁ as simulated by the planetary boundary layer model of
Deardorff (1970). (In this chapter, we use the caret to distinguish dimen-
sional variables from those that have been nondimensionalized.) In each of
two experiments representing neutral (H/L = 0) and slightly unstable
(B/L = -4,5) atmospheric conditions, where L is the Monin-Obukhov Tength,
800 particles were released from points on a horizontal plane and followed

16

for a given period of time. Using the computed trajectories of each particle,

we calculated the two-dimensional density function p(x z t[x ,z ,t') 1n the

following way. (The components of r and r' were taken to be x, z and x' s z R

respectively.)

First, we transformed the coordinate system of each particle to a moving

frame:

¥y
—
~
N
!

= xg(0) - Dxg + ulzgde]

i=1,2, ..., 800 . -

where D(ES) is the mean value of the x-component of the wind at the level of
release of the particles and © = t - t'. Then we introduced a new function,

p._, such that

€L
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N(e,cot) [B00RI2X(0) 3T, Jelex()

(g,z,1) = (18)

0, otherwise s

Pec

where N(&,z,t1) is the number of particles at time t that lie in the range
g-1/2se <e(r)<e+1/2 88 and ¢ - 1/2 sz < (1) <o+ 1/2 bz and X(1)
is a distance that is exceeded by the |gil of only a negligible fraction of
the 800 particles. The intervals A¢ and Az are also functions of t and are
sufficiently large that a minimum number of the intervals AgAz are void of
particles at each tv. Clearly. we can approximate the desired transition
probability density function p(i,%,t[i',i',t') as follows:

A A

p(x,z,t]x',2',t") [e-i(z)teor] o (19a)

" P
The accuracy of a probability density function derived in this manner
is virtually impossible to assess using analytical error formulas alone.
The best error estimates are obtained by repeating the calculations with a
fresh set of data and then comparing the results. The limited data set
available in this study precluded such a check, but we plan to examine this
matter in more detail in future studies. Suffice it to say that. random er-
rors in the computed density function p are attenuated by the integration
process, when used in Eq. (16), and that as a result the calculated mean con-
centrations are less erroneous than the p function on which they are based.
The function p(x,z,tlx',zs,t‘) = p(x—x',z-zs,t—t') is shown graphically in
Figure 4 for several travel times and for each of the two stability condi-
tions considered. The nondimensional space and time coordinates used here

are defined by

: : tu
X ='§“ ’ Z ='§_ ’ t = —* ) (]9b)
h h h

where u, is the friction velocity and h is a vertical length scale defined

later.
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We used the results of the above analyses for both the neutral and
slightly unstable cases in Eq. (16) to compute the mean cross-wind inte-
grated concentration, <c(x,z)>, of a chemically inert substance arising
from a continuously emitting point source. For S(x,z,t) = Ms(x - xs)ﬁ(z - Zs)’

where M is the emission rate (a constant) and <c(x,z,t0)>= 0, Eq. (16)
becomes
t
<c(x,z)> = lim M ;[ p(x,z,t|xs,zs,t') dt! ) (20)
oo

Section C presents the results of the calculations.
C.  ASSESSMENT OF THE ATMOSPHERIC DIFFUSION EQUATION

In the introduction, we mentioned that the implications of the gradient
transport hypothesis [Eq. (15)] regarding the nature of turbulent diffusion
are generally incorrect. However, the so-called diffusion equation to which
this hypothesis gives rise through Eq. (14) is an attractive equation from
the standpoint of describing atmospheric diffusion. Specifically, this equa-
tion is simple and easily solvable using conventional finite differencing
techniques, and it Tumps the effects of the turbulence into the single func-
tion Kij rather than into one or several additional differential equations.
This last point is particularly significant in the context of photochemical
pollution modeling, where the number of differential equations involved is
already so large that the addition of more equations to handle the diffusion
terms would make the computational burden prohibitive. Thus, a tacit con-
straint on our analysis was that the closure approximation we derived must

require no additional equations.

These considerations therefore prompted the following question: Does a
function ij exist that renders the differences between the solution of the
diffusion equation and the solution of Eq. (16) acceptably small, and if so,
how does this "optimal" diffusivity compare with the expressions in current
use? As én added constraint, we insisted that the function Kij depend only
on spatial coordinates and not on travel time. Without this restriction,



which contradicts observations, Kij wdu]d become a function of the source
distribution S and would therefore acquire extremely unwieldly forms in
problems such as urban pollution modeling, where one must deal with a mul-
titude of widely scattered sources of various shapes and sizes and tempor-
ally variable strengths. In short, we attempted to determine whether
turbulent diffusion can be described with acceptable accuracy in terms of
some local, hypothetical property of the flow field.

To explore this question, we considered the two-dimensional steady-
state form of the atmospheric diffusion equation, in which turbulent
dispersion in the direction of the mean wind is neglected, i. e.,

Wz) B2 = 2T E) B el - x) 6z - 2) . (2D)
3X 9z 3z
Upon defining the dimensionless variables,
- K ~ <e>u(z_)h
u = % , KZ = ZA , C = __T—S— , (22)
* u*h

where h is a vertical length scale and u, is the friction velocity, we obtain
the dimensionless form of Eq. (22):

g 262 o (KZ §—§>+ [U(ZS)] s{x - xs) s(z - z.) , (23)

u

where s(+) = &(-)h and where x, z, and t are given by Eq. (19b). The bound-
ary conditions for Eq. (23) are

c(z,0) =0 , . (24)

o€ _ =
K 37 0 , z=0,1 . (25)

Z
In contrast to the neutral case, in which the depth of the planetary

boundary layer is some fraction of u*/f, where f js the Coriolis parameter,

Deardorff found that the unstable boundary layer extends up to the height z,

20
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of the inversion base below which convective mixing is confined. Conse-
quently, the proper choice of the length scale h is h = Z, in unstable
cases and h = u,/f in the neutral case.

Before proceeding with the calculation of the optimal diffusivity KZ’
we first consider the mean velocity profiles u that enter into Eq. (23) and

also the diffusivity profiles KZ in current use.

1. Wind Profiles from the Planetary Boundary Layer Model

Figure 5 shows u(z) computed by the planetary boundary layer model in
the two cases of h/L = 0 and h/L = -4.5. It is of interest to compare these
profiles with those predicted by conventional theories.

According to the Monin-Obukhov similarity theory, the mean velocity
gradient in the surface layer is given by (Monin and Yaglom, 1971)

7 Y - (2
M-z ¢m<[‘) , (26)
37 z
where 1 , neutral z < eu /f :
~ _Z: _
m\C) " ~ -0.25 )
(1 -8 %) . unstable -2 < 2/L <0 .(27)

The commonly accepted value of g is 15. The mean surface layer velocity
profiles obtained by integrating Eq. (26} from 20
Table 1, where the profiles are expressed in both dimensional and dimen-

to z + 20 are given in
sionless form.

Above the surface layer, there is a change of wind direction with height
(the Ekman layer). In the planetary boundary layer, v = 1/5 u at the geo-
strophic level, so that |v| ¥ G, even with turning. In the unstable case,
i.e., 21/L < -1.5, both observational data and the numerical calculation

show that the change of wind direction is strongly suppressed, resulting in
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Table 1
WIND AND VERTICAL EDDY DIFFUSIVITY PROFILES IN THE SURFACE LAYER FROM SIMILARITY THEORY

Neutral: z < kU, /T Unstable: -2 < E/L <0
R U, - u R R - ~
u(z) — {1+ %) = 2<tan']w-tan']w>+znlf+] - n ‘f+]
< z < 0 vy -1 v+ ]
0 0 0
1 z_ 1 -1 -1 y -1 ¥+ 1
u(z) K9vn<1+?_0> K[2<tan ¥y - tan W0>+zn(wo_])-£n<wo+] ):,
. . . > -0.25
(z) KU, Z , kuz {1 -8 T
Fl -0.25
K_(z) KZ kz \1 - Bz T
Note: ¥ =[1-8(z+z20/0V% v =1 -ezg0)Vt
y={1-8(z+ zo)ﬂ/L]1/4 T BZOFI/L)]/4
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a nearly unidirectional flow in the planetary boundary layer. Thus, in the
diffusion calculations presented later, we neglected the turning of the wind
with height in all situations. Although several approximate expressions
have been proposed to describe the wind speed profile above the surface
layer, none of these agrees as well with the numerically calculated wind as
the profile obtained by simply extrapolating the surface layer formulation
[Eqs. (26) and (27)] to the top of the boundary layer (see Figure 5).

2. Theoretical Forms for Eddy Diffusivities

The surface layer vertical eddy diffusivities corresponding to the mean
wind profiles derived from similarity theory are given in Table 1. Consid-

erably less is known about the behavior of K, above the surface layer than

Z
within it. In two recent studies, expressions for KZ in the planetary bound-

ary layer above the surface layer have been proposed.

Ragland (1973) suggested that QZ be taken as constant above the surface
layer at its value at the top of the surface layer. In contrast, Shir and
Shieh (1973) assumed that in the planetary boundary layer under neutral con-

ditions K, obeys the form

Z

K, = u*z(z), neutral , (28)

where 2(z) = <7 exp (—42/21), and that under nonneutral conditions, RZ obeys
the form

2) = R (z) M2l (29)
where 21 is taken to be 10 m.. In these computations, KZ(E]) is to be calcu-
lated assuming that 2](= 10 m)]ies within the surface layer. In the dimen-
sionless form adopted here, Egs. (28) and (29) become

4z

K = kze (30)

and
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_4(21—2)

Kz(z) = Kz(z]){g? e } , unstable . (31)

We postpone further discussion of these proposed diffusivity profiles until
after we have derived our "optimal" estimate of KZ'

3. Estimation of the Optimal Kz(z) in the Atmospheric Diffusion Equation

In addressing the question of the existence of an optimal diffusivity
KZ’ one faces the general problem of estimating the form of a functional
parameter appearing in a partial differential equation [namely, Eq. (23)],
such that the solution of that equation matches certain given data as
closely as possible. If the data are available as continuous functions of
x and z, denoted here by Cﬂ(x,z), then the customary criterion to be mini-
mized by the choice of Kz(z) is

5
J =J'°§ [C (x,z) - C(x,z)]% dz dx (32)
b Jo f

where 20 is the extent of x over which data are available.

This problem is known as an inverse problem. As Chen and Seinfeld (1972)

and Chen et al. (1974) have shown, problems of this type can be solved effi-
ciently by techniques of optimal control theory. The optimal control problem
to be solved is the following: Determine the function Kz(z) that minimizes J,
subject to Egs. (23) through (25) and to Kz > 0. For this problem, the neces-
sary conditions for optimality assume the form of a two-point boundary value

problem:



(A

« 3% %Z(Z ‘3‘%) ¥ (%) s(x - x)6(z-z) (33)
c(0,z) = 0 , (34)
Kz%”) ,z=0,1 (35)

%%': - 'E'[Kz 5y (%)} + 2[Cz(x z) - C(x,z)] , (36)
v(25,2) =0 \ (37)
P !
Kz'ﬁ(ﬁ)” s 2=0,1 , (38)
%
6d_ 8C 3 /1 _
a—K;j o (0 =0 (39)
0

where 8J/68K, is the functional derivative of J with respect to KZ and ¢(x,z)
is the adjoint variable to C (x,z) as shown, for example, by Lions (1¢71).

The two-point boundary value problem given by Eqs. (33) through (39)
cannot be solved analytically and must therefore be solved iteratively.
One straightforward means of determining the optimal value of Kz-numeri—
cally is to use the method of steepest descent. From the definition of
the functional derivative, we can rewrite Eq. (39) as

1 4

5 =_j'0.{joo[%z_ (%)]@9 dx}.dKZ(z) iz, (40)

which is a direct expression for the effect of a perturbation in KZ on the

value of J. The basis of the method of steepest descent is to choose GKZ

such that &J is negative. This can be accomplished by setting

5K, (2) = W(z) J;O[% (%)]({2—5—) dx « (41)
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where W(z) is an arbitrary positive function of z.
The algorithm proceeds as follows:

(1) Make an initial guess of K,(z), calling it Kg(z). Select W(z).

\

L

)

(2) Integrate Egs. (33) through (35) from x
Evaluate J.

- : 0
0 to x = %o using KZ.

(3) Integrate Eqs. (36) through (38) from x
and C{x,z) from Step 2.

1

- - 0
29 to x = 0 using KZ

0

(4) Compute 8K, from Eq. (41), and call it GKZ.

Z

(5) Revise the initial guess of K, by

10 0
by = Kz + 9K

If K

7 <0, set K

7 = 0.

(6) Using K1, return to Step 2 and repeat.
Z

n

(7) Continue until (J - Jnﬂ)/Jn <e, where € is a preset convergence

criterion.

In the steepest descent algorithm, the perturbations in KZ are defined
so as to seek the minimum of J by moving KZ along the gradient of J with re-
spect to KZ' The length of the step, i.e., how far a distance one proceeds
along the gradient in each direction, is controlled by the choice of the
function W(z). Although it is possible to choose W(z) by an auxiliary opti-
mization problem, it is generally simpler computationally to select a constant
value of W initially equal, say, to some fraction of the initial guess of KZ'

If, during the iteration, an improved estimate of K, increases rather than

VA
decreases J, the minimum has been overstepped. One must then go back to the

value from the previous iteration, and decrease W by a preset factor before



computing the new estimate. The convergent value of KZ generally varies
depending on the initial guess. Thus, it is desirable to try several
different initial guesses to determine the variability of the convergent
KZ profiles. We carried out this procedure in the present study, and we
substantially attained the profiles to be discussed subsequently, regard-
less of the initial guess. Nevertheless, results on the uniqueness of

profiles determined by using optimal control theory are still unavailable.

The resulting optimal diffusivity profile Kz(z) for the neutral case
is shown in Figure 6, which also shows the profiles given by similarity
theory (listed in Table 1); the profile suggested by Shir and Shieh, Eq.
(28). and the eddy viscosity calculated by Deardorff. The optimal profile
agrees relatively well with that proposed by Shir and Shieh and shows also
fairly close correspondence to the eddy viscosity profile computed by
Deardorff. However, the diffusivity estimates given by similarity theory
are consistently too large and differ from the optimal value by nearly a
factor of 1C at the top of the boundary Tayer.

The opposite situation is found in the unstable case (Figure 7), where
the optimal diffusivities are much ltarger than those given by similarity
theory. When the Tatter values were used in Eq. (23), the resulting errors

were a factor of 10 larger than those produced by the optimal K. profile.

For all common values of E, the Shir-Shieh profile for KZ underzunstab1e
conditions (not showh in Figure 7) gives smaller diffusivities than does
similarity theory.

The fact that the optimal KZ profile does not drop to zero along the
broken line shown in Figure 7 cannot be attributed to the algorithm that
was used to compute KZ’ because we found that the smaller diffusivity values
near the surface resulted in larger errors in the ground-level concentra-
tions predicted by Eq. (23). A more likely cause is the larger truncation

errors in the finite difference model of Eq. (23).
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Having described the differences between the optimal KZ profile and
some of the diffusivity formulas in current use, we turn now to the im-
portant question of how well the solutions of Eq. (23), using the optimal
profiles, compare with the corresponding numerico-empirical solutions of
Eq. (16). The latter are displayed in Figures 8(a) and 9(a) for the
neutral and unstable cases, respectively. Note that in the neutral case
the source height z = 0.09, and in the unstable case z. = 0.025. To fa-
cilitate comparison of these solutions with those of Eq. (23), we plotted
the latter in Figures 8(b) and 9(b) in the form of a fractional error

C(x,z) - CO(X,Z)

C ’ (42)

*boz) = =)

where C denotes the solution of Eq. (23) and CO represents the correspond-

ing value given by Eq. (16). These figures give the values of e multiplied
by 100 so that they can be interpreted as plots of the percentage error.

The figures reveal that the errors in Eq. (23) are nearly randomly dis-
tributed in space, except for the neutral case, in which rather Targe errors
occur near the source. The larger errors in this region are consistent with
the conclusion drawn from theoretical considerations that the gradient transport
hypothesis should not hold when the length scale of the mean concentration dis-
tribution is comparable to or smaller than the Lagrangian length scale of the
turbulence (Lamb, 1973). For the most part, however, this hypothesis appears
to be reasonable. Errors in the calculated concentrations are no larger than
about 20 percent at points farther than about 6u*/f from the source in the
neutral case and at nearly all points at ground level in the unstable case.
Thus, if we find in future studies that the optimal KZ profile is insensitive
to the source height Z, and to the number, shapes, sizes, and distribution of
particle sources. and that in such applications the errors in the diffusion
equation do not increase significantly beyond those shown in Figures 8(b) and
9(b), then we will have succeeded, through the concept of optimal diffusivity,
in transforming the diffusion equation into a model of atmospheric diffusion
that is accurate enough to be useful in a wide range of applied problems.
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(a) Nondimensionalized Cross-Wind Integrated Concentrations

Computed from Eq. (16) Using the Probability Density p
Calculated from Deardorff's Data for Neutral (h/L = 0)
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]
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(b) Concentrations Given by the Diffusion Equation [Eq. (23)]
" Using the Optimum K; Profile Shown in Figure 6 and the Wind
Profile (D) in Figure 5. Concentrations are expressed as
the percentage deviation (i.e., 100e) from those given in

Part (a) above.

COMPARISON OF OPTIMAL PROFILE AND NUMERICO-EMPIRICAL SOLUTIONS
FOR THE NEUTRAL CASE
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D.  ANALYSIS OF THE DISPERSION PARAMETERS o_ AND o
IN THE PLUME AND PUFF MODELS z X

Because we use the plume and puff models later, we attempt here to
optimize the performance of these models. As previously mentioned, in both
the plume and puff models, we assume that the probability density function
p that enters in Eq. (16) has a Gaussian form that is completely determined
by the mean (X,z) and mean square (xZ,z%) displacements of fluid particles
from their point of release. Recall that these quantities are properties of
the turbulence. Because of the great difficulty of tracking particles in
the atmosphere, past empirical studies of atmospheric diffusion have not at-
temped to measure the particle displacement statistics directly. Rather, X2
and ;?.have been treated merely as free parameters to be used in fitting a
Gaussian profile to concentration measurements made downwind from point
sources of known strength under various atmospheric conditions. In this
manner, the so-called dispersion parameters of Pasquill and Gifford and
McElroy and Pooler were obtained. If the probability density p were actually
Gaussian and if the assumptions involved 1n the empirical determination of

the dispersion parameters were correct, then these parameters should be
2

2 . Let us

equivalent to the mean square particle displacements x“ and

;Z-and ;E

given by Deardorff's model with the dispersion parameters measured in the

compare the profiles of calculated from the particle trajectories

two empirical studies just cited.

The Pasquili-Gifford data give a vertical dispersion parameter g, as a
function of distance x from the source for various atmospheric stabilities.
In principle, the parameter g, is related to the particle displacement sta-

tistics by

and the distance x from the source is equivalent to x. In all cases z = z,
where z_ is the height of release of the particles.
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The computed values of (;? - 22)1/2 as a function of x for both the
neutral and unstable cases are represented in Figure 10 by the open
triangles and open circles, respectively. In this figure, the nondi-
mensionalized Pasquill-Gifford profiles of o, as a function of x for
three different atmospheric stabilities are indicated by the curves.
Since the positions, but not the slopes, of these curves depend on the
value of the length scale h that is used to nondimensionalize o, and x,
we have indicated the extent to which each -curve would be displaced by
a different choicé of h.

Figure 10 clearly shows poor agreement between the calculated and
measured o's. The chief discrepancy is a systematic shift of the calcu-
lated values to the right of the measured ones. Thus, if we plot
(32.- 72) as a function of 0.24X, we obtain the closed circles and tri-
angles shown in Figure 10, and these agree much better with the measure-
ments. Note that in both the neutral and unstable cases, the slope of the
computed o, profile conforms for small distances x to that of the Pasquill-
Gifford profile for Class C stability (i.e., slightly unstable); but that
at greater distances, the slopes become dissimilar, with the unstable case
becoming parallel to the Class B profile and the neutral case becoming par-
allel to the Class D curve.

The closer agreement between the computed and measured data that results
when a smaller value of X, namely 0.24x, is used suggests that the Pasquill-
Gifford data pertain to particles released from a lower level than that used
in the numerical experiments. This conclusion follows from the fact that for
a release height z', dx/dt = u(z'); and, thus, with a strong wind shear near
the ground (see Figure 5), x will increase with z' for a given value of the
travel time t. This effect has apparently not been taken into account in rou-
tine diffusion estimates made with the plume formula (see Turner 1969). Con-
sequently, one would expect those calculations to overestimate systematically
the ground-Tevel concentrations resulting from elevated sources, if (as

appears likely) a, is less sensitive to z' than x is. .
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The Pasquill-Gifford dispersion parameters are useful only in the
plume formula. The puff model, however, requires ¢'s that are functions
of travel time. Figure 11 presents data of this type, which have been
collected by McElroy and Pooler in St. Louis. In this figure, the data
are shown in nondimensional form, along with the computed values of
(z2 - 72) for the same stability cases. Again, the positions, but not
the slopes, of the empirical curves depend on the values of the length
scale h and the time scale ﬂ/u* that are used to nondimensionalize the
data. Figure 11 shows that for a value of u, = 0.98 m/sec, which is not
unreasonabie for the urban area in which the McElroy-Pooler data were col-
lected, the computed and measured cz(t) profiles are in excellent agree-
ment in the unstable case and in good agreement for small t, under neutral
conditions. (The downward turning of the computed o, profile at large t
is a result of the effect of the simulated inversion base at z = 1 in the
numerical model.)

-0k
Figure 12 compares the computed streamwise dispersion oy 7 (x2 - x2)2

— ok
with the Tateral dispersion oy = (y2 - y2)? observed by McElroy and Pooler
as a function of travel time. (We did not compute Oy originally because it
is not needed in our problem.)

The McElroy-Pooler data for Oy show Tittle variation between neutral
and unstable conditions, and the computed o, values exhibit the same behav-
ior. In fact, Figure 12 shows that when thg empirical data are nondimen-
sionalized using a friction velocity of about 0.45 m/sec, about one-half the
value used earlier with 0, the computed and observed dispersion curves are
nearly superposed.

Recall that if the turbulence were such that the probability density p
that enters in the generalized diffusion equation [Eq. (16)]--and in the
puff equation--were actually Gaussian with joint moments Xy = Xz = yZ = 0,
as is assumed in the puff model, then the empirical o's would be equivalent
to the root-mean-square second moments of p, i.e., ;2-%, 72 %, and so forth,
as described earlier, and the concentrations predicted by the puff model
would agree exactly with those given by Eq. (16). It follows, therefore,
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that since the empirical o's are in close agreement with the numerically
calculated values of ;ég, _é%, and so forth, major errors in the puff
model predictions reflect departures of the turbulence characteristics
from those consistent with the assumed Gaussian form of p. Similar ar-
guments apply to the plume formula. Let us examine these errors.

For this purpose, we set up the standard plume model using Pasquill-
Gifford dispersion data, and the puff model of Lamb and Neiburger (1971)
using the McElroy-Pooler data, to simulate the same two-dimensional problem
that was treated earlier in Section C. In each case, we nondimensionalized
the empirical data in the manner portrayed in Figures 10, 11, and 12 so
that each set was in closest agreement with the computed particle statis-
tics ;2; ;2; and so forth. We should point out that the plume model does
not account rigorousiy for the effects of the inversion layer present in
this problem. However, in the trial calculations presented here, this de-
ficiency 1is not serious, because within the range of downwind distances
treated, the inversion layer has little overall influence on the concen-
tration distributions.

Figure 13 presents the results of the calculations for the neutral
case, and Figure 14 gives those for the unstable case. As in the previous
figures, we have plotted the model predictions in terms of their fractional
departure ¢, Eq. (42), from the corresponding numerico-empirical solutions
of Eq. (16). The latter are given in Figures 8(a) and 9(a). We consider
only the puff model results here, because these results provide a better
assessment of the accuracy of the assumed Gaussian form of p due to the
closer agreement between the McElroy-Pooler data and the computed particle
statistics.

As shown in Figure 11, for the neutral case the empirical g, and the
calculated 221/2 profiles are nearly superposed for travel times t < 0.1,
which corresponds to distances x from the source in the range 0 < x < 4.
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FIGURE 13.  COMPARISON OF THE PREDICTIONS MADE BY THE PUFF MODEL AND
THE PLUME MODEL FOR THE CASE OF NEUTRAL STABILITY. The
puff model used neutral, travel-time-dependent McElroy-

~ Pooler data; the plume model used Pasquill-Gifford Class C
data and an expanded x-axis (see the text).



08- :0.6 ' ;;;55555:::::::;”’*—_”—_——h
1 @078 ~20 _
0.6 Igg
100
0.4 //”——-“ﬂ_~——””’—
0.2 20
.C ] O/\
\ /,,_———~—f:::::::::::::::::::-4o-__‘~_\\
I 1 l. 1 1 I I 1 1 i I [ I ! T I T
0 2 4q 5] 8 10 12 14 16

x/h
(a) Nondimensionalized Cross-Hind Integrated Concentrations
Predicted by the Puff Model, Expressed as the Percentage

Deviation (i.e., 100 )} from Those Shown in Figure 9(a),
Which Were Obtained from Eq. (16) for the Unstable Case

T €=-025

1 —=i/2 -

- 62/=OJO

- // _
: } ‘-‘—-—407 At /’;“20\\ M

T T T T
0 0.5 1.0 () 20 2.5 3.0 3.5 4.0
(b) Results of the Plume Model Calculations Expressed as in
Part (a)

FIGURE 14.  COMPARISON OF THE PREDICTIONS MADE BY THE PUFF MODEL AND

THE PLUME MODEL FOR THE UNSTABLE CASE. The puff model
used "slightly unstable" McElroy-Pooler data; the plume
model used Pasquill-Gifford Class B data and an expanded
x-axis (see the text).




43

However, Figure 13(a) reveals that in this range the predictions of the
puff model are considerably in error. Concentrations are underestimated
on the centerline of the plume and are greatly overestimated at the
edges, especially along the plume edge that touches the ground. This
behavior suggests that the diffusing particles behave as if a weak re-
storing force were preventing them from wandering too far away from their
level of release, i.e., the plume axis. Thus, particles that have wan-
dered a distance E?%, say, from the plume axis have a larger probability
of moving back toward the plume centerline than of continuing on to still
more remote points. In contrast, the Gaussian density implies that at
each instant the particles have equal probabilities of moving toward or
away from the plume axis. In short, the Gaussian density has a much
larger kurtosis or flatness factor than the true probability density p
does under neutral conditions.

Turning next to the unstable case, we see in Figure 11 that the measured
o, values and those computed for ;?% are in excellent agreement at all travel
times (and distances from the source), except those at the extreme upper limit
of the range treated. Figure 14(a) reveals that the errors in the puff model
predictions are smaller in this instance than those in the neutral case but
that there is still a tendency for the predicted concentrations along the
plume centerline to be too small and for those at the edges to be too large.
One factor contributing to these errors is the assumption in the puff model
that the joint moment Xz is zero. Actually, this moment is strongly positive;
because of the rapid increase in wind speed above the level of release (namely,
ZpeL = 0.0256) of the particles in the unstable case (see Figure 5), particles
that are displaced upward are also systematically displaced downstream. Con-
sequently, at any distance x from the source, a significant fraction of the
particles that normally would be found at the plume edge are found farther
downstream, and in their places are particles from points upstream of x, which
thus have smaller vertical displacements. As a result, the effective width of
the plume is consistently smaller than one would predict on the basis of ;2%
alone. This phenomenon is not as pronounced in the neutral case, because the
wind shear at the level of release (zREL = 0.1us/f) of the particles is much

smaller (see Figure 5).
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The analyses just completed illustrate the inadequacy of the basic
assumption underlying the plume and puff models that the probability
density p entering in Eq. (16) is of a Gaussian form. However, despite
these limitations, the plume and puff models remain attractive formula-
tions in applied studies because of their mathematical simplicity. For
this reason, it is useful to inquire whether profiles exist that will
bring the errors in the predictions of these two models within the range
of acceptability.

