CASE STUDY OF PARTICULATE EMISSIONS FROM SEMI-SUSPENSION INCINERATION OF MUNICIPAL REFUSE

FINAL REPORT

U.S. ENVIRONMENTAL PROTECTION AGENCY
AIR AND HAZARDOUS MATERIAL DIVISION
1200 SIXTH AVENUE, SEATTLE, WASHINGTON 98101

CASE STUDY OF PARTICULATE EMISSIONS FROM SEMI-SUSPENSION INCINERATION OF MUNICIPAL REFUSE

<u>Errata</u>

Page v	Appendix C, "Page 34" should read "Page 35"
Page 11	Line 12, "7.500 C.F.M." should read "7,500 C.F.M."
Page 18	Table 5, "9.2x10 9 ohm-cm" should read "9.2x10 8 ohm-cm"
Page 29	"Table 6" should read "Table 7"

FINAL REPORT

EPA-910/9-76-033

CASE STUDY OF PARTICULATE EMISSIONS FROM SEMI-SUSPENSION INCINERATION OF MUNICIPAL REFUSE

Prepared by

Wesley D. Snowden, P.E. Alsid, Snowden and Associates

And

Kenneth D. Brooks, EPA Project Officer Region X, Surveillance and Analysis Division

Purchase No. WY-6-99-0872-A

Prepared for

U. S. Environmental Protection Agency Solid Waste Program Air and Hazardous Material Division 1200 Sixth Ave., Seattle, Washington 98101

November, 1976

This report is issued by Region X, Environmental Protection Agency, to assist state and local air pollution control agencies in carrying out their program activities. Copies of this document may be obtained, for a nominal cost, from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22151.

This report was jointly written by Alsid, Snowden and Associates, 13240 Northrup Way, Suite 21, Bellevue, Washington 98005 in fulfillment of EPA Purchase No. WY-6-99-0872-A and the project officer. It was subsequently reviewed by the Air and Hazardous Materials Division, U. S. Environmental Protection Agency, Region X and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Region X Publication No. EPA-910/9-76-033

ACKNOWLEDGMENT

The genuine cooperation of The Regional Municipality of Hamilton Wentworth and the assistance of Mr. Harold Saunders, Plant Engineer and the staff at the East Hamilton Solid Waste Reduction Unit are gratefully acknowledged. The authors also wish to acknowledge the collaborative data furnished by Mr. Rick Reid, CH₂M/Hill; Mr. Jimmie Wilkerson, Winzler and Kelley; Messrs. Alex Topley and Donald Neal, Babcock and Wilcox Canada Ltd; and Messrs. Bill Reeves and Kurt Glockner, Babcock and Wilcox.

CONTENTS

	Page
ACKNOWLEDGMENT	iii
LIST OF TABLES	vi
LIST OF FIGURES	vi
I. INTRODUCTION	1
II. SUMMARY OF RESULTS	5
III. PROCESS DESCRIPTION AND OPERATION	8
IV. TESTING AND ANALYTICAL METHODOLOGY	18
V. DETAILED RESULTS	28
APPENDIX A PLUME EVALUATION	30
APPENDIX B STEAM FLOW CHARTS	32
APPENDIX C OPERATING LOG	34
APPENDIX D SOURCE TESTING DOCUMENTATION	42

LIST OF TABLES

- SUMMARY OF RESULTS
- 2. BOILER OPERATING CONDITIONS DURING TEST PERIODS
- 3. APPARENT FACTORS AFFECTING BOILER OPERATIONS
- 4. FLECTROSTATIC PRECIPITATOR OPERATING CONDITIONS DURING TEST PERIODS
- 5. ELECTROSTATIC PRECIPITATOR INLET ASH RESISTIVITY
- 6. CENTROID LOCATIONS FOR ELEMENTAL AREAS OF STACK
- 7. SUMMARY OF TEST DATA
- 8. TERMINOLOGY AND EQUATIONS FOR REPORTING ATMOSPHERIC EMISSIONS

LIST OF FIGURES

- SAMPLING SCENARIO
- 2. EAST HAMILTON SOLID WASTE REDUCTION UNIT FLOW DIAGRAM
- 3. PARTICLE SIZE DISTRIBUTION RUN #1 EAST HAMILTON MUNICIPAL INCINERATOR
- 4. SCHEMATIC OF EPA METHOD 5 TYPE SAMPLING TRAIN
- 5. STACK CROSS SECTION AND EQUAL AREA CENTROLD LOCATIONS

INTRODUCTION

The concurrent growth of energy demands and increasing cost and scarcity of commonly-used conbustible fuels has prompted national interest in alternative sources of thermal energy. One specific example involves the energy recovery concept of burning municipal refuse in spreaderstoker fed boilers either as a supplement to hogged woodwastes or as the sole fuel. Since the environmental impact of this concept was largely unknown, the State of Oregon, where hog-fuel boilers are widely used by wood products industries to generate steam and electrical energy to serve their plants, requested Region X, U. S. Environmental Protection Agency to provide particulate emission data on hog-fuel type boilers firing refuse.

The Oregon Department of Environmental Quality suggested the East Hamilton Solid Waste Reduction Unit (SWARU), Hamilton, Ontario for a case study. Though this facility was designed to burn 100% refuse while the boilers in Oregon are envisioned to fire small percentages of processed refuse, 10-20%, in combination with hog fuel, the SWARU proved to be the only North American facility designed for semi-suspension combustion similar to Oregon's hog fuel spreader-stoker boilers. In addition, Oregon officials were interested in the application of electrostatic precipitators to such boilers and each of the boilers at the SWARU are equipped with an ESP.

As a result of the cooperation and assistance from The Regional Municipality of Hamilton-Wentworth personnel, source sampling was conducted October 12-15, 1976 by Alsid, Snowden and Associates under contract to EPA at the East Hamilton Solid Waste Reduction Unit. During this period, particulate concentrations and emission rates were determined in accordance with EPA Method 5 equipment and procedures, modified to include the impinger catch as requested by the Oregon DEQ.

Though six EPA Method 5 and two Brinks impactor samples were scheduled to be collected, erratic boiler operation caused by chronic fuel feed problems, precluded this goal. Sampling boiler emissions at variable, yet constant loadings, was intended. However, feed problems greatly inhibited any reasonably steady-state operation and often prompted the supplemental burning of natural gas. Consequently, three complete EPA Method 5 samples and no Brinks impactor sample were obtained.

Since the SWARU facility is rather unique, several equipment manufacturers and governmental agencies were interested in various operating parameters. Individual sampling plans of those organizations identified in the following table, were discussed and an overall sampling scenario developed to minimize disruption of the SWARU operation and yet satisfy respective data needs.

Organization

Role

Winzler & Kelly Co-contractor for Humbolt County,

California

CH2M/Hill Co-contractor for Humbolt County,

California

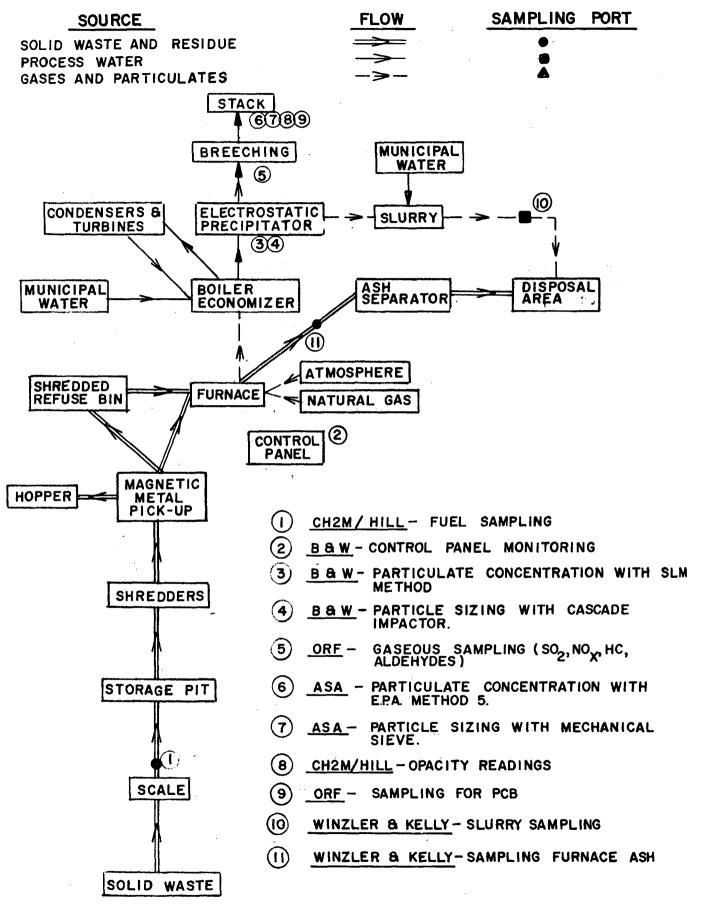
Ontario Research Foundation

Subcontractor for CH₂M/Hill and Contractor for the Ontario Ministry

of the Environment

Babcock and Wilcox Boiler manufacturer

Babcock and Wilcox Canada Ltd. Boiler manufacturer


Alsid, Snowden and Associates Contractor for U.S. EPA

The SWARU sampling scenario is shown in Figure 1. This figure is intended to inform the reader of (1) the parameters that were measured, (2) where sampling occurred in the system, and (3) who conducted which tests.

The purpose of this report is to document and interpret the emission sampling results of Alsid, Snowden and Associates. In addition, data furnished by the above mentioned organizations were included if they were deemed to be pertinent to the emission results.

If the reader is interested in data beyond the scope of this report, a complete compilation of each organization's data will be jointly prepared by Winzler & Kelly and $\mathrm{CH}_{2}\mathrm{M}/\mathrm{Hill}$ for Mr. Bill Kuntz, County of Humbolt, Department of Public Works, 1106 Second Street, Eureka, California 95501.

FIGURE I SAMPLING SCENARIO

SUMMARY OF RESULTS

The results of sampling the No. 1 boiler at the East Hamilton Solid Waste Reduction Unit for particulate emissions must be prefaced by the fact that boiler operation during each run widely fluctuated. Reasons for this chronic unstable mode of operation are discussed in Section III. However, at this point it should be noted that unstable operating conditions will generally produce higher particulate loadings than stable operating conditions. Therefore, the Alsid, Snowden and Associates emission results summarized in Table 1, reflect not only specific boiler and ESP equipment but the operating conditions of that system.

Since the particulate catch of an EPA Method 5 sampling train can be defined as either the front half (i.e. nozzle, heated probe, and heated filter) or the front half plus the back half (i.e. impingers), results using both interpretations were calculated. Accordingly, the 3-run average particulate concentration, corrected to 12% CO₂, for the front half and for the front and back halves was 0.528 gr/dscf and 0.624 gr/dscf, respectively.

The front half constituted an average of 84.3% of the total sample weight for the three samples.

The mean particle size determined by mechanically sieving Sample Number One was found to be 200 microns.

A resistivity analysis of the electrostatic precipitator inlet ash collected by Babcock & Wilcox indicated a relatively favorable value of less than 10^{11} ohm-cm.

Opacity readings by Mr. Mark Boedigheimer, CH₂M/Hill averaged 15 percent over a 30-minute period coincidental to sampling run 3. Individual readings are furnished in Appendix A.

TABLE 1. SUMMARY OF RESULTS

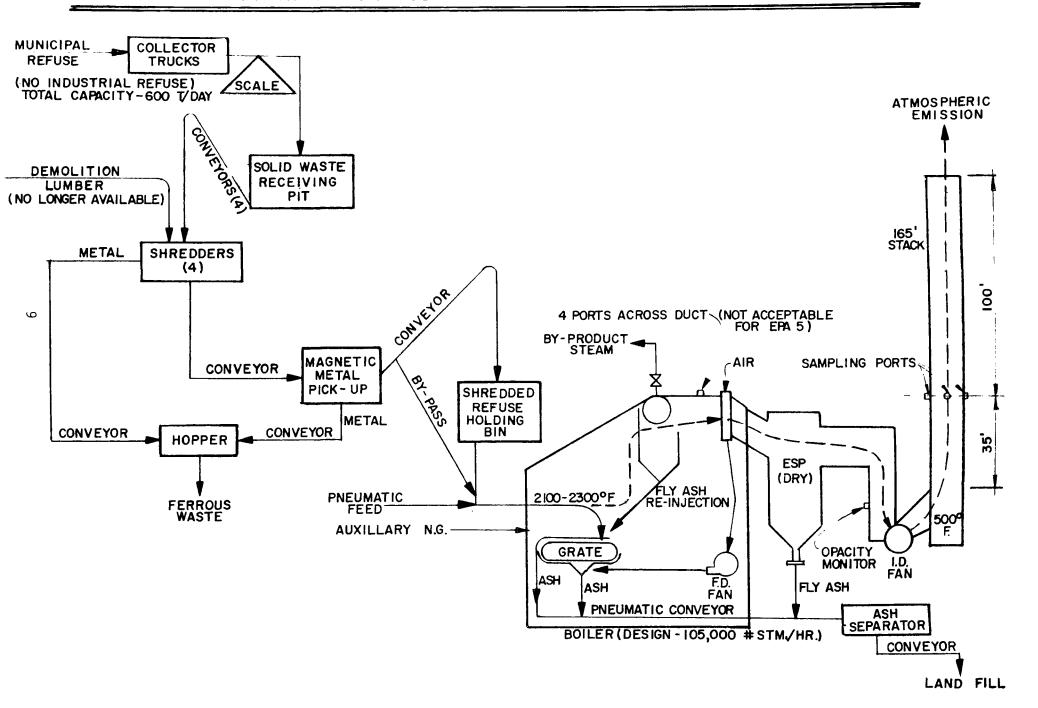
Run Number (a)	1	3	4	
Date	10/13/76	10/14/76	10/14/76	
Process Data				
Design Steam Prod. Rate, 1000 lbs/hour	105	105	105	
Avg. Steam Prod. Rate, 1000 lbs/hour	88	53	46	
Range of Steam Production 1000 lbs/hour	n 45-115	25-114	25-114	
Stack Data				
Temperature, °F Gas Velocity, ft/sec Gas Flow Rate, DSCFM(b) CO ₂ Content, percent Isokineticity, percent	487 38.3 44,265 10.35 110.6	498 36.0 42,968 6.4 106.5	487 36.9 46,334 4.53 103.1	
Emission Results (Front Half Co	atch) (c)			
Particulate Catch, mg. Particulate Concentration, grains/DSCF(b)	2103.8 0.574	829.2 0.243	622.5 0.175	
Particulate Concentration @ 129 grains/DSCF(b) Pollutant Mass Rate, lbs/hour	% CO ₂ 0.666 218.0	0.455 89.3	0.462 69.2	
Emissions Results (Total Train	Catch) (d)			
Particulate Catch, mg.	2179.6	976.9	869.8	
Particulate Concentration, grains/DSCF(b)	0.595	0.286	0.244	
Particulate Concentration (B) 12% CO ₂ grains/DSCF(D) Pollutant Mass Rate, lbs/hour	0.690 225.9	0.536 105.2	0.645 96.7	
(a) Run number 2 was curtaile	2d			

⁽a) Run number 2 was curtailed.

⁽b) Dry Standard Cubic Feet with standard defined as $70\,^{\circ}\text{F.}$ and $29.92\,^{\circ}$ inches of Hg.

⁽c) Particulate includes nozzle, heated probe and heated filter catch of EPA Method 5.

⁽d) Particulate includes front half plus condenser catch after the filter.


