Technical Report

Operational Characteristics Study Columbus, Ohio Program

By

Glenn Thompson Robin McCoy Mark Hoekwater Lisa Snapp Alan Schuler

August 1987

NOTICE

Technical Reports do not necessarily represent final EPA decisions or positions. They are intended to present technical analysis of issues using data which are currently available. The purpose in the release of such reports is to facilitate the exchange of technical information and to inform the public of technical developments which may form the basis for a final EPA decision, position or regulatory action.

Standards Development and Support Branch
Emission Control Technology Division
Office of Mobile Sources
Office of Air and Radiation
U. S. Environmental Protection Agency

Table of Contents

		Page
List of	Figures	iii
List of	Tables	iv
Abstract	t	1
I.	Introduction	1
II.	Report Layout	1
III.	Program Design	2
IV.	Equipment	3
v.	Data Collection	4
VI.	Data Preparation	8
VII.	Data Reduction	15
VIII.	Trip Statistics Results	20
ıx.	Summary of Temperature Analysis	32
х.	Conclusions	42
Referenc	ces	43
Appendia	Kes	44

List of Figures

Figure		Page
1	Time Within A Hypothetical Stop	17
2	Average Trip Speed-Histogram (0-64 mph)	24
3	Trip Distance - Histogram (0-25 miles)	25
4	Time Since Last Trip - Histogram (0-24 hours)	26
5	Number of Trips Made Per Day - Histogram (0-17)	27
6	Number of Trips vs. Time of Day (Urban Only)	30
7	Number of Trips vs. Time of Day (Urban and Rural)	31
8	Average Distance Travelled (Urban Only)	33
9	Number of Stops Per Trip (Urban Only)	. 34
10	Average Trip Speed (Urban Only)	. 35
11	Time Since Last Trip (Urban Only)	. 36
12	Trip Duration (Urban Only)	. 37
13	Temperature Plots - During Trip	. 38
14	Temperature Plots - Beginning of Soak	39
15	Temperature Plots - Complete Soak	. 40

List of Tables

<u>Table</u>		Page
1	Trips Selected for Temperature Analysis	. 21
2A	Mean Values For Urban Only Trips	. 22
2B	Mean Values For Urban And/Or Rural Trips	. 22
3	OCS Data Overview Urban Trips	. 29
4	Hot Soak Times	. 42

Abstract

The Columbus, Ohio program of the Operational Characteristics Study (OCS) monitored the driving patterns of 47 private citizens in Columbus, Ohio over a nine month period from April 1983 to January 1984. These citizens were loaned one of four vehicles equipped with time, speed, distance, and temperature recording devices to gather a total of 251 days of in-use data. This report describes the details of this program, the results, and a comparison of the average trip statistics to the Federal Test Procedure used in emissions testing.

I. Introduction

The Federal Test Procedure (FTP) is the urban dynamometer driving cycle used for vehicle exhaust emission certification and fuel economy measurement. The cycle is based on a Los Angeles road route, designated the LA-4, which was selected by Los Angeles County and California State personnel in 1965 or 1966.[1] The FTP was developed about 1970, and consists of the LA-4, a 10 minute engine off period (soak), and a repeat of the first section (bag) of the LA-4.[2]

Many notable changes have occurred in the U.S. during the twenty years since the LA-4 was developed. Demographically, the population distributions have shifted toward increased urbanization. Particularly notable is the recent trend toward growth of small urban areas.[3] The gasoline shortage of the 1974-75 years initiated or accelerated the trend toward smaller vehicles. In addition, the Energy Conservation and Policy Act introduced Corporate Average Fuel Economy Standards for vehicle manufacturers, increasing the incentive for the production of fuel efficient vehicles.[4]

The accumulative effect of all of these changes on vehicle usage is unknown and was the primary objective of this program. Specifically, the program was designed to study the operational characteristics of vehicles while also comparing current average vehicle operation with the LA-4 (and hence the FTP).

II. Report Layout

The report will first summarize the main ideas and results from this program. The main body will then proceed with the program design, data collection and preparation, data analysis, results, and finally with some conclusions. The appendexes contain more voluminous and detailed materials including listings of several computer programs used to analyse the data, histograms of trip characteristics, graphs of the average trip statistics versus trip starting time, a summary of the questionnaire given to the participants, and an engine temperature analysis.

III. Program Design

In any program of this type the goal is to obtain as much vehicle use data as possible, without interference from the data collection technique. Past approaches have included operator surveys, mechanical recording devices, human observors in the monitored vehicle and "chase cars".

Questionnaire surveys of vehicle owner-operators can obtain large quantities of data at very low cost, but the accuracy and the detail of data can be very poor. This approach has primarily been used for, and is best suited for, collecting information such as annual miles traveled, commuting distances, and ratios of the number of hot start versus cold start trips.

Greater confidence and more detailed data may be obtained by using a mechanical recording device to provide a direct record of the vehicle operation. However, mechanical recorders have limited resolution and usually small data capacity. These devices have primarily been used to measure time in various speed regions or to sense and record maximum vehicle or engine speeds.

The chase car approach is notably different from the recorder approach because in this case the recording instrumentation is placed in a vehicle which follows or "chases" the actual vehicle of interest. Since a specially instrumented vehicle is used, the instrumentation can be quite extensive. Also, it can be controlled by the driver or a passenger in the chase car. The weakness of this approach is that the use data is really data on the use of the chase car, not directly the vehicle of interest. There is always some uncertainty about how well the chase vehicle mimics the driving characteristics of the followed vehicle. Sampling is also a problem because the chase car data must be weighted to reflect rush hour traffic densities or the operation of the vehicle must be adjusted to reflect these traffic patterns. Several chase car studies have been conducted to investigate the representativeness of the EPA test cycles.[5]

The final historical approach which has been used is installation of chase car type instrumentation directly in the vehicle of interest. In this case, an observer was sent in the vehicle to operate the instrumentation. This approach was used in an EPA study to develop driving cycles for heavy-duty trucks.[6] While this approach may be suitable for commercial vehicles in delivery use, it is at the very least inconvenient for passenger car use. In either case there is the potential problem that the presence of the observer may alter the behavior of the vehicle operator.

The approach chosen for this study was a logical extension of this previous technique. An instrumentation system was

developed with sufficient capacity and intelligence so that an attendant operator was not required. Ideally this system would have been installed in the vehicle owned by the study participant, however, early experience with the system demonstrated that it was quite time intensive to install and to adequately test prior to use. Consequently it was decided to install the instrumentation in several vehicles which were then loaned to the study participants. These vehicles were similar in size and type to the vehicle owned by the study participant. This similarity of the vehicles would hopefully lead the participant to operate the vehicle as he/she would operate his/her own and therefore minimize any changes from "normal" vehicle use.

IV. Equipment

The program design required that the data recording equipment operate unattended in a vehicle for a minimum of several days. However, during most of this time the vehicle would probably be inactive and, therefore, the most important data, the vehicle speed information would be unnecessary. Therefore, the data acquisition system required the ability to adjust as a result of the system signals. A microprocessor provided this instrumentation control, replacing the human instrumentation operator necessary in previous programs.

The instrumentation system was designed and constructed by MB Associates (MBA) of San Ramon, California. The system was based on an RCA development board using the 1802 CMOS microprocessor. This microprocessor was chosen because of its low power requirements, typical of CMOS integrated circuits. In 1975 when the system was first designed, this was one of the very few CMOS microprocessors commercially available. The microprocessor controlled the collection of data from the speed, temperature, and other sensors, applied calibration factors to these data and monitored the recording of the data on a cassette tape.

The vehicle speed signal was generated by an optical encoder connected to the speedometer cable. The encoder pulses were sent to the interrupt request line of the microprocesor and were subsequently counted by the interrupt request subroutine. The microprocessor divided the number of pulses counted each second by a calibration factor to obtain the vehicle speed in mi/hr. This value was then modified by the data encoding system before being queued for the cassette tape.

Eight temperature channels were provided. Six of these channels were used in the program. Each sensor was a thermistor which was multiplexed to a single analog to digital converter. The temperature sensors were installed at the following locations: 1) behind or adjacent to the rear bumper, to measure the ambient temperature; 2) at the water pump, to

measure the engine coolant temperature; 3) on the underside of the oil pan, to measure the engine lubricant temperature; 4) at or near the air cleaner intake, to measure the engine compartment temperature; 5) on the underside of the fuel tank, to measure the fuel tank temperature; and 6) at one other nonspecific location under the hood. Temperatures were recorded every minute during the time that the vehicles were running and throughout most of the time when the vehicles sat idle. When the vehicle had not been running for over twelve hours, the temperatures were recorded every twenty minutes.

A few things should be noted about these temperature sensor locations. A sensor attached to the rear bumper of a vehicle in operation will not provide a very accurate measurement of ambient temperature. The bumper is subject to solar heating on sunny days and rapid cooling from puddle splashes on rainy days. Therefore, the "bumper temperature" was not included in the temperature analysis. Improved fuel tank temperatures could have been obtained by inserting the thermistor inside the fuel tank. Unfortunately, this was not Therefore, an attempt was made at obtaining an feasible. approximate temperature profile by placing the underneath the fuel tank, although this too is subject to road splash. The sensor on the underside of the oil pan may be in a similar situation, but due to the confined area where it is placed and the relatively large changes experienced in oil temperature it will not be as affected by outside elements as the sensor on the fuel tank is. Also, the "underhood" temperature may not be comparable between vehicles as the sensor location is not specifically defined.

One additional lata input was used in the OCS program, a switch which was operated by the vehicle driver to indicate urban versus rural operation of the vehicle.

V. Data Collection

The general program approach was to instrument vehicles and then provide these vehicles as loaner cars to the participants of the study. Since vehicle size might effect the operational characteristics of the vehicle, the loan vehicles were selected to represent the diverse sizes of vehicles in use. The participants were selected randomly, but were always provided with a vehicle of approximately the same size as their personally owned vehicle.

The data collection phase of the program was conducted by Automotive Testing Laboratories (ATL) of East Liberty, Ohio under an EPA contract [7]

A. <u>Vehicle Selection</u>

Full size, intermediate, compact and subcompact vehicles were initially planned for the following number of loans.

Vehicle Size	Number of Planned Loans
Full size	12
Intermediate	25
Compact	5
Subcompact	<u>30</u>
Total	72

The vehicle size classifications are those used in the DOE/EPA vehicle mileage guides.[8] The number of loans planned for each category was proportional to the total number of vehicles registered in that category. Therefore, the vehicle sampling process was designed to be a representative sample, by vehicle size, of the total in-use fleet.

During the progress of the program occasional difficulties occurred, primarily either intermittant electronic problems with one of the recorders or loss of battery power due to premature battery drainage. This caused a reduction in the total amount of data which could be obtained within the data collection contract funds. The following number of instrumented vehicle loans were actually used in the final analysis as valid loans.

Vehicle	Size	Number of Successful Instrumented Loans
Chevrolet Impala Ford Fairmont Chevrolet Chevette	Full size Intermediate Subcompact	12 13 22
Total	oub opuo o	47

The loan period was between April 12, 1983 and January 11, 1984. Two different Chevettes were equipped, which resulted in a total of four vehicles used in this study.

B. Participant Selection

The participants in the study were selected randomly subject to the constraint that each participant receive a loan vehicle of approximately the same size as the vehicle owned by the participant. Lists were obtained for 1979 model year vehicles registered in all postal zip codes located within ten miles of zip code 43211. This was essentially Columbus, Ohio. From this list 2000 vehicle owners were sent a letter asking if they were interested in participating in an EPA sponsored test program. All those responding affirmatively, approximately 20

percent, were listed and numbered sequentially. A random number generator was then used to select numbers from this list which were then sequentially tabulated according to vehicle size.

C. The Vehicle Loan

Immediately preceding each loan the battery packs in the vehicle were replaced with freshly charged packs or they were recharged in the vehicle. The vehicle speed sensor was calibrated by driving the vehicle for one mile on a chassis dynamometer. Finally, the vehicle was driven over the first segment of the EPA urban test cycle.

After these preliminary steps the vehicle was delivered to the participant. The time of delivery was noted so that any data recorded while the vehicle was operated by the ATL employee could be separated in the analysis process.

The study participant was instructed to operate the vehicle in the same manner as the participant's own vehicle would be used. Only two additional requests were made; the operator was asked to maintain a fuel purchase log and to flip a switch to a rural position whenever the vehicle was driven in a rural area. For this study an urban area was defined by the Ohio Department of Transportation 1975 urbanized area limits. These urbanized area limits are developed in conjunction with U.S. Department of Transportation guidelines. All other regions were considered rural.

The distinction between an urban and rural area is often not clear and, therefore, several precautions were taken to attempt to improve the urban/rural switch data. First, the participant was given a map of the Columbus area with the boundary of the urbanized area clearly outlined on this map. participant's typical daily commute crossed the boundary, the participant was asked to note the boundary point on the map and to try to change the switch position at the precise boundary point. It was also pointed out to the participant that the boundary was approximated by the I-270 freeway circumscribing Columbus. The participant was asked to change the switch position at this freeway whenever the participant was entering or leaving the urban area but was not certain about the exact boundary. While there is always uncertainty about the accuracy of the switch data, Columbus was an ideal metropolitan area for participant accuracy. It is a nearly circular metropolitan area surrounded by rural farmland. The beltway is a good, easily recognized approximate boundary between the urban and rural regions. Finally, there are no long corridors of urbanization along any geographical boundaries.

D. Quality Control

Several steps were taken to maintain quality control, therefore minimizing the collection of data which might later prove to be useless. The initial system test verified that the instrumentation was correctly installed, monthly quality control tapes ensured the long term accuracy of the equipment and data inspection after each loan provided a frequent test that the instrumentation continued to function.

1. <u>Initial System Test</u>

After the instrumentation was first installed in a loan vehicle, the vehicle was operated by ATL personnel for about one week. This data tape was reviewed to ensure that the data appeared reasonable. Only after it was verified that the data appeared reasonable and it was demonstrated that the instrument and battery would survive approximately a week of unattended operation was the vehicle loaned to a participant.

2. Monthly Quality Control Test

The initial system test relied on the ability of ATL personnel to ascertain if the data appeared reasonable. Since the actual use of the vehicle was not accurately known, there was the possibility that some instrumentation drift or other problem might occur and might not be detected. To ensure that any problems of this nature would be detected a quality control data tape was made after the initial installation test and each subsequent month. The quality control data tape consisted of a driving record of the instrumented vehicle over the federal test procedure (FTP) cycle used for exhaust emissions measurement. This data tape was forwarded to EPA for analysis along with all other data. Since the FTP cycle is accurately known, comparison of the driven cycle to the theoretical cycle would detect even minute problems and would provide a method to correct the field data for any calibration drift should this be necessary. For all cases in this study, reasonable comparisons were found.

3. Data Inspection

Immediately after each vehicle loan, random segments of the data were displayed using an Apple microcomputer. These data were visually inspected by the ATL Project Manager to ensure that the instrumentation system continued to function properly. If the data appeared reasonable, the Apple was used to transcribe the data from the cassette tape used in the vehicle recorder onto floppy diskettes. The diskette and the original cassette tape were then transmitted to the EPA Motor Vehicle Emission Laboratory.

VI. Data Preparation

The purpose of the data preparation phase was to detect and correct data problems. Two types of problems were possible: a malfunctioning instrument might result in total loss of usable data, or relatively infrequent random errors might cause extensive data analysis difficulties. The data preparation phase attempted to remove or correct any data problems prior to the analysis of the data.

Analysis of data from an early pilot program indicated that the most significant data problem was the occasional loss of one byte of the recorded data. This problem was never clearly identified but is believed to result from a real time programming or hardware error in the data collection system.

After any cleaning or correction of the raw data, the information was converted into standard engineering units. Once converted, tests of the data, such as the ranges of parameter values or the rate of change of the parameters could be made to assess the reasonableness of the data. Infrequent errors could be corrected or if blocks of data were missing the entire data set could be rejected.

A. Initial Cleaning - The Missing Bytes Problem

The missing data byte problem occurs infrequently, about 0.01 percent of the data are missing. Yet it is potentially a very severe problem because one lost byte could result in many subsequent data being erroneously interpreted, causing a much higher effective data error rate. For example, a single error in a one minute string of speed data could cause all of the data for the remainder of the minute to be analyzed as speeds of several hundred miles per hour. Simply using such obviously illogical data would be undesirable and eliminating significant blocks of these data would seriously compromise the analysis.

The greatest obstacle in correcting the missing data bytes was that no error detection/correction code had been used in the original data collection. The only data decoding asset provided by the collection system was that a unique synchronization mark, an "FD", was provided at the beginning of each minute of recorded data. This "FD" was used as the first step toward an automated data correction system.

The data were reformatted so that all "FDs" were at the beginning of the lines of the data files. This reformatting was done with the Apple using a program written in BASIC. A copy of the program is included in Appendix A.

Reformatting emphasized the data patterns which facilitated recognition of blocks of data which contained one or more missing bytes. Each "FD" was followed by six bytes of

identifier information followed by six temperature bytes. After this there might or might not be 60 seconds of speed data in the form of one speed byte pair each second. If any speeds appeared there should always be 60 seconds of data unless the vehicle engine stopped, in which case this would be indicated by an "FE" code. Consequently, by reformatting the data in lines of twelve bytes per line and forcing any "FDs", "FEs", or "FC" calibration codes to start a new line, any missing data would result in a short line and would be immediately obvious.

Unfortunately, the end of a diskette data file could also result in a break in the data which would not correspond to any of the identifier flags. This data break problem was resolved by transferring the data to the main computer used by EPA, the University of Michigan MTS system. This system can accommodate much larger files than the Apple. Therefore, all files of each vehicle loan were concatenated into a single large data file. The transfer of data to MTS was done by configuring the Apple as a data terminal using a binary communications program supplied by MTS.

Initially the reformatted MTS data files were printed and then scanned by data analysis personnel to determine the specific locations of missing data. This location could be unambiguously determined in virtually all cases. For example, in the case of sequential temperature data a dislocation of the data columns was usually apparent:

	4A	57	41	5C	000
ort line	short	4 B	42	5C	000
	4C	57	43	5C	000

The 57 is missing in the middle line and the 4B is shifted.

The identity of a missing speed datum was more subtle but also unambiguous. For example:

000	01	27	01	28	01 29	
000	01	29	*29	01	30 01	
000	30	01	31	01	29short li	ne

The "01" is missing at point * and all subsequent data are shifted.

Once the system evolved to this stage where unambiguous human editing could be based on pattern recognitions, than it was obvious that automated computer editing was also possible. Two programs were written, OCS.S-TMPFIX, and OCS.S-SPDFIX to correct temperature and speed missing data, respectively. This

automation greatly increased the speed and accuracy of the data editing process.

TMPFIX searches for a line with a missing temperature datum which is both preceded and followed by a correct line. When this condition is found the two correct lines interpolated to predict values for all temperatures in the line with the missing datam. These predicted temperatures are compared with the observed temperatures and the difference or "errors" are squared and then summed over all temperatures in The last temperature datum is then shifted one position and the process is repeated. In this manner an array of the sums of the squares of the errors is computed for all possible positions of the blank or missing datum. The minimum of this array is then computed and the location of this minimum selects the location of the missing datum. Once the location is known, the preceding and following values are simply averaged to obtain the value which is inserted in the location of the missing datum. A copy of this program and the mathematics of the algorithm are given in Appendix A.

The temperature errors were randomly distributed and infrequent, therefore, the condition that the line with the error lie between two correct lines was generally met. If this condition was not met, the program placed flags in the margin of the output file but did not attempt a correction.

The speed corrections program used a very similar approach the temperature correction program. Each speed datum required two bytes, the high order or most significant byte (MSB) and the lower order or least significant byte (LSB). Because of the scaling the MSB always had a value of 04 or less while the LSB could have any value. Consequently when low-high pairs appeared in consecutive odd-even positions, respectively, the data stream was known to be correct. Once a high-low pair occurred in a consecutive odd-even position, data loss must have occurred before this point. This logic was used to locate the datum known to be correct before any data loss and the first datum known to be shifted after data loss. Once these reference points were located there was usually only one intermediate point which was the obvious location of the missing datum. In this case the average of the two known reference points was inserted as the missing value. In some instances where the missing datum could occur at more than one point the average of the preceding and following data were tested as the possible missing datum at each point. configuration which gave the minimum sum of the squares of the acceleration, that is the smoothest transition, was selected as the missing data point. If a clear minimum was not apparent, then the editing program did not introduce any change but wrote an error message to a separate file for later reviewing. A copy of the OCS.S-SPDFIX program is given in Appendix A.

After both editing programs were run, results of the programs were investigated by running the MTS-supplied software *APC (All Purpose Compare) which detected all differences between the original and the edited file. Whenever a change was made, the data before and after the modifications were reviewed to ascertain that the editing programs were functioning in a logical manner. Also, any problems that the programs could not correct were reviewed to see if a logical unambiguous resolution was possible.

The general philosophy toward all data correction was very conservative. Only those corrections that were obvious and unambiguous were made or accepted. This was generally possible because the errors were infrequent and most were completely missing single bytes in a known data sequence. Great care was taken not to introduce any biasing of the data by making frequent or extensive change.

B. Data Conversion

The conversion of the data into engineering units was done by the Fortran program OCS.S-PREPARE run on the MTS system. A copy of the program is given in Appendix A.