To explore this question, we used the variances OX(T) and oz(r) as
adjustable parameters for obtaining a least-squares best fit of the
Gaussian density function to the numerico-empirical expression p. Figures
15 and 16 present the resulting "optimal" profiles of oy and g, respec-
tively. In each case, the corresponding empirical data of McElroy and
Pooler, presented earlier in Figures 11 and 12, are shown for comparison.
Since the method used to obtain the empirical data is similar to that used
here to.obtain the optimal oy and o, values, it is surprising that the lat-
ter do not compare as well with the empirical data as do the computed root-
mean-square particle displacements shown in Figures 11 and 12.

In a similar manner, we adjusted the dispersion parameter oz(x) to ob-
tain the least-squares best fit of the plume formula to the numerico-empirical
concentration distributions given in Figures 8(a) and 9(a). Figure 17 pre-
sents the results, along with the empirical Pasquill-Gifford data for compar-
ison. We subsequently inserted these "optimal" dispersion coefficients into
the puff and plume models and performed new sets of calculations to compare
with the numerico-empirical concentration profiles given in Figures 8(a) and
9(a). The results, given in terms of the fractional error e used earlier,
are presented in Figure 18 for the neutral case and in Figure 19 for the un-
stable case. Comparing Figures 13(a) and 14(a) with Figures 18(a) and 19(a),
we find that although the optimal oy and g, profiles improved, the overall
performance of the puff model, errors in the predicted values remain intol-
erably large in certain regions. This is especially true for the ground-level
concentrations predicted in the neutral case [see Figure 18(a)].

Figures 13(b) and 18(b) reveal that using the "optimal" oz(x) profiles,
the plume model fails by a considerable margin to achieve the level of accur-
acy that was attained in the earlier calculations. The reader will recall
that in the previous computations, we expanded the x-axis to account for
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numerico-empirical concentration distribution given in

Figure 8(a).
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apparent differences in the mean particle velocities implicit in the empirical

data and in the numerical turbulence model. We also made arbitrary adjust-
ments of the atmospheric stability. 1In contrast, we did not employ any of
these artifices in computing the optimal oz(x) values. These facts, together

with the error values given in Figure 18(b) suggest that the basic plume
formula does not provide a wholly adequate description of atmospheric
diffusion, at least under neutral stability conditions. However, under
unstable conditions, the accuracy is better, as indicated by Figure 19(b).

E. IMPLEMENTATION OF THE OPTIMAL DIFFUSIVITY AND
WIND SHEAR PROFILES IN AN AIRSHED MODEL

Since the optimal diffusivity profiles derived in Section C are based
on a rather small ensemble of particle trajectories, the statistical sig-
nificance of these profiles is limited. In addition, the question arises
of whether the profiles vary significantly with changes in the source
height. (In our studies, data from only one release height were available
for each stabiiity case.) The data needed to resolve these problems are
currently being collected using Deardorff's newest model, and we plan to
continue studies similar to those described above but with a much wider
scope.

For the present, however, we are developing the methods necessary to
implement these diffusivity and wind shear profiles in operational airshed
models. For this purpose, we have fitted fourth-order polynomiais to the
wind shear and optimal diffusivity profiles derived earlier. Table 2 pre-
sents these in nondimensional form. The only task necessary to use these
results in a diffusion model is to convert the profiles into dimensional
forms. Thus, denoting dimensional variables by the caret ("), we have [cf

Eq. (22)]

5 _ .
Kz(ff) uz, ., unstable case (z;/L = -4.5) s - (43)

o)
Kz(ﬁ:) = ; neutral case (Zi/L = Q)
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Here Kz(z) is the nondimensional diffusivity, given in Table 2, at height
z (nondimensional) and Uys Zis f, and L are defined as before. Similarly,
we have

) - ’u‘(%)a , (44)

where ﬁ* is the friction velocity, u is the wind speed profile given

in Table 2, and h = Z, in the unstable case and u*/f under neutral condi-
tions. Note that the wind profile u given in the table is for a particu-
lar value of R = H/EO, where 20 is the surface roughness. For different

values of R, the profiles must be adjusted as described below.

In air pollution modeling studies, one normally has available only
Zis f, Zg> and Urg where the last term denotes the wind speed at 10 m*.
Atmospheric stability data are seldom available from measurements. Rather,
Pasquill's technique of categorizing the stability into Classes A through F
using ground level wind speed and insolation observations is frequently em---
ployed. Recently, Golder (1972) obtained approximate relationships between
Pasquill's stability classes and the Monin-Obukhov length L. Thus, we
assume that estimates of ii/L can be obtained using Golder's formulas and
Pasquill's stability classes. The friction velocity u, must be determined
before the wind and diffusivity profiles can be converted into dimensional
forms.

An often used formula for u, is
u = Cphu , (45)

where CD is a drag coefficient for the boundary layer and Ug is the geostrophic

wind speed. Lettau (1959) proposed the formula

u -1
= 4973
Cp 0.16[]0910(f20) 1.8] , neutral case (46)

*
A technique for estimating the surface roughness Zg has been proposed by
Lettau (1970).



Table 2

OPTIMAL PARAMETERS FOR USE IN THE DIFFUSION EQUATION AND IN THE
GAUSSIAN PUFF AND PLUME MODELS {NONDIMENSIONAL VARIABLESt)

Stability
; u o Z.
Neutral =0 Z—=1.5x 10/ Unstable L= -2.5 -1=6.8x 108
Model Parameter Zp . 0
Gag;sian cz(r) = 0.0045 + 0.47, 0.022 < = < 0.079 = -0.0023 + 0.657 - ].8912 + 5.3213,
pu
= 0.026 + 0.129t, 0.079 < t < 0.32 0.04 < 7 < 0.52
o,(x) = 1.85t, 0 <1t < 0.045 = 0.045 + 1.307t, 0.05 <t < 0.7
= 0.045 + 0.92t; 0.045 < T < 0.32
G?ussian oz(x) = 0.032 + 0.0044x, 0.23 < x < 4.0 = 0.075 + 0.0167x, 0.5 < x < 5.5
plume
= ~0.065 + 0.0435x, 5.5 < x < 9.5
Diffusion K, (2)° «7.39 x 107% + 6.082 x 10°% ‘= 26.934.x 1073 + 0.6113z + 3.2972°
equation 2 .3 4 3 4
+ 2.532z" - 12.72z" + 15.17z°, _ . -6.442z + 3.153z7,
0 < z < 0.45¢ 0.02 <z <« 1.0
«0, zx0.45,
i(z)- = 29.82 + 213.2z - 19892% - 26.22 + 153.2z - 14282°
+ 878325 - 146702%, 0.022 < z < 0.21; + 55012° - 75232%, 0.025 <z < 0.3
= u(0.21), z > 0.21. . = u(0.3), z x 0.3,

’

+ A1l lengths were made nondimensional by zi = inversion height in the unstable case and by u,/f in the
neutral case. Times were made nondimensional by zj/u, (unstable) and 1/f (neutral).

5 The polynomial given for the neutral case is only qualitatively accurate. See Appendix A for a more
precise formulation. . . -
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for neutral conditions. Our work with Deardorff's boundary layer model has
led to a confirmation of this expression. We have also found that in the
unstable case, the drag coefficient is given approximately by

-1
C, = 0.156{10g (==} - 1.18 , unstable case . (47)
D 10 Zg
Because the geostrophic wind speed ug is often not known in air pollution
studies, Eq. (45) is difficult to use in diffusion modeling applications.
Consequently, we attempt below to obtain u, from the 10-m wind Usg and the

wind speed profiles that we have available.

Consider first the unstable case Zi/L = -4.5, which is representative
of the mixed Tayer over urban regions during much of the daylight period.
For the unstable case, we have from Table 2,

AL L G(z) = 26.22 + 153.22 - 14287°

¥ 554120 - 75232

(48)

0.025 < Z/Zi < 0.3 ;

= (0.3,  z=2/z,>0.3
Note that this profile is valid only for 220.025, R = z./z) = 6.8 x 10%, and
Ei/L = -4.5, For different values of R, the wind speed profile D(z,zo) is (for
a given zo)
W(z,2.) = 0(z) - & enf6.8 x10% 2.} .,  0.025 <z < 0.3, (49)
0 K 0 :
zy < .004 5
where G(z)'is given by Eq. (48) and k is the von Karman constant (=,35). (Note
the restriction on the size of ZO‘)

Let 1
= (50)
z
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represent the nondimensionalized 10-m anemometer height. Then we have
from Eq. (49)

[l B4
—
O

u(

7|

21052g) =

Therefore,

~

u
= 10

Note that the expression in Eq. (49) for u(z,z
z > 0.025. If Z]O
where similarity theory gives (see Table 1)

O) is valid only for heights
is smaller than this value, we are in the surface layer,

i = Mofean™! -1 x =1 _ x+ 1
u(z,zy) = k[Z(tan x - tan XO) + 4£n <x . ]). Ln (x n ])] ,

0 0
zg <z < 0.025 , (52)
where
21.1/4
X = [] - 15(z + zo)L ,
z, 1/4
XO = [] - ]SZOT] . (53)

In summary, we obtain the friction velocity u, in unstable cases from the

formula 2
u
U = = 10

* uiz]o,zoi

~

where u is the wind speed at the anemometer height and u is given by

10
Eqs. (48) and (49) for Z10 in the range 0.025 < Z10 < 0.3 and by Egs. (52)

and (53) when zy < 2y < 0.025. Note that the surface roughness %O’ the

mixing height %i’ and the Monin-Obukhov length L must be known to obtain u, .
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In the neutral case (zi/L = 0), the evaluation of u, is somewhat
simpler because the anemometer height is always within the surface layer.
Here similarity theory gives (see Table 1)

.

. 1 zrz %
u(z,z,) = — £n , — = 0] neutral stability
0 k Z, L
| (54)
Thus, if 210 = 10 meters and a]o is the 10-m wind speed, we can assume
that
kuy g
u, = - ~ s neutral stability . (55)
210 T %
nf ——e—
%0

It is important to note that Eq. (54) is very accurate up to a height

z = 0.03 u /f. Since f = 1074 secf] for latitudes within the United
States and u, > 0.1 m/sec over urban regions during most of the daylight
hours, it is easy to see that 10 m is a value that is well within the

range of validity of Eq. (54).

Having established formulas for the friction velocity u,, we can con-
vert the nondimensional wind speed and diffusivity profiles of Table 2 into
physical forms quite easily using the computer. Our approach is to define
FORTRAN functions USTAR, DKZ, and UBAR, which calculate the friction velocity,
diffusivity, and wind speed, respectively. given the following data:

Uig = anemometer wind speed at height Z10°

z = Tlocal surface roughness,

z, = local inversion height,

z./L = stability parameter (recall that the Monin-Cbukhov

_1 length L is assumed to be known), 3

z = level at which the diffusivity or wind speed is required,

f = 20 sin ¢ = Coriolis parameter.



56

In the execution of the pollution model, the function USTAR is called
for each point on the horizontal plane to compute the local friction veloc-
ity. Thus, we have

u, = USTAR(U10,20,ZI0VL,ZI,Z10) ,

where the arguments of USTAR are given the proper local values. Once u, is
determined, the functions DKZ and UBAR can be referenced as follows:

Pas
—
N
~
I

= DKZ(Z,Z1,USTAR,F,ZIOVL) ,

[
N
~—
1

UBAR (Z,20,21,ZI0VL,F,USTAR)

These functions merely use their arguments to translate the polynomials
given in Table 2 into dimensional values. Note that the functions DKZ and
UBAR simply replace the diffusivity and wind speed variables in the program.

Listings of the FORTRAN programs of each of these three functions are
provided in Appendix A. Note in the listing of UBAR that in the portion of
the surface layer not covered by the profiles given in Table 2, we use well-
known analytical expressions for u(z). Equation (52) is an example of such
an expression. Further information in this regard can be obtained from
Ragland (1973).

At present, the three functions USTAR, DKZ, and UBAR are applicable only
to the stability cases Zi/L = 0 (neutral) and Zi/L = -4.5 (slightly unstable).
The data on which the profiles of Table 2 are based are currently restricted
to these conditions. We hope to be able to extend the scope and accuracy of
this work in the future. Deardorff (1972) has found, for example, that in all
situations where —Zi/L is greater than about 5, the proper velocity scale is

1/3



rather than u. If this is true, then one KZ profile should suffice for
all unstable conditions in the range Zi/L < -5, but this remains to be
checked. Also, our KZ profiles were obtained for fixed source heights.
In principle, the diffusivity should be independent of source height;
but because of the heuristic nature of the concept of a turbulent diffu-
sivity, this may not be the case. Further work is therefore needed to
ascertain the influence of source height on the optimal KZ profiles.
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[T DEVELOPMENT OF A CLOSURE APPROXIMATION
FOR THE CONCENTRATION FLUCTUATION TERMS
IN THE GOVERNING EQUATIONS

A.  INTRODUCTION

Snapshots of smoke plumes in the atmosphere always reveal an erratic
distribution of smoke concentration within the local vicinity of the smoke
source. In contrast, time exposures usually reveal a smooth distribution
that closely resembles the classical Gaussian profile. If two such photo-
graphs of the same plume were superposed, the difference in apparent smoke
concentration at any point would represent the instantaneous magnitude at
that point of the so-called turbulent concentration fluctuation. That is,
if A denotes the instantaneous concentration, portrayed by the snapshot, and
A denotes the mean, revealed by the time exposure, then

A =A-A (56)
is the concentration fluctuation.

In situations where nonlinear chemical reactions occur among consti-
tuents of the plume or between the plume's constituents and chemical species
entrained from the ambient atmosphere, the presence of concentration fluctua-
tions can have a profound impact on the behavior of the mean concentrations
of all the reacting species. This can be demonstrated mathematically by the
following simple example. Suppose that two species, A and B, undergo the
bimolecular reaction

A+B-~>C .
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with rate constant k. The equation governing the instantaneous concentration
of A is, therefore,

dA _

Fro -kAB . (57)
I[f the two species are not homogeneously distributed, Tocal fluctuations
A' and B' exist. The mean concentration A is then governed by the

equation

&%

= -kAB - kA'B" ) (58)

This equation follows from Egs. (57) and (56) and the assumption that
A" = B" = 0. Equation (58) indicates that, depending on their amplitude,
the concentration fluctuations can actually dominate the evolution of the
mean concentration distribution.

Since the term AB' is an additjonal unknown variable, Eq. (58) cannot
be solved until another expression relating A'B' to A and B or to some other
known quantities is found. This is known as the closure problem. The
search for such relationships, or closure approximations as they are generally
called, has been undertaken by several investigators. Of these, the most
sophisticated work has been done by 0'Brien (1968) and Hilst et al.
(1973). Both of these studies, which are similar in nature, follow along
the 1ines of the so-called invariant modeling approach. We outline this
method below, using the work of Hilst et al. as an example.

In the context of the problem represented by Eq. (58). the first step
is to formulate the equation governing A'B' and to add it to the system of
equations governing A and B. We then have [repeating Eq. (58)]

dA _ 5= AT
gt = -kAB - KA'B (59a)
d_B— - sy SRt 1
- -kAB - kA'B (59b)



2 . RATRT 4 patl 4 TETRT

CLYEAR —k[AB' + BA'B" + BA'® + AA'B'

dt
(59c¢)

+ AlBl2 + B|A|2:|

The last equation involves the mean squares A'2 and B'Z, and so their

governing equations must also be considered:

B 2| Bad s BAE Al (594)
a'? Am1? y RETET 4 arpt2
& = -2k AB'® + BATBT + A'B" . (59€)

The presence of third-order moments, such as A'sz, in Eqs. (59c¢) through
(59e) precludes a solution of the system of equations représented by

Eqs. (59a) through (59e). Note that the problem here is identical to the

one we faced with Eq. (58), i.e., too many unknowns for the available set

of equations. It is apparent, therefore, thét merely writing down the
governing equation for each new unknown that appears does not in itself
resolve the difficulty, for this process produces an infinite hierarchy

of equations. At some point, a hypothetical expression must be introduced

to circumvent the hierarchy and to produce a closed, finite set of equations.

It is at the point represented by the system [Eqs. (5%9a) through (59e)] that
Hilst et al. introduced their closure hypothesis in the form

—y TR 12 iR TR |
Al = 2B (1 #4228 ){A_E - M) , (59¢)
R AB /\ 7B

- —'—é 12 TRl ATipT |
prgil = AB <1+§-—-+258— -A—‘i—--M> : (599)

B? A5 /\ A8
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where

0, if (A'Y/R%) (B'Y/BY) <1
I, otherwise

Equations (59f) and (59g) are not based on any physical concepts or
on experimental observations. Rather, they are simply mathematical approxi-
mations that are designed to satisfy the following realizability conditions:

- )
"B=0 , ifRET-E
A% =8, ifAl=0
> (60)
A% = BB + A'CB 4 0RTBTA ,  ifA'%B =0
a%g >0 . )

We should note that Eqs. (59f) and (59g) are not the only relationships
that satisfy Conditions (60), nor are these conditions the only ones that
the statistics of A and B satisfy.

Although Hilst et al. have found good agreement between the pre-
dictions of their model [Eq. (59)] and the corresponding analytic solu-
tions of certain simplified chemical reactors, from the standpoint of
urban pollution modeling, their approach is not altogether acceptable. The
objection is that in a system involving m nonlinear reactions among n species,
their technique introduced n + m additional differential equations into the
existing set of n to be solved. Thus, in a typical case where there are
five pollutants and five reactions (in which concentration fluctuations
are important), the number of differential equations to be solved is 15
instead of 5. Needless to say. an increase in computational effort of
this magnitude cannot be accommodated in urban diffusion models given pre-
sent computer speed.
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Since none of the existing closure approximations for the turbu-
lent concentration fluctuation terms possess both the degree of accuracy
and the ease of implementation that are required in pollution simulation
studies, we set for ourselves the task of developing a new approximation
that would more closely satisfy these needs. Our primary constraint was
that the new scheme should involve no additional differential equations.
The existence of such a scheme has been suggested by our work in the pre-
vious chapter with the analogous term ulc’. In Chapter II, we found
that by a proper choice of the functional form of the diffusivity K,, the
approximation

could be made sufficiently accurate to be useful in diffusion modeling
applications. Moreover, this formulation does not require that additional
equations be solved. Using this work as a gquide, we set out to find an
expression of the form

A'B" = f(A,B,known parameters)

We describe the expression that we have developed and our attempts to
demonstrate its accuracy in the remainder of this chapter.

B.  DERIVATION OF AN APPROXIMATION FOR CONCENTRATION FLUCTUATION TERMS

SUCH AS A'B'

The following simple example illustrates both the reasoning behind
our approach and the essence of the closure problem itself.

Suppose that rectangular pulses or slugs of the species A and B are

present in a one-dimensional system as shown in Figure 20. The mean con-
centration A of A is defined by

0
= _ 1 Agt
A-t Adx=L— ’ (61)
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FIGURE 20. TWO INITIAL SLUGS OF SPECIES A AND B
IN A ONE-DIMENSIONAL VESSEL

and a similar definition applies for B. These results follow immediately
from Figure 20. (Although in this example L represents an averaging

length interval, it could just as well denote time or ensemble averaging
domains because the results that we derive below are the same in all cases.)
Since A and B are not uniformly distributed within L, concentration fluctua-
tions exist. At points outside the slug of A, the fluctuation A' has a

magnitude
At =A-A=-—F— ; (62)
and at points within the slug,
A' = A0<1 - Eé) . (63)

Similar expressions pertain to the fluctuations B'.

Suppose that both A and B undergo first-order decay reactions whose
rates are given by

at = kA s

(64)
dB _
T -kBB



The concentrations within the slugs then become

- —kAt
A AOe .
(65)
- ~-kpt
B = Boe

From these expressions and Eq. (61), we find that the mean concentration
A is

Ao
7= _0A ~kat _ 5 -kpt

and a similar equation holds for B. Here, ﬂb denotes the initial value
of A. Upon differentiating Eq. (66), we find that

Qﬂo'
| |
f
]
o~
>=|

(67)

Since this expression is not explicitly dependent upon 2p or 2pgp,

the temporal behavior of A is independent of the way in which A is dis-
tributed within L. We can conclude, therefore, that linear reactions
are unaffected by the presence of concentration fluctuations.

Suppose, however, that A and B react with each other in the manner
A+B->D

with rate constant k. In the example shown in Figure 20, it is clear
that this reaction can occur only in the domain (of width QAB) where A
and B are mixed. Outside this domain, the concentrations of A and B
remain unchanged for all time. Let Ay and By denote the concentrations
within the mixed zone gapg. Then )

dAm dBm
dat ~ dt —kAmBm ’ (68)

64
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and from the definition given by Eq. (61), we have

=]
n

] .
T [P0 = 2ag) * Autas s
(69)

]
T |Bol%s - %np) * Bytap

L

Keeping in mind that all terms on the right side of Eq. (69) are con-
stants except A, and B, we obtain upon differentiating Eq. (69)

Y B WP

dt L dt mm L i (70)
and

= %

dB _ _AB

dt = —kAmBm L

These equations show that in contrast to the:linear reactions considered
earlier, the behavior of A and B is now explicitly dependent upon 2ag.
In other words, because of the nonlinearity of the chemistry, temporal
changes in A and B are sensitive to the manner in which the species of
A and B are distributed in space and time.

This fact is obvious from Figure 20, which shows that the quantities of
A and B that are consumed by the reaction A + B - D are determined by the ex-
tent to which the slugs of A and B overlap. Moreover, this figure indicates
that the extent of overlap, i.e. 2pg, iS not expressible in terms of A and
B alone because these variables are independent of the positions of the

slugs within the interval L.

Herein lies the essence of the closure problem--the parameters that
control A and B, in this case Ay, By, and 2pp, are not expressible in
terms of only the variables A and B themselves. The origin of this diffi-
culty lies in the loss of information about the details of the distribu-
tion of A and B within L when A and B are averaged over the interyal L.



Consequently, in situations where these details play on explicit role
(namely, where nonlinear processes are involved), the closure problem
arises in equations governing mean values. This suggests that solving
the closure problem means retrieving the information that is lost in the
averaging process. This simple notion is the basic principle underlying
our proposed closure approximation. Specifically, restricting ourselves
to chemical reactions that do not perturb the fluid flow (all air polu-
tion reactions fall into this group), we plan to show that most of the
information contained in the term A'B' is also present in its counter-
part ﬁ}ﬁ}} which pertains to the case where the species A and B are
inert, and since ﬁ}@f'is determined solely by those processes that con-
trol the spatial distributions of A and B, then ﬁfﬁ}} and hence A'B",
are expressible in terms of measurable properties of the system.

To demonstrate this approach, we consider the problem described 1in
Figure 20. Under the passive reaction assumption, the extents of the
regions 2p, 2, and 2AR are the same, regardless of the chemical proper-
ties of the species A and B. Consequently, if inert materials Aj and
By are released into this system in initial concentration Ag and Bp,
and if the same mechanisms that controlled the positions and sizes of
the slugs of the reactive species A and B also act upon Ay and By, then
we would observe

Ag

_ Ry

R = 28 A , (71a)
B.g

— Bytg

B, = 1 3 (71b)

and the second moments would be

66



2 .
—  A%s
2 0"A
AI = L > (7](:)
2
—  BnR
2 0"B
AB2
R 0"0"AB
AIBI =1 . (71e)

A1l parameters on the right-hand side of Eqs. (71a) through (71e) are
identical to the corresponding terms entering into Eq. (69), and all
quantities on the left side of Egs. (71a) through (71e) represent mea-
surable parameters. If the latter are regarded as properties of the
system and are specified along with the other parameters that describe
the given problem, then the five equations comprising the set can be
solved for the five unknowns Ay, By, 2p, %p, and 2pg. These results
can then be substituted into Eq. (69) to obtain the variables Ay, Bp,
and gpg that are required to achieve closure of the reaction rate equa-
tion [Eq. (70)].

The results of the solution of Egs. (71a) through (71e) are

o LT
AB T - ’
TaTs
ot
i\
A
(72)
A
A = e
0 N [}
T
B
B = Y
0 T
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where

A-B
R (73a)
AB i B
I°1
A
Pp = — , (73b)
+2
A
I
. B
g = — (73c)
A
B
I

After substituting these results into Eq. (69) and solving for A, and B
we can write Eq. (70) in the closed form

Since the right side of this equation is equivalent to

-kAB = -k[AB + A'B"] , (75)

our approximation for A'B' 1is given by

£ f r T

AET - AB [ﬁ- K,(] : f‘—B)][§- §I< _ ﬁ)} A8 . (786)
T * T T
AB B A

We emphasize that this relationship is exact in the case of the problem

of two rectangular slugs of A and B shown in Figure 20. -
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Before we extend this technique to more generalized situations. it
is of interest to test the accuracy of the Hilst et al. closure [Egs.
(59f) through 599)] in the context of this simple problem.

To simplify the mathematics, let us assume that R T Wl T

B
i.e., that the species A and B are premixed. If A = B, then we find from
the definitions of the bar average () and the fluctuation A', Eqs. (61) and

(62), respectively, that

— 3 2
3 _Ap L0528
A'Y = T {1 -3rt Z-E?J . (77)

For this quantity, the Hilst et al. approximation [Eqs. (59f) through
(59g9)] gives

3 27
ALy s R 2 e
L L L2
X (78)
DH -
A3JL 2 52,2
=—==13-534+2 = . L/2 <2 <L
L Lo

Figure 21 shows the behavior of the fractional error of this approxi-
mation, i.e.,

e ———— (79)

as a function of the normalized mean square fluctuation

p=
™~
I
=
I
—

(80)

>|‘
no

The large size of errors in this approximation, even for this elementary
problem, emphasizes the extreme difficulty of finding a closure scheme
based on hypothetical relationships among statistical moments that is
accurate for a wide range of situations.



Consider now the extension of the closure scheme developed above
for the simple problem shown in Figure 20 to the generalized situation
exhibited in Figure 22. The disjointed volume ViR represents the total
volume where A and B particles are found together; and the volumes va
and Vg denote those regions where A and B are found in isolation. If
the averaging volume V implicit in the bar operator () encompasses all

of Vps Vo and vpp, then we have by definition

R - %-.{ A dv + J° Advl (81)
a VaB

.

