WATER QUALITY CRITERIA DATA BOOK VOLUME 5 EFFECTS OF CHEMICALS ON AQUATIC LIFE # WATER QUALITY CRITERIA DATA BOOK - VOL. 5 EFFECTS OF CHEMICALS ON AQUATIC LIFE (Compilation From the Literature Dated 1968-1972) Ъу Homer T. Kemp Robert L. Little Verna L. Holoman and Ralph L. Darby Grant Number R-800942 Project Number 18050 HLA Project Officer Robert Andrew U.S. Environmental Protection Agency National Water Quality Laboratory Duluth, Minnesota 55804 for the OFFICE OF RESEARCH AND DEVELOPMENT U.S. Environmental Protection Agency Washington, D.C. 20460 September 1973 #### EPA REVIEW NOTICE This report has been reviewed by the Office of Research and Development, EPA, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. ### ABSTRACT This report is an extensive compilation of data on the effects of chemicals on aquatic life which were extracted from literature published during the period 1968-1972. It is an update of an earlier report entitled "Water Quality Criteria Data Book, Volume III, Effects of Chemicals on Aquatic Life" (Kemp, et al., 1971). The data are arranged alphabetically by chemical and are concisely presented in a columnar format which includes organism names, type of study, chemical effect, controlled parameters, significant comments on the test, and source of the data. The data were compiled using a program prepared as part of the work. # CONTENTS | Section | <u> </u> | Page | |---------|--|-------------------| | I | Recommendations | 1 | | II | Introduction | 3 | | III | Procedure | 5 | | IV | Acknowledgements | 9 | | V | References | 11 | | VI | Appendices | | | | A. Chemical Names B. Species Index C. Chemical Index | A-1
B-1
C-1 | #### RECOMMENDATIONS In a prior report (Water Quality Criteria Data Book, Volume III. Effects of Chemicals on Aquatic Life, Kemp, H. T., Abrams, J. P., Overbeck, R. C., EPA Contract No. 68-01-0007, Project No. 18050 GWV, 1971, 528 pp), several recommendations were presented. These are restated as follows with any appropriate comments. - (1) Establishment of a Chemical Pollution Effect Information Analysis Center. The Analytical Methodology Information Center (AMIC) sponsored by EPA at Battelle's Columbus Laboratories fills this need. - (2) Preparation of Listings of Chemical Constituents in Effluents by Cooperative Input From Industry. To the authors' knowledge this has not been done nor is there a current attempt to do so. - Development of a Standard Pattern of Laboratory Evaluations for Estimating More Accurately the Effect of Chemicals on Aquatic Life. To the authors' knowledge no standard pattern of laboratory evaluations is widely accepted. Considerable progress has been made recently, however, in particular at the National Water Quality Laboratory (Duluth, Minnesota) and Virginia Polytechnic Institute. Significant efforts to compile bioassay information are in progress by Drs. Seba, Stephans, Tarzwell, and Weber, respectively, located at EPA establishments at Denver (Colo.), Duluth (Minn.), West Kingston (R.I.), and Cincinnati (Ohio). The classic report by McKee and Wolf (1963) is reportedly now being updated. - Development of In Situ Field Bioassay Procedures for More Realistic Results Than Those Obtained in Laboratory Bioassays. Although increased publication of these types of data are apparent, there appears to be no large-scale trend in the published literature toward this approach. - [5] Improved Reporting Would Greatly Enhance the Utility of Chemical Effects Data and Allow More Precise Development of Multivariate Analysis and Mathematical Modeling. There is a large volume of literature on mathematical modeling, a significant amount of which is concerned with environmental pollution problems. For the most part, these models are not refined enough for practical utility in water pollution problems. Improved, more detailed data would assist greatly in verifying these models and enhancing their practical utility. The next few years will be crucial in this development. #### SECTION II # INTRODUCTION This report was prepared to update the document, 'Water Quality Criteria Book, Volume 3", published in May, 1971 (Kemp, et al., 1971). This updated version primarily contains extracted information from original published data, but does not critically review bioassay procedures, factors affecting chemical toxicity, and other subject areas important in the study of water pollution by chemicals. #### SECTION III # PROCEDURE The literature search technique primarily involved acquisition of documents cited in selected sections of annual reviews published in the Journal of the Water Pollution Control Federation, for the years 1968-1972. These listings were quite comprehensive, but were supplemented by additional documents identified in routine screening activities of the Analytical Methodology Information Center (AMIC), Battelle's Columbus Laboratories. The data were prepared on punched paper tape so that the compilation could be prepared by computer. In addition, the format of the data is such that they can be loaded in the Analytical Methodology Information Center data base. Since index terms were added to each line of data, they can be remotely searched on an on-line real-time computer system located at Battelle's Columbus Laboratories. Persons interested in having access to this system should contact the AMIC Project Officer: Mr. Luther E. Garrett Data & Information Research Division Office of Research & Development Environmental Protection Agency 404 M Street, S.W. Washington, D.C. 20024 As in the earlier document, extracted data are alphabetically arranged by chemical name (Appendix A). In all cases, chemical names and names (common or scientific) of organisms designated by the authors were used in this report. Nomenclature was not changed or corrected in any manner, that is, when the common name of a fish or a chemical was cited by an author, this and this alone was used. Therefore, in using these data compilations, care should be exercised by the reader to search chemical and biological synonomy. For example, in Appendix B, Species Index, data searches on bluegills (Page B-2) should include the scientific name, Lepomis macrochirus (page B-6) for completeness. Likewise trade names such as Sevin and Carbaryl should be searched for all data on this insecticide. In the authors' judgment, the most significant toxicity levels in the aquatic studies are those for fish specifically designated 96-hr TL_m . These were usually selected but other values were included when these were not available. 96-hr TL_m is designated as T^4 to abbreviate this notation. T2 was used for 48-hr TL_m , and so on. When EC50, LC50, and LD50 were judged to be essentially equivalent to TL_m or TL50, then the designation T was used to improve the consistency of data presentation. The authors acknowledge that this is not standard practice and that there may be important differences in these designations. Experimental conditions noted by authors in column six are denoted in lower case letters (see page A-1) with asterisks to indicate when conditions were controlled. In some cases, authors briefly referred to previous publications as a simple means of describing experimental conditions. No asterisks were included in these instances although some conditions were probably controlled. The letters in footnote μ were augmented so that additional conditions could be indicated. These were light (q) (r) and (s). Comments in general are brief, and it is recommended that interested readers consult the original document for more complete information. The chemical nature of most industrial effluents is very complex and difficult to characterize. Although increased numbers of publications on this type of pollution problem are being published, there is no highly satisfactory technique to include these data in the tabular format used here. For these reasons, this document must be described as primarily containing data on the effect of single chemicals or simple mixtures of chemicals on aquatic life. There was no attempt to extract data from the various reviews available since these rarely contained descriptive information concerning experimental conditions. Furthermore, only selective data are usually discussed. In the earlier report, more than 83 review papers were cited. To these can be added: Becker, C. D., Thatcher, T. O., "Toxicity of Power Plant Chemicals to Aquatic Life", Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Washington, Report Nos. WASH-1249, UC-11, June 1973, 248 pp. AMIC-9135. Boccardy, J. A., Spaulding, W. M., Jr., 'Effects of Surface Mining on Fish and Wildlife in Appalachia", Bureau of Sport Fisheries and Wildlife, Publication No. 65, 1968. AMIC-6389. Hunt, E. G., Keith, J. O., "Pesticide Analysis in Fish and Wildlife", Analytical Methods for Pesticides, Plant Growth Regulators, and Food Additives, Vol. 5, 1967, p 147. AMIC-5758. Johnson, D. W., "Pesticides and Fishes - a Review of Selected Literature", Transactions of the American Fisheries Society, Vol. 97, 1968, pp 398-424. AMIC-5463. Jones, A. N., Howells, W. R., "Recovery of the River Rheidol", Effluent Water Treatment Journal, Vol. 9, 1969, pp 605-610. AMIC-5752. Seagran, H. L., "Mercury in Great Lakes Fish", Limnos, Vol. 3, No. 2, Summer 1970, pp 3-10. AMIC-153. Sprague, J. B., "Measurement of Pollutant Toxicity to Fish. I. Bioassay Methods for Acute Toxicity", Water Research, Vol. 3, 1969, pp 793-821. AMIC-137. Sprague, J. B., "Measurement of Pollutant Toxicity to Fish. II. Utilizing and Applying Bioassay Results", Water Research, Vol. 4, 1970, pp 3-32. AMIC-358. Swabey, Y. H., "The Autopsy of Fish Collected in Fish Kills", The Ontario
Water Resources Commission, Canada, Publication No. 11. 1966, 19 pp. Not reviewed in this report are bioassay procedures, field assessment techniques, and related topics. A number of recent documents would be useful for this purpose, including: Bell, M. C., 'Fisheries Handbook of Engineering Requirements and Biological Criteria", Fisheries-Engineering Research Program, Corps of Engineers, North Pacific Div., Portland, Oregon, Contract No. DACW57-68-C-0086, 1973, 508 pp. Cairns, J., Dickson, K. L., 'Biological Methods for the Assessment of Water Quality', ASTM Special Technical Publication No. 528, 1973, 262 pp. Dills, G. G., Rogers, D. T., "Aquatic Community Structure as an Indicator of Pollution", Geological Survey of Alabama, Circular 80, 1972, 25 pp. Smith, L. S., Saddler, J. B., Cardwell, R. C., et al., "Responses of Teleost Fish to Environmental Stress", University of Washington, Fisheries Research Institute, Seattle, Washington, EPA Grant No. 18050EBK. 1971, 114 pp. One report by McPhee and Ruelle (1969) was received too late to include in this compilation. In it are summarized toxicity data for 1888 chemicals against five fish species in a piscicide screening program. It was previously suggested that ecological investigators be encouraged to include in their reports: - Positive identity of chemicals under test - Precise description of test organisms - Use of standard test or field methods, where applicable, or of procedures if standard methods are not used - Closer definition and control of test conditions Although papers have generally improved in these regards, not all investigators include all desirable details of their experimentation. A species index is included as Appendix B. Appendix C is a list of commercial chemicals cited in the data section (Appendix A) and includes, when available, the chemical nature of the compound. # SECTION IV # ACKNOWLEDGEMENTS The authors wish to express their appreciation to the Project Officer, Mr. Robert Andrew, for his assistance and concern for this work. Homer T. Kemp Robert L. Little Verna L. Holoman Ralph L. Darby # REFERENCES Abedi, Z. H., McKinley, W. P. "ZEBRA FISH EGGS AND LARVAE AS AFLATOXIN BIOASSAY TEST ORGANISMS", Journal of the Association of Official Analytical Chemists, Vol. 51, No. 4, 1968, pp 902-905. AMIC-3712. Abedi, Z. H., Turton, D. E. "NOTE ON THE RESPONSE OF ZEBRA FISH LARVAE TO FOLPET AND DIFOLATAN", Journal of the Association of Official Analytical Chemists, Vol. 51, No. 5, 1968, pp 1108-1109. AMIC-3717. Adelman, I. R., Smith, L. L., Jr. "EFFECT OF HYDROGEN SULFIDE ON NORTHERN PIKE EGGS AND SAC FRY", Transactions of the American Fisheries Society, Vol. 99, No. 3, 1970, pp 501-509. AMIC-5516. Alabaster, J. S. "SURVIVAL OF FISH IN 164 HERBICIDES, INSECTICIDES, FUNGICIDES, WETTING AGENTS AND MISCELLANEOUS SUBSTANCES", International Pest Control, March/ April 1969, pp 29-35. AMIC-5425. Anderson, J. M. "EFFECT OF SUBLETHAL DDT ON THE LATERAL LINE OF BROOK TROUT, SALVELINUS FONTINALIS", Journal of the Fisheries Research Board of Canada, Vol. 25, No. 12, 1968, pp 2677-2682. AMIC-3768. Anderson, J. M., Peterson, M. R. "DDT: SUBLETHAL EFFECTS ON BROOK TROUT NERVOUS SYSTEM", Science, Vol. 164, April 25, 1969, pp 440-441. AMIC-3838. Anderson, J. M., Prins, H. B. 'EFFECTS OF SUBLETHAL DDT ON A SIMPLE REFLEX IN BROOK TROUT", <u>Journal of the Fisheries Research Board of Canada</u>, Vol. 27, No. 2, 1970, pp 331-334. AMIC-3782. Arthur, J. W., Leonard, E. N. "EFFECTS OF COPPER ON GAMMARUS PSEUDOLIMNAEUS, PHYSA INTEGRA, AND CAMPELOMA DECISUM IN SOFT WATER", Journal of the Fisheries Research Board of Canada, Vol. 27, No. 7, July 1970, pp 1277-1283. AMIC-867. Ashley, L. M. "ACTION OF IRON SALTS IN SOLUTION ON GOLDFISH", The Progressive Fish-Culturist, Vol. 32, April 1970, p 109. AMIC-5436. Aubin, A. E., Johansen, P. H. "THE EFFECTS OF AN ACUTE DDT EXPOSURE ON THE SPONTANEOUS ELECTRICAL ACTIVITY OF GOLDFISH CEREBELLUM", Canadian Journal of Zoology, Vol. 47, No. 2, March 1969, pp 163-166. AMIC-3835. Bache, C. A., Gutenmann, W. H., Lisk, D. J. "RESIDUES OF TOTAL MERCURY AND METHYLMERCURIC SALTS IN LAKE TROUT AS A FUNCTION OF AGE", Science, Vol. 172, May 28, 1971, pp 951-952. AMIC-3818. Bahr, T. G., Ball, R. C. "ACTION OF DDT ON EVOKED AND SPONTANEOUS ACTIVITY FROM THE RAINBOW TROUT LATERAL LINE NERVE", Comp. Biochem. Physiol., Vol. 38A, 1971, pp 279-284, AMIC-3808. Baker, J. T. P. "HISTOLOGICAL AND ELECTRON MICROSCOPICAL OBSERVATIONS ON COPPER POISONING IN THE WINTER FLOUNDER (PSEUDOPLEURONECTES AMERICANUS)", Journal of the Fisheries Research Board of Canada, Vol. 26, No. 11, 1969, pp 2785-2793. AMIC-3763. Baldridge, H. D., Jr. "KINETICS OF ONSET OF RESPONSES BY SHARKS TO WATERBORNE DRUGS", Bulletin of Marine Science, Vol. 19, No. 4, 1969, pp 884-892. AMIC-3832. Ballard, J. A., Oliff, W. D. "A RAPID METHOD FOR MEASURING THE ACUTE TOXICITY OF DISSOLVED MATERIALS TO MARINE FISHES", Water Research, Vol. 3, 1969, pp 313-333. AMIC-300. Batterton, J. C., Boush, G. M., Matsumura, F. "GROWTH RESPONSE OF BLUE-GREEN ALGAE TO ALDRIN, DIELDRIN, ENDRIN AND THEIR METABOLITES", Bulletin of Environmental Contamination and Toxicology, Vol. 6, No. 6, November/December 1971, pp 589-594. AMIC-1471. Bell, H. L., Nebeker, A. V. "PRELIMINARY STUDIES ON THE TOLERANCE AQUATIC INSECTS TO LOW pH", Journal of the Kansas Entomological Society, Vol. 42, No. 2, April 1969, pp 230-236. AMIC-5988. Bender, M. E. "THE TOXICITY OF THE HYDROLYSIS AND BREAKDOWN PRODUCTS OF MALATHION TO THE FATHEAD MINNOW (PIMEPHALES PROMELAS, RAFINESQUE)", Water Research, Vol. 3, 1969, pp 571-582. AMIC-3787. Bender, M. E. "UPTAKE AND RETENTION OF MALATHION BY THE CARP", The Progressive Fish-Culturist, Vol. 31, July 1969, pp 155-159. AMIC-5731. Bender, M. E., Eisele, P. "LONG TERM EFFECTS OF PESTICIDES ON STREAM INVERTEBRATES", University of Michigan, Department of Environmental and Industrial Health, Ann Arbor, Michigan, Project Completion Report, December 1971, 28 pp, PB-206 692. AMIC-3279. Bennett, H. J., Day, J. W., Jr. "ABSORPTION OF ENDRIN BY THE BLUEGILL SUNFISH, LEPOMIS MACROCHIRUS", Pesticides Monitoring Journal, Vol. 3, No. 4, March 1970, pp 201-203. AMIC-195. Berger, B. L., Lennon, R. E., Hogan, J. W. "LABORATORY STUDIES ON ANTIMYCIN A AS A FISH TOXICANT", U. S. Bureau of Sport Fisheries and Wildlife, Fish Control Laboratory, La Crosse, Wisconsin, Investigations in Fish Control No. 26, February 1969, 21 pp. AMIC-5495. Bhatia, H. L. "TOXICITY OF SOME PESTICIDES TO PUNTIUS TICTO (HAMILTON)", Science and Culture, Vol. 37, No. 3, March 1971, pp 160-161. AMIC-5423. Birdsong, C. L., Avault, J. W., Jr. "TOXICITY OF CERTAIN CHEMICALS TO JUVENILE POMPANO", The Progressive Fish-Culturist, Vol. 33, No. 2, April 1971, pp 76-80. AMIC-5570. Boer, H. H., Lever, J. "THE EFFECT OF AMPHENONE B ON THE EGG PRODUCTION OF LYMNAEA STAGNALIS", Malacologia, Vol. 5, No. 3, 1967, pp 431-444. AMIC-5445. Brown, V. M., Dalton, R. A. "THE ACUTE LETHAL TOXICITY TO RAINBOW TROUT OF MIXTURES OF COPPER, PHENOL, ZINC, AND NICKEL", Journal of Fish Biology, Vol. 2, 1970, pp 211-216. AMIC-5994. Brown, V. M., Jordan, D. H. M., Tiller, B. A. "THE ACUTE TOXICITY TO RAINBOW TROUT OF FLUCTUATING CONCENTRATIONS AND MIXTURES OF AMMONIA, PHENOL, AND ZINC", Journal of Fish Biology, Vol. 1, 1969, pp 1-9. AMIC-5993. Brungs, W. A. "CHRONIC TOXICITY OF ZINC TO THE FATHEAD MINNOW, PIMEPHALES PROMELAS RAFINESQUE", Transactions of the American Fisheries Society, Vol. 98, 1969, pp 272-279. AMIC-5458. Buhler, D. R., Shanks, W. E. "INFLUENCE OF BODY WEIGHT ON CHRONIC ORAL DDT TOXICITY IN COHO SALMON", Journal of the Fisheries Research Board of Canada, Vol. 27, No. 2, 1970, pp 347-358. AMIC-3781. Burton, D. T. 'LACTIC AND PYRUVIC ACID CHANGES IN BLUEGILL SUNFISH (LEPOMIS MACROCHIRUS RAFINESQUE) DURING GRADUAL HYPOXIA AT TWO ACCLIMATION TEMPERATURES (5 AND 20 C)", The ASB Bulletin, Vol. 17, No. 2, April 1970, p 35. AMIC-6385. Butler, G. W., Ferguson, D. E., Sadler, C. R. "EFFECTS OF SUBLETHAL PARATHION EXPOSURE ON THE BLOOD OF GOLDEN SHINERS, NOTEMIGONUS CRYSOLEUCAS", Journal of the Mississippi Academy of Science, Vol. 15, 1969, pp 33-36. AMIC-5977. Cairns, J., Jr., Sparks, R. E. "THE USE OF BLUEGILL BREATHING TO DETECT ZINC", Virginia Polytechnic Institute and State University, Center for Environmental Studies, Blacksburg, Virginia, Water Pollution Control Research Series 18050 EDQ 12/71, December 1971, 45 pp. AMIC-3232. Cairns, J., Jr., Waller, W. T. "THE USE OF FISH MOVEMENT PATTERNS TO MONITOR ZINC", Virginia Polytechnic Institute and State University, Center for Environmental Studies, Blacksburg, Virginia, Water Pollution Control Research Series 18050 EDP 12/71, December 1971, 55 pp. AMIC-3231. Cairns, J., Loos, J. J. "CHANGED FEEDING RATE OF BRACHYDANIO RERIO (HAMILTON-BUCHANAN) RESULTING FROM EXPOSURE TO SUBLETHAL CONCENTRATIONS OF ZINC, POTASSIUM DICHROMATE, AND ALKYL BENZENE SULFONATE", Pennsylvania Academy of Science, 1967, pp 47-52. AMIC-5707. Chen, C. W., Selleck, R. E. "A KINETIC MODEL OF FISH TOXICITY THRESHOLD", Journal Water Pollution Control Federation, Vol. 41, 1969, pp R294-R304. AMIC-3831. Coler, R. A., Gunner, H. B., Zuckerman, B. M. "TUBIFICID SENSITIVITY TO STREPTOMYCIN", Transactions of the American Fisheries Society, Vol. 97, 1968, pp 502-503. AMIC-5460. Cooke, A. S. "SELECTIVE PREDATION BY NEWTS ON FROG TADPOLES TREATED WITH DDT", Nature, Vol. 229, January 22, 1971, pp 275-276. AMIC-3814. Cordone, A. J., Nicola, S. J. "INFLUENCE OF MOLYBDENUM ON THE TROUT AND TROUT FISHING OF CASTLE LAKE", California Fish and Game, Vol. 56, No. 2, 1970, pp 96-108. AMIC-5750. Cowmeadow, M. M., Steege, P. T., Pang, P. K. T., Grant, F. B. "A STUDY OF THE PHYSIOLOGICAL EFFECTS OF SULFISOXAZOLE ON THE KILLIFISH", The Progressive Fish-Culturist, Vol. 31, October 1969, pp 226-228. AMIC-5736. Davis, H. C., Hindu, H. "EFFECTS OF PESTICIDES ON EMBRYONIC DEVELOPMENT OF CLAMS AND OYSTERS AND ON SURVIVAL AND GROWTH OF THE LARVAE", U.S. Fish and Wildlife Service
Fishery Bulletin, Vol. 67, No. 2, 1969, pp 393-404. AMIC-5990. Dimond, J. B., Getchell, A. S., Blease, J. A. "ACCUMULATION AND PERSISTENCE OF DDT IN A LOTIC ECOSYSTEM", Journal of the Fisheries Research Board of Canada, Vol. 28, No. 12, December 1971, pp 1877-1882. AMIC-3291. Duke, T. W., Lowe, J. I., Wilson, A. J., Jr. "A POLYCHLORINATED BIPHENYL (AROCLOR 1254) IN THE WATER, SEDIMENT, AND BIOTA OF ESCAMBIA BAY, FLORIDA", Bulletin of Environmental Contamination and Toxicology, Vol. 5, No. 2, March/April 1970, pp 171-180. AMIC-720. Earnest, R. D. "THE EFFECT OF PARAQUAT ON FISH IN A COLORADO FARM POND", The Progressive Fish-Culturist, Vol. 33, No. 1, January 1971, pp 27-31. AMIC-5564. - Eaton, J. G. "CHRONIC MALATHION TOXICITY TO THE BLUEGILL (LEPOMIS MACROCHIRUS RAFINESQUE)", Water Research, Vol. 4. October 1970, pp 673-684. AMIC-1312. - Ebel, W. J. "SUPERSATURATION OF NITROGEN IN THE COLUMBIA RIVER AND ITS EFFECT ON SALMON AND STEELHEAD TROUT", Fishery Bulletin, Vol. 68, No. 1, 1969, pp 1-9. AMIC-6198. - Eisler, R. "CADMIUM POISONING IN FUNDULUS HETEROCLITUS (PISCES: CYPRINODONTIDAE) AND OTHER MARINE ORGANISMS", Journal of the Fisheries Research Board of Canada, Vol. 28, No. 9, September 1971, pp 1225-1234. AMIC-1621. - Eller, L. L. "PATHOLOGY IN REDEAR SUNFISH EXPOSED TO HYDROTHOL 191", Transactions of the American Fisheries Society, Vol. 98, 1969, pp 52-59. AMIC-5459. - Epifanio, C. E. "EFFECTS OF DIELDRIN IN SEAWATER ON THE DEVELOPMENT OF TWO SPECIES OF CRAB LARVAE, LEPTODIUS FLORIDANUS AND PANOPEUS HERBSTII", Marine Biology, Vol. 11, No. 4, December 1971, pp 356-362. AMIC-2653. - Erickson, S. J., Lackie, N., Maloney, T. E. "A SCREENING TECHNIQUE FOR ESTIMATING COPPER TOXICITY TO ESTUARINE PHYTOPLANKTON", Journal Water Pollution Control Federation, Vol. 42, No. 8, Part 2, August 1970, pp R270-R278. AMIC-449. - Ferguson, D. E., Ludke, J. L., Finley, M. T., Murphy, G. G. "INSECTICIDE-RESISTANT FISHES: A POTENTIAL HAZARD TO CONSUMERS", Mississippi Academy of Science Journal, Vol. 13, 1967, pp 138-140. AMIC-5976. - Fletcher, G. L., Hoyle, R. J., Horne, D. A. "YELLOW PHOSPHORUS POLLUTION: ITS TOXICITY TO SEAWATER-MAINTAINED BROOK TROUT (SALVELINUS FONTINALIS) AND SMELT (OSMERUS MORDAX)", Journal of the Fisheries Research Board of Canada, Vol. 27, No. 8, August 1970, pp 1379-1384. AMIC-839. - Fredeen, F. J. H., Duffy, J. R. "INSECTICIDE RESIDUES IN SOME COMPONENTS OF THE ST. LAWRENCE RIVER ECOSYSTEM", Pesticides Monitoring Journal, Vol. 3, No. 4, March 1970, pp 219-226. AMIC-534. - Gardner, G. R., Yevich, P. P. "HISTOLOGICAL AND HEMATOLOGICAL RESPONSES OF AN ESTUARINE TELCOST TO CADMIUM", Journal of the Fisheries Research Board of Canada, Vol. 27, No. 12, 1970, pp 2185-2193. AMIC-3827. - Garrison, R. L. "THE TOXICITY OF PRO-NOXFISH TO SALMONID EGGS AND FRY", The Progressive Fish-Culturist, Vol. 30, January 1968, pp 35-38. AMIC-5714. - Gibson, J. R., Ludke, J. L., Ferguson, D. E. "SOURCES OF ERROR IN THE USE OF FISH-BRAIN ACETYLCHOLINESTERASE ACTIVITY AS A MONITOR FOR POLLUTION", Bulletin of Environmental Contamination and Toxicology, Vol. 4, No. 1, 1969, pp 17-23. AMIC-3783. - Gibson, J. R., Ludke, J. L. 'EFFECT OF SESAMEX ON BRAIN ACETYLCHOLINESTERASE INHIBITION BY PARATHION IN FISHES", Bulletin of Environmental Contamination and Toxicology, Vol. 6, No. 2, 1971, pp 97-99. AMIC-3799. - Grant, B. F., Mehrle, P. M. "CHRONIC ENDRIN POISONING IN GOLDFISH, CARASSIUS AURATUS", Journal of the Fisheries Research Board of Canada, Vol. 27, No. 12, 1970, pp 2225-2232. AMIC-3826. - Grosch, D. S. "POISONING WITH DDT: SECOND- AND THIRD-YEAR REPRODUCTIVE PERFORMANCE OF ARTEMIA", Pollution Foundations for Today, Vol. 2, 1971, pp 84-85. AMIC-2090. - Guthrie, J. E., Acres, O. E. "TOXICITY TO FISH OF TWO ORGANIC REACTOR COOLANTS", Bulletin of Environmental Contamination and Toxicology, Vol. 5, No. 2, March/April 1970, pp 145-151. AMIC-721. - Hanes, D., Krueger, H., Pilcher, K. S. "PENTACHLOROPHENOL AND CULTURES OF EMBRYONIC CELLS FROM ONCORHYNCHUS KISUTCH", Proceedings of the Western Pharmacological Society, Vol. 13, 1970, pp 62-68. AMIC-5753. - Hansen, D.J., Parrish, P.R., Lowe, J.I., Wilson, A.J., Jr., Wilson, P.D. "CHRONIC TOXICITY, UPTAKE, AND RETENTION OF AROCLOR 1254 IN TWO ESTUARINE FISHES", Bulletin of Environmental Contamination and Toxicology, Vol. 6, No. 2, March/April 1971, pp 113-119. AMIC-1811. - Hatfield, C. T. "EFFECTS OF DDT LARVICIDING ON AQUATIC FAUNA OF BOBBY'S BROOK, LABRADOR", Canadian Fish Culturist, Vol. 40, 1969, pp 61-72. AMIC-5770. - Haven, D. S. "LEVELS OF THE HERBICIDE DIQUAT IN TWO ESTUARINE MOLLUSCS AND IN THE WATER AND MUD", Journal of Science, Vol. 20, 1969, pp 51-53. AMIC-5978. - Hazel, C. R., Meith, S. J. 'BIOASSAY OF KING SALMON EGGS AND SAC FRY IN COPPER SOLUTIONS", California Fish and Game, Vol. 56, No. 2, 1970, pp 121-124. AMIC-5572. - Henderson, C., Inglis, A., Johnson, W. L. "RESIDUES IN FISH, WILDLIFE, AND ESTUARIES. ORGANOCHLORINE INSECTICIDE RESIDUES IN FISH FALL 1969 NATIONAL PESTICIDE MONITORING PROGRAM", Pesticides Monitoring Journal, Vol. 5, No. 1, June 1971, pp 1-11. AMIC-1407. - Hiltibran, R. C. "A PROPOSED BIOCHEMICAL MECHANISM OF THE TOXIC ACTION OF DDT", Transactions of the Illinois Academy of Science, Vol. 64, No. 1, 1971, pp 46-54. AMIC-5975. - Hogan, R. L., Roeloes, E. W. "CONCENTRATIONS OF DIELDRIN IN THE BLOOD AND BRAIN OF THE GREEN SUNFISH, LEPOMIS CYANELLUS, AT DEATH", Journal of the Fisheries Research Board of Canada, Vol. 28, No. 4, 1971, pp 610-612. AMIC-3824. - Holland, H. T., Coppage, D. L. "SENSITIVITY TO PESTICIDES IN THREE GENERATIONS OF SHEEPSHEAD MINNOWS", Bulletin of Environmental Contamination and Toxicology, Vol. 5, No. 4, July/August 1970, pp 362-367. AMIC-726. - Houston, A. H., Madden, J. A., Woods, R. J., Miles, H. M. "VARIATIONS IN THE BLOOD AND TISSUE CHEMISTRY OF BROOK TROUT, SALVELINUS FONTINALIS, SUBSEQUENT TO HANDLING, ANESTHESIA, AND SURGERY", Journal of the Fisheries Research Board of Canada, Vol. 28, No. 5, 1971, pp 635-642. AMIC-3822. - Houston, A. H., Madden, J. A., Woods, R. J., Miles, H. M. "SOME PHYSIOLOGICAL EFFECTS OF HANDLING AND TRICAINE METHANE-SULPHONATE ANESTHETIZATION UPON THE BROOK TROUT, SALVELINUS FONTINALIS", Journal of the Fisheries Research Board of Canada, Vol. 28, No. 5, May 1971, pp 625-633. AMIC-3823. - Howland, R. M. "INTERACTION OF ANTIMYCIN A AND ROTENONE IN FISH BIOASSAYS", The Progressive Fish-Culturist, Vol. 31, January 1969, pp 33-34. AMIC-5725. - Hubschman, J. H. "EFFECTS OF COPPER ON THE CRAYFISH ORCONECTES RUSTICUS (GIRARD) I. ACUTE TOXICITY". Crustaceana, Vol. 12, 1967, pp 33-42. AMIC-5985. - Huner, J. V., Dowden, B. F., Bennett, H. J. "THE EFFECTS OF ENDRIN ON THE OXYGEN CONSUMPTION OF THE BLUEGILL SUNFISH LEPOMIS MACROCHIRUS", Louisiana Academy of Sciences, Vol. 30, 1967, pp 80-86. AMIC-5981. - Jackson, D. A., Anderson, J. M., Gardner, D. R. "FURTHER INVESTIGATIONS OF THE EFFECT OF DDT ON LEARNING IN FISH", Canadian Journal of Zoology, Vol. 48, 1970, pp 577-580. AMIC-3837. - Johnson, B. T., Saunders, C. R., Sanders, H. O. "BIOLOGICAL MAGNIFICATION AND DEGRADATION OF DDT AND ALDRIN BY FRESHWATER INVERTEBRATES", Journal of the Fisheries Research Board of Canada, Vol. 28, No. 5, 1971, pp 705-709. AMIC-3820. - Kawatski, J. A., Schmulbach, J. C. "ACCUMULATION OF INSECTICIDE IN FRESHWATER OSTRACODS EXPOSED CONTINUOUSLY TO SUBLETHAL CONCENTRATIONS OF ALDRIN OR DIELDRIN", Transactions of the American Fisheries Society, Vol. 100, No. 3, 1971, pp 565-567. AMIC-5506. - Kihlstrom, J. E., Lundberg, C., Hulth, L. "NUMBER OF EGGS AND YOUNG PRODUCED BY ZEBRAFISHES (BRACHYDANIO RERIO, HAM.-BUCH.) SPAWNING IN WATER CONTAINING SMALL AMOUNTS OF PHENYLMERCURIC ACETATE", Environmental Research, Vol. 4, No. 4, October 1971, pp 355-359. AMIC-2707. - Konar, S. K. "TOXICITY OF HEPTACHLOR TO AQUATIC LIFE", Journal Water Pollution Control Federation, Vol. 42, No. 8, Part 2, August 1970, pp R299-R303. AMIC-448. - Konar, S. K. "EFFECTS OF HEPTACHLOR AND NICOTINE ON THE BARBELS OF A CATFISH (HETEROPNEUSTES FOSSILIS)", The Progressive Fish-Culturist, Vol. 31, 1969, pp 62-63. AMIC-5726. - Konar, S. K. "NICOTINE AS A FISH POISON", The Progressive Fish-Culturist, Vol. 32, April 1970, pp 103-104. AMIC-5435. - Konar, S. K. "LABORATORY STUDIES ON TWO ORGANOPHOSPHORUS INSECTICIDES, DDVP AND PHOSPHAMIDON, AS SELECTIVE TOXICANTS", Transactions of the American Fisheries Society, Vol. 98, No. 3, 1969, pp 430-437. AMIC-5453. - Konar, S. K. "LETHAL EFFECTS OF THE INSECTICIDE DDVP ON THE EGGS AND HATCHLINGS OF THE SNAKE-HEAD, CHANNA PUNCTATUS (B1) (OPHIOCEPHALIFORMES: OPHIOCEPHALIDAE)", Japanese Journal of Ichthyology, Vol. 15, No. 3, February 15, 1969, DD 130-133. AMIC-6388. - Lane, C. E., Scura, E. D. "EFFECTS OF DIELDRIN ON GLUTAMIC OXALOACETIC TRANSAMINASE IN POECILIA LATIPINNA", Journal of the Fisheries Research Board of Canada, Vol. 27, No. 10, October 1970, pp 1869-1871. AMIC-1283. - LaRoche, G., Eisler, R., Tarzwell, C. M. "BIOASSAY PROCEDURES FOR OIL AND OIL DISPERSANT TOXICITY EVALUATION", Journal Water Pollution Control Federation, Vol. 42, No. 11, November 1970, pp 1982-1989. AMIC-445. - Lincer, J. L., Solon, J. M., Nair, J. H., III 'DDT AND ENDRIN FISH TOXICITY UNDER STATIC VERSUS DYNAMIC BIOASSAY CONDITIONS", Transactions of the American Fisheries Society, Vol. 99, No. 1, 1970, pp 13-19. AMIC-5509. - Linn, J. D., Stanley, R. L. "TDE RESIDUES IN CLEAR LAKE ANIMALS", California Fish and Game, Vol. 55, No. 3, 1969, pp 164-178. AMIC-5521. - Lloyd, R., White, W. R. "EFFECT OF HIGH CONCENTRATION OF CARBON DIOXIDE ON THE IONIC COMPOSITION OF RAINBOW TROUT BLOOD", Nature, Vol. 216, December 30, 1967, pp 1341-1342. AMIC-3721. - Loeb, H. A., Starkey, R. J. "SURVIVAL OF BURIED BULLHEADS SUBJECTED TO 4'-IODO-3-NITROSALICYLANILIDE", New York Fish and Game Journal, Vol. 13, No. 2, July 1966, pp 196-205. AMIC-6199. - Lucas, H. F., Jr., Edgington, D. N. "CONCENTRATIONS OF TRACE ELEMENTS IN GREAT LAKES FISHES", Journal of the Fisheries Research Board of
Canada, Vol. 27, No. 4, 1970, pp 677-684. AMIC-3778. - Lyman, L. D., Tompkins, W. A., McCann, J. A. "RESIDUES IN FISH, WILDLIFE, AND ESTUARIES", Pesticides Monitoring Journal, Vol. 2, No. 3, December 1968, pp 109-122. AMIC-3839. - Macek, K. J. "REPRODUCTION IN BROOK TROUT (SALVELINUS FONTINALIS) FED SUBLETHAL CONCENTRATIONS OF DDT", Journal of the Fisheries Research Board of Canada, Vol. 25, No. 9, 1968, pp 1787-1796. AMIC-3716. - Macek, K. J., Korn, S. "SIGNIFICANCE OF THE FOOD CHAIN IN DDT ACCUMULATION BY FISH", Journal of the Fisheries Research Board of Canada, Vol. 27, No. 8, August 1970, pp 1496-1498. AMIC-844. - Macek, K. J., McAllister, W. A. "INSECTICIDE SUSCEPTIBILITY OF SOME COMMON FISH FAMILY REPRESENTATIVES", Transactions of the American Fisheries Society, No. 1, 1970, pp 20-27. AMIC-5510. - MacPhee, C., Ruelle, R. "A CHEMICAL SELECTIVELY LETHAL TO SQUAWFISH (PTYCHOCHEILUS OREGONENSIS AND P. UMPQUAE)", Transactions of the American Fisheries Society, Vol. 98, 1969, pp 676-684. AMIC-5450. - Manion, P. J. "EVALUATION OF LAMPREY LARVICIDES IN THE BIG GARLIC RIVER AND SAUX HEAD LAKE", Journal of the Fisheries Research Board of Canada, Vol. 26, No. 11, 1969, pp 3077-3082. AMIC-3761. - Mann, H. "BIOLOGICAL EFFECTS OF FATTY ALCOHOLS ON FRESHWATER ANIMALS", Internationale Revue der Gesamten Hydrobiologie, Vol. 56, No. 4, 1971, pp 599-607, AMIC-3079. - Marking, L. L. "TOXICITY OF METHYLPENTYNOL TO SELECTED FISHES", U. S. Bureau of Sport Fisheries and Wildlife, Fish Control Laboratory, La Crosse, Wisconsin, Investigations in Fish Control No. 30, February 1969, 7 pp. AMIC-5477- - Marking, L. L. "JUGLONE (5-HYDROXY-1,4-NAPHTHOQUINONE) AS A FISH TOXICANT", Transactions of the American Fisheries Society, Vol. 99, No. 3, 1970, pp 510-514. AMIC-5517. - Marking, L. L. "TOXICITY OF RHODAMINE B AND FLUORESCEIN SODIUM TO FISH AND THEIR COMPATIBILITY WITH ANTIMYCIN A", The Progressive Fish-Culturist, Vol. 31, July 1969. pp 139-142. AMIC-5729. - Mathur, D. S. "TOXICITY OF ALDRIN TO CERTAIN FISH", Science and Culture, Vol. 35, No. 8, August 1969, pp 418-419. AMIC-5422. - Mawdesley-Thomas, L. E. "TOXIC CHEMICALS THE RISK TO FISH", New Scientist, Vol. 49, No. 734, January 14, 1971, pp 74-75. AMIC-1056. - McIngvale, C. R., Ludke, L., Ferguson, D. E. "OXYGEN CONSUMPTION OF ENDRIN-SUSCEPTIBLE AND ENDRIN-RESISTANT GAMBUSIA DURING SUBLETHAL AND ACUTE ENDRIN EXPOSURE", Journal of the Mississippi Academy of Science, Vol. 14, 1968, pp 116-121. AMIC-5475. - McKim, J. M., Christensen, G. M., Hunt, E. P. "CHANGES IN THE BLOOD OF BROOK TROUT (SALVELINUS FONTINALIS) AFTER SHORTTERM AND LONG-TERM EXPOSURE TO COPPER", Journal of the Fisheries Research Board of Canada, Vol. 27, No. 10, 1970, pp 1883-1889. AMIC-3828. - McKim, J. M., Benoit, D. A. "EFFECTS OF LONG-TERM EXPOSURES TO COPPER ON SURVIVAL, GROWTH, AND REPRODUCTION OF BROOK TROUT (SALVELINUS FONTINALIS)", Journal of the Fisheries Research Board of Canada, Vol. 28, No. 5, 1971, pp 655-662. AMIC-3821. - McKone, C. E., Young, R. G., Bache, C. A., Lisk, D. J. "RAPID UPTAKE OF MERCURIC ION BY GOLDFISH", Analytical Chemistry, Vol. 5, No. 11, November 1971, pp 1138-1139. AMIC-1492. - McReynolds, H. E. "PRACTICALITY OF ENDRIN AS A FISH TOXICANT", Indiana Academy of Science Proceedings, Vol. 79, 1969, pp 148-161. AMIC-108. - Metcalf, R. L., Sangha, G. K., Kapoor, I. P. "MODEL ECOSYSTEM FOR THE EVALUATION OF PESTICIDE BIODEGRADABILITY AND ECOLOGICAL MAGNIFICATION", Environmental Science and Technology, Vol. 5, No. 8, August 1971, pp 709-713. AMIC-1495. Minchew, C. D., Ferguson, D. E. "TOXICITIES OF SIX INSECTICIDES TO RESISTANT AND SUSCEPTIBLE GREEN SUNFISH AND GOLDEN SHINERS IN STATIC BIOASSAYS", Journal of the Mississippi Academy of Science, Vol. 15, 1970, pp 29-32. AMIC-5471. Mitchum, D. L., Moore, T. D. "EFFICACY OF DI-N-BUTYL-TIN OXIDE ON AN INTESTINAL FLUKE, CREPIDOSTOMUM FARIONIS, IN GOLDEN TROUT", The Progressive Fish-Culturist, Vol. 31, July 1969, pp 143-148. AMIC-5730. Morris, R. L., Johnson, L. G. "DIELDRIN LEVELS IN FISH FROM IOWA STREAMS", Pesticides Monitoring Journal, Vol. 5, No. 1, June 1971, pp 12-16. AMIC-1452. Moubry, R. J., Helm, J. M., Myrdal, G. R. "CHLORINATED PESTICIDE RESIDUES IN AN AQUATIC ENVIRONMENT LOCATED ADJACENT TO A COMMERCIAL ORCHARD", Pesticides Monitoring Journal, Vol. 1, No. 4, March 1968, pp 27-29. AMIC-3753. Mount, D. I., Boyle, H. W. "PARATHION - USE OF BLOOD CONCENTRATION TO DIAGNOSE MORTALITY OF FISH", Environmental Science and Technology, Vol. 3, No. 11, November 1969, pp 1183-1185. AMIC-11. Mount, D. I., Stephan, C. E. "CHRONIC TOXICITY OF COPPER TO THE FATHEAD MINNOW (PIMEPHALES PROMELAS) IN SOFT WATER", Journal of the Fisheries Research Board of Canada, Vol. 26, No. 9, 1969, pp 2449-2457. AMIC-3765. Munson, T. O. "CHLORINATED HYDROCARBON RESIDUES IN MARINE ANIMALS OF SOUTHERN CALIFORNIA", Bulletin of Environmental Contamination and Toxicology, Vol. 7, No. 4, April 1972, pp 223-228. AMIC-3096. Murphy, P. G. "THE EFFECT OF SIZE ON THE UPTAKE OF DDT FROM WATER BY FISH", <u>Bulletin of Environmental Contamination and Toxicology</u>, Vol. 6, No. 1, January/February 1971, pp 20-23. AMIC-1805. Murphy, P. G., Murphy, J. V. "CORRELATIONS BETWEEN RESPIRATION AND DIRECT UPTAKE OF DDT IN THE MOSQUITO FISH GAMBUSIA AFFINIS", Bulletin of Environmental Contamination and Toxicology, Vol. 6, No. 6, November/December 1971, pp 581-588. AMIC-1470. Naqvi, S. M., Ferguson, D. E. "LEVELS OF INSECTICIDE RESISTANCE IN FRESH-WATER SHRIMP, PALAEMONETES KADIAKENSIS", Transactions of the American Fisheries Society, No. 4, 1970, pp 696-699. AMIC-5519. - Naqvi, S. M., Ferguson, D. E. "PESTICIDE TOLERANCES OF SELECTED FRESHWATER INVERTEBRATES", Journal of the Mississippi Academy of Science, Vol. 14, 1969, pp 121-127. AMIC-5979. - Nimmo, D. R., Blackman, R. R., Wilson, A. J., Forester, J. "TOXICITY AND DISTRIBUTION OF AROCLOR 1254 IN THE PINK SHRIMP PENAEUS DUORARUM", Marine Biology, Vol. 11, No. 3, November 1971, pp 191-197. AMIC-2645. - Nunogawa, J. H., Burbank, N. C., Jr., Young, R. H. F., Lau, L. S. "RELATIVE TOXICITIES OF SELECTED CHEMICALS TO SEVERAL SPECIES OF TROPICAL FISH", University of Hawaii, Water Resources Research Center, Honolulu, Hawaii, Technical Report No. 40, August 1970, 38 pp, PB-196-312. AMIC-6567. - Otto, N. E. "ALGAECIDAL EVALUATION AND ENVIRONMENTAL STUDY OF MAT PRODUCTING BLUE-GREEN ALGAE", Bureau of Reclamation, Office of Chief Engineer, Denver, Colorado, Report No. REC-OCE-70-25, July 1970, 31 pp, FB-194 808. AMIC-892. - O'Hara, J. "ALTERATIONS IN OXYGEN CONSUMPTION BY BLUEGILLS EXPOSED TO SUBLETHAL TREATMENT WITH COPPER", Water Research, Vol. 5, 1971, pp 321-327. AMIC-3793. - Pal, R. N., Gopalakrishnan, V. "PRELIMINARY TRIALS ON THE TOXICITY OF 'ALGISTAT' TO FISH AND ALGAE", Fishery Technology, Vol. 5, No. 2, July 1968, pp 101-103. AMIC-5754. - Patrick, R., Cairns, J., Jr., Scheier, A. "THE RELATIVE SENSITIVITY OF DIATOMS, SNAILS, AND FISH TO TWENTY COMMON CONSTITUENTS OF INDUSTRIAL WASTES", The Progressive Fish-Culturist, Vol. 30, January 1968, pp 137-140. AMIC-5720. - Pickering, Q. H., Thatcher, T. O. "THE CHRONIC TOXICITY OF LINEAR ALKYLATE SULFONATE (LAS) TO PIMEPHALES PROMELAS, RAFINESQUE", Journal Water Pollution Control Federation, Vol. 42, No. 2, Part 1, February 1970, pp 243-254. AMIC-65. - Portmann, J. E., Wilson, K. W. "THE TOXICITY OF 140 SUBSTANCES TO THE BROWN SHRIMP AND OTHER MARINE ANIMALS", Ministry of Agriculture, Fisheries and Food, Fisheries Laboratory, Burnham-on-Crouch, Essex, England, Shellfish Information Leaflet No. 22, December 1971, 12 pp. AMIC-7701. - Post, G., Schroeder, T. R. "THE TOXICITY OF FOUR INSECTICIDES TO FOUR SALMONID SPECIES", Bulletin of Environmental Contamination and Toxicology, Vol. 6, No. 2, March/April 1971, pp 144-155. AMIC-1812. Rabe, F. W., Wissmar, R. C. "SOME EFFECTS OF ANTIMYCIN IN AN OLIGOTROPHIC LAKE", The Progressive Fish-Culturist, Vol. 31, July 1969, p 163. AMIC-5732. Rachlin, J. W., Perlmutter, A. "RESPONSE OF AN INBRED STRAIN OF PLATYFISH AND THE FATHEAD MINNOW TO ZINC", The Progressive Fish-Culturist, Vol. 30, October 1968, pp 103-207. AMIC-5722. Rachlin, J. W., Perlmutter, A. "RESPONSE OF RAINBOW TROUT CELLS IN CULTURE TO SELECTED CONCENTRATIONS OF ZINC SULFATE", The Progressive Fish-Culturist, Vol. 31, April 1969, pp 94-98. AMIC-5728. Ragab, M. T. H. "GAS CHOMATOGRAPHIC ANALYSIS OF MALATHION IN WATER AND IN FISH", Bulletin of Environmental Contamination and Toxicology, Vol. 3, No. 3, 1968. pp 155-163. AMIC-3728. Raynes, A. E., Ryback, R. S. "EFFECT OF ALCOHOL AND CONGENERS ON AGGRESSIVE RESPONSE IN BETTA SPLENDENS", Boston City Hospital, Alcohol Study Unit, Boston, Massachusetts. AMIC-5712. Ray, J., Stevens, V. "USING BAYTEX TO CONTROL CRAYFISH IN PONDS", The Progressive Fish-Culturist, Vol. 32, January 1970, pp 58-60. AMIC-5433. Reinert, R. E. "PESTICIDE CONCENTRATIONS IN GREAT LAKES", Pesticides Monitoring Journal, Vol. 3. No. 4. March 1970. pp 233-240. AMIC-196. Risebrough, R. W., Rieche, P., Peakall, D. B., Herman, S. G., Kirven, M. N. "POLYCHLORINATED BIPHENYLS IN THE GLOBAL ECOSYSTEM", Nature, Vol. 220, December 14, 1968, pp 1098-1102. AMIC-3844. Rucker, R. R., Amend, D. F. "ABSORPTION AND RETENTION OF ORGANIC MERCURIALS BY RAINBOW TROUT AND CHINOOK AND SOCKEYE SALMON", The Progressive Fish-Culturist, Vol. 31, October 1969, pp 197-201. AMIC-5733. Sanders, H. O. "TOXICITIES OF SOME HERBICIDES TO SIX SPECIES OF FRESHWATER CRUSTACEANS", Journal Water Pollution Control Federation, Vol. 42, No. 8, Part 1, August 1970, pp 1544-1550. AMIC-453. Savitz, J. "EFFECT OF M.S. 222 ON NITROGEN EXCRETION OF THE BLUEGILL (LEPOMIS MACROCHIRUS)", Journal of the Elisha Mitchell Scientific Society, Vol. 85, No. 4, 1969, pp 150-151. AMIC-5838. - Shaw, T. L., Brown, V. M. "HEAVY METALS AND THE FERTILIZATION OF RAINBOW TROUT EGGS", Nature, Vol. 230, No. 5291, March 26, 1971, p 251. AMIC-1444. - Smith, J. W., Grigoropoulos, S. G. "TOXIC EFFECTS OF TRACE ORGANICS ON FISH", Journal American Water Works
Association, Vol. 62, No. 8, August 1970, pp 499-506. AMIC-993. - Solon, J. M., Lincer, J. L., Nair, J. H., III "THE EFFECT OF SUBLETHAL CONCENTRATION OF LAS ON THE ACUTE TOXICITY OF VARIOUS INSECTICIDES TO THE FATHEAD MINNOW (PIMEPHALES PROMELAS RAFINESQUE)", Water Research, Vol. 3, 1969, pp 767-775. AMIC-3785. - Sonstelie, L. C. "THE EFFECTS OF DDT ON THE INSECT POPULATION OF TROUT CREEK", University of Utah, Salt Lake City, Utah, Dissertation Abstracts No. 70-3796, 1969, 136 pp. AMIC-964. - Sparks, R. E., Cairns, J., Jr., Cross, F. B. "SOME EFFECTS OF A NEUTRAL MIXTURE OF CALCIUM OXIDE AND SULFURIC ACID ON CHANNEL CATFISH ICTALURUS PUNCTATUS (RAFINESQUE)", Transactions of the Kansas Academy of Science, Vol. 72, No. 1, Spring 1969, pp 1-15. AMIC-5902. - Sprague, J. B. "AVOIDANCE REACTIONS OF RAINBOW TROUT TO ZINC SULPHATE SOLUTIONS", Water Research, Vol. 2, 1968, pp 367-372. AMIC-3760. - Stapleton, R. P. "TRACE ELEMENTS IN TISSUES OF THE CALICO BASS PARALABRAX CLATHRATUS (GIRARD)", Bulletin of the Southern California Academy of Sciences, Vol. 67. No. 1, 1968, pp 49-58. AMIC-5980. - Stock, J. N., Cope, O. B. "SOME EFFECTS OF TEPA, AN INSECT CHEMOSTERILANT, ON THE GUPPY, POECILIA RETICULATA", Transactions of the American Fisheries Society, Vol. 98, 1969, pp 280-287. AMIC-5457. - Stout, V. F. "PESTICIDE LEVELS IN FISH OF THE NORTHEAST PACIFIC", Bulletin of Environmental Contamination and Toxicology, Vol. 3, No. 4, 1968, pp 240-246. AMIC-3784. - Tracy, H. B., Lee, R. A., Woelke, C. E., Sanborn, G. "RELATIVE TOXICITIES AND DISPERSING-EVALUATIONS OF ELEVEN OIL-DISPERSING PRODUCTS", Journal Water Pollution Control Federation, Vol. 41, No. 12, December 1969, pp 2062-2069. AMIC-3834. - Uthe, J. F., Bligh, E. G. "PRELIMINARY SURVEY OF HEAVY METAL CONTAMINATION OF CANADIAN FRESHWATER FISH", Journal of the Fisheries Research Board of Canada, Vol. 28, No. 5, 1971, pp 786-788. AMIC-3819. Vaala, S. S., Mitchell, R. B., Anthony, A. "CYTOPHOTOMETRIC STUDIES OF DNA IN CIRCULATING ERYTHROCYTES OF BROOK TROUT EXPOSED TO ACID ph", Proceedings of the Pennsylvania Academy of Science, Vol. 43, 1969, pp 191-194. AMIC-5709. Warnick, S. L., Bell, H. L. "THE ACUTE TOXICITY OF SOME HEAVY METALS TO DIFFERENT SPECIES OF AQUATIC INSECTS", Journal Water Pollution Control Federation, Vol. 41, No. 2, Part 1, February 1969, pp 280-284. AMIC-3767. Wedemeyer, G. "THE STRESS OF FORMALIN TREATMENTS IN RAINBOW TROUT (SALMO GAIRDNERI) AND COHO SALMON (ONCORHYNCHUS KISUTCH)", Journal of the Fisheries Research Board of Canada, Vol. 28, No. 12, December 1971, pp 1899-1904. AMIC-3287. Wedemeyer, G., Ross, A. J., Smith, L. "SOME METABOLIC EFFECTS OF BACTERIAL ENDOTOXINS IN SALMONID FISHES", Journal of the Fisheries Research Board of Canada, Vol. 26, No. 1, 1969, pp 115-122. AMIC-3774. Weir, P. A., Hine, C. H. "EFFECTS OF VARIOUS METALS ON BEHAVIOR OF CONDITIONED GOLDFISH", Archives of Environmental Health, Vol. 20, January 1970, pp 45-51. AMIC-739. Wellborn, T. L., Jr. "TOXICITY OF SOME COMPOUNDS TO STRIPED BASS FINGERLINGS", The Progressive Fish-Culturist, Vol. 33, No. 1, January 1971, pp 32-36. AMIC-5571. Wellborn, T. L., Jr. "THE TOXICITY OF NINE THERAPEUTIC AND HERBICIDAL COMPOUNDS TO STRIPED BASS", The Progressive Fish-Culturist, Vol. 31, January 1969, pp 27-32. AMIC-5723. Wildish, D. J. "THE TOXITY OF POLYCHLORINATED BIPHENYLS (PCB) IN SEA WATER TO GAMMARUS OCEANICUS", Bulletin of Environmental Contamination and Toxicology, Vol. 5, No. 3, 1970, pp 202-204. AMIC-69. Wilson, D. C., Bond, C. E. "THE EFFECTS OF THE HERBICIDES DIQUAT AND DICHLOBENIL (CASORON) ON POND INVERTEBRATES. PART I. ACUTE TOXICITY", Transactions of the American Fisheries Society, Vol. 98, 1969, pp 438-443. AMIC-5452. Wisely, B., Blick, R. A. P. "MORTALITY OF MARINE INVERTEBRATE LARVAE IN MERCURY, COPPER, AND ZINC SOLUTIONS", Australian Journal of Marine and Freshwater Research, Vol. 18, 1967, pp 63-72. AMIC-5708. Woodhead, P. M. J. "AN EFFECT OF THYROXINE UPON THE SWIMMING OF COD", Journal of the Fisheries Research Board of Canada, Vol. 27, No. 12, 1970, pp 2337-2338. AMIC-3825. - Worthley, E. G., Schott, C. D. "THE COMPARATIVE EFFECTS OF CS AND VARIOUS POLLUTANTS ON FRESH WATER PHYTOPLANKTON COLONIES OF WOLFFIA PAPULIFERA THOMPSON", U.S. Department of the Army, Biomedical Laboratory, Edgewood Arsenal, Maryland, Technical Report EATR 4595, December 1971, p 12. AMIC-3233. - Young, R. G., St. John, L., Lisk, D. J. "DEGRADATION OF DDT BY GOLDFISH", Bulletin of Environmental Contamination and Toxicology, Vol. 6, No. 4, 1971, pp 351-354. AMIC-3796. - Zillich, J., Wuerthele, M. "THE TOXIC EFFECTS OF THE LANSING WASTEWATER TREATMENT PLANT EFFLUENT TO THE FATHEAD MINNOW, PIMEPHALES PROMELAS", Michigan Department of Natural Resources, Water Resources Commission, Lansing, Michigan, paper, January 19-20, 1970, 4 pp. AMIC-2899. - Zillich, J., Wuerthele, M. "THE TOXIC EFFECTS OF THE GRANDVILLE WASTEWATER TREATMENT PLANT EFFLUENT TO THE FATHEAD MINNOW, PIMEPHALES PROMELAS", Michigan Department of Natural Resources, Water Resources Commission, Lansing, Michigan, Report, November 17-21, 1969, 10 pp. AMIC-2898. - Zillich, J. "THE TOXICITY OF THE WYOMING WASTEWATER TREATMENT PLANT EFFLUENT TO THE FATHEAD MINNOW AND THE WHITE SUCKER JULY 28 AUGUST 1, 1969", Michigan Department of Natural Resources, Water Resources Commission, Lansing, Michigan, Paper, 1969, 7 pp. AMIC-2906. - Zillich, J. "A BIOLOGICAL EVALUATION OF SIX CHEMICALS USED TO DISPERSE OIL SPILLS", Michigan Department of Natural Resources, Water Resources Commission, Lansing, Michigan, Paper, April 1969, 12 pp. AMIC-2909. - Zitko, V., Aiken, D. E., Tibbo, S. N., Besch, K. W. T., Anderson, J. M. "TOXICITY OF YELLOW PHOSPHORUS TO HERRING (CLUPEA HARENGUS), ATLANTIC SALMON (SALMO SALAR), LOBSTER (HOMARUS AMERICANUS), AND BEACH FLEA (GAMMARUS OCEANICUS)", Journal of the Fisheries Research Board of Canada, Vol. 27, No. 1, 1970, pp 21-29. AMIC-3817. - Zitko, V. "POLYCHLORINATED BIPHENYLS (PCB) SOLUBILIZED IN WATER BY NONIONIC SURFACTANTS FOR STUDIES OF TOXICITY TO AQUATIC ANIMALS", Bulletin of Environmental Contamination and Toxicology, Vol. 5, No. 3, 1970, pp 279-285. AMIC-23. - Zitko, V. "POLYCHLORINATED BIPHENYLS AND ORGANOCHLORINE PESTICIDES IN SOME FRESHWATER AND MARINE FISHES", Bulletin of Environmental Contamination and Toxicology, Vol. 6, No. 5, 1971, pp 464-470. AMIC-3715. SECTION VI APPENDICES # Abbreviations for Appendix A Note: Names of chemicals and organisms are as given by the various authors. Readers should search for alternate, common, and/or scientific names of both chemical and aquatic species. - (1) Letters represent: - B = bioassay, used in combination with S = static, CF = continuous flow, A = acute, and CH = chronic. - L = laboratory bioassay. - BOD = biochemical oxygen demand. - F = field study, used in combination with R = river, stream, creek, etc., L = pond, M marine, E = estuarine, and O = other (port facility, flooded area, etc.). - (2) Field location is indicated by abbreviation of the state or county. - (3) The number indicates ppm (mg/l), unless otherwise indicated by appropriate designations. The letters within parentheses following indicate $T = TL_m$, K = kill, SB = sublethal effects, NTE = no toxic effect. The number following these indicates the time in days (unless otherwise noted) at which observations were made. EC_{50} , LC_{50} , and similar designations for 50 percent lethality were all considered as TL_m and designated as such. The numbers within parentheses following these designations indicate the time in days when the effect was observed. - (4) The following indicate (when followed by an asterisk the variable was controlled): - a = water temperature - b = ambient air temperature - c = pH - d = alkalinity (total, phenolphthalein or caustic) - e = dissolved oxygen - f = hardness (total, carbonate, Mg, or CaO) - g = turbidity - h = oxidation-reduction potential - i = chloride as Cl - j = BOD, 5 day; (J) = BOD, short-term - k = COD - $1 = \text{nitrogen} (as NO_2 \text{ or } NO_3)$ - m = ammonia nitrogen as NH3 - n = phosphate (total, ortho-, or poly) - o = solids (total, fixed, volatile, or suspended) - $p = CO_2$ - q = light - r = flow rate - s = sound - (5) Other miscellaneous abbreviations are: - SM = sterilized media - SSM = synthetic seawater medium - NSW = natural seawater - MSC = maximum safe concentration The AMIC-xxxx number following each reference is the accession number which was assigned by the Analytical Methodology Information Center to facilitate location of original documents. | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |---------------|------------------------|-----------|-------------------|---|---|---|--| | A8 5 | Brachydanio
rerio | BSA | | 32 (584) | a,e, and
synthetic
ditution
water | Feeding behavior was affected by zinc, chromium, and ABS in that mora time was required for consuming measured amounts of food. Feeding response was also affected by aeration, feeding schedule, light intensity, and outside disturbances. The authors note that much more work is needed to establish the reliability of this procedure. | B1 (1967),
AMIC-5707 | | ABS | Lepomis
macrochirus | 85A,
L | | 17,4 (T4) | a*,e, and
synthetic
ditution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an aiga, and an
invertehrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bloassays with at least three components of the food web. | Patrick, et
at (1968),
AMIC-5720 | | 20 A | Nitzschia
Tinearis | BSA,
L | | 10 (T5) | a∓,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | ABS | Physa
heterostropha | BSA,
L | | 34.2 (74) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | Acetal dehyde | Lepomis
macrochirus | BSA,
L | | 53 (14) | a*,e, and
synthetic
dilution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bloassays with at least three components of the food web. | Patrick, et
at (1968),
AMIC-5720 | | Acetal dehyde | Nitzschia
Iinearis | BSA.
L | | 236.6 (15) | a",e, and
synthetic
dliution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | Acetaldehyde | Crangon
crangon | BSA | | greater than
100 (T2) | a*(contin-
uous, aer-
ation, sea | | Portmann, et
al(1971),
AMIÇ-7701 | | Þ | | |---|--| | 1 | | | w | | | | | | | water, and daily solution renewal) | | | |-------------|-------------------------|--------------------|------------------------------|---|--|---| | Acetic acid | Lepomis
macrochirus | BSA,
L |
75 (14) | a*,e, and
synthetic
ditution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bloassays with at least three components of the food web. | Patrick, et
al (1968),
AMIC-5720 | | Acetic acid | Nitzschia
tinearis | BSA. |
74 (15) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | Acetic acid | Carcinus
maenas | BSA |
180 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et al (1971), AMIC-7701 | | Acetic sold | Crangon
crangon | BSA |
greater than
100 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | same as above | Portmann, et
at (1971),
AHIC-7701 | | Acetone | Rasbora
heteromorpha | BCFA
and
BSA |
4,000 (T2) | at,c,e,f,
hard(HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscettaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was | Alabaster
(1969),
ANIC-5425 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | Comments | Reference , | |----------|--------------------------------------|-----------|-------------------|---|---|--|--| | | | • | | | | found to be essential. | | | Acetone | Lepomis
macrochirus | 85A,
L | | 8,300 (T4) | a*,e, and
synthetic
dilution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bloassays with at least three components of the food web. | Patrick, et
at (1968),
AHIC~5720 | | icetone | Nitzschia
finearis | ASA,
L | | 11,493 (T5) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC~5720 | | Acetone | Mercenaria
mercenaria
(eggs) | t | | greater than
100.0 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was renorted. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | Davis, et
at(1969),
AMIC-5990 | | Acetone | Mercenaria
mercenaria
(larvae) | L | | greater than
100.0 (T12) | | same as above | Davis, etat
(1959),
AMIC-5990 | | Acetone | Crassostrea
virginica
(eggs) | ι | | greater than
100.0 (T2) | | same as above | Davis, et
al(1969),
AMIC-5990 | | Acetone | Phormidium
ambiguum | L | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. | 0110 (1970)
AHIC-892 | Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | | | | | | means were found. | | |--------------------------|--|--------------------|------------------|--|---|-----------------------------------| | Acriflavine
(neutral) | Morone
saxatitis
(fingertings) | ASA |
16.4 (T4) | a,c,d,e,f,
P | All compounds were investigated because of their probable usage in hatchery production of white bass. Comoounds that can be used at recommended concentrations were Aquathol, Casaron, Lindane, and Terramycin concentrate. Those that should not be used were Acriflavine, Rayluscide, Malachite green oxatate, and Malathion. | Wellborn
(1971),
AMIC-5571 | | Acriflavine | Trachinotus
carotinus
(juveniie) | BSA |
114-118 (T4) | magnesium,
carbonate, | In this study of pompano salinity was controlled at 10, 20, and 30 ppt and investigated as a variable. Accifiaving formally, and potassium permanganate were slightly more toxic at the highest salinity, while copper sulfate was slightly less toxic. These compounds are used as prophylactic bacterial treatments. All appeared to be reasonably safe to use excepte possibly potassium permanganate. | al (1971), | | Acrolein | Rasbora
heteromorpha | BCFA
and
BSA |
0.06 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Acrylonitrile | Crangon
crangon | BSA |
10-33 (T1) | | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychtorinated biphenyls, pure inorquic, and organic chemicals were evaluated against as many as ten marine | Portmann, et at (1971), AHIC-7701 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm |
Experiment
Variables,
Controlled
or Noted | | Reference | |---------------------------|-------------------------------------|--------------------|------------------------------------|---|---|--|---------------------------------------| | | | | | | solution renewal) | ordanisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | | Actusol | Sterihrad
trout
(fingertings) | BSA | | 24.0 (T4) | | Evaluation of 11 oil dispersants resulted in a ranking for each and a recommendation for use according to the ranking. Ranking was based on toxicity and oil dispersal effectiveness. Corexit 7764 acceased to have the least toxicity with fair to good oil dispersion capability. | Tracy, et
a!(1969),
AHIC-1834 | | Actusol | Coho salmon
(fingerlings) | BSA
in
situ | Hood Canal,
Hoodsport,
Wash, | 40-0 (K) | | same as above | Tracey, et
at (1969),
AMIC-3834 | | Actusol | Pacific
oyster
(larvae) | BSA | | 20.0-40.0 (5) | | same as above | Tracy, et
al(1969),
AMIC-3834 | | Affatoxin 81 | Brachydanio
rerio (eggs) | | | 1.0 (K) | a* | This fungal toxin was acutely toxic to Brachydanio rerio embryos and larvae, especially the latter. The authors suggest this response as an easily performed assay for aflatoxin. | Abedl, et al
(1968),
AMIC-3712 | | Agridio | Rasbora
heteromorpha | BCFA
and
BSA | | 1.9 (T2) | a*,c,e,f,
hard
(HH)or
soft (SH)
synthetic
ditution
water, or
seawater
for some
species | same as above | Alabaster,
(1969),AMIC-
5425 | | Aldrin (C-14
labelled) | Daohnla magna
(adult) | BCF | | 2.4 (residue) | a* | Magnification of ODT and Aldrin tadded with C-14 occurred rapidity. Biological magnification factors of 2900 to 114,100 depending on the species were found for DDT, and 22,800 to 141,000 for Aldrin. Marked degradation of DDT as determined by analysis for DDT metabolites occurred. The authors conclude that aquatic invertebrates influence quality and quantity of insecticide residue passed via the fish | Johnson,et
al (1971),
AMIC-3820 | #### food chain. | Aldrin (C-14
labelled) | Hexagenia
bitineata
(nymph) | BCF | ••• | 0.7 (residue) | a* | same as above | Johnson, et
al (1971),
AMIC-3820 | |---------------------------|-----------------------------------|------|------|-------------------------------|--------------------------------------|--|--| | Aldrin (C-14
tabelled) | Chironomus
sp. (larva) | RCF | | 0.5 (residue) | a* | same as above | Johnson.et
al (1971),
AHIC-3820 | | Aldrin (C-14
labelled) | Daphnla magna
(adult) | 8 CF | | 0.0001 (S83) | a* | same as above | Johnson,et
al (1971),
AMIC-3820 | | Aldrin (C-14
labelled) | Hexagenla
bilineata
(nymph) | BCF | | 0.0001 (SB3) | a. | same as above | Johnson, et
ai (1971),
AMIC-3520 | | Aldrin (C-14
labelled) | Chironomus
sp. (larva) | BCF | | 0.0001(\$83) | a* | same as above | Johnson,et
at (1971),
AHIC-3820 | | Aldrin | Fish (not
specified) | | | greater than 0.001-0.01 (K) | | Approximate toxicitles of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mawdesley-
Thomas
(1971),AMIC-
1056 | | Aldrin | Ictalurus
punctatus | FRLO | Iowa | 0.91
(accumulation,
SB) | | Edible flesh of fish collected from rivers, lakes, ponds, and reservoirs was analyzed. Fish taken in areas receiving agricultural runoff showed highest accumulation, especially in bottom feeding fish. | Horris, et
al(1971),
AMIC-1452 | | Aldrin | Wolffia
papulifera | L | | 1000 (K) | Hunter's
medium
diluted
1:5 | All compounds were harmful to duckweed to some degree. Decreased populations were noted at non-lethal concentrations and some compounds (Malathian and 2,4-D) caused teratogenic effects at concentrations as low as 1 ppm | Worthley, et
al (1971),
AMIC-3233 | | Aldrin | Anacystis
nidulans | ı | •• | NTE | a*,c*,r
SM | Metabolic products of Aldrin, Dieldrin, and Endrin can be as toxic as the parent compounds, as shown by OD measurement. | Batterton,
et al (1971),
AMIC-1471 | | Aldrin | Agmenellum
quadrup-
licatum | ι | | NTE | a*,c*,r
SM | same as above | Batterton,
et al
(1971),AMIC=
1471 | | Aldrin | Channa
punctata | BSA | | 0.000166 (K 2
hr) | a*,c | Aldrin was shown to be more toxic than DDT, BHC, dieldrin, and lindane. Behavioral responses prior to death were recorded in some detail. | Mathur (1969),
AMIC-5422 | | Aldrin | Channa
punctata | BSA | | 0.000333 (K 30
min) | a*,c | same as above | Mathur
(1969),ANIC- | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | al
Comments | Reference | |----------|--------------------------|------------------|-------------------|--|---|--|--| | | | | | | | | 5422 | | Aldrin | Puntius
sophore | ASA | | 0.000166 (K 1.5
hr) | а », с | same as above | Mathur
(1969),AMIC-
5422 | | Aldrin | Puntius
sophore | BSA | | 0.000333 (K 30
mln) | a•,c | same as above | Mathur
(1969),AMIC+
5422 | | Aldrin | Chlamydotheca
arcuata | BSCH
and
A | | 0.00001-0.001
(120-1700
ppbresidue 64
wk) | | The organisms were exposed to 0.01 and 0.1 cpb of the toxicants for 25 weeks after which time the amounts added each week were increased ten-fold over the initial amounts. Ulothrix occurred spontaneously in the test tanks. The results show that chronic accumulations in Chlamydotheca exceeded levels which were toxic in acute tests. Residues in Chlamydotheca ranged from 12,000 to 260,000 times greater than the theoretical concentrations in the waters those in Ulothrix were 235-3,000 times exposure levels. | | | Aldrin | Chlamydotheca
arcuata | BSCH
and
A | | 0.0015 (71) | | same as above | Kawatski, et
al
(1971),AMIC-
5506 | | Aldrin | Ulothrix sp. | вѕсн | | 0.00001-0.001
(120-1700 ppb
residue 33-48
wk) | | same as above | Kawatski, et
al (1971),
AMIC-5506 | | Aldrin | Tubifex
tublfex | FL
and
BSA | Belzoni,
Miss. | 3.0 (NTE) | | The response of pesticide-resistant aduatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Betzoni and non-resistant species at State College. Copepods, clams, snails, and sludge worms from Belzoni were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the amount of pesticide residues available to animals of higher trophic levels. | Nagvi, et al
(1969),AMIC-
5979 | | Þ | > | |---|---| | ì | | | V |) | | Afdrin | Hercenaria
mercenaria
(eggs) | ι | | greater than
10.0 (T2) | - | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Nost of the compounds affected development more than survivat. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | Davis, et al
(1969),
ANIC-5990 | |--|--------------------------------------|---|---|---|---|--|--------------------------------------| | Aldrin | Mercenaria
mercenaria
(larvae) | L | | 0.41 (T 12) | | same as above | Davis, et al
(1969),ANIC-
5990 | | Algistat | Cyprinus
carpio | L | - | 0.66 (K) | | The results are described as preliminary and the authors state that further testing should be conducted before Algistat is used in hatcheries and rearing ponds. | Pal, et al
(1968),
AMIC-5754 | | Algistat
 Spirogyra | L | | 0.8 (K) | | same as above | Pal, et al
(1968),
ANIC-5754 | | Algistat | Oscillatoria | L | | 0.66 (K) | | same as above | Pal, et al
(1968),AMIC-
5754 | | Algistat | Anabaena | ι | | 0.66 (K) | | same as above | Pat, et al
(1968),
ANIC-5754 | | Algistat | Microcystis | L | | 0.66 (K) | | same as above | Pal, et al
(1968),
AMIC-5754 | | Algistat | Euglena | L | | 1.0 (NTE) | | same as above | Pal, et al
(1968),
AMIC-5754 | | Alkyi dimethyi
benzyiammonium
chioride | Phormidium
ambiguum | t | | 0.5-10.0
(33percent
growth
inhibited 14) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Cooper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to | Otto (1970).
AMIC-892 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |--------------------|--------------------------------------|-----|-------------------|---|--|--|---| | | | | | | | determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | | | Allidene diacetate | Phormidium
ambiguum | ι | | 0.5-10.0 (NTE) | | same as above | Offo(1970),
AMIC-892 | | Aliyi alcohol | Mercenaria
mercenaria
(eggs) | ι | | 1.03 (72) | | The effect of 52 nesticides on embryonic development of clams and ovsters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Allyl alcohol | Mercenaria
mercenaria
(larvae) | ι | | less than 0.25
(T12) | •• | same as above | Davis,et al
(1969),
AMIC-5990 | | Allyl elcohol | Asterlas
rubens | BSA | | 10-33 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | agents, solvent emulsitiers, pesticides, polychiorinated blohenyis, pure | | | Allyl alcohol | Cardlum edule | BSA | | greater than
100 (T2) | ac(continuous aeration, see water, and daily solution renewal) | same as above | Portmann, et
al (1971).
AMIC-7701 | | Allyt bicohol | Crangon | BSA | | greater than | a#(contin- | _ same as above | Portmann, et | | • | crangon | | | 100 (| (57 | uous aeration, seawater, and daily solution renewal) | - | at (1971) .
AHIC-7701 | |---|--------------------------|--------------------|--|-------------------------|-----|---|---|-----------------------------------| | | Rasbora
heferomorpha | BCFA
and
BSA | | 190 (| T2) | as, c, e, f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity soanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AHIC-5425 | | aipha-amino-2,6 R
dichiorobenzaidoxine P | Rasbora
heteromorpha | BCFA
and
BSA | | 440 (| T2) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los
Angeles,Cal. | | e . | | Fish collected from an effluent pipe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nicket. Silver, barlum, lithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of potlutants on marine organisms. | | | | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 8 (do
musc)
resid | e | | same as above | Stapleton
(1968), | | þ | > | |---|---| | ŀ | 4 | | ħ | Ů | | Compound | Qrqanis# | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |------------|---|----|--|---|---|---------------|-----------------------------------| | | | | | | | | AMIC-5980 | | Aluminum | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los
Angeles,Cal. | muscle
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | lluminum | Paralabrax
clathratus | FĦ | Catalina
Island, Cal. | 8 (ventral
muscle
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | A fue Loue | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los
Angeles,Cal. | | | same as above | Stapleton
(1968),
AHIC-5980 | | liuminum | Paralahrax
clathratus | FH | Catalina
Island, Cal. | 38
(gonads
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | lluminum | Paralabrax
clathratus
(gravid
females) | FH | Catalina
Island, Cal. | 22 (gonads
residue) | | same as above | Stapleton
(1968),
AMIC-5988 | | ltumlnum | Paralabrax
clathratus | FN | Scattergood
Steam Plant,
Los
Angeles,Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | iluminum | Paralabrax
clathratus | FN | Catalina
Island, Cal. | 25
(liver
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | tuminum | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los
Angeles,Cal. | 69 (Integument
residue) | | same as above | Staoleton
(1968),
AMIC-5980 | | iuminum | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 23
(Integument
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | luminum | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los | | | same as above | Stapleton
(1968),
AMIC-5980 | ## Angeles, Cal. | Aluminum | Paral abrax
clathratus | FH | Catalina
Island, Cal. | 4
(heart
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | |---------------|--------------------------------------|-----|--|----------------------------|----|--|--| | Atuminum | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los
Angeles,Cal. | 33 (eyeball
residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Atuminum | Paralabrax
clathratus | FN | Catalina
Island, Cal. | 34
(eyebali
residue) | | same as above | Stableton
(1958),
AMIC-5980 | | Aminotriazole | Fish (not
specified) | | | greater than
1000 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. |
Hawdesley-
Thomas
(1971),AMIC-
1056 | | Amitrol-T | Crassostrea
virginica
(aggs) | ι | | greater than 10 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Host of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | Davis, ef
al(1969),
AMIC-5990 | | Amitro1-T | Crassostrea
virginica
(larvae) | ι | | greater than
10(T14) | | same as above | Davis, eta!
(1969),
AMIC-5990 | | Amitrol-T | Gammarus
fasciatus | 8SA | | greater than
100.0 (T2) | a* | Of the aquatic weed herbicides evaluated, Dicione was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | | | Amitro1-T | Paleomontes
kadiakensis | BSA | | greater than
100.0 (T2) | a* | same as above | Sanders
(1970),AMIC-
453 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |--------------------------------|--------------------------------------|-----|-------------------|---|--|--|---------------------------------------| | | | | | | | | | | Amitrol-T | Asellus
brevicaudus | BSA | | greater than
100.0 (72) | a* | same as above | Sanders
(1970),AMIC-
453 | | Amitro1-T | Orconectes
nais | BSA | | greater than
100.0 (T2) | a∙ | same as above | Sanders
(1970),AMIC-
453 | | Amitroi-T | Daphnla magna | BSA | | 30.0 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | Amitrol-T | Cypridopsis
vidua | BZA | | 32.0 (T2) | a* | same as above | Sanders
(1970).
AMIC-453 | | Amitrot-T | tepomis
macrochirus | RSA | | greater than
100.0 (T2) | a* | same as above | Sanders
(1970),44IC-
453 | | Amitrol | Crassostrea
virginica
(eggs) | ι | | 733.7 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, nowever, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Amitros | Crassostrea
virginica
(larvae) | L | | 255.4 (T14) | | same as above | Davis, et al
(1969), AMIC+
5990 | | Ammonia (plus phenoi and zinc) | Salmo
galrdneri | BSA | •• | 0.5-2.54 (T2) | a,c*,d,e*,
f,m | Painbow frout were exposed to concentrations of fluctuating levels of ammonia, phenol, and zinc and to constant mixtures of the three. Tests with fluctuating levels of toxicants showed that LC50 values were similar to those for constant concentrations as long as the periodicity of the fluctuation did not exceed the resistance time for the poison. Except when zinc predominated in the mixtures, the fractional toxicities could be summed to give the toxicity of the mixture. | Brown, et al
(1969),
AMIC-5993 | | \triangleright | |------------------| | ı | | 1 | | Š | | | Salwo
gairdnerl | 8SA |
22.5-67.5
(fluctuating
conc. T 370-
greaterthan 700
min) | a,c*,d,e*,
f,m | same as above | Brown, et a!
(1969),
AMIC-5993 | |---|-------------------------|--------------------|--|--|---|--------------------------------------| | Ammonia | Salmo
galrdneri | BSA |
45.0 (T greater
than 700 min) | a,c*,d,a*,
f,m | same as above | Вгоно, et al
(1969);
АМІС-5993 | | Armonium carbonate
plus Copper sulfate | Phormidium
ambiguum | L |
0.5-10.0 (100 percent growth inhibited 14) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental means were found. | Otto (1970),
AMIC-892 | | Ammonium chloride plus Copper sulfate (1:2) | Phormidium
ambiguum | L |
0.5-10.0 (100 percent growth inhibited 14) | | same as above | Otto (1970),
ANIC-892 | | Ammonium hydroxide
(as NH3) | Phormidium
ambiguum | L |
0.5-10.0(NTE) | | | Otto (1970),
AMIC-892 | | Ammonium sulfamate | Rasbora
heteromorpha | BCFA
and
BSA |
1,100 (T1,
hardwater) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Ammonium sulfamate | Rasbora
heteromorpha | BCFA
and
BSA |
700 (T1, softwater) | a*,c,*,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | and a sulfamate | Rasbora | BCFA |
3,200 (T1, pH | a*,c,e,f, | same as above | Alabaster | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |--------------------|-------------------------|--------------------|-------------------|---|--|---|--| | | heteromorpha | and
RSA | | 5.7) | hard (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | | (1969),
AMIC-5425 | | Ammonium sulfamate | Rasbora
heferomorpha | BCFA
and
828 | | 510 (T1, pH
7.1) | a*,c,p,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969).
AHIC-5425 | | Ammonium sulfamate | Rashora
heteromorpha | BCFA
and
8SA | | 55 (T1,pH 8.0) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
ditution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
ANIC+5425 | | Ammonium (as NH3) | Lepomis
macrochirus | BSA,
L | | 3.4 (T4) | a*,e, and
synthetic
dilution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bloassays with at least three components of the food web. | Patrick, et
al (1968),
AMIC-5720 | | Ammonlum (as NH3) | Nitzschia
Iinearis | BSA,
L | | 420 (SB5) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | | _ | |---|---| | μ | 0 | | 1 | | | Ě | _ | | f | • | | _ | • | | | | | Ammonium (as NH3) | Physa
heterostropha | BSA,
L | •• | 90.0 (74) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | |-------------------|----------------------------------|------------|--------------------------|--------------------|---
--|--| | Amphenone B | Lymnaea
staqnails
(aduits) | L | | 10.0 (SB7) | a*•q | This compound markedly reduced egg viability, production, and laying frequency of this hasommatophoran small. Dogenesis and spermatogenesis appeared to be retarded. The authors conclude that amphenone B can be regarded as an effective molluscicide for Lymnaea stagnalis. | Boer,et al
(1967),
AMIC-5445 | | Antlmony | Coregonus
ciupeaformis | FL | Hoose Lake,
Can. | N.002
(residue) | | Concentrations of 13 toxic etements in dressed fish from heavily industriatized and non-industriatized areas were determined. Only mercury exceeded regulatory limits, and concentrations of most elements were essentially the same in fish from both areas. | Uthe, etal
(1971),
AMIC-3819 | | Antimony | Coregonus
clupeaformis | FL | Lake
Ontarlo,
Can. | 0.003
(residue) | | same as above | Uthe, eta!
(1971),
AMIC-3819 | | Antimony | Esox lucius | FL | Moose Lake,
Can. | 0.003
(residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Antimony | Esox Juclus | FL | Lake St.
Plerre, Can. | 0.004
(residue) | | same as above | Uthe, et
AL(1971),
AMIC-3819 | | Antimony | Esox fuclus | FL | Lake Erie,
Can. | 0.004
(residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Antimony | Osmeru s
mordax | FL | Lake Erle,
Can. | 0.004
(residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Antimony | Perca
flavescens | FL | Lake Erle,
Can. | (residue) | | same as above | Uthe, et
AL(1971),
AMIC-3819 | | Antimycin A | Lepisosteus
piatostomus | BSA,
FO | | 0.00048 (T4) | a,c,e,f,g,
delonized
water | | Berger, et
al (1969),
AMIC+5495 | | ı | |----------| | | | \vdash | | B | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |-------------|--------------------------|------------|-------------------|---|---|--|---------------------------------------| | | | | | | | succumbed to 0.005 ppm or less of the toxicant; only certain catfishes surv 0.025 ppm. | | | Antimycin A | Amla caiva | BSA,
FO | | 0.015 (60
percent K4) | a,c,e,f,c,
deionized
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Antimycin A | Salmo
galrdneri | BSA.
FO | | 0.00003-0.00008
(T4) | a,c,e,f,g,
deionized
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Antimycin A | Selmo trutta | BSA.
FO | | 0.005 (K3) | a,c,e,f,g,
delonized
water | same as above | Berger, et a
(1969),
AMIC-5495 | | Antimycin A | Salvelinus
fontinalis | BSA,
FO | | 0.00003-0.00006
(T4) | a,c,e,f,g,
deionizec
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Antimycin 4 | Salvelinus
namaycush | BSA,
FO | | 0.00007 (T4) | a.c.e.f.q.
delonized
water | same as above | Rerger, et
at (1969),
AMIC-5495 | | Anfimycin A | Esox luclus | RSA.
FO | | 0.00011-0.00055
(T4) | a,c,e,1,g,
delonized
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Antieycin A | Carasslus
auratus | 85A,
FO | | 0.00020-0.001
(T4) | a,c,e,f,g,
deionized
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Antimycin A | Chrosomus eos | BSA, | | 0.00009-0.00052 | a,c,e,1,q, | same as above | Berger, et | | Antimycin A | Lenomis
gibbosus | BSA,
FO | •• | 0.00005-0.00024
(T4) | a,c,e,f,g,
deionized
water | same as above | Berger, et
al (1969),
AMIC-5495 | |-------------|--------------------------------|------------|----|-------------------------|----------------------------------|---------------|---------------------------------------| | Antleycin A | Lenomis
macrochirus | BSA,
FO | | 0.00006-0.0005
(T4) | a,c,e,f,g,
deionized
wator | same as above | Berger, et
al (1969),
AMIC-5495 | | Antlmycin A | Lepomis
megatotis | BSA,
FO | | 0.00008 (74) | a,c,e,f,g,
delonized
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Antimycin A | Lepomls
mlcrolophus | BSA,
FO | •• | 0.00009 (T4) | a,c,e,f,g,
delonized
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Antimycin A | Hicropterus
doiomieul | BSA,
FO | | 0.00004-0.0000E
(T4) | a,c,e,f,g,
dilution
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Antimycin A | Micropterus
saimoldes | BSA.
FO | | 0.00009+0.00014
(T4) | a,c,e,f,g,
deionized
water | same as above | Berger, et
al (1969).
AMIC-5495 | | Antimycin A | Pomoxis
nigro-
maculatus | BSA,
Fo | | 0.001 (43
percent K) | a,c,e,f,g,
deionized
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Antimycin A | Perca
flavescens | BSA.
FO | | 0.00003-0.00012
(T4) | a,c,e,f,g,
dcionized
water | same as above | Rerger, et
al (1969),
AMIC-5495 | | Antimycin A | Stizostedion
vitreum | BSA,
Fo | | 0.0000Z-0.00004
(T4) | a,c,e,f,g,
dilution
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Antimycin A | Aptodinotus
grunniens | BSA.
FO | | 0.00002-0.00014
(T4) | a,c,e,f,g,
deionized
water | same as above | Rerger, et
al (1969),
AMIC-5495 | | Antimycin A | Cyprinus
carpio | BSA,
FO | | 0.00012-0.00043
(T4) | a,c,e,f,g,
deionized
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Compound | Organism | - | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |-------------|--------------------------|------------|-------------------|---|---|---------------|---------------------------------------| | Antimycin A | Pimephales
promeias | BSÅ,
FO | | 0.00006-0.00020
(T4) | a,c,e,f,g,
deionized
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Antimycin A | Carplodes
cyprinus | BSA,
FO | | 0.003 (K) | a.c.e,f.g.
delonized
water | same as above | Rengen, et
al (1969),
AMIC-5495 | | Antimycin A | Catostomus
commersoni | BSA,
FO | | 0.005 (K4) | a,c,e,f,g,
deionized
water | same as above | Berger, et
al (1969),
AMIC~5495 | | Antimycin A | Ictiobus
cyprineitus | BSA.
Fo | | 0.005 (K4) | a.c.e.f.g.
deionized
water | same as above | Benger, et
al (1969),
AHIC-5495 | | Antimycin A | Minytrema
melanops | BSA,
Fo | | 0.002 (K) | a,c,e,f,g,
delonized
water | same as above | Rerger,et al
(1969),
AMIC~5495 | | Antimycin A | Ictaturus
catus | BSA,
Fo | | 0.2 (K4) | a,c,e,f,g,
delonized
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Antimycin A | Ictaturus
#etas | BSA,
FO | | 0.021-0.088
(T4) | a.c.e.f.g.
delonized
water | same as above | Berger, et
al (1969),
AMIC-5495 | | Antimycin A | Ictalurus
punctatus | BSA.
FO | | 0.0052-0.0105
(†4) | a,c,e,f,g,
dilution
water | same as above | Berger, et
at (1969),
AMIC+5495 | | Antimycin A | Pliodictis
olivaris | BSA.
FO | | 0.2 (K4) | a,c,e,f,g,
delonized
water | same as above | Berger, et
al (1959),
AMIC-5495 | | Antlmycin A | Eucalia
inconstans | BSA,
FO | | 0.00004-0.00055
{T4} | a,c,e,f,g,
deionized
water | same as above | Rerger, et
al (1969),
AMIC-5495 | | Antimycin A | Lepomis
cyanellus | BSA,
FO | | 0.00011-0.0005
(T4) | a,c,e,f,g,
deionized
water | same as above | Berger, et
al (1969),
AMIC-5495 | | | | FO | | (14) | deionized
water | | al (1969),
AHIC-5495 | |-------------|-------------------------|--------------------|-----------------------|--------------|--|---|-------------------------------------| | Antlmycin A | Salmo
gairdneri | L | | 0.00003 (74) | 9,8 | The piscicides Antimycin A and Rotenone were found to be compatible when mixed and furthermore appeared to have an additive effect in cmbination. That is both compounds were more toxic in the presence of the other than alone. | | | Antimycin A | Lepomis
macrochirus | L | | 0.00016 (T4) | a* | same as above | Howland
(1969),
AMIC-5725 | | Antimycin A | Salmo cłarki | FL | Copper Lake,
Idaho | 0.005 (K) | a,c,d,e | Rapid fish kill occurred in a oligotrophic situation and toxicity persisted for at least 10 days following application. Plankton was also reduced. Later the lake was successfully stocked with cutthroat trout. The rapidity of kill and persistence indicated that the Antimycin concentration was higher than necessary. The authors recommended further research. | Rabe, et al
(1969),
AMIC-5732 | | Antimycin A | Salmo
galrdneri | AZB | | 0.00005 (T4) | a* | The dyes Rhodamine B and Fiuorescein sodium were found to be relatively non-toxic in ppm concentrations while antimycin was toxic at ppb levels. The author states that neither dye at field
use concentrations should significantly influence the activity of Antimycin A against fish. | Marking
(1969),
AMIC-5729 | | Antimycin A | Ictalurus
punctatus | ASB | | 0.0147 (T4) | a* | same as above | Marking
(1969),
AMIC-5729 | | Antimycin A | Lepomis
macrochirus | AZB | | 0.00014 (74) | a* | same as above | Marking
(1969),
AMIC-5729 | | Aphi tox | Rasbora
heteromorpha | BCFA
Bnd
BSA | | 27 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes | Alabaster
(1969),
AMIC-5425 | | *********** | | | Fleld | Toxicity, Active Ingredient, | Experiments
Variables,
Controlled | | | |---------------|--------------------------------------|-----|----------|------------------------------|---|---|---| | Compound | Organism | | Location | Ppm | or Noted | Comments | Reference | | | | | | | species | pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | | Aqueciene 100 | Pimephales
prometas | BSA | | 25.0 (T4) | c,d,e,f | Toxicity of six oil split dispersants was determined along with 800 values. Pond water was used as diluent and oil was included in the experiment. Oil markedly reduced toxicity of all dispersants. Data are given as "most probable" 96-hr TL sub m. | 71111ch
(1959),AMIC-
2909 | | Aquactene 100 | Pimephales
promelas | RSA | | 4.2 (MSC) | c,d,e,f | same as above | Zillich
(1959),AMIC~
2909 | | Aquactene 188 | Blochemical
oxygen demand | ι | | 840,00 | c,d,e,f | same as above | 71111ch
(1969),AMIC-
2909 | | Aquactene | Cardium edule | BSA | | 33-100 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Aquactene | Crangon
crangon | BSA | | 100-330 (72) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann, et
at (1971),
AMIC-7701 | | Aguathoi | Morone
saxatilis
(fingeriings) | BSA | | 710 (T4) | a,c,d,e,f, | All compounds were investigated because of their probable usage in hatchery production of white bass. Compounds that can be used at recommended concentrations were Aquathol, Casaron, Lindane, and Jerramycin concentrate. Those that should not be used were Acriflavine, Bayluscide, Malachite green oxalate, and Malathion. | Wellborn
(1971),
AMIC-5571 | | × | • | |----|---| | Ĭ. | | | ຜ | | | AQ | Nerels virens | BSA | | 0.00011-0.00044
(74) | a*,c,e,
and
synthetic
seawater | A laboratory procedure based on Standard Methods for 96-hr toxicity determinations of crude oil and oil-dispersant mixtures was described. The dispersants varied considerably in toxicity, ranging from 0.01 to 7.1 mi/i, TL50 for 96 hr. These did not differ significantly from 240 hr values. The dispersants were designated as CX, DO. CI, OD, AQ, PC, MM, TN, BP, and NA with no further description of their chemical nature or source. Only a few bloassays were conducted with shrimp. Mollusks and echinoderms were suggested as sultable test animals. The authors stated that the method could be used to test any product for toxicity in seawater. | LaRoche,et
al (1970),
AMIC-445 | |-------------------------------------|---------------------------|--------------------|----|-------------------------|---|---|---| | PA | Fundulus
heterocilitus | BSA | | 0.00032-0.00035
(T4) | a*,c,e,and
synthetic
seawater | same as above | LaRoche, et
al (1970),
AMIC-445 | | Arkotine DDT | Rasbora
heteromorpha | BCFA
and
BSA | | 0.17 (TZ) | a*,c,e,f,
hard
(HW) or
soft (SW)
synthetic
dilution
water, or
seawater
forsome
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster,
(1969),AMIC-
5425 | | Aroclor 1221 (blus
Corexit 7664) | Salmo salar
(parr) | L | | 4 (K 5 hr) | a*,e
(mixed tap
or
seawater) | Arociors 1254 and 1221 were evaluated for toxic effect with Corexit 7664 (weight ratio 1:19) as an emulsifying agent. Since only two fish were used for each exposure, the author notes that the results are only preliminary. However, PCR"s appeared to be less toxic to Atlantic salmon parr than chiorinated hydrocarbon pesticides. | Zitko
(1970),
AMIC-23 | | Aroctor 1242 | Agonus
cataphractus | BSA | •• | greater than 10
(T2) | uous aer- | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychiorinated biphenyls, pure inorganic, and organic chemicats were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
a! (1971),
AMIC-7701 | | Aroctor 1242 | Crangon
crangon | BSA | | 1.0 (72) | ar(contin-
uous aer-
ation, sea-
water, and
daily | same as above | Portmann, et
al (1971),
AMIC-7701 | | Compound | Qrganism | | Field
Location | Toxicity, Active Ingredient, Ppm | Experiment:
Variables,
Controlled
or Noted | Comments | Reference | |--|------------------------|-----|-------------------|--|---|---|---| | | | | | | solution renewal) | | | | Aroctor 1248 | Agonus
cataphractus | BSA | | greater than 10
(T2) | as(continuous aeration, seawater, and daily solution renewal) | same as above | Portmann, at
al (1971),
AMIC-7701 | | Arocior 1248 | Cardium edule | BSA | | greater than 1B
(T2) | as (continuous ser-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Aroctor 1248 | Crangon
crangon | BSA | | 0.03-1.0 (T2) | at (continuous aeruous aeruous, sea water, and daily solution renewal) | - | Portmann, et
al (1971),
AMIC-7701 | | Arocior 1254 (plus
Corexit 7664) | Saimo salar
(parr) | · | | 4 (K 90 hr) | a",e
(mixed tap
or
seawater) | Aroctors 1254 and 1221 were evaluated for toxic effect with Corexit 7664 (weight ratio 1;19) as an emulsifying agent. Since only two fish were used for each exposure, the author notes that the results are only preliminary. However, PCB**s appeared to be less toxic to Atlantic salmon parr than chlorinated hydrocarbon pesticides. | Z11ko
(1970),AMIC-
23 | | Arocior 1254 (with
corexit 7664,
colloidal solution) | Gammarus
oceanicus | BSA | | 0.001-0.01
(threshold
concentration) | a#(weekly
solution
chango,
seawater) | Aroctor 1754 solutions or suspensions with Corexit 7664 at varied concentrations in seawater resulted in varying toxicity of the Aroctor. Corexit was not tethal at 1900 pom but caused | Wildish
(1970),AMIC-
69 | sublethal brichial edema at concentrations down to 0.19 ppm. The author notes a possible synergistic effect between the two compounds. | | | | | | | erreer between the two beams of | | |--|-------------------------------------|------------|---------|--|--
--|---------------------------------------| | Arocior 1254 (with corexit 7664, emuision) | Gammarus
oceanicus | BSA | | 0.01-0.10(thres
hold
concentration) | a* (weekly
solution
change,
seawater) | same as above | Wildish
(1970),
Amic-69 | | Aroctor 1254 | Laqodon
rhomboldes
(juvenile) | ВСГСН | | 0.005 (K
14-15) | a,
salinity | Exposure of spot and pinfish to this PCB increased susceptibility to disease as well as being toxic at .005 ppm. The compound was rapidity stored in tissues, persisting for approximately 3 mo. The authors recommended further chronic exposure studies. | Hansen, et
al (1971),
AMIC-1811 | | Aroctor 1254 | Lelostomus
xanthurus | ВСЕСН | | 0.005 (K
14-15) | a,
salinity | same 26 ames | Hansen, et
al (1971),
AMIC-1811 | | Aroctor 1254 | Lelostomus
xanthurus | ВСЕСН | | 0.001 (\$856) | a,
salinity | same as above | Hansen, et al
(1971),
AMIC-1811 | | Aroctor 1254 | Leiostomus
xanthurus | всғсн | | 0.001 (8.3 ppm
brain residue
56 d) | a,
salinity | same as above | Hansen, et
al (1971),
AMIC-1811 | | Aroclor 1254 | Leiostomus
xanthurus | BCFCH | | 0.001 (46 ppm
glils residue
56 d) | a,
salinity | same as above | Hansen, et
al (1971),
AMIC-1811 | | Aroctor 1254 | Lelostomus
xanthurus | всесн | | 0.001 (13 ppm
heart residue
56 d) | a,
salinity | same as above | Hansen, et
al (1971),
AMIC-1811 | | Aroclor 1254 | Lelostomus
xanthurus | BCFCH | ~~ | 0.001 (83 ppm
liver residue
56 d) | a,
salinity | same as above | Hansen, et
al (1971),
AMIC-1811 | | Aroclor 1254 | Leiostomus
xanthurus | BCFCH | | 0.001 (65 ppm
muscle residue
56 d) | a,
salinity | same as above | Hansen, et
al (1971),
AMIC-1811 | | Aroclor 1254 | Lelostomus
xanthurus | BCFCH | | 0.001 (27 ppm
whole body
residue 56 d) | a,
salinity | same as above | Hansen, et
al (1971),
AMIC-1811 | | Aroctor 1254 | Penaeus
duorarum | L
(ACF) | | 1.0 ppb(K15,
juvenile) | a* | In addition to mortality, Arochlor accumulation in shrimp | Nimmo, et al (1971), | | Compound | Organism | | Fleid
Location | Toxicity, Active Ingredient, Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |--------------|------------------------|-----|-----------------------|----------------------------------|---|---|--| | | (juvenite) | | | | | hepatopancreas was marked (up to 510 PPM). The biological half-life for this chemical was found to be 17 days with tissue distribution in the shrimp being similar to that of DDT. Delayed mortality with no prior poisoning symptoms was also observed. Considerable additional data are presented. | AHIC-2645 | | Aracion 1254 | Agonus
cataphractus | ВЅА | | greater than 10
(T2) | uous aer-
ation, sea | One hundred-forty surface active agents, solvent emulsifiers, besticides, polychlorinated biphenyls, pure inorqanic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Aroctor 1254 | Cardlum edule | AZB | | greater than 10
(T2) | a*(continuous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann, et
al (1971),
AMIC-7701 | | Aroclor 1254 | Crangon
crangon | BSA | | 3-10 (72) | aw(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
a!
(1971),AMIC-
7701 | | Aroctor 1254 | Parallchthys
Sp. | FM | Escambla
Bay, Fla. | 4.5-184
(residue) | | Residue analysis of dead and dying animals led to the source of the PCB which was an accidental leakage from an industrial plant. The concentrations of the PCB in water and sediment were less than 0.03-486 and less than 0.001 ppm, respectively. Bloassays showed juvenile shrimp to be the most susceptible species, but inhibition of shell growth of cysters was the most sensitive parameter studied. Continued surveillance and long-term testing at subject a concentrations were pointed out as urgently needed. | Duke, et a!
(1970),
AMIC-720 | | Aroclor 1254 | Lagodon
rhomboldes
(juvenile) | BSA | | 17 (residue) | | same as above | Duke, et
AL(1970),
AMIC-720 | |--------------|--------------------------------------|-------|-----------------------|---------------------------|----|---------------|-------------------------------------| | Aroctor 1254 | Penaeus
duorarum
(juvenile) | BSA | | 3.9 (residue) | | same as above | Duke, et
AL(1970),
AHIC-720 | | Aroctor 1254 | Crassostrea
virginica | BSA | | 0.1 (S84) | | same as above | Duke, et al
(1970), AMIC-
720 | | Aroctor 1254 | Penaeus
duorarum
(juvenlie) | BCHCF | | 0.005 (72
percent K20) | | same as above | Duke, et at
(1970),
AHIC-720 | | Aroclor 1254 | Penaeus
duorarum
(juvenile) | BCHCF | | 0 (residue) | | same as above | Buke, et
AL(1970),
AMIC-720 | | Arocior 1254 | Callinectes
sapidus
(jųvenile) | BCHCF | | 0.005 (5percent
K20) | | same as above | Duke, et ai
(1970),
AMIC-720 | | Aroclor 1254 | Callinectes
sapidus
(juvenile) | BCHCF | | 23 (residue) | | same as above | Duke, et
AL(1970),
AMIC-720 | | Aroctor 1254 | Micropogon
undulatus | FM | Escambla
Bay, Fla. | 12 (residue) | | same as above | Duke, et al
(1970),
AMIC-720 | | Aroclor 1254 | Brevoortla
patronus | FM | Escambla
Bay, Fla. | 5.7-11(residue) | | same as above | Duke, et af
(1970),
AMIC-720 | | Aroclor 1254 | Lagodon
rhomboldes | FM | Fscambla
Ray, Fla. | 10 (residue) | | same as above | Duke, et at
(1970),
AMIC-720 | | Aroclor 1254 | Cynoscion
nebulosus | FM | Escambla
Bay, Fla. | 7.5-20(residue) | •• | same as above | Duke, et al
(1970),
AMIC-720 | | Aroclor 1254 | Penaeus
setiferus | FM | Fscambla
Bay, Fla. | 1.5-2.5
(residue) | | same as above | Duke, et al
(1970), | | | | | | | | | | | Compound | Organism | | Fleld
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reterence | |--------------|-------------------------------------|-----|-----------------------|---|---|---|---| | | | | | | | | AMIC-720 | | Aroclor 1254 | Cattinectes
sapidus | FM | Escambla
Bay, Fla. | 1.0-7.0
(residue) | | same as above | Duke, et al
(1970),
AMIC-720 | | Aroctor 1254 | Lagodon
rhomboldes
(juvenile) | BSA | | 0.1 (NTE) | | same as above | Duke, et
AL(1970),
AMIC-720 | | Aroclor 1254 | Penaeus
duorarum
(juvenile) | BSA | | 0.01 (K2) | | same as above | Duke, et
AL(1970),
AMIC-720 | | Aroclor 1260 | Agonus
cataphractus | BSA | | less than 10
(T2) | ation, sea-pot
water, and ind
daily eva
solution ord
renewal) pub | One hundred-forty surface active ents, solvent emutsifiers, pesticides, lychlorinated bibbenyls, pure organic, and organic chemicals were aluated against as many as ten marine ganisms. The authors noted that most blished data of this type deal with kicity of chemicals to freshwater ganisms. | | | Arocior 1260 | Cardium edule | BSA | | less than 10
(T2) | ar(contin-
uous aer-
ation, sea-
water, end
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC~7701 | | Aroctor 1260 | Crangon
crangon | BSA | | less than 10
(T2) | a*(contin-
uous ae-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Aroctor 1262 | Agonus
cataphractus | BSA | | less than 10
(T2) | a*(contin-
uous aer-
ation, sea-
water, and | same as above | Portmann, et
a1 (1971),
AMIC-7701 | | Aroctor 1262 | Cardlum edule | BSA | | less than 10
(T2) | daily solution renewal) a*(continuous aeration, sea water, and daily solution renewal) | • | Portmann, et
al (1971),
AMIC-7701 | |--------------|------------------------------|-----|---|----------------------|--
---|---| | Aroctor 1262 | Crangon
crangon | BSA | | less than 10
(T2) | as(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | _ | Portmann, et
al (1971),
AMIC-7701 | | Arsenic | Alosa
pseudo-
harengus | FL | Great Lakes - Superior, Michigan, and Erie | 0.023(residue) | | Trace element content of fish from Lakes Superior, Michigan, and Erle was determined by activation analysis. Whole body and liver residues were determined. Concentrations varied with species and take. Other elements found were: antimony - 5 to 100 ppb, barium - 0.2 ppm, cesium - 3 ppb, lanthanum - 1 to 20 ppb, mercury - 10 ppb, rhenium - 0.5 to 5 ppb, rubildium - 0.06 to 6 ppm, scandium - 2 ppb, setenium - 0.1 to 2 ppb, silver - 0.001 ppb. | Lucas, et al
(1970),
AHIC-3778 | | Arsenic | Coregonus
artedil | FL | Great Lakes
- Superior,
Hichigan,
and Erie | 0.069(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Arsenic | Coregonus
clupeaformls | FL | Great Lakes
- Superior,
Michigan,
and Erle | 0.014(residue) | | same as above | Lucas, et at
(1970),
AMIC-3778 | | Arsenic | Coregonus
hoyl | FL | Great Lakes
- Superior,
Michigan,
and Erie | 0.063(residue) | •• | same as above | Lucas, et al
(1970),
AMIC-3778 | | Arsenic | Prosoplum
cylindraceum | FL | Great Lakes - Superior, | 0.0056(residue) | | same as above | Lucas, et at
(1970), | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|------------------------------------|----|---|---|---|--|--------------------------------------| | | | | Michigan,
and Erie | | | | AHTC-3778 | | Arsenic | Salvelinus
namaycush | FL | Great Lakes - Superior, Michigan, and Erie | 0.049(residue) | | same as above | Lucas, et al
(1970),
ANIC-3778 | | Arsenic | 0smerus
mordax | FL | Great Lakes - Superlor, Michigan, and Erie | 0.020(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Arsenic | Carasslus
auratus | FL | Great Lakes
+ Superior,
Michigan,
and Erie | 0.006(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Arsenic | Notropls
hudsonius | FL | Great Lakes
- Superior,
Michigan,
and Erie | 0.0035(residue) | | same as above | Lucas, et al
(1970),
AHIC-3778 | | Arsenic | Perconsis
omiscomaycus | FL | Great Lakes + Superior, Hichigan, and Erie | 0.025(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Arsenic | Roccus
chrysops | FL | Great Lakes - Superior, Hichigan, and Erie | 0.098(residue) | | same as above | Lucas, et al
(1970),
AHIC-3778 | | Arsenic | Perca
flavescens | FL | Great Lakes
- Superior,
Michigan,
and Erie | 0.007(residue) | | same as above | Lucas, et al
(1970),
ANIC-3778 | | Arsenic | Stizostedion
vitreum
vitreum | FL | Great Lakes
- Superior,
Hichigan,
and Erie | 0.098(residue) | | same as above | Lucas, et at
(1970),
AMIC-3778 | | Arsenic | Coregonus
clupeaformis | FL | Moose Lake,
Can. | 0.09 (residue) | | Concentrations of 13 toxic elements in dressed fish from heavily industrialized and non-industrialized | Uthe, et at
(1971),
AMIC-3819 | areas were determined. Only mercury exceeded regulatory limits, and concentrations of most elements were essentially the same in fish from both areas. | Arsenic | Coregonus
ctupeaformis | FL | Lake
Ontarlo,
Can. | 0.7 (residue) | | same as above | Uthe, etat
(1971),
AMIC-3819 | |-----------------|---------------------------|--------------------|--------------------------|--------------------------|--|---|-------------------------------------| | Arsenic | Esox Tuclus | FL | Moose Lake,
Can. | 0.05 (residue) | | same as above | Uthe, et al (1971),AMIC-3819 | | Arsenic | Esox luclus | FL | Lake St.
Plerre, Can. | 0.09 (residue) | | same as above | Uthe, et
AL(1971),
AMIC-3819 | | Arsenic | Esox fuclus | FL | Lake Erie,
Can. | 0.05 (residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Arsenic | Osmerus
mordax | FL | Lake Erie,
Can. | 0.15 (residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Arsenic | Perca
flavescens | FL | Lake Erle.
Can. | 0.05 (residue) | | same as above | Uthe, et
AL(1971),
ANIC-3819 | | Asulum (K salt) | Rasbora
heteromorpha | BCFA
and
BSA | | 5,260 (T1,
hardwater) | a*.c.e.f.
hard (Hw)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | One hundred slxty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster (19
69),
AMIC-5425 | | Asulum (K sait) | Rasbora
heteromorpha | BCFA
and
BSA | | 1,700 (T1,
softwater) | a*,c.e,f,
hard (HW)
or soft
(SW)
synthetic
dilution | same as above | Alabaster (19
69) ,
AMIC-5425 | | Coapound | Organism | | Fleld
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |---------------------|-------------------------|--------------------|-------------------|---|--|---|--| | | | | | | for some
species | | | | Asuntol (sheep dip) | Rasbora
heteromorpha | BCFA
and
BSA | | 0.046 (12) | a*,c,e,t, hard (HH)or soft (SH) synthetic ditution water, or seawater for some species | same as above | Alabaster,
(1969),AMIC-
5425 | | Atles 1901 | Cardium edule | AZA | | 33-100 (12) | ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
e!
(1971),AMIC-
7701 | | Atlas 1901 | Crangon
crangon | BSA | | 100-330 (72) | as(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Aftes 1901 | Pandalus
montagui | AZB | | 33-100 (72) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971).
