Environmental Protection Technology Series

Prediction of Subsoil Erodibility Using Chemical, Mineralogical and Physical Parameters

Office of Research and Development
U.S. Environmental Protection Agency
Washington, D.C. 20460

RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, Environmental Protection Agency, have been grouped into five series. These five broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The five series are:

- 1. Environmental Health Effects Research
- 2. Environmental Protection Technology
- 3. Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies

This report has been assigned to the ENVIRONMENTAL PROTECTION TECHNOLOGY series. This series describes research performed to develop and demonstrate instrumentation, equipment and methodology to repair or prevent environmental degradation from point and non-point sources of pollution. This work provides the new or improved technology required for the control and treatment of pollution sources to meet environmental quality standards.

This report has been reviewed by the Office of Research and Development. Approval does not signify that the contents necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

PREDICTION OF SUBSOIL ERODIBILITY USING CHEMICAL, MINERALOGICAL AND PHYSICAL PARAMETERS

bу

Charles B. Roth
Darrell W. Nelson
Mathias J. M. Romkens

Project No. 15030 HIX Program Element 1BB042

Roap/Task PEMP 03

Project Officer
Ronald D. Hill
Industrial Waste Research Laboratory
National Environmental Research Center
Cincinnati, Ohio 45268

Prepared for OFFICE OF RESEARCH AND DEVELOPMENT U. S. ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

ABSTRACT

This report presents evidence that the surface soil erodibility prediction nomograph (Wischmeier et al., 1971) which uses terms involving soil particle size, organic matter, structure and permeability, could not be improved upon by consideration of other mineralogical and chemical parameters. However, the surface soil erodibility nomograph did not adequately predict the soil erodibility factor, K, of high clay subsoils studied in the field under simulated rainfall conditions as a part of this project. A multiple linear regression equation and nomograph were developed which can be used to estimate the erodibility factor, K, of many high clay subsoils. The subsoil erodibility nomograph uses terms involving soil particle size distribution and the amount of amorphous hydrous oxides of iron, aluminum, and silicon in the soil. Multiple regression analysis revealed that amorphous iron, aluminum and silicon hydrous oxides serve as soil stabilizers in subsoils, whereas, organic matter is the major stabilizer in surface soils.

Evidence is presented to show that soil erodibility from semi-compacted fill and scalped subsoil surface conditions were essentially identical. It is reported that the scalped condition is the best standard soil surface to base the calculation of the erodibility factor for subsoils.

It is suggested that a soil-management factor should replace the cropping-management factor in the Universal Soil-Loss Equation when the Equation is used to predict subsoil erosion.

This report, number 5460 of the Agricultural Experiment Station, Purdue University, is submitted in fulfillment of Project Number 15030 HIX, Contract Number 6709, by Purdue Research Foundation under the sponsorship of the Environmental Protection Agency. Work was completed as of December 1973.

CONTENTS

		Page
Abstract .		ii
List of Fig	gures	iv
List of Tab	les	ix
Acknowledgm	nents	хí
Sections		
I	Conclusions	1
II	Recommendations	2
III	Introduction	3
IV	Field Experiments	6
v	Laboratory Characterization of Reference Soils	
	for Physical, Chemical, and Mineralogical Prop-	
	erties	54
VI	Statistical Analysis of Data Obtained in Field	
	and Laboratory Experiments	65
VII	A Nomograph for Estimating the Erodibility	
	Factor, K, of High Clay Subsoils	74
VIII	References	80
TX	Appendices	82

FIGURES

No.		Page
1	Plot view of the semi-compacted fill treatment on the McGary subsoil before rainstorm tests	18
2	Plot view of the scalped treatment on the McGary sub- soil before rainstorm tests	18
3	Plot view of the tilled treatment on the McGary subsoil before rainstorm tests	18
4	Close-up view of the semi-compacted fill treatment on McGary subsoil before rainstorm tests	19
5	Close-up view of scalped treatment on McGary subsoil before rainstorm tests	19
6	Close-up view of tilled treatment on the McGary sub- soil before rainstorm tests	19
7	Surface condition of tilled treatment on McGary subsoil after 63.5 mm (2.5 inches) of artificial rain	20
8	Close-up view of scalped treatment on Portageville subsoil after 127mm (5 inches) of artificial rain	20
9	Close-up view of tilled treatment on Portageville subsoil after 127mm (5 inches) of artificial rain	22
10	Plot view of tilled treatment on Portageville subsoil after 127mm (5 inches) of artificial rain	22
11	Plot view of scalped treatment on Portageville subsoil after 127mm (5 inches) of artificial rain	22
12	Plot view of scalped treatment on St. Clair subsoil before rainstorm tests	23
13	Plot view of tilled treatment on St. Clair subsoil before rainstorm tests	23

FIGURES (continued)

No.		Page
14	Plot view of semi-compacted fill treatment on St. Clair subsoil before rainstorm tests	23
15	Close-up view of the scalped treatment on St. Clair subsoil before rainstorm tests	24
16	Close-up view of the tilled treatment on St. Clair subsoil before rainstorm tests	24
17	Close-up view of the semi-compacted fill treatment on St. Clair subsoil before rainstorm tests	24
18	Sediment load of runoff from the compacted fill treatment on the St. Clair subsoil	26
19	Close-up view of the tilled treatment on St. Clair subsoil 17 hours after the initial 63.5 mm (2.5 inch) artificial rainstorm	27
20	Plot view of the tilled treatment on St. Clair subsoil after 63.5 mm (2.5 inches) of artificial rain	27
21	Plot view of the tilled treatment on St. Clair subsoil after 127mm (5 inches) of artificial rain	27
22	Site area of Wymore subsoil during site preparation	28
23	Plot view of the tilled treatment on Wymore subsoil before application of artificial rain	29
24	Close-up view of the tilled treatment on Wymore subsoil before application of artificial rain	29
25	Plot view of the tilled treatment on Wymore subsoil immediately after 63.5mm (2.5 inches) of artificial rain	31
26	Plot view of the tilled treatment on Wymore subsoil 24 hours after the initial 63.5mm (2.5 inch) artificial	
	rainstorm	31

FIGURES (continued)

No.		Page
27	Close-up view of the tilled treatment on Wymore subsoil 24 hours after the initial 63.5mm (2.5 inch) artificial rainstorm	31
28	Plot view of the scalped treatment on Wymore subsoil before the rainstorm tests	32
29	Close-up view of the scalped treatment on Wymore sub- soil before the rainstorm tests	32
30	Sediment load of runoff from the scalped treatment on the Wymore subsoil	33
31	Close-up view of the tilled treatment on Wymore sub- soil one week after rainulator tests	34
32	Tilled treatment area on Pawnee subsoil during site preparation	35
33	Scalped treatment area on Pawnee subsoil during site preparation	35
34	Close-up view of the tilled treatment on Pawnee sub- soil before rainstorm tests	37
35	Plot view of the tilled treatment on Pawnee subsoil before rainstorm tests	37
36	Close-up view of the tilled treatment on Pawnee subsoil after 18mm (0.71 inches) of artificial rain	37
37	Plot view of the tilled treatment on Pawnee subsoil after 63.5mm (2.5 inches) rainstorm	38
38	Plot view of the scalped treatment on Pawnee subsoil before rainstorm tests	38
39	Close-up view of the scalped treatment on Pawnee subsoil before rainstorm tests	38

FIGURES (Continued)

No.		Page
40	Plot view of the scalped treatment on Pawnee subsoil 17 hours after 63.5 mm (2.5 inches) of artificial rain	38
41	Close-up view of the tilled treatment on Pawnee sub- soil about 2 weeks after rainulator tests	39
42	Tilled treatment area on Mayberry subsoil during site preparation	40
43	Scalped treatment area on Mayberry subsoil during site preparation time	40
44	Scalped treatment area on Mayberry subsoil after 8 weeks of natural weathering	40
45	Plot view of the scalped treatment on Mayberry subsoil before rainstorm tests	41
46	Close-up view of the scalped treatment on Mayberry subsoil before rainstorm tests	41
47	Aggregate-size distribution for aggregates on Wymore and Mayberry subsoil before rainstorm tests	42
48	Sediment load of runoff from the scalped treatment on the Mayberry subsoil	44
49	Plot view of the tilled treatment on Mayberry subsoil before rainstorm tests	45
50	Close-up view of the tilled treatment on Mayberry subsoil before rainstorm tests	45
51	Plot view of the tilled treatment on Mayberry subsoil after 188mm (7.4 inches) of rain	46
52	Close-up view of the tilled treatment on Mayberry subsoil after 188mm (7.4 inches) of rain	46

FIGURES (continued)

No.		Page
53	Plot view of the scalped treatment on Mayberry subsoil after 188mm (7.4 inches) of rain	47
54	Close-up view of the scalped treatment on Mayberry subsoil after 188mm (7.4 inches) of rain	47
55	Nomograph for estimating the erodibility factor, K, of high clay subsoils	75

TABLES

No.	-	Page
1	Summary of Dates of Site Preparation and Rainulator Test	9
2	Observed Soil Loss and Infiltration on Subsoils During Successive Rainstorms	10
3	Observed Soil Loss and Infiltration on Nebraska Surface Soils During Successive Rainstorms	15
4	Observed and Predicted Soil Erodibility Factors for Tilled Subsoils	49
5	Observed and Predicted Soil Erodibility Factors for Scalped Subsoils	50
6	Observed and Predicted Soil Erodibility Factors for Surface Soils	52
7	Physical Characteristics of Soils Used in This Study	58
8	Chemical Composition of Soils Used in This Study	60
9	Clay Mineralogical Composition of Soils Used in This Study (percent of the clay fraction)	62
10	Estimates of Parameters in the Simple Linear Regression Equation of Kobs with Analyzed Soils Variables	66
11	Estimates of Partial Regression Coefficients in the Multiple Linear Regression Equation of Kobs with	60
12	Soil Variables Estimates of Partial Regression Coefficients in the Multiple Linear Regression Equation of Kobs with Surface Soil Variables	68
13	Estimates of Partial Regression Coefficients in the Weighted Multiple Linear Regression Equation of Kobs	70
	with Surface and Subsoil Variables	72

TABLES (continued)

No.		Page
14	Estimates of Partial Regression Coefficients in the Multiple Linear Regression Equation of Kobs with Sub-	
	soil Variables	73
15	Comparison of the Soil Erodibility Factor, K, Determined in Field Experiments and Those Computed from	
	the Subsoil Nomograph	78
16	Correlation Matrix of Surface Soil Variables (co- efficient of correlation - r)	106
17	Correlation Matrix of Subsoil Variables (coefficient of correlation - r)	109

TABLES

No.	, -	Page
1	Summary of Dates of Site Preparation and Rainulator Test	9
2	Observed Soil Loss and Infiltration on Subsoils During Successive Rainstorms	10
3	Observed Soil Loss and Infiltration on Nebraska Surface Soils During Successive Rainstorms	15
4	Observed and Predicted Soil Erodibility Factors for Tilled Subsoils	49
5	Observed and Predicted Soil Erodibility Factors for Scalped Subsoils	50
6	Observed and Predicted Soil Erodibility Factors for Surface Soils	52
7	Physical Characteristics of Soils Used in This Study	58
8	Chemical Composition of Soils Used in This Study	60
9	Clay Mineralogical Composition of Soils Used in This Study (percent of the clay fraction)	62
10	Estimates of Parameters in the Simple Linear Regression Equation of Kobs with Analyzed Soils Variables	66
11	Estimates of Partial Regression Coefficients in the Multiple Linear Regression Equation of Kobs with	
12	Soil Variables Estimates of Partial Regression Coefficients in the Multiple Linear Regression Equation of Kobs with	68 70
13	Surface Soil Variables Estimates of Partial Regression Coefficients in the Weighted Multiple Linear Regression Equation of Kobs	70
	with Surface and Subsoil Variables	72

I. CONCLUSIONS

The nomograph developed by Wischmeier et al. (1971) to estimate erodibility factor, K, of surface soils could not be statistically improved upon even considering the large number of chemical and mineralogical parameters investigated as a part of this study.

The nomograph developed by Wischmeier et al. (1971) to predict the soil erodibility factor, K, of surface soils does not adequately predict the erodibility factor of high clay subsoils.

The number of observations on subsoils was too small to develop a universally applicable model for predicting subsoil erodibility. However, the observations made as a part of this study did allow the development of a nomograph which can be used to predict the erodibility factor, K, of high clay subsoils with very slow permeability and blocky or massive structure containing amorphous iron and aluminum hydrous oxides.

The average soil losses and infiltration rates were similar on the scalped and semi-compacted fill treatments on subsoils.

The scalped subsoil surface was chosen as the standard soil surface condition to be used for determining soil erodibility factors on subsoils.

A soil-management factor was introduced to describe the scalped subsoil treatment. This factor should replace the cropping-management factor in the Universal Soil-Loss Equation when used to predict subsoil erosion.

II. RECOMMENDATIONS

The soil erodibility prediction nomograph developed for high clay subsoils is restricted in that it can be used only on subsoils with massive or blocky structure and very slow permeability. Since Wischmeier et al. (1971) has shown structure and permeability to be important factors in soil erodibility prediction of surface soils, it is highly probable that these factors are important in subsoils. It is recommended that more soil erodibility measurements be made on subsoils having structures other than massive or blocky and permeabilities other than very slow.

An important term in the proposed model to predict high clay subsoil erodibility is the amount of citrate-dithionite extractable iron and aluminum. The iron and aluminum removed by this reagent from the subsoils investigated in this study is thought to have existed in the subsoils as amorphous hydrous oxides. The amorphous hydrous oxides of iron and aluminum can serve as binding agents in soils, thereby, increasing aggregate stability, but the crystalline forms of iron and aluminum hydrous oxides do not affect aggregate stability. Since the citrate-dithionite reagent can extract both crystalline and amorphous hydrous oxides or iron, it is recommended that a procedure be developed which will distinguish between crystalline and amorphous forms of iron and aluminum hydrous oxides in soils.

Field observation indicated that initial moisture content of the subsoil could affect erodibility determinations. Additional work in this area is recommended.

Fulfillment of the above recommendations would allow a more universal application of a subsoil erodibility model such as developed in this study.

III. INTRODUCTION

Sediment is a major pollutant of surface water in the United States. Much of the sediment is derived from agricultural land. However, with the extensive and rapid conversion of agricultural land to other uses such as housing, road, school, business, and industry, an increasing amount of sediment currently has its source in urban areas. Sediment yield from areas in intensive suburban developments is often appreciable larger than that of cultivated land in rural areas. Thus, techniques are needed for minimizing soil losses in urban situations, where soil erosion has received little attention in the past.

Sediment yield from agricultural land has been successfully described by the Universal Soil Loss Equation, which combines the principal factors that influence surface soil erosion by water. The equation takes the form:

A = RKLSCP

where

- A is the soil loss expressed in the units selected for K and for the time period covered by factor R, short tons/acre.
- R is the rainfall factor, usually expressed in units of rainfall-erosivity index, EI, ft-short tons/acre times the maximum 30-min intensity in inches/hour time 10^{-2} .
- K is the soil-erodibility factor, commonly expressed in short tons per acre per EI unit.
- L is a slope-length factor, dimensionless ratio.
- S is the slope-steepness factor, dimensionless ratio.

- C is the cropping and management factor, dimensionless ratio.
- P is the erosion control practice factor, dimensionless ratio.

The above equation can be expressed in metric units by multiplying the English EI units by 1.735 to arrive at the storm energy in tm/ha times the maximum 30-minute intensity in cm/hr. The factor for direct conversion of K to t/ha per metric EI unit is 1.292 (Wischmeier, 1972).

The most difficult parameter to be specified in the equation is the soil erodibility factor. Although the Universal Soil Loss Equation has been used successfully by the Soil Conservation Service for predicting soil losses and conservation measures on agricultural land, little attempt has been made to adapt the equation for use with urban construction site soil loss. A primary difficulty in using the Universal Soil Loss Equation for predicting soil erosion on construction areas is the evaluation of the erodibilities of subsoils, which are commonly heavier in texture than the surface soils for which existing relations have been derived. In addition, subsoils likely have aggregating agents that are very much different than those found in surface soils and the degree of soil aggregation is known to have a profound influence on soil erosion by water.

To allow accurate prediction of soil losses from urban construction sites, an improved method of relating the soil erodibility to basic soil parameters must be developed. The first step for such an improvement was made with the development of a nomograph from which soil erodibilities of predominant light-textured soils can be determined (Wischmeier et al. 1971). Soil parameters used in predicting the soil erodibility for surface soils are silt content, sand content, organic matter content, structure and permeability of the soil profile. Since the actual cohesion between soil particles is determined by chemical and mineralogical constituents, any effort to improve the existing procedure for predicting erodibilities of surface soils and develop a technique for estimating the erodibility of subsoils will likely utilize basic chemical and physical parameters.

The objectives of this study were: (1) to test the soil erodibility model on soils having textural extremes, which are commonly found in subsoils at construction sites but were not present in the surface soils from which the model was developed; (2) to determine various chemical, physical, and mineralogical characteristics of selected surface and subsoils and to relate these parameters to the erodibility factor, K; and (3) to attempt to improve the soil erodibility factor model so that subsoils are included, or to develop a separate model for use with subsoils, by utilization of data produced during accomplishment of the first two objectives.

Objective 1 was accomplished by determining the erodibility of six subsoils from the Midwestern part of the country by use of a field rainfall simulator. Subsoils were selected with variation in texture, iron oxide, and organic matter content. The observed erodibilities of subsoils were compared with the erodibility predicted by the erodibility nomograph to judge the accuracy of the nomograph for subsoils. Objective 2 was accomplished by determining a variety of chemical, mineralogical, and physical parameters of surface and subsoils for which the erodibilities had been measured. The erodibilities of the soils were than related statistically to the other parameters measured to determine those important in influencing intrinsic soil erodibility.

Objective 3 was met by multiple regression analyses of the data collected under Objectives 1 and 2 to produce models which successfully predict erodibility of surface and subsoils as functions of their chemical, mineralogical and physical properties. From the model for subsoil erodibility a nomograph was constructed which allows estimation of the erodibility factor, K, for high clay subsoils.

After the erodibility factor, K, has been determined, the Universal Soil Loss Equation may be used to predict soil loss from subsoils for a given rainfall pattern, slope steepness, and slope length. Once the potential soil loss from a site is established, soil erosion control measures may be recommended which are effective in maintaining soil loss from the area within established tolerances.

IV. FIELD EXPERIMENTS

The soil-erodibility factor, K, in the Universal Soil Loss Equation (A = RKLSCP) is defined as the rate of soil erosion per unit of erosion-index (EI) from unit plots on that soil. An unit plot is defined as being 22.1 m (72.6 ft) long with a uniform length-wise slope of 9 percent in continuous fallow, tilled up and down the slope (Wischmeier and Smith, 1965). A further refinement of this definition is given by specifying that continuous fallow represents a condition in which land is tilled and kept free of vegetation for a period of two years or until prior crop residues have decomposed. Before conducting soil-loss measurements, the plot is plowed and placed in conventional corn seedbed each spring and is tilled as needed to prevent vegetal growth or crusting. Under these conditions, the factors L, S, C, and P in the universal soil loss equation each have a value of 1 and the soil erodibility factor, K, equals A/R, where A is the measured soil loss, while R represents the erosion-index or the rainfall factor (Wischmeier and Smith, 1965).

From the definition of the soil erodibility factor it may be inferred that determinations of K are most readily performed on surface soils. More recently, a soil erodibility nomograph was developed by Wischmeier et al. (1971) which permits predictions of the soil erodibility factor from routine laboratory determinations on soil and standard soil profile descriptions. The accuracy and validity of the nomograph was confirmed for 13 benchmark surface soils by comparing the predicted K values with those measured in long term, natural-rain plot studies. Actually, the nomograph's derivation was based on soil-loss measurements of mostly medium textured surface soils, causing some uncertainty as to its

accuracy for high clay subsoils. To establish a greater accuracy in predictions of subsoil erodibility, soil losses were measured on selected sites of high clay subsoils using established simulated rainfall procedures. Two surface conditions, commonly found at subsoil sites, were evaluated. The erodibility factor of the subsoils for each of these treatments was computed by standard procedures. The accuracy of the nomograph was then checked for these soils by comparing measured and predicted values. Then, a selection was made as to which soil treatment should represent the standard surface conditions for soil erodibility determinations on subsoils.

PROCEDURE

The subsoils selected were located in a wide geographical area in the middle West. The selections, primarily based on the clay content, were:

McGary silty clay near Bloomington, Monroe Co., Indiana
Portageville clay near Portageville, New Madrid Co., Missouri
St. Clair silty clay near Woodburn, Allen Co., Indiana
Wymore silty clay near Burr, Otoe Co., Nebraska
Pawnee clay loam near Burr, Otoe Co., Nebraska
Mayberry clay loam near Burr, Otoe Co., Nebraska

The soil profile descriptions of the above soils are given in Appendix A. The erodibility factors, K, were measured and calculated for the surface soils on the Nebraska sites. These K values will be used in the statistical analysis phase of this project.

The general site areas were selected in cooperation with University (Purdue University and the University of Missouri) and Soil Conservation Service personnel using high clay content of the subsoil as the principal criterion. The clay contents of these subsoils, as determined by procedures outlined in Chapter V, are: McGary 39.8%, Portageville 66.5%, St. Clair 38.7%, Wymore 38.5%, Pawnee 35.4%, and Mayberry 33.9%. The specific locations were largely determined by practical considerations such as accessibility, proximity to a water source, cooperation of landowners and tenants, and natural topography.