B=Vdev+j Bdv| (82)
! VAB

AB=%J. AB dv (83)
VAR

Let the following variables be defined:

/A\=LJAdv , l§=l—Jde ; (84)
\
A< B
A B
,\_] "_]
R Adv b—v—f Bdv . (85)
A J AB
AB VaB

In terms of these variables, A and B become

70



3
_Apue - A

13
OH

a3
TRUE

FIGURE 21. FRACTIONAL ERROR e IN THE DONALDSON-HILST APPROXIMATION

[EQ. (59f)]1 OF A'3 FOR THE CASE OF TWO PREMIXED SLUGS OF MATERIAL IN
A ON_-DIMENSIONAL RFACTOR (plotted as a function of the
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normalized mean square fluctuation A'2/A2)

FIGURE 22. MIXING TURBULENT CLOUDS OF
REACTING PARTICLE SPECIES A AND B
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AvA + aVABd s

< —

—

1704 .
V'LBVB + bVABJ

=

Recalling that the concentrations within and the extents of the zones

vy and vg are the same regardless of the chemical nature of the reacting
species, we find that the quantities corresponding to Egs.

for inert particle species A] and By are

- 'l A~ ~
Ap=v|Apt aIVAB} ’

= '| ~
By =v |8 * bIVAB} g

where

™
™
o
<
i
i =
Q>
o>
<
]
W
-

(86) and (87)

(91)
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efforts to relate » to indices of both of the chemical natures of the
reacting species and of the turbulence and molecular diffusivity.

C. FORMULATION OF THE PARAMETERS cl\AND -

We consider three distinct situations, each of which illustrates to
some degree the physical significance of these parameters and how each
is related to properties of the flow.

1. Release of A into a Uniform Field of B

Suppose that a cloud of A particles of initial concentration Ay and
volume Vg is released into a turbulent fluid in which particles of species
B are uniformly distributed. We desire to estimate zp.

In this situation, Vap> and hence Ly, are initially zero. Although
particles at the edge of the cloud are near particles of the other species,
there is no region in which one species is immersed in the other. However,
with the passage of time, particles of A, excited by molecular-scale agita-
tions, migrate into the ambient fluid and thereby create a region vpg.

The flux of migrating particles at the cloud edge can be represented in
the form

F=K'a‘n' ’ (]0])

where ¢ is the molecular diffusivity of A and dA/dn is the gradient of
concentration of A particles normal to the cloud surface. If S denotes

the instantaneous surface area of the cloud, then at any instant the number
of A particles moving into the ambient fluid is given by

g%-=.f E -« nds (]02>
s < -
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Since the portion v, of the original cloud that is occupied only by A
particles is completely surrounded by a region vpp created by the migra-
tion of A particles into the ambient fluid, all particles that leave vp
move immediately into vpg. Therefore,

= 5 (103)

where Ny = AOV0 is the total number of A particles released and N is the
number still in vy at any given time. From Eqs. (103) and (102), we
obtain

o

A

fF * n ds (104)
s - n

The particle flux F averaged over the cloud surface can be expressed
in the form

F=c 2 (105)
£

where A and £ are concentration and length scales, respectively. We pro-
pose that the ratio A/g entering in Eq. (105) can be represented to good
approximation using the following expressions for A and ¢:

N
A= s (106)
VO
1/4
3
e =(£) : (107)

where ¢ is the energy dissipation rate of the turbulence.
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The quantity on the right side of Eq. (107) represents the smallest
lTength scale associated with spatial variations in a scalar field in
turbulent fluid (see Batchelor, 1967). It represents the length scale
associated with the concentration gradient that is required to produce a
molecular diffusive flux of particles that just balances the compressional
fluxes arising from the strain rate field of the turbulence. This length
scale is thus a logical choice for &, at least initially. With the passage
of time, however, £ increases, but in a manner that is not possible to
describe exactly. We are proposing that the overall effect of this in-
crease {and the simultaneous decrease in A) on the flux F can be accounted
for by Egs. (105) through (107); i.e.,

F = (K€)1/4 %‘ . (108)
0

Here, Vg is constant because it is the combined volume occupied by all
particles that initially were of species A. Combining Eqs. (108), (103),
and (104), we obtain

dzp g /4 1/4

It is not possible to obtain a precise description of the rate of
change of surface area S of a cloud of marked particles in turbulent fluid.
A reasonable approximation for the average surface area might be

S gl (110)

where ¢ is the distance between a pair of marked particles released a
distance &( apart where

-

v s V4 (111)

20 ™ 0 ’
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and Sg is the initial surface area of the cloud. Batchelor (1950) showed
that for particles whose separation £ is within the inertial subrange of
a homogeneous turbulence,

2

ds

at— Y Zt(EQ/ )2/3

0
Combining this result with Egs. (110) and (111), we obtain the estimate

s = 5,(1+ 235 72348 (112)

and upon substituting this expression into Eq. (109) and solving the re-

sulting differential equation, we obtain finally

3
)

_ o-latibt

gy = 1 , (113)

where

= 3K]/4 51/4 261 R (114)

b = 174 E]]/]Z 2—7/3

7 (115)

and 20 is the initial cloud diameter.

Under conditions of strong convection in the atmosphere with ¢ on
the order of 1072 m2/sec3, Eq. (113) predicts that for a cloud of material
of Schmidt number on the order of 1 and initial diamter of roughly 1 meter,
tp Will reach its Timiting value of unity within about 20 seconds after release.
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2. Release of Dilute Mixtures of A and B
into a Homogeneous Turbulent Reactor

In view of its definition [Eq. (96)], tp is equivalent, in a homo-
geneous system, to the probability that any inert particle of A will be
found at time t within some distance 3r, say, of a particle of B. In other
words, implicit in our definition of vpg is the condition that the smallest
distance between particles of opposite species is on the average ar or
smaller. The magnitude of 3r is in turn an implicit function of the chemi-
cal reactivity of A and B because reactions are assumed to occur within
and only within VAR-

Let E|Ag represent the event

E[AO = given particle AO is within a distance

or of at least one B at time t . (116)
If the concentrations of A and B are sufficiently dilute that the proba-

bility of finding more than one B particle with a distance ar of the given
A is negligible, then clearly

t t
prob {E]AO( = ffff p(r,t,r',t
0 0 oV

dr' dr dt

a0° a0 B> 30’ S ("Bo> teo’ BO

(117)

where (fAO’tAO) is the release point of the given inert A particle, 3v is a
volume of radius ar centered at the location (r,t) of a particular inert B
particle, and Sg(rgp.tgg) is the number density -of B particles released per
unit time and volume at (rpgg.tpp)-

Equation (117) gives the probability that a particular A particle ex-
periences event E. However, zp is equivalent to the event i

drB

0

b
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E = any randomly chosen particle of A is within a distance

8r of at least one B at time t.

If Ny particles of A have been released prior to time t, then there are
Np mutually exclusive ways in which F can be realized, and it follows that

t
_ _ 1
Ty = prob IE} —-E; .,Jf prob {Elef SA(rAO’tAO) thO deO , (118)
0

where SA(fAO=tAO) is the number density of A particles released per time and
volume at (on,tAO). Upon substituting Eq. (117) into Eq. (118), we obtain
finally (see Lamb, 1974)

- %_ff AE 8 B(e.E) dr' dr . (119)
A v

If the volume év is sufficiently small that Aj(r',t) Br(r,t) is nearly
constant for all r' in 6v and for all r, then Eq. (119) reduces to

0y = ﬁ_XfAI(r:,t) B (r.t) dr . (120)

If, moreover, the chemical reactor has volume V and the statistics of A
and By are uniform throughout V--the homogeneity assumption--then Eq. (120)
gives finally

VT (121)

AB
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In the Timit as A and B became thoroughly mixed, EAB + 1 and ¢y ~ By 6v.
Since by definition 0 < g5 < 1, we see that Eq. (121) holds only if the
concentrations are so dilute that

E& sv < 1 . (122)

3. Release of Rectangular Slugs of Reactants
into a Hypothetical, One-Dimensional Reactor

Imagine a one-dimensional system such as that shown in Figure 20 in
which the reacting clouds have rectangular shapes. In this hypothetical
system, we see that

s CB = z__' ’ (]23)

where Ay is the (uniform) concentration of inert particles in the cloud.
The following mean values are thus defined:

A B2
= _Pota ~_ Bo'p
At = > BpE—
2 2
2 . Mt 52 _ Po's
1 - » Br=
5 - o%0"a8
s S &

Solving these six equations for gpg and £, and substituting the result into
Eq. (123), we obtain

r
_ _AB .
EA - A s (]24)

I'p




and, similarly,

where

It turns out (as we show later) that when Egs.

1>

1

Y

RS [

|-

ol
—_— N

>
[ov]

l

I

I

82

(125)

(124) and (125) are used

in the closure approximation [Eq. (95)], good agreement with observation

results, even in turbulent pipe flow reactors.

This suggests that Egs. (124)

and (125) may be sufficiently accurate for all general purpose applications

of Eq. (125), but this remains to be definitely established.

D.

FORMULATION OF THE PARAMETER A

Being dependent upon the properties of both the turbulence and the

chemical reaction, A is more difficult to formulate than the mixing para-

meters zp and LR-

By virtue of its definition, i.e.,
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f AB dv f AI dvf BI dv
v ) VaB VaB , (126)
My f Advf B dv f AB; dv

v VAB

VAR AB

A is a measure of the effect of the chemical reaction on the correlation
of the concentrations of A and B within the mixed zone vpg. This can be
seen more clearly in Figure 23, which compares profiles of the concentra-
tions of inert species in vpg with those that might be observed if the
species were reactive. In interpreting this diagram, one should keep in
mind that vpg is defined for the inert rather than the reactive particles.
As a consequence, portions of the zone defined as vpg may contain only one
of the species rather than a mixture of the two. In fact, if the reaction
is extremely fast, no part of vppg contains a mixture of the reactants ex-
cept a very small zone where the reactant clouds merge. In this case, it
is clear from Eq. (126) that x» -~ 0. However, at the other extreme where
the reaction is exceedingly slow, the concentration profiles within vpp
are nearly identical for both the reactive and inert materials, and it follows
that A > 1.

AL _ Br
//
A”' RN «"’ ‘k‘B
\\\ 7
<
/// \\\
- ~ X
< VAB 3>

FIGURE 23, COMPARISON OF CONCENTRATION PROFILES IN THE MIXED
ZONE VaB FOR INERT AND REACTIVE SPECIES
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The behavior of the parameter x for reactions of intermediate speed
has been studied by Shu (1975). 1In his analyses, the differential equa-
tions governing the combined reaction and molecular diffusion of two reacting
species in one dimension were solved numerically, and the values of X were
calculated explicitly for a wide range of rate constants, molecular diffu-
sivities, initial conditions, and the 1ike. The model equations used were

2
A _ A g (127)
5T 2

29X
3B 32B
B8 (128)
3t 5

oX

oA 32AI

— = D R (129)

TR

B 3281

EI e (130)

where k is the reaction rate constant, D is the molecular diffusivity, and
n is the stoichometric ratio. These equations were solved subject to the
initial and boundary conditions

Ag ’ -6 <x<0 ;

"

A(x,0) AI(x,O) = ‘ (131)
0 , otherwise;

B0 ) 0 <x<§é ;

B(x,0) = BI(x,O) = (132)
0 , otherwise; -

!
o

lim A, B =

Xt

(133)
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The computed functional form of A(t) is shown graphically in Figure 24 for
several values of the dimensionless group

ty  ke“na,
a = — = , (134)
tR D
where tp is the characteristic time scale of the diffusion; i.e.,
2
_8°
tD =7 R (135)
and tp is the (initial) characteristic time scale of the reaction,
namely,
_ -1
tR = (knAO) . (136)
A1T curves in this figure are for the case of the feed ratio
B
8= -1 (137)
0

equal to unity.

It can be seen that in all cases both the initial value and the final
values of A are 1. Initially, before the reaction has had time to consume
appreciable quantities of the reactants, the concentration profiles are
virtually identical to those in the inert case. In the long time 1imit, the
eventual total mixing of the species results in uniform spatial concentra-
tion distributions that, as is easily verified, are characterized by x» = 1,
regardless of the value of k.



It is important to note that for a < 1, the parameter X has approxi-
mately unit value for all time (see Figure 24). This greatly simplifies
the functional form of the closure scheme [Eq. (95)]. In contrast, signi-
ficant temporal variations occur in X as o becomes large compared with
unity. A fortuitous and fortunate feature of this behavior is that for all
values of a, X reaches its minimum value Ayin at approximately t = 0.5tp and
maintains this value for a period of about 100 tp. Inasmuch as reacting
species that are initially unmixed can be consumed only as fast as the mole-
cular diffusion and turbulence can bring them together, for fast reactions
(o >> 1), the characteristic time scale must be tp rather than tg. In view
of this, it appears from the behavior of x(t) described above (and shown in
Figure 24) that a constant value of A, namely,

A=A s (138)

should yield good results in Eq. (95) for all values of a. With this pros-
pect in mind, Shu examined the relationship between Apj, and o and found
that for g = 1,

AL, = , (139)

IQ

as shown graphically in Figure 25.

An interesting consequence of Eqs. (138) and (139) 1is that for large
values of o, we have

A:E
a

Upon substituting this result into Eq. (95) and using the resulting ex-
pression for AB in the rate equation for A, we obtain

-

86
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Bom- (- )R] B- (- )8 . (140)

The absence of the rate constant k from the right side of this equa-
tion emphasizes the fact that fast reactions are diffusion-limited processes.

Shu (1975) also considered the effects of variations in the feed ratio
g and the number and initial separation of the slugs of reactants. Figure 26
shows how A(t) is affected by variations in B when a is held constant at 700.
The most striking effect is the more rapid onset of the rise of 1 toward its
final value of 1. This behavior reflects the more rapid exhuastion of the
species (in these cases A) that is present in a smaller quantity. Despite
this behavior, the assumption

A = constant = Amin
should still prove accurate during the major part of the perjod in which

the reaction is in progress. Figure 26 also shows that except for the case
of B << 1, the order of magnitude of Apjp is unaffected by changes in 8.

Figure 27 shows the influence on 1 of changes in the number and sep-
aration of the initial slugs of reactants. In each of the three separate
cases shown, the minimum value achieved by A is of the same order of magni-
tude. These results, those presented above, and other experiments not des-
cribed here suggest that Eqs. (138) and (139) are perhaps accurate even in
general situations. In the next section, we examine this possibility in
light of observational data.

E.  TESTING THE CLOSURE SCHEME REPRESENTED BY EQ. (95)
USING OBSERVATIONAL DATA

Few empirical studies of turbulent reactions have been reported in
which all of the information required to apply and subsequently to test
Eq. (95) has been measured. Usually, the data reported are not sufficient
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to permit estimations of the parameters Tpag, zp, and cp that are properties

of the inert species concentration statistics. However, using the theory

of Toor (1962), which relates the concentration statistics of inert species

to those of extremely fast reactants in the same turbulence, Shu (1975)
succeeded in collecting experimental data from the literature that are ade-
quate to apply and test Eq. (95). (See Appendix E for details.) We report
some of his findings here. For more details, we refer the reader to Shu (1975)

A11 of the data used were gathered from the multijet reactor designed
by Vassilatos and Toor (1965). In this system, the reactants, usually an
acid and a base, are fed through alternate jets in a head consisting of
100 small jets at the end of a pipe several centimeters in diameter. Down-
stream from the jet head, the mean concentrations are constant on all planes
normal to the pipe axis. Thus, this reactor approximates a one-dimensional
system in which downstream distance corresponds to elapsed time.

Using Zq. (95) in the governing rate equations, Shu modeled this
system by

dFA erAB

Ty, NP P 0ol R - (-l (141

where

a2 (142a)
A
1

Fg = > (142b)
B
1

and where Ay and By are constants. Since the reactions are of the form
A + nB - products, and since the mean speed u of material down the pipe
is constant, Eq. (141) can be written in the equivalent form



a3

dFA _ kAFABnA
dx

I

- [FA - (] - CA)] [FA -1+ BCB] 5 (]43)
UCAEB

where x represents downstream distance and

o

I .

nAI

B:

is the feed ratio of the inlet jets.

Shu used Egs. (124) and (125) to approximate zp and ¢g. Subsequently,
he determined the values of fA, fB, and fAB entering into these expressions
and into Eq. (143) by using Toor's theory, mentioned above, together with
relevant measured data on extremely fast reactions in the multijet reactor
(see Appendix E). We should add that although Toor's theory has been corro-
borated by several experiments, a more thorough and meaningful test could be
performed if data were available that did not require this theory.

To apply the approximation [Egqs. (136) and (139)] for A, Shu evaluated
a using reported values of k, D, and other terms, and the measured scalar
microscale for 8. In all cases, Shu found that o < 1, and so he used the
constant value X = 1 throughout the model validation calculations.

Figure 28 presents the first set of comparisons between the observed
values of Fp and those predicted by the model equation [Eq. (143)] for two
different values of the feed ratio 8. In both cases, the agreement between
the model predictions (solid line) and the observations (circles) is very
good. The degree to which the concentration fluctuations dominate the
rate of change of the mean reactant concentrations is revealed by the dis-
Crepancy between the data points and the dashed lines shown in both panels
of Figure 28. These lines show the predictions of the rate equations in

which the concentration fluctuation term A™B™ has been omitted. The com-
parisons show that the effect of the fluctuations is a retardation of the
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speed of the reaction. This result is caused by the segregation of the
reactants initially and the finite time required for the turbulence and
molecular diffusion acting together to bring the two materials into contact.
As shown in Figure 29, this phenomenon cannot be described in terms of A and
B alone. In this figure, we have plotted the solutions of the equation

@ = -exm (144)

Q.

for several values of the constant . Note that no value of e exists
that will bring the solution of Eq. (144) into even crude agreement with
the observations.

Figure 30 shows a comparison of the theory and observations for a situa-
tion involving both a faster reaction and larger values of the feed ratio
than those presented in Figure 28. As this figure indicates, the agreement
between theory and observation is better than it was in the previous case.
Additional comparisons can be found in Shu (1975).

The results reported above are very encouraging and provide the hope
that our closure model will perform well under a wide range of conditions,
both in the atmosphere and in the laboratory. Our immediate goal is to
develop expressions for fAB’ tp» and tg that permit Eq. (95) to be applied
to reaction processes in the atmosphere. Toward this end, we are currently
preparing a numerical experiment in which these functions will be estimated
using the turbulence model of Deardorff. The procedure will be to release
pairs of particles in the numerical fluid in each of many realizations of
the turbulent flow and to calculate the mean square concentration field from
the ensemble of particle-pair trajectories generated thereby. In this
way, we plan to derive the forms of Tpz, tp, and cg as functions of the
atmospheric stability, wind speed, release height, surface roughness, and
the Tike. Provided that the resulting expressions have universal features,
the universal functional forms of these parameters can be used in conjunction
With those of the diffusivities K, presented in Chapter II to study reactive
plumes of material in the planetary boundary layer. Progress on this project
Will be reported in Shu (1975) and in future reports on our EPA contract
efforts.
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IV DEVELOPMENT OF A SCHEME FOR PARAMETERIZING THE EFFECT
OF SUBGRID-SCALE COWCENTRATION VARIATIONS
ON REACTION RATE

A.  INTRODUCTION

The previous chapter dealt with the instantaneous concentration fluctu-

ations produced by turbulence and the effect they have on the reaction rate
of nonlinear chemical reactions. In this chapter, we treat the analogous

problem of variations in the mean concentration that are of too small a scale

to be resolvable by a grid model of an urban atmosphere. The similarity of
this problem to that of the turbulent concentration fluctuation is so great
that the closure scheme we developed in the last chapter can be used here as
the basis of a parameterization scheme for the subgrid-scale effects.

Before proceeding with the development and application of the scheme,
we briefly review the nature of the subgrid-scale variation (SSV) probliem
and then develop necessary conditions under which SSV is of negligible con-
sequence. The last two sections of this chapter are devoted to the deriva-
tion of the SSV parameterization scheme and to the application of it to air

pollution problems of applied interest.
B.  STATEMENT OF THE PROBLEM
Consider two poliutants, A and B, that undergo the reaction

A+B-~>D

to form a third product D. The equations governing the concentrations of
these species in an urban atmosphere are generally taken to be (for modeling
purposes)

Ao AL 3, A
T TP Ki 3 axj+SA

98

- kAB (145a)
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where

A = some time averaged concentration of A,

ﬁi = the i-th component of the mean wind speed,

Kij = the turbulent diffusivity tensor,

SA = the distribution and strength of sources of A,

=~
n

the rate constant for the above reaction.
An equation similar to Eq. (145) governs the concentration of B:

B , - 3B _ 3 3B )
5t T Y5 T = o] ij ij + SB kAB . (145b)

Because the analytic solution of this system of equations is not available,
Eq. (145) must be solved numerically. For reasons given in Chapter I, this
necessitates the averaging of Eq. (145) over volumes equal to that of the
grid cells into which space is discretized in the numerical technique. The
spatial average is denoted by the tilde (~) and is defined by (using the con-
centration of A as an example)

XtAX +Ay ZtAz

A
Z\(r,t) 8AxlyAz / [ jf A(r',t) dr' , (146)

-AX Ay  “z-Az

where r = (x,y,z) and (2ax, 2AY, 24z) denotes the dimension of the grid cells.
Averaging Eqs. (145a) and (145b) in the manner of Eq. (146) and assuming that
uand K are nearly constant over distances comparable to the grid cell dimen-
sions, we obtain

- _ A z ~
FE X, X, Ki; % t Sy - kAB (147)

wher? §A and AB are defined as in Eq. (146). A similar equation can be derived
for B. Equation (147) and the corresponding equation for B are used as the
basis of urban pollution models; therefore, it is A and B, rather than the
"point" values A and B that these models predict. The differences
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A" A-A R

(148)
B = B-8B

are the subgrid-scale variations. Using the definitions given by Eq. (148)
and assuming that

Q

B = B >

and so forth, we can express Eq. (147), and the corresponding equation for
B, in the more useful forms

LT S SV Y vt (1492)
ot A ’

aé 5 . o o rTIn

SF T IB = Sy - kAB - kA"B , (149b)

where for brevity we have introduced the Tinear operator

L = uiﬁy—%@ja—i} : (150)
The quantity kﬂig” on the right side of Eqs. (149a) and (149b) represents

the influence of the SSV on the rate of decay of A and B. Until now, all

models of urban pollution have tacitly ignored SSV effects, but as we show in

the next section, this omission is generally unjustifiable.

C. CONDITIONS UNDER WHICH SSV EFFECTS
ON REACTION SPEED ARE NEGLIGIBLE

If

— -~

A"B" << AB , . (151)
then it is clear from Eq. (149) that SSV has a negligible influence on A and B
and can be ignored. To derive the condition under which Lq. (151) 1is satis-

fied, we begin by deriving the equations governing A" and B".



101

Subtracting Eq. (149a) from Eq. (145a) and using Eq. (148) to define
A", we obtain

aA“ nm _ ] n 3] o H H 1 /H\Jll
— + LA" = S% - k(AB" + BA" + A"B" - A"B") , (152a)
ot A
and, similarly,
3B" ~ ~ v
=t LB" = S% - k(AB" + BA" + A"B" - A"B") R (152b)

where SA =5, - §A and SE = Sy - Sg. Multiplying Eq. (152a) by B" and
Eq. (152b) by A" and adding, we obtain

%{(A“B") + L(AIIBII) - . K1J[3A aB + aA 38"] . B“S“ N A“S“

axi axj axj axi A B
POV BAlDY u ||2 anJH
- k(AB"“ + BA"B" + A"B"“ - B"A"B

" tan o II2 II2 n 1t /?’H
+ AB"A" + BA"" + A"“B" - A"A"B")

Upon averaging this equation in the manner of Eq. (146) and invoking assump-
tions such as A = A made earlier, we obtain

—~ —~ /n\—/ 1 /—u\/u — o~
_@_ AIIBII + LAIIBII = - K- . BA aB + BA BB + B“S“ + IISH
at 1] axi axj axj axi

~ ~ o~ P
~ ~ ~ ~ ~ 2
- K[AB"Z + BA"Z + AUB" (A + B) + A"B"“+ A"OR"]

(153)

o~~~

The first term on the right side of this equation causes a decay of A"B",
even in the absence of chemical decay, i.e., when k = 0. Thus, if A and B
were inert and if K:Eh were nearly uniform in space, the steady-state value
of K:E” would be such that

N/\'JN
A" 3B" . BA" 3B"| _ Tudh 4 pucw
Kij[axi axj ¥ axj axi] B SA A"Sg . (154)
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e~
Let the steady-state value prescribed by Eq. (154) be denoted by (A”B“)I.

It follows, therefore, that the conditions that result in the satisfaction
of
1 " T
(A"B )I << AB (155)
are sufficient conditions for the realization of Eq. (151). Since these

conditions are not difficult to derive, we use them as the measure that we
seek of the importance of the SSV.

We note first that the left side of Eq. (155) can be expressed approxi-
mately in terms of known quantities using Eq. (154) and the equation corre-
sponding to Eq. (153) that governs A"“, namely,

3A“ 112 - B_A_I_l_ B_A_"_ e tnu o (|2 u2 U
= LAY = ‘2K1jax1 ox. + A'Sy k(AA"B" + BA"“ + A““B")
(156)

In Appendix F, we show that the first term on the right side of Eq. (15€)
can be approximated by

2K. . gﬁ gﬁ N 2A AN , (157)
T 9X5 Xy y

where A is on the order of the smallest dimension of.a grid cell and Kx is

the turbulent diffusivity in the corresponding coordinate direction. Also,
——

it is not unreasonable to assume that A“SA is on the order of

—~ 5 /‘iiﬁ

Allsn v (AIIZ) (S‘Ill\

A (158)

From this approximation and from Eq. (157), we conclude from Eq. (156) that
in the steady state

A (159)
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ignoring the chemical decay (k = 0) as before. Employing assumptions such
as Eqs. (158) and (157) in Eq. (154), we conclude finally that

(AB"); v 45 Sasn (160)
A

The quantities on the right side of Eq. (155) pertain to the concentra-
tions of the reactive species A and B, rather than to their inert counterparts
considered above in deriving Eq. (160). Since the decay rates of A and B are
on the order of

—_— = =y —kAé s (]6-1)

and since the production rates of these quantities are §A and §B, respectively,

we see that in the steady state

A E‘i(—"iB——l (162)

where

0= A (163)
B

Assuming that

R

LI
<
e
w [

we can reduce Eq. (162) to the form
ZSASB

k(SA + SB)

AB

Upon combining this result with Eq. (160), we conclude finally that a
sufficient condition for ignoring SSV effects on the chemical decay of A
and B is
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4/—-‘\_/
S“ S it .
ATB b
N k(SA
ZKASASB

g) << . (164)

When this condition is not satisfied, SSV effects may or may not be important,
depending on the particular physical situation. In the next section, we con-

sider the derivation of a necessary condition under which subgrid-scale
concentration variations significantly influence A and B

To demonstrate the quantitative significance of Eq. (164), let us consider
a simple one-dimensional problem in which a series of sources of strength S and
width W are distributed with separation £ along the x-axis, as shown in Figure
31. We might consider this problem to represent a cross section of a system of
infinitely long, parallel streets.

UL

FIGURE 31. SYSTEM OF RECTANGULAR SOURCES

Suppose that S represents the emission rate of species B and that oS is the
emission rate of species A. Suppose further that a grid model simulation of
this problem is to be constructed using a grid mesh size ax. We desire to
know whether subgrid-scale concentration variations can be ignored in the grid
model simulation of the concentrations A and B.

