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PREFACE

The Office of Radiation Programs of the U.S. Environmental Protection
Agency carries out a national program designed to evaluate the exposure of man
to ionizing and non-ionizing radiation, and to promote development of controls
necessary to protect the public health and safety and assure environmental
quality.

Exposures by direct external gamma irradiation from nuclides in the
uranium-238 decay chain, naturally present in the environment - as in
commercial grade ore deposits - or in byproducts - as in the tailings piles of
uranium mills - represent an element of risk that must be quantitatively
assessed to determine the need for remedial action and the setting of
necessary controls. This report illustrates the application of basic
theoretical methods and models for the prediciton of exposure rates at the
locations of concern, as an initial step for the required risk assessment.
Readers of this report are encouraged to inform the Office of Radiation
Programs of any errors or omissions. Comments or requests for further
information are invited.

Wayne A. Bliss
Acting Director
Office of Radiation Programs, LVF



ABSTRACT

The application of simple computer-implemented analytical procedures to
predict exposure rates over uranium-bearing soil deposits is demonstrated in
this report. The method is based, conceptually, on the energy-dependent
point-source buildup factor and, operationally, on two consecutive
integrations. The dependence of photon fluxes on spatial variables is
simplified by an analytical integration over the physical dimensions of the
deposit, represented as a slab bearing homogeneously distributed nuclides of
the uranium-238 decay chain, at equilibrium, and covered with a source-free
overburden slab; both slabs being of variable thickness but of infinite areal
extent. The resultant analytical expression describes flux as function of
energy-dependent parameters, thickness of the source slab, and depth of
overburden, and is equated analytically to exposure rates bearing the same
dependence. Elementary computer techniques are then employed to integrate
numerically the exposure rates corresponding to the specific energies of
uranium-238 decay chain, for chosen thicknesses of the overburden and
uranium-bearing slabs. The numerical integration requires the use of buildup
factors, attenuation and absorption coefficients expressed as continuous
functions of energy by curve-fitting equations included in the report.

As direct application of the method, maximum exposure rates over
uranium-bearing deposits are calculated. In addition, the dependence of

exposure rates on the thickness of the uranium-bearing slab and depth of
overburden is reduced to a simple model. These results, valid for uranium

mill tailings piles, are compared to those obtained by other authors, and then
applied to detemine changes in exposure rates due to radon gas emanation from
source materials.
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Introduction
External gamma exposure rates over soils containing nuc]idés of the 238U
decay chain (such as uranium mill tailings piles) have been evaluated with
models and techniques differing in generality and level of sophistication.
The resultant range of estimates reflects the diversity of approaches. Some
of the higher predictions are unquestionably due to simple methods incorpo-
rating, necessarily, conservative assumptions. More reliable methods, based
on thorough analytical treatment and processing of abundant input data,
frequently require complex programming and extensive computer use, in excess
of resources and time allotted by many facilities to specific projects. It
follows that the immediate practical value of such evolved techniques is
limited to that of the published final results, which may not be directly

applicable to the needs of potential users.

Such limitations and drawbacks were an important factor motivating the present

work, extended to serve a threefold purpose, as described below:

1) to demonstrate the reliability of a method, based on the "buildup
factor" concept, requiring limited programming and computer use while
avoiding many of the inaccuracies or uncertainties inherent in

simplified models;

2) to apply this method in generating simple models relating exposure

rates to depths of uranium-bearing soil deposits and cover material;



3) to illustrate the usefulness of these simple models under conditions
of greater complexity - specifically, by examining the reduction in
exposure rates due to radon exhalation from uranium-beéring soil and
the effects of radon penetration into the overburden. Additional

analysis was required torealize this last objective.

The proposed method, models, their application, results and comparisons with
results obtained by other authors are described or presented in the main text
of the report. Analytical treatments, assumptions, curve-fitting equations,
ancillary tables and graphs are discussed in appendices, referenced in the

main text.

This report evolved from an exploration of simple, analytically based tech-
niques whereby results from brevious methods could be critically examined.
Given the exploratory nature of the original study, the use of substitutions,
extrapolations and approximations in applying the method was due to unavail-
ability of other data or convenience rather than the rigorous analysis on
which the method is based. Nevertheless, their use may be justified by their
contribution to the effectiveness of the technique, demonstrated by results
which are in close agreement with previously published models and values,
particularly with some that "have been reproduced by a number of other

investigators" (Beck, 1981).

In view of the relative simplicity of the method, such close agreement may

exceed expectations fostered by reliance on more complex techniques. The



element Qf fortuity cannot be entirely denied, in that the substitutions,
extrapolations and approximations used in implementing the method undoubtedly
produced errors that were mutually compensatory to a large extent, as
evidenced by the results. To further support the validity of the latter,
extensive appendices were included with the report. These provide a detailed
description of the analytical bases of the method, the logical foundation of
assumptions, substitutions, etc., complete presentation of the data base and
treatment (including curve-fitting errors), computer implementation and sample
calculations. Additional appendices contain some basic but relevant comments
on the models derived from the results, their interrelationship and applica-

tion.



Analytical Bases and Development

In principle, the assessment of exposure rates from any radioactive source
requires identifying the energies of photons reaching the point of concern and
calculating the photon flux corresponding to each of these energies. In
common practice, the first requirement 1is reduced to equating the photon
energies at the assessment point to the energies of photons emitted by the
source, The second requirement entails determining the effects of distance
and the attenuation capabilities of a specified medium in reducing the
probability that a photon of a given energy, from a source of known
configuration, will reach the point of interest. For a point source, such

determination ultimately results in

om(E)r
$(e) = s(E) 2 (1)
dqr
whereqb(E) = flux of photons of energy E at assessment point,photons/cmzsec
S(E) = point-source rate of emission of photons of energy E, or “point-
source strength", photons/sec
2 2

4xr©® = surface of a sphere of radius r, cm

exp[-u(E)r] = exponential attenuation term, function of distance r, absorbing

medium, and photon energy E, dimensionless
u(E) = total linear attenuation coefficient of absorbing medium for
photons of energy E, cm‘1
r = distance between point-source and assessment point, cm

E = energy with which photons are emitted by the point source, MeV

The linear attenuation coefficient u(E) represents the probability that a

photon of energy E will interact with the medium in any one of several
4



possible ways per each unit of distance it travels in this medium. Since any
detectable interaction of a photon with the medium involves a detectable
energy loss and/or change of direction, the use of u(E) in (1) implies that
any photon emitted with energy E that interacts with the medium will not
contribute to the flux of photons of energy E at the point of concern. The
exclusion of such "secondary" or "scattered" photons, of energies less than E,
facilitates the calculation and definition of a "primary exposure rate",
limited to those (“primary") photons that succeed in reaching the point of
interest without any prior interaction. The calculation requires the use of

qb(E) from Equation (1) in the following general expression for exposure rates,

: (E)
X(E) = F,E fen ¢ (E) (2)
P

air

where X(E) = exposure rate from photons of energy E, in R/s
Fy = conversion constant
= 1.824401368 x 1078 g . R/Mev

E = gamma energy, in MeV

()
energy dependent mass energy absorption coefficient for air, in

w, (E)| =
[enp ] cm2/g

air

“flux" of gammas of energy E, in gammas/(cmz.s)

Photons excluded from the primary flux by an interaction with the medium
are not exempt from subsequent absorption and scattering events, and have a
finite probability of reaching the point of assessment after successive
scatterings. Because of the large number of possible occurrences of every
type of interaction, the photons scattered to this point compound a complex

aggregate of "secondary fluxes" of virtually every energy below the energy of

5



emission E., The difficulty of individually calculating each of these fluxes
is a serious obstacle to the determination of the corresponding exposure rates
[see Equation (2)], a significant concern since the latter contribute
substantially to the total exposure rate at the point of interest. To
circumvent these difficulties, the total net effect of secondary radiations
may be equated to a nominal increase of the primary flux, by a so-called

"buildup factor B", based on experimental and theoretical results, so that

-u(E)r
¢(E) = S(E) B(E) El‘l?__ (3)

wr

The values tabulated for B depend on the energy of emission, on the source
configuration, on the absorbing medium and, to some extent, on the effect
being observed. Thus, there are slight differences between energy buildup,
energy-absorption buildup, and dose buildup factors for the same energy,
medium and configuration. Since dose in air is proportional to exposure,
"point-source dose buildup factors," valid for infinite media, are used in the
present work. These may be used to illustrate the above description of

buildup factors as

+ secondary dose rate due to point source emitting photons of energy E
primary dose rate due to point source emitting photons of energy E

B(E) =

energy-dependent point-source dose buildup factor, for unspecified

infinite medium, dimensionless

Applying B(E) in (3) results in a fluxqb(E), nominally of photons retaining
their initial energy E, which can be used in (2) to calculate exposure rates

including both primary and scattered photons.



Tabulations of buildup factor values at various distances from a source in
an infinite medium have been available since 1954, or earlier, for each set of
conditions specifying either a point isotopic or monodirectional plane source,
one of nine source energies, and one of seven® infinite medium méterials. To
facilitate analytical treatment and interpolation for untabulated energies,
several empirical functions have been fitted to these tables. These include
"linear," "quadratic" and "cubic" forms, as well as other polynomial fits
containing exponential terms, all of them with fitting coefficients valid for
a specific source energy. The fitting coefficients in some of these forms
apply only within specified distances from the source, which prompted the
selection of a form employing coefficients of greater generality, such as

Taylor's Dose Buildup Factor Formula (see Appendix A),

‘al(E)H(E)r

-a,(E)u(E
A(E)e +[1-A)e 2( Ju(E)r

BT(EoDr) (5)

where BT(E,ur) energy and distance dependent buildup factor, Taylor's

Formula, dimensionless

A(E),aq(E),a,(E) = Taylor's energy-dependent fitting parameters,

dimensionless

u(E) = energy-dependent attenuation coefficient, em~L

r = distance, cm

*Author's note. Four additional materials are included in Trubey (1966).

7



Taylor's fitting parameters A(E), al(E) and °2(E) “"are not available
below 0.5 MeV" (Trubey, 1966), which excludes a range of lower energies

238U decay chain at

comprising roughly 15% of the total energy emitted by the
radioactive equilibrium. Part of this range may be covered by the use of

Berger's Buildup Factor Formula,

1 + C(E)u(E)reP(EJu(E)Y (6)

1]

BB(Esur)

where C(E), D(E) = energy-dependent fitting parameters, dimensionless

Berger's fitting parameters are available for energies equal to or greater
than 0.255 MeV, excluding energies corresponding to only 3% or 4% of the total
energy emitted by the decay chain. Buildup at these energies can be
tentatively estimated by a specialized application of Berger's formula, as

discussed in the appropriate section.

Although Taylor's fitting coefficients apply over a smaller energy range than
Berger's parameters, the latter have the disadvantage of being valid only for
specified distances from the source of emission. Thus, a set of Berger's
parameters is applicable for up to seven "mean free path" lengths (ur = 7),
another for up to 20 MFPs, etc. This restricts the application of Berger's
formula to special cases, as will be seen, while Taylor's formula is not

subject to such restrictions.

The wide range of applicability of Taylor's fitting parameters makes this
formula suitable for analytical treatments involving distributed gamma-ray

¢ 238

sources of variable dimensions, a useful generalization o U decay chain

deposits when studied as a set. For present purposes, such a generalized

8



repository is represented as a smooth, flat, moisture-free soil slab of
uniform, specified (variable) thickness but infinite' in area, qontaining, in
uniform distribution and radioactive equilibrium, all the nuclides of the
uranium decay chain from 238y to stable lead. This nuclide-bearing soil
slab is covered with an infinitely wide slab of source-free overburden, of a
uniform, specified (variable) thickness, having the same buildup and
attenuation properties as the slab beneath. The bases for these simplifying

assumptions are discussed, to some extent, in Appendix B.

The physical model outlined above requires some qualifications affecting

the course of subsequent analysis and import of the results, as follows:

1) The thicknesses specified for the nuclide-bearing slab or overburden slab
need not be limited to finitude. Infinitely thick source slabs without
overburden are included in the analysis.

238U decay chain nuclides and their

2) The radioactive equilibrium of the
uniform distribution in the source slab allow equating the activity per
unit volume of any such nuclide to that of the parent. This is assumed to
be "1 pCi of 238U per cm3" in uranium-bearing soils, or "1 pCi of
226p, per cn® in uranium mill tailings piles, if the absence of the

226p, progenitors 238U through 230Th in tailings is taken into

account. However, these last mentioned nuclides are of small consequence
in exposure rate calculations. To simplify the study, both uranium-
bearing soils and (conservatively) tailings piles are assumed to contain

238

activity concentrations of 1 pCi/cm3 of every nuclide from U to

stable lead.



3)

4)

5)

The repository is nominally "moisture free", for purposes of analysis,
since the present method can not determine the. buildup and attenuation
effects of water independently from the material in which it fs entrapped.
The consequences of including or increasihg soil moisture must be learned
indirectly, as results from the attendant increase in soil density. Cal-
culations implementing the analysis assume a soil density of 1.6 g/cm3,
corresponding to the densities of "dry packed tailings" and "moist packed
earth" studied by Schiager (1974) and that of soil containing "10% water"
by Beck (1972).

To facilitate analytical application of Taylor's and Berger's Buildup
Factor Formulas, the buildup properties of both the source slab and over-
burden material are assumed to be sufficiently similar as to be charac-
terized by the same set of energy-dependent fitting parameters A, a4,
a,, etc. This similarity may be expected to extend to other properties
of relevance, such as densities and mass—attenuaiion coefficients, or
linear attenuation coefficients; it is so assumed in the calculations
implementing the analysis. Nevertheless, the analysis does not require
equal linear attenuation coefficients for source slab and overburden, thus

they are allowed to differ in the analytical development, as a concession

to greatér generality.

The assumption of a source-free overburden does not consider the migratory

f 222Rn

capabilities o gas, which will permeate the overburden slab

transforming it into a "secondary" repository of uranium decay chain

nuclides, from 222

Rn to stable lead. Consequently, the direct results
of the analysis and subsequent numerical treatment will apply strictly to

uranium-bearing soils (or uranium mill tailings piles) covered with

10



overburden impervious to radon gas penetration. Nevertheless, the numerical
models developed for this specialized case are useful in dealing with radon-
permeable overburdens,.as demonstrated in another section.

238U series may be accompanied by

Any single decay of a nuclide in the
the release of photons of specific energies, characteristic;of the decaying
nuclide, with probability of emission varying according to photon energy.
These probabilities of emission, or "intensities", have been determined for
all the characteristic photon energies observed in the decay of each uranium
series nuclide, and tabulated as dimensionless decimal fractions or
percentages with the implicit units of "number of photons of energy E emitted
per decay" of the nuclide of interest. The product of the latter and a known
amount of this nuclide (in activity units of "decays per unit time) produces a
set of "source strengths" or "emission rates" of "photons of energy E emitted
per unit time" by the given quantity of the decaying nuclide, for all the
energies E characterizing this decay. Applying this process to each of the
238U decay chain nuclides, uniformly distributed throughout the source slab

3 2 3

with equilibrium activities of 1 pCi/em” (or 3.7 x 107° decays/cm” per

second), generates an ensemble of "volumetric source strengths SV(E)"

3

bearing units of "photons of energy E emitted per cm” per second" - for

every photon energy E released in the chain.

The product of any given volumetric source strength SV(E) and an
infinitesimal volume element dV is analogous to a joint source, emitting
SV(E)dV photons of energy E per second, not unlike the joint sources of
Equations (1) and (3). To exploit this analogy in the context of the present

physical model it is helpful to examine Figure 1.

N
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Figure 1. Section of overburden-covered tailings or uranium-bearing source

slab with analyticélly relevant angles, dimensions and material properties.

The photons of energy E originating from a volume dV are subject to spatial and
material attenuation and buildup effects of travelling a distance r, from some
generalized emission point within a source slab of thickness t, to the point
of assessment at the surface of an overburden of depth d, where they

contribute an element of fluxdqb(E) such that

12



-uy (E) (r-dsece) - uc(E)dsecel

d4>(£)=s_v(s)a(E) g - ' av )
wherede(E) = differential flux element, photons of energy E/cmas
SV(E) = source strength per unit volume, photons of energy E/cm3-s
B(E) = buildup factor for photons of energy E, dimensionless
= Taylor's buildup factor, Equation (5), for E > 0.5 MeV
= Berger's buildup factor, Equation (6), for E < 0.5 MeV
ut(E),uc(E) = attenuation coefficients for uranium-bearing soil and cover .

material, for photons of energy E, respectively, cm"1

dv = rzsine de d¢ dr, volume element, cm3

To determine the total flux of photons of (nominally) energy E at the
assessment point, Equation (7) must be integrated analytically over the
dimensions of the source and cover slabs. Given the alternative formulations
of the buildup factor in. (7), two different integrations are required, as
described in some detail in Appendix C. Both integrations produce
analytically valid expressions of the total flux of photons of energy E, at
the ground-air interface, as function of energy-dependent properties of source
and cover slabs, these thicknesses, and the volumetric source strength SV(E)
in the sourée slab. However, numerical implementation of these equations
points out an inconsistency in the integration involving Berger's buildup
factor. In a strict sense, Berger's fitting coefficients C and D are
applicable only within specified distances from a point source, whereas the
integration is performed between limits including "infinity" (infinite areal
extent of source and cover slabs), which implies a contradiction.

Accordingly, the summary of integration results in Table 1 emphasizes those
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Table 1. Analytical expressions of flux qb(E) at the surface of an infinitely wide uranium-bearing
soil slab or tailings pile of uniform thickness, covered with an overburden of uniform depth, based
on Taylor's buidup factor formula and valid for all E 2 0.5 MeV. An equation originating from Berger's
form of the buildup factor, for all E < 0.5 MeV, has been included for the conditions of maximum flux.

Tailings Pile or Uranium-Bearing Soil of Finite
Thickness "t".

t = independent variable

Tailings Pile or Uranium-Beéring Soil of Infinite
Thickness.
t =0

Cover Material
or Overburden
of Finite

Thickness "d".

d = independent
variable

_ Sy(E)A(E)
¢ (E)= m Ez{uc([)d[lﬂl] (E)]}

-Ez{[.uc(z)am(s)tnua,(m}>

"

S (EY[1-A Y :
N :i ) *fxz)]Jéz{vc(f)d[lﬂx;(f)]}

-Eg{[uc(E)d+ut(§)tJ[1*cz(E)]}>

General Case:
finite,variable t,d

Sv(E)A(E)
E)d|l
$E Zut(E)[hul(E)] 2 {uC( )d[+ul(E)] }>
sv(E)[1-A(E)]
£ E)d[1+a (E :
O] g{uc( Jd[1+a, )]})

Special Case: infinite t; finite, variable d
for studying effects of cover thickness in reducing¢(E)

Absence of Cover
or Overburden
Material.

d=20

¢ (€) = %RT}(B] ( 1-E { ut(E)t[1+01(_E)]}>

5y (E) [1-A(E)
Zag (€ []+az E] (1-52 {"t(s)t[l+°z(E)]%>

Special Case: finite, variable t ; d = 0

for studying effects of increasing pile thickness onqp(E1

Sy(E) [ A(E) 1-A(E) ]
P - Zoe(E) | 1#a (E)  Teag(E)

and
(From Berger's Form
$le) = Sy(E) 14 —CLE) of Buildup Factor:
2ut (E) [b(e)-1)2 for E< 0.5 MeV)
Maximum Flux, Exposure Rate, Case:
t=o ,d=20



based on Taylor's form of the buildup factor, limiting the application of

Berger's form to the case of "maximum flux", as explained below.

For each of the four cases covered in Table 1, a relationship betweenqb(E)
and exposure rate X(E) may be readily obtained using Equation (2). The total
exposure rate applicable to a given case would obviously require a summation
of exposure rates X(E) corresponding to that case, for all energies E emitted
in the source slab. Such summation would naturally divide into two partial
sums, for energies above (or equal to) 0.5 MeV and below 0.5 MeV, involving
the use of Taylor's and Berger's coefficients, respectively. Since the latter
produce the inconsistency alluded to above, the effects of varying depth of
cover d and thickness of source slab t on the total exposure rate are inferred
from the effect of such variations on the partial sum of exposure rates for
energies £ 2 0.5 MeV. These exposure rates correspond to fluxes determined
with Taylor's coefficients (see "special cases" in Table 1), and roughly 85%

238U decay chain at equilibrium, a factor

of the total energy emitted by the
that supports the inferred relationships. Emphasizing the variable of

concern, they may be expressed as

Y X(E,d) Y X(E,d) ,

aH E > 0.5 MeV = all E = m (8)
2 X(E,0) 2_X(E,0) X(0)

all E > 0.5 MeV all E

and 2X(E,t) 2 X(E,t) .

all £ > 0.5MeV _ allE o Xt) (9)
2 X(E,=) 2 K(E,=) X()

all E > 0.5 MeV all E

where X(E,d) = exposure rate due to photons of energy E, with cover of depth d,

assuming infinitely thick source slab (see Table 1).
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X(E,t) = exposure rate due to photons of energy E, with a source slab
of thickness t, assuming absence of cover (see Table 1).
X(E,0) = X(E,=) = maximum exposure rate due to photons of energy E, with a bare
source slab of infinite thickness (see Table 1).
X(d) = total exposure rate, with cover of depth d, assuming
infinitely thick source slab (simplified notation).
X(t) = total exposure rate, with a source slab of thickness t,

assuming absence of cover (simplified notation).