Site preparation was in accordance with the procedures outlined in the Project Plan of the Research Proposal. The overburden soil was removed with a bulldozer, and the site area was sloped to 9 percent steepness. Three treatments were conducted on the McGary, Portageville, and St. Clair sites: scalped, tilled and semi-compacted fill. A third of the area that was sloped to 9 percent steepness with a bulldozer was used without farther manipulations for the scalped treatment. The tilled treatment consisted of plowing and disking to approximately 127mm (5 inches) another area similar to that used for the scalped treatment. The tilled treatment on the McGary, Portageville, and St. Clair subsoils received two thorough diskings (2-3 passes each time), one immediately following plowing, the other just before rain tests. Nebraska sites received three thorough diskings, the third one performed about two weeks after site preparation. The semi-compacted fill treatment consisted of excavating the soil from another area of the sloped site to a depth of approximately 300 mm (12 inches), returning the removed soil back to the plot area and compacting the soil with the bulldozer tread. Only the scalped and tilled treatments were tested on the Nebraska sites. The deletion of the semi-compacted fill treatment from the Nebraska sites, which were prepared under the supplemental part of the project, was suggested by the similarity in results of soil loss and runoff observed earlier on the McGary and Portageville sites. Site preparation and rainfall test dates are summarized in Table 1. Artificial rainstorms of about 63.5 mm (2.5 in) per hour were applied to replicated treatments on 1.8 by 10.7 m (6 by 35 ft) plots, using the rainfall simulator (rainulator) described by Meyer and McCune (1958). Each rainulator test series consisted of an initial run of 60 minutes followed 24 hours later by two 30-minute runs on the wet soil. On the Nebraska sites, the two 30-minute runs were combined in a single 60-minute storm. However, the data were divided into two 30-minute storms by using basic information such as sediment load and runoff data from this storm and an analytical procedure for generating hydrographs described by Foster et al. (1968). Runoff from each plot was collected by gutters which extended across the lower plot end and emptied into

Table 1. SUMMARY OF DATES OF SITE PREPARATION AND RAINULATOR TEST

Soil ^a	Site Preparation	Rainulator Tests		
McGary	16 August 1971	16-17 September 1971		
Portageville	1 September 1971	15-16 October 1971		
St. Clair	10 June 1972	5-6 September 1972		
Wymore S	28 June 1972	14-15 August 1972		
Pawnee S	28 June 1972	16-17 August 1972		
Mayberry S	28 June 1972	24-25 August 1972		
Wymore T	28 June 1972	22-23 August 1972		
Pawnee T	28 June 1972	14-15 August 1972		
Mayberry T	28 June 1972	25-26 August 1972		

a S = subsoil, T = topsoil

the approach of a 18.3 cm (0.6 ft), calibrated, HS-flume. The flume has a stilling well and stage recorder to measure the rate and amount of runoff (Meyer, 1960). Approximately one percent of the runoff was collected by a sampling slot located on an electrically powered rotating wheel placed in the runoff stream between the gutter and flume. When large soil particles (aggregates) were transported, 100 percent runoff samples were collected to insure that none of the large aggregates were missed because of non-passage through the sampling slot. Runoff samples were taken at 3-5 minute intervals during the runoff period. Soil loss and runoff were computed by integrating the measured hydrograph and acquired sediment content values of collected runoff samples. Computations were performed on the Purdue University CDC 6500 computer.

RESULTS

The observed soil losses and infiltration rates for the subsoils tested are summarized in Table 2. Due to larger infiltration rates and/or

Table 2. OBSERVED SOIL LOSS AND INFILTRATION OF SUBSOILS DURING SUCCESSIVE RAINSTORMS

		Stor		oil loss,			Infil-	Adjusted soil
				nort tons	/acre) S	lope,		loss, t/ha
Soil		min		Plot 2		7	mm(in)	
McGary	Scalped	60	24.91 ^b	38.11	38.11	9.0	17.02	54,88
_	-		(11.11) ^t	(17.00)	(17.00)	١	(0.67)	(24.48)
		30	12.35	13.61	12.98		4.32	18.70
			(5.51)	(6.07)	(5.79)	•	(0.17)	(8.34)
	٠,	30	13.72	16.03	14.88		1.78	21.43
	•		(6.12)	(7.15)	(6.64))	(0.07)	(9.56)
	Semi-	60	33.33	30.04	31.69	9.0	22.10	45.64
•	compacted		(14.87)	(13.40)	(14.14))	(0.87)	(20.36)
	f111	30	12.71	16.10	14.41		4.57	20.74
			(5.67)	(7.18)	(6.43)	1	(0.18)	(9.25)
		30	17.60	15.87	16.74		2.03	24.10
			(7.85)	(7.08)	(7.47)	1	(0.08)	(10.75)
	Tilled	60	15.11	14.39	14.75	9.0	27.43	21.25
	d		(6.74)		(6.58)	•	(1.08)	(9.48)
		30	11.25	9.68	10.47		4.06	15.09
			(5.02)	(4.32)	(4.67)	1	(0.16)	(6.73)
		30	11.66	10.54	11.10		2.29	15.98
			(5.20)	(4.70)	(4.95)	•	(0.09)	(7.13)
Port-	Scalped	60	3.38	4.64	4.01	9.0	16.26	5.78
agevil	lle		(1.51)	(2.07)	(1.79))	(0.64)	(2.58)
_		30	1.37	4.17	2.77		5.08	3.99
			(0.61)	(1.86)	(1.24))	(0.20)	(1.78)
		30	1.21	3.18	2.20		2.54	3.16
			(0.54)	(1.42)	(0.98))	(0.10)	(1.41)
	Semi-	60	3.27	6.10	4.69	9.0	13.21	6.75
•	compacted	ļ	(1.46)	(2.72)	(2.09))	(0.52)	(3.01)
	fill	30	2.13	2.51	2.32		4.32	3.34
		,	(0.95)	(1.12)	(1.03))	(0.17)	(1.49)
		30	1.84	3.47	2.66		1.52	3.83
			(0.82)	(1.55)	(1.19))	(0.06)	(1.71)
	Tilled	60	0.47	0.96	0.72	9.0	32.26	1.03
			(0.21)	(0.43)	(0.32))	(1.27)	(0.46)
		30	0.90	0.13	0.52		16.26	0.74
			(0.40)	(0.06))	(0.64)	(0.33)
		30	0.61	0.16	0.38		8.13	0.54
			(0.27)	(0.07)	(0.17))	(0.32)	(0.24)

Table 2 (continued). OBSERVED SOIL LOSS AND INFILTRATION OF SUBSOILS DURING SUCCESSIVE RAINSTORMS

Soil	Treat-	Storm dura- tion min	- Se t/ha(sl	oil loss, hort) tone Plot 2		Slope,	Infil- tration mm(in)	Adjusted soil ^a loss, t/ha (short tons/a)
St.	Scalped	60	52.37	44.58	48.48	9.0	8.89	69.83
Clai	r		(23.36)	(19.89)	(21.63))	(0.35)	(31.15)
		30	23.47	19.77	21.63		1.78	31.14
			(10.47)		(9.65))	(0.07)	(13.89)
		30	20.98	16.43	18.61		0.76	26.95
			(9.36)	(7.33)	(8.30))	(0.03)	(12.02)
	Semi-	60	46.25	42.03	44.14	9.0	10.16	63.57
+	compacted	l		(18.75))	(0.40)	(28.36)
	fill	30	16.79	16.41	16.60		3.56	23.90
			(7.49))	(0.14)	(10.66)
		30	12.71	14.32	13.52		1.78	19.45
			(5.67)		(6.03)		(0.07)	(8.68)
	Tilled	60	31.52	31.56	31.54	9.0	21.84	45.42
				(14.08))	(0.86)	(20.26)
		30	14.68	9.66	12.17		6.35	17.53
			(6.55)	(4.31)	(5.43))	(0.25)	(7.82)
		30	14.57	10.81	12.69		3.81	18.27
			(6.50)	(4.82)	(5.66))	(0.15)	(8.15)
Wymor	e Scalped	60	45.95	49.21	47.58	8.7	20.57	71.60
				(21.95)	(21.23))	(0.81)	(31.94)
		30	22.28	20.80	21.54		7.37	32.30
			(9.94)	(9.28)	(9.61))	(0.29)	(14.41)
		30	16.88	13.98	15.43		4.83	23.09
			(7.53)	(6.24)	(6.89))	(0.19)	(10.30)
	Tilled	60	0.00	0.00	0.00	9.1	63.50	0.00
			(0.00)	(0.00)	(0.00))	(2.50)	(0.00)
		30	4.75	3.38	4.07		25.40	5.85
			(2.12)	(1.51)	(1.82))	(1.00)	(2.61)
		30	7.20	7.15	7.17		20.32	10.24
			(3.21)	(3.19)	(3.20))	(0.80)	(4.57)

Table 2 (continued). OBSERVED SOIL LOSS AND INFILTRATION OF SUBSOILS DURING SUCCESSIVE RAINSTORMS

Soil	Treat	Storm dura- tion min	t/ha(sl	oil loss, nort tons, Plot 2	/acre)	Slope,		Adjusted soil ^a loss, t/ha (short tons/a)
Pawnee	Scalped	60		38.24			19.56	63.26
				(17.06)			(0.77)	(28.22)
		30	23.38		20.08		5.59	29.68
				(7.48)			(0.22)	(13.24)
		30		17.17	22.09	ř	2.54	32.66
				(7.66)			(0.10)	(14.57)
	Tilled	60	11.21		19.59	8.9	43.69	28.83
				(12.48)			(1.72)	(12.86)
		30		15.40	15.71		7.11	23.20
				(6.87)			(0.28)	(10.35)
		30	15.56	18.88	17.22		5.33	25.40
			(6.94)	(8.42)	(7.68)		(0.21)	(11.33)
May- berry	Šcalped	60	70.68		68.42		10.67	98.70
	٠.		(31.53)	(29.51)	(30.52)		(0.42)	(44.03)
		30	30.82		30.82		1.27	43.00
			(13.75)	C	(13.75)		(0.05)	(19.18)
		30	23.45		23.45		0.00	32.71
			(10.46)	С	(10.46)		(0.00)	(14.59)
	Tilled	60	4.77	2.31	3.54	9.1	44.96	5.10
			(2.13)	(1.03)	(1.58)		(1.77)	(2.24)
		30 [^]	2.35		2.35		15.24	3.45
			(1.05)	c	(1.05)		(0.60)	(1.54)
		30	3.52		3,52		10.16	5.16
			(1.57)	С	(1.57)		(0.40)	(2.30)

^a Soil loss values were adjusted for slope steepness and slope length to unit plots (Wischmeier and Smith, 1965).

This value was deleted in subsequent computations due to reduced soil loss resulting from a severe concavity at the plot end. At the end of the 60-minute storm, sedimentation had eliminated the irregularity in slope.

These values could not be determined because a natural rainstorm, which occurred after the 60-minute storm, destroyed the plot.

storage capacities and reduced runoff velocities, soil losses from the tilled treatment were consistently smaller than those from the scalped treatment. The combined soil losses from the two 30-minute storms on the scalped plots were, for all but the Portageville subsoil, less than the soil losses from the 60-minute initial storm. This tendency may be explained by the mass removal of loose soil material as was evident by the larger soil content in runoff samples collected during the first storm in comparison to those collected during the 30-minute storms. On the other hand, the tilled treatment for all soils showed larger soil losses for the combined 30-minute storms than for the 60-minute storm. These latter findings reflect decreased infiltration rates and void storage as well as increased runoff velocities following slaking of clods during the course of the experiment.

Average soil losses and infiltration rates of the semi-compacted fill treatment of the McGary, Portageville, and St. Clair subsoils were generally similar to those for the scalped treatment during corresponding storms. Infiltration rates during corresponding storms tended to be slightly larger on the filled treatment than on the scalped treatment for the McGary and St. Clair soils; the reverse trend was observed for the Portageville soil. However, the observed differences between these two treatments are relatively small and are presumably within experimental error of determinations. Because of the similarity in data between the filled and scalped treatments, the semi-compacted fill treatment was deleted from further consideration on the Nebraska sites.

Appreciable differences in soil loss within a treatment were obtained between subsoils. The largest soil erosion rate was obtained on the scalped treatment of the Mayberry subsoil during the 60-minute storm, 98.7 t/ha (44.0 short tons/acre); this was followed by the Wymore, 71.6 t/ha (31.9 short tons/acre) and St. Clair, 69.8 t/ha (31.2 short tons/acre). Next in this sequence were Pawnee, 63.3 t/ha (28.2 short tons/acre), McGary, 54.9 t/ha (24.5 short tons/acre) and, a significant last, Portageville, 5.8 t/ha (2.6 short tons/acre). This same sequence

also resulted if soil losses of the two 30-minute storms were added, except that the positions of Pawnee and Wymore were interchanged. The Pawnee subsoil showed a nearly constant soil erosion rate during successive rainstorms. A similar tendency was observed on the Portageville subsoil, whereas all other subsoils tested showed an appreciable decrease in soil erosion rates when progressing from storm 1 to storm 3. Some of the reasons for these differences will be discussed later.

The tilled treatment showed the opposite trend for soil erosion rates from that of the scalped treatment. On all subsoils except St. Clair, soil erosion rates during the two 30-minute storms were larger than those of the 60-minute storm. Soil loss from the second 30-minute storm was generally larger than that from the first 30-minute storm. No satisfactory explanation can be given for the deviant response of the St. Clair subsoil, except that a rapid breakdown of clods upon wetting, followed by sealing and a subsequent mass removal of small and readily transportable soil particles, led to initial high soil losses. The observed increase in soil erosion rates from the tilled treatment with successive storms can be attributed to a reduction in surface roughness and infiltration rates, leading to larger runoff velocities and ipso facto larger detachment and transport rates.

A summary of the observed soil losses and infiltration rates for the Nebraska surface soils is given in Table 3.

FIELD OBSERVATIONS ON INDIVIDUAL SUBSOILS

McGary subsoil

The McGary subsoil, a lake bed deposit, is a very heterogeneous soil. Appreciable variation (nearly linear) in clay content was evident from the upper to the lower end of the plots. Also, textural, chemical, and mineralogical variation could be visually discerned at any given location on the plots. The impact of these variations on soil loss is difficult to assess, but is thought to have increased soil erosion rates because of reduced structural homogeneity. A view of the plots

Table 3. OBSERVED SOIL LOSS AND INFILTRATION OF NEBRASKA SURFACE SOILS DURING SUCCESSIVE RAINSTORMS

Soil	Treat- ment	tion	. So t/ha(si	nort tons	/acre) S	lope,	tration	Adjusted soil loss, t/ha (short tons/a
Wymore	Tilled	60	11.03	10.98	11.01	5.6	38.35	30.31
			(4.92)	(4.90)	(4.91)		(1.51)	(13.52)
		30	7.40	7.89	7.64		7.37	21.05
			(3.30)	(3.52)	(3.41)		(0.29)	(9.39)
		30	8.02	7.29	7.66		5.84	21.07
			(3.58)	(3.25)	(3.42)		(0.23)	(9.40)
Pawnee	Tilled	60	18.09	17.01	17.55	7.3	42.42	33.74
			(8.07)	(7.59)	(7.83)		(1.67)	(15.05)
		30	10.56	11.66	11.11		12.45	21.32
			(4.71)	(5.20)	(4.96)		(0.49)	(9.51)
		30	9.46	11.46	10.46		11.94	20.06
			(4.22)	(5.11)	(4.67)		(0.47)	(8.95)
May- berry	Tilled	60	18.34	17.04	17.69	8.5	29.21	27.66
			(8.18)	(7.60)	(7.89)		(1.15)	(12.34)
								17.40
								(7.76)
		30					5.08	
				(4.55)				(8.23)

Soil loss was adjusted for slope steepness and slope length to unit plots (Wischmeier and Smith, 1965).

of semi-compacted fill, scalped and tilled treatments is shown in Figures 1, 2 and 3, respectively, with close-ups of the soil surface for these treatments in Figure 4, 5, and 6.

Plot preparation on this site differed from those of other sites in that polyethylene sheets were used to cover the plot area between site preparation and tests. This may have affected the weathering process in two respects. Wetting by natural rainfall in the intervening period was prevented, thereby retarding the attainment of an adequately weathered surface condition on the filled and scalped treatment. Secondly, loose soil on the scalped plots was not removed by runoff

from natural rainstorms before the commencement of rainulator tests. Hence, a larger than average amount of sediment may have resulted from the removal of loose soil material during the 60-minute storm. On the other hand, this effect was compensated, at least in part, by the absence of loose soil material produced during natural weathering processes.

To obtain uniform slopes on the scalped plots, a final reshaping of the surface with a 1-m wide improvised blade appeared necessary one day before the scheduled rainulator test. One plot, however, retained a severe concavity. Therefore, soil-loss values during the 60-minute storm from this plot were excluded from analysis.

The tilled treatment represented a condition with appreciable void storage. However, the surface clods broke down rapidly thereby filling up voids (Figure 7).

Rills on this subsoil did not appear to be an important source of soil in the first 127 mm (5 in) of artificial rain under the soil surface conditions prevailing at this site. Only the upper plot end of the tilled treatment showed the presence of some minor rills.

Portageville clay

The study on Portageville clay differed in several respects from all other experiments:

- 1. The study was conducted in the fall.
- 2. Clods in the tilled treatment had a high moisture content at the time of the rainulator tests.
- 3. This subsoil had the highest clay percentage (66.5%) of all subsoils studied.
- 4. This subsoil had an unusually high organic carbon content, which is known to be an important parameter in the soil erodibility factor.

It is not clear which of these factors might have contributed the most to the relatively low rates of soil erosion. The weathering period led to very similar soil conditions between the semi-compacted fill and scalped treatment. The plots had distinct rills, which occurred mostly in residual bulldozer tracks. The soil surface consisted of an agglomeration of aggregates, 56% of which were in the 4-7 mm (0.16-0.28 in) size fraction while most of the remaining aggregates were larger than 7 mm (0.28 in). The aggregates appeared to be quite stable due to a high moisture level. However, upon air drying and submersion in water under laboratory conditions the aggregates disintegrated in a matter of seconds. This suggests that soil erosion rates from these treatments might have been more severe if prolonged weathering, especially drying, had taken place before the rainulator tests. This drying would have to have been longer than 3 weeks since the last natural rain in the vicinity of this site occurred 3 weeks before the rainulator test.

Plot observations during and after rainstorms suggested that most soil in runoff originated from rills where sufficient concentration of flow enabled transport of large aggregates. The importance of this effect in soil erosion can be seen in Figure 8, where the rill portion in the photograph shows mostly coarse aggregates embedded or still attached to the soil mass, while the interrill region exhibits a much more uniform texture consisting of finer aggregates. Also, a 3- to 4-fold increase in measured soil content upon full sampling of runoff over that obtained by sampling 1% of runoff with the rotating wheel with sampling slot (Meyer, 1960) indicated the importance of soil erosion by aggregate detachment and transport.

The surface roughness of the interrill region on the scalped (Figure 8) and semi-compacted fill treatment indicated a large degree of stability of individual aggregates. Also, it appeared that aggregates resisted detachment and transport into existing rills by splash, which is considered to be an important mode of soil erosion from upland areas.

The tilled treatment yielded large clods, which were still very wet at the time of the rainulator tests. The stability of these clods after 127 mm (5 in) of artificial rain at 63.5 mm (2.5 in) per hour was not

Figure 1. Plot view of the semicompacted fill treatment on the McGary subsoil before rainstorm tests.

Figure 3. Plot view of the tilled treatment on the McGary subsoil before rainstorm tests.

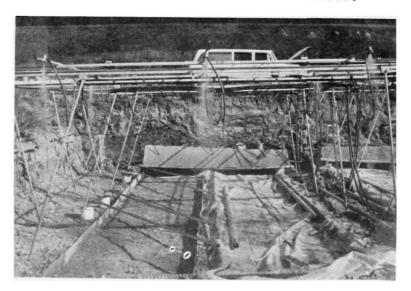


Figure 2. Plot view of the scalped treatment on the McGary subsoil before rainstorm tests.

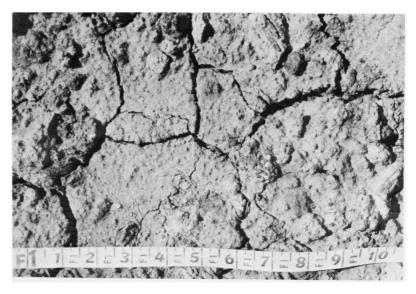


Figure 4. Close-up view of the semi-compacted fill treatment on McGary subsoil before rainstorm tests.

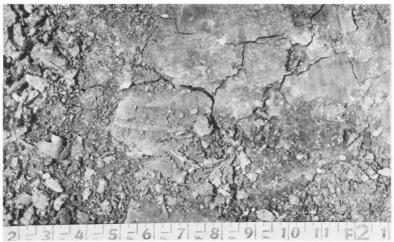


Figure 5. Close-up view of scalped treatment on McGary subsoil before rainstorm tests.

Figure 6. Close-up view of tilled treatment on the McGary subsoil before rainstorm tests.

Figure 7. Surface condition of tilled treatment on McGary subsoil after 63.5 mm (2.5 inches) of artificial rain.

Figure 8. Close-up view of scalped treatment on Portageville subsoil after 127 mm (5 inches) of artificial rain.

appreciably affected (Figure 9) by impacting raindrops. Consequently, the large voids between clods stored sizable quantities of water, thereby reducing runoff. Also, the tortuous pathway of flow to the lower plot end reduced runoff velocities and, thus, soil detachment by shear flow. Although some disintegration of clods was visible after the rain tests (Figure 9) soil particles detached from clods were deposited in the void spaces between clods.

Figures 10 and 11 show the plot condition of the tilled and scalped treatment, respectively, after 127 mm (5 in) of artificial rain.

St. Clair silty clay

Like the McGary subsoil, the St. Clair subsoil was a lake bed deposit of non-uniform composition. The non-uniformity in this subsoil resulted mainly from a cut into a 16% natural slope. As a consequence, the lower 3.0 m (10 ft) of the plot area consisted of soil material from the B-horizon. However, within a single horizon the subsoil appeared to be quite uniform in contasts to the McGary subsoil. A second difference was the presence of finer cracks in the St. Clair subsoil than in the McGary (Figures 15 and 17). These cracks may explain the lower infiltration rate during the 60-minute test on the St. Clair subsoil for both the scalped and semi-compacted fill treatments.

Figures 12, 13, and 14 show the surface condition of the scalped, tilled, and semi-compacted fill treatments, respectively, with close-ups of each treatment in Figures 15, 16, and 17. In contrast to the subsoil on the McGary site, the St. Clair subsoil was exposed to natural weathering for at least 10 weeks. In fact, this site was exposed longer to weathering than any other site in this project. Rills were in strong evidence at the time of rainulator tests on both the scalped and filled treatment. Rilling became more severe during the course of the experiments. The effect of weathering is apparent in Figure 18 showing a relatively high soil content in runoff samples during the initial portion of the 60-minute storm.

Figure 9. Close-up view of tilled treatment on Portageville subsoil after 127 mm (5 inches) of artificial rain.

Figure 10. Plot view of tilled treatment on Portageville subsoil after 127mm (5.0 inches) of artificial rain.

Figure 11. Plot view of scalped treatment on Portageville subsoil after 127mm (5.0 inches of artificial rain.

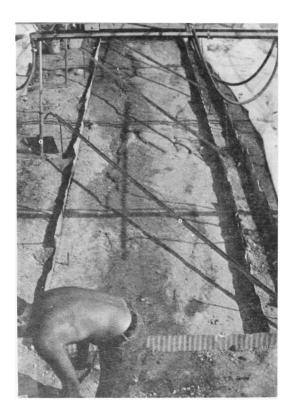


Figure 12. Plot view of scalped treatment on St. Clair subsoil before rainstorm tests.

Figure 13. Plot view of tilled Figure 14. Plot view of semitreatment on St. Clair subsoil before rainstorm tests.

compacted fill treatment on St. Clair subsoil before rainstorm tests.