Conversion of the data into engineering units is slightly confusing because of the diverse encoding systems used by the recorder systems. Consequently each decoding system is discussed in conjunction with the type of data it was used to decode.

1. Identifier Line

A segment of identifier data appeared each minute unless the vehicle had not been used in the last eight hours, in which case the identifier segment appeared every twenty minutes. This segment always contained an "FD mark" followed by the date, time, and loan number. For example:

FD	38	13	46	01	00
"mark"	day	tin	ne	loan	number
	38	1:4	: 6		100

All of the parameters on the FD line were recorded as binary encoded decimal, therefore, it was not necessary to perform any change in the numerical system or units.

The date encoding was the only frequent problem in this field. We intended to use the last two digits of the Julian calendar date so that the starting date of all loans, or at least all loans on any one vehicle, would have unique dates. Unfortunately, the software of the recording system was written to subtract 30 from the date at each hour change if the date value was greater than 30. Consequently, Julian 68 would be modified to 38 and then 08. Since this was considered to be a

potential cause for confusion, these dates were corrected back to the correct Julian Values. This correction was made whenever necessary by the data analysis personnel using the general MTS Supplied EDIT programs.

2. Temperatures

Six temperatures always followed the identifier block. The information supplied by MBA with the recording units stated that the conversion to degrees Celsius was given by:

C = (H-57)

where H is the decimal value of the recorded hexidecimal (base 16) data. An example of the temperature decoding is:

Recorded temperature value	39	64	85	86	61	6D	6F
Conversion to decimal	5 7	100	133	134	97	109	111
Subtraction of 57	0	43	76	77	40	52	54

Calibration of the temperature sensors in a hot water bath indicated that the MBA conversion was not adequate for correct Celcius temperatures. Therefore, an additional empirically derived correction was applied. This correction was:

Correction = M * Sensor + B

where, when the sensor value was less than or equal to 90:

M = 0.82473

B = 0.4184

or, when the sensor value was greater than 90:

M = 0.51254

B = 28.847

3. Speed Data

The speed data always appeared in two byte pairs. The conversion, supplied by MBA was:

Convert both hexadecimal bytes to binary.

Append the three least significant bits of the most significant byte to bits 2 through 6 of the least significant byte. The two least significant bits of the least significant byte, bits 0 and 1 are the decimal fraction of the speed.

Convert the resulting binary number to decimal.

An example calculation follows:

Most Sign. Byte Least Sign. Byte

Original Hex Data: 01 27 Binary Notation: 0000 0001 0010 0111

Decoded Binary: 00101001.11
Decimal mi/hr: 41.75

4. Other Codes

In addition to the identifier, temperature, and speed data, an FC code could appear once near the beginning of the data and several FE codes could appear anywhere in the speed data. The FC code indicated that a calibration had occurred and the following speed data should be valid. This would logically occur only once in each loan file. Each file was checked to ensure that one and only one FC was found. All data before the FC were ignored.

The FE codes indicated an engine on/off change or a change in the urban/rural switch. The interpretation of these are:

FE	OA	ignition on urban
FE	· OB	ignition off urban
FE	02	ignition on rural
FE	03	ignition off rural

The FE codes were somewhat troublesome, primarily because repetitive or oscillating values occasionally occurred. The source of these problems were never clearly identified but are believed to be switch bounce or are related to an unsuccessful attempt by MBA to include software to sense vehicle gear changes into the FE code.

C. Data Testing

Once the data were converted into engineering units each value was tested for reasonableness by the FORTRAN program, OCS.S-SCAN. The day, hour, and minute were checked to assure that no data were missing. A message was written to a separate file whenever the date and time did not follow sequentially. The loan identification number was checked to assure it was identical throughout the data. Another message was written to the error file when discrepancies were found. The temperature data were flagged if a change of greater than 10 degrees/minute occurred. Any speed point exhibiting an acceleration or deceleration greater than 7 mph/sec from the preceding point was flagged.

The program OCS.S-SCAN also tested for missing temperatures and speeds. If any temperatures were missing at this point in the analysis, the last (sixth) temperature would be read as a zero. Therefore, a check for a zero valued sixth temperature by the scanning program discovered any missing temperatures. A similar test was made to detect the presence

of less than 60 speeds in each minute in which any speeds occurred. A Copy of OCS.S-SCAN is given in Appendix A.

In a typical loan file, approximately 100 possible data problems were observed. Each of these possible problems were reviewed by a data analyst. A few problems were traced to obvious errors which had escaped the initial editing. These data were corrected if the correct data could be unambiguously determined. In most cases the data values appeared unusual but not obviously erroneous. These values were not changed because strong emphasis was placed on not biasing the data toward the expectations of the reviewer. For example, an acceleration rate might seem higher than expected but could be plausible, particularly at low speed. In addition, temperatures often changed abruptly near engine on and engine off segments. The number and percentage of these instances were small, typically between .005 and .01 percent. This very small number should not have any observable effect on the final analysis. Any significant sequences of questionable data were noted or "flagged" so that if any unusual statistics occurred from these data the source could be identified and later traced if desired.

In a few cases, significant amounts of data were missing and, of course, these could not be reconstructed from the information in the file. In this case the interval of missing data was determined and the original cassette data tape was scanned to attempt to locate the data. Generally the information was found. It was then processed through all of the analysis steps as a "partial loan" and then inserted into the original loan data. These losses probably occurred in the original transcription of the data from cassette to the diskettes or from a marginal quality region of the diskette.

In one instance, the data were clearly illogical and could not be reconstructed. In this case the speed signal often changed rapidly from zero to speeds of about 50 mph and then back to zero. It was decided that the problem was most likely a poor connection in the speed sensing area. The entire loan was voided. A check of subsequent loans showed that the speed sensor completely failed on the next loan and was then replaced. A second instance also occurred when the speed sensor apparently failed. This entire loan was also voided.

Upon reduction of the data, some loans were voided because of apparent battery failure. In some instances, battery failure occurred at the end of the loan period, while other times it occurred fairly early in the week. It was decided to void all tests in which the battery failed within three days. If the battery failure occurred after three or more days, the loan was not voided, but any data occuring on and after the day of failure was disregarded.

VII. Data Reduction

The reduction phase of the data analysis reduced the voluminous basic data files into a much more manageable volume of descriptive parameters which could then be statistically analyzed. A "trip" was chosen as the primary concept of the reduced data and therefore most of the reduced data parameters described "trip" characteristics.

The analysis was done with the FORTRAN program OCS.S-STATS.FOR, and the FORTRAN program OCS-CMP.FOR, which are given in Appendix B.

A. Trip Parameters

The following parameters were computed to describe each trip and the results were stored in the output files XXX.TRIPLOG (XXX represents the loan identification number).

Trip Parameters

SAVDAY TRIPCT	Day number at beginning of trip Sequential number of trip
DAYTRP	Sequential number of trip during day
SAVTIM	Time at beginning of trip
TYPE	1 = urban, 2 = combination, 3 = rural
START	1 = hot, 2 = cold
OFFCT	Time car is off before trip (minutes)
AVESPD	Average speed (total distance/total time)
DISTNC	Distance traveled during a trip (miles)
STOPCT	Number of stops
AVEDBS	Average distance between stops
ONCT	Length of trip (seconds)
TOTSS	Total stopped seconds, speed < 4 mph
GOSC	Total going seconds, speed \geq 4 mph

Originally a trip was defined simply as the interval between engine "on" and engine "off." Preliminary analysis of the data showed that this definition of a trip may not reflect actual conceptions of trip driving characterstics. In the original case, a car could be driven for a series of "drives" with short engine off times between the "drives" and have each "drive" count as a separate trip. In reality, if the engine off times are short enough, it might be more appropriate that the whole series of "drives" should be counted as one total trip. For example, a person who drives to the post office, stops only long enough to buy a roll of stamps and then drives on to work, would most likely consider this as one trip with a "quick" stop rather than two separate trips.

In light of this, the definition of a trip was generalized. A program was written that revised the trip data

file by combining sequential trips with very short engine off times between trips. The engine off time was a variable in the program, allowing for analysis and comparison using different trip definitions. The program combines trips in such a manner that a trip with an engine off time less than or equal to the desired time, is combined with the previous trip to form one new trip. The new total trip time and stop time will both include the engine off time, since this time is now considered as part of the trip. In this study, engine off times of 0 (original data), 5, 10, 15, and 20 minutes were analyzed. A comparison of the number of trips per day, time of trip, average speed, number of stops, and hot to cold start ratios using these five trip definitions is included in the results Engine off times longer than ten minutes may entail significant hot soak emissions, which should not be overlooked when calculating trip statistics for comparison to the urban driving cycle. Ten minutes was also considered as a reasonable "quick stop." Therefore, unless upper time limit for a otherwise noted, the rest of this report assumes engine off periods exceeding ten minutes as the delineator between trips.

B. Stop Parameters

Knowing the number of stops made during a trip, along with the total time spent while stopped, is useful for developing and verifying dynamometer test cycles. Obviously, the end of each trip was considered as a stop. However, just adding the number of zero mile per hour (mph) occurances to this "stop count" could cause inaccuracies. For example, some drivers make "rolling stops" without ever coming to a complete stop. Also, in a congested traffic situation, drivers will frequently stop and then "creep-up" to the car in front of them. Occasionally, this movement will even entail a small, short burst of speed. Counting all of these physical stops within a nominal stop condition would be misleading. Therefore, a stop was defined as any time the vehicle slowed from above 10 to below 4 mph, and then returned to a speed greater than or equal to 10 miles per hour. The end of a trip was also counted as a stop.

A noticeable amount of time and distance can be covered while in these stop conditions. Therefore, bursts of speed between 4 and 10 mph contributed towards "go time" and "go distance", although the vehicle was still considered to be in the same stop. "Stop time" (stop distance) was counted any time the vehicle speed went below 4 mph. Figure 1 gives an example of how these speeds and times interact within one stop condition.

The following data were computed for the intervals between each stop and stored in the output files XXX.STOPLOG.

TIME WITHIN A HYPOTHETICAL STOP

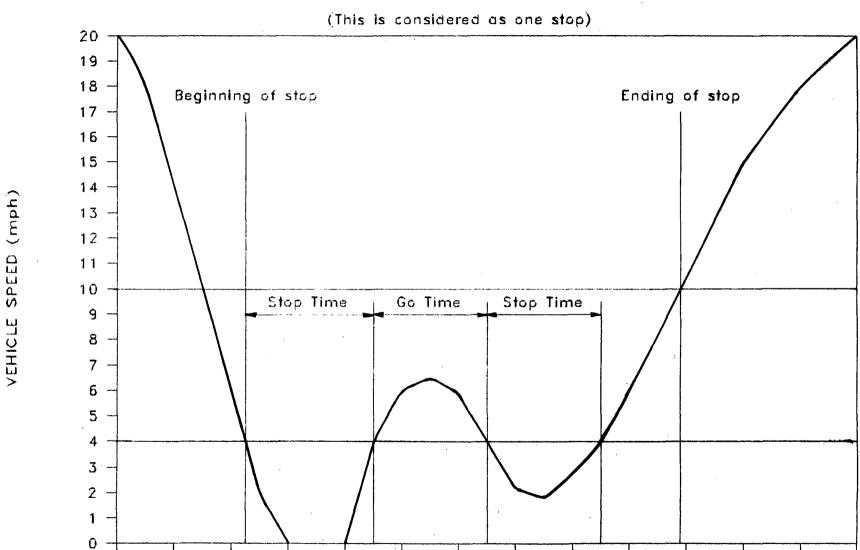


Figure 1

Stop Parameters

SAVDAY	Day number
TRIPCT	Sequential number of trip
DAYTRP	Sequential number of trip per day
TIME	Time at end of stop
STOPCT	Sequential number of stop during trip
STOPSC	Length of stop (seconds)
STOPDI	Distance travelled when "stopped," speed < 4 mph
GODI	Distance travelled when "moving," speed > 4 mph

C. Final Data Verification

A key purpose of this study was to compare current trip parameters to the LA-4 test cycle used in exhaust emission certification. Since it would be undesirable to report differences between the OCS data and the LA-4 that are due to instrumentation error, an additional data check was made for each vehicle loan. This check was made after generating the vehicle triplog, but required an additional step to be taken before each vehicle loan.

Before the vehicle was presented to each participant, the vehicle was operated over the first 505 seconds of the LA-4. The final data verification was a comparison between the analysis of the results from these dynamometer test periods to the results of applying the data analysis programs to the equivalent interval of the theoretical test cycle. For example, the trip statistics for the first 505 seconds of the LA-4 are:

Average Speed (mi/hr)	-	Number of Stops	Avg. Dist. Between stops (mi)	Total Trip time (sec)	Time In Stops (sec)	Time In Motion (sec)
25.6	3.59	6	0.72	505	109	396

Each vehicle loan was checked to verify that it contained a "signature" of statistics very similar to these at approximately the time the data sheet supplied by ATL stated that the dynamometer test was conducted.

D. Trip Statistics File

After final verification, the trip statistics from each loan were added to the aggregate trip statistics file, OCS.D-TRIPS, using the Fortran program, OCS-CMP.FOR. At this time several additional columns were created in this file to facilitate subsequent analysis. The most important of these was a loan number column that retained the identity of loan and a column which indicated whether the data in the file were

computed from a vehicle trip which occurred when the vehicle was operated by the participant, whether it came from a road trip when the vehicle was operated by ATL personnel, or if it came from the dynamometer test. Columns relating to the combining of short trips were also added so that the operator could check for the reasonableness of the trip combining methodology. This collection of the data into a single file with multiple labeling columns was an ideal format for multiple analyses using the MTS statistics program package MIDAS.

E. Description of Analysis

very total collected data base was extensive. Therefore, it was essential to extract simple statistics from the data which described the important parameters of the data. A logical method of organizing the data was to consider the characteristics of observed vehicle trips. These parameters can then be related to each other and used for different analysis as suits each individual, such as comparing the OCS results with the parameters of the LA-4. The following trip parameters were investigated: trip type (urban, urban and/or rural), trip distance, trip duration (including time moving, and time stopped), time since last trip, trip speed, number of trips per day, number of stops during trip, and the number of observed hot to cold trip starts (assumed engine temperature at start of the trip).

Two trip speeds were calculated in this analysis: the average trip speed, and the average driving speed. The average trip speed is defined as the total distance traveled during the trips of interest, divided by the total duration of these trips. Since this speed includes the effects of stop time, it is more descriptive of the entire trip condition (i.e., trips with many long stops will have lower average trip speeds than trips with only a few short stops). The average driving speed describes the speeds seen during actual vehicle movement. It is defined as the total distance traveled during the trips of interest, divided by the total time moving (excludes total time stopped). By comparing these speeds together, the effects of stop duration can be seen.

All of the analysis described here considers only those data obtained when the vehicle was being operated by the loan participant. Furthermore, since receiving or surrendering the instrumented vehicle in the middle of the day could influence the number or type of trips made with the vehicle, only the data from days in which the participant had the vehicle for the entire day are included. This resulted in 251 days of in-use vehicle operation data from the 47 different loans. Statistics were calculated for urban trips only, and for urban and/or rural (UAR) trips, to characterize driving habits in both

cases. The urban only criteria limited the number of acceptable data to 42 vehicle loans. The UAR analysis utilized all 47 vehicle loans.

As previously mentioned, the temperature data may not be highly accurate. However, a temperature analysis was performed to develop representative time-temperature histories for five of the six vehicle temperatures monitored. The goal was to develop characteristic patterns for vehicles beginning at conditions, going through a full warmup, experiencing a hot soak followed by cooldown to ambient again. The trips chosen for analysis therefore were those that were felt to be isolated from the possible carryover effects from previous trips. The trips needed to be long enough for the measured temperatures to reach a somewhat steady level. soak after the trip needed to be long enough for temperatures to return to their pre-trip levels. Therefore the criteria for choosing a trip for temperature analysis were: an uninterrupted soak of at least six hours prior to the trip, trip length of at least 15 minutes, and 3) uninterrupted soak of at least six hours after the trip. Twenty-nine trips were found meeting these conditions, of which ten trips were chosen at random. These are outlined in Table 1.

The lengths of the ten trips chosen ranged from 15 to 34 minutes. For the first 15 minutes, where data for all trips existed, the temperatures measured were averaged across all ten trips to obtain values for a typical trip. For the remainder of the times, the average change in temperatures from minute to minute for the remaining trips were averaged, and this change was applied to the temperature for the previous minute. In this iterative fashion, the temperatures for the typical trip were determined. This continued until the trip reached a length of 29 minutes after which ony two of the original ten trips remained.

VIII. Trip Statistics Results

The analysis of the trip data are broken down into four areas: discussion of the general trip statistics and how they vary by changing the trip definition; comparison to the LA-4 trip statistics; discussions of the distribution of the various trip parameters; and comparison of the trip statistics for different trip starting times. A summary of the results from the temperature analysis is in Section IX. A more detailed reporting of the temperature analysis is included in Appendix H.

A. General Trip Statistics vs. Trip Definition

Tables 2A and 2B show the statistics for trips separated by engine off times exceeding 0, 5, 10, 15, and 20 minutes. Table 2A is for urban trips only, while Table 2B is for UAR trips (urban and/or rural). Both tables include hot trip start to cold trip start ratios for cold start definitions of at least 1, 4, 6, 8, and 12 hour engine off times.

Table 1
Trips Selected for Temperature Analysis

Vehicle	Loan #	Dat <u>e</u>	Time of Trip	Length Prior to to Trip (hrs/min)	Length of Trip (min)	Length of Soak After Trip (hrs/min)
83 Chevy						
Impala	211	5/24/83	7:19	8:03	20	11:06
83 Chevy Impala	230	7/28/83	7:38	11:12	29	8:40
83 Chevy Impala	234	8/18/83	7:20	14:28	15	8:16
83 Chevy Chevette	315	6/7/83	7:20	11:31	28	8:47
83 Chevy Chevette	344	10/3/83	7:20	18:54	34	- 8:55
83 Chevy Chevette	361	12/5/83	7:40	62:57	33	8:32
83 Ford Fairmont	443	10/3/83	7:40	15:04	26	8:48
83 Ford Fairmont	468	12/26/83	21:03	7:56	17	10:46
83 Ford Fairmont	468	12/28/83	8:05	10:49	23	9:11
84 Chevy Chevette	559	12/1/83	8:49	11:07	15	6:53

TABLE 2A
MEAN VALUES FOR URBAN ONLY TRIPS

Engine Off Time* CHARACTERISTIC 0 MIN. 5 MIN. 10 MIN. 15 MIN. 20 MIN. 1. # of trips/day** 6.6 5.4 4.7 4.3 3.9 Time since last trip (hrs) 3.3 4.0 4.6 5.1 5.5 Average trip speed (mph) 21.1 20.1 18.5 17.1 15.9 Ave. driving speed (mph) 28.8 28.8 28.8 4. 28.8 28.8 5. Distance of trip (miles) 3.3 4.0 4.6 5.1 5.6 6. # of stops during trip 6.0 7.4 8.5 9.4 10.2 7. Distance btwn stops (miles) 0.55 0.55 0.55 0.55 0.55 8. Total time of trip (min) 9.3 12.0 15.1 18.0 21.0 9. Total time stopped (min) 2.5 3.6 5.4 7.3 9.4 10. Total time moving (min) 8.4 9.7 10.7 6.8 11.6 11. # of trips analyzed 1434 1158 1000 900 828 12. Hot start/cold start ratios 1 hr min for cold start 0.69 0.52 a. 1.4 0.94 0.40 b. 4 hr min for cold start 3.5 2.7 2.2 1.9 1.7 c. 6 hr min for cold start 4.8 3.7 3.1 2.7 2.4 d. 8 hr min for cold start 5.2 4.1 3.4 3.0 2.7 e. 12 hr min for cold start 11.7 9.2 8.0 7.1 6.5

TABLE 2B
MEAN VALUES FOR URBAN AND/OR RURAL TRIPS

			-			
CHAR	ACTERISTIC	0 MIN.	5 MIN.	10 MIN.	15 MIN.	20 MIN.
1.	<pre># of trips/day</pre>	7.2	5.8	5.0	4.5	4.2
2.	Time since last trip (hrs)	3.2	3.9	4.5	5.0	5.3
3.	Average trip speed (mph)	25.1	23.8	22.2	20.6	19.3
4.	Ave. driving speed (mph)	32.7	32.7	32.7	32.7	32.7
5.	Distance of trip (miles)	4.4	5.5	6.3	7.0	7.5
6.	# of stops during trip	6.0	7.5	8.6	9.5	10.3
7.	7. Distance btwn stops (miles)		0.73	0.73	0.73	0.73
8.	Total time of trip (min)	10.5	13.8	17.0	20.3	23.4
9.	Total time stopped (min)	2.4	3.7	5.5	7.5	9.5
10.	Total time moving (min)	8.1	10.0	11.5	12.8	13.8
11.	<pre># trips analyzed</pre>	1795	1443	1255	1131	1047
12.	Hot start/cold start ratios					
	 a. 1 hr min for cold start 	1.4	0.93	0.68	0.52	0.40
	b. 4 hr min for cold start	3.7	2.7	2.3	1.9	1.7
	c. 6 hr min for cold start	5.0	3.8	3.2	2.8	2.5
	d. 8 hr min for cold start	. 5.4	4.1	3.5	3.0	2.7
	e. 12 hr min for cold start	11.9	9.4	8.0	7.1	6.5

^{*} Engine Off Time = the minimum time an engine off period must exceed before a trip is considered ended. Sequential operations with engine off periods less than or equal to these amounts were included in the same trip.