PROCESS DESCRIPTION AND OPERATION

The East Hamilton Solid Waste Reduction Unit includes two identical boilers with a combined capacity of 600 tons per 24 hour day. This facility, engineered by G.L. Sutin and Associates Ltd. and costing \$8,250,000 (1972 Canadian Dollars), is based upon the concept of semisuspension burning of shredded municipal refuse in a water-walled boiler exhausted through an electrostatic precipitator. A process flow diagram showing the common fuel feed system and one of the boiler/ESP systems at this facility is illustrated in Figure 2.

Municipal refuse is delivered in trucks to the receiving pit.

Before dumping, the trucks are weighed. Next, the refuse fuel is transported from the pit by four variable-speed, independently operated, conveyor belts. These belts each feed a dedicated shredder. The output of each of the four shredders is combined and transported by conveyor belt to a magnetic metal pick-up. The refuse is then conveyed to the boiler where it is fed into the furnace pneumatically with the overfire air. It should be noted that there is no functional surge capacity in this fuel feed system. Though a shredded refuse holding bin was originally built into the system, it has since been bypassed due to plugging problems and deterioration. As a result, boiler operation is plagued by lagging response to fuel feed rate commands.

Before presenting process and control system conditions during test periods, these systems will be discussed in greater detail. The subsequent boiler and ESP design specifications were respectively furnished by Alex Topley and Donald Neal, Babcock & Wilcox Canada Ltd.

Babcock & Wilcox Canada Ltd. balanced draught single pass two drum Stirling baffleless boiler with water cooled membraned furnace and vertical tubular air heater.

The boiler is fitted with a Babcock-Detroit Rotograte stoker 12'-1 1/2" wide x 18'-8" shaft centers and two Babcock & Wilcox circular type multi-spud auxiliary gas burners.

The boiler will generate 105,700 lbs. of steam per hour when burning 50,000 lbs. of refuse per hour. The refuse has an average heating value of 6,000 BTU per lb. and contains 10% moisture. The refuse fuel is municipal garbage, shredded in pulverizers and all metal removed prior to injection into the furnace. The fuel is injected into the furnace through three windswept spouts in the furance frontwall above the stoker. The lighter material burns in suspension while the heavier materials falls to the stoker grate and burns there. The stoker grate is continuously moving and constantly discharges the ash into an ash hopper at and under the front of the boiler. The speed of the stoker grate can be adjusted to suit load and fuel conditions. The hot gases generated from the combustion of the fuel pass up the furnace through the generating bank where most of the steam is generated, through an air heater to preheat the combustion air, through an electrostatic precipitator to clean the flue gas and then to the stack through an induced draft fan.

The combustion air is supplied to the boiler - under grate when the stoker is in service and to the gas burners when auxiliary fuel is being fired - by means of a turbine driven forced draught fan. An electric motor drive is also fitted to the fan for use when no steam

is available. This fan has a test block rating of 203,400 lbs. of air per hour at a static pressure of 10.6" water gauge and a temperature of 105° F.

The combustion gases are removed from the unit by means of a turbine driven induced draught fan with a test block rating of 234,600 lbs. of flue gas per hour at a static pressure of 2.88" water gauge and a temperature of 615° F. This fan can also be driven by an electric motor when no steam is available.

In order to control and complete combustion overfire air is supplied to the furnace through ports at two levels at front and rear above the stoker grate. The air for this service is supplied by a turbine drive overfire air blower having a test block rating of 7.500 C.F.M. at 30" water gauge static pressure and a temperature of 105° F. This blower also supplies air to the windswept refuse spouts located at the front of the boiler through which the refuse is distributed evenly into the furnace over the grate.

To increase the thermal efficiency of the unit and for more complete carbon burn out cinders collected in the boiler and air heater hoppers are reinjected at the rear of the furnace just over the grate. This is done through nozzles using an electric motor driven blower supplying 700 C.F.M. of air at a pressure of 30" water gauge and 105° F.

Wheelabrator Lurgi Electrostatic Precipitator Design Specifications

Technical Data

- 1.0 Gas Operating Conditions
 - 1.1 Source Two (2) 300 ton water wall

incinerators

- 1.2 Quantity 184,200 lbs./hr.
- 1.3 Temperature 590° F.
- 1.4 Pressure + 20 inches WC (design)
- 1.5 Dust Content 5.33#/1000# gas at 50% excess air
- 2.0 Precipitator Data (for one (1) unit, two (2) required)
 - 2.1 Cross Section 388 ft.²
 - 2.2 Velocity 3.48 f.p.s.
 - 2.3 Treatment time 5.38 secs.
 - 2.4 Gas Passages 18
 - 2.5 Field height 25 ft.
 - 2.6 No. of fields Two (2)
 - 2.7 Field length 9'-4"
 - 2.8 Collecting Area
 - 2.8.1 Projected 17,500 ft.²
 - 2.8.2 Actual 21,000 ft.²
 - 2.9 Collecting Surface
 - 2.9.1 Type Pocketed 18-3/4" x 18 ga. x 25 ft.
 - 2.9.2 Material Cold rolled steel
 - 2.10 Plate Spacing 10" on centers

3.0	Disc	Discharge Electrodes			
	3.1	Type	Star-shaped, .288" diameter in l" diameter pipe frame		
	3.2	Material	Cold rolled mild carbon steel		
	3.3	Total length of electrodes	16,200		
	3.4	Supports	8 - fused silica insulators		
4.0	Casi	ng			
	4.1	Gas distribution devices	3 - 12 ga. perforated plates carbon steel		
5.0	Rapp	ers			
	5.1	Collecting surface	2 drives - 38 hammers		
	5.2	Discharge electrode	2 drives - 36 hammers		
6.0	Elec	trical			
	6.1	High voltage sets	Full wave (double half wave not required)		
	6.2	Туре	Silicon diode rectifier		
	6.3	Number and Size	2 - 500 ma, 45 KV		
	6.4	Transformer coolant	Askarel or Pyranol		
	6.5	Power supply	500 volt, 60 cycle, 3-phase		
	6.6	Power consumption (precip., insulator heaters and rappers)	34.4 KW		
	6.7	Rectifier rating	70 KVA		
	6.8	High voltage conductors	2		
	6.9	Automatic power control	2		
	6.10	Rapper control	l cabinet with 2 timers Eagle Flexopulse repeat cycle timer adjustable from 2 - 40 secs. operating, 10-300 interval.		

Performance Guarantee

When operating with an inlet dust loading of 5.33#/1000# gas with 50% excess air and a gas volume of 81,000 actual cubic feet per minute at $590^{\circ}F$ the collection efficiency is guaranteed to be 98.5% resulting in a dust loading at the precipitator outlet of 0.08#/1000# gas at 50% excess air.

Boiler/ESP System Test Conditions

The competence of emission results is a function of the sampling procedure and the operation of process and control equipment during sample periods. The sampling and analytical procedures used at SWARU will be discussed in the next section while operating conditions of the boiler/ESP system will be presently discussed.

Though both boiler/ESP systems, designated No. 1 and No. 2, can be operated simultaneously, only the No. 1 system was operational during the week of testing. Therefore, all subsequent comments pertain to this system.

A temporal relationship between boiler operation and testing is shown in Table 2. The determination of operating conditions results from interpreting steam flow strip charts shown in Appendix B.

Table 2. Boiler Operating Conditions During Test Periods

Test	Date	Time (hours)	STEAM PRO Average (1bs/hr)	DUCTION RATE Range (lbs/hr)	Drum Pressure (psi)
1	10/13	1745 1930	88,000	45,000-115,000	220
3	10/14	1500 1515	53,000	25,000-114,000	215
4	10/14	1745 1915	46,000	24,000-114,000	200

It is obvious from the above information that boiler operation widely fluctuated from design specifications during testing. The most apparent factors contributing to the erratic boiler operation are listed in Table 3. The general interruptive effect these, and possibly other factors, had on the operation of boiler No. 1 can be seen in the operating log provided in Appendix C. This log was recorded by Mr. Rick Reid of CH₂M/Hill.

Table 3. Apparent Factors Affecting Boiler Operation

	<u>Factor</u>	Reason
1.	Fuel Feed - Erratic overfire air	Turbine drive impractical with fluctuating steam pressure.
	- Improper spread	Rotary drive on feeder inoperative, Erratic overfire air, Too much through center chute.
	- Non-uniform feed	Plugging feed chute, No surge in feed system.
	- Slow feed rate change response	No surge in feed system.
	- Low BTU content	Less than expected paper.
2.	Gas Flow	
	- Poor ID fan control	Sticking damper, Auto control inoperative
	- Insufficient ID fan capacity	Part of damper welded shut.
	- Non-uniform spread of fuel on grate	Too much through center chute.
3.	Boiler Controls	

- Many instruments not operative Maintenance not emphasized. most not calibrated.

Unfortunately there is no means to quantitively determine the effect of these factors on stack emissions. Though it is reasonable to assume that erratic boiler operation will result in higher particulate loadings than steady-state operation, operation of the SWARU boiler has been typically erratic, therefore, particulate emissions from the SWARU boiler could

be reduced by steady-state operation but such operation has not yet been achievable.

A temporal relationship between ESP operation and testing is shown in Table 4. These data reflect panelboard reading provided by the project officer.

Table 4. ESP Operating C onditions During Test Periods

Time		Time	ZONE 1 PRIMARY PRECIP.			PRII	ECIP.	
Tes	t Date	(hrs)						(milliamps)
1	10/13	1745 1930	190 190	59 58	290 290	200 210	54 54	270 270
3	10/14	1500 1500 1615	180 185	59 59	290 285	205 225	53 56	270 265
4	10/14	1745 1915	190 190	59 59	285 290	220 210	55 54	260 250

During each stack sampling period, the electrical input to the precipitator remained constant. However, any attempt to meaningfully establish its collecting efficiency during sampling (design collection efficiency was 98.5%) would be futile due to the large chunks, up to several inches in diameter, being carried into the ESP. In lieu of this information, the following comments, furnished by Mr. Donald Neal, Babcock and Wilcox Canada Ltd., are presented to indicate the condition of the ESP during sampling.

"On October 26, 1976 Peter Finnis and John Underwood from Wheelabrator and the writer conducted a visual examination of the #1 precipitator. From the visual inspection it was found that collector plates 3, 4, 9 and 17 on the inlet were warped. The walkway grating at the inlet was piled with tin foil, paper and charred material. This effectively stops all the flow from passing through the bottom 18 inches of the collectors. This build-up was removed and the walkway cut out and removed.

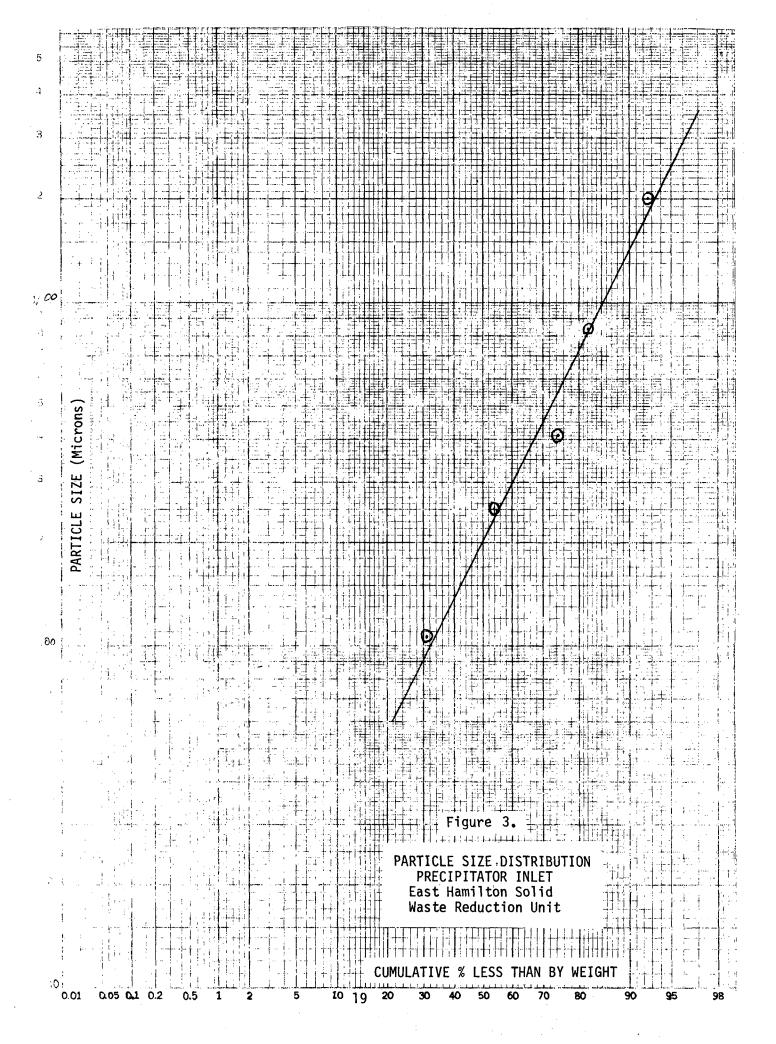
"The 9th and 17th collector on the primary field were warped for their total length.

The second field was in good shape. The 13th collector was warped at the outlet. Also there was rapper seized on the outlet field. (This effectively reduces the collector area by 5% on the 2nd field.) The electrode wires are in good shape and none are down. Generally the precipitator on #1 unit is in pretty fair shape. It has had about 15 to 20 percent of its collector area negated due to the above reasons."

In summary, the design specifications and operating conditions of the subject boiler/ESP system have been described in this section to properly qualify the particulate emission results of this single case study. Given similar circumstances, similar grain loadings can be expected. Though measured grain loadings could be reduced by design and operational improvements, the magnitude of such reductions must remain a subjective consideration of the reader.

TESTING AND ANALYTICAL METHODOLOGY

Atmospheric emissions characterizations as to particulate mass and size of emissions were determined from the limited number of samples collected by the EPA Method 5 type train and mechanical sieving respectively. Three complete Method 5 type samples were collected during the available four days of representative incinerator operating times.


Particle sizing via a cascade impactor was planned but the erratic nature of the boiler operation precluded sample collection. A mechanical sieving analysis of the filter catch on Run Number One (approximately 1.2 grams total) was performed to gain some understanding of the size of the particles. The results of the particle sizing analysis indicates that the mean particle size by weight is 200 microns in diameter. The last two stages of the sieve analysis were washed with acetone to facilitate passage of the particles through the respective sieves. The results of the particle sizing analysis are shown in Figure 3.

A boiler flyash sample taken by Babcock & Wilcox at the inlet to the electrostatic precipitator was analyzed as to its charging adaptability reported as "resistivity" in terms of ohm-cm. The ash sample at a 10% moisture by volume condition was found to have a relatively favorable charging characteristic of less than 10¹¹ ohm-cm. The resistivity versus temperature data is shown in Table 5.