><
—
L=
~—
]
>
—
8
~—
1

maximum total exposure rate, with a bare source slab of

infinite thickness (simplified notation)

A corollary assumption implicit in (8) and (9) is that the partial sum of
exposures due to all E < 0.5 MeV depends on d and t in exactly the same manner
as the partial sum of exposures due to all E 2 0.5 MeV. This may be only
approximately true. As Beck (1981) points out, "“low energy photons will
clearly be attenuated and absorbed at a faster rate than higher energy photons
[with increasing depth of overburden]," although recognizing that the error
(overestimate) is "relatively small since the low energy sources contribute
only a small fraction of the exposure" allows retaining Equations (8) and (9)

as valid approximations.

With numerical implementation, the ratios in (8) and (9) can express the
dependence of total exposure rate on d and t without specifying the magnitude
of the maximum total exposure rate X(0) = X(m) - i.e. the case of a bare
source slab of infinite thickness. This allows for a separate evaluation of
the maximum exposure rate, without jeopardizing the reliability of the above
dependence by the inclusion of terms of conceivably lesser accuracy. Such a

separate evaluation would consist of a summation of maximum exposure rates

16



corresponding to all energies emitted in the source slab, both above and below
0.5 MeV. In the present context, this means adding maximum exposure rates
obtained using Taylor's coefficients to the somewhat more tentative maximum
rates based on Berger's buildup formula, despite integration inconsistencies
discussed in a previous paragraph. The relevant flux formulas are presented
in Table 1 ("maximum flux, exposure rate, case") with further details given in

“Implementation."

The formulas in Table 1 do not include the minor contributions of
"skyshine" (see Appendix B). Determination of this component by the buildup
factor method would require buildup coefficients for "air", unavailable in the
consulted references. On the premise that the "skyshine" effect is minor for
bare source slabs, and totally negligible for covered slabs, exposure rates
obtained from Table 1 and Equation (2) are valid for the air-ground
interface. A simple modifying factor was sought to convert these to the
corresponding exposure rates at one meter above ground, for a closer
comparison with previously published values. Such a conversion should,
ideally, account for the energy-dependent buildup and attenuation capabilities
of the intervening meter of air. However, the wunavailability (or
nonexistence) of buildup factor coefficients for "air" leads to a simpler

approach, limited to attenuation effects.

The modifying factor is expressed as the ratio of exposure rate at one
meter above ground, including air attenuation effects, to the corresponding
exposure rate at ground level, for photons of a given energy E. Since the
correction is intended primarily for the case of maximum exposure rate, the
source slab is assumed to be infinitely thick, with an air "cover" of
generalized height h (1 meter, in this case). The assumption of infinite

17



thickness also simplifies analysis while remaining consistent with situations
encountered in practice, since exposure rates from an "infinitely" thick slab
compare closely to those from any slab over 1 to 2 feet in thickness, as shown
in "Results." The analysis involves the use of yet another version of the

buildup factor, the "linear form",
BL(E,ur) =1 +a(E)u(E)r (10)

Leaving pertinent details to Appendix C, the analytical process results in the

modifying factor
Fy = Eplugyp(E)N] (11)

The product of (11) and any of the flux formulas in Table 1 represents the
corresponding flux at a height h above ground level. Setting h = 100 cm and
applying the results in (2) produces exposure rates corrected for air
attenuation at one meter above ground, facilitating comparison to previous
results. The exclusion of buildup effects in (11) implies a slight
underestimation of these exposure rates, just as neglect of "skyshine" effects
produces a similarly small underestimation of exposure rates at ground level.
Hdwever, these two effects are not cummulative, and may be balanced, to some
extent, by the overestimate in low-energy exposure rates described in

Appendix G.
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Implementation

Determination of total exposure rates X(E), at ground level and at one
meter above the surface, requires establishing the values of Sv’ Hgs Moo
Majps (“enlp)air’ A, ap, oy, C and D for every energy E borne by
photons emitted in the source slab. Some of these parameters, in conjunction
with the cover and source slab thicknesses d and t, produce the argument of
the second order integral E2, which must also be quantitatively determined
[see Table 1 and Equations (2) and (11)]. A1l but one of these parameters may
be expressed as piecewise continuous functions of energy or of the argument,
in the case of E2, by means of curve-fitting equations. The only exception

is the volumetric source strength Sv’ which is not a continuous function of

energy, and entails a tabulation.

The tabulation consists of "source terms" SV(E), in units of "photons of

3 per second," corresponding to all the possible photon

energy E per cm
energies E accompanying decay of source slab nuclides. Quantitatively, these
entries represent the products of intensities, in "photons of energy E emitted
per decay," and the rate of decay equivalent to an assumed equilibrium

3

activity of 1 pCi/em” (or 3.7 x 10'2 decays/cm3 per second) of each

nuclide in the wuranium series from 238U to 206Pb. Omitted from

consideration are 218Po, 210 218At,

Bi and the branch decay nuclides
206T1 and 21OTI, since they are not photon emitters or have an extremely

low probability of emitting gammas (see decay scheme in Appendix D).

The need to rely on tabulated values necessitates the use of numerical
integration techniques in obtaining a total exposure rate X(E). For ease of

implementation, the 282 volumetric source strengths SV(E) calculated with
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decay data from Kocher (1977) are distributed between two tables, in Appendix
D. One of these, with 105 SV(E) values for energies E<0.5 MeV, is meant for
applications of Berger's buildup formula (see Table 1). The remaining 177
entries, for E>0.5 MeV, serve as input to the various expressions in Table 1

derived with Taylor's buildup coefficients.

Values of Taylor's buildup parameters A, a1, and ay for energies 0.5
MeV to 3.0 MeV are listed in Appendix E, for 11 materials, none of which is
"soil" or "uranium mill tailings." The unavailable coefficients must be
replaced with those corresponding to one of the listed materials, if the flux
equations in Table 1 are to be numerically implemented. The selection of a
material with buildup properties allegedly similar to those of soil may be

made less arbitrary by setting the criteria discussed below.

One of the criteria of a realistic choice is that it be made
conservatively, in that the set of buildup coefficients selected should
produce a greater "buildup" of secondary radiation than those resulting from
other possible choices. The comparison of "buildup" effects is facilitated by

the equation for "maximum flux" in Table 1, reproduced below.

5, (E) A(E) 1-A(E)

PE) =700 | TR ® T Ty (12)

The factor outside the brackets, SV(E)/Zut(E), represents the "uncollided"
or "primary" flux at the surface of a bare, infinitely thick tailings stab.
The total buildup produced by a given choice of buildup coefficients A(E),
al(E) and “Z(E) is expressed by the terms within brackets, and called [B]

for ease of reference,
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Values attained by [B](E) in the energy range 0.5 MeV < E < 3.0 MeV, for each
of the materials under consideration, are compared graphically fn Appendix E.
The comparison establishes that Taylor's buildup parameters for either "water"
or “"ordinary concrete" generate the highest values of buildup [B](E) in the
range of energies examined. This necessitates additional criteria to effect a

choice.

The decisive selection criterion originates from the need to extend analysis
to energies below 0.5 MeV, lower limit of applicability for Taylor's buildup
coefficients. Berger's coefficients for "water" are available for energies
down to 0.255 MeV, while those for "ordinary concrete" and other materials do
not exist for enefgies under 0.5 MeV (Trubey, 1966). By elimination, the
buildup properties of "“soil" are maximized by using ‘“water" buildup

coefficients.

On the basis of the above selection, Taylor's buildup coefficients A(E),
“1(E) and “2(E) for water (i.e. "soil") are' represented in Appendix F by
the corresponding number of energy-dependent curve-fitting equations. A
different method is applied to Berger's coefficients, since these are used
only for conditions of maximum flux and exposure rate. Referring to the
appropriate equation in Table 1, these conditions can be seen to result in a
"buildup term" {1+C(E)/[D(E)—1]2 } totally independent of spatial parameters
d and t. This allows expressing the entire "buildup term," in a compound

manner, as a single energy-dependent variable, and representing it accordingly

by a curve-fitting equation,
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The dependence of this compound "buildup term" on C(E) and D(E) allows it to
be represented in different ways, corresponding to the manner in which the
energy-dependence of C and D 1is expressed. The latter varies according to
what range of distances between point source and detector requires application
of Berger's buildup factor formula, with 7 MFP*, 10 MFP, 15 MFP and 20 MFP
fits reported by Trubey (1966). A discussion in Appendix F suggests that
Berger's coefficients C and D based on a 7 MFP fit are appropriate for 0.255
MeV sources 1in an infinitely thick soil slab having ‘"water" buildup
properties. For 0.255 MeV gammas, 7 MFP in water are approximately 55 cm,
which matches closely the slab thickness equivalent to an "infinite" slab when
exposure rates are calculated with Taylor's coefficients, as will be seen in

"Results".

Accordingly, the bracketted ‘"buildup term" { 1 + C(E)/[D(E)—l]2 } is
represented by a curve-fitting equation using C(E) and D(E) values based on a
7 MFP fit. This selection provides the added advantage of greater accuracy,
as discussed 1in Appendix F, and a correspondingly more solid base for
extrapolations. Since the parameters C(E) and D(E) are not available for
energies below 0.255 MeV, some judicious extrapolation is required to cover

the remainder of the photon energies emitted in uranium-bearing soils.

In lieu of extrapolation, an energy-dependent "correction term" is added, for
energies below 0.255 MeV, to the curve-fitting equation describing the
"buildup term" as function of energy. The net effects of the correction
include a buildup of "1.0" at E = 0.01 MeV and a maximum buildup occurring at

E 0.12 MeV, meeting constraints set in Appendix F. The energy of maximum

* MFP - mean~free-path lengths, as multiples of u(E)r =1
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buildup reflects mathematical convenience, without benefit of new or special
insights into buildup in water (or soil) at small energies. Nevertheless, a
rough analysis by Evans (1972) suggests that the assumption of maximum buildup

at 0.12 MeV is not in great error.*

Conservative maximization of the buildup properties of soil was an
important factor in selecting water as a soil surrogate. The effect of this
selection on flux may be gaged by examining Equation (12). Assuming the
attenuation coefficient “t(E) for soil to be known, and to be equally valid
and applicable to all possible soil surrogates, maximum buildup at a given
energy would inevitably lead to maximum flux (see Appendix E). Furthermore,
if this were true .for all the energies of concern, a maximum total exposure

rate would be equally certain.

A reasonable estimate of ut(E) as function of energy may be obtained from a
graph in Appendix G, showing the energy-dependent behavior of mass-attenuation
coefficients u/p of typical soil components, including water. For energies E>
0.23 MeV, the u/p coefficients of these materials lie within a narrow band of
values, with a maximum difference of about 159 (between H,0 and Fe).
Consequently, the product of any such coefficient times the density of soil,

assumed to be 1.6 gm/cm3, will represent ”t(E) with a maximum possible

* Evans® estimate of buildup, for point sources in an infinite medium, as
function of Compton scattering, total attenuation and total absorption linear
coefficients, respectively og, ug and uy,is

r) [ "The Atomic Nucleus"',Chapter 25, Eqn. (4.18)]

The energy-dependence of og, My and uy implies a maximum B in the range
0.06 MeV < E < 0.09 MeV, in water, and in the range 0.09 MeV < E < 0.15 MeV
in aluminum (indicated as an alternative replacement for "soil" by Beck, 1981).
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error of 15%. Taking into account that Si and 0 constitute 75% of soil, by
weight (Hammond, 1966), reduces this maximum error to the probable range of

10% - 12%,

However, buildup and attenuation are not independent effects (see Evans's
approximation, footnote of preceding page) and thus the choice of u/p coeffi-
cient may not be entirely arbitrary. Since water was used to represent the
buildup properties of soil, the corresponding choice of. (u/p)H20 for the
mass-attenuation coefficient of soil would maintain consistency. Some
consequences of this consistency are viewed in Appendix G, with emphasis on
resultant compensating errors. The rest of this appendix is allocated to

curve-fitting equations for (u/p)HZO, (ulp) and (“enlp)air’ as functions of

air
energy, and for the 2nd order exponential function Ez(x) as function of the

argument.

In both Appendix F and Appendix G, the accuracy of the various curve-
fitting equations is emphasized by reference to maximum errors-of-fit (at any
point) ranging from 0.5% to #1.74%. The only exception is the 3% error
estimated at £ = 2.45 MeV in the curve fit for al(E), a parameter of small
magnitude always added to "1.0", which effectively reduces this maximum error
to approximately 0.1% (see Table 1). Consequently, curve-fitting inadequacies
must be eliminated as a potential source of major error - the above piecewise-
continuous functions of energy appear to be viable alternatives to inter-

polating subroutines commonly used in computer implementation.

The present scheme of computer implementation, designed to obtain total
exposure rates based on Table 1, Equation (2), tables and energy-dependent

parameters in the various appendices, etc., is outlined in Appendix H. An
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application of this scheme to the case of a monoenergetic emitter (40K)
uniformly distributed throughout a bare, infinitely thick source slab is

presented in Appendix I, as illustration.
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Results

The theoretical and empirical foundations of the buildup factor concept
have been extensively discussed in the leading section of this report, to
provide the necessary solid basis for subsequent analytical development. The
resultant mathematical formulations in Table 1, Equations (2), (11), etc. are,
in their context, generally valid and represent an equally reliable
operational base for quantitative impliementation of the method. However, the
translation from generality to specificity required in the implemental process
incorporates approximations, simplifications and extrapolations of unverified
effect on accuracy of results. Above all, the unavailability of buildup and
attenuation parameters for soil and their substitution with the corresponding
coefficients for water indicates that the method, however analytically sound,
produces results that must be regarded as only tentatively valid. To test
their validity and, by implication, that of the techniques employed, these
results may be usefully compared with the results and models of previous

investigators, such as Beck (1972) and Schiager (1974).

I. Previous Results and Models

Beck (1972) employs a polynomial series approximation to the Boltzmann

transport equation to determine exposure rates due to 238U, 232Th and

40K decay chain gamma emitters, distributed uniformly in the ground with
infinite half-space geometry. Two of his results are particularly relevant to
present purposes. Using the simplified notation 'of Equations (8), (9) and

(47-C), they are:
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exposure rate at 1 meter above the surface of a bare, infinitely thick source

slab containing a uniform distribution of 40K, source of 1.464 MeV gammas,
Xy, (=) = 0.179 wR/h per pCi/g (14)

total exposure rate at 1 meter above the surface of a bare, infinitely thick
source slab containing, in uniform distribution and radioactive equilibrium,

all the nuclides of the 238U decay chain through 210Po,
klm(m) = 1.82 wR/h per pCi/g (15)

Schiager (1974) draws from experimental data available to him to propose a

buildup factor for calculations involving tailings piles which, in present

notation, is

B = elwt/(1 + ut)] | (16)

where p = 0.11 cm-l, attenuation coefficient for "dry packed tailings" or

"moist packed earth" of density 1.6 g/cm3

With other correction factors, Schiager's model of total exposure rate as
function of a bare tailings slab thickness t may be expressed, in the

simplified notation of Equation (9), as
X(t) = 0.92[1-E, (ut) 1P/ (W) gy per peifg (17)

It follows from the above that, for bare, "infinitely" thick tailings, the

total exposure rate is
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X(=) = 0.92 e wR/h per pCi/g (18)

2.5 uR/h per pCi/g

In addition, Schiager (1974) includes a graph of decreasing exposure rate as
function of increasing thickness of overburden. Using the simplified notation

of Equation (8), this is interpreted as

x(a) _ e/t (19)
x(0)
where L = soil relaxation length with respect to exposure rate, cm

14 cm, in Schiager's graph (1974)

226

Schiager's equations are intended for tailings, thus primarily for Ra and

238

daughters rather than for the more inclusive U decay chain. However, the

226Ra decay chain comprises roughly 98% of the total energy emitted by the

238, chain (see Appendix D). Neglecting this minor difference, Schiager's

results may be compared to those of the present report.

II. Comparison With Present Results

The first comparison is useful in testing the accuracy of the

approximation for u (E) in Appendix G, namely

soil

usoit(E) = [Eégl]Hzo X Psoil (20)

where p .y = 1.6 g/cm3
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To that effect, Beck's result for the monoenergetic 1.464 MeV gammas from
40K, in Equation (14), is contrasted to that produceq by the present simpler

method, detailed in Appendix I,
Xyp(=) = 0.172 wR/h per pCi/g (21)

The present result is less than 4% smaller than Beck's corresponding value

in Equation (14), suggesting that use of water buildup parameters with the

approximation in (20) and Appendix G is not unreasonable for energies above
0.25 MeV. By implication, the use of (20) for energies below 0.25 MeV should

produce conservative results (see pertinent discussion in Appendix G).

Another valuable comparison involves maximum total exposure rates at one

meter above the air-ground interface of a tailings pile or uranium-bearing

soil, containing all the uranium series nuclides from inclusive)

210Po in radioactive equilibrium and wuniform distribution.

through
Calculation 2 in Appendix H represents the computer-implemented application of

the present method, generating
le(w) = 1.96 wR/hr per pCilg (22a)
This value is 7.7% higher than Beck's in (15). However, the entire energy

spectrum for the 238U decay chain was employed in arriving at the result in

(22a), whereas Beck explicitly excluded x-rays and low intensity gammas from

his calculations. Eliminating the contributions of -the same to (22a) permits

a more valid comparison:

le(m) = 1.89 wR/hr per pCi/g (22b)
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The reduced exposure rate 1is less than 4% higher than Beck's in (15).
Recalling the result in (21), it can be tentatively concluded that the present
method estimates exposure rates within %4% of Beck's results, when adjusted

for proper comparison.

The corresponding maximum total exposure rate at ground surface, including

all energies in the 238, decay chain, is
X(~) = 2.06 wR/hr per pCi/g (23)

This result is 5% higher than the exposure rate at one meter above ground,

Equation (22a), whereas Beck (1972) mentions a corresponding difference of

only 2%.

Schiager (1974) evidently ignores these minor differences, describing his
results as "exposure rate over the slab", applicable to "a point near the
surface." His maximum exposure rate of "2.5 uR/h per pCi/g" is 21% greater
than the ground surface maximum in (23) and 28% greater than the maximum at
one meter above ground, in (22a). A comparison of Schiager's maximum to those
produced by reduced spectra, i.e., excluding x-rays and low intensity gammas,
leads to still greater differences, as may be expected. Thus, Schiager's
maximum is 32% greater than the corresponding value in (22b) and 37% greater

than Beck's maximum in (15), both for 1 meter above ground.

Based on the above discussion, the most suitable application for Schiager's
model is in describing exposure rates at ground level. Nevertheless, his
maximum exposure rate appears exceedingly conservative when compared to the

various maxima obtained by Beck and the present method. The latter results
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may be alleged to be mutually supportive, to an extent 1limited by the

substitutions, approximations and other inadequacies of the present method.

By contrast, Beck underestimates the maximum exposure rate, by excluding
x-rays and gammas with intensities less then 0.1% (1972). This eliminates
over 200 entries from the tables in Appendix D, pertaining to x-rays, weak
gammas represented by their summed intensities and average energy, and gammas
of effectively low intensity due to alternate decay modes with low branching
ratios (23%Pa)*. Although individually insignificant, their summed products
of energy times intensity represent a potential 4.6% increment to the total
energy emitted in Beck's source spectrum. Being fairly representative of the
spectrum as a whole, with energies ranging from 0.01 MeV to 1.93 MeV, these

omitted photons may proportionately increase Beck's maximum exposure rate of

"1.82 uR/h per pCi/g" to as much as "1.9 uR/h per pCi/g."

III. Models Based on Present Techniques

and Comparison with Previous Models

The discrepant estimates of maximum exposure rate in the preceding section
indicate the existence of uncertainties in the bases and processes of such
estimation. These uncertainties contributed to the rejection of models
explicitly postulating numerical values of maximum exposure rate, in favor of
expressions describing the dependence of ratios X(d)/X(0) and X(t)/X(=) on
varying d and t. Such "relative effect" models have the advantage of
substantially reducing potential error, through mutual cancellation of terms,
while avoiding commitment to a maximum value.

* The tables in Appendix D do not differentiate between x-rays, weak gammas
and gammas of intensity greater than 0.1%. To verify the assertion motivating
this footnote, reference to Kocher (1977) is suggested.
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Accordingly, Calculations 3) and 4) in Appendix H were repeated with several t
and d values, generating X(t) and X(d) ground surface exposure rates which
were then normalized with respect to X(=) = X(0) = 1.765 wR/h per pCi/g,

maximum exposure rate, at ground surface, due to gammas of energies above 0.5

MeV. The resultant sets of ratios X(t)/X(~) and X(d)/X(0), displayed in
Tables 2 and 3, are expected to apply at ground surface and at one meter above
ground level, for exposure rates due to the entire 238U energy spectrum,

i.e. including the 15 of total energy emitted in the range E<0.5 MeV.

