Technical Report

CO/CO2 NDIR Analyzer Replacement

bу

Aaron D. McCarthy and Carl J. Ryan

April, 1990

NOTICE

Technical Reports do not necessarily represent final EPA decisions or positions. They are intended to present technical analysis of issues using data which are currently available. The purpose in the release of such reports is to facilitate the exchange of technical information and to inform the public of technical developments which may form the basis for a final EPA decision, position or regulatory action.

U. S. Environmental Protection Agency
 Office of Air and Radiation
 Office of Mobile Sources
 Engineering Operations Division
 2565 Plymouth Road
 Ann Arbor, MI 48105

Technical Report

CO/CO2 NDIR Analyzer Replacement

bу

Aaron D. McCarthy and Carl J. Ryan

April, 1990

NOTICE

Technical Reports do not necessarily represent final EPA decisions or positions. They are intended to present technical analysis of issues using data which are currently available. The purpose in the release of such reports is to facilitate the exchange of technical information and to inform the public of technical developments which may form the basis for a final EPA decision, position or regulatory action.

U. S. Environmental Protection Agency
Office of Air and Radiation
Office of Mobile Sources
Engineering Operations Division
2565 Plymouth Road
Ann Arbor, MI 48105

Table of Contents

I.	Abstract	2
II.	Executive Summary	3
III.	Introduction	4
IV.	Preliminary Investigation	5
	Summary Test Description	6
٧.	First CO2 Comparison Study	
••		
	Summary Test Description Results/Observations/Conclusions Vehicle Exhaust Comparison Water Vapor Interference Investigation Analyzer Sensitivity to Barometer Changes	8 9 10
	Wet Precision	
VI.	Second CO2 Comparison Study	
	Summary Discussion of Analyzer Selections for Study Water Vapor Interference Investigation Vehicle Exhaust Bag CO2 Comparison Analysis of Vehicle Exhaust Bag CO2 Measurement Differences Description of Calibration Gases Used in the Study Calibration Curve Variability Background Level CO2 Measurement Comparison	13 14 15 17 18
VII.	EPCN Process Coordination/Implementation	21
viii.	Installation Chronology	21
	Gas Lab Light Duty E&D Heavy Duty	21 21
IX.	Other Changes	22
	Flow Rate Bench Plumbing Sample Analysis Correlation (SAC) Revision	22
x.	Overall Discussion of Study Results	23
	CO	
XI.	List Of Attachments	25

I. Abstract

The EPA Motor Vehicle Emissions Laboratory (MVEL) makes extensive use of gas analyzers employing nondispersive infrared (NDIR) technology for the determination of carbon monoxide (CO) and carbon dioxide (CO2) concentrations. The analyzers, primarily used for measurements of CO and CO2 in automotive emissions, are also used for ambient level measurements and gas standards procedures.

The MVEL has replaced all vehicle emission measurement system Bendix 8501-5C CO and MSA 202 CO and CO2 analyzers with Horiba Instruments, Inc., AIA-23 CO and CO2 analyzers. A total of 30 analyzers were purchased to upgrade the Light Duty, Heavy Duty, Evaluation & Development, and Master Sites.

This report summarizes the various evaluation and comparison testing performed as part of the analyzer procurement and the Equipment/Procedure Change Notice (EPCN #70) process. Included in this report is information that has already been released in EPCN #70, as well as additional information needed to completely document the project.

The Horiba CO analyzers were approved for MVEL use based on the pre-purchase test data supplied by Horiba and on the results of a preliminary in-house investigation of CO measurement differences between old and new analyzers.

The Horiba CO2 analyzers were approved for MVEL use based on the pre-purchase test data supplied by Horiba and on the results of an in-house CO2 measurement comparison study between old and new analyzers. The significant finding of the CO2 comparison testing indicated an average shift in CO2 measurements of -0.53% between Horiba and the MSA analyzers (average percent-of-point difference between corrected concentrations, Horiba reading lower). This result was obtained from statistical analyses of simultaneous measurements made on vehicle exhaust. Investigative testing indicated that water vapor interference occurring on the MSA analyzer was contributing to the observed CO2 measurement shift.

The results of the evaluation and comparison testing documented in this report and in EPCN #70 show that the Horiba NDIR analyzers meet the functional requirements and produce measurements comparable to the old analyzers.

II. Executive Summary

As early as 1984, the Engineering Operations Division had plans for a large scale NDIR analyzer replacement. Problems with the Bendix and MSA CO and CO2 analyzers, such as out-of-tolerance water vapor interference, electrical output noise, and other performance deficiencies, required an increasing amount of minor repairs. This situation, coupled with a decreasing amount of manufacturer support (e.g., some spare parts were no longer available) underscored the need for new analyzers. Funding for the new analyzers was obtained in 1986.

The analyzer procurement documented in this report resulted in the purchase of Horiba AIA-23 CO and CO2 analyzers. These analyzers were designed specifically for automotive emission applications and are used extensively by automotive manufacturers. This was not true of the MSA and Bendix analyzers which were designed for nonautomotive process control applications and ambient monitoring of hazardous locations, such as mineshafts.

The process of approving the new analyzers for MVEL use began with a review of results from performance testing required by the EPA procurement contract. The manufacturer was required to perform and document valid calibrations, water vapor interference checks (CO analyzers only), and determinations of repeatability, electrical output noise, curve nonlinearities, zero/span drift, and response times for each analyzer. The test results showed that all the analyzers demonstrated compliance with the prepurchase test criteria.

The EPA internal approval process called for preparation of an Equipment/Procedure Change Notice (EPCN) which documented significant effects on MVEL testing resulting from the analyzer replacement. A series of comparison tests was performed on the old and new analyzers to detect and quantify measurement differences. The final tests compared CO2 measurements very precisely on Range 23 (0-2.5%) only. CO analyzer comparisons were found to be acceptable during the preliminary investigation.

The results of the comparisons indicated that the Horiba analyzers used in the study exhibited better precision during calibration curve generation, decreased sensitivity to known interferants and changes in barometric pressure, reduced electrical output noise, and less zero/span drift than their comparison study counterparts.

The Horiba NDIR CO and CO2 analyzers were approved for use at MVEL based on the information contained in EPCN #70. This information was part of, but did not completely document, the overall project work. This report documents the entire NDIR CO and CO2 analyzer project. The EPCN #70 cover page is shown in Attachment A.

III. Introduction

The Laboratory Projects Group was assigned the task of coordinating the procurement of new NDIR CO/CO2 analyzers in June of 1986. All MVEL CO and CO2 analyzers used for bag analysis (bench mounted) were to be replaced. The primary reason for the procurement was that the MSA and Bendix NDIR analyzers were obsolete and some spare parts were no longer available. A total of 30 analyzers, including spares, were to be ordered. This included analyzers for Light Duty, Heavy Duty, E&D, and the Master Site. A table listing the number of CO and CO2 analyzers to be replaced, their locations, and ranges is shown in Attachment B.

Analyzers employing NDIR technology were researched from several manufacturers. A list of performance specifications and required salient features was compiled for the procurement documentation (see Attachment C). This list not only included specifications and desirable features resulting from the research of new analyzers, but also from CFR requirements and other EPA performance specifications. We wished to obtain documented verification of these parameters, so the performance specifications were defined and written in the form of test criteria to be met. More elaborate descriptions of the required performance tests (see Attachment C) were included in the procurement package to ensure valid measurements.

Beckman Industrial Corp., Horiba Instruments, Inc., Westinghouse/Maihak Div., and Combustion Engineering, Inc., were listed as suggested sources. These manufacturers were sent "Request for Quotation" documents which included our specifications. An advertisement was also listed for 30 days in The Commerce Business Daily to solicit additional bids. Horiba submitted the low bid of \$101,377.86 and was awarded the contract in August of 1986.

The process of approving the Horiba NDIR CO/CO2 analyzers for MVEL use began with a review of results from performance testing required by the EPA contract. Each analyzer had undergone three sets of performance tests, one for each range setting. The manufacturer was required to perform and document valid calibrations, water vapor interference checks (CO analyzers only), and determinations of repeatability, electrical output noise, curve nonlinearities, zero/span drift, and response times. The actual test specifications and results for the analyzers are listed in Attachment D. The test results showed that all the analyzers demonstrated compliance with the pre-purchase test criteria. Horiba was authorized to deliver the analyzers in March of 1987.

IV. Preliminary Investigation

Summary

Once the analyzers had been delivered, a preliminary investigation was performed to detect possible measurement differences between the Horiba analyzers and the MSA and Bendix analyzers being replaced. This investigation did not constitute a full measurement comparison, but did indicate where further study was warranted. The testing for this investigation took place in June of 1987.

Analyzer agreement on vehicle exhaust bag sets was studied as well as agreement on bags generated for the Sample Analysis Correlation (SAC) process (a mixture of cylinder gases blended together in a sample bag and then analyzed on all MVEL vehicle test sites as a diagnostic test). The data consisted of simultaneous measurements taken on old and new analyzers. Comparisons were performed on all ranges that were to be calibrated and actively used.

CO and CO2 measurement differences calculated from the SAC bag comparison data were used to generate means and confidence intervals on the means. In three of the five range comparisons, a statistically valid bias could not be discerned.

The data obtained from vehicle exhaust bag readings showed statistically valid biases. Both positive and negative biases were observed. The following two tables summarize the results of the preliminary investigation.

SAC Bag Comparison Results Statistics Computed For % Diff. % Diff = [(H.R. - O.A.R.)/O.A.R.] x 100 H.R. = Horiba Reading O.A.R. = Old Analyzer Reading

CO Range Comparisons	N	MIN	MAX	MEAN	SDEV	95% Conf.Interval
Horiba R18 vs. Bendix R17	9	-2.21	1.01	-1.03	0.98	$-1.79 \le \mu \le -0.28$
Horiba R18 vs. Bendix R19	4	-0.96	-0.04	-0.29	0.45	$-1.00 \le \mu \le 0.42$
Horiba R20 vs. MSA R20	1	-2.43	-2.43	-2.43		
CO2 Range Comparisons						
Horiba R22 vs. MSA R22	9	-1.6	0.25	-0.23	0.59	$-0.69 \le \mu \le 0.22$
Horiba R23 vs. MSA R23	5	-1.15	0.62	0.035	0.72	$-0.87 \le \mu \le 0.93$

Vehicle Exhaust Bag Comparison Results

Statistics Computed For % Diff.

% Diff = [(H.C.C. - O.A.C.C.)/O.A.C.C.] x 100
 H.C.C. = Horiba Corrected Concentration
O.A.C.C. = Old Analyzer Corrected Concentration

CO Range Compa	risons	N	MIN	MAX	MEAN	SDEV	95% Conf.Interval
Horiba R16 vs. H	Bendix R17	6	-4.36	-1.86	-2.75	0.93	$-3.72 \le \mu \le -1.78$
Horiba R18 vs. H	Bendix R19	6	-1.75	-0.53	-0.97	0.47	$-1.47 \le \mu \le -0.48$
Horiba R20 vs. 1	MSA R20	6	-5.08	-3.68	-4.4	0.56	$-4.99 \le \mu \le -3.81$
CO2 Range Comp	parisons				'		
Horiba R22 vs. 1	MSA R22	6	0.042	1.05	0.4	0.36	0.02 ≤ μ ≤ 0.78
Horiba R23 vs. 1	MSA R23	9	-0.09	1.55	0.61	0.56	$0.18 \le \mu \le 1.05$
Horiba R24 vs. 1	MSA R24	6	-1.32	-0.52	-1.03	0.32	$-1.36 \le \mu \le -0.69$

R16 = 0 - 100 ppm

R17 = 0 - 250 ppm

R18 = 0 - 500 ppm

R19 = 0 - 1000 ppm

R20 = 0 - 2500 ppm

R22 = 0 - 1.0%

R23 = 0 - 2.5%

R24 = 0 - 5.0%

Test Description

A special bench was constructed, containing a set of three Horiba NDIR analyzers (LCO, HCO, CO2). These analyzers were identical to those which would be installed in the certification test sites. The bench was tied into Site A202 so that simultaneous measurements could be made on the old and new analyzer pairs. The sample flow rate supplied to the Horiba instruments was adjusted to 3.0 SCFH, versus the 6.0 SCFH flow rate supplied to the old NDIR analyzers. The ranges used on the Horiba Low CO analyzer were R16 (0-100 ppm) and R18 (0-500 ppm), and were being compared to the Bendix analyzer's R17 (0-250 ppm) and R19 (0-1000 ppm) ranges, respectively. These changes were planned as part of the NDIR replacement, and therefore became a constraint on any comparison testing. Hardware provisions (voltmeter, strip/chart) were made to record analyzer output, and the Horiba analyzers were then calibrated.

Vehicle exhaust samples were generated using MVEL vehicles and standard driving schedules. The samples were measured simultaneously on corresponding analyzer pairs. To quickly check agreement at other portions of the analyzer ranges, the exhaust samples were repeatedly diluted and remeasured. The initial background reading was used to correct the initial and subsequently diluted sample readings. In general, agreement on corresponding ranges of each analyzer pair was measured at six different points, the only exception being CO2 Range 23 (0-2.5%), where nine points along the range were compared.

Simultaneous SAC bag readings were taken on the old and new analyzers during the normal SAC schedule rounds. Readings from the Horiba analyzers were compared to those from the old analyzers but were not included in the calculated SAC statistics.

Results/Observations/Conclusions

The preliminary investigation data indicated that small but statistically valid measurement differences existed between the old and new NDIR analyzers. The measurement biases were observed primarily on analyses of vehicle exhaust. One valid bias was observed in the SAC bag analyses. The measurement differences are documented in the tables shown in the summary.

The CO measurement comparisons performed on vehicle exhaust during the preliminary investigation documented mean differences that ranged from approximately -1.0% to -4.0% of point. However, the CO comparison data set needs some further qualifying.

Two of the three range comparisons were interrange, meaning that the comparisons were between different ranges. This reflected the proposed CO range changes.

The largest mean difference was observed in the CO (Range 20) comparison. The MSA high CO analyzer was found to exhibit an unacceptable amount of water vapor interference during a follow-up test. This meant that the instrument was giving abnormally high responses to humid samples. Since in the high CO comparison the MSA was reading higher than the Horiba, we concluded that we could expect somewhat better analyzer agreement between the two MVEL high CO analyzer populations.

The primary goal of the preliminary investigation and the subsequent comparison studies was to document measurement differences between MSA/Bendix and Horiba NDIR analyzers. More specifically, we were interested in the possible impact on fuel economy determination. Since fuel economy calculations are relatively insensitive to changes in CO measurement, it was concluded that the results of the preliminary investigation were fully adequate for operational approval of the Horiba CO analyzers.

Conversely, because of the "large role" of CO2 in fuel economy determination, we felt that the CO2 data were insufficient to completely quantify the possible impact. We decided that a more tightly controlled CO2 comparison study was warranted.

V. First CO2 Comparison Study

Summary

A comparison study of CO2 analyzer agreement was designed, and the Calibration and Maintenance Group began taking data in December of 1987. The study focused on a comparison of several vehicle exhaust bag sets. Procedures and precautions used for the control of the study included taking simultaneous readings (calibrations, zero/span, sampling) on both analyzers, daily curve checks at mid-span, and analyzer plumbing dimensions and components as similar to production test benches as possible.

Statistically valid measurement biases between the analyzers were again observed while measuring vehicle exhaust. This contrasted with very good agreement observed during calibration curve generation. We began to suspect that water vapor interference was contributing to the change in agreement between the two situations.

Data was taken in an attempt to discern and characterize any water vapor interference. Water vapor interference data was taken not only on the study analyzers, but also on several other MVEL MSA and Horiba NDIR CO2 analyzers (total: 5 MSA and 4 Horiba analyzers). The data indicated that the MSA analyzer used in the first study had an abnormally high and unrepresentative response to water vapor. This finding compromised the validity of the vehicle exhaust data by implying that the measurement bias observed was larger than, and unrepresentative of, the true bias. However, an attempt was made to correct the vehicle exhaust comparison data based on the water vapor interference data. Correction factors were developed for each CO2 range and applied to the vehicle exhaust data.

The data from the study were incorporated into a first draft package for the EPCN process. The draft EPCN was then circulated for comments. After reviewing the returned comments, we decided that a second comparison study would have to be performed using an MSA analyzer more representative of the MSA analyzer "population." Portions of the study remained valid, however, and for that reason we felt a description of the study was warranted here.

Test Description

The setup consisted of a pair of Horiba and MSA CO2 analyzers in a special module (19" rack) tied into the analyzer bench located on Site A002. The two CO2 analyzers were plumbed in parallel to make simultaneous measurement possible. Care was taken to ensure that line lengths and related components (valves, etc.) were as similar to the production testing benches as possible. The supplied flow rates were, as before, 6.0 SCFH to

the MSA and 3.0 SCFH to the Horiba. All calibration gas and sample readings were taken with calibrated digital voltmeters. All readings (calibration gases, zero/span gases, sample/background gases) were taken simultaneously on both analyzers. Curves were generated on all three ranges of each analyzer.

The study compared several vehicle exhaust bag sets. Repeated readings of the bag sets were taken on each analyzer to estimate the precision of the instruments when measuring vehicle exhaust. A mid-span CO2 cylinder was read daily, following zero/span procedures, to detect curve shifts. The curve shift data was later used to provide comparisons of accuracy and sensitivity to changes in barometric pressure.

Data was also generated on all bench-mounted NDIR CO2 analyzers to discern and characterize any water vapor interference. A total of five MSA and four Horiba CO2 analyzers were included in the water vapor interference investigation. The data was generated by routing CO2 calibration gases through a bubbler apparatus and into the analyzers. This allowed us to make observations over the entire curve instead of only around zero as in the standard CFR interference check.

Results/Observations/Conclusions

Vehicle Exhaust Comparison

The data from the vehicle exhaust comparisons indicated that the Horiba CO2 analyzer was giving consistently lower measurements. Because of the results of the water vapor interference investigation, the validity of the vehicle exhaust comparison was suspect. However, an attempt was made to correct the vehicle exhaust data using correction factors developed from the water vapor interference data. The correction factors were ratios of the water vapor responses of the "abnormal" MSA analyzer and the average water vapor responses of the "normal" MSA analyzers. The results (correction factors applied) of the comparison are summarized below. This data was superseded by later exhaust comparisons.

Vehicle Exhaust Bag CO2 Comparison %Diff. = [(Horiba Corr.Conc. - MSA Corr.Conc.)/MSA Corr.Conc.] x 100

	C02	Range	Compari	sons	N	Avg % Diff.	
	Horib	a R22	vs. MSA	R22	16	0.67	
}	Horib	a R23	vs. MSA	R23	18	0.04	
	Horib	a R24	vs. MSA	R24	12	-0.18	

R22 = 0 - 1.0%

R23 = 0 - 2.5%

R24 = 0 - 5.0%

Water Vapor Interference Investigation

Data was generated to investigate the possibility of water vapor interference occurring during the vehicle exhaust measurements. Each analyzer's response to a given "dry" calibration gas was compared to its response to the same gas passed through a bubbler. The sample was assumed to be in a saturated state after it had been bubbled.

An interference-free analyzer, when measuring a bubbled calibration gas, will return a measured concentration slightly less than the calibration gas's "named" concentration. This is due to the addition of water to the sample stream by the bubbler. Therefore, if an analyzer returns a measured concentration greater than the original "named" concentration, it is likely that water vapor interference is occurring. The magnitude of this interference is at least as great as the difference between the erroneously high reading and the true "named" concentration.

The results of the water vapor interference investigation are shown graphically in Attachment E. The graphs show the difference between the analyzer-measured concentration (bubbled) and original cylinder "name" (units = $\frac{200}{100}$) versus cylinder concentration (units = $\frac{200}{100}$). The following observations/conclusions were made on the basis of these data:

- 1. The responses of the Horiba CO2 analyzers, including the study analyzer, were tightly grouped. Water vapor interference, if it was occurring with the Horiba analyzers, was difficult to discern.
- 2. The responses of the MSA CO2 analyzers were tightly grouped, with the exception of the comparison study analyzer, which returned abnormally high responses. The positive offset of the MSA responses indicated a small amount of water vapor interference.
- 3. The negative slope of the plots was due to the concentration-lowering effect of the bubbler. The bubbler replaced a certain, consistent percentage of each sample with water. This percentage equated to a larger and larger absolute CO2 reduction as higher concentration gases were used.
- 4. The average offset between Horiba and MSA grouped responses was consistent and was not concentration- (or range-) dependent.
- 5. The MSA CO2 analyzer used in the first study gave unrepresentative responses when compared to the other MSA responses.

Analyzer Sensitivity to Barometric Changes

The effect of changes in barometric pressure on analyzer readings was studied to see if any correlation existed. A midspan secondary cylinder was repeatedly read on each range of each CO2 analyzer over the 21-day study period. Readings were obtained over a barometric pressure range of 28.5 to 29.25 "Hg. The analyzer readings from each range were regressed against barometer readings. In this way, we planned to see if analyzer readings changed as the barometer changed.

The Horiba CO2 analyzer showed a very low correlation coefficient between reading changes and barometric changes, and we concluded that no correlation existed at the 95% confidence level. A correlation may have existed at lower confidence levels, but this was not investigated.

The MSA CO2 analyzer studied did show a valid correlation, at the 95% confidence level, between reading changes and barometric changes. The results are shown in Attachment F.

Wet Precision

The vehicle exhaust samples were also used to estimate analyzer precision. Duplicate measurements were made on each vehicle exhaust bag. Standard deviations were calculated on the duplicates. The standard deviations were then pooled together. The results are shown in Attachment G.

One other useful operational statistic was computed, and that was relative range. This statistic was calculated only for sample bag measurements generated on the Horiba CO2 analyzer and serves as a benchmark for future reference. The relative range data and calculations are shown in Attachment G. The average relative range of duplicates for Horiba CO2 Ranges 22, 23, and 24 turned out to be very consistent with values between 0.21% and 0.24% (of point). This meant that we could expect the Horiba CO2 analyzer used in the study to be capable of repeating measurements of vehicle exhaust to within 0.24%.

Curve Check Summary Statistics

A mid-span calibration gas was measured twice daily to flag possible curve shifts. No out-of-tolerance curve shifts were observed. The mid-span data was also used to check for analyzer sensitivity to changes in barometric pressure. The summary statistics and raw data are listed in Attachment H.

^{1.} Formula from EPA QAMS (3/30/84), Chapter 5, page 8.

^{2.} Formula from EPA QAMS (3/30/84), Chapter 5, page 1.

VI. Second CO2 Comparison Study

Summary

The effort to document measurement differences between old and new NDIR analyzers was, at this point, focused on the comparison of CO2 analyzers. A good portion of the comparison data from the previous study could not be relied upon due to the findings of the water vapor interference investigation. A second comparison study was designed and underwent a panel review by members of Facility Support Branch, Quality Control, Quality Assurance, Certification Branch, and Correlation & Engineering Services. The review group met several times and, as a consequence, several revisions to the design of the study were performed. It should be noted that the input from the interdivisional panel was an invaluable tool in clarifying what was needed for the EPCN process.

The Calibration and Maintenance Group began taking data for the second comparison study in August of 1988. The study again focused on a comparison of vehicle exhaust samples. Water vapor interference data was again taken, with several refinements added to the procedure. A controlled CO2 measurement comparison at background level concentrations was also performed.

Procedures and precautions used for the control of the study included representative analyzer selections, daily calibration curve generation, and water vapor mass measurement as well as all of the controls used in the previous study.

The second comparison study showed that the Horiba and MSA CO2 analyzers agreed very closely when measuring dry calibration gases. The Horiba demonstrated better precision than the MSA on dry (water vapor free) calibration gas readings.

A small bias was observed between Horiba and MSA CO2 analyzer readings taken from vehicle exhaust bags. The Horiba analyzer gave consistently lower readings than the MSA. The mean difference in analyzer readings was -0.53% (of the MSA corrected concentration).

The negative shift in the CO2 measurement produced a positive shift in calculated fuel economy. The magnitude of the positive shift was virtually equal to the magnitude of the CO2 shift (corrected concentration).

The water vapor interference data showed a similar negative bias (Horiba read lower), but the magnitude of this single effect would have only accounted for one-third of the bias in vehicle exhaust measurements. The interference data also displayed greater variability than the vehicle exhaust data.

We concluded that water vapor interference was contributing to the bias in vehicle exhaust CO2 measurements but that there were other factors involved. In addition, the nature of the interference data suggests that the MSA analyzer, not the Horiba, was exhibiting the water vapor interference. It should also be noted that the measured interference effects did not cause the analyzers to exceed the manufacturer's stated accuracy limits or CFR interference criteria, and both the MSA and Horiba analyzer groups could be termed "free" of water vapor interference.

The impact of the measurement shift documented in our controlled comparison may not be detectable in future production test results. The fact that a fuel economy determination may require eight CO2 measurements (four sample and four background for full confirmatory), combined with the normal variability experienced across the certification sites, will tend to mask a small measurement shift.

The study data underwent another review by QC/QA as part of the EPCN process. Most of the study data was incorporated into the final EPCN #70 package. Only minor questions and comments on the EPCN have been received at this time.

Discussion of Analyzer Selections for Study

The CO2 measurement comparison study involved two individual analyzers chosen to represent their respective analyzer groups. This section presents data that show each of the study analyzers is representative of its "population." Completely similar data on both analyzer groups did not exist; however, we felt the data presented here were sufficient to make the selections.

The information on the MSA analyzer group contains a SAC summary of MVEL MSA CO2 analyzers over a 7-month period leading up to the CO2 study, and the water vapor interference data for CO2 Range 23 (0-2.5%) generated during a preliminary water vapor sensitivity study (see Attachment I). The water vapor interference data was generated by reading secondary standards which had been flowed through a bubbler at room temperature.

The information on the Horiba CO2 analyzer group contains the water vapor interference data for CO2 Range 23 (0-2.5%) generated during the preliminary water vapor sensitivity study and the Horiba-supplied performance test results from pre-purchase compliance testing (see Attachment I).

The SAC data indicated that the MSA analyzer used in the comparison study (Site A002 CO2 analyzer) was representative of the other MSA analyzers. The mean deviations (from average) for the three MSA analyzers screened for the study were closely grouped over the 7-month SAC analysis period.

The water vapor interference data showed that the responses of the MSA analyzer used in the comparison study were closely grouped with the responses of the other MSA analyzers.

The performance test data and the water vapor interference data indicated that the responses of the Horiba analyzer used in the comparison study were closely grouped with the responses of the other Horiba analyzers.

Water Vapor Interference Investigation

Background

Previous studies on NDIR instruments, primarily CO instruments, showed that analyzer readings could be affected by the presence of water vapor in the sample. We suspected water vapor as the cause of CO2 measurement differences between Horiba and MSA analyzers observed during the previous study.

We wanted to quantify any possible water vapor interference effect by running a controlled experiment. Because we wished to use this information to help quantify a possible fuel economy measurement shift, the optimum data for such an investigation would come from actual vehicle exhaust samples; however, using actual exhaust samples was not practically feasible. CO2 and water vapor content are highly correlated in vehicle exhaust, which means high CO2 levels are generally observed in conjunction with high water vapor levels. This makes the water vapor interference statistically difficult to separate out. Also, actual exhaust data does not contain the low-to-moderate levels of water vapor needed to really quantify the interference effect.

CO2 measurements for the water vapor interference study were obtained by using calibration gases, and water vapor was added to the samples by using a "variable" bubbler apparatus. This consisted of a standard bubbler with a valve-controlled bypass added to vary the amount of water vapor added to the samples. This made it possible to cover much larger ranges of water vapor and CO2 content faster and more efficiently than with actual exhaust samples. This strategy produced a controlled, isolated measure of the water vapor influence.

Test Description

The test involved running the study calibration gases through a variable bubbler and into the Horiba and MSA CO2 analyzers simultaneously. A dew-point meter was put in line to measure the humidity content. A schematic of the setup is shown in Attachment J. The analyzers were simultaneously calibrated on a daily basis.

The study measured the analyzers' agreement on samples that had humidities ranging from essentially 0 grains/pound to more than 90 grains/pound. Gas concentrations were also controlled, and ranged from zero gas up to 2.4% CO2.

Data Handling

The matrix of data generated contained CO2 analyzer agree ent at various levels of water vapor content and CO2 concentration. Multiple linear regressions were performed to see if either water vapor content, CO2 concentration, or the cross-product of the two could account for the variations in analyzer agreement. A raw data table and analyzer agreement plot are shown in Attachment J.

Observations

Of all the regressions performed, a simple linear regression of analyzer agreement versus water vapor content, with a zero intercept, showed the best fit. Although the correlation coefficient squared (r^2) was still quite low, this regression was used later in the study to try and account for CO2 analyzer output differences observed on vehicle exhaust bag measurements.

Vehicle Exhaust Bag CO2 Comparison

Summary

Exhaust samples were collected from vehicles using standard driving cycles (2-Bag LA-4's, Highways). A total of 11 tests were run (see Attachment K). Sample and background bags were read simultaneously on both analyzers. The humidity of the bag sets was measured for possible correlation with the water vapor interference investigation data. The comparison results are shown in the table below and graphically in Attachment K. A raw data table is also shown in Attachment K.

VEHICLE EXHAUST CO2 COMPARISON RESULTS

Sample and Background Bag Comparison Results CO2 Analyzer Agreement (% of MSA Sample Pt.Diff.) $[((H - M)/M_S) * 100]$

	Min	Max	Mean	95%	Confidence Interval
Background	0.0072	-0.52	-0.20		$-0.33 \le \mu \le -0.07$
Sample	0.2045	-1.27	-0.69		$-0.88 \le \mu \le -0.50$

Corrected Concentration Comparison Results
CO2 Analyzer Agreement (% of Pt.Diff.)
[((H_{CC} - M_{CC})/M_{CC}) * 100]

	Min	Max	Mean	95%	Confidence	Interval
Corr. Conc.	-0.0226	-0.98	-0.5302		$-0.73 \le \mu \le $	-0.3 <mark>3</mark>

A small bias was observed between Horiba and MSA CO2 analyzer readings taken from vehicle exhaust bags. The Horiba analyzer gave consistently lower readings than the MSA. The mean difference in analyzer readings was -0.53% (of the MSA corrected concentration).

The negative shift in the CO2 measurement produced a positive shift in calculated fuel economy. The magnitude of the positive shift was virtually equal to the magnitude of the CO2 shift (corrected concentration).

Test Description

The study required a special setup in which a Horiba CO2 analyzer was connected in parallel with the MSA analyzer located on Site AOO2 (see Attachment K). The analyzers were calibrated simultaneously each day that study data was taken to randomize the effect of the calibration curve generation process. A special set of gases was used for the daily calibrations; however, the initial and final set of curves were generated with secondary standards for curve comparison purposes.