^{**} For calculating this parameter, we have excluded all days where any non-urban trip occurred. (The 251 days was therefore reduced to 188 urban days.)

A comparison between trip definitions shows the expected trends. As the allowed engine off time within a trip increases, the mean values for trip duration, total stopped time, total time moving, distance travelled, and time since last trip, all increase. Also with increased engine off time, the number of trips made per day, and the average trip speed, decrease. The decrease in average trip speed is expected since this speed includes stopped time.

The hot to cold start ratios also decrease with the increasing engine off time within a trip. This decrease reflects the combining of trips that were previously considered as hot start, into longer trips. The ratio of hot trip starts to cold trip starts shown in Tables 2A and 2B vary by a factor of approximately 3.6 depending on the cold trip start definition, and a factor of 2.0 depending on the trip definition. There is little difference between the UAR data set and the urban only data set.

Evaluating trips separated by a 10 minute minimum engine off time, participants made an average of 4.7 urban (5.0 UAR) trips per day, with a typical trip taking 15 (17) minutes and covering 4.6 (6.3) miles. These trips included 8.5 (8.6) stops, which consumed 36 (32) percent of the total trip time.

B. Distribution of Trip Statistics

Histograms of the individual trip statistics for the urban only trips and UAR trips are included in Appendixes C and D, respectively. The histograms are for the 10 minute minimum engine off time between trips, and show the average speeds, distances traveled, number of stops, and total, moving, and stop times. Histograms of the average trip speed, trip distance, time since last trip, and the number of trips per day are reproduced in Figures 2, 3, 4 and 5, respectively (urban trips only). As seen in these figures, the distributions are skewed. In the cases shown, most participants made slower trips with shorter distances travelled, than indicated by the average values in Table 2A. Most participants also made fewer trips per day with less time between trips, than indicated by the average values.

The number of short distances travelled during a trip are higher than what may be expected. Figure 3 shows that ten percent of the trips were less than half a mile in length, and the data in Appendix C shows that 4.6 percent were less than 0.1 miles. A closer analysis indicated that 2.3 percent of the trips went less than 0.01 miles (53 feet). Although no follow through was made to the loan participants, these extremely short trips likely represent such things as driving from one store to another at a shopping mall or switching car position on a driveway. Most (81 percent) of the 0.1 to 0.5 mile trips were part of "longer trips", where the preceeding and/or following engine off stops were less than one hour in duration.

URBAN TRIPS

LEFT-END	TOT%	COUNT	т
0.	4.4	44	+xxxxxxxxxxxxxxxxx
2.0000	2.2	22	+XXXXXXXXXX
4.0000	3.7	37	+XXXXXXXXXXXXXXXXXX
6.0000	4.2	42	·+XXXXXXXXXXXXXXXXXXX
8.0000	5.4	54	+XXXXXXXXXXXXXXXXXXXXXXXXX
10.000	6.0	60	+XXXXXXXXXXXXXXXXXXXXXXXXXXXX
12.000	9.3`	93	+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
14.000	10.4	104	+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
16.000	9.7	97	+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
18.000	7.9	79	+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
20.000	10.3	103	+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
22.000	7.7	77	+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
24.000	5.6	56	+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
26.000	3.5	35	+XXXXXXXXXXXXXXXXXXXXX ·
28.000	2.5	25	+XXXXXXXXXXXXX
30.000	1.9	19	+XXXXXXXXX
32.000	1.5	15	+XXXXXXXX
34.000	1.4	14	+XXXXXXX
`36.000	. 5	5	+XXX
38.000	. 3	3	+XX
40.000	. 3	3	+XX
42.000	. 3	3.	+XX
44.000	. 3	3	+XX
46.000	. 2	2	+X
48.000	. 1	1.	. +X
50.000	. 2	2	+X
52.000	0.	0	+
54.000	0.	0	+
56.000	Ο.	0	+
58.000	Ο.	0	•
60.000	. 1	1	+X
62.000	. 1	1	+X
TOTAL	100.0	1000	(INTERVAL WIDTH= 2.0000)

Figure

TOTAL

URBAN TRIPS

```
LEFT-END
          TOT% COUNT
          10.5
                .50000
          8.5
                1.0000
          8.1
                 1.5000
          7.6
                 2.0000
          5.2
                 52 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
2.5000
          5.3
                 53 +XXXXXXXXXXXXXXXXXXXXXXXXXXX
3.0000
          6.0
                 60 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3.5000
           4.0
                 40 +XXXXXXXXXXXXXXXXXXXXXX
4.0000
          6.5
                 4.5000
          4.2
                 42 +XXXXXXXXXXXXXXXXXXXXXXX
5.0000
          2.8
                 28 +XXXXXXXXXXXXXXX
5.5000
          4.5
                 45 +XXXXXXXXXXXXXXXXXXXXXXXXX
6.0000
          3.6
                36 +XXXXXXXXXXXXXXXXXXXX
6.5000
          2.3
                23 +XXXXXXXXXXXX
7.0000
          2.0
                20 +XXXXXXXXXX
7.5000
          1.5
                15 +XXXXXXXX
8.0000
          1.1
                11 +XXXXXX
8.5000
          1.5
                 15 +XXXXXXXX
9.0000
          1.3
                13 +XXXXXXX
9.5000
          1.1
                11 +XXXXXX
          1.9
10.000
                19 +XXXXXXXXXX
10.500
          . 9
                 9 +XXXXX
11.000
          1.3
                13 +XXXXXXX
11.500
          1.3
                13 +XXXXXXX
12.000
          1.2
                 12 +XXXXXX
          . 9
12.500
                 9 +XXXXX
           . 8
13.000
                 8 +XXXX
           . 3
13.500
                 3 +XX
           . 3
14.000
                 3 +XX
14.500
                 4 +XX
                 5 +XXX
15.000
           . 2
15.500
                 2 + X
16.000
           . 3
                 3 +XX
16.500
           . 2
                 2 +X
17.000
           . 2
                 2 +X
           . 2
17.500
                 2 +X
18.000
          0.
                 0 +
18.500
                 2 +X
19.000
                 4 +XX
19.500
           . 1
                 1 +X
           . 1
20.000
                 1 +X
           . 1
20.500
                 1 +X
           . 1
21.000
                 1 +X
21.500
          0.
                 0 +
22.000
          . 1
                 1 +X
          0.
22.500
                 0 +
23.000
          0.
                 0 +
          0.
23.500
                 0 +
24.000
                 0 +
          Ο.
24.500
                 0 +
          0.
                 4 > 25.000
```

100.0 1000 (INTERVAL WIDTH= .50000)

TOTAL

URBAN TRIPS

```
LEFT-END
           TOT% COUNT
                 25.0
                 15.7
 .50000
                  86 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
            8.6
 1.0000
                  72 +XXXXXXXXXXXXXXXXXXXXXXXXXXXX
           7.2
 1.5000
                  36 +XXXXXXXXXXXX
 2.0000
            3.6
                  34 +XXXXXXXXXXXXX
 2.5000
            3.4
            3.1
                  31 +XXXXXXXXXXX
 3.0000
                  22 +XXXXXXXX
            2.2
 3.5000
            2.1
                  21 +XXXXXXX
 4.0000
                  27 +XXXXXXXXXX
 4.5000
            2.7
                  11 +XXXX
            1.1
 5.0000
                  10 +XXXX
            1.0
 5.5000
                   5 +XX
 6.0000
            . 5
                   5 +XX
 6.5000
             . 5
 7.0000
             . 2
                   2 +X
            . 4
                   4 +XX
 7.5000
                   16 +XXXXXX
            1.6
 8.0000
                  21 +XXXXXXX
            2.1
 8.5000
                  11 +XXXX
            1.1
 9.0000
                   16 +XXXXXX
            1.6
 9.5000
                   17 +XXXXXX
            1.7
 10.000
                   11 +XXXX
 10.500
            1.1
                                                                                                     Figure
                   11 +XXXX
 11.000
            1.1
                   13 +XXXXX
            1.3
 11.500
                   9 +XXX
             . 9
 12.000
                    9 + XXX
             . 9
 12.500
                    6 +XX
 13.000
             . 6
                    B +XXX
 13.500
             . 8
                   13 +XXXXX
             1.3
 14.000
                    4 + XX
 14.500
             `. 4
                    2 + X
 15,000
                   2 + X
 15.500
                    4 +XX
 16.000
             . 3
                    3 +X
 16.500
                    2 +X
              . 2
 17.000 -
                    5 +XX
              . 5
 17.500
             . 1
                    1 +X
 18.000
             . 1
                    1 + X
 18.500
                    4 +XX
 19.000
                    4 +XX
 19.500
                    1 +X
             . 1
                                              12 mg & 93 . 6 25/305
 20.000
                    1 +X
 20.500
             . 1
                    1 + X
 21.000
             . 1
                    4. +XX
 21.500
                                               24165 4 14
                    1 + X
  22.000
                    3 +X
  22.500
              . 3
  23.000
                    4 +XX
  23.500
                    1 +X
                   18 > 24.000
             1.8
           100.0 1000 (INTERVAL WIDTH= .50000)
```

NUMBER OF TRIPS MADE PER DAY (0-17)

TOTAL

URBAN DAYS

each x = 1 day

MIDPOINT	HIST%	COUNT
0.0	9.0	17 +XXXXXXXXXXXXXXXXX
1.0	6.4	12 +XXXXXXXXXXXX
2.0	11.2	21 +XXXXXXXXXXXXXXXXXXXXXXX
3.0	14.4	27 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4.0	10.1	19 +XXXXXXXXXXXXXXXXXXXX
5.0	14.4	27 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6.0	8.0	15 +XXXXXXXXXXXXXXXX
7.0	8.0	15 +XXXXXXXXXXXXXXXX
8.0	8.0	15 +XXXXXXXXXXXXXXXX
9.0	4.3	B +XXXXXXXX
10.0	2.7	5 +XXXXX
11.0	1.1	2 +XX
12.0	0.0	0 +
13.0	0.5	1 +X
14.0	0.0	0 +
15.0	0.5	1 +X
16.0	1.1	2 +XX
17.0	0.5	1 +X

188 (INTERVAL WIDTH= 1.0000)

C. Comparison to the LA-4

Table 3 shows the trip statistics from the LA-4 along with the mean and median trip statistics for the 1,000 Columbus urban trips (using the ten minute off time trip definition). Comparing the mean and median Columbus values first, in all cases the median values are smaller than the mean values. This is because the distributions are skewed, with a majority of the participants making fewer, shorter (in both time and length), slower speed trips than indicated by the mean, (as shown in section B).

In general, the Columbus trips were substantially shorter than the LA-4. Considering the mean values they went 62 percent of the distance in 66 percent of the time with 45 percent of the number of stops. However, the average speeds are approximately equal, 18.5 versus 19.6 mph, and the average Columbus trip went further between stops, 0.55 miles compared to 0.41 miles. Considering the large urban spread with many connecting freeways found in L.A., the longer trip distances used in the LA-4 can be expected. The LA-4 is also based on morning rush-hour traffic [2] which is usually characterized by shorter distances between stops. Therefore, the differences between the LA-4 and the Columbus statistics appear reasonable.

The Code of Federal Regulations weights the cold start and hot start exhaust emission values by 0.43 and 0.57, respectively, to obtain a composite value.[9] This gives a hot to cold start ratio of 1.3, or 1.3 trips starting with the engine hot for every trip starting with a cold engine. As shown in Table 3, the hot start to cold start ratios from the Columbus data are 0.69 and 2.2 for a one hour and four hour cold start definition, respectively. Interpolating between these values, the LA-4 cold start definition would correspond to 2.2 hours of off time. Based upon the temperature results to be discussed in Section IX, this amount of time would allow peak vehicle temperatures (above ambient) to decline by 60-75 percent.

D. Trip Statistics by Trip Starting Time

Figures 6 and 7 (urban only and UAR trips, respectively), show the number of trips starting within given hour increments. The hour values shown represent the beginning of the hour period. Morning and afternoon rush hours can be observed centered at the 7-8 a.m. and 4-5 p.m. periods. As might be expected, the number of trips made after 1 a.m. are very few. While the trip statistics for these early morning hours are included in the graphs in Appendixes E and F, the values may not be representative of average driving habits for these hours.

Graphs of the average distance travelled, the number of stops made, the average trip speed, the time since last trip,

TABLE 3 OCS DATA OVERVIEW -- URBAN TRIPS*

CHARACTERISTIC	MEAN	MEDIAN	<u>LA-4</u>
1. # of trips/day** 2. Average speed (mph) 3. Distance of trip (miles) 4. Distance btwn stops (miles) 5. # of stops during trip 6. Time since last trip (hrs) 7. Total time of trip (min) 8. Total time stopped (min) 9. Total time moving (min) 10. Hot start/cold start ratio	4.7 18.5 4.6 0.55 8.5 4.6 15.1 5.4 9.7	5.0 16.6 3.4 0.48 7.0 1.5 12.4 2.8 8.1	N/A 19.6 7.4 0.41 19.0 N/A 22.9 5.3 17.5 1.3
a. 1 hr min. for cold startb. 4 hr min. for cold start	0.69 2.2		

Trips can include an engine off period lasting up to and including 10 minutes. Engine off periods longer than 10 minutes imply the ending of the original trip.

For calculating the number of trips per day, we have excluded

all days where any non-urban trip occurred.

NUMBER OF TRIPS VS TIME OF DAY

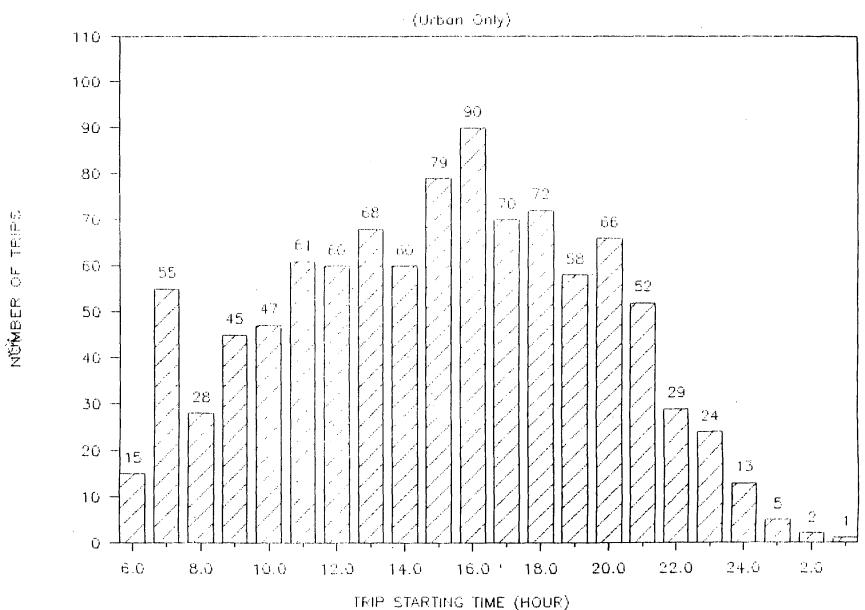
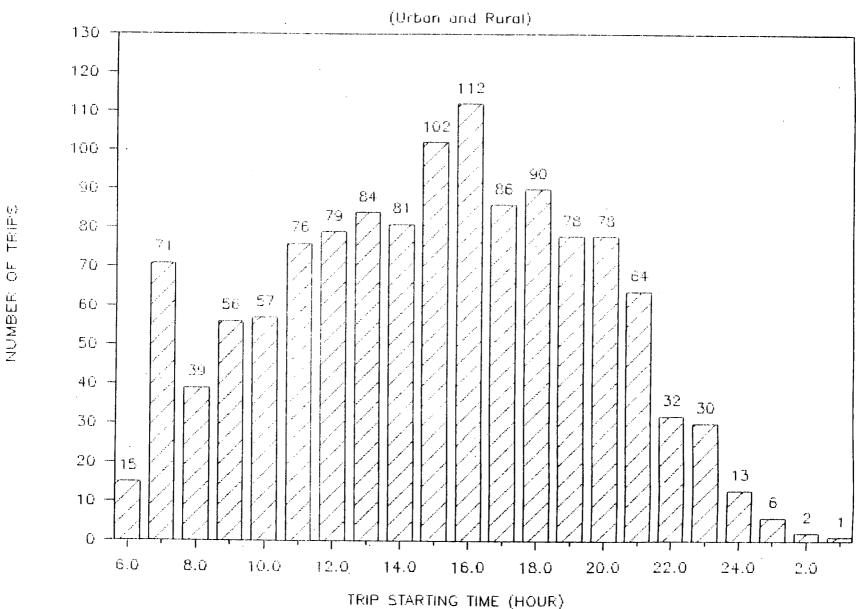



Figure 6

NUMBER OF TRIPS VS TIME OF DAY

-31-Figure 7 and the trip duration are shown in Figures 8, 9, 10, 11, and 12, respectively, for urban only trips (these graphs can also be found in Appendix E). The distance travelled, trip speed, and time since the last trip show pronounced morning time effects. The value of 6.5 miles travelled during the morning rush hour (7-8 a.m.) is fairly close to the 7.4 miles travelled in the LA-4 (which simulates rush hour conditions). The average trip speed drops from 25 mph during the 6 a.m. hour to 13.6 mph during the 9 a.m. hour. This drop in speed is probably due to an increase in traffic. The time since the last trip is large (10-12 hours) for the morning trips and decreases from there. However, this is to be expected.

IX. Summary of Temperature Analysis

This section summarizes the temperature analysis. A more detailed analysis including temperature profiles for trips taken during a sumer day, winter night, and winter day is included in Appendix H.

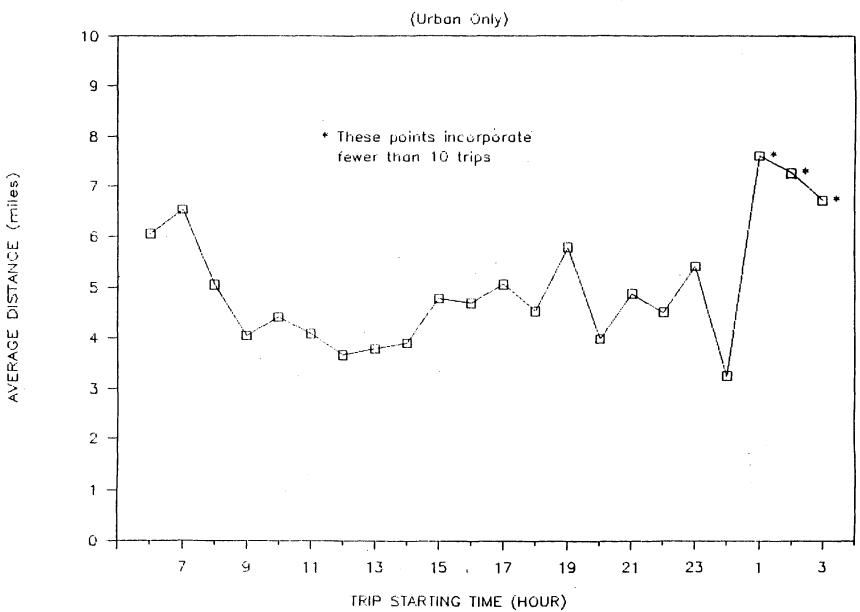
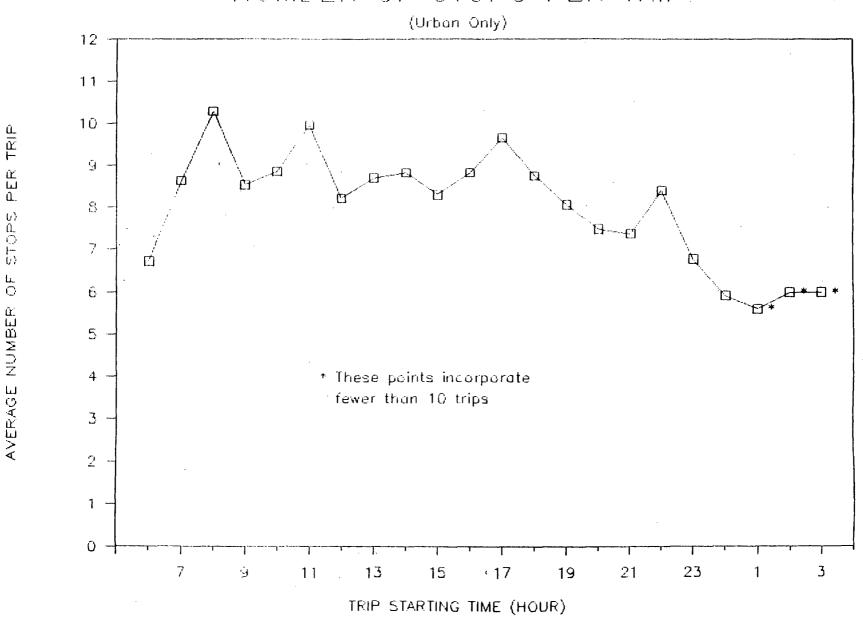
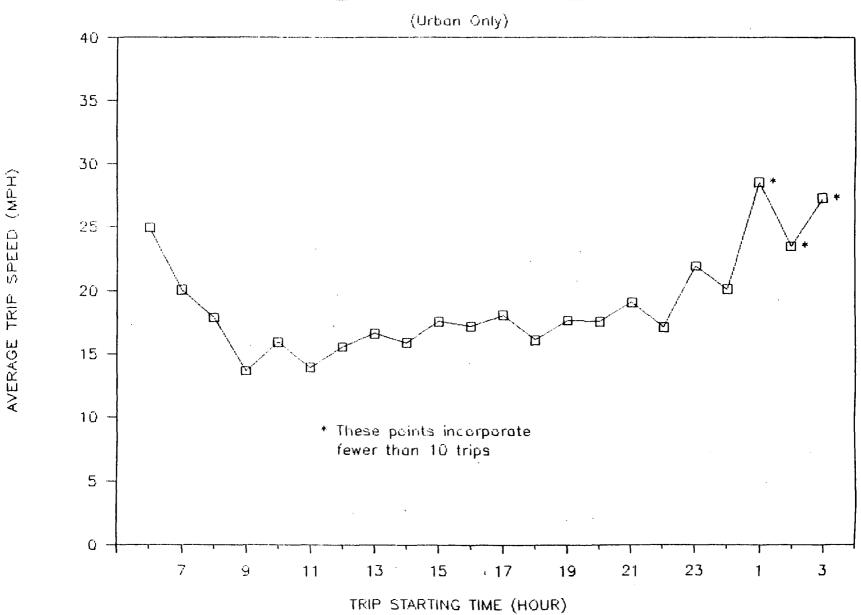
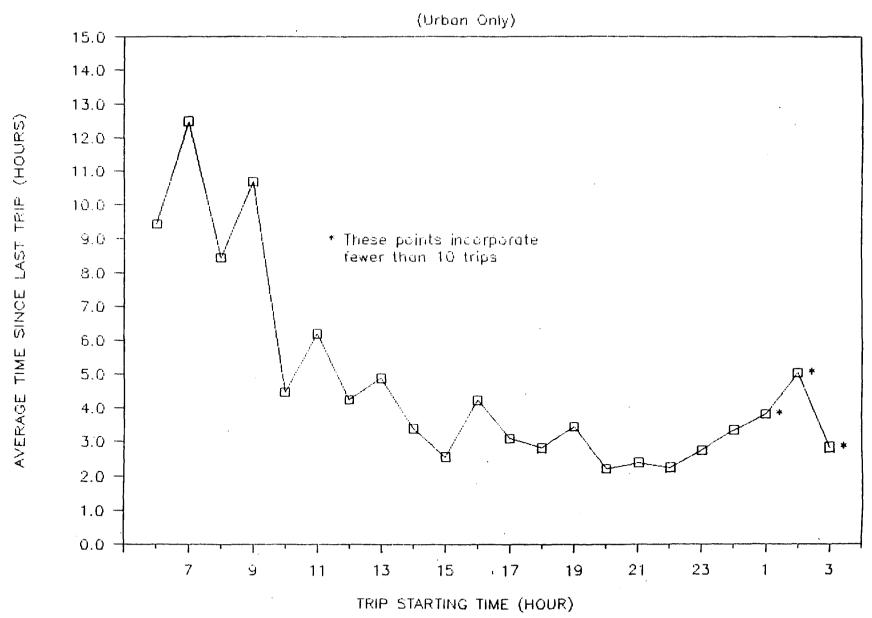

