MONITORING TO DETECT GROUNDWATER PROBLEMS RESULTING FROM ENHANCED OIL RECOVERY by Ron Beck Bernard Aboba Douglas Miller Ivor Kaklins ERCO/Energy Resources Co. Inc. Cambridge, Massachusetts 02138 EPA Contract No. 68-03-2648 **Project Officer** John S. Farlow Oil & Hazardous Materials Spills Branch Municipal Environmental Research Laboratory-Cincinnati Edison, New Jersey 08837 MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268 ### DISCLAIMER This report has been reviewed by the Municipal Environmental Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. #### FOREWORD The U.S. Environmental Protection Agency was created because of increasing public and government concern about the dangers of pollution to the health and welfare of the American people. Noxious air, foul water, and spoiled land are tragic testimonies to the deterioration of our natural environment. The complexity of that environment and the interplay of its components require a concentrated and integrated attack on the problem. Research and development is that necessary first step in problem solution; it involves defining the problem, measuring its impact, and searching for solutions. The Municipal Environmental Research Laboratory develops new and improved technology and systems to prevent, treat, and manage wastewater and solid and hazardous waste pollutant discharges from municipal and community sources, to preserve and treat public drinking water supplies, and to minimize the adverse economic, social, health and aesthetic effects of pollution. This publication is one of the products of that research and provides a most vital communications link between the researcher and the user community. This report develops a groundwater monitoring program for the early detection of any environmental problem that may result from enhanced oil and gas recovery operations. The program is readily adaptable for use at specific sites. The report will be of interest to all those interested in the potential environmental impacts that may be associated with tertiary oil and gas production. Further information may be obtained through the Oil and Hazardous Materials Spills Branch, Edison, New Jersey 08837. Francis T. Mayo, Director Municipal Environmental Research Laboratory #### ABSTRACT This report develops a four-stage monitoring program to detect groundwater contamination events that may potentially result from enhanced oil recovery (EOR) projects. The monitoring system design is based on a statistical analysis evolving from a series of equations that model subsurface transport of EOR spills. Results of the design include both spatial and frequency monitoring intervals that depend on properties of the local geology and dispersion characteristics of the potential contaminants. Sample results are provided for typical reservoir characteristics. Selection of measures to be sampled is based on a review of the identity of likely contaminants, on the available sample and analysis procedures, and on the cost and time constraints on analysis. Nonspecific indicator measures are identified that can be used to flag those intervals requiring more intensive and specific monitoring. The number of independent variables in the analysis dictate that EOR monitoring systems be designed on a site-specific basis. Sampling designs can be easily formulated to conform to the peculiarities of chosen EOR sites based on data already available from federal and state geological surveys and from oil company statistics. This report is submitted by Energy Resources Company Inc. in fulfillment of Subcontract No. N8520023SP with Rockwell International under Contract No. 68-03-2648 with the U.S. Environmental Protection Agency. Work began in September 1979 and was completed August 1980. The draft report was completed in November 1980. The Rockwell Project Officer was Walter Unterberg. # CONTENTS | Bowers | : | |--|------------| | Foreword | | | Abstract | J Í | | Figures | ij | | Tables | ii | | Tables | iх | | 1. Introduction | 1 | | The Need for Monitoring Programs | 1 | | Background | 5 | | Objectives of This Study | - | | 2. Overview of EOR Processes | 2 | | Charm Triaction | 5 | | The City Combination | - | | In Situ Combustion | 0 | | Improved Waterflood | . ბ | | Micellar/Polymer Flooding | Ll | | Alkaline Flooding | L 4 | | CO2-Miscible Flooding | 4 | | 3. Groundwater Contamination Pathways | | | 4. A Simple Program to Monitor EOR Projects | 21 | | Overview | 21 | | Conceptual Design of the Monitoring Program | 21 | | Representative Monitoring Programs | 25 | | 5. Identification of Chemicals Used in Enhanced | | | Recovery Programs | 3 1 | | Chemicals Used in EOR and Enhanced Gas Recovery | _ | | Processes | 2 7 | | Chemicals Covered Under Current Regulatory | , 1 | | Chemicals covered under current Regulatory | . | | Structure |) | | | | | Introduction | 19 | | Sampling Parameters | | | Applicability of the Techniques | 56 | | 7. Monitoring Program Design Considerations ! | 59 | | Design Issues | 59 | | Benefits Measures | | | Development of Baseline Data | 5 O | | Detection of Trends and Violation of Standards (| 53 | | Identification of Previously Unrecognized | | | Pollutants | 53 | | Detection of Chemical or Hydrocarbon Losses |
5 | | Evaluation of the Effectiveness of Control | , -1 | | Investments | ξ = | | Pollutant Indicators | , _
; = | | | 8. | Placement of Monitoring Stations and Frequency | |---|---------|---| | | | of Sampling 67 | | | | Introduction 67 | | | | Before Vs. After a Pollutant Event 67 | | | | Design of a Pollution-Event Detection System 68 | | | | Monitoring in Response to Pollutant Events 77 | | | 9. | Baseline Data on Groundwater Quality 85 | | | | Introduction | | | | Selection of Counties 85 | | • | | Display of Spatial Placement 86 | | | | Selection of a Statistic 86 | | | | Trend Analysis 87 | | | 10. | Recommendations | | | Refere | nces | | | Apendio | | | • | A. | World Oil's 1979-1980 Guide to Drilling, Workover and Completion Fluids | | | в. | Development of Convection-Diffusion Model | | | ь. | Equations | | | c. | Development of Pollutant Event Monitoring Model | | | ٠. | Equations | | | D. | USGS/NWDE Groundwater Monitoring Station Locations | | | D. | and Sampling Frequencies | | • | | | | | | | | | | | | | - | | | | | | | | | | . ur. # FIGURES | Number | <u> </u> | 1 | age | |--------|---|-----|-----| | 1 | Steam-soak process | | 6 | | 2 | Steam-drive process | | 7 | | 3 | Forward in situ-combustion process | | | | 4 | Reverse in situ-combustion process | | | | 5 | The micellar-polymer flooding process | | | | 6 | Major routes of groundwater contamination | • | | | • | associated with enhanced recovery | | 18 | | 7 | Monitoring Program: Water-Quality Degradation | • | | | • | from EOR/EGR | | 23 | | 8 | EOR/EGR Environmental Monitoring Overview Matrix | | | | 9 | Concentration as a function of time for a sampling | • | | | | point 500 m downstream from a burst leak source | | 71 | | 10 | Volume of spill P (m ³) | | | | 11 | Sampling frequency as a function of spill volume | | , , | | . 11 | | | 71 | | 1.0 | and dispersion rule | • | / 4 | | 12 | Progression of burst leak; dispersion rate = | | 76 | | | 5 times groundwater velocity | • | / 5 | | R-I | Location of Recommended Monitoring Stations for a | | | | | Detection Monitoring System, Based on the Solution of | | | | | an Equation for an Ellipse Showing Pollutant Trace at | | | | | Concentration Co (Detection Limit) at Time to (an | _ | | | | Arbitrary Time After the Spill) | . 1 | .27 | | D-1 | Area Map for Stephens County, Texas, Showing Loca- | | | | | tions of USGS Groundwater Quality Monitoring Wells . | . 1 | .34 | ## TABLES | Number | | Page | |------------|--|----------| | 1 | Summary of Levels of Risk Anticipated from Various Activities Carried Out During Enhanced-Recovery | ٠ | | 2 | Programs | 20 | | | Groundwater | 22 | | 3 | Monitoring Program for a Polymer Flood to be Conducted over a 20-year Period | 26 | | 4 | Monitoring Program for a Steam Flood to be Conducted over a 20-year Period | 28 | | 5 . | Enhanced Oil Recovery: Chemicals Proposed for Use | 33 | | 6 | as Surfactants | | | 7 | as Cosurfactants | 34 | | | Fraction of Micellar Slug (or in Miscible-Displacement Processes) | 35 | | 8 | Tertiary Oil Recovery: Chemicals Proposed for Use | | | .9 | as Mobility Buffers | 36 | | 10 | as Bactericides and Biocides | 37 | | | Use to Block Exchange Sites in the Formation | 37 | | 11 | (Preflushing) | - ' | | 12 | trolytes | 38 | | 13 | to Increase Efficiency of Thermal Methods EOR Chemical Producing Companies and Their Products - | 38 | | | Summary for United States | 39
51 | | 14 | Matrix of Monitoring Parameters | 61 | | 15
16 | EOR/EGR Environmental Monitoring Costs and Benefits . Model Parameters | 70 | | 17 | Station Locations and Sampling Frequencies | 77 | | 18 | Pollutants and Classes of Transport Models | 79 | | 19 | Data Needs for Immiscible-Flow Model | 81 | | 20 | Data Needs for Miscible-Flow Model | 83 | | D-1 | Summary of Existing Groundwater Data for Four Sample | | | | Counties | 133 | | D-2 | Parameters Measured - 40 Stephens County Groundwater Monitoring Stations | 135 | # ABBREVIATIONS AND ACRONYMS | ACGIH | American Conference of Governmental Industrial | |--------
--| | | Hygienists | | API | American Petroleum Institute | | ASTM | American Society for Testing and Materials | | BOD | Biochemical Oxygen Demand | | DOE | Department of Energy | | EGR | Enhanced Gas Recovery | | EOR | Enhanced Oil Recovery | | EPA | Environmental Protection Agency | | ERDA | Energy Research and Development Administration | | EV | Environmental Office, Department of Energy | | GC/FID | Gas Chromatograph with Flame Ionization Detector | | GC/MS | Gas Chromatograph/Mass Spectroscope | | ICAP | Inductively Coupled Argon Plasma Detector | | IOCC | Interstate Oil Compact Commission | | MBA | Methylene Blue Active Substances Test | | MERL | Municipal Environmental Research Laboratory, EPA | | NAS | National Academy of Science | | NASQAN | National Stream Quality Accounting Network | | NIH | National Institutes of Health | | NWDE | National Water Data Exchange | | nwoss | National Water Quality Surveillance System | | OSHA | Occupational Safety and Health Act | | RCRA | Resource Conservation and Recovery Act | | TOC | Total Organic Carbon | | TDS | | | | Toxic Substances Control Act | | USGS | United States Geological Survey | #### SECTION 1 #### INTRODUCTION # THE NEED FOR MONITORING PROGRAMS1 Various recent studies of the environmental aspects of enhanced oil recovery (Donaldson, 1978; United States Department of Energy, 1978; and Beck et al., 1980, for example) have identified contamination of freshwater in aquifers as a potential consequence of extensive enhanced oil recovery (EOR) activities. The DOE has ranked micellar polymer flooding as having the potential for significant environmental constraints (United States Department of Energy, Office of the Assistant Secretary for Environmental Protection, Safety and Emergency Preparedness, 1980). Many potential routes exist for groundwater pollution. No firm evidence is available that such pollution does or will occur, nor is there a complete understanding of the pollutant mechanism. Relatively few data have been collected from the aquifers that may be contaminated from currently active enhanced recovery programs. Many of the enhanced recovery projects are experimental in nature, and all available resources were devoted to assembly of engineering performance data. Many of the early EOR projects took place in sparsely populated areas where no convenient water wells useful for the sampling of aquifer quality existed. Uncertainties as to whether groundwater contamination does in fact take place will persist until adequate data sets become available for study, or until a major pollutant event occurs that is readily detected by the public. For assembled data to be useful for pollutant detection and analysis, data must be collected consistently and according to statistically valid sampling procedures. The various organizations responsible for environmental data collection (oilfield operators, U.S. EPA, USGS, U.S. DOE, state resource agencies and local resource agencies) have different monitoring objectives. Thus, each group's ¹For meaning of abbreviations and acronyms in this and subsequent sections, refer to listing on p. ix. monitoring program design will be different although some elements will be in common. A monitoring system is needed for use by research and policy groups such as the U.S. EPA, U.S. DOE and API. They will require nationwide data sets that can be used to detect long-term trends, to identify regional problems, and to determine how much attention should be paid to potential hazards to groundwaters from EOR activities. Any analysis that is to be applied to large data sets will require consistent data. If each station selects an entirely new set of variables to sample, intervals of sampling, and sampling procedures, then the statistical problems involved with using the entire national data set will be large. The lack of sets of data collected over a long period of time to serve as a baseline is probably the most significant constraint as regards groundwater sampling, since chemicals can be expected to move only a few feet per year in most subsurface environments. Additionally, the groundwater problem is so broad in scope that a generalized sampling plan at an affordable level of effort will be unlikely to yield useful results. With these problems and provisos in mind, there is needed a set of procedures that will accomplish routine monitoring in an efficient fashion. ### BACKGROUND Information is available from various environmental monitoring programs developed over the last 15 years. For example, the USGS has developed the NASQAN water-quality monitoring network and the EPA has developed the NWQSS network. The USGS has maintained a computer file of ground-water quality data for over more than 10 years. The states of California, Texas, Kansas, Oklahoma, and Illinois (among others) maintain records of oilfield connate waters, brines, ¹Contact the USGS National Water Data Exchange, Reston, Virginia, for further information. ²All unpublished data available from the state agencies (California Division of Oil and Gas, California Department of Water Resources, Texas Railroad Commission, Kansas, Oklahoma, and Illinois Geological Surveys) and some data available on tape from the U.S. DOE, Bartlesville Energy Research Center. and adjoining aquifiers. 2 EPA is developing monitoring programs regarding Underground Injection Control regulations. Each of these existing monitoring or data repository systems is an important element in the design of a monitoring program for enhanced recovery operations. In addition, hierarchical chemical analysis schemes have been developed to deal with the requirements of RCRA, the Safe Drinking Water Act, and TSCA. Finally, the EPA Las Vegas Laboratory has developed a series of comprehensive documents regarding monitoring to detect groundwater pollution from oil-shale projects (Todd et al., 1976; Slawson, 1979; Slawson and McMillian, 1979; Pimental et al., 1979). The statistical and sampling theory bases for developing groundwater monitoring program all exist for other applications. Modeling work includes Bender et al. (1977), Gray and Pinder (1976), Peaceman (1977), and Aris (1978). A variety of monitoring program designs for other applications were developed by Gunnerson (1966), Matalas (1967), Lettenmaier (1975), Montgomery (1974), and Beck and Pierrehumbert (1976). #### OBJECTIVES OF THIS STUDY This study aims at meeting the data needs for the identification of the nature and extent of groundwater contamination due to enhanced oil recovery activities. The primary objective of this study is to design an efficient EOR project groundwater monitoring program and to develop the necessary procedures to accomplish this. This study is to provide the groundwork for development of standard principles to be used in monitoring EOR projects. Monitoring guidelines are to be developed through analysis of: (a) review of chemical use data and of toxicity and carcinogenicity studies that establish the pollutants of concern, (b) statistical analysis of patterns of variability to establish suitable sampling frequency and sample well spacing and patterns, and (c) review of analytical protocols available that will yield valid results. #### SECTION 2 #### OVERVIEW OF EOR PROCESSES After World War II, as a result of the increasing demand for crude oil, attention was given to improved management of the known oil in place, as well as to an expansion in exploration. Scientists and engineers had recognized that simple techniques of improved oil recovery were potentially useful and realized that new methods could play a very important role in adding to oil reserves and reservoir productivity (American Petroleum Institute, 1961). Since the end of the war various new fluid-injection methods have been researched that provide the potential to recover large volumes of oil left in reservoirs after conventional recovery. Little effort, however, has been applied to identification of environmental problems. ### STEAM INJECTION Documented cases of steam injection were reported in the 1920's and 1930's, and apparently the technique had been discovered long before that. In at least one case -- in the tight sands of the Bradford, Pennsylvania, field -- the steam or hot water injection was initiated to improve injectivity of the water rather than to increase production (American Petroleum Institute, 1961). In other situations the steam had been intended for paraffin removal from the well bore. Steam injection did not significantly progress until the 1960's, when the Shell Oil Company succeeded with a cyclic steam soak in California (American Petroleum Institute, 1961). Since then, steam flooding has been applied successfully to heavy oils in a variety of California fields (Figures 1 and 2). At the present time, steam soak is a technically proven and economically acceptable enhanced-recovery process, and in some cases steam flooding looks promising. Large-scale expansion of steam soak in California is currently being held up by air-pollution concerns. Various options are under consideration, including use of scrubbers, low-NO_x burners, fluidized-bed coal generators and solar generated steam. Possible revision of air-pollution regulations would simplify the problem. There has been little concern about environmental protection until the present. Conflicts with air regulations have Figure 1. Steam-soak process. Figure 2. Steam-drive process. led to air sampling, stack sampling, air-dispersion modeling, and developmental scrubber engineering. Re-use of produced water for steam injection is also under study. #### IN SITU COMBUSTION Air and water injection were common in the earlier part of the 1900's. The purpose of air injection at that time was to "push" the oil toward the producing well. Yet the O_2 content of the resulting air samples indicated that subterranean combustion had been at least partially
responsible for the "air-injection" that increased production. In situ combustion was probably unknowingly conducted in the early 1900's before it was recognized as such. Some of the earliest work in in situ-combustion EOR occurred in Russia in 1935, in shallow, high-permeability, high-porosity sands. The oil-laden sand was ignited by glowing charcoal (American Petroleum Institute, 1961). This work was performed in a pressure-depleted reservoir with 36 API gravity crude. The recovery was small, but significant. The most significant present work in the United States is in California, by Getty and Citgo (Beck et al., 1980). Figures 3 and 4 depict the process. Environmental studies have not been performed. ## IMPROVED WATERFLOOD1 Simple waterflooding had its beginning over a century ago, in the Bradford field of western Pennsylvania, when an insufficient packer² allowed leakage of shallow groundwater into a well's oil column. While the production of the immediate well was curtailed, there was a marked increase in oil production at the surrounding wells. Early operators built on this experience and developed "circle floods" whereby they would waterflood their field incrementally by turning central producing wells into water injectors and, as oil production continued, they would, in an expanding circle, convert the closest watered-out producers to water injectors. For many years waterflooding was practiced illegally in Pennsylvania; not until 1921 was the practice legalized there. Other early waterflooding projects took place at ¹Summarized from Schumacher, 1978. ²Packer - the outer supporting structure of a well. CO, CH4, C2H6, C3H8, C4H10 (High-Molecular-Weight Hydrocarbons) SO_x, NO_x CO₂, H₂O Oxidant Gas Production Compressor Particulate Input Well Well Scrubber Burned Region Combustible Gases Forward In Situ Figure 3. Forward in situ-combustion process. Reverse In Situ Figure 4. Reverse in situ-combustion process. California's Kern River field and in Ontario (Interstate Oil Compact Commission, 1974), but many believed the water would contaminate or dilute the oil. Legislative constraints diminished in the 1940's, however, and the practice spread to fields across the country. Improved waterfloods or polymer-augmented waterfloods were developed in order to increase recovery efficiency of the flood. The improvement in oil-displacement efficiency over and above straight waterflooding is minimal, but the polymer thickens the injected water and greatly improves the sweep conformance, 3 causing the waterflood to affect a larger fluid mobilities, and particularly to the fluid mobility ratio of oil to water on injection and production in flood patterns. The results suggested increasing waterflood's sweep efficiencies by increasing the viscosity of the injected water (Chang, 1978). Then in 1964 water-soluble polymers were suggested as the preinjection thickening to reduce water mobility. Numerous laboratory and field studies have been done since that time to further refine the Improved waterfloods were field-tested in the process. 1960's. The injected chemicals are of potential environmental concern. Historical data on polymers used in this process exist from their use as flocculating agents in water-treatment processes. Flocculating agents have been screened for health hazards on a regular basis by the chemical manufacturers that supply them; there is no formal EPA review process, however, nor have any detailed EPA studies been performed to evaluate use of flocculants. # MICELLAR/POLYMER FLOODING4 Micellar/polymer flooding involves the use of a surfactant/water injection followed by polymer/water injection. ³In summary, sweep conformance means flooding the entire volume of the oil-bearing zone. See petroleum engineering texts, for example, the Society of Petroleum Engineers monograph series, for a detailed explanation of this. ⁴Gogarty (1975) reviews the development of surfactant or micellar/polymer flooding in his paper on the "Status of Surfactant or Micellar Methods." ⁵Sweep Efficiency is the percentage of recoverable oil that is produced at time of water breakthrough in the production well. These "slugs" of fluid act to improve the displacement efficiency and sweep efficiency over a conventional waterflood. Polymer injection adds conformity to and enhances sweep efficiency of the surfactant slug, which acts to minimize fluid-oil interfacial tension (see Figure 5). Surfactant flooding was initiated in the late 1920's and the 1930's, using polycyclic sulfonic substances and wood sulfite liquor. As the technique progressed, a variety of chemical substances were considered for use as long as they achieved the desired results of reduced interfacial tension between oil and flooding fluid and prevention of excessive adsorption of the surfactants in the reservoir. A range of surfactant-solvent compounds are still used in micellar/polymer flooding today, and as a result it is difficult to analyze the pollution effects from the surfactant slug. Additional laboratory studies and refinement of the chemical-flooding theories gave rise to the so-called low-tension flooding process, whereby large volume (30 percent of the pore volume), low-surfactant-concentration (<2 percent) floods are used. In 1959 and 1961 this process was further refined by patents teaching injection of surfactant in low-viscosity hydrocarbon solvent (Holm and Bernard) and other hydrocarbon solutions for specific reservoir conditions. The processes using petroleum-based sulfonate slugs became known as soluble-oil flooding processes. Microemulsions⁷ for use in oil recovery were first patented as part of a well-stimulation process to remove obstructing waxy solids. Twenty years later, what would become the well-known "Maraflood" enhanced-recovery process, licensed by Marathon Oil Company, was introduced by Gogarty and Olsen. This process differed from the low-tension floods because a small fraction of the pore volume and a relatively high surfactant concentration (>5 percent) were used. Several types of surfactant flooding have been developed, but generally they are of two types. In the first, large volumes (15 to 60+ percent pore volume) and low concentrations of surfactant dissolved in oil or water are injected. The second type involves a relatively small volume (3 to 20 percent pore volume) of highly concentrated surfactant. ⁶Interfacial tension is an instability between two liquids along their interface caused by dissimilarities in molecular compositions. $^{^{7}}$ Microemulsions: surfactant-stabilized dispersion of water and hydrocarbons. The aggregates of surfactants and hydrocarbons (micelles) are in the general size range of 10^{-6} to 10^{-4} mm. Figure 5. The micellar-polymer flooding process (ERDA, 1975). The slug that is used in micellar/polymer floodings can have a variety of components that make assessment of its environmental hazards difficult at best. Often the exact composition of additives used is not known, since crude extracts of a roughly determined nature may be added. The basic composition of a micellar slug is hydrocarbon, surfactant, and/or water, and often added to these are a cosurfactant (usually alcohol) and electrolytes (inorganic salts). ### ALKALINE FLOODING The history of alkaline flooding is most likely directly aligned with that of waterflooding. After waterflooding was recognized as an effective recovery mechanism, the addition of various alkaline chemicals was considered as an option for recovery of further fractions of the remaining oil in suitable reservoirs. The alkaline chemicals, such as sodium hydroxide and potassium hydrate, were added to the drive water to enhance recovery by improving formation wettability and oil emulsification and by reducing interfacial tension (U.S. Deparatment of Energy, 1978). Regarding environmental protection, the only relevant work has been a recent environmental assessment (O'Banion, 1978b). ### CO2-MISCIBLE FLOODING Out of the search for the development of more efficient recovery technologies, the concept of miscible-fluid flooding developed, and many petroleum scientists were intrigued by the idea of miscible-fluid displacement (Interstate Oil Compact Commission, 1974). Although the concept of miscible-fluid displacement was proposed in 1972, the idea was not tested in field applications until the late 1950's (Schumacher, 1978). The use of CO₂ as a miscible-flooding agent evolved because it was known to be one of the few low-cost fluids that could be miscible with both oil and water if the right physical conditions were maintained (Schumacher, 1978). A carbonated waterflood using this concept was initiated in the Bartlesville sand formation, Oklahoma, in 1961. From 8 to 10 pounds of CO₂ were added to each barrel of injected water. However, this application had very disappointing recovery effects, apparently due to formation fractures and peripheral stratifications that diverted the mainstream of the fluid (Interstate Oil Compact Commission, 1974). Though laboratory tests showed the CO_2 process to be promising and very efficient, in field applications the miscible slug of solvent apparently becomes enriched with oil as it passes through the reservoir, and loses a large part of its scavenging ability (Interstate Oil Compact Commission, 1974). #### SECTION 3 #### GROUNDWATER CONTAMINATION PATHWAYS Enhanced recovery can result in contamination of aquifers by a variety of pathways that fall into three general categories: 1) downward leaching from surface disposal, 2) communication to aquifers via improperly sealed or cased wells, and 3) communication to aquifers through fractures or cracks in previously impermeable formations. Such fractures may be opened up by changed reservoir pressures accompanying enhanced oil-recovery techniques and subsequent reinjection or by gas fracturing. Figure 6 depicts the major routes of contamination. Evaluation of existing information can provide
only tentative conclusions regarding groundwater degradation. Significant risks to groundwater quality are apparent. Some of the chemicals employed in enhanced recovery may be toxic or carcinogenic. Little is known about the degradation products of these chemicals, which may be more or less toxic than the parent chemicals. Brines, which are produced in a ratio with oil as high as 20:1 in current enhanced-recovery operations, have the potential to contaminate freshwater aquifers by reinjection or disposal. Brines also contain heavy metals that may migrate from the disposal site. Some of the pathways depicted in Figure 6 are known to exist as a result of pollutant events that have already occurred. Others only represent possible pathways. The volumes and concentrations of chemicals used are significant enough to warrant further investigation of the toxicities of the chemicals and of the pollutant pathways. All enhanced-recovery technologies involve potential groundwater concerns. Those technologies that require injection of chemicals into the reservoir or fracturing of formations hold the most potential for contamination. In situ combustion is also of particular concern, because of the range of chemicals that are formed during the subsurface combustion process. Table 1 summarizes the types of pollutant problems that may occur. In addition to the generic concerns, there are various environmental/institutional situations that may enhance pollutant risks. These must be looked at in a site-specific Figure 6. Major routes of groundwater contamination associated with enhanced recovery. or a technologywide assessment, and should be considered in terms of their probability of occurrence. Insufficient information is available to make reliable determinations of such probabilities at this time. The types of situations of concern include: - 1. EOR programs taking place in old fields in which unmapped abandoned wells exist. These old wells are in some cases imperfectly sealed and may lead to communication with freshwater aquifers. - 2. EOR programs making use of old fields in which old wells are not all reworked or recapped. Cracks in cement or casings, as a result of corrosion, age, or both, may allow communication with freshwater aquifers. Proposed underground injection regulations would require reworking of all wells within .4 km of all EOR activities. - 3. Freshwater aquifers located just above or below the producing formation. This would greatly increase the opportunity for contamination over the more common situation, in which aquifers are far removed from producing layers. - 4. EOR programs taking place in areas that have undergone significant subsidence. In such areas the subsidence events may have resulted in fracturing or other structural alterations allowing transport of pollutants. - 5. High seismic activity in the region of the project. The producing reservoir will become a repository for brines containing a variety of injected chemicals. These hazardous wastes may escape the oil formation following seismic events. - 6. Freshwater aquifers located below disposal ponds for drilling muds and hydraulic fracturing fluids. In these situations, leachate contamination may occur. TABLE 1. SUMMARY OF LEVELS OF RISK ANTICIPATED FROM VARIOUS ACTIVITIES CARRIED OUT DURING ENHANCED-RECOVERY PROGRAMS. THESE ARE ERCO ESTIMATES BASED UPON AVAILABLE EVIDENCE. | | | G | Acti
roundwa | vities Ca
ater Cor | using
Itaminat | ion | |-----------------------------|-------------------------|------------------------|------------------------------------|---|---|---| | | | Injection of Chemicals | In Situ Formation of
Pollutants | Cause Subsurface Structural
Changes (new pollutant routes) | Disposal of Solid Wastes with
Hazardous Leachate | Summary of Potential for Groundwater Problems | | | Steam | ı | + | - | + | Low | | | In Situ
Combustion | - | • | - | - | Medium | | | Polymer | • | - | + | - | High | | rocesse | Polymer/
Miçellar | . • | - | + | 1 | Hìgh | | ery i | Alkaline | • | • | + | - | High | | Reco | CO ₂ | + | 1 | + | - | Low | | Enhanced Recovery Processes | Hydraulic
Fracturing | + | 1 | ++ | + | Medium | | <u> </u> | Explosive
Fracturing | • | 1 | ++ | | Medium | | | Directional
Drilling | - | - | - | - | Low | ### LEGEND: ⁻Negligible Risk ⁺Potential for Occasional Pollutant Events ^{*}Significant Potential for Regular Occurrence of Pollutant Events If No Measures Are Taken #### SECTION 4 #### A SIMPLE PROGRAM TO MONITOR EOR PROJECTS This chapter presents a simple monitoring scheme that can be implemented as part of an enhanced oil-recovery project. The purpose of such a so-called detection monitoring program will be to check for indications that groundwater degradation may be occurring as a result of the EOR project. A more sophisticated monitoring procedure may be appropriate in cases where the project is very large or where the regional geology has been identified as making the project particularly susceptible to pollutant events. In such situations, the procedures discussed in Sections 5 through 8 will be pertinent. #### OVERVIEW Particular monitoring activities and intensities of sampling will be associated with different EOR technologies and with each stage of an EOR project. Table 2 depicts a general scheme for monitoring. The scheme involves assembly of background and baseline information during the early stages of a project, with routine monitoring during the course of the project and, in some cases, follow-up monitoring for 5 years after the project is completed. For relatively low-risk technologies such as thermal-oil recovery, less monitoring is required. ### CONCEPTUAL DESIGN OF THE MONITORING PROGRAM Figures 7 and 8 summarize the overall concept of EOR/EGR (Enhanced Gas Recovery) monitoring. Figure 7 gives a step-by-step outline of the tasks to be carried out in an environmental-monitoring program. The approach is a hierarchical one, in which the simplest, broadest monitoring activities are first performed and then only those analytical tests relevant to specific environmental problems are incorporated in the detailed and comprehensive phases of a monitoring program. Figure 8 characterizes each of four hierarchical stages in a monitoring program. TABLE 2. GENERAL SCHEME FOR MONITORING OF EOR IMPACTS ON GROUNDWATER. | Stage of Project of Project | Conception | Field
Manager
(Rewor
seal old t
drill new | ment
k or
wells, | Preflush | Injection of
Chemical
Slugs | Production by
Water or Steam
Injection | Post
Production |--|---|--|--|---------------|-----------------------------------|--|------------------------|----------------------------|---------------|---------------|-----------------|-----------------|---------------------|---------------------|--|---------------------|-------------------|---|-----------------|-------------------| | Steam Soak,
Steam Drive | | | | N.A.* | N.A. | Perform Diagnostic
Monitoring Only If | In Situ
Combustion | ata
nse Plan | Prepare a Map of All Old Wells Monitor Reworking Activities | Prepare a Map of All Old Wells Monitor Reworking Activities | Wells ivities | s Wells | J Wells | S Wells | y Wells ivities | i Wells | Wells ivities | d Wells | Wells | N.A. | N.A. | Unusual Reservoir
Conditions Are
Noted | None
Outside | Steam Drive with Additives | Assemble Baseline Data
ate Pollution-Response | | | | N.A. | Monitor for Presence
of Chemicals in
Produced Oil & Wate | | Required | CO ₂ , Other
Miscible Gas | semble B | | | Prepare a Map | Prepare a Map (| Prepare a Map | Prepare a Map | Prepare a Map Monitor Rewo | Prepare a Map | Prepare a Map | e a Map | e a Map o | re a Map
tor Rew | re a Map
tor Rew | re a Map | re a Map
tor Rew | | · | Conduct Bourier | Advanced Waterflood,
Polymer Flood | Assemble Baseline Data
Formulate Pollution-Response Plan | | | | | | | | | | Prepar
Monit | Prepar
Monit | Prepare
Monite | | Prepare
Monite | | Prepare
Monite | | Prepar
Monit | Prepare
Monite | Prepar
Monit | Alkaline Flood
Micellar/Polymer Flood | | | | | | | Nearby
Groundwaters | [&]quot;N.A. = Not Applicable. Figure 7. Monitoring Program: Water-Quality Degradation from EOR/EGR. | | | STAGES OF MONITORING | | | | | | |-----------------------------------|--|---|--
---|--|--|--| | | DEVELOP
BASELINE | II
MONITOR
TRENDS | III
SPECIFICIALLY
EVALUATE FLAGGED
PROBLEMS | IV
ASSESS
EFFECTIVENESS
OF CONTROLS | | | | | Parameters to be
Measured | indicators | Indicators | Specify Chemicals | Specify Chemicals | | | | | Purpose of
Monitoring | Determine Existing
Conditions | tdentify Changes
in Levels | identify Problem
Contaminants, identify
Violations of Standards | Compare Levels with
Regulatory Crituria;
Check for Reduction in
Levels to Below Criteria
Values | | | | | General
Stratugy | a. Measure Baseline Levels
b. Identify Spatial and
Temporal Patterns | a. Select Key Stations b. Take Periodic Measures c. Look for Changes in kluntification Patterns | a. Perform Specific Tests to Determine Contaminants That Have Coused Trends b. Determine If Criteria Have Been Violated c. Determine Spatial Extent of Contamination | a. Evaluate Contaminant
Trends in Response to
Controls | | | | | Major Dimension(s)
of Analysis | Spatial and Temporal | Temporal for
Representative Sites | Profile of Classus
of Contembrants | Temporal for Specific
Problem Zones | | | | Figure 8. EOR/EGR Environmental Monitoring Overview Matrix. This display summarizes the major characteristics of the four types of monitoring needed to evaluate environmental quality. #### REPRESENTATIVE MONITORING PROGRAMS To show how the general scheme in Table 2 should be applied to a particular project, two typical monitoring programs are outlined, for a polymer flood in Table 3, and for a steam flood in Table 4. Each element of the monitoring program for the polymer-flood example is described below. ### Design of Project During the initial design stages of a polymer-flood project, available data on local groundwaters are collected. At a minimum, a cross-sectional mapping of the location of all freshwater aquifers in relationship to the producing formation is prepared. In particular, aquifers that are traversed by injection, production, or abandoned wells are noted. Additionally, all available monitoring data on the quality of these local aquifers are assembled. Geostatistical procedures such as "kriging" are employed to develop averages weighted by the spatial distribution of the sample points. ### Reworking of Oilfield Wells During the preparation stage of the polymer flood, a map is drawn that locates all the wells that penetrate the formation to be flooded. All wells are keyed by age, and all plugged and otherwise abandoned wells are noted. During the drilling of new EOR wells and reworking of old wells for use during the project, well-log data and well pressures are monitored to detect any communication of fluids with freshwater aquifers that are traversed. This monitoring procedure is a standard part of oilfield operations. ### Preflush During the preflush stage of the polymer flood, the initial pressurization of the reservoir takes place (even though sometimes the field has been subjected to secondary waterflooding for several years prior to the polymer project). A tracer is injected during the preflush to track the movement of the injected fluids under the new pressure conditions. The tracer is tracked in existing oil wells and also in water wells penetrating adjacent aquifers, to verify that no communication is occurring with freshwater bodies. Samples of the preflush fluids are drawn to determine their chemistry, in case any pollutant event (such as leakage via a sealed well) should occur. TABLE 3. MONITORING PROGRAM FOR A POLYMER FLOOD TO BE CONDUCTED OVER A 20-YEAR PERIOD | Stage of Project | | Monitoring Events | |-----------------------------|----|--| | Design of Project | 1. | Identify all freshwater aquifers. Collect monitoring data on aquifer water quality; utilize "kriging" a statistics to develop average values. Look for seasonal trends. | | Rework Oilfield Wells | 1. | Develop maps of all old and all sealed wells, and inventory the condition of all old wells. Monitor reworking procedure to detect any communication with aquifers. | | Preflush | 1. | Conduct tracer studies to determine dynamics of injected fluids. Monitor quality of preflush fluids. | | Injection of Chemical Slugs | 1. | Conduct tracer studies to determine dynamics of chemical slug. Inventory known degradation tendencies, toxicity, carcinogenicity of chemicals used; identify persistent potentially harmful components. | | Production | | Monitor for unusual levels of indicators (Total Organic Carbon, Methylene Blue, Active Substances, Conductivity, Reservoir/Welltest Pressure, Resistivity and the Geophysical Logs) on a weekly to monthly basis, depending on the proximity | aSee Section 8, "Selection of a Statistic" for definition of "Kriging." TABLE 3 (cont.) | Stage of Project | Monitoring Events | |------------------|--| | | of the aquifer to the producing zone. Sampling sites to be spaced at not more than 4 times well spacing if possible. | | Post-production | Monitor for unusual levels of indicators on a yearly basis. Monitor pressure for a statistically selected sample of oil wells. | TABLE 4. MONITORING PROGRAM FOR A STEAM FLOOD TO BE CONDUCTED OVER A 20-YEAR PERIOD | Stage of Project | | Monitoring Events | |------------------------------|-------|---| | Design of Project | 1. 2. | | | Rework Oilfield Wells | 2. | Develop maps of all old and all sealed wells, and inventory the condition of all old wells. Monitor reworking procedure to detect any communication with aquifers. | | Steam-soak Selected
Wells | | Monitor produced oil and water phases to detect heat-induced synthesis of hazardous organics. | | Fieldwide Steam Soak | | Monitor produced oil and water phases to detect heat-induced synthesis of hazardous organics. | | Post-production | | None | ### Injection of Chemical Slugs During the polymer stage of a project a succession of concentrated chemicals is injected into the formation. Many of these, such as biocides and polymers, are subject to fairly rapid degradation within the formation. Background information is assembled on the known chemical and toxicological properties of the chemicals being used, and inferences regarding synergistic effects are developed. A tracer is injected with the chemical slug to track its progress through the formation. ### Production The production stage of the project involves injection of water to force out additional oil, utilizing the polymer as a mobility control zone, and a piston. During this time surrounding freshwater zones need to be monitored regularly. Sampling wells should be spaced as closely as possible to increase the chances of early flagging of any contamination events. Since each sampling well will cost \$1,000 to \$10,000 (1980 dollars) or more to drill, a comprehensive sampling network will not be economically justifiable until a significant contamination event is suspected. Wells already completed to the freshwater formations will have to be used for sampling. If possible, freshwater sampling stations should be spaced no farther apart than four times the spacing of the oilfield's producing wells. Samples of produced fluids will be monitored to determine the composition of the oil and brine phases, with particular attention paid to degradation products of the injected chemicals and other potentially hazardous substances. ### Post-production After the polymer project is completed, regular monitoring of groundwater sampling stations is continued, to check for fluids moving out of the former producing zone (and the disposal zone if the produced water has not been returned to the producing zone). Well pressures at a random sample of wells are monitored for unusual reservoir conditions or well failures. ### If Pollutant Events Are Detected If pollutant events are detected, then additional sampling, as outlined in Sections 5 through 8 of this report, will be required. ## SECTION 5 # IDENTIFICATION OF CHEMICALS USED IN ENHANCED RECOVERY PROGRAMS This section discusses the selection of parameters for further consideration in the analytical stages of the design of a monitoring program. The major problem at hand is to reduce the list of chemicals to a manageable size. In eliminating a chemical from the list, the cost of monitoring must be weighed against the potential of the substance to pose an environmental threat. Monitoring costs are usually The environmental hazards, on the other hand, are well known. difficult to establish. The information herein and in Section 6 provides a variety of ways of partitioning the lists to make the selection tasks easier. There are three major sources of working lists: 1) lists of known chemicals used in the technologies assembled by the EPA (Braxton et al., 1976; Beck et al., 1980); 2) lists of chemicals covered under current regulations assembled by the DOE (Booz, Allen, and Hamilton 1978); and 3) lists of parameters that can serve as indicators of categories of contaminants. For purposes of monitoring activities, lists of parameters to be measured are most useful if arranged according to analytical methods. task report, then, provides a discussion of the various lists of chemicals and the development of an integrated list organized by analytical techniques and discussion of the utility of the lists. #### CHEMICALS USED IN EOR AND ENHANCED GAS RECOVERY
PROCESSES A wide variety of chemicals are used during the course of enhanced-recovery projects. These range from the drilling muds, added during the preliminary drilling of injection and production wells for a project, to toxic biocides and anticorrosion additives, which are used to counteract chemical reactions that have been found to reduce the effectiveness of enhanced recovery. Despite the apparent vastness of these lists, many of the chemicals are very similar; and, in fact, groups of chemicals can each be measured through one analytical procedure. The list developed by Braxton et al. (1976) for the EPA was a preliminary one, based on a review of current practices and patent literature. This list thus includes some chemicals that although theoretically interesting are not now being considered for use in field applications. The list included as Tables 5 through 12 is a revised version of Braxton's list, which takes these changes into account. To further qualify the information considered in Tables 5 through 12, a separate list has been developed, which includes only those chemicals known to be commercially available for use in EOR projects. This list of trade products, Table 13, represents those chemicals which are likely to be used in projects taking place today and in the near future. The appendix presents a list of chemicals generally in use in oil and gas development that are also used in conjunction with enhanced recovery. ## CHEMICALS COVERED UNDER CURRENT REGULATORY STRUCTURE Regulations are not usually specific with respect to chemicals used in oil and gas applications. In fact, this lack of specificity has been at the center of the controversy regarding the regulation of drilling-mud wastes and brines. The EPA is currently beginning a detailed monitoring investigation of drilling mud wastes. In an attempt to deal with these uncertainties, the DOE developed an analysis of the currently regulated chemicals. Other relevant lists include the NIH list of carcinogens, drinking water criteria, water quality criteria, and California air quality standards. ¹The revised surfactant list (1976) is now outdated; developments since its revision are likely to have caused additions and/or changes. # TABLE 5. ENHANCED OIL RECOVERY: EXAMPLES OF CHEMICALS PROPOSED FOR USE AS SURFACTANTS^a #### SULFONATES Alfo olefin sulfonate Alky alryl sulfonate Alky aryl napthenic sulfonate with monovalent cation Hexadecylnaphthenic sulfonate Sodium laryl sulfonate #### LAURATES p-Chloroaniline sulfate laurate^b p-Toluidene sulfate laurate Polyglycerol monolaurate Triethanolamine laurate Sodium glyceryl monolaurate sulfate #### AMMONIUM CHLORIDES Ditetradecyl dimethyl ammonium chloride Dodecyl trimethyl ammonium chloride Hexadecyl trimethyl ammonium chloride ## MYRISTATES Glycerol disulfoacetate monomyristate Triethanolamine myristate ## SULFATES n-Dodecyl-diethyleneglycol sulfate Monobutylphenyl phenol sodium sulfate Diethyleneglycol sulfate # OTHERS n-Methyltaurine oleamide Morpholine stearate Pentaerythritol monostearate Dihexyl sodium succinate Sodium sulfate oleylethylanilide Triethanolamine oleate Alkyl phenoxypolyethoxy ethanol Polyoxyethylene alkyl phenol aBraxton et al. (1976). bHalogenated compounds, though proposed in the literature, are unlikely to be used in field operations, because their possible presence in produced oil streams would poison the catalysts at the refinery. # TABLE 6. ENHANCED OIL RECOVERY: CHEMICALS PROPOSED FOR USE AS COSURFACTANTS^a Alcoholic liquors Fusel oil Alcohols Alkaryl alcohols Phenol p-Nonyl phenol Cresol Alkyl alcohols Isopentano1^b 2-Pentanolb Decyl alcohols Ethanol Isobutanol n-Butanol Cyclohexanol 1-Hexanolb 2-Hexanolb 1-Octanol 2-Octanol Isopropano1^b Aldehydes Formaldehyde Gluteraldehyde Paraformaldehyde Amides Amino compounds Esters Sorbitan fatty ester Ketones ^aBraxton et al. (1976). ^bMost commonly used. TABLE 7. ENHANCED OIL RECOVERY: HYDROCARBONS USED AS A FRACTION OF MICELLAR SLUG (OR IN MISCIBLE-DISPLACEMENT PROCESSES)^a ``` Alkylated aryl compounds Anthenic compounds Aryl compounds with mono cyclic compounds Alkyl phenols Benzene Toluene Acryl compounds with polycyclic compounds Crude oilb Partially refined fractions of crude oil Overheads from crude columns Side cuts from crude columns Gas oils Straight run gasoline Kerosene Liquefied petroleum gas Naphthas Heavy naphthas Refined fraction of crude oil Paraffinic compounds Decane Dodecane Heptane Octane Pentane Propane Cycloparaffinic compounds Cyclohexane Naphthenic compounds ``` aBraxton et al. (1976). bMost commonly used. #### TERTIARY OIL RECOVERY: TABLE 8. CHEMICALS PROPOSED FOR USE AS MOBILITY BUFFERSa Aldoses B series L series Amines Carboxymethylcellulose Carboxyvinyl polymer Dextrans Desoxyribonucleic acid Glycerin Ketoses B series L series Polyacrylamideb Polyethylene oxideb Polyisobutylene in benzene Rubber in benzene Saccharides Conjugated saccharides Disaccharides Monosaccharides Polysaccharidesb Hydroxyethylcellulose aBraxton et al. (1976). bMost commonly used. # TABLE 9. TERTIARY OIL RECOVERY: CHEMICALS PROPOSED FOR USE AS BACTERICIDES AND BIOCIDES^a Aldehydes Formaldehyde Gluteraldehyde Paraformaldehyde Alkyl phosphates Acetate salts of coco amines Alkyl amines Quaternary amines Alkyl dimethyl ammonium chloride Coco dimethyl benzyl ammonium chloride Diamine salts Acetate salts of coco diamines Acetate salts of tallow diamines Calcium sulfate Sodium hydroxide Heavy metal salts Chlorinated phenols Alkyl dichlorophenol Pentachlorophenol Substituted phenols Sodium salts of phenols TABLE 10. TERTIARY OIL RECOVERY: CHEMICALS PROPOSED FOR USE TO BLOCK EXCHANGE SITES IN THE FORMATIONA (PREFLUSHING) Quaternary ammonium salts Fluoride solutions Potassium permanganate Sodium hydroxide aT. J. Robichaux, "Bactericides Used in Drilling and Completion Operations," U.S. EPA Symposium on Environmental Aspects of Chemical Use in Well Drilling Operations, Houston, May 1965, p. 4. aBraxton et al. (1976). # TABLE 11. TERTIARY OIL RECOVERY: CHEMICALS PROPOSED AS ELECTROLYTES^a Acids Hydrochloric acid Inorganic acids Organic acids Sulfuric acid Bases Inorganic bases Organic bases Sodium hydroxide Salts Inorganic salts Organic salts Sodium hydroxide Sodium nitrate Sodium sulfate Sodium silicate aBraxton et al. (1976). TABLE 12. TERTIARY OIL RECOVERY: CHEMICALS PROPOSED FOR USE TO INCREASE EFFICIENCY OF THERMAL METHODS^a Quinoline Sodium hydroxide Toluene aBraxton et al. (1976). TABLE 13. EOR CHEMICAL PRODUCING COMPANIES AND THEIR PRODUCTS - SUMMARY FOR UNITED STATES | | Description | Use | Physical Properties | |---------------------------|---|--|---| | A. Amoco Chemical Con | npany | | | | Surfactants: | | | | | Amoco Sulfonate 155 | a highly consistent
ammonium salt of a
sulfonated petroleum
fraction | for use in formulating micellar fluids for enhanced oil recovery | Sulfonate activity wt % 48-52
Oil wt % 7-12
Inorganic salts wt % 15 max
Water wt % 27-33 | | Amoco Sulfonate 151 | a medium equivalent weight (420) sodium salt of a polybutene sulfonate | for use in formulating micellar fluids for enhanced oil recovery | Sulfonate activity wt % 47-52
Oil wt % 8-18
Inorganics salts wt% 15 max
Water wt % 23-29 | | Amoco Sulfonate 152 | an ammonium salt
of a sulfonated
petroleum fraction | for use in formulating
micellar fluids for
enhanced oil recovery | Sulfonate activity wt % 48-52 Oil wt % 7-12 Inorganic salts wt % 15 max Water wt % 27-33 Viscosity, centistokes @ 49° C (120° F) = 800 Density = 1.09 kg/l Flash point = 182° C Pour point = 0° C (32° F) Corrosion rate (carbon steel at 49° C) = 5 Odor, ammoniacal | | Cosurfactants: | | | | | Amoco Cosurfactant
120 | an oxyalkylated alcohol w/ "unusual" phase distribution coefficient in oil/ water systems | for the preparation of micellar injection fluids, can be used w/ most sulfonates at sulfonate/cosurfactant ratios up to 20/1 | Density = 1.01 kg/l
Pour point = 2° C
Flash point = 1260° C
Viscosity cp = 77 | ^aThis table describes the commercially available EOR injection chemicals. Ancillary chemicals such as biocides, corrosion inhibitors, and steam-drive additives are not reported on in this table. Further documentation of these products is available from the Manufacters. TABLE 13 (CONT.) | | Description | Use | Physical Properties | |----------------------------------|---|--|--| | Amoco Cosurfactant
122 | an oxyalkylated alcohol w/ "unusual" phase distribution coefficient in oil/ water systems | for the preparation of micellar injection fluids, can be used w/ most sulfonates at sulfonate/cosurfactant ratios as high as 80/1 or as low as 1/1 | Density = 8.60 lb/gal Pour point = 40° F Flash point = 205° F Viscosity cp = 35.4° F | | Polymers: | | • | | | Sweepaid 103 | high molecular weight copolymer, a liquid emulsion form containing 25% polymer, 25% oil, and 50% water and is supplied with an emulsion breaker | specially developed
for EOR, to improve
mobility ratios | Specific
gravity = 8.33 lb/gal
Pour point = -20° C
Viscosity = 900 cps
pH = 7.2 | | B. Allied Colloids | Incorporated | | | | Polymers: | • | | | | Alcoflood 1200 | anionic acrylamide copolymer w/ ultra high molecular weight; dry, white granular powder | mobility control in
the driving fluid | Particle size = 100% through #12 mesh Bulk density = 40 lb per ft ³ pil in distilled water 1% solution #25° C = 5.5-6.5 In oxygen-free brine less than 10% loss in viscosity over 5 days at 175° F. | | Various alsomer-
polymers 507 | polyacrylamides;
sodium polyacrylate
polymer in "micro-
bead" form | for use in drilling fluids, fluid loss reducer for fresh water based drilling systems in bentonite, etc. | Particle size = 100% through #12 mesh Bulk density = 802 kg/m ³ pH of 1% solution @ 25° C = 5.5 to 6.5 | | Other: | | | | | Antiprex A | a polymeric scale inhibitor - sodium salt of a synthetic polycarboxylic acid | for control of scale & deposit formation which restricts flow through injection & flow lines & filtering systems | Solid content = 45 ± 1% pH = 7.0-7.5 Specific gravity = 1.30 Viscosity @ 25° C = 1,400 cps | | | Description | Use | Physical Properties | |------------------------------------|--|--|---------------------| | C. Nalco Chemical Div | ision | | | | Polymers: | | | | | Nalfo F | is 30% by weight polymer solids | for mobility control in EOR flooding | | | Nal-flo P | high molecular weight,
is unstabilized,
develops liquid
polymers | mobility-control agents | | | Surfactants: | • | | | | ADOFOAM BF-1 Anionic | alcohol ether sulfate | foaming agent | N.A. | | D. DON | | | | | A wide variety of
EOR polymers: | · | | | | XD (series) | acrylamide polymers of various molecular size, in which 30% of the carboxamide groups have been replaced by carboxylate groups | mobility-control agents | | | Pushers/dry polymers: | | | | | Pusher 500 Oil | an intermediate-molecular-
weight anionic
polyelectrolyte | mobility-control agent | | | Pusher 700 Oil | a high-molecular-weight anionic polyelectrolyte | mobility-control agent | | | Pusher 1000 Oil | an extremely
high-molecular-weight
anionic polyelectrolyte | mobility-control agent form as a hydrocarbon emulsion o water-soluble polymers | | | Surfactants: | • | | | | PET 1000 | cationic polymer; | foaming agent | N.A. | | PEI 400 | polyethylenamine
cationic polymer;
polyethylenamine | foaming agent | N.A. | # TABLE 13 (CONT.) | | Description | Use | Physical Properties | |-----------------------------|---|---|--| | E. Pfizer Chemical Di | vision | | | | Polymers: | | | | | Biopolymer 1035 | solution of xanthan gum: a high molecular weight heteropoly-saccharide produced by the Xanthomonas campestris fermentation of carbohydrates | mobility-control
agent for enhanced
oil recovery | Tan gelatinous fluid Polymer activity = 2.8-3.2% Viscosity = 7,000-10,000 cp Specific gravity = 25° C 0.95 1.00 g/cc Stabilizer, formaldehyde 2000 ppm min | | F. American Cyanamid | | | | | Polymers: | | | | | Cyanatrol the 900
series | anionic liquid
polyacrylamides | mobility-control
agents developed
specifically for
EOR | Bulk density 25° C = 8.43 lb/gal
Bulk viscosity 25° C = 1,200 cps
Freezing point = 18° C
Flash point = 3982° C | | Surfactants: | | | | | Aerosol A-102 | nonionic and anionic;
disodium ethoxylated
alcohol half ester of
sulfosuccinic | foaming agent | N.A. | | G. Aerosol OT
(75% Alo) | anionic;
sodium dioctyl
sulfosuccinite | foaming agent | N.A. | | Polymers: | | | | | Xanthan Broth | a polysaccharide made by fermentation by Xanthomonas campestris | mobility-control agent for EOR | Xanthan gum % = 2.5-3.0
Viscosity = 10,000-20,000 cp
pH = 6.0-7.0
Preservative = 3,000 ppm
formaldehyde | TABLE 13 (CONT.) | | Description | Use | Physical Properties | |---|--|-----------------------------|--| | N-Hance (series) | polyacrylamides manu-
factured "to produce"
higher & more uniform
molecular weights and
greater polymer
linearity | mobility-control agents | Viscosity ≃ Range 6-100 c
@ 1,000 ppm | | Natrosol 250 HHR | hydroxyl cellulose
(HEC) | mobility-control agents | | | Other EOR chemicals sup | pplied by Hercules through | CORT are cellulosic & polys | accharide chemicals. | | I. Witco Chemical Corp | poration | | | | Surfactants: | | | | | TRS 10-80 | petroleum sulfonate | foaming agent | н.А. | | TDA-100 | ethoxylated alcohol | foaming agent | | | J. <u>Stepan Chemical Com</u>
Burfactants: | pany | | | | Petrosep 465 | petroleum sulfonate | foaming agent | N.A. | | Petrosep 450 | petroleum sulfonate | foaming agent | | | Petrosep 420 | petroleum sulfonate | foaming agent | | | K. Alcolac Inc. | | | | | Surfactants: | | | | | Siponate DS-10 | dodecyl benzene
sulfonate | foaming agent | N.A. | | L. Exxon Chemical Co. | | | | | Surfactants: | | | | | | | | | | ı | |---| | 4 | | 4 | | | | | Description | Use | Physical Properties | |-------------------|---|---------------|---------------------| | . GAP Corporation | | | • | | urfactants: | | | | | jepal CO-530 | ethoxylated phenol | foaming agent | N A. | | epal CO-610 | ethoxylated phenol | foaming agent | N.A. | | Suntech | | | | | ntech l | mixed xylenes and C ₁₂ olefin | foaming agent | N.A. | | ntech 2 | mixed xylenes and C ₁₅ olefin-narrow | foaming agent | N.A. | | ntech 3 | toluene and C ₁₅ olefin-narrow | foaming agent | N.A. | | ntech 4 | toluene and C ₁₅
olefin-narrow | foaming agent | N.A. | | tech 5 | toluene and C ₁₅
olefin-broad | foaming agent | N.A. | | ntech 6 | benzene tower
feed and C ₁₅
olefin-broad | foaming agent | N.A. | | ntech 7 | benzene tower feed
and C ₁₅ olefin-narrow | foaming agent | N.A. | | ntech 8 | benzene tower
bottoms and C ₁₂
olefin | foaming agent | N.A. | TABLE 13 (CONT.) | | Description | Use | Physical Pro | pert les | |--|------------------------------------|---------------|--------------|---------------| | O. MILEHEAA | | | | · | | Surfactants: | | | | | | Ampli foam" | coco amine betaine | foaming agent | N.A. | | | P. MAGCOBAR | | | | | | Surfactants: | | | • | | | Magcofoamer 44 | | foaming agent | N.A. | | | Q. Armour Industrial
Chemical Company | | | | | | Surfactants: | | | | | | ARQUAD T-2C | cationic; quaternary | | N.A. | | | ARMOMIST #1 | ammonium salt
cationic | | N.A. | | | R. <u>Dupont</u> | | | | | | Surfactants: | , | | | | | BCO | amphoteric, C-alkyl bet | aine | N.A. | | | S. <u>General Mills</u> | | | | | | Surfactants: | | | | | | ALFOAM 3 | | | N.A. | | | T. Shell Chemical | | | | | | Surfactants: | | | • | | | Shell foam | sulfonate (probably
no benzene) | foaming agent | N.A. | | TABLE 13 (CONT.) | | Description | Use | Physical Properties | |--|--|------------------------|---------------------| | U. <u>Halliburton</u> | | | · | | Surfactants: | | | | | HC-2
HOWCO SUDS | | foamlng agent | N.A.