The supplied flow rate to the Horiba analyzer was 3.0 SCFH, 6.0 SCFH to the MSA analyzer. Digital voltmeters were used to measure the analyzers' output.

The vehicle exhaust CO2 comparison was limited to standard lab range 23 (0-2.5% CO2) only. We felt this was acceptable because of data indicating that Range 23 is used approximately 96% of the time on FTP and Highway analyses.

Other Data Handling

The analyzer agreement (CO2 corrected concentration differences) and CO2 concentration values were regressed against each other to see if a correlation existed. This was done to determine if changes in analyzer agreement were concentration dependent.

^{4.} Actual CO2 Range use data compiled by D. Garter. Analysis of 385 FTP and 366 Highway tests performed between 1/1/87 and 6/5/87 showed CO2 Range 23 (0-2.5%) used 99.5% on Bag 1, 89.3% on Bag 2, 99.5% on Bag 3 of FTP tests and 95.6% on Highway tests. (See memo dated 5/13/88 from D. Garter to J.T.White.)

Observations

The data showed a negative bias (Horiba read lower) of mean magnitude equal to -0.53% (of the MSA corrected concentration) between the Horiba and MSA CO2 analyzers. The observed bias was statistically valid (the 95% confidence interval on the mean did not include zero).

The humidity content of the sample bags was grouped between 60 and 75 grains/pound and the background bag humidities were grouped between 40 and 55 grains/pound (agreeing closely with the test cell measured humidity).

The variations in analyzer agreement could not be explained by variations in CO2 concentration. In each case the correlation coefficient was below the minimum level needed to establish that correlation exists at 95% confidence level ($r_{min}=0.602$). Analyzer agreement is simply reported in means and confidence intervals as a result. The calculated correlation coefficients were as follows:

Regressed Variables

Correlation Coeff.(r)

Corr.Conc. % F.S.Diff.s 0.11 vs. MSA Corr.Conc.(%CO2)

Corr.Conc. % pt.Diff.s 0.48 vs. MSA Corr.Conc.(%CO2)

Analysis of Vehicle Exhaust Bag CO2 Measurement Differences

Analysis Description

An attempt was made to account for the differences observed on vehicle exhaust bag CO2 measurements by calculating and removing the effect of water vapor interference. The calculations were based on what we had observed in the interference investigation.

The specific humidity raw data from the vehicle exhaust bag comparison were used with a regression equation developed from the water vapor interference investigation to calculate a concentration difference "K" (see Attachment L). The "K" values were then subtracted from the Horiba analyzer readings. New dilution factors, bag differences, and corrected concentration differences were then calculated.

Once the analyzer differences were "corrected" in this manner, new confidence intervals on the mean differences could be computed to see if they included zero.

Observations

The calculated water vapor effect only accounted for approximately one-third of the difference observed between Horiba and MSA CO2 readings on vehicle exhaust bags. The data still showed a statistically valid negative bias (Horiba read lower) of mean magnitude equal to -0.36% (of the MSA corrected concentration). This remaining difference could not be explained.

Description of Calibration Gases Used in the Study

At the Gas Lab's request, a separate set of calibration gases, as opposed to the Gas Lab's secondary standards, were used for the daily curve generation. Secondary standards were not depleted, and overlap of cylinder usage between the Gas Lab and the study was thus avoided. Cylinders for the study were procured by the Gas Lab and named off curves generated from secondary standards, making them equivalent to working gases,i.e., span gases.

Printouts documenting the daily calibration curve generation are listed in Attachment M. The printouts contain some notation in the operator comment section that needs clarifying:

BLINE = Initial curves generated with sec. standards
WORK = Curves generated with "working" standards
ENDSEC = Final curves generated with sec. standards
ENDWORK = Final curves generated with "working" standards

Calibration Curve Variability

Test Description

Daily calibration curves were generated simultaneously on both the study analyzers to measure response shifts and the resulting curve shifts (see Attachment M). The same curve fit parameters were used on both analyzers' curves. This process measured the individual variabilities of the two CO2 measurement systems as well as the variability of their agreement to each other. Response shifts and resulting curve shifts due to barometric pressure changes were, in effect, compensated for by the daily curve generation and therefore were not considered a factor during this study. A total of 10 curves were generated on

Range 23 (0-2.5%) of each analyzer. In addition, Range 22 (0-1.0%) on both analyzers was calibrated during two of the test days as part of the background level CO2 measurement comparison. The calibrations were generated with a special set of gases obtained for the study.

Data Handling

For each test day, the curve-generated CO2 concentrations for each calibration gas were compared back to the calibration gas "named" concentration. The results are shown in the following table and graphically in Attachment N. In addition, since the curve generation was performed simultaneously on both analyzers, the curve-generated concentrations for each cylinder were paired and differences calculated. The results are shown in the following table and graphically in Attachment N.

Calibration Curve Statistics
No. of Curves = 10

Cal. Cyl.	Horiba Avg	HOR - Cyl.	MSA Avg	MSA - Cyl.	HOR - MSA
Conc (%CO2)	Conc (%CO2)	Avg.%FS Diff	Conc (%CO2)	Avg.%FS Diff	Avg. %FS_Diff
2.3803	2.3800	-0.012	2.3807	0.016	-0.030
1.9123	1.9125	0.008	1.9120	-0.012	0.020
1.6013	1.6013	-0.004	1.6003	-0.040	0.036
1.2088	1.2100	0.048	1.2100	0.048	-0.001
0.9515	0.9504	-0.044	0.9514	-0.004	-0.040
0.7991	0.7984	-0.028	0.7986	-0.020	-0.007
0.4959	0.4962	0.012	0.4973	0.056	-0.045
0.4060	0.4063	0.012	0.4049	-0.044	0.056

Observations/Conclusions

Agreement of the Horiba and MSA calibration curve concentrations with the calibration gas "names" averaged to within $\pm 0.05\%$ of Full Scale and $\pm 0.06\%$ of Full Scale, respectively, at each calibrated point.

The overall variabilities (as expressed by ± 3 Standard Deviations) of the differences between the Horiba and MSA curve concentrations and the calibration gas "names" were within ± 0.11 % of Full Scale and ± 0.26 % of Full Scale, respectively, at each calibrated point.

The Horiba and MSA analyzers cal curve agreement was within $\pm 0.06\%$ of Full Scale, on the average, at each calibrated point.

The overall variability (± 3 Standard Deviations) of the difference between the two analyzers calibration curves was within $\pm 0.26\%$ of Full Scale at each calibrated point.

We concluded that analyzer agreement during the calibration process was excellent, and we could assume that the analyzers gave equivalent calibration results.

These data also demonstrated that the Horiba CO2 analyzer is quite capable of meeting CFR requirements and is much more precise than the MSA unit.

Background Level CO2 Measurement Comparison

Background

The first CO2 comparison study showed greater disagreement (on a percentage basis) of background bag measurements than on sample bag measurements taken between Horiba and MSA analyzers. It was not known if the disagreement was a characteristic of the background bag measurements or if it was a calibration curve disagreement. For this reason, an agreement check of the analyzers on background level, dry CO2 gases was included in this study.

Test Description

The test involved measuring the analyzers' responses to low level CO2 cylinder gases. Three cylinders were obtained from the Gas Lab for the study. On the first and last testing days of the study, two curves were generated on Range 22 (0-1.0%) and Range 23 (0-2.5%) of both analyzers, one using secondary standards, the second using the study calibration gases. Responses to the low level CO2 gases were taken and concentrations calculated from the various curves. In addition, responses to cylinders were taken daily on Range 23 (0-2.5%) and concentrations calculated from the daily curves. Since the responses were taken simultaneously on both analyzers, the readings were paired and differences were calculated. The results are shown Attachment O.

Observations

The differences in measured concentrations between the analyzers had an average of -0.011% of Full Scale (Range 23 or 2.5% CO2 FS).

The large percent differences on background bag measurements that were observed in the previous study were not observed in the background agreement data or the background bag comparison data of this study.

VII. EPCN Process Coordination/Implementation

Equipment replacements within the EOD production testing environment are subject to the Equipment/Procedure Change Notice, or EPCN, process. The work documented in this report, for the most part, was performed to address the objectives of that process.

Initially, the first investigations and comparisons were performed and the results, along with Horiba supplied performance data and other details of the procurement, were incorporated into an EPCN draft package. The package was released for comments in April of 1988. The comments received indicated that further comparison tests would have to be performed and, in addition, some consensus would have to be reached among the "customers" as to exactly what data would satisfy everyone.

In order to address this issue, an interdivisional panel was formed. The panel was made up of members of Facility Support Branch (FSB), Quality Control (QC), Quality Assurance (QA), Correlation & Engineering Services (C&ES), and Certification Branch. The panel's review of the test plan proposed by LPG helped optimize the plan's specific details. The second set of comparison tests were performed and the results underwent a follow-up review by the panel. No further testing was requested, and a second EPCN package was drafted and released for comments in October of 1988. Once the comments had been received, the EPCN package underwent a final review/revision process by members of FSB, QA and QC. The finalized version of EPCN #70 was signed off and released in February of 1989.

VIII. Installation Chronology

Gas Lab

The Gas Lab began using Horiba high CO and CO2 analyzers as of 7-16-87. The low CO analyzer will be replaced with a Horiba unit at a later date.

Light Duty

Site A001 was released for production testing on 1-19-89.

Site A002 was released for production testing on 4-11-89.

Site A003 was released for production testing on 6-15-89.

Site A004 is slated for NDIR replacement in June of 1990.

E&D

Sites A202 and A203 had Horiba analyzers installed in early 1988.

Heavy Duty

Site A009 had a new Horiba low CO analyzer installed in early

Other Changes

Several incidental and/or related changes were made to the analyzer benches as part of the NDIR replacement. These changes were included within the measurement comparisons, i.e., Horiba analyzers were operated under changed conditions, and therefore their combined impact on testing was observed and documented. The following sections discuss the changes.

Flow Rate

The normal flow rate to the CO and CO2 NDIR analyzers was changed from 6.0 SCFH to 3.0 SCFH. The change was made to relieve demand on the sample bench pump. This will allow easier flow balancing of the bench, allow the flow rate to another analyzer to be increased if needed, and lengthen the the life of the pump.

Bench Plumbing

Although no changes were made to the fundamental schematic of the sample bench, the actual placement of the plumbing was modified in a "housekeeping" effort. Valves and sample lines were moved to help standardize the layouts of the light duty benches. An updated schematic of the light duty benches is contained in Calibration and Maintenance Group files.

Sample Analysis Correlation (SAC) Revision

The CO range changes required a corresponding change in the CO concentrations generated for SAC. The lowest CO range is now R16 (0 - 100 ppm); this means that a larger range of CO concentrations must be generated by the SAC blender. Several changes were made to the SAC schedule in order to accomplish this, as follows:

- 1. The CO cylinder concentration was lowered from 1700 ppm to 800 ppm to obtain the low blended CO concentrations needed for Range 16 while maintaining the minimum blend time of 15 seconds.
- 2. The SAC schedule sequence for HC and NOX was rearranged to obtain blend time needed to generate CO concentrations for Range 20 (0-2500 ppm).

3. The previous SAC schedule checked CO Ranges 17, 19, and 20, a total of five, two, and one time(s), respectively. The new SAC schedule will check CO Ranges 16, 18, and 20, a total of four, three, and one time(s), respectively, during the 2-week SAC period. This is in response to a request by QC for more appropriate coverage of the CO ranges.

IX. Overall Discussion of Study Results

CQ

The CO measurement comparisons performed on vehicle exhaust during the preliminary investigations documented mean differences that ranged from approximately -1.0% to -4.0% of point. However, the CO comparison data set needs some further qualifying.

Two of the three range comparisons were interrange, meaning that the comparisons were between different ranges. This reflected the proposed CO range changes.

The largest mean difference was observed in the high CO (Range 20) comparison. The MSA high CO analyzer was found to exhibit an unacceptable amount of water vapor interference during a follow-up test. This meant that the instrument was giving abnormally high responses to humid samples. Since in the high CO comparison, the MSA was reading higher than the Horiba, we concluded that we could expect somewhat better analyzer agreement between the two high CO analyzer populations.

For these reasons, it was decided that further CO comparisons were not warranted and the Horiba NDIR CO analyzers were approved for use at MVEL based on the preliminary investigation and the pre-purchase performance test results.

CO2

During the course of the project, the focus of the CO2 investigation was narrowed to a comparison of CO2 measurements taken on Range 23 (0-2.5%) only.

The comparison study showed that the Horiba and MSA CO2 analyzers agreed very closely when measuring dry calibration gases. The Horiba demonstrated better precision than the MSA on dry (water vapor free) calibration gas readings.

Good agreement was observed between the Horiba and MSA CO2 analyzers when measuring background level CO2 concentrations generated from cylinders.

A small bias was observed between the Horiba and MSA CO2 analyzer readings taken from vehicle exhaust bags. The Horiba analyzer gave consistently lower readings than the MSA. The mean difference in analyzer readings was -0.53% (of the MSA corrected concentration), with the Horiba giving lower results.

The negative shift in the CO2 measurement produced a positive shift in calculated fuel economy. The magnitude of the positive shift was virtually equal to the magnitude of the CO2 shift (corrected concentration).

The water vapor interference data showed a similar negative bias (Horiba read lower), but the magnitude of this single effect would have only accounted for one-third of the bias in vehicle exhaust measurements. The interference data also displayed greater variability than the vehicle exhaust data.

We concluded that water vapor interference was contributing to the bias in vehicle exhaust CO2 measurements, but that other factors were involved. In addition, the nature of the interference data suggested that the MSA analyzer, not the Horiba, was exhibiting the water vapor interference. It should also be noted that the measured interference effects were within the manufacturer's stated accuracy limits, and both the MSA and Horiba analyzer groups could be termed "free" of water vapor interference.

The impact of the measurement shift documented in our controlled comparison may not be detectable in future production test results. The fact that a fuel economy determination may require eight CO2 measurements (four sample and four background for full confirmatory), combined with the normal variability experienced across the certification sites, will tend to mask a small measurement shift.

XI. List of Attachments

A	EPCN #70 Cover Page
В	Analyzer Location Table
С	Procurement Documentation
D	Pre-purchase Test Result slots
F	Barometer Sensitivity Table
G	Wet Precision Tables
н	Curve Check Summary Statistics/Raw Data
I	Analyzer Selections for Study
J	Water Vapor Interference Plots/Data
к	CO2 Comparison Plots/Data
L	CO2 Comparison Analysis Plots/Data
М	Comparison Study Calibration Curves
N	Calibration Curve Statistics Plots
0	Background Level CO2 Comparison Data

ATTACHMENT A

FOUNDATION OF THE C		105:05	EPCN NO.	DATE ENTERED							
EQUIPMENT/PROCEDURE C	HANGE	NOTICE	70	3 / 24/ 87	PAGEOF						
1. ORIGINATOR AATON MCCarus	2. PH 21	ONE EXT.	3. REVIEW DUE DATE:	none	ENTER "FYI" AS APPLICABLE						
4. DIVISION CLEARANCE		PE OF FEE	REGISTER DIPMENT	A/C FORM MSAPC PROCEDURE	OTHER						
6. REFERENCE DOCUMENTS (List Attachments,	REFERENCE DOCUMENTS (List Attachments, Forms, Procedures, FR#s, etc.) SEE ATTACHED PAGE										
7. DESCRIPTION OF CHANGE (Attach details,	specifica	itions, drawing									
All Bendix 8501-5C CO analyzers and MSA 202 CO and $\rm CO_2$ analyzers are to be replaced with Horiba AIA-23 CO and $\rm CO_2$ analyzers. (AIA - 23AS for LCO).											
The ranges normally used on the low CO analyzers will be changed from R17 (0-250ppm) and R19 (0-1000ppm) to R16 (0-100ppm) and R18 (0-500ppm), respectively.											
The CO blend concentrations used accommodate the range changes.	The CO blend concentrations used in the sample analysis cross check will be revised to accommodate the range changes.										
The normally supplied flow rate to 3.0 SCFH.	o the CO	and CO ₂ an	alyzers will	L be changed fr	rom 6.0 SCFH						
Installation will begin mid-December 1988 and EOD Sites 1-4 will be complete by mid-March 1989, one site at a time.											
8. PURFOSE OF CHANGE (Why is this change being proposed?) The Bendix and MSA analyzers are obsolete and some replacements parts are no longer available. The new analyzers will provide improvements in performance and maintenance as well as standardize the NDIR modules to one manufacturer type.											
9. PROPOSED EFFECTIVITY		110 DURA	TION OR EXTENT	OF USE							
(Date, MY, etc.) December 1988	3		10. DURATION OR EXTENT OF USE PERMANENT TEMPORARY								
11. AREAS OF MSAPC AFFECTED BY THIS CHANGE			CIGOTICITY	- CIN Olday							
IX LDT IX E & D I INST. SI IX HDT IX C & M I RTS HDWI I OTHER		CHEM LAB. TEST VALID.	☑ QC/QA ☐ DATA BR								
	12 05/11	CHC AND ADDOOM	ALC								
CLEWARDED BY JINIT.	DATE	EWS AND APPROV CONCURRENCE		COMMENTS							
James D. Carpenter, Chief Facility Support Branch	12/15/8	VES NO									
В.		YES NO									
¢.											
		YES NO									
13. DIVISION RESPONSE (OC)	DATE	1000000	RECOM	MENDED ACTION	N/A: [7] / 0						
Signature Donald D. Danyko, Mgn, QC	12/15/23	APPROVE DISAPPROVE D]	CONDITIONAL APPRO	OVAL [] (Comments) V REDRAFTS []						
THE REVIEWS AND RESPONSES NOTED HAVE BEEN RECEIVED AND DOCUMENTED.	DATE .	14. EPCN CONTI QC		REDRAFT REQUIR							
THE PROMETONS OF THE SOCK AND	,	115. AUTH	RIZED BY:		DATE						
THE PROVISIONS OF THIS EPCN ARE HEREBY AUTHORIZED FOR IMPLEMENT		Richard	b. Lawrence	e, Director EC							

MSAPC FORM 7.5 REVISED: 7/1/75

DISTRIBUTION: OR

ORIGINAL (White) - EPCN LOG^ COPY 1 (Yellow) - DIVISION LOG COPY 2 (Blue) - EPCN INTERIM LOG COPY 3 (Pink) - RETAINED BY ORIGINATOR

ANALYZER LOCATIONS

ANALYZER: MODEL P/N* CELL LENGTH / DETECTOR TYP (choppers are all 10		RA	NGES:	decinal to	, ppm			·						
			Ì	RANGE	TOTAL	A001	A002	A003	A004	A202	A203	A009	A251	SPARE
	α													
AIA - 23AS			100	16										
363053	LOW		250	17	9	1	1	1	1	1	1	1	1	1
500mm / DUAL			500	18							· · · · · · · · · · · · · · · · · · ·			
•							-							
AIA - 23			2500	20										
360448	HIGH		5000		8	1	1	1	1	1	1	1	1	1
30mm / SINGLE			0000											
AIA - 23		2	5000	23										
360421			0000		1								1	
3mm / SINGLE			0000											
•														
	CO2											<i>i</i>		
AIA - 23			2500	2 0		t								
360439		_	5000		1								1	
30mm / SINGLE		_	0000									1	_	
-														
AIA - 23		1	0000	2 2										
360442			5000		10	1	1	1	1	1	1		1	3
6mm / SINGLE			0000	2 4										
-					<u> </u>									
AIA - 23		5	0000	2 4			 }							
360449			0000		1								1	
1mm / SINGLE			0000											
_				TOTAL	30	3	3	3	3	3	3	1	6	5

^{*}Each P/N includes one "AIA" (detector) and one "OPE" (amplifier).

	areas are for use)	ATTACI	HMENT C				Page	of			
ÜS	Environmental Washington	Protection Age 5, DC 20460	ency	1. Name	. •				l l	2. Date of Requisition				
		Procuren	nent	3. Mail C		. McCart	McCarthy 4. Telephone Number			6-86				
SE	PA F	Request/(^	EOD-		,	4. Telephone Number 5. Date Item Required 313-668-4215							
	re of Originator	leguest/ (/ /// } //	100-	-13		7. Recommended Procurement Method							
o. Signato	/e or Originator /			Atto.	K	1				Sole source small	Lourchasa			
8 Deliver	To (Project Man	30erl	9. Address	2565 F	VIIO		Competitive Other than full and open competition Sole source small purchase Rd 10. Mail Code 11. Telephone Number							
	rl J. Ryar		EPA			Mich. 48	105	EOD-15	<u> </u>	668-4251				
12. Financ			1		,					= "C," Purchase				
	ropriation								Other (Misc.)					
			D Doc	ument	T			Object		Amount (g)				
	FMO Use . (b) (13 digits)			Number digits)	1	Account Numi		Class (f) (4 digi	}	Dollars	Cent			
	(011.0 0.9.13)		1 (0)1	, 0.9.13)	 	terrio organi	·/	(1)14 0.91	13/	- Jonata	- Cerri			
<u></u>					 			+						
, -			 		1 .			 						
13. Suggest	led Source (Name,	Address, ZIP Con	de, Phone/Con	tact)	<u> </u>	4. Amount of m	noney	15. Contracti	ng office is autho	rized to exceed amour	nt shown by 105			
							•	Yes	□ No					
<u> </u>	See A	Attachment	E A		j	⊠ Origin				Office Number				
İ					1	☐ Increa		1						
 -					17.	Approvals								
a. Branch/	109 Ker	(A)	,	Date	11		tv Manage	ement Office	/Designee	Date				
///	Mars	and la		6/2	27/8	6	.,	-,	ŭ	Ì				
الروسواكل ٥			77	Date	1100	, e. Other	Specity)			Date				
1/67	11800	6	- RDL	6/2	7/86	6	٠, ٠,٠	0 2	/ 42	_ 6-	27-86			
g. Funcs li	sted aboye are a	vailable ava		Dete	-/	f. Other	Specify)		7	Date				
reserve	ed /			}										
18. Date o	of Order	19. Order N	umber-			20. Contr	act Numb	er (if any) .	21. Dis	scount Terms	***			
·				· · ·				· · · · · ·		<u> </u>	<u> </u>			
22. FOB P	oint		23. [Delivery to	FOB Poi	nt by <i>On or be</i>	efore (Date	e/ 24. Persor	Taking Orde	r/Quote and Pho	ne No.			
·				· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u> </u>						
25. Contra	actor (Name, add	iress, ZIP Code	,			26. Type		Re	eference your	ence your quote (See block 24)				
						🖾 a. Pu				<u> Personalan ang ang ang ang ang ang ang ang ang a</u>				
									erms specified ding delivery a	on both sides of this	s order and or			
]		e e e e	• • •	-		the attac	med sheets	s, ii ariy, inciu	Only Delivery 6	is malcated.				
					•	The second secon								
Ì							Lib. Delivery provisions on the reverse are deleted. The delivery order subject to the terms and conditions of the contract. (See Block 20)							
											, c. 20/ 1 /			
			ا معاد		1.7		c. Oral Written Confirming							
100.3	· · · · · ·				<u> </u>		O181. L			to the training of ex	Z. 143. 10.			
					27	Schedule Quantity	1	Estimated	Unit	120 00 240 21 21 21	Quantit			
Number		Supplie	s or Services			Ordered	Unit	Unit Price	Price	Amount	Accepte			
(a)			(b)			(c)	(d)	(e)	(f)	(g)	(h)			
	_					10				144 (2) 197				
	OO Analy				7	_ 19	ľ		1.5		3			
]	(Horil	oa Model .	A1A-23 0	r edni.	varent	· .	1	ļ	The state of		1			
			•			111								
į.	∞_2 Analy	yzer	A 7 A . O O		1 4	11								
	-(Hori	oa Model .	ALA-23 C	r edm.	vateni	- /	-							
	<u> </u>		D	_	•						1.33			
		ed Analyz						ļ						
	Specif	ications	and reat	wes							一			
	-	A 444 10	B C C	•										
	See .	Attachmen	LSDAL	, ,					14.	是是	-			
	*************	TTON N-	dod += =	on I con							2000年			
1	JUSTIFICA	TION: Nee	olete e	ani nace	. *		}							
		ODS	olete ec	Inthine;					127.34					
 							L	L	Control of the		7 7 7 7 7 6			
1							\$120.	000.00	Total S					
28. United	States of Amer	ica	11 11			29. Type			ntracting Off	icer				
	nature)		•			1								

SUGGESTED SOURCES

Beckman Industrial Corporation 41365 Vincenti Court Novi, MI 48050

Horiba Instruments 3901 Varsity Drive Ann Arbor, MI 48104

Westinghouse Electric Corporation
Maihak AG Subsidiary
1201 N. Main
P.O. Box 901
Orville, OH 44667-0901

Combustion Engineering Inc. Process Analytical Division P.O. Drawer 831 Lewisburg, W. Virginia 24901

SPECIFICATIONS

Horiba Model AIA-23 or equivalent. The following salient features of the Horiba Model AIA-23 will be used to determine equivalency:

TYPE: Non-Dispersive Infrared Analyzer, with optical

filter, and at least three switch-selectable

analysis ranges.

RANGES: Required ranges listed in Attachment C.

OUTPUT: O to +10 volts DC output.

RANGE IDENTIFICATION: Isolated contact closure; contact rating; 100 ma.

GAS CONNECTIONS: 1/4 NPT

SIZE: Amplifier/control module 19" rackmount or

smaller, separate zero, span and range controls must be provided if amplifier/control module is

larger than 3.6" wide by 9.2" tall.

POWER 115 VAC. 60 Hz

CALIBRATION & INTERFERENCE: * As per CFR 40, Ch. 1, Pts. 86.114-79, 86.122-78 &

86.124-78.

REPEATABILITY:* 12 repeated readings shall not deviate more than

0.5% FS (Full Scale) from each other.

NOISE:* Short term variations in analyzer output shall

not deviate more than 0.5% FS on a 90% FS

continuous sample over a 1-minute period.

NON-LINEARITY:* Shall be less than 10%.

DRIFT:* Long term directional variations in analyzer

output shall not deviate more than 1.0% FS on continuous zero and span samples over a 4-hour

period.

RESPONSE TIME: * Response time to 90% final reading shall be less

than 4.0 seconds.

* The manufacturer is required to show proof that <u>each</u> analyzer meets these specifications. The manufacturer shall complete the performance tests described by Attachment C. The manufacturer shall submit acceptable performance test results for <u>each</u> analyzer <u>within 120 days</u> after receipt of order. The manufacturer will be authorized to ship the analyzers only after the Facility Support Branch has approved the performance test results in writing. The EPA may choose to observe performance testing at the manufacturer's facility. The manufacturer shall give the EPA ten days notice prior to the start of the performance testing.

1336c

RANGE SPECIFICATIONS*

CO Analyzer Ranges	Quantity (Analyzers)
100 PPM (.01%) 250 PPM (.025%) 1000 PPM (.10%)	9
2500 PPM (.25%) 5000 PPM (.50%) 10000 PPM (1.0%)	8
25000 PPM (2.5%) 50000 PPM (5.0%) 100000 PPM (10.0%)	1
CO2Analyzer Ranges	
2500 PPM (.25%) 5000 PPM (.50%) 10000 PPM (1.0%)	. 1
10000 PPM (1.0%) 25000 PPM (2.5%) 50000 PPM (5.0%)	10
50000 PPM (5.0%) 100000 PPM (10.0%) 150000 PPM (15.0%)	·l

^{* 3} Switch Selectable Ranges Per Analyzer

01.06e

PERFORMANCE TESTS

A. Proof of Acceptability:

Prior to specific performance testing the manufacturer must show proof that the analyzers have general acceptance in the market place. The manufacturer shall provide three or more references, (with at least one related to the automobile industry) of companies currently using these specific analyzers.

B. After the contract is awarded, the manufacturer must submit documentation to demonstrate their analyzers' performance. The manufacturer will not be paid or authorized to ship the analyzers until the documentation is approved by the Facility Support Franch.

The documentation which the manufacturer is required to submit is strip chart recordings of analyzer output as well as tabulated data obtained from the strip chart recordings. The documentation must show that each analyzer has been calibrated and tested (as defined below), and that each analyzer's performance is in accordance with the criteria defined below. The tabulated data must list the relevant readings from the strip chart recordings that show compliance with the performance tests. The analyzers will not be accepted if the documentation does not show that the analyzers meet these acceptance criteria.

The manufacturer shall submit acceptable performance test results for each analyzer within 120 days after receipt of order. The manufacturer will be authorized to ship the analyzers only after the Facility Support Branch has approved the test results. The manufacturer will not be paid for equipment, supplies or materials shipped prior to approval. The EPA may choose to observe performance testing at the manufacturer's facility. The manufacturer shall give the EPA 10 days notice prior to the start of the performance testing.

Each range of each analyzer shall be calibrated as defined in the Code of Federal Regulations, Title 40, Chapter I, Parts 86.114-79, 86.122-78 and 86.124-78, as appropriate (see page 4). Each range of each analyzer shall be tested as defined below.

For each calibration or test the analyzer output shall be adjusted to produce 10.0 volts if a full-scale concentration gas were sampled and 0.0 volts if nitrogen gas were sampled. The full-scale gas concentrations for each range are defined above under "PANGES". The strip chart recorder shall be adjusted to record its full-scale output for a 10.0 volt input, and zero for a 0.0 volt input. The speed of the strip chart recorder paper shall be written on the paper. Use of linearizing circuitry in the analyzer is not allowed. The analyzer sample gas flow rate for these tests shall be 4.0 standard cubic feet per hour (standard conditions of 70.0 degrees Farenheit and 14.696 psia).

1. INTERFFRENCE: Each carbon monoxide analyzer shall meet interference criteria as defined in the Code of Federal Regulations, Title 40, Chapter I, Part 86.122-78 (see page 4). The use of conditioning columns is not allowed.