Figure 15. Close-up view of the scalped treatment on St. Clair subsoil before rainstorm tests.

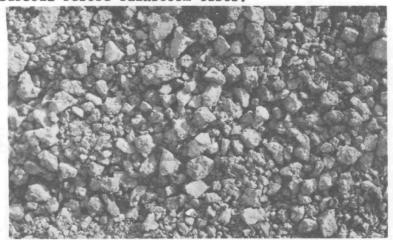


Figure 16. Close-up view of the tilled treatment on St. Clair subsoil before rainstorm tests.

Figure 17. Close-up view of the semi-compacted fill treatment on St. Clair subsoil before rainstorm tests.

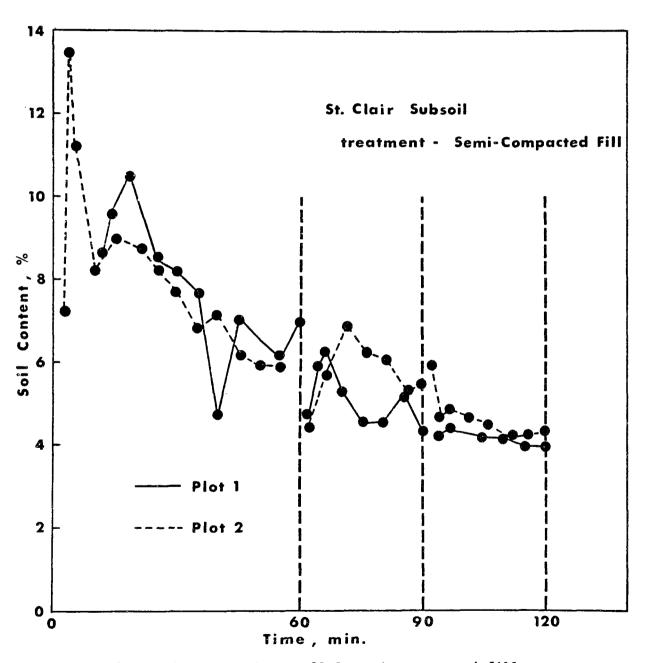


Figure 18. Soil content in runoff from the compacted fill treatment on the St. Clair subsoil.

The tilled treatment was disked immediately before the application of artificial rains. During the 60-minute storm, clods in this treatment slaked relatively fast thereby filling up voids (Figure 19). At 20-minutes into this storm, runoff from this treatment had reached appreciable levels. Rills were very apparent at the end of the 60-minute storm (Figure 20) and were mostly concentrated in the lower 3.0 m (10 ft) section of the plot area representing the B-horizon. Rills did not extend beyond 4.6 m (15 ft) from the plot end even after 63.5 mm (2.5 in) of additional rain (Figure 21). It should be noted that the tilled treatment on the St. Clair soil produced high soil losses during the first 60-minutes of rain.

Wymore silty clay

Site preparation on the Wymore subsoil is shown in Figure 22. Wymore subsoil was an extremely friable material which, after plowing followed by two diskings (Figure 22) and two weeks of natural weathering, readily broke into small aggregates during successive diskings. Figures 23 and 24 show the surface condition of the tilled treatment plot area after a final disking immediately before the application of artificial rain. The tilled treatment on this subsoil most nearly resembled the plot condition of surface soil studied for erodibility factor determinations. The tilled treatment produced a condition that was able to absorb-almost all rain applied during the first rainstorm. Slaking of soil clods and aggregates was almost non-existent, though 60-minutes of rain did produce some soil consolidation. The soil surface retained a large degree of roughness due to stable aggregates adhering to the soil surface. The low runoff rate and "spongy" nature of this soil in the tilled treatment can be seen in Figure 25, taken at the end of the 60-minute storm. The stability of individual aggregates prevented effective sealing of the soil surface. Consequently, the tilled soil retained a high water absorptive capacity. Infiltration during the combined 30-minute storms was large on the tilled treatment plots and far exceeded infiltration observed on the scalped treatment plots during corresponding storms (Table 2). The surface

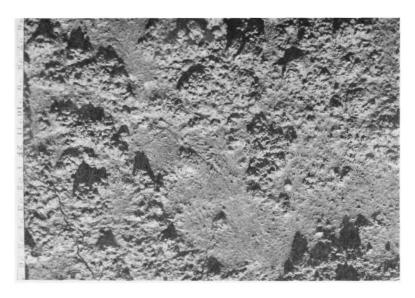


Figure 19. Close-up view of the tilled treatment on St. Clair subsoil 17 hours after the initial 63.5 mm (2.5 inch) artificial rainstorm.

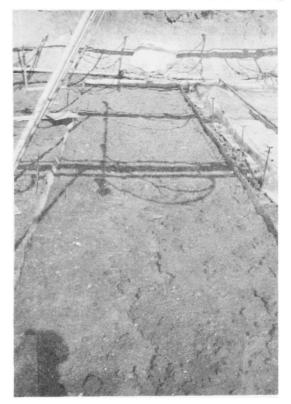


Figure 20. Plot view of the tilled treatment on St. Clair subsoil after 63.5 mm (2.5 inches) of artificial rain.

Figure 21. Plot view of the tilled treatment on St. Clair subsoil after 127mm (5 inches) of artificial rain.

Figure 22. Site area of Wymore subsoil during site preparation.

Figure 23. Plot view of the tilled treatment on Wymore subsoil before application of artificial rain.



Figure 24. Close-up view of the tilled treatment on Wymore subsoil before application of artificial rain.

condition of the tilled soil after 24 hours of drying (Figures 26 and 27), however, was very similar to that of the scalped-treatment soils before rain tests (Figures 28 and 29). Apparently, the loose, yet stable, intergranular matrix produced by the tilled treatment provided ample storage for infiltrating water, while the weathered surface represented an agglomorate of aggregates which was similar to that produced by the scalped treatment. The reason for the stability of individual aggregates is not clear but is probably related to the chemical composition of the soil.

The scalped-treatment soil showed a hexagonal crack pattern with about 50 mm (2 in) diameter hexagons overlaid with numerous aggregates. These aggregates, of which 2/3 were in the 0.5-5 mm (0.02-0.20 in) size fraction, were readily detachable. Consequently, mass removal of aggregates in rills, fed by interrill sources through sheet flow and splash, led to initially large soil content in the runoff. As the application of rain continued, a gradual decrease in the soil content of runoff was observed (Figure 30). Rain applied during the first 12 to 15 minutes of the first storm was largely absorbed in soil cracks which subsequently were closed by the swelling soil.

Observations at this site suggest that following a rainstorm and subsequent drying, the original condition of a weathered surface is quickly re-established. Figure 31 shows the surface condition of this subsoil one week after the completion of rainulator tests.

Pawnee clay loam

The preparational phase of the Pawnee site is shown in Figures 32 and 33 for the tilled and scalped treatments, respectively. The Pawnee subsoil was extremely difficult to till especially in a dry state. Plowing followed by three thorough diskings, each disking consisting of two to three passes, did not appreciably reduce clod sizes. The final clod size achieved before application of artificial rain varied from about 25 to 76 mm (1 to 3 in) (Figure 34). Figure 35 shows the tilled plot before the application of rain. A rain of less than 30-minutes was

Figure 25. Plot view of the tilled treatment on Wymore subsoil immediately after 63.5 mm (2.5 inches) of artificial rain.

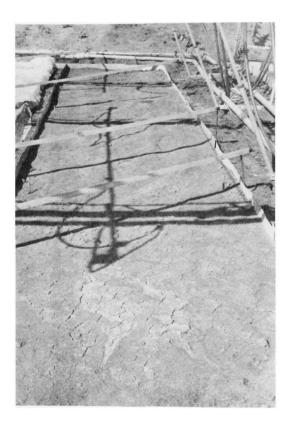


Figure 26. Plot view of the tilled treatment on Wymore subsoil 24 hours after the initial 63.5 mm (2.5 inches) of artificial rainstorm.

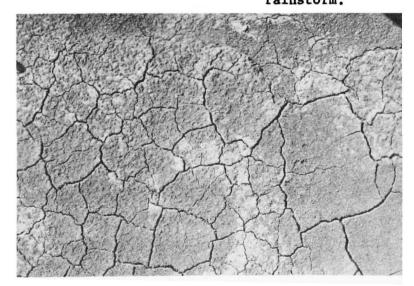


Figure 27. Close-up view of the tilled treatment on Wymore subsoil 24 hours after the initial 63.5 mm (2.5 inch) artificial rainstorm.

Figure 28. Plot view of the scalped treatment on Wymore subsoil before the rainstorm tests.

Figure 29. Close-up view of the scalped treatment on Wymore subsoil before the rainstorm tests.

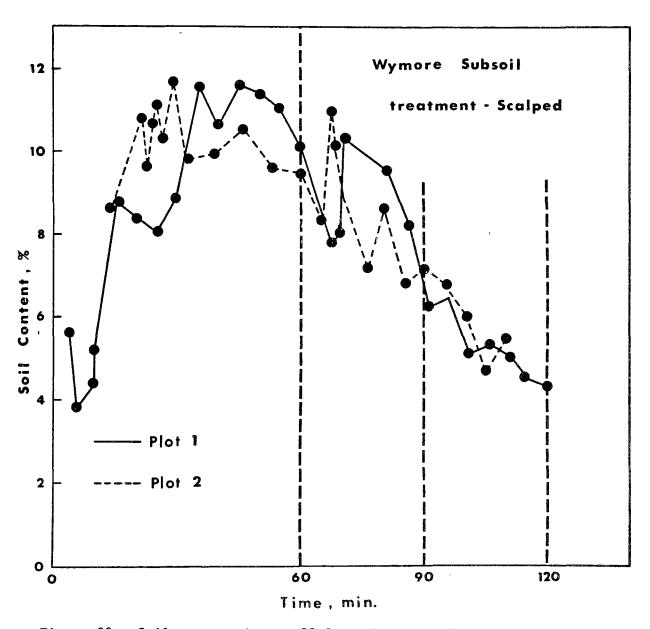


Figure 30. Soil content in runoff from the scalped treatment on the Wymore subsoil.

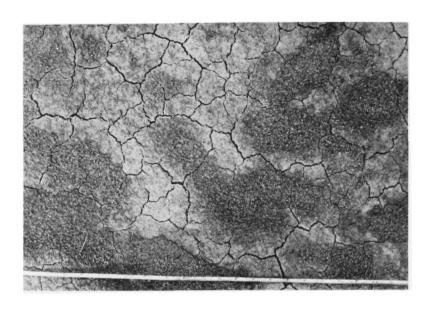


Figure 31. Close-up view of the tilled treatment on Wymore subsoil one week after rainulator tests.

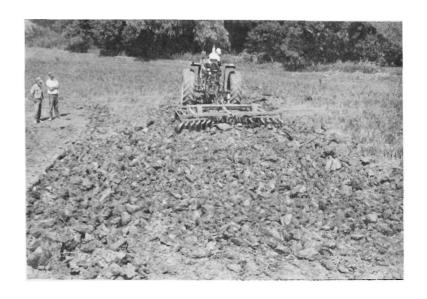


Figure 32. Tilled treatment area on Pawnee subsoil during site preparation.

Figure 33. Scalped treatment area on Pawnee subsoil during site preparation.

Figure 34. Close-up view of the tilled treatment on Pawnee subsoil before rainstorm tests.

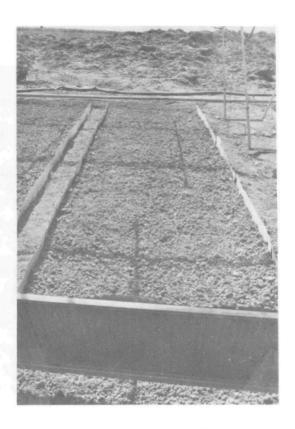


Figure 35. Plot view of the tilled treatment on Pawnee subsoil before rainstorm tests.

Figure 36. Close-up view of the tilled treatment on Pawnee subsoil after 18 mm (0.71 inches) of artificial rain.

needed to produce an effective surface seal caused by slaking of the clods. Figure 36 shows the surface condition of the tilled plot after 17 minutes of rain, while Figure 37 gives an overview of this plot following the 60-minute storm. Some rill development was evident at the end of the 60-minute storm.

The scalped treatment morphology prior to the rain tests is shown in Figures 38 and 39. Selective soil erosion on this subsoil is in strong evidence as demonstrated by the deposition of white colored silt and fine sand in the rills or depressions of the plot. The readily dispersable nature of this soil is not fully understood, but may be related, at least in part, to the relatively low levels of amorphous hydrous oxides of iron and aluminum. The uniformity in soil erosion rates for the 60-minute and 30-minute rainstorms on this treatment is probably related to the dispersable nature of this soil, although sediment content of runoff samples declined somewhat during the 30-minute storms. About 127 mm (5 in) of artificial rain and 61 mm (2.4 in) of natural rainfall eliminated any visible difference in surface condition between the scalped and tilled treatment. A plot view of the scalped treatment 24 hours after the 60-minute rainstorm is shown in Figure 40, while a close up view of the soil surface 2 weeks after all rainstorms is shown in Figure 41.

Mayberry clay loam

The preparational phase on the Mayberry site is shown in Figures 42 and 43 for the tilled and scalped treatments, respectively. The two-month period between site preparation and rainulator tests yielded a highly weathered subsoil with numerous aggregates loosely bound to the soil surface (Figure 44). Figure 45 shows the surface condition of the scalped treatment before rainulator tests, while a close-up view is shown in Figure 46. The largest frequency of aggregates was in the 1 to 2 mm (0.04 to 0.08 in) size fraction (Figure 47). The maximum frequency in aggregate size on this soil was appreciably smaller than that for the Wymore subsoil. A possible explanation for the increase

Figure 37. Plot view of the tilled treatment on Pawnee subsoil after 63.5 mm (2.5 inch) rainstorm.

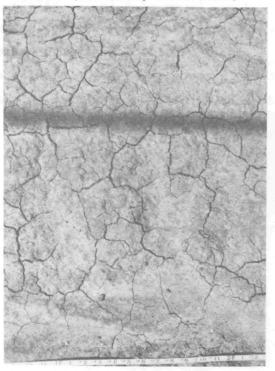


Figure 39. Close-up view of the scalped treatment on Pawnee subsoil before rainstorm tests.

Figure 38. Plot view of the scalped treatment on Pawnee subsoil before rainstorm tests.

Figure 40. Plot view of the scalped treatment on Pawnee subsoil 17 hours after 63.5mm (2.5 inches) of artificial rain.

Figure 41. Close-up view of the tilled treatment on Pawnee subsoil about 2 weeks after rainulator tests.

Figure 42. Tilled treatment area on Mayberry subsoil during site preparation.

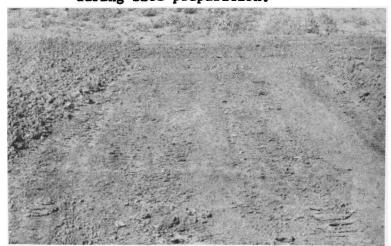


Figure 43. Scalped treatment area on Mayberry subsoil during site preparation time.



Figure 44. Scalped treatment area on Mayberry subsoil after 8 weeks of natural weathering.

Figure 45. Plot view of the scalped Figure 46. Close-up view of the treatment on Mayberry subsoil before rainstorm tests.

scalped treatment on Mayberry subsoil before rainstorm tests.

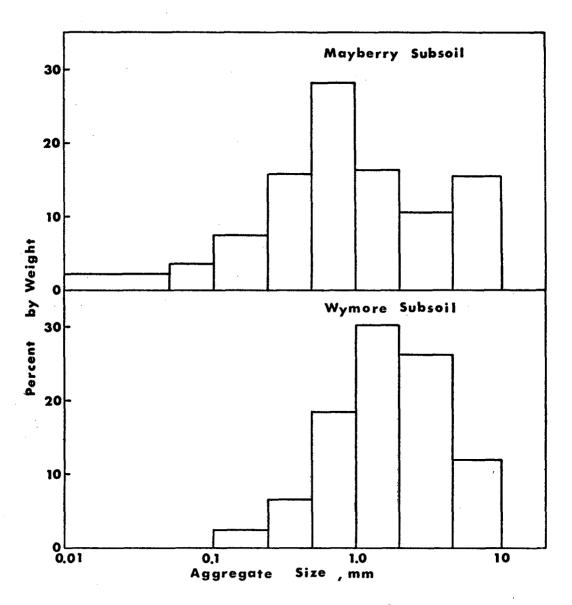


Figure 47. Aggregate-Size Distribution for Aggregates on

Wymore and Mayberry Subsoil Before Rainstorm Tests

in soil loss from the Mayberry subsoil over that of the Wymore subsoil during the 60-minute storm (Table 2) may be the more readily detachable and transportable nature of aggregates in the Mayberry subsoil. Also, the soil content trend for runoff from the scalped treatment of the Wymore and Mayberry subsoils were very similar (Figures 30 and 48). It should be noted, however, that the data obtained from the Mayberry subsoil for the two 30-minute storms had to be synthesized because of the confounding influence of a natural rainstorm of 61 mm (2.4 in) following the 60-minute storm. The synthesis, based on soil content and infiltration data (Figure 48) from the simulated rainstorms, introduced some uncertainty in the acquired soil-loss values. On the other hand, the consistency in these basic data and good reproducibility between replicates for the 60-minute storm gave credence to the derived soil loss values for the 30-minute storms. Furthermore, it should be noted that in computations of soil erodibility, the influence of the soil loss measurements of the 60-minute storm appreciably outweighed those of the 30-minute storms.

The tilled treatment of the Mayberry subsoil differed from that of the Wymore subsoil in that the soil was less friable. In fact, for the tilled treatment, even following a final disking, a large degree of non-uniformity in clod sizes was retained (Figures 49 and 50). The soil did not readily slake or break down as was observed with the Pawnee subsoil. In fact, 188 mm (7.4 inches) of rain left a soil surface with a considerable degree of roughness (Figures 51 and 52) causing reduced runoff velocities and soil loss. Clods disintegrated to some extent into small aggregates (Figure 52), which were either deposited in voids or carried by the runoff water.

The tremendous stability of the individual aggregates was also apparent in the scalped treatment (Figures 53 and 54). One day after the conclusion of the rainulator tests, the soil still looked like an agglomerate of stable aggregates (Figure 54). Again, the stability of these aggregates is not well understood, but is presumably related to their chemical composition.

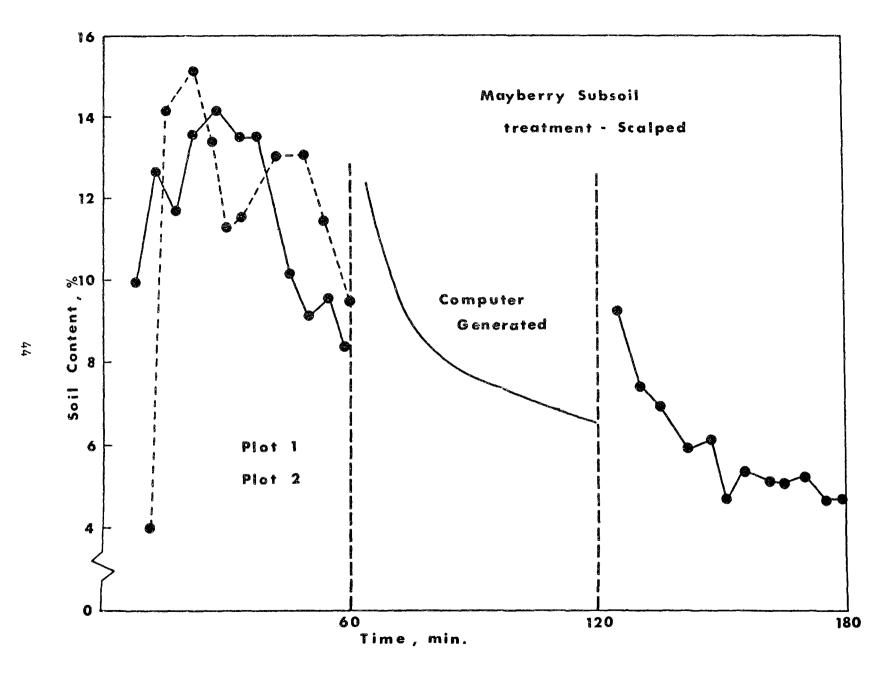


Figure 48. Soil content in runoff from the scalped treatment on the Mayberry subsoil.

Figure 49. Plot view of the tilled treatment on Mayberry subsoil before rainstorm tests.

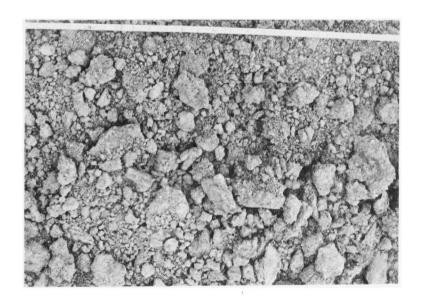


Figure 50. Close-up view of the tilled treatment on Mayberry subsoil before rainstorm tests.

Figure 51. Plot view of the tilled treatment on Mayberry subsoil after 188 mm (7.4 inches) of rain.

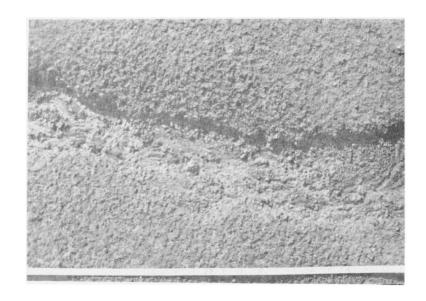


Figure 52. Close-up view of the tilled treatment on Mayberry subsoil after 188 mm (7.4 inches) of rain.

Figure 53. Plot view of the scalped treatment on Mayberry subsoil after 188 mm (7.4 inches) of rain.

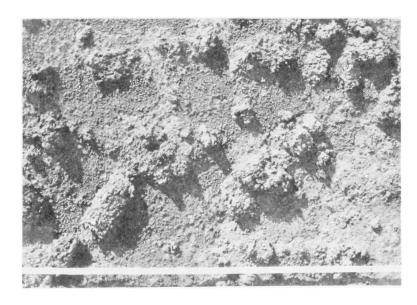


Figure 54. Close-up view of the scalped treatment on Mayberry subsoil after 188 mm (7.4 inches) of rain.

Most of the soil removed from the Mayberry scalped-treatment plot appears to have originated from rills (Figure 53). The bulk of runoff sediment consisted of aggregates. The significance of this observation is that high soil erosion rates from a weathered and well aggregated subsoil like the Mayberry, and to some extent also the Wymore subsoil, is a recurrent phenomenon following drying. It appears that particle size and the degree of interaggregate bonding may be important parameters in soil erosion problems of high clay subsoils.

