LAND APPLICATION OF WASTEWATER IN AUSTRALIA

The Werribee Farm System

Melborne and Metropolitan Board of Works
Victoria, Australia

by

BELFORD L. SEABROOK Professional Engineer

MAY 1975

U.S. ENVIRONMENTAL PROTECTION AGENCY
Municipal Construction Division
Office of Water Program Operations
Washington, D.C. 20460

ABBREVIATIONS

Board - MMBW-Melbourne and Metropolitan Board of Works

BOD - biochemical oxygen demand

em - centimeter

('Ol) - chemical oxygen demand

Farm - Werribee I arm soil treatment system of MMBW

in, - inch

MMBW - Melbourne and Metropolitan Board of Works

N - nitrogen

mgd - million gallons per day
mg/l - milligrams per litter
ppm - parts per million

P - phosphorus

SS - suspended solids

TERMS

Conventional secondary treatment - Reduction of pollutant concentrations in wastewater by physical, chemical or biological menas.

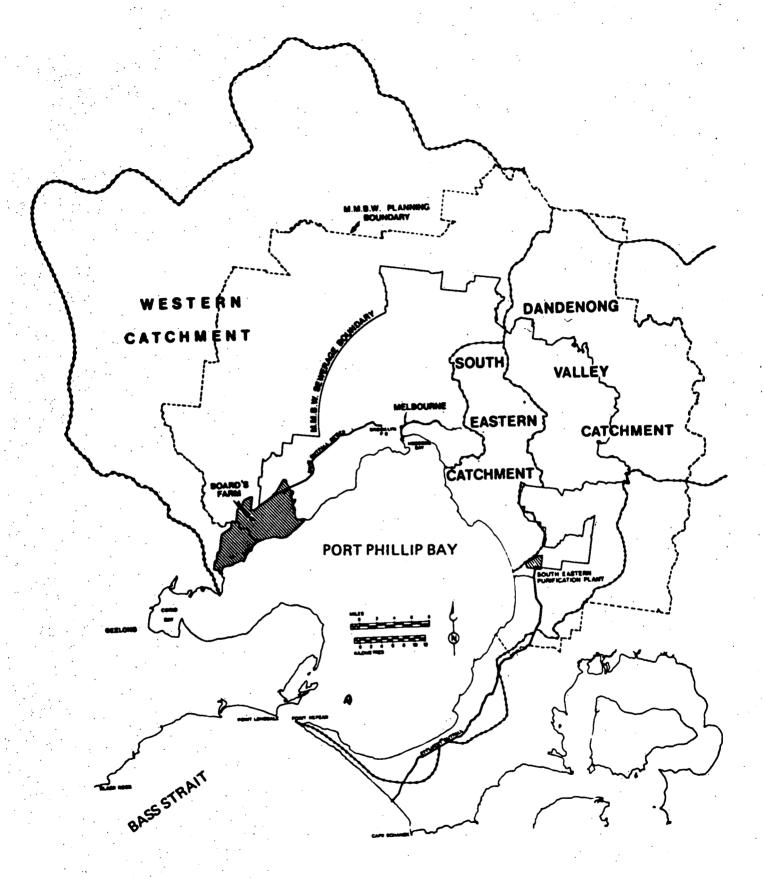
Crop irrigation - Application on land of water to meet the growth needs of plants.

Evapotranspiration - The unit amount of water used on a given area in transpiration, building of plant tissue, and evaporated from adjacent soil, snow, or intercepted precipitation in any specified time.

Grass filtration - Same as overland flow.

Land application or Land Treatment - The discharge of wastewater onto the soil for treatment, reuse or crop irrigation.

Overland flow - Wastewater treatment by grass filtration, flooding or spray-runoff, in which wastewater is applied onto gently sloping, relatively impermeable soil which has been planted to vegetation. Biological oxidation occurs as the wastewater flows over the ground and makes contact with the biota in the vegetative litter.


Raw sewage - Untreated wastewater.

Secondary treatment - Something more than primary treatment, usually treatment by physical, chemical, or biological means such as trickling filters, activated sludge, or chemical precipitation and filtration. Sometimes called mechanical treatment.

