
UPCONING OF A SALT-WATER/FREST-WATER INTERFACE BELOW A PUMPING WELL

Oklahoma State University Stillwater, OK

Jun 85

U.S. DEPARTMENT OF COMMERCE National Technical Information Service

UPCONING OF A SALT-WATER/FRESH-WATER

INTERFACE BELOW A PUMPING WELL

bу

Jan Wagner
School of Chemical Engineering
Oklahoma State University
Stillwater, Oklahoma 74078

Douglas C. Kent
Department of Geology
Oklahoma State University
Stillwater, Oklahoma 74078

CR811142

Project Officer

Carl G. Enfield
Robert S. Kerr Environmental Research Laboratory
U. S. Environmental Protection Agency
Ada, Oklahoma 74820

ROBERT S. KERR ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
ADA, OK 74820

TECHNICAL REPORT DATA (Please read Instructions on the reverse before	A completing)		
1. REPORT NO. EPA/600/2-85/066	3. RECIPIENT'S ACCESSION NO.		
4. TITLE AND SUBTITLE * UPCONING OF A SALT-WATER/FRESH-WATER INTERFACE	5. REPORT DATE June 1985		
BELOW A PUMPING WELL	6. PERFORMING ORGANIZATION CODE		
Jan Wagner, Douglas Kent	8. PERFORMING ORGANIZATION REPORT NO.		
9. PERFORMING ORGANIZATION NAME AND ADDRESS Oklahoma State University	10. PROGRAM ELEMENT NO. ABRD1A		
Stillwater, OK 74078	11. сынхихихихиххих Соор. Agr.		
	CR811142		
Robert S. Kerr Environmental Research Laboratory	13. TYPE OF REPORT AND PERIOD COVERED 9/83 - 2/85		
Office of Research and Development U.S. Environmental Protection Agency	14. SPONSORING AGENCY CODE		
Ada, OK 74820	EPA/600/15		
15. SUPPLEMENTARY NOTES			
Carl G. Enfield, Project Officer			

Analytical solutions for the upconing of an abrupt salt-water/fresh-water interface beneath a pumping well and for the concentration profile across a moving interface are developed for two types of upconing problems. The first considers the position of the interface and the salinity of the pumped water for a specified pumping rate. The second type of problem addresses the pumping schedules to prevent salinization of a well or to reach a predetermined salinity in the pumped water.

An interactive Fortran computer code has been developed to obtain solutions to both types of problems. The user is provided with options to modify the definition of a given problem, and, therefore, can gain some insight into the effects of geometry and physical properties on the rate and extent of upconing and the salinization of a well.

17.	KEY WORDS AND DOCUMENT ANALYSIS						
i.	DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group				
		İ					
			1				
3. DISTRIBUTI	ON STATEMENT	19. SECURITY CLASS (This Report)	21. NO. OF PAGES				
		UNCLASSIFIED	78				
RELEASE	TO PUBLIC	20. SECURITY CLASS (This page)	22. PRICE				
		UNCLASSIFIED	ŀ				

DISCLAIMER

The information in this document has been funded wholly or in part by the United States Environmental Protection Agency under assistance agreement number CR-811142 to Oklahoma State University. It has been subject to the Agency's peer and administrative review, and it has been approved for publication as an EPA document.

FOREWORD

EPA is charged by Congress to protect the Nation's land, air, and water systems. Under a mandate of national environmental laws focused on air and water quality, solid waste management and the control of toxic substances, pesticides, noise, and radiation, the Agency strives to formulate and implement actions which lead to a compatible balance between human activities and the ability of natural systems to support and nurture life.

The Robert S. Kerr Environmental Research Laboratory is the Agency's center of expertise for investigation of the soil and subsurface environment. Personnel at the Laboratory are responsible for management of research programs to: (a) determine the fate, transport and transformation rates of pollutants in the soil, the unsaturated zone and the saturated zones of the subsurface environment; (b) define the processes to be used in characterizing the soil and subsurface environment as a receptor of pollutants; (c) develop techniques for predicting the effect of pollutants on ground water, soil and indigenous organisms; and (d) define and demonstrate the applicability and limitations of using natural processes, indigenous to the soil and subsurface environment, for the protection of this resource.

This project was initiated to develop an interactive computer model which could be utilized to predict the impact of density gradients on water flow. The model should be useful in regard to salt water intrusion and salt water injection problems. This model assumes idealized conditions of a homogeneous isotropic media. Care should be utilized if there is significant heterogeneity in the aquifer.

Clinton W. Hall

Director

Robert S. Kerr Environmental Research Laboratory

Clinton W Half

ABSTRACT

Analytical solutions for the upconing of an abrupt salt-water/freshwater interface beneath a pumping well and for the concentration profile
across a moving interface are developed for two types of upconing problems. The first considers the position of the interface and the salinity
of the pumped water for a specified pumping rate. The second type of problem addresses the pumping schedules to prevent salinization of a well or to
reach a predetermined salinity in the pumped water.

An interactive Fortran computer code has been developed to obtain solutions to both types of problems. The user is provided with options to modify the definition of a given problem, and, therefore, can gain some insight into the effects of geometry and physical properties on the rate and extent of upconing and the salinization of a well.

TABLE OF CONTENTS

Abstract1
Table of Contents2
List of Tables
List of Figures4
Introduction5
Section I - Mathematical Development
Section II - Applications
Section III - Program UPCONE
References37
Appendix A - Example Problems38
Appendix B - Description of Program UPCONE60
Appendix C - Listing of Program UPCONE61
Appendix D - Listing of Function Subroutines71

LIST OF TABLES

Table	1	-	Parameters for Semadar 1 - Test B
Table	2	-	Salinity/Maximum Pumping Rate and Salinity/Time Relationships for Semadar 1 (X _{cr} = 0.4d)25
Table	3	_	Edit Commands for UPCONE

LIST OF FIGURES

Figure	1	-	Upcoming of an abrupt interface below a pumping well7
Figure	2	-	Predicted and observed interface elevations for Test B of Semadar 120
Figure	3	-	Predicted and observed upconing and recovery curves for Test B of Semadar 1
Figure	4	-	Concentration profile across initial transition zone23
Figure	5	-	Predicted and observed chloride concentrations in pumped water for Test B on Semadar 124

INTRODUCTION

Relatively simple analytical models can often be used to solve ground-water contamination problems, depending upon the complexity of the system and the availability of field data. Analytical models can also be used to gain some insight to the expected behavior of a complex system before progressing to the application of more sophisticated numerical models. In general, relatively few input parameters are required to define a problem using an analytical model and numerical results can be calculated in a few seconds. Analytical models are well suited for interactive use, and in some instances can be programmed on hand-held calculators.

This report presents an analytical solution for the upconing of an abrupt salt-water/fresh-water interface below a pumping well. Dispersion phenomena arising from the displacement of a moving interface, or a finite transition zone between the invading and displaced fluids, can be superimposed on the analytical solution for the position of an abrupt interface. An interactive Fortran computer code has been developed which enables the user to modify input parameters and to control the computational sequence. This interactive approach enables the user to gain insight into the effects of geometry and physical properties on the rate and extent of upconing and salinization of a well.

SECTION I

Mathematical Development

McWhorter (1972) presented the equations which describe the flow in saturated aquifers which are underlain by a zone of saline water and pointed out the difficulties in obtaining solutions to these problems. The complexity of the flow phenomenon has led many investigators to idealize the system as a fresh-water zone separated from an underlying salt-water zone by a sharp interface. In other words, the two fluids are assumed to be immiscible. Schmorak and Mercado (1969) followed this approach and accounted for the mixing of the two fluids by superimposing the effects of dispersion on the transient solution for the position of an abrupt interface.

Upconing of an Abrupt Interface

The following discussion is based on the studies of Bear and Dagan as reported by Schmorak and Mercado (1969). The basic assumptions underlying the theoretical development are: (1) the porous medium is homogeneous and nondeformable, (2) the two fluids are incompressible, immiscible, and separated by an abrupt interface (a geometric surface), and (3) the flow obeys Darcy's law. The non-linear boundary condition along the interface between the two fluids constitutes the major difficulty with the immiscible formulation of the problem. Bear and Dagan used the method of small pertubations to obtain an approximate solution for the position of the interface which served as a tool for obtaining analytical solutions for cases involving small deviations from an initially steady interface.

For the case of upconing beneath a pumping well partially penetrating a relatively thick confined aquifer as shown in Figure 1, Schmorak and

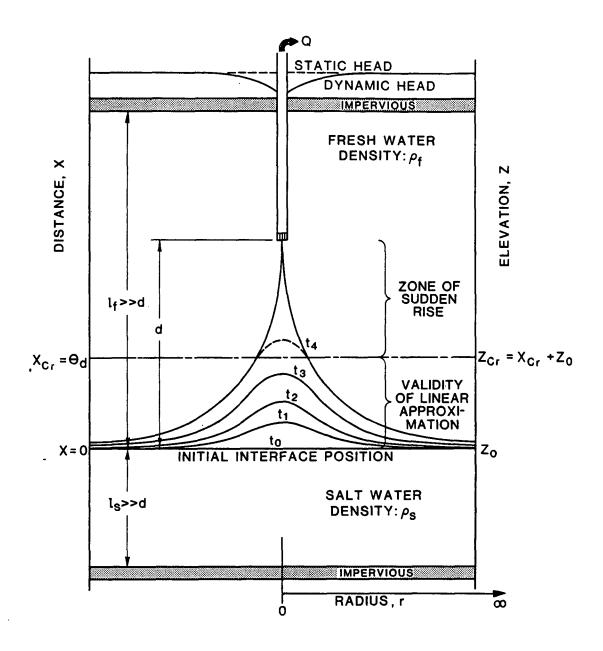


Figure 1. Upconing of an abrupt interface below a pumping well.

Mercado (1969) presented Bear and Dagan's solution for the position of the interface as a function of time and radial distance from the pumping well as

$$X(r,t) = \frac{Q}{2\pi(\Delta\rho/\rho)K_{x}^{d}} \left[\frac{1}{(1+R^{2})^{\frac{1}{2}}} - \frac{1}{(1+\tau)^{2}+R^{2}} \right]^{\frac{1}{2}}$$
(1)

where R and τ are dimensionless distance and time parameters defined by

$$R = \frac{r}{d} \left(\frac{K_z}{K_x} \right)^{\frac{1}{2}}$$
 (2)

and

$$\tau = \frac{(\Delta \rho / \rho) K_z}{2\theta d} t \tag{3}$$

Other notations are defined as follows (also refer to Figure 1):

- d distance from the bottom of the well to the initial
 interface elevation (L)
- K_x, K_z horizontal and vertical permeabilities, respectively (L/t)
 - Q well pumping rate (L^3/t)
 - r radial distance from well axis (L)
 - t time elapsed since start of pumping (t)
 - X rise of the interface above its initial position (L)
- $\Delta \rho/\rho$ dimensionless density difference between the two fluids, $(\rho_{\text{S}} \rho_{\text{f}})/\rho_{\text{f}}$
 - θ porosity of the aquifer.

Application of the method of small pertubations restricts changes in the interface elevation to relatively small values. In terms of the physical problem, this restriction implies $d << 1_f$ and $d << 1_s$. Although the governing differential equations have been formulated for a confined aquifer, the results can be applied to unconfined systems if the drawdown is negligible compared to the saturated thickness of the fresh-water zone.

The linear relationship, Equation 1, between the rise of the interface and the pumping rate is limited to a certain "critical rise," $X_{\rm cr}$. This limitation arises from linear approximation of the boundary conditions. As the interface approaches this critical rise, the rate of rise increases. Above the critical rise the interface reaches the pumping well with a sudden jump. Muskat (1946) defines the zone of accelerated rise for X/d > 0.48 and the critical rise within the limits of $X/d \sim 0.60$ to 0.75. Schmorak and Mercado (1966) recommend application of the linear approximation for $X/d < \infty$ 0.5. Sahni (1972) investigated the zone of instability of the interface using both numerical and physical models and recommended design criteria for skimming wells.

An abrupt interface such that (1) salinization of the pumping well occurs only for X > X_{cr} =fd where f is the fractional critical rise, and (2) Equation 1 is valid for $0 \le X \le X_{cr}$ will be assumed in this report. Thus, the maximum permissible pumping rate which will ensure salt-free water can be obtained from Equation 1.

For r = 0 and $t \rightarrow \infty$

$$X(0,\infty) = \frac{Q}{2\pi d(\Delta \rho/\rho)K_{x}}$$
 (4)

and

$$Q_{\text{max}} = 2\theta d(\Delta \rho / \rho) K_{x} C_{r}$$
 (5)

For a decaying mound, an imaginary recharge well is superimposed at time t = t corresponding to the end of the pumping period, and for t > t

$$X(r,t) = \frac{Q}{2\pi(\Delta\rho/\rho)K_{x}^{d}} \left[\frac{1}{\left(1+\tau_{1}\right)^{2} + R^{2}\right]^{\frac{1}{2}}} - \frac{1}{\left(1+\tau_{1}\right)^{2} + R^{2}\right]^{\frac{1}{2}}}$$
(6)

where

$$\tau_1 = \frac{(\Delta \rho / \rho) K_z}{2\theta d} (t - t^*)$$
 (7)

Values of R and τ are evaluated using Equations 2 and 3 respectively.

Dispersion

The upconing process as treated above assumes that the two fluids are immiscible and that the interface between them is abrupt. Actually, the interface is diffuse and a transition zone exists between the two fluids in which the concentration varies from the concentration in one fluid to the concentration in the other fluid over a finite distance. This transition zone is related to dispersion processes which alter the concentration profile across the moving interface.

Bear and Todd (1960) approximated the concentration profile as a function of position, X; the "interface" position, \overline{X} ; the equivalent total distance the interface is displaced, $|\Delta \overline{X}|$, independent of direction; and the dispersivity, D_m . The correlation is given by

$$\varepsilon(X) = \frac{1}{2} ERFC \left[\frac{X - \overline{X}}{2(D_m |\Delta \overline{X}|)^{\frac{1}{2}}} \right]$$
 (8)

where $\epsilon(X)$ is a dimensionless, or relative, concentration defined as

$$\varepsilon(X) = \frac{C - C_b}{C_x - C_b} \tag{9}$$

C = measured concentration at X

 $C_{_{\rm S}}$ = concentration of the invading fluid

 $C_{\overline{b}}^{}$ = background concentration of the displaced fluid.

Now, Equation 9 is a normal distribution function with a mean \overline{X} and a standard deviation

$$\sigma = (2D_{m} | \Delta \overline{X} |)^{\frac{1}{2}}$$
 (10)

or

$$P_{\mathbf{r}} \{X \ge x\} = \frac{1}{\sigma(2\pi)^{\frac{1}{2}}} \int_{-\infty}^{\infty} EXP \left(-\frac{(X-\overline{X})^2}{2\sigma^2}\right) dx$$
 (11)

From the definition of the error function,

$$P_{r} \{X \ge x\} = \frac{1}{2} ERFC \left(\frac{X - \overline{X}}{\sigma \sqrt{2}} \right)$$
 (12)

The two-parameter distribution is completely defined once the mean, \overline{X} , and standard deviation, σ , are known.

The mean of the distribution is assumed to be the rise of the interface as determined from Equation 1, or

$$\overline{X} = X \big|_{\varepsilon = 0.5} = X(r, t) \tag{13}$$

The standard deviation is defined as

$$2\sigma = \left[X \big|_{\varepsilon=0.841} - X \big|_{\varepsilon=0.159} \right] \tag{14}$$

Now, the width of the transition zone is a function of the total distance traveled, $|\overline{\Delta X}|$, (independent of direction) and the dispersivity as given by Equation 10, or

$$2\sigma = 2(2D_{m}|\overline{\Delta X}|)^{\frac{1}{2}}$$
 (15)

For an interface with an initial transition width, $2\sigma_0$, when raised by a distance, $\overline{\Delta X}$,

$$\sigma_{1} = \left(\sigma_{0}^{2} + (2D_{m}|\overline{\Delta X}|)\right)^{\frac{1}{2}} \tag{16}$$

The concentration distribution function then becomes

$$\varepsilon(X) = \frac{1}{2} ERFC \left(\frac{X - \overline{X}}{\sigma_1 \sqrt{2}} \right)$$
 (17)

or

$$\varepsilon(X) = \frac{1}{2} ERFC \left(\frac{X - \overline{X}}{\left(2\sigma_0^2 + 4D_m |\overline{\Delta X}| \right)^{\frac{1}{2}}} \right)$$
 (18)

Two important points should be noted concerning the preceding discussion of dispersion. First, the "initial width" of the transition zone has been defined as two standard deviations of the dimensionless concentration distribution. This definition has been adopted for convenience and serves to define the standard deviation of the concentration distribution across the initial transition zone. Secondly, the dispersion concept should be limited to the zone below the critical depth. This point will be considered in more detail in the following paragraphs.