AMIC-7701 | | Aflavar | Rasbora
heteromorpha | BCFA
and
BSA | | 1,300 (12) | or soft | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 order: | Alabaster
(1969),
AMIC-5425 | | | Þ | |---|----| | | Į, | | ì | ĩ | | | | | | thetic
dilution
water, or
seawater
for some
species | of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | |-----------|--|---------------|--------------------------|--|---|---| | Atrezine | Carcinus BSA
maenas | | greater
than
100 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
at (1971),
AMIC-7701 | | Atrazine | Cardium edule BSA | . | greater than
100 (TZ) | as (contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | <u>.</u> | Portmann, et
al (1971),
AMIC-7701 | | Atrazine | Crangon BSA
crangon | | 10-33 (T2) | aw(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann, et
al (1971).
AMIC-7701 | | Avadex BW | Rasbora BCF
heteromorpha end
BSA | ĺ | 6 (T2) | as,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water collutants showed a wide range of toxicity scanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments
Variables,
Controlled
or Noted | Comments | Reference | |--------------------------------|-------------------------|--------------------|-------------------|---|--|---|---| | Avadex | Rasbora
hateromorpha | BCFA
and
BSA | | 8.2 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW)synthe
tic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Azlnphosmethyl | Fish (not
specified) | | | greater than 0.01-0.1 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mandestey-
Thomas(1971)
AMIC-1056 | | Azinphosmethyi | Carcinus
maenas | BSA | | 0.033-0.1 (12) | ation, see. | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychiorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Az inphosme _i thy i | Cardium edule | BSA | | greater than 10 (T2) | as (continuous aerution, sea water, and daily solution renewal) | | Portmann, et
al (1971).
AMIC-7701 | | Azinphosmethyi | Crangon
crangon | BSA | | 0.0003-0.001
(T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | | Portmann, et
al (1971),
AMIC-7701 | | lz inphosme thy i | Limanda | 8SA | | 0.01-0.03 (T2) | a*(contin- | same as above | Portmann, et | | | limanda | | | | uous aer-
ation, sea
water, and
daily
solution
renewal) | | al (1971),
AMIC-7701 | |----------------------|--|--------------------|-------------|--------------|--|---|---| | Azinbhosmethyl | Pandalus
montagui | BSA | •• | 0.0003-0.001 | a*(contin-
uous aer-
ation, sea
water, end
daily
solution
renewal) | - | Portmann, et
al (1971),
AMIC-7701 | | Azinphos methyl | Rasbora
heteromorpha | BCFA
and
BSA | | 0.076 (T2) | dilution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of machitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Bacterial endotoxins | Salmo
gairdneri
(400-500 g) | ι | | 10 (NTE) | | Salmon and frout were injected with endotoxins prepared from Escherichia coli and Aeromonas salmonicida. No significant cardiovascular response or effect on liver tryptochan pyrrolase activity in vitro occurred. It was concluded that metabolic effects of bacterial endotoxins in salmonids are qualitatively different from those of higher vertebrates. | Wedemeyer,
et al
(1968),
AMIC-3774 | | Bacterial endotoxins | Oncorhynchus
kisutch
(400-500 g) | ι | | 10 (NTE) | | same as above | Wedemeyer, et
al (1968),
AMIC-3774 | | ₿alən | Gammarus
Tasclatus | AZB | | 1.1 (T4) | a* | Of the aquatic weed herbicides evaluated, Dictone was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals | | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Pom | Experimental
Variables,
Controlled
or Noted | Comments | Reference | |-------------|-------------------------|--------------------|-------------------|---|---|---|---| | | | | | | ге | epresent important food chain links. | | | Banner DG01 | Crangon
crangon | BSA | | 10-33 (T2) | ation, rea-po
water, and in
daily ev
solution or
renewal) pu | One hundred-forty surface active gents, solvent emuisitiers, pesticides, plychlorinated biphenyls, pure norganic, and organic chemicals were valuated against as many as ten marine reganisms. The authors noted that most ublished data of this type deal with exicity of chemicals to freshwater reganisms. | Portmanne et
al (1971),
AHIC-7701 | | Benner OG02 | Crangon
crangon | BSA | | 10 (T2) | as(contin-
uous aer-
ation, sea-
water, and
daily
solution
renowal) | same as above | Portmann, et
al (1971),
AHIC-7701 | | Banner DG03 | Crangon
crangon | BSA | | 10-33 (T2) | as (continuous aeration, sea-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Banner OGO4 | Crangon
crangon | BSA | | 10-33 (TZ) | a*(contin-
uous aer-
ation, sen-
water, and
daily
solution
renewal) | seme as above | Portmann, et
al (1971),
AMIC-7701 | | 8erben | Rasbora
heteromorpha | BCFA
and
BSA | | 0.91 (T2) | or ml
SOFT(SH) wl
synthetic of | One hundred sixty-four esticides, wetting agents, and iscellaneous water pollutants showed a lide range of toxicity spanning 12 orders f magnitude. Knowing the toxicity and ercentage of all components of a | Alabaster
(1969),
AMIC-5425 | | : | Þ | |---|----| | i | J. | | Ĺ | پر | | - | ~ | | | | | | | water, or
seawater
for some
species | formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most foxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | |----------------|---|----|--|---|--|---|-----------------------------------| | Barium | Paralabrax
clathratus | FN | Scattergood
Steam Plant,
LosAngeles,
Cal. | muscle | | Fish collected from an
effluent pipe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normat sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nicket. Silver, barium, lithium, and lead showed the least differences. The author concluded that trace element analysis of fissues could be used to determine the effect of pollutants on marine organisms. | | | Barlue | Paratabrax
clathratus | FM | Catatina
Island, Cat. | i.7 (dorsa)
muscie
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Barlum | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | | | same as above | Stapleton
(1968),AMIC-
5988 | | Berium | Paratabrax
ctathratus | FM | Catalina
Island, Cal. | 1.3 (ventral
muscle
residue) | ••• | same as above | Stapleton
(1968),
AMIC-5980 | | Barlum | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | | | same as above | Stableton
(1958),
AMIC-5980 | | 8ariu = | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 2.6
(gonads
residue) | | same as above | Stapleton
(1968),
AHIC-5980 | | Barlum | Paralabrax
clathratus
(gravid
females) | FM | Catalina
Island, Cal. | 2.2
(gonads
residue) | •• | same as above | Stapleton
(1968),
AMIC-5980 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |-----------|--------------------------|-----|--|---|---|---------------|-----------------------------------| | 8arlum | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
LosAngeles,
Cat. | | | same as above | Stapleton
(1968).
AMIC-5980 | | Berlum | Paratabrax
ctathratus | FH | Catalina
Island, Cal. | 1.8
(fiver
residue) | | same as above | Stapleton
(1968).
AMIC-5980 | | Barium | Parainbrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | ?.8 (integument
residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Bariue | Paralahrax
clathratus | FH | Catalina
Island, Cal. | 1.5
(Integument
residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Deriue | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
LosAngeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | larium | Paralahrax
clathratus | FH | Catalina
Island, Cal. | ?
(heart
residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Derive | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
LosAngeles,
Cal- | 5.8 (eyeball
residue) | | seme as above | Stapleton
(1968).
AMIC-5980 | | lariue | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 9.1
(eyebsil
residue) | | seme as above | Stableton
(1968),
AMIC-5980 | | Basol AD6 | Crangon
crangon | BSA | | 10-33 (72) | a*(contin-
uous acr-
ation, sea-
water, and
daily
solution
renewal) | | | | \triangleright | |------------------| | ì | | w | | 9 | | | | Basol 99 | Rasbora
heteromorpha | BCFA
and
BSA |
42 (T2,
hardwater) | a*,c,e,f, hard (HW) or soft (SW) syn- thetic dilution water, or seawater for some species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),AMIC-
5425 | |-------------|--------------------------------------|--------------------|----------------------------|--|---|-----------------------------------| | Basol 99 | Rasbora
heteromorpha | BCFA
and
BSA |
32 (T2,
softwater) | at,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Bayer 39007 | Rasbora
heteromorpha | BCFA
and
BSA |
14 (TZ,
hardwater) | a*,c,e,f,
hard
(HW) or
soft (SW)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Bayer 39007 | Rasbora
heferomorpha | BCFA
and
BSA |
7.5 (TZ,
softwater) | a*,c,e,f,
hard
(HW) or
soft (SW)
synthetic
dilution
water, or
seawater
for some
species | same as above | Atabaster
(1969),
AMIC-5425 | | Baytuscide | Morone
saxatitis
(fingerlings) | BSA |
0.78 (T3) | a,c,d,e,f,
p | All compounds were investigated because of their probable usage in hatchery production of white bass. Compounds that can be used at recommended concentrations were Aquathol, Casaron, Lindane, and Terramycin concentrate. | Wellborn
(1971),
AMIC-5571 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments
Variables,
Controlled
or Noted | Comments | Reference | |----------|-------------------------|---------------------|-------------------|---|---|---|------------------------------------| | | | | | | | Those that should not be used were Acriftavine, Bayluscide, Malachite green oxalate, and Malathion. | | | Baytex | Orconectes
nals | FP | Pratt,
Kansas | 0.1 (K4) | a,b,c,d,e,
f,g,p | Baytex applied at various rates up to 250 ppb resulted in significant reduction of crayfish. Ponds treated at less than 100 ppb had to be retreated to eradicate crayfish. This chemical appears to have utility in fish culture for controlling crayfish. | Ray, et af
(1970),
AMIC-5433 | | Beytex | Procambarus
simulans | FP | Pratt,
Kansas | 0.1 (K4) | a,b,c,d,e,
1,g,p | same as above | Ray, etal
(1970),
AMIC-5433 | | Baytex | Channel
catfish | FP | Pratt,
Kansas | 0.1 (NTE4) | a,b,c,d,e,
f,q,p | same as above | Ray, et
al(1970),
AMIC-5433 | | Baytex | Roccus
saxatilis | FP | Pratt.
Kansas | 0.1 (NTE4) | a,b,c,d,e,
f,q,p | same as above | Ray, et
al(1970),
AMIC-5433 | | Baytex | Oragonfiles
(farvae) | FP | Pratt,
Kansas | 0.1 (K4) | a,b,c,d,e,
f,q,p | same as above | Ray, et
al(1970),
AMIC-5433 | | Baytex | Whiriigig
beetles | FP | Pratt.
Kansas | 0.1 (K4) | a,b,c,d,e,
1,g,p | same as abov e | Ray, et
al(1970),
AMIC-5433 | | Baytex | Backswimmers | FP | Pratt,
Kansas | 0.1 (K4) | a,b,c,d,e,
f,q,p | same as above | Ray, et al
(1970),AMIC
5433 | | Bayfex | Ictal unus
punctatus | 8 2 8 | | 1.68 (T4) | | Organochlorine insecticides were the most toxic compounds, organophosphates intermediate, carbamates the least toxic. Brown trout was the species most susceptible to organochlorines, coho salmon the most susceptible to carbamates, and goldfish were the least susceptible of all species. Safe concentrations established by bloassays with salmonids or | (1970),
AMIC-5510 | centrarchids would likely be safe for cyprinids and ictaiurids. Safe levels for ictaiurids or cyprinids would probably be hazardous for centrarchids and salmonids. The use of goldfish in bloassays was discouraged. | Baytex | Ictalurus
melas | BSA | | 1.62 (T4) | a,
synthetic
test water | same as above | Macek, et
a!(1970),
AMIC-5510 | |------------|--------------------------|------|----|-----------|-------------------------------|------------------------|-------------------------------------| | Baytex | Carasslus
auratus | BSA | | 3,40 (T4) | a,
synthetic
test water | same as above | Macek, et
at(1970),
AMIC-5510 | | Baytex | Cyprinus
carplo | 82A | | 1.16 (T4) | a,
synthetic
test water | same as above | Macek, et
at(1970),
AMIC-5519 | | Baytex | Pimephales
promelas | BSA | | 2.44 (T4) | a,
synthetic
test water | same as above | Macek, et
81(1970),
AMIC-5510 | | Baytex | Lepomls
macrochirus | BSA | ~- | 1.38 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Baytex | Lepomls
microlophus | BSA | ~~ | 1.88 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Boytex | Micropterus
saimoides | AZB | | 1.54 (T4) | a,
synthetic
test water | same as above | Macek, et
at(1970),
AMIC-5510 | | Baytex |
Salmo
galrdneri | BZA | | 0.93 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Baytex | Salmo trutta | BSA | | 1.33 (74) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Baytex | Oncorhynchus
klsutch | BSA | | 1.32 (74) | a,
synthetic
test water | same as above | Macek, eta!
(1970),
AMIC-5510 | | Baytex | Perca
flavescens | BSA | | 1.65 (T4) | a,
synthetic
test water | same as above | Nacek, et
at(1970),
ANIC-5510 | | Baywood 43 | Rasbora | BCFA | | 880 (72) | a*,c,e,1, | One hundred sixty-four | Alabaster | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments Variables, Controlled or Noted | Comments | Reference | |--------------------|-------------------------|--------------------|-------------------|---|--|---|---| | | heteromorpha | and
BSA | | | or
SOFT(SW)
synthetic
dilution
water, or
seawater | pesticides, wetting agents, and miscellareous water pollutants showed a wide range of toxicity soanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | (1969),
AMIC-5425 | | Benazoiin | Rasbora
heteromorpha | BCFA
end
BSA | | 325 (T2) | at,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Bensul I de | Gammarus
fasclatus | BSA | | 1.4 (T4) | a* | Of the aquatic weed herbicides evaluated, Dictone was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | | | OMC (plus lindane) | White sucker | FRL | Hisc. states | 0.01-0.22
residue (SB) | | The Bureau of Sport Fisheries continued its fish monitoring program by collecting 147 composite fish samples from 50 nationwide monitoring stations during the fall of 1969. Fish were analyzed for residues of 11 organochtorine insecticides, lipids, and PCB**s. | Henderson,
et al
(1971),
AMIC-1407 | | IHC (plus findame) | Yellow perch | FRL | Hisc. states | 0.01-0.31 | •• | same as above | Henderson | ## residue (SB) | | | | | | | | residue (SB) | | | et al
(1971),
AMIC-1407 | |-----|-------|----------|--------------------|-----|-------|--------|---------------------------|-------------|-------|---| | внс | (plus | (enabni | Chain
pickerel | FRL | Misc. | states | 0.07
residue (58) |
same as | above | Henderson,
et al
(1971),
AHIC-1407 | | внс | (plus | lindane) | White catfish | FRL | Misc. | states | 0.23 residue
(SB) |
Same as | above | Henderson,
et al
(1971),
AMIC-1407 | | внс | (plus | findane) | White perch | FRL | Hlsc. | states | 0.18-0.26
residue (58) |
same as | above | Henderson,
et al
(1971),
AMIC-1407 | | внс | (plus | lindane) | Goldfish | FRL | Misc. | states | 0.51 residue
(SB) |
same as | | Henderson,
et al
(1971),
AHIC-1407 | | внс | {plus | (Indane) | Pumpkinseed | FRL | Misc. | states | 0.09 residue
(SB) |
same as | | Henderson,
et a!
(1971),
ANIC-1407 | | внс | (plus | lindane) | Largemouth
bass | FRL | Misc. | states | 0.01-0.47
residue (SB) |
same as | | Henderson,
et al
(1971),
AHIC-1407 | | внс | (plus | (Indane) | Brown
bullhead | FRL | Misc. | states | 0.01-4.37
residue (SB) |
same as | | Henderson,
et al
(1971),
ANIC-1407 | | внс | (plus | lindane) | Carp | FRL | Misc. | states | 0.01-0.99
residue (SB) |
same as | | Henderson.et
al (1971),
ANIC-1407 | | внс | (plus | tindane) | Channel
catfish | FRL | Misc. | states | 0.01-1.50
residue (SB) |
same as | | Henderson,
et al
(1971),
AMIC-1407 | | внс | (plus | lindane) | Redhorse
sucker | FRL | Misc. | states | 0.02-0.18
residue (SB) |
same as | | Henderson,
ef al
(1971),
AMIC-1407 | | Compound | Organisa | | Fleld
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental
Variables,
Controlled
or Noted | Comments | Reference | |---------------------|--------------------|-----|-------------------|---|--|---------------|---| | BHC (otus findane) | Gizzard shad | FRL | Misc. states | 0.06-0.10
residue (SB) | - | same as above | Henderson,
et a;
(1971),
AMIC-1407 | | BHC (plus findane) | Spotted
sucker | FRL | Hisc. states | 0.01-0.03
residue (SB) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | BHC (olus lindane) | Bluegliis | FRL | Misc. states | 0.01-0.02
residue(SB) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | BHC (plus findane) | Striped
suffet | FRL | Hisc. states | 0.28-1.14
residue (S8) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | BHC (plus lindane) | Blue catfish | FRL | Hisc. states | 0.14 residue
(SB) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | BHC (plus lindane) | Rock bass | FRL | Misc. states | 0.01-0.14
residue(SB) | •- | same as above | Henderson,
et al
(1971),
AMIC-1407 | | BHC (plus findane) | Freshwater
drum | FRL | Hisc. states | 0.01 residue
(82) | | same as above | Henderson,
et al
(1971),
AHIC-1407 | | BHC (plus lindane) | Bloater | FRL | Hisc. states | 0.03-0.08
residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | HC (olus lindane) | Lake
whitefish | FRL | Misc. states | 0.05
residue(SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | BHC (plus Indane) | Lake trout | FRL | Hisc. states | 0.01-0.01
residue (SB) | | same as above | Henderson,
et al | | | | | | | | | | | | (1971),
AMIC-1407 | |-----|--------|-----------|------------------------|-----|-------|--------|---------------------------|----|---------------|---| | внс | (plus | (Indane) | White crapple | FRL | Misc. | states | 0.07-2.19
residue (SB) | | same as above | Henderson,
et ai
(1971),
AMIC-1407 | | внс | (plus | (Indane) | Blgmouth
buffalo | FRL | Mlsc. | states | 0.03-0.07
residue (SB) | ~- | same as above | Henderson,
et al
(1971),
AMIC-1407 | | внс | (p lus | 11ndane) | Small mouth
buffalo | FRL | Misc. | states | 0.08 residue
(58) | | same as above | Henderson,
et a!
(1971),
AMIC-1407 | | внс | (plus | findane) | Flathead
catfish | FRL | Misc. | states | 0.02 residue
(SB) | | same as above | Henderson,
et al
(1971),
AMIC-1487 | | внс | (plus | lindane) | Goldeye | FRL | Hlsc. | states | 0.02-0.08
residue (SB) | | same as above | Henderson, et
at (1971),
AMIC-1407 | | внс | (plus | (Indane) | Walleye | FRL | Mlsc. | states | 0.01 residue
(SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | внс | (plus | lindane) | Sauger | FRL | Misc. | states | 0.01 residue
(SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | внс | (plus | lindane) | Flannelmouth
sucker | FRL | Misc. | states | 0.02 residue
(SB) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | внс | (plus | lindane) | Black
builhead | FRL | Misc. | states | 0.01 residue
(SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | внс | (plus | (Indane) | White bass | FRL | Misc. | states | 0.01 residue
(SB) | | same as above | Henderson.et
a! (1971),
AMIC-1407 | | внс | (plus | 1 indane) | Black crapple | FRL | Misc. | | 0.01-0.03
residue (SB) | | same as above | Henderson,
ef al
(1971),
AMIC-1407 | | Compound | Oceanics | | Field | Toxicity, Active Ingredient, Ppm | Experimental Variables, Controlled | Camments | Reference | |--------------------|-----------------------|-----|--------------|----------------------------------|------------------------------------|---------------------------------|---| | | Organism | | Location | | or Noted | Comments | Kelenanca | | BHC (plus lindane) | Largescale
sucker | FRL | Misc. states | 0.01-0.12
residue (SB) | | same as abov e | Henderson,
et al
(1971),
AMIC-1407 | | BHC (plus lindane) | Small mouth
bass | FRL | Hisc. states | 0.01 residue
(SB) | | same as above | Henderson,
et
al
(1971),
AMIC-1407 | | BHC (plus lindane) | Northern
squawfish | FRL | Misc. states | 0.01 residue
(SB) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | BHC (plus lindane) | Chiselmouth | FRL | Misc. states | 0.02-0.03
residue (SB) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | BHC (plus lindane) | Rainbow trout | FRL | Misc. states | 0.01 residue
(SB) | | same as above | Henderson, et al (1971), AMIC-1407 | | BHC (plus lindane) | Bridgello
sucker | FRL | Misc. states | 0.02 residue
(SB) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | BHC (plus lindane) | Arctic
grayling | FRL | Misc. states | 0.12 residue
(SB) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | BHC (plus lindane) | Round
whitefish | FRL | Misc. states | 0.04 residue
(SB) | | same as above | Henderson,
et al
{1971},
AMIC-1407 | | BHC (plus (indane) | Longnose
sucker | FRL | Hisc. states | 0.01-0.03
residue (SB) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | знс | Puntius ticto | | | 70 (T4) | a,c,d,e,f | Of the pesticides investigated, | Bhatla | | Þ | |---| | L | | + | | - | | | | | | | | | the most toxic was Klofos followed in decreasing order by Sumithion, Malathion, Formithion, Dimecron, Sevin, and BHC. The author cites the need for more selective pesticides nontoxic to fish or antagonistic agents for reducing fish toxicity. | (1971),
ANIC-5423 | |--|------------------------|-----|---|---|---|---| | внс | Carcinus
maenas | BSA |
greater than
100 (TZ) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AHIC-7781 | | внс | Cardium edule | BSA |
greater than 10 (TZ) | a#(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
at (1971),
AHIC-7701 | | внс | Crangon
crangon | BSA |
0.001-0.003 | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | same as above | Portmann, et
ai (1971).
AHIC-7701 | | Bls hydroxymethyl)
phosphinic acid | Pimephaies
prometas | BSA |
. 29.0 (T 4) | aw,d,e,o,
and Fe | Malathion and its hydrolysis products were evaluated with the finding that one such product (diethyl fumarate) was more toxic than Malathion to fathead minnows. Synergism occurred between Malathion and two products of hydrolysis. Continuous exposure resulted in increased toxicity. | Bender
(1969),
AMIC-3787 | | Bis (dimethy) thio
carbomoy)) disulfide | Phormidium
ambiguum | L |
0.5-10.0
(66percent
growth
inhibited 14) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be | Otto (1970),
AMIC-592 | | Compound | Organism | | Fleid
Location | Toxicity, Active Ingredient, Ppm | Experiment:
Variables,
Controlled
or Noted | comments | Reference | |--------------------------------|------------------------|--------------------|-------------------|--|---|---|-------------------------------------| | | | | | | | more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling atgae by environmental management. No practical environmental means were found. | | | Bis (tri-n-butyl)
fin oxide | Phormidium
ambiguum | ι | | 0.5-10.0 (100
percent
growth
inhibited ll;) | | same as above | Otto (1970),
AHIC-892 | | Borasceu | Səlmo
gairdneri | BCFA
and
BSA | | 1,800 (TZ) | dilution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magritude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Bourbon | Betta
splendens | ι | _ | 2850 (SB 6 hr) | a* | The effects of ethanol and bourbon on the aggressive response of Slamese fighting fish were determined. Ethanol increased all1 show (aggressiveness) and bourbon and bourbon conqueners decreased it. The authors tentatively concluded that the delayed effect of the conquener resulted from involvement of a different physiological mechanism and that this may be related to hangover effects in man. | Raynes, etal
(1968),AHIC
5712 | | BP 1002 | Carcinus
maenas | BSA | | 10-33 (T2) | | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychiorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine | | | Þ | |---| | 1 | | Ø | | | | | | | | | solution
renewal) | published da | The authors noted that most
ata of this type deal with
chemicats to freshwater | | |----------|----|-------|------------------------|-----|----|-----------------------------|---|--------------|--|---| | | BP | 1002 | Cardium edule | BSA | | 33-100 (72) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | | as above | Portmann, et
al (1971),
AHIC-7701 | | | ВР | 1002 | Crangon
crangon | BSA | | 3.3-10 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | | as above | Portmann, et
al (1971),
AMIC-7701 | | <u>-</u> | BP | 1002 | Limanda
Iimanda | BSA | | 10-33 (72) | as(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | | as above | Portmann. et
al (1971).
AHIC-7701 | | | ВР | 1002 | Ostrea edutis | BSA | | 33-100 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | | as above | Portmann, et
al (1971),
AHIC-7701 | | | ВР | 1002 | Pandalus
montagul | BSA | | 3.3-10 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | | as above | Portmann, et al (1971),
AMIC-7701 | | | BP | 1100X | Agonus
cataphractus | BSA | •• | greater than
10,000 (T4) | a*(contin-
uous aer- | same | as above | Portmann, et al (1971), | | : | C | | |---|----|---| | ì | | | | ď | ٠. | | | ` | 2 | l | | (| Ξ | | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |----------|------------------------|-----|-------------------|---|---|---------------------------|--| | | | | | | ation, sea-
water, and
daily
solution
renewal) | | AHIC-7701 | | BP 1100X | Cardium edute | BSA | | greater than
10,000 (T4) | as (continuous acration, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AHIC-7701 | | BP 1100X | Crangon
crangon | BSA | | greater than
10,000 (T4) | as(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as abov e | Portmann, et
at (1971),
AHIC-7701 | | BP 1100 | Agonus
cataphractus | BSA | | 1000-3300 (T2) | as(continuous aeration, seawater, and daily solution renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | 8P 1100 | Cardlum eduie | BSA | | 1000-3300 (72) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
a!
(1971),AMIC~
7701 | | BP 1100 | Crangon
crangon | BSA | | greater than
3300 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portpann, et
al (1971),
AMIC-7701 | | - | |---| | - | | | | V | | ŭ | | | | 8P | Fundulus
heteraciltus | BSA | | 0.00001-0.00022
(74) | a*,c,e,and
synthetic
seawater | | LaRoche, et
al (1978),
AMIC-445 | |-------------
---------------------------|--------------------|---|-------------------------|---|---|---------------------------------------| | 6P | Nereis virens | BSA | | 0.00001-0.00017
(T4) | a*,c,e,
and
synthetic
seawater | same as above | LaRoche,et
al (1970),
AMIC-445 | | Brakontrole | Rasbora
heferomorpha | BCFA
and
BSA | | 62 (T2) | dllutlon | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Bromine | Coregonus
clupeaformis | FL | Great lakes
- Superior,
Michigan,
and Erie | 0.1(residue) | | Trace element content of fish from Lakes Superior, Michigan, and Erle was determined by activation analysis. Whole body and liver residues were determined. Concentrations varied with species and lake. Other elements found were; antimony - 5 to 100 ppb, barlum - 0.2 ppm, ceslum - 3 ppb, lanthanum - 1 to 20 ppb, mercury - 10 ppb, rhenium - 0.5 to 5 ppb, rubidium - 0.06 to 6 ppm, scandium - 2 ppb, setenium - 0.1 to 2 ppb, sliver - 0.001 ppb. | Lucas, et al
(1970),
AMIC-3778 | | Bromine | Coregonus
hoyi | FL | Great Lakes - Superior, Michigan, and Erie | 0.01 (residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Bromine | Prosoplum
cylindraceum | FL | Great Lakes - Superior, Hichigan, and Erie | 0.5 (residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Bromine | Salvelinus
namaycush | FL | Great Lakes
- Superior, | 0.5(residue) | | same as above | Lucas, et al
(1970), | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | ol
Comme∩ts | Reference | |---------------------|------------------------------------|--------------------|---|---|--|---|--------------------------------------| | | | | Michigan,
and Eria | | | | AMIC+3778 | | Bromine | Cerassius
auratus | FL | Great Lakes
- Superior,
Michigan,
and Erie | 0.3(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Browlne | Roccus
chrysops | FL | Great Lakes - Superior, Michigan, and Erie | 0.8(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Browling | Stizostedion
vitreum
vitreum | FL | Great Lakes
- Superior,
Hichigan,
and Erie | 0.8(residue) | | same as above | Lucas, et at
{1970},
AMIC-3778 | | 8ramephos | Resbore
heferomorpha | BCFA
and
BSA | | 0.62 (T2) | ab,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-tour nesticides, writing agents, and miscellaneous water poliutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AHIC-5425 | | Bromoxynli (K sait) | Rasbora
heteromorpha | BCFA
and
BSA | | 60 (T2,
hardwater) | a*,c,e,f,h
and (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),AMIC-
5425 | | Bromoxynii (K sait) | Rasbora
heteromorpha | BCFA
and
BSA | | 5.0 (T2,
softwater) | a",c,e,f,
hard (HW)
or soft | same as above | Alabaster
(1969),
AMIC-5425 | | | r | |---|---| | | ı | | 1 | J | | (| À | | | | | | | (SW) synthetic dilution water, or seawater for some species | | | |----------------------------------|--------------------------|--------------------|----|------------------------|--|-----------------------------------|-----------------------------------| | Busan 881 | Rasbora
heteromorpha | BCFA
and
BSA | | 0.65 (T2) | a*,c,e,f,
hard
(HH) or
soft (SW)
synthetic
dilution
water, or
seawater
for some
species | percentage of all components of a | Alabaster
(1969),AHIC-
5425 | | Busan 90 | Rasbora
heteromorpha | BCFA
and
BSA | | 1.8 (T1,
hardwater) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Busan 90 | Rasbora
heteromorpha | BCFA
and
BSA | •• | 1.2 (T1,
softwater) | a*,c,e,f,
hard
(HN) or
soft (SH)
synthetic
dijution
water, or
seawater
for some
species | same as above | Alabaster
(1969),ANIC-
5425 | | Cadmium chioride (as
cadmium) | : Agonus
cataphractus | AZB | - | 33 (T4) | as (contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | | | | Compound | Organism | | Field
Location | Toxicity, Active Ingredient, Ppm | Experiments Variables. Controlled or Noted | | Reference | |----------------------------------|--------------------------|-------|-------------------|----------------------------------|---|--|---| | Cadwium chloride (as
cadmium) | Cardium edule | 8 S A | | 3.3 (T4) | ar(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | 30.00 | Portmann, et
al (1971),
AMIC-7701 | | Cadmium chloride (as
cadmium) | Crangon
crangon | AZB | | 1.0 (T2) | as(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann, et
ai (1971),
AMIC-7701 | | Cad≋lum chłoride | Fundutus
heterociitus | L | | 50 (SB2) | a*,c | Abnormalities observed included intestine, kidney, gilt filaments, and resolratory tameliae. The earliest and most severe was the intestine (and mucus within one hr). Eosinophilla occurred after 4 hr exposure, and lymphocytethrombocyte irregularities occurred after 12 hr exposure. The authors suggest broader study of blood/pathology as a means for developing a water pollution classification similar to those used in mammalian toxicology. | Gardner.et
al (1901,
amic-3827 | | admium sulfate (as
d) | Acroneurla | BSA | | 32 (T14) | a*,c,d,e,1 | Ephemerella (mayfly) was the most sensitive aquatic insect of those studied, and copper the most broadly toxic metal. The authors suggest that aquatic insects may not be as sensitive to heavy metals as fish. | Warnick, et
al(1969),
AMIC-3767 | | admium sulfate (as
d) | Ephemerella | BSA | | 2 (14) | a*,c,d,e,f | same as above | Warnick, et
al(1969),
AMIC-3767 | | admium suffate (as
d) | Hydropsyche | BSA | •• | 32 (T10) | a*,c,d,e,f | same as above | Warnick, et
al(1969),
AMIC-3767 | | | Þ | |---|---| | - | | | \ | 5 | | \ | 5 | | | | | Cadmium | Alosa
pseudo-
barengus | FL | Great Lakes Superlor, Michigan, and Erie | 0.00006
residue) |
Trace element content of fish from Lakes Superior, Michigan, and Erle was determined by activation analysis. Whole body and liver residues were determined. Concentrations varied with species and lake. Other elements found were: antimony - 5 to 100 ppb, barium - 0.2 ppm, cesium - 3 ppb, lanthanum - 1 to 20 ppb, mercury - 10 ppb, rhenium - 0.5 to 5 ppb, rubidium - 0.06 to 6 ppm, scandium - 2 ppb, selenium - 0.1 to 2 ppb, silver - 0.001 ppb. | Lucas, et al
(1970),
AHIC-3778 | |---------|------------------------------|----|---|---------------------
--|--------------------------------------| | Cadmlum | Coregonus
artedli | FL | Great Lakes
- Superior,
Michigan,
and Frie | 0.0016(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cadmium | Coregonus
clupeaformis | FL | Great Lakes
- Superior,
Michigan,
and Erie | 0.0002(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cadmium | Coregonus
hoyl | FL | Great Lakes
- Superior,
Hichigan,
and Erie | 0.0005(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cadmlum | Prosopium
cylindraceum | FL | Great Lakes
- Superior,
Michigan,
and Erie | 0.0004(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cadmium | Salvelinus
namaycush | FL | Great Lakes
- Superior,
Michigan,
and Erle | 0.003(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cadmlum | Osmerus
mordax | FL | Great Lakes - Superior, Michigan, and Erle | 0.00007
residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cadmium | Carassius
auratus | FL | Great Lakes
- Superior,
Michigan,
and Erie | 0.0014(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cadmium | Notropis
hudsonlus | FL | Great Lakes
- Superior,
Michigan,
and Erie | 0.0001(residue) |
same as above | Lucas, et a!
(1970),
AMIC-3778 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experiment:
Variables,
Controlled
or Noted | Comments | Reference | |----------|------------------------------------|----|---|---|---|---|--------------------------------------| | Cad#ium | Percopsis
omiscomaycus | FL | Great Lakes
- Sucerior,
Michigan,
and Frie | 0.0001(residue) | | same as above | Lucas, et at
(1970),
AMIC-3778 | | Cadmium | Roccus
chrysops | FL | Great Lakes - Superior, Michigan, and Erie | 0.0002(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Cadmium | Perca
flavescens | FL | Great Lakes
- Superior,
Hichigan,
and Erie | 0.0005(residue) | | same as above | Lucas, et al
(1970).
AMIC-3778 | | Cadmium | Stizostedion
vitneum
vitneum | FL | Great Lakes
- Superior,
Michigan,
and Erie | 0.0002(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Cadmium | Coregonus
clupeaformis | FL | Moose Lake,
Can. | 0.05 (residue) | | Concentrations of 13 toxic elements in dressed fish from heavity industrialized and non-industrialized areas were determined. Only mercury exceeded requiatory limits, and concentrations of most elements were essentially the same in fish from both areas. | Uthe,et al
(1971),
AMIC-3819 | | Cadmium | Coregonus
clupeaformis | FL | Lake
Ontario.
Can. | 0.05 (residue) | | same as above | Uthe,et al
(1971),
AMIC-3819 | | Cadmium | Esox lucius | FL | Moose Lake,
Can. | 0.05 (residue) | | same as above | Uthe, et al
(1971),AMIC=
3819 | | Cadmium | Esox lucius | FL | Lake St.
Pierre, Can. | 0.05 (residue) | | same as above | Uthe, et
AL(1971),
AMIC-3819 | | Cadalus | Esox lucius | FL | Lake Erle.
Can. | 0.05 (residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Cadelus | Osmerus
mordex | FL | Lake Erle.
Can. | 0.06 (residue) | •- | same as above | Uthe, et
AL(1971),
AMIC-3819 | |---------|---|----|---|----------------------------------|----|---|------------------------------------| | Cadelun | Perca
flavescens | FL | Lake Erie,
Can. | 0.05 (residue) | | same as above | Uthe, et
AL(1971),
AMIC=3819 | | Cadalua | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | muscle | | Fish collected from an effluent pipe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nickel. Silver, barlum, lithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of pollutants on marine organisms. | Stapleton
(1968),
AMIC-5980 | | Codmium | Paratabrax
ctathratus | FH | Catalina
Island, Cal. | 3 (dorsal
muscle
residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Cadmium | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | muscle | | same as above | Stapleton
(1968),
AMIC-5980 | | Cadmlum | Paralabrax
clathratus | FH | Catailna
Island, Cal. | 2 (ventral
muscle
residue) | | same as above | Stapleton
(1968).
AMIC-5989 | | Cadmium | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | residue) | | Same as above | Stapleton
(1968),
AMIC-5980 | | Cadwium | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 6 (gonads
residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Cedmium | Paralabrax
clathratus
(gravid
females) | FH | Catalina
Island, Cál. | 3
(gonads
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Compound | Organisa | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |------------------|--------------------------|-----------|---|---|--|---|--| | Cadelum | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stableton
(1968),
AMIC-5980 | | Cadelus | Paralahrax
clathratus | FĦ | Catalina
Island, Cal. | 24 (liver
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Ce de i un | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | 6 (integument residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Cadmium | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 2 (Integument
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Cadplum | Paralabrax
clathratus | FĦ | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-598D | | Cadmium | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 2 (heart
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Cadmium | Paratabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Codmium | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 4 (eyeball
residue) | | same as above | Stapleton
(1968).
AMIC-5980 | | Calcium chioride | Lepomis
macrochirus | BSA,
L | | 10,650 (T4) | as,e, and
synthetic
dilution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bioassays with at least three components of the food web. | Patrick, et
al (1968),
AMIC-5720 | | Calcium chioride | Nitzschla
Hinearis | BSA,
L |
3,130 (T5) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968).
AMIC-5720 | |---------------------------------------|------------------------|-----------|--|---
---|--| | Calcium hypochiorite
(as Ci) | Phormidium
ambiguum | ι |
0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling atgae by environmental management. No practical environmental means were found. | Otto (1970),
AMIC-892 | | Caicium oxide (olus
Sulfuric acid) | Ictalurus
punctatus | ı |
24,200-30,400
(K2, 5-9 ppm
DO) | a*,c,e*,f, | Large and small caffish were subjected to a neutral synthetic waste approximating that being dumred by the Sunflower Army Ammunition Plant into the Kansas River. There were no apparent differences between the responses of the large and small fish. Fish in the neutral mixture swam continuously with particles of the mixture clinqing to the mucus of the skin. Also, the mucus stripped away in places, and strands of mucus extended from the aills. The degree of coating of the skin, stripping of the mucus, and mortality depended on the amcunt of solids kept in suspension by aeration. | Sparks, et
al (1969),
AMIC-5902 | | Calcium oxide (plus
Sulfuric acid) | Ictalurus
punctatus | ί |
367-509(67
percent K
22-28, 5-9 ppm
DO) | a*,c,e*,f,
o | same as above | Sparks, et
al(1969),
AMIC-5902 | | Calcium sulfate | Lepomis
macrochirus | BSA,
L |
2,980 (T4) | a*,e, and
synthetic
dilution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bioassays with at least three components of the food web. | Patrick, et
al (1968),
AMIC-5720 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |-----------------|--------------------------|-----------|---|---|---|---|--| | Celcium sulfate | Nitzschia
Hinearis | 85A.
L | | 3,200 (T5) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | Celcium | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | muscle | | Fish collected from an effluent pioe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nickel. Silver, harium, lithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of pollutants on marine organisms. | | | Calcium | Paralabrax
clathratus | FM | Catalina
Island, Cat. | 567 (dorsal
muscle
residue) | | same as above | Stapleton
(1958),
AMIC-5980 | | Calcium | Paralahrax
clathratus | FĦ | Scattergood
Steam Plant,
LosAngeles,
Cal. | | | same as above | Stapleton
(1968).
AMIC-5980 | | Catcium | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 543 (ventral
muscle
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Calcium | Paralabrax
clathratus | FĦ | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Celciue | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 565 (gonads
residu <u>ė</u>) | | same as above | Stapteton
(1968),
AMIC-5980 | | Calcium | Paralabrax
clathratus
(gravid
temates) | FM | Catalina
Island, Cal. | 550 (gonads
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | |--------------------------|---|--------------------|---|---------------------------------|---|-----------------------------------|-----------------------------------| | Calcium | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Calcium | Paratabrax
çlathratus | FM | Catailna
Island, Cal. | 265 (11ver
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Calcium | Paral abrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | (Integument | | same as above | Stapleton
(1968),
AMIC-5980 | | Calcium | Paralabrax
clathratus | FH | Catalina
Tsiand, Cai. | 1915
(integument
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Calcium | Paral abrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | residue) | •• | Same as above | Stapleton
(1968),
AMIC-5980 | | Calcium | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 480 (heart
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Cafcium | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | 19,000 (eyeball
residue) | | same as above | Stableton
(1958),
AMIC-5980 | | Calcium | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 26,200(eyeball
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Canat bank
weedkilter | Rasbora
heteromorpha | BCFA
and
BSA | | 610 (T2) | a*,c,e,f,
hard(HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | percentage of all components of a | Alabaster
(1969),AMIC-
5425 | | Compound | Organism | | Fleld
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |----------|--------------------------------------|------|-------------------|---|---|--|--| | | | | | | | Testing the actual material as sold was found to be essential. | | | Captan | Fish (not specified) | | | greater than 0.1-1.0 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mawdesley-
Thomas
(1971),AMIC-
1056 | | Capten | Brachydanlo
rerio
(larvae) | ι | | 1.0 (T 30 min) | | Foloet, Difolatan, and Captan were found to be toxic to zebrafish larvae within 90 min. Difolatan was most toxic while Captan was least toxic. Effects observed were cessation of heartbeat and loss of pigmentation. The authors recommended this as a sensitive, rapid bloassay for these and related compounds. | Abedl, et al
(1968), AMIC-
3717 | | Carbaryl | Fish (not specified) | ** | ~- | greater than
1.0-10.0 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mawdesley-Th
omas(1971)
AHIC-1056 | | Carbaryl | Salvelinus
fontinalis
(1.15 g) | BCFA | | 1,070 (T4) | as,c,d,
e,f,1,o,
sulfate,
copper,
manganese,
iron, and
chromium | Four insecticides were evaluated on four fish species at two body weights. Standard method bioassay procedures were followed. Symptomology was also reported. Generally, toxicity was significantly different at the two body weights. I.e., more toxic at the lower body weight, except for Malathion. Well-defined
experimental conditions were said to result in truer measurement of toxicity. | (1971),
AMIC-1812 | | Carbaryl | Salvelinus
fontinalis
(2.04 g) | BCFA | | 1,450 (T4) | as,c,d,
e,f,1,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et al
(1971),
AMIC-1812 | | Carbaryl | Salmo clarki | BCFA | | 1.5 (14) | a#,c,d, | same as above | Post, et al | | ➣ | | |---|--| | 7 | | | ယ | | | | | (0.37 g) | | | | e,f,i,o,
sulfate,
copper,
manganose,
iron, and
chromium | | (1971),AMIC-
1812 | |------|----------|------------------------------------|------|------------|-------------|---|---|-------------------------------------| | | Carbaryl | Salmo clarki
(1.30 g) | BCFA |
2.2 (T | 41 | aw,c,d,
e,f,i,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et al
(1971),AMIC-
1812 | | | Carbaryi | Salmo
gairdneri
(1.24 g) | BCFA |
1.47 (| T4) | as,c,d,
e,f,1,0,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et al
(1971),
AMIC~1812 | | A-63 | Carbary1 | Oncorhynchus
kisutch (.50
g) | BCFA |
1.3 (T | 4) | at,c,d,
e,f,i,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et al
(1971),
AMIC-1812 | | | Carbaryl | Ictalurus
punctatus | 8SA |
15.80 | (T4) | | Organochlorine insecticides were the most toxic compounds, organophosphates intermediate, carbamates the least toxic. Brown trout was the species most susceptible to organochlorines, coho saimon the most susceptible to carbamates, and goldfish were the least susceptible of all species. Safe concentrations established by bloassays with salmonids or centrarchids would likely be safe for cyprinids and ictalurids. Safe levels for ictalurids or cyprinids would probably be hazardous for centrarchids and salmonids. The use of goldfish in bloassays was discouraged. | (1970),
AMIC-5510 | | | Carbaryi | Ictalurus
melas | BSA |
20.00 | (T4) | a,
synthetic
test water | same as above | Macek, eta!
(1970),
AMIC-5510 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | 1
Comments | Peference | |----------------|----------------------------------|-------|-------------------|---|---|---|--------------------------------------| | Carbaryl | Carassius
auratus | AZB | | 13.20 (T4) | a,
synthetic
testwater | same as above | Macek.et al
(1970).
AMIC-5510 | | Carbaryl | Cyprinus
carpio | 82A | | 5.28 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Carbaryi | Pimephales
promelas | BSA | | 14.60 (T4) | a,
synthetic
test water | same as above | Macek,et al
(1970).
AMIC-5510 | | Carbaryl | lepomis
macrochirus | 8 Z A | | 6.76 (T4) | a.
synthetic
test water | same as above | Macek, et at
(1970).
AMIC-5510 | | Carbaryl | Lepomis
microlophus | BSA | | 11.20 (T4) | a,
synthetic
test water | same as above | Macek.et al
(1970).
AMIC-5510 | | Carbaryl | Micropterus
satmoldes | BSA | | 6.40 (T4) | a,
synthetic
test water | same as above | Macek,et al
(1970).
AMIC-5510 | | Carbaryl | Salmo
galrdneri | BSA | | 4.34 (14) | a,
synthetic
test water | same as above | Macek, eta)
(1970),
AMIC-5510 | | Carbaryl | Salmo trutta | BSA | | 1.95 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Carbaryl | Oncorhynchus
klsutch | BSA | | 0.76 (14) | a:
synthetic
test water | same as above | Macek,et al
(1970),
AHIC-5510 | | Cerberyl | Perca
flavescens | BSA | | 0.75 (T4) | a,
synthetic
test water | same as above | Macek, etal
(1970),
AMIC-5510 | | Cerbon dloxide | Salmo
gairdneri
(yearling) | AZB | | 35 (SR1) | a,c, bi-
carbon-
ate, and
total
solids | Bicarbonate in blood serum of
brook trout rose to 5 times greater than
that of contro. Increase was slow, being
half complete at 6 hr. Sodium and
inorganic phosphate were not affected,
but serum chioride increased. The | | ## authors note that the data indicate an environmental stress not related to problems of osmotic adaptation. | Carbophenothion | Rasbora
heteromorpha | BCFA
and
BSA |
2.3 (T2) | a*,c,e,f,
hard (HW)
or
SOFT(SW)
synthetic
dliution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AHIC-5425 | |-----------------|-------------------------|--------------------|------------------------|--|---|---| | Carbyne | Rasbora
heteromorpha | BCFA
and
BSA |
0.5 (T2) | as,c,e,f,
hard (Hw)
or soft
(Sw) syn-
thetic
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Carbyne | Rasbora
heteromorpha | BCFA
and
BSA |
1.4 (T2) | as,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Carbyne | Asterias
rubens | 854 |
3.3-10 (K 1
HR) | | One hundred-forty surface active agents, solvent emutsitiers, pesticides, polychtorinated biphenyls, pure inorganic, and organic chemicals were evatuated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Carbyne | Cardium edute | BSA |
100 (T2) | e*(contin-
uous aer- | same as above | Portmann, et al (1971), | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Pom | Experiments
Variables
Controlled
or Noted | Comments | Reference | |-----------|------------------------------|--------------------|-------------------|---|--|---|---| | | | | | | ation, seawater, and daily solution renewal) | | AMIC-7701 | | Carbyne | Crangon
crangon | BSA | | 3.3-10 (72) | as (contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Casol | Pimephales
promeles | BSA | | 32.0 (T4) | c,d,e,f | Toxicity of six oil spill dispersants was determined along with BOD values. Pond water was used as diluent and oil was included in the experiment. Oil markedly reduced toxicity of all dispersants. Data are given as "most probable" 96-hr TL sub m. | 71111ch
(1969) •
AMIC-2909 | | Casol | Plmechales
promelas | BSA | | 4.4 (MSC) | c,d,e,f | same as above | Z11tlch
(1969),AMIC-
2909 | | Casol | Blochemical
oxygen demand | L | | 610,000 | c,d,e,f | same as above | Z1111ch
(1969),
AMIC-2909 | | Casoron G | Rasbora
heteromorpha | BCFA
and
BSA | | 100 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes
pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425
S | | Casoron 133 | Rasbora
heteromorpha | BCFA
and
BSA |
13 (72) | a*,c,e,f,
hard (HM)
or
SOFT(SM)
synthetic
ditution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | |---------------------------------|--------------------------------------|--------------------|------------------------------|---|---|---| | Cesoron | Morone
saxatilis
(fingerlings) | BSA |
6,200 (T4) | a,c,d,e,f, | All compounds were investigated because of their probable usage in hatchery production of white hass. Compounds that can be used at recommended concentrations were Aquathol, Casaron, Lindane, and Terramycin concentrate. Those that should not be used were Acrifiavine, Rayluscide, Malachite green oxalate, and Malathion. | Hellborn
(1971),
AHIC-5571 | | Casoron | Cardium edule | BSA |
greater than
100 (T2) | as (contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychtorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
at (1971),
AHIC-7701 | | Cesoron | Crangon
crangon | BSA |
3.3-10 (T2) | a*(continuous aer-
ation, sea
water, and
dail;
solution
renewal) | | Portmann, et
at (1971),
AMIC-7701 | | Cd C12 . 2.5 H20 (as Cd 2 plus) | Crangon
septemspinosa | BSA |
0.32(T4) | a*,c,e,
SSM | Although data cited were taken at 20 C and 2.0 percent salinity, varying temperature and salinity were also studied. Higher temperature (20 C) and lower salinity (5.0 percent) resulted in greater susceptibility of mummichogs to cadmium. TL sub 25, TL sub 50, and TL sub 75 for 24 and 48 hr are also presented. Post treatment mortality of mummichogs was also observed for considerably prolonged periods (up to 50 days). Teleosts were less susceptible than crustacea. Residue levels In mummichogs were also reported, e.g., whole body residues in excess of 86 mg Cd/kg body ash resulted in death within 5 wk. A review and discussion of results are also included. | Elster
(1971),
Amic-1621 | | Compound | Orqanism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimentat Variables, Controlled or Noted | Comments | Reference | |------------------------------------|----------------------------|-------|-------------------|---|---|---------------|---| | | | | | | | | | | Cd C12 . 2.5 H20 (a
Cd 2 plus) | s Fundutus
heterociltus | BSA | | 55.0 (T4) | 8*,c,e,
S2M | same as above | Eisler
(1971),
AHIC-1621 | | Cd C12 . 2.5 H20 (a
Cd 2 plus) | s Paqurus
Iongicarpus | BSA | | 0.32 (T4) | a*,c,e,
SSM | syode 26 sme2 | Eisler
(1971),
AMIC-16 <i>2</i> 1 | | Cd C12 • 2•5 H20 (a
Cd 2 plus) | s Palaemonetes
vulgaris | BSA | | 0.42 (T4) | a*,c,e,
SSM | same as above | Elsler
(1971).
Amic-1671 | | Cd C12 . 2.5 H20 (a
Cd 2 plus) | s Asterias
forbesi | BSA | | 0.82 (T4) | a*,c,e,
55M | same as above | Elsier
(1971),
AhIC-1621 | | Cd C12 . 2.5 H20 (a | s Mya arenaria | BSA | | 2.2 (T4) | a*,c,e,
SSM | same as above | Elster
(1971),
AMIC-1671 | | Cd C12 . 2.5 H2N (a
Cd 2 plus) | s Carcinus
maenus | BSA | | 4.1 (T4) | a*,c,e,
SSM | same as above | Eister
(1971),
AHIC-1621 | | Cd C12 . 2.5 H20 (a
Cd 2 plus) | s Urosalpinx
cinerea | BSA | | 6.6 (T4) | a*,c,e,
SSM | same as above | Eister
(1971),
AMIC-1621 | | Cd C12 . 2.5 H20 (as
Cd 2 plus) | s Fundulus
majails | BSA | | 21.0 (T4) | a*,c,e,
SSM | same as above | Elster
(1971),
ANIC-1621 | | Cd Cl2 . 2.5 H2n (as
Cd 2 plus) | s Mytitus
edutis | B S 4 | | 25.0 (T4) | a*,c,e,
SSM | same as above | Eisler
(1971),
Amic-1621 | | Cd C12 . 2.5 H20 (as
Cd Z plus) | s Cyprinodon
variegatus | BSA | | 50.0 (T4) | a*,c,e,
SSM | same as above | Elsler
(1971),
Amic-1621 | | Cd Cl2 . 2.5 H20 (as
Cd 2 plus) | Nassarlus
obsoletus | BSA | | 10.5 (T4) | a*,c,e,
SSH | same as above | Eisler
(1971),
AHIC-1621 | |------------------------------------|--|-------------------|-----------------------------------|-----------------------------|---------------------|---|---------------------------------------| | Cd C12 . 2.5 H20 (as
Cd 2 plus) | Nerels virens | BSA | | 11.0(T4) | 8*,c,e, | same as above | Elster
(1971),
AMIC-1621 | | Chevron NI-O | Steelhead
trout
(fingerlings) | BSA | | 3.2 (T4) | | Evaluation of 11 oil dispersants resulted in a ranking for each and a recommendation for use according to the ranking. Ranking was based on toxicity and oil dispersal effectiveness. Corexit 7764 appeared to have the least toxicity with fair to good oil dispersion capability. | Tracy, et
a1(1969),
AHIC-3834 | | Chevron NI-0 | Coho salmon
(fingerlings) | BSA
in
situ | Hood Canal
Hoodsport,
Wash. | 0.001 (K) | | same as above | Tracy, et al (1969),
AMIC-3834 | | Chioral hydrate | Negaprion.
brevirostris
(1-3 kg) | BSA | - | 300 (SB 1 hr) | a,c,e | Data from study of drug effects on young lemon sharks were treated mathematicativ to demonstrate applicability of classical rate theory to the study of chemical shark deterrents. Incapacitation (narcosis) was the primary parameter timed for effectiveness. This was usually quite rapid for the more effective drugs. | Baldridge (19
69) ,
AHIC-3832 | | Chiorasine | Gammarus
pseudo-
limnaeus | BCF | | 0.22 (T4) | at,c,d,e,f,r*,s | Chloramine toxicity was very carefully studied using weight reduction and reproduction over 15 to 21 week exposure periods. Loss of weight and ability to reproduce were observed at concentrations less than that observed for toxicity. The towest chloramine concentration having no significant effect was less than 3.4 ppb for Gammarus and 0.017 ppb for the fathead minnow. | Arthur, et
al (1971),
AMIC-3290 | | Chloramine | Pimephales
promelas | BCF | | 0.15 (T3)
0.09-0.15 (T4) | a*,c,d,e,
f,r*,s | same as abov e | Arthur, et
al (1971),
AMIC-3299 | | Chlorawine | Daphnia magna | BCF | | 0.001 (K 3-5) | at,c,d,e,
f,rt,s | same as above | Arthur, et
al(1971),
AMIC- 3290 | | Chloramphenicol | Mercenarla | ι | | 74.3 (T2) | | The effect of 52 pesticides on | Davis, et at | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |-----------------|--------------------------------------|--------------------|-------------------|---|--|--|-------------------------------------| | | mercenarla
(eggs) | | | | | embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larvat growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Chioramphenicol | Mercenarla
mercenarla
(larvae) | t | | 50.0 (T12) | | same as above | Davis, et
at(1969),
AMIC-5990 | | Chloremphenicol | Phormidium
ambiguum | i | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CUSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CUSO4 formulated with certain wetting agents was more toxic than CUSO4 alone. Copper
chloramine was also found to be more toxic than CUSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Otto(1970),
AHIC-892 | | Chiorax | Salmo
gairdneri | BCFA
and
BSA | | 1,800 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. | Alabaster
(1969),
AMIC-5425 | | | | | | | | Testing the actual material as sold was found to be essential. | | |-------------|--------------------|-----|-------|--------|---------------------------|--|---| | th I ordane | White sucker | FRL | Mlsc. | states | 0.12-0.44
residue (SB) |
The Bureau of Sport Fisheries continued its fish monitoring program by collecting 147 composite fish samples from 50 nationwide monitoring stations during the fall of 1969. Fish were analyzed for residues of 11 organochtorine insecticides, tipids, and PCB"s. | Henderson, et
al (1971),
AMIC-1407 | | Chiordane | White perch | FRL | Mlsc. | states | 1.75 residue
(SB) |
same as above | Henderson,
et al(1971),
AMIC-1407 | | Chlordane | Largemouth
bass | FRL | Misc. | states | 0.95 residue
(SB) |
Same as above | Henderson,
etal (1971),
AMIC-1407 | | Chiordane | Brown
builhead | FRL | Misc. | states | 0.31 residue
(SB) |
same as above | Henderson,
etal (1971),
AMIC-1407 | | Chlordane | Carp | FRL | Misc. | states | 0.09-0.68
residue (SB) |
same as above | Henderson,
et al(1971),
AHIC-1407 | | Chiordane | Channel
catflsh | FRL | Misc. | states | 0.09-1.01
residue (SB) |
same as above | Henderson, et
at (1971),
AMIC-1407 | | Chiordane | Redhorse
sucker | FRL | Misc. | states | 0.20 residue
(SB) |
same as above | Henderson,
etal (1971),
AMIC-1407 | | Chiordane | Gizzard shad | FRL | Misc. | states | 13.5 residue
(SB) |
same as above | Henderson,
et al(1971),
AMIC-1407 | | Chi ordane | Striped
mullet | FRL | Misc. | states | 0.09 residue
(SB) |
same as above | Henderson,
et al(1971),
AMIC-1407 | | Chlordane | Blue catfish | FRL | Misc. | states | 1.30 (SB) |
same as above | Henderson,
et al
(1971),AMIC-
1407 | | Chiordane | Walleye | FRL | Misc. | states | 0.10 residue
(SB) |
same as above | Henderson,
ef al
(1971),AHIÇ- | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments
Variables,
Controlled
or Noted | Comments | Reference | |------------|---|------------------|-----------------------|---|---|---|---------------------------------------| | | | | | | | | 1407 | | Chiardene | Lepomis
cyanellus
(Resistant) | BSA | | 3.28 (T2) | •* | Green sunfish from Belzoni, Miss-were resistant to Chiordane, Heptachior, Lindane, and Strobane, but not to Parathion. Golden shiners from the same tocation were resistant to Lindane and Strobane, tolerant to Chiordane and Heptachior, and susceptible to Parathion. Lack of resistance to Parathion indicated tack of acricultural usage of organophosphates in that area. Resistant fish were compared to susceptible ones cotlected at Starkville. | a1(1970),
AMIC-5471 | | Chlordane | Lepomis
cyanellus
(Susceptible) | BSA | - | 0.09 (72) | a* | same as above | Minchen, et
al(1970),
AMIC-5471 | | Chlordane | Notemlgonus
crysoleucas
(Resistant) | BSA | | 2.33 (12) | a* | same as above | Minchew, et
al(1970),
AMIC-5471 | | ch lardane | Notemigonus
crysoleucas
(Susceptible) | BSA | | 0.41 (T2) | a• | same as above | Minchew,
etal (1970),
AMIC-5471 | | chiordane | Palaemonetes
kadlakensis
(resistant) | BSA | | 0.0779-0.334
(T1) | | Bloassays were conducted with shrimp from three areas of intensive pesticide use and from an unexposed area. Previously exposed shrimp were from 1 to 25 times more resistant than unexposed shrimp. Both types of shrimp were also exposed in cages to waters of the contaminated areas. Susceptible shrimp suffered 66 percent more mortality than did resistant shrimp. The toxicity of the insecticides ranked in descending order was as follows: most toxic, Endrin, DDT, Methyl parathlon, Parathlonimedium toxicity, Guthlon, Lindane, Toxaphene, Strobane: lease toxic Chiordane, Sevin, and Heptachior. | | | Chiordane | Copepods
(Cyclops
bicuspidus
Cyclops
varicans,
Eucyclops | FL
and
BSA | State
College,MIss | 0.30 (K2) | | The response of posticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Betzoni and non-resistant | Naqvi, et a
(1969),
AMIC-5979 | | | Þ | |---|----| | | ٠. | | (| | | | agilis, Macrocyclops albidus, Orthocyclops modestus) | | | | | | species at State College. Comepods, clams, shalls, and sludge worms from Belzoni were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic levels. | | |-----------------|--|--------------------|-------------------|-------|------------|--|---|--------------------------------------| | Chiordane | Copepods (Cyclops bicuspidus, Cyclops varicans, Cyclops vernalis, Eucyclops agilis, Macrocyclops albidus, Orthocyclops modestus) | FL
and
BSA | Beizoni,
Miss | KS) | (96percent | | same as above | Naqvi, et al
(1969),
AMIC-5979 | | Chlordane | Tubifex
tubifex | FL
and
BSA | Belzoni,
Miss. | 1.50 | (NTE) | | same as above | Nagvi, et
81(1969),
AMIC-5979 | | Chiores | Salmo
galrdneri | BCFA
and
BSA | | 1,100 | (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Chlorfenvinphos | Rasbora
heteromorph a | BCFA
and
BSA | | 0.25 | (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969).
AMIC-5425 | | Chiorfenvinphos | Rasbora
heteromorpha | BCFA
and
BSA | | 3.55 | (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) | same as above | Alabaster
(1969),AMIC-
5425 | | Compound | Organis a | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |-------------------------|-------------------------|--------------------|-----------------------------------|---|---
---|--| | | | | | | synthetic
dilution
water, or
seawater
for some
species | | | | Chiorine | Pimephales
prometas | BSA
(HL) | Grand River,
Wyoming,
Mich. | 0.07-0.15 (T4) | | The indicated toxic levels of chloride occurred in 3.84 percent and 7.04 percent dilutions of wastewater effluent in river water. Sublethal effects were noted at dilutions as low as 1.97 percent. The authors note that this chemical at low concentrations 0.05 mg/l may seriously degrade fish populations in rivers. | Zillich, et
at (1969),
AHIC-2878 | | Chlorine | Fathead
minnow | BSA
(ML) | Grand River,
Lansing,
Mich. | 8.33
percent(KI,
WHD) | | Striking sublethal effects were noted at tower dilutions. Dechlorination did not remove toxicity of the mastewater since toxic effects were noted at dilutions of 42 and 50 percent of dechlorinated waste water. Cyanide was present at 0.2 mg/l and may have had some influence on the results. The authors concluded that the waste water caused severe degradation of the Grand River. | | | Chiorofiurazoi e | Rashora
hateromorpha | BCFA
and
BSA | | 0.13 (Y2) | orsoft
(SH)
synthetic
dilution | One hundred sixty-four nesticides, wetting agents, and miscellaneous water nollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essentiat. | Alabaster
(1969),
AMIC-5425 | | Chloropropylate | Rasbora
hateromorpha | BCFA
BSA | | 20 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn- | same as above | Alabaster
(1969),
ANIC-5425 | | | | | | | thetic
dilution
water, or
seawater
for some
species | | | |----------------------------|-------------------------|--------------------|---------|--------------|---|--|---| | Chiorthiamid | Rasbora
heteromorpha | BCFA
and
BSA | | 30 (12) | a*,c,e,f,
hard (HW)
or
SOFT(SW)
synthetic
dilution
water, or
seawater
for some
species | 34.114 33 45013 | Alabaster
(1969),
AMIC-5425 | | Chromates (as
chromium) | Agonus
cataphractus | BSA | | 33-100 (12) | ation, sea
water, and
daily
solution
renewal) | agents, solvent emulsifiers, pesticides, | Portmann, et
al (1971),
ANIC-7701 | | Chromates (as
chromium) | Asterlas
rubens | BSA | | 33-100 (T2) | ar(contin-
uous aer-
ation, sea-
water, end
daily
solution
renewal) | Same as above | Portmann, et
at (1971),
Amic-7701 | | Chromates (as chromium) | Cardlum edule | BSA | | 100-330 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | Same By above | Portmann, et
ai (1971),
AMIC-7701 | | Chromates (as
chromium) | Crangon
crangon | BSA | | 100 (T2) | as (contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | 30 33 4341 | Portmann, et
al (1971),
AMIC-7701 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | Comments | Reference | |------------------------------|------------------------------|-----|---|---|---|--|--| | Chromic chioridm (as
Cr) | Acroneurla | BSA | | 32 (17) | a*,c,d,e,f | Ephemeretta (mayfly) was the most sensitive aquatic insect of those studied, and copper the most broadly toxic metal. The authors suggest that aquatic insects may not be as sensitive to heavy metals as fish. | Warnick, et
at (1969),
AMIC-3767 | | Chromic chioride (as
Cr) | Ephemerella | BSA | | 2 (14) | a*,c,d,e,f | same as above | Warnick, et
al(1969),
AMIC-3767 | | Chromic chioride (as
Cr) | Hydropsyche | BSA | | 64 (T4) | a*,c,d,e,f | same as above | Warnick, et
al(1969),
AMIC-3767 | | Chromium trioxide
(as Cr) | Phormidium
ambiguum | ι | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Otto (1970),
AMIC-892 | | Chromium | Alosa
pseudo-
harengus | FL | Great Lakes
- Superior,
Michigan,
and Erle | 1.1(residue) | | Trace element content of fish from Lakes Superior, Michigan, and Erie was determined by activation analysis. Hhole body and liver residues were determined. Concentrations varied with species and lake. Other elements found were: antimony ~ 5 to 100 ppb, barium ~ 0.2 nom, cesium ~ 3 ppb, lanthanum ~ 1 to 20 ppb, mercury ~ 10 ppb, rhenium ~ 0.5 to 5 ppb, rubidum ~ 0.65 to 6 ppm, scandium ~ 2 ppb, selenium ~ 0.1 to 2 ppb, silver ~ 0.001 ppb. | Lucas, et al
(1970),
AMIC-3778 | | Chrozius | Notropis
hudsonius | FL | Great Lakes
- Superior,
Michigan,
and Erie | 5.5(residue) | | same as above | Lucas, et a!
(1970),
ANIC-3778 | |----------|---------------------------|----|---|----------------|----|---|--------------------------------------| | Chromium | Percopsis
omiscomaycus | FL | Great Lakes - Superlor, Hichigan, and Erie | 2.4(residue) | | same as above | Lucas, et at
(1970),
ANIC-3778 | | Chromium | Coregonus
clupeaformis | FL | Moose Lake,
Can. | 0.03 (residue) | | Concentrations of 13 toxic elements in dressed fish from heavily industrialized and non-industrialized areas were determined. Only mercury exceeded regulatory limits, and concentrations of most elements were essentially the same in fish from both areas. | Uthe, et
AL(1971),
AMIC-3819 | | Chromium | Coregonus
clupeaformis | FL | Lake
Ontarlø,
Can. | 0.02 (residue) | | same as above | Uthe, etal
(1971),
AMIC-3819 | | Chromium | Esox fucius | FL | Moose Lake,
Can. | 0.04 (residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Chromium | Esox fuclus | FL | Lake St.
Pierre, Can. | 0.03 (residue) | | same as abov€ | Uthe, et
AL(1971),
AMIC-3819 | | Chromium | Esox fucius | FL | take Erie,
Can. | 0.03 (residue) | •• | same as above | Uthe, et al
(1971),AMIC-
3619 | | Chromium | Osmerus
mordax | FL | Lake Erie.
Can. | 0.03 (residue) | •• | same as above | Uthe, et al
(1971),AMIC-
3819 | | Chromium | Perca
flavescens | FL | Lake Erie,
Can. | 0.07 (residue) | | same as above | Uthe, et al
(1971),ANIC-
3819 | | Chromium | Paral abrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | muscle | | Fish collected from an effluent ploe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nickel. Sliver, barium, lithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of pollutants on marine organisms. | Stapleton
(1968),
ANIC-5980 | | Compound | 0rgan1sm | | Fleid
Location | Toxicity. Active Ingredient. Ppm | Experimental
Variables, Controlled or Noted | Comments | Reference | |----------|--------------------------|----|---|------------------------------------|---|---------------|------------------------------------| | Chrowlum | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | 4.8 (eyeball
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Chromium | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 5.5 (eyebali
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Chromium | Paralahrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles.
Cal. | residue) | | same as above | \$tableton
(1968),
AMIC-5980 | | Chromium | Paralabrax
clathratus | FH | Catalina
Island, Cale | 1.7 (heart
residue) | | same as above | Stanteton
(1968),
AHIC-5980 | | Chromium | Paratabrax
clathratus | FM | Catalina
Island, Cal. | 1.7 (dorsal
muscle
residue) | | same as above | Stanteton
(1968),
AMIC-5980 | | Chromlum | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stableton
(1968),
AMIC-5980 | | Chromium | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 1.4 (ventral
muscle
residue) | | same as above | Staoleton
(1968),
AMIC-5980 | | Chromium | Paralabrax
clathratus | FĦ | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stableton
(1968),
AMIC-5980 | | Chromium | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 2.3 (gonads
residue) | | same as above | Stapleton
(1958),
AMIC-5980 | |-------------|---|-----|---|----------------------------|--|---|---------------------------------------| | Chromium | Paralabrax
clathratus
(gravid
temates) | FH | Catailna
Island, Cal. | 2.6
(qonads
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Chromium | Paralabrax
claihratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Chromium | Paralabrax
clathratus | FM | Catalira
Island, Cal. | 1.5 (liver residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Chromium | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Chromlum | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 1.4 (Integument residue) | | same as above | Stapleton
(1958),
AMIC-5980 | | Citric acid | Carcinus
maenas | BSA | | 160 (T2) | a*(contin-
uous mer-
ation, sea
water, and
daily
solution
renewal) | agents, solvent emulsifiers, pesticides, polychlorinated biphenyis, pure | | | CI | Fundulus
heterociltus | BSA | | 0.00014-0.0012
(T4) | and | A laboratory procedure based on Standard Methods for 96-hr toxicity determinations of crude oil and oil-dispersant mixtures was described. The dispersants varied considerably in toxicity, ranging from 0.01 to 7.1 mi/l. TL50 for 96 hr. These did not differ significantly from 240 hr values. The dispersants were designated as CX, DO, CI, OD, AO, PC, MM, TN, BP, and NA with no further description of their chemical nature or source. Only a few bloassays were conducted with shrimp. Mollusks and echinoderms were suggested as suitable test animals. The authors stated that the method could be used to test any product for toxicity in seawater. | LaRoche, ef
a! (1970),
AMIC~445 | | CI | Nerels virens | BSA | ** | 0.0002-0.0007
(T4) | a*,c,e,
and
synthetic
seawater | same as above | LaRoche,et
al (1970),
AHIC-445 | | Compound | Organism | _ | Field
Location | Toxicity,
Activa
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |-------------|------------------------|-----|-------------------|---|--|---|---| | Cleanogoi | Cardlum edule | BSA | | 10-33 (72) | ation, sea- | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychtorinated biphenyts, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Cleanosol | Crangon
crangon | BSA | | 33-100 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | same as above | Portmann, et
at (1971),
AMIC-7701 | | Cieanosai | Pandalus
montaqui | BSA | | 33 (12) | ar(contin-
uous acr-
ation, sea
water, and
daily
solution
renewal) | - | Portmann, et
al (1971),
AHIC-7701 | | Clophen A30 | Agonus
cataphractus | BSA | | greater than 10
(T2) | uous acr-
ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Clophen A30 | Cardium edule | BSA | | 3 (12) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | | Portmann, et
al (1971),
AHIC-7701 | | Clophen A30 | Crangon
crangon | BSA | | 0.03-1.0 (T2) | a*(contin-
uous aer-
ation, sea
water, and | - | Portmann, et
at (1971),
AMIC-7701 | | | | | | | daily
solution
renewal) | | | |---------------------------|------------------------|------------|-------------------|-------------------------|--|----------------|---| | Clophen A68 | Agonus
cataphractus | BSA | | greater than 10
(T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | 1- | Portmann, et
at (1971),
AMIC-7701 | | Clophen A60 | Cardium edule | BSA | | greater than 10
(T2) | a*(continuous aeration, sea water, and daily solution renewal) | !- | Portmann, et
al(1971),
AHIC-7701 | | Clophen A60 | Crangon
crangon | BS4 | | greater than 10 (TZ) | a*(continuous aer-
ation, sea
water, and
daily
solution
renewal) | ! - | Portmann, et
al(1971),
AMIC-7701 | | Clophen A 40 | Crangon
crangon | BSA | | 1.0-3.3 (T2) | a*(continuous aer-
ation, see
water, and
daily
solution
renewal) | 2- | Portmann, et
al (1971),
AMIC-7701 | | Claphen A 50 | Crangon
crangon | BSA | - | 3.3-10 (T2) | a*(continuous aer-
ation, sea
water, and
daily
solution
renewal) | 1 - | Portmann, et
at (1971),
AMIC-7701 | | CN, Cu, NI, Cr, and
Zn | Pimephales
promeias | BSACF (HL) | Grand River
at | between
1.25-3.75 | a,c,e, con
ductivity, | | 71111cn
(1969), | | Compound | Organism | - | Field
Location | Toxicity,
Active
Ingredient,
PDm | Experiment:
Variables,
Controlled
or Noted | Comments | Reference | |------------------------------|------------------------------|---------------|---|---|---|--|---------------------------------------| | | | | Wyoming, Mich
Igan | percent (T3) | Ni,Cu,Cr,
CN, and Zn | | AMIC-2906 | | CN, Cu, NI, Cr, and
Zn | Catostomus
commerson l | BSACF
(ML) | Grand River
at
Wyoming,Hich
igan | between
1.25-3.75
percent (T3) | a,c,e, conductivity,
Ni,Cu,Cr,
CN, and Zn | - same as above | 71111ch
(1969),
AMIC-2906 | | Cobaltous suffate
(as Co) | Acroneuria | BSA | | 32 (18) | a*,c,d,e,f | Ephemerella (mayfly) was the most sensitive aquatic insect of those studied, and copper the most broadly toxic metal. The authors suggest that aquatic insects may not be as sensitive to heavy metals as fish. | Warnick, et
al(1969),
AMIC-3767 | | Cobaltous sulfate
(as Co) | Ephemerelis | BSA | | 16 (74) | a*,c,d,e,f | same as
above | Warnick, et
et(1969),
AMIC-3767 | | Cobaltous sulfate
las Co) | Hydropsyche | BSA | | 32 (17) | a*,c,d,e,f | same as above | Warnick, et
a1(1969),
AMIC-3767 | | Cobal f | Alosa
psaudo-
harengus | FL | Great Lakes
+ Superior,
Michigan,
and Erie | 0.029(residue) | | Trace element content of fish from Lakes Superior, Michigan, and Erie was determined by activation analysis. Whole body and liver residues were determined. Concentrations varied with species and take. Other elements found were; antimony - 5 to 100 ppb, barium - 0.2 ppm, cesium - 3 ppb, lanthanum - 1 to 20 ppb, mercury - 10 ppb, rhenium - 0.5 to 5 ppb, rubldium - 0.06 to 6 ppm, scandium - 2 ppb, selenium - 0.1 to 2 ppb, sliver - 0.001 ppb. | Lucas, et a
(1970),
AMIC-3778 | | Cobalt | Coregonus
artedii | FL | Great Lakes - Superior, Michigan, and Erie | 0.020 (residue) | | same as above | Lucas, et a
(1970),
AMIC-3778 | | Cobalt | Coregonus
ctupeaformis | FL | Great Lakes
- Superior,
Michigan, | 0.023(residue) | ~~ | same as above | Lucas, et a
(1970),
AHIC-3778 | ## and Erle | Cobalt | Coregonus
hoyl | FL | Great Lakes - Superior, Hichigan, and Erie | 0.026(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | |--------|------------------------------------|----|---|-----------------|--|--------------------------------------| | Cobelf | Prosopium
cylindraceum | FL | Great Lakes - Superlor, Michigan, and Erie | 0.047(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cobelf | Salvel Inus
namaycush | FL | Great Lakes - Superlor, Michigan, and Erie | 0.033(residue) |
same as above | Lucas, et al
(1970),
AMIC-3775 | | Cobalt | Osmerus
mordax | FL | Great Lakes - Superior, Michigan, and Erie | 0.013(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cobalf | Notropis
hudsonius | FL | Great Lakes
- Superior,
Michigan,
and Erle | 0.033(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cobalf | Percopsis
omiscomaycus | FL | Great Lakes - Superior, Michigan, and Erie | 0.023(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cobalt | Roccus
chrysops | FL | Great Lakes - Superior, Michigan, and Erie | 0.043(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cobait | Perca
flavescens | FL | Great Lakes - Superior, Hichigan, and Erie | 0.120(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cobalt | Stizostedion
vitreum
vitreum | FL | Great Lakes Superior, Mic higan, and Erie | 0.045 (residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Cobalf | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | muscle |
Fish collected from an effluent pipe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element | Staoleton
(1968),
AMIC-5980 | | ; | > | |---|-------------| | • | L | | ١ | Ł | | ٦ | _ | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|---|----|--|---|---|--|-----------------------------------| | | | | | | | content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nickel, zinc, and chronium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nickel. Silver, barium, lithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of pollutants on marine organisms. | | | Cobal f | Paratabrax
clathratus | FM | Catalina
Island. Cal. | 2.2 (dorsa)
muscle
residue) | | same as abova | Stapleton
(1968),
AMIC-5980 | | Cobalt | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | muscle | | same as above | Stapleton
(1968),
AMIC-5980 | | Cobali | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 4.3 (ventra) muscle residue) | | same as above | Stapleton
(196%),
AMIC-5980 | | Cobalt | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | | | same as above | Stableton
(1968),
AMIC-5980 | | Cobalt | Paralabrax
clathratus | FH | Catatina
Istand, Cal. | 4.4 (gonads
residue) | | same as above | Stapleton
(1958),
AMIC-5980 | | Cobalt | Paraiahrax
ciathratus
(gravid
temaies) | FM | Catalina
Island, Cal. | 3.7(qonads
residue) | | same as above | Stapleton
(1968),
AHIC-5980 | | Cobalt | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | C | obalt | Paralabrax
clathratus | FM | Ćatalina
Island, Cal. | 1.9 (liver residue) |
same as above | Stapleton
(1968),
AMIC-5980 | |---|---|--------------------------|-----|--|--------------------------|--|--| | C | obal t | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | 1.8 (integument residue) | | Stap!!!!!!!
eton (1968),
AMIC-5980 | | c | obalt | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 1.4 (Integument residue) |
same as above | Stapleton
(1968).
AMIC-5980 | | c | obal t | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | | | Stapleton
(1968),
AMIC-5980 | | C | obalt | Paratabrax
clathratus | FM | Catalina
Island, Cal. | 1.2 (heart
residue) |
same as above | Stapleton
(1968),
AMIC-5980 | | C | obal t | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | 5.2 (eyeball
residue) |
same as above | Stableton
(1968),
AMIC-5980 | | C | obalt | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 5.1 (eyeball
residue) |
same as above | Stapleton
(1968),
AMIC-5980 | | c | ocoamine diacetate | Phormidium
ambiguum | L | | 0.5-10.0 (NTE) |
Of 74 chemicals evaluated as aigloides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chioramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Offo(1970).
AMIC-892 | | | oco
onoethanotamide
plus ethylene
xide, ethoxy | Cardlum edule | RSA | | greater than
100 (T2) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated bibhenyls, pure inorganic, and organic chemicals were | Portmann, et
al (1971),
AMIC-7701 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments Variables, Controlled or Noted | Comments | Reference | |--|--------------------|-----|-------------------|---|---|--|---| | monoethanolamide) | | | | | daily
solution
renewal) | evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | | Coco
monoethanolamide
(plus ethylene
oxide, ethoxy
monoethanolamide) | Crangon
crangon | BSA | | greater than
100 (T2) | as (continuous acration, sea-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Coco
monoethanolamide
(plus
ethylene
oxide, ethoxy
monoethanolamide) | Carcinus
maenas | BSA | | qreater than
100 (T2) | a*(continuous acration, seawater, and daily solution renewal) | same as above | Portmann, et
at (1971),
AMIC-7701 | | Coco
monoethano∣amide | Cardium eduie | BSA | | greater than
100 (T2) | a*(continuous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
at (1971),
AHIC-7701 | | Coco
monosthanotamide | Crangon
crangon | BSA | | greater than
100 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC~7701 | | Compass | Cardium edule | BSA | | greater than
100 (T2) | a*(contin-
uous aer-
ation, sea.
water, and
daily
solution | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychiorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most | Portmann, et
al (1971),
AHIC-7701 | renowal) published data of this type deal with toxicity of chemicals to freshwater organisms. | Compass | Crangon
crangon | BSA |
greater than
100 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | |--|-------------------------|--------------------|------------------------------|---|---|--| | Compass | Carcinus
maenas | BSA |
greater than
100 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann. et
al (197.1).
AHIC-7701 | | Cooper ^{es} s Fly dip
(new type) | Rasbora
heteromorpha | BCFA
and
BSA |
3.55 (12) | af.c,e,f;
hard(HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity soanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster,
(1969),AMIC-
5425 | | Copper chloride (as
Cu) | Lepomis
macrochirus | BSA, |
1.25 (T4) | a*, e, and
synthetic
dilution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bloassays with at least three components of the food web. | Patrick, et
al (1958),
AMIC-5720 | | Copper chloride (as
Cu) | Nitzschla
tinearis | BSA,
L |
0.81 (T5) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5729 | | Copper | Phormidium | t |
0.5-10.0 (16 | | Of 74 chemicals evaluated as | Otto (1978), | | Compound | Organism | | Fleid
Location | Toxicity, Active Ingredient, Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------------------------------|--------------------------------------|---|-------------------|----------------------------------|---|---|--| | methane-arsonate | ambiguum | | | percent growth
inhibited14) | | algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chicramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | AHIC-892 | | Copper salts | Fish (not specified) | | | greater than 0.1-1.0 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mandesley-
Thomas(1971)
AHIC-1056 | | Copper salt of
endothall | Phormidium
ambiguum | ι | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as atglicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 atone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of atgae in canals to determine whether there were leads to controlling algae by environmental means were found. | Otto (1970),
AMIC-892 | | Copper sodium
citrate (as Cu) | Watersipora
cucullata
(larvae) | L | | 0.63 (T 2 hr) | a,c,i, and salinity | This study was conducted to determine species of marine larvae suitable for use in test screening antifouling chemicals. A salina (brine shrimp) appeared to have the best potential for this purpose. A salina larvae sensitivity was greatest starting at age 20-80 hr, and tolerated relatively low pH (5.0). | Wisely, et (1967),
(1967),
AMIC-5708 | | Copper sodium
citrate (as Cu) | Bugula
neritina
(larvae) | L |
3.90 (T 2 hr) | a,c,i, and
salinity | l same as above | Wisely, et al
(1967),
AMIC-5708 | |---|---|---|--|------------------------|--|---------------------------------------| | Copper sodium
citrate (as Cu) | Spirorbis
lamellosa
(larvae) | L |
0.48 (T 2 hr) | a,c,i, and salinity | l same as above | Wisely, et al
(1967),
AMIC-5708 | | Copper sodium
citrate (as Cu) | Galsolaria
caespitosa
(larvae) | L |
2.90 (T 2 hr) | a,c,i, and
salinity | same as above | Wisely, et al
(1967),
AMIC-5708 | | Copper sodium
citrate (as Cu) | Mytilus
edulis
planulatus
(larvae) | L |
23 (T 2 hr) | a,c,i, and
salinity | | Wisely, et al
(1967),
AMIC-5708 | | Copper sulfate plus
Alkylaryl
Bolyoxethylene
glycols | Phormidium
ambiguum | ι |
0.5-10.0 (100
percent growth
inhibited 14) | | Of 74 chemicals evaluated as atgicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming atgae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also tound to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Otto (1970),
Amic-892 | | Copper sulfate plus
Ammonium carbonate
(1:2) | Phormidium
ambiguum | L |
0.5-10.0 (100 percent growth inhibited 14) | | same as above | Otto (1970),
AMIC-892 | | Copper sulfate plus
Ammonium chloride
(2:1 | Phormidium
embiguum | L |
0.5-10.0 (100 percent growth inhibited 14) | | | Otto (1970),
ANIC-892 | | Copper sulfate plus
Zinc sulfate (1:2) | Phormidium
ambiguum | L |
0.5-10.0 (100 percent growth inhibited 14) | | same as above | Otto (1970),
AMIC-892 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |--|------------------------|-----|-------------------|--
--|--|---| | | | | | | | | | | Copper sulfate plus
Calcium sait of
polyoxyethylene | Phormidium
ambiguum | ι | | 0.5-10.0 (100
percent growth
inhibited 14) | | evode 26 emez | Otto (1970), | | Copper sulfate plus
Dodecylether of
polyethylene glycol | Phormidium
ambiguum | i | | 8.5-18.8 (58
percent growth
inhibited 14) | | same as above | Ofto (1970),
AMIC-892 | | Copper sulfate plus
EmulsIflable
polyethylene | Phormidium
ambiguum | ι | | 8.5-18.0(25
percent growth
inhibited 14) | | same as above | Otto (1970),
AMIC-892 | | Copper suifate plus
Ethoxylated Isooctyl
phenoxy polyethoxy
ethano! | | L | | 0.5-10.0 (50 percent growth inhibited 14) | | evode za emez | Otto (1978),
AHIC-892 | | Copper sulfate plus
Ethoxylated nonyl
phenylether | Phormidium
ambiguum | ι | | 0.5-10.0 (50 percent growth inhibited 14) | | same as above | 0110
(1970),AMIC-
892 | | Copper sulfate plus
Polyoxyethlene nonyl
phenylether | | ι | | 0.5-10.0 (NTE) | | same as above | Offo (1970),
AMIC-892 | | Copper sulfate (as
copper) | Carcinus
maenas | BSA | | 109 (T2) | ation, sea-p
water, and 1
daily e
solution or
renewal) p | One hundred-forty surface active gents, solvent emulsifiers, pesticides, olychlorinated biphenyls, pure norganic, and organic chemicals were valuated against as many as ten marine reanisms. The authors noted that most ublished data of this type deal with oxicity of chemicals to freshwater reganisms. | Portmann, et
al (1971),
ANIC-7701 | | Copper sulfate (as copper) | Cardium edule | BSA |
1.0 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | | Portmann, et
al (1971),
AHIC-7701 | |---------------------------------|---|-----|------------------|---|---|---| | Copper sulfate (as copper) | Crangon
crangon | BSA |
19 (74) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | | Portmann, et
al (1971),
AHIC-7701 | | Copper sulfate (as copper) | Ostrea edutis | BSA |
100 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | 1 | Portmann, et
al (1971),
AMIC-7701 | | Copper sulfate (as copper) | Pandaius
aontagui | BSA |
14 (72) | a*(contin-
uous aer-
ation, sea-
water, and
dail;
solution
renewal) | 1 | Portmann, et
ai (1971),
AHIC-7701 | | Copper sulfate (as copper) | Platicthys
flesus | BSA |
1.0-3.3 (T2) | a*(contin-
uous aer-
ation, see-
water, and
daily
solution
renewal) | ; | Portmann, et
al (1971),
AHIC-7701 | | Copper sulfate (as
Cu2 plus) | Salmo
gairdneri
(eggs and
sperm) | LCF |
1.0 (NTE) | F e
S i
C o
S i | | Shaw, et al
(1971),
AMIC-1444 | | Compound | Organisa | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | a í
Comment s | Reference | |---------------------------|--|-----|-------------------|--|---|--|--| | | | | | | | increased. The authors concluded that in hard waters neither Cu nor Ni is likely to impair fertilization in rainbow trout. | | | Copper sulfate (as
Cu) | Acroneurla | A28 | | 8.3 (T4) | a*,c,d,e,f | Ephemerella (mayfly) was the most sensitive aquatic insect of those studied, and copper the most broadly toxic metal. The authors suggest that aquatic insects may not be as sensitive to heavy metals as fish. | Warnick, et
at (1969),
AMIC-3767 | | Copper sulfate (as
Cu) | Ephemerelia | BSA | | 0.32 (T2) | a*,c,d,e,f | same as above | Warnick,
etal (1969),
AMIC-3767 | | Copper sulfate (as
Cu) | Hydropsyche | BSA | •• | 32 (714) | a*,c,d,e,1 | same as above | Warnick,
etai (1959),
AMIC-3767 | | Cooper sulfate (as
Cu) | Phormidium
ambiquum | ι | | 0.5-10.0 (83
percent growth
inhibited14) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-torming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also recorted are factors affecting growth of algae in canats to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Offo (1970),
AHIC-892 | | Copper sulfate | Pseudopleuro
noctos
americanus (3
yr) | | | 0.180 (SB) | a*,c,e | Winter flounder were exposed to varied concentrations of copper and selected tissues examined by light and electron microscopy. Medium to high concentrations of copper resulted in fatty fiver deposits, kidney necrosis, hemopoetic tissue destruction, and gill architectural changes as determined by light microscopic analysis. Seven additional organs or structures were | Raker
(1969),
AMIC-3763 | apparently unaffected. Low levels of copper caused varied anomalies in qill tameliae as determined by electron microscopy. | Copper | sul fate | Pseudopleuro
noctos
americanus (3
yr) | | •• | 0:560-3.2
(K29) | 8 [#] ,C,Q | same as above | Baker
(1969),
AHIC-3763 | |--------|----------|--|-------|-----|--------------------|--|--|--------------------------------------| | Copper | sul fate | Pimephales
prometas | ASB | | 0.084 (T4) | ac,c,d,e,
f, acidity
conduc-
tivity,
and Cu | Copper at 18.4 ppb affected survivat, growth, and spawning. Lower concentrations also reduced growth and spawning but apparently not eqq hatchability. The maximum acceptable toxicant concentration (MATC) for the fathead minnow was calculated to be between 0.13 to 0.22 of the 96-hr TL sub m. Some difference in results in hard and soft water was found but the authors recommend further study. Use and further development of the application factor approach was further recommended. | Mount, et al
(1969),
AHIC-3765 | | Copper | sul fate | Pimephales
promelas | BCFA | *** | 0.075 (T4) | as,c,d,e,
f, acidity,
conduc-
tivity,
and Cu | same as above | Mount, et al
(1969),
AMIC-3765 | | Copper | sul fate | Pimephales
promelas | BCFCH | •- | 0.018 (T 12
HO) | as,c,d,e,
f, acidity,
conduc-
tivity,
and Gu | same as above | Mount, et al
(1969),
AMIC-3765 | | Copper | sul fate | Lepomis
macrochirus
(juvenile) | ı | | 1-5 (\$81) | a*,c,e,f | Copper caused a respiratory increase as concentration levels were increased. Recovery from initial stress by copper was delayed at higher concentrations. The author suggests the flowing water fish respirometer technique as a fast and sensitive tool for evaluating poliutants. | | | Copper | sul fate | Trachinotus
carolinus
(juvenile) | BSA | | 1.4-2.0 (T4) | | In this study of pompano satinity was controlled at 10, 20, and 30 ppt and investigated as a variable. Acrifiavin, formatin, and potassium permanganate were slightly more toxic at the highest satinity, while copper suifate was slightly tess toxic. These compounds are | al (1971),
AMIC-5570 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |-------------------------------|---------------------------------------|---------------|-------------------|---|--|---|--------------------------------------| | | | | | | | used as prophylactic bacterial
treatments. All appeared to be reasonably safe to use excepte possibly potassium permanganate. | | | Copper sulfate | Oncorhynchus
tshawytscha
(eggs) | RCFA | | 0.08 (NTE) | a*,c,d,f | Chinook salmon eggs were more resistant to copper sulfate than were fry. Growth was also inhibited. Adverse effects on fry were noted at concentrations as low as 0.02 ppm. The authors recommend further laboratory and in situ studies. | Hazel, et al
(1970),
AMIC-5572 | | Copper sulfate | Oncorhynchus
tshawytscha
(fry) | BCFA | | 0.04 (93
percent K) | a*,c,d,f | same as abové | Hazel, et al
(1970),
AMIC-5572 | | Copper sulfate | Poccus
saxatilis
(fingerlings) | BSA | •• | 0.62 (T4) | ar,c,d,e,
f,p, and
iron | Striped bass fingerlings were apparently much more sensitive to therapeutic and herbicidal compounds than many freshwater fish. | Wellborn
(1959),
AMIC-5723 | | Copper sulfate | Orconectes
rusticus | BCF▲ | | 3.0 (T4) | a*,c,e,f,q | Adult crayfish were found to be more resistant to copper sulfate than the young. Several life stages were studied, and additional exposure variations were included in the experimentation. Mortality of newly-hatched crayfish occurred at 0.125 ppm, and growth was inhibited at concentrations down to 0.015 ppm over a 30-day period. Subjethat effects of copper were well established and the procedure appears to be a good one. | AMIC-5985 | | Copper sulfate | Orconectes
rusticus | всгсн | | 1.0 (T13) | a*,c,e,f,q | same as above | Hubschman
(1967),
AMIC-5985 | | Copper sulfate | Orconectes
rusticus | всгсн | | 0.015 (SB) | a*,c,e,f,q | same as above | Hubschman
(1967),
AMIC-5985 | | Copper (as Copper
sulfate) | Campeloma
decisum | BCFA
andCH | | 1.7 (74) | a,c,d,e,f | Survival, growth, reproduction, and feeding were the responses used to | Arthur, et al (1970), | measure toxicant effects. Stock copper AMIC-867 solutions were prepared by dissolving anhydrous cooper sulfate in distilled water acidified with suffuric acid. Chronic tests (6 weeks) with copper concentrations of 0.0148 and 0.028 pom markedly reduced survival of all three species and prevented growth of Physa and Gammarus. Levels of 0.008 did not affect growth of Physa or Gammarus, feeding of Campetema, or reproduction of Gammarus. However, growth and survivat of the F1 Gammarus were affected at concentrations greater than 0.0046 ppm. Safe limits for Gammarus were 0.0046-0.008 in a continuous flow system and 0.0129-0.0239 In a static system. | Copper (as Copper
Sulfate) | Campeloma
decisum | RCFA
and
CH | | 0.008-0.0148
(NTE6 wk) | a,c,d,e,f | same as above | Arthur, et
al (1970),
AMIC-867 | |-------------------------------|---------------------------------|-------------------|----|----------------------------|-----------|---|--------------------------------------| | Copper (as Copper
sulfate) | Physa Integra | BCFA
and
CH | | 0.039 (T4) | a,c,d,e,f | same as above | Arthur, et
at (1970),
AMIC-867 | | Copper (as Copper
sulfate) | Physa Integra | BCFA
and
CH | | 0.008-0.0148
(NTE 6 WK) | a,c,d,e,f | same as above | Arthur, et
al (1970),
AMIC-867 | | Copper (as Copper
sulfate) | Gammarus
pseudo⊷
limn£eus | BCFA
and
CH | | 0.020 (T4) | a,c,d,e,f | same as above | Arthur, et
at (1970),
AMIC-867 | | Copper (as Copper
sulfate) | Gammarus
pseudo-
limnaeus | BCFA
and
CH | | 0.008-0.0148(NT
F 6 wk) | a,c,d,e,f | same as above | Arthur, et
al (1970),
AHIC-867 | | Copper (plus
PHENOL) | Səlmo
galrdneri | BSA | | 0.5-1.75 (T2) | a,C,e | Painbow trout were exposed to copper, phenol, zinc, or nickel solutions to determine 48-hour LC50 values for mixtures of copper and phenol: copper, zinc, and phenol: and copper, zinc, and nickel. It was concluded that acute tethal toxicities of the mixtures could be adequately described by summations of the tractional toxicities. | Brown, et
al(1970),
AMIC-5994 | | Copper (plus zinc,
nickeł) | Salmo
galrdneri | BSA | •• | 0.5-1.8 (12) | a,c,e | same as above | Brown, et al
(1978),
AMIC-5994 | | Compound | Organism | | Fleld
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments Variables, Controlled or Noted | Comments | Reference | |----------------------------|------------------------------|-----|---|---|--|--|--------------------------------------| | Copper (plus zinc, phenol) | Salmo
galrdneri | BSA | | 0.6-2.40 (T2) | 8,0,6 | same as above | Arown,et al
(1970),
AMIC-5994 | | Copper | Alosa
pseudo-
harengus | FL | Great Lakes
- Suberior,
Michigan,
and Erie | 0.9(residue) | | Trace element content of fish from takes Superior, Michigan, and Erie was determined by activation analysis. Whole body and liver residues were determined. Concentrations varied with species and lake. Other elements found were; antimony - 5 to 100 ppb, barium - 0.2 ppm, cesium - 3 ppb, lanthanum - 1 to 20 ppb, nercury - 10 opb, rhenium - 0.5 to 5 ppb, rubidium - 0.66 to 6 ppm, scandium - 2 ppb, selenium - 0.1 to 2 ppb, sliver - 0.001 ppb. | Lucas, et al
(1970),
AMIC-3778 | | Copper | Coregonus
artedii | FL | Great Lakes
- Superior,
Michigan,
and Frie | 12(residue) | | same as above | Lucas, et at
(1970),
AMIC-3778 | | Copper | Coregonus
ctupeaformis | FL | Great Lakes - Superior, Michigan, and Erie | 5.4(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Copper | Coregonus
hoyl | FL | Great Lakes - Superior, Michigan, and Erie | 4.9(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Copper | Prosopium
cylindraceum | FL | Great Lakes - Superior, Michigan, and Erie | 3.8(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Copper | Salvelinus
namaycush | FL | Great Lakes
- Superior,
Michigan,
and Erie | 24(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Copper | Osmerus
mordax | FL | Great Lakes
- Superior,
Michigan,
and Erie | 1.5(residue) | | same as above | Lucas, et al
{1970},
AMIC-3778 | | Copper | Carassius
auratus | FL | Great Lakes
- Superior,
Michigan,
and Erie | 14(residue) |
same as above | Lucas, et al
(1970),
AHIC-3778 | |--------|------------------------------------|----|---|----------------|---|--------------------------------------| | Copper | Notropis
hudsonius | FL | Great Lakes
- Superior,
Michigan,
and Erie | 1.0(residue) |
same as above | Lucas, et af
(1970),
AMIC-3778 | | Copper | Percopsis
omiscomaycus | FL | Great Lakes
- Superior,
Michigan,
and Erle | 1.8(residue) |
same as above | Lucas, et at
(1970),
AMIC-3778 | | Copper | Roccus
chrysops | FL | Great Lakes
- Superior,
Michigan,
and Erie | 4(residue) |
same as above | Lucas, et al
(1970),
AHIC-3778 | | Copper | Perca
flavescens | FL | Great Lakes - Superlor, Michigan, and Erie | 3(residue) |
same as above | Lucas, et al
(1970),
AMIC-3778 | | Copper | Stizostedion
vitreum
vitreum | FL | Great Lakes - Superior, Hichigan, and Erie | 4 (residue) |
same as above | Lucas, et al
(1978),
AMIC-3778 | | Copper | Coregonus
clupeaformis | FL | Moose Lake,
Can. | ₹.5 (residue) |
Concentrations of 13 toxic elements in dressed fish from heavily industrialized and non-industrialized areas were determined. Only mercury exceeded regulatory limits, and concentrations of most elements were essentially the same in fish from both areas. | Uthe, et
AL(1971),
AMIC-3819 | | Copper | Coregonus
clupeaformis | FL | Lake
Ontario,
Can. | 0.9 (residue) |
same as above | Uthe, etal
(1971),
AMIC-3819 | | Copper | Esox luclus | FL | Moose Lake,
Can. | 0.07 (residue) |
same as above | Uthe, et at
(1971),AMIC-
3819 | | Copper | Esox fuclus | FL | Lake St.
Pierre, Can. | 0.9 (residue) |
same as above | Uthe, et al
(1971),AMIC-
3819 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |----------|---|-------|--|---|--
---|-------------------------------------| | Copper | Esox fucius | FL | Lake Erie,
Can. | 0.7 (residue) | | same as above | Uthe, et a!
[1971],AMIC-
3819 | | Copper | Osmerus
mordax | FL | Lake Erie,
Can. | 0.8 (residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Copper | Perca
flavescens | FL | Lake Erie,
Can. | 1.3 (residue) | | same as above | Uthe, et al
(1971).AMIC-
3819 | | Copper | Salvetinus
fontinalis
(eggs) | ВОГСН | | 0.018 (NTE) | a [∓] ,c,d,e,f | A concentration of 17.5 ppb copper did not adversely affect survival, growth, or spawning of brook trout. However, this concentration level had drastic effect on juvenile trout. The copper also delayed yolk sac absorption and delayed fry development. The maximum acceptable toxicant concentration (MATC) was calculated to be between 9.5 to 17.4 ppb copper. | AHIC-3821 | | Copper | Salvelinus
tontinatis
(juveniles) | BDFCH | | 0.017 (K) | a*,c,d,e,f | same as above | McKim,et al
(1970),
AMIC-3821 | | Copper | Salvelinus
fontinalis
(adults) | BDFCH | | D.1 (T4) | a*,c,d,e,f | same as above | McKim, etal
(1970),
AMIC-3821 | | Copper | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | muscle | | Fish collected from an effluent pipe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium. Copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with alumirum, cadmium, and nickel. Silver, barium, lithium, and lead showed the least differences. The author | | ## concluded that trace element analysis of tissues could be used to determine the effect of pollutants on marine organisms. | Copper | Panal abnax
clathnatus | FM | Catalina
Island, Cal. | 2 (dorsal
muscle
residue) |
same as above | Stapleton
(1968),
AMIC-5980 | |--------|---|----|--|---------------------------------|-------------------|-----------------------------------| | Copper | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | muscte |
same as above | Stapleton
(1968),
AMIC-5980 | | Copper | Paral abrax
clathratus | FH | Catalina
Island, Cal. | 2 (ventral muscle residue) |
same as above | Stapleton
(1968),
AMIC-5980 | | Copper | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | |
same as above | Stableton
(1968),
AMIC-5980 | | Capper | Paralabrax
clathratus | FĦ | Catalina
Island, Cal. | 5 (gonads
residue) |
same as above | Stapleton
(1968),
AMIC-5980 | | Copper | Paratabrax
clathratus
(gravid
femates) | FH | Catalina
Island, Cale | 5
(gonads
residue) |
same as above | Stableton
(1968),
AMIC-5980 | | Copper | Paratabrax
ctathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | |
same as above | Staoleton
(1968),
AMIC-5980 | | Copper | Paralabrax
clathratus | FĦ | Catalina
Island, Cal. | 6 (llver
residue) |
same as above | Stapleton
(1968),
AMIC-5980 | | Copper | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | 3 (Integument residue) |
same as above | Stapleton
(1958),
AMIC-5980 | | Copper | Paral abrax
clathratus | FĦ | Catalina
Island, Cal. | 3 (Integument residue) |
same as above | Stapleton
(1968),
AMIC-5980 | | Copper | Parai abrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles, | |
same as above | Stapleton
(1968),
AMIC-5980 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experimenta Variables, Controlled or Noted | Comments | Reference | |--------------|-------------------------------------|-----|--|---|--|---|--------------------------------------| | | | | Cal. | | | | | | Copper | Paralabrax
clathratus | FĦ | Catalina
Island, Cal. | 12 (heart
residue) | | same as above | Stapteton
(1968),
AMIC-5980 | | Copper | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
LosAngeles,
Cal. | | | Same as above | Stapleton
(1968),
AMIC-5988 | | Copper | Paralahrax
clathratus | FM | Catalina
Island, Cal. | 4 (eyebali
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Copper | Salmo
gairdneri | BSA | | 0.75 (T2) | a,c,e | Rainbow frout were exposed to conver, phenot, zinc, or nickel solutions to determine 48-hour LC50 values for mixtures of copper and phenoli copper, zinc, and phenoli and copper, zinc, and nickel. It was concluded that acute tethal toxicities of the mixtures could be adequately described by summations of the fractional toxicities. | Brown, et al
(1970),AYIC-
5994 | | Corexit 7664 | Pimephales
prometas | BSA | | 3200 (T4) | c,d,e,f | Toxicity of six oil spill dispersants was determined along with BOD values. Pond water was used as diluent and oil was included in the experiment. Oil markedly reduced toxicity of all dispersants. Data are given as "most probable" 96-hr TL sub m. | 71111ch
(1969),AMIC-
7909 | | Corexit 7664 | Pimephales
prometas | BSA | | 180 (MSC) | c,d,e,f | same as above | 71111ch
(1959),AMIC-
2909 | | Corexit 7664 | Blochemical
oxygen demand | ι | •• | 380,000 | c,d,e,1 | same as above | Zillich
(1969),
AMIC-2909 | | Corexit 7664 | Steethead
trout
(fingerlings) | BSA | | 15.8 (T4) | | Evaluation of 11 oil dispersants resulted in a ranking for each and a recommendation for use according to the ranking. Ranking was based on toxicity and oil dispersal effectiveness. Corexis | al(1969),
Amic-3834 | ## 7764 appeared to have the least toxicity with fair to good oll dispersion capability. | Corexit 7664 | Coho salmon
(fingerlings) | BSA
in
situ | Hood Canal
Hoodsport,
Wash. | 40.0 (к) | | same as above | Tracy, et al (1969),
AEIC-3834 | |--------------|------------------------------|-------------------|-----------------------------------|---------------------|---|--|---| | Corexit 7664 | Pacific oyster (larvae) | BSA
in
situ | Hood Canal
Hoodsport,
Wash. | 40.0-80.0 (SB) | •• | same as above | Tracy, et al
(1969),
AMIC-3834 | | CorexIt 7664 | Cardlum edule | BSA | | 3300-10,000
(T2) | ation, sea- | One hundred-forty surface active agents, solvent emulsiflers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most pubtished data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, ef
al (1971),
AMIC-7701 | | Corexit 7664 | Crangon
crangon | BSA | | 3300-10,000
(T2) | ar(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971).
AMIC-7701 | | Corexit 7664 | Limanda
Iimanda | BSA | | 1000-3300 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971).
AMIC-7701 | | Corexit 7664 | Salmo salar
(parr) | L | | 500 (NTE4) | or | Aroctors 1254 and 1221 were evaluated for toxic effect with Corexit 7664 (weight ratio 1;19) as an emulsifying agent. Since only two fish were used for each exposure, the author notes that the results are only preliminary. However, PCR"s appeared to be less toxic to Atlantic salmon parr than chlorinated hydrocarbon pesticides. | Zitko
(1970),
AMIC-23 | | Corexit 7664 | Gammarus
oceanicus | BSA | | 1900 (NTE) | a* (weekly
solution
change,
seawater) | Aroctor 1254 solutions or suspensions with Corexit 7664 at varied concentrations in seawater resulted in varying toxicity of the Aroctor. Corexit was not lethal at 1900 ppm but caused subjethal brichial edema at | Wildish
(1970),
AMIC-69 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |--------------|--------------------------------------|--------------------|-------------------|---
---|---|--| | | | | | | | concentrations down to 0.19 ppm. The author notes a possible synergistic effect between the two compounds. | | | Corexit 7664 | Gammarus
oceanicus | 85 A | | 0.19 (SB) | a*
(weeklysol
utlon
change,
seawater) | same as above | Wildish
(1970),
AMIC-69 | | Corexit 8666 | Crangon
crangon | 8 S A | | 3300 (T2) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated bibbenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al
(1971),AMIC-
7701 | | Coumaphos | Rasbora
heteromorpha | BCFA
and
BSA | | 0.046 (T2) | a*,c,e,f,
hard (HH)
or
SOFT(SH)
synthetic
dilution
water, or
seawater
for some
species | miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders | Alabaster
(1969),
AMIC-5425 | | co-Rat | Morone
saxatitis
(tingertings) | BSA | | 62 (T4) | a,c,d,e,f, | All compounds were investigated because of their probable usage in hatchery production of white bass. Commounds that can be used at recommended concentrations were Aquathoi, Casaron, Lindane, and Terramycin concentrate. Those that should not be used were Acrifiavine, Bayluscide, Malachite green oxalate, and Malathion. | Weilborn
(1971),
AMIC-5571 | | Co-Rai | Mercenarla
mercenarla
(eggs) | t | | 9.12 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected | Davis, et al
(1969),AMIC-
5990 | development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | | | | 21141 | 111201 | | |------------|--------------------------------------|-----|----|----------------------------|---|---|---| | Co-Rai | Mercenaria
mercenaria | L | •• | 5.21 (T 12) | •• | same as above | Davis, et at | | | (larvae) | | | | | | (1959),AMIC+
5990 | | Co-Ra1 | Crassostrea
virginica | L | | 0.11 (T2) | | same as above | Davis, et al | | | (eggs) | | | | | | (1969),44IC-
5990 | | Co-Rat | Crassostrea
virginica
(tarvae) | L | | greater than
1.0 (T 14) | | same as above | Davis, et at (1969), AMIC-5990 | | Craine OSR | Crangon
crangon | BSA | | 330-1000 (T2) | stion, sea-poly water, and inordaily evaluation ordarenewal) publication toxi | One hundred-forty surface active ats, solvent emutsifiers, pesticides, echlorinated biphenyls, pure ganic, and organic chemicals were uated against as many as ten marine misms. The authors noted that most lished data of this type deal with acity of chemicals to freshwater anisms. | Portmann, et
at (1971),
AMIC-7701 | | Cresols | Agonus
cataphractus | BSA | | 10-33 (T2) | ation, sea-poly
water, and inor
daily eval
solution orga
renewal) publi | One hundred-forty surface active ats, solvent emulsifiers, pesticides, schlorinated biphenyls, pure qualc, and organic chemicals were lusted against as many as ten marine anisms. The authors noted that most lished data of this type deal with city of chemicals to freshwater anisms. | | | Cresols | Carcinus
maenas | BSA | | 10-100 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
ANIC-7701 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------------|--------------------------|--------------------|-------------------|---|---|---|--| | Cresols | Cardium edule | BSA | | greater than
100 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
ronewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Cresols | Pleuronectes
platessa | AZB | | 10-33 (T?) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides. polychiorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | | Crossguard | Crangon
crangon | BSA | | 3.3-10 (T4) | ation, sea-
water, and
daily
solution
renewal) | one hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
at
(1971),AMIC-
7701 | | Crofothane | Pasbora
heteromorpha | BCFA
and
BSA | | 0.07 (T2) | (HH) or
soft (SH)
synthetic
dliution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster,
(1969),AMIC-
5425 | | Crow solvent M | Crangon
crangon | ASA | | 33-100 (T2) | ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Er, NI, Cu, CN, and
Zn | Pimephales
promelas | BSACF
(ML) | | between
1-25-3-75
percent (T3) | a,c,e,
conductivi
ty, Ni,
Cu, Cr,
CN, and Zn | A mobile bloassay unit was utilized to conduct this study of municipal wastewater containing the indicated toxicants. River water was used as diluent. The conclusion was reached that synergistic or additive toxic effects occurred since toxicity was greater than that of any of the ions singly. | Z1111ch
(1959),
AMIC-2906 | |---------------------------|-----------------------------------|---------------|---|--------------------------------------|--|---|---| | Cr. Ni, Cu, CN. and
Zn | Catostomus
commerson! | BSACF
(HL) | Grand River
at
Wyoming,Mich
igan | between
1,25-3,75
percent (T3) | a,c,e,
conductivi
ty, NI,
Cu, Cr,
CN, and Zn | | ZIIIIch
(1969),
AMIC-2906 | | CS | Wolffia
papulifera | L | | 100 (K) | Hunter's
medium
diluted
1:5 | All compounds were harmful to duckweed to some degree. Decreased populations were noted at non-lethal concentrations and some compounds (Malathion and 2,4-D) caused teratogenic effects at concentrations as low as 1 ppm | Worthley, et al,(1971), AMIG-3233 | | CuC12 2H20 (as Cu) | Platymonas
subcordi-
formis | ι | | approx.1.0 (K) | SSM and
NSW | NTA stimulated atgat growth in cultures without added copper and reduced toxicity of copper at all levels of copper addition. See information on CuCl2.H2O (as Cu) under authors cited for Juritary information. | Erickson, et
al (1970),
AHIC-449 | | CuC12 2H2O (as Cu) | Porphyridium
cruentum | L | ** | approx. 0.5(K) | SSM and
NSW | same as above | Erickson, et
al (1978),
AMIC-449 | | CuC12 2H20 (as Cu) | Skeletonema
costatum | L | |
approx. 0.15 (K) | SSM and
NSW | same as above | Erickson, et
al (1970),
AMIC-449 | | CuCl2 ZH20 (as Cu) | Amphidinium
carteri | L | | less than 0.05
(K) | SSM and
WZW | same as above | Erickson, et
al (1970),
AMIC-449 | | CuC12 ZHZO (as Cu) | Chaetoceros
sp | L | - | approx. 0.05
(K) | SSM and
NSW | same as above | Erickson, et
at (1970),
AMIC-449 | | CuC12 2H20 (as Cu) | Cycloteila
nana | ι | | approx. 0.15
(K) | NSW and | same as above | Erickson, et
al (1970),
AMIC-449 | | CuCl2 ZH2O (as Cu) | Dunaliella
tertiolecta | L - | | 450 (50 percent
K) | SSM and
NSW | same as above | Erickson, et
al (1970),
AMIC-1449 | | CuCl2 2H2O (as Cu) | Isochrysis
Galbana | L | | Approx. 0.2 K) | SSM and
NSW | same as above | Erickson, et
al (1970),
AMIC-1419 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | al
Comments | Reference | |--------------------|-------------------------|--------------------|-------------------|---|---|---|---| | CuCl2 2H2O (es Cu) | Monochrysis
Lutheri | L | | Approx. 0.5
(K) | SSM and
NSW | same as above | Erickson, et
al (1970),
AMIC-449 | | CuCl2 2H2O (as Cu) | Nannochloris
oculata | L | | Approx. 0.5 (K) | SSM and
NSW | same as above | Erickson, et
al (1970),
AMIC-449 | | CuCl2 2H2O (as Cu) | Nitzschia
closterium | L | | Approx. 0.05 (K) | SSM and
NSW | same as above | Erickson, et
el (1970),
AMIC-449 | | CuCl2 2N20 (as Cu) | Olisthodiscus
luteus | L | | Approx. 0.05 | SSM and
NSW | same es above | Erickson, et
al (1970),
AMIC-4449 | | Cunliate RQ 24 | Salmo
gairdneri | RCFA
and
BSA | | 0.5 (T2,
hardwater) | a*,c,e,f,
hard
(HH)or
soft (SH)
synthetic
dilution
water, or
seawater
tor some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water collutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),AMIC-
5425 | | Cunitate RQ 24 | Rasbora
heteromorpha | BCFA
and
BSA | | 1_4 (T2,
softwater) | a*,c,e,f,
hard(HW)
or soft
(SW)
synthetic
dilution
water,
orseawater
for some
species | same as above | Alabaster
(1969),AMIC-
5425 | | Cunilate RO 24 | Rasbora
heteromorpha | BCFA
and
BSA | | 0.9 (T2,
hardwater) | a*,c,e,f,
hard(HH)
or soft
(SH)
synthetic
dilution
water, | same as above | Alabaster
(1969),AMIC-
5425 | ## orseawater for some species | Cupric ammonium
sulfate (as Cu) | Phormidium
ambiguum | ι |
0.5-10.0 (16
percent growth
Inhibited14) | | Of 74 chemicals evaluated as atgicides, only 9 were more toxic than CuS04. None inhibited growth of mat-forming algae for more than 2 weeks. CuS04 formulated with certain wetting agents was more toxic than CuS04 alone. Copper chloramine was also found to be more toxic than CuS04. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Ofto (1970),
AMIC-892 | |------------------------------------|---------------------------------------|-------|--|------------|--|---| | Cupric chloramine | Phormidium
ambiguum | ι |
0.5-10.0 (100 percent growth inhibited 14) | | same as above | Otto (1970),
AMIC-892 | | Cupric sulfate | Salvelinus
fontinalis
(6-8 in.) | BCFA |
0.038-0.069(SB
6 and 21) | a*,c,⊕,f,q | The seven blood characteristics of brook trout studied were red blood count, hematocrit, hemoelobin, plasma chioride, plasma glutamic exalacetic transaminase, osmolarity, and total protein. Statistically significant changes were noted in 5 characteristics after 6 days. Measurable decrease in plasma glutamic exalacetic transaminase was the only change noted after long-term exposure to lower concentrations. The authors state that fish blood study can be used as a measure of their physical condition and long-range forecasting of reproductive success and survival. | McKIm, et al
(1970),
AMIC-3828 | | Cupric sulfate | Salvetinus
fontinalis
(6-8 in.) | ВСГСН |
0.017-0.033(SB
337) | a*,c,e,f,q | same as above | McKIm, et al
(1970),
AMIC-3828 | | Cubrinol | Crangon
crangon | BSA |
3.3-10 (T2) | ation, sea | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicats were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
ai (1971),
AMIC-7701 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Varlables,
Controlled
or Noted | Comments | Reference | |---------------------------|---------------------------|---------------|---|---|---|--|--| | Cu, NI, Cr, CN, and
Zn | Pimephales
promelas | BSACF
(ML) | | between
1.25-3.75
percent (T3) | Ni, Cu, Cr,
CN, and Zn | A mobile bloassay unit was utilized to conduct this study of municipal wastewater containing the indicated toxicants. River water was used as dituent. The conclusion was reached that synergistic or additive toxic effects occurred since toxicity was greater than that of any of the ions singly. | 71111ch
(1969),
AMIC-2906 | | Cu, NI, Cr, CN, and
Zn | Catostomus
commerson I | BSACF
(ML) | Grand River
at
Wyoming,Mich
Igan | between
1.25-3.75
percent (T3) | a,c,e, conductivity,
Ni,Cu,Cr,
CN, and Zn | 35 | Z1111ch
(1969),
AMIC-2906 | | CX | Fundulus
heterociltus | BSA | | 0.00051-0.00225
(T4) | and | A laboratory procedure based on Standard Methods for 96-hr toxicity determinations of crude oil and oil-dispersant mixtures was described. The dispersants varied considerably in toxicity, ranging from 0.01 to 7.1 ml/l, 150 for 96 hr. These did not differ significantly from 240 hr values. The dispersants were designated as CX, 00, C1, 00, AQ, PC, MM, TN, BP, and NA with no further description of their chemical nature or source. Only a few bloassays were conducted with shrimp. Mollusks and echinoderms were suggested as sultable test animals. The authors stated that the method could be used to test any product for toxicity in seawater. | LaRoche, e1
al (1970),
AMIC-445 | | cx | Nerels virens | 8SA | | 0.00078-0.0071
(T4) | a*,c,e,
and
synthetic
seawater | same as above | LaRoche,et
at (1970),
AMIC-445 | | Cyanides | Lepomis
macrochirus | A28 | | 0.18 | a*,e, and
synthetic
dilution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bloassays with at least three components of the food web. | Patrick, et
al (1968),
AMIC-5720 | | Cyanldes | Physa
heterostropha | BSA |
0.432 | a*,e, and
synthetic
ditution
water | same as above | Patrick, et
al (1968),
AHIC-5720 | |---------------|-------------------------|--------------------|--
--|--|--| | Cycloheximide | Phoraldium
ambiguum | ι |
0.5-10.0 (66
percent growth
inhibited) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Otto (1970),
AMIC-892 | | Delecide | Rasbora
heteromorpha | BCFA
and
BSA |
620 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Datapon | Fish (nat
specified) | |
greater than
100-1000 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mawdesley-
Thomas
(1971),AMIC-
1056 | | Dalapon | Rasbora
heteromorpha | BCFA
and
BSA |
greater than
500 (T2,
hardwater) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some | One hundred sixty-four pesticides, wetting agents, and miscellaneous water politutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes | Alabaster
(1969),
AMIC-5425 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|-----------------------------|--------------------|-------------------|---|---|--|---| | | | | | | specles | pesticides were most toxic in hard water
and sometimes the opposite was true.