- 2. Repeatability: The following sequence shall be repeated 12 times; sample nitrogen gas until analyzer output is stable, sample a nominal 90% of full-scale sample gas until analyzer output is stable, record analyzer output. Each reading shall not deviate more than 0.5% of full-scale output, from the average of the 12 readings.
- 3. Noise: A nominal 90% of full-scale sample gas shall be sampled continuously for one minute. The analyzer output shall not deviate more than 0.5% of full-scale analyzer output, from minimum to maximum.
- 4. Non-Linearity: The percent non-linearity of the calibration curve is defined as the deviation at mid-scale of the curve concentration from the straight line connecting zero and full-scale concentration. The deviation is expressed as a percentage of full-scale concentration and shall be determined as follows: find the curve concentration at half of the full-scale analyzer output using the calibration curve found above, subtract this from half of the full-scale concentration, divide the result by the full-scale concentration, multiply this result by 100. The percent non-linearity shall be less than 10%. The use of linearizing circuitry is not allowed. NOTE: This test is not required if the calibration curve is a single calibration factor, as defined in the CFR references listed above.
- 5. Drift: This test shall be performed on the lowest range of each analyzer only. Zero: Nitrogen gas shall be sampled continuously for 4-hours. The analyzer output shall not deviate more than 1.0% of full-scale analyzer output, from minimum to maximum. Span: A nominal 90% of full-scale sample gas shall be sampled continuously for 4-hours. The analyzer output shall not deviate more than 1.0% of full-scale analyzer output, from minimum to maximum.
- 6. Response Time: A strip chart recording of transitory analyzer output, which occurs when the analyzer samples a step change in gas concentration, shall be obtained as follows: sample nitrogen gas until the analyzer output is stable, sample a nominal 90% of full-scale sample gas until the analyzer output is stable. The time duration from the start of analyzer output transition, to 90% of the final stable analyzer output, shall be less than 4.0 seconds.

#0106e

84.114-79 Analytical gases.

(a) Analyzer gases.

- (1) Gases for the CO and CO, analyzers shall be single blends of CO and CO, respectively using nitrogen as the diluent.
- (2) Gases for the hydrocarbon analyzer shall be single blends of propane using air as the diluent.
- (3) Gases for NO, analyzer shall be single blends of NO named as NO, with a maximum NO, concentration of 5 percent of the nominal value, using nitregen as the diluent.
- (4) Fuel for the evaporative emission enclosure FID shall be a blend of $40\pm3\%$ hydrogen with the balance being helium. The mixture shall contain less than I ppm equivalent carbon response. 98 to 100 percent hydrogen fuel may be used with advance approval by the Administrator.
- (5) The allowable zero gas (air or nitrogen) impurity concentrations shall not exceed 1 ppm equivalent carbon response, 1 ppm carbon monoxide, 0.04 percent (400 ppm) carbon dioxide and 0.1 ppm nitric oxide.
- (6) "Zero grade air" includes artificial "air" consisting of a blend of nitrogen and oxygen with oxygen concentrations between 18 and 21 mole percent.
- (7) The use of proportioning and excision blending devices to obtain the required analyzer gas concentration is allowable provided their use has been approved in advance by the Administrator.
- (b) Calibration gases shall be traceable to within 1 percent of NBS gas standards, or other gas standards which have been approved by the Administrator.
- (c) Span gases shall be accurate to within 2 percent of true concentration, where true concentration refers to NBS; gas standards, or other gas standards which have been approved by the Administrator.
- [42 PR 32954, June 28, 1977, as amended at 43 FR 52920, Nov. 14, 1978]

\$ 84.122-78 Carbon, monoxide analyzes,

The NDIR carbon monoxide analyzer shall receive the following initial and periodic calibrations:

- (a) Initial and periodic interference check. Prior to its introduction into service and annually thereafter the NDIR carbon monoxide analyzer shall be checked for response to water vapor, and CO:
- (1) Follow the manufacturer's instructions for instrument startup and operation. Adjust the analyzer to optimize performance on the most-sensitive range to be used.
- (2) Zero the carbon monoxide analyzer with either zero-grade air or zero-grade nitrogen.
- (3) Bubble a mixture of 3 percent CO₂ in N₂ through water at room temperature and record analyzer response.
- (4) An analyzer response of more than 1 percent of full scale for ranges above 300 ppm full scale or of more than 3 ppm on ranges below 300 ppm full scale will require corrective action. (Use of conditioning columns is one form of corrective action which may be taken.)
- (b) Initial and periodic calibration. Prior to its introduction into service and monthly thereafter the NDIR carbon monoxide analyzer shall be calibrated.
- (1) Adjust the analyzer to optimize performance.
- (2) Zero the carbon monoxide analyzer with either zero-grade air or zero-grade nitrogen.
- (3) Calibrate on each normally used operating range with carbon monoxide in N. calibration gases having nominal concentrations of 15, 30, 45, 60, 75, and 90 percent of that range. Additional calibration points may be generated. For each range calibrated, if the deviation from a least-squares best-fit straight line is 2 percent or less of the value at each data point, concentration values may be calculated by use of a single calibration factor for that range. If the deviation exceeds 2 percent at any point, the best-fit nonlinear equation which represents the data to within 2 percent of each test point shall be used to determine concentration.

\$86.124-78 Carbon dioxide analyzer c bration.

Prior to its introduction into servand monthly thereafter the NE carbon dioxide analyzer shall be chated:

- (a) Follow the manufacturer's structions for instrument startup : operation. Adjust the analyzer to o mize performance.
- (b) Zero the carbon dioxide analy with either zero-grade air or z grade nitrogen.
- (c) Calibrate on each normally t operating range with carbon dioxid N. calibration gases with nominal centrations of 15, 30, 45, 60, 75, an percent of that range. Additional bration points may be generated. each range calibrated, if the devia from a least-squares best-fit stra line is 2 percent or less of the valu each data point, concentration va may be calculated by use of a si calibration factor for that range the deviation exceeds 2 percent at point; the best-fit non-linear equa which represents the data to with percent of each test point shall used to determine concentration.

ATTACHMENT	
Ū	

Serial No.	Туре	Range	Range Conc.s	H2O Interference	Repeatab	oility	Noise	Non-Linearity	Response Time		Dr	ift (%F.S	S.)		
				(%F.S.)	Avg. (%F.S.)	Max. Dev. (%F.S.)	(%F.S.)	(%)	(sec.s)	Min.	Zero Max.	Dev.	Min.	Span Max.	Dev.
561661011	co	1	0 - 100 ppm	1.00	90.01	0.09	0.20	0.80	5.40	-0.30	-0.30	0.00	84.00	84.00	0.00
		2	0 - 250 ppm	-	94.01	0.09	0.20	3.00	5.40	-	-	-	-	-	•
		3	0 - 500 ppm	-	89.20	0.00	0.20	6.63	5.30	-	-	-	-	-	-
561661012	co	1	0 - 100 ppm	-0.10	89.91	-0.21	0.40	0.61	5.35	-0.50	-0.50	0.00	84.56	84.50	0.00
		2	0 - 250 ppm	-	94.04	0.16	0.20	2.80	5.50	-	-	-	-	-	-
		3	0 - 500 ppm	-	89.90	-0.20	0.20	6.58	5.30	-	-	-	-	-	-
561661013	co	1	0 - 100 ppm	1.00	91.00	0.00	0.40	0.60	5.35	0.40	-0.40	0.80	87.70	87.20	0.50
		2	0 - 250 ppm	-	94.17	0.13	0.20	2.80	5.35	-	-	-	-	-	-
		3	0 - 500 ppm	-	91.00	0.00	0.50	6.69	5.40	-	-	-	-	-	-
561661014	co	1	0 - 100 ppm	0.70	95.00	0.10	0.20	-	5.30	0.20	0.00	0.20	-	_	0.40
		2	0 - 250 ppm	•	94.01	0.19	0.20	3.00	-	-	-	-	-	-	-
		3	0 - 500 ppm	-	94.91	-0.09	0.20	6.96	-	-	-	-	-	-	-
561661015	co	1	0 - 100 ppm	1.2(<3ppm)	96.02	0.08	0.40	-	5.20	0.30	0.30	0.00	-		0.30
		2	0 - 250 ppm	` - '	94.10	0.10	0.20	-	-	•	-	•	-	-	•
		3	0 - 500 ppm	-	96.00	0.00	0.10	6.48	-	-	-	-	· -	-	-
561661016	co	1	0 - 100 ppm	-0.10	97.02	-0.12	0.20	-	5.00	0.20	0.10	0.10	_	_	0.30
		2	0 - 250 ppm	•	94.05	0.15	0.20	3.00	•	-	-	•	-	-	-
		3	0 - 500 ppm	-	97.05	0.05	0.00	6.78	-	-	-	-	-	-	-
561661017	co	1	0 - 100 ppm	1,10	94.84	-0.14	0.50	-	5.20	0.00	0.00	0.00	-	-	0.10
		2	0 - 250 ppm	•	94.77	-0.07	0.20	•	-	-	-	•	-	_	•
		3	0 - 500 ppm	-	95.00	0.00	0.10	7.06	-	-	-	-	-	-	-
561661018	co	1	0 - 100 ppm	0.50	95.97	-0.17	0.70	-	5.10	0.70	0.50	0.20	_	_	0.00
		2	0 - 250 ppm	-	96.06	-0.06	0.10	-	-	-	-	•	-	-	•
		3	0 - 500 ppm	-	96.00	0.00	0.10	6.79	-	-	-	-	-	-	-
561661019	co	1	0 - 100 ppm	1.40	97.01	-0.11	0.50	-	5.20	0.70	0.70	0.00	-	_	0.10
		2	0 - 250 ppm	-	96.99	-0.09	0.20	-	•	-	-	-	-	-	-
		3	0 - 500 ppm	-	97.08	0.12	0.20	7.10	-	-	-	-	-	-	-
561661021	co	1	0 - 2500 ppm	0.90	95.05	0.15	0.20	_	3.90	0.00	0.00	0.00	-	_	0.10
		2	0 - 5000 ppm	-	92.00	0.00	0.30	-	•	-	-	-	-		-
		3	0 - 10000 ppm	-	94.10	0.00	0.10	7.80	-	-	-	-	-	-	-
561661022	со	1	0 - 2500 ppm	0.80	96.03	0.07	0.20	-	3.80	0.00	0.00	0.00	_	-	0.20
		2	0 - 5000 ppm	•	92.91	0.09	0.10	-	-	-	-	-	-	-	-
		3	0 - 10000 ppm	-	94.90	0.00	0.20	7.80	-	-	-	-	-	-	-
561661023	co	1	0 - 2500 ppm	0.70	97.06	0.14	0.40	-	4.00	0.20	0.10	0.10	-	_	0.10
	-	2	0 - 5000 ppm	-	94.00	0.00	0.30	-	-		-		_	-	-
		3	0 - 10000 ppm	-	95.80	0.00	0.10	7.80	-	-	-	-	-	-	-

Serial No.	Туре	Range	Range Conc.s	H2O Interference	Rep	eatability	Noise	Non-Linearity	Response Time	•	Di	rift (%F.S.)			
				(%F.S.)	Avg (%F.S		(%F.S.)	(%)	(sec.s)	Min.	Zero Max.	Dev.		an ax. Dev.	
561661024	co	1	0 - 2500 ppm	0.80	95.0	7 -0.07	0.30	-	3.80	0.00	0.20	0.20		0.10	
		2	0 - 5000 ppm	-	92.7	3 0.08	0.30	-	-	-	-	-			
		3	0 - 10000 ppm	-	94.0	0.00	0.10	8.14	-	-	-	-	-	· -	
561661025	co	1	0 - 2500 ppm	0.80	96.0		0.10	-	3.60	-0.10	-0.30	0.20		0.00	
		2	0 - 5000 ppm	•	93.7	0.00	0.10	-	-	-	-	-		-	
		3	0 - 10000 ppm	-	95.0	0.00	0.00	8.14	-	-	-	-	-		
561661026	co	1	0 - 2500 ppm	0.70	97.0		0.20	-	3.60	0.00	-0.10	0.10		0.20	
		2	0 - 5000 ppm	•	94.9	0.00	0.10	-	-	-	-	-		-	
		3	0 - 10000 ppm	-	96.0	0.00	0.10	7.77	-	-	-	-	-	-	
561661027	co	1	0 - 2500 ppm	0.80	93.2		0.20	-	3.60	-0.40	-0.60	0.20		0.00	
		2	0 - 5000 ppm	-	92.6		0.10	-	-	-	-	-		-	
		3	0 - 10000 ppm	-	93.6	0.00	0.10	8.38	-	-	-	-	-	-	
561661028	co	1	0 - 2500 ppm	0.60	94.3		0.40	-	3.60	0.30	0.10	0.20		0.10	
		2	0 - 5000 ppm	•	93.60		0.30	•	-	-	-	-		-	
		3	0 - 10000 ppm	-	94.60	0.00	0.20	9.63	-	-	-	-		-	
5616610502	CO2	1	0 - 1.0 %	-	92.8		0.40	-	3.30	0.30	0.40	0.10		0.50	
		2	0 - 2.5%	-	-	. • .	. -		-	-	-	-		-	
		3	0 - 5.0%	-	93.08	-0.08	0.10	7.73	-	-	-	-		-	
5616610503	CO2	1	0 - 1.0 %	-	94.90		0.20	-	3.30	-0.50	-0.90	0.40		0.10	
		2	0 - 2.5%	-			-		-	-	-	-		•	
		3	0 - 5.0%	-	95.08	-0.08	0.10	7.91	-	-	-	-		-	
5616610504	CO2	1	0 - 1.0 %	-	93.08	-0.08	0.30	-	3.40	0.00	-0.10	0.10		0.30	
		2	0 - 2.5%	-		_	-	-	-	_	-	-			
		3	0 - 5.0%	-	94.00	0.00	0.10	7.82	-	-	-	-	- •	-	
5616610505	CO2	1	0 - 1.0 %	-	94.1	-0.11	0.20	-	3.40	0.70	-0.10	0.80		0.60	
		2	0 - 2.5%	-	-	-	-	-	-	-	-	-		-	
		3	0 - 5.0%	-	95.00	0.00	0.10	7.82	-	-	-	-		-	
5616610506	CO2	1	0 - 1.0 %	-	95.08	-0.08	0.20	-	3.50	-0.10	-0.50	0.40		0.10	
		2	0 - 2.5%	-	-	-	-	-	-	-	-	-		-	
		3	0 - 5.0%	-	96.00	0.00	0.10	7.82	-	-	-	-	- •	-	
5616610507	CO2	1	0 - 1.0 %	-	94.00	0.00	0.30	-	3.50	0.00	0.00	0.00		0.00	
		2	0 - 2.5%	-	-	•	-	-	-	-	-	-		-	
		3	0 - 5.0%	-	94.00	0.00	0.10	7.88	-	-	-	-		-	
5616610508	CO2	1	0 - 1.0 %	-	92.94	0.06	0.20	-	3.50	0.20	0.10	0.10		0.70	
		2	0 - 2.5%	-	-	-	-	-	-	-	-	-		-	
		3	0 - 5.0%	-	95.00	0.00	0.10	7.88	-	-	-	•		-	
5616610509	CO2	1	0 - 1.0 %	-	95.95	-0.05	0.20	-	3.60	0.60	0.40	0.20		0.60	
		2	0 - 2.5%	-	-	-	-	-	-	-	-	-		-	
		3	0 - 5.0%	-	96.00	0.00	0.00	7.88	-	-	-	-		-	

Serial No.	Туре	Range	Range Conc.s	H2O Interference	Repeata	bility	Noise	Non-Linearity	Response Time		Dr	ift (%F.S	.)		
				(%F.S.)	Avg. (%F.S.)	Max. Dev. (%F.S.)	[(%F.S.)	(%)	(sec.s)	Min.	Zero Max.	Dev.	Min.	Span Max.	Dev.
5616610510	CO2	1	0 - 1.0 %	-	93.86	-0.06	0.20	-	3.60	0.10	0.00	0.10	-	_	0.20
		2	0 - 2.5%	-	-	-	-	-	-	-	-	-	-	_	-
		3	0 - 5.0%	•	93.00	0.00	0.00	7.88	-	-	-	-	-	-	-
5616610501	CO2	1	0 - 1.0 %	-	92.90	0.00	0.30	-	3.60	0.00	-0.30	0.30	-	_	0.20
		2	0 - 2.5%	-	_	-	-	-	-	_	-	-	-	-	-
		3	0 - 5.0%	-	93.00	0.00	0.20	8.37	-	-	-	-	-	-	-
56166103	CO2	1	0 - 5.0%	-	95.00	0.00	0.20	-	3.20	0.20	-0.30	0.50	-	-	0.00
		2	0 - 10.0%	-	90.96	-0.06	0.20	-	3.20	-	-	-	-	-	-
		3	0 - 15.0%	-	92.00	0.00	-	6.43	3.20	-	-	-	-	-	-
56166104	CO2	1	0 - 2500 ppm	-	90.00	0.00	0.10	-	3.70	-0.10	-0.50	0.40	_	_	0.30
		2	0 - 5000 ppm	-	91.00	0.00	0.20	-	3.60	-	-	-	-	_	-
		3	0 - 10000 ppm	-	94.00	0.00	0.10	8.89	3.60	-	-	-	-	-	-
56166106	CO2	1	0 - 2500 ppm	-	90.50	0.00	0.40	-	3.40	0.00	0.00	0.00		-	0.60
		2	0 - 5000 ppm	-	90.90	0.00	0.10	-	3.20	_	-	-	-	-	-
		3	0 - 10000 ppm	•	91.90	0.00	0.10	7.79	3.20	-	-	-	-	-	-

•

Range 22 Water Response (CO2 Analyzers)

ATTACHMENT

Range 22 (%CO2)

Range 23 Water Response (CO2 Analyzers)

Range 24 Water Response (CO2 Analyzers)

- -G- A001 (MSA)
- ← A002 (MSA)
- A003 (MSA)
- A004 (MSA)
- Comp. (MSA)
- -D- A202 (Hor.)
- → A203 (Hor.)

ATTACHMENT F

CO₂ Analyzer Reading Changes
Over Range of Barometer Change (28.5-29.25" Hg)

		· (%CO2)	Regression Rdg(%CO2)= m Baro("Hg		min. R 95% Co		Analyzer Reading Change (%\(\Delta\)) over range of Barometer change (from regression)	Analyzer Reading Change (% \(\Delta \)) over +1"Hg Barometer change (from regression)
	N	Sec. Std. T	т <u>ь</u>	Corr. Coef.	Rmin	Does Correlation Exist?	%Δ= (max-min)x100 max	7Δ= (<u>max-min</u>)x100 <u>max</u>
R22 Horiba	15	.4812	.86675E-3	0.339	. 0.514	no .	+0.13	+0.18
MSA	15	.4812	.32712E-2 .38534	0.631	0.514	yes	+0.51	+0.68
R23 Horiba	15	1.3480	.19490E-2 1.2915	0.337	0.514	no	+0.11	+0.14
MSA	15	1.3480	.46397E-2 1.2199	0.518	0.514	yes	+0.26	+0.34
R24 Horiba	10	2.1100	.18248E-2 2.0476	0.108	0.632	no	+0.07	+0.09
MSA	10	2.1100	.24822E-1 1.3919	0.668	0.632	yes	+0.88	+1.17

CO2 Analyzer
Vehicle Bag Sample Data
Two repeated readings on each bag
No Barometer Changes between readings

	.1	(from a Mean	r Readings	gs) 2	Bag Sample Std. Dev. %CO2	%cv <u>s-100</u>
Range	N	_ <u>X</u>	Range		S pooled_	X
R22 (0-1 Horiba	8 prs		.4984	.75 77	.002332	0.36
MSA	8 pra	.6551	.5015	.7599	.001157	0.18
R23 (0-2	.5%)					
Horiba	9 prs	1.1537	.4981	2.1924	.001796	0.16
MSA	9 prs	1.1679	.5138	2.1995	.001383	0.12
R24 (0-5						
Horiba	6 prs	1.6348	.8615	2.2448	.002625	0.16
MSA	6 prs	1.6545	.8878	2.2621	.005965	0.36

N = Number of Sample Bags, each bag contained a different CO2 concentration, and was read twice.

² These values represent approximate lowest and highest bag concentrations in the bag set.

^{*}Formula from EPA QAMS (3/30/84), Chapter 5, page 8

CO2 Analyzer Background Bag Data Two repeated readings on each bag No Barometer Changes between readings

		Analyzer Re	eadings (% CO readings))	Background Bag Std. Dev. % CO?
	<u> </u>	Mean x	Ran	ge	S pooled
R22 (0-1%	()				
Horiba	8 prs	.04085	.03680	.04850	.0007115
MSA	8 prs	.04673	.04180	.05390	.001521
707 (0.0	rd)		•		
R23 (0-2.	.5%)				
Horiba	9 prs	.04122	.03830	.04520	.0006916
MSA	9 prs	.04864	.04270	.05770	.002256
DO4 (0 F	* \				
R24 (0-5)	76)				
Horiba	6 prs	.04123	.03650	.04320	.0009815
MSA	6 prs	.04798	.04400	.05500	.001834

CO2 Analyzer Corrected Concentration (Sample - Background) Bag Data Two repeated readings on each bag No Barometer Changes between readings

Corrected Concentration Analyzer Readings (% CO2) Std. % CV (from all readings) Dev. S-100 Mean X S pooled --- Range ---N R22 (0-1%) .002271 0.37 .6111 .7164 8 prs .4598 Horiba 0.31 .001905 .7135 MSA 8 prs .6084 .4588 R23 (0-2.5%) 0.15 .001697 1.1125 .4588 2.1531 Horiba 9 prs .4668 2.1547 .003466 0.31 MSA 9 prs 1.1192 R24 (0-5%) .8250 2.2016 .002802 0.17 Horiba 6 prs 1.5936 0.34 2.2108 .005442 6 prs 1.6065 .8438 MSA

0924e

RANGE 2 2

RANGE 2 3

RANGE 2 4

Duplicates	Average	Range	Relative Range
X1, X2	Xa	R	RR
λι, λΞ	= [X1+X2]/2	= X1-X2	= [R/Xa] x 100
(%CO2)	(%CO2)	(%CO2)	(% of pt.)
0.6209	0.6164	0.009	1.460
0.6119			
0.7567	0.7572	0.001	0.132
0.7577	0.7372	0.001	0.152
0.7492	0.7492	0.000	0.000
0.7492			
0.6209 0.6209	0.6209	0.000	0.000
0.0209			
0.6375	0.6365	0.002	0.314
0.6355			
0.6720	0.6720	0.000	0.000
0.6720			
0.4984	0.4984	0.000	0.000
0.4984	0.4004	0.000	0.000
		[
0.6657	0.6652	0.001	0.150
0.6647			
		l	Average RR
			0.237
			0.207

	Duplicates	Average	Range	Relative Range
	X1, X2	Xa	R	RR
		= [X1+X2]/2	= X1-X2	= [R/Xa] x 100
	(%CO2)	(%CO2)	(%CO2)	(% of pt.)
	1.2451	1.2477	0.005	0.417
	1.2503			
	1.1431	1.1431	0.000	0.000
	1.1431	, , , , , ,		5,555
	1.3490	1.3504	0.000	0.000
	1.3517	1.0004	0.000	0.000
	0.6104	0.6093	0.002	0.378
	0.6081	0.0000	0.002	0.370
	0.0001			,
	0.9714	0.9714	0.000	0.000
	0.9714	0.8714	0.000	0.000
	0.8714			
	0.8124	0.8112	0.002	0.296
i	0.8124	0.0112	0.002	0.290
Ì	0.8100			
	0.5003	0.4992	0.002	0.441
1		0.4992	0.002	0.441
	0.4981			
	امممدا	2.1924		0.000
į	2.1924	2.1924	0.000	0.000
	2.1924		ı	
			ا ممما	
ı	1.5571	1.5585	0.003	0.180
	1.5599			
				Average RR
			Į.	
İ				0.212

Duplicates	Average	Range	Relative Range
X1, X2	Xa	R	RR
i	= [X1+X2]/2	= X1-X2	= [R/Xa] x 100
(%CO2)	(%CO2)	(%CO2)	(% of pt.)
0.9106	0.9127	0.004	0.449
0.9147			
			1
1.8190	1.8190	0.000	0.000
1.8190			
2.2397	2.2423	0.005	0.227
2.2448	2.2.22		
0.8656	0.8636	0.004	0.475
0.8615	0.000	0.004	0,4,0
0.00.0			
1.7902	1.7878	0.005	0.268
1.7854	1.7070	0.000	0.200
7.7054			
2.1838	2.1838	0.000	0.000
2.1838	2.1000	0.000	0.000
2.1838			Average RR
			Average nn
			0.240
			0.240

CO2 Analyzer
Mid - Span Data - Dry Gas
From Different Days
with Barometer Changes Between Readings

Range	N	Average Analyzer Reading X (%CO2)	Sec. Std. T (%CO2)	Bias X-T (%CO2)	Bias Percent (X-T)x100 T (%)	Std. Dev. S (%CO2)	%cv S·100 X (%)
22 Horiba MSA	15 15	.48203 .48006	.4812 .4812	.00083 00114	0.17 -0.24	.00070	0.15 0.30
23 Horiba MSA	15 15	1.3480 1.3544	1.3480 1.3480	0.0 .00640	0.0 0.47	.00132	0.10 0.15
24 Horiba MSA	10 10	2.1003 2.1081	2.1100 2.1100	00970 00190	-0.46 0.09	.00258 .00565	0.12 0.27

rangé 22

MID-SAM CHECK DATA

	1		7	Antonia de la constante de la	_	1000 ·	1			-	
	NOM,	HOP. CAIC	MSA CALC	HOP	BA	· M	SA	BARO	DIFF.	FROM	
DATE	CONC.	CONC.		DEFL.	conc,	DEFL.	CONC.	"HG		BARO. "HE	
43/87	0.4812	0.4813	0.4815	50,9	0.4813	50.1	0.4795	29.70		-0.14	
		.		-		50,8	0.4805	-			
2/4/87					-	50.1	0.4795	29.03		0.19	
				-		50,3	0.4815	***		-	-
58/11/S					-	50,2	0.4805	28.5		-0,34	
-				_	•	49.9	0.4775	~	•		
16/87				51.1	0.4833	200	0.4796	28.78		-0.06	
								-		_	`
- 2/23/8				51.0	0.4823	50,3	0.4815	29,25		0.41	_
						-			 	-	
											_
-							-			-	
							-	-		1	
124 87						50.0	0.4786	29,03		0.19	
										 - -	
·		HORIBA	S/N#	5616610-						 	-
		MSA	SITE #	A002	306						
		W/JW	711 C W	AUUZ							_
											·
	······································						·				

range 23

MID-SPAN CHECK DATA

			·	7 CASHOO	-	The same of the sa	-			-
	NOM	HOP. CALL	MSA CALL	HOP	I BA	M	S.A.	BARO.	DIFF. FROM	
DATE	conc.	CONC	CONC.	DETL.	CONC		CONC.	n HG.	CAL BARO "H	6
				 		1			*	-
-					 	 			28.84	
		 	 			1				7
		 			 					
2/3/87	1.3480	1.3491	1.3495	59,0	1.3464	58.2	1,3520	28.70	-0.14	
			1.2322		-			-		`
2/4/87				59.1	1.3490	58.3	1.3546	29,03	0,1.	9
-				-	-	58.2	13650		-	
2/9/87				<i>5</i> 9,0	1,3464	-	-	28.74	-0.10	5
_				-		58.3	1.3546	4444	-	
2/16/87				59.1	1.3490	58.4	1.3571	29.78	-0.06	
				-	-	58.3	1,3546			
2/23/87				1		58.4	1,3571	29.25	OAI	
				-		-	-	****	-	
•				-	_	****	•		-	
=				59.0	1.3464	58.3	1.3546	-	_	
				-	-)		· -		
2/24/07				59.1	1.34%	-	_	29,01	0.19	
-				_	-	58,2	1.3520			
·										
		HORIBA	\$/N#	5616610-	506					
		MSA	SITE#	A002						
										
										+
										1
			<u>.</u>						2 34 30 30 30	- CELL

Mio-Span Check Data RANGÉ Ž4 MSA HOP CAIC MSA CAIC HOUBA BARO 'NOM. DIFF. FROM DATE CONC CONC CAL, BARO. 46 CONC CONC CONC. DEFL. DEFL * H6 12/3/87 2.1100 2.1033 2.1096 50.7 2.0983 28.70 50.4 2,10% -0.14 50.8 2.1033 12/4/87 2,1145 29,03 0,19 50,5 2.10% 50.4 2/9/87 2.1047 28.71 50,3 -0.10 2.0983 50.7 12/16/87 50,Z 2.0999 28.78 -0.06 2/24/83 2.1195 29,03 0.19 50.5 50.5 2,1145 HORIBA 5/N# 5616610 506 MSA A002 SITE#

* SAC SUMMARY STATISTICS *
ANALYSIS OF DEVIATIONS *
FROM LAB AVERAGE FOR CO2 *

PERIOD OF ANALYSIS: 1- 1-88 TO 8-10-88

PROCESSED: 10:32:53 NOV 3, 1988

SITE		RANGE 21			RANGE 22			RANGE 23				24	ALL RANGES			
NO	!	5000 PP	M		1 PC	T		3 PC	T		5 PC	T				
****	***	******	******	***	******	******	* * *	******	******	***	******	******	***	*****	******	
	N	MEAN	SIGMA	N	MEAN	SIGMA	N	MEAN	SIGMA	N	MEAN	SIGMA	N	MEAN	SIGMA	
A001	0	0.0	0.0	91	-0.16	0.579	48	0.04	0.471	0	0.0	0.0	139	-0.09	0.551	
A002	0	0.0	0.0	73	0.11	0.779	65	0.08	0.379	0	0.0	0.0	138	0.09	0.622	
A003	0	0.0	0.0	96	0.69	0.653	51	0.22	0.398	0	0.0	0.0	147	0.53	0.617	
A004	0	0.0	0.0	57	-0.24	0.764	54	0.18	0.614	0	0.0	0.0	111	-0.04	0.724	
A009	0	0.0	0.0	72	0.58	0.607	61	0.70	0.398	0	0.0	0.0	133	0.64	0.523	
A202	0	0.0	0.0	90	-0.42	0.659	46	-0.56	0.624	0	0.0	0.0	136	-0.47	0.649	
A203	0	0.0	0.0	89	-0.54	0.665	47	-1.02	0.591	0	0.0	0.0	136	-0.71	0.678	
ALL	0	0.0	0.0	568	0.00	0.807	372	-0.01	0.713	0	0.0	0.0	940	-0.00	0.771	
								SIGMA V	ALUE AS OF	3-	28-81				0.750	

ANALYSIS OF ALL SITES AND RANGES AVERAGE VS THEORETICAL % DIFFERENCE

125 -1.22 2.142

- MSA CUE ANALYZEL USED IN COMPARISON STUDY

Comparison of MSA CO2 Analyzers' Response to H2O (R23 Only)

Cyl. Conc. (%CO2)

Comparison of HORIBA CO2 Analyzers' Response to H2O (R23 Only)

Cyl. Conc. (%CO2)

A004 Wet Data (R23)