Through a straightforward series of analyses, we find that in this problem
g Eat (1-%) (165)
A”B A L

and that

Sg = 7 , Sh T Tr (166)
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Substituting these results into Eq. (164), we find that SSV can be
ignored if
2k

kS < A : (167)
MU

Normally £>>w and y might be on the order of one. Under these conditions,
Eq. (167) can be simplified to

l7<
B> N

kS < (168a)

A

For the hydrocarbon-ozone reaction, k v 0 .1 ppm_1m1n_]. Also, hydrocarbon
emissions from motor vehicles are on the order of 10 gm/mile. Using these
values we find that for a roadway carrying 1000 vehicles per hour,

2

kS v 3 x 10" 2sec” (168b)

A typical value of KA in the atmosphere is 10 m2/sec. Consequently, we find
from Eq. (168a) that SSV effects are negligible in the present problem if

A S50m . (169)

In the problem shown in Figure 31, X is on the order of £. Thus, if the
source configuration shown here represented a network of actual streets, £
would certainly exceed 50 m, and SSV effects could not be ignored. In cases
where £>AX, X is on the order of Ax. In this case, SSV effects could be sup-
pressed by making the mesh size Ax suitably small; but this is not practical
in many cases, and one is left with a problem in which SSV effects might have
to be parameterized to achieve meaningful estimates of the spatial averaged
concentrations A and B. In Section E, we develop a quantitative measure of
whether parameterization is actually necessary.
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D.  PARAMETERIZATION SCHEME FOR THE SUBGRID-SCALE
CONCENTRATION VARIATIONS

Having derived the conditions under which SSV effects are negligible
in the modeling of nonlinear chemical reactions and having demonstrated
that these conditions are frequently not realized in actual air pollution
simulation studies, we turn now to the development of a mathematical scheme
for representing SSV. The scheme we developed here is based on the closure
approximation developed in Chapter III.

Let V denote the volume of any grid cell in the grid model of A and é,
and let va denote the total volume within V in which particles of species A
are found alorne. Similarly, let Vg denote the volume where B particles are
found alone. The volumes 7\ and vg are distinguished from a third volume
Vag in which particles of A and B are mixed sufficiently for chemical reac-
tions to occur. Figure 32 illustrates these three volumes. By definition,
we thus have

A=y fAdv+f Adv) (170a)
YA VaB
B =y J/.B dv + J/. B dv] . (170b)

VB VaB

FIGURE 32. DESCRIPTION OF THE VOLUMES v AND Vag

A’ Vg
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It is clear from the definition of v and Vg that if A and B were chemically
inert, the concentrations within these volumes would be the same as in the
reactive case. It is only in the domain Vag that the inert and chemically
reactive systems differ. This fact is one of the key points upon which our
parameterization scheme is based.

We define the following four variables:

izl ./r A dv , B =l .}{~ Bdv
Va VB
i VB
~ ~ ]
a:v A dv s b:v B dv . (]7])
AB AB
VaB VaB

Let the subscript I denote the situation where the given particle species
is chemically inert. Then analogous to Eq. (171), we define

i S e S
a; = — A, dv R b - B, dv . (172)
I ViR I I VaB I

VAB VaB

In terms of these variables, A, é, AI’ and éI become

A = %}:AVA + évAB] (173a)
B = %ﬁ?VR + BVAB] (173b)
A = ‘VLZ\VA + aI"AB} (173¢)
B = ’]\7[@"3 N BIVAB] L (173d)
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Treating Vs Vpo and Vpg @s invariants in the inert and reactive systems
as we have done above is permissible as long as the fluid motions, which con-
trol these volumes, are not perturbed by the chemical reactions. In the
problems of interest to us, this condition is always satisfied.

Next, we define

Y =lf AB dv = BAB 2 ¢
AB 7 "T°1 Vv v v = Vv aIbIVAB ’ (174a)
AB
_ ’\é _] f 2 f 2 'l ~
r, = A7 =~ A" dv + = =
AP v[ v / A d"] V [“AA"A+ a21VaB ; (174b)
A AB
P / 2 f 2 1‘ 2 52,
T, =B, = — B + = 4
g = B; v[ Vg dv Vg B™ dv V%" VB * PrVas | (174¢)

(We discuss the u's later.) Just as AI and éI are determined completely
by the fluid velocity field and source distribution, so too are Tpg, Tp»
and rg. Consequently, these five quantities can be regarded as known
parameters that characterize the given problem.
—~S
Rather than parameterize the term A"B" explicitly, we shall instead treat
the term

~ —~ ~
AB = A"B" + AB . (175)

Using the variables introduced above, we can write

AB = \}—f AB dv = X.abv , (176)

where A is a parameter that can vary with time. The desired parameterization
is then obtained by examining 5, 5, and Vg in terms of the seven known quan-
tities given by Eqs. (173), (174), and by substituting the results into Eq.

(176). To accomplish this. we must use two additional approximations because
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there are two more variables in Eqs. (173) and (174) than there are equa-
tions. We therefore write

a; = gAA (177a)

B ) (177b)

o
1

17 %p

In terms of the new parameters gA and gB, AI and éI become

= A

AI = v-(vA + EAVAB) , (178a)

B, = 5 (vy + £uvyg) (178b)
I Vv B B AB )

In the manipulation of Egs. (173), (174), and (177), several terms frequently
appear together in a form that we call g; i.e.

o - % '8 * tVap g = “ABCA VA " EnVaB (179)
B u ' 2 ’ A u 2
B vg * wEpVpg, Avp * waEavag
g HA

Using this parameter, we can write

. A Hapé

I, - A TAB”A (180a)
At I

. 5 MRt (180b)

Fy _ B Ag B
B,

. VarGndn ~ .

= R B (180¢)
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where

s - Tps

. Tp .
— 'p = =5 ’ Pap = == ) (181)

2, B

o)

Using all of the above expressions, we obtain finally

~ ph [ ~ A . - - - A . ~
AB = T:;\E{FBQBA - (ngB 'FAB>AI] [FAQAB - (FAQA - FAB)BI] (182)
where
N A (183)
MAB

Except for the parameters h and g, which we discuss in more detail later, all
of the terms on the right side of Eq. (182) are known quantities. The next
step, therefore, in implementing this parameterization of AB is to express the
right side of Eq. (182) in terms of the source distribution, fluid velocity,
and other variables that characterize the given system.

This task is simplified somewhat in situations where the species A and B
are released from the same sources, as is often the case in actual air pollu-
tion simulation studies. Under this condition, we have

VA = VB = ( .
and 9a and 98 reduce to
u u
A AB
g = —_— s g = —_—— . (]84)
A My B Mo
Using these results, we find that
A R U B v 6 <‘; -
FBgB - TAB = M(; - ?‘I‘> s (]85)
VBI BI AI
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A similar expression can be found for ngA - EAB' Now, from Egs. (177) and
(178), we conclude that the term in parentheses in Eq. (185) is identically
zero. Thus,

~

h RPN
AB = =g g.f,f A
Fig A% A'B

which reduces with the aid of Eqs. (180c), (174a), (178a), and (178b) to the
final form

~

AB = thBAé : (186)
This simple form of the parameterization is valid whenever the reacting species
are emitted from the same source or in other terms, when the reactants are pre-
mixed. That most of the air pollution modeling problems of interest fall within
this class of problems is justification for our continuing the analysis of the
parameterization scheme with Eq. (186) rather than the general expression Eq.
(182). Thus, in the next section, we consider h briefly and then derive ex-
pression relating fAB to measurable parameters.

E.  DERIVATION OF fAB IN TERMS OF MEASURABLE PARAMETERS AND
APPLICATION OF THE PARAMETERIZATION SCHEME TO SPECIFIC PROBLEMS

Before considering fAB’ we should point out that h is also a function of
the given system and ranges from a value of zero for infinitely fast reactions
to a value of unity for inert materials. Chapter III further analyzes this
parameter. In the present analysis, we assume that h is a known constant.

By virtue of its definition, fAB pertains to.the inert species AI and BI
and can accordingly be derived from linear theory. That is,
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where AI is the solution of Eq. (145a) with k = 0; i. e.,

aAI

EE—'+ LAI = SA 3 (]87&)
and, similarly,

aBI

ot LBI = SB . (187b)

We assume that A and B are released from the same sources. Hence,

SA = aSB s (188)

where o is the ratio of the emission rates of A and B. If the initial con-
centration of A; and By are both zero, then it follows from Egs. (187) and
(188) that

AI = uBI
and hence that
oK
et (189)
I I

The solution of Eq. (187a) is of the form
b
Ar(r,t) =ff p(r,tlr',t") S(r',t') dt' dr' , (190)
” 0

where p is the Green's function of Eq. (187a) and where, for brevity, we
have dropped the subscript from the source function SA' A1l aspects of
the transport, diffusion, and interactions of the particles with bound-
aries are embodied in the kernel p. If the turbulence is homogeneous,
then p has the property

p(r’tlrl’tl) = p(r'rl9tstl) ’ (]9])
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which leads to the following simplifications of the expressions for AI and
A7
t
N 1
A(r,t) \7[}] plry-r'st,t') S(r',t') dt' dr! dr, . (192)
) L
v(r)
t ~
ff p(r-r',t,t') S(r',t') dt' dr' (193)
0
o .t
Af(f,t) = \}—vaﬁ‘f p(g—]g',t,t') p(l:-it“,t,t") S(re,t') S(r",t") dt' dt" dr' dr" drq,
v(r)

it

(194)
t .t
=fjff plr-r',t,t") plr-r",t,t") 6(r',r",t',t") dt' dt" dr' dr"
00
(195)
where
G(r',ru t',t") = f f fﬁ S( r +C t') S(f”"'C,t") dr
-AX -Av - ~ -
(196)

and V = AxayAz is the volume of the grid cell v(r) centered at r. The derivations
of Eqs. (193) and (195) are presented in Appendix B. Since p is the known Green's
function of Eq. (187), the parameter EAB can be evaluated using Egs. (193) and~
(195) once the source correlation function G has been prescribed. (Note that S

is the source function that enters into the grid model of A and é.) We consider
below the forms that G acquires in three problems of practical interest.
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1. Random Distribution of Point Sources in a
Three-Dimensional Space

Consider the situation in which "Point" sources of (small) volume v are
distributed at random in space, and suppose that each source has a constant
emission rate m. Let the number density of sources D(r) be sufficiently
large that on scales comparable to that of the grid cells used in a numeri-
cal calculation, the density D can be treated as a continuous function. The
problem just posed might serve as a model of emissions arising from home
heating units, or, through proper choices of D, from clusters of major point
sources of pollution.

The source strength function that describes this array of sources is

s(rot) = g ulr) (197a)
where
1 . if r lies within any source ;
U(r) = (197b)
0 R otherwise
Thus,

z+hz  yHAY  XxFAX
) = %‘ S(r') dx' dy' dz' ,

W
~~
s

where we have taken the averaging volume V to have the dimensions 24z - 24X + 24y
Similarly, we have

Az AX By o
VoY o l_ m ! "
G(r ,r') = Vf f f v2 U(r' + 5)- U(r" + E) dcy dcx dgz . (199)
-8z Y-AX Y -by
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Let

W(r,ar) = U(r) U(r + ar) . (200)

It can be seen from the definition of U [Eq. (197b)] that W is a random
variable whose value is either 1 or 0 depending on whether both r and
r + Ar lie within sources. If we let

Ay = ¢! - ¢ s (201)

Eq. (199) then can be written in the form

X"+Ax  y"+py z"+Az

I 11 —_ |:n2 ]
G(r',r") = 5 [V W(r,ar) di} ,

v X"-aAx Yy"-py Y z"-nz
(202a)
or
r'n2 .
G(rlar") = _Z_N(r“’Ar) s (202b)
v

where W(r",Ar) is the Volume average of W at the point r".

Provided that the source density D in the vicinity of r" is sufficiently
large, we can exploit the random variable nature of W described earlier to
write

W(p", ar) = (1) P(15r") + (0) P(O5 ¥")

=P(lir") (203)
where P(n;r") is the probability that W(r",Ar) has the value n, where n = 0, 1.
If Ar = (Arx, Ary, Arz) is larger than the dimensions of the elemental sources,
i.e.,

Ar >
X vx ?

Ar > v ,
Y y

ar, > v, R (204)
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where v = VxVsz’ then P(1;r") is just the product of the probabilities that
the vectors r" and r" + ar fall within sources. This is a result of the sta-
tistical independence of the source positions. Simple reasoning is sufficient
to show that the probability that a point chosen at random will Tie within a
source is just the fraction of the total volume occupied by sources in the
vicinity of that point. Thus, we conclude that

~

W(r", ar) = sz(r”) D(r" + ar) » lar] > dimensions of v, (205)

and hence that

6(r',r") = 72D(r") D(r")

, if |r' - r"| > dimensions of v (206)

When |r' - r"| has a value smaller than the source size, the determination
of W is slightly more difficult because the probabilities that r' and r' each
fall within sources are no longer independent. Instead, we have

POsr") = Py (115" (207)

where PUU,(n,m) is the joint probability that U(r") has value n and that
simultaneously U(r" + Ar) has value m. By definition,

Pyge (15157") = Py (11T) Pyu() (208)

where PUU(nIm) is the conditional probability that U(r") = n given that
U(r" + Ar) = m, and where PU.(1) is the probability that U(r" + ar) = 1.
From this definition and from Figure 33, we conclude after some reasoning
that

' 2 ' 1
Pugt (11130 = L2 (v - ) D(x?) (209a)

where

vt (v, - IArxl)(Yy - |Aﬁy])(vz-— lar,]) : (209b)
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To see this, note first that it is given that one point, say, r", lies in a
source, for example, the source marked vy in Figure 33. Since the separa-

tion vector ar is also given, the second point r" + Ar must lie somewhere

in the volume denoted Vo in Figure 33. If this second point happens to lie

in the shaded volume, i.e., v', then both U(r") and U(r" + ar) will have

unit value; but if the point falls outside the shaded region, then U{r" + ar)
will have zero value, unless the point happens to fall within a neighboring
source. The two events, r" + Ar Ties in v' and r" + ar lies outside v', are
mutually exclusive. Thus, Eq. (209) follows immediately.

FIGURE 33. RANGES OF THE VECTORS r" AND r" + Ar
GIVEN Ar AND GIVEN THAT " LIES IN vy

We found earlier that

PU'(1) = PU(1;r“ + Ar) = vD(r" + Ar)

.
3

but since |ar| < Vs Vy’ v, in the present analyses, we have

Py~ (1) = vD(¢") . (210)

Combining this result with Eqs. (209), (207), and (208), we obtain the informa-
tion required to evaluate W, given by Eq. (203), and subsequently G:
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. P
G(r',r") = ——-D(r“)[v' - (v2 - w') D(r“ﬂ , |ar| < dimensions of v

v2
(211).

where v' is given by Eq. (209b). In summary,

-
' hz D(r') D(r") , if any component of ' - ¢" is larger than
the corresponding dimension of v ;
G(r|r”) - _<
ﬁz 2
‘i‘D(f")[Y' -(v" - w') D(r“] , otherwise; (212)
v
where v' = (vx - ]Arx])(vy - IAry])(vz - |Ar2|) ,
\
Vo=V v,

Upon substituting this expression into Eg. (195), we can solve for the mean
square inert concentration distribution AI arising from the random array of

point sources.
For simplicity, let us assume that

D(r) = D = constant. (213)
If the diffusivities KH and K§ argéa]so u?iform in space, then all spatially
averaged quantities, such as AI’ AI‘ and S, will be independent of spatial varia-
bies. Consequently, regardless of the speed of the mean wind, there can be no net
advection of spatially averaged quantities, and we can therefore assume that U = 0
without any further loss of generality. In this case, we have

2 2 2
_ 1 + - 1 - '
p(r-r',t,t') = 3}2 ~—— exp|- G xD2* by = y)™ 2 5 ) ,
(2m)™ “op0, 20y 20%
(214a)

2
UH = ZKH(t - tl) s -
2 _oo(t - t) (214b)
OZ = Z - .
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The problem thus posed is one of a uniform spatial density of continuous

point sources acting in a homogeneous turbulence of arbitrary mean speed.

From Eq. (195), we now have

ff _/f r r”,t-t") p(r-r“—Ar,t—t‘) dar dr" (215)

|Ar]>v

+J,:;P ~ [v' - (v 2 _ vv')D] pr-r",t-t")

o lAC‘E.V]/3 v

p(r-["-Ar,t—t') dar dr"% dt' dt"

where we have assumed that

V.=V =y =y (216)

The Gaussian form [Eq. (214a)] of the kernels p permits a reduction of the
first integral within the braces in Eq. (215) to

) 173 2 173
DN - ol |V - e (217)
ﬁr(cr'{ + 0;1' ) e /TT(OZ to, )
where
2 _ . "2 _ _ 4
off = A (t-t) et

and so forth. The second integral within the braces in Eq. (215) reduces to

D(1 - 7vD)
@77 (02 + 01) (o1F + 1)) V2

(218)
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In deriving Egs. (217) and (218), we had to assume that Oy 0,5 > v]/3. Fur-
thermore, we assumed earlier that vD <<1. Consequently, Eq. (215) can be
written in the form

;%(f’t) i ff 372 ; 372 T/Z( dt' dt"
2k [t - ) + (- £97%° (2 )7
1/2
222 Dt
(277) YK,
Similarly, we find that
K?(r t) = meplt? . (220)

Making use of this result and Eq. (219), we obtain from Eq. (189)

S /2 - v2/3
I, =1+ R t>> —m— . (221)
AB Dt3/ YHV 1/2 (2 3)1/2 KH2/3 KZ]/3

As indicated, Eq. (221) is not valid in the Timit as t>0. This Timiting
value is easily obtained, however, when one notes that at small times the
material is confined to a puff of volumes v equal to that of each source.
Straightforward analyses then lead to the result

1
Tim FAB Dv . (222)

t->0
The significance of these results to the behavior of A and B in the
problem under study becomes clear once Egq. (221) 1is incorporated into our
parameterization [Eq. (186)] and the result is used in Eq. (147). We obtain

—g%—+LA-mD—kAB , (223)
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where
k' = kh(] + a ) (224)
1772 .3/2
DKK, '/ C
and
S 7]
(209)1/2

The parameter k' is an effective rate "constant" whose departure from the
nominal value k is a measure of the SSV effects on the chemistry of A and
B. In the case where h = 1, we note that

112 k' =k, (225a)

and that 1
k' « — 77 . (225b)

DKHKZ

The first of these indicates that SSV effects die out with time. From
Eq. (222), we find that

Tim k' = 5%— . (226)
£50

In view of the second property, Eq. (225b), the importance of SSV effects
diminishes as the source number density D, the turbulent diffusivity K, or
both increase.

Let us examine the SSV effects quantitatively. Because of the constancy
of SA and SB’ A is homogeneous in space. This fact results in

Assume also that SA = SB so that A = B. Equation (223) then reduces to

~

%%-= b - k'A

2 (227)
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the solution of which is
- . 2vt
D e -1
A(t)==45%- S— (228)
k e2yt

where

It can be seen from Egs. (228) and (225a) that the steady-state value of
A is independent of the SSV:

= lim A(t) =gﬁ%§ . ( 229)

tooo

=t

Using A_, we can define a reaction time scale TR:

= (01 /2, (230)
This time scale is a rough measure of the time required for the chemical
reaction A+B~D to achieve a rate equal to that of the source emission rate.

Substituting Tp into Eq. (224)., we find that by the time the chemical decay
rate and the emission rate are in balance, the effective rate constant k'

. 3/4
K' = k [14— aiik) %/ J . (231)

has a value

1/4 1/2
D KHKZ

Since k' has a maximum at t = 0 and decreases thereafter, it follows from
Eq. (231) that if
3/4

7z >l (232)
KZ

- mk )
D]/4KH

then SSV effects will play a significant role in the behavior of A and B as
they approach their steady-state values. This fact is illustrated graphically
in Figure 34, where we have plotted the ratio

e

S5V

o(t)z == (233)
A
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for several values of the dimensionless group u. Here, ASSV dengtes the mean
value of A, which accounts explicitly for the SSV using k', and A denotes the
corresponding value obtained using k. According to Figure 34, u must have a
value comparable to or larger than about 103 before significant SSV effects
are manifest in A.

It is of interest now to apply our criterion, Eq. (232), to an assess-
ment of the SSV effects in actual problems encountered in pollution simula-
tion studies. One such problem is the simulation of large urban areas
containing strong point sources, such as power plants and refineries. The
question here is whether such sources produce a significant SSV impact on
the predictions of an airshed model.

To approximate the conditions of a problem of this type, we Tet D
approach the value of one source per grid cell. In a typical case where

3

the grid cell dimensions are 103 x 107 x 50 m, we have

D=2x108 w3

We assume that the source emission rate in this case is 100 gm/sec. This is

a rough value for the NO emission rate of power plants. We also consider here
three conditions of atmospheric stability. These and the corresponding values

assumed for K, and Kz are as follows (in m2/sec):

H
Condition KH Kz
Stable 5 107!
Neutral 50 1
Unstable 50 25

Substituting the above values in Eq.” (232), we obtain the curves of u as a
function of k shown in Figure 35. -

Note that p = 103 ijs the smallest value of u shown in the figure. Conse-
quently, all combinations of rate constant and stability classification shown
in this figure represent cases where significant SSV effects occur, at least in
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problems of the type considered here. For reference, we have indicated the
values of the rate constants for some of the important photochemical pollution
reactions. We should add, however, that for some of these reactions, the value
of u cannot be read directly from the figure because we assumed that the
concentration of the two reactants are approximately equal. In cases

where the reactant concentrations are in the ratio o (a<1), the value of

u read from Figure 35 should be multiplied by the factor a3/4.

According to Figure 35, the ozone-olefin reaction is too slow to be
affected significantly by subgrid-scale concentration fluctuations. The
same is probably true of the reactions involving atomic oxygen, in view of
the extremely low concentrations of this species in urban air. Only the
ozone-nitric oxide reaction appears likely to be affected by SSV, especially
in cases where an elevated stack emits pollutants into a neutral or stable
layer aloft. An investigation of the impact of SSV on the other important
photochemical reactions is required before a thorough treatment of this
phenomenon can be incorporated into air pollution models.

We should also note that for point sources of the space heating type
whose emission rate m is much smaller and whose number density D is much
larger than the values assumed in Figure 35, the resulting value of u is
very small, and SSV effects are insignificant for nearly all pollution
reactions.

2. Nonrandom Distribution of Sources in Three Dimensions

Having considered the SSV effects produced by a homogeneous distribution
of point sources, we look now at the effects produced by networks of streets.
It is advantageous to reduce this problem to a system of small volume sources
such as that of the random distribution just treated. With a constant width
w for all streets and an effective source depth of h, the "point" source volume
v becomes

v=wh . _ T (234)
The effective source population density D is defined, as before,

N

D = AXAYAZ i
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where N is the number of "point" sources in the averaging volume. Let Ay
and ) denote the separation distances between streets, and assume that

Then we have

- (éxAy xx * kx)
w Axxy
Therefore,
A T A '
D= WZEX;T% . (235)

The source strength function S that describes the network of streets is

S(r,t) = %—U(r) , (236)

where m is the mass emission rate of each "point" source that constitutes the

network, v is the point source volume given by Eq. (234), and

1, if r falls on a street,
) = (237)

u(r
0, ' otherwise.

The source correlation function G [see Eq. (196)] is therefore given by

.2 Az/?2 Ay/2 AX/2
CB(r'e") = -

. g U(r' + ) U(r" + ) dz_ dz, dg
. vv .. ~ ~ ~ ~ X y 2
‘ -Az/2 “Y-Ay/2 “T-ax/2
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where V = aAxayaz. Making the change of variables

Y‘ll

=r' +Ar

and using the fact that G(f',r‘+Ar) is independent of r' for all r' lying in
the slab 0< z<h and is zero for all r' outside this slab, we obtain

A
G(r',r'+Ar) = —%L-.}rU(r') U(r* + Ar) dr' . (239)

With the aid of Figure 36, we can be seen that
(0,4if |ar,_|#na n=0,1, 2
2 X X ’ 9’ ’ 3 e

and |ar, |+#ma , m=0,1,2, ...
y y

whaxay, 1f Jar_| = nx ,
. X X

X
and |A X ;
|ary [ my
Ur') U(r* + ar) dr' = (240)
V
whaxdy if [ar_| # na ,
A X X
Yy
and |ar | = ma 5
y y
WChDV  iF [Ar.| = na
. X X ’
and |Ar | = mA
jar, |
Therefore,
2 1o(ar ) olar)
ot = = X Y A
G(r',r'+ar) = G(ar) 7 [ oz * GYE: + Dofar ) ofar)

if 0<z<h , andz +az <h ; (241)

G(ar) =0 forall z'> h
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In this expression,
0 , 1f|Arxl#‘nxx ;

¢(ar ) =
1 , if ]Arxl =ni, and |Ary|7émxy ;

(242)

Similar values apply for ¢(Ary). Substituting these results into Eq. (195),

we obtain

t Xt .
=ffff p(f'f':t:t') P(K"f"Af:tat") G(Ar,tlt”) dAr dr. dtl dt"
00
t .t
=[fffp(§’t’t') p(grar,t,t") G(ar) dar dg dt' dt" (243)
0 0

2 w “2 2
whA V2n o, o ot (nx ] £ g+ Ar
X Z B} oy Gy y)
f{ 2 ]/2 exp 5 l jf exp 5 - > dary dEy

2 2 ,
e " OH " )j |ary | -m “H “o
¥y
+ term in ¢(Ary) + term in ¢(Arx)¢(Ary) dt' dt" ,
where
ih
A, = (244)
X WBA AZoAzoﬁaécz(Zw)3
and
Oﬁ = OH(t”) s

OH = OH(tI) )

and so forth. Evaluating the expanded term in Eq. (243), we obtain



2 .2 o 2
term in _ Ax(ZH)GHOH ( EE: exp |- ( M) )
o(ar)) (o2 + %'12)”2 l”"‘” 2008 + o;f) S
g/— W S _m)® )
(V2T - exp |- -« (245
l (oﬁ + ol_'lz)]/z En;_w 2(05 v gl (

The term in ¢(Ary) in Eq. (243) is symmetrical to that in ¢(Arx) and has the
form

2.2 (. 2
e T M P LY
A 2 2\ 1/2 ) \
g W b (nxx)z ] (
S - z : exp |- 5 s (246)
Va o\ 1/2 |
l (oF + 0 2)P 2loy o) |
where
A
= X
Ay = Ax Ay . (247)

On evaluating the product term in Eq. (243) and combining the result with
Eqs. (245) and (246), we obtain finally

t .t © 2
~ .2 -(nx_)
2 m_h ‘ 1 X
A(t)=ff LS e —p Xy
I 0 W2AZOécz(2ﬂ)3/2 (02 + 0'2)]/2 l >\)( N=—co Z(Oﬁ + 0'2)

0 H H H

w 2
: . -(mx.) z -
+ J}\“ ZEXP _Z—‘X——‘z"“) dt' dt" . (248)
y = ~co 2(OH + 0}1[ )/ J
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Determining the mean value A, is not quite as compiex. We find through

I "
straightforward reasoning based on the homogeneity of AI that

_ Total Mass in V

) 1_[ mDVt v]
v AxAyOZ .
~ ﬁTt )\x + ):y
Ap(t) = — - : (249)
X"y

Using this expression and Eq. (248), we can determine the variable fAB [defined
in the present instance by Eq. (189) that is required in the subgrid-scale
parameterization scheme [Eq. (186)]. Unfortunately, Eq. (248) involves non-
elementary integrals that can be evaluated only by numerical integration tech-
niques. Such methods will therefore be necessary to implement the present scheme
in an airshed model. For the present, however, it is useful to obtain «n order-
of-magnitude estimate of the effect of the subgrid-scale concentration variations
on the chemistry.