N.A. | | V. Rohm & Haas | | | | | Surfactants: | | | • | | TRITON QS-15 | amphoteric;
oxyethylated sodium
salt | foaming agent | N.A. | | TRITON GR-S | anionic; sodium
alkylester sulfonate | foaming agent | N.A. | | W. Petrolite Corp. | | | | | Surfactants: | | | · | | Tret-0-11te J-9005 | | foaming agent | N.A. | | Tret-O-lite TD-8 | | foaming agent | N.A. | | X. Adomite | | | | | Surfactants: | | | | | Adofoam | 50% active anionic surfactant | foaming agent | N.A. | | Y. Kelco, Division of
Herck & Co., Inc. | | | | | Polymers: | | | | | Xanflood | xanthan gum | mobility-control agent | N.A. | TABLE 13 (CONT.) | | Description | Use | Physical Properties | |--------------------------------|---------------------------------|------------------------|---------------------| | Z. Hercules Incorporated | | | | | Polymers: | | • | | | Natrosol 250 IIIIR | hydroxyethyl
cellulose (HEC) | mobility-control agent | N.A. | | AA. Union Carbide Chemical Co. | | | | | Polymers: | . | | | | Polyox WSR N-3000 | polythylene oxide (REO) | mobility-control agent | N.A. | | Polyox WSR 301 | polythylene oxide (REO) | mobility-control agent | N.A. | | Polyox coagulant | polythylene oxide (REO) | mobility-control agent | N.A. | | Chemical
Category
for EOR Use | Chemical
Group | Nonspecific
Analytical
Technique | Specific
Analytical
Technique | Technique
Protocol
Listing | Precision % | Threshold
Value
(detection
limit) | Environmental
Standard or
Guideline | Cost
per
Sample ^a | Level of
Operator
Training
Required | |-------------------------------------|-------------------------------------|---|-------------------------------------|----------------------------------|-------------|--|---|------------------------------------|--| | | monopolymeri
augara | c | paper
chromatography | 1 | m | m | | | | | | polysac-
charides | manual
analysi
by cleavage
enzyme hydroly | | | • | n | | | | | E. Biocides | aldehydes | GC/FID | | EPA Level I | | | p | \$50-100 | 4 yr
college | | | alkyl
phosphates | phosphate
colorimetric
tests | | ASTM D-515 | • | .01-10 _. ppm | | \$5-10 | H.S.
tech. | | | alkyl
phosphates | | GC/HS | | j | 50 mg
injected | | \$50-200 | 4 yr
college | | .L | quaternary
amines | | ion chrom-
atography | | q | q | | \$15-25 | tech.
or 4 yr
college | | ர்
2
1 | alkyl amines | ••• | GC/MS | EPA Level I | | 50 mg
injected | | \$50-200+ | 4 yr
college | | | acetate salt
of amines | 8 | GC/MS | EPA Level I | | 50 mg
injected | | \$50-200+ | 4 yr
college | | | calcium sulf | ate | titration | | e | e | | \$5-10 | II.S.
tech. | | | sodium
hydroxide | alkalinity
titration | | ASTM D1067- | -1070 | | | \$5-10 | H.S.
tech. | | | heavy met-
al salts | atomic
absorption ^r | | | s | · s | | u | 4 yr
college | | | heavy met-
al salts | inductively coupled | | · | t | t | | \$100W | 4 yr
college | | | phenols | argon plasma
chloroform
extraction | | ASTM-D1783 | h | h | x | \$5-10 | H.S.
tech. | | | phenols | | GC/MS | EPA Level 1 | | 50 mg
injected | x | \$50-200+ | 4 yr
college | | F. Chemicals used to block ex- | quater-
nary am-
monium salts | NII ₃ titration | ` | ASTH D1426 | У | . y | | \$5-10 | H.S.
tech. | | change
sites | quater-
nary am-
monium salts | | ion
chromatography | у | q | g | · | \$15-25 | tech.
or 4 yr
college | TABLE 14. MATRIX OF MONITORING PARAMETERS | Cat | mical
egory
EOR Use | Chemical
Group | Nonspecific
Analytical
Technique | Specific
Analytical
Technique | Technique
Protocol
Listing | Precision & | Threshold
Value
(detection
limit) | Environmental
Standard or
Guideline | Cost
per
Sample ^a | Level of
Operator
Training
Required | |-----|---------------------------|-----------------------------|--|---|----------------------------------|-----------------|--|---|------------------------------------|--| | Α. | Surfac-
tants | all sur-
factants | | direct probe
mass spectro-
metry ^b | | <u>></u> 100 | low ppb
range ^C | | \$25-100 | 4 yr
college | | | | sulfon-
ates | titrationd | | ASTM D-2330 |) е | e | f | \$5~10 | N.S.
tech. | | B. | Cosur-
factants | alcohols | | GC/FID | EPA Level 1
recommended | | 50 mg
injected | g | \$50-100 | 4 yr
college | | | | phenols | chloroform
extraction | | ASTM-D 1783 |) h | h | i | \$5~10 | II.S.
tech | | | | phenols | | GC/MS | EPA Level I
recommended | | 50 mg
injected | i | \$50-200+ | .4 yr
college | | | | aldehydes | GC/FID | | EPA Level I | | | | \$50-100 | 4 yr
college | | | | amides | | GC/MS | EPA Level I | | 50 mg
injected | | \$50-200+ | 4 yr
college | | | | amines | | GC/MS | EPA Level 1
recommended | | 50 mg
injected | | \$50-200+ | 4 yr
college | | | | amines | | GC/MS ^k | EPA Level I | • | 50 mg
injected | | \$50-200+ | 4 yr
college | | | | esters | | GC/MS | EPA Level 1 | • | 50 mg
injected | | \$50-200+ | 4 yr
college | | | | ketones | | GC/MS | EPA fevel i | | 50 mg
injected | | \$50-200+ | 4 yr
college | | c. | llydro-
carbons | aryl compou
(incl. benzo | | GC/MS ^e | , | j | 50 mg
injected | | \$50-200+ | 4 yr
college | | | | alkyl
phenols | chloroform
extraction | | ASTM-D 178 | 3 h | ħ | | \$5-10 | U.S.
tech. | | | | aliphatic
hydrocarbons | s | GC/FID] | EPA level i | | 5 mg
injected | | \$50-100 | 4 yr
college | | D. | Mobility
buffers | amines | | GC/MS ^k | FPA Level : | • | 50 mg
injected | | \$50-200+ | 4 yr
college | | | | monopolymer
sugars | lc | GC/MS of
trimethylsily
derivatives | 1 | | | | \$50-200+ | 4 yr
college | ## SAMPLING PARAMETERS To design a monitoring program requires information about eight sampling parameters shown in Table 14. These eight parameters include information about the appropriate chemical tests-- - Nonspecific Analytical Technique - 2. Specific Analytical Technique - 3. Technique Protocol Listing-- information concerning the ability of the techniques to detect environmental hazards-- - 4. Precision - Threshold Value/Detection Limit - 6. Environmental Standard or Guideline-- and information about the effort required to carry out the tests-- - Cost Per Sample Level of Operator Training Required. # Nonspecific Analytical Technique Each chemical group cited in the table includes a number of individual chemicals, each with its own molecular composition, physical and chemical properties, and toxicity. For some of these groups, a convenient "nonspecific" test exists that will detect the presence of some member of the group in a sample, without being able to identify specific chemicals and their concentrations. These general tests are often an appropriate screening tool, to determine inexpensively whether more detailed sampling is required at a particular sampling station and time. # Specific Analytical Technique Techniques included in this category will detect the presence or absence of specific chemicals within a group. # Technique Protocol Listing Techniques that are routine enough to be standardized are described by analytical protocols. The appropriate protocol references are provided in the matrix. Some of the protocols refer to techniques that are undergoing rapid development, such as GC/MS analysis. These protocols will provide only general guidelines for the analytical procedures, #### SECTION 6 ## GROUNDWATER SAMPLING AND ANALYSIS PROCEDURES #### INTRODUCTION Enhanced oil and gas recovery processes use and create a diversity of chemicals. To monitor the discharge of these chemicals to the environment requires many specific analytical tests and procedures. The parameters associated with these tests have been summarized in a master matrix of water-quality tests for EOR/EGR chemicals. This matrix is displayed in Table 14. It would be desirable to reduce the number of required tests, at least initially, by performing simple screening tests which would indicate whether or not more specific testing is likely to show presence of contaminants. To that end, nonspecific tests are noted in the matrix that can serve as general indicators of the presence of a class of chemicals. Even more general screening tests are not cited in the matrix. Those general tests that might be used include: - Total Organic Carbon The total organic carbon (TOC) test will generally detect all organic carbon compounds. This will include not only polymers but also oils and other oil-based hydrocarbons. Thus, TOC can indicate oil or working-fluid contamination. However, interpretation of TOC data is complicated. - o Total Dissolved Solids (TDS) The measurement of high TDS levels will indicate the presence of brine contamination in a sample. This can be an initial indicator of escape of reinjected or surface-disposed wastewaters. - o pH A sudden change in the pH values occurring at a sampling station can provide an indication of contamination by surfactants, sulfur-containing compounds, and other EOR-related chemicals. TABLE 14 (CONT.) | Cat | micai
egory
EOR Use | Chemical
Group | Nonspecific
Analytical
Technique | Specific
Analytical
Technique | Technique
Protocol
Listing | Precision 1 | Threshold
Value
(detection
limit) | Environmental
Standard or
Guideline | Cost
per
Sample ^a | Level of
Operator
Training
Required | |-----|--------------------------------------|---------------------------|--|-------------------------------------|----------------------------------|-------------|--|---|------------------------------------|--| | | | fluoride
solutions | distillation and
colorimetric test | | ASTM D1179 | Y | 10 ppb | - | \$5-10 | II.S.
tech. | | | | potassium
permanganate | | titration | | e | e | | \$5-10 | II.S.
tech. | | | | sodium
hydroxide | alkalinity
titration | | ASTM D1067- | -1070 | | | \$5-10 | II.S.
tech. | | G. | Electro-
lytes | acids and
bases | pH titration | | ASTM D1067 | -1070 | | | \$5-10 | и.s.
tech. | | | | salts | | ion chroma-
tography | | ġ | q . | | \$15-25 | tech.
or 4 yr
college | | | | sodium
salts | flame atomic absorption | | | s | S | | \$8-15 | 4 yr
college | | 11. | Chemicals
used to | guinoline | | GC/MS | EPA Level 1 | - , | 10 mg
injected | | \$50-200+ | 4 yr
college | | | increase
efficiency
of thermal | sodium
hydroxide | alkalinity
titration | | ASTM D1067 | _ | | | \$5-10 | H.S.
tech. | | | methods | toluene | | GC/MS | EPA Level
recommended | • | 50 mg
injected | | \$50-200+ | 4 yr
college | #### FOOTNOTES: $^{^{}m d}$ Colorimetric titration with methylene blue measures detergent as equivalent ppm of linear alkyl sulfonate. | eFor titration tests in general: | Threshold Values | Precision (1) | |----------------------------------|-----------------------|---------------| | | 10^{-2} M in solu. | 0.01 | | | 10^{-5} M in solu. | 0.1 | | | 10-6 M-10-7 M in solu | 0.2-1.0 | (continued) ^aCost per sample assuming 10 or more similar samples run at one time. Direct probe mass spectrometry achieves poor separation, so specific identification is possible only if individual peaks are not greatly superimposed on one another. CAssuming a large sample is collected and concentrated in the laboratory. fpetroleum sulfonates are considered flammable and
therefore might be hazardous under RCRA. They should also be treated as potential carcinogens. **Shexanol** - marginal for RCRA hazardous rating on the basis of ignitability - aquatic toxicity over 96 hours - LC50 = 10-100 ppm octanol - OSHA limit 100 ppm n-butanol - threshold limit value (skin) - 50 ppm - aquatic toxicity at 96 hours - LC50>1000 ppm - hazardous under RCRA on the basis of ignitability tert-butanol - OSHA limit 100 ppm - hazardous under RCRA on the basis of ignitability iso-butanol - threshold limit value - 100 ppm - hazardous under RCRA on the basis of ignitability sec-butanol - OSHA limit 100 ppm - threshold limit value - 150 ppm - aquatic toxicity at 96 hours - LC50>1000 ppm - hazardous under RCRA on the basis of ignitability cyclohexanol - OSHA limit 50 ppm - threshold limit value - 50 ppm - aquatic toxicity at 95 hours - LC50 = 10-100 ppm hDetection limit - 5 ppb Threshold Values Precision (1) 93.5 48.3 ppb 6 9.61 pph 10 iphenol - OSHA limit (skin) 5 ppm - threshold limit value - 5 ppm - drinking water standard (1962) - <1 ppb ¹35% precision for GC/MS is typical, though experienced operators can obtain somewhat greater precision. kGC/PID is an alternative for preliminary analysis. landling problems can be expected with lighter-gravity hydrocarbons. ^mthreshold value for paper chromatography is significantly higher than other chromatography techniques mentioned here. Similarly, precision is lower. Pglutaraldehyde - threshold value limit - 2 ppm formaldehyde - threshold value limit - 2 ppm quetection limit: low ppb range - up to 50 ppb precision is 1-101. TPlame atomic absorption or graphite-furnace atomic absorption, for example, depending on which metals are being examined. 8 Flame AA detection limit: low ppm to high ppb range - at 1-10 ppm, precision is 1-2%; graphite furnace AA - at 20-100 ppb, precision is 5%. t Inductively coupled argon plasma detection limit: 10-20 ppb - at 100-300 ppb, precision is 3%. "Flame AA - \$8-15/sample, graphite furnace AA - \$12-25/sample. WICAP is a multi-element technique. Several elements can be measured in a single analysis, so for a wide scan it can be cheaper than AA. x2,4,5-trichlorophenol - threshold limit value - low (very toxic) LC50<1 ppm - aquatic toxicity at 96 hours - phenol - OSHA limit - 55 ppm (skin) - threshold limit value - 5 ppm - drinking water standard (1962) - 1 ppb YAt 0.5 ppm, precision is 31. pentachlorophenol EPrecision was 9% at 0.81 ppm. -55- leaving the details of the analysis to the judgment of the chemist. For other sophisticated tests, such as inductively coupled argon plasma, standard protocols are not appropriate, since the technique is too new and complicated. Thus, analytical procedures are standardized only to a limited extent, depending for the validity of the data on the training and experience of the analyst. # Precision The techniques differ in their precision. Precision can be affected by the operator experience and training. # Threshold Value The threshold value of a test usually must be less than or equal to one-half of the applicable environmental guideline for the technique to be a useful monitoring tool. # Environmental Standard or Guideline Environmental standards have not yet been developed for many of the chemicals of concern. (See Beck et al., 1980, and Silvestro et al., 1980). This information gap is a problem in the development of effective monitoring programs. # Cost Per Sample Costs per sample have been developed assuming: a) 1980 prices, 1980 dollars; b) commercial laboratories perform the testing; c) samples are run in batches of at least ten samples. Costs for sample transport are not included. # Level of Operator Training Required The quality of the operators performing the chemical tests is a principal variable controlling the value of monitoring data. Use of inexperienced or undertrained technicians can invalidate monitoring data. Required training levels included in the matrix are the generally recognized minimums. Use of operators with several years of experience can result in better accuracy and consistency. Laboratories should be under the supervision of a Ph.D. chemist or the equivalent. Laboratories should meet appropriate state and EPA laboratory-approval tests. ## APPLICABILITY OF THE TECHNIQUES Sample volume and cross-constituent interference limit the applicability of some of the techniques. Required sample volumes will increase rapidly as desired detection limit decreases, so that no simple values could be entered into the matrix. Presence of a complicated hydrocarbon component in the sample may necessitate multiple solvent separations and extracts to isolate the sample fraction to be analyzed. Presence of a high total-dissolved-solids component can decrease the sensitivity of other tests. ## SECTION 7 ## MONITORING PROGRAM DESIGN CONSIDERATIONS Design of an effective yet realistic groundwater monitoring program is a difficult analytical problem and is impeded by the lack of information about the baseline quality of aquifers and the pollutant pathways that are required in making informed decisions. Generally, it is much easier to design a monitoring program on the basis of a specific type of pollutant event or track to a specific pollutant incident. Unfortunately, often a pollutant event will remain undetected for long periods of time, being noticed only after an aquifer has been subjected to low levels of pollution over several years. Thus, it is necessary to conduct some form of regular monitoring of aquifers that may be affected by an EOR project. ## DESIGN ISSUES The major problems to be addressed in the enhancedrecovery environmental monitoring manual are as follows: - How should monitoring stations be located to ensure an acceptable probability that any discharges from the recovery processes are detected? - What combination of measurements, number of stations, and frequency of sampling provides the best information value per dollar expenditure? - 3. How can all of the various monitoring variables be standardized sufficiently so that different recovery projects can be compared, and so that time-series analysis can be carried out? - 4. Which procedures need to be followed to ensure that the measurements taken constitute meaningful information? # BENEFITS MEASURES The design of an efficient monitoring program requires that the benefits of monitoring be identified. Benefits of EOR groundwater monitoring will include detection and prevention of environmental risks and evaluation of environmental control investments. To each general benefits category (Table 15) a variety of indices and variables can serve as measures to meet that monitoring need. For example, indices of cancer mortality per 1,000,000 individuals may serve as a measure of human health risk. The first step in specifying these benefits is an evaluation of the enhanced-recovery processes and the nature of the pollutant events that may be expected. This first step was carried out as part of the recently completed project performed by MERL (Beck et al., 1980). This tells us the types of risks that a monitoring program should be designed to detect. The next step is to identify measurements that can be made to characterize the pollutant events. An enumeration of measures is provided in Section 6. The next step is to determine range of values, variability and statistical characteristics of contamination events using a body of historical data relative to past pollutant events. This cannot now be adequately carried out due to lack of historical data. 1 A substitute analysis, carried out on an a priori basis, makes up the body of Section 8 of this report. This tells us how intensively the risk indices should be measured to obtain meaningful information. Table 15 summarizes the categories of costs and benefits that enter into the design of an EOR/EGR monitoring program. In addition to the benefits identified in Table 15, there is another purpose for monitoring investments, which does not appear in that list because it is an "intermediate" benefit; that is, it is a tool for the accomplishment of the other purposes. That benefit is the development of Baseline Information. Dollar values and manpower values can easily be placed on the cost elements, as has been done in Section 6. The measures that should be used for the other benefits are less straightforward. Some of the possible uses of a monitoring program and the way to express their benefits are discussed below. The objectives discussed are: (1) baseline data assembly, (2) detection of trends and violations of standards and (3) detection of previously unrecognized pollutants. ¹Historical data that could be used for this work are lacking mainly because (1) few significant pollutant events have been identified and (2) no environmental monitoring programs are in place with EOR or EGR projects. TABLE 15. EOR/EGR ENVIRONMENTAL MONITORING COSTS AND BENEFITS | Costs | Benefits | |----------------------------------|---| | Dollar costs of monitoring tests | Identification of public-health risks | | Manpower costs of monitor-ing | Detection of violations of regulations | | | Identification of ecosystem risks | | | <pre>Identification of other envi- ronmental risks (aesthetics, resource preemption, synergistic effects, intermedia effects)</pre> | | | Identification of previously unrecognized pollutants | | | Detection of degradation trends at levels below currently recognized risk thresholds | | | Detection of chemical or hydro-
carbon losses (economic
benefit) | | | Evaluation of the effective-
ness of control investments | ## DEVELOPMENT OF BASELINE DATA There are two alternate strategies for the development of a baseline for EOR/EGR environmental studies. One is to evaluate environmental insults on a site-specific basis; the other is to look at
the national or regional picture. To some extent, both must be done. Environmental control of EOR/EGR activities merits significant attention if the potential overall impacts are significant, compared with other energy alternatives. Also, violations of regulations at any site cannot be ignored. Regulatory agencies -- i.e., those of the DOE, EPA, and California Air Quality Control Board -- will mainly require regional and national data to evaluate the effectiveness of their programs. Operators will only have use for an approach applicable to their own specific projects. Each approach will have different statistical and information requirements. # Regional Approach The regional approach requires the development of average values and spatial and temporal variabilities for a relatively small number of key stations. The key stations are selected to represent the range of conditions relevant to the technology and medium of interest. The conditions that need to be represented are as follows: Geological characteristics Connate-water chemistry Aguifer characteristics Types of disposal formations Technology options Age of field operations Generally, a minimum number of observations will be required to characterize each condition, depending on the variability of the parameter being considered. This minimum number can be achieved by some combination of repeat observations at a station and synoptic measurements at several stations. Once the basic statistics have been statistically characterized, additional stations or observations will provide minimal informational benefit. # Site-Specific Approach The site-specific approach involves investigation of possible routes of contamination and directions of contaminant flow. The approach includes reservoir and aquifer dynamics. A synoptic data set covering the area influenced by the project is required; a time series adequate to characterize local patterns is also required for several key stations. Baseline data gathering should be kept to the minimum required to characterize levels of indicator parameters. Without specific cause for carrying out detailed monitoring at specific stations, large bodies of useless data could easily be assembled. ## DETECTION OF TRENDS AND VIOLATION OF STANDARDS Violations of regulations are usually measured as frequency of observations exceeding a reference level. The statistics that govern trends in frequency of occurrences of a condition are different from the statistics that govern trends in annual means. No reference levels (i.e., standards or criteria) currently exist for most of the chemicals identified in Table 13 and Appendix A. The lack of firm reference criteria makes the use of these benefits measures difficult. Thus, development of usable reference values should be undertaken by the monitoring agencies. The status of reference values is as follows: Public-Health Risk. Drinking-water standards and water-quality criteria exist. However, these standards do not cover most of the organics relevant to EOR/EGR. The NAS (1977) lists of suspected carcinogens came closest to considering the relevant variables. U.S. DOE research is currently under way on this topic. Air-quality standards exist, but these standards do not cover the trace organics. Reinjection, Subsurface, Waste-Injection Regulations do not specify quality criteria. RCRA. Guidelines for drilling muds and oilfield brines are currently being developed by the U.S. EPA. Ecosystem Risks. No guidelines exist relative to subsurface waters. Water-quality criteria cover few of the relevant chemicals. Visibility criteria exist. Other Environmental Risks are difficult to quantify. # IDENTIFICATION OF PREVIOUSLY UNRECOGNIZED POLLUTANTS A monitoring program that is intended to identify previously unrecognized pollutants involves broad-based measurements with low expectation for informational benefits. Indices of the informational value of such a monitoring plan include: - 1. Classes of chemicals measured: A monitoring program is beneficial to the extent that it provides measurements of a wide range of chemicals: detection of presence/ absence is the main criterion. - 2. Media sampled: A monitoring program is beneficial to the extent that it provides a scan of the range of possibly polluted media with a spatial coverage of each medium. - 3. Temporal Sampling: A monitoring program is beneficial to the extent that it can detect pollutants that may be subject to irregular occurrence at sampling stations. A suitable measure of of the potential informational benefits of a program designed to screen for new pollutants would be of the following form: $$I = F_1(C)^{w_1} (MN)^{w_2} (f)^{w_3}$$ where $w_1 \gg w_2 + w_3$ - I = index of likelihood of detecting previously unrecognized pollutants - F1(C) = index of the classes of chemicals measured - M = number of aquifers sampled (of total aquifers bodies impacted) - N = average number of samples per aquifer - f = average frequency of sampling per station w1,w2,w3 = weighting factors for the three indices. The best monitoring strategy will yield a maximum value of I within a given budgetary constraint. # DETECTION OF CHEMICAL OR HYDROCARBON LOSSES Some monitoring strategies screen for potential pollutant events by monitoring chemical and/or hydrocarbon losses from the oil reservoir. These strategies include monitoring of well pressure, monitoring of movements of tracer chemicals, and development of data for periodic mass-balance accounting. Benefits of these monitoring activities may be measured as the dollar savings caused by reduced-volume consumption of chemicals and increased recovery of oil or gas. Estimated savings are calculated in terms of a site-by-site assessment of risks of losses that are usually calculated during the project engineering; or they can be calculated generally, as in the 1976 EPA study (Braxton et al., 1976). # EVALUATION OF THE EFFECTIVENESS OF CONTROL INVESTMENTS Monitoring programs to evaluate effectiveness of control investments will compare the performance of controls with regulating standards and/or design criteria. This will involve the statistical issues discussed above. Making comparisons requires pairs of observations "upstream" and "downstream" of controls before and after their application. For controls aimed at maintenance of groundwater quality, "upgradient" and "downgradient" pairs may not be easy to establish, and groups of stations may be required to define the "up" and "down" gradient conditions. # POLLUTANT INDICATORS Enhanced-recovery activities use a wide variety of chemicals. Comprehensive monitoring for each potential pollutant (including primary pollutants, degradation products, and synergistic pairs) will require extensive budgetary commitments. The measurement of indicator parameters rather than specific chemicals provides less detailed and less precise information; but it is a more certain way of obtaining useful returns for a given level of investment. Various indicators that might be used to detect relevant pollutants are as follows: 1. Total Organic Carbon. Total organic carbon provides a measure of the presence of all chemicals soluble in a given solvent, such as methylene chloride. Monitoring TOC in the vicinity of EOR projects can be expected to detect the presence of organic polymers, organic biocides, hydrocarbons, and miscellaneous other - organic additives used in oil operations. The TOC measure could be used as a screening tool; if adverse trends are observed, then further, more specific analytical tests would be triggered. - 2. Methylene Blue Active Substances. The MBA test quantifies the presence of methylene blue active chemicals, which mainly include a large class of surfactants. Monitoring MBA in the vicinity of EOR projects can be expected to detect the presence of surfactants. The MBA test is a general screening tool, aimed at a more restricted list of pollutants than the first test. - 3. Conductivity. The conductivity test is a surrogate measure to determine the general presence of salts. The measurement of conductivity in the vicinity of EOR/EGR projects can serve as a screening tool to detect the presence of brines in water bodies. - 4. Reservoir Pressure. The pressure maintained within the oil-bearing formation provides a monitor on escape of fluids away from the intended pathways. These monitoring activities are usually carried out as part of good reservoir engineering practices. #### SECTION 8 # PLACEMENT OF MONITORING STATIONS AND FREQUENCY OF SAMPLING #### INTRODUCTION This section adopts two separate approaches for determining appropriate placement and sampling-frequency designs for underground monitoring stations. The first method applies to detection systems, or systems designed to monitor before and just after a pollutant event occurs. The second method applies to event-monitoring systems that are designed to monitor the progress or extent of a contaminant plume. While detection-system monitoring stations must be operational before the event, an event-monitoring methodology is likely to be applied after the event to determine where to drill new wells or take above-ground measurements and how frequently to do so. The following outlines the three subsections below that address issues of sampling frequency and station placement: - 1. The first section discusses the differences in emphasis between systems designed before and after the pollutant event has occurred. - The second section discusses the proposed methodology for designing a pollution-event detection system. - 3. The third section discusses the methodology for monitoring in response to pollutant events and the equations for the chemical-fate modeling of water-miscible and -immiscible pollutants in groundwater. ## BEFORE VS. AFTER A POLLUTANT EVENT The considerations affecting spatial placement of monitoring stations are different before and after a pollutant event has occurred. Before a pollutant event occurs, the
emphasis is on early detection leading to monitoring for contamination close to possible sources, whereas after an event the emphasis is on determining the extent of contamination, which may require monitoring far from the source. Similarly, for detection capability the density of monitoring stations should be high, whereas for delineating the extent of contamination the stations should be more widely spaced. For these reasons, the design of a detection and an event-monitoring system have only a weak linkage. As a detection system requires greater accuracy, higher sampling frequencies, and fewer stations than an event-monitoring system, data collection by well samples is appropriate. For an event system, however, less expensive methods will suffice. This is not to say, of course, that an event-monitoring system should not use detection techniques, particularly if there are water wells in the field that can easily be used for monitoring. The point is that monitoring techniques are likely to be more cost-effective than drilling new wells. The use of less expensive data-collection techniques for event-monitoring systems should be more than compensated for by a program of computer-based miscible or immiscible transport models. As it is doubtful whether these models can be adequately calibrated without a pollutant event, they play a less prominent role in "detection" systems. Chemical-fate mathematical models fall into two categories: miscible and immiscible pollutant models. While brines and biocides are soluble in water, oil and surfactants are not. Briefly, the latter (immiscible case) equations must be written for the movement of both the water and nonwater phases, while in the former (miscible case) an equation for transport in the water phase only is developed. ## DESIGN OF A POLLUTION-EVENT DETECTION SYSTEM The design of a detection system has two phases: the first is a "baseline" analysis, characterizing TDS, BOD, organic-carbon, etc., and other levels before an event, and the second phase is the design of the monitoring system itself. The purpose of the first phase is to take out all "trends" or explainable variations in groundwater quality, so that residual variation is uncorrelated (a white noise). Seasonal trends in groundwater quality have been noted frequently in the literature; other possible trends include a straight-line time dependence, correlation among levels of chemical constituents, correlations among nearby wells, and relations of concentrations to the level of the groundwater table and volume of water pumped. Once all trends have been removed, the standard deviation of the residuals is taken to serve as an indication of the reliability of sampling. A well with a standard error of σ on a given pollutant measure would yield a standard deviation of σ/\sqrt{n} if sampling results were averaged over n time periods. The second phase of monitoring station design takes as input the expected value of an indicator at a given time, $\mu(t)$, and the calculated standard deviation σ . These parameters are used to set up threshold levels for detection; as only upper thresholds are likely to be useful, a value of $\mu + (S\sigma/\sqrt{n})$ represents the threshold level, where S = a factor between 2 and 4. The value selected will reflect a judgement on the importance of early detection and the degree of inconvenience you wish to bear from false alarms due to random variation. The following outlines the aspects of detection systems to be discussed in the next few pages: - A. The model to be used for determining spatial arrangement and sampling frequency, its limitations and data requirements. - B. Issues of detection power. - C. Formulas for spacing and frequency of monitoring. - D. Refinements to the model. ### A. The Model The subsurface dispersion model equations developed in Appendix B are based on a second-order, linear differential equation which depicts underground convection-diffusion phenomena. This analysis assumes that aquifer flow is constant in direction and magnitude and also that underground diffusion properties are uniform in the region of the spill. Since detection monitoring stations are to be placed close together, each covering only a small zone, variations in flow and diffusion may be neglected without seriously affecting results. The purpose of the detection monitoring system is to detect contamination as soon as possible. The model permits prediction of the length of time, to, required to detect a leak depending upon values of spill size and concentration, spacing of stations, groundwater flow, local diffusion rates and the time interval between samples. Because the concentration profile could range from an initial burst to a slow leak, a worst-case approach is adopted. An initial-burst leak that quickly damps out is the hardest to detect. Consequently, the solutions for monitoring system design drawn from the model will be fitted to the detection of this case. # Data Requirements-- The parameters of the model are given in Table 16. It is seen that considerable geological and production information is needed to specify the model parameters. However, as detection stations are likely to be placed close to sources and as geological and production information should be available for existing wells, collection of necessary data should not require additional geological measurements. The concentration of a pollutant at a given point in space C(x,y,t) is illustrated as a function of time and model parameters in Figure 9. The x-coordinate signifies the direction of aquifer flows and the y-coordinate, its perpendicular in the horizontal plane. TABLE 16. MODEL PARAMETERS | Parameter | Physical measurements that must be made to determine parameter | |------------------------------------|--| | V - velocity of groundwater motion | Transmissibility, level of groundwater table near pollutant surface | | D - diffusion coefficient | Pollutant mobility; for immiscible fluids, water saturation viscosity; porosity; permeability of area near source | | P - level of initial burst | In an injection well, volume of fluids injected per second; or in a producing well, volume of produced fluids per second | Figure 9. Concentration as a function of time for a groundwater sampling well 500 m downstream from a burst leak source; Groundwater Velocity=.01 cm/sec; Dispersion Rate=5 times groundwater velocity. Example chosen is a sand aquifer with relatively fast transport. ## Limitations-- It should be stressed that while the modeling developed in equations B-1, -2, -3 and -4 of Appendix B and illustrated in Figures 10 and 11 is inadequate for the modeling of pollutant fates to be conducted in an event-monitoring system, it gives considerable insight into considerations for detection-system design. The model does not take into account possible variations in permeability and porosity nor, more seriously, variations in directions or magnitude of groundwater flow. As is shown in Subsection D below, once an understanding of the basic forces influencing system design is achieved, solutions to these objections will suggest themselves. # B. Detection Power As has been mentioned in the introduction, baseline sampling provides us with an expected value for a measured variable and a standard deviation. Levels more than $S\sigma/\sqrt{n}$ above the baseline mean μ are cause for sounding an alarm, where n is the number of samples averaged for the purposed of reducing false alarms. The approach taken in the following sections is to design a system that will be likely to detect levels above the mean of $S\sigma$ or greater, within a time of t_0 after the event, using only one sample. An added benefit is that levels of $S\sigma/\sqrt{n}$ or greater may be detected by averaging over n samples. As a result, a graph of the minimum deviation detectable within a given period after the event, with confidence factor S, would plot $S\sigma/\sqrt{n}\Delta t$ versus $n\Delta t$, where Δt is the sampling interval. # C. Derivation of Spatial and Frequency Relations The progress of a contamination plume will resemble Figure 12. As can be seen, the "center of gravity" of the plume progresses at a speed of V in the x direction, while the width of the plume in the y direction is proportional to the dispersion coefficient D. Equation B-4, which generated the plots in Figure 12, is reproduced below. Figure 10. Spacing of sampling stations as a function of spill volume and dispersion rate, D. Figure 11. Sampling frequency as a function of spill volume and dispersion rate, D. Figure 12. Progression of burst leak; dispersion rate = 5 times groundwater velocity. $$C(x,y,t) = \frac{p}{(2\pi)^2 Dt} e^{-[(x-Vt)^2 + y^2]/2Dt}$$ (B-4) Our goals in detection-system design are: - 1. To detect a minimum concentration above baseline of $S\sigma$ in one sample. - 2. To do so before time to. As was shown in Figure 9, a principal problem in accomplishing these objectives is inadequate density of monitoring stations, so that contaminant plumes "slip through." If we can calculate the width of the contaminant plume in the x and y directions at time to, and we space monitoring at one-half this width, our problem is solved. Based on the derivation of equations B-5 to B-10 in Appendix B, an initial array of monitoring stations, suitable for delimiting the contaminant plume at time $t_{\rm O}$, may be developed. Table 17 gives station locations and sampling frequencies. Figures 10 and 11 illustrate the variations in locations and frequencies as a function of spill volume and diffusion rate for a set of hypothetical conditions. Consult Aris (1978) for background information. # D. Justification of Results It is important to check whether the results we have developed agree with intuition. Let us consider the formula
for the x spacing, $$\Delta x = 1/2 \sqrt{2WDt - y^2}$$ (B-8) W is the parameter that represents the accuracy of detection; as C_0 , the minimum concentration detectable, decreases, W increases, although slowly. Because of this increased accuracy, stations may be placed farther apart, and Δx increases. As y increases, and we get farther from the source, stations must be placed closer together. This is because the plume becomes narrower in the x direction as y increases. Beyond $y^2 = 2WDt_0$, stations become useless, as contaminant levels are undetectable. TABLE 17. STATION LOCATIONS AND SAMPLING FREQUENCIES (See Fig. B-1 on pg. 127) | Station Location | Sampling Interval | |---|--| | (Vt _o , 0) | $\frac{1}{v^2}\sqrt{4w^2D^2-8vt_0w^2D}$ | | (Vt _o , 1/2√2WDt _o) | $\frac{1}{v^2} \sqrt{4w^2 D^2 - 10v w^2 Dt_0}$ | | $\left(Vt_{o}, -1/2\sqrt{2WDt_{o}}\right)$ | $\frac{1}{v^2}\sqrt{4w^2D^2-10v\ w^2Dt_0}$ | | $\left(Vt_{o} + \sqrt{2WDt_{o}}, 0\right)$ | $\frac{1}{v^2} \sqrt{4w^2 D^2 - 8VWD [Vt_0 + 1/2 2WDt_0]}$ | | $\left(Vt_{o}^{-1/2}\sqrt{2WDt_{o}},0\right)$ | $\frac{1}{V^2}\sqrt{4W^2D^2-8VWD} [Vt_0-1/2 2WDt_0]$ | The formula for y spacing may be similarly interpreted. For values of x such that $(x-Vt_0)^2 > 2WDt_0$, stations become useless. From another point of view, for values of t such that the equality no longer holds, sampling stations at point x with y > Δy become useless. Thus, for monitoring of a burst leak, stations have a finite useful life. The formula for Δt is seen to decrease in V^2 , and to increase in D and W. This is intuitively correct, as quicker sampling is required to "catch" events in quicker flowing aquifers. As accuracy increases, aquifers need not be sampled so often. #### MONITORING IN RESPONSE TO POLLUTANT EVENTS Enhanced recovery groundwater pollutant events will involve diverse pollutant-transport routes. Contamination may occur as a result of well-casing leaks, spills of chemicals or oils in holding tanks, or communication between subsurface formations, for example. Each pollutant event will require a unique detection and monitoring program, in which sampling stations are selected to conform with the expected speed and direction of travel of the pollutants, sampling intervals conform to the expected rate of degradation of the pollutant, and analytical procedures are selected according to the chemical nature of the pollutant. This discussion presents an overview of the transport models that can be used in the design of a sampling program to track a pollutant event. # Information Needs The detection of groundwater pollutant events should not be a statistical question. That is to say, chemical tests should be chosen so as to delimit very clearly between pollutant events and normal circumstances, such that it is unnecessary to filter out "noise." To determine which chemical tests should be performed to detect EOR chemicals for accidents at site, it is important to collect the following information: - o A table of "likely" concentration levels of EOR chemicals in every EOR process in injected and produced waters, in addition to levels in the reservoir formation. - o A table of contamination scenarios, listing for each scenario the groups of pollutants that are likely to be released together, concentration estimates, and relative mobilities. For example, a leaky injection well will result in pollution by EOR chemicals at full strength, but little brine or oil contamination; fractures in the formation will result in higher levels of brine and oil and less of EOR chemicals. Brine contamination travels much more quickly than polymer does. - o A summary of the relevant EOR chemical degradation processes and by-products. - o A table of "likely" background values for TDS, BOD, TOC, Methylene Blue Active Substances, etc., in the local aquifers. The above information will allow one to discern which chemical tests have high detection power for a particular pollutant event. It is important to realize that once this information is assembled and tests are selected for the monitoring program, little attention will have to be paid to the collection of baseline data. # Classing EOR Pollutants According to Physical Properties Surfactants and polymers are used in enhanced oil recovery because they decrease the mobility of injected water (and therefore the rate of flow through porous rock), thereby better matching the mobility of injected fluids with that of the reservoir oil. Because of the alteration in fluid properties brought about by even the small concentrations of polymers and surfactants in conventional water, models of contaminant transport in aquifers are inappropriate for modeling pollutant events involving these chemicals. Conventional models of miscible transport, such as those developed by Pinder (Bredehoeft and Pinder, 1973; Gray and Pinder, 1976; Bender et al.) can be applied to brine and biocide contamination. A summary of the classes of models (miscible, immiscible, fluid-altering) is provided in Table 18. TABLE 18. POLLUTANTS AND CLASSES OF TRANSPORT MODELS | Classes