Testing the actual material as sold was
found to be essential. | | | Dalapon | Rasbora
heteromorpha | BCFA
and
BSA | | 43 (T2,
softwater) | a*,c,e,f, hard (HW) or soft (SW) synthetic ditution water, or seawater for some species | same as above | Alabaster
(1969),AMIC-
5425 | | Dalapon | Cardium edule | BSA | _ | greater than
100 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active fagents, solvent emulsifiers, pesticides, polychiorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
at (1971),
AMIC-7701 | | Datapon | Crangon
crangon | BSA | | greater than
100 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Delapon | Platicthys
flesus | BSA | | greater than
100 (T2) | a*(continuous aer-
ation, sea
water, and
daily
solution
renewal) | | Portmann, et
al (1971),
AMIC-7701 | | DBP | Palaemonetes
kadlakensis | BCF | | 0.08 (residue) | a▼ | Hagnification of DDT and Aldrin tagged with C+14 occurred rapidly. | Johnson, et | | | | | | | | Aldrin. Marked degradation of DD1 as determined by analysis for DD1 metabolites occurred. The authors conclude that aquatic invertebrates influence quality and quantity of insecticide residue passed via the fish food chain. | | |------|-----------------|------------------------------|------------------------------------|--------------------------|--|---|--| | 08 P | | Palaemonetes,
Kadlakensis | BCF |
0.0001 (SB3) | a* | same as abov e | Johnson, et
a! (1971),
AMIC-3820 | | ODD | (C-14 labelled) | Sorghum
ha I pense | L
(Mod-
el
eccsy
stem) |
1 lb per A
(NTE) | a,c,g,
standard
reference
water and
sand | This small laboratory model ecosystem procedure was developed to study pesticide biodegradability and ecological magnification. The food-chain pathways in this system were: (1) sorghum - caterpliler (farva), (2) caterpliler (excreta) - Nedogonium, (3) Dedogonium - snail, (4) Estigmene (excreta) - diatoms, (5) Diatoms - plankton, (6) Plankton - Cutex (larvae), (7) Cutex - Gambusia. The fish is the top of the food chain. Using isotopically labeled pesticides (1 ib/acre application rate), residues were determined for only selected organisms (snail, mosquito, and fish) and water. Reproducibility appeared to be good. The authors state that the method gives a good estimation of the potential toxicity of pesticides and their breakdown products to a variety of organisms and is suitable for computer modeling. | Metcalf, et
al (1971),
AMIC-1495 | | 000 | (C-14 labelled) | Estigmene
acrea | L
(Mod-
el
ecosy
stem) |
1 Ibper A
(K-NTE) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | | סמס | (C-14 labelled) | Physa spp | L
(Mod-
el
ecosy
stem) |
5.6 (residue) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | Biological magnification factors of 2900 (1971), AMIC- to 114,100 depending on the species were 3820 found for DDT, and 22,800 to 141,000 for Aldrin. Marked degradation of DDT as | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |---------------------|---|------------------------------------|-------------------|---|--|---------------|---| | ODO (C-14 labelled) | Daphnla magna | L
(Mod-
el
ecosys
tem) | | 1 lb per A
(K-NTE) | a,c,g,
standard
reference
water and
sand | same as above | Hetcalf, et
al (1971),
amic-1495 | | 000 (C-14 labelled) | Culex piplens
quinque-
fasciatus | L (Mod- el ecosy stem) | | 5.8(residue) | a,c,g,
standard
reference
water and
sand | same as above | Hetcalf, et
al (1971),
AHIC-1495 | | DDD (C-14 labelled) | Dedogonium
cardiacum | L
(Mod-
el
ecosy
stem) | | 1 1b per A
(NTE) | a.c.g.
standard
reference
water and
sand | same as above | Hetcalf, et
at (1971),
AMIC-1495 | | 000 (C-14 tabelled) | Gambusia
affinis | L
(Mod-
el
ecosy
stem) | | 39.1 (residue) | a,c,q,
standard
reference
water and
sand | same as above | Hetcalf, et
al (1971),
AMIC-1495 | | 000 (C-14 labelled) | Diatoms (Navicula, Coscinodis- cus, Dip- loness, and Diatomella) | L
(Mod-
el
ecosy
stem) | | 1 1b per A
(NTE) | a,c,q,
standard
reference
water and
sand | same as above | Hetcalf, et
al (1971),
AMIC-1495 | | DDD (C-14 fabelled) | Protozoa
(Nuclearia,
Coleps,
Vorticella,
and
Paramecium) | L
(Mod-
el
ecosy
stem) | | 1 1b
per A
(NTE) | a,c,g,
standard
reference
water and
sand | same as above | Hetcalf, et
al (1971),
AHIC-1495 | | DDD (C-14 labelled) | Rotifers (Asplanchnop- us, Notomat- ta, Ruclaris, Scardium) | el | | 1 lb per A
(NTE) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf, et
al
(1971),AMIC-
1495 | | DDD-(C-14 labelled) | Kater | L
(Mod-
el
ecosy
stem) | | 0.006
(residue) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | |---------------------|--------------------------------------|------------------------------------|---|------------------------------|--|--|--| | 000 (o,o™) | Angulila
rostrata | FRL | St. John,
N.B., Can. | 0.19 (residue) | | PCB"s were found in higher concentrations than organochlorine pesticides in all fish analyzed. The authors point out that PCB is tess toxic in an acute sense than organochlorines, that little is known of subjethal PCB effects, and that more knowledge of PCB distribution and effects is needed. | Zitko(1971),
AMIC-3715 | | DDD (p.p*) | Esox niger | FRL | St. John,
N.B., Can. | 0.03 (residue) | •• , | same as above | 711ko
(1971) "AMIC—
3715 | | DDD (0.p°) | Salmo salar | FRL | St. John,
N.B., Can. | 0.07 (residue) | | same as above | Zitko
(1971) + AMIC-
3715 | | DDD (p.p") | Clupea
harengus | FRL | St. John,
N.B., Can. | 0.01-0.04
(residue) | •• | same as above | 711ko(1971).
AMIC-3715 | | DDD (p,p™) | Scomber
scombrus | FRL | St. John,
N.B., Can. | 0.02 (residue) | | same as above | 711ko(1971),
AMIC-3715 | | DDD | Limnephilus
rhombicus
(larvae) | FS | Knights
Creek, Dun
County,
Wisc. | 0.007(whole
body residue) | | Samples of water, silt, bottom debris, bottom organisms, and fish were taken in 1966 from a creek adjacent to an orchard which had been treated in 1963-1965 with various chlorinated hydrocarbon pesticides. No residues were found in water samples. Silt samples contained 0.002-0.013 ppm endrin and 0.005 ppm dieldrin. Endrin residues of 0.011-0.025 ppm and 0.002-0.006 ppm dieldrin were found in debris samples. Despite limited control data, residue analyses indicated that contamination of the environment studied was limited. | 3753 . | | Comocund | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|----------------------------|-----|---|---|---|--|---| | DDD | Rhinichthys
atratulus | FS | Knights
Creek, Dun
County,
Wisc. | 0.78
(fat
residue) | | same as above | Moubry, et
al (1968),
AMIC-3753 | | 000 | Gammarus so. | FS | Knights
Creek, Dun
County,
Wisc. | 0.007 (whole
bodyresidue)
residue) | | same as above | Moubry, at al (1968), AMIC-3753 | | 000 | Salvelinus
fontinalis | FS | Knights
Creek, Dun
County,
Hisc. | 0.26-1.04
(fat
residue) | | same as above | Moubry, et
al (1968),
AMIC-3753 | | ODO | Semotlius
atromaculatus | FS | Knights
Creek, Dun
County,
Wisc. | 0.53-0.67(fat
residue) | | same as above | Moubry, et
al (1968),
AMIC-3753 | | DOD | Cottus bairdi | FS | Knights
Creek, Dun
County,
Wisc. | 0.4-0.47 (fat
residue) | | same as above | Moubry, et
at (1968),
AMIC-3753 | | 000 | Simils sp.
(Imrvae) | FS | Knights
Creek, Dun
County,
Wisc. | 0.003
(wholebody
residue) | | same as above | Moubry, et
at (1968),
AMIC-3753 | | 000 | Carasslus
auratus | t | | 0.1-0.8
(residue) | a* | Goldfish were exposed to increasing concentrations of DDT and residues determined after 21 days of exposure. Most DDT had been converted to DDE. Phenobarital had no significant effect on insecticide residues. | Young, etal
(1971),
AMIC-3796 | | 000 | Daphnla magna
(adult) | BCF | | 0.6 (residue) | a* | Magnification of DDT and Aldrin tagged with C-14 occurred rapidity. Blotogical magnification factors of 2900 to 114,100 depending on the species were found for DDT, and 22,800 to 141,000 for Aldrin. Marked degradation of DDT as determined by analysis for DDT metabolites occurred. The authors conclude that aquatic invertebrates influence quality and quantity of insecticide residue passed via the fich food chain. | Johnson, et
al
(1971),AMIC-
3820 | | ÖÖD | | | | | | | | |-----|--|-----|---------------------|---------------------------------------|----|---|---------------------------------------| | 000 | Palaemonetes
kadlakensis
(adult) | BCF | *- | 0.04 (residue) | a* | same as above | Johnson, et
al(1971),
AMIC-3820 | | 000 | Daphnia magna
(adult) | BCF | ** | 0.0001 (SB3) | a* | same as above | Johnson,et
al (1971),
AMIC-3820 | | 000 | Palaemonetes
Kadiakensis
(adult) | BCF | | 0.0001 (SB3) | a* | same as above | Johnson,et
at (1971),
AHIC-3820 | | 000 | Archoplites
interruptus | fL | Clear Lake,
Cal. | 316 (flesh
residue) | | Residue analysis results mainly for TDE in fish, birds, and plankton from 1959 through 1965 were reported. The residues primarily resulted from application of DDT to farmland and for gnat control. In some cases, data for a single animal in one year were given. Primary emphasis was on largemouth bass and white catfish. The general level of TDE contamination in birds and fish declined markedly from 1958 to 1965. This decline correlated directly with strict limitation by permits of DDT | Linn, et af
(1969),'
AMIC-5521 | | | | | | | | applications during the latter years. | | | 000 | Orthodon
microlepi-
dotus | FL | Clear Lake,
Cal. | 0.5-7.0 (flesh
residue) | | same as above | Linn, et al
(1969),
AMIC-5521 | | 000 | Pomoxis
nigromaculatu
s | FL | Clear Lake,
Cal. | 10-24
(11esh
residue) | | same as above | Linn, eta!
(1969),
AMIC-5521 | | 000 | Aechmophorus
occidentatis | FL | Clear Lake,
Cal. | 16-2,800 (fat
residue) | | same as above | Linn.et al
(1969),
AMIC-5521 | | חסס | Bucephala
clangula | FL | Clear Lake,
Cal. | 132 (fat
residue) | | same as above | Linn, et al
(1959),AMIC-
5521 | | 000 | Larus spp. | FL | Clear Lake,
Cal. | 68-2,134 (fat
residue) | | same as above | Linn, et al
(1969),AMIC-
5521 | | 000 | Larus
delawarensis | FL | Clear Lake,
Cal. | 100-1,020 (fat
residue) | | same as above | Linn, et al
(1969),AMIC-
5521 | | 000 | Merqus
merganser | FL | Clear Lake,
Cal. | greater than
8-80 (fat
residue) | | same as above | Linn, etal
(1969),
AHIC-5521 | | 000 | Plankton | FL | Clear Lake,
Cal. | 10.9 (residue) | | same as above | Linn, et al
(1969),
AMIC-5521 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|----------------------------|-----|-------------------------------------|---|---|--|--------------------------------------| | 000 | Archoplites
Interruptus | FL | Clear Lake,
Cat. | 3,972 (fat
residue) | | same as above | Linn, etai
(1969).
AMIC-5521 | | 000 | Ictalurus
catus | FL | Ciear Lake,
Cai. | 1.3-184 (flesh
residue) | | same as above | Linn, et
AL(1969),
AMIC-5521 | | 000 | Ictalurus
catus | FL | Ctear Lake,
Cat. | 220-2,350 (fat
residue) | | same as above | Linn, et
Al(1969),
Amic-5521 | | 000 | tavinia
exificauda | FL | Ctear Lake,
Cal. | less than 1-2
(flesh
residue) | | same as above | Linn, et al
(1969),
AMIC-5521 | | ono | Lenomis | FL | Clear Lake,
Cal. | 2 (flesh
residue) | | same as above | Linn, et al
(1969),AMIC=
5521 | | 000 | Lebomls
cyanellus | FL | Clear Lake,
Cal. | 103 (fat
residue) | | same as above | tinn, et al
(1969),AMIC-
5521 | | 000 | Micropterus
salmoides | FL |
Clear Lake,
Cat. | 0.2-111 (flesh
residue) | | same as above | Linn,et al
(1959),
AMIC-5521 | | 000 | Micronterus
salmoides | FL | Clear Lake,
Cal. | 28-437 (fat
residue) | | same as above | Linn, etal
(1959),
AMIC-5521 | | 000 | Perca
flavescens | FLR | 93 sampling
stations in
Mass. | | | Fish indigenous to Massachusetts freshwater streams were analyzed for DDT and DDT metabolites during 1965-1967. Generally there was an increase in pesticide content during the three year period. | Lyman, et al
(1968),
AMIC-3839 | | 000 | Lepomis | FLR | 93 sampling | 0-6.7 | | same as above | Lyman, et al | | | gibbosus | | stations in
Mass. | (residue) | | (1968),
AMIC-3839 | |-----|------------------------------|-----|-------------------------------------|------------------------|-------------------|--------------------------------------| | 000 | Catostomus
commerson (| FLR | 93 samoling stations in Hass. | |
same as above | Lyman, et al
(1968),
AMIC+3839 | | 000 | Ictaturus
nebulosus | FLR | 93 sampling stations in Mass. | 1.2 (residue) |
same as above | Lyman, et al
(1968),
AMIC-3839 | | 000 | Cyprinus
carpio | FLR | 93 sampting stations in Hass. | 0.24-1.9
(residue) |
same as above | Lyman, et al
(1968),
AMIC-3839 | | 090 | Esox niger | FLR | 93 sampling
stations in
Mass. | 0.30 (residue) |
same as above | Lyman, etal
(1959),
AMIC-3839 | | 000 | Notem I gonus
crysoleucas | FLR | 93 sampling
stations in
Mass. | 0.15-2.7
(residue) |
same as above | Lyman, et al
(1968),
AMIC-3839 | | 000 | Semotitus
corporatis | FLR | 93 sampling
stations in
Mass. | |
same as above | Lyman, et al
(1968),
AMIC-3839 | | 999 | Lepomis
macrochirus | FLR | 93 sampling
stations in
Mass. | |
same as above | Lyman, et at
(1958),
AMIC-3839 | | 000 | Ambioniites
rupestris | FLR | 93 sampting
stations in
Mass. | 0.30-10.8
(residue) |
same as above | Lyman, et al
(1968),
AMIC-3839 | | 000 | Semotlius
atromaculatus | FLR | 93 sampling stations in Mass. | |
same as above | Lyman, et ai
(1968),
AMIC-3839 | | 000 | Micropterus
dotomleul | FLR | 93 sampling
stations in
Mass. | 0.20-0.50
(residue) |
same as above | Lyman, et a!
(1968),
AMIC-3839 | | 000 | Afosa
pseudo-
barengus | FLR | 93 sampling
stations in
Mass. | 0.88 (residue) |
same as above | Lyman, et al
(1968),
AMIC-3839 | | 000 | Fundulus
heteroclitus | FLR | 93 sampling stations in Mass. | 1.7-3.6
(residue) |
same as above | Lyman, et al
(1968),
AMIC-3839 | | 000 | Notropis | FLR | 93 sampling | 0.8-2.0 |
same as above | Lyman, et al | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |----------|--------------------------------|-----|---|---|---|---|---------------------------------------| | | cornutus | | stations in
Mass. | (residue) | | | (1968),
AMIC-3839 | | סרס | Roccus
americanus | FLR | 93 sampling
stations in
Mass. | | | same as above | Lyman, et al
(1968),
AMIC-3839 | | ספס | Pomoxis
nigro-
maculatus | FLR | 93 samoling
stations in
Mass. | 10.7(residue) | | same as above | Lyman, et al
(1968).
AMIC-3839 | | סכס | lepomis
auritus | FLR | 93 sampting
stations in
Mass. | 0.46 (residue) | | same as above | Lyman, et al
(1968),
AMIC-3839 | | DOD | Phinichthys
atratulus | FLR | 93 sampting
stations in
Mass. | 0.40 (residue) | | same as above | Lyman, et al
(1968),
AMIC-3839 | | 000 | Cyprinus
carpio | FR | St. Lawrence
River,
Hontreal,
Canada | 0.38(0.40 pom
max fissue
residue) | | Residues of DDD were measured in mater, mud, motiuses, and fish during and after DDD application in 1967. Sampling points were above the point of application and 10 and 45 mi downstream. Residues from unknown sources were detected upstream. Downstream residues were more than twice those obtained upstream (0.156 versus 0.369 ppm). The highest concentration in an individual fish was 1.81 ppm. | al (1970), | | 000 | Catostomus
commersoni | FR | St. Lawrence
Piver,
Montreal,
Canada | 0.38(0.40 ppm
max fissue
residue) | | same as above | Fredeen, et al (1970),ANIC+534 | | 000 | Amelurus
nebulosus | FR | St. Lawrence
River,
Montreal,
Canada | 0.38(0.55 ppm
max fissue
residue) | | same as above | Fredeen, et
al (1970),
AMIC-534 | | 000 | Perca
flavescens | FR | St. Lawrence
River,
Montreal,
Canada | 0.38 (0.44pom
max tissue
residue) | | same as above | Fredeen, et
al (1970),
AMIC-534 | | (| 000 | Esox fuclus | FR | St. Lawrence
River,
Montreal,
Canada | N.38 (1.31
ppmmax tissue
residue) | | same as above | Fredeen, et
al (1970),
AMIC-534 | |---|---------------------|--------------------------|------------------------------------|---|--|--|---------------|--| | 1 | 900 | Ambiooiltes
rupestris | FR | St. Lawrence
River,
Montreal,
Canada | 0.38(0.25 ppm
max tissue
residue) | •• | same as above | Fredeen, et a! (1970),AMIC-534 | | 1 | מסס | Pisidlum sp. | FR | St. Lawrence
River,
Montreal,
Canada | 0.38 (0.001ppm
max fissue
residue) | | same as above | Fredeen, et al (1970), AMIC-534 | | 1 | ם מכ | Campeloma sp. | FR | St. Lawrence
River,
Montreal,
Canada | 0.38 (0.22ppm
max fissue
residue) | | same as above | Fredeen, et
al (1970),
AHIC-534 | | 1 | ODE (C-14 labelled) | Sor qhu#
ha I pense | L
(Mod-el
ecosy
stem) | | 1 tb per A (NTE) | a.c.g.
standard
reference
water and
sand | | Metcalf, et
al (1971),
AMIC-1495 | | C | DDE (C-14 labelled) | Estigmene
acrea | L
(Mod-
el
ecosy
stem) | | 1 lbper A
(K-NTE) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | | C | DDE (C-14 labelled) | Physa spp | L
(Mod- | | 121.6
(residue) | a,c,g,
standard | same as above | Hetcalf, et | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |---------------------|---|------------------------------------|-------------------|---|--|---------------------------|--| | | | el
ecosy
stem) | | | reference
water and
sand | | (1971),AMIC-
1495 | | DDE (C-14 labelled) | Daphnia magna | L
(Mod-
el
ecosys
tem) | | 1 lb per A
(K-NTE) | a,c,g,stan
dard
reference
water and
sand | same as abov e | Metcalf, et
al (1971),
AMIC-1495 | | DDE (C-14 labelled) | Culex olplens
quinque-
fasciatus | L
(Mod-
el
ecosy
stem) | | 168.9(residue) | a,c,q,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | | DDE (C-14 labelled) | Dedogonium
cardiacum | L
(Mod-
el
ecosy
stem) | | 1 1b per A
(NTE) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf, et
al(1971),
AMIC-1495 | | DDE (C-14 labelled) | Gambusla
affinis | L
(Mod-
el
ecosy
stem) | | 149.8
(residue) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | | ODE (C-14 labelled) | Diatoms (Navicula, Coscinodis- cus, Dip- loness, and Diatomella) | L
(Mod-
el
ecosy
stem) | - | 1 tb per A
(NTE) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | | DDE (C-14 labelled) | Protozoa
(Nuclearia,
Coleps,
Vorticella,
and
Paramecium) | L
(Mod-
el
ecosy
stem) | | 1 1b per A
(NTE) | a,c,q,
standard
reference
water and
sand | same as above | Metcalt, et
al (1971),
AMIC-1495 | | DOE | (C-14 labelled) | Rotifers (Asplanchnopus, Notomata, Euclaris, Scardium) | el | | 1 lb per Å
(NTE) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf, et
al(1971),
AMIC-1495 | |-----|-----------------|--|------------------------------------|-------------------------|------------------------|--|---|--| | DOE | (C-14 tabelled) | Water | L
(Mod-
el
ecosys
tem) | | 0.00å
(residue) | a, c, g,
standard
reference
water and
sand | same as above | Metcaif, et
al (1971),
AMIC-1495 | | DDE | (0,0™) | Angullla
rostrata | FRL | St. John,
N.B., Can. | 0.5 (residue) | |
PCR"s were found in higher concentrations than organochlorine pesticides in all fish analyzed. The authors point out that PCB is less toxic in an acute sense than organochlorines, that little is known of sublethal PCB effects, and that more knowledge of PCB distribution and effects is needed. | Zitko(1971),
AMIC-3715 | | DDE | (0,0") | Esox niger | FRL | St. John,
N.R., Can. | 0.16 (residue) | | same as above | 71tko
(1971)+AMIC-
3715 | | DDE | {p,p"} | Salmo salar | FRL | St. John,
N.B., Can. | 0.22 (residue) | | same as above | Zitko
(1971),AMIC+
3715 | | DOE | (0,0") | Clupea
harengus | FRL | St. John,
N.B., Can. | 0.06-0.24
(residue) | | same as above | Zliko(1971),
AMIC-3715 | | DOE | (p,p") | Scomber
scombrus | FRL | St. John,
N.B., Can. | 0.07 (residue) | | same as above | Zitko(1971),
AMIC-3715 | | DOE | (0,p") | Mytitus
edulis | FRL | St. John,
N.B., Can. | 0.0?(residue) | | same as above | Zitko
(1971) + AMIC+
3715 | | DOE | (p,p") | Gadus morhua | FRL | St. John,
N.R., Can. | 0.01 (residue) | | same as above | Zliko(1971).
AMIC-3715 | | 300 | (p,p") | Urophycls
tenuls | FRL | St. John,
N.B., Can. | 0.02 (residue) | | same as above | Zltko(1971),
AMIC-3715 | | ODE | (0,0") | Hippo-
glossoides
piatessoides | FRL | St. John,
N.B., Can. | 0.01 (residue) | | same as above | 71tko
(1971),
AMIC-3715 | | DDE | (p,p") | Sebastodes | FRL | St. John, | trace | | same as above | Zliko(1971), | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental
Variables,
Controlled
or Noted | Comments | Reference | |------------|----------------------|-----|-------------------|---|--|---------------|--| | | marinus | | N.B., Can. | (residue) | | | AHIC-3715 | | DOE | Carp | FRL | Misc. state | s 0.03-2.93
residue (58) | | same as above | Henderson,
et al
(1971),AMIC-
1407 | | סחו | Channe i
catfish | FRL | Misc. state | s 0.04-42.3
residue (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | 005 | Redhorse
sucker | FRL | Misc. state | s 0.03+0.36
residue (S8) | | same as above | Henderson,et
B1 (1971),
AMIC-1407 | | DOE | Gizzard shad | FRL | Hisc. state | s 0.27-1.54
residue (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | 00€ | Spotted
sucker | FRL | Misc. state: | s 0.29-0.45
residue (SB) | | same as above | Henderson,
et al(19 ⁷ 1),
AMIC-1407 | | οσε | Bluegilis | FRL | MIsc. state | s 0.04-0.81
residue (SB) | | same as above | Henderson,
et al{1971},
AMIC-1407 | | ODE. | Redbreast
sunfish | FRL | Misc. state: | 5 0.02 residue
(SB) | ~~ | same as above | Henderson,
et al(1971),
AMIC+1407 | | one | Striped
mutlet | FRL | Misc. state | s 0.08-4.55
residue (SB) | | same as above | Henderson,
etal (1971),
AHIC-1407 | | PΩE | Blue catfish | FRL | Misc. states | (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | DOE | Rock bass | FRL | Misc. states | : 0.08-0.60
residue (SB) | ** | same as above | Henderson,
et al(1971),
AMIC-1407 | | DOE | freshwater
drum | FRL | Misc. states | : 0.26 residue
(SB) | | same as above | Henderson:
et al(1971);
AMIC-1407 | | DDE | Bloater | FRL | Misc. | states | 1.07-3.52
residue (S8) | | same as above | Henderson et
af(1971),
AMIC-1407 | |-------|------------------------|-----|-------|---------|---------------------------|----|---------------|---| | DOF | Lake
whitefish | FRL | Misc. | states | 0.34 residue
(SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | DOE | Lake trout | FRL | Misc. | states. | 0.04-0.98
residue (SB) | •• | same as above | Henderson,
etal (1971),
AMIC-1407 | | DOE | White crappie | FRL | Misc. | states | 0.03-0.23
residue (SB) | •• | same as above | Henderson, et
al (1971),
AMIC-1407 | | DDE | Blgmouth
buffato | FRL | Misc. | states | 0.15-0.62
residue (SB) | | same as above | Henderson, et
at (1971),
AMIC-1487 | | DDE | Small mouth
buffalo | FRL | Misc. | states | 0.46 residue
(SB) | ** | same as above | Henderson, et
al (1971).
AMIC-1407 | | DDE | Flathead
catfish | FRL | Misc. | states | 0.82 residue
(SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | DDE | Goldeye | FRL | MIsc. | states | 0.03-0.29
residue (SB) | | same as above | Henderson.
et al(1971).
AMIC-1487 | | ODE | Walleye | FRL | Misc. | states | 0.05 residue
(SB) | •• | same as above | Henderson,
et al
(1971),AMIC-
1407 | | DDE | Sauger | FRL | Misc. | states | 0.38 residue
(SB) | | same as above | Henderson, et
al(1971),
AMIC-1407 | | - DDE | Fiannelmouth
sucker | FRL | Misc. | states | 0.13 residue
(SB) | | same as above | Henderson.et
al (1971),
AHIC-1487 | | DOE | Black
bullhead | FRL | Misc. | states | 0.03-0.04
residue (SB) | •• | same as above | Henderson, et al (1971), AHIC-1407 | | DDE | White bass | FRL | Hisc. | states | 0.13 residue
(SB) | •• | same as above | Henderson,
et al(1971), | | Compound | mzinepo0 | | Fietd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |----------|-----------------------|-----|-------------------|---|---|---------------|--| | | | | | | | | AMIC-1407 | | DOE | Black crappie | FRL | Hisc. state | residue (SB) | | same as above | Henderson.et
al (1971),
AMIC-1407 | | DΩE | Largescale
sucker | FRL | Misc. state | residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | 00€ | Small mouth
bass | FRL | Misc. state | residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | 00E | Northern
squawfish | FRL | Misc. state | s 0.45-1.87
residue (SB) | | same as above | Henderson.et
al (1971),
AMTC-1407 | | 90€ | Chiselmouth | FRL | Misc. state | s 0.14-0.70
residue (SB) | | same as above | Henderson,
etal (1971),
ANIC-1407 | | DOE | Klamath
sucker | FRL | Misc. state | s 0.02 residue
(SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | DDE | Rainbow trout | FRL | Misc. state | s 0.08-0.50
residue (SB) | | same as above | Henderson, et
a! (1971),
AMIC-1407 | | DOE | Bridgellp
sucker | FRL | Misc. state | s 0.35 residue
(SB) | •• | same as above | Henderson, et
al (1971),
AMIC-1487 | | 00€ | Arctic
grayling | FRL | Misc. state | s 0.25 residue
(SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | DOE | Round
whitefish | FRL | Misc. state | s 0.27 residue
(SB) | | same as above | Henderson,
etat (1971),
AMIC-1407 | | DDE | Longnose
sucker | FRL | Hisc. state | residue (SB) | | same as above | Henderson.et
at (1971).
AMIC-1407 | | DOE | White sucker | FRL | Misc. states | 0.05-4.82
residue (SB) | | The Bureau of Sport Fisheries continued its fish monitoring program by collecting 147 composite fish samples from 50 nationwide monitoring stations during the fall of 1969. Fish were analyzed for residues of 11 organochtorine insecticides, lipids, and PCB™s. | Henderson,
et al
(1971),
AMIC-1407 | |-----|--------------------------------------|------|---------------------------------------|-------------------------------|----|---|---| | DDE | Yellow perch | FRL | Hisc. states | 0.03-2.41
residue (SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | DOE | Chain
plckeret | FRL | Hisc. states | 0.06 residue
(SB) | | same as above | Henderson,
et al(1971),
AHIC-1407 | | DOE | White catfish | FRL. | Hisc. states | 0.38-0.86
residue (SB) | | Same as above | Henderson, et al (1971), AHIC-1407 | | DDE | White perch | FRL | Misc. states | 0.64-10.9
residue (SB) | •• | same as above | Henderson,
et al(1971),
AHIC-1407 | | DOE | Goldfish | FRL | Misc. states | 1.24 residue
(SB) | | same as above | Henderson,
et al
(1971),AMIC-
1407 | | DOE | Pumpkinseed | FRL | Hisc. states | 0.83 residue | | Same as above | Henderson,
et al
(1971),AMIC-
1407 | | DDE | Largemouth
bass | FRL | Misc. states | 0.10-5.85
residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | DDE | Brown
bullhead | FRL | Misc. states | 0.04-1.65
residue (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | DDE | Limnephilus
rhombicus
(Iarvae) | FS | Knights
Creek, Dun
County,Wisc. | 0.006 (whole
body residue) | | Samples of water, silt, bottom debris, bottom organisms, and fish were taken in 1966 from a creek adjacent to an orchard which had been treated in 1963-1965 with various chlorinated hydrocarbon pesticides. No residues were found in water samples. Silt samples contained 0.002-0.013 ppm endrin and 0-0.015 ppm dietdrin. Endrin residues of | Moubry, et al (1968), AMIC-3753 | | Compound | Organism | | Field
Location | Toxicity, Active Ingredient, Pom | Experiment:
Variables,
Controlled
or Noted | | Reference | |----------|----------------------------|----|--|----------------------------------|---
--|---------------------------------------| | | | | | | | 0.011-0.025 ppm and 0.002-0.006 ppm dietdrin were found in debris samples. Respite limited control data, residue analyses indicated that contamination of the environment studied was limited. | | | on€ | Slalis so.
(larvae) | FS | Knights
Creek, Dun
County,
Wisc. | 0.005
(wholebody
residue) | | same as above | Moubry, et
at (1968),
AMIC-3753 | | DOΕ | Gammarus so∙ | FS | Knights
Creek, Dun
County,
Wisc. | 0.01(whole bodyresidue) residue) | •• | same as above | Moubry, et
al (1968),
AMIC-3753 | | DOF | Salvetinus
fontinatis | FS | Knights
Creek, Dun
County,
Wisc. | 0.3-1.4(fat
residue) | | same as above | Moubry, et
al (1968),
AMIC-3753 | | DOE | Semotlius
atromaculatus | FS | Knights
Creek, Dun
County,
Wisc. | 1.02-1.53(fat
residue) | | same as above | Noubry, et
at (1958),
AMIC-3753 | | οσε | Cottus bairdi | FS | Knights
Crrek, Dun
County,
Wisc. | 0.6-0.7 (fat
residue) | | same as above | Houbry, et
at (1968),
AMIC-3753 | | 00E | Rhinichthys
atratulus | FS | Knights
Creek, Dun
County,
Wisc. | 1.92(fat
residue) | | same as above | Moubry, et
at (1968),
AMIC-3753 | | DΩE | Engrautis
mordax | | Pacific
Northwest
Coast, Grays
Harbor,
Wash. | 0.06-0.17(res
idue) | | Pesticides from the Columbia River into Puget Sound apparently contaminated fish constituting commercial catches in Pacific Northwest waters. Residues in these marine products were substantially lower than the FDA tolerance for beef (7 ppm). Fish from locations near the mouth of the Columbia River had higher pesticide content than ones caught farther away. | Stout
(1958),
AMIC~3784 | Wash. | DDE | Sebastodes
flavidus | FM | Pacific
Northwest
Coast,
Hecate
Strait, B.C. | 0.02-0.0A
(residue) |
same as above | Stout
(1968),
AMIC-3784 | |-----|--------------------------|------|---|------------------------|-------------------|-------------------------------| | DOE | Sebastodes
tlavidus | FM | Pacific
Northwest
Coast,
Ilwaco,Wash. | 0.09-0.42
(residue) |
same as above | Stout
(1968),
AMIC-3784 | | ODE | Platichthys
stellatus | FH | Pacific
Northwest
Coast,
Blaine,
Wash. | 0.02(residue) |
same as above | Stout
(1968),
AMIC-3784 | | DDE | Gadus
macrocephalus | FH | Pacific
Northwest
Coast,
Biaine, | 0.01 (residue) |
same as above | Stout
(1968),
AMIC-3784 | | ODE | Cancer
magister | FM | Pacific
Northwest
Coast,
Destruction
Island,
Wash. | 0.039(residue) |
same as above | Stout
(1968),
AMIC-3784 | | DDE | Cancer
maqlster | FM | Pacific
Northwest
Coast,
Ilwaco,
Wash. | 0.03-0.04
(residue) |
same as above | Stout
(1968),
AMIC-3784 | | DDE | vetulus | FH . | Pacific
Northwest
Coast,
Biaine,
Wash. | 0.01-0.05
(residue) |
same as above | Stout
(1968),
AHIC-3784 | | DOE | Merluccius
productus | FM | Pacific
Northwest
Coast,
Sarasota
Passage,
Wash. | 0.04-0.06
(residue) |
same as above | Stout
(1968),
AMIC-3784 | | DOE | Mertuccius
productus | FH | Pacific
Northwest | 0.04-0.11
(residue) |
same as above | Stout
(1968), | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|---------------------------------------|-----|---|---|---|---|--| | | | | Coast, Fort
Susan, Wash. | | | | AMIC-3784 | | DOE | Merlucclus
productus | FM | Pacific
Northwest
Coast, Cape
Foulweather,
Ore. | 0.87(residue) | | same as above | Stout
(1968),
AMIC-3784 | | οσε | Mertucclus
productus
(fishmeat) | FM | Pacific
Northwest
Coast,
Aberdeen,
Wash. | 0.27 (residue) | | same as above | Stout
(1968),
AMIC-3784 | | DOE | Sebastodes
alutus | FM | Pacific
Northwest
Coast,
Hecate
Strait, B.C. | 0.01 (residue) | | same as above | Stout
(1968),
AMIC-3784 | | ONE | Carassius
auratus | ι | | 4.7-8.2
(residue) | a* | Goldfish were exposed to increasing concentrations of DDT and residues determined after 21 days of exposure. Most DDT had been converted to DDE. Phenobarital had no significant effect on insecticide residues. | Young, etal
(1971),
AHIC-3796 | | DD€ | Triturus
cristatus | ι | | 0.23-0.64
(residue) | | DDT caused hyperactivity in exposed tadpoles. This caused increased capture lunges of newts thus increasing the predatory efficiency of the newts. DDT had no apparent effect on the newts. | Cooke
(1971),
AMIC-3814 | | DOE | Rana
temporaria | ι | | 0.001-0.01
microgram
(residue) | | same as above | Cooke
(1971),
AMIC-3914 | | DOE | Daphnla magna
(adult) | BCF | - | 1.8 (residue) | a* | Magnification of DDT and Aldrin tagged with C-14 occurred rapidly. Biological magnification factors of 2900 to 114,100 depending on the species were found for DDT, and 22,800 to 141,000 for Aldrin. Marked degradation of DDT as determined by analysis for DDT metabolites occurred. The authors | Johnson, et
a!
(1971),AMIC
3820 | ## conclude that aquatic invertebrates influence quality and quantity of insecticide residue passed via the fish food chain. | DDE | Gammarus
fasciatus
(adult) | BCF | | 0.4 (residue) | a* | same as above | Johnson, et
Bi
(1971),AMIC-
3620 | |-----|--|-----|----|----------------|-----|---------------|--| | DDE | Palaemonetes
kadlakensis
(adult) | BÇF | | 8.7 (residue) | a* | same as above | Johnson, et
al(1971),
AHIC~3820 | | DDE | Hexagenia
bilineata
(nymph) | BCF | | 1.4 (residue) | ´a• | same as above | Johnson, et a! (1971),AMIC-3820 | | DOE | Ischnura
verticatis
(nalad) | BCF | | 0.2 (residue) | a* | same as above | Jehnson, et
at
(1971), AMIC-
3820 | | 00E | Libellula sp.
(nalad) | BCF | ** | 0.02 (residue) | a* | same as above | Johnson, et
al (1971),
AMIC-3820 | | ODE | Chironomus
sp. (larva) | BCF | | 8.1 (residue) | a* | same as above | Johnson, et
a!
(1971),AMIC-
3820 | | DDE | Daphnla magna
(aduit) | BCF | | 0.0001 (SB3) | a* | same as above | Johnson,et
#1 (1971),
AMIC-3820 | | DO€ | Gammarus
fasclatus
(adult) | BCF | | 0.0001 (SB3) | a* | same as above | Johnson,et
al (1971),
AMIC-3820 | | 300 | Palaemonetes
kadlakensis
(adult) | BCF | | 0.0001 (583) | a • | same as above | Jahnson,et
al (1971),
AHIC-3820 | | DOE | Hexagenla
bilineata
(nymph) | BCF | | 0.0001 (SB3) | a* | same as above | Johnson,et
at (1971),
AMIC-3820 | | DDE | Ischnura
verticalis
(nalad) | BCF | | 0.0001 (SB3) | a* | same as above | Johnson,et
at (1971),
AMIC-3820 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|------------------------------|-----|-------------------------------------|---|---|---|---------------------------------------| | DOE | Libellula sp.
(nalad) | BCF | | 0.0001 (583) | a* | same as above | Johnson,et
al (1971),
AMIC-3820 | | DOE | Chironomus
sp. (tarva) | BCF | | 0.0001 (S83) | a* | same as above | Johnson,et
at (1971),
AMIC-3820 | | 00E | Micropterus
saimoldes | FL | Clear Lake,
Cal. | 0.3-9 (flesh
residue) | | Residue analysis results mainly for TDE in fish, birds, and plankton from 1959 through 1965 were reported. The residues primarily resulted from application of DDT to farmland and for quat control. In some cases, data for a single animal in one year were given. Primary emphasis was on largemouth bass and white catfish. The general level of TDE contamination in birds and fish dectined markedly from 1958 to 1965. This decline correlated directly with strict limitation by permits of DDT applications during the fatter years. | Linn, et
AL(1969),
AMIC-5521 | | 00€ | Micropterus
salmoides | FL | Clear Lake,
Cal. | 82 (fat
residue) | | same as above | Linn, et al
(1969),AMIC-
5521 | | 00€ | Aechmophorus
occidentatis | FL | Ciear Lake,
Cai. | 33-2,360 (fat
residue) | | same as above | Linn, et
AL(1959),
AMIC-5521 | | 300 | Larus sop. | FL | Clear
Lake,
Cal. | 300-402
(residue) | | same as above | Linn, et al
(1969),
ANIC-5521 | | 09E | Larus
delawarensis | FL | Clear Lake,
Cal. | 92-2700 (fat
residue) | | same as above | Linn, et al
(1959),AMIC=
5521 | | 00ε | Perca
flavescens | FLR | 93 sampling
stations in
Mass. | 0.25-3.6
(residue) | | Fish Indigenous to Massachusetts freshwater streams were analyzed for ODT and ODT metabolites during 1965-1967. Generally there was an increase in pesticide content during the three year period. | Lyman, et al
(1968),
AMIC-3539 | | 00E | Lepomis
gibbosus | FLR | 93 sampling
stations in
Mass. | |
same as above | Lyman, et al
(1968),
AHIC-3839 | |-----|-------------------------------|-----|--------------------------------------|-----------------------|-------------------|--------------------------------------| | 00€ | Catostomus
commerson i | FLR | 93 sampting
stations in
Mass. | |
same as above | Lyman, et al
(1968),
AMIC-3839 | | ODE | Ictalurus
nebulosus | FLR | 93 sampling
stations in
Mass. | 0.9 (residue) |
same as above | Lyman, et al
(1968),
AMIC-3839 | | DOE | Cyprinus | FLR | 93 sampling
stations in
Mass. | |
same as above | Lyman, et a!
(1968),
AMIC+3839 | | DDE | Esox niger | FLR | 93 sampling
stations in
Mass. | |
same as above | Lyman, et at (1968),
AMIC-3839 | | 00€ | Notemigonus
crysoleucas | FLR | 93 sampling
stations in
Mass. | |
same as above | Lyman, et al
(1958),
AMIC-3839 | | 00E | Semotilus
corporatis | FLR | 93 sampiling
stations in
Mass. | |
same as above | Lyman, et al
(1968),
AMIC+3839 | | DOE | Lepomis
macrochirus | FLR | 93 sampling
stations in
Mass. | |
same as above | Lyman, et al
(1968),
AMIC+3839 | | 0DE | Amblopiltes
rupestris | FLR | 93 sampling
stations in
Mass. | |
same as above | Lyman, et al
(1968),
AMIC-3839 | | 00E | Semotilus
atromaculatus | FLR | 93 sampling
stations in
Mass. | |
same as above | Lyman, et ai
(1968),
AMIC-3839 | | 00€ | Micropterus
dolomieui | FLR | 93 sampling
stations in
Mass. | |
same as above | Lyman, et al
{1968},
AMIC-3839 | | DDE | 41 osa
pseudo-
herengus | FLR | 93 sampling
stations in
Mass. | 1.08 (residue) |
same as above | Lyman, et al
(1968),
AHIC-3839 | | DOE | Fundulus
heteroclitus | FLR | 93 sampling
stations in
Mass. | 1.16-4.1
(residue) |
same as above | Lyman, et al
(1968),
AMIC-3839 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Pom | Experiment:
Variables,
Controlled
or Noted | | Reference | |----------|--------------------------------|-----|---|---|---|--|---------------------------------------| | ουε | Notropis
cornutus | FLR | 93 sampling
stations in
Mass. | | | same as above | Lyman, et al
(1968),
AMIC-3839 | | 300 | Poccus
americanus | FLR | 93 sampling
stations in
Mass. | | | same as above | Lyman, et at
(1968),
AMTC-3839 | | 00€ | Pomoxis
nigro-
maculatus | FLR | 93 sampling
stations in
Mass. | 1.94 (residue) | | same as above | Lyman, et al
(1968),
AMIC-3839 | | DOE | Fundulus
diaphanu | FLR | 93 sampling
stations in
Mass. | 2.35 (residue) | | same as above | Lyman, et al
(1968),
AMIC-3839 | | 00* | Notropis
anatostanus | FLR | 93 sampling
stations in
Mass. | 0.53 (residue) | | same as above | Lyman, et al
(1968),
AMIC-3839 | | 00E | Lebomis
auritus | FLR | 93 sampling
stations in
Mass. | 0.46 (residue) | | same as above | Lyman, et al
(1968),
AMIC-3839 | | 098 | Phinichthys
atratulus | FLR | 93 sampling stations in Mass. | | | same as above | Lyman, et al
(1968),
AMIC+3839 | | OOF | Cyprinus
carpio | | St. Lawrence
Plver,
Hontreal,
Canada | 0.38(0.32 ppm
max tissue
residue) | | Residues of DDD were measured in water, mud, mcliuscs, and fish during an after DDD application in 1967. Sampling points were above the point of application and 10 and 45 mi downstream. Residues from unknown sources were detected upstream. Downstream residues were more than twice those obtained upstream (0.156 versus 0.369 ppm). The highest concentration in an individual fish was 1.81 ppm. | d at (1970). | | 300 | Amelurus
nebulosus | FR | St. Lawrence
Piver,
Montreal,
Canada | 0.38(0.12 ppm
max fissue
residue) | | same as above | Fredeen, et
al (1970),
AMIC-534 | | DDE | Perca
flavescens | FR | St. Lawrence
River,
Montreal,
Canada | 0.38 [0.01ppm
max flssue
residue) | | same as above | Fredeen, et
al (1970),
AMIC-534 | | DDE | Esox luclus | FR | St. Lawrence
River,
Montreat,
Canada | 0.38 (0.43
ppmmax flssue
residue) | | same as above | Fredeen, et
al (1970),
AMIC-534 | |---------------------|--|-----|---|---|------------|---|--| | DOE | Ambiopilies
rupestris | FR | St. Lawrence
River,
Montreal,
Canada | nqa 20.035.0
max tissue
residue) | | same as above | Fredeen, et al (1970).AMIC-534 | | DOE | Pisidium sp. | FR | | 0.38 (0.04ppm
max fissue
residu) | | same as above | Fredeen, et
al (1970),
AMIC~534 | | ODE | Campelona sp. | FR | St. Lawrence
River,
Montreal,
Canada | 0.38 (0.09ppm
max tissue
residue) | •• | same as above | Fredeen, et
a! (1970).
AMIC-534 | | DOE | Catostomus
commerson1 | FR | St. Lawrence
River,
Hontreal,
Canada | 0.38(0.32 ppm
max fissue
residue) | | same as above | Fredeen, et al (1970),4MIC-534 | | ODT (C-14 labelled) | Dabhnla magna
(adu¶†) | BCF | | 6.7-9.2
(residue) | a* | Hagnification of DDT and Aldrin tagged with C-14 occurred rapidly. Biological magnification factors of 2900 to 114,100 depending on the species were found for DDT, and 22,800 to 141,000 for Aldrin. Marked degradation of DDT as determined by analysis for DDT metabolites occurred. The authors conclude that aquatic invertebrates influence quality and quantity of insecticide residue passed via the fish food chain. | Johnson, et
al (1971),
AMIC-3820 | | DDT (C-14 labelled) | Culex pipiens
(larva) | RCF | | 13.9 (residue) | a* | same as above | Johnson.et
al (1971).
AMIC-3820 | | DDT (C-14 labelled) | Daphnla magna
(adult) | BCF | | 0.0001 (SB3) | a* | same as above | Johnson.et
al (1971),
AMIC-3820 | | DDT (C-14 labelled) | Gammarus
fasciatus
(adult) | BCF | | 0.0001 (SB3) | a♥ | Same as above | Johnson,et
at (1971),
AMIC-3820 | | DOT (C-14 labelled) | Orconectes
nais (adult) | RCF | | 0.0001 (SB3) | a* | same as above | Johnson,et
81 (1971),
AMIC-3820 | | DOT (C-14 labelled) | Palaemonetes
kadlakensis
(adult) | BCF | | 0.0001 (SB3) | a* | same as above | Johnson, et
al (1971),
AHIC-3820 | | DDT (C-14 labelled) | Hexagenia
bilineata | RCF | | 0.0001(SB3) | 3 * | same as above | Johnson,et
al (1971), | | Compound | Organism | | Fleld
Location | Toxicity,
Active
Ingredient,
Pom | Experimental Variables, Controlled or Noted | Comments | Reference | |---------------------|--|-----|-------------------|---|---|---------------|--| | | | | | | | | | | | (nymoh) | | | | | | AMTC-3829 | | DOT (C-14 labelled) | Siphionurus
sp (nymph) | BCF | | 0.0001 (S83) | a• | same as above | Johnson,et
al (1971),
AMIC-3A20 | | 007 (C-14 labelled) | Ischnura
verticalis
(naiad) | BCF | | 0.0001(SB3) | a • | same as above | Johnson,et
al (1971),
AMIC-3520 | | DOT (C-14 labelled) | (naiad) | BCF | | 0.0001 (583) | a* | same as above | Johnson, et
at (1971),
AMIC-3820 | | DOT (C-14 labelled) | Chironomus
sp. (larva) | BCF | | 0.0001 (SB3) | a • | Same as above | Johnson,et
al (1971),
AMIC-3820 | | OOT (C-14 labelled) | Cutex pipiens
(tarva) | ACF | | 0.0001 (583) | a♥ | same as above | Johnson,et
al (1971),
AMIC-3820 | | DOT (C-14 labelled) | Gammarus
fasclatus
(adult) | BCF | | 1.3-1.7
(residue) | a• | Same as above | Johnson, et
al (1971),
AMIC~38≥0 | | DDT (C-14 labelled) | Orconectes
nais (adult) | BCF | | 0.2 (residue) | a♥ | same as above | Johnson,et
al (1971),
AMIC-3820 | | DDT (C-14 labelled) | Palaemonetes
kadiakensis
(adult) | BCF | | 0.3-0.5
(residue) | a* | same as above | Johnson, et
al (1971),
AHIC-3820 | | Þ | |----------| | | | \vdash | | w | | Ň | | | DDT (C-14 labelle | d) Hexagenia
bilineata
(nymph) | BCF | | 0.3-1.7
(residue) | 9* | same as above | Johnson, et
al (1971),
AMIC-3829 | |-------|-------------------|--------------------------------------
------------------------------------|---------|-----------------------|--|---|--| | | DDT (C-14 labelle | d) Siphionurus
sp. (nymoh) | BCF | | 1.1 (residue) | a* | same as above | Johnson,et
a1 (1971),
AMIC-3820 | | | DOT (C-14 labelle | d) Ischnura
verticalis
(nalad) | BCF | | 0.2-0.4
(residue) | a* | Same as above | Johnson, et
al (1971),
AMIC-3820 | | | DOT (C-14 labelle | t) Libettula sp.
(naiad) | - BCF | | 0.04-0.1
(residue) | a* | Same a\$ above | Johnson, et
al (1971),
AMIC-3820 | | | ODT (C-14 labelle | d) Chironomus
sp. (Tarva) | BCF | | 0.4-2.2
(residue) | a* | Same as above | Johnson, et al (1971), AMIC-3820 | | A-135 | DDT (C-14 labelle | 3) Estigmene
acrea | L
(Mod-
el
ecosy
stem) | | 1 lbper A (K-NTE) | a,c,g,
standard
reference
water and
sand | This small laboratory model ecosystem procedure was developed to study resticide biodegradability and ecological magnification. The food-chain pathways in this system were: (1) sorghum - caterpiller (larva), (2) caterpiller (excreta) - Dedogonium, (3) Dedogonium - snall, (4) Estigmene (excreta) - diatoms, (5) Diatoms - plankton, (6) Plankton - Cufex (larvae), (7) Culex - Gambusia. The fish is the top of the food chain. Using isotopically labeled pesticides (1 lb/acre application rate), residues were determined for only selected organisms (snall, mosquito, and fish) and water. Reproducibility appeared to be good. The authors state that the method gives a good estimation of the potential toxicity of pesticides and their breakdown products to a variety of organisms and is suitable for computer modeling. | Metcalf, et
al (1971),
AMIC~1495 | | Compound | nrganis# | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |---------------------|---|------------------------------------|-------------------|---|--|---------------|--| | DDT (C-14 tabelled) | Protozoa
(Nuclearia,
Coleps,
Vorticella,
and
Paramecium) | L
(Mod-
el
ecosy
stem) | | 1 1b per A
(NTE) | a,c,q,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | | DDT (C-14 labelled) | Rotifers
(Asplanchnop-
us, Notomat-
ta, Euclaris,
Scardium) | el | | 1 1b per A
(NTE) | a.c.q,
standard
reference
water and
sand | same as above | Metcalf, et
el(1971).
AMIC-1495 | | 007 (C-14 labelled) | Water | L
(Mod-
el
ecosy
stem) | | 0-004
(residue) | a,c,g,
standard
reference
water and
sand | same as above | Hetcalf, et
al (1971),
AMIC-1495 | | DDT (C-14 labelled) | Physa spp | L
(Mod-
el
ecosy
stem) | | 22.9 (residue) | a,c,q,
standard
reference
water and
sand | evode ze emez | Metcalf, et
al (1971),
AMIC-1495 | | DOT (C-14 fabelied) | Daphnla maqna | L (Mod- el ecosy stem) | | 1 lb per A
(K-NTE) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | | DOT (C-14 labelled) | Culex pipiens
quinque-
fasciatus | L
(Mod-
el
ecosys
tem) | | 8.9(residue) | a,c,q,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | | ODT (C-14 labelled) | Oedogonium
cardiacum | L
(Mod-
el
ecosy
stem) | | 1 1b per A
(NTE) | a,c,q,
standard
reference
water and
sand | evode`ze emez | Metcalt, et
al(1971),
AMIC=1495 | | ODT (C-14 labelled) | Gambusia
affinis | L
(Mod-
el
ecosy
stem) | | 54.2 (residue) | a,c,g,
standard
reference
water and
sand | zame az above | Metcalf, et
al (1971),
AMIC+1495 | | ODT (C-14 labelled) | Diatoms (Navicula, Coscinodis- cus, Dip- loness, and Diatomella) | L
(Mod-
el
ecosy
stem) | | 1 1b per A (NTE) | a,c,q,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AHIC-1495 | |---------------------------|--|------------------------------------|---------------------------------------|---|--|--|--| | OOT (C-14 labelled) | Salvelinus
fontinalis | ВСГСН | | 0.00003
(0.0256ppm
accumulation
120 d) | a | This study was an attempt to evaluate, under laboratory conditions, the relative importance of food and water as sources of DDT for fish and to relate these observations to natural environments. To simulate conditions in Lake Michigan, fish were exposed to water containing 3 plus or minus 0.3 ppt DDT, and others were fed 3 plus or minus 0.15 ppm DDT (0.045 mg/kg/day) for 120 days. Whole body accumulations were determined throughout the test by measuring C-14 radioactivity in fish. The results show that fish accumulated 3.5 percent of the DDT avallable in the water and 35.5 percent of that available in food. It is concluded that the food chain is the major source of DDT in fish. | Macek, et al
(1970),
AMIC-844 | | DDT (C-14 tabelled) | Salvelinus
fontinalis | BCFCH | | 0.045 mg per kg
(1.92ppm
accumulation
120 d) | a | same as above | Macek, et a!
(1970),
AMIC+844 | | DDT (0,p") | Rasbora
heteromorpha | BCFA
and
BSA | | 0.03 (T1) | dilution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | ODT (plus DDT
analogs) | Limnephilus
rhombicus
(larvae) | FS | Knights
Creek, Dun
County,Wisc. | 0.024 (whole
body residue) | | Samples of water, silt, bottom debris, bottom organisms, and fish were taken in 1966 from a creek adjacent to an orchard which had been treated in 1963-1965 with various chlorinated hydrocarbon pesticides. No residues were | Moubry, et al (1968), AMIC-3753 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | comments | Reference | |---------------------------|----------------------------|----|---|---|---|---|---------------------------------------| | | | | | | | found in water samples. Silt samples contained 0.002-0.013 ppm endrin and 0-0.005 ppm dietdrin. Endrin residues of 0.011-0.025 ppm and 0.002-0.006 ppm dietdrin were found in debris samples. Despite timited control data, residue analyses indicated that contamination of the environment studied was limited. | | | 100 sula) 100
anaiogs) | Slalis sp.
(larvae) | FS | Knights
Creek, Oun
County,
Wisc. | 0.016 (whole
body residue) | | same as above | Moubry, et
s!(1968),
AMIC+3753 | | ONT (plus DNT
analogs) | Gammarus \$₽• | FS | Knights
Creek, Dun
County,
Wisc. | 0.003-0.013
(whole body
residua) | | same as above | Moubry, et
at (1968),
AMIC-3753 | | ODT (plus DOT
anatogs) | Salvelinus
fontinalis | FS | Knights
Creek, Dun
County,Wisc. | 0.042-0.155
(whole body
residue) | | same as above | Moubry, et
al (1968),
AMIC-3753 | | 007 (plus 007
analogs) | Semotlius
atromaculatus | FS | Knights
Creek, Dun
County,Wisc. | 0.061-0.076
(whole body
residue) | | same as above | Moubry,et al
(1968),
AMIC-3753 | | 100 zula) 100
(apolene |
Cottus bairdi | FS | Knights
Creek,
DunCounty,
Wisc. | 0.034-0.062
(whole body
residue) | | same as above | Houbry, et
al (1958),
AMIC-3753 | | ODT (ofus DOT
analogs) | Phinichthys
atratulus | FS | Knights
Creek, Dun
County,Wisc. | 0.165 (whole
body residue) | | same as above | Moubry, et
at (1958),
AMIC-3753 | | DNT (blus DNT
analogs) | Salvelinus
fontinalis | FS | Knights
Creek, Dun
County, Wisc. | 0.92-3.87 (fat
residue) | | Same as above | Moubry, et
al (1968),
AMIC-3763 | | DOT (blus DOT
enalogs) | Semotifus
atromaculatus | FS | Knights
Creek, Dun
County,Wisc. | 1.81-2.36 (fat
residue) | | same as above | Moubry, et
af (1968),
AMIC+3753 | | DOT (plus DDT
Bnologs) | Cottus bairdi | FS | Knights
Creek, | 1.53-2.58 (fat residue) | | same as above | Houbry, et
al (1968), | | | | | DunCounty,
Hisc. | | | | | AMIC-3753 | |--|--------------------------|--------------------|--|--------------|------|--|---|---------------------------------------| | 00T (plus 0DT
analogs) | Phinichthys
atratulus | FS | Knights
Creek, Dun
County, Wisc. | 2.8
resla | | | same as above | Moubry, et
al (1968),
AMIC-3753 | | 09T (plus 20 percent
non-lonic
emulsitier, 60
percent naphtha) | Rasbora
heteromorpha | BCFA
and
BSA | | 0.11 | (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | 09T (ofus 20 percent
non-lonic
emulsifier, 60
percent naphtha, in
acetone) | Rasbora
heteromorpha | BCFA
and
RSA | | 0.02 | (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | DDT (olus 24 percent
suspending agents) | Rasbora
heteromorpha | BCFA
and
BSA | | 10.7 | (71) | a*,c,e,f,
hard (HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | DDT (plus 3 percent emulsifier, 45 percent naphtha) | Rasbora
heteromorpha | BCFA
and
BSA | | 0-11 | (T2) | a*,c,e,f,
hard (HH)
or soft
(SH)
synthetic
dllution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |---|----------------------------------|--------------------|-------------------|---|--|--|---------------------------------------| | OOT (plus 77 percent
China clay, 3
percent calcium
sulfate) | Rasbora
heteromorpha | BCFA
andBS
A | | 8.0 (12) | a*,c,e,f,
hard (HW)
or soft
(SW) | same as above | Alabaster
(1969),
AMIC-5425 | | | | | | | synthetic
ditution
water or
seawater
forsome
species | | | | DDT (plus 77 percent
Chine clay, 3
percent calcium
sulfete, in
ACETONE) | Pasbora
heteromorpha | BCFA
and
BSA | | 0.001 (72) | at, c, e, f,
hard (iiw)
or soft
(SW) syn-
thetic
water, or
scawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | ODT (p,p~-) | Pimephales
promeias (%
cm) | BSA | | 0.0074 (T2) | a*,c,e,f,k
,1,n,and
magneslum,
sulfates,
iron,
caicium | Rioassays conducted simultaneously indicated that NOT was considerably more toxic to fathead minnows under static conditions than under continuous flow conditions. Recreasing oxygen and increasing metabolites may have enhanced DOT toxicity. An identical study with Endrin resulted in only stightly higher toxicity under continuous flow conditions. Average pH, oxygen, and ammonia nitrogen were followed throughout the experiments. The results were comprehensively discussed taking into consideration many contributing factors. | | |)OT (p,p"-) | Pimephales
promelas (3
cm) | BCFA | | greater than
0.04 (T2) | a*,c,e,f,k
,l,n,and
magneslum,
sulfates,
lron, | | Lincer, et
al (1970),
AMIC-5509 | ## calcium | 00T (°a,a°) | Angullla
rostrata | FRL | St. John,
N.B., Can. | 0.29 (residue) | | PCR"s were found in higher concentrations than organochlorine pesticides in att fish analyzed. The authors point out that PCR is tess toxic in an acute sense than organochlorines, that little is known of subtethal PCR effects, and that more knowledge of PCB distribution and effects is needed. | Zitko(1971),
AMIC-3715 | |---|------------------------------------|--------------------|-------------------------|------------------------|----------|---|-----------------------------------| | DDT (0,p*) | Fsox niger | FRL | St. John,
N.B., Can. | 0.08 (residue) | | same as above | Zitko
(1971),AMIC-
3715 | | DDT (0,p ^m) | Salmo salar | FRL | St. John,
N.R., Can. | 0.08 (residue) | | same as above | Z1tko
(1971),AMIC+
3715 | | DDT (p,p") | Clupea
harengus | FRL | St. John,
N.B., Can. | 0.05-0.15
(residue) | | same as above | Zitko(1971),
AHIC-3715 | | 00T (°a,a") | Scomber
\$combrus | FRL | St. John,
N.B., Can. | 0.07 (residue) | | same as above | Zitko(1971),
ANIC-3715 | | 00T (p,p") | Rasbora
heteromorpha | BCFA
and
BSA | | 0.013 (T1) | dliution | Che hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | DDT (p.p ^m , C-14
labelled) | Gambusla
affinis
(0.1+1.5 g) | • | | 0.000041(SB2) | a∓ | DDT-resistant mosquitofish were collected from a pond at Salinas, California. Smaller flsh (100 mg) accumulated DDT-C14 more rapidly than larger ones (200-1500 mg). In 48 hr the flsh removed 21 percent of the DDT from the water. The author notes that other researchers attribute DDT contamination of flsh to food chain uotake but that his results indicate direct uptake from water by smaller flsh may be of considerable importance. | Hurphy
(1971),
ANIC-1805 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experimenta
Variables,
Controlled
or Noted | ol
Comments | Peference | |--|------------------------------------|--------------------|-------------------|--|--|---|-----------------------------------| | ODT (p,p", C-14
labelled) | Gambusla
effinis
(0.1-1.5 g) | ι | | 0.000041(0.01-0
.04 ppm whole
body residue 2
d) | a₹ | same as
above | Murchy
(1971),
AMIC-1805 | | DDT (o,o", plus 20
percent o,p"DDT) | Rasbora
heteromorpha | BCFAB
nd
BSA | | 0.0031
(T2,hardwater) | or soft
(SW)
synthetic
dilution
water, or
seawater | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969).
AMIC-5425 | | DDT (p.p., plus 20
percent o.p. 0001) | Rasbora
heteromorpha | BCFA
and
BSA | | 0.00054
(T2,softwater) | as,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
water, or
soawater
for some
species | same as above | Alabaster
(1969),
Amic-5425 | | 007 (p.p., plus 20
percent o,p.001) | Salmo trutta
(alevin) | BCFA
and
BSA | | 0.0025 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dllution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | DDT (p,p", plus 20 percent o,p"DDT) | Rasbora
heteromorpha | BCFA
and
BSA | | 0.017 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) | same as above | Alabaster
(1969),
AMIC-5425 | | | | | | | synthetic dilution water, or seawater for some species | | | |--|--------------------------|--------------------|--------------|-------------------------------------|--|--|--| | 001 (p,p°, plus 20
percent o,p°001) | Salmo trutta
(alevin) | RCFA
and
BSA | | 0.011 (72) | a*,c,e,f,
hard (HH)
or soft
(SH)
synthetic
difution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | ODT (18 percent) | Rasbora
heteromorpha | BCFA
and
BSA | | 0.17 (T2) | a*,c,e,f, hard (HW) orsoft (SW) synthetic dilution water, or seawater for some species | same as above | Alabaster
(1969),
ANIC-5425 | | 700 | Fish (not specified) | | | greater than
0.0001-0.001
(K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mandesley-
Thomas(1971)
AMIC-1056 | | τng | White sucker | FRL | Misc, states | 5 0.05-2.50
residue (SB) | | The Bureau of Sport Fisheries continued its fish monitoring program by collecting 147 composite fish samples from 50 nationwide monitoring stations during the fall of 1969. Fish were analyzed for residues of 11 organochlorine insecticides, lipids, and PCB"s. | Henderson, et
al (1971),
AMIC~1407 | | 00T
, | Redhorse
sucker | FRL | Misc. states | : 0.02-0.25
residue (SB) | | same as above | Henderson, et al (1971), AMIC~1497 | | 001 | Glzzard shad | FRL | Misc. states | 0.13+0.15
residue (SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | דפם | Spotted
sucker | FRL | Misc. states | (SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | Compound | Organis∎ | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |----------|------------------------|-----|-------------------|---|---|---------------|--| | ***** | | | | | | | | | DO T | Striped
multet | FRL | Hisc. States | 0.30-1.12
residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | 7 00 | Plue catfish | FRL | Misc. states | 0.04 residue
(SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | 00 T | Pock bass | FRL | Misc. states | 0.06-0.49
residue (SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | זמנ | freshwater
drum | FRL | Hisc. states | 0.31 residue
(SB) | | Same as above | Henderson,
etal (1971),
AMIC-1407 | | 7 ac | Bloater | FRL | Misc. states | 0.59-1.80
residue (SB) | | Same as above | Henderson;
et al(1971);
AMIC-1407 | | 7 00 | Lake
whitefish | FRL | Hisc. states | 0.28 residue
(SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | 10 T | Lake trout | FRL | Misc. states | 0.03-0.45
residue (SB) | | same as above | Henderson,
etal (1971),
AHIC-1407 | | 00 T | White crappie | FRL | Misc. states | 0.09-0.20
residue (SB) | | same as above | Henderson:et
al (1971):
AMIC-1407 | | T 0. | Algmouth
buffalo | FRL | Misc. states | 0.11-0.51
residue (SB) | | same as above | Henderson.et
a: (1971).
AMIC-1407 | | 0 T | Small mouth
buffalo | FRL | Misc. states | 0.50 residue
(SB) | | same as above | Henderson.et
at (1971).
AHIC-1407 | | ז מכ | Flathead
catfish | FRL | Misc. states | 0.60 residue
(SB) | | same as above | Henderson.et
al (1971).
AMIC-1407 | | 001 | Goldeye | FRL | Misc. | states | 0.02-0.34
residue (SB) |
same as above | Henderson,
et al(1971),
AMIC-1407 | |-------|------------------------|-----|-------|--------|---------------------------|-------------------|--| | TCO | Walleye | FRL | Misc. | states | 0.04-0.20
residue (SB) |
same as above | Henderson,
et al(1971),
AMIC-1407 | | 001 | Sauger | FRL | Misc. | states | 0.18 residue
(SB) |
same as abové | Henderson, et
al(1971),
AMIC-1487 | | 001 | Flannelmouth
sucker | FRL | Misc. | states | 0.19 residue
(SB) |
same as above | Henderson, et
at (1971),
AHIC-1407 | | 001 | Black
bullhead | FRL | MIsc. | states | 0.01-0.03
residue (SB) |
same as above | Henderson, et
al (1971),
AMIC-1407 | | 7 כים | White hass | FRL | Misc. | states | 0.21 residue
(SR) |
same as above | Henderson,
et al(1971),
AMIC-1407 | | 00 T | Black crapple | FRL | Misc. | states | 0.22-0.25
residue (SB) |
same as above | Henderson, et
al (1971),
AMIC-1407 | | 00 T | Largescale
sucker | FRL | Misc. | states | 0.05-8.45
residue (SB) |
same as above | Henderson.et
al (1971),
AMIC-1407 | | 007 | Small mouth
bass | FRL | Misc. | states | 0.15-0.20
residue (SB) |
same as above | Henderson, et
al (1971),
AMIC-1407 | | 00 T | Northern
squawfish | FRL | Misc. | | 0.05-0.10
residue (SB) |
same as above | Henderson, et al (1971), AMIC-1407 | | DOT | Chiselmouth | FRL | HIsc. | states | 0.07-0.09
residue (SB) |
same as above | Henderson,
etal (1971),
AMIC-1407 | | DOT | Klamath
sucker | FRL | MIsc. | states | 0.02 residue
(SB) |
same as above | Henderson,
etal (1971),
AMIC-1407 | | 001 | Rainbow trout | FRL | Misc. | states | 0.03-0.07
residue (SB) |
same as above | Henderson, et al (1971), AMIC-1407 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental
Variables,
Controlled
or Noted | Comments | Reference | |----------|----------------------|-----|-------------------|---|--|---------------|---| | | | | | | | | | | 7 00 | Bridgelip
sucker | FRL | Misc. states | 0.38 residue
(SB) | | same as above | Henderson,
etal (1971),
AHIC-1407 | | דמ | Arctic
Arctic | FRL | Misc. states | 0.21 residue
(SR) | | same as above | Henderson.
etal (1971).
AMIC-1407 | | ד מנ | Pound
Whitefish | FRL | Misc. states | 0.34 residue
(SA) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | τ ο ο | Longnase
sucker | FRL | Misc. states | 0.01-0.10
residue (SB) | | same as above | Henderson, e1
a1 (1971),
AMIC-1407 | | 00 T | Yellow perch | FRL | Misc. states | 0.03-2.56
residue (SB) | •• | same as above | Henderson,et
at (1971),
AMIC-1487 | | OO T | Chain
pickerei | FRL | Misc. states | 0.08 residue
(SB) | | same as above | Henderson.
et al(1971).
AMIC-1407 | | T 0 | White catfish | FRL | Misc. states | 0.21-0.31
residue (SB) | | same as above | Henderson,e
a! (1971),
AMIC-1407 | | 7 O | White perch | FRL | Misc. states | 0.63-1.30
residue (SB) | | same as above | Henderson.e ⁴
al (1971).
AMIC-1407 | | 00 T | Goldfish | FRL | Misc. states | 0.65 residue
(SB) | | same as above | Henderson,
et al
(1971),AMIC
1407 | | D T | Bluegilis | FRL | Misc. states | 0.04-0.24
residue (SB) | | same as above | Henderson,
etal (1971)
AMIC-1407 | | 0.7 | Redbreast
sunfish | FRL | Misc. states | 0.03 residue
(SB) | | same as above | Henderson,e
al (1971),
AMIC-1407 | | 00 T | Pumpkinseed | FRL | Misc. sta | tes 0.23 residue
(SB) | | same as above | Henderson,
et al(1971),
AMIC-1487 | |------|--------------------------------------|-------|-----------|--------------------------|---
--|--| | 001 | Largemouth
bass | FRL | Misc. sta | residue (SB) | •• | same as above | Henderson, et
at (1971),
AMIC-1487 | | 001 | Brown
builhead | FRL | Misc. sta | res1due (SB) | | same as above | Henderson:et
a1 (1971):
AMIC-1407 | | 001 | Carp | FRL | Mlsc. sta | residue (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | 00 T | Channel
cattish | FRL | Misc. sta | residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | 00 T | Gambusla
afflnls | BSA | | 0.04 ppb (S8) | a* | C-14-labelled NDT was taken up by mosquitofish more rapidly over a 36-hr period at 20 C than at 5 C. It was shown that only live fish take up NDT, that uptake was related to respiration rate and that small fish are more efficient than larger fish in removing NDT from water. One implication of this study is that at warmer temperatures NDT is taken up more rapidly, thus suggesting that thermal releases be carefully controlled. | Murphy | | DDT | Wolffia
papulifera | L | | 100 (K) | Hunter's
medium
diluted
1:5 | All compounds were harmful to duckweed to some degree. Decreased populations were noted at non-lothal concentrations and some compounds (Malathion and 2,4-D) caused teratogenic effects at concentrations as low as 1 ppm. | Worthley, et
al (1971),
AMIC-3233 | | 007 | Salvellnus
fonfinalis
(1.15 q) | BCFA | | 7.4 (T4) | aw,c,d,
e,f,i,o,
sulfato,
copper,
manganese,
iron, and
chromium | Four insecticides were evaluated on four fish species at two body weights. Standard method bloassay procedures were followed. Symptomology was also reported. Generally, toxicity was significantly different at the two body weights, i.e., more toxic at the lower body weight, except for Matathion. Weil-defined experimental conditions were said to result in truer measurement of toxicity. | (1971),
AMIC-1812 | | DOT | Salvetinus
fonfinalis
(2.13 g) | 8 CFA | | 11.9 (T4) | av,c,d,
e,f,i,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et at
(1971),
AMIC-1812 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | | Reference | |----------|-------------------------------------|------|-------------------|---|---|---|-------------------------------------| | 007 | Salmo clarki
(0.33 q) | BCFA | | 0.0001 (T4) | av,c,d,
e,f,i,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et al
(1971),
AMIC-1812 | | 00 T | Salmo clarki
(1.25 g) | BCFA | | 1.37 (T4) | as,c,d,
e,f,i,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et al
(1971),
AMIC-1812 | | ODT | Salmo
gairdneri
10.41 g) | RCFA | | 0.0002 (T4) | ap,c,d, e,f,i,o, sulfate, copper, manganese, iron, and chromium | same as above | Post, et al
(1971),
AMIC-1812 | | οοτ | Oncorhynchus
klsutch (0.5
g) | BCFA | | 0.011 (T4) | as,c,d,
e,f,i,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et al
(1971),
AMIC-1812 | | 00 7 | Oncorhynchus
kisutch (1.65
g) | | | 0.019 (T4) | as,c,d,
e,f,i,o,
sulfate,
copper,
mangenese,
iron, and
chromium | same as above | Post, et al
(1971),
AMIC-1812 | | DOT | Artemla spp. | ι | | 0.00001 and
0.000001
(sublethal) | | Artemia spp populations exposed in 1966 to the indicated DDT concentrations and studied for up to 4 generations were found to have residues of p.p**ODT that were higher than control | Grosch
(1971),AHIC-
2090 | background. Brine shrimp naupili were apparently most sensitive to DDT compared to older stages. Cyclic coexistence of pesticide residue and vulnerable stage of life cycle influenced succeeding generations. | 001 | Sebastodes
sp• | F0 | Pacific
Ocean, Caf. | 0.46 (liver
residue) | | Samples of marine animals were collected from three locations off the coast of Southern California and analyzed for residues of chlorinated hydrocarbons. The data suggest that Kellet's whetk would be a good indicator organism for studying the regional distribution of chlorinated hydrocarbons. | Munson
(1972),
AMIC-3096 | |------|--|----|-----------------------------------|---------------------------------------|----|---|---------------------------------| | DDT | Panut Irua
Interruptus | FO | Pacific
Ocean, Cal. | 0.037 (muscle
residue) | | same as above | Munson
(1972),
AMIC-7096 | | DOT | Paralabrax
nebullfer | F0 | Pacific
Ocean, Cal. | 0.21
(liverresidue) | | same as above | AMIC-3096 | | 001 | Anisotremis
davidsoni | FO | Pacific
Ocean, Cat. | 0.4(liver
residue) | | same as above | Hunson(1972),
AHIC-3095 | | DDT | Pimetomet apo n
putchrum | F0 | Pacific
Ocean, Cal. | 0.21 (liver residue) | | same as above | Munson(1972),
A4IC-3096 | | 90 T | Haliotis
rufescens | FO | Pacific
Ocean, Cat. | less than 0-1
(liver
residue) | | same as above | Munson
(1972),
AMIC-3096 | | DOT | Strongylocent
rotus
franciscanus | FO | Pacific
Ocean, Cal. | 0.057-0.073
(gonad
residue) | | same as above | Munson
{1972}.
AMIC-3096 | | ז ממ | Hinnites
multirugosis | FO | Pacific
Ocean, Cai. | 0.032 (gonad
residue) | | same as above | Munson
(1972).
AMIC-3095 | | tot | Haliotis
corrugata | FO | Pacific
Ocean, Cai. | 0.042
(digestive
gland residue) | | same as above | Munson
(1972),
AMIC-3095 | | 100 | Kelletia
kelletii | F0 | Pacific
Ocean, Cat. | 0.077
(residue) | | same as above | Munson
{1972},4HIC-
3096 | | DOT | Plants (algae
and hluher
aquatic | F | Various
ponds and
streamsin | 0.01 to 0.74 (residue) | ** | Plant, invertebrate, fish, and mud samples were pooled, homogenized, and analyzed for DDT. Birds were analyzed | Dimond, et at (1971), AMIC+3291 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |-------------|---|----|---|---|---|--|---------------------------------------| | | plants) | | Maine | | | individually. The data represent the range of ODT concentration over a 10-year period after one accilication. Highest concentrations were found immediately after and 1 yr after application with considerably less two years and after. However, the residues even after 10 years were still well above those in brooks never treated. This study further demonstrated the persistence of ODT in the environment and its tendency to spread and concentrate in food chains. | | | OOT | Invertebrates (Cambarus bartonl, freshwater mussets, and smaller animals) | F | Various
ponds and
streams in
Haine | 0.03 to 2.41
(residue) | | same as above | Dimond, et
al(1971),
AMIC-3291 | | ז מס | Fish (Salvetinus fontinatis and Semotilus atromaculatus primarily) | f | Various
pondsand
streams in
Maine | 0.21 to 9.84 (residue) | | same as above | Dimond, et
a! (1971),
AMIC-3291 | | 001 | Birds (Mrdaceryle alcyon, Merdus merganser, and Lophodytes cuculiatus) | F | Variousponds
and streams
in Maine | | | same as above | Dimond, et
at (1971),
AMIC-3291 | | ד מס | Huds | F | Various
ponds and
streams in
Maine | 0.03 to 0.83
(residue) | | same as above | Dimond, et
al(1971),
AMIC-3291 | | 001 | Limnephilus
rhombicus
(larvae) | FS | Knights
Creek, Dun
County,
Wisc. | 0.01(whole body
residue) | | Samples of water, slit, bottom debris, bottom organisms, and fish were taken in 1966 from a creek adjacent to an orchard which had been treated in | Moubry, et
al (1964),
AMIC-3753 | 1963-1965 with various chlorinated hydrocarbon pesticides. No residues were found in water samples. Silt samples contained 0.002-0.013 ppm endrin and 0-0.015 ppm dieldrin. Endrin residues of 0.011-0.025 ppm and 0.002-0.006 ppm dieldrin were found in debris samples. Despite limited control data, residue analyses indicated that contamination of the environment studied was limited. | 007 | | FS | Knights | 0.01 (whole | | same as
above | Moubry, et | |------|---------------------------------------|----|---|-----------------------------|----|---|---------------------------------------| | | (larvae) | | Creek, Dun
County,
Wisc. | body
(residue) | | | al (1968),
AMIC-3753 | | DD T | Gammarus sp. | FS | Knights
Creek, Dun
County,
Wisc. | 0.03(whole body
residue) | | same as above | Moubry, et al (1968), AMIC-3753 | | 001 | Salvelinus
fontinalis | FS | Knights
Creek, Dun
County,
Wisc. | 0.4-1.4
(fat
residue) | | same as above | Moubry, et
al (1968),
ANIC-3753 | | DO T | Semotitus
atromaculatus | FS | Knights
Creek, Dun
County,
Wisc. | 0.1-0.6(fat
residue) | | same as above | Moubry, et al (1968), AMIC-3753 | | 007 | Cottus bairdi | FS | Knights
Creek, Dun
County,
Wisc. | 0.5+1.5 (fat
residue) | | same as above | Moubry, et
al (1968),
ANIC-3753 | | DDT | Rhinichthys
atratulus | FS | Knights
Creek, Dun
County,
Wisc. | 0.10
(fat
residue) | | same as above | Moubry, et
al (1968),
AMIC-3753 | | 001 | Salvelinus
fontinalis
(15.2 cm) | L | | 0.1-0.3 (SB1) | a♥ | Neurophysiological function of brook frout was affected by 24-hr exposure to DDT as determined by measurement of electrical activity of lateral lines. Partially exposed lateral lines of freshly killed fish were fitted with electrodes. DDT caused the lateral line nerve to become hypersensitive to experimental stimuli and affected behavioral responses of fish to temperature. | Anderson
(1968),
AMIC-3768 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |---------------------|---|----|--|---|---|--|--| | 00 T | Oncorhynchus
kisutch (2.9
g) | L | | 0.33 (T31) | | A diet containing DDT fed to coho salmon resulted in median survival times directly proportional to body weight. Supplemental feeding orolonged lifespan, but mean survival time remained a direct function of body weight. Smaller salmon were more susceptible because tipid content apparently falled to provide for storage detoxification of DDT. Considerable additional data are presented. | | | 00 T | Oncorhynchus
kisutch (7.4
g) | ι | | 1.3 (T65) | | same as above | Buhler, et
al
(1970),AMIC-
3781 | | DO T | Oncorhynchus
klsutch
(15.04 g) | ι | | 2.6 (1106) | | same as above | Buhler, et
a!
(1970),AMIC-
3781 | | 0 0 7 | Salvelinus
fontinalis
(110-180 g) | L | | 0.02 (SB) | a*,e | Brook trout conditioned to light and shock rescond to both by the propeller-tail reflex. Exposure to DDT resulted in markedly delayed ability to learn. The authors state that DDT apparently affects the CNS and may cause adverse effects on such behavioral activities as territorial defence and migration. | Anderson, et
al (1970),
AMIC-3782 | | D T | Parophrys
vetulus | FM | Pacific
Northwest
Coast,
Biaine,
Hash. | 0.01 (residue) | | Pesticides from the Columbia River into Puget Sound apparently contaminated fish constituting commercial catches in Pacific Northwest waters. Residues in these marine products were substantially lower than the FOA tolerance for beef (7 ppm). Fish from locations near the mouth of the Columbia Piver had higher pesticide content than ones caught farther away. | Stout
(1968),
AMIC-3784 | | 001 | Merlucclus
productus | FM | Pacific
Northwest | 0.01-0.06
(residue) | | same as above | Stout
(1968), | | | | | Coast,
Sarasota
Passage,
Wash. | | | | | AHIC-3784 | |--------------|---------------------------------------|------|---|-------------------------|------|---------|----------------------------|-------------------------------| | DO T | Hertuccius
productus | | Pacific
Northwest
Coast, Fort
Susan, Wash. | 0.04-0.09
(residue) | •• | Same | as above | Stout
(1968),
AMIC-3784 | | DDT | Merluctus
productus | | Pacific
Northwest
Coast, Cape
Foulweather,
Ore. | 0.01 (resl due) | | Sane | as above | Stout
(1968),
Amic-3784 | | DDT | Meriuccius
productus
(fishmemi) | | Pacific
Northwest
Coast,
Aberdeen,
Wash. | 0.08 (residue) | | same | as above | Stout
(1968),
AMIC-3784 | | DDT · | Sebastodes
alutus | | Pacific
Northwest
Coast,
Hecate
Strait, B.C. | 0.01 (residue) | | same | as above | Stout
(1968),
Amic-3784 | | 00 T | Platichthys
stellatus | | Pacific
Northwest
Coast,
Biaine,
Wash. | 0.01(residue) | | sane | as above | Stout
(1965),
AMIC-3784 | | DDT | ·Gadus
macrocephalus | | Pacific
Northwest
Coast,
Blaine,
Wash. | 0.004
(residue) | | 5 a m e | as above | Stout
(1968),
Amic-3764 | | DDT . | Sebastodes
11 av I dus | | Pacific
Northwest
Coast,
Hecate
Strait, B.C. | 0.004-0.05
(residue) | | same | as above | Stout
(1968),
Amic-3784 | | OOT | Sebastodes
flavidus | | Pacific
Northwest
Coast,
Ilwaco,Wash. | 0.04-0.19
(residue) | | same | as above | Stout
(1968),
AMIC-3784 | | T 00 | Pimephales | BCFA | | 0.018 (T4) | a*,• | LAS | acted synergistically with | Solon, etal | | Compound | ,
Organism | | Field
Location | Toxicity, Active Ingredient, Ppm | Experimenta Variables, Controlled or Noted | Comments | Reference | |----------|-----------------------------------|---|-------------------|-----------------------------------|--|--|-------------------------------------| | | prometas | | | | | parathion to cause tess survival of fatheds but had an indeterminate effect with DNT and no synergistic effect with Endrin. | (1969),
AMIC-3785 | | DD T | Carassius | ι | | 45-180 (S8
5-20) | a* | Goldfish were exposed to increasing concentrations of DDT and | Young, et a | | | auratus | | | 5-2U) | | residues determined after 21 days of exposure. Most DDT had been converted to DDE. Phenoharital had no significant effect on insecticide residues. | (1971),AMIC-
3796 | | 00 T | Carassius
auratus | ι | | 0-0-1
(residue) | a* | same as above | Young, et a
(1971),
AMIC-3796 | | DOT | Salmo
gairdneri
(186-288 g) | L | | 15 (SB 6 hr) | a* | In aquarium water, 15 ppm DDT caused no apparent electrophysiological differences in lateral line preparations. However, tremors and hyperexcitability were observed after 1 hr. Neural discharge was not affected by intravenous injections, but tremors occurred at concentration levels of 0.5 ppm and above. The authors conclude that spontaneous activity of the lateral line is not a sensitive index for DDT neurotoxic effet. | | | τ οο | Salmo
gairdneri
(146-244 g) | L | | 0.1-2.0 (NTE,
intravenous) | a * | same as above | Bahr, et al
(1971),AMIC
3808 | | DD T | Triturus
cristatus | ι | | 0.62-1.4
(residue) | ** | DDT caused hyperactivity in exposed tadpoles. This caused increased capture lunges of newts thus increasing the predatory efficiency of the newts. DDT had no apparent effect on the newts. | Cooke
(1971),
AMIC-3814 | | DO T | Rana
temporaria | L | | 0.05 (SB 5-19
hr) | | same as above | Cooke
(1971),
AMIC-3814 | | DOT | Rana
temporarla | ι | | 0.5-1.2
microgram
(residue) | | same as above | Cooke
(1971),
AMIC+3814 | | 00 T | Carassius
auratus (8-15
g) | BSA | | 1.0 (SB 2.5hr) | a,q * | Fish exposed to DNT were killed and brain electrical activity recorded by means of Aq-AqCl bioolar electrodes. After 2.5 hr exposure, fish displayed complete foss of balance and swam continuously on their sides. Amplitude and frequency of spontaneous electrical activity were altered. This coincided with permanent loss of balance. The authors state that this is the first record of a change in fish EEG following DDT poisoning. | Aubin, et
al(1969),
AMIC-3835 | |------|--|-----|---|-------------------------------|--------------
--|--| | ODT | Carassius
auratus (8-15
g) | BSA | | 1.0 (T 10 hr) | a•q* | same as above | Aubin, et at
(1969),AMIC-
3835 | | DDT | Salmo salar | L | | 0.02-0.20 | a*,q* | Fish were conditioned by means of light change and low voltage electricat shock. Alteration of previous training procedures for avoidance containing, indicated that salmonids were able to acquire a conditioned avoidance response when pretreated with sublethal doses of DDT. | Jackson, et
al
(1970), AMIC-
3837 | | 001 | Salvelinus
fontinalis
(yearling) | L | | 0.02-0.20
(SB1) | a*,q* | same as above | Jackson,et
al (1970),
AMIC→3837 | | 007 | Satvelinus
fontinalis | L | | G.4 (S8) | a* | The thermal acclimation mechanism of brook trout acclimated at 9 and 18 C was altered significantly at sublethal DDT concentrations. This was also true for conditioned avoidance, in which time for training was recorded, and for memory retention to a lesser extent. | Anderson, et
al
(1969),AMIC
3838 | | 007 | Endomychura
craverl
(eggs) | F | Western U.S., Pacific Ocean, Panama, Mexico,and Antarctic | 39 (residue) | | same as above | Pisebrough,
et al
(1968),
AMIC-3844 | | DOT | Endomychura
craverl
(eggs) | F | Western
U.S.,
Pacific
Ocean, | 0.31-2.4 (whole body residue) | | same as above | Risebrough,
et al
(1968),
ANIC-3844 | | Compound | Organis# | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experimental Variables, Controlled or Noted | Comments | Reference | |----------|---------------------------------|---|--|---|---|---------------|--| | | | | Panama,
Mexico, and
Antanctic | | | | | | DOT | Thalasseus
elegans
(eggs) | F | Western U.S., Pacific Ocean, Panama, Kexico, and Antartica | 5.0 (residue) | | same as above | Pisebrough,
et ai
(1968),
AMIC-3844 | | 7 00 | Larus
heer≡ani
(eggs) | F | Western U.S., Pacific Ocean, Panama, Hexico, and Antanctic | 48 (residue) | | same as above | Pisebrough,
et al
(1968),
AMIC-3844 | | ז מס | Pomoxis
annuiaris | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 1.83 (whole
body residue) | | same as above | Pisebrough,
et al
(1968),
AMIC-3544 | | 00 T | Posoxis
nigro-
maculatus | F | Western U.S., Pacific Ocean, Panara, Mexico,and Antartic | 7.10 (whole
body residue) | | same as above | Pisebrough,
et al
(1968),
AMIC-3844 | | ז מס | Lebomis
macrochirus | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 5.5 (whole body
residue) | | same as above | Pisebrough,
e t al (1958),
AMIC-3844 | | 001 | Pygosceils
adeilae | F | Western | 0.128
(residue) | | same as above | Pisebrough,
et al | | ъ | | |---|--| | - | | | • | | | <u>, </u> | | | V | | | | | | | (eggs) | Pacific
Ncean,
Panama,
Mexico, and
Antarctic | | | (1968) .
AMIC-3544 | |------|---------------------------------|--|--------------------------------------|-------------------|--| | DOT | Aechmorphorus F
occidentalis | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 26.4 (flesh
residue) |
same as above | Risebrough,
et al
(1968),
ANIC-3844 | | DOT | Fulmanus F
qiaciails | Western U+S-, Pacific Ncean, Panama, Mexico, and Antarctic | 0.41-17.5
(whole body
residue) |
same as above | Risebrough,
et al
(1958),
AMIC-3844 | | DOT | Puffinus F
creatorus | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 3.0 (whole body
residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | DOT | Puffinus F
griseus | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 2.3-12.3 (whole
body residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | 00 T | Puffinus F
tenuirostris | Western U+S+, Pacific Ocean, Panama, Mexico, and Antarctic | 39 (whole body
residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | 707 | Oceanodroma F
homochroa | Western U.S., Pacific Ocean, Panama, Mexico, and | 59.3 (whole
body residue) |
same as above | Risebrough,
et al
(1958),
AMIC-3844 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |----------|---|---|--|---|---|---------------|--| | | | | Antarctic | | | | | | 7 00 | Pelecanus
occidentatis
(eggs) | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 10.0-11.5
(residue) | | same as above | Risebrough,
et al
(1968),
AMIC-7844 | | τ οο | Freqata
magnificens
(eggs) | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.0087-0.03
(residue) | | same as above | Pisebrough,
et al
(1968),
AMIC-3844 | | 001 | Sula
leucogaster | f | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 8.2 (residue) | | same as above | Risebrough,
et at
(1968),
AMIC-3844 | | 00 T | Phalacrocorax
peniciliatus
(eggs) | f | Western U.S., Pacific Ocean, Panama, Mexico,and Antarctic | 0.326
(residue) | | same as above | Risebrough,
et al
(1968),
AHIC-3844 | | T D T | Phalacrocorax
pelagicus
(eggs) | F | Western U.S., Pacific ncean, Panama, Mexico, and Antarctic | 0.128
(residue) | | same as above | Risebrough.
et al
(1968),
AMIC-3844 | | 001 | Anas
cyanoptera | F | Western
U.S.,
Pacific
Ocean, | 10.9 (whole
body residue) | | same as above | Risebrough,
eta! (1968)
AMIC-3844 | | | | Panama,
Mexico, and
Antarctic | | | | |------|--------------------------------|--|------------------------------|-------------------|--| | 00 T | Elanus
leucurus
(eggs) | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.34-9.0
(residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | 001 | Accipiter
cooperii | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | ?5.2 (whole
body residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | 100 | Aqulla
chrysaetos
(eggs) | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 2.0 (residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | 100 | Pandion
hallaetus | F Western U.S., Pacific Ocean, Panama, Hexico, and Antarctic | 55.D (whole
body residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | DDT | Faico
columbarius | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 2-9 (whole body
residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | 001 | Falco
sparverius | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.04 (whole
body residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | Compound | 0rganism | | Firld
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |-------------|------------------------------------|---|--|---|---|---------------|--| | 001 | Falco
sparverius
(eggs) | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.2 (residue) | | same as above | Rlsebrough,
etal (1968),
AMIC-3844 | | 007 | Nycticorax
nycticorax
(eggs) | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.541-0.869
(residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | τ οο | Larus
occidentalis
(eggs) | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.385-0.803
(residue) | | same as above | RIsebrough,
et al
(1968),
AMIC-3844 | | 00 T | Sterna
forsteri
(eggs) | F | Western U.S., Pacific Ocean, Panama, Hexico, and Antarctic | 0.665
(residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | 0 O T | Hydroprogne
caspia
(engs) | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 1.269-1.430
(residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | 00 T | Phalaropus
fulicarius | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.78 (whole
body residue) | | same as above | Risebrough,
et al
(1968),
ANIC-3844 | | DDT | Urla aalge f
(eqqs) | Hestern U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 151 (residue) |
same as above | Risebrough,
et al
(1958),
AMIC-3844 | |-----|---------------------------------|--
---------------------------------|-------------------------------|--| | DDT | Ptychoramphus f
aleuticua | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 5.8 (whole body
residue) |
same as abóve | Risebrough,
et al
(1968),
AMIC-3844 | | DDT | Synthilboramp i
hus antiquum | F Western U.S., Pacific Ocean, Panama, Moxico, and Antarctio | 0.75 (whole
body residue) |
same as above | Risebrough,
et al
(1968),
Amic-3544 | | 001 | Cerorhinca i
monocerata | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 2.7 (whole body
residue) |
same as above | Risebrough,
et al
(1968),
AMTC-3644 | | 001 | Zenaldura (
macroura | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.19 (whole
body residue) |
same as abov ė | Risebrouah,e
† al (1958),
AMIC-3844 | | DDT | Tyto alba I | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 1.3-6.6 (whole
body residue) |
same as above | Risebrough,
et al(1958),
Amic-3844 | | 001 | Sturnella
neglecta | F Western
U.S.,
Pacific | 0.2-3.3 (whole body residue) |
same as above | Risebrough,
et al
(1968), | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|-----------------------------------|---|--|---|---|---|--| | | | | Ocean,
Panama,
Mexico, and
Antarctic | | | | AMIC-3844 | | 0 D T | Falco
peregrinus
(eggs) | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.02 (residue) | | Peregrine falcons, falcon prey, and other predator species were collected widely and analyzed for DDT, DDE, PCB, and a few other pesticides to a tesser degree. PCB and DDT were found to be widely dispersed globally. PCB was found to be a powerful inducer of hepatic enzymes that degrade oestradiot. Reductions in thickness of egg shells, eggshell weight, and water retention occurred. Atl affect hatching success. The authors state that the oeregrine may be the first species entirpated by global contamination. | (1968),
AHIC-3844 | | 001 | Falco
peregrinus
(immature) | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 1.9-296 (flesh
residue) | | same a≤ above | Risebrough,
et al
(1958),AMIC
3844 | | 7 O | Faico
peregrinus
(immature) | F | Hestern U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 64-5,000 (fat
residua) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | O T | Falco
peregrinus
(aduit) | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 85-127 (flesh
residue) | | same as above | Risebrough,
ef al
(1968),
AMIC-3844 | | T 00 | Falco
peregrinus | F | Western
U.S., | 2,600 (fat
residue) | | same as above | Risebrough,
et al | | | , | | | | | | | | |----------|------|--------------------------|-----|--|--------------------------------------|-------------|---|--| | | · | (adult) | | Pacific
Ocean,
Panama,
Mexico, and
Antarctic | | | | (1968),
AMIC-3844 | | | 00 T | Podiceps
caspicus | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0-25-12-1
(whole body
residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | ≯ | DDT | Loomelania
melania | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 9.2 (whole body
residue) | , | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | A-163 | DOT | Halocyptena
microsoma | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 3.2 (Whole body
residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | | DOT | Pizonyx
vivesi | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarotic | 0.71 (whole
body residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | | DDT | Ictalurus
punctatus | RSA | | 0.016 (T4) | | Organochlorine insecticides were the most toxic compounds, organophosphates intermediate, carbamates the least toxic. Brown trout was the species most susceptible to organochlorines, coho salmon the most susceptible to carbamates, and goldfish were the least susceptible of all species. Safe concentrations established by bloassays with salmonids or centrarchids would likely be safe for cyprinids and ictalurids. Safe levels for ictalurids or cyprinids would probably be hazardous for centrarchids and salmonids. The use of goldfish in bloassays was discouraged. | | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental
Variables,
Controlled
or Noted | Comments | Peference | |----------|--------------------------|-----|-------------------|---|--|---------------|-------------------------------------| | OT | Salmo trutta | 0SA | | 0.002 (T4) | a.
synthetic
test water | same as above | Macek. et
al(1970),
AMIC-5510 | | 07 | Oncorhynchus
klsutch | BSA | | 0.004 (T4) | a.
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | oΥ | Perca
flavescens | 8SA | | 0.009 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | 00 T | Ictalurus
metas | RSA | •• | 0.005 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | TO | Carassius
auratus | BSA | | 0.021 (T4) | a.
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | 100 | Cyprinus
carpio | ASA | | 0.010 (T4) | a.
synthetic
test water | same as above | Macek, et
af(1970),
AMIC-551(| | ОТ | Pimephates
prometas | RSA | | 0.019 (T4) | a,
synthetlc
test water | same as above | Macek, e
b1(1970)
AMIC-551 | | 0 1 | Lepomis
macrochirus | BSA | | 0.008 (T4) | a,
synthetic
test water | same as above | Macek, e
al(1970)
AMIC-551 | | OΤ | Lepomis
microtophus | BSA | | 0.005 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970)
AMIC-551 | |)T | Micropterus
satmoides | BSA | | 0.002 (T4) | a,
synthetic
test water | same as above | Macek, e
81(1970)
AMIC-551 | | זמ | Salmo
galrdneri | BSA | | 0.007 (T4) | a,
synthetic
test water | same as above | Macek, e
al(1970)
AMIC+551 | | DDT | Palaemonetes
kadiakensis
(resistant) | BSA | | 0.0037-0.0068
(T1) | a• | Bloassays were conducted with shrlmp from three areas of intensive pesticide use and from an unexposed area. Previously exposed shrimp were from 1 to 25 times more resistant than unexposed shrlmp. Both types of shrimp were also exposed in cages to waters of the contaminated areas. Susceptible shrlmp suffered 66 percent more mortality than did resistant shrimp. The toxicity of the insecticides ranked in descending order was as follows: most toxic, Endrin, DDT, Methyl parathlon, Parathlon; medium toxicity, Guthlon, Lindane, Toxaphene, Strobane; lease toxic Chiordane, Sevin, and Heptachior. | Nagvi, et al
(1970),
AMIC-5519 | |------|---|-----|-------------------------------------|-----------------------------------|----|--|--------------------------------------| | 00 T | Palaemonetes-
kadlakensis
(non-
resistant) | BSA | | 0.0026 (T1) | a* | same as above | Nagvi,et ai
(1970),
AHIC-5519 | | DOT | Tctalurus
catus | FL | Clear take,
Cal. | less than 1
(flesh
residue) | | Residue analysis results mainly for TDE in fish, birds, and plankton from 1959 through 1965 were reported. The residues primarily resulted from application of DDT to farmland and for quat control. In some cases, data for a single animal in one year were given. Primary emphasis was on largemouth
bass and white catfish. The general level of TDE contamination in birds and fish declined markedly from 1958 to 1965. This decline correlated directly with strict limitation by permits of DDT applications during the latter years. | Linn, et
AL(1969),
AMIC-5521 | | DDT | Perca
flavescens | FLR | 93 sampting
stations in
Mass. | | | Fish indigenous to Massachusetts freshwater streams were analyzed for DDT and DDT metabotites during 1965-1967. Generally there was an increase in pesticide content during the three year period. | Lyman, et al
(1968),
AMIC-3839 | | 001 | Lepomls
qlbbosus | FLR | 93 sampling
stations in
Mass. | | | same as above | Lyman, et al
(1968),
AMIC+3839 | | 007 | Catostomus
commersoni | FLR | 93 sampting
stations in
Mass. | | | same as above | Lyman, et al
(1958),
AMIC-3839 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Exoerimental Variables, Controlled or Noted | Comments | Reference | |----------|------------------------------|-----|-------------------------------------|---|---|---------------|--------------------------------------| | | | | | | | | , | | 0 T | Totaturus
nebutosus | FLR | 93 sampling
stations in
Mass. | 0.32 (residue) | | same as above | Lyman. et a
(1968).
AMIC-3839 | | זמ | Cyprinus
carpio | FLR | 93 sampling
stations in
Mass. | | | same as above | Lyman,et a!
(1968),
AMIC-3839 | | то | Esox niger | FLR | 93 samoting
stations in
Mass. | 0.02-1.0
(residue) | | same as above | Lyman, et al
(1968),
AMIC-3839 | | DΥ | Noteminonus
crysoteucas | FLR | 93 sampling
stations in
Mass. | | | same as above | Lyman, et a
(1968),
AMIC-TAT9 | | 0 7 | Semotitus
corporatis | FLR | 93 samoling
stations in
Mass. | | | same as above | Lyman, et a
(1968),
AMIC-TRRQ | | DΥ | tepomis
macrochirus | FLR | 93 sampling
stations in
Mass. | | | same as above | Lyman, et a
(1958),
AMIC-3839 | | ף ת
ז | Ambloplites
rupestris | FLR | 9% sampling
stations in
Mass. | | | same as above | Lyman, et a
(195*),
AMIC-3439 | | 0 † | Semotitus
atromaculatus | FLR | 93 sampling stations in Mass. | | | same as above | Lyman, et a
(1968).
AMIC-3839 | | 0 T | Micronterus
dotomieui | FLR | 93 samoling
stations in
Mass. | | | same as above | Lyman, et a
{196*/,
AMIC-3839 | | D T | Alosa
pseudo-
harengus | FLR | 93 sampling
stations in
Mass. | 0.34 (residue) | | same as above | Lyman, et a
(196A),
AMIC+3839 | | DT | Fundulus
heterociltus | FLR | 93 sampting
stations in
Mass. | | | same as above | Lyman, et a
(1968),
AMIC+3839 | | DΤ | Notropis | FLR | 93 sampling | 0.1-3.3 | | same as above | Lyman, et a | | | cornutus | | stations in
Mass. | (residue) | | | (1968),
AMIC-3839 | |------|-------------------------------------|-----|--|----------------------|---------|--|--------------------------------------| | DOT | Roccus
americanus | FLR | 93 sampling stations in Mass. | 0.2-2.2
(residue) | | same as above | Lyman, et ai
(1968),
AMIC-3839 | | DOΤ | Pomoxis
nigro-
maculatus | FLR | 93 sampling
stations in
Mass. | 8.4 (residue) | | same as above | Lyman, et al
(1968).
AMIC-3839 | | DOT | Fundulus
diaphams | FLR | 93 sampting stations in Hass. | 5.9 (residue) | | same as above | Lyman, et al
(1968),
AMIC+3839 | | 00 T | Notropis
anatostanus | FLR | 93 sampling
stations in
Mass. | 0.40 (residue) | | same as above | Lyman, et at
(1968).