The results in Table 3 [from Calculation 4)] are particularly useful in
the development of lnathemgtical models. The depth-dependence of the ratio
X(d)/X(0) has been often ekpressed as a decreasing exponential function with
an argument “-d/L", where d, is the depth of cover and L is the "relaxation
length" [see Equation (19)]. This relaxation length represents the thickness
of cover required to reduce the exposure rate by a factor of "e", and is
assumed to be constant for a given material, e.g. Schiager estimates it to be
%14 cm, for soil, in (19). The ratios X(d)/X(0) in Table 3 allow testing the

accuracy of this assumption by Fearranging (19) to produce

-

L or L(d) = (24)

" 1In liﬂl [from Table 3]
X(0) .

The results of (24) are included in Table 3. They indicate that L is by no
means a constant, but a well defined function of d. Furthermore, when
graphed (Figure 2) they suggest that the increase in L(d) as d increases is
not a transient phenomenon for the range 1 cm < 100 cm, but that the trend
will continue for higher d. It is clear, however, that L(d) is a slowly-

varying fdnction, particularly as d increases - thus statistical fluctuations
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Table 2. Proportional Increase in Exposure Rates*, with Respect to Maximum,
as Function of Increasing Thickness of the Uranium Bearing Slab

Thickness t of Exposure Rate X (t) * Ratio of Exposure rate X(t)
Uranium-Bearing Due to Slab of thick- to Maximum Exposure Rate
Slab, cm ness t, uR/h per pCi/g X(«): X(t)/X(~), dimensionless
1 0.31176 0.17665
2 0.51318 0.29077
3 0.66856 0.37881
4 0.79662 0.45137
5 0.90348 0.51192
6 0.99993 0.56657
7 1.0848 0.61464
8 1.1560 0.65500
9 1.2192 0.69080
10 1.2754 0.72264
15 1.4765 0.83660
20 1.5914 0.90170
30 1.6993 0.96283
40 1.7391 0.98536
50 1.7544 0.99406
60 1.7601 0.99753
70 1.7630 0.99896
80 1.7641 0.99955
90 1.7645 0.9998
100 1.7647 0.99991
© 1.7649 1.0

* Tabulated exposure rates X(t) [including X(=) = 1.7649 uR/h per pCi/g]
represent summations of exposure rates due to all gammas of energy greater
than 0.5 MeV, using Taylor's buildup factor parameters. Since energies E >0.5
MeV comprise over 85% of the total energy emitted by the 238y decay chain at
equilibrium, the resulting ratios are expected to apply to exposure rates due

to the entire 238y energy spectrum [with X(=) = 2.06 wR/h per pCi/g,per example]
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Table 3. Proportional Decrease in Exposure Ratesl),with Respect to Maximum,
as Function of Increasing Thickness of the Overburden Slab, d

Thickness dz) Exposure Ratel) Ratio_of Exposure Depth-dependent
of Overburden| X(d), With Cover Rate X(d) to Maxi- Relaxation Length
Slab, cm Slab of Thick- mum Exposure Rate L(d),cm
ess & W pcizg) 0N S X0
0 1.7649 1.0 -
1 1.4531 0.8234 5.145
2 1.2517 0.7092 5.832
3 2.0963 0.6212 : 6.301
4 0.9683 0.5486 6.663
5 0.8614 0.4881 6.971
6 0.7650 0.4334 7.177
7 0.6801 0.3854 7.341
8 0.6089 0.3450 7.517
9 0.5457 0.3092 7.668
10 0.4895 0.2774 7.797
15 0.2884 ©0.1634 8.280
20 0.1735 0.0983 8.622
30 6.559 x 10-2 3.717 x 10-2 9.112
40 2.583 x 107" 1.464 x 1072 9.469
50 1.048 x 10-2 5.937 x 1077 9.753
60 4.348 x 1073 2.464 x 107> 9.990
70 1.837 x 107° 1.041 x 10-° 10.193
80 7.881 x 107" 4.465 x 107" 10.371
90 3.422 x 107" 1.939 x 10-" 10.529
100 1.502 x 107" 8.510 x 10™° 10.671

1)Tabulated exposure rates X(d) [including X(0) = 1.7649 uR/h per pCi/g]
represent summations of exposure rates due to all gammas of energy greater
than 0.5 MeV, using Taylor's buildup factor parameters. Since energies E >0.5
MeV comprise over 85% of the total energy emitted by the 238y decay chain at
equilibrium, the resulting ratios are expected to apply to exposure rates due
to the entire 238y energy spectrum [with X(0) = 2.06 wR/h per pCi/g,as example]

2)Limited to d < 100 cm because of exponentially increasing computer
“roundoff" error.
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12 .
L(d) resultant from present computer - implemented
0 : : S o
. method (see Table 3): Co g‘\\\\\\*
L) =—9 _ |
ln[¥giq
X (co)
8 : o
6
This curve can be closely
approximated by
1 .
4 1 o4 2 |
4; L(d):doe In [2e (.;‘_oe +1)], cm.
- j
2 - - . where dg= 1cm
(maximum observed error in fit
is approximately 1.0% at any poinﬁ
0

1 10 100
Depth of Cover, d (cm)

Figure 2 . Depth-dependent relaxation parameter L(d), as obtained by the present
computer implemented model. Accompanying the graph is a curve-fitting equation by
the present author, which replicates the graphed results with a maximum observed
error of 1.0% , at any point.
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and equipment inadequacies may frustrate experimental verification of the

functional behavior under many conditions. The present author represents L(d)

as
1 .
L(d) = doe/‘|n[2ez(-g-e+l)] , in cm (25)
o
where L(d) = depth-dependent relaxation length with respect to exposure
rate, cm
d = depth of cover, in cm
do =1cm

The resemblance of (25) to a theoretically derived function requires special
emphasis of the fact that it is merely a convenient fit of computer output
data. In the process of obtaining this "pseudo-analytical formula," fitting
coefficients corresponding to powers of the natural base "e" were found to
produce optimum results ~ replicating the values L(d) in Table 3 with a maximum
curve-fitting error, at any point, of 1.0%4*. This discouraged the use of
simpler, but less accurate formulations of the type L(d) = a + b 1n(d/d°),

as discussed in Appendix J.

Replacing L in (19) with the depth-dependent L(d) in (25) produces

X
X

w—

_{ d/d, }
d . e%In(2e2(%e+1)]
0 = € d, (26)

—
L

* The import of the small curve-fitting errors mentioned throughout this
section is discussed in the closing paragraphs of same.
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This expression matches the corresponding X(d)/X(0) values in Table 3 with a

maximum observed curve-fitting error of about 1.1%, at any point.

Graphical comparisons of Equations (25) and (26) with the models of Equation
(19) may be found in Figures 3 and 4. Both these figures demonstrate the
conservatism of L and X(d)/X(0) from Schiager (1974) in contrast to those of

the present method.

The ratios X(d)/X(0) in Table 3 may be theoretically related to the ratios

X(t)/X(=) in Table 2 by a relationship derived in Appendix K, for the special

cases t = d, which is

Xt) o g _Xd) | gopt g (27)
X(=) X(0)

Applying Equation (26) to the above expression summarizes the ratios X(t)/X(w)

as function of source slab thickness t,

TRl
Xt _1- e e1’4|n[2e2(%°e +1)]

X() (28)

To test the validity of (28) it is necessary to compare the values X(t)/X(«)
obtained by this equation to the values in Table 2, which were obtained

independently [Calculation 3)] from those of Table 3. This comparison yields

a maximum curve-fitting error of less than 1y, at any point (maximum error:

0.7%, at t = 5 cm).
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2 (This curve-fitting equation replicates computer results |
with a maximum observed error of 1.0 % at any point) {
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Figure 3 . Comparison of proposed depth-dependent relaxation "parameter" L (d), from results obtained
with the present computer implemented model, with the relaxation constant from Figure 4 in Schiager
(1974), attributed to Throckmorton(1973), as interpreted by the present author.
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N
\‘\ Model from Schiager (1974), interpreted
. as d
. ~ X(d) - ¢ /L
AN X(0)
\\ -
~ where L= 14 cm
N
~
~
~
1072 h
0 Results obtained \‘.\
. by oresent comouter - N '
).(_(d_) implemented method \\
X(0) (Table 3), closely fitted AN
3 (with a maximum observed error ‘\\~\
10 of 1.1 %) by N
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X(0) °
107*
where dy=1 cm
i.e. leading to use of d/do as a dimensinless
variable.
107° J
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Cover Slab Depth d, in cm

Figure 4 . Relative decrease in exposure rate, with respect to
maximum exposure rate possible, as function of increasing thickness
of the overburden slab, as obtained by the present proposed computer-
implemented method (Table 3), fitted by applying the proposed model
of the depth-dependent relaxation length L , and compared to a model
from Schiager (1974).
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The results in Table 2 or from Equation (28) can be compared with those of
Schiager (1974), obtained for tailings. A forma]ized.expreséion of Schiager's
ratios X(t)/X(~) may be produced by dividing Equation (17) by Equation (18),

both from Schiager's model,

X(t) - [1—52(1!11)] e-ll(1+ut)

(=) (29)

Schiager's linear attenuation coefficient in dry tailings

0.11 cm"1

where u

Graphs of X(t)/X(m) and X(t) from (29) are presented in Figures 5 and 6,
respectively, along with the corresponding graphed values from Table 2 and
Equation (28) for the present model. The latter strongly support Schiager's
statement thatc'For any situation involving tailings depths of more than 1 or
2 feet...the external exposure rate over the tailings can be calculated as

follows:

L)

X(uR/h) = 0.92eCp (PCi/g) = 2.5 Cp,(pCilg)
where CRa = Radium concentration, pCi/g (in Schiager's notation)

In other words, maximum exposure rates [see Equation (18)] should be closely
approximated with source slab thicknesses of 1 or 2 feet. In meeting this
criterion, the present model is superior to Schiager's, as may be verified by
comparing ratios X(t)/X(«) from Equations (28) and (29), graphed in Figure 5.
The present model predicts 974 of maximum exposure rate at t = 30.5 cm (1
foot) and 99.8% at t = 61 cm (2 feet), whereas Schiager's corresponding values

are not quite 4/5 and 9/10, respectively. To attain 97% of maximum exposure
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Figure 5 . Relative increase in exposure rate, with respect to maximum exposure rate possibie,

as function increasing thickness of the uranium-bearing soil slab, as obtained by the present
computer-implemented method (Table 2), approximated by a curve-fitting equation with a maximum
observed error in fit of 0.7 ¥ , and compared to Schiager's model {1974).
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2.6 . . . MR /hr
Maximum Exposure Rates Predicted by Schiager's Model, X(w) =25,cpxa  _ _ _ _ (Asymptote)
2.4} = i
(Schiager's) X(t) = [1 - Ez(pt)] e "4 X(oo) ~ _
Maximum Exposure Rates Predicted by Preseat /-~ = _ — — — — 7T 77
2.2} .. - — 4
Proposed Model: X(e) = 2.06"“./'" <a -
pCi/g - _
2L 7 7 "(Asymptote) , == / i
< e
1.8} . . - 2t 1
Present Proposed Model X{t)=X(xo) |1 — @ In[2e (Toe +1)]
16| 4
Lal- where t =1cm i.e.L is dimensionless B
M =011 cm! °
1.2} a = activity, PCi/g .zuRa or U T
1 L -
The above expression is NOT an analytically derived function, but a curve-fitting
/ equation with constant coefficients expressed as powers of natural base € =2.718.... ]

These fitting coefficients were found to produce optimum results—the ratios )'((t)/>'(( © )
corresponding to this expression replicate the ratios in Table 2 with a maximum
observed error of 0.7% at.any point.

! : \ 2 . i

rigure 6.

10 20 30 0 50 60 70 80 90
Thickness t of Uranium Bearing Soil Slab, in cm

Effects of increasing thickness of a bare uranjum bearing soil (or Tailings) slab on the exposure rate at the

surface, based on ratios (Table 2) and maximum exposure rate calculated by the present computer-implemented method, and
compared to Schiager (1974) results.
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rate, Schiager's model requires t=280 cm (9 feet), and as much as t=3700 cm

(120 feet) to reach 99.8%.

The two models show closer agfeement when comparing exposure rates (Figure 6),
rather than the above X(t)/X(«) ratios. However, this relative agreement is
limited to small source slab thicknesses t<40 cm, and merely reflects the
difference in maximum exposure rates X(w) - Schiager's maximum of "2.5 wR/h

per pCi/g" is substantially higher than Beck's or the present model's maxima.

In summation, the present model expresses the dependence of exposure rate
on source slab thickness t in a manner consistent with Schiager's
observations, as quoted, has a reliable analytical foundation, and the support
of a method of implementation that produced maximum exposure rates within + 4%
of Beck's results. One additional advantage of this model is the analytically
demonstrable relationship to the dependence of exposure rates on overburden
depth d [see Equations (26), (27) and (28)], which leads to an internally

consistent comprehensive model of exposure rate as function of d and t,

oo s oTwcTvoen)
Xd.tH=X e e#Inf2e*de+n]) | {_ @ e’In[2¢*cte o) (a0
* max ° o

where X(t,d) = exposure rate, in uR/h per pCi/g, as function of

t = thickness of uranium-bearing soil slab, in cm, and
to =1cm

d = thickness of source-free cover material slab, in cm
dO =1cm

X(=)=X(0) = maximum possible exposure rate, with t== and d=0

=<
[«})
b4

]
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This comprehensive model consists, primarily, of the product of curve-fitting
equations (26) and (28), describing the magnifude of ratios X(d)/X(0) and
X(t)/X(=) as functions of their respective arguments. It may be recalled that
the choice of ratios to represent exposure rate dependence on d and t was
intended to reduce potential errors, while avoiding commitment to explicit
values of maximum exposure rate X(0) = X(~). The resultant flexibility of
(26) and (28) allowed the formulation of the comprehensive model in (30) (see
Appendix J), while qualifying it to incorporate, within reason, different
v%lues of maximum exposure rate Xmax‘ This is a distinct advantage of the
proposed model(s), since uncertainties in buildup and attenuation properties
of soil indicate that the present author's maximum exposure rates in (22a) and

(23) require further substantiation.

In that context, the * 4% difference* between Beck's results (1972) and those
of the present study, although indicative of general agreement, nevertheless
represents a residual conflict that cannot be readily resolved. The
inadequacies of the present method do not allow proposing the resultant maxima
in preference to Beck's. On the other hand, Beck's exclusion of x-rays and
low-intensity gammas leads to an underestimation of maximum exposure rate, by
up to 4.6% in terms of Beck's results. Consequently, assigning a specific
value to maximum exposure rate may be premature, a range of values being more
representative of persisting uncertainties. Prudence dictates that the limits
of such range be realistic but conservative. Two sets of limits are required

for the cases of current interest.

* Excluding the contribution of x-rays and low intensity gammas from the

present results.
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For the case of maximum exposure rate at one meter above ground, the present
estimate in (22a) provides an upper limit. The lower limit of the range was
generated by conservatively increasing Beck's result in (15) by 4.6% . Thus,

at one meter above ground,
1.90 wR/h per pCi/g < X .. < 1.96 wR/h per pCi/g (31)

For maximum exposure rate at ground surface, the upper limit was obtained frbm
(23), i.e. an increase of 5% over the corresponding value in (31). Since Beck
estimated a difference of only 2% between exposure rates at ground level and
at one meter above ground, the Tlower 1imit in (31) was increased
proportionately, for consistency with his study. Thus, for ground surface

exposure rates,
1.94 wR/h per pCi/g < X .. < 2.06 uR/h per pCi/g (32)

The value ranges (31) and (32) imply potential maximum errors of 3% and 6% ,
respectively, which may be assumed to represent the net effect of different
soil-surrogate materials, approximations, etc., in the two studies, but
excluding the effect of different spectra. These maximum potential errors
delimit the liability of using maxima from (31) or (32)* in the comprehensive
model of Equation (30). Including the combined curve-fitting errors of (26)
and (28), a total of 1.8% , this model should express exposure rate as
function of d and t with a maximum possible error of less than 8% , for any

set of d and t values not exceeding 100 cm, severally.

* Implicit in the process of setting ranges (31) and (32) is the constraint
that a maximum exposure rate at ground surface, chosen from (32), should be 2%
to 5% greater than the corresponding maximum exposure rate at one meter above
ground level, from (31). ,
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As pointed out in Figures 2 through 6, the models in (25), (26), (28) and,
by extension, the comprehensive model in (30), are based on results obtained
by computerized techniques. These are virtua]]y’ indispensable for the
efficient performance of repetitive mathematical tasks, but introduce small
inaccuracies in the process of "rounding off" results to a prescribed number
of digits. The effect of such "computer round off errors" grows progressively
larger with increasing d and t, ultimately compromising the validity of all
results corresponding to d and t greater then 100 cm. Such effect is
immaterial in modeling X(t)/X(~), but very significant in studying the
efficacy of cover thickness d in reducing exposure, as described by
X(d)/X(0). Since "small" round off errors in X(d) may represent differences
of orders of magnitude, the modeling of X(d)/X(0) was not extended beyond
results verifiable by Equation (27) and comparison of Tables 2 and 3, values

corresponding to larger d being left to extrapolation.

In the latter context, the graph of L(d) in Figure 2 suggests that any
expression providing an accurate fit to the values graphed should be
applicable, with resonable expectations of accuracy, to a range of cover
depths d extending beyond 100 cm. Since Equation (25) meets such requirement
with a maximum error of 1% , at any point, corresponding expectations of
generality accrue to this equation and the adjunct Equation (26), representing
X(d)/X(0). Such presumed generality does not negate the possibility of
increased error for values of d greatly in excess of 100 cm; it merely
restates that errors of such magnitude as to invalidate Equation (26) - and
thus (28) and (30) - cannot be anticipated on the basis of the graph in Figure
2 and the key equation (25). In that vein, the aforementioned equations are

included in the comparison of general models summarized by Table 4.
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TABLE 4 .

Schiager's Models

Comparison of Maximum Exposure Rates and Models Based on Present Technique With Previously Published Models and Values.

Curve-Fitting HModels, From Values Obtained by Present Technique

Exposure rate

tailings slab thickness t (cm)
and overburden depth d (cm) -
coiprehensive mode1—238U chain

As collated from Schiager (1974)
[}lt/(] +}1t)] e_d/L

K(a,t) = 0.92 [1 - g,(ut)] e

/4, } t, }
Y. [ 2.4 .3 "3
{e/‘ln[Ze’(—d-oe + li_l . e {e" 1n[2e2(%°e + 1i|

Xca.t) =X

max

Ratio of exposure rate due to
bare tailings slab t cm thick

As adapted from Schiager (1974)

{ t/to } t = tailings slab thickness,
e"‘ln[?e’(%e + ])] in cm
(*]

i | X(B) ) X(t)
to exposure rate d"ez§g infi- ) 8.~ . [I - Ez(ut)] e )/ *pt) [—=1- d = overburden depth, in cm
nitely thick slab - “>%U chain] K(=) X (=) t = d =1
Ratio of exposure rate due to o ] ] ] d/d RRCIN ?m
slab covered with averburden As }mphed by Figure 4 in Schiager (1974) . _ {v/‘_—zoﬁ_—} Xiax = X(«) = X(0) = max1mt.1m
d cm thick to exposure rate _X(d) - oL X(d) . e ' 1n[2e (H'oe * ])] efposure rate, obtained
due to bare slab - 238y chain.| X(0) X(0) witht == andd=0.
Relaxation length , in cm, . d Overburden is assumed to be
. . . 2
with respect to exposure rate-| "om Figure 4 in Schiager (1974) L(d) = doe/‘ln[Ze ge 1)] impervious to radon gas, in
38y chain. L=14cm these models.
Schiager (1974) Beck (1972) Values Obtained by Present Technique
Maximum exgg;ure rate at ground xmax = 0.92-e uR/h per pCi/g ).(max = 2.06 uR/h per pCi/g
surface - U chain. = 2.5 uR/h per pCi/g
iMaximum exposure rate at 1 m xmax = 1.96 pR/h per pCi/g
above ground surface-238U chain.
Same as above, excluding weak X = 1.82 pR/h per pCi/g i(m = 1.89 pR/h per pCi/g
238 ] max ax
gammas and X-rays -""-U chain.
Exposure rate over bare, infi- X = 0.179 pR/h per pCi/g Xnax = 0-172 pR/h per pC /g
- . . 40 max
nitely thick deposit of " K, at
1 m above surface.




Applications

One of the primary purposes of this report is to demonstrate the
application of simple mathematical models, developed in the originating study,
to conditions of somewhat greater complexity than those envisioned in the
course of such development. It should be recalled that the analysis and
jmplementation wultimately yielding Equations (25), (26), (28) and the
comprehensive model in (30) were made possible by a number of simplifying
assumptions (Appendix B), which admit of conditions that are, generally,
improbable but conceptually not impossible. The relevant exception to this
generality is the assumption that radon will not emanate from the tailings or
uranium-bearing soil, implying a lack of motivity conceptually improbable and

generally impossible for a noble gas in a porous medium.