of Models | Miscible | Immiscible | Fluid-Altering | |----------------------|----------|------------|----------------| | Pollutants | Biocides | Oil | Polymers | | | Brines | | Surfactants | It is important to realize that these models may be combined to model any combination of pollutants escaping together or separately. In the next few pages, the following information will be given for each of these models: - 1) A summary and explanation of the mathematical equations - 2) References for computer codes, numerical solutions, and in-depth explanations - 3) A summary of the data necessary to operate the models # Overview of the Equations From a physical perspective, all the models to be discussed are derived from three equations: those of (1) mass conservation, (2) Darcy's law, and (3) convection-diffusion. Mass conservation is a physical law, while Darcy's law is an empirically verified principle (not unlike Ohm's law); the convection-diffusion equation resembles a mathematical model, as it combines several diffusion mechanisms in one equation. # Definition of Terms The <u>effective porosity</u> maximum $\phi_e(x)$ of porous rock is defined as the fraction of rock volume that may be filled by a fluid. Only connected pores contribute to effective porosity. The pores may be filled wholly or partially by fluids. In an oil-bearing formation, these would be brine and oil; in an aquifer, water. The saturation S(x) with respect to a given fluid is defined as the fraction of available pore space occupied by the fluid at point X. The capillary pressure Pc is defined as the total pressure within the pores due to all fluids. The relative permeability k_{ri} is a function of the saturations of other fluids present in the pores, which ranges from 0 to 1. It must be determined experimentally from cores. # Immiscible Flow Equations ## Overview-- To model the flow of immiscible fluids in porous media (oil in water or water in oil), two mass-conservation and Darcy's-law equations are used, one of each for the miscible and immiscible phases. The equations are coupled by relations between the pressure and saturations of the wetting and nonwetting phases. It is important to remember that there are only two free variables in the equations. These may be thought of as $S_{\rm W}$, the water saturation, and $P_{\rm W}$, the pressure due to water. These two variables are determined by two partial differential equations. The equations are developed in Appendix C. Equations C-6 and C-7 are combined mass-conservation and Darcy's-law equations; equation C-9 says that between the wetting and nonwetting phases, all available pore space is filled. Equation C-8 states that the capillary pressure is a function of the water and nonwater saturations, and that the water and nonwater pressures contribute to it with opposing signs. This has been experimentally verified. Together, equations C-6 to C-9 make up two equations in two unknowns. #### Uses -- Equations C-6 to C-9 are used to model oil pollution of aquifers. Solving the equations gives the water saturation in the formation, which can be used as an element in a miscible-flow equation if there are pollutants dissolved in the water. #### Data Needs-- A summary of the parameters that need to be determined to specify the model is given in Table 19. Of all the parameters, q is the most difficult to determine. ### References-- The book by Peaceman (1977) contains a complete explanation of the immiscible-flow equations. TABLE 19. DATA NEEDS FOR IMMISCIBLE-FLOW MODEL | Parameter | How Determined | |---|--| | <pre>a (thickness of formation)</pre> | Geologic maps and cores | | D (depth of formation) | Geologic maps and cores | | P _C (S _w) (capillary pressure) | Determined experimentally from cores | | $\kappa_{rw}(S_w)$ (relative permeability) | Determined experimentally from cores | | q(x) (source or sink term) | Must identify sources of contamination (fractures, bad wells, etc.), from geologic and hydrologic maps and pressure test cores | | <pre>\$\phi_e\$ (effective porosity)</pre> | Determined experimentally from cores | # Miscible-Flow Equations #### Overview-- The miscible-flow models couple one mass-conservation-Darcy's-law equation with a convection-diffusion equation. The mass-conservation-Darcy's-law equation is used to establish the distribution of groundwater velocity within the aquifer, and the water saturation. These two variables are then used as input to the convection-diffusion equation that models the concentration of pollutant within the ground-water. It is important to realize
that the miscible-flow equations assume that water mobility and density are constant—that is, that increasing concentrations of pollutant do not change these values. This assumption does not hold true for surfactant and polymer pollutants. The equations are developed in Appendix C. These relations must be empirically determined for the polymers and surfactants under consideration. The result is that equations C-10 (Darcy's Law equation) and C-13 (convection-diffusion equation) must now be solved simultaneously instead of independently. The mobility effects of equations C-14 and C-15 are likely to be important, as the presence of polymer in groundwater will slow its movement through rock. It must be realized that this effect may well be permanent; i.e., groundwater flow after a pollutant event is likely to be slower than before the event, even after polymer levels have subsided. This is because polymer clogs rock pores, decreasing permeability. This is the essence of equation C-14. ### Uses -- Equations C-10 to C-13 are used to model brine and biocide pollution of aquifers. With equations C-14 and C-15 added, polymer and surfactant pollutant events may be modeled. ### Data Needs-- A summary of the parameters that need to be determined to specify the model are given in Table 20. #### References-- The book by Collins (1976) describes the miscible-flow model, including polymer-mobility effects. # Fluid Altering Equations Where the pollutant is polymer or surfactant, equations C-14 and C-15 must be added to account for changing water mobility and density. Data are obtained from laboratory flooding simulations employing the polymer or surfactant. TABLE 20. DATA NEEDS FOR MISCIBLE-FLOW MODEL | Parameter | How Determined | |---|--------------------------------------| | Normal Case | | | a (thickness) | Geologic maps and cores | | D (depth of formation) | Geologic maps and cores | | P _C (S _w) (capillary pressure) | Determined experimentally from cores | | κ (permeability) | Determined experimentally from cores | | μ (viscosity of groundwater) | Water samples | | <pre>\$\rightarrow{e}\$ (effective porosity)</pre> | Cores | | Sw (water saturation) | Hydrologic maps and cores | | Polymer and Surfactant Case | | | <pre>κ(c) permeability</pre> | Experimentally from cores | | μ(c) (viscosity of ground-
water) | Viscometer | #### SECTION 9 #### BASELINE DATA ON GROUNDWATER QUALITY #### INTRODUCTION To establish a baseline for the groundwater-quality monitoring of EOR projects, data representative of the areas in which present or future EOR activity is taking place are needed. Rather than raw data, the required information is in the form of regional statistics. Such statistics can be used in the assessment of problems at specific oilfields. The steps in the development of useful regional statistics are as follows: - 1. The selection of counties in which groundwatermonitoring data are to be collected. - 2. The display, on 1:500,000 scale hydrologic unit maps, of the spatial placement of monitoring stations within each county. - 3. The selection of a statistic to estimate the "average" groundwater quality within a particular cluster of stations. - 4. The taking out of seasonal and other trends in the selection of a statistic, to produce a residual variance, σ . A discussion of the procedures to be used in each of these steps follows. ### SELECTION OF COUNTIES From the Oil and Gas Journal EOR Annual Report of March 28, 1980, four counties were selected as representative areas of present or future EOR activity for initial tabulation in this report: Osage, Oklahoma Stephens, Texas Wayne, Mississippi Kern, California The USGS National Water Data Exchange (USGS/NWDE) provided a retrieval of the locations and monitoring frequencies of all groundwater monitoring stations in these counties. That information is tabulated in Appendix D. ### DISPLAY OF SPATIAL PLACEMENT The USGS can provide printouts that include latitude and longitude, monitoring frequency, and station ID numbers. From this information, the USGS/NWDE can provide plots of the spatial location of the stations within selected counties. This information can be obtained from the USGS in Reston, Virginia. ### SELECTION OF A STATISTIC The "average" water quality from samples taken at irregular spacings and times (as is likely for the data of concern here) is estimated in a geostatistical procedure known as "kriging." Kriging involves the selection of $\lambda_{\dot{1}}$'s in an estimator of the form: $$\bar{\mu} = \sum_{i=1}^{N} \lambda_{i} W(X_{i}, Yd_{i}, t_{i}),$$ so as to estimate $$\mu = \frac{1}{\lambda} M(X,Y,t^*) dXdY$$ That is, the average concentration of W over the area A at time t*. The characteristics of the kriging estimator are: - unbiasedness under the assumption of W = a constant. - 2. least variance among linear estimators. See the David et al. (1976) reference for "hands-on" use. ### TREND ANALYSIS Groundwater literature indicates that seasonal trends are a possibility. These trends have been observed on several occasions in nonpolluted groundwater and have increased in severity after a pollutant event; that is, these trends may well be better expressed as a percent change from the average rather than as an additive factor. A trial regression might be: $$\mu_{ij} = \overline{\mu}\alpha_{j}\beta_{i} + e_{ij}$$ where μ_{ij} = the kriging estimator in year i, month j. μ = the average value for concentration a; = the month effect $\beta_i = \text{the year effect}$ $e_{ij} = an \ additive \ error \ term (the literature)$ supports the idea that the term is in fact additive). #### SECTION 10 #### RECOMMENDATIONS This report sets up a framework for statistically valid monitoring of enhanced recovery projects. Monitoring conducted in accordance with this framework at geographically separated sites will be comparable for the purposes of evaluating regional and national conditions and trends. However, this report presents only a preliminary outline for groundwater monitoring programs. The following are recommendations for further work needed regarding the assembly of groundwater quality information for enhanced recovery projects: - o Identify Projects That Require Monitoring: Review ongoing and planned EOR, EGR, and tar sands projects. Select those projects that are most likely to impose groundwater quality degradation. Rank the remaining projects according to potential groundwater quality impacts. Obtain a complete prioritized listing of EOR, and tar sands projects in order of need for monitoring. - distribution of EOR, EGR and tar sands projects. Evaluate the regional environmental issues, existing environmental quality and groundwater use. Prioritize regions regarding the need for monitoring. Organize the prioritized listing of project by region. - o Select Trend Monitoring Sample: Develop a statistically based sample of projects, based on compartmentalization of the sample by region and by inferred pollution potential. - o Select Initial Sample: Select a small set of projects for sampling. This initial set of from one to five sites should be selected based on the accessibility of the site, the availability of existing wells to use in the sampling effort, and the anticipated costs of sampling at that site. ^{*}Regions to be defined in terms of oil production areas. - o Develop Sampling Plans for Sample Set: Design site specific sampling plan for the initial set of sites based on the monitoring guidelines presented in this report. These plans should account for the engineering and geological peculiarities, if any, for the selected projects. - O Develop Cooperative Sampling Procedure: Working with the DOE and the industry, the EPA should develop a workable plan for conducting monitoring at the initial sample of stations and on a nationwide basis. - o <u>Training</u>: EPA and DOE should jointly develop training programs for federal, state and industry personnel who will be responsible for carrying out the EOR monitoring programs. In addition to the work recommended for the implementation of a groundwater monitoring program, the following more general activities should be undertaken to complement the topics covered by this report: - Water Usage Monitoring: A program needs to be developed to account for the water usage by EOR and EGR projects. This will need to take the form of monthly tabulations of water usage by projects as compared with unallocated water supplies at that locality. - o Produced Water Disposal Formations: An information base needs to be developed and kept updated regarding the usage of subsurface formations for produced water disposal, and the volumes disposed of at each formation. - Monitoring Programs for Related Technologies: Tar Sands, Heavy Oil Mining. The EPA Las Vegas laboratory has developed detailed protocols for the monitoring of wastewater from oil shale projects (Todd et al., 1976, Slawson, 1979). These protocols, together with this report need to be extended to the tar sands and heavy oil mining technology areas. #### REFERENCES - Aggar, M. A., and Langmuir, D. 1971. "Groundwater Pollution Potential of a Landfill Above a Water Table." Groundwater 9(6), pp. 76-94. - Aris, R. 1978. Mathematical Modelling Techniques, Pitman, San Francisco, 191 pp. - American Petroleum Institute. 1961. History of Petroleum Engineering, API Publication, New York, New York. - Bear, J. 1972. "Dynamics of Fluids in Porous Media." Am. Elsevier Pub. Co., New York, 764 p. - Beck, R. and Pierrehumbert, R.T.D. 1976. <u>Design of Stations for Monitoring Water Quality Trends</u>, U.S. EPA, OPE. - Beck, R., Scriven, T.H.; Lindquist, M.; and Shore, R. 1980. Pollution Assessment of Enhanced Oil and Enhanced Gas Recovery Technologies, U.S. EPA, ORD. - Bender, Scott J.; Pinder, G. F.; and Gay, William F. 1977. "A Comparison of Numerical Approximations to the One-Dimensional Convective-Diffusion
Equation." Water Resources Program, Princeton University. - Booz, Allen, and Hamilton. 1978. "Development of Environmental Guidelines for EOR and EGR Processes." Office of Environmental Activities, Division of Program Control and Support, Department of Energy. - Braxton, C.; Muller, C.; Post, J.; Stephens, R.; and White, J. 1976. Potential Environmental Consequences of Tertiary Oil Recovery. For U.S. Environmental Protection Agency. Report No. PB-260, 646/5GA, 229 pp. - Bredehoeft, J. D., and Pinder, G. F. 1973. "Mass Transport in Flowing Groundwater." Water Resour. Res. V. 9, No. 1, pp. 194-210. - Chang, H.L. 1978. "Polymer Flooding Technology Yesterday, Today, and Tomorrow." <u>Journal of Petroleum</u> Technology:1113-1128. Collins, R. E. 1976. Flow of Fluids Through Porous Materials, Petroleum Pub. Co., Tulsa. David, M. et al. 1976. Advanced Geostatics in the Mining Industry. D. Reidel Publishing Company, Boston, Massachusetts. Donaldson, Erle C. 1978. The Environmental Aspects of Enhanced Oil Recovery. U.S. Department of Energy, Bartlesville Energy Technology Center, internal paper. Everett, Lorne, G.; Schmidt, K.D.; Tinlin, R.M.; and Todd, D.K. 1976. "Monitoring Groundwater Quality: Methods and Costs." EPA/600/4-76/023, General Electric Co., Santa Barbara, California, TEMPO. Fryberger, J. S. 1975. "Arkansas Brine Disposal." In Report 5, Monitoring Groundwater Quality: Illustrative Examples, prepared by G.E. TEMPO for the Environmental Protection Agency (in press). Geraghty, J. J., and Perlmutter, N. M. 1975. "Landfill Leachate Contamination in Milford, Connecticut." In Report 5, Monitoring Groundwater Quality: Illustrative Examples, prepared by G.E. TEMPO for the Environmental Protection Agency (in press). Geraghty, J. J., and Perlmutter, N. M. 1975. "Plating Waste Contamination in Long Island, New York." In report 5, Monitoring Groundwater Quality: Illustrative Examples, prepared by G.E. TEMPO for the Environmental Protection Agency (in press). Gogarty, B.W. 1975. Status of Surfactant or Micellar Methods. Society of Petroleum Engineers Paper No. 5559, AIME. Gray, William G., and Pinder, G. F. 1976. "An Analysis of the Numerical Solution of the Transport Equation." Water Resour. Res. V. 12, No. 3, pp. 547-55. Gunnerson, Charles G. 1966. "Optimizing Sampling Intervals in Tidal Estuaries," <u>Journal of the Sanitary</u> Engineering Division, Proceedings of the American Society of Civil Engineers 92(SA2;April): pp. 103-125. Interstate Oil Compact Commission, (IOCC), 1974. Secondary and Tertiary Oil Recovery Processes. Oklahoma City. Le Grand, H. E. 1972. "Monitoring of Changes in Quality of Groundwater." In Water Quality in a Stressed Environment, ed. by W. A. Pettyjohn, Burgess Pub. Co., pp. 122-29. - Lettenmaier, D.P. 1975. <u>Design of Monitoring Systems</u> for Detection of Trends in Steam Quality, Harris Hydraulics Laboratory, Technical Report #39, University of Washington, Seattle. - Matalas, Nicholas C. 1967. "Optimum Gauging Station Location," presented at IBM Scientific Symposium on Water and Air Resource Management, October 23-25, 1967. - Meyer, C. F. ed., 1973. Polluted Groundwater: <u>Some</u> <u>Effects, Controls and Monitoring</u>. G.E. TEMPO Report prepared for the Environmental Protection Agency, EPA-600/4-73-0016. - Montgomery, H.A.C. 1974. "The Design of Sampling Programmes for Rivers and Effluents," Water Pollution Control (1974): pp. 77-101. - Moore, S.F. 1971. The Application of Linear Filter Theory to the Design and Improvement of Measurement Systems for Aquatic Environments, Ph.D. Thesis, University of California, Davis, California. - National Academy of Sciences. <u>Summary Report: Drinking</u> <u>Water and Health</u>. For U.S. Environmental Protection Agency, <u>Washington</u>, D.C. - O'Banion, K. Environmental Impact Assessment: Enhanced Oil Recovery by Caustic Flood, Long Beach, California. Lawrence Livermore Laboratory, June 5, 1978. - Peaceman, Donald W. 1977. <u>Fundamentals of Numerical</u> Reservoir Simulation, Elsevier Press. - Pimentel, K.D., Stuermer, D.H., and Moody, M.M. 1979. "Sampling Strategies in Groundwater Transport and Fate Studies for <u>In Situ</u> Oil Shale Retorting, paper in <u>Oil Shale Symposium</u>, U.S. EPA, IERL, EPA-600/9-80-022, pp. 286-302. - Pinder, G. F., and Frind, E. O. 1972. "Application of Galerkin's Procedure to Aquifer Analysis." Water Resources Research, 8(1), pp. 108-20. - Prickett, T. A., and Lonnquist, C. G. 1971. <u>Selected</u> Digital Computer Techniques for Groundwater Resource Evaluation. Illinois State Water Survey, Bulletin 55. - Schmidt, K. D. 1975. "Monitoring Groundwater Pollution." Paper presented at the International Conference on Environmental Sensing and Assessment, Las Vegas, Sept. 14-19. - Schumacher, M.M., editor, 1978. <u>Enhanced Oil Recovery:</u> <u>Secondary and Tertiary Methods</u>. Noyes Data Corporation, New Jersey. - Silvestro, E., and Desmarais, A.M. 1980. <u>Toxicity of Chemical Compounds Used for Enhanced Oil Recovery</u>, U.S. DOE, BETC. - Slawson, G.C., Jr. 1979. Groundwater Quality Monitoring of Western Oil Shale Development. U.S. EPA Interagency Energy-Environment Research and Development. EPA-600/7-79-023. - Slawson, G.C., Jr., and McMillian, L.G. 1979. "Ground-water Quality Sampling Approaches for Monitoring Oil Shale Development," paper in Oil Shale Symposium, U.S. EPA IERL, EPA-600/9-80-022, pp. 86-100. - Stollar, R. L., and Roux, P. 1975. "Earth Resistivity Surveys A Method for Defining Groundwater Contamination." Groundwater 13(2), pp. 145-50. - Tinlin, R. M. 1976. "Monitoring Groundwater Quality: Illustrative Examples." EPA/666/4-76/036, General Electric Co., Santa Barbara, California, Ctr. for Advanced Studies. - Todd, D. K.; Tinlin, R.M.; Schmidt, K.D.; and Everett, L.D. 1976. "Monitoring Groundwater Quality: Monitoring Methodology." EPA/666/4-76/026, General Electric Co., Santa Barbara, California, Ctr. for Advanced Studies. - U.S. Department of Energy. 1978. Environmental Development Plan: Enhanced Gas Recovery FY 1977. Washington, D.C. - U.S. Department of Energy. 1980. "Comparing Energy Technology Alternatives from an Environmental Perspective," working paper. - Yare, B. S. 1975. "The Use of a Specialized Drilling and Groundwater Sampling Technique for Delineation of Hexavalent Chromium Contamination in an Unconfined Aquifer, Southern New Jersey Coastal Plain." Groundwater 13(2), pp. 151-54. # APPENDIX A # WORLD OIL'S 1979-80 GUIDE TO DRILLING, WORKOVER AND COMPLETION FLUIDS 1 Reprinted courtesy of World Oil, June 1979. lNote: These are generally oilfield fluids, used in conventional as well as enhanced recovery, many of which are common harmless chemicals. This list is included for completeness. # World Oil's 1979-80 Fluids Guide | 1 | Reco | omin | end | ed f | or T | hes | Sy: | Core sants Per sants | | | | | | | | | | | | | | _ | | | | |-------------|-------------|------------|---------|----------|-------------|------------|--------------|----------------------|-----------|------------|--------------|-----------|-------------|------------|-------------|------------|----------------|------------|---------------------|---------|-----------|--------------|--------------|---------------------|---------------------| | | W | /ate | r-ba: | Lov | e pH | | H | | | 1 | | | 5 | | | | | | | | | بٍ | gents | sants | | | = | | | ater | Waler | Salt Water | reated | Treated | | \$ | Od (Inv | | Mist | FC | ides | | ers | ş | ats | Reducers | Foaming Agents | C Mai. | Shate Control Inhib | Active. | s. Disper | 8.0 | akrum Remove | Weighting Materials | to to the the local | | Fresh Water | Brackish Wa | Sat. Satt | Gyp Tre | Lime Tre | Fresh Water | Low Solids | Water-in-Oil | Oil Mud | Auf. Gas. | Alkalinity | Bactericides | Defoamers | Emulsitiers | Lubricants | Floccutants | Filtrate F | Foaming | Lost Circ. | Shale C | Surface | Thuners | Viscosifiers | Calcium | Weightir | | | Fiuids | : Guide | L | , | | · | ٤ | H | | i i | | | Sales | | | | | | = | | | 훃 | Age | 1880 | . | Ę | 158 | tors | | |---|---|-------------|----------------|-------------|---------|--------------|-------------|-------------|-----------------------|--------|----------------|-------|--------------|-----------|-------------|------------|-------------|-------------------|----------------|-----------------|---------------------|---------------------|--------------------|--------------|------------------|---------------------|----------------------|---| | | | Fresh Water | Brackish Water | Salt Water | Treated | Lime Treated | Fresh Water | Solids | Water-in-Oil (Invert) | fud | Air, Gas, Mist | 1 | Bactericides | Defoamers | Emulsifiers | Lubricants | Floccutants | Filtrate Reducers | Foaming Agents | Lost Circ. Mat. | Shate Control Inhib | Surface Active Agen | Thuners, Dispersan | Viscosifiers | Calcium Removers | Weighting Materials | Corrosion Inhibitors | | | Product Tradename | Description of Material | F. 85 | Drac | Saf | Gyp | Ě | Fres | Low | Š | OH Mud | ¥ | 1 | Bac | Def | Ē | Ę | F. | Ē | Foa | 20 | Sha | Suc | Ē | Zi Si | Š | Š | Ŝ | Available from: | | ACE-BEN | Flocculant and bentonite
Extender | × | | | | | x | × | | | | | | | | | P | | | | | | | S. | | | | American Mud | | ACL
ADOFOAM BF-1 | Organo metallic compound
Brine & freshwater foamer | × | X | X | X | X | X | | | | x | | | | | | | \$ | P | | s | s | ٩ | | | | | CECA
Naico | | ADOMALL
AEROSOL
AD-4 | Bactericide-surfactant
Surface active agent
Oil-soluble fluid-loss additive
for brines | XXX | XXX | X | X | XXX | XXX | x | | | X | | P | | p | | | P | \$ | | • | S
P | | | | | | Naico
Am. Cyanamid
Western | | AFROX
AIRFOAM AP-50
AIRFOAM B | Foaming agents
Freshwater
foamer
Brine & freshwater foamer | × | x | X | | | | | | | X
X | | | | | | ρ | | p
p | s | | s
s | | | | | | Aquaness
Aqua-Flo
Aqua-Flo | | AKTAFLO-E
AKTAFLO-S
ALCOMER 80 | Nonionic emulsifier Nonionic mud surfactant, shale and solids control. Selective flocculant | X
X | X | x | X | x | X
X | X | | | x | | | | P | | P | | | | s | Ş | | | | | | Baroid
Baroid | | ALCOMER 90 | Selective flocculant of low | × | | × | | | | × | | | | - | | | | | P | | | | | | | | _ | _ | | Allied | | ALCOMER 100 | yield drill solids
Clay flocculant | x | x | x | x | x | x | x | | | | | | | | | ρ | | | | | | | | | | | Allied | | ALCOMER 120
ALCOMER 507
ALCOMER 525 | Shale inhibitor
Sodium polyacrylate
Bentonite extender | XXX | x
x | X | | x | X
X | X
X | × | | | | | | | | SSP | P | | | P | | s | ρ | | | | Allied
Allied
Allied | | ALCOMER 72L
ALCOPOL
ALDACIDE | Dispersant, thinner
Surface active agent
Microbiocide | X
X
X | X
X | X
X
X | X
X | X | X | X
X
X | | | | | P | | ρ | | | | s | | · | P | P | | | | | Allied
Allied
Baroid | | ALKA-LIG 007
ALUMINUM STEARATE
ALWATE | Cauticized lignite Aluminum stearate High specific gravity granular powder (4.7 sq) | XXX | X
X
X | X
X | X | X
X | X
X | X | × | × | | | | P | s | | | s | | | | | P | | | ρ | s | American Mud
Most companies
Messina | | AM-9
AM-9 GROUT | Chemical grout
Mixture of acrylic monomers | | | | | | | | | | X | | | | | | | | | p
p | | | | | | | | Am. Cyanamid
Am. Cyanamid | | AMERICAN BAR | w/catalysts
Barite | × | × | x | x | x | x | x | x | x | | | | | | | | | | | | | | | | ρ | | American Mud | | AMERICAN GEL
AMI-TEC | Wyoming bentonite Water base mud corrosion | × | × | × | × | × | × | × | | | × | | | | | | | s | | | | | | P | | | ٩ | American Mud
Milionem | | AMOCO DRILLAID 402 | inhip. Wetting agent for shale-seal, gilsonite & asphaltic materials | | x | x | x | x | x | x | | | | | | | s | s | s | | | | P | P | | | | | | Amoco | | AMOCO DPILLAID 403 | Surface active agent diff. press, sticking | × | x | _ | х | x | x | x | | | | | | | s | P | s | | | | _ | P | | | | _ | | Amoco | | AMOCO ORILLAID 405 | Biodegradable, non-fluorescent
oil substitute | X | X | X | X | X | X | X | x | | | | | | | P | | | | | | s | | | | | | Amoco | | AMOCO DRILLAID 412 | Corrosion inhibitor (Filming amine) | × | X | × | X | X | X | X | | | | | | | | | | | | | | | | | | | 2 | Amoco | | AMOCO DRILLAID 450
AMOCO DRILLAID SPA | Oxygen scavenger,
Sodium polyacrylete fluid loss | X | • <u>X</u> | X | X | X | X | X | | | | | | | | | | P | | | | | | | | | ٩ | Amoco
Amoco | | AMOCO FLO-TREAT | reducer Gel reducing agent—low solids non-dispersed muds | × | X | | | | | x | | | | | | | | | | | | | | | P | | P | | | Атосо | | AMOCO KLA-FREE
AMOCO LO-SOL | Organic biopolymer blend
Sentonite extender & selective | × | X | x | X | x | × | X | | | | | | | P | | , | S | | s | s | | | P | | | | Amoco
Amoco | | AMOCO SELECT-FLOC | flocculant Selective flocculant of low yield drilled solids | x | x | x | | | | X | | | | | | | | | P | | | | | | | | | | | Amaco | | AMPLI-FOAM
ANHIB
ANTI-FOAM B | Gen. purpose foaming agent
Completion fluid inhibitor
Foam inhibitor | × | × | × | x | x. | × | × | | | × | | ٠ | p | | - | | | ρ | | | | | | | | ρ | Milchem
Halliburton
Completion | | ANTIPREX A
APC
APS-1 | Scale inhibitor Nonpolluting lubricant Water external emulsion spacer fluid | X | X
X | X | X | X | ××× | × | × | x | | | | | | P | | s | | | | | - | | ρ | | | Allied
Chemco
Western | | APS-2
AQUAGEL
AQUARI | Water based spacer fluid Wyoming bentonite Polymeric for day free fluids | ××× | X
X | X
X | × | X | × | X
X
X | x | x | | | | | | | | P | | | P | | | S
P | | | | Western
Baroid
Brinadd | | AQUA-TEC | Nonionic blend w/organic amine salt | | | | | | | | | | x | | | | | | | | | | | | _ | - | | | p | Milchem | | ARCOBAN
ARCOBAR | Higher alcohol compound
Barite | x | X | X | X | X | x | x | x | × | | | | P | | | | | | | | | | | | ٩ | | Arnold & Clarke
Arnold & Clarke | | ARCO BLEND | Blended lignosulfonate com- | X | X | × | x | × | x | × | | | | | | | 5 | | | P | | | | | | | | | | Arnold & Clarke | | ARCOCHROME
ARCO CHROME | Chrome lignosulfonate
Chrome lignosulfonate | × | × | X | × | X | X | X. | _ | | | | | | s | | | s
S | | | s
s | | P | | | | | Arnold & Clarke
Deita Mud | | ARCOCHROME MODIFIED
ARCOCLAY
ARCODET | Ferrochrome lignosulfonate
Sub-bentonite
Detergents | X
X | | | x
x | | XXX | X
X | | | | | | | Р | | | P | | | s | P | _ | ρ | | | | Arnold & Clarke
Arnold & Clarke
Arnold & Clarke | | ARCO DMS, DME
ARCO DMS
ARCOFIBER | Non ionic surfactants
Liquid surfactant
Fibrous material | ××× | X
X | X | XXX | XXX | X
X | X
X | × | x | | | | | S | | | s | | p | | p
p | | | | | | Arnoid & Clarke
Deita Mud
Arnoid & Clarke | | | * | | Reco | Omm | end | ed to |
97 TI | resi | Svs | ltem: | | | | | | | | Fur | etic | ກະກ(| As | | | | | | | | |---|--|-------------|----------------|--------------|-------------|--------------|-------------|------------|----------------------|-----------|----------------|----------------------------------|--------------|-----------|-------------|------------|-------------|-------------------|----------------|----------------|---------------------|------------------|-----------------------|--------------|------------------|---------------------|----------------------|---| | World Oil | 's 1979·80 | | ٧ | ater | -085 | ie | · | | O
ba | ii-
se | | dilives | | | | | | | | | | | | | | | | - | | | Guide | | Lov | v p∺ | | H | gn
H | | erl) | | | untrol Ad | | | | | | 8 | | | μĐ | Agents | sants | | \$18 | ials | lors | | | | | Fresh Waler | Brackish Water | 1 Sall Water | Gyp Treated | Lime Treated | Fresh Waler | Low Solids | Water in Od (Invert) | Oil Mud | Air. Gas. Mist | Athabinity, pH Control Additives | Bactericides | Defoamers | Emulsitiers | Lubricants | Flocculants | Filtrale Reducers | Foaming Agents | Lost Circ. Mat | Shale Control Inhib | Surface Active A | Thinners, Dispersants | Viscosifiers | Calcium Removers | Weighting Malerials | Corrosion Libititors | | | Product Tradename | Description of Material | <u>.</u> | ě | Sal | Ó | ا ت | ŭ | × | 3 | ŏ | ₹ | ₹ | ã | ă | ŭ | 13 | Ē. |] Œ | 2 | 2 | Š | ์ | = | > | ਹੈ | ≥ | ŏ | Available from | | ARCO FLOC
ARCO FOS
ARCO FREE | Flocculating agent Sodium tetraphosphate Oil soluble surfactants | × | X | | x | X | х
 | <u>x</u> | | | | | | | | | <u>.</u> | | | | | ρ | - | | | | | Arnold & Clarke
Arnold & Clarke
Arnold & Clarke | | ARCO GEL
APCOLIG
ARCOLOID | Bentonite
Mined lignite
Pregelatinized starch | × | X
X
X | × | X
X | X
X | ××× | X
X | | | | | | | s | | | S
P | | | | | P | P | | | | Arnold & Clarke
Arnold & Clarke
Arnold & Clarke | | APCOLUBE
ARCOMERSE
ARCOMICA F | Extreme pressure-lubricants Sodium alkylaryl sulfonate Ground mica, fine | X
X
X | X
X
X | X
X
X | X
X
X | X
X
X | X
X
X | X | x. | × | | | | P | | ρ | | | | P | | | _ | | | | | Arnoid & Clarke
Arnoid & Clarke
Arnoid & Clarke | | ARCOMICA C
ARCOMUL | Ground mice, coarse
Primary emulsifier for invertinuds | X | . x | × | x | × | × | X | X | × | | | | | ρ | | | | | Р | | | | | | | | Arnoid & Clarke
Arnoid & Clarke | | ARCOPARA
ARCO PERMALOID
ARCO PLUG: F.M.C | Paratormaldenyde
Non-termenting starch
Ground Walnut Shells | × | ××× | ××× | ××× | × | × | × | × | x | | | P | | | | | Ρ | | P | | | | | | | | Arnoid & Clarke
Arnoid & Clarke
Arnoid & Glarke | | ARCOSEAL
ARCOSOL
ARCOTAN | Cellophane
Non-ionic anionic emulsifier
Quebracho compound | ××× | X
X | × | X | ××× | ××× | ××× | × | X | | | | | Р | | | ۰ | | ρ | | | p | | | | | Arnoid & Clarke
Arnoid & Clarke
Arnoid & Clarke | | ARCOTONE
ARCOTRIM
ARCOTROL | Causticized lignite Blend of surfactants Stabilizer for oil muds | × | X | × | x | × | × | × | × | x | | | | | p | ρ | | P | | | | | P | | | - | | Arnold & Clarke
Arnold & Clarke
Arnold & Clarke | | - ARCO VAN | Hi-temperature stabilizer for | _ | | | | | | | х | x | | | _ | | Р | | | | | | | | | | | | | Arnold & Clarke | | ARCO VIS | oil muds Viscosity and gel builder for oil muds | | | | | | | | | X | | | | | | | | | | | | | | P | | | | Arnold & Clarke | | ARCOWATE | Calcium carbonate | | | | | | | | X | × | | | _ | | | | | | | | | | | | | P | | Arnold & Clarke | | ARCOWOOL
ARGISIL 5 6
ASBENIT EXTRA | Fibrous mineral wool Attapuigite clay or sepidire Crysotyli | x
x | ××× | ××× | | | x
x | | | | | | | | | | | ٩ | | P
 | | | | p | | | | Arnoid & Clarke
S.F.D B.
UBM | | ASBESTOS LC
ASBESTOS SL | Fine Aspestos
Fibrous aspestos
Inorganic viscosifier | × | X
X | X
X | X
X | ××× | ××× | X
X | | | | | | | | | | | | PPS | | | | S
P | | | | UBM
Drillsate
Drillsafe | | ASP-222
ASPHA.GEL
CONCENTRATE
ASPHA.MUL
CONCENTRATE | Corrosion inhibitor
Gelatinous casing
recovery pack
Basic emulsitier | X | x | x | x | x | X. | X | x | x
x | X | | | P | P | | | | | | | | | | | | P | Visco
Mizell
Mizell | | AT-GEL
ATLOSOL
ATLOSOL | Attapuigite Anionic-nonionic surfactant, emulsitier Low solids emulsifier | × | ××× | x | X | X | × | X | | | | | | | P | | | | | s | | P | | ρ | - | | 5 | Ordisate
Milchem
Aquaness | | ATLOSOL S
ATLOSOL S
ATTAPULGUS DRILLING
CLAY 40 | Low solids brine emulsifier Nonionic emulsifier Attapulgite Clay for for oil mud
 | X | | | <u>-</u> | | | × | x | | | | | P | | | | | | | P | | P | - | | s | Aquaness
Milchem
Engelhard | | ATTAPULGUS DRILLING
CLAY 150
ATTAPULGUS DRILLING
FLUID | Attapulgite Clay Predispersed attapulgite clay liquid | | × | x
x | x
x | | | x
x | | | | | _ | | | | | | | | - | | | P | | | | Engelhard
Engelhard | | BACTIRAM
BACTIRAM 443
BACTIRAM 471 | Bactericide Bactericide (sulfate reducing) Corrosion inhibitor and bactericide | ××× | ××× | ××× | X | X | X | X | | | | | P.
S | - | • | | | | | | | | - | | | | Р | CECA
CECA
CECA | | BACTRON K-22
BACTRON K-31
BACTRON KM-4 | Bactericide
Bactericide
Bactericide | | x
x | X
X
X | x
x | X
X
X | X
X | XXX | × | | × | | P D P | | | | | | | | | | | | | | | Champion
Champion
Champion | | BACTRON KM-S
BACTRON KM-7
BANSLUFF | Sactericide Sactericide for high wt. brine Asphaltic Compound | × | X | × | X
X | X | x
x | XXX | X | x | X | | P | | P | P | | s | | | P | | | | | | | Champion
Champion
Drigmud | | BARABUF
BARACARB | pH buffer for clay free fluids
Acid soluble graded calcium
carbonate | X | X | X | × | × | X | X | | | x | P | | | | | | s | | Ρ | | | | | | p | | Baroid
Baroid | | BARACOR A | Corrosion inhibitor | _ | _ | X | - | | | _ | | | | | s | | | | | | | | | | | | | | Р | Baroid | | BARA DEFOAM 1
BARAFLOC
BARAFOS | Surface active defoamer
Clay flocculant
Sodium tetraphosphate | x
x | × | × | × | × | × | X | | | | s | | P | | | Р | | | | | | P | | s | | | Baroid
Baroid
Baroid | | BARAVIS
BARAZAN | Synthetic cellulose
Suspension agent | X | X | X | X | X | . X | X | | | | | | | p | | | | | | | | | P | | _ | | Baroid
Baroid | | BAR-GAIN
BARITE | High specific gravity weighting agent Or oarytes, offered under many tradenames, native barium sulfate | X | | | x | x | x | x | | x | | | | | | | | | | • | | | | | | P | | Baroid
Most companies | | BARITE MUDBAR
BARITE MUDHEMA
BARIUM CARBONATE | Barium sulphate and barite
Barite and hematite
Barium carbonate | ××× | ××× | X
X
X | X
X
X | X
X
X | ××× | X | X | X | | | | | | | | | | | | | | | p | P | | Edemsarda
Edemsarda
Most companies | | | | | | | | | | | | | | _ | -9 | 8- | | | | | | | | | | | | | | | # World Oil's **Fluids** Product Tradename BASCO 50 BASCO 300 BASCO BEN BASCO BESTOS BASCO CAU-LIG BASCO CELLOPAC BASCO DRILFAS BASCO DRILFLO BASCO DRIFLOC BASCO FIBER BASCO FLAKE BASCO GEL BASCO LIG BASCO LUBE-X BASCO MUD BASCO T BASCO WATE BASCO Y BDO BEN-EX BENGUM BENTOBLOC BENTONE 34 BENTONIL C. BENTONITA VISC. MPL EXTRA BEX BIOHIBIT B-717 BIOTROL BLACK MAGIC BLACK MAGIC SUPERMIX BLACK MAGIC SUPERMIX BLACK MAGIC SUPERMIX-SFT BLACK MAGIC UNIVERSAL BLANOSE CMHEC BLOCK BUSTER BM-NITE BORE-TROL BREAK BRIDGE-SAL Polymer dispersant and sized salt blend BLANOSE BLACK MAGIC PREMIX BIT LUBE BICARBONATE OF SODA BIOMIBIT 8-711 BIOMIBIT 8-712 BASCOIL BASCO PIPE FREE BASCO PLUG BASCO PRESERVATIVE BASCO SALT MUD BASCO SURF BASCO DRILMUL BASCO DRILUBE BASCO FILTER RATE BASCO DEFOAMER BASCO DEFOAMERS BASCO DOUBLE-YIELD | | | Rec | om n | nend | led ! | or T | hes | e Sy | slen | 18 | | _ | | | | | Fun | C110 | กเกตู | As: | | | | | | | | |---|-------------|----------------|-----------------|-------------|--------------|-------------|-------------|-----------------------|-------------|----------------|----------------------|--------------|-----------|-------------|------------|-------------|-------------------|----------------|-----------------|---------------------|------------------|-----------------------|--------------|------------------|---------------------|----------------------|--| | l's 1979-80 | Г | ٧ | ate | r÷ba: | 50 | | Γ | |)ii.
150 | Γ | lives | | | | | | | | | | | | | | | | | | Guide | | LO | » pH | 1 | H | gh | | = | | | pH Control Additives | | | | | | | | | ٩ | Agents | sants | | | els , | 013 | j. | | Description of Material | Fresh Water | Brackish Water | Sat. Salt Water | Gyp Tranted | Lime Treated | Fresh Water | Low Solids | Water-in-Oil (Invert) | Ou Mud | Air. Gas, Mist | Alkalinity, pH Cor | Bactericides | Defoamers | Emulsifiers | Lubricants | Flocculants | Filtrate Reducers | Foaming Agents | Losi Circ. Mai. | Shale Control Inhib | Surface Active A | Thimners, Dispersants | Viscosifiers | Calcium Removers | Weighting Materials | Corrosion Inhibitors | Available from: | | Nonfermenting starch
Chrome lignosulfonate
Clay extender | XXX | X | × | × | X | ××× | ××× | | | <u>-</u> | | | <u> </u> | s | | P | P
S | | | s | | ρ | S | l | . | | Barium
Barium
Barium | | Inorganic viscositier Causticized lignite High molecular weight poly- anionic cellulose polymer | XXX | X
X | ××× | × | X | X
X
X | X | | | x | s | | | s | s | | S
P | | | P | | P | P | | | | Barium
Barium
Barium | | Hi atcohol | x | x | × | | | | _ | | | | | | P | | | | | | | | s | | _ | | | * | Barium
Barium | | Hi yield bentonite | × | | | | | | X | | _ | | | | | - | | | ٠ | - | | | | | P | | | | Barium | | Drilling mud detergent
Ferrochrome lighosulfonate
Clay flocculant | X | X | × | X | × | × | X
X | | | | | | 5 | s
s | | P | s
 | | | | P | P | | | | | Barium
Barium
Barium | | Anionic-nonionic surfactant
Diesel substitute
Asphaltic compound | X
X | X
X | X
X | X
X
X | XXX | X
X
X | X
X
X | | | | | | | P
S | g
P | | s . | | | P | SP | 5 | | | | | Barium
Barium
Barium | | Shredded cane fiber
Fragmented cellophane
Bentonite | X | X
X
X | X
X
X | X
X | X
X
X | X
X
X | X
X | × | × | | | | | | | | P | | P
S | | | | ρ | | | | Barium
Barium
Barium | | Lignite
High pressure lubricant
Sub-bentonite | XXX | X
X
X | X
X | X
X
X | X
X
X | X
X | X
X
X | | | | | | | s | P | | S
P | | | | | P | ρ | | | | Barium
Barium
Barium | | Oil base mud stabilizer Surfactant-mix w/diesel to free pipe Processed nut hulls | x | x
x | x | × | x
x | x
x | X | X
X | X | | | | | | | | P | | P | | | | P | | | | Barium
Barium
Barium | | Starch preservative Attabulgite clay Drilling mud detergent | x | XX | ×× | x | | x
x | x | | | | | P | s | s | | | | | | | P | | P | | | | Barium
Barium
Barium | | Oil mud stabilizer
BArite (barytes)
Oil mud gel additive | × | x | x | × | x | x | x | X
X
X | XXX | | | | | Ρ | | | s | | | | | | S
P | | P | | Barium
Barium
Barium | | Compound chromo . Iignosulfonate Bentonite diesel oil slurry Polymer, flocculant and clay extender | | x | × | x | × | x
x | × | | | | | | | | | P | P | | P | s | | P | P | | | | Avebene &
CECA
Halliburton
ROSI and
ECCO | | Gum-bentonite-diesel oil
Time setting compound
Ogranophilic clay | x | x | x | × | x | × | x | x | × | x | | | | | | | | | P | | | | ρ | | | | Malliburton
CECA
CECA | | Bentonite
Extreme high yielding | X | X | x | X | X | x | X | | x | | | | | P | | | P
S | | | | | | P | _ | | | S.F.D.B
UBM | | Polymeric clay free fluids | X | X | × | | | | X | | | | | | | | | | | | | | | | P | | | | Brinadd | | Sodium bicarbonate
Biocide
Biocide | × | X
X
X | ××× | x
x | .х | × | X
X | × | | × | 5 | P | | | | | | | | | | | | P | s | s | Most companies
C-E Natco
C-E Natco | | Biocide
Liquid blocide | x | × | X | x | X | x | X | x | | x | | P | | | | | | | | | | | | | | | C-E Natco
Montello and
ECCO | | Extreme pressure lubricant | × | X | × | X | X | X | × | | | | | | | | P | | | | | | | | | | | | Magcobar | | Basic oil base mud conc. (mfgr. mixed) | | | | | | | X | | X | | | | | | S | | P | | | | | S | | | | S | Oil Base | | Basic oil base mud conc.