AMIC+3839 | | 00 T | Lepomis
auritus | FLR | 93 sampling
stations in
Mass. | 0.44 (residue) | | same as above | Lyman, et al
(1965),
AMIC-3839 | | 7 00 | Phinichthys
atratulus | FLP | 93 sampting stations in Mass. | | | same as above | Lyman, et al
(1968),
AMIC+3839 | | DOT | Salvelinus
fontinalis
(caged) | FS | Robby"s
Brook,
Labrador,
Can. | 0.1 (NTE) | c,d,e,g | In studying control of black fly, the indicated aquatic species were studied at a series of six sampling stations. Water quality was unaffected by the DDT application. No cased fish died, but wild ones did apparently resulting from incestion of dead invertebrate larvae. Invertebrates were collected by bottom sampling and by drift nets, and fish by netting and angling. Fish mortality could always be related to at least a ten-fold increase in DDT residues in the fish. DDT caused high bottom tauna mortality by direct contact. Caddistiy larvae were more affected than stonefly and mayfly larvae. The author stated that DDT larviciding for black fly control was not successful because of harm to non-target organisms. | Hatfleld
(1969),
AMIC-5770 | | DOT | Salvelinus
fonfinalis
(wild) | FS | Bohby"s
Brook,
Labrador,
Can. | 0.1 (SB) | c,d,e,g | same as above | Hatfield
(1969),
AMIC-5770 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|--|------------------|--|---|---|--|-------------------------------------| | 001 | Simulum
venustum
(larvae) | FS | Robby"s
Rrook,
Labrador,
Can. | 0.1 (SB) | c,d,e,g | same as above | Hatfleld
(1969),
AMIC-5770 | | ταο | Bottom
Invertebrates | FS | Robby"s
Brook,
Labrador,
Can. | 0.1 (K) | c,d,e,g | same as above | Hatfleld
(1969),
AMIC-5770 | | DO T | Lenomis
macrochirus
(fiver
mitochondria) | ι | | 590 (SB) | a* | Oxygen uptake by bluegiti liver mitochondria was inhibited in the presence of DDT and succinic acid. Increased hydrolysis of ATP also occurred in the presence of Mg and Mn ions. The author states that the primary effect of NDT ancears to be inhibition of electron flow from succinic acid to the cytochrome chain. | | | D O T | Conepods (Cyclons blousnidus, Cyclops varicans, Cyclops vernalis, Eucyclops agilis, Macrocyclops albidus, Orthocyclops modestus) | FL
and
BSA | State
College,
Miss. | 0.05 (K2) | | The response of pesticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were cottected at Reizoni and non-resistant species at State Cottege. Copepods, clams, snalls, and sludde worms from Beizoni were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic levels. | AMIC-5979 | | 00 T | Copends (Cyclops bicuspidus, Cyclops varicans, Cyclops vernalis, Eucyclops agilis, Macrocyclops | FL
and
BSA | Belzoni,
Miss | 0.05 (91
percent K2) | | same as above | Naqvi, et a
(1969),
AMIC-5979 | albidus, | | Orthocyclops
modestus) | | | | | | | |------|---|------------------|-------------------|----------------|--|--|---| | 001 | Tubifex
tubifex | FL
and
BSA | Belzonl,
Miss. | 3.0 (NTE) | | same as above | Nagvi, et
al(1959),
AMIC-5979 | | DOT | Crassostrea
virginica
(farvae) | l | | 0.034 (714) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | Davis, et al
(1969),AMIC-
5990 | | 001 |
Gambusia
affinis
(female, 4.3
cm, 1.9 g) | BSA | | 0.02 (74) | a,c,d,
e,f,i,
(Honolulu
tap
water) | The five fish species are commonly found in streams and estuaries in semi-tropical areas. G. affinis was the most toterant. Varied sensitivity to the toxicants were found. K. sandvicensis was the most sensitive fish studied. The standard method procedure was followed. | Nunogawa, et
al (1970),
ANIC-6567 | | 001 | Lebistes reticulatus (maie, 1.8 cm, 0.2 g) | BSA | *** | 0.003 (T4) | a,c,d,
e,f,i,
(Honolulu
tap
water) | same as above | Nunogawa, et
al (1970),
AHIC-6567 | | 00 T | Tilapia
mossambica
(3.4 cm, 1.3
g) | BSA | | 0.007 (T4) | a,c,d,
e,f,i,
(Honolulu
tap
water) | same as above | Nunogawa, et
al (1970),
AMIC-6567 | | 007 | Kuhila
sandvicensis
(4.3 cm, 1.5
g) | BSA | | 0.0039 (T4) | a,c,d,e,f,
i,sait
water | same as above | Nunogawa, et
al (1970).
AMIC-6567 | | TOU | Stolephorus
purpurea (3.6
cm, 0.4 g) | BSA | | 0.001 (T 12hr) | a,c,d,e,f,
I, salt
water | same as above | Nunoqawa, et
al (1970),
AMIC-6567 | | Compound | Orqanism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |-------------|--------------------------|-----|---|---|---|--|---| | DOT | Carcinus
maenas | BSA | | 0-3-1.0 (72) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychiorinated bibhenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et at (1971), AMIC-7701 | | DDT | Cardium edute | BSA | | greater than 10 (TZ) | aw(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | 7 OO | Pteuronectes
platessa | BSA | | 0.003-0.01
(T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann, et
al (1971),
AMIC-7701 | | 00 T | freshwater
drum | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.62 (whole
body residue) | | Fish from Lake Michigan contained 2 to 7 times more DDT (and DDT analogs) and Dieldrin residues than fish from the other Great Lakes. Fish from Lake Superior invariably had the lowest accumulations of both chemicals. The compounds tended to concentrate in fat (oils). Considerable additional data are presented. The author noted the need to reduce pesticide usage to a minimum and to replace these insecticides with less persistent materials. | (1970),AMIC-
196 | | ז מס | Goldfish | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.70 (whole body residue) | | same as above | Reinert
(1970),
AMIC-196 | | 700 | KIYI | (On:
Hur
Eri
Sup | | 3.28 (whole
body residue) |
same as above | Reinert
(1978),
AMIC-196 | |-------|--------------------|---------------------------|---|--------------------------------------|-------------------|--------------------------------| | זמס . | Lake herring | (On
Hur
Eri
Sup | at Lakes
tario,
on,
e,
erior,
chigan) | 1.44-3.51
(whole body
residue) |
same as above | Reinert
(1970),AMIC-
196 | | DOT | Lake trout | (On
Hur
Eri
Sup | eat Lakes
stario,
ron,
le,
perior,
shigan) | 6.51-7.44
(whole body
residue) |
same as above | Reinert
(1978),AMIC-
196 | | | Lake
whitefish | (On
Hur
Eri
Sup | | 0.45-5.02
(wholebody
residue) |
same as above | Reinert
(1970),AMIC-
196 | | 001 | Rock bass | (On
Hur
Eri
Sup | at Lakes
tario,
on,
e,
erior,
chigan) | 0.40 (whole
body residue) |
same as above | Reinert
(1970),
AMIC-195 | | 001 | Round
Whitefish | (On
Hur
Eri
Sup | at Lakes
tario,
on,
e,
erior,
chigan) | 0.57 (whole
body residue) |
same as above | Reinert
(1970),
AMIC-196 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |----------|----------------------------|----|---|---|---|---------------|--------------------------------| | 001 | Sea tamprey | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 1.27 (whole
body residue) | | same as above | Reinert
(1970),
Amic-196 | | 7 00 | Slimy sculpin | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.22-2.33
(whole body
residue) | | same as above | Reinert
(1970),
Amic-196 | | 007 | Spottali
shiner | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.25 (whole
body residue) | | same as above | Reinert
(1970),
AMIC-196 | | DD T | Nine-spined
stickleback | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.43 (whole
body residue) | | same as above | Reinert
(1970),
AMIC-196 | | 00 T | Stonecat | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.28 (whole
body residue) | | same as above | Reinert
(1970),
AMIC-196 | | 7 | > | |---|---| | ۲ | 3 | | u | • | • | | Troutperch | FL Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.94 (whole
body residue) |
same as above | Reinert
(1970),
AMIC-196 | |--------------|--------------|--|--------------------------------------|-------------------|--------------------------------| | | Walleye | FL Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 1.12-6.02
(whole body
residue) | same as above | Reinert
(1970),
AMIC-196 | | DOT . | White bass | FL Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 1.89-2.76
(whole body
residue) |
same as above | Reinert
(1970),
AMIC-196 | | DDT | White perch | FL Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 4.32 (Whole
body residue) |
same as above | Reinert
(1970),
AMIC-196 | | 007 | White sucker | FL Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.37-1.14
(whole body
residue) |
same as above | Reinert
(1970),AMIC-
196 | | ,
DOT | Yellow perch | FL Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.87-2.93
(whole body
residue) |
same as above | Reinert
(1970),AMIC-
196 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables. Controlled or Noted | Comments | Reference | |----------|-------------------|----|---|---|---|---------------|--------------------------------| | DDT | Fmerald
shiner | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.94 (whole
body
residue) | | same as above | Reinert
(1970),4MIC-
196 | | 00 T | Gizzard shad | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.53-0.63
(whole body
residue) | | same as above | Peinert
(1970),AMIC-
196 | | τοο | Alewife | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.72-3.88
(whole body
residue) | | same as above | Reinert
(1970),AMIC-
196 | | 001 | American
smelt | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.32-1.58
(whotebody
residue) | | same as above | Pelnert
(1970),44IC-
196 | | 001 | Bloster | FL | Great Lakes
(Ontario, | 1.09-9.83
(whole body | | same as above | Reinert
(1970) • | | | | | | Huron,
Erie,
Superior,
Michigan) | residue) | | AMIC-196 | |---|-------------|------------------------|----|---|---------------------------------|-------------------------------|--------------------------------| | | DDT . | Brown
bullhead | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.28 (whole
body
residue) |
same as abov e | Reinert
(1970),AMIC-
196 | | 1 | DD T | Carp | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 1.92 (whole
body residue) |
same as above | Reinert
(1970),
AMIC-196 | | i | DD T | Channel catfish | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 6.90 (whole
body residue) |
same as above | Reinert
(1970),
AMIC-196 | | 1 | ד סם | Coho salmon
(flesh) | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.72
(whole
body residue) |
same as above | Reiner†
(1970),AMIC÷
196 | | ; | DOT | Coho salmon
(eggs) | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 2.12 (whole body residue) |
same as above | Reinert
(1970),AMIC-
196 | | Compound | Organism | | Field
Location | Toxicity, Active Ingredient, Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|---------------------------|-----|---|---|---|--|---| | | | | Lake
Michigan) | | | | | | 007 | Cyprinus
carpio | FR | St. Lawrence
River,
Montreat,
Canada | 0.38(0.33 ppm
max fissue
residue) | | Pesidues of DDD were measured in water, mud, molituses, and fish during and after DDD application in 1967. Sampling points were above the point of application and 10 and 45 ml downstream. Residues from unknown sources were detected upstream. Downstream residues were more than twice those obtained upstream (0.156 versus 0.369 ppm). The highest concentration in an individual fish was 1.81 ppm. | al (1970), | | סס ד | Catostomus
commerson I | FR | St. Lawrence
Rlver,
Montreal,
Canada | 0.38(n.33 ppm
max flssue
residue) | | same as above | Fredeen, et al (1970),4410 | | DOT | Amelurus
nebulosus | FR | | 0.38(0.12 ppm
max fissue
residue) | | same as above | Fredeen, et
ø1 (1970),
AMIC-534 | | סס ד | Perca
flavescens | FR | St. Lawrence
River,
Hontreal,
Canada | 0.38 (0.55ppm
max tissue
residue) | | same as above | Fredeen, et
at (1970),
AMIC-534 | | ם מ | Esox fuclus | FR | St. Lawrence
River,
Montreal,
Canada | 0.38 (0.38
ppmmax tissue
residue) | ** | same as above | Fredeen, et
al (1978),
AMIC-534 | | ז מכ | Ambfoplites
rupestris | FR | St. Lawrence
River,
Montreal,
Canada | 0.38(0.02 ppm
max fissue
residue) | | same as above | Fredeen, et
al
(1970),AMIC
534 | | 700 | Campeloma sp. | FR | St. Lawrence
River,
Montreat,
Canada | 0.38 (0.40ppm
max tissue
residue) | | same as above | Fredeen, et
at (1970),
AMIC-534 | | 00 T | Cyprinodon | BSA | | 0.015-0.02 (K) | a*, | Sensitivity of three generations | Holland, et | | | variegatus
(50-70 mm) | | | | seawater | of sheepshead minnows to DDT and Endrin was determined. Sensitivity to DDT varied seasonally. Fish were bred in ponds 15m X 5m X 1.25m exposed to pesticides in aquarla, and survivors used for breeding. The results for DDT were not entirely clear due to the seasonal variability. Increased and decreased sensitivity were recorded for the F1 generation at different times, increased sensitivity for the F2, and decreased for the F3. The authors stated that incorporation of DDT in ova via lipids may have caused increased sensitivity. Endrin toxicity was decreased in the F1 and increased in the F2 generation. | | |------|--------------------------------------|-----|--|--------------------|----------------|--|----------------------------------| | DOT | Renthic
insects | F | Trout Creek,
Wasatch
County,Utah | 0.012~0.068
(K) | Stream
flow | Complete depopulation was found at the collection station 2000 m downstream from application point. Insect mortality was independent of DDT concentration in areas of turbulent flow, thus mortality was not directly related to DDT concentration in this field situation. Repopulation was incomplete after 57 MK. | Sonstelle
(1959),
AMIC-964 | | DDVP | Labeo rohlta
(fry) | BSA | | 11.2 (17) | a,c,d,e,f | DDVP and Phosphamidon were shown to be selective toxicants that can be used for eradication of undesirable animals from ponds without injuring carp. DDVP seemed superior since less was needed, it was not influenced by turbidity, and it detoxified more rapidly than phosphamidon. | | | DOVP | Labeo rohita
(fingerling) | ASA | | 22.4 (17) | a,c,d,e,f | same as above | Konar
(1959),AMIC-
5453 | | DOVP | Trichogaster
fasciatus
(young) | BSA | | 1.8 (T7) | a,c,d,e,f | same as above | Konar (1969),
AMIC-5453 | | DOVP | Trichogaster
fasciatus
(aduit) | BSA | | 2.4 (T7) | a,c,d,e,f | same as above | Konar
(1969),AMIC-
5453 | | DOVP | Channa
punctatus
(fry) | BSA | | 0.8 (T7) | a,c,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | DOVP | Puntius | BSA | | 6.2 (T7) | a,c,d,e,f | same as above | Konar | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experimental Variables, Controlled or Noted | Comments | Reference | |---------------|------------------------------|-----|-------------------|---|---|---------------|-------------------------------| | | sophore
(adult) | | | | | | (1959),AMIC-
5453 | | DOVP | Anabas
testudineus | BSA | | 11.7 (77) | a,c,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | 00 VP | Heteropneus-
tes fossilis | BSA | | 17.8 (17) | a,c,d,e,f | same as abové | Kanar
(1959).AHIC-
5453 | | 00 VP | Esomus
dannica
(fry) | BSA | | 2.8 (17) | a,c,d,e,f | same as above | Konar
(1969),AMIC-
5453 | | 00 VP | Esomus
dannica
(adult) | BSA | | 18.2 (T7) | a,c,d,e,f | evode ze emez | Konar
(1969),AMIC-
5453 | | 00 V P | Notonecta sp. | BSA | | 0.001 (T7) | a,c,d,e,f | same as above | Konar
(1969),
AMIC+5453 | | DDVP | Oytiscus sp.
(larvae) | ASA | | 0.064 (T7) | a,c,d,e,f | same as above | Konar
(1969),AMIC-
5453 | | 00 v p | Nytiscus sp.
(adutt) | BSA | | 0.35 (T7) | a,c,d,e,1 | same as above | Konar
(1969),AMIC-
5453 | | 00 VP | Sphaerodema
annutatum | BSA | | 0.085 (T7) | a,c,d,e,f | same as above | Konar
(1969),AMIC-
5463 | | 00 v P | Panatra
filiformis | BSA | | 0.13 (T7) | a,c,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | 00 VP | Anisoptera
(nymphs) | BSA | | 0.15 (T7) | a,c,d,e,f | same as above | Konar
(1969),AMIC-
5453 | | DOVP | Cybister sp. | 854 | | 0.21 (T7) | a,c,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | DDVP | Nepa sp. | BSA |
0.27 (77) | a,c,d,e,f | same as above | Konar
(1969),
AMIC-5457 | |------|---------------------|-----|---------------|---------------|---------------|-------------------------------| | DOVP | Belostoma
Indica | BSA |
0.28 (77) | a,c,d,e,f | same as above | Konar
(1959),
AMIC-5453 | | DDVP | Hydrophllus
sp. | BSA |
0.35 (77) | a,c,d,e,f | Same as above | Konar
(1969),
AMIC-5453 | | DOVP | Volvox | BSA |
5.0 (NTE) | a,c,d,e,f | same as above | Kanar
(1969),
AMIC-5453 | | DOVP | Pandorina | BSA |
5.0 (NTE) | a, c, d, e, f | Same as above | Konar
(1959),
AMIC-5453 | | DOVP | Closterium | BSA | 5.0 (NTE) | a,c,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | DOVP | 8rachlonus | BSA |
5.0 (NTE) | a,c,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | DOVP | Gastrotricha | BSA |
5.D (NTE) | a,c,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | DDVP | Cypris | BSA |
1.0 (K) | a,c,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | DOVP | Cyclops | BSA |
0.5 (K) | a,c,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | DOVP | Maupllus | BSA |
D.5 (K) | a,c,d,e,f | Same as above | Konar
(1969),
AMIC-5453 | | DDVP | Daphnla | BSA |
0.5 (K) | a,c,d,e,f | same as above | Konar
(1969).
AMIC-5453 | | DDVP | Cerlodaphnia | BSA |
D.5 (K) | a,c,d,e,1 | same as above | Konar
(1969),
ANIC-5453 | | Compound | Organisa | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | | Reference | |----------|-------------------------------------|-----|-------------------|---|---|--|-------------------------------| | DOVP | DIaptomus | BSA | | 0.5 (K) | a,c,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | DOVP | Nandus nandus | BSA | | 2.6 (17) | a,c,d,e,f | 30 | Konar
(1969),
AMIC-5457 | | DOVP | Rita rita | BZA | | 2.8 (17) | a,c,d,e,† | | Konar
(1969),
AMIC-5453 | | 00 VP | Amohipnous
cuchia | ASA | | 3.4 (17) | a,c,d,e,f | | Konar
(1969),
AMIC-5453 | | DOVP | Mystus
vltatus
(fry) | AZA | | 2.3 (17) | a,c,d,e,f | | Konar
(1969),
AMIC-5457 | | 00 VP | Mystus
vitatus
(aduit) | AZB | | 6.6 (17) | a,c,d,e,f | | Konar
(1969),
AMIC-5453 | | 00 VP | Puntlus
sophore
(fry) | BSA | | 1.0 (77) | a,c,d,e,f | | Konar
(1969),
AMIC-5453 | | DOVP | Channa
punctatus
(fingeriing) | BSA | | 1-8 (T7) | a,c,d,e,f | same as above |
Konar
(1969),AMIC-
5453 | | 00 VP | Channa
punctatus
(adult) | BSA | | 2.9 (T7) | a _t c,d,e,f | same as above | Konar
(1969),441C-
5453 | | 00 VP | Mastocemb elus
pancalus | BSA | | 2.6 (77) | a,c,d,e,f | same as above | Konar(1969),
AMIC-5453 | | DOVP | Macrognathus
aculeatum | BSA | | 3.6 (77) | a,c,d,e,f | same as above | Konar (1969),
AHIC-5453 | | DOVP | Channa
punctatus | ı | | 20 (SA1) | a* | Snakehead fish eggs were unaffected by:DDVP concentrations of less | Konar
(1969),AMIC- | | | (eqqs) | | | | than 1.0 ppm, but delayed hatching occurred at higher concentrations. Yolk sac absorption was decreased at 1.6-4.0 ppm and stopped at 5.0 ppm or more. Eggs and hatchlings survived well at 0.1 ppm DDVP. | 6388 | |----------------------------|---------------------------------------|-----|-------------------------------|------------|--|---| | DOVP | Channa
punctatus
(hatchlings) | ι |
2.5 (T2) | a# | same as above | Konar
(1969),
AMIC+6388 | | Decamethonium
dibrowide | Negaprion
brevirostris
(1-3 kg) | BSA |
50 (NTE 3.5
HR) | a,c,e | Data from study of drug effects on young lemon sharks were treated mathematically to demonstrate applicability of classical rate theory to the study of chemical shark deterrents. Incapacitation (narcosis) was the primary parameter timed for effectiveness. This was usually quite rapid for the more effective drugs. | Baldridge
(1969),
AHIC-3832 | | Delrad | Mercenaria
marcenaria
(larvae) | ι |
0.031 (T12) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shelltish. | Davis, et al
(1969),AMIC-
5990 | | Detrad | Crassostrea
virginica
(larvae) | ι |
0.072 (T14) | | same as above | Davis, et at
(1969),AMIC-
5990 | | Demeton Pethyl | Fish (not specified) | |
greater than 1.0-10.0 (K) | | Approximate toxicities of numerous pesticides commonty used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mandesley-Th
omas(1971)
ANIC-1055 | | Dermol | Cardlum edule | BSA |
100-330 (T2) | ation, sea | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychlorinated bibhenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with | Portmann, et
al (1971).
AMIC-7701 | | Compound | Organism | | Fletd
Location | Toxicity, Active Ingredient, Ppm | Experiment:
Variables,
Controlled
or Noted | Comments | Reference | |---------------------|-------------------------|--------------------|-------------------|----------------------------------|---|---|---| | | | | | | solution renewal) | toxicity of chemicals to freshwater organisms. | | | Dermoi | Crangon
crangon | BSA | | 100-330 (T2) | aw(continuous aeration, seawater, and daily solution renewal) | same as abové | Portmann, et
at (1971),
ANIC-7701 | | Dermol | Pandatus
montagui | BSA | | 100-330 (T2) | aw(continuous aeration, seawater, and daily solution renewal) | same as above | Portmann, et
at (1971),
AMIC-7701 | | De De Tane 25 | Rasbora
heteromorpha | BCFA
and
BSA | | U.11 (T2) | at, c, e, f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster,
(1969),AMIC-
5425 | | De De Tane (fiquid) | Rasbora
heteromorpha | BCFA
and
BSA | | 0.11 (T2) | a*,c,e,f,
hard
(HW) or
soft (SW)
synthetlc
dliution
water, or
seawater
for some
species | same as above | Alabaster,
(1969),AMIC-
5425 | | • | | | | | | | | |--------------------------|-------------------------|--------------------|---|---------------------------|---|--|-------------------------------------| | De De Tane (liquid) | Rasbora
heferomorpha | BCFA
and
BSA | | 0.02 (T2 in
acetone) | a*,c,e,f,
hard (HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster,
(1969),
AHIC-5425 | | De De Tane (paste) | Rasbora
heteromorpha | RCFA
and
BSA | - | 10.7 (71) | as, c, e, f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | same as above | Alabaster,
(1969),AMIC-
5425 | | De De Tane
(wettable) | Rashora
heteromorpha | BCFA
and
BSA | | 0.001 (T2 lin
acetone) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster,
(1969),
Amic~5425 | | De De Tane
(wettable) | Pasbora
heteromorpha | BCFA
and
BSA | | 8.2 (T2) | a*,c,e,f,
hard
(HW) or
soft (SW)
synthetic
dilution
water, or
seawater
for some
species | Same as above | Alabaster,
(1969), AMIC-
5425 | | Discetone alcohol | Phormidium
ambiguum | L | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as atquicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be | Otto(1970),
AMIC-892 | | Compound | Organism | Study | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | Comments | Reterence | |----------|----------------------------|--------------------|-------------------|---|--|---|-----------------------------------| | | · | | | | | more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also renorted are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | • | | Diazinon | Rasbora
heteromorpha | BCFA
and
RSA | | 1.45 (71) | ap.c.e.f.
hard (HW)
or soft
(SW) syn-
thetic
water, or
seawater
for some
species | One hundred sixty-tour pesticides, wetting agents, and miscellaneous water collutants showed a wide rance of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Diaginon | Wolffia
papulifera | L | | 100 (K) | Huntor's
medium
diluted
1:5 | All compounds were harmful to duckweed to some degree. Decreased populations were noted at non-lethal concentrations and some compounds (Malathion and 2,4-D) caused teratogenic effects at concentrations as low as 1 pp. | Worthley, et al (1971), AMIC-3233 | | Dicamba | Gammarus
fasclatus | BSA | | greater than
100.0 (T2) | 3* | Of the aquatic weed
herbicides evaluated, Dictone was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animal represent important food chain links. | | | Dicembe | Paleomontes
kadlakensis | BSA | | greater than
100+0 (T2) | a* | same as above | Sanders
(1970),AMIC-
453 | | Dicamba | Asellus
brevicaudus | BSA | | greater than
100-0 (T2) | a* | same as above | Sanders
(1970),AMIC-
453 | | Olcamba | Orconectes
nais | BSA | | greater than
100-0 (T2) | ** | same as above | Sanders
(1970),AHIC-
453 | | Dicembe | Daphnia magna | BSA | | greater than | * | same as above | Sanders | | | | | 100.0 (T2) | | | (1970),AHIC-
453 | |-------------|--|--------------------|--------------------------------|---|--|---------------------------------------| | Olcamba | Cypridopsis
vidua | BSA |
greater than
100.0 (T2) | a* | same as above | Sanders
(1970),AMIC~
453 | | Dicamba | tepomis
macrochirus | BSA |
40.0 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | Dlcapthon | Mercenaria
mercenaria
(eggs) | ι |
3.34 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Host of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Dlcapthon | Mercenaria
mercenaria
(farvae) | L |
5.74 (T12) | | same as above | Davis, et al
(1969), AMIC-
5990 | | Dichiobenii | Rasbora
heteromorpha | BCFA
and
BSA |
5.7 (T2) | a*,c,e,f,
hard (HW)
or
SOFT(SW)
synthetic
dilution
water, or
seawater
for some
species | misceltaneous water pollutants showed a wide range of toxicity spanning 12 orders | Alabaster
(1969),
AMIC-5425 | | Dichtobenii | Callibactis
SD. (nymph,
8-12 mm) | BSA |
10.3 (T4) | sodium, | The toxicity of herbicides Diquat and Dichlobenii to aquatic invertebrates and fish was determined in aquaria containing substrates natural to each species. Diquat was quite toxic to H. azeteca but not as toxic to other organisms. Dichlobenii was less toxic to H. azetecus but considerably more toxic | a1 (1969),
AMIC-5452 | | Compound | Organism | | Field
Location | Toxicity, Active Ingredient, Pom | Experiment
Variables,
Controlled
or Noted | | Reference | |--------------|--|-----|-------------------|----------------------------------|--|---|---------------------------------------| | | | | | | sulfate,
iron, | to the remaining organism than Diquat Mud lessened the toxicity of both, but more so for Diquat. Dichiobenii had a sublethal narcotizing effect on the organisms that resulted in immobilization. It was concluded that both herbicides could adversely affect certain fish food organisms. | | | Dichiohanii | Callibactis
sp. (nymph,
8-12 mm) | BSA | | 7.4 (584) | as,bs,c,f, i,l, and silica, calcium, magnesium, sodium, potassium, bicarbon- ate, carbonate, sulfate, iron, dissolved solids, conduc- tance | same as above | Wilson, et
al (1969),
AMIC-5452 | | Dichlobeni i | Lepomis
macrochirus | BSA | | 14.7 (T4) | as, bs, c, f, i, l, and silica, calcium, magnesium, sodium, potassium, bicarbon-ate, carbonate, sulfate, iron, dissolved solids, conductance | | Wilson, et
at (1969),
AMIC-5452 | | Dichtobenit | Libeliula sp. RSA
(naiad, 16-24
mm) | qreater than 100 a#, b#, c, i 1,1, and silica, calcium, magnesium sodium, potassium bicarbon- ate, carbonate sulfate, iron, dissolved solids, conduc- tance | a,
a, | Wilson, et
at (1959),
AMIC-5452 | |-------------|---|---|------------|---------------------------------------| | Dichtobenit | Libellula sp. BSA
(nalad, 16-24
mm) | greater than 100 at, bt, c, f (SB 1-4) i,l, and silica, calcium, magnesium sodium, potassium bicarbon- ate, carbonate sulfate, iron, dissolved solids, conduc- tance | 1.9
1.9 | Wilson, et
at (1969),
AHIC-5452 | | Dichtobenit | Limnephitus 85A
sp. (larva,
15-20 mm) | 13.0 (74) a*,b*,c,f i,l, and silica, calcium, magnesium sodium, potassium bicarbon- ate, | 1, | Witson, et
al (1969),
AMIC-5452 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Pom | Experimental Variables, Controlled or Noted | Comments | Reference | |-------------|---|-----|-------------------|---|---|---------------|---------------------------------------| | | | | | | carbonate, sulfate, iron, dissolved solids, conduc- tance | | | | Dichiobenii | Limnephilus
sp. (larva,
15-20 mm) | BSA | | 12.00 (584) | as, bs, c, f, i, l, and silica, calcium, magnesium, sodium, potassium, bicarbonate, sulfate, iron, dissolved solids, conductance | sama as above | HIISON, ef
al (1959),
AMIC-5452 | | Dichiobenli | Micropterus
salmoldes | BSA | | 12.5 (74) | a*,b*,c,f, i,l, and silica, calcium, magnesium, sodium, potassium, bicarbon- ate, carbonate, sulfate, iron, dissolved solids, conduc- tance | same as above | Wilson, ef
al (1969),
AMIC-5452 | | Dichiobeni i | Hyaletla
azeteca
(adult, 4-8
mm) | BSA |
8.5 (T4) | at, bt, c, f, i, l, and silica, calcium, magnesium, sodium, potassium, bicarbon-ate, carbonate, sulfate, iron, dissolved solids, conductance | same as above | Wilson, et
al(1969),
AMIC-5452 | |--------------|---|--------------|----------------|--|----------------|---------------------------------------| | Dichtobení i | Hyalella
azteca
(adult, 4-6
mm) | 8 5 A |
2.8 (\$84) | as, bs, c, f, i, l, and silica, calcium, magnesium, sodium, potassium, bicarbon-ate, carbonate, sulfate, iron, dissolved solids, conductance | same a\$ above | Witson, et
at(1969),
AMIC-5452 | | Dichlobenii | Enallagma sp.
(nalad, 16-24
mm) | |
12.3 (SB1) | as, ps, c, f,
i,l, and
silica,
calcium,
magnesium,
sodium,
potassium,
bicarbon-
ate, | same as above | Wilson, et
al (1969),
AMIC-5452 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment Variables, Controlled or Noted | | Reference | |--------------|---------------------------------------|-----|-------------------|---|--|---|--------------------------------------| | • | | | | | carbonate,
sulfate,
iron,
dissolved
solids,
conduc-
tance | | | | Dichtobeni1 | Enallaqma sp.
(nalad, 16-24
mm) | AZB | | 20.7 (T4) | as, bs, c, f,
i, l, and
silica,
calcium,
magnesium,
sodium,
potassium,
bicarbon-
ate,
carbonate,
sulfate,
iron,
dissolved
solids,
conduc-
tance | | Witson, et
at(1969),
AMIC-5452 | | Dichtobeni i | Gammarus
fasclatus | ASA | | 18.0 (T2), 10.0
(T4) | a* | Of the aquatic weed herbicides evaluated, Dicione was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | Sanders
(1970),
ANIC-453 | | Dichiobenli | Paleomontes
kadiakensis | BSA | | 9.0 (T2) | 8* | same as above | Sanders
(1970),
AMIC-453 | | Dichtobenit | Asellus
brevicaudus | BSA | | 34.0 (T2) | a * | same as above | Sanders
(1970),
AHIC-453 | | Dichlobenii | Orconectes
nais | BSA | | 22.0 (72) | a* | same as above | Sanders
(1970),
AMIC-453 | | Dichtobeni t
 Daphnia magna | BSA |
10.0 | (T2) | a₹ | same as above | Sanders
(1970),
AMIC-453 | |--------------|----------------------------|--------------------|------------------|------------|--|---|-----------------------------------| | Dichtobenit | Cypridopsis
vidua | BSA |
7.8 (| T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | Dichiobeni: | Lenomis
macrochirus | BSA |
20.0 | (T2) | a* | same as above | Sanders
(1970),
AHIC-453 | | Dichlone | Sałmo
gairdneri | BCFA
and
BSA |
0.09 | (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AHIC-5425 | | Dichione | Gammarus
fasclatus | BSA |
0.24
(T4) | (T2), 0.10 | a* | Of the aquatic weed herbicides evaluated, Dictone was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration tevels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain tinks. | Sanders
(1970),
AHIC-453 | | Dichlone | Paleomontes
kadlakensis | BSA |
0.45 | (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | Dichlone | Asellus
brevicaudus | BSA |
0.20 | (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | Dichlone | Orconectes
nals | BSA |
3.2 (| T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | Dichione | Daphnla magna | BSA |
0.025 | (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | Dichione | Cypridopsis | BSA |
0.23 | (12) | a* | same as above | Sanders | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |---------------------------|-------------------------|--------------------|-------------------|---|--|---|-----------------------------------| | | vldua | | | | | | (1970).
AMIC-453 | | Dichione | Lepomis
macrochirus | BSA | •• | 0.12 (TZ) | a* | same as above | Sanders
(1978),
AMIC-453 | | Dichlorfenthion | Rasbora
hateromorpha | BCFA
and
BSA | | 1.9 (T2) | thetic
dilution | One hundred slxty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was frue. Testing the actual material as sold was found to be essential. | Alabaster
(1959),
AHIC-5425 | | Dichtorfenthion | Rasbora
heterosorpha | BCFA
and
BSA | | 2.1 (T1) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AHIC-5425 | | Olchtorfenthion | Rasbora
heteromorpha | BCFA
and
BSA | | 0.73 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seamater
for some
species | zame as above | Atabaster
(1969),
AHIC-5425 | | Dichlorophen (Na
self) | Salmo
gairdneri | BCFA
and
BSA | | 0.22 (T2) | af,c,e,f,
hard
(HH) or | same as above | Atabaster
(1969),
AMIC-5425 | | | | | | | | soft (SW)
synthetic
dilution
water, or
seawater
for some
species | | | |-------|-------------------------------|-------------------------|--------------------|---------|-----------------------------|---|---|--| | | Dichlorophen (Na
saif) | Rasbora
heteromorpha | BCFA
and
BSA | | 0.15 (T2) | as,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
water, or
seawater
for some
species | same as above | Alabaster
(1969),AMIC-
5425 | | A-193 | Dichiorvos | Rasbora
heteromorpha | BCFA
and
BSA | | 6.5 (TZ) | a*,c,e,f,
hard (HW)
or
SOFT(SH)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | | Dieldrin (15 percent
M.O.) | Rasbora
heteromorpha | BCFA
and
BSA | | 1.0 (T2) | a*,c,e,f,
hard(HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),AMIC~
5425 | | • | Dieldrin | fish (not
specified) | | | greater than 0.001-0.01 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Nawdesley-
Thomas (1971)
ANIC-1056 | | | Dieidrin | Poecilla
latipinna | BCFA | •• | 0.003 (partial
K5) | 8* | Studies were conducted with fish weighing 2-5 q in seawater at a | Lane, et al
(1970), | | Coppound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments Variables, Controlled or Noted | Comments | Reference | |----------|-----------------------|------|-------------------|---|--|--|--| | | | | | | | temperature of 27 plus or minus i C. The purpose of the tests was to determine the effect of dieldrin on serum glutamic oxaloacetic transaminenase activity which increased at all exposures. However, little correlation was found between enzyme activity and total mortality. | | | Dieldrin | Poeciiia
iatipinna | BCFA | | 0.006 (70
percent K3) | a* | ≲ame as above | Lane, eta!
{1970},
AMIC-1283 | | Dieldrin | Poecitia
tatipinna | BCFA | | 0.012 (K3) | a* | same as above | Lane, et al
(1970), AMIC-
1283 | | Dietdrin | Whife sucker | FRL | Misc. states | 0.01-0.35
residue (58) | | The Aureau of Sport Fisheries continued its fish monitoring program by collecting 147 composite fish samples from 50 nationwide monitoring stations during the fall of 1969. Fish were analyzed for residues of 11 organochlorine insecticides, lipids, and PCB ^m s. | Henderson, et
al (1971),
AMIC-1407 | | Dietdrin | Yellow perch | FRL | Misc. states | 0.02-0.20
residue (SB) | | same as above | Henderson.et
al (1971).
AHIC-1407 | | Oleldrin | Chain
pickere! | FRL | Misc. states | 0.02 residue
(SB) | | same as above | Henderson.et
al (1971).
AMIC-1407 | | Diefdrin | White catfish | FRL | Misc. states | 0.01-0.50
residue (SB) | •• | same as above | Henderson, at at (1971), AMIC=1407 | | Dieldrin | White perch | FRL | Misc. states | 0.06-0.56
residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | Dieidrin | Goldfish | FRL | Misc. states | 0.04 residue
(SB) | | same as above | Henderson.
et al(1971).
AMIC-1407 | | Dieldrin | Pumpkinseed | FRL | Misc. states | 0.05 residue | | same as above | Henderson. | FRL Hisc. states 0.02-0.37 | Dieldrin | Largemouth
bass | FRL | Misc. | states | 0.01-1.59
residue (SB) |
same as above |
Henderson,
et al
(1971),
AHIC-1407 | |----------|----------------------|-----|-------|--------|---------------------------|---------------------------|---| | Dieldrin | Brown
bullhead | FRL | Misc. | states | 0.01-0.25
residue (SB) |
same as abov e | Henderson, et
at (1971),
ANIC-147 | | Diefdrin | Carp | FRL | Misc. | states | 0.01-0.54
residue (SB) |
same as above | Henderson,
etal (1971),
AMIC-1407 | | Dieldrin | Channet .
catfish | FRL | Misc. | states | 0.01-0.36
residue (SB) |
same às above | Henderson, et
al (1971),
AMIC-1407 | | Dieldrin | Redhorse
sucker | FRL | Misc. | states | 0.01-0.12
residue (SB) |
same as above | Henderson,
et a!
(1971),
AMIC-1407 | | Dieidrin | Glzzard shad | FRL | Mlsc. | states | 0.05-0.50
residue (SB) |
same as above | Henderson,et
#1 (1971),
AMIC-1407 | | Dieldrin | Spotted
sucker | FRL | Misc. | states | 0.30 residue
(SB) |
same as above | Henderson,et
al (1971),
AHIC-1407 | | Dieldrin | Bluegills | FRL | Misc. | states | 0.01-0.55
residue (SB) |
same as above | Henderson,et
al (1971),
AHIC-1407 | | Dieldrin | Redbreast
sunflsh | FRL | Misc. | states | 0.01 residue
(SB) |
same as above | Henderson,
et a!
(1971),
AMIC-1407 | | Bleidrin | Striped
mullet | FRL | Mlsc. | states | 0.02-0.39
residue (SB) |
same as above | Henderson,
et al
(1971),
AMIC-1407 | | Dieldrin | Rock bass | FRL | Misc. | states | 0.07 residue
(SB) |
same as above | Henderson,
et al(1971),
ANIC-1407 | etal (1971), AMIC-1407 Henderson, et same as above Dietdrin Bloater | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental
Variables,
Controlled
or Noted | Comments | Reference | |----------|------------------------|-----|-------------------|---|--|---------------|---| | | | | | residue (SB) | | | at (1971),
AMIC-1407 | | Diełdrin | Lake
Whitefish | FRL | Misc. states | 0.03 residue
(SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | Dieldrin | Lake trout | FRL | Misc. states | 0.02 residue
(SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | Dieldrin | White crapple | FRL | Misc. states | 0.02-0.27
residue (SB) | | same as above | Henderson,
et al
(1971),
AHIC-1407 | | Dieldrin | Bigmouth
buffalo | FRL | Misc. states | 0.04-0.42
residue (SB) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | Dietdrin | Small mouth
buffalo | FRL | Hisc. states | 0.12 residue
(SB) | | same as above | Henderson,et
ai (1971),
AMIC-1407 | | Dieldrin | Flathead
catflsh | FRL | Misc. states | 0.03 residue
(SB) | | same as above | Henderson,et
al (1971),
AMIC-1407 | | Dietdrin | Goldeye | FRL | Mlsc. states | 0.01-0.08
residue (SB) | | same as above | Henderson,et
at (1971).
AMIC-1407 | | Dieldrin | Walleye | FRL | Misc. states | 0.01+0.03
residue (SB) | | same as above | Henderson.et
al (1971),
AMIC-1487 | | Dieldrin | Sauger | FRL | Misc. states | 0.01 residue
(SB) | | same as above | Henderson,
et al(1971),
AHIC-1407 | | Dieldrin | Flannelmouth
sucker | FQL | Misc. states | 0.01 residue
(SB) | | same as above | Henderson,
et al
(1971),
ANIC-1407 | | Dieldrin | Freshwater
drum | FRL | Misc. states | 0.04 residue
(SB) | | samo as above | Henderson, et
al (1971),
AMIC-1407 | | Dieidrin | Black
builhead | FRL | Misc. | states | 0.01-0.03
residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | |----------|-----------------------|-----|-------|--------|---------------------------|----|---------------|---| | Dieldrin | White bass | FRL | Misc. | states | 0.02 residue
(58) | ~~ | same as above | Henderson,
et al(1971),
AMIC-1407 | | Dietdrin | Black crapple | FRL | Misc. | states | 0.02-0.36
residue (SB) | | same as above | Henderson,et
al (1971),
AMIC-1487 | | Dietdrin | Largescale
sucker | FRL | Misc. | states | 0.01-0.09
residue (SB) | | same as above | Henderson,
et al
(1971),
AMIC-1487 | | Dietdrin | Small mouth
bass | FRL | Misc. | states | 0.03-0.04
residue (SB) | | same as above | Henderson, et al (1971),
AHIC-1407 | | Dlełdrin | Northern
squawfish | FRL | Misc. | states | 0.01-0.02
residue (SB) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | Dieldrin | Chiselmouth | FRL | Misc. | states | 0.01-0.03
residue (SB) | | same as above | Henderson.et
a1 (1971),
AMIC-1407 | | Dieldrin | Rainbow trout | FRL | Misc. | states | 0.01-0.04
residue (SB) | | same as above | Henderson,et
at (1971),
AMIC-1407 | | Dietdrin | Bridgellp
sucker | FRL | Misc. | states | 0.02 residue
(SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | Dieidrin | Arctic
grayling | FRL | Misc. | states | 0.01 residue
(SB) | •• | same as above | Henderson, et
a: (1971),
AHIC-1407 | | Dieldrin | Round
whitefish | FRL | Misc. | states | 0.01 residue
(SB) | | same as above | Henderson.et
al (1971).
AMIC-1407 | | Oleidrin | Langnose
sucker | FRL | Misc. | states | 0.01 residue
(SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | comments | Reference | |----------|--------------------------|------|-------------------|---|---|--|---| | Dioldrin | Ictalurus
punctatus | FRLO | Iowa | 0.034-1.6
(accumulation,
SB) | | Edible flesh of fish collected from rivers, lakes, ponds, and reservoirs was analyzed. Fish taken in areas receiving agricultural runoff showed highest accumulation, especially in bottom feeding fish. | Morris, et
al (1971),
AMIC-1452 | | Dieldrin | Ictiobus
cyprinellus | FRLO | Iowa | 0.028-0.84 (accumulation, SB) | | Same as above | Morris, et
al (1971),
AMIC-1452 | | Dieldrin | Cyprinus
carpio | FRLO | Iowa | 0.015-0.56
(accumulation,
SB) | | same as above | Morris, et
al (1971),
AMIC-1452 | | Dieldrin | Micropterus
salmoldes | PRLO | Iowa | 0.11-0.08
(accumulation,
SB) | | same as above | Morris, et
al (1971),
AMIC-1452 | | Dieldrin | Carpiodes sp | FRLO | Iowa | 0.313
(accumulation,
SB) | | same as above | Morris et
el (1971),
AMIC-1452 | | Dieldrin | Pomoxis
nigromaculatu | FRLO | Iowa | 0.012
(accumulation,
SB) | | same as above | Morris, et
al (1971),
AMIC-1452 | | Dieldrin | Pomoxis
annularis | FRLO | Iowa | 0.059
(accumulation,
SB) | | same as above | Morris, et
al (1971),
AMIC-1452 | | lleidrin | Stizostedion
vitreum | FRLÖ | Iowa | 0.01-0.06
(accumulation,
SB) | | same as above | Morris,et a
(1971),
AMIC-1452 | | Dieidrin | Esox lucius | FRLO | Iowa | 0.05
(accumulation,
SB) | | same as abov€ | Morris, et
a:
(1971),AMI(
1452 | | Dieldrin | Ictalarus
. melas | FRLO | Iowa | 0.098
(accumulation,
SB) | | same as above | Morris, et
al (1971),
AMIC-1452 | |----------|--------------------------------------|------|---|--------------------------------------|---------------|---|---| | Dieldrin | Lepomis
macrochirus | FRL0 | Iowa | 0.014-0.034
(accumulation,
SB) | | same as above | Morris, et
el (1971),
AMIC-1452 | | Dieldrin | Esox lucius | FRLO | Iowa | 0.05
(accumulation,
SB) | | same as above | Morris, et
al (1971),
AMIC-1452 | | Dieldrin | Roccus
chrysops | FRLO | Iowa | 0.091-0.175
(accumulation,
SB) | ~- | same as above | Morris, et
al (1971),
AMIC-1452 | | Oletdrin | Anacystis
nidulans | t | | 0.5-1.0 (growth
Inhibited) | a*,c*,r
SH | Metabolic products of Aldrin, Dieldrin, and Endrin can be as toxic as the parent compounds, as shown by OD measurement. | Batterton,
etal (1971),
AMIC-1471 | | Dieldrin | Agmenelium
quadrup-
licatum | ι | | 0.5-1.0 (growth inhibited) | a*,c*,r
SM | same as above | Batterton,
et al
(1971),
AMIC-1471 | | Di⊕ldrin | Leptodius
fioridanus
(iarvae) | L | | 5-10 ppb(K) | | Zoeal and megalops larval stages were investigated and varying sensitivity at different stages was found, i.e., earlier stages were affected more severely. Subjethal effects on moiting and survival were also noted at 0.5 and 1.0 ppb. The author recommended study of toxicity at all life stages to determine better the effect of a pesticide on the animal in its natural environment. | Epitanio
(1971).
Amic-2653 | | Dieldrin | Panopenus
nerbstll
(larvae) | ι | | 5-10 ppb (K) | | same as above | Epifanio
(1971),AMIC-
2653 | | Dieldrin | Limnephilus
rhombicus
(larvae) | FS | Knights
Creek, Dun
County,
Hisc. | 0.002(whole
body residue) | •• | Samples of water, silt, bottom debris, bottom organisms, and fish were taken in
1966 from a creek adjacent to an orchard which had been treated in 1963-1965 with various chlorinated hydrocarbon pesticides. No residues were found in water samples. Slit samples contained 0.002-0.013 ppm endrin and | Moubry, et
al (1968),
AMIC-3753 | | Compound | Organism | - | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|----------------------------|-----|---|---|---|---|--| | | | | | | | 0-0.005 ppm dieldrin. Endrin residues of 0.011-0.025 ppm and 0.002-0.006 ppm dieldrin were found in debris samples. Despite timited control data, residue analyses indicated that contamination of the environment studied was limited. | | | Dietdrin | Sialis sp.
(larvae) | FS | Knights
Creek, Dun
County,
Wisc. | 0.013
(wholebody
residue) | | same as above | Moubry, et
al (1968),
AMIC-3753 | | Dieldrin | Gammarus sp. | FS | Knights
Creek, Dun
County,
Wisc. | 0.005-0.013
(wholebody
residue) | | same as above | Moubry, et
a: (1968),
AMIC-3753 | | Oleidrin | Salvelinus
fontinalis | FS | Knights
Creek, Dun
County,Wisc. | 0.008-0.014
(whole body
residue) | | same as above | Moubry, et
al (1968),
AMIC-3753 | | Dieldrin | Semotilus
atromaculatus | FS | Knights
Creek, Dun
County,
Wisc. | 0.006-0.013
(whole body
residue) | | same as above | Moubry, et
81
(1958),AMIC-
3753 | | Oletdrin | Coffus bairdi | F\$ | Knights
Creek, Dun
County,
Hisc. | 0.007-0.017
(whole body
residue) | | same as above | Houbry, et
al (1968),
AMIC-3753 | | Dietdrin | Rhinichthys
atratulus | FS | Knights
Creek, Dun
County,Wisc. | 0 (wholebody residue) | | same as above | Houbry, et
at (1958),
AMIC-3753 | | Dletdrin | Salvelinus
fontinalis | FS | Knights
Creek, Dun
County, Hisc. | 0.18-0.26(fat
residue) | | same as above | Moubry, et
al (1968),
AMIC-3753 | | Dietdrin | Semotlius
atromaculatus | FS | Knights
Creek, Dun
County,
Wisc. | 0.17-0.34 (fat
residue) | | same as above | Houbry, et
al (1968),
AMIC-3753 | | Dieidrin | Cottus bairdl | FS | Knights
Creek, Dun | 0.3-0.7
(fat
residue) | | same as above | Moubry, et
al (1968), | | | | | County,
Hisc. | | | | AMIC-3753 | |-------------------|--------------------------------|----|--|-------------------------|----|---|--| | Dieldrin | Rhinichthys
atratulus | FS | Knights
Creek, Dun
County,Wisc. | O (fat
residue) | | same as above | Houbry, et
at (1968),
AHIC-3753 | | Dieldrin | Lepomis
cyanelius | ı | - | 0.006 (K9) | a* | The blood and brains of green sunfish that died due to exposure to Dieldrin were analyzed for this chemicat. Surviving fish had less Dieldrin in blood and brains than dead fish. Severity of poisoning symptoms also correlated with Dieldrin concentration. Extraction efficiency from blood and brains was quite good (92-95 percent). | Hogan, et al
(1971),
AMIC-3824 | | Dietdrin | LepomIs
cyanetius | L | •• | 5.7 (blood
residue) | a* | same as above | Hogan, et al | | | Cyanerius | | | residuel | | | (1971),44IC+
3824 | | Dietdrin | Lepomis
cyanellus | £ | | 10.3 (brain
residue) | a* | same as above | Hogan, et ai | | | 0,3,10,743 | | | , 632,400, | | | (1971),ANIC-
3824 | | Dieldr <u>i</u> n | Falco
peregrinus
(eggs) | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.11 (residue) | | Peregrine falcons, falcon nrey, and other predator species were collected widely and analyzed for DDT, DDE, PCR, and a few other pesticides to a lesser degree. PCR and DDT were found to be widely dispersed globally. PCB was found to be a powerful Inducer of hepatic enzymes that degrade oestradiol. Reductions in thickness of egg shells, eggshell weight, and water retention occurred. All affect hatching success. The authors state that the peregrine may be the first species entirpated by global contamination. | (1968).
AMIC-3844 | | Dieldrin | Aquita
chrysaetos
(eggs) | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.0047
(residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | Compound | Orqanism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experimental
Variables,
Controlled
or Noted | Comments | Reference | |----------|-------------------------------------|---|--|---|--|---------------|--| | Dieldrin | Falco
peregrinus
(immature) | F | Hestern
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.07-1.6 (fat
residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | Dieldrin | Falco
peregrinus
(adult) | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.31-3.7 (flesh
residue) | | same as above | Rlsebrough,
ef al
(1958),
AMIC-3844 | | Dieldrin | Falco
Deregrinus
(adult) | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.44-62.5 (fat
residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | Dieldrin | Endomychura
craverl
(eggs) | f | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.08 (residue) | | same as above | Risebrough,
et al
(1968),
AMTC-3844 | | Dieldrin | Pelecanus
occidentalis
(eggs) | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.06-0.16
(residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | Dieldrin | Sula
leucogaster
(eggs) | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.04-0.18
(residue) | | same as above | Plsebrough,
et al
(1968),
AMIC-3844 | | Dieldrin | Falco | F | Western | 0.04-0.11 | | same as above | Risebrough, | | ➣ | |---| | ı | | N | | 0 | | ω | | · | peregrinus
(immature) | | U.S., Pacific Ocean, Panama, Mexic o, and Antarctic | (flesh
residue) | | et al
(1968),AMIC-
3844 | |----------|---|------------------|---|---|--|---| | Dietdrin | Chlamydotheca
arcuata | BSCH
and
A | | 0.0001-0.001
(1700-2600 ppb
residue48 wk) |
The organisms were exposed to 0.01 and 0.1 ppb of the toxicants for 25 weeks after which time the amounts added each week were increased ten-fold over the initial amounts. Ulothrix occurred spontaneously in the test tanks. The results show that chronic accumulations in Chiamydotheca exceeded levels which were toxic in acute tests. Residues in Chiamydotheca ranged from 12,000 to 250,000 times greater than the theoretical concentrations in the waters those in Ulothrix were 235-3,000 times exposure levels. | Kawatski, et
ai (1971),
AHIC-5506 | | Dieldrin | Chlamydotheca
arcuata | BSCH
and
A | | 0.0245 (11) |
same as above | Kawatski, et
a!(1971),
AMIC-5505 | | Dieldrin | Ulothrix sp. | BSCH | | 0.00001-0.001
(1.9-126 ppb
residue 33-48
wk) |
same as above | Kawatski, et
al (1971),
AMIC-5506 | | Dieldrin | Copends (Cyclops blcuspidus, Cyclops varicans, Cyclops vernalls, Eucyclops agilis, Macrocyclops aibldus, Orthocyclops modestus) | FL
and
BSA | State
Collega,
Miss. | 0.35 (83
percen†K2) |
The response of pesticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Belzoni and non-resistant species at State College. Copepods, clams, snalls, and sludge worms from Belzoni were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic levels. | Nagvi, et al:
(1969),
AMIC-5979 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments Variables,
Controlled or Noted | Comments | Reference ' | |----------|--|------------------|----------------------------|---|--|--|--------------------------------------| | Dieldrin | Tublfex
tublfex | FL
and
BSA | Retzoni,
Miss. | 6.0 (NTE) | | same as above | Nagvi, etal
(1959).
AMIC-5979 | | Dieldrin | Physa gyrina | FL
and
BSA | State
College,
Miss. | 0.50 (K3) | | same as above | Nagvl, etal
(1959),
AMIC-5979 | | Dieldrin | Physa gyrina | FL
and
BSA | Betzoni,
Miss. | 0.50 (K3) | | same as above | Nagvi, et
m1(1969),
AMIC-5979 | | Dieldrin | Copepods (Cyclops blouspidus, Cyclons varicans, Cyclops vernalis, Eucyclops agills, Yacropy lops atbldus, Orthocyclops modestus) | FL
and
BSA | Beizoni,
Hiss | 0.35 (20
percent K2) | | same as abové | Nagvi, et
al(1969),
AMIC-5979 | | Dieldrin | Copenods (Cyclops bicuspidus, Cyclops varicans, Cyclops vernalis, Eucyclops aqilis, Macrocyclops albidus, Orthocyclops modestus) | FL
and
BSA | Belzonl,
Miss | 0.40 (39
percent K2) | | same as above | Nagvi. et
al(1969),
AMIC-5979 | | Oleldrin | Crassostrea
virginica
(eqgs) | L | | 0.64 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also recorted. Host of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of | Davis, et al
(1969),AMIC-
5990 | selecting chemicals for pest control that would not have serious effect on shellfish. | Dieldrin | Crassostrea
virginica
(1arvae) | ι | | greater than
10.0 (T14) | | same as above | Davis, etal
(1969),
AMIC-5990 | |----------|---|-----|----|----------------------------|--|--|---| | Dieldrin | Gambusia
affinis
(female, 4.3
cm, 1.9 g) | BSA | | 0.031 (T4) | a,c,d,e,
e,f,i,
(Honolulu
tap
water) | The five fish species are commonly found in streams and estuaries in semi-tropical areas. G. affinis was the most tolerant. Varied sensitivity to the toxicants were found. K. sandvicensis was the most sensitive fish studied. The standard method procedure was followed. | Nunoqawa, et
a! (1970),
AMIC-6557 | | Dieldrin | Lebistes
reticulatus
(male, 1.8
cm, 0.7 g) | BSA | | 0.007 (T4) | a,c,d,
e,f,i,
(Honolulu
tap
water) | same as above | Nunogama, et
al (1970).
AMIC-6567 | | Dieldrin | Tilapia
mossambica
(3.4 cm, 1.3
g) | BSA | | 0.010 (T4) | a,c,d,
e,f,i,
(Honolulu
tap
water) | same as above | Nunodawa, et
a! (1970),
AMIC-6567 | | Dieldrin | Kuhila
sandvicensis
(4.3 cm, 1.5
g) | BSA | | 0.002 (T4) | a,c.d,e,f,
i,salt
water | same as above | Nunogawa, et
al (1970).
AMIC-6567 | | Dietdrin | Stolephorus
purpurea (3.6
cm, 0.4 g) | BSA | · | 0.005 (T 12
HR) | a,c,d,e,f,
i, salt
water | same as above | Nunoqawa, et
al (1970),
AMIC-6567 | | Dieldrin | Agonus
cataphractus | BSA | | 3.3 (12) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emutsifiers, besticides, polychtorinated biphenyls, pure inorquanic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Dieldrin | Carcinus
maenas | BSA | ~~ | 0.01-0.03 (T2) | a*(continuous aeration, sea water, and daily | | Portmann, et
al (1971),
AHIC-7701 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|--------------------|-----|---|---|--|--|---| | | | | | | solution ronewal) | | | | Dieldrin | Cardium edule | BSA | | greater than 10 (T2) | as (continuous aeration, sea water, and daily solution ronewal) | - | Portmann, et
a! (1971),
AMIC-7701 | | Diefdrin | Crangon | AZB | | 0.01-0.03 (72) | a*(continuous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
at (1971),
AMIC-7701 | | Oleidrin | Freshwafer
drum | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.04 (whole
body residue) | | Fish from Lake Michigan contained 2 to 7 times more DDT (and DDT analogs) and Dieldrin residues than fish from the other Great Lakes. Fish from Lake Superior invariably had the lowest accumulations of both chemicals. The compounds tended to concentrate in fat (olfs). Considerable additional data are presented. The author noted the need to reduce pesticide usage to a minimum and to replace these insecticides with less persistent materials. | (1970),AMIC- | | Dieldrin | Alewlife | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.05-0.97
(whole body
residue) | | same as above | Reinert
(1970),AMIC-
196 | | Dietdrin | American
smelt | FL | Great Lakes
(Ontario, | 0.02-0.10
(whole body | | same as above | Reinert
(1970),AMIC- | | i | : | > | |---|---|---| | ſ | • | 3 | | Ċ | | 5 | | _ | | j | | | | | Huron,
Erie,
Superior,
Michigan) | residue) | | 196 | |----------|------------------------|----|---|--------------------------------------|-------------------|--------------------------------| | Dieldrin | Bloater | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.03-1.07
(whole body
residue) |
same as above | Reinert
(1970),ANIC-
196 | | Dieldrin | Brown
bullhead | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.00 (wholebody
residue) |
same as above | Reinert
(1970),AMIC-
196 | | Dieldrin | Channel
catfish | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.07 (whole
body residue) |
same as above | Reinert
(1970),AMIC-
196 | | Dieldrin | Coho salmon
(flesh) | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.01(whole body residue) |
same as above | Reinert
(1970),AMIC-
196 | | Dieldrin | Coho salmon
(eggs) | FL | Great Lakes
(Ontario, | 0.04 (whole
body residue) |
same as above | Reinert
(1970),AMIC-
196 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Pom | Experimental Variables, Controlled or Noted | Comments | Reference | |----------|--------------|----|---|---|---|---------------|-------------------------------| | | | | Huron,
Erie,
Superior,
Michigan) | | | | | | 0ietdrin | Gizzard shad | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.04-0.09
(whole body
residue) | | same as above | Reinert
(1970),AMIC
196 | | Dieldrin | Kiyi | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.28 (whole
body residue) | | same as above | Reinert
(1970),AMIC
196 | | Dieldrin | Lake herring | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.02-0.07
(whole body
residue) | | same as above | Reinert
(1970),AMIC
196 | | Dieldrin | Lake frout | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.05-1.13
(whole body
residue) | | same as above | Reinert
(1970),AHIC
196 | | Dietdrin | Lake
whitefish | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.02-0.47
(whole body
residue) | | same as above | Reinert
(1970).AMIC-
196 | |----------|----------------------------|----|---|--------------------------------------|-----------|---------------|--------------------------------| | Dieldrin | Rock bass | FL |
Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.02 (whole
body residue) | | same as above | Reinert
(1970),AMIC-
196 | | Dieidrin | Round
whitefish | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.03 (whole
body residue) | | same as above | Reinert
(1970),4MIC-
196 | | Dieldrin | Sea tamprey | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.02 (whole
body residue) | · | same as above | Reinert
(1970),AMIC-
196 | | Dieldrin | Silmy scutpin | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.03 (whole
body residue) | | same as above | Reinert
(1970);AMIC-
196 | | Dietdrin | Nine-spined
stickleback | FL | Great Lakes
(Ontario, | 0.02(whole body residue) | | same as above | Reinert
(1970),AHIC- | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |----------|--------------|----|---|---|---|---------------|--------------------------------| | | | | Huron,
Erie,
Superior,
Michigan) | | | | 196 | | Dl⊕ldrin | Walleye | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.08-0.13
(whole body
residue) | | same as above | Reinert
(1970),AMIC-
196 | | Dieldrin | white bass | FL | Great Lakes
(Ontario,
Euron,
Erie,
Superior,
Michigan) | 0.04-0.10
(whole body
residue) | | same as above | Reinert
(1970),AHIC
196 | | 01•1drin | White perch | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.10 (whole body residue) | | same as above | Relner†
(1970),AHIC
196 | | Dietdrin | White sucker | FL | Great Lakes
(Ontario,
Huron,
Erie,
Superior,
Michigan) | 0.02 (whole body residue) | | same as above | Relner†
(1970),AMIC
196 | | | | | Michigan) | | | | | |----------------------|----------------------------------|--------------------|---|--------------------------------------|--|--|-------------------------------------| | Dieldrin | Yellow perch | FL | Great Lakes (Lake Ontarlo, LakeHuron, LakeErle, Lake Superlor, Lake Michigan) | 0.03-0.07
(whole body
residue) | | same as above | Reinert
(1970),AMIC-
196 | | Dieldrin | Wolffia
papulifera | L | | 100 (K) | Hunter's
medium
diluted
l:5 | All compounds were harmful to duckweed to some degree. Decreased populations were noted at non-lethal concentrations and some compounds (Malathion and 2,4-D) caused teratogenic effects at concentrations as low as 1 ppm | Worthley, et al (1971), AMIG-3233 | | D1ethy1-DL-tartarate | Pimephales
prometas | BSA | | 650.0 (14) | a*,d,e,o,
and Fe | Matathion and its hydrotysis products were evaluated with the finding that one such product (diethy! fumarate) was more toxic than Halathion to fathead minnows. Synergism occurred between Matathion and two products of hydrotysis. Continuous exposure resulted in increased toxicity. | Render
(1969),AMIC-
3787 | | Diethyl fumarate | Pimephales
prometas | BSA . | | 4.5 (T4) | a*,d,e,o,
and Fe | same as above | Render
(1969),AMIC-
3787 | | Diethyl fumarate | Pimephales
promelas | 8CFA | | 2.8 (T14) | a*,d,e,o,
and Fe | same as above | Bender (1969),
AMIC-3787 | | Dlethy1 maleate | Pimephales
prometas | BSA | | 18.0 (T4) | a*,d,e,0,
and Fe | same as above | Bender
(1969),AMIC-
3787 | | Diethyl succinate | Pimephates
prometas | BSA | | 140.0 (T4) | a*,d,e,o,
and fe | same as above | Bender (1969),
AMIC-3787 | | Difolatan | Brachydanio
rerio
(larvae) | L | | 1.0 (T 30 mln) | | Folpet, Difolatan, and Captan were found to be toxic to Zebrafish tarvar within 90 min. Difotatan was most toxic white Captan was teast toxic. Effects observed were cessation of heartbeat and loss of pigmentation. The authors recommended this as a sensitive, rapid bioassay for these and related compounds. | Abedi, et
at(1968),
AMIC-3717 | | Difolatan | Rasbora
heteromorpha | BCFA
and
BSA | | 0.032 (T1) | a*,c,e,f,
hard (HW)
or
SOFT(SW)
synthetic
dliution
water, or | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy | Alabaster
(1969),
AMIC-5425 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experiment:
Variables,
Controlled
or Noted | | Reference | |------------|-------------------------|--------------------|-------------------|---|--|---|--| | | | | | | seawater
for some
species | predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | | Olfotatan | Rasbora
heteromorpha | BCFA
and
BSA | | 0.017 (72) | a*,c,e,f,
hard (HW)
or
SNFT(SW)
synthetic
dliution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Oimenin | Rasbora
heteromorpha | BCFA
and
BSA | | 3.3 (72) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AHIC-5425 | | Dimecron | Puntius ticto | •• | | 0.41 (T4) | a,c,d,e,f | Of the pesticides investigated, the most toxic was Klofos followed in decreasing order by Sumithion, Malathion. Formithion, Dimecron, Sevin, and BHC. The author cites the need for more selective pesticides nontoxic to fish or antagonistic agents for reducing fish toxicity. | Đ | | Dimethoate | Fish (not specified) | | | greater than
10-100 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mawdesley-
Thomas(1971
AMIC-1056 | | Olmethoate | Saimo
gairdneri | BCFA
and
BSA |
9 (T2) | as,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscelianeous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster`
(1969);
AMIC-5425 | |------------|----------------------|--------------------|-------------------------------|--|---|---| | Dimethoate | Carcinus
maenas | BSA |
greater than
3.3 (T2) | a*(centin-
uous ner-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyis, nure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al(1971),
AMIC-7701 | | Dimethoate | Cardium edule | BSA |
T.3 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et al (1971), AMIC-7701 | | Dimethoate | Crangon
crangon | BSA |
0.0003-0.001
(T2) | a*(contin-
uous aer-
ation,
sea-
water, and
daily
solution
renewal) | same as above | Portwann, et
al (1971),
AMIC-7701 | | Dimethoate | Pandalus
montagui | BSA |
greater than
0.03 (T2) | a: (continuous aeration, sea water, and daily solution renewal) | same as above | Portmann,
etal (1971),
AMIC-7701 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | Comments | Reterence | |-----------------------------------|------------------------|------|-------------------|---|---|---|---| | Dimethytamine | Crangon | BSA | | greater than
100 (T2) | aw(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emutsiflers, pesticides, polychtorinated biphenyts, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Olmethyiphosphorodit
holc acid | Pimephales
promelas | BSA | | 23.5 (T4) | a*,d,e,o,
and Fe | Malathion and its hydrolysis products were evaluated with the finding that one such product (diethy) fumarate) was more toxic than Malathion to fathead minnows. Synerglsm occurred between Malathion and two products of hydrolysis. Continuous exposure resulted in increased toxicity. | Render
(1959),
AHIC-3787 | | Dimethylphosphorodit
holc acid | Pimephales
prometas | ÐCFA | | 21.0 (T14) | a+,d,e,o,
and Fe | same as above | Bender
(1969),
AMIC-3787 | | Dimethylphosphorothi
pnic acid | Pimephales
prometas | BSA | | 42.5 (14) | a*,d,e,o,
and Fe | same as above | Render
(1969),
AMIC-3787 | | Dimethy: formamide | Crangon
crangon | BSA | | greater than
100 (T2) | a*(continuous aer-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsiflers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971).
AMIC-7701 | | Dimethy: phosohate | Pimephales
promelas | BSA | | 18.0 (T4) | a*,d,e,o,
and Fe | Malathion and its hydrolysis products were evaluated with the finding that one such product (diethyl fumarate) was more toxic than Malathion to fathead minnows. Synergism occurred between Halathion and two products of hydrolysis. Continuous exposure resulted in increased toxicity. | Bender(1969)
AHIC-3787 | | Dimethyl phosphite | Pimephales
prometas | BSA | <u></u> | 225.0 (T4) | a*,d,e,o,
and fe | same as above | Bender(1969),
AMIC-3787 | |--|------------------------|------------------|-------------------|---|---------------------|--|----------------------------| | Dimethyl
2,3,6-tetrachioroter
ephthalate | PhormIdium
ambiguum | ι | _ | 0.5-10.0
(33percent
growth
InhIbIted 14) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copner chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Offo (1970),
ANIC-892 | | Dimite | Tubliex
tubliex | FL
and
BSA | Betzoni,
Miss. | 0.50 (NTE) | | The response of pesticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Reizoni and non-resistant species at State College. Copepods, clams, snalls, and sludge worms from Reizoni were considerably more tolerant to besticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic levels. | ANIC-5979 | | Dinitrobuty1 phenot | Gammarus
fasclatus | BSA | | 1.8 (T4) | a* | Of the aquatic weed herbicides evaluated, Dictone was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | | | Dinitrophenylether | Phormidium
ambiguum | L | - | 0.5-10.0 (66
percent growth
inhibited 14) | | Of 74 chemicals evaluated as addicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be | Offo (1978),
AMIC-892 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |----------|-------------------------|--------------------|-------------------|---|--|--|--| | | | | | | | more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | | | Dinocap | Fish (not
specified) | | | greater than
0-01-0-1 (K) | | Approximate toxicities of numerous posticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mawdesley-
Thomas
(1971),AHIC-
1056 | | Dinocap | Rashora
heteromorpha | ACFA
and
BSA | | 0.11 (T2) | ab,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water politurants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formutation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Dinocap | Rasbora
heteromorpha | BCFA
and
8SA | - | 0.07 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
ANIC-5425 | | Dinoseb | Fish (not
specified) | | | greater than
0.1-1.0 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excettent brief, general discussion of toxicity testing is also present. | Mawdestey-
Thomas(1971)
AMIC-1056 | | Diphenamid | Gammarus
fasciatus | BSA |
greater than
100.0 (T2) | a* | Of the aquatic weed herbicides evaluated, Dicione was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | Sanders
(1970) •
AMIC-453 | |------------------|--------------------------------------|--------------------|--------------------------------|------------------------------
--|--------------------------------------| | Diphenamid | Paleomontes
kadlakensis | BSA |
58.0 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | Diphenamid | Asellus
brevicaudus | BSA |
greater than
100.0 (T2) | a* | same as above | Sanders
(1970).AHIC-
453 | | Diphenamid | Orconectes
nais | BSA |
greater than
100.0 (T2) | a* | same as above | Sanders
(1970),AMIC-
453 | | Olphenamid | Daohnia magna | BSA |
56.0 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | Diphenamid | Cypridopsis
vidua | BSA |
50.0 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | Diphenamid | Lenomis
macrochirus | BSA |
80.0 (T2) | a* | same as above | Sanders
(1970) •
AMIC-453 | | Dipterex | Crassostrea
virginica
(larvae) | L |
1.0 (T14) | | The effect of 52 desticides on embryonic development of clams and dysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | Davis, et al
(1969),AMIC-
5990 | | Diquat-dibromide | Salmo
gairdneri | BCFA
and
BSA |
70 (T2) | a+,c,e,t,
hard (HW)
or | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a | Alabaster
(1959),
AMIC-5425 | | Compound | Organisa | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment.
Variables,
Controlled
or Noted | | Reference | |----------|--|-----|-------------------|---|---|---|---------------------------------------| | | | | | | SOFT(SW)
synthetic
dilution
water, or
seawater
for some
species | wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | | Diquat | Callibactis
sp. (nymph,
8-12 mm) | BSA | | 16.4 (T4) | sodium,
potassium,
bicarbon-
ate, | and Dichtobenii to aquatic invertebrates and fish was determined in aquaria containing substrates natural to each species. Diquat was quite toxic to Hazeteca but not as toxic to other organisms. Dichtobenii was less toxic to the azetecus but considerably more toxic to the remaining organism than Diquat Mud lessened the toxicity of both, but more so for Diquat. Dichtobenii had a sublethal narcotizing effect on the organisms that resulted in immobilization. It was concluded that both herbicides could adversety affect certain fish food organisms. | at (1969),
AMIC-545? | | Diquat | Enallagma sp.
(naiad, 16-24
mm) | | | greater than
100 (T4) | a*,b*,c,f, i,l, and silica, calcium, magnesium, sodium, potassium, bicarbon- ate, carbonate, sulfate, iron, dissolved solids, conduc- tance | . same as above | Wilson, et
al (1969),
AMIC-5452 | | | i | , | |---|---|---| | | | ı | | | ı | ٦ | | | i | _ | | , | ď | , | | | ١ | L | | O i quat | Hystella 85A
azteca
(adult, 4~8
mm) |
0.05 (T4) | a*,b*,c,f, i,l, and silica, calcium, magnesium, sodium, potassium, bicarbon- ate, carbonate, sulfate, iron, dissolved solids, conductance | same as above | Wilson, et
al (1969),
AMIC-5452 | |----------|--|------------------------------|---|---------------|---------------------------------------| | Ol quat | Libellula sp. BSA
(naiad, 16-24
mm) |
greater than
100 (T4) | a*,b*,c,f, i,l, and silica, calcium, magnesium, sodium, potassium, bicarbon- ate, carbonate, sulfate, iron, dissolved solids, conductance | same as above | Wilson, ef
al (1969),
AMIC-5452 | | 01 quat | Limnephitus BSA
sp. (Tarva,
15-20 mm) |
33 (14) | a*,b*,c,f, i,l, and silica, calcium, magnesium, sodium, potassium, bicarbon- ate, carbonate, sulfate, iron, | same as above | Wilson, et
al (1969),
AMIC-5452 | | Compound | Organism | - + | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |----------|--------------------------------------|-----|----------------------|---|---|---|--------------------------------------| | | | | | | dissolved solids, conductance | | | | Diquat | Tendipedidae
(larvae, 7-18
am) | | | greater than
100 (T4) | a*,b*,c,f, i,l, and silica, calcium, magnesium, sodium, potassium, bicarbon- ate, carbonate, sulfate, iron, dissolved solids, conduc- tance | | WIIson,et al
(1959),
AMIC-5452 | | Diquat | Roccus
saxatilis
(fingerlings) | BSA | | 80 (T4) | as,c,d,e,
f,p, and
iron | Striped bass fingerlings were apparently much more sensitive to therapeutic and herbicidal compounds than many freshwater fish. | Wellborn
(1969),
AMIC-5723 | | DI quat | Mya arenaria | F | Nomini
Creek, Va. | 0.35 (SB) | | Consistent absence of Diquat in edible parts of clams and oysters was recorded. Residues in intequment of clam siphons was believed to be due to soll particles trapped in folds of tissue. No Diquat was found in water due probably to rapid adsorption by silt and bottom mud. Residues persisted for nearly one year in bottom mud. | , | | Diquat | Crassostrea
virginica | F | Nomini
Creek, Va. | 0.35 (SB) | | same as above | Haven
(1969),AMIC-
5978 | | Diquat | Myrlophillum
spicatum | F | Nomini
Creek, Va. | 0.35 (40-70
percent K36) | | same as above | Haven
(1969),
AMIC-5978 | |--------------|------------------------------------|-----|----------------------|------------------------------|--|---|---| | 01 quat | Cardium edule | BSA | | greater than 10
(T2) | uous aer-
ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic charicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
af (1971),
AMIC-7701 | | 01quat | Crangon
crangon | BSA | | greater than 10 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | _ | Portmann, et
al (1971),
AMIC-7701 | | Olspersol SD | Agonus
cataphractus | AZB | | 100-330 (T4) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | | Portmann, et
at (1971),
AHIC-7701 | | Dispersol SD | Crangon
crangon | BSA | | 3300-10,000
(T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | | Portmann, et al (1971), AMIC-7701 | | Olsuffoton | Fish (not
specified) | | | greater than
1.0-10.0 (K) | | Approximate toxicities of numerous pesticides commonly used in Britair were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mawdesley-
Thomas(1971)
AMIC-1056 | | 01uron | Hercenarla
mercenaria
(eggs) | L | | 2.5 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected | Davis, et at
(1969),AMIC-
5990 | | Compound | 0rqanism | | Fleid
Location | Toxicity,
Active
Ingredient,
Pom | Experiments Variables,
Controlled or Noted | | Reference | |--|--------------------------------------|-----|-------------------|---|--|--|--| | | | | | | | development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of setecting chemicals for pest control that would not have serious effect on shellfish. | | | Dluron | Mercenaria
mercenaria
(larvae) | ι | | greater than
5.0 (T12) | | same as above | Davis, et
al(1969),
AMIC-5990 | | Oluron | Gammarus
fasclatus | BSA | | 0.70 (T4) | a* | Of the aquatic weed herbicides evaluated, Dicione was the most toxic, Daohnia was generally the most sensitive organism. Atl of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. Atl of the animals represent important food chain links. | | | DI-Isobuty! phenoxyethoxyethy! dimethy! benzy! ammonlum chioride | Phormidius
ambiguum | ι | | 0.5-10.0 (16
percent growth
inhibited 14) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chioramine was also found to be more toxic than CuSO4. No wettind agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Otto (1970),
AMIC-892 | | Di-n-butyl fin oxide | Crepidostomum
tarionis | ι | | 150 (oral dose,
K1) | | Capsules containing the tin compound were administered to the trout by force feeding. The tin compound was effective against the intestinal fluke but erythromycin was not. Residue analyses indicated tin was not readily | Mitchum, et
al (1969),
AMIC-5730 | absorbed by fissue outside the intestinat fract and that the compound was rapidly eliminated. Tissue residue and retention time studies were recommended for drug clearance purposes. | Di-n-butyl tin oxide | Salmo
aquabonita | ι | * = | 100-600 (ore)
dose, NTE) | | same as above | Hitchum, et
al (1969),
AMIC-5730 | |---|--------------------------|---|------------|--|----|--|--| | D1-Syston | Merceneria
mercenaria | t | | 5.28 (12) | •• | same as above | Davis, et al | | | (eggs) | | | | | | (1969),AMIC-
5990 | | DI-Syston | Mercenaria
mercenaria | ι | | 1.39 (712) | , | same as above | Davis, et al | | | (tarvae) | | | | | | (1969),AMIC~
5990 | | 01-Syston | Crassostrea
virginica | t | •• | 5.86 (T2) | | same as above | Davis, et at | | | (eqqs) | | | | | | (1969),AMIC-
5990 | | D1-Syston | Crassostrea
virginica | ι | | 3.67 (114) | | same as above | Davis, et al | | | (larvae) | | | | | | (1969),AMIC-
5990 | | DI (N, N dimethy) cocommine sait of endothmil (ethy) bis) (?-ethy)hmay)) phosphinate?-oxabicy cio (?-2-1) heptane-?,3-dicarbox y)ic acid) | | 1 | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Content chionarine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.05 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | 0110 (1971),
AMIC-892 | | DI (N. N dimethyl tridecyl amine) salt of endothall | Phormidium
ambiguum | t | | 0.5-10.0 (0
percent growth
inhibited 14) | •• | same as above | Ofto (1970).
Amic-892 | | DHOC | Fish (not | | | greater than | | Approximate toxicities of | Mandesley- | | Compound | ,
Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Exoeriment
Variables,
Controlled
or Noted | | Reference | |----------|----------------------|-------------|-------------------|---|--|---|---| | | specified) | | | 1.0-10.0 (K) | | numerous pesticides commonly used in
Aritain were summarized. An excellent
brief, general discussion of toxicity
testing is also present. | Tromas
(1971),AMIC-
1055 | | DODS JN | Carcinus
maenas | BSA | | greater than
100 (T2) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, besticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portrann, et at (1971), AMIC-7701 | | NL 2GOD | Cardium edule | BSA | | greater than
100 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmarn, et
at (1971),
AMIC-7701 | | Dobs JN | Crangon | BSA | | greater than
100 (T2) | aw(continuous aer-
etion, some
water, and
daily
solution
renewal) | same as above | Portmann, et
at (1971),
AMIC-7701 | | Dobs JN | Pandalus
montaqui | 8 28 | | greater than
100 (T2) | as(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann.
etal (1971).
AHIC-7701 | | Oobs 055 | Carcinus
maenas | BSA | | greater than
100 (T2) | a*(contin-
uous acr-
ation, sec
vater, and
daily
solution | - | Portrann, et
at (1971),
AMIC-7701 | ## ronewal) | Dobs 055 | Cardium edule | BSA | •• | 34.3 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | | Portmann, et
al (1971),
AMIC-7701 | |----------------|------------------------------------|-----|----|---------------------------|---|--|---| | Dobs 055 | Crangon
crangon | BSA | | greater than
100 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann, et al (1971), ANIC-7701 | | Dobs 055 | Pandalus
montagui | BSA | | greater than
100 (T2) | as (continuous aerution, sea water, and daily solution renewal) | ~ | Portmann, et
al(1971),
AMIC-7701 | | Dobs 055 | Platicthys
flesus | BSA | | 10-30 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Por*mann, et al (1971), AMIC-7701 | | Dodine acetate | Fish (not
specified) | | | greater than 0.1-1.0 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mandesley-
Thomas(1971)
AMIC-1056 | | Dowicide A | Mercenaria
mercenaria
(eggs) | Ĺ | | greater than
10.0 (T2) | | The effect of 52 nesticides on embryonic development of clars and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval | Pavis, etal
(1969),
AHIC-5999 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experiment
Variables,
Controlled
or Noted | | Pelerence | |------------|--------------------------------------|--------------------|-------------------|---
--|---|--------------------------------------| | | | | | | | growth. The authors coint out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Dowicide A | Mercenaria
mercenaria
(Tarvae) | L | | 0.75 (T12) | | same as above | Davis, et a:
(1969),AMIC-
5990 | | Dowlcide G | Mencenaria
mencenaria
(eggs) | L | | less than 0.25
(T2) | | same as above | Davis, et
at(1969),
AMIC-5990 | | Dowlcide G | Mercenaria
mercenaria
(larvae) | t | | less than
0.25(T12) | | same as above | Davis, et
al(1959),
AMIC-5990 | | Dомроп | Rashora
heteromorpha | BCFA
and
BSA | | 204 (T2) | a*,c,e,f,
hard (EW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water nollutants showed a wide range of toxicity scanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | #1abaster
(1969),
#HIC-5425 | | Dамроп | Salmo
galrdnerl | BCFA
and
BSA | | 179 (T2) | at,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
water, or
soawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Doxcide | (C102) | Carcinus
maenas | BSA |
500 (T2) | ution, sea- | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
ai (1971),
AMIC-7701 | |---------|--------|--------------------------|-----|------------------------------|---|---|---| | Doxcide | (C102) | Cardium edule | BSA |
greater than
500 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Doxclde | (C102) | Crangon
crangon | BSA |
greater than
500 (T2) | aw(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et al (1971), AMIC-7761 | | Doxcid∘ | (C102) | Pandalus
montagui | BSA |
greater than
500 (T2) | a*(continuous acr-
ation, sea
water, and
daily
solution
renewal) | _ | Portmann, et
at (1971),
AMIC-7701 | | DSS | | Fundulus
heteroclitus | BSA |
4.5 (T4) | a*,c,e,
and
synthetic
seawater | A laboratory procedure based on Standard Methods for 96-hr toxicity determinations of crude oil and oil-dispersant mixtures was described. The dispersants varied considerably in toxicity, ranging from 0.01 to 7.1 ml/l. TL50 for 96 hr. These did not differ significantly from 240 hr vatues. The dispersants were designated as CX. 90. CI. 00. AQ. PC. MM. TN. BP. and NA with no further describition of their chemical nature or source. Only a few bioassays were conducted with shrimp. Motitusks and echinoderms were suggested as suitable test animals. The authors stated that the method could be used to test any product for toxicity in seawater. | LaRoche, et
al (1970),
AMIC-445 | | Compound | Organism | | Field
Location | Toxicity.
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | , | Reference | |----------|--|------------------|-------------------|---|--|---|--| | DO | Fundulus
heterociltus | B54 | | 0.0005 (T4) | a*,c,e,
and
synthetic
seawater | same as above | LaPoche, et
al (1970),
AMIC-445 | | 00 | Nereis virens | BSA | | 0.0002-0.001
(T4) | a*,c,e,
and
synthetic
seawater | same as above | LaRoche.et
a1 (1970).
AMIC-445 | | DSS | Nerels virens | BSA | | 13.5 (T4) | a*,c,e,
and
synthetic
seawater | same as above | LaRoche, et
al(1970),
AMIC-445 | | OTMC | Palaemonetes
kadlakensis
(adult) | ACF | | 0.07 (residue) | a* | Magnification of PDT and Aldrin tagged with C-14 occurred rapidly. Blotogical magnification factors of 2900 to 114,100 depending on the snecies were found for DDT, and 22,800 to 141,000 for Aldrin. Marked degradation of DDT as determined by analysis for DDT metabolites occurred. The authors conclude that aduable invertebrates influence quality and quantity of insecticide residue passed via the fish food chain. | Johnson, et
at(1971),
AHIC-3820 | | DTHC | Libettula sp.
(nalad) | BCF | | 0.01 (residue) | a* | same as above | Johnson, et al (1971), AMTC-3820 | | DTMC | Palaemonetes
kadlakensis
(adult) | BCF | | 0.0001 (SB3) | a * | same as above | Johnson,et
al (1971),
AMIC-3320 | | DTMC | Libelfula sp.
(nalad) | BCF | | 0.0001 (SB3) | a◆ | same as above | Johnson, et
a: (1971),
AMIC-3820 | | Dursban | tubifex | FL
and
BSA | Retzoni,
Miss. | 2.0 (NTE) | | The response of pesticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. | Nagvi, et
at(1969),
AMIC-5979 | Pesticide-resistant species were collected at Reizoni and non-resistant species at State College. Copepods, clams, snalis, and sludge worms from Reizoni were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues avaitable to animals of higher trophic levels. | | | | | | | of higher fromit fevers. | | |---------------|--------------------------------------|--------------------|----|------------------------|---|---|-----------------------------------| | Dylox | Roccus
saxatiils
(fingeriings) | BSA | | 5.2 (T4) | a*,c,d,e,f
,p and
iron | Strioed bass fingerlings were apparently much more sensitive to therapeutic and herbicidal compounds than many freshwater fish. | Wellborn
(1959),
AMIC-5723 | | D.B. Granular | Salmo
gairdneri | BCFA
and
BSA | | 2,050 (T2) | a*,c,e,f,
hard (HW)
or
SOFT(SW)
synthetic
dilution
water, or
seawater
forsome
species | One hurdred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1959),
AMIC-5425 | | Econal 13056 | Rasbora
heteromorpha | BCFA
and
BSA | •• | 0.19 (T2) | a*,c,e,f,
hard (HW)
or
SOFT(SW)
synthetic
ditution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the
opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | EC-98 | Rasbora
heteromorpha | BCFA
and
BSA | | 1.2 (T2,
hardwater) | a*,c,e,f,
hard (HW)
or soit
(SW)
synthetic
dilution
water, or | One hundred sixty-four pesticides, wetting agents, and miscellaneous water collutants showed a wide range of toxicity scanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy | Atabaster
(1969),
AMIC-5425 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |--|--------------------------|--------------------|-------------------|---|--|---|-----------------------------------| | | | | | | seawater
for some
species | predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | | €C - 90 | Rasbora
heteromorpha | BCFA
and
BSA | | 1.2 (T2,
softwater) | a*,c,e,f, hard (HM) or soft (SH) synthetic dilution water, or seawater for some species | same as above | Alabaster
(1969),
AMIC-5425 | | Emcol H-146 (88) percent plus 20 percent Fmcol H-500X) | Rasbora
heteromorpha | BCFA
and
RSA | | 10 (T2) | as,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Emcol 702 | Rasbora
heteromòrpha | RCFA
and
BSA | | 6.0 (12) | ab,c,e,f, hard (HW) or soft (SW) syn- thetic dilution water, or seawater for some species | same as above | Alabaster
(1959),
AMIC-5425 | | EMID | Crassostrea
virginica | ι | | 16.8 (72) | | The effect of 52 pesticides on embryonic development of clams and | Davis, et at
(1969), | | 7 | • | |----|---| | V | 2 | | 'n | ١ | | | (eqqs) | | | | | oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the oossibility of selecting chemicals for pest control that would not have serious effect on shellfish. | AMIC-5990 | |----------------------|--------------------------------------|-----|----------------------------------|------|---|--|---| | EMID | Crassostrea
virginica
(larvae) | L |
30.0 (T | 14) | | same as above | Davis, et al
(1969), AMIC-
5990 | | Empilan | Crangon
crangon | ÁZÀ |
106-330 | (14) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renowal) | One hundred-torty surface active agents, solvent emulsifiers, pesticides, polychlorinated binhenyls, pure Inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et al (1971), AMIC-7701 | | Emkem spill-wash | Crangon
crangon | RSA |
1.0-3.3 | (T4) | aw(continuous aeration, seawater, and daily solution renewal) | same as above | Porfmann, et
al (1971),
AMIC-7701 | | Emuisifier blend 350 | Crangon
crangon | BSA |
100-330 | (T4) | a*(contin-
uous aer-
ation, sea-
wator, and
daily
solution
renewal) | | Portmann, et al (1971), AMIC-7701 | | Endosulfan | Fish (not
specified) | |
greater
0.000001
1 (K) | | | | Mawdesley-
Thomas (1971
AMIC-1056 | | Compound | Organis# | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experiment
Variables,
Controlled
or Noted | | Reference | |------------|-------------------------|--------------------|-------------------|---|---|--|---| | Endosulfan | Rasbora
heteromorpha | BCFA
and
BSA | | 0.000003 (T2) | or soft
(SW)
synthetic
dilution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water notiutants showed a wide range of toxicity scanning 12 orders of magnitude. Knowing the toxicity and generantage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Endosulfan | Agonus
cataphractus | 8 S & | | 0.03-1.0 (72) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, resticides, polychlorinated bioharyts, pure inorganic, and ordanic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | | Endosulfan | Cardium edule | BSA | | greater than 10 (TZ) | as(contin-
uous ear-
ation, sea-
water, and
daily
solution
renewal) | - | Portmann. et al (1971). AMIC-7701 | | Endosultan | Crangon
crangon | B S A | | 0.01 (72) | a*(continuous acration, seawater, and daily solution renewal) | - | Portmarn, et
al (1971),
AMIC-7791 | | Endothall | Rasbora
heteromorpha | BCFA
and
BSA | | 460 (T2) | as,c,e,f,
hard (HW)
or soft
(SW) syn- | One hundred sixty~four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders | Atabaster
(1969),
AMIC-5425 | | | | | | | thetic
dilution
water, or
seawater
for some
species | of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the cocosite was true. Testing the actual material as sold was found to be essential. | | |------------|--|---|-----|-------------------------------------|--|---|--| | Endothall | Mercenarla
mercenarla
(eggs) | L | | 51.0 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the nossibility of selecting chemicals for pest confroit that would not have serious effect on shellfish. | Davis, et al
(1969).AMIC-
5990 | | Endo Thall | Mercenaria
mercenaria | ι | | 12.5 (T12) | | same as above | Davis, et al | | | (larvae) | | | | | | (1969),AMIC+
5990 | | Endothall | Crassos trea
virginica
(egas) | L | | 28,2 (T2) | | same as above | Davis, et al
(1969), AMIC-
5990 | | Endothall |
Crassostrea
virginica
(larvae) | ι | | 48.1 (T14) | | same as above | Davis, et al
(1969), AMIC-
5990 | | Endothal | Fish (not
specified) | | | greater than
10-100 (K) | | Approximate toxicitles of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mandestey~
Thomas
(1971),AMIC-
1056 | | Endrin | Fish (not specified) | | | greater than
0.0001-0.001
(K) | | same as above | Mandestey-
Thomas(1971),
AMIC-1056 | | Endrin | Anacystls
nldulans | t | *** | 0.5-1.0 (growth inhibited) | a*,c*,r
SH | Metabolic products of Aldrin. Dieldrin, and Endrin can be as toxic as the parent compounds, as shown by OD measurement. | Batterton, et al (1971), | | Compound | ,
Organism | | Fle1d
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|--------------------------------------|------|-------------------|---|---|--|---| | | | | | | | | AHIC-1471 | | Endrin | Aqmenellum
quadrup-
licatum | ι | | 0.5-1.0 (growth Inhibited) | a*,c*,r
SH | same as above | Batterton,
et al
(1971),
AMIC-1471 | | Endrin | Salvelinus
fontinalis
(1.15 q) | BCFA | | 0.355 (T4) | as,c,d,
e,f,1,o,
sulfato,
copper,
manganese,
iron, and
chromium | Four Insecticides were evaluated on four fish species at two body weights. Standard method bloassay procedures were followed. Symptomotogy was also reported. Generally, toxicity was significantly different at the two body weights, i.e., more toxic at the lower body weight, except for Malathion. Welf-defined experimental conditions were said to result in truer measurement of foxicity. | (1971),
AMIC-1812 | | Endrin | Salvetinus
fontinalis
(2.04 q) | RCFA | | 0.59 (T4) | a*,c,d,
e,f,i,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et a (1971), AMIC-1812 | | Endrin | Salmo clarki
(0.37 a) | BCFA | | 0.00001 (T4) | as,c,d,
e,f,i,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et a
(1971),
AMIC-1812 | | Endrin | Salmo ctarki
(1.30 q) | BCFA | | 0.00002 (T4) | as,c,d,
e,f,i,o,
sulfato,
copper,
manganese,
iron, and
chromium | same as above | Post, et a
(1971),
AMIC-1817 | | Endrin | Salmo
qalrdneri
(1.24 g) | BCFA | | 0.0004 (T4) | as,c,d,
e,f,1,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et a
(1971),
AMIC-1812 | | Endrin | Limnephilus
rhombicus
(larvae) | FS | Knights
CRFEK,
DunCounty,
Wisc. | 0.003 (whole
body residue) | | Samples of water, silt, bottom debris, bottom organisms, and fish were taken in 1966 from a creek adjacent to an orchard which had been treated in 1963-1965 with various chiorinated hydrocarbon pesticides. No residues were found in water samples. Slit samples contained 0.002-0.013 ppm endrin and 0-0.0105 ppm dieldrin. Endrin residues of 0.011-0.025 ppm and 0.002-0.006 ppm dieldrin were found in debris samples. Nespite limited control data, residue analyses indicated that contamination of the environment studied was limited. | | |--------|--------------------------------------|------|---|--|---|---|---------------------------------------| | Endrin | Slalis sp.
(larvae) | FS | Knights
Creek, Dun
County,Wisc. | 0.009
(wholebody
residue) | | same as above | Moubry, et
al (1968),
AMIC-3753 | | Endrin | Gammarus sp• | FS | Knights
Creek, Dun
County,
Wisc. | 0.013~0.025
(wholebody
residue) | | same as above | Moubry, et al (1958), AHIC-3753 | | Endrin | Pimephales
promelas | BCFA | | 0.25 ppb (T4) | a*,e | LAS acted synergistically with parathion to cause tess survival of fatheds but had an indeterminate effect with DDT and no synergistic effect with Endrin. | Solon, et al
(1969),AMIC-
3785 | | Endrin | Carassius
auratus | BCF | . | 0.0043 (oral
dose per day,SB
4 mo) | a*,c,q | No effects were noted at lower concentrations while higher doses caused some mortality, lowered growth rate, decreased thyroid cett height, decreased gametogenesis, lowered total body fat, less vacuolization of liver cells, elevated serus Na concentrations, osmo-regulatory disturbance, and other effects. The authors note that sublethal | Grant, et al
(1970),
AMIC-3826 | | Endrin | Oncorhynchus
kisutch (1.50
g) | | | 0.76 (T4) | a*,c,d,
e,f,1,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et al
(1971),
AHIC-181? | | Compound | Organism | | FleId
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | Comments | Reference | |----------|-------------------------------------|---|--|---|---|---|--| | | | | | | | effects could adversely affect fish populations. | | | Endrin | Endomychura
craveri
(eggs) | F | Hestern
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.17 (residue) | | Peregrine falcons, falcon prey, and other predator species were collected widely and analyzed for ODT, DDE, PCB, and a few other pesticides to a lesser degree. PCB and DDT were found to be widely dispersed globally. PCB was found to be a powerful inducer of hepatic enzymes that degrade oestradiol. Reductions in thickness of ego shells, eggshell weight, and water retention occurred. Afl affect hatching success. The authors state that the peregrine may be the first species entirpated by global contamination. | Risebrough,
et al
(1968),
AMIC-3844 | | Endrin | Pelecanus
occidentalis
(eggs) | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.07-1.13
(residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | Endrin | Sula
leucogaster
(eggs) | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.01-0.06
(residue) | | ' same as above | Risebrough,
et al
(1968),
AHIC-3844 | | Endrin | Pandion
haliaetus
(eggs) | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.25 (residue) | | same as above | Risebrough,
et al
(1958),
AMIC-3844 | | Endrin | Gambusia
affinis
(resistant) | L | •• | 0.05-0.4 (SB 3
hr) | | Endrin resistant mosquitofish exhibited no consistent change in rate of oxygen consumption. The susceptible strain had decreased oxygen consumption | McIngvale,
et al
(1958),
AMIC+5475 | at higher concentrations. Some mortality occurred at .02-.075 pom in susceptible tish and at .40 ppm in the resistant strain. | Endrin | Gambusla
affinis
(susceptible) | t |
0.00001-0.2
(SB 3 hr) | | same as above | McInquate,
et al
(1968),
AMIC~5475 | |--------|--|------|------------------------------|---|--|---| | Endrin | Pimephales
prometas (3
cm) | BSA |
0.00077 (T2) | a*,c,e,f,
k,l,h,
and mag-
nesium,
sulfates,
iron,
calcium | Rioassays conducted simultaneously indicated that DDT was considerably more toxic to fathead minnows under static conditions than under continuous flow conditions. Decreasing oxygen and increasing metaholites may
have enhanced DDT toxicity. An identical study with Endrin resulted in only slightly higher toxicity under continuous flow conditions. Average pH, oxygen, and ammonia nitrogen were followed throughout the experiments. The results were comprehensively discussed taking into consideration many contributing factors. | Lincer, et
al
(1970),AMIC~
5509 | | Endrin | Pimephales
prometas (3
cm) | BCFA |
0.00057 (T2) | a*,c,e,f,
k,l,n,
and mag-
nesium,
sulfates,
iron,
calcium | same as above | Lincer, et
al (1970),
AMIC-5509 | | Endrin | Palaemonetes
kadlakensis
(resistant) | BSA |
0.0028-0-0137
(T1) | a* | Bloassays were conducted with shrimp from three areas of intensive pesticide use and from an unexposed area. Previously exposed shrimp were from 1 to 25 times more resistant than unexposed shrimp. Both types of shrimp were also exposed in cages to waters of the contaminated areas. Susceptible shrimp suffered 66 percent more mortality than did resistant shrimp. The toxicity of the insecticides ranked in descending order was as follows: most foxic, Endrin, DDT, Methyl parathlon, Parathlon; medium foxicity, Guthion, Lindane. Toxaphene, Strobane; lease toxic Chlordane, Sevin, and Heptachior. | Nagvi, et al
(1970),
AMIC-5519 | | Endrin | Palaemonetes | BSA |
0.0009 (T1) | a* | same as above | Nagvi,et al | | Compound | Organism | - | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | | Reference | |----------|--|------------------|----------------------------|---|---|--|---| | | kadlakensis
(non-
resistant) | | | | | | (1970),
AMIC+5519 | | Endrin | Gambusia
affinis
(resistant) | l | | 0.5-2 (\$86-9) | | Resistant mosquitofish were exposed to Endrin for varying periods of time then fed to susceptible green sunfish. Other experimental variables were studied. Edibte portions of sunfish exposed to sublethal concentrations of Endrin for short periods of time contained up to 25 ppm of this chemical. The authors note that zero toterances have been established for Endrin and that those fish would be rendered unfit for human consumption in the event of Endrin splilage. | ANIC-5976 | | Endrin | Gambusia
affinis
(resistant) | t | | 24.9-1042
(whole body
residue) | | same as above | Ferguson, et
at (1957),
AMIC-5976 | | Endrin | Lenomis
cyanellus
(susceptible) | L | | greater than 1
(44 percent
K5) | | same as above | Ferguson, et
al (1967),
AMIC-5976 | | Endrin | Lenomis
cyanellus
(susceptible) | L | | 0.4-0.9 (whole
body residue) | | same as above | Ferguson, et
at (1967),
AMIC-5976 | | Endrin | Copeneds (Cyclops blouspidus, Cyclops varicans, Cyclops vernalls, Eucyclops agills, Macrocyclops albidus, Orthocyclops modestus) | FL
and
BSA | State
College,
Miss. | 0.08 (85
percent K2) | | The response of pesticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Belzoni and non-resistant species at State College. Copepods. Clams, snalis, and studge worms from Belzoni were considerably more toterant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animats | AMIC-5979 | ## of higher trophic levels. | Endrin | Conepods (Cyclons blouspidus, Cyclops varicans, Cyclops vernalis, Eucyclops agilis, Macrocyclops atbldus, Orthocyclons modestus) | FL
and
BSA | Retzoni,
Miss | 0.08 (20
percent K2) | | same as above | Naqvi, et al
(1969),
AMIC-5979 | |--------|--|------------------|----------------------------|--------------------------|--------|--|--------------------------------------| | Endrin | Tublifex
tubifex | FL
and
BSA | Belzoni,
Miss. | 6.0 (NTE) | | same as above | NagvI, etal
(1969),
AMIC-5979 | | Endrin | Physa gyrina | FL
and
BSA | State
College,
Miss. | 0.55 (K3) | | same as above | Nagvl,et at
(1969),
AMIC-5979 | | Endrin | Physa gyrina | FL
and
BSA | Relzoni,
Miss. | 0.55 (20
percent (K3) | | same as above | Nagvl, et at
(1969),
AMIC-5979 | | Endrin | Eupera
singteyi | FL
and
BSA | State
College,
Miss. | 0.075 (K3) | | same as above | Nagvi, et al
(1959),
AMIC-5979 | | Endrin | Lepomis
macrochirus | AZB | | 0.0001 (S81) | a*c,e | In a flow-through respirometer, the sublethal dosage caused increased oxygen consumption while the lethal dosage decreased it. Exercise had no effect on oxygen consumption but affected mucus production and hastened death. Symptomology of Endrin treatment included high excitability, loss of body color, increased opercular activity, convulsionary loss of equilibrium, short quiesclence periods, and body hemorrhage. Unexercised fish treated with 0.001 ppm Endrin began to die two weeks after treatment. | | | Endrin | Lepomis
macrochirus | BSA | | 0.001 (K1) | a*,c,e | Same as above | Huner, et al | | | | | | | | | (1967),AMIC-
5981 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta Variables, Controlled or Noted | Comments | Reference | |----------|--------------------------------------|------|-------------------------------------|---|--|--|-------------------------------------| | Endrin | Crassostrea
virginica | L | | 0.79 (T2) | | same as above | Davis, et al | | | (egqs) | | | | | | (1959),AMIC-
5990 | | Endrin | Crassostrea
virginica
(tarvae) | · · | | greater than
10.0 (T14) | | same as above | Davis, et
#1(1969),
AMIC-5999 | | Endrin | Lepomis
macrochirus | BSA | | 0.001-0.002
(K) | | Lab. tests were followed by test: In ponds to eradicate fish. Endrin toxicity persisted in one pond study (46 ppb) even after the pond had been empties and refilled twice. In ponds, Endrin toxicity varied widely. The author stated that this chemical was too dangerous for use as a pescicide except in extremely isolated instances. | (1969),AHIC-
108 | | Endrin | Lecomis
microlophus | BSA | | 0.001-0.002
(K) | а | same as above | McReynolds
(1969),
AHIC-108 | | Endrin | Lepomis
macrochirus | FP | Oriftwood
Farm Ponds,
Indiana | 0.004 (K2) | a | same as above | McReynolds
(1959),
AMIC-108 | | Endrin | Lepomis
macrochirus | FP | Oriftwood
Farm Ponds,
Indiana | 0.001 (K21) | a | same as above | McReynolds
(1969),
AMIC-108 | | Endrin | Lepomis
macrochirus | FP | Orlftwood
Farm Ponds,
Indiana | 0.046 (K1) | a | same as above | McReynolds
(1969),
AMIC-108 | | Endrin | Lepomis
macrochirus | BCFA | | 0.002 (71) | | Endrin absorbed by bluegitt in tethal and subtethal exposures was determined by electron capture gas chromatography. Absorbtion was measured at varying times up to 24 hr. The authors stated that a temporary decrease in absorption at the sublethal concentration level suggests the fish were metabolizing and excreting the Endrin. | | | Endrin | Lepomis
macrochirus | BCFA | | 0.0002 (SB1) | w.w | same as above | Bennett, et
at
(1970), AMIC-
195 | |----------------|--|--------------------|---|--|---|--
---| | Endrin | Lepomis
· macrochirus | BCFA | | 0.0002
(0.04-0.13 ppm
muscle
residue) | | same as above | Bennett, et
at (1970),
AMIC-195 | | Endrin | Lepomis
macrochirus | BCFA | | 0.0002
(0.60-0.70 ppm
gut residue) | •• | same as above | Bennett, et
al (1970),
AMIC-195 | | Endrin | Lepomis
macrochirus | BCFA | | 0.0002
(0.80-1.0 ppm
liver residue) | | same as above | Bennett, et
a% (1970),
AMIC-195 | | Endrin | Lepomis
macrochirus | BCFA | | 0.0002
(0.80-0.30 ppm
whole body
residue) | | same as above | Bennett, et
al (1970),
AHIC-195 | | Endrin | Cyprinodon
variegatus
(50-70 mm) | BSA | | 0.001 (K) | a*,
seawater | Sensitivity of three generations of sheepshead minnows to DDT and Endrin was determined. Sensitivity to DDT varied seasonality. Fish were bred in ponds 15m X 5m X 1.25m exposed to pesticides in aduaria, and survivors used for breeding. The results for DDT were not entirely clear due to the seasonal variability. Increased and decreased sensitivity were recorded for the F1 generation at different times, increased sensitivity for the F2, and decreased for the F3. The authors stated that incorporation of DDT in ova via lipids may have caused increased sensitivity. Endrin toxicity was decreased in the F1 and increased in the F2 generation. | Holland, et
al (1970),
AMIC-726 | | Epichlorhydrin | Rasbora
heteromorpha | BCFA
and
BSA | - | 36 (T2) | a*,c,e,f,
hard (HW)
or
SOFT(SW)
synthetic
ditution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the foxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. | Alabaster
(1969),
AMIC-5425 | | Compound | Organism | - | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Fxperiment,
Variables,
Controlled
or Noted | | Reference | |-----------------|---------------------------------------|-----|-------------------|---|--|--|--| | | | | | | | Testing the actual material as sold was found to be essential. | | | Eptam | Gammarus
fasclatus | BSA | | 23.0 (T4) | a* | Of the aquatic meed herbicides evaluated. Dictore was the most toxic. Daphnia was generally the most sensitive organism. All of the crustacea mere affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain tinks. | | | Eserine sulfate | Negaprion
brevirostris
(1-3 kg) | ASA | | 11 (NTE 3 hr) | 3,C,0 | Data from study of drug effects on young lemon sharks were treated mathematically to demonstrate applicability of classical rate theory to the study of chemical shark deterrents. Incapacitation (narcosis) was the primary parameter timed for effectiveness. This was usually quite rapid for the more effective drugs. | | | Essolvene | Carcinus
maenas | BSA | | 10-33 (T2) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyts, bure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, e1
al
(1971),AMIC-
7701 | | Essolvene | Cardium edule | BSA | | 33-100 (T2) | a*(contin-
uous aer-
ation, soa
water, and
daily
solution
renewal) | | Portmann, et
at
(1971),AMIC-
7701 | | Essotvene | Crangon
crangon | BSA | | 10 (T2) | a*(contin-
uous aer-
ation, sea-
water, and | same as above | Portmann, et
al (1971),
AMIC-7701 | | | | | | daily
solution
renewal) | | |---------------------|-------------------------|----|--------------------------|---|--------------------------------------| | Essolvene | Ostrea edulis BS | SA | 33-100 (T2) | uous aer- | ortmann, et
 (1971),
 | | Essolvene | Pandalus BS
montagui | SA | 10 (T2) | uous aer- at | ortmann, et
1 (1971),
4IC-7701 | | Esso solvent FG-155 | Crangon BS.
crangon | SA | 10-33 (T2) | uous aer- agents, solvent emulsiflers, pesticides, at | ortmann, et
! (1971),
HIC-7701 | | Ethanedios | Crangon 8S.
crangon | SA | greatér than
100 (T2) | uous aer- agents, solvent emuisifiers, pesticides, at | ortmann, et
i (1971),
MIC-7701 | | Ethanolamine | Crangon BS.
crangon | SA | greater than
100 (T2) | uous acr- | ortmann, et
1(1971),
MIC-7701 | | Compound | Organism. | Study | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |---------------|---------------------------------|--------------------|-------------------|---|--|--|---| | Ethano I | Betta
splendens | ι | | 2850 (\$B 6 hr) | a* | The effects of ethanol and bourbon on the addressive response of Siamese fighting fish were determined. Ethanol increased gill show (adgressiveness) and bourbon and bourbon congeners decreased it. The authors tentatively concluded that the delayed effect of the congener resulted from involvement of a different physiological mechanism and that this may be related to hangover effects in man. | Raynes, et
al
(1968),AHIC
5712 | | Ethion | Pashora
heteromorpha | ACFA
and
BSA | | 0.52 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn~
thetic
dilution
water, or
seawater
for:some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 1? orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was frue. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Ethion | Tublifex
tublifex | FL
and
BSA | Belzoni,
Miss. | 1.50 (NTE) | | The response of pesticide-resistant aduatic ordanisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Beizoni and non-resistant species at State College. Copeoods, clams, snails, and sludge worms from Beizoni were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic tevels. | ANIC-5979 | | Ethomeen S-25 | Rasbora
het eromorpha | BCFA
and
BSA | | 0.35 (T2,
hardwater) | as,c,e,f,
hard (Hw)
or soft
(SW) syn- | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the apposite was true. Testing the actual material as sold was found to be essentiat. | Alabaster
(1969),AMIC-
5425 | | | | | | thetic
dilution
water, or
seawater
for some
species | | | |--------------------|-------------------------------------|--------------------|-----------------------------|--|---|---| | Ethomeen S-25 | Rasbora
heteromorpha | BCFA
and
BSA |
0.68 (T2,
softwater) | as,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1959),AMIC-
5425 | | Ethylene phosphite | Pimephales -
promelas | BSA |
34.0 (74) | a*,d,e,o,
and Fe | Malathion and its hydrolysis products were evaluated with the finding that one such product (diethyl fumarate) was more toxic than Malathion to fathead minnows. Synergism occurred between
Malathion and two products of hydrolysis. Continuous exposure resulted in increased toxicity. | 8ender(1969),
— AMIC-3787 | | Ethyt parathion | Cardium edule | BSA |
3.3-10 (72) | as(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychiorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | | Ethyl parathion | Crangon
crangon | A28 |
0.003-0.01
(T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | <u>-</u> | Portmann, et
al (1971),
ANIC-7701 | | E-314 | Steelhead
trout
(fingerlings) | BSA |
22.5 (T4) | | Evaluation of 11 old dispersants resulted in a ranking for each and a recommendation for use according to the ranking. Ranking was based on toxicity and old dispersal effectiveness. Corexit 7764 appeared to have the least toxicity | (1969),AHIC-
3834 | | Compound | Organism | | fletd
Location | Toxicity, Active Ingredient, Ppm | Experiments Variables, Controlled or Noted | Comments | Reference | |-----------------|---------------------------------|--------------------|------------------------------------|----------------------------------|--|---|-----------------------------------| | | | | | | | with fair to good olf dispersion capability. | | | E-314 | Coho saimon
(fingertings) | BSA
in
situ | Hood Canal,
Hoodsport,
Wash, | 0.01 (K) | | same as above | Tracy, et al (1969), AMIC-3834 | | Fenac (Na sait) | Gammarus
fasclatus | ΒSA | | greater than
100.0 (T2) | a* | Of the aduatic weed herbicides evaluated, Dictone was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | Sanders
(1978),
AHIC-453 | | Fenac (Na sait) | Paleomontes
kadlakensis | BSA | | greater than
100.0 (T2) | a* | same as above | Sanders(1970)
AMIC-453 | | Fenac (Na sait) | Asellus
brevicaudus | BSA | | greater than 100.0(T2) | a* | same as above | Sanders (1970)
AHIC-453 | | Fenac (Na salt) | Orconectes
nals | BSA | | greater than
100-0 (T2) | a* | same as above | Sanders
(1978),AMIC+
453 | | Fenac (Na sait) | Danhnia magna | BSA | | greater than
100.0 (T2) | a₹ | same as above | Sanders
(1970), #MIC+
453 | | Fenac (Na salt) | Cyoridoosis
vidua | BSA | | greater than
100.0 (T2) | a* | same as above | Sanders
(1970),AMIC-
453 | | Fenac (Na sait) | Lenomls
macrochirus | RSA | | 19.0 (T2) | a‡ | same as above | Sanders
(1970),
AMIC-453 | | Fenoprop | Rasbo ra
heferomorpha | RCFA
and
BSA | | 37 (T2) | thetic
dilution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a | Alabaster
(1969),
AMIC-5425 | for some mixture of materials. Sometimes species pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | | | | | found to be essential. | | |----------------------------|--------------------------------------|-----|-------------------------------|------------|--|---| | Fentin acetate | Pandalus
montagui | BSA |
greater than 33
(T2) | uous aer- | One hundred-forty surface active agents, solvent emuisifiers, pesticides, polychlorinated biohenyls, pure inorganic, and organic chemicats were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Fenuron | Mercenaria
mercenaria
(eggs) | ι |
greater than
10.0 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life staces of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | Pavis, et
al(1969),
AMIC-5990 | | Fenuron | Mercenaria
mercenaria
(larvae) | L |
greater than
5.0 (T12) | | same as above | Davis, et
a1(1969),
AMIC-5993 | | Ferric chiorida | Carassius
auratus | ι |
5-10 (K4) | | Iron salts were most harmful immediately after dissolving, resulting in gill blockage (reversible), absorption in digestive tract, and iron precipitates in epithelium and renal fubules. | Ashlev
(1970),AMIC-
5436 | | Ferric sulfate | Carassius
auratus | L |
5-10 (K4) | | same as above | Ashley
(1970),
AMTC-5436 | | Ferrous chioride | Carassius
auratus | ι |
5-10 (K4) | | same as above | Ashley(1970),
AMIC-5436 | | Ferrous sulfate (as
Fe) | Acroneuria | BSA |
16 (T9) | a*,c,d,e,f | Ephemerella (mayfly) was the most sensitive aquatic insect of those studied, and copper the most broadly toxic metal. The authors suggest that | Warnick, et
al(1969),
AMIC-3767 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Varlables,
Controlled
or Noted | | Reference | |----------------------------|----------------------|------|-------------------|---|--|---|---| | | | | | | | aquatic insects may not be as sensitive to heavy metals as fish. | | | Ferrous sulfate (as
Fe) | Ephemerelia | BSA | | 0.32 (T4) | a*,c,d,e,f | same as above | Warnick.
etal (1969).