Figure 13 shows the temperature profile for the typical trip. The water pump has the most rapid increase in temperature, approaching its peak temperature of 45°C (113°F) in 15 minutes. The oil pan also reaches this temperature seven minutes later. The air cleaner and fuel tank temperatures barely change. In all the data analyzed the fuel tank temperature, measured by a skin sensor on the bottom of the fuel tank, never appears to appreciably deviate from ambient temperatures. Given the inconsistency of this result with other in-use fuel tank temperature measurements, it appears that the skin sensor did not adequately measure internal fuel tank temperature. Therefore, the only use made of the fuel tank temperature data has been to consider it a surrogate for ambient temperature against which to compare the other temperature data during vehicle cool down.

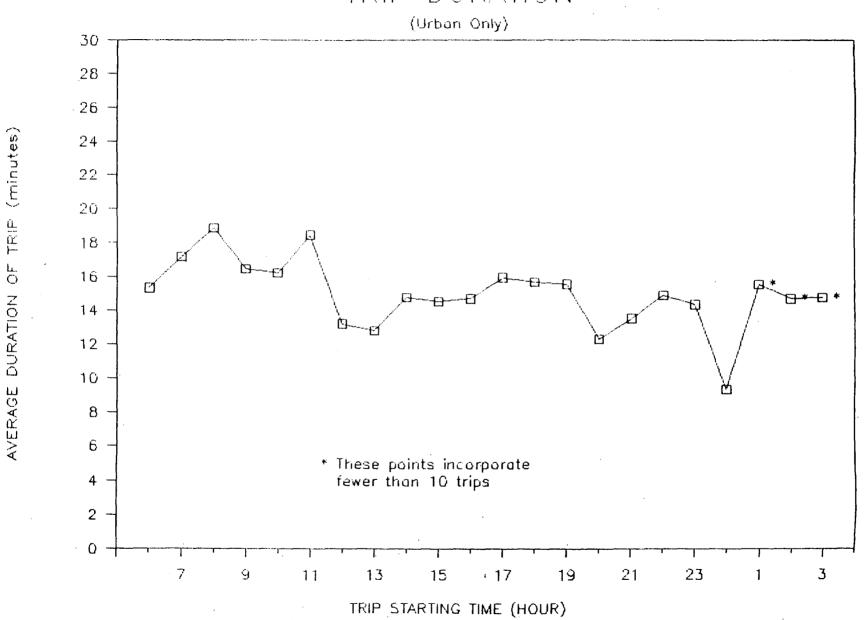
Figure 14 shows the temperature profile for the first 45 minutes after engine shut-off. The water pump temperature has the largest increase, jumping 20°C to a peak level of nearly 70°C (158°F) in the first ten minutes of the soak. The oil pan reaches a peak temperature of 50°C (122°F). The temperature at the air cleaner rises markedly, almost 30°C.

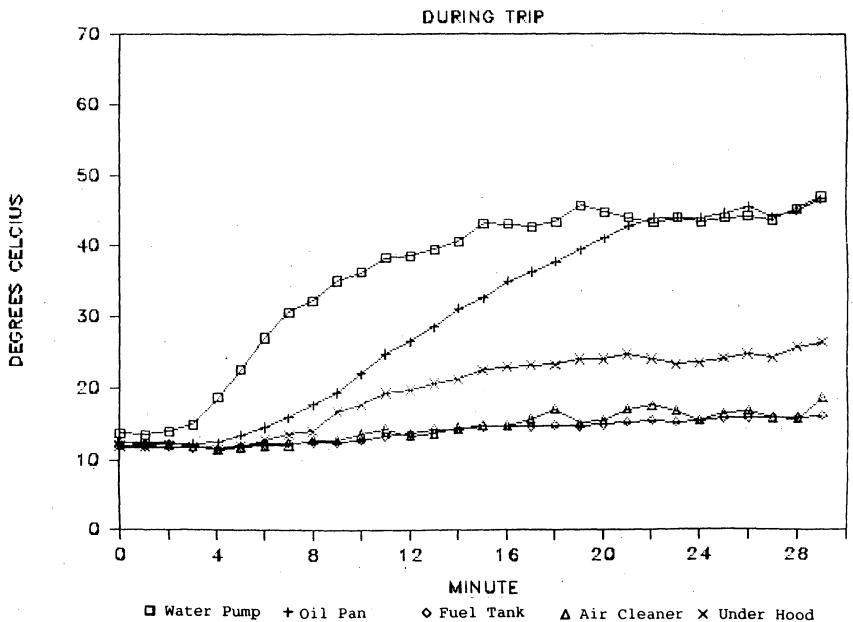

The temperature profile of the complete soak is shown in Figure 15. The water pump, oil pan, air cleaner, and underhood temperatures all exhibit decay down to ambient temperature. The fuel tank temperature rises slowly through the soak period, apparently tracking a rise in the ambient temperature (all but one of the ten trips occured in the morning).

Beginning at twenty minutes after the soak begins, exponential decay curves were fit to the water pump, oil pan,

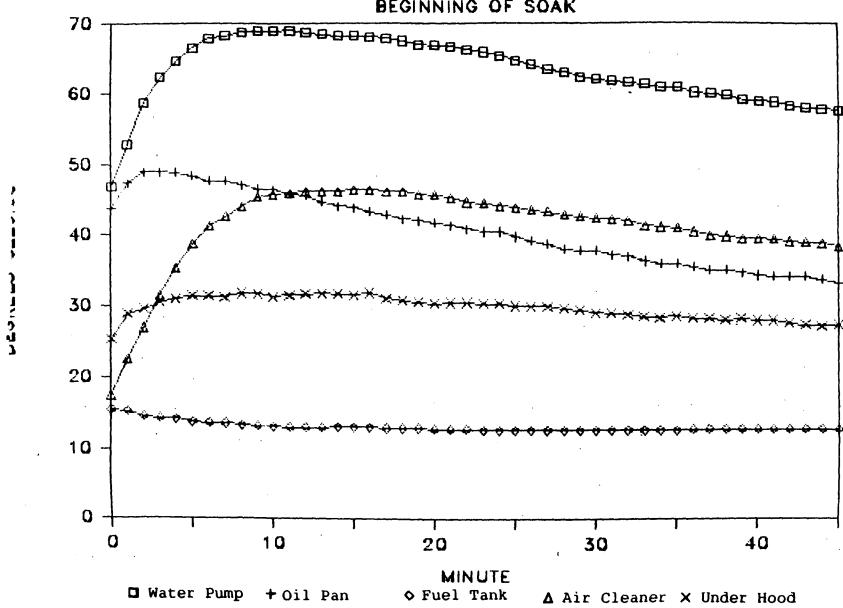

AVERAGE DISTANCE TRAVELLED


NUMBER OF STOPS PER TRIP.

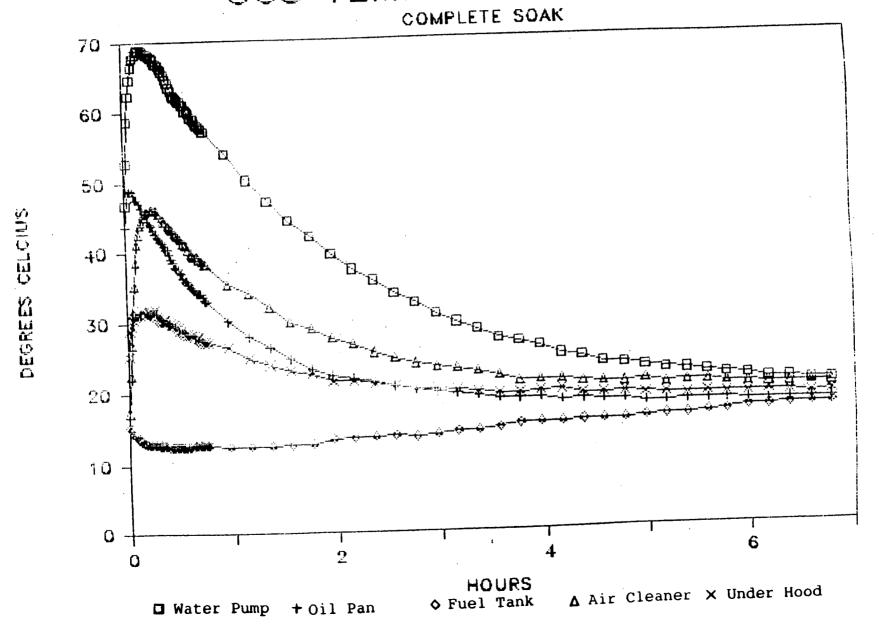

AVERAGE TRIP SPEED


TIME SINCE LAST TRIP

TRIP DURATION



OCS TEMPERATURE PLOTS



OCS TEMPERATURE PLOTS

BEGINNING OF SOAK

OCS TEMPERATURE PLOTS

air cleaner, and underhood temperatures. These were first adjusted by subtracting the fuel tank temperature, in order to model decay to ambient temperature. The resulting decay constants are .007, .011, .008, and .007 (1/minutes) for the water pump, oil pan, air cleaner, and underhood temperatures, respectively. To put these values in perspective, Table 4 shows the time required for the difference between the peak soak temperatures and ambient temperatures to be reduced to 50 percent, 20 percent, 10 percent, 5 percent, and 1 percent of their original values for the decay constants of .007 and .011 (1/minutes). These may be useful in determining when a vehicle is experienceing a "hot start" versus a "cold-start".

X. Conclusions

Two hundred and fifty-one days worth of in-use vehicle speed, time, distance, and temperature data were monitored and analyzed from participants driving in the Columbus, Ohio area. The data were catagorized by urban, and Urban and/or Rural (UAR) trips, with an engine-off period exceeding 10 minutes separating consecutive trips. The average participant made 4.7 urban (5.0 UAR) trips per day, going 4.6 (6.3) miles in 15 (17) minutes. The majority of urban trips (indicated by median values) went a smaller distance in less time than indicated by the respective mean values.

The urban trips were considerably shorter and less time consuming than the EPA urban dynamometer driving cycle (LA-4), although average speeds are approximately the same. The differences may occur because the current test cycle was only intended to represent a morning commute (in Los Angeles), not average vehicle use throughout a day. Also, the large urban sprawl with connecting freeways found in L.A. is very different from the smaller, more compact setting found in Columbus, which would cause different driving habits.

Temperature data collected during the vehicle loans were also analyzed to determine characteristic temperature profiles. The results showed that most parameters require approximately 15-20 minutes to reach stable warm-up levels. Soak temperatures rise very rapidly following engine shutdown, reaching peak values within 10 to 20 minutes. After shut-off, approximately half of the total temperature rise is dissipated in about two hours, while 4.1 to 5.8 hours are required to dissipate 80 to 90 percent of the peak hot soak temperature.

Table 4

Hot Soak Times

Time Required to Reduce Temperature Difference to Indicated Percentage of Original

Decay Constant	tant					
(1/minutes)	(hrs:min)					
	50%	20%	- 10%	5%	1%	
.007	1:39	3:50	5:29	7:08	10:58	
.011	1:03	2:26	3:29	4:32	6:59	

References

- 1. "Laboratory Simulation of Driving Conditions in the los Angeles Area," G. C. Hass, M. P. Sweeney, Society of Automobive Engineers, Paper 660546.
- 2. "Development of the Federal Urban Driving Schedule," R. E. Kruse and T. A. Huls, Society of Automotive Engineers, Paper 730553.
- 3. "The Changing Rural Village in America: Demographic and Economic Trends Since 1950," H. Johansen and G. Fuguitt, Harper and Rowe.
- 4. Title III of the Energy Policy and Conservation Act of 1975 amending the Motor Vehicle Information and Cost Savings.
- 5. "Vehicle Operations Survey," prepared by Scott Research Laboratories Inc., for the Coordinating Research Council and the U.S. Environmental Protection Agency, December 17, 1971.
- 6. "Truck Driving Pattern and Use Survey Phase II-Final Report, Part 1," prepared by Wilber Smith and Associate for the U. S. Environmental Protection Agency, June 1977.
- 7. Memorandum and Final Report for Work Assignment No. 3, Contract 68-03-3157, Myron, Gallogly, ATL February 24, 1984.
- 8. 1979 Gas Mileage Guide compiled and prepared by the U. S. Environmental Protection Agency and published and distributed by the U. S. Department of Energy, 1979.
- 9. Derived from the Code of Federal Regulations, Title 40, Section 86.144-78, "Calculations; exhaust emissions."

APPENDIXES

Operational Characteristics Study Columbus, Ohio Program

Appendix A Data Preparation Programs

OCS.REFMT.SRC OCS.S-TMPFIX OCS.S-SPDFIX OCS.S-PREPAR OCS.S-SCAN

Appendix B Data Reduction Programs

OCS.S-STATS.FOR OCS-CMP.FOR

Appendix C Histograms: Urban Only Trips

Appendix D Histograms: Urban And/Or Rural Trips

Appendix E Graphs - Trip Parameter vs. Trip Starting Time

Urban Only Trips

Appendix F Graphs - Trip Parameter vs. Trip Starting Time

Urban And/Or Rural Trips

Appendix G Participant Survey

Sample Questionnaire Summary of Answers

Appendix H Temperature Analysis

Appendix A

Data Preparation Programs

OCS.REFMT.SRC

```
110 REM *
                              PROGRAM NAME: OCS.REFMT.SRC
120 REM *
                                 PROGRAMMER: ALVARO M. CHPAMAN (SDSB)
          REM *
13:
                          YEAR WRITTEN: 1983
144
          REM *
150 REM *
140 REM * PURPOSE: THIS PROGRAM WAS DESIGNED TO REFORMAT
                                                     RAW OCS DATABASE FILES. IT UNPACKS THE
170 REM *
180 REM * ORIGINAL DATA INTO A FROM WHICH LEAVES EACH NEW * 190 REM * STARTING WITH AN 'FD' IN COLUMNS 1%2. THEREAFTER, *
200 REM * HEXADICMAL SPEED BYTES MAY OR MAY NOT OCCUR.
210 REM * CAR-ON AND CAR-OFF CODES ARE PRECEDED BY AN 'FE'
220 REM * CODE. THERE ARE AT PRESENT ONLY FOUR RECOGNIZABLE
230 REM * ON/OFF CODES, THESE ARE:
240' REM *
250 REM * FE 02 =
260 REM *
                             FE 03 =
                             FE OA ≔
270 REM *
                             FE OB =
280 REM *
290 REM * 1
300 REM * A CALIBRATION MODE CODE IS 'FC' AND ONLY APPEARS
310 REM * ONCE THROUGHOUT A FILE. IF MORE THAN ONE APPEARS,
320 REM * DATA RECORDED PAST THE LAST OCCURANCE SHOULD BE
330 REM * CONSIDERED VALID.
340 REM #
350 REM * A NORMAL DATA BLOCK SHOULD CONSIST OF ONE FD-LINE, *
360 REM * WITH NO MORE THAN TEN LINES OF SPEED BYTES *
370 REM * IMMEDIATELY FOLLOWING AM 'FD'. LESS THAN TEN *
380 REM * LINES ARE ACCEPTABLE PROVIDED THAT SEEMS TO BE NO *
31 REM * MISSING DATA WHICH WOULD CAUSE LATER ANALYSIS *
44. REM * ERRORS.
410 REM *
420 REM #
                              DATA DICTIONARY:
430 REM *
440 REM *
                             VARIABLE NAME TYPE DESCRIPTION
 450 REM #
                                                                   . ......
                                                                                     The control of the co
                                                                                 CTRL-G (BELL)
CTRL-D (DOS)
                                                                     Α
460 REM *
                                        VIII (its
470 REM #
                                      ∑#
                                                                    Δ
                                                                                - ARRAY CONTIANING HAMES OF *
180 REM *
                                      UIT®
                                                                    C)
 190 REM #
                                                                                  UNFORMATIED FILES.
500 REM #
                                      1 ... 🔅
                                                                                  - ARRAY CONTIANING MAMES OF *
 210 REM #
                                                                                   FORMATTED FILES.
520 REM #.
                                      1.7.$
                                                                                    INTERMEDIATE STRUCK USED
520 REM *
                                                                                   PROCESSING DATA FILES.
                                                    . )
                                                                               INTERMEDIATE STRING USED
540 REM #
                                      △#
550 REM *
                                                                                    TO EXTRACT CTRL-J'S.
560 REM *
                                      CH#
                                                                     . 1
                                                                                    INTERMEDIATE STRING USED *
570 REM *
                                                                                   VIEW DATA BYTES.
                                      ME
580 REM *
                                                                    .1.
                                                                                     INTEGER SCALAR INDICATES *
590 REM #
                                                                                   MUMBER OF FILES TO FORMAT. *
                                                                                    INTEGER SCALAR INDICATES
500 REM #
                                                                                   MUMBER OF DATA LINES IN A *
610 REM *
620 REM *
                                                                                    FILE.
                                      CHP TR L
                                                                                    INTEGER SCALAR INDICATES
630 REM *
                                                                                   CURRENT CHARACTER
640 REM #
£.
         REM #
                                                                                   POSITION IN FILE.
        REM *
                                      99
                                                                    i.
                                                                                     INTEGER SCALAR INDICATES *
 6
670 REM # -
                                                                                   SOURCE DRIVE.
 680 REM #
                                      DD
                                                                                    INTEGER SCALAR INDICATES
                                                                                     DESTINATION DRIVE.
 REM *
 700 REM *
                                      DC
                                                                                   INTEGER SCALAR INCICATES
 710 REM *
                                                                                   DATA COUNT OF BUFFER.
 720 REM *
                                       PTR
                                                                                    INTEGER SCALAR INDICATES
```