Superposition of Dispersion on the Upconing of an Abrupt Interface

The position of the interface as a function of time and radial distance from the well is evaluated using Equation 1, which assumes an abrupt interface between the two fluids. This elevation is assumed to correspond to $X|_{\varepsilon=0.5}$, or the mean of the concentration distribution across the transition zone. In other words,

$$\overline{X} = X(r,t) = \frac{Q}{2\pi(\Delta\rho/\rho)K_{x}^{d}} \left[\frac{1}{\left((1+\tau_{1})^{2} + R^{2} \right)^{\frac{1}{2}}} - \frac{1}{\left((1+\tau)^{2} + R^{2} \right)^{\frac{1}{2}}} \right]$$
(6)

assuming an abrupt interface. The effect of dispersion arising from the displacement of the interface by a distance

$$|\overline{\Delta X}| = |X(r,t \leq t^*)| + |X(r,t > t^*)|$$
(20)

is superimposed to estimate the concentration distribution across the interface using Equation 18, or

$$\varepsilon(X) = \frac{1}{2} ERFC \left[\frac{X - \overline{X}}{\left(2\sigma_0^2 + 4D_m |\overline{\Delta X}| \right)^{\frac{1}{2}}} \right]$$
 (18)

The only difficulties in the approach occur for $\epsilon(X)$ = 0.0 and $\epsilon(X)$ = 1.0. Since

$$\varepsilon(X) = 0 \text{ for } X \rightarrow \infty$$

and

$$\varepsilon(X) = 1.0 \text{ for } X \to 0 \tag{22}$$

the transition zone would have an infinite width in theory. To overcome this physical impossibility, the width of the transition zone is arbitarily set at five standard deviations. This range includes approximately 99 percent of the area under the concentration distribution curve. Thus

$$\varepsilon(X) \simeq 0 \text{ for } X = \overline{X} + 2.5 \sigma_1$$
 (23)

and

$$\varepsilon(X) \simeq 1 \text{ for } X = \overline{X} - 2.5 \sigma_1$$
 (24)

Note that these limits differ from those used to define the "initial width" of the transition zone defined by Equation 14, or

$$2\sigma_{o} = \left(X \big|_{\varepsilon=0.841} - X \big|_{\varepsilon=0.159} \right)$$
 (25)

Concentration in Pumped Water

The increase in concentration, or salinization, of pumped water is probably due to the intrusion of invading fluid above the critical depth.

Data for two pumping tests on a coastal aquifer in the Ashqelon area of Israel indicated that the increase in salinity of the pumped water was approximately proportional to the average salinity above the critical depth (Schmorak and Mercado, 1969).

Previous discussion has emphasized that the linear approximation for the interface elevation is limited to elevations below the critical elevation and that the dispersion concept should be limited to the zone below the critical depth. The complex mixing and flow phenomena above the critical depth, near the well screen, and within the well pipe are approximated expirically using the approach followed by Schmorak and Mercado (1969).

The average dimensionless concentration of the transition zone above the critical rise, $\overline{\epsilon}(X > X_{cr})$, is approximated as one-half the concentration at the critical depth, or

$$\varepsilon(X > X_{cr}) = 0.5 \ \varepsilon(X_{cr}) \tag{26}$$

The concentration in the pumped water, $\epsilon_{_{
m W}}$, is determined from dilution of the average transition-zone concentration above the critical depth with displaced fluid, or

$$\varepsilon_{\mathbf{w}} = \phi \ \overline{\varepsilon} (\mathbf{X} > \mathbf{X}_{\mathbf{cr}}) \tag{27}$$

where ϕ is an interception coefficient, or the fraction of transition zone fluid in the total volume pumped.

SECTION II

Applications

Two types of upconing problems are considered. The first involves the description of the expected interface elevation and the salinity of the pumped water as a function of time for a given pumping rate. The second problem addresses the maximum rate at which a well can be pumped without exceeding a specified salinity in the pumped water. Both types of problems are discussed in the following paragraphs.

Case I - Estimation of Interface Elevations for a Given Pumping Rate

Case I problems are solved in a fairly straight-forward manner. Once the physical properties of the aquifer and the initial conditions have been specified, Equation 1 or Equation 6 is solved for the position of the abrupt interface, or the mean of the transition zone, i.e.,

$$X(r,t) = X|_{\epsilon=0.5} = \overline{X}$$
 (13)

In terms of elevations,

$$Z(r,t) = X(r,t) + Z_0$$
 (28)

where Z_{0} is the initial interface elevation.

The concentration profile across the transition zone is evaluated using Equation 18. The salinity of the pumped water is determined from the dilution of the average transition zone salinity above the critical rise. From Equations 26 and 27

$$\varepsilon_{\mathbf{w}} = 0.5 \phi \varepsilon(\mathbf{X}_{\mathbf{cr}})$$
 (29)

and from the definition of dimensionless concentration (Equation 9)

$$C_{w} = \varepsilon_{w} (C_{s} - C_{b}) + C_{b}$$
 (30)

where $\mathbf{C}_{_{\mathbf{U}}}$ is the concentration in the pumped water.

Case II - Estimation the Maximum Permissible Pumping Rate to Prevent Salinization of a Well

Case II problems present some difficulty as the pumping rate, Q, is unknown. Thus, the elevation of the interface, \overline{X} , and the total displacement of the interface, $|\overline{\Delta X}|$, are also unknown. Equation 18 must be solved for the maximum permissible rise in interface elevation such that

$$\varepsilon(X_{cr} = fd) \leq \varepsilon_{max}$$
 (31)

where

$$\varepsilon_{\text{max}} = \frac{\varepsilon_{\mathbf{w}}}{0.5\phi} \tag{32}$$

Assuming a constant, steady pumping rate the total displacement of the interface will be equal to the rise of the interface or

$$|\Delta X| = \overline{X}$$

and Equation 18 can be written as

$$\varepsilon_{\text{max}} = \frac{1}{2} \text{ ERFC} \left(\frac{\mathbf{x}_{\text{cr}} - \overline{\mathbf{x}}}{\left(\frac{2}{2\sigma_{\text{o}}} + 4D_{\text{m}} \overline{\mathbf{x}} \right)^{\frac{1}{2}}} \right)$$
(33)

Equation 33 must be solved for \overline{X} using trial-and-error procedures. The maximum permissible rise in the interface elevation,

$$X_{\text{max}} \leq X_{\text{cr}} = \text{fd}$$
 (34)

is then corrected for the concentration profile as

$$x_{\text{max}}^* = x_{\text{max}} - (fd - \overline{x})$$
 (35)

and

$$Z_{\text{max}}^{*} = X_{\text{max}}^{*} + Z_{0}$$
 (36)

The maximum permissible steady-state pumping rate is then obtained using Equation 5, or

$$Q_{\text{max}}^{*} = 2\pi d(\Delta \rho/\rho) K_{\text{x}} X_{\text{max}}^{*}$$
(37)

where $\chi^{\star}_{\text{max}}$ depends only upon the critical rise and the dispersion pattern.

The time required to reach a predetermined salinity in the well can be estimated by rewriting Equation 1 as

$$t(C_{W}) = \frac{2\theta d}{(\Delta \rho / \rho) K_{z}} \left[\frac{1}{1 - \left(2\pi (\Delta \rho / \rho) K_{x} dX_{max}^{*} \right) / Q} - 1 \right]$$
(38)

Substituting Equation 37 into Equation 38 yields

$$t(C_{w}) = \frac{2\theta d}{(\Delta \rho / \rho) K_{z}} \left(\frac{1}{1 - Q_{max}^{*} / Q} - 1 \right)$$
(39)

which can be used to estimate the time required to reach a predetermined salinity in the pumped water for pumping rates, Q, greater than the maximum steady-state pumping rate, Q_{max}^* .

An interactive computational code has been developed to calculate interface elevations, and concentrations for both Case I and Case II problems using the approach described above. The computer program is discussed in Section IV of this report.

Example Problem - Upconing Below a Coastal Collector Well

The application of the analytical model will be demonstrated using the field data for Test B on the coastal collector well Semadar 1 in the Ashqelon area of Israel (Schmorak and Mercado, 1969). Test B consisted of pumping Semadar 1 at a rate of $348 \text{ m}^3/\text{day}$ for a period of 84 days. The upconing and decay of the salt-water/fresh-water interface were monitored by measuring the

TABLE 1

Parameters for Semadar 1 - Test B

Fresh-water density, ρ_{f}	1.00 g/cm^3
Salt-water density, ρ_s	1.03 g/cm^3
Porosity, θ	0.33
Horizontal permeability, $K_{\mathbf{x}}$	14.7 m/day
Vertical permeability, K _z	14.7 m/day
Initial interface elevation, Z _o	-30.75 m MSL
Distance from bottom of well to initial interface, d	15.5 m
Fractional critical rise, f	0.4
Chloride concentration in salt water, C	22,000. ppm C1
Chloride concentration in fresh water, $C_{\overline{b}}$	145. ppm C1
Dispersivity, D _m	0.5 m
Initial width of transition zone, $2\sigma_0$	3.5 m
Interception coefficient, ϕ	0.08
Pumping rate, Q	348.m ³ /dy
Pumping period, t*	84. dy
Observation wells.	

Observation wells:

Identification	Radius, m
T-2	4.5
T-3	12.4
T-4	16.7
T-5	33.9

salinity profiles in four observation wells. Samples of the pumped water were collected periodically and analyzed for chlorides. The properties of the fluids and the aquifer as estimated by Schmorak and Mercado are summarized in Table 1.

Program UPCONE was used to calculate the transient interface elevations and chloride concentrations in the pumped water. The input data dialog and printed results for this problem are presented in Appendix D.

The predicted and observed interface elevations after 16, 57, and 84 days of pumping are shown in Figure 2. The observed interface elevations correspond to elevations for a 50 percent relative concentration of sea water, or

$$\varepsilon = \frac{C - C_b}{C_s - C_b} = 0.5$$

The predicted and observed interface elevations match fairly well with the exception of the values for observation well T-2. Well T-2 is located 4.5 meters from the pumping well and penetrates to an elevation of 31.10 meters below MSL. However, this well is screened to an elevation of only 29.02 meters below MSL, and Schmorak and Mercado (1969) indicate that saline water was entrapped at the bottom of the well from a previous pumping test. The predicted rise of the interface at well T-2 also approaches the critical elevation for a fractional critical rise of 0.4. Thus, the observed interface elevation could be in a zone of accelerated rise. Finally, the reported concentration gradients were very steep in well T-2, and small errors in concentration measurements could lead to large errors in estimating the position of the interface.

The predicted upconing and recovery curves for each of the four observation wells are shown in Figure 3. With the exception of well T-2 the

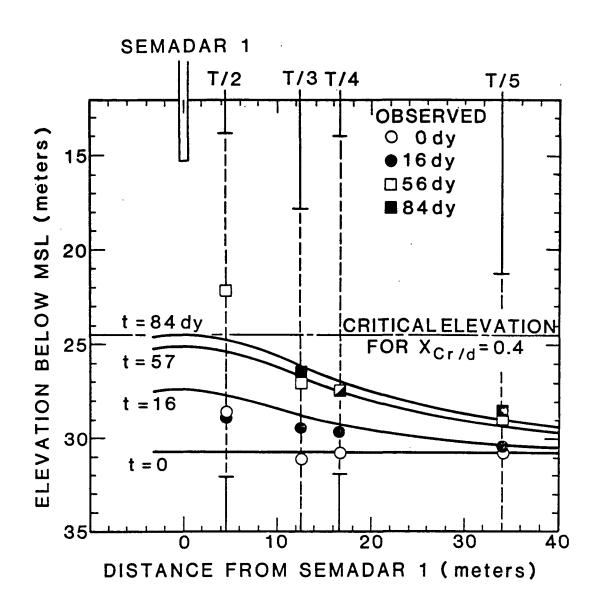


Figure 2. Predicted and observed interface elevations for Test B of Semadar 1.

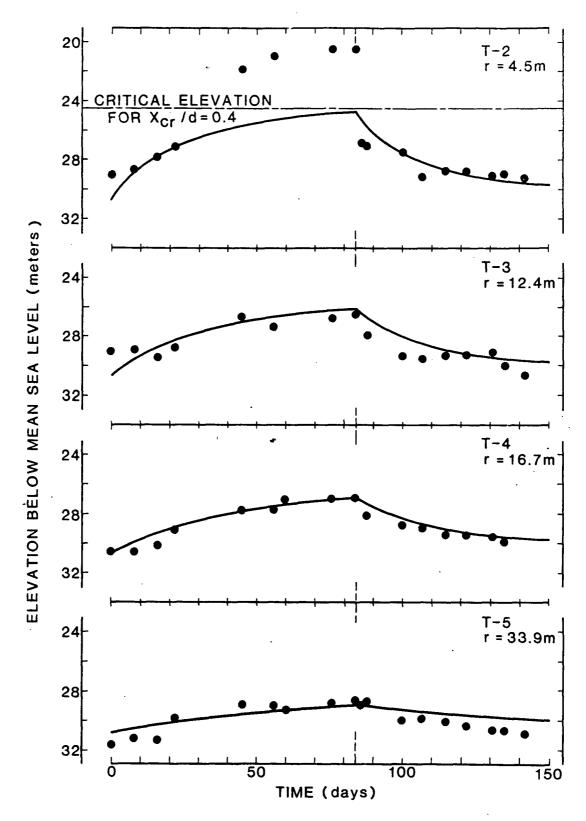


Figure 3. Predicted and observed upconing and recovery curves for Test B of Semadar 1.

predicted upconing curves follow the observed interface elevations fairly well. The recession curves for all four observation wells are also in fair agreement with the field data.

Initial observed relative concentrations for wells T-3, T-4, and T-5 are plotted on Figures 4a and 4b. The predicted concentration profile across the transition zone using an initial transition zone width, $2\sigma_0$, of 3.5 meters is also shown. This value represents an average of the widths of the transition zones at the three observation wells.

The parameters listed in Table 1 were used to predict the concentration of chlorides in the pumped water as a function of time. The results of the simulation are summarized in Figure 5 and agree very well with the observed values.

No effort has been made in this report to "optimize" model input parameters or to quantify the "goodness of fit" between observed and predicted values of elevations, concentration profiles, or salinity of the pumped water. However, a qualitive comparison of the predicted and observed values as shown in Figures 2, 3, and 5 indicate that the assumptions incorporated in the analytical model approach the field conditions.

Program UPCONE was also used to develop salinity/maximum pumping rate relationships and salinity/time relationships for Semadar 1. These relationships correspond to Case II types of problems. The corrected critical interface elevations, Z_{max}^* , and maximum steady-state pumping rates, Q_{max}^* , for several values of predetermined salinity in the pumped water are presented in Table 2. The time required to reach the specified salinity in the pumped water were also calculated for two optional pumping rates. These pumping rates correspond to Test A and Test B of Semadar 1.

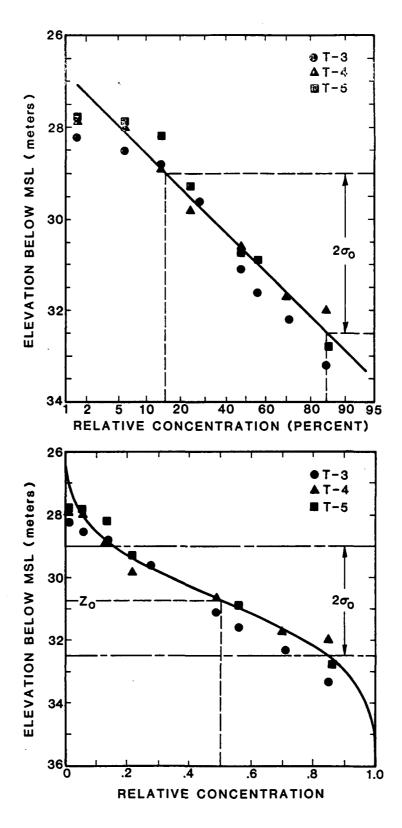


Figure 4. Concentration profile across initial transition zone.