To illustrate one of the consequences of this faulty assumption, it suffices
to apply Equation (30) to the case of a bare tailings slab. Since the Xmax
value in (30) was obtained assuming that 222pn does not diffuse out of the

source material, it follows that (30) will overestimate exposure rate.

The reverse is true when Equations (25), (26), and (30) are applied to
determine the shielding effects of cover. Unless the overburden is

222Rn, the exposure rates from a tailings pile covered with

impermeable to
overburden of thickness d will be substantially underestimated - by orders of
magnitude if d>100 c¢cm. This is due to the fact that radon gas may be
generally expected to diffuse into the cover material, generating a source of
gamma rays with considerably 1less shielding than the thickness of the

overburden would indicate. Fortunately, models developed in the preceding
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sections may be used to provide a more realistic estimate of exposure rates

due to a covered pile.

The first step in such determination is establishing the distribution of
222Rn in the tailings and cover material. This will depend on the thickness
of cover d, the radon emanation power E, and the diffusion coefficient of
“free" radon in soil, D. Applying Fick's law to the general diffusion
equation, with the bbundary conditions and treatment of Appendix L, results in

the following two equations:

in overburden C. (z) = Ee*dsinh [a(d-2)] (33)
(for z>0) TOTAL

in tailings Ct (z) =1 - Eea(z'd)cosh(ad) (34)
(for z<0) TOTAL

where CCTOTAL(Z) = 222Rn concentration in overburden, in pCi/g of free

radon, per pCi/g of 226Ra in tailings, as function of

distance z above tailings-cover interfere.

CtTOTAL(Z) = 222pn concentration in tailings, in pCi/g of both free

and bound radon, per pCi/g of 226Ra in tailings, as
function of distance z below tailings-cover interface.
Z = generalized distance, normal to tailings-cover interface
where z>0, above tailings-cover interface,
z = 0, at tailings—cover interface,
2<0, below tailings-cover interface
E = emanation power, fraction of 222Rn free to diffuse out

of soil grains, dimensionless
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decay constant of 222Rp,

a =Vagoo /D , where 222
Rn Rn -6 -1
= 2.1 x 10 "s

diffusion coefficient of
222 2/

o
]

Rn, in cm™/s

d = depth of cover, cm

With the assumption that 222

Rn is in radioactive equilibrium with all
daughter nuclides throughout the overburden and tailings, the distributions
given in (33) and (34) permit establishing exposure rates above the cover, by
the use of numerical integration techniques applying the comprehensive model

of Equation (30).

The techniques employed take advantage of the fact that the concentration of
nuclides increases with decreasing z, and of the linear relationship between
concentration and exposure rate, e.g. a concentration of 0.1 pCi/g will lead
to an exposure rate one-tenth of that in (30). By representing the
concentrations in (33) and (34) as a set of discrete increments AC
corresponding to distance increments Az, an ensemblie of infinitely thick slabs
with different nuclide concentrations AC is generated. All but one of these
slabs are represented as having source-free overburdens of thicknesses equal
to multiples of Az, according to the number of Az increments required to reach
the depth corresponding to a specific AC. This allows direct application of
Equation (30) to each of these slabs to calculate an element of exposure rate

AX  (Appendix M).

The sum of all such elements AX results in a total exposure rate X
corresponding to a set of conditions comprising a given thickness of cover d,

a diffusion coefficient D, and an emanation power E. Setting E = 0.2, a set
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of graphs for different D was obtained, describing the effect of increasing d

in terms of X(d)/X(0), in Figure 7.
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Figure 7 . Relative decrease in exposure rates, with respect to
maximum exposure rate possible, as function of increasing thickness
d of the overburden slab, for emanation power E = 20% and different
va]ue of radon d1ffus1on coeff1c1ent in soil, D, in the range 0.02
cmé/s > D > 0.0002 cm?/s.
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In the case of a bare, infinitely thick tailings slab, the distribution of

radon is governed by Equation (34) with d = 0, which produces

(z) =1 - Ee*? , for z <0 (35)
TOTAL

Cy

Applying to (35) the technique outlined in Appendix M, the effect of radon
emenation in reducing maximum exposure rates can be estimated. For the
specific case of E = 0.2 and 0.0001 cm2/s <D < 0.05 cm2/s, the process

yields results that‘may be approximated by the curve-fitting Equation (36) and

Figure 8.
X (D) -0.21
max
_£=0.2 o.75<-D— (36)
X D
maxe _q 0
where Xmax = exposure rate (maximum) over a bare, infinitely thick
£=0.2
tailings pile with an emanation power £ = 0.2, as
function of diffusion coefficient D, in uR/h per pCi/g
(of 226Ra)
X = exposure rate (maximum) over a bare, infinitely thick
maxg_o

tailings pile without radon emanation, in uR/h per
pCi/g.
= X, ax in Equation (30)
D = radon diffusion coefficient, cm’/s

D = reference constant

1 cm2/s
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Figure 8. Exposure rate over a bare, infinitely thick tailings
pile reduced by radon emanat1on effects, as funct1on of diffusion
coefficient D, for 0.0001 cm 2/s <D <0.05cm /s, and £ = 0.2.
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Appendix A

Choice of Empirical Function to Represent Gamma-Ray Buildup

Determination of external exposure rates from any radioactive source
generally requires a calculation of photon fluxes at the points of interest.
The latter procedure accounts for the interactions of electromagnetic
radiation with the materials it encounters between the point of emission and
the receptor. The effects of such interaction can be described in terms of
the two related concepts of "attenuation" and "buildup".

By ascribing to each photon an "identity" characterized by energy and
direction, the process of "attenuation" can be defined essentially as one of
"identity loss", in which scattering and absorption interactions with matter
alter the direction and reduce the energy of the original or "primary"
radiation. For a well collimated beam, attenuation of primary photons
approximates a net loss of photons, since scattering would effectively remove
them from the narrow beam. The photon intensity drops exponentially with
distance, and is fairly easy to calculate, for such conditions. However, for
the more common "poor geometry" or "broad beam" situations, such calculation

would result in a sizable underestimation of photon flux at the point of

concern.

Calculation of gamma-ray exposure rates from sources distributed in
absorbing media must include the effects of "secondary" radiation, consisting
mostly of Compton-scattered photons with the addition of annihilation

radiation from pair-production, and of X-rays resulting from photoelectric
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interactions and bremsstrahlung. Determination.of this extra contribution, or
"buildup", requires the solution of the Boltzmann transport equation for
photons, an extremely involved calculation that has been cérried out by
several different techniques, with varying success. The most publicized of
these techniques, the "method of moments", has ultimately produced "buildup
factors" for point isotropic sources of up to nine energies between 0.255 and
10.0 MeV, embedded in infinite media consisting of water or one of six

elements with Z ranging from 13 to 92.

Paraphrasing Trubey (1966), a "buildup factor" may be defined as "the
ratio of any quantity of interest, characteristic of the total gamma-ray flux,
at a chosen point in a given medium, to the same quantity characteristic of
the unscattered flux at that same point". Thus, there exist energy-flux
buildup, energy-absorption buildup, and dose (or dose rate) buildup factors
(Glasstone and Sesonske, 1967). The differences between the various buildup

factors are often neglected, but may be significant in critical calculations.

In addition to source energy and medium composition buildup factors are
also dependent on spatial coordinates, as implied by the definition and the

columnar arrangement of Table 1-A. Since the latter pertains to isotropic point

sources in infinite media, such dependence 1is sufficiently expressed by
tabulated values corresponding to one single spatial variable "r", distance
from the point source. All other geometries would require an integration over
the dimensions of the source, with the spatially-dependent buildup factor
included in the integrand. This clearly necessitates expressing the buildup

factor as - an explicit function of spatial coordinates.
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Table 1-A

Dose Buildup Factor (B) for a Point Isotropic Sorce

pr
Material MeV
L 2 4 7 10 15 20
Water 0.255 § 3.09 f 7.14 [ 23.0 72.9 166 556 982
0.5 2.52 [ 5.14 ] 14.3 38.8 77.6 178 334
1.0 2.3 [ 3.71 7.68 | 16.2 27.1 50.4 82.2
2.0 1.33 ) 2.77 4.88 8.46 12.4 19.5 27.7
3.0 1.09 § 2.42 3.91 6.23 8.63 12.8 17.0
4.0 1.58  2.17 3.34 5.13 6.94 9.97 12.9
6.0 1.46 § 1.91 2.76 3.99 5.18 7.09 8.85
3.0 1.3 f 174 2.40 3.3 4.25 5.66 6.95
10.0 1.33 § 1.63 2.19 2.97 3,72 4.90 5.98
Aluminum 0.5 2.37 4,24 9.47 21.5 38.9 80.8 L4l
1.0 2,02 § 3.31 6.57 | 13.1 21.2 37.9 53.5
2.0 1.75 | 2.6t 4,62 8.05 11.9 18.7 26.3
3.0 1.04 | 2.32 3.78 6.14 8.65 13.0 17.7
4.0 1.53 | 2.08 3.22 5.01 6.88 10.1 13.4
6.0 1.42 § 1.85 2.70 4.06 5.49 7.97 10.64
8.0 1.34 | 1.68 2.37 3.45 4.58 6.56 8,52
10.0 1.28 § 1.55 2.12 3.01 3,96 5.63 7.32
Iron 0.5 1.98 [ 3.09 5.98 § 11.7 19.2 35.4 55.6
1.0 1.87 | 2.89 5.39 § 10.2 16.2 28.3 42,7
2.0 1.76 | 2.43 4.13 7.25 10.9 17.6 25.1
3.0 1.55 f 2.15 3.51 5.85 8.51 13.5 19.1
4.0 1.45 ] 1.94 3.03 4.91 7.11 11.2 16.0
6.0 1.3 § 1.72 2.58 4.14 6.02 9.89 14.7
8.0 1.27 | 1.56 2,23 3.49 5.07 8.50 13.0
10.0 1.20 f 1.42 1.95 2.99 4.35 7.56 12.4
Tin 0.5 1.56 § 2.03 3.09 4.57 6.04 8.64 --
1.0 1.64 | 2.30 3.74 6.17 8.85 13.7 18.8
2.0 1.57 f 2.17 3.53 5.87 8.53 13.6 19.3
3.0 1.46 § 1.96 3.13 5.28 7.91 13.3 20.1
4.0 1.38 § 1.81 2.82 4,82 7.41 13.2 21.2
6.0 1.26 | L.57 2.37 4.17 6.94 14.8 29.1
8.0 1.19 | 1.42 2.05 3.57 6.19 |- 15.1 34.0
10.0 1.14 f 1.31 1.79 2.99 5.21 12.5 33.4
Tungsten 0.5 1.28 J 1.50 1.84 2.2 2.61 3.12 --
1.0 1.44 § 1.83 2.57 3.62 4,64 6.25 (7.35)
2.0 1.42 § 1.85 2.72 4.09 5.27 8.07 [ (10.6)
3.0 1.36 | 1.74 2.59 4.00 5.92 9.66 14.1
4.0 1.29 J 1.62 2.4 4.03 6.27 12.0 20.9
6.0 1.20 | 1.43 2.07 3.60 6.29 15.7 36.3
8.0 1.14 f 1.32 1.81 3.05 5.40 15.2 41.9
10.0 1.10 f 1.25 1.64 2.62 4,65 14.0 39.3
Lead 0.5 1.24 | 1.62 1.69 2.00 2.27 2.65 (2.73)
1.0 1.37 1.69 2.26 3.02 3.74 4.81 5.86
2.0 1.39 f 1.76 2.51 3.66 4.84 6.87 9.00
3.0 1.36 | 1.68 2.43 2.75 5.30 8.44 12.3
4.0 1.27 | 1.356 2.25 3.61 5.44 9.80 16.3
s.1097f t.2t | t.s 2.08 3.44 5.55 11.7 23.6
6.0 1.18 f 1.40 1.97 3.34 5.69 13.8 32.7
8.0 1.14 ] 1.30 1.74 2.89 5.07 14.1 44,6
10.0 1.11 § 1.23 1.58 2.52 4,34 12.5 39.2
Uranium 0.5 1.17 f 1.30 1.48 1.67 1.85 2.08 --
1.0 1.3t } 1.56 1.98 2.50 2,97 3.67 --
2.0 1.33 0 1.4 2.23 3.09 3.95 5.36 (6.48)
3.0 1.29 § 1.58 2.21 3.27 4,51 6.97 9,68
4.0 1.24 ] 1.50 2.09 3.21 4,66 8.01 i2.7
5.0 1.16 § 1.36 1,35 2.96 4.80 10.8 23.0
8.0 1.12 § 1.27 1.66 2.6l 4.36 11.2 258.0
10.0 78.5

* ur=mass absorption coefficient (u/p) X distance (cm) X shield density {g/cm?)

From the Radiological Health Handbook (1970)
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There exist many expressions, or "forms", of the buildup factor as
function of source energy (E) and distance from the source (r). Three of the
best known are the "linear", “quadratic”, and " cubic ” forms of the buildup
factor, polynomials of the 1lst, 2nd, and 3rd degree in r, respectively, with
energy-dependent coefficients. Two other polynomial forms, "Berger's" and
"Taylor's", include exponential terms with products of distance and
energy-dependent parameters both as coefficients preceding the exponential
functions and/or as function arguments. All but one of the five forms have
one common characteristic: that the energy-dependent fitting parameters are
valid up to a certain distance from the point source, and have to be replaced
with others once that distance is significantly exceeded. The attendant
discontinuities plus the fact that each succeeding set of parameters renders a
given form increasingly less accurate suggest the need for other choices for a

general treatment.

The sole exception to the above mentioned drawbacks is provided by

Taylor's Form of the buildup factor, which can be written

Br(E,ur) = A(E)e~e; (E)u(E)ref1-ple-az (E)u(E)r (1-A)
where BT(E,ur) = energy and distance dependent buildup factor, dimensionless
ACE) o (E) i (E)
n(E)

r

energy-dependent fitting parameters, dimensionless

1]

energy-dependent attenuation coefficient, cm-l

distance, cm

The energy-dependent parameters A, «,, and a, are expected to retain their
validity -to a great extent- at most distances from the source, producing

buildup factors (thus, exposure formulas) of consistent accuracy.Table 2-A
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illustrates this consistency as contrasted to that of Berger's Form, which
is sometimes used as a standard of comparison (Trubey,1966). There is Tittle
variation between the mean percentage deviations of Taylor's Dose Formula at 7
MFP (mean free paths) and the corresponding values at 20 MFP, where 1 MFP =
pur. This is particularly true of water and the six pure elements originally
examined by the "method of moments" (see Tablel-A) and considerably less so for

the various types of concrete, which are mixtures.

Table 2-A Comparison of Average Percentage Deviation of Dose Buildup
Factors for a Point Isotropic Source, Obtained Using Taylor's and
Berger's Formulas Versus Tabulated Buildup Factors, for Eight Energies
(Trubey, 1966).

- Mean Percentage Deviation

20 MFP Range 7 MFP Range
Medium Berger¥ Taylor Berger¥* Taylor
Water 4.0 3.6 1.2 3.7
Aluminum 2.5 2.8 0.7 2.5
Iron 2.1 2.5 0.5 2.5
Tin 1.3 1.9 ‘ 0.2 1.7
Tungsten 1.7 1.6 0.3 1.2
Lead 2.3 0.8 | 0.7 0.5
Uranium 1.6 0.8 0.k 0.5
Ordinary concrete 3.2 2.9 2.0 k.o
Ferrophos. concrete 3.2 2.6 1.4 3.3%
Magnetite. concrete 2.9 h.2 0.9 4.8
Barytes concrete 2.6 3.4 ' C.6 3.7

*#20-MFP parameters used.
*¥*7~MFP parameters used.

(From ORNL-RSIC-10, "A Survey of Empirical Functions Used to Fit Gamma-Ray
Buildup Factors," by D. K. Trubey dated February 1966, Oak Ridge National
Laboratory.
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Appendix B

Simplifying Assumptions

The choice of Taylor's form of the buildup factor in Appendix A was
influenced by the need of dealing with extended sources of highly variable
dimensions, characteristic of uranium-238 decay chain deposits when studied as
a group. Such a general study is greatly simplified by a number of
assumptions, presumed to apply for most soils containing U238  and/or

daughters, but with express emphasis on uranium mill tailing piles.

~ Assumption 1. Infinite Planar Extent of Tailings

a. Uranium mill tailings piles normally extend over tens of
thousands - often hundreds of thousands - of square meters
(Ford, Bacon and Davis, 1977).

b. External exposures on the surface of tailings piles are
usually characterized by "worst case" conditions - i.e., at
the center of the pile surface, ignoring "edge effects."

c. The major component of such exposures would be due to
photons traveling through soil, mostly. If exposures were
limited to these photons, a detector at the center of the
pile surfaée, a short distance above the air-tailings
interface, would not distinguish between a large, though
finite, area and one of infinite extent.

d. However, photons scattering through air can reach a given

point from much greater distances than by traveling through
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Assumption 2.

Assumption 3.

soil, and thus the exposure rate detected over tailings
piles must include a "skyshine" cﬁmponent of photons from
sources near the pile surface but distant from the detector
(Beck, 1981). This component would increase as the pile
surface area increases, a dependence that becomes more pro-
nounced for decreasing depths of overburden.

The assumption of infinitely wide areas (e.g., Beck, 1972)
would not detract from the accuracy of calculations dealing
with the exposure component in c), while conservatively
maximizing the minor contribution of "skyshine,"*in d).

For the purposes of simplifying calculation and comparison
with the results of other investigators (Beck, 1972;
Schiager, 1974) infinitely wide tailings piles were

assumed for this study.

Finite Depth of Tailings

The effect of different thicknesses of mill tailings on the

exposure and dose rates is one of the objects of the present

study.

Smooth, Flat Interfaces

de.

Realistically, tailings-ground, overburden-tailings, air-
tailings interfaces can be expected to be neither smooth

nor flat.

* Author's note: "skyshine" contributions are not included in this study.
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Assumption 4.

b.

C.

d.

Roughness at the air-tailings interface would "tend to
increase the field close to the iﬁterface by a slight
amount." (Beck, 1972)

Thus, the assumption of smooth, flat interfaces leads to
exposure rates, etc., being underestimated, slightly, for
most surfaces. Severe roughness would presumably result in
greater error.

Smooth, flat interfaces are assumed in the present study,
which greatly simplifies analysis. Since this assumption
is routinely made in studies of this nature, comparison of
results is also facilitated. Nevertheless, it represents a

drawback of fhis and similar methods.

Absence of Soil Moisture

de

bl

C.

Increasing soil moisture from 0% to 25% by weight will not
substantially affect gamma-ray transport (Beck, 1972).
However, increases in soil moisture would always result in
increases of in situ soil density, "which for the uniformly
distributed sources reduces the source activity per gram
and thus...fluxes, exposure rates, etc." (Beck, 1972)

The present proposed method accommodates small, uniform,
changes in soil density with extreme ease and, with con-
sistent use of either "in situ" or "laboratory" soil

densities, produces valid results.
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Thus, "absence of soil moisture" is not a strict require-
ment of the proposed method; it is merely a convenient
choice, since the density of "dry packed tai]fngs" studies
in this case corresponds to the density of "moist packed
earth" studied by other investigators (Schiager, 1974) thus

simplifying comparison of results.

Assumption 5. No Radon Emanation

de

C.

Over 95% of the total photon energy emitted in the 238y
decay chain originates from 222Rn and daughters.

However, 222pn is a noble gas which can emanate into the
soil or tailings air, diffusing through the soil and cover
material, and eventually, into the atmosphere. Typically
20% of the 222Ru is free to diffuse in this manner, thus
effectively reducing the source of gamma rays within the
tailings while simultaneously creating a source of gamma
rays within the cover material.

To facilitate comparison with results obtained by other
researchers, who assumed "no radon emanation," the same
simplifying assumption is made for the present method.
This is roughly equivalent to assuming that cover material
is impermeable to radon diffusion and may lead to over-
estimating, by orders of magnitude, the effective shield-

ing capabilities of cover, as discussed in Appendices J,L
and M.
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Assumption 6.

Assumption 7.

Radioactive Equilibrium

For simplicity, all the members of the 238y decay chain

are assumed to be in radioactive equilibrium, notwithstanding
the capability mentioned in 5¢c. Thus, source concentrations in
pCi/g as used in this report refer to “pCi of 238y per gram

of soil," etc., which reflects standard practice.

Uniform Distribution of Nuclides in Tailings

a. A large volume of tailings may be expected to contain many
local inhomogeneities.

b. However, a detector is affected by gammas from many points
in the pile, which reduces in some degree, the effect of
local differences.

c. For most sites, the assumption of uniform distribution has

been found to be a valid approximation (Beck, 1972).

Assumptions 8,9. Uniform Distribution of Overburden Material

Assumption 10.