	Cyl. Conc. R23	Dry (%CO2)	Wet (%CO2)	W-D Diff.	W-D %fs Diff.	W-D %pt Diff.
1	2.4120	2.4174	2.4048	-0.013	-0.520	-0.538
2	1.8730	1.8809	1.8693	-0.012	-0.480	-0.638
3	1.6050	1.6119	1.6008	-0.011	-0.440	-0.682
4	1.2060	1.2087	1.2036	-5.100e-3	-0.204	-0.422
5	0.9696	0.9702	0.9677	-2.500e-3	-0.100	-0.258
6	0.8017	0.8017	0.8017	0.000	0.000	0.000
7	0.4812	0.4809	0.4831	2.200e-3	0.088	0.458
8	0.3647	0.3645	0.3666	2.100e-3	0.084	0.576
9	0.0000	0.0019	0.0134	0.011	0.440	578.900
				A202	2 Wet Data (R23	•)
	Cyl. Conc. R23	Dry (%CO2)	Wet (%CO2)	W-D Diff.	W-D %fs Diff.	W-D %pt Diff.
1	2.4120	2.4165	2.4042	-0.012	-0.480	-0.497
2	2.1100	2.1078	2.0930	-0.015	-0.600	-0.712
3	1.8730	1.8714	1.8571	-0.014	-0.560	-0.748
4	1.3480	1.3426	1.3294	-0.013	-0.520	-0.968
5	0.9696	0.9606	0.9508	-9.800e-3	-0.392	-1.000
6	0.5900	0.5812	0.5744	-6.800e-3	-0.272	-1.200
7	0.3647	0.3596	0:3553	-4.300e-3	-0.172	-1.200
8	0.2550	0.2504	0.2484	-2.000e-3	-0.080	-0.799
9	0.0000	0.0076	0.0057	-1.900e-3	-0.076	-25.000
				A20 3	Wet Data (R23)
	Cyl. Conc. R23	Dry (%CO2)	Wet (%CO2)	W-D Diff.	W-D %fs Diff.	W-D %pt Diff.
1	2.4120	2.4139	2.3988	-0.015	-0.600	-0.621
2	2.1100	2.1117	2.0914	-0.020	-0.800	-0.947
3	1.8730	1.8769	1.8572	-0.020	-0.800	-1.100
4	1.3480	1.3529	1.3373	0.016	-0.640	-1.200
5	0.9696	0.9707	0.9585	-0.012	-0.480	-1.200
6	0.5900	0.5921	0.5829	-9.200e-3	-0.368	-1.600
7	0.3647	0.3669	0.3604	-6.500e-3	-0.260	-1.800
8	0.2550	0.2573	0.2530	-4.300e-3	-0.172	-1.700
9	0.0000	0.0060	0.0060	0.000	0.000	0.000

A001 Wet Data (R23)

	Cyl. Conc. R23	Dry (%CO2)	Wet (%CO2)	W-D Diff.	W-D %fs Diff.	W-D %pt Diff.
	0.4400	0.4100	2 4242	0.000 - 0	0.040	0.057
1	2.4120	2.4102	2.4040	-6.200e-3	-0.248	-0.257
2 3	1.8730	1.8823	1.8737	-8.600e-3	-0.344	-0.457
4	1.6050 1.2060	1.6131 1.2131	1.5966	-0.016	-0.640 -0.204	-0.992 -0.420
5	0.9696	0.9733	1.2080 0.9708	-5.100e-3	-0.100	-0.420
6	0.8017	0.8077	0.8030	-2.500e-3 -4.700e-3	-0.188	-0.582
7	0.4812	0.4842	0.4820	-2.200e-3	-0.088	-0.454
8	0.3647	0.3672	0.4620	0.000	0.000	0.000
9	0.0000	0.0019	0.0078	5.900e-3	0.236	310.500
9	0.0000	0.0019	0.0078	5.9008-3	0.236	310.500
				A002	Wet Data (R23)
	Cyl Conc. R23	Dry (%CO2)	Wet (%CO2)	W-D Diff.	W-D %fs Diff.	W-D %pt Diff.
1	2.4120	2.4105	2.4043	-6.200e-3	-0.248	-0.257
2	1.8730	1.8691	1.8634	-5.700e-3	-0.228	-0.305
3	1.6050	1.6012	1.5930	-8.200e-3	-0.328	-0.512
4	1.2060	1.2020	1.1969	-5.100e-3	-0.204	-0.424
5	0.9696	0.9670	0.9621	-4.900e-3	-0.196	-0.507
6	0.8017	0.7981	0.7958	-2.300e-3	-0.092	-0.288
7	0.4812	0.4809	0.4809	0.000	0.000	0.000
8	0.3647	0.3637	0.3637	0.000	0.000	0.000
9	0.0000	0.0020	0.0080	6.000e-3	0.240	300.000
				A003	Wet Data (R23)
					•	•
	Cyl. Conc. R23	Dry (%CO2)	Wet (%CO2)	W-D Diff.	W-D %fs Diff.	W-D %pt Diff.
1	2.4120	2.4102	2.4059	-4.300e-3	-0.172	-0.178
2	1.8730	1.8697	1.8669	-2.800e-3	-0.112	-0.150
3	1.6050	1.5997	1.5942	-5.500e-3	-0.220	-0.344
4	1.2060	1.1958	1.1933	-2.500e-3	-0.100	-0.209
5	0.9696	0.9587	0.9587	0.000	0.000	0.000
6	0.8017	0.7910	0.7910	0.000	0.000	0.000
7	0.4812	0.4731	0.4775	4.400e-3	0.176	0.930
8	0.3647	0.3595	0.3638	4.300e-3	0.172	1.200
9	0.0000	0.0019	0.0134	0.011	0.440	578.900

R23 NX HORIBA S/N# COMPARATOR. -B7- CO2+H20 . 5616610506. COZ CONC PLUT CARVE · MSA · HOR · MSA HOP 11 .. 10 13 2.4120 96.2 96.5 .. 96.5 95.7 86.3 25.5 86.0 86.0 2.1100 28.3 77.5 12,8 1,8230 77,6 59,1. 59.5 1,3480 58.1 58.5 0.9696 94.1 12,9 43,6 13.5 22.5 0.5900 28.0 26,8 27,8 0.3697 12.7 17.8 16.8 17:6 12.6 12,5 0.2550 12.6 6.6 0.1282 65 ---•

% F.S. Diff (Hor - MSA)

ATTACHMENT

Specific Humidity (grains/pound)

Bubbled CO2 Differences

Specific Humidity (gr/lb)

BUBBLED CO2 CYLINDER DATA

	Cyl. Conc.	Spec. Hum.	Hor, Response			% pt. Diff.	% F.S. Diff.
7	(#600)	SH (gr./lb)	(%CO2)	M (%CO2)	H - M (%CO2)	see below	see below
Date 8/18/88	(%CO2) 2.3803	30.88	2.3733	2.3783	-0.0050	(% M pt.) -0.210	(% R23) -0.200
0/10/00	1.2088	30.26	1.2075	1.2048	0.0027	0.224	0.108
1	0.4060	31.00	0.4039	0.4060	-0.0021	-0.517	-0.084
	0.0941	30.88	0.0961	0.0999	-0.0038	-3.804	-0.152
	0.0295	30.51	0.0298	0.0317	-0.0019	-5.994	-0.076
	2.3803	44.33	2.3673	2.3753	-0.0080	-0.337	-0.320
_]	1.2088	43.32	1.2049	1.2074	-0.0025	-0.207	-0 100
	0.4060	44.16	0.4039	0.4081	-0.0042	-1.029 0.209	-0.168 0.008
1	0.0941	43.82 43.99	0.0961	0.0959	0.0002 0.0001	0.209	0.004
	0.0295 2.3803	58. 29	2.3583	0.0317 2.3598	-0.0015	-0.064	-0.060
	1.2088	55.93	1.1975	1.1972	0.0003	0.025	0.012
	0.4060	56.99	0.4018	0.4038	-0.0020	-0.495	-0.080
	0.0941	56.14	0.0961	0.0999	-0.0038	-3.804	-0.152
	0.0295	55.72	0.0318	0.0337	-0.0019	-5.638	-0.076
8/24/88	2.3808	34.23	2.3738	2.3635	0.0103	0.436	0.412
	1.2088	33.42	1.2047	1.2041	0.0006	0.050	0.024
	0.4060	33.69	0.4061	0.4053	0.0008	0.197	0.032
	0.0941	33.69	0.0971	0.0986	-0.0015	-1.521	-0.060
	0.0295	33.69	0.0321	0.0340	-0.0019	-5.588	-0.076 -0.076
	2.3808	49.19	2.3647 1.1996	2.3666	-0.0019 -0.0045	-0.08 0 -0.374	-0.076
	1.2088 0.4060	47.52 48.81	0.4018	1.2041 0.4053	-0.0045	-0.864	-0.140
	0.0941	47.71	0.0951	0.4055	-0.0035	-3.550	-0.140
	0.0295	48.07	0.0301	0.0380	-0.0079	-20.789	-0.316
	2.3808	65.22	2.3556	2.3635	-0.0079	-0.334	-0.316
	1.2088	63.08	1.1945	1.2041	-0.0096	-0.797	-0.384
	0.4060	64.98	0.4018	0.4119	-0.0101	-2,452	-0.404
	0.0941	66.44	0.0951	0.1027	-0.0076	-7,400	-0.304
0/05/00	0.0295	68.94	0.0301	0.0400	-0.0099	-24.750	-0.396
8/25/88	2.3808 1.2088	33,44	2.3680 1.2021	2.3816 1.2099*	-0.0136 -0.0078	-0.571 -0.645	-0.544 -0.312
	0.4060	32.20	0.4037	0.4111	-0.0074	-1,800	-0.296
	0.0941	32.78	0.0948	0.0992	-0.0044	-4.435	-0.176
	0.0295	32.65	0.0300	0.0403	-0.0103	-25.558	-0.412
	2.3808	54.71	2.3559	2.3691	-0.0132	-0.557	-0.528
	1.2088	52.88	1.1970	1.2023	-0.0053	-0.441	-0.212
	0.4060	53.89	0.4015	0.4090	-0.0075	-1.834	-0.300
	0.0941	52.68	0.0968	0.1012	-0.0044	-4.348	-0.176
	0.0295	52.68	0.0300	0.0382	-0.0082	-21.466	-0.328
	2.3808	64.36 61.77	2.3529 1.1970	2.3536 1.1947	-0.0007 0.0023	-0.030 0.193	0.028
	1.2088	62.94	0.4015	0.4046	-0.0031	-0.768	-0.124
	0.0941	62.01	0.0948	0.1012	-0.0064	-6.324	-0.256
	0.0295	62.24	0.0300	0.0382	-0.0082	-21.466	-0.328
8/31/88	2.3808	36.98	2.3706	2.3807	-0.0101	-0.424	-0.404
	1.6013	37.71	1.5936	1.6011	-0.0075	-0.468	-0.300
	0.9515	38.01	0.9453	0.9518	-0.0065	-0.683	0.260
	0.4060	36.26	0.4048	0.4105	-0.0057	-1.389	0.228
	0.0000	37.12	0.0020	0.0040	-0.0020	-50.000	-0.080
	2.3808	52.09	2.3615	2.3621	-0.0006	-0.025 0.044	-0.024 0.028
	1.6013 0.9515	51.30 51.50	1.5882 0.9429	1.5875	0.0007	-0.169	-0.064
	0.9515	52.29	0.4004	0.3996	0.0008	0.200	0.032
	0.0000	53.69	0.0000	0.0000	0.0000	0.000	0.000
	2.3808	92.42	2.3494	2.3590	-0.0096	-0.407	-0.384
	1.6013	90.78	1.5801	1.5875	-0.0074	-0.466	-0.296
	0.9515	90.14	0.9356	0.9396	-0.0040	-0.426	-0.160
	0.4060	91.44	0.3983	0.4018	-0.0035	-0.871	-0.140
	0.0000	92.42	0.0020	0.0079	-0.0059	-74.684	-0.236
8/12/88	2.3803	0.00	2.3798	2.3802 1.9128	-0.0004	-0.017	-0.016 -0.012
Calibration	1.9123	0.00	1.9125	1.6010	0.0004	0.025	0.016
Data	1.2088	0.00	1.2098	1.2088	0.0010	0.083	0.040
	0.9515	0.00	0.9510	0.9489	0.0021	0.221	0.084
	0.7991	0.00	0.7975	0.8024	-0.0049	-0.611	-0.196
ļ	0.4959	0.00	0.4967	0.4955	0.0012	0.242	0.048
	0.4060	0.00	0.4061	0.4057	0.0004	0.099	0.016
8/18/88	2.3803	0.00	2.3793	2.3814	-0.0021	-0.088	-0.084
Calibration		0.00	1.9141	1.9128	0.0013	0.068	0.052
Data	1.6013	0.00	1.6002	1.5958	0.0044	0.276 -0.206	0.176
l	1.2088	0.00	1.2100	1.2125	-0.0025 -0.0031	-0.206	-0.124
	0.9515	0.00	0.9501	0.9532	0.0009	0.113	0.036
	1 0 7001	1 0 00					
	0.7991 0.4959	0.00	0.7984 0.4967	0.4981	-0.0014	-0.281	-0.056

CO2 Comparison Equipment Set-Up

Means & 95% C.I.s for Vehicle Bag CO2 Diff.s

% pt. Difference (see below)

Vehicle Bag CO2 Differences

Specific Humidity (gr/lb)

											,			,			T
Test	Test		HORIBA	MSA	Specific	HORIBA	MSA	Hor-MSA	Hor-MSA	Backgrnd	Backgrnd	Sample	Sample	HORIBA	MSA	Corr. Conc.	Corr. Conc.
Date	Туре	Bag	Cons	Conc.		Dilution		Difference	Difference	%F.S. Diff	%Sam Diff	%FS Dili	%Sam Diff		Corr.Conc.		%pi. Dill
,	.,,,-		Н	M	SH	Factor	Factor	H · M	H - M	see below	see below	see below	see below	Hac	Mcc	see below	see below
1 1				(%CO2)	(gr/lb)	DFh	DFm	(%CO2)	(ppm)		(%MSA Sam)	(%FS R23)	(%MSA Sam)	see below			(%MSA CC)
1 1	1		(2002)	(2002)	(91710)	(see	, ,	(%002)	(, , , , , , , , , , , , , , , , , , ,	(20, 5, 1,25,	(Tomor out)	(Al 3 H23)	(MOA Sam)		(%CO2)	(20)	(2000
 						1 300	DEIDW					 		1 1%0021	(NCO2)		
8/18/88	2-bag LA-4	B1	0.0378	0.0377	43.985	9.80	9.70	0.0001	1.00	0.0040	0.0072		1	1.3341	1.3473	-0.5291	-0.9817
10, 10,00	Van	S1	1.3680		64.928	0.00	0.70	-0.0131	-131.00	0.00	0.00.2	-0.5240	-0.9485	1.0041	1.047.0	0.020.	1
] [B2	0.0398		44.160	13.31	13.21	0.0001	1.00	0.0040	0.0099	3.55.70	-0.5403	0.9698	0.9777	-0.3166	-0.8096
1 1	ŀ	S2	1.0066		66.386	10.5.	,,	-0.0078	-78.00	0.00.0	0.000	-0.3120	-0.7689	0.5050	1	0.0.00	1
1	ŀ	JE	1.0000	1.0144	00.500			-0.0076	-70.00			-0.5120	-0.7009				
8/25/88	2-bag LA-4	B1	0.1440	0 1485	53.963	6.54	6.52	-0.0045	-45.00	-0.1800	-0.2191			1.9277	1.9282	-0.0174	-0.0226
10,52,00	REPCA	Sı	2.0497		72.163	0.54	0.52	-0.0043	-42.00	-0.1000	-0.2151	-0.1680	-0.2045	1.52//	1.5202	10.0174	10.0220
1	ו אינוי		0.1152		52.154	6.72	6.69	-0.0042	-4.00	-0.0160	-0.0200	-0.1080	-0.2045	1.8970	1.9056	-0.3455	-0.4532
1 1			1.9950			0.72	6.69	-0.0004	-89.00	-0.0160	-0.0200			1.8970	1.9050	-0.5455	-0.4552
ł I		32	1.9950	2.0039	67.534			-0.0069	-09.00			-0.3560	-0.4441				
10,21,00	2-bag LA-4	B1	0.0339	0 0250	48.710	11.88	11.81	-0.0019	-19.00	-0.0760	-0.1675			1.0974	1.1016	-0.1710	-0.3882
10/31/00	REPCA	S1	1.1284		67.008	11.00	11.01	-0.0060	-60.00	-0.0760	-0.10/3		0.5000	1.0974	1.1016	-0.1710	-0.3002
i I	ner.		0.0359			47.00			1.00	0.0040	0.0404	-0.2400	-0.5289	0.7040		-0.2083	-0.7134
1 1					48.896	17.66	17.54	0.0001		0.0040	0.0131			0.7248	0.7300	-0.2083	-0.7134
1 1		S2	0.7587	0.7638	65.099	l i		-0.0051	-51.00			-0.2040	-0.6677	I	1		,
1 I	0 500 1 4 4	В1	0.0339		49.287		11.81	-0.0059	-59.00	-0.2360	0.5004			1	1 0000	0 1040	-0.2843
1	2-bag LA-4 REPCA				49.267 65.320	11.90	11.01	·0.0059		-0.2360	-0.5201			1.0948	1.0980	-0.1248	-0.2043
i l	HERCA	S1	1.1259				43.00		-85.00	0.4500		-0.3400	-0.7493			0.3400	0.0004
1 1			0.0339		50.426	17.61	17.38	-0.0039	-39.00	-0.1560	-0.5060			0.7290	0.7352	-0.2460	-0.8364
1 1		S2	0.7610	0.7708	65.078			-0.0098	-98.00			-0.3920	-1.2714		i i		
1 1		Вз	0.0339		50.218	7.44	7.38	-0.0039	-39.00	-0.1560	0.0440			1 7700		-0.4907	-0.6880
ł I	Hwy REPCA	S3				7.44	7.36	-0.0039		-0.1360	-0.2148	0.0040	0.0504	1.7709	1.7831	-0.4907	-0.6660
i i	HEPCA	53	1.8002	1.8158	71.831			-0.0156	-156.00			-0.6240	-0.8591				
9/23/88	2-bag LA-4	В1	0.0359		44.532	8.30	8.26	-0.0039	-39.00	-0.1560	0.0400			1.5837	1.5881	-0.1757	-0.2766
3723700	W. Nova	S1				8.30	0.20	-0.0038	-78.00	-0.1500	-0.2403		0.4000	1.5037	1.5001	-0.1757	-0.2700
] [W. NOVA		1.6153		74.199	11.06	10.98	-0.0078		0.1560	0.0407	-0.3120	-0.4806	1.1793	1.1838	0 1701	-0.3781
i i	1	S2	0.0359		41.212	11.00	10.90	-0.0039	-39.00	-0.1560	-0.3197	0 2000	0.6557	1.1793	1.1838	-0.1791	-0.3781
l t	i	32	1.2120	1.2200	77.801			-0.0080	-80.00			-0.3200	-0.6557				
l I	i			1						STDDEV	mp.cc.	STIDDEV	STDDEV			STIDDEV	STIDDEV
i i	ľ			ľ			ľ		ľ		STDDEV		- '		1		
ļ İ	•			į	,					0.0880	0.1945	0.1331	0.2848			0.1541	0.2943
] {	I			İ					1	AVERAGE	AVERAGE	AVERAGE	AVERAGE			AVERAGE	AVERAGE
1	Ī			ŀ			I										
	1	1		1				l		-0.1018	-0.1979	-0.3447	-0.6890			-0.2549	-0,5302
1	j			j	j		1	1		0504 01	05% 0.1	05% C1	05% C1		1	0E% C1	95% C.I.
1								Į.		95% C.I.	95% C.I.	95% C.I.	95% C.I.		 	95% C.I.	
<u></u>			LI	I						(04,16)	(07,33)	(26,43)	(+.50,88)		<u>. </u>	(·.15,·.36)	(33,73)

Background %F.S. Diff. = $[(H_b - M_b)/2.5] \times 100$ Background %Sam Diff. = $[(H_b - M_b)/M_S] \times 100$ MSA Corr. Conc. (Mcc) Sample %F.S. Diff. $= [(H_S - M_S)/2.5] \times 100$ Corr. Conc. %F.S. Diff. Sample %Sam Diff. $= [(H_S - M_S)/M_S] \times 100$

Horiba Corr. Conc. (H_{CC}) = $H_S - H_b(1 - 1/DF)$

 $= M_S - M_b(1 - \frac{1}{DF})$

 $= [(H_{CC} - M_{CC})/2.5] \times 100$ Corr. Conc. %pt. Diff. $= [(H_{CC} - M_{CC}) / M_{CC}] \times 100$ Dilution Factor (for study) = 13.4 / %CO2

CO2 Comparison Equipment Set-Up

								Corr.tor K		Corr. for K	Corr.for K	Corr.for K	Corr.for K	Corr.for K	Corr.tor K	1				
Test	Test		HORIBA	MSA	Specific	X-T calc from	HORIBA	HORBA	MSA	Hor-MSA	Hor-MSA	Backgrnd	Backgrid	Sample	Sample	HORIBA	MSA	Corr. Conc.	Corr. Conc.	1
Date	Туре	Bag	Conc.	Cana.	Humidity	Regr. Formula	Corr. for "K"	Dilution	Dilution	Difference	Difference	%F.S. DIM	%Sam Diff	WFS DIN	%Sem Diff	Corr.Conc.	Corr.Conc.	%FS DIN	%pt. Diff	l
1	i	_	н	м	SH	K	Hc = H-K	Factor	Factor	Hc - M	Hc - M	see below	see below	see below	woled see	Hoc	Moc	see below	see below	1
1 !			(%COS)	(%CO2)	(gr/lb)	(A %CO2)	(%002)	DEN	Dfm	(%CO2)	(pp.m)	(%FS R23)	KMSA Sam)	(%FS R23)	(KAISA Sam)	محود لحود	see below	(%FS R23)	(%MSA CC)	!
1			·				, ,					l` '	,		ľ 1	(%CO2)	(%CO2)	1		
																	T			ł
8/18/88	2-bag LA-4	81	0.0378	0.0377	43.985	-0.00351660	0.04131660	9.76	9.70	0.0036	36.17	0.1447	0.2619	ŀ		1.3361	1.3473	-0.4471	-0.8296	ı
1 4	Van	SI	1.3680	1.3811	64.928	-0.00519099	1.37319099			-0.0079	-79.09			-0.3164	-0.5727	ı				1
1 1		B2	0.0398	0.0397	44.160	-0.00353059	0.04333059	13.24	13.21	0.0036	36.31	0.1452	0.3579			0.9718	0.9777	-0.2342	-0.5990	1
1		S2	1.0066	1.0144	66.386	-0.00530756	1.01190756			-0.0025	-24.92			-0.0997	-0.2457	ŀ		l		1
				1												l				1
8/25/88	2-bag LA-4	B1	0.1440	0.1485	53.963	-0.00431434	0.14831434	6.52	6.52	-0.0002	-1.86	-0.0074	-0.0090		1	1.9299	1.9282	0.0698	0.0904	1
	REPCA	S1	2.0497	2.0539	72.163	-0.00576943				0.0016	15.69	ļ '		0.0628	0.0764	l		1	İ	١
1 1		82	0.1152	0.1158	52.154	-0.00416971	0.11936971	8.70	6.69	0.0038	37.70	0.1508	0.1881			1.8988	1.9056	-0.2695	-0.3536	ł –
1		S2	1.9950	2.0039	67.534	-0.00539934	2.00039934			-0.0035	-35.01			-0.1400	-0.1747	1	1 :		İ	1
1 1																l	i '	1		1
8/31/88	2-bag LA-4	B1	0.0339	0.0358	48.710	-0.00389436	0.03779436	11.82	11.81	0.0020	19.94	0.0798	0.1758			1.0992	1.1016	-0.0988	-0.2242	
i i	REPCA	SI	1.1284	1.1344	67.008	-0.00535729	1.13375729			-0.0008	-6.43	1		-0.0257	-0.0567	l	1	,		•
1 1		B2	0.0359	0.0358	48.896	-0.00390924	0.03980924	17.54	17.54	0.0040	40.09	0.1604	0.5249		1	0.7264	0.7300	-0.1470	-0.5035	1
1 1		S2	0.7587	0.7638	65.099	-0.00520467	0.76390467		· ·	0.0001	1.05			0.0042	0.0137	l		Į.		1
1 1																		1	ŀ	1
1 1	2-bag LA-4	81	0.0339	0.0398	49.287	-0.00394050		11.85	11.81	-0.0020	-19.60	-0.0784	-0.1727		[1.0965	1.0980	-0.0597	-0.1360	1
1 1	REPCA	S1	1.1259	1.1344	65.320	-0.00522233				-0.0033	-32.78			-0.1311	-0.2889					1
1		B2	0.0339	0.0378	50.426	-0.00403156	0.03793156	17.49	17.38	0.0001	1.32	0.0053	0.0171			0.7304	0.7352	-0.1894	-0.6439	1
		S2	0.7610	0.7708	65.078	-0.00520299	0.76620299			-0.0046	-45.97			-0.1839	-0.5964					
															[4			ı
1 }	Hwy	B3	0.0339	0.0378	50.218	-0.00401493	0.03791493	7.42	7.38	0.0001	1.15	0.0046	0.0063			1.7731	1.7831	-0.3994	-0.5599	1
1	REPCA	S3	1.8002	1.8158	71.831	-0.00574289	1.80594289			-0.0099	-98.57			-0.3943	-0.5429	1				1
, ,	J													l :	ł i		j	1) ;
9/23/88	2-bag LA-4	B1	0.0359	0.0398	44.532	-0.00356033		8.27	8.26	-0.0003	-3.40	-0.0136	-0.0209			1.5865	1.5881	-0.0630	-0.0992	
I .	W. Nova	S1	1.6153	1.6231	74.199	-0.00593221				-0.0019	-18.68			-0.0747	-0.1151				_	;
1 1		B2	0.0359	0.0398	41.212	-0.00329490		11.00	10.98	-0.0006	-6.05	-0.0242	-0.0496			1.1826	1.1838	-0.0494	-0.1043	
1 1		S2	1.2120	1.2200	77.801	-0.00622019	1.21822019			-0.0018	-17.80	l i		-0.0712	-0.1459					
l I																				l
	1											STDDEV	STODEV	STD DEV	STD DEV			STDDEV	STD DEV	
i I						· ·						0.0864	0.2056	0.1344	0.2364			0.1565	0.2870	;
1 I									1											l
1	1											AVETVICE	AVETWOE	AVETAGE	AVERAGE	1		AVERAGE	AVERAGE	1
i I	 											0.0516	0.1163	-0.1245	-0.2408			-0.1716	-0.3603	l l
1 .	i i												امحسرا	ایجیریا	05W C 1			95% C.I.	058 01	l l
] !				l i								95% C.I.	95% C.L	95% C.I.	95% C.I.				95% C.L (15,55)	ı
												(.11,01)	(.25,04)	(U3,22)	(0/,41)			<u>(00,28)</u>	1 10, 55)	i

Background %F.S. Diff. = $[(H_b - M_b)/2.5] \times 100$

Background %Sam Diff. = $[(H_b - M_b)/M_s] \times 100$

Sample %F.S. Diff. = $[(H_S - M_S)/2.5] \times 100$

Sample %Sam Diff.

 $= [(H_S - M_S)/M_S] \times 100$

Horiba Corr. Conc. $(H_{CC}) = H_S - H_b(1 - \frac{1}{DF})$

MSA Corr. Conc. (M_{∞}) = $M_s - M_b(1 - \frac{1}{DF})$

Corr. Conc. %F.S. Diff. $= [(H_{\infty} - M_{\infty})/2.5] \times 100$

Corr. Conc. %pt. Diff. = $[(H_{CC} - M_{CC})/M_{CC}] \times 100$

Dilution Factor (for study) = 13.4 / %CO2

Means & 95% C.I.s for Vehicle Bag CO2 Diff.s (corr. for H2O vapor)

Background %Sam Diff. = $[(H_b - M_b)/M_s] \times 100$ Sample %Sam Diff. = $[(H_s - M_s)/M_s] \times 100$

% (of sample pt.) Diff.

(see below)

Corr. Conc. %pt. Diff. $= [(H_{CC} - M_{CC})/M_{CC}] \times 100$

Vehicle Exhaust Bag CO2 Differences Corrected for H2O Vapor

Specific Humidity (gr/lb)

Y	EQUIPMENT ID # 1	789463	***	AA	44	22 2	2 55		111
	CALIBRATION NAME:	C02A-CR22	*** ANALYZER CALIBRATION CURVE ANALYSIS ***	AA	44	22	55		1111
	CALIBRATION .	880811-104630	111	AA	HA	22	553	5 55 5	11
	TEST BITE ;	A251	**************************	AAA	AAAA	22		55	11
	CALIB DONE AT :	14:12 08-10-88		AA	AA	222	2 55	55	11
	OPERATOR COMMENT:	EPA-MSA-R22-BLINE		AA	A4	222222	2 5	555 5	11111

		KNC	DWN OR H	1E ASURE D	INFUTS	*****		. 1	********		= CHRVE CO			=	* = = = = = = =	
	I EPACYLO	VENDOR CYLID	VCODE	DATA	HEAS	HOMINAL	ACTIVE 1	1	FIT Q	UALITY OF	NEW CURVE	1	SHIFT	FROM FREVI	OUS CURVE	
	I OR	0R	OR	POINT	DEFL	CONC	EFS CONC 1	1	DEFL	CONC	Y XPOINT	J	DEFL	CONC	Y ZSHIFT	
	I BLNCOD	BLENDER RNG	BLNRT	TYPES	ХĦ	YH	YE 1	1	i xc	YC	(H-C)/C	J	XS	YS#	(S-C)/C	
	[1	1				1				
	I 155139	•1	#1	CURVE	95.40	0.9515	*1 1	. 1	95.40	0.9516	0.01	I	# 4	14	8.4	
	I 33470	0 1	#1	CURVE	81.40	0.7991	01 1	1	R1.40	0.7987	-0.05	J	14	• 4	0.4	
	1 163287	• 1	• 1	CURVE	71.40	0.6925	01 1	. 1	71.40	0.6929	0.06	I	14	14	84	
	I B1103	●1	•1	CURVE	61.90	0.5947	●1 I	1	61.90	0.5947	0.01	I	14	#4	84	
	I B442	#1	# 1	CURVE	52.10	0.4959	01 I	1	52.10	0.4957	-0.04	I	#4	8.4	6.4	
	I B15 75	*1	0 1	CURVE	43.00	0.4060	•1 I	1	43.00	0.4057	-0.08	1	14	8.4	8.4	
	I B916	0 1	•1	CURVE	25.30	0.2344	•1 I	1	25.30	0.2351	0.30	1	14	#4	* 4	
	1 337743	#1	#1	CURVE	15.10	0.1396	●1 I	I	15.10	0.1392	0.27	1	14	84	8.4	
	Ĭ						1	I	MEAN OF	(ABS 2) =	0.10	1				
	1						1	1				1				
	1 B2386	#1	•1	NAMED	97.00	0.9494	•1 I	1	97.00	0.9694	-0.02	1		8 1	● 1	
	I B2211	#1	#1	NAMED	81.70		01 I	1	81.70	0.8020	0.03	1		01	•1	
	I B1454	#1	• 1	NAMED	74.40	0.7260	01 I	J	74.40	0.7244	-0.22	I		#1	•1	~
	I A-221	•1	•1	NAHED	41.30	0.5900	#1 I	I	61.30	0.5884	-0.24	I		• 1	•1	-
	I B1184	0.1	• 1	NAMED	50.60	0.4812	01 I	1	50.60	0.4808	-0.09	1		# 1	#1	} -
	1 157656	•1	• 1	NAMED	38.90	0.3647	01 1	1	38.90	0.3656	0.26	1		• 1	●1	7
	I 206591	#1	•1	NAHED	27.30	0.2550	#1 1	1	27.30	0.2541	-0.36	1		• 1	• 1	<u> </u>
	1 065369	#1	• 1	NAMED	13.80	0.1282	01 I	1	13.80	0.1271	-0.85	1		# 1	• 1	5
1	I 244214	0 1	# 1	NAMED	10.60	0.0941	#1 I	1	10.60	0.0974	3.41	1		8 1	01	2
1	I 391539	01	• 1	NAHED	6.60	0.0606	01 1	1	6.60	0.0605	-0.1B	1		0.1	#1	
1	I 46207	• • 1	# 1	NAHED	3.20	0.0295	01 I	1	3.20	0.0293	-0.B1	1		#1	●1	2
	•						_	_				_				

NOTE forall11 CYLINDER HOT DEFINED IN THE EQUIPMENT FILE SYSTEM.