CONVERSIONS

1 Acre feet = 3,060,000 US gallons, or 2,550,000 Imperial gallons

A\$ = Australian dollars

MELBOURNE AND METROPOLITAN AREA

SUMMARY

This report concerns the Werribee Farm soil treatment area operated by the Melbourne and Metropolitan Board of Works (MMBW). The Board (MMBW) was constituted in 1890 by an Act of the Parliment of Victoria to develop and operate a system of main and general sewerage for the metropolis. James Mansergh, an eminent sanitation engineer from London, submitted eight alternative schemes, five of which involved treatment by land; two, disposal by ocean outfall; and one, by chemical precipitation. Mansergh stated that the Werribee site was situated for land purification of sewage because it was exceptionally dry and had an abnormally low rainfall compared with surrounding districts. His recommendation, based on proven success in England, and on the benefit of irrigation in an area of low rainfall, was for disposal by flood irrigation on prepared land without prior treatment of the sewage. Even today raw sewage is used at the Werribee Farm. Work began in 1892; and in 1897, the sewage from the first property (a hotel) was delivered to the system. Mansergh, of course, could not have foreseen Melbourne's rapid population growth nor the demands that would be placed on the Werribee Farm within 30 years of its establishment. By the late 1930's, the heavy waste loadings had made it necessary to not only enlarge the area of the Farm, but also to complement land filtration (called crop irrigation in the United States) with sedimentation,

grass filtration (overland flow) and lagooning. Despite these additions to the Farm's land treatment operations, the 1897 system remains, to this day, basically as it was originally conceived and build. Even the introduction of the South-Eastern Sewerage System (in 1974) on the opposite side of Port Phillip Bay fulfills Mansergh's original concept of a disposal system serving each side of the Bay. The relationship of the Werribee Farm to the South-Eastern Sewerage System can be seen on the accompanying map of the Melbourne Metropolitan area. In June 1974, there were some 800,000 ratepayers (population 1,880,000) being served by the Board. The Werribee Farm serves about 95 percent of the sewered areas in the metropolis. The balance is served by four other major and two minor systems.

For the fiscal year ending June 1974, the annual per capita cost of the Board's Werribee system was A\$1.13 (US\$1.53) for 95 percent of the population of 1,880,000. This figure includes all current costs. The capital costs of the land and the original construction were written off years ago. The average daily flow to the Werribee Farm is 125 million British Imperial gallons (150 mgd US).

The principal problem with land treatment at MMBW is caused by the increasing hydraulic load per capita coupled with the increasing population served by the system.

Because the cost of purification at Werribee is substantially less than by mechanical treatment, as well as because the quality of the effluent from Werribee is higher, the MMBW intends to continue to utilize land treatment to the extent possible. However, as the populations of Melbourne and Geelong increase, and the urban areas extend outward toward the Werribee Farm, the acquisition of additional land adjacent to Werribee has not been possible. As a consequence, MMBW is constructing conventional secondary mechanical treatment works and plans to transfer about 45% of the hydrological load from the Werribee Farm to the new South East mechanical system. In spite of this, by 1980/81 the MMBW estimates that the pollutant loading will return to the maximum that the Werribee Farm, as presently operated, can handle.

Currently all sewage to the Werribee Farm is raw sewage. This has been the practice since land treatment was started in 1897. However, in order to provide increased treatment capacity at Werribee, MMBW is giving consideration to using a combination of part primary to full secondary treatment in conjunction with biological processes.

In summary, the MMBW Werribee system is in full operation, is most successful, is substantially lower in annual per capita cost of operations, and MMBW intends to continue to operate its land treatment facilities indefinitely.

LAND TREATMENT IN UNITED STATES

The Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500), the legislative history of the Act, and the regulations which have been issued in accordance with the provisions of the Act, provide the statutory basis for consideration and funding of land-application systems in the treatment of municipal wastewater.

The rationale and goals within which land-application systems are to be considered are contained in the following sections of the Act:

Section 208 - Areawide Waste Treatment Management

Section 201 - Facilities Planning

Section 304 - Best Practicable Treatment Technology (BPT)

Section 212 - Cost Effectiveness Analysis

These sections, together with the regulations pertaining to these sections of the Act, and the Program Memoranda to the EPA Regional Administrators, have resulted in a growing interest in the United States in soil treatment systems for municipal wastewater. The EPA Deputy Administrator, on November 1, 1974, wrote to the Regional Administrators urging them to ascertain that the regional review of application for construction of publicly-owned treatment works requires that land application of wastewater be considered as an alternative waste management system. The DA said that the RA's should refuse to fund projects using other systems of waste treatment if it can be demonstrated that land treatment is the most

cost-effective alternative; is consistent with the environmental assessment; and, in other aspects, satisfies applicable tests.

This memorandum is attached hereto.

In addition to the potential for being the most cost effective treatment alternative (note the MMBW total annual per capita cost for the fiscal year ending June 1974 is US\$1.53 for sewage treatment serving 95 percent of the population of 1.88 million people), another significant reason for the growing interest in land treatment is that PL 92-500 gives authority to the EPA Construction Grants Program to fund publicly-owned soil treatment systems including the acquisition of the land that will be an integral part of the treatment process -- Section 212(2)(A).