Replicating Assumptions 1 and 2, the overburden material is
assumed to be of infinite planar extent but of some given,
finite, thickness. The latter can be "zero" for the common

case of "no overburden present."

Identity of Buildup Factor Parameters for Tailings and
Overburden
Tailings and overburden material are assumed to be identical

insofar as buildup factor parameters are concerned.
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In summation, a typical uranium-bearing soil or uranium mill tailings pile is
represented as a flat slab of finite thickness but infinite in area,
containing in uniform distribution and radioactive equilibrium, the nuclides
of the uranium chain from either 238y or 226Ra* to stable lead. The soil
or tailings slab is covered with a similar slab of source-free overburden, in

the more general case.

*The differences in the energies emitted in these two cases is minimal.
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Appendix C
Exposure Rates and Flux Equations
The determination of exposure rates to photons from any radioactive source

entails, basically,a conversion from photon flux. For photons of a specific
energy E, the correspondence of exposure rate and flux may be expressed by

' ) Hen(E) ‘ )
X(E) F).(t-:cﬁ(E)[._F_]air (1-0)

where X(E) = exposure rate from photons of energy E, in R/s

Fx = conversion constant
= 1.824401368 x 10-8 g . R/Mev X
E = gamma energy, in MeV

"flux" of gammas of energy E, in gammas/(cmZs)

©-
——
m
g
]

uen(E)] = energy dependent mass energy absorption coefficient
for air, in cm2/g

An obviously necessary input to the above equation is calculation of the
photon flux at the point of interest. For gamma rays of a specified energy,
from extended sources, such calculation would consider primarily the geometric
aspects of source distribution and overall source configuration, as affected
by the spatial dependence of the buildup factor.

In the case under study, the extended source consists of uranium decay
chain nuclides, at radioactive equilibrium, dispersed uniformly throughout an
infinitely wide tailings slab of finite thickness covered with a source-free
overburden slab. With these basic premises and Figure 1-C, general equations
for the monoenergetic photon flux at any point "o" in the overburden, at a
distance "d" from the oberburden-tailings interface, are developed in the

following pages.
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Volume Element dV, with source strength S, photons/cm>sec

r«sin@-d¢!
o
dr «®
| |
! _—
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Figure 1-C. Geometry for flux calculations with a sliab-distributed

source (uranium-bearing soil or uranium miil| tailings) covered with
a source-free overburden slab.
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Consider a generalized volume element dV within the tailings slab, in Figure
1, of specific source strength Sy, at a distance r from some unspecified
point 0 in the overburden or cover material. Taking buildup into account,
plus the generally assumed different attenuation capabilities of the two
media, the flux contribution from dV at point 0 can be basically expressed

(Morgan and Turner, 1967) as:

SyB e-u'(r-dsece)-ucd seco

dep = 7 dv (2-C)
where qb = “f]ux“, bhotons/cmz.sec
Sy = source strength per unit volume, photons/cm3.sec
B = buildup factor, dimensionless
ut,uc = attenuation coefficients for uranium bearing soil (or
tailings) and cover material, respectively, cm-1
dv = volume element, cm®, equal to "rZsine de d¢ dr" (see Figure 1-C)

To obtain the total flux ¢of photons of a given energy at 0, equation (2-C)
must be integrated over the tailings and cover slabs dimensions. Such
integration must include the buildup factor, as already discussed, and
necessitates adapting the chosen buildup form to suit the geometric
configuration. Referring to Equation (1-A), Assumption 10*and Figure 1-C, the

spatial dependence of Taylor's Form of the buildup factor can be described,

* See Appendix B
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for the present case, by Equation (3-C) below.

Br(r,6) = Ae—alut(r-dsece)-alucdsece +[1-AJe- %Mt (r-dseco )-o,u dsecs (3-0)

Equation (3-C) can now replace the generalized "B" in Equation (2-C) and the
resultant expression integrated. Prior to doing so, however, the integrand
can be simplified by multiplying Equation (3-C) by the exponential term in
Equation (2-C)

t (r-dsecs)-pcdsecs

BT(r.o)x e " = Afi(8) g,(r) + (1-A)f,(0)g, (r) (4-C)

where f, (o) = e (ut-uc) (1+a1 )dsecd
ar(r) =et(lta)r

and f,(s) = e(bt-uc) (1+a,)dsece
gz(r) =e'ut(l+d2)r

With these transformations, the integration of Eqn. (2-C) can be indicated

as
$ - Sv[Af (8)g1(r) + (1-A)F2(6)g,(r)] " (5-C)
4qr2
v
where dV = r< sineded¢dr
Therefore,
2 w/2 (t+d)secs
Sy
qb = _Z_. J do j sinode [Af, (6)9, (r) + (1-A)f,(6)g,(r)]dr (6-C)
T 0 ) d secs

The integration with respect to r produces the following two terms
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(7-C)

A e-Clsece(l_e-T1sec6) , (1_A)e-czsece(1_e-Tzseca)
Ti/t T2/t

-where C; = pcd(1+en) , C2 = ch(lfaz)

T, = mutt{l+a1) , T2 = mtt(l+a,)

To integrate with respect to o, the above is multiplied by sins and the

product expressed as the sum of four separate integrals

. ﬂ/ ﬂ/z
2-Clsece -(C,+T,)sece
A J e sineds - e sinede
Ti/t
0 ° (8-C)
1l/2 ﬂ/z
-CZSQCB -(C2+T2)SEC6
+ (1-A) e singdg - e ' sinads
Ta2/t
0 0

To perform the integrations, a substitution 1is required, with the

corresponding changes in the limits of integration

y = seco
dy = sec?6sin® de (9-C)
= y2 sing ds
thus g1;= sine do

As ¢ varies from 0 to n/p , Y = seco varies from 1 to =

Equation (8-C) can now be rewritten

-Ciy -(C1+Th)y LA -C,y -(Co+Ty )y
- e -
ALy . || + LLAL] e dy - 4y | (10-O)
Ti/y y2 y? Talt y2 y2

1

-—

| |
The form of Equation (10-C)leads directly to an evaluation in terms of the

familiar 2nd order exponential integral E,:
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Tll;—t [atc,) - EZ(C1+T1)] + Tl;’:)[éz(cz) - E2(C2+T2):| (11-C)

The last integration, with respect to ¢, merely introduces a factor of 2n into

the numerator of Equation (6-C) which now becomes

¢ - _z_v_ g TA/t [E (C,) -E2(Cy+T )] ?(rl_;%)[Ez(Cz) -E2(02+T2)” (12-C)

Replacing C,, C,, T, and T, with their equivalences, defined in Equation(7-C)

permits rewriting Eqn. (12-C) in a more meaningful form.

¢ - W ucd(.1+a1):|- EZ[(ucd + utt)(l‘fal)];

Sy(1-A) r
AR 3 2 [ued(14a,)] - E2[(ucd + utt)(1+a2)]§

L

(13-C)

The integration performed above was strictly geometric, involving
only the physical dimensions of the tailings slab and cover; it was not
affected procedurally by the energy-dependence of the buildup factor,
attenuation, and source strength parameters. Nevertheless, the
energy-dependence of these parameters cannot be neglected; it is obvious that
they must all correspond to some definite energy E in any given particular
case, or Equation (13-C) would be invalidated. More relevantly, this
correspondence must extend to the resultant flux , now specifically limited
to photons of one single energy. Thus, a more accurate rendition of Eqn.(13-

C) would be as follows:

b (E)- [1+ E)]< {ie (E)aT 1+, (B) £, {Lac (E) et (E)t J1va, ()] }> 1)

E)[1- A ] < uc E)d[l*‘uz(E)J} Ez{[uc(E)d+ut(E)t][1+u2(E)]}>
“t
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"flux" of photons of energy E, photons/cm?.sec.

where ¢(E)

Sy(E) = volumetric source strength, photons of energy E/cm3.sec.

ut(E) = attenuation coefficient of uranium-bearing soil or tailings
material for energy E, cm!

uc(E) = attenuation coefficient of cover material for energy E, cm- 1

A(E),al(E),} Taylor's form buildup factor parameters for photons of
and a (E) energy E, valid for both tailings and cover, dimensionless
t = thickness of tailings or uranium-bearing soil slab, cm

d

thickness of cover slab, cm

Note that the previously generalized distance "d" has been redefined, above,
as "the thickness of the cover slab". This means that Equation(14-c)now
results in the flux of photons of energy "E" at the top of the overburden or
cover slab, at the air-cover interface, i.e. a "surface flux ", at the soles
of an observer's shoes, as it were. Treating "d" as a variable, the effect of
increasing cover on the "surface flux " of a given energy can be determined.
Setting "d" equal to "zero" produces the case of "bare" or "uncovered"

tailings, with the maximum “surface flux " possible with a tailings slab of a

specified thickness "t".

# @) - SRy (1 {mionteton})

Sy(E) [1-A(E)]
ZUZ(E)[1+a2(E[]<1'E2 {ut(E)t[1+a2(E)]€>

(15-C)

Equation (lS-C)aIso describes the effect of varying U.B.S. (uranium-bearing

soil) or tailings slab thickness "t" on the "surface 'flux'" of photons of
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energy "E", for the "bare U.B.S. or tailings" case. The conditions of maximum
surface "flux" are obtained by postulating an infinite thickness, "t==".
Although infinitely thick tailings piles have not been reporfed to date,
“fluxes" corresponding to such a "worst case" are approached asymptotically

with "sufficiently large" but finite values of "t".

Sy(E) A(E) 1-A(E) ]
PE) - 2ut (E) [1+a1(E) ' 1+a, (E)

(16-C)

To isolate the effects of varying cover depth "d" on surface "fluxes", a
constant thickness "t" must be maintained in Equation (14) while altering d.
Setting "t==" again, as a convenient example, produces

Sv(E)A(E)

¢ (E) = ] Ep {uc(E)d 1+a1(E):]}

2ut (E)[1+a, (E)

(17-C)
Sy(E)[1-A(E)]

+ ] EZ{uC(E)d[HaZ(E)J}

2ut (E)[1+o, (E)

The energy-dependence of buildup, attenuation and source-strength
parameters has been repeatedly noted in Equations (14-C) through (17-C) to
stress the fact that their output is, in each case, a monoenergetic flux. By
direct application of Equation (C-1) to such resultant single-energy flux(es)
the corresponding exposure rate(s) can then be computed.  However, the
exposure rate attributable to photons of one specific energy would obviously
not suffice to describe conditions at a wuranium mill tailings pile,
characterized by a complex spectrum of emission energies. The flux and then
the exposure rate corresponding to each and every energy produced by the
nuclide inventory of the pile would have to be calculated singly, followed by
a process intergrating all exposures. Note, however, that the integration
cannot be performed analytically, since S,(E) is not a continuous function
of energy; a numerical integration, best done with a computer, is required.
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allE .
Xeo = }EF,E. ¢ (£) M on (i where X = exposure rate due to photons of
ZE i_]x ! "V P Jair =E all energies, in R/s.

This expression introduces a serious problem, namely that the buildup
parameters A(E), o, (E) and a,(E) of Taylor's form, upon which the analytical
development is based, "are not available below 0.5 MeV" (Trubey, 1966). This
means that up to 15% of the total photon energy emitted in a pile at
radioactive equilibrium would be 1left unrepresented, unless some means to
extend analysis below 0.5 MeV is found. One viable technique requires use of

Berger's Form of the buildup factor,

D(E)pr

BB(E,ur) =1+ C(E)ur e (18-C)

where C(E), D(E) = energy dependent fitting parameters, dimensionless

Applying Equation (18-C) to the conditions of Figure 1, Assumption 10, etc.,

produces the following expression for the spatial dependence of Berger's Form

D r-dseco)+udseco
Bg(r,8) =1 + C [ut(r-dsece) + ucdsecole Cus Jrudsece] (19-C)

Replacing the generalized "B" in Equation (2-C) with the above expression and

carrying out the multiplication produces

d¢p = %ﬁsineded¢[%'f(r’e) + Cf(r,e)e(D-l)f(r’e)]dr (20-C)

where f(r,0) = ur-(u. -u )dsec®

To integrate the bracketed expression with respect to r, note that
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df _df | 21-C
dr = V"t thus dr = 7 s ( )

which permits expressing the integrals as

' PP (D-1)f (22-c)
— e df + =—|fe df
Mt ut

This produces the following two terms

(23-C)

- D-1)f
%—(-e f) + C e( ) [ (D-1)f -1] + constant
t

¥t (0-1)°
With the 1imits of integration made explicit, the first term of (23-C) becomes

(d+t)sece
1 |_o~utr+(ut-uc)dsece 1 _-ucdsecef -uitsece

dsece t (24-C)

Continuing with this first term, the integration with respect to s can be

indicated as

s - (ugthucd)
-ucdseco =(u4t+ucd)secsd
1 J; sineds - J; t sinede (25-C)
ut
0 0
With the substitution Y = sece , (26-C)
dY = sec2g sino do
= Y2 sing do
thus  dY - qipoede
y2
with the corresponding change of limits, (25-C) can be rewritten as
(4 ©
1 e'“ify dy - |e-{ugttucd)y d (27-C)
Mt y y? Y

! 1
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As with Equation (10-C), the above integration results in two 2nd order

exponential integrals

28-C
[Ez(ucd) - Ez(utt+ucdﬂ ( :

T,

t
Integrating this with respect to ¢ introduces a factor of 2n. Multiplying the
product of 2 and (28-C) by the constant term of Equation(20-C) yields the first

term of the integration of (20-C)with respect to r, 6, 9.

(1st. Term) = Sv_ [E d) - E (u ts ] (29-C)
Jugt (ued) 2(utt ud)
Now the process of evaluating the second term of Equation(23-C)is undertaken:
(d+t)secs
D-1 “(uy- 30-C) .,
¢ |eP-1) uyr-(ug-uc)dsecs 3 (0-1) [utr i (ut-uc)dsece] _li (30-C)
2
Bt (D-1) dseco
Expression (30-C)results in a 4-term polynomial
C (31-C)
—_— + o) + 8) + 6
— [ e e s 1]
- + ucd)sectd
where T;(8) = e(D 1)(utt ucd)
T,(0) = o(D-1)(uet + ued)secd (D-1)(u,t + u d)sece
Ti(s) = e(D'l)“cdsece(D-l)ucdsece
T(e) = e(D-l)ucdsece
The integration with respect to 6 is indicated below
n/2 /2 "/2 "/2
L J.Tl(e)sinedo + j.Tz(o)sinede + j.T3(e)sinedo + J.Tq(e)sinede
ut(D-1)?
0 0 0
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For the terms including T1(6.) and T3(6), the following substitution is
useful 4
Y = seco (32-C)
dy = sece(sinssecs)ds
dy = sinfsec6d®

y

For the terms including T2(s) and T4(e), the corresponding substitution is
Y = secb (33-C)
dy = sec?6 sined®
Jt%,= sinede
These substitutions necessitate a change in limits of integration, from "0 to 75"

to "1 to =". The integration with respect to & now produces a polynomial in terms

of 1st. and 2nd. order exponential integrals,

(D-1) (ugt+ucd) Ey[ -(D-1)(uit+ucd)]

C -EZ [-(D-])(utt'hicd)] (34_(:)
ut (D-1)2 -(D-1)ugd E; [ -(D-1)ucd]
+ B [-(0-1)ucd]

The above expression can be simplified by making use of the following

relationships
E(X) =e X - x E,(X)
2 (35-C)
Ex(X) = -Ep(x) + X
X
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With the transformations in (35-C) the first and third terms in brackets in

become, respectively

1 (D1)(pgthncd)

E2 [-(9-1)(u ttud) | - e
trre (36-C)
- (D-])ucd
and  -E [ S(D-Nud ] + e
Cancelling like terms, this becomes
c e(D-l)ucd ) e(D-l)(utt+ucd)
ut (D-1)2
(37-C)
o o (0-1)ucd [}_E(D-l)utt]
w(D-1)2

Integrating with respect to ¢, etc. results in the second term of the

integration of Equation (20-C) with respect to r, 6, ¢

¢(2nd Term) = _SC e(D'l)ucd[}_e(D-l)utg] (38-C)

2ut (D-1)2
Adding the 1lst term from Equation (29-C) and expressing the energy-dependence

of relevant parameters produces

Qb(E) - Su(E) Eoluc(E)d] - E,Lut(E)t + uc(E)d]
2ue (E - (39-C)

CfE) e 1-e

[D(E)-1] uc(E)d
+[D(E)-]]Z g

[D(E)-1] ut(E)t}
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For the important case of an "infinitely thick" tailings slab (t=e) without

cover material (d=0), Equation (39-C) reduces to

¢ - NE N, _«®) (40-C)
2up(E) [o(E)-1]2

With the values of "surface flux " obtained through Equations (14-C) ,
(15-C),(16-C),(17-C) or (40-C), applied in Equation (1-C), the exposure rates
at ground surface can be determined, for gamma radiation of a specific energy.
However, much of the published data refers to exposure rates at a specific
height (typically 1 meter) above ground surface. Accordingly, a modifying
factor was sought, to relate "surface exposure rates" obtained from the above
equations to the corresponding rates at one meter above ground, thus

facilitating comparison with previous results.

This modifying factor can be expressed as a ratio of exposure rate at a
height "h" above ground, including buildup and attenuation effects, to the
corresponding exposure rate at ground level, for photons of a given energy E.
The source of the emissions is assumed to be an infinitely thick slab with an
air "cover" of thickness "h". The assumption of infinite thickness.is meant
to simplify analysis, based on yet another version of the bui]dup factor, the

"linear" form,

BL(E,uY‘) = 1+ a(E)p(E)r (41-C)

where a(E) = energy - dependent fitting parameter, dimensionless

Rep]a@ing Me and d in (2-C) with Maip and h, respectively, plus including
the above formula for BL with the necessary specifications at(E) (for

tailings) and a_..(E) results in an integrable expression. The details of

air
the integration are given in Morgan and Turner (1967) and shall not be

repeated here, with only the results being presented, below.
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The flux of photons of energy E, at a height h above ground level, is

Sy
¢ - E;;'[(l toag)Eplugiph) + agyeh El(“a1rh)] (42-C)

The second term within brackets is subject to the following relationship

jeh E ("a1r )= e - Ea("airh)

where, for h - o,

-u.:.h
air
e

h=o" 1

and Ez(uairh)|h$o= 1

Thus, for h=0, or "ground level case", (42-C) reduces to

Sy
¢ = E__ (1 +a) (43-C)

The modifying factor is obtained by dividing (42-C) by (43-C),

h E;(u
h) a]r a1r

(1 +a

air h) (44-C)
t)

F

M= EZ(“air

The second term of (44-C) may be eliminated if buildup in one meter of air is
neglected, i.e. the case of B = 1, unit buildup, implying that % iy =0
[see Equation (41-C)]. This reduces (44-C) to the following expression, with

energy dependences indicated,

FM(E) = Ez[uair(E)h] (45-C)
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Although based on flux ratios, the modifying factor FM(E) is directly
applicable to exposure rates, as an examination of Equation (1-C) can verify,

due to mutually cancelling terms.

With this modification, the numerical integrations resulting in "total"
exposure rates at ground level and at one meter above ground level can be

represented by Equations (46-C) and (47-C), respectively.

n
. . wen(E;)
= FyEs Es 1
XZES 1Z=:_| X 1¢( i) [——P ] air (46-C)
m
, uen(Ej)]
+3 FREsep(E )| =20
= i® J)[ p lair
; ven(Ef)
: = p. .y | Heniti )
and XZE1p ‘i=1 FxE1Qb(E1)[——7;——-] airEz[ua1r(Ei)]Oocm] (47-C)
m .
+'.Z FXEJ¢(EJ)[ED£J_)_] Ez[pa'ir(Ej)looch
=1 P lair
where i = 1, 2, ...n, indices of discrete energies below 0.5 MeV.

=1, 2, ...m, indices of discrete energies above 0.5 MeV.

The indices i and j in the above equations refer to discrete energies below
and above 0.5 MeV, respectively, corresponding to the choice of buildup form:
the first summation terms in both (46-C) and (47-C) indicate "the sums of
exposure rates, at ground level and at 1 meter above the surface, due to gamma

emissions of energies up to 0.5 MeV , calculated on the basis of Berger's

buildup factor" ; the second summation terms in both equations signify similar
processes employing Taylor's form of the buildup factor, for energies greater

than 0.5 MeV.
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Appendix D

Decay Scheme and Energy Spectrum

The typical uranium bearing soil slab subject of this study is assumed to
contain 238y in radioactive equilibrium with all decay daughters through
210Po, as shown in Figure 1-D. Several branching decays have been omitted,
namely 218At and 206T1 (neither of which is a gamma emitter) and 21071,
None of the mentioned nuclides is produced in more than 0.02% of decays of the
parent nuclide; the "main branch" nuclides 214py,,  210py and 214pg,
respectively, being assumed to correspond to 1005 of the parent
disintegrations, for simplicity. Consequently, the only branching included in
the decay scheme is that of 234pa-metastable (1.17 minutes) and 234pa (6.7

hours).