COMPUTATION OF SOIL ERODIBILITY FACTOR, K

In computing the soil erodibility factor, K, soil loss measurements for each storm and treatment were adjusted to standard conditions of 9-percent slope steepness and 72.6 feet slope length using relationships given by Wischmeier and Smith (1965). The cropping-management factor, C, and erosion-control practice factor, P, were taken to be 1. K-values could then be computed as the average soil-loss per unit of R, where R represents the number of erosion-index units for a given storm as defined in the Universal Soil Loss Equation. So that the K values computed from the simulated rainstorms would more nearly represent the storm size distribution of natural rain, average soil losses per unit of R were computed for combinations of thirteen 63.5 mm (2.5 in) rains on moderately dry soil, four 31.75 mm (1.25 in) rains on wet soil, and three 63.5 mm (2.5 in) rains on wet soil (Wischmeier et al., 1971). This approach minimized the influence of variations in antecedent moisture and reflected annual rainfall pattern in the geographical area where tests were conducted. To further adjust for differences in rainfall energy between a natural rainstorm and the simulated rainstorm, both of 63.5 mm (2.5 in) per hour rainfall intensity, the weighted soil erodibility factor was multiplied by a factor 0.8 (Meyer and McCune, 1958). A summary of the observed erodibility factors, Kobs, and the nomograph derived erodibility factors, $K_{\mbox{nomo}}$ (Wischmeier, et al., 1971), using physical and chemical parameters determined from soil profile descriptions and laboratory analyes, is given in Tables 4 and 5 for the tilled and scalped conditions, respectively.

Table 4. OBSERVED AND PREDICTED SOIL ERODIBILITY FACTORS FOR TILLED SUBSOILS

Soil	Soil ID number	Kobs	Total ^a organic carbon %	Organic ^a matter %	Sand ^b (>100µ), %	Silt ^b (2-100μm),	Struc- ^c ture	Perme- ^c ability	d Knomo
McGary	191E	0.17	0.34	0.54	0.46	59.05	4	6	0.43
Portageville	192E	0.01	1.23	2.12	0.00	32.15	4	6	0.19
St. Clair	212E	0.31	0.75	1.29	9.80	48.82	4	6	0.34
Wymore	210E	0.03	0.92	1.58	2.01	53.45	4	6	0.34
Pawnee	206E	0.24	0.82	1.41	20.56	38.68	4	6	0.29
Mayberry	208E	0.04	0.82	1.41	7.56	54.18	4	6	0.37

Determination according to Mebius (1960). Conversion factor for organic carbon to organic b matter was taken to be 1.72.

Procedures described in section V. Evaluations were made from soil profile descriptions.

Soil erodibility factor, K, as determined from the nomograph of Wischmeier et al., 1971.

Table 5. OBSERVED AND PREDICTED SOIL ERODIBILITY FACTORS FOR SCALPED SUBSOILS

Soil	Soil ID number	Kobs	Total ^a organic carbon %	Organic ^a matter %	Sand ^b (>100µ), %	Silt ^b (2-100µm),	Struc-c ture	Perme-c ability	d Knomo
McGary	191s	0.36	0.34	0.58	0.46	59.05	4	6	0.43
Portageville	192S	0.05	1.23	2.12	0.00	32.15	4	6	0.19
St. Clair	21 2 S	0.48	0.75	1.29	9.80	48.82	4	6	0.34
Wymore	210S	0.49	0.92	1.58	2.01	53.45	4	6	0.34
Pawnee	206S	0.45	0.82	1.41	20.56	38.68	4	6	0.29
Mayberry	208S	0.67	0.82	1.41	7.56	54.18	4	6	0.37

Determinations according to Mebius (1960). Conversion factor for organic carbon to organic matter was taken to be 1.72.

Procedures described in section V. Evaluations were made from soil profile descriptions.

Soil erodibility factor, K, as determined from the nomograph of Wischmeier et al., 1971.

Significant differences were obtained between $K_{\mbox{obs}}$ and $K_{\mbox{nomo}}$ for both the tilled and scalped subsoils. The K_{obs} values derived from the tilled treatments for all subsoils were consistently smaller than the K values, while K from the scalped treatment for all but the McGary and Portageville subsoils were appreciably larger than the K nomo. The magnitude of the differences raises doubt about the accuracy of the nomograph as derived by Wischmeier et al. (1971) in soil erosion predictions from subsoils - at least from high clay subsoils. Some uncertainty exists, however, concerning the proper interpretation of the structure and permeability parameters for subsoils. By equating the tilled treatments with permeable surface soils underlain by massive clay (storage taken to be similar to high intake rates) it may be argued that the permeability factor for some subsoils should be assigned a value 5 or perhaps even 4. In that case the $K_{\mbox{nomo}}$ values should be reduced by 0.03 or 0.06 units. Such a correction would improve the erodibility factor prediction but significant discrepancies with the K_{obs} values would remain. Only the predictions for the Pawnee and St. Clair subsoils would approach the Kobs values for those subsoils. Similarly, the soil structure of the weathered scalped subsoils could, in some cases (Mayberry), be assigned the value 3. Again, no significant improvement in erodibility predictions would be obtained. In fact, the new predictions might enhance the discrepancy (Mayberry).

A summary of the observed and predicted erodibility factors for surface soils, including those of the Nebraska sites studied in this project, has been given in Table 6. The procedures used for these determinations have been outlined by Wischmeier et al., (1971). The cropping management factors used for the Wymore, Pawnee and Mayberry topsoils were based on the cropping history of the sites.

SELECTION OF STANDARD CONDITION FOR SUBSOIL ERODIBILITY FACTOR DETERMINATION

Subsoil erodibility determinations often involve soil conditions different than those on surface soils. Subsoils are usually free of plant residues, which would relax, if not eliminate, the suggested two-year

Table 6. OBSERVED AND PREDICTED SOIL ERODIBILITY FACTORS FOR SURFACE SOILS

	Sample ID	Soil erodibil	ity factor ^a
Soil name	number	Кпото	Kobs
Bedford	101	.46	.46
	103	.39	.39
Bewleyville	104	•36	.39
Cincinnati	105	.52	• 54
Muren	106	.42	.43
Russell	112	.44	.42
Rossmoyne	114	.51	•55
Switzerland	115	.41	.40
	117	.47	.51
	119	.45	.43
Parr	121	.30	.33
Morley	123	.30	.26
Miami	125	.26	.22
Miami	126	.24	.25
Fox	128	.28	.28
	131	.24	.25
	133	.41	.42
Princeton	135	.08	.07
Princeton	140	.50	.39
Princeton	144	.08	.07
Pembroke	145	.53	.54
Morley	147	.31	.25
Elkinsville	149	.41	.42
Varna	150	.29	.27
Frederick	152	.43	.39
Morley	154	.38	.37
Russell	155	.44	.48
Ockley	157	.39	.41
Grayford	160	.51	.58
Miami	162	.32	,36
Warsaw	164	.13	.11
Zanesville	166	.52	.52
Marlove	168	.34	.36
Markland	169	.22	.20
Zanesville	170	.40	.36
Celina	171	.26	.24
Celina	172	.38	
Morley	174	.30 .48	.34
Wea	176	.24	.47
Parr			.26
Fox	178 179	.24	.25
rox Morley		.09	.09
•	180	.37	.38
Avonburg Pawnee Topsoil	182	.54	.55
	207	.28	.37
Mayberry Topsoil	209	.31	.31
Wymore Topsoil	211	.32	.34

Knomo is the K factor derived from the soil erodibility nomograph developed by Wischmeier et al.(1971) and Kobs is the K factor actually measured.

requirement for decomposition of plant material before erodibility measurements can be made. On the other hand, subsoils have had much less exposure to processes of natural weathering, that is drying and wetting, than surface soils. This consideration suggests an extended fallow period upon removal of the overburden soil. Hence, a straightforward application of techniques developed for surface soils may not be appropriate for determining the erodibility factor of subsoils. The poor predictions for the erodibility factor of high clay subsoils from both tilled and scalped surface conditions seems to confirm this notion. Therefore, it would seem justified to select standard conditions for subsoil erodibility measurements which may constitute a better basis for future erodibility predictions. The following reasons led to the selection of the scalped surface as a more suitable standard surface condition on high clay subsoils for erodibility measurements:

- Scalped surfaces are more commonly found on construction sites.
- 2. Scalped surfaces are more reproducible than tilled soil.
- Variations in void volume and thus storage capacity at different locations and within replicates of a given location are minimized.

Because of these considerations, the observed soil erodibility factors, K_{obs} , chosen for further analysis in the statistical phase of this project are those derived from the scalped treatment. It could be argued then that the ratio $K_{\mathrm{obs}}(\mathrm{tilled})/K_{\mathrm{obs}}$ (scalped) represents in fact the soil-management factor. This factor is smaller than 1 for all subsoils tested. Assuming that the basic format of the Universal Soil-Loss Equation also holds for subsoils, the cropping-management factor in this equation should then be replaced by the soil-management factor. In arriving at the soil erodibility factor for subsoils it should be stressed that a further refinement for the standard plot condition will be needed especially in regard to the degree of weathering. Also, the above considerations should not be interpreted as negating the existing nomograph (Wischmeier et al., 1971) for all subsoils. Medium textured subsoils may follow the soil erodibility factor predictions of the nomograph developed by Wischmeier et al. (1971).

V. LABORATORY CHARACTERIZATION OF REFERENCE SOILS FOR PHYSICAL, CHEMICAL, AND MINERALOGICAL PROPERTIES

To arrive at relationships between the erodibility factor, K, determined in field experiments, and the specific physical, chemical, and mineralogical properties of soils, it was necessary to carry out extensive
laboratory analyses of reference soils. Wischmeier and Mannering (1969)
had previously used organic matter content, a variety of particle size
parameters, and other physical properties to empirically predict the
erodibility factor for surface soils. Later Wischmeier et al. (1971)
developed a nomograph utilizing five parameters (% silt plus very fine
sand, % sand, organic matter content, structure, and permeability) to
estimate the soil erodibility factor of surface and subsoils. Their
model was based on analyses of 55 surface soils.

Intuitively, intrinsic soil properties must control soil erodibility. However, selection of the soil properties to be quantitatively measured is difficult due to the large number of soil factors which may affect erodibility either directly or indirectly. We decided that measurement of basic soil constituents and properties was the best hope for improvement in the prediction of the soil erodibility factor and further that nonquantitative, subjective parameters should be avoided if possible. The soil parameters measured were those which are known to influence soil erodibility or have been reported to play some role in soil aggregation processes.

SAMPLING AND SOURCE OF SOIL SAMPLES

Forty-three of the surface soil samples considered in this study were part of the 55 soil samples used by Wischmeier et al. (1971) in

development of the nomograph to predict erodibility of surface soils. The other twelve soils used by Wischmeier could not be used in this study because of insufficient amount of sample. When received, the soil samples had been air-dried, ground to 2-mm and stored in paper bags since they were collected between 1961 and 1965. Three additional surface soils were collected as a part of this project during field studies near Syracuse, Nebraska.

One subsoil sample was obtained from Agricultural Research Service Soil Erosion Group at Purdue University. The remaining six subsoil samples were collected at the site on which field studies of soil erodibility were conducted as a part of this project.

The soil samples collected as a part of this study represented a composite of several individual samples (0-15 cm depth) taken from the actual rainulator plots. The composited samples were air-dried at room temperature (25°C), ground to pass a 2-mm screen, and stored in sealed plastic bags. A subsample was removed and ground to pass a 80 mesh sieve for use in certain chemical analyses. Finely ground samples were stored in glass vials. All analyses given are the average of at least duplicate determinations and are reported on a moisture-free basis.

DETERMINATION OF PHYSICAL PROPERTIES

Particle size analysis of samples was performed using the basic procedure outlined by Jackson (1956). The soil samples were dispersed with a sodium carbonate solution after removal of carbonates, soluble salts, and divalent cations with sodium acetate buffer (pH 5), removal of organic matter with hydrogen peroxide, and removal of iron oxides with sodium citrate-bicarbonate-dithionite solution. The sand and coarse silt (> 20μ m diameter) particles were separated from the dispersed soil sample by gravity sedimentation. The sand and coarse silt material was then separated into standard size fractions by dry-sieving in a nest of sieves. The fine silt (2- 20μ m diameter) was separated from the clay (2μ m) by centrifuge sedimentation.

The amounts of fine and coarse silt were combined to give a value for total silt as were the fine sand fractions to give total sand. Summation of the values for sand, silt, and clay does not yield 100% due to removal of carbonates, iron oxides, and organic matter in the dispersion process. A "new" silt parameter was also calculated by adding the amount of very fine sand (50 to 100µm diameter) to the silt value to give a value for the total soil particles having a mean diameter between 2 and 100µm. Computation of a "new" silt parameter also resulted in a "new" sand parameter involving particles with diameters between 100 and 2000µm. These calculations merely involved transfer of the very fine sand component from the sand fraction to the silt fraction. A particle size factor, M, which Wischmeier et al. (1971) found to be highly related to soil erodibility, was also calculated. The M factor was computed by multiplying the "new" silt percentage by the sum of "new" silt and "new" sand.

Soil structure and permeability classes were coded from information in soil profile descriptions made at the rainulator sites as described by Wischmeier et al. (1971). The permeability classes refer to the soil profile as a whole. Both soil structure and permeability are somewhat subjective parameters which depend upon the accuracy of the soil profile description.

Table 7 provides data on the physical parameters determined for each soil in the study. It is evident that the soils studied represent a wide range in sand, silt, and clay contents and vary widely in structure, permeability and textural classification. Six of the seven subsoils analyzed contain in excess of 33% clay and as a group the subsoils have a good range in sand and silt contents. However, all of the subsoils were considered to have blocky or massive structure (coded 4), and very slow permeability (coded 6).

DETERMINATION OF . CHEMICAL COMPONENTS

The reference soil samples were analyzed for a variety of chemical constituents. A sodium citrate-bicarbonate-dithionite (CDB) extraction

to remove iron oxides was performed on soil samples as outlined in Appendix B. The CDB extraction procedure removes crystalline and non-crystalline iron oxides except highly crystalline hematite and magnetite and also removes aluminum hydrous oxides and hydrous silica associated with iron oxides in soils (Roth et al., 1969). Iron, aluminum, and silicon in the CDB extract were determined colorimetrically as outlined in Appendix B and are reported as citrate-dithionite extractable iron oxide, aluminum oxide, and silica.

Organic carbon was determined in soils by the procedure of Mebius (1960) using < 80-mesh samples. Sodium pyrophosphate extractable organic carbon and hot water extractable organic carbon were determined by the procedures given in Appendix B. An index of the amounts of polysaccharides present in soils was obtained by reacting the samples with sodium periodate and measuring the decrease in periodate concentration after 24 hours as described in Appendix B. Total organic carbon and extractable organic carbon are reported as percent of soil on a weight basis and the index of polysaccharides is given as millimoles of periodate consumed per gram of soil in 24 hours of reaction at room temperature. Total N in soils was estimated by the procedure of Nelson and Sommers (1972) and total P by the method of Sommers and Nelson (1972). Total N and total P are reported as ppm of soil on a weight basis.

Table 8 gives a listing of the chemical constituents of the 46 surface soils and 7 subsoils used in this study. Fairly wide ranges in ${\rm Fe_2}^0{}_3$, ${\rm Al_2}^0{}_3$, and ${\rm Si0_2}$ content were observed, however, the surface soils were somewhat uniform in nitrogen, phosphorus, and carbon content. A wide range in periodate-oxidizable polysaccharides was evident with both surface and subsoils. The subsoils studied had a reasonable range in all chemical parameters measured.

DETERMINATION OF CLAY MINERALOGICAL COMPONENTS

The clay-sized material originally separated in the particle size analysis procedure was subjected to x-ray diffraction analysis according

				icle s							New	New			
Soil	<u>! </u>		dist	ributi	on		Sand f				silt	sand			_
Name	Type a	ID No.	clay	silt	sand	1-2	.5-1	0.5- 0.25	0.25- 0.1	0.1-	2-100 µm	.1-2mm	м ^b	Struc- ture	Perme- ability
		 		%			%		nd		%				
Surface soils:															
Bedford	SIL	101	15.0	69.9	10.1	5.7	6.9	5.7	38.8	42.8	74.2	5.8	5938	3	4
	SIL	103	20.3	67.4	7.9	5.4	14.9	29.6	20.3	41.9	70.7	4.6	5328	2	4
Bewleyville	SIL	104	14.4	76.6	4.8	18.8	26.6	10.1	15.9	30.4	78.0	3.3	6347	2	3
Cincinnati	SIL	105	18.6	73.5	2.6	15.8	18.4	15.8	18.4	31.6	74.3	1.8	5649	3	6
Muren	SIL	106	19.7	71.5	4.0	9.0	7.9	5.7	7.9	69.6	74.3	1.2	560 7	2	3
Russell	SIL	112	13.5	56.2	27.1	2.2	10.2	22.0	35.8	29.8	64.2	19.0	5347	3	3
Rossmoyne	SIL	114	16.8	71.2	8.1	6.6	15.8	19.7	27.6	30.3	73.6	5.7	5839	3	6
Switzerland	SIL	115	19.9	20,2	4.2	7.2	14.2	19.4	30.6	28.6	71.4	3.0	5314	3	3
	SIL	117	14.5	52.8	28.1	1.6	1.9	4.5	40.6	51.4	67.2	13.7	5439	3	4
	SIL	119	18.2	61.4	16.2	4.6	8.2	10.4	46.4	30.5	66.3	11.2	5138	3	4
Parr	L	121	19.2	46.3	28.7	6.8	15.7	22.2	32.1	23.2	53.0	22.0	3974	3	3
Morley	CL	123	24.3	39,6	28.8	5.6	12.9	16.4	33.4	31.7	48.7	19.7	3333	3	4
Miami	SL	125	6.1	24.0	66.9	3.1	10.7	20.1	42.0	24.6	40.5	50.4	3677	3	3
Miami	L	126	19.7	36.4	38.4	6.0	12.3	18.9	35.2	27.5	48.4	26.4	3616	3	3
Fox	SIL	128	18.8	65.0	10.3	6.2	14.4	16.5	13.4	49.5	70.1	5.2	5284	2	3
	SICL	131	36.8	44.1	9.1	2.7	10.8	12.0	22.8	51.7	48.8	4.4	2597	3	4
	SIL	133	19.4	68.8	7.0	0	7.8	7.8	34.1	50.4	72.3	3.5	5478	3	3
Princeton	LS	135	3.9	8.2	86.4	0.1	5.8	37.9	47.8	8.5	15.5	79.1	1470	2	2
	SL	140	8.3	35.1	54.4	0.1	0.6	5.0	74.7	19.8	45.8	43.6	4101	3	3
	LS	144	2.6	10.1	85.6	0.7	23.4	39.0	29.0	7.9	16.9	78.9	1615	2	2
Pembroke	SIL	145	15.6	76.8	3.3	6.2	12.1	5.9	17.9	57.9	78.7	1.4	6300	4	5
Morley	CL	147	25.4	29.4	28.4	8.3	15.9	15.6	32.0	28.2	47.4	20.4	3211	3	4
Elkinsville	SIL	149	12.6	67.5	16.5	2.5	1.2	1.2	25.2	69.9	79.1	5.0	6641	2	3
Varna	L	150	15.5	48.8	31.5	4.1	11.0	27.6	39.5	17.8	54.4	25.9	4372	3	4
Frederick	SIL	152	21.8	61.7	11.6	1.5	3.9	3.9	42.8	47.8	67.3	6.1	4939	3	3
Morley	L	154	14.5	41.2	41.1	3.0	10.6	19.9	39.3	27.2	52.4	29.9	4309	4	4
Russell	SIL	155	10.7	69.4	15.9	5.4	15.8	24.5	34.2	20.1	72.6	12.7	6186	3	3
Ockley	SIL	157	11.9	54.8	29.6	12.5	29.0	29.6	21.6	7.2	57.0	27.4	4804	3	3
Grayford	SIL	160	15.5	75.9	3.7	3.4	15.5	22.4	29.3	29.3	76.9	2.6	6118	4	5
Miami	SL	162	7.8	27.5	61.9	3.9	11.5	21.9	40.5	22.2	41.3	48.1	3691	2	4
Warsaw	SL	164	13.2	22.5	59.3	9.8	20.4	31.9	30.4	7.5	27.0	54.8	2208	3	2
Zanesville	SIL	166	17.2	72.5	6.9	4.0	9.0	7.9	22.0	57.1	76.4	2.9	6057	3	6

Table 7 (continued). PHYSICAL CHARACTERISTICS OF SOILS USED IN THIS STUDY

			Part	icle s	ize						New	New			
Soil		dist	ributi	on		Sand f	ractio			silt	sand				
Name	Type ^a	ID No.	clay	silt	sand	1-2	.5-1	0.5- 0.25	0.25- 0.1	0.1-	2-100 µmi	.1-2mm	м ^b	Struc- ture	Perme- ability
				%		% of sand					%-				
Marlove	SIL	168	13.4	55.5	26.9	2.4	15.4	30.4	32.0	19.8	60.8	21.6	5011	2	3
Markland	SICL	169	34.9	54.1	1.8	9.1	9.1	9.1	18.2	54.5	55.1	0.8	3077	3	3
Zanesville	SIL	170	17.3	64.9	13.8	0.8	1.6	0.8	28.7	68.0	74.3	4.4	5847	2	3
Celina	SL	171	10.0	25.6	61.1	2.7	12.7	25.0	40.3	19.2	37.3	49.4	3238	4	3
Celina	L	172	19.8	49.4	27.6	2.7	6.1	15.8	34.6	40.8	60.7	16.3	4676	4	4
Morley	SIL	174	11.7	59.8	24.4	8.9	13.0	16.8	32.4	28.9	66.9	17.3	5633	3	4
Wea	SIL	176	17.3	62.1	15.7	3.2	12.7	22.1	29.7	32.3	67.2	10.6	5225	2	3
Parr	L	178	13.2	41.4	40.1	5.2	14.1	22.3	25.7	32.6	54.5	27.0	4440	2	3
Fox	GSL	179	6.9	12.5	78.1	12.9	29.8	28.9	23.0	5.4	16.7	73.9	1515	2	3
Morley	L	180	16.8	44.3	35.0	1.9	7.7	24.5	43.4	22.6	52.2	27.1	4138	3	5
Avonburg	SIL	182	10.3	66.1	20.3	5.3	14.1	20.6	32.9	27.2	71.6	14.8	6186	3	6
Pawnee	SICL	207	36.3	41.8	16.5	3.1	6.1	17.5	30.1	38.8	48.2	10.1	280 9	3	5
Mayberry	SICL	209	29.4	46.9	18.8	0.5	6.0	16.3	28.3	48.9	56.1	9.6	3685	3	5
Wymore	SICL	211	37.5	53 .3	6.3	4.9	11.1	7.6	8.3	68.1	57.5	2.0	3425	3	5
Subsoils:															
Wingate	SL	188	9.9	29.2	54.0	8.8	14.8	18.1	34.0	24.3	42.3	40.9	3514	4	6
McGary	SIC	191S	39.8	58 .7	0.8	20.0	0	20.0	20.0	40.0	59.1	0.5	3514	4	6
Portageville	C	192S	66.5	32.2	0.3	e	e	e	е	e	32.2	0.3	1045	4	6
Pawnee	CL	206S	35.4	28 .6	30.7	2.7	15.0	19.7	29.6	33.0	38.7	20.6	2291	4	6
Mayberry	SICL	208s	33.9	47.4	14.4	2.2	10.7	14.4	25.3	47.4	54.2	7.6	3345	4	6
Wymore	SIC	210s	38.5	50.8	4.7	4.9	16.8	11.9	8.9	57.4	53.5	2.0	2965	4	6
St. Clair	SIC	212S	38.7	43.8	14.8	2.6	16.8	21.2	25.7	33.7	48.8	9.8	2862	4	6

SIL, silty loam; L, loam; CL, clay loam; SL, sandy loam; SICL, silty clay loam; LS, loamy sand; CSL, gravely sandy loam; C, clay; SIC, silty clay.

b M=% new silt (% new silt + % new sand).

c 1, very fine granular; 2, fine granular; 3, med. or coarse granular, 4, blocky, platy or massive.

d 1, rapid; 2, mod. to rapid; 3, moderate; 4, slow to med.; 5, slow; 6, very slow.

e Insufficient sand in sample for fractionation.