AMIC-3767 | | Ferrous sulfate (as
Fe) | Hydropsyche | BSA | | 16 (77) | a*,c,d,e,f | same as above | Warnick, et
al(1969),
AMIC-3767 | | Ferrous sulfate | Carassius
auratus | ι | | 5-10 (K4) | | Iron saits were most harmful immediately after dissolving, resulting in gill blockage (reversible), absorption in digestive tract, and iron precipitates in epithelium and renal tubules. | | | Finasol ESK | Crangon
crangon | RSA | | 100-330 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychtorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Finasol OSR2 | Crangon
crangon | BSA | | 3300 (T4) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann, et
al (1971),
AMIC-7701 | | Finaso1 SC | Crangon
crangon | BSA | | 33-100 (T2) | a*(continuous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann, et
al (1971),
AHIC-7701 | | Flock o.p. Fty dip | Pasbora | BCFA | | 0.73 (T2) | a*,c,e,1, | One hundred slxty-four | Alabaster, | | | heteromorpha | and
BSA | | | hard
(HH) or
soft (SH)
synthetic
dilution
water, or
seawater
for some
species | pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | (1969),AMIC-
5425 | |--------------------|-------------------------|--------------------|-----------|------|---
--|-----------------------------------| | Fluorescein sodium | Salmo
gairdneri | BSA |
1,372 | (14) | , a* | The dyes Rhodamine B and Fluorescein sodium were found to be relatively non-toxic in pom concentrations white antimycin was toxic at ppb levels. The author states that neither dye at field use concentrations should significantly influence the activity of Antimycin A against fish. | Marking
(1969),
AMIC-5729 | | Fluorescein sodium | Ictalurus
punctatus | BSA |
2,267 | (74) | a* | same as above | Marking
(1969),AMIC-
5729 | | Fluorescein sodium | tepomis
macrochirus | BSA |
3,433 | (T4) | * | same as above | Marking
(1969),AMIC-
5729 | | Fluorokiii | Rasbora
heteromorpha | 901 7 |
3,500 | (T2) | a*,c,e,f,
hard (HW)
or
SOFT(SW)
synthetic
dilution
water, or
seawater
for some
species | percentage of all components of a | Alabaster
(1969),
AMIC-5425 | | Fluoroklii | Salmo
gairdneri | BCFA
and
BSA |
1,800 | (12) | a*,c,e,f,
hard (HW)
or
SOFT(SW)
synthetic
dilution
water, or
seawater | same as above | Alabaster
(1969),
AMIC-5425 | | Compound | mzinepnO | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | al
Comments | Reference | |---------------|----------------------------------|--------------------|-------------------|---|---|--|--| | | | | | | for some
species | | | | Fluorokili | Platessa
vulgaris | BCFA
and
BSA | | 1,200 (T2) | a*,c,e,f,
hard (HW)
or
SOFT(SY)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Folizoii | Cardium edute | BSA | | 33-100 (T2) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, -polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | | Folizoii | Crangon
crangon | BS4 | | 330-1000 (T2) | as(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann, et
at
(1971),AHIC-
7701 | | Folpet | Brachydanio
rerio
(larvae) | ι | | 1.0 (T 30 min) | | Folpet, Difotatan, and Captan were found to be toxic to zebrafish larvae within 90 min. Difolatan was most toxic while Captan was least toxic. Effects observed were cessation of heartbeat and loss of olymentation. The authors recommended this as a sensitive, rapid bloassay for these and related compounds. | Abedi.et af
(1958).
AMIC-3717 | | Formal dehyde | Salmo
gairdneri | BCFA
and
BSA | | 50 (12) | a*,c,e,f,
hard (HW)
or soft | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a | Alabaster
(1969),
AMIC-5425 | | | | | | | (SW) synthetic cilution water, or seawater for some species | wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materiats. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | |----------------|----------------------|--------------------|------------------------|--------|---|---|---| | Foresidehyde | Salmo trutta | BCFA
and
BSA |
50 (T2) | | a*,c,e,f,
hard (HW)
or soft
(SW) synthe
tic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Formal dehyde | Crangon
crangon | AZB |
330-100 | 0 (T2) | as(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Formal dehy de | Platicthys
flesus | BSA |
100-330 | (12) | aw(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Formatin | Salmo
galrdneri | L |
200-400
4-6 hr) | (SB, | ľ | Caudat arterial blood samples were taken at selected time intervals and evaluated for acid-base balance and for gill, kidney, and liver function by measuring 02 consumption, total CO2, HCO3, C1(minus), Ca(2 plus), billrubin, whole blood pH, and Vitamin C deptetion. Formalin treatments seemed to be a more severe stress to rainbow gelscif ptele data and discussion are presented. | Wedemeyer
(1971),AMIC-
3287 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |-------------|--|--------------------|-------------------|---|--|---|-----------------------------------| | Formatin | Oncorhynchus
klsutch | ι | | 200-400 (SB,
4-6 hr) | 1 | same as above | Wedemeyer
(1971),AMIC-
3787 | | Forwal in | Trachinotus
carolinus
(juvenite) | BSA | | 69.1-74.9 (T4) | and
sulfate,
sodium,
calcium,
potassium,
magnesium, | was controlled at 10, 20, and 30 not and investigated as a variable. Accrittavin, formalin, and potassium permanganate were slightly more toxic at the highest salinity, while copper sulfate was slightly less toxic. These compounds are used as prophylactic bacterial | 81 (1971),
AMIC-5570 | | Formalin | Roccus
saxatilis
(fingerlings) | RSA | - | 18 (T4) | as,c,d,e,
f,p, and
iron | Striped bass fingerlings were apparently much more sensitive to therapeutic and herbicidal compounds that many freshwater fish. | Hellborn
(1969),
AMIC-5723 | | Formic scld | Carcinus
maenas | BSA | | 80-90 (T2) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | | Farmathion | Puntlus ticto | | | 0.165 (T4) | a,c,d,e,f | Of the pesticides investigated, the most toxic was Klofos followed in decreasing order by Sumithion, Malathion Formithion, Dimecron, Sevin, and BHC. The author cites the need for more selective pesticides nontoxic to fish or antagonistic agents for reducing fish toxicity. | | | Formothion | Rasbora
heteromorpha | BCFA
and
BSA | | 1.2 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic | One hundred sixty~four pesticides, wetting agents, and miscellaneous water politutants showed a wide range of toxicity spanning 12 order of magnitude. Knowing the toxicity and | Alabaster
(1969),
AMIC-5425 | | | | | | water, or
seawater
for some
species | formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | |------------|---------------------------------------|---|-------------|--
---|---| | Furtural | heteromorpha s | BCFA
and
BSA | 23 (12) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | F.O. 309-B | Steethead E
trout
(fingertings) | BSA | 65.0 (T4) | | Evaluation of 11 oil discersants resulted in a ranking for each and a recommendation for use according to the ranking. Ranking was based on toxicity and oil dispersal effectiveness. Corexis 7764 appeared to have the least toxicity with fair to good oil dispersion capability. | (1969) +
AMIC-3834 | | P.O. 300-B | (fingerlings) i | SA Hood Canal,
n Hoodsport,
itu Wash. | 4.0 (K) | | same as above | Tracy, et al
(1969),
AMIC-3834 | | Gamlen CW | Cardium edute E | 35A | 33-100 (T2) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, oure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
at (1971),
AMIC-7701 | | Gamlen CW | Pandatus 8
montagul | BSA | 10-33 (72) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution | same as above | Portmann, et
al (1971),
AMIC-7701 | dilution percentage of all components of a | Compound | ,
Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |------------|----------------------|-----|-------------------|---|--|---------------|--| | | | | | | renewal) | | | | Ga≖len D | Cardium edule | BSA | | 33 (72) | ar(continuous aeration, sea-
water, and daily solution renewal) | same as above | Portmann, e
al (1971),
ANIC-7701 | | Gamten D | Crangon
crangon | BSA | | 10 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | same as above | Portmann, e
a! (1971) .
AMIC-7701 | | Gamten D | Pandalus
montaqui | BSA | | 10 (T2) | a*(continuous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, e
a!
(1971),AMIC
7701 | | Gamlen DSR | Carcinus
maenas | BSA | | 10-33 (T2) | a*(continuous aer-
ation, soa-
water, and
daily
solution
renewal) | same as above | Portmann, e
al (1971),
AMIC-7701 | | Gamlen OSR | Cardlum edule | BSA | | 10-33 (T2) | a*(contin-
uous aor-
ation, sea-
water, and
dail7 | same as above | Portmann, e
al (1971),
AMIC-7701 | | | | | solution renewal) | | |-------------|---|----------------|---|---| | Gamlen OSR | Crangon BSA
crangon | 10 (T2) | a*(contin- same as above uous aer- ation, sea- wator, and daily solution renewal) | Portmann, et
al (1971),
AMIC-7701 | | Gamilen OSR | Ostrea edulls BSA | 15-55 (T2) | a*(continuous aeration, seauwater, and daily solution renewal) | Portmann, et
al (1971),
AMIC-7701 | | Gamien PBX | Crangon BSA
crangon | 330-1000 (T4) | a: (continuous aer-
ation, sea-
water, and
daily
solution
renewal) | Portmann, et
al (1971),
AMIC-7701 | | Gamien W8X | Crangon BSA
crangon | · 100-330 (T4) | aw(contin- uous aer- ation, sea- water, and daily solution renewal) | Portmann, et
al (1971),
AMIC-7701 | | Gamma BHC | Pasbora BCFA
heteromorpha and
BSA | 0.045 (T2) | a*,c,e,f, hard (HW) pesticides, wetting agents, and or SOFT(SW) synthetic dilution water, or seawater for some species pesticides, wetting agents, and miscellaneous water politutants showed a wide range of toxicity soanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was | Alabaster
(1969),
AMIC~5425 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | al
Comments | Reference | |------------------------------|--------------------------------------|--------------------|-------------------|---|--|---|---| | | | | | | | found to be essential. | | | Gesapax | Pandatus
montaqui | BSA | | 33 (T2) | as(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsiflers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, ef
al (1971),
AHIC-7701 | | Giobe terramycin pet
tabs | Roccus
saxatilis
(fingerlings) | BSA | | 178 (T4) | a*,c,d,e,
f,p, and
iron | Striped bass fingerlings were apparently much more sensitive to therapeutic and herbicidal compounds than many freshwater tish. | Wellborn
(1969),
AMIC-5723 | | Gloquat C | Crangon | AZA | | 100-300 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
ronewal) | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, e1
a1 (1971),
AMIC-7701 | | Gramoxone W (J.F. 1137) | Rasbora
heteromorpha | BCFA
and
BSA | | 17 (T2,
hardwater) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders | Alabaster
(1969),
AMIC-5425 | | Gramoxone W (J.F.
1137) | Rasbora
heteromorpha | BCFA
and
BSA | | 46 (T2,
softwater) | a*,c,e,f,
hard (HH)
or soft
(SH)
synthetic
ditution | same as above | Alabaster
(1969),
AMIC-5425 | | | | | | water, or
seawater
for some
species | | | |--------------------------|--------------------------------------|--------------------|----------------------------|--|--|---| | Gramoxone (J.F.
1341) | Rasbora
heteromorpha | BCFA
and
BSA |
570 (T2,
hardwater) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
ANIC-5425 | | Gramoxone (J.F.
1341) | Rasbora
heteromorpha | BCFA
and
BSA |
200 (T2,
softwater) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Griseofulvin | Mercenarla
mercenarla
(eggs) | Ĺ |
less than 0.25
(T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported.
Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced tarval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Griseofulvin
- | Mercenaria
mercenaria
(larvae) | ι |
less than 1.0
(T12) | •- | same as above | Davis, et
at(1969),
AMIC-5990 | | Gulf agent 1009 | Crangon
crangon | BSA |
330 (T4) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most | Portmann, et
al (1971),
AMIC-7701 | | Compound | Organism | _ | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments Variables, Controlled or Noted | | Reference | |----------|------------------------|-----|-------------------|---|--|---|-------------------------------------| | | | | | | renewal) | published data of this type deal with toxicity of chemicals to freshwater organisms. | | | Guthion | Ictalurus
punctatus | BSA | | 3.29 (T4) | a,
synthetic
testwater | Organochlorine insecticides were the most toxic compounds, organophosphates intermediate, carbamates the least toxic. Brown trout was the species most susceptible to organochlorines, coho salmon the most susceptible to carbamates, and goldfish were the least susceotible of all species. Safe concentrations established by bloassays with salmonids or centrarchids would tikely be safe for cyprinids and ictalurids. Safe levels for ictalurids or cyprinids would probably be hazardous for centrarchids and salmonids. The use of goldfish in bloassays was discouraged. | al(1970),
AMIC+5510 | | Guthion | Ictaturus
melas | BSA | | 3.50 (T4) | a,
synthetic
test water | same as above | Macek, et
at(1970),
AMIC-5510 | | Guthion | Carassius
auratus | BSA | | 4.27 (T4) | a,
synthetic
test water | same as above | Macek, et a
(1970),AMIC
5510 | | Guthion | Cyprinus
carpio | RSA | | 0.695 (T4) | a,
synthetic
test water | same as above | Macek, et
at(1970),
AMIC-5510 | | Guthion | Plmephates
prometas | BSA | | 0.295 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Guthlon | Lenomis
macrochirus | 8SA | •• | 0.022 (T4) | а.
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Guthion | tepomis
microlophus | BSA | | 0.052 (14) | a,
synthetic
test water | same as above | Macek, et
at(1970),
AMIC-5510 | | Guthion | Micropterus
salmoides | BSA | | 0.005 (74) | a,
synthetic
test water | same as above | Macek, et
at(1970),
AMIC-5510 | |---------|--|------------------|-------------------|-----------------------|-------------------------------|--|--------------------------------------| | Guthlon | Salmo
gairdneri | BSA | | 0.014 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AHIC-5513 | | Guthion | Salmo trutta | BSA | | 0.004 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Guthlon | Oncorhynchus
kisutch | BSA | | 0.017 (T4) | a,
synthetic
test water | same as above | Macek, et
at(1970),
AMIC-5510 | | Guthlon | Perca
flavescens | BSA | | 0.013 (74) | a,
synthetic
test water | same as abov e | Macek, et
al(1970),
AMIC-5510 | | GuthIon | Palaemonetes
kadlakensis
(resistant) | BSA | | 0.0044-0.0168
(T1) | a* | Bloassays were conducted with shrimp from three areas of intensive pesticide use and from an unexoosed area. Previously exposed shrimp were from 1 to 25 times more resistant than unexposed shrimp. Both types of shrimp were also exposed in cages to waters of the contaminated areas. Susceptible shrimp suffered 66 percent more mortality than did resistant shrimp. The toxicity of the insecticides ranked in descending order was as follows: most toxic, Endrin, DDT, Hethyl parathion, Parathlon; medium toxicity, Guthlon, Lindane, Toxaphene, Strobane; lease toxic Chiordane, Sevin, and Heptachion. | Nagvi, et at
(1970),
AMIC-5519 | | Guthlon | Palaemonetes
kadlakensis
(non-
resistant) | BSA | | 0.0089 (11) | a¥ | same as above | Nagvi, et al
(1970),
AMIC-5519 | | Guthion | Tubitex
tubitex | FL
and
BSA | Relzoni,
Hiss. | 1.00 (NTE) | | The response of pesticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant soecies were collected at Betzoni and non-resistant species at State College. Copepods, clams, snails, and sludge worms from Reizoni were considerably more tolerant to pesticides than the non-resistant | Nagvi, eta!
(1969),
AMIC-5979 | | Compound | Organism | | Fleld
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | | Reference | |--------------------|--------------------------------------|-----|-------------------|---|---|--|--| | | | | • | | | organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic tevels. | | | Guthlon | Mercenaria
mercenaria
(eggs) | ι | | 0.86 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Guthion | Mercenaria
mercenaria
(iarvae) | L | | 0.86 (T12) | | same as above | Davis, et al
(1969),AMIC- | | Guthion | Crassostrea
virginica
(eggs) | ι | | 0.62 (T2) | | same as above | Davis, et al
(1959), AMIC-
5990 | | Heptachtor epoxide | Brown
bullhead | FRL | Misc. states | 0.34 residue
(SB) | - - | The Bureau of Sport Fisheries continued its fish monitoring program by collecting 147 composite fish samples from 50 nationwide monitoring stations during the fall of 1969. Fish were analyzed for residues of 11 organochiorine insecticides, lipids, and PCB*s. | Henderson,
et at
(1971),
AMIC-1407 | | Heptachtor epoxide | Carp | FRL | Misc. states | 0.04 residue
(SB) | | same as above | Henderson, e ⁴
81 (1971),
AMIC-1407 | | Heptachlor epoxide | Channel
catfish | FRL | Misc. states | 0.03 residue
(SB) | | same as above | Henderson,
et al | | | | | | | | | | (1971),
AMIC-1407 | |--------------------|-----------------------------------|--------------------|--|--------------|-------------------------|---|---|--| | Heptachlor epoxide | Small mouth
buffalo | FRL | Misc. states | 0.16
(SB) | residue | | same as above | Henderson.
et al
(1971).
AMIC-1407 | | Heptachlor
epoxide | Falco
peregrinus
(immature) | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | | (whole | | Peregrine faicons, faicon crey, and other predator soecies were collected widely and analyzed for DDT, DDE, PCB, and a few other pesticides to a lesser degree. PCB and DDT were found to be widely dispersed globally. PCB was found to be a powerful inducer of hepatic enzymes that decrade oestradiol. Reductions in thickness of egg shells, eggshell weight, and water retention occurred. All affect hatching success. The authors state that the peregrine may be the first species entirpated by global contamination. | (1968),AMIC-
3844 | | Heptachtor epoxide | Faico
peregrinus
(adult) | F | Western U.S., Pacific Ocean, Panama, Mexico,and Antarctic | | -1.0 (whole
residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | Heptachlor | Glzzard shad | FRL | Misc. states | 0.45
(SB) | residue | | The Bureau of Sport Fisheries continued its fish monitoring program by cotlecting 147 composite fish samples from 50 nationwide monitoring stations during the fall of 1969. Fish were analyzed for residues of 11 organochiorine insecticides, lipids, and PCB**s. | Henderson,
etal (1971),
AMIC-1407 | | Heptachlor | Blue catfish | FRL | Misc. states | 0.22
(SB) | residue | | same as above | Henderson.
etal (1971).
AMIC-1487 | | Heptachlor | Rasbora
heteromorpha | BCFA
and
BSA | •• | 0.05 | (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a | Alabaster
(1969),
AMIC-5425 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |------------|---|-----|-------------------|---|---|---|---| | | | | | | for some
species | mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the ooposite was true. Testing the actual material as sold was found to be essential. | | | Mentachlor | Lenomis
cyanellus
(Resistant) | BSA | | 1.98 (T2) | a* | Green sunfish from Belzoni, Hiss. were resistant to Chtordane, Heptachior, Lindane, and Strobane, but not to Parathion. Golden shiners from the same location were resistant to Lindane and Strobane, tolerant to Chlordane and Heptachior, and susceptible to Parathion. Lack of resistance to Parathion indicated lack of agricultural usage of organophosphates in that area. Resistant fish were compared to susceptible ones collected at Starkville. | al(1970),
AMIC-5471 | | Heptachtor | Lenomis
cyanellus
(Susceptible) | BSA | | 0.07 (T2) | a* | same as above | Minchew, et
81(1970),
AMIC-5471 | | Heptachlor | Notemlgonus
crysoleucas
(Resistant) | 85A | | 2.34 (T2) | a* | same as above | Minchen,
etal (1 ^{c7} 0)
AMIC-5471 | | Heptachlor | Notemigonus
crysoleucas
(Susceptible) | BSA | | 0.49 (T2) | a* | same as above | Minchew,
etal (1978)
AMIC-5471 | | Heptachtor | Palaemonetes
kadlakensis
(resistant) | BSA | | 0.169-0.273
(T1) | a* | Bioassays were conducted with shrimp from three areas of intensive pesticide use and from an unexposed area. Previously exposed shrimp were from 1 to 25 times more resistant than unexposed shrimp. Both types of shrimp were also exposed in cages to waters of the contaminated areas. Susceptible shrimp suffered 66 percent more mortality than did resistant shrimp. The toxicity of the insecticides ranked in descending order was as follows: most toxic. Endrin, DDT, Methyl parathion, Parathion | | ## medium toxicity, Guthlon, Lindane, Toxaphene, Strobane: tease toxic Chlordane, Sevin, and Heptachlor. | Hestachlor | Palaemonetes
kadlakensis
(non-
resistant) | BSA |
0.0406 (T1) | a* | same as above | Nagvi, et al
(1970),
AMIC-5519 | |--------------|--|-----|------------------------------|-----------|---|--------------------------------------| | Heptachlor | Heteropheus-
tes fossilis | L |
1.0 (SB 2 hr,K
44 hr) | | Epidermal lesions of catfish barbels were moderate to severe after exposure noted. Barbel curling and inactivation were associated effects. | Konar
(1959),
AHIC-5725 | | Heptachlor | Amphipnous
cuchia | BSA |
2.0 (K3) | B,C,d,e,f | All bloassay animats were collected locally apparently near Muzaffarpur, Bihar, India. The bloassay consisted of a simple jar (8-liter) with dally solution renewal (except for plankton studies in which solutions were not renewed). A safe application rate of 0.813 lb/acre was suggested for survivat of most aquatic species. | Konar
(1970):
AHIC-448 | | Heptachlor | Anabus
testudineus | BSA |
0.5 (K3) | a,c,d,e,f | same as above | Konar
(1970),
AMIC-448 | | Heptachtor | Channa
punctatus
(fry) | 854 |
0.001 (K11) | a,c,d,e,1 | same as above | Konar
(1970),
AMIC~448 | | Heptachlor | Channa
punctatus
(adult) | BSA |
2.0 (K2) | a,c,d,e,f | same as above | Konar
(1970),
AMIC~448 | | Heptachtor | Esomus
danrica | BSA |
0.2 (K4) | a,c,d,e,f | same as above | Konar
(1970),
AMIC-448 | | Heptachion | Heteropneus-
tes fossilis
(fry) | BSA |
0.016 (K2) | a,c,d,e,f | same as above | Konar
(1970),AMIC-
448 | | · Heptachlor | Heteropneus-
tes fossilis
(adult) | BSA |
1.0 (K2) | a,c,d,e,1 | same as above | Konar (1976) .
ANIC-448 | | Compound | Vrqanism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |------------|--------------------------|-----|-------------------|---|---|---------------|------------------------------| | | | | | | | | AMIC-448 | | Heptachlor | Daphn i a | BSA | | 0.1 (K) | a,c,d,e,f | same as above | Konar
(1970),AMIC-
448 | | Heptachlor | Olaptomus | BSA | | 0.1 (K) | a,c,d,e,f | same as above | Konar
(1970),
AMIC-448 | | Heptachlor | Gastrotricha | BSA | | 0.1 (NT) | a,c,d,e,f | same as above | Konar
(1970),
AMIC-448 | | Heptachtor | Nauptius | BSA | | 0.1 (K) | a,c,d,e,f | same as above | Konar
(1970),
AMIC-448 | | Heptachlor | Pandorina | BSA | | 0.001 (K) | a,c,d,e,f | same as above | Konar
(1970),
AMIC-448 | | Heptachtor | Volvox | BSA | | 0.001 (K) | a,c,d,e,f | same as above | Konar
(1970),
AMIC-448 | | Heptachtor | Anisoptera
(nymphs) | BSA | | 0.01 (K5) | a,c,d,e,f | same as above | Konar
(1970),
AHIC-448 | | Heptachlor | Belostoma
Indica | BSA | | 2.0 (K3) | a,c,d,e,f | same as above | Konar
(1970),
AMIC-448 | | Heptachion | Cybister sp. | BSA | | 0.1 (K3) | a,c,d,e,f | same as above | Konar
(1970),
AMIC-448 | | Heptachion | Oytiscus sp.
(larvae) | BSA | | 0.05 (K2) | 8,C,d,e,1 | same as above | Konar
(1970),AMIC-
448 | | Heptachtor | Dytiscus so.
(adult) | BSA | | 0.1 (K3) | a,c,d,e,f | same as above | Konar
(1970),
AMIC-448 | | Heptachlor | Hydrophlius
sp• | BSA | | 0.08 (K3) | a,c,d,e,f | same as above | Konar(1978),
AMIC-448 | |------------|--------------------------------------|-------|-------------|------------|---------------|---------------|------------------------------| | Heptachior | Nepa sp. | BSA | | N.04 (K6) | a,c,d,e,f | same as above | Konar
(1970),
AMIC-448 | | Heptachlor | Notonecta sp. | BSA | | 0.006 (K2) | a,c,d,e,f | same as above | Konar
(1978),
AHIC-448 | | Heptach1or | Ranatra
filiformis | BSA | | 0.006 (K3) | a,c,d,e,f | same as above | Konar
(1970)
AMIC-448 | | Heptachlor | Sphaerodema
annulatum | BSA | | 0.007 (K3) | a,c,d,e,f | same as above | Konar
(1970),
AMIC-448 | | Heptachlor | Mystus -
vittatus | BSA | | 0.5 (K1) | a,c,d,e,f | same as above | Konar
(1970),
AMIC+448 | | Heptachion | Nandus nandus | : BSA | | 0.16 (K2) | a,c,d,e,f | same as above | Konar
(1978),
AMIC-448 | | Heptachlor | Puntius
sophore | BSA | | 0.1 (K1) | a,c,d,e,f | same as above | Konar
(1970),
AMIC-448 | | Heptachlor | Trichogaster
fasciatus
(young) | 8SA | | 0.04 (K1) | a,c,d,e,f | same as above | Konar
(1973),AMIC-
448 | | Heptachtor | Trichogaster
fasciatus
(adult) | BSA | | 0.3 (K3) | a,c,d,e,f | same as above | Konar
(1979),AMIC-
448 | | Heptachtor | Brachlonus | BSA | | 0.1 (NTE) | a, c, d, e, f | same as above | Konar
(1970),
AHIC-448 | | Heptachlor | Cerlodaphnla | BSA | | 0.1 (K) | a,c,d,e,1 | same as above | Konar
(1970).
AMIC-448 | | Heptachlor | Closterium | RSA | | 0.001 (K) | a,c,d,e,f | same as above |
Konar
(1970).
AHIC-448 | | Heptachlor | Cyclops | BSA | | 0.1 (K) | a,c,d,e,f | same as above | Konar
(1970),AMIC-
448 | | Heptachlor | Cypris | BSA | | 0.1 (K) | a, c, d, e, f | same as above | Konar
(1970), | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |----------------------------------|---------------------------------------|-----|-------------------------|---|--|---|-------------------------------| | deptachlor | Labeo rohita
(early
fingerling) | BSA | | 0.02 (K1) | a,c,d,e,f | same as above | Konar
(1970),AMIC- | | eptachtor | Labro rohita
(1ate
fingerling) | BSA | | 0.20 (K2) | a,c,d,e,f | same as above | Konar
(1970),AMIC | | fexach forobenzene | Angullia
rostrata | FRL | St. John,
N.R., Can. | 0.01 (residue) | | PCB"s were found in higher concentrations than organochtorine pesticides in all fish analyzed. The authors point out that PCB is less toxic in an acute sense than organochlorines, that little is known of subtethal PCB effects, and that more knowledge of PCB distribution and effects is needed. | Zitko
(1971),
AMIC-3715 | | exachlorobenzene | Esox niger | FRL | St. John,
N.B., Can. | 0.03 (residue) | | same as above | 711ko(1971)
Amic-3715 | | exach lorobenzene | Salmo salar | FRL | St. John.
N.B., Can. | 0.00Z
(residue) | | same as above | ZITHO(1971)
AMIC-3715 | | exach1orobenzene | Clupea
harengus | FRL | St. John,
N.B., Can. | 0.003-0.006
(residue) | | same as above | 71†ko
(1971),
AMIC-3715 | | e xachiorobenzen e | Scomber
scombrus | FRL | St. John,
N.B., Can. | 0.001
(residue) | | same as above | 71†ko
(1971).
AMIC-3715 | | exachiorodimethyi
uifone | Phormidium
ambiguum | t | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Conper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmentat | Offo(1970),
AMIC-892 | management. No practical environmental means were found. | Hexadecanot
(Praparat Alfol WV
10) | Copepods | BSA |
(NTE) | | The formulation was applied to the water surface at concentration levels to yield a more or less continuous monomolecular layer. Gerris and other surface-oriented aquatic insects as well as insect larvae that surface to breathe and hatch could not maintain themselves at the surface and therefore sank and suffocated. | Mann
(1971),AMIC-
3079 | |--|---------------------------------------|--------------------|-------------------|--|---|------------------------------------| | Hexadecanoi
(Praparat Alfoi WV
10) | Daphnla | BSA |
(NTE) | | same as above | Mann
(1971),AMIC-
3079 | | Hexadecanol
(Praparat Alfol WV
10) | Tubificids | BSA |
(NTE) | | same as above | Mann
(1971),AHIC-
3079 | | Hexadecanol
(Praparat Alfol HV
10) | Lebistes
reticulatus | BSA |
(NTE) | | same as above | Mann(1971),
AMIC-3079 | | Hexadecanol
(Praparat Alfol WV
10) | Salmo
galrdneri | BSA |
(NTE) | | same as above | Mann
(1971),AMIC-
3079 | | Hexadecanol
(Praparat Alfol WV
18) | Gerris | BSA |
(Suffocation) | | same as above | Hann
(1971), AMIC-
3079 | | Hillvale Fly dip | Rasbora
heteromorpha | BCFA
and
BSA |
2.1 (T1) | as,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster,
(1969),AMIC-
5425 | | Histamine phosphate | Negabrion
brevirostris
(1-3 kg) | BSA |
48 (NTE 2 hr) | a,c,e | Data from study of drug effects on young lemon sharks were treated mathematically to demonstrate applicability of classical rate theory to the study of chemical shark deterrents. | Baldridge
(1969),
AMIC-3832 | | Compound | Organism | | Fleld
Location | Toxicity, Active Ingredient, Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |---------------|-------------------------------------|-------------------|------------------------------------|----------------------------------|--|---|---| | | | | | | | Incappacitation (narcosis) was the primary parameter timed for effectiveness. This was usually quite rapid for the more effective drugs. | | | lobstone OSD | Crangon
crangon | BSA | | 1.0-3.3 (T2) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorqanic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann. et
al (1971),
AMIC-7781 | | doc SC 1780 | Crangon
crangon | BSA | | 330-1000 (T2) | a*(contin-
uous aer-
ation, sea
water, and
dail;
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC+7701 | | lol1-Chem 622 | Steelhead
trout
(fingerlings) | BSA | | 3.2 (14) | | Fvaluation of 11 oil dispersants resulted in a ranking for each and a recommendation for use according to the ranking. Ranking was based on toxicity and oil dispersal effectiveness. Corexit 7764 appeared to have the least toxicity with fair to good oil dispersion capability. | al(1969),
AHIC-3834 | | Holl-Chem 622 | Coho salmon
(fingerlings) | BSA
in
situ | Hood Canal,
Hoodsport,
Wash. | 0.1 (K) | | evoda sa emse | Tracy, et al
(1969),
AMIC-3834 | | doughtosol ve | Crangon
crangon | BSA | | 10-33 (T2) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater | Portmann, et
al (1971),
AMIC-7701 | ## organisms. | Hydrochłoric acid | Brook trout | L | | pH 3.5 (S84) | | Excessive mucin accumulated in the gill region of exposed trout. No evidence of enhanced hempolesis or increased red cell destruction was found. The authors concluded that one of the reasons for trout deaths in acid water is that compensatory erythropolesis does not occur or is not rapidly initiated. | Vaala, et al
(1969),AMIC-
5709 | |-------------------|---|------|---|----------------------|----------------------|---|--------------------------------------| | mydrochtoric acid | Brachycentrus
americanus
(larvae and
nymphs) | BCFA | | pH 1.21-1.8
(T4) | a,c,d,e | Aquatic insects generally were tolerant of acid conditions for at least one week. The organisms died at phyalues below those normally found in streams. The authors point but that ecological factors in streams may cause different results. Research on long-term effects on molting,
growth, reproduction, and survival was recommended. | Bell, et al
(1969),
AMIC-5988 | | Hydrochloric acid | Ephemerelia
subvaria
(larvae and
nymphs) | BCFA | • | рн
4.35-5.05(T4) | a _f c,d,e | same as above | Rell, et al
(1969),
AMIC-5988 | | Mydrochtoric acid | Hydropsyche
betten!
(Tarvae and
nymphs) | BCFA | | pH 3-3.35 (T4) | a,c,d,e | same as above | Bell, et al
(1959),
AMIC-5988 | | Hydrochloric acid | Taenlopteryx
maura (larvae
and nymphs) | BCFA | | pH 3.07-3.48
(T4) | a,c,d,e | same as above | Bell, et al
(1969),
AMIC-5988 | | Hydrochloric acid | Boyeria
vinosa
(larvae and
nymphs) | BCFA | | pH 3.18~3.35
(T4) | 8,C,d,e | same as above | Bell, et al
(1969),
AMIC-5988 | | Hydrochloric acid | Acroneuria
lycorias
(larvae and
nymphs) | BCFA | | pH 2.90-3.74
(T4) | a,c,d,e | same as above | Bell, et al
(1969),
AMIC-5988 | | Hydrochloric acid | Stenonema
rubrum
(larvae and
nymphs) | BCFA | | pH 3-15-3-41
(T4) | a,c,d,e | same as above | Bell, et al
(1969),
ANIC-5988 | | Hydrochtoric acid | Ophlogomphus rupinsutensis | BCFA | | pH 3.31-3.71
(T4) | a,c,d,e | same as above | Bell, et al
(1969), | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |-------------------|---|-------|-------------------|---|--|--|---| | | (larvae and | | | | | | AMIC-5988 | | Hydrochloric acid | Isogenus
frontalls
(larvae and
nymphs) | 8CFA | | pH 3.20-4.04
(T4) | a,c,d,e | same as above | Bell, et al
(1969),
AMIC-5988 | | Hydrochtoric acid | Pteronarcys
dorsata
(1arvae and
(sadgmyn | BCFA | | pH 3.90-4.73
(T4) | a,c,d,e | same as above | Bell, et al
(1969),
AMIC-5988 | | Hydrochloric acid | Carcinus
maenas | RSA | •• | 240 (T2) | etion con | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten manine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to frashwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Hydrochloric acid | Crangon
crangon | BSA | | 260 (T2) | a*(continuous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et al (1971), AMIC-7701 | | Hydrogen sulfide | Esox fuclus
(eggs) | BSCFA | | 0.030-0.032
(T4) | 8,6,0 | Laboratory studies were designed to test the effect of hydrogen sulfide on pike eggs and sac fry and the effect of oxygen concentrations on hydrogen sulfide toxicity. Eggs subjected to hydrogen sulfide produced a higher percentage of sac fry with anatomical malformations. Sac fry hatched from eggs held at the higher hydrogen sulfide concentrations were smaller than the controls. Sac fry subjected to hydrogen sulfide showed decreased growth rates at the higher concentrations. The level of dissolved oxygen was significant only in relation | al (1970),
AMIC-5516 | to mortality of sac fry. Experiments with pike eggs indicate that hydrogen suffide and oxygen acted independently in causing mortality. | Hydrogen sulflde | Esox lucius
(sac fry) | BSCFA | | 0.009-0.026
(T4) | a,c,e | same as above | Adelman, et
al (1970),
AMIC-5516 | |------------------------------------|---------------------------------|-------|----------------------|---------------------|---------------------|--|--| | Hydrothol 191 | Lepomis
microlophus | FP . | Tishomingo,
Okia. | 0.03-0.3
(SB14) | | Of a number of organs inspected, the gills, liver, and testes of redear sunfish were apparently the most severely affected. Systemic blood dyscrasia was also noted at U.5 ppm Hydrothol in histopathological sections. | Eller
(1969),
AMIC-5459 | | Hydrothol 191 | Gammarus
fasclatus | BSA | | 0.48 (T4) | a♥ | Of the aquatic weed herbicides evaluated, Dictone was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration tevels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | Sanders
(1970),
AMIC-453 | | Hydroxyacetic acid (glycolic acid) | Phormidium
ambiguum | t | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as atgicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming atgae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chioramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Ofto (1970),
AMIC-892 | | H2S1F6 (as
FLUORTOE) | Gammarus
pseudo-
limmaeus | BCF | | 0.08-0.13
(NTE) | a‡,c,d,e,f
,r*,S | Chloramine toxicity was very carefully studied using weight reduction and reproduction over 15 to 21 week exposure periods. Loss of weight and ability to reproduce were observed at concentrations less than that observed for toxicity. The lowest chloramine concentration having no significant effect was less than 3.4 ppb for Gammarus and 0.017 ppb for the fathead minnow. | Arthur, et
al (1971),
AMIC-3290 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Pom | Experiment:
Variables,
Controlled
or Noted | Comments | Reference | |--|------------------------|--------------------|-------------------|---|--|---|---| | H2S1F6 (as
H2S1F6 (as | Pimephales
prometas | BCF | | 0.6-0.13 (NT) | a*,c,d,e,f
,ſ*,S | same as above | Arthuret at
(1971),
AMIC-3290 | | īaa | Wolffia
papulifera | L | | 700 (K) | Huntor's
medium
diluted
1:5 | All compounds were harmful to duckweed to some degree. Decreased populations were noted at non-lethal concentrations and some compounds (Malathion and 2,4-D) caused teratogenic effects at concentrations as low as 1 pps | Worthley, et
al (1971),
AMIC-3233 | | Ialine brushweed
Killer | Salmo
gairdneri | BCFA
and
BSA | | 27 (T2) | a*,c,e,f,
hard
(HH) or
soft (SH)
synthetic
ditution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),AMIC+
5425 | | Inline drass growth
regulator (Regulox) | | BCFA
and
BSA | | 56 (T2) | a*.c.e,f,
hard (HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AHIC-5425 | | Ialine vergicide
meedkiller D | Salmo
gairdneri | BCFA
and
BSA | | 3.3 (12) | a*,c,e,f,
hard(HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),AMIC~
5425 | | Iodoacetic acid | Phormidium
ambiguum | t | 0.5-10.0 (100 percent growth Inhibited 14) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations
investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Otto (1970),
AMIC-892 | |-----------------|-------------------------|--------------------|--|--|--|-----------------------------------| | Toxynll Na | Rashora
heteromorpha | BCFA
and
BSA |
68 (T2,
hardwater) | a*,c,e,f,
hard
(HW) or
soff (SW)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water poliutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1959),
AMIC-5425 | | Ioxynii Na | Rasbora
heteromorpha | BCFA
and
BSA |
3.3 (T2,
soffwater) | a*,c,e,f,
hard
(HH) or
soft (SH)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | IPC | Gammarus
fasciatus | BSA |
19.0 (T4) | a* | Of the aquatic weed herbicides evatuated, Dictone was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration tevels of herbicides than indicated by | Sanders
(1970),
AMIC-453 | | Compound | *Organism | | Fleld
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference ' | |----------|-------------------------------------|----|---|---|---|---|-----------------------------------| | | | | | | | the TL sub 50 values. All of the animals represent important food chain links. | | | Iron | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | muscle | | Fish collected from an effluent plue of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nicket. Sliver, barium, lithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of pollutants on marine organisms. | Stableton
(1968),
AMIC-5980 | | Iron | Panal abnax
clathnatus | FĦ | Catalina
Island, Cal. | 32 (dorsal
muscle
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Iron | Paratabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cat. | muscle | | same as above | Stableton
(1968);
AMIC-5980 | | Iron | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 43 (ventra)
muscle
residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Iron | Paratabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Iron | Paratabrax
clathratus | FĦ | Catatina
Island, Cal. | 122 (gonads
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Iron | Paratabrax
ctathratus
(gravId | FH | Catalina
Island, Cal. | 110
(gonads
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | | females) | | • | | | | | |---|--------------------------|--------------------|---|----------------------------|---|-----------------------------------|-----------------------------------| | Tron | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Iron | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 205 (liver
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Iron | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | 72 (Integument
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Iron | Paralabrax
clathratus | FM | Catailna
Island, Cal. | 72 (Integument residue) | | same as above | Stapleton
(1968).
AMIC-5980 | | Iron | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapteton
(1968),
AMIC-5980 | | Iron | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 640 (heart
residue) | | same as above | Stableton
(1968),
AMIC~5980 | | Iron | Paralabrak
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | 120 (eyebali
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Iron | Paratabrax
clathratus | FM | Catailna
Island, Cal. | 165 (eyeball
residue) | | same as above | Stapleton
(1968),
AMIC-5930 | | Iso-propyl 2,4,dinitro-6-sec-bu tylphenyl carbonate | Rasbora
heteromorpha | BCFA
and
BSA | | 0.024 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
forsome
species | percentage of all components of a | Alabaster
(1959),
AMIC-5425 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |----------------------------|-------------------------------------|-------------------|------------------------------------|---|---|---|-------------------------------------| | I.C.I. Summer sheep
dip | Rasbora
heteromorpha | , 0 | | 4.1 (72) | a*,c,e,f, hard (HW) or soft (SW) synthetic dilution water, or seawater for some species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster,
(1959), AMIC-
5425 | | Jansotv-60 | Pimephales
prometas | BSA | | approx. 56.0
(T4) | c,d,e,f | Toxicity of six oil spill dispersants was determined along with 800 values. Pond water was used as dituent and oil was included in the experiment. Oil markedly reduced toxicity of all dispersants. Data are given as "most probable" 96-hr TL sub m. | 71(11ch
(1969),
AMIC-2909 | | Jansolv-60 | Pimephales
prometas | 8SA | | approx. 7.5
(MSC) | c,d,e,f | same as above | 71111ch
(1959),AMIC-
2909 | | Jansotv-60 | Biochemical
oxygen
demand | t | | 350,000 | c,d,e,f | same as above | Zillich
(1969).AMIC-
2909 | | Jan-Solv-60 | Strethead
trout
(fingerlings) | BSA | | 35.5 (T4) | | Evaluation of 11 oit dispersants resulted in a ranking for each and a recommendation for use according to the ranking. Ranking was based on toxicity and oit dispersal effectiveness. Corexit 7764 appeared to have the least toxicity with fair to good oit dispersion capability. | Tracy, ef
al(1969),
AMIC-3834 | | Jan-Solv-60 | Coho salmon
(fingerlings) | BSA
in
situ | Hood Canal,
Hoodsport,
Wash. | o.8 (K) | | same as above | Tracy, et al (1969), AMIC-3834 | | Jugione
| Saimo
gairdneri | BSA | | 0.0382 (14) | c | Bloassays were conducted at 12 C. The toxicity of Judione to rainbow trout and bluegills was not aftered | | significantly in waters of different temperature or hardness. Standard (pH 7.4) and buffered (pH 9.0) solutions of Juglone aged for one week effectively killed rainbow trout although approximately three times as much Juglone was required at the higher ph. Juglone is ea; ily reduced to less toxic components by factors in the natural environment. However, Juglone is sufficiently persistent to eliminate target fish. | Juglone | Esox lucius | BSA | | 0.0271 (T4) | c | same as above | Marking
(1970):
AMIC-5517 | |----------|--------------------------------------|--------------|-------------------|-------------|------------------------------|---|----------------------------------| | Jugl one | Carassius
auratus | BSA | | 0.080 (T4) | c | same as above | Marking
(1970),
AMIC-5517 | | Jugl one | Cyprinus
carbio | BSA | | 0.088 (T4) | c | same as above | Marking
(1970),
AMIC-5517 | | Jug1 one | Catostomus
commersoni | BSA | | 0.060 (14) | c | same as above | Marking
(1970),
AMIC-5517 | | Jugl one | Ictalurus
melas | BSA | | 0.0757 (T4) | c | same as above | Marking
(1970),
AMIC+5517 | | Juglane | Ictalurus
punctatus | 9 5 A | ** | 0.0367 (T4) | c | same as above | Marking
(1970),
AHIC-5517 | | Jug! one | Lecomis
cyanelius | BSA | | 0.0469 (T4) | c | same as above | Marking
(1970),
AMIC-5517 | | Juglone | tepomis
macrochirus | BSA | | 0.0429 (T4) | c | same as above | Marking
(1970),
AMIC-5517 | | Karmex | Poccus
saxatilis
(fingerlings) | BSA | | 3.0 (T4) | a*,c,d,e,f
,p and
iron | Striped bass fingerlings were apparently much more sensitive to therapeutic and herbicidal compounds than many freshwater fish. | Wellborn
(1969),
AHIC-5723 | | Kelthane | Tublfex
tublfex | FL
and | Reizoni,
Hiss. | 0.50 (NTE) | •• | The response of pesticide-resistant aquatic organisms to | Nagvi, et al
(1969), | | Compound | Organism | | Fletd
Location | Toxicity, Active Ingredient, Ppm | Experiments
Variables,
Controlled
or Noted | | Reference | |--|-----------------------------------|-------|-------------------|----------------------------------|---|---|--| | | | 8 S A | | | | various pesticides was compared to the resonnse of non-resistant species. Pesticide-resistant species were collected at Belzoni and non-resistant species at State College. Comepods, clams, snalls, and studge worms from Belzoni were considerably more toterant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic levels. | AMIC-5979 | | Ketoendrin | Anacystls
nldufans | L | | 0.5-1.0 (growth
inhibited) | a*,c*,r
SM | Metabolic products of Aldrin, Dieldrin, and Endrin can be as toxic as the parent compounds, as shown by OD measurement. | Batterton,
81 (1971),
AMIC-1471 | | Ketoendrin | Agmenellum
quadrup-
licatum | ι | | NTE | a*,c*,r
SM | same as above | Batterton,
et al(1971)
AMIC-1471 | | Klofos | Puntlus ticto | | | 0.00017 (T4) | a.c,d,e,f | Of the pesticides investigated, the most toxic was Kiofos followed in decreasing order by Sumithion, Maiathion. Formithion, Dimecron, Sevin, and 8HC. The author cites the need for more selective pesticides nontoxic to fish or antagonistic agents for reducing fish toxicity. | | | LAS | Pimephales
prometas | BCFA | | 3.5 (T4) | a*,e | LAS acted synergistically with parathion to cause less survivat of fatheds but had an indeterminate effect with DDT and no synergistic effect with Endrin. | Solon, et a
(1969),
AMIC-3785 | | Lauryl ether sulfate
(plus ethylene
oxide) | Cardlum edule | BSA | | 24 (12) | | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorqanic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deat with toxicity of chemicals to freshwater | Portmann, e
al
(1971),AMIC
7701 | ## organisms. | Lauryl ether sulfate
(plus ethylene
oxide) | Crangon
crangon | BSA |
greater than100
(T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann, et
a! (1971),
AHIC-7701 | |--|----------------------|-----|--------------------------------|---|--|--| | Lauryl ether sulfate
(olus ethylene
oxide) | Carcinus
maenas | BSA |
greater than100
(T2) | aw(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | | Portmann, et
a! (1971),
ANIC-7701 | | Lauryl ether sulfate
(plus ethylene
oxide) | Pandalus
wontagul | BSA |
greater than100
(T2) | a*(contin-
uous aer-
ation, sea-
water, and
iaily
solution
renewal) | | Portmann,et
al (1971),
AMIC-7701 | | Lead arsenate | Fish (not specified) | •• |
greater than
10-100 (K) | | Approximate toxicities of numerous pesticides commonly used in Aritain were summarized. An excettent brief, general discussion of toxicity testing is also present. | Maxdesley-
Thomas (1971)
AMIC-1056 | | Lead carbonate | Carassius
auratus | ι |
110 (T7) | В уС | In addition to toxicity data, conditioned avoidance response was studied at sublethal concentrations. The lowest concentration of metal resulting in significant impairment was; arsenic, 0.10: lead, 0.07: mercury, 0.003: and selenium, 0.25. Deleterious effects occurred at metal concentrations approximately similar to potable water standards. | Heir, eta!
(1970),
AMIC-739 | | Lead nitrate (as
lead) | Cardlum edule | BSA |
greater than
500 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most | Portmann, et
al (1971),
AMIC-7701 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |---------------------------|-----------------------------------|-----|---------------------|---|--|--|---| | | | | | | renewal) | published data of this type deal with
toxicity of chemicals to freshwater
organisms. | | | Lead nitrate (as
tead) | Pandalus
montagui | BSA | | 375 (T2) | ar(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | | Portmann, et
al (1971),
AMIC-7701 | | Lead nitrate | Carassius
auratus | ι | | 6.6 (T7) | a,c | In addition to toxicity data, conditioned avoidance response was studied at sublethal concentrations. The lowest concentration of metal resulting in significant impairment was: arsenic. 0.10: lead, 0.07: mercury, 0.003: and selenium, 0.25. Deleterious effects occurred at metal concentrations approximately similar to potable water standards. | Weir, et at
(1970),
AMIC-739 | | Lead sulfate (as
Pb) | Acroneurla | BSA | | 64 (T14) | a¥,c,d,e,f | Ephemerelia (mayfly) was the most sensitive aquatic insect of those studied, and copper the most broadly toxic metal. The authors suggest that aquatic insects may not be as sensitive to heavy metals as fish. | Warnick, et
al(1969),
AMIC-3767 | | Lead sulfate (as
Pb) | Ephemerella | BSA | | 16 (17) | a*,c,d,e,f | same as above | Warnick, et
al(1969),
AMIC-3767 | | Lead sulfate (as
Pb) | Hydropsyche | BSA | | 32 (17) | a*,c,d,e,f | same as above | Warnick, et
at(1969),
AMIC-3767 | | Lead | Coregonus
clupeafor ¤is | FL | Moose Lake,
Can, | 0.5 (residue) | | Concentrations of 13 toxic elements in dressed fish from heavily industrialized and non-industrialized areas were determined. Only mercury exceeded regulatory limits, and concentrations of most elements were essentially the same in fish from both | Uthe, et
al
(1971),
AHIC-3819 | ## areas. | Lead | Coregonus
clupeaformis | FL | Lake
Ontarlo,
Can. | 0.5 (residue) | | same as above | Uthe, et al
(1971),
AMIC+3819 | |------|---------------------------|----|---|-----------------------------------|----|---|--------------------------------------| | Lead | Esox luclus | FL | Hoose Lake,
Can. | 0.5 (residue) | | same as above | Uthe, et a!
{1971},44IC-
3819 | | Lead | Esox lucius | FL | Lake St.
Plerre, Can. | 0.5 (residue) | | same as above | Uthe, et
AL(1971),
AMIC+3819 | | Lead | Esox lucius | FL | Lake Erie,
Can. | 0.5 (residue) | | same as above | Uthe, et al
(1971).AMIC-
3819 | | Lead | Osmerus
mordax | FL | Lake Erle,
Can. | 0.5 (residue) | | same as above | Uthe, et al
(1971), AMIC-
3819 | | Lead | Perca
11 avescens | FL | Lake Erie,
Can. | 0.5 (residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | L⊕ad | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | muscle | | Fish collected from an effluent pipe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nickel. Silver, barium, lithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of poliutants on marine organisms. | Stableton
(1968),
AMIC-5960 | | Lead | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 1.3 (dorsal
muscle
residue) | ~- | same as above | Stapleton
(1968),
AMIC-5980 | | Lead | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |-------------|---------------------|----|----------------------|---|---|---------------|-----------| | | | | | | | | | | .ead | Paralahrax | FM | Catalina | 1.3 (ventral | | same as above | Stapletor | | | clathratus | | Island, Cat. | muscle | | | (1968), | | | | | | residue) | | | AMIC-59A | | e ad | Paralabrax | FM | Scattergood | 2.3 (gonads | | same as above | Stapleto | | | clathratus | | Steam Plant, | residue) | | | (1968), | | | | | Los Angeles,
Cal. | | | | AMIC-598 | | • ad | Paralabrax | FM | Catalina | 2.2 (gonads | | same as above | Stapleto | | . 4 80 | clathratus | | Island, Cal. | | | 38ME 63 6004E | (1968), | | | 0,77711 2703 | | 13.0 | | | | AMIC-598 | | e ad | Paratabrax | FH | Catalina | 1.3 | | same as above | Stapleto | | | clathratus | | Island, Cal. | (gonads | | | (1968), | | | (gravid
females) | | | residue) | | | AMIC-598 | | e ad | Paralabrax | FM | Scattergood | | | same as above | Stapleto | | | clathratus | | Steam Plant, | residue) | | | (1968), | | | | | Los Angeles.
Cal. | | | | AMIC-598 | | .ead | Paralabrax | FM | Catalina | 1.5 (liver | | same as above | Stapleto | | | clathratus | | Island, Cal. | residue) | | | (1964), | | | | | | | | | AMIC-598 | | .e ad | Paralahrax | FM | | 1 (Integument | ~~ | same as above | Stapleto | | | clathratus | | Steam Plant, | residue) | | | (1968), | | | | | Los Angeles,
Cal. | | | | AMIC-598 | | ea d | Paral abrax | FH | Catalina | 1.6 (Integument | | same as above | Stapleto | | | clathratus | | Island, Cal. | residue) | | | (1968). | | | | | | | | | AMIC-598 | | e ad | Paralabrax | FM | Scattergood | | | same as above | Stanleto | | | clathratus | | Steam Plant, | Lezignej | | | (1968), | | | | | Los Angeles,
Cal. | | | | AMIC-598 | | €ad | Paralabrax | FM | Catalina | 0.9 (heart | | same as above | Stapleto | | | clathratus | | Island, Cal. | residue) | | | (1968), | | | | | | | | | ANIC+59 | • | Lead | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | 2.2 (eyeball
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | |---------------------|---|-----|---|---------------------------|----|--|---| | Lead | Paral ahrax
cl athratus | FM | Catalina
Island, Cal. | 3.4 (eyeball
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Lindane (gamma 8HC) | Fish (not
specified) | | | greater than 0.01-1.0 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excettent brief, general discussion of toxicity testing is also present. | Mawdesley-Th
omas (1971
AMIC-1056 | | Lindane | Lepomis
cyanellus
(Resistant) | BSA | | 1.93 (T2) | a* | Green sunfish from Beizoni, Miss. were resistant to Chlordane, Heptachlor, Lindane, and Strobane, but not to Parathion. Golden shiners from the same location were resistant to Lindane and Strobane, tolerant to Chlordane and Heptachlor, and susceptible to Parathion. Lack of resistance to Parathion indicated lack of agricultural usage of organochosphates in that area. Resistant fish were compared to susceptible ones collected at Starkville. | al(1970),
AMIC-5471 | | Lindane | Lepomls
cyanelius
(Susceptible) | BSA | | 0.05 (T2) | a♥ | same as above | Minchew, et
al(1970),
AMIC-5471 | | Lindane | Notemigonus
crysoleucas
(Pesistant) | BSA | | 3.14 (72) | a◆ | same as above | Minchew, et
af(1970),
AMIC-5471 | | Lindane | Notemigonus
crysoleucas
(Susceptible) | BSA | | 0.15 (T2) | a♥ | same as above | Minchews et
at(1970),
AMIC-5471 | | ·Lindane | Ictalurus
punctatus | BSA | | D.O44 (T4) | | Organochlorine Insecticides were the most toxic compounds, organochosphates intermediate, carbamates the least toxic. Grown trout was the species most susceptible to organochlorines, coho salmon the most susceptible to carbamates, and goldfish were the least susceptible of all species. Safe concentrations established by bloassays with salmonids or | a1(1970),
AMIC-5510 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------|--------------------------|-------|-------------------|---|---|---|-------------------------------------| | | | | | | , | centrarchids would likely be safe for cyprinids and ictaturids. Safe levels for ictaturids or cyprinids would probably be hazardous for centrarchids and salmonids. The use of goldfish in bloassays was discouraged. | | | Lindane | Ictaturus
melas | 854 | | D.064 (T4) | a.
synthetic
test water | same as above | Macek, etal
(1970),
AMIC-5510 | | Lindane | Carassius
auratus | 8 S A | | 0.131 (T4) | a;
synthetic
test water | same as above | Macek, etal
(1970),
AMIC-5510 | | Lindane | Cynrinus
carpio | ASA | | 0.090 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Lindane | Pimephales
promelas | RSA | | 0.087 (T4) | a,
synthetic
test water | same as above | Macek, eta
(1970),
AMIC-5510 | | Lindane | Lepomis
macrochirus | BSA | | 0.068 (T4) | a,
synthetic
test water | same as above | Macek, eta
(1970),
AMIC~5510 | | Lindane | Lepomis
microlophus | BSA | | 0.083 (T4) | a;
synthetic
test water | same as above | Macek, eta
(1970),
AMIC~5510 | | Lindane | Micropterus
salmoides | BSA | | 0.032 (T4) | a,
synthetic
test water | same as above | Macek.et a
(1970).
AMIC~5510 | | Lindane | Salmo
galrdner1 | BSA | | 0.027 (T4) | a,
synthetic
test water | same as above | Macek, eta:
(1970),
AMIC-5510 | | Lindane | Salmo trutta | BSA | | 0.002 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Lindane | Oncorhynchus
kisutch | BSA | | 0.041 (T4) | a,
synthetic
test water | same as above | Macek.et a
(1970),
AMIC-5510 | | Lindane | Perca
flavescens | BSA | - | 0.068 (T4) | a,
synthetic
test water | same as above | Macek, etal
(1970),
AMIC-5510 | |-----------
--|------------------|----------------------------|----------------------|-------------------------------|--|--------------------------------------| | Lindane | Pataemonetes
kadiakensis
(resistant) | BSA | | 0.014-0.0373
(T1) | g* | Bioassays were conducted with shrimp from three areas of intensive pesticide use and from an unexposed area. Previously exposed shrimp were from 1 to 25 times more resistant than unexposed shrimp. Both types of shrimp were also exposed in cages to waters of the contaminated areas. Susceptible shrimp suffered 66 percent more mortality than did resistant shrimp. The toxicity of the insecticides ranked in descending order was as follows: most toxic, Endrin, DDT, Methyl parathion, Parathion: medium toxicity, Guthion, Lindane, Toxanhene, Strobane: lease toxic Chiordane, Sevin, and Heptachtor. | | | Lindane | Palaemonetes
kadlakensis
(non-
resistant) | BSA | | 0.0051 (T1) | a* | same as above | Nagvi, et al
(1970),
AMIC-5519 | | L I ndane | Horone
saxatitis
(fingerlings) | BSA | | 0.4 (T4) | a,c,d,e,f, | All compounds were investigated because of their probable usage in hatchery production of white bass. Compounds that can be used at recommended concentrations were Aquathol, Casaron, Lindane, and Terramycin concentrate. Those that should not be used were Acrifiavine, Bayluscide, Malachite green oxalate, and Malathion. | Weilborn
(1971),
AMIC-5571 | | Lindane | Conecods (Cyctops bicuspidus, Cyctops varicans, Cyctops vernatis, Eucyctops agitis, Macrocyclops albidus, Orthocyctops modestus) | FL
and
BSA | State
College,
Miss. | 0.60 (K2) | | The response of pesticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Belzoni and non-resistant species at State College. Copepods, clams, snalls, and studge worms from Belzoni were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic levels. | ANIC-5979 | | Co#00un1 | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |----------|---|--------------------------|-------------------|---|--|--|--| | Llndane | Conends (Cyclons bleuspidus, Cyclops varicans, Cyclops vernalls, Eucyclops aqills, Macrocyclops albidus, Orthocyclops modestus) | FL
and
BSA | Retzonl,
Miss | 0.60 (87
percent K2) | | same as above | Nagvi, et al
(1969).
AMIC-5979 | | Lindane | Tubifex
tubifex | F L
and
BSA | Retzoni,
Miss. | 4.0 (NTE) | | same as above | Nadvi, et
at(1969),
AMIC-5979 | | Lindane | Mercenarla
mercenarla
(eggs) | ι | | greater than
10.0 (T2) | | The effect of 52 nesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control tha would not have serious effect on shellfish. | | | Lindane | Mercenaria
mercenaria
(larvae) | ι | | greafer than
10.0 (712) | | same as above | Davis, et
al(1969),
AMIC-5990 | | Lindane | Crassostrea
virginica
(eggs) | t | | 9.1 (72) | | same as above | Davis, et al
(1969),AMIC-
5990 | | Lindane | Gamhusla
affinis
(femate, 4.3 | BSA | | 0.13 (T4) | a,c,d,
e,f,i,
(Honolulu | The five fish species are commonly found in streams and estuaries in semi-tropical areas. G. affinis was | Nunogawa, е
а1 (1970),
АМІС-6567 | | ➣ | |---| | ı | | N | | œ | | 7 | | | cm, 1.9 g) | | | | tap
Water) | the most tolerant. Varied sensitivity to the toxicants were found. K. sandvicensis was the most sensitive fish studied. The standard method procedure was followed. | | |------------------------------|---|-------|---|--------------------|--|---|---| | Lindane | Lebistes
reticulatus
(maie, 1.8
cm, 0.2 g) | BSA | | 0.05 (T4) | a,c,d,
e,f,1,
(Honolulu
tap
water) | same as above | Nunogawa, et
al (1970),
AMIC-6567 | | Lindane | Tilapia mossambica (3.4 cm, 1.3 G) | BSA | | 0.06 (T4) | a,c,d,e,f,
(Honolulu
tap water) | | Nunogawa, et
al (1970),
AMIC-6567 | | Lindane | Kuhlia
sandvicensis
(4.3 cm, | BSA | | о.оц (тц) | a,c,d,e,f, | | Nunogawa, et
al (1970),
AMIC-6567 | | Lindane | 1.5 G) Stolephorus purpurea (3.6 cm, 0.4 G) | BSA | | 0.00h
(T 12 hr) | a,c,d,e,f,
salt water | | Nunogawa, et
al (1970),
AMIC-6567 | | Linear alkylate
sultonate | Pimephates
prometas | BCFA | | 4.2-4.5 (T4) | sodium,
potassium,
sulfate,
beryllium, | Acute and chronic toxicity studies resulted in a laboratory fish production index for fathead minnow. Lethality of LAS to newly hatched fry was the most critical factor with no effect at 0.6 ppm on spawning eqg production, or hatchability at this concentration. A fungus infection of mature males occurred and was controlled by means of antibiotics. No accumulative mortality occurred. The application factor was calculated to be between 14 and 28 percent. The concentration of 0.63 ppm was determined to be the maximum acceptable concentration of LAS for fatheads. | Pickering,
et al(1970),
AMIC-65 | | Linear alkyläte
sulfonate | Pimephales
prometas | BCFCH | · | 0.63 (NTE) | a*,c,d,f*, i,j,n, calclum, magnesium, sodium, potassium, sulfate, berylllum, strontium, iron, boron, barium, aiuminum, zinc, | | Pickering,
etal(1970),
AMIC-65 | | Compound | Organism | | field
Location | Toxicity, Active Ingredient, Ppm | Experiments
Variables,
Controlled
or Noted | | Reference | |--------------|-------------------------|--------------------|-------------------|----------------------------------|---|---|---| | | | | | | copper, | | | | Linuron | Fish (not
specified) | | | greater than
10-100 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mawdesley-
Tñomas(1971)
AHIC-1056 | | Lirostanol | Rasbora
heteromorpha | BCFA
and
BSA | | 0.044 (T2) | a*,c,e,f,
hard (HW)
or
SOFT(SW)
synthetic
dilution
water, or
seawater
for some
species | percentage of all components of a | Alabaster
(1969),
AHIC-5425 | | Llssanot IPA | Crangon
crangon | BSA | | 1000-3300 (T2) | as(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann, et
al (1971),
AMIC-7701 | | Lissagoi NH | Crangon
crangon | A28 | | 330-1000 (72) | as(continuous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann, et
al (1971),
AMIC-7701 | | Lissacoi NX | Rasbora
heferomorpha | BCFA
and
BSA | | 3.6 (12) | a*.c.e.f.
hard (HH)
or
SOFT(SH)
synthetic | One hundred sixty-tour pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and | Alabaster
(1969),
AMIC-5425 | | | | | |
dilution
water, or
seawater
for some
species | percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | |-------------|----------------------------|--|------------------------------------|--|---|---| | Lissapol NX | Crangon
crangon | BSA | 1000-3300 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, dure inorqanic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
ANIC-7701 | | Lithium | Paralabrax
clathratus | FM Scattergood
Steam Plant
Los Angeles
Cal | | | Fish collected from an effluent pipe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normat sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nickel. Silver, barlum, lithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of poliutants on marine organisms. | | | Lithium | Paralabrax 1
clathratus | FM Catalina
Island, Cal | 6.2 (dorsal
muscle
residue) | | same as above | Stapleton
(1958),
AMIC-5980 | | Lithium | Paralabrax I
clathratus | FM Scattergood
Steam Plant,
Los Angeles,
Cal. | | •• | same as above | Stap1eton
(1958),
AMIC-5980 | | Lithium | Paralabrax f
clathratus | FM Catalina
Island, Cal | 5.6 (ventral
muscle
RESIDUE) | | same as above | Stapleton
(1968),
AMIC-5980 | | Lithium | Paralabrax f
clathratus | FM Scattergood
Steam Plant; | 8.6 (gonads
, residue) | | same as above | Stapteton
(1968), | | Compound | Organism | | Fietd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables. Controlled or Noted | Comments | Raference | |----------------|---|----|---|---|---|---------------|-----------------------------------| | | | | Los Angeles,
Cal. | | | | AMIC-5980 | | Lithium | Paralabrax
clathratus | FH | Catalina
Tsland, Cal. | 8.4 (gonads
residue) | | same as above | Stapleton
(1959),
AMIC-5980 | | Lithium | Paralabrax
clathratus
(gravId
femates) | FM | Catalina
Island, Cal. | 7.7
(gonads
residue) | | same as above | Stapleton
(1969),
AMIC-5980 | | Lithium | Paralabrax
clathratus | FĦ | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | .ithium | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 7.3 (liver residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | .Ithlum | Paralahrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | 6.8 (Integument residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | .lthlum | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 7.7 (integument residue) | | same as above | Stanteton
(1968),
AMIC-5980 | | lthlu m | Paratabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapfeton
(1968),
AMIC-5980 | | .ithlum | Paratabrax
clathratus | FM | Catatina
Island, Cal. | 8.5 (heart
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Ithlum | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | 580 (eyebali
residue) | | same as above | Stapleton
(1968),
ANIC-5980 | | .ithium | Paralabrax
clathratus | FH | Catatina
Istand, Cat. | 124 (eyeball
residue) | | same as above | Stapleton
(1968), | | | | | | | | AMIC-5988 | |-------------|-------------------------|--------------------|-----------------------------|--|---|---| | Lubro! APNS | Cardium edule | BSA |
10-33 (T2) | | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated bibhenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Lubro! APNS | Crangon
crangon | BSA |
33-100 (T2) | a*(contin-
uous acr-
ation, sea
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | tubref L | Rasbora
heteromorpha | BCFA
and
BSA |
16 (T2,
hardwater) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AHIC-5425 | | tubroi t | Pasbora
heteromorpha | BCFA
and
BSA |
12.5 (T2,
softwater) | a*.c,e,f,
hard (HH)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Magic Power | Pimephales
promelas | BSA |
14.0 (T4) | c,d,e,f | Toxicity of six oil spill dispersants was determined along with BDD values. Pond water was used as dituent and oil was included in the experiment. Oil markedly reduced toxicity of all dispersants. Data are | Z1111ch
(1969),AMIC
2909 | | Compound | Ordanism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments Variables, Controlled or Noted | Comments | Peference | |-------------|------------------------------|-----|---|---|--|---|-----------------------------------| | | | | | | | given as "most probable" 96-hr TL sub m. | | | Magic Power | Pimephales
prometas | BSA | | 2.7 (MSC) | c,d,e,f | same as above | 71111ch
(1959),AMIC-
2909 | | Magic Power | Blochemical
oxygen demand | L | | 880,000 | c,d,e,f | same as above | 71111ch
(1969),
AMIC-2909 | | Hagnes Ium | Paratabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | Fish collected from an effluent pipe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nickel. Silver, harium, lithium, and lead showed the least differences. The author concluded that trace element analysis of fissues could be used to determine the effect of pollutants on marine organisms. | | | Magneslu≋ | Paralabrax
clathratus | FM |
Catailna
Island, Cale | 2190 (dorsa)
muscle
residue) | | same as above | Stapteton
(1958),
AMIC-5980 | | Magnes I un | Paral abrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Magnes I um | Paralahrax
clathratus | FH | Catalina
Island, Cat. | 2190(ventral
muscle
residue) | | same as above | Stapleton
(1958),
AMIC-5980 | | Hagneslu≡ | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | 1010 (gonads
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Magneslum | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 2420 (gonads
residue) | | | Staoleton
(1968),
AMIC-5980 | |-----------------|---|--------------------|---|-----------------------------|--|--|-----------------------------------| | Magnesium | Paralabrax
clathratus
(gravid
temales) | FH | Catalina
Island, Cal. | 1420
(qonads
residue) | | | Stanleton
(1968),
AMIC-5980 | | Magnes I un | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stableton
(1958),
AMIC-5980 | | Hagnes I um | Paralabrax
clathratus | FM | Catatina
Island, Cal. | 1040(liver
residue) | , | 30 | Stapleton
(1968),
AMIC-5993 | | Magnesium | Paratabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Staoleton
(1968),
AMIC-5980 | | Hagnes Lun | Paralabrax
clathratus | FM | Catatina
Island, Cale | 840 (Integument
residue) | | 30 | Staoleton
(1964),
AMIC-5980 | | Magnes I um | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angetes,
Cal. | | | same as above | Stapleton
(1958),
AMIC-5980 | | Magnes i um | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 950 (heart
residue) | | | Stapleton
(1958),
AMIC-5980 | | Magnesium | Paral abrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cat. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Magnes Lum | Paralabrax
clathratus | FM | Catalina
Island, Cal- | 1470(eyeball
residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Malachite green | Rasbora
heteromorpha | BCFA
and
BSA | | 0.45 (T1,
hardwater) | a*,c,e,f,
hard (HH)
or soft
(SH)
synthetic
ditution
water, | One hundred sixty-four pesticides, wetting agents, and miscellaneous water poliutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy | Alabaster(19
69),
AMIC-5425 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |-----------------|-------------------------|--------------------|-------------------|---|--|--|----------------------------------| | | | | | | or seawater
for some
species | predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | | Malachite green | Rasbora
heteromorpha | BCFA
and
BSA | | 0.08 (T1,
softwater) | a*,c,e,f,h
ard (HW)
or soft
(SW)
synthetic
dilution
water,
orseawater
for some
species | | Alabaster
(1969),AMIC
5425 | | Halachite green | Salmo
gairdneri | BCFA
and
BSA | | 0.09 (T2.
hardwater) | a*,c,e,f,
hard
(HW) or
soft (SW)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),AMIC
5425 | | dalachite green | Pasbora
heteromorpha | BCFA
and
BSA | | 0.17 (T1,
hardwafer) | a*,c.e,f, hard(HW) or soft (SW) synthetic dilution water, or seawate for some species | same as above | Alabaster
(1969),AHIC
5425 | | Malachite green | Rasbora
heteromorpha | BCFA
and
BSA | | 0.14 (T1,
softwater) | a*,c,e,f,
hard(HW)
or soft
(SW)
synthetic
dilution | same as above | Alabaster
(1969),AMIC
5425 | | | | | • | | water,
or seawater
for some
species | - | | |-----------------|--------------------------------------|-------|---------------|--------------------------|---|--|--| | Matachite green | Morone
saxatllis
(fingerlings) | BSA | • | 0.3 (71) | a,c,d,e,f, | All compounds were investigated because of their probable usage in hatchery production of white bass. Compounds that can be used at recommended concentrations were Aduathot, Casaron, Lindane, and Terramycin concentrate. Those that should not be used were Acriffavine, Bayluscide, Matachite green oxalate, and Matathion. | Wellborn
(1971),
AMIC-5571 | | Malathion | Fish (not
specified) | | | greater than 0.1~1.0 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mandesley-
Thomas
(1971),AMIC-
1056 | | Malathlon | Lepomis
macrochirus | RCFCH | 1 | 0.028 (K54) | a,c,d,e,f,
conduo-
tivity | Rivegills were exposed to seven concentrations of Malathion from 0.00125 to 0.08 ppm. Fish spawned under the test conditions and the effects were noted in all life stages. Reproduction and early fry survival were unaffected by the 0.0074 ppm concentration that crippled adult fish over several months. A "maximum acceptable toxicant concentration" was calculated. | | | Malathion | Lepomis
macrochirus | всғсн | l | 0.066 (K16) | a,c,d,e,f,
conduc-
tivity | same as above | Eaton
(1970),
AMIC~1312 | | Malathlon | tepomis
macrochirus | BCFCH | ı | 0.089-0.131
(T4) | a,c,d,e,f,
conduc-
tivity | same as above | Eaton
(1970),
AMIC-1312 | | Malathlon | Satvetinus
tontinatis
(1.15 g) | BCFA | | 130.0 (T4) | as,c,d,
e,f,1,0,
sulfate,
copper,
manganese,
iron, and
chromium | Four insectleides were evaluated on four fish species at two body weights. Standard method bloassay procedures were followed. Symptomotogy was also reported. Generally, toxicity was significantly different at the two body weights, i.e., more toxic at the lower body weight, except for Malathion. Well-defined experimental conditions were said to result in truer measurement of | AL (1971) .
AMIC-1812 | | Compound | 0rqanism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | | |------------|--------------------------------------|------|-------------------|---|---|---|-------------------------------------|--| | | | | | tax1city. | | | | | | fatathion | Salvelinus
fontinalis
(2-13 g) | BCFA | | 120.0 (T4) | a*,c,d,
e,f,i,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et
AL(1971),
AHIC-1812 | | | la lathion | Salmo clarki
(0.33 g) | BCFA | | 0-15 (T4) | as,c,d,
e,f,i,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et al
(1971),
AMIC-1812 | | | leiethion | Salmo clarki
(1.25 g) | BCFA | | 0.20 (T4) | as,c,d,
e,f,1,o,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et al
(1971),
AMIC-1812 | | | fatathion | Salmo
gairdneri
(0.41 q) | BCFA | - | 0.12 (T4) | as,c,d,
e,f,1,c,
sulfate,
coppor,
manganese,
iron, and
chromium | same as above | Post, et al
(1971),
AMIC-1812 | | | falathion | Oncorhynchus
kisutch (1.70
g) | | | 0.265 (T4) | a*,c,d,
e,f,1,e,
sulfate,
copper,
manganese,
iron, and
chromium | same as above | Post, et at
(1971),
AMIC-1812 | | | Matathion | Cyprinus
carpio | L | | 0.010 (SB) | | This study was conducted to determine whether components of tissues from various fish would interfere with GLC determinations for Matathion. Good | Ragab (1968)
AMIC-3728 | | recovery (80-96 percent) was obtained with best recovery from skin, flesh, and gills. Recovery was less successful in liver, brain, and blood. The author recommends the GLC procedure as simpler than the use of activated charcoat. | | | | | | THAN THE USE OF SCITABLES CHARCOSTS | | |-----------|----------------------------
--------------------|-----------------|---|---|-----------------------------------| | Metathion | Catostonus
commerson i | ı |
0.010 (SR) | | same as above | Ragab
(1958),
AMIC-3728 | | Malathion | Perca
flavescens | L |
0.010 (SR) | | same as above | Ragab
(1968),
AMIC-3728 | | Malathlon | Esox niger | L |
0.010 (58) | | same as above | Ragab
(1958),
AMIC-3728 | | Helathlon | Notemigonus
crysoleucas | L |
0.010 (SB) | | same as above | Ragab
(1968).
AMIC-3728 | | Matathlon | Pimephales
promelas | BSA |
16.0 (74) | aw,d,e,o,
and Fe | Malathion and its hydrolysis products were evaluated with the finding that one such product (diethyl fumarate) was more toxic than Malathion to fathead minnows. Synergism occurred between Malathion and two products of hydrolysis. Continuous exposure resulted in increased toxicity. | Bender
(1969),AMIC-
3787 | | Malathion | Pimephales
promelas | BCFA |
11.0 (T14) | a*,d,e,o,
and Fe | same as above | Bender
(1959),AMIC-
3787 | | Matathion | Puntlus ticto | |
0.0074 (T4) | a,c,d,e,f | Of the pesticides investigated, the most toxic was Klofos followed in decreasing order by Sumithion, Malathion, Formithion, Dimecron, Sevin, and RHC. The author cites the need for more selective pesticides nontoxic to fish or antagonistic agents for reducing fish toxicity. | Bhatla
(1971),AMIC-
5423 | | Malathion | Rasbora
heteromorpha | BCFA
and
BSA |
8 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or | One hundred sixty-four pesticides, wetting agents, and miscellaneous water collutants showed a wide range of toxicity scanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy | Alabaster
(1969),
AMIC-5425 | | Compound | Orqanism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |-----------|------------------------|-----|-------------------|---|---|--|-------------------------------------| | | | | | | seawater
for some
species | predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opnosite was true. Testing the actual material as sold was found to be essential. | | | Matathion | Ictalurus
punctatus | BSA | | 8.97 (T4) | | Organochtorine insecticides were the most toxic compounds, organochosphates intermediate, carbamates the least toxic. Brown trout was the socies most susceptible to organochtorines, coho salmon the most susceptible to carbamates, and goldfish were the least susceptible of all species. Safe concentrations established by bloassays with salmonids or centrarchids would tikely be safe for cyorinids and ictaiurids. Safe levels for ictaiurids or cyprilids would probably be hazardous for centrarchids and salmonids. The use of goldfish in bloassays was discouraged. | (1970);
: AMIC-5510 | | Malathion | Ictaturus
metas | ASA | | 12.90 (14) | a,
synthetic
testwater | same as above | Macek, et
al(1970),
AMIC-5510 | | Matathlon | Carassius
auratus | BSA | | 10.70 (T4) | a,
synthetic
test water | same as above | Macek,et al
(1970),
AMIC-5510 | | Matathlon | Cyprinus
carpio | BSA | | 6.59 (14) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Malathion | Pimeohales
prometas | BSA | | 8.65 (T4) | a,
synthetic
test water | same as above | Macek,et at
(1970),
AMIC-5510 | | Malathion | Lepomis
macrochirus | BSA | | 0.103 (T4) | a,
synthetic
test water | same as above | Macek,et al
(1970),
AMIC-5510 | | Majathlon | Lepomis
microiophus | BSA | | 0.170 (T4) | a.
synthetic | same as above | Macek, et at (1970), | | | | | | | test water | | AHIC-5510 | |-----------|-------------------------------------|-----|-------|-----------------------|-------------------------------|--|--------------------------------------| | Malathion | Micropterus
salmoides | BSA | | 0.285 (T4) | a,
synthetic
test water | same as above | Macek, et al
(1970),
AMIC-5510 | | Malathion | Salmo
gairdneri | BSA | | 0.170 (74) | a,
synthetic
test water | same as above | Macek, etal
(1970),
AMIC-5510 | | Malathion | Salmo trutta | BSA | | 0.208 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Malathion | Oncorhynchus
kisutch | 85A | | 0.101 (T4) | a,
synthetic
test water | same as above | Macek, et al
(1971),
AMIC-5510 | | Malathion | Perca
flavescens | 854 | | 0.263 (T4) | a,
synthetic
test water | same as above | Macek, etal
(1970),
AMIC-5510 | | Malathion | Morone
saxatlis
(fingerlings) | BSA | | 0.24 (T4) | a,c,d,e,f, | All compounds were investigated because of their probable usage in hatchery production of white bass. Commounds that can be used at recommended concentrations were Aquathol, Casaron, Lindane, and Terramycin concentrate. Those that should not be used were Accifiavine, Bayluscide, Halachite green oxalate, and Halathion. | Wellborn
(1971),
AMTC-5571 | | Malathion | Cyprinus
carpio | L | | 5 (SB4) | | Matathion residues in carp occurred primarity in the liver and flesh with lesser amounts in the brain, blood, and gills. Retention time was relatively brief with most of the residue passing on or being metabolized within 1-2 days. Metabolism in the fish foregut, degradation biochemically, and lack of uptake due to low permeability were cited as possible explanations for the results obtained. Lack of persistence in fish counted with slow hydrolysis in the environment seem to indicate that this compound has desirable characteristics regarding safety to humans. | Bender(1959),
AMIC~5731 | | Hatathion | Cyprinus
carpio | L | | 2.6-65.6
(residue) | | same as above | Pender (1969),
AMIC-5731 | | Malathion | Copepods | FL | State | 0.025 (K2) | | The response of | Nagvi, et al | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |-----------|--|------------------|-------------------|---|---|--|--------------------------------------| | | (Cyclops blousnidus, Cyclops varicans, Cyclops vernalis, Eucyclops agilis, Macrocyclops albidus, Orthocyclops modestus) | and
BSA | College,
Miss. | | | pesticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Reizoni and non-resistant species at State College. Copepods, clams, snalls, and sludge worms from Beizoni were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic levels. | (1969).
ANIC-5979 | | Malathion | Conepods (Cyclops bleuspidus, Cyclops varicans, Cyclons vernalls, Fucyclops aqilis, Macrocyclops albidus, Orthocyclops modestus) | FL
and
RSA | Reizoni,
Miss | 0.025 (13
percent K2) | | same as above | Nagvl, et al
(1969),
AMIC-5979 | | Maiathion | Tublifex
tublifex | FL
and
BSA | Reizoni,
Miss. | 3.0 (NTE) | | same as above | Nagvl, et
at(1969),
AMIC-5979 | | Hatathion | Crassostrea
virginica
(eggs) | ι | | 9.07 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also
reported. Most of the compounds affected development more than survival. Some, however, drastically reduced tarval growth. The authors point put the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on | | ## shellfish. | Halathion | Crassostrea
virginica | ι |
2.66 (T14) | | same as above | Davis, et ai | |-------------|--------------------------|-----|------------------------------------|--|---|--| | | (larvae) | | | | | (1969),AMIC+
5990 | | Malathion | Cardium edule | BSA |
3.3-10 (T2) | ation, soa- | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Ma!athion | Crangon
crangon | BSA |
0.33-1.0 (T2) | a*(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Malathion | Wolffia
papulifera | L |
100 (K) | Hunter's
medium
diluted
1:5 | All compounds were harmful to duckweed to some degree. Decreased populations were noted at non-lethal concentrations and some compounds (Malathion and 2,4-D) caused teratogenic effects at concentrations as low as 1 ppm | Worthley, et al (1971), AMIC-3233 | | Maleic acid | Pimephales
promelas | BSA |
5.0 (T4) | a•,d,e,o,
and Fe | Malathion and its hydrolysis products were evaluated with the finding that one such product (diethy) fumarate) was more toxic than Malathion to fathead minnows. Synergism occurred between Malathion and two oroducts of hydrolysis. Continuous exposure resulted in increased toxicity. | Bender
(1969),AMIC-
3787 | | Hanazon | Fish (not
specified) | |
greater than
100-1000 (K) . | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mawdesley-
Thomas(1971)
AMIC-1056 | | Mancozeb | Fish (not specified) | |
greater than
1.0-10.0 (K) | | same as above | Mawdesley-
Thomas(1971),
AMIC-1056 | | Haneb | Fish (not
specified) | |
greater than 0.1-1.0 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mawdestey-
Thomas
(1971),AMIC-
1056 | | Haneb | Agonus | BSA |
0.33-1.0 (T2) | a* | One hundred-forty surface active | Portmann, et | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |-----------|---------------------------|-----|---------------------|---|---|--|---| | | cataphractus | | | | ation, sea | agents, solvent emulsiflers, pesticides, polychlorinated birhenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | a! (1971),
AMIC-7701 | | Maneb | Asterlas
rubens | BSA | | 33-100 (72) | aw(contin-
uous, aer-
ation, sea
water, and
daily
solution
renewal) | | Portmann, et
al (1971),
AMIC-7701 | | Haneb | Cardium edule | BSA | | 100-330 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann. et
al (1974),
AMIC-7701 | | Haneb | Crangon
crangon | BSA | | 3.3-10 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | <u>-</u> | Portmann, et
al (1971).
AMIC-7701 | | Manganese | Coregonus
clubeaformis | FL | Moose Lake,
Can. | 0.7 (residue) | | Concentrations of 13 toxic elements in dressed fish from heavily industrialized and non-industrialized areas were determined. Only mercury exceeded regulatory limits, and concentrations of most elements were essentially the same in fish from both areas. | Uthe, et
AL(1971),
AMIC-3819 | | Nanganese | Caregonus | FL | Lake | 0.7 (residue) | ~ - | same aș above | Uthe, etat | | | clupeaformis | | Ontario,
Can. | | | | (1971),
AMIC-3819 | |-----------|---------------------------|----|---|-----------------------------------|---|---|-------------------------------------| | Manganese | Esox luclus | FL | Moose Lake,
Can. | 3.0 (residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Manganese | Esox lucius | FL | Lake St.
Pierre, Can. | 3.2 (residue) | | same as above | Uthe, et
AL(1971),
AMIC-3819 | | Manganese | Esox luclus | FL | Lake Erie,
Can. | 0.9 (residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Hanganese | Osmerus
mordax | FL | take Erie.
Can. | 0.02 (residue) | ` | same as above | Uthe, et al
(1971),AMIC-
3819 | | Manganese | Perca
flavescens | FL | Lake Eria,
Can. | 0.21 (residue) | | same as above | Uthe, et a!
(1971),AMIC-
3819 | | Manganese | Paral abrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | muscle | | Fish collected from an effluent pipe of a steam plant and from offshore waters of Catalina Istand were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nickel. Silver, barlum, lithlum, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of pollutants on marine organisms. | Stapleton
(1968),
AMIC-5980 | | Manganese | Paralabrax
clathratus | FĦ | Catalina
Island, Cal. | 0.6 (dorsat
muscie
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Hanganese | Paralabrax
clathratus | FĦ | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Hanganese | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 0.5 (ventra)
muscle | | same as above | Stableton
(1968), | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Peference | |-----------|---|----|---|---|---|---------------|-----------------------------------| | | | | | residuel | | | AMIC-5980 | | Manganese | Paratabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cat. | | | same as above | Stableton
(1968),
AMIC-5987 | | Manganèse | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 1.7 (gonads
residue) | | same as above | Stanleton
(1968),
AMIC-5980 | | Manganese | Panalabnax
clathratus
(gravid
temates) | FM | Catalina
Island, Cal. | 2.2
(gonads
residue) | | same as above | Stanteton
(1958),
AMIC-5980 | | Manganese | Paratabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Manganese | Panalabnax
clathratus | FM | Catalina
Island, Cal. | 4.2 (fiver residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Mangañese | Panalabnax
clathratus | FM | Scatterqood
Steam Plant,
Los Angeles,
Cal. | 0.7 (integument residue) | | same as above | Stableton
(1968).
AMIC-5980 | | Manganese | Panalabnax
clathratus | FM | Catalina
Island, Cal. | 0.8 (Integument residue) | •• | same as above | Stableton
(1968),
AMIC-5980 | | Manganese | Paral abrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapteton
(1968),
AMIC-5980 | | Nanganese | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 1.4 (heart
residue) | | same as above | Stableton
(1968),
AMIC-5980 | |
Hanganese | Paralabrax
clathratus | FĦ | Scattergood
Steam Plant,
Los Angeles, | 1.6 (eyebali
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | . Cal. | Hanganes e | Paratabrax
clathratus | FĦ | Catalina
Island, Cal. | 2.6 (eyeball
residue) | | same as above | Stapleton
(1968).
AMIC-5980 | |-------------------|--------------------------------------|--------------------|--------------------------|-----------------------------|---|--|---| | loxone H | Rasbora
heteromorpha | BCFA
and
BSA | | 16 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) synthe
tic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materiats. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | HCPA | Fish (not
specified) | | | greater than
10-100 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mawdestey-
Thomas
(1971),AMIC-
1056 | | НС РА | Crassostrea
virginica
(eggs) | ι | | 15.6 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stades of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | Davis, et af
(1969),
AMIC-5990 | | MCPA | Crassostrea
virginica
(tarvae) | Ĺ | | 31.3 (T14) | | same as above | Davis, et al (1969), AMIC+ | | Mecarbam | Fish (not specified) | | | greater than 0.001-0.01 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | 5990
Mawdesley-
Thomas(1971)
AMIC-1056 | | *********** | | | | | | | | |------------------------------|--------------------------------------|--------------------|-------------------|---|--|--|---------------------------------------| | Compound | Organism | | Fietd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | | Menazon | Rashora
heteromorpha | BCFA
and
BSA | | 154 (TZ) | as,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1959),
AHIC-5425 | | Mercuric chloride
(as Hg) | Acroneuria | RSA | | 2 (T4) | a*,c,d,e,f | Ephemerelia (mayfly) was the most sensitive aquatic insect of those studied, and copper the most broadly toxic metal. The authors suggest that aquatic insects may not be as sensitive to heavy metals as flsh. | Marnick, et
al(1969),
AMIC-3767 | | Mercuric chioride
(as Hg) | Ephemerella | BSA | | 2 (T4) | a*,c,d,e,f | same as above | Warnlck, et
at(1969),
AMIC-3767 | | Mercuric chioride
(as Hg) | Hydropsyche | BSA | | 2 (T4) | a*,c,d,e,f | same as above | Warnick, et
at(1959),
AMIC-3767 | | Mercuric chloride
(as Hg) | Hatersloora
cucullata
(tarvae) | ι | | 0.10 (T 2hr) | a,c,l, and
salinity | This study was conducted to determine species of marine larvae suitable for use in test screening antifouting chemicals. A. satina (brine shrimp) appeared to have the best potential for this purpose. A. satina farvae sensitivity was greatest starting at age 20-80 hr, and tolerated relatively tow ph (5.0). | Wisely, et
at (1957),
AMIC-5703 | | Mercuric chioride
(as Hg) | elupuB
enltinan
(ervnel) | ι | | 0.20 (T 2 hr) | a,c,1,
and
salinity | same as above | Wisely, et
at (1967),
AMIC-5703 | | Mercuric chioride
(as Hg) | Spirorbis
tamelfosa
(tarvae) | ι | | 0.14 (T 2 hr) | a,c,l, and
salinity | same as above | Wisely, et
at (1967),
AMIC-5708 | | Mercuric chioride
(as Hg) | Galeolaria
caespitosa | ι | | 0.12 (T 2 hr) | a,c,l, and
salinity | same as above | Wisely, et
at (1967), | | | (larvae) | | | | | | AHIC-5708 | |-----------------------------------|---|-------------|----|----------------|--|---|---| | Mercuric chioride
(as Hg) | Mytlius
edulls
planulatus
(larvae) | t | | 13.1 (T 2 hr) | a,c,i,
and
salinity | same as above | Wisely, et
at (1967),
AMIC-5703 | | Mercuric chioride
(as Hg) | Crassostrea
commerciatis
(larvae) | ι | | 180.9 (T 2 hr) | a,c,l, and satinity | same as above | Wisely, et
al (1967),
amic-5708 | | Mercuric chloride
(as Hg) | Artemia
salina
(larvae) | L | | 1809 (T 2 hr) | a,c,i,
and
salinity | same as above | Wisely, et
al (1967),
AMIC-5708 | | Hercuric chioride
(as mercury) | Carcinus
maenas | BSA | | 1.2 (T2) | ation, sea
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorqanic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Mercuric chioride
(as mercury) | Cardium edula | 85 A | | 9.0 (T2) | aw(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
a! (1971),
AMIC-7701 | | Mercuric chioride
(as mercury) | Crangon
crangon | BSA | | 0.10-0.33(74) | as (contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7781 | | Mercuric chioride
(as mercury) | Ostrea edulis | BSA | | 4.2 (T2) | as(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et al (1971), AHIC-7701 | | Mercuric chloride | Pan da l us | BSA | •• | 0.08 (T2) | a* | same as above | Portmann, et | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | fxperlmenta
Varlables,
Controlled
or Noted | Comments | Reference | |-----------------------------------|----------------------|-------|-------------------|--|--|--|---| | (as mencury) | montagul | | | | (continuous aeration, seawater, and daily sotution renewat) | s | al (1971).
AMIC-7701 | | Mercuric chioride
(as mercury) | Platicthys
ffesus | ASB | | 3.3 (T2) | a* (continuous aeration, seawater, and daily solution renewal) | same as above
s | Portmann, et
al (1971),
AMIC-7701 | | fercuric chioride | Carassius
auratus | 8 S A | | 0.25 (\$81) | a*,e | Mercury accumulated rapidly in goldfish. The higher the concentration up to 1.0 ppm, the more rapid was the accumulation. At higher concentrations, heavy mucus formation occurred with most of the mercury being found in the mucus. The authors noted that bacterial methylation occurs in dead fish but only if muchus is present. | McKone, et
al (1971),
AMIC-1492 | | dercuric chioride | Carasslus
auratus | BSA | | 0.25 (15 ppm
fissue residue
i d) | a*•e | same as above | McKone, et
al (1971),
AMIC-1492 | | Mercuric chioride | Carasslus
auratus | BSA | | 0.25 (40-50 ppm
tissue
residue 100 hr) | | same as above | McKone, et
at
(1971),
AMIC-1492 | | Mercuric chioride | Ambassis
safgha | BSA | | 2.8 (T1) | a*,
seawater | Measurement of residual dissolved oxygen during exposure of fish to toxicants resulted in data similar to that obtained from 24- and 48-hr bloassays by the standard method. The residual oxygen method required only 8 hr to conduct. Variables studied included density per unit votume, temperature, and fish size. The authors conclude that the residual oxygen method is a quick and reliable procedure for routine monitoring work. | at (1969),
Amic-300 | | Mercuric chioride | Carassius
auratus | L | | 0.82 | (177) | a,c | In addition to toxicity data, conditioned avoidance response was studied at sublethal concentrations. The lowest concentration of metal resulting in significant impairment was; arsenic, 0.101 lead, 0.071 mercury, 0.0031 and setenium, 0.25. Deteterious effects occurred at metal concentrations approximately similar to potable water standards. | Weir, et at
(1970),AMIC-
739 | |-------------------|------------------------------------|----|------------------------------|------|-----------|-----|--|--------------------------------------| | Hercury (fotal) | Salvelinus
namaycush (1
yr) | FL | Cayuga Lake,
Ithaca, N.Y. | | (residue) | | Lake trout stocked annually as tagged fingerlings were netted and analyzed for mercury and methylmercury. Total mercury and the proportion of methylmercury to mercury increased with age but not sex. | Bache, et al
(1971),
AMIC-3815 | | Mercury (total) | Satvetinus
namaycush (11
yr) | FL | Cayuga Lake,
Ithaca, N.Y. | | (residue) | | same as above | Rache, et al
(1971),
AMIC-3818 | | Hercury (total) | Salvelinus
namaycush (12
yr) | FL | Cayuga Lake,
Ithaca, N.Y. | | (residue) | | same as above | Bache, et al
(1971),
AMIC-3815 | | Hercury (fotal) | Salvelinus
namaycush (2
yr) | FL | Cayuga Lake,
Ithaca, N.Y. | | (residue) | | same as above | Bache, et at
(1971),
AMIC-3818 | | Hercury (total) | Salvetinus
namayoush (3
yr) | FL | Cayuga Lake,
Ithaca, N.Y. | | (residue) | | same as above | Rache, et at
(1971),
AMIC-3818 | | Hercury (total) | Salvelinus
namaycush (4
yr) | FL | Cayuga Lake,
Ithaca, N.Y. | | (residue) | | same as above | Rache, et al
(1971),
AMIC-3818 | | Mercury (total) | Salvelinus
namaycush (5
yr) | FL | Cayuqa Lake,
Ithaca, N.Y. | | (residue) | | same as above | Bache, et al
(1971),
AMIC-3818 | | Mercury (total) | Salvelinus
namaycush (6
yr) | FL | Cayuqa Lake,
Ithaca, N.Y. | | (residue) | | same as above | Rache, et al
(1971),
AMIC-3818 | | Hercury (total) | Salvelinus
namayoush (7
yr) | FL | Cayuga Lake,
Ithaca, N.Y. | | (residue) | | same as above | Bache, et al
(1971),
AMIC-3818 | | Mercury (total) | Salvelinus | FL | Cayuga Lake, | 0.55 | (residue) | | same as above | Bache, et al | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experiment
Variables,
Controlled
or Noted | | Reference | |-----------------|-----------------------------------|--------------------|------------------------------|---|---|---|-------------------------------------| | | namaycush (8
yr) | | Ithaca, N.Y. | | | | (1971),
AMIC-3818 | | Mercury (total) | Salvelinus
namaycush (9
yr) | FL | Cayuqa Lake,
Ithaca, N.Y. | 0.53 (residue) | | same as above | Bache, et a
(1971),
AMIC-3818 | | Mercury | Coregonus
clupeaformis | FL | Moose Lake,
Can. | 0.07 (residue) | | Concentrations of 13 toxic elements in dressed fish from heavily industrialized and non-industrialized areas were determined. Only mercury exceeded regulatory limits, and concentrations of most elements were essentially the same in fish from both areas. | Uthe, etal
(1971),
AMIC-3819 | | Mercury | Coregonus
ctupeaformis | FL | Lake
Ontarlo,
Can. | 0.17 (residue) | | same as above | Uthe, etat
(1971),
AMIC-3519 | | Mencury | Esox luclus | FL | Moose Lake,
Can. | 0.11 (residue) | | same as above | Uthe, et al
(1971),AMIC
3819 | | Mercury | Esox lucius | FL | Lake St.
Pierre, Can. | 0.70 (residue) | | same as above | Uthe, et
AL(1971),
AMIC-3519 | | Mercury | Esox lucius | FL | Lake Erle,
Can. | 0.49 (residue) | | same as above | Uthe, et at
(1971),AMIC
3819 | | Mercury | Osmerus
mordax | FL | Lake Erie,
Can. | 0.05 (residue) | | same as above | Uthe, et al
(1971),AMIC
3319 | | Mercury | Perca
flavescens | FL | Lake Erie,
Can. | 0.22 (residue) | | same as above | Uthe, et al
(1971),AMIC
3819 | | Metasystox | Rasbora
heteromorpha | BCFA
and
BSA | | 6.5 (12) | a*,c,e,f,
hard (HH)
or
SOFT(SH)
synthetic
dilution | miscellaneous water politutants showed a wide range of toxicity spanning 12 orders | Alabaster
(1969),
AMIC-5425 | | | | | | water, or
seawater
for some
species | formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | |------------------------------------|------------------------|-----------------------------------|---------------------------|---|---|---| | He thano I | Agonus
cataphractus | BSA |
10,000-33,000
(T2) | ation, sea- | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated bibbenyls, pure inorqanic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Hethanol | Cardium edute | BSA |
3300-10,000
(T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
at (1971),
AMIC-7701 | | Ne thano1 | Crangon
crangon | BSA |
1700 (T4) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
ai (1971),
AHIC-701 | | Hethoxychior
(tritium labelied) | Sorghum
halpense | L
(mode
!
ecosy
stem) | 1 1b per A (NTE) | a,c,g,
standard
reference
water and
sand | This small laboratory model ecosystem procedure was developed to study pesticide blodegradability and ecological magnification. The food-chair pathways in this system were: (1) sorghum - caterpiller (larva), (2) caterpiller (excreta) - Dedogonium, (3) Dedogonium - snail, (4) Estigmene (excreta) - diatoms, (5) Diatoms - plankton, (6) Plankton - Culex (larvae), (7) Culex - Gambusia. The fish is the too of the food chain. Using isotopically labeled pesticides (1) Ib/acre application rate), residues were determined for only selected organisms (snail, mosquito, and fish) and water. | Metcall, et
al (1971),
AMIC-1495 | | Compound | Organism | | Fletd
Location | Toxicity, Active Ingredient, Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |------------------------------------|--|------------------------------------|-------------------|----------------------------------|--|--|--| | | | | | | | Reproducibility appeared to be good. The authors state that the method gives a good estimation of the potential toxicity of pesticides and their breakdown products to a variety of organisms and is suitable for computer modeling. | | | Methoxychlor
(tritium labelled) | Estiqmene
acrea | L
(Mod-
el
ecosy
stem) | | 1 th per A
(K-NTE) | a.c.g,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | | Methoxychlor
(tritium labelled) | Physa spp | L
(Mod-
el
ecosy
stem) | | 15.7 (residue) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | | Methoxychlor
(tritium labelled) | Daphnia magna | L
(Mod-
el
ecosy
stem) | | 1 (K-NTE) | a,c,g,
standard
reference
water and
sand | same as above | Metcatt, et
at (1971),
AMIC-1495 | |
Methoxychior
(tritium labelied) | Culex pipiens
quinque-
fasciatus | L
(mode
1
ecosy
stem) | | 0.48(resIdue) | a,c,g,
standard
reference
water and
sand | same as above | Metcatt, et
al (1971),
AMIC-1495 | | Methoxychior
(tritium labelled) | Oedogonium
cardiacum | i (mode
i
ecosy
stem) | | 1 lb per
A(NTE) | a,c,q,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | | Methoxychlor
(tritium labelied) | Gambusia
affinis | L
(mode
i
ecosy | | 0.33 (residue) | a,c,g,
standard
reference
water and | same as above | Metcatt, et
al (1971),
AMIC-1495 | | | | | stem) | | | sand | | | |---|------------------------------------|---|-----------------------------------|---------|---------------------|--|--|--| | | Methoxychior
(tritium labelied) | Diatoms (Navicula, Coscinodis- cus, Dip- loness, and Diatomella) | L
(mode
l
ecosy
stem) | | 1 to per A (NTE) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf, et
al(1971),
AMIC-1495 | | | Nethoxychior
(tritium labelled) | Protozoa
(Nuclearia,
Coleps,
Vorticella,
and
Paramecium) | L
(mode
t
ecosy
stem) | | 1 1b per A (NTE) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf,
etal (1971),
AMIC-1495 | | | Methoxychior
(tritium labelled) | Rotifers (Asplanchnop- us, Notomat- ta, Euclaris, Scardium) | ecosy | | 1 1b per A
(NTE) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf,
etal (1971),
AMIC-1495 | | | Hethoxychior
(tritium labelled) | Water | L
(mode
)
ecosy
stem) | | 0.0016
(residue) | a,c,g,
standard
reference
water and
sand | same as above | Metcalf, et
al (1971),
AMIC-1495 | | | He thoxych I or | Chironomus
tentans
(instar) | BSACF | | 5.5 (T4) | | This chemical was evaluated primarily because it is one of the principal substitutes for DDT. Rabid breakdown of the chemical occurred when living organisms were present. The half-life of methoxychlor was 7 days in Ann Arbor city water, but was much more rabid (less than 1 day) in local creek water and slow (approximately 200 days) in distilled water. These studies were to be continued to determine long term effects but no data are presented. | Bender.et at
(1971),
AMIC-3279 | | • | He thoxych i or | Stenonema
candidum
(Instar) | BSACF | | 2.1 (T4) | c,d,e | same as above | Bender, et
al(1971),
AMIC-3279 | | | He thoxych I or | Taenloptaryx
nivalls
(Instar) | BSACF | | 0.98 (T4) | c,d,e | same as above | Bender, et al
(1971),
AMIC-3279 | | | Methylene bis | Phormidium | L | | 0.5-10-0 (16 | | Of 74 chemicals evaluated as | Otto (1970), | | Comocund | `Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controtted
or Noted | | Reference | |------------------|-----------------------------------|----|------------------------------|---|---|--|-------------------------------------| | thlocyanate | ambiguum | | | percent
growth inhibited
14) | 1 | algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain metting agents was more toxic than CuSO4 alone. Copper chloramine was also found to he more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.05 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | AMIC-892 | | Hethylmercury | Salvetinus
namaycush (1
yr) | FL | Cayuga Lake,
Ithaca, N.Y. | 0.07 (residue) | | Lake trout stocked annually as tagged fingerlings were netted and analyzed for mercury and methylmercury. Total mercury and the proportion of methylmercury to mercury increased with age but not sex. | Rache, et a
{1971},
AMIC-3518 | | Methylmercury | Salvelinus
namaycush (2
yr) | FL | Cayuqa Lake,
Ithaca, N.Y. | 0.11 (residue) | | same as above | Pache, et a (1971), AMIC-3818 | | Methylmercury | Salvelinus
namaycush (3
yr) | FL | Cayuga Lake,
Ithaca, N.Y. | 0.21 (residue) | | same as above | Bache, et a
(1971),
AMIC-3818 | | Methylmercury | Salvelinus
namaycush (4
yr) | FL | Cayuqa Lake,
Ithaca, N.Y. | 0.34 (residue) | | same as above | Bache, et a
(1971),
AMIC-3818 | | Methylmercury | Salvelinus
namaycush (5
yr) | FL | Cayuga Lake,
Ithaca, N.Y. | 0.35 (residue) | | same as above | Bache, et a
(1971),
AMIC-3818 | | He thy I mercury | Salvelinus
namaycush (6
yr) | FL | Cayuga Lake,
Ithaca, N.Y. | 0.45 (residue) | | same as above | Rache, et a (1971), AMIC-3818 | | He thy I wercury | Salvelinus
namayoush (7
yr) | FL | Cayuga Lake,
Ithaca, N.Y. | 0.31 (residue) | | same as above | Rache, et a
(1971),
AMIC-3818 | | Hethylmercury Salvelinus FL Cayuga Lake, 0.51 (residue) same as above Hethylmercury Salvelinus FL Cayuga Lake, 0.43 (residue) same as above Ithaca, N.Y. yr) Hethylmercury Salvelinus FL Cayuga Lake, 0.41 (residue) same as above Ithaca, N.Y. yr) Hethylmercury Salvelinus FL Cayuga Lake, 0.41 (residue) same as above Ithaca, N.Y. yr) Hethylmercury Salvelinus FL Cayuga Lake, 0.47 (residue) same as above Ithaca, N.Y. yr) Hethylmercury Salvelinus FL Cayuga Lake, 0.47 (residue) same as above Ithaca, N.Y. yr) Hethylmercury Salvelinus FL Cayuga Lake, 0.47 (residue) same as above Ithaca, N.Y. yr) Hethylmercury Salvelinus FL Cayuga Lake, 0.47 (residue) same as above Ithaca, N.Y. yr) Hethylmercury Salvelinus FL Cayuga Lake, 0.47 (residue) same as above Ithaca, N.Y. yr) Hethylmercury Salvelinus FL Cayuga Lake, 0.47 (residue) same as above Ithaca, N.Y. yr) | | |---|--| | namayoush (9 yr) Methylmercury Salvelinus FL Cayuga Lake, 0.41 (residue) same as above namayoush (11 yr) Methylmercury Salvelinus FL Cayuga Lake, 0.47 (residue) same as above namayoush (12 yr) Methylmercury Salvelinus FL Cayuga Lake, 0.47 (residue) same as above namayoush (12 yr) Methylmercury Salvelinus FL Cayuga Lake, 0.47 (residue) same as above namayoush (12 yr) Methylmercury Salvelinus FL Cayuga Lake, 0.47 (residue) same as above namayoush (12 yr) Methylmercury Salvelinus FL Cayuga Lake, 0.47 (residue) same as above namayoush (12 yr) Methylmercury Salvelinus FL Cayuga Lake, 0.47 (residue) same as above namayoush (12 yr)
Methylmercury Salvelinus FL Cayuga Lake, 0.47 (residue) same as above namayoush (12 yr) | Rache, et al
(1971),
AMIC-3818 | | namayoush (11 Ithaca, N.Y. yr) Methylmercury Salvelinus FL Cayuqa Lake, 0.47 (residue) same as above namayoush (12 Ithaca, N.Y. yr) Methylmertynol Salmo BSA 870-1260 (T4) a*,c,f Methylmentynol was teste gairdneri 96-hour bloassays for its toxici rainbow trout, brown trout, brown | Bache, et al
(1971),
AMIC-3818 | | namaycush (12 Ithaca, N.Y. yr) Methylpentynol Salmo BSA 870-1260 (T4) at,c,f Methylpentynol was teste gairdneri 96-hour bloassays for its toxici rainbow trout, brown trout, brown | Bache, et al
(1971),
AMIC-3819 | | gairdneri 96-hour bloassays for its toxici
rainbow trout, brown | Rache, et al
(1971),
AMIC-3818 | | lake trout, northern bike, chann catilsh, blueqilis, larqemouth b walleyes. Channel catilsh where resistant and lake trout the mos sensitive. Two-inch rainbow trout, and lake trout were more to methylpentynol than larqer on 96-hour exposures. The druq was toxic to blueqilis and rainbow the elevated temperatures. Toxicity barely influenced by changes in hardness. | ity to AMIC-5477 ok trout, ne! bass, and the most st out, brown sensitive nes in the s more trout with y was | | Methylpentynol Salmo trutta BSA 680-1100 (T4) a*,c,f same as above | Marking
(1969),AMIC⇒
5477 | | Methylpentynoi Salvellnus BSA 1100-1200 (T4) a*,c,f same as above fontinalis | Marking(1969).
4MIC-5477 | | Methylpentynol Salvelinus BSA 660-1160 (T4) a*,c,f same as above namayoush | Harking(1959),
AHIC-5477 | | Methylpentynoj Esox lucius BSA less than 900 a°,c,f same as above
(14) | Marking
(1959),4MIC-
5477 | | Methylpentynol Ictalurus BSA 1700-1890 (T4) a*,c,f same as above punctatus | Marking(1959),
AMIC-5477 | | Mathylpentynol Lepomis BSA 1260-1340 (T4) a*,c,f same as above macrochirus | Marking(1969),
AMIC-5477 | | Comocund | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | a!