: With the decay scheme of Fig. 1-D and the radionuclide decay data of
Kocher (1977), a complete spectrum of gamma emission energies present in a
uranium-bearing soil can be compiled. Postulating a "Base Case" of "1 pCi per
cubic cm", and making use of Kocher's intensities, an energy-dependent "source
term" S,(E) is found for each energy E, to implement Eqns. (14-C) through
(17-C),(40-C) and finally (43-C) and (44-C). In agreement to the form of these
last two equations, the S, (E) values are distributed between two tables.
Table 1-D contains S,(E) terms for energies up to 0.5 MeV, for a total of
n=105 values, while Téb]e 2-D consists of the remaining m=177 values, for

energies over 0.5 MeV, where "m" and "n" refer to indices in (43-C) and (44-C).
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Table 1-D Volumetric
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Table 1-D (Continued)
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Table 2-D Volumetric
Source Strength S, (E)
for Energies E>0.5 MeV

From Kocher (1977)
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Table 2-D (Continued)
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Table 2-D (Continued)
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Table 2-D(Continued)

Intensity, or Volumetric NUCLIDE
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Appendix E

Choice of Medium Representing Uranium Mill Tailings

The usefulness of equations based on Taylor's or Berger's buildup factor
is closely connected to the availability of parameters corresponding to either
form for a given transport medium. These parameters have been obtained for
elements such as tin, lead, etc., for water and for homogeneous mixtures of
well defined composition, such as the various types of coﬁcrete in Table 2-A
but not for "soil" or "uranium mill tailings". This omission is due, in all
probability, not only to the complexity of the projected task, but also to the
envisioned lack of generality of the presumptive results (no two soils or
tailings piles are more than vaguely similar in composition). Consequently,
any relatively simple method based on the buildup factor concept must
incorporate the parameters of one of the materials of Table 2-A,which entails a
choice. The choice must be made realistically but conservatively, i.e., a
material representing "tailings" should produce a greater, rather than smaller

“"buildup" of secondary radiation, regardless of any other characteristic.

The selection is facilitated by Equation (16-C) describing the "flux" of
photons, emitted with some energy E > 0.5 MeV, at the surface of a bare

tailings slab of infinite thickness, i.e., a "worst case" condition.

$ (©) - Sv(E) [ AGE) , _1-A(E)
2ut (E)L 1+a, (E) 1+ay (E)

Assuming the coefficient w¢(E) for “tailings" to be already known as a

function of energy, and bearing in mind that the values of Sy(E) have been

tabulated in Tables 1-D and 2-D,the flux.qb (E) for a given energy is directly
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proportional to the magnitude of the bracketed term in the above expression.
This bracketed term is solely a function of the Taylor parameters A, a; , and
a, which, in turn, depend exclusively onthe choice of materia],.for a given
energy E. Obviously, that transport medium which produces the largest values

of the term in brackets would represent the most conservative choice.

The values of Taylor's parameters A, a;, and a, are given in Table 1-E for
each of the 11 media previously listed in Table 2-A, and for energies ranging
from 0.5 MeV to 3.0 MeV (this upper bound exceeding the highest gamma energy

observed in the 238

U decay chain). Based on these values, the magnitude of
the term [A/(1*a;) *+ (1-A)/(1%*a,)] has been plotted, for each material, over

the indicated energy range, in Figure 1-E.

It is clear from this plot that either "water" or "ordinary concrete"
would produce the highest values of buildup, necessitating additional criteria
to effect a selection. In this regard, an important consideration is the need
for extending analysis below the 0.5 MeV Tlimit existing for Taylor's buildup
factor. Since Berger's coefficients for 0.255 MeV exist for "water", but
appear to be unavailable for "ordinary concrete" (Trubey, 1966), the choice of

"water" parameters for energies above and below 0.5 MeV would be consistent

and obvious.

The extent to which fluxes and exposure rates may be overestimated on the
basis of the above selection cannot be precisely determined. By comparing
the buildup in water to that in aluminum, Beck (1981) suggests that results
obtained with the present selection may be high by 5 to 10¢, at 1 meter, and
even more at greater distances. However, the choice of water introduces
compensating errors, alleviating, at least in part, the mentioned drawback, as

discussed in Appendix G.
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Table 1-E Buscaglione-Manzini* Coefficients

for Taylor Dose Buildup Factor Formula

Material Fo (MeV) A - o,
Water 0.5 100.845 0.12687 0.10925
1 19.601 0.09037 - 0.02522
2 12.612 © 0.05320 ©  0.01932
3 11.110 0.03550 0.03206
Aluminum 0.5 38.911  0.10015 0.06312
1 28.782 0.06820 0.02973
2 16.981 0.04588 0.00271
3 10.583 0.0L066 0.0251k4
Iron 0.5 31.379 0.06842 0.03742
1 24.957 0.06086 0.02463
2 17.622 . 0.04627 0.00526
3 13.218  0.04431 0.00087
Tin 0.5 11.440 0.01800 0.03187
1 11.426 0.04266 0.01606
2 8.783 0.05349 0.01505
3 5.400 0.07440 0.02080
Tungsten 0.5 2.655 0.01740 0.11340
1 3.234  0.04754 0.13058
2 3.504° - 0.06055 - 0.08862
3 L.722 0.06468 0.01404
iead 0.5 1.677 0.03084 0.30941
1 2.984 0.03503 0.13486
2 5.421 0.03482 0.04379
3 5.580  0.05422 0.00611
Uranium 0.5 1.444  0.02459 0.35167
1 2.081 0.03862 0.22639
2 3,287 0.03997 0.08635
3 4.883 0.04950 0.00981
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Table 1-E(continued)

Material Fo (MeV) A -0y o,
Ordinary 0.5 38.225 0.14824 - 0.10579
Concrete 1 25.507  0.07230 - 0.018L43
2 18.089 0.04250 0.00849
3 13.640 0.03200 0.02022
Ferrophos- 0.5 61.341 0.07292 - 0.05265
gﬁgii:ie | 1 | u6.o§37 0.05202 - 0.02845
S 2 14.790 0.04720  0.00867
3 10.399 0.04290 0.02211
Megnetite 0.5 75.471 0.07479 - 0.05534
Concrete 1 49.916  0.05195 - 0.02796
2 14.260 0.04692 0.01531
3 8.160 0.04700 0.04590
Barytes 0.5 33,006 0.06129 - 0.02883
Concrete 1 2%3.01L  0.06255 - 0.02217
2 9.350  0.05700  0.03850
3 6.269 0.06064 0.0k44L40

*From "A Survey of Empirical Functions Used to Fit Gamma-Ray
Buildup Factors.” By D.K. Trubey, ORNL-RSIC-10, Published
February 1966.
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Appendix F

Dose Buildup Coefficients for Taylor's and Berger's Formulas

The choice of Taylor's (and Berger's) "water parameters as conservative
substitutes for the unavailable "U.B.S. or mill tailings" coefficients was
based, primarily, on a visual inspection of Figure 1-E drawn using known values

of A, a,, and o, at energies of 0.5, 1, 2, and 3 MeV (Table 1-E). These four

1’
values are obviously insufficient for meeting the requirements of Equations
(43-C) and (44-C) and equations leading thereto -Tables 1-Dand 2-D identify 282

different gamma energies from nuclides in the 238y decay chain, ranging

roughly from 0.01 to 2.45 MeV. Fortunately, both Taylor's and Berger's
coefficients are smooth functions of energy, which enabled the present author

to obtain the necessary curve-fitting expressions.
[. Taylor's Coefficients

For Taylor's coefficients, required for 177 gamma energies from 0.5 to

2.45 MeV (Table 2-D), the following equations apply:

a
(Figure 1-F) A(E) = exp< + c> (1-F)
b-E
where a = -0.560 423 309 6
b= 0.266 709 011 9
c = 2.211 317 385
; i - 2-F
(Figure 2-F) a,(E) =a +b InE (2-F)
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-0.090 035

where a,

bl = 0.053 141 671 84
a
(Figure 3-F)  a,(E) = 2, c,E + dy - (3-F)
b+ E

where a, = -0.113 514 887 2

0.098 224 139 43

o
N
|

c, = -0.004 721 763 81

d, 0.082 863 985 76

Note that the energy range for which Taylor's coefficients are valid comprises
85% of the energy emitted in the 238y decay chain, and that they are valid
generally, i.e. without regard to the number of mean free paths involved (see
Table 2-A , supra). Thus the brunt of calculations concerning the effects of
varying U.B.S. or tailings slab thickness, cover material thickness, and

relaxation lengths is aptly borne by these coefficients.
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100

90 TAYLOR’S DOSE BUILDUP COEFFICIENT A, FOR A POINT
ISOTROPIC SOURCE IN WATER, As Function of Energy E. |
80
-0.560 423 309 6 + 2.211317 385
0.2667090119 - E :
70 A(E) = €
60 For 0.5 MeV< E < 2.45 MeV
50
40
30
20
‘\.\ 0.85% €rror at 3 Mev
ni- e
.5 1.0 2.0 3.0
" '0 ENERGY, MeV

Figure 1-F. Taylor's Dose Buildup coefficient A, for a point isotropic
source in water, as function of gamma energy E.
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TAYLOR’S DOSE BUILDUP COEFFICIENT C!l , FOR
A POINT ISOTROPIC SOURCE IN WATER, as
Function of Energy E, for 0.5 MeV< E < 2.45 MeV
-.02
/
p:
=04} - Estimated 3% Error (Maximum) at E =2.45 MeV /
—.06
a,(e)
—.08
—.10( - -
-.12
0.5 1.0 2.0 3.0

ENERGY, MeV

Figure 2-F.Taylor's Dose Buildup coefficient @4 , for a point
isotropic source in water, as function of energy E.
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where a,=-0.113 514 887 2
b,= 0.098 224139 43
c,= - 0.004'721 763 81
d,= 0.082 86398576
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ENERGY, MeV

Figure 3-F.Taylor's Dose Buildup coefficient &, for a point

isotropic source in water, as function of energy E.
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II. Berger's Coefficients

For Berger's factors, required for 105 gamma energies from 0.01 to 0.5 MeV
(Table 1-D) a more limited application is apbropriate. Note that Berger's
parameters are, spatially, less generally valid than Taylor's, i.e. an element
of uncertainty is introduced as a given number of MFP's is exceeded (see Table
2-A & supra). This is an undesirable effect in calculating relaxation lengths
or any thickness-dependent quantity. Fortunately, Berger's factors need apply
to only 15% of the total energy released by the 238y decay chain, which
suggests that simplified approaches would not result in gross overall error.
Specifically, the best use of Berger's factors is thought to be one that
bypasses - or ignores -the problems of discontinuity inherent to dealing with
varying thicknesses of tailings, and limits their application to one simple
case. This simple case is that of the bare tailings slab of “infinite"
thickness, a "maximum flux" or "worst case" condition expressed by Equation
(40-C) repeated below.

Sy(E) C(E)
) MATTIRV

This equation may be viewed as producing a (somewhat) tentative corrective
term to be added to the corresponding "worst case" fluxes (and exposures)
obtained via fay1or's parameters and Equation (16-C), with other results
adjusted accordingly when pertinent. Spatial dependence being absent from
Equation (40-C), the energy dependence of Berger's factors may be dealt with in
a "compound" manner, defining a "Berger's effective buildup factor for worst

case conditions", or Byc(E).

BuclE) = 1+ C(E) (4-F)

[p(E)-1]2
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Berger's Form parameters C(E) and D(E) have been calculated by A. B. Chilton
for wr < 7, wr < 10, and ur < 20 (Trubey, 1966.). The choice of one set of
parameters over another appears to be moot, since the slab under consideration
is assumed to be of infinite areal extent, regardless of the manner in which
the slab "infinite" thickness can be represented. Choosing the C(E) and D(E)
parameters for the 20 MFP case may seem, at first regard, a slightly better
option, since they apply over a greater range. To offset this presumed
advantage, the corresponding parameters for the 7 MFP fit generally produce
more conservative buildup values. This may be verified by comparing, in Figure
4-F, the buildup factors at various distances from a 0.255 MeV point source in

an infinite water medium, obtained with Berger's formula using both 7 MFP and

20 MFP coefficients. Further analysis is suggested by these considerations.

Figure 4-F. Buildup
. factors as functions of
100
distance, in mean-free-
paths, from a 0.255 MeV
isotropic point source
in an infinite water
medium, calculated with

Berger's buildup formula

using C and D buildup

—
<

coefficients based on 20

Bg(E,ur) = 1 + C(E)ur eD(E)"r

MFP and 7 curve fits.

Berger's Buidup Factor in water

The latter result in

higher buildup for dis-

1 10 tances over 4 MFP's.
Distance from 0.255 MeV source, MFP's
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For distances up to 4 MFP's from the 0.255 MeV point source, buildup factors
obtained with C and D coefficients based on the 20 MFP fit are slightly higher
than the corresponding buildup based on 7 MFP fit coefficients. This
observation achieves significance when the buildup term [1+C/(D—1)2], for
the bare, infinitely thick source slab case (see Table 1), is evaluated with
both sets of C and D parameters: the 20-MFP-fit values for C and D result in
a buildup term that is also higher (by 8% or 9%) than the value produced by
the 7-MFP-fit coefficients, implying that buildup from sources within a short
distance from a receptor will override all buildup effects from more distant
sources. This "distance of observable effect" must be, indeed, rather short,
since the 7-MFP-fit buildup factor at 10 MFP's from the 0.255 MeV source
exceeds the 20-MFP-fit buildup factor by 87% (see Figure 4-F), and by roughly
400% at 20 MFP's, while the above comparison of buildup terms for infinite
source slabs obviously negates such enormous differences. Consequently, the
ch(E) term in Equation (4-F) may be gainfully evaluated with C(E) and D(E)
coefficients applicable to distances of less than 10 MFP's, with 7-MFP-fit
parameters being a natural choice. This is an important factor considering
that the 20 MFP fit at 0.255 MeV ("dose buildup®, point source in water)
produces a maximum error of 30%, whereas that for a 7 MFP fit is only 10%
(Trubey, 1966). Since the parameters C(E) and D(E) are not available for
energies below 0.255 MeV, some judicious extrapolation is required to cover
the remainder of the gamma energy range, in which light the choice of 7 MFP

coefficients appears judicious by offering less possibility of serious error.

The values acquired by ch(E) as function of energy, based on Berger's

parameters C(E) and D(E), for the 7 MFP fit, are given in Table 1-F.
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Table 1-F. Values of B C* and D* for Energies 0.255 MeV to 1.0 MeV

we?®
Energy E Dimensionless parameters
(MeV) C(E) D(E) B (E) =1+ _C(E)
[0(E)-112
0.255 1.7506 0.2609 4,2046
0.5 1.3245 0.2078 3.1105
1.0 1.0622 0.1052 2.3266

* Coefficients C and D from Trubey (1966)

The corresponding curve-fitting equation for B, as function of energy follows:

a
(Figure 4-F) ch(E) = 1.0 + exp (-—-—3——— + c3> (5-F)
1nE-b3
where a, = 204.525 558 5
b3 = 17.131 305 11
c, = 12.221 355 02

Although the values used in the curve fit ranged from 0.255 MeV to 1.0 MeV,
inclusive, the range of Equation (5-F) applicable to the purposes of this
 study is determined as 0.185 MeV < E < 0.5 MeV. The upper bound is prescribed
by the availability of Taylor's coefficients (preferred to Berger's) for
energies E 2 0.5 MeV. The setting of the lower bound at a value below 0.255

MeV is based on necessity, and requires additional explanation.

Generally, some extrapolation of a curve fitting equation may be regarded
as valid, to the extent that it does not conflict with accepted facts. Such a

238U chain decay spectrum. To be

conflict occurs at the lowest energies of the
specific, at £ = 0.01 MeV, Equation (5-F) produces Byc = 17.6 . This is clearly

a fallacy, since at this energy the mass energy-absorption coefficient Hen/,

approaches the value of the mass-attenuation coefficient U/b » suggesting that
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ch(0'01 MeV) = 1.0 . Consequently, some correction is required if Equation
(5-F) is to apply to energies below 0.255 MeV. The' correction should produce a

net effective buildup factor meeting mainly the following constraints:

1. At E = 0.01 MeV, the net effective buildup factor should have a value of 1.0

2. For the range 0.255 MeV < E <€ 0.5 MeV, the values obtained through Equation

(5-F) should remain unaltered.

3. The resultant curve should lack discontinuities. Thus the maximum

2
buildup cannot occur at 0.255 MeV (4 Buc /dg? is negative at E = 0.255 MeV}

4. For lack of better information concerning soil cross-sections, the
maximum buildup is assumed to appear at E =~ 0.12 MeV, roughly mid-range

of 0.01 MeV € E < 0.255 MeV.

An energy-dependent correction term CT(E), when subtracted from the
corresponding values of BWC(E), produces an "extrapolated" net effective

buildup factor B, (E) in agreement with the set constraints (Figure -F).

XWC
Bywc (E) = B, (E) - Cq(E) (6-F)
: d,
where CT(E) = exp (-———-——- +g,In + h3> (7-F)
InkE + fs
and d, = 1.757 679 538
fy = 1.682 331 986
g, =-0.281 565 645
h. = 2.116 732 933

The range of applicability of Equations (6-F) and (7-F) comprises energies
0.01 MeV < E < 0.185 MeV, thus complementing the range set for Equation (5-F)
of 0.185 MeV < E < 0.5 MeV. The setting of E = 0.185 MeV as boundary between

the two ranges is based on the observation that C.(E) becomes negligibly small

as E increases to 0.185 MeV, but infinitely large when E = exp(-f;) is exceeded.
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Figure 5-F. Effective Buildup Factors B, (E) and Bywc(E) for a point at the surface
of an infinitely thick slab with distributed sources, based on Berger's
dose buildup coefficients for water (0-7 MFP fit), as function of energy.
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Appendix G

Ancillary Curve - Fitting Equations

In addition to Taylor's and Berger's coefficients, the equations

introduced in preceding sections include other energy-dependent parameters,

namely
ut(E) = energy-dependent attenuation coefficient of tailings, cm~!
uc(E) = energy-dependent attenuation coefficient of cover material,cm™’

uair(E) = energy-dependent attenuation coefficient of air, cm™

ven(E)| energy-dependent mass-energy absorption coefficient of air, cm%@
P

air

In conjunction with several geometric parameters, most of those mentioned

above serve as input to the argument of yet another function,

E2 (argument) = Second order exponential integral

where argument = f[al(E),az(E),ut(E),uc(E),uair(E),d and/or t]

A11 these quantities have been extensively tabulated in several publications
(e.g. Radiological Health Handbook), in which form they can be used directly
in any computer program possessing the necessary interpolating subroutines.
Nevertheless, since a simpler process was envisioned in developing the present
method, it was thought best to express them as explicit functions of energy,

or of the generalized argument in the case of the exponential integral.

Attenuation coefficients for "tailings" or "soil" (cover material) are not

available, which necessitates approximating these functions of energy on the
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basis of coefficients obtained for other materials. The approach is suggested
by Figure 1-G, in which mass-attenuation coefficients u/p are plotted as
functions of energy for various materials. These were chosen.according to
their abundance in the earth crust and represent, in broad terms, the main
components of a generalized "soil". Quoting Hammond (1966), "oxygen accounts
for about 47% of the crust by weight, while silicon comprises about 28%, and
aluminum about 8%. These elements, plus iron, calcium, sodium, potassium, and
magnesium, account for about 99% of the earth's crust.” Other materials were
added for diverse reasons. Carbon and water were included by at least one
researcher (Beck, 1972) among typical soil components. Since both water and
concrete were equally relevant in choosing parameters for Taylor's buildup
formula, the latter material was added for comparison purposes. Silica (Si0)
is the major component of tailings, with all the elements mentioned above,
plus uranium, being present as complex silicates (G.E.I.S. Uranium Milling,

1979).

One important observation can be made from Figure 1-G, that for energies
0.25 MeV < E < 3.0 MeV, the u/p coefficients of the various materials 1fe
within a narrow band of values, with a maximum difference of about 15%
(between H,0 and Fe, at E = 0.8,'1.0, and 1.5 MeV). This suggests, for these
energies, a generalized mass-attenuation coefficient approximately independent

of material, and depending solely on energy.

H,0, Fe, Al etc. (1-G)
generalized "soil"

[Ji_g':_)] mz[%(E )] . where rg

This generalization allows choosing the mass-attenuation coefficient of water
to represent the "generalized “/," in (1-G), without introducing gross error,

while retaining consistency with the choice of medium in selecting Taylor's
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Figure 1-G. Mass attenuation coefficients for various materials.
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and Berger's buildup parameters. Henceforth, by definition,

[%(E)] : [%(E)] » (2-6)

Consequently, the linear attenuation coefficient wu(E)y of any of the soil
materials in Figure 1-G, and thus that of soil itself, can be approximated by
multiplying the mass-attenuation coefficient of water, at the energy E, by the

density pp of the given material.

u(E)m z{_u_éi):l X Pm | (3-6)

H,0

Since the density of "tailings" is expected to be roughly that of "soil"
(cover material), it follows that
Ut(E)zuc(E)x[L(_E_z] x 1.6 g/cm’ (4-6)
* dh,0
where "1.6 g/cm " is the density of both "tailings" and "moist packed soil",

as per Schiager, 1974,

The selection of the mass-attenuation coefficient of water to represent
the "generalized mass-attenuation coefficient" in (1-G) was influenced by the

"water" in lieu of

choice of Taylor's and Berger's buildup coefficients for
the unavailable "soil" parameters, envisioned as a conservative alternative
that would increase, rather than reduce, the calculated values of "flux". The
wish for consistency discouraged other choices, although Equations (16-C) and
(40-C) indicate that a lower coefficient, such as that of C in Figure l-G,

would further increase calculated "flux", leading to an extremely conservative

model.