Table 8. CHEMICAL COMPOSITION OF SOILS USED IN THIS STUDY

Sample ID		ate-Dithi xtractabl	e				Pyrophosphate extractable	Hot H ₂ 0 extractable	Periodate
Number	Fe ₂ 0 ₃	A1203	SiO ₂	Total P	Total N	Total C	carbon	carbon	consumed
		%		pp	ш				(mmoles/gm)
Surface	Soils:							- • •	
101	1.53	.304	.051	305	1120	1.06	.27	.044	. 257
103	1.61	.246	.099	352	-∙9 80	0.77	.26	.029	.195
104	1.58	.278	.054	315	1350	1.25	.34	.064	. 261
105	1.81	.324	.088	298	1050	0.93	.22	.041	,313
106	2.31	.333	.097	433	950	0.84	.26	.039	.262
112	1.06	.210	.048	482	1120	1.20	.30	.036	.209
114	1.65	.290	.043	450	990	1.28	. 34	.032	.228
115	1.97	.305	.058	290	970	1.09	.24	.031	.212
117	1.55	.272	.048	273	1470	0.94	.22	.029	.214
119	1.94	.318	.066	485	1190	0.76	.22	.032	.191
121	1.50	.254	.097	420	1630	1.86	.38	.067	.338
123	2.08	.288	.112	7 50	1720	1.72	.31	.053	. 365
125	0.69	.157	.033	28 7	1050	1.26	.35	.053	.194
126	1.83	.257	.100	446	1130	1.29	.31	.051	.284
128	1.65	. 241	.095	482	1330	1.38	.35	.057	.339
131	3.01	.398	.114	676	1230	1.05	.26	.043	.516
133	1.96	.324	.094	529	1330	1.25	.27	.047	.394
135	0.73	.135	.046	375	490	0.78	.19	.020	.116
140	0.96	.139	.053	303	680	0.49	.21	.033	.147
144	0.58	.088	.030	305	460	0.31	.18	.029	.098
145	1.60	.260	.067	447	1150	0.96	.28	.041	.319
147	2.02	.246	.129	425	1170	1.03	.24	.038	.564
149	1.31	.252	.065	371	970	0.88	.27	.043	.277
	1.20	.242	.081	381	1440	1.38	.47	.064	.277
150		.377	.071	891	1400	1.01	.29	.048	.356
152	2.07	.226	.071	257	1010	1.16	.32	.055	.213
154	1.33			358	1300	1.38	.41	.065	.276
155 157	1.09 1.22	.198 .189	.061 .061	330 471	1350	1.17	.36	.044	.323

Table 8 (continued). CHEMICAL COMPOSITION OF SOILS USED IN THIS STUDY

Sample ID		ate-Dithi xtractabl					Pyrophosphate extractable	Hot H ₂ 0 extractable	Periodate	
Number	Fe ₂ 0 ₃	A1203	SiO ₂	Total P	Total N	Total C	carbon	carbon	consumed	
		%		рр	m		%		(mmoles/gm)	
160	1.42	.248	.070	566	1900	1.50	.39	.059	.444	
162	1.05	.173	.058	25 7	830	0.71	.27	.049	.187	
164	1.39	.260	.080	427	1590	1.61	.53	.090	.294	
166	2.19	.305	.094	483	830	0.63	.25	.036	.241	
168	1.20	.198	.086	387	1290	1.24	.37	.054	.281	
169	2.32	.385	.095	733	2240	2.09	.45	.073	.644	
170	1.76	.304	.067	308	1090	0.98	.26	.037	.295	
171	1.02	.160	.054	231	920	0.90	.28	.066	.213	
17 2	1.81	.255	.090	303	940	0.83	.30	.044	.197	
174	1.15	.213	.072	303	1310	1.39	.40	.062	.289	
176	1.39	.236	.112	590	1670	1.75	.48	.081	.358	
178	1.22	.175	.090	887	1360	1.72	.38	.057	.577	
179	1.08	.141	.054	300	630	0.69	.23	.045	.184	
180	1.43	.216	.073	335	850	0.69	.24	.028	.168	
182	1.06	.226	.053	300	900	0.83	.26	.036	.241	
207	1.08	.232	.185	762	620	2.04	.41	.141	.356	
209	1.00	.220	.135	593	500	1.31	.31	.129	.275	
211	0.93	.178	.255	1016	650	1.80	.38	.102	.367	
Subsoil	s:									
188	2.09	.194	.156	372	410	0.53	a	а	а	
1915	3.52	. 242	.121	516	540	0.34	.04	.020	.124	
1928	1.42	.145	. 265	767	970	1.23	.38	.018	.259	
206S	.85	.121	.264	800	140	0.82	.12	.117	.305	
208S	1.15	.229	.127	412	300	0.82	.18	.056	.220	
2105	0.80	.293	.319	1018	200	0.92	.22	.097	.249	
212S	2.34	. 250	.155	1130	180	0.75	.06	.080	1.056	

^aInsufficient sample was available to run these analyses.

Table 9. CLAY MINERALOGICAL COMPOSITION OF SOILS USED IN THIS STUDY (percent of the clay fraction)

	rmi-		linite			Quartz	
				Amorphous	Montmo-	plus	Chlo-
No. cu	lite Mi	ica hal	loysite	material	rillonite	feldspar	rite
_							
Surface so						70.5	۰
		9.4	20.3	10.6	11.0	12.5	24.7
			11.6	9.9	21.3	9.3	22.7
			14.9	9.1	9.9	13.0	44.3
			18.8	12.0	16.6	9.1	21.2
			13.6	7.7	23.0	6.3	24.9
			16.9	13.4	12.5	13.5	18.9
			17.3	10.5	12.3	11.8	28.3
			17.7	11.8	13.2	9.9	27.2
			23.5	10.0	10.3	9.7	26.6
			18.4	10.4	12.1	9.0	31.7
		9.2	9.2	11.7	9.2	13.5	26.3
			10.0	7.0	14.9	8.7	26.1
			12.5	8.8	4.5	16.1	19.0
			12.6	9.2	15.6	6.9	24.1
			14.7	10.6	18.3	8.3	24.7
		1.7	8.3	5.0	11.0	6.4	24.4
			18.5	17.3	23.3	8.5	13.3
			17.1	17.6	18.2	13.7	9.9
			15.0	16.7	16.9	12.6	15.1
			12.9	11.7	1.4	26.7	24.2
		2.1	14.5	18.5	20.1	11.0	12.1
		3.2	6.0	5.8	12.9	9.3	18.4
			16.8	18.3	18.8	10.2	12.5
		7.2	8.4	14.8	3.4	15.8	19.3
			20.0	27.6	20.9	8.4	3.7
			10.0	13.7	15. 7	10.0	8.9
			11.8	15.1	19.0	14.8	12.1
			14. 2	18.8	10.5	13.2	9.4
			18.3	20.5	3.7	11.2	12.1
			11.1	12.3	6.4	11.4	17.8
			13.6	15 .7	8.1	16.5	10.2
			15 .7	15 .6	4.4	6.1	19.3
			12.1	12.6	10.8	11.8	23.4
			9.6	7.0	2.1	8.6	14.1
			16.5	17.7	7.6	8.8	22.5
			11.9	12.7	6.7	11.3	19.1
	7.4 37	7.7	10.4	11.3	10.6	11.1	11.5
	3.7 44	1.1	8.6	9.9	11.3	16.2	6.4
	0.2 27		12.2	19.0	14.2	11.9	5.0
	1.9 37		11.7	15.8	19.9	11.1	2.5
179	6.5 18	3.4	13.4	18.9	19.0	14.2	9.5

Table 9 (continued). CLAY MINERALOGICAL COMPOSITION OF SOILS USED IN

THIS STUDY
(percent of the clay fraction)

Sample			Kaolinite			Quartz	
ID	Vermi-		plus	Amorphous	Montmo-	plus	Chlo-
No.	culite	Mica	halloysite	material	rillonite	feldspar	rite_
180	4.7	35.0	6.9	11.8	14.6	13.5	13.5
182	2.4	15.8	17.7	15.9	16.7	13.2	16.7
207	17.3	18.6	12.4	17.6	25.6	6.6	2.0
209	12.7	21.6	14.4	18.9	14.1	6.2	12.1
211	4.1	24.8	18.8	16.6	22.3	10.3	3.2
Subsoil	.s:						
188	4.3	53.9	7.1	6.2	11.4	11.9	5.3
191S	5.3	37.2	8.9	9.2	19.4	6.3	13.7
192S	7.7	23.0	9.8	9.3	22.6	7.9	19.8
206S	12.2	16.5	12.9	13.4	30.0	8.7	6.3
208S	7.1	20.1	14.8	15.9	28.6	6.0	7.5
210S	12.4	22.0	9.4	11.1	30.4	7.0	7.8
212S	5.2	45. <u>0</u>	9.1	10.4	5.7	13.9	10.7

to procedures outlined by Jackson (1956) to provide a qualitative estimate of clay mineral composition. The x-ray diffraction studies revealed that the clay fraction of almost every soil contained montmorillonite. kaolinite, mica (illite), vermiculite, quartz, feldspar, and chlorite. In addition, previous studies have shown that the <2 µm fraction of soils contain variable amounts of amorphous inorganic material, e.g. allophane, which is not detected by x-ray diffraction techniques. Accordingly, the clay-sized fraction ($<2\mu m$ mean diameter) of soils in this study was analyzed quantitatively for amorphous and crystalline components. Montmorillonite and vermiculite were determined by the procedure of Alexiades and Jackson (1965) as modified by Chapman (1970). phous material and kaolinite plus halloysite were estimated by the procedures described by Hashimoto and Jackson (1960). Mica and quartz plus feldspar were determined by the procedures given in Appendix B which was modified from Jackson, 1956. Chlorite was estimating by summing the percent of the clay fraction composed of montmorillonite, vermiculite, kaolinite plus halloysite, mica, amorphous materials, and quartz plus feldspar and subtracting the sum from 100. Clay mineral components are reported in Table 9 as percentages of the clay fraction, however, in statistical analyses the clay mineral components were used as percentages of the whole soil on a weight basis.

Table 9 shows that substantial variation exists in the clay mineralogical composition of the surface soils studied. Subsoils tended to contain somewhat higher amounts of vermiculite and montmorillonite and lower amounts of chlorite as compared to surface soils. However, a reasonable range in clay mineralogical composition was observed in subsoil samples.

VI. STATISTICAL ANALYSIS OF DATA OBTAINED IN FIELD AND LABORATORY EXPERIMENTS

STATISTICAL PROGRAMS USED

The majority of the statistical analyses on this project were performed using the procedures found in the SPSS (Statistical Package for the Social Sciences) manual (Nie, Bent and Hull, 1970). In particular the REGRESSION procedure was used from the SPSS package of statistical programs. An option in this procedure allows the user to specify that the entrance of variables into the multiple linear regression model will follow the forward selection technique (Draper and Smith, 1966) such that the variable, not already included in the model, which exhibits the highest partial correlation, will be the next forced into the model.

The "weighted regression analysis program" (WRAP) was valuable in certain phases of the statistical analysis portion of this project. This program performs multiple linear regression analysis using the backward elimination technique (Draper and Smith, 1966) in which all the independent variables are forced into the model and subsequently deleted at each state until all variables remaining are significant at the user defined probability level. WRAP differs from the SPSS program in that the latter uses a forward selection technique whereas the former uses a backward elimination technique. The WRAP contains a useful option which allows each observation or case to be weighted by a function of its variance, whereas, the SPSS programs do not contain this option.

Several other techniques and programs were evaluated as to usefulness in the statistical analysis phase of this project but none of these

Table 10. ESTIMATES OF PARAMETERS IN THE SIMPLE LINEAR REGRESSION EQUATION OF Kobs WITH ANALYZED SOILS VARIABLES

Independent	X,	46 Sur	face soi	ls ^a	7 Sul	soilsª	
Variable	_	Ъ	Ъ	2c	Ъ	Ъ	-,c
Name	i	βo	^β 1	r	β _o	^β 1	r
Knomo	1	.0020	1.0018	.913	1382	1.6698	.430
% clay	2	.3385	.0009	.003	.7803	0092	.615
% sand(old)	3	.4554	0038	.462	.3561	.0046	.210
% silt(old)	4	.0598	.005 7	.669	.2938	.0034	.042
2.0-1.0 mm sand	5	.3928	0329	.194	.4004	.0355	.096
1.0-0.5 mm sand	6	.4144	0174	.409	.3643	.0282	.180
0.5-0.25 mm sand	7	.4243	0118	.514	.3643	.0226	.178
0.25-0.10 mm sand	8	.4181	0068	.272	.3751	.0117	.162
0.10-0.05 mm sand	9	.4090	0085	.068	.3040	.0240	.373
% sand (new)	10	.4390	0042	.479	.3731	.0053	.159
% silt(new)	11	0226	.0065	.710	1011	.0114	.320
$M=X_{11}(X_{11}+X_{10})$	12	0075	.00008	.736	0596	.00018	.651
Strūcturė TV	13	.1546	.0705	.111	e	e	е
Permeability	14	.0678	.0770	.407	e	e	e
% C-total	15	.3872	0288	.008	.6751	3116	.208
7 C-Na pyro.	16	.4072	1712	.012	.5600	8798	.350
% C-Hot H ₂ 0	17	.3998	8726	.028	.3609	1.3245	.092
Periodate Consumed	18	.3654	0397	.001	d	ď	d
Fe ₂ 0 ₃	19	.2790	.0504	.037	.4795	0260	.017
A1 ₂ 0 ₃	20	.1902	.6677	.124	.1465	1.3668	.185
SiŌ2	21	.3727	2301	.005	.6215	9312	.146
ppm P	22	.3844	00007	.010	.5380	0001	.049
Z N	23	.3182	.3158	.008	.6470	-5.4352	.669
% vermiculite	24	.3582	0050	.002	.6154	0600	.291
% mica	25	.3867	0071	.034	.6690	0222	.339
% kaolinite	26	.2775	.0326	.099	.6552	0563	.269
amor. material	27	.3156	.1082	.032	.6135	0435	.158
% montmorillonite	28	.3340	.0083	.014	.5980	0197	.265
% quartz	29	.3330	.0121	.003	.6764	0765	.394
% chlorite	30	.3331	.0072	.012	.6239	0428	.839
X ₁₉ +X ₂ 20	31	.2677	.0498	.046	.4734	0201	.011
$(x_7)^2$	32	.3880	0004	.429	.4003	.0016	.087
$\{X, Y, \{X, Y\}\}$	33	d	d	d	.5976	0023	.307
(X_{21}^{31}) (X_{22}^{2})	34	.3352	.0043	.014	.6078	0125	.368
(X_{16}^{31}) (X_{2}^{28})	35	.3686	0027	.005	.5538	0174	.600
(X_{16}^{20}) (X_{29}^{2})	36	.3463	.0102	.003	.5472	0673	.489
(X ₁₆) (X ₂₈) Specific surface	37	.3266	.0006	.015	.6667	0019	.349
X_c+X_a	38	.4302	0107	.528	nd	nd	nd
$(x_{11})(x_{11})$	39	.1269	.00006	.681	nd	nd	nd

aKobs and Knomo for surface soil from Table 6 and for subsoils from Tab. 5.

^bK pred = β_0 + β_1 X_i
^cCoefficient of determination or the square of the simple coefficient of correlation, r.

 $^{^{}m d}$ Correlation insufficient for computation.

eValues of independent variables were constant.

was found to be any large benefit to the analysis.

STATISTICAL ANALYSIS OF SURFACE SOIL DATA

Simple linear correlation analysis of the observed K, K obs, values for the surface soils with each of the independent variables reported in Tables 7, 8 and 9 reveals that about half of the variables are positively correlated with Kobs whereas the other one-half are negatively correlated (Table 10). The values used for all of the independent variables considered in Table 10, and for all subsequent statistical analysis reported later, have been converted to a whole soil base. That is, all of the values for the sand size fractions were converted to percent whole soil in lieu of percent of sand as reported in Table 7 and the clay mineralogical composition values were converted to percent whole soil in lieu of percent of the clay fraction as reported in Table 9. There are several combinations of variables calculated and reported in Table 10, such as the % Fe + Al as X_{31} and the percent silt (new) squared as X_{39} . The combinations of variables that proved to be of significant help in the statistical analysis were those represented by X_{12} and X_{31} . The specific surface variable, X_{37} , was an attempt to estimate the specific surface area of the soil from the amount of the various clay minerals present and the specific surface areas reported in the literature for the various clay minerals. The correlation matrix for the surface soil variables is reported in Table 16, Appendix C.

Multiple linear regression analysis was performed on the surface soil data with K as the dependent variable using the WRAP. The partial regression coefficients of the multiple linear regression equations are reported in Table 11. Table 11 contains the last 6 steps in the backward elimination of variables in an initial model containing 22 independent variables. The final model at step 6 contains 4 variables which are significant at the 0.05 probability level. The initial model considered in Table 11 contained all of the single variables analyzed (29) except for % sand-new (X_{10}), % silt-new (X_{11}) and the five sand fractions ($X_5 - X_9$, inclusive). Later analysis including the combination variable % Fe + % A1 (X_{31}) did not alter the deletion process in

Table 11. ESTIMATES OF PARTIAL REGRESSION COEFFICIENTS IN THE MULTIPLE LINEAR REGRESSION EQUATION OF $K_{\mathbf{obs}}$ WITH SURFACE SOIL VARIABLES a

Independent		Partial regression coefficients in the multiple linear regression equation							
Variable Name	x _i ^b	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6		
Constant	X _o	-0.1344	-0.1382	-0.1287	-0.1395	-0.1357	-0.1357		
$M \times 10^{-5}$	х ₁₂	6.3932	6.9180	6.7004	6.5201	6.6044	6.7097		
Permeability	X ₁₄	0.03780	0.03291	0.03540	0.03639	0.03938	0.03847		
Structure	x ₁₃	0.03704	0.04083	0.03624	0.03770	0.03532	0.03448		
% C-Na pyro.	X ₁₆	- 0.3255	-0.1879	-0.1992	-0.1673	-0.1603	-0.1732		
% mica	X ₂₅	-0.01779	-0.01213	-0.00366	-0.00461	-0.00109			
% clay	X_2	0.01253	0.00949	0.00206	0.00177				
% chlorite	x ₃₀	-0.02060	-0.01438	-0.00366					
% amor. mat.	x ₂₇	-0.03592	-0.02857						
% N	X ₂₃	0.5645							
Coefficient of determination (r ²)	23	0.921	0.912	0.905	0.903	0.899	0.899		

a Backward elimination of variables (WRAP) until all variables remaining are significant at the 0.05 probability level.

b As defined in Table 10.

the last six steps. Therefore, the model as proposed in step 6 would be the best model to use to predict K for surface soils. The model proposed in step 6 might best be written as:

 $K_{pred} = 0.1357 + (6.710) (10^{-5}) X_{12} + 0.03448X_{13} + 0.03847X_{14} - 0.1732X_{16}$ where the X_4 are those reported in Table 10,

With the use of the SPSS regression program we arrive at the same conclusions as reported above. That is, with the forward selection of independent variables to be added to the regression model on the basis of highest partial correlation we arrive at the models reported in Table 12. The variables included in the models up to and including those of step 4 are statistically necessary, at the 0.05 probability level, to adequately predict the dependent variable, K. The slight differences in the partial regression coefficients in the models arrived at by the two methods when the same independent variables are included, such as step 6, Table 11 and step 4, Table 12, is attributed to numerical accuracy differences of the two programs.

It is very interesting to note that the four most significant variables to be included in the surface soil model to predict K are essentially the same four variables that Wischmeier, Johnson and Cross (1971) use in their nomograph to predict soil erodibility. The only difference being the use of sodium pyrophosphate extractable carbon in the former and percent organic matter in the latter. The sodium pyrophosphate extractable carbon is highly correlated with the percent organic matter, r = 0.866. It is thought by the authors that the sodium pyrophosphate extractable carbon is more representative of that organic material in soils which can affect intra-particle bonding in soils.

STATISTICAL ANALYSIS OF SUBSOIL DATA

The main problem in establishing a model for the prediction of subsoil erodibility is the low number of $K_{\rm obs}$ values from subsoils. The correlation matrix for the subsoil variables is reported in Table 17, Appendix C. With only 7 sets of observations for the subsoils, any

Table 12. ESTIMATES OF PARTIAL REGRESSION COEFFICIENTS IN THE MULTIPLE LINEAR REGRESSION EQUATION OF $K_{\mbox{obs}}$ WITH SURFACE SOIL VARIABLES $^{\mbox{a}}$

	ъ	Partial	regressi	on coeffi	cients in	the mult	iple line	ar regres	sion equa	tion
Variable ————————	X _i	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7	Step 8	Step 9
Constant		-0.00753	-0.1270	-0.1894	-0.1447	-0.1503	-0.2184	-0.2226	-0.2561	-0.2613
M x 10 ⁻⁵	x ₁₂	7.9616	6.7259	6.8147	6.8711	6.9787	7.5961	7.8378	7.8661	8.1960
Permeability	X ₁₄		0.0472	0.0399	0.0376	0.0343	0.0367	0.0367	0.0405	0.0382
Structure	x ₁₃			0.0303	0.0338	0.0358	0.0337	0.0343	0.0297	0.0292
% C-Na pyro.	X ₁₆				-0.1571	-0.1692	-0.1232	-0.1204	-0.1850	-0.2390
% mont.	x ₂₈					0.0048	0.0081	0.0095	0.0122	0.0118
0.25-0.1 mm	x ₈						0.0016	0.0027	0.0035	0.0040
0.1-0.05 mm	x ₉							-0.0037	-0.0039	-0.0043
% N	x ₂₃								0.3377	0.4167
% vermiculite	x ₂₄									0.0085
Coefficient of determination	• • • • • • • • • • • • • • • • • • • •	0.736	0.871	0.888	0.897	0.902	0.908	0.915	0.919	0.922

a Forward selection of variables on basis of highest partial correlation of the variables that are not subsequently in the model.

b As defined in Table 10.

model containing 6 independent variables will completely predict the dependent variable from the 7 observations. Therefore, weighted regression analysis was used in which each of the 46 surface soil observations were weighted 1/46 or 0.021739 and the 7 subsoil were weighted 1/7 or 0.142857.