Comments | Reference | |---------------------------|---|-----|-------------------|---|---|--|--| | Methy I pent yno I | Micropterus
salmoldes | BSA | | 1100-1250 (T4) | a*,c,f | same as above | Marking(1969)
1MIC-5477 | | Methy I pentynot | Stizostedion
vitreum | BSA | | 1140 (T4) | a♥yCşf | same as above | Marking
(1969),44IC-
5477 | | Methyl parathion | Lepomis
cyanellus
(Resistant) | θSA | | greater than
5000 (T2) | a ♥ | Green sunfish from Reizoni, Miss. were resistant to Chiordane, Heptachior, Lindane, and Strobane, but not to Parathion. Golden shiners from the same location were resistant to Lindane and Strobane, tolerant to Chiordane and Heotachior, and susceptible to Parathion. Lack of resistance to Parathion indicated lack of agricultural usage of organophosphates in that area. Resistant fish were compared to susceptible ones cottected at Starkville. | | | Methyl parathion | Lepomis
cyanellus
(Susceptible) | RSA | | greaterthan
500d (T2) | a* | same as above | Minchew, et
al (1970),
AMIC-5471 | | Methyl parathion | Noteminonus
crysoleucas
(Resistant) | BSA | | greater than
5000 (T2) | a* | same as above | Minchew, et
al (1978),
AMIC-5471 | | Methy1 parathion | Notemidonus
crysoleucas
(Susceptible) | BSA | | greater
than5000 (T2) | a* | same as above | Minchew, et
at (1970),
AMIC+5471 | | Methy1 parathion | Ictalurus
punctatus | BSA | - | 5.71 (14) | | Organochlorine insecticides were the most toxic compounds, organochosphates intermediate, carbanates the least toxic. Brown trout was the species most susceptible to organochlorines, coho salmon the most susceptible to carbanates, and goldfish were the least susceptible of all species. Safe concentrations established by bioassays with salmonids or centrarchids would likely be safe for | (1970),
AMIC-5510 | cyprinids and ictalurids. Safe levels for ictalurids or cyprinids would probably be hazardous for centrarchids and salmonids. The use of goldfish in bloassays was discouraged. | Hethyl parathion | Ictaturus
metas | BSA |
6.64 (T4) | a,
synthetic
test water | same as above | Macek,et al
(1970),
AMIC-5510 | |------------------|-----------------------------|-----|---------------------------|-------------------------------|--|--------------------------------------| | Methyl parathion | Carassius
auratus | RSA |
99.00 (T4) | a.
synthetic
test water | same as above | Macek, et at
(1970),
AMIC-5510 | | Hethyl parathion | Cyprinus | BSA |
7.13 (T4) | a,
synthetic
test water | same as above | Macek, et at
(1970),
AMIC-5510 | | Methyl parathion | Pimephales
prometas | 8SA |
8.90 (T4) | a,
synthetic
test water | same as above | Macek, et al
(1970),
AMIC-5510 | | Methyt parathion | Lepomis
macrochirus | BSA |
5.72 (T4) | a,
synthetic
test water | same as above | Macek, et al
(1970),
AMIC-5510 | | Methyl parathion | Lepomis
microlophus | BSA |
5.17 (T4) | a,
synthetic
test water | same as above | Macek, et al
(1970),
AMIC+5510 | | Hethyl parathlon | Micropterus
salmoides | BSA |
5.22 (T4) | a,
synthetic
test water | same as above | Macek, et al
(1970),
AMIC-5510 | | Methyl parathlon | Salmo
gairdneri | BSA |
2.75 (T4) | a,
synthetic
test water | same as above | Macek, et al
(1970),
AMIC-5510 | | Methy! parathlon | Salmo trutta | BSA |
4.74 (T4) | a,
synthetic
test water | same as above | Macek,et al
(1970),
AMIC-5510 | | Methyl parathion | Oncorhynchus
kisutch | BSA |
5.30 (14) | a,
synthetic
test water | same as above | Macek, et al
(1970),
AMIC-5510 | | Methyl parathion | Perca
11avescens | 854 |
3.06 (T4) | a,
synthetic
test water | same as above | Macek, et al
(1970),
AHIC-5510 | | Methyl parathion | Palaemonetes
kadlakensis | BSA |
0.0025-0.0233
(T1) | a*
shrimp | Bloassays were conducted with
from three areas of intensive | Nagvi, et at
(1970), | | Compound | 0rganlsm | | Fle1d
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |------------------|--|--------------------|-------------------|---|---|--|--------------------------------------| | | (resistant) | | | | | pesticide use and from an unexposed area. Previously exposed shrimp were from 1 to 25 times more resistant than unexposed shrimp. Noth types of shrimp were also exposed in cages to waters of the contaminated areas. Susceptible shrimp suffered 66 percent more mortality than did resistant shrimp. The toxicity of the insecticides ranked in descending order was as follows: most toxic. Endrin, DDT, Methyl parathion. Parathions medium toxicity, Guthion, Lindane. Toxaphene, Strobanet lease toxic Chiordane, Sevin, and Heptachior. | | | Hethyf parathion | Palaemonetes
kadlakensis
(non-
resistant) | BSA | | 0.0037 (T1) | a* | same as above | Nagvi, et al
(1970),
Amic-5519 | | Methy! parathion | Tubifex
tubifex | FL
and
BSA | Reizoni,
Miss. | 6.00 (NTE) | | The response of posticide-resistant aquatic organisms to various posticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Reizoni and non-resistant species at State College. Copedods, clams, smalls, and sludde worms from Reizoni were considerably more tolerant to posticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic tevets. | AMIC-5979 | | Mevinfos | Rasbora
heteromorpha | BCFA
and
BSA | | 11.5 (T2) | a*,c,e,f,
hard (HW)
or
SOFT(SW)
Synthetic
dilution
water, or
seawater
for
some | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water | Alabaster
(1969),
AHIC-5425 | | | | | | | species | and sometimes the opposite was true.
Testing the actual material as sold was
found to be essential. | | |----------|--------------------------|--------------------|---|-------------------------
--|---|---| | N1 lbex | Rasbora
heteromorpha | BCFA
and
BSA | _ | 3.5 (12) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and misceflaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | ни | Fundulus
heteroclitus | BSA | | 0.0003-0.0006
(T4) | a*,c,e,
and
synthetic
seawater | same as above | LaRoche, et
al (1970),
AMIC-445 | | ни | Nereis virens | RSA | | 0.00006-0.00043
(T4) | a*,c,e,
and
synthetic
seawater | same as above | LaRoche,et
al (1970),
AMIC-445 | | Moaspiff | Crangon
crangon | BSA | | 1000-3300 (74) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Mobilsof | Crangon
crangon | BSA | | 10-33 (T2) | ation, sea. | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychtorinated biphenyts, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Molinate | Gammarus
1asclatus | BSA | | 0.39 (T2), 0.30
(T4) | a* | Of the aquatic weed herbicides evaluated, Dictone was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were | Sanders
(1970),
AMIC-453 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta Variables, Controlled or Noted | Comments | Reference | |-------------|----------------------------|-----|---|---|--|---|--------------------------------| | | | | | | | affected by much lower concentration
levels of herbicides than indicated by
the TL sub 50 values. All of the animals
represent important food chain links. | | | lolinate | Paleomontes
kadiakensis | BSA | | 1.0(T2) | a • | same as above | Sanders
(1970),
AMIC-453 | | ofinate | Asellus
brevicaudus | BSA | | 0.40 (T2) | a♥ | same as above | Sanders
(1970),
AMIC-453 | | olinate | Orconectes
nais | BSA | | 5.6 (12) | a * | same as above | Sanders
(1970),
AHIC-453 | | otinate | Daphnla magna | BSA | | 0.60 (T2) | a* | same as above | Sanders
(1979),
AMIC+453 | | olinate | Cypridopsis
vidua | BSA | | 0.18 (T2) | a * | same as above | Sanders
(1970),
AMIC-453 | | olinate | Lepomis
macrochirus | BSA | | 0.48 (T2) | g * | same as above | Sanders
(1970),
AMIC-453 | | o l ybdenu4 | Paral abrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | muscle | | Fish collected from an effluent ploe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nickel. Sliver, barlum, fithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the | | ## effect of pollutants on marine organises. | Holybdenum | Paralabrax
clathratus | FM | Catalina
Island, Cal. | N.2(dorsal
muscle
residue) |
same as above | Stapleton
(1968),
Amic-5987 | |--------------|---|----|---|-----------------------------------|-------------------|-----------------------------------| | No I ybdenua | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | muscle |
same as above | Stableton
(1958),
AMIC-5980 | | Mo I ybdenua | Paral abrax
clathratus | FH | Catalina
Island, Cal. | 0.2(ventra)
muscle
residue) |
same as above | Stapleton
(1968),
AMIC-5989 | | No lybdenum | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | |
same as above | Stableton
(1968),
AMIC-5980 | | Molybdenum | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 0.8(gonads
residue) |
same as above | Stableton
(1968),
AMIC-5980 | | Molybdenum | Paralabrax
clathratus
(gravld
females) | FM | CatalinaIsta
nd, Cat. | 0.6
(gonads
residue) |
same as above | Stapteton
(1958),
AMIC-5980 | | No lybdenua | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | |
same as above | Stapleton
(1968),
AMIC-5980 | | No i ybdenua | Paralabrax
clathratus | FH | Catalina
Tsland, Cal. | 0.4(liver
residue) |
same as above | Stapteton
(1968),
AMIC-5980 | | No lybdenum | Paral abrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | 0 (Integument residue) |
same as above | Stapleton
(1968),
AMIC-5989 | | Molybdenum | Paral abrax
clathratus | FM | Catalina
Island, Cal. | 0.4(Integument residue) |
same as above | Stableton
(1968),
AMIC-5989 | | Nolybdenum | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | |
same as above | Stapleton
(1968),
AMIC-5980 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Peterence | |--|--------------------------|--------------------|---|---|--|--|-----------------------------------| | Molybdenum | Paralahrax
clathratus | FH | Catalina
Island, Cal. | 0.4(heart
residue) | | same as above | Stapteton
(1968).
AMIC-5980 | | Malybdenum | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | 1.9 (eyeball
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Mo lybdenu u | Paralabrax
clathratus | FH | Catalina
Island, Cat. | 4.8(eyeball
residue) | | same as above | Stableton
(1958),
AMIC-5988 | | Manaxone | Saimo
gairdneri | BCFA
and
BSA | | 900 (T2) | as,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | one hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the coposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Mono (N. N dimethy)
alkyl amine) sait of
endothall | | t | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was
also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 pom). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Offo (19/0).
AMIC-592 | | Manuran | Salmo
gairdneri | BCFA
and
BSA | | 80 (T2) | as,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic | One hundred sixty-four pesticides, wetting agents, and miscellaneous water potiutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and | Alabaster
(1969),
AHIC-5425 | | | | | | dilution
water, or
seawater
for some
species | percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sametimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | |---------------|---------------------------------------|-----|-------------------------------|---|--|---| | Menuron | Mercenaria
mercenaria
(eggs) | 1 |
greater than
5.0 (T2) | , | The effect of 5? pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | Davis, et al(1969), amic-5998 | | Monuron | Mercenaria
mercenaria
(larvae) | L |
greater than
5.0 (T12) | | same as above | Davis, et
at(1969),
AMIC-5990 | | Horphothion | Cardium edule | BSA |
greater than 10 (TZ) | uous aer-
ation, sea- | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Horphothion . | Crangon | BSA |
1.0-3.3 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | | Portmann, et
al (1971),
AMIC-7701 | | MS-222 | Negaprion
brevirostris
(1-3 kg) | BSA |
20.9 (SB 10 min) | a,c,e | Data from study of drug effects on young lemon sharks were treated mathematically to demonstrate applicability of classical rate theory to the study of chemical shark deterrents. Incapacitation (narcosis) was the primary parameter timed for effectiveness. This was usually quite rapid for the more effective drugs. | | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |--------------|-------------------------|--------------------|-------------------|---|---|---|--| | MS-222 | Lecomis
macrochirus | BSA | | 30 (\$81) | a,* | Little difference in nitrogen excretion rate was found between treated and control fish. Anaesthesia should have reduced nitrogen excretion but did not. The author believed that increased mucus secretion was a possible explanation for the results obtained. | Savitz
(1969),AMIC-
5838 | | Mystox LSC-P | Pasbora
heteromorpha | BCFA
and
BSA | | 18 (T2,
hardwater) | a*,c,e,f,
hard(HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of foxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),AMIC-
5425
s | | Mystox LSC-P | Pashora
heteromorpha | BCFA
and
BSA | | 5.6 (T2,
softwater) | af,c,e,f,
hard(HH)
or soft
(SH)
synthetic
dilution
water,
orseawater
for some
species | same as above | Alabaster
(1969),AMIC~
5425 | | Mystox LSE-L | Salmo
gairdneri | BCFA
and
BSA | | 36 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) synthe
tic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Mystox LSE-P | Salmo
galrdneri | BCFA
and
BSA | | 24 (T2) | af,c,e,f,
hard (HH)
or soft
(SH)synthe
tlc
difution
water, or
seawater | same as above | Alabaster
(1969),
AMIC-5425 | | | | | • | | | | | |--------------|------------------------------------|--------------------|---|------------------------|--|--|--------------------------------------| | | | | | | for some
species | | | | Mystox LSL-L | Salmo
galrdneri | BCFA
and
BSA | | 180 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AHIC-5425 | | Mystox LSL-P | Salmo
galrdneri | BCFA
and
BSA | | 68 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Mystox LSL | Rasbora
heteromorpha | BCFA
and
BSA | | 8.2 (T2,
hardwater) | a*,c,e,f,
hard
(HW) or
soft (SH)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),AMIC~
5425 | | Mystox LSL | Rasbora
heteromorpha | RCFA
and
BSA | | 2.5 (T2,
softwater) | a*.c.e.f,
hard(HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),AMIC-
5425 | | Nabam . | Mercenaria
mercenaria
(eggs) | L | | less than 0.5
(T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected | Davis, et al
(1969),AMIC-
5990 | | Compound | Organism | | Field
Location | Toxicity, Active Ingredient, Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |-----------|--------------------------------------|--------------------|-------------------|----------------------------------|--|---|--------------------------------------| | | | | | | | development more than survival. Some, however, drastically reduced tarvat growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Nabam | Mercenaria
mercenaria
(larvae) | L | | 1.75 (T12) | •• | same as above | Davis, et al
(1969),AMIC-
5990 | | Nabae | Crassostrea
virginica
(eggs) | ι | | less than 0.5
(T2) | | same as above | Davis, et al
(1959).AMIC-
5990 | | Naico 201 | Rashora
heteromorpha | BCFA
and
BSA | | 0.76 (T2) | as,c,e,f,
hard (Hw)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes
pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
ANIC-5425 | | Naico 240 | Rasbora
heteromorpha | BCFA
and
BSA | | 7.4 (TZ) | as,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Naico 243 | Rasbora
heteromorpha | BCFA
and
BSA |
0.28 (T2) | a*,c,e,f,
hard (HH)
or
SOFT(SH)
synthetic
ditution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | |------------------|------------------------------------|--------------------|------------------------------|---|---|--| | Naphthenic acids | Leoomis
mącrochirus | BSA.
L |
5.6 (T4) | a*,e, and
synthetic
dilution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bloassays with at least three components of the food web. | Patrick, et
al (1968),
AMIC-5720 | | Naphthenic acids | Nitzschia
Tinearis | BSA,
L |
43.1 (T5) | a*,e, and
synthetic
dilution
water | same as avode | Patrick, et
at (1968),
AMIC-5720 | | Naphthenic acids | Physa
heterostropha | BSA,
L |
7.1 (74) | as,e, and
synthetic
dilution
water | evode 25 ames | Patrick, et
al (1968),
AMIC-5720 | | NA | Fundulus
heterociltus | ASA |
0.00018-0.0005
(T4) | | A laboratory procedure based on Standard Methods for 96-hr toxicity determinations of crude oil and oil-dispersant mixtures was described. The dispersants varied considerably in toxicity, ranging from 0.01 to 7.1 mi/l, TL50 for 96 hr. These did not differ significantly from 240 hr values. The dispersants were designated as CX, DO, CI, OD, AQ, PC, MM, TN, BP, and NA with no further description of their chemical nature or source. Only a few bloassays were conducted with shrimp. Hollusks and echinoderms were suggested as suitable test animals. The authors stated that the method could be used to test any product for toxicity in seawater. | LaRoche, et
al (1970),
AMIC-445 | | NĀ | Nerels virens | BSA |
0.000007-0.000
6 (T4) | 0 a*,c,e,
and
synthetic
seawater | same as above | LaRoche,et
al (1970),
AMIC-445 | | Neburon | Mercenaria
mercenaria
(eggs) | t |
less than 2.4
(T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, | Davis, et
al(1969),
AMIC-5990 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments
Variables,
Controlled
or Noted | e!
Comments | Reference | |------------------|--------------------------------------|-----|-------------------|---|---|---|--------------------------------------| | | | | | | | however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Neburon | Mercenarla
mercenarla
(larvae) | ι | | less than 2.4
(T12) | | same as above | Davis, et
al(1969),
ANIC-5990 | | Nemagon | Mercenaria
mercenaria
(egqs) | L | | 10.0 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected develorment more than survival. Some, however, drastically reduced larval growth. The authors coint out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Nemagon | Mercenaria
mercenaria
(larvae) | L | | 0.78 (T12) | | same as above | Davis, et al
(1969),AMIC-
5998 | | Neomycin sulfate | Phormidium
ambiguum | ι | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of matt-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Otto(1970),
AMIC-892 | | New 8P 1100 | Crangon
crangon | BSA | | 3300-10,000
(T2) | | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure | | | | | | | water, and
daily
solution
renewal) | inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | |-------------------------------|------------------------|----|--------------------------|--|---|---| | Nickel sulfate.(as
nickel) | Carcinus B
maenas | SA | 255 (T2) | ation, sea-
water, and
daily
solution | One hundred-forty surface active agents, solvent emulsitiers, pesticides, polychlorinated biphenyls, pure inorquals, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
at (1971),
AMIC-7701 | | Nickel suffate (as
nickel) | Cardium edule B | SA | greater than
500 (T2) | a*(contin-
uous, aer-
ation, sca-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Nickel sulfate (as
nickel) | Crangon B
crangon | SA | 125 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Nickel sulfate (as
nickel) | Ostrea edulis B | SA | 100-150 (T2) | ae(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Port*ann, et
al (1971).
AMIC-7701 | | Nickel sulfate (as
nickel) | Pandalus 8
⊯ontagul | SA | 13.9 (72) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et al (1971), AMIC-7701 | | Compound | Organism | | Fletd
Location | Toxicity, Active Ingredient, Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |---------------------------------|---|-----|-------------------|--|---|---|---------------------------------------| | Nichet sulfate (as
Ni? plus) | Salmo
gairdneri
(eggs and
sperm) | BSA | | 1.0 (NTE) | 8,0,1 | Data were given in mq/I which was taken to be the equivalent of ppm. Fertilization rates were statistically similar in both test (Cu and NI) and control waters. The rate of
hatching was significantly different for eggs exposed to Cu and the rate of development was increased. The authors concluded that in hard waters neither Cu nor NI is likely to impair fertilization in rainbow trout. | (1971),
AMIC-1444 | | Nickel sulfate (as
NI) | Acroneuria | 854 | | 33.5 (T4) | a*,c,d,e,f | Ephemerella (mayfiy) was the most sensitive aquatic insect of those studied, and copper the most broadly toxic metal. The authors suggest that aquatic insects may not be as sensitive to heavy metals as fish. | Warnick, et
al(1969),
AMIC-3767 | | Nickel sulfate (as
Ni) | Ephemorella | BSA | | 4 (T4) | a*,c,d,e,f | same as above | Warnick, et
al(1969),
AMIC-3767 | | Nickel suffate (as
Ni) | Hydropsyche | BSA | | 64 (T14) | a*,c,d,e,f | same as above | Warnick, et
al(1969),
AMIC-3767 | | Nickel sulfate (as
Ni) | Phormidium
ambiguum | ι | | 0.5-10.0 (16
percent growth
inhibited14) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of materiorming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Offo (1970)
AHIC-892 | | lickel (plus copper,
tinc) | Salmo
galrdneri | BSA | | 0.5-1.8 (72) | a,c,e | Rainbow trout were exposed to copper, phenol, zinc, or nickel solutions to determine 48-hour LC50 values for | Brown, et al
(1970),
AMIC-5994 | | mlxtures | of copper and phenoi: copper, | |----------|-----------------------------------| | zinc, ar | d phenol: and copper, zinc, and | | nickei. | It was concluded that acute | | lethal t | oxicities of the mixtures could | | be adequ | rately described by summations of | | the frac | tional toxicities. | | | Concentrations of 13 toxic | | | in dressed fish from heavily | | Nickel | Coregonus
clupeaformis | FL | Moose Lake,
Can. | 0.2 (residue) | ••• | Concentrations of 13 toxic elements in dressed fish from heavity industrialized and non-industrialized areas were determined. Only mercury exceeded regulatory limits, and concentrations of most elements were essentially the same in fish from both areas. | Uthe, et as
(1971),
AMIC-3819 | |--------|---------------------------|----|--|---------------|-----|---|-------------------------------------| | Nickel | Esox fucius | FL | Moose Lake,
Can. | 0.2 (residue) | | same as above | Uthe, et al
(1971),AMIC=
3819 | | Mickel | Esox luclus | FL | Lake St.
Plerre, Can. | 0.2 (residue) | | same as above | Uthe, et
AL(1971),
AMIC-3819 | | Hickel | Esox lucius | FL | Lake Erie,
Can. | 0.2 (residue) | | same as above | Uthe, et at
(1971),AMIC-
3819 | | Hickel | Osmerus
mordax | FL | Lake Eria,
Can. | 0.2 (residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Nickes | Perca
flavescens | FL | Lake Erie,
Can. | 0.2 (residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Mickel | Coregonus
clupeaformis | FL | Lake
Ontarlo,
Can. | 0.2 (residue) | | same as above | Uthe, et a1
(1971),
AMIC-3819 | | Mickel | Paral abrax
clathratus | FH | Scattergood
Steam Plant,
LosAngeles,
Cal. | muscle | | Fish collected from an efficient pipe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nicket, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with atuminum, cadmium, and nicket. | Stableton
(1968),
AMIC-5980 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta Variables, Controlled or Noted | Comments | Reference | |----------|---|----|---|---|--|--|-----------------------------------| | | | | | | | Silver, barium, lithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of pollutants on marine organisms. | | | N1cke1 | Paralahrax
clathratus | FM | Catalina
Island, Cal. | 6.4 (dorsat
muscle
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Nickel | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stacteton
(1958),
AMIC+5980 | | Nickel | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 6.1 (ventral muscle residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Nickel | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | 14.7 (gonads
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Nickel | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 22.2 (gonads
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Nicket | Paralahrax
clathratus
(gravid
females) | FM | Catalina
Island, Cal. | 8.6
(gonads
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Nickel | Paratabrax
clathratus | FH | Scattergood
Steam Plant,
LosAngeles,
Cal. | | | same as above | Stapleton
(1958),
AMIC-5980 | | Nickel | Paralabrax
clathratus | FM | Catailna
Island, Cal. | 7.6 (llver
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Nickel | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
LosAngeles, | 9 (Integument residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Nicket | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 18.2
(integument
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | |----------|---------------------------------------|-----|--|---------------------------------|---------|---|--------------------------------------| | Nicket | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Nickel | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 10.8 (heart
residue) | | same as above | Stapleton
(1958),
AHIC-5980 | | Nickei | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
LosAngeles,
Cal. | 6.4 (eyebali
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Nickel | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 33.2 (eyeball
residue) | | same as above | Stacleton
(1958),
AHIC-5980 | | Nicket | Satmo
galrdneri | BSA | | 32.0 (T2) | 8,0,0 | Rainbow trout were exposed to copper, phenol, zinc, or nickel solutions to determine 48-hour LC50 values for mixtures of copper and phenol: copper, zinc, and phenol: and copper, zinc, and nickel. It was concluded that acute lethal toxicities of the mixtures could be adequately described by summations of the fractional toxicities. | Brown, et al
(1970),
AHIC-5994 | | Nicotine | Negaprion
brevirostris
(1-3 kg) | BSA | | 34 (SB) | a,c,e | Data from study of drug effects on young lemon sharks were treated mathematically to demonstrate applicability of classical rate theory to the study of chemical shark deterrents. Incanacitation (narcosis) was the primary parameter timed for effectiveness. This was usually quite rapid for the more effective drugs. | Baldridge
(1959),AMIC-
3832 | | Nicotine | Labeo rohita | L | | 1.0 (S87) | a,d,e,f | This experiment showed that nicotine could be successfully used to live-capture fish from reservoirs. Fish surfaced and recovered rapidly when placed in freshwater. Fish remaining in test solutions above 4 ppm did not recover. This chemical was considerably less toxic to the aquatic insects studied. | Konar
(1970),
AHIC-5435 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controtted
or Noted | al
Comments | Reference | |----------------------|------------------------------|-----|-------------------|---|---|---|--| | licotine | Puntius
soohore | L | • |
1.0 (SB7) | a,d,e,f | same as above | Konar
(1970),
AMIC-5435 | | licotin s | Ranatra
fliiformis | t | | 40 (NTE7) | a,d,e,f | same as above | Konar
(1970),
AHIC-5435 | | licotine | Dytiscus so. | ι | | 400 (NTE7) | a,d,e,f | same as above | Konar
(1970),
AMIC-5435 | | licotine | Heteropneus-
tes fossilis | t | | 3.2 (SB 5 hr),
K 18 hr) | | Epidermal lesions of cattish barbels were moderate to severe after excosure noted. Barbel curling and inactivation were associated effects. | Konar(1969),
AMIC-5726 | | litric acid | Agonus
cafaphractus | BSA | | 100-330 (12) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | | Portmann, et
al (1971).
AMIC-7701 | | lifric acid | Asterlas
rubens | BSA | | 100-330 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | itric acid | Carcinus
maenas | BSA | | 180 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - 43 above | Portmann, et
at
(1971),AMIC~
7701 | | itric acid | Cardium edule | AZ8 | | 330-1000 (T2) | a*(contin- | Same as above | Portmann, e | | | | | | uous, aeration, seawater, and daily solution renewal) | | al (1971),
AMIC-7701 | |--------------------------------|--------------------------------|----------------|----------|---|---|---| | Mitrilotriacetic
acid (NTA) | Amohidinium (
carteri | | 10 (NTE) | SSM and
NSW | NTA stimulated algal growth in cultures without added copper and reduced toxicity of copper at all levels of copper addition. See information on CuC12.H2O (as Cu) under authors cited for further information. | AMIC-449 | | Nitrilotriacetic
acid (NTA) | Chaetoceros L
sp | | 10 (NTE) | SSM and
NSW | same as above | Erickson, et
a1(1970),
AMIC-449 | | Nitrilotriacetic
acid (NTA) | Cyclotella L
nana | | 10 (NTE) | NSM
SSM and | same as above | Erickson, et
al(1970),
AMIC-449 | | Nitrilotriacetic
acid (NTA) | Dunatletta L
tertiolecta | | 10 (NTE) | NSW and | same as above | Erickson, et
al (1978),
AMIC-449 | | Nitritotriacetic
acid (NTA) | Isochrysis l
galbana | | 10 (NTE) | NSH and | same as above | Erickson,et
al (1970),
AMIC-449 | | Nitritotriacetic
acid (NTA) | Monochrysis L
tutheri | | 10 (NTE) | NSH and | same as above | Erickson, et
al (1970),
AMIC-449 | | Mitritotriacetic
acid (NTA) | Nannochioris L
oculata | | 10 (NTE) | SSM and | Erickson, et at (1970), AMIC-449 | Nitrilotriac
etic acid
(NTA) | | Nitrilotriacetic acid | Nitzschia L
closterium | | 10 (NTE) | SSM and
NSW | same as above | Erickson, et
al (1970),
AMIC-1419 | | Kitrilotriacetic
acid | . Olisthodiscus L
luteus | | (10 NTE) | SSM and
NSW | same as above | Erickson, et
al (1970),
AMIC-449 | | Nitrilotriacetic
acid | Platymonas L
subcordiformis | | (10 NTE) | SSM and
NSW | same as above | Erickson, et
al (1970),
AMIC-4449 | | Nitrilotriacetic acid | Porphyridium Locruentum | -,- | (10 NTE) | SSM and
NSW | same as above | Erickson, et
al (1970),
AMIC-1449 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |--------------------------|--|-------------|--------------------------------|---|---|--|-------------------------------------| | Ni trofurazone | Mercenaria
mercenaria
(eggs) | ι | | greater than
100.0 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval arowth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | Davis,et bi
(1969),
AMIC-5990 | | Wi trofurazone | Mercenaria
mercenaria
(farvae) | L | | greater than
100.0 (T12) | | same as above | Davis, et a
(1969),
AMIC-5990 | | Nitrogen
(dissolved) | Oncorhynchus
tshawytscha
(juveniles) | FR.BS
CH | Priest
Rapids Dam,
Wash. | Super
saturation
(K54) | | The nitrogen gas regime in the Columbia River was studied in 1966 in order to determine whether high levels of dissolved nitrogen might be responsible for losses of adult satmon and poor production of young fish at spawning channels. Examinations of dead juvenile satmon revealed that most fish had symptoms of "gas bubble disease". Juvenile satmon kept at sufficient depth to compensate for the supersaturation of dissolved nitrogen were free of symptoms of gas bubble disease. Fish under stress from the supersaturation of dissolved nitrogen were very intolerant to temperature increases. | Ebel (1969
AMIC-6198 | | litrogen
(dissolved) | Salmo
gairdneri
(adults) | FR | McNary Dame
Wash. | Supersaturation
(NTE 35) | • | same as above | Ebel (1969)
AMIC-6198 | | (1 trogen
(dissofved) | Oncorhynchus
kisutch
(juvenites) | FR,
BSCH | Priest
RapidsDam,
Wash. | Super
saturation
(6-16 percent | • | same as above | Ebel (1969)
AHIC-6198 | | i | 1 | | |---|---|---| | L | ì | 1 | | Ū | ï | | | - | | • | | Nitrogen
(dissolved) | Oncorhynchus
nerka
(adul ts) | FR | McNary Dam,
Wash. | Supersaturation
(SB35) | a | same as above | Ebel (1969),
AMIC-6198 | |---|------------------------------------|---------------|--|--------------------------------------|--|---|--| | NI, Cu, Cr, CN, and
Zn (wastewater) | Pimechales
prometas | BSACF
(HL) | Grand River
at Wyoming,
Hichigan | approx. 1.67
percent (T3) | Ni, Cu, Cr, | A mobile bloassay unit was utilized to conduct this study of municipal wastewater containing the indicated toxicants. River water was used as diluent. The conclusion was reached that synergistic or additive toxic effects occurred since toxicity was greater than that of any of the ions singly. | 71111ch
(1969),
AMIC-2906 | | MI, Cu, Cr, CN, and
Zn (wastewater) | Catostomus
commersoni | BSACF
(ML) | Grand River
atwyoming,
Michigan | between
1.25-3.75
percent (T3) | a,c,e, conductivity,
Ni,Gu,Gr,
CN, and Zn | ' same as above | Zillich
(1969),
AMIC-2906 | | Nony1 phenol 12
(plus ethylene
oxide) | Carcinus
maenas | BSA | | greater than
100(TZ) | water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychiorinated biphenyls, pure inorqanic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Nonyl phenol 12
(plus ethylene
oxide) | Cardium edule | BSA | | 92.5 (T2) | as(continuous aeration, seawater, and daily solution renewal) | same as above | Portmann, et
a!
(1971),AMIC-
7701 | | Nonyl pheno! 12
(plus ethylene
oxide) | Crangon
crangon | 854 | | 89.5 (T2) | au(continuous, aeration, sea-
water, and
daily
solution
renswal) | | Portmann, et
al
(1971),AMIC-
7701 | | Nonyl phenol 12
(plus ethylene
exide) | Pandalus
montagui | BSA | *** | 19.3 (72) | ar(continuous, aer-
ation, sea- | evode ze emez | Portmann, et al (1971), AMIC- | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments Variables, Controlled or Noted | | Reference | |----------|-------------------------|--------------------|-------------------|---|--|---
---| | | | | | | water, and daily solution renewal) | | 7701 | | Norea | Gammarus
fasclatus | BSA | | 1.4 (T4) | a* | Of the aquatic weed herbicides evaluated, Dicione was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | | | Norsewan | Crangon
crangon | BSA | | 3.3-10 (T4) | | 0110 1101101 20 10111 | Portmann, ei
al (1971),
AMIC-7701 | | NPH 1253 | Rasbora
heteromorpha | BCFA
and
BSA | | 0.14 (T2) | a*,c,e,f, hard (HH) or SOFT(SH) synthetlc dilutlon water, or seawater for some specles | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | NPH 1313 | Rasbora
heteromorpha | BCFA
and
BSA | | 11 (T2) | a*,c,e,f,
hard (HH)
or soft
(SW)
synthetic
dilution
water, or | same as above | Alabaster
(1969),
AHIC-5425 | | | | | | | seawater
for some
species | | | |----------------------------------|-------------------------|--------------------|---------|----------------|--|--|-----------------------------------| | NPH 1313 | Rasbora
heteramorpha | BCFA
and
BSA | | 5.0 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC~5425 | | Nucidol diazinon
sheep dip | Rasbora
heteromorpha | BCFA
and
BSA | ~~ | 1.45 (T1) | a*,c,e,f,
hard (HW)
or soft
(SW) syn-
thetic
dilution
water, or
seawater
for some
species | same as above | Alabaster,
(1969),AMIC
5425 | | Nystatin | Phormidium
ambiguum | ι | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as aigicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | O++o (1970),
AMIC-892 | | N-methyl carbamate
derivitive | Rasbora
heteromorpha | BCFA
and
BSA | | D.58 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
ditution
water,or
seawater | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a | Alabaster
(1969),
AMIC-5425 | | Compound | Organis= | | Field
Location | Toxicity, Active Ingredient, Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |---|--------------------------------------|-----|-------------------|----------------------------------|---|--|---| | | | | | | species | pesticides were most toxic in hard water
and sometimes the opposite was true.
Testing the actual material as sold was
found to be essential. | | | 3452 | Cra≤sostrea
virginica | t. | | less than 0.5
(T2) | | The effect of 52 pesticides on embryonic development of clams and | Davis, et al | | | (eqqs) | | | , | | oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | 3452 | Crassostrea
virginica
(1arvae) | L | | less than 0.5
(T14) | | same as above | Davis, et
al(1969),
AMIC=5990 | | 3514 | Mercenarla
mercenarla
(eggs) | L | | less than 1.0
(T2) | | same as above | Davis, et al
(1969), AMIC- | | 3514 | Mercenaria
mercenaria
(larvae) | t | | tess than 1.0
(T12) | | same as above. | Davis, et
a1(1969),
AMIC-5900 | | 3514 | Crassostrea
virginica
(eggs) | ι | | less than 1.0
(T2) | | same as above | Davis, et
al(1969),
AMIC-5990 | | 3514 | Crassostrea
virginica
(farvae) | ι | | less than 1.0
(T14) | | same as above | Davis, et
ai(1969),
AHIC-5990 | | tyl phenol 11
plus ethylene
(ide) | Carcinus
#aenas | BSA | | greater than100
(T2) | (continuou
s
aeration, | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychlorinated biphenyls, pure inorqanic, and organic chemicals were evaluated against as many as ten marine | Portmann, et
al (1971),
AMIC-7701 | | | | | | solution
renewal) | organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | |---|-----------------------------|---------------|-------------|--|--|---| | Octyl phenoi 11
(plus ethylene
oxlde) | Cardium edule BSA | 4 | 19.6(72) | a#(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al(1971),
AMIC-7701 | | Octyl phenol 11
(plus ethylene
oxide) | Crangon 85/
crangon | A | 63(T4) | a*(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
alli971),
AMIC-7701 | | Octyl phenol 11
(plus ethylene
oxide) | Pandalus 8S/
montaqui | A | 10.8 (T2) | a*(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renswal) | same as above | Portmann, et
a!(1971),
AMIC-7701 | | Octyl phenol 11
(plus ethylene
oxide) | Platicthys BS/
flesus | A | 33-100 (T2) | a#(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et al
(1971),AMIC-
7701 | | OD | Fundulus BS
heterociltus | A | 0.0005 (74) | a*,c,e,
and
synthetic
seawater | A laboratory procedure based on Standard Methods for 96-hr toxicity determinations of crude oil and oil-dispersant mixtures was described. The dispersants varied considerably in toxicity, ranging from 0.01 to 7.1 ml/l, 11.50 for 96 hr. These did not differ significantly from 240 hr values. The dispersants were designated as CX, DO, CI, OD, AO, PC, NM, TN, BP, and NA with no further description of their chemical nature or source. Only a few bloassays were conducted with shrimp. Mollusks and echinoderms were suggested as sultable test animals. The authors stated that the method could be used to test any product for toxicity in seawater. | LaRoche,et
at (1970),
ANIC-445 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | a (
Comments | Reference | |-------------------|------------------------------------|-----|-------------------|---|--
---|---| | op | Nereis virens | BSA | ~- | 0.00014-0.00094
(T4) | a*,c.e,
and
synthetic
seawater | same as above | taRoche.et
al (1970),
ANIC-445 | | 011 herder | Crangon
crangon | BSA | | 3300-10.000
(T4) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, -polychlorinated biphenyls, bure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
at (1971),
AMIC-7701 | | Oll (crude) | Palaemonetes
vulgaris | BSA | | greater than 1.0 (T4) | a*,c,e,
and
synthetic
seawater | A laboratory procedure based on Standard Methods for 96-hr toxicity determinations of crude oil and oil-dispersant mixtures was described. The dispersants varied considerably in toxicity, ranging from 0.01 to 7.1 mi/l, TL50 for 96 hr. These did not differ significantly from 240 hr values. The dispersants were designated as CX, DO, CI, OD, AQ, PC, MM, TN, BP, and NA with no further description of their chemical nature or source. Only a few bloassays were conducted with shrimp. Molfusks and echinoderms were suggested as suitable test animals. The authors stated that the method could be used to test any product for toxicity in seawater. | LaRoche, et
ai (1970),
AMIC-445 | | Oll (crude oll B) | Fundulus
heteroclitus | BSA | | 0.0082 (T4) | a*,c,e,
and
synthetic
seawater | same as above | LaRoche, et
a! (1970),
AMIC-445 | | Oli (crude oli 8) | Nerels virens | BSA | | 0.0061 (T4) | a*,c,e,
and
synthetic
seawater | same as above | LaRoche, et
al (1970),
AMIC-445 | | Oil (refined) | Palaemonetes
vulgaris | BSA | | 0.00005 (T4) | a*,c,e,
and
synthetic
seawater | same as above | taRoche, et
a1 (1970),
AMIC-445 | | Omazene | Mercenaria
mercenaria
(eggs) | L | | 0.081 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. | Davis, et al
(1969), AMIC-
5990 | Host of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | | | | | Shellilish. | | |---|----------------------------|--------------------------------------|--------------------|---------------------------------|--|--|--------------------------------------| | | Omazene | Mercenaria
mercenaria
(larvae) | ι |
0.38 (712) | , | same as above | Davis, et al | | | | | | | | | 5990 | | | Gmazene | Crassostrea
virginica | L |
0.078 (T2) | | same as above | Davis, et al | | | | (eggs) | | | | | (1969) • AMIC-
5990 | | | Omazène | Crassostrea
virginica | ι |
0.34 (T14) | | same as ahove | Davis, et al | | | | (larvae) | | | | | (1969) - AMIC -
5990 | | | Or thod I ch I or obenzene | Mercenaria
mercenaria
(egas) | t |
greater than
100.0 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | Davis, et al
(1969),
AMIC-5990 | | ٠ | Orthodich1orobenzene | Mercenaria
mercenaria
(larvae) | L |
greater than
100.0 (T12) | | same as above | Davis, et al
(1969),
AMIC-5990 | | | Oxine-copper | Salmo
gairdneri
, | BCFA
and
BSA |
0.14 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW) synthe
tic
dilution
water, or | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy | Alabaster
(1969),
AMIC-5425 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |--|-------------------------|--------------------|-------------------|---|--|---|-----------------------------------| | | | | | | seawater
for some
species | predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | | Oxygen | Leponis
macrochirus | BCF | | O to saturation (SB8) | a,e* | Fish 15-20 cm long were exposed to gradual hypoxia stress to determine the effect on skeletal muscle and liver lactate and pyruvate. Tests were conducted at 5 and 20 C with DD reduced from saturation to zero over an 8-hour period. Low DO increased lactic acid concentrations in muscle and liver at both temperatures: pyruvic acid levels remained constant. Lactic acid levels were higher at 5 C than at 20 C, and fish were better able to tolerate low oxygen levels at the lower temperature. | Burton
(1970),
AMIC-6385 | | o-dichlorobenzene
(50 percent plus 20
percent crescylic
acid) | Rasbora
heteromorpha | BCFA
AND
BSA | | 5.0 (T2) | dliution water, | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC+5425 | | o,o-diethyl o-2
pyrazinyl
phosphorothiate | Rasbora
heteromorpha | BCFA
and
BSA | | 0.05(T2) | a*.c.e.f.
hard (HH)
or soft
(SH)
synthetic
dilution
water, or
seewater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Paraquat-di
(methyl) chloride | Rasbor a
heteromorpha | BCFA
and
BSA | | 32 (12) | a*.c.e,f,h ard (HH) or soft (SH) synthetic dilution water, or seawater for some species | same as above | Alabaster
(1969),AMIC-
5425 | |----------------------------------|---------------------------------|--------------------|--------------------------------|---|---|---|-----------------------------------| | Paraquat | Chara sp | FL | Jefferson
County.,
Colo. | 1.14(K16) | a,C,d,e,g,
and water
stage | Paraquat almost eliminated Chara sp. in 16 days and gave initial control of Spirogyra sp. The latter recovered within 3 mos. Fish deaths and other effects occurred within 48 hr. Paraquat was recovered from mud 99 days after application, indicating that this herbicide can be very persistent. This study was conducted in 1964. Livecar exposure of some fish was one technique employed. | Earnes†
(1971);
AMIC-5564 | | Paraquat | Hater
(bottom) | FL | Jefferson
County.,
Colo. | 1.14 (1.5 ppm
max residue3
hr) | a,c,d,e,g,
and water
stage | same as above |
Earnest
(1971),AHIC-
5564 | | Paraquat | Mud | FL | Jefferson
County.,
Coto. | 1.14 (15.9 ppm
maxresidue 16
residue 16d) | a,c,d,e,g,
and water
stage | same as above | Earnest
(1971),
AMIC-5564 | | Paraquat | Spirogyra sp | FL | Jefferson
County.,
Colo. | 1.14 (K16) | a,c,d,e,g,
and water
stage | same as above | Earnest
(1971) ,
AMIC-5564 | | Paraquat | Chara sp | FL | Jefferson
County.,
Colo. | 1.14 (2300 ppm
max fissue
residue 8d) | a,c,d,e,g,
and water
stage | same as above | Earnest
(1971),
AMIC-5564 | | Paraquat | Spirogyra sp | FL | Jefferson
County.,
Colo. | 1.14 (1300 ppm
max tissue
residue 4d) | a.c.d.e.g.
and water
stage | same as above | Earnest
(1971),
AMIC-5564 | | Paraquat | Rainbow trout | FL | Jefferson
County
Colo. | 1.1 (1.9ppm max
tissue 1
residue 1d) | a,c,d,e,g,
and water
stage | Same as above | Earnest
(1971),AMIC-
5564 | | Paraquat | Channel
cattish | FL | Jefferson
County.,
Colo. | i.1 (1.3 ppm
max
tissue 1
residue ld) | a,c,d,e,g,
and water
stage | same as above | Earnest
(1971),
AHIC-5564 | | Compound | Organism | | Field
Location | Toxicity, Active Ingredient, PDM | Experiment:
Variables,
Controlled
or Noted | Comments | Reference | |----------------------------------|------------------------|------|--------------------------------|---|---|---|---| | Paraquat | Green sunfish | FL | Jefferson
County.,
Colo. | 1.1 (2.1ppm max
tissueresidue
16 d) | a,c,d,e,g,
and water
stage | same as above | Earnes†
(1971),
AMIC-5564 | | Paraquat | Alueqliis | FL | Jefferson
County.,
Colo. | 1.1 (1.6 ppmmax
tissueresidue 8
d) | | same as above | Earnest
(1971),
AHIC-5564 | | Paraquat | Water (top) | FL | Jefferson
County.,
Colo. | 1.14 (0.6 ppm
max residue3
hr=1 d) | a.c.d.e.g,
and water
stage | same as above | Earnest
(1971),
AMIC~5564 | | Paraguat | Cardlum edule | BSA | | greater than 10 (TZ) | uous aer-
ation, sea | One hundred-torty surface active agents, solvent emulsifiers, pesticides, polychiorinated bibbenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Paraquaf | Crangon
crangon | BSA | | greater than 10
(T2) | ar(continuous aer-
ation, sea
water, and
daily
solution
renewal) | | Portmann, et
al (1971),
AMIC~7701 | | Parathion (plus 0.25
ppm LAS) | Pimephales
promelas | BCFA | | 0.8 (2.5
percent K) | a⁴,e | LAS acted synergistically with parathlon to cause less survival of fatheds but had an indeterminate effect with OOT and no synergistic effect with Endrin. | Solon, et al
(1969),
AMIC-3785 | | Parathion (plus 0.5 ppm LAS) | Pimephales
prometas | BCFA | | 0.8 (61.5
percent K) | a*,e | same as above | Solon, et al
(1959),
AMIC-3785 | | Parathion (plus 1
pp= LAS) | Pimephales
promelas | BCFA | | 0.8 (95 percent
K) | a•,e | same as above | Solon, et al
(1969),
AMIC-3785 | | Parathion (Sesamex pretreatment at 2 ppm) | Notemigonus
chrysoleucas | L |
0.20 (46percent
AChE
Inhibition) | | Fish brain AChE activity was not affected by Sesamex alone but was significantly inhibited by parathion-Pretreatment with Sesamex at 2 ppm resulted in decreased inhibition of AChe activity by parathion. | Glbson, et
at (1971).
AMIC-3799 | |---|---|------|---|------|---|---------------------------------------| | Parathion (Sesamex pretreatment at 2 ppm) | Lepomls
cyanellus | ι |
0.20 (40
percentAChE
inhibition) | | same as above | Gibson, et
al (1971),
AMIC-3799 | | Parathion (Sesamex pretreatment at 2 ppm) | Lenomis
macrochirus | ι |
0.20 (47percent
AChE
Inhibition) | | same as above | Glbson, et
al (1971),
AMIC-3799 | | Parathion | Lepomis
macrochirus
(brain
tissue) | L |
0.75 (SB 30 min, invitro) | | This study was conducted to determine whether brain tissue and handling variables (freezing-thawing) affected ACHE assays. ACHE inhibition of 25 oercent occurred at 750 prb. Considerable variation occurred, i.e., no symptoms were evident and fish recovered after experiencing 90 percent ACHE inhibition. The authors recommend standardization of handling procedures and fish strain. | | | Parathion | Pimephales
prometas | BCFA |
1.4 (T4) | a*,e | LAS acted synergistically with parathion to cause tess survivat of fatheds but had an indeterminate effect with DDT and no synergistic effect with Endrin. | Solon, et
al(1969),
AMIC~3785 | | Parathion | Pimephales
prometas | BCFA |
0.8 (5 percent
K) | a*,e | same as above | Solon, et
al(1969),
AMIC-3785 | | Parathion | Notemigonus
chrysoleucas | L | 0.20 (67
percent
ACHE
inhibition) | | Fish brain AChE activity was not affected by Sesamex alone but was significantly inhibited by parathion. Pretreatment with Sesamex at 2 ppm resulted in decreased inhibition of AChe activity by parathion. | Glbson, et
a! (1971),
AHIC+3799 | | Parathion | Lepomis
cyanellus | Ł |
0.20 (74
percent AChE
inhibition) | •• | same as above | Glbson, et
al (1971),
AMIC-3799 | | Parathlon | Lenomis
macrochirus | ι |
0.20 (68
percent AChE
inhibition) | | same as above | Glbson, et
al(1971),
AMIC-3799 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta Variables, Controlled or Noted | Comments | Reference | |-----------|--|-----|-------------------|---|--|---|---------------------------------------| | Parathion | Lepomis
cyanellus
(Pesistant) | BSA | | 0.28 (T2) | a* | Green sunfish from Belzoni, Miss. were resistant to Chiordana, Heptachior, Lindane, and Strobane, but not to Parathion. Golden shiners from the same location were resistant to Lindane and Strobane, tolerant to Chiordane and Heptachior, and susceptible to Parathion. Lack of resistance to Parathion indicated lack of agricultural usage of organophosphates in that area. Resistant fish were compared to susceptible ones collected at Starkville. | al(1970),
AMIC+5471 | | Parathion | Lepomis
cyanellus
(Susceptible) | BSA | | 0.21 (T2) | a* | same as above | Minches, et
el(1970),
AMIC-5471 | | Parathlon | Notemigonus
crysoleucas
(Resistant) | BSA | | 2.80 (T2) | a* | same as above | Minchew, et
al(1970),
AMIC-5471 | | Parathlon | Notemigonus
crysoleucas
(Susceptible) | BSA | | 1.90 (T2) | a* | same as above | Minchew,
etal (1970)
AMIC-5471 | | Parathion | Palaemonetes
kadlakensis
(non-
resistant) | BSA | | 0.0071 (T1) | a♥ | same as above | Nagvi, et a
(1970),
AMIC-5519 | | Parathion | Palaemonetes
kadlakensis
(resistant) | BSA | | 0.0066-0.0118
(T1) | •• | Rioassays were conducted with shrimp from three areas of intensive pesticide use and from an unexposed area. Previously exposed shrimp were from 1 to 25 times more resistant than unexposed shrimp. Both types of shrimp were also exposed in cages to waters of the contaminated areas. Susceptible shrimp suffered 66 percent more mortality than did resistant shrimp. The toxicity of the insecticides ranked in descending order was as follows: most toxic, Endrin, DDT, Methyl parathion, Parathions medium toxicity, Guthlon, Lindane, | | Toxaphene, Strobane: lease toxic Chiordane, Sevin, and Hebtachior. | Parathion | Notemigonus
crysoleucas | L | | 0.5 (SB 1-2) | | Fish exposed as indicated had significant or highly significant changes in hematocrit, feucocytes, lymphocytes, heterophits, and in body weight. No significant changes were noted in body tength, or erythrocyte total and fragility. The authors state that effects on hemopoeliss and cell membranes could produce the results reported. | Butler, et
al (1969),
AMIC-5977 | |-----------|----------------------------|------------------|-------------------|--------------------|---
---|---| | Parathion | Tubifex
tubifex | FL
and
BSA | Belzoni,
Miss. | 2.00 (NTE) | | The response of pesticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Betzoni and non-resistant species at State College. Copends, clams, snails, and sludge worms from Betzoni were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic levels. | Nagvi, etai
(1969),
AMIC-5979 | | Parathion | Cardium edule | A 2 B | | 3.3-10 (T2) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Parathion | Crangon
crangon | BSA | | 0.003-0.01
(T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
a! (1971),
AMIC-7701 | | Parathion | Pieuronectes
piatessa | BSA | | 0.03-0.10 (T2) | aw(contin-
uous aer-
ation, sea-
water, and | same as above | Portmann, et
al (1971),
AHIC-7701 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |-----------|------------------------|------|-------------------|---|---|--|---| | | | | | | daily
solution
renewal) | | | | Parathion | Ictaturus
nebutosus | BCFA | | 0.8-3.0 (K up
to 30 d) | a*,c,d,e,f
,9 | Catfish blood content of parathlon was shown to be directly correlatable with water content, lethality, and sublethal symptoms. Freeze-thawing of blood five times resulted in disruption of blood cells and release of unaitered parathlon thus indicating that this pesticide is not readily and completely metabolized in fish. | Hount, et al
(1959),
AMIC+11 | | Perethion | Ictalurus
nehulosus | BCFA | | 10-80 (blood
residue) | a*,c,d,e,f
,g | same as above | Mount,et al
(1969),
AMIC=11 | | PC B | White sucker | FRL | Misc. states | 0.27-14.8
residue (SB) | | The Bureau of Sport Fisherles continued its fish monitoring program by collecting 147 composite fish samples from 50 nationwide monitoring stations during the fall of 1969. Fish were analyzed for residues of 11 organochiorine insecticides, lipids, and PCB*s. | Henderson,
et al(1971),
AHIC-1407 | | PC 9 | Yellow perch | FRL | Misc. states | 0.28-12.6
residue (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | PCB | Chain
pickere! | FRL | Misc. states | 0.45 residue
(SB) | | same as above | Henderson.
etal (1971).
AHIC-1407 | | PCB | White catfish | FRL | Misc. states | less than
0.10-2.16
residue (SB) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | PC B | White perch | FRL | Misc. states | tess than
0-10-7-68
residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | PCB | Goldfish | FRL | Misc. | states | 9.50 residue
(SR) | | same as above | Henderson,
et al
(1971),AHIC-
1407 | |-----|----------------------|-----|-------|--------|--|----|---------------|---| | PCB | Pumpkinseed | FRL | Misc. | states | 2.68 residue
(SB) | | same as above | Henderson,
et al(1971),
ANIC-1407 | | PCB | Largemouth
bass | FRL | Nisc. | states | less than
0.10-8.07
residue (SB) | •• | same as above | Henderson,
et al
(1971),
AMIC-1407 | | PCB | Brown
builhead | FRL | Misc. | states | 0.34-4.00
residue (SB) | | same as above | Henderson,et
al (1971).
AMIC-1407 | | PCB | Carp | FRL | Hisc. | states | less than
0.10-11.7
residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | PCB | Channel
catfish | FRL | Misc. | states | less than
0.10-6.77
residue (SB) | | same as above | Henderson,
et al
(1971),
AMIC-1407 | | PCB | Redhorse
sucker | FRL | Misc. | states | tess than
0.10-0.25
residue (SB) | •• | same as above | Henderson,
et al
(1971),
AMIC-1407 | | PCB | Gizzard shad | FRL | Misc. | states | 0.22-0.86
residue (SB) | •• | same as above | Henderson, et
al (1971).
ANIC-1407 | | PCB | Spotted
sucker | FRL | Misc. | states | tess than 0.10
residue (SB) | | same as above | Henderson, et
al (1971),
AHIC-1407 | | PCB | Blueg111s | FRL | Misc. | states | 0.35-1.19
residue (SB) | | same as above | Henderson,
et al
(1971),AMIC-
1407 | | PCB | Redbreast
sunflsh | FRL | Misc. | states | 0.15 residue
(SB) | | same as above | Henderson.
et al(1971).
AMIC-1407 | | PCR | Striped
mullet | FRL | Misc. | states | Tess than
0.10-1.39
residue (SB) | | same as above | Henderson,
et al
(1971), | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experimental
Variables,
Controlled
or Noted | Comments | Reference | |-------------|------------------------|-----|-------------------|---|--|---------------|---| | | | | | | | | AMTC-1407 | | PCB | Blue catfish | FRL | Misc. states | less than 0.10
residue (SB) | | same as above | Henderson,
etal (1971),
AMIC -1407 | | PCB | Rock bass | FRL | Misc. states | 0.39-4.10
residue (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | PCB | Freshwater
drum | FRL | Misc. states | 1.94 residue
(SB) | | same as above | Henderson,
et al(1971),
AHIC-1407 | | PCB | Bloater | FRL | Misc. states | 1.24-3.47
residue (SB) | •• | same as above | Henderson,
et at
(1971),AMIC-
1407 | | PCB | Lake
whitefish | FRL | Misc. states | 1.96 residue
(SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | PC B | Lake trout | FRL | Misc. states | 2.64-2.84
residue (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | pcb | White crappie | FRL | Misc. states | 0.83-1.79
residue (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | PCB | 81qmouth
buffalo | FRL | Misc. states | less than
0.10-1.21
residue(SB) | | same as above | Henderson,
et a!
(1971),
AMIC-1407 | | PCB | Small mouth
buffalo | FRL | Misc. states | 2.66 residue
(SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | PC8 | Flathead
catfish | FRL | Misc. states | 3.88 residue
(SB) | •• | same as above | Henderson,
et al(1971),
AMIC-1407 | | P CB | Goldeye | FRL | Misc. states | 0.16-2.35
residue (SB) | | same as above | Henderson,
et al(1971), | | | | | | | | | | AMIC-1407 | |-------|------------------------|-----|-------|--------|--|----|---------------|---| | · PCB | Walleye | FRL | Misc. | states | 0.22 residue
(SB) | •• | same as above | Henderson,
et a!
(1971),4MIC-
1407 | | PCB | Sauger | FRL | Misc. | states | 1.09 residue
(SB) | •• | same as above | Henderson.et
at
(1971),AMIC-
1407 | | PCB | Fiannelmouth
sucker | FRL | Misc. | states | 2.14 residue
(SB) | •• | same as above | Henderson,
et al(1971),
AMIC-1407 | | PCB | Black
bulihead | FRL | Hisc. | states | 0.15-0.21
residue (S8) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | PCB | White bass | FRL | M1sc. | states | 1.04 residue
(SB) | | same as above | Henderson,
et al
(1971),AMIC-
1407 | | PCB | Black crapple | FRL | MIsc. | states | less than
0.10-1.83
residue (SB) | | same as above | Henderson.et
al (1971),
AMIC-1497 | | PCB | Langescale
sucker | FRL | Misc. | states | less than
0.10-1.16
residue (SB) | | same as above | Henderson,
et al
(1971),
AHIC-1407 | | PCB | Small mouth
bass | FRL | Hisc. | states | less than 0.10 residue (SB) | | same as above | Henderson, et al (1971), AMIC+1407 | | PCB | Northern
squawfish | FRL | MIsc. | states | 0.58-1.19
residue (SB) | | same as above | Henderson,et
al (1971),
AMIC-1407 | | PCB | Chiselmouth | FRL | Misc. | states | 0.71-0.98
residue (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | PCB | Klamath
sucker | FRL | H1sc. | states | 0.13 residue
(SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | PC B | Rainbow trout | FRL | Hisc. | states | 0.27-5.48
residue (SB) | | same as above | Henderson,
et al(1971), | | Campound | Organism | |
Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | Comments | Reference | |----------|--|-----|------------------------|---|---|--|---| | | | | | | | | AMIC-1407 | | PCB | Arldgellp
sucker | FRL | Mlsc. states | 2.75 residue
(SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | PCA | Arctic
grayling | FRL | Hisc. states | 1.42 residue
(SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | PC B | Pound
whitefish | FRL | Misc. states | (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | PC 8 | Longnose
sucker | FRL | Hisc. states | 1.53-3.87
residue (SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | PCB | Sebastodes
sp. | FO | Pacific
Ocean, Cai. | 1.0 (Hiver
residue) | | Samples of marine animals were collected from three locations off the coast of Southern California and analyze for residues of chiorinated hydrocarbons. The data suggest that Keilet's whelk would be a good indicator organism for studying the regional distribution of chiorinated hydrocarbons. | | | PCB | Panatabnax
nebutifen | FO | Pacific
Ocean, Cai. | 0.24 (fiver
residue) | | same as above | Munson(1972),
AMIC+3096 | | PCB | Anisotremus
davidsoni | FO | Pacific
Ocean, Cai. | 0.51 (llver
residue) | | same as above | Munson(1972),
AMIC-3096 | | PCB | Plmelometapon
pulchrum | FO | Pacific
Ocean, Cal. | 0.29 (liver residue) | | same as above | Munson(1972)+
AMIC+3096 | | PCB | Hallotis
rufescens | FO | Pacific
Ocean, Cai. | less than 2.0 (gonad residue) | | same as above | Munson
(1972),
Amic-3096 | | PCB | Strongylocent
rotus
franciscanus | FO | Pacific
Ocean, Cal. | 0.12-0.21
(gonad
residue) | | same as above | Munson
(1972),
AMIC-3096 | | PCB | Hinnites
multirugosis | FO | Pacific
Ocean, Cal. | 0.5
(gonad
residue) | | same as above | Munson(1972),
AMIC-3096 | | PCB | Hallotis
corrugata | FO | Pacific
Ocean, Cai. | 0.008 (gonad
residue) | | same as above | Munson
(1972),AMIC-
3096 | |------|--------------------------|-----|-------------------------|--------------------------|----|---|--------------------------------| | PCB | Kelletia
kelletil | FO | Pacific
Ocean, Cai. | 0.23 (residue) | | same as above | Munson
(1972),AHIC-
3096 | | PCB | Panullrua
Interruptus | FO | Pacific
Ocean. Cal. | 0.16 (muscle
residue) | | same as above | Munson(1972):
AMIC-3096 | | PCB | Anguilla
rostrata | FRL | St. John,
N.B., Can. | 0.71 (residue) | | PCB"s were found in higher concentrations than organochtorine pesticides in all fish analyzed. The authors point out that PCB is less toxic in an acute sense than organochtorines, that little is known of sublethal PCB effects, and that more knowledge of PCB distribution and effects is needed. | Zl†ko
(1971);
AHIC-3715 | | PC8 | Sebastodes
marinus | FRL | St. John,
N.B., Can. | trace
(residue) | | same as above | 71tko
(1971),AMIC-
3715 | | PC B | Esox niger | FRL | St. John,
N.R., Can. | 0.33 (residue) | •• | samé as above | 71tko
(1971),AMIC-
3715 | | PCB | Salmo salar | FRL | St. John,
N.B., Can. | 0.45 (residue) | | same as above | 71tko
(1971),AMIC-
3715 | | PCB | Clupea
har engus | FRL | St. John,
N.B., Can. | 0.32-0.54
(residue) | ** | same as above | 71tho(1971),
AMIC-3715 | | PCB | Scomber
scombrus | FRL | St. John,
N.B., Can. | 0.35 (residue) | •• | same as above | Zitko
(1971),AMIC-
3715 | | PCB | Mytlius
edulis | FRL | St. John,
N.B., Can. | 0.14 (residue) | | same as above | Zitko
(1971),AMIC-
3715 | | PCB | Gadus morhua | FRL | St. John,
N.B., Can. | 0.02 (residue) | | same as above | Zitko
(1971),AMIC-
3715 | | PCB | Urophycis
tenuis | FRL | St. John,
N.B., Cana | 0.02 (residue) | | same as above | 71tko
(1971),AHIC-
3715 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | | Reference | |----------|--------------------------------------|-----|--|---|---|---|--| | PCR | Hippo-
glossoides
platessoides | FRL | St. John,
N.B., Can. | 0.03 (residue) | •- | same as above | 711ko
(1971),
Amic-3715 | | PCB | falco
peregrinus
(eggs) | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 10.2 (residue) | | Peregrine falcons, falcon prey, and other predator soecles were collected widely and analyzed for DDT, DDE, PCB, and a few other costicides to a lesser degree. PCB and DDT were found to be widely dispersed globally. PCB was found to be a powerful inducer of hepatic enzymes that degrade cestradioi. Reductions in thickness of egg shells, eggshell weight, and water retention occurred. All affect hatching success. The authors state that the peregrine may be the first species entirpated by global contamination. | (1968),
Amic-3844 | | PC 8 | Falco
peregrinus
(immature) | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.16-84 (flesh
residue) | | same as above | Risebrough,
et al
(1968),AMIC-
3844 | | PC8 | Falco
peregrinus
(immature) | F | Western U.S., Pacific Ncean, Panama, Mexico, and Antarctic | 3,2-1,420 (fat
residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PCB | Falco
peregrinus
(adult) | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 19.7-41.5
(flesh
residue) | | same as above | Pisebrough,
et al
(1968),
AMIC-3844 | | PCB | falco
peregrinus
(adult) | f | Western
U.S.,
Pacific | 3.2-1,980 (fat residue) | | same as above | Risebrough,
et al
(1968), | | | | Ocean,
Panama,
Mexico, and
Antarctic | | | AHIC-3844 | |------|----------------------------------|--|------------------------------|-------------------|--| | PCB | Loometania
metania | F Hestern U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 1.0 (whole body
residue) |
same as above | Risebrough,
et at
(1968),
AMIC-3844 | | PCB | Hatocyptena
microsoma | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarotic | 0.35 (whole
body residue) |
same as above | Risebrough,
et al
(1968),
AHIC-3844 | | PCB | Pizonyx
vivesi | F Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.02 (whole
body residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PCB | Endomychura
craverl
(eggs) | F Western U=S-, Pacific Ocean, Panama, Mexico, and Antarctic | 4.5 (residue) |
same as above | Risebrough,e
† a1 (1958),
AMIC-3844 | | PCB | Thalasseus
elegans
(eggs) | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 1.5 (residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PC B | Larus
heermani
(eggs) | F Western U.S., Pacific Ocean, Panama, Hexico, and Antarctic | 8.1 (residue) |
same as above | Risebrough,
etal (1968),
AHIC-3844 | | Compound | Organism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |----------|---------------------------------|---|--|---|---|---------------|--| | PCB | Pomoxis
annutaris | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.004 (whole
body residue) | | same as above | Risebrough,
† al (1968),
AMIC-3844 | | PC B | Pomoxis
nigro-
maculatus | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.003 (whole
body residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PC B | Lepomis
macrochirus | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.005 (whole
hody residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PC B | Pygoscells
adellae
(eggs) | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.044
(residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | |
PC8 | Fulmanus
glacialis | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.08-6.5 (whole
body residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PC B | Puffinus
creatopus | F | Western U.S., Pacific Ocean, Panama, | 0.42 (whole
body residue) | | same as above | Risebrough,
† al (1968);
AMIC-3844 | | | | Mexico, and
Antarctic | | | | | |-----|-------------------------------------|--|---------------------------------|------------|---------------|--| | PCB | Puffinus
griseus | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.9-1.2 (whole
body residue) | •• | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PCB | Puffinus
tenuirostris | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 2.1 (whole body
residue) | - - | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PCB | Oceanodroma
homochroa | F Western Us5., Pacific Ocean, Panama, Mexico, and Antarctic | 9.8 (whole body
residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PCB | Pelecanus
occidentalis
(eggs) | F Western U.S., Pacific Ocean, Panama, Mexico,and Antarctic | 0.0104-0.0231
(residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3544 | | PCB | Fregata
magniticens
(eggs) | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.0057-0.084
(residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PC8 | Sula
leucogaster | F Western U.S., Pacific Ocean, Panama, Hexico, and Antarctic | 0.0048
(residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PCB | Phalacrocorax | F Western | 0.113 | | same as above | Risebrough, | | Compound | Organism | Study | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |----------|--------------------------------------|-------|--|---|---|---------------|--| | | penicitiatus
(eggs) | | U.S., Pacific Ocean, Panama, Mexico, and Antarctic | (residue) | | | et BI
(1968),
AMIC-3844 | | РСЯ | Phalacrocorax
pelagicus
(eggs) | F | Western U+5., Pacific Ocean, Panama, Mexico, and Antarctic | 0.062
(residue) | | same as above | Risebrough,
et al
(1958),
AMIC-3844 | | PCB | Anas
cyanoptera | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.91 (whole
body residue) | | same as above | Risebrough,
etal (1968),
AHIC-3844 | | PCB | Etanus
teucurus
(eggs) | F | Western U.S., Pacific Ocean. Panama, Mexico, and Antarctic | 0.00084-0.0064
(residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PCB | Accipiter
cooperii | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 6.3 (whole body
residue) | | same as above | Risebrough,
et al
(1968),
Amic-3844 | | PCB | Aquila
chrysaetos
(eggs) | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.23 (whole
body residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PCB | Pandion
haliaetus | F Hestern U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.0034-0.103
(whole body
residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | |-----|------------------------------------|--|---|-------------------------------|--| | PCB | Faico
columbarlus | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.39 (whole body residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PCB | Falco
sparverius | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.31 (whole
body residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PC8 | Falco
sparverius
(eggs) | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.09 (residue) |
same as above | Risebrough,
et al
(1958),
AMIC-3844 | | PCB | Nycticorax
nycticorax
(eggs) | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.023-0.33
(residue) |
same as above | Risebrough,
ef al
(1968),
AMIC-3844 | | PCB | Larus
occidentalis
(eags) | F Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.023-1.31
(residue) |
same as abov e | Risebrough,
et al
(1958),
AMIC-3844 | | PC8 | Sterna
forster1
(eggs) | F Western
U.S.,
Pacific
Ocean, | 0.114
(residue) |
same as above | Risebrough,
et al
(1968),
AMIC-3844 | | Compound | Organism | Study | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experimental Variables, Controlled or Noted | Comments | Reference | |----------|---------------------------------|-------|--|---|---|---------------|---| | | | | Panama,
Mexico, and
Antarctic | | | | | | PCB | Hydroprogne
caspla
(eqgs) | f | Western
U.S.,
Pacific
Ocean,
Panama, | 0.114-1.01
(resIdue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | | | | Mexico, and
Antarctic | | | | | | PCB | Phataropus
futicarius | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.10 (whole
body residue) | | same as above | Risebrough,
et ai
(1968),
Amic-3864 | | PCB | Uria aalge
(eggs) | F | Hestern U.S., Pacific Ocean, Panama, Hexico, and Antarctic | 45 (residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PCB | Ptychoramphus
aleuticua | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarctic | 0.16 (whole
body residue) | | same as above | Risebrough,
et ai
(1968),
AMIC-3844 | | PCB | Synthilboramp
hus antiquum | F | Western
U.S.,
Pacific
Ocean,
Panama,
Mexico, and
Antarotic | 0.15 (whole
body residue) | | same as above | Risebrough,
et ai-
(1968),
Amic-3844 | | PCB | Cerorhinca
monocerata | F | Western U.S Pacific Ocean. Panama, Mexico, and Antarctic | 0.36 (whole
body residue) | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | | PCB . | Zenaldura
macroura | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | No residue | | same as above | Risebrough,
et al
(1968),
AMIC-3844 | |------------|--------------------------|-----|--|----------------------------|---|---|--| | PCB | Tyto alba
(eggs) | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.47-0.66
(residue) | •• | same as above | Risebrough,
etal (1958),
AMIC-3844 | | PCB | Sturnella
neglecta | F | Western U.S., Pacific Ocean, Panama, Mexico, and Antarctic | 0.0025-0.0261
(residue) | , | same as above | Risebrough,
et al
(1968),
ANIC-3844 | | PC | Fundulus
heteroclitus | BSA | | 0.00024-0.0004
(T4) | a*,c,e,
and
synthetic
seawater | A laboratory procedure based on Standard Methods for 95-hr toxicity determinations of crude oil and oil-dispersant mixtures was described. The dispersants varied considerably in toxicity, ranging from 0.01 to 7.1 mi/l, TL50 for 96 hr. These did not differ significantly from 240 hr values. The dispersants were designated as CX, DO, CI, OD, AQ, PC, MH, TN, BP, and NA with no further description of their chemical nature or source. Only a few bioassays were conducted with shrimp. Hollusks and echinoderms were suggested as suitable test animals. The authors stated that the method could be used to test any product for toxicity in seawater. | LaRoche, et
al (1970),
AMIC-445 | | PC | Nerels virens | BSA | | 0.00068-0.00075
(T4) | af,c,e,
and
synthetic
seawater | same as above | LaRoche,et
al (1970),
AMIC-445 | | Pebul ate | Gammarus
fasciatus | 954 | | 10.0 (74) | a* | Of the aquatic weed herbicides evaluated, Dictone was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | Sanders
(1970),
AHIC-453 | | Penetone X | Crangon
crangon | BSA | | 10-33 (T2) | | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychlorinated biphenyls, pure | Portmann, et al (1971), AMIC-7701 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
PDM | Experiment:
Variables,
Controlled
or Noted | | Reference | |------------------------------|--------------------------------------
-----------|-------------------|---|---|--|---| | | | | | | water, and
daily
solution
renewal) | inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | | Pentachi orophenoi | Crassostrea
virginica
(eggs) | ι | | less than 0.25 | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Host of the comoounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Pentachiorophenoi | Crassostrea
virginica
(Tarvae) | L | | 0.071 (T14) | | Same as above | Davis, et
al(1969),
AMIC-5990 | | Pentachtorophenyt
acetate | Crassostrea
virginica
(eggs) | L | | tess than 0.25
(T2) | | same as above | Davis, et
a! (1969),
AMIC-5990 | | Pentachiorophenyi
acetate | Crassostrea
virginica
(Tarvae) | L | | less than 0.025
(T14) | | same as above | Davis, et al
(1969),
AMIC-5990 | | Perolin No. 5 | Crangon
crangon | AZB | | 3.3-10 (T2) | ation, sea | Dne hundred-forty surface active agents, solvent emulsiflers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
at (1971),
AHIC-7701 | | Perthane | Tubifex
tubifex | FL
and | Belzoni,
Miss. | 0.50 (NTE) | | The response of pesticide-resistant aquatic organisms to | Nagvi, etai
(1969). | | | | BSA | | | | various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Belzoni and non-resistant species at State College. Copepods, clams, snalls, and sludge worms from Belzoni were considerably more toterant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic tevels. | AHIC-5979
, | |------------------|---------------------------------------|-----|------------------------------------|------------------------------|---------------|---|---| | Petrotite W-1439 | Steelhead
trout
(fingerlings) | BSA | | 35.5 (T4) | | Evaluation of 11 oil dispersants resulted in a ranking for each and a recommendation for use according to the ranking. Ranking was based on toxicity and oil dispersal effectiveness. Corexit 7764 appeared to have the least toxicity with fair to good oil dispersion capability. | Tracy, etal
(1969),
AMIC-3834 | | Petrolite W-1439 | Coho salmon (fingerlings) | | Hood Canal,
Hoodsport,
Wash, | 1.5 (K) | | same as above | Tracy, et al
(1969),
AMIC-3834 | | Phenkapton | Fish (not
specified) | | | greater than
1.0-10.0 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mandesley-Th
omas(1971)
AMIC-1056 | | Phenobarbi ta I | Negaprion
brevirostris
(1-3 kg) | BSA | | 300 (NTE3.25
hr) | a, c,€ | Data from study of drug effects on young lemon sharks were treated mathematically to demonstrate applicability of classical rate theory to the study of chemical shark deterrents. Incaoacitation (narcosis) was the primary parameter timed for effectiveness. This was usually quite rapid for the more effective drugs. | | | Phenobaritas | Carassius
auratus | L | ~- | 75 (NTE) | a* | Goldfish were exposed to increasing concentrations of DDT and residues determined after 21 days of exposure. Most DDT had been converted to DDE. Phenobarital had no significant effect on insecticide residues. | Young, et al
(1971),
AMIC-3796 | | Phenolics | Fish (not specified) | | | greater than 0.1-1.0 (K) | | Approximate toxicities of numerous pesticides commonly used in | Hawdestey-
Thomas | | Compound | Organism | | Field
Location | Toxicity, Active Ingredient, Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |----------------------------------|-------------------------|--------------------|-------------------|----------------------------------|--|--|--------------------------------------| | | | | | | | Aritain were summarized. An excellent brief, general discussion of toxicity testing is also present. | (1971).AMIC-
1056 | | henois (plus
mmonim and zinc) | Salmo
gairdneri | 828 | | 0.5-2.54 (T2) | a•c*•d•e*•
f•m | Rainbow trout were exposed to concentrations of fluctuating levels of ammonia, phenol, and zinc and to constant mixtures of the there. Tests with fluctuating levels of toxicants showed that LC50 values were similar to those for constant concentrations as long as the periodicity of the fluctuation did not exceed the resistance time for the poison. Except when zinc predominated in the mixtures, the fractional toxicities could be summed to give the toxicity of the mixture. | | | thenois (plus
copper) | Salmo
galrdneri | BSA | | 0.5-1.75 (T2) | 8,0,0 | Rainbow trout were exposed to cooper, phenol, zinc, or nickel sofutions to determine 48-hour LC5D values for mixtures of copper and phenoli riber, zinc, and phenoli and copper, zinc, and nickel. It was concluded that acute lethal toxicities of the mixtures could be adequately described by summations of the fractional toxicities. | Brown, et
al(1970),
AMIC-5994 | | henois (plus
opper, zinc) | Salmo
gairdneri | BSA | | 0.6-2.40 (12) | a,c,e | same as above | Brown, et al
(1970),
AMIC-5994 | | henois | Rashora
heferomorpha | BCFA
and
BSA | | 6.2 (T2,
hardwater) | a*,c,e,f, hard (HH) orsoft (SH) synthetic dilution water, or seawater for some species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of maferials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Atabaster
(1969) +
AMIC-5425 | | Pheno I s | Rasbora
heteromorpha | BCFA
and
BSA | | 7.4 (T2,
softwater) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water or
seawater
for some
species | same as above | Alabaster
(1969),
ANIC-5425 | |-----------|--------------------------------------|--------------------|----|------------------------|---|--|--| | Phenois | Lepomis
macrochirus | BSA,
L | | 13.5 (74) | a*.e, and
synthetic
dilution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bloassays with at least three components of the food web. | Patrick, et
al (1968),
AMIC-5728 | | PhenoIs | Nitzschia
Hinearis | BSA,
L | | 258 (TS) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | Pheno1s | Physa
heterostropha | BSA,
L |
 94 (T4) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | PhenoIs | Mercenaria
mercenaria
(eggs) | L | | 52.6 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Pheno 1 s | Mercenaria
mercenaria
(larvae) | ι | | 55 (T12) | | same as above | Davis, et al
(1969),AMIC-
5990 | | Phenois | Crassostrea
virginica | L | ~~ | 58.3 (T2) | | same as above | Davis, et at | | Compound | Organism | | Fleid
Location | Toxicity, Active Ingredient, Ppm | Experiments Variables, Controlled or Noted | | Reference | |----------|---|-----|-------------------|----------------------------------|---|--|--| | | (eggs) | | | | | | (1969) • AMIC- | | Phenois | Salmo
gairdneri | BSA | | 9.4 (T2) | 8,C, C | Rainbow trout were exposed to copper, phenol, zinc, or nickel solutions to determine 48-hour LC50 values for mixtures of copper and phenoli copper, zinc, and phenoli and copper, zinc, and ickel. It was concluded that acute lethal toxicities of the mixtures could be adequately described by summations of the fractional toxicities. | Brown, et a
; (1970),
AMIC-5994 | | Phenois | Gambusia
affinis
(fenale, 4.3
cm, 1.9 g) | BSA | | 26 (T4) | a,c,d,
e,f,1,
(Honolulu
tap
waterj | The five fish species are commonly found in streams and estuaries in semi-tropical areas. G. affinis was the most toterant. Varied sensitivity to the toxicants were found. K. sandvicensis was the most sensitive fish studied. The standard method procedure was followed. | Nunogawa, e
al (1970),
AMIC-6567 | | Phenois | Lebistes
reticulatus
(mate, 1.8
cm, N.2 g) | BSA | | 31 (T4) | a,c,d,
e,f,i,
(Honolulu
tap
water) | same as above | Nunogawa, e
al (1970),
AMIC-6567 | | Phenois | Tilapia
mossambica
(3.4 cm, 1.3
q) | BSA | | 19 (T4) | a,c,d,e,
e,f,i,
(Honolulu
tap
water | same as above | Nunogama, e
at (1970),
AMIC-6567 | | Phenols | Kuhlia
sandvicensis
(4.3 cm, 1.5
g) | BSA | | 11 (T4) | a,c,d,e,f,
l,
saltwater | same as above | Nunoqawa, e
al (1970),
AMIC-6567 | | Phenois | Stolephorus
purpurea (3.6
cm, 0.4 g) | BSA | | 0.51 (T12 hr) | a,c,d,e,f,
l, salt
water | same as above | Nunogawa, e
al (1970),
AMIC-6567 | | Phenois | Carcinus
maenas | BSA | •• | 56 (T2) | ation, sea- | One hundred-forty surface active agents, solvent emutsifiers, pesticides, -polychiorinated biphenyis, pure inorganic, and organic chemicals were | Portmann, e
al (1971),
AMIC-7701 | | | | | | daily
solution
renewal) | evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | |---------|----------------------|-----|------------------------------|--|--|---| | Phenois | Cardlum edule | BSA |
greater than
500 (T2) | a*(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renewal) | 20 | Portmann, et
at (1971),
AMIC-7701 | | Phenois | Crangon
crangon | BSA |
23.5 (T2) | a*(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renewal) | | Portmann, et
at (1971),
AMIC-7701 | | Phenois | Pandalus
montagul | BSA |
17.5 (72) | a*(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renewal) | Same as above | Portmann, et
af (1971),
AHIC-7701 | | Phenots | Platicthys
flesus | BSA |
33-100 (T2) | a*(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AHIC-7781 | | Phenois | Ambassis
safgha | BSA |
13.5 (T1) | a*,
seamater | Measurement of residual dissolved oxygen during exposure of fish to toxicants resulted in data similar to that obtained from 24- and 48-hr bloassays by the standard method. The residual oxygen method required only 8 hr to conduct. Variables studied included density per unit volume, temperature, and fish size. The authors conclude that the residual oxygen method is a quick and | Ballard, et
al
(1969), AMIC-
300 | | Compound | Organis a | Study | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------------------------|--|--------------------|-------------------|---|--|---|-----------------------------------| | | | | | | | reliable procedure for routine monitoring work. | | | Phenoxylene | Crangon
crangon | BSA | | greater than 10 (T2) | uous, aer-
ation, sea- | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyis, pure inorqanic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | | Phenoxytol | Pasbora
heteromorpha | BCFA
and
BSA | | 135 (T2) | tic
dilution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
ANIC-5425 | | Phenyimercuric
acetate | Brachydanio
rerio
(breeding
adults and
eggs) | L | | 0.2 and 1.0 ppb
(0) | a*,1 | Eggs were collected daily from spawning females which were continuously excosed to water solutions of the chemicat. Dead and hatched eggs were counted daily with daily water renewat and removal of dead eggs. At 1.0 ppb the number of eggs released was significantly less, and at 0.2 and 1.0 ppb hatching freduency was significantly reduced. | (1971),
AMIC-2707 | | Phenyl mercuric
acetate | Sat≡o
gairdnerl | BCFA
and
BSA | | 0.005 (T1) | a*,c,e,f,
hard
(HH) or
soft (SH)
synthetic
ditution
water, or
seawater
for some
species | | Alabaster
(1969),AMIC-
5425 | | Phenyt mencuric
acetate | Salmo
gairdneri | BCFA
and
BSA | | 0.004 (T2) | a*,c,e,f,
hard
(HW) or
soft (SW)
synthetic | Same as above | Alabaster
(1969),AMIC-
5425 | vernails, dliution water, or seawater for some species | Phorate | Fish (not specified) | | | greater than 0.01-1.0 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mawdesley-
Thomas
(1971),AMIC-
1056 | |------------|--|--------------------|----------------------------|---------------------------|---|--|--| | Phordene | Crangon
crangon | ÐSA | | greater than 10 (T2) | uous, aer- | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated blohenyls, pure inorquatic, and organic
chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
a: (1971),
AHIC-7701 | | Phosal one | Rasbora
heteromorpha | BCFA
and
BSA | | 0.4 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Phosdrin | Conepods (Cyclops blcusoldus, Cyclops varicans, Cyclops vernalls, Eucyclops aglils,Macroc Macrocyclops atbldus, Orthocyclops modestus) | FL
and
BSA | State
College,
Hiss. | 0.055 (91
percent K2) | | The response of pesticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Belzonl and non-resistant species at State College. Copepods, clams, snalls, and studge worms from Belzonl were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic levels. | Nagvi, et a!
(1969),
ANIC-5979 | | Phosdrin | Conepods (Cyclops blouspidus, Cyclops varicans, Cyclops | FL
and
BSA | Belzonl,
Miss | 0.055 (54
percent K2) | | same as above | Nagvi, et al
(1969),
AMIC-5979 | | Compound | Organisa | | Fleid
Location | Toxicity,
Active
Ingredient,
PDM | Experiment
Variables,
Controlled
or Noted | | Reference | |-----------------------|--|------------------|-------------------|---|--|--|---| | | Eucyclops agilis, Macrocyclops albidus, Orthocyclops modestus; | | | | | | | | Phos drin | Tub!fex
tub!fex | FL
and
BSA | Betzoni.
Miss. | 1.0 (NTE) | | same as above | Nagvl, et at
(1969),
AMIC-5979 | | Pnosphem!don | Fish (not specified) | | | greater than
1.0-10.0 (K) | •• | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Hawdesley-Th
omas(1971)
AHIC-1056 | | Phosphanidon | Labeo rohita
(fry) | A28 | | 137.7 (T7) | avCydy e , f | DDVP and Phosphamidon were shown to be selective toxicants that can be used for eradication of undesirable animals from ponds without injuring carp. DDVP seemed superior since less was needed, it was not influenced by turbidity, and it retraitled more rapidly than phosphamidon. | (1969),AMIC-
5453 | | Phosphamidon | Laber rohita
(fingerling) | BSA | | 177.0-205.2
(T7) | a,c,d,e,f | same as above | Konar(1969),
AMIC-5453 | | Phosphonidon | trichogaster
fasciatus | BSA | | 30.2 (17) | a,c,d,e,f | same as above | Konar(1969).
AHIC-5453 | | Ph <i>a</i> sph#41dan | Channa
punctatus
(fry) | BSA | | 19.1 (17) | a,c,d,e,f | same as above | Konar
(1969),AHIC-
5453 | | Phosphemidon | Channa
punctatus
(fingerling) | BSA | | 25.1 (17) | a,c,d,e,f | same as above | Konar(1969),
AHIC-5453 | | Phosphamldon | Channa
punctatus
(adult) | BSA | | 36.3 (17) | a, c, d, e, f | same as above | Konar
(1969),AMIC-
5453 | | Ph <i>o</i> sphamidon | Mastocembelus
pancalus | BSA | | 20.4 (17) | a,c,d,e,f | same as above | Konar
(1969),AMIC+
5453 | | Phosphanidon | Hacrognathus
aculeatum | BSA | | 41.7 (77) | a,c,d,e,f | same as above | Konar
(1969),AMIC-
5453 | | Phosphamidon | Nandus nandus | BSA | | 34.7 (17) | a,c,d,e,f | same as above | Konar (1969),
AHIC-5453 | | | Phosphamidon | Amphionous
cuchia
(young) | BSA . | | 11.2 (77) | 8,0,0,0,1 | same as above | Konar
(1969) •AMIC-
5453 | |-------|---------------|--|-------|------|-------------------|----------------------------|---------------|--| | | Phosphanidon | Amphipnous
cuchia
(adult) | BSA | | 22.4 (17) | a,c,d,e,f | same as above | Konar
(19 <u>69) AMIC</u> -
5453 | | | Phosphamidon | Hystus
vitatus | BSA | •• | 82 .2 (T7) | a, c, d, e, f | same as above | Konar
(1969),
AMIC-5453 | | | Phosphemidon | Puntlus
sophore | BSA | •• | 209.9 (17) | a,c,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | ** | Phosphamidon | Anabas
testudineus | BSA | | 68.4 (17) | a,c,d,e,1 | seme as above | Konar
(1969),
AMIC-5453 | | | Phosphamidon | Heteropheus-
tes fossilis
(fry) | BSA | •• | 66.8 (17) | a,c,d,e,f | same as above | Konar
(1969),AMIC-
5453 | | | Phosphamidon | Heteropheus-
tes fossilis
(fingerling) | BSA | | 66.1 (T7) | a,c,d,e,f | same es above | Konar(1969),
AMIC-5453 | | A-373 | Phosphamidon | Esomus
danrica
(fry) | BSA | •• ` | 178.2 (77) | a,c,d,e,f | same es above | Konar
(1969),AMIC-
5453 | | 773 | Phosphamidon | Oytiscus sp.
(adult) | BSA | | 1.3 (77) | 8,c,d,e,f | same as above | Konar
(1969),AMIC-
5453 | | | Phosphan1 don | Sphaerodema
annulatum | BSA | | 2.6 (T7) | a,c,d,e,1 | same as above | Konar
(1969),AMIC-
5453 | | | Phosphanidon | Ranatra
filiformis | BSA | | 2.9 (T7) | 0,c,d,e,f | same as above | Konar
(1969),
AHIC-5453 | | | Phosphamidon | Anisoptera
(nyaphs) | BSA | | 1.5 (T7) | 8,c,d,e,1 | same as above | Konar
(1969),AMIC-
5453 | | | Phosphamidon | Cybister sp. | BSA | •• | 2.3 (17) | 8, C,d, 0 ,f | same as above | Konar
(1959),
ANIC-5453 | | | Phosphanidon | Nepa sp. | BSA | | 2.4 (T7) | a,c,d,e,f | same as above | Konar
(1969),
AHIC-5453 | | | Phosphani don | Belostoma
indice | BSA | | 6.3 (17) | a,c,d,é,f | same as above | Konar
(1969), | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Connects | Reference | |--------------|--------------------|-----|-------------------|---|---|---------------|-------------------------------| | | | | | | | | AHIC-5453 | | hosphamidon | Hydrophilus
Sp. | BSA | | 5.6 (17) | 8,C,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | hosphaeldon | ROVIOV | BSA | | 5.0 (NTE) | a,c,d,e,f | same as above | Konar
(1969),
ANIC-5453 | | nobl#sdqzon' | Pandorina | 954 | | 5.0 (NTE) | a,c,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | nobjes dazoń | Ctosterium | BSA | | 5.0 (NTE) | a.c.d.e.1 | same as above | Koner
(1969),
Amic-5453 | | hosphemidon | Brach I onus | BSA | | 50 (NTE) | a.c.d.e.f | same as above | Konar
(1969),
AMIC-5453 | | hosphaeldon | Gastrotricha | AZG | | 10 (NTE) | a,c,d,e,f | same as abova | Konar
(1969),
AMIC-5453 | | hosphamldon | Cyoris | BSA | | 10 (NTE) | 8,C,d,e,f | same as above | Konar
(1969),
AMIC-5453 | | hosphamidon | Cyclops | BSA | | 2.5 (K) | a,c,d,e,1 | same as above | Konar
(1969),
AMIC-5453 | | hosphamidon | Naupflus | 854 | | 2.5 (K) | 8,0,0,0,1 | same as above | Konar
(1969),
AMIC-5453 | | hosphaeldon | Daphnle | 854 | | 2.5 (K) | 8+C+d, e, f | Same as above | Konar
(1969),
AMIC-5453 | | hosphamidon | Cerlodaphnia | 854 | | 4.8 (K) | B; C; d; e; f | same as above | Konar
(1969),
AMIC-545 | | ʹ>> | | |-----|--| | | | | Ψ, | | | 3 | | | Phosphorus | Paralabrax
clathratus | FH | Scattergood
Steem Plant,
Los Angeles,
Cal. | | | Fish collected from an effluent ploe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nickel. Silver, barlum, lithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of poliutants on marine organisms. | Stapfeton
(1968),
AMIC+5980 | |-------------------------|---|----|---|------------------------------------|----|---|-----------------------------------| | Phosphorus |
Panalabnax
clathratus | FM | Catalina
Island, Cal. | 7550 (dorsa)
muscie
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Ph os phorus | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1958),
AMIC-5988 | | Photohorus | Panalabnax
clathratus | FH | Cetatina
Island, Cal. | 6700 (ventral auscie residue) | | same as above | Stapleton
(1968),
AMIC-5988 | | Ph <i>o</i> sphorus | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | 23,620 (gonada
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Phosphorus | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 23,928 (gonads
residue) | | same as above | Stapleton
(1958),
AMIC-5980 | | Phosphorus | Paralabrax
clathratus
(gravid
tamalas) | FM | CatalinaIsla
nd, Cal. | 10,550(gonads
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Phosphorus | Paral abrax
clathratus | FH | Scattergood
Steam Plants
Los Angeless
Cats | | | same as above | Stableton
(1968),
AMIC-5980 | | Phosphorus | Parai abrax
ci athratus | FH | Catalina
Island, Cal. | 7270 (fiver residue) | ** | same as above | Stapleton
(1968), | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingradient,
Ppm | Experiments
Variables,
Controlled
or Noted | Comments | Reference | |-------------|-----------------------------------|-----|---|---|---|---|---| | | | | | | | | AMIC-5980 | | Phosphorus | Paralahrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | (integument | | same as above | Stapleton
(1968),
AMIC-5980 | | Phosphorus | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 2520
(Integument
residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Phosphorus | Paralabrax
clathratus | FM | Scattergood
Stram Plant,
Los Angeles,
Cat. | | | same as above | Stableton
(1958),
AMIC-5980 | | Phosphorus | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 5550 (heart
residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Phosphorus | Paratabrax
clathratus | FĦ | Scattergood
Steam Plant,
Los Angeles,
Cal. | 7800 (eyeball
residue) | | same as above | Stapleton
(1958),
AMIC-5980 | | Phosphorus | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 10,450 (eyebal)
residue) | | same as above | Stapleton
(1958),
AMIC-5980 | | Phostox | Crangon
crangon | BSA | | greater than 10 (T2) | uous aer-
ation, sea- | One hundred-torty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Photostdrin | Anacystis
nidulans | L | | 1.0 (growth
inhibited) | 8*,c*,r
SM | Metabolic products of Aldrin, Dieldrin, and Endrin can be as toxic as the parent compounds, as shown by 00 measurement. | Batterton,
et al
(1971),
AMIC-1471 | | Photosidrin | Agmenellum
quadrup-
licatum | ι | | NTE | 8*,c*,r | same as above | Batterton,
et al
(1971),AMIC | | | | | | | | 1471 | |-------------------|--------------------------------------|--------------------|--------------------------------|---|--|---| | Photodieldrin | Agmenellum
quadruplicatu
m | L |
0.5-1.0 (growth inhibited) | a*,c*,r
SM | Same as above | Batterton,
et al
(1971),
AMIC-1471 | | Photodieldrin | Anacystis
nidulans | ι |
0.5-1.0 (growth inhibited) | a*,c*,r
SH | Same as above | Ratterton,
et al
(1971),
AMIC-1471 | | Phygon | Mercenaria
mercenaria | ι |
0.04 (TZ) | | The effect of 52 pesticides on embryonic development of clams and | Davis, et al | | | (eggs) | | | | ovsters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected develocment more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Phygon | Mercenaria
mercenaria
(larvae) | t |
1.75 (T12) | | same as above | Davis, et at | | | | | | | | 5990 | | Phygon | Crassostrea
virginica | ι |
0.014 (T2) | | same as above | Davis, et at | | | (eggs) | | | | | (1969),AMIC-
5990 | | Phygon | Crassostrea
virginica | L |
0.041 (714) | | same as above | Davis, et al | | | (larvae) | | | | | (1969),AMIC-
5990 | | Pictoram (K sait) | Rasbora
heteromorpha | BCFA
and
BSA |
11 (†2) | a*.c.e.f.
hard (HW)
orsoft
(SW)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water | Alabaster
(1969),
ANIC-5425 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |------------------|--------------------|-----|-------------------|---|--|--|--| | | | | | | | and sometimes the opposite was true.
Testing the actual material as sold was
found to be essential. | | | PMA | Salmo
gairdneri | L | | 2.0 (5030) | a,e,f (1
hr
exposure
dally for
up to 11
days) | Single exposures of fish to organomercury compounds resulted in peak concentrations of mercury as follows; gills, 3 hr: blood, 32 hr: fiver, 7 dat kidney 21 For repeated one hr (daily) exposures peak concentrations were; blood, 10 dat fiver, 10 dat kidney, 61 dat muscle, 7 da. The concentration of mercury was always lowest in muscle fissue. Feeding experiments with PMA showed mercury could be passed from fingerlings to larger fish. The authors conclude that either legal size or fingerling hatchery fish treated with organomercurlats could be a public health hazard. | AHIC-5733 | | Polycell product | Crangon
crangon | 8SA | - | 330-1000 (74) | | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorqanic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, e1
al (1971),
AMIC-7701 | | Polyciens | Carcinus
maenas | BSA | | 10-33 (72) | as (contin-
uous, aer-
ation, sea
water, and
daily
solution
renewal) | | Portmann, et
at
(1971),AMIC-
7701 | | Polyclens | Cardium edule | BSA | | 33-100 (T2) | a*(continuous aeration, sea water, and daily solution | _ | Portmann, et al (1971). AMIC-7701 | ## renewal) | Polyciens | Crangon
crangon | BSA | | 10-33 (72) | a*(continuous aerution, sea water, and daily solution renewal) | same as above | Portmann, et al (1971), AMIC-7781 | |------------------|-------------------------------------|-------------------|------------------------------------|--------------|--|---|--| | Polyciens | Panda i us
montagu i | BSA | | 10 (72) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | - | Portmann,
et
al
(1971),AMIC-
7701 | | Polycomplex A-11 | Steelhead
trout
(fingerlings) | BSA | | 13.0 (74) | | Evaluation of 11 oil dispersants resulted in a ranking for each and a recommendation for use according to the ranking. Ranking was based on toxicity and oil dispersal effectiveness. Corexit 7764 appeared to have the least toxicity with fair to good oil dispersion capability. | al(1969),
AHIC-3834 | | Polycomplex A-11 | Coho salmon
(fingerlings) | BSA
in
situ | Hood Canal,
Hoodsport,
Wash. | 1.5 (K) | | same as above | Tracy, et al
(1969),
AMIC-3834 | | Polycomplex A | Carcinus
maenas | B\$A | | 100-330 (T2) | ation, sea | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychlorinated bibhenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmain, et
al (1971),
AMIC-7701 | | Polycomplex A | Cardium edute | ASB | | 33-100 (T2) | aw(continuous, aeration, sea water, and daily solution renewal) | • | Portmann, et
al (1971),
AMIC-7701 | | Compound | Organism | | Flefd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments Variables, Controlled or Noted | Comments | Reference | |-------------------------------|--------------------------------------|-----------|-------------------|---|---|---|--| | | | | | | renewal) | | | | Polycomplex A | Liwanda
Hiwanda | BSA | | 33-100 (T2) | as(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | - | Portmann, et al (1971), AMIC-7701 | | Polyotic | Roccus
sexetilis
(fingerlings) | BSA | | greater than
1,818 (T4) | a*,c,d.e.f
,p and
iron | Striped bass fingerlings were apparently much more sensitive to therapeutic and herbicidal compounds than many treshwater fish. | Hellborn
(1969),
AMIC+5723 | | Potessium chforide | Lepomis
macrochirus | BSA. | | 2,010 (T4) | a*,e, and
synthetic
dilution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bloassays with at least three components of the food web. | Patrick, et
at (1968),
AMIC-5720 | | Pofassium chforide | NItzschia
Tinearis | BSA,
L | | 1,337 (75) | a*.e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | Pofessium chtoride | Physa
heterostropha | BSA,
L | | 940 (T4) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | Potasslum chromate
(as Cr) | Lepomis
macrochirus | BSA,
L | | 168.8 (T4) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | Potessium chromate
(es Cr) | Nitzschie
Tineeris | BSA,
L | | 7.8 (75) | a*,e, and
synthetic
dilution
water | evode 26 sm62 | Patrick, et
al (1968),
AMIC-5720 | | Potassium cyanide
(as cyanide) | Carcinus
Maenas | BSA |
greater than 5
(T2) | uous, aer-
ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, -polychiorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et al
(1971),AMIC-
7701 | |-----------------------------------|--|-----|----------------------------|--|---|--| | Potassium Cyanide (as cyanide) | Crangon
crangon | BSA |
greaterthan 25
(T2) | as(continuous, aeration, seawater, and daily solution renewal) | same as above | Portmann, et
al
(1971),AMIC-
7701 | | Potassium cyanide
(as cyanide) | Pandalus
montagui | BSA |
0.25 (T2) | aw(continuous aeration, seawater, and daily solution renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Potassium cyanide | Lebistes
reticulatus
(1 mo, 1.1
cm) | BCF |
0.26 (T2) | phates,
carbon-
ates, bi-
carbon-
ates, sul- | Toxicity thresholds and a dilution mixture threshold were calculated from fish bloassay data for zinc chloride and potassium cyanide. Threshold concentrations for zinc and cyanide were found to be 0.33 and 0.236 mg/l, respectively. A procedure for determining toxicity threshold concentrations for mixtures of chemicals was also presented. A zinc-cyanide dilution ratio for toxicity threshold (THDR) was found to be a linear function of the concentration of the two ions taken separately, and therefore; THDR equals 1.26-0.86CN-1.22Zn. Based on a multicomponent equation, mixtures of zinc and cyanide exhibit an antagonistic effect. This appears to be a significant advance in an approach to estimating safe concentrations for water politutants. | Chen, et al
(1969),
AMIC-3831 | | Potassium cyanide | Lebistes
reticulatus
(1 mo, 1.1
cm) | BCF |
0.42 (T1) | a,c,d,e,f,
n,q, phos-
phates, | same as above | Chen, et al
(1969),
AMIC-3831 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments
Variables,
Controlled
or Noted | Connents | Reference | |---------------------------------|------------------------|-----------|-------------------|---|---|--|---| | | | | | | carbon- ates, bi- carbon- ates, sul- fates, and conduc- tance | | | | Potassium dichromate
les Cr) | Lenomis
macrochirus | BSA,
L | | 113 (74) | a*,e, and
synthetic
dilution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bloassays with at least three components of the food web. | | | Potassium dichromate
lms Cr) | Nitzschia
Iinearis | BSA,
L | | 0.21 (75) | a*,e, and
synthetic
ditution
water | same as above | Patrick, et
at (1968),
AMIC-5720 | | Potassium dichromate
les Cr) | Physa
heterostropha | BSA. | | 17.3 (74) | a*,e, and
synthetic
ditution
water | same as above | Patrick, et
al
(1968),AMIC-
5720 | | Potassium dichromate
las Cr} | Phormidium
ambiguum | ι | | 0.5-10.0 (16
percent
growth
inhibited ll.) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canais to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Otto (1970),
AMIC-892 | | otassium dichromate | Brachydanio | BSA | | 56-75 (\$84) | a,e, and | Feeding behavior was affected by | Calros, et | | • | | |---|---| | | | | u | | | Ö | Ī | | ~ | ı | | • | • | | | rerio | | | syntheticd
liution
water | zinc, chromium, and ABS in that more time was required for consuming measured amounts of food. Feeding response was also affected by aeration, feeding schedule, light intensity, and outside disturbances. The authors note that much more work is needed to establish the reliability of this procedure. | AHIC-5707 | |---------------------------------|--|-----|--
---|---|--------------------------------------| | Potassium
pentachlorophenate | Oncorhynchus
klsutch (CSE
119 embryo
cells) | L |
40-120 (5810) | . | Growth of cultured coho salmon embryo cells on Eagle"s MEM was partially inhibited at 40 ppm, strongly inhibited at 80 ppm, and totally inhibited at 210 ppm. The 50 percent inhibitory dose was estimated to be 66 ppm. A linear relationship between dose and effect was noted. Data on cell counts, population volume, dry weight, ash, nitrogen, organic acids, and organic matter are renorted. | Hanes, et al
(1970),
AMIC=3753 | | Potassium
permanganate | Trachinotus
carolinus
(juvenile) | BSA | 1.6-2.9 (74) | a.c.e.f.i. and sulfate, sodium, calcium, potassium, magnesium, carbonate, bicarbon- ate, salinity | In this study of pompano satinity was controlled at 10, 20, and 30 ppt and investigated as a variable. Acrificatin, formatin, and potassium permanganate were slightly more toxic at the highest satinity, while copper suffate was slightly less toxic. These compounds are used as prophytactic bacterial treatments. All appeared to be reasonably safe to use excepte possibly potassium permanganate. | al (1971),
Amic-5570 | | Potassium
permanganate | Roccus
saxatilis
(fingerlings) | BSA |
2.5 (14) | a*,c,d,e,f
,p and
lron | Striped bass fingerlings were apparently much more sensitive to therapeutic and herbicidal compounds than many freshwater fish. | Wellborn
(1969),
AMIC-5723 | | Potassium
permanganate | Phormidium
ambiguum | l |
0.5-10.0 (16
percent growth
inhibited14) | •• | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental | Offo (1970),
AMIC-892 | | Compound | `Organis# | | Fletd
Location | Toxicity, Active Ingredient, Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |--|---------------------------------------|--------------------|-------------------|---|--|--|--| | | | | | | | management. No practical environmental means were found. | | | Potassium sait of
2(4-chiorotolyi)
oxy-N-methoxy-acetam
ide | Phormidium
ambiguum | L | | 0.5-10.0 (16
percent growth
inhibited 14) | | same as above | Offo (1970),
ANIC-892 | | Potassium salt of
2,3,5-trichloro-4-py
ridinol | Phormidium
ambiguum | L | | 0.5-10.0(NTE) | | same as above | Offo (1970),
ANIC-892 | | Procaine
hydrochioride | Negaprion
brevirostris
(1-3 kg) | BSA | | 10 (NTE 1 hr) | a,c,e | Data from study of drug effects on young lemon sharks were treated mathematically to demonstrate applicability of classical rate theory to the study of chemical shark deterrents. Incapacitation (narcosis) was the primary parameter timed for effectiveness. This was usually quite rapid for the more effective drugs. | | | Propanii | Gamarus
fasclatus | BSA | - | 16.0 (T4) | •• | Of the aquafic weed herbicides evaluated, Dictone was the most toxic, Dachnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | | | Prophas | Fish (not specified) | | | greater than
10-100 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent briet, general discussion of toxicity testing is also present. | Mawdesley-Th
omas
(1971),AMIC-
1056 | | Protin | Rasbora
heteromorpha | BCFA
and
BSA | | 10.0 (TZ.
hardwater) | a*,c,e,f,
hard(HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes | Alabaster
(1969),
AHIC-5425 | | | | | • | | shecies | and sometimes the opposite was true.
Testing the actual material as sold was
found to be essential. | | |-------------|--------------------------------------|--------------------|---|------------------------|--|--|-----------------------------------| | Protia | Rasbora
heferomorpha
, | BCFA
and
BSA | | 1.8 (TZ,
softwater) | a*,c,e,f,
hard (HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Pro-Nox1Ish | Oncorhynchus
tshawytscha
(fry) | BSA | | 1.0 (SB) | | Salmonid egg embryos may be able to survive rotenone treatment that kills fish. Toxicity to the coho embryos was greater at 53 F than at 39 and 46 F. Eggs buried in gravel survived better than those at the gravel surface. Further field evaluations were recommended. | Garrison
(1968),
AMIC-5714 | | Pro-Noxfish | Oncorhynchus
klsutch
(fry) | BSA | | 0.125 (T1) | | same as above | Garrison
(1958),AMIC-
5714 | | Pro-Noxflsh | Oncorhynchus
kisutch
(eggs) | BSA | | 1.7 (T1) | | same as above | Garrison
(1968),AMIC-
5714 | | PVP~Iodine | Mercenaria
mercenaria
(eqgs) | Ĺ | | 17-1 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | PVP-Iodine | Mercenaria
mercenaria | L | | 34.9 (712) | | same as above | Davis, et at | | | (1.arvae) | | | | | | (1969),AMIC-
5990 | species pesticides were most toxic in hard water | Compound | Organism | | Field
Location | Toxicity, Active Ingredient, Ppm | Experiment:
Variables,
Controlled
or Noted | - - | Reference | |--------------|---------------------------------------|--------------------|-------------------|----------------------------------|--|--|---| | Pyramin | Pasbora
heteromorpha | BCFA
and
BSA | | 26 (T2) | a*,c+e,f,
hard
(HW) or
soft (SW)
synthetic
dilution
water, or
seawater
for some
species | percentage of all components of a | Alabaster
(1969),
Amic-5425 | | Pyrazon | Fish (not
specified) | | | greater than
10-100 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mandesley-
Thomas(1971)
AMIC-1056 | | Pyri≡ithate | Rasbora
heteromorpha | BCFA
and
BSA | | 4.1 (T2) | a*,c,e,f,
hard (HH)
or
SOFT(SH)
synthetic
dilution
water, or
seawater
for some
species | percentage of all components of a | Alabaster
(1969),
AMIC-5425 | | Quinaidine | Negaprion
brevirostris
(1-3 kg) | BSA | | 8.2 (SB 10
Min) | a,c,€ | Data from study of drug effects on young lemon sharks were treated mathematically to demonstrate applicability of classical rate theory to the study of chemical
shark deterrents. Incapacitation (narcosis) was the primary parameter timed for effectiveness. This was usually quite rapid for the more effective drugs. | | | Raynap Sol B | Crangon | BSA | | 3.3-10 (T2) | a*(contin- | One hundred-forty surface active | Portmann, e | | | crangon | | | ation, sea- | agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deat with toxicity of chemicals to freshwater organisms. | at (1971),
AMIC-7701 | |-----------|-------------------------|--------------------|---------------------------|--|---|-------------------------------------| | RD 14639 | Rasbora
heteromorpha | BCFA
and
BSA |
0.58 (T2) | ditution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster,
(1969), AMIC-
5425 | | Regione | Rasbora
heteromorpha | BCFA
and
BSA |
37 (T2,
softwater) | ditution | One hundred sixty-four pesticides, wetting agents, and miscetianeous water poliutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Reg I one | Salmo
gairdneri | BCFA
and
RSA |
70 (T2,
hardwater) | a*,c,e,f,
hard (HH)
or soft
(SH)synthe
tic
ditution
mater, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Reg1 one | Salmo
galrdneri | BCFA
and
BSA |
27 (T2,
softwater) | a*,c,e,f,
hard (HW)
or
SOFT(SW) | | Alabaster
(1969),
AMIC-5425 | | Compound | Organism | | Fletd
Location | Toxicity, 'Active Ingredient, Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |-------------|------------------------------------|-----|-------------------|-----------------------------------|---|--|--| | | | | | | synthetic
ditution
water, or
seawater
for some
species | | | | Rhodemine B | Salmo
gairdneri | BSA | | 217 (T4) | a• | The dyes Rhodamine 8 and Fluorescein sodium were found to be relatively non-toxic in ppm concentrations while antimycin was toxic at ppb levels. The author states that neither dye at field use concentrations should significantly influence the activity of Antimycin A against fish. | Marking
(1969),
AMIC-5729 | | Rhodamine B | Ictalurus
punctatus | BSA | | 526 (T4) | a* | same as above | Marking
(1969),
AMIC-5729 | | Rhoda⊕ine B | Lepomis
macrochirus | BSA | | 379 (T4) | a* | same as above | Marking
(1969),
AMIC-5729 | | Ridzlik | Crangon
crangon | BSA | | 330-1000 (T2) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychiorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, e
at (1971),
AMIC-7701 | | Roccal | Mercenaria
mercenaria
(eggs) | ι | | 0.19 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control than | | # would not have serious effect on shellfish. | Roccal | Mercenaria | ι |
0.14 (T12) | | same as above | Davis, et al | |--------------------------|------------------------------------|-----|-----------------------------|-----------|--|--| | | mercenaria
(larvae) | | | | | (1969),AMIC-
5990 | | Rola OSD | Crangon
crangon | BSA |
3.3-10 (T4) | ation see | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychtorinated biphenyls, pure inorqanic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al
(1971),AMIC-
7701 | | Rosin amine
diacetate | Phormidium
ambiguum | ι |
0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of rat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Offo (1970),
AMIC-892 | | Rosin Amine D | Crassostrea
virginica
(eggs) | ι |
less than 0.25 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | Davis, etal
(1969),
AHIC-5990 | | Rosin Amine D | Crassostrea
virginica | L |
less than0.025
(T14) | | same as above | Davis, et at
(1969), | | Compound | Organism | | Field
Location | Toxicity, Active Ingredient, Ppm | Experimenta
Variables,
Controlled
or Noted | | Reference | |--|---------------------------------|-------|-------------------|----------------------------------|---|--|---------------------------------| | | (larvae) | | | | | | AMIC-5990 | | Rotenone | Salmo
gairdn e ri | ι | | 0.057 (T4) | a* | The piscicides Antimycin A and Rotenone were found to be compatible when mixed and furthermore appeared to have an additive effect in embination. That is both compounds were more toxic in the presence of the other than alone. | | | Rotenone | Lepomis
macrochirus | ι | | 0-114 (T4) | a* | same as above | Howland
(1969),
AMIC-5725 | | Ro-nee† | Gammarus
fasciatus | 8 S A | | 2.6 (T4) | a* | Of the aquatic weed herbicides evaluated, Dictone was the most toxic, Daohnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | | | R-1910 | Gammarus
fasciatus | BSA | | 15-0 (T4) | a* | Of the aquatic weed herbicides evaluated, Dicione was the most toxic, Daphnia
was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | | | Salicylic acid
(2-hydroxybenzoic
acid) | Phormidium
ambiguum | ι | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as afgicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agent: were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental | Otto (1970),
AMIC-892 | #### means were found. | Seasweed | Steelhead
trout
(fingerlings) | BSA | | 20-2 (T4) | | Evaluation of 11 oil dispersants resulted in a ranking for each and a recommendation for use according to the ranking. Ranking was based on toxicity and oil dispersal effectiveness. Corexit 7764 appeared to have the least toxicity with fair to good oil dispersion capability. | Tracy, et al
(1969),AMIC-
3834 | |------------------|-------------------------------------|-------------------|------------------------------------|----------------|---|--|---| | Seasweep | Coho salmon
(fingerlings) | BSA
in
situ | Hood Canal,
Hoodsport,
Wash. | 1.5 (K) | | same as above | Tracy, et al
(1969),
AMIC-3834 | | Sefoli | Agonus
cataohractus | BSA | | 1000-3300 (T2) | | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
at (1971),
AHIC-7701 | | Sefolt | Crangon
crangon | BSA | | 1000-3300 (T2) | as(contin-
uous, aer-
ation, sea
water, and
daily
solution
renewal) | | Portmann, et
al (1971),
AMIC-7701 | | Selenium dioxide | Carassius
auratus | t | | 12 (17) | a,c | In addition to toxicity data, conditioned avoidance response was studied at sublethal concentrations. The lowest concentration of metal resulting in significant impairment was: arsenic, 0.10: tead, 0.07: mercury, 0.003: and setenium, 0.25. Defeterious effects occurred at metal concentrations approximately similar to potable water standards. | Weir, et al
(1970),
AMIC-739 | | Setenium | Coregonus
clupeatorais | FL | Moose Lake,
Can. | 0.2 (residue) | ~ | Concentrations of 13 toxic elements in dressed fish from heavily industrialized and non-industrialized areas were determined. Only mercury exceeded requiatory limits, and concentrations of most elements were essentially the same in fish from both | Uthe, etal
(1971),
AMIC-3819 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experiments
Variables,
Controlled
or Noted | Comments | Reference | |-----------|-----------------------------|----|--------------------------|---|---|---|---------------------------------------| | | | | | | | ereas. | | | Selenium | Coregonus
clubeaformis | FL | Lake
Ontario,
Can. | 0.4 (residue) | | same as above | Uthe, etat
(1971),
AMIC-3819 | | ietenium | Esox fuclus | FL | Moose Lake,
Can. | 0.2 (residue) | | same as above | Uthe, et al
(1971),AMIC
3819 | | elenium | Esox fuclus | FL | Lake St.