(mfgr. mixed)
Basic oil base mud conc. for hi | | | | | | | x | | X
X | | | | | | s
s | | P
P | | | | | s
s | | | | s
s | Oil Base
Oil Base | | wt. and temp. (mfgr. mixed) | | | • | | | | | | _ | | | | | _ | | | | | | | | | | | | | | | Sacked oil base mud conc. for
wt. and temp. (location mixed | ١ . | | _ | | | | X | L | X | | | | | S | s | | P | | | | | S | | | | s | Oil Base | | "Sacked fishing tools," oil base concentrate, location mixed
Sacked oil base mud conc.
for location mix | | * | * | * | • | ^ | x | * | x | | | | | s | s | | P | | | | S
S | s | • | - | | s | Oil Base
Oil Base | | Sodium carboxymethyl cellu-
lose available in high and low
viscosity, technical and pure | x | x | x | x | × | X | x | | | × | | | | | | | Р | _ | | | | | s | | | | CECA | | grade
Carboxymethyl hydroxyethyl
cellulose
Surfaciant | × | x | X | × | X | x | x | | | × | | | | s | | | P | | | | P | | s | | | | Hercules
Magcobar | | Chrome lignite Shale, hole, HT/HP fluid loss control agent Defoamer for clay free fluids | X | X
X | X | x | X | X | X | | | x | - | | P | Ρ | P | | P | | | P | | S | | | _ | | Teinite
Messina
Brinado | | | | | | | _ | | | | | - | | - | | | | | | | - | | | | | | | | | P Texas Brine X # World Oil's 1979-80 Fluids Guide | Bracksis Water Sal Sali Water Gyp Trasidod Test Water Test Water Town Solids Ar. Gas. Mist. Mi | ٠, | Reco | omir | end | ea f | gr T | hese | Sy | stem | 9 | | | | | | | Fun | ctio | ning | As: | | | | | | |
--|-------------|----------------|-------|-------------|------------|-------------|-----------|-----|---------|---|--------|--------------|-----------|-------------|-----------|-------------|---------|----------------|------|-------------------|------------------|-----------------|--------------|---------------|-----------------|-------------------| | Maler Po Mal | | W | /ater | -ba | 30 | | | | | | ddives | | | | | | | | | | | | | | | | | sn Water sn Water sn Water sn Water sn Water water snated water sning water sning sning sning sning sning sning sning sning sning water sning sning sning water sn | | Lov | w oH | | | | | 110 | | | | | | | | | _ | | | ą | gents | sants | | Š | sis | lurs | | | Fresh Water | Brackish Water | Salt | Gyp Trauted | me Treated | Fresh Water | ow Solids | ā | Dit Mud | I | PHC | Bactericides | Defoamers | Emulsiliers | ubricants | Flocculants | Reducer | Foaming Agents | Cic | Shale Control Int | Surface Active A | hunners, Disper | Viscosifiers | alcium Remove | Weighting Mater | Corrosion Inhibit | | riuias | s Guide | - | 1 % | T | Τ | ╁ | Т | 1 | 1 8 | | ١. | 3 | 3 | ١ | | | | | 5.0 | ş | | Ē | 1 | ers. | | 1 | Š | 2 | 를 | | |---|---|-------------|----------------|------------|---------|-----------|-------------|------------|--------------------|---------|-----------|---|---|--------------|-----------|-------------|------------|-------------|-------------------|----------------|----------------|-------------------|-------------------|-------------------|-------------|--------------|--|-------------------|--------------------|--| | | | Fresh Water | Brackish Waler | Salt Water | Treuted | 6 Treated | Fresh Water | Solids | Water-in-Oil (live | Oil Mud | Gas, Mist | 1 | 4 | Bactericides | Datoamers | Emulsitiers | Lubricants | Flocculants | Fillrate Reducers | Foaming Agents | Lost Circ. Mai | Shale Control Inh | Surface Active An | Thinners, Dispers | Veryonitare | Viscosifiers | HOLE TOTAL | Weighting Materia | Corrosion Inhibito | $\frac{\sqrt{t}}{t}$ | | Product Tradename | Description of Material | Fre | Bra | S | Gyp | Lime | Fres | Fo. | Wai | ā | ¥ | 1 | | g | 2 | Ē | . <u>a</u> | E S | Ē | Foa | 108 | Sha | 6 | | 2 | \$ 3 | اڌُ | Š | Š | Available from; | | BRINE-GARD
BRINE-OX | H ₂ S scavenger
Oxygen scavenger | X | X | X | X | X | X | X | P
P | Brinadd
Brinadd | | BRINE-PAC | Carrosion inhibitor for solids | | X | × | | | | | | | | | | | | | | | | | | | • | | | | | | ρ. | Milchem | | BRINE SAVER | free packer fluids Oil-soluble fluid-loss additive for brines - | X | X | X | X | X | X | | | | | | | | | • | | | P | | | | | | | | | | | Oqwell | | BRINEFOAM | Surfactant | | | | | | | | | | × | | | | | | | | | | | | ٩ | | | | _ | | | Brinadd | | BRISTEX
BRIXEL | Plg hair bristles
Ferrochrome lignosulfonate | X | X | X | X | X | X | X | X | x | | | | | | | | | s | | P | s | | þ | | | | | | Bristex
Avecene
CECA | | BRIXEL 2E | Ferro-lignosulfonate modified | X. | X | × | × | x | X | X | | | | | | | | s | | | S | | | | | p | | | | | | Avedene
CECA | | BRIXEL 3E | Sadium FerroChrome Ligno-
sulfanete modified | X | X | X | x | X | X | . x | | | • | | | | | | | | ş | | | | | P | | | | | | Avebene & CECA | | BRIXEL ECO | Ferro-lignosulfonate modified: | X | X | X | X | X | X | X | | | | | | | | s | | | s | | | | | P | | | | | | Avenene
CECA | | BRIXEL NF 2 | Ferrochrome
lignosulfonate | X | X | X | X | X | X | X | | | | | | | | S | | | S | | | S | | P | | | | | | Avenene
CECA | | BUCAL | Shale control reagent | × | _ | | | | | _x | | | | _ | | | | | | | | | | ρ | | • | | | _ | | | Arnold & Clarke | | BW BAR
BW CHROME-FREE | Barytes
Dechromed lignosulfonate | X | X | X | X | X | X | X | X | X | | | | | | | | | s | | | | | P | | | F | P | | 8W Mud
8W Mud | | BW CLAY | Wyoming bentonite | × | × | | x | x | × | x | | | | _ | | | | | | | ş | | | | _ | | P | , | | | | 8W Mud | | BW CLN
BW OT | Chrome lignite Concentrated mud | X
X | X | x | x | X | X | X | | | | | | | | S | | | P | | | | ٥ | Þ | | | | | | 9W Mud
8W Mud | | | detergent | <u>. </u> | | | | | BW EMUL-FL | Invert emulsifier Supplementary emulsifier & filtration control agent | | | | ٠٠, | | | | X | X | | | • | | | S | | | P | | | | | | | | | | | BW Mud
BW Mud | | 8W EMUL-VIS | for invert emulsions Gelling agent for invert emulsions | | | | | | | | × | X | | | | | | | | | s | | | | | | P | | | | | 9W Mud | | BW EXHI-CELL | Purified, high molecular weight carboxymethyl | × | x | | x | x | × | × | | | | | | | | | | | ρ | | | | | | P | i | | | | 8W Mud | | BW FCL | cellulose
Ferro-Chrome | × | X | X | X | X | X | × | | | | | | | | | | | s | | | | | P | | | | | | BW Mud | | BW HEC | lignosulfonate
Hydroxy ethyl callulose | × | X | X | X | × | X | x | | | | | | | | | | | s | | | | | | ρ | , | | | | BW Mud | | BW HI-CELL | High molecular weight | X | X | | x | X | × | x | | | | | | | | | | | ρ | | | | | | ρ | 1 | | | | 8W Mud | | BW HT-LOID | Temperature stable modified starch | X | ·Χ | X | X | X | X | X | | | | | | | | | | | ρ | | | | | | | | | | | 8W Mud | | BW INHIBITOR 351 | Corrosion inhibitor and bactericide | × | X | × | × | X | X | X | | | × | | | | | | | | | | | | | | | | | | þ | BW Mud | | BW LO-CELL | Medium molecular weight sodium carboxymethyl | x | x | | × | x | x | X | | | | | | | | | | | P | | | | | | s | į | | | | BW Mud | | 8W LUBE
8W PIPE-LOOSE | cellulose Biodegradable lubricant Surfactant to be mixed with diesel oil to free stuck gipe | X | X | X | X | X | X | × | | | | | | | | | P | | | | | | | | | | | | | BW Mud
BW Mud | | BW POLYSEALER | Non-viscosifying fluid | × | × | × | × | × | × | × | | | | | | | | | | | ρ | | | | | | | | | | | BW Mud | | BW RESINOIL | loss reducer
Oil soluble resin, fluid | × | x | x | | | | | | | • | | | | | | | | P | | | | | | | | | | | BW Mud | | BW RHEOCAP | loss control agent
Polymeno shale ençapsulator | x | x | X | | | , x | X | | | | | | | | | | | | | | P | | | s | í | | | | 8W Mud | | BW RHEOCELL | High molecular weight golyanionic callulosic | X | X | X | × | x | x | x | | | | | | | | s | s | | ρ | | | s | | | p | 1 | | | | 8W Mud | | BW RHEODRILL
BW RHEOFLOW | oolymer Polymeric viscosifier High molecular weight polyanionic cellulosic polymer | X | X | X | X
X | X | X | X | | | | | | | | s | s | | Ş | | | s | | | o
o | | | | | 8W Mud
8W Mud | | BW SAFESEAL | Particle sized calcium | × | X | X | x | x | × | × | × | x | | | | | | | | _ | ρ | | | | | | | | -; | s | | 9W Mud | | BW SALT CLAY
BW SCALEFREE | carbonate
Attabulgite clay
Scale inhibitor | × | X | X | X | X | x | X | | | | | | | | | | | | | | | | | ρ | t | | | p | BW Mud
BW Mud , | | BW S-LOID
CALCIUM BROMIDE | Pregelatinised starch
Calcium bromide/calcium | x | x | x | × | x | x | x | | | | | | | | | | | ρ | | | | | • | - | | , | ۰ : | s | BW Mud
Deita Mud | | CALCIUM CARBONATE | chtoride (liquid blend)
Calcium carbonate | _ x | × | x | x | × | × | × | x | × | | | | _ | | | _ | _ | | | P | | | | | | ſ | ρ | | Most companies | | CALCIUM CHLORIDE
CALGON X-9
CALGON X-10 | Calcium chloride Oxygen scavenger-powdered Powdered inorganic metallic compound | X
X | X
X | X | X | × | × | X
X | X | × | × | P | | | | | | s | | | | P | | | | _ | 1 | | o
2 | Most companies
Water Fech
Water Fech | | CALGON X-100 | · Liquid inorganic metallic | × | × | × | x | × | x | X | × | | × | | | | _ | | _ | | | | | | | _,_ | | | | | ۵ | Water Tech | | CALGON X-901T
CALGON X-330 | compound:
Oxygen scavenger-liquid
Organic inhibitor | X | X | | X | X | X | X |
X. | x | x | | | | | | | | | | | | | | | | | | p
2 | Water Tech
Water Tech | | CALGON Y-55LT
CALIG
CAL-SEAL | Liquid salt inhibitor
Calcium lignosulfonate
Gypsum cament | × | x | × | X | × | x | x | | | | | | _ | | • | | - | s | | p | s | | ρ | | | | | ρ | Water Fech
CDA/HMC
Halliourton | # World Oil's 1979-80 | - 1 | Rec | omn | end | ed f | or T | hes | s Sy | siem | \$ | | | | | | | Fur | etio | uint | AS: | | | | | | | | |-------------|----------------|----------------|--------------------|-------------|------------|--|-------------------|-------------|----------------|--------------------|--------------|-----------|-------------|-----------|------------|-------------------|---------------|--------------|---------------------|------------------|---|--------------|-----------------|--------------------|---------------------|---| | | W | fate | -58: | se | | | |)ii.
150 | | ddilives | | | | | | | | | | | | | | | | | | | Lov | V DH | | H D | gn | | vert | | 1 Control A | | | | | | | | | | P. | Agents | sants | | 818 | tafs | 101.3 | | | Fresh Water | Brackish Water | Sat Sall Water | Byp Treated | ime Treated | resh Water | ow Solids | Water-in-Oil (Inv | Oil Mud | Air. Gas. Mist | Aftealinity, pH Co | Bactericides | Defoamers | Emulsiliers | ubricants | Hocculants | filtrate Reducers | oaming Agents | ost Circ Mat | Shate Control Inhib | Surface Active A | hinners, Disper | /iscosifiers | Calcium Anmover | Veighling Maleriah | Corrosion Inhibitor | | | = | | , 0, | | × | | <u>. </u> | - | | | <u> </u> | | _ | | | | | | <u>-</u> | P | 0, | تــــــــــــــــــــــــــــــــــــــ | ے | | - | ت | _ | | Fluids | Guide | L | Lo | w 01 | • | | igh
H | | Gra | | | nfrof A | | | | | | | | | | 皇 | | er anna | | | . 4 | 2 | ِ
ق | = | |-------------------------------------|---|-------------|----------------|----------------|-------------|---------------|-------------|-------------|-----------------------|----------|----------------|-------------------------|--------------|-----------|-------------|-----------|-----------|-------------|-------------------|----------------|---------------|----------------------|-----|---------------------|-------|-------------|----------------|---------------------|-----------------------|-------------------------------------| | | | Fresh Water | Brackish Water | Sat Sall Water | Gyp Treated | Lime Treated | Fresh Water | Low Solids | Water-in-Oil (Invert) | Oil Mud | Air. Gas. Mist | Athalindy, pH Confrol A | Bactericides | Defoamers | Emulsitiers | ubricante | Concornia | Frocculants | Filtrate Reducers | Foaming Agents | Lost Circ Mat | Shale Control Inhib. | | Thunger Dispersents | | Viscosiners | Alleran terror | Weighling Malerials | Corrosion Inhabitor a | | | Product Tradename CALTROL | Description of Material Shale control inhibitor | 12 | ě | က် | ō | <u>ت</u>
x | Ē | ٤ | 3 | ō | ₹ | ₹ |] # | <u> </u> | ŭ. | 1= | ; i | <u> </u> | = | 2 | ۲ | S
P | 6 | ñ = | :] : | ļč | <u> </u> | = 0 | ర | Available from
Milchem | | CANAFLEX
CARBOCEL | Shredded cane fibers
CMC | × | X | X | X | X | X | × | | | x | | | | 5 | | | | Þ | | P | s | | | | 3 | | | | UBM
Lamberti | | CARBO-FREE | Variable density oil phase spot-
ting fluid concentrate to free | X | X | × | x | X | X | X | | | | | | | | F | • | | | • | | | 5 | | | | | | | Milchem | | CARBO-GEL | stuck pipe
Invert suspending agent,
viscosifier | | | | | | | • | X | | | | | | _ | | | | | | | | | _ | . 1 | • | | | | Mitchem | | CARBO-MUL | Liquid oil phase mud emulsifier
and wetting agent | | | | | | | | | <u> </u> | | | | | P | _ | | | _ | | • | | | i
—— | | | | | | Milchem | | CARBONOX
CARBO-SEAL
CARBOSE | Lignitic material
Modified hydrocarbon
Sodium carbosymethyl
cellulose | | x | | × | x | x | | x | | | | | | S | | | | P | | P | s | | P | 5 | . | | | | Baroid
Milchem
BASF Wyandotte | | CARBO-TEC L | High temp, w/a emulsifier for
oil phase muds | | | | | | | | X | | | | | | P | | | | | | | | | | | | | | | Milchem | | CARBO.TROL
CARBOXS | Filtration control agent for oil phase muds Carboxilic polycarbonate dispersant | x | x | × | × | × | × | x | x | X | | | | | | | | | P | | | s | S | P | | | | | | Milchem
Drillsafe | | CARBWATE | Calcium carbonate (particle sized) for clay free fluids | | | _ | | | | | | | | | | | | | | | | | | | _ | | | | F | , | | Brinadd | | CARNA-MUL | Supplemental additive for
oil muds while drilling
carnallite salt | | | | | ٠ | | | X | X | | | | | P | | | | | | | | | | | | | | | Mizell | | CASCANIT | Processed nut hulls | X | X | × | × | X | x | × | | | | | | | | | | | | | P | | | | | | | | | UBM | | CAUSTICIZED LIGNITE CAUSTIC POTASH | North Dakota lignite
(causticized)
Potassium hydrate | | x | | ¥ | X | × | | | | | ۰ | | | | | | | | | | | | P | | | | | | Wyo-Ben
Most companies | | CAUSTIC SODA | Sodium hydroxide | × | × | X | | <u> </u> | X | | × | | | Р | s | | | | | | | | | | | | | <u> </u> | | | | Most companies | | CAUSTI-LIG
CC-16
CEASCAL | Causticized lightte Sodium salt of lighttic material Acid soluble sealer for lost circulation | X | X
X | . X | × | X | X
X | XXX | | | | | | | s | | | 1 | Þ | | P | | | P | | | | | | Magcobar
Baroid
Magcobar | | CEASTOP | Acid soluble lost circulation material | × | × | | | | | x | | | | | | | | | | | P | | P | | | | S | | | | | Magcobar | | CECA D.D.
CECA DETERGENT | Drilling mud detergent
Drilling mud detergent | × | × | X | X | X | X
X | X | | | | | | | _ | | 5 | | | | | S | P | , | | | | | | CECA SA
CECA | | CECABAR
CECAL
CECALIG | Barite
Ground almond hulls
Chrome lignosulfonate | X
X | ××× | X
X | X
X | X
X | X
X | X
X | X | × | | | | | | | | | 5 | | P | s | | P | _ | | | , | | CECA
CECA
CECA | | CECAMIANTE
CECAMIDON
CECAPERL | Inorganic viscosifier
Pregelatinized starch
Expanded perlite | X
X | X
X | X
X
X | X
X | X
X | X | X
X | x
x | x | | | | _ | | | | , | • | | ρ. | s | | | S | | | | | CECA
CECA
CECA | | CECARB
CECBRINE A
CECBRINE B | Calcium carbonate Acid soluble workover Acid soluble filtrate reducer for cecbrine A | X
X | XX | X
X | x | X
X | X
X | X
X
X | x | x | | | | | s | | | | 5 | | s | | | | P | | P | , | | CECA
CEGA
CECA | | CECFLOC HT
CECGUM | Clay flocculant
Clay flocculant-high temp.
Natural polymer | XXX | X
X | X | | | X | X
X | | | | | | | | | P
S | , | 5 | | | s | | | • | | | | | CECA
CECA
CECA | | CECLUBEP
CECMER
CECNUT | Extreme pressure lubricant
Cerboxymethyl cellulose
Ground walnut hulls
(fine and coarse) | x
x | X | • | x
x | | | X | x | x | | | | | | P | | ۱. | • | | P | | | | s | | | | | CECA
CECA
CECA | | CECOL | Ground olive stones (fine and coarse) | x | × | X | x | x | x | X | x | × | | | | | | | | | | | P | | | | | | | | | CECA | | CECPAO | Combination of granules,
and fibers
Fine | P | | | | | | | | | CECA | | CECPAO S | Coarse Acid soluble lost circulation material | P | | | | | | | | | CECA | | CECPHANE
CECTAN
CECWOOD | Shredded cellophane
Alomized quebracho
Shredded wood liber | ××× | XXX | x
x | X | X | | X | x
x | x | | | | | | | | | s | | P
P | | | P | | _ | | | | CECA
CECA | | CEDAR SEAL
CEGAL
CELATEX | Processed cedar fiber
Lead sulfide powder
Ground rubber (fine, medium
and coarse) | XXX | X | X
X
X | X
X | X
X
X | X
X | | x | x | | | | | | | | | | | P | | | | | | P | , | | Most companies
CECA
CECA | | CELATEXN | Ground neoprene (fine, medium & coarse) | | | | | | | | x | X | | | | | | | | | | | P | | | | | | | | | CECA SA | | CELFLAKE
CELLEX | Fibrous cellulose
Sodium carboxymethyl
cellulose | × | × | x | X | × | × | X | X | x | x | | | | | | | 1 | • | | P | | .,. | | \$ | | | | | Drilisate
Baroid | | CELLOFLAKE | Shredded cellophane | | | | X | | | | | | | | | _ | | | | | | | P | | | | | | | . = | | Drillsate and
ECCO | | CELL-O-SEAL
CELL-O-SEAL | Shreaded cellophane
Cellophane flakes | X | X | X | X | X | X | X | x | x | | | | | | | | | | | 9 | | | | | | | | | Magcobar
Western | # World Oil's 1979-80 Fluids Guide Flocculant sulfide scavenger Shredded cellophane Liquid oxyden scavenger Chrome lignosulfonate Product Tradename CELLOSIZE CELOFLEX CELPOL CELPOL SL CF-1 CF-2 CHALKSEAL CHALK-SEAL CHEMCO APC CHEMCO GEL CHEMGO LOD CHEMGOLIG CHEMGO LIGNO-SULFONATE 727 CHEMCO NO FOAM CHEMCO NO SLUFF CHEMCO PLUG CHEMCO SALT GEL CHEMHIB KI CHEMICAL V CHEMICAL W CHEMICAL WASH 7 CHEMICAL WASH 100 CHEMTROL X CHIP-SEAL CHROMBLEND CHROME-FREE CHROMELIG CIB CIDE:COR CIRCOTEX CIRCOTEX-MAX CKCIDE L. CKCIDE P CKCL CXMIX CL 11 . CLARSOL ATC CLARSOL FB 2 CLARSOL FB 5 CLARSOL FB 7 CLARSOL THR CLARSOL WY CLA-STAY CL-CLS CL-CLS CLEAR SZO C-LOX CLAY-EX CLAY MASTER CLAY STABILIZER L42 CLEARATRON 7 CLEARTRON 8-24 CLINTON FLAKES CHEMCOBAR CHEMCO FREE LUBE | • | | | | |---|-------------|----------------|--------------|---------|-------------|-------------|-------------|-----------------------|-------------|----------------|------------------------|--------------|------------|-------------|------------|-------------|-------------------|----------------|---------------|---------------------|-----------------------|-----------------------|--------------|-----------------|---------------------|----------------------|--| | | | Rec | omn | ienc | ed f | or T | reso | Sy |
stem | 3 | | | | | | _ | Fur | octio | nınç | As: | | | | | _ | | 4 | | 's 1979·80 | | ٧ | Vater | r-5a | 50 | | | |)il-
150 | | Additives | | | | | | | | | | | | | | | | | | Guide | | Lov | w pH | | | ign
H | | ŧ | | | irol Ad | | | | | | | | | نو | ents | ants | | | şş | | | | Guide | Fresh Water | Brackish Water | Sall Water | Treated | e Treated | Fresh Water | Solids | Water-in-Oil (Invert) | Oil Mud | Air, Gas, Mist | Alkalınıty, pH Control | Bactericides | Detoarners | Emulsifiers | Lubricants | Flocculants | Filirate Reducers | Foaming Ayanis | Lost Circ Mat | Shale Control Inhib | Surface Active Agents | Thinners, Dispersants | Viscosifièrs | Catcium Removei | Weighting Materials | Corrosion Inhibitors | | | Description of Material | Fres | Bra | Sal | g, | Lime | ě | Mo | × | ō | ₹ | ¥ | Buc | å | Ē | 3 | Floc | Ē | Foa | 108 | Sna | Sur | Ē | Zi S | S. | ξ | Ö | Available from: | | Hydroxyethyl cellulose
Shredded cellophane
Long chain bolyanionic cellu-
losic polymer | X | | X
X | X | X | X | × | | | x | | | | s | s | | ` S | | P | P | | | ۶
\$ | | | | Magcober
UBM
Nyma | | Polyanionic callulose polymer
Anionic foaming agent
Neutral fluorolhydrocarbon
foamer | X
X
X | X | X
X
X. | × | x | x | × | | | | | | | s | s | | Р | P | | P | p | | | | | | Nyma
Cardinal
Cardinal | | Acid soluble fibers Select blend of acidizable lost circulation materials | X | X | X | x | x | x | x | x | | x | | | , | | | | _ | | P | | - | | , | | | | Orlgmud
Mizell & | | Non-polluting lubricant | X. | . X | X | X | × | × | X | | | | | | | | ρ | | s | | | | | | | | | | Chemco | | Barite Surfactant material to be mixed with diesel oil to free stuck orge | X | X | X | X | X. | X | X | X | x | | | | | | ρ | | | | | | | • | | | P | | Chemco
Chemco | | Wyaming bentanite | _ | × | | × | | | X | | - | | | | | | | | \$ | | . : | | | | <u>P</u> | | | · | Chemco | | Fluid detergent
Lignite
Lignosulfonate | X
X
X | X | x | × | X | X
X | X
X | x | | | | | | s
s | | P | ρ | | | s | b, | p
p | | | | | Chemco
Chemco
Chemco | | Liquid antifoam agent
Sulfonated asphalt
Ground nut hulls | ××× | X | . X
. X | XXX | X | X
X | X
X | x
x | x | , | | | P | s | s | | p | | Ş | ٥ | | | | | | | Chemco
Chemco
Chemco | | Attaouigite clay
Filming amine
Non-viscous organic (qd. to im-
prove gel and combat crude
oil contamination in Black
Magic | | x | × | | | | Х. | × | × | | | | | s | | | s | | | s | | s | P
P | _ | | P | Chemco
Bhhadd
Oil Base | | Non-viscous organic lod, and
Black Magic thickening agent
Mud preffush for cementing
Mud preffush for cementing | X | | × | X | × | X | X | X | × | x | | | | | - | | S | | S | \$ | | S
p | ρ | | | | Oil Base
Dowell
Dowell | | Selected polymer blend
Shredded Cedar Fiber
Blend of dispersant | ××× | X | XXX | XXX | XXX | X | × | _ | | | | | | | | _ | P | | P | s | | , | | | | | Milchem
Magcobar
Arnold & Clarke | | Chrome free lignite for high temperature service | x | х | × | х | X | X | x | | - | | | • | | | | | | | | | P | | | | | | T:I.M. | | Chrome lignite Filming amine | X | | X | x | X | X | X | | | | | P | | | | | s | | | þ | | P | | | | P | Arnoid & Clarke
Texas Brine | | Biocide-corrosion inhibitor
Sized carbonates
Sized carbonates | X
X
X | X | X
X
X | XXX | X
X
X | X
X
X | X
X
X | × | × | | | ρ | | | | | | | ρ
ρ. | | | | | | s
s | ρ | Messina
Texas Brine
Texas Brine | | Non-polluting bactericide | X | X | × | X | x | x | X | | | | | P | | | | | | | | | | | | | | | CECA | | Non-polluting bactericide
(powder)
Inhibitive complex polymer | | x | X | X | X | × | X | | | | | Þ | | | | s | s | | | Þ | | | s | | | | CECA - | | Oil-in-water emulsion workover and completion | | | <u> </u> | | _ | | × | _ | - | | | _ | | 5 | | <u> </u> | s | | | | | | P | | - | | CECA SA | | system Potassium salt of lignite | x | × | × | x | x | × | x | | | | | | | | | | P | | | P | | s | | | | | Avene | | material
Cellulose fiber
Attabulgite clay | X | X | X | x | × | × | x | x | × | | | | | | | | | | p | | | | ٥ | | | | CECA
CECA | | Medium yield bentonite
High yield bentonite
Sepialite clay | X | | | X | X | X | × | | | × | | | | · - | | | s
s | | | | | | 000 | | - | | CECA
CECA
CECA | | Super-bentanite Wyoming bentanite Completion & perforating fluid | X | | X | X | X | X | X | | | X | | | | | | | \$
\$ | | | ٥. | | | p | | | | CECA
CECA
Mailiburton | | Bentonite extender
Low M.W. polymer
Zirconium salt solution to
prevent clay migration | X | X | × | x | x | X
X | × | _ | | x | | | | | | P | | | | Þ | | <u></u> | P | | | | Arnold & Clarke
Western
Dowell | | Chrome lignite-chrome lignosulfonate | X | X | × | X | × | × | X | | | | | | | s | _ | | p | | | s | | ρ | _ | | | | Dixie | | Chrome lighite-chrome
lighosulfonate.
Surfactant for removal of oil
mud lost to formation | X | х
 | X | x | X | X | × | × | X | | | | | S | | | s | | | s | P | ρ | | | | | Delta Mud
Baroid | Champion Champion Dowell Wyo-Ben Most companies # World Oil's 1979-80 | F | Peco | 200 | nend | ed 1 | or T | hesi | Sy: | siem | S | | | | | | | Fur | 10110 | กเกร | AS | | | | | | | |-------------|-----------------|-----------|---------|---------|-------------|--------|------------------|-------------|-----------|-------------|--------------|-----------|-------------|------------|-------------|----------|----------|------------|-------------|---------|-----------|--------------|----------|-----------|-------| | | W | /ale | r-ba | se | | | |):I-
ase | | Addilives | | | | | | | | | | | | | | | Γ | | | LOV | у рН | 1 | H: | gn
H | | 9.0 | | | Control Ad | | | | | | | | | Inhib | Agents | sants | | | e par | | | /ele/ | h Waler | t Water | freated | Treated | /ate/ | Solids | -in-Oil (Invert) | | . Mist | Ŧ | cides | 918 | iers | str | st ue | Reducers | g Agents | c. Mat | Control Int | Active | 4. Disper | liers | n Remove | ng Mater | 4 4 4 | | Fresh Water | Orackish | Sat. Salt | Gyp Fre | Lime Ir | Fresh Water | Low So | Water | Oil Mud | Air. Gas. | Alkalinity. | Bactericides | Deloamers | Emulsifiers | Lubricants | Flocculants | Filtrale | Foaming | Lost Circ. | Shale C | Surface | Thinners | Viscosifiers | Calcium | Weighling | | | Fluide | Guide | | LO | w pt | 1 | | ligh
oH | | Ş | | | ľ | Control | | | | | | | | | Pi P | gents | Sants | | | 5 | £ . | <u>ء</u> | | |---|---|-------------|----------------|--|-------------|--------------|-------------|-------------|-----------------------|---------|--------------|---|-----------------------------------|-------------|---------------|------------|-------------|------------------|---|----------------|----------------|---------------------|-----------------------|-----------------------|--------------|------------------|--------------|---------------------|--|---| | Product Tradename | Description of Material | Fresh Water | Brackish Water | Sat. Saft Water | Gyp Treated | Lime Treated | Fresh Water | l ow Solids | Water in Oil flavert) | Oil Mud | Air Gas Mist | | Alkalinity, pH Co
Bactericides | Deloamers | Emulsifiers | Lubricants | Flocculants | Filtrate Reducer | | roaming Agents | Lost Circ. Mat | Shate Control Inhib | Surface Active Agents | Thinners, Dispersants | Viscosifiers | Calcum Barnovers | Саблыт меточ | Weighling Materials | Corrosion Inhibito | Available from | | СМС | Sodium carboxymethyl cellu-
lose (offered under many
tradenames and in many
grades) | ч- | × | -تــــــــــــــــــــــــــــــــــــ | - | X | | _ | | .1- | | | | | 1 | 1 | <u>, </u> | P | | | | | | | S | | | | ــــــــــــــــــــــــــــــــــــــ | Most companie | | CMHEC | Dry or liquid viscosifier & filter reducer for salt | x | x | × | x | × | × | × | : | | X | | | | s | | | P | | | | | | | S | | | | | Drillsafe | | CM-TH
COAT-45 | muds and cament sturries:
Cement decontaminant
Sulfide scavenger | X | X | X | x | x | × | X | | | | 1 | P | , | | | | | | | | | | - | | P | , | | P | Brinadd
Baroid | | COAT-110
COAT-113
COAT-122 | Atmospheric corrosion inhibito
Oxygen corrosion inhibitor
Corrosion inhibitor for reating
solids free packer fluids | × | x | x | x | x | x | × | | | x | | | | | | | | | | | | | | | | | | P
P | Baroid
Baroid
Baroid | | COAT-190
COAT-311
COAT-415 | Atmospheric corrosion inhibitor
Oxygen corrosion inhibitor
Filming amine | r
X | × | × | X | X | × | X | | | × | | | | | | | | • | | | | | | | | | | P
P | Baroid
Baroid
Baroid | | COAT-777
COAT-888
COAT B-1400 | Oxygén scavenger (liquid)
Oxygen scavenger (solid)
Corrosion inhibitor and biocide
for treating solids free
packer fluids | × | X | × | X | × | X | × | | | | | s | | | | _ | | | | | | | | | | | j | 9 9 | Baroid
Baroid
Baroid | | COLMACEL
COMP-PLUG
CON DET | Cellulose fiber Acid soluble particulate suspension Mud detergent | X | X | X | X | X | X | × | X | X | | | | | 5 | | | | | F | | | P | | | | | | | CECA
Completion
Baroid | | CORBAN
COREXIT 7648 | Organic corrosion inhibitors
Inorganic scale dissolver | × | X | × | | | × | X | | | | _ | | | - | | | | | | | _ | | | | | _ | | P | Dowell
Exxon Chem | | COREXIT 7652
COREXIT 7671 | Anionic surfactant blend
Bactericide, Concentrated
sodium trichlorophenate | × | × | × | × | × | X | × | × | | × | | P | | | P | | _ | _ | | | | P | | | | | | | Exxon Chem.
Exxon Chem
 | COREXIT 7720 | solution
Corresion inhibitor | × | × | × | x | × | x | X | × | × | | | | | | | | | | | | | | | | ساسا | | | Р | Exxon Chem | | COREXIT 7754
COREXIT 7767
COREXIT 7815 | Corrosion inhibitor
Inorganic oxygen scavenger
Parattin dispersent | × | X | × | × | × | X | X | × | X | | | | | P | | | | | | | | | P | | <u> </u> | | | P | Exxon Chem.
Exxon Chem
Exxon Chem | | CORTRON R-174
CORTRON R-2207
CORTRON R-2264 | Organic corrosion inhibitor
Organic corrosion inhibitor
Complete brine packer fluid
treatment | X
X | X
X | X | X
X | × | X
X
X | X | | x | × | | | | | | | | | | | | s | | | | | | P
P | Champion
Champion
Champion | | CORTRON RDF-18 | Corrosion inhibitor for mud | _ | | | _ | _ | | | X | | | | | | | | | | | | _ | | _ | | | | | | P | Champion | | CORTRON RDF-21
CORTRON RDF-100
CORTRON RDF-101 | Filming amine corr. inh. Catalyzed powdered oxygen scavenger Oxygen scavenger | X | X
X | × | | | X | X | | X | X | | | | | | | | | | | | | | | | | İ | P
P | Champion
Champion | | CORTRON RDF-109
CORTRON RDF-115
CORTRON RDF-128 | Organic filming inhibitor
Corrosion inhibitor
Oxygen scavenger | X
X | XXX | XXX | X
X | X | X | | × | x | × | | | | | | | | | | | | | | | | | j | P
P
S | Champion
Champion
Champion | | CORTRON RDF-132
CORTRON RDF-137 | Aerated corrosion inhibitor
Sulfide scavenger corrosion | X | X | X | X | X | X | X | × | | × | | | | | | | | | | | | | | | | | | P
S | Champion
Champion | | CORTRON RDF-138 | inhibitor Corrosion inhibitor for serated muds | × | × | x | x | x | | × | | | x | | | | | | | | | | | | | | | | | 1 | P | Champion | | CORTRON RU-70
CORTRON RU-135
CORTRON RU-137 | Complete mud packer fluid
Aerated corrosion inhibitor
Low solids corrosion inhibitor | X
X | × | × | X
X
X | X
X
X | × | × | , | P
P | Champion
Champion
Champion | | COTTONSEED HULLS
COUROFLEX
CRACKCHEK-97 | Cottonseed hulls
Shredged leather flakes
Sulfide cracking inhibitor | ××× | X
X | XXX | XX | XXX | X
X | × | × | x | | | | | | | | | | 0.0 | , | | | | | | | | • | Most companie
UBM
Halliburton | | CRODACAP
CRODACELL
CRODAN | Encapsulating polymer
Viscosifying polymer
Sodium polyacrylate | X
X
X | X | X
X | × | X. | X
X | X
X | | | x | | | | | | \$ | թ
Տ
Р | | | | | | s | Sp | | | | | CDA/HMC
CDA/HMC
CDA/HMC | | CRODAPOL 15
DRONOX-235
CS-1 | Polyacrylamide dispersion
Dritting corrosion inhibitor
Polymer clay stabilizer | X
X
X | X
X
X | X
X
X | × | x | X | X
X | | | . x | | | | | | | | | | | • | | P | 5 | <i>)</i> a | • | F | D | CDA/HMC
Aquaness
Cardinal | | CS-3
CSD-50
CSD-50 SPACER | Clay and silt suspending agent
One sack additive spotting
fluid for freeing stuck pipe
One sack cement spacer | X | x | X | | | - | X | X | x
x | | - | | _ | | P | | | | | _ | | s | | | | | | | Western
Mizell
Mizell | | CUTTINGS WASH
CYANAMER 244 A
CYANAMER 292 | Detergent Drilling fluid additive Low solids mud additive | × | x | x | × | x | × | XXX | × | x | | | | | | | p | Ρ | | | | | | P | , | | | | | Am. Cyanamio
Am Cyanamid
Am. Cyanamid | | CYFLOC
CYFLOC 4000
CYFLOC 4500 | Synthetic flocculant
Flocculant
Flocculant | X | X | XX | × | x
x | X | × | | | | | | · | | | PSS | _ | | | | | s | | | | | | | Am. Cyanamid
Am Cyanamid
Am Cyanamid | | CYPAN | Sodium-polyacrylate | x | | x | _ | х | х | _ | | | x | | | | | _ | | P | | _ | | - | - | s | | | | | | Am. Cyanamid | | D-AIR-1 | Powdered antifoam agent | | | | | | | | | | | | | P | | | | | | | | | | | | | | | | and ECCO
Halliburton | # World Oil's 1979-80 Fluids Guide | Recommende | d for The | se Sys | stern: | s | | | | | | | Fund | CIIQI | ning | As | | | | | | | |---|-------------------|---------|------------|---------|---------------|--------|-----------|------------|-----------|------------|---------|----------|-----------|----------------|---------|-----------|------------|--------|-----------|-----------------| | Water-base | | | ij.
150 | | Additives | | | | | | | | | | | | | | - | | | LowoH | High
sH | Invert) | | | ontrol Act | | | | | | | . | | q. | Agents | sants | | ŝ | slas | 50 | | water
ish Water
att Water
reated | h Water
Solids | į | _ | s. Mist | PHC | cides | 1615 | iers | sluis | ants | Reducer | g Agents | c. Mat | Control linhab | Active | s. Disper | liers | Remove | Mate | osion lahabator | | こうじょしょう | resh W | | Pa Mad | 'w Gas | ith altinity. | Jacter | Detoamers | Emulsiners | ubricants | focculants | ittrate | оатипд | ost Circ. | Shale C | Surface | huner | scosifiers | alcum | Veighting | 100 | | | | Fresh Water | Brackish Water | Sat. Salt Water | Gyp Ireated | Lime freated | Fresh Water | Low Solids | Water in Oil (In | Orl Mud | Aur. Gas. Mist | Alkahnity, pHC | Detoamer | Emulsihers | Libricants | Flocculants | Filtrale Reduce | Foarming Agent | Lost Circ. Mal | Shate Control to | Surface Active | Thuners, Dispe | Viscosifiers | Calcum Remov | Weighling Mate | Corresion tahab | : | |---|---|-------------|----------------|-----------------|-------------|--------------|-------------|-------------|------------------|---------|----------------|----------------|-----------|------------|------------|-------------|-----------------|----------------|----------------|------------------|----------------|----------------|--------------|--------------|----------------|-----------------|--| | Product Tradename
D-AIR-2 | Description of Material | ŭ. | ā | ŝ | Ö | = | ū | ۲ | 3 | 0 | <u> </u> | ₹ 6 | <u> </u> | <u> </u> |]= | ī | Ē | 16 | - | ŭ. | ű | Ξ | > | Ü | } | ŭ | Available from | | DAKOLITE
D-D
DEFOAM | North Dakota lignite Drilling mud detergent Clay free fluids detoamer | X | X | x | x | X | X | X | | | | | | s | | | 5 | | | s | P | ρ | | | | | Halliburton Wyo-Ben Magcobar Brinadd | | DEFOAMER DEFOAMER NO 15 DEFOAMER NO. 20 | Liquid-non alcohol base
detoamer
Higher alcohol compound | × | | | × | × | ×× | × | _ | | | | P | | | | | • | | | | | | | - | - | RDSI
Telnite | | DEFOAMER RL23
DEFOAMER RL53
DEFOAMER RL83
DEFOAMER VOF-135 | Sodium alkyl arvi sulfonate General purpose defoamer Sodium alkyl arvi sulfonate Branched higher alcohol Defoamer | x | XXXX | ×××× | _ | XXX | | ××× | | | × | | - P P P P | | ···- | | • | | | | | | | | | | CDA/HMC
CDA/HMC
CDA/HMC
CDA/HMC
Champion | | DEFOMEX
DEL-BAR
DEL-BRIDGE-B | Defoamer
Barite (barytes)
Blended CaCO3 for brine
fluids | × | x | × | | | | x | x | x | | | · p | | | | s | | P | | | | | | P | | Lamberti
Delta Mud
Delta Mud | | DEL-CIDE-B
DEL DEFOAMER
DEL-DET | Film forming amine and
bactericide
Alcohol defoamer
Mud detergent | X
X | X
X
X | X
X | X
X | x
x | x
x
x | X
X | | | | ı | ۰
۶ | s | | | | | | · | P | | | | | P | Delta Mud
Delta Mud
Delta Mud | | DEL-FIBER
DEL-FLAKES
DEL-GEL | Shredded cane fiber blend
Shredded cellophane
Wyoming bentonite | X
X
X | X
X
X | X | X
X
X | X | ××× | X
X | | | | | | | | | s | • | P | | | | P | | ٠ | | Delta Mud
Delta Mud
Delta Mud | | DEL-HYVIS-B
DEL-LIGNITE C
DEL PAK | Blended HEC for brine fluids
Chrome lignite
Calcium bromide/calcium
chloride (liquid blend) | X | X | X | | x | x | x | | | | | | s | S | } | P | s | | | | P | P | | p | S | Delta Mud
Delta Mud
Delta Mud | | DEL PEL DEL-PILL-B DEL-PLUG | Calcium chtoride (pellet or
flake)
Hec-lignosulfonete-CaCog
surry blend for brine fluids -
Ground wannut or pecan hulls | | × | | Y | ¥ | | | X
X | | | | | | | | s | | P | P | | | | | Р | s | Delta Mud Delta Mud Delta Mud | | DEL-SEAL-8
DEL-S-GEL | HEC-lignosulfonate-carbonate
blend for brine fluids
Attapulgite clay | × | × | | | | | × | - | | | | | | | | P
S | | <u> </u> | | | | S | | | | Delta Mud
Delta Mud | | DESCO | Blended HEC CaCog for brine fluids Organic mud thinner | <u>x</u> | × | | × | × | × | x | | - | | | s | | | | | | | s | | ρ | | | | | Delta Mud Drill Spec. and ECCO | | DESILTA
DETERGENT JD-1 | Selective flucculant
Mud detergent | X | X | X | × | X | x | X | | | | | | s | | P | | | | P | | | | | | | American Mud
UBM | | DETERGENT #7
DETERGENT #139
DEXTRID | Drilling detergent (dry) Organic polymer | . х
х | x
x | x | | x | x
x | x
x | × | | × | | | | | | م | P | | ρ | | | S | | | | Wyo. Ben
King
Baroid | | DFM DICASORB | Polyalcohol defoamer
Shredded oil absorbing
material
Filter aid material | | x | | × | × | | × | x
x | | | | ŗ |) | | | | | P | | | | | | | | Texas Brine
Delta Mud
Messina | | DIASEAL M
DICKS MUD SEAL | Mixture of filter aid materials
Shredded organic fiber | × | X | X | × | X | X | X | × | X | | | | | | - | | | 0.0 | | | | | | | | Drill Spec.
Wyo-Ben
and ECCO | | DIEL 421
DISPERSOL C
DISPERSOL N | Distchaceous earth-graded Polymer for calcium control Modified lignosulfonate Modified lignosulfonate | X | × | × | × | | | ·x | ·X | | <u>×</u> | | | | | | - | | P | • | | p | | | ρ | | Am. Collaid Avebene & CECA Avebene & CECA | | DMA LIGNITEC
DML-2 | Causticized lignite Water soluble biodegradable non-polluting lubricant Drilling mud surfactant | X
X
X | X | × | x
x | × | | | | | | | | s | 5 | | P | | | | | s | | | | | Drill. Add.
Delta Mud
Aduaness | | DMS
DOS-3
DOS-22 | Drill mud surfactant
Diesel oil substitute
Drilling mud lubricant |
XXX | X | XXX | | | X | XXX | - | - | | | | s | S | 3 | s | | | s | P | | | | = | | ROSI
Magcobar
Drigmud | | DOW CORNING
DOWELL
BACTERICIDE 400
DOWELL
BACTERICIDE 500 | Silicones
Bactericide surfactant
Bactericide | × | × | | x | x | X
X | x
x | | | x
x | | p f | • | | | | | | | s | | | | | s
s | Tretolite
Dowell
Dowell | | DOC
DRILLBAR
DRILLBAR C | Diesel oil cement
Barite
Coarse barite | × | X | × | X | × | × | x | × | × | | | | | | | | | ρ | | | | | | 20 | | Halliburton
Orilisate
Orilisate | | DRILLGEL DRILLING DETERGENT DRILLING DETERGENT DRILLING DETERGENT DRILLWATE | Bentonite
Oriling mud detergent
Mud detergent
Acid soluble weighting mat. | X
X
X | ××× | XXX | X | X | X
X
X | ××× | х. | x | × | | | | | , | s | | | | P | | P | | Р | | Orilisale
CDA/HMC
Orilisale | | DRILL-X
ORIL-SOL
DRILTAL 131 | Torque reducer (liquid)
Flocculent (liquid)
Orilling mud detergent | X
X
X | X
X | ××× | × | X
X
X | X
X | X
X
X | | - | 104 | | | ; • | F | P | | | | | p | | | | | | Wyo-Ben
Wyo-Ben | # World Oil's 1979-80 | P | (ecc | 3177 | nend | ed f | or Ti | hesc | Sy: | stem | 15 | | | | | | | Fur | ctio | uuc | AS: | | | | | | | |------------|----------------|-----------------|-------------|-------------|------------|-----------|-----------------------|-------------|---------------|------------------|-------------|-----------|-------------|-----------|-------------|------------------|---------------|---------------|-------------------|------------------|-----------------|--------------|----------------|---------------------|----------------------| | | ٧ | /210 | -58 | | | | |)il-
150 | | Additives | | | | | | | | | | | | | | | | | | Lov | v рН | ı | H | gh | | = | | | ontrol Ad | | | | | | _ | | | nhib
dirin | Agents | sants | | 5 | als | 8 8 8 | | resh Water | Brackish Water | Sat. Sati Water | Gyp Treated | ime Treated | resh Water | ow Solids | Nater-in-Oil (Invert) | Out Mud | ir. Gas. Mist | Alkalinity, pHCo | actericides | Defoamers | Emulsifiers | ubricants | Flocculants | iltrate Reducers | oanung Agents | ost Circ Mat. | Shate Control Int | Surface Active A | hinners, Disper | Viscosifiers | Calcium Remove | Weighting Materials | Corresion Inhibitors | | riuius | Guiue | - | T | Τ. | Т | + | Т | - | 1 2 | 1 | | 18 | [| | ŀ | | | 5 | 票 | ŀ | 1 | | ₹ | 5.0 | 1 |) A | 1 8 | Di lo | . د | |--|--|-------------|----------------|------------|-------------|--------------|-------------|-------------|--------------------|-------------|-----------|----------|--------------|-----------|-------------|------------|-------------|-------------------|----------------|-----------|-------------------|-----|-------------------|--------------|-------------|-----------------|-------------------|--------------------|---| | , | | Fresh Water | Brackish Water | Sati Water | Treated | Lime Treated | Fresh Water | Solide | Water-in-Oil (Inve | 9 | Gas, Mist | | Bactericides | mers | there | ants | Flocculants | Filtrate Reducers | Foaming Agents | arc Mat. | Shate Control tob | 5 | Surface Active Ag | ers. Dispers | Viscosihers | Calcium Remover | Weighting Materia | Corresion Inhibite | W | | Product Tradename | Description of Material | Fresh | Breck | Sat. S | g | Lame | Fesh | 5 %0 | Water | Out Mud | Air. G | Alkati | Bacte | Deloamers | Emulsifiers | Lubricants | Focc | E | Foam | Lost Circ | Shale | | e la | Thundrs, I | Visco | Calcin | Weigh | Corro | Available fro | | RILTEX | Polymer & sized carbonate | | × | | <u> </u> | 1 | × | | | 1. | 1 | <u> </u> | | 1 | | | | ρ | | | <u>'</u> | | | | _ | s | | ب | Texas Brine | | RILTREAT
RILTRON B-24 | blend
Oil mud stabilizer
Flocculant/sulfide
scavenger | × | x | × | × | x | × | × | × | x | | | | | P | | P | s | | | | _ : | 3 - | s | | | | | Baroid
Champion | | RILTRON 8-27
RILTRON 8-143
RISCOSE | Chromate corrosion inhibitor -
Sulfide scavenger inhibitor
Pure grade CMC | X
X
X | X | X | × | X | ××× | X | | | × | | | | s | s | | Р | | | s | | | | s | | | P | Champion
Champion
Drill. Spec | | RISCOSE HIGH
VISCOSITY | Pure grade GMC | × | × | | × | × | × | × | ; | | x | | | | s | s | | ρ | | | s | | | | 5 | | | | Baker Cherr | | RISCOSE, REG. &HV
RISPAC, REG.