NOTE #4: NO PREVIOUS ANALYZER CALIBRATION ON FILE IN THE EFS. IOTE #: YS FOR NAMED CYLS IS PREVIOUS EFS CONC (UNSHIFTED).

EQUATIONS AND COEFFICIENTS

X = (HCAL * X) + BCAL C H

MCAL = 0.1000000E 01 BCAL = 0.0000000E 00 DEGREF FIT

4 3 2 A5*X + A4*X + A3*X + A2*X + A1 = FCT C02 /N2 C C C C

A1 = 0.0000000E 00 A2 = 0.9126383E-02 A3 = 0.5725509E-05 A4 = 0.3321407E-07 A5 = 0.0000000E 00

PROD	PROCESSED 1	10:54:51 08-11-88	******* HABTER BITE ******	AAA	AA	22222	5955555	11
Y	EQUIPMENT ID 4 :	789463	***	AA	66	22 22	55	111
	CALIBRATION NAME!	CO2A-CR22	*** ANALYZER CALIBRATION CURVE ANALYSIS ***	AA	44	22	55	1111
	CALIBRATION + :	BB0B11-105451	***	AA	HA	22	555555	11
	TEST SITE :	A251	*************************	AAAA	AAA	2 2	55	11
	CALIB DONE AT :	14:12 08-10-88		AA	AA	222 2	55 55	11
	OPERATOR COMMENT:	EPA-MSA-R22-BLINE	•	AA	AA	2222222	5555 5	11111

EPACYL#	VENDOR CYLID	VCODE	DATA	NEAS	NOMINAL	ACTIVE 1	1	FIT Q	NUALITY OF	NEW CURVE	1	SHIFT	FROM FREVI	OUS CURVI
OR	OR	DR	POINT	DEFL	CONC	EFS CONC 1	1	DEFL	CONC	Y ZFOINT	1	DEFL	CONC	Y ZSHIF
BLNCOD	BLENDER RNG	BLNRT	TYPES	XH	YH	YE 1	I	ХC	YC	(H-C)/C	I	XS	Y5*	(S-C)/
B2386	* 1	* 1	CURVE	97.00	0.9696	•1	1	97.00	0.9700	0.04	I	• 4		14
B2211	01	01	CURVE	81.70	0.8017	61 1	i	81.70		0.07	ī	14	64	94
B1454	01	+1	CURVE	74.40	0.7260	01 1	1	74.40		-0.1B	1	14	84	14
A-221	•1	#1	CURVE	61.30	0.5900	01 1	i	61.30		-0.15	i	14	84	14
B1184	91	•1	CURVE	50.40	0.4812	01 1	1	50.60		0.04	ì	14	04	84
157656	#1	• 1	CURVE	38.90	0.3647	01 1	1	38.90		0.46	ī	14	14	14
286591	#1	• 1	CURVE	27.30	0.2550	01 1	Ī	27.30		-0.06	ī	14	14	64
065369	♦1	• 1	CURVE	13.80	0.1282	01 1	I	13.80		-0.41	i	14	14	14
						1	Ī	MEAN OF		0.18	1			
155139	61	•1	NAMED	95.40	0.9515	*1 1	1	95.40	0.9521	0.06	I 1		* 1	•1
33470	01	01	NAMED	81.40	0.7991	• i i	•	81.40		-0.00	i		• 1	•1
163287	01	•1	NAMED	71.40	0.6925	ěi i	i	71.40		0.11	i		41	41
B1103	♦1	0.1	NAMED	61.90	0.5947	6 1 1	1	61.90		0.09	ī		• 1	41
B442	#1	01	NAMED	52.10	0.4959	01 1	1	52.10		0.08	1		• 1	#1
B1575	01	• 1	NAMED	43.00	0.4060	91 1	1	43.00		0.09	i		9.1	• 1
B916	• •1	01	NAMED	25.30	0.2344	#1 I	1	25.30	0.2358	0.61	1		• t	#1
337743	0 1	01	NAMED	15.10	0.1396	#1 I	1	15.10	0.1398	0.16	1		#1	# 1
244214	91	#1	NAMED	10.60	0.0941	01 1	1	10.60	0.0979	3.87	1		#1	*1
391539	♦1	0 1	NAMEL	6.60	0.0606	●1 I	1	6.60	0.0608	0.35	1		#1	8 1
66207	•1	• 1	NAMED	3.20	0.0295	•1 <u>I</u>	1	3.20	0.0294	-0.23	J		• 1	• 1
NOTE #1:	CYLINDER NOT	DEFINE	IN THE	EQUIPME	NT FILE SY	STEM.	I.	MCAL= 1	.0000 BC	L= 0.000	- I - ·	 15 =	RS.	
4144					· ·		Ĭ		25T=1 WFC	•			ZST= WF	
							1	NEW . CAL	18.NO= 8808	11-105451	1 1	RU. CAL	IB.NO=	-

NOTE #4: NO PREVIOUS ANALYZER CALIBRATION ON FILE IN THE EFS. NOTE #1: Y8 FOR NAMED CYLS IS PREVIOUS EFS CONC (UNSHIFTED).

DEGREE FIT : 3

EQUATIONS AND COEFFICIENTS.

X = (MCAL * X) + BCAL C N

MCAL = 0.1000000E 01 BCAL = 0.0000000E 00 4 3 2 A5*X + A4*X + A3*X + A2*X + A1 = FCT C02 /N2 C C C C

1----- EFF D/T --- INEFF D/T -

A1 = 0.0000000E 00 A2 = 0.9182639E-02 A3 = 0.4470880E-05 A4 = 0.4077645E-07

C

	COLID	MENT ID 8 : BATION NAME: KATION 8 :	09:05:10 789433 CD2A-CR: 880811-0	23		######## H ### ### ANALYZER ### ################################		101	CUF	RVE AHAL	***	AA/ AA 4A 4A AAA/	4AA 44 44 44		22 55 2 55	11 111 111 11 11
		DONE AT 1	09105									AA	AA		2 55 55	11
	UPEKA	TOR COMMENT:	EPA-HSA-	-R23-BLI	NE							AA	44	22222	22 55555	11111
I		====== KN(OWN OR HI	EASURED	INFUTS			= I	1==			= CURVE CO	DHFA	RISONS :		
I E	FACYL	VENDOR CYLID	VCODE	DATA	HEAS	NOHINAL	ACTIVE	1	1	FIT QU	ALITY OF	NEW CURVE	1	SHIFT	FROH PREVIO	US CURVE
I	OR	OR	DR	POINT	DEFL	CONC	EFS CONC	1	1	DEFL	CONC	Y XFOINT	I.	DEFL	CONC	Y ZSHIFT
_	LNCOD	BLENDER RNG	BLNRT	TYPES	XH	YM	YE	I	1	XC	YC	(M-C)/C	1	XS	Y5#	(S-C)/C
-		**********						I	I				1			
	16660	#1	• 1	CURVE	95.3		#1	I	I	95.30	2.3805		I	95.50		-0.00
	46293	●1	•1	CURVE	79.7		• 1	1	1	79.70	1.9125		1	79.72		0.79
I B		#1	0 1	CURVE	60.6	0 1.6013	01	I	1	68.60	1.6008	-0.03	1	68.49		1.24
I B	180	#1	• 1	CURVE	53.7	0 1.2088	• 1	1	1	53.70	i.2081	0.06	I	53,42	1.2282	1.66
I 13	55139	●1	•1	CURVE	43.4	0 0.9515	• 1	1	1	43.40	0.9527	0.13	I	43.00	0.9693	1.74
I 3	3470	#1	• 1	CURVE	36.9	0 0.7991	• 1	1	1	36.90	0.7978	-0.16	I	36.42	0.8110	1.65
I D	442	♦1	01	CURVE	23.8	0 0.4959	0.1	1	1	23.80	0.4995	0.72	1	23.17	0.5032	0.75
I B	1575	#1	•1	CURVE	19.4		*1	I	1	19.40	0.4032		I	18.72	0.4032	-0.00

41

41

.1

•1

.1

•1

NOTE' 1: CYLINDER NOT DEFINED IN THE EQUIPMENT FILE SYSTEM.

. 1

. 1

• 1

. 1

41

. 1

• 1

NAMED

NAMED

NAHED

NAMED

NAMED

NAMED

NAMED

NAMED

NAMED

NAMED

NAMED

94.50

78.30

48.80

53.60

44.00

37.00

23.00

17.60

4.80

2.90

1.90

2.4120

1.8730

1.6050

1.2060

0.9494

0.8017

0.4812

0.3647

0.0941

0.0606

0.0295

NOTE *: YS FOR NAMED CYLS IS FREVIOUS EFS CONC (UNSHIFTED).

DEGREE FIT

0.25

-0.04

0.08

-0.03

-0.24

-0.19

-0.05

-4.13

22.47

0.14

2.69

1

0.23 I HEAN OF (ABS %) :=

EQUATIONS AND COEFFICIENTS

#1

#1

.1

•1

• 1

• 1

41

•1

X = (MCAL & X) + RCAL C M

MCAL = 0.1000000E 01 BCAL = 0.0000000E 00 A5#X + A4#X + A3#X + A2#X + A1 = FCT C02 /N2
C C C C

I MEAN OF (ARS X) -

2.4180

1.8723

1.6063

1.2056

0.9672

0.8002

0.4819

0.3644

0.0967

0.0582

0.0381

96.50

78.30

48.80

53.60

44.00

37.00

23.00

17.60

4.80

2.90

1.90

1

1

. 1

1

A2 = 0.1994R83E-01 A3 = 0.4060335E-04 A4 = 0.1277533E-06 A5 = 0.0000000E 00

C

I 368730

1 343923

1 262947

I B17780

I B2386

I B2211

I 31184.

1 157656

I 244214

I 391539

1 86207

M-7

. 1

. 1

1 1

• 1

1

1

41

• 1

1

: 3

• 1

1

. 1

. 1

• 1

0 1

1

0.000000E 00

0.1991130E-01

0.4345426E-04

0.9577360E-07

- -------

A1

A3

A4

A2 =

.

C

.

٠,

0

•

MCAL =

BCAL =

C

0.1000000E 01

0.000000E 00

<u>ች</u>

CALIBRATION NAME: CALIBRATION # : TEST SITE : CALIB DONE AT : OPERATOR COMMENT: I EFACYL# VENDOR CYLID I DR OR I BLNCOD BLENDER RNG I I \$16660 #1 I 146293 #1	VCODE OR BLNRT	090155 08-11-88 -R23-WOR	## ##	*		*******	• • • • • • • • • • • • • • • • • • • •	**	AA AA AAAA AA	AA AAA AA AA	22 22 22 222 222222	555555 5 2 55 5	5 11 5 11
TEST SITE : CALIB DONE AT : OPERATOR COMMENT: I===================================	A251 O9:05 (EFA-HSA- DUN OR HE VCODE OR BLNRT	08-11-88 -R23-WOR Easured Data Foint	## K Infuts = Heas		:=======[*******	**	AAAA AA	AAA	22 222	5 2 55 5	5 11 5 11
OFERATOR COMMENT: I===================================	09:05 C EFA-HSA- DWN OR HE VCODE OR BLNRT	-R23-WOR Easured Data Foint	K INFUTS = HEAS		:=======[AA	AA	222	2 55 S	5 11
I EFACYLO VENDOR CYLID I DR OR I BLNCOD BLENDER ENG I I \$18660	EFA-MSA- DWN OR ME VCODE OR BLNRT	-R23-WOR Easured Data Foint	K Infuts = Meas			Ivesses							11111
I EFACYL® VENDOR CYLID I DR OR I BLNCOD BLENDER RNG I I \$18660 \$1	VCODE OR BLNRT	DATA FOINT	HEAS			[======							
I DR OR I BLNCOD BLENDER RNG I I B18660 01	OR BLNRT	FOINT	. – –	NOHINAL					CURVE CO	HF AF	KISONS =	F	=======================================
I BLNCOD BLENDER RNG I	BLNRT		DEFL		ACTIVE 1	1 F1T	QUALITY	OF NE	CURVE	1	SHIFT F	ROM FREVI	DUS CHRVE
I \$16660 \$1		TYPES		CONC	EFS CONC I	J DEF	CONC	Y	XFOINT	1	DEFL	CONC	Y ZSHIFT
I \$16660 #1			ХH	YM	YE I	I XC	YC		(H-C)/C	1	XS	YS#	(S-C)/C
I 146293 #1	●1	CURVE	95.30	2.3803	•1 I	1 95.3			-0.06]	95.44	2.3788	-0.00
	0 1	CURVE	79.80	1.9123	01 1	1 79.8	30 1.9	140	0.09	1	79.78	1.9292	0.B0
I 9752 #1	01	CURVE	68.70	1.6013	01 I	1 68.7	70 1.6	025	0.07	1	68.56	1.6226	1.26
1 D180 01	01	CURVE	53.80	1.2088	01 I	1 53.6				1	53.50	1.2304	1.66
1 155139 •1	#1	CURVE	43.20	0.9515	01 1	1 43.2			-0.38	1	42.79	0.9643	1.73
I 33470 #1	•1	CURVE	36.90	0.7991	01 1	1 36.9	0.7	981	-0.13	1	36.42	0.8110	1.62
I B442 #1	01	CURVE	23.70	0.4959	01 I	1 23.7	70 0.4	978	0.38	I	23.0B	0.5013	0.70
I B1575 #1	•1	CURVE	19.50	0.4060	01 I	1 19.5	0.4	059	-0.02	I	18.84	0.4059	~0.00
I *					I		F (AHS %) :	0.16	I	SEAN OF	(ABS %) =	0.97
I 244214	# 1	NAMED	4.80	0.0941	•1 I	I I 4.6	0.0	969	2.93	i		# 1	#1
I 391539 4 1	0.1	NAMED	3.00	0.0606	01 I	1 3.0	0.0	604	-0.38	1		0 1	8 1
1 66207 #1	•1	HAHED	1.60	0.0295	•i <u>i</u>	1 1.6			8.13	1		* 1	1
NOTE #1: CYLINDER NOT						I HCAL= I CFC=1 I NEW.CA I XNL=	ZST=1 LIB.NO= 5.890	BCAL: WFC=2 880816 • INF:	0.000 DBF=3 5-090155	I A I C I F I B	RV.CAL I	ST=1 WF B.NO= 880 70322 995	= -0.865 C=2 DGF=3 B09-165450 AC-TIVE

EQUATIONS AND COEFFICIENTS. *****************

X = (MCAL * X) + BCALH

HCAL = 0.1000000E 01 BCAL = 0.0000000E 00 4 3 2 A5#X + A4#X + A3#X + A2#X + A1 = FCT CO2 /N2 C C C C

0.000000E 00 A2 = 0.2000664E-01 A3 = 0.3883405E-04 A4 = 0.1380222E-06 0.0000000 00

TIAND INCIDE CORE

: 3

DEGREE FIT

YOU FROLE	.0020	0710013	2 00-10			1 M S 1 L K	3		*****	ни	HMH	2422		. II
(EQUIP	PHENT ID # 1	789433		#1					***	AA	AA	22 2	22 55	111
CALIE	RATION NAME:	CD2A-CR	23	*1	* ANALYZER	CALIBRATIO	N C	URVE ANA	LYSIS ###	AA	AA	22	2 55	1111
CALIE	RATION # :	880816-	090835	81	1#				***	AA	AA	22	555555	1 1
TEST	SITE	A251		*4	********	********	***	*******	. * * * * * * * *	AAA	AAAA	22	5	
CALIE	DONE AT :	09105	08-12-88	1						AA	AA	222	2 55 5	
OPERA	TOR COMMENT:	EFA-MSA	-R23-WOR	K						AA	AA	222222	2 55555	
*******	===== KN	DWN OR M	EASURED	INFUTS =		=====I	J	======================================		- CURVE CO	DHFA	RISONS =		========
EPACYL .	VENDOR CYLID	VCODE	DATA	HEAS	NONINAL	ACTIVE I	I	FIT Q	JALITY OF I	NEW CURVE	1	SHIFT F	RON FREUI	DUS CURV
DR	OR	OR	POINT	DEFL	CONC	EFS CONC 1	J	DEFL	CONC	Y ZFOINT	1	DEFL	CONC	Y ZSHIF
BLNCOD	BLENDER RNG	FLNRT	TYFES	XH	YM	YE I	1	ХC	YC	(H-6)/0	J): S	Y5*	(S-C)/
						I	I				1			
B16660	♦1	• 1	CURVE	95.30	2.3803	61 1	J	95.30	2.3802	-0.00	1	95.49	2.3802	-0.0
146293	#1 .	•1	CURVE	79.60	1.9123	#1 I	I	79.60	1.9128	0.02	I	79.57	1.9234	0.5
B752	0 1	• 1	CURVE	68.50	1.6013	#1 1	1	68.50	1.6010	-0.02	1	48.31	1.6161	0.9
B 180	+1	0 1	CURVE	53.70	1.2088	#1 I	1	53.70	1.2088	0.00	1	53.31	1.2254	1.3
155139	1	• 1	CURVE	43.30	0.9515	01 I	1	43.30	0.9489	-0.28	1	42.76	0.9635	1.5
33470	•1	. •1	CURVE	37.20	0.7991	01 I	J	37.20	0.8024	0.41	1	36.58	0.8146	1.5
B442	+1	0 1	CURVE	23.80	0.4959	#1 I	1	23.80	0.4955	-0.08	3	22.99	0.4991	0.7
B 1575	† 1	● 1	CURVE	19.70	0.4060	♦1 I	J	19.70	0.4057	-0.0R	1	18.83	0.4057	-0.0
		•				1	1	MEAN OF	(ABS %) =	0.11	1	HEAN OF	(ARS %) =	0.8
244214	+1	0 1	NAMED	4.90	0.0941	•1 i	j	4.90	0.0970	2.95	i		# 1	# 1
391539	+ 1	† 1	NAMED	3.00	0.0606	41 1	1	3.00	0.0591	-2.62	I		# 1	# 1
66207	#1	+ 1	NAMED	1.60	0.0295	01 I	1	1.60	0.0314	5.9R	1		• 1	# 1
						•	1				•			
MOIE AT	: CYLINDER NOT	LEFINE	fi IN IHF	FAUTLUE	NI FILE ST	SIEM.	_	HCAL= 1				MS = 1.		
							i	CFC=1 Z		=2 fiGF=3				
•									F.NO= 8806					
NOTE +	1 VP PMC MAME				ONE AMENI	FTF5.\			.871 41N				70322 995	
MUIE #	! YS FOR NAME!	i CIES I	2 LVEATA	na Fra C	THENDY JAM	LIEB).					- ,	·- EFF	U/1 [}	IEFF D/T

******* HASTER SITE ******

EQUATIONS AND COEFFICIENTS ****************

PROD PROCEBBED

1 09108:35 08-16-88

X = (MCAL + X) + RCALM C

0.1000000E 01 HCAL -0.000000E 00 BCAL =

A5#X + A4#X + A3#X + A2#X + A1 = FCT C02 /N2 C C

DEGREE FILE

22222 555555

11

AAAAA

A1 = 0.0000000E 00 0.1952421E-01 A2 = . 0.5351349E-04 0.3878552E-07 A4 = A5 = 0.000000E 00

		in (in)	4444444 MASIER SIIE (4444444 AA)	AAF	25555	141910101010	11
X	EQUIPMENT ID 4 :	789433	888 888 AA	CO	22 22	55	111
	CALIBRATION NAME:	CO2A-CR23	14# ANALYZER CALIBRATION CURVE ANALYSIS 4## AA	AA	22	55	1111
	CALIBRATION # :	880816-125641	141 141 AA	AA	27	5574575	1.1
	TEST SITE :	A251	######################################	HAA	22	55	1.1
	CALIF DONE AT :	09:05 08-16-88	AA	AA	202 0	55 55	1.1
	OFERATOR COMMENT:	EFA-HSA-R23-WORK	AA	AA	2222222	5/1/1/15	11111

FACYL	======= KNO VENDOR CYLID	VCODE	DATA	HEAS	NOHINAL	ACTIVE	i	I FIT OU	MLITY OF A	= CHRVE CON !EW CURVE		FROM FREVIO	IUS CHRV
90	0k	OR	FOINT	DEFL	CONC	EFS CONC	1	1 DEFL	CONC	1 ZFOINT	1 DEFL	CONC	Y ZSHIF
LNCOD	BLENDER RNG	BLNRT	TYFES	XH	YH	YE	I	t xt.	r L	(4-6)/6	t XS	Y5#	(\$-();
6660	01	•1	CURVE	95.30	2.3803	•1	I	1 95.30	2.3808	0.02	I 95.51	2.3868	-0.0
6293	* #1	ěi	CURVE	79.50	1.9123	• i	;	79.50	1.9094	-0.15	1 79.50		0.6
52	ě i	• 1	CURVE	48.60	1.6013	• • • • • • • • • • • • • • • • • • • •	•	1 68.60	1.6034	0.13	1 68.46		1.0
80	0 1	11	CURVE	53.80	1.2088	41	;	1 53.80	1.2118	0.25	1 53,46		1.4
5139	ěi	•1	CURVE	43.30	0.9515	• • • • • • • • • • • • • • • • • • • •	•	1 43.30	0.9501	-0.15	1 42.82		1.5
470	ěi	01	CURVE	36.90	0.7991	ši	i	1 36.90	0.7968	-0.29	1 36.34		1.5
42	01	* i	CURVE	23.70	0.4959	ěi	:	1 23.70	0.4952	-0.14	1 22.97		0.6
575	* 1	# 1	CURVE			•1	•	1 19.70	0.4076	0.38	1 18.91		-0.(
	••	* •	CORVE	19.70	0.4060	V 1	:		(ABS %) -	0.19	I HEAN OF		0.6
							i	1 near or	(465 47 -	0.17	1	CHES AT	0.0
4214	#1	0 1	NAMED	4.90	0.0941	# 1	i	1 4.90	0.0977	3.71	i	8.1	0 1
1539	#1	• 1	NAMED	3.00	0.0606	0.1	i	1 3.00	0.0595	1.76	1	# 1	
207	•1	♦1	NAMED	1.50	0.0295	0.1	I	1 1.50	0.0297	0.56	1 .	# 1	• 1
OTF ALS	CYLINDER NOT	DEETMER		EDUITEMENT		CTEN	- 1	1 I HCAL- 1.	0000 FCA	L= 0.000	I MS = 1	.0132 #S	= -1.0
	O'LLINEL NO!	eri inet	, tu tue	EUOIFREN	rite St	21541			ST=1 WFC			.0132 #3 ZST=1 WFC	
								I NEW.CALI		116-125641			09·1654
									.864 #IN			170322 9"5	

X = (HCAL * X) + FCAL C H

MCAL = 0.100000E 01 BCAL = 0.000000E 00 A5#X + A4#X + A3#X + A2#X + A1 - FCT C02 /N2

WEIGHTING FACTOR CODE

DEGREE FIT

; 2

: 3

A1 = 0.0000000E 00 A2 = 0.1970352E-01 A3 = 0.4860388E-04 A4 = 0.7125615E-07 A5 = 0.0000000E 00

FAGE 2														
FROD FROC	ESSED :	10:29:3	4 08-17	7-8R 1		ASTER	:	SITE	******	AA	AAA	22222	5555555	11
	PHENT ID .	789433							***	AA	ΛA			ıii
	BRATION NAME!	COZA-CR	23		* ANALYZER	CALIBRATI	ON	CURVE ANAL	YS15 444	AA	66	22	55	1111
CAL 1	BRATION .	880817-		-	144				***	AA	40	22	555555	11
	SITE :	A251		•	*********	********	***	********	******	AAA	AAAA	22	55	11
CALI	B DONE AT 1	09:05	08-17-88	3						AA	AA	222	2 88 55	
OF ER	ATOR COMMENT:	EFA-MSA	-R23-WOR	K.						AA	ΛA	222222	2 55555	11111
1========	====== KN	DUN OR M	EASUREU	INFUTS			I	1		= CURVE CO	PHF AF	CISONS ==		=====:.
1 EFACYL®	VENDOR CYLID	VCODE	DATA	HEAS	NOMINAL	ACTIVE	1	I FIT OU	IALITY OF	NEW CURVE	J	SHIFT FI	ROM FREVIO	US CURVE
I OR	OR	OR	FOINT	DEF1.	CONC	EFS CONC	I	J DEFL	CONC	Y ZFOINT	1	DEFL	CONC	Y ZSHIFT
1 BLHCOD	BLENDER RNG	BLNRT	TYPES	HX	YH	YE	I	1 XC	YC	(H-C)/C	I	XS	Y5#	(5-1)/0
1							1	1			1			
I B16660	#1	• 1	CURVE	95.30	2.3803	0 1	1	1 95.30	2.3815	0.05	I	95.53	2.3815	-0.00
1 146293	91	• 1	CURVE	79.80	1.9123	• 1	1	79.60	1.9091	0.17	1	79.64	1.9255	0.86
1 8752	♦ t	• 1	CURVE	68.70	1.4013	O L	1	1 68.70	1.6025	0.08	ī	48.41	1.6241	1.34
I B180	●1	0.1	CURVE	53.80	1.2088	0 1	1	I 53.80	1.2097	0.08	1	53.53	1.2312	1.78
1 155139	#1	0 1	CURVE	43.50	0.9515	0.1	1	1 43.50	0.9545	0.31	1	43.11	0.9721	1.84
1 33470	01	• 1	CURVE	34.80	0.7991	91	1	1 36.80	0.7950	-0.51	1	36.33	0.8088	1.72

1 1

1 1

1 1

1 1

• 1

01

23.70

19.50

4.80

3.00

1.50

I CFC=1 ZST=1

1 XNL= 5.975 #INF=

I MEAN OF (ARS %) -

0.4973

0.4055

0.0968

0.0603

0.0301

I MCAL = 1.0000 BCAL = 0.000 I HS = 1.0120

0.28 1

2.83 1

-0.4B I

1.88 I

WFC=2 DGF=3 I CFC=1 ZST=1

1----- EFF D/T --- INEFF D/T

I NEW.CALIB.NO= 880817-102934 I FRV.CALIB.NO= 880809-165450 [

1

-0.13

23.07

18.82

0.20 I HEAN OF (ABS %) :

0.5010

0.4055

4 1

. 1

.

0 1 BR0809-170322 995 AC-11VE 1

1 66207 91 91 NAMED 1.50 0.0295 11 NOTE #1: CYLINDER NOT DEFINED IN THE EQUIPMENT FILE SYSTEM.

11

.1

CURVE

CURVE

NAMED

NAMED

23.70

19.50

4.80

3.00

0.4959

0.4060

0.0941

0.0606

NOTE #: YS FOR NAMED CYLS IS FREVIOUS EFS CONC (UNSHIFTED).

MEJUHIAND FACIUN CULL . 4 : 3 DEGREE FIT

A58X + A48X + A34X 1 A24X + A1 = FCT CO2 /N2 C AI 0.000000E 00

A2 0.1998616E-01 A3 0.3860703E-04 A4 0.145B367E-06 A5 = 0.000000E 00

EQUATIONS AND COEFFICIENTS ****************

#1

1 8

= (MCAL # X) + BCAL H C

0.1000000E 01 MCAL = 0.000000E 00 BCAL =

C

I B442

1 81575

244214

1 391539

0.75

-0.00

. .