Application of Wastewater by American Public Works Association, identifies certain existing soil treatment systems that were started in the United States as early as 1880. However, these early systems started as disposal projects, and there is a major gap in reliable design data and information. The consequences of this dearth of design information has handicapped the construction grants program, primarily because of the lack of standard criteria. Another deterrent has been the lack of information concerning potential health hazards from soil treatment systems.

Strangely, however, the same dearth of information concerning potential health hazards from secondary treatment and discharge to surface waters has not slowed the demand for the more costly conventional reinforced concrete treatment works. In fact, it seems to me that there could be far greater health hazards from secondary discharge into surface waters because these waters are so often used as sources of potable water by other downstream municipalities.

INTRODUCTION

There are 17 residences located in the midst of the Werribee Farm which are used by farm employees and their families. I visited several of the homes of farm employees, met members of their families including the children, and enjoyed a Sunday picnic on the front lawn of one of these residences. There is no evidence of health hazards caused by sewage irrigation in the adjacent fields, and no concern was expressed by the occupants of these houses about potential health hazards. To the foreign observer that I was, these residences appeared no different than any other farm residences, and their occupants appeared no different than any other farm families, either in Australia or in the United States. Incidentally, on previous trips to Australia I visited many rural communities in every Australian state, except the Northern Territory, and I lived and worked on farms in the United States over a period of several decades.

In my judgment, the farm houses located on the Werribee
Farm are better than the majority of farm dwellings in the
United States, and the occupants are living under better health
conditions than some of their counterparts in both Australia
and the U. S.

The Werribee Farm soil treatment system is the outstanding project in Australia from the standpoints of the lowest annual operating costs, success, size and extent of experience with the use of wastewater effluents. The map of Melbourne on page 2 shows the relationship of the Board's Werribee Farm to Port Phillip Bay and the surrounding Melbourne and Metropolitan areas. The South-Eastern Purification Plant (secondary treatment) is also shown on this map.

The Farm has served the residents of Melbourne as a reliable and economical means of wastewater treatment and utilization since 1897. The use of wastewater for irrigation of pasture land, and the subsequent production of cattle and sheep, is an outstanding example of reclamation and conservation. Over the years, however, population and industry have increased greatly. As a result, the Farm is no longer able to cope satisfactorily with the volumetric and organic loadings imposed upon it.

LIVESTOCK AND THE TREATMENT PROCESS

The livestock at the Farm are not only money-earners from the point of view of meat, they are also an essential part of the treatment operations.

Because wastewater treated at the Farm contains a high proportion of natural fertilizers, it promotes a prolific growth of pasture; but since crop irrigation is an efficient method only if the vegetation cover is kept short, cattle and sheep are effectively used to "mow" the grass.

Sheep were introduced to the Farm in 1900 and cattle some 10 years later. In the years since, the Board has sold more than 1.7 million sheep and well over a quarter million head of beef cattle from its Angus and Hereford herds.

Grazing of sheep is on a seasonal basis, and the Board buys the animals in various parts of the southeastern corner of Australia to fatten them for market. The beef cattle, on the other hand, are bred on the Farm and remain there until they are ready for sale. The most suitable animals are retained for breeding and the others are sold as prime meat on the hoof at Newmarket, Melbourne.

Sales of cattle are subject to the condition that they must be immediately slaughtered at an abattoir in the Melbourne metropolitan area, and those killed must undergo rigid inspection. This condition, imposed in the 1920's by the Parliament of Victoria, was a political one obtained by the commercial beef producers and had no health hazard basis.

Diversion to the South Eastern Purification Plant of a portion of the wastewater now reaching the Farm will ease, but not solve, the situation for a number of years, but continued growth in the Western Catchment will produce flows and loadings well in excess of those at present. For example, the loading of biochemical oxygen demand will total about 750,000 pounds per day before completion of the South Eastern Purification Plant; diversion to that plant will remove slightly over 100,000 pounds per day; increased development in the Western Catchment will gain this amount back before 1985; and, less than fifty years hence, the total loading may exceed 1,000,000 pounds per day.

The Farm system serves about 95 percent of the sewered areas in the metropolis. Except for wastes from the greater part of the Municipality of Sunshine, which are discharged directly in the Main Outfall Sewer, and from Williamstown, which enter the main system at Spotswood, all wastes collected by the Farm system flow by gravity through two main sewers - the North Yarra and the Hobsons Bay Main Sewers which unite at Spotswood.

The combined flow then continues for 2 1/4 miles via a 9 ft. 3 in. diameter trunk sewer which terminates at the Brooklyn pumping station. Flows in this sewer enter the pumping station through two penstocks, or control gates, set at the bottom of a well, 144 ft. deep and 22 ft. in diameter. The penstocks control the flow into each of two protective screen wells, 156 ft. deep and 22 ft. in diameter.