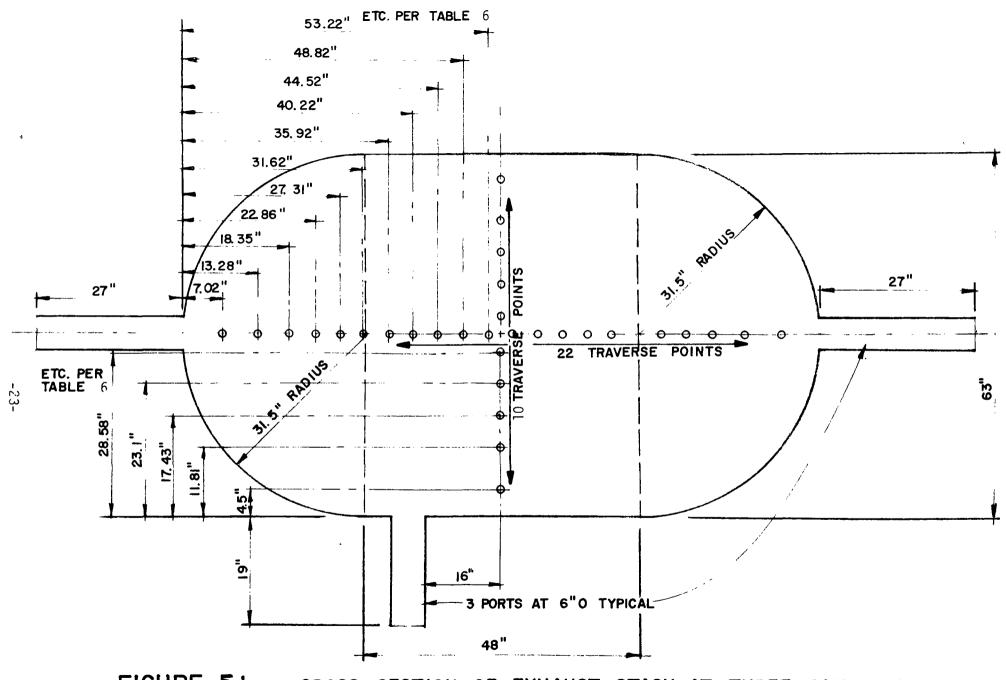
Table 5. ELECTROSTATIC PRECIPITATOR INLET ASH RESISTIVITY

<u>TEMPERATURE</u>	MOISTURE	RESISTIVITY
400°F	10%	4.1x1010ohm-cm
450°F	10%	1.5x109ohm-cm
500°F	10%	7.2x109ohm-cm
550°F	10%	3.4x109ohm-cm
650°F	10%	9.2x10ohm-cm

*Moisture in percent by volume. Sample was 7.5 grams allowing one moisture condition.

Stack gas sampling equipment designed by the United States
Environmental Protection Agency (EPA), office of Air Programs was
used in this evaluation. A schematic of the sampling equipment is
shown in Figure 4.

Sampling was performed according to the following:


Sampling ports were existing and locations noted. The number of sampling points were determined considering the number of duct diameters between obstructions in the duct upstream and downstream of the sampling ports. Stack pressure, temperature, moisture content,

and maximum velocity head readings were measured. An EPA designed nomograph was set up using this data and the correct nozzle diameter was selected using this nomograph. A sketch of the stack cross section and the equal areas selected is shown in Figure 5.

Thirty-two elemental areas were selected for traverse sampling of the stack. The stack area is composed of a combination of semicircle, rectangle and another semi-circle. Three ports were already installed and selected for sample collection to collect the most representative sample. The thirty-two elemental areas were divided into two parts, a 22 elemental point traverse along the longest diameter direction and a 10 point elemental point traverse along the shortest diameter. The sampling port installed for sampling the shortest diameter was not at the center of the longest diameter.

The 22 and 10 elemental areas selected are shown in Table 6. The dimensions and centroids of the elemental areas were determined by trial and error calculations knowing that each elemental area along the longest diameter is 1/22 of the total area and each elemental area along the shortest diameter is 1/11 of the total area.

A leak test was performed on the assembled sampling train. The leak rate did not exceed 0.02 cfm at a vacuum of 24 inches Hg. The probe was heated so that the gas temperature at the probe outlet was approximately 250° F. The filter was heated to approximately 250° F. to avoid condensation of moisture on the filter. Crushed ice was placed around the impingers at the beginning of the test with new ice being added as required to keep the gases leaving the sampling train below 70° F.

CROSS SECTION OF EXHAUST STACK AT THREE SAMPLING
PORTS WITH EQUAL ELEMENTAL AREA TRAVERSE POINT
LOCATIONS.

Table 6
Centroid Location for Elemental Areas

Shortest Di	ameter, # Areas = 10	Longest Diameter # Areas = 22 (Enter thru 2 ports @ ends)		
Area No.	Centroid (from		Centroid (from inside wall)	
1	4.5"	1	7.02"	
2	11.81"	2	13.28"	
.3	17.43"	3	18.35"	
4	23.00"	4	22.86"	
5	28.58"	5	27.31"	
6	34.42"	6	31.62"	
7	39.9"	7	35.92"	
8	45.57	8	40.22"	
9	51.19	9	44.52"	
10	58.5"	10	48.82"	
		11	53.22"	

TOTAL AREA - 42.65 ft²

The train was operated as follows:

The probe was inserted into the stack to the first traverse point with the nozzle tip pointing directly into the gas stream. The pump was started and immediately adjusted to sample at isokinetic velocities. Equal time was spent at selected points of equal elemental areas of the duct with the pertinent data being recorded from each time interval. The EPA nomograph was used to maintain isokinetic sampling throughout the sampling period. At the conclusion of the run the pump was turned off, the probe was removed, and the final readings were recorded.

Clean-up of the EPA train was performed by carefully removing the filter and placing it in a container marked "Run X, Container A". Reagent grade acetone and brushes were used to clean the nozzle, glass probe and pre-filter connections. The acetone wash was placed in a container marked "Run X, Container B". The volume of water in the impinger and bubblers (glassware) was weighed in their respective containers to the nearest 0.1 gram. The original weights which included approximately 100 ml in the bubbler and 100 milliliters in the impinger were then subtracted and the difference added with the water weight gain of the silica gel constituted the amount of water collected during the run. The silica gel was weighed in a bubbler before and after the run. The water from the glassware and a water rinse of the glassware were placed in a container marked "Run X, Container C". An acetone rinse of the glassware and all post-filter glassware (not including the silica gel container) was performed and placed in a container marked "Run X, Container D".

Analysis of the samples in each container was performed according to the following:

Run X, Container A - Transfer the filter and any loose particulate from the sample container to a tared glass weighing dish and desiccate for 24 hours in a desiccator or constant humidity chamber containing a saturated solution of calcium chloride or its equivalent. Weigh to a constant weight and report the results to the nearest 0.1 milligram.

Run X, Container B - Measure the volume to the nearest 0.1 milliliter. Transfer acetone washings from container into a tared beaker and evaporate to dryness at ambient temperature and pressure. Desiccate for 24 hours and weigh to a constant weight. Report the result to the nearest 0.1 milligram.

Run X, Container C - Measure the volume to the nearest 0.1 milliliter. Extract organic particulate from the water solution with three 25 milliliter portions of chloroform and three 25 milliliter portions of ethyl ether. Combine the ether and chloroform extracts and transfer to a tared beaker. Evaporate until no solvent remains at about 70° F. This can be accomplished by blowing air that has been filtered through activated charcoal over the sample. Desiccate for 24 hours and weigh to a constant weight. Report the results to the nearest 0.1 milligram. After the extraction, evaporate the remaining water to dryness and report the results to the nearest 0.1 milligram.

Run X, Container D - Measure the volume to the nearest 0.1 milliliter.

Transfer the acetone washings to a tared beaker and evaporate to dryness at ambient temperature and pressure. Desiccate for 24 hours and weigh to a constant weight. Report the results to the nearest 0.1 milligram.

Blanks were taken on the acetone, ether, chloroform, and deionized water and subtracted from the respective sample volumes. The filter paper used with the EPA train was a Mine Safety Appliance 1106 BH, heat treated glass fiber filter mat.

DETAILED RESULTS

A detailed summary of the test data collected on this project is shown in Table 7. Table 7 was compiled from the computer printouts of the data. The computer printouts for the four samples are placed in the Appendix D.

Table 6 . Summary of Test Data

CLIENT EPA REGION 10	Test Date(s) October	13 & 14, 19	76
SAMPLING LOCATION WASTE INCIN. #1 STA	CK_ PROCESS	INCINERATIO	ON OF WASTE	
	Run #_1_	Run #_2_	Run #_3_	Run #_4_
	Date <u>10-13-76</u>	Date <u>10-14</u>	Date <u>10-14</u>	Date <u>10-14</u>
Start Time	1751	1133	1458	1743
Finish Time	1829	1144	1621	1917
Elapsed Sampling Time, Min.	64	11	64	64
Volume Sampled, ft ³	56.997		53.363	55.442
Volume Sampled Standard*, ft ³	56.373		52.662	55.001
Moisture Content of Stack Gas, %	17.3	P ROC	14.08	10.8
Molecular Weight of Stack Gas, 1b/1b Mole	27.93	CESS	27.94	28.11
Stack Pressure, in Hg	29.214	H	29.351	29.381
Pitot Coefficient	0.827	— <u>— — — — — — — — — — — — — — — — — — </u>	0.827	0.823
Velocity of Stack Gas, ft/sec	38.3	~R∪₽	36.0	36.9
Stack Gas Flow Rate, ft ³ /min	98,006		92,152	94,535
Temperature of Stack, °F	487		498	487
Stack Gas Flow Rate, S* ft ³ /min	44,265	S	42,968	46,334
Diameter and Area of Nozzle, in., ft ³	3/8" .000767	MP C	3/8" .000767	3/8" .000767
Percent Isokinetic of Test	110.6	N G	106.5	103.1
Weight Particulate Collected, mg	2179.6	CUR	976.9	869.8
Particulate Concentration, grains/S* ft ³	0.595	TAIL	0.286	0.244
CO ₂ Content of Stack Gas, %	10.35	<u> </u>	6.4	4.53
Particulate Concentration @ 12% CO ₂ , gr/S* ft ³	0.690		0.536	0.645
Pollutant Mass Rate (Concentration Method), 1b/hr	225.9		105.2	96.7

^{*}Standard, 70°F, 29.92 in Hg, dry

APPENDIX A PLUME EVALUATION

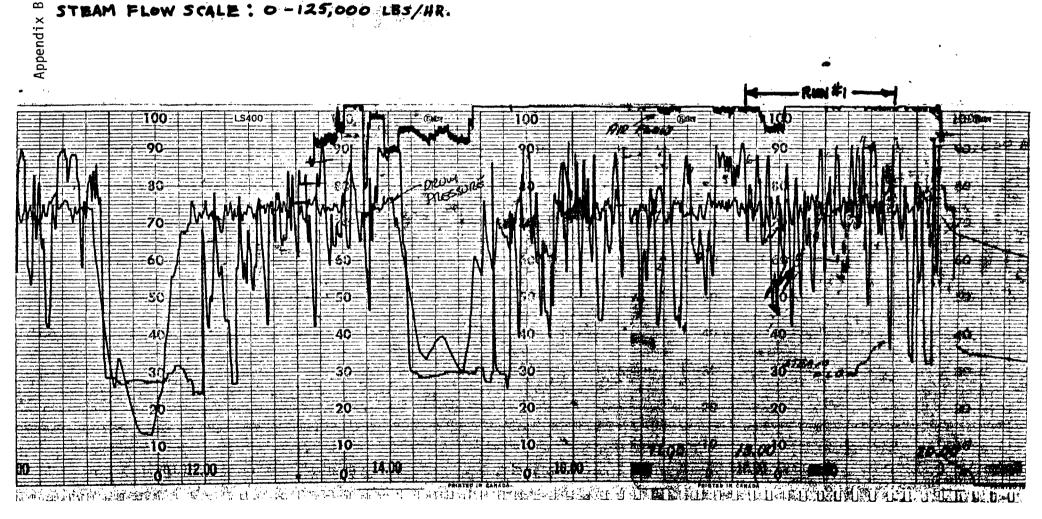
Appendix A

PLUME EVALUATION

Date	14 OGT	76	
Proje	at No		

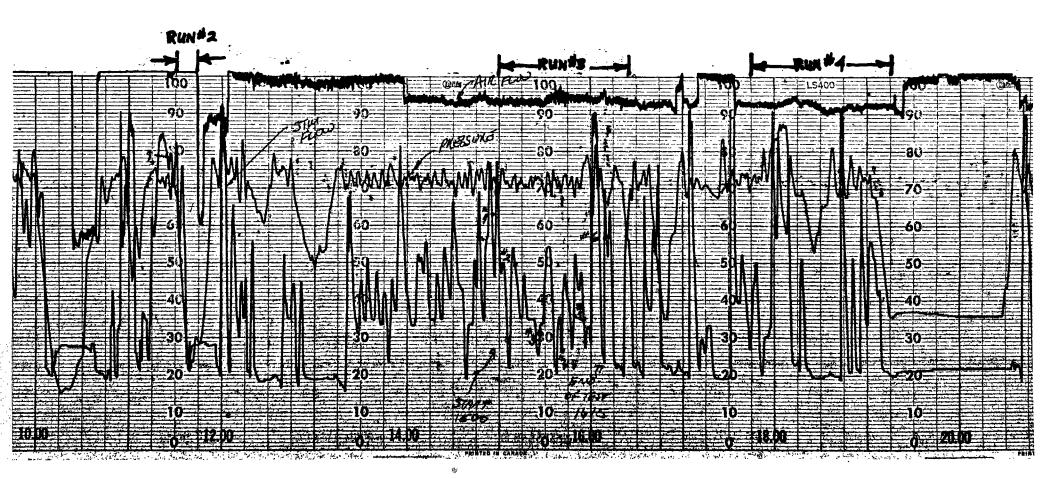
Name	Name of Firm							Opacity			
Plan	ıt and	d Loca	ation	HAMIS	TON	ONT	ARIO				Ringelmann
Sour	ce I	dentit	ty 130	OILEA	NO.	1 5	TACK	EXH2	TŁUZ		EPA TEST NO. 23
											SPEAM FLOW & 60,000 #/hr.
Time	0	1/4	1/2	3/4		Time	0	1/4	1/2	3/4	Point of Observation
3,35	15	10	25	25							STACK EXIT
3:36		10	25	30							A 15 p V 100
3:37	20	25	15	15							Distance to Source - 150 YARDS
3:38	10	15	10	20							Direction to Source NORTH
3:39	10	10	10	5							
3140	15	10	15	10							Wind Direction WEST
3:41	10	5	10	10							Wind Velocity 5-15 MPH
3:42	10	20	25	35							
3 3	15	15	10	10							Cloud Cover 10%
3:44	20	25	20	20							Comments OFF-WHITE BROWNISH COL
3:45	10	15	10	20							Comments of Agric Decoration
3:46	15	10	20	15							PLUME, PHOTO 9
3:47	15	10	15	10		<i>,</i>					
3:48	15	10	10	10							•
3149	10	10	20	10							No. 5 (100%) Units
3150	W	10	5	5							No. 4 (200) Wilder
3:51	20	10	10	5							No. 4 (80%) Units
3:52	5	10	10	10							No. 3 (60%) Units
3:53	10	10	10	B							
3:54	10	10	5	5							No. 2 (40%) Units
3:55	10	15	15	5							No. 1 (20%) Units
3:56		10	15	10							
3:57		25	15	20							No. 0 (0%) Units
3:58			20	เร							Total Units
3:59	30	20	20	25				 			
4:∞		25	25	30				 			Minutes of Observation
4:01	25	15	30	20				1	 		Minutes of Violation
1 12	15	20	15	15	-		} <u>-</u>	 			
11.02	1.0	<u> </u>	20	1 15	<u> </u>			 	t		

20


25

15

15


APPENDIX B.
STEAM FLOW CHARTS

SWARU # 1 BOILER DATE: 10/13/76 STEAM FLOW SCALE: 0-125,000 LBS/HR.

SWARU#1 BOILER

DATE: 10/14/76 STEAM FLOW SCALE: 0-125,000 LB3/HR

APPENDIX C.