In that context, (u/p)Hzo is very conservative for E < 0.1 MeV but, at
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higher energies, it exceeds the coefficients of most soil materials generally by
some 10%, that of Al rather uniformly by 13%, and that of Fe by up to 15%
(Figure 1-G). Correspondingly, the fluxes and exposure rates at these higher
energies would be unquestionably lower than those for true soil, were it not for
the compensatory effect of the conservatively chosen buildup factor (Appendix

E).

This effect is illustrated by a rough comparison of fluxes and exposure
rates calculated by using water to represent soil versus those obtained by using
aluminum "which is a fairly good approximation for soil" (Beck, 1981).
Referring to Equation (16-C), the effect of using the Hp0 buildup factor
rather than that of Al is that of increasing flux and exposure rate, at any
given energy, by a factor "[B]HQ()// (B1a1", equal to the ratio of the
corresponding bracketed "buildup terms” in Figure 1-E (indicated by "[B]" in
present notation). On the other hand, the use of the H20 mass-attenuation
coefficient (“/p)Hzo instead of (M/p)a1 in Equation (4-G) increases p¢ by
the ratio “(P/p)HQO/(P/p)A]“, which amounts to reducing flux in (16-C) by a
factor "(P/p)A]/U‘/p)Hzo"- Listing both increase and reduction factors in
Table 1-G for the energy intervals used by Beck (1972) indicates that their net
effect, or product, is one of increasing low energy fluxes and reducing high
energy fluxes by up to 9%, respectively, assuming unit intensity for each energy
interval. Considering the actual tabulated intensities (also from Beck, 1972)

and average energies for each interval indicates an overall flux overestimation

of 0.5% and a total exposure rate underestimation of 4%, always assuming that Al

is the exact analog of soil. A discussion in Appendix I suggests some

liabilities of this assumption. In the interim, the above calculationsserve to
point out that the choice of H0 to represent soil will not result in gross

error.
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Table 1-G. Effects on Flux and Exposure Rates of Using Water Buildup Factor and

Mass Attenuation Coefficient Instead of the Corresponding Parameters for Aluminum

Energy Average Intensity Reduction Factor: Increase Factor Exposure Rate

Interval E?ergy (gammas per [(¥/o)py (Bui]dug "Term" and Flux Ratios
(MeV) MeV) disintgrtn) //////jf// ] Ratios): per Unit Intsty
ledyof [Bln,o/lBla1 (® x @)

.05- .15 .1 .139 1.0 1.0 ~* 1.0
.15- .25 .2 .104 .8905 1.223 * 1.089
.25- .35 .3 .196 .8739 1.223 * 1.069
.35- .45 .4 .361 .8745 1.223 * 1.07
.45- .55 .5 .022 .8719 1.223 1.066
.556- .65 .6 .436 .8705 1.2 1.045
.65- .75 .7 .027 .8704 1.165 1.014
.75- .85 .8 .084 .8702 1.136 .989
.85- .95 .9 .032 .8686 1.112 .966
.95-1.05 1.0 .014 .8670 1.098 .952
1.05-1.35 1.2 .252 .8680 1.067 .926
1.35-1.65 1.5 .137 .8696 1.052 .915
1.65-1.95 1.8 .218 .8725 1.047 914
1.95-2.55 2.25 .081 .8738 1.042 .916
2.55 2.55 .002 .8840 1.035 .915
Notes:

* From Figure 1-E, the ratio of the "bracketted" buildup "term" of water
to that of aluminum is 1.223 at 0.5 Mev, and likely to increase for
energies E< 0.5 MeV. Thus, a minimum ratio of 1.223 was assumed to be
valid for energies 0.15 MeV<E <0.5 MeV.

D,B) From Beck (1972)
@ Midpoint of energy interval
@ From Equations (15-C),(16-C),etc. and Equations (1-G) through (4-G):
for E>0.1 MeV, (“/p)HZO > (M/p)py» thus using (u/p)H20 in (4-G) wil
produce somewhat higher values of ut(E) which, in turn, will reduce
flux calculated through Equations (16-C), etc. by the indicated ratio.

(:) From Figure 1-E: [B] = [Té51+'%i%2] ,i.e. "bracketted buildup 'term'".

(:) Net effect of reduction and increase factors; product of (:) X (:) .

2O x @]

Overall effect on flux = = 1,005 ,i.e. a 0.5% increase

2[® x 1.0]
2I®x® x @]

Effect on total exposure rate = = 0.96 , a 4% decrease

2 I[® x 1.0 x @]
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No similar complications attach to uajr(E), which is simply

nair(E) _ [ESEJ] X 0.001203 g/cp3 (5-G)
e air

where "0.001293 g/cp3" is the density of dry air at 760 mm Hg and 0°C.

Values obtained from the Radiological Health Handbook (1970) were used in
fitting curves to the mass attenuation coefficients for water and air, and to

the mass energy-absorption coefficient for air, as functions of energy:

u(E)
Mass Attenuation coefficient of Water [ P ] , as function of energy
(Figure 2-G) : H20
for .01 MeV < E < .08 MeV, (ufo)y o = Fiu(E) + Gu(E) (6-G)
for .08 MeV < E < 3.0 MeV, (u/e), o = G,(E) (7-6)

2

where  F,(E) = exp 34 c,InE + d

InE+b,
- fa
Gy(E) = exp ——+ h,
InE+g,
and a, = 0.571 008 922 1 f, = 53.135 288 31
b, = 2.485 192 485 g, =-10.621 802 09
cy = -3.082 595 417 h, = 2.353 164 25
ds = -12.345 692 43
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(E)

)

] , As Function of Energy

H0

R
‘-'__Jb

= F,(E) + §,(E)

5 =G4(E)

N—

a,
where : F4(E) = exp(m +cC,Int + d4>

- f
6, (E) = exp(———“— + n4>

InE-o-g‘1

and: a, = 0.571008922)
b, = 2.485192485
C4 = —3.082595417
d, =-12.34569243
fg = 53.13528831
g, =-10.62180209

= 2.35316425

max.error = £1.15 %

0.01

A

Energy,MeV

Figure 2-G.Mass attenuation coefficient for water, as function of energy




Mass Attenuation Coefficient of air [p(E)] , as _function of energy (Figure

©
3-G): air
for .01 MeV < E < .015 Mev,(ﬁAO) = F5(E) = exp (asInE + bs) (8-G)
air
where ag = -2.883 555 097
by = -11.671 826 05
for .015 MeV < E < .6 Mev,(u4o> = F(E) + G4(E) (9-6)
air
c
where G (E) = exp + fcInkE + gs
TnE+d;
and ¢, = -1.028 577 166
dg = 4.464 072 73
f. = -0.451 578 597
g5 = -2.482 816 293
for .6 MeV < E < 3.0 MeV,<u/p> = Gg(E) + H(E) (10-G)
air
where Hs(E) = hs . 1
TnE+ks

and hg = 3.409 847 524 x 1072
kg = 2.730 717 269
15 = -1.536 800 255 x 1072
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10

Mass Attenuation Coefficlent for Air, as Function of Energy

For 0.01MeV < E <0.015Mev, [E—;E-)-] = F,(E) = exp(a5 InE + b5)
air

For 0.015MeV < E < 0.6MeV, [-’-‘-(i)] = F(E) + B.(E)
P air

s +finE + g
where GS(E) —exp(m 5 5)

(E)
For 0.6MeV <E ssmv,[ip—] = Gs(E) + Hg(E)
at

ir

hs
InE + Kk, ls

where H5( E) =

and:

as='-’2.883 555097
bs=-1.671 826 05 max. errors : —1.7% and 0.72%
C5=-1.028577166
ds= 4.464 07273

0.
fs=-0.451 578 597
g5=-2.482 816 293
. -2
hg= 3.409 847 524 x 10
ks= 2.730 717 269
-2
| 5=-1.536 800 255 x 10
003 0.1 1
’ ' Energy,MeV

Figure 3-G. Mass attenuation coetficient for air, as function of energy




Mass Energy-Absorption Coefficient of Air [Uen(E)] , as function of energy
e Jair

(Figure 4-G):

= = (11-6)
for .01 MeV < E € .02 Mev’(“en/p> . Fe(E) exp (aelnE+b6)
air
where a, = -3.157 083 5
b6 = "1300
for .02 MeV < E < .5 MeV,{u = Fg(E) + Gg(E) (12-G)
- en/e air

where G¢(E) = exp ( Ce f61nE4-gb)
1 nE+d6

and ¢, = -1.812 611 059
dg = 3.938 990 767
fe = -0.103 883 0383
ge = -3.030 852 910

for .5 MeV < 2.45 MeV,
(@) , = exp( he 4 lglnt + me) (13-6)
e Jair TnE+k ¢

and hg = 1781.994 330

kg = -24.226 319 540
1o = 2.866 717 707
m = 69.980 580 070
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10 —— — —
Mass Energy Absorption Coefficient for Air, as Function of Energy

Hen(E)

For 0.01MeV < E <0.02 MeV, [__f—’—] = FG(E) = exp(ablni + bo)
air
For 0.02MeV < E < 0.5MeV, [-H'Pﬂ} = FB(E) + GB(E)
‘ air
= —S6 L, tinE
Where Gg(E) :exp(ln“d6+ Wt +g,
1
Hoo(E) he
. <f=<24 — =exp({——
For 0.5MeV < E <2 5Mev,[ p e ,P(InE+k6+l6'nE '”“o)
air
Fen
P/ _ With a,= —3.1570835
alr by= —13.0
Ce= - 1.812611059
dg =  3.938990767
max. e‘rror::).u% fé = —0-1038830383
= —-3.030852 9

0.1 , e
' hey = 1781.994 33

k6 = ~24.226 31954

le=  2.866 717 707
M= 69.980 580070

Energy,MeV

Figure 4-G. Mass energy-absorption coefficient for air, as function of energy.
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The values used in curve-fitting the 2nd order exponential integral as
function of the argument were taken from the Handbook of Mathematical

Functions AMS 55, National Bureau of Standards (1964).

E2, 2nd Order Exponential Integral, as function of the argument X (Figure 5-G):

for 0 < x < 0.5,

: a
Ea(x) = exp( -+ C7) + xlnx (14-6)
X + by
where a; = 0.666 274 740 5
by, = -1.200 944 510
c, = 0.554 709 010 2
for 0.5 < x < 100.0
d;
1.0 + exp{ ———— + g7lnx + h -
(]nx+f7 7 (15-6)
and E,(x) =
‘ (2 + y)e¥
where d., = -282.378 704 2
f- = 10.976 502 83
g, = =3.179 407 102
h, = 24.195 713 71

The maximum error observed in this curve-fit was approximately 0.5%.
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Appendix H

Computer Implementation

One of the main objectives of the present report is to implement a method
for determining exposure rates over uranium bearing soils that not only would
be fairly reliable and well founded, but also be reasonably simple to apply.
An extreme case involving the use of a programmable desk calculator has been
envisioned. This would require partitioning the energy spectrum into several
ranges, in accordance with the range limits set for the various curve-fitting
equations. The minimum number of ranges would thus be roughly a half-dozen,
- with a maximum depending on the values of the argument for the second order
exponential integral E , Equations (14-G) and (15-G). The pertinent equations
would then be applied to each of the energies within a given range, exposures

summed, and the calculator reprogrammed for the next range.

Treating 282 gamma energies by the process described above is likely to be
tedious and time consuming. An alternate approach was followed by the present
author, involving the use of a computer. However, to test ease of
application, software development was abrogated in favor of implementation
through the ISIS program on a CDC 6400 computer. ISIS (1975) is an
interactive statistical package permitting the creation and manipulation of
data files through simple commands following the conventions of FORTRAN
EXTENDED. New files may be generated from previously created files and stored
by the computer. Naturally, no user commands are “stored" beyond the time at
which a new file has been created, i.e., no permanent new software is

maintained by ISIS.
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A basic example of the operational scheme is provided by Figure 1-H,
depicting the process whereby effects of varying thicknesses of the uranium
bearing soil slab on exposure rates are determined. As initial input, the two
files “BELOHAF" and "OVERHAF"* were created by using the ISIS "utility" TYPDAT
(TYPe DATa), each containing energies E;j and the corresponding source terms
Sy(Ej) for E < 0.5 MeV and E > 0.5 MeV, from Tables 1-D and 2-D,
respectively, and stored in memory. Subsequently, two other files, "BERGERS"
and TAYLORS", were generated through "utility" TRADAT (TRAnsform DATa),
listing buildup coefficients, attenuation parameters, etc. for each of the 105
and 177 energies in files "BELOHAF" and "OVERHAF", respectively. These two
new files were also stored.** Since the buildup coefficient in file "BERGERS"
includes an extrapolation of unverified validity for E < 0.255 MeV, and
Berger's coefficients are range dependent, no further use was made of this
file in the present case (see Table 2-A, Equations (6-F), (7-F) and
accompanying discussions). File "TAYLORS", however, was transformed
repeatedly with TRADAT, using specific values of "t" (uranium bearing soil
slab thickness) to create successive files "XPOS1", "XP0S2", etc., containing
“fluxes" and exposure rates for each energy E; in each of the given cases

t=1cm, t=2cm, etc. Again, the various "XP0S..." files were stored.
Average exposure rates were obtained with ISIS utility MULDES (MULtivariate
DEScription) applied to each "XP0S..." file, and multiplied by "177" to

determine the total exposure rate X(t) for each specified t.

* ISIS data file names are restricted to seven alphabetic characters.

** "Storing" a file implies "making a file permanent", without curtailing the
user's facility for altering copies of this permanent file in the process of
generating new files.
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Note that the several X(t) values are given in terms of R/sec per pCi/cm3
necessitating an increase by a factor of 3.6 x 10 to be expressed in uyR/h per
pCi/cm3, and multiplication by 1.6 g/cm® (soil density) to produce values in

uR/hr per pCi/g.

Four separate calculations were carried out using this and similar
schemes. A brief summary of Tables and equations relevant to each calculation

is given below.

Calculation 1) Maximum exposure rates at the ground surface.

This calculation was performed assuming a uranium-bearing soil slab of
infinite thickness without overburden, employing the files and equations

referenced below.

For E < 0.5 MeV:

Table 1-D (File "BELOHAF"), 105 energies and source terms,

Equations (5-F), (6-F), (7-F) for "Berger's effective buildup factor for 'worst
case conditions™,

Equations (3-G), (6-G), (7-G) for the linear attenuation coefficient of soil,
Equations (11-G), (12-G) for the mass energy absorption coefficient of air,
Equation (40-C) for "flux",

Equation (1-C) for exposure rate (File "LODOSEM" with 105 energies and

exposure rates).

For E > 0.5 MeV:
Table 2-D (File "OVERHAF"), 177 energies and source terms,
Equations (1-F), (2-F), (3-F) for Taylor's buildup coefficients,
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Equations (3-G), (7-G) for the linear attenuation coefficient of soil,
Equation (13-G) for the mass energy absorption coefficient of air,

Equation (16-C) for "flux",

Equation (1-C) for exposure rate (File "HIDOSEM" with 177 energies and

exposure rates).

Equation (46-C) for summation of exposure rates both for E < 0.5 MeV and E >

0.5 MeV.

Calculation 2) Maximum exposure rates at one meter above ground surface.

This calculation reduces the exposure rates due to each of the 282 energies in

1) corresponding to the effects of air attenuation.

For E < 0.5 MeV:

File "LODOSEM", with 105 energies and exposure rates,

Equations (5-G), (8-G), (9-G) for linear attenuation coefficient of air,
Equations (14-G), (15-G) for 2nd order exponential integral values, modifying
factor,

Equation (47-C) for summation of exposure rates (lst term).

For E > 0.5 MeV:

File "HIDOSEM", with 177 energies and exposure rates,

Equations (5-G), (9-G), (10-G) for linear attenuation coefficient of air,
Equations (14-G), (15-G) for 2nd order exponential integral values, modifying
factor,

Equation (47-C) for summation of exposure rates (2nd term)
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Equation (47-C) for summation of exposure rates (lst and 2nd term)

Calculation 3) Dependence of exposure rate on thickness of uranium bearing

soil slab.
This calculation determines the effect of varying the thickness "t" of a
uranium bearing soil slab without cover material on exposure rates due to

gamma energies higher than 0.5 MeV (85% of total energy emitted).

Table 2-D (File "OVERHAF"), 177 energies and source terms,

Equations (1-F), (2-F), (3-F) for Taylor's buildup coefficients,

Equations (3-G), (7-G) for the linear attenuation coefficient of soil.
Equations (14-G), (15-G) with a specific value of t, for 2nd order exponential
values,

Equation (15-C) for flux,

Equation (1-C) for exposure rate

Equation (46-C), 2nd term, for summation of monoenergetic exposure rates

resultant from a slab of thickness "t".

The process is then repeated for the next chosen value of t, etc.

Calculation 4) Dependence of exposure rate on depth of cover slab.

This calculation determines the effect of varying the depth "d" of overburden
material covering an infinitely thick uranium bearing soil slab on exposure

rates due to energies greater than 0.5 MeV.

The tables and equations of 3) are used in 4) with the sole exception of
Equation (15-C) for "flux", here replaced by Equation (17-C), "d" becoming the

new input variable.
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APPENDIX I

Sample Calculations for a Monoenergetic Case

Application of Basic Computational Scheme to 40g uniformly distributed in

soil with infinite half-space geometry:

Basis: 1 pCi/cm® E = 1.464 MeV

1 pCi/em® = > 3.7 x 1072 decays

: cm3-second _3

Sy(E) = 3.959 x 1077 v's
cm3.s

Intensity = 10.7% = > .107 v's
Decay

TAYLOR'S BUILDUP FACTOR COEFFICIENTS FOR E = 1.464 MeV
14.576 250 06

From Equation (1-F) A

From Equation (2-F) o, -0.069 778 860 58

0.003 288 967 120

fl

From Equation (3-F) a,

SOIL ATTENUATION COEFFICIENT FOR E = 1.464 MeV
From Equation (7-G) (u/p), = 0.058 688 605 16 cm?/g

2
From Equation (4-G) wuggi] = 0.093 901 768 26 cm-!

GROUND SURFACE FLUX FOR E = 1.464 MeV

From Equation (16-C) ¢p = 4.506 843 598 x 10-2 ZES
cme-

AIR MASS - ENERGY ABSORPTION COEFFICIENT FOR E = 1.464 MeV

From Equation (13-G) (uen/p)aiy = 2.576 712 795 x 10-2 cm?/g
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EXPOSURE RATE PER pCi/g AT GROUND SURFACE FOR E = 1.464 MeV
3.101 701 261 x 10-" R/S per pCi/cm?

From Equation (1-C) X
1.786 579 926 x 10~' wR/h per pCi/g.

i

Conversion XS

1.464 MeV

AIR ATTENUATION COEFFICIENTS FOR E
From Equations (9-6),(10-G) (u/p)aiy = 5.244 559 536 x 102 cm?/g
6.781 215 480 x 10~5 cm™

From Equation (5-G) Yair

ARGUMENT FOR 2nd ORDER EXPONENTIAL INTEGRAL
Mair X 100 cm = 6.781 215 480 x 103

Modifying Factor for Xqn

VALUE OF 2nd ORDER EXPONENTIAL INTEGRAL
0.962 992 296 8

1l

From Equation (14-G) E2[Uair x 100 cm]

Exposure Rate at 1 meter Above Ground Level For E = 1.464 MeV

Xym = 1.786 579 926 x 1071 uR/h per pCi/g x E,luaip x 100 cm]

1.720 462 706 x 10-! uR/h per pCi/g
0.172 yR/h per pCi/g

Beck (1972) result: Xyp = 0.179 wR/h per pCi/g

Replacing the buildup factor coefficients and mass-attenuation parameters'for
water [Equations (1-F) through (3-F) and (7-G)] with those for aluminum results

N Xy, = 0.189 uR/h per pCi/g

The curve-fitting equations for the relevant aluminum coefficients appear in
Figure 1-I, including that for the buildup parameters in compound form [ see
bracketted "buildup term" in Equation (16-C)].
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Figure 1-1. Mass-attenuation coefficient and buildup "term" for aluminum, for
the energy range 1.0 MeVSE<2.0 MeV and 0.5 MeVSE<2.0 MeV, respectively, and

corresponding curve-fitting equations.
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1 2
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at £ = 1.464 MeV, |Tva T17a,| = 2.02483558
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The exposure rate calculated using aluminum mass-attenuation and buildup
factor coefficients is clearly more conservative - roughly 10 % greater-
than the result based on the corresponding water parameters, at 1.464 MeV.
HoWéver, the latter result shows better agreement with the value published
by Beck in 1972. This suggests that aluminum is not necessarily a better
analog for "soil" than water, in applications of the present method.
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Figure 1-1. Mass-attenuation coefficient and buildup "term" for aluminum, for
the energy range 1.0 MeV<E<2.0 MeV and 0.5 MeV<SE<2.0 MeV, respectively, and
corresponding curve-fitting equations.
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The exposure rate calculated using aluminum mass-attenuation and buildup
factor coefficients is clearly more conservative - roughly 10 % greater-
than the result based on the corresponding water parameters, at 1.464 MeV.
However, the latter result shows better agreement with the value published
by Beck in 1972. This suggests that aluminum is not necessarily a better
analog for "soil" than water, in applications of the present method.
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Appendix J
Comments on Curve-Fitting Exposure Rate Models

None of the Equations (25), (26), (28) and (30) has been obtained,
independently, from theoretical considerations, but from curve-fitting
techniques ultimately devolving to an iterative process for determining
coefficients of optimum fit. Fortuitously, these coefficients were found to
be simple powers of the natural logarithm base "e", leading to convenient,
concise expressions with a misleading resemblance to analytically derived
functions. Nevertheless, the interrelationship of these "pseudo-analytical"
expressions may be shown to be consistent with the theoretical bases of the

present work.