(a) Relative concentration on probability scale.

(b) Relative concentration on arithmetic scale.

Figure 5. Predicted and observed chloride concentrations in pumped water for Test B on Semadar 1.

TABLE 2 Salinity/Maximum Pumping Rate and Salinity/Time Relationships For Semadar 1 $(X_{cr} = 0.4d)$

		Chloride			Ti	ne
	Relative Concentration of Salt Water (Dimensionless)	Concentration In Pumped Water (ppm CL)	X* max (meters)	Q [*] max (m ³ /day)	Test A $Q = 575 \text{ m}^3/\text{day}$ (days)	Test B $Q = \frac{348 \text{ m}^3}{\text{(days)}}$
	0.001	166.85	2.85	79.57	3.73	6.88
	.003	210.56	3.73	117.40	5.95	11.81
21	.005	254.27	4.30	141.66	7.58	15.92
	.010	363.55	5.36	187.34	11.21	27.05
	.020	582.10	7.20	266.28	20.01	75.59
	.030	800.65	9.49 [†]	364.76 [†]	40.25	-

^(†) $X_{max}^{*} > X_{cr} = 6.20 \text{ meters}$

The example problems using the data for Test B of Semadar 1 described above are intended to support, in general, the validity of the theoretical approach and to demonstrate the application of the analytical model to a typical upconing problem. The reader interested in methods which might be used to develop input parameters for the model are referred to the Schmorak and Mercado (1969) discussion of the field investigation and interpretation of the field data.

SECTION III

Program UPCONE

Program UPCONE evaluates the position of an abrupt salt-water/freshwater interface beneath a pumping well as a function of time and radial distance from the well. The program has also been written to (1) superimpose the effects of dispersion on the abrupt interface to estimate the concentration profile across the interface and the salinity of the pumped water, or (2) estimate the maximum pumping rate or time required to reach a specified salinity in the well. The program has been designed for interactive use and requires data input under two modes of operation—"Basic Input Data" and "Edit."

Basic Input Data

Basic input data are required to initiate a new problem using the UP-CONE program. The data entries include the problem title, the physical properties of the aquifer and the two fluids, and the geometry of the system. The user is prompted for the required data through a series of input commands described below. Numeric data should be entered through the keyboard with decimal points, and multiple data entries should be separated by a comma(s). The first basic input command is

ENTER TITLE

?

Any valid keyboard characters can be used. The first 60 characters will be retained for further problem identification.

The next two input commands are used to define the units of all variables used in the calculations and printouts of the results. Any consistent set of units may be used. The two commands are

ENTER UNITS FOR LENGTH (2 CHARACTERS)

?

ENTER UNITS FOR TIME (2 CHARACTERS)

?

Any valid keyboard characters can be used. The first two characters will be retained for identification of length and time units.

The next series of input commands are used to specify the physical properties of the fluids and the aquifer. Input data errors which may interrupt the computational sequence are detected by the program and a command is issued to reenter the data for the appropriate variable. The series of commands are as follows:

ENTER FRESH-WATER AND SALT-WATER DENSITIES

?,?

The densities, or specific gravities, of the two fluids may be entered in any units so long as the units are identical for both entries.

ENTER AQUIFER POROSITY

?

Enter the volume void fraction as a decimal value greater than zero and less than one.

ENTER HORIZONTAL PERMEABILITY (L/t)

?

ENTER VERTICAL PERMEABILITY (L/t)

?

Horizontal and vertical permeabilities must be entered with dimensions of L/t in the units requested. Numerical values for both entries must be greater than zero.

ENTER INITIAL INTERFACE ELEVATION (L)

?

The initial interface elevation may be either positive, zero, or negative, depending upon the location of the reference elevation with respect to the initial abrupt interface (or the elevation of the mean concentration of the transition zone). The elevation must be entered in the units requested.

ENTER DISTANCE FROM BOTTOM OF WELL TO INITIAL INTERFACE (L)

?

The entry must be positive and in the units requested.

ENTER FRACTIONAL CRITICAL RISE

?

The fractional critical rise must be a decimal value greater than zero and less than one.

The next basic input command is used to select the option of performing concentration calculations. The command is

CONCENTRATION CALCULATIONS? (Y/N)

If the user does not respond with Y, the problem title and parameters which have been specified are listed. The critical rise and the maximum steady-state

pumping rate which will maintain the interface at the critical elevation are evaluated and the results are printed. The program then enters the "Edit" mode.

If the response to the last basic input command is Y, the user will be requested for additional basic input data required to carry out the concentration calculations. The first command is

ENTER UNITS FOR CONCENTRATION (6 CHARACTERS)

?

Any valid keyboard characters can be used. The first 6 characters will be used to specify concentrations for following data entries and printed results. The following commands are:

ENTER SALT-WATER AND BACKGROUND CONCENTRATIONS (M/L³)

?,?

The concentration of any desired component in the invading fluid and the displaced fluid are entered. If the user wishes to work in terms of dimensionless concentrations, enter a value of 1.0 for the salt-water concentration and a value of 0.0 for the background concentration.

ENTER DISPERSIVITY (L)

?

The dispersivity has dimensions of L and must be entered in the units requested. Numerical values must be greater than zero.

ENTER INITIAL WIDTH OF TRANSITION ZONE (M)

?

The width of the transition zone is defined as two standard deviations of the concentration distribution function across the transition zone, as discussed in Section II of this report. For an initially abrupt interface enter a value of zero.

ENTER INTERCEPTION COEFFICIENT

?

The interception coefficient is the fraction of transition zone water in the total volume pumped. Enter a decimal fraction greater than zero and less than one.

At this point the program will list the problem title and parameters as they are currently specified along with the critical rise and the maximum permissible pumping rate for an abrupt interface. The program then enters the "Edit" mode.

Edit Commands

Once the basic input data have been entered, the problem as currently defined is listed and the program enters the "Edit" mode. The edit commands are listed in Table 3. The request for information is

ENTER NEXT COMMAND

?

One of the responses from Table 1 should be given. If the response is incorrect or improperly formated the statement

ERROR IN LAST COMMAND--REENTER

?

is issued. Error messages for invalid numeric data will be issued as described under Basic Input Data.

The request for information will be repeated until one of the responses EL, PR, LI, NP or DN is entered.

EL will initiate the calculation of interface elevations for a specified pumping rate. The user is given the option of calculating the concentration profile across the transition zone by responding to the following command

CONCENTRATION CALCULATIONS ? (Y/N)

If the response is Y and the data required for concentration calculations have not been entered previously, the user is prompted for the required information using "Basic Input" commands.

For the initial use of the EL edit command, the following requests for data are issued:

ENTER PUMPING RATE (CU L/t) AND PERIOD (t) ?,?

Enter the well pumping rate and the pumping period in the units requested. Both entries must be positive and separated by a comma.

Two additional requests for data are used to define the coordinates of the observation points. The first is

ENTER TFIRST, TLAST, DELTAT (t)

?,?,?

Input units for the time variables must be in the units requested. TFIRST must not be negative value. A zero entry for DELTAT will result in interface elevations at a single time. The second request is

ENTER RFIRST, RLAST, DELTAR (L)
?,?,?

The numerical values used to define the radial coordinates of the observation points may be positive or negative. The results of the calculations will be printed from RFIRST to RLAST.

The pumping rate and observation coordinate parameters are listed and a request

CONTINUE ? (Y/N)

is issued. If the response is not Y, the program returns to the edit mode. If the response is Y, the program proceeds to the computation of interface elevations at the specified times and radial distances from the well and prints the results. If concentration calculations were requested, the concentration in the pumped water and the concentration distribution across the transition zone are also evaluated and printed for the specified times.

On subsequent use of the EL edit command, the pumping rate and observation coordinate data as currently defined will be listed and a request to continue will be issued.

PR initiates the calculation of maximum permissible interface elevations and pumping rates for a specified concentration in the pumped water. If the data required for concentration have not been entered previously, the user is prompted for the required data using "Basic Input Data" dialog. The following request for information is then issued:

ENTER MAXIMUM PERMISSIBLE CONCENTRATION IN PUMPED WATER (M/L^3) ?

Enter the concentration in the units requested. The numerical value must not be negative.

The program then lists the problem as currently defined and evaluates the maximum permissible interface elevation and pumping rate. The following request for information is then issued:

ENTER OPTIONAL PUMPING RATE (L³/t)

If a value greater than the maximum pumping rate is entered, the time to reach the specified concentration in the pumped water will be calculated, and the command reissued. If a value less than the maximum pumping rate is entered the program returns to the edit mode.

LI will list the problem as currently defined.

- NP will request a complete new problem definition using the "Basic Input Data" dialog.
- DN will terminate the program.

Although many tests for valid input data and properly formulated edit commands have been embedded in the computer code, the user is encouraged to correct "keyboard errors" before the data are transmitted. This practice will serve to minimize the frustration of program termination as a result of fatal errors during execution of the numerical computations.

TABLE 3 Edit Commands for UPCONE

Command	Variable Changed/Execution
CO	Salt-water and background concentrations
CR .	Fractional critical rise
DI	Dispersivity
DT	Depth from bottom of well to initial interface
FD	Fluid densities
IC	Interception coefficient
KX	Horizontal permeability
KZ	Vertical permeability
· OB	Time and radius coordinates
PO	Porosity
QP	Pumping rate and time
- RC	Radius coordinates
TC	Time coordinates
TW	Initial width of transition zone
Z O	Initial interface elevation
DI .	Interface elevation calculations
EL	
DN	Terminate program
LI	List problem definition
NP	New problem
PR	Pumping rate calculations

REFERENCES

- Abramowitz, M. and I. A. Stegun. 1966. <u>Handbook of Mathematical Functions</u>

 with Formulas, Graphs, and Mathematical Tables. National Bureau of

 Standards Applied Mathematics Series 55, U. S. Department of Commerce,

 1046 pp.
- Bear, J. and D. K. Todd. 1960. "The Transition Zone between Fresh and Salt Waters in Coastal Aquifers." Contribution No. 29, Water Resources Center, University of California, Berkeley, CA.
- Carnahan, B., H. A. Luther and J. O. Wilkes. 1969. Applied Numerical Methods. John Wiley and Sons, New York, NY.
- McWhorter, D. B. 1972. "Steady and Unsteady Flow of Fresh Water in Saline Aquifers." Water Management Technical Report No. 20, Engineering Research Center, Colorado State University, Fort Collins, CO.
- Schmorak, S. and A. Mercado. 1969. "Upconing of Fresh Water-Sea Water Interface Below Pumping Wells, Field Study." Water Resources Research, Vol. 5, No. 6, pp 1290-1311.

APPENDIX A

Example Problems

The following pages contain the documentation of the upconing simulation used to generate the predicted interface/time and concentration/time relationships for the example problem discussed in Section II of this report.

```
ENTER TITLE
SEMADAR 1 -- TEST B
  ENTER UNITS FOR LENGTH (2 CHARACTERS)
M
  ENTER UNITS FOR TIME (2 CHARACTERS)
DΥ
  ENTER FRESH-WATER AND SALT-WATER DENSITIES
1.00,1.03
  ENTER AQUIFER POROSITY
0.33
  ENTER HORIZONTAL PERMEABILITY (M /DY)
14.7
  ENTER VERTICAL PERMEABILITY (M /DY)
14.7
  ENTER INITIAL INTERFACE ELEVATION (M )
-30.75
  ENTER DISTANCE FROM BOTTOM OF WELL TO INITIAL INTERFACE (M )
15.5
  ENTER FRACTIONAL CRITICAL RISE
0.4
  CONCENTRATION CALCULATIONS ? (Y/N)
```

```
SEMADAR 1 -- TEST B
```

```
DENSITY OF FRESH WATER . *
                                                       1.0000
DENSITY OF SALT WATER
                                                       1.0300
AQUIFER POROSITY
                                                         .3300
HORIZONTAL PERMEABILITY (M /DY)
                                                      14.7000
VERTICAL PERMEABILITY (M /DY)
                                                      14.7000
INITIAL INTERFACE ELEVATION (M )
DISTANCE FROM BOTTOM OF WELL TO INTERFACE (M )
                                                     -30.7500
                                                      15.5000
                                                        4000
FRACTIONAL CRITICAL RISE
CRITICAL RISE (M )
                                                        6.2000
CRITICAL ELEVATION (M )
                                                     -24.5500
MAXIMUM STEADY-STATE PUMPING RATE (CU M /DY)
                                                     266.2818
```

ENTER NEXT COMMAND EL

CONCENTRATION CALCULATIONS ? (Y/N)

ENTER PUMPING RATE (CU M /DY) AND PERIOD (DY) ?,? 348.,84. ENTER TFIRST, TLAST, DELTAT (DY) ?,?,? 0.,57.,16. ENTER RFIRST, RLAST, DELTAR (M) ?,?,? 0.,40.,5.

> PUMPING RATE (CU M /DY) 348.0000 PUMPING PERIOD (DY) 84.0000

.0000 TLAST = 57.0000 DELTAT = .0000 RLAST = 40.0000 DELTAR = TFIRST = 16.0000 RFIRST = 5.0000

NOTE: INTERFACE WILL RISE TO CRITICAL ELEVATION IN 75.59 DY

CONTINUE ? (Y/N)

36

PUMPING RATE: 348.00 CU M /DY FDR 84.00 DY

INTERFACE ELEVATIONS (M)

R (M)	•						
	.00	5.00	10.00	15.00	20.00	25.00	30.00
T (DY)							
.00	-30.75	-30,75	-30.75	-30.75	-30.75	-30.75	-30.75
16.00	-27.44	-27.75	-28.42	-29.09	-29.60	-29.95	~30.18
32.00	-26.05	-26.41	-27.23	-28.08	-28.78	-29.30	-29.67
48.00	-25.29	-25.66	-26.52	-27.45	-28.22	-28.82	-29.26
57.00	-24.99	-25.37	-26.25	-27.18	-27 .9 8	-28.60	-29.0B

INTERFACE ELEVATIONS (M) (CONTINUED)

```
R (M)
                35.00 40.00
 T (DY)
        .00
              -30.75
-30.34
                       -30.75
                        -30.45
       16.00
       32.00
               -29.94
                        -30.13
       48.00
               -29.60
                        -29.84
       57.00
              -29.43
                        -29.70
  ENTER NEXT COMMAND
09
  ENTER TFIRST, TLAST, DELTAT (DY)
?,?,?
0.,160.,5.
  ENTER REIRST, RLAST, DELTAR (M )
  ?,?,?
4.5,0.,0.
 ENTER NEXT COMMAND
EL
  CONCENTRATION CALCULATIONS ? (Y/N)
    PUMPING RATE (CU M /DY)
                                                        348.0000
    PUMPING PERIOD (DY)
                                                         84.0000
               .0000 TLAST = 160.0000 DELTAT = 4.5000 RLAST = .0000 DELTAR =
 . TFIRST =
                                                            5.0000
                                                            .0000
    RFIRST =
 NOTE: INTERFACE WILL RISE TO CRITICAL ELEVATION IN
                                                           75.59 DY
 CONTINUE ? (Y/N)
```