Pierre, Can. | 0.4 (residue) | | Same as above | Uthe, et af
(1971),AMIC
3819 | | Sefenium | Esox tuclus | FL | Lake Erie,
Can. | 0.2 (residue) | | Same as above | Uthe, et al
(1971), AMIC
3819 | | e leni us | Osmerus
mordax | FL | Lake Erie,
Can. | 0.2 (residue) | | same as above | Uthe, et ai
(1971),AMIC
3819 | | ie lentu# | Perca
flavescens | FL | Lake Erle,
Can. | 0.3 (residue) | | same as above | Uthe, et at
(1971),AMIC
3819 | | esaacx | Notemigonus
chrysoleucas | L | | 2 (NTE 1) | ~~ | Fish brain AChE activity was not affected by Sesamex atone but was significantly inhibited by parathion. Pretreatment with Sesamex at 2 ppm resulted in decreased inhibition of AChe activity by parathion. | Glbson, et
a1
(1971),AM
3799 | | esanex | Lepomis
cyanelius | ι | | 2 (NTE 1) | | same as above | Glbson, et
al (1971),
AMIC-3799 | | esakex | Lebomis
macrochirus | L | | 2 (NTE 1) | | same as above | Glbson, et
et(1971),
AMIC-3799 | | evin | Puntlus ticto | | | 3.7 (T4) | a,c,d,e,1 | Of the pesticides investigated, the most toxic was Kiofos foflowed in decreasing order by Sumithion, Halathion, Formithion, Dimecron, Sevin, and BHC. The muthor cites the need for more selective | | ### pesticides nontoxic to fish or antagonistic agents for reducing fish toxicity. | Sevin | Rasbora
heferomorpha | BCFA
and
BSA | | 2.6 (12) | dilution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | |-------|--|--------------------|-------------------|---------------------|----------|--|--------------------------------------| | Sevin | Palaemonetes
kadiakensis
(resistant) | BSA | | 0.064-0.272
(T1) | •• | Bloassays were conducted with shrimp from three areas of intensive pesticide use and from an unexposed area. Previously exposed shrimp were from 1 to 25 times more resistant than unexposed shrimp. Both types of shrimp were also exposed in cages to waters of the contaminated areas. Susceptible shrimp suffered 66 percent more mortality than did resistant shrimp. The toxicity of the insecticides ranked in descending order was as follows; most toxic, Endrin, DDT, Methyl parathlon, Parathlon; medium toxicity, Guthion, Lindane, Toxaphene, Strobane; lease toxic Chiordane, Sevin, and Heptachlor. | | | Sevin | Palaemonetes
kadiakensis
(non-
resistant) | BSA | | 0.0425 (71) | a* | same as above | Nagvi, et al
(1970),
AMIC-5519 | | Sevin | Tubifex
tubifex | FL
and
BSA | Belzoni,
Miss. | 1.50 (NTE) | | The response of pesticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Reizoni and non-resistant species at State College. Copepods, clams, snails, and sludge worms from Beizoni were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic levels. | Naqvi, et
a!(1969),
AHIC~5979 | | Compound | Organism | | Fle1d
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments
Variables,
Controlled
or Noted | Comments | Reterence | |---------------|--------------------------------------|-----|-------------------|---|---|--|---| | Sevin | Mercenaria
mercenaria
(egqs) | ι | | 3.82 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility
of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Sevin | Mercenaria
mercenaria
(larvae) | ι | | greater than
2.5 (T14) | | same as above | Davis, et
al(1969),
AMIC-5990 | | Sevin | Crassostrea
virginica
leggs) | L | | 3 (12) | | same as above | Davis, et al
(1969),
AMIC-5990 | | Sevin | Crassostrea
virginica
(tarvae) | L | | 3 (714) | | same as above | Davis, et al
(1969),AMIC-
5990 | | Sevin | Wolffia
papulifera | L | | 1000 (K) | Huntor's
modium
diluted
1:5 | All compounds were harmful to duckweed to nome degree. Decreased populations were noted at non-lethal concentrations and some compounds (Ealathion and 3,4-D) caused teratogenic offects at concentrations as low as 1 pp | Worthley, et
al (1971),
AMIC-3233 | | Shamash R1885 | Crangon
crangon | 854 | | 3.3-10 (72) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater | | | Shamash R1885 | Pandatus
montagui | 8SA | | 1.0-3.3 (72) | a+(contin-
uous, aer-
ation, sea
water, and
daily
solution
renewal) | • | Portmann, et
al (1971),
AMIC-7701 | | Shell D-50 | Salmo
galrdneri | BCFA
and
BSA | <u></u> | 105 (T2) | a*,c,e,f,
hard
(HH) or
soft (SH)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of maquitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | |----------------------------|--------------------------|--------------------|---|--|--|---|-----------------------------------| | Sliver
methane-arsonate | Phormidium
ambiguum | ι | | 0.5-10.0 (16
percent growth
inhibited14) | | Of 74 chemicals evaluated as algleides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Cooper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 opm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Offo (1970),
AMIC-892 | | Silver | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | muscle | | Fish collected from an effluent pipe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with atuminum, cadmium, and nicket. Sliver, barium, lithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of poliutants on marine organisms. | Stapleton
(1968),
AMIC-5980 | | Compound | 0rganis# | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experimental
Variables,
Controlled
or Noted | | Comments | Reference | |----------|---|----|---|---|--|---------|----------|-----------------------------------| | Sliver | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as | above | Stableton
(1968),
AMIC-5980 | | Silver | Panatabnax
clathnatus | FM | Catatina
Island, Cal. | 0.16
(heart
residue) | | same as | above | Stapleton
(1958),
AMIC-5980 | | 51 Iver | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as | above | Stapleton
(1968),
AMIC-5980 | | Silver | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 0.02
(eyeball
residue) | | same as | above | Stapleton
(1968),
AMIC-5980 | | Sliver | Parai abrax
ci athratus | FH | Catalina
Island, Cal. | 0.09 (ventral
muscle
residue) | | same as | above | Stapleton
(1968),
AMIC-5980 | | 51 iver | Paral abrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | residue) | | same as | above | Stapleton
(1968),
AMIC-5980 | | Silver | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 0.42
(gonad
residue) | | same as | above | Stapleton
(1968),
AMIC-5980 | | Silver | Paralabrax
clathratus
(gravid
females) | FM | Catalina
Island, Cal. | 0.12gonad
residue) | | same as | above | Stableton
(1968),
AMIC-5980 | | Silver | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | residue) | | same as | above | Stapleton
(1968),
AHIC-5980 | | Silver | Paratabrax
clathratus | FM | Catalina
Island, Cal. | 0.02
(Hiver
residue) | | same as | above | Stapleton
(1968),
AMIC-5980 | | Sliver | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | (Integument | | same as above | Stapleton
(1968),
AMIC-5980 | |---------------|----------------------------|-----|---|---------------------------------|----|---|-----------------------------------| | Silver | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 0-12
(integument
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Silvex (BEE) | Gammarus
fasciatus | BSA | | 0.74 (T2), 0.25
(T4) | a* | Of the aquatic weed herbicides evaluated, Dicione was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration tevets of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | Sanders
(1970),
AMIC-453 | | Silvex (BEE) | Paleomontes
kadiakensis | BSA | | 8.0 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | Silvex (BEE) | Asellus
brevicaudus | BSA | | 40.0 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | Silvex (BEE) | Orconectes
nais | BSA | | 60.0 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | Slivex (BEE) | Daphnia maqna | BSA | | 2.1 (T2) | a# | same as above | Sanders
(1970),
AMIC-453 | | Silvex (BEE) | Cypridopsis
vidua | BSA | | 4.9 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | SIIvex (BEE) | Lepomis
macrochirus | BSA | | 70.0 (T2) | a* | same as above | Sanders
(1970),
ANIC-453 | | Silvex (PGBE) | Gammarus
fasclatus | RSA | •• | 1.0 (T2), 0.84
(T4) | a* | same as above | Sanders
(1970),AMIC-
453 | | Silvex (PGBE) | Pateomontes
kadiakensis | BSA | | 3.2 (72) | a* | same as above | Sanders
(1970),
AMIC-453 | | Compound | Organism | - | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |---------------|------------------------------------|------|-------------------|---|--|--|---| | Slivex (PGBE) | Asellus
brevicaudus | BSA | | 0.5 (T2) | a* | same as above | Sanders
(1970),
AMIC~453 | | Slivex (PGBE) | Orconectes
nais | 054 | | greater than
100.0 (T2) | a* | same as above | Sanders
(1970),AMIC | | Slivex (PGBE) | Daphnia magna | 854 | | 0.18 (T2) | a• | same as above | Sanders(197)
), AHIC-453 | |
Slivex (PGBE) | Cypridopsis
vidua | BSA | | 0.20 (T2) | a* | same as above | Sanders
(1970),
AHIC-453 | | Slivex (PGBE) | Lepomis
macrochirus | BSA | | 16.6 (TZ) | a* | same as above | Sanders
(1971),
AMIC-453 | | SIlvex | Crassostrea
virginica
(eggs) | ι | | 5.9 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Host of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Sitvex | Crassostrea
virginica | ι | | 0.7 (714) | | same as above | Davis, et a | | | (larvae) | | | | | | (1969),AMIC | | Si∍azine | Fish (not
specified) | | | greater than
10-100 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mawdesley-
Thomas
(1971),AMIC
1056 | | Simezine | Salmo | BCFA | | 43 (12) | a*,c,e,f, | One hundred slxty-four | Alabaster | | > | | |---|--| | | | | u | | | V | | | V | | | | | | | gairdneri | and
BSA | | dilution | pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | (1969),
AMIC-5425 | |----------|--------------------------------------|--------------------|------------------------------|---|--|---| | Slmazine | Salmo
gairdneri | BCFA
and
BSA |
44 (71) | a*,c,e,f,
hard(HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Simazine | Roccus
saxatilis
(fingerlings) | BSA |
0.25 (T4) | a*.c,d,e,f
,p and
Iron | Strived bass fingerfings were apparently much more sensitive to therapeutic and herbicidal compounds than many freshwater fish. | Wellborn
(1969);
AMIC-5723 | | Simazine | Carcinus
maenas | BSA |
greater than
100 (TZ) | ation, sea- | One hundred-forty surface active agents, solvent emulsifiers, pesticides, potychtorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971);
AMIC-7701 | | Simazine | Cardium edule | BSA |
greater than
100 (TZ) | a*(continuous, aeration, seawater, and daily solution renewal) | Same as above | Portmann, et
al (1971),
AMIC-7701 | | Slmazine | Crangon
crangon | 85A |
greater than
100 (TZ) | a*(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
at (1971),
AHIC-7701 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments Variables, Controlled or Noted | Comments | Reference | |------------|----------------------------|-------------|-------------------|---|--|---|---| | Simazine | Gammarus
fasclatus | BSA | | greater than
100.0 (TZ) | 9 n | Of the aquatic weed herbicides evaluated, Dicione was the most toxic. Daohnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | | | Imazine | Paleomontes
kadiakensis | BSA | | greater than
100.0 (TZ) | a* | same as above | Sanders
(1970),AMIC-
453 | | i∎azine | Asellus
brevicaudus | BSA | | greater than
100.0 (TZ) | a* | same as above | Sanders
(1970),AMIC-
453 | | imazine | Orconectes
nals | 85 A | | greater than
100.0 (T2) | a * | same as above | Sanders
(1970),AMIC-
453 | | imazine | Daphnla maqna | BSA | | 1.0 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | imazine | Cypridopsis
vidua | BSA | | 3.2 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | imazine | Lepomis
macrochirus | BSA | | greater than
100.0 (T2) | a* | same as above | Sanders
(1970),AMIC-
453 | | fickgone 1 | Carcinus
maenas | AZB | | 33-100 (T2) | | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated bibhenyls, Dure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AHIC-7701 | | tickgone i | Cardium edule | BSA | | 33 (T2) | a*(contin- | same as above | Portmann, e | | | | | | uous, aer-
ation, sea
water, and
daily
solution
renewal) | | at (1971).
Amic-7701 | |-------------|----------------------|-----|-----------------|--|---------------|---| | Silckgone 1 | Crangon
crangon | BSA |
3.3-10 (72) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971).
AMIC-7701 | | Slickgone 1 | Pandalus
montagui | BSA |
3.3-10 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Silckgone 2 | Carcinus
maenas | BSA |
10-33 (T2) | a+(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AHIC-7701 | | Slickgone ? | Cardium edule | BSA |
3.3 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AHIC-7701 | | Slickgone ? | Crangon
crangon | BSA |
3.3-10 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971).
AMIC-7701 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments Variables, Controlled or Noted | Comments | Reference | |-------------|-------------------------|--------------------|-------------------|---|---|---|---| | | | | | | renewal) | | | | Silckgone 2 | Pandatus
montagui | BSA | | 3.3-10 (T2) | a*(continuous aer-
ation, sea
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AHIC-7701 | | SIIX | Rasbora
heteroporpha | BCFA
and
BSA | | 8.3 (TZ) | dliution | One hundred sixty-four pesticides, wetting agents, and miscetlaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AHIC-5425 | | \$11x | Carcinus
maenas | ASA | •• | 15 (74) | ation, sea. | One hundred-forty surface active agents, solvent emulsifiers, posticides, polychiorinated biohenyls, pure linorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | | SIIX | Cardlum edule | BSA | | 33 (T2) | as(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Slix | Crangon
crangon | BSA | | 100-330 (T2) | as(continuous, aeration, seawater, and daily | samé as abové | Portmann, et al (1971), AHIC-7701 | # solution renewal) | SIIX | Ostrea edulis BSA | | 100 (72) | a*(contin-
uous,
aer-
ation, sea-
water, and
daily
solution
renewal) | şame as above | Portmann, et
al (1971),
AMIC-7701 | |-------------------|------------------------------|-----|---------------|--|---|---| | | Pandaius BSA
montagui | | 10-33 (72) | as(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | Zeme sz spoke | Portmann, et
al (1971),
AMIC-7701 | | Snowdrlff SC98 | Crangon BSA
crangon | · · | 330-1000 (72) | ation, sea.polywater, and inordaily evaluation organization renewal) publication | One hundred-forty surface active conts, solvent emulsifiers, pesticides, ychlorinated biphenyls, pure granic, and organic chemicals were gluated against as many as ten marine anisms. The authors noted that most gillshed data of this type deal with cicity of chemicals to freshwater anisms. | Portmann, et
al (1971),
AHIC-7701 | | Sodium arsenate | Carassius L
auratus | | 32 (17) | Sturitori
lo s
0.1
Seli
occi
appi | In addition to toxicity data, ditioned avoidance response was died at sublethal concentrations. The lest concentration of metal resulting significant impairment was: arsenic, 0: lead, 0.07: mercury, 0.073: and enium, 0.25. Deleterious effects curred at metal concentrations proximately similar to potable water indards. | Weir, et al
(1970),AMIC-
739 | | Sødium blembonate | Lepomis BSA
macrochirus L | | 8,600 (T4) | dilution com
water to :
The
10- | This study was conducted to termine the relative toxicities of 20 mon constituents of industrial wastes a fish, an aiga, and an invertebrate, experiments were conducted over a year period for varied purposes. The thors recommend bloassays with at least | Patrick, et
at (1968),
AMIC-5720 | | Compound | Õrganis∎ | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | Comments | Reference | |--------------------|-------------------------|--------------------|-------------------|---|--|---|--| | | | | | | | three components of the food web. | | | Sodium bicarbonate | Nifzschia
Iinearis | BSA,
L | - | 650 (15) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | odium cerbonate | Lepomis
macrochirus | BSA,
L | - | 320 (14) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | Sodium carbonate | Nitzschia
Ilnearis | BSA. | | 242 (15) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
al (1968),
AMIC-5720 | | Sodium chlorate | Rasbora
heteromorpha | BCFA
and
BSA | | 8600 (T1) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dliution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Sodium chioride | Lepomis
macrochirus | BSA, | | 17,946 (T4) | a*,e, and
synthetic
dliution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bioassays with at least three components of the food web. | Patrick, et
al (1968),
AMIC-5720 | | Sodlum chloride | Nitzschia
Iinearis | BSA. | | 2,430 (T5) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
ai (1968),
AMIC-5720 | | Sodium chloride | Agonus | BSA | | 22,000-33,000 | a*(contin- | One hundred-forty surface active | Portmann, et | | | cataphractus | | | (T2) | ation, sea- | agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | a! (1971),
AHIC-7701 | |-------------------------|---------------------------------------|--------------------|---|-----------------------|---|--|---| | Sodium chloride | Carcinus
maenas | BSA | - | 11,000-16,500
(T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | | Portmann, et
a! (1971),
AHIC-7701 | | Sodiu n chloride | Cardium edule | BSA | | 66,000 (T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
ai (1971),
AMIC-7701 | | Sodium chioride | Crangon | BSA | | 16,500-33,000
(T2) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | | Portmann, et
al(1971),
AMIC-7701 | | .Sodium cyanide | Negaprion
brevirostris
(1-3 kg) | BSA | | 6.6 (SB10 min) | a,c,e | Data from study of drug effects on young lemon sharks were treated mathematically to demonstrate applicability of classical rafe theory to the study of chemical shark deterrents. Incapacitation (narcosis) was the primary parameter timed for effectiveness. This was usually quite rapid for the more effective drugs. | 8aldrldge
(1969),
AMIC-3832 | | Sodium fluoracetate | Salmo
gairdneri | BCFA
and
BSA | | 580 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water, or | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy | Alabaster
(1969),AMIC-
5425 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
PDM | Experiment:
Variables,
Controlled
or Noted | | Reference | |------------------|------------------------|-----|-------------------|---|--|---|---| | | | | | | seawater
for some
species | predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | | Sodium fluoride | Crangon
crangon | BSA | | greater than
300 (T2) | ation, sea- | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | | Sodium hydroxide | Agonus
cataphractus | BSA | | 33-100 (72) | a*(contin-
uous, aor-
ation, sea-
wator, and
daily
solution
renewal) | | Portmann, et
al(1971),
AHIC-7701 | | Sodium hydroxide | Cardium edule | BSA | | 330-1000 (72) | aw(continuous, aeration, seawater, and daily solution renewal) | | Portmann, et
at (1971),
AMIC-7701 | | Sodium hydroxide | Crangon
crangon | BSA | | 33-100 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | same as above | Portmann, et al (1971),
AHIC-7701 | | Sodium molybdate | Salmo
galrdneri | FL | Castle Lake, | 3.5 1b per A (NTE) | | Molybdenum fertilization resulted in greater standing crops of zooplankton | | | | | | | | | and bottom fauna and apparently in increased yields of rainbox and eastern brook trout. Hitigating factors may have influenced the results. A second experimental fertilization was initiated. | AHIC-5750 | |---------------------------------------|--------------------------|--------------------|----------------------
-----------------------|---|--|--| | Sodium molybdate | Saiveilnus
fontinalis | FL | Castle Lake,
Cal. | 3.5 1b per A
(NTE) | | same ąs above | Cordone, et
al (1970),
AMIC-5750 | | Sodium nitrite | Rasbora
heferomorpha | BCFA
and
BSA | | 210 (T2) | a*,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water, or
seawater
forsome
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water poliutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Sodium
N-methyldithio
carbamate | Phormldium
ambiguum | ť | | 0.5-10.0(NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain metting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Otto (1970),
AMIC-892 | | Sodium
pentachiorophenate | Salmo
gairdnerl | BCFA
and
BSA | | 0.15 (T2) | a*,c,e,f,
hard
(HH) or
soft (SH)
synthetic
dilution
water, or
seawater
species | One hundred sixty-four pesticides, wefting agents, and miscellaneous water collutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. | Alabaster
(1969),AMIC-
5425 | | Continued | Organise | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |------------------------------|------------------------|-----------|-------------------|---|--|--|---| | | | | | | | Testing the actual material as sold was found to be essential. | | | Sodium
pentachiorophenate | Phormidium
ambiguum | ι | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algloides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Otto (1970),
AMIC-892 | | Sodium pyridine-N-oxide | Phormidium
ambiguum | L | | 0.5-10.0 (NTE) | | same as above | Otto (1970);
AMIC-892 | | Sodium suifate | Lepomis
macrochirus | BSA,
L | | 13,500 (T4) | a*,e, and
synthetic
dilution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bloassays with at least three components of the food web. | Patrick, et
at (1968),
AMIC-5720 | | Sodium sulfate | Nitzschia
Iinearis | BSA,
L | | 1,900 (TS) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
at (1968),
AMIC-5720 | | Sodium thiocyanate | Carcinus
Baenas | BSA | | greater than
500 (T2) | ation, soa | agents, solvent emulsifiers, pesticides,
polychtorinated biphenyts, pure
inorganic, and organic chemicals were
evaluated against as many as ten marine | Portmann, et
at (1971),
AMIC-7701 | | Sodium thlocyanate | Cardium edute | BSA | | greater than
500 (T2) | aw(continuous aeration, sea water, and daily solution renewal) | - | Portmann, et
a! (1971).
AHIC-7701 | |--------------------|-------------------------------------|-------------------|------------------------------------|--------------------------|--|---|---| | Sodium thlocyanate | Crangon
crangon | BSA | | greater than
500 (T2) | aw(continuous, aeration, sea
water, and
daily
solution
renewal) | | Portmann, et
ai (1971),
AMIC-7701 | | Sodium thiocyanate | Pandalus
montagui | BSA | | greater than
6.2 (T2) | a*(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Sp111-X | Steelhead
trout
(fingerlings) | BSA | | 35.5 (T4) | | Evaluation of 11 oil dispersants resulted in a ranking for each and a recommendation for use according to the ranking. Ranking was based on toxicity and oil dispersal effectiveness. Corexit 7764 appeared to have the least toxicity with fair to good oil dispersion capability. | (1969),AMIC-
3834 | | Spill-X | Coho salmon (fingerlings) | BSA
in
situ | Hood Canal,
Hoodsport,
Wash. | 1.5 (K) | | same as above | Tracy, et al
(1969),
AMIC-3834 | | Spill remover | Pimephales
promelas | BSA | | 5.6 (74) | c,d,e,f | Toxicity of six oil split dispersants was determined along with 800 values. Pond water was used as diluent and oil was included in the experiment. Oil markedly reduced toxicity of all dispersants. Data are given as "most probable" 96-hr TL sub m. | Z1111ch
(1969),
AHIC-2909 | | Spill remover | Pimephales
promelas | BSA | | 1.4 (HSC) | c,d,e,f | Same as above | Z1111ch
(1969),AMIC-
2909 | | Spill remover | Biochemical
oxygen demand | ı L | •• | 630,000 | c,d,e,f | same as above | Z1111ch
(1969),AMIC+ | | Compound | Organism | Study | fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |----------------------|-------------------------------------|-------|-------------------|---|---|--|-------------------------| | | | | | | | | 2909 | | Streptomycin suffate | Limnodritus
sp | ι | | 0.5 (T1) | a* | Tubificid worms were found to be approximately 300 times more sensitive than their own gut microflors. The authors recommend that streptomycin should not be indiscriminately applied in aquatic ecosystems. | (1968),
AMIC-5460 | | treptomycin sutfate | Tubifex sp | L | | 0.5 (T1) | a* | same as above | Coler, et a | | | | | | | | | (1958),AMIC
5460 | | treptomycin sulfate | Peloscolex sp | ι | | 0.5 (T1) | a* | same as above | Coler, et a | | | | | | | | | (1968),AMIC
5460 | | treptomycin sulfate | Phormidium
ambiguum | ι | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the
concentrations investigated (0.05 and 0.005 cpm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Offo(1970),
AMIC-892 | | Strobane | Lepomis
cyanelius
(Resistant) | BSA | | 0.88 (72) | a* | Green sunfish from Belzoni, Hiss. were resistant to Chlordane, Heptachlor, Lindane, and Strobane, but not to Parathlon. Golden shiners from the same location were resistant to Lindane and Strobane, tolerant to Chlordane and Heptachlor, and susceptible to Parathlon. Lack of resistance to Parathlon indicated lack of agricultural usage of organophosphates in that area. Resistant | al (1970),
Amic-5471 | ## fish were compared to susceptible ones collected at Starkville. | Strobane | Lepomis
cyanellus
(Susceptible) | BSA | | 0.05 (12) | a* | same as above | Minchew,
etal (1970),
AMIC-5471 | |----------|--|------------------|----------------------------|----------------------|---------|--|---------------------------------------| | Strobane | Notemigonus
crysoleucas
(Resistant) | BSA | | 2.22 (72) | •• | same as above | Minchew,
etal (1970),
AMIC-5471 | | Strobane | Notemiaonus
crysoleucas
(Susceptible) | BSA | | 0.06 (72) | * | same as above | Minchew,
etal (1970),
AMIC-5471 | | Strobane | Palaemonetes
kadiakensis
(resistant) | BSA | • | 0.0854-0.207
(T1) | a* | Bloassays were conducted with shrimp from three areas of intensive pesticide use and from an unexposed area. Previously exposed shrimp were from 1 to 25 times more resistant than unexposed shrimp. Both types of shrimp were also exposed in cages to waters of the contaminated areas. Susceptible shrimp suffered 56 percent more mortality than did resistant shrimp. The toxicity of the insecticides ranked in descending order was as follows: most toxic, Endrin, DDT, Methyl parathion, Parathion; medium toxicity, Guthion, Lindane, Toxaphene, Strobane; lease toxic Chiordane, Sevin, and Heptachior. | | | Strobane | Palaemonetes
kadlakensis
(non-
rosistant) | BSA | | 0.0393(71) | a* | same as above | Nagvi, et al
(1970),
AMIC-5519 | | Strobane | Cooenods (Cyclops bicuspidus, Cyclops varicans, Cyclops vernalis, Eucyclops agilis, Macrocyclops albidus, Orthocyclops modestus) | FL
and
BSA | State
College,
Miss. | 0.10 (K2) | | The response of pesticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Belzoni and non-resistant species at State College. Copepods, clams, snaits, and sludge worms from Belzoni were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of | Nagvi, et al
(1969),
AMIC-5979 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta Variables, Controlled or Noted | Comments | Reference | |-------------------|---|------------------|---|---|--|---|-------------------------------------| | | | | | | | pesticide residues available to animals of higher trophic levels. | | | Strobane | Copepods | FL | Betzoni, | 0.10 (K2) | | same as above | Nagvi, et a | | | (Cyclos blcuspidus, Cyclos varicans, Cyclos vernalis, Eucyclos agilis,Macroc Macrocyclops albidus, Orthocyclops andestus) | and
BSA | Hiss | | | | (1969),AMIC
5979 | | Strobane | Tublifex
tublifex | FL
and
BSA | Belzoni,
Miss. | 1.50 (NTE) | | same as abové | Nagvi, et
al(1969),
AMIC-5979 | | Strontlu m | Paral abrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | muscle | | Fish collected from an effluent ploe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nicket, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with atuminum, cadmium, and nicket. Sliver, barium, lithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of poliutants on marine organisms. | | | Strontlum | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 1.7 (dorsal
muscle
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Strontlum | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles, | | | same as above | Stapleton
(1968),
AMIC-5980 | ## Cal. | Strontlum | Paratabrax
ctathratus | FN | Catalina
Island, Cal. | 1.8 (ventra)
muscle
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | |-------------|---|----|---|------------------------------------|---------|---------------|-----------------------------------| | Strontlum | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1958),
AMIC-5980 | | Strontlym | Paralabrax
clathratus | FM | Catatina
Island, Cal. | 3.4 (gonads
residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Strontium | Paralabrax
clathratus
(gravid
females) | FH | Catalina
Island, Cal. | 3.2
(gonads:
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Strontlum | Paratabrax
ctathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Strontlum . | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 2.1 (liver residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Strontlum | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | 5.4 (Integument
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Strontlum | Paral abrax
clathratus | FM | Catalina
Island, Cal. | 10.1(integument residue) | | same as above | Stapleton
(1968),
AMIC-5988 | | Strontlum | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Strontium | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 3.7 (heart
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Strontium | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | 92 (eyeball
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
PDM | Experiments
Variables,
Controlled
or Noted | | Reference | |------------------------------|---------------------------------------|-----|--------------------------|---|---|---|---| | Strontium | Paralahrax
clathratus | FH | Catalina
Island, Cal. | 162 (eyeball
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Strychnine nitrate | Negaprion
brevirostris
(1-3 kg) | BSA | | 1.7 (SB 10
HIN) | 8,0,0 | Data from study of drug effects on young lemon sharks were treated mathematically to demonstrate applicability of classical rate theory to the study of chemical shark deterrents. Incapacitation (narcosis) was the primary parameter timed for effectiveness. This was usually quite rapid for the more effective drugs. | | | Suffisoxazole
(Gantrisin) | Fundulus
heteroclitus
(3 in.) | t | | 0.96 (SBJ0) | 8* •q | The sulfa drug caused no significant difference in growth rate,
testes weight, lodine uptake, or liver weight. Varying degrees of adrenal inactivity and adrenal degranulation occurred due to treatment. A significant increase in hematocrit was noted. As a result this chemical has become the sulfadrug of choice in the Ringham Laboratory for controlling skin infection of killifish. | | | Suffuric acid | Agonus
cataphractus | BSA | | 80-90 (T2) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychtorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AHIC-7701 | | Suffuric acid | Carcinus
maenas | BSA | | 70-80 (T2) | as(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | • | Portmann, et
at (1971),
AMIC-7701 | | Sulfuric acid | Cardium edule | BS▲ | | 200-500 (12) | s*(contin- | same as above | Portmann, et | | | | | | | uous aer-
ation, ser
water, and
daily
solution
renewal) | | al (1971),
Amic-7701 | |-----------------|------------------------------------|-----|---|--------------------------|--|--|--| | Suffuric acid | Crangon
crangon | BSA | | 70-80 (T2) | a*(contin-
uous aer-
ation, see
water, and
daily
solution
renewal) | !- | Portmann, et
al (1971),
AMIC-7701 | | Sulfuric acid | Pandalus -
montagul | BSA | | 42 . 5 (T2) | as (continuous aeration, sea water, and daily solution renewal) | | Portmann, et
a: (1971).
AHIC-7701 | | Sulfuric acid | Platicthys
flesus | BSA | - | 100-330 (T2) | a*(contin-
uous aer-
ation, ses
water, and
daily
solution
renewal) | ı - | Portmann, et
al (1971),
AMIC-7701 | | Sulfur | fish (not
specified) | | | greater than
1000 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An exceitant brief, general discussion of toxicity testing is also present. | Mawdesley-
Thomas
(1971),AMIC-
1056 | | Sulmet (finted) | Hercenaria
mercenaria
(eggs) | L | | greater than
100 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Host of the compounds affected development more than survivat. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of | Davis, et al
(1969),
AHIC-5990 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | - | Reference | |-------------------|--------------------------------------|--------------------|-------------------|---|--|---|--------------------------------------| | | | | | | | selecting chemicals for pest control that would not have serious effect on shellfish. | | | Sulmet (tinted) | Mercenarla
mercenarla
(larvae) | i | | greaterthan 100
(T12) | | same as above | Davis, et a
(1969),
AMIC-5990 | | Sulmet (untinted) | Mercenaria
mercenaria
(eggs) | L | | greaterthan
1000 (T2) | | same as above | Davis, et a:
(1969),
ANIC-5990 | | Sulmet (untinted) | Mercenaria
mercenaria
(larvae) | i | - | greater than
1000 (T12) | | same as above | Davis, et a!
(1969),
AMIC-5990 | | Sulmet (untinted) | Crassostrea
virginica
(eggs) | ι | | greaterthan 600
(T2) | | same as above | Davis, et a
(1969),
AMIC-5990 | | uimet (untinted) | Crassostrea
virginica
(tarvae) | ι | | greater than
600 (T14) | | same as above | Davis, et a
(1969),
AMIC-5990 | | Sumithion | Puntlus ticto | | | 0.0058 (T4) | a,c,d,e,1 | Of the pesticides investigated, the most toxic was Kiotos followed in decreasing order by Sumithion, Hatathion, Formithion, Dimecron, Sevin, and BHC. The author cites the need for more selective pesticides nontoxic to fish or antagonistic agents for reducing fish toxicity. | | | iutan | Gammarus
fasclatus | BSA | | 10.0 (T4) | a* | Of the aquatic weed herbicides evaluated, Dicione was the most toxic, Daohnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | Sanders
(1970),
AMIC-453 | | :.0. 3562 | Rasbora
heteromorpha | BCFA
and
BSA | | greater than
1,000 (T2) | a*,c,e,f,
hard(HH)
or soft
(SH)
synthetic
dilution
mater, or
seawater
for some | percentage of all components of a | Alabaster
(1969),AMIC-
5425 | | | | | | species | pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | |-----------|------------------------------------|--------------------|----------------|---|---|--------------------------------------| | S.D. 8211 | Rasbora
heteromorpha | BCFA
and
BSA |
3.5 (T2) | a*,c.e.1,
hard (HW)
or
SOFT(SW)
Synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | S.D. 8447 | Rasbora
heteromorpha | BCFA
and
BSA |
4.3 (T2) | a*.c.e.f. hard (HW) or soft (SW) synthetic dilution water, or seawater for some species | same as above | Alabaster
(1959),
Amic-5425 | | S.N. 5215 | Rasbora
heteromorpha | BCFA
and
BSA |
23 (T2) | a*,c,e,f,
hard (HH)
or
SOFT(SH)
synthetic
ditution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AHIC-5425 | | TCC | Mercenaria
mercenaria
(eggs) | ι |
0.032 (T2) | | The effect of 52 pesticides on embryonic development of clams and bysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of | Davis, et al
(1969),AMIC-
5990 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |----------|--------------------------------------|-----|-------------------|---|---|--|--| | | | | | | | selecting chemicals for pest control that would not have serious effect on shellfish. | • | | TCC | Mercenaria | i. | | 0.037 (712) | | same as above | Davis, et al | | | mercenaria
(larvae) | | | | | | (1969),AMIC-
5990 | | TCP | Crassostrea
virginica
(eggs) | 1 | | 0.6 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survivat. Some, however, drastically reduced farval growth. The authors point out the necessity of evaluating the effects of pesticides on all tite stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | TCP |
Crassostrea
virginica
(tarvae) | L | | greater than
1.0 (T14) | | sawe as above | Davis, et
al(1969),
amic-5990 | | TDE | Fish (not
specified) | | | greater than
0.01-0.1 (K) | ** | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mandesley-
Thomas
(1971),AMIC-
1856 | | TOE | White sucker | FRL | Misc. states | 0.05-3.81
residue (SB) | | The Bureau of Sport Fisheries continued its fish monitoring program by collecting 147 composite tish samples from 50 nationwide monitoring stations during the fall of 1969. Fish were analyzed for residues of 11 organochlorine insecticides, lipids, and PCB*s. | AHIC-1407 | | TDE | Yellow berch | FRL | Misc. states | 0.03-1.47
residue (SB) | | evode 26 sme2 | Henderson,
etal (1971),
AHIC-1407 | | TOE | Chain
pickerei | FRL | Misc. states | 0.09 residue
(SB) | | same as above | Henderson,
et al(1971),
AHIC-1407 | | TOE | White catfish | FRL | Hisc. s | | 0.32-0.43
residue (SB) | | same as above | Henderson, et
al (1971),
AHIC-1407 | |-----|----------------------|-----|---------|--------|---------------------------|-----------|---------------|--| | TOE | White perch | FRL | Misc. s | | 0.65-8.07
residue (SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | TOE | Goldflsh | FRL | Misc. s | states | 1.91 residue
(SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | TOE | PumpkInseed | FRL | Misc. s | states | 0.39 residue
(SB) | , | same as above | Henderson,
et al(1971),
AMIC-1407 | | TOE | Largemouth
bass | FRL | Misc. s | states | 0.04-2.73
residue (SB) | | same as above | Henderson.et
al (1971),
AMIC-1407 | | TOE | Brown
builhead | FRL | Misc. s | states | 0.07-1.76
residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | TOE | Carp | FRL | Misc. s | states | 0.02-1.86
residue (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | TOE | Channel
cattish | FRL | Misc. s | states | 0.04-10.4
residue (SB) | | same as above | Henderson, et at (1971), AMIC-1407 | | TOE | Redhorse
sucker | FRL | Misc. s | states | 0.03-0.44
residue (SB) | | same as above | Henderson,et
al (1971),
AMIC-1407 | | TOE | Gizzard shad | FRL | Misc. s | states | 0.37-0.73
residue (SB) | | same as above | Henderson,
etal (1971),
AMIC-1407 | | TDE | Spotted
sucker | FRL | Misc. s | states | 0.19-0.32
residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | TDE | Bluegilis | FRL | Misc. | states | 0.03-0.45
residue (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | TDE | Redbreast
sunfish | FRL | Misc. | states | 0.02 residue
(SB) | | same as above | Henderson, et
al (1971),
AHIC-1487 | | Compound | Organis a | | Field
Location | | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | | Comments | Reference | |----------|------------------------|-----|-------------------|------|---|---|--------------------|-------------------|--| | TOE | Striped
multet | FRL | Misc. st | ates | 0.20-2.26
residue (SB) | | same as | above | Henderson, et
al (1971),
AMIC-1407 | | TOE | Blue caffish | FRL | Misc. st | ates | 0.08 residue
(SB) | | 58#0 8S | above | Henderson,
et al(1971),
AMIC-1407 | | TOE | Rock bass | FRL | Misc. st | ates | 0.05-0.59
residue (SB) | | same as | above | Henderson,
et ai(1971),
AMIC-1407 | | TOE | Freshwater
drum | FRL | Misc. st | ates | 0.28 residue
(SB) | | 2986 92 | above | Henderson,
et al(1971),
AMIC-1407 | | TOE | Bloater | FRL | Misc. st | ətes | 0.15-0.74
residue (SB) | | \$8 # 0 8\$ | evode: | Henderson,
et al(1971),
AMIC-1407 | | TOE | Lake
whitefish | FRL | Misc. st | ates | 0.12 residue
(SB) | | \$8 96 85 | abov e | Henderson,
et al(1971),
AHIC-1407 | | TOE | Lake trout | FRL | Misc. st | ates | 0.02-0.15
residue (SB) | | same as | above | Henderson,
et al(1971),
AMIC-1407 | | TOE | White crapple | FRL | Misc. st | ates | 0.22-0.27
residue (SB) | | same as | Bbove | Henderson, et
al (1971),
AMIC-1407 | | TOE | Blgmouth
buffalo | FRL | Hisc. st | ates | 0.17-0.60
residue (SB) | | same as | above | Henderson, et
at (1971),
AMIC-1407 | | TOE | Small mouth
buffalo | FRL | Misc. st | ates | 0.46 residue
(SA) | | same as | above | Henderson, et
al (1971),
AMIC-1407 | | TDE | Flathead
catfish | FRL | Misc. st | ates | 0.80 residue
(SB) | | same as | abov• | Henderson,
etal (1971),
AHIC-1407 | | TDE | Go1 deye | FRL | Hisc. st | ətes | 0.02-0.28
residue (SB) | | 58 89 85 | above | Henderson,
et al(1971), | | | | | | | | | | AMIC-1407 | |-----|------------------------|-----|-------|--------|----------------------------|----|---------------|--| | TOE | Walleye | FRL | Misc. | _ | 0.03-0.29
residue (SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | TOE | Sauger | FRL | Misc. | states | 0.10 residue
(SB) | | same as above | Henderson, et
al
(1971), AMIC-
1407 | | TDE | Flannelmouth
sucker | FRL | Hisc. | states | 0.28 residue
(SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | TDE | Black
bullhead | FRL | Misc. | states | 0.02-0.05
residue (SB) | •• | same as above | Henderson, et
al (1971),
AMIC-1407 | | TDE | White bass | FRL | Misc. | states | 0.09 residue
(SB) | •• | same as above | Henderson,
ef al(1971),
AMIC-1407 | | TOE | Black crapple | FRL | Misc. | states | 0.22-0.49
residue (SB) | | same as above | Henderson.et
a! (1971),
AMIC-1407 | | TOE | Largescale
sucker | FRL | Mjsc. | states | 0.06+0.29
residue (SB) | | Same as above | Henderson, et
al (1971),
AMIC-1407 | | TOE | Small mouth
bass | FRL | Misc. | states | 0.14-0.23
residue (SB) | | Same as above | Henderson, et
al (1971),
AMIC-1407 | | TDE | Northern
squawfish | FRL | HISC. | states | 0.03-0.45
residue (\$B) | | same as above | Henderson.et
at (1971).
AMIC-1407 | | TOE | Chiselmouth | FRL | Hisc. | states | 0.09-0.41
residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | TDE | Klamath
sucker | FRL | Hisc. | states | 0.01 residue
(58) | | Same as above | Henderson,
et al(1971),
AMIC-1407 | | TOE | Rainbow trout | FRL | Misc. | states | 0.03-0.16
residue (SB) | | same as above | Henderson, et
al (1971),
AMIC-1407 | | TOE | Bridgetip | FRL | Misc. | states | 0.38 residue | | same as above | Henderson, | | Compound | Organisa | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | Comments | Reference | |----------|-------------------------|-----|---|---|--|--|---| | | sucker | | | (58) | | | et al(1971).
AMIC-1407 | | 307 | Arctic
grayling | FRL | Misc. states | 0.16 residue
(SB) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | TOE | Round
Whitefish | FRL | Misc. states | 0.32 residue
(58) | | same as above | Henderson,
et al(1971),
AMIC-1407 | | TDE | Longnose
sucker | FRL | Misc. states | 0.01-0.52
residue (SB) | | same as above | Henderson,et
al (1971),
AMIC-1407 | | TOE | Engraulis
mordax | FH | Pacific
Northwest
Coast, Grays
Harbor,
Hash. | 0.07-0.24
(residue) | | Pesticides from the Columbia Piver into Puget Sound apparently contaminated fish constituting commercial catches in Pacific Northwest maters. Residues in these marine products were substantially lower than the FDA tolerance for beef (7 ppm). Fish from locations near the mouth of the Columbia River had higher pesticide content than ones caught farther away. | Stout
(1968),
AMIC-3784 | | TOE | Cancer
magister | FM | Pacific Northwest Coast, Destruction Island, Wash. | 0.01(residue) | | same as above | Stout
(1968),
AMIC-3784 | | TOE | Cancer
magister | FH | Pacific
Northwest
Coast,
Ilwaco,
Wash. | 0.02 (residue) | •• | same as above | Stout
(1968),
AMIC-3784 | | 70E | Parophrys
vetulus | FĦ | Pacific
Northwest
Coast,
Rimine,
Wash, | 0.01-0.07
(residue) | | same as above | Stout
(1958),
AMIC-3784 | | TOE | Merluccius
productus | FH | Pacific
Northwest
Coast,
Sarasota
Passage,
Wash. | 0.03-0.05
(residue) | •• | same as above | Stout
(1968),
AHIC-3784 | | TDE . | Meriuccius
productus | FM Pacifi
North
Coast
Susan | est (residue) | | same as above | Stout
(1968),
AHIC-3784 | |------------------|---------------------------------------|---|----------------|---------------|--|-------------------------------| | TDE | Merluccius
productus | FM Paclil
North
Coast
Foulw
Ore. | est | | same as above | Stout
(1968),
AMIC-3784 | | TDE |
Merlucclus
productus
(flshmeal) | FM Pacifi
North
Coast
Aberd
Wash. | vest | •• | same as above | Stout
(1966),
AMIC-3784 | | 10E | Sebastodes
alutus | FM Pacif
North
Coast
Hecat
Strain | rest (residue) | | same as above | Stout
(1958),
AMIC-3784 | | TDE [.] | Platichthys
stellatus | FM Pacifi
North
Coast
Riain
Hash. | iest
L | •• | same as above | Stout
(1968).
AMIC-3784 | | TDE | Gadus
macrocephalus | FM Pacif
North
Coast
Blain
Wash. | rest | | same as above | Stout
(1968),
AMIC-3784 | | TDE | Sebastodes
flavidus | FN Pacif
North
Coast
Hecat
Strain | iest | | same as above | Stout
(1968),
AMIC-3784 | | TDE | Sebastodes
11 av Idus | FM Pacifi
North
Coast
Ilwace | est (residue) | | same as above | Stout
(1968),
AMIC-3784 | | TEPA | Poeclila
reficulata | ВСН | 1-10 (SB1) | a ,c,d | Gupples were continuously exposed for 24 hr each week over a 33 kk experimental period to determine the effect of TEPA on reproduction and on the viabily, survival, and reproduction of | (1969),AMIC- | | Compound | `Organis≡ | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments
Variables,
Controlled
or Noted | Comments | Reference | |----------|------------------------------------|------------------|-------------------|---|---|---|--------------------------------------| | | | | | | | the unexposed Fi generation. Male fertitity was adversely affected at concentration levels that did not influence female reproductive capability. Inhibited brood production was associated with atrophied and normal testes. The effect varied with concentration and exposure frequency. Male potency appeared to recover when exposures were discontinued. No apparent effects were observed in the Fi generation. TEPA is a chemosteritant used to induce sterility in insect pests. | | | TEPA | Poeciila
reticulata | всн | | 190 (T4) | a,c,d | same as above | Stock, et
at (1969),
AMIC-5457 | | TEPP | Tublfex
tublfex | FL
and
BSA | Beizonł,
Niss. | 8.00 (NTE) | | The response of pesticide-resistant aquatic organisms for various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Retzoni and non-resistant species at State College. Copepods, clams, snails, and studge worms from Belzoni were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic levels. | Nagvi, e
e1(1969)
AMIC-5976 | | TEPP | Crassostrea
virginica
(aggs) | L | | greater than
10.0 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that | Davis, e
a!(1969)
AMIC-599 | would not have serious effect on shellfish. | TEPP | Crassostrea
virginica
(larvae) | ι | ••• | greater than
10.0 (T14) | | same as above | Davis, et
al(1959),
AHIC-5990 | |-------------------------------|--------------------------------------|--------------------|----------------------|-----------------------------|---|---|---| | Terramycin
(concentrate) | Morone
saxatilis
(fingerlings) | BSA | | 165 (T4) | a.c.d.e.f. | All compounds were investigated because of their probable usage in hatchery production of white bass. Compounds that can be used at recommended concentrations were Aquathol, Casaron, Lindane, and Terramycin concentrate. Those that should not be used were Acrifiavine, Bayluscide, Malachite green oxalate, and Malathion. | Hellborn
(1971),
AMIC-5571 | | Tetraditon | Cardlum edule | BSA | | greater than 10 (T2) | uous, aer-
ation, sea | One hundred-forty surface active agents, solvent emulsiflers, pesticides, polychlorinated biphenyls, pure inorganic, and organic chemicals were evatuated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
at (1971),
AMIC-7701 | | Tetradifon | Crangon
crangon | BSA | | greater than 10
(T2) | aw(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et
al (1971),
AMIC-7701 | | Tetrahydrofurturyt
alcohol | Rasbora
heteromorpha | BCFA
and
BSA | | 3,400 (T2) | a".c.e.f,
hard(HM)
or soft
(SM)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),AMIC-
5425 | | TFN | Petromyzon
marinus | FLR | Marquette
County, | 3.8-9 (annua)
treatment. | a,f,
conduc- | TFN, a selective lamprey tarvicide, was applied annually over a | Manion
(1969), | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments
Variables,
Controlled
or Noted | of
Comments | Reterence | |-------------------|-------------------------|--------------------|--|---|---|---|-----------------------------------| | | | | Michigan.,
Gartic River
and SauxHead
Lake | | tivity | 3-year period to the Garlic River which flows into Saux Head Lake. The final TFN treatment contained 1 percent Rayluscide as a synergist and "bottom toxicant". The two compounds in combination were considerably more effective than TFN alone. The author believed total effectiveness was not achieved because lampreys avoid lethal doses by moving to untreated water. | AMIC-3761 | | Thalfium | Crangon
crangon | BSA | | 10 (T4) | ation, sea. | One hundred-forty surface active agents, solvent emutsitiers, pesticides, polychtorinated binhenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | | Thimet | Rasbora
heteromorpha | BCFA
and
BSA | | less than 10
(T1) | dilution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Thioglycolic acid | Pimephales
prometas | BSA | | 30.0 (T4) | a*,d.e.o,
and Fe | Malathion and its hydrolysis products were evaluated with the finding that one such product (diethyl fumarate) was more toxic than Malathion to fathead minnows. Synergism occurred between Malathion and two products of hydrolysis. Continuous exposure resulted in increased toxicity. | Bender(1969),
AMIC+3787 | | Thiolutin | Phormidium
ambiguum | L | | 0.5-10.0 (100 percent growth | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than | Offo (1970),
AMIC-892 | | | | | | | | were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical
environmental means were found. | | |----------|-------------------------------|--------------------|---|----------------|--|---|--------------------------------------| | Thlumet | Rasbora
heteromorpha | BCFA
and
BSA | | 12 (T2) | a*,c,e,f,
hard (HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Thor ius | Al osa
pseudo-
harengus | fL | Great Lakes
~ Superior,
Michigan,
and Erie | 0.006(residue) | | Trace element content of fish from Lakes Superior, Michigan, and Erie was determined by activation analysis. Whole body and liver residues were determined. Concentrations varied with species and lake. Other elements found were: antimony - 5 to 100 ppb, barium - 0.2 ppm, cesium - 3 opb, lanthanum - 1 to 20 ppb, rubidium - 0.06 to 6 ppm, scandium - 2 ppb, seienium - 0.1 to 2 ppb, sliver - 0.001 ppb. | Lucas, et al
(1970),
AMIC-3778 | | Thorius | Coregonus
artedli | FL | Great Lakes
- Superior,
Michigan,
and Erie | 0.003(residue) | | same as above | Lucas, et a!
(1970),
AMIC-3778 | | Thorium | Coregonus
clupeaforæls | FL | Great Lakes
- Superior,
Michigan,
and Erie | 0.004(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | inhibited 14) CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain metting agents was more toxic than CuSO4 alone. | Compound | 0rqanis# | Study | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |----------|---------------------------|-------|---|---|---|---------------|--------------------------------------| | Thorium | Coregonus
hoyi | FL | Great Lakes
- Superior,
Michigan,
and Erle | 0.0021 (residue) | •• | same as above | Lucas, et al
(1970),
AMIC-3778 | | Thor lum | Prosocium
cyłindraceum | FL | Great Lakes - Superlor, Michigan, and Erle | 0.0005(residue) | | same as above | Lucas, et al
11970),
AMIC-3778 | | Thorium | Salvelinus
namaycush | FL | Great Lakes - Superior, Michigan, and Erie | 0.004(residue) | •• | same as above | Lucas, et al
(1970),
Amic-3778 | | Thorium | Osmerus
mordax | FL | Great Lakes - Superior, Hichigan, and Frie | 2(residue) | | same as above | Lucas, ef al
(1970).
Amic-3778 | | Thorium | Carassius
auratus | FL | Great Lakes - Superior, Michigan, and Erie | 53(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Thorium | Notropis
hudsonius | FL | Great Lakes - Superior, Michigan, and Erie | .0.0085(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Thorium | Percopsis
omiscomayous | FL | Great Lakes - Superior, Michigan, and Erie | 0.0024(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Thorium | Roccus
chrysops | FL | Great Lakes - Superlor, Michigan, and Erle | 0.003(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Thorium | Perca
flavescens | FL | Great Lakes - Superior, Hichigan, and Erie | 0.003(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Thorium | Stizostedion | FL | Great Lakes | 0.002(residue) | | same as above | Lucas, et al | | | vitreum
vitreum | | - Superior,
Hichigan,
and Erie | | | | (1978),
AMIC-3778 | |-------------------------------------|---------------------------|----|--------------------------------------|----------------|--|--|---------------------------------------| | Thyroxine | Gadus morhua | L | | 0.000001 (586) | | Line-caught juvenile cod held in small tanks of seawater responded to thyroxine injection by a 35 percent increase in swimming speed. Large replication resulted in highly significant (P less than 0.001) difference between treated fish and controls. | Woodhead
(1970),AMIC-
3825 | | Timsan (ethyl
mercury phosphate) | Salmo
gairdneri | ı | | 2.0 (SB 1-2) | a.e.f (1
hr
exposure
dally for
up to 11
days) | Single exposures of fish to organomercury compounds resulted in peak concentrations of mercury as follows; gills, 3 hrs blood, 32 hrs liver, 7 das kidney 21 for repeated one hr (daily) exposures peak concentrations were; blood, 10 das liver, 10 das kidney, 61 das muscle, 7 da. The concentration of mercury was always towest in muscle tissue. Feeding experiments with PMA showed mercury could be passed from fingerlings to larger fish. The authors conclude that either legal size or fingerling hatchery fish treated with organomercurials could be a public health hazard. | Rucker, et
al (1969),
AMIC-5733 | | fin | Coregonus
clupeaforæls | FL | Moose Lake,
Can. | 3.6 (residue) | | Concentrations of 13 toxic elements in dressed fish from heavily industrialized and non-industrialized areas were determined. Only mercury exceeded regulatory limits, and concentrations of most elements were essentially the same in fish from both areas. | Uthe, et
AL(1971),
AMIC-3819 | | Tin | Coregonus
clupeaformis | FL | Lake
Ontario,
Can. | 0.8 (residue) | | same as above | Uthe, et
AL(1971),
AMIC-3819 | | Tin | Esox tuclus | FL | Moose Lake,
Can. | 5.4 (residue) | | seme as above | Uthe, et al
(1971),AMIC-
3819 | | Tin | Esox fucius | FL | Lake St.
Pierre, Can. | 0.7 (residue) | | same as above | Uthe, et al
(1971), AMIC-
3819 | | Tin | Esox tucius | FL | Lake Erie, | 0.5 (residue) | | same as shove | Uthe, et al | | Compound | Organisa | | Field
Location | Toxicity, Active Ingredient, PDR | Experiment:
Variables,
Controlled
or Noted | Comments | Reference | |----------|--------------------------|--------------------|--------------------|----------------------------------|--|---|---------------------------------------| | | | | Can. | | | | (1971),
AMIC-3819 | | Tin | Osmerus
mordax | FL | Lake Erie.
Can. | 1.2 (residue) | | seme as above | Uthe, et al
(1971),AMIC-
3819 | | Tin | Perca
11 avescens | FL | Lake Erle.
Can. | 0.6 (residue) | | same as above | Uthe, et at
(1971),AMIC-
3819 | | TH | Fundulus
heterociitus | BSA | _ | 0.000008-0.0001
9 (74) | a*,c,e,
and
synthetic
seawater | A laboratory procedure based on Standard Methods for 96-hr toxicity determinations of crude oil and oil-dispersant mixtures was described. The dispersants varied considerably in toxicity, ranging from 0.01 to 7.1 mi/l, TL50 for 96 hr. These did not differ significantly from 240 hr vatues. The dispersants were designated as CX, DO, CI, OD, AO, PC, MM, TN, BP, and NA with no further description of their chemical nature or source. Only a few bloassays were conducted with shrimp. Mollusks and echinoderms were suggested as suitable test animals. The authors stated that the method could be used to test any product for toxicity in seawater. | LaRoche, et
al (1970),
AMIC-445 | | TN | Nerels virens | BSA | | 0.00006-0.00033
(T4) | a*,c,e,
and
synthetic
seawater | same as above | LaRoche,et
at (1970),
AMIC-445 | | ток | Gammarus
fasciatus | BSA | - | 6.30 (T4) | a* | Of the aquatic weed herbicides evaluated, Dictone was the most toxic, Dabhnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals
represent important food chain links. | Sanders
(1970),
AMIC-453 | | Tordon C | Rasbora
heteromorpha | BCFA
and
BSA | | 248 (T2) | a*,c,e,f,
hard (HW)
or sof*
(SW)
synthetic
dilufion
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water | Alabaster
(1969).
AMIC-5425 | ## and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Tordon H | Rasbora
heteromorpha | BCFA
and
BSA | | 185 (T2) | a*,c,e,f,
hard (HW)
or
SOFT(SW)
synthetic
ditution
water, or
seawater
for some
species | same as above | Atabaster
(1969),
AMIC-5425 | |-----------|--------------------------|--------------------|-----|------------|---|---------------|---| | Toxaphene | Ictaturus
punctatus | BSA | - | 0.013 (T4) | | | Macek,et al
(1970),
AMIC-5510 | | Toxaphene | Ictaturus
metas | BSA | | 0.005 (T4) | a,
synthetic
test water | | Macek, et al
(1970),
AMIC-5510 | | Toxaphene | Carassius
auratus | BSA | | 0.014 (T4) | a,
synthetic
test water | | Macek,et a;
(1970),
AMIC-5510 | | Toxaphene | Cyprinus
carpio | BSA | *** | 0.004 (T4) | a,
synthetic
test water | | Macek,et al
(1970),
AMIC~5510 | | Toxaphene | Pimephales
promelas | BSA | | 0.014 (T4) | a,
synthetic
test water | | Macek,et at
(1970),
AMIC-5510 | | Toxaphene | lepomis
macrochirus | BSA | | 0.018 (74) | a,
synthetic
test water | | Macek,et a:
(1970),
AMIC+5510 | | Toxaphene | tepomis
microlophus | BSA | | 0.013 (74) | a,
synthetic
test water | | Macek,et al
(1970),
AMIC-5510 | | Toxaphene | Micropterus
salmoides | BSA | •• | 0.002 (T4) | a,
synthetic | | Macek,et a!
(1970), | | Compound | Organis≡ | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments Variables, Controlled or Noted | | Reference | |-----------|---|------------------|----------------------------|---|--|--|--------------------------------------| | | | | | | test water | | AMIC-5510 | | Toxaphene | Salmo
gairdneri | BSA | | 0.011 (74) | a,
synthetic
test water | same as above | Macek, eta!
(1970),
AMIC-5510 | | Toxaphene | Salmo trutta | BSA | ** | 0.003 (T4) | a,
synthetic
test water | same as above | Macek, et
61(1970),
AMIC-5510 | | Toxaphene | Oncorhynchus
kisutch | BSA | •• | 0.008 (74) | a,
synthetic
test water | same as above | Macek.et al
(1970),
AMIC-5510 | | Toxaphene | Perca
flavescens | A28 | | 0.012 (T4) | a,
synthetic
testwater | same as above | Macek.et al
(1970),
AMIC-5510 | | Toxaphene | Palaemonetes
kadlakensis
(resistant) | BSA | | 0.044-0.229
(T1) | •• | Bioassays were conducted with shrimp from three areas of intensive pesticide use and from an unexposed area. Previously exposed shrimp were from 1 to 25 times more resistant than unexposed shrimp. Both types of shrimp were also exposed in cages to waters of the contaminated areas. Susceptible shrimp suffered 66 percent more mortality than did resistant shrimp. The toxicity of the insecticides ranked in descending order was as follows: most toxic, Endrin, DDT, Hethyl parathlon, Parathlon; medium toxicity, Guthlon, Lindane, Toxaphene, Strobane; lease toxic Chiordane, Sevin, and Heptachlon. | | | Toxaphene | Palaemonetes
kadiakensis
(non-
resistant) | BSA | | 0.0209 (T1) | •• | same as above | Nagvi, et al
(1970),
AMIC-5519 | | Toxophene | Copepods (Cyclops bicuspidus, Cyclops varicans, Cyclops | FL
and
BSA | State
College,
Miss. | 0.045 (84
percent K2) | | The response of pesticide-resistant aquatic organisms to various pesticides was compared to the response of non-resistant species. Pesticide-resistant species were collected at Belzoni and non-resistant | Negvi, et a!
(1969),
AMIC-5979 | | | vernatis, Eucyclops agilis,Macroc Macrocyclops albidus, Orthocyclops modestus) | | | | | species at State College. Copepods, clams, snalls, and sludge worms from Beizoni were considerably more tolerant to pesticides than the non-resistant organisms. The authors note that the effect of increased tolerance in the organisms is an increase in the amount of pesticide residues available to animals of higher trophic levels. | | |-----------|--|------------------|----------------------------|--------------------------|---------|---|---| | Toxaphene | Copends (Cyclops blcuspidus, Cyclops varicans, Cyclops vernalis, Eucyclops agills, Macroc Macrocyclops albidus, Orthocyclops modestus) | FL
and
BSA | Betzoni,
Miss | 0.045 (28
percent K2) | | same as above | Naqvi, et al
(1969),
AMIC-5979 | | Toxaphene | Tubifex
tubifex | FL
and
BSA | Relzoni,
Miss. | 6.0 (NTE) | | same as above | Naqvi, etaî
(1969),
AMIC-5979 | | Toxaphene | Physa gyrina | FL
and
BSA | State
College,
Miss. | 0.45(K3) | | same as above | Nagvi, et al
(1969),
Amic-5979 | | Toxaphene | Physa gyrina | FL
and
BSA | Belzoni,
Hiss. | 0.45 (35
percent K3) | •• | same as above | Nagvi, et al
(1969),
AMIC-5979 | | Toxophene | Eupera
singleyi | FL
and
BSA | State
College,
Miss. | 0.70 (K3) | | same as above | Nagvi, et al
(1969),
AMIC-5979 | | Toxaphene | Eupera
singleyi | FL
and
BSA | Betzoni,
Hiss. | 0.70 (40
percent K3) | | same as above | Nacvi, et al
(1969),
AMIC-5979 | | Toxophene | Mercenaria
mercenaria
(eggs) | L | | 1.12 (T2) | <u></u> | The effect of 5? pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Host of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the | Davis, et al
(1969),AMIC-
5990 | | Compound | ° Organis a | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experiment:
Variables,
Controlled
or Noted | | Reference | |-----------|--------------------------------------|-----|-------------------|---|--|---|---| | | | | | | • | necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for Dest control that would not have serious effect on shellfish. | | | Toxaphene | Mercenaria
mercenaria
(larvae) | L | | less than 0.25
(712) | | same as above | Davis, et
al(1969),
AMIC-5990 | | Toxion | Carcinus
maenas | BSA | | 163 (T2) | a*(contin-
uous, aer-
ation, sea
water, and
daily
solution
renewal) | | Portmann, et
al (1971),
AMIC-7701 | | Toxion | Cardlum edute | BSA | | 27.4 (T2) | ation, sea | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychiorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | | | Toxion | Crangon
crangon | BSA | | 6.6 (T2) | as(contin-
uous, aer-
ation, sea-
water, and
daily
solution
renewal) | • | Portmann, et
al (1971),
AMIC-7701 | | Toxion | - Pandalus
montagui | BSA | | 0.98 (12) | as(continuous, aeration, sea water, and daily solution renowal) | • | Portmann, et
el (1971),
AMIC-7701 | | Trace organics
(GGE) | Rainbow trout BSA | 4- | 36 (71) | | The organic micropollutants used in the study were recovered from spring and well water and Missouri River water. Chronic effects were studied by alternately placing the fish in the test wolution for 5 days followed by a 5-day period in a recovery solution. Results of the tests are also given as total accumulated survival time. Studies were
also conducted to determine the physiological effects of the pollutants, and equations were developed for accurately estimating the toxicity of trace organics. CCE and CAE from spring water were not generally toxic individually, but often showed strong synergistic behavior when combined at naturally occurring levels. CCE from river water proved to be most toxic of all organics. | Smith, et at
(1970),AMIC-
993 | |------------------------------|---------------------------|-----------|-------------------------|----|---|-------------------------------------| | Trace organics
(CCE) | Rainbow frout BSCH | | 10 (T 5-10) | •• | same as above | Smith, et
ai(1970),
AMIC-993 | | Trace organics
(CCE) | Rainbow trout BSCH | | 1-0 (T more
than 19) | | same as above | Smith, etal
(1978),
AMIC-993 | | Trace organics
(CCE) | Golden shiner BSA | | 59 (T1) | | same as above | Smith, et al
(1970),AMIC-
993 | | Trace organics (CCE) | Blue-green BSA
sunfish | | 56 (T1) | | same as above | Smith, et al
(1970),AMIC-
993 | | Trace organics (CCE and CAE) | Rainbow trout BSA | | 88-201 (T1) | | same as above | Smith, et at
(1970),
AMIC-993 | | Trace organics (CCE and CAE) | Rainbow trout BSCH | | 10 (T 20-30) | | same as above | Smith.et at
(1970),
AMIC-993 | | Trace organics (CCE and CAE) | Rainbow trout BSCH | | 1.0 (T more
than 54) | | same as above | Smith, et al (1970), | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |------------------------------|-------------------------|--------------------|-------------------|---|--|---|-------------------------------------| | | | | | | | | AMIC-993 | | Trace organics (CCE and CAE) | Blue-green
sunfish | BSA | | 137-166(71) | •• | same as above | Smith, et al
(1970),
AMIC-993 | | Trace organics (CCE and CAE) | Red shiner | BSA | | 195 (71) | | same as above | Smith, et
81(1970),
AMIC-993 | | Trace organics (CCE and CAE) | Red shiner | BSCH | | 24 (T 20-30) | | same as above | Smith, et
al(1970),
AMIC-993 | | Trace organics (CCE and CAE) | Red shiner | всн | •• | 5.6 (145 - more
than 65) | | same as above | Smith, et al
(1970),
AMIC-993 | | Trace organics (CCE and CAE) | Golden shiner | BSA | | 180 (71) | | same as above | Smith, et
al(1970),
AMIC-993 | | Trace organics (CCE and CAE) | Mosquitofish | BSA | •• | 170 (NTE5) | | same as above | Smith, et
at(1970),
AMIC-993 | | Treffan E.C. | Rasbora
heteromorpha | BCFA
and
BSA | | 0.28 (T2,
softwater) | or solt
(SW) | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Treflan E.C. | Rasbora
heteromorpha | BCFA
and
BSA | | 0.28
(Ti,hardwater) | a*,c,e,f,
hard (HW)
or soft
'(SW)
synthetic
dilution
water, or
seawater
for some | same as above | Alabaster
(1969),
AMIC-5425 | species | Tributy! tin
chioride | Phormidium
ambiguum | ι |
0.5-10.0 (100 percent growth inhibited l4) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copoer chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Otto (1970),
AMIC-892 | |--|--------------------------|--------------------|--|--|--|--| | Tributy: fin oxide | Salmo
gairdneri | BCFA
and
BSA |
0.027 (T1) | dilution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity sanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materiats. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Tributy: fin oxide | Salimo
galindneni | BCFA
and
BSA |
0.020 {72} | a*,c,e,f,
hard (HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | fricaine
methanesul fonâte
(finguel) | Salvelinus
fontinalis | L |
100 (NTE) | 9.4 | Anesthetization of brook trout resulted in alterations of hemoglobin, tissue and plasma water content, electrolytes, aortic pressure, and ventilatory rate and amplitude. Finguel apparently exerted depressive influence on central autonomic functions. Handling alone resulted in changes in plasms | Houston, et
al (1971),
ANIC-3823 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |------------------------------|--------------------------------------|-----|-------------------|---|--|--|--| | | | | | | | glucose and lactate content, and in a number of electrolytes. | | | Tricaine
methanesulfonate | Salvelinus
fontinalis | ι | | 100(NTE) | •* | Study of the effects of anesthesia, handling, and experimental preparation of brook trout resulted in alterations in hematological characteristics, hyperdivermia, changes in plasms, tissue, cellular ion concentrations, and equilibrium conditions. Short-term (2-6 hr) effects correlated with clearances of the anasthetic while persistent effects were believed to be associated with generalized endocrine response to trauma. | Houston, et
al (1971),
AMIC-3822 | | Trichtorobenzene | Mercenaria
mercenaria
(eggs) | ι | | greater
thani0.0 (T2) | | The effect of 52 pesticides on embryonic development of clams and oysters was reported. Synergistic effects with solvents were also reported. Most of the compounds affected development more than survival. Some, however, drastically reduced larval growth. The authors point out the necessity of evaluating the effects of pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | Trichiorobenzene | Mercenaria
mercenaria
(iarvae) | ι | •• | greater than
10.0 (T12) | | same as above | Davis, et al
(1959),
AMIC-5990 | | Trichiorobenzene | Crassostrea
virginica
(eggs) | ι | | 3.13 (72) | | same as above | Davis, et
al(1969),
AHIC-5990 | | Trifluratin | Asellus
brevicaudus
| BSA | | 2.0 (T2) | a• | Of the aquatic weed herbicides evaluated, Dictone was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animal represent important food chain links. | | | Triffuratin | Orconectes
nais | BSA | | 50.0 (T2) | 8* | same as above | Sanders
(1970),
AMIC-453 | | Trifluratin | Daphnia magna | BSA | | 0.56 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | |--------------|----------------------------|--------------------|----|------------|---|---|-----------------------------------| | Trifturatio | Cypridopsis
Vidua | BSA | | 0.25 (12) | a* | same as above | Sanders(1970),
AHIC-453 | | Triffuration | Lepomis
macrochirus | BSA | | 0.019 (72) | •* | same as above | Sanders
(1970),
AHIC-453 | | Triffuratin | Gammarus
fasciatus | BSA | | 1.8 (72) | | same as above | Sanders(1970),
AHIC-453 | | Triffuratio | Pateomontes
kadiakensis | BSA | | 1.0 (74) | a• | same as above | Sanders
(1970),
AMIC-453 | | Trioxone | Salwo
gairdneri | BCFA
and
BSA | | 10 (T2) | aw,c,e,f,
hard (HW)
or soft
(SW)
synthetic
dilution
water or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Trixabon | Rasbora
heteromorpha | BCFA
and
BSA | - | 0.34 (T2) | a*,c,e,f,
hard (HH)
or
SOFT(SH)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | Tubotox | Rasbora | BCFA | •• | 0.27 (T2) | a*,c,e,f, | One hundred slxty-four | Alabaster | | Compound | 0rganis# | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment.
Variables,
Controlled
or Noted | | Reference | |------------|------------------------------------|------------|---|---|---|--|--------------------------------------| | | hetero≡orpha | end
BSA | | | or
SOFT(SH)
synthetic
ditution | pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | (1969),
AHIC-5425 | | Ur en i u≡ | Alosa
pseudo-
harengus | FL | Great Lakes - Superior, Michigan, and Erie | | | Trace element content of fish from Lakes Superior, Michigan, and Erie was determined by activation analysis. Whole body and liver residues were determined. Concentrations varied with species and lake. Other elements found were: antimony - 5 to 100 ppb, barium - 0.2 ppm, cesium - 3 ppb, lanthanum - 1 to 20 ppb, mercury - 10 ppb, rhenium - 0.5 to 5 ppb, rubidium - 0.06 to 6 ppm, scandium - 2 ppb, seienium - 0.1 to 2 ppb, sliver - 0.001 ppb. | Luces, et al
(1970),
AMIC-3778 | | Uranju≡ | Percopsis
omiscomayous | FL | Great Lakes
~ Superior,
Michigan,
and Erie | 0.0008(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Uran 1 um | Roccus
chrysops | FL | Great Lakes - Superior, Michigan, and Erie | 0.002(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Uran i us | Perca
flavescens | FL | Great Lakes - Superior, Michigan, and Erie | 0.0009(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Uranius | Stizostedion
vitreum
vitreum | FL | Great Lakes - Superior, Michigan, and Erie | | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Uranium | Coregonus
artedii | -
Hi | reat Lakes
Superior,
ichigan,
nd Erie | 0.002(residue) | | same as above | Lucas, et a!
(1970),
AMIC-3778 | |-------------------|---------------------------|---------|--|-----------------|----|---|--------------------------------------| | Uranium | Coregonus
clupesformis | H | reat Lakes
Superior,
ichigan,
nd Erie | 0.0006(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Uraniu= | Coregonus
hoyi | -
H: | reat Lakes
Superior,
ichigan,
nd Erie | 0.0035(resldue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Uranium | Prosopium
cylindraceum | —
М: | reat Lakes
Superior,
ichigan,
nd Erie | 0.0048(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Uranium | Salvel Inus
namaycush | H | reat Lakes
Superior,
ichigan,
nd Erie | 0.002(residue) | | same as above | Lucas, et a!
(1970),
AMIC-3778 | | Ureniue | Osmerus
mordax | H | reat Lakes
Superior,
ichigan, and
rie | 0.002(residue) | | same as above | Lucas, et al
(1970),
AMIC-3778 | | Uranium | Carassius
auratus | -
H | reat Lakes
Superior,
ichigan,
nd Erie | 0.0005(residue) | | same as above | Lucas, et al
(1970),
AHIC-3778 | | Uranium | Notropis
hudsonius | H | reat Lakes
Superior,
ichigan,
nd Erie | 0.0058(residue) | | same as above | Lucas, et al
(1970),
AHIC-3778 | | Ur an Lu n | Coregonus
clupeaformis | | oose Lake,
an. | 3 (residue) | | Concentrations of 13 toxic elements in dressed fish from heavily industrialized and non-industrialized areas were determined. Only mercury exceeded regulatory limits, and concentrations of most elements were essentially the same in fish from both areas. | Uthe, et
AL(1971),
AHIC-3819 | | Uranium | Coregonus
clupeaformis | 0 | ake
ntarlo,
an. | 2 (residue) | •• | same as above | Uthe, et
AL(1971),
AMIC-3819 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
PDM | Experimenta Variables, Controlled or Noted | Comments | Reference | |---------------------|-------------------------|--------------------|--------------------------|---|---|---|-------------------------------------| | Uranius | Esox fuclus | FL | Moose Lake.
Can. | 3 (residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Jrenium | Esox tucius | FL | Lake St.
Plerre, Can. | ? (residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Uranium | Esox lucius | FL | take Erle,
Can. | 1 (residue) | | same as above | Uthe, et at
(1971),AMIC-
3819 | | Urenium | Osmerus
mordax | FL | Lake Erie,
Can. | ? (residue) | | same as above | Uthe, et Bl
(1971),AMIC-
3819 | | Jr en i um | Perca
flavescens | FL | take Erie,
Can. | 1 (residue) | | same as above | Uthe, et al
(1971),AMIC-
3819 | | Uresbor | Salmo
galrdneri | BCFA
and
BSA | | 925 (T2) | or
SOFT(SH)
Synthetic
ditution
water, or
seawater
for some
Species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | vee ldothlon | Rasbora
heteromorpha | BCFA
and
BSA | | 460 (T2) | a*,c,e,f,
hard (HH)
or
SOFT(SH)
Synthetic
dliution
water, or
seawater
for
some
species | same as above | Afabaster
(1969),
AMIC-5425 | | , | , | |---|---| | 1 | _ | | • | E | | | Ė | | (| ע | | | | | | Yanadium | Paral abrax
clathratus | FH | Scaffergood
Steam Plant,
Los Angeles,
Cal. | nuscle | | Fish collected from an effluent ploe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nicket, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nickel. Silver, barium, lithium, and lead showed the least differences. The author concluded that trace element analysis of tissues could be used to determine the effect of pollutants on marine organisms. | | |-------|------------------|---|----|---|------------------------------------|----|---|-----------------------------------| | A | Vanadium | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 1.9 (dorsa)
muscle
residue) | •• | same as above | Stapleton
(1968),
AMIC-5980 | | A_443 | Vanadiu≋ | Paratabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cat. | | | same as above | Stapleton
(1968),
AMIC-5980 | | | ¥anadlu# | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 1.7 (ventral
muscle
residue) | •• | same as above | Stapleton
(1958),
AMIC-5980 | | | Vanadiu≡ | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | •• | same as àbove | Stapleton
(1968),
AMIC-5988 | | | Vanadiu≢ | Paralahrax
clathratus | FH | Catalina
Island, Cal. | 4.2 (gonads
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | | Vanadium | Paralahrax
clathratus
(gravld
temales) | FĦ | Catalina
Island, Cal. | 3.4
(gonads
residue) | •• | same as above | Stableton
(1968),
AMIC-5980 | | | Va nadium | Paralahrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | | •• | same as above | Stapleton
(1968),
AMIC-5980 | | | Vanadium | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 3.3 (liver residue) | •• | same as above | Stapleton (1968), | | Compound | Organism | Study | Field
Location | Toxicity,
Active
Ingredient,
PDW | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |---|--------------------------|--------------------|---|---|---|---|-----------------------------------| | ********* | | | | | | | AMIC-5980 | | Venedius | Paratabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | au IbeneV | Paralabrax
clathratus | FĦ | Catalina
Island, Cal. | 2.9 (Integument
residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Vened I um | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | residue) | | same as above | Stableton
(1968),
AMIC-5990 | | Venadi un | Paralahrax
clathratus | FM | Catalina
Island, Cai. | 3.2 (heart
residue) | | same as abové | Stacteton
(1968),
AMIC-5980 | | Vanadium | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | residuel | | same as above | Stapleton
(1968),
AMIC-5980 | | welbeney. | Paralabrax
clathratus | FM | Catalina
Island, Cal. | 7.6 (eyeball
residue) | | same as above | Stapleton
(1958),
AMIC-5980 | | ¥apa∍ | Rasbora
heteromorpha | BCFA
and
BSA | | 0.13 (72) | dilution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Velsicol AR 50G
(87.2 percent plus 9
percent Emcol H-146, | Pasbora
heteromorpha | BCFA
and
BSA | | 7.2 (12) | a*.c.e.f.
hard
(HW)or | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a | Alabaster
(1969), AMIC
5425 | | 2 percentEmcol
H-500%, 1.2percent
Epichlorhydrin) | | | • | | | soft (SH)
synthetic,
ditution
water, or
seawater
forsome
species | of magnitude. Knowing the toxicity and percentage of all components of a | | |---|-------------------------|--------------------|---|--------------|-------------|--|---|-----------------------------------| | Velsicol AR 50G (89
percent plus 9
percent Emcol H-146,
2 percent Emcol
H-500X) | Rasbora
heteromorpha | BCFA
and
BSA | | · 9 • 2 | (T2) | a*,c,e,f,
hard (HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969).
ANIC-5425 | | Venzar | Rasbora
heferomorpha | BCFA
and
BSA | | 50 (| T21 | a*,c,e,f,
hard
(HW)or
soft (SW)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formutation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | Vergemaster (laline
vergicide weedkilter
B) | | BCFA
and
BSA | | 2.2 | (12) | a*,c,e,f,
hard (HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some
species | \$ame as above | Alabaster
(1969),
ANIC-5425 | | Verno1 ate | Gammarus
fasclatus | BSA | | 20.0
(T4) | (T2), 13. |] a• | Of the aduatic weed herbicides evaluated, Dicione was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration | Sanders
(1970),AHIC-
453 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
PDM | Experimental
Variables,
Controlled
or Noted | Comments | Reference | |---------------|----------------------------|-------------|-------------------|---|---|---|---| | | | | | | • | levels of herbicides than indicated by
the TL sub 50 values. All of the animals
represent important food chain links. | | | Vernotate | Paleomontes
kadiakensis | BSA | •• | 1.9 (T2) | a* | same as above | Sanders
(1970),
AHIC-453 | | Vernotate | Asellus
brevicaudus | BSA | | 5,6 (TZ) | a* | same as above | Sanders
(1970),
AMIC-453 | | Vernotate | Orconectes
nais | BSA | | 24.0 (T2) | a.• | same as above | Sanders
(1970),
AHIC-453 | | Vernolate | Daphnia magna | BSA | | 1.1 (TZ) | a* | same as above | Sanders
(1970),
AMIC-453 | | Vernolate | Cynridopsis
vidua | BSA | | 0.24 (72) | ** | same as above | Sanders(1970)
AHIC-453 | | Vernotate | Lecomis
macrochirus | BSA | | 9.2 (TZ) | ð* | same as above |
Sanders
(1970),
AMIC-453 | | Vinyl acetate | Asterias
rubens | A 28 | - | 330-1000 (72) | ation, sead water, and daily solution renewal) | One hundred-forty surface active agents, solvent emutsifiers, pesticides, polychiorinated biphenyls, pure inorganic, and organic chemicals were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AMIC-7701 | | Vinyt acetate | Crangon
crangon | BSA | •• | 10-100 (72) | a*(contin-
uous aer-
ation, sea-
water, and
daily
solution
renewal) | same as above | Portmann, et al (1971), AMIC-7701 | | Vinyt acetate | Platicthys
flesus | A28 |
greater than
100 (T2) | a*(continuous aer-
ation, ses
water, and
daily
solution
renewal) | ı. | Portmann. et
a! (1971).
AMIC-7701 | |-------------------|----------------------------------|--------------------|--|--|--|---| | Weedazot T-L | Crangon
crangon | AZB |
1000-3000 (72) | ar(contin-
uous aer-
ation, ses
water, and
daily
solution
renewal) | l. | Portmann, et
al (1971),
AMIC-7781 | | Weedazol | Rasbora
heteromorpha | BCFA
and
BSA |
540 (T2) | a*,c,e,f,
hard
(HW) or
soft (SW)
synthetic
ditution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous wafer politutants showed a wide range of foxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | HL 4205 | Rasbora
heteromorpha | BCFA
and
BSA |
0.50 (TZ) | a*;c,e,f,
hard
(HH) or
soft (SH)
synthetic
ditufion
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC+5425 | | Yellow phosphorus | Clupea
harengus
(10-15 cm) | BCFA |
0.016 (T 12
HR) | a*,c,f | The lethal effect of yellow phosphorus was apparently irreversible and possibly cumulative. This form of phosphorus was surprisingly stable in bottom muds where oxygen content was low. The most probable cause of death was asphyxiation brought on by massive hemolysis. | Zitko, et al
(1970),
AMIC-3817 | | Yellow phosphorus | Salmo salar
(7-13 cm) | BCFA |
0.018
(incipient
tethal levet) | a*,c,f | same as above | Zitko, et al
{1970};
AMIC=3817 | | Yellow phosphorus | Homarus
americanus | BCFA |
0.040 (110) | a*,c,f | same as above | Zitko, et
al(1970),
AMIC-3817 | | Compound | Organis ≡ | | Field
Location | Toxicity,
Active
Ingredient,
PDM | Experiment
Variables,
Controlled
or Noted | Comments | Reference | |-------------------|--------------------------|--------------------|-------------------|---|--|--|---| | Yellow phosphorus | Gammarus | BCFA | | 3-4 (K1) | a*,c,f | same as above | Zitko, et at | | | oceanicus | | | | | | (1970),AMIC-
3817 | | Yellow phosphorus | Salvelinus
fontinalis | BCFA | | 0.0005 (T 200
hr) | 8 | The data were presented at LT sub 50 (time to 50 percent lethality). The approximate TL sub m data cited were interpolated from plotted TL sub 50 values. Redness, hemolysis, and reduced hematocrits correlated directly with toxicity to brook trout. No redness or hemolysis occurred in smelt although reduced hematocrits occurred. Herring also turned red with hemolysis and redness around head and fins. In time phosphorus was toxic at concentrations as low as 0.5 micron/i. | 61 (1970),
Amic-839 | | Yellow phosphorus | Salvelinus
fontinalis | BCFA | | 1.2 (T 2.7 hr) | | same as above | Fietcher, et
al(1970),
AMIC-839 | | Yellow phosphorus | Osmerus
mordax | BCFA | | 0.0005 (T 190
hr) | 8 | same as above | Fietcher, et al(1970), AMIC-839 | | Yellow phosphorus | Osmerus
mordax | BCFA | | 1.0 (T 12 hr) | 8 | same as above | Fletcher, et
at(1970),
AMIC-839 | | Yellow phosphorus | Clupea
harengus | BCFA | | 0.1 (T 3.6 hr) | 8 | same as above | Fletcher, e1
a1(1970),
AHIC-839 | | Young™s Defly | Rasbora
heteromorpha | BCFA
and
BSA | - | 2.3 (72) | difution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowling the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster.
(1969),AMIC-
5425
; | | Zectran | Ictalurus
punctatus | BSA | | 11.40 (74) | a,
synthetic
test water | Organochiorine insecticides were the most toxic compounds, organophosphates intermediate, carbamates the least toxic. Brown trout was the | (1970) - | species most susceptible to organochlorines, coho salmon the most susceptible to carbamates, and goldfish were the least susceptible of all species. Safe concentrations established by bloassays with salmonids or centrarchids would likely be safe for cyprinids and ictalurids. Safe levels for ictalurids or cyprinids would probably be hazardous for centrarchids and salmonids. The use of goldfish in bloassays was discouraged. | Zectran | Ictalurus
melas | BSA | | 16.70 (T4) | a,
synthetic
test water | same as above | Hacek, et
al(1970),
AMIC-5510 | |-------------------------|--------------------------|-----|---|---------------|--|--|--| | Zectran | Carassius
auratus | BSA | | 19.14 (T4) | a,
synthetic
test water | same as above | Macek, etal
(1970),
AMIC-5510 | | Zectran | Cyprinus
carpio | BSA | | 13.40 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Zectran | Pimephales
prometas | BSA | | 17.00 (T4) | a,
synthetic
test water | same as above | Macek,et al
(1970),
AMIC-5510 | | Zectran | Lepomis
macrochirus | BSA | | 11.20 (T4) | a,
synthetic
test water | same as above | Macek, etal
(1970),
AMIC-5510 | | Zectran | Lepomis
microtophus | BSA | | 16.70 (T4) | a,
synthetic
test water | same as above | Macek, etal
(1970),
AMIC-5510 | | Zectran | Micropterus
salmoides | BSA | | 14.70 (T4) | a,
synthetic
test water | same as above | Macek, etal
(1970),
AMIC-5510 | | Zectran | Salmo
gairdneri | BSA | | 10.20 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Zectran | Salmo trutta | BSA | | 8.10 (T4) | a,
synthetic
test water | same as above | Macek, et
at(1970),
AMIC-5510 | | Zectran | Oncorhynchus
klsutch | BSA | | 1.73 (T4) | a,
synthetic
test water | same as above | Macek, etal
(1970),
AMIC-5510 | | Zectran | Perca
flavescens | BSA | - | 2.48 (T4) | a,
synthetic
test water | same as above | Macek, et
al(1970),
AMIC-5510 | | Zinc chloride (as zinc) | Brachydanio
rerio | BSA | | 3.7-6.7 (SB4) | a.e. and
synthetic
dilution
water | Feeding behavior was affected by zinc, chromium, and ARS in that more time was required for consuming measured amounts of food. Feeding response was | Cairns, et
al
(1967),AMIC-
5707 | | Compound | Organism | • | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments
Variables,
Controlled
or Noted | comments | Reference | |--------------------------|--|-----------|-------------------|---|---
--|--| | | | | | | | also affected by aeration, feeding schedule, light intensity, and outside disturbances. The authors note that much more work is needed to establish the reliability of this procedure. | | | Zinc chioride (as
Zn) | Lenomis
macrochirus | BSA,
l | | 3.3 (T4) | ac,e, and
synthetic
dilution
water | This study was conducted to determine the relative toxicities of 20 common constituents of industrial wastes to a fish, an alga, and an invertebrate. The experiments were conducted over a 10-year period for varied purposes. The authors recommend bloassays with at least three components of the food web. | Patrick, et
al (1958),
AMIC-5720 | | Zinc chioride (as
Zn) | Nitzschia
Tinearis | BSA,
L | | 4.3 (75) | a*,e, and
synthetic
dilution
water | same as above | Patrick, et
st (1968),
AMIC-5720 | | Zinc chioride (es
Zn) | Physa
heterostropha | BSA,
L | | 0.98 (T4) | a*,e, and
synthetic
dilution
water | same as above | Patrick, at at (1968), AMIC-5720 | | Zinc chioride | Lebistes
reticulatus
(1 mo. 1-1
cm) | BCF | | 0.56 (T4) | phates,
carbon-
ates, bi-
carbon-
ates, sul- | Toxicity thresholds and a dilution mixture threshold were calculated from fish bloassay data for zinc chloride and potassium cyanide. Threshold concentrations for zinc and cyanide were found to be 0.33 and 0.236 mo/l, respectively. A procedure for determining toxicity threshold concentrations for mixtures of chemicals was also presented. A zinc-cyanide dilution ratio for toxicity threshold (THOR) was found to be a linear function of the concentration of the two lons taken separately, and therefore; THDR equals 1.26-0.86CN-1.22Zn. Based on a multicomponent equation, mixtures of zinc and cyanide exhibit an antagonistic effect. This appears to be a significant advance in an approach to estimating safe concentrations for water poliutants. | | | Zinc chioride | Lebistes
reticutatus
(1 mo. 1.1
cm) | BCF | | 1.0 (T 1.5) | a,c,d,e,f,
n,q, phos-
phates,
carbon-
ates, b1- | same as above | Chen, et al
(1969),
AMIC-3831 | carbonates, sulfates, and conductance | đ | inc
imethyldithio-
arbamate | Phormidium
ambiguum | i. |
0.5-10.0 | (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Cooper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canais to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Otto (1970).
AMIC-892 | |---|-----------------------------------|--------------------------------------|--------------------|---------------|-------|------------------------|--|---------------------------------------| | 1 | inc hydroxyquinone | Rasbora
heteromorpha | BCFA
and
BSA |
0.10 (172 | | dilution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969).AMIC-
5425 | | | inc sodium citrate
as Zn) | Watersipora
cuculiata
(larvae) | L |
33 († 2 | hr) | a.c.l. and
salinity | This study was conducted to determine species of marine larvae suitable for use in test screening antifouting chemicals. A. salina (brine shrimp) appeared to have the best potential for this purpose. A. salina larvae sensitivity was greatest starting at age 20-80 hr. and tolerated relatively low pH (5.0). | Wisely, et
al (1967),
AMIC-5708 | | | inc sodium citrate
as Zn) | Spirorbis
lamellosa
(larvae) | t |
4.9 († 2 | hr) | a,c,l, and
salinity | same as above | Wisely, et
at (1967),
AMIC-5708 | | Compound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | Comments | Reference | |--------------------------------|--------------------------------|-------|-------------------|---|---|---|---------------------------------------| | Zinc sodium citrate
(as Zn) | Buguta
neritina
(tarvae) | ι | | 5.1 (T 2 hr) | a,c,i, and
salinity | same as above | Hisely, et
al (1967),
Amic-5708 | | Zinc sulfate(as Zn) | Acroneuris | BSA | | 32 (T14) | a*,c,d,*,f | Ephemerella (mayfly) was the most sensitive aquatic insect of those studied, and copper the most broadly toxic metal. The authors suggest that aquatic insects may not be as sensitive to heavy metals as fish. | Warnick, et
al(1969),
AMIC=3767 | | Zinc sulfate (as
Zn) | Ephemerella | 8SA | | 16 (T10) | a*,c,d, e, f | same as above | Warnick, et al (1969),AMIC=3767 | | Zinc sulfate (as
Zn) | Hydropsyche | BSA | | 32 (711) | a*,c,d,e,f | same as above | Warnick, et
al(1969),
AMIC+3767 | | Zinc sulfate | Lepomis
macrochirus | BSCF | | 2.55 (S8) | a,c,d,e,f,
r*,1* | Results of monitoring fish breathing frequency were primarily reported. The indicated 7n concentration was the lowest detectable. Reproduction and growth of bluedills were apparently not affected by 0.025 and 0.075 mg/l. At a concentration of 0.25 mg/l spawning was inhibited and newly-hatched fry were killed. The authors suggest ways of improving this technique and suggest simultaneous use with fish movement change (See Cairns and Wailer, 1971). | | | Zinc suifate | Salmo
galrdneri | 8CF | | 0.0056
(avoidance) | 8*,c,1 | The threshold avoidance limit was essentially the same at 9.5 and 17.0 C. The value noted is 0.01 of the lethal threshold concentration, according to the author. Improvements in the test procedure are described. | (1968),
AMIC-3760 | | Zinc suffate | Satmo
galrdneri | BCF | | 0.56 (threshold
toxicity) | a*,c,f | same as above | Sprague
(1968),
AMIC-3768 | | Zinc sulfate | Pimephales | BCFCH | | 0.18 (58) | a,c,d,e,t, | Hatching was unaffected at the | Brungs | | ₽ | |---| | ı | | ₽ | | Ċ | | ú | | | | | | prometas
(0.3-0.4 g) | | | | Mg. Na. K. | Indicated concentration of zinc, but egg production was significantly reduced. Growth inhibition occurred at 2.8 ppm. Egg production was the most sensitive parameter studied. The author notes that an application factor of 0.005 mould exist if a 20 percent reduction of egg production is biologically insignificant. | (1969),
Amic-5458 | |---|-----------------------------------|---|-----|----|--------------|--------------------------------------|--|--| | | Zinc sulfate | Xiphophorus
maculatus (45
mm) | BSA | | 12.0 (74) | | Fathead minnows were more susceptible to zinc than inbred platyfish. Hale olatyfish were more succeptible than female. The authors suggest the inbred platyfish as a candidate for bloassay evaluations due to its known (31 generations) genetic background. | Rachiln, et
at (1968),
AMIG-5722 | | | Zinc sulfate | Pimephales
promeias (45
em) | BSA | - | 7.6 (T4) | a*,b,c,f,m
, Fe,Hn,
Cu, and Hg | same as above | Rachiin, et
al (1968),
AMIC-5722 | | | Zinc sulfate | Rainbow trout
(RTG-2 gonad
cell line) | L | - | 18.0 (SB4) | | Tissue culture study using the Eagles MEM medium resulted in 70 percent reduction in mitotic index and cytotoxic changes in cell morphology. Concentrations at 0 to 10.0 ppm zinc had no significant effect. The trout cells were less sensitive than cultured cells of fathead minnow. | Rachiln, et
al (1968),
AMIC-5722 | | | Zinc (plus ammonia
and phenoi) | Salmo
galrdneri | BSA | | 0.5-2.54(T2) | a,c*,d,e*,
f,≡ | Rainbox trout were exposed to concentrations of fluctuating levels of ammonla, phenol, and zinc and to constant mixtures of the three. Tests with fluctuating levels of toxicants showed that LC50 values were similar to those for constant concentrations as iong as the periodicity of the fluctuation did not exceed the resistance time for the poison. Except when zinc predominated in the mixtures, the fractional toxicities could be summed to give the toxicity of the mixture. | Brown, et al
(1969),
AMIC-5993 | | • | Zinc (plus copper, nickel) | Salmo
gairdneri | BSA | •• | 0.5-1.8 (72) | a,c, € | Rainbow frout were exposed to copper, phenol, zinc, or nickel solutions to determine 48-hour LC50 values for mixtures of copper and phenol: copper, zinc, and phenol: and copper, zinc, and nickel. It was concluded that acute lethal toxicities of the mixtures could | Brown.et al
(1970),
AMIC-5994 | | Compound | 'Organism | | Field
Location | Toxicity, Active Ingredient, Ppm | Experiments Variables, Controlled or Noted | | Reference | |-------------------------------|---------------------------|-----|---|----------------------------------|--|--|-------------------------------------| | | | | | | | be adequately described by summations of the fractional toxicities. | | | Zinc (plus copper,
phenoi) | Salmo
galrdneri | BSA | | 0.6-2.40 (12) | 8,C, 4 | same as above | Brown,et al
(1970),
AMIC-5994 | | 7 inc | Coregonus
artedil | FL | Great Lakes
- Superior,
Hichigan,
and Erie | 36(residue) | | Trace element content of fish from Lakes Superior, Michigan, and Erie was determined by activation analysis. Whole body and liver residues were determined. Concentrations varied with species and lake. Other elements found were: antimony - 5 to 100 ppb, barium - 0.2 ppm, ceslum - 3 ppb, lanthanum - 1 to 20 ppb, mercury - 10 ppb, rhenium - 0.5 to 5 ppb, rubidium - 0.06 to 6 ppm, scandium - 2 ppb, selenium - 0.1 to 2 ppb, silver - 0.001 ppb. | Lucas, et a
(1970).
AMIC-3778 | | ?Inc | Coregonus
clupeaformis | FL | Great Lakes - Superior, Hichigan, and Erie | 23(residue) | | Same as above | Lucas, et a
(1970),
AMIC-3778 | | ?Inc | Coregonus
hoyl | FL | Great Lakes
- Superior,
Hichigan,
and Erie | 44(residue) | •• | same as above | Lucas, et a
(1970),
AMIC-3778 | | ?Inc | Prosopium
cytindraceum | FL | Great Lakes
- Superior,
Michigan,
and Erie | 11(residue) | | same as above | Lucas, et a
(1970),
AMIC-3776 | | ?Inc | Salvelinus
namaycush | FL | Great Lakes
- Superior,
Michigan,
and Frie | 48(residue) | | same as above | Lucas, et a
(1970),
AHIC-3778 | | line | Carassius
auratus | FL | Great Lakes
+ Superior,
Hichigan,
and Erie | 36(residue) | | same as above | Lucas, et a
(1970),
AMIC-3778 | | !Inc | Roccus | FL | Great Lakes | 28(residue) | | same as above | Lucas, et a | | | chrysops | - Sup
Michig
and E | | | | (1970),
Amic-3776 | |------|----------------------------|--------------------------|---|-----------|--|-------------------------------------| | Zinc | Coregonus
ctupeatormis | FL Moose
Can. | Lake, 14 (| (residue) |
Concentrations of 13 toxic elements in dressed fish from heavity industrialized and non-industrialized areas were determined. Only mercury exceeded regulatory limits, and concentrations of most elements were essentially the same in fish from both areas. | Uthe, et
AL(1971),
AMIC-3819 | | Zinc | Coregonus
clupeaformis | FL Lake
Ontar
Can. | | (residue) |
same as above | Uthe, et
AL(1971),
AMIC-3819 | | Zinc | Esox fuclus | FL Moose
Can. | Lake, 19 | (residue) |
same as above | Uthe, et al
(1971),4MIC-
3819 | | Zinc | Esox fuclus | FL Lake :
Pierr | St. 19
e. Can. | (residue) |
same as above | Uthe, et al
(1971),AMIC-
3619 | | Zinc | Esox lucius | FL Lake Can. | Erle, 11 | (residue) |
same as above | Uthe, et al
(1971),AMIC-
3819 | | Zinc | Osmerus
mordax | FL Lake Can: | Erle, 20 | (residue) |
same as above | Uthe, et al
(1971),AMIC-
3819 | | Zinc | Perca
flavescens | FL Lake Can. | Erle, 12 | (residue) |
same as above | Uthe, et al
(1971),AMIC-
3619 | | Zinc | Parat abrax
ci athratus | Steam | ergood 26
Plant, musc
ngeles, res | c I e |
Fish collected from an effluent pipe of a steam plant and from offshore waters of Catalina Island were analyzed for trace element content. Trace element content of the effluent water was at least 5 times greater than that of normal sea water for cadmium, copper, nickel, zinc, and chromium. Livers of fish from the effluent were nearly twice the size of those from the ocean. Greatest differences in concentration occurred with aluminum, cadmium, and nickel. Sliver, barium, lithium, and lead showed the least differences. The author concluded that trace element analysis of | | | Cospound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental
Variables,
Controlled
or Noted | Comments | Reference | |----------|---|----|---|---|--|--|-----------------------------------| | | | | | | | ssues could be used to determine the fect of pollutants on marine organisms. | • | | ? Inc | Parafabrax
clathratus | FH | Catatina
Island, Cal. | 10 (dorsa)
muscle
residue) | | same as above | Stableton
(1968),
AMIC-5980 | | Zinc | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | muscle | | same as above | Stapletor
(1968),
AMIC-5980 | | ? I nc | Paratabrax
clathratus | FH | Catalina
Island, Cal. | 9 (ventral
muscle
residue) | | same as above | Stapletor
(1968),
AMIC-5980 | | linc | Paralabrax
clathratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapletor
(1968),
AMIC+5980 | | linc | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 119 (goneds
residue) | •• | same as above | Stapletor
(1968),
AMIC-598 | | linc | Paratabrax
clathratus
(gravld
temates) | FĦ | Catalina
Island, Cal. | 245
(gonads
residue) | | same as above | Stabletor
(1968),
AMIC-598(| | linc | Paral abrax
clathratus | FĦ | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapletor
(1968),
AMIC-5980 | | linc | Paralabrax
clathratus | FH | Catalina
Island, Cal. | 100 (Hiver
residue) | | same as above | Stapletor
(1968),
AMIC-5980 | | lnc | Paralabrax
clethratus | FM | Scattergood
Steam Plant,
Los Angeles,
Cal. | 223 (Integument
residue) | | same as above | Stapletor
(1968),
AMIC-5980 | | line | Paral abrax
clathratus | FH | Catalina
Island, Cal. | 198 (Integument residue) | | same as above | Stapletor | | | | | | | | | AHIC-5980 | |--------------------------------|--------------------------|------------------|---|--|-------------------|--|--| | Zinc | Paralabrax
clathratus | FN | Scattergood
Steam Plant,
Los Angeles,
Cal. | | | same as above | Stapleton
(1968),
AMIC-5980 | | Zinc | Paralabrax
clathratus | FH | Catalina
Island, Cat. | 90 (heart
residue) | •• | same as above | Staoleton
(1968),
AMIC-5980 | | Zinc | Paralabrax
clathratus | FH | Scattergood
Steam Plant,
Los Angeles,
Cal. | 700 (eyeball
residue) | | same as above |
Stableton
(1958),
AMIC-5980 | | Zinc | Paratabrax
clathratus | FN | Catalina
Island, Cal. | 600 (eyeball
residue) | | same as above | Stapleton
(1968),
AMIC-5980 | | Zinc | Salmo
galrdneri | BSA | | 1.95-5.85
(fluctuating
conc, T
2340-2960 min) | a,c*,d,e*,
f,m | Rainbow trout were exposed to concentrations of fluctuating levels of ammonia, phenot, and zinc and to constant mixtures of the three. Tests with fluctuating levels of toxicants showed that LC50 values were similar to those for constant concentrations as long as the periodicity of the fluctuation did not exceed the resistance time for the poison. Except when zinc predominated in the mixtures, the fractional toxicities could be summed to give the toxicity of the mixture. | | | Zinc | Salmo
galrdneri | BSA | | 3.9 (T 2400
mln) | a,c*,d,e*,
f,m | same as above | Brown, et
al(1969),
AMIC-5993 | | Zinc | Salmo
gairdneri | BSA | | 4.0 (T2) | 8,C, @ | Rainbow trout were exposed to copper, phehol, zinc, or nicket solutions to determine 48-hour LC50 values for mixtures of copper and phenoli copper, zinc, and phenol: and copper, zinc, and nicket. It was concluded that acute lethal toxicities of the mixtures could be adequately described by summations of the fractional toxicities. | Brown, et al
(1970),
ANIC-5994 | | ZnSO4 . 7H2O (as Zn
2 plus) | Lepomis
macrochirus | BSA
and
CF | | 2.94-3.64 (584) | a,c,d,e,f,
r,f | Results of monitoring fish movement by means of light beam interruption were primarily reported. The values given for bluegills were the | Cairns, et
a!
(1971),AHIC-
3231 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment
Variables,
Controlled
or Noted | | Reference | |---------------------------------|---|---------------|-------------------|---|---|--|---------------------------------------| | | | | | | | Towest detectable concentration causing significant movement changes. Values for golden shiners and goldfish were obtained in preliminary studies. At 1/10 the indicated concentration, growth and reproduction of bluegills were significantly affected but not at 1/100 dilution. Considerable discussion and additional data are presented. | | | ZnSO4 • 7H2O (as Zn
2 plus) | Notemigonus
crysoleucas | BSA | | 7.5 (SB) | a.c.d.e.f.
r.t | same as above | Cairns, et
al (1971),
AMIC-3231 | | ZnSO4 • 7H2O (as Zn
2 plus) | Carassius
auratus | BSA | | 7.5 (K) | a,c,d,e,f,
r,f | same as above | Cairns, et al
(1971),
AMIC-3231 | | Zn, Ni, Cr, CN, Cu,
and Zn | Catostomus
commersoni | BSACF
(ML) | | between
1.25-3.75
percent (T3) | Ni,Cu,Cr, | A mobile bloassay unit was utilized to conduct this study of municipal wastewater containing the indicated toxicants. River water was used as diluent. The conclusion was reached that synergistic or additive toxic effects occurred since toxicity was greater than that of any of the ions singly. | Z1111ch
(1969),
AMIC-2906 | | Zn, NI, Cr. CN, Cu,
and Zn | Pimephales
promelas | BSACF
(ML) | | between
1.25-3.75
percent (T3) | a,c,e, con
ductivity,
Ni,Cu,Cr,
CN, and Zn | | Z1111ch
(1969),
AMIC-2906 | | 1,1"-methylenedi-2-
naphthol | Ptychochellus
oregonensis
(71 mm) | BSA | | 0.006-0.015 (K
6-31 hr) | a,c,d,f,
and
conduc-
tivity | The chemical studied was found to be selectively lethal to squawfish at concentrations 3 to 190 times more toxic to these species than to salmonids. Potency varied positively with concentration and temperature. Concentrations cited are for 10-18 C. A sheep and ducks showed no lil effects over a 7-day period when forced to drink water containing 10 ppm of the naphthol. A field application in a small lagoon containing several species of fish resulted only in kill of P. oregonensis. This chemical appears to be an effective squawfish. | al | | 1,1"-methy fenedi-2-
naphthol | Ptychochelius
umpquae (58
mm) | BSA | | 0.01-0.03(K
6-20 hr) | a*,c,d,f,
and
conduc-
tivity | same as above | MacPhee, et
at (1969),
AMIC-5450 | |---|--|-----|----|--------------------------|--|--|---| | 1.1"-methylenedl-2-
naphthol | Salvelinus
fontinalis
(91 mm) | BSA | •• | 0.3 (584) | a*.c,d,f,
and
conduc-
tivity | same as above | MacPhee, et
al (1969),
AMIC-5450 | | 1,1"-methylenedl-2-
naphthol | Oncorhynchus
tshawytscha
(84 mm) | BSA | | 0.1 (SB4) | a*,c,d,f,
and
conduc-
tivity | same as above | MacPhee, at
al (1969),
AMIC-5450 | | 1,1"-methylenedi-2-
naphthol | Oncorhynchus
klsufch (102
mm) | BSA | •• | 0.6-1.3(584) | e*,c,d,f,
and
conduc-
tivity | same as above | MacPhee, et
a!
(1969),AMIC-
5450 | | 1,1"-methylenedl-2-
naphthol | Salmo
gairdneri (66
mm) | BSA | | 0.6-1.3 (\$84) | a*,c,d,f,
and
conduc-
tivity | same as above | NacPhee, et
al (1969);
AMIC-5450 | | 1,2 dichteropropane | Crangon
crangon | BSA | | greater than
100 (T2) | a*(contin-
uous aer-
ation, sea
water, and
daily
solution
renewal) | One hundred-forty surface active agents, solvent emulsifiers, pesticides, polychtorinated biphenyls, pure inorganic, and organic chemicats were evaluated against as many as ten marine organisms. The authors noted that most published data of this type deal with toxicity of chemicals to freshwater organisms. | Portmann, et
al (1971),
AHIC-7701 | | 1,2,3,4,9,9-hexachlo
ro-1,4-methane
1,4,4a,8a-fetrahydro
-5,8-naphthoquinone | anbiguum | l | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are tactors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Offo (1970),
AMIC-892 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experimenta
Variables,
Controlled
or Noted | | Reference | |--|------------------------|---|-------------------|--|---|--|--------------------------| | 2-amino-3-chloro-1,4
-naphthoduinone | Phormidium
ambiguum | ι | | 0.5-10.0(16per
cent growth
inhibited 14) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 pom). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Ofto (1970),
AMIC-892 | | Ż-chloro-4,6-bis
(ethylemino)
S-triazine | Phormidium
ambiguum | ι | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (fl.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to
determine whether there were leads to controlling algae by environmental means were found. | Offo (1970),
AMIC-892 | | 2-dimethyt-mmino-1,4
-naphthoquinone | Phormidium
ambiguum | ι | | 0.5-10.0(16per
cent growth
inhibited 14) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited drowth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors | Offo (1970),
Amic-892 | affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | | | | | | | means were tound. | | |---|------------------------|-----|---|---|--------------------|--|--------------------------| | 2~Hercaptodiethyl
succinate | Pimephales
prometas | BSA | - | 35.0 (74) | a*,d,e,o,
andfe | Malathion and its hydrolysis products were evaluated with the finding that one such product (diethyl fumarate) was more toxic than Malathion to fathead minnows. Synergism occurred between Malathion and two products of hydrolysis. Continuous exposure resulted in increased toxicity. | AHIC-3787 | | 2-propenal
(acroiein) | Phormidium
ambiguum | · | | 0.5-10.0 (66 percent growth inhibited 14) | | Ot 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Cooper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 npm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Offo (1970),
AMIC-892 | | Z-procene-1-of
(ally) alcohol) | Phormidium
ambiguum | ι | | 0.5-10.0 (16 percent growth inhibited 14) | | same as above | 0110 {1970}.