730 REM *

CURRENT POSITION WITHIN

```
THE BUFFER.
740 REM #
                  EMPTY$ A4
                                       CONSTANT STRING USED WHEN *
750 REM *
                                        A BLANK DATA LINE IS READ *
760 REM *
                                        IN.
770 REM: *
780 REM *
800 REM
810 Ds = CHR$ (4): REM
                         CTRL-D
820 8$ = CHR$ (7): REM CTRL-G
830 EMPTY$ = "MI SS IN G* DA TA MI SS IN G* DA TA MI SS IN G* "
840 DIM BUFF$(100)
850 REM
850 REM
            CALL SUBROUTINES TO INITIATE FILE PROCESSING
870 REM
1000 GOSUB 11000: REM SUBROUTINE DISK INFORMATION
1010 GOSUB 12000: REM SUBROUTINE FILE INFORMATION
1020 REM
1030 REM
            TOP OF OUTER-LOOP CONTROLLING FILE PROCESSING.
1040 REM
1050 FOR OL = 1 TO MF
1040 TX# = "": REM RE-INITIALIZE TX# TO MOTHING
1070 REM.
1080 REM
            OPEN BOTH IMPUT % OUTPUT FILES.
1090 REM
1100 PRINT D#; "OPEN "; UF# (OL); ", D"; SD
1110 PRINT D#; "READ "; UF# (OL) >
1120 IMPUT ND
1130 PRINT D#: "OPEN ":FF#(OL): ",D";DD
1140 PRINT D$;"WRITE ";FF*(OL)
1150 PRINT FF*(OL)
1' 0 GOSUB 13000: REM SUBROUTINE INPUT DATA
1 ) REM
            IF LENGTH OF TX# IS GREATER THAN 72 CHMRACTERS, THEN START PROCESSING. OTHERWISE, GO BACK FOR MORE DATA.
ligo REM
1190 REM
1200 REM
1210 IF LEN (TX#) > 72 THEN 2000
1220 DC = DC - 1: REM DECREMENT DATA COUNT
1230 PTR = PTR + 1: REM INCREMENT BUFFER POINTER
1240 TMP$ - BUFF$(PTR): REM ___ ASSIGN CURRENT DATA LINE TO TMP$
1250 REM
1260 MEH
             IMMEDIATELY CHECK IF A GLAMK LINE WAS BEAD. IF IT
1270 REM . MAS BEEN, THEN INCERT THE ERROR MEBRAGE CTRING EMPTY#.
1290 FEM
1070 IF LEN (THOS) : 1 THEN THUS - LIMPLS
1000 REM
           SCAN THE TEXT LINE FOR ANY CIRL J'S. THIS SPECIAL CHARACTER CAUSES A LINE FEED AND LATER CAUSES MANY
1310 REM
1320 DEM
ACCO REM
           REFORMATTING ECHNS OF MOT EXTRACTED MOW.
1340 REM
1350 A# = ""
1360 FOR DL = 1 TO LEN (TMP::
1370 IF MID# (TMP#,DL,1) - CHEW (10) THEN 1400
1380 IF MID# (TMP#, DL, 2) - " ' HEN 1100
1390 As - As + MIDs (IMPs, DL. 1)
1400 NEXT DL
1410 TMP$ = A$
1470 TX# - TX# + TMP#
1 0 REM
            SEE IF WE HAVE ALLIGHED THE END OF OUR OUFFER. IF SO,
1 D REM
            THEN GO GET MORE COTA TO PROCESS.
1450 REM
1460 REM
1470 FEM
            NEXT SEE IF WE have reached the END OF THE FILE. IF SO,
1490 REM . THEN JUMP TO LINE -00 WHERE WE DUMP REMAINING DATA AND
1490 REM
             CLOSE BOTH FILES.
```

OCM

```
1530 GOTO 1210
2000 REM # # * * * * * * * *
2010 REM
              CHECK 1ST CHARACTER POSITION TO BE SURE IT ISN'T A
2020
      REM
201
      REM
              BLANK.
20
      REM
2050 IF MID$ (TX$, F, F) < > " " THEN 3000
2060 \text{ TX$} = \text{MID$} (\text{TX$,2. LEN} (\text{TX$}))
3000 REM * * * * * * * * *
3010 REM
3020 REM
              SCAN THROUGH TX$ UNTIL WE FALL UPON ONE THE THESE
              CHARACTER REPRESENTATIONS AND JUMP TO THE INDICATED
3030 REM
3040 -REM
              INSTRUCTION BLOCKS.
3050 REM
3060 FOR CHPTR = 1 TO 36 STEP 3
3070 \text{ LN} = 0
3072 \text{ CH} = \text{MID} = (TX = , CHPTR, 2)
3080 IF CH$ = "FD" THEN 4000
3090 IF CH# = "FE" THEN LN = 6: GOTO 7000
3100 IF CH$ = "FC" THEN LN = 3: GOTO 7000
      NEXT CHPTR
3110
3120 REM
3130 REM
              IF HERE, WE ASSUME WE EITHER HAVE A COMPLETE FD-LINE
3140 REM
              OR THERE ARE JUST SPEED BYTES TO BE PRINTED.
3150 REM
3160 PRINT MID# (TX#,1,36)
3170 \text{ TX$} = \text{MID$} (\text{TX$}, 37, \text{LEN} (\text{TX$}))
3180 GOTO 1210
4000 REM * * * * * * * * * *
4010 REM
4: ) REM .
              IF HERE, WE HAVE FOUND AN 'FD'. SCAN THROUGH THE REST'
             OF THE LINE TO BE SURE MOTHING ELSE DOES NOT STAY WITH
4k ) REM
4040 REM
              THE TEXT WHICH DOESN'T BELONG.
1050 REM
4060 REM
             MOWEVER. IF THE POINTER IS POINTING TO THE 1ST CHARACTER
4070 REM

    POSITION JUMP TO ANOTHER BLOCK OF INSTRUCTIONS.

-4080 REM
4090
      IF CHPTR > 1 THEN 6000
4100 FOR DL = 19 FO 35 STER 3
4110 CH$ = MID$ (TX$,DL,D)
4120 IF CH$ = "FD" THEN 5000
4130 IF CH# - "FE" THEN 5000
4110 IF CH$ = "00" THEN 5000
\pm 1150 (F CH# \pm "01" THEN 5000
4150 IF CH$ = "02" THEN 5000
      - (F CH$ = "03" THEN 5000
4170
4180
     IF CH# = "04" THEN 5000
4190 NEXT DE
4200 REM
4210 REM
              IF HERE, WE ASSUME WE HAVE A COMPLETE FD-LIME.
4220 REH
1230 PRINT MID# (TX#,1,36)
4240 TX# = MID# (TX#,37, LEN (1:5))
4250 GOTO 1210
5000 REM * * * * * * * * *
5010 REM
5/10
      REM
              IF HERE, WE HAVE FOUND ADDITIONAL INFORMATION ON
5
     REM
              AN FD-LIME. MOST OF THE TIME IT IS EITHER ANOTHER
50 iO REM
              FD-LINE OR SPEEDS LEGIH TO APPEAR HERE.
5050
      REM
5060 PRINT MID# (TX#,1,DL
5070 TX# == MID# (TX#,DL, LEN (1:#))
5080 GOTO 1210
6000
      REM
           *****
5010 REM
```

```
REM. THE DATA WE WISH TO LOOK AT. WE MUST DUMP DATA
                                                            A 6
4050
     PRÍNT" MID$ (TX$.1.CHPTR - 1)
6060
    TX$ = MID$ (TX$,CHPTR, LEN (TX$))
90.
60
     GOTO 3000
7000
     REM 本本本教教教者本本本
                200
7010
     REM
7020
     REM
            IF HERE: WE HAVE COME ACROSS EITHER AN 'FE'OR 'FC'.
7030
     REM
7040
     IF CHPTR > 1 THEN 8000
7050
    PRINT MID$ (TX$.1.LN)
7060 TX$ = MID$ (TX\$,LN + 1, LEN (TX\$))
7070
     GOTO 1210
8000
     REM * * * * * * * * * *
8010
    REM
            IF HERE, WE HAVE COME ACROSS EITHER AN 'FE' OR 'FC'
8020
     REM
            BEYOND COLUMN ONE. DUMP THAT INFORMATION WHICH LIES
8030
    REM
            BEFORE IT.
8040
    REM
8050
    REM
     PRINT MID$ (TX#,1,CHPTR - 1)
8060
          MID# (TX#, CHPTR, LN)
8070 PRINT
8080 TX# = MID# (TX#,LN + CHPTR, LEM (TX#))
8090
    GOTO 1210
9000
     REM
         * * * * * * * * * *
9010
     REM
9020
    REM
            IF HERE, WE HAVE REACHED THE END OF THE INPUT FILE.
9030
    REM
            DATA STILL REMAINS IN TX#. SO GET RID OF IT AND CLOSE
9040 REM
            BOTH FILES.
9050 REM
9 ) LCH = LEN (TX$): REM
                          LAST CHARACTER POSITION
90 D IF LCH 0 36 THEN 9120
9080 PRINT MID# (TX#,1,36)
9090 LCH = LCH - 36.
9100 TX$ = MID$ (TX$,37, LEN (TX$))
9110 - GOTO 9060
9120
    PRINT MID# (TX#,1, LEN (TX#))
9130
     REM
9140
          NOW CLOSE FILES.
    REM
9150
    REM
9160
    PRINT D#: "CLOSE ":UF#(OL)
9170
    PRINT D#: "CLOSE ": FF# (OL)
9172
     YTAB (13 + OL): HTAB 20: PRINT "DOME."; Os
9174
     VTAB (14 + NF):
    MEXT OL
9180
9182 PRINT
9190
    PRINT : INVERSE
9200
    PRINT "TO CONTINUE REFORMATTING"
9210
     PRINT "TYPE: CALL 6064 (CRO"
9220
    PRINT : NORMAL : END
11010 REM # .
11020 -
     REM
                          SUBROUTINE
                            INFORMATION
     REM
11030
11040 -
     REM
11050
     50
     REM
     HOME : VIAB 1: HIAB 10: INVERSE
  70
11080 PRINT "DISKETTE INFORMATION";8: MORMAL
11090 REM
11100 REM
             GET SOURCE DRIVE
     REM
11110
```

YTAB 3: CALL - 958: IMPUT "SOURCE DRIVE: ";SD

IF SD \Rightarrow = 1 AND SD \langle = 2 THEN 11160

STAB 4: PRINT "(RANGE ERROR)"; D\$

11120

11130

11140

```
11160 REM
                                   A 7
11170 REPT GET DESTINATION DRIVE
11180 REM
11190 VTAB 5: CALL - 958: INPUT "DESTINATION DRIVE: "; DD
11 0 IF DD > = 1 AND DD < = 2 THEN 11230
   ) VTAB 6: PRINT "(RANGE ERROR)"; B#
11
11220 FOR DL = 1 TO 1500: NEXT DL: GOTO 11190
11230 REM
              MAKE SURE THEY ARE NOT THE SAME DISK DRIVES.
11240 REM
11250 REM
11260 IF SD < > DD THEN 11330
11270 PRINT : PRINT "ILLEGAL STATEMENT"; B$
11280 INVERSE : PRINT "(PROGRAM REQUIRES 2 DISK DRIVES)": NORMAL
11290 PRINT: PRINT "DOES THIS SYSTEM HAVE 2 DISK DRIVES"
11300 INPUT "(Y/N) ?":YN$
11310 IF YN$ = "N" THEN PRINT "(PROGRAM TERMINATED)"; B$: END
11320 GOTO 11120
11330 REM
11340 REM
              HAVE USER REMOVE AND INSERT PROPER DISKETTES AND SEE
11350 REM
11360 REM
              IF THE DISKETTE IN THE DESTINATION DRIVE IS TO BE
             INITIALIZED.
11370 REM
11380 VTAB 11: INVERSE : PRINT "REMOVE": NORMAL
11390 PRINT "- DCS SYSTEM MASTER DISKETTE"
11400 PRINT
11410 INVERSE : PRINT "INSERT": NORMAL
11420 PRINT "- OCS DATA DISKETTE INTO DRIVE (":SD:")"
11430 PRINT "- CLEAN DATA DISKETTE INTO DRIVE (";DD;")"
11440 PRINT
11450 PRINT "INITIALIZE DISKETTE IN DRIVE (":DD:")":
1 50 IMPUT YN#
1. 70 IF YN$ = "N" THEN 11510
11480 PRINT D$; "INIT TEMP, D"; DD
11490 FRINT Ds; "DELETE TEMP"
11492 PRINT
11500 PRINT "INITIALIZATION COMPLETE": 0#
11510 UTAB 23: INVERSE
11520 PRINT "(DEPRESS ANY KEY TO CONTINUE)";
11530 GET YN: NORMAL
11540 RETURN
12010 REM *
                         SUBBOUTINE
12020 REH #
12030 REM *
12040 REM *
                  FILE INFORMATION . *
12060 REM
12070 HOME : VTAB 1: HTAB 10: ENVERSE
12072 PRINT "FILE INFORMATION": NORMAL
. 12080 YTAB 2: PRINT D#; "CATALHO, D"; SD
12090 VTAB 14: PRINT "(ENTER 10 END PROGRAM)"
12100 INPUT "NUMBER OF FILES TO BEFORMAT: "; NF
12110 IF NF < 1 THEM PRINT "COLORAM TERMINATED"; D*: END
12130 FOR DL = 1 TO NF
12140 PRINT: VTAB (13 + DL): Call + 758
12150 PRINT "FILE >"; DL; " ";
  60 INPUT UF#(DL)
1
  70 PRINT "SPELLED CORRECTL. / H): ";: INVERSE
12:72 PRINT UF$(DL);: NORMAL : FOIRT " ";
12180 INPUT YN#
12190
      IF YN# = "N" THEN 12140
12200 NEXT DL
12210 REM
12220 REM CREATE NEW FILE HAMES FOR OUTPUT FILES.
```

```
iddau meni
12240 FOR DL = 1 TO NF
                             A 8
12250 FF\$(DL) = UF\$(DL) + "*"
12260 NEXT DL
12270 RETURN
130 0 REM *
13020 REM *
                       SUBROUTINE
13030 REM *
                       DATA INPUT
13060 REM
13070 PTR = 0: REM RE-INITIALIZE BUFFER POINTER
14000 REM
14010 IF ND < 100 THEN 14080
14020 \text{ ND} = ABS (ND - 100)
14030 DC = 100
14032 PRINT D#; "READ "; UF# (OL)
14040 FOR DL = 1 TO DC
14050 BUFF#(DL) = "": INPUT BUFF#(DL)
14060 NEXT DL
14070 GOTO 14130
14080 DC = ND
14090 \text{ ND} = 0
14092 IF DC = 0 THEN 14130
14094 PRINT Ds; "READ "; UF$ (OL)
14100 FOR DL = 1 TO DC
14110 BUFF $ (DL) = "": INPUT BUFF $ (DL)
14120 MEXT DL
14130 PRINT D#; "WRITE "; FF#(OL)
17140 RETURN
```

· I

OCS.S-IMPFIX

```
C#
     PROGRAM NAME:
                    OCS.S-TMPFIX
C*
C* PROGRAMMER: ALVARO M. CHAPMAN (SDSB)
C*
                    STANDARD DEVELOPMENT & SUPPORT BRANCH (SDSB) *
     BRANCH:
C *
                    OPERATIONAL CHARACTERISTICS STUDY (OCS)
      PROJECT:
C*
C*
C*.
      PROGRAM DESCRIPTION:
C*
C*
     THIS PROGRAM IS DESIGNED TO CORRECT FD-LINES WITHIN THE
C*
\mathbb{C}*
     OCS DATABASE FILES. AN FD-LINE CONSIST OF THE FOLLOWING:
□*
     FD 00 HH MM ID ID T1 T2 T3 T4 T5 T6
C*
C*
      WHERE: FD - INDICATES BEGINNING OF NEW MINUTE BLOCK
C*
              DD - INDICATES THE JULIAN DAY OF THE YEAR
二*
              HH - INDICATES THE HOUR OF THE DAY IN MILITARY TIME *
C*
              MM - INDICATES THE MINUTE DURING THE 'HH' HOUR
ID - INDICATES THE VEHICLE LOAN ID NUMBER. THIS
C*
巴米
                   ID NUMBER CONSIST OF TWO HEX PAIRS.
                   (I.E. 04 20 WOULD MEAN LOAN ID 420)
C*
     T1 THRU T6 - INDICATES THE SIX DIFFERENT TEMPERATURES FOR
VARIOUS PURPOSES.
C*
C*
C*
    A TYPICAL FD-LINE WILL APPEAR AS SUCH:
\square *
     FD 99 14 02 03 99 5A 5B 5C 5D 5E 5F
C#
C*
C*
     THIS PROGRAM IS DESIGNED TO ONLY CORRECT THE FOLLOWING:
C #
C*
    JULIAN DAY - IT WILL ONLY BE ALTERED WHEN THE ID IS NOT
C#
                   IN PLACE.
Ü∦.
C*
     ITEMS TO THE LEFT OF THE ID WILL ONLY DE ALTERED IF THE
     ID IS EITHER MISSING OR SHIFTED TO THE LEFT ONE SPACE OR
\mathbb{C} *
\mathbb{C}^*
     MORE.
意識
     ITEMS TO THE RIGHT OF THE ID WILL ONLY BE ALTERED IF THE
\mathbb{C}^*
     ID IS FOUND TO BE IN ITS CORRECT SPACE. IF THE 10 IS FOUND
(2) *
\mathbb{C}^{\pm}
     * IN ITS CORRECT SPACE AND THERE APPEALS TO BE HORE THAN ONE *
     TEMPERATURE MISSING. THIS DATA LINE WILL MOT BE ALTERED DUE *
\mathbb{C}^*
     TO THE FACT THAT THIS IS NOT POSSIBLE AT THIS POINT.
巴米
0.8
\mathbb{C}^*
\mathbb{C}^{x}
     UNIT FILE DESCRIPTIONS:
CX
\mathbb{C}^*
C#
     UNIT # FILE NAME FILE DESCRIPTION
C *
      C#
      - 4
               ERRORS
                        UUTPUT DEVICE FOR ERROR MESSAGES
              INPUT INPUT DEVICE FOR OCS HEX DATA
OUTPUT GUTHUT DEVICE FOR CORRECTED OCS DATA
SCREEN OUTPUT DEVICE FOR TERMINAL USE
C*
       5
```