PUMPING RATE: 348.00 CU M /DY FOR 84.00 DY INTERFACE ELEVATIONS (M)

```
R (M)
                4.50
 T (DY)
        .00 -30.75
       5.00
             -29.45
             -28.52
      10,00
      15.00
              -27.81
      20.00
              -27.27
              -26.83
      25.00
              -26.47
      30,00
      35.00
              -26.18
      40.00
              -25.93
      45.00
              ~25.71
      50.00
              ~25.53
      55.00
              -25.36
      60.00
              -25.22
      65.00
              ~25.09
      70.00
              -24.98
      75.00
             -24.88
      80.00
              ~24.79
      85.00
              ~25.00
             -26.13
      90.00
      95.00
              -26.94
     100.00
              -27:55
     105.00
              -28.01
             -28.37
     110.00
     115.00
             -28.67
     120.00
             -28.91
     125.00
             -29.11
     130.00
             -29,27
     135.00
             -29.41
     140.00
             -29.54
     145.00
             -29.64
              -29.73
     150.00
              -29.81
     155.00
     160.00
              -29.88
 * NOTE: CRITICAL ELEVATION OF -24.55 M EXCEEDED AT R=0 AND T= 75.59 DY
 ENTER NEXT COMMAND
RC
 ENTER RFIRST, RLAST, DELTAR (M )
 ?,?,?
12.4,0.,0.
 ENTER NEXT COMMAND
EL
 CONCENTRATION CALCULATIONS ? (Y/N)
                                                    348.0000
    PUMPING RATE (CU M /DY)
    PUMPING PERIOD (DY)
                                                     84.0000
                                                        5.0000
                 .0000 TLAST = 160.0000 DELTAT =
    TFIRST =
                                                        .0000
    RFIRST =
              12.4000 RLAST =
                                  .0000
                                           DELTAR =
 NOTE: INTERFACE WILL RISE TO CRITICAL ELEVATION IN
                                                        75.59 DY
 CONTINUE ? (Y/N)
```

PUMPING RATE: 348.00 CU M /DY FOR 84.00 DY

INTERFACE ELEVATIONS (M)

```
R (M)
                12.40
  T (DY) #
         .00
              -30.75
       5.00
              -29.99
       10.00
              -29.36
       15.00
               -28.85
       20.00
              -28.42
       25.00
              -28.06
       30.00
               -27.76
       35.00
              -27.50
       40.00
              -27,28
              -27.08
       45.00
              -26.91
       50.00
       55.00
              -26.76
       60.00
              -26.63
       65.00
              -26.51
       70.00
              -26.40
       75.00
              -26.30
       80.00
              -26.22
       85.00
              -26.30
       90.00
              -26.96
       95.00
              -27.49
      100.00
              -27.92
      105.00
              -29.28
      110.00
              -28.57
      115.00
              -28.82
      120.00
              -29.02
      125.00
              -29.20
      130.00
              -29.34
      135.00
              -29.47
      140.00
              -29.58
      145.00
              -29.68
      150.00
              -29.77
      155.00
               -29.84
      160.00
               -29.91
  * NOTE: CRITICAL ELEVATION OF ~24.55 M EXCEEDED AT R=0 AND T= 75.59 DY
  ENTER NEXT COMMAND
RC
  ENTER RFIRST, RLAST, DELTAR (M )
  ?,?,?
16.7,0.,0.
 ENTER NEXT COMMAND
 CONCENTRATION CALCULATIONS ? (Y/N)
    PUMPING RATE (CU M /DY)
                                                      348,0000
    PUMPING PERIOD (DY)
                                                        84.0000
    TFIRST = .0000 TLAST = 160.0000 DELTAT = RFIRST = 16.7000 RLAST = .0000 DELTAR =
                                                          5.0000
                                                          .0000
  NOTE: INTERFACE WILL RISE TO CRITICAL ELEVATION IN
                                                          75.59 DY
  CONTINUE ? (Y/N)
```

```
INTERFACE ELEVATIONS (M )
    * R (M)
               16.70
              -30.75
        .00
       5.00
              -30.23
      10.00
              -29.76
      15.00
              -29.36
              -29.00
      20.00
      25.00
              -28.70
      30.00
              -28.44
      35.00
              -28.21
      40.00
             -28.00
      45.00
             -27.83
             -27.67
      50.00
      55.00
             -27.53
      60.00
             -27.40
      65.00
             -27.29
      70.00
              -27.19
      75.00
             -27.09
      80.00
             -27.01
      85.00
              -27.04
      90.00
             -27.48
             -27.87
      95.00
     100.00
             -28.20
     105.00
             -28.49
             -28.73
     110.00
             -28.94
     115.00
     120.00
             -29.12
     125.00
             -29.27
     130.00
             -29.41
             -29.52
     135.00
     140,00
             -29.63
     145.00
             -29.72
     150.00
              -29.80
              -29.87
     155.00
     160.00
             -29.93
 * NOTE: CRITICAL ELEVATION OF ~24.55 M EXCEEDED AT R=0 AND T= 75.59 DY
 ENTER NEXT COMMAND
 ENTER RFIRST, RLAST, DELTAR (M )
 ?,?,?
 ENTER NEXT COMMAND
EL
 CONCENTRATION CALCULATIONS ? (Y/N)
    PUMPING RATE (CU M /DY)
                                                    348.0000
    PUMPING PERIOD (DY)
                                                     84.0000
    TFIRST =
                 .0000 TLAST = 160.0000 DELTAT =
                                                        5,0000
                                   .0000 DELTAR =
                                                        .0000
    RFIRST = 33.9000 RLAST =
 NOTE: INTERFACE WILL RISE TO CRITICAL ELEVATION IN 75.59 DY
 CONTINUE ? (Y/N)
```

PUMPING RATE: 348.00 CU M /DY FOR 84.00 DY

INTERFACE ELEVATIONS (M)

```
* R (M )
                33.90
  T (DY) *
         .00
               -30.75
        5.00
              -30.62
       10.00
              -30.48
              -30.34
       15.00
       20.00
               -30.20
       25.00
              -30.07
              -29.94
       30.00
       35.00
              -29.82
              -29.70
       40.00
       45.00
              -29.59
       50.00
               -29.49
       55.00
              -29.40
              -29.31
       60.00
       65.00
              -29.23
       70.00
              -29.15
       75.00
               -29.08
       80.00
              -29.02
       85.00
              -28.98
       90.00
              -29.05
       95.00
              -29.14
      100.00
              -29.23
      105.00
               -29.32
      110.00
              -29.41
      115.00
              -29.49
      120.00
              -29.58
      125.00
              -29.65
      130.00
              -29.72
      135.00
              -29.79
              -29.85
      140.00
      145.00
              -29.91
      150.00
              -29.96
              -30.01
      155.00
      160.00
              -30.05
  * NOTE: CRITICAL ELEVATION OF -24.55 M EXCEEDED AT R=0 AND T= 75.59 DY
  ENTER NEXT COMMAND
ОВ
  ENTER TFIRST, TLAST, DELTAT (DY)
  ?,?,?
0. .84. .5.
  ENTER RFIRST, RLAST, DELTAR (M )
  ?,?,?
  ENTER NEXT COMMAND
EL
  CONCENTRATION CALCULATIONS ? (Y/N)
  ENTER UNITS FOR CONCENTRATION (6 CHARACTERS)
PPM CL
  ENTER SALT-WATER AND BACKGROUND CONCENTRATIONS (PPM CL)
22000.,145.
  ENTER DISPERSIVITY (M )
0.5
  ENTER INITIAL WIDTH OF TRANSITION ZONE (M )
  ENTER INTERCEPTION COEFFICIENT
0.08
```

SEMADAR 1 -- TEST B

DENSITY OF FRESH WATER	1.0000
DENSITY OF SALT WATER	1.0300
AQUIFER FOROSITY	.3300
HORIZONTAL PERMEABILITY (M /DY)	14.7000
VERTICAL PERMEABILITY (M /DY)	14.7000
INITIAL INTERFACE ELEVATION (M)	-30.7500
DISTANCE FROM BOTTOM OF WELL TO INTERFACE (M)	15.5000
FRACTIONAL CRITICAL RISE	. 4000
CRITICAL RISE (M)	6.2000
CRITICAL ELEVATION (M)	-24.5500
MAXIMUM STEADY-STATE PUMPING RATE (CU M /DY)	266.2818

CONCENTRATION IN SALT WATER (PPM CL) BACKGROUND CONCENTRATION (PPM CL) INITIAL WIDTH OF TRANSITION ZONE (M)	22000, 0 000 145,0000 3,5000
DISPERSIVITY (M) INTERCEPTION COEFFICIENT	.5000 .0800

PUMPING RATE (CU M /DY)	348.0000
PUMPING PERIOD (DY)	84.0000

TFIRST = .0000 TLAST = 84.0000 DELTAT = 5.0000 RFIRST = .0000 RLAST = .0000 DELTAR = .0000

NOTE: INTERFACE WILL RISE TO CRITICAL ELEVATION IN 75.59 DY

CONTINUE ? (Y/N)

PUMPING RATE: 348.00 CU M /DY FOR 84.00 DY INTERFACE ELEVATIONS (M)

.00 -30.75 -29.31 -28.31 .00 5.00 10.00 15.00 -27.57 20.00 -27,00 25.00 30.00 -26.55 -26.18 35.00 -25.88 40.00 -25.62 45.00 -25.40 -25.22 50.00 -25.05 55.00 60.00 -24,91 65.00 -24.78 -24.66 70.00 75.00 -24.56 -24.47***** -24.40***** B0.00 84.00

* NOTE: CRITICAL ELEVATION OF ~24.55 M EXCEEDED AT R=0 AND T= 75.59 DY

CONCENTRATION IN WELL AND PROFILES BENEATH WELL (PPM CL)

· T	C(WELL) E(WELL)		ELEVA	TION FOR	C/(E) (M	•	
		145.0	2330.5	4516.0 (.2)	6701.5	8887.0	11072.5
.00	145.17	-26.4	-28.5	-29.3	-29.8	-30.3	~30. B
5.00	155.81 (.000 5)	-24.0*	-26.6	-27.5	-28.2	-28.8	-29.3
10.00	192.67	-22.4*	-25.3	-26.3	-27.1	-27.7	-28.3
15.00	244.28 (.0045)	-21.3*	-24.4*	-25.5	-26.3	-26.9	-27.6
20.00	297.22 (.0070)	-20.5*	-23.7*	-24.8	-25.6	-26.3	-27.0
25.00	345.51 (.0092)	-19.8*	-23.1*	-24.3*	-25.1	-25.9	-26.5
30.00	387.60 (.0111)	-19.3*	-22.6*	-23.9*	-24.7	-25.5	-26 . 2
35.00	423.69 (.0128)	-18.8*	-22.3*	-23.5*	-24.4*	-25.2	-25.9
40.00	454.52 (.0142)	-18.5*	-22.0*	-23.2*	-24.1*	-24.9	-25.6
45.00	480.92 (.0154)	-18.2*	-21.7*	-23.0*	-23.9*	-24.7	-25.4
50.00	503.65 (.0164)	-17.9*	-21.5*	-22.7*	-23.7*	-24.5*	-25.2
55.00	52 3.35 (.017 3)	-17.7*	-21.3*	-22.6*	-23 .5 *	-24.3*	-25.1
60.00	540.53 (.0181)	-17.4*	-21.1*	-22.4*	-23.3*	-24.2*	-24.9
65. 00	555.62 (.0188)	-17.3*	-20.9*	-22.2*	-23.2*	-24.0*	-24.8
70.00	568.94 (.0194)	-17.1*	-20.8*	-22.1*	-23.1*	-23.9*	-24.7
75.00	580.79 (.0199)	-17.0#	-20.7*	-22.0#	-23.0*	-23.8*	-24.6
80.00	591.38 (.0204)	-16.8*	-20.6*	-21.9*	-22.9*	-23.7*	-24 . 5*
84.00	599.06 (.0208)	-16.7*	-20.5*	-21.0*	-22.8*	-23.6*	-24.4*

^{*} NOTE: THE DISPERSION CONCEPT SHOULD BE LIMITED TO THE ZONE BELOW THE CRITICAL ELEVATION OF -24.5500 M

CONCENTRATION IN WELL AND PROFILES BENEATH WELL (PPM CL)

T (DY)	C (WELL)		ELEV	ATION FOR	C/(E) (1)	
		11072.5 (.5)		15443.5 (.7)	17629.0	19814.5	
.00	145.17	-30.8	-31.2	-31.7	-32.2	-33.0	-35.1
5.00	155.81	-29.3	-29.9	-30.4	-31.1	-32.0	-34.6
10.00	192.67	-28.3	-28 .9	-29.5	-30.3	-31.3	-34.2
15.00	244.28 (.0045)	-27.6	-28.2	-28.9	-29.7	-30.8	-33.8
20.00	297.22 (.0070)	-27.0	-27.7	-28.4	-29.2	-30.3	-33.5
25.00	345.51 (.0092)	-26.5	-27.2	-28.0	-28.8	-30.0	-33.3
30.00	387.60 (.0111)	-26.2	-26.9	-27.6	-28.5	-29.7	-33.1
35.00	423.69 (.0128)	-25.9	-26.6	-27.4	-28.2	-29.5	-32.9
40.00	454.52 (.0142)	-25.6	-26.3	-27.1	-28.0	-29.3	-32.8
45.00	480.92 (.0154)	-25.4	-26.1	-26 .9	-27.8	-29.1	-32.7
50.00	503.65 (.0164)	-25.2	-26.0	-26.8	-27.7	-29.0	-32.5
55.00	523.35 (.0173)	-25.1	-25.8	-26.6	-27.5	-28.8	-32.5
60.00	540.53 (.0181)	-24.9	-25.7	`-26.5	-27.4	-28.7	-32.4
65.00	555.62 (.0188)	-24.B	-25.5	-26.4	-27.3	-28.6	-32.3
70.00	568.94 (.0194)	-24.7	-25.4	-26.3	-27.2	-28.5	-32.2
75.00	580.79 (.0199)	-24.6	-25.3	-26.2	-27.1	-28.5	-32.2
80.00	591.38 (.0204)	-24.5*	-25.2	-26.1	-27.0	-28.4	-32.1
84.00	599.06 (.0208)	-24.4*	-25.2	-26.0	-27.0	-28.3	-32.1

^{*} NOTE: THE DISPERSION CONCEPT SHOULD BE LIMITED TO THE ZONE BELOW THE CRITICAL ELEVATION OF -24.5500 M

ENTER NEXT COMMAND

NP

```
ENTER TITLE
SEMADAR 1 SALINITY/TIME RELATIONSHIPS
  ENTER UNITS FOR LENGTH (2 CHARACTERS)
  ENTER UNITS FOR TIME (2 CHARACTERS)
DΥ
  ENTER FRESH-WATER AND SALT-WATER DENSITIES
  ?,?
1.00,1.03
  ENTER AQUIFER POROSITY
0.33
  ENTER HORIZONTAL PERMEABILITY (M /DY)
14.7
  ENTER VERTICAL PERMEABILITY (M /DY)
14.7
  ENTER INITIAL INTERFACE ELEVATION (M )
-30.75
  ENTER DISTANCE FROM BOTTOM OF WELL TO INITIAL INTERFACE (M )
15.5
  ENTER FRACTIONAL CRITICAL RISE
0.4
  CONCENTRATION CALCULATIONS ? (Y/N)
  ENTER UNITS FOR CONCENTRATION (6 CHARACTERS)
PPM CL
  ENTER SALT-WATER AND BACKGROUND CONCENTRATIONS (FPM CL)
22000.,145.
  ENTER DISPERSIVITY (M )
  ENTER INITIAL WIDTH OF TRANSITION ZONE (M )
  ENTER INTERCEPTION COEFFICIENT
0.08
```

DENSITY OF FRESH WATER	1.0000
DENSITY OF SALT WATER	1.0300
AQUIFER POROSITY	.3300
HORIZONTAL PERMEABILITY (M /DY)	14.7000
VERTICAL PERMEABILITY (M /DY)	14.7000
INITIAL INTERFACE ELEVATION (M)	-30.7500
DISTANCE FROM BOTTOM OF WELL TO INTERFACE (M)	15.5000
FRACTIONAL CRITICAL RISE	.4000
CRITICAL RISE (M)	6.2000
CRITICAL ELEVATION (M)	-24.5500
MAXIMUM STEADY-STATE PUMPING RATE (CU M /DY)	266.2818

CONCENTRATION IN SALT WATER (PPM CL)	22000.0000
BACKGROUND CONCENTRATION (FPM CL)	145.0000
INITIAL WIDTH OF TRANSITION ZONE (M)	3 .50 00
DISPERSIVITY (M)	.5000
INTERCEPTION COEFFICIENT	.0800