11

1

BS = -0.913 I

WFC=2 DGF=3 1

1.04

, 11	955555	2222	AA4	AA	******	5 1 1 E	H 5 I E K	11					
111	2 55	22	AA	AA	***			*	4.0	3	789433	MENT IN 6 1	K EQUIF
1111	55	2	۸۸	AA	LYSIS 444	CURVE ANAL	CALIBRATION	& ANALYZER		CR23	C034-C	BRATION NAME!	CALIB
1.1	585555	2.3	AA	AA	444			ŧ		B-152113	880818	RATION • :	CALIE
11	53	22	AAAA	AAA		********	*********	*******			A251	SITE :	TEST
, 11	2 55 55	722	44	AA						08-18-88	09:05	B DONE AT :	CALIB
11111	ទេ ខេត្តស	22227	AA	AA			•		K	5A-R23-WOR	EFA-NS	ATOR CUMMENT:	OFERA
		RISORS	one:al	= CHRVE CE	=======================================	1======	======1		INFUTS -	MEASURET	IOWN OR	:==== KN(=======
	ROM FREVE	SHIFT	3	NEN CHEAE.	HALITY OF 1	I FIT AL	ACTIVE 1	NDMINAL	HEAS	E DATA	VCDDE	VENDOR CYLID	FACYL
Y 25H1F	CONC	ひとだし	ı	V REDINT	CONC	I DEFL	EFS CONC I	CONC .	UEFL	FOINT	0R	OR	OR
(S-C)/	Y54	X 5	Ţ	(M- D) \ L	YC	1):C	re I	YH	HX	TYFES	BLNRT	HLEND ER RNG	RL NCOD
			1			1	1						
-0.0	2.3814	55.53	1			1 95.30	#1 I	2.3803	95.30	CURVE	8 1	• 1	16660
0.6	1.9250	79.63	Ţ	0.03	1.9128	1 79.60	61 I	1.9123	79.60	CURVE	+ 1	♦1	46293
1.0	1.6125	69.18	1	-0.35	1.5958	1 68.30	#1 I	1.6013	68.30	CURVE	6 1	# 1	752
1 . 4	1.2301	53.49	1	0.30	1.2125	1 53.80	0 1 1	1.2088	53.80	CURVE	8 1	* 1	180
1.5	0.9683	42.96	1	0.18	0.9532	1 43.40	91 I	0.9515	43.40	CURVE	0.1	11	55139
1.5	0.8097	36.37	3	0.20	0.7975	1 36.90	61 I	0.7991	36.90	CURVE	6 1	0.1	3470
0.7	0.5017	23.10	1	0.43	(1.4981	1 23.80	81 I	0.4959	23.80	CURVE	41	#1	442
	0.403R	18.74	ı	0.55	0.4038	1 19.50	41 1	0.4060	19.50	CURVE	• 1	#1	1575
-0.0						T MEAN OF	,						
	(ARS %)	IEAN OF	1 1	0.26	(みもち %) -	I HEAN OF							
		IEAN OF	1	0.26	(ABS 2) -	I DEAN OF	i						
-0.0(0.8)		IEAN OF	I 1 I I		0.0959	1 4.80	• 1 I	0.0941	4.80	NAMEL	• 1	• 1	44214
0.8	(ARS Z)	IEAN OF	1 1	1.87		1	1 01 I 01 I	0.0941	4.80	NAME D NAME D	0 i 0 i	8 I 8 1	244214 191539

NOTE #: YS FOR NAMED CYLS IS PREVIOUS EFS CONC (UNSHIFTED).

X = (MCAL * X) F BCAL

MCAL = 0.1000000E 01 BCAL = 0.0000000E 00 4 3 2 A5*X + A4*X + A3*X + A2*X + A1 = FCT C02 /N2 C C C C

1-----EFF D/T --- INEFF D/T --

DEGREE FIT

WEIGHTING FACTOR CODE

: 2

: 3

FHUE 4	mmFt.							****	***		2022		_
ROD PROCE X EQUIP	MENT ID # :		9 08-24-			ASTER	5 1 1 F	*******	AAA		22222 22 22	_ ភ្នកកទទទ	
	RATION NAME:	789433 CD2A-CR	2.3	**		CALIBRATION	CHEUE ANA		AA AA	AA AA	72 22 22	55 55	111
	RATION # :	BB0824-				CHEIPKHIION	CORVE IIII	***	AA	6A	22	555555	111
TEST		A251	102657		•	**********	*******		8888		22	53.7.7.75	
	CONE AT		08-24-88	• •		**********	*******		AA		222 2		
	TOR COMMENT:	-	-R23-WORK	(AA		222222		11111
=======	======= KN	DWN OR M	EASUREI: 1	NEUTS =		======= l	[===:=:==	5 25512552	= CURVE COI	1FART	50NS ==	=======================================	, = # = 5 = 1, = # = 7 .
EFACYL .	VENDOR CYLID	VCODE	DATA	HEAS	NOMINAL	ACTIVE 1	I FIT Q	UALITY OF	NFW CURVE	1 5	HIFT FR	OH PREVIO	NUS CURVE
OR	OR	OR	FOINT	DEFL	CONC	EFS CONC I	1 DEFL	COHC	Y ZFOINT	1	NEFL	CONC	Y ZSHIFT
BLNCOD	BLENDER RNG	BENRT	TYFES	ХK	YM	YE 1	1 xc	YC	(H-C)/C	1	XS	YS#	(5-0)/0
B16660	#1	#1	CURVE	95.30	2.3803	#1 I	1 95.30	2.3789	-0.06	•	95.44	2.3789	-0.00
146293	# 1	# 1	CURVE	79.80	1.9123	01 T	1 79.80	1.9158	0.18]	79.78	1.9292	0.70
B752	# 1	0 1	CURVE	48.50	1.6013	#1 I	1 68.50	1.5991	-0.14	1	48.35	1.6171	1.12
B1B0	₩1	0 1	CURVE	53.70	1.2088	1 I	1 53.70	1.2092	0.03	1 :	53.39	1.2275	1.52
155139	• 1	8 1	CURVE	43.30	0.9515	#1 I	1 43.30	0.9511	0.05	1 .	42.88	0.9663	1.61
33470	# 1	0 1	CURVE	36.90	0.7991	#1 I	1 36.90	0.7984	0.09	1	36.40	0.8106	1.53
B442	# 1	# 1	CURVE	23.70	0.4959	#1 I	1 23.70	0.4974	0.29	1	23.06	0.500B	0.68
R1575	#1	6 1	CURVÉ	19.50	0.4060	61 I	1 19.50	0.4053	-0.16	I	18.81	0.4053	-0.00
						1	I HEAN OF	(ABS %) -	0.13	I HE	AN OF (ለ ቡ Ѕ %) -	0.89
244214	#1	+ 1	NAMED	4.80	0.0941	•1 I	1 4.80	0.0966	2.56	i		8 1	0.1
391539	# 1	# 1	NAMED	3.10	0.0606	#1 1	1 3.10	0.0621	2.48	ī		● 1	# 1
66207	•1	*1	NAMED	1.50	0.0295	01 I	1 1.50		1.55	l		4.1	01
NOTE #1	: CYLINDER NO	T DEFINE	D IN THE	EQUIPHE	NT FILE SY	STEM.	I MCAL= 1 I CFC=1		AL= 0.000 C=2 IGF=3				
												.NO= 8808 0372 995	09-165450 AC-TIVE
NOTE #	: YS FOR NAME	D CYLS 1	S FREVIOL	IS EFS C	ONC (UNSHI	FTEID.	1			1	EFF U	/T IN	IEFF 11/T

X = (MCAL * X) + BCAL

MCAL = 0.1000000E 01 BEAL = 0.000000E 00

0.000000E 00

: 2

		1 00 .0			N 3 1 E N	• •			, ,,,,,,			_ 555555.	
													111
					CALIFRATIO	N C	JRVE ANAL		****				1111
		105111									_		1.1
	A251		**	********	********	***	*******	*****	AAAA	AAA			
	09:05	08-25-88							AA	AA			
TOR COMMENT:	EFA-MSA	-R23-WOR	K						88	AA	22227	2 55555	11111
	OWN OR HI	EASUREI	INFUTS -		=======================================	3	=======	_======	= CURVE CO	HF AF	LIBOND		
VENDOR CYLID	ACODE	DATA	HEAS	NOMINAL	ACTIVE I	1				1			
OR	0Æ	FOINT	DEFL	CONC	EFS CONC I	1	ひをチレ	COND	Y ZFOINT	1	いEFL	COKC	Y ZSHIFT
BLENDER RNG	BLNRT	TYFES	MX	YM,	YE I	1	ХC	YC	(#-0)/0	ĭ	ΧS	YS#	(S·C)/C
*1	•1	CURVE	95.30	2.3803	•1 I	i	\$5.30	2.3816	0.05	j	95.53	2.3816	-0.00
#1	# 1	CURVE	79.60	1.9123	\$1 I	1	79.60	1.9110	-0.07	Ţ	79.66	1.9259	0.78
# 1	0.1	CURVE	68.50	1.6013	#1 I	I	68.50	1.5996	-0.10	1	68.43	1.6193	1.23
# 1	# 1	CURVE	53.70	1.2088	#1 I	1	53.70	1.2099	0.09	t	53.47	1.2295	1.62
#1	• 1	CURVE				ī	43.30	0.9522	0.07	1	42.95	0.9682	1.68
9 1	1	CURVE	36.90	-	*1 1	1	36.90	0.7997	0.07	j	36.48	0.8123	1.58
*1	0.1					i	23.60	(1.4967	0.15	1	23.03	0.5001	0.68
#1	0.1	CURVE	19.40		#1 I	ĩ	19.40	0.4046	0.34	1	18.78	0.4046	-0.00
			•		i	Ī	MEAN OF	(ABS %) -	0.12	1 +	SEAN OF	(ARS %) =	0.95
•1	9 1	NAME I)	4.80	0.0941	91 1	I I	4.80	0.0972	3.15	1		• 1	4.1
0 1	-					ī		0.0405				0 1	# 1
41	-					i	1.40	0.0281	-4.80	t		9 1	6 1
	#1	NAME ()	1.40	0.0295	•1 I	1	1.40			t -1			
CYLINDER NOT	DEFINE	U IN THE	EQUIFME	NT FILE SY	STEN.	_							
						_				-			
						-			_				
							417L- J	.033 41	141 - V		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	IIVL
	VENDOR CYLIB- OR RLENDER RNG ************************************	MENT 10 4 : 789433 RATION NAME: CO2A-CR RATION 9 : 880826- SITE : A251 DONE AT : 09:05 TOR COMMENT: EFA-MSA ========= KNOWN OR M VENDOR CYLIB VCODE OR OR BLENDER RNG BLNRT 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91	MENT ID 4 : 789433 RATION NAME: CO2A-CR23 RATION 9 : B80826-105111 SITE : A251 DONE AT : 09:05 08-25-88 TOR COMMENT: EFA-MSA-R23-WOR	### ### ### ### ### ### ### ### ### ##	#ENT 10 6 : 789433	### ##################################	### ### ##############################	### ANALYZER CALIFRATION CURVE ANAL ### ANALYZER CALIFRATION CURVE ANAL ### ANALYZER CALIFRATION CURVE ANAL ### ANALYZER CALIFRATION CURVE ANAL ### ##############################	### ANALYZER CALIBRATION CURVE ANALYSIS ### ANALYZER CALIBRATION CURVE ANALYSIS ### ANALYZER CALIBRATION CURVE ANALYSIS ### ANALYZER CALIBRATION CURVE ANALYSIS ### ANALYZER CALIBRATION CURVE ANALYSIS ### ANALYZER CALIBRATION CURVE ANALYSIS ### \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	MENT 10 4: 789433 RATION NAME: CO2A-CR23	### ABA AA RATION NAME: C02A-CR23	RENT ID 4: 789433	MENT 1D 4 : 789433

ARRESTER SITE SERAFER

EQUATIONS AND COEFFICIENTS *****************

..... VO ... BU

X = (HCAL * X) + RCALн

MCAL = 0.1000000E 01 FCAL = 0.000000E 00 DECREE FIT

A5*X + A4*X + A3*X + A2*X + A1 = FCT E02 /N2 C C C

0.0000000E 00 A1 -A2 = 0.2005121E-01 0.3890154E~04 A4 = 0.1356052E-06 A5 = 0.0000000E 00

11

: 3

22222 5555555

AAAAA

PRATI	 FROCESSED	69:18	127 09-01	- 8B	******	н	A 5	T E	F :	s i	ΤE	*4 * 4	****	AA	AAA	22	222	5585	555	1.6
X	EQUIPMENT IN & CALIBRATION NAME	78943; CO2A-	-		### ### ARAL	YZER	CAL	IBRAT	108	CURVI	E 6114	ALYS 19	111	AA AA	hh hh	22	22	55 55		111
	CALIBRATION #	88090	1-091827		***								* * *	AA	66		22	5555	55	11
	TEST SITE	A251			*******	****	****	****	****	****	***	*****	****	AAAA	AAAA	2	2		55	1.1
	CALIB DONE AT	09:05	08-31-86	3										AA	ሰስ	222		55	55	11
	OFERATOR COMMENT	EFA-M	6A-R23-WOF	(K										AA	66	222	5555	555	55	11111
-	======================================			INFUTS NEAS				TIVE	= []	l===: 1 F		RUALII					-			. ± ==:: CURVE

EFACYL#	VENDOR CYLID	VCODE	DATA	HEAS	HOHINAL	ACTIVE	I	1 FJ1			NEW CURVE	1		FROK FREVIO	JUS CURVE
OR	OR:	OR	FOINT	DEFL	CONC	EFR CONC	I	I DEF	L	CONC	Y ZFOINT	1	DEFL	CONC	Y ZSHIFT
BLNCOD	PLENDER RNG	BLNRT	TYFES	ХМ	YH	YE	İ	1 XC		YC	(H-C)/C	i	XS	Y5#	(5-6)/0
P16660	*1	6 1	CURVE	95.30	2.3803	•1	i	1 95.	30	2.3807	0.02	í	95.50	2.3807	0.00
146293	• 1	• 1	CURVE	79.70	1.9123	0.1	1.			1.9131	0.04	i	79.71	1.9273	0.74
B752	1	• 1	CURVE	48.50	1.6013	0.1	Ī	1 68.		1.5984	-0.18	i	68.37	1.6175	1.20
B180	# 1	9.1	CURVE	53.80	1.2088	0.1	i	1 53.		1.2103	0.12	1	53.48		1.62
155139	# 1	• 1	CURVE	43.40	0.9515	• 1	1	1 43.	40	0.9518	0.03	1	42.95		1.73
33470	# 1	• 1	CURVE	37.00	0.7991	• 1	ī	I 37.	0	0.7989	-0.02	ı	36.47	0.8122	1.66
B442	† 1	8 1	CURVE	23.80	0.4959	• 1	1	1 23.	10	0.4980	0.43	ı	23.11	0.5018	0.76
R1575	# 1	# 1	CURVE	19.50	0.4060	# 1	1	1 19.	50	0.4040	0.50	1	18.75	0.4040	0.00
							1	I HEAN	DF (AF5 2)	0.17	1	MEAN OF	(ABS %) -	0.96
							I	l _				I			
244214	# 1	0.1	NAMEL	5.10	0.0941	4.1	I	1 5.		0 - 1,022	7.95	1		6 1	# 1
391539	• 1	0 1	NAMEL	2.90	0.0606	•1	I	1 2.		0.057R	4.77	1		• 1	# 1
66207	#1	# 1	NAME	1.90	0.0295	•1	I	1 1.	70	0.0378	21.98	l		₹1	# 1
NOTE A1	CYLINDER NOT	DECINE	 I IN TUE	COULTERE	AT ETIE CY	CICH	- 1	I HCAL=	1 66	000 RC	L- 0.000	-] -	MC - 1		6.60
MOIL VI	· CICINDEN NO	DET THE	D IN THE	EWOITHE	41 FICE 51	316111		1 CFC=1	751					.0125 AS Z s t÷l wfd	0.99. -2 DGF=3
•								I NEW . C		-	01-091827				
								1 2NL=	5.5					170322 995	

EUUATIUNS ANU LUEFFILIENIS

X = (MCAL * X) + RCAL

MCAL = 0.1000000E 01 BCAL = 0.000000E 00 DEGREF FIT

: 3

4 3 2 A5*X + A4*X + A3*X + A2*X 1 61 # FCT C02 /N2 C C C C

A1 0.0000000E 00
A2 0.1981583E-01
A3 = 0.4411709E-04
A4 = 0.1058008E-06
A5 = 0.0000000E 00

C

PAGE 2 PROD PROCESSED 1 09:06:07 09-02-88 5555555 11 ****** NASTER SITE ***** AAAAA 22222 EQUIPMENT ID 0 1 789433 22 22 55 111 AA 66 CALIBRATION NAME: CD2A-CR23 *** ANALYZER CALIBRATION CURVE ANGLYSIS 44* 22 55 1111 AA 44 CALIBRATION . : 880902-090607 555555 11 *** 22 ... AA AA 55 TEST SITE 11 1 A251 **************************** AAAAAAA 2.2 CALIB DONE AT 1 09:05 09-01-88 55 55 AA 222 11 AA OPERATOR COMMENT: EFA-MSA-R23-SEC 55555 11111 AA AA 2222222

EFACYL#	VENDOR CYLID	VCODE	DATA	HEAS	NOHINAL	ACTIVE	1 1	FIT AL	IALITY OF A	IEW CURVE	I SHIFT	FROM FREVIO	DUS CURVE
OR	0Ř	OR	FOINT	DEFL	CONC	EFS CONC	1 1	DEFL	LUNC	Y ZFOINT	T DEFL	CONC	Y ZSHIFT
BLNCOD	FLENDER RNG	BLNRT	TYFES	HX	YH	YE	1 1	ХC	YC	(H-C)/C	I XS	YS#	(S-C)/C
N36920	#1	A.	CHEHE	05.00	2 7054		I	05.00	2.7047	0.05	1	2 2047	0.00
343923	0 1	• 1	CURVE	95.80	2.3950	1		95.80	2.3963	0.05	1 96.0		0.00
262947	91	• 1	CURVE	78.20	1.8730	• 1	! !	78.20	1.8707	-0.12	1 78.2		0.83
P1778		• 1	CURVE	68.70	1.6050	• 1		68.70	1.6049	-0.01	1 68.6		1.22
	61	• 1	CURVE	53.60	1.2060	01	1 1	53.60	1.2064	0.04	53.3		1.67
B2386	01	1	CURVE	44.10	0.9696	• 1	II	44.10	0.9701	0.05	1 43.7		1.81
B2211	01	#1	CURVE	37.10	0.8017	• 1	1 1	37.10	0.8026	0.11	1 36.6		1.77
B1184	01	• 1	CURVE	23.00	0.4812	• 1	1 1	23.00	0.4814	0.04	1 22.4		0.96
157656	* 1	+ 1	CURVE	17.60	0.3647	#1	1 1	17.60	0.3638	0.23	I 16.9		-0.00
							1 1	MEAN OF	(ARS %) -	0.08	I HEAR O	F (ARS %) :	1.03
							1 1				I		
F16660	• 1	• 1	NAMED	95.30	2.3803	0.1	1 1	55.30	2.3807	0.02	ī	9 1	# 1
146293	• 1	• 1	NAMED	79.50	1.9123	• 1	1 1	79.50	i.9080	-0.22	I	# 1	1 1
B752	1	# 1	NAMED	48.50	1.6013	0 1	1 1	68.50	1.5994	-0.12	1	# 1	# 1
B180	•1	• 1	NAMED	53.70	1.2088	#1	1 1	53.70	1.2090	0.02	1	#1	# 1
155139	*1	# 1	NAMED	43.30	0.9515	• 1	1 1	43.30	0.9506	-0.09	I	# 1	9.1
B442	+1	• 1	NAMEI	23.70	0.4959	01	1 1	23.70	0.4969	0.19	J	● 1	# 1
B1575	01	0 1	NAMED	19.40	0.4060	• 1	1 1	19:40	0.4027	-0.82	1	0.1	# 1
244214	• 1	• 1	NAMED	4.70	0.0941	• 1	1 1	4.70	0.0944	0.31	1	• 1	• 1
391539	01 '	• 1	NAME ()	2.80	0.0606	0 1	1 1	2.80	0.0560	· 8.22	1	● 1	# 1
66207	#1	6 1	NAMED	1.20	0.0295	9.1	1 1	1.20	0.0239	~23.35	1	9 1	• 1
							1 1				1		
NOTE #1	CYLINDER NOT	DEFINE	IN THE	EQUIFME	NT FILE SY	STEN.	1	MCAL = 1.			-	.0113 #S	0.852
							1	CFC=1 Z					:=2
							1	NEW.CALI	B.NO= 8809	02-090607	I FRU. CAL	.IB.NO= 8808	109-165450
							1	2NL = 5	.B76 #1N	F= 0	1 BRORDS-	170322 995	ΔC - 11UF

EQUATIONS AND COEFFICIENTS

X = (HCAL * X) + BCAL C H

MCAL = 0.1000000E 01 BCAL = 0.000000E 00 4 3 2 A5*X + A4*X + A3*X + A2*X + A1 = FCT CD2 /N2 C C C C

METONITUD LUCION CORE

DEGREE FIT

: 3

A1 = 0.0000000E 00 A2 = 0.1987737E-01 A3 = 0.4333516E-04 A4 = 0.1072521E-06 A5 = 0.0000000E 00

C

PROD PROCESSED : 10:24:5:	1 08-11-88 ******	HASTER SIT	E #######	AAAAA	22222	5555555	11
Y EQUIPHENT ID 4 : 789463	***		***	AA A	A 22 22	55	111
CALIBRATION NAME: CO2A-CR	22	ZER CALIBRATION CURVE	AKALYSIS ###	AA A	A 22	55	1111
CALIBRATION # 880811-1	102451 ###		***	AA A	A 22	555555	11
TEST SITE \$ A251	*******	**************	*********	AAAAAA	A 22	55	1,1
CALIB DONE AT 1 14:12 (08-10-88			AA A	A 22 2 2	55 55	11
DPERATOR COMMENT: EPA-HOR-	-R22-BLINE			AA A	A 222222	5555 5	11111

EPACYL	VENDOR CYLID	VCODE	DATA	HEAB	NOHINAL	ACTIVE I	1	FIT Q	UALITY OF	NEW CURVE	1	SHIFT	FROM FREVI	OUS CURVE
OR	DR	DR	POINT	DEFL	CONC	EFS CONC 1	1	DEFL	CONC	Y XPDINT	1	DEFL	CONC	Y XSHIFT
BLNCOD	BLENDER RNG	BI.NRT	TYPES	XH	YH	YE I	1	XC	YC	(H-C)/C	I	XS	YS#	(S-C)/(
B2386	#1	01	CHERE		0.0404	I	Ï	97.00	0.9699	0.03	Ï	+4	•4	14
B 2211	0 1	0 1	CURVE	97.00 81.70	0.9696 0.8017	01 I	•	81.70	0.8024	•	•	84	94	• • •
B1454	* 1	0 1	CURVE	74.40	0.7260	•1 I	•	74.40	0.7246		•	14	94	94
A-221	0 1			61.40	-	•1 I	•	61.40				14	14	14
B1184	#1	01	CURVE	20.80	0.5900 0.4812	•1 1	•	50.80	-		3	- 17	14	• • •
157656		01				_								
•	#1	1	CURVE	39.00	0.3647	•1 I	ï	39.00			1	• 4	84 84	• 4
286591	01	\$1	CURVE	27.60	0.2550	•1 I		27.60		- · -	1	0.4		84
065369	#1	• ı	CURVE	14.00	0.1282	#1 1		14.00	0.1277		Ţ	14	14	84
		•	•				IN	EAN OF	(ABS X) =	0.15	j			
						I	1				I			
155139	#1	*1	NAMED	95.40	0.9515	91 1	1	95.40	0.9521	0.04	1		• 1	#1
33470	#1	0.1	NAMED	81.50	0.7991	•1 I	I	81.50	0.8003	0.15	I		#1	• 1
163287	#1	• 1	NAMED	71.40	0.6925	01 I	I	71.40	0.6930	0.08	I		●1	• 1
B1103	•1	●1	NAMED	62.00	0.5947	41 1	I	62.00	0.5955	0.13	I		• 1	• 1
B442	•1	• 1	NAMED	52.30	0.4959	01 1	I	52.30	0.4969	0.20	I		#1	1.0
B1575	61	• 1	NAMED	43.20	0.4060	• • • • • • • • • • • • • • • • • • •	I	43.20	0.4064	0.10	I		• 1	• 1
B916	+1	•1	NAMED	25.40	0.2344	01 I	I	25.40	0.2344	0.02	1		● 1	# 1
337743	. 1	#1	NAMED	15.30	0.1396	01 I	I	15.30	0.1398	0.11	I		8 1	•1
244214	• • • • • • • • • • • • • • • • • • • •	• 1	NAMED	10.60	0.0941	•1 I	1	10.60	0.0964	2.34	1		• 1	#1
391539	#1	01	NAMED	6.60	0.0606	61 I	I	6.60	0.0598	-1.42	1		61	+ 1
66207	# 1	0 1	NAMED	3.20	0.0295	01 I	I	3.20	0.0289	-2.17	1		• 1	# 1
						I	1				- J			
MO I PAT	CYLINDER NOT	DELINER	TM IHE	FAULLEN	II FILE ST	DIEU.		CAL+ 1.		NL 0.000			RS	
									ST=1 WFC				ZST= WF	= IIGF=
NOTE #4							1 14	FM·CUL1	B.NO= 8808	111-102451	1 1.1	V. LAL	TA.Wn=	-

X = (HCAL * X) + BCAL

MCAL = 0.1000000E 01 BCAL = 0.0000000E 00 WEIBHTING FACTOR CODE DEGREE FIT

4 3 2
A5*X + A4*X + A3*X + A2*X + A1 = FCT CO2 /N2

A1 : 0.0000000E 00 A2 :: 0.8994130E-02 A3 = 0.8922260E-05 A4 = 0.1478682E-07 A5 = 0.0000000E 00

C

: 2

EPACYL#	VENDOR CYLID	VCODE	DATA	HEAS	NOHINAL	ACTIVE I	I FIT	RUALITY	OF NEW	CURVE	1	SHIFT	FROM FREV	IOUS CURVI
OR	Oƙ	OR	POINT	DEFL	CONC	EFS CONC 1	I DEF	CONC	C Y	ZPOINT	1	DEFL	CONC	Y ZSHIF
BLNCOD	BLENDER RNG	BLNRT	TYPES	XM	YM	YE I	1 XC	YC	. (M-C)/C	I	XS	YS*	(5-0)/(
155139	#1	01	CURVE	95.40	0.9515	•1 I	1 95.	10 0.9	7514	-0.01	1	14	•4	14
33470	0 1	•1	CURVE	81.50	0.7991	01 I	I 81.		7994	0.04	1	84	04	84
163287	0 1	•1	CURVE	71.40	0.4925	•1 I	1 71.		922	-0.05	ī	14	14	84
B1103	#1	01	CURVE	62.00	0.5947	oi i	1 62.0		5946	-0.01	ī	14	14	14
B442	0 1	•1	CURVE	52,30	0.4959	•1 i	1 52.		1962	0.07	1	14	14	84
B1575	•1	01	CURVE	43.20	0.4060	●1 I	1 43.2	-	1059	-0.03	Ī	14	14	84
B916	#1	0.1	CURVE	25.40	0.2344	91 I	1 25.4		343	-0.06	Ī	0.4	14	
337743	#1	01	CURVE	15.30	0.1396	01 1	1 15.3		397	0.07	1	8.4	14	
		•			***************************************	i	I HEAN			0.04	Ī			
B2386	‡ 1	# 1	NAMED	97.00	0.9696	•1 I	I I 97.0	0.9	693	-0.04	ı		0.1	8 1
B2211	#1	0 1	NAMED	81.70	0.8017	01 I	1 81.7			-0.02	t		•1	•1
B1454	●1	01	NAMED	74.40	0.7260	•1 I	1 74.4			-0.31	Ĩ		11	• 1
A-221	●1	01	NAMED	61.40	0.5900	#1 I	1 61.4			-0.26	Ī		0.1	• 1
B1184	0 1	• 1	NAMED	50.80	0.4812	• i i	I 50.8			0.00	i		1.6	• 1
157656	01	0.1	HAHED	39.00	0.3647	61 1	1 39.0			0.02	Ī		0.1	# 1
284591	01	• 1	NAMED	27.60	0.2550	01 I	I 27.6			0.05	ī		# 1	• 1
065369	#1	0 1	NAMED	14.00	0.1282	01 I	I 14.0			-0.42	I		0.1	0.1
244214	• •1	1	NAMED	10.60	0.0941	01 1	1 10.6			2.32	1		# 1	• 1
391539	●1	# 1	NAMED	6.60	0.0606	01 I	1 6.6	0 0.0	598	-1.41	I	,	8 1	01
66207	#1	# 1	NAMED	3.20	0.0295	01 I	1 3.2	0.0	289	-2.15	1		0.1	● 1
NOTE ALL	CYLINDER NOT	DEFINED	IN THE	EQUIEMENT	FILE SYST	I Ifh.	I HCAL=	1.0000	FCAL=	0.000	- I I M:	 S =	 8s	

NOTE #4: NO FREVIOUS ANALYZER CALIBRATION ON FILE IN THE EFS. NOTE #1 YE FOR NAMED CYLS IS FREVIOUS EFS CONC (UNSHIFTED).