The weighting and subsequent regression analysis was performed using the weighted regression analysis programs (WRAP). The partial regression coefficients and the coefficients of determination for this weighted model are reported in Table 13. It was hoped that by using this type of approach we could determine those basic independent variables that affect the prediction of K in both surface soil and subsoils.

Comparison of the variables necessary to predict K in the combined surface soil and subsoil weighted regression model of Table 13, with those in the model developed in Tables 11 and 12 for surface soils reveals that the amount of sodium citrate-bicarbonate-dithionite (CDB) extractable Fe and Al, X31, and CDB extractable Si, X21, might be important in the former model and are not even considered in the latter. Therefore, the amount of CDB extractable Fe, Al and Si must be important in predicting the K factor of subsoils. Such a model is shown in Table 14 along with some additional models. On the basis of F-test analysis the amount of sodium pyrophosphate extractable carbon is not statistically necessary, at the 5 percent level, to predict K for high clay subsoils. However, if the percent silicon released by CDB extraction is included with M and the % Fe + % Al there is a statistical improvement in the prediction model, Table 14-Equation 7, at the 5 percent level. Therefore, the model

 $K_{pred} = 0.32114 + 20.167X10^{-5} X_{12} - 0.14440X_{31} - 0.83686X_{21}$ can be used to statistically predict the erodibility of the high clay subsoils considered in this study.

Table 13. ESTIMATES OF PARTIAL REGRESSION COEFFICIENTS IN THE WEIGHTED MULTIPLE LINEAR REGRESSION EQUATION OF κ_{obs} WITH SURFACE AND SUBSOIL VARIABLES a

Independent		Partial re	gression coe	fficients in equati		e linear regr	ession	
Variable Name	x_i^b	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	
Constant		-0.05513	-0.13859	-0.16775	-0.24337	-0.15458	-0.00526	
% silt-old	X_{4}	0.00840	0.00903	0.00931	0.01007	0.01002	0.00889	
% C-Na pyro.	х ₁₆	-0.61251	-0.58304	-0.58278	-0.57060	-0.67752	-0.72662	
% Fe ₂ 0 ₃ +%Al ₂ 0 ₃	X ₃₁	-0.10516	-0.09887	-0.09508	-0.08272	-0.09160	-0.09438	
0.1-0.05 mm sand	X ₉	0.01290	0.01288	0.01401	0.01590	0.01441	0.01448	
Structure	х ₁₃	0.06545	0.06494	0.06466	0.06278	0.08661	0.06929	
1.0-0.5 mm sand	X ₆	0.00442	0.00547	0.00676	0.00902	0.00724		
Permeability	X ₁₄	0.03096	0.03305	0.03175	0.02328			
% SiO ₂	X ₂₁	-0.29004	-0.24154	-0.31414				
% montmorillonite	X ₂₈	-0.00424	-0.00304					
0.25-0.1 mm sand	X ₈	-0.00148						
Coefficient of determination (r ²)	J	0.841	0.840	0.838	0.830	0.820	0.805	

a Backward elimination of variables (WRAP) until all variables remaining are significant at the 0.05 probability level.

72

b As defined in Table 10.

Table 14. ESTIMATES OF PARTIAL REGRESSION COEFFICIENTS IN THE MULTIPLE LINEAR REGRESSION EQUATION OF Kobs WITH SUBSOIL VARIABLES^a

Independent		Partial re	egression co	efficients	in the mult	iple linear	regression	equation
Variable	X_{i}^{b}	Equation	Equation	Equation	Equation	Equation	Equation	Equation
Name	i_	1	2	3	4	5	66	7
Constant		0.00367	0.17565	-0.09575	0.05255	0.1 8 608	-0.07558	0.32114
$M \times 10^{-5}$	X ₁₂	23.001	19.496	24.271	21.907	20.204	24.161	20.167
$\% \text{ Fe}_{2}^{0}_{3} + \% \text{ Al}_{2}^{0}_{3}$	x ₃₁	-0.10839	-0.12085	-0.10020	-0.10550	-0.12241	-0.10562	-0.14440
% C-Na pyro.	X ₁₆		-0.34917					
% C-total	X ₁₅			0.06213				
% clay	X_2				-0.00064			
% montmorillonite	X ₂₈					-0.00929		
% amor. mat.	^X 27						0.01006	
% SiO 2	^X 21							-0.83686
Coefficient of determination (r ²)		0.904	0.921	0.905	0.905	0.933	0.909	0.950

a b The WRAP were used to obtain these values without using the backward elimination option. As defined in Table 10.

VII. A NOMOGRAPH FOR ESTIMATING THE ERODIBILITY FACTOR, K, OF HIGH CLAY SUBSOILS

A nomograph which can be used to predict the erodibility factor, K, of subsoils is shown in Figure 55. The nomograph was developed from the multiple linear regression equation (Section VI) relating the erodibility factor to the soil texture factor, M, the amount of CDB extractable iron and aluminum oxides, and the amount of CDB extractable silica. The nomograph is similar to that developed for surface soils (Wischmeier et al., 1971). The equation used to derive the nomograph was:

$$K_{\text{pred}} = 0.32114 + 2.0167 \times 10^{-4} \text{ M} - 0.14440 (\% \text{ Fe}_20_3 + \% \text{ Al}_20_3) - 0.83686 (\% \text{Si0}_2)$$

The soil texture factor, M, is calculated arithmetically by summing the percent "new" silt (2 - 100 μ m mean diameter) and "new" sand (100 - 2000 μ m mean diameter) then multiplying the sum by the percent "new" silt.

Inspection of the nomograph reveals that for given levels of CDB extractable iron plus aluminum oxide and silica, the erodibility factor, K, increases with an increase in M. The soil texture factor, M, is in turn influenced by the relative proportions of sand, silt and clay in the sample. In high clay soils, M is generally low and a function of the ratio of silt to sand. In sandy soils, M is also lower than in more silty soils and behaves as a function of the clay to silt ratio. The value of M increases as the square of the silt content when soils grade from loamy sands to sandy loams. The same trend is evident when soil textures grade from clays to silty clays to silty loams to silt loams and to silts.

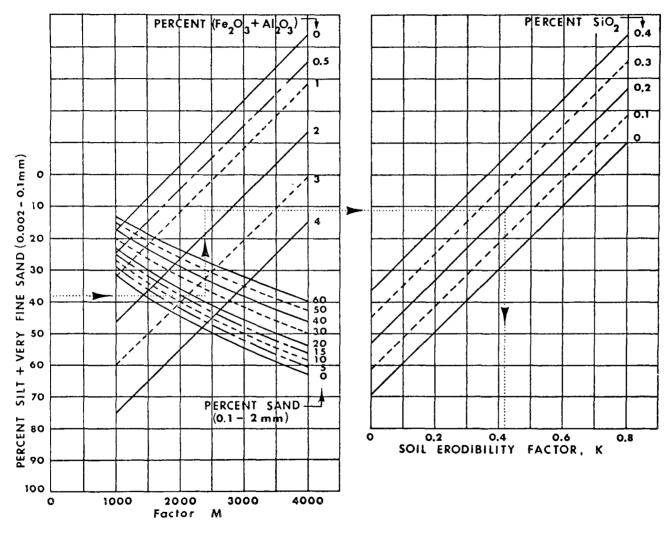


Figure 55. Nomograph for Estimating the Erodibility Factor, K, of High Clay Subsoils

It is also evident from the nomograph that at a given value of M there is a decrease in K with an increase in the amount of iron and aluminum oxides and silica in the sample. This finding is expected because amorphous iron and aluminum hydrous oxides and hydrous silica are known to bind soil particles into stable aggregates. Although the citrate-dithionite-bicarbonate (CDB) reagent used to extract these soils removes some of the crystalline iron oxides, it is most likely that almost all of the iron extracted by CDB from the subsoil samples used in this study was in the amorphous form. The CDB reagent will extract a very small amount of aluminum and silicon from crystalline clay minerals. However, the amounts of aluminum and silicon extracted from the subsoils used in this study, suggest that the Al and Si is combined with the amorphous iron oxide and is released when the iron is solubilized by the CDB reagent.

The chemistry of iron and aluminum suggest that their reactions with primary soil particles should be similar. This suggestion is supported by the observation that the summation of CDB extractable iron and aluminum oxides leads to a factor that serves as a better predictor of K than does iron and aluminum oxides when used separately in the model. The inclusion of CDB extractable silicon in this summation does not statistically improve the prediction of K; however, when silica is included as a separate term in the model along with $Fe_20_3 + Al_20_3$ there is a statistical improvement in the resulting regression model. This suggests that CDB extractable iron and aluminum act similarly in serving as binding agents in subsoils and that CDB extractable silica. important in predicting the erodibility of high clay subsoils, reacts differently with the primary soil particles than do iron and aluminum oxides. Evidently the amorphous iron and aluminum oxides and silica are the primary binding agents in subsoils, much as organic matter is the primary binding agent in surface soils, which promotes the formation of soil aggregates that are resistant to raindrop detachability.

The nomograph is used by entering the sum of new silt (2 - 100 μ m diameter) on the left-most vertical axis and proceeding horizontally

to intercept the curve for the appropriate sand content (100 - 2000 μm diameter). From this point proceed vertically to intercept the appropriate curve for the percent $\mathrm{Fe_20_3} + \mathrm{Al_20_3}$. Then proceed horizontally to intercept the appropriate curve for the percent $\mathrm{Si0_2}$ and from there proceed vertically to the bottom horizontal axis. At the point where the vertical line intersects the bottom right-hand horizontal axis the value predicted for K may be read directly. The value for M is not precomputed nor used directly, but rather may be calculated indirectly in using the nomograph by drawing a vertical line from the point of intersection of the "new" silt (2 - 100 μm diameter) horizontal with the appropriate curve for "new" sand (100 - 2000 μm diameter) to the bottom, left-hand, horizontal axis.

Table 15 gives a comparison of K values observed in field experiments with seven subsoils and similar values computed with the nomograph. A close relationship exists between the K values predicted by the nomograph and those measured in field experiments. The difference in K values between observed and predicted by the nomograph exceeds 0.03 only in the case of the St. Clair subsoil where the nomograph underestimates the observed K by 0.09.

The nomograph may be used with some degree of confidence with subsoils similar to those used in this study because the study soils represented a wide range in K values, textural composition, chemical composition, clay mineralogy and pedogenic origin. It should be emphasized that the nomograph may not be applicable to subsoils having large amounts of iron and aluminum in crystalline forms which are extractable by the CDB reagent. The iron and aluminum in such subsoils may not be active in binding soil particles into aggregates which resist raindrop disruption. The nomograph would therefore underestimate the K for subsoils containing large amounts of crystalline iron and aluminum compounds since the nomograph is based on the finding that CDB extractable iron, aluminum and silicon content of soils is inversely related to the soil erodibility factor. The nomograph may not be applicable to subsoils that have a structure other than blocky or massive and a permeability other than very slow. It would be necessary to investigate

Table 15. COMPARISON OF THE SOIL ERODIBILITY FACTOR, K,

DETERMINED IN FIELD EXPERIMENTS AND THOSE

COMPUTED FROM THE SUBSOIL NOMOGRAPH

	Sample ID	Soil erodibility factor, l				
Soil	number	Observed	nomograph ^a			
Dayton	188	•54	•57			
McGary	1918	.36	.39			
Portageville	1928	.05	.08			
St. Clair	2128	.48	.39			
Pawnee	206S	.45	.42			
Mayberry	2088	.67	.69			
Wymore	210S	.49	.49			

^aSoil erodibility factor, K, as determined from Figure 55.

subsoils that have other structures and permeabilities to determine the exact effect of these two variables on the erodibility of subsoils.

The use of this nomograph to predict erosion at a proposed construction site should include the following steps:

- Composite subsoil samples should be collected which represent each subsoil horizon and/or topographical characteristic proposed for prolonged exposure during the construction phase.
- 2. These subsoil samples should be submitted to a soil characterization laboratory for particle size analysis (silt, 2 100 μm and sand, 100 2000 μm) and determination of iron, aluminum and silicon released by citrate-dithionite-bicarbonate (CDB) extraction. The particle size analysis can be performed on the same sample used for the CDB extraction following the procedure of Jackson, 1956.
- 3. The results from these analyses can then be used to predict the soil erodibility factor, K, for each of the areas involved by using the nomograph presented in Section VII of this report.
- 4. Soil loss values can then be estimated using the Universal Soil-Loss Equation using procedures outlined by Wischmeier and Smith, 1965.

VIII. REFERENCES

- 1. Alexides, C. A. and M. L. Jackson. Quantitative Determination of Vermiculite in Soils. Soil Sci. Soc. Amer. Proc. 29:522-527, 1965.
- Chapman, S. L. and M. L. Jackson. Quantitative Clay Mineralogy of Selected Soils from North Central United States. Agronomy Abstracts. p. 131, 1969.
- 3. Draper, N. R. and H. Smith. Applied Regression Analysis. New York, Wiley, 1966. 407 p.
- 4. Foster, G. R., L. F. Huggins and L. D. Meyer. Simulation of Overland Flow on Short Field Plots. Water Resour. Res. 4:1179-1187, 1968.
- 5. Hashimoto, I. and M. L. Jackson. Rapid Dissolution of Allophane and Kaolinite-Halloysite After Dehydration. Clays Clay Minerals. 7:102-113, 1960.
- 6. Jackson, M. L. Soil Chemical Analysis-Advanced Course (1st Edition, 3rd Printing 1967) Published by the author. Department of Soil Science, University of Wisconsin, Madison, WI, 53706, 1956.
- 7. Mebius, L. J. A Rapid Method for Determination of Organic Carbon in Soils. Anal. Chim. Acta. (Amsterdam). 22:120-124, 1960.
- 8. Meyer, L. D. Use of the Rainulator for Runoff Plot Research. Soil Sci. Soc. Amer. Proc. 24:319-322, 1960.
- 9. Meyer, L. D. and D. L. McCune. Rainfall Simulator for Runoff Plots. Agr. Eng. 39:644-648, 1958.
- 10. Nelson, D. W. and L. E. Sommers. A Simple Digestion Procedure

- for Estimation of Total Nitrogen in Soils and Sediments. J. Environ. Quality. 1:423-425, 1972.
- 11. Nie, N. H., D. H. Bent, and C. H. Hull. SPSS-Statistical Package for the Social Sciences, New York, McGraw-Hill, 1970. 343 p.
- 12. Roth, C. B., M. L. Jackson, and J. K. Syers. Deferration Effect on Structural Ferrous-Ferric Iron Ratio and CEC of Vermiculities and Soils. Clays Clay Minerals. 17:253-264, 1969.
- Sommers, L. E. and D. W. Nelson. Determination of Total Phosphorous in Soils: A Rapid Perchloric Acid Digestion Procedure. Soil Sci. Soc. Amer. Proc. 36:902-904, 1972.
- 14. Wischmeier, W. H. Upslope Erosion Control In: Environmental Impact on Rivers. Fort Collins, Colorado, H. W. Shen, 1972. p. 15-1 to 15-26.
- 15. Wischmeier, W. H. and J. V. Mannering. Relation of Soil Properties to Its Erodibility. Soil Sci. Soc. Amer. Proc. 33:131-137, 1969.
- 16. Wischmeier, W. H. and D. D. Smith. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains. Agr. Handbook No. 282. U.S. Gov't Printing Office, Washington, D.C. 1965.
- 17. Wischmeier, W. H., C. B. Johnson and B. V. Cross. A Soil Erodibility Nomograph for Farmland and Construction Sites. J. Soil Water Conserv. 26:189-193, 1971.

IX. APPENDICES

		Page
Α.	Profile Descriptions of Soils Used in This Study	83
В.	Methods Modified or Developed and Used During the Course of This Study	97
c.	Correlation Matrix of Surface Soil and Subsoil Variables	105

APPENDIX A

PROFILE DESCRIPTIONS OF SOILS USED IN THIS STUDY

Soil type: McGary silt loam

Location: 3.9 mi. north of Bloomington, Indiana, along highway 37, approximately 150 feet west (TW 9, N R 1, W sect. S4, NW 1/4)

Land Use: pasture

Parent Material: calcareous lacustrine

Physiography: lake bed

Slope: 2%

Salt or Alkali: none Permeability: slow to very slow

Stoniness: none Drainage: somewhat poorly

Erosion: none Ground water: deep

Aspect: south

Root Distrib .: none

Profile description:

Ap -- 0-11" -- Gray (10YR 5/1-6/1) silt loam; fine cloddy somewhat compact and massive; friable; neutral; abrupt smooth boundary. (6 to 11 inches thick.)

B21gt -- 11-15" -- Grayish-brown (10YR 5/2) light silty clay, common, fine, faint gray (10YR 6/1) mottles; moderate medium subangular blocky structure; firm; medium acid; clear smooth boundary. (2 to 5 inches thick.)

B22gt -- 15-22" -- Grayish-brown (10YR 5/2) silty clay, common fine faint yellowish-brown (10YR 5/2) mottles; weak, fine soft black (10YR 2/1) manganese and iron oxide concretions; thin gray (10YR 5/1) clay films on ped faces; firm; neutral; clear smooth boundary. (5 to 10 inches thick.)

B23gt -- 22-27" -- Grayish-brown (10YR 5/2) silty clay, common fine faint yellowish-brown (10YR 5/4) mottles; moderate medium prismatic structure, breaking to moderate to strong medium angular blocky structure; thin gray (10YR 5/1) clay films on ped faces; tongues

a Profile description taken from Soil Survey.

McGary silt loam (cont'd.)

of gray (10YR 5/1) silty clay, 1 to 2 inches thick and 6 to 10 inches apart, firm; mildly alkaline; gradual irregular boundary. (4 to 10 inches thick.)

- B3gt -- 27-39" -- Gray (10YR 5/1) light silty clay, common fine distinct light yellowish-brown (10YR 6/4) mottles; moderate to strong, fine to medium prismatic structure, breaking to moderate to strong, medium blocky structure; firm; mildly alkaline; clear irregular boundary. (9 to 15 inches thick.)
- Cg -- 39-50" -- Gray (10YR 6/1) stratified silty clay loam and clay, common fine distinct yellowish-brown (10YR 5/6) mottles; moderate coarse blocky structure; firm; thin gray (10YR 5/1) clay films on ped faces; calcareous; tongues of the B3 horizon project into this horizon.

Soil type: Portageville clay

Location: Delta Experiment Station, Portageville, Mo.

Land Use: Cultivated

Parent Material: alluvial deposit Physiography: backwater deposit

Slope: 0%

Salt or Alkali: none Permeability: very slow

Stoniness: none Drainage: poor

Erosion: none Ground Water: shallow

Aspect: none

Root distrib: none Profile description:

- Ap -- 0-6" -- Very dark grayish brown (10YR 3/2) clay with few, fine, dark reddish-brown (5YR 3/3) mottles; weak, fine to medium, granular structure; very firm; pH 7.0; abrupt, smooth boundary.
- A1 -- 6-15" -- Very dark gray (10YR 3/1) clay with common, medium, dark reddish-brown (5YR 3/4) mottles; moderate, fine to medium, subangular blocky structure; very firm; few fine roots and pores; Ph 7.5, weakly calcareous; gradual, smooth boundary.
- B1 -- 15-25" -- Dark-gray (5Y 4/1) clay with common, medium, dark reddish-brown (5YR 4/3) mottles and few, coarse, yellowish-red (5YR 4/6) mottles; moderate, medium, angular blocky structure; very firm; few polished surfaces 1 to 4 inches across in angular position (slickensides); pH 8.0, weakly calcareous; gradual, smooth boundary.
- E2 -- 25-47" -- Gray (5Y 5/1) clay with few, fine, dark reddish-brown (2.5YR 2/4) mottles and common, fine, dark reddish-brown (5YR 3/4) and yellowish-red (5YR 4/8) mottles; weak, medium, angular blocky structure; very firm;

Profile description taken from Soil Survey, Pemiscot County, Missouri, USDA-SCS, 1971.

Portageville clay, Po (cont'd.)

many ped interiors of dark grayish brown (2.5Y 4/2); few polished surfaces 1 to 4 inches across in angular position (slickensides); pH 8.0, strongly calcareous; gradual boundary.

C -- 47-60" -- Dark gray (5Y 5/1) and dark grayish-brown (10YR 4/2) clay with common, fine, dark reddish-brown (5YR 3/4) and dark-brown (7.5YR 4/4) mottles; massive, stratified; strata are 1/2 inch to 2 inches thick; dark reddish-brown (5YR 3/4) and yellowish-red (5YR 4/8) colors appear as thin lines between the strata, and there are occasional thin lenses (about 1/2 inch thick) of very fine sandy loam; very firm; pH 8.0, strongly calcareous.

At a depth between 10 and 40 inches, these soils have a clay content of 40 to 65 percent or more.

The A horizon ranges mainly from 10 to 20 inches in thickness, but is as much as 24 inches in places. Color ranges from 10 YR to 2.5Y in hue, 2 to 3 in value, and 0 to 2 in chroma. The texture is commonly clay and silty clay loam, but there are areas of sandy loam or loamy sand overwash.

The B1 horizon ranges from 10YR to yellower in hue, has a value of 3.5 to 4.5, and has a chroma of 1. The B2 and C horizons range from 10YR to yellower in hue and have a value of 4 to 6 and a chroma of 1. Ped interiors have a chroma of 1 or 2.

Reaction ranges from slightly acid to moderately alkaline in the top 10 inches, and from neutral to moderately alkaline below. The soil materialin the top 10 inches is calcareous in some places, and it ranges to violently calcareous below a depth of 10 inches.

NOTES: This soil occupies level and depressional areas on lakebeds and meanders of former channels in the recent Mississippi River

Portageville clay, Po (cont'd.)

flood plain. These areas are like oxbows in shape, are several hundred acres in size, and are in the eastern part of the county.