According to our scheme, the measure of the importance of the subgrid-scale
chemistry effect is the degree to which the parameter

Tag =

>21>2
- N N

differs from unity during the period when the generation of material by sources
and the chemical decay are unbalanced. Through simple, straightforward analysis,
we find that initially

T ™ (%Z-)(%) , (250)



assuming that Ax v Ay v A. Note that fAB is independent of the emission
rate. Thus, assuming an effective emission depth h = 2 m, a street width
w = 10 m, and an average street separation x = 150 m, we find that in a
diffusion model that employs a grid spacing az = 20 m in its Towest level,

A

PAB v 150

We know from the work presented in the previous sections that r decays

AB
because of turbulent diffusion and ultimately attains a constant value of

unity. The time scale of this decay is given roughly by

Tr vomax {éﬁg— ) %E- s (251)
z H

where it is assumed that both o, and o, are proportional to t]/z. Since EAB
is initially much larger than unity, significant subgrid-scale chemistry ef-
fects will arise if TF turns out to be comparable to or larger than the time
scale TE’ for example, required for the chemical decay and source emissions
rates to reach an equilibrium. The time scale TE is equivalent to the time
required for

~27

kA~ S R

where S denotes the source emission rate. In the present probliem,

> =mh = WAAZ ?
and
W
A==
W ATAzZ
Thus ,

1/2
T » WasZ : (252)
2mk
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In the present problem, we find that

2
T, v %= 400 sec (253)
H
(using KH " 60m2/sec), and
4 3.1/2
TE Y (_B—Zj]k_o._m_) . (254)
m

Subgrid-scale effects will be most pronounced for fast reactions in which T

E
is small. For the case of the NO—O3 reaction, we have k 1O7£/m01e/sec.
Thus, if vehicles emit about 1 gm of NO per kilometer, on a street network
in which 104 vehicles pass each point per day,

TE ~ 200 sec . (255)

From this estimate and from Eq. (253), we conclude that in areas with sireet
network densities less than or comparable to that treated here (i.e., streets
150 m apart), and with traffic densities greater than or equal to 104 vehicles
per day, subgrid-scale concentration variations will have a nonnegligible ef-
fect on the simulation of ozone and nitrogen oxide concentrations. To account
for these effects, we must incorporate a scheme such as that developed here
into the simulation model.

3. Isolated Point and Line Sources

The analyses presented in the last two subsections deal with homogeneous
source distributions. The results of those analyses are therefore applicable
only in portions of an urban region where sources are fairly uniformly distrib-
uted upwind of a given site. In this section, we briefly consider the magni-
tude of subgrid-scale effects arising from isolated point and line sources, such
as power plants and major highways. -

For the purposes of this study, we assume that, in a point source plume,
the mean concentration is described with adequate accuracy by
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c(x,y,z) = = q exp - 2 EXpPy- 2 s (256)
us,o 2 20
zy 9, y
where Q is the emission rate,
2 _ ., X
O'Z = '\Z .L.‘ s
2 X
=K = s
% " g

and where the x-axis lies on the plume centerline with the mean wind parallel
to the x-axis. Assuming that the grid volume V = AxayAz has dimensions much
larger than the y and z dimensions of the plume, we find after integrating
Eq. (256) that

ﬁAyAzﬂn(%%) (257)
AXK\YU2 K 1/2 ’

z

Tng

where d is the effective source diameter. This value of fAB pertains to the
grid cell that contains the source. At a point nax downstream from the source,
fAB can be found by replacing £n(ax/d) by £n[nax/(n + 1)ax]. At each point in
space, the value of fAB is constant, because of the constancy of the source

and meteorology, but the value that emitted material "sees" as it moves down-
stream decays with time.

In the context of the present problem, the effect of subgrid-scale concen-
tration variations on reaction rate is accounted for in our parameterization

scheme by replacing the true rate constant k by an effective value k' given by

K' = T,k . (258)

AB

The resulting perturbation in the space averaged concentration due to the subgrid-

scale variations is therefore

Poy - ]
e s T (259)
1+ (kcIt)
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where t = ax/u is the residence time of material in each grid cell. MWith

=~ _ AxQ
Cy = = [
| ay
Eq. (259) reduces to (assuming that kEIt > 1)
de 7 . _uayrz (260)

¢ AB AxYK_K
zy

Typically, ax = ay, Az ~ 20 m, and KzKy ~ 100 m%secz. Recalling that our
analysis assumes that the plume dimensions o, and o are much smaller than
Az and Ay, respectively, we conclude that for sufficiently large u,

%f-w i . (261)

This result indicates that the perturbation due to the subgrid scale is very
large for reactions in which (kEIAx/D) > 1. The NO—O3 reaction in power plant
plumes is one example of a situation that satisfies this criterion. When
kEI(Ax/D) becomes much smaller than unity, the subgrid-scale effect diminishes.
These results agree with the analyses of randomly distributed point sources

presented in Section IV-E-1.

Turning finally to the subgrid-scale effects produced by isolated line
sources, we assumed a line source plume concentration distribution of the form

QL 22
c(x,y,z) = —= exp -<}—?~ (262)
uo, 20"

where QL is the emission rate per unit length of source and

Integrating Eq. (262) and assuming that bz>>a,, we obtain
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~ G]/ZAZ

Tpp = —775—— :
B " T2 KZ1/2

(263)

As in the case of the point source, the subgrid-scale-induced perturbation
in the concentration will be on the order of

n -1/2
dc _ U ""az
T T 172 172 (264)
X K
z
when
ke, 221 . (265)
u
Since the line source produces a mean concentration level EI of
. Q
R (266)
UAZ
Eq. (265) is satisfied if
GzAz
>
kQL 2 . (267)
For the NO-O3 reaction with k = 107 L/mole/sec, Eq. (267) reduces to
o, 21073 gn/sec/m (268)

when u = 3 m/sec, Az = 20 m, and Ax = 103 m. If NO emissions are on the order
of 1 gm/km, Eq. (268) is satisfied only by roadways.carrying 105 or more vehi-
cles per day. Few highways rank in this category. Even for those that do, fAB

is only on the order of unity; consequently, 1ittle if any subgrid-scale chemistry
effect occurs.

We conclude that in contrast to the point sources, line sources of commonly
encountered strengths produce negligible subgrid-scale chemistry effects, at
least insofar as the NO—O3 reaction is concerned. All other reactions that are
explicitly treated in air pollution simulations are slower than this one and
accordingly are less affected by subgrid-scale concentration variations.



V' DEVELOPMENT OF A SUBMODEL
FOR RESTORING POINT SPATIAL RESOLUTION
TO GRID MODELS OF URBAN POLLUTION

A.  INTRODUCTION

In Chapter I, we have discussed and explained the inability of grid
models (i.e., those in which space and time are discretized) to resolve
features in the concentration field smaller than the discretization interval.
Generally speaking, urban diffusion models of the grid type employ grid
networks with a horizontal mesh size of several kilometers and a vertical
mesh several tens of meters in length. Since most major sources of air
pollution, such as power plants. refineries, and highways, have scales much
smaller than these, there is a great deal of fine structure in the concentra-
tion distribution that grid models cannot resolve. Indeed, the locations
and intensities of concentration maxima, the extent and location of the
zone of oxidant depression near roadways, and the pollutant exposures in
street canyons are examples of important pollution phenomena about which
urban-scale grid models can provide no information. Moreover, validation
studies of grid models use monitoring station data that represent time
averages at a fixed point rather than averages over the large volumes re-
presented by each grid cell. Consequently, without an estimate of the
amplitude of small-scale concentration variations in the vicinity of each
monitoring station, the validation process can be hindered, because it would
be difficult to ascertain whether discrepancies between the computed and
observed concentrations were due to small-scale sbatial variations or to
errors in the model.

These weaknesses have been cited by some in arguments favoring the
development of alternative pollution modeling approaches. Spectral methods
are among the alternatives most often proposed. In this chapter, we develop



a "microscale model" (not based on spectral methods) that can be used in con-
Junction with an urban-scale grid model to achieve point spatial resolution
of the concentration distribution at any specified point. In developing this
microscale model, one fundamental constraint was imposed: The microscale
model must operate totally independently of the urban-scale model. That is,
we sought the capability of examining the near-source small-scale concentra-
tion distribution at any point without having to make multiple runs of the
large-scale model. We also wanted the microscale model not to be structured
around or coupled to the urban-scale model. If all of these conditions are
met, the microscale model can be used with any grid model, and the required
calculations can be performed with a minimum of time and effort.

Before proceeding with the mathematical development of the microscale
model, we review, for orientation purposes, some of the basic concepts intro-
duced in Chapter I.

Most air pollution models in current use are based on the premise that
the processes governing the concentrations of each pollutant can be described
by an equation of the form

9Cc , — 3¢ 9

. 9C
3t Yo T Kij ax. TSR ’ (269)
i i J
where
G} = the i-th coordinate component of the mean wind,
Kij = the turbulent diffusivity tensor,
S = the strength of all systematic sources of the pollutant,
R = the time rate of change of the concentration due to

chemical interactions among all of the pollutants present.

In adopting Eq. (269), one tacitly assumes that if all of the parameters in
this equation were known precisely, then the solution c(r,t) of the resulit-
ing equation (and initial and boundary conditions) would correspond exactly
to an error-free measurement of the concentration at the point (r,t).
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{Actua]]y, c in Eq. (269) represents a mean value, which we can think of as
a time average over an interval of several minutes, say, depending on the
nature of the diffusivities used [see Lamb (1971)].}

If Eq. (269) is to be solved by numerical methods executed on a digital
computer, this equation must first be "filtered" to remove all small-scale
variations that the grid network cannot resolve. One way to achieve such
filtering is to space average the equation at each point over a volume V
equal to that of the grid mesh. Thus, if the grid network has mesh dimensions
of AXx by Ay by Az, then it can be shown that any space averaged variable de-
fined by

X+BX y+Ay z+Az
> ] 1 t
C(\:,t) = myA—z [ f / C(l’_‘ ,t) dr (270)

X=AX Yy-Ay z-AZ

is essentially free of spatial variations unresolvable by the grid network
[In Eq. (270), r = (x,y,z).] Similar definitions can be written for S and R.
Averaging Eq. (269) in the manner of Eq. (270) and assuming that u and K are
nearly constant on scales comparable to the grid dimensions, we obtain

~ -~

T o98C _ 9 3C 4 ¢ 4R
U ax - ax; Kij axj tSHR : (271)

Q|
O

\

Numerical methods can then be applied to this equation to obtain an approx-
imate solution for c.

Thus, a grid model yields the quantity E(r,t) rather than the point
value c(r,t). The difference between these quantities, which we denote by

~

c"(r,t) = c(r,t) - c(r,t) , (272)

is what we refer to as the subgrid-scale variations (SSV). Upon subtracting
£Eq. (271) from Eq. (269), we obtain the equation governing the SSV:

_a_c_:l=__a__l _a_c__ 113 "
X, X, l\1\] X, ST R ? (273)

ac" | —
== _ + .
st Y

J

i
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R(L"t) - R(rat)

=
—
=
o+
~——
fl

Since R is not a function of any spatially variable parameter other than
the concentration, it is clear from Eq. (273) that subgrid-scale variations
c¢" can arise only from subgrid-scale variations S" in the source strength.
Given the usual dimensions of grid meshes used in airshed models (see the
earlier discussion), there are no urban areas in which $", and hence c", is
everywhere identically zero.

It is the mean value c(x,t), rather than the space averaged mean E(g,t)
given by the grid model, that possesses the point spatial resolution and
hence all of the information that we require in air pollution studies.
According to Eq. (272), we can acquire this information from the grid model
by calculating in addition the subgrid-scale field c". Thus, our approach

to the restoration of point resolution to the grid model is simply to develop
a microscale, or subgrid-scale, model based on Eq. (273) whose output c"(x,t)

can be combined with that of the grid model E(g,t) to describe the point
field c(x,t) at any arbitrary point.

To illustrate an important property of the subgrid-scale variation c"
and to give the reader a better physical feel for the nature of c", we
examine this field quantitatively in an elementary example in the next
section.

B.  QUANTITATIVE ILLUSTRATION OF THE SUBGRID-SCALE VARIATIONS c"(r,t)

For simplicity. we consider a one-dimensional problem governed by the
equation

% -k 2L+ s(2) s(t) (275)
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with initial and boundary conditions

c(z,0) =0 , (276a)

Tim c(z,t)

2>t

it
o

(276b)

where K is the turbulent diffusivity, assumed to be a constant, and 8§ is the
delta function. The solution of Egs. (275)and (276) is

2
- -1/2 z_
c(z,t) = (4nKt) exp (_4Kt) . (277)
Now let
Z+AZ
c(z,t) 5-5%2 .}f c(z',t) dz' . (278)
z-AZ

Averaging Eq. (277) in this manner, we obtain

~ 1 Z + Az : Z - AZ
Z,t) = ~— lerf | ==& | - erf — , (279)
clz.t) = 757 <,[4Kt ) <‘[4Kt )

where

erf(x) = —g—-vjrx e_>‘2 da
“"ﬂ'
0

is the standard error function. Note that Eq. (279) is the solution of
the equation obtained by averaging Eq. (275); i.e.,

wl|o®

O
"
~
@

no

no 2

¥ 21Tz U(z) s(t) (280)
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where

( 1 s -AZ < Z < AZ s
u(z) =
l 0 . otherwise

Let us assume that Eq. (280) is a grid model representation of Eq. (275)
and that ¢, as given by Eq. (279), is the model's output. The subgrid-
scale variations are therefore [from Egs.. (277) and (279)]

2
" R .z 1 z + 8z z - Az
¢"(z,t) = exp ( T ) T [%rf (-?ﬁa;r> erf ( e )}
(281)

We can see from this expression that the amplitude of the SSV decreases as

the discretization interval Az in the grid model is made smaller. More-

over, for fixed Az, the SSV in this example decreases with time. The latter
effect is shown graphically in Figure 37. The figure also shows ¢ for com-
parison. It can be seen that for the earlier travel time (i.e., t = O.O31A22/K),
" is up to three times as large as ¢ and is therefore not a negligible
variation.

C

To obtain a more concise description of the relative magnitude of the
subgrid-scale variation ¢", we note first that c" is largest at the source
location (i.e., z = 0). Thus, the maximum amplitude of c" relative to ¢
can be expressed by

o(t) = c'(0,t) . (282)

c(0,t

—

From the expressions for c¢" and ¢, we obtain

o(t) = \[L? [G* erf (—l)] T , (283)

g

where

. (284)
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FIGURE 37. ILLUSTRATION OF THE SUBGRID-SCALE CONCENTRATION VARIATIONS
ARISING FROM AN INSTANTANEQOUS POINT SOURCE
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That is, o* is the approximate half-width of the pollutant cloud at time t
normalized by the grid mesh size Az. It is evident from Eq. (283) that o*
is the key parameter that determines the relative size of the SSV in this
instance. Upon evaluating Eq. (283) for several values of o*, we obtain

p = 10 when o* = 0.1, p = 0.34 when o* = 1, and p = 0.08 when o* = 2. From
these values, we conclude that, in the case of a point source, the SSV can
be neglected relative to ¢ after the pollutant cloud has grown to a width
of about four grid intervals.

These results take on added meaning when one realizes that the one-
dimensional equation considered here is an approximate model of a two-
dimensional steady-state plume. In this case, time is related to the down-
wind distance x from the plume source by the relationship

X = ut , (285)
where u is the mean wind speed (directed along the x-axis). Translated
into terms of the two-dimensional plume, the conclusions reached above re-

garding the relative magnitude of the SSV indicate that SSV effects will
be significant within a distance of approximately

— 2
X = “ﬁz (286)

from the plume source. In the grid model, this distance x will represent

uAz e.
X (287)

> =
N

grid intervals from the source. Thus, for fixed u and K, the number of
grid cells affected by SSV actually increases as the grid size Az is in-

creased, albeit both ¢" and ¢ become insignificant sufficiently far from
the source.

Although we considered only the maximum value of c¢" (i.e., c"(0,t) in
the analysis above, we can expect (see Figure 37) that the SSV will become

negligible everywhere in space on the same time scale as that of the
maximum,
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C. DERIVATION OF A SUBMODEL OF c" FOR LINEARLY REACTIVE POLLUTANTS

1. Discussion of General Operational Problems

As stated in the introduction to this chapter, we seek to obtain c¢"
from its governing equation [Eq. (273)] and to use this result along with
that given by the grid model to obtain the point mean field c(x,t). Since
our earlier discussion of the equation governing c", i.e., Eq. (273), was
very general, it did not reveal several of the operational problems that
arise in solving this equation in given situations. We discuss these below,
within the context of a simple problem, before proceeding with the develop-

i

ment of specific models.

To keep the mathematics as simple as possible, we consider here only
a single pollutant that decays at a nonlinear rate. The equation governing
the concentration of this pollutant in the urban atmosphere is assumed to be

Bble=ke” - KDy +s (238)

where [ is the operator

_ - P} P ) ‘
L =y, TPy Ki; TR (289)

U} is the mean wind speed, K is the turbulent diffusivity tensor, and

(C'2> is the turbulent concentrat1on fluctuation term discussed in Chapter III.
Although this example is mathematically much simpler than that for photo-
chemical air pollution, which involves a system of coupled nonlinear equa-
tions, the problem posed by Eq. (288) has many of the essential character-
istics of the more complicated real situation. Thus, techniques developed

for a pollutant that undergoes a second-order reaction can be applied to

more general situations through straightforward extensions.

Suppose that a grid model for the pollutant cited above is to be -
developed. As outlined earlier, the procedure for deriving the working
equation of the model is to perform at each point a spatial average of
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Eq. (288) over a volume V equal to that of the grid cells. In this way,
we obtain the working equation '

oy Sy

2 ke ey v s (290)

=+ ]c = -ke

where ¢ and S are spatial averages and c" is the subgrid-scale concentration
variation. NOES/that it is the spatial average mean square turbulent fluc-
tuation term <c'2> that enters into the grid model equation. Upon subtract-
ing Eq. (290) from Eq. (288), we obtain the equation governing c":

Wy Y™y

%%—'1‘ Le" = -kC"Z _ ZkEC” + kC”2 _ k<c|2>n + S , (29])

where (c'2>” represents the subgrid-scale portion of the mean square fluc-
tuation field (c'2>. The second term on the right side of Eq. (291) represents
the chemical interaction of the subgrid-and supergrid-scale concentration
fields. Since the latter is a known quantity at each point (it is given by

the grid mode1), Eq. (291) contains only one dependent variable, ¢" (after

¢"2 and (c'2> have been parameterized), and this equation can thus in

principle be solved.

The nonlinearity of Eq. (291) dictates that its solution can be approxi-
mated only by using numerical integration techniques. It is to be expected,
however, that the implementation of these techniques will require the solu-
tion of operational problems unlike those associated with the modeling of C.
This requirement arises because point and line type sources give rise in S"
to delta functions, which are not amenable to treatment using discrete grid
numerical methods. We could, of course, attempt to evaluate Eq. (291) on
a fine grid, but this would only create new subgrid-scale problems. To
circumvent these problems, we develop a new technique later in this chapter.

In contrast, in cases where the pollutant is linearly reactive, the
implementation of the microscale model is quite simple because the governing
equation, Eq. (291), reduces to the much simpler form

acll

-~ _ 4 LC“ = _kcu + g

= , (292)
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and if the pollutant is inert, the equation reduces further to

ac" T T
St— + Lc" = 8§ . (293)
In the remainder of this section, we develop the known analytic solu-
tion of Eq. (292) into a working model of c¢" that can be used with any grid

model of CO, 502, or other essentially linear pollutants.

2. Derivation of the Working Equations for a Microscale Model of
Linearly Reactive Pollutants

Consider a pollutant that decays linearly at a rate described by

de - e

at , (294)

where k is the rate constant. (Note that inert pollutants are represented
by k = 0.) The equation governing c" in this case is Eg. (292), the solu-
tion of which is of the form [see Lamb and Neiburger (1971)1]

t
c"(r,t) =f/ p(r,tir't') exp [—k(t - t')] S"(r',t') dt' dre
t
0

+ / p(rstfrity) exp [-k(t - to)] c"(r'.ty) dr' ;
(295)

where p denotes the Green's function of Eq. (292) and its bouadary conditions.
For simplicity, we assume that c“(g.to) = 0. in which case the last term in
Eq. (295) vanishes. Our aim now is to derive formulas for c" pertinent to
general source configurations S" in conditions of open terrain where the

form of p is rather simple. Consider first the source function S".
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The source distribution S can be expressed in the general form

N M
S(rot) = 2 Sp(t) slr - r)) + 35 (1) 6z - z,) sly - s, (0],
=1 al (296)

where Spa denotes the emission rate (mass/time) of the a-th point source (of
which N are present), ry is the position of the a-th source, and § is the
delta function. The line sources represented by the last term in Eg. (296)
have strengths SLp per unit length and lie along the curves y = SB(X) at
elevation Zg. From Egs. (296), (274), and (270), we obtain

N M
S'(rst) = 3 S, (8) 6lp - r ) + 3 0S (1) 8z - z) ey - s (0],

Q. .
R VL.
AxAybz Uijk(r) i (297)

where Qijk is the total mass of pollutant emitted per unit time in the grid
cell (i,j,k) and

1, if r lies in the grid cell (i,j,k);
Uijk(r) = (298)
0, otherwise.

Upon substituting Eq. (297) into Eq. (295), we obtain an expression for c" of
the form
N M L
c"(r,t) = P {r,t) + L (r.t) - V(r.,t R 299
(~>§a<~);6<~);¢) (299)

where Pa is the contribution to c¢" from the o-th point source, LB is the con-
tribution to c¢" from the g-th 1ine source, and where VY is the collective con-
tribution of all sources in the y-th grid cell. Below we derive the functional
form of each of these terms, assuming that in the open terrain and quasi-steady
flow regimes of interest to us here the kernel p in Eq. (295) has the Gaussian
form
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2 I\ 2
«{expf{- iZ__EZ_l_ + exp- 2 +22 ) , (300)
20 20
where

T=t-1t', (301a)

Ty oy, o, = F(t), (301b)

U, V = constants, (301c)

W = 0. (301d)

This form of p contains the implicit assumptions that the earth acts as a
reflective barrier to the pollutant particles, that the turbulence is homo-
geneous, and that no low-level inversions exist. Assumptions (301c) and
(301d) are not generally valid, but are acceptable approximations over the
relative small areas, comparable to a grid cell, in which ¢" is finite. To
maximize the accuracy of Assumption (301b), we plan to use the "optimal"
cx(t) and oz(t) profiles developed in Chapter II.

a. The Point Source Contribution, Ea

Using the delta function's property

[ f(x) s(x - xO) dx = f(xo) , a<x0<b ,

we find immediately from Egs. (295) and (297) through (300) that the point
source term Pa entering in Eq. (299) is of the form -
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t

P lr.t) = Spa(t)fo Py (KoY ox5¥ o o1) Py (252 1) dr (302)

where
-1 (x - x_ - Dr)z
pxy(xsy,xa,yaaT) = I:ZTFGX(T) Gy(T)J exp [‘ ZGS(T)
X
(v -y, - 0)°
- > - k1 (303)
20y(r)
and
-1; (z - z )2 (z + z )2
pZ(Z,ZOL,T) = [/Z_TTOZ(T)] exp[— —-Z_OL_:l + exp|- _T_L} . (304)
l ZOZ(T) ZGZ(T)

We should mention that the assumptions of a reflective earth and the absence
of an upper level inversion can be relaxed by substituting the appropriate
expression for p, in Eq. (302). Equation (302) is the first of the set that
we need to model c".

b. Line Source Terms

We first assume that all line source segments are straight lines lying at
ground level (i.e., z, = 0, 8=1,2, ..., M) and that the strength of each seg
ment is constant along its length. Suppose that the 8-th Tine source has
length KB, that it is centered at (x
the y-axis as shown in Figure 38.

5> yB), and that it makes an angle O with

FIGURE 38. PARAMETERS REQUIRED TO SPECIFY A FINITE LINE SOURCE
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The line source term LB’ which represents this source in the c" formula
[Eq. (299)], can be shown to be [see Lamb and Neiburger (1971)]

t 2

[(x - Ut - x,) cos 0+ (y-vr-y.) sineo,]
L (r,t) =S (t)f exp { - B B 8 B2 ke
0 O
- ’88
-1 (y - vt -y )cos o - (x-urt- XB) sin 6_ + 5
. (2V270) erf B B B
V2 o
- - ZB
) erf[}y - VT - yB) cos OB - (x - ut - XB) sin OB ) }
V2 o
- p,(z,0,0) dr (305)

where o = oy = oy and where py is given hy Eq. (304), with zg = 0. This is
the general line source term needed to compute c".

C. Volume Source Terms

The volume source terms VY arise from S, each volume source having the
dimensions Ax « Ay - Az of the grid cells in the urban-scale model. It is
not difficult to show that the volume source term VY is given by

t - Ax - AXN
Q X = X = Ut + 5~ X - X_ - Ut = =5
V.(r,t) = §jl .erf/ 21 erf ! 2\
Y V) \ 7o 7o
r ve 4 by e - A
) Yy -y - v+ y -y - vt -
ce kT L L ers I 2\ - erf ! 2
/2 o / 2o

. [erf(A) - erf(B) + erf(D) - erf(c)} dt , (306)
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where
Az Az
Z -2 + = + - =
A 5 ’ . z zY 5
V2 o V2 o
z z
(307)
Az Az
Z -z - = + + 2£
. v 5 ’ ) - z zY 5 ’
/Z-O /?O
z z

and (xY,yY, zY) denotes the center of the y-th grid cell. Equation (306) is
the volume source term required in Eq. (299) to calculate c".

3. Design of the c¢" Model Computer Program--Interaction
with the Source Inventory Data Bank

We have derived the basic equations required to calculate c". The next
step is to put these results into the form of a subroutine that the airshed
model can call to compute concentrations c at any given point. As previously
stated, the c" model must not interfere with the operation of the full urban-
scale model, and it must not require the latter to perform special calculations
In short, the ¢" subprogram must be capable of calculating c" given only the
following information (which is always available in the grid model itself):

(u, v) = horizontal components of the mean wind in the
vicinity of the receptor,
z./L = local stability parameter,

i
AX, Ay, -0z.= dimensions of the grid cells,

u, = Jocal friction velocity,
z; = mixing depth in the vicinity of the receptor,
T = value computed by the grid model for the

receptor point,

(X,y,2) coordinates of the receptor.

Thus, if MICRO is the name of the c" model, the call fdr it by the grid model
might look something 1ike the following:
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CALL MICRO (X,Y,Z,T,ZIOVL,USTAR,ZI ,UBAR,VBAR,
DELTAX,DELTAY ,DELTAX,CTILDE,CPP) s

where CPP = ¢"(x,y,z,T).

The MICRO program must also have access to the source inventory, where
each point and line source segment, or link, is stored separately. In partic-
ular, the following source data are needed to compute c":

XPS(I)

YPS(I) = (x,y,z) coordinates of I-th point source.

ZPS(1)

XLS(J) 1 _ (x,y) coordinates of the center of the J-th line
YLS(J) § 7 Tine source (ZLS = 0 assumed).