SUPERLO | CMC
Polyanionic cellulose | X | X | × | X | × | X | X | :
 | | × | | | | S | s
s | | P | | | S | 1 | | | Ş | | | | ECCO
ECCO | | PRISPAC
PRISPAC SUPERLO
PREGBAR | Polyanionic cellulose
Polyanionic cellulose
Bante | X | X | X | XXX | X | X | X
X
X | × | × | x | | | | S | S | | 0 | | | P | | | | P | | P | | Drill, Spec.
Drill, Spec.
Drigmud | | RLGDET
RLGGEL
RLGX | Drilling mud detergent
Bentonite
Polymer flocculant-clay
extender | ××× | X | × | x | X | × | X | | | | | | S | | | | P | | s | | f | • | | ρ | | | | Originud
Driginud
Driginud | | S'403 | Corrosion inhibitor for
clayfree & water base mud
and COo. HaS | x | X | × | x | × | × | × | | | | | | | · | | | | | | | | | | | | | P | Orilisate | | \$ 495 | and CO ₂ , H ₂ S
Corrosion inhibitor for
workover & completion | | × | | | X | | | | | | | _ | | | | | | | | | | | | | | | P | Drillsafe | | S 495 E | Filming amine w/biocide | × | | - | | | × | | | | | | P | | | | | | | | | | | | _ | _ | | P | Onlisate | | IS P5
S-PEC
IS-PH | M ₂ S scavenger Shale control agent Liquid pH regulator for H ₂ S and shale control | X
X | X
X | XXX | .x
x | | X | × | | | | P | | | ٠ | | | s | • | • | 5 | | | | | | | | Orilisate
Orilisate
Orilisate | | S-PRESERVATIVE
-TRON S-18
UOVIS | For starch and gums
Drilling detergent
Xanthum gum biopolymer | XXX | XXX | X
X | X | X | X
X
X | X | | | × | | P | | s | | | s | | | | F | , | | ρ | | | s | Drillsafe
Champion
Magcobar | | URATONE HT | Oil mud filtration control agent
Temperature stable fluid | × | x | × | x | × | × | | x | x | | | | | | - | | 0 0 | | | | | | | | | | | Baroid
Baroid | | V-22 | loss additive Fluid loss control agent for oil base and invert emulsion muds | | | | | | | | | x | × | | | | s | | | P | | | | | | | | | | | Magcobar | | WA-768
W-33 | Dispersant/wetting agent Oil wetting agent for oil con-
tingus å invert emulsion muds Dispersant/wetting agent | | | | | | | | X | ××× | | | | • | P | | | s | | | | 9 | • | P | | | | | UBM
Magcobar
Mizell | | CCO-BANOX | Oxygen scavenger | | × | | × | | | <u> </u> | | <u></u> | × | - | | _ | | | — | _ | | _ | | | | | - | | | P | ECCO | | CCO-BAR
CCO-CLAYLUBE | Barite
Biodegradable & Nontoxic
lubricant | X | X
X | XX | X
X | XX | X
X | X
X | × | x | x | | | | s | P | • | | | | s | s | _ | | | | P | | ECCO . | | CCO-DEFOAMER
CCO-DRILLING
DETERGENT | All purpose defoamer
Orilling mud detergent | × | x | | × | | | X | | | X | | | P | s | | | | | | | 9 | , | | | | | _ | ECCO
ECCO | | CCO-FILMINE | Filming amine | × | | | | | | | | | <u> </u> | | | _ | _ | | _ | s | | | | | | | P | | | P . | ECCO | | CCO-PARACIDE
CCO-SEAL | Sodium bentonite Microbiocide Shredded organic fiber | × | X | X | | | × | | | | | | P | | | | | • | | P | | | | | _ | | | | ECCO
ECCO | | CCO-SORBIDE
CCO-SPERSE
CCO-SPOTFREE | M ₂ S scavenger
Chrome lignosulfonate
Surfactant for mixing
w/diesel oil to free
stuck pioe | X | | X
X | X
X
X | X
X | X | X
X | | | | | | | s | | | P | | | | P | | • | | | | P | ECCO
ECCO | | CCO-YP
CCO-SHALEBOND
CONOMAGIC | Bentonite extender
Modified asphaltic powder
Crude oil emulsifier and
thixothropic property adjuster | × | x | x | x | × | × | X
X | X | x | × | | | | S | s | s | P
S | | | P
S | s | | • | s
S | | | s | ECCO
ECCO
Oil Base | | MULFOR BH
MULFOR EP
MULFOR ER
MULFOR GE | Organic compound
Emulsifier, stabilizer
Filtrate reducer
Gelling agent | | | | | | | | X
X | X
X
X | | | | | P
S | | | ρ | | | | | , | • | P | | | | CECA
CECA
CECA
CECA | | MULFOR MO | Wetting agent for high complex sait content | | | | | | | | x | • | | | | | | | | | | | ٥ | P | | s | | | _ | | CECA | | MULFOR NK
MULFOR ST | Basic material, filtrate reducer
Stabilizer, emulsifier | _ | | | | | | | × | X | | | | | S | | _ | S | | | s | s | | , | | s | | | CECA
CECA | | MULFOR TX
MULGO
MULGO PILL | Viscositier
Emulsifier for clay free fluids
Clay free fluids emulsifier | | | | | | | | ××× | | | | | | | | | S | | ρ | | | • | | Pop | | | | CECA
Brinadd
Brinadd | | PMUDLUPE
SAPAL XT 177
SAPAL NP 187 | Extreme pressure lubricant
Drill mud liquid surfactant
Nonionic emulsifier | ××× | X | X | | | × | X | | | | | | | ρ | P
S | | s | s | | | S | |
S | | | | | Barois
Lamberti
Lamberti | | | | | | | | | | | | Λ. | | | | | | <u> </u> | | | | | | | | . | | | | | | # World Oil's 1979-80 Fluids Guide Finely ground CACO3 Modified tree extract Low surface tension foaming agent Oil sotuble "temporary plugging agent for producing zones Product Tradename EXCELLO-GEL EZEFLO E Z MUL E. Z OUT EZ SPOT F-552 FB 1 FCL F.D.S. 69 FER-O-BAR FERRO-CAL FERROWATE FL-1 (Refined) FLOCCULENT FLOCGEL LY-NA FLOCGEL NLV FLOCGEL ST FLOCGEL W FLOXIT FOAMATRON V-12 FOAMATRON V-14 FOAMING AGENT G-2 FORAGUM C -FORAGUM HM FORAMOUSSE D FORAMOUSSE S FORAQUITAINE 10 FORAQUITAINE 35 FORMASEAL FORMASEAL-HT FREE HOLE FREE LUBE FEWPILL FOAM BRAKE FOAMER OP14 FOAMER OP15 FLOCHEK FLOSAL FLOTEX F-FLOW FIBERTEX FL-3 FL-4 FLOBEST FLOCELE FLOCGEL FB 2 EXTRA HI.YIELD GEL | · |--
-------------|----------------|-------------|---------|--------------|-------------|-----------|-----------------------|------------|-----------|------------------------|--------------|-----------|-------------|------------|-------------|-------------------|----------------|----------|---------------------|------------------|----------------------|--------------|-----------------|---------------------|----------------------|--| | | F | 1000 | mm | end | ed fa | or Ti | 1856 | Sy | stem | 1 | | | _ | _ | | _ | Fun | ctio | nıng | As: | _ | _ | | | | | | | 's 1979·80 | | w | ater | -585 | | | | | ii-
150 | | Additives | | | | | | | | | | | | | | | | | | Guide | | Lov | ρН | | H | | | (1)0/ | | | ontrol A | | | | | | s | | | qiu | Agents | sants | | 8 19 | iats | lors | | | duide | aler | Brackish Water | Sall Water | Treated | aled | ater | sp | Water-in-Oil (Invert) | | Gas, Mist | Alk alunty, pH Control | ides | 8.5 | or s | şi | SE- | Filtrate Ruducers | Foaming Agents | Mai | Shale Control Inhib | Surface Active A | Innners, Dispersants | \$10 | Calcium Remover | Weighting Materials | Corrosion Inhibitors | | | | Fresh Waler | ackist | Sat Salt | Gyp Tre | Lime Treated | Fresh Water | ow Solids | ator-ır | Dil Mud | Aur. Gas | kahen | Bactericides | Detuamers | Emulsifiers | Lubricants | Flocculants | irale f | house | LOSI CAC | ale C | ulace | unnet | Viscosifiers | Hourn | Highle | 0110810 | • • • | | Qescription of Material | _ | <u> </u> | | | | - | | 3 | ō | ₹ | ₹ | œ | Ğ | ŭ | 13 | Œ | Ē | ů, | | Š | ์ | = | > | ن | 3 | <u>ರ</u> | Available from: | | Polymeric water gel spacer
fluid
Polymerized Wyoming
bentonite | x | x | x | x | x
x | X. | * | | | | | | | | | | | | | | | | þ | | | | Wyg-Ben | | Low pour-point surfactant Oil mud emulsifier Oil soluble surfactant to free stuck pipe | x | x
x | x
x | x | X | × | × | X | x | | | | | ρ | | | | | | - | s
S | | | | | | Dowell
Baroid
Delta Mud | | Oil mud concentrate
Nonignic foaming agent
Silicone defoamer | XXX | X
X
X | X
X | x
x | X.
X | X
X | x
x | x | X | | | | ρ | | p
S | | | p | | | s | | | | | | Baroid
CE-Natco
Deita Mud | | Concentrated silicone defoamer | | X | X | | X | x | X | | | | | | P | | s | | | | | | | | | | | | Oelta Mud | | Modified chrome lignosulfonate
Orilling detergent | X | X | X | X | X | X | X | x | × | | | | | ş | | | م
— | | | s | | ρ | | | | | CDA/HMC
Trinity Mud | | Weighting material
fron complexed lignosulfonate
fron carbonate | X
X | X
X | X
X
X | X
X | X
X | X
X | X
X | x
x | x
x | | | | | _ | | | s | | | | | ė | | | p
p | s | Sachtleben
Milchem
Brinadd | | Mud removal agent
Shredded cane fiber blend
Improved organic polymer | X | X | × | × | × | × | X
X | x | × | | | | | | s | | ٩ | | ۶. | s | P | | | - | | | Western
Baroid
Montello | | Polymeric for clay free fluids
Polymeric for clay free fluids
Inorganic viscosifler | XX | X
X | X
X
X | x | x | × | x | x | | | | | | | | | 9.9 | | | | | | ρ | | | | Srinadd
Srinadd
Messina | | Clay flocculant
Celiophane flakes
Pregelatinized starch | X
X | X
X | × | × | × | × | XXX | | | | | | | | | P | P | | P | | | | s | | | | Wyo-Ben
Halliburton
Scholten | | Modified natural polymer
Pregelatinized potato starch
Pregelatinized starch,
low viscosity | X | XXX | X
X | X
X | X
X | X
X | x
x | | | | | | | | | | 200 | | | | | | P S S | | | | Schollen
Schollen
Schollen | | Pregelatinized corn starch
Shredded high swelling flakes
Carboxymethyl polymer
bentonite extender | XXX | X
X | × | × | X | X
X | X | x | x | x | | | | | | | р·
\$ | | p | ρ | | | S
P | | | | Scholten
Scholten
Scholten | | Two-phase polymer and cement
inorganic viscosifier | x | x | x | x | x | x | x | | | | | | | | | | | | Ş | | | | p | | | | Halliburton
Orill Spec.
and ECCO | | Lignosuifonates, carbohydrates
& sized carbonate blend | × | × | <u> </u> | | | X | | | | | | | | | | | P | | s | | | | | | | | Texas Srine | | Clay flocculant
Foaming agent
Foaming agent | X | X | × | × | × | × | X | | | × | | | | | • | , | | P | | | | | | | | | Magcobar
Champion
Champion | | Liquid antifoam agent
Non-ionic foaming agent
Foaming agent for nigh
electrolyte fluids | X
X | X
X | X
X | | x
x | | | | | X | | | ρ | | | | | 9 9 | | | | | | | | | Montello
CDA/HMC
CDA/HMC | | Foaming agent
Versatile non-polluting
defoamer | x | x | × | × | × | × | x | | | × | | | ρ | | s | | | ρ | | | s | | | | | | Lamberti
Messina | | Nonionic foaming agent
Organic compound
Natural polymer | XXX | X | XXX | | | | x | | | X | | | • | | | s | | | P | S | | | 2 | | • | | Dowell
CECA
CECA | | Freshwater foaming agent
Fresh and sea water
foaming agent
Salt water foaming agent | | | | | | | | | | X
X | | | | | | | | 200 | | | | | | | | | CECA
CECA
CECA | | Bactericide Bactericide Oil sol. lost circ. material and . temp. plugging agent | × | X. | X | × | X | X | X
X | × | × | | | P | | | | , | s | | P | | | | s | | | s | CECA
CECA
Oil Base | | Oil soi, lost circ, material and temo, plugging agent for | | | | | | | x | x | x | | | | | | | | s | | P | _ | _ | | s | | | | Qil Base | | high temp.
Surface active agent for-freeing | x | x | x | x | x | x | x | x | | | | | | | | | | | | | | | | | | | Montello . | | stuck drill gloe Surfactant material to be mixed with diesel oil to free stuck gloe | x | × | × | X. | x | x | x | x | | | | | | | | | | | | | | | | | | | Chemco | Drigmud Messina Western Oil Base $\begin{smallmatrix} \mathbf{X} & \mathbf{X} & \mathbf{X} \\ \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} \\ \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} \end{smallmatrix}$ x x x x x x x x # World Oil's 1979-80 Fluids Guide | Recommended | tor The | se Sys | stem: | 5 | | | | | | Fur | nctio | กเทร | A8: | | | | | | | |--|------------|---------|-------------|------|------------|------------|-------|-----------|----------|---------|--------|------|---------|--------|--------|---------|---------|-----------|-------| | Water-base | | | ii -
150 | | ddilives | | | | | | | | | | | | | | | | | ligh
pH | 916 | | | ontrol Ado | | . | - | | | | | ē | Agents | sants | | | ats | | | Water
Water
sted | <u> </u> | id (tov | | Mist | HE | les | | | | ducers | Agents | Mat | ut lout | Chve A | Disper | | Remover | Materials | 4.404 | | ackish Wal
it. Sali Wal
ip Treated | 1 = 10 | ler-in- | Mud | Gas. | almity. | clericides | oamer | ulsifiers | bricants | rate Re | Butte | Circ | ale Cor | face A | nners. | costler | Cuum A | ghting | 0.500 | | riuius | Guide | ater | Water | Salt Water | freated | ated | iole | ş | Water-in-Oil (Inve | | Mist | Alkalonic OH Con | des | 52 | | ş | 星 | Filtrate Reducers | Agents | Mat | Shale Control Juhi | Surface Active Ag | Phoners Occurs | 13/20 | | Calcium Remover | Weighling Materia | Corrosion Inhibito | | |--|---|-------------|----------------|------------|-------------|--------------|-------------|------------|--------------------|---------|-----------|------------------|--------------|-----------|-------------|------------|-------------|-------------------|----------------|-----------|--------------------|-------------------|----------------|-------|--------------|-----------------|-------------------|--------------------|--| | Product Tradename | · Description of Material | Fresh Water | Brackish Water | Sat. Salı | Gyp Trei | Lime Treated | Fresh Waler | Low Solids | Nater-m | Oil Mud | Aur. Gas. | Alkalind | Bactericides | Defoamers | Emulsitiers | Lubricants | Flocculants | Filtrate F | Foaming Agents | Losi Circ | Shale Co | Surface | honore | | Viscosiliers | Calcium | Veightin | Corrosio | Available from | | GABROSA | Sodium carboxymethylcellulose
(Low, Med, Hi, Ext Hi vis | _ | _ | | | - | - | X | | 1- | X | | | | \$ | | <u> </u> | , | _ | | s | 147 | | | P | <u>-</u> 1 | ے | 1~ | Montedison | | GALACTASOL 413 | technical grade) Nonionic polymer viscosifier | x | x | × | | | x | × | | | x | | | | | | | | | | 5 | • | | 6 | > | | | | Henkel | | GALACTASOL 416
GALACTASOL 615
GALENA | Nonionic polymer viscosifier
Anionic polymer viscosifier
Lead sulfide powder | X
X | XXX | x
x | × | x | X
X | X | | × | × | | | | | | | | | | 5 | | | ş | | | ρ | | Henkel
Henkel
Baroid | | GEL-AIR
GELOMERE EAV | Anionic foaming agent
High molecular weight | x | X | × | x | x | x | | | | X | | | | | | | \$ | P | | 5 | | | F | , | | | | Milchem
UBM | | GELTONE II
GENORIL FLO | polymer
Low shear, oil mud gellant
Natural polymer and fluid
loss additive | × | × | × | | | × | × | 'Χ | x | | | | | | | | s | | | | | | P | ;
; | | | | Baroid
Henkel | | GENDRIL THIK
GEN DRIL THIK
GEO-GEL | Natural polymer viscosifier
Guar gum
High temperature stable
viscosifying agent | ××× | XXX | × | × | × | × | X | 1 | | | | | | | | | s
s | | | | | - | e e | • | | | | Henkel
American Mud
Magcobar | | GILSONITE
GRAPHITE
GUFCOBAR | Natural hydrocarbon
Graphite
Bante (barytes) | XXX | XXX | XXX | X | X
X | XXX | ××× | X | × | | | | | | S | | | • | P | P | | | | | | P | | Most companie
Most companie
GH Gulco | | SUFCO BIOCIDE B-12
SUFCO BIOLUBE
SUFCO BROMICAL | Bactericide Nonpolluting lubricant Water solution of calcium chloride and calcium bromide | X | X | × | X | X | X | X | | | | | Р | | | ρ | | | |
| | | | | | - | P | | GH Guico
GH Guico
GH Guico | | SUFCO BROMICAL HD | Water solution of
zinc bromide and
calcium bromides | _ | | | | P | | GH Guico | | SUFCO BROMICON | Calcium bromide powder
(fine, medium & coarse) | • | | P | | GH Guico | | SUFCO CLS | Chrome lignosultanate | | _ | | _ | <u> </u> | _ | | | | | | | _ | | | | \$ | | _ | | _ | ٩ | _ | | | _ | | GH Guico | | GUFCO D-FOAM 40
GUFCO DMD | Defoamer
Orilling mud detergent | X | X | X | X | X | X | X | | | | | | P | s | s | | | | | | ρ | _ | | _ | | | | GH Gutco
GH Gutco | | GUFCO FILMKOTE C-33
GUFCOGEL
GUFCO HD GEL | Corresion inhibitor Wyoming bentonite Viscosifier for Bromical HD | X | X | X | X | X | X | X | | | | | | | | | | s | | | | | | p |)
} | | | ρ | GH Guico
GH Guico
GH Guico | | SUFCO LIG
SUFCO OXBAN S-10
SUFCO PLUG | Mined lignin
Oxygen scavenger
Ground pecan shells | XXX | XXX | X
X | X
X
X | XXX | X
X
X | XXX | × | × | | | | | s | | | s | | p | | | | P | | | | P | GH Gutco
GH Gutco
GH Gutco | | GUFCO POLYJEL
GUFCO POLYSEAL | Pure synthetic polymer
LCM for clear water | x | X | X | | | X | | | | | | | | | | | | - | P | | | | ρ | - | | | | GH Gulco
GH Gulco | | GUFCO POLYVIS | fluids (Reg. & Coarse) Polymer and calcium carbonate blend | × | X | x | | | x | | | | | | | | | | | | ρ | | s | | | ٩ | | | | | GH Gulco | | GUFCO PREGEL
GUFCO PREMUL
GUFCO PREMUL EMA | invert mud gelling agent
inverted emulsion
invert mud emulsifier | | | | | | | | × | X | | | - | | þ | • | | • | | | | | | ٥ | _ | | | | GH Guico
GH Guico
GH Guico | | GUFCO PREMUL EMB
GUFCO PREMUL EMC
GUFCO PREMULX | Invert mud emulsifier
Invert mud wetting agent
Invert mud fluid loss
control agent | | | | | | | | X | X
X | | | | | P
S | | | P | | | | P | | s | | | | | GH Guico
GH Guico
GH Guico | | GUFCO SALT GEL
GUFCO WALLFREE | Attabulgite clay
Surfactant material
to be mixed with diesel
oil to free pipe | x | X | X | x | x | x | x | x | | | | | | | | | | | | | P | | ٥ | | | | | GH Gutco
GH Gutco | | GUFCO WALLKOTE | Liquid asphalt | X | X | × | X | X | X | X | | | | | | | | s | | s | ٩ | _ | P | | | | | | | | GH Gulco | | GYPSOL III
GYPSUM
GYPTRON TDF-113 | Gypsum disintegrator
Gypsum (plaster of paris)
Scale control | x
x | X
X | × | × | × | × | × | | | | | | | | | | s | | | | P | _ | - | F | | | | Cardinal
Most companies
Champion | | HALLIBURTON-GEL | Wyoming bentonite Oxygen scavenger (solid) | X | x | x | X | X | X | X | | | | | | | | | | | | | | | | P | | | | ₽ | Halliburton
Dowell | | ANTI-OXIDANT M129
LEVIWATER DRY
CONCENTRATE 555 | Weignting agent for solids-free | x | | | | | x | x | | | | | | | | | | | | | 5 | | | | | | ٥ | | Dowell | | HEVIWATER GELLING | Gelling agent | x | x | x | х | х | x | x | | | | | | | | | | s | | | | | | P | | | | | Dowell | | AGENT J164
MEVIWATER IC
PACKER AND
COMPLETION FLUID | Water solution of calcium
chloride with density range
of 9 to 11.6 ppg including | P | | Dowell | | HEVIWATER IIC
PACKER AND
COMPLETION FLUID | inhibitor and fluid loss control Water solution of calcium chloride and calcium bromide with density range of 11.7 to 15.1 ppg including inhibitor and fluid loss control | P | - | Dowell | | HEVIWATERIIIC | Water solution of Cadr | | | | | | | | | | | | | _ | | | | P | | _ | | | | | | | P | s | Dowell | HEVIWATER IIIC PACKER AND COMPLETION FLUID Water solution of Cadr with density of 15.2-17.2 opg. including inhibitor F | riuius | Guide | H | 5 | 1 = | Γ | - | T | 1 | Inve | | _ | 18 | | | | 1 | | 8,00 | 25 | _ | Ē | A O | Dispers | | over | lere | 94 | | |---|---|-------------|----------------|------------|-------------|--------------|-------------|-------------|--------------------|---------|-----------|-----|--------------|-----------|-------------|------------|-------------|-------------------|-----------------|----------|-------------------|-------------------|---------------|--------------|-----------------|-------------------|---------------------|---| | | | Fresh Water | Brackish Water | Salt Water | Gyp Treated | Lime Treated | Fresh Water | Solids | Water-in-Oil (Inve | Oil Mud | Gas. Mist | l g | Bactericides | Detoamers | Emidsiliers | Lubricants | Flocculants | Filtrale Reducers | Foarming Agents | Circ Mat | Shale Control Inh | Surface Active Ag | Thinners, Dis | Viscosifiers | Calcium Remover | Weighting Maleria | Corrasion lithibito | :. | | Product Tradename | Description of Material | Fre | Bra | Sat | ð | ٤ | Fre | Low | 3 | ō | Ā | ₹ | Ba | Det | Ē | 3 | ş | Ē | Foa | Los | Spa | Sur | Ē | V.SC | S | ĕ | Š | Available from. | | HEVIWATER IVC
INHIBITED BRINE | Water solution of zinc
bromide, calcium bromide an
calcium chloride, 15,2 to | đ | | | | | | | | | | | | | | _ | | | | | | | | | | P | | Dowell | | HIGELL | 19.2 ppg
Polyanionic callulose | x | x | x | x | × | x | x | | | x | | | | s | s | | P | | | P | | | ٥ | | | • | CDA/HMC | | HICELL DS
HIDENSE
HIMUL Y | Polyanionic cellulose
Weighting agent
Organophilic colloid | x | x | × | × | x | x | x | | × | | | | | 5 | s | | ρ | | | ρ | | | P | | Р | | CDA/HMC
Halliburton
CDA/HMC | | HIPOL X | High molecular weight xanthan | x | x | х | × | x | × | × | | | | | | | | | | s | | | | | | P | | | | Messina | | HI-WATE | gum
Extra high density powder for | X | X | X | X | x | x | | x | X | | | | | | | | | | | | | | | , | p | | Messina | | HME . | blowout control Selective, nonionic surface active agent | × | X | X | , x | X | X | × | | | | | | | | | | | | | | P | | | | | | Chemco | | HME ENERGIZER | Selective, nonionic surface | x | × | × | × | х | x | × | | | | | | _ | | | | | | | | ρ | | | | | | Montello | | HOLE-CONTROL | active agent
Modified hydrocarbon | X | X | x | x | X | x | × | | | X | | | | s | \$ | | P | | | P | | \$ | | , | | | Mizell | | HOLEMAKER FLOC | compound for shale control
Nonionic, selective flocquiant | X | x | X | X | x | x | × | | | | | | | | | P | | | | | | | | | | | Montello | | HOTGEL | Stable high temperature viscosifying agent | × | × | × | × | х | x | × | | | | | | | | | | s | | | | | | P | | | - | Messina | | HOWCO BAR
HOWCO SUDS | Weighting agent
Nonionic foaming agent | x | × | | | x | x | × | | | x | | | | | | | _ | ρ | | | | | | | ρ | | Halliburton
Halliburton | | HOWCO SUDS.STICKS
HS GUARO
HS-I | Solid foaming agent
Hydrogen sulfide scavenger
Sulfide cracking inhibitor | X | X | X | X | X | × | × | | | x | | | _ | | | | | P | | | | | | | | P
P | Halliburton
Arnold & Clarke
Western | | HTT 450 | Polymeric high temperature dispersant, fluid loss con- | x | X | x | x | × | x | | | | | | | | | | | P | | | | | P | | | | | CDA/HMC | | HUMIC 333
HUMIC NF | trot agent Oil in water emulsion system Acid soluble oil-in-water emulsion workover and completion system | X | X | X | | | | X | | | | | | | PP | | | s
s | | | | | | \$
\$ | | | | CECA | | HYDROGEL
HYDRO-SPOT | Wyoming bentonite One drum additive spotting fluid for freeing stuck pipe | x | x | × | x | | × | × | × | × | | | | | | P | - | s | | | | | | P | | | | Wyo-Ben
Mizeli | | HYDROWATE | Weighted completion fluid | | | | | | | _ | Halliburton | | HY-SEAL
HYTEX | Shredded organic fiber Lignosulfonates, synthetic polymer & sized carbonate blend | . X | X | X | X | X | X | X | | | | | | | | | | | | P | | | | | | | | Baroid
Texas Brine | | IDF ANTIFOAM L-500 | Defoamer for polymeric systems | X | X | X | × | X | X | X | | | | | | ٩ | | | | | | | | | | | | | | IDF | | IDF AP-21
IDF BACTERIOCIDE D3T
IDF B-FREE | Polymeric fluid loss reducer
Non-phenolic Bactericide
Spotting fluid for freeing
stuck gipe | ××× | X
X | ××× | x | × | XXX | × | | | | | ρ | | | P | | | | | | \$
\$ | | | | | | IDF
IDF
IDF | | IDF CL-11
IDF CORROSION | Chrome lignite Coating amine corrosion | × | X | X | X | X | X | x | | | | | | | | | | S | | | | | ₽ | | | | P | IDF | | INHIBITOR A/C
IDF CORROSION
INHIBITOR A/S | inhibitor Sulfide resistant-amine base corrosion inhibitor | x | | | X | P | IOF | | IDF CORROSION | Oxygen scavenger | × | × | <u> </u> | × | × | | × | | | | _ | _ | | | _ | | | | | | | | | | _ | _ <u>-</u> | IDF | | INHIBITOR O/S | Coating amine for | | | | x | • | | Р | IDF | | INHIBITOR PHT | production wells
Alcohol blend | | | | X | - | | | | | | | | P | | | | | | | | | | | | | • | IDF | | IDF DF-19
IDF DF-20G | Selective flocculant Flocculant | × | × | | | | | × | | | | | | | | | P | | | | _ | | | | | _ | | IDF
IDF | | IDF D-FOAM | Long chain alcohol Polymeric viscositier | x | | _ <u>x</u> | × | <u> </u> | | | | | | _ | | ρ | s | | | s | | | | | | Р | | | | IDF | | IDF DI-PLUG
IDF DRILLING
DETERGENT DX-10 | Filter aid material Drilling mud detergent | × | × | x
X | x
x | X | X
X | X
X | × | × | | | | | s | | | | | P | | ٩ | | | | | | IOF | | IDF DV-68
IDF DYNA LUBE
IDF EASY DRILL | Bentonite extender
Drilling lubricant
Torque reducer | Х
Х | × | X
X | X
X | X | × | X
X
X | | | | | | | | P | | | | | | s
s | | P | | | | IOF
IDF
IDF | | IDF EML LUBRICANT
IDF FLR-100 | Drilling lubricant
Polymeric fluid loss | X | X | X | X | X | X | X | | | | | | | s | P | | P | | | | S | | s | | | | IDF | | IDF HI-FOAM | reducer
Foaming agent | X | | | | | x | × | | | | | | | | | | | P | | | s |
 | | | | IDF | | IOF HI-TEMP | High temperature fluid | X | X | X | x | X | × | × | | | | | | | | | | P | | s | | | | | | | | IOF | | IDF HY-MUL | loss reducer High temperature fluid loss stabilizer | X- | × | x | | | X | × | | | | | | | | | | P | | | | s | | | | | | IDF | | OFIDBREAK | Surface active defoamer | X | X | X | × | × | x | × | | | | | | ρ | | | | | | | | | | | | | | IOF | | IDF IDBRIDGE
IDF IDCARB-75 | Oil soluble graded resin
Acid soluble graded | | X | | | x | X | X | · x | × | | | • | | | | | s | | s | | | | | | ٥ | | IDF
IDF | | IDF IDCAR8-150 | calcium carbonate Acid soluble graded calcium carbonate | x | X | x | X | X | x | x | x | × | | | | | | | | P | | s | | | | | | \$ | | IOF | | riuias | s Guiae | \vdash | 5 | ا
ھ | Т | - | T | 1 | Oil (Inver | | 1_ | 3 | | | | | | 8.03 | 를 | _ ا | Ę | 9 A Q | Dispersi | | Over | lora | ub to | | |--|---|-------------|----------------|------------|----------|--------------|-------------|-------------|------------|---------|-----------|--------------|-------------|----------|------------|------------|-------------|------------------|-----------|------------|-------|----------|-----------|--------------|-----------------|-------------------|--------------------|---------------------------| | | • | Water | Brackish Water | Salt Water | Treated | Lime Treated | Water | Solids | Q e | | Gas. Mist | Alkahorty of | rendes. | 3 PE | flers | sha | lants | Fittrate Reducer | ng Agents | rc. Mat. | | e Active | | fiers | Calcium Remover | Weighting Materia | Corrosion Inhibito | \bigcup | | Product Tradename | Description of Material | Fresh Water | Bracks | Sat. S. | Gyp Fr | Lime | Fresh Water | LowS | Water-in- | Oil Mud | Air. G | Alkah | Bactericide | Defoamer | Emulsihers | Lubricanis | Flocculants | Filtrate | Foaming | Lost Circ. | Shale | Surface | Thinners. | Viscosifiera | Calcu | Weigh | Corro | Available from | | IDF IDCIDE-L | Non-phenolic bacteriocide | × | × | × | × | × | X | × | x | | | | P | | | | | - | | | | | | | | | | IDF | | IDF IDCIDE-P | liquid
Non-phenolic bacteriocide
powder | x | X | X | × | x | X | × | X | | | | P | | | | | | | | | | | | | | | IDF | | IDF IDFAC | Non-ionic fluoro-surfactant | × | X | X | | | X | X | | | | | | | | | | | | | _ | - p | | | | | | IDF | | IDF IDFILM-120
IDF IDFILM-220
IDF IDFILM-320 | Filming amine inhibitor
Filming amine inhibitor
Filming amine inhibitor | X | X | X | × | × | × | × | | | × | | | | | | | | | | | | | | | | 0 0 | IDF
IDF
IDF | | IDF IDFILM-620 | Atmospheric corrosion inhibitor | P | IDF | | IDF IDFLO | Non viscosifying fluid
loss reducer | x | X | X | X | X | X | X | | | | | | | | | | P | | | | | | | | | | IDF | | IDFIDHEC | Synthetic cellulose polymer | × | X | X | | | X | X | | | • | | | | | | | | | | | | | | | | | IDF | | IDFIDSCAV 110 | Oxygen corrosion scavenger | X | X | × | X | X | X | X | | | | | | | | | | | - | | - | | | | | | 2 | IDF | | IDFIDSCAV 110X
IDFIDSCAV-210 | Catalysed oxygen corrosion
scavenger
Oxygen corrosion scavenger | × | | | x | | | | | | • | | | | | | | | | | | | | | | | P | IDF | | IDFIDSCAV-310 | Oxygen and sulphite | . x | | | <u> </u> | <u> </u> | | × | | _ | x | | | | | | | | | | | | | | | | ·
P | IDF | | IDFIDWATE | scavenger Acid soluble graded iron | . ^ | | × | | | | × | | | ^ | | | | | | | s | | | | | | | | P | • | IDF | | IOF INTERDRILL EMUL | compound
Invert emulsifier | ., | | | | | | | × | | | | | | P | | | _ | | | | | | | | | | IOF | | IDF INTERDRILL FL | invert fluid loss reducer
invert system base | | | | | | | | X | | | | | | S | | | P | | | | | | | | | | IDF
IDF | | MULTIMUL
IDF INTERDRILL.O.W. | mixture
Invert system oil
wetting agent | | | | | | | | X | | | | | | | | | | | | | P | | | • | | | IDF | | IOF INTERDRILL SF | Invert fluid loss reducer
Polymeric invert viscosifier | | | | | | | | X | | | | | | s | | | P | | | | | - | P | | | | 10F
IDF | | VISOL
IDF INTERDRILL
VISTONE | Invert viscosifier | | | | | | | | x | | | | | | s | | | | | | | | | P | | | | IDF . | | IDF INTERLOK | Blended lost dirculation material | x | X | x | х | x | × | × | | | | | | | | | | | | ρ | | | _ | | | | | IDF | | IDF MUD FIBER
IDF POLY MUL | Fibrous material
o/w emulsifier | X | X | x | X | × | X | X | | | | | | | P | | | , | | P | | s | | | | | | IOF
IOF | | IOF POLY PLASTIC
IDF PTS-100
IDF RHEOPOL | Shale stabilizer
pH buffer for clay free fluids
Polymeric fluid loss
reducer | X | X | X | x | x | XXX | X
X
X | | | | P | | | | | | S
P | | | P | | | s | | | | IDF
IDF
IDF | | IDF SAFEGUARD 5000 | Amine base corrosion | x | x | × | x | x | x | x | | | | - | | _ | | | | | | | | | | | | | P | IDF | | IDF SAFEGUARD 5500
IDF SAFEGUARD 6000 | inhibitor Oxygen scavenger Arhine base corrosion inhibitor | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | : | | P | IDF . | | IDF SM(X)
IDF SPUD MUD (R)
IDF SS-100 | Polymeric viscosifier
Polymeric viscosifier
Polymeric shale encapsulator | X
X | X
X | X | | | X
X
X | x
x | | | | | | | | | | | | | Р | | | P | | | | IDF
IDF | | IDF TARGARD
IMA #2
IMA CONCENTRATE | Sait mud blend system (dry)
Defoaming & wetting agent | x
x | XXX | X | XXX | XXX | x
x | x
x | | | × | | | P | P | s | | P | | | s | P | | | | | | IDF
Wyo-Ben
Wyo-Ben | | IMCO BAR
IMCO BRINEGEL
IMCO CIDE | Barite (barytes)
Attapulgite clay
Blended carbamate solution,
bactericide | x
x | ××× | X | x
x | | | | х | × | | | P | | | | | | | | | | | P | | Р | | IMCO
IMCO
IMCO | | IMCO CRACK CHEK
IMCO DEFOAM
IMCO DRIL-S | Sulfide cracking inhibitor
Salt water defoamer
Polymer biocide and sized
carbonate blend | x | ××× | X
X | x | x | x
x | x
x | | | | | | ρ | | | | p | | | | | • | p | | | P | IMCO
IMCO
IMCO | | IMCO DRILLTHERM | High temperature fluid | x | × | | | | | x | | | | | | | | | | P | | | | | s` | • | | | | IMCO . | | IMCO DUROGEL
IMCO EP LUBE | Viscositier
Extreme pressure lubricant | X | X | × | X | X | X | X | | | | | | | | P | | | | _ | | | | P | | | | IMCO
IMCO | | IMCO FLAKES
IMCO FLOC
IMCO FOAMANT | Shredded collophane flakes
Clay flocculant
Foaming agent | x | x | × | × | x | x | X | × | x | × | | | | | | P | | P | ρ | | s | | | | | | IMCO
IMCO | | IMCO FOAMBAN
IMCO FREEPIPE
IMCO FYBER | All purpose liquid defoament
Oil sol, surfactant
Shredded fiber blend | X
X
X | X
X
X | × | XXX | XXX | | X
X
X | × | x | | | | Ρ | | | | | | P | | P | | | | | | IMCO
IMCO
IMCO | | IMCO GEL
IMCO GELEX
IMCO HOLECOAT | Wyoming Bentonite
Bentonite extender
Water dispersable asphaltic
blend | X
X | ××× | x | x
x | x
x | X
X
X | X
X
X | | | | | | | | ρ | s | s
s | | | | | | P | | | | IMCO
IMCO
IMCO | | IMCO HYB
IMCO IE PAC
IMCO KEN CAL-L | Extra hi yield bentonite
Inhibition enhancer
Powdered dispersing agent | X | × | × | | | × | x
x | x | | | | | | | | | s | | | P | | ρ | Þ | - | | | IMCO
IMCO
IMCO | | Brackish Water & Sat. Sati Water C | | 3 | |------------------------------------|------------|-------| | al Sail Water | Wa | econ | | Gyp Ireated . | ter-ba | nmen | | Treated D | 130 | ded | | resh Water | | ar T | | ow Solids | | hese | | Water-in-Oil (Invert) | | Sy | | OilMud | il-
150 | sterr | | Air, Gas, Misi | | 15 | | Uhalinity, pH Control Ac | ddilives | | | Bactericidus | | | | Dutoamers | | | | Emulsifiers | | | | ubricants | | | | foccutants | | | | Filtrate Reducers | | Fur | | Oaming Agents | | ctro | | ost Cuc Mat. | | היחל | | Shale Control Inhib | | As: | | Surface Active Agents | | | | hunders. Dispersants | | | | fiscositiers | | | | Calcium Removers | | | | Weighting Materials | | | | Corresson lutributors | | | | Elijide | Guide | | Lo | ~ C1 | • | | Hgn
H | | 1 | | | Control / | | | | | | | | | ٩ | Sine | Sants | ٠ | ا | Sli | s a | | |--|--|-------------|----------------|---------------|-----------|--------------|-------------|----------|-----------------------|---------|--------------|--------------------|--------------|-----------|------------|------------|-------------|-------------------|----------------|-------------|---------------------|-----------------------|----------------------|--------------|------------------|---------------------|----------------------|-------------------------------------| | riulus | Guiue | Fresh Water | Brackish Water | 1. Sall Water | p Freated | Lune Treated | Fresh Water | Solids | Water-in-Oil (Invert) | Oil Mud | r. Gas. Mist | Alkalinity, pH Cor | Bactericidus | Dutoamers | Emulsihers | Lubricants | Flocculants | Filtrato Reducers | Foaming Agants | St Cuc Mai. | Shale Control Inhib | Surface Active Agents | Thumpes, Dispersants | Viscosifiers | Calcium Removers | Weighting Materials | Corresson lubiditors | | | Product Tradename | Description of Material | Ĕ | ă | Sal | ĝ | = | Ē | 3 | Š | ō | ¥. | ₹ | ã | å | ū | 13 | 문 | Ē | ŝ | Lost | ซื | S | Ē | ş | Ü | 3 | ပီ | Available from? | | IMCO KEN-GEL
IMCO KENOL-S
IMCO KENOX | Organophilic clay Emulsifiers for formulating invert emulsions Quick time | | | | | | | | X
X | | | | | | p
p | | • | S | | | | | | 5 | | | | IMCO
IMCO | | IMCO KEN-PAK
IMCO KEN SUPREME
IMCO KEN-X CONG, 1 | Conc. for gelatingus oil packs
Fatty acid emulsifier
Basic-invert oil emulsifier | | | | | | | | x
x | Υ. | | | | | 0 0 0 | | | | | | _ | | | | | | | IMCO
IMCO
IMCO | | IMCO KEN-X CONG.
2
IMCO KEN-X CONG. 3
IMCO KLAY | Stabilizer: weight suspension agent Stabilizer: hi temp filtrate control Sub-bentonite | × | × | × | x | × | × | × | . x | | | | | | P | | | s | | | | | | P | | | | IMCO
IMCO
IMCO | | IMCO KWIKSEAL
IMCO LIG
IMCO LOID | Stended LCM
Lignitic material
Pregelatinized starch | X | XX | × | X | X | ××× | X | | × | | | | | s | | | p | | P | | | ρ | s | | | | IMCO
IMCO
IMCO | | IMCO LUBE-106
IMCO LUBRIKLEEN
IMCO MO | Lubricant
Non-polluting organic lubricant
Mud detergent | XX | | ××× | X
X | X
X | X
X | | | | | | | s | p | p | | | | | | Р | | | | | | IMCO
IMCO
IMCO | | IMCO MUDOIL
IMCO PERMAFILM
IMCO PERMALOID | Oil dispersed asphalt
Corrosion inhibitor
Pregelatinized starch | × | X
X
X | | XXX | | X | X | | | | | | | | ρ | | ρ | | | , | | | | | | P | IMCO
IMCO
IMCO | | IMCO PHOS
IMCO PLUG
IMCO POLY Rx | Phosphate
Ground walnut hulls (fine, med.
and coarse grades)
Synergistic polymer blend | XX | | x
x | x
x | | |) | X | × | | | | | s | | | P | | P | P | | P | | | | | IMCO
IMCO | | IMCO POLYSAFE
IMCO PRESERVALOID
IMCO QBT | Polymer for fluid loss control
Paraformaldehyde
Quebracho based thinner | XXX | X | X | X | x | |) | (| | | | ρ | | | | | P | | | s | | p | s | | | | IMCO
IMCO
IMCO | | IMCO RD-111
IMCO RD-2000
IMCO SAFE-PAC | Processed mod, lignosuifonate
Dispersant
Blended polymers | X
X
X | X
X | XXX | XXX | X | X | 2 | (| x | x | | | | s | | | ş | | | s | | 0.0 | p | | | | IMCO
IMCO
IMCO | | IMCO SAFE PERFSEAL
IMCO SAFE-SEAL
IMCO SAFE-SEAL X | Blended synthetic polymers
Sized carbonates
Sized carbonates | XXX | | X | X | X | X
X | X
X | × | × | | | | | | | | ρ | | S P | | | | P | | s
s | | IMCO
IMCO
IMCO | | MCO SAFE-TÄOL
MCO SAFE-VIS
MCO SAFE-VIS X | Lignosulfonates, carbohydrates
and sized carbonate blend
Synthetic polymer and sized
carbonate blend
Synthetic polymer | X | x
x
x | x | | | × | X
X | 3 | | | | | | | | | \$ | | | | | | p
p | | | | IMCO
IMCO | | MCO SCALECHEK
MCO SCR
MCO SHURLIFT | Scale inhibitor Shale control resgent Wet processed calcium magnesium silicate | | × | x | | x | x | | | | | | | | | | | | | | | ρ | , | ۰ ۴ | s | | ρ | IMCO
IMCO
IMCO | | IMCO SP-101
IMCO SPOT
IMCO SULF-XII | Sodium golyacrylates
Ory blend emulsifier
Hydrogen sulfide scavenger | x
x | x
x | × | × | | x
x | ; ;
; | X | | × | | | | s | p | | ρ | | | | | | | | | P | IMCO
IMCO
IMCO | | IMCO SUPER GELEX
IMCO SWS
IMCO THIN | Bentonite extender
Anionic-nonionic surfactant
Causticized lignite | ××× | | x | , х | × | x
x | ; ;
; | | | | | | | s
s | | S
P | | | | | p | Ρ | P | | | | IMCO
IMCO
IMCO | | IMCO VC-10
IMCO VR
IMCO WATE | Chrome lignosulfonate
Gel-builder for invert emulsion
Calcium carbonate | x | x | x | × | X | X | , x | × | | | | | | s
s | | | ٩ | | | s | | م | p | | ρ | | IMCO
IMCO
IMCO | | IMCO XC
IMCO X-CORR
IMCO XO ₂ | Bacterially produced polymer
Corrosion inhibitor
Oxygen scavenger | X
X | X | X
X | X
X | X | X | ٠, | (| | | | p | | | | | | | | | | | P | | | ρ | IMCO
IMCO | | MPERMEX
MVIGEL
NDUSCRUB | Pregelatinized starch
Magnesium smectite
Heavy duty cleaner | X | X | X | · X | × | X | ; | | | | | | | s | | | Š | | _ | | P | | P | | | | Baroid
IMV
CE-Natco | | NICOR B
NIPOL S 33 | Carrosian inhibitor
Surfactant mixed with diesel for
freeing stuck pipe | X | | X | , X | X | X | , X | × | × | | | | | | s | | | | | | p | _ | • | | | <u> </u> | Lamberti
GECA | | NVERMUL
NVERPOL
ROBAR | Oil mud stabilizer
Magnesium smectite
Synth. hi density, acid
sol, weighting material | × | X | × | X | | | X | (| X
X | | | | | Ρ. | | | S | | | | | | Sp | - | 0 | | Baroid
IMV
Or:IIsale | | ROMTÉ SPONGE
J-2
JEL-O-GEL | Synthetic oxide M ₂ S
scavenger
Natural gum viscosity builder
and fluid-loss control agent
Hydroxyethylecellulose | × | | x | | × | x | X | | | | | | | | | | s | | | | - | s | P | | s | ø | lronite Western Completion Services | | JELFLAKE
KANE FIBER
KARI | Shredded cellophane
Processed cane fiber
Polymeric for clay free fluids | x
x
x | X | X | X | × | × | × | | | | | - | | | s | - | | | o
o | | ء | | | | | | Baroid
Wyo-Ben
Brinadd | | KATHON WT | Biocide | | | _ | × | x | × | x | | | | | 9 | | | _ | _ | | - | | | | _ | | | | | Orilisate | | A Solids Tealed Teal | Recommende | ed for Th | ese S | yster | 15 | | | | F | unctio | วกเก | g As | | | | | |--|------------|-----------|-------|-------|------|--------|----------|-----------|--------|-----------------------|------|-------------|-------|--------|--------|---| | H Control A HO | Water-base | • | | | | | | | | 1 | | | | | | | | HCD dd | Low pH | | | | | < | | | | | | ٥ | Jents | sants | ٠٤ | = | | Sall W. J Treate e Treate with Water and | ter te | ē . | - 13 | | Anst | PH Co. | ericides | ulsifiers | ulants | Heducers
ig Agents | Mai | Control Inh | | Disper | lomove | 2 | | Fluids | : Guide | L | | - U. | ' | ئال | H | | Ę | | | 텵 | | | | | | | | | ē | Agen | rsan | | 1 | 1 2 | fors | , <u></u> | |---|---|-------------|--|-----------------|-------------|--------------|-------------|-------------|----------------------|---------|----------------|-----------------------|--------------|-----------|--------------|------------|-------------|-------------------|----------------|-----------------|---------------------|------------------|---------|---|------------------|---------------------|----------------------|---| | Product Tradename | Description of Material | Fresh Water | Brackish Water | Sat. Salt Water | Gyp Treated | Lime Treated | Fresh Water | Low Solids | Water-m-Oil (Invert) | Oif Mud | Air, Gas, Mist | Alk almity, pH Contro | Bactericides | Detoamers | Emulsifiers | Lubricants | Flocculants | Filtrate Reducers | Foaming Agents | Lost Circ. Mat. | Shale Control Inhib | Surface Active A | Osio | | Calcium Romovers | Weighting Materials | Corresion Inhibitors | Available from a | | KELZAN XC POLYMER
KEMBREAK | Xanthum gum biopolymer
Calcium lignosulfonate | × | <u>. </u> | × | _ | × | × | | 15 | 1,0 | 17 | 1. | ιΞ. | 1 | s | <u> </u> | | S | لـــــا | | s | 1 | ٩ | P | | 1- | 10 | Kelco
Arnold & Clarke | | K-FLO
KIM-MUD
KLEARFAC | Non-ionic surfactant
Polymeric for clay free fluids
Phosphate ester of alcohol
alkoxylate | × | | x | | | | × | × | × | × | | | | P | | • | P | P | | ş | P | P | P | - | | | Baroid
Brinadd
BASF Wyandott | | KLEEN-BLOCK
KLEEN-BLOCK X
KLEEN-ORILL | Non-damaging sized carbonate
Non-damaging sized carbonate
Non-damaging polymer/filtra-
tion control compound | XXX | X
X
X | X
X | X | X | X | × | ×
× | × | | | | | | | | P | | P | | | | P | | s
s | | Messina
Messina
Messina | | KLEEN-MIX | One bag mixture of non-
damaging viscosifiers/ | × | × | x | × | × | x | x | | | _ | | | | | | | ρ | | | | | | P | _ | | | Messina | | KLEEN-PAK
KLEEN-PIL | filtration agents. Non-damaging synthetic polymer blend Non-damaging synthetic | x
x | | x | | | x | x | | | | | | | - | | | P | | | s | | | P | | | s | Messina
Messina | | KLEEN-SEAL | Non-damaging filtration con- | x | _ | x | | | _ | × | | | _ | | | | | | | | _ | | | | | | | — | | Massas | | KLEEN-SPOT
KLEEN UP | troi bland Non-polluting, invert emulsion spotting fluid for stuck pipe Heavy duty detergent and degresser | x
x | x | x | | × | | x | x | x | | | | | P | P | |
• | | | Ρ. | | | | | s | | Messina Delta Mud Magcobar | | KLEEN-VIS X | Non-damaging synthetic
polymer
Non-damaging synthetic
polymer | x
x | | x | | | | x
x | | | | | | | | | | S | | | | | | P | | | | Messina
Messina | | KOLITE
KONTOL
KOROMIBIT C-100K | Potassium lignite derivative Ground coal Corrosion inhibitor Atmospheric corrosion inhibitor | × | × | × | × | X | × | × | × | × | × | | | | | P | | | P | P | | s | | | | <u></u> | P. | Dowell
Tretolite
C-E Natco | | KOROHIBIT C-115K
KOROHIBIT C-122K
KOROHIBIT C-675 | Corrosion inhibitor H ₂ S scavenger Corrosion inhibitor | X | ××× | X
X | ××× | X
X | X | XXX | | | x
x | | | | | , | | | | | | | | | | | 200 | G-E Natco
G-E Natco
G-E Natco | | KWIK-THIK
KWIK SEAL
KWIK VIS | Extra hi yield bentonite
Combination of granules, flakes
and fibers
Polymer | X | x | × | × | x | | X
X
X | | | | | | | | - | | S | | Р | | | | P | | | | Magcober
ASDI and
ECCO
Wyo-Ben | | L 10 | Pure, dried lignite for geo-
thermal drilling
Causticized soluble lignite | | x | | - | | × | x
x | | | | - | | _ | | | | s
s | | - | s
s | | P | | | | | CECA & Avebene Avebene & CECA SA | | LAMCOBAR | Bante (barytes) | X | X | X | | _ | | × | × | X | _ | | | | | | | | | | | _ | | | | P | | Louisiana Mud | | LAMCO CLAY
LAMCO DRILLFAS
LAMCO E | Sub-bentonite
Mud delergent
Emulsifier | XX | X
X | X
X | X
X | X
X | X
X | X
X | | | | | | s | P | | | S | | | | P | | ٩ | | | | Louisiana Mud
Louisiana Mud
Louisiana Mud | | LAMCO FIBER
LAMCO FLAKES
LAMCO GEL | Shredded cane fibers
Shredded flakes .