OPERATING LOG

Appendix C

OPERATING LOG EAST HAMILTON SWARU TEST OCTOBER 12-18 1976

DATE	TIME	OPERATING CONDITION	REMARKS
Tuesday	8:30	Refuse delivery started	Dumped into pit
10/12/76		Boiler up to temperature on gas	
	9:00	Refuse feed begun 3 pulverizers on line	No air flow control - I.D. fan damper stuck
	10:15	Refuse feed system plugged	Boiler back on gas
	10:45	Refuse feed started	
	11:15	Steam load held reasonably constant at 85% load	Lost it after 15 minutes - inconsistent feed
్లు	12:00	Lunch break - boiler operated by plant personnel	
« .	13:00	Refuse feed plugged	On gas
	13:30	Refuse feed plugged	On gas
	14:00	Refuse feed plugged	On gas
	14:20	Restart refuse	
	14:50	Lost feed	10 minutes
	15:00	Restart refuse	
	15:30	Attempt to operate at about 70% load	Load swings of ± 20%

16:00	Attempt to open to at full	1 40 mand amounting
	Attempt to operate at full load	+ 4% - good operation
16:20	Lost feed - partially plugged	Attempted to continue operation at low feed rate
16:40	Lost feed - chutes plugged	On gas
17:20	Restart refuse feed	Uneven feed rates
18:00	Lost feed	Bridge breaker in feed chute stuck
8:30	First refuse truck arrived	166 ton loaded in pit
9:23	Start refuse feed	Attempted to bring unit up to full loadFeed variations and minor plugging plagued operation.
11:00	Lost feed	Bridge breaker stuck on gas
12:00	Restart refuse feed	1 1/2 hr. operation at 80% Load + 20%. B&W and EPA doing preliminary measurements.
13:50	Boiler up to full load	15 minutes - lost feed
14:05	Lost feed - bridge breakers stopped	Gear box defective. Replacement took just over an hour. Boiler on gas.
15:20	Restart refuse feed .	Boiler brought up to 80% load maintained there + 20% for 3 1/2 hours. ID fan dampers stuck in open position. Particulate test runs by EPA and B&W. No loss of feed during this period.
	16:40 17:20 18:00 8:30 9:23 11:00 12:00	Lost feed - partially plugged 16:40 Lost feed - chutes plugged 17:20 Restart refuse feed 18:00 Lost feed 8:30 First refuse truck arrived 9:23 Start refuse feed 11:00 Lost feed 12:00 Restart refuse feed 13:50 Boiler up to full load 14:05 Lost feed - bridge breakers stopped

	20:00	Boiler shutdown	Out of refuse
Thursday 10/14/76	8:15	Start refuse feed	Boiler up to load 3 times in first hour. Plugged feed each time. Problems with bridge breakers and overfire air turbine drive.
	10:05	Feed chute plugged	On gas. Bridge breaker drives burnt-out. New drives opened for installation tomorrow morning. System operated at reduced load remainder of day w/o bridge breakers.
	10:50	Restart refuse feed	
	11:05	Lose feed	
	11:15	Restart feed	
	11:40	Lose feed	Plugged chutes
••	12:00	Restart feed	
さ	12:20	Lose feed	Plugged chutes
	12:40	Restart feed	
	12:50	Lose feed	Overfire air turbine drive kicking out
	13:20	Restart feed	Operated @ 50% load for 1 1/2 hours w/o loss of feed. Then at 45% load for one hour. Both at + 30%. Particulate & gas testing during this period.

	16:00	Began to experience kick-out problems with overfire air fan turbine	No consistent operation the remainder of the day.
Friday 10/15/76	8:00	Change bridge breaker drives	New gear motors installed with chain drives to bridge breaker sprockets.
	10:45	Start refuse feed	
	11:10	Lost feed	Bridge breakers stuck. Necessary to cut cleanout holes in chutes.
	15:35	Restart refuse	
	16:05	Shut down feed	Fuel piling on grates-overfire air fan turbine kicking out.
%3	17:00	Similar kick-out problems to previous day with overfire air turbine	No consistent operation the remainder of the day.
Saturday 10/16/76	8:20	Start refuse feed	Continue to have problems with overfire air turbine and settings on stokers. No consistent operation.
	10:40	Refuse feed shut off	Working on overfire air turbine governor.
	11:15	Restart refuse	Still air problems
	11:35	Shut down feed	Replace worn shaft in turbine governor
	13:20	Restart refuse feed	

	13:45	Begin gas sampling	2 hr. run at 70% load 45 minutes @ full load
	17:00	Erratic operation - chute plugging	
	17:05	Gas on	
Sunday 10/17/76	9:40	Start refuse feed	
10/11//0	10:30	No. 1 pulverizer plugged	Speed up No. 3 & 4
			B&W ran 2 1/2 hr test at 80 to 90% load
	11:40	Slowed conveyors - blowing off safeties.	Lost control of steam load for 30 minutes.
2	13:00	Lost refuse feed	Erratic operation for rest of day.
Monday 10/18/76	8:30	Exercise emergency generation	Required weekly - interrupts electrical circuits
	9:30	Start refuse feed	
	10:15	Stop feed	Bridge breaker stuck
	10:35	Restart feed	
	11:40	Stop feed	Bridge breaker
	11:50	Restart feed	
	12:15	Stop feed	Bridge breaker
	12:25	Restart feed	
	12:40	Start B&W test	Average load ∿ 75% ± 20%

13:30	Stopped two pulverizers to clear feed conveyors	Only one left running
13:35	Restart pulverizers	
14:35	Lost smooth feed	
16:05	Plugged No. 1 pulverizer	Shutdown pulverizer for the day.
		Last hour of test at about 60% load \pm 25%.
17:00	Plugged No. 4 pulverizer	Stopped feed - on gas

APPENDIX D.

SOURCE TESTING DOCUMENTATION

			/
ALSID, SNOWDEN	&	ASSOCIATES	COMPUTER

COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA

EPARED BY D. ALGUA	PD		
*	INCIN. STACK EN		143-6
BJEC I			
56 • 9 9 7. VOLm	0 • 2 8 V	'H 0 • 21 VH	ti na jednosti veda 1994.
29•425 Pm	540 • T	5 500 . TS	450
29 • 425 PM	16 • 73320053068	14 • 1985 9 14 7 9 4 3	15-674820573
530. Tstd		14-19859147945	
527 • Tm			,
•37312810442 VOL std	0 • 30	0 • 2 4	0 • 2
	540•	450•	45
	17•32650367568	14 • 77836256152	14 • 778362561
11.83 VOL w			the state of the s
• 3 4 5 2 4 5 4 8 7 6 9 % M			
	· Ü•30		O • .
265475451231 MF	5 5 6	∪•27	0 -
	5 4 5 •	450•	4.5
	17.56375535418	15 • 67482057313	15 • 083103128
. 34/4			44
50 • 01 6 Wd • 93179530219 Ww	1		
• 931/9330219 •• •	0 • 28	0 • 2 9	0 •
•		0 - 2 9	
018063479999 Cd		450•	4 5
	16.77498137107	16-24493923053	15.083103128
ii.			
29 • 21 4Psn			
G12U11114324Cs	0 • 2 8 ﴿	0 • 28	0 •
. •		•	
	550• 16•81665840766	450 •	45 45.07436
U•67 ∀H	10-01003040700	15 • 96245595138	13-301607430
540 .TS 566600265340 -			
300000203340	0 • 2 8	0 • 2 9	0 •
	550 •		45
	16 • 816 65340766	450• 16•24493923053	15 • 674820573
0 • 18		10-24499923033	
• 4 6 3 3 2 5 0 5 2 5 4	U • 2 9		0.•
	0 - 2 - 3	0 • 2 9	
	550•	4 S Ü •	45
0 • 2 2	17 • 11 432 148815	16 • 24499923053	15 • 962455951
U * Z Z			
550•			
• 9 3 6 3 7 4 4 7 5 3 7	0 • 15	r. = 3 n	ა :
		0 • 28	
•	525 • `,	450•	4.5
	12.15524573114		15 • 381807436

550° 19°31665340766

43

LOB NAME -	E	PA	···		DATE.	10-	13-76
PREPARED		D.A.		APPROVED	PAGE.	2	OF 2
SUBJECT	#1	WASTE	INCIN.	EMISSIONS	CONTID		
		1		0 • 27 VH			947•0312500000 Ts
		;	15•674	450 • TS 162057313			15•49959900830 Ka
							•5J41434790983 Kb
		1		J • 27 VH			
			15•674	450 • TS 462057313			0 • 827 Cp 38 • 29870650246 Vo
				0 • 27			
			15 • 67	450• 482057313			42.55 As 98006-39096339 Q 3
							44265•28171045 Qs
				u • 28			,
			15•96	450 • 245595138			64. T
							0 • 06 67 67 An
							42•37763442312 Vn
							110 • 6503003993
							2179•6 Pt •5954226974566 Co

10-35 **N** •6903451564714 **C**

225 • 9020195318 PMRp

249 • 9737630378 PMRr

237 • 9376312848 PMR

•7270898160400**C'**

OB NAME EPA (D HAMILTON ON	TERID	DATE 10	114176
	E STOLBERG		PAGE	OF
UBJECT WAS	TE INCINEHATOR	181	RUAL 2	144-6
16-124	VOL m	0 • 24 VH	U•32 VH	975•0000000000
29•58€	15 * 33 6 2 :	520 • TS 5161014	, 540 . TS 17•88854361999	16•94115346882 K
53)• ' 5±5• '				•5425879137174 K
. • 34. 9 5 2 7 9 2 3 1		ũ•30	0 • 3 0	
1•598° . •9072355156°		54ú• .ชบ7568	510 • 17 • 05872210925	0 • 827 C 41 • 2757)778168 V
	AA E	J • 31	v • 3 C	
ed 39275641034 ·	MF 17•1610)	49J•	490 • 16 • 38194301615	42.65 A 105624-7665233 Q
30 • 016 ° • 565223203J2				49534•61J75706 Q
OC 63 6 DZF 6544 (Cq			11. T
				0 • JCU767 A
29•551 • U Jy474547916				43•47658451631 V
	VH rs			105-3367514451
'	rs			134.5 Pt -2003610071950 Cd
	INCOMPLET			10.55 N •2329(3254719° C
	RECKT LENG			85-45062253476 PI
	WITTEN ST		, ,, ,-,,,,, , ,,,,,,,,,,,,,,,,,,,,,,,,	96.01541069100 PI
				47•75731664739 PI
		45		÷239∪916329236 €

ALSID, SNOWDEN & ASSO	,	PRINT-OUT OF ATMOSPH	
JOB NAME EPA @ HAN	TILTON, ONTERIO	DATE	0/14/76
	TOUBERS APPROVED		OF
SUBJECT WASTE INCIA	VERATOR BOILER No	1 PUN 3	145-6
53•363 VOLm	0 • 2 4 V 1	H 0•23 VH	0 • 1 7
∠9•527 Pm	510 · TS		490•
نة كارون عالم المارون	15 • 25778489820	14.89798644112	12.70826502713
530 • Tm 52 • 5 • 20755 6815 VOL std	0 • 2 4	U • 2 4	0.24
72-36207310W21 VOLSIG	0 - 2 4	0 • 2 4	ΰ • 2 4
	510 • 15 • 25778489620	497• 15•15519712857	492• 15•11555490215
ۥ627 VOLw	2 1 2 3 7 7 1 4 (7 0 2 0	13 1331,712637	15-115-4490215
14 · 675 y 179 6747 %M			
	0 • 4 4	0 • 2 5	3 • 2 4
• 35424U8203253 MF	510•	4 7 7 •	492•
		15 • 46770 329825	15 • 115 55 49 0 2 1 5
29•564 Wd			
27 • 9 5 6 2 6 0 c 4 6 4 4 Ww			
	0 • 25	0 • 25	0 • 2 4
1.317982103249 Cd	512•	497•	485•
	15 • 5 38 45 72 6 8 1 1	15 • 46770829825	15 • 05 5 6 3 0 4 7 7 6 1
29•351 Psn 1•009640496326 Cs	∪ • 25	⊍ • 2.4	0 • 23
1.0336464363566		0 24	0.23
	512 • 15 • 5 J & 4 5 7 2 6 8 1 1	497• 15•15519712837	50U• 4•85934649680
0 • 1 ∜ VH	19 99949720411	15 17/17/16/57	14-73734047600
424 • TS			
11.001520733638	U • 26.	0 • 2 4	U • 2 4
	5∪6•	497•	50∠•
3.5.4		15 • 15519712837	15 • 19473593357
Ĵ•21			
490• 14-12444669132			
14-12-44007132	0 • 2 6	0 • 2 5	Ú • 2 6
	5 U 6 •	495•	501
3 • 2 ≥	15•448 UZ 526852	14 • 52059373027	15 • 80696049213
5 1 ↓•			
14.60821383536	Ú • 17	0 • 2 ∠	0 • 2 €
			ì
	505° 12°80820049811	495.• 14•49482666333	500 • 15 • 49193333494
) • 4 5	- /- 		1
512•	4	16	1
14-50192295325	•		

JOB NAME EPA 6	HAMILTON, DATERIO		DATE_	10	1/4/76	
PREPARED BY	APPROVED_		PAGE_		OF	
SUBJECT WASTE IN	CINERATOR BOILER #	1 RUN	3	CON	70	
•	0 • 23 VI	н	0 • 1	7 VH	953•053750000	0 Ts
	499 • TS		. 497	. TS		
		12•75499			14 • 605 675 6953	8 Ka
					•471845504174	4 Kb
	0 • ∠ 2		ن • 0	8		
	498•		496	•		_
		8 • 7 4 5 2 8 4			U • 32	, Cp
					36 * 911 045 67 445	· ••
					42.55	, As
					92152•26593211	Qos
					42963•49353318	Qs .
						_
					54	, Т
					J•06J767	, An
					50 • 34 + 63916461	Vn
					J. J. J. 65 J. 64 J.	
					196 • 4857595448	1
					976 • 3	Pt
					• 2 5 E 6 7 B 4 J 9 4 4 1 3	Co
					6 - 4	
					•5356413427036	, C
					165-2693776026	PMR
					112-0385167698	PMR
					104.62553000064	PMR

•5523582551600 C'

ALSID, SNOWDEN & ASSOCIATES / COMPUTER PRINT-OUT OF ATMOSPHERIC EMISSION DATA

PREPARED BY D. ALGUARD		DATE 10-14	
	APPROVED_	PAGE	_ OF <u>2</u>
SUBJECT # 1 INCINERATOR	EMISSIONS ,	RUN#4	146-6
55 - 442 VOL m	u•26 VH	0 • 23 VH	0 • 2 2
29•570 Pm	491 • TS	490 • TS	460•
530•¡Tstd	15.72450517180	14 • 73174549939	14 • 22673539502
528 • Tm			%
55 • 00 0 9 9 3 1 2 9 8 4 VOL std	Ú • 2 4	0 • 2 6	0 • 2 7
	498 •	490•	475
r • 6 6 4 VOLw	15 • 16311 313681	15 • 716 2 3 3 6 4 5 5 0	15 • 98867521223
1.1.5J677ät 1950 %M			
•4919322111050 MF	0 • 2 4	Ů • 2 6	U • 27
-4917222111090	493•	484-	480•
	15 • 16311313661	15.66652482205	15 • 93110165682
29 • 3 3 4 Wd			
23•10515963066 Ww			••
	0 • 23	0 • 4 7 5	` 9 • 2 5
1•J14€4646703∪ Cd	505•	470•	435•
	14 • 90576363633	15.99218559171	15 • 370 4261 4393
29•331 Psn			
1*J071369677795 Cs	U • 2 3	6 • 270	0 • 2 6
	514-	455•	437.
Ů•19. ∀H	14 • 967297(3528	15-71782427691	15 • 6913 989 1787
494 - TS			
₹•4632€ >4∪339	0 • 23 5	C • 2 8 0	0 • 27
	545•	450•	437
0 • 2 3	15.13884364060	15 • 96245 595138	13 • 99030956548
492•			
4-73723765047			
	0 • 2 6	u • 26 ù	0 • 4 8
	523•	4 K U •	489
∂• 2?	15-98666951227	15 • 46 6 0 9 1 9 4 5 3 4	16 • 50 0 9 2 3 2 1 9 4 3
4 + 7 ± 1 7 + 5 4 9 9 ± 9			
	0 • 1 9	(j • <u>2</u> 4	0 • 27
	51∪•	450 ◆	492
J • 2 5	15.57571360923	14.77836256152	15 • 130 254 8561
4 ♂ 5 •	4	ΙΩ	
5 • 5704 4 51 4893	4	10	