Classification: fine, montmorillonitic, calcareous thermic, vertic, haplapuoll

Soil type: Mayberry clay loam, F2G2D

Location: .16 mi. E and 350' N from SW corner, Sec. 35, T 7 N, R 10 E
Otoe County

Land use: cultivated

Parent material: stratified clay loam, sandy loam and clay (Fullerton formation?)

Physiography: upland

Slope: 18%

Salt or Alkali: none Permeability: slow

Stoniness: none Drainage: moderately well

Erosion: moderate Ground water: very deep

Slope: north

Root distrib .: none

Profile description:

Alp -- 0- 8" -- Dark brown (7.5YR 3/2) moist; clay loam; weak

S72Neb-66-1-1 coarse blocky parting to weak coarse to fine granular structure; hard, friable; medium acid (pH 5.6);
clear smooth boundary.

aB21t -- 8-20" -- 50% dark brown (7.5YR 3/2) and 50% reddish-brown S72Neb-66-1-2 (5YR 4/4) moist; clay; weak coarse blocky parting to strong medium and fine angular blocky structure; extremely hard, very firm; slightly acid (pH 6.5); gradual smooth boundary.

bB22t --20-40" -- Brown (10YR 5/3) moist; silty clay to clay; moderate S72Neb-66-1-3 medium angular blocky structure; extremely hard, very firm; neutral (pH 7.0); gradual smooth boundary.

CB23t --40-53" -- Dark brown (7.5YR 4/4) moist; clay; moderate medium S72Neb-66-1-4 and coarse angular blocky structure; extremely hard, very firm; clear smooth boundary.

d_C --53-65" -- Yellowish brown (10YR 5/4) moist; stratified clay S72Neb-66-1-5 loam and sandy loam; weak coarse blocky structure; hard, friable. Mayberry clay loam, F2G2D (cont'd.)

NOTES: This soil thought to be formed in Paleosol or clayey sediments of Fullerton formation. 100' of crest has reddish brown color, heavy clay loam or silty clay loam in upper 2'. Moved downslope for erosion study because of slope and testure. This profile possibly taxadjunct because of brown color and is part of Mayberry mapping unit. Thick clay films in lower B and C could be characteristic of the parent material, as this has been observed elsewhere.

Classification: fine, montmorillonitic, mesic family of Aquic Argiudolls.

Few dark organic coatings, common, small, hard, round dark accumulations, thin patchy clay film.

Few large dark organic coatings along cracks, few faint dark accumulations, common distinct brown mottles (7.5YR 4/4) thin patchy clay films.

Common soft, diffuse dark accumulations, thick discontinuous dark brown clay films fill pores and channels, few hard lime concretions, few gravel.

d Many thick dark brown clay films fill channels.

Courtesy of Mr. H. Sauter, District Soil Scientist, USDA-SCS, Otoe County, Syracuse, Nebraska.

Soil type: Pawnee clay loam, F2GD

Location: .5 mi. N, .3 mi. W and 580' S from SE corner, Sec. 27-7-9

Otoe County

Land use: cultivated

Parent material: calcareous glacial drift

Physiography: upland

Slope: 8%

Salt or Alkali: none Permeability: slow

Stoniness: none Drainage: moderately well

Erosion: moderate Ground water: very deep

Aspect: east

Root distrib.: none

Profile description:

Alp -- 0- 7" -- Very dark brown (10YR 2/2) moist; clay loam, weak S72Neb-66-2-1 coarse blocky parting to weak coarse to fine grandular structure; hard, friable; slightly acid (pH 6.4); clear smooth boundary.

B2lt _- 7-18" -- Very dark grayish-brown (10YR 3/2) moist; clay;

S72Neb-66-2-2 moderate, medium angular blocky structure; extremely hard, very firm; neutral (pH 6.8); gradual smooth boundary.

bB22t --18-25" -- Dark brown (10YR 4/3) moist; clay; moderate coarse S72Neb-66-2-3 and medium angular blocky structure; extremely hard, very firm; neutral (pH 7.2); gradual smooth boundary.

CB23t __25-40" -- Grayish-brown (10YR 5/2) moist; clay; moderate

S72Neb-66-2-4 coarse and medium angular blocky structure; extremely hard; very firm; gradual smooth boundary.

B3 --40-60" -- Grayish-brown (2.5Y 5/2) moist; heavy clay loam;

S72Neb-66-2-5 moderate medium angular blocky structure; very hard;

firm.

Pawnee clay loam, F2Gd (cont'd.)

NOTES: This is moderately eroded soil (about 50 x 50°) included in mapping unit, Pawnee soils, severely eroded. (Slope in this general area of mapping unit averages about 7%.)

Classification: fine, montmorillonitic, mesic family of Aquic Arguidolls.

a Few brown (7.5YR 4/4) mottles, thin discontinuous clay films.

b Few brown (7.5YR 4/4) mottles, many very dark brown (10YR 2/2) organic coatings along cracks, thin discontinuous clay films.

Common yellowish brown (10YR 5/4) mottles, common organic coatings, common hard lime concretions, thin discontinuous clay films.

Many prominent dark accumulations (manganese), few brown accumulations (iron), few soft lime concretions, thin patchy clay films.

Courtesy of Mr. H. Sauter, District Soil Scientist USDA-SCS, Otoe County, Syracuse, Nebraska.

Soil type: Wymore silty clay loam, F2DC

Location: .5 mi. N, .45 mi. W and 130' S from SE corner, Sec. 27.

T 7 N, R 9 E, Otoe County

Land use: cultivated

Parent material: silty clay loam, loess

Physiography: upland

Relief: 5 1/2%

Salt or Alkali: none Permeability: slow

Stoniness: none Drainage: moderately well

Erosion: moderate Ground water: very deep

Aspect: east

Root Distrib .: none

Profile description:

Alp -- 0-8" -- Very dark brown (10YR 2/2) moist; silty clay loam; S72Neb-66-3-1 weak coarse blocky parting to weak coarse to fine granular structure; hard, friable; slightly acid (pH 6.1); clear smooth boundary.

B21t -- 8-19"-- Mixed very dark brown (10YR 2/2), dark grayish-S72Neb-66-3-2 brown (10YR 4/2), and very dark grayish-brown (10YR 3/2) crushed, moist; silty clay; strong medium and fine angular blocky structure; extremely hard, very firm; neutral (pH 6.6); gradual smooth boundary.

B22t --19-35" -- Dark grayish-brown (2.5Y 4/2) moist; silty clay; S72Neb-66-3-3 strong medium and fine angular blocky structure; extremely hard; very firm; neutral (pH 7.0); gradual smooth boundary.

B3t --35-48" -- Mixed grayish-brown (2.5Y 4/2) and grayish-brown S72Neb-66-3-4 (2.5Y 5/2) moist; heavy silty clay loam; moderate medium angular blocky structure; very hard, firm; gradual smooth boundary.

Wymore silty clay loam, (cont'd.)

d_C --48-60" -- Grayish-brown (2.5Y 5/2) moist; silty clay loam; S72Nev-66-3-5 weak coarse and medium blocky structure; hard, friable.

Classification: fine montmorillonitic, mesic family of Aquic Argiudolls.

^aThin patchy clay films.

b Few faint small brown (7.5YR 4/4) mottles, common organic coatings, thin discontinuous clay films.

Many prominent large brown (7.5YR 4/4) mottles, few pinhead-size dark accumulations, many small pores, common lime concretions, dpatchy clay films.

Many prominent diffuse strong brown (7.5YR 5/6) mottles, many large and small pores.

e and small pores. Courtesy of Mr. H. Sauter, District Soil Scientist USDA-SCS, Otoe County, Syracuse, Nebraska.

Soil type: St. Clair silty clay loam

Location: S13, T 31 N, R 14 E, Allen County, Indiana

Land use: cultivated

Parent material: calcareous till

Physiography: upland

Slope: 16%

Salt or Alkali: none Permeability: slow to very slow

Stoniness: none Drainage: moderately well

Erosion: moderate Ground water: deep

Aspect: east

Root Distrib .: none

Profile description:

Ap -- 0-5" -- Dark grayish-brown (10YR 4/2) silt loam; weak, fine, granular structure; friable when moist; neutral; abrupt, smooth boundary.

B1 -- 5-7" -- Brown (10YR 5/3) light silty clay loam; moderate, fine, subangular blocky structure; firm when moist; medium acid; clear, wavy boundary.

B21t -- 7-14" -- Brown (10YR 5/3) silty clay; weak, medium, prismatic structure breaking to strong, medium, angular blocky structure; very firm when moist; thin clay films on many ped faces; very strongly acid; clear, wavy boundary.

B22t -- 14-24" -- Brown (10YR 5/3) clay; few, fine, faint mottles of yellowish brown (10YR 5/8) in the upper part and common, medium, distinct mottles of yellowish brown in the lower part; weak, medium, prismatic structure; extremely firm when moist; thin to thick clay films on many ped faces; strongly acid; clear, wavy boundary.

a Profile description taken from Soil Survey, Allen County, Indiana, USDA-SCS, 1969.

St. Clair silty clay loam (cont'd.)

C -- 24-40" -- Dark grayish-brown (10YR 4/2) heavy silty clay loam to silty clay; common, medium, prominent mottles of light gray (10YR 7/2); weak, medium, angular blocky structure; very firm when moist; calcareous.

The A horizon ranges from 5 to 10 inches in thickness and from silt loam to silty clay loam in texture. Soil material from the Bl horizon is mixed with that of the A horizon in many cultivated areas. In some places there is no Bl horizon. The depth to calcareous material ranges from 18 to 28 inches.

Classification: fine, illitic, mesic, typic hapludalf

APPENDIX B

METHODS MODIFIED OR DEVELOPED AND USED DURING THE COURSE OF THIS STUDY

SODIUM CITRATE - SODIUM BICARBONATE - SODIUM DITHIONITE EXTRACTION OF SOILS

Free iron oxides are extracted from soils by a two step procedure in which organic matter is first removed with hydrogen peroxide and iron oxides are extracted with the CDB reagent.

A. Removal of organic matter with hydrogen peroxide

- 1. Add 10 ml increments of 30% H₂O₂ to a 5 g soil sample in a 600-ml beaker and digest until organic matter is destroyed. Evaporate the sample to a thin paste.
- 2. Transfer the sample to a 100-ml centrifuge tube using 0.5 \underline{N} NaOAc (pH5).
- 3. Wash twice with 50 ml portions of .5 \underline{N} NaOAc (pH 5), centrifuge at 2000 rpm, and decant.
- 4. Wash once with 0.5 NaOAc (pH 7), centrifuge at 2000 rpm and decant.
- 5. Wash once with 0.5 $\underline{\text{N}}$ NaCl, centrifuge and decant.

B. Removal of iron oxides

- 1. Add 40 ml of sodium citrate-bicarbonate solution to each tube.
- 2. Heat the suspension in the tube to 75 80° C in a water bath. (Do not exceed 80° C or ferrous sulfide will form. Suspension should be a light gray. Black indicates ferrous sulfide.)
- 3. Add approximately 1 g of solid sodium dithonite $(Na_2S_2O_4)$ to each tube. Stir constantly for 1 minute and allow to react for 5 minutes. Keep the temperature between 75 80° C.
- 4. After 5 minutes add an additional gram of sodium dithionite, stir and allow to react for five minutes.
- 5. Repeat step 4 once more.
- 6. Centrifuge at 1600 2000 rpm for 5 minutes and decant.

 IMPORTANT. Place supernatant liquid in a 250-ml volumetric flask and save for iron determination.

- 7. Wash twice with 0.5 \underline{N} NaCl, centrifuge and decant the liquid into the 250-ml volumetric flask.
- 8. Wash once with 30 ml of water, centrifuge and decant liquid into volumetric flask.

C. Determination of Fe in Na₂S₂O₄-Na Citrate-NaHCO₃ extract

- 1. Place appropriate aliquot of an air-oxidized sample (containing less than 400 mg of Fe) in a 100-ml volumetric flask.
- 2. Add 2 ml 10% $\mathrm{NH}_2\mathrm{OH}\text{-HCl}$ (hydroxylamine hydrochloride).
- 3. Add 5 ml of NaOAc-HCl buffer.
- 4. Dilute to about 80 ml and mix.
- 5. Add 3 ml of 0.4% orthophenanthroline in 95% ethanol and mix well (There must be at least 8 mg of orthophenanthroline present in the final color development flask).
- 6. Dilute to volume with water.
- 7. Read at 510 mu after 10 min. Color is stable at least 20 hours.

NaOAc-HCl buffer

81.6 g NaOAc

369 ml glacial HOAc

41.8 ml conc. HCl

Make to 1 liter with water

D. Determination of low concentrations of Al in Na₂S₂O₄-Na citrate-

NaHCO3 extracts

- 1. Place an appropriate aliquot of air-oxidized extract containing $2-40 \mu g$ Al in a 50 ml beaker.
- 2. Add 10 ml concentrated HNO3.
- 3. Add 3 ml concentrated H2SO4.
- 4. Mix.
- 5. Heat to dryness on hot plate then ignite at 400°C for 3 hours.
- 6. When cool add 1 ml 6NHCl and 20 ml water.
- 7. Digest on steam plate 30 min. then allow to cool.

- 8. Neutralize to pH 4.0 with 1N NaOH (determine with pH meter).
- 9. Add 2 ml 1% thioglycolic acid.
- 10. Digest 30 min. on steam plate.
- 11. Cool and add 10 ml aluminon-acetate buffer, transfer to 50 ml volumetric flask.
- 12. Allow to stand 1 hour and read at 530 m µ

Aluminon-acetate buffer

120 ml glacial HOAc - 900 ml H₂0

24 g NaOH

Mix

0.35 g aluminon

Dilute to 1 liter with water

E. Determination of Si in Dithionite-Citrate-Bicarbonate Extracts*

- 1. Place 5 to 10 ml of an air-oxidized extract (containing 5 to 25 g Si) in a 50 ml volumetric flask.
- 2. Add 10 ml of 1×12^{80} and mix.
- 3. Add 10 ml of 0.3 \underline{M} MoO_{l_4}⁻² and mix.
- 4. After 2 min. add 5 ml of 20% tartaric acid.
- 5. Add 1 ml of 1-amino-2naphthol-4-sulfonic acid reductant reagent.
- 6. Dilute to volume with distilled water.
- 7. Measure absorbance at $820 \, \text{m} \, \mu$ after 30 min.

$1 \times H_2$ SO₄

Dilute 29 ml concentrated H2SO, to 1 liter.

0.3 M molybdate

Dissolve 54.0 g of ammonium molybdate, $(NH_4)_6^{MOO}_7^{O}_{24}$ · 4 H₂O in approximately 800 ml of H₂O, adjust to pH 7.0 with 5 N NaOH and make to 1 liter volume.

20% tartaric acid

Dissolve 100 g of tartaric acid in 500 ml of H₂0.

^{*}The citrate dithionite extract, diluted to 500 ml, is assumed to contain 12 mmoles of Na citrate, 5 mmoles of NaHCO $_3$ and 17.5 mmoles of oxidized Na dithionite.

1-amino-2-naphthol-4-sulfonic acid reductant

Dissolve 25 g of NaHSO $_3$ in 200 ml of H $_2$ O. Dissolve 2 g of anhydrous Na $_2$ SO $_3$ and 0.4 g of 1-amino-2-naphthol-4-sulfonic acid in 25 ml H $_2$ O. Combine the two solutions, dilute to 250 ml and store in a refrigerator in plastic.

F. Determination of hot water extractable carbon in soils

- 1. Add 10 g of <2 mm soil to 125 ml 24/40 Standard Taper Erlenmeyer flask.
- 2. Add 20 ml distilled water.
- 3. Boil under reflux for 30 min.
- 4. Rinse down condensor with small amount of H₂O.
- 5. Transfer contents of Erlenmeyer flask to centrifuge tube (50 ml) with small amount of H₀0.
- 6. Centrifuge at approximately 10,000 rpm for 10 min.
- 7. Decant supernatant into 50 ml volumetric flask.
- 8. Wash residue with 10 ml of hot water.
- 9. Centrifuge as before, decant and add washing to 50 ml volumetric flask.
- 10. Make to 50 ml final volume.
- 11. Take 5 ml aliquot for carbon determination add to 125 ml Standard Taper Erlenmeyer flask.
- 12. Add 5 ml of 0.2 \underline{N} $K_2Cr_2O_7$ solution.
- 13. Add 15 ml concentrated H2SO4.
- 14. Boil under reflux for 30 min.
- 15. Remove from heat and cool sample.
- 16. Titrate sample with approximately 0.05 N ferrous ammonium sulfate solution using N-phenylanthanilic acid as an indicator.
- 17. Have boiled and unboiled blanks using 5 ml distilled ${\rm H_2O}$ + 5 ml ${\rm 0.5~N~K_2Cr_2O_7}$ + 15 ml ${\rm H_2SO_4}$.
- 18. Calculate data as described by Mebius (1960).

G. Determination of sodium pyrophosphate extractable carbon in soils

1. Weigh 5 g samples of < 2 mm soil into 50 ml centrifuge tubes.

- 2. Add exactly 25 ml of 0.15 \underline{M} sodium pyrophosphate adjusted to pH 8.0.
- 3. Stopper tube and shake overnight approximately 16 hours.
- 4. Remove stoppers and centrifuge at 10,000 rpm for 10 minutes.
- 5. Decant supernatant.
- 6. Remove 5 ml aliquots of supernatant and place into 125 ml Standard Taper Erlenmeyer flasks.
- 7. Add 5 ml of 0.5 \underline{N} K_2 Cr₂O₇ + 15 ml concentrated H_2 SO₄.
- 8. Boil under reflux for 30 min.
- 9. Remove from heat and cool sample.
- 10. Titrate sample with 0.1 \underline{N} Ferrous ammonium sulfate solution using N-phenylanthranillic acid as redox indicator.
- 11. Have boiled and unboiled blanks using 5 ml distilled ${\rm H_2O}$ plus 5 ml 0.5 $\underline{{\rm N}}$ K₂Cr₂O₇ plus 15 ml concentrated ${\rm H_2SO_4}$.
- 12. Calculate results as described by Mebius (1960).

H. Periodate oxidizable polysaccharides in soil

Reagents:

- 1. 0.05 \underline{M} (0.1 \underline{N}) sodium periodate Dissolve 10.695 g of NaIO $_{4}$ in distilled H $_{2}$ O and dilute to 1 liter.
- 2. 0.1 \underline{M} (0.2 \underline{N}) sodium arsenite Dissolve 12.990 g of NaAsO $_2$ and 4 g of NaHCO $_3$ in water and dilute to 1 liter.
- 3. $0.05 \, \underline{\text{M}}$ ().05 $\underline{\text{N}}$) iodine solution Dissolve 20 g of iodate-free KI in 40 ml of water. Add 6.35 g of sublimed iodine to the KI solution, stopper, shake and bring to 1 liter after iodine dissolves.
- 4. Starch solution Make a paste of 1 g of soluble starch and a small amount of water. Pour the paste into 100 ml of boiling water and boil for 1 minute. Allow the solution to cool and add 3 g of KI. Use two ml aliquots for solution for titration.

Procedure:

Weigh out 2.5 g soil samples and place into small plastic bottles or 50 ml Erlenmeyer flasks. Add exactly 25 ml of 0.05 M periodate

solution and place on a wrist action shaker for 24 hours (use very show speed). Centrifuge sample and place a 15 ml aliquot of supernatant into a 125 ml Erlenmeyer flask. Add 1 g of NaHCO₃ and 10 ml of 0.1 M NaAsO₂ solution. Wash down sides of flask and add 2 ml of starch solution. Titrate the mixture with 0.05 M iodine solution. Standardize the iodine solution by titration against 10 ml of arsenite solution (titration about 40 ml) and standardize periodate solution by adding 10 ml of arsenite solution to 15 ml of periodate and titrating the resultant mixture with iodine to starch end point. Always use a blank having 25 ml of periodate with your sample set and take 15 aliquot of this blank for subsequent titration.

Report results as millimoles of periodate consumed per gram of soil.

I. Procedure for the determination of mica in soil clays

- 1. A 100 mg clay sample that has been freshly treated with NaOAc buffer pH 5, ${\rm H_2O_2}$ and NaOAc pH 7 is placed in a 15-ml centrifuge tube.
- 2. Wash five times with $1 \frac{M}{4} (NH_4)_2 CO_3$.
- 3. Transfer to a tared platinum crucible with water and dry overnight at 110° C.
- 4. Weigh crucibles after cooling 5 minutes in desiccator.
- 5. To the sample add several drops of water, .5 ml 60% perchloric acid and 5-10 ml bydrofluoric acid.
- 6. Cover 9/10 of crucible with platinum lid and place on 200-240°C sand bath and evaporate to dryness.
- 7. Repeat steps 5 and 6.
- 8. Remove and cool crucible.
- 9. Add 5 ml of 6 \underline{N} HCl to the crucible and place on a porcelain plate and return to the 240° C hot plate for 1/2 hour.
- 10. Remove and cool for 10 minutes.
- 11. Transfer contents of crucible to 100-ml volumetric flask and dilute to volume with distilled water.

- 12. Determine K with flame photometer.
- 13. % mica = $\% \text{ K}_{2}0 \times 10$.

J. Determination of quartz plus feldspar content of soil clays

- 1. Weigh 0.200 g of dried clay sample into a 50-ml vitreous silica crucible containing about 5 g NaHSO $_{\rm h}$ (fused).
- 2. Mix sample with salt then add 7-10 g of NaHSO $_{l_4}$ (fused).
- 3. Fuse under hood.
- 4. Transfer cake to 150-ml beaker with 3 \underline{N} HCl (approximately 60 ml) boil gently then transfer suspension to centrifuge tubes. Centrifuge and discard solution.
- 5. Wash 2 times with 3 N HCl.
- 6. Transfer residue from tube with 0.5 \underline{N} NaOH to Ni-beaker. Make up to 100 150 ml of 0.5 \underline{N} NaOH.
- 7. Bring suspension rapidly to boiling, boil for 25 minutes and cool in ice bath.
- 8. Transfer to plastic centrifuge tubes with 3 $\underline{\text{N}}$ HCl and centrifuge.
- 9. Transfer residue to weighed 18-ml centrifuge tubes.
- 10. Wash 3 times with 3 N HCl.
- 11. Dry at 110° C and weigh. Residue is amount of quartz plus feldspar in the sample.