C:#

C* $\mathbb{C} *$ - 5

	NAME	DESCRIPTION
ī	FDFLAG	ARRAY CONTAINING STATUS OF FDBUFF. CONSIST
I	FDPTR	POINTS TO POSITION IN BUFFER WHERE AN FD-L.
I	BUFCNT	INDICATES CURRENT NUMBER OF ELEMENTS WITHIN BUFFER.
I	COUNT	INTERMEDIATE VARIABLE USED WHEN SCROLLING BUFFER.
I	FDCNT	INCREMENT COUNTER INDICATING NUMBER OF FD-LINES READ INTO THE BUFFER.
I	J	WILD CARD VARIABLE USED FOR MEANINGLESS LO
Ī	PTRONT	INTERMEDIATE VARIABLE USED WHEN SCROLLING BUFFER.
I	ERRFIX	CONTAINS NUMBER OF ERRORS CORRECTED BY PRODUCING A RUN.
I .	ERRONT	CONTAINS NUMBER OF ERRORS WHICH OCCURED DU A RUN.
A	FDBUFF	ARRAY CONTAINING DUPLICATES OF FD-LINES FR WITHIN THE BUFFER.
A	BUFFER	ARRAY CONTAINING DATA READ IN FROM THE INP
А	LINE	INTERMEDIATE VARIABLE USED TO FILL THE BUF ARRAY.
Α	DATAFL	STRING VARIABLE USED ONLY FOR ECHOING.
Α	DATE	STRING VARIABLE USED FOR ECHOING DATE TO F
А	DATAFL	STRING VARIABLE USED FOR ECHOING THE NAME A DATA FILE DURING A RUN.
A	OPMAME	STRING VARIABLE USED FOR ECHOING THE NAME THE ACTUAL USER DURING A RUN.
Α	TMPLIN	INTERMEDIATE VARIABLE USED TO DISPLAY ORIG OATA TO ERROR MESSAGE FILE BEFORE IT HAS D CORRECTED.
α^{-1}	IDIST	IST PART OF THE VEHICLE LOAN ID MUMBER.
Δ	IDRND	2ND PART OF THE VEHICLE LOAM ID NUMBER.
15	FIXED	BOOLEAN VARIABLE USED TO INDICATE WHETHER

```
FDFLAG(3), FDPTR(3), BUFCNT, PTRCNT, ERRFIX
      INTEGER
                  ERRCHT. COUNT. FDCNT. J
      INTEGER
                  ERRORS, INPUT, OUTPUT, SCREEN
      INTEGER
C
      CHARACTER$50 FDBUFF (3). BUFFER (100), LINE. TMFLIN
      CHARACTER$6 ID1ST, ID2ND, OFNAME
                  DATAFL*12, DATE*8
      CHARACTER
C
C
      LOGICAL
                  FIXED
C
                  ERRORS. INPUT. OUTPUT, SCREEN /4,5,6,7/
      DATA
                  ERRONT, ERRFIX, BUFCNT, FDCNT /0,0,0,0/
      DATA
C*
      USING A DO-LOOP, CLEAR ANY PREVIOUS TEXT FROM THE TERMINAL
C*
      SCREEN. THEN PROMPT THE USER FOR THE FOLLOWING INFORMATION
C*
      PERTAINING TO EACH INDIVIDUAL RUN.
C*
C
      FIXED = .FALSE.
C
      DD 10 J=1.22
         WRITE (SCREEN, *)
      CONTINUE
 10
\mathbb{C}
      WRITE(SCREEN, 100) 'OPERATIONAL CHARACTERISTICS STUDY'
      WRITE (SCREEN. 100) * TEMPERATURE FIXING CROGRAM'
      WRITE(SCREEN.*)
\mathbb{C}
      WRITE(SCREEN, 100) 'INPUT TODAYS DATE (MM/DD/YY)...'
      READ (SCREEN. 100) DATE
C
      WRITE(SCREEN, 100) 'INPUT INITIALS OR FIRST NAME...'
      READ (SCREEN. 100) OPNAME
C
      WRITE (SCREEN, 100) 'INPUT OCS DATA FILE NAME...'
      READ (SCREEN. 100) DATAFL
\mathbb{C}
      URITE (SCREEN.*)
      WRITE(SCREEN.120) DATE.OFNAME.DATAFL
      URITE(SCREEN.*)
- C
      WRITE(SCREEN.*) 'PROCESSING DATA GET...'
O
\mathbb{C}
```

```
C#
     READ IN ONE DATA LINE AT A TIME, PUT IT INTO THE WORKING
C*
     BUFFER. THEN CHECK TO SEE IF A CHARACTER REPRESENTATION
C*
     OF 'FD' APPEARS IN COLUMNS 1 & 2.
2*
C*
     IF AN 'FD' APPEARS IN COLUMNS 1 & 2, COPY THIS DATA LINE
C*
     INTO THE FD-BUFFER. THEN CHECK ITS LENGTH TO SEE WHETHER
C*
     IT HAS AN ERROR. IF THE LENGTH OF THE FD-LINE IS LESS
C*
     THAN 36 UNITS. THE LINE IS BAD SO INDICATE SO BY SETTING
C*
C*
     ITS FLAG ARRAY ELEMENT (THE ELEMENT IS DETERMINED BY THE
     SEQUENCE THIS PARTICULAR FD-LINE WAS FOUND) TO 1.
C*
C*
     FINALLY. CHECK TO SEE IF WE HAVE FILLED OUR FD-BUFFER.
\mathbb{C}^*
     IF NOT, THEN RESUME READING DATA UNTIL WE DO.
C*
20
     READ(INPUT, 100, END=80) LINE
     BUFCNT = BUFCNT + 1
     BUFFER (BUFCNT) = LINE
C
     IF (LINE(1:2).EQ.'FD') THEN
        FDCNT = FDCNT + 1
       FDFLAG (FDENT) = 0
       FDPTR (FDCNT) = BUFCNT
       FDBUFF (FDCNT) = LINE
\Box
        IF ( INDEX(LINE.' ').LT.35 ) THEN
          FDFLAG (FDCNT) = 1
          ERRONT = ERRONT + 1
        ENDIF
     ENDIF
\mathbb{C}
     IF (FDCNT.LT.3) GOTO 20
C
```

```
C*
     HERE IS WHERE MOST OF THE DECISION MAKING GOES ON. WE
C *
     MUST DETERMINE WHAT EXAXCTLY NEEDS TO BE FIXED ON THE 2ND
C *
     FD-LINE WITHIN THE FD-BUFFER. HOWEVER, FIRST WE MUST
C*
     BE SURE THAT WE HAVE A DESIRED FD-BUFFER TO WORK WITH.
C*
C*
     THE FOLLOWING WILL DEMONSTRATE WHAT TYPE OF PATTERN WE
C*
     WISH TO WORK WITH & NOT WORK WITH:
C*
\mathbb{C} *
    ONE WE CAN WORK WITH
E*
C *
     FD 99 14 02 03 39 SA 5B 5C 5D 5E 5F = 0 (GOOD FD-LINE)
C*
    FD 99 14 02 03 39 5A 5B 5C 5D 5E = 1 (BAD FD-LINE)
C *
     FD 99 14 04 03 39 5A 5B 5C 5D 5E 5F = 0 (GOOD FD-LINE)
C*
C*
C*
     ONE WE CAN'T WORK WITH:
C*
     FD 99 14 02 03 39 5A 5B 5C 5D 5E
= 1 (BAD FD-LINE)
     FD 99 14 03 03 39 5A 5B 5C 5D 5E 5F = 0 \cdot (600D \text{ FD-LINE})
C*
C*
     FD 99 14 04 03 39 5A 5B 5C 5D 5E = 1 (BAD FD-LINE)
C*
     SEE. THE TRICK IS TO WORK WITH THE BAD FD-LINE IN THE
E*
     MIDDLE SO THAT WE CAN AVERAGE OUT THE TEMPERATURES TO
C*
REPLACE THE MISSING ONE. A SPECIAL SUBROUTINE WILL DO
     THE ACTUAL CALCULATIONS IN FINDING WHICH ONE IS MISSING,
C*
C *
     BUT FIRST WE MUST SEND IT A VALID FD-BUFFER TO WORK WITH.
\mathbb{C}*
\Gamma
     IF (FDFLAG(1).EQ.1) GOTO 40
     IF (FDFLAG(2).EQ.0) GOTO 40
     IF (FDFLAG(3).E0.1) GOTO 40
     IF ( INDEX(FDBUFF(2).', ').LE.30 ) 6010 40
C
     ID1ST = FDBUFF(1)(13:17)
     ID2ND = FDBUFF(2)(13:17)
     TMPLIN = FDBUFF(2)
\mathbb{C}_{\mathbb{X}}
    TO BE AT THIS POINT. WE MUST HAVE AN FD-BUFFER WHICH TO
\square *
    - WORK WITH. THE ONLY PROBLEM IS THAT WE DON'T KNOW WHAT
\mathbb{C}^*
     TO FIX - DATA TO THE LEFT OF THE ID OR DATA TO THE RIGHT
C#
     OF THE ID. IF ID1ST DOES NOT EQUAL ID2ND. THEN WE KNOW!
     THE CORRECTION TO BE MADE MUST BE TO THE LEFT OF THE ID.
\mathbb{C}
     IF (ID2ND.ME.ID1ST) THEN
        CALL IDFIX( FDBUFF, FIXED )
        IF (.MOT. FIXED) GOTO 30
        FDFLAG(2) = 0
        CALL IMPRIX ( FDBUFF )
        FDFLAG(2) = 0
     ENDIF
C
     ERRFIX = ERRFIX + 1
```

DIRECTO / EDDTO /OL L - CDDUCE /OL

```
C*
     NOW THAT WE HAVE MADE THE NEEDED CORRECTIONS, WRITE OUT THE *
2*
     LINES WHICH WERE AFFECTED TO THE ERROR MESSAGE FILE FOR
C*
                                                         ×
     USER ANALYSIS AND WRITE OUT THE BUFFER UP TO THE 2ND
C*
     FD-LINE TO THE OUTPUT FILE. THIS IS SO THAT WE CAN SCROLL
C.X
     THE BUFFER UP NEXT.
C*
C*
WRITE(ERRORS, 110) FDBUFF(1)
     WRITE(ERRORS.130) TMPLIN. FDBUFF(2)
     WRITE(ERRORS, 110) FDBUFF(3)
     WRITE (ERRORS. *)
C
     IF (FDFLAG(1).EQ.1) BUFFER(FDPTR(1))(40:46) = 'ERROR'
40
С
     DO 50 J = 1.FDPTR(2)-1
       WRITE (OUTPUT. 110) BUFFER (J)
     CONTINUE
C
NOW, AT THIS POINT WE MUST DO THE ACTUAL SCROLLING OF THE
\square *
C* - BUFFER. ALL WE DO IS MOVE EVERYTHING FROM THE 2ND FD-LINE
     UP TO THE LAST LINE IN THE BUFFER UP TO THE TOP OF THE
     BUFFER. WE ALSO MEED TO KEEP INTACK WHERE THE POINTERS ARE *
C*
\mathbb{C} *
     POINTING.
\mathbb{C}^*
\mathbb{C}
     COUNT = 0
     PTRONT = 0
C
     DO 40 J = FDPTR(2).FDPTR(3)
       COUNT = COUNT + 1
        BUFFER( COUNT ) - BUFFER(J)
\mathbb{C}
        IF (CUFFER(COUNT)(1:2).EO./FD/) THEN
          PTRONT = PTRONE + 1
          FORTR ( PIRCHI / - COUNT
       ENDIF
\mathbb{C}
     CONTINUE
 50
     DD 70 J = 1.2
       FDFLAG(J) = FDFLAG(J+1)
       FDBUFF(J) = FDBUFF(J+1)
 70
     CONTINUE
     FDCNT = 2
     BUFCHT = COUNT
     SOTO 20
\mathbb{C}
```

```
C*
     TO HAVE ARRIEVED HERE. WE MUST HAVE ENCOUNTERED THE EDF.
C*
                                                             *
     SINCE THERE IS NO FURTHER DATA TO COMPARE ANYTHING WITH.
C X
     WE WILL LEAVE THE REMAINDER OF THE BUFFER UNTOUCHED AND
C*
     SIMPLY DUMP IT TO THE OUTPUT FILE. ALSO, WE WILL DISPLAY
C*
     THE NUMBER OF ERRORS FOUND AND THOSE WHICH HAVE BEEN
C*
     CORRECTED.
C*
C*
DO 90 J = 1.BUFENT
30
        WRITE(OUTPUT.110) BUFFER(J)
     CONTINUE
 90
C
     WRITE(SCREEN, *) 'PROCESSING COMPLETE!'
C
     WRITE(ERRORS.*) 'ERRORS FOUND = '.ERRCHT
    . WRITE(ERRORS.*) 'ERRORS FIXED = '.ERRFIX
C
     WRITE(SCREEN,*) 'ERRORS FOUND = ', ERRONT
     WRITE(SCREEN.*) 'ERRORS FIXED = '.ERRFIX
\mathbb{C}
C
     FORMAT STATEMENTS
 100 FORMAT(A)
110 FORMAT(' ',A)
120 FORMAT(' ','DATE: ',A8,' OPERATOR: ',A8,' FILE: ',A12)
130 FORMAT(' ',A,'<--->',A)
Ü
     STOP
     END
```

```
CO
                SUBROUTINE FNOVAL
E3
                                                                   ú
Ca
                                                                    Э
      THIS SUBROUTINE IS DESIGNED TO CALCULATE THE MISSING TEMP-
Ca
      ERATURES WHEN CALLED UPON BY THE SUBROUTINE TMPFIX. IT
Ca
      DOES THIS BY CALCULATING THE LEAST SQUARE ERROR DIFFERENCE
CD
      OF A 3 BY 6 MATRIX.
                                                                    Э
C:3
CЭ
<u>ლიგიგიგიდიდი მიცია გიცია გ</u>
      SUBROUTINE
                   FNDVAL ( TEMPS )
С
      INTEGER
                  TEMPS(3.5), TMPVAL(6), TRUTMP(6), ERROR(6)
                   ERRSUM(5), MINSUM, CNT, I, J, K
      INTEGER
C
\Box
      MINSUM = 10000
С
      DO 20 I = 1.5
         ERRSUM(I) = 0
C
         DO 10 J = 1.4
            IF (J.LT.I) TMPVAL(J) = TEMPS(2.J)
            IF (J.GT.I) TMPVAL(J) = TEMPS(2,J-1)
            IF (J.EQ.I) GOTO 10
C
            ERROR(J) = (TEMPS(1,J) + TEMPS(3,J) - 2*TMPVAL(J))
            ERRSUM(I) + ERRSUM(I) + ERROR(J)**2
         CONTINUE
 10
\mathbb{C}
         IF (ERRSUM(I).GT.MINSUM) DOTO 20
         MINSUM = ERRSUM(I)
         CMT = I
 20
      CONTINUE
\mathbb{C}
\mathbb{C}
      DO 30 K = 1.5
         IF (K.LI.CHI) TRUING(E) = (EMPS(C.E)
         IF (R.CT.CNT) TRU(MP(R) = TEMPS(2.R-1)
         TE (K.EO.CMT) TEUTHORK) - ( FEMPS(1.K) ) TEMPS(3.K) )/2
      CONTINUE
 30
\mathbb{C}
      DO 40 K = 1.6
         TEMPS(2.K) = TRUTHE ()
 4.0
      CONTINUE
      RETURN
      END
```

```
\Boxეგეგეგები განადა გ
                                                                                                                                                            Э
                                     SUBROUTINE TMPFIX
Ca
                                                                                                                                                            a
                                                                                                                                                            3
CO
              THIS SUBROUTINE IS DESIGNED TO REPAIR THE MISSING TEMP-
C3
             FRATURE ONCE IT HAS BEEN SUPPLIED BY THE FNDVAL SUBROUTINE.
C:3
CĐ
              IT SIMPLY TRANSLATES THE ENGINEER UNIT NUMBER INTO ITS
                                                                                                                                                            •
CĐ
              EQUIVALENT HEXADECIMAL CHARACTER VALUE USING THE SUBROUTINE @
C:3
              HEXDEC (TRANSLATES FROM HEXS TO DECIMAL) AND THE SUBROUTINE 3
CO
              DECHEX (TRANSLATES FROM DECIMAL TO HEXS).
Ca
                                                                                                                                                            ï.
CĐ
TMPFIX( TMPBUF )
              SUBROUTINE
C
                                            DECVAL(3,6), HEXVAL, CNT, I, J
              INTEGER
                                            TMPBUF (3) *50, MATRIX (3,4) *3, BLANK*3
              CHARACTER
C
             NULL OUT THE CHARACTER MATRIX
C
C
          · BLANK = '
              DO 10 I = 1.3
                     DO 10 J = 1.5
                            MATRIX(I.J) = BLANK
                     CONTINUE
  10
  20
              CONTINUE
\mathsf{C}
              CONVERT THE HEX VECTOR INTO A DECIMAL MATRIX
\mathbb{C}
              DO 40 I = 1.3
                     CNT = 0
                     DD = 30 J = 19,34,3
                            CNT = CNT + 1
                            MATRIX(I.CNI) = TMFBUF(I)(J:J+2) +
                            CALL HEXDEC( MATRIX(I, CNT), DECYAL(I, CNT) )
   30
                     CONTINUE
              CONTINUE
   40
C
\mathbb{C}^{3}
(C, \overline{z})
              CALL UPON SUBROUTINE FNDVAL AND RETURN WITH MISSING
                                                                                                                                                             ĵ.
CO
              TEMPERATURE.
                                                                                                                                                             Ü
CD
CALL FNDVAL ( DECVAL )
\mathbb{C}
              DD = 1.5
                     CALL DECHEX( DECYAL(2,J), MATRIX(2,J) )
              CONTINUE
  50
              TMPBUF(2)(19:36) = MATRIX(2,1)//MATRIX(2,2)//MATRIX(2.
                                                           3)//MATRIX(2,4)//MATRIX(2,5)//MATRIX(2,6)
\mathbb{C}
              RETURN
              END
```

..

```
CЭ
             SUBROUTINE
                               HEXDEC
Ca
                                                      Э
CĐ
                                                      9
     THIS SUBROUTINE IS DESIGNED TO CONVERT INCOMING DATA FROM
CЭ
                                                      Э
     ITS HEXADECIMAL VALUE INTO ITS EQUIVALENT DECIMAL VALUE.
                                                      3
Ca
CЭ
                                                      Э
SUBROUTINE
                HEXDEC ( HEXDIG, VALUE )
C
     INTEGER
               HEXVAL(2), VALUE, I, J
     CHARACTER
               HEXS(16) *1, HEXDIG*3
C
               HEXS /'0','1','2','3','4','5','6','7','8','9',
     DATA
                   'A','B','C','D','E','F'/
C
               HEXMAL 70.07
     DATA
С
C
     SEARCH THROUGH HEXADECIMAL ARRAY FOR EQUIVALENT REPRESENTA-
С
     TIONS OF DIGITS OR LETTERS.
DD_120 I = 1.2
       DO 10 J = 1.16
          IF (HEXDIG(I:I).EQ.HEXS(J)) HEXVAL(I) = J-1
 10
       CONTINUE
 20
    CONTINUE
     VALUE = HEXVAL(1)*15 + HEXVAL(2)
С
    RETURN
     END
```

```
C3
                                                       3
             SUBROUTINE DECHEX
CĐ
                                                       3
E3
                                                       Э
     THIS SUBROUTINE IS DESIGNED TO CONVERT INCOMING DATA FROM
C:3
                                                       3
   TITS DECIMAL VALUE TO ITS EQUIVALENT CHARACTER REPRESENTA-
C:3
                                                       3
     TION.
                                                       Œ.
C3
CĐ
SUBROUTINE
               DECHEX ( DECUAL, HEXDIG )
C
                DIGIT1, DIGIT2, DECVAL
     INTEGER
                HEXS(16)*1, HEXDIG*3, HEX1*1, HEX2*1
     CHARACTER
С
                HEXS /'O','1','2','3','4','5','6','7','8','9',
'A','B','C','D','E','F'/
     DATA
    *
C
     DIGIT1 = DECVAL/16
     DIGIT2 = MOD( DECVAL, 16 )
C
     HEX1 = HEXS( DIGIT1 + 1 )
     HEX2 = HEXS(DIGIT2 + 1)
С
     HEXDIG ≟ HEX1//HEX2
\mathbb{C}
     RETURN
     END
```

```
CO
CO
            SUBROUTINE IDFIX
                                                     3
CЭ
                                                     Э
    THIS SUBROUTINE IS DESIGNED TO CORRECT ALL DATA TO THE
Ca
                                                     Œ,
    LEFT OF AND INCLUDING THE LOAN-ID ON AN FD-LINE.
Ca
C3
    THIS SUBROUTINE IS ONLY INVOKED WHEN WE KNOW THERE EXIST
\Box
    ALL SIX TEMPERATURES. WHAT WE MAINLY CHECK FOR IN THIS
Ca
    SUBROUTINE IS THE ACCURACY IN SEQUENTIAL TIME. IF THE
Ca
    TIME ON THE 2ND FD-LINE DOES NOT COMPUTE A DIFFERENCE OF
CO
    EITHER 2 MINUTES OR 40 MINUTES, THEN WE KNOW A SERIOUS
CĐ
CĐ
    ERROR EXIST AND WE DO NOTHING TO IT.
C:3
IDFIX( BUFFER.FIXED )
    SUBROUTINE
C
               DAY, HOUR, MIN, FDLEN, DIFF, CNT, I, J

    INTEGER

               DEC(3,3), TIME1, TIME2, TIME3, VAL®
    INTEGER
C
              BUFFER(3)*50, MAT(3,12)*3, LOANID*6
    CHARACTER
    LOGICAL
               FIXED
C
C
    EXTRACT THE CORRECT LOAN-ID FROM THE BUFFER'S 1ST ELEMENT
C
    FIXED = .FALSE.
    LOANID = BUFFER(1)(13:18)
C
    CONVERT THE BUFFER VECTOR INTO A 3X3 MATRIX FOR SIMPLER
C
\Box
    ACCESS.
\epsilon
    DO 20 I = 1.3
       CMT = 0
       DO 10 J = 1.34.3
         CNT = CNT + 1
         MAT(I,CNT) = BUFFER(I)(J:J+2)
 10
       CONTINUE
 20 CONTINUE
SHIFT ALL ELEMENTS WITHIN THE 2ND ROW ONE SPACE TO THE
Ca
    RIGHT.
DO 30 I = 12.5.-1
       MAT(2,I) = MAT(2,I-1)
30
    CONTINUE
```

```
CONVERT CHARACTER REPRESENTATIONS INTO THEIR DECIMAL
     EQUIVALENTS.
                                                                :
Ca ·
                                                                3
CЭ
     WE ARE CONCERNED WITH THE FOLLOWING:
                                                                3
СЭ
                                                                3
CO
                              7
                                      9 10
              3
                  4
                                 8
                                            11
                                                                3
CO
      1
          2
                      5
                          5
                                 ---
                                                                æ
             ---
                 __
                     __
                             .__.
Ca
     ___
         __
                         ---
                                             3E 3F
        61
             13 02
                     02
                         25
                             JΑ
                                 3B
                                     30
                                         3D
                                                                Œ:
C:3
    1:FD
                     25
                                40
                                     4D
                                         4E
                                             4F
                                                                Э
        61 13 02
                         4A
                             4B
    2:FD
Ca
                04
                             5A . 5B
                                     50
                                            5E 5F
                     02
                         25
                                         SD
                                                                :5
        61, 13
Ca
    3:FD
                                                                æ
         \langle \rangle \langle \rangle
                 <>
C3
CĐ
     WE ARE INTERESTED IN THOSE NUMBERS WHERE '<>' LIES
                                                                Э
C:3
     DIRECTLY BENEATH THEM. THESE NUMBERS ARE USED TO
                                                                :D
CO
      CALCULATE THE MISSING TIME IN THE 2ND FD-LINE.
Ca
Ca
CNT = 1
C
      DO 50 I = 2.4.1
        DEC (ENT, I-1) = VAL*(MAT(CNT, I)(1:1))*10 +
                      VAL#( MAT(CNT, I)(2:2) )
 50
      CONTINUE
C
      IF (CNT.LT.3) THEN
        CNT = 3
        GOTO 140
      ENDIF
C
      TIME1 = DEC(1,1) *60 *24 + DEC(1,2) *60 + DEC(1,3)
      TIMES = DEC(3.1) *60*24 + DEC(3.2) *60 + DEC(3.3)
C
      DIFF = TIMES - TIME1
C
      IF ((DIFF.NE.2) .AND. (DIFF.NE.40)) GOTO 999
C
      FIXED = .TRUE.
C
      IF (DIFF.ED.2) TIME2 = TIME1 + 1
      IF (DIFF.EQ. 40) TIME2 = TIME1 + 20
C
      DAY = TIME2/1440
      TIME2 = TIME2 - DAY*1140
С
      HOUR = TIME2/60
      TIME2 = TIME2 - HOUR#50
C
      MIN = TIME2
С
C
      NOW CONVERT THESE DECIMAL VALUES BACK INTO THERE
\mathbb{C}
      CHARACTER REPRESENTATION.
\mathbb{C}
      CALL STR#( DAY, MAT(2.2) )
      CALL STR#( HOUR, MAT(2, 3) )
      CALL STR#( MIN ,MAT(2, D )
\Box
```

```
P625-633

MAT(2,5) = LDANID(1:3)

MAT(2,6) = LDANID(4:6)

C

BUFFER(2) = MAT(2,1)//MAT(2,2)//MAT(2,3)//MAT(2,4)//MAT(2,

* 5)//MAT(2,6)//MAT(2,7)//MAT(2,8)//MAT(2,9)//MAT(2,

* 10*//MAT(2,11)//MAT(2,12)

C

999 RETURN
END
```

```
Ca
          INTEGER FUNCTION VALS
CЭ
                                                  3
Ca
                                                  3
    THIS INTEGER FUNCTION IS DESIGNED TO CONVERT INCOMING
CЭ
                                                  3
    CHARACTER DATA INTO ITS EQUIVALENT DECIMAL VALUE AND
C:3
                                                  G;
    RETURN ITS FORTRAN STATEMENT.
Ca
CЭ
INTEGER FUNCTION
                   - VAL# ( CHR# )
C
    INTEGER
    CHARACTER
              DECMAL(10) *1. CHR**1
C
              DECMAL /'0','1','2','3','4','5','6','7','8','9'/
    DATA
C
    VAL== 0
C
    D0 10 I = 1.10
       IF (CHR$.EQ.DECMAL(I)) GOTO 20
    CONTINUE
 10
C
    VAL = -1
    GOTO 30
C
 20
    VAL = I-1
 30
    RETURN
    END
```

```
C3
           SUBROUTINE STR$
Ca
                                                 3
                                                 3
Ca
    THIS SUBROUTINE IS DESIGNED TO CONVERT INCOMING DATA FROM
                                                 Э
Ca
    ITS DECTED VALUE TO ITS EQUIVALENT CHARACTER
                                                 3
C:3
    REPRESENTATION.
                                                 Э.
CO
C:3
SUBROUTINE
              STR#( VAL,STRING )
С
             VAL, LEFT, RIGHT
    INTEGER
    CHARACTER STRING*3, HEXS(10)*1
C
              HEXS //0','1','2','3','4','5','6','7','8','9'/
    DATA
C
    LEFT = VAL/10
   _ RIGHT = VAL - (LEFT*10)
C
    STRING(1:1) = HEXS(LEFT + 1)
    STRING(2:2) = HEXS(RIGHT + 1)
C
    RETURN
    END
```