From each screen well, the flow continues to its corresponding pump well.

The two pump wells are each 178 ft. deep (internal) and 66 ft. in diameter. Four pumps are installed in each well, and the eight pumps are driven by individual electric motors, the combined rating of which totals 12,800 horsepower. Each pump has a maximum capacity of 42 mgd (50 mgd, US).

When Melbourne's sewerage scheme was originally designed, Port Phillip Bay was selected as the most suitable body of water for the final disposal of the effluents after purification.

The most suitable method of purification known in European countries at the time was land treatment, and the site chosen near Werribee, between the Geelong Road and Port Phillip Bay, possessed all the factors essential for the satisfactory operation of the method--ample area, reasonable isolation, suitable soil and climatic conditions.

An area of 8,847 acres was acquired, and the preparatory work began in 1893. As the city has grown, it has been necessary to expand the Farm area, and today it covers 27,000 acres or nearly 42 square miles.

The Board's Farm at Werribee begain operating in 1897. By 1900, it handled a wastewater flow averaging 12 million gallons per day (14.4 mgd, US). Since that time, the flow has increased as a result of growth of population and industry in the metropolitan area, and at present, averages about 125 mgd (150 mgd, US or 568,650 cubic meters). The mode of operation, originally begun as irrigation of 6,000 acres of

land to produce pasturage for cattle and sheep, has been expanded over the years to include all-year use of anaerobic and aerobic lagoons, sedimentation basins and open sludge digestion lagoons, as well as overland flow (grass filtration) from mid-autumn to mid-spring when irrigation demands are minimal or nil.

Rainfall at the Farm averages 19 in. (48.3 cm.) annually, of which about 12.5 in. (32.2 cm.) of evenly distributed rainfall can be expected during the crop irrigation season; whereas, the evapotranspirational potential during the same period averages about 35.6 in. (90.4 cm.), indicating that a major portion of the annual application of 44 in. (112 cm.) of sewage effluent has evaporated. The daily flows of raw sewage arriving at the Farm vary greatly depending upon rainfall. The current average flow is about 150 mgd (568,650 cubic meters); however, during storm periods peak flows as high as 300 mgd (1,140,000 cubic meters) may occur. Temperature variations are from a low of 40 degrees F (4.4 degrees C) in winter to a high of 112 degrees F (44 degrees C) in summer.

SOIL CHARACTERISTICS

There is no detailed classification of the Farm soils, but the surface of the soil profile consists of a red-brown silt clay loam which is slightly acid. Clay occurs at a depth of about 12 in. (30 cm.). The depth of the clay subsoil is substantial, extending far below any core samples

that have been recorded. The report issued by the U.S. Army Corps of Engineers in Jamuary 1974, entitled, "Selected Chemical Characteristics of Soils, Forages, and Dramage Water from the Sewage Farm Serving Melbourne, Australia", contains much detail on soil and forage characteristics.

GENERAL OBSERVATIONS

Many aspects of the Farm operations are praiseworthy. Widespread recognition of the need to conserve or reuse natural resources has evolved only in recent years; however, since 1910 the Farm has reused wastewater from Melbourne for irrigation of pasture land. This process has converted land of little potential for agriculture to prime pasture which now carries over 20,000 cattle and 10,000 sheep. By using the natural resources, water and land, the Farm has marketed more than 270,000 cattle and 1,500,000 sheep since 1910. Taking into account the equipment and manpower costs related to livestock production, the net returns from sales presently average over A\$500,000 (US\$675,000) per year and significantly reduce the costs directly associated with sewage purification at the Farm. Thus, from conservation and financial standpoints, the Farm represents a valuable resource to the residents of Melbourne.

Initial diversions from the Farm system to the Board's South Eastern Purification Plant are scheduled for 1975. Although this will result in lower loadings at the Farm in the short-term, growth of population and industry tributary to the Farm will generate additional loadings well in excess of those diverted.

FARM OPERATIONS

It is logical to consider operations at the Farm from two standpoints: first, in relation to its primary function for wastewater
treatment and second, in terms of its use for livestock production.
In addition, approximately three-fourths of the Farm area is a declared Wildlife Sanctuary and provides a habitat for a variety of waterfowl and other birds and animals.

WASTEWATER TREATMENT

In the early years, treatment at the Farm consisted of land filtration by irrigation of pasture land with the underflow collected in drainage channels and discharged to Port Phillip Bay. During winter, wastewater flows in excess of the land's capacity were held in shallow lagoons along the foreshore. Increasing flows during the intervening 70 years have lead to increasing the size of the Farm from about 6.000 acres to nearly 27,000 acres. Of this total, about 17,000 acres are used for some form of treatment, and the balance is devoted to dry grazing, roads, buildings, yards, and other purposes.