ENTER NEXT COMMAND ? PR

ENTER MAXIMUM PERMISSIBLE CONCENTRATION IN PUMPED WATER (PPM CL) ? 166.85

SEMADAR 1 SALINITY/TIME RELATIONSHIPS DENSITY OF FRESH WATER 1.0000 DENSITY OF SALT WATER 1.0300 AQUIFER POROSITY HORIZONTAL PERMEABILITY (M /DY) 14.7000 VERTICAL PERMEABILITY (M /DY) 14.7000 INITIAL INTERFACE ELEVATION (M) -30.7500 DISTANCE FROM BOTTOM OF WELL TO INTERFACE (M) 15.5000 .4000 FRACTIONAL CRITICAL RISE CRITICAL RISE (M) 6.2000 CRITICAL ELEVATION (M) -24.5500 CONCENTRATION IN SALT WATER (PPM CL) 22000.0000 145.0000 BACKGROUND CONCENTRATION (PPM CL) INITIAL WIDTH OF TRANSITION ZONE (M) 3.5000 .5000 DISPERSIVITY (M) INTERCEPTION COEFFICIENT .0800 MAXIMUM CONCENTRATION IN PUMPED WATER (PPM CL) 166.8500 .0010 MAXIMUM RELATIVE CONCENTRATION MAXIMUM INTERFACE ELEVATION (M) -28.8973 MAXIMUM PERMISSIBLE PUMPING RATE (CU M /DY) 79.5689 ENTER OPTIONAL PUMPING RATE (CU M /DY) 348. PUMPING RATE (CU M /DY) TIME TO REACH CMAX (DY) 348,0000 6.8762 ENTER OPTIONAL PUMFING RATE (CU M /DY) 575. PUMPING RATE (CU M /DY) 575.0000 TIME TO REACH CMAX (DY) 3.7256 ENTER OPTIONAL PUMPING RATE (CU M /DY) ENTER NEXT COMMAND PR

ENTER MAXIMUM PERMISSIBLE CONCENTRATION IN PUMPED WATER (PPM CL)

210.56

DENSITY OF FRESH WATER	1.0000
DENSITY OF SALT WATER	1.0300
AQUIFER POROSITY	.3300
HORIZONTAL PERMEABILITY (M /DY)	14.7000
VERTICAL PERMEABILITY (M /DY)	14.7000
INITIAL INTERFACE ELEVATION (M)	-30.7500
DISTANCE FROM BOTTOM OF WELL TO INTERFACE (M) 15.5000
FRACTIONAL CRITICAL RISE	.4000
CRITICAL RISE (M)	6.2000
CRITICAL ELEVATION (M)	-24.5500
CONCENTRATION IN SALT WATER (PPM CL)	22000.0000
BACKGROUND CONCENTRATION (PPM CL)	145.0000
INITIAL WIDTH OF TRANSITION ZONE (M)	3.5000
DISPERSIVITY (M)	.5000
INTERCEPTION COEFFICIENT	.0800

MAXIMUM CONCENTRATION IN PUMPED WATER (PPM CL) 210.5600
MAXIMUM RELATIVE CONCENTRATION .0030
MAXIMUM INTERFACE ELEVATION (M) -28.0165
MAXIMUM PERMISSIBLE PUMPING RATE (CU M /DY) 117.4009

ENTER OPTIONAL PUMPING RATE (CU M /DY) ? 348.

FUMPING RATE (CU M /DY) 348.0000 TIME TO REACH CMAX (DY) 11.8100

ENTER OPTIONAL PUMPING RATE (CU M /DY) ? 575.

PUMPING RATE (CU M /DY) 575,0000 TIME TO REACH CMAX (DY) 5.9515

ENTER OPTIONAL PUMPING RATE (CU M /DY) ?
o.

ENTER NEXT COMMAND

PR

ENTER MAXIMUM FERMISSIBLE CONCENTRATION IN PUMPED WATER (PPM CL) ? 245.27

DENSITY OF FRESH WATER .	1.0000
DENSITY OF SALT WATER .	1.0300
AQUIFER POROSITY	.3300
HORIZONTAL PERMEABILITY (M /DY)	14.7000
VERTICAL PERMEABILITY (M /DY)	14.7000
INITIAL INTERFACE ELEVATION (M)	-30.7500
DISTANCE FROM BOTTOM OF WELL TO INTERFACE (M	
	.4000
FRACTIONAL CRITICAL RISE	
CRITICAL RISE (M)	6.2000
CRITICAL ELEVATION (M)	-24.5500
CONCENTRATION IN SALT WATER (PPM CL)	22000.0000
BACKGROUND CONCENTRATION (PPM CL)	145.0000
INITIAL WIDTH OF TRANSITION ZONE (M)	3.5000
DISPERSIVITY (M)	. 50 00
INTERCEPTION COEFFICIENT	.0800

MAXIMUM CONCENTRATION IN PUMPED WATER (PPM CL)

MAXIMUM RELATIVE CONCENTRATION

MAXIMUM INTERFACE ELEVATION (M)

MAXIMUM PERMISSIBLE PUMPING RATE (CU M /DY)

245.2700

.0046

-27.5565

137.1553

ENTER OPTIONAL PUMPING RATE (CU M /DY) ? 348.

PUMPING RATE (CU M /DY) 348.0000 TIME TO REACH CMAX (DY) 15.0899

ENTER OPTIONAL PUMPING RATE (CU M /DY) ? 575.

PUMPING RATE (CU M /DY) 575.0000 TIME TO REACH CMAX (DY) 7.2666

ENTER OPTIONAL PUMPING RATE (CU M /DY)

ENTER NEXT COMMAND ? PR

ENTER MAXIMUM PERMISSIBLE CONCENTRATION IN PUMPED WATER (PPM CL) ? 363.55

DENSITY OF FRESH WATER	1.0000
DENSITY OF SALT WATER	1.0300
AQUIFER POROSITY	.3300
HORIZONTAL PERMEABILITY (M /DY)	14.7000
VERTICAL PERMEABILITY (M /DY)	14.7000
INITIAL INTERFACE ELEVATION (M)	-30.7 5 00
DISTANCE FROM BOTTOM OF WELL TO INTERFACE (M)	15.5000
FRACTIONAL CRITICAL RISE	.4000
CRITICAL RISE (M)	6.2000
CRITICAL ELEVATION (M)	-24.5500
CONCENTRATION IN SALT WATER (PPM CL)	22000.0000
BACKGROUND CONCENTRATION (PPM CL)	145.0000
INITIAL WIDTH OF TRANSITION ZONE (M)	3.50 00
DISPERSIVITY (M)	.5000
INTERCEPTION COEFFICIENT	.0800

MAXIMUM CONCENTRATION IN PUMPED WATER (FPM CL) 363.5500
MAXIMUM RELATIVE CONCENTRATION .0100
MAXIMUM INTERFACE ELEVATION (M) -26.3880
MAXIMUM PERMISSIBLE PUMPING RATE (CU M /DY) 187.3442

ENTER OPTIONAL PUMPING RATE (CU M /DY) ? 348.

PUMPING RATE (CU M /DY) 348.0000 TIME TO REACH CMAX (DY) 27.0509

ENTER OPTIONAL PUMPING RATE (CU M /DY) ? 575.

PUMPING RATE (CU M /DY) 575.0000 TIME TO REACH CMAX (DY) 11.2107

ENTER OPTIONAL PUMPING RATE (CU M /DY) ? 0.

ENTER NEXT COMMAND ? PR

ENTER MAXIMUM PERMISSIBLE CONCENTRATION IN PUMPED WATER (PPM CL) ? 582.1

DENSITY OF FRESH WATER	1.0000
DENSITY OF SALT WATER	1.0300
AQUIFER POROSITY	.3300
HORIZONTAL PERMEABILITY (M /DY)	14.7000
VERTICAL PERMEABILITY (M /DY)	14.7000
INITIAL INTERFACE ELEVATION (M)	-30.7500
DISTANCE FROM BOTTOM OF WELL TO INTERFACE	(M) 15.5000
FRACTIONAL CRITICAL RISE	.4000
CRITICAL RISE (M)	6.2000
CRITICAL ELEVATION (M)	-24.5500
CONCENTRATION IN SALT WATER (PPM CL)	22000.0000
BACKGROUND CONCENTRATION (PPM CL)	145.0000
INITIAL WIDTH OF TRANSITION ZONE (M)	3.5000
DISPERSIVITY (M)	.500 0
INTERCEPTION COEFFICIENT	.0800

MAXIMUM CONCENTRATION IN PUMPED WATER (PPM CL) 582.1000
MAXIMUM RELATIVE CONCENTRATION .0200
MAXIMUM INTERFACE ELEVATION (M) -24.5511
MAXIMUM PERMISSIBLE PUMPING RATE (CU M /DY) 266.2366

ENTER OPTIONAL PUMPING RATE (CU M /DY) ? 348.

PUMPING RATE (CU M /DY) 348.0000 TIME TO REACH CMAX (DY) 75.5346

ENTER OPTIONAL PUMPING RATE (CU M /DY) ? 575.

PUMPING RATE (CU M /DY) 575.0000 TIME TO REACH CMAX (DY) 20.0023

ENTER OPTIONAL PUMPING RATE (CU M /DY) ? \circ .

ENTER NEXT COMMAND ?

ENTER MAXIMUM PERMISSIBLE CONCENTRATION IN PUMPED WATER (PPM CL) ? 800.65

DENSITY OF FRESH WATER DENSITY OF SALT WATER	1.0000 1.0300
AQUIFER POROSITY	.3300
HORIZONTAL PERMEABILITY (M /DY)	14.7000
VERTICAL PERMEABILITY (M /DY)	14.7000
INITIAL INTERFACE ELEVATION (M)	-30.7500
DISTANCE FROM BOTTOM OF WELL TO INTERFACE (M)	15.5000
FRACTIONAL CRITICAL RISE	. 4000
CRITICAL RISE (M)	6.2000
CRITICAL ELEVATION (M)	-24.5500
CONCENTRATION IN SALT WATER (PPM CL)	22000.0000
BACKGROUND CONCENTRATION (PPM CL)	145.0000
INITIAL WIDTH OF TRANSITION ZONE (M)	3.5000
DISPERSIVITY (M)	.5000
INTERCEPTION COEFFICIENT	.0800

MAXIMUM CONCENTRATION IN PUMPED WATER (PPM CL) 800.6500
MAXIMUM RELATIVE CONCENTRATION .0300
MAXIMUM INTERFACE ELEVATION (M) -22.2571*
MAXIMUM PERMISSIBLE PUMPING RATE (CU M /DY) 364.7604

* NOTE: THE DISPERSION CONCEPT SHOULD BE LIMITED TO THE ZONE BELOW THE CRITICAL ELEVATION OF -24.5500 M (MAXIMUM CONCENTRATIONS IN PUMPED WATER LESS THAN 582.10 PPM CL)

ENTER OPTIONAL PUMPING RATE (CU M /DY) ? 575.

PUMPING RATE (CU M /DY) 575.0000 TIME TO REACH CMAX (DY) 40.2467

ENTER OPTIONAL PUMPING RATE (CU M /DY) ?

ENTER NEXT COMMAND ? PR

ENTER MAXIMUM PERMISSIBLE CONCENTRATION IN PUMPED WATER (PPM CL) ? 1019.2

DENSITY OF FRESH WATER	1.0000
DENSITY OF SALT WATER	1.0300
AQUIFER POROSITY	.3300
HORIZONTAL PERMEABILITY (M /DY)	14.7000
VERTICAL PERMEABILITY (M /DY)	14.7000
INITIAL INTERFACE ELEVATION (M)	-30.7500
DISTANCE FROM BOTTOM OF WELL TO INTERFACE (M)	15.5000
FRACTIONAL CRITICAL RISE	.4000
CRITICAL RISE (M)	6.2000
CRITICAL ELEVATION (M)	-24.5500
CONCENTRATION IN SALT WATER (PPM CL)	22000.0000
BACKGROUND CONCENTRATION (PFM CL)	145.0000
INITIAL WIDTH OF TRANSITION ZONE (M)	3.5000
DISPERSIVITY (M)	.5000
INTERCEPTION COEFFICIENT	.0800

MAXIMUM CONCENTRATION IN PUMPED WATER (PPM CL) 1019.2000
MAXIMUM RELATIVE CONCENTRATION .0400
MAXIMUM INTERFACE ELEVATION (M) -13.1997*
MAXIMUM PERMISSIBLE PUMPING RATE (CU M /DY) 753.7639

* NOTE: THE DISPERSION CONCEPT SHOULD BE LIMITED TO THE ZONE BELOW THE CRITICAL ELEVATION OF -24.5500 M

(MAXIMUM CONCENTRATIONS IN PUMPED WATER LESS THAN 582.10 PPM CL)

ENTER OPTIONAL PUMPING RATE (CU M /DY)
?
D.

ENTER NEXT COMMAND
?
DN
Stop - Program terminated.

C>

APPENDIX B

Description of Program UPCONE

Program UPCONE has been written in an unextended Fortran computer code in an effort to make the program transportable between computer systems. The code consists of a main program and two function subroutines. The program has been documented internally through the liberal use of comment statements.

The main program is divided into three sections. Section I provides for the "Basic Input Data" as described in Section III of this report. The numerical evaluation of interface elevations, concentrations, and maximum pumping rates is accomplished in Section II of the main program which contains the computational algorithms for Case I and Case II types of problems. Section III provides for problem redefinition and control of execution under the "Edit" mode.

Two function subroutines are required to calculate the concentration distribution across the transition zone or to evaluate the maximum pumping rate for a specified salinity of the pumped water. Function ERFC (Z) is a rational approximation of the complimentary error function of the argument Z.

Function IERFC (X, Z, ZMIN, ZMAX) uses a regula falsi root finding technique to find the argument, Z, for a specified value of the complimentary error function, X. The last two arguments, ZMIN and ZMAX, define the lower and upper limits of the initial search interval.