IOB NAME	EPA @ HAM	LTON	DATE	14-76
PREPARED BY.	D. ALGUARD	APPROVED	PAGE Z	OF
SUBJECT	EMISSIONS	RUN#4 CONT'D		
		0 • 285 VH	VH	947.1250000000 7
		493 •TS 16•4c644295521	TS	15•11394015289 K o
		2 - 2 - 6		•4911631067654 K l
		0 • 2 4 0		
		500• 15•178°3276980		0 • 823 Cr 36 • 94225417118 Vc
		0 • 1 8		
		459• 13•05931254647		42•65 As 44535•22842407 Q a
				4n333•92373639 Q s
		0 • 1 1		
]	478 • Lu • 1 5775565762		54- T
				0-000767 Ar
				59•1011935,424 Vn
				163•1271543781
				839•E Pt •2435395362931 Co
				•2435395362931 C o
				+•33 N •3451379613413 C
				96•71645115394 PM

Table 8

PARTICULATE CONCENTRATION AND PMR CALCULATION TERMINOLOGY

- VOLm = Dry gas meter volume @ meter temperature and pressure, dry acf
- Pm Dry gas meter pressure (recorded as inlet deflection accross orifice meter) "Hg
- Tm = Dry gas meter temperature (average of inlet and outlet)
- PSTD = Standard atmospheric pressure (29.92" Hg)
- T_{STD} = Standard Temperature (520 or 530° R)
- VOLw = Volume of water collected (expressed as vapor at standard temperature and pressure) scf
- % M = % water, calculated from amount the train collected in impinger, bubblers, and on silica gel
- MF = Mole fraction of dry gas
- WD = Molecular weight of dry stack gas 1b/1b mole
- Ww = Molecular weight of wet stack gas 1b/1b mole
- W_a = Molecular weight of air lb/lb mole
- C_D = Velocity correction coefficient for gas density
- P_{SN} = Stack pressure (static + barometric) "Hg
- C_S = Velocity correction coefficient for stack pressure
- VH_n = Pitot tube pressure differential "H₂0
- Vo = Stack velocity @ stack conditions fps
- Q₀ = Stack flow rate at stack conditions acfm
- T_s = Average stack temperature = °F
- Q_{ζ} = Stack flow rate at standard conditions scfm
- T = Time over which sample was collected minutes
- V_n = Velocity of gases inside nozzle during sampling fps
- I = % isokinetic (+ 10% desirable)
- C_O = Particulate concentration grains/scf
- N = % CO₂ by volume in stack (12 indicates no % CO₂ correction is to be made)
- T_s = Temperature of stack gas at sampling point °F

Table 8 (Continued)

PARTICULATE CONCENTRATION & PMR CALCULATIONS

1.
$$VOL_{STD} = \frac{(VOL_m) (P_m) (T_{STD})}{(P_{STD}^*) (T_m)}$$
 15. PMR_p = (C_O) (Q_{OS}) (0.008571)

2. % M =
$$\frac{(100) (VOL_W)}{VOL_{STD} + VOL_W}$$

3. MF =
$$\frac{100 - M}{100}$$

4.
$$W_{W} = (W_{D}) \text{ (MF)} + 18 \text{ (1-MF)}$$

* $P_{STD} = 29.92^{"} \text{ Hg.}$

* $W_{B} = 28.95 \text{ LB/LB MOLE}$

5.
$$c_D - \sqrt{\frac{W_{a^*}}{W_w}}$$

6.
$$c_S - \sqrt{\frac{P_{STD}}{P_{SN}}}$$

7. K
$$=\frac{\sum\sqrt{v_{H_n}\times T_{S_n}}}{n}$$

8.
$$V_0 = 2.9 (K_a) (C_p) (C_D) (C_S)$$

9.
$$Q_o - (V_o) (A_S) (60)$$

10.
$$Q_{OS} = \frac{Q_{O} (T_{STD}) (P_{SN}) (MF)}{(T_{S}) (P_{STD})}$$

11.
$$V_n = \frac{(VOL_{STD}) (P_{STD})(T_S)}{(MF) (T_{STD}) (P_{SN}) (T) (A_N) (60)}$$

12. I - (100)
$$\frac{V_n}{V_0}$$

13.
$$c_0 = \frac{P_T}{VOL_{STD}}$$
 (0.0154)

14. G =
$$\frac{C_0 (12x)}{N}$$

Table 8 (Continued)

PARTICULATE CONCENTRATION AND PMR CALCULATION TERMINOLOGY

C Particulate concentration corrected to 12% CO₂

PMR_p = Pollutant mass rate - "concentration method" - 1b/hr

P_T = Total Particulate collected by sampling train - mg

A₂ = Area of Stack - FT²

An = Area of Nozzle - FT²

VH * Velocity head readings for pitot tube - inches water

VOLSTD - Standardized gas that passed through the sampling train - cubic feet, 70° F., 1 atmosphere pressure, and dry.

Velocity correction coefficient for type pitot tube - dimensionless 0.83 to 0.87 for "S" type pitot tube normally and 1.0 for "P" type pitot tube.

2∕,~,	OPERATOR/S SAMPLE BOX FILTER NO. FIL #1 BUBBLER #2 IMPINGER #3 BUBBLER #4 SILICA G TOTAL WATER	AIG NO STARE NAL WT. 9m (015.23 3557 SEL 654.8 R VOLUME (1	Mg NITIAL WT. gm N	5774CK 1.763 DIS ET WT. gm 185.8 30.2 5.1 22.5 1.60.0474	TANCE UPST /WITTA L 429 - 437 - 350 - 632 - 11,83 FT	TRAVE TREAM & DO CO. T. T. T. S. S. S. S. S. S. TRAVE	SNOWDE RSE SAMPL DWNSTREAM C OF TRAV	FROM OBST	RUCTION los 8/5" 48" T LAYOUT	8 35 PP A A S PP PP	AROMETRIC EAK RATE ORT PRESSU SN = PB + SSUMED MOI FACTOR! EF. \(\times \) P/ TACK DIMEN ROBE NOZZL ROBE LENGT	PRESSURE (F PS CFM PS SIURE / Z SIURE / Z SIONS SIONS E DIA. 3/61 H 3 / NU	2 MAX VI	"Hg "HG 1015 "Hg 14 "Hg 1420 5,9147.6\$2
		NEOUS READI	NGS: RECORDED @			1	·		E VALUES READ					
	TIME CLOCK	ELAP. TIME	DRY GAS METER	DRY GA	S TEMP. F)	BOX TEMP.	IMPINGER TEMP.	POINT	PITOT VH	ORIFIĆE ("H	ا کے H (0	PUMP Vacuum	STACK TEMP.	OPACITY OR
	(24 HRS)	(MIN)	(CUBIC FEET)	INLET	OUTLET	(°F)	(°F)	·, , ,	("H ₂ 0)	DESTRED	ACTUAL.	("Hg GA)	(°F)	%C02
	5:51	0	533.203	61	60	195	40	22	0,07	Z 7 - Z Z - Z	.700	2,8	540	
		2	534.1.	20	60	270	40	Z1 20	0.18	1.8.3	1.8	2.6	SS@_	
		4	537.5	74	60	225	46	19	122	2,8 2,8	2.4	2.8 2.4	550 550	
		8	5 39.01	ַ עַּכּר	60	530	40	18	28	2.78	28 28	30	540	
		72	542.5	7.5 83	61	245	47	1.7_	3	3,/	3.1	40	540	
C)	n	14	544.6	84_	61	260	46	16	,28	3/ 2.S	7.5	4.0	545 545	
~		16	546,45	- \$7	61	760	48	14	.28	2.5	27	4.0	(১৯৯	
		- // 2 k'	54816 550.45	52 52	63	265	53	13	. 28		1.00	4.0	220	
		2	552,267		63/6	25	54	12	29	<u>3.1.</u>	1.6	24.0	330 525	
	6.15/6.25	24	554,0	74	63	250	. 54	24	, 2/	2.2	2.2	30	500	
		26 28	555.5 556.9	74	62	250	52 50	25	.24	2.5	2.5	4.0	450	
		30	5589	. 78	6.2	マシ	250	_26 27	, 27 ,29	28	2.8	3.0	450	I
		3.2	556,0	¬.\$.	- 60	2.50		23	. 26	30	2.9	5.0	450	
		34- 34-	51.45	<u>يتي.</u>	60	248	48	. Z.L.	:25	<u> </u>	3.0	5 ,Q	450	
		34 34	564.5	80 80	60	255	50	30_		3.0	3.c 2.5	5,0	450	
		40	563.6	80	60	755	50	32	27	2.8	28	520	45°C -	
		47	370.442	30 /60 60	60 154 54	250	<u>50</u>		24	7.5_	2.5	5,0	450 -	
		46	573.6		54	250	50	7.8	135	2.7	27	5.0	450 201	
	7	4-8	5755	દિહ	54	240	50	1-1-7	17777	777	7777	/ / / /	73000	7772
	TOTAL		· · · · · · · · · · · · · · · · · · ·		L			, -, -			"H ₂ 0	1//:		
	AVERAGE			°F	= °R				1////	. "H ₂ () = "Hg			

op.

GLIENT FOACHAM ONT.

BLAN 10-13-176

SEATTLE, WASHINGTON

TRAVERSE SAMPLING DATA SHEET IMPORTANT: FILL IN ALL BLANKS.

INSTANTA	NEOUS READI	INGS: RECORDED @	BEGINNING OF TH	ME INTERVAL		AVERAGE	VALUES READ	WITHIN THE	TIME INTE	RVAL		
CLOCK TIME (24 HRS.)	ELAP. TIME (MIN)	DRY GAS METER (CUBIC FEET)	DRY GAS TEMP. (°F) INLET OUTLE	TEMP.	IMPINGER TEMP. °F.	POINT	PITOT VH ("H ₂ 0)	ORIFICE ("H: DESIRED	ACTUAL	PUMP VACUUM ("Hg.GA.)	STACK TEMP. (°F.)	OPACITY OR %CO2
		(CUBIC FEET) 577.6 581 582.8 587.5 588.3 570.200		TEMP. (°F.) 5 240 7 240 7 30 7 30 7 30 7 30	TEMP. *F. Sb Sc Sc Sc Sc Sc Sc Sc Sc Sc	4 5 4 7 8 9 10				VACUUM	TEMP.	0R %C02
								,				
/ TOTAL/	64	56.991	2000 F=	•R.	TWANGE	/// ///			おら"H20 = 196 "Hg			
T ESTIMA	BLOWN	MED AT THIS CER STRIKE PL	ATTORM DT	this time	Sul	• •	$Pm = P_B + \Delta H$	<u> 27.4</u>	25 "Hg	1	°R	

ORSAT DATA AND CALCULATION SHEET

CLIENT Z	PA HEM	27.0N					
SAMPLING POINT	LOCATION _	INCIN.	STACK	#1 80	NEC		
DATE 10/13							
TIME OF SAMPLE	COLLECTION	1 6 15-1	7. 4° TIME	OF ANALYSIS	8:	30	
CUMULATIVE % BY VOL.(DRY)	ANALYSIS #1	ANALYSIS #2	ANALYSIS #3	ANALYSIS #4			
co ₂	104	10.4	10.3				
CO ₂ + O ₂	18.2	19.4	19.3				
$co_2 + o_2 + co$	18.6	19,6	19.3				
COMPONENT % BY VOL.(DRY)	#1	#2	#3	#4	AVG.	RATIO NOLE WT	WT./MOLE \ (DRY)
CO ₂		10.4	10.3		10.35	44/100	4,554
02		9.0	9.0		9,0	32/100	2.880
СО		0.2	0.0		.1	28/100	,028
N ₂ (100-Above)		· · · · · · · · · · · · · · · · · · ·			80.55	28/100	22.554
				AVG. MC	LECULAR	L	30.016

WT. DRY STACK GAS

mernici	449.8 · 441.2	463.5 444.2	13.7 3.0	/	74-(,										
Dry	34.9	763.5 444.2 335.1 -4am, 10m (nerator 6 -5 nowder	12.6		ב שנטת	1.3791	+3									
S TERMS	FPA C	40m Ho	TAL - 29.	- ·	U- / - CE/	ATTLE, W	A SHINGT	ON.		4 DAMPTO TO	porceupe /	. 29	? 7 7			
LIENI	ou To- air o	774411107	<u>/n</u> /		TDAVE	DOT CAMPI	THE DATA		В	MANUMETRIC	PRESSURE (I	B) <u> </u>	<u>> </u>			
OKI LUCATI	10-14-7	4			TMPODI	RSE SAMPL TANT: FIL	ING DAIA		,	AMBIENI CUR	IDE (0-) = .	2 " "u_n - "	018 111			
ODEDATOD/S	Almar	1 Carriedos			APP ON	INNI IAL	E AN MEL	DEATING	r	P. = Po + Po						
DIN NO こ									,	AMBIENT CONDITIONS Way 48° PORT PRESSURE (PS) 25 "H20 = - 018 "Hg PSN = PB + PS						
CAMDLE & MET	TED BOY MIN	BERS Cad &							,							
METER BOX A	4.76	:3								REF. \triangle P	.19					
ETITER NO S	1-5 8	TARE	ma					STACK DIMENSIONS ; AREA PROBE NOZZLE DIA. 3/8 IN; AN POINT LAYOUT PROBE LENGTH 8 FT. 712								
CLEAN-UP NO	; B	LANKS &								ROBE NO771	F DIA. 3/6	IN: An	 F			
		TTING <u>256°</u> 8_			SCHEMATI	C OF TRAV	ERSE POIN	T LAYOUT	P	ROBE LENGT	H	FT. ₹12	II			
		NGS: RECORDED @						E VALUES READ	WITHIN THE	TIME INTE	RVAL					
CLOCK	ELAP.	DRY GAS METER	DRY GA	S TEMP.	вох	IMPINGER	POINT	PITOT VH	ORIFICE ("H	ДН	PUMP	STACK	OPACITY			
TIME (24 HRS)	TIME	(CUBIC FEET)		OUTLET		TEMP.		/!!u-0\	DESIRED		VACUUM ("Hg GA)	TEMP. (°F)	OR *COo			
1133	(wru)	570.824	48	121	75	(°F)	777	("H ₂ 0)	7777	7777		520	%CO2			
1/	خ		1,00		7 22		/	124	2.2	2.8	3	540				
	_4	552.35 2554.25 -556.1 578 6.00.950	5€	46	700 210 210		3	-,32	3.1	31	3.2	540				
	G	-556-1	60	47	210		4	. 3	2.3	3.1	3.5 3.5 3.5	540				
	10*	600	45	47	-2-70	 	-5-		3.0	30	3.5	450				
		600.950	66	47					3.3	3.0	3.2	410				
				 -	}	1										
		 -							 							
									<u> </u>							
				ļ	ļ	ļ										
					ļ											
							··									
						 										
									ļ							
]					ļ							
						_						-				
		1	L	Ī	l	l					7777	1777	777			
TOTAL		10.124	411	327	7//	<i>X </i>		77777	111	16,9'H20	7777	1 1				