The use of grass filtration (overland flow) during winter months began about 1928 and made it possible to phase out the shallow lagoons along the foreshore previously used for winter flows.

Anaerobic and aerobic lagoons were introduced about 1935. Lagoons can handle higher loadings of organic matter than either of the two other methods of treatment, and as a result, their area has been increased greatly in recent years to match increases in loadings. For purposes of comparison, numerical values for the years ending 30 June 1959 and 30 June 1971 are listed in Table A and the monthly variations during each year are shown on Figures 1 and 2.

Table A. Loadings and Treatment Processes, 1959 and 1971

	Year Ending 30 June	
	1959	1971
Total wastewater volume, million gallons (US)	35,160	50,900
Average BOD5, milligrams per liter Pounds per day	451 384,000	588 661,000
Crop irrigation, million gallons (US) Percent of total	13,320 38	10,680 21
Overland flow, million gallons (US) Percent of total	13,680 39	15,360 30
Lagoons, million gallons (US) Percent of total	8,160 23	24,960 49

On arrival at the Farm, the wastewater is distributed to the various treatment areas through a network of channels. Three methods of purification are used. Short explanations of each method along with pertinent comments follow.

Figure 1: Areas used for various treatment methods during 1958/59 at Werribee Farm

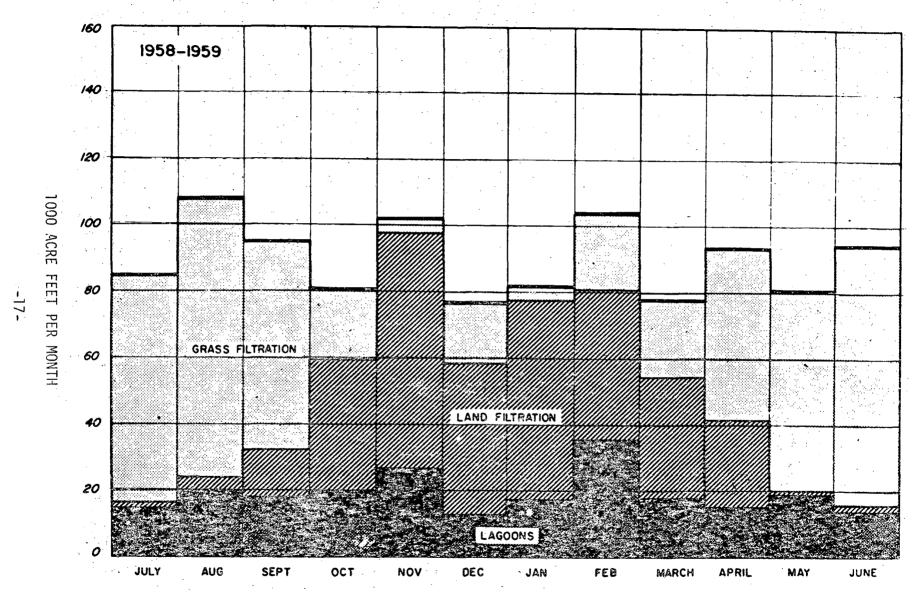
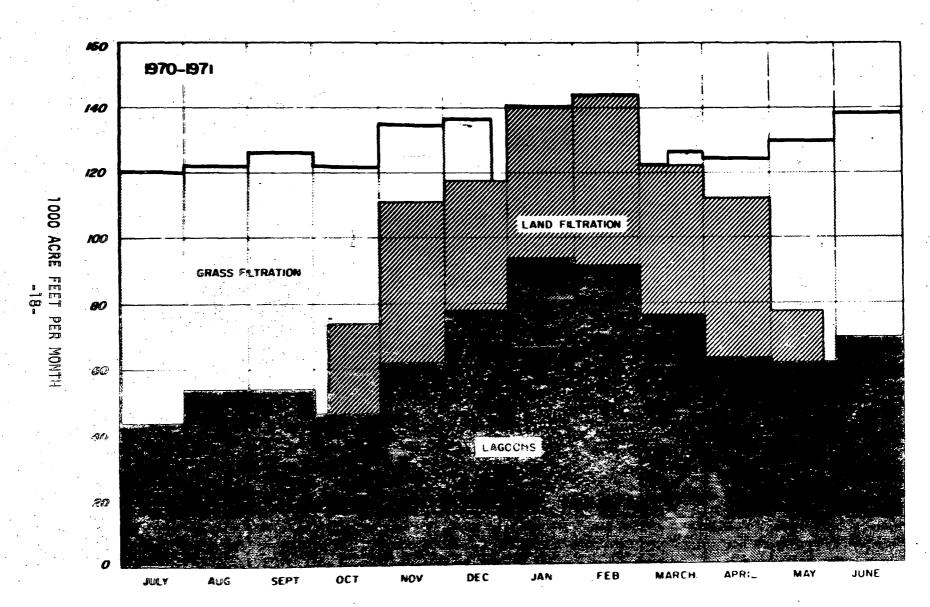



Figure 2: Areas used for various treatment methods during 1970/71 at Werribee Farm

Crop Irrigation (land filtration). This is the primary method which is used throughout the summer. The land filtration areas are carefully prepared pastures, about 20 acres in exent, and divided into 50 bays by low check banks. They are subsoiled, graded evenly and sown with selected pasture grasses.