THETA(J) = angle of the J-th line source (see Figure 38).
XLNGTH(J) = length of the J-th line source.

SP(I) = strength (mass/time) of the I-th point source.

SL!J) = strength (mass/length/time) of the J-th line source.

Using all of the above information, MICRO computes c" in a manner described
roughly by the flow chart shown in Figure 39. We have completed the steps
labeled SIGMA and CALC in the flow chart; Appendix C presents listings of

their source programs. Steps SEARCH, SORT, and DOMAIN have not been completed,
and without these modules, the MICRO subprogram lacks the capability of search-
ing the source inventory itself. However, if the user provides the relevant
source information, the existing steps SIGMA and CALC can compute c¢" at any

given point.

In its present form, SIGMA consists of two FORTRAN functions, SIGMAX(T)
and SIGMAZ(T), which are used by the subprogram CALC. The SIGMA functions
calculate oy and o, for a given travel time T and for given stability, mixing
depth, and friction velocity conditions (which are passed through common blocks
to the function programs). To evaluate the integrals entering in the equations
derived earlier for c", the CALC subprogram uses a Monte Carlo quadrature
technique, described theoretically in Appendix D. This technique allows infi-
nite flexibility in the ability of the CALC program to evaluate c" both near
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e
~ {_ RETURN

SIGMA

DOMAIN

SEARCH

SORT

CALC

FIGURE 39. FLOW DIAGRAM OF THE c"-MODEL ROUTINE MICRO
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and far from point and line sources. It also requires minimal complexity

in programming and permits control over the accuracy of the integral eval-
uation.

Test calculations performed with the MICRO model in its present form
for the problem portrayed in Figure (40a) are presented in Figures (40b)
and (40c). Although these figures are self-explanatory, we wish to call
attention to the size of ¢" in the immediate vicinity of the line source
in this calculation: It is over two orders of magnitude larger than € at
the same point [cf. Fiqures (40b) and (40c)].

One of the main problems that we anticipate in the implementation of
microscale models such as MICRO into full-scale urban diffusion models 1is
the incompatability of the source inventory data bases that the two kinds
of models require. That is, in grid models, such as that developed by SAI,
the source inventory consists of total emissions from each grid cell rather
than emissions from each point and Tine source within a cell. The MICRC
model requires data in the Tatter form, which is not derivable from the
existing source inventory.

A logical solution to this problem is to collect raw data in the form
of point and line source emissions and to store it in this form. It is then
a simple matter to compute total emissions from any grid cell network for
use in a grid model. This approach was employed in a pollution modeling
study of the Los Angeles basin conducted by Lamb and Neiburger (unpublished).
Data from this study consist of the coordinates and strengths of each of ap-
proximately 6000 roadway links in the Los Angeles area for the year 1966.
These data are stored on discs and can be converted, using simple programs,
into emissions from any desired grid cell network. We have procured this
data bank and will use it in the final developmental phases of the MICRO
program. Qur chief interest is in using this data to test the DOMAIN,
SEARCH, and SORT modules, which will allow the MICRO program to interact.
with the data bank for the purposes of computing c¢" at any desired point.
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The final version of MICRO will enable the user of a grid model to restore
point-scale spatial resolution to his diffusion model at any desired point.
The following sections describe the DOMAIN, SEARCH, and SORT modules that
we are presently developing.

a. DOMAIN

We demonstrated analytically in Section V-B that c" decays with travel
time, even in the absence of chemical decay. Lel the characteristic time

scale of this decay be T. Thus, sources located a distance
[T R (308)

upwind of the receptor point (XR,YR,ZR) have a negligible effect on ¢". Fur-

thermore, because of the Timited horizontal and vertical dispersion rates, all
sources downwind of (XR,YR,ZR) and those outside a wedge-shaped sector upwind

of (XR,YR,ZR) have negligible effect on c". By ignoring all such sources, the
MICRO program can optimize its calculation speed.

We showed in Section V-B that the decay time scale T of c" is approximately

equal to the time required for a point source cloud to grow to the size of a

. . - by - b = bz '
grid cell. Thus, if oy axt , Gy ayt Y, and o, azt , we have

\! /b 1/b 1/b
RO R 5
X y z

The upwind dimension £ of the domain of influence is therefore

L= \T . (310)
and T is given by Eq. (310).

The width of the domain of influence is proportional to oY(t), assuming
that oy = oy. We conclude that the domain of influence is the wedge-shaped
region shown in Figure 41.
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FIGURE 41. HORIZONTAL AND VERTICAL CROSS SECTIONS OF THE
DOMAIN OF INFLUENCE ON c"(XR,YR)
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b.  SEARCH

Once the boundaries of the domain of influence have been established,
the next step is to find and 1ist all point, line, and volume sources that
lie within it. As indicated earlier, the coordinates of the i-th point
source are stored in the data bank as XPS(I), UPS(I), ZPS(I). Four param-
eters are stored for each line source. By testing the coordinates of each
source, we can determine whether that source lies wholly or partially within
the domain of influence.

The speed of the point- and line-source searching operation can be opti-

mized if sources in the data bank are catalogued according to the grid cell

in which they lie. If this is the case, only those blocks of data filed in
locations corresponding to grid cells within the zone of influence need be
examined. Determining the volume sources within the domain of influence is

a simple matter, since these correspond to the grid cells. Note that even

if only the edge of a volume source (grid cell) falls within the domain of
influence, the entire source must be treated. The extent to which that source

affects c¢" at the receptor is automatically accounted for in the c¢" equation.

c. SORT

The efficiency of the c¢" calculation can be increased by considering only
those sources that together have the largest influence on c¢" at the receptor.
For example, the SEARCH step may find a total of 10 point and line sources
within the domain of influence, but only three of these together may be re-
sponsible for 90 percent of the observed magnitude of c". In this case, neg-
lecting the other seven sources would cut computation time by 70 percent at
the cost of only a 10 percent error in c".

Because the SORT process itself consumes computing time, the usefulness of
this step. is limited to those cases where there are many point and line sources
within the domain of influence. To determine which sources to neglect, we need
an algorithm that permits rapid estimates of the approx{mate effect on ¢" of a
given source. The following is such an algorithm.
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To each point and line source, we assign a number RANK. For the i-th
point source, RANK is given by

o SP(1)
RANK = , (311)
[aLATaZ(%)bLAT(%)b4
where
d = [(XpS(1) - XR)Z + (vps(1) - YR)21V/2 . (312)

For the j-th line source,

SL(J) 4 XLNGTH(

[«

)

RANK = , (313)
D I s
where
d = [(XLS(3) - )% + (vLS(J) - YvP)?3] (314)
W= XLNGTH(J)*SIN[THETA(J) ¥ TAN_]<%%%%>J . (315)

With a value of RANK assigned to each point and line source, we now form
the sum

RANKT = ZRANK R (316)

where the summation is over all point and line sources and where we arrange
the sources in order of decreasing values of RANK, with point and line sources
mixed as their values of RANK dictate.

In the CALC step, the sources are treated in order of their RANK values,
the largest being treated first. As we proceed through the 1ist of sources,
we keep a running sum of the RANK values of the sources treated. Let this sum
be denoted by
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K
RUNSUM(K) = 3= RANK(k) (317)
k=1

where K represents the number of sources out of the total of KMAX point and
line sources in the domain of influence that have been treated. Note that,
by definition, RUNSUM (KMAX) = RANKT. Thus, when

RUNSUM(K)
TRANET 2 B , (318)

where 0<g<1, we terminate the calculation of the point and line sources con-
tributions to c¢" and neglect all sources with labels between K and KMAX. The
value assigned to B depends largely on the estimated overall accuracy of the
model; it is generally unnecessary to set g8 = 1 because errors in the model
itself do not warrant the added computing time required.

A print-out of the 1ist of the sources actually treated and their RANK
values will also be of aid in assessing the polluting potential of each
source in the vicinity of the receptor.

D.  DEVELOPMENT OF MATHEMATICAL METHODS FOR MODELING SUBGRID-SCALE
CONCENTRATION VARIATIONS c" OF NONLINEAR POLLUTANTS

In the last section, we derived solutions of Eq. (292), which governs
the ¢" distribution of Tinear pollutants. Needless to say, obtaining solu-
tions of the more general equation [Eq. (291)], which governs nonlinear species,
is a much more difficult process. And modeling the complete system of photo-
chemical pollutants is even more complex. We have only begun to consider the
nonlinear problem. We outline here a method that we have developed and are
considering for constructing a microscale model of nonlinear pollutant species.
We demonstrate the method in the context of Eq. (291) because it is mathemati-
cally much simpler than the equations describing the complete kinetic mechanism,
but yet it retains the essential nonlinear property of those equations.
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The obvious approach to solving Eq. (291) is to express the equation
in finite difference form and to integrate the resulting expression numer-
jcally. However, this method only creates a new subgrid-scale problem:
because due to the presence in S" of delta functions arising from point and
line sources, subgrid-scale concentration variations will exist in any dis-
crete analogue of Eq. (291). Even if it were possible to achieve a grid
network fine enough to resolve the major variations in the concentration
field, operational problems would still remain. For example, because of
the arbitrariness of the locations and orientations of point and line
sources, a variable grid network would be required to optimize the accuracy
of the numerical integration process. But this might lead to difficulties
with computational stability, boundary conditions, truncation error, and the
like, and would certainly complicate the computer program.

To circumvent all of the problems, we develop in this section a rela-
tively new type of pollution modeling equation. This model is not based on
any radicall, new theory. Rather, it is based on an equation that is an
intermediate step in a sequence of mathematical operations that leads from
the general Lagrangian equation of turbulent diffusion Eq. (16), through the
well-known Gaussian puff and plume formulas, to the classical diffusion equa-
tion [Eq. (291)]. One of the unique features of the new equation that enables
it to avoid the problems listed above is that it is continuous in space (1like
the diffusion equation), but discrete in time. In the remainder of this sec-
tion, we derive the new model, briefly discuss its place in the scheme of
existing modeling equations, and outline a set of ways in which this model
can be implemented in the calculation of ¢" of nonlinear pollutants. The
actual implementation process will be undertaken in a later study.

1. Derivation of a Discrete-Time, Continuous-Space Diffusion Equation

The starting point of the derivation is the Lagrangian form of the dif-
fusion equation introduced in Chapter II, i.e. ,
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t
<c(r,t)> =ff p(r,t|r',t") S'([",t') dt' dr' +fp([‘,t|f',t0)<c([",t0)>d}:' R
t
0 (319)

where S is the source strength function. In cases where lTinear chemical decay
occurs at a rate

== -k(t)c , (320)

where k(t) is the rate "constant," it can be shown [see, for example, Lamb (1971)]
that the proper form of the kernel p entering in Eq. (319) is

t

p(rytir',t') = p'(r,t{r',t") exp [-J{ k(t") dt”] ,
.t I

(321)

where p' is the probability density that the fluid will advect a particle

from (r',t') to (r,t). MNote that p' is a property of the fluid motions alone
and is independent of the chemistry. Through a series of assumptions and math-
ematical operations, it can be shown that the Gaussian plume formula, the puff
model, and the classical diffusion equation are all derivable frqm Eq. (319).
It is in the derivation of the diffusion equation that the discrete-time,
continuous-space model arises.

Thus, Tet the time axis be divided into equal intervals of length At, and
let tn.denote the time t = nAt. For brevity, we omit the reference to time in
the derivation by writing, for example,

p(rot [rosty) = plr [r,)

Consider now the conditional probability density

-

plr, t_1s tpogse-ooty) (322)
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that a particle is at r, at time t given that it was at ol at time tn-]’
at r,_, at time t, o> and so forth. If an interval At exists such that

Plr Ir_qsThpseestg) = plr lr, ) , (323)

then the particle motions are said to consitute a Markov process in the dis-
crete time frame because any stochastic process whose probability density
satisfies a relationship of the form of Eq. (323) is called a Markov process.
An important property of a Markov sequence is that its probability density
p(fnlfm) satisfies the Chapman-Kolmogoroff equation

pltlry) = [oltleg plrply) ar, (324)
where n>£>m are any integers.

The physical significance of the Markov process in the context of a tur-
bulent diffusion problem warrants comment. Suppose that the turbulent eddies
that are responsible for the random motions of the poliutant particles have a
time scale T. A reasonable estimate for T is the Lagrangian integral time
scale of the turbulence defined by

- !
L= —J ve(t) v (t+¢&)de (325)
vt o0

where v'(t) is the velocity component at time t of a fluid particie. (If the
turbulence is stationary, then ZLis independent of the time t.) The time
scale TL can be regarded as a rough measure of the Tifetime of the so-called

energy-containing eddies.

Suppose now that a particle is released in the turbulence and that its
velocity is recorded at intervals At = TL/]O apart. We can expect that if
tn+1’ and tn+2’
greater chance of observing a positive velocity at time tn+3
velocity; and conversely, if the velocity is negative at the first three times,

the velocity is, say, positive at times tn’ then there is a

than a negative



then it is more likely to be negative than positive at time tn+3' In con-
trast, if the particle velocity is recorded at intervals At = 10 L apart,
then we can expect the velocity at time tn+3 to be independent of that at
tn+2 and all previous times. The idea here is simply that a particle has
a "memory" of some length T in the sense that the behavior of the particle
at any time t is seemingly influenced by its history during the interval T
just prior to the time t. This apparent memory is imparted to the particles
by the organized or systematic behavior that each eddy exhibits during its
lifetime. It is the randomness of the birth and death processes of the
eddies and of the transferral of a particie from one eddy to another that
causes a particle ultimately to "forget" its distant past history. This
type of reasoning leads us to expect that the probability density of the
particle positions will satisfy the Markov condition [Eq. (323)] if the
discretization time interval At is chosen such that

At >> T, , (326)
where T is given by Eq. (325).

For reference, we rewrite here the general equation [Eq. (319)] using
the notation adopted above:

t
n-1
<c(r,tn)> =fp(rnlr0)<c(ro,t0)> dry, +ff p(r fr') S(r',t')dt" dr’
t
0

t

+ffn p(r fr") s(r',t") dt' dr
t

n-1
(327)

The reason for the split integral in this equation will become clear later.

For any time t'< tn-]’ we have from the Markov assumption

r') = plr (v ;) : (328)

~n-1

166
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Thus, from the general relationship

FX [ ) =[f(xnlxﬁ,xm) XX ) dX, (329)

where Xn’ XK’ and Xm are any three random variables with probability density
functions f, it follows from Eq. (328) that

p(r, Ir") =jp(rn|rn_]) plr,_qlr") dr. ;. (330)

Thus, p(rnlf‘) satisfies a Chapman-Kolmogoroff type of equation, even through
r' can be the particle position anywhere on the continuous time axis prior to
tn_'l .

Using Eq. (324), we can express the first term in Eq. (327) in the form

fp(rnlr()) (elrysty)) drg =fp(rn rn_])fp(rn_] rg) {elrysty)) dry drp
(331)

Similarly, Eq. (330) permits the second term in Eq. (327) to be written as

t
n-1
ff p(rylrt) s(x',t') dt' dr' = f plr,lr, )

t
‘ tn-1
jf plr_qle’) S(etst') dt' dr' dr
%

0
(332)

Combining Eqs. (331) and (332) and comparing the result with Eq. (327) for
<@(r,tn_])> , we conclude finally that, by virtue of the Markov property,
Eq. (327) is equivalent to
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<C(L”,tn)>=/P(r,tn|f',tn_]) <C([",tn_1)> dr'

t
n
+// plrot lr'st') S(r',t') dt' dr' : (333)
tn—]

This is the discrete-time, continuous-space diffusion equation.

From the modeling standpoint, Eq. (333) has several very useful assets.
The first is that it allows concentrations at time t to be calculated from
those at time t-At and from the source emissions that have occurred during
the interval at just prior to t. This is in contrast to Eq. (319) or to the
puff model, for example, which requires an integration over the entire period
tO - t to obtain the concentrations at time t. The second advantage of
Eq. (333) is that it possesses unlimited spatial resolution. As we pointed
out earltier, this property is essential in modeling the microscale concentra-
tion distribution. The third advantage of Eq. (333) is that finite differen-
cing techniques are not required to evaluate it. In fact, all of the integrals
in this equation can be evaluated analytically when the concentration distribu-
tion <c(f,tn_])) is expressed in series form. This advantage circumvents the
problems, often associated with differencing techniques, of computational sta-
bility and of the imposition of artificial boundary conditions.

2. Development of A Microscale Model of Nonlinear Pollutants Based
on The Discrete-Time, Continuous-Space Equation

Our aim is to use Eq. (333) as the basis of a microscale model. In this
section, we demonstrate how this might be accomplished, using as the example
a single nonlinear species ¢ whose microscale variations c" are governed by
Eq. (291). The formal relationship between Egs. (333) and (297) is quite
complicated, and since the details are not important to the present analyses,
we outline the relationship only briefly below.

First, we note that Eq. (219) is of the form -

%%—-+ Lc" = -k <a + be" + c”2> + S , (334)
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where —~ “
a = -c" 4 <c'2> , (335a)
b = 2¢ . (335b)

Consequently, if S" were zero and if ¢" were initially uniformly distributed

in space (so that rc" = 0), then the chemistry alone would cause c" to change
in time, and we would have

¢(t) = -t + q[i—‘] , (336)
T - d
where
q= (& - 4a)1/? (337a)
_ okqt[Co t € - @
d=e {?gf;7§<;7i (337b)

and where ca = ¢"(0). Recall the form [Eq. (321)] that the kernel p acquires
in situations where the scalar quantity decays at the linear rate

dec _
?t- = —k(t)C.

We anticipate, therefore, that if a nonlinear decay of the form found in Eq. (334)
occurs, then the kernel p entering in Eq. (335) can be approximated by

oy [E ¢+ 1 |
p(r,tir',t') = p'(r,t[r',t") [ i %5(1——@] ’ (338)
where, as in the case of Eq. (321), p' is the solution of the equation

Lovpt = s(r-r)s(t-t) (339)
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We now state without proof that the equation

1
+ q(? f L)] [c“(f‘,t')] dt' dr' (340)

becomes equivalent to Eq. (291) in the limit as At =t -t approaches zero,

In Eq. (340), q and d are functions of the time and space variables that appear

to the right of the vertical bar in the kernel p. Thus, we can say that Eq.

(340) provides a consistent representation of Eq. (291) inasmuch as the solution
of Eq. (340) can be made arbitrarily close to that of Eq. (291) by making the time
step At suitably small. We should hasten to add, however, that the size of at

is restricted by Eq. (326); so the equivalence of Eqs. (340) and (291) can be
realized only by scaling the time axis with some value T and then making At* = At/T
suitably small by making T sufficiently large. The implication of this is that
temporal resolution is lost as Eq. (340) is made to approach Eq. (291). Never-
theless, for all practical purposes, Eq. (340) will serve well as the working
equation for a model of c".

Consider now the evaluation of Eq. (340). We demonstrate aGur proposed
technique for solving this equation by considering only the first integral on
the right side. To simplify the analysis further, we assume homogeneous, sta-
tionary turbulence and restrict our attention to a one-dimensional problem.
Albeit highly simplified, this case is adequate to demonstrate the essential
features of our technique.
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Under the conditions that we have imposed upon the turbulence charac-
teristics, the kernel p' becomes

B .
A e [ I e (301)

where
X = x' + uat (342)

and u and ¢ are functions of x' and tn-]'

Turning next to the definition [Eq. (337a)] of the parameter q that enters
in Eq. (340), we see that two of the variables upon which it depends, namely,
¢ and c“2, spatially averaged quantities. Since the spatial region of con-
cern to us in the microscale model is only as large as several grid cells, it
is not unreasonable to treat these two quantities as constants. This assumption
is also supported by observational studies of mean concentration variations in
both the horizontal and vertical directions. The third quantity entering into
the definition of g--namely, <c'2>”-—1s variable over the microscale region,
but for simplicity we also regard it as essentially constant. Combining all of
the above assumptions in Eq. (340), we obtain

c"(x,tn) = —ufé(x',tn_]) p'(x,tn|x',tn_]) dx'

. _] '_2 ~
. qﬂj(zﬂ)l/zc{] exp[} (x _ZX) T(haae t et a) ,

20 J "oyt Ot

(343)
where

) , (344a)

(344b)



The first term on the right side of Eq. (343) is clearly equal to &(x,tn)
[Eq. (333)1.

Now let c“(x,tn) be represented by the power series

c"(x, tn) = :Z:: a mxm . (345)

The last term in parentheses in Eq. (343) can now be written in the form

1 '
(..) i IR (346)
m=0

where
By = 8,0 Cta (347)
di1,0 = %%, 0fecta (348)
m
d - wa -l E d a (349)
n-1,m n-1,m BO n-1,m-k n-1,k :
k =1

Substituting Eq. (346) into Eq. (343), we obtain

" ~ = =
c (x,tn) + c(x,tn) c(x,tn) é——gzgq—-:E;: dn—],m
0" m=0
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Changing the integration variable to

£= X'+ uat - x ,
we obtain
@ S - 2/2 2
c(x,t.) = —9 d €& - x) e & /eo dg ,
n B N n-1,m
0 m=20
(351)
where
X = uat - x . (352)
Equation (351) can be written in the equivalent form
o) m I(_‘)‘()m"kfk _52/202
c(x,t ) = —d— d m: £ e de
n BO/?; j ZE:O n 1’m;§;:O ki1{m - k)!
m= ) (353)
Evaluating the integral in this expression, we obtain
e m/ 2
2k 2k
c(x,t) ==L § d m! (-x)"" Y
BO A—_J n]mz( m_Zkvl(k ])l .
m=20
(354)
where
(2k - 1)1t = 1:3-5...(2k-1)

and where ZE/O denotes summation over all k that do not exceed m/2. Upon
expanding the right side of Eq. (354) and collecting 1ike powers of x, and
upon writing the left side of this equation, i.e., c(x,tn), in its series

form

_ m ~
= j{: dn,mx + c(x,tn)
m=20 '
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and grouping these terms with those of the right side of Eq. (354), we obtain
the set of equations for the coefficients d_ . The desired mircoscale field

3
+

C"(X,Ln) is now in the form

where

j=3)
I
-h
—
o3

n,m m n—],m)

and the fm are known functions. The modeling of ¢" is thus reduced simply to
the algebraic manipulation of coefficients in a series expansion. No differ-
ential equations or integrals require manipulation.

As we mentioned earlier, this modeling approach has not been developed or
tested heretofore. Consequently, considerable work remains to be done in pro-
ducing a working microscale model for photnchemical pollutants. We hope,
however, to make considerable progress toward that goal in our continuing model
development program.
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VI SIMULATION OF BUOYANT PLUMES IN
THE PLANETARY BOUNDARY LAYER

A.  INTRODUCTION

Up to this point, all of the work presented in this volume has per-
tained to passive scalar quantities, that is, to scalars that do not inter-
act dynamically with @he fluid. Under this condition, the mathematical
problems of diffusion modeling are greatly simplified because the effects
of the turbulence on the scalar can be described in terms of quantities,
(namely, the turbulent diffusivity) that are properties of the flow. It
is this assumption that made it possible for us in Chapter II to derive
profiles for the diffusivity K, that were independent of the character
of the diffusing substance.

In air pollution studies involving emissions from power plants, oil
refineries, and other sources in which large quantities of both heat and
pollutants are discharged simultaneously, the “"passive scalar" assumption
is not valid on the microscale, i.e., over distances up to about 1 km
from the source. The reason for this is that the heat exhausted along
with the pollutants produces buoyancy forces, which enchance the vertical
transport of the pollutant material. The result is the so-called plume
rise phenomenon, which has been studied analytically by Briggs (1963) and
others. In most of these investigations, attempts were made to describe
the plume rise using semi-emnirical formulas. Some of these formulas
were found to work reasonab? well under certain special circumstances,
but not in others. Apparent , there is no formulation that is applicable
to a wide range of conditions. In this chapter, we outline a model that
we hope will fill this need.
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The starting point of our simulation is the Lagrangian diffusion
equation introduced in Chapter I1I [Eq. (16)]:

t
<@(r,ti> 2.}(}2 p(f,t[f',t) S(f',t')dt'dr'

Our approach is to use the planetary boundary layer model or Deardorff

in conjunction with our own model of buoyant particle motions in turbulent
fluid to derive the probability density junction p(r,tlr',t') that would
be required in Eq. (16) to describe the mean concentration disturbation

in a buoyant plume. In this chapter, we outline our particle model and
describe how it will be used with Deardorff's calculations to achieve the
desired results.

B.  CALCULATION OF THE PROBABILITY DENSITY p(r,t|r',t')

The density function p describes the ensemble properties of particle
displacements in the turbulent fluid. To obtain this function from Deardorff's
data, which represent only a single realization of an infinitely large en-
semble, we must invoke ergodic theory. The details of this theory are not
presented here. Suffice it to say that the stationarity and homogeneity
(in horizontal planes) of the turbulence simulated by Deardorff's model
are amenable to the application of ergodic theory in the manner we require.

An additional consequence of stationarity and homogeneity is that
p has the property

p(r.tfr',t') = plen,z7,1) (355)
where
£ = X - x', -
n = y-y',
T t-t',
ro= (xy,2).



177

Thus, p is a function of the horizontal projection of the distance to the
release point--but not of the positions of the source or receptor separately--
and of the travel time t--but not of the clock time t or release time t'
separately. Consequently, we can calculate p in the following way.

For a given release height z', say z' = zy e release a particle
from each grid point on the horizontal plane at height 7 at the initial
instant tO when the data begin. If there are N grid points in each hori-
zontal plane, then N particles will be released. We allow each particle
to move forward in time under the action of the forces exerted upon it by
the turbulent fluid. By tracking each particle, we create an ensemble of
N particle trajectories, each of duration 7, from which the density function
p(g,n,z,z],T), 0 <t < T, can be computed by conventional techniques [see,
for example, Bendat and Piersol (1968)]. Here, T denotes the length of
the interval during which data from Deardorff's model are available. In
our early work, 7 corresponds roughly to 1 hour in real time.

For the function p derived by this process to be applicable

to a given dispersion problem--for example, the diffusion and transport
of pollutants from a stack of height H, diameter D, exhaust velocity Vx’
and temperature es—-the ensembel of particle trajectories on which the
function p is based must adequately reflect the behavior of particles
released under such conditions. In the example just cited, it is clear
that wind shear, buoyancy, and other phenomena have strong effects on
the particle motions. Furthermore, as a result of the proximity of the
particles to one another at their time of release, particle interactions

affect drag forces, heat exchange between the particles, and the atmos-
phere, and similar factors. Thus, unless all of these mechanisms are pro-

perly modeled in the simulation of the ensemble of particle trajectories,
the density function p based on this ensemble will Tead to erroneous es-
timates of the mean concentration when used in the {c> equation.

Hinze (1959) has reveiwed the theory relevant to the prediction of
the motion of discrete, bouyant particles in a turbulent fluid. In the
remaining sections, we use this theory to formulate a model that, using
Deardorff's data as input, can simulate the trajectory ensembeles required
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to study the diffusion of any type of pollutant (e.g., heat, moisture,
gases) released under any conditions in the planetary boundary layer.