APPENDIX C

CORRELATION MATRIX OF SURFACE SOIL AND SUBSOIL VARIABLES

Table 16. CORRELATION MATRIX OF SURFACE SOIL VARIABLES (coefficient of correlation - r)

4 1.00004994725384218 5 1.0000 .7851 .4693 .2 6 1.0000 .8265 .4	9012701 085 .5452 2005317 565 .0602 904 .1402 501 .2599
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9012701 085 .5452 2005317 .0602 904 .1402 .501 .2599
3 1.00009214 .5187 .7836 .9162 .964	.5452 2005317 565 .0602 904 .1402 501 .2599
4 1.0000 4994 7253 8421 8 5 1.0000 .7851 .4693 .2 6 1.0000 .8265 .4	2005317 565 .0602 904 .1402 501 .2599
4 1.0000 4994 7253 8421 8 5 1.0000 .7851 .4693 .2 6 1.0000 .8265 .4	.0602 904 .1402 501 .2599
5 1.0000 .7851 .4693 .2 6 1.0000 .8265 .4	.1402 .501 .2599
6 1.0000 .8265 .49	.2 599
	.2 599
8 1.00	
x_{10} x_{11} x_{12} x_{13} x_{14} x_{15} x_{15}	16 ^X 17
,	249 .4995
3 .98768901703516354647317416	
	8860795
	.0639
6 .82767684632722583973217604	
7 .94978693713824034643270113	
8 .8813769858570622403936332	
9 .40683527241500151849148416	
10 1.00009039721417794718318119	
•	6010919
	0972315
•	989 .1215
14 1.0000023010	
	223 .7023
16	
	. X
2 .6151 .5657 .5883 .8069 .6728 .1885 .5	24 X ₂₅
· ·	779 .8138
• • • • • • • • • • • • • • • • • • • •	
0.000	
11 .1937 .4051 .5668 .0463 .0582 .307503	
120081 .2078 .368519931614 .244120	·
	.2462
	.1603
	975 .4623
10 0000 0404 0400 4/44 4	251 .2641
<u>17 .327521840600 .6464 .4703 .0713 .7</u>	.2915

Table 16 (continued). CORRELATION MATRIX OF SURFACE SOIL VARIABLES (coefficient of correlation - r)

X _i								
i	^X 18	x ₁₉	^X 20	X ₂₁	X ₂₂	X ₂₃	X ₂₄	X ₂₅
18	1.0000	.4827	.4557	.4686	.6553	.6244	.3043	.7113
19		1.0000	.8995	.1664	.2488	.4142	.0494	.5586
20			1.0000	.1428	.2738	.4808	.1179	.4703
21				1.0000	.6783	0405	.5725	.5755
22					1.0000	.2553	。3988	.5131
23						1.0000	0626	.3530
24							1.0000	.3937
	X ₂₆	^X 27	x ₂₈	x ₂₉	Х ₃₀	^X 31	X ₃₂	х ₃₃
2	.7750	.6714	.7344	.7782	.4822	.5746	5021	.8431
3	6665	 4717	4418	5266	4881	6326	.7889	5678
4	.4570	.2768	.2029	.2664	.3345	.4664	7166	.2608
5	3766	2534	2271	1413	2400	2263	.2780	2733
6	5384	3800	 3583	3615	3743	4642	.7144	4281
7	6121	4303	4120	4646	4518	5890	.9382	5106
8	6118	4514	4254	 5239	4409	5909	.6512	 5345
9	 3208	2030	1641	3322	2714	3665	.1086	3147
10	6662	4761	4507	 5115	4811	6207	.8393	5598
11	.4296	.2582	.1857	.2163	.3058	.4293	7662	.2142
12	.1817	.0566	0384	0187	.1372	.2297	6472	0712
13	.1632	.1915	.0280	.2740	0167	.1256	3032	.1483
14	.3762	.3130	.2815	.2606	.1331	.1633	4419	.1836
15	.3641	.4350	.3421	.6492	.0591	.0731	 3385	.2855
16	.0710	.2804	.0533	.5085	1621	0906	 2572	.0351
17	.4016	.6505	.4805	.4686	1726	2014	 1878	.1108
18	.3380	.3333	.2931	.5395	.2456	.4846	4017	.6353
19	.3666	.0920	.2106	.3066	.7468	.9986	4731	.8625
20	.5279	.2727	.2420	.3916	.6648	.9216	5644	.7945
21	.6702	.7022	.8114	.6916	.1004	.1653	3101	.4657
22	.6302	.6899	.6162	.5431	.0261	.2545	2173	.5019
23	.0409	0253	 2035	.3790	.2781	.4269	3976	.3363
24	.3906	.6313	.4207	.3237	 0755	.0583	1688	.3223
25	.3640	.2740	.3505	.6972	.4384	.5539	 3259	.8378
26	1.0000	.7908	.7262	.5841	.2768	.3903	4690	.5328
27		1.0000	.7303	.5285	1327	.1151	3672	.3188
28			1.0000	.5025	.0987	.2167	- .3441	.4387
29				1.0000	2950	.3203	4686	.5528
30					1.0000	.7449	3792 - 4894	.6953
31						1.0000	4894 1.0000	.8636 - 4113
32							1.0000	4113 1.0000
33								1.0000

Table 16 (continued). CORRELATION MATRIX OF SURFACE SOIL VARIABLES (coefficient of correlation - r)

X								
i	X ₃₄	^X 35	^X 36	^X 37	х ₃₈	^X 39	Knomo	Kobs
2	.7314	.8966	.7048	.8648	5688	.1371	0215	.0564
3	5186	5 005	~. 3747	5343	.9196	8474	6229	6801
4	.2772	.1750	.1372	.2510	8497	.9761	.7828	.8179
5	2623	1907	1763	2741	.6158	5044	4414	4408
6	4011	3631	2906	4297	.8922	6968	6397	6393
7	4757	4291	3368	4934	.9847	 7876	7103	7167
8	4933	5050	~.3824	5141	.7197	7499	4210	5220
9	2405	2840	1405	2142	. 2435	4167	1878	2606
10	5200	4922	3820	5421	.9565	8454	6436	6923
11	.2498	.1267	.1186	.2271	8816	.9807	.8208	.8425
12	.0105	1544	~.0907	~.0388	7239	.9503	.8592	.8577
13	.0234	.1651	.0215	.1333	23 85	.0507	.3632	.3324
14	.1878	.2042	.2398	.3382	4634	.3887	.5615	.6379
15	.1829	.7 705	.5037	.4609	2413	。0142	2149	0906
16	1015	.5793	.2615	.1907	0787	0067	2000	1074
17	.1825	.7103	.6432	.6130	0903	1582	3094	1658
18	.3837	.6491	.3117	.4290	 3795	.1218	0781	0357
19	.6027	.3262	.0615	.2837	5488	.3712	.2374	.1930
20	.5579	.4150	.1243	.3641	6734	.5363	.3653	.3516
21	.6083	.7969	.8459	.8606	3186	0353	 1839	0700
22	.5416	.7175	.6601	.7202	 2761	0032	1782	0980
23	0247	.3414	1479	0632	3179	.2532	.0969	.0916
24	.2203	.6575	.5316	.6168	1 695	0876	1674	0459
25	.4528	.7685	.3334	.4943	3275	1215	1890	1839
26	.6274	.6650	.6878	.8244	6203	.3882	.2216	.3150
27	.5199	.6800	.7643	.8877	4340	.2072	.0733	.1790
28	.8589	.6216	.9591	。9351	4124	.1298	0018	.1199
29	.4002	.8293	.5471	.6283	4424	.1187	0056	.0570
30	.4033	.2449	0322	.1247	- .4503	.2661	.1394	.1112
31	.6038	。3406	.0698	.2966	5700	.3954	.2556	.2145
32	3784	4048	2973	4231	.8920	6467	6540	6553
33	.7045	.6588	.3410	.5554	 5094	.1469	.0002	.0062
34	1.0000	.5007	.7278	. 7899	4761	.2012	.0595	.1167
35		1.0000	.7068	.7891	4205	.0324	1821	0671
36			1.0000	.9237	 3353	.0583	1023	.0548
37				1.0000	4943	.1554	.0035	.1226
38					1.0000	8021	7208	7264
39						1.0000	.7991	.8251
Knor	no						1.0000	.9555
Kobs	S							1.0000
						·		

Table 17. CORRELATION MATRIX OF SUBSOIL VARIABLES (coefficient of correlation - r)

								
X _i								
i	x ₂	х ₃	Х ₄	x ₅	х ₆	^X 7	х ₈	x ₉
2	1.0000	8208	.1080	 7942	8072	7957	8087	8177
		1.0000	 6513	.9098	.9956	.9950	.9955	.9615
4 5			1.0000	5174	6619	6711	6523	6062
5				1.0000	.9073	.8871	.9384	.7 812
6					1.0000	. 99 7 5	.9910	.9466
7						1.0000	.9890	.9534
8							1.0000	.9338
	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	^X 15	х ₁₆	X ₁₇
2	8077	2879	7 977	а	a	.6722	.8139	.0668
3	.9957	3032	.3257	а	а	3275	5760	1109
4	6552	.9127	.5030	а	а	3885	1299	.0225
5	.9373	2321	.3759	- a	а	3959	5405	4380
6	.9949	3238	.3014	а	а	3218	5858	0852
7	.9918	3316	.2915	а	а	3311	5954	0734
8	.9991	3187	.3165	а	a	3477	5727	1970
9	.9320	2282	.3530	а	a	2660	5404	.0952
10	1.0000	3232	.3109	а	а	3425	5779	1781
11		1.0000	.7971	а	а	6123	4368	.0764
12			1.0000	а	а	8386	7 990	0925
13				а	a	а	a	a
14					а	а	а	а
15						1.0000	.9093	.2669
16							1.0000	.0711
	x ₁₈	x ₁₉	^X 20	x ₂₁	x ₂₂	X ₂₃	x ₂₄	x ₂₅
2	.2299	1142	1872	.3952	.4175	.5925	.7584	.6367
3	2092	0967	3392	1860	3784	3463	5708	6496
4	.0748	.4353	.8099	3006	.0581	1274	0849	.3594
5	3739	.1029	1748	2320	4878	0863	6532	5250
6	1582	0826	3306	1473	3050	3571	5534	6058
7	1468	0722	3710	1737	3185	3598	5552	5997
8	2558	0408	3527	2071	4233	2683	5917	6214
9	1444	2545	3157	1658	3347	5156	4975	7441
10	2274	0421	3412	1895	3866	2834	5855	6068
11	.0175	.4021	.8291	4533	1009	4209	3596	.0577
12	1515	.4028	.6107	6098	3901	5581	7571	3171
13	a	a	a	.0070 а	. 3701 a	a	a	a
14	a	a	a	a	a	a	a	a
15	.1754	7333	 3058	.6850	.4344	.3150	.778 9	.0838
16	0689	5639	2223	.6195	.2496	.5454	.8304	.1679
17	.4510	5731	.0708	.4969	.6598	7284	.4855	1839
			· · · · · · · · · · · · · · · · · · ·					

Table 17 (continued). CORRELATION MATRIX OF SUBSOIL VARIABLES (coefficient of correlation - r)

X								
i	X ₁₈	^X 19	x ₂₀	^X 21	X ₂₂	X ₂₃	x ₂₄	^X 25
18	1.0000	.0692	.2065	0588	.7571	3335	.0165	.5931
19		1.0000	.2402	7033	2438	.2427	6116	.5581
20			1.0000	1739	.2244	3458	2327	.1940
21				1.0000	.5613	.0170	.8505	.1584
22					1.0000	2811	.5173	.4589
23						1.0000	.2107	.4213
24						_,	1.0000	.0973
	X ₂₆	^X 27	х ₂₈	Х ₂₉	X ₃₀	^X 31	x ₃₂	х ₃₃
				29	30	31	32	
2	.8904	.8554	.7 571	.7660	.9109	1237	 7768	.5699
3	 6985	7438	6262	5124	6491	1158	.9674	6883
4	.0231	.1354	.0310	1001	0424	.4776	 6428	.5353
5	8104	8803	6492	5687	5055	.0906	.9717	5319
6	7168	7605	 6457	4610	6367	1015	.9690	6689
7	6884	7349	6404	4492	6320	0936	.9601	6508
8	7126	 7715	6287	5191	6030	0616	.9851	6436
9	5899	6013	 5506	5286	 7451	2696	.8644	7860
10	7229	7789	6407	4981	6057	0622	.9854	6437
11	2747	1431	 2450	 3940	4348	.4461	3428	.2514
12	7329	6433	 6561	7210	 7979	.4335	.2866	 1369
13	а	а	а	а	a	а	а	а
14	a	a	а	а	а	а	а	а
15	.7177	.6975	.6853	.5706	.5813	 7399	3563	1870
16	.8225	.7877	.8729	.4717	. 7 455	 5682	5465	٥537 ،
17	.2362	.3672	.2226	.1974	3181	 5594	2926	3282
18	.1540	.2335	2 808	.7394	.0725	.0807	3265	.2541
19	3614	4003	5192	0007	.0785	.9982	.0189	.7380
20	3198	1784	 2604	1563	2 928	.2973	3396	.1569
21	.3300	.3429	.6317	.2589	.2503	7024	1604	323 9
22	.2462	.3352	.1335	.7209	.1915	2261	 4295	.1222
23	.4052	.2564	.4082	.2968	.8549	.2176	1624	.4967
24	.7588	.7671	.9007	.4639	•5458	6157	5726	.0198
25	.3349	.3219	.0106	.7890	.6669	.5608	 5 7 58	.8836
26	1.0000	.9820	.8330	.5911	.7188	37 50	7471	.3158
27		1.0000	.8139	.5765	.6212	4047	8208	.2852
28			1.0000	.2449	. 599 7	5266	 6085	.0907
29				1.0000	.7003	0102	5186	.4974
30					1.0000	.0593	5293	.6148
31						1.0000	0022	.7 355
32							1.0000	5864
			· · · · · · · · · · · · · · · · · · ·	·				

Table 17 (continued). CORRELATION MATRIX OF SUBSOIL VARIABLES (coefficient of correlation - r)

i X34 X35 X36 X37 Knomo Kobs 2 .6723 .8424 .8040 .8831 7682 7842 3 7675 5173 5136 7386 .3271 .4579 4 .4886 2385 2132 .0758 .4850 .2054 5 6072 4252 4345 7716 .4431 .3101 6 7846 5179 5199 7503 .3058 .4238 7 7690 5257 5309 7397 .2966 .4216 8 7202 4917 4948 7425 .3397 .4026 9 8165 5543 55254 6633 .2951 .6108 10 7378 4560 5007 7511 .3322 .3986 11 .1785 5768 5310 2481 .7453 .5653 12 2673 8782	X _i						
37675517351367386 .3271 .4579 4 .488623852132 .0758 .4850 .2054 56072425243457716 .4431 .3101 67846517951997503 .3058 .4238 77690525753097397 .2966 .4216 87202491749487425 .3397 .4026 98165554352546633 .2951 .6108 107378456050077511 .3322 .3986 11 .1785576853102481 .7453 .5653 122673878283927283 .9703 .8071 13 a a a a a a a a a a a a a a a a a a a		X ₃₄	X ₃₅	X ₃₆	^X 37	Knomo	Kobs
4 .488623852132 .0758 .4850 .2054 56072425243457716 .4431 .3101 67846517951997503 .3058 .4238 77690525753097397 .2966 .4216 87202491749487425 .3397 .4026 98165554352546633 .2951 .6108 107378456050077511 .3322 .3986 11 .1785576853102481 .7453 .5653 122673878283927283 .9703 .8071 13 a a a a a a a a a a a a a a a a a a a				.8040	.8831	7682	7842
5	3	 7675	- .5173	5136	 7386	.3271	.45 7 9
67846517951997503 .3058 .4238 77690525753097397 .2966 .4216 87202491749487425 .3397 .4026 98165554352546633 .2951 .6108 107378456050077511 .3322 .3986 11 .1785576853102481 .7453 .5653 122673878283927283 .9703 .8071 13 a a a a a a a a a a a a a a a a a a a		.4886	 2385	2132	.0758	.4850	.2054
77690525753097397 .2966 .4216 87202491749487425 .3397 .4026 98165554352546633 .2951 .6108 107378456050077511 .3322 .3986 11 .1785576853102481 .7453 .5653 122673878283927283 .9703 .8071 13 a a a a a a a a a a a a a a a a a a a	5	6072	4252	4345	7716	.4431	.3101
8	6	7846	 5179	5199	- .7503	.3058	.4238
98165554352546633 .2951 .6108 107378456050077511 .3322 .3986 11 .1785576853102481 .7453 .5653 122673878283927283 .9703 .8071 13 a a a a a a a a a a a a a a a a a a a	7	7 690	- .5257	 5309	7397	.2966	.4216
10	8	7202	4917	4948	- 。7425	.3397	.4026
11	9	8165	- .5543	 5254	6633	.2951	.6108
12	10	- .7378	4560	5007	7 511		.3986
13 a a a a a a a a a a a a a a a a a a a	11	.1785	 5768	5310	2481	.7453	.5653
14 a a a a a a a a a a a a a a a a a a a	12	2673	8782	8392	7283	.9703	.8071
15	13	а	а	a	а	а	а
16 .4085 .9536 .9819 .8976 8277 5917 17 2943 1435 0655 .2299 2867 .3037 18 3000 0700 1557 0768 2401 .0253 19 .3515 3772 4863 4313 .5728 1317 20 0205 3453 3113 2384 .5413 .4297 21 0053 .5356 .6131 .5643 6740 3824 22 1511 .1946 .1775 .2541 4856 2204 23 .6385 .7390 .6673 .4475 3796 8177 24 .3828 .7329 .7927 .9010 8160 5390 25 .4653 .3090 .1820 .2233 2266 5823 26 .5581 .7660 .7661 .9262 7719 5183 27 .5088 .6849 .6999 .9100 7185 3969 28 .6118<	14	а	а	a	а	а	а
17	15	.0277	.8570	.8749	.7270	9177	- 。455 7
18 3000 0700 1557 0768 2401 .0253 19 .3515 3772 4863 4313 .5728 1317 20 0205 3453 3113 2384 .5413 .4297 21 0053 .5356 .6131 .5643 6740 3824 22 1511 .1946 .1775 .2541 4856 2204 23 .6385 .7390 .6673 .4475 3796 8177 24 .3828 .7329 .7927 .9010 8160 5390 25 .4653 .3090 .1820 .2233 2266 5823 26 .5581 .7660 .7661 .9262 7719 5183 27 .5088 .6849 .6999 .9100 7185 3969 28 .6118 .7754 .8461 .9703 6825 5148 29 .1785 .5586 .4568 .4497 7159 6279 30 .6696 <td>16</td> <td>.4085</td> <td>.9536</td> <td>.9819</td> <td>.8976</td> <td>8277</td> <td>5917</td>	16	.4085	.9536	.9819	.8976	8277	5917
19	17	2943	 1435	~.0655	.2299	2867	.3037
20	18	3000	0700	1557	0768	2401	.0253
21	19	.3515	 3772	4863	4313	.5728	1317
221511	20	0205	 3453	3113	2384	.5413	.4297
23	21	0053	.5356	.6131	.5643	 6740	3824
24	22	1511	.1946	.1775	.2541	 4856	2204
25	23	.6385	.7390	.6673	.4475	3796	8177
26	24	.3828	.7329				
27	25	.4653	.3090				
28	26	.5581	.7660				
29	27	.5088	.6849				
30		.6118					
31		.1785					
32		6696 ،					
33 .7513 .1914 .0872 .250500015543 34 1.0000 .4544 .4425 .646914736065 35 1.0000 .9854 .822684197743 36 1.0000 .861382616991 37 1.000075235908 nomo 1.0000 .6556							
34 1.0000 .4544 .4425 .646914736065 35 1.0000 .9854 .822684197743 36 1.0000 .861382616991 37 1.000075235908 nomo 1.0000 .6556	32	6494	4371				
35 1.0000 .9854 .822684197743 36 1.0000 .861382616991 37 1.000075235908 nomo 1.0000 .6556	33	.7513	.1914	=			
36 1.0000 .861382616991 37 1.000075235908 nomo 1.0000 .6556		1.0000					
37 1.000075235908 nomo 1.0000 .6556	35		1.0000				
nomo 1.0000 .6556	36			1.0000			
	37				1.0000		
1 0000	Knomo					1.0000	
obs I.0000	Kobs						1.0000

a Coefficient of correlation could not be computed because of missing data.

TECHNICAL REPORT DATA (Please read Instructions on the reverse before a	a mulatinal
1. REPORT NO. 2. EPA-660/2-74-043	3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE Prediction of subsoil erodibility using chemical, mineralogical and physical parameters	5. REPORT DATE June 1974 6. PERFORMING ORGANIZATION CODE Purdue Research Foundation
7. AUTHOR(S) Charles B. Roth, Darrell W. Nelson, Mathias J. M. Römkens	8. PERFORMING ORGANIZATION REPORT NO. 5460
9. PERFORMING ORGANIZATION NAME AND ADDRESS Purdue Research Foundation Executive Building West Lafavette Indiana 47907	10. PROGRAM ELEMENT NO. 1BB042 11. CONTRACT/GRANT NO. 15030 HIX
West Lafayette, Indiana 47907 12. SPONSORING AGENCY NAME AND ADDRESS Office of Research and Development	13. TYPE OF REPORT AND PERIOD COVERED Final
U.S. Environmental Protection Agency Washington, D.C. 20460	14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES	

16. ABSTRACT

This report presents evidence that the surface soil erodibility prediction nomograph (Wischmeier et al., 1971) which uses terms involving soil particle size, organic matter, structure and permeability. could not be improved upon by consideration of other mineralogical and chemical parameters. However, the surface soil erodibility nomograph did not adequately predict the soil erodibility factor, K, of high clay subsoils studied in the field under simulated rainfall conditions as a part of this project. A multiple linear regression equation and nomograph were developed which can be used to estimate the erodibility factor, K, of many high clay subsoils. The subsoil erodibility nomograph uses terms involving soil particle size distribution and the amount of amorphous hydrous oxides or iron, aluminum, and silicon in the soil. Multiple regression analysis revealed that amorphous iron, aluminum and silicon hydrous oxides serve as soil stabilizers in subsoils, whereas, organic matter is the major stabilizer in surface soils.

Evidence is presented to show that soil erodibility from semi-compacted fill and scalped subsoil surface conditions were essentially identical. It is reported that the scalped condition is the best standard soil surface to base the calculation of the erodibility factor for subsoils.

It is suggested that a soil-management factor should replace the cropping-management factor in the Universal-Soil-Loss Equation when the Equation is used to predict subsoilaters on the Universal-Soil-Loss Equation when the Equation is used to predict subsoilaters on the Universal-Soil-Loss Equation when the Equation is used to predict subsoilaters on the Universal-Soil-Loss Equation when the Equation is used to predict subsoilaters on the Equation is used to predict subsoilaters of the Equation is used to

b. IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group
19. SECURITY CLASS (This Report)	21. NO. OF PAGES 123
20. SECURITY CLASS (This page)	22. PRICE
	19. SECURITY CLASS (This Report)