Pm = PB +△H = 24,586 "Hg

* STUPPED CIT MINET

CLIENT	11:40	E INGIN BOILER		11.	FINAL SEL	ATTLE, W	ASHINGTO	ON Ver	B.	ARDMETRIC (PRESSURE (P	B) 29.3	69_"Hg
PORT LOCATI	ON <u>WAS</u>	E INCIN BOILER	#1	1. 2	TRAVE	RSE SAMPL	ING DATA	SHEET	- A	MBIENT CON	DITIONS	E YONIN	0.0
DATE				113.6	IMPORT	ANT: FIL	L IN ALL	BLANKS 25.	≠ P	ORT PRESSU	RE (PS)ニュ	5 "H ₂ 0 =_	,078 "Hg
OPERATOR/S_			 459	137 B. C	3441	3		6.	, P	SN = PB +	Ps	7,351	"Hg
RUN NO				Tring to	659	4		20,0	> д		STURE	<u> 77 </u>	x
SAMPLE & MET	TER BOX NUM	1BERS <u>ニアル</u> &			-			20,0 70,0474= 8,6	C	FACTOR	. 8		
METER BOX A	ьН Н						,	x.3474= 8.6	STFF R	EF. Δ P	.19		
FILTER NO.	R1-5 e	TARE	mg					,	S	TACK DIMEN	SIONS	_; AREA_	42,65 F2
		LANKS &							P	ROBE NOZZL	E DIA	IN; AN 1	000767 F2
BOX & PROBE	HEATER SE	TTING &	_		SCHEMATI	C OF TRAV	ERSE POIN	T LAYOUT	Р	ROBE LENGT	н	FT. #/	<u>Z</u>
		NGS: RECORDED @						VALUES READ					
CLOCK	ELAP.	DRY GAS METER			вох	IMPINGER		PITOT VH			PUMP	STACK	OPACITY
TIME	TIME	Ditt and the feet	j*) (*i	S TEMP.	TEMP.			, , , , , , , , , , , , , , , , , , , ,	ORIFICE ("H		VACUUM	TEMP.	OR
(24 HRS)	(MIN)	(CUBIC FEET)	INLET	OUTLET	(°F)	(°F)		("H ₂ 0)	DESIRED	ACTUAL	("Hg GA)	(°F)	%C02
14.58	2	601.112	60	56	250	40	777	2, '5	1.4	1.4	9.3	4.67.	7.2.2.4
11 50	-7	65 2165	54	56	1 2 2 2		4.4	3.1.	13-	100		200	
75		(0 = 20.5)	77	<u></u>	290	 		5.22	2.,15	2 , 4	6.2	510	
15 20	<u> </u>	605.78 507,45		<u>7, 1</u> 5 e		 	ij	0.23	2.15	2115	4.5	613	
10 08	70	00/1/	772	5 B	720	-	5	5.724	7 30		7.0	5/0	
15 10	12	610.83		57	E U		ا ک	0,24	7.30		7,0	\$ 10	
15/2	14	6 /2.7	24 76	57			7	.25	2.4	2.30	7.0	5/0	
15 14	16	614.4	78	57	250		9	, 25	2.4	2.4	7.0	512	
1516	18	616.2	79	58	<u> </u>	ļ	10	, 26	2.4	2.6	7.0	506	
1518	20	617.7	80	55	260	70	11	,26		2.4	7.0	506	
	55 8171	6/9.47	82/64	60/60			22	, 17	7.4	1.6	Sio		
1528	24	621	76	61	300	50	24	. 23	2,2	2,2	6.5	505	
1530	26 28	624.4	83	62	325	∤ ∶	25	.24	2,3	2,3	7.0	957 457	
1534	30	626.2	85	63	325	<u> </u>	26	.25	2,35	2.35	7.0	457	
1536	32	627.8	86	63	280	50	27	25	2.35 2.3		7.0	497	
1538	34	625.5	88	64	250		78 25	,24	2.3	2,3	7.0	497	
1500	36,	631. L	88	64	ļ <u> </u>		30	,23	2,2	2,2	7,0		
	38	632.9	90	65	210		3/	.22	2.05		6.5	455	
	-42(1)	634.6 636.0	258 758 79	65	2/5	50	32	. 17	1.6	1.6	5.0	490	
1538	44 2	639,90	75	65		 	12	.24	2.3	2.2	2.8	492	
	41 (4)	63925	79	1.6		 	13	,24	2,3	2,3	7,8	492	ļ
	· · · · · · · · · ·	639.35	00	63		<u> </u>	13	,24	7,3	12,3	777	#85	1777
TOTAL										"H ₂ 0			
AVERAGE			• F	- *R					"H ₂	0 - "Hg			
							,	Pm = PB + AH		"Hg		•R	

CLIENT EPA@HAMICTON

SUN # 3- 10/19/16

SEATTLE, WASHINGTON

TRAVERSE SAMPLING DATA SHEET IMPORTANT: FILL IN ALL BLANKS.

		NGS: RECORDED @			ERVAL		AVERAGE	VALUES READ V	ITHIN THE	TIME INTE	RVAL		
CLOCK TIME (24 HRS.)	ELAP. TIME (MIN)	DRY GAS METER (CUBIC FEET)	DRY GAS T (°F) INLET 0	ļ ·	BOX TEMP. (°F.)	IMPINGER TEMP. °F.	POINT	PITOT VH ("H ₂ 0)	ORIFICE ("H DESIRED	Δ H 20) ACTUAL	PUMP VACUUM ("Hg.GA.)	STACK TEMP. (°F.)	OPACITY OR %CO2
[61(50 (8) 52 (19) 54 (17) 56 (19) 58 (19) 60 (18) 61 (20) 64 (22)	646.15 646.15 647.92 649.71 651.37 654.475	865 865 865 865 865	62 2	250 250 250 250 250 250 250 280 280 28°	50 50 50 50 50 50	15 16 17 18 19 20 21 22	0.23 0.24 0.26 0.25 0.25 0.23 0.23 0.08	2.3	2.2 2.3 2.4 2.2 2.4 0.9	7.1 7.8 8.7 8.0 7.5 6.8 5.0	500 507 501 500 999 498 497 496	
TOTAL/	64	53.363	2689 70 °F=	530°R.		///	32		2. KP. "H2	6855"H20 0 =,/58"Hg	,,,,,,		
	V	<i>V. l. i. l. l.</i> /	<u> </u>			<u> </u>		Pm = PB + △ H				°R	

ORSAT DATA AND CALCULATION SHEET

CLIENT 5	110	HAMIL TO	N. Orta	2/2/10			
SAMPLING POINT	LOCATION	STECK	Boicer	1/2/			
DATE 0/19	76 RUN	NO. 7/12h	HOW C	OLLECTED /	TE GEL	17212 3	26
TIME OF SAMPLE	COLLECTIO	N 1958-16	33 TIME	OF ANALYSIS	200	ن 7	
•	ANALYSIS	ANALYSIS	ANALYSIS	ANALYSIS			
% BY VOL.(DRY)	#1	#2	#3	#4			
co ₂	6,3	9. 9.	6.4				
CO ₂ + O ₂	20,9	19,9	19.9				
$co_2 + o_2 + co$	25.0	30,0	20.3				
	-						
			-		ı		
COMPONENT % BY VOL.(DRY)	#1	#2	#3	#4	AVG.	RATIO NOLE WT	WT./MOLE (DRY)
CO ₂		6.4	6.4		6.4	44/100	2.86
02		/3.5	13.5		13.5	32/100	4,32
CO		0.1	0.1		. 1	28/100	,028
N ₂ (100-Above)		\			80	28/100	22.4
				AVG. MC	LECULAR	t	22.4 29.564

WT. DRY STACK GAS

ORT LOCATIO		SACK DATE			AFOIT	CALCULINE	3 T C 2 A 4200						
UN NO. 9		FIMILIO	2		— ···'	•		CIATES	D:	UX AND PRO	BE HEMIER :	DA 2	0, 75%
	LA	B NO. 146-6			TRAVE	RSE SAMPL	ING DATA	ŞHE FT	B	AROMETRIC	PRESSURE (F	(B)	3 9 9_"Hg
PERATOR/S_	•	N Alguard	 -						LI	EAK RATE	2.0 (CFM	10 291	5 "HG
AMPLE BOX !	NO Red	METER BOX AHA/_	DIST د <u>کر</u>	TANCE UPST	REAM & DO	WNSTREAM	FROM OBST	RUCTION			RE (PS)	<u>دک_</u> "H ₂ 0 =_	-0/8_"Hg
ILTER NO.			 -			1	\			SN = PB +		•	<u>38/</u> "Hg
		INITIAL WT. gm NE	T WT. am			(?)				STURE 17	% MAX VI	H
1 BUBBLER	<u> 55/.3</u>	3-451.9 =	99.4				1			FACTOR _C			
2 IMPINGER	466.2	- 4475 =	18,3			75, 1114	-32		R	EF.ΔP_0	<u>.19</u>		
3 BUBBLER	_ <i>338.</i> 7					+			S	TACK DIMEN	SIONS	AREA'	F2
	EL. 638.0		2/10	- 002.	=/_ LLUFT	3 22			P	ROBE NOZZL	E DIA.3/8	IN: An	F2
OTAL WATER	VOLUME (1	gm = 1 m1)	140.6	x,0474	SCHEMATI	C OF TRAV	ERSE PGIN	T LAYOUT	P	ROBE LENGT	Hhu	MBER 13	SIDE Z
INSTANTAN	EOUS READIN	IGS: RECORDED @	BEGINNING	OF TIME I				E VALUES READ					
CLOCK	ELAP.	DRY GAS METER	DRY GA:	S TEMP.	вох	IMPINGER	POINT	PITOT VH	ORIFICE	ΔН	PUMP	STACK	OPACITY
TIME	TIME				TEMP.	TEMP.			ORIFICE ("H2		VACUUM	TEMP.	OR
(24 HRS)	(MIN)	(CUBIC FEET)	INLET	OUTLET	(°F)	(°F)		("H ₂ 0)	DESTRED	ACTUAL	("Hg GA)	(°F)	%C02
1743	0	654,450	60	58	190	50		0.19	1, 8	1,27	280,999	494	-2- i 2- i
47	2	657.75	68	58			2	0.23	2,4	2,4	2.8	492	
' '	6	659.95	70	57	220		3	0,23	2.2	2.4	2,8	490	
_	à	661,28	73	51			4	0,25	2.45	2.5	2.9	485 491	
	B 10	663,03	75	57			567	0,26	2,25	2.25	3.0	198	
	12	064,77	7.7	51	230	50	5	024	2,25	2,25	3,0	498	
<u>.</u>	1,5	666,40	- 79l	50				0.23	2,20	2,26	3.7	506	
5	16	668,09	81	58	250	50	8	0,23	2,20	2,20	3.2	5/4	
	18	671.38	83	50	6 20		10	0.235	2,70	2,20	3,5	523	
·	22	67319	85/12	19/58			11	0,26	2.45	2,45	3,45	523	
	24	674.70	75	58			23 24	0.23	1,80	7.20	3,0 3,5	490	
1820	20	676.30	77	59	270	50	25	0.26	2.20	2,45	3.9	490	
1828	28	678,16	79	.59			76	0.26	2.45	2,45	3,9	484	
- 1 8 50	3383338	680.00	82	- 60			2]	01275	2,65	2,65	43	470	
1834	84	683.65	27	60	280	20	-28	0,270	2,60	2160	4.2	955	
1836	36	685.7	87 88	60	2.00		29 30	. 28	2.7	77	4.5	450	
1838	38	687.2	88	6.0			31	24	2.45	2.45	4.5	460	
1840	~/0 <u> </u>	688.9	29	.61			32	.22	2.25	2,0	24.5	460	
1842/185	42	670.5	88/72	61/59			128	0.27	2.1	- Z La	7.5	475	
	A(4) 44	696.30	7:0	59			13	0.27	2.6	NO	4.5	486	
	46	688.1 690.5 692.35 694.00 695.60	75	589		1	227	0.25	7.4	7,7	4,5	4.85	7777
TOTAL					Y///				///	"H ₂ 0	1///		
/ 	777	777777	۰F	- °R	1//		777.	1///	Hu-n		· · · · · · · · · · · · · · · · · · ·		
AVERAGE	PRKID ,	Imma 1		:		<u> </u>		Pm = PB + AH	"H ₂ 0	- ng. : , "Hg		°R	

CLIENT EPA X OHAMILTON, ONTARIO RUN # 9 1914/-

SEATTLE, WASHINGTON

TRAVERSE SAMPLING DATA SHEET IMPORTANT: FILL IN ALL BLANKS.

		NGS: RECORDED @				AVERAGE	VALUES READ I	ITHIN THE	TIME INTE	RVAL		
CLOCK TIME (24 HRS.)	ELAP. TIME (MIN)	DRY GAS METER (CUBIC FEET)	DRY GAS TE (°F) INLET OL	BOX TEMP.	IMPINGER TEMP. °F.	POINT	PITOT V H ("H ₂ 0)	ORIFICE ("H2 DESIRED	Δ H 20) ACTUAL	PUMP VACUUM ("Hg.GA.)	STACK TEMP. (°F.)	OPACITY OR %CO2
/407	50 52 56 50 60 60 60 60	697.68 699.50 701.19 703.07 705.15 706.65 703.27	78 5	300 8 300 8 7 7 250 7 230 7 230 7 230 7 240 56 250	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16 17 18 19 20 21 22	0,24 0,28 0,275 0,285 0,285 0,240 0,13	2,45 2,55 2,65 2,60 2,70 2,30 1,75 1,05	2,45 2,85 2,65 2,10 2,10 2,10 1,75 1,05	5,2 5,2 5,2 5,3 8,5 5,0 4,0 3,8	487 489 4992 493 5489 478	
TOTAL		55.442		042 ///		77.			743 "H ₂₀			
AVG	1/1	1/1//	68.1°F= S	28 R. //	<u> X//</u>	1//	Pr = Pa + A H) =./7/ "Hg			

ORSAT DATA AND CALCULATION SHEET

CLIENT		Alver	رت ر رره		j		
SAMPLING POINT							
DATE 10/15/	<u>.</u> •		•	OLLECTED Z	was	Wall of the second	
TIME OF SAMPLE COLLECTION TIME OF ANALYSIS							
CUMULATIVE % BY VOL.(DRY)	ANALYSIS #1	ANALYSIS #2	ANALYSIS #3	ANALYSIS #4			
co ₂	4,6	4,6	4,5				
co ₂ + o ₂	133	177	19.7				
$c_{02} + c_{2} + c_{0}$	193	190	19.8				
COMPONENT % BY VOL.(DRY)	#1	#2	#3	#4	AVG.	RATIO WT	T./MOLE (DRY)
co ₂	4.6	4.6	4.5		4.53	44/100	1,993
02	15.2	15,3	15.2		15.23	32/100	4.874
СО	0.0	0,0	٥.١		.03	28/100	.008
N ₂ (100-Above)					80.21	28/100	22,459
	•			AVG. MO	LECULAF	{	29.334

WT. DRY STACK GAS

ALSID, SNOWDEN & ASSOCIATES LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET

CLIE	NT EPA Region 10 DATE OF ANALY	sis	10-25-76	<u>; </u>
EVAL	NT <u>EPA Region 10</u> date of analy uation location <u>Hamilton</u> , Am. Waste Incin. #1 run	NO	/	
	UATION DATE			
ı.	EVAPORATION OF 200 (m1) OF Acetone			
	RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE FILTER.			
	FINAL <u>7839/.8</u> (mg) - TARE <u>77537,3</u> (mg)			
	-BLANK ((, $0/9$ mg/m1) (200 m1) = 3.8 mg)	=	850.7	mg.
II.	FILTER CATCH MSA 1/06-BH #81-5 (Media Type & #)			
	FINAL <u>/633 3</u> (mg) - TARE <u>380.2</u> (mg) HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON	=	1253.1	mg.,/
III.	HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON WATER IN IMPINGER AND BUBBLERS.		·	$\frac{\sqrt{N}}{N}$
	FINAL 78020.6 (mg) - TARE 780/6.9 (mg)			
	-BLANK (mg)	=	3,6	mg.
IV.	PARTICULATE FROM EVAPORATION OF 430 (m1) WATER IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -			
	FINAL <u>79014.2</u> (mg) - TARE <u>78943.9</u> (mg)			
	-BLANK ((_,	11		
	-249.6 m1 CONDENSED = 180.4 m1) = 0.5 m	ng) =	69.8	mg.
v.	PARTICULATE FROM 55 (m1) OF AcetoneRINSE OF I BUBBLERS, AND CONNECTORS AFTER FILTER:	MPINGER	•	3.48°
	FINAL 77820.5 (mg) - TARE 77817.1 (mg)			,
	-BLANK ((_,019 mg/ml) (_55 ml) = $/.0$ mg)	=	2.4	mg.
VI.	TOTAL PARTICULATE = I + II + III + IV + V	=	2179.6	mg.
	BLANKS		20.42	
	ACETONE = $/.9$ mg/ $/00$ ml = $0.0/9$ mg/ml	TARE	77465.6	mg. mg.
	ETHER-CHLOROFORM = 0.1 mg.(FINAL 77402.9 mg -			
	WATER = $\frac{mg}{200 \text{ ml}} = \frac{.0025 \text{ mg/ml}}{.0025 \text{ mg/ml}}$	FINAL TARE	79471.8	mg.