C.  MATHEMATICAL BASIS OF THE TRAJECTORY SIMULATION MODEL--
PRELIMINARY DESIGN

1. The Particle Momentum Equation

Let (u,v,w) represent the velocity V of the scalar (pollutant) particle

with respect to a fixed Eulerian frame, and let (u 2V W ) represent the

average (spatial) velocity ye of the fluid in the ?mmedigte vicinity of

the given particle, i.e., the local environmental velocity. We distinguish
between the "environmental" velocity ye and the ambient fluid velocity yf,
because, as a result of the presence of large numbers of scalar particles,
the Tocal velocity of the fluid that a particular particel "sees" will
generally differ from yf. Also, let T and Te represent the particle and
environment temperatures, respectively. Provided that the particles are
sufficiently small, the momentum equation governing their motion can be

written in the form [see Hinze (1959)]

’g’i‘\!(gst) = 'Q[V(a:t) - ye(X(a,t),t>] - @C{ + Y ZdjTye(X(aat)st> ]

(356a)
where
9
0 = — M : (356h)
relofe— + 1)
pe
E. .
P
B = ——v (356c)
o, 1
Pe 2
_ 3 B}
Y = .2.3 . s ‘ (356d)
P
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and
r = the particle radius,
p = the particle density,
v = the kinematic viscosity of the environmental fluid,
Pp = the density of the environmental fluid,
a = the release points of the particle in ouestion,
X(a,t) = the position of the particle at time t
g = the gravity vector,
and
d . 8 I
- AT (357)

The second term on the right side of Eq. (35fa) represents a Stokes drag
force on the particle. For this approximation to be valid, the Peynolds
number of the particle with respect to the particle radius r and relative
velocity |V - ye[ must be on the order of unity or smaller.

The last term on the right side of Eq. (356a) represents the accelera-
tion of the environmental fluid relative to the axis of the moving particle.
In cases such as those of interest to us, where the scalar and fluid par-
ticles are dynamically quite similar, accelerations of the one relative to
the other are sufficiently small that the last term in Ea. (35fa) can be
neglected. We assume further that the response time u—1 of the particle
is so small. relative to the time scale of changes in Ye that the quasi-
steady-state relation

holds at all times. Under these two assumptions, we obtain from EQ. (356a)

u o= u , (359a)

v =V , (359b)
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PR N (R (359¢)
e 9v Po ‘ ¢

In view of the absence of horizontal forces on the particles other than
those exerted by the fluid, we assume that the horizontal components of

the velocities of all particles are equal at all times to the correspondina
velocities of the Tocal ambient fluid. That is, we assume that

(360)

where ug and vg are the velocities given by Deardorff's data.
It is more convenient to work with potential temperature than with

densities because the former are given for the fluid by Deardorff's data.
Using the gas law and the definition of potential temperature, i.e.,

R/cp

where p is pressure in millibars, we can convert Eq. (359c) into the

form

2 [0 -0
- 2rg e
W= Wt g ( 5 ) . (361)
Later, we derive the equation governing the particle temperature o that

can be used in conjunction with Eq. (361) to obtain the particle's vertical
velocity component w. However, to render Eq. (361) solvable, we must first
express we in terms of the known ambient fluid velocity component wg.
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Toward this end, we consider two limiting cases. First, in the Timit
as the travel time becomes large and the initial cloud of scalar particles

becomes so dispersed that each particle is surrounded mainly by ambient
fluid particles, we have

Tim Wy = We . (362)

T

Recall that we represents the velocity of the environmental fluid, com-
posed of both scalar and ambient fluid particles, in the immediate vicinity
of the given scalar particle. At the other extreme, where the travel time
1 is near zero, the entire collection of scalar particles can be envisaged
as a buoyant jet of diameter D (equal to that of the source diameter)
issuing into the ambient fluid. The velocity of each particle can be as-
sumed to be equal to that of the jet and can be approximated by empirical
and theoretical means. For the present, however, we assume that initially
the particles form a spherical cloud of diameter D. This approximation
might apply under very unstable conditions. The initial velocity of ecch
particle is now assumed to be equal to that of the entire cloud and is to
be calculated by assuming a drag force on the cloud of the form

2]

(g—D>u2 : (363)

where Cp is the drag coefficient of the spherical cloud and u, is the
speed of the cloud relative to the ambient fluid. Invoking the quasi-
steady-state assumption as before, we can equate the drag force D and
the buoyancy force B, where

0 - Oe
18] = 9 —5 : (364)

e




to obtain
2 _ 4D
(W - we)® = 5 |B]
D
or
1/2
W= W, + sign(B) 40iB| . (365)
f 3CD

Upon substituting this expression into the left side of Eq. (361), we
can find the effective environmental velocity we in the 1imit as tv - 0.
We obtain

1/2
4Dgle - ee[) ) 2r29<0 - @e) (366)

Tim Wy = We ¥ sign{e - @e)< 3CD@e T 5

-0

This, then, is the environmental velocity component wg in the initial
instance where the cloud of scalar particles behaves as a sphere moving
through the ambient fluid. From the two limiting cases given in Egs. (362)
and (366), we surmise that we can be expressed in the general form

Wy = We t o(T) G(e,ee) . (367)

where

1/2
4Dgle - o 2 0 -0
__gl_____§1> _2ryg ( e) (368)

G(O’Oe) = sign(o - ee)< 3CD@e 9v 0

and where ¢(0) = 1, lim ¢(t) = 0. (In the general case, G(0,0¢) represents
the velocity of the buoyant plume as it emerges from its source.) The rate

at which ¢(r) change with travel time depends on how rapidly the initial

182
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cloud of particles becomes dispersed, or, in other terms, how rapidly the
poputation of particles surrounding any given scalar particle becomes satur-
ated with ambient fluid particles. We attempt in a later section to derive
an explicit expression for ¢ based on turbulence properties. Thus, from
Eqs. (361) and (367), we arrive at the final form of the expression for w:

2

= 2rg
W= oWt o(1) G(e,ee) * 555 (o oe) . (369)

The next task is to derive the equation governing the temperature o.

2. The Particle Temperature Equation for Dry Plumes

As long as there is a difference between the particle temperature
© and the ambient fluid temperature of, not only is a buoyancy force
exerted on the particle, but also a heat exchange between the particle
and fluid acts to eliminate any temperature differences. This heat flux
can be expressed quantitatively by

q = -hA(e - o) (370)

where h is the heat transfer coefficient of the particle and A is the
particle's surface area. The temperature change resulting from the heat
flux q is

o

hA(o - o)
i e (371)
PP

where Vp is the particle volume and Cp is the specific heat capacity (in

units of energy/mass/°K). For spheres in the Reynolds number range
1 < Ry < 25, h has the form (Kreith, 1966)



h = anumoe , (372)
where
1/2
0
3 = 2&2\; + 0.4()\) ]/2 . (373)
o (2u_r)

Combining Eqs. (372) and (371), we obtain

d_6=3_a(w_w)@_93 (374)
t r e ee )

Here it is necessary to express O in terms of o¢. For this purpose,
we consider the two limiting cases that we considered earlier in relating
We to we. First, in the 1imit, as the travel time becomes very large, 0g
approaches of because each scalar particle "sees" an environment compo<ed
almost totally of ambient fluid particles. We can therefore write

Tim Oe =0
T

£ (375)

In the other 1imit, when t =~ 0, we envisage as before that the entire
collection of scalar particles comprise a spherical cloud of diameter D
and that this cloud exchanges heat with its environment at the same rate
as a rigid sphere would under identical conditions. (In the general case,
we envisage the particles as comprising a buoyant jet, but we do not con-
sider this case here.) HMoreover, we assume that internal mixing in the
cloud js sufficient to result in an equi-partitioning among all of the
particles of the total heat exchanged. In this case, we have

2
(41TD > (@ _ @ ) -
lim g—i - A4 f - (376)

T—)O c ﬂ_ <TTD3> ’
P*p\3/\8
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: 6h{o - o)
Tim %%-= - “‘YTTT‘QE“ . (377)
0 o P

For spheres with Reynolds numbers in the range 25 < Ry < 105, the heat
transfer coefficient is given to good approximation by (Kreith, 1966)

0.6

- O.37kf <EEE>
D

\Y

, (378)

where kg is the thermal conductivity of the fluid (units of energy/time/
meter/°K). Combining Eqs. (377) and (378), we obtain

2.2k,u2% (6 - 0,)
. do _ e f .
Tim 4= = - ; (379)
dt 1.4 0.6
0 pCpD v

and by equating this expression and Eq. (374), we obtain the effective
environmental temperature 6, at the initial instant of release:

(380)

0.4 D1.4 VO.

-1
2.2rkg(0 - o) J
>0 6

lim @e = Ol} +
3apCpe(w - wf)

Since both we and 0, are uniquely determined once the populations of
scalar and ambient fluid particles surrounding any given scalar particle
have been prescribed, we assume that the transition of o, from its initial
value [Eq. (380)] to its final form [Eq. (375)] is describable in terms of
the function ¢ used earlier with wy. In particular, we assume that

2.2rkc(0 - o) -1
0.0 7.4 05 ‘U -eldleg . (381)

0, = op(T) |1 +
3apCpO(W - wf)
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This equation, together with Eqs. (374), (367), and (369), formsza closed
system of equations that can be solved for the temperature © of the par-

ticle and vertical velocity component w as a function of travel time 1

and the ambient fluid conditions O¢ and wg¢ described by Deardorff's data.

In short, we now have model equations that we can use to simulate the tra-
jectories of dry particles of any type in a turbulent fluid. (The deriva-

tion of the corresponding equations for vapor plumes is currently in progress.)
A1l that remains to complete the model is to derive a suitable functional

form for o¢(t).

3.  The ¢(1) Equation

As defined, ¢(t) has the Timiting values

lim ¢(t) =1 , (382a)
>0
1im ¢{t) = 0 (382b)
>0

In physical terms, ¢(t) represents the fractional population of scalar
particles within a distance of several radii of a given scalar particle.
This suggests that ¢ is equivalent to the mean particle concentration in
an expanding cluster. Under the action of turbulence in the inertial sub-
range, a cluster of particles expands at a rate given by

44> 20 2/3 2/3
I £ T

dt 3 0 ’

(383)

where ¢ is the energy dissipation rate per mass of fluid, 2g is the ini-
tial diameter of the cluster, t is the travel time, and <i2> denotes the
mean square cluster diameter after a travel time v. Equation (383) is
valid only as long as <£2>% is within the range of eddy sizes that comprise
the inertial subrange and only as long as a true jnertial subrange exists.



The latter condition may not always be fulfilled in some problems of
interest to us where significant turbulent energy is created by the par-
ticle cloud itself. Indeed, observations reveal that under neutral and
stable atmospheric conditions. the turbulent energy within the plumes pro-
duced by large power plants is often significantly greater than that in
the atmosphere just outside the plume. Under these conditions, it will

be necessary to resort to the available empirical and theoretical know-
ledge of buoyant jets to derive a saitable approximation for ¢(t). Never-

theless, in those cases in which Eq. (383) holds, the mean cloud diameter
d at time t is given by

; 1/2
d(t) = [DZ + %Q 213 pe/3 TZJ (384)

where D denotes the initial cloud diameter. This expression holds only
as long as d < 10D.

If the initial concentration of particles in the cloud is unity, it
follows from the considerations presented above that

23

4
o(t) = 3°38
ﬁ(DZ + %Q_€2/3 D2/3 TZ) 3/2 ’

W[+

-3/2
= G + %9'€2/3 D-4/3 T2 ) ) (385)

We assume that by the time <3LZ>1/2 is outside the inertial subrange, or

d > 10D, and Eq. (385) ceases to hold, either the mignitude of ¢ has fallen
to a value near zero or <@?>% v AX, where aX is a measure of the grid size
in Deardorff's model. In the latter case, the growth rate of the cloud can
be estimated explicitly from the computed particle trajectories.
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VIT SUMMARY

For the reader's convenience, we summarize here the major points
presented in each of the six previous chapters.

A.  CHAPTER 1

In this chapter, we introduced the term "microscale" to refer to all
phenomena whose space or time scales are too small to be resolvable ex-
plicitly and deterministically in arid models of urban poliution. Such
small features result because of turbulence and finite differencing
techniques. Those produced by the former include the turbulent velocity
fluctuations themselves, usually denoted by y', and the concentration
flucutations c' generated by y'. Both of these microscale features af-
fect the spatial and temporal behavior of the evolution of the mean con-
centrations of photochemical pollutants., No exact mathematical expres-
sions have yet been found that can describe these effects in generalized
situations. Consequently, an important problem in pollution modeling
is the development of an approximate description of these phenomena
that, under most conditions of interest, will be as accurate as the
data upon which the model calculations are to be based. Chapters II,
III, and VI address these problem areas.

The use of finite differencing techniques in diffusion modeling
gives rise to the microscale phenomenon that we have termed the SSV, or
subgrid-scale concentration variation. This feature occurs because the
spatial variations that exist in the concentration distribution near
point and line sources, such as power plant stacks or highways, are of
much too small a scale to be resolved by the grid meshes used in urban
pollution models. Ve showed that the SSV can affect the grid-averaged
concentrations of photochemical pollutants in much the same way that the
turbulence-induced concentration fluctuations can influence the time mean
concentration, We also pointed out that the SSV can complicate the use



of pollutant concentration values pred%cted by a simulation model:

The concentration levels observed at a fixed point will differ from the
spatially averaged concentration predicted at that point as long as the
SSV is not zero. Model validation studies and concentration extrema
forecasts are two examples of applications in which this problem arises.
Chapters IV and V addressed all aspects of the SSV microscale effects.,

B,  CHAPTER II

In this chapter, we demonstrated how Lagrangian diffusion theory can
be implemented using numerical turbulence models, Using this technique,
we were able to derive expressions for the distribution of the mean con-
centration of passive material issuing from a continuous point source
in the planetary boundary layer, We referred to these distributions,
shown in Figures 8(a) and 9(a), as the numerico-empirical (NE) solutions
of the Lagrangian equation. Inasmuch as the data sets on which these solu-
tions were based were rather small, the results presented in Chapter II
are only tentative. Future studies will attempt to achieve greater ac-
curacy and will address the important questions of how the concentra-
tions are affected by changes in source height and atmospheric stabilities
(other than those treated here) and by changes to other source types,
such as area or line sources,

Proceeding under the assumption that the accuracies of the present
NE solutions are at worst comparable to those of available empirical
data, we used these solutions as standards for assessing the accuracies
of the three major diffusion models: the diffusion equation and the
Gaussian puff and plume formulas. We devoted subsequent work to optimi-
zing the performances of these models by adjusting the functional forms
of the free parameters in each model such that the resulting predictions
were in closest overall agreement with the NE solutions. These "optimal"

parameters, i.e., diffusivities KZ and dispersion coefficients o_ and Oy

z
are summarized in functional form in Table 2. With regard to the accura-

cies of the optimal models, we note the following:
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> Of the three models, the diffusion equation is by far the superior
one. Errors are generally on the order of 20 percent, except at
points near the source under neutral conditions in which case much
larger discrepancies are observed [see Figures 8(b) and 9(b)].

> Relative to the plume formula, the Gaussian puff equation is a
slightly superior model; but, in quantitative terms, neither
provides an acceptable description of atmospheric diffusion
under neutral stability conditions, at least in the problem
considered in Chapter 11, Both models tend tc overpredict
ground-level concentrations arising from elevated sources. Er-
rors of 100 percent are prevalent, and in isolated areas they
are much larger, In the particular problem treated, the ac-
curacies of the optimal models were acceptable under unstable
conditions (see Figures 18 and 19).

Considering the Gaussian puff and plume models in general, we note
the following points:

> Spatial concentration distributions in the planetary boundary
layer are decidedly non-Gaussian,

> The Pasquill-Gifford data commonly used in the plume forumla
are not applicable to emissions from elevated sources unless
some allowance is made for wind shear effects. When such modifi-
cations are made, they greatly improve the accuracy of the plume
formula for elevated sources [see Figure 13(b), as compared with
Figure 18(b)].

The optimal diffusivity, dispersion coefficient, and wind shear pro-
files presented in Table 2 were implemented in the form of FORTRAN
function routines. These routines can be used in place of the corres-
ponding variable names in existing diffusion models to achieve results
that are compatible with the predictions of Deardorff's boundary layer
model,

190



191

C. CHAPTER III

Using empirical data, we showed (see Figure 28) that concentration
fluctuations generated by turbulence can dominate the temporal behavior
of the mean concentration of materials that undergo nonlinear chemical
reactions. Although several previous investigators have suggested ap-
proximate mathematical expressions for describing these effects, none of
these cquations is well suited to pollution modeling studies because
each introduces too many additional differential eugations into the
system to be solved. For this reason, we set for ourselves the task
of developing a new approximation that does not entail multiple eguations.
The results of our efforts for the case of a bimolecular reaction are
represented by Eq. (95) for the generalized case, and by Eq. (99) for
the case where the reactants are premixed.

In Section C of Chapter III, we develop for various situations ap-
proximate functional forms of the parameters Za and Ly which enter into
the generalized closure scheme expressed by Eq. (95), [See Egs. (113),
(121), (124), and (125).] Tests--based on empirical data--of the accuracy
of the overall scheme produced excelient results (see Figures 28 and 30).

D. CHAPTER IV

Just as turbulent concentration fluctuations can affect the mean
rates of nonlinear chemical reactions, so can subgrid-scale variations
in the concentration fields simulated by numerical models. In Chapter
IV, we derived a test of the significance of these effects [see Eq. (164)].
When this condition is satisfied, SSV effects are negligible and can be
ignored; but, when it is violated, SSV effects may or may not be impor-
tant, depending on the particular physical situation. To handle these
cases, we used the concepts that we employed in Chapter III to treat
turbulent concentration fluctuation effects to develop a scheme for
parameterizing the SSV influences. In its most general form, this scheme
is described mathematically by Eq. (182); and in cases where the reac-
tants are emitted from the same sources, it takes the form of Eq. (186).



We

>

>

>

applied the latter to three problems of practical interest:

A random spatial distribution of point sources, such as building
heating emissions.

A network of streets of arbitrary separation,

Strong, isolated point and line sources.

From these applications, we derived a dimensionless number u, defined

by Eq. (232),. that provides a quantitative measure of the magnitude of

SSV effects on nonlinear reactions simulated in urban pollution models.
As portrayed in Figure 34, the magnitude of the SSV impact grows as the

value of p increases, Using representative rate constants, source

strengths, diffusivities, and the Tike, we evaluated the parameter u for

several

of the important photochemical pollutants (see Figure 35).

From this study, we drew the following conclusions:

>

The NO-O3 reaction is the only reaction explicitly treated in the
current SAI model that is affected by subgrid-scale concentra-

tion variations. In this case, the SSV suppresses the effective
rate of ozone depletion.

Effects from freeways carrying 105 or more vehicles per day are
significant when the wind is parallel to the freeway, but not

when it is perpendicular, Smaller traffic volumes produce pro-
portionately smaller effects, and larger volumes produce pro-
portionately larger ones.

SSV effects from networks of city streets carrying 104 or more
vehicles per day are significant when (1) the streets are 150
meters or more apart and (2) the meteorology or source emission
rates are in a state of transition. Under steady-state conditions,
the SSV effects from uniform street networks become negligible,

but those arising from strong isolated sources do not, as described
in the second point above.

These findings are only tentative. In future work; we will attempt
to corroborate them through numerical experiments.

192



193

E. CHAPTER V

An objection frequently raised against grid point diffusion models
is that in spreading emissions from point and Tine sources uniformly
throughout the local grid cell, such models produce distorted descrip-
tions of the time concentration field within the immediate vicinity
of point and line sources. This effect complicates the tasks of model
validation and concentration extrema predictions. In Chapter V, we
developed a so-called microscale model that can be used as a subprogram
in any grid model of CO, 502, or other inert or first-order reactant
to resolve the detailed concentration field at a given point. This sub-
model has been implemented in FORTRAN and tested in several preliminary
calculations, as shown in Figure 471,

The chief weaknesses of this microscale model in its present form
are its inability to handle pollutants that react nonlinearly and its
use of Gaussian kernels. The latter precludes applications to problems
of the following types:

> Those in which aerodynamic effects are important, such as
downwash in the lee of an elevated roadway or building.

> Calculations of pollutant levels in street canyons.

> Estimations of pollutant levels on a roadway where vehicle
wake turbulence is primarily responsible for the initial pollu-
tant dispersal.

For the purpose of developing a microscale model for pollutants that react
nonlinearly, we derived a special discrete-time continuous-space dif-
fusion equation [Eq. (333)]. We showed that, when the concentration

field is expressed in a series form and line and point sources are rep-
resented in the usual delta function forms, the nonlinear microscale

model reduces to a simple set of algebraic equations (see the last
equation in Chapter V). Tests of this equation and attempts to relax

the Gaussian kernel assumption implicit in-the current microscale model
versions will be undertaken in the next phase of the EPA contract work.
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F. CHAPTER VI

In this chapter, we outlined a method whereby the boundary layer
model of Deardorff and the equation governing fluid particle dynamics can
be combined to simulate buoyant plumes and cooling tower exhaust in the
planetary boundary later. The idea was to create an ensemble of particle
trajectories from vhich the probability density function p that enters
into the general Lagrangian diffusion equation [Eq. (16)] can be derived.
The analyses presented in Chapter VI are intended primarily as an illus-
tration of the technique we are planning to use to simulate buoyant
plumes., Further theoretical analyses will be required to develop the
final form of the model equations,



VIIT FUTURE EFFORTS

The work reported in this volume has attempted both to emphasize

the aspects of pollution modeling that are affected by microscale phenomena
and to develop mathematical tools for describing these effects. However,

two basic aspects of this project are still incomplete:

> A thorough and systematic evaluation of the magnitude of
microscale effects in specific problem areas of pollution
modeling interest.

> A thorough testing of the accuracies of the various tools
that we have developed for treating microscale phenomena.

This last deficiency can be remedied by means of a series of straight-
forward numerical experiments in which each of the microscale modeling
techniques is examined and exercised under controlled conditions, We
reported the results of a few such studies--the tests of the closure
scheme presented in Chapter III is one example--and others are planned
for the next phase of our work. It is the evaluation of the magnitude
of the actual microscale problem area itself that will require further
planning and careful study. Indeed, the outcome of these evaluations
may well alter the future course of our microscale modeling work. Ue
foresee three basic steps in the design of these evaluative studies, as
discussed in the sections below.

A.  SPECIFICATION OF THE DEGREE OF SPATIAL RESOLUTION
REQUIRED IN URBAN POLLUTION MODELING STUDIES

Air quality standards are currently expressed in terms of certain
time-averaged concentrations, but no mention is made of the extent of
the spatial areas to which these criteria apply. Considering the fact

that air quality standards are intended priuarily as safequards of public
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health, one can infer that these standards apply to all points where
plants or animals vulnerable to pollution damage are found. Thus, for
assessments of air quality relative to cropland, livestock, hospital
patients, and so forth, or for validations of a diffusion model using
data gathered by a pollution monitoring station, an urban-scale pollu-
tion model possessing point spatial resolution (as described in Chapter
V) should be adequate. However, to assess the pollutant dosages received
by highway patrolmen , bus and truck drivers, road maintenance men,

and other similar occupational groups, a model should have not only the
capability of providing Tine-integrated concentrations, but also the ability
to simulate pollutant concentrations on the sources themselves. The

last feature is outside the scope of present urban diffusicn models,
because on the urban scale highways can be treated as line sources of
zero width within which concentrations are infinite. Moreover, on a
highway or within a street canyon, the initial dispersion and the rates
of fast nonlinear chemical reactions are controlled by vehicle wake tur-
bulence and other aerodynamic effects that are not described by the con-
ventional Gaussian puff and plume models or by the commonly used dif-
fusion equation.

These considerations and the likelihood of observing intolerable
highway-integrated pollutant dosages point to the need for special micro-
scale models that can simulate pollutant levels in the motorist's
frame of reference. One of the goals of the next phase of our micro-
scale work will be to develop such a model to supplement the capa-
bilities of our urban-scale model. We also plan to examine further the
resolution required for various types of modeling studies.

B.  EVALUATION OF THE ACTUAL SPATIAL VARIABILITY OF
CONCENTRATIONS AT RECEPTOR SITES OF INTEREST

Having established the locations at which pollutant concentration
calculations are needed and the degree of spatial resolution required at
each site, one is faced next with the following question: Are Tocal
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spatial variations in the concentration field so large that an urban-
scale model alone is incapable of providing a representative estimate

of the true pollutant levels at those sites? In the case of the fixed-
point dosage estimates, this question is essentially one of whether local
sources are responsible for a significant fraction of the pollution ob-
served; and in the case of the roadway-integrated dosage calculations,
the question is whether background concentrations are so small--compared
with those on and produced by the roadway--that the urban-scale model
itself is needed.

Continuous pollutant measurement data can help resolve these ques-
tions. For example, suppose that such a record is available for a
ground-Tevel traverse of a city. If moving averages of this record were
made to remove all variations that a grid model of that pollutant could
resolve, then the residual concentrations would represent the micro-
scale variations in question. If these microscale deviations in populous
areas turn out to be only a small fraction of the total concentration
observed at those same locations, then urban-scale models alone, i.e.,
without a supplementary microscale module, should be adequate for assessing
urban air quality.

Analyses of the type just described have been performed on unpub-
lished oxidant measurements made by Lamb and Neiburger in the Los
Angeles basin in 1967, Preliminary results of this work indicate that
significant microscale oxidant variations occur on freeways themselves.
However, the amplitude of these perturbations decreases very rapidly with
distance, both upwind and downwind, from the freeway. Microscale varia-
tions in oxidant levels also occur on heavily traveled city streets and
in street canyons, but the amplitudes are less than those observed on
freeways. Finally, on all streets with Tittle or no traffic, microscale
oxidant variations are negligible.



These preliminary findings emphasiée the need for a microscale model
applicable to roadways themselves. They also suggest that, except for
sites on streets or freeways, it should be possible to obtain accurate
fixed-point assessments of oxidant levels using an urban-scale model
alone {one in which subgrid-scale concentration variations have been prop-
erly parameterized). We plan to continue these empirical studies so
that we can determine where the true microscale modeling problems lie.

C.  ASSESSMENT OF THE MEED FOR REFINED MICROSCALE
TRANSPORT AND DIFFUSION FORMULAS

The foregoing discussions point toward the need for pollution simu-
Tation models applicable to both freeway and street canyon environments.,
Since within such regions transport, diffusion, and concentration fluc-
tuation effects are controlled by vehicle wake turbulence and other aero-
dynamic effects not normally considered in conventional pollution modeling
theories, the question arises of whether refined diffusion formulations
will be required to develop the microscale models needed. UYe have al-
ready begun to develop a model of wake turbulence that can be used in
conjunction with the theory presented in Chapter III of this report to
simuTate chemical reactions in the wakes of motor vehicles. We also
plan to develop expressions for the kernel p, which enters in the
Lagrangian diffusion equation [see, for example, Eg. (295)], to render
this equation applicable to situations where aerodynamic effects, such
as building and elevated roadway wakes, are important. This work will
be described in subsequent phases of our EPA contract effort,
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APPENDIX A

FORTRAN PROGRAMS FOR USTAR, DKZ, AND UBAR



USTAR = u, ROUTINE

U10 = wind speed at anemometer height,
Z10 = anemometer height, in meters,

ZI = inversion height, in meters,

70 = surface roughness, in meters,
ZIgVL = ZI/L = stability parameter.