The obvious contribution of Equations (26) and (28) to the model of Equation
(30) may be reviewed in summarizing (30) as the product of two ratios, each of
them expressed as an independent function of a single variable, either
uranium-bearing soil slab thickness "t" or depth of overburden "d". Since
both variables are totally independent of each other, the model represents

each ratio to be independently valid, a validity that extends to their product.

Although the effects of uranium-bearing soil slabs of varying thickness, in
Equation (28), are conceptually independent from the consequences of varying
depth of overburden, in Equation (26), the two equations embody similarities
of form that indicate an interconnection. This interconnection may be
supported on analytical grounds. Comparisons of Equations (15-C), (16-C) and
(17-C), 1implemented by Equation (1-C) and the treatment of Appendix K

ultimately yield, for the special cases t = d, the formal relationship
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X(t) o1 - Xd) | for values t = d (1-J)
X(w) X(0)

X(») = X(0) as defined for Tables 2 and 3.

The applicability of Equation (1-J) is restricted by the requirements that the
uranium-bearing soil and overburden have the same attenuation coefficient and
that the same building factor be applicable to both materials. These
conditions are fulfilled through Assumption (10) and Equation (4-G) in the
present study, and lead to results supporting the validity of (1-J), as

comparison of Tables 2 and 3 may verify.

The relationship in Equation (1-J) suggests that any expression describing
accurately the behavior of X(d)/X(O) could be used to generate a reliable
model of X(t)/X(~), and vice versa, with 1little more than a change of

independent variable. Such procedure was applied to Equation (26) to generate

Equation (28).

In addition to being analytically useful, Equation (1-J) provides a valuable
criteria of accuracy in ‘"curve-fitting", by implying that any model
successfully replicating the values of Table 3 must also, when transformed by
(1-3), closely reproduce the value of Table 2 to be considered valid. This
amounts to requiring that one-curve fitting equation satisfy two sets of
taBu]ated values, independently calculated. This criterion is met by Equation

(26), and therefore by Equation (28) as well, enhancing the credibility of
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these equations* plus, by implication, that of (30).

The origins of Equations (30) and (28) may be traced beyond.Equation (26),
which has sources of its own. These are to be found in Equations (24) and
(25), the former being primarily a definition of "depth-dependent relaxation
length" L(d) and necessary introduction to the 1latter, which applies this

concept to summarize the results of Table 3 as a curve-fitting equation.

The logarithmic form of the resultant expression for L(d), in (25), was
suggested directly by Figure 2, a continuous graph based on Table 3 values of

“relaxation length".

The accuracy of Equations (30), (28) and (26) may be seen to depend on an
éccurate fit of L(d), such as, presumably, that of Equation (25). In that
regard, the graph in Figure 2 invites tempting simplifications of the form

L(d) =a+b 1n(d/d0) which must be discarded as undesirable. The various

*Author's note. It does not necessarily follow that any curve-fitting equation
reproducing the values of one of the Tables 2, 3 will lead to a successful
model for the other. Applying the observation that powers of "e" appeared to
be particularly useful in obtaining such equations, the present author tested
an alternative fit X(t)/X(=) = tanh [e-(e-l)(t/to)e-Z] ~ to the
values of Table 2, with a maximum error at any point of 1.6%. Unfortunately,
the corresponding expression k(d)/k(O) = 1 - tanh [e'(e-l)(d/do)e-2]

obtained by applying (1-J), yielded errors of up to 30%, at d = 100 cm.
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shortcomings of this formulation may be examined quantitatively by comparing

Equation (25) with an example of the simpler form, also by the present author,

L(d) = 5 + 1.23 ]n(d/do) , in cm (2-4)

The simplified formulation implies negative values of L(d) for small values of
d, which makes it conceptually unattractive. It also increases curve-fitting
error in the range 1 cm < d < 100 cm, as compared to the results of (25).
This increase is inherent in the simpler formulation, corresponding to a
semi-logarithmic 2-point fit. By contrast, Equation (25) requires a 3-point

fit.

Of greater significance are the consequences of the simplified formulation for
the region d > 100 cm. It was pointed out, elsewhere in this report, that
computer round off precluded obtaining reliable results for t or d greater
than 100 cm. Whereas for X(t)/X(«) this is largely inconsequential, such
handicap in determining X(d)/X(O) for d > 100 cm is of greater importance.
Consequently, the need for accuracy in curve-fitting equations for L(d) and
X(d)/X(O) in the region d < 100 cm increases proportionately to the degree of

generality such expressions may be required to have; specifically for applying

them to the region d > 100 cm.

Any simple equation of the form L(d) = a + b 1n(d/do) providing a reasonable
fit to the values in Table 3 may be expected to underestimate both L(d) and
X(d)/X(O) for d > 100 cm. This is due to the fact that the rate of increase
of L(d) with respect to Ln(d/do) in the above expression is a constant, "b",

whereas the graph in Figure 2 shows a slowly but steadily increasing slope.
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The consequences of the simpler formulation may be tested by comparing L(d)
and X(d)/X(0) resultant from Equations (25) and (26) with the corresponding
values produced by (2-J). The latter generates values which are consistently
and progressively lower than those produced by (25) and (26) as d increases
past d = 100 cm. This indicates that (25) and (26) are more conservative in
gaging the effectiveness of the cover slab in reducing exposures, i.e.,
theyare less apt to overestimate the exposure-reducing capabilities of

overburden, for d > 100 cm.

Having defended the advantages of the proposed models against tempting but
short-sighted approximations, it becomes necessary to address the more
fundamental problem of a "depth dependent relaxation length", L(d). Without
this concept, Equation (25) and, by implication, Equations (26) and (30), lack

foundation.

The analytical bases of the present technique may be advanced in support of
this concept. On the other hand, the more traditional notion of a relaxation
constant appears to be supported by empirical data, in treating which,
however, the depth-dependent behavior of the slowly-varying function L(d) may
be all too easily neglected. Note, for instance, that Equation (25) predicts
a change in L of some 10 mm between depths of 1 foot and 2 feet, of another 5
mm between 2 feet and 3 feet, etc. Such differences may be easily attributed
to other factors, or ignored altogether in developing simpler models for which

a "safety margin" would be eminently desirable.

A constant, depth-independent L may provide a substantial "safety factor", if

used judiciously, through underestimation of the exposure-reducing capabilities
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of overburden. Such judicious use entails setting limits on the thickness of
the cover slab for which a given constant L nhy be used. Exceeding these

Timits will produce the opposite effect, i.e., the exposure rates will be

underestimated.

With the aid of Equation (25), specific limits may be determined for each
given L. In the author's experience, proposed values of L vary between 10 and
14 cm. Replacing the depth-dependent L(d) in (25) with a generalized constant

L representing these values, and solving for d produces

d, = explLe Y/2¢° - 1/e (3-0)
where L = generalized constant relaxation length
= 10, 11, 12, 13, 14 cm
dL = limit depth, in cm, which must not be exceeded if

a constant L is used in Equations (26), (30)

The results are summarized below.

Table 1-J. Thickness of the Overburden Slab Which Must Not Be Exceeded
With the Use of a Constant L

Depth 1limit d| which must not be exceeded if equation

Constant L X(d)/X(0) = exp(-d/L) is to produce conservative results
(cm) j.e., overestimation of X(d)/X(0), thus a "safety factor".
10 59.7 cm or approximately 2 feet
11 l3d cm or approximately 4 feet
12 285 cm or approximately 9 feet
13 620 cm or approximately 20 feet
14 1350 cm or approximately 44 feet
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Appendix K
Interrelationship of Exposure Ratios

The relationship of X(t)/X(») in Equation (28) to X(d)/X(0) in Equation (26)
is based on the following analysis:

The exposure rate to gammas of energy E from sources distributed throughout a
uranium-bearing slab of thickness t may be determined by combining Equations
(15-C) and (1-C),

K(E,t) = G(E) (A (E)1-E(t B 1) TR, (E)1-E,(t,E, 02) ] | (1-K)
where G(E) = F)'(E[u_e_"_(E_)] .
P air
2u(E)[1+a1(E)]
AZ(E) = SV(E)[I‘A(E)]

2 (E) T ay(E)]
Eo(t,Esay) = Es {u(E)t[1+-aAE)]}
£, (8.E.0z) = €, {u(E)t01+ E)1}
and u = pt = uc

The expression (1-K) may be rewritten, for convenience,as
X(E,t) = G(E)[A(E) + A,(E)] - G(E)[A, (E)E,(t,E,a1p) + Az(E)E2(t,E,02p)(2-K)
For the special case t=«, this becomes

X(E,») = G(E)[AL(E) + A,(E)] (3-K)

Dividing (2-K) by (3-K) results in the following ratio
X(E,t) AL(E)Eo(t,E 0 ) + AZ(E)EZ(t,E,azE)

A = (8-K)
X(E,=) AL(E) + A,(E)
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A similar process, applied to Equations (17-C), (1-C), produces

X(E,d) _ Al(E)Ez(dsEsalE) + AZ(E)EZ(dsE:aZE) (S-K)
X(€,0) ~ AL(E) + Ay(E) |

where E2(4,,01) = £ {u(E)dl1+a)(E)]}

Ea(e,E,00¢) = E, {u(E)d[1+ay(E)]}

A comparison of (5-K) and 4-K) indicates that, for the special cases of t = d,

X(E,t) _, _ X(E,d) (6-K)

X(Es°) ) x(Eso)

In keeping to the simplified notation used throughout the report, each of the
ratios of Equation (6-K) is expressed in terms of either of two geometric
variables, t or d, while omitting any mention of the second geometric
parameter, which is held constant. A more complete rendition of the
dependence of exposure rate on energy and geometric variables would be

X(E,t,d) = exposure rate due to gammas of energy E,
from a uranium-bearing slab of thickness t,
covered with overburden to a depth d.

On that basis, the components of (6-K) could be rewritten as follows

a) X(E,t) = X(E,t,o)‘ j.e. cover thickness d = o, (7-K)
b) X(E,=) = X(E,=,0) } in both cases
and | ) \
c) X(E,d) = X(E,»,d) | i.e. thickness of uranium-bearing
}
d) X(E,0) = X(E,=,0) ] slabt = =, in both cases

A comparison of above identities b) and d) serves to emphasize the fact that
the denominators in Equation (6-K) are equal. This permits rewritting (6-K)
in the following manner,

!

X(E,t) = X(E,=,0) - X(E,d) | (8-K)
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Consequently, a summation of exposure rates over all energies E;y may be

indicated as

N N N
Do K(Ef,t) = Do K(Eq,e,0) - D K(Eq,d) (9-K)
i=1 i=1 i=1

N = #of ¥ lines

Dividing both sides of (9-K) by the total exposure rate due to gammas of all

energies from tailing slab infinitely thick with no cover, 2 X(E,=,0), results

(=8

in . -
2 X(E;,t) > X(Ej,d)
i=1 . (10-K)
Z).((Eis“’o) Z).((Eis”,o)
i=] i=1

The above expression is exactly equivalent to that of Equation (6:K) which, in

simplified notation, is ) .
X(t) X(d)

—_— ] - ——

X() X(0)
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Appendix L

Radon Distribution Through Overburden

Diffusion theory and Fick's law were used to model the 222Rn concentration
in an infinitely thick tailings pile covered with a finite thickness d of

overburden, both of infinite areal extent, as shown in Figure 1-L.

z
z=d T

Thickness of overburden, d

i

z=0 l

222Rn source, infinitely thick tailings slab

v
Z = -

Y Figurel-L. Tailings and cover configuration.

The fraction of 222Rn which emanates from the source material in the
tailings represents a flux which is proportional to the concentration

gradient, as per Fick's law

J(z) = -D dc(z) (1-L)
dz
where J(z) = depth-dependent radon flux, in pCi/cme.s
C(z) = depth-dependent "free" radon concentration, in pCi/cm3
D = diffusion coefficient of "free" radon in soil, in cm/s

Applying Fick's law to the general diffusion equation produces, at steady

state,
d2C . 20 +5=0

dz2 (2-1)

where a2 = ARn
D
andS:ERﬁ[_)_ARﬂE
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Cra ARnt
and S = “Ra *Rn
—5

with Agp = 222Rn decay constant, in s-1
CRa = 226Ra concentrations in tailings, in pCi/g
E = emanating power of 22Z2Rn in tailings, dimensionless

The general solutions of (2-L) for the concentration of 222Rn as function of
depth, C(z), are

Ce(2)

Ae%? + Be %% 4 §§- , for z < 0 (tailings) (3-1)
a

and Ce(z) = Ee®% + Fe™®% | for z > 0 (cover) (4-1)
c 2

Four boundary conditions are required to determine the values of A, B, E and

F. They are

B.C.l Jg(-=) =0 At -=, the concentration of free radon is assumeq to
be at an absolute maximum, thus dC(-«)/dz = 0 and

Jt(-c) = Q.

B.C.2 Ct(0)

Jc(0) continuous at the tailings-cover interface.

0 The free radon concentration at the cover-atmosphere

Cc(0) } Both the free radon concentration and flux are

B.C.4 Cc(d)
interface is assumed to be very small, i.e., approach-
ing "zero". In reality, Fick's law does not apply to

such interface.

Solving for A, B, E, F:

From B.C.1: J¢(-=) =0

or -Dgglifl = -D(oAe*’-aBe™*) =0

2=~ Z=-»

141



this means that B = 0 , otherwise J would be infinitely large

thus, Ci(z) = Ae®? + §§ for z < 0 ~ (5-L)
a
From B.C.4: Cc(d) =0
or £e% + Fe

so, E = -Fe~

Ferod [l - oz _ o-lad - a2)y g, 5 g (6-L)

and Cc(z)

Equating the derivatives of (5-L) and (6-L) at z = 0 produces
A = _Fe-ad(ead + e—ad)

e"(!d ( edd

thus C¢(z) = §5 - F + o) ¢Z g5 z <0 (7-1)
a

From B.C.2: C¢(0) = C(0)

Equating (6-L) and (7-L) at z = 0 results in

S Fe-ad(ead + e-ad) - Fe-ad(ead _ e-ad)

or F = _5; (8-1)

Inserting (8-L) into (7-L) produces an equation describing the free radon

concentration as function of depth in the tailings, i.e., for z < 0

alz-d)

Ci(z) = %7-[1 -e cosh (ad)] for z < 0 (tailings)  (9-L)
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CrRa Apnt
and S = Ra Rn
-y

with Agp = 222Rn decay constant, in s-1
CRa = 226Ra concentrations in tailings, in pCi/g
E = emanating power of 222Rn in tailings, dimensionless

The general solutions of (2-L) for the concentration of 222Rn as function of
depth, C(z), are

Ce(z) = Ae®? + Be @ 4 §§- , for z < 0 (tailings) (3-1)
a

and Ce(z) = Ee®* + Fe™® , for z > 0 (cover) (4-1)

Four boundary conditions are required to determine the values of A, B, E and

F. They are

B.C.1 Jt(-o) =0 At -o, the concentration of free radon is assumed to
be at an absolute maximum, thus dC(-=)/dz = 0 and
Je(-=) = 0.

B.C.2 C¢(0) = Cc(0) Both the free radon concentration and flux are

B.C.3 J¢(0) = Jc(0) | continuous at the tailings-cover interface.

B.C.4 Cc(d) =0 The free radon concentration at the cover-atmosphere
interface is assumed to be very small, i.e., approach-
ing "zero". In reality, Fick's law does not apply to

such interface.

Solving for A, B, E, F:

or -Dggliil = -D{aAe*Z-aBe"%?) =0
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this means that B = 0 , otherwise J would b& infinitely Tavrge =" *

thus, Cy(z) = Ae®Z + % for 2 < 0 (5-L)
a

From B.C.4: Cgq(d) =0

ad

or Ee" + Fe =

so, E = -Fe™2od

p 4

Fered eod - oz _ omled - a2)yeon 50 (6eny

and Cc(z)

From B.C.3: J¢(0) = J.(0)
Equating the derivatives of (5-L) and (6-L) at z = O produces
A = _Fe—ad(ead + e-ad)

thus C¢(z) = §E - Fe""‘d(e"‘d + e'“d) %% for z <0 (7-1)
o

Equating (6-L) and (7-L) at z = 0 results in

-— -

2

S Fe-ad(ead + e-ad) - Fe-ad(ead _ e-ad)

or F =_5; (8-1)

Inserting (8-L) into (7-L) produces an equation describing the free radon

concentration as function of depth in the tailings, i.e., for z < 0

Ci(z) = %2.[1 - e“(z'd)cosh (ad)] for z < 0 (tailings)  (9-L)
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Appendix M

Effects of Radon Diffusion on Exposure Rates

The effects of radon diffusion through cover material on exposure rates was
estimated by numerical integration techniques, employing the models developed
in the study and the radon concentration formulas-from Appendix L. The method
assumes the typical "infinitely thick" tailings slab covered with overburden
of depth d to be equivalent to a large number of infinitely thick slabs,
occupying simultaneously the same space but with varying radon concentrations
and depths of cover. The fundamental concept is partially illustrated in
Figure 1-M, for the specific case d = 100 ¢cm and D = 0.02 cm2/s, and further
amplified by the following description.

1
w

| :
! i
il

- B — ‘ 15,10

L=

= _ £(98)+€(98.5)
:C4=-A,.,..2.TA.,,. ; '
Infinitely thick slab, ﬁ = cover = 1.5

© = T98Y5) fcgygk _____
T ﬁz (99) 5

. Infinitely ithick |slab, -

!
!
|

i

'~ ¢(99)+C(99.5)
j.

Infﬁnitely thick slab

‘ of co@centration qz-Cl
o C(99.5)¥c(I00) ' L L s
q‘l- 2 - ; ( |

~ Infinitely thic s]ab@of concentrdtion

L e , 0
98 98.5 99 99.5 100
Z,cm Z=d

Figure 1 - M. Schematic representation of numerical integration method, applied to the
top two cm of a cover of thickness d = 100 c¢cm, on top of an infinitely thick tailings
slab, with a radon diffusion coefficient of D = 0.02 cmz/s, for £E=0.2

145



Having decided on a specific set of values E, d, D, the distribution of radon
C(z) in the cover and tailings is determined by Equations (11-L) and (14-L),
at regular intervals Az. The average concentration between two successive

points is then calculated by

G, = td-nsz * Cd-(n-1)az
2

where n = 1,2,3,..
and Cq.ppz = concentration C(z) at Tocation z = d-naz

As n increases, Eh increases also, by an amount ACq = 'En - -En-l (see
Figure 1-M ), the increment becoming effective at a distance zp=d-(n-1)az

Setting m = n, and adopting the convention that Cb = 0, the above may
be restated as AEm not being present for all z > z,, appearing as a step
function at z = zy, and continuing to exist for all z < zyp. This is
tantamount to assuming the existence of an infinitely thick slab of
concentration ACp, with a source-free cover of depth d -z = (n-1)az.
Such configuration is ideally suited for the calculation of exposure rates
through application of Equation (30) to the various slabs of incremental
concentration ‘AEh and depth of cover (n-1) Az. Adding the increments AX
resultant from each of these calculations produces the total exposure rate due

to an infinitely thick tailings slab with cover d and diffusion coefficient D.

Repeating this procedure for various d and D values leads to the exposure

rates depicted in Figure 2-M, all for E=0.2.
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Figure 2-M. Relative decrease in exposure rates, with respect to
maximum exposure rate possible, as function of increasing thickness
d of the overburden slab, for emanating power E = 20% and different
value of radon diffusion coefficient in soil, D, in the range 0.02
cmé/s > D > 0.0002 cm2/s.
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