> WEIGHTING FACTOR CODE : 2 : 3 DEGREE FIT

0 I 1----- EFF D/1 --- INEFF D/1 ---

EQUATIONS AND COEFFICIENTS. *****************

= (MCAL * X) + BCAL н

MCAL = 0.1000000E 01 BCAL = 0.000000E 00

2 3 A5#X + A4#X + A3#X + A2#X + A1 = FCT CO2 /N2 C C C

I XNL= 2.814 #INF=

0.000000E 00 A1 # 0.8997887E-02 A2 = A3 = 0.8354270E-05 0,1956350E-07 A4 = A5 = 0.000000E 00

C

(

PAGE 2 FROD PROCESSED 13:44:26 08-10-88 ****** HASTER SITE ****** 22222 555555 AAAAA 11 Y EQUIPMENT ID 4 1 789433 22 22 AA *** 40 55 111 CALIBRATION NAME! CD2A-CR23 *** ANALYZER CALIBRATION CURVE ANALYSIS *** 55 AA 22 1111 44 880810-134426 ... 22 555555 11 CALIBRATION # ... AA 44 ***************************** 22 11 A251 55 TEBT SITE AAAAAA CALIB DONE AT 1 09:05 08-10-88 AA A4 222 55 55 11 OPERATOR COMMENT: EFA-HOR-R23-BLINE 2222222 5555**5** AA AA 11111

VENDOR CYLID	VCODE	DATA	HEAS	NOMINAL	ACTIVE I		FIT O	JALITY OF A	NEW CURVE	J	SHIFT F	FROM FREVIO	OUS CURVE
OR	OR	POINT	DEFL	CONC	EFB CONC I	1	DEFL	CONC	Y ZFOINT	ĵ	DEFL	CONC	Y ZSHIFT
BLENDER RNG	BLNRT	TYPES	XH	YM	YE I	1	ΧC	YC	(H-C)/C	I	XS	Y5*	(8-0)/0
#1	•1		96.50		•1 I	1	96.50		-0.03	i	96.54		-0.00
●1	•1					1	78.20	1.8744	0.07	1	78.09	1.8823	0.42
#1	_					Ĭ			0.03	1	68.31	1.6160	0.66
●1	01					Ī	53.30		-0.05	1	52.99		0.99
#1 .	• 1	CURVE	43.80			1	43.80	0.9683	-0.13	1	43.41	0.9794	1.14
#1	• 1	CURVE	36.90	0.8017	•1 I	1	36.90	0.8023	0.08	1	36.45	0.8117	1.17
#1	# 1	CURVE	22.90	0.4812	01 I	1	22.90	0.4612	-0.01	I	22.34	0.4845	0.69
#1	• 1	CURVE	17.60	0.3647	•1 I	1	17.60	0.3650	0.08	I	17.00	0.3650	-0.00
	•				I	1	MEAN OF	(ABS %) =:	0.06	1	KFAN OF	(ABS 2) =	0.63
					1	I				I			
*1	+ 1	NAMED	95.40	2.3803	41 I	1	95.40	2.3779	-0.10	1		0 1	● 1
●1	● 1	NAMED	79.50	1.9120	•1 I	1	79.50	1.9112	-0.04	1		# 1	• 1
*1	• 1	NAMED	68.30	1.6013	91 1	1	68.30	1.6000	-0.0R	1		• 1	* 1
●1	0 1	NAMED	53.40	1.2088	#1 I	1	53.40	1.2079	-0.07	1		6 1	• 1
●1	0 1	NAMED	43.00	0.9515	#1 I	1	43.00	0.9488	-0.28	1		● 1	• 1
#1	0 1	NAMED	36.70	0.7991	01 I	1	36.70	0.7976	-0.19	1		# 1	# 1
#1	• 1	NAMED	23.50	0.4959	41 1	1	23.50	0.4945	-0.28	1		• 1	• 1
●1	• 1	NAMED	19.40	0.4060	01 I	1	19.40	0.4041	-0.47	1		# 1	● 1
	0 1	NAMED	4.70	0.0941	•1 I	1	4.70	0.0944	0.28	1		# 1	• 1
A 4	• 1	NAMED	2.90	0.0606	•1 I	1	2.90	0.0580	-4.55	I		# 1	# 1
01 01	01	NAMED	1.40	0.0295	♦1 I		1.40	0.0279	-5.83				0.1
	0R BLENDER RNG	OR OR BLENDER RNG BLNRT 01 01 01 01 01 01 01 01 01 01 01 01 01 0	OR OR POINT BLENDER RNG BLNRT TYPES 1 01 CURVE 01 01 CURVE 01 01 CURVE 01 01 CURVE 01 01 CURVE 01 01 CURVE 01 01 CURVE 01 01 CURVE 01 01 CURVE 01 01 CURVE 01 01 NAMED 01 01 NAMED 01 01 NAMED 01 01 NAMED	OR OR POINT DEFL BLENDER RNG BLNRT TYPES XH 1	OR OR POINT DEFL CONC BLENDER RNG BLNRT TYFES XM YM 1 01 CURVE 96.50 2.4120 01 01 CURVE 78.20 1.8730 01 01 CURVE 68.50 1.6050 01 01 CURVE 53.30 1.2060 01 01 CURVE 43.80 0.9696 01 01 CURVE 36.90 0.8017 01 01 CURVE 22.90 0.4812 01 01 CURVE 17.60 0.3647 1 01 NAMED 79.50 1.9120 1 01 NAMED 53.40 1.2088 01 01 NAMED 43.00 0.9515 01 01 NAMED 36.70 0.7991 01 01 NAMED 36.70 0.7991 01 01 NAMED 36.70 0.7991 01 01 NAMED 19.40 0.4060	OR OR FOINT DEFL CONC EFS CONC I BLENDER RNG BLNRT TYPES XM YM YE I 01 01 CURVE 96.50 2.4120 01 I 01 01 CURVE 78.20 1.8730 01 I 01 01 CURVE 68.50 1.6050 01 I 01 01 CURVE 53.30 1.2060 01 I 01 01 CURVE 43.80 0.9696 01 I 01 01 CURVE 36.90 0.8017 01 I 01 01 CURVE 36.90 0.8017 01 I 01 01 CURVE 17.60 0.3647 01 I 01 01 NAMED 79.50 1.9120 01 I 01 01 NAMED 53.40 1.2088 01 I 01 01 NAMED 43.00 0.9515 01 I 01 01 NAMED 43.00 0.7991 01 I 01 01 NAMED 36.70 0.7991 01 I 01 01 NAMED 36.70 0.7991 01 I 01 01 NAMED 36.70 0.7991 01 I 01 01 NAMED 36.70 0.7991 01 I	OR OR POINT DEFL CONC EFS CONC I I BLENDER RNG BLNRT TYPES XM YM YE I I I I I I I I I I I I I I I I I I	OR OR POINT DEFL CONC EFS CONC I I DEFL RLENDER RNG BLNRT TYPES XM YM YE I I XC *** **TYPES XM YM YE I I XC *** **TYPES XM YM YE I I XC *** **TYPES XM YM YE I I XC *** **TYPES XM YM YE I I XC *** **TYPES XM YM YE I I XC *** **TYPES XM YM YE I I XC *** **TYPES XM YM YE I I XC *** **TYPES XM YM YE I I XC *** **TYPES XM YM YE I I XC *** **TYPES XM YM YE I I XC *** **TYPES XM YM YE I I XC *** **TYPES XM YM YE I I XC *** **TYPES XM YM YE I I I XC *** **TYPES XM YM YE I I XC *** **TYPES XM YM YE I I I XC *** **TYPES XM YM YE I I I XC *** **TYPES XM YM YE I I I XC *** **TYPES XM YM YE I I I XC *** **TYPES XM YM YE I I I XC *** **TYPES XM YM YM YE I I I XC *** **TYPES XM YM YM YE I I I XC *** **TYPES XM YM YM YE I I I XC *** **TYPES XM YM YM YE I I I XC *** **TYPES XM YM YM YE I I I XC *** **TYPES XM YM YM YE I I I XC *** **TYPES XM YM YM YE I I I XC *** **TYPES XM YM YM YE I I I XC *** **TYPES XM YM YM YE I I I XC *** **TYPES XM YM YM YE I I I XC *** **TYPES XM YM YM YE I I I XC *** **TYPES XM YM YM YE I I I XC *** **TYPES XM YM YM YM YE I I I XC *** **TYPES XM YM YM YM YM YM YM YM YM YM YM YM YM YM	OR OR POINT DEFL CONC EFS CONC I I DEFL CONC BLENDER RNG BLNRT TYPES XM YM YE I I XC YC YC 01 01 CURVE 96.50 2.4120 01 I 1 96.50 2.4112 01 01 CURVE 78.20 1.8730 01 I 1 78.20 1.8744 01 01 CURVE 68.50 1.6050 01 I I 78.20 1.8744 01 01 CURVE 53.30 1.2060 01 I I 53.30 1.2054 01 01 CURVE 43.80 0.9696 01 I I 53.30 1.2054 01 01 CURVE 36.90 0.8017 01 I I 36.90 0.8023 01 01 CURVE 22.90 0.4812 01 I I 22.90 0.4612 01 01 CURVE 17.60 0.3647 01 I 1 17.60 0.3650 I I HEAN OF (ABS 2) = 01 01 NAMED 79.50 1.9120 01 I 79.50 1.9112 01 01 NAMED 88.30 1.6013 01 I 1 53.40 1.2079 01 01 NAMED 33.40 1.2088 01 I 1 53.40 1.2079 01 01 NAMED 33.40 1.2088 01 I 1 53.40 1.2079 01 01 NAMED 34.00 0.7975 01 I I 36.70 0.7976 01 01 NAMED 36.70 0.7991 01 I I 36.70 0.7976 01 01 NAMED 36.70 0.7991 01 I I 36.70 0.7976 01 01 NAMED 33.50 0.4959 01 I I 23.50 0.4945 01 01 NAMED 33.50 0.4959 01 I I 23.50 0.4945 01 01 NAMED 33.50 0.4959 01 I I 23.50 0.4945 01 01 NAMED 19.40 0.4060 01 I I I 19.40 0.4041	OR OR POINT DEFL CONC EFS CONC I DEFL CONC Y 2FOINT BLENDER RNG BLNRT TYPES XM YM YE I I XC YC (M-C)/C #1 #1 #1 CURVE 96.50 2.4120 #1 I 78.20 1.8744 0.07 #1 #1 CURVE 78.20 1.8730 #1 I 78.20 1.8744 0.07 #1 #1 CURVE 68.50 1.6050 #1 I 78.20 1.8744 0.07 #1 #1 CURVE 53.30 1.2060 #1 I 1.6054 0.03 #1 #1 CURVE 43.80 0.9696 #1 I 43.80 0.9683 -0.13 #1 #1 CURVE 34.90 0.8017 #1 I 36.90 0.8023 0.08 #1 #1 CURVE 17.60 0.3647	OR OR POINT DEFL CONC EFR CONC I I DEFL CONC Y XFOINT I BLENDER RNG BLNKT TYPES XH YH YE I I XC YC (H-C)/C I \$1	OR OR POINT DEFL CONC EFS CONC I I DEFL CONC Y 2POINT I DEFL CONC Y 2POINT I DEFL CONC Y 2POINT I DEFL CONC Y 2POINT I DEFL CONC Y 2POINT I DEFL CONC Y 2POINT I XS	OR OR POINT DEFL CONC EFR CONC DEFL CONC Y ZFOINT DEFL CONC Number Num

EQUATIONS AND COEFFICIENTS.

X = (MCAL * X) + BCAL C N

MCAL = 0.1000000E 01 BCAL = 0.0000000E 00 DEGREE FIT

4 3 2 A5*X + A4*X + A3*X + A2*X + A1 = PCT C02 /N2 C C C C

A1 :: 0.0000000E 00 A2 :: 0.1983948E-01 A3 = 0.5050859E-04 A4 = 0.2934626E-07 A5 = 0.0000000E 00

C

(

(

1

1

X																
X																
CALIBRATION NAME: C02A-CR23				6 08-16	-88	*******	IASTF	ĸ	S 1	TE	******	AA	AAA			
CÀLIBRATION 0 : 080016-084146	x £0011	PHENT ID # ;	789433			***					***	AA	AA	72	<u> 12 55 </u>	111
TEST SITE: : A251	CALII	BRATION NAME:	CO2A-CR	23		*** ANALYZER	CALIBRA	10 I T	1 CUF	VE ANA	LYSIS ###	AA	AA	22	55	1111
CALIB DONE AT 1 09105 08-11-88	CALII	BRATION • :	980816-	084146		***					***	AA	AA	22	55555	11
### COMMENT: EFA-HOR-R23-WORK I	TEST	SITE :	A251			**********	*******	****	****	****	********	AAA	AAAA	22	55	. !!
EFACYLO VENDOR CYLID VCODE DATA MEAS NOMINAL ACTIVE I FIT QUALITY OF NEW CURVE I SHIFT FROM FREVIOUS CURVE I SHOWN OR OR OR POINT DEFL CONC EFS CONC I DEFL CONC Y XPDINT I DEFL CONC Y SHIP I I XC YC (M-C)/C I XS YSO (S-C)/I	CALII	B DONE AT 1	09:05	08-11-88								AA	616	222	2 55 55	5 11
I EFACYL® VENDOR CYLID UCODE DATA MEAS NOMINAL ACTIVE I I FIT QUALITY OF NEW CURVE I SHIFT FROM FREVIOUS CURVE I OR OR OR POINT DEFL CONC EFS CONC I DEFL CONC Y XPOINT I DEFL CONC Y XSHIFT FROM FREVIOUS CURVE I BLANCOD BLENDER RNG BLNRT TYPES XM YM YE I I XC YC (M-C)/C I XS YS\$ (S-C)/I	ÛFĒŔ	ATOR COMMENT:	EFA-HOR	-R23-WOR	K							AA	A f	222222	22 5555 5	11111
EFACYLO VENDOR CYLID VCODE DATA MEAS NOMINAL ACTIVE 1 FIT QUALITY OF NEW CURVE SHIFT FROM FREVIOUS CURVE OR OR FOINT DEFL CONC EFS CONC 1 DEFL CONC Y XPOINT DEFL CONC Y XSHIFT CONC XSHIFT CONC Y XSHIFT CONC] = = = = = = = = = = = = = = = = = = =	VN	DUM OF M	CACHEED	T 115.11.7.0				•					ETCONE .		
I OR OR OR FOINT DEFL CONC EFS CONC I I DEFL CONC Y XPOINT 1 DEFL CONC Y XSHI I BLNCOD BLENDER RNG BLNRT TYPES XH YH YE I I XC YC (H~C)/C I XS YS\$ (S-C)/C I								-	•							
BLNCOD BLENDER RNG RI NRT TYPES XH YH YE								_	Ī					•		
I B16660								CI	1							
I B16660	_	BLENDER RNG	BLART	TYFES	XH	YH	YE	I	I	ХC	YC	(M-C)/C]	XS	Y5#	(S-C)/(
I 146293 #1 #1 CURVE 79.50 1.9120 #1 I 79.50 1.9123 0.02 I 79.44 1.9197 0.3 I #752 #1 #1 CURVE 68.30 1.6013 #1 I 1.6008 -0.03 I 68.13 1.6113 0.6 I #180 #1 #1 CURVE 53.50 1.2088 #1 I 53.50 1.2112 0.20 I 53.20 1.2227 0.5 I #155139 #1 #1 CURVE 43.00 0.9515 #1 I 43.00 0.9496 -0.20 I 42.60 0.9598 1.6 I #33470 #1 #1 CURVE 36.70 0.7991 #1 I 36.70 0.7984 -0.08 I 36.25 0.8068 1.6 I #442 #1 #1 CURVE 19.50 0.4060 #1 I 19.50 0.4071 0.26 I 18.89 0.4071 -0.6 ### ### ### ### ### ### ### ### #### ### ### ####	B16660	• 1	0 1	CURVE	95.4	0 2.3803	•1	- 1 1	j	95.40	2.3800	0.01	i	95.48	2.3800	0.00
I 8752	1 146293	0 1	0 1	CURVE	79.5		0.1	1	1	79.50	1.9123	0.02	1	79.44	1.9197	0.39
B180	1 #752	0 1			-			1	i		_			48.13		0.65
I 155139	I B180	#1		. – -		- · - -		Ī	i				-			0.95
I 33470	1 155139							i	i							1.06
I B442	I 33470							i	i		–		-			1.05
B1575 01 01 CURVE 19.50 0.4060 01 1 1 19.50 0.4071 0.26 1 18.89 0.4071 -0.0				-				i	i							0.49
The state of the s								•	•				•			
	1	• •	Ÿ.	CUKVE	17.3	0.4080	*1	•				0.25	•			0.57

0.0941

0.0606

0.0295

NOTE #1: CYLINDER NOT DEFINED IN THE EQUIPMENT FILE SYSTEM.

NAMED

HAHED

NAMED

3.00

1.50

NOTE #1 YS FOR NAMED CYLS IS PREVIOUS EFS CONC (UNSHIFTED).

-0.73 1 8 1 41 3.00 0.0602 1.50 0.0300 1.57 1 . I HCAL= 1.0000 BCAL= 0.000 I MS = 1.0091 ES - -0.785 WFC=2 DGF=3 I CFC=1 ZST=1 WFC=2 DGF=3 I CFC=1 25T=1 1 NEW.CALIB.NO= 880816-084146 1 FRV.CALIB.NO- 880809-165450 0 I B80809-170322 995 AC-TIVE

DEGREE FIT

WEIGHTING FACTOR CODE

2.67 I

EQUATIONS AND COEFFICIENTS

X = (MCAL # X) + RCAL C M

HCAL = 0.1000000E 01 BCAL = 0.000000E 00 4 3 2 A5*X + A4*X + A3*X + A2*X + A1 = PCT CO2 /N2 C C C C

0.0967

A1 ... 0.0000000E 00 A2 ... 0.1990647E-01 A3 = 0.4886654E-04 A4 = 0.4164999E-07 A5 = 0.0000000E 00

4.80

I 244214

1 66207

391539

1 2

PAGE TODESSED		08150123 08-16-RR
W THITPHENT IN A	i	789411
X TUIPHENT ID 8	i	CO2A-CR23
CALTBRATION .	t	880816-085023
TEST SITE		A251
CALID DONE AT	t	09105 08-12-88

OPERATOR COMMENT: EPA-HOR-R23-WORK

8888884.	M	A	8	T	E.	R	E	1	1	E	****	***
***												***
SSS ANALYZ	ER	C	AL	19	RA	TION	CI	UR	VE	ANA	LYSIS	***
***												***
********	**		881	##	**	****	111	111	t t	***	*****	***

AA	AAA	222	222	5553	5555	11
AA	AA	22	22	55		111
AA	AA		22	55		1111
AA	88	- 2	22	555	555	11
AAA	AAAA	22	2		55	11
AA	88	222	2	55	55	11
AA	AA	2222	2222	559	555	11111

1		*====== KN(INN OR HE	ABURED	INPUTS =:		*====
1	EPACYLO	VENDOR CYLID	VCODE	DATA	MEAS	NOMINAL	ACTIVE
1	OR	OR	OR	POINT	DEFL	CONC	EF8 CONC
1	BLNCOD .	BLENDER RNB	BLNRT	TYFEB	HX	YH	YE
1							
1	316660	11	•1	CURVE	95.40	2.3803	• 1
1	146293	●1	• 1	CURVE	79.50	1.9120	• 1
1	D752	01	01	CURVE	68.30	1.6013	•1
1	D180	#1	•1	CURVE	53.40	1.2088	• 1
1	155139	• 1	•1	CURVE	43.00	0.9515	●1
1	33470	01	•1	CURVE	36.60	0.7991	• 1
I	B442	01	01	CURVE	23.50	0.4959	0 1
1	81575	•1	• 1	CURVE	19.40	0.4060	•1
1			•				
1							
1	244214	01	01	HAHES	4.80	0.0941	•1
1	391539	01	• 1	HAMED	3.00	0.0606	01
Ī	66207	•1	01	NAMED	1.50	0.0295	•1
I							
	NOTE 41	CYLINDER NOT	DEFINED	IN THE	EQUIPMEN	NT FILE SY	STEM.

J	FIT OU	JALITY OF NE	W CURVE	1	SHIFT F	ROM FREVIO	US CURVE
I	DEFL	CONC Y	XF:OINT	1	DEFL	CONC	Y XSHIFT
1	XC	YC	(H-C)/C	1	XS	Y5#	(S-C)/C
1				1			
1	95.40	2.3798	-0.02	1	95.47	2.3798	-0.00
J	79.50	1.9125	0.03	1	79.44	1.9199	0.39
1	68.30	1.6014	0.01	1	48.15	1.6117	0.64
1	53.40	1.2098	0.0R	I	53.13	1.2210	0.92
1	43.00	0.9510	-0.05	1	42.64	0.9607	1.02
I	34.60	0.7975	-0.20	1	36.19	0.8055	1.00
1	23.50	0.4967	0.16	1	22.98	0.4990	0.47
1	19.40	0.4041	0.03	I	18.85	0.4061	-0.00
1	MEAN OF	(ARS %) =	0.07	1	MEAN OF	(ARS X) =	0.56
1				1			
1	4.80	0.0971	3.10	1		01	• 1
1	3.00	0.0604	-0.26	1		0.1	01
1	1.50	0.0301	2.04	1		• 1	0.1
Į.				1 -			
1	HCAL: 1.	0000 RCAL	- 0.000	j	. L = 3H	0082 RS	= -0.710
1	CFC=1 Z	ST=1 WFC=	2 DGF=3	3		ST=1 WFC	

I NEW.CALIB.NO= 880816-085023 J PRV.CALIB.NO= 880809-165450 I XNL= 5.415 91NF= 0 1 880809-170322 995 AC-TIVE

ILPROSEERINGER STREET CURVE COMPARISONS SERVICES STREET

NOTE 41: CYLINDER NOT DEFINED IN THE EQUIPMENT FILE SYSTEM.

NOTE #1 YS FOR NAMED CYLS IS FREVIOUS EFS CONC (UNSHIFTED).

NUIE #1 TS FUR NAMED CTES IS PREVIOUS EFS CONC. COMBMITTED ?

-WORK

WEIGHTING FACTOR CODE : 2
DEGREE FIT : 3

X = (MCAL # X) + BCAL C H

MCAL = 0.1000000E 01 BCAL = 0.000000E 00 4 3 2 A58X + A48X + A38X + A28X + A1 = FCT C02 /N2 C C C C

A1 = 0.0000000E 00 A2 = 0.2000604E-01 A3 = 0.4685111E-04 A4 = 0.5164976E-07 A5 = 0.0000000E 00

C

M = 1.7

ROD FROC	ESSED 1	1214411	0 08-16		H	IASTE	E:	5 1 1	F	******	44	AAA	22222	555555	5 11
X EQUI	PHENT 1D 4 :	789433		84			••		-		AA	ΛΑ		2 55	111
	BRATION NAME:	CO2A-CR	23		& AHALYZER	CALIBRAT	אחו	CHRUE	ANA		AA	AA	22	_	1111
CALI	BRATION . :	880816-		11	• • • • • • • • • • • • • • • • • • • •					***	AA	AA	22	555555	11
TEST	SITE :	A251			*******	*******						AAAA	22	5:	, 11
	R DONE AT :		08-16-88		••••			*****			88	Á	322	2 55 55	-
	ATOR COMMENT:		-#23-WOK								AA	60		•	11111
		2	uon												
======	====== KN(DWN OR M	EASURED	INFILES =		312111113	- I	1==	= 2 = 2		= CURVE C	DHF AI	KISONS =		
EFACYL .			DATA	MEAS	HOMINAL	ACTIVE	ī			UALITY OF				ROH FREVIO	OUS CURVE
OK	06	OR	FOINT	DEFL	CONC	EFS CONC	i		EFL	CONC	Y ZFOINT		HEFL	CONC	Y 25H1F1
BLNCOD	BLENDER RNG	BLNRT	TYFES	KH	YM	YE	i		XC	YC	(M-C)/C	_	XS	Y5#	(S-C)/C
							ĭ	i				i			
P16660	# 1	• 1	CURVE	95.40	2.3803	0.1	i	i 9:	5.40	2.3800	-0.01	ī	95.48	2.3800	0.00
146293	91	0.1	CURVE	79.50	1.9120	1 1	ī	-	9.50			-	79.44	1.9197	0.39
B752	01	41	CURVE	68.30	1.6013	#1	ī		B.30	1.6008			48.13	1.6113	0.45
B180	#1	#1	CURVE	53.50	1.2088	01	ī		3.50	1.2112	_		53.20	1.2227	0.95
155139	0.1	• 1	CURVE	43.00	0.9515	0.1	1		3.00				12.60	0.9598	1.06
33470	#1	41	CURVE	36.70	0.7991	01	ī		6.70				34.25	0.8048	1.05
B442	#1	• 1	CURVE	23.50	0.4959	01	ī	-	3.50	0.4953			22.93	0.4978	0.49
B1575	0.1	•1	CURVE	19.50	0.4060	61	i		9.50	0.4071			18.89	0.4071	-0.00
		• •	0011.12		0.4000	••	i			(ABS %) .	0.11			(ABS X)	0.57
							i	1	· U	THES AT	V	; '	II. KIV 01	(APC 4)	0.07
244214	•1	0.1	NAMED	4.80	0.0941	• 1	i	i	1.BO	0.0967	2.67	1		# i	0.1
391539	01	• i	NAMED	3.00	0.0441	ěi	Ť	-	3.00	0.0402	_	-		• i	• i
66207	ěi	•i												• i	• 1
	~ 4	4.1	HAHED	1.50	0.0295	01	1		1.50	0.0300	1.57	1		• •	• •

NOTE 01: CYLINDER NOT DEFINED IN THE EQUIPMENT FILE SYSTEM.

NOTE 4: YS FOR NAMED CYLS IS PREVIOUS EFS CONC (UNSHIFTED).

WEIGHTING FACTOR CODE : 2
DEGREE FIT : 3

WFC=2 DGF=3 1 CFC=1 ZST=1 WFC=2 DGF=3 I

0 | 880809-170322 995 AC-TIVE | I

I HCAL= 1.0000 | BCAL= 0.000 | HS = 1.0091 | BS = -0.785 |

1 NEW.CALIB.NO= 880816-124410 I FRV.CALIB.NO= 880809-165450 I

1----- EFF D/T --- INEFF D/T -1

EQUATIONS AND COEFFICIENTS

X = (MCAL * X) + BCAL C H

MCAL = 0.1000000E 01 BCAL = 0.0000000E 00 4 3 2 A5*X + A4*X + A3*X + A2*X + A1 = FCT CO2 /N2 C C C C

I CFC=1 ZST=1

1 2NL = 5.466 #INF =

A1 = 0.0000000E 00 A2 = 0.1990647E-01 A3 = 0.4886654E-04 A4 = 0.4164999E-07 A5 = 0.0000000E 00

```
FAGE 2
                                                                           4444444
                                          *******
                                                    MASTER SITE
                                                                                           AAAAA
                                                                                                    22222
                                                                                                           555 3555
FROD FROCESSED
                   : 10:16:13 08-17-RB
                                                                                                                       11
                                                                                ...
                                                                                                   22 22
    EQUIPMENT ID 4 : 789433
                                          ...
                                                                                          AA
                                                                                               AA
                                                                                                           55
                                                                                                                      111
                                          *** ANALYZER CALIBRATION CURVE ANALYSIS ***
    CALIBRATION NAME: CO2A-CR23
                                                                                          AA
                                                                                               ΛA
                                                                                                      2.2
                                                                                                           55
                                                                                                                     1111
                                                                                ...
                                                                                          AA
                                                                                               ńΑ
                                                                                                      22
                                                                                                           5555555
                      880817-101613
                                          ...
    CALIBRATION .
                   :
                                                                                                                      1 1
                                                                                          AAAAAAA
                                                                                                                55
    TEST SITE
                      A251
                                          ***************************
                                                                                                     22
                                                                                                                       11
    CALIB DONE AT : 09:05 08-17-88
                                                                                          AA
                                                                                               AA
                                                                                                  222
                                                                                                           55 55
                                                                                                                       11
                                                                                                  2222222
    OPERATOR COMMENT: EFA-HOR-R23-WORKE
                                                                                          AA
                                                                                               64
                                                                                                            55555
                                                                                                                     11111
I EFACYLO VENDOR CYLID VCODE
                               DATA
                                      HEAS
                                              NOMINAL
                                                       ACTIVE I I FIT QUALITY OF NEW CURVE I SHIFT FROM FREVIOUS CURVE I
                                       DEFL
                                                                      DEFL
                                                                             CONC
   OR
               90
                        OR
                               POINT
                                               CONC
                                                      EFS CONC I I
                                                                                     Y ZFOINT I
                                                                                                  DEFL
I PLNCOD
          BLENDER RNG
                                                                       XC
                                                                               YC
                       BLNRT
                               TYFES
                                       ИX
                                                YH
                                                         YE
                                                               1 1
                                                                                      (H-C)/C
                                                                                                   XS
                                                                                                            Y5#
                                                                                                                   (S-f:)/C 1
1 -----
                                                               1 1
                                                                                               1
                                                                                                  _ _ _ - - -
I B16660
              # 1
                        . 1
                               CHRVE
                                       95.40
                                               2.3803
                                                               1
                                                                 1
                                                                      95.40
                                                                              2.3807
                                                                                                  95.50
                                                                                                           2.3807
                                                          8 1
                                                                                         0.02 1
                                                                                                                     -0.00 I
I 146293
              . 1
                        . 1
                               CURVE
                                       79.40
                                               1.9120
                                                          • 1
                                                               1
                                                                 1
                                                                      79.40
                                                                               j.9106
                                                                                        -0.0R
                                                                                                  79.36
                                                                                                           1.9177
                                                                                                                      0.38
                                                                                              1
I B752
              41
                        • 1
                               CURVE
                                       68.30
                                               1.6013
                                                          .
                                                               1 1
                                                                      68.30
                                                                              1.6021
                                                                                         0.05 1
                                                                                                  68.17
                                                                                                           1.6122
                                                                                                                      0.63 1
I B180
              # 1
                        8 1
                               CURVE
                                       53.40
                                               1.2088
                                                          • 1
                                                               1 1
                                                                      53.40
                                                                              1.2102
                                                                                         0.12
                                                                                              ı
                                                                                                  53.14
                                                                                                           1.2212
                                                                                                                      0.91
                                                                                                                           1
1 155139
              . 1
                               CURVE
                                       43.00
                                                                      43.00
                                                                              0.9512
                        # 1
                                               0.9515
                                                          0 1
                                                               1
                                                                  1
                                                                                        -0.03
                                                                                              1
                                                                                                  42.65
                                                                                                           0.9608
                                                                                                                      1.01
1 33470
              .
                        • 1
                               CURVE
                                       36.60
                                               0.7991
                                                                  1
                                                                      36.60
                                                                              0.7576
                                                                                        -0.19
                                                                                                           0.8055
                                                          • 1
                                                               1
                                                                                              1
                                                                                                  36.19
                                                                                                                      0.99
I B442
              1
                        0 1
                               CURVE
                                       23.50
                                               0.4959
                                                          . 1
                                                               1
                                                                 1
                                                                      23.50
                                                                              0.4966
                                                                                         0.13 I
                                                                                                  22.98
                                                                                                           0.4989
                                                                                                                      0.47
I B1575
              # 1
                        . 1
                               CURVE
                                       19.40
                                                                      19.40
                                                                              0.4060
                                               0.4060
                                                          # 1
                                                               1 1
                                                                                        -0.00
                                                                                             I
                                                                                                  18.84
                                                                                                           0.4060
                                                                                                                     -0.00
                                                               1 1 HEAN OF (ABS %)
                                                                                         0.08 I MEAN DF (ARS %) -
                                                                                                                      0.55
                                                               1 1
1 244214
              # 1
                               NAMED
                                               0.0941
                        11
                                        4.80
                                                          0 1
                                                               1
                                                                  I
                                                                       4.80
                                                                              0.0970
                                                                                         3.02
                                                                                                              # 1
                                                                                                                      1
1 391539
              . 1
                        . 1
                               NAME D
                                       3.00
                                               0.0606
                                                          . 1
                                                               1
                                                                  1
                                                                       3.00
                                                                              0.0604
                                                                                        . 0.36
                                                                                                              . 1
                                                                                                                      11
                                                                                                                           1
1 66207
              8 1
                        .
                               NAMED
                                       1.50
                                               0.0295
                                                          • 1
                                                               1
                                                                  1
                                                                       1.50
                                                                              0.0301
                                                                                         1.94 I
                                                                                                              # 1
                                                                                                                      1 1
1------
                                                                  1---
  NOTE #1: CYLINDER NOT DEFINED IN THE EQUIPMENT FILE SYSTEM.
                                                                  1 MCAL= 1.0000
                                                                                  HCAL =
                                                                                        0.000 1 HS = 1.0087
                                                                                                              FS = -0.725 I
                                                                  I CFC=1 ZST-1
                                                                                  WFC=2 DGF=3 1 CFC=1 ZST=1
                                                                                                              MEC=2 DGE=3 I
                                                                  I NEW.CALIB.NO: 880817-101613 I FRV.CALIR.NO: 880809-165450 [
                                                                  I XNL = 5.415
                                                                                  INF =
                                                                                            0 I BR0809-170322 995 AC-TIVE
  NOTE #: YS FOR NAMED CYLS IS FREVIOUS EFS CONC (UNSHIFTED).
                                                                  1----1 ... EFF D/T ... INEFF D/T ...
```