FUNCTION USTAR (U10,Z0,Z1pVL,Z1,210)
IF (ZIpVL) 10,20,30

10 Z10=210/71

20=70/71
IF (Z10.GT.0.025.AND.Z0,LT.0.004) GC TO 15

X=(1.-15.%Z10+Z0)*Z1QVL)**0, 25
X0=(1.-15.%Z0*ZIpVL)**0.25
AT=ATAN(X)-ATAN(XO)
A2=ALOG((X-1.)/(X0-1.))~ALOG((X+1.)/(X0+1.))
UTOBAR=(2.*A1+A2)/0.35
USTAR=UT0/UT10BAR

RETURN
15 IF (Z10.GT.0.3)710=0.3
UU=26.22+153.2*210-1428.*%Z10**2+5541. *Z10**3
-7523.*%7210%*4-AL0G(Z0*6.8E6)/0.35
USTAR=UT0/UU
RETURN
20 USTAR=0.35*U10/ALOG((Z10+Z0)/Z0)
RETURN
C EXPRESSIONS BELOW FROM RAGLAND PAPER
30 L7=710%Z1pVL/ZI
IF (ZZ.GT.1.0) GO TO 35
USTAR=0.35*U10/(ALOG((Z10+20)/Z0)+5.2*ZZ)
RETURN
35 USTAR=0.35*U10/ (ALOG((Z10+Z0/Z0)+5.2)
RETURN

END



VERTICAL DIFFUSIVITY ROUTINE

7 = height of level where KZ is wanted,
ZI = inversion height,

USTAR = friction velocity,

F = Coriolis parameter = 20 sin 0,
ZIPVL = ZI/L = stability parameter.

~ FUNCTION DKZ(Z,ZI,USTAR,F,ZIQVL)
IF (ZIpVL) 10,20,30

10 2=1/11
IF (Z.GT.1.0) GO TO 15
DK=-6.934E-3+0.6113%Z+3.297%Z**2
-6.442%7**3+3.153*7**4
IF (DK.LT.0.0) DK=0.0
DKZ=DK*USTAR*Z1

RETURN
15 DKZ=0.6123*EXP(-(Z-1.)**2/.02)
RETURN
20 Z=7*F/USTAR
IF (Z.GT.0.45) GO TO 25
DK=7.396E-4+6.082E-2%Z+2.532*7*1
-12.72*7%%3+15.17*1**4
DKZ=DK*USTAR*USTAR/F
" RETURN
25 DK=3.793E-3*EXP(-(Z-0.45)**2/2./4.E-2)
DKZ=DK*USTAR*USTAR/F
RETURN
30 XL=ZI/ZI0VL
IF (Z.GT.085*XL) GO TO 35
DKZ=.35%USTAR*Z/(1.+4.7*1/XL)
RETURN
35 DKZ=0.0
RETURN

END
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WIND SPEED PROFILE ROUTINE

FUNCTION UBAR (Z,20,Z1,Z1@VL,F,USTAR)

IF (ZIPVL) 10,20,30
10 70=20/71

7=1/11

IF (Z,GT.0.025.AND.Z0.GT.0.004) GO TO 14
X=(1.-15.%(Z+Z0)*ZI1QVL)**0. 25
X0=(1.-15.*%Z0*ZI@VL)**0.25
AT=ATAN(X)-ATAN(X0)
A2=ALOG((X-1.)/(X0-1.))-ALOG((X+1.)/(X0+1.))
UBAR=(2.*A1+A2)*USTAR/0. 4

RETURN
14 IF (Z.GT.0.3) GO TO 15
UU=26.22+153. 2%7-1428. *7**2+554] , %7%*3
~7523.%7**4-ALOG(Z0*6.8E6)/J. 35
UBAR=UU*USTAR
RETURN
15 UBAR=USTAR*(32.33-AL0G(Z0*6.8E6)/0.35)
RETURN
20 70=70*F/USTAR
Z=7*F /USTAR
IF (Z.GT.0.055.AND.Z0.LT.0.006) TO TO 25
UBAR=USTAR*ALOG ( (Z+20)/70)/0.37
RETURN
25 IF (Z.GT.0.21) Z=0.21
UU=29.82+213. 2%7-1989. *7**248743 . *7%*3
-14670.*7**4-ALOG(Z0*1.5E7)/0. 37
UBAR=UU*USTAR
RETURN
30 77=7*71pVL/71
IF (ZZ.GT.1.0) GO TO 35
UBAR=USTAR* (ALOG( (Z+20)/20)+5.2*22)/0.37
RETURN
35 IF (7Z.GT.6.0) 77=6.0

7=17*11/71pVL
WRITE (6,1000)
UBAR=USTAR* (ALOG ( (Z+20)/Z0)+5.2)/0.37
RETURN

1000 FORMAT (1HO, 'NO ACCURATE WIND DATA ABOVE SURFACE LAYER IN STABLE CASE')
END
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ApPENDIX B
DERIVATION OF EQS, (193) AND (195)
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ApPEnDIX B
DERIVATION OF EQS, (193) AKD (195)

Equation (193) states that
. t .
Ap(r,t) = J/:jr p(r - r',t,t") S(r',t') dt* dr'
0

and Eq. (195) reads as follows:

~ t .t
A%([‘,t) =ffjj/ P(l:-f',t,t') P([‘—[‘",t,t") G():l,}:“,tl,t”) dt' dt drl d['“
070

In the derivation of these equations, we first want to show that

— N\
%f {f p(r - r") C{r) D(r') d\:':l dr =fp(1: = r') C(r) D(r') dr’ ’

av(r) )

~

(B-1)
where
— : AX Ay Az
¢(r) 0(r') = grayaz f /‘ f Clr +2) D(r' + ) de, dg dr
Sax Sy Az (8-2)

Since each of the three integrals in.}r dr' in Eq. (B-1) are similar, we con-
sider the one-dimensional case only, i.e.,

X+AX X+AX
J/. d/‘ p(x" ~ x') C(x") D(x') dx*' dx" = ,/t/P p(x" - x') C{x") D(X") dx" dx"

X-AX X=-AX



Let
x" = x - x] + x' 2>dx" = -dx]
Then
X'+ AX
p(x - x]) C{x - X1 + x') D(x") dx] dx
X'=AX
x1+Ax
=fp(x—x])f Clx = xg + x7) D(x') de' dx,
x1-Ax
Now let
c=x‘—x]%>dx‘=dc )
AX
= f p(x - x]) f Clx + ¢) D(xy + z) dg dx,
-AX

Upon repeating for the y and z integrals, we obtain Eq. (B-1).

Now we want to show that

‘17/ [ff p(r - r') p(r - r") S(r') s(r") dr' d[‘"] dr
AV

= ff p(r -~ r') p(r - r") s(r') S(r") dr' dr"

~ ~ ~

where the product mean value in the right integral is defined as in Eq. -(B-2).
To prove this, we start with the one-dimensional problem as before:
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X+AxX .
f ff p(z - x') plg = x") S(x') S(x") dx' dx" dc
X=40X

= 5%;- J{‘P(c - x') S(x") F(z) dx' dg ; (B-3)

where F(z) = p(z - x")S(x")dx". We can use Eq. (B-1) to write Eq. (B-3)
in the form

p(z - x') S(x') F(z) dx' , (B-4)

where

m AX

S(x') Fz) - 5%;- J/. J/'p(c - x"+g) s{x! +g) S(x") dx" dg

-AX
Now let
xll - Xu + £ = dx" = dx*

Then

m AX

S(¢) F(e) =gy [ f el - ) SO+ ) SG )t a

-AX

"""
yjp plz - x") S(x') s(x") dx" ,

where the tilde average here is defined as in Eq. (B-2). Using this result
in Eq. (B-4), we obtain
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AppeENDIX C

FORTRAN LISTINGS OF THE CALC, SIGMAX,
AND SIGMAZ FUNCTIONS
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_SUBROUTINE CALC{XALPHA+YALPHA+ZALPHASXR YR ZReISTYPE JXLNGTHsTHET A
L4 . DELTAXDELTAYWDELTAZ,UBER<VEARWRESULT)
COMMON/MICRO/Z ITEMAX JNCHECK  HNSAHMP s XSAMP EPSLON, IXsRITFELSIGFAC
COMMON/TABLE/ ERFT(1S0S)«EXAPT(200S8) +NERFoNEXPWERFLIMDERF «DEXP,
e e EXPLTM - —— e
DIMENSION TEST(50)
LOGICAL HALTWRITEZCALL1
I0OUT = ITRMAX/NCFECK + 1 i
. SQ2 =-1le4142135-- —_——
SQ2PI = 2.5066283
T2PT = €.2821&S53
DELTA=0.0
———— IF-{ISTYRPE}-20,+10+15
i0 COSTH = COS(THETA)
SINTH = SIN(THETA)
XL02 = XLNGTH/2.
DELTA=XLC2 — —

15 DX02 = DELTAX/2.
DYD2 = DELTAY/2.
—— DZ02_= DELTAZ/2 6 ———.. N
DELTVE = DELTAXXDELTAY*DELTAZ%8
DELTA=0X0D2
20 XMXA = XR=XALPHA
R YMYA_=_YR—-YALPHA i —
ZMZA = ZR-ZALPHA
TZPZA = ZR4+ZALPHA
. ZMZA22 = ZMZAX%X2/2.,. <
ZPZA22 = ZPZAX*2/2.
R = SQRT(XMXAEXMXA+YMYARYMYA)
VEL = SQRT(UBAR®UBAR+VBAR®VBAR)
TO = R/VEL
SIGX=SIGNAX(TO) . ____
SGDELT=SIGFACHSIGX+DELTA
TUP={R+SGDELT)Y/VECL
TLO=(R-SGDELT)/VEL >
I (TL0lTo0.0)_TLO=0LA
TRNGE = TUpP-TLO
IF(TRNGE«NE«.0.0) GO TO 25
WRITE(6,1030)
RESULT=1.0E7S

RETURN
SUM=0.0
WRITE(E,1028) XMXAYMYA,; ZMZAZVEL s TLOsTRNGESIGX
DO 200 ITROUT=1L,I12UT.

ITRS = ITRGUT®NCHECK
DD 90 ITRIMR=1,NCFECK
C "RANDOM ROUTINE
1Y = _IX%®E5E39
IF (1Y) 50.51,51
50 IY = IY+21474832647+1
51 ZFL = 1Y
. e TT=ZFL%044656613E=9 .. .
T=TT®TRNGE+TLO
IX = 1Y
€ END_RANDCM. ROUTINE _
IF(T.NE.0.0) GO TO 55
PXPY=0.0
c THIS ASSUMES THAT THE RECEPTOR IS NOT ON A SOURCEs.e«sTHUS PXPYPZ=0.
GOo._IYa__<9a
55 SIGX=SIGMAX{T)
SIGX2=SIGX=xSIGX
SIGZ=SIGMAZ(T}
S1GZ2_.= SIGZ®SIGZ

XUBART=XNVXA-UBARXT

YVBART=YMYA-VPRARXT .
SQ28GX=5S02%xS1GX
S025G2=502*S1G6Z. -
IF(ISTYPE) 60465470
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60 EXPARG= ( XUHAR T2 XUBAR T+ YVEAR TXYVBART) /2 0/S1G
PXPY=EXPC(EXPARG)I/SIGX2/T2P [ «07516xa
.GO TO 75 e T — e e
65 EX=(XUBART*COSTH4YVRART*SINTH)=%2/2./6160%0 7

A1=(YVPAHT*COSTH~XUHART*SINTH+XL02)/SOZSGX
A2=(YV@AQTﬁCOSTH~XUBART*SINTH—XLOZ)/SO2SGX

- - PXPY=EXPO(EX)%(ERROR(ALI~ERRORLA
GO To 75 2Y)/2./502P1/S51GX

70 Al=(XUBART+DX02) /SQ2SGX
© A2=(XUBART-DX02)/502SGX
- —-A3Z{YVBART4DYC2)/S02SGX .___
AG= (YVBAKT-DYO2) /SQ2SGX
PXPY=(ERROR(A1)-ERROR(AZ))*(ERRDR(A3)—ERROR(A4))/

¥ DELTVS
TS e _IE(ISTYPE) B0+80.,85 ... . o
80 PZ=(EXPD(ZMZA22/SIGZ2) +EXPO(ZPZA22/S1G22) ) /SQ2P1/SIGZ
GO T0 90
85 A=(ZMZA+DZ02) /SQ2SGZ

B=(ZMZA-CZC2)/SQ2SG2~ — ——

C={ZPZA~DZ02) /SQ25G7
D=(ZPZA+CZ02)/SQ2SGZ
PZ=ERROR(A)}~-ERRODR(BI+ERROR(D)=~ERRQOR(C)

S0 SUM=SUM+PXPY%PZ . ___ e
T22=SUM/FLCAT(ITRS)} .
TEST(ITRCUT)=T22
IF(ITROUT-NSAMP.LT.0} GO TO 200
L CCNVERGENGCE. . ROUTINE .. : - S
. SUMJ=0.0 :
JMIN=TITROUT-NSAMP+1
00 150 J=JMIN,ITRCUT

—-150 SUMJ=SUMJI+TEST(J) — e
SBAR=SUNJ/ XSAMP
SUMJ=0.0
DO 160 J=JMIN, ITROUT
—--160 SUMJ=SUMJIH(TEST(U)=-SBAR )42, . . -

HAL T=SQRT(SUMJI/ XSAMP ) LE.EPSLON®SBAR
IF(HALT) GC TO 205

200 CONTINUE
205 RESULT=TRNGEXxT22 - ———
- IF{ NOT4RITE) PETURN

DO 280 JTEST=1, [TROUT
ITRN=JTESTANCHECK
~—280—— e WRITE (6 +1-042) ~ITRNy TEST{ITEST-> e
RETURN
1028 FORMAT(1HO,7E13.5)
1030 FORMAT(1HOs *RECEPTOR LIES ON A PCOINT SOURCE")
lOQZ-FORMAT(lH—vJAFTER‘c1692X1‘4TERATIONS~TEST=LvElZcS)
END :

- SUBROUTINE TABLET
— COMMON/TABLE/-ERFT{1505)4EXRTL(2005) s NERFoNEXPRLERFLIMIDERFHDEXP,
% EXPLIM
Y=0.0
NO2=NERF /2

NQO2P1=N0O2+1
DERF=ERFLIM/FLOAT(NDO2)
ERFT(NOZ2F1)=0,0
00 15 N=1,NO2
Y=Y +DERF -—
ERE=ERF(Y) .
ERFT(NO2P1+N) =ERE
18 ERFT(NOZ2P] -N)=-ERE
DEXP=EXRLIM/FLOAT(NEXRP]
X==DEXP
DO 20 N=1.NEXP
X=X+DEXP
20 EXPTIN)=EXP (=X}
RETURN
END
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FUNCT [ON EXPO(ARG}
”CUuMOngggt?; ERFT(lSOS)oEXPT(ZOOSlvNEQFoNEXPcERFLIMvDERFvDEva
IE=IFIX(ARG/DEXP) +1
IFCIFE«GTeNFXP) [E=NEXP

o oeme——~ EXPOsSEXPT{IE)- -
RETURN (1E) e

END

~—~FUNCTION ERROR(ARG) _
COMMON/TABLE = 5

- Exétig ERFT(1505).EXPT(2005)oNERFcNEXP.EQFLIM.DERFeDEXP.
IERF=IFIX((ARG+ERFL IM} /DERF )+

—IF(IERF.«LTsl) . 1ERF=1 __.__-) !
IF(IERF «GT oNERF) IERF=NERF
ERROR=ERFT( IERF)

RETURN
e ENDe

(EuncTIon S1guazcT)
COMMON WSTARUSTARsHeF
~———IE{WSTAR) 30,20010.._.

10 ~ T Ys= TedsSTAR/H
IF(TS.GT«0.525) GO TO 15
SIGMAZ=H* (0 +65%T S~1 ¢B8I*TSHTS+S 0 32HTSHE3)

—— _RETURN ) —_—
15 IF(TSeGT=1.1) GO TO 16
SIGMAZ=H¥ (=111 1%XTS%TS+2,344%TS=0,334 )
RETURN
16 SIGHMAZ=HE0.Q
. RETURN
20 TS=T+*F/0.45
USTARF=ULSTAR/F
IF(TSeGT0.05) .GO .TR_-2 .
SIGMAZ=06e4S%xUSTARF%0Q0e64%TS
RETURN -,
21 IF(TS:GT.0.178) GO TO 22 _
SIGMAZ=0 4SHUSTARE#{ L0140, 4KTS )
RETURN
22 SIGMAZ=0.45%USTAPF.{ 0, 05840129%TS) N
IF(SIGMAZoGTo0315USTARF) SIGMAZ=C+31%USTARF
ol THIS L IMIT_DUE TO_ MAX(SIGZ/HI=QA_ IN_ UNSTABLE CASE AND _H=.335USTAR/E 1
C NEUTRAL CASE.
RETURN
30 WRITE(6,1003)
SIGHMAZ=0.13{USTAR/E]}
RETURN : ,
1003 FORMAT(1HO,.*ND SIGMA DATA FOR STABLE CASE®')} .
END

FUNCTION SIGMAX(T)
s USTARHs F
IF(WSTAR) 30,20410
10 ITS=T2WSTAR/H...—
IF(TS.GT«0.05) GO TO 1S ;
SIGMAX=2.2%TS%*H ) . o ¢

RETURN
15 SIGMAX=HX(0.045+1.307%TS)
RETURN
TS=T%F/0.45
IF(TS.GT.0.1) GO TO 22
— e SIGMAX={ 4 5%¥USTAR/F) %1..85x2TS -
RETURN
22 SIGMAX=( 45%*USTAR/F )% (0e14+092%TS)
RETURN
—-30 . ~MRITE(£41003). .
SIGMAX=0.5%(USTAR/F)
RETURN

1003 FORMAT(1HOs °NO DATA FOR STABLE CASE¢)
.- END
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APPENDIX D

THE MONTE CARLO TECHNIQUE
USED BY THE CALC SUBPROGRAM

We propose to use a Monte Carlo technique to evaluate the integrals
entering in Eqs. (302). (305), and (306). The technique is best des-
cribed by the mathematical analyses that are required to prove its validity.
Consider a function f(t) defined in the interval tO <tx tO + T
as shown in Figure D-1. Suppose we pick a sequence of numbers ti’
i=1,2,...,n, at random in the interval tO <t < tO + T. We choose the
numbers by a random process such that each number in the interval is
equally Tikely to occur. For each number ti in the sequence, there is

a corresponding unique number fiz

Thus, the probability of observing a value f in the range fi < f s fi + f
is by definition

m(e.)

p(f;) = prob(f, < f = f, + f) = ! , (D-1)

where m(ej) is the measure of the set e, in which fi < f(t) < fi + f
(see Figure D-2) in the domain (to, tO+T).
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Now, by definition of the Lebesque integral, we have

0
J‘ f(t) = 1im :z f m( , (D-2)

Af>0
Y

where the summation is over all intervals fj in the range -~o < f < =,
Let the mean value of the random sequence f(t;)., i = 1,2,...,m, generated
above be noted by

n
% Z f(t - (D-3)

i=1

Then by definition the ensemble mean value of the random variable f(t;) is

f=1imf_ = lim 25 f. p , (D-4)
n-oo Af>0

where p(fj) = prob(fj < f<fy+ Af) and the summation is over all
intervals fj in the infinite range of f values. From Eqs. (D-1) and (317),
we obtain

= 1im ES f

Af>0 )

Comparing this with Eq. (D-2), we see finally that

t 4T n
0
f F(t) dt =T 1 [Jn— z ] . (0-5)

Yo ]
This result means that we can approximate the integral of any function
f(t) over any domain by simply multiplying the length of the domain T by
the mean value of the random variable f(ti) formed by picking points ty

at random in the domain of integration.
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The speed of execution of this Monte Carlo integration technique
can be increased greatly by tabulating the exponential and error func-
tions that appear in the integrands of several of the integrals of
interest. That is, rather than use the EXP and ERF FORTRAN routines to
compule the function value each time it is required, we create a table
of the values of each function initially and look the value up in the
table as needed. This procedure has been found to reduce computation
time by about one-third. The subroutines and functions TABLET, EXPO,
and ERROR listed in the CALC program replace the EXP and ERF functions.
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AppeEnpix b

DERIVATION OF T, I, AD L, FRON
MULTIJET REACTOR DATA AND TOOR’S THEORY

The purpose of this appendix is to give a brief description of the
multijet reactor data and how we used the data to calculate the inert

correlation functions (EAB’ EA’ and fB) used in Chapter III.

As noted in Chapter III, Toor (1962) developed a theory that relates
the concentration statistics of two species undergoing a very rapid irre-
versible reaction in a turbulent mixer to the concentrations of inert
species in an identical mixer. To test the theory experimentally, Vassilatos
and Toor (1965) designed an ideal one-dimensional tubular reactor having a
head made of some 100 small nozzles (Figure E-1). Reactants are fed through
alternate jets to simulate a cross-sectionally uniform concentration profile.
A modified version of this reactor was later made and used by Mao (1969).
Extensive measurements covering a wide range of reaction speeds were made
in these reactors. However, the results provided only a partial test of
Toor's theory because no inert mixing data were taken. Later measurements
of inert concentration statistics in the same reactors by McKelvey (1968)
and Zakanycz (1971) have corroborated Toor's theory.

polymethyl methachylate—-—\\*
/ vl / B T‘

00000
LK)
60a0:0, 5000,
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e 6 ¢ 6 ee o
0.0.0 0000
6 6 6 0 v 0 v @
606050,0,0,0.00
o'owobooooo:o
0,0,0,050

(ST
[\woysions,
B

S ————
TS WSS

)y
A
(9)]
\

FIGURE E-1. SIDE AND END VIEWS OF TUBULAR REACTOR
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The theory presented by Toor (1962) states that for very rapid reactions
with stoichiometric feed,

<A'B'(x)>%
)>)>= L1 - (E-1)
<ApB (%)

where x = <{u(x)>t is the axial position along the reactor length and Xg 15
some reference point where the reactor has reached the state of cross-
sectional homogeneity. Toor and his coworkers designed the multijet reactor
so that homogeneity is achieved virtually at the inlet of the reactor. Thus,
we set Xg = 0. Toor (1969) further derived a relationship between the con-
centration fluctuations of two unpremixed inert species fed into this reactor:

Aoy (o) (82)

(E-2)

Since the concentration field is assumed to be cross-sectionally homogeneous,
the initial concentration fluctuations can be obtained theoretically by
cross-sectional averaging. If one-half of the nozzles feed inert species A
and the other half feed B (which is true for Mao's reactor and approximately
true for Vassilatos'), it is easy to show that

2 2
(8 (0) = <ap
(E-3)
2 2
B;(0) = <6
Since the species are not premixed,
CABL(OD = - <A <Bp . (E-4)

Combining Eqs. (E-1) through (E-4), we obtain
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PAB(X = (””Y?T'" Z‘};z@;;‘“ . (x) (E-5)
<A12(x)> <A (x) 5
Tplx) = ———=—=1 =1+ F (x) =rg (E-6)

(ap? (A >2

where <AI> and <BI> are independent of x due to homogeneity. Equations (E-5)
and (E-6) are used to convert F_(x), the concentration decay of very rapid
stoiEhiometric reactions, to the inert concentration correlations fAB’ fA’
and Ty

Conversion data of reactions with rate constants greater than 107 1/g-mole-sec
are not distinguishable from one another in the chemical reactors of Vassilatos
and Mao. Therefore, these data represent very fast, diffusion-limited reac-
tions and may be used for F_ in Eqs. (E-5) and (E-6). Figures E-2, E-3, and
E-4 show the data of F_ for three different flow conditions. Since data do
not extend to the inlet of the reactor, we used a cubic spline function to
extrapolate the first data point back to the reactor inlet. The reader is
referred to Shu (1975) for further information regarding these data.
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AppenDIX F

ESTIMATION OF THE ORDER OF MAGNITIME OF
THE TIME SCALE OF DECAY OF A”Z

When the first term on the righthand side of Eq. (156) is expressed
in the form (157), we find that, in the absence of any mean transport,
chemical decay, or sources of subgrid-scale concentration fluctuations,
an initially present mean square fluctuation field A"" decays according to

‘/‘
Yy “ZKx'Kfﬁ

ot X2

(F-1)

where A is some length scale and K, is the eddy diffusivity. In other
words, the time scale of decay of Aﬂé due to turbulent diffusion is of
the order of

22

T~ Z—
K)\

(F-2)

We wish to show from an estimate of T that A is of the order of the size
of the grid mesh upon which the mean concentration field K is defined.

For simplicity we consider a one-dimensional problem governed by
the equation

9 82C
9 =K 2E o+ s(z)e(t) (F-3)
ot 2
52
with initial and boundary conditions
c(z,0) = 0 (F-4a)
Tim c(z,t) =0 (F-4b)

7>t
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where K is the turbulent diffusivity, assumed to be a constant, and § is
the delta function. The solution of (F-3) and (F-4a,b) is found to be

-1/2 22
c(z,t) = (4mKt) eXp(:'ZKE . (F-5)
Now Tet
z+AzZ
N _ b . ;
c(z,t) = ZAZ/ c(z',t)dz ) (F-6)
7-A7

Averaging (F-5) in this manner we obtain

1y = L zhoz\ | e (222 i
c(z,t) = e erf < 4Kt) erf’(\ﬂﬁzé) , (F-7)

where

is the standard error function. Note that Eg. (F-7) is the solution
of the equation obtained by averaging Eq. (F-3), that is

. g, 1 ~ .
= = K ;‘2-‘* N U(z)s(t) ’ (F-8)

where

1, -4z < z < Az,

~———
i

0, otherwise.
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Let us assume that Eq. (F-8) is a grid model representation of Eq. (F-3)
and that ¢, as given by Eq. (F-7), is the model's output. The subgrid-
scale variations are therefore [from Egs. (F-5) and (F-7)]

1] - 1 22 ] + -
c"(z,t) = - exp {- ——) - —— jerf {ZA2]). opq (242 F-9
. 4Kt ( 4Kt) 4A7 ‘VMKt ke - (F9)

We can see from this expression that the amplitude of the SSV decreases as
the discretization interval Az in the grid model is made smaller. Moreover,
for fixed Az the SSV in this example decrease with time.

To obtain a more concise description of the relative magnitude of the
subgrid-scale variation c", we note first that c¢" is largest at the source
location (i.e., z = 0). Thus, the maximum amplitude of c" relative to €
can be expressed by

c"(0,t) , (F-10)

o(t) = S
c(0,t)

From the expressions for c" and ¢ we obtain

. -1
p(t) = 2_ [o*erf (%—)] -1 > (F-11)
Vo

ikt (F-12)
AZ

where

In words, o* is the approximate half-width of the pollutant cloud, normalized
by the grid mesh size az, at time t! It is evident from Eq. (F-11) that o*
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is the key parameter which determines the relative size of the SSV in this
instance. On evaluating Eq. (F-11) for several values of o*, we obtain

p = 10 when o* = 0.1; o = 0.34 when o* = 1; and , = 0.08 when o* = 2. Thus,
the time scale of decay of p is of the order

T - AZZ
o~ T K - (F-13)

Now since ¢ (0,t). which enters in the definition of o [in Eq. (F-10)], also
decays with time, the decay rate of c¢"(0,t) can be no faster than that of p.
Furthermore, since c¢"(0,t) represents the maximum amplitude of c’(z,t), it
is not unreasonable to assume that the time scale of decay of c“2 is com-
parable to that of c"(0,t). From all of these considerations we conclude
that

2
T~T ~ 5%, (F-14)

and hence that the length scale X, defined in the beginning of this appendix,
is of the order of Az.
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