The temperature correcting algorithm can be most easily understood by considering an example. In this example it is simpler to consider only four temperature inputs. A data set with a missing datum might appear as:

5C	41	57	4A
5C	42	4B	*
5C	43	57	4C

First we convert from hexadecimal to decimal:

92	65	87	74
92	66	7 5	*
92	67	87	76

The test or trial vector for the second row, which is the interpolated mean of the first and third row, can now be calculated.

Comparing the test vector against the second row, the sum of the squares of the differences with no shifting of the row is:

$$(92-92)^2 + (66-66)^2 + (75-87)^2 = 144$$

If the last element of the row is shifted one location the sum of the squares of the differences is:

$$(92-92)^2 + (66-66)^2 + (75-75)^2 = 0$$

Shifting the last two elements, the sum of the squares of the differences is:

$$(92-92)^2 + (87-66)^2 + (74-75)^2 = 442$$

Shifting all elements, the sum of the squares of the differences is:

$$(66-92)^2 + (87-66)^2 + (74-75)^2 = 1118$$

Clearly shifting only the last element of the row results in the minimum sum of the squares. Therefore we know that the data array should be:

92	65	87	74
92	66	*	75
92	67	87	76

The trial or test value, 87 is now inserted in the location of the known missing datum.

Finally converting back into hexadecimal the corrected data are:

5C	41	57	4A
5C	42	57	4B
5C	43	57	4C

^{*} missing datum.

OCS.S-SPDFIX

```
A 29
  OCS. S-SPDFIX IS AN ATTEMPT TO FIRST DETECT AND THEN
  CORRECT SPEED ERRORS IN OCS ORIGINAL HEX DATA FILES.
C
 HERE IS A SAMPLE OF THE ODD THINGS THAT OCCUR IN
C
  ORIGINAL DCS HEX DATA:
  FD LINE
С
   FE ON CODE
   (SPEEDS MAY OR MAY NOT FOLLOW BEFORE NEXT FD)
C
   OR A DIFFERENT SCENARIO:
С
 FD LINE
  (SPEEDS MAY OR MAY NOT FOLLOW BEFORE FE OFF CODE)
C
   FE OFF CODE
C
С
C
  OR TO FURTHER COMPLICATE MATTERS:
C
C
 FD LINE
  FE ON CODE
  (SPEEDS MAY OR MAY NOT FOLLOW BEFORE FE OFF CODE)
  FE OFF CODE
C
 FE ON CODE
  (SPEEDS MAY OR MAY NOT FOLLOW BEFORE FE OFF CODE)
   ETC. UNTIL NEXT FD
С
  FD
C
  NOTE:
         THE OTHER OCS PROGRAMS ONLY PROVIDE FOR THE
          CAR TO CHANGE ITS MIND (ON-OFF STATUS) SIX
С
          TIMES IN ONE MINUTE! IF THIS SOUNDS OUTRAGEOUS.
          READ ON... I SET UP ONE PROGRAM TO DEAL WITH
\mathbb{C}
C
          THE CAR CHANGING STATUS ONLY FOUR TIMES IN
C
          ONE MINUTE, AND THE VERY FIRST TEST RUN CONTAINED
          AN INSTANCE WITH FIVE CHANGES. OF COURSE. THE
SAME THING HAPPENED WITH THE MODIFIED VERSION
\mathbb{C}
\Box
          TO DEAL WITH FIVE CHANGES. SO FAR, NO LOAN
          HAS BEEN DISCOVERED TO HAVE MORE THAN SIX.
\mathbb{C}
   ANOTHER WRINKLE:
                     SOMETHIMES (LOOSELY FRANSLATED: OFTEN)
C
                     WHEN THE CAR IS TURNED OFF, TWO SPEED
C
                     PAIRS FOLLOW THE FE OFF CODE (PROBABLY
C
                     DUE TO SOME BUFFER BEING EMPTIED BY
C
                     THE RECORDING COMPUTER). OTHER OCS SOFT-
C
                     WARE HANDLES THIS BY IGNORING THE OFFENDING
                     SPEED. THIS PROGRAM WILL FOLLOW SUIT. AND
C
                     JUST SPIT IT OUT.
   ALSO, BESIDES FE ON AND OFF CODES, THE DATA CONTAINS
```

ALSO, BESIDES FE ON AND OFF CODES, THE DATA CONTAINS URBAN<->RURAL CHANGE CODES. FOR EXAMPLE, A CAR CAN BE ON RURAL AND CHANGE TO ON URBAN. WE WANT TO CONTINUE KEEPING TRACK OF THE SPEEDS FOR A MINUTE AFTER A URBAN RURAL CHANGE WHEN IT OCCURS IN THE MIDDLE OF A MINUTE. THESE CHANGES CAN ALSO OCCUR WHEN THE CAR IS OFF, BUT THEY DO NOT CAUSE ANY MAJOR PROBLEMS LIKE WHEN THE CAR IS ON.

```
A 30
C
   I/O UNITS:
C
           MNEUMONIC PURPOSE
\mathbb{C}
  NUMERIC
C
C
      .4
             INPUT
                        ORIGINAL HEX DATA FILE
      5
                        MESSAGES TO USER
C
            MSINK
                        CORRECTED HEX DATA FILE
      7
C
            OUTPUT
                        UNCORRECTED SUSPECTED ERRORS
C
      8
             MESSAG
C
C
\mathbb{C}
   IMPORTANT VARIABLES:
C
С
            TYPE
                     DESCRIPTION
  NAME
C
   ... --- ---
                     DATA LINE JUST READ
C
   LINE
           CHAR*40
C
           CHAR*40 COPY OF LAST FD LINE READ
   FDLINE
   SPEEDS CHAR*40 ARRAY TO STORE A MINUTE'S SPEEDS
C
C
                     USED ONLY FOR PROBLEMS AROUND FC
C
  SNOBS CHAR*2
                     ARRAY TO STORE SPEEDS WITHOUT BLANKS
                     USED TO CHECK SPEEDS
C
С
  TOTLIN INTEGER COUNTER FOR # OF LINES OF SPEEDS BETWEEN FD'S.
   TOTSPD INTEGER COUNTER FOR # OF SPEED BYTES
C
C
C
C
\mathbb{C}
С
C
   DECLARATIONS
      INTEGER INPUT. MSINK, OUTPUT, MESSAG, FIXED
      INTEGER TOTLIN, TOTSPD
Ü
      CHARACTER*40 SPEEDS(11), LINE, FDLINE
      CHARACTER*2 SNOBS(120) /120*1 1/
      CHARACTER*2 FD /'FD'/, FE /'FE'/, FC /'FC'/
      CHARACTER*2 OA /'OA'/, OB /'OB'/, O2 /'O2'/, O3 /'O3'/
\mathbb{C}
      LOGICAL ON /.FALSE./
C
      COMMON /IO/ IMPUT.MSINK.OUTPUT.MESSAG.FIXED
O
  READ A LINE FROM DATA FILE
\Box
   10 READ(INPUT, 50, END=900) LINE
   50 FORMAT(A)
C
C
   CHECK LINE FOR FC. FE. OR FD CODES
      IF (LINE(1:2) .ED. FC) THEN
         WRITE (MESSAG, 60) 'FILE GOOD. FC FOUND HERE: ', FDLINE
   60
       FORMAT(* *,2A)
C
C
         ODD THINGS HAPPEN BROUND THE FC. JUST DUMP SPEEDS
\mathbb{C}
         (WITHOUT CHECKING ANYTHING) AND START COLLECTING THEM
C
         AGAIN AFTER THE FC.
         DO SO I=1.TOTLIN
```

WRITE (OUTPUT, 70) SPEEDS (I)

```
1 124 150
```

A 31

```
70
             FORMAT(A)
   80
          CONTINUE
С
          TOTLIN=0
          TOTSPD=0
C
          WRITE(OUTPUT, 70) LINE
C
      CHECK FOR FE CODE
C
C
      ELSEIF (LINE(1:2) .EQ. FE) THEN
C
         DETERMINE WHICH FE CODE IT IS
C
C
         IF (LINE(4:5) .EQ. DA .OR. LINE(4:5) .EQ. D2) THEN
C
             RE-INITIALIZE SPEED COUNTERS WHEN CAR IS TURNED ON
C
             AND BLANK OUT SPEEDS WITHOUT BLANKS ARRAY. ALSO
C
             RE-INITIALIZE IF THIS IS AN URBAN(=) RURAL TYPE CHANGE:
C
             BUT, FIRST, CHECK PRECEDING SPEEDS.
C
C
            , IF (ON) THEN
                CALL SPDCHK (SNOBS, FDLINE, TOTLIN, TOTSPD)
             ENDIF
C
             ON=. TRUE.
             TOTLIN=0
             TOTSPD=0
C
             DO 90 I=1.120
                SNOBS(I) = ?
   90
             CONTINUE
С
             WRITE (OUTPUT.70) LINE
\Box
C
          ELSEIF (LINE(4:5) .EQ. OB .OR. LINE(4:5) .EQ. O3) THEN
\mathbb{C}
\Box
             CHECK LAST BLOCK OF SPEEDS WHEN CAR IS TURNED OFF.
С
             DO NOT CHECK SPEEDS IS URBANK => RURAL TYPE CHANGE.
             IF (ON) THEN
                ON=.FALSE.
                CALL SPOCHK (SNOBS, FOLINE, TOTLIN, TOTSPO)
             ENDIF
\mathbb{C}
             WRITE (OUTPUT, 70) LINE
\mathbb{C}
C
         ELSE
             WRITE(MSINK, 100) 'BAD FE CODE FOUND HERE: ', LINE
             FORMAT(' ', 10)
\mathbf{c}
             00 TO 999
\Box
          ENDIF
C
С
   CHECK FOR FD CODE
```

```
ELSEIF (LINE(1:2) .EQ. FD) THEN
C
         IF CAR IS ON THEN CHECK THE LAST BLOCK OF SPEEDS
C
         IF (ON) THEN
C
            CHECK PRECEDING BLOCK OF SPEEDS
C
C
             CALL SPDCHK (SNOBS, FDLINE, TOTLIN, TOTSPD)
C
             THEN RE-INITIALIZE SPEED COUNTERS AND BLANK OUT SNOBS
C
C
             TOTLIN=0
             TOTSPD=0
C
             DO 110 I=1,120
                SNOBS(I)=' '
             CONTINUE
  110
\mathbf{C}
         ENDIF
C
         WRITE(OUTPUT,70) LINE
C
         SAVE THIS FD LINE FOR FUTURE USE
C
C
         FDLINE=LINE
С
 NOW, FINALLY, WE ARE SURE WE HAVE A LINE OF SPEED BYTES
  IF THE CAR IS ON, COLLECT SPEEDS FOR CHECKING IN SNOBS.
  IF THE CAR IS OFF, JUST SPIT OUT THE LINE. THIS TAKES
   CARE OF SITUATIONS WHEN FE OFF CODE IS FOLLOWED BY A
   SPEED PAIR.
C
      ELSE
C
         IF (ON) THEN
C
             STORE LINE IN ARRAY SPEEDS
\mathbb{C}
            HAVE TO CHECK FOR ODD SITUATIONS AROUND FC
\mathbb{C}
             IF (TOTLIN .LT. 11) THEN.
                TOTLIN=TOTLIN+1
                SPEEDS (TOTLIN) - LINE
             ENDIF
\mathbb{C}
\mathbf{c}
            NOW, SEE HOW MANY SPEEDS ARE IN THIS LINE
C
            FIRST STRIP OFF TRAILING BLANKS, LÉAVING ONE.
\mathbb{C}
             DD 200 I=40,1, 1
                IF (SPEEDS(TOTLIN)(I:I) .NE. 7 1) GO TO 210
  200
             CONTINUE
  210
            LEN=I+1
C
C
             TAKE OUT BLANKS BETWEEN SPEED BYTES FOR
C
             SUBROUTINE SPOCHE. AT THE SAME TIME.
C
             ADD UP THE NUMBER OF SPEED BYTES.
\mathbb{C}
             DO 300 I=3.LEN
                IF (SPEEDS (TOTLIN) (I:I) .EQ. ' ') THEN
                   TOTSPD=TOTSPD+1
```

جاويت الاستوار

:

```
A 33
```

```
SNOBS (TOTSPD) = SPEEDS (TOTLIN) (I-2: I-1)
```

ENDIF

300

CONTINUE

ELSE

WRITE(OUTPUT, 70) LINE

ENDIF

C THAT'S ALL FOR THIS LINE

C ENDIF

C GO GET THE NEXT LINE

GO TO 10

C

END OF DATA SET

900 WRITE(5,910) 'DATA SET DONE'

910 FORMAT(* 7,A)

999 STOP

END

```
C
C
C
```

SUBROUTINE SPDCHK (SNOBS, FDLINE, TOTLIN, TOTSPD)

C C

C

C C

C C

C

C

SUBROUTINE TO CHECK THE NUMBER OF SPEEDS IN A BLOCK. ERROR MESSAGES PRINTED TO FILE MESSAG AND CORRECTED SPEEDS TO FILE OUTPUT.

THE THEORY OF CORRECTING SPEED ERRORS FOLLOWS:

BASICALLY. THE ONLY TIME WE KNOW DEFINITELY THAT THE SPEEDS ARE CORRECT IS WHEN WE HAVE A "LOW HIGH" PAIR. EXAMPLE: 01 36 01 48 01 69 01 75 01 A1 THESE ARE ALL LOW HIGH PAIRS. HOWEVER, THESE ARE ONLY CONSIDERED GOOD IF THE LOW OCCURS IN AN "ODD" POSITION AND THE HIGH OCCURS IN AN "EVEN" POSITION.

C C C

C

C

C

C

EVEN WHAT WE KNOW ממם

____ LOW HIGH GOOD SPEED PAIR

WE DON'T KNOW ANYTHING -- COULD BE GOOD OR BAD LOW LON

HIGH LOW BAD SPEED PAIR

HIGH HIGH BAD SPEED PAIR

C ·C C

C

C

C

THE DEFINITION OF LOW AND HIGH DOES NOT CONCERN ITSELF WITH THE RELATIONSHIP BETWEEN THE ELEMENTS OF THE PAIR. LOW IS DEFINED AS 00, 01, 02, 03 AND HIGH IS DEFINED AS EVERYTHING ELSE. HOPEFULLY, THE CAR WILL NOT GO ABOVE 03 FF (127.8 MPH)

C Ċ

> INTEGER INPUT, MSINK, OUTPUT, MESSAG, FIXED INTEGER TOTLIN, TOTSPD INTEGER IFIRST, INEXT, LGOOD, FBAD

C

CHARACTER*40 FDLINE CHARACTER*2 SNOBS (120)

 \mathbb{C}

C

LOGICAL LOW, HIGH

C C COMMON /IO/ INPUT, MSINK, OUTPUT, MESSAG, FIXED

C C

C

C

C C

C

CHECK IF THERE ARE 120 SPEED BYTES (40 PAIRS)

IF (TOTSPD .NE. 120) THEN

C C

IF NOT, CHECK IF THERE ARE AN EVEN OR ODD NUMBER OF BYTES

IF (TOTSPD/2*2 .NE. TOTSPD) THEN

PRINT ERROR MESSAGE IF ODD NUMBER OF BYTES AND CONTINUE ON TO TRY AND FIX SPEED ERROR

100

WRITE (MESSAG, 100) 'BAD SPEEDS IN THIS BLOCK: ', FDLINE FORMAT (101,2A)

```
C
            BEGIN LOOKING FOR UN-LOW HIGH PAIRS
C
            L600D=0
            FBAD =0
            IFIRST=1
            INEXT =2
            IF (INEXT .GT. TOTSPD) GO TO 180
  110
            LOW = . FALSE.
            HIGH=.FALSE.
C
            LOW=(SNOBS(IFIRST).EQ.'00' .OR. SNOBS(IFIRST).EQ.'01' .OR.
                 SNOBS(IFIRST).EQ.'02' .OR. SNOBS(IFIRST).EQ.'03')
C
            HIGH=(SNOBS(INEXT).NE.'00' .AND. SNOBS(INEXT).NE.'01' .AND.
                  SNOBS(INEXT).NE. '02' .AND. SNOBS(INEXT).NE. '03')
C
C
            IF LOW HIGH PAIR, WE ARE CONFIDENT THAT SPEED PAIR IS
C
            GOOD. SAVE THE INDEX OF THIS GOOD PAIR FOR LATER USE.
C
            THEN INCREMENT COUNTERS AND LOOK FOR MORE LOW HIGHS.
С
            IF (LOW .AND. HIGH) THEN
               IF (FBAD .NE. 0) THEN
                  WRITE (MESSAG, 150) 'BAD SPEED BETWEEN SPEED PAIR',
                                     LGOOD, LGOOD+1, 'AND ', IFIRST, INEXT,
     .
                                     'BAD SPEED PAIR IS', FBAD, FBAD+1
  150
                  FORMAT(" 1,2(A,214)/A,214)
C
C
                  FIX THESE SPEEDS
C
                  CALL SPDFIX(SNOBS.LGOOD, IFIRST.TOTSPD)
C
                  GO TO 180
C
C
               ELSE
                  LGOOD= IFIRST
                  IFIRST=IFIRST+2
                  INEXT =INEXT +2
                  GO TO 110
               ENDIF
C
C
            NOW, IF A LOW HIGH FAIR DID NOT OCCUR, WE COULD BE IN
C
            TROUBLE. IF THE PAIR IS A LOW LOW, WE DON'T KNOW
C
            ANYTHING, SO CONTINUE PAIRING ALONG UNTIL SOMETHING
C
            DEFINITELY GOOD OR BAD OCCURS. INCREMENT IFIRST AND
C
            INEXT BY TWO, MEEPING THE PAIRING PATTERN, BUT DO
\mathbb{C}
            NOT SET VARIABLE LASTGOOD INDEX.
С
            ELSEIF (LOW .AND. .NOT. HIGH) THEN
               IFIRST=IFIRS(+C
               INEXT =INEXT+2
               60 TO 110
C
            IF THE PAIR IS HIGH LOW OR HIGH HIGH WE KNOW SOMETHING
C
C
            HAS GONE WRONG. HURRAY! CHANGE THE PAIRING PATTERN
            BY SHIFTING IT OVER TO THE RIGHT ONE AND PAIR UP ANOTHER
C
            SET TO TRY TO FIND A (GOOD) LOW HIGH. NOW, WE HAVE TWO
C
            LOW HIGH FAIRS SANDWICHING THE ERROR. SET VARIABLE FIRST BAD.
C
            ELSEIF (.NOT. LOW) THEN
```

FBAD = IFIRST

END

```
IFIRST=INEXT
               INEXT = INEXT+1
               GO TO 110
            ENDIF
C
CC
            NON WE HAVE GONE THROUGH ALL THE SPEEDS IN SEARCH
            OF A BAD PAIR. IF ONE WAS NOT FOUND, FRINT WARNING.
C
  180
            IF (FBAD .EQ. 0) THEN
               WRITE (MESSAG, 185) 'SORRY, UNABLE TO DETECT ERROR'
               FORMAT(' '.A)
  185
            ENDIF
C
C
C
         ELSE
C
         PRINT WARNING MESSAGE IF EVEN NUMBER OF BYTES.
C
С
         THERE MAY BE TWO ERRORS IN ONE BLOCK. OR. THE CAR MAY
C
         HAVE BEEN TURNED ON OR OFF IN THE MIDDLE OF A MINUTE.
C
         DO NOT TRY TO CORRECT THESE ERRORS, BUT PRINT A WARNING.
C
            WRITE (MESSAG, 190) 'LESS THAN 60 SPEEDS IN THIS BLOCK: '.
                                FDLINE
  190
            FORMAT (101,2A)
         ENDIF
      ENDIF
C
   IN ANY CASE, PRINT OUT SPEEDS
   NOTE AWFUL METHOD USED TO PRINT THESE OUT: PROBLEM ENCOUNTERED
   WITH REPEAT SPECIFICATIONS IN FORMAT STATEMENTS. (UNFORTUNATELY
   FOR US. MTS DOESN'T HAVE ALL THE BUGS OUT OF F77 YET)
      I = 1
  200 IF (I .GT. TOTSPD) GO TO 210
         WRITE(OUTPUT, 205)(SNOBS(J), J=I, I+11)
         FORMAT(12(A. ' '))
  205
         I = I + 12
         60 TO 200
  210 CONTINUE
\mathbb{C}
C
C
      RETURN
```

```
1 1 march 1971
C
 C
 C
 C
  C
  C
  C
  C
  \mathbf{c}
  C
  C
  C
 C
  C
 C
 C
 \epsilon
 C
 C
  \mathbb{C}
  \Box
  C
  \mathbb{C}
  \mathbb{C}
  C
  C
  \Box
```

(

C

SUBROUTING HEXDEC (HEXIN1, HEXIN2, DECOUT)

THIS SUBROUTINE CONVERTS A HEX SPEED PAIR INTO A DECIMAL NUMBER.