The wastewater is applied as in normal flood irrigation. Every 18-20 days, each block is covered to a depth of about 4 in. In all, about 600 acres are irrigated each day. The wastewater filters through the soil and when purified seeps into deep earth drains.

The periodic irrigation of pastures with wastes containing a large proportion of fertilizing materials promotes a very vigorous growth of grass. Rotational grazing by sheep, cattle and some horses is essential to maintain these pastures in a condition suitable for continued wastewater purification.

Application rates for crop irrigation are controlled by the ability of the soil to absorb water, rather than by the strength of the wastewater. Examination of irrigation records from 1935-1971 shows wastewater irrigation depths average about 3.5 feet per year and range between 2.9 and 4.2 feetper year. In a given year, the application rate depends on the rainfall pattern and evaporation. Including annual rainfall, the land receives more than 5 feet of water depth per year. Based on present wastewater strength, the average application rate amounts to 30 lb. of BOD per acre each day.

Crop irrigation is quite effective in reducing the concentrations of many chemical constituents of concern in terms of their effects on the receiving waters. Compounds of nitrogen, phosphorous, and most of the heavy metals are reduced dramatically. Table B shows results of analyses made on the incoming wastewater and the average for effluent collected from seven different drainage channels which pick up the underflow from the irrigation areas.

Table B. Chemical Characteristics of Untreated Wastewater and Effluent from Crop Irrigation Treatment

mg/L Concentrations 1/					
Constituent	Untreated Wastewater	Effluent	Percent Removal		
Organic nitrogen	14.3	1.0	93		
Ammoniacal nitrogen	35.0	3.2	91		
Nitrite	0.75	1.3	-		
Nitrate	0	0.4			
Orthophosphate	26.2	2.6	90		
Total Phosphorous	32.1	2.9	91		
Sodium	400.0	770.0	_		
Potassium	95.0	26.0	. 73		
Calcium	65.0	45.0	30		
Magnesium	80.0	107.0	-		
Copper	0.45	0.07	84		
Nickel	0.20	0.16	20		
Chromium	1.0	0.09	90		
Cadmium	0.01	0.006	40		
Zinc	1.3	0.18	86		
Lead	0.55	0.12	78		
Mercury	0.0015	0.0003	80		

Source: MMBW Analyses on samples collected 17 May 1972.

^{1/} Concentrations of nitrogen compounds expressed as N; phosphorous compounds as PO₄; all other as the particular element.

Overland Flow (grass filtration). This process is used in purifying the greater part of the normal winter flow when reduced evaporation makes crop irrigation impractical. In this method, the wastewater is first directed into sedimentation tanks, and when the sludge has settled, the water is allowed to flow slowly but continuously over graded areas on which Italian rye grass supplements the natural herbage to make a dense growth. The plants act as a filter in which microorganisms absorb the organic matter in the wastewater so that by the time it reaches the drain, it has the required standard of purity. The overland flow areas are grazed only in the summer when they are not needed for purification purposes.

Detention times are about 2 days. In contrast with crop irrigation, loading rates are governed by wastewater strength rather than by volume. Because of the short detention time, daily loadings rather than long term ones are important. Maximum loadings of about 90 lb. of BOD per acre each day can be handled. In practice, however, it is more convenient to control application by regulating wastewater volume to the overland flow areas. To keep BOD loading rates within the maximum, the volumetric rate of application of sedimented wastewater is held at about 1 mgd per 50 acres. Experience at the Werribee Farm indicates that daily BOD application rates average about 70 lb. per acre.

Oxidation Ponds Treatment. This process operates throughout the year to handle the balance of the normal flows which cannot be treated by the other methods and also copes with the wet weather excess flows. During this treatment, the wastes flow slowly through large areas of shallow ponds where purification is effected by oxygen which is partly absorbed from the atmosphere and partly provided by algae in the presence of sunlight.