Wyoming bentonite | X
X | X
X | × | X
X | X
X | X | X
X | | | | | | | | | | s | | 2
P | | | , | ρ | | | | Louisiana Mud
Louisiana Mud
Louisiana Mud | | LAMCO HYDROPROOF
LAMCOLIG
LAMCO PERMA THINZ | Colloidal asphalt
Lignite
Aluminum chrome ligno-
sulfonate | XXX | XXX | x | X
X | X
X | X
X | X
X | x | | | | | | S S S | \$ | | P
S | | • | P | | 0 0 | | | | | Louisiana Mud
Louisiana Mud
Louisiana Mud | | LAMCO SLX
LAMSALGEL
LD-8 | Emulsifier & surfactant
Attapulgite clay
Non-polluting defoamer | x
x | X | X | | | x
x | | | | | | | P | 5 | Р | | | | | | s | | P | | | | Louisiana Mud
Louisiana Mud
Milchem | | LEATHERSEAL
LEATH-O
LECTRO-MIX | Shredded leather
Shredded leather
Water soluble salts | X
X | X
X
X | ¥ | × | × | | x
x | x | x | | | | | | | | | | p
p | ρ | | | | | | | Baroid
Milchem
Oil Base | | LENALK
LENOX
LEO'S PLUG | Causticized lignite
Lignite
Sunflower seed hulls | X
X | x | x | × | X
X
X | X | | | | | | | | s
s | | | P | | p | | | P
P | | | | | ECCO
ECCO
Wyo-Ben | | LHC ' | Liquid hydrocarbon coment for
lost circulation | | | | | | | | | | | | | | | | | | | P | | | - | • | | | | Western | | LIGCO
LIGCON | Lignite Sodium salt of lignitic material | X | X | | x | X | X | X | | | | | | | S | | | P | | | | | S | | | | | Milanem
Milanem | | LIGNATE | Processed modified ligno-
sulfonate | | × | × | | x | X | x | | | | | | | s | | | P | | | s | | P | | | | | Teinite - | | LIGNEX | Low molecular weight ferro-
chrome lignosulfonate
Sodium lignosulfonate | × | | x | x | x | × | | | | | | | | P | | | s
s | | | 3 | | P | | | | | CECA &
Avetene
Avetene &
CECA | | LIGNO THIN
LIGTEX-K
LIME | Lignite base thinner
Potassium lignite derivative
Hydrated lime | X | | | | × | × | X
X
X | × | | × | P | s | | ρ | s | | P
P | | | P
S | | P
\$ | | | | s | Am Colloid
Texas Brine
Most companies | | LOLOSS | Guar gum | × | x | | | | | x | | | _ | • | | | | | | s | | | | | | P | | | | Magcobar | | , | ç | 3ec | אווויי | rend | ed t | or T | hese | Sy | stem | 5 | | | | | | | Fun | ictio | uiuć |) As | | | | | | | |------------|-------------|------------|---------|------------|------------|--------|---------------------|-------------|-----------|--------------|-----------|----------|------------|----------|------------|--------------|---------------|--------------|-----------------|---------------|----------------|-------------|----------------|-----------------|------------------| | | W | ate | r-08 | se . | | | |)il.
232 | | Additives | | | | | | | | | | | | | | | | | | Lov | • рн | | ž o | gh
H | | ert) | | | Control Add | | | | | | | | | Inhib | Agents | sants | | ş | ists | or S | | resh Water | ckish Water | Salt Water | Treated | ne Treated | resh Water | Solids | /ater-in-Oil (Inver | Mud | Gas. Mist | almity, pHCo | lericides | eloamers | mulsifiers | bricants | locculants | ale Reducers | oaming Agents | ost Circ Mat | ate Control Int | face Active A | unners, Disper | iscosifiers | alcıum Remover | reighting Mater | osion tohibitors | | | Guide | Fresh Water | Brackish Water 6 | Sal Salt Water | _ | Lime Treated D. I | Fresh Water To | Low Solids | Water-in-Oil (Invert) | Oil Mud | Air, Gas, Misi | Alkalinity, pH Control Addit | Bactericides | Deloamers | Emulsifiers | Lubricants | Flocculants | Fibrate Beducers | Foaming Agents | | Chair Court mai | Shard Control mirro | Surface Active Agents | Phinners, Dispersants | Viscosifiers | Calcium Removers | Weighting Materials | Corrosion Inhibitors | Available from | |---|---|-------------|------------------|----------------|-------------|-------------------|----------------|------------|-----------------------|-------------|----------------|------------------------------|--------------|-----------|-------------|-------------|-------------|------------------|----------------|-----|-----------------|---------------------|-----------------------|-----------------------|--------------|------------------|---------------------|----------------------|-------------------------------------| | LOWATE
LST-5 | Acid soluble weight material
Non-emulsion, all purpose
surfactant | × | × | × | X | X | X | X | X | x | × | 1 | | | | | J | - 1 | | - ! | | | ρ | | | | ρ | 1,-1 | Magcobar
Cardinal | | LST-12
LST-13
LST-34 | Silt suspending surfactant -
Oil, garaffin dispersant
Catronic fluorosurfactant | | x
,x | | | | | | | x | | | | | | | | | | | | | P
P | P | | | | - | Cardinal
Cardinal
Cardinal | | LST-36
LST-37 | Fluorosurfactant blend for toam ing hydrocarbon frac fluids Fluorosurfactant blend for foaming mixtures of hydrocarbon and water from well bore | | | | - | | | | | x | | | | | | | | | P | | | | | | | | | | Cardinal
Cardinal | | LST-35
LUBE-KOTE
LUBE-TEX | Nonionic fluorosurfactant
Graphite
Biodegradable lubricant | X
X
X | XXX | ××× | X | X
X | X
X | X | | | | | | | | P P | | | | | | | P | | | | | | Cardinal
Magcobar
Texas Brine | | LUBRA-GLIDE
LUBRA-PHASE I
LUBRA-PHASE II | Solid friction reducer &
"gumbo" stabilizer
Non ionic mud surfactant,
shale solids control
Biodegradable & non-loxic
lubricant | X
X | X
X
X | × | x
x
x | x
x
x | x
x
x | x
x | x | x | X | | , | | | P | | s | | | s | | p | | | | | | Sun Chem
Sun Chem
Sun Chem | | LUBRA-SEAL
LUBRE TORQUE
LUBRICANT JJ35 | Micronized, surface modified,
cellulose-base fiber
Torq reducer
Extreme pressure lubricant | x
x | × | × | X
X | x
x
x | X
X | x
x | × | × | × | | | | S
S | Р | | s | | · | | | | | | | | | Sun Chem
UBM
CDA/HMC | | LUBRICANT 458 LUBRI-FILM LUBRI-SAL | Biodegradable and nontoxic
lubricant
E.P. lubricant and corrosion
inhib.
Non-polluting lubricant | x | x | x | x | x | x
x
x | x | | | | ٠ | | | | р
р
р | | | | | | | | | | | | P | Lamberti
Milchem
Milchem | | MAGCOBAR
MAGCOBRINE C.B
MAGCOBRINE C.C. | Barite (barytes) Pre-blended calcium chloride/ Bromide brines for workover, completion and packers Pre-blended calcium chloride brine for workover, comple- tion and packers | | X | x | X | X | X. | x | × | x | | | | | | | | | | | | | | | | | P | | Magcobar
Magcobar
Magcobar | | MAGCOBRINE P.C.
MAGCOBRINE S.C.
MAGCO
DEFOAMER A-40 | Potassium chloride
Sodium chloride
Defoamer | × | X | X | X | X | × | × | | | | , | | ρ | | | \$ | | • | | S | : | | | | | P | | Magcobar
Magcobar
Magcobar | | MAGCOFOAMER 76
MAGCO FIBER
MAGCOGEL | Foaming agent
Blended fibers
Wyoming bentonite | X | × | X | X | × | × | X
X | | | × | | | | | | | s | ρ | P | | | | | ρ | | | | Magcobar
Magcobar
Magcobar | | MAGCO INHIBITOR 101
MAGCO INHIBITOR 202
MAGCO INHIBITOR 303 | Corrosion inhibitor for packer
fluids
Corrosion inhibitor for direct
tresting oil drill string
Organic amine corrosion
inhibitor for workover, com-
pletion and packer brines | | x | | x | X | x
x | x | | | x | | | | | | | | | | • | | - | | | | | P | Magcobar
Magcobar
Magcobar | | MAGCOLUBE
MAGCONATE
MAGCONOL | Biodegradable lubricant
Petroleum sulfonate emulsifier
Alcohol detoamer | X | XXX | X
X | X
X | X
X | ××× | X
X | | | | | | P | P | P | | | | | | | | | | | | | Magcobar
Magcobar
Magcobar | | MAGCOPHOS
MAGCO POLY
DEFOAMER | Sodium tetraphosphate
Organic polyof defoamer | X | × | X | × | | X | | | | | - | P | | | | | p | | | | | | • | P | | | | Magcobar
Magcobar | | MAGCO POLY SAL MAGNACIDE MAGNE-MAGIC MAGNE-SALT | Organic polymer Bacteriostats Blend of magnesium and calcium compounds Water soluble salts | X
X | × | ×× | | × | ××× | × | | | | P | P | | | | | P | | | P | | | · | s | | - | | Aquaness
Oil Base | |
MAGNE-SET
MAGNE-SET
ACCELERATOR
MAGNE-SET RETARDER | Controlled solidifier Material for reducing set time for Magne-Set Material for increasing set time for Magne-Set | x
x | ×× | X
X | x
x | x
x | ×× | ××× | | | | | | | | | | | | P | | | • | | | • | | | Oil Base
Oil Base
Oil Base | | MAGNESIUM CHLORIDE
MAGNESIUM OXIDE
MAGNE-THIN | Magnesium chloride
Low molecular wt. polymer | | ·
× | x
x | x | | | × | | | | | | | | • | | | | - | s | | | | P | | s | - - | Most companie
ECCO
Oil Base | | MARBLE
MARITE
MC-500 | Natural calcium carbonate 4.7 specific gravity weighting agent Fluid loss control, high temper-
ature stability additive | × | × | × | × | X | × | x | | x
x
x | | | | | | | | P | | | | - | | | | ρ | S | | Edemsarda
Messina
Mizell | | MESUCO-BAR
MESUCO-BEN
MESUCO-CL | Barite (barytes) Bentonite Sodium salt of lignitic material | X | ××× | × | X | ××× | X
X | × | | x | | | | | s | | | P | | | | _ | 1 | | P | | Ρ | | Messina
Messina
Messina | | MESUCO-CRCL
MESUCO FIBER
MESUCO FLAKE | Chrome lignitic compound
Shredded plant fibers
Sized and crimped cellophane | X
X | ××× | ××× | x | X | X
X | X
X | × | x | | | | | | | | s | | P | P | , | - | P . | | - | | | Messina
Messina
Messina | | riuias | Guide | ┝ | 1 2 | T. | T | + | _ | ┨ | (Inve | | | 5 | | | | | | 5 | = | | i de | | 2 | Oispers | . 1 | DVE | 5 | 1 | | | |---------------------------------------|--|-------------|----------------|------------|-------------|--------------|-------------|------------|-----------|---------|-----------|---------------|--------------|-----------|-------------|------------|-------------|-------------------|-----------------|-----------|--------------------|----------|---------|------------|--------------|-----------------|-------------------|---------------|-------|--------------------------------| | _ | : | 916 | h Wate | Salt Water | pele | eated | ater | ş | ō | | M.S. | Ho | Sep | ers | ers | 돧 | str | Reduc | Ager | . Nat | ontrol | | L i | 3.0 | 1675 | Rem | Ma Ma | 1 | | ٠., | | One divertification of | Description of Managed | Fresh Water | Brackish Water | Sat Sal | Gyp Trealed | Lime Treated | Fresh Water | Low Solids | Water | Oil Med | Air. Gas. | Alkahnıty old | Bactericides | Defoamers | Emulsitiers | Lubricants | Florculants | Filtrale Reducers | Foarming Agents | Losi Circ | Shale Control Inhi | | Suriace | I hinners. | Viscosifiers | Calcium Remover | Weighting Materia | Corresponding | 01.03 | | | Product Tradename MESUCO-FOAM | Description of Material Versatile foaming agent for | 1 " | 1 @ | 100 | 10 | 1= | <u> </u> | <u> -</u> | <u> </u> | 10 | X | 15 | - | ٥ | w | | - | - | <u> </u> | _ | 100 | 10 | ٠. | | | - | 15 | 10 | ٠, | Available from
Messina | | MESUCO-GEL | fresh to sait saturated muds Wyoming bentonite (API spec.) | X | x | X | X | × | X | × | | | ^ | | | | | | | P | | | | | | | ₽ | | | | | Messina | | MESUCO-GEL | Wyoming bentonite | X | × | X | X | × | | × | | _ | | | | | | | | P | | | | | | | P | | | | | Messina | | MESUCO-HEC
MESUCO-KL
MESUCO-LIG | Mydroxyethylcellulose
Potassium lignitic compound
Lignitic material | X | X
X | . × | x | X
X | X
X
X | ××× | | | × | | | | \$
\$ | | | SP | | | P | | | Ş.
5 | P | | | | - | Messina
Messina
Messina | | MESUCO MUD
DETERGENT | Concentrated mud detergent | X | × | x | x | X | X | X | | | | | | | 5 | | | | | | | P | • | | | | | | ٠ | Messina | | MESUCO-PLUG
MESUCO SALT CLAY | High strength ground nut shells
Attapulgite clay | X | X | X | | X | X | X | X | × | | | | | | S | | | | ٩ | | | | | P | | | | | Messina
Messina | | MESUCO-SEAL | Scientific blend of loss circula- | x | x | х | × | x | 'Χ | X | | | | | | | | | | | | P | | | | | | | | | - | Messina | | MESUCO-SORB
MESUCO SUPER GEL | H ₂ S scavenger
Extra high yield bentonite | X | X | X | x | × | X | X | | | | | | | | | | s | | | | | | | P | | | P | • | Messina
Messina | | MESUCO WORKOVER-5 | High molecular weight polymer- | . x | × | × | | | | | | | | | | | | | | | | P | | | | - | | | | | _ | Messina | | MF-1
MCA | calcium carbonate blend Polymer, selective flocculant Mica flakes (sev. grades avail.) | X | X | X | x | x | X | X | x | × | | | | | | | ₽ | | | P | | | | | | | | | | RDSI
Most companie | | MICATEX | Mica flakes (fine, med. and | × | × | × | x | × | × | × | × | × | | | | | | | | | | P | | _ | | _ | _ | | | | | Baroid | | MIL-BAR
MILCHEM MD | coarse)
Barite (barytes)
Mud detergent | X | X | X | X | X | X | X | x | × | | | Ţ | | s | | | | | | | P | | | | | P | | | Milchem
Milchem | | MILCHEM PIPE-GARD | Zinc chromate corrosion | | | | × | | | | - | | | | | | _ | | | | | | | | | _ | | | | | | Milchem | | MIL CON | inhibitor
Neutralized heavy metal mod | | | | X | | | | | | | | | | s | | | P | | | | | • | 5 | | | | | | Mitchem | | MIL-FIBER | fignite Shredded cane fibers | × | x | X. | х | x | x | x | | | | | | | | ٠. | | | | P | | | | | | | | | | Milchem | | MILFLAKE
MIL-FREE | Shredded cellophane fibers
Surfactant for mixing with | X | X | X | X | X | X | X | | | | | | | | P | | | | P | | | | | | | | | | Milchem
Milchem | | MIL-GARD | diesel oil to free stuck pipe H ₂ S scavenger | | | | × | P | , | Milchem | | MILGEL | Wyoming bentonite | × | X. | × | × | x | x | x | | | x | | | | • | | | \$ | | | | _ | | | P | | | | | Milchem | | MIL-PLUG | Diesel oil replacement
Ground walnut hulls | X | X | X | X | X | X | X | x | x | | | | | | P | | | | P | | | | | | | | | | Milchem
Milchem | | MIL-POLYMER 302 | Biodegradable polymer viscos-
ifier for water base mud | X | x | × | | | x | X | | | | | • | | | | | s | | | _ | | | | P | | | | | Milchem | | MIL-POLYMER 303 | Drilling polymer with biocide | X | | X | | | | X | | | | | \$ | | | | | P | | | | | | | P | | | | | Milchem | | MIL-POLYMER 304 | Drilling polymer with biocide
for calcium contaminated
systems | X | X | X | | | • | . x | | | | | \$ | | | | | P | | | | | | | P | | | | | Milchem | | MIL-POLYMER 305 | Drilling polymer for moderate | x | × | x | | × | × | | | | | | | | | | | P | | | | | | | p · | | | | _ | Milchem | | MIL-POLYMER 306 | temperature systems Drilling polymer for moderate to high temp. systems | × | X | X | | X | X | | | | | | | | | | | P | | | | | | | P | | | | | Milchem | | MIL-TEMP | Stabilize flow & fluid loss of water base muds at high temp. | × | ; x | × | x | × | × | × | | | | | | | | | | \$ | | | | | F | • | | | | | | Milchem | | MIXICAL | Acid soluble fluid loss additive
and lost circulation material
for Polybrine systems | x | X | × | | | X | x | X | | | | | | | | | P | | P | | | | | | | | | | Magcobar | | MON-DET
MONEX | Mud detergent
Flocculant and bentonite
extender | X | X | × | X | X | X | X | | | | | | | S | | P | | | | | P | | | P | | | | | Montello
ECCO | | MONEX | Co-polymer, flocculant and | × | x | | | | x | x | | | | _ | | | | | P | | - | _ | | | | | P | | | | | Montello | | MON FOAM | clay extender Foaming agent for fresh or salt water | | | | | | | | | | X | | | | | | | | P | | | | | | | | | | | Montello | | MON HIB | Film forming amine to control drill pipe corrosion | X | X | X | X | X | X | X | P | | Montello | | MONOIL CONCENTRATE | Concentrate for Oil Base invert | | | | | | | | x | | | | | | P | | | | | | | | | | | | _ | | | Montello | | MON PAC | High molecular weight, poly-
anionic cellulosic polymer | X | X | X | X | X | X | x | | | X | | | | s | s | | P | | | P | | | | P | | | | | Montello | | MON PAC ULTRA LO | Polyanionic cellulose ultralo viscosity | x | X | × | × | x | × | x | | | | | • | | s | s | | P | | | P | | | | | - | - | | | Montello | | MOR-REX
MOR-REX | For shale stabilization Modified starch | x
x | X | x | X | X | x | x | | | | | | | | | s | | | | P | _ | p | | | | | | | Corn
Milchem | | MR-1
MUDBAN | Mud removal agent Oil-base mud thinner. | | × | x | x | × | × | x | | _ | | | | | | | - | | _ | | | <u>s</u> | F | | | | | | | Western Dowell | | MUD-EX
MUDFLUSH | dispersant
Mud detergent
Mud removal agent | X | X | X | | X | X
X | X | | | | | | | | | | | | | | P | F | , | | | | | | Tretolite
Halliburton | | MUD FIBER | Blended cane and wood fiber | × | × | × | | _ | <u>^</u> | ^ | | | | | | | | | | - | _ | - | | | | _ | _ | _ | | | | | | MUD-MUL
MUD-MUL (LS) | Non-ionic emulsifier Anionic/nonionic (low solids emulsifier) | x | X | × | X | ^ | × | X | | | | • | | | P. | | | | | _ | | S | | | | | | | | Magcobar
Messina
Messina | | MUD-PAC | Corrosion inhibitor for solids | x | x | X | × | × | x | x | | | | | | | | | | | | | | | | _ | _ | _ | _ | P | | Milchem | | MUD SEAL . | layden Packer Fluids
Cellulose fibers | X | x | x | X | X | × | x | 'X | x | | | | | • | | | | | P | | | | | | | | | | Teinite | Product Tradename | Description of Material | Fresh Water | Brackish Wa | Sat. Satt Water | Gyp Treated | Lime Treated | Frash Water | 1 our Sounde | Water-in-Ort | | Oil Mud | Au. Gas. Mist | Athalinity, pH | Bactericides | Defoamers | Emulsitiers | Lubricants | Flocculants | Fulrate Redu | Foaming Age | Lost Circ. Ma | Shale Confro | Surface Activ | Thunders, Dis | Viscosiliars | | Catcum Rem | Weighting Ma | Corrosion Int | Available from: | |--|---|-------------|-------------|-----------------|-------------|--------------|-------------|---|------------------|----|----------|---------------|----------------|--------------|-----------|-------------|------------
-------------|--------------|-------------|---------------|--------------|---------------|---------------|--------------|----------|------------|---------------|---------------|---| | MULCON . | To correct acid number in | " | 1 @ | S | 10 | 1= | . 1 | تــــــــــــــــــــــــــــــــــــــ | | 1. | | _ | ت | - | | s | | <u> </u> | S | - | | s | S | 1- | 12 | <u> </u> | 21: | <u>> </u> | 31 | Orillsafe | | - | oil muds & invert muds | _ | | | | | | | | | MULDIS | Emulsifier & wetting agent
for oil base & invertimuds | | | | | | | X | | | | | | | | Þ | | | S | | | | P | s | _ | | | | | Orillsafe | | MULFIL | Stabilizes suspension & plaster-
ing prop. in oil m. | ٠. | | | | | | X | | | X | | | | | | | | _ | | _ | _ | | _ | P
- | | , | | | Orilisate | | MULFIX | Oil soluble liquid for use
as packer fluid, for
fracturing and acidizing | | | | | | | × | . х | | X | | | | | | | • | S | | S | S | | · \$ | P | | | | | Oritisate | | MULFLO
MULGEL | Flow improver
Viscosifier & gelling agent | | | | | | | | × | - | X
X | | | | | ρ | s | | S | | | s. | P
S | ρ | ρ | | | | | Orilisale
Orilisale | | MULOIL A | for all base & invert muds' Dry or liquid basic comp. for hi temp/hi water oil base muds | | | | | | | | × | | x | | | | | s | 5 | | P | | | s | | | s | | | | s | Orillsafe | | MULOIL B | Dry or liquid basic comp. | | | | | | | | | | x | | | | | s | 5 | | p | | | s | | | \$ | | | | s | Drillsafe | | MULSEAL | for oil base muds
Asphaltic, oil soluble LCM | | | | | | | | x | | X | | | | | | | | s | | P | | | | s | | | | | Orillsale | | MULSTAB | for oil base & invert
Stabilizes filtrate & emulsion
under hi temp. In oil
base muds | | • | | | | | | X | | × | | | | | Ρ | | | s | | | | s | ρ | | | | | | Orilisate | | MULTICEL
MULTICEL EHV
MULTICOAT | CMC, all grades Super ni vis CMC Water-dispersible asphalt for filtration, immittion & lubric, in water base m. | X
X | XXX | XXX | X
X | X | X | X | C
C
X | | × | X | | | | | s | | 0 0 0 | | | P | | | 5
5 | | | | | Orilisate
Orilisate
Orilisate | | MULTICRYL
MULTIDET
MULTIDEX | Polyacrylamide, all grades
Drilling mud detergent
Hi temperature stable •
polysacchande, 200°C | X
X
X | X
X
X | ××× | × | X | × | X | C C C | | | x | | | | s | | | P | | | P
S | ρ | | S | | | | | Oniisale
Oniisale
Oniisale | | MULTI-DF
MULTI-DFO
MULTIFLOC | Liquid all purpose d-foam
Dry all purpose d-foamer
Selective, nonionic
flocculant | XXX | X
X
X | XXX | ××× | X
X | X
X
X | X | | | | | | | P | | | ρ | | | | | | | | | | | | Ornisate
Drillsate
Drillsate | | MULTIFOAM
MULTIHEC
MULTILAX | All purpose foaming agent
Hydroxyethylcellulose
Oil spluble surfactsnt to
free stuck pipe | XXX | XXX | X | XXX | X | X | X | (
(
(X | | | X | | | | ş | s | | ٩ | P | | . | ρ | | ρ | | | | | Ornitsate
Ornitsate
Ornitsate | | MULTILIG C
MULTILUBE
MULTILUBE A | Chrome lignite
Extreme pressure lubricant
Non-polluting EP lubricant | XXX | X | XXX | × | X | × | X | (
(
(
(| | | | | | | • | p
p | | s | | | P | s
s | . ρ | | | | | | Orillsafe
Orillsafe
Orillsafe | | MULTIMER | Blend of hi temp, & sait resistant polymers | X | X | X | X | X | x | X | (| | | X | | | | | | | ٥ | | | s | | | S | | | | | Orillsate | | MULTIMYL
MULTIMYL A | Pregelatinized starch Non-termenting, lemp, stable carboxymethyl-starch | x | X | X | , X | X | X | X | (
(| | | X | | | | | | | P. | | | s | | | S | | | | | Orilisate
Orilisate | | MULTIPLAST | Non-polluting, hi saluble | x | x | Х | x | × | × | X | (X | | X | χŧ | | | | | | | | | ρ | | | | | | | | | Orillsate | | MULTIPOL HT | law solids LCM-additive Resin/lignitic blend for filtrate & vis control at hi | X | X | X | × | X | . x | X | • | | | | | | | | | | P | | | S | | S | \$ | | | | | Onitsate | | MULTISAL | temperatures Colloidal base & filtrate reducer for clayfree muds | | x | x | | | X | | | | | | P | | | | | | P | | | | | | \$ | | | | | Orilisate | | MULTISEAL | Combination of granules flakes and fibers | X | X | X | X | X | x | Х | (| | | | | | | | | | | | ρ | | | | | | | | | Eisenman | | MULTIVIS | Chrome lignosulfonate Hi molecular weight, sait resistant polymer | X | X | X | X | X | X | X | ξ | | | x | | | | s | | | s | | | S | | P | p | | | | | Orillsate
Orillsate | | MULTI-XC | Hi malecular weight xanthan | x | x | х | × | X | × | Х | ť | | | x | | | | s | | | s | | | | | | P | | | | • | Onlisate | | MV-405 | gum polymer Liquid oil phase mud emulsifier & wetting agent | | | | | | | | X | : | X | | | | | | s | | s | | | | P | | 7 | • | | | | Milchem | | MY-LO-JEL | Pregelatinized starch | × | × | X | x | × | × | X | ١ | | | | | | | | | | P | | | | | | | 5 | ;
—— | | | Magcobar | | MY-LO-JEL
PRESERVATIVE | Starch preservatives | X | X | | X | | X | X | | | | | | ٩ | | | | _ | | | | | | | | | | | | Magcopar | | N-4886
NAMINAGIL | Organic balyelectrolyte polymers Corrasion inhibitor, biocide | ¥ | X | | | | | | X | | | | | s | | • | | P | | | | | | | | | | | , | Tretolite Rhone Poulence | | NATROSOL
NELU PHANE
NELU PHLAX | Hydroxy ethyl cellulose
Cellophane flakes
Shredded fibre | ××× | _ | ×× | × | × | X | × | | | x
X | | | - | - | | | | P | | P
P | | | | p | | | | | Baker Chem.
CDA/HMC
CDA/HMC | | NELU STARCH | Pregelatinised starch | | | | | | | | | _ | _ | | | | | | _ | | ٥ | | - | | | | s | | | | | CDA/HMC | | NE-1
NEP
N-GAUGE | Fregeratinised starch Liquid antifoam agent Powdered antifoam agent Potassium lignosulfonate | X
X
X | XXX | XXX | X
X
X | X
X
X | X | X
X
X | (| | | | | | P | | | | ş | | | p | | s | _ | | | | | Hailiburton
Hailiburton
Deita Mud | | NOCOR 133, 166, 203 | Corresion inhibitors | | | | | | | | | | ž. | | | | | | | | | | _ | | | | | | | | 0 | Cardinal | NOCOR 133, 166, 203 NOCOR 224 Carrosian inhibitors Carrosian inhibitors P Cardinal P Cardinal P Cardinal | Myster and a seed-sate water and a seed-sate water and a seed-sate water | Re | eco | mn | enc | led f | or T | nes4 | . Sy | siem | 15 | | | | | | | Fur | CLIC | חוח |) As | | | | | | | |--|----|---------------|------------|---------|-----------|-----------|----------|------|------|-----------|---------|--------------|----------|-----------|-----------|-------------|--------------|--------------|-----|---------|--------|---------|--------------|-----|---------------------|-----------------------| | Till (Invert) Hd Ma mon Manus Spersantis Spersantis | | w | ate | -ba | se | | | | | | filives | | | | | | | | | | | | | | | Γ | | | L | Lov | • рн | | | | | er. | | | _ | | | | | | | | | ۾ | gents | sants | | | sle | 810 | | Fresh Waler Brackish Wa Sat Salt Wa Sat Salt Wa Gyp Treated Lime Fresh Water Fresh Water Low Solids Water-in-Oil Mud Oil Mud Oil Mud Oil Mud Oil Mud Fresh Water-in-Oil Coll Mud Fresh Water-in-Oil Coll Mud Shafer-in-Oil Fater Gent Fater Red Fater Control Surface Act Thinners Di Viscositiers Calcum Rei Coll Coll Coll Coll Coll Coll Coll Col | | rackish Water | Salt Water | Treated | e freated | esh Water | v Solids | Ė | Mud | Gas, Mist | F | Bactericides | efoamers | mulsibers | ubricants | Flocculants | ale Reducers | Iming Agents | Ü | Control | Active | <u></u> | Viscosifiers | . – | Veighling Materials | Corresion firhibitors | | | | Fresh Water | Brackish Waler | it Salt Water | Gyp Treated | Lime Freated | Fresh Water | w Solids | Water in Oil (In | Oil Mud | r. Gas. Mist | Atkalinity, pHC | Bactericides | Defoamers | Emulsibers | Lubricants | Flocculants | Filtrale Reduce | Foarming Agent | Lost Circ. Mat | Shale Control b | | Stirrice Active | Thinners, Disp | Viscosifiers | Calcium Remo | Weighting Mate | Corrosion fiihit | |
--|--|-------------|----------------|---------------|-------------|--------------|-------------|-------------|------------------|---------|--------------|-----------------|--------------|-----------|------------|------------|-------------|-----------------|----------------|----------------|-----------------|----------|-----------------|----------------|--------------|--------------|----------------|------------------|------------------------------------| | Product Tradename | Description of Material | - | | Sat | - | _ | | 10 | ₹ | ō | ¥ | 2 | ě | ŏ | ŭ | ئ | ű | 12 | 15 | تِ ا | Ø. | <u> </u> | | | > | ت | ₹ | <u> </u> | Available from | | NOCOR 643 | Surfactant and corr. Inhib. | | X | | × | <u>×</u> | <u> </u> | <u>×</u> | | | | | | | | | | | | <u> </u> | | | | _ | | | | <u>s</u> _ | Cardinal | | NOCOR 644
NOCOR 645
NOCOR 700 S | Air/Gas Drig foamer with
inhibitor
Air/Gas Drig foamer
Surfactants | x | × | × | x | x | x | x | | | x | | | - | | | | | P | | | ě | - | | | | | _ | Cardinal
Cardinal
Cardinal | | NOMOUSS D
NOMOUSS S
NORUST 720 | Defoarmer
Detoarmer
Corrosion inhibitor | × | ××× | × | | | x | X | | | × | · | 5 | P | | | | | | | | | _ | | | | | P | CECA
CECA
CEGA | | NORUST 995 | Corrosion inhibitor for completion brings | | x | x | | | | | | | | | s | | _ | | | | | | | - | | | | | | P | CECA SA | | NORUST 996
NORUST ACH | Corrosion inhibitor for
calcium completion brines | | × | X | | | Ų | x | | | × | | S | | | | | ٠ | | | | | | | | | | P | CECA SA | | NORUST ASW | Oxygen corrosion inhibitor Oxygen corrosion inhibitor | ÷ | | <u> </u> | | | <u> </u> | | _ | | <u> </u> | | | _ | | _ | | | | | | | | | | <u></u> | | -
- | CECA | | NORUST OC 40
NORUST PA23D | Foaming agent for fresh or salt water M ₂ S and CO ₂ corrosion | • | | x | | | | | x | x | × | | | | | | | | P. | | | | | | | | | P | CECA | | NOBUCT CC 44 | Tinnibitor T | | _ | | | | | | | • | NORUST SC 41
NO-STIK
NOVADRIL 30 | Oxygen scavenger
Surface active agent
Polyanionic cellulosic polymers | ××× | ××× | X
X | × | × | × | × | | | | | | | | \$ | ρ | 5 | | | | | | | P | | | | CECA
RDSI
Hercules | | NOVADRIL 40
NOXYGEN
N.P.L. 122 | Polyanionic cellulosic polymers
Oxygen scavenger
Environmental Protection
Lubricant | X
X | X
X | X
X | × | X | × | × | x | x | | | | | | P | P | P | | | P | | | | P | | | P | Hercules
Milchem
Trinity Mud | | NUT PLUG
NYMCEL | Ground wainut shells Carooxy methyl-cellulose in low, high and ultra high vis- cosities, technical and pure grades | X | X | X | X | X | X | X | x | x | x | | | | s | | | P | | P | s | | | | P | | | | Magcobar
Nyma | | OA 13 | Oxidizing agent | X | X | X | | | | | | | x | | P | | | | · | | | | | | | | | | | | Completion | | OB ACID PYRO
OB BENGEL
OBC 655 | Sodium acid pyro phosphate
Wyoming bentonite
Blended oxygen scavenger,
corrosion inhibitor, blocide | X | X
X | X
X | × | X | X
X | X
X
X | | | × | | Þ | | | | | s | | | | | , | • | P | | | P | Oil Base
Oil Base
CDA/HMC | | OBC 656 | Blended oxygen scavenger. | x | x | x | × | | | x | | - | x | | P | | | | | | | | | | | | | | | P | CDA/HMC | | OB CLAY
OB CLOROGEL | corrosion inhibitor, biocide
Sub-bentonite
Attapulgite clay | × | X
X | × | × | × | × | X | | | | | | | | | | s | | | | | : | | P
P | | | | Oil Base
Oil Base | | OB DEFOAMER
OB DETERGENT
OB DIVERTER | Defoamer
Mud detergent
Stimulation fluid diverter | X
X | X
X
X | X
X | X
X | X
X | X | X
X
X | x | × | | | | P | s | | | s | | ρ | | P | , | • | | | | | Oil Base
Oil Base
Oil Base | | OB DIVERTER-HT | Stimulation diverter for hi-
temp, hi-press wells | x | X | × | X | × | x | × | x | x | | | | | S | | | s | | P | | | | | | | | | Oil Base | | OB FLOC
OB GEL | Clay floceutent Conc. for improving Black Magic gel: basic conc. for location mixing of Black Magic SP | X | X | X | X | X | X | X | x | x | x | | | | s | s | P | P | | | s | P | \$ | ; | s | | | | Oil Base
Oil Base | | OB GRAVEL PACK
FLUID | Basic oil base mud conc. for gravel packing range of 7.8 | | | | | | | x | | x | | | | | | | | P | | | • | | | | s | | | _ | Oil Base | | OB HEVYWATE
OB HEXAGLAS | to 17-ppg (mfgr. mixed) Barite (barytes) Sodium hexameto phosphate | X | X | X | X | X | X | X | X | x | | | | | | | | | | | | | F | • | P | | P | | Oil Base
Oil Base | | OB HI-CAL
OB LIME HYDRATE
OB MIX FIX | Calcium hydroxide
Hydrated lime
Visc. reducer for Black Magic
and mixing oil adjuster | × | x | x | x | X | x | X
X
X | X | XXX | x | P | \$
\$ | , | s | | s | s | | • | 5 | | | • ; | s | _ | | s
s | Oil Base
Oil Base
Oil Base | | OB NUT SHELL
OB PACKER FLUID | Ground pecan shell Besic oil base mud conc. for oing annulus packing | X | X
X | X | X | X | X | X | × | X | × | | | | | | | | _ | P | | | | | | | | P | Oil Base
Oil Base | | OB PFA |)r. mixed
/tropic adjuster for oil base
wacker fluids | | | | | | | | × | x | | | | | | | s | | | | | | | i | · ` | ·
 | | \$ | Oil Base | | OB PYRO OB SAPP OB STARCH PRESERVATIVE | Sodium terraphosphate
Sodium acid pyro phosphate
Paratormaldehyde | X | X | X | - | | X | X | | | | | p | _ | | | | | | | | | = | | P | | | <u>-</u> | Oil Base
Oil Base
Oil Base | | OB STP
OB WATE
OB WELL PAC | Sodium tetraphosphate
Calcium carbonate
Basic oil base mud conc. for | | X
X | | × | X. | x
x | | × | × | × | | | | | • | | | | | | | F | | P | | P | ——
Р | Oil Base
Oil Base
Oil Base | | | bell hole & casing protection
(mtgr. mixed) | _ | | | | OB WELL WASH | cleaner | X | S | 6 | | | | | | Oil Base | | OB WOODSEAL
OCOBAR | Wood shavings
Barite | × | X | X | X | X | × | X | X | × | | | | | | | | | | P | | | | | | | P | | Oil Base
OCOMA | | OCOBAR BULK
OCOBAR MB
OCOBAR T | Bulk barite
Marine bagged barite
Coarse barite | X | X | × | X
X
y | X | X
X
Y | X
X
Y | X
X | ×
X | 1.5 | | | | | | - | | | _ | | | - | | | | P | - | OCOMA
OCOMA | | i | Pecc | חתוכ | nenc | ed t | or T | hese | Sy | stem | 3 | | | | | | | Fur | Ctio | uiuč | As | | | | | | | |------------|----------------|------------|---------|---------|---------|--------|----------|-------------|-----------|------------------|--------------|-----------|------------|-----------|------------|------------|---------------|---------------|---------|---------|--------------|--------------|----------------|---------------------|----------------------| | | W | ate | r-08: | Je | | ŀ | |).i.
158 | | ddilives | | | | | | | | | | | | | | | | | | Low | v pH | 1 | ΗO | gn
H | | (Invert) | | | Control Ad | | | | | | _ | | | luhib | Agents | sants | | B18 | 8 8 t | lors | | resh Water | Brackish Water | Salt Water | Treated | Treated | Water . | Solids | in-Oil | 9 | Gas, Mist | Ikatinity, pH Co | Bactericides | Deloamers | mulsifiers | ubricants | locculants | de Reducer | oaming Agents | nst Circ Mat. | Control | Active | ners, Disper | Viscosiliers | alcium Remover | Weighting Materials | Corrosion Inhibitors | | Frest | Oraci | Sat | Gyp | E | Fresh | Low | Water | Oil Mud | Ž | Alka | Bact | Defo | Ē | Ę | Floc | Filtrate | roan | Lost | Shale | Surface | Thinner | Visco | Calci | Weig | Corr | | X | × | x | X | X | X | X | _ | | | | | | _ | | | Ş | | | | | _ | P | | | | | Fluide | Guide | | Lov | w pH | 1 | | gn
H | | fra | | | Control Ad | | | | | | | | | | ٩ | | Agents | sants | | | 2181 | 015 | 7 | | |---|--|-------------|----------------|-----------------|-------------|--------------|-------------|-------------|-----------------------|---------|----------------|-------------------|--------------|-----------|-------------|-----------|-------------|---|--------------------|----------------|---------------|---------------------|-----|------------------|----------------------|--------------|------------------|--|----------------------|--------------------------------------|------------------| | Product Tradename | Oescription of Material | Fresh Water | Brackish Water | Sat. Salt Water | Gyp Treated | Lime Treated | Fresh Water | Low Solids | Water-in-Oil (Invert) | Oil Mud | Air, Gas, Mist | Alkationly, pH Co | Bactericides | Deloamers | Emulsifiers | ubricante | Floceulante | | Fullrate (teducers | Foaming Agents | Lost Circ Mat | Shale Control Inhib | 1 | Surface Active A | Thuners, Dispersants | Viscosidiers | Calcium Removers | Weighting Malarials | Corrosion Inhibitors | Availe | e
:
:
: | | OCOBEN
OCOBRACHO
OCO DEFOAMER | Bentonite
Soray dried quebracho
Detoaming agent | X | XXX | X
X | × | XX | XXX | XXX | | 10 | 1. | <u> `</u> | <u>, =</u> | P | s | 1. | . 1 . | | | | <u></u> | 1 0, | 1.0 | | _ | P | | <u> </u> | 10 | OCOM | IA
IA | | OCO DRILL LUBE
OCO FIBER
OCO FLAKE | Torque reducer Shredded cane fiber Shredded cattophane fibers | X
X
X | ××× | ××× | ××× | ××× | ××× | XXX | x | x | | | | | s | F | | | | | P | | | | | | | | | 0C0M
0C0M | 14 | | OCO FOAM
OCO FREE PIPE
OCOGEL | Foaming agent for fresh to salt saturated mud systems
Surfactant to mix with diesel
to free stuck pipe
Wyoming bentonite | x
x | x
x | | x
x | | x
x | | x | | x | | | | | F | | | • | p | | | F | • | , | p | | | | OCOM
OCOM | 1A | | OCO GEO FIX
OCO GEO GEL
OCO GEO LOW. | Shale &
solids control agent
mud surfactant for high temp.
High temporature stable clay
Dispersable hydrocarbon for
high temp. fluid loss
control | × | X
X | × | X | X
X | x | X
X | × | × | X | | | | | s | | į | 5 | | s | S | F | • | | P | | | | OCOM | 14 | | OCO GEO MUD
OCO HEAVY WATE
OCOLIG | Resin-lignitic blend for ht/hp
rheological/fluid loss control
Lead sulfide powder
Lignitic material | X
X | X
X | x
x | x | x
x
x | X
X
X | x
x | × | x | | | ٠. | | s | | | ı | , | | | s | | | s . | | | Р | | OCOM
OCOM | tA. | | ocorig k
ocorig cr
ocorig c | Caustic lignitic material
Chrome lignitic material
Caustic Potash lignitic material | X
X | X
X | × | | X
X | X
X | X
X | | | | | | | s
s | | | , | | ٠ | | 9
9 | | | e
s | | | | | 0C0N | 44 | | OCO MUL S OCO MULTILOW | Additive for stable invert emulsions Supplement emulsifier and wetting agent Non fermenting starch | x | × | x | x | x | × | × | | x | | | | | P | | | | \$
\$ | | | | S | 5 | | s
s | | | | OCOM | iA . | | OCO OIL LOW OCO OIL VIS OCO PERMAFLOW | Fluid loss control agent for inverted systems Viscosity and gelling agent Lignosultonate | | | | | | × | | x
x | x
x | | | | | s | | | | -
S | | | s | | | P | P | | | | OCOM
OCOM | AA | | OCOPHOS
OCO PLUG
OCO POLY LOW | Sodium tetraphosphate
Ground weinut hulls
High molecular weight poly-
anionic cellulose | X | X | XXX | × | × | X
X | X
X | x | x | | | | | s | | | ı | • | | P | s | | | P | P
P | | | | 000N
000N | AA . | | OCO SALT GEL
OCO SEAL | Attabulgite clay Combination of granules, flakes and fibers for lost circulation | X | X | × | X | × | × | X | | | | | | - | | | | | | | SP | | | | | P | | | | OCOM | | | OCO SK CLAY | control
Very high temp, clay | X | X | x | x | x | | X | | | | | • | | | | | 1 | • | | | | | | | ρ | | | | OCOM | łA. | | OCO SPOT FREE | Conc. for hi density spotting fluid H ₂ S scavenger | x | X | X | | X | X | X
X | × | | | | | | | F | | | | | | | , | • | | | | | P | OCOM | 44 | | OCO SUPER FLOCK OCO SUPER SLICK OCO SUPER VIS OCOTHIN | Procedurate Diesel oil replacement Extra hi yield bentonite Chrome modified lignosulfonate | ××× | ××× | ××× | × | × | | X
X
X | | | | | | | s | F | | | | | | s | | | ·
P | P | | | | OCON
OCON
OCON | AA . | | OCOWATE
OCOWET
OD 110 | Calcium carbonate Oil wetting agent Corrosion inhibitor (dry) | x
x | | × | × | × | x | x | x | x | | | | | р | | | | - | | | | 5 | s . | | | | P | P | OCOM
OCOM
Wyo-E | A.A. | | OD 1100
OD 1550T
OD 1600 | Corrosion inhibitor (liquid)
Salt inhibitor (liquid)
Oxygen scavenger (dry) | , X
X | X
X
X | ××× | | | x
x | p
p | Wyo-E
Wyo-E
Wyo-E | 3en | | O.K. LIQUID \ OS-1L O-S-5 PILL | Detergent
Oxygen scavenger
Polymeric for clay free fluids | X | × | × | | | × | x | | | x | | | | | | | , | , | P | P | | | | | ٩ | | | P | King
Magco
Brinac | | | OMC
OIL BASE MUD SPACER
OILCOMPLETE | Oil mud conditioner
Cement spacer for oil base
muds
No-solids/non-damaging-oil
base completion fluid con-
centration | x | x | × | x | x | x | × | X | X
X | × | | | ٠ | | s | | i | Þ | | | P | • | | S | p | • | • | | Baroid
Dowel
Messi | 1 | | OIL CON
OILFAZE
OILFOS | Supplemental emulsifier,
wetting agent
Sacked oil base mud conc.