APPENDIX C

Listing of Program UPCONE

```
UPCNO01
      PROGRAM UPCONE
С
      VERSION 1.0
                                                                               UPCN002
                                                                               UPCN003
С
      JAN WAGNER
С
      SCHOOL OF CHEMICAL ENGINEERING
                                                                               UPCN004
      OKLAHOMA STATE UNIVERSITY
                                                                               UPCN005
С
                                                                               UPCN006
C
      STILLWATER, OK 74078
      TELEPHONE (405) 624-5280
                                                                               UPCN007
С
                                                                               UPCNOO8
                                                                               UPCN009
C
      JANUARY, 1982
C
                                                                               UPCN010
      DIMENSION A(30),C(11),CW(51),E(11),EW(51),IC(20),KFLG(11),
                                                                               UPCN011
     1R(26),T(51),Z(26,26)
                                                                               UPCN012
      REAL*4 KX.KZ
                                                                               UPCN013
     DATA KHAR1,KHAR2,NY/' ','*','Y'/
DATA IC/'FD','PO','KX','KZ','ZO','DT','CR','CO','DI','WT','IC',
1'OB','TC','RC','QP','LI','EL','PR','NP','DN'/
                                                                               UPCNO14
                                                                               UPCN015
                                                                               UPCN016
C
                                                                               UPCNO17
      READ DEVICE: NI=1
                               WRITE DEVICE: NO=1
                                                                               UPCN018
C
                                                                               UPCN019
      NI = 1
      NO = 1
                                                                               UPCN020
С
                                                                               UPCNO21
      MAXIMUM NUMBERS OF OBSERVATION POINTS FOR TIME AND RADIUS
                                                                               UPCN022
C
      HAVE BEEN SET AT 50 AND 25, RESPECTIVELY
                                                                               UPCN023
C
С
       DIMENSION CW(M), EW(M), R(N), T(N), Z(M, N)
                                                                               UPCNO24
            -- WHERE M=MAXTIM+1 AND N=MAXPTS+1
                                                                               UPCN025
      MAXTIM = 50
                                                                               UPCN026
      MAXPTS = 25
                                                                               UPCNO27
C
                                                                               UPCN028
      INITIALIZE PROGRAM FLOW PARAMETERS
                                                                               UPCN029
    1 IEDIT = 1
                                                                               UPCN030
      KCON = 1
                                                                               UPCN031
      KELE = 1
                                                                               UPCN032
С
                                                                               UPCN033
C ***** SECTION I -- BASIC INPUT DATA
                                                                               UPCN034
C
                                                                               UPCN035
C
      READ TITLE
                                                                               UPCN036
      WRITE(NO,5)
                                                                               UPCN037
    5 FORMAT('1',3X,'ENTER TITLE',/,3X,'?')
READ(NI,10) (A(I),I=1,30)
                                                                               UPCN038
                                                                               UPCN039
   10 FORMAT(30A2)
                                                                               UPCN040
C
                                                                               UPCN041
      DEFINE UNITS
                                                                               UPCNO42
      WRITE(NO, 15)
                                                                               UPCNO43
   15 FORMAT(3X, 'ENTER UNITS FOR LENGTH (2 CHARACTERS)', /, 3X, '?')
                                                                               UPCN044
      READ(NI,20) IL
                                                                               UPCNO45
   20 FORMAT(A2)
                                                                               UPCN046
      WRITE(NO, 25)
                                                                               UPCNO47
   25 FORMAT(3X, 'ENTER UNITS FOR TIME (2 CHARACTERS)',/,3X,'?')
                                                                               UPCNO48
      READ(NI,20) ITU
                                                                               UPCN049
                                                                               UPCN050
      FLUID DENSITIES
                                                                               UPCNO51
   29 WRITE(NO,30)
                                                                               UPCN052
   30 FORMAT(3X, 'ENTER FRESH-WATER AND SALT-WATER DENSITIES', /, 3X, '?,?') UPCNO53
      READ(NI, 35) RHOF, RHOS
   35 FORMAT(2F10.0)
                                                                               UPCNO55
   40 IF(RHOS.GT.O.O) GO TO 55
                                                                               UPCN056
      WRITE(NO,45)
                                                                               UPCN057
   45 FORMAT(3X, 'SALT-WATER DENSITY MUST BE GREATER THAN ZERO',
                                                                               UPCN058
     1' -- REENTER',/,3X,'?')
                                                                               UPCN059
      READ(NI,50) RHOS
                                                                               UPCN060
   50 FORMAT(F10.0)
                                                                               UPCN061
      GO TO 40
                                                                                UPCN062
   55 IF(RHOF.GT.O.O.AND.RHOF.LT.RHOS) GO TO 69
                                                                               UPCN063
      WRITE(NO,60)
                                                                               UPCN064
   60 FORMAT(3X, 'FRESH-WATER DENSITY MUST BE GREATER THAN ZERO',
                                                                               UPCN065
     1/,6X,'AND LESS THAN SALT-WATER DENSITY -- REENTER',/,3X,'?')
                                                                               UPCN066
      READ(NI,50) RHOF
                                                                               UPCN067
      GO TO 55
                                                                               UPCN068
   69 GO TO (70,700), IEDIT
                                                                               UPCN069
                                                                               UPCN070
```

```
POROSITY
                                                                            UPCN071
C
   70 WRITE(NO.75)
                                                                            UPCN072
                                                                            UPCN073
   75 FORMAT(3X, 'ENTER AQUIFER POROSITY', /, 3X, '?')
   80 READ(NI,50) PO
                                                                            UPCN074
      IF(PO.GT.O.O.AND.PO.LT.1.0) GO TO 89
                                                                            UPCN075
                                                                            LIPCNO76
      WRITE(NO.85)
   85 FORMAT(3X, 'POROSITY MUST BE GREATER THAN ZERO AND LESS THAN',
                                                                            LIPCNO77
     1' ONE -- REENTER', /, 3X, '?')
                                                                            UPCN078
      GO TO 80
                                                                            UPCNO79
   89 GO TO (90,700), IEDIT
                                                                            UPCN080
C
                                                                            UPCNOS 1
      HORIZONTAL PERMEABILITY
                                                                            UPCNO82
   90 WRITE(NO,95) IL, ITU
                                                                            UPCN083
   95 FORMAT(3X, 'ENTER HORIZONTAL PERMEABILITY (',A2,'/',A2,') ',
                                                                            UPCN084
     1/.3X,'?')
                                                                            UPCN085
                                                                            LIPCNOSS
  100 READ(NI,50) KX
      IF(KX.GT.O.O) GO TO 110
                                                                            UPCN087
      WRITE(NO, 105)
                                                                            UPCNO88
  105 FORMAT(3X, 'HORIZONTAL PERMEABILITY MUST BE GREATER THAN',
                                                                            UPCN089
     1' ZERO -- REENTER',/,3X,'?')
                                                                            UPCN090
                                                                            UPCN091
      GD TD 100
  110 GO TO (111,700), IEDIT
                                                                            UPCN092
                                                                            UPCN093
      VERTICAL PERMEABILITY
                                                                            UPCN094
  111 WRITE(NO, 112) IL, ITU
                                                                            UPCN095
  112 FORMAT(3X, 'ENTER VERTICAL PERMEABILITY (', 1A2, '/', A2, ') ',
                                                                            UPCN096
     1/,3X,'?')
                                                                            UPCN097
  114 READ(NI,50) KZ
                                                                            UPCN098
      IF(KZ.GT.O.O) GO TO 119
                                                                            UPCN099
      WRITE(NO, 115)
                                                                            UPCN100
  115 FORMAT(3X, VERTICAL PERMEABILITY MUST BE GREATER THAN ZERO'.
                                                                            UPCN101
     1' -- REENTER',/,3X,'?')
                                                                            UPCN102
      GD TO 114
                                                                            UPCN103
  119 GO TO (120,700), IEDIT
                                                                            UPCN104
С
                                                                            UPCN 105
      INITIAL INTERFACE ELEVATION
                                                                            UPCN 106
  120 WRITE(NO, 125) IL
                                                                            UPCN107
  125 FORMAT(3X, 'ENTER INITIAL INTERFACE ELEVATION (',A2,')',/,3X,'?')
                                                                            UPCN 108
      READ(NI,50) ZO
                                                                            UPCN109
      GD TO (129,700), IEDIT
                                                                            UPCN110
                                                                            UPCN111
C
      DISTANCE FROM BOTTOM OF WELL TO INITIAL INTERFACE
                                                                            UPCN112
  129 WRITE(NO, 130) IL
                                                                            UPCN113
  130 FORMAT(3X, 'ENTER DISTANCE FROM BOTTOM OF WELL TO INITIAL '.
                                                                            UPCN114
     1'INTERFACE (',A2,') ',/,3X,'?')
                                                                            UPCN115
  135 READ(NI,50) D
                                                                            UPCN116
      IF(D.GT.O.O) GD TO 144
                                                                            UPCN117
      WRITE(NO, 140)
                                                                            UPCN118
  140 FORMAT(3X, 'DISTANCE MUST BE GREATER THAN ZERO -- REENTER',/.
                                                                            UPCN119
                                                                            UPCN120
     13X,'?')
      GO TO 135
                                                                            UPCN121
  144 GO TO (145,700), IEDIT
                                                                            UPCN122
                                                                            UPCN123
      FRACTIONAL CRITICAL RISE
                                                                            UPCN124
  145 WRITE(NO, 150)
                                                                            UPCN125
  150 FORMAT(3X, 'ENTER FRACTIONAL CRITICAL RISE', /, 3X, '?')
                                                                            UPCN126
  155 READ(NI,50) THETA
                                                                            UPCN127
      IF(THETA.GT.O.O.AND.THETA.LT.1.0) GO TO 164
                                                                            UPCN128
      WRITE(NO, 160)
                                                                            UPCN129
  160 FORMAT(3X, 'FRACTION MUST BE GREATER THAN ZERO AND LESS THAN',
                                                                            UPCN130
     1' ONE -- REENTER',/,3X,'?')
                                                                            UPCN131
      GO TO 155
                                                                            UPCN132
  164 XCR = THETA*D
                                                                            UPCN133
      ZCR = XCR + ZO
                                                                            UPCN134
      MAXIMUM STEADY-STATE PUMPING RATE
                                                                            UPCN135
      QMAXSS = 6.283185*((RHOS-RHOF)/RHOF)*KX*D*XCR
                                                                            UPCN136
  165 GO TO (169,700), IEDIT
                                                                            UPCN137
С
                                                                            UPCN138
С
                                                                            UPCN139
С
      DATA FOR CONCENTRATION CALCULATIONS
                                                                            UPCN140
```

```
- 169 WRITE(NO. 170)
                                                                            UPCN141
  170 FORMAT('0'.2X.'CONCENTRATION CALCULATIONS ? (Y/N)')
                                                                            UPCN142
      READ(NI, 175) ICON
                                                                            UPCN143
  175 FORMAT(A1)
                                                                            UPCN144
С
                                                                            UPCN145
      IF(ICON.NE.NY) GO TO 275
С
                                                                            UPCN147
                                                                            LIPCN148
  176 \text{ KCON} = 2
      WRITE(NO, 180)
                                                                            UPCN149
  180 FORMAT(3X.'ENTER UNITS FOR CONCENTRATION (6 CHARACTERS)'.
                                                                            UPCN150
                                                                            HPCN151
     1/.3X./?/)
      READ(NI.185) IM1, IM2, IM3
                                                                            UPCN152
  185 FORMAT(3A2)
                                                                            UPCN153
                                                                            UPCN154
      SALT-WATER AND BACKGROUND CONCENTRATIONS
                                                                            UPCN155
  188 IF(KCON.EQ.2) GO TO 189
                                                                            UPCN156
                                                                            HPCN157
      WRITE(NO, 180)
      READ(NI, 185) IM1, IM2, IM3
                                                                            UPCN158
  189 WRITE(NO. 190) IM1, IM2, IM3
                                                                            UPCN159
  190 FORMAT(3X, 'ENTER SALT-WATER AND BACKGROUND CONCENTRATIONS (',
                                                                            UPCN160
     13A2.') ',/,3X,'?,?')
                                                                            UPCN161
      READ(NI,35) CO,CB
                                                                            UPCN162
  195 IF(CO.GE.1.0) GO TO 205
                                                                            UPCN163
      WRITE(NO.200)
                                                                            UPCN164
  200 FORMAT(3X, 'SALT-WATER CONCENTRATION MUST BE GREATER THAN',
                                                                            UPCN165
     1' OR EQUAL TO ONE -- REENTER',/,3X,'?')
                                                                            UPCN166
      READ(NI,50) CD
                                                                            UPCN167
      GO TO 195
                                                                            UPCN168
  205 IF(CB.GE.O.O.AND.CB.LT.CO) GO TO 214
                                                                            UPCN169
                                                                            UPCN170
      WRITE(ND.210)
  210 FORMAT(3X, 'BACKGROUND CONCENTRATION MUST BE GREATER THAN'.
                                                                            UPCN171
     1' OR EQUAL TO ZERO',/,6X,'AND LESS THAN SALT-WATER',
                                                                            UPCN172
     2' CONCENTRATION -- REENTER',/,3X,'?')
                                                                            UPCN173
      READ(NI,50) CB
                                                                            UPCN174
  GO TO 205
214 GO TO (215,700,215,215), IEDIT
                                                                            UPCN175
                                                                            UPCN176
                                                                            UPCN177
                                                                            UPCN178
      DISPERSIVITY
  215 WRITE(NO, 220) IL
                                                                            UPCN179
  220 FORMAT(3X, 'ENTER DISPERSIVITY (',A2,') ',/,3X,'?')
                                                                            UPCN180
  225 READ(NI,50) DM
                                                                            UPCN181
      IF(DM.GT.O.O) GO TO 234
                                                                            UPCN182
      WRITE(NO, 230)
                                                                            UPCN183
  230 FORMAT(3X, 'DISPERSIVITY MUST BE GREATER THAN ZERO -- REENTER',
                                                                            UPCN184
     1/,3X,'?')
                                                                            UPCN185
      GD TD 225
                                                                            UPCN186
  234 GO TO (235,700,235,235), IEDIT
                                                                            UPCN187
С
                                                                            UPCN188
      INITIAL WIDTH OF TRANSITION ZONE
                                                                            UPCN189
  235 WRITE(NO, 240) IL
                                                                            UPCN190
  240 FORMAT(3X, 'ENTER INITIAL WIDTH OF TRANSITION ZONE (',A2,') ',
                                                                            UPCN191
     1/,3X,'?')
                                                                            LIPCN 192
  245 READ(NI,50) SO2
                                                                            UPCN193
      IF(SO2.GE.O.O) GO TO 254
                                                                            UPCN194
      WRITE(NO.250)
                                                                            UPCN195
  250 FORMAT(3X, 'INITIAL WIDTH MUST BE GREATER THAN ZERO -- REENTER',
                                                                            UPCN196
     1/,3X,'?')
                                                                            UPCN197
      GD TO 245
                                                                            UPCN198
  254 GO TO (255,700,255,255), IEDIT
                                                                            UPCN199
                                                                            UPCN200
      INTERCEPTION COEFFICIENT
                                                                            UPCN201
  255 WRITE(NO, 260)
                                                                            UPCN202
  260 FORMAT(3X, 'ENTER INTERCEPTION COEFFICIENT', /, 3X, '?')
                                                                            UPCN203
  265 READ(NI.50) PHI
                                                                            UPCN204
      IF(PHI.GT.O.O.AND.PHI.LT.1.0) GO TO 274
                                                                            UPCN205
      WRITE(NO, 270)
                                                                            UPCN206
  270 FORMAT(3X, 'COEFFICIENT MUST BE GREATER THAN ZERO AND LESS THAN'.
                                                                            UPCN207
     1' ONE -- REENTER',/,3X,'?')
                                                                            UPCN208
      GD TO 265
                                                                            UPCN209
  274 GO TO (275,700,275,510), IEDIT
                                                                            UPCN210
```

```
UPCN211
С
       LIST PROBLEM DEFINITION
                                                                                    UPCN212
                                                                                    UPCN213
С
  275 CONTINUE
                                                                                    UPCN214
       WRITE(NO,280) (A(I),I=1,30), RHOF,RHOS,PO,IL,ITU,KX,IL,ITU,KZ
                                                                                    UPCN215
  280 FORMAT('1',3X,30A2,//,
                                                                                    UPCN216
      16X, 'DENSITY OF FRESH WATER', 25X, F10.4,/,
                                                                                    UPCN217
     26X, DENSITY OF SALT WATER, 26X, F10.4, //, 36X, AQUIFER POROSITY, 31X, F10.4, /,
                                                                                    UPCN218
                                                                                    UPCN219
     46X, HORIZONTAL PERMEABILITY (',A2,'/',A2,') ',15X,F10.4,/,
56X, VERTICAL PERMEABILITY (',A2,'/',A2,') ',17X,F10.4)
                                                                                    UPCN220
                                                                                    UPCN221
       WRITE(NO,281)IL, ZO,IL,D,THETA,IL,XCR,IL,ZCR
                                                                                    UPCN222
                                                                                    UPCN223
  281 FORMAT('0'
      15X, 'INITIAL INTERFACE ELEVATION (',A2,') ',14X,F10.4,/,
                                                                                    UPCN224
      26X. DISTANCE FROM BOTTOM OF WELL TO INTERFACE (',A2,') ',F10.4,/,
                                                                                    UPCN225
      36X, 'FRACTIONAL CRITICAL RISE ',22X,F10.4,/,
                                                                                    UPCN226
     46X, 'CRITICAL RISE (',A2,') ',28X,F10.4,/,
                                                                                    UPCN227
     56X, 'CRITICAL ELEVATION (', A2, ') ', 23X, F10.4)
                                                                                    UPCN228
С
                                                                                    UPCN229
       WRITE(NO.285) IL, ITU, QMAXSS
                                                                                    UPCN230
  285 FORMAT('O',5X,'MAXIMUM STEADY-STATE PUMPING RATE (CU ',A2,'/',
                                                                                    UPCN231
                                                                                     UPCN232
                ',F10.4,/,'0',/,'0')
                                                                                     UPCN233
С
       IF(ICON.NE.NY.OR.KCON.EQ.1) GO TO 700
                                                                                    UPCN234
С
                                                                                    UPCN235
       WRITE(NO,290) IM1, IM2, IM3, CO, IM1, IM2, IM3, CB, IL, SO2, IL, DM, PHI
                                                                                    UPCN236
  290 FORMAT('0',5x,'CONCENTRATION IN SALT WATER (',3A2,') ',10x,F10.4./ UPCN237
16x,'BACKGROUND CONCENTRATION (',3A2,') ',13x,F10.4,/, UPCN238
26x,'INITIAL WIDTH OF TRANSITION ZONE ('A2,') ',9x,F10.4,//, UPCN239
      36X, 'DISPERSIVITY (',A2,') ',29X,F10.4,/,
                                                                                    UPCN240
      46X, 'INTERCEPTION COEFFICIENT', 23X, F10.4, /, '0', /, '0')
                                                                                    UPCN241
                                                                                    UPCN242
C
                                                                                    UPCN243
       GD TD (700,700,301), IEDIT
Ç
                                                                                    UPCN244
                                                                                    UPCN245
C ***** SECTION II -- NUMERICAL EVALUATION OF INTERFACE ELEVATIONS
                                                                                    UPCN246
                                                                                    UPCN247
С
                                                                                    UPCN248
С
       CASE I PROBLEMS -- EVALUATE INTERFACE ELEVATIONS AND CONCENTRATION UPCN249
С
С
                                                                                    UPCN250
                                                                                    UPCN251
С
  300 CONTINUE
                                                                                    UPCN252
                                                                                    UPCN253
       IFDIT = 3
                                                                                    UPCN254
С
       PARAMETERS FOR INTERFACE ELEVATION CALCULATIONS
                                                                                    UPCN255
                                                                                    UPCN256
  301 IF(KELE.EQ.2) GO TO 329
       KELE = 2
                                                                                    UPCN257
С
                                                                                     UPCN258
       PUMPING RATE AND PERIOD
                                                                                    HPCN259
C
  302 WRITE(NO,305) IL,ITU,ITU
                                                                                    UPCN260
  305 FORMAT('0',2X,'ENTER PUMPING RATE (CU ',A2,'/',A2,') AND',
1' PERIOD (',A2,')',/,3X,'?,?')
                                                                                    UPCN261
                                                                                    UPCN262
       READ(NI,35) Q, TPUMP
                                                                                     UPCN263
  306 IF(Q.GT.O.O) GO TO 308
                                                                                    UPCN264
                                                                                    UPCN265
       WRITE(NO, 307)
  307 FORMAT(3X, 'PUMPING RATE MUST BE GREATER THAN ZERO -- REENTER',
                                                                                    UPCN266
                                                                                    UPCN267
      1/,3X,'?')
       READ(NI.50) 0
                                                                                     UPCN268
       GO TO 306
                                                                                    UPCN269
  308 IF(TPUMP.GT.O.O) GO TO 310
                                                                                    UPCN270
       WRITE(NO, 309)
                                                                                     UPCN271
  309 FORMAT(3X, 'PUMPING PERIOD MUST BE GREATER THAN ZERO -- REENTER'.
                                                                                    UPCN272
      1/,3X,'?')
                                                                                    UPCN273
       READ(NI,50) TPUMP
                                                                                    UPCN274
       GO TO 308
                                                                                     UPCN275
  310 GO TO (700,700,312), IEDIT
                                                                                     UPCN276
C
                                                                                    UPCN277
       COORDINATES OF OBSERVATION POINTS -- TIME AND RADIUS
                                                                                    UPCN278
  311 IEDIT = 1
                                                                                    UPCN279
  312 WRITE(NO,313) ITU
                                                                                    UPCN280
```

```
313 FORMAT(3X, 'ENTER TFIRST, TLAST, DELTAT (',A2,') './.3X,'?.?.?')
                                                                                      UPCN281
       READ(NI,315) TF,TL,DELT
                                                                                      UPCN282
  315 FORMAT(3F10.0)
                                                                                      UPCN283
                                                                                      UPCN284
       DELT = ABS(DELT)
  316 IF(TF.GE.O.O.AND.DELT.LE.1.0E-06) GO TO 320
                                                                                      UPCN285
       IF(TF.GE.O.O) GO TO 318
                                                                                      UPCN286
       WRITE(NO.317)
                                                                                      UPCN287
  317 FORMAT(3X, 'TFIRST MUST NOT BE LESS THAN ZERO -- REENTER',
                                                                                      UPCN288
                                                                                      UPCN289
      1/,3X,'?')
       READ(NI,50) TF
                                                                                      UPCN290
       GO TO 316
                                                                                      UPCN291
  318 IF(TL.GE.O.O) GO TO 321
                                                                                      UPCN292
                                                                                      HPCN293
       WRITE(NO,319)
  319 FORMAT(3X, 'TLAST MUST NOT BE LESS THAN ZERO -- REENTER',
                                                                                      UPCN294
                                                                                      UPCN295
      1/,3X,'?')
       READ(NI,50) TL
                                                                                      UPCN296
                                                                                      UPCN297
       GO TO 318
  320 TL = TF
                                                                                      UPCN298
  321 GO TO (322,700,322), IEDIT
                                                                                      UPCN299