Oxidation Ponds. In the lagoon treatment process, wastewater passes through anaerobic lagoons and then through aerobic lagoons. Detention times, relatively short in the former and long in the latter, depend on the rate of wastewater addition, but generally are about one month. BOD loading rates vary with Wastewater strength and the volume added. Experience indicates that average loading rates of about 60 lb. of BOD per acre per day can be handled in winter, while about 100 lb. per day can be handled in summer when photosynthetic activity is greater due to higher temperatures and longer hours of sunlight.

Treatment Efficiency. As shown by the annual averages on Table C, the three treatment processes vary in their ability to remove organic matter and other chemical constituents in raw wastewater. The crop irrigation process is the most effective, but as noted above. area loading rates are low and only about 20 percent of the year's flow at the Farm can be treated by this process. The reductions it achieves in compounds of nitrogen and phosphorous are particularly noteworthy. In raw wastewater given crop irrigation treatment, only 5 pounds pass through the top soil and are found in the effluent. In contrast, the comparable values for overland flow are 40 pounds of nitrogen and 65 pounds of phosphorous, while for lagoons, the values are 65 and 70 pounds respectively. In terms of nitrogen removal, crop irrigation is 8 times more effective than overland flow and 13 times more effective than lagoons. Similarly, for phosphorous removal, it is 13 and 14 times more effective, according to MMBW.

Table C. Estimated Performance by Treatment Processes on Annual Basis

Characteristics	Method of Treatment			
	Crop Irrigation	Overland Flow	Lagoon System	
Percent of total flow treated	20	30	50	
Percent removal				
BOD	98	. 96	94	
Suspended solids	97	95	87	
Total nitrogen	95	60	40	
Total phosphorous	95	35	30	
Detergent	80	50	30	
E. Coli	98	99.5	99.8	

Odors. Sources of odors at the Farm have been studied intensively several times, particularly in 1950, 1966, and 1968-1970. The 1966 work disclosed that the "odor potential", based on measured hydrogen sulphide emissions, was four times greater in winter than in summer, and that sedimentation and sludge digestion basins, lagoons, and overland flow areas were the principal sources. Crop irrigation areas and effluent channels were found to be relatively insignificant sources. At each of the major sources, the treatment processes are, or are prone to be, anaerobic. Sedimentation and sludge digestion basins are open, and hydrogen sulphide and other odorous gases are readily released to the atmosphere. The anaerobic lagoons, an inherent part of the lagoon system presently used, are economic on space due to the high BOD loading which they can handle, but are the odorous component. During winter, the area of anaerobic lagoons is greater than in summer, which leads to the release of greater quantities of hydrogen sulphide. In the 1966 tests, this gas was detected over about half of the area used for overland flow.

Livestock Production. Since 1910, the Farm has operated a commercial beef enterprise, producing 20-22 month old steers and fat cull cows for the Melbourne market. During the past 62 years, over 270,000 cattle have been marketed. Since 1946, almost the entire cattle output has been bred and raised on the Farm. In addition, sheep are brought in and fattened on the Farm, and during the same period, more than 1.5 million have been marketed.

Early prohibitions against marketing the cattle for human consumption because of the incidence of beef measles (cysticercosis) were overcome in 1946 by the adoption of the carcass inspection and branding program. In addition, the Farm stock has built up an immunity, and market rejection for this reason is rare -- 29 rejections out of over 116,000 cattle marketed since 1946.

In summary, the principal purposes of operating the Werribee Farm have been to renovate the sewage effluents and to recover resources that could be converted into cash. Research for the sake of research alone has not been a major factor, although some elements of research have been done to seek out solutions to specific problems. The Werribee Farm has 31 test wells for monitoring the influent (daily) and the effluent (twice weekly) to Port Phillip Bay.

The Board has some information on soil analyses at certain locations. In certain small areas affected by salt accumulation caused by groundwater, there is some information. There is limited data on receiving water quality, odors, and potential health hazards, as well as information on BOD, SS, COD, pH, fecal coli, P, total N, nitrate, nitrite and Cl.

CORPS OF ENGINEERS REPORT

In May 1972 a team from the U.S. Army Corp of Engineers made an intensive inspection and study of the Werribee Farm land treatment system. An important aspect, among others, was to learn as much as possible about long term responses of the soil/plant ecosystem to sewage applications. Accordingly, soil and plant samples were collected and analyzed for their nutrient and heavy metal contents.

A report published by the Corps in January 1974, entitled, "Selected Chemical Characteristics of Soils, Forages, and Drainage Water from the Sewage Farm Serving Melbourne, Australia", presents and discusses the findings of this study. Specifically, data resulting from the analyses of soil and plant samples, from sites under irrigation for periods of 48 to 73 years, is discussed in relation to a control sample, length of time under irrigation, resultant water quality produced by the treatment system, and expected ranges of constituent concentrations found in soils and plants from the literature on the subject. A copy of the Corps report is attached hereto.