Sodium tetrapnosphate | × | × | | | | · | × | × | x
x | | | | | P | | | | 3
3 | | | | s | | P | s | s | | | Messi
Magco
Milche | bar | | OIL MUL-L OIL MUL-L OILMUL-P OILPACK | Additive for stable invert emulsions Liquid additive for stable invert emulsions Powder additive for stable invert emulsions Oit base packer fluid concentrate | x | x | · x | x | x | x | × | x
x | x | x | | | | P | | 5 | | S | | | | • | | | s
s
s | | | P | Messii
Messii
Messii
Messii | na
na | | OILSPERSE
OILSPERSE-I | Amine
Mud removal agent | | | | | | | | X. | - x | | - | | | P | | _ | | | | _ | P | | | P | | | | P | Brinad
Hallio | | | Brackish Water Sal Sali Water (NP Treated Test Water Ow Solids Ow Solids Ow Mud Ar. Gas. Mist Ar. Gas. Mist Ar. Gas. Mist Are Collection Agents Collec | ı | Reci | DW4 | rend | ed f | or T | hes | Sy | sten | 15 | | | | | | | fur | CIIC | ຄະຕຸ | As: | | | | | | | |--|------------|-----------|----------|-------------|-------------|------------|-----------|----|---------|------|----------------|-------------|-----------|------------|-----------|------------|-------------------|--------|-----------|-------------------|-------|------------------|--------------|----------------|-----------------|-------------------| | Maler An Water Wat | | W | vale | r-ba: | se | | | | | | ditives | | | | | | | | | | | | | | | | | Water III Water tealed Water lids in Oddin d in Oddin d A string Main manis filers mers filers my pit C control it co | | Lov | w pH | | | | | == | | | | | | | | | | | | ۽ | gents | | | \$ | ales
S | S vo | | | resh Water | ackish Wa | at. Sall | Gyp Treated | ime Treated | resh Water | ow Salids | | Oil Mud | ı –. | Wkalindy, pHCo | Bactencides | Defoamers | mulsifiers | ubricants | locculants | Filtrate Reducers | oaming | ost Circ. | Shale Control Int | | Thirmers, Disper | Viscosifiers | Calcium Remove | Veighting Mater | Corresson Inhibit | | Fluids | Guide | | Lo | w 01 | ٠, | | H | | verB | | | ontrol | | | | | | • | | | غ
ق | Agents | rsant | | 1 | 1 | ş | | | |--|---|-------------|----------------|-----------------|-------------|--------------|-------------|------------|-----------------------|---------|----------------|------------------------|--------------|-----------|-------------|---------------|-------------|-------------------|----------------|-----------------|---------------------|----------------|----------------------|--------------|------------------|---------------------|----------------------|-----|---| | Product Tradename | Description of Material | Fresh Water | Brackish Water | Sat. Sall Water | Gyp Treated | Lime Ireated | Fresh Water | Low Salids | Water-in-Oil (Invert) | Oil Mud | Air. Gas, Mist | Alkalinity, pH Control | Bactericides | Defoamers | Emulsifiers | Lubricants | Flocculants | Filtrate Reducers | Foaming Agents | Lost Circ. Mal. | Shale Control Inhib | Surface Active | Thirmers, Dispersant | Viscosifiaca | Calchum Bemovers | Weighting Materials | Corrosion Inhibitors | | Available from | | OILSPOT | Sacked conc. for hi dense spotting fluid | _ | × | - | | _ | × | 1 | | | | | | ٠., | _ | P | | | | | | S | - | | | | | | Messina | | OILTONE
OILVIS
OILWET | Fluid loss control agent
Viscosity and gelling agent
Oil wetting agent | | | | | | | | X | X | | | | | S | | | P
S | | | | \$ | | P | , | | | | Messina
Messina
Messina | | OMG-40
OMG-40 LIQUID B
OMG-40 SOLID B | Viscosifier/weight suspension
Viscosifier/weight suspension
Organophilic clay | | | | | | | | X
X
X | XXX | | | | | | | | | | | | | - | P | | | | | Mizeli
UBM
UBM | | OS-IL
PAC
PAK-R-CHEM | Oxygen scavenger
Poivanionic cellulose
Biocide for drilling and
packer fluids | X
X
X | X | × | × | × | X
X
X | X
X | | | x | | P | | s | s | | P | | | 5 | | | s | i | | p | | Magcobar
Baker Chem
United Mud | | PAL-MIX-100-B
PAL-MIX 110-R
PAL-MIX 150-D | Organic polysacchride
Complex copolymer system
Enzyme breaker | ××× | XXX | X | × | × | × | XXX | X | X | ××× | | | | | S | s | 5 | | PP | | | P | P | , | | | | P.A.L.
P.A.L.
P.A.L. | | PAL-MIX 150-F
PAL-MIX
200
PAL-MIX 210 | Enzyme breaker
HClacid
Liquid defoamer | × | X
X | X
X | | | x
x | . X | X | X | X
X | ρ | | P | | | | | | | | P | P | | | | | | P.A.L.
P.A.L.
P.A.L. | | PAL-MIX 225
PAL-MIX 235-A
PAL-MIX 236 | Surfactant-detergent Proprietary liquid X-Aldehyde Plus Water-soluble corrosion | x | X | x | × | X | × | x | | | × | | P | _ | | | | | | | | | P | | | | | | PAL
PAL
PAL | | | inhibitor/biostart | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | PAL-MIX 255
PAL-MIX 305
PAL-MIX 333 | Alkaiine catalyst
Fine calcium carbonate for
polymer, 325 mesh
Sized calcium carbonate for
polymer fluids
SG gradations 12-325 mesh
G gradations 12-100 mesh
EC gradations 3-16 mesh | X | X | X | X | X | X | X | | | | P | | | | | | P | | P | ٠ | | | | | s | | | P.A.L.
P.A.L. | | PAL-MIX 375
PAL-MIX 380-A
PAL-11X A Z 32 | Hydroxyethyl cellulose
Blended polymer system
Biodegradable-non fluorescing
liquid copolymers | XXX | X
X
X | X
X | , x | X
X | X | X
X | | | X | | | s | s
s | \$
\$
P | s | 905 | | S | SSP | s | | . P P | | | s | | P.A.L.
P.A.L
P.A.L. | | PAL-MIX FLOC-AN
PAL-MIX FLOC-ONIC
PAL-MIX FOAM-R | Anionic polymer flocculant
Nonionic polymer flocculant
Liquid foam agent for con-
trolled half-life drig,
or W.O | ×× | X
X
X | | | × | × | X
X | | | | , | | ٠. | | | P | s | P | | | P | | s | - | | | | P.A.L.
P.A.L.
P.A.L | | PAL-MIX RD-238
PAL-MIX RD-320
PAL-MIX SUPER-FAC | Ammonium Bisulfite Oil-soluble fluid-loss additive for brines Heavy duty cleaner | × | X | × | X | X | X | X | | | | | | | s | | | P | | s | | ρ | | | _ | | P | | P.A.L.
P.A.L. | | PAL-MIX SUPER-X | Complex copolymer drilling | x | × | x | × | × | × | × | | | | | | | Ť | s | 5 | P | | s | P | _ | | P | _ | | | | P.A.L | | PAL-MIX SUPER-X-G.S. | fluid
Thixotropic drilling polymer | x | × | | | | x | x | | | | | | | | 5 | s | P | | | P | | | P | | | | | P.A.L. | | PAL-MIX X-TENDER-B | w/get strength
Alkatine Phosphate plus | x | x | _× | | | | | | | | P | | | | | | | | | | | | | | | | | P A.L. | | Paraformaldehyde
Peladow
Peltex | Paratormaldehyde
94-97% pore calcium chloride
Ferrochrome lignosuttonate | × | x | X | X | × | × | X | | | | | P | | | | S | | | | Þ | | P | | | | | | Most companie
Baker Chem
King | | PEPTOMAGIC
PEPTOMAGIC LS
PERFHEAL | Crude oil mud emutatier
Crude oil mud emutatier
Polymeric-lignosultonate for
clay free fluids | x | x | x | | | | x | _ | × | | | - | \$ | | | | P | | | S | | | 200 | | | | - 1 | Oil Base
Oil Base
Brinadd | | PERLITE
PERMA-CHECK
PERMA-LOSE | Lost circulation material
Lost circulation material
Non-fermenting starch | × | X | × | × | X | × | x | × | X | | | | | | | | P | | p | | | | s | | | | 1 | Halliburton
Western
Milchem | | PETRO 150 DRILLING | High grade attapulgite | | × | × | x | x | | × | | | | | | | | | | s | | | | | | P | | | | | American Mud | | CLAY
PETRO-DF
PETRO-FLO | Surfactant defoamer
Ferrochrome lignosultonate | X | X | X | X | X | X | X | | | | | | P | s | | | s | | | | | P | | | | | | American Mud
American Mud | | PETROGIL 37-60 B
PETROGIL 1681
PETROGIL A 46 | Polymer-bentonite extender
Emulsifier
Wetting agent, thinner | X
X | X | x | | | X | X | × | × | | | | | P P | | Р | | | | | | s. | p. | . ~ | | | - 1 | Rhone-Poulent
Rhone-Poulent
Rhone-Poulent | | PETROGIL ARF453 | Emulsifier, filtrate reducer. | | | | | | | | × | | | | | | ₽ | | | P | | | | | | | | | | 1 | Rhone-Poulent | | PETROGIL ARG
PETROGIL EP | stabilizer
Drilling detergent
Extreme pressure additive | × | X | X | X | X | X | X | | | | _ | | | | P | | | _ | | P | | | | | | | 1 | Rhone-Poulent
Rhone-Poulent | | PETROGIL F54
PETROGIL RF3
PETROGIL SIV-CONC | Basic emulsifier, stabilizer
Temperature filtrate reducer
Viscositier, gelling agent | | | | | | | | X
X
X | | | | | _ | ρ | | | P | | | | | | P | | | | 1 | Anone-Poulenc
Anone-Poulenc
Anone-Poulenc | | PETROGIL X | Invertisporting agent for | X | ,х | X | x | X | x | x | × | x | | | | , | | Þ | | | | | | | | | | | | - | Rhone-Poulenc | | PETRO-LIG
PETRO-LIG-K | freeing stuck pipe
Lignite material
Reacted product of lignite
and potassium | × | X | × | × | X | X | X | | | | | | | Ş | | | S | | | ₽ | | p | | | | | | American Mud
American Mud | | Brackish Water Sal Salt Water Gyp Treated Lime Liminers Liminers Lost Circ Mai Surface Active Agents Thinners Lost Circ Mai Shate Control Inhth Surface Active Agents Thinners Lost Circ Mai Shate Control Inhth Surface Active Agents Calcium Removers Calcium Removers | Rec | omn | nenc | led f | ar T | hes | 5 5 y | 8197 | is _ | | | | | | | Fun | ctio | กเกร | As | | | | | | | |---|--------------------|--------------|-------|--------|-------|--------|--------------|--------|------|---------|--------|--------|-------|---------|--------|----------|--------|--------|------------|--------|-------|--------|---------|-------|-------------| | Avaior Avaior Fealed Tog Waler Fealed Tog Waler Tog Tog Tog Tog Tog Tog Tog To | * | Vate | r-08 | se | | | | | | Jillves | | | | | | | | | | | | | | | | | Anter State | Lov | ₩ D H |) | | | | ert) | | | < | | | | | | | | | hđ | gents | | | 918 | shei | 5. 1 | | Brackish V
Brackish V
Brackish Tresh V
Valer - Cod Muu
Alkan Ga
Alkan Ga
Alkan Ga
Calchur Cod | Vater
sh Water | It Water | eated | reated | Valer | spile | 8 | | | ā | icides | ner 3 | liers | ants | ants | Reducer | | | Control In | Active | eri. | fiers | n Remov | | ion Inhibit | | <u> </u> | Fresh V
Brackis | 1 = | · - | Lime I | Fresh | Low So | Water | OilMuc | | Alkatin | Bacter | Defoar | Emuls | Lubrica | Floccu | Filtrate | Foamer | Lost C | Shale (| Surfac | Thing | Viscos | Catchur | Weigh | Corrosiun | | Guide | L | Lov | v pH | | | | | ert) | | | introl Ad | | | | | | | | | pr
pr | gents | rsants | | 919 | ste | 5 | | |---
---|--|--|---
--|--|---|--|--
---|--|---------------------------------|--|--|--
--|---|---|---|---|--|--
--|---|---|--|--| | | esh Weter | rackish Water | at. Salt Water | yp Freated | ime freated | resh Waler | ow Solids | Vater-In-Oll (In | Mwd | Vir. Gas. Mist | Ilkatinity, pHCc | actericides |)efoamers | mulsifiers | ubricants | locculants | ilitate Reducer | oaming Agents | OSI Circ Mal. | hate Control In | urface Active | hinners. Dispe | iscositiers | alclum Remov | Veighling Male | Orrosion Inhib | Available from. | | | | | _ | | | _ | | | 10 | | _ | | ١٥ | ш, | - | | - | 1 - | ـــٰـــ | S | - | _ | <u> </u> | 0 | 5 | <u>0 </u> | American Mud | | cant and bit balling agent
Organophilic clay powder for
use as oil mud suspended
agent | _ | | | | _ | | | _x | x | | | | | | _ | | | | | | 3 | | Р | | | | Baroid | | Buffers for clay free fluids pH control and corres. | X | X | X | x | x | x | | | | | P | s | | | | | | | | | | - | | | | P | Brinadd
UBM | | Flat, chip shape, thermoset res- | | X | x | X | x | X | x | X | X | | | | | | | | | | è | | | | | | | | Montello | | | × | × | × | X | x | x | x | × | | | | | | | | | | | | | | | | | | | Magcobar | | | X | · X | X | X | X | X | X | | | | | | | | | | • | | | | | | | • | | | Orili. Add. | | Surfactant to be mixed with diesel oil to free stuck pipe | . × | . X | X | X | x | X | × | x | | | | | | | | | | | | <u>.</u> | | | | | | | Otzię . | | Oil soluble surfactant
Processed hardwood fiber
Combination of grannulates
fibers | ××× | X
X | X
X
X | X
X | X
X | X
X | × | | | | | | | | | | | | P | | P | | | | | | CDA/HMC
Baroid
UBM | | Sized salt with dispersant
Surfactants
Surfactants | | | X | | | | | × | × | X | | | P | P | | | | p
p | P | | P | PP | | | | | Texas Brine
BASF Wyandotte
BASF Wyandotte | |
Surfactants
Surfactants
Polymer for clay free drilling | × | × | x | × | x | x | x | X | X. | × | | | P | P | | | | 000 | | | 0.00 | e
P | | P | | | BASF Wyandotte
BASF Wyandotte
Brinadd | | Polymeric lignosultonate com- | X | x | x | | | | | | | | | | | | | | P | | | | | | | | | | Brinadd | | Synthetic flocculant Hi molecular weight poty- anionic cellulosic polymer | × | × | × | × | × | × | X, | | | × | | | | s | ş | P | P | | | ρ | | P | | | | | CDA/HMC
Drillsafe | | Polymer, flocculant and bentonue extender | × | X | | | | × | × | | | | | | | | | P | | | | | | | P | | | | Messina | | Self complexing polymer—ug
Acid soluble material for vis-
cosity and fluid loss control | X | X | X | | x | X | × | | | | | | | • | | | S. | | P | | | <u>. </u> | P | | | | Milchem
Oil Base | | Bentonite extender
Modified HEC
Oil sol, plastic film | X
X
X | X
X | X | x | × | | | × | x | | | | | | | P | | | ρ | | | | P | | | | Orilisate
Origmud
Baroid | | Extreme pressure lubricant
Co-polymer
Co-polymer | × | × | X
X
X | × | × | x | X
X
X | | | | | | | | P | | P
S | | | S | | | s
S | | | | Oit Base Ger.
Oil Base
Oil Base | | Co-polymer
Co-polymer
Co-polymer | | × | × | | | | XXX | | | | | | | | | | SSS | | | P
P
S | | | SSP | | | | Oil Base
Oil Base
Oil Base | | Scale inhibitor Lost circulation plug Oxygen scavenger for polymer fluids | X
X
X | X
X
X | X
X | X | XXX | X
X | × | | | | | | | | | | | | ρ | | | | | P | | ρ | Aquaness
Dowell
Milchem | | Sodium polyacrylate liquid system | x | X | X | X | x | X | X | | | | | | | | | | P | | | s | | s | | | | | Wyo-Ben | | Selective flocculant and bentonite extender | X | X. | | | X | X | X | | | | | | | | | | | | | | | | P | | | | Am Colloid | | Selective flocculant and ben-
tonite extender for non-dis-
persed muds | | | | | | . X | X | | | | | | | | | 5 | | | | | | | р. | | | | Am. Colloid | | Granular high angle drilling | X | x | x | x | × | X | x | | | | | | | | ρ | s | | | s | | | | Ρ | | | | Am. Colloid
Messina | | Drilling mud surfactant | × | × | × | x | × | x | x | | | | | | | | s | | s | | | | P | | | | | | CDA/HMC | | Organic polymer blend
Polassium chloride
Bentonite | X
X
X | X
X
X | × | | | X
X
X | x | | | | | | | | P | | P
P | | | P | | | P | | | | Texas Brine
Most companies
Am, Colloid | | Surfactant mixed with diesel | X | X | X | X | X | X | X | X | | | | | | | P | | | | | | P. | | | - | • | | Lamberti | | Paraformaidehyde
Sodium pentachlorophenate | X | X | X | X | x | x | X | | | | | P | | | | | | | | | | | | _ | | | CDA/HMC
CDA/HMC | | Coating for atmospheric corro- | ρ | Milchem | | Calcium-lignosulfonate Shredded excelsior material emulsions and water blocks | × | × | X | X | X
X | X | × | × | x | | | | | P | | | s | | P | | | Ρ, | | | | | Avebene & CEC/
Wyo-Ben
and ECCO | | Moses discountly people | ¥ | x | X | X | x | x | | X | ¥ | | | | | s | | | | ρ | | | P | | | | s | | UBM | | Water dispersable asphalt additive Oil dispersed asphalt used as | | х. | | | | | | | • | | | | | | s | | P | | | s | | s | | | - | | Oil Base | | | Organophilic clay powder for use as oil mud suspended agent Buffers for clay free fluids ph control and corros. Inhib. Inquid Flat, chip shape, thermoset resinoid material, particle graded flat, chip shape, thermoset resinoid material, particle graded situation of the property | Description of Material Biodegradable-nontoxic lubricant and bit balling agent Organophilic clay powder for use as oil mud suspended agent Buffers for clay free fluids photographilic clay powder for use as oil mud suspended agent Buffers for clay free fluids photographilic clay powder for use as oil mud suspended agent Buffers for clay free fluids photographilic clay powder free fluids Flat, chip shape, thermoset resinoid material, particle graded Surfactant mit, to be mixed with diesel oil to free pipe Surfactant mit, to be mixed with diesel oil to free pipe Surfactant to be mixed with diesel oil to free stuck pipe Oil soluble surfactant Processed hardwood fiber Combination of grannulates Sized salt with dispersant Surfactants Surfactants Surfactants Surfactants Surfactants Surfactants Polymer for clay free drilling X Polymer for clay free drilling X Polymer flocculant and bentionite extender Self complexing polymer ug Acid soluble material for viscosity and fluid loss control Bentonite extender Self complexing polymer ug Acid soluble material for viscosity and fluid loss control Bentonite extender Self complexing polymer Co-polymer Co-polymer Co-polymer Co-polymer Co-polymer Co-polymer Scale inhibitor Lost circulation plug Cygen scavenger for polymer fluids Sodium polyacrylate liquid system Selective flocculant and bentonite extender for non-dispersed muds Polymer for nondispersed muds Granular high angle drilling Younger for nondispersed muds Polymer for nondispersed muds Cacletive flocculant and bentonite extender for non-dispersed muds Polymer for nondispersed muds Corganic polymer blend Polassium chiloride Selective flocculant and bentonite extender for non-dispersed muds Polymer for nondispersed muds Corganic polymer blend Polassium chiloride Selective flocculant and bentonite extender for non-dispersed muds Corganic polymer blend Polassium chiloride Selective flocculant and bentonite extender for non-dispersed muds Costing for atmospheric corrosion conditions Calcium-lignosulfonat | Description of Material Biodegradable-nontoxic lubricant and bit balling agent Organopnillic clay powder for use as oil mud suspended agent Buffers for clay free fluids PM control and corros. Inhib. liquid Flat. chip shape. thermoset resinoid material, particle graded Surfactant mit, to be mixed with diesel oil to free pipe Surfactant mit, to be mixed with diesel oil to free pipe Surfactant to be mixed with diesel oil to free pipe Surfactant to be mixed with diesel oil to free stuck pipe Oil soluble surfactant Processed hardwood fiber Cambination of grannulates fibers Sized salt with dispersant Surfactants Surfactants Surfactants Surfactants Surfactants Surfactants Polymer for clay free drilling X X Polymeric lignosulfonate complex for clay-free fluids Synthetic flocculant Hi molecular weight polyanionic cellulosic polymer Polymer, flocculant and bentonite extender Self complexing polymer ug Acid soluble material for viscosity and fluid loss control Bentonite extender Modified HEC Oil sol, plastic film Extreme pressure lubricant Co-polymer Co-polymer Co-polymer Co-polymer Co-polymer Selective flocculant and bentonite extender on on-dispersed | Description of Material Biodegradable-nontoxic lubricant and bit balling agent Organophilic clay powder for use as oil mud suspended agent Buffers for clay free fluids pH control and corros. Inhib. liquid Flat. chip shabe, thermoset resinoid material, particle graded Surfactant mtl. to be mixed with diesel oil to free pipe Surfactant mtl. to be mixed with diesel oil to free pipe Surfactant mtl. to be mixed with diesel oil to free stuck pipe Surfactant to be mixed with diesel oil to free stuck pipe Surfactant be mixed with diesel oil to free stuck pipe Surfactants Sized salt with dispersant Surfactants Surfactant surfactant Surfactants Surfactant mixed with diesel to free stuck pipe Paraformaidehyde Surfactant mixed with diesel to free stuck pipe Paraformaidehyde Surfactant mixed with diesel to free stuck pipe Paraformaidehyde Surfactant mixed with diesel to free stuck pipe Paraformaidehyde Surfactant mixed with diesel to free stuck sippe Paraformaidehyde Surfactant mixed with diesel to free stuck sippe Paraformaidehyde Surfactant mixed with diesel to free stuck sippe Paraformaidehyde Surfactant mixed with | Description of Material Description of Material Biodegradable-nontoxic lubricant and bit balling agent Organophilic clay powder for use as oil mud suspended agent or o | Biodegradable-nontoxic lubricant and bit belling agent Organophilic clay powder for use as oil mud suspended agent Surfactant mit. to be mixed with X X X X X X description of to free shuck pipe Surfactant mit. to be mixed with X X X X X X description of the fibration fib | Description of Material Biodegrapable-nontroxic fubricant and bit belling spent Organophilic clay powder for use as oil mud suspended agent Buffers for clay free fluids provided agent Grandphilic clay powder for use as oil mud suspended agent Buffers for clay free fluids provided agent Surfactant mit. to be mixed with x x x x x x x x x x x x x x x x x x x | Description of Material Biodegradable-nontoxic lubric roam and bit balling agent or use as off mod and profile flat chip and agent or use as off mod and profile flat chip and core in the profile flat chip and core in the profile flat chip and core in the profile flat chip and core in noilb. Incuit of flat chip and as period material, particle graded Surfactant mtil. to be mised with a diesel oil to free pipe. Surfactant mtil. to be mised with a diesel oil to free pipe. Surfactant ntil. to be mised with a diesel oil to free pipe. Surfactant to be mised with a diesel oil to free pipe. Surfactant to be mised with a diesel oil to free pipe. Surfactant of grannulates in the processed hardwood fiber. Combination of grannulates in the pipe for clay-free fluids. Synthetic floculant in molecular weight polymer pipes for clay-free fluids. Synthetic floculant and bentonite extender. Self complexing polymer up the fluid complexing polymer up the fluid in particle fluid in particle fluid in particle fluids. Synthetic floculant and bentonite extender. Self complexing polymer up the fluid in particle | Buffers for clay free fluids per for institution of granular mit. to be mixed with dispersant of the fluids | Description of Material Biodegradable-nontoic lubricant and bit belling agent Organobilitic clay powder for sincide
graded agent or agent incident must specify agent or agent incident must specify agent or agent incident must suppressed | Description of Material Biodegradable-noniosic lubricant and bettoric clay free fluids picture. Surfactant in the being agent of the biodegradable in the bettoric clay free fluids picture. Surfactant mit. to be mixed with X X X X X X X X X X X X X X X X X X X | Guide Secription of Material | Giodegradable-nontoxic lubrican and bit balling agent organomilic clay power for use as oil mud suspended agent or use as oil mud suspended agent organomic clay power for use as oil mud suspended agent organomic clay processes and mud suspended agent organomic clay processes and mud suspended agent organization orga | Biodegradable-nontoxic lubrican and bit balling agent organonnilic clay power for use as oil mud suspended agent organonnilic clay power for use as oil mud suspended agent organonnilic clay power for use as oil mud suspended agent organonnilic clay power for use as oil mud suspended agent organonnilic clay power for use as oil mud suspended agent organonnilic clay power for use as oil mud suspended agent organonnilic clay power for use as oil mud suspended agent organonnilic clay power for clay free fluids organonnilic clay free fluids organonnilic clay free fluids organonnilic clay free fluids organonnilic clay free fluids of control clay free fluids organonnilic fre | Biodegradable-nontoxic lubrican and bit balling agent organopanic day power for use as oil mud suspended agent or use as oil mud suspended agent or use as oil mud suspended agent or use as oil mud suspended agent organopanic day of the provided agent provid | Briddegradable-nontrosic lubricant and bit belling sgent organophilic clay power for usable oil mude suspended gent organophilic clay power for usable oil mude suspended gent of the property | Biodegradable-nontosic lubrican and bit balling agent Organophic Gay power for use 10 billing particle graded with X X X X X X X X X X X X X X X X X X X | Brodegradable-nontoxic lubrican in the balling agent organophic can see the balling agent organophic city power for useful city power for city free fluids with a control and corros. Surfact for city free fluids | Biodegradable-nontrolic lubrican and bit balling agent Organization (Ley proved or Agent) Suffers for clay free fluids | Participate | Briddegragable-nonlosic lubricani and dit balling agent of the process pro | Bindegradable-nontrosic lubrical in and off to shing agent of the state of the shing agent agen | Discrept sealer - nontrosic lubrication and of the falling agent of use as all miss asserted agent of the falling agent of use as all miss asserted agent of the falling agent of use as all miss asserted agent of the falling agent of use as all miss asserted agent of the falling a | Discontinuation Definition | Bindegreable-nontoxic lubri- cont and bit balling agent use as cill my suspender | Biodegrazate-nontrosic lutrin X X X X X X X X X X X X X X X X X X X | Discontine California (Suprison of Particular Processed Internal Configuration Pr | Product Tradename PROTECTOMAGIC S PROTECTOZONE J211 PROTECTOZONE J212 PROTECTOZONE J213 PROTECTOZONE J214 PROTECTOZONE J215 PROXEL AB PROXEL GXL PW 20.30 PWG O-BROXIN OF-5 OF-6 O-PILL O-TROL | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | • | |----|--|------------|----------------|-----------------|-------------|--------------|-------------|-------------|-----------------------|-------------|----------------|--------------------|--------------|---------------|-------------|------------|-------------|-------------------|----------------|--|---------------------|-------------------|-------------------|--------------|-----------------|---------------------|-----------------------|--| | | | | Rec | omn | nenc | ed 1 | or T | hes | . Sy | sterr | 15 | | | | | | | Fun | CIIO | nin | As | | | | | | | | | /5 | s 1979•80 | | ٧ | Vale | r-ba | se | | | |):1-
350 | | dilives | | | | | | | | | | | | | - | | | | | | Guide | | Lo | w pH | 1 | * | igh
H | | ert) | | | Control Additives | | | | | | | | | ۽ | Agents | sants | | 5 | ste | 948 | P. | | • | | resh Water | Brackish Water | Sal. Sall Water | Gyp Treated | Lime freated | Fresh Water | Low Solids | Water-in-Oil (Invert) | OitMud | Air, Gas, Mist | Alkatinity, pH Cor | Baclericides | Defoamers | Emulsifiers | Lubricants | Flocculants | Filtrate Reducers | Foaming Agents | Lost Circ Mat | Shale Control Inhib | Surface Active Aq | Thinners, Disper- | Viscosifiers | Calcum Removers | Weighting Materials | Corresion Inhibitiors | | | _ | Description of Material | ιΞ. | 1 | ٠ | | | | | | 0 | Α. | < | 8 | ٥ | | | Ξ | P P | ŭ. | 2 | _ | Š | _ | اخا | ن | 3 | ن | Available from: | | | Sacked asphalt conc. location
mixed w/diesel for use as oil
phase in emulsion muds.
Flurd-loss additive for brines
less than 9.6 pbg.
Flurd-loss additive for brines
heavier than 9.6 pbg. | x | × | × | × | × | × | × | x | | | | | | S | s
 | | P
P | | | | - | 5 | | | | | Oil Base Dowell Dowell | | | Fluid loss additive for brines, premixed package (solids)
Bridging agent for workover | x
x | × | x | | | × | x | | | | | | | | | | s | | P | | | | P | | | | Dowell
Dowell | | | brines Brine viscosifier | ^ | ^ | × | | | | | | | | | | | | | | s | | _ | | | | P | | | | Dowell | | | Mud and starch preservative
Mud and starch preservative
Polyanionic fluid loss reducer
and viscositier | X
X | ××× | ××× | X | X
X | XXX | X
X
X | | | | | P | - | s | | | P | | | P | | | P | | | \$
\$ | ICI .
ICI .
Novacei | | | Polymeric water gel
Ferrochrome lignosulfonate
Cellulose gelling agent | X
X | ××× | X
X
X | × | X | X | X | x | x | | | | | s | | | S
P | | P | \$ | | P | | | | | Halfiburton
Baroid
Cardinal | | | Chemically modified low residue guar | X | × | X | | | | | | | | | | | | | | P | | | | | | | | | | Cardinal | | | Polymeric for clay free fluids
Inhibited mud additive | X | × | X | | | × | x | | | | | | | | | | S | | P | P | | | P | | | | Brinadd
Am. Colloid | | | Quebracho (tannin) extract
Quick setting cement
for lost circulation | X | X | x | x | x | × | × | | | × | | | | | | | P | | P | | | P | | | | | Most companies
Western
Baroid | | - | Biodegradable foaming agent High yield bentonite Suspension of concentrated viscositiers | X | × | _ | | | | × | | | × | | - | | | s | | <u> </u> | • | <u>. </u> | | | - | P P | | | | Baroid
Baroid | | _ | Organic polymer: clay extender | × | × | × | | <u> </u> | <u> </u> | × | | | | | | | | | P | | | | Р | | | P | | | | Magcobar Magcobar | | | and solids flocculant Chrome lignosulfonate Acid corrosion inhibitor | X | × | X | x | × | × | x | | | | | | | | | | | | | | | P | | | | P
—— | Wyo-Ben
Cardinal | | | High temperature acid corrosion inhibitor Extreme pressure lubricant | x
x | X
X | x
x | x | x | x | x | | | | | | | | ρ | | | | | | | | | | | ₽ | Cardinal Oil Base Ger | | _ | High yield bentonite | × | | | _ | | | X | _ | | | | | | | | | | | | | | | P | | | | American Mud | | | Redwood fiber Quick set cement for lost circulation Surface sctive agent | × | × | x | | | × | × | | | | | | | | s | | s | | P | |
P | | | | | | Most companies Dowell Montello and | | | Catalyzed sodium suffite
Liquid sodium bisulfite
Resin additive, fluid loss control | × | × | | | | | | | | | | | - | | | | P | | | s | | | | <u> </u> | | P
P | Arnold & Clarke
Arnold Clarke
Magcobar | | | sgent Selective flocculant Inert clay Resinous filtrate reducer | × | × | × | × | × | × | × | | | | | <u>.</u> | | | | | P
P | | | | | _ | P | | | | Scholten
Wyo-Ben
Trinity Mud | | | High molecular weight long chain polymer xanthon gum | x | x | x | | | x | x | | | | | | | | | | | | | | | | P | | | | Rhone-Poulenc
& CECA | | _ | Xanthan gum biopolymer
Silicone anti-foam | X | × | X | X | X | X | X | | | | | | Р | | | | | | | s | | | P | | | | Rhone-Poulenc
Rhone-Poulenc | | _ | Acrylic resin and catalysts
Acrylic resin and catalysts
E. P. lubricant for drill rods | X
X | X
X
X | X
X | X
X | X
X | X
X
X | X
X | X | X | X | | | | s | Р | | | | P | | | | | | | | Rhone-Poulenc
Rhone-Poulenc
Magcobar | | | Woody ring of corn cob
Amine base scale inhib.
Seawater emulsifier | × | X
X | X | X | X | X | X | | | | | | | P | s. | | s | | P | | | | | - | | P | Wyo-Ben
Wyo-Ben
Magcobar | | | Associated | | Ţ | _ | | | | _ | | | | | | | | | | | | | | _ | | | | _ | | | | | minuted indo souther |---|--|-------------|-------------|-------------|--------|-----|-------------|-------------|---|---|----------|---|---|----|---|----|------------|-------------|---|-----|---|---|---| | QUEBRACHO
QUICK-SET | Quebracho (tannin) extract
Quick setting cement | x | X | x | X | x | × | × | | | | | | | | P | P | | P | | | | Most companies
Western | | QUIK-FOAM | for lost circulation
Biodegradable foaming agent | | | _ | | | | | | | × | | | | | | P | | | | | | Beroid | | OUIK-GEL
OUIK-MUD | High yield bentonite
Suspension of concentrated | X | x | | | | | X | | | x | | | | | \$ | | | | P | | | Baroid
Baroid | | QUIK-TROL | viscositiers
Organic polymer | X | X | x | x | x | x | | | | | | | | | | • | P | | P | | | Baroid | | RAPIDRIL | Organic polymer; clay extender | x | × | X | | | |
× | | | | | | | P | | | | | ρ | | | Magcobar | | RAYVAN
RD-11 | and solids flocculant
Chrome lignosulfonate
Acid corrosion inhibitor | X | X | X | x | X | X | x | | | • | | | | | | | | P | | | Þ | Wyo-Ben
Cardinal | | RD-12 | High temperature acid corro- | x | x | x | | • | | | | | | | | | | | | | | | | P | Cardinal | | REDOU-TORQUE
RED DEVIL CLAY | sion inhibitor
Extreme pressure lubricant
High yield bentonite | X | x | x | x | x | x | X | | | | | | P | | | | | | P | | | Oil Base Ger
American Mud | | REDWOOD FIBER
REGULATED FILL-UP | Redwood fiber
Outck set cement for lost | x | × | x | x | x | x | x | | | | | | | | | P P | | | | | | Most companies
Dowell | | CEMENT
RELEASE | circulation
Surface active agent | × | × | × | × | x | X | x | | | | | | \$ | | \$ | | | P | | | | Montello and
ECCO | | REMOX
REMOX L
RESINEX | Catalyzed sodium suffite
Liquid sodium bisulfite
Resin additive, fluid loss control
agent | x | × | X | × | × | x | | | | | | | | | P | | s | | | | P | Arnold & Clarke
Arnold Clarke
Magcobar | | RETABOND A.P.
REV-DUST
R.F.R. 123 | Selective flocculant
Inerticiay
Resinous filtrate reducer | ·x | × | × | × | x | × | × | | | | | | | P | P | | | | P | | | Scholten
Wyo-Ben
Trinity Mud | | RHODOPOL 23 | High molecular weight long | × | x | x | | | x | x | | | | | | | | | | | | · p | | | Rhone-Poulenc | | RHODOPOL 23-P
RHODORSIL | chain polymer xanthon gum
Xanthan gum biopolymer
Silicone anti-foam | X | X | X | X | X | X | X | | | | Р | | | | | | s | | P | | | & CECA
Rhone-Poulenc
Rhone-Poulenc | | ROCAGIL
ROCAGIL 1295-S
ROD LUBE | Acrylic resin and catalysts
Acrylic resin and catalysts
E. P. lubricant for drill rods | X
X
X | X
X
X | X
X
X | X
X | XXX | X
X
X | X
X
X | X | X | X | | s | P | | | Þ | | | | | | Rhone-Poulenc
Rhone-Poulenc
Magcobar | | RUF-PLUG
S-61
SALINEX | Woody ring of cern cab
Amine base scale inhib.
Seawater emulsifier | X | XXX | X | × | X | X | × | | | | | p | s. | | s | P | | | | | P | Wyo-Ben
Wyo-Ben
Magcobar | | SALGITE
SALT
SALT GEL | Attabulgite clay
Sodium chloride
Attabulgite clay | | XXX | XXX | x | x | | X | × | | | | | | P | | | s | | P. | | s | Arnold & Clarke
Most companies
Magcobar | | SALT GEL HLYIELD
SALT MUD
SALT WATER CLAY | Attapulgite Attapulgite clay Attapulgite clay | | X
X | XXX | x
x | * | | x | | | | | | | | s | | | _ | 000 | | | ECCO
Wyo-Ben
American Mud | | SALT WATER GEL
SAM 4
SAM 5 | Attapulgite clay
Spacer fluid
Spacer fluid | × | XXX | XXX | XXX | XXX | ××× | XXX | × | X | | | | | | | | | | P | | | Milchem
Halliburton
Halliburton | | SANHEAL PILL | Polymeric-lignosulfonate | X | × | X | | | | | | | | | | | | P | P | | | P | | | Brinadd | | SAPP
SCALE-BAN | complex for clay free fluids
Sodium acid pyrophosphate
Scale inhibitor for drilling
muds | X | X | X | x | X. | ٠, | x | | | | | | | | • | | ٠ | P | | P | P | Magcobar
Milchem | | SCALEHIBIT S-208K
SCALEHIBIT S-401
SCALEHIBIT S-404 | Scale inhibitor
Scale inhibitor
Scale inhibitor | X
X
X | X
X | X
X
X | X
X | ××× | × | X
X
X | | | -119 | | | | | | | | | | P | | C-E Natco
C-E Natco | | riiins | i Guide | L_ | | | | | | 1. | ē | ļ | ı | Ę | 1 | | l | ļ | | | | į | 3 | 8 | 2 | . 1 | 5 | <u>ē</u> | ě | | |---|--|-------------|----------------|------------|-------------|-----------|-------------|-------------|---------------------|---------|----------------|----------------------|--------------|-----------|-------------|------------|-------------|-------------------|----------------|-----------------|---------------------|--------------------|--------------------|--------------|------------------|--------------------|---------------------|--| | , idide | durac | Fresh Water | Brackish Water | Salt Water | Gyp Treated | e Treated | Fresh Water | Low Solids | Water an Oil (Inver | Oil Mud | Air. Gas. Mist | Alkalinity, ptt Cont | Bactericides | Defoamers | Emulsifiers | Lubricants | Flocculants | Filtrate Reducers | Foaming Agents | Lost Circ. Mat. | Shale Controf Inhib | Surface Active Age | Thunners, Dispersa | Viscositiers | Calcium Removers | Weighting Material | Corrusion Inhibitor | 11 | | - Product Tradename | Description of Material | ğ | ě | Sat | ô | Lime | T. | ğ | Š | ē | ¥ | 1 | å | ě | Ē | 3 | Flo | Ę | Foa | ş | Sha | Š | Ē | > | Š | Ş | Õ | Available from: | | SCAVENGER x H2S | Powdered inorganic H ₂ S
scavenger | x | X | X | X | X | X | X | X | | X | | | | | | | | | | | | \$ | | | s | ٥ | Lamberti | | SCORTRON GDF-50 | Detergent, scale, corrosion | X, | X | X | X | X | X | X | X | | X | | | | s | | | | | | | \$_ | | | | | Ρ. | Champion | | SE-11 | Secondary emulsifier for oil
base and invert emulsion
muds | | | | | | | | X | X | | | | • | P· | | | S | | | | S | | | | | | Magcobar | | SEABAR
SEABEN
SEA BLEND | Barrum sulfate
Bentonite
Filtrate reducer and
viscosifier | X | X
X | X | X | X | X | X | x | | | | | | · | | <u>.</u> | S | - | | | | | P | | P | | Seamud
Seamud
Seamud | | SEA CARB | Lost circulation and | | × | × | | | | | | | | | | | | | | _ | | ρ | | | | _ | | ρ | | Seamud | | SEA CLAY
SEADRILL | weighting material
Fibrous aspestos
High yield viscosifier | X | X | X | X | × | × | X | × | x | | | | | | | | s | _ | s | | | | P | | | | Teinite
Champion | | SEA-FLO | Quick-dissolving hi-
molweight polymer | X | × | × | X | X | X | x | | | | | | | s | s | | P | | | ₽ | | | P | | | | Enka 1 | | SEAFLO | Aluminum complex ligno-
sulfonate | X | X | X | X | × | X | X | | | | | | | | | | s | | | P | | | | | | | Seamud | | SEAFLO-C | Chrome lignosultonate | × | | <u> </u> | X | × | | × | | | | | | | 5 | | | s | | _ | <u>s</u> | | _ | | | | | Seamud | | SEA-FREE
SEALIG
SEA MUD | Pipe freeing compound
Lignite
Sepiolite | X
X | X | X | X | X | X | X
X | X | | x | | | | s | | | P
S | | | | | s | p | | | | Seamud
Seamud
IMV | | SEAMUL | Salt water emulsifier and | | × | × | × | | | x | | | | | | | P | | | s | | | | 5 | s | | | | | Baroid | | SEA VIS
SEPARAN | surfactant
Viscosifier
Clay flocculant | | | | | | | x | | | | | | | | | P | | | | | | | P | | | | Seamud
Milchem | | SEPGEL
SERVO CK, UCA
SERVO MCA | Sepiolite Corrosion inhibitor, bactericide Oxygen scavengers, floccu- | X | X | XXX | X | X
X | X | X
X
X | | | | | P | | | | P | S | | | | | | P | | | p
p | Orillsale
Servo
Servo | | SHALE LIG
SHALE-TONE | Potassium lignite Wettable aspnaltic blend for | × | | x | × | × | × | X | | | | | | | |
s | | P | | | P | | | | | | | Arnoid & Clarke | | SHUR-GEL | shale control Beneticiated bentonite mud conditioner | | X | | | - | - | | | | | , | | | | | | | | | | | | . , | s | | | Baroid | | SHUR-PLUG | Dehydrated graded cellulosic | x | X | X | x | x | x | x | | | | | | | | | | P | | P | | _ | | - | | | | Shur-Plug | | SHUR-PLUG
BRIDGE BOMB | bridging agent Granular polymer/clay blend for sealing vugular loss zones | | X | X | X | X | X | X | X | X | X | | | | | | | | | P | | | | | | | | Shur-Plug | | SHUR-PLUG LINK-UP | Alkaline liquid catalyst | × | X | X | X | | , X | X | | | | Ρ | | | | | | | | ٩ | | | _ | _ | | | | Shur-Plug | | SHUR-PLUG
PRONTO-PLUG | Blend of water soluble poly-
mers & graded callulosic
bridging agent | X | | | | | | | X | X | X. | | | | | . : | 5 | P | | ρ | | | | P | | | _ | Shur-Plug | | SL-1000
SIDERITE | Scale inhibitor Acid soluble weight material | X | X | X | X | X | X | × | X | x | | | | | | | | | | | | : | | | | P . | <i>P</i> | Magcobar
Magcobar | | SIGTEX
SIMPLE SEAL | Synthetic polymers Polymeric lignosulfonate com- | X | X | X | | | x | | | | | | | | | | | P | | P | | | | P | | | | Texas Brine
Brinadd | | SIMULSOL P4 | plex & sized carbonate blend
Emulsifier oil-water | × | | x | | x | x | x | | | | | | | P | s | | | | | | | | | | | | CECA | | SLICKCOAT
SLICKPIPE | Pipe coating lubricant
Biodegradable non-toxic mud | X | × | × | X | × | X | X | | | | | | | | P | | s | | _ | s | | - | | | | \$
\$ | Messina
Messina | | SLIX | lubricant corrosion inhibitor and diesel oil substitute Torque reducer | × | x | x | x | x | x | × | | | | | | | | P | | | | | | | | | | | | Montello | | SLUGGIT
COARSE
GRANDE
MAX
MEDIUM | Calcium carbonate for clay free
fluids (particle sized) | × | × | × | | | | | | | | | | | | | | | | P | | | | | | | | Brinadd | | MICRO
SLUGHEAL | Polymeric-lignosulfonate com- | x | x | x | | | | x | | | | - | | | | | | P | | | | | | ρ | | | | Brinadd | | SODA ASH | plex for clay free fluids
Sodium carbonate | x | × | x | x | × | x | x | | • | | s | | | | | | | | | | | | | Þ | | | Most companies | | SODIUM BICARBONATE
SODIUM CARBONATE
SODIUM DICHROMATE | Sodium bicarbonets
Sods esh
Sodium dichromate | XX | X | X | X | × | X | | | | | S | | | | | | | | | | P | | s | Ş | - | s | Most companies
Most companies
Most companies | | SODIUM HEXAMETA | Sodium hexameta phosphate | x | X | × | | | _ | × | | _ | | | | _ | | | | | | _ | | | P | | P | | | ECCO | | PHOSPHATE
SODIUM SULFITE
SOLKWIK | Oxygen scavenger instant dissolving viscosifier | X | X | X | X | X | X | × | | | x | | | | , s | 5 | | s | | | | | | P | | | P | Most companies
Enka | | SOLTEX | Sulfonated residuum | X | X | X | x | x | х | × | x | | x | | | | ρ | ρ | | s | | | ρ | | | | | | | Drill Spec. | | SOLUBLE-WATE | Acid soluble weighting material
for workover/completion
fluids | X | x | X | X | X | X | | X | X | | | | | | | | | | | | | | | | P | | and ECCO
Messina | | SOLUBREAK | Viscosity breaker for
clay free
fluids | X | X | X | Brinadd | | SOLUBRIOGE | Particle sized resin for clay free fluids | x | × | x | | | | | | | | | | | | | | _ | | P | | | | | | _ | | Brinadd | DLUBRIOGE Particle sized resin for clay FINE fluids MEDIUM | Recommend | ed for T | hese | Syl | Hem | 5 | | | | | | | Fun | Ctio | לטוט | A5 | _ | | | | | | |---|-----------------------|--------|---------|------------|------|------------|-----------|-------|----------|---------|----------|---------|---------|----------|------------|----------|---------|-----------|-------|--------|-------------| | Water-ba | se | | | ui-
180 | | Additives | | | | | | | | | | | | | | | | | Low pH | High | | ert) | | | ontrol Add | | | | | | | | | Ę | gents | ants | | • | sher | 52 | | Water
Water
ited | reated | _ | Odginve | | 15-4 | PHC | sə | | | | 2 | ducers | Agents | Mat | trof Inhih | clive Ag | Oispers | | emove | Maler | fritingstor | | schish Waler
Schish Wa
I. Sali Wal
p Treated | e Treater
sh Water | Solids | er-in- | Mud | Gas. | alinily. | tericides | namer | Ulsafier | oucants | ccutants | nte Red | / Burmu | st Circ. | ale Cor | lace A | nners. | cosifiers | E E | ghting | rosion | | Product Tradename | Description of Material | Fresh Water | Brackish Water | Sat. Saft Water | Gyp Freated | Lime Treated | Fresh Water | l ow Solids | Water-in-Oil tim | OdMud | | Air, Gas, Mist | Alkalinily, pH Co | Bactericides | Defnamers | Emulsifiers | Lubricants | Floccutants | f strate Reduces | A Domina | maño Amunio | Lost Circ. Mat | Shale Control In | Surface Active | | moners Dispe | Viscosifiers | Calcium Remov | Weighting Mate | Corrosion fribiti | Available | rom | |---|---|-------------|----------------|-----------------|-------------|--------------|-------------|-------------|------------------|-------|----|----------------|-------------------|--------------|-----------|-------------|------------|-------------|------------------|----------|-------------|----------------|------------------|----------------|---|--------------|--------------|---------------|----------------|-------------------|---------------------------------------|----------| | SOLUKLEEN | Polymeric-lignosulfonate com- | | × | ٠ | _ | | <u> </u> | X | - | 1. | ٠. | -1 | | | | _ | | | P | -1- | - | | <u></u> | | | | P | <u> </u> | <u> </u> | <u> </u> | Brinado | <u> </u> | | SOLVAQUIK | Diex for clay free fluids
Emulsifier for clay free fluids | | | | _ | | | | × | | | | | | | | | | Þ | | | | | | | | P | | | | Brinadd | | | SOLVITEX C.P.