                                                                                      UPCN300
                                                                                      UPCN301
  322 WRITE(NO,323) IL
  323 FORMAT(3X, 'ENTER RFIRST, RLAST, DELTAR (',A2,') ',/,3X,'?,?,?')
                                                                                      LIPCN302
       READ(NI.325) RF.RL.DELR
                                                                                      UPCN3O3
  325 FORMAT(3F10.0)
                                                                                      UPCN304
       DELR = ABS(DELR)
                                                                                      UPCN305
       GD TO (700,700,329), IEDIT
                                                                                      UPCN306
                                                                                      UPCN307
С
  329 WRITE(NO.330) IL.ITU.Q.ITU.TPUMP.TF.TL.DELT.RF.RL.DELR
330 FORMAT('O',5X,'PUMPING RATE (CU ',A2,'/',A2,') ',23X,F10.4,/,
16X,'PUMPING PERIOD (',A2,') ',27X,F10.4,//,
26X,'TFIRST =',F10.4,3X,'TLAST =',F10.4,3X,'DELTAT =',F10.4,/,
36X,'RFIRST =',F10.4,3X,'RLAST =',F10.4,3X,'DELTAR =',F10.4,)
                                                                                      UPCN308
                                                                                      UPCN309
                                                                                      UPCN310
                                                                                      UPCN311
                                                                                      UPCN312
       IF(Q.LE.QMAXSS) GO TO 332
                                                                                      UPCN313
       TCR = ((2.*P0*D)/(((RHOS-RHOF)/RHOF)*KZ))*((1./(1.-QMAXSS/Q))-1.)
                                                                                      UPCN314
  WRITE(ND,331) TCR.ITU
331 FORMAT('0',2X,'NDTE: INTERFACE WILL RISE TO CRITICAL ELEVATION'.
                                                                                      UPCN315
                                                                                      LIPCN316
      1' IN',F10.2,A3)
                                                                                      UPCN317
  332 WRITE(NO,333)
                                                                                      UPCN318
  333 FORMAT('0',2X,'CONTINUE ? (Y/N)')
                                                                                      UPCN319
       READ(NI, 175) JFLOW
                                                                                      UPCN320
       IF(JFLDW.NE.NY) GO TO 700
                                                                                      UPCN321
                                                                                      UPCN322
       RADIUS COORDINATES
                                                                                      UPCN323
  335 CONTINUE
                                                                                      UPCN324
       IR = 1
                                                                                      UPCN325
       R(IR) = RF
                                                                                      UPCN326
       IF(DELR.LE.1.0E-06) GO TO 345
                                                                                      UPCN327
       DIF = RL - RF
                                                                                      UPCN328
       IF(ABS(DIF).LE.1.0E-06) GO TO 345
                                                                                      UPCN329
       IF(DIF.LE.O.O) DELR = -DELR
                                                                                      UPCN330
       NPTS = DIF/DELR
                                                                                      UPCN331
       REM = DIF - DELR*FLOAT(NPTS)
                                                                                      UPCN332
       TOL = 1.0E-06*ABS(DIF)
                                                                                      UPCN333
       NPTS = NPTS + 1
                                                                                      UPCN334
       IF(NPTS.LE.MAXPTS) GO TO 337
                                                                                      UPCN335
  WRITE(NO.336) NPTS, MAXPTS
336 FORMAT(3X,13,' RADIUS OBSERVATION POINTS EXCEED MAXIMUM OF',14)
                                                                                      UPCN336
                                                                                      UPCN337
       GD TD 700
                                                                                      UPCN338
  337 CONTINUE
                                                                                      UPCN339
       DO 340 IR=2,NPTS
R(IR) = R(IR-1) + DELR
                                                                                      UPCN340
                                                                                      UPCN341
  340 CONTINUE
                                                                                      UPCN342
       IR = NPTS
                                                                                      UPCN343
       IF(ABS(REM).LT.TOL) GO TO 345
                                                                                      LIPCN344
       IR = IR + 1
                                                                                      UPCN345
       R(IR) = RL
                                                                                      UPCN346
  345 CONTINUE
                                                                                      UPCN347
                                                                                      UPCN348
C
       TIME COORDINATES
                                                                                      UPCN349
       IT = 1
                                                                                      UPCN350
```

```
UPCN351
      T(IT) = TF
      IF(DELT.LE.1.0E-06) GD TD 355
                                                                               UPCN352
      DIF = TL - TF
                                                                               UPCN353
      IF(ABS(DIF).LE.1.ÓE-06) GO TO 355
                                                                               UPCN354
                                                                               HPCN355
      IF(DIF.LE.O.O) DELT = -DELT
      NPTS = DIF/DELT
                                                                               UPCN356
      REM = DIF - DELT*FLOAT(NPTS)
                                                                               UPCN357
      TOL = 1.0E-06*ABS(DIF)
                                                                               UPCN358
      NPTS = NPTS + 1
                                                                               UPCN359
                                                                               UPCN360
      IF(NPTS.LE.MAXTIM) GO TO 347
      WRITE(NO, 346) NPTS, MAXTIM
                                                                               UPCN361
  346 FORMAT(3X,13, ' TIME OBSERVATION POINTS EXCEED MAXIMUM OF',14)
                                                                               UPCN362
                                                                               UPCN363
      GO TO 700
                                                                               UPCN364
  347 CONTINUE
      DO 350 IT=2,NPTS
T(IT) = T(IT-1) + DELT
                                                                               UPCN365
                                                                               UPCN366
                                                                               UPCN367
  350 CONTINUE
                                                                               UPCN368
      IT = NPTS
      IF(ABS(REM).LT.TOL) GO TO 355
                                                                               UPCN369
                                                                               UPCN370
      IT = IT + 1
      T(IT) = TL
                                                                               UPCN371
                                                                               UPCN372
  355 CONTINUE
                                                                               UPCN373
      TM\Delta X = TI
                                                                               UPCN374
      IF(TF.GT.TL) TMAX=TF
                                                                               UPCN375
С
                                                                               UPCN376
      CDEF = Q/(6.2832*((RHOS-RHOF)/RHOF)*KX*D)
                                                                               UPCN377
      CONR = SQRT(KZ/KX)/D
                                                                               UPCN378
      UPCN379
                                                                               UPCN380
       TAU = CONT*T(I)
                                                                               LIPCN381
       TAU1 = CONT*(T(I)-TPUMP)
                                                                               UPCN382
       IF(T(I).LE.TPUMP) TAU1=0.0
                                                                               UPCN383
       XRO = CDEF*(1.0/(1.0+TAU1) - 1.0/(1.0+TAU))
ZRO = XRO + ZO
                                                                               UPCN384
                                                                               UPCN385
       DO 360 J=1.IR
                                                                               UPCN386
          RDIM = CONR*R(J)
                                                                               UPCN387
           Z(I,J) = CDEF*((1.0/SQRT((1.0+TAU1)**2 + RDIM**2))
                                                                               UPCN388
                                                                               UPCN389
  360 CONTINUE
                                                                               UPCN390
      IF(ZRO.GT.ZCR) IPR=2
                                                                               UPCN391
  365 CONTINUE
                                                                               UPCN392
                                                                               UPCN393
  370 IT = I
                                                                               UPCN394
С
      PRINT INTERFACE ELEVATIONS
                                                                               UPCN395
      WRITE(NO,375) Q,IL,ITU,TPUMP,ITU,IL,IL
                                                                               UPCN396
  375 FORMAT('1',18X,'PUMPING RATE:',F12.2,' CU ',A2,'/',A2,' FOR',
1F10.2,A3,/,'O',18X,'INTERFACE ELEVATIONS (',A2,') ',//,
23X,' *',/,3X,' * R (',A2,')')
                                                                               UPCN397
                                                                               UPCN398
                                                                               UPCN399
      LIM1 = 1
                                                                               UPCN400
      LIM2 = 7
                                                                               UPCN401
  380 IF(LIM2.GT.IR) LIM2=IR
                                                                               UPCN402
      WRITE(NO,385) (R(L),L=LIM1,LIM2)
                                                                               UPCN403
  385 FORMAT(3X,'
                             ',7F9.2)
                                                                               UPCN404
      WRITE(NO,390) ITU
                                                                               UPCN405
  390 FORMAT(3X,'T (',A2,') *',/,12X,'*')
                                                                               UPCN406
      DO 400 I=1,IT
                                                                               UPCN407
       DO 393 L=LIM1,LIM2
                                                                               UPCN408
       KFLG(L) = KHAR1
                                                                               UPCN409
       IF(Z(I,L).GT.ZCR) KFLG(L)=KHAR2
                                                                               UPCN410
  393 CONTINUE
                                                                               UPCN411
  WRITE(NO,395) T(I),(Z(I,L),KFLG(L),L=LIM1,LIM2)
395 FORMAT(5X,F8.2,1X,7(F8.2,A1))
                                                                               UPCN412
                                                                               UPCN413
  40AX.GE.TCR)
                                                                               UPCN414
                                                                               UPCN415
  405 FORMAT('O',2X,'* NOTE: CRITICAL ELEVATION OF',F8.2,A3,
                                                                               UPCN416
     1' EXCEEDED AT R=O AND T=',F8.2,A3)
                                                                               UPCN417
      IF(LIM2.EQ.IR) GO TO 415
                                                                               UPCN418
      LIM1 = LIM1 + 7
                                                                               UPCN419
      LIM2 = LIM2 + 7
                                                                               UPCN420
```

```
UPCN421
      WRITE(NO.410) IL,IL
  410 FORMAT('1', 18X, 'INTERFACE ELEVATIONS (', A2, ') (CONTINUED)', //, 13X, ' *', /, 3X, ' * R (', A2, ')')
                                                                                   UPCN422
                                                                                   UPCN423
      GD TO 380
                                                                                   UPCN424
  415 CONTINUE
      IF(ICON.NE.NY) GD TD 700
                                                                                   UPCN426
                                                                                   HPCN427
С
      CONCENTRATION PROFILES
                                                                                   UPCN428
      SO = SO2/2.0
      E(1) = 0.0
                                                                                   UPCN430
      C(1) = CB
                                                                                   UPCN431
      DO 420 K=2,11
                                                                                   UPCN432
       E(K) = E(K-1) + 0.1
        C(K) = E(K)*(CO-CB) + CB
                                                                                   UPCN434
  420 CONTINUE
                                                                                   UPCN435
С
                                                                                   UPCN436
UP = CONT*TPUMP
                                                                                   UPCN437
       XBAR1 = COEF*(1.0-1.0/(1.0+TAUP))
                                                                                   UPCN438
       TAU1 = CONT*(T(I)-TPUMP)
                                                                                   LIPCN439
       XTOT = COEF*((1.0/(1.0+TAU1)) - (1.0/(1.0+TAU)))
                                                                                   UPCN440
        XBAR2 = XBAR1 - XTOT
                                                                                   UPCN441
        XBAR = XBAR1 + XBAR2
        GO TO 440
                                                                                   UPCN443
  435 XTOT = COEF*(1.0 - 1.0/(1.0+TAU))
XBAR = XTOT
                                                                                   LIPCN444
                                                                                   UPCN445
       CONTINUE
                                                                                   UPCN446
        S1 = SQRT(SO**2 + 2.0*DM*XBAR)
        ARG = 10.0
                                                                                   UPCN448
        IF(S1.GT.O.O) ARG = (XCR-XTOT)/(1.414214*S1)
                                                                                   UPCN449
        EZCR = 0.5*ERFC(ARG)
                                                                                   UPCN450
        EW(I) = 0.5*EZCR*PHI
                                                                                   UPCN451
       CW(I) = EW(I)*(CO-CB) + CB
                                                                                   UPCN452
       Z(I,1) = XTOT + 2.5*S1 + ZO

Z(I,11) = XTOT - 2.5*S1 + ZO
                                                                                   UPCN453
                                                                                   UPCN454
        XLIM1 = 2.0
                                                                                   UPCN455
        XLIM2 = 0.0
                                                                                   UPCN456
        DO 445 K=2.5
                                                                                   UPCN457
           CERF = 2.0*E(K)
                                                                                   UPCN458
           CALL IERFC(CERF, ARG, XLIM1, XLIM2)
                                                                                   UPCN459
           DIST = 1.41421*S1*ARG
Z(I,K) = XTOT + DIST + ZO
                                                                                   UPCN460
                                                                                   UPCN461
           L = 12-K
           Z(I,L) = XTOT - DIST + 20
                                                                                   UPCN463
      CONTINUE
                                                                                   UPCN464
       Z(I,6) = XTOT + ZO
                                                                                   UPCN465
  446 CONTINUE
                                                                                   UPCN466
      LIM1 = 1
                                                                                   UPCN467
       LIM2 = 6
 IN WELL AND PROFILES BENEATH WELL',
                                                                                   UPCN469
     1' (',3A2,')',//,11X,'T C(WELL)',14X,'ELEVATION FOR C/(E) (', UPCN470 2A2,')',/,9X,'(',A2,') E(WELL)') UPCN471
      WRITE(NO,430) (C(K),K=LIM1,LIM2),(E(K),K=LIM1,LIM2)
                                                                                   UPCN472
  430 FORMAT(24X,6(F8.1,1X),/,24X,6('
                                            (',F3.1,')'))
                                                                                   UPCN473
  431 DO 455 I=1,IT
                                                                                   UPCN474
       DO 449 K=LIM1,LIM2
                                                                                   UPCN475
           KFLG(K) = KHAR1
                                                                                   UPCN476
           IF(Z(I,K).GT.ZCR) KFLG(K) = KHAR2
      CONTINUE
                                                                                   UPCN478
        WRITE(NO,450) T(I),CW(I),(Z(I,K),KFLG(K),K=LIM1,LIM2),EW(I)
                                                                                   UPCN479
  450 FORMAT(/,6X,F8.2,F9.2,1X,6(F8.1,A1),/,16X,('(',F6.4,')'))
                                                                                   UPCN480
  455 CONTINUE
      WRITE(NO,457) ZCR,IL
                                                                                   UPCN482
  457 FORMAT('O',2X,'* NOTE: THE DISPERSION CONCEPT SHOULD BE LIMITED',
1' TO THE ZONE BELOW',/,11X,' THE CRITICAL ELEVATION OF',F12.4,A3)
                                                                                  UPCN483
                                                                                  UPCN484
      IF(LIM2.EQ.11) GO TO 700
                                                                                   UPCN485
      LIM1 = 6
                                                                                   UPCN486
      LIM2 = 11
                                                                                   UPCN487
      GO TO 447
                                                                                   UPCN488
С
                                                                                   UPCN489
                                                                                   UPCN490
```

```
UPCN491
NCENTRATION IN PUMPED WATER
                                                                               UPCN492
                                                                               UPCN493
  500 CONTINUE
                                                                               UPCN494
      IEDIT = 4
      IF(KCON.NE.2) GO TO 176
                                                                               UPCN495
  510 WRITE(NO,515) IM1, IM2, IM3
                                                                               UPCN496
  515 FORMAT('O',2X,'ENTER MAXIMUM PERMISSIBLE CONCENTRATION IN PUMPED'. UPCN497
1' WATER (',3A2,')',/,3X,'?')
UPCN498
  516 READ(NI,50) CMAX
                                                                               UPCN499
      IF(CMAX.GE.CB.AND.CMAX.LT.CO) GO TO 518
                                                                               UPCN500
                                                                               UPCN501
      WRITE(NO.517)
  517 FORMAT(3X, 'CONCENTRATION MUST BE GREATER THAN OR EQUAL TO CB', /.
                                                                               UPCN502
     13X, 'AND LESS THAN CO -- REENTER',
                                                                               UPCN503
                                                                               UPCN504
     2/,3X,'?')
      GO TO 516
                                                                               UPCN505
  518 CONTINUE
                                                                               UPCN506
                                                                               UPCN507
C
                                                                               HPCN508
      SO = SO2/2.0
                                                                               UPCN509
      EMAX = (CMAX-CB)/(CO-CB)
                                                                               UPCN510
                                                                               UPCN511
      EXCR = EMAX/(0.5*PHI)
      ELIM = 0.0
                                                                               UPCN512
      IF(SO.GT.O.O) ELIM = 0.5*ERFC(XCR/(1.1414214*SO))
                                                                               UPCN513
      CINIT = 0.5*PHI*ELIM*(CO-CB) + CB
                                                                               UPCN514
      IF(EXCR.LT.ELIM) GO TO 550
                                                                               UPCN515
      IF(EXCR.LE.O.O.OR.EXCR.GE.1.0) GO TO 520
                                                                               UPCN516
                                                                               UPCN517
      CERF = 2.0*EXCR
      XLIM1 = 3.0
                                                                               UPCN518
      XLIM2 = 0.0
                                                                               HPCN519
      CALL IERFC(CERF, ARG, XLIM1, XLIM2)
                                                                               UPCN520
      B = -4.0*ARG*ARG*DM - 2.0*XCR
                                                                               UPCN521
      CON = -2.0*ARG*ARG*SO*SO + XCR*XCR
                                                                               UPCN522
                                                                               UPCN523
      GO TO 521
  520 B = -12.5*DM - 2.0*XCR
                                                                               UPCN524
      CON = -6.25*SO*SO + XCR*XCR
                                                                               UPCN525
  521 CONTINUE
                                                                               UPCN526
      ROOT = B*B - 4.0*CON
                                                                               UPCN527
      IF(R00T.LT.O.O) GO TO 650
                                                                               UPCN528
      XBAR1 = (-B-(ROOT**0.5))/2.0
                                                                               UPCN529
      XBAR2 = (-B+(ROOT**0.5))/2.0
                                                                               UPCN530
      XBAR = XBAR1
                                                                               UPCN531
      IF(EXCR.GT.O.5) XBAR=XBAR2
                                                                               UPCN532
      ZMAX = XBAR + ZO
                                                                               HPCN533
      JFLG = KHAR1
                                                                               UPCN534
      IF(ZMAX.GT.ZCR) JFLG=KHAR2
                                                                               UPCN535
      QMAX = 6.283185*((RHOS-RHOF)/RHOF)*KX*D*XBAR
                                                                               UPCN536
С
                                                                               UPCN537
      WRITE(NO.280) (A(I),I=1,30),RHOF,RHOS,PO,IL,ITU,KX,IL,ITU,KZ
                                                                               UPCN538
                                                                               UPCN539
      WRITE(NO.281) IL,ZO,IL,D,THETA,IL,XCR,IL,ZCR
      WRITE(NO,290) IM1, IM2, IM3, CO, IM1, IM2, IM3, CB, IL, SO2, IL, DM, PHI
                                                                               UPCN540
      WRITE(NO.525) IM1, IM2, IM3, CMAX, EMAX, IL, ZMAX, UFLG, IL, ITU, QMAX
                                                                               UPCN541
  525 FORMAT('O', 5X, 'MAXIMUM CONCENTRATION IN PUMPED WATER (', 3A2, ')',
                                                                               UPCN542
      11X,F10.4./,
                                                                               UPCN543
     26X, 'MAXIMUM RELATIVE CONCENTRATION', 17X, F10.4,/,
                                                                               UPCN544
     36X, MAXIMUM INTERFACE ELEVATION ('.A2,')', 15X,F10.4,A1,/,46X, MAXIMUM PERMISSIBLE PUMPING RATE (CU '.A2,'/',A2,')',4X.
                                                                               UPCN545
                                                                               UPCN546
     5F10.4)
                                                                               UPCN547
      IF(ZMAX.LE.ZCR) GO TO 530
                                                                               UPCN548
      WRITE(NO,457) ZCR,IL
                                                                               UPCN549
      CLIM = 0.5*(0.5*PHI)*(CO-CB) + CB
                                                                               UPCN550
      WRITE(NO,527) CLIM, IM1, IM2, IM3
                                                                               UPCN551
  527 FORMAT(3X,'(MAXIMUM CONCENTRATIONS IN PUMPED WATER LESS THAN',
                                                                               UPCN552
      1F10.2,A3,2A2,') ',/,'0')
                                                                               UPCN553
                                                                               UPCN554
  530 WRITE(NO,535) IL,ITU
                                                                               UPCN555
  535 FORMAT('O',2X,'ENTER OPTIONAL PUMPING RATE (CU ',A2,'/',A2,')',
                                                                               UPCN556
     1/,3X,'?')
                                                                               UPCN557
      READ(NI,50) QP
                                                                               UPCN558
      IF(QP.LE.QMAX) GD TD 600
                                                                               UPCN559
      TIME = ((2.*P0*D)/(((RHOS-RHOF)/RHOF)*KZ))*((1./(1.-QMAX/QP))-1.) UPCN560
```

```
WRITE(NO,545) IL, ITU, QP, ITU, TIME
                                                                                    UPCN561
  545 FORMAT('0',2X,'PUMPING RATE (CU ',A2,'/',A2,')',6X,F10.4,/
                                                                                    UPCN562
                                                                                    UPCN563
       GD TO 530
                                                                                    UPCN564
                                                                                    UPCN565
С
  550 WRITE(NO,555) SO2, IL, CINIT, IM1, IM2, IM3
                                                                                    UPCN566
  555 FORMAT('0'.2X.'CMAX EXCEEDED FOR AN INITIAL TRANSITION'.
1'ZONE WIDTH OF',F10.4,A3,/.
23X.'INITIAL CONCENTRATION IN PUMPED WATER IS',F10.4,A3,2A2)
                                                                                    UPCN567
                                                                                    UPCN568
                                                                                    UPCN569
  600 CONTINUE
                                                                                    UPCN570
                                                                                    UPCN571
       GD TD 700
                                                                                    UPCN572
  650 WRITE(NO,655)
                                                                                    UPCN573
  655 FORMAT(3X, 'IMAGINARY ROOT OBTAINED FOR XMAX')
                                                                                    UPCN574
                                                                                    UPCN575
       GO TO 700
С
                                                                                    UPCN576
                                                                                    UPCN577
C ***** SECTION III -- PROBLEM REDEFINITION AND CONTROL OF EXECUTION
                                                                                    UPCN578
С
                                                                                    UPCN579
                                                                                    UPCN580
С
  700 CONTINUE
                                                                                    UPCN581
       IEDIT = 2
                                                                                    UPCN582
       XCR = THETA*D
                                                                                    UPCN583
       ZCR = XCR + ZO
                                                                                    UPCN584
       QMAXSS = 6.283185*((RHOS-RHOF)/RHOF)*KX*D*XCR
                                                                                    UPCN585
  WRITE(NO,705)
705 FORMAT(//,3X,'ENTER NEXT COMMAND',/,3X,'?')
710 READ(NI,715) NEXT
                                                                                    UPCN586
                                                                                    UPCN587
                                                                                    UPCN588
  715 FORMAT(A2)
                                                                                    UPCN589
                                                                                    UPCN590
       DO 720 I=1,20
                                                                                    UPCN591
        IF(NEXT.EQ.IC(I)) GO TO 730
                                                                                    UPCN592
  720 CONTINUE
                                                                                    UPCN593
       WRITE(NO,725)
                                                                                    LIPCN594
  725 FORMAT(3X, 'ERROR IN LAST COMMAND -- REENTER', /, 3X, '?')
                                                                                    UPCN595
       GD TO 710
                                                                                    UPCN596
  730 GO TO (29,70,90,111,120,129,145,188,215,235,255,
                                                                                    UPCN597
      1311,312,322,302,275,300,500,1,1000),I
                                                                                    UPCN598
С
                                                                                    UPCN599
 1000 STOP
                                                                                    UPCN600
       END
                                                                                    UPCN601
```