ALSID, SNOWDEN & ASSOCIATES LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET

CLIENT <u>EPA</u> <u>Region 10</u> DATE OF ANALYSIS <u>10-25-76</u>	-						
EVALUATION LOCATION HAMILTON, ONT. WASTE INCINITION NO. 2							
EVALUATION DATE 10-14-76 LAB NO. 144-6	_						
1. EVAPORATION OF 65 (m1) OF Acctone							
RINSE & BRUSHING OF NOZZLE, PROBE AND GLASSWARE BEFORE FILTER.							
FINAL <u>78220.1</u> (mg) - TARE <u>78181.5</u> (mg)							
-BLANK (($.0/9 \text{ mg/ml}$) ($.55 \text{ ml}$) = $.1.0 \text{ mg}$) = $.37.6 \text{ mg}$.	cH.						
II. FILTER CATCH <u>MSA 1/06-BH</u> #91-5 (Media Type & #)	26.5						
-BLANK ((.019 mg/m1) (55 m1) = /.0 mg) = 37.6 mg. II. FILTER CATCH $MSA // 06 - BH$ #9/-5 (Media Type & #) FINAL 462.0 (mg) - TARE $379./$ (mg) = 82.9 mg.							
III. HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXTRACTION ON WATER IN IMPINGER AND BUBBLERS.							
FINAL 78443.7 (mg) - TARE 78443.0 (mg)							
-BLANK $(0-/mg)$ = 0.6 mg.							
IV. PARTICULATE FROM EVAPORATION OF 303 (ml) WATER IN IMPINGER AND BUBBLERS FOLLOWING EXTRACTION -							
FINAL 78/00.5 (mg) - TARE 78 088.3 (mg)							
-BLANK ((0025 mg/ml) (303 ml initial							
-29.5 m1 condensed = 273.5 m1) = 0.7 mg) = 11.5 mg.							
v. particulate from 33 (m1) of Acetone RINSE of IMPINGER, bubblers, and connectors after filter:							
FINAL 77 992.0 (mg) - TARE 77989./ (mg)							
-BLANK $((,0/9 \text{ mg/m1}) (33 \text{ m1}) = 0.6 \text{ mg}) = 2.3 \text{ mg}.$	14.						
VI. TOTAL PARTICULATE = $I + II + III + IV + V$ = 134.9 mg.	10						
BLANKS SAME AS RUN /							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
ETHER-CHLOROFORM = mg.(FINAL mg - TARE mg)							
WATER = mg/ ml = mg/ml. FINAL mg.							
TARE mg.							

ALSID, SNOWDEN & ASSOCIATES LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET

CLIEN	II EPA Region 10	DATE OF ANALYSI	s 10-25-76
EVALU	VATION LOCATION HAMILTON ONT. WASTE	INCIN. RUN N	0 3
EVALU	MATION DATE _/0-/4-76	LAB NO.	145-6
ı.	EVAPORATION OF /58 (m1) OF AC	etone	
	RINSE & BRUSHING OF NOZZLE, PROBE AND GLAS FILTER.	SWARE BEFORE	
	FINAL <u>77982.8 (mg)</u> - TARE <u>77522</u>		
	-BLANK ((<u>,0/9</u> mg/m1) (<u>/58</u> m1) FILTER CATCH <u>MSA //06-BH</u> #82-5 (M) = 3.0 mg)	= 457.5 mg. UH
II.	FILTER CATCH MSA 1/06-BH # 82-5 (M	edia Type & #)	829.
	FINAL 751.2 (mg) - TARE 379.5	(mg)	= <u>37/.7</u> mg.
	HYDROCARBON OBTAINED BY ETHER-CHLOROFORM EXWATER IN IMPINGER AND BUBBLERS.	XTRACTION ON	
	FINAL 77882.3 (mg) - TARE 77875	.Z(mg)	
	-BLANK (= <u>7.0</u> mg.
	PARTICULATE FROM EVAPORATION OF 489 IN IMPINGER AND BUBBLERS FOLLOWING EXTRACT:		
	FINAL 79378,9 (mg) - TARE 79242.	O (mg)	
	-BLANK ((_,0025_ mg/ml) (ml initial	
	$- \frac{182}{\text{m1 condensed}} = \frac{307}{}$	m1) = mg	= /36./ mg.
V.	PARTICULATE FROM 35 (ml) OF Aceton BUBBLERS, AND CONNECTORS AFTER FILTER:	e RINSE OF IME	PINGER,
	FINAL 78903.2 (mg) - TARE 78897.	9 (mg)	
	-BLANK ((<u>,019</u> mg/ml) (<u>35</u> ml)	= <u>/7</u> mg)	= 4.6 mg.
VI.	TOTAL PARTICULATE = I + II + III + IV + V		= <u>976.9</u> mg. 15.
j	BLANKS		
	ACETONE = mg/ml =	mg/ml T	INAL mg.
]	ETHER-CHLOROFORM = mg.(FINAL	mg - I	'AREmg)
	WATER =mg/m1 =	mg/ml. F	—————

ALSID, SNOWDEN & ASSOCIATES LABORATORY ANALYSIS AND TOTAL PARTICULATE SHEET

CLIE	NT	EPA	Deg1	on 10	· · · · · · · · · · · · · · · · · · ·	DATE OF AN	NALYSIS	10-	25-76	····	
			•		NT. WASTE						
EVAL	UATION	DATE	10-14	4-76		LAB	NO	146	-6		
ı.	EVAPO	RATION C)F	<u>70</u> (1	n1) OF	cetone					
	RINSE FILTE		ING OF	NOZZLE, PI	ROBE AND GLAS	SWARE BEFOR	RE				
				 -	ARE 76 39						
		-BLANK ((.019	mg/ml)	(70 ml) = /.3	mg)	= _	168.1	- mg.	při s
II.	FILTE	R CATCH	MSA	1/06-8	(<u>70 </u>	edia Type &	· #)			Ġ	,V'
		final <u>&</u>	32.6	(mg) - TA	ARE 378.2		(mg)	=	454.4	_mg.	
III.				BY ETHER- ID BUBBLERS	-CHLOROFORM E	XTRACTION (ON				
		final <u>80</u>	090.0	(mg) - TA	are <u>80 07 2</u>	2.5	(mg)				
		-BLANK (0.1	mg)			= _	17.4	_mg.	
IV.					OF 404 OWING EXTRACT		ATER				
		FINAL 7	8045.3	(mg) - TA	ARE 7783°	4.2	(mg)				
		-BLANK ((,002	≤ mg/m1) (404	ml in	nitial				
					ED = <u>263,4</u>					mg.	
v.	PARTI BUBBL	CULATE F ERS, AND	rom <u>6</u>	O (ml) CTORS AFTER	of <u>Aceton</u>	e RINSE	OF IMPI	NGER,			
		final Z	6106.7	(mg) - TA	RE 76086	//((mg)			mg.	(K)3
		-BLANK ((,019	_img/m1) (_	60 ml)	= <u>///</u> m	ng)	=	19.5	mg.	ν
VI.	TOTAL	PARTICU	LATE =	I + II + 1	III + IV + V			=	869.8	mg.	ર દ.વ
	BLANK	<u>s</u>					r T	NI A T		m o	
	ACETO	NE =		mg/	m1 =	mg/m	nl TA	RE		mg.	
	ETHER	-CHLOROF	ORM = _		mg.(FINAL	m	g – TA	RE		mg)	
	WATER	=		_mg/	m1 =	mg/	ml. FI	NAL RE	• • • • • • • • • • • • • • • • • • • •	mg.	

CONSULTANTS IN AIR, WATER, SAFETY, HYGIENE & MANAGEMENT

13240 Northrup Way, Suite 21, Bellevue, Washington 98005 (206) 641-5130

SAMPLE CHAIN-OF-CUSTODY RECORD

112 TON ON THEIS	MINICIPAL (NCIN.
Laboratory Number:	143-6
Personnel	Date(s)
DAA	10/12/70
WOS/DAR	16/13/76
WUS	10/13/76
DAA	10/18-27/
DAA	10/28-29/
105	11/1-30/70
	Personnel DAA WOS/DAA WOS DAA

CONSULTANTS IN AIR, WATER, SAFETY, HYGIENE & MANAGEMENT

13240 Northrup Way, Suite 21, Bellevue, Washington 98005 (206) 641-5130

SAMPLE CHAIN-OF-CUSTODY RECORD

Client: EPA X @ H	AMILTON, ONTAK	10 CANADA
Run Number: Z	Laboratory Number:	144-6
Sample Phase	Personnel	Date(s)
Sample Box Preparation	W05	10/13/76
Sample Collection	DAA/NOS	10/13/76
Sample Clean-up	DAA	10/14/76
Sample Analysis	DAA	10/18-27/76
Calculation of Results	DAA	14/29-29/76
Report Preparation	NO5	11/1-30/76

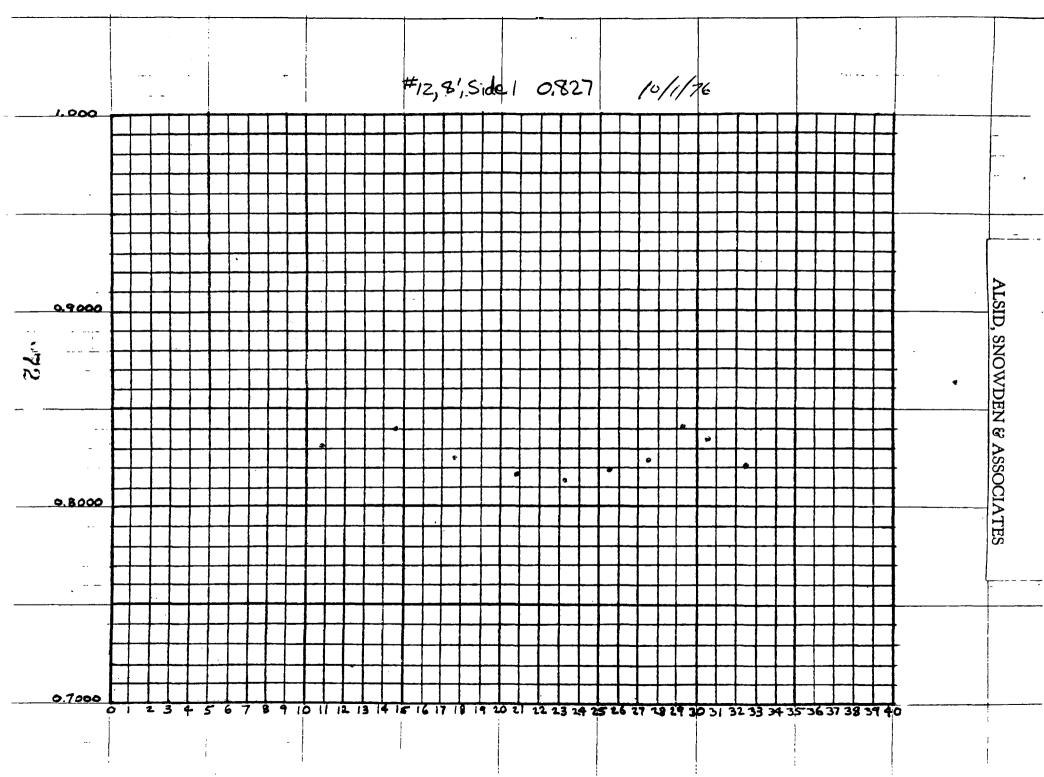
Comments:

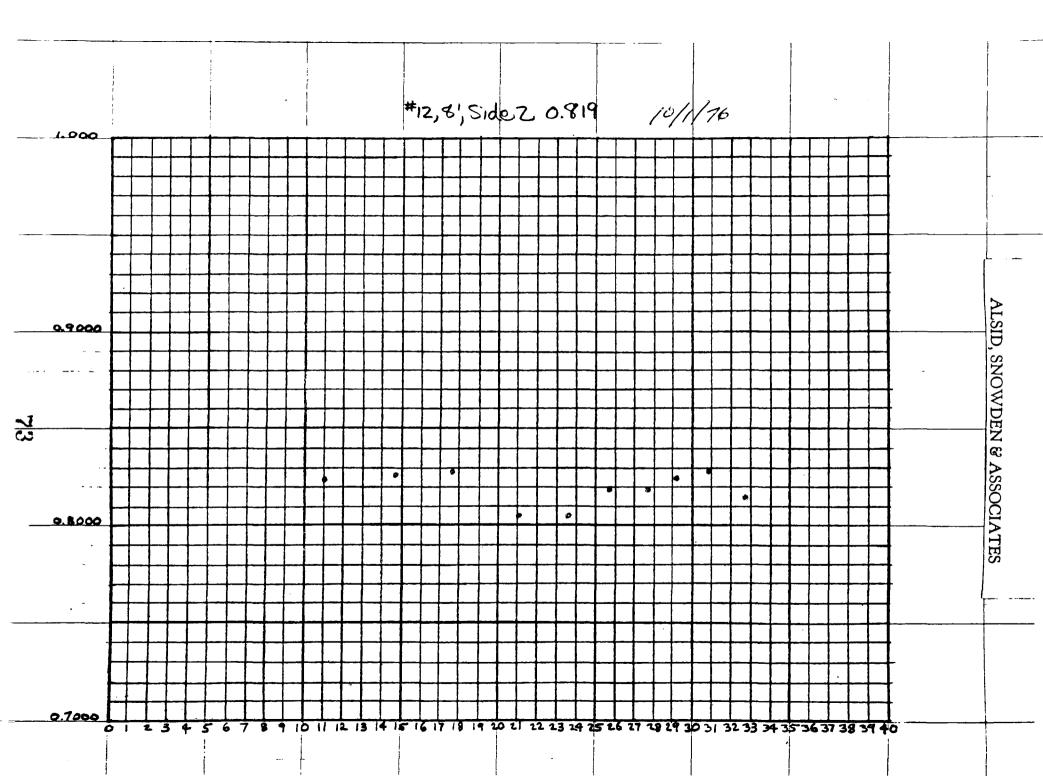
[NOOMPLETE TRAVERSE - BOILER COULD NOT

MAINTEN, S STEAM PRODUCTION RATE @ MAKINGAM.