SOR8-OX
SPACER 1000 | Modified polymer Oxygen scavenger Mud—cement spacer, fluid loss control agent | X
X | X | X | | X | X | X | : | | | | | | | | | | S
P | | ; | 5 | | | • | | P | | | P | Scholten
Messina
Dowell | | | SPACER 1001 | Cement spacer for oil | | | | | | | | x | × | | | | | | | | | P | | | | _ | P | P | _ | | _ | | _ | Dowell | | | SPEEDER-P | Extreme pressure lubricants | . х | x | × | X | X | x | × | × | X | | | | | | s | P | | | | | | | P | | | | | | | Telnite | | | SPEEDER-X | and wetting agents Surfactant for mixing with diesel oil to free pipe | x | x | X | x | X | × | X | × | | | | | | | | | | | | | | | P | | | | | | | Telnite | | | SPECIAL ADDITIVE 47 | Non-viscous organic liqd, for
treating water, water base
mud or dry contam, of oil | | | | | | | X | | × | : | | | | | S | | | s | | | | | P | s | , | 5 | | | | Oil Base | | | SPECIAL ADDITIVE 47X | base muds Powder for treating oil base muds contaminated by water base muds | | | | | | | | | x | | · | | | | s | | | | | | | | | P | | | | | | Oil Base | | | SPECIAL ADDITIVE 58 | Weight suspension stabilizer
and mixing adjuster for oil
base muds | | | | | | | × | | × | | | | | | | | | | | | | | | | | P | | s | | Oit Base | | | SPECIAL ADDITIVE 77 | Surfactant for treatment of water contamination | | | | | | _ | | X | X | | | | | | 5 | | | | | | | | P | | | | | | | Oil Base | | | SPECIAL ADDITIVE 81-A | Oil base mud stabilizer
Concentrated oil base mud
stabilizer | | | | | | | | | × | | | | | | P | | | \$
\$ | | | | | s
s | P | | S
S | | | | Oil Base
Oil Base | | | SPECIAL ADDITIVE 252
SPERSENE
STABIL HÖLE | Detoemer fluids
Chrome lignosulfonate
Sacked asphalt-added dry to
system or as a mixture with
oil | X
X
X | X
X | XX | X
X | X | X
X | X | x | × | | | | 1 | • | s | s | | s | s | | | P | | P | | s | | | | Oil Base
Magcobar
Magcobar | | | STABILITE | Organic phosphate thinner | × | × | | | | X | X | | | | , | | | | | | • | P | | | | | S | P | | s | | | | Baroid | - | | STABILOSE
STABILPROP | Carboxymethylated polymer
tow viscosity
Chrome-lignite | × | | × | x | x | × | | | | Х | | | | | | | | s | | | | P | | P | | • | | | | Scholten
Drill Add | | | STABL-VIS
STAFLO | Chrome-lignosulfonate
High molecular weight poly- | X | × | × | × | × | × | × | _ | | x | | | | | s
s | | | 5 | | _ | | S | | P | | P | | _ | | Drill Add
Enka | | | STAFOAM 202 | anionic cellulosic polymer
Biodegradable foaming agent | x | x | x | | | | | | | × | | | | | | | | | P | | | | P | | _ | | | | | American I | Mud | | STAFLO-EXLO
STARCH
STARFIX | Polyanionic cellulose
Pregelatinized starch
Non-termenting starch-based
polymer | X
X | X | X | X | X | X | XXX | | | × | | , | | | S | | | 999 | | | | P 5 | | | 9 | 5 | | | | Enka
Most comp
Messina | anies | | STARLOSE
STORIT | Non-fermenting starch
Preservative for clay-free | × | × | x | | | | | | | | | | • | | | | | P | | | | • | | | : | 5 | | | | Milchem
Brinadd | | | STUCKBREAKER | fluids Surfactant product for mixing with diesel oil to free stuck pipe | | | | × | x | × | x | | | | | | | | | P | | ٠ | | | | | P | | | | | | | Messina | | | SUPER ASBESTOS
SUPER COL
SUPER DRIL | Asbestos fibre
Mod. extra high yield bentonite
Specially treated gilsonite | XXX | X
X | XXX | x
x | x
x | X | XXX | | | | | | | | | s | | s
s | | | | • | | s | | , | | | | CDA/HMC
Milchem
Montello | | | SUPERDRILL | Treated gilsonite for dispersed | | | | | | | | | | | | | | | | s | | P | | | - | • | | s | | | | | | Chemo | | | SUPER EXTEND
SUPERGEL | systems Bentonite extender Beneficiated bentonite | X | × | | | | X | X | | | | | | | 1 | P | | | | | | | | | | 5 | | | | | CDA/HMC
Arnold & Cl | larke | | SUPER GEL
SUPER LIG
SUPER LUBE FLOW | High yield bentonite
Lignite
Pure, pulverized, high temper-
ature gilsonite | X
X | × | x | × | x | X
X | × | | | | | | | ; | S | P | P | P | | | , | • | | P | F | , | | | | Am Colloid
Am. Colloid
Montelia | | | SUPERMUL
SUPER SHALE-TROL 202
SUPER TREAT | Non-ionic emulsifier
Organo-aluminum complex
Soluble lignite | X | X
X
X | × | × | × | × | ××× | | | | | | | | P
S | | | P | | | , | <u> </u> | s | P | | | | | | CDA/HMC
Milchem
Am. Colloid | | | SUPER VISBESTOS
SUPER VISBESTOS
(CRUSHED)
SUPER-WATE | Fiberous asbestos material
Pre-sheared, wet-refined,
pelletized, crysotile asbestos
Special nigh density weighting
material for blowout control
only | X | X | X | X | × | X | × | X | × | • | | | | | | | | | | | | | | | ç | | | P | | Magcobar
Montelio
Magcobar | | | SURF-ACT | Mud surfactant, shale and | × | x | | x | × | x | x | | | × | | | | | | | _ | _ | | _ | |
; | P | _ | | | | | | Messina | _ | | SURFAK E
SURFAK M | solids control agent
Emulsifier
Nonionic surfactant for solids
control: solullizer for GMC-8
starch fluids | X | X | × | × | X | × | × | | | | | | | | P
P | s
· | | s | | | | | s | | | | | | | Magcobar
Magcobar | | | SURFATRON DP-61
SURFDRIL | Surfactant Biodegradable, non-ionic wetting agent | X | X | X | X | X | X | X | | | | | | | ; | s | | | | | | | | P
P | | | | | | | Champir -
American N | Aud | | SURFLO-B11 | Corrosion inhibitor and biocide for treating solids free packer fluids | | | | | | | | | | | | S | i | | | | | | | | | | | | | | | | P | Baroid | | | | Pec. | omn | end | ed f | or T | hesi | s Sv | siem | \$ | | | | | | | fun | CTIO | nınç | As | | | | | | | |------------|----------------|------------|--------|---------|----------|--------|-------------------|-------------|-----------|-------------|-------------|-----------|-------------|------------|-------------|------------|-----------|-----------|---------|---------|------------------|-------------|-----------|---------------------|-----------------| | | ٧ | /ate | r-ba: | se | | | |)il-
558 | | Additives | | | | | | | | | | | | | | | | | | Lov | • рн | | H | igh
H | | (Invert) | | | Control Add | | | | | | | | | Inhib | Agents | sants | | 51. | lats - | ors | | resh Water | Brackish Waler | Sall Water | reated | Treated | Water | Solids | Nater-in-Oil (Inv | p | Gas. Mist | E | actericides | mers | ifiers | ants | shants | 9 Reducers | ng Agents | Circ. Mai | Control | Active | ars. Dispersants | ithers | m Remover | Weighting Materials | sion Inhibitors | | Fresh | Brack | Sal. Se | Gyp I | Lime | Fresh | LowS | Water | Oil Mud | Air. G | Alkalinity | Bacte | Detoamers | Emutsitiers | Lubricants | Flocculants | Fillrate | Foaming | LosiC | Shate | Surface | Thunners | Viscosibers | Calcium | Weigh | Corrosion | | ¥ | Y | ¥ | ¥ | X | ¥ | × | | | | | ρ | | | | | | | | | | | | | | | | Fluide | Guide | L | Lo | w p+ | 1 | - | H | | 1 | | | outro. | | | | | | | | | ą | Agent | lues. | | 2 | tals | Sign | | |--|--|-------------
----------------|-----------------|-------------|--------------|-------------|-------------|-----------------------|---------|----------------|-----------------------|--------------|-----------|-------------|------------|-------------|-------------------|----------------|----------------|---------------------|----------------|----------------------|-------------|------------------|---------------------|----------------------|---------------------------------------| | Product Tradename | | Fresh Water | Brackish Waler | Sal. Sall Water | Gyp Treated | Lime Treated | Fresh Water | Low Solids | Water-in-Oil (Invert) | Oil Mud | Air. Gas. Mist | Alkalinity, pH Contro | Bactericides | Detoamers | Emutsifiers | Lubricants | Flocculants | Filtrate Reducers | Foaming Agents | Losi Circ. Mai | Shate Control Inhib | Surface Active | Thorners. Dispersant | Viscosibers | Calcium Removers | Weighting Materials | Corrosian Inhibitors | 1' | | | Description of Material | _ | <u> </u> | | <u> </u> | _ | | _ | 5 | 10 | 14 | <u> </u> | | - | <u> </u> | - | 1 44 | u. | - | ت | S | S | - | > | 0 | <u> </u> | <u> </u> | Available from: | | SURFLO-833
SURFLO-H35
SURFLO-S362 | Biocide for drig, and pkr. fluids
Scale innibitor
Foaming agent for fresh or
salt water | X | × | X | X | X | . X | X | | | x | | Р | | | | | | ρ | | | | | | | | ρ | Baroid
Baroid
Baroid | | SURFLO-S375 | Foaming agent for fresh or salt water | | | | | | | | | | x | | | | | | | | ρ | | | | _ | | | | | Baroid | | SURFLO-S378 | Foaming agent for fresh or salt water | | | | | | | | | | X | | | | | | | | Ρ | | | | | | | | | Barord | | SURFLO-S390 | Foaming agent for fresh or salt water | | | | | | | | | | X | | | | | • | | | P | | | | | | | | | Baroid | | SURFLO-W300
SURF-LUBE
TANNATHIN | Surface active defoamer
Powdered surfactant lubricant
Lignite | X
X | X
X
X | X
X
X | X | ××× | X | X
X | x | | | | | Р | s
s | • Р | | s
s | | | | P | Ş | | | | | Baroid
Dixie
Magcobar | | TANNEX | Quebracho extract and lignitic mti. | X | x | | | × | x | x | | | | | | | s | | | s | | | | | P | | | | | Baroid | | TBA
TEL-BAR | Temporary blocking agent Barite (barytes) | x | x | x | x | X | x | × | x | x | | | | | | | | | | P | | | | | | P | | Halliburton
Ternite | | TEL-CELLOSE-H
TEL-CELLOSE-L
TEL-CELLOSE-TL | CMC (pure grade hi-vis)
CMC (pure grade low-vis)
CMC (technical grade low-vis) | X
X | ××× | X
X | X
X | XXX | X | X | | | | | | | | | | SPP | | | | , | | PSS | | | | Telnite
Telnite
Telnite | | TEL-CELLOSE-TM
TEL-CLEAN
TEL-D.D. | CMC (technical grade regular) Water soluble lubricant Drilling mud detergent and wetting agent | × | × | X | X | X | X | X
X
X | | | | | | | s
s | P | | Ρ | | | | P | | 5 | | | | Telnite
Telnite
Telnite | | TEL-DEXT
TEL-FIBER
TEL-FLAKE | Organic polymer
Fibrous material
Shredded cellophane flakes | ××× | ××× | ××× | X
X | × | ××× | X | × | × | | | - | | | | | P | | P | | | | 5 | | | | Telnite
Telnite
Telnite | | TEL-GEL
TEL-LIG
TEL-LIG-K | Bentonite Ferrochrome lignosulfonate Ferrochrome potassium lignosulfonate | X
X | X
X | ××× | X
X
X | ××× | × | x | | | | | | | s
s | | | \$
\$
\$ | | | s
s | | ٥ | P | | | | Teinite
Teinite
Teinite | | TELNITE-A
TELNITE-B
TEL-PLUG | Processed lignite
Processed sodium lignite
Ground watnut shells | ××× | X | × | x | ××× | X | X | x | x | × | | | | s
s | | | P | | | P | ٠. | P | | | | | Telnite
Telnite
Telnite | | TEL-POLYMER-L
TEL-POLYMER-H
TEL-PHOS | Potyanionic cellulose
Potyanionic celluloso
Sodium tetrapnosphate | XXX | XXX | X | X | XXX | X
X | x | | | | | | | S | S | | P | | | P | | P | P | | | | Teinite
Teinite
Teinite | | TEL-SAPP
TEL-SEAL
TEL-STOP | Sodium acid pyrophosphate
Vermiculite flakes
Cotton seed hulls
(coarse and fine) | X
X | X
X
X | X
X | x | × | x | × | X | x
x | | | | | | | | Р | | ρ | | | P | | | | | Telnite
Telnite
Telnite | | TEMBLOK
TEMPOSEAL | High viscosity fluid Temporary lost circulation | | | | , | _ | × | | | | | | | | | | - | | | ٥٥ | | | | | | _ | - | Halliburton
Western | | TEMP-WATE | plug Coarse barite for temporary weight control | x | × | × | x | | | | × | × | | | | | | | | | | | | | | | | P | | Messina | | TETRONIC
TET THIN
THERMOGEL | Surfactants
Sodium tetraphosphate
High temperature sepiolite | × | × | X | | | x | X | x | x | x
x | s | | | ρ | | | s | P | | | P | P | ρ | ρ | | | BASF Wyandotte
CDA/HMC
IMV | | THERMO-SEAL | Dispersable hydrocarbon for HT water loss control: | x | × | × | X | | | X | | | | | | | | s | | P | | s | P | | | | | | | Messina | | THERMO-TROL | Resin—lignitic blend for HT/HP
rheological/water loss contro | X | X | X | X | X | X | | | | | | | | | | | P | | | 5 | | S | | | | | Messina | | THIX | Emulsifier for clay free fluids | ·X | X | X | _ | | | | | | | | | | | | _ | Ρ | | | | | | ρ | | | | Brinadd . | | THIXOLITE . | Lightweight thixotropic cament for lost circulation | | | | | | | | | | | | | | | | | | | P | ٠ | | | | | | | Western | | THIXOMENT | Thixotropic cement for lost circulation | • | _ | | | | | | | | | | | | | | | | | P | | | | | | | | Western | | THIXOMIX | Thixotropic cament | _ | | | | | | | | | _ | | | | | | | | | _ | | | | _ | — | — | | Halliburton | | THIX-PAK THIXSET CEMENT TIMPLEX | Emulsifier for clay free fluids Thixotropic cement Lignite based thinner and fluid loss reducer for high temperature service | XX | X
X | XXX | X
X | X | X | × | × | X | | | | | | | | P | | P | | | P | P | · | ı | | Brinadd
Halliburton
T.I.M. | | TLC
TOL-AEROMER
TOL-FOAM | Temporary loss control
Oxygen corrosion inhibitor
Foaming agent | X | X | X | x | x | X | × | x | × | × | | | | | | | | ρ | P | | s | | | | | P | Halliburton
Tretolite
Tretolite | | TORKEASE
TORQ TRIM II | Orilling mud lubricant
Biodegradable and non-toxic | X | X | X | X | X | X | X | | | | | | | | 0.0 | | | | | s | | | | | | - | DSC Inc.
Baroid | | TORQ-TRIM | lubricant Biodegradable, non-toxic lubricant | × | | x | _ | _ | × | . × | | | | | | | | P | | | | | | | | | | | | Baroid | | TORQUEOUT | Biodegradable-Non toxic | x | x | × | X | X | X | X | | | | | | | | ρ | | | | | | | | | | | | Drigmud | | TREAT
TRETOLITE | lubricant Polymeric for clay free fluids Multipurpose products | X | X | X | x | x | x | x | x | | | | P | P | s | ٩ | s | ρ | s | P | | ρ | P | | | | | Brinadd
Tretolite | | TRILEX
TRIL-G | Basic invert oil emulsifler
Oil mud asphaltic gelling agent | | | | | | | | | X | | | | | P | | | | | | | _ | | P | | | | Deita Mud
Deita Mud | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | - | Recommended for These Systems Water-base Oil. base | | | | | | 5 | | | | | | | Fur | otto | ກາດໃ | AS | | | | | | | | | |-------------|---|----------------|-------------|-------------|------------|-----------|-----------------------|----------|----------------|-------------------|-------------|-----------|-------------|-----------|------------|-----------------|---------------|--------------|----------------------|------------------|----------------------|--------------|-----------------|-----------------|----------------------------| | | ٧ | ate | -58 | 30 | | | | | | Additives | | | | | | | | | | | | | | | | | | Lov | v pH | | T O | gh
X | | = | | | ontrof Ad | | | | | | _ | | | £ | Agents | sants | | : | SE SE | | | Fresh Water | Brackish Water | Sal Sall Water | Gyp freated | ime Treated | resh Water | ow Solids | Water-in-Oil (Invert) | Dist Mud | Arr. Gas. Mist | Alkahnity, pft Co | actericides | Defoamers | Emulsitiers | ubricants | loccutants | ilirate Reducer | oaming Agents | ost Circ Mat | Shale Control Inhith | Surface Active A | Thuners, Dispersants | Viscositiers | Calcium Armover | Weighting Mater | Section for the section of | | Product Tradename | Description of Material | Fresh Water | Brackish Water | Sal Sall Water | Gyp freated | Lime Treated | Fresh Water | Low Solids | Water - m - Oil (Pri | Oit Mud | Arr. Gas. Mist | Alkahnity, pft C. | Bactericides | Defoamers | Emulsifiers | Lubricants | Flocculants | Filtrate Reduce | Foaming Agent | Lost Circ Mat | Shale Control I | Surface Active | Thuners Dispe | Viscositiers | Calcium Brimo | Weighting Mate | Corresson Inhit | Available from | |---|---|-------------|----------------|----------------|-------------|--------------|-------------|------------|----------------------|---------|----------------|-------------------|--------------|-----------|-------------|------------|-------------|-----------------|---------------|---------------|-----------------|----------------|---------------|--------------|---------------|----------------|-----------------|---| | TRIL-OX | Complimentary invertibility emulsifier (quick lime) | 1= | != | 1 | - | 1= | - | | 1- | × | 17 | P | !- | | P | _ | | _ | <u> </u> | | | 1 | <u> </u> | 1- | 1. | 1- | 10 | Delta Mud | | TRIMULSO
TRIP-WATE
TRI-S | Oil-in-water emulsifier
Granular barrite
Surfactant additive for work-
over and completion fluid | × | × | × | X | X | X | X | x | × | | | | | P | s | | | | P | | P | | | | ρ | S | Baroid
Baroid
Halliburton | | 75-301 | Polymeric-lignosulfonate | × | x | × | | | | | | | - | | | | | _ | | ٩ | | | | | _ | | | | | Brinadd | | TUF-PLUG | complex for day free fluids
Wainut shells (coarse, medium, | x | x | x | x | x | x | × | × | x | | | | | | | | | | p· | | | | | | | | Halliburton | | TUF-PLUG | and fine)
Walnut shells | x | x | x | x | X | x | X | x | x | | | | | | | | | | P | | | | | | | | Western | | T-Z
PILL
ULTRADEFOM
ULTRADET | Polymeric for clay free fluids
Defoaming agent
Surfactant, mud detergent and
emulsifier | × | X
X | X
X | X | X | X | X | X | x | | | | P | s | s | | P | | . P | | P | | P | | | | Brinadd
Meril
Meril | | ULTRADRYL
ULTRAFLOK
ULTRAFLOKOR | Engineered drilling fluid
Non-selective flocculant
Non-selective flocculant/
anti-corrosive | × | x | x | | | x | × | | , | | | | | | | 999 | P | | | P | | | P | | | s | Merit
Merit
Merit | | ULTRAFLOK-SEL
ULTRAFREE
ULTRAKOR | Selective flocculant
Spotting agent
Anti-corrosive | X
X x | x | | | | | | P | P | | | | | | | | | | P | Merit
Merit
Merit | | ULTRAPAK | Viscosifier and filtrate reduc-
tion agent | X | x | x | × | X | X | × | | | | | | | | | s | P | | | 5 | | | P | | | | Merit | | ULTRASAFE
ULTRASEAL | Workover fluid
Seepage inhibitor | X | X | X | × | × | X | x | × | x | | | | | | | | P | | P | P | | | P | | | | Merit
Merit | | ULTRASPAN | Viscosifier and filtrate reduc- | x | X | | | | x | x | | | | | | - | | | s | P | | | s | | | P | 5 | | | Merit | | ULTRAVIS . | tion agent
Viscosifier and hole sweeping
agent (replaces asbestos | × | x | x | x | x | × | x | × | × | | | | | | | | s | | P | | | | P | | | | Merit | | UMS FIBER SEAL | libers)
Blended lost circulation mtl. | x | x | x | x | x | x | x | | | | | | | | | | ٠ | | | | | | | | | | United Mud | | UNI-CAL | Chrome mod. sodium | X | X | x | x | x | x | x | | | | | | | S | | | s | | | s | | P | | | | | Mitchem | | UNI-DRILL | Sodium potyacrylate liquid system | X | X | X | X | X | X | X | | | | | | | | | | P | | | s | | | | | | | Wyo-Ben | | UNI-FREE | Surfactant to be mixed with diesel oil to free pipe | X | X | × | X | × | X | X | United Mud | | UNITED DEFOAMER
UNITED GEL
UNITED INHIBITOR | Liquid anti-fosm sgent
Wyoming bentonite
Corrosion inhibitor | × | X | x | x
x | x
x | X
X
X | X
X | | | | | | P | | P | | P | | P | | | | P | | | P | United Mud
United Mud
United Mud | | UNI-THIN
VEN-BLEND | Causticized lignite Combination of fibers. | . X | X | X | x | X | X | X | | | | 5 | | | \$ | | | s | | P | | | ₽ | | | | | United Mud
Venture | | VEN-CHEM 300 | granules, and flakes
Organic polymer | x | x | | | | X | | | | | | | | 5 | | | P | | | | | | | | | | Venture | | VEN-FYBER 201 | Micronized, surface modified, | × | x | x | х | × | x | × | x | × | x | | | | s | | | s | | P | | | | | | | | Venture | | VEN-GEL
VENTURE BURR PAK | cellulose-base fiber
High yield bentonite
Blend of organic fibers | X | x | ¥ | x | ¥ | ¥ | x | | | | | | | | | | | | P | | | | P | | | | Venture
Venture | | VENTURE FIBER KANE VENTURE POLY | Cellulose-base cane fiber Densified and expandable | × | × | × | ×× | × | ×× | × | | | <u> </u> | - | | _ | | | | | | P | | | | | | | | Venture
Venture | | PELLETS
VERLOW | fiberous LCM product Oil soluble surfactant | | | | | | | | × | | | | | | | | | | | | | P | P | | | | | CDA/HMC | | VERMUL | Invert emulsifier, fluid loss | | | | | | | | x | | | | | | P | | | P | | | | | | | | | | CDA/HMC | | VERMUL S
VERT | Control agent Supplementary emulsifier Polymeric for clay free fluids | x | X | x | | | | | X | X | | | | | P | | | s | | | | | | P | | | | CDA/HMC
Brinadd | | VERTILE
VERTOIL | Invert emulsion
Sacked-invert emulsion | | | | | | | | X | | | - | | | P
P | • | | P
S | | | | | | P | | | | Magcobar
Magcobar | | VERVIS | mud conc.
Organo metallic powder | · | | | | | | | × | x | | | | | | | | s | | | | | | P | | | | CDA/HMC | | VG-69 | Gelling agent for invert emulaions | | | | | | | | X | | | | | | | | | s | | | | | | P | | | | Magcobar | | VISBESTOS | Inorganic viscosifier emulsion mud | X | x | × | x | x | × | x | x | | | | | | | | | | | | | | | P | | | | Magcobar | | VISCOGEL 618 | High temperature polymer | × | X | x | x | × | X | X | | | | | | | _ | | | P | | | \$ | | | 5 | _ | | | Scholten | | VISFLO (REGULAR &
SUPER 20) | High molecular weight poly-
anionic cellulose | × | | X | × | X | × | X | | | | | | | 5 | | | P | | | S | | | P | | | | Messina | | VISQUM
VISQUICK | Modified guar gum
Inorganic viscosifier | X | X | x | × | × | x | X | | | | | | | | | | s | | | | | | ٩ | | | | CDA/HMC
Magcobar | | VISTEX | Synthetic polymer & sized carbonate blend | X | X | × | | | x | | | | | | | | | | | s | | | | | | P | | | | Texas Brine | | VISTROL
W-703K | Causticized quebracho
Oxygen scavenger | X | X | X | X | X | X | X | | | x | | | | | | | P | | _ | | _ | P | | | | P | Arnold & Clarke
C-E Natco | | WALL-NUT
WATESAL
WC-14 | Ground walnut nulls
Sized salt with dispersant
Organic polyelectrolyte
polymers | x | X | X | x | X | x | X | x
x | x | | | | | | | P | | | P
S | | | | | | P | | Most companie
Texas Brine
Tretolite | | ŕ | eco | ייייי | nenà | ec i | or T | hes | e Sv | stem | 8 | | | | | | | Fur | 10110 | ning | As | | | | | | | |---|---------------|-----------|----------|----------|-------------|------------|--------------|---------------|----------|-------------|--------------|-----------|------------|------------|--------------|-----------|---------|-----------|-------------|----------|---------|--------------|---------|-----------|---------------| | | W | ate | -52 | ** | | | |) ji -
150 | | ddilives | | | | | | | | | | | | | | | | | | Lov | DH | | H. | gn
H | | 9.5 | | | ontrof Ad | | | | | | | | | Intrib | Agents | sants | | | 2,5 | 510 | | | Waler | Water | realed | Treated | ie | 2 | Oil (Invert) | | Mist | PHC | des | 5 | 5 | 2 | ž | Reducer | Agents | E M | Control Int | Active A | Disper | | Remove | g Materia | o forbability | | | Brackish Wale | Sat Salt | Gyp Irea | Lime Tre | Fresh Water | Low Solids | Water in | Ort Mud | Au. Gas. | Alkalınıly. | Bactericides | Defoamers | Emulsihers | Lubricanis | Floccinlants | Fulrate A | Foaming | Lost Circ | Shale Co | Surface | Phoners | Viscosifiers | Calcium | Veighting | Correspon | | | s Guide | _ | _ | | | ₩ | - | | 🖫 | 1 | | 18 | | | i | li | | | | ı | 1 = | 15 | 1 : | 2 | - 1 | ا تة | = 1 | 31 | t comp | |-----------------------------|--|-------------|----------------|------------|----------|---------|-------------|----------|--------------------|---------|----------------|--------------------|--------------|-----------|-------------|------------|--------------|------------------|----------------|--------------|--------------------|-----------|-----|------------------|--------------|-----------------|-------------------|--------------------|-------------------------| | , ,w,ac | duide | Fresh Water | Brackish Water | Salt Water | Irealed | Treated | Fresh Water | Solids | Water in Oil (Inve | _ | Air, Gas, Mist | Alkalınıly, pH Con | Bactericides | Defoamers | Emulsitiers | nls | Flocciniants | Fulrate Reducers | Foaming Agents | LOSI Cuc Mai | Shale Control Intu | Active An | | rammers, Dispers | Viscosiliers | Calcium Remover | Weighting Materia | Corresion Inhibito | - | | | | 1 | 1 5 | Sal | = | = | 5 | So | 5 | 2 | Š | Ē | ě | Dear | 4 | 1.09 | 15 | 윭 | Ē | ٥ | 3 | 100 | | | S | 5 | 충 | 2 | | | Product Tradename | Description of Material | ŝ | ě | Sat | Gyp | Lime | Ę | 10 | Wal | Orl Mud | Ž | ¥. | Оче | a a | Ē | Lubricanis | Ę | Ī | Foa | 2 | S. | Surface | 1 | | Z's | Car | ξ | ق | Available from | | WEIGHTEX
WHITE MAGIC | Catcium carbonate Emulsifier and thinner for emulsion muds | X | X | X | X | X | X | x | X | x | | | | | P | | S | | | | s | | P | _ | | | P | | Texas Brine
Oil Base | | WK-1 | Filtrate reducer for kill fluids | X | X | X | | | | X | | | | | | | | | P | | | | | S | | | | | | | Western | | WL-100
WMW-1 | Sodium polyacrylate | X | | X | | | X | x | | | | | | | | | | P | | | | | | | | | | | ROSI | | W.O. 20 | Mud removal agent High-yield polymeric for viscosity and filtration control | | X | x | | | | | | | | | | | | | | P | | | | | _ | , | • | | | | Western
Milchem | | W.C 21 | High yield polymer | X | x | × | | | | | | | | | | | | | - | | | | | | | , | | | | | Milchem | | W O 22 - | Acid soluble polymeric viscosi-
fier-low density fluids | X | X | X | | | X | | | | | | ٠ | | | | | ρ | | | | | | , | • | | | | Milchem | | W.Q. 23 | Acid soluble polymeric viscosi-
fier-high density fluids | X | X | X | | | × | | | | | | | | | | | P | | | | | | • | • | | | | Milchem | | W.O 30 | Acid-soluble, graded calcium | х | x | x | | | | | | | | | | | | | | | | P | | | | | | | s | | Mitchem | | W O 35 | carbonate
Acid soluble-high specific | x | x | X | X | X | x | P | | Milchem | | W.O. 50 | gravity weighting material
Polymer and graded calcium
carbonate | x | x | X | | | • | | | | | | | | | ٠ | | | | P | | | | | ٠ | | | | Milchem | | WO DEFOAM
WYO-BEN X | Alcohol base compound
Polymer, flocculant and | | | | | | x | J | - | | | | | P | | | | | | _ | | | | | | | | | Milchem
Wyo-Ben | | X-900A | clay extender | • | X | J | u | | | | | | _ | | | | | | - | | | | | | ٠ | • | | | | _ | • • • | | A-900A | Powdered catalysed oxygen
scavenger | | × | | <u> </u> | | X | <u> </u> | | | × | | | | | | | | | | | | | | | | | -
 | C-E Naico | | X-900L
X-905 | Oxygen scavenger
Oxygen scavenger | X | X | X | X | | X | X | | • | X | v | | | | | | | | | | | | | | | | 9 | C-E Natco
CE-Natco | | XB 23 | Biopolymer | â | <u> </u> | â | | | x | <u> </u> | | | | | | | | | | s | | | | | | | ·
 | | | | CECA | | XC POLYMER | Xanthum gum biopolymer | × | x | X | X | x | X | X | | | | | | | s | | | s | | | | | _ | ı | , | | _ | | Kelco &
Completion | | XKB-LIG
XKB-THIN | Potassium lignite
Iron complexed lignosuifonate | X | X | X | | | X | X | | | | | | | | | | s
S | | | 5 | | S | | | | | | Milchem
Milchem | | XMDL | Multi-functional drilling liquid | × | Х. | × |
x | × | X | X | | | | | | | | P | • | _ | | | _ | P | | | | | | s | ROSI | | XP-20
X-PEL G | Chrome lignite Water dispersable asphaltite (Gilsonite) | X | X | X | X | X | X | X | | | | | | | | P | | S
S | | | 0 | • | , | ı | | | | | Magcobar
RDŠI | | XPK-2000
X-TEND | Atmospheric corrosion inhibitor
Powdered flocculant and clay | . x | × | | | | × | × | | | | | | | | | p | | | | | | | | , | | | P | Magcobar
Baroid | | ZEQ | extender Polymeric for clay free fluids | × | x | x | | | | | | | | | | | | • | | P | | | | | | , | , | | | | Brinadd | | ZEOGEL | Attapulgite powder | | × | × | × | × | | × | | • | <u> </u> | - | _ | | | | | | | | | | | | | | | | Baroid | | ZERO TORQUE
ZINC BROMIDE | Graded granular thermo beads
Zinc bromide/calcium bromide
(liquid bland) | × | x | x | X | x | X | x | X | X | | ٠ | | | | P | | | | | | | | • | | | P | s | Delta Mud
Delta Mud | #### APPENDIX B DEVELOPMENT OF CONVECTION-DIFFUSION MODEL EQUATIONS For the purposes of detection-system design, the convection-diffusion equation will be used. The equation is: $$Dv^2C - V \cdot vC = aC/at$$ (B-1) where C = the concentration of pollutant at point x,y,z D = the diffusion coefficient V = a vector given the direction and magnitude of fluid flow t = time In pollutant fate modeling, V is not constant, but varies in space across the aguifer. As V may vary, the use of equation B-l for modeling pollutant transport in diverse areas would be inappropriate; however, as detection-monitoring stations are to be placed fairly close together, the variation in V may be neglected for detection-system design. If we assume that a source of the pollution (o,o,t) is located at the origin, and that V is in the x direction, and that variation in the a direction may be neglected, the solution of equation B-l is: $$C(x,y,t) = \int_{0}^{t} C(0,0,t-t_{1}) \frac{dt_{1}}{\sqrt{(2\pi)^{2}Dt_{1}}} e^{-[(x-Vt_{1}^{2})^{2} + y^{2}]/2Dt} (B-2)$$ where. V = velocity in the x direction D = the diffusion coefficient t_1 = a small time interval ¹For background information, see Aris, 1978. For an initial burst that quickly damps out, the form of C may be said to be: $$C(o,o,t) = P \delta (t)$$ (B-3) $P = level of the burst at time 0$ $(t) = the dirac delta function.$ The solution to equation (B-2), then, is: $$C(x,y,t) = \frac{P}{(2\pi)^2Dt_1} e^{-[(x-Vt)^2 + y^2]/2Dt}$$ (B-4) Let us set the minimum detection level $S\sigma = C_0$. Solving the equation $$\frac{P}{(2\pi)^2Dt_1} = -[(x-Vt)^2 + y^2]/2Dt = C_0$$ (B-5) we find $$[(x-Vt)^2 + y^2] = 2DT[W - 1/2 ln t/t_1]$$ (B-6) where $$W = \ln P/[2\pi C_0(Dt_1)^{1/2}]$$ t₁ = 1 sec Now, as the term $\ln t/t_1$ is small compared with the other term, we may neglect it, and we get: $$(x-Vt)^2 + y^2 = 2DtW$$ (B-7) Equation 7 is the formula of an ellipse. Solving for one-half the width of the ellipse in the x and y directions, we find: $$\Delta x = 1/2$$ 2WDt₀ - $(x-Vt_0)^2$, for $(x-Vt)^2 < WDt$ (B-8) = 0 elsewhere $$\Delta y = 1/2 \quad 2WDt - y^2, \text{ for } y^2 < WDt_0$$ (B-9) = 0 elsewhere It can be seen that the maximum y spacing occurs at $x = vt_0$, and the maximum x spacing at y = 0, so that $(vt_0, 0)$ is an optimal place to put a station if we wish to minimize the number of stations (see Figure B-1). Figure B-1. Location of Recommended Monitoring Stations for a Detection Monitoring System. Based on the Solution of an Equation for an Ellipse Showing Pollutant Trace at Concentration C_0 (Detection Limit) at Time t_0 (an Arbitrary Time After the Spill). The sampling frequency may be solved by finding the width of t as a function of x and y: $$\Delta t = \frac{4w^2D^2 - 4V^2y^2 - 8xVWD}{2V^2}$$ (B-10) #### APPENDIX C DEVELOPMENT OF POLLUTANT EVENT MONITORING MODEL EQUATIONS The conservation of mass equation is of the form: $$\nabla \cdot (\rho V) = \frac{\partial \rho}{\partial T} \qquad (C-1)$$ where ρ = the density of fluid, and V - velocity. This says that the amount of fluid entering a small volume is equal to the increase in density. Darcy's law is expressed in the form: $$V = -\lambda \left[\nabla P - \rho q^{\nabla} D\right] \tag{C-2}$$ where V = velocity, λ = a parameter known as mobility, P is pressure, ρ is density, g is the gravitational acceleration constant, and D is depth. This equation says that fluid velocity in porous rock is proportional to applied force. λ , mobility, may be a function of pollutant concentration in the fluid. The convection-diffusion equation is: $$D\nabla^2C - \nabla \cdot \nabla C = \delta C/\delta t \tag{C-3}$$ where C = the concentration of pollutant within a fluid, D = a parameter known as the diffusion or dispersion coefficient, and V = velocity of the fluid in which the pollutant is dissolved. This equation is a relative of the heat or diffusion equation: $$D\nabla^2C = \delta C/\delta T \tag{C-4}$$ When V = 0, this is a solution to equation C-3. Thus, in the frame of reference of the moving fluid, the convection-diffusion equation simplifies to a simple diffusion equation. The mobility $\lambda_{\dot{1}}$ of a given fluid is composed of several terms: $$\lambda_{i} = \frac{\kappa \kappa_{ri}}{\mu_{i}} \tag{C-5}$$ where κ = permeability, κ_{ri} = relative permeability of fluid, and μ_{i} = viscosity of fluid i. #### IMMISCIBLE FLOW EQUATIONS $$\nabla \cdot \left[\alpha \rho_{n} \frac{\kappa \kappa_{rn}^{(S_{w})}}{\mu_{n}} (\nabla P_{n} - \rho_{n} g \nabla D)\right] + \alpha q_{n} = \alpha \frac{\partial (\phi_{e} \rho_{n} S_{n})}{\partial t} (C-6)$$ $$\nabla \cdot \left[\alpha \rho_{W} \frac{\kappa \kappa_{TW}}{\mu_{D}} (\nabla P_{W} - \rho w g \nabla D)\right] + \alpha q w = \alpha \frac{\partial \left(\phi_{e} \rho_{W} S_{D}\right)}{\partial t} (C-7)$$ $$P_C(S_W) = P_n - P_W$$ (This is an empirical law, verified experimentally.) (C-8) $$S_n + S_w = 1, \tag{C-9}$$ where a subscript n = nonwetting phase, and a w = wetting phase. S = saturation (varies in space) g = the gravitational constant q(x,y,t) =source or sink, volume injected per unit volume D = depth (may vary in space) = h (thickness) in two dimensions (may vary in space) = 1 in three dimensions e = effective porosity (may vary in space) P = pressure (varies in space) p = density (constant) r = permeability (varies in space) P_c = capillary pressure (varies in space) #### MISCIBLE FLOW EQUATIONS $$\nabla \cdot \left[\alpha p w \frac{\kappa}{\mu_W} \left(\nabla P_C - \rho w g \nabla D\right) + \alpha q w = \alpha \frac{\partial \left[\phi_C \rho_W S_W\right]}{\partial t} \quad (C-10)$$ $$P_{C} = P_{C}(S_{W}) \tag{C-11}$$ $$v_{W} = (\nabla P_{C} - \rho W g \nabla D) \frac{\kappa}{u}$$ (C-12) $$\alpha \phi_{e} \stackrel{\partial}{\partial t} (S_{w}C) = \kappa_{1} \nabla \cdot (\alpha \nabla C) - v_{w} \cdot \nabla (\alpha C) + \alpha q_{c}$$ (C-13) where C = concentration of pollutant in groundwater a = h (thickness) in two dimensions = 1 in three dimensions P_C = capillary pressure (varies in space) S_w = water saturation (varies in space) k = permeability (constant) $\mu_{\mathbf{W}} = \text{viscosity of groundwater (constant)}$ \$\phi_e = effective porosity C = concentration of pollutant in groundwater κ_1 = diffusion of dispersion constant g = gravitational constant $\rho_{\mathbf{W}}$ = density of groundwater q = q(x,y,z,t) = source of sink volume of water per volume rock qw = water source term g_C = pollutant source term FLUID ALTERING EQUATIONS: MODIFICATIONS FOR POLYMER AND SURFACTANT POLLUTANT EVENTS Where the pollutant is polymer or surfactant, equations 14 and 15 must be added. $$\kappa = \kappa(C) \tag{C-14}$$ $$\mu_{\mathbf{W}} = \mu_{\mathbf{W}}(\mathbf{C}) \tag{C-15}$$ #### DETERMINING THE SOURCE TERM The source term q in both the miscible and immiscible flow equations will vary according to the source of contamination. For contamination from a leaky well, q might be modeled as a point source: $$q(x,y,z) = Q\delta(x-x_0)\delta(y-y_0)\delta(z-z_0)$$ (C-16) where Q is the pollutant emitted and (x_0,y_0,z_0) is the location of the leak. It is important to understand that this case is not likely to be useful because, if one knew where the leak in the well was, he would stop it and there would be no source term. For contamination via a direct communication between strata, q might take the form $q(x,y,z,t) = q*C*8x_0,y_0,z_0,t)$ (C-17) where q^* = the fraction of reservoir fluid leaking into the aquifer from the leak at point (x_0, y_0, z_0) , and C^* is the concentration of pollutants within the reservoir fluids. This is related to the progress of EOR within the reservoir. #### APPENDIX D ### USGS/NWDE GROUNDWATER MONITORING STATION LOCATIONS AND SAMPLING FREQUENCIES This appendix provides examples of the nature and extent of data available for a groundwater quality baseline from the USGS data bases. Locations with high EOR potential, selected as examples, are shown in Table D-1. TABLE D-1. SUMMARY OF EXISTING GROUNDWATER DATA FOR FOUR SAMPLE COUNTIES | Location | No. of
Monitoring
Wells | No. of
Parameters
Measured | Frequency | |---------------------------|-------------------------------|----------------------------------|-----------| | Stephens County, Texas | 40 | 9 | Seasonal | | Wayne County, Mississippi | 25 | 11 | Annual | | Osage County, Oklahoma | 24 | 11 | Annual | | Kern County, California | 663 | 14 | Annual | Monitoring information for Stephens County is presented in Figure D-1 and Table D-2. Maps and sampling frequency computer printouts can be obtained from the USGS for a nominal users charge. Figure D-1. Area map for Stephens County, Texas, showing locations of USGS groundwater quality monitoring wells. TABLE D-2. PARAMETERS MEASURED - 40 STEPHENS COUNTY GROUNDWATER MONITORING STATIONS (See Figure D-1 for Station Locations) ALL PARAMETERS MEASURED SEASONALLY Temperature Specific Conductance pH Dissolved Solids Major Ions Hardness Silica Nitrogen Species Minor Constituents AWBERC
LIBRARY U.S. EPA | TECHNICAL REPORT DATA Please read Instructions on the reverse before com | pletingj | |---|---| | 1. REPORT NO.
EPA-600/2-81-24/ | 3. REC:PIENT'S ACCESSION NO. | | Monitoring to Detect Groundwater Problems Resulting from Enhanced Oil Recovery | S. REPORT DATE OCTODER 1981 6. PERFORMING ORGANIZATION CODE | | Ron Beck, B. Aboba, D. Miller, and I. Kaklins | 8. PERFORMING ORGANIZATION REPORT NO. | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS ERCO/Energy Resources Co., Inc. 185 Alewife Brook Parkway Cambridge, MA 02138 | 10. PROGRAM ELEMENT NO. INE 823 11. CONTRACT/GRANT NO. 68-03-2648 | | 12 SPONSORING AGENCY NAME AND ADDRESS Municipal Environmental Research Laboratory - Cin., OH Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 | 13. Type of Report and Period Covered Final 14. Sponsoring agency code EPA/600/14 | #### 15. SUPPLEMENTARY NOTES John S. Farlow, Project Officer (201-321-6631) #### 16. ABSTRACT This report develops a four-stage monitoring program to detect groundwater contamination events that may potentially result from enhanced oil recovery (EOR) projects. The monitoring system design is based on a statistical analysis evolving from a series of equations that model subsurface transport of EOR spills. Results of the design include both spatial and frequency monitoring intervals that depend on properties of the local geology and dispersion characteristics of the potential contaminants. Sample results are provided for typical reservoir characteristics. Selection of measures to be sampled is based on a review of the identity of likely contaminants, on the available sample and analysis procedures, and on the cost and time constraints on analysis. Nonspecific indicator measures are identified that can be used to flag those intervals requiring more intensive and specific monitoring. The number of independent variables in the analysis dictate that EOR monitoring systems be designed on a site-specific basis. Sampling designs can be easily formulated to conform to the peculiarities of chosen EOR sites based on data already available from federal and state geological surveys and from oil company statistics. | 17. KEY | WORDS AND DOCUMENT ANALYSIS | |---|--| | a. DESCRIPTORS | b.IDENTIFIERS/OPEN ENDED TERMS c. COSATI Field/Group | | Monitors Groundwater Pollution Oil Recovery Environmental Engineering | Monitoring Strategy Groundwater Pollution Environmental Problems Enhanced Oil Recovery | | 13. DISTRIBUTION STATEMENT | 19. SECURITY CLASS (This Report) 21. NO. OF PAGES Unclassified 146 | | Release to Public | 20. SECURITY CLASS (This page) 22. PRICE Unclassified |