EQUATIONS AND COEFFICIENTS	DEGREE F17 : 3
X = (MCAL * X) + BCAL C M	A5*X + A4*X + 63*X + A2*X + A1 = FCT CO2 /N2 C C C C
MCAL = 0.1000000E 01 BCAL = 0.0000000E 00	A1 = 0.0000000E 00 A2 = 0.159B405E=01 A3 = 0.4770664E=04 A4 = 0.4607B61E=07 A5 = 0.0000000E 00

C

THUE &						
FROD FROCESSED ;	15:12:21 08-18-8R	******* HASTER SITE *****	AAAAA	22222	5555555	1.1
X EQUIFMENT III # :	789433	***	AA AA	22 22	55	111
CALIBRATION NAME:	CO2A-CR23	### AMALYZER CALIBRATION CURVE ARALYSIS ###	AA AA	22	55	1111
CALIBRATION • :	880R1R-151221	***	AA AA	22	555555	1.1
TEST SITE ;	A251	***********************	AAAAAAA	22	54	1.1
CALIR DONE AT :	09:05 08-18-88		AA AA	222 2	55 55	11
OPERATOR COMMENT:	FFA-HOR-R23-NORKE		44 44	222222	55555	11111

EFACYL .	VENDOR CYLID	VCORE	DATA	HEAS	NON1NAL	ACTIVE I	1			EW CURVE		T FROM FREVIO	
0f:	OR	0ĸ	FOINT	DEFL	CONC	EFS CONC I	I	DEFI	CONC	Y %FOINT	1 HEF	L CONC	Y %SHIF
RLNCOU	FLENDER RNG	BLNKT	TYFES	ЖM	YM	YE I	1	ХC	YC	(H-C)/C	t xs	Y5#	(5-C)/
16660	\$ 1	• 1	CURVE	95.40	2.3803	•1 I	I	95.40	2.3793	-0.04	I	46 2.3793	0.0
46293	# 1	• 1	CURVE	79.50	1.9120	0 1 I	;	79.50	1.9141	0.11	t 79.		0.2
752	ě i	i	CURVE	68.20	1.6013	6 1 I	1	68.20	1.6002	0.07	1 48.		0.4
180	ěi	•1	CURVE	53.40		• i i	•	53.40	1.2100	0.10	1 53.		0.7
55139	• 1				1.2088								0.9
33137		9 1	CURVE	43.00	0.9515	#1 I	. !	43.00	0.9501	0.14	1 42.	- · · · · · · · · · · · · · · · · · · ·	
	1	#1	CURVE	36.70	0.7991	#1 I	ı	36.70	(1.7984	0.09	I 36.		0.9
3442	1	#1	CURVE	23.60	0.4959	61 1	I	23.60	(1.4967	0.15	1 22.	· -	0.4
(1575	# 1	• 1	CURVE	19.50	0.4060	#1 I	I	19.50	0.4660	0.01	1 18.	- -	0.0
						I	I	HEAN OF	(AES 2) =	0.07	T HEAN	OF (ARS %) -	0.4
44214	1	# 1	NAME [4.80	0.0941	8 1 I	1	4.60	0.0961	2.11	1		8 I
91539	#1	• 1					i				ť	#1	
6207	91	# 1	NAME I				ī	_			ī	11	₽ 1
244214 391539 66207	#1	1	NAMED	4.80 3.00 1.60	0.0941 0.0606 0.0295	#1 I #1 I #1 I	I I I	4.80 3.00 1.60	0.0961 0.0598 0.0318	2.11 1.36 7.13	1 (1 1	# 1 # 1 # 1	
NOTE \$1	CYLINDER NOT	DEFINE	IN THE	EQUIFMENT	FILE SY	STEN.	I	HCAL= 1.0	OOO RCAI	L- 0.000	1 KS -	1.0094 HS	_
							1	CFC=1 ZS	T=1 WIC:	=2 DCF=3	I CFC=1	251=1 WFC	
							1	NEW.CALIE	.NO- BB08	18/151221	1 PRV.C	AL 18.NO= 8808	09 1654

4 3 2 X = (MCAL * X) + RCAL C M C C C C C

HCAL = 0.100000E 01 A1 ... 0.000000E 00

BCAL = 0.000000E 00 A2 ... 0.197674BE-01

A3 = 0.5409156E-04

A4 = 0.1414909E-08

A5 = 0.000000E 00

CALIBRATION TABLE - PERCENT FULL-SCALE CHART DEFLECTION US PCT CO2 /N2

FAGE 2 5555555 FROD FROCESSED : 10122:32 08-24-88 ****** HASTER SITE ****** AAAAA 22222 1.1 X EQUIPMENT ID # : 789433 66 22 22 *** AA 55 111 55 *** ANALYZER CALIBRATION CURVE ANALYSIS *** 2.2 CALIBRATION NAME: CO2A-CR23 AA 4A 1111 22 555555 CALIBRATION . : B80B24-102232 *** *** AA 6:64 . 11 TEST SITE A251 AAAAAAA 22 55 11 55 55 CALIR DONE AT : 09:05 08-24-88 AA AA 222 2 11 2222222 OPERATOR COMMENT: EFA-HOR-R23-WORKE 50555 11111 AA AA

EFACYL .	VENDOR CYLID	VCODE	DATA		NOMINAL	ACTIVE I	1			IEW CURVE	X		ROM FREVIO	
0R	OR:	OR	FOINT	DEFL	CONC	EFS CONC I	1	DEFL	CONC	YZFOINT	I	DEFL	CONC	Y ZSHIFT
FLNCOD	BLENDER RNG	BLNRT	TYFES	хн	YM	YE I	1	ХC	YC	(M-C)/C	I	XS	YS.	(S-C)/C
B16660	* 1	•1	CURVE	95.40	2.3803	•1 1	i	95.40	2.3798	0.02	i	95.47	2.3798	-0.00
146293	11	0.1	CURVE	79.50	1.9120	01 I	1	79.50	1.9125	0.03	ī	79.44	1.9199	0.39
8752	41	0.1	CURVE	6B.30	1.6013	#1 I	ī	68.30	1.6014	0.01	Ī	68.15	1.6117	0.64
B180	#1	0 1	CURVE	53.40	1.2088	41 1	ı	53.40	1.2098	0.08	1	53.13	1.2210	0.92
155139	• 1	• 1	CURVE	43.00	0.9515	01 I	I	43.00	0.9510	0.05	1	42.64	0.9607	1.02
33470	# 1	0 1	CURVE	36.60	0.7991	01 I	i	36.60	0.2975	0.20	1	36.19	0.8055	1.00
B442	0.1	1	CURVE	23.50	0.4959	01 1	1	23.50	0.4567	0.16	1	22.98	0.4990	0.47
81575	9 1	• 1	CURVE	19.40	0.4060	•1 I	3	19.40	0.4061	0.03	ĭ	18.85	0.4061	-0.00
						1	1	HEAN OF (ABS 2) 💼	0.07	1 /	TEAN OF (ARS %)	0.56
						i	1		•		1			
244214	# 1	# 1	NAME D	4.80	0.0941	•1 I	1	4.80	0.0971	3.10	I		# 1	# 1
391539	#1	0 1	NAMED	3.00	0.0606	01 I	I	3.00	0.0604	0.26	1		• 1	• 1
66207	91	• 1	HAHED	1.50	0.0295	91 1	I	1.50	0.0301	2.04	I		* 1	9 1
						I	1 -				1			
NOTE #1	: CYLINDER NOT	DEFINED	IN THE	EQUIPMENT	FILE SYS	ITEM.		MCAL: 1.0					082 RS	
							-		T=1 WFC		-		T=1 WFC	
								NEW.CALIE XNL= 5.	.NO= 8B08 415	24-102232 F= 0			.NO= 3808 0322 995	09-165450

EQUATIONS AND COEFFICIENTS

X = (MCAL * X) + BCAL C H

MCAL = 0.1000000E 01 BCAL = 0.000000E 00 DEGREE FIT : 3

4 3 2 A5*X + A4*X + A3*X + A2*X + A3 = FCT CD2 /N2 C C C C

> A1 := 0.0000000E 00 A2 := 0.2000604E-01 A3 = 0.4685111E-04 A4 = 0.5164976E-07 A5 = 0.0000000E 00

AN TRAITION TABLE - REPORTED CHILL-SCALE CHART REFLECTION US PCT CO2 /N2

C

PROCES	SSEU ;	10:45:17	08-26	- 88 - 444		n 5 T E K	S	111	******	AAA	AAA	72222	5555555	. [1
		789433		***					***	AA	44			111
		COZA-CRO	23	* * *	AHALYZER	CALIBRATIO	N CU	RVE ANA	LYS15 #4#	AA	6A			1111
		880826-1	04519	***					* * *	AA	6:6:	22		1 1
		A251		****	******	********	***	*****	* * * * * * * * *	AAAA	AAAA	22		
CALIB	LIONE AT :	09:05 0	8-25-88							AA	AA	222	2 55 50	
BF'ERA1	OR COMMENT:	FFA-HDR-	£23-40k	ΥE						AA	6:61	202221	2 55555	11111
=====	:=====nu==	OWN OF HE	ASUFELI	INFUIS=		======1	1 -		<u> </u>	= CHEVE CE	MF A	K1508S -	*****	
CYL#	VENDOR CYLID	VCODE	DATA			ACTIVE I	ı					SHIFT F	RON PREVIO	OUS CHEVE
Ř	0k	0Æ	FOINT	DEFL	CONC	EFS CONC 1	1	DEFL	L (08)	Y ZEDINT	1	DEFL	CONC	Y ASHIFT
	BLENDER RNG	FLNRT	TYFES			YE I	ı	χt	٧٢.			X5	7S#	(5-0)/0
560	• 1	# 1				•	1	95.40			•	95.48	2.3800	
293	8 1	0.1			-		Ì			0.00	1	79.35	1.9172	0.25
2	#1	8 1					1	68.20	1.6018	0.03	1	68.05	1.05.0	0.45
)	0.1	0.1	-				1					53.03	1,2163	0.71
139	11					-	i					42.54	0.9581	0.64
70	0.1						ī					36.18	0.8053	0.85
<u> </u>	11						i					22.97	0.4988	0.43
75	- 8.1						i					18.84	0.4059	6.00
		••				i	i	-			-	IEAR OF	(AES %)	0.44
.13	A (11 5 to 6 11	. 60		i	ı			5 61	1			4.1
				_	· · · · · ·									• i
							•				•		_	- 11
·	• • • • • • • • • • • • • • • • • • •	*1	NAMEL	1.30	0.0243	#1 1	1 -			_	-1.			• •
E #1:	CYLINDER NOT	DEFINED	IN THE	FOUTPHENT	F11 F 57	SIFM.	1 -				1 1	i5 - L.	0084 55	4
				Luo. I nen		J. C					_	_		
	EQUIFICALIBITES SCALIBITES L# VENDOR CYLID R OR COD BLENDER RNG 660 #1 293 #1 2 #1 39 #1 20 #1 20 #1 21 #1 21 #1 25 #1 26 #1 27 #1	EQUIFMENT 10 0 : 789433 CALIBRATION NAME: CO2A-CR2 CALIBRATION 0 : 880826-1 TEST SITE : A251 CALIB DONE AT : 09:05 0 OFFERATOR COMMENT: FFA-HDR- EXAMPLE STREET STR	EQUIFMENT ID 8: 789433 CALIBRATION NAME: C02A-CR23 CALIBRATION 8: 880826-104519 TEST SITE : A251 CALIB DONE AT : 09:05 OB-25-88 OFFERATOR COMMENT: FPA-HOR-R23-WOR CYLE VENDOR CYLID VCODE DATA COD BLENDER RNG BLNRT TYFES COD BLENDER RNG BLNRT TYFES COD BLENDER RNG BLNRT TYFES COD BLENDER RNG BLNRT CURVE CYST BL	EQUIPMENT ID 8: 789433	EQUIPMENT ID 8: 789433	EQUIPMENT ID 8: 789433	EQUIPMENT ID 8: 789433	### AHALYZER CALIBRATION CURVE ARA CALIBRATION NAME: CO2A-CR23	### AHALYZER CALIBRATION CURVE ARALYSIS ### CALIBRATION NAME: C02A-CR23	### AAA ### AAA TALIBRATION NAME: CO2A-CR23	EQUIPMENT IN 8 : 789433	EQUIPMENT 10 8 : 789433	EQUIPMENT 1D 8 : 789433	

NOTE #: YS FOR NAMED CYLS IS FREVIOUS EFS (ONC (UNSHIFTED).

C HCAL * X) + BCAL

MCAL = 0.1000000E 01 BCAL = 0.000000E 00 HEUNEE FII

4 3 2 A5*X + A4*X + A3*X + A2*X + A1 FCT C02 /N2 C C C C

> A1 - 0.0000000E 00 A2 = 0.1992400E-01 A3 = 0.5119225E-04 A4 = 0.1536426E-07

> > 0.000000E 00

A5 =

C

. .5

FAGE 2													
ROD FROCE		_	4 09-01	-88 *	******	1 A S T E	Ŕ	SITE	******	AAA		222 5555	555 44
	MENT ID 4 :	789433		\$ 1	14				4 # 4	AA	66 22	22 55	111
	REATION NAME:	CO2A-CR	23	4.0	# ANALYZER	CALIBRAT	NO	CURVE AHAL	Y515 ***	AA	AA	22 55	1111
CALIE	RATION # :	B80901~	090954	#1	14				***	AA	AA .	12 5515	
TEST		A251		#1	********	*******	***	*****	*****	AAAA	AAA 2	?	55 11
	E DONE AT :		08-31-88							AA	4A 272	2 - 55	
DFERA	ATOR COMMENT:	EFA-HOR	-R23-NORI	NE						AA	4A 222	2222 555	55 11111
======================================	:====== KN	OWN OR M	EASURED	INPUTS =	:::::::::::::::::::::::::::::::::::::::		= I	1		= CURVE CO	MFAR ISON	, =======	=
EFACYL#	VENDOR CYLID		DATA	KEAS	NUNINAL	ACTIVE	I		JALITY OF I	NEW CURVE			VIOUS CHRVE
90	OR:	OF	FOINT	DEFL	CONC	EFS CONC	1	I DEFL	CONC	Y ZFOINT	1 DEFL	CONC	Y ZSHIFT
BL NCOD	BLENDER RNG	BLNRT	TYFES	XH	MY	YE	1	I XC	YC	(M-C)/C	I XS	YS*	
P16660	*1	1	CURVE	95.40	2.3803	91	i .	1 95.40	2.3797	0.03	1 95.4		
146293	01	• 1	CURVE	79.50	1.9123	• 1	1	1 79.50	1.9130	0.04	1 79.4	3 1.91	95 0.34
8752	# 1	# 1	CURVE	68.30	1.6013	• 1	1	05.86 1	1.6017	0.03	1 48.	3 1.61	10 0.58
R180	#1	#1	CURVE	53.40	1.2088	₽ L	1	1 53.40	1.2095	0.06	t 53.0	9 1.22	00 0.87
155139	* 1	# 1	CURVE	43.00	0.9515	0.1	1	1 43.00	0.9502	-0.14	I 42.6	0 0.95	96 1.00
33470	●1	● 1	CURVE	36.70	0.7991	0.1	I	1 36.70	0.7988	-0.04	1 36.2	4 0.80	67 0.99
B442	#1	0 1	CURVE	23.50	0.4959	# 1	1	1 23.50	0.4953	0.11	1 22.9	2 0.49	77 0.47
B1575	#1	1	CURVE	19.50	0.4060	●1	I	I 19.50	0.4070	0.25	1 18.8	9 0.40	70 -0.00
							I	I HEAN OF	(AES %)	0.09	T MEAN C	F (ABS %)	0.53
244214	\$1		NAMEL	4.90	0.0941	• 1	I	1 4.90	0.0986	4.59	1		1 • 1
391539	#1	• 1	NAMED	3.00	0.0404	41	ī	1 3.00	0.0601	0.84	t	i	
66207	#1	● 1	NAMED	1.60	0.0295	#1	1	1 1.60	0.0319	7.63	t	• :	1 11
NOTE #1	: CYLINDER NO	T DEFINE	D IN THE	FOUTEME	NT FILE SY	STEN.	- 1	I MCAL = 1.	0000 BC4		1 NS =	1.0090	35 -0.786
			· · · · ·					I CFC=1 Z			-		4F.C2 DGF=3
·												· •	30H09-165450
					•				.423 616			-170322 99	· · · · · · · · · · · · · · · · · · ·
NOTE #	YS FOR NAME	D CYLS I	S FREVIO	US EFS C	ONC CUNSHI	FTE(I).		1				0/1	

X = (MCAL * X) + BCAL C H

MCAL = 0.1000000E 01 BCAL = 0.000000E 00 A5#X + A4#X + A3#X + A2#X + A1 = FCT C02 /N2 C C C C

DEGREE FIT

A1 = 0.0000000E 00 A2 = 0.1987993E-01 A3 = 0.5030846E-04 A4 = 0.2907069E-07 A5 = 0.0000000E 00

C

EFACYL# OR	VENDOR CYLID OR	VCODE	DATA	MEAS	NOMINAL	ACTIVE I	I		ALLTY OF A			ROM FREVIO	
BLNCOD		0Æ	POINT	DEFL	CONC	EFS CONC I	I	DEFL	CONC	Y %FOINT	I DEFL	CONC	Y %5H1F
	BLENDER RNG	BLNRT	TYFES	XH	YH	YE I	Į	ХC	YC	(M-C)/C	I XS	YS 	(5-0)/
F16660	#1	# 1	CURVE	95.40	2.3803	#1 I	Ī	95.40	2.3802	-0.00	95.49	2,3802	-0.0
146293	#1	# 1	CURVE	79.50	1.9123	. #1 I	ī	79.50	1.9125	0.01	79.45	1,9201	0.4
B752	#1	0 1	CURVE	68.30	1.6013	#1 I	i	68.30	1.6012	-0.01	I 68.15	1.6118	0.6
180	# 1	+ 1	CURVE	53.40	1.2088	#1 1	1	53.40	1.2094	0.05	1 53.13	1.2209	0.9
155139	#1	1	CURVE	43.00	0.9515	#1 I	1	43.00	0.9505	0.10	1 42.64	0.9605	1.0
3470	*1	* 1	CURVE	36.70	0.7991	*1 I	I	36.70	0.7954	0.04	1 36.28	0.8076	1.0
4442	# I	# 1	CURVE	23.50	0.4959	• 1 I	I	23.50	0.4763	0.08	1 22.97	0.4987	0.4
11575	† 1	# 1	CURVE	19.40	0.4060	•1 I	1	19.40	0.4058	.0.06	1 18.93	0.4058	- 0.0
						1	1 (HEAN OF	(AFS %) =	0.04	I KEAN OF	(ABS %) =	0.5
36920	# 1	8.1	NAME D	95.90	2.3550	•1 I	i	95.90	2.3954	0.02	1	å 1	8 1
43923	# 1	1	NAMED	78.10	1.8730	01 1	I	78.10	1.8728	-0.01	I	# 1	4 1
62947	\$1	1	NAMELI	68.40	1.6050	81 1	1	68.40	1.6039	-0.07	1	# 1	8 1
1778	#1	# 1	NAMED	53.30	1.2060	♦1 I	1	53.30	1.2068	0.07	I	0.1	# 1
2386	#1	+ 1	NAMED	43.70	0.9696	. 01 1	ĭ	43.70	0.9676	-0.21	1	# 1	8 1
2211	‡ 1	† 1	NAMED	36.80	0.8017	#1 I	1	36.80	0.8018	0.01	1	# 1	# 1
1184	# 1	# 1	NAMEL	22.90	0.4812	#1 I	1	22.90	0.4829	0.36	I	9.1	8.1
57656	#1	§ 1	NAME ()	17.60	0.3647	01 I	1	17.60	0.3666	0.51	I	#1	# 1
44214	#1	# 1	NAME ()	4.70	0.0941	•1 I	I	4.70	0.0950	0.91	I	1 1	4.1
91539	#1	# 1	NAME ()	3.00	0.0606	01 I	1	3.00	0.0604	-0.38	1	# 1	8 1
6207	01	1	NAME (i	1.50	0.0295	#1 I	I	1.50	0.0301	1.93	I	#1	0.1
NOTE #1	CYLINDER NOT	DEFINED	IN THE	FRUIFMEN	IT FILE SY	STEN.	1 1	ICAL= 1.	0000 FCA	L= 0,000	I MS = 1.	0086 FS	= -0.7
						0.2		FC=1 Z				ST=1 WFC	
							-			13-135232			09-1654
								NL= 5				70322 995	

X = (MCAL * X) + BCAL C N

MCAL = 0.1000000E 01 RCAL = 0.000000E 00 A5#X + A4#X + A3#X + A2#X + A1 = FCT C02 /N2

DEGREE FIT

A1 = 0.0000000E 00 A2 = 0.1998198E-01 A3 = 0.4715868E-04 A4 = 0.5149988E-07 A5 = 0.0000000E 00

C

FROD PROCE	SSED :	13:44:2	6 08-10)-88 * :	***** H	IASTER	SIT	Ε	*******	884	AA 4	2222	2 555555	5 11
	MENT ID 4 1	789433		#1				-	***	AA	40		22 55	1111
CALIB	RATION NAME!	CD2A-CR	23	#1	# ANALYZER	CALIBRATIO	N CURVE	ANAL	YSIS ###	AA	44	2:	2 55	1111
CALIB	RATION .	880810-	134426	*1	18				***	AA	AA	22	555555	11
TEBT	SITE !	A251		81	*******	*********	******	****	******	AAA	AAAA	22	55	5 11
CALIB	DONE AT		08-10-86							AA	AA	222	2 55 55	5 11
OPERA	TOR COMMENT!	EPA-HOR	-R23-BL1	NE						AA	AA	22222	22 5555 5	11111
[====== KN	OWN OR H	EASURED	INPUTS -	******	ermussasas I				- CURVE CO) MF A	RISONS :		
I EPACYL®	VENDOR CYLID		DATA	HEAS	HOHINAL	ACTIVE I	I FIT	ดน	IALITY OF	NEW CURVE	3	SHIFT !	FROM PREVIO	JUS CURVE
I OR	OR	OR	POINT	DEFL	CONC	EFB CONC I	I DE	FL	CONC	Y ZPOINT	J	DEFL	CONC	Y ZSHIFT
I BLNCOD	BLENDER RNG	BLNRT	TYPES	XH	YH	YE 1	I X	C .	YC	(M-C)/C	I	XS	YS#	(8-0)/0
I 368730	•1	#1	CURVE	96.50	2.4120	•1 I	•	.50	2.4112	-0.03	ì	96.54	2.4112	-0.00
1 343923	#1	01	CURVE	78.20	1.8730	01 I	I 78	.20	1.8744	0.07	1	78.09	1.8823	0.42
1 262947	#1	#1	CURVE	68.50	1.6050	•1 I	1 68	.50	1.6054	0.03	1	68.31	1.6160	0.66
I B17780	#1	# 1	CURVE	53.30	1.2060	81 I	1 53	.30	1.2054	-0.05	1	52.99	1.2174	0.99
I B2386	#1	#1	CURVE	43.80	0.9696	01 I	1 43	. 80	0.9683	-0.13	1	43.41	0.9794	1.14
I B2211	#1	•1	CURVE	36.90	0.8017	•1 I	1 36	. 90	0.8023	0.08	1	36.45	0.8117	1.17
I B1184	#1	#1	CURVE	22.90	0.4812	•1 I	1 22	. 90	0.4B12	-0.01	1	22.34	0.4845	0.69
1 157656	+1	Q1	CURVE	17.60	0.3647	•1 I	J 17	. 60	0.3650	0.08	1	17.00	0.3650	-0.00
1		•				1	I HEAN	OF	(ABS 2) =	0.06	1	HEAN OF	(ABS Z) =	0.63
1						1	I				1			
B16660	#1	0 1	NAHED	95.40	2.3803	41 I	1 95	. 40	2.377 9	-0.10	1		0.1	# 1
146293	01	• 1	NAMED	79.50	1.9120	01 I	1 79	. 50	1.9112	-0.04	1		0.1	• 1
B752	11	01	NAHED	68.30	1.6013	01 I	1 48	. 30	1.6000	-0.08	1		0.1	# 1
B180	#1	# 1	NAHED	53.40	1.2088	#1 I	I 53	. 40	1.2079	-0.07	1		6.1	0.1
155139	•1	0 1	NAMED	43.00	0.9515	01 I	I 43	. 00	0.9488	-0.28	1		0.1	0.1
33470	01	• 1	NAMED	36.70	0.7991	•1 I	1 36	.70	0.7976	-0.19	1		8 1	91
B442 ·	#1	01	NAMED	23.50	0.4959	#1 I	1 23	. 50	0.4945	-0.28	1		8 1	01
B1575	#1	01	NAMED	19.40	0.4060	01 I	I 19	. 40	0.4041	-0.47	1		#1	#1
244214	* 41	• 1	NAMED	4.70	0.0941	01 I	1 4	. 70	0.0944	0.28	1		41	• 1
391539	#1	• 1	NAHED	2.90	0.0606	01 I	1 2	. 90	0.0580	-4.55	I		8 1	• 1
1 66207	#1	0 1	NAMED	1.40	0.0295	●1 I	1 1	. 40	0.0279	-5.83	1		• 1	• 1
NOTE 01	: CYLINDER NOT	DEFINE	D IN THE	EQUIPHE	NT FILE SY	I Steh.	I HCAL:		 0000 Fr4	L= 0.000	- J	IS # 1.	0081 RS	 = -0.744

NOTE #: YS FOR NAMED CYLS IS FREVIOUS EFS CONC (UNSHIFTED).

X = (HCAL * X) + BCAL

MCAL = 0.1000000E 01 BCAL = 0.0000000E 00 4 3 2 A5*X + A4*X + A3*X + A2*X + A1 = PCT CO2 /N2 C C C C C C C A1 = PCT CO2 /N2 A1 = 0.00000000E 00 A2 = 0.1983948E-01 A3 = 0.5050859E-04

I XNL= 5.451 #INF=

WFC=2 DGF=3 I CFC=1 ZST=1

I NEW.CALIR.NO= 880810-134426 I FRV.CALIR.NO= 880809-165450

1----- EFF D/T --- INEFF D/T --

DEGREE FIT

A2 = 0.1983948E-01 A3 = 0.5050859E-04 A4 = 0.2934626E-07 A5 = 0.0000000E 00

C

1

1.

WFC=2 DGF=3

: 3 .

0 I 880809-170322 995 AC-TIVE

Means & 90% C.l.s of MSA Daily Calibration Curves

Range 23 (%CO2)

TABLE C
Range 22 Background Level
Agreement Data

	T	T	T	1	T
	Curve	Cylinder	HORIBA	MSA	HORIBA-MSA
Date	Code	Conc.	Conc.	Conc	%FS Diff
		•			
8/10/88	s	0.0941	0.0964	0.0979	-0 1500
1	S	0.0606	0.0598	0.0608	-0 1000
]	S	0.0295	0.0289	0.0294	-0.0500
j i	w	0.0941	0.0963	0.0974	-0.1100
	W	0.0606	0.0598	0.0605	-0.0700
	W	0.0295	0.0289	0.0293	-0 0400
9/8/88	W	0.0941	0.0960	0.0955	0.0500
	W	0.0606	0.0592	0.0595	-0.0300
	W	0.0295	0.0300	0.0301	-0.0100
	S	0.0941	0.0960	0.0951	0.0900
ŀ	S	0.0606	0.0592	0.0592	0.0000
	S	0.0295	0.0300	0.0300	0 0000
					average
					-0.0350
					STD DEV
		l			0.0678

TABLE D
Range 23 Background Level
Agreement Data

	T	,	γ		
	Curve	Cylinder	HORIBA	MSA	HORIBA-MSA
Date	Code		ı		%FS Ditt
<u>Date</u>	- CUE	Conc.	Conc.	Conc.	781 3 15111
8/10/88	s	0.0941	0.0944	0.0966	-0.088
8/10/88	s	0.0606	0.0580	0.0581	0.004
	s	0.0295	0.0380	0.0380	0.404
	Ιẅ́	0.0293	0.0279	0.0967	0.068
	w	0.0606	0.0584	0.0582	0.008
	l w	0.0295	0.0384	0.0381	-0.4
8/11/88	W-	0.0293	0.0281	0.0969	-0.008
6/11/66	l w	0.0606	0.0602	0.0604	-0.008
	W	0.0295	0.0300	0.0004	-0.084
8/12/88	W	0.0293	0.0300	0.0970	0.004
8/12/88	W	0.0606	0.0604	0.0570	0.004
	W	0.0000	0.0301	0.0391	0.052
8/16/88		0.0233	0.0361	0.0314	0.04
8/16/88	w	0.0606	0.0602	0.0595	0.028
	w	0.0000	0.0300	0.0393	0.028
8/17/88	- 	0.0293	0.0300	0.0968	0.008
6/1//66	w	0.0606	0.0604	0.0603	0.008
	w	0.0295	0.0301	0.0301	0.004
8/18/88	w	0.0233	0.0961	0.0959	0.008
0710700	w	0.0606	0.0598	0.0597	0.004
	w	0.0005	0.0338	0.0397	0.004
8/24/88	w	0.0941	0.0971	0.0966	0.02
0,24,00	w	0.0606	0.0604	0.0621	-0.068
	w	0.0295	0.0301	0.0300	0.004
8/25/88	W	0.0941	0.0968	0.0972	-0.016
	w	0.0606	0.0602	0.0605	-0.012
	w	0.0295	0.0300	0.0281	0.076
8/31/88	w	0.0941	0.0986	0.1022	-0.144
	w	0.0606	0.0601	0.0578	0.092
1	w	0.0295	0.0319	0.0378	-0.236
9/1/88	W	0.0941	0.0950	0.0946	0.016
	w	0.0606	0.0604	0.0561	0.172
Ì	w	0.0295	0.0301	0.0240	0.244
}	S	0.0941	0.0943	0.0944	-0.004
j	S	0.0606	0.0599	0.0560	0.156
	s	0.0295	0.0298	0.0239	0.236
Į.		ţ	•	ļ	AVERAGE
		ľ		ĺ	-0.011
Į.	- 1		j	j	STD DEV
j	- 1			l	0.133

ATTACHMENT O