APPENDIX D

Listing of Function Subroutines

```
FUNCTION ERFC(Z)
                                                                                ERFC001
      RATIONAL APPROXIMATION OF THE COMPLIMENTARY ERROR FUNCTION
С
                                                                                ERFC002
      SEE SECTION 7.1 OF ABRAMOWITZ AND STEGUN (1966)
С
                                                                                ERFC003
      IF(ABS(Z).GT.7.5) GO TO 30
                                                                                ERFC004
      THE FOLLOWING IDENTITIES ARE USED TO HANDLE NEGATIVE ARGUMENTS ERFC( Z) = 1 - ERF(Z)
С
                                                                                ERFC005
                                                                                ERFC006
С
          ERFC(-Z) = -ERFC(Z) = 1 + ERF(Z)
С
                                                                                ERFC007
                                                                                ERFC008
      X = Z
                                                                                ERFC009
С
      NEGATIVE ARGUMENTS
                                                                                ERFC010
      IF (Z.LT.O.O) X = -Z
                                                                                ERFC011
      ERFC = 1.0/((1.0 + 0.070523*X + 0.042282*(X**2))
                                                                                ERFC012
                           + 0.009270*(X**3) + 0.000152*(X**4)
                                                                                ERFC013
                           + 0.000276*(X**5) + 0.000043*(X**6))**16)
     2
                                                                                ERFC014
      NOTE: 2-ERF(X) = ERFC(-X) = ERFC(Z) FOR Z<0
IF (Z.LT.O.O) ERFC = 2.0 - ERFC
C
                                                                                ERFC015
                                                                                ERFC016
      RETURN
                                                                                ERFC017
С
                                                                                ERFC018
   FOR Z>7.5, ERFC(Z)<2.32E-22 AND IS SET TO 0 30 ERFC = 0.0
                                                                                ERFC019
С
                                                                                ERFC020
      FOR Z < -7.5 ERFC(Z) IS SET TO 2.0
С
                                                                                ERFC021
      ERFC = 2.0
                                                                                ERFC022
      RETURN
                                                                                ERFC023
      END
                                                                                ERFC024
```

```
INVERSE COMPLIMENTARY ERROR FUNCTION
                                                                                       IERF001
С
                                                                                       IERF002
       SUBROUTINE IERFC(CERF, X, XLH, XRH)
       INVERSE COMPLIMENTARY ERROR FUNCTION .
                                                                                       IERF003
       A REGULA FALSI ROOT-FINDING TECHNIQUE IS USED TO LOCATE X FOR A SPECIFIED VALUE OF CERF. XLH AND
C
                                                                                       IERF004
                                                                                       IERF005
                                                                                       IERF006
С
       XRH DEFINE THE INITIAL SEARCH INTERVAL.
       SEE CARNAHAN, LUTHER AND WILKES (1969) FOR A DISCUSSION OF THE METHOD.
С
                                                                                       IERF007
Ċ
                                                                                       IERF008
       FLH = CERF - ERFC(XLH)
FRH = CERF - ERFC(XRH)
                                                                                       IERF009
                                                                                       IERF010
    10 XEST = (XLH*FRH - XRH*FLH)/(FRH - FLH)
                                                                                       IERFO11
       FEST = CERF - ERFC(XEST)
                                                                                       IERFO12
       IF(ABS(FEST).GT.1.0E-04) GD TO 20
                                                                                       IERF013
       X = XEST
                                                                                       IERF014
       RETURN
                                                                                       IERFO15
    20 IF(FEST.GT.O.O.AND.FRH.GT.O.O) GD TD 30
                                                                                       IERFO16
       XLH = XEST
FLH = CERF - ERFC(XLH)
                                                                                       IERFO17
                                                                                       IERFO18
   GD TD 10
30 XRH = XEST
                                                                                       IERFO19
                                                                                       IERF020
       FRH = CERF - ERFC(XRH)
                                                                                       IERFO21
       GO TO 10
                                                                                       IERF022
       END
                                                                                       IERF023
```