AHIC-892 | | Z-tert-butylamino
4-ethyl-amino
6-methyl S-triazine | Phormidium
ambiguum | ı | | 0.5-10.0 (66
percent growth
inhibited 14) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuS04. None inhibited growth of mat-forming algae for more than 2 weeks. CuS04 formulated with certain weffing agents was more toxic than CuS04 alone. Copper chloramine was also found to be more toxic than CuS04. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental | Offo (1970),
AMIC-892 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments
Variables,
Controlled
or Noted | Comments | Reference | |-------------------------------------|----------------------------|-----|-------------------|---|---|---|--------------------------------| | | | | | | | means were found. | | | ?,3-dichioro-1,4-
naphthoquinone | Phormidium
ambiguum | L | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CUSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CUSO4 formutated with certain metting agents was more toxic than CUSO4 alone. Copper chloramine was also found to be more toxic than CUSO4. No metting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.05 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental | Otto (1970),
AMIC-892 | | 2,4-D (acid) | Ganmarus
fasciatus | BSA | | 3.2 (72) | a* | Of the aquatic weed herbicides evaluated, Dicione was the most toxic, Daphnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by, the TL sub 50 values. All of the animals represent important food chain tinks. | | | ?,4-D (acld) | Daphnia magna | BSA | | greater than
100.0 (T2) | 8* | same as above | Sanders
(1970),AMIC-
453 | | ?,4-D (scid) | Lepomis
macrochirus | BSA | •• | | 8* | same as above | Sanders
(1970),
AMIC-453 | | ?,4-D (BEE) | Gammarus
fasclatus | BSA | | 5.9 (T2), 5.9
(T4) | •• | Same 26 ame2 | Sanders
(1970),AMIC-
453 | | ?,4-D (BEE) | Paleomontes
kadiakensis | BSA | | 1.4 (T2) | •• | Same as above | Sanders
(1970),
AHIC-453 | | ?;4-D (BEF) | Asellus
brevicaudus | BSA | | 3.2 (72) | •• | same as above | Sanders
(1970), | | | | | | | | | | | AMIC-453 | |------|---------------------------|------------------------------------|--------------------|---------|------|--------------------|---|---|-------------------------------------| | . 54 | 4-D (BEE) | Orconectes
nais | BSA | | | ter than
0 (T2) | ** | same as above | Sanders
(1970),AMIC-
453 | | 2, | 4- 0 (BEE) | Daphnla magna | BSA | | 5.6 | (72) | •• | same as above | Sanders
(1970),
AMIC-453 | | 2, | Ģ −D (BEE) | Cypridopsis
vidua | BSA | | 1.8 | (72) | •• | | Sanders
(1970),
AMIC-453 | | 2, | 4- 0 (8EE) | Lepomis
macrochirus | BSA | | 1.1 | (72) | a* ` | same as above | Sanders
(1970),
AMIC-453 | | | 4-D
utoxyethylester) | Rasbora
heteromorpha | BCFA
and
BSA | | 1.0 | (12) | dilution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Atabaster
(1969),
AMIC=5425 | | 2, | h-D (clay based) | Rasbora
hateromorpha | BCFA
and
BSA | | 420 | (71) | a*,c,e,f,
hard(HH)
or soft
(SH)
synthetic
dilution
water, or
seawater
for some
species | | Alabaster
(1969).AMIC-
5425 | | 2, | 4-D (dimethylamine
113 | Crassostrea
virginica
(eggs) | l | | 20.4 | (12) | | embryonic development of clams and | Davis, etal
(1969),
AMIC-5990 | | Compound | ,
ezinegnO | Study | Fleld
Location | Toxicity,
Active
Ingredient,
Ppm | Experiments Variables, Controlled or Noted | Comments | ,
Reference | |-------------------------------|--------------------------------------|-------|-------------------|---|--|---|--------------------------------------| | | | | | | | pesticides on all life stages of an organism and note the possibility of selecting chemicals for pest control that would not have serious effect on shellfish. | | | ?.4-D (dimethylamine sait) | Crassostrea
virginica
(larvae) | L | | 64.3 (T14) | | same as above | Davis, et al
(1969),
AMIC-5990 | | ?.4-D (dimethylamine
selt) | Gammarus
fasclatus | 85A | | greater
than100.0 (T2) | a* | Of the aquatic weed herbicides evaluated, Dictone was the most toxic, Daohnia was generally the most sensitive organism. All of the crustacea were affected by much lower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain
links. | | | ?.4-D (dimethytamine
mait) | Paleomontes
kadlakensis | BSA | •• | greaterthan
100.0 (T2) | •• | same as above | Sanders
(1970),
AMIC-453 | | ?.4-D (dimethytamine
selt) | Aseltus
brevicaudus | BSA | •• | greater than
100.0 (T2) | ** | same as above | Sanders
(1970),
AMTC-453 | | ?,4-D (dimethylamine | Orconectes
nais | BSA | | greater than
100.0 (T2) | • | same as above | Sanders
(1970),
ANIC-453 | | 2,4-D (dimethytamine selt) | Dachnia magna | BSA | •• | 4.0 (TZ) | •• | same as above | Sanders
(1970),
AMIC-453 | | 2,4-D (dimethylamine | Cypridopsis
vidu s | BSA | | 8.0 (TZ) | •• | same as above | Sanders
(1970),AMIC= | | 2,4-D (dimethytamine :aft) | Leponis
macrochirus | BSA | | greater than
100.0 (T2) | * | same as above | Sanders
(1970),
AMIC-453 | | | Crassostrea
virginica
(eggs) | L | | 8.0 (TZ) | | same as above | Davis, et al | | | | | • | | | | 5990 | |-----------------|----------------------------|--------------------|-------|----------------------------|---|---|-----------------------------------| | 2,4-D (ester) | Crassostrea
virginica | i | •• | 0.74 (714) | | some as above | Davis, et ai | | | (larvae) | | | | | | (1969),ANIC-
5990 | | 2,4-0 (Na salt) | Rasbora
heteromorpha | BCFA
and
BSA | | 1,160 (71) | a*,c.e,f,
hard
(HW)or
soft (SW)
synthetic
dilution
water, or
seawater
for some
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),
AMIC-5425 | | 2,4-D (PG9E) | Gammarus
fasclatus | BSA | | 2.6 (T2), 2.5
(T4) | a* | Of the aquatic weed herbicides evaluated, Dictone was the most toxic, Daohnia was generally the most sensitive organism. All of the crustacea were affected by much tower concentration levels of herbicides than indicated by the TL sub 50 values. All of the animals represent important food chain links. | Sanders
(1970),AMIC-
453 | | 2,4-D (PG9E) | Pateomontes
kadiakensis | BSA | ··· . | 2.7 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | 2,4-D (PGBE) | Asellus
brevicaudus | BSA | | Z.2 (T2) | 8* | same as above | Sanders
(1970),
AMIC-453 | | 2,4-0 (PGBE) | Orconectes
nais | BSA | | greater than
100.0 (T2) | 8* | same as above | Sanders
(1970),
AMIC-453 | | 2,4-D (PG9E) | Daphola magna | BSA | | 0.1 (T2) | a* | same as above | Sanders
(1970),
AMIC-453 | | 2,4-D (PGBE) | Cypridopsis
vidua | BSA | | 0.32 (12) | * | same as above | Sanders
(1970),
AHIC-453 | | 2,4-D (PGBE) | tepomis
macrochirus | BSA | | 0.90 (T2) | 9. | same as above | Sanders
(1970), | | Compound | Organism | | Fleld
Location | Toxicity,
Active
Ingredient,
Pom | Experiments Variables, Controlled or Noted | Comments | Reference | |-------------------------------|---------------------------------------|--------------------|-------------------|---|--|---|--| | | | | | | | | AMIC-453 | | 2,4-D (resin based) | Rasbora
heteromorpha | BCFA
and
BSA | | 2,480 (T2) | a*,c,e,f,
hard(HH)
or soft
(SH)
synthetic
ditution
hater, or
seawater
for same
species | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | Alabaster
(1969),AMIC-
5425 | | 2,4-D (resin based) | Salmo
gairdneri | BCFA
and
BSA | | 1,920 (T2) | a*,c,e,f,
hard
(HW) or
soft (SW)
synthetic
dilution
water, or
seawater
for some
species | same as above | Alabaster
(1969),
AMIC-5425 | | 2,4-0 | Fish (not
specified) | | | greater than 0.1-1.0 (K) | ~~ | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mandesley-
Thomas
(1971),AMIC-
1056 | | 2,4-D | Wolffia
papulifera | L | | 1000 (K) | Hunter's
medium
diluted
1:5 | All compounds were harmful to duckweed to some degree. Decreased populations were noted at non-lethal concentrations and some compounds (Malathion and 2,4-D) caused teratogenic effects at concentrations as low as 1 ppm | Worthley, et
al (1971),
AMIC-3233 | | 2,4 dinitrophenol | Negaprion
brevirostris
(1-3 kg) | BSA | •• | 10 (NTE 3 hr) | a,c, € | Data from study of drug effects on young lemon sharks were treated mathematically to demonstrate applicability of classical rate theory to the study of chemical shark deterrents. Incapacitation (narcosis) was the primary parameter timed for effectiveness. This was usually quite rapid for the more effective drugs. | | | 2,4,5-T
(butoxyethylester) | Rasbora
heteromorpha | BCFA
and
BSA | | 1.0 (72) | a*,c,e,f,
hard (HW)
or soft | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a | Alabaster
(1969) .
AHIC-5425 | | | | | | | (SH) synthetic dilution water, or seawater for some species | wilde range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materiats. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | | |--|------------------------|-----|-----|--------------------------|---|---|--| | 2,4,5-1 | Fish (not specified) | | *** | greater than 0.1-1.0 (K) | | Approximate toxicities of numerous pesticides commonly used in Britain were summarized. An excellent brief, general discussion of toxicity testing is also present. | Mandesley-
Thomas
(1971),AMIC-
1856 | | 2"-bromo-3-nitrosafi
cylanitide | Salmo
galrdneri | BSA | | 1.0 (K 3 hr) | a* | Twenty-nine nitrosalicylanilides and related compounds were evaluated for their relative toxic effect to selected fish. Potency varied with type and position of substitutions. Several compounds were selectively toxic to yellow perch. Goldfish were the most resistant to the salicylanilides. | Marking.et
a! (1970),
AHIC~6391 | | 2 ^m -bromo-3-nitrosali
cylanitide | Carassius
auratus | BSA | | 10 (K1) | 8* | Same as above | Marking,
etal (1970),
AMIC-6391 | | 2 ⁻ -bromo-3-nitrosali
cylanilide | Cyprinus
carpio | BSA | •• | 1.0 (K1) | 8* | Same as above | Marking,et
al (1970),
AMIC-6391 | | 2 ^m -bromo-3-nitrosali
cylanilide | Pimephales
prometas | BSA | •• | 1.0 (K 3 hr) | 9.ª | same as above | Marking,et
at (1970),
AMIC-6391 | | 2 ⁻ -bromo-3-nitrosali
cytanitide | Ictalurus
melas | BSA | •• | 1.0 (K1) | a* | same as above | Marking,
eta! (1970),
AMIC-6391 | | 2 ^m -bromo-3-nitrosali
cytanilide | Lepomis
cyanelius | BSA | •• | 10 (K 3 hr) | 8* | Same as above | Harking,et
ai (1970),
AMIC-6391 | | 2 ⁻ -bromo-3-nitrosali
cytanitide | Lepomis
macrochirus | BSA | | 10 (K 3hr) | 8* | same as above | Marking,et
al (1970).
ANIC-6391 | | 2"-bromo-3-nitrosati
cylanitide | Perca
flavescens | BSA | | 1.0 (K1) | a* | same as above | Marking,
etal (1970),
AMIC-6391 | | 2"-chioro-4"-methy!-
3-nitrosalicyl-
anilide | Salmo
gairdneri | BSA | | 1.0 (K 3 hr) | a• | same as above | Marking, et
al (1970),
AMIC-6391 | | Campound | Organism | | Fleid
Location | Toxicity,
Active
Ingredient,
PDB | Experimental Variables, Controlled or Noted | Comments | Reference |
--|------------------------|------|-------------------|---|---|---------------|--| | | | | | | | | | | ?"-chioro-4"-methyl-
3-nitrosalicyl-
anilide | Carassius
auratus | 854 | | 1.0 (K 3 hr) | a• | same as above | Harking, et
at (1970),
AMIC-6391 | | ?"-chioro-4"-aethyi-
3-nitrosalicyl-
anilide | Cyprinus
carplo | BSA | | 1.0 (K1) | •• | same as above | Marking, et
a! (1970),
AMIC-6391 | | ?"-chioro-4"-methyi-
3-nitrosalicyl-
anilide | Pimephales
promelas | BSA | | 1.0 (K1) | •• | same as above | Marking, et
aj (1970).
AMIC-6391 | | "-chioro-4"-methyi-
3-nitrosalicyl-
unilide | Ictalurus
melas | BSA | | 1-0 (K1) | •• | same as above | Marking, et
al (1970),
AMIC-6391 | | "-chioro-4"-methyi-
-nitrosalicyl-
nilide | Lepomis
cyanelius | AZB | | 1.0 (K1) | a• | same as above | Marking, et
al (1970),
AMIC-6391 | | "-chioro-4"-methyi-
3-nitrosalicyl-
unilide | Lepomis
macrochirus | BSA | | 1.0 (K1) | •• | same as above | Marking, et
e: (1970).
AMIC-6391 | | "-chioro-4"-methyl-
-nitrosalicyl-
milide | Perca
flavescens | BSA | | 1.0 (K1) | a• | same as above | Marking, et
at (1970),
AMIC-6391 | | m-chloro-#-nitro-3 | | BSA | | 1.0 (K 3 hr) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | ?"-chtoro-4"-nitro-3
-nitrosaticytanitide | | BSA | | 1.0 (K1) | •• | same as above | Harking, et
al (1970).
AHIC-6391 | | 2"-chioro-4"-nitro-3
-nitrosalicylanilide | | BSA | | 1.0 (K1) | •• | same as above | Marking, et
al (1970),
AMIC-6391 | | 2"-chloro-4"-nitro-3
-nitrosalicylanilide | | #\$# | | 1.0 (K1) | •• | same as above | Marking, et
al (1970),
AMIC-6391 | | 2"-chioro-4"-nitro-3 | Ictalurus | BSA | | 1.0 (K 3 hr) | •• | Same as above | Harking, et | | -nitrosaticytanilide me | elas | | | | | | | at (1970),
Amic-6391 | |--|----------------------|-------|----|--------------|------------|-------------|----------|--| | 2"-chloro-4"-nitro-3 Le
-nitrosalicylanilide cy | | BSA | | 1.0 (K2) | 8* | same | as above | Marking, et
ai (1970),
AMIC-6391 | | 2"-chloro-4"-nitro-3 Le
-nitrosalicylanilide ma | | BSA | | 1.0 (K1) | •* | Same | as above | Marking, et
al (1970),
AMIC-6391 | | 2"-chioro-4"-nitro-3 Pe
-nitrosalicylanilide fi | | BSA | | 1.0 (K1) | a• | same | as above | Marking, et
al (1970),
AMIC-6391 | | | almo (
airdneri | BSA · | | 1.0 (K 3 hr) | a* | sane | as above | Marking, et
al (1970),
ANIC-6391 | | | orasslus (
uratus | BSA | | 10 (K1) | a• | same | as above | Marking, et
at (1970),
ANIC-6391 | | | porinus (
prolo | BSA | | 10 (K 3 hr) | a • | Same | | Marking, et
al (1970),
ANIC-6391 | | | imephales
rometas | BSA | | 10 (K 3 hr) | a♥ | Same | | Marking, et
al (1970),
AMIC-6391 | | | ctaturus
etas | BSA | | 1.0 (K2) | a* | same | | Marking, et
at (1970),
AMIC-6391 | | | epomis
yanellus | BSA | •• | 10 (K 3 hr) | a• | 58RQ | | Marking, et
al (1970),
AHIC-6391 | | | epomis
acrochirus | BSA | | 10 (K 3 hr) | a• | same | | Marking, et
al (1970),
AMIC-6391 | | | erca
lavescens | BSA | | 10 (K 3 hr) | a* | same | | Marking, et
al (1970),
AMIC-6391 | | | almo
airdneri | BSA | | 1.0(K 3 hr) | 3 ♥ | same | | Marking, et
al (1970),
AMIC-6391 | | 2"-lodo-3-nitro Ca | erassius | BSA | | 10 (K1) | a* | same | as above | Marking. | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
PDM | Experimental Variables, Controlled or Noted | Comments | Reference | |--|------------------------|-----|-------------------|---|---|---------------|--| | zali cylanilide | auratus | | | | | | etal (1970),
AMIC-6391 | | 2"-lodo-3-nitrosalic
ylanilida | Cyprinus
carpio | BSA | | 1.0 (K1) | 8* | same as above | Marking, et
al(1970),
AMIC-6391 | | 2"-lodo-3-nitrosatic
ylanitide | Pimephates
prometas | 88A | | 1-0 (K1) | 84 | same as above | Marking,et
at (1970),
AMIC-6391 | | 2"-lodo-3-nitrosatic
ytaniilde | Ictalurus
melas | BSA | | 10 (K1) | a* | same as above | Marking,
etal (1970),
AMIC-6391 | | 2*-lodo-3-nltrosatic
ytanitide | Lepomis
cyanellus | BSA | | 18 (K 3 hr) | 9* | same as above | Marking,et
al (1970),
AMIC-6391 | | 2"-lodo-3-nitrosatic
ylanitide | Lepomis
macrochirus | BSA | | 10 (K 3 hr) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 2°-lodo-3-nitrosatic
ylanilide | Perca
flavescens | BSA | | 1.0 (K1) | 8.2 | same as above | Marking,et
at (1970),
AMIC-6391 | | 2"-methoxy-4"-nitro-
3-nitrosalicyl-
anilide | Salmo
gairdneri | BSA | | 10 (K 3 hr) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 2"-methoxy-4"-nitro-
3-nitrosalicyl-
anilide | Carassius
auratus | BSA | | 10 (K1) | 8* | evode 26 eme2 | Marking, et
al (1970),
AMIC-6391 | | 2"-methoxy-4"-nitro-
3-nitrosalicyl-
anilide | Cyprinus
carpio | BSA | | 10 (K1) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 2"-methoxy-4"-nitro-
3-nitrosalicyl-
anilide | Pimephales
promelas | BSA | | 10 (K1) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 2"-methoxy-4"-nitro-
3-nitrosalicyl-
anilide | Ictaturus
setas | BSA | | 10 (K1) | 8* | same as above | Marking, et
al (1970),
AMIC-6391 | | 2"-methoxy-4"-nitro- Lepomi
3-nitrosalicyl- cyane:
anilide | | | 10 (K1) | •• | same as above | Marking, et
al (1970),
AMIC-6391 | |--|-------------|-----------|--------------|------------|---------------|--| | 2"-methoxy-4"-nitro- Lepomi
3-nitrosalicyl- macroc
anilide | | . | 10 (K1) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 2"-methoxy-4"-nitro- Perca
3-nitrosalicyl- flaves
anilide | 434 | | 10 (K 3 hr) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 2".4"-dimethy!-3- Salmo
nitrosalicylanilide gairdn | 004 | | 1.0 (K 3 hr) | a* 🍁 | same as above | Marking, et
at (1970),
AMIC-6391 | | 2".4"-dimethyl-3- Carass
nitrosalicylanilide auratu | | | 10 (K 3 hr) | 8* | same as above | Marking, et
a: (1970),
AMIC-6391 | | 2".4"-dimethy!-3- Cyprin
nitrosalicylanilide carpio | | | 1.0 (K2) | a* | same as above | Marking, et
al (1978),
AMIC-6391 | | 2",4"-dimethy1-3- Pimeph
nitrosaliaylanilide promet | | | 1.0 (K4) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 2",4"-dimethy1-3- Ictalu
nitrosalicylanilide metas | rus BSA | | 1.0 (K1) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 2",4"-dimethy1-3- Lepomi
nitrosalicylanilide cyanet | - | | 10 (K 3 hr) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 2°,4°-dimethy1-3- Lepomi
nitrosalicylanilide macroc | | | 10 (K 3 hr) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 2",4"-dimethyl-3- Perca
nitrosalicylanilide flaves | BSA
cens | | 1.0 (K1) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 2",5"-dibromo-3- Salmo
nitromalicylanilide galrd | BSA
eri | | 1.0 (K 3 hr) | » * | same as above | Marking,et
al (1970),
AMIC-6391 | | Z",5"-dibromo-3- Carass
nitrosalicylanilide aurasu | | | 10 (K1) | •• | Same as above | Marking,et
.ai (1970),
AMIC-6391 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |--|------------------------|-----|-------------------|---|---|---------------|---------------------------------------| | | | | | | | | | | ",5"-dibromo-3-
itrosalicylanilide | Cyprinus carpio | BSA | | 1.0 (KZ) | •* | same as above | Marking,et
at (1970),
AMIC-6391 | | ",5"-d bromo-3-
itrosaliqylanilide | Pimenhales
prometas | BSA | •• | 1.0 (K1) | . • | same as above | Marking, e
al (1970),
AMIC-6391 | | ",5"-dibromo-3-
itrosalicylanilide | Ictalurus
pelas | BSA | | 1.0 (K1) | a.• | same as above | Marking. e
at (1970),
AMIC-6391 | | -,5"-dibromo-3-
itrosalicylanilide | tepomis
cyanellus | BSA | •• | 1.0 (K1) | 5 * | same as above | Marking, e
al (1970),
AMIC-6391 | | -,5"-dibromo-3-
itrosalicylanilide | Lepomis
macrochirus | BSA | | 10(K 3 hr) | •* | same as above | Marking, e
a: (1970),
AMIC-6391 | | ",5"-dlbromo-3-
itrosalicylanilide | Perca
flavescens | BSA | | 1.0 (K 3 hr) | a* | same as above | Marking, e
at (1970),
AMIC-6391 | | ",5"-disethoxy-4"-
nloro-3-nitrosa-
icylanilide | Salmo
gairdneri | BSA | | 1.0 (K 3 hr) | a* | same as above | Marking, e
at (1970),
AMIC-6391 | | ",5"-dimethoxy-4"-
nloro-3-ni trosa-
icylanilide | Carassius
auratus | BSA | •• | 1.0 (K4) | a*
• | same as above | Marking, e
ai (1970),
AMIC-6391 | | ",5"-dlmethoxy-4"-
iloro-3-nitrosa-
loylanilida | Cyprinus
carpio | BSA | | 1.0 (K2) | a• | same as above | Marking, e
al (1970),
AMIC-6391 | | ",5"-dimethoxy-4"-
nloro-3-nitrosa-
lcylanilide | Pimenhales
prometas | BSA | | 1.0 (K1) | a • | same as above | Marking, e
at (1970),
AMIC-6391 | | ",5"-dimethoxy-4"-
nloro-3-nitrosa-
lcylanilide | Ictal urus
metas | BSA | | 1.0 (K1) | a* | same as above |
Marking, e
a1 (1970),
AMIC-6391 | | ".5"-dl me thoxy-4"- | Leponis | BSA | | 1.0 (K2) | a* | same as above | Marking, e | | chioro-3-nitrosa-
licylanilide | cyanellus | | | | | | al (1970),
Amic-6391 | |--|-------------------------|--------------------|----|-----------|----------|--|--| | 2",5"-dimethoxy-4"-
chloro-3-nitrose-
licylamilide | Lepowis
macrochirus | BŠA | •• | 1.0 (K1) | •• | same as above | Marking, et
al (1970),
AMIC-6391 | | 2",5"-dimethoxy-4"-
chlore-3-nitrosa-
licylanilide | Perca
flavescens | BSA | | 1.0 (K1) | •• | Same as above | Marking, et
at (1970),
AMIC+6391 | | 2",6"-diethyl-3,5-di
nitrobenzanilide | Salmo
galrdneri | BSA | | 10 (NTE) | •• | same as above | Marking, et
al (1970),
AMIC-6391 | | 2",6"-dlethy1-3,5-dl
nltrobenzanilide | Carassius
auratus | BSA | | 10 (NTE) | •• | same as above | Marking, et
al (1970),
AMIC-6391 | | 2°,6°-diethyt-3,5-di
nitrobenzanitide | Cyprinus
carpio | BSA | | 10 (NTE) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 2",6"-diethyl-3,5-di
nitrobenzanilide | Pimephales
promelas | 85A | | 10 (NTE) | a* | same as above | Harking, et
at (1970).
AMIC-6391 | | 2",6"-diethyl-3,5-di
nitrobenzanitide | Ictalurus
melas | BSA | ` | 10 (NTE) | •• | same as above | Marking, et
at (1970),
AMIC-6391 | | 2",6"-diethyt-3,5-di
nitrobenzanitide | Leponis
cyanelius | BSA | •• | 10 (NTE) | a• | same as above | Marking, et
at (1970),
AMIC-6391 | | 2",6"-diethy1-3,5-di
nitrobenzanitide | Lepomis
macrochirus | BSA | | 10 (NTE) | •• | same as above | Marking, et
al (1970),
AHIC-6391 | | 2",6"-diethyl-3,5-dl
nitrobenzanilide | Perca
11 avescens | ASB | | 10 (NTE) | a* | same as above | Harking, et
a: (1970),
AMIC-6391 | | 3-chioropropane-1,2
dloi | Rasbora
heteromorpha | BCFA
and
BSA | | 2,100(TZ) | dilution | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. | Alabaster
(1969),AMIC-
5425 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimenta
Variables,
Controlled
or Noted | Comments | Reference | |---|------------------------|---|-------------------|--|---|--|--------------------------| | | | | | | species | | | | 3(p—chlorophenyl)
1,1-dimethylurea | Phormidium
ambiguum | i | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuS04. None inhibited growth of mat-forming atgae for more than 2 weeks. CuS04 formulated with certain wetting agents was more toxic than CuS04 alone. Copper chloramine was also found to be more toxic than CuS04. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Otto (1970);
AMIC-892 | | 3,4-dichtorobenzyt
methyl carbamate | Phormidium
ambiguum | ι | | 0.5-10.0(16
percent growth
inhibited 14) | | same as above | Otto (1970);
AMIC-892 | | 3,4-dihydroxybenzpic
acid (protocatechuic
acid) | | ι | | 0.5-10.0(50
percent growth
inhibited 14) | | same as above | Otto (1978);
AMIC-892 | | 3,4,5-frihydroxy
benzoic acid
(gallic acid) | Phormidium
ambiguum | L | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuS04. None inhibited growth of mat-forming algae for more than 2 weeks. CuS04 formulated with certain wetling agents was more toxic than CuS04 alone. Copper chloramine was also found to be more toxic than CuS04. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Offo (1970),
AMIC-892 | | 3,5-dibromo-4-hy
droxybenzonitrile | Phormidium
embiguum | L | | 0.5-10.0 (NTE) | •• | Of 74 chemicals evaluated as algicides, only 9 were more toxic than | Otto (1978)
AMIC-892 | CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chioramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | 3.5-dilodo-4-hydroxy
droxybenzonitrile | Phormidium
ambiguum | ι | | 0.5-10.0 (NTE) | | same as a | bove | Otto (1970),
AMIC-892 | |--|------------------------|-----|----|---|----|---|--|---------------------------------------| | 3,5-dimethyltetrahyd
hydro 1,3,5,2-
thiodizine | Phormidium
ambiguum | L | | 0.5-10.0
(16percent
growth
inhibited 14) | | same as a | bove | Otto (1970),
AMIC-892 | | 3,5,7-triaza-1-azoni
azonia adamontane | Phormidium
ambiguum | ι | | 0.5-10.0 (NTE) | | same as a | bove | Otto (1970).
AMIC-892 | | 3™-bromo-3-nitrosati
cytanitide | Salmo
galrdneri | BSA | | 1.0 (K 3 hr) | a♥ | and related comp
their relative to
fish. Potency v
position of sub-
compounds were s
yellow perch. O | nine nitrosalicylanilides bounds were evaluated for toxic effect to selected varied with type and stitutions. Several selectively toxic to soldfish were the most a salicylanilides. | Marking,et
at (1970),
AMIC-6391 | | 3"-browo-3-nitrosail
cyłaniilde | Carasslus
auratus | BSA | | 10 (K 3 hr) | a* | 5 ame 2 a | bove | Marking,et
at (1970),
AMIC-6391 | | 3"-bromo-3-nitrosall
cylanitide | Cyprinus
carpio | BSA | | 1.0 (K1) | a* | same as a | pove | Marking,
etal (1978),
AHIC-6391 | | 3"-browo-3-nitrosali
cylanilide | Pimephates
prometas | BSA | | 1.0 (K 3 hr) | a• | same as a | bove | Marking.et
at (1970),
AMIC-6391 | | 3bromo-3-nitrosall
cylanitide | Ictaturus
melas | BSA | | 1.0 (K 3 hr) | a* | Same as a | | Harking.et
al (1970),
AMIC-6391 | | 3°-bromo-3-nitrosali
cylanitide | Leponis
cyanellus | BSA | | 10 (K 3 hr) | a* | Same as a | bove | Marking,et
al (1970),
AMIC-6391 | | 3"-broso-3-n1trosali
cytanilide | Lepomis
macrochirus | BSA | •• | 1.0 (K1) | a* | Same as a | bove | Marking.et
at (1970), | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Exoerimentat Variables, Controlled or Noted | Comments | Reference | |------------------------------------|------------------------|-----|-------------------|---|---|---------------|---------------------------------------| | | | | | | | | AMIC-6391 | | 3"-bromo-3-nitrosali
cytanilide | Perca
flavescens | BSA | | 1.0 (K 3 hr) | 9. | same as above | Marking,et
al (1970),
AMIC-6391 | | !™-ch!oro-3-nitroben
anilide | Carassius
auratus | BSA | | 10 (K 3 hr) | 8* | same as above | Marking, e
at (1970),
AMIC-6391 | | l™-chtoro-3-nitroben
anilide | Cyprinus
carpio | AZB | | 10 (K 3 hr) | a* | same as above | Marking, e
al (1970),
AMIC-6391 | | T-chioro-3-nitroben
anitide | Pimephates
prometas | BSA | | 10 (K 3 hr-) | a• | same as above | Marking, e
ai (1970),
AMIC-6391 | | ™-chtoro-3-nitroben
anitide | Ictalurus
melas | BSA | | 10 (K1) | e* | same as above | Marking, e
at (1970),
AMIC-6391 | | "-chloro-3-nitroben
anitide | Lepomis
cyanellus | BSA | | 10 (K 3 hr) | a• | same as above | Marking, e
al (1970),
AMIC-6391 | | -chloro-3-nitroben
anitide | Lepomis
macrochirus | BSA | | 10 (K1) | a* | same as above | Marking, e
al (1970),
AMIC-6391 | | ™-chtoro-3-nitroben
anitide
 Perca
flavescens | BSA | | 10 (K 3 hr) | a * | same as above | Marking, e
ai (1970),
AMIC-6391 | | P-chioro-5-nitro
salicylanilido | Salmo
galrdneri | BSA | | 1.0 (K4) | a • | same as above | Marking, e
al (1970),
AMIC-5391 | | chioro-5-nitro
alicylanilide | Carassius
auratus | BSA | | 10 (K1) | 8* | same as above | Marking, e
at (1970),
AMIC-6391 | | "-chioro-5-nitro
malicylanilido | Cyprinus
carpio | BSA | | 18 (K 3 hr) | a* | same as above | Marking, e
a: (1970),
AMIC-6391 | | 3°-chloro-5-nitro
salicylanilide | Ictalurus
melas | BSA | | 18 (K 3 hr) | 9ª | same as above | Marking, et
al (1970),
AMIC-6391 | |--|------------------------|-----|----|--------------|------------|--|--| | 3"-chioro-5-nitro
salicylanilide | Lepomis
cyanellus | BSA | | 18 (K 3 hr) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 3**-chioro-5-nitro
salicylanilide | Lepomis
macrochirus | BZA | | 18 (K 3 hr) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 3"-chioro-5-nitro
salicylanilide | Perca
flavescens | BSA | | 1.0 (K2) | ** | same as above | Harking, et
at (1970).
AMIC-6391 | | 3°-1odo-3-nitrosalic
ylaniilde | Carasslus
auratus | BSA | | 10 (K1) | a* | same as above | Marking,
etal (1970),
AMIC-6391 | | 3*-lodo-3-nitrosatic
ytanitide | Cyprinus
carplo | BSA | | 10 (K 3 hr) | a* | same as above | Marking, et
at(1970),
AMIC-6391 | | 3*-lodo-3-nltrosailc
ylanliide | Pimephales
promelas | BSA | •• | 1.0 (K1) | 6 * | same as above | Marking,et
at (1970),
AMIC-6391 | | 3 ^m -lodo-3-nltrosalic
ylanlilde | Ictalurus
melas | BSA | •• | 18 (K 3 hr) | a* | same as above | Marking,
etal (1970),
AMIC-6391 | | 3 ^m -lodo-3-nltrosatic
ylanliide | Lepomis
cyanellus | BSA | •• | 1.0 (K1) | a* | same as above | Marking,et
at (1970),
AMIC-6391 | | 3"-lodo-3-nitrosalic
ylanilide | tepomis
macrochirus | BSA | | 1.0 (K1) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 3™-lodo-3-nltrosallc
ytanlilde | Perca
flavescens | BSA | | 1.0 (K 3 hr) | * | same as above | Marking,et
at (1970),
AMIC-6391 | | 3™-lodo-3-nltrosatic
ylanilide | : Salmo
gairdneri | BSA | | 18 (K 3 hr) | 8* | same as above | Marking, et
81 (1970),
AMIC-6391 | | 3°,4°-dichloro-3-
nitrosalicylanilide | Satmo
gairdneri | BSA | | 1.0 (K 3 hr) | a* | Twenty-nine nitrosalicylanilides and related compounds were evaluated for their relative toxic effect to selected fish. Potency varied with type and | Marking, et
al (1970),
AMIC-6391 | | Compound | Organisa | | Field
Location | Toxicity, Active Ingredient, Ppm | Experiments Variables. Controlled or Noted | | Reference | |---|------------------------|-------|-------------------|----------------------------------|--|--|--| | | | | | | | position of substitutions. Several compounds were selectively toxic to yellow perch. Goldfish were the most resistant to the selicylanitides. | | | 3",4"-dichtoro-3-
nitrosalicylanilide | Carassius
auratus | 8SA | | 1.0(K1) | 8* | same as above | Marking, et
al (1970),
AMIC-6391 | | 3",4"-dichloro-3-
nitrosalicylanilide | Cyprinus
carplo | BSA | | 1.0 (K1) | a• | same as above | Marking, et
al (1970),
AMIC-6391 | | 3",4"-dichtoro-3-
nitrosalicylanilide | Pimenhales
prometas | 888 | | 0.1 (K2) | . * | same as above | Marking, et
al (1970),
AMIC-6391 | | 3",4"-dichioro-3-
nitrosalicylanilide | Ictalurus
melas | BSA | | 0.1 (K1) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 3",4"-dichtoro-3-
nitrosalicylanilide | Leoomis
cyanellus | 8 S A | | 1.0(K1) | 8* | same as above | Marking, et
al (1970),
AMIC-6391 | | 3",4"-dichtoro-3-
nitrosalicylanilide | Lepomis
macrochirus | 8SA | | 0.1 (K4) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 3°,4°-dichtoro-3-
nitrosalicytanitide | Perca
flavescens | BSA | | 0.1 (K4) | * | same as above | Marking, et
al (1970),
AMIC-6391 | | 4-cyano-2.
6-dilodophenyi-N-
methyl carbamate | Phormidium
ambiguum | t | | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain metting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to | Offo (1970),
Amic-892 | controlling algae by environmental management. No practical environmental means were found. | 4™-azophenyi-3-nitro
⊊alicylaniilde | Salmo
gairdneri | BSA | | 0.1 (K1) | 8* | Twenty-nine nitrosalicylanilides and related compounds were evaluated for their relative toxic effect to selected fish. Potency varied with type and position of substitutions. Several compounds were selectively toxic to yellow perch. Goldfish were the most resistant to the salicylanilides. | Marking, et
at (1970),
AMIC-6391 | |---|------------------------|-----|----|--------------|--------------|--|--| | 4∞-azophenyi-3-nitro
salicytanitide | Carassius
auratus | ASB | | 1.0'(K 3 hr) | , 8 * | same as above | Marking, et
at (1970),
AMIC-6391 | | 4"+azopheny1-3-nitro
saticytanitide | Cyprinus
carpio | BSA | | 0.1 (K4) | a* | same as above | Marking, et
a! (1970),
AMIC-6391 | | 4"-azophenyi-3-nitro
saticylanilide | Pimephales
prometas | BSA | | 0.1 (K1) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 4*-azophenyl-3-nitro
salicytanilide | Ictalurus
melas | BSA | | 0.1 (KZ) | a• | same as above | Marking, et
al (1970),
AMIC-6391 | | 4"-azopheny!-3-nitro
salicytanilide | Lepomis
cyanellus | BSA | •• | 0.1 (K4) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 4*-azophenyl-3-nitro
salicylanitide | Lepomis
macrochirus | BSA | •• | 0.1 (K1) | a* | same as above | Marking, et
a! (1970),
AMIC-6391 | | 4*-azophenyl-3-nitro
salicylanilide | Perca
flavescens | BSA | | 0.1 (K1) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 4*-bromo+2-methyl-3-
nitrosalicylanilide | | BSA | •• | 1.0 (K 3 hr) | a* | same as above | Marking.et
ai (1970).
AMIC-6391 | | 4*-bromo-2-methyl-3-
nitrosalicylanilide | | BSA | •• | 1.0 (K1) | 9. | same as above | Marking.et
at (1970).
AMIC-6391 | | 4"-browo-2-methyl-3-
nitrosalicylanilide | | BSA | | 0-1 (K4) | •* | same as above | Marking,
etal (1970),
AMIC-6391 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |---|------------------------|-----|-------------------|---|---|---------------|--| | 4"-bromo-2-methyt-3-
nitrosalicylaniiide | | BSA | | 1.0 (K1) | a ¶ | same as above | Marking.et
al (1970). | | 4"-bromo-2-methyl-3-
nitrosalicytaniilde | | BSA | *- | 1.0 (K 3 hr) | a* | same as above | AMIC-6391
Harking.et
at (1970),
AMIC-6391 | | 4™+bromo-2-methy1-3+
nitrosalicylanilide | | BSA | | 1.0 (K 3 hr) | | same as above | Marking, e
al (1970),
AMIC-6391 | | N™-bromo-2-methyl-3-
nitrosaticylanilide | | BSA | | 1.0 (K1) | a* | same as above | Marking, e
al (1970),
AMIC-6391 | | h"-bromo-2-methyl-3-
nitrosalicylaniilde | | BSA | | 0.1(K2) | 3* | same as above | Marking,et
at (1970),
AMIC-6391 | | ≒"-bromo-3-nitrosali
cylanilide | Salmo
gairdneri | BSA | | 1.0 (K 3 hr) | * | same as above | Marking.et
at (1970).
AMIC-6391 | | ≒"-bromo-3-nitrosali
cytanitide | Carassius
auratus | BSA | | 1.0 (K1) | a* | same as above | Marking,et
a! (1970),
AMIC-6391 | | ≒"-bro#o-3-nltrosali
cylanitide | Cyprinus
carpio | BSA | | 0.1 (K 3 hr) | a* | same as above | Harking,
etat (1970)
AMIC-6391 | | h™-broπo-3-nitrosali
cylanitide | Pimephales
prometas | AZB | | 1.0 (K 3 hr) | 3 ° | same as above | Marking,et
af (1970),
AMIC-6391 | | h™-browo-3-nitrosali
cylanilide | Ictaturus
metas | BSA | | 1.0 (K1) | 8* | same as above | Harking.et
al (1970),
AMIC-6391 | | ≒"-bromo-3-n1trosati
cytanitide | Leponis
cyaneltus | BSA | | 1.0 (K 3 hr) | ** | same as above | Marking.et
al (1970),
AMIC-6391 | | t#-bromo-3-nitrosali | Leponis | BSA | | 1.0 (K1) | a• | same as above |
Harking,e1 | | cylanitide | macrochirus | | | | | | al (1970).
AMIC-6391 | |---|---------------------|-----|----|--------------|------------|---------------|--| | 4"-browo-3-nitrosali
cytanitide | Perca
flavescens | BSA | •• | 0.1 (K1) | a* | same as above | Marking.et
at (1970).
AHIC-6391 | | 4-broso-5-broso-3-
nifrosalicylanilide | | BSA | | 0-1 (K1) | •• | same as above | Harking.et
a; (1970),
AMIC-6391 | | 4"-bromo-5-bromo-3-
nitrosalicylanilide | | BSA | | 1.0(K1) | a* | same as above | Marking.et
at (1970).
AMIC-6391 | | 4"-bromo-5-bromo-3-
nitrosalicylanilide | • | BSA | •• | 0.1 (K4) | a* | same as above | Marking,
etal (1970),
AMIC-6391 | | 4°-bromo-5-bromo-3-
nitrosal[cylan]lide | | BSA | | 0.1 (K2) | a* | same as above | Marking.et
at (1970),
AMIC-6391 | | 4*-bromo-5-bromo-3-
nltrosalicylanliide | | BSA | | 0.1 (K4) | a* | same as above | Marking,et
at (1970),
AMIC-6391 | | 4*-bromo-5-bromo-3-
nitrosalicylanilide | | BSA | | 0.1(K4) | a* | same as above | Marking,et
at (1970).
AMIC-6391 | | 4"-promo-5-bromo-3-
nitrosalicylanilide | | BSA | | 0.1 (K2) | a• | same as above | Marking.et
at (1970),
AMIC-6391 | | %*-bromo-5-bromo-3-
nitrosaticytaniilde | | BSA | •• | 0.1 (K1) | a* | same as above | Marking,et
at (1970),
AMIC-6391 | | 5"-chloro-2"-methyl-
nitrosallcylanilide | | BSA | | 1.0 (K1) | 8 * | same as above | Marking, et
al (1970),
AMIC-6391 | | 5"-chioro-2"-methyi-
nitrosaticylanilide | | BSA | •• | 1.0 (K 3 hr) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 6"-chloro-2"-methyl-
nitrosaticylaniilde | | BSA | | 1.0 (K1) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 4"-chloro-2"-methyl- | Lepomis | BSA | | 1.0 (K1) | 8* | same as above | Harking, et | | Compound | Organis m | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experimental Variables, Controlled or Noted | Comments | Reference | |---|------------------------|-----|-------------------|---|---|---------------|--| | nitroselicylanilide | macrochirus | | | | | | at (1970).
AMIC-6391 | | 4"-chloro-2"-methyl-
nitrosaticylanifide | | BSA | | 1.0 (K 3 hr) | * | same as above | Marking, et
at (1970),
AMIC-6391 | | 4"-chloro-2"-methyl-
nitrosaticylanitide | | BSA | | 1.0 (K 3 hr) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 4"-chloro-2"-methyl-
nitrosalicylanitide | | 854 | | 1.0 (K1) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 4"-chioro-2"-methyl-
nitrosaticylaniiida | -, | RSA | | 1.0 (K1) | 9* | same as above | Marking, et
et (1970),
AMIC-6391 | | ≒"-chloro-3-nitrosa;
icylanilide | Salmo
galrdneri | BSA | | 1.0 (K1) | a* | same as above | Marking,et
et (1970),
AMIC-6391 | | 4"-chloro-3-nitrosaf
icytanitide | Carassius
auratus | BSA | | 1.0 (K1) | a* | same as above | Marking,et
al (1970),
AMIC-6391 | | 4"-chioro-3-nitrosat
icytaniilda | Cyprinus
carpio | BSA | | 1.0 (K1) | 8* | same as above | Marking,et
al (1970),
AMIC-6391 | | 47-chtoro-3-nitrosal
icytanitide | Pimephales
promelas | BSA | | 1.0 (K3 hr) | a * | same as above | Marking, et
al (1970),
AMIC-6391 | | 4°-chioro-3-nitrosal
Icytanitide | Ictaturus
petas | BSA | | 1.0 (K 3 hr) | a* | same as above | Marking,et
at (1970),
AMIC-6391 | | 4"-chloro-3-nitrosal
icylanilide | Lepomis
cyanelius | BSA | •• | 1.0 (K1) | a* | same as above | Harking.et
a: (1970).
AMIC-6391 | | 4=chloro-3-nitrosal
lcytanitide | Lepomis
macrochirus | BSA | | 1.0 (K1) | a • | same as above | Marking,et
at (1970),
AMIC-6391 | | 4™-chloro-3-nitrosat
icytaniilde | Perca
flavescens | BSA | | 1.0 (K1) | 8* | same as above | Marking,et
al (1970),
AHIC-6391 | |---|------------------------|-----|----|--------------|-----------|---------------|--| | 4-chloro-5-bromo-nl
trosallcylanilide | Salmo
gairdneri | BSA | | 0-1 (K1) | 8* | same as above | Marking, et
al (1970),
AMIC-6391 | | 4∞-chloro-5-bromo-nl
trosallcylanItide | Carassius
auratus | BSA | | 1.0 (K1) | ** | Same as above | Marking, et
al (1970),
AMIC-6391 | | 4"-chloro-5-bromo-nl
trosallcylanilide | Cyprinus
carpio | BSA | | 0.1 (K2) | 8* | Same as above | Marking, et
al (1970),
AMIC-6391 | | 4"-chloro-5-bromo-ni
trosalicylanilide | Pimephales
prometas | BSA | - | 0.1 (K2) | •** | same as above | Marking, et
al (1970),
AMIC-6391 | | 4"-chloro-5-bromo-ni
trosalicylanilide | Ictaturus
metas | BSA | | 1.0 (K 3 hr) | a* | same as above | Harking, et
mi (1970).
AMIC-5391 | | 4°-chloro-5-bromo-ni
trosaticytaniiide | Lepomis
cyanellus | BSA | | 0.1 (K4) | a* | same as above | Marking, et
al (1970),
AMIC-5391 | | 4"-chloro-5-bromo-ni
trosalicylaniilde | Lepomis
macrochirus | BSA | | 0.1 (K2) | •• | same as above | Marking, et
a1 (1970),
AMIC-5391 | | 4"-chloro-5-bromo-ni
trosalicylaniilde | Perca
flavescens | BSA | | 0.1 (K1) | •• | same as above | Marking, et
at (1970),
AMIC-6391 | | 4"-chioro-5-nitrosat
icytaniilde | Salmo
gairdneri | BSA | | 1.0 (K1) | 8* | same as above | Marking, et
a1 (1970),
AMIC-6391 | | 4°-chioro-5-nitrosal
icylaniilde | Carassius
auratus | BSA | | 10 (KS) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 4"-chloro-5-nltrosal
icylanllide | Cyprinus
carpio | BSA | | 10 (K4) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 4"-chloro-5-nitrosal
Icylanilide | Pinephales
prometas | BSA | •• | 1.0(K1) | 4* | same as above | Marking, et
al (1970),
AMTC-6391 | | Compound | Örganism | | Fletd
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | Comments | Reference | |-------------------------------------|--|-----|-------------------|---|---|---|--| | 4"-chioro-5-nitro
selicylaniilde | Ictalurus
melas | BSA | | 1.0 (K1) | *
* | same as above | Marking, et
al (1970),
AMIC-6391 | | 4"-chloro-5-nitro
salicylanilide | Leromis
cyanellus | 858 | | 1.0 (K1) | •• | same as above | Marking, et
ai (1970),
AMIC-6391 | | 4~-chioro-5-nitro
salicytanitide | Lepomis
macrochirus | BSA | | 1.0 (K1) | •• | same as above | Marking, et
at (1970),
AMIC-6391 | | 4°-chtoro-5-nitro
saticytanitide | Perca
11avescens | BSA | | 1.0 (K1) | •• | same as above | Marking, et
at (1970),
AMIC-6391 | | 4™-lodo-3-nlfro
salicylaniiide | Ictalurus
nebufosus
(2.5-6.01n.) | t | | 5.0 (K) | ₽ ,c,g | Rrown builheads were subjected to solutions of 4"-iodo-nitrosalicylanifide in laboratory jars some of which contained hottom sediments of different deoths up to 2 inches. Upon exposure to the toxicant, some of the builheads buried themselves in the sediments thereby surviving the chemical treatment & to 16 days. The phenomenon of burying appeared to be temperature dependent. | | | &~-lodo-3-nitro
selicytanitide | Ictalurus
nebulosus
(2-5-6-0
IN-) | L | | 2.5 (partial
K) | 8,0,9 | same as above | Loeb, et al
(1966),
AMIC-6199 | | 47-lodo-3-nitro
saticytaniilde | Salmo
galrdneri | BSA | | 0.1 (K2) | •• | Thenty-nine nitrosalicylanilides and related compounds were evaluated for their relative toxic effect to selected fish. Potency varied with type and rosition of substitutions. Several compounds were selectively toxic to yellow perch. Goldfish were the most resistant to the salicylanilides. | Marking, et
at (1970),
AMIC-6391 | | 4"-lodo-3-nitro
saticytanitida | Carassius
auratus | BSA | | 1.0 (K 3 hr) | * | same as above | Marking,et
a1 (1970),
AMIC-6391 | | 4°-iodo-3-nitro
salicytaniiide | Cyprinus
carpio | BSA | | 0.1 (K1) | •• | same as above | Harking.
etal (1978);
AMIC-6391 | | 4 10do-3-n1tro | Pimephales | 85A | | 0.1 (K1) | •• | same es above | Harking, et | | Salicytaniilde | promelas | | • | | | | af (1970),
Amic-6391 | |---|------------------------|-----|----|--------------|------------|---------------|--| | 4~-iodo-3-nitrosalic
ylanilide | Ictalurus
melas | BSA | | 0.1 (K1) | •• | same as above | Marking.
etal (1970),
AMIC-6391 | | 4™-iodo-3-nitrosalic
ylanliide | Lecomis
cyanellus | BSA | | 1.0 (K 3 hr) | a• | same as above | Marking.et
at (1970),
AMIC-6391 | | 4*-lodo-3-nitrosalic
vianitide | Lenomis
macrochirus | BSA | | 0.1 (K2) | a♥ | Same as above | Marking, et
at (1970),
AMIC-6391 | | 4 ^m -lodo-3-nitrosatic
ytmnitide | Perca
flavescens | BSA | | D.1(K1) | a* | same as above | Marking,et
at (1970),
AMIC-6391 | | 4 ^m -lodo-5-nitrosailc
yl a niilde | Salmo
gairdneri | BSA | | 1.0 (K1) | 3* | same as above | Harking, et
at (1970),
AMIC-6391 | | 4™-iodo-5-nitrosatic
ylanilide | Carassius
auratus | BSA | •• | 1.0 (K2) | •• | same as above | Marking,
etal
(1970),
AMIC-6391 | | 4°-lodo-5-nitrosatic
ytaniilde | Cyprinus
carpio | BSA | | 1.0 (K2) | •• | same as above | Harking, et
al(1970),
AMIC-6391 | | 4™-lodo-5+nltrosatic
ytaniilde | Pimephales
prometas | 854 | | 1.0 (K1) | a* | same as above | Marking,et
at (1970),
AMIC-6391 | | 4™-iodo-5-nitrosatic
ylanitide | Ictalurus
melas | BSA | | 1.0 (K1) | a* | same as above | Marking, et
al(1970,
AMIC~5391 | | 4=-lodo-5-nitrosalic
ytanilide | Lepomis
cyanelius | BSA | | 1.0 (K2) | a* | same as above | Marking, et
al(1970),
AMIC-6391 | | 4 ^m -lodo-5-nitrosatic
ytanilide | Lepomis
macrochirus | BSA | | 1.0 (K1) | 8 * | same as above | Marking, et
81(1970),
AMIC-6391 | | Compound | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Ppm | Experiment:
Variables,
Controlled
or Noted | | Reference | |--|------------------------|-----|-------------------|---|---|--|--| | 4″-lodo-5-nitrosatic
ytanitide | Perca
flavescens | AZB | | 1.0 (K1) | a• | same as above | Marking.et
at (1970).
AMIC-6391 | | 4~-methoxy-2"-nifro-
3-nitrosalicyl-
anilide | Salmo
gairdneri | BSA | | 1.0 (K1) | a* | Twenty-nine nitrosaticytanilides and retated compounds were evaluated for their relative toxic effect to selected fish. Potency varied with type and position of substitutions. Several compounds were selectively toxic to yellow perch. Goldfish were the most resistant to the saticytanilides. | Marking, et
at (1970),
AMIC-6391 | | 4"-methoxy-2"-nitro-
3-nitrosalicyl-
anilide | Carassius
auratus | ÐSA | •• | 10 (K 3 hr) | a* | same as above | Marking. et
al (1970).
AMIC-6391 | | 4"-methoxy-2"-nitro-
3-nitrosalicyl-
anilide | Cyprinus
carpio | BSA | | 10 (K 3 hr) | a* | Same as above | Marking, et
at (1970),
AMIC-6391 | | 4~-methoxy-2"-nitro-
3-nitrosalicyl-
anilide | Pimephates
prometas | BSA | | 10 (K 3 hr) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 4"-methoxy-2"-nitro-
3-nitrosalicyl-
anilide | Ictalurus
metas | BSA | | 1.0 (K1) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 4"-methoxy-2"-nitro-
3-nitrosalicyl-
anilide | Lepomis
cyanellus | BSA | | 10 (K1) | a • | same as above | Marking, et
al (1970),
AMIC-6391 | | 4"-methoxy-2"-nitro-
3-nitrosalicyl-
anilide | Lepomis
macrochirus | BSA | | 1.0 (K1) | a* | Same as above | Marking, et
al (1970),
AMIC-6391 | | 4"-methoxy-2"-nitro-
3-nitrosalicyl-
anilide | Perca
flavescens | BSA | | 1.0 (K1) | 8 * | same as above | Marking, et
al (1970),
AMIC-6391 | | 5-bromo-3-nitrosalic
ytic acid | Salmo
galrdnerl | BSA | | 1.0 (K 3 hr) | a • | Twenty-nine nitrosalicylanilides and related compounds were evaluated for their relative toxic effect to selected fish. Potency varied with type and position of substitutions. Several | | # compounds were selectively toxic to yellow perch. Goldfish were the most resistant to the salicylanilides. | 5-bromo-3-nitrosalic
ylic acid | Carasslus
auratus | BSA | | 1.0 (K1) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | |---|-------------------------|--------------------|----|----------------|-----------------------------------|--|--| | 5-bromo-3-nitrosatic
ytic acid | Cyprinus
carpio | 828 | | 1.0 (K1) | a. | same as above | Harking, et
al (1970),
AHIC-6391 | | 5-bromo-3-mitrosatic
ytic acid | Pimephales
prometas | BSA | *- | 1.0 (K1) | a* | same as above | Marking, et
al (1970),
AMIC-6391 | | 5-bromo-3-nitrosalic
ylic acid | Ictalurus
melas | BSA | | 1.0 (K1) | a.* | same as above | Marking, et
at (1970),
AMIC-6391 | | 5-bromo-3-nitrosalic
ylic acid | Lepomis
cyaneliųs | BSA | | 1.0 (K1) | 9. | same as above | Marking, et
at (1970),
AMIC-6391 | | 5-browo-3-nltrosallc
ylic acid | Lepomis
macrochirus | BSA | | 1.0 (K1) | a* | same as above | Marking, et
at (1970).
AMIC-6391 | | 5-bromo-3-nitrosatic
ytic acid | Perca
flavescens | BSA | •• | 0.1 (K1) | a* | same as above | Marking, et
ai (1970).
AMIC-6391 | | 5-bromo-3-sec-butyl-
6-methyluracli | Phormidium
ambiguum | ι | •• | 0.5-10.0 (NTE) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental management. No practical environmental means were found. | Offo (1970),
AMIC-892 | | 5-methyl 2-
(1-methyl-n-heptyl)
-4,6-dinitrophenyl- | Rasbora
heteromorpha | BCFA
and
BSA | | 0.52 (T2) | a*,c.e.f.
hard (HW)
or soft | One hundred sixty-four pesticides, wetting agents, and miscellaneous water pollutants showed a | Atabaster
(1969),
AMIC+5425 | | Comocund | Organism | | Field
Location | Toxicity,
Active
Ingredient,
Pom | Experiments
Variables,
Controlled
or Noted | | Reference | |--|------------------------|-----|-------------------|---|---|--|--| | thio∣ carbon⊅*e | | | | | dilution | wide range of toxicity spanning 12 orders of magnitude. Knowing the toxicity and percentage of all components of a formulation did not result in easy predictability of the toxicity of a mixture of materials. Sometimes pesticides were most toxic in hard water and sometimes the opposite was true. Testing the actual material as sold was found to be essential. | : | | 5,8-dihydroxyl-1,2,3
,4,9,9-hexachloro-1,
4-methano-1,4-dihy
dronaphthalene | | ι | | 0-5-10.0 (33
percent growth
Inhibited 14) | •• | Of 74 chemicals evaluated as aigloides, only 9 were more toxic than CuSO4. None inhibited growth of mat-forming aigae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4 alone. Copper chioramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 pom). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling aigae by environmental management. No practical environmental means were found. | Offo (1970);
AHIC+892 | | 5°-chloro-2°-methoxy
+3-nitrosalicyt
anitide | Saf#o
galrdneri | AZB | | 1.0 (K 3 hr) | 8* | Twenty-nine nitrosaticytanilides and related compounds were evaluated for their relative toxic effect to selected fish. Potency varied with type and position of substitutions. Several compounds were selectively toxic to yellow perch. Goldfish were the most resistant to the saticytanilides. | Marking, et
al (1970),
AMIC+6391 | | 5"-chloro-2"-methoxy
-3-nltrosalicyl
anllide | Carassius
auratus | BSA | | 10 (K1) | a* | same as above | Marking, et
al (1970),
AMIC-5391 | | 5°-chioro-2°-methoxy
-3-nitrosaticyi
anitide | Cyprinus
carpio | BSA | | 1.0 (K1) | a* | Same as above | Marking, et
al (1970),
AMIC-6391 | | 5"-chioro-2"-methoxy
-3-nifrosalicy!
anilide | Pimephales
prometas | BSA | | 1.0 (K1) | a* | same as above | Marking, et
al (1970),
AMIC+6391 | | : | Þ | |---|---| | 1 | L | | 7 | Ę | | ` | Ó | | 5"-chloro-2"-methoxy
-3-nitrosaticyl .::
anitide | | ASB |
1.0 (K1) | a* | same as above | Marking, et
ai (1970),
AMIC-6391 | |---|------------------------|-----|---|-----------
--|--| | 5"-chloro-2"-methoxy
-3-nitrosalicyl
anlilde | Lepomis
cyanelius | BSA |
1.0 (K1) | a• | same as above | Marking, et
al (1970),
AMIC-6391 | | 5"-chloro-2"-methoxy
-3-nitrosalicyl
anilide | Lepomis
macrochirus | BSA |
1.0 (K1) | a* | same as above | Marking, et
a: (1970),
AHIC-6391 | | 5"-chloro-2"-methoxy
-3-nitrosaticxi
anliide | Perca
flavescens | BSA |
1.0 (K1) | a* | same as above | Marking, et
at (1970),
AMIC-6391 | | 6,7-Dihydrodipyrido
(1,2-a:2'l'-c)
pyrazidiinium salt
(Diquat) | Phormidium
ambiguum | L |
0.5-10.0 (66
percent growth
inhibited 14) | | Of 74 chemicals evaluated as algicides, only 9 were more toxic than CuSO4. None inhibited growth of matforming algae for more than 2 weeks. CuSO4 formulated with certain wetting agents was more toxic than CuSO4. Copper chloramine was also found to be more toxic than CuSO4. No wetting agents were found to be inhibitory at the concentrations investigated (0.05 and 0.005 ppm). Also reported are factors affecting growth of algae in canals to determine whether there were leads to controlling algae by environmental means were found. | | ----- #### APPENDIX B #### SPECIES INDEX Accipiter cooperii - A-159, 360 Acroneuria - A-54, 76, 82, 92, 247, 280, 306, 330, 452 Acroneuria lycorias - A-269 Aechmophorus occidentalis - A-115, 130, 157 Agmenellum quadruplicatum - A-7, 199, 234, 278, 376, 377 Agonus cataphractus - A-23, 24, 26, 28, 49, 50, 53, 75, 80, 81, 103, 206, 221, 232, 301, 311, 334, 393, 404, 406, 414 Alewife - A-174, 206 Algae - A-149 Alosa pseudoharengus - A-29, 55, 76, 82, 96, 117, 131, 166, 427, 440 Ambassis safgha - A-308, 369 Ambloplites rupestris - A-117, 119, 131, 133, 166, 176 Ameirus nebulosus - A-118, 132, 176 American smelt - A-174, 206 Amia calva - A-18 Amphidinium carteri - A-105, 335 Amphipnous cuchia - A-180, 263, 373 Anabaena - A-9 Anabas testudineus - A-178, 263, 373 Anacystis nidulans - A-7, 199, 233, 278, 376, 377 Anas cyanoptera - A-158, 360 Anguilla rostrata - A-113, 121, 141, 266, 355 Anisoptera - A-178, 264, 373 Anisotremis davidsoni - A-149, 354 Aplodinotus grunniens - A-19 Aquatic plants - A-149 Aquila chrysaetos - A-159, 202, 360 Archoplites interruptus - A-115, 116 Arctic grayling - A-46, 124, 146, 197, 354, 422 Artemia salina - A-307 Artemia spp. - A-148 Asellus brevicaudus - A-14, 184, 190, 191, 217, 246, 320, 397, 398, 401, 438, 446, 462, 464, 465 Asplanchnopus - A-112, 121, 136, 313 Asterias forbesi - A-68 Asterias rubens - A-10, 65, 75, 302, 334, 446 Backswimmers - A-40 Belostoma indica - A-180, 264, 373 Benthic insects - A-177 Betta splendens - A-48, 244 Bigmouth buffalo - A-45, 123, 144, 196, 352, 420 Birds - A-150 Black bullhead - A-45, 123, 145, 197, 353, 421 Black crappie - A-45, 124, 145, 197, 353, 421 Bloater - A-44, 123, 144, 174, 195, 207, 352, 420 ``` Blue catfish - A-44, 71, 122, 144, 261, 352, 420 Bluegills - A-44, 122, 146, 195, 346, 351, 419 Blue-green sunfish - A-435, 436 BOD - A-22, 66, 100, 276, 292, 409 Bottom invertebrates - A-168 Boyeria vinosa - A-269 Brachionus - A-179, 265, 374 Brachycentrus americanus - A-269 Brachydanio rerio - A-2, 7, 62, 211, 250, 370, 382, 449 Bridgelip sucker - A-46, 124, 146, 197, 354, 421 Brevoortia patronus - A-27 Brook trout - A-269 Brown bullhead - A-43, 71, 125, 147, 175, 195, 207, 260, 351, 419 Bucephala clangula - A-115 Bugula neritina - A-89, 306, 452 Callibaetis sp. - A-185, 186, 218 Callinectes sapidus - A-27, 28 Cambarus bartoni - A-150 Campeloma decisum - A-94, 95 Campeloma sp. - A-119, 133, 176 Cancer magister - A-127, 422 Carassius auratus - A-18, 30, 41, 52, 55, 64, 97, 114, 128, 154, 155, 164, 235, 247, 248, 258, 277, 279, 280, 284, 298, 308, 309, 317, 365, 391, 403, 428, 431, 441, 449, 454, 458, 467, 468, 469, 470, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488 Carcinus maenas - A-3, 33, 34, 47, 48, 68, 79, 86, 87, 90, 103, 170, 205, 213, 224, 227, 242, 252, 254, 270, 279, 307, 329, 334, 337, 340, 368, 378, 379, 381, 399, 400, 401, 402, 405, 408, 414, 434, Cardium edule - A-10, 22, 24, 26, 28, 29, 32, 33, 34, 47, 49, 50, 54, 65, 67, 75, 79, 80, 81, 85, 86, 91, 101, 104, 110, 170, 181, 206, 213, 221, 224, 225, 227, 232, 242, 245, 250, 253, 254, 278, 279, 291, 301, 302, 207, 311, 323, 329, 334, 337, 341, 346, 349, 369, 378, 379, 399, 400, 401, 402, 405, 406, 409, 414, 425, 434 Carp - A-43, 71, 122, 147, 175, 195, 260, 351, 419 Carpiodes cyprinus - A-20 Carpiodes sp. - A-198 Catostomus commersoni - A-20, 82, 105, 108, 117, 118, 131, 133, 165, 176, 277, 297, 337, 458 Ceriodaphnia - A-179, 265, 376 Cerorhinca monocerata - A-161, 362 Chaetoceros sp. - A-105, 335 Chain pickerel - A-43, 125, 146, 194, 350, 419 Channa punctatus - A-7, 177, 180, 181, 263, 372 Channel catfish - A-40, 43, 71, 122, 147, 175, 195, 207, 260, 345, 351, 419 Chara sp. - A-345 Chironomus sp. - A-7, 129, 130, 134, 135 Chironomus tentans - A-313 Chiselmouth - A-46, 124, 145, 197, 353, 421 Chlamydotheca arcuata - A-8, 203 ``` ``` Chrosomus eos - A-18 Closterium - A-179, 265, 376 Clupea harengus - A-113, 121, 141, 266, 355, 447, 448 Coho salmon - A-6, 69, 101, 175, 207, 246, 253, 268, 276, 365, 379, 393, 409 Coleps - A-112, 120, 136, 313 Copepods - A-72, 73, 203, 204, 238, 239, 267, 285, 286, 299, 300, 371, 411, 412, 432 Coregonus artedii - A-29, 55, 82, 96, 427, 441, 454 Coregonus clupeaformis - A-17, 29, 30, 31, 51, 55, 56, 77, 82, 96, 97, 280, 281, 302, 310, 331, 393, 394, 427, 429, 441, 454, 455 Coregonus hoyi - A-29, 51, 55, 83, 96, 428, 441, 454 Coscinodiscus - A-112, 120, 137, 313 Cottus bairdi - A-114, 126, 138, 151, 200 Crangon crangon - A-2, 3, 5, 10, 22, 23, 24, 26, 28, 29, 32, 33, 34, 36, 38, 47, 49, 50, 54, 66, 67, 79, 80, 81, 86, 87, 91, 101, 102, 103, 104, 107, 110, 182, 206, 213, 214, 221, 224, 225, 227, 231, 232, 242, 243, 245, 248, 250, 251, 254, 255, 256, 257, 268, 270, 277, 286, 287, 289, 301, 302, 307, 311, 319, 323, 328, 329, 337, 338, 341, 346, 349, 363, 364, 369, 370, 371, 376, 378, 379, 381, 386, 388, 389, 391, 394, 399, 401, 402, 403, 405, 406, 409, 415, 425, 426, 434, 446, 447, 459 Crangon septemspinosa - A-67 Crassostrea commercialis - A-307 Crassostrea virginica - A-4, 13, 14, 26, 103, 169, 181, 204, 205, 217, 220, 223, 230, 231, 233, 240, 260, 284, 300, 301, 305, 326, 340, 343, 364, 367, 377, 389, 394, 398, 416, 418, 424, 425, 438, 463, 464, 465 Crepidostomum farionis - A-222 Culex pipiens - A-112, 120, 133, 134, 136, 312 Cybister sp. - A-178, 264, 373 Cyclops - A-179, 265, 374 Cyclops bicuspidatus - A-72, 73, 168, 203, 204, 238, 239, 285, 286, 299, 300, 371, 411, 412, 432, 433 Cyclops varicans - A-72, 73, 168, 203, 204, 238, 239, 285, 286, 299, 300, 371, 411, 412, 432, 433 Cyclops vernalis - A-72, 73, 168, 203, 204, 238, 239, 285, 286, 299, 300, 371, 411, 412, 432, 433 Cyclotella nana - A-105, 335 Cynoscion nebulosus - A-27 Cypridopsis vidua - A-14, 185, 191, 217, 246, 320, 397, 298, 400, 439, 446, 463, 464, 465 Cyprinodon variegatus - A-68, 176, 241 Cyprinus carpio - A-9, 19, 41, 64, 117, 118, 131, 132, 164, 166, 176, 198, 258, 277, 284, 296, 298, 299, 317, 431, 449, 467, 468, 469, 470, 471, 472, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488 Cypris - A-279, 265, 374 Daphnia - A-179, 264, 267, 374 Daphnia magna - A-6, 7, 14, 69, 112, 114, 115, 120, 128, 129, 133, 134, 136, 184, 191, 217, 246, 312, 320, 397, 398, 400, 439, 446, 462, 463, 464, 465, 466 ``` Diaptomus - A-180, 264 Diatomella - A-112, 120, 137, 313 Diatoms - A-112, 120, 137, 313 Diploneis - A-112, 120, 137, 313 Dragonflies - A-40 Dunaliella tertiolecta - A-105, 335 Dytiscus sp. - A-178, 264, 334, 373 Elanus leucurus - A-159, 360 Emerald shimer - A-174 Enallagma sp. - A-189, 190, 218 Endomychura craveri - A-155, 201, 230, 357 Engraulis mordax - A-126, 422 Ephemerella - A-54, 76, 82, 92, 248, 280, 306, 330, 452 Ephemerella subvaria - A-269 Esomus danrica - A-178, 263, 373 Esox lucius - A-17, 18, 31, 56, 77, 97, 98, 119, 133, 176, 198, 199, 270, 271, 277, 281, 303, 310, 315, 331, 394, 429, 442, 455 Esox niger - A-113, 117, 121, 131, 141, 166, 266, 297, 355 Estigmene acrea - A-111, 119, 135, 312 Eucalia inconstans - A-20 Euclanis - A-112, 121, 136, 313 Eucyclops agilis - A-72, 73, 168, 203 204, 238, 239, 283, 284, 299, 300, 371, 411, 412, 432, 433 Euglena - A-9 Eupera singleyi - A-239, 433 Falco columbarius - A-159, 361 Falco peregrinus - A-162, 201, 202, 201, 356 Falco sparverius - A-159, 160, 361 Fathead minnow - A-74 Fish (not specified) - A-7, 13, 34, 62, 88, 109, 143, 150, 181, 193, 212, 216, 221, 223, 225, 231, 233, 277, 281, 286, 295, 301, 305, 365, 371, 372, 386, 388, 398, 415, 418, 466, 467 Flannelmouth sucker - A-45, 123, 145, 196, 353, 421 Flathead catfish - A-45, 123, 144, 196, 352, 420 Fregata magnificens - A-158, 359 Freshwater drum - A-44, 122, 144, 170, 196, 206, 352, 420 Freshwater mussels - A-150 Fulmanus glacialis - A-157, 358 Fundulus diaphanus - A-132, 167 Fundulus heteroclitus - A-23, 51, 54, 68, 79, 108, 117, 131, 166, 227, 228, 319, 327, 341, 342, 363, 414, 430 Fundulus majalis - A-68 Gadus macrocephalus - A-127, 153, 423 Gadus morhua - A-121, 355, 429 Galeolaria caespitosa - A-89, 306 Gambusia affinis - A-112, 120, 136, 141, 142, 147, 169, 205, 236, 237, 238, 286, 312, 368, 390 Gammarus fasciatus - A-13, 35, 41, 129, 133, 134, 184, 190, 191, 215, 217, 222, 242, 246, **2**71,
273, 319, 338, 363, 384, 397, 400, 416, 430, 439, 445, 462, 464, 465 Gammarus oceanicus - A-24, 25, 101, 102, 448 Gammarus pseudolimnaeus - A-69, 95, 271 Gammarus sp. - A-114, 126, 138, 151, 200, 235 Gastrotricha - A-179, 264, 376 Gerris - A-267 Gizzard shad - A-44, 71, 122, 143, 174, 195, 208, 261, 351, 419 Golden shiner - A-435, 436 Goldeye - A-45, 145, 196, 351, 352, 420 Goldfish - A-43, 123, 125, 146, 170, 194, 419 Green sunfish - A-346 Haliotus corrupts - A-140, 255 Haliotus corrugata - A-149, 355 Haliotis rufescens - A-149, 354 Halocyptena microsoma - A-163, 357 Heteropneustes fossilis - A-178, 263, 334, 373 Hexagenia bilineata - A-7, 129, 133, 135 Hinnites multirugosis - A-149, 354 Hippoglossoides platessoides - A-121, 356 Homarus americanus - A-447 Hyallela azteca - A-189, 219 Hydrophilus sp. - A-179, 265, 374 Hydroprogne caspia - A-160, 362 Hydropsyche - A-54, 76, 82, 92, 248, 280, 306, 330, 452 Hydropsyche betteni - A-269 Ictalurus catus - A-20, 116, 165 Ictalurus melas - A-20, 41, 63, 164, 199, 258, 277, 284, 298, 317, 431, 449, 467, 468, 469, 470, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489 Ictalurus nebulosus - A-21, 117, 131, 166, 350, 484 Ictalurus punctatus - A-7, 20, 40, 59, 63, 163, 198, 249, 258, 277, 283, 298, 315, 316, 390, 431, 448 Ictiobus cyprinellus - A-20, 198 Invertebrates - A-150 Ischnura verticalis - A-129, 134, 135 Isochrysis galbana - A-105, 335 Isogenus frontalis - A-270 Kelletia kelletii - A-149, 355 Kiyi - A-171, 208 Klamath sucker - A-124, 145, 353, 421 Kuklia sandvicensis - A-169, 205, 287, 368 Labeo rohita - A-177, 266, 333, 372 Lagodon rhomboides - A-25, 27, 28 Lake herring - A-171, 208 Lake trout - A-44, 123, 144, 171, 196, 208, 352, 420 Lake whitefish - A-44, 123, 144, 171, 196, 209, 352, 420 Largemouth bass - A-43, 71, 125, 147, 195, 351, 419 Largescale sucker - A-46, 124, 145, 197, 353, 421 Larus delawarensis - A-115, 130 ``` Larus heermani - A-156, 357 Larus occidentalis - A-160, 361 Larus spp. - A-115, 130 Lavinia exilicauda - A-116 Lebistes reticulatus - A-169, 205, 267, 287, 368, 381, 450 Leiostomus xanthurus - A-25 Lepdotius floridanus - A-199 Lepisosteus platostomus - A-17 Lepomis auritus - A-118, 132, 167 Lepomis cyanellus - A-20, 72, 116, 201, 238, 262, 277, 283, 316, 347, 348, 394, 410, 411, 467, 468, 469, 470, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489 Lepomis gibbosus - A-19, 116, 131, 165 Lepomis macrochirus - A-2, 3, 4, 14, 16, 19, 21, 41, 58, 59, 64, 87, 93, 108, 117, 131, 156, 164, 166, 168, 185, 186, 191, 192, 199, 217, 239, 240, 241, 246, 249, 258, 277, 284, 295, 298, 315, 317, 320, 323, 327, 344, 347, 358, 367, 380, 382, 388, 390, 394, 397, 398, 400, 403, 404, 408, 431, 439, 446, 449, 450, 452, 457, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489 Lepomis microlophus - A-19, 41, 64, 164, 240, 258, 271, 284, 298, 431, Libellula sp. - A-129, 130, 134, 135, 187, 219, 228 Limanda limanda - A-34, 49, 101, 382 Lepomis megalotis - A-19 Limnephilus rhombicus - A-113, 125, 137, 150, 199, 235 Limnephilus sp. - A-187, 188, 219 Limnodrilus sp. - A-410 Longnose sucker - A-46, 124, 146, 197, 354, 422 Loomelania melania - A-163, 357 Lophodytes cucullatus - A-150 Lymnaea stagnalis - A-17 Macrocyclops albidus - A-72, 73, 168, 203, 204, 238, 239, 285, 286, 299, 300, 371, 411, 412, 432, 433 Macrognathus aculeatum - A-180, 372 Mastocembelus pancalus - A-180, 372 Megaceryle alcyon - A-150 Mercenaria mercenaria - A-4, 8, 9, 10, 69, 70, 102, 103, 181, 185, 221, 222, 223, 225, 226, 233, 247, 257, 260, 286, 323, 325, 326, 327, 328, 336, 340, 342, 343, 367, 377, 385, 388, 389, 394, 415, 416, 417, 418, 433, 434, 438 Mergus merganser - A-115, 150 Merluccius productus - A-123, 128, 152, 153, 422, 423 Microcystis - A-9 Micropogon undulatus - A-27 Micropterus dolomieui - A-19, 117, 131, 166 Micropterus salmoides - A-19, 41, 64, 116, 130, 164, 188, 259, 284. 299, 316, 317, 431, 449 Minytrema melanops - A-20 Monochrysis lutheri - A-106, 335 ``` Morone saxatilis - A-5, 22, 39, 67, 102, 285, 295, 299, 425 Mosquitofish - A-436 Muds - A=150, 345Mya arenaria - A-68, 220 Myriophyllum spicatum - A-221 Mystus vitatus - A-180, 265, 373 Mytilus edulis - A-68, 121, 307, 355 Mytilus edulis planulatus - A-89 Nandus nandus - A-180, 265, 372 Nannochloris occulata - A-106, 335 Nassarius obsoletus - A-69 Nauplius - A-179, 264, 374 Navicula - A-112, 120, 137, 313 Negaprion brevirostris - A-69, 181, 242, 267, 323, 333, 365, 384, 386, 405, 414, 466 Nepa sp. - A-179, 265, 375 Nereis virens - A-23, 51, 69, 79, 108, 228, 319, 327, 342, 363, 430 Nine-spined stickleback - A-172, 209 Nitzschia closterium - A-106, 335 Nitzschia linearis - A-2, 3, 4, 16, 59, 60, 87, 327, 367, 380, 382, 404, 408, 450 Northern squawfish - A-46, 124, 145, 197, 353, 423 Notemigonus crysoleucas - A-72, 117, 131, 166, 262, 283, 297, 316, 347, 348, 349, 394, 411, 458 Notomatta - A-112, 121, 136, 313 Notonecta sp. - A-178, 265 Notropis analostanus - A-132, 167 Notropis hudsonius - A-30, 54, 76, 82, 97, 428, 441 Notropis cornutus - A-117, 132, 166 Nuclearia - A-112, 120, 136, 313 Nycticorax nycticorax - A-160, 361 Oceanodroma homochroa - A-157, 359 Oedogonium cardiacum - A-112, 120, 136, 312 Olisthodiscus luteus - A-106, 335 Oncorhynchus kisutch - A-35, 41, 63, 64, 148, 152, 164, 235, 252, 259, 284, 296, 299, 317, 336, 383, 385, 432, 449, 459 Oncorhynchus nerka - A-337 Oncorhynchus tshawytscha - A-94, 336, 387, 459 Ophiogomphus rubinsulensis - A-269 Orconectes nais - A-14, 40, 133, 134, 184, 190, 191, 217, 246, 320, 397, 398, 400, 440, 448, 463, 464, 465 Orconectes rusticus - A-94 Orthocyclops modestus - A-72, 73, 168, 169, 203, 204, 238, 239, 285, 286, 299, 300, 371, 411, 412, 432, 433 Orthodon microlepidotus - A-115 Oscillatoria - A-9 Osmerus mordax - A-17, 30, 31, 55, 57, 77, 83, 96, 98, 281, 303, 310, 331, 394, 428, 430, 441, 442, 448, 455 Ostrea edulis - A-49, 91, 243, 255, 307, 329, 403 ``` Pacific oyster - A-6, 101 Pagurus longicarpus - A-68 Palaemonetes kadiakensis - A-13, 72, 110, 111, 115, 129, 133, 134. 165, 184, 170, 191, 217, 228, 237, 246, 259, 262, 263, 285, 317, 318, 320, 348, 393, 397, 400, 411, 432, 439, 446, 462, 464, 465 Palaemonetes vulgaris - A-68, 342 Pandalus montagui - A-379, 381, 394, 401, 402, 403, 409, 415, 434 Pandion haliaetus - A-159, 236, 361 Pandorina - A-179, 264, 374 Pandulus montagui - A-32, 35, 49, 80, 91, 182, 213, 224, 225, 227, 243, 247, 253, 254, 256, 279, 280, 307, 329, 337, 341, 369 Panopenus herbstii - A-199 Panulirua interruptus - A-149, 355 Paralabrax clathratus - A-11, 12, 13, 37, 38, 57, 58, 60, 61, 77, 78, 79, 83, 84, 85, 98, 99, 100, 274, 275, 281, 282, 283, 289, 290, 292, 293, 303, 304, 305, 320, 321, 322, 331, 332, 333, 375, 376, 395, 396, 397, 412, 413, 414, 443, 444, 455, 456, 457 Paralabrax nebulifer - A-149, 354 Paralichthys sp. - A-26 Paramecium - A-112, 120, 136 Parophrys vetulus - A-127, 152, 422 Pelecanus occidentalis - A-158, 202, 236, 259 Peloscolex sp. - A-410 Penaeus duorarum - A-25, 27, 28 Penaeus setiferus - A-27 Perca flavescens - A-17, 19, 30, 31, 41, 56, 57, 64, 77, 83, 97, 98, 116, 118, 130, 132, 164, 165, 176, 259, 281, 285, 297, 299, 303, 310, 317, 331, 394, 428, 430, 432, 440, 442, 449, 455, 467, 468, 469, 470, 471, 472, 473, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489 Percopsis omiscomaycus - A-30, 56, 77, 83, 97, 428, 440 Petromyzon marinus - A-425 Phalacrocorax pelagicus - A-158, 360 Phalacrocorax peniciliatus - A-158, 359 Phalaropus fulicarus - A-160, 362 Phormidium ambiguum - A-4, 9, 10, 15, 47, 48, 59, 70, 76, 85, 87, 88, 89, 90, 92, 107, 109, 183, 215, 222, 223, 266, 271, 273, 313, 322, 328, 330, 339, 382, 383, 384, 389, 390, 395, 407, 408, 410, 426, 437, 451, 459, 460, 461, 462, 473, 474, 475, 478, 487, 488, 489 Physa gyrina - A-204, 239, 433 Physa heterostropha - A-2, 17, 109, 327, 367, 380, 382, 450 Physa integra - A-95 Physa spp. - A-111, 119, 136, 312 Pilodictus olivaris - A-20 Pimelometopon pulchrum - A-149, 354 Pimephales promelas - A-20, 22, 41, 47, 64, 66, 69, 73, 81, 93, 100, 105, 108, 140, 153, 164, 211, 214, 215, 235, 237, 245, 258, 272, 276, 278, 284, 287, 291, 292, 297, 298, 301, 317, 337, 346, 347, 409, 426, 431, 449, 452, 453, 458, 461, 467, 468, 469, 470, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488 ``` ``` Pisidium sp. - A-119, 133 Pizonyx viversi - A-163, 357 Plankton - A-115 Plants - A-149 Platessa vulgaris - A-250 Platichthys flexus - A-91, 110, 225, 251, 308, 341, 369, 415, 447 Platichthys stellatus - A-127, 153, 423 Platymonas subcordiformis - A-105, 335 Pleuronectes platessa - A-104, 170, 349 Podiceps caspicus - A-163 Poecilia latipinna - A-193, 194 Poecilia reticulata - A-423, 424 Pomoxis annularis - A-156, 198, 358 Pomoxis nigromaculatus - A-19, 115, 118, 132, 156, 167, 198, 358 Porphyridium cruentum - A-105, 335 Procambarus simulans - A-40 Prosopium cylindraceum - A-29, 51, 55, 83, 96, 428, 441, 454 Protozoa - A-112, 120, 136, 313 Pseudopleuronectes americanus - A-92, 93 Pteronarcys dorsata - A-270 Ptychocheilus oregonensis - A-458 Ptychocheilus umpquae - A-459 Ptychoramphus aleuticua - A-161, 362 Puffinus creatopus - A-157, 358 Puffinus griseus - A-157, 359 Puffinus tenuirostris - A-157, 359 Pumpkinseed - A-43, 125, 147, 194, 351, 419 Puntius sophore - A-8, 177, 180, 265, 334, 373 Puntius ticto - A-46, 212, 252, 278, 297, 394, 416 Pygoscelis adeliae - A-156, 358 Rainbow trout - A-46, 124, 145, 197, 345, 353, 421, 435, 453 Rana temporaria - A-128, 154 Ranatra filiformis - A-178, 265, 334, 373 Rasbora heteromorpha - A-3, 5, 6, 11, 15, 16, 21, 23, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 51, 52, 53, 61, 65, 66, 67, 73, 74, 75, 87, 102, 104, 106, 109, 110, 137, 139, 141, 142, 143, 182, 183, 184, 185, 192, 193, 211, 212, 216, 226, 229, 230, 232, 241, 244, 245, 246, 248, 249, 252, 255, 256, 257, 261, 267, 273, 275, 276, 288,
391, 293, 294, 297, 305, 306, 310, 318, 319, 324, 325, 326, 327, 338, 339, 344, 345, 366, 367, 370, 371, 377, 384, 385, 386, 387, 393, 402, 404, 407, 416, 417, 425, 426, 427, 430, 431, 436, 439, 442, 444, 445, 447, 448, 451, 463, 465, 466, 473, 487 Redbreast sunfish - A-122, 146, 295, 351, 421 Redhorse sucker - A-43, 71, 122, 143, 195, 351, 419 Red shiner - A-436 Rhinichthys atratulus - A-114, 118, 126, 132, 138, 139, 151, 167, 200, 201 Rita rita - A-180 Roccus americanus - A-118, 132, 166 Roccus chrysops - A-30, 52, 56, 83, 97, 199, 428, 440, 454 Roccus saxatilis - A-40, 94, 220, 229, 252, 256, 277, 380, 383, 399 Rock bass - A-44, 122, 144, 171, 195, 209, 352, 420 ``` ``` Round whitefish - A-46, 124, 146, 171, 197, 209, 354, 422 Salmo aquabonita - A-223 Salmo clarki - A-21, 62, 63, 148, 234, 296 Salmo gairdneri - A-14, 15, 18, 21, 35, 41, 48, 63, 64, 70, 73, 91, 95, 100, 106, 148, 154, 164, 191, 192, 213, 217, 226, 229, 234, 249, 250, 251, 259, 267, 272, 276, 284, 294, 296, 299, 315, 317, 322, 324, 325, 330, 333, 336, 343, 366, 368, 370, 378, 387, 388, 390, 395, 398, 399, 405, 406, 407, 429, 432, 437, 439, 442, 445, 449, 452, 453, 454, 457, 459, 466, 467, 468, 469, 470, 471, 472, 473, 475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 488 Salmo salar - A-23, 24, 101, 113, 121, 141, 155, 266, 355, 447 Salmo trutta - A-18, 41, 64, 142, 143, 164, 251, 259, 284, 299, 315, 317, 432, 449 Salvelinus fontinalis - A-18, 62, 98, 107, 114, 126, 137, 138, 147, 150, 151, 152, 155, 167, 200, 234, 295, 296, 315, 407, 437, 438, 441, 448, 459 Salvelinus namaycush - A-18, 30, 51, 55, 83, 96, 309, 310, 314, 315, 428, 454 Sauger - A-45, 123, 145, 196, 353, 421 Scardium - A-112, 121, 136, 313 Scomber scombrus - A-113, 121, 141, 266. 355 Sea lamprey - A-172, 209 Sebastodes alutus - A-128, 153, 423 Sebastodes flavidus - A-127, 153, 423 Sebastodes marinus - A-121, 355 Sebastodes sp. - A-149, 354 Semotilus atromaculatus - A-114, 117, 126, 131, 138, 150, 151, 166, 200 Semotilus corporalis - A-117, 131, 166 Sialis sp. - A-114, 126, 138, 151, 200, 235 Simulium venustum - A-168 Siphlonurus sp. - A-134, 135 Skeletonema costatum - A-105 Slimy sculpin - A-172, 209 Smallmouth bass - A-46, 124, 145, 197, 353, 421 Smallmouth buffalo - A-45, 123, 144, 196, 261, 352, 420 Sorghum halpense - A-111, 119, 311 Sphaerodema annulatum - A-178, 265, 373 Spirogyra sp. - A-9, 345 Spirorbis lamellosa - A-89, 306, 451 Spottail shiner - A-172 Spotted sucker - A-44, 122, 143, 195, 351, 419 Steelhead trout - A-6, 69, 100, 245, 253, 268, 276, 365, 379, 391, 409 Stenonema candidum - A-313 Stenonema rubrum - A-269 Sterna forsteri - A-160, 361 Stizostedion vitreum - A-19, 30, 52, 56, 83, 97, 198, 314, 428, 440 Stolephorus purpurea - A-169, 205, 287, 368 Stonecat - A-172 ``` Rotifers - A-112, 120, 136, 313 Striped mullet - A-44, 71, 122, 144, 195, 351, 420 Strongylocentrotus franciscanus - A-149, 354 Sturnella neglecta - A-161, 363 Sula leucogaster - A-158, 202, 236, 359 Synthliboramphus antiquum - A-161, 362 Taeniopteryx nivalis - A-313 Taeniopteryx maura - A-269 Tendipedidae - A-220 Thalasseus elegans - A-156, 357 Tilapia mossambica - A-169, 205, 287, 368 Trachinotus carolinus - A-5, 93, 252, 383 Trichogaster fasciatus - A-177, 265, 372 Triturus cristatus - A-128, 154 Trout perch - A-173 Tubifex sp. - A-412 Tubifex tubifex - A-8, 73, 169, 204, 215, 228, 239, 244, 259, 277, 286, 300, 318, 349, 364, 372, 393, 412, 424, 433 Tubificids - A-267 Tyto alba - A-161, 363 Ulothrix sp. - A-8, 203 Uria aalge - A-161, 362 Urophycis tenuis - A-121, 355 Urosalpinx cineria - A-68 Volvox - A-179, 264, 374 Vorticella - A-112, 120, 136, 313 Walleye - A-45, 71, 123, 145, 173, 196, 210, 353, 421 Watersipora cucullata - A-306, 451 Whirligig beetles - A-40 White bass - A-45, 123, 145, 173, 197, 210, 353, 421 White catfish - A-43, 125, 146, 194, 350, 419 White crappie - A-45, 123, 144, 196, 352, 420 White perch - A-43, 71, 125, 146, 173, 194, 210, 350, 418, 419 White sucker - A-42, 71, 125, 143, 173, 194, 210, 350, 418 Wolffia papulifera - A-105, 147, 184, 211, 272, 301, 394, 466 Xiphophorus maculatus - A-453 Yellow perch - A-42, 125, 146, 173, 194, 211, 350 Zenaidura macroura - A-161, 363 #### APPENDIX C ## IDENTIFICATION OF COMMERCIAL CHEMICALS (Note: Many of the names included in this list are tradenames and should be treated as such.) | Chemical Name | Composition | |---------------------|-------------------------------------| | ABS | Alkyl benzene sulfonate | | Acriflavine | Mixtures of 2,8-diamino-10- | | | methylacridinium chloride | | | and 2,4-diaminoacridine | | Acrolein | see Aqualin | | Actusol | No information available | | Aflatoxin Bl | C17H12O6 | | Agridip | No information available | | Amitrole | 3-Amino-1,2,4-triazole | | Amitrol-T | 3-Amino-1,2,4-triazole-ammonium | | | thiocyanate mixture | | Amphenone B | 3,3-Bis [p-aminophenyl]-2-butanone- | | · | 2-dihydrochloride | | Antimycin A | C28H40N2O9 | | Aphitox | Fluoroacetamide and Lissapol | | AQ | No information available | | Aquaclene | No information available | | Aquaclene 100 | No information available | | Aqualin | 2-Propenal | | Aquathol | Disodium salt of endothal | | | (19.2 percent-H-Pennsalt) | | Aroclor 1221 | Commercial PCB with 21 percent | | | chlorine | | Aroclor 1242 | Commercial PCB with 42 percent | | | chlorine | | Aroclor 1248 | Commercial PCB with 48 percent | | | chlorine | | Aroclor 1254 | Commercial PCB with 54 percent | | | chlorine | | Aroclor 1260 | Commercial PCB with 60 percent | | | chlorine | | Aroclor 1262 | Commercial PCB with 62 percent | | | chlorine | | Asuntol (Sheep dip) | see Coumaphos | | Asulum | Methyl-4-aminobenzene sulfonyl- | | 442 - 3007 | carbamate | | Atlas 1901 | No information available | | Atlavar | Sodium chlorate, 2,4-D, Monuron | mixture #### Chemical Name Composition 2-Chloro-4-ethylamine-6-isopropyl-Atrazine amino-s-triazine S-2.3-Dichloroallyl diisopropylthio-Avadex carbamate Avadex BW S-2.3.3-Trichloroallyl-diisopropyl thiolcarbamate Azinphosmethyl see Guthion Balan see Benefin Banner DG01 No information available Banner DG02 No information available Banner DG03 No information available Banner DG04 No information available Banvel 3.6-Dichloro-o-anisic acid 4-Chloro-2-butynyl-m-chlorocarbanilate Barban Basol AD6 No information available Basol 99 No information available Bayer 39007 N-methyl 2 isopropoxyphenyl carbamate 2',5-Dichloro-4'-nitrosalicylanilide Bayluscide ethanolamine Baytex see Fenthion Baywood 43 Maleic hydrazide, 2,4-D as triethanol, amine salt, wetting agent, water Benazolin No information available Bensulide see Betasan Betasan S-(0,0-Diisopropyl phosphorodithioate) ester of N-(2-mercaptoethyl) benzenesulfonamide BHC Benzene hexachloride Borasceu No information available BP No information available BP 1002 No information available BP 1100 No information available BP 1100X No information available Brakontrole 4-CPA Bromophos see OMS-658 3.5-Dibromo-4-hydroxybenzonitrile Bromoxynil Busan 90 No information available Busan 881 Organosulfur formulation Canal Bank Weedkiller No information available Captan cis-N-((trichloromethyl)thio)-4-cyclohexene-1,2-dicarboximide Carbaryl 1-Naphthyl methylcarbamate Carbophenothion see Trithion Carbyne see Barban Casol No information available see Dichlobenil Casoron see Dichlobenil see Dichlobenil Isopropyl N-phenylcarbamate No information available Casoron G Chem-Hoe Casoron 133 Chevron NI-O Chloramphenicol Chloral hydrate Chloramine Chlorax Chlordane Chlorea Chlorfenvinfos Chloroflurazole Chloropropylate Chlorthiamid CI Cleanosol Clophen A30 Clophen A40 Clophen A50 Clophen A60 Compass Cooper's Fly Dip Co-Ral Corexit 7664 Corexit 8666 Coumarhos Craine OSR Crossguard Crotothane Crow Solvent M Cunilate RQ 24 Cuprinol CX Dalacide Dalapon D.B. Granular DBP DDD DDE DDT DDVP Decamethonium dibromide De De Tane Delrad #### Composition (Chloromycetin) D-(-)-threo-2dichloroacetamido-l-p-nitrophenyl-1.3-propanediol 2,2,2-Trichloro-1,1-ethanediol (N-Chloro-p-toluenesulfonamido)sodium No information available Mixture of 60 percent octachloro-4,7methanotetrahydroindane and 40 percent related compounds see Monuron 2.4-Dichlorophenyl-1-chloroethylene diethyl phosphate No information available Commercial mixture of PCB No information available No information available see Chlorfenvinfos 0.0-Diethyl 0-3-chloro-4-methyl-2- oxo-2H-1-benzopyran-7-y1phosphorothicate No information available No information available see Co-Ral No information available Nó information available see Karathane No information available Oxine copper No information available No information available Dalapon-Na, Sodium 2,2,3, trichloropropionate 2.2 Dichloropropionic acid No information available 4.4'-Dichlorobenzophenone see TDE 1.1-Dichloro-2.2-bis (p-chlorophenyl) ethylene 1.1.1-Trichloro-2,2-bis(p-chlorophenyl) ethane 0,0-dimethyl-0-(2,2-dichlorovinyl) phosphate No information available see DDT Dehydroabiethylamine acetate Delrad 70 Demeton methyl Dermol Diazinon Dicamba Dicapthon Dichlobenil Dichlone Dichlorofenthion Dichlorophen Dichlorvos Dicofol Dieldrin Difolatan Dimanin Dimecron Dimethoate Dimite Dinocap Dinoseb Diphenamid Dipterex Diquat Dispersol SD Disulfoton Di-Syston Diuron DNOC Dobs JN Dobs 055 Dowicide A Dowicide G Dowpon Doxide (C 102) DSS DTMC Dylox Dursban E-314 EC -90 Composition Technical grade of dehydroabietylamine see Meta-Systox No information available 0,0-Diethyl 0-(2-isopropyl-6-methyl-4-pyrimidinyl) phosphorothicate see Banvel 0-(2-Chloro-4-nitrophenyl)0,0dimethyl phosphorothicate 2,6-Dichlorobenzonitrile 2,3-Dichloro-1,4-naphthoquinone see VC-13 2,2'-Methylenebis [4-chlorophenol] see DDVP 1,1-bis(p-Chlorophenyl)-2,2,2trichloroethanol Not less than 85 percent of 1,2,3,4, 10,10-hexachloro-6,7-epoxy-1,4,4a, 5,6,7,8,8a-octahydro-1,4-endo-exo-5,8-dimethanonaphthanlene cis-N-[(1,1,2,2-Tetrachloroethyl)thio]-4-cyclohexene-1,2-dicarboximide Alkyldimethylbenzyl ammonium chloride plus urea see Phosphamidon 0.0-Dimethyl
S-(N-methylcarbamylmethyl) phosphorodithicate 1,1-bis(p-Chlorophenyl)ethanol see Karathane 2-(sec-Butyl)-4,6-dinitrophenol N, N-Dimethyl-2, 2-diphenylacetamid see Dylox 6,7-Dehydrodipyrido [1,2a:2',1'c] pyrazinedium salts No information available phosphorodithicate see Disulfoton O,O-Diethyl-S-[2-(ethylthio)-ethyl] 3-(3,4-Dichlorophenyl)-1.1-dimethylurea 2-Methyl-4,6-dinitrophenol sodium salt No information available No information available O-phenylphenol, sodium salt Sodium pentachlorophenate see Dalapon No information available see Dioctyl sodium sulfosuccinate see Dicofol 0,0-Diethyl 0-3,5,6-trichloro-2pyridyl phosphoro thioate 0,0-dimethyl (2,2,2-trichloro-1- hydroxyethy1) phosphonate No information available No information available Econal 13086 Emcol H-146 Emcol 702 EMID Emkem Spill Wash Empilan Emulsifier Blend 350 Endosulfan Endothall Endothall Endrin Epichlorohydrin Eptam Eserine sulfate ESSO Solvent FG-155 Essolvene Ethanediol Ethion Ethomeen S-25 Ethyl Parathion EVIK Fenac Fenoprop Fenthion Fentin acetate Fenuron Finasol ESK Finasol OSR2 Finasol SC Flock O.P. Fly Dip Florescein sodium Fluorokill F.O. 300B Foilzoil Folpet Formothion Furfural Gamlen CW Gamlem D Gamlen OSR #### Composition 2,4,5-T (as butoxy ethyl ester) No information available No information available 2,4-Dichlorophenoxy-acetamide No information available No information available No information available 6,7,8,9,10,10-Hexachloro-1,5,5a,6,9, 9a-hexahydro-6,9-methano-2,4,3benzodioxathiepin-3-oxide see Endothall 7-Oxabicylo(2.2.1)heptane-2,3dicarboxylic acid 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-endoendo-5,8-dimethanonaphthalene 1-Chloro-2,3-epoxypropane S-Ethyl dipropylthiocarbamate No information available No information available No information available No information available 0,0,0',0'-Tetraethyl S,S'-methylene biophosphorodithioate No information available see Parathion 2-(Ethylamino)-4-(isopropylamino)= 6-(methylthio)-s-triazine 2,3,6-Trichlorophenylacetic acid or sodium salt No information available O.O-Dimethyl-O-[4](methylthio)-mtolyl]-phosphorothioate No information available 3 Phenyl-1,1-dimethylurea No information available No information available No information available see Dichlorofenthion 9-(0-carboxyphenyl)-6-hydroxy-3isoxanthenone Fluoroacetamide No information available No information available N-(Trichloromethylthio)-phthalimide Phosphorodithioic acid 0,0-dimethyl ester S-ester with N-formy1-2mercapto-N-methylacetamide 2-Furaldehyde No information available No information available No information available Gamlen PBX Gamlen WBX Gamma BHC Gesapax Globe Terramycin Pet Tabs Gloquat C Gramoxone W Griseofulvin Gulf Agent 1009 Guthion Heptachlor Heptachlor epoxide Herbane Hillvale Fly Dip Histamine phosphate Hobstone OSD Hoc SC 1780 Holl-Chem 622 Houghtosolve Hydrothol 191 IAA Ialine Brushweed Killer Ialine grass growth regulator (Regulox) Ialine Vergicide Weedkiller D Ialine Vergicide Weedkiller I.C.I. Summer Sheep Dip Ioxynil Ioxynil Na IPC Jansolv-60 Juglone Karathane Karmex Kelthane Ketoendrin Klofos LAS Lenacil Lindane #### Composition No information available No information available see Lindane see EVIK Oxytetracycline hydrochloride No information available see Paraquat 7-Chloro-2',4,6-trimethoxy-6'8-methylspiro-[benzofuran-2(3H),1'[2] cyclohexene]-3,4'-dione No information available 0,0-Diethyl-s-[4-oxo-1,2,3-benzotriazin-3(4H)-ylmethyl]-phosphorodithioate 74 percent 1,4,5,6,7,8,8a-Heptachloro-3a,4,7a-tetrahydro-4,7-methanoindene Photoisomer of Heptachlor 3-(Hexahydro-4,7-methanoinden-5-yl)-1, a-dimethylurea Dichlorofenthion No information available Mono (N, N-dimethylalkylamine) salt of endothall Indole-3-acetic acid No information available see Maleic hydrazide No information available see Vergemaster see Pyrimithate 3,5-Diodo-4-hydroxybenzonitrile No information available see Chem Hoe No information available 5-Hydroxy-1,4-naphthoquirone 2-(1-Methylheptyl)-4,6-dinitrophenyl crotonate see Diuron see Dicofol No information available No information available Linear alkylate sulfonate 3-Cyclohexyl-6,7-dihydro-1H- dione gamma isomer cyclopentapyrimidine-2,(3H,5H)- containing at least 99 percent 1,2,3,4,5,6-Hexachlorocyclohexane Linuron Lirostanol Lissapol IPA Lissapol NM Lissapol NX Lubrol APNS Lubrol L Magic Power Malathion Maleic hydrazide Manazon Mancozeb Maneb Manoxol MCPA Mecarbam Mecoprop Menazon Meta-Systox Methoxychlor Methyl parathion Methylpentynol Mevinfos (Mevinphos) Milbex MM Moaspill Mobilsol Molinate Monoxone Monuron Morphothion MS-222 Mystox LSC-P Mystox LSE-L Mystox LSE-P Mystox LSL Mystox LSL-L Mystox LSL-P N-3452 #### Composition 3-(3,4-Dichlorophenyl)-1-methoxy-1-methylurea Fentin acetate Mixture of the sodium salts of sulfated fatty alcohols Mixture of the sodium salts of sulfated fatty alcohols Mixture of the sodium salts of sulfated fatty alcohols No information available No information available No information available O,O-Dimethyl phosphorodithioate of diethyl mercaptosuccinate 1,2-Dihydro-3,6-pyridazinedione No information available No information available Manganous ethylene bisdithiocarbamate No information available 2-Methyl-4-chlorophenoxyacetic acid No information available No information available S-(4,6-Diamino-s-triazin-2-ylmethyl) 0,0-dimethyl phosphorodithioate Isomeric mixture of 0-[2-(ethylthio) ethyl]0,0-dimethyl phosphorothicate 2,2-bis(p-Methoxyphenyl)-1,1,1trichloroethane O,O-Dimethyl O-p-nitrophenyl phosphorothioate No information available 2-Carbomethoxy-1-methylvinyl dimethyl phosphate, aisomer No information available No information available No information available No information available see Ordram No information available 3-(p-Chlorophenyl)-1.1-dimethylurea No information available Tricaine methanesulfonate No information available Alkyl(C8-C18)dimethyl benzyl ammonium chloride N-3514 NA Nabam Nalco 201 Nalco 240 Nalco 243 Neburon Nemagon New BP 1100 Nitrofurazone Nitrofen Norea Norseman NPH 1253 NPH 1313 Nucidol Diazinon Sheep Dip Nystatin OD Oil Herder Omazene (Omazine) oms-658 Paraquat Ordram Parathion PC PCB. Pebulate Penetone X Perolin No. 5 Perthane Petrolite W-1439 Phenkapton (Phencapton) Phenobarbital Phenoxylene Phenoxytol (Phenoxetol) Phorate Phordene Phosalone Phosdrin #### Composition 2-Chloro-l-nitropropane No information available Disodium ethylenebisdithiocarbamate Chlorinated phenol formulation Organobromine formulation Organosulfur formulation 1-n-Butyl-3-(3,4-dichlorophenyl)l-methylurea 1,2-Dibromo-3-chloropropane No information available 5-Nitro-2-furaldehyde semicarbazone 2.4-Dichlorophenyl p-Nitrophenyl ether see Herban No information available see Ioxynil see Mecoprop see Diazinon No information available No information available No information available S-Ethyl hexahydro-lH-azepine-lcarbothioate Cupric dihydrazinium sulfate 0-(4-Bromo-2,5-dichlorophenyl) 0,0-dimethyl phosphorothicate 1,1'-Dimethyl-4,4'-bipyridinium dichloride or 1,1'-Dimethyl-4,4'bipyridiniumbis [methylsulfate] 0,0-Diethyl-O-p-nitrophenyl phosphorothioate see Phosphocreatine Polychlorinated biphenyl see Tillam No information available No information available 1,1-Dichloro-2,2-bis(p-ethylphenyl) ethane (88 percent) plus related compounds, 12 percent No information available 0,0-Diethyl-S-(2,5-dichlorophenylthiomethyl) phosphorodithicate 5-Ethyl-5-phenylbarbituric acid No information available 2-Phenoxyethanol 0,0-Diethyl S-(ethylthio)-methyl phosphorodithioate No information available see Zolone see Mevinfos Phosphamidon Phosphocreatine Phostox Photoaldrin Photodieldrin Phygon Picloram PMA Polyram Polycell Product Polyclens Polycomplex A Polycomplex A-11 Polyotic Praparat Alfol WV 1019 Princep Procaine hydrochloride Pro-Noxfish Propanil Propham Protim PVP-Iodine Pyramin Pyrazon Pyrimithate Quinaldine R-1910 Raynap Sol B RD 14639 Reglone Rhodamine B Ridzlik Roccal Rola OSD Ro-Neet #### Composition 2-Chloro-N,N-diethyl-3-(dimethoxyphosphinyloxy)crotonamide N-(Phosphonoamidino)sarcosine No information available No information available Photoisomer of Aldrin Photoisomer of Dieldrin see Dichlone 4-Amino-3.5.6-trichloropicolinic acid Pyridylmercuric acetate Sodium carboxymethyl cellulose No information available No information available No information available Tetracycline hydrochloride Mixture of 5.2 parts by weight (83.9 percent) of ammoniates of [ethylene-bis-(dithiocarbamate)] zinc with 1 part by weight (16.1 percent) ethylene bis[dithiocarbamatic acid], bimolecular and trimolecular cyclic anhydrosulfides and disulfides Hexadecanol 2-Chloro-4,6-bis(ethylamino)-s-triazine p-Aminobenzoyldiethylaminoethanol hydrochloride Rotenone 3,4-Dichloropropionanilide see Chem Hoe Copper pentachlorophenate plus chloronaphthalene and dieldrin 1-Vinyl-2-pyrrolidinone polymers, iodine complex 5-Amino-4-chloro-2 phenyl-3 (2H)-pyridazinone see Pyramin Phosphorothioic acid O-[2-dimethylamino)-6-methyl-4-pyrimidinyl] O,O-diethyl ester 2-Methylquinoline Ethyl-N, N-diisobutyl thiolcarbamate No information available N-methyl carbamate derivative Diquat-dibromide [9-(0-carboxyphenyl)-6-diethylamino)= 3H-xanthene-3-ylidene]diethylammonium chloride No information available Benzalkonium chloride No information available S-Ethyl N-ethyl-N-cyclohexylthiocarbamate Thyroxine Tillam Timsan TN Composition Rosin Amine D see Delrad 70 S.D. 3562 (Bidrin) Phosphoric acid dimethyl ester, ester with cis-3-hydroxy-N.N-dimethylcrotanamide Phosphoric acid, 2-chloro-1-(2,5-S.D. 8211 dichlorophenyl) vinyl dimethyl ester 2-Chloro-1-(2,4,5-trichlorophenyl)vinyl S.D. 8447 dimethyl phosphate No information available Seasweep No information available Sefoil Sesamex No information available Sevin see Carbaryl Shamash R1885 No information available 2.4.D amine (triethanolamine salt) Shell D-50 2-(2,4,5-Trichlorophenoxy)-propionic Silvex acid see Princep Simazine No information available Slickgone 1 No information available Slickgone 2 Slix No information available S.N. 5215 No information
available Snowdrift SC98 No information available No information available Spill Remover No information available Spill-X Streptomycin Sulfate 2 C21 H39N7O12.3H2SOL Terpene polychlorinates Strobane N^1 -(3,4-Dimethyl-5-isoxazolyl) Sulfisoxazole sulfanilamide Sulmet (Sodium sulfamethazine) sodium (4,6dimethyl-2-sulfanilamidopyramidine) O.O-Dimethyl O-(4-nitro-m-tolyl)-Sumithion phosphorothicate S-Ethyl diisobutylthiocarbamate Sutan 3,4,4'-Trichlorocarbanilide TCC Tritolyl phosphate (C21H21O4P) TCP 1,1-Dichloro-2,2-bis(p-chlorophenyl) TDE ethane TEPA tris-(1-Aziridinyl)phosphine oxide TEPP Tetraethyl pyrophosphate 4'-Chlorophenyl 2,4,5-trichlorophenyl Tetradifon TFN (Lamprecid) 3-Trifluoromethyl-4-nitrophenol, sodium salt see Phorate Thimet Thiolutin No information available Thiumet see Polyram No information available No information available S-Propyl butylethylthiocarbamate 6.25 Percent ethyl mercury phosphate TOK Tordon C Tordon M Toxaphene Toxion Treflan E.C. Trifluralin Trioxone Trithion Trixabon Tubotox Ureabor Vamidothion Vapam VC-13 Velsicol AR 50G Venzar Vergemaster Vernam Vernolate Weedazol Weedazol T-L WL 4205 Young's Defly Zectran Zolone 2,4-D 2,4,5-T ### Composition see Nitrofen Picloram (potassium salt) plus mecoprop Picloram (potassium salt) plus MCPA Chlorinated camphene with 67-69 percent chlorine No information available see Triflurolin α , α , α -Trifluoro-2, 6-dinitro-N, N-dipropyldipropyl-p-toluidine No information available S=[[p-Chlorophenyl)thio]methyl] o.o-diethyl phosphorodithioate Ioxynil plus Dimexan, cycluron, BIPC, emulsifier, methyl alcohol, propionic acid, and solvent naphtha see Dinoseb No information available No information available Sodium N-methyl-dithiocarbamate 0-2,4-Dichlorophenyl 0,0-diethyl phosphorothicate No information available see Lenacil No information available S-Propyl dipropylthiocarbamate see Vernam see Amitrole No information available A triazine see Trithion 4-Dimethylamino 3,5-Xylyl methyl- carbamate 0.0-Diethyl S[(6-chloro-2oxobenzoxazolin-3-yl)methyl] phosphorodithioate 2,4-Dichlorophenoxyacetic acid 2,4,5-Trichlorophenoxyacetic acid | ELECTED WATER RESOURCES ABSTRACTS | Report No. 2. | TALESTON | |--|--------------------------------|--| | NPUT TRANSACTION FORM | | VV | | Title WATER QUALITY CRITERIA DATA BOOK - VOL. | . 5 – | 5. Report Date
6. | | | | 8. Performing Organization Report No. | | 7. Author(s) | subset D T | | | Kemp, H. T.; Little, R. L.; Holoman, V. L.; De | roy, R. L. | R-800942 | | Battelle Memorial Institute, Columbus, Ohio Columbus Laboratories | | | | Columbus Lacoratories | | 18050 HLA | | . Sponsoring Organization | | 13. Type of Report and
Period Covered | | 5. Supplementary Notes Environmental Protection Agency report number | er, 18050HLA09/ | 73 | | This report is an extensive compila on aquatic life which were extracted from lite | rature publishert entitled "Wa | | Descriptors Toxicity, Water pollution effects, Industrial wastes, Pesticides, Aquatic plants, Aquatic animals, Absorption, Reviews, Marine fish, Freshwater fish, Chlorinated hydrocarbon pesticides, Carbamate pesticides, Phosphothicate pesticides, Organic acids, Antibiotics (pesticides), Heavy metals, Metals, Inorganic pesticides, Biochemical oxygen demand, Thiocarbamate pesticides, Triazine pesticides, Organophosphorus pesticides, Polychlorinated biphenyls, Surfactants, Nutrients, Urea pesticides, Organic compounds, Organic pesticides, Zooplankton, Phytoplankton, Aquatic algae, Marine algae, Water birds, Chlorophyta, Pyrrophyta, Cyanophyta, Chrysophyta, Crustaceans, Mollusks, Annelids, Aquatic insects, Benthic fauna, Protozoa, Invertebrates, Diatoms, Euglenophyta, Frogs, Marine animals, Newts, Toxins, Phenolic pesticides, Dyes, Chemicals, 17b. Identifiers Anesthetics, Oil dispersants, Echinoderms, Macroinvertebrates 17c. COWRR Field & Group 05C, 05B, 05A | Abstractor Robe | 20. Security Class. (Page) | 22. Price | WATER RESOURCES SCIENTIFIC INFORMATION CENTER U.S. DÉPARTMENT OF THE INTERIOR WASHINGTON, D.C. 20240 Lumbus Laboratories, Columbus, Ohio | |------------------|---------------------------------|---------------------|--| | 18. Availability | 19. Security Class.
(Report) | 21. No. of
Pages | Send To: |