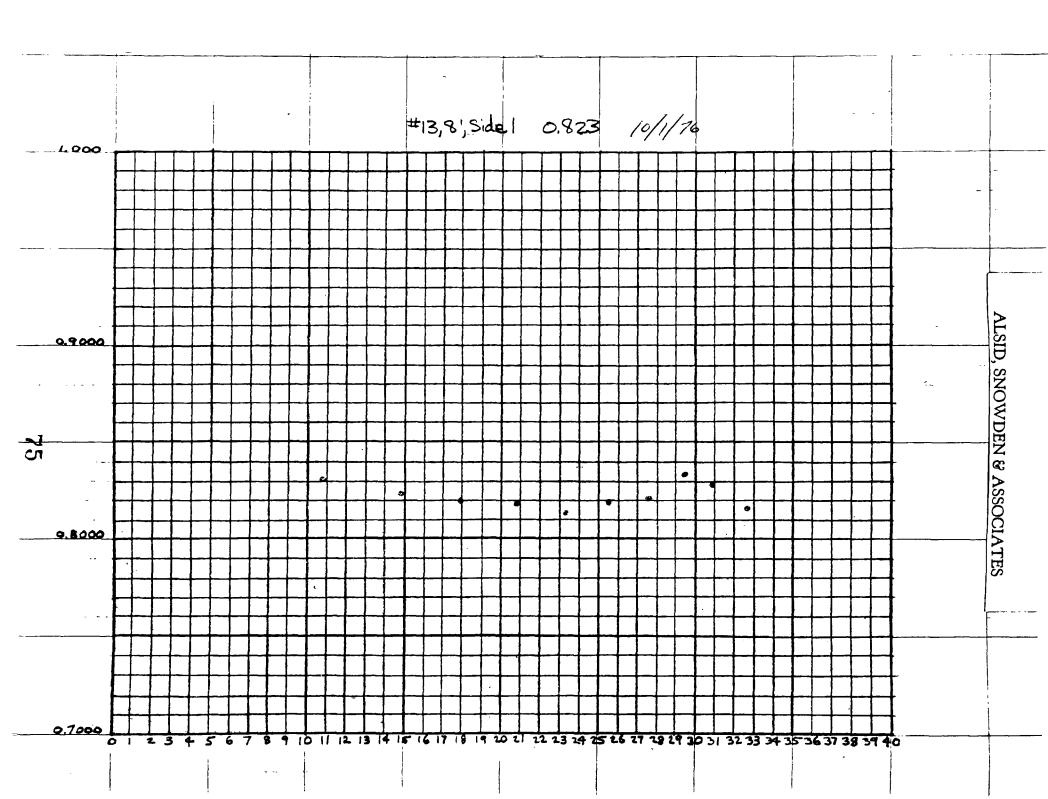
13240 Northrup Way, Suite 21, Bellevue, Washington 98005 (206) 641-5130

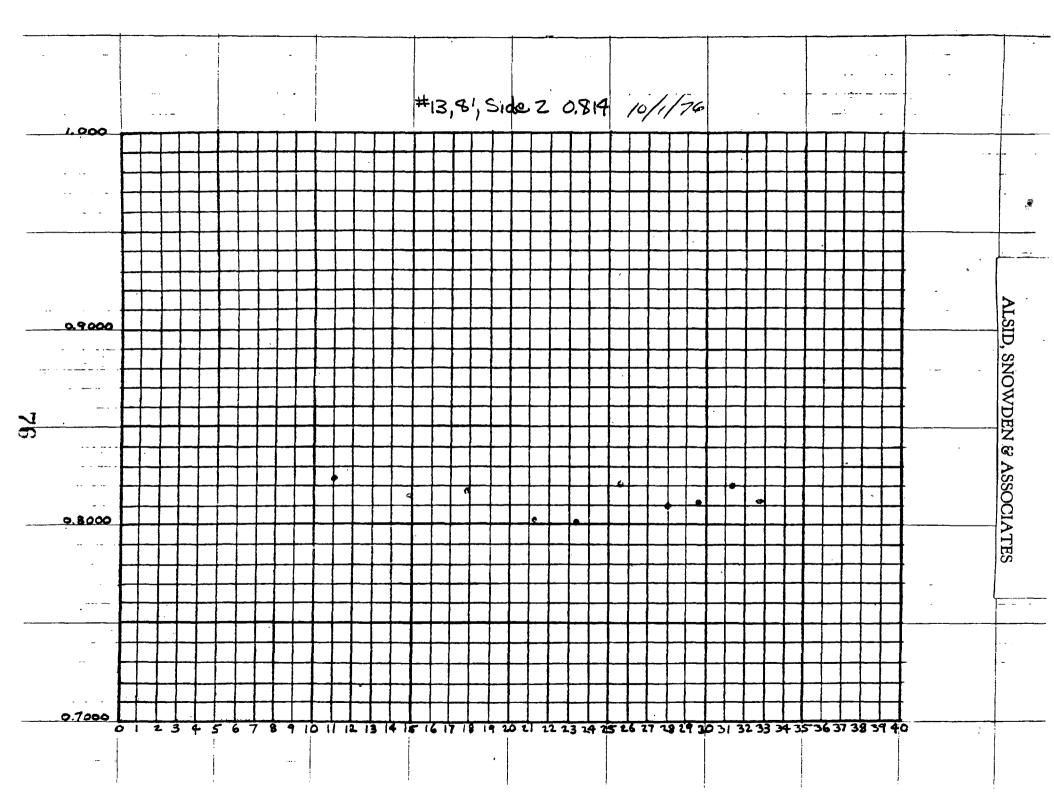
SAMPLE CHAIN-OF-CUSTODY RECORD


Run Number: 3		TRICIS CANDO 145-6
Sample Phase	Personnel	Date(s)
Sample Box Preparation	DAA	19/12/76
Sample Collection	WOS/DAA	10/14/76
Sample Clean-up	DAA	10/19/16
Sample Analysis	DAA	19/18-27/1
Calculation of Results	DAA	10/29-29/7
Report Preparation	WOS	11/1-30/1
Comments:		


13240 Northrup Way, Suite 21, Bellevue, Washington 98005 (206) 641-5130

SAMPLE CHAIN-OF-CUSTODY RECORD


Client: EPA LEGION Z	@ HAMETON ON	TARIO, CANADA
Run Number: 4	Laboratory Number:	
Sample Phase	Personnel	Date(s)
Sample Box Preparation	DAA	19/13/16
Sample Collection	DAA/WOS	10/14/16
Sample Clean-up	DAA	10/14/76
Sample Analysis	DRA	10/18-27/
Calculation of Results	PAA	10/28-29/1
Report Preparation	WOS	11/1-30/7
Comments:		


	NOZZLE	BAR		EEE	•).			
TYPE	, DIU.	PRESSURE	. Δ H	REF	'FACTOR	i -				DATE	10/	1/76	
#12,71				!	i		;						-
	501716F		!	į	1		METER TE	EMP			1,	_	į
SIDE	DRIFICE	P-TYPE	5-TYPE	AHTRRIN	PUMP	DUCT	IN O	MT \	Vhe	VVHS	17H5	WHSXE	
/ /	·	0.155	0.225	·	· !	22			7.294	0.479	0.93	110.94	_}
24		0.285	0.405			22	<u>:</u>	<u> </u>	534	0.630	60.85	+ 14.67	
مني			0.60			215	†	· 0	1.64	27,0	\$0.87	2617,84	4
+	· · · · · · · · · · · · · · · · · · ·	0.55	0:125	: 		21	•		.742	80P.0	0.81	72091	i
5		0,67	1.01			77	•	- 0	88	1.005	120-	423,25	
رث)	 	07:25	1.23	:	,	_22_	:		809	1.109	0.81	9522	2
7		0.975	1,42	 	·	21,5	· -	<u></u> り	.987	1,196		527,55	7
4	·	1.15	1.62			21.		/	.072	1.27	30.85	1229,3	
-7			1.76			23	· · · · · · · · · · · · · · · · · · ·	/_	109	1,32	70,83	630,69	
10		1,34	1.99	· 	•	23			128	1,411	0.85	2132,58	28,0
	·		İ	-	•		:						1
2 /		0,155	0.228		<u> </u>	24	` <u>-</u>		374	0.478	083	411.05	_
2		0.25	041		i	23,5	•• •		529	0.69	085	7 14.8	_
ترت		0.405	0.59			23	· · · · · · · · · · · · · · · · · · ·	0	1636	0.768	0,82	8 17,79	
4.		0,525	0.825		!	<u> 25.25</u>	•	0	731	0908	30,80	52107	
5		0.68	1.05		1	29	7	0	225	LOZS	50.80	2523.71	4
6			1.24		•	23.5	I	·/p	911	1.119	0.819	B 25,74	-
7	•	0.95	1.74			23	!	0	1982	1,2	1200	8 27.71	1
4	1	1.09	1.60			23	·		019		50.8	2529.21	4
.1		1,23	1.79			23		<u>i),</u>	109	1.33	808	29 30.9	
18		1,33	2,00		!	25	T		.153	1419	18.0.4	29 30.9 5 32.7	7 0.81
						:		:	-		i.		
AVERAGES		i 	; : 			<u>i</u>	 						

PROBE TYPE	NOZZLE DIPM.	BAR	. A H	REF	FACTOR	·							
#13,81		PRESSURE	1	i A F	FACTOR	+	:		DATE	10/11	76		**
	i			;	1	;	METER-	TEMP				i	Ī
SIDE	DRIFICE	P-TYPE	5-TYPE	LAHTRAL	VPUMP	DUCT	ſ	out	VVHP	VVHS	VUHS	WHSXE	
/ /	<u> </u>	0.155	0225	<u>:</u>	:	Z'Z	531	1.6	0394		10.8E	11094	
2		028S	042	<u> </u>	<u></u>	22	·	· · ·	0,524	0.648	0,825		
3			061	<u> </u>	;	12/5	530		0.64	0.78	1025	17.99	
4	1	0.525	0.83			21	529,		OAS	0911		20.97	" !
=	- - 	0.67	101			24	<u>535,</u>	2.	0.818	1,005	0.819	23.25	
6		0232	1,23	•		22	531,	<u>, 6</u>	300.0	1.109	0.814	25,57	7
7		270	7,44	<u> </u>		215	530		0987	1, 2		2.27.64	-1
17		1.14	1.64	<u> </u>		21.	529		1.068		~	7-29,48	<u>.</u>
P	<u> </u>	1,23			-+		<u>, 533</u>	1,4	1.109	<u>/338</u>		1:30.9	- 077
10	<u>):</u>	1.34	125/	·	i	23	<u> </u>	-	1.158	1,418	OSLI	32,79	10,853
		<u> </u>	!	·	•				1	- 1	4 A Chaire	· 	
2 /	,		0.225	· 	·	24	<u>535</u>			047	~~~	11.05	
2		0.28	<u> </u>		:	235	534			0.64	X 0, X 16		1
			0605	·		23	533	4	0636	777	107/1X	17.96	į.
7		0,535			1 	25.5	537	9	0.731	1190	0,100	321.13	
E5		0.622	1.02	1		24	535		70801	1.01	0.801	23,36	I .
6			1.23	<u> </u>	-	23.5			D. 411	177	2. SZZ		4
7			1,47	-	 	123	533	3.4	0.982	1,212		28,0	
7	!	11.09	1.65	 	<u> </u>	23			1.044	1,284	-0.XI	329.67	4
7	<u> </u>	11.23	1.83	!		23	•		1.107	1,55	<u> </u>	31.24	ACIU
10	<u> </u>	1.33	12.01	-		25	537	7	1.15=	31.418	0,81	3285	10,814
AVERAGES	; }	<u> </u>	!			<u>i</u>				1	ı		

Bor " 3

ALSID, SNOWDEN & ASSOCIATES 11 - 13 - 25

13240 Northrup Way, Suite 21

Belleywe, Washington 98005 Rg

29.838 - UN # 1 BARDAY W/ DRY METER 10418 STANDARD WER 300 11: Mair TIME (جرم) ر _ (A) 12 A Men CFA CFW OTA ORIFICH (A) M) 740 70 403.190 12:36 5 0.5 73 74,75 *ک*,٥५ ﴿) 408.185 4.955 394.612 680 10:23 #6 333 18,5 388.650 73 25.888 1,0 73.5 5.922 69 *4*33.5 :69 3102:469 # 5 357,500 2.0 6:09 480 69.5 73 s, 5533 74.75 25' 70 73 F. 1. 534.75 408.439 \$ O. 71 10. 418,464 4.0 8:46 73 80,25 533 10,025 5.,.5 72 540,25 478.696 418.696 50 フح 85,25 7:13 73 6,5 10 523 100 . 75 10,041 35 545.25 73,5 4 .9.443 796: 85.75 7.3 -29,384. 16:18 10 8,0 10,059 104 1545.75 (5)(29.825)(534.75) 4.995(29.838 x 10)(64(533) 0.015 85 (533 x /2.6 12 1.8065 111 -1,0030 29.838 x 530.5 ું .79886 528 5 x25,838 6 7 (6)(29.8x) (533.0) 1-7092 5.592 (25.838). 0.0135) (533) 1.7477 from run#2 USE 25,512 5 (29.838) 531.75) 1,0046 4.869 (25.08 1.0.14) 533 29.385 333 × 6,15 12 1.7247 0.0634 (525.5) 25.838 1.7385 10(25.838 (540.25) 1,0012 b,025 (24.838, 0.44)(533) 533× 8,77 /2. 0.1263 (532) (25.838) 30,132 10 1 27,958 (545,25) 10,001 (25,000) 30,268,833 1.7694. 6,0 0.1902 -- = 1,0043 1533,5)25,838 10.059 (538 2.585) 533 30.476 533×63)2 8,0 0.2536 1.7896 :'AUG. __1.0017 AHA 4 = 1.753 14 = 0.0317 (Line - + & CRIPTLE) (TW + 460 + Y = CFOP, CTANOTO

TECHNICAL REPORT DATA (Please read Instructions on the reverse before	A completing)
1. REPORT NO. 2.	3. RECIPIENT'S ACCESSION NO.
EPA-910/9-76-033	
4. TITLE AND SUBTITLE	5. REPORT DATE November 1976
Case Study of Particulate Emissions From Semi-Suspension Incineration of Municipal Refuse	6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S) W. D. Snowden and K. D. Brooks	8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT NO.
Alsid, Snowden and Associates	
13240 Northrup Way	11. CONTRACT/GRANT NO.
Bellevue, WA 98005	WY-6-99-0872-A
12. SPONSORING AGENCY NAME AND ADDRESS	13. TYPE OF REPORT AND PERIOD COVERED Final
Environmental Protection Agency	14. SPONSORING AGENCY CODE
1200 Sixth Ave., M/S 530	
Seattle, WA 98101	

15. SUPPLEMENTARY NOTES

Prepared in cooperation with The Regional Municipality of Hamilton-Wentworth

16. ABSTRACT

One aspect of the environmental impact of semi-suspension incineration of municipal refuse is the emission of particulate matter to the atmosphere. In order to provide this essential, but nonexisting data, sampling was conducted at the only known operating facility of this type, the East Hamilton Solid Waste Reduction Unit, Hamilton, Ontario. Based upon three runs of EPA Method 5 during the period October 13-14, 1976, the no. 1 boiler and electrostatic precipitator at the subject facility emitted 0.528 grains per dry standard cubic foot, corrected to 12% carbon dioxide.

17. KEY W	ORDS AND DOCUMENT ANALYSIS	
a. DESCRIPTORS	b.identifiers/open ended terms	c. COSATI Field/Group
Incinerators Air Pollution Performance Tests	East Hamilton Solid Waste Reduction Unit Semi-suspension Incineration	
18. DISTRIBUTION STATEMENT Release Unlimited	19. SECURITY CLASS (This Report) Unclass i fied 20. SECURITY CLASS (This page) Unclass i fied	21. NO. OF PAGES 77 22. PRICE