MOVIE

The MMBW has produced a 16mm film, entitled Werribee - In Harmony with Nature, showing the land treatment operations at the Werribee Farm. This is a nontechnical film, 773 ft. in length. Copies can be purchased from the MMBW. EPA has ordered 10 copies of this film, one for each Regional Office. Persons wishing to buy a copy should address their inquiries to James B. MacPherson, Manager, Werribee Farm, Melbourne and Metropolitan Board of Works, 625 Little Collins Street, Melbourne, Victoria 3001, Australia.

REFERENCES

- 1. Melbourne and Metropolitan Board of Works, Reports, Publicity Brochures, Newsletters, Staff Newspaper, Unpublished Memoranda, Calculations, Lists, Fact Sheets, Charts, Sewerage Committee Notes, Board of Works Notice Papers, and Interviews with Board Officials, Employees and Specialists.
- Survey of Facilities Using Land Application of Wastewater, Prepared by American Public Works Association, July 1973. No. EPA-430/9-73-006. National Technical Information Service No. PB-227-351-A/S. U.S. Government Printing Office Stock No. 5501-00666; Cat. No. EP2.2:W28/4.
- 3. Article, Waste into Wealth, Water Spectrum 1972.
- 4. Report, Program for Development of a Master Plan for Water Quality Management at the Board's Farm, March 1973, by Caldwell Connell Engineers.
- 5. Data and statistics from certain Principal Persons Interviewed.
- 6. Data and statistics from Dr. Thomas D. Hinesly, University of Illinois.
- 7. Notes from personal observations during site visits.

ATTACHMENTS

- 1. Memorandum from EPA Deputy Administrator to RA's, Nov. 1, 1974.
- Report, U.S. Army Corps of Engineers, January 1974 "Selected Chemical Characteristics of Soils, Forages, and Drainage Water from the Sewage Farm Serving Melbourne, Australia".

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

SUBJECT: Land Treatment DATE: November 1, 1974

FROM: Deputy Administrator /s/ John Quarles

TO: Regional Administrators

The purpose of this memorandum is to express my concern that EPA must do a better job in assuring that land treatment is given full and adequate consideration as a possible method for municipal sewage treatment in projects funded with Federal grants.

Land application of wastewaters is practiced successfully and extensively in the United States. Many land treatment systems have been in continuous use since 1900. It is apparent from this long-term experience and documented research work that land treatment technology is a viable alternative to be considered as part of waste management systems.

In section 201 of the Federal Water Pollution Control Act Amendments of 1972, it declares that:

"Waste treatment management plans and practices shall provide for the application of the best practical waste treatment technology before any discharge into receiving waters, including reclaiming and recycling of water, and confined disposal of pollutants so they will not migrate to cause water or other environmental pollution and shall provide for consideration of advance waste treatment techniques".

Pursuant to section 304(d)(2), which directs EPA to publish information on alternative treatment management techniques and systems available to implement section 201, the document "Alternative Waste Management Techniques for Best Practicable Waste Treatment" was published. Therein it considers land application as a viable alternative for best practicable waste treatment.

In addition, the Cost-Effectiveness Analysis Regulations which apply to all projects subject to best practicable treatment state that:

"All feasible alternative waste management systems shall be initially identified. These alternatives should include systems discharging to receiving waters, systems using land or surface disposal techniques, and systems employing the reuse of wastewater".

The above requirements shall be met for all projects awarded after June 30, 1974. This means that land treatment must be considered in the basic selection of method for waste treatment.

I urge that you ascertain that your regional review of application for construction of publicly-owned treatment works require that land application be considered as an alternative waste management system. If it can be demonstrated that land treatment is the most cost-effective alternative, is consistent with the environmental assessment, and in other aspects satisfies applicable tests, the Region should insist that land treatment be used and should refuse to fund projects using other systems of waste treatment.

Your director of Water Programs Division has received the draft document "Evaluation of Land Application Systems". This document should be utilized during the review process. Additional assistance can be obtained by contacting the Municipal Construction Division (OWPO), the Municipal Technology Division (ORD), or the Robert S. Kerr Laboratory (ORD).

In order to promulgate proper consideration of land treatment systems by future grant applicants I suggest that the Regional Office provide opportunity for public awareness of land treatment technology. As an example, Region III is planning a two day symposium November 20-21, 1974 at the University of Delaware to highlight land application technology. The idea for the symposium originated in the Regional Office and was planned cooperatively between the regional staff and Office of Water Program Operations headquarters staff. The objective of the symposium is to clarify the technical and policy issues involved and to chart directions for future decisions on land treatment techniques. The symposium will provide useful information to over 300 engineers, scientists, public officials and private citizens. This technique or a similar one could be used by your region to emphasize consideration of land treatment.