FOR EXAMPLE, SUPPOSE HEXIN1 = 01 AND HEXIN2 = 30 HEXDEC WOULD RETURN DECOUT = XXX.

THE METHOD IS NOT TERRIBLY STRAIGHTFORWARD BECAUSE HEXIN1 AND HEXIN2 ARE HEX CHARACTERS AND DECOUT IS AN INTEGER. ALSO, THERE ARE PROBLEMS IF THE LEFT-MOST MEMBER OF HEXIN2 IS 8 OR GREATER. THE FAMOUS "B-PROBLEM" ENCOUNTERED IN OCS.S-PREPAR. THERE IS THE ADDITIONAL B-PROBLEM IN THE RIGHT-MOST MEMBER OF HEXIN1 HERE BECAUSE OF THE SHIFTING. IN "NORMAL" SITUATIONS, HEXIN1 IS ALWAYS BETWEEN OO AND O3; HOWEVER, SINCE WE ARE SHIFTING THE PAIRING SCHEME, IT IS LIKELY THAT HEXIN1 MAY BE "BIG" I.E. NOT BETWEEN OO AND O3. THE LONG-HAND WAY OF CONVERTING CHOPS OFF THE LEFT-MOST BINARY DIGIT OF BOTH B PROBLEM HEX DIGITS. SO A CORRECTION MUST BE MADE.

TO CONVERT HEX TO DECIMAL THE LONG WAY:

3C TAKE THE ORIGINAL PAIR 01 CONVERT EACH DIGIT TO BINARY 0000 0001 0011 1100 XXX XXX XXDD SEPARATE OUT DECIMAL PART STICK IT TOGETHER 00101111.00 CONVERT BACK TO DECIMAL: 2**X 76543210 ADD UP COMPONENTS 32+8+4+2+1.00 59.00 DONE!

TO CONVERT HEX TO DECIMAL USING J.P.'S METHOD:

THIS SUBROUTINE IS BUILT ON THE J.P. CONCEPT. HOWEVER,
IT WILL NOT CONCERN ITSELF WITH THE DIVIDE BY FOUR PART.
ALL SPEEDS WILL BE DEALT WITH IN THEIR WHOLE NUMBER
COUNTERPARTS. THIS IS FOUGH ENOUGH WITHOUT HASSLING WITH
THE DECIMAL VALUES. (SUGGESTED BY OLENN THOMPSON)

DECLARATIONS

CHARACTER#2 HEXIN1, HEXIN2 CHARACTER#1 HEXMAP(15)

INTEGER VALI(2), VAL2(2)
INTEGER DECOUT

DATA HEXMAP /101,111.121,131,141,151,161,171, + 181,191,1A1,181,1C1,1D1,1E1,1F1/

BEGIN WITH THE FIRST HEX NUMBER

```
A 38
     DO 200 I=1,2
C
         DO 100 J=1,16
            IF (HEXIN1(I:I) .EQ. HEXMAP(J)) GO TO 150
         CONTINUE
  100
         VAL1(I) = -1
         GO TO 200
C
        VAL1(I)=J-1
  150
C
  200 CONTINUE
С
С
 REPEAT WITH THE SECOND HEX NUMBER
C
     DO 400 I=1.2
\mathsf{C}
         DO 300 J=1,15
            IF (HEXIN2(I:I) .EQ. HEXMAP(J)) GO TO 350
         CONTINUE
  300
C
         VAL2(I) = -1
         GO TO 400
  350
        VAL2(I)=J-1
С
  400 CONTINUE
C FIX THE RIGHT-MOST MEMBER OF THE FIRST SPEED
  AND THE LEFT-MOST MEMBER OF THE SECOND SPEED.
\mathbb{C}
      IF (VAL1(2) .GE. 8) THEN
         -VAL1(2) = VAL1(2) + 8
      ENDIF
С
      IF (VAL2(1) .GE. 8) THEM
          VAL2(1) = VAL2(1) -8
      ENDIF
\mathbb{C}
\Box
  MOW DO THE MULTIPLYING
C
      DECOUT= 128*VAL1(2) | 16*VAL2(1) | VAL2(2)
C
      RETURN
      END
```

```
C
C
C
C
C
C
      SUBROUTINE DECHEX (DECIN, HEX1, HEX2)
Ċ
C
   THIS SUBROUTINE CONVERTS A DECIMAL SPEED INTO A HEX SPEED PAIR.
   IT IS THE INVERSE OF SUBROUTINE HEXDEC. SEE THAT SUBROUTINE
C
С
   FOR A DETAILED EXPLANATION OF THE HEX SPEED CONVERSION.
С
С
С
   DECLARATIONS
      CHARACTER*2 HEX1, HEX2
      CHARACTER*1 HEXMAP(16)
С
      INTEGER VAL1(2), VAL2(2)
      INTEGER DECIN
C
      DATA HEXMAP /'0','1','2','3','4','5','6','7',
                     78', 79', 7A', 7B', 7C', 7D', 7E', 7F'/
C
C
   TURN THE DECIMAL NUMBER INTO ITS HEX EQUIVALENT
      VAL1(1)=0
      VAL1(2) = DECIN/128
      TEMP
             =DECIN-(VAL1(2)*128)
      VAL2(1)=TEMP/16
      VAL2(2) = TEMP - (VAL2(1) * 15)
С
   NOW CONVERT EACH NUMBER INTO A CHARACTER
C
      HEX1(1:1) = HEXMAP(VAL1(1)+1)
      HEX1(2:2) = HEXMAP(VAL1(2)+1)
С
      HEX2(1:1) = HEXMAP(VAL2(1)+1)
      HEX2(2:2) = HEXMAP(VAL2(2)+1)
\Box
\mathbb{C}
      RETURN
      END
```

C

C

C

C

C

C

C

C

C

C

C

C

C

C

С

 \mathbb{C}

C

0

C

C

C

C

C

С

C

C

SUBROLTTHE SPOFIX (SNOBS. IGOOD1, IGOOD2, TOTSPD)

SUBROUTINE TO FIND INCORRECT SPEED BETWEEN TWO GOOD SPEEDS. NOT AN ALL-TOGETHER EASY TASK, SINCE WE HAVE NO IDEA HOW MANY SPEEDS ARE IN BETWEEN THESE TWO GOOD SPEEDS. EXAMPLE:

C EXAMPLE: C -----

L H H L H 1 POSSIBLE PLACE FOR ERROR L H L L H L H 2 POSSIBLE PLACES FOR ERROR L H L L L H L H 3 POSSIBLE PLACES FOR ERROR ETC.

THE GENERAL IDEA OF SUBROUTINE SPDFIX IS TO TRY ALL POSSIBLE COMBINATIONS OF SPEED PAIRS, EACH TIME CHOOSING A DIFFERENT HALF PAIR TO SKIP. THE SPECIFIC APPROACH WILL MINIMIZE THE SUM OF THE SQUARES OF THE CHANGES IN THE SPEED. THIS PROGRAM WILL KEEP A RUNNING SUM OF THE SQUARED CHANGES AND A "RUNNING MINIMUM" SUM. AFTER TRYING ALL THE POSSIBLE PAIRING COMBINATIONS, WE WILL KNOW WHICH SPEED IS MISSING AND CAN REPLACE IT WITH THE AVERAGE OF THE TWO GOOD SPEEDS ON EITHER SIDE.

C HERE IS AN EXAMPLE:

SUPPOSE OUR DATA LINE SEGMENT LINE LOOKED LIKE THIS:

01 5B 01 5C 5A 01 5B L H L H H L H

NOW IT IS OBVIOUS TO US THAT THE LINE SHOULD BE:

01 5B 01 5C 01 5A 01 5B

BUT, LET'S PRETEND WE ARE A (DUMB) COMPUTER:

THE POSSIBLE PAIRINGS ARE:

1) 01 5B 2) 01 5B 01 5C 5C 5A 01 5B 01 5B

THESE TRANSLATE INTO:

C 1) 219 2) 219 C 730 220 C 219 219

NOW THE SUM OF THE SQUARED DIFFERENCES ARE:

SUM1 = 511**2 + 511**2 = HUGE NUMBER

SUM2 = 1**2 + 1**2

```
= 2
C
C
   SO THE WINNER IS SUM2
  NOW PUT THE AVERAGE OF THE TWO SURROUNDING 'GOOD'. PAIRS
C
   INTO THE SPOT WHERE ERROR WAS:
C
     01 5B 01 5B 01 5B
C
C
          WHEN WE DO THIS AVERAGING, IT IS VERY LIKELY THAT
C
  NOTE:
          THE GOOD PART OF THE BAD SPEED (?) WILL BE LOST.
C
          LIKE IN THIS EXAMPLE, 5A WAS GOOD BUT WHEN WE
C
          AVERAGED 5C AND 5B WE GOT 5B. ALL IS NOT LOST,
C
          WE HAVE DECIDED TO BE HAPPY WITH THIS AVERAGED
C
C
          NUMBER.
C
C
C
C
   DECLARATIONS
C

    INTEGER INPUT.MSINK.OUTPUT.MESSAG.FIXED

      INTEGER TOTSPD
      INTEGER DIFF, SHIFTS, AVE, AVE1, AVE2, SUM
      INTEGER DEC1, DEC2
      INTEGER WHICHS
C
      CHARACTER*2 SNDBS(120), TEMP(120), FIX1, FIX2
C
      COMMON /IO/ INPUT, MSINK, OUTPUT, MESSAG, FIXED
C
C
  DEBUG
C
C
      WRITE(FIXED, 5) TOTSPD
С
    5 FORMAT(* 1,14)
C
      I = 1
C
    5 IF ( I .GT. TOTSPD) GO TO 8
         WRITE(FIXED, 10) (SNOBS(J), J=I, I+11)
C
         FORMAT(12(A, 2 2))
C
        1=1+12
\mathbb{C}
         60 TO 6
\mathbb{C}
    8 CONTINUE
\mathbb{C}
\Box
  BEGIN BY CHECKING THAT THERE ARE INDEED TWO GOOD SPEED PAIRS
С
  SENT HERE.
C
      IF (IGOOD1 .EQ. 0) THEN
         WRITE(MESSAG, 20)'SORRY, NO FIRST LOW-HIGH FAIR. CANNOT FIX'
         FORMAT(' ',A)
   20
         RETURN
      ENDIF
C
  NEXT FIND OUT HOW MANY SPEEDS ARE IN BETWEEN TWO
С
   GOOD SPEED PAIRS. THIS MUST BE AN ODD NUMBER.
C
      DIFF=1600D2-1600D1
      IF (DIFF/2*2 .EQ. DIFF) THEN
         WRITE(MESSAG, 50) SORRY, EVEN NUMBER OF SPEEDS. CANNOT FIX.
         FORMAT(7 7,A)
   50
         RETURN
      ENDIF
C
C
  NOW DECIDE HOW MANY DIFFERENT PAIRINGS THERE ARE TO TRY MISSING
```

:

F. W/

```
SPEED IN EACH POSSIBLE PLACE.
C
      SHIFTS=DIFF/2
C
   NOW TRY THE MISSING SPEED IN EACH PLACE
C
   ASSUME EACH: IS IN THE 2*I+1 PLACE. I.E. IF SHIFTS=3, THEN TRY
C
   THE 3RD, STHE AND 7TH SPEEDS.
C
      DO 300 I=1.SHIFTS
         SUM=0
\mathbf{c}
         GET THE DECIMAL EQUIVALENT OF THE FIRST GOOD PAIR
C
C
         J=1G00D1
         CALL HEXDEC (SNOBS (J), SNOBS (J+1), DEC1)
C
         GET THE DECIMAL EQUIVALENT OF THE NEXT PAIR
C
C
  100
         J=J+2
         IF (J .GT. IGOOD2) GO TO 200
C
C
            CHECK IF THIS PAIR SHOULD BE SKIPPED
C
            IF (J .EQ. 2*I+IGOOD1) J=J+1
C
            NOW GET THE DECIMAL EQUIVALENT OF THE NEXT PAIR
C
C
            CALL HEXDEC (SNOBS (J), SNOBS (J+1), DEC2)
C
            TAKE THE AVERAGE OF THE TWO SPEEDS
C
C
            AVE = (DEC1 + DEC2)/2
C
С
            KEEP A RUNNING SUM OF THE SQUARES OF THE DIFFERENCES
C
            SUM=SUM+((DEC1-AVE)**2 + (DEC2-AVE)**2)
C
C
            GET READY FOR THE NEXT PAIR
C
            DEC1-DEC2
         GO TO 100
C
C
         NOW KEEP TRACK OF THE SMALLEST SUM
C
         IF (I .EQ. 1) THEN
 200
            MIN=SUM
            WHICHS=I
         ELSEIF (SUM .LT. MIN) THEN
            MIN=SUM
            WHICHS=I
         ENDIF
C
С
  300 CONTINUE
C
C
С
  NOW WE KNOW WHICH SCENARIO GAVE US THE SMALLEST SUM OF THE
   SQUARED DIFFERENCES. AMOTHER PROBLEM ARISES: WE HAVE TO
   FIND THE TWO NEAREST GOOD PAIRS SURROUNDING THE ERROR AND
   CALCULATE THEIR AVERAGE. THE AVERAGE IS EASY, THE FINDING
   IS NOT.
```

```
C
      CALL HEXDEC (SNOBS (WHICHS*2+IGOOD1-2),
                    SNOBS(WHICHS*2+IGOOD1-1), AVE1)
      CALL HEXDEC (SNOBS (WHICHS * 2+IGOOD 1+1),
                    SNOBS(WHICHS*2+IGOOD1+2), AVE2)
C
      AVE= (AVE1+AVE2)/2
C
      CALL DECHEX (AVE.FIX1,FIX2)
C
   NOW INSERT THE CORRECT HEX PAIR INTO THE SPEED ARRAY.
C
   PROBLEM: THE PAIR GOES WHERE A HALF PAIR WAS BEFORE,
C
C
              SO WILL HAVE TO MOVE THE REST OF THE SNOBS
C
              ARRAY DOWN ONE.
C
c
C
   DEBUG
C
C
      WRITE (FIXED, 5) TOTSPD
      WRITE (FIXED, 11) MIN, WHICHS, FIX1, FIX2
C
C
   11 FORMAT(' ',2110,2A)
      SNOBS(WHICHS*2+IGOOD1)=FIX1
C
      DO 400 I=WHICHS*2+IGOOD1+2.TOTSPD+1
          TEMP(I)=SNOBS(I-1)
  400 CONTINUE
      DO 450 I=WHICHS*2+ICOOD1+2.TOTSPD+1
          SNOBS(I) = TEMP(I)
  450 CONTINUE
C
      SNOBS(WHICHS*2+IGOOD1+1)=FIX2
C
      TOTSPD=TOTSPD+1
C
\mathbb{C}
\mathbb{C}
\mathbb{C}
  DEBUG
C
\mathbb{C}
      WRITE(FIXED, 5) TOTSPD
C 500 IF (I .OT. TOTSPD) GO TO 510
\Box
          WRITE(FIXED, 10) (SNOBS(J), J=I, I+11)
C
          I=I+12
          GO TO 500
C 510 CONTINUE
      RETURN
      END
```

:

G. BEUCK DATE

COMMON /IO/ INPUT, MSINK, OUTPUT, MESSAG, FIXED

INTEGER INPUT, MSINK, OUTPUT, MESSAG, FIXED

DATA IN 141, MBINK /6/, OUTPUT /7/, MESSAG /8/,

END

:

С

C

C ·

OCS.S-PREPAR

```
A 46
        SNH7: OCS. S-PREPAR HOLDS THE NEWEST VERSION OF THE OCS
C
        TRANSCRIPTION PROGRAM. IT CONVERTS HEX DATA INTO
C
        DECIMAL VALUES AND WRITES THEM TO THREE FILES:
                                  PSEUDO-STRIP CHART USED FOR VISUAL
             CHART:
C
                                    EDITING OF SPEED DATA.
C
             RESULT: BLOCK DATA LAYOUT WITH & ROWS OF 10
C
                                    SPEEDS FOLLOWING THE ID RECORD.
C
                                   BLOCK DATA LAYOUT WITH FLAGS TO HELP THE
C
             POST:
                                    ANALYSIS PROGRAM READ IT. THIS FILE
C
C
                                    ONLY CONTAINS DATA BEGINNING THE MINUTE
                                    AFTER THE CALIBRATION MODE.
C
C
        THIS PROORAM IS A COMPOSITE OF:
С
            1. J.P.CHENG'S ORIGINAL STRIP CHART PROGRAM
C
             2. R.L.PARSON'S MODIFICATIONS TO DEAL WITH 5 TEMPERATURES
C
             3. M.K.MELICK'S MODIFICATIONS FOR DIFFERENT DATA LAYOUTS
C
C
C
\mathbb{C}
C
       THIS PROGRAM ALSO CONTAINS A SECTION TO CORRECT TEMPERATURE
C
        DATA:
C
             CORRECT = M * SENSOR + B
C
                  WHERE M = 0.82473
C
                                 B = 0.41840 WHEN SENSOR <= 90
C
                  AND
C
                                 M = 0.51254
C
                                  B = 28.847 WHEN SENSOR > 90
C
        THESE COEFFICIENTS WERE DETERMINED FROM MIDAS ANALYSIS OF
C
C
        TEMPERATURE CALIBRATION DATA.
\mathbb{C}
C
        I/O UNIT ASSIGNMENTS: .
C
\mathbb{C}
            MMEMONIC UNIT # FILE ASSIGNMENT PURPOSE
C
             The second control of 
C
                                                           KHEX DATA FILES IMPUT HEXIDECIMAL ENGINE DATA
             HEX
                                           4
                                                                  *MSOURCE* USER RESPONSES TO PROMPTS
*MSINK* PROMPTS TO USER
                                           5
C
             ANSWER
                                           Ġ
7
C
             ASK
                                                           (OUTPUT FILE) CONVERSION RESULTS
\mathbb{C}
             RESULT
                                             8 (OUTPUT FILE) CONVERSION RESULTS PLUS FLAGS
7 (OUTPUT FILE) STRIP CHART OF SPEEDS
\mathbb{C}
                                           8
              PUST
\mathbb{C}
             CHART
\mathbb{C}
\mathbb{C}
      TLAG ASSIGNMENTS:
C.
C
O
C
```

MNEMONIC	HEX	VALUE	EXPLANATION
FLAG S (1)	FE OD FE OD FE OD	1 2	CAR ONUREAN CAR OFFUREAN CAR ONRURAL
•	FE OU FC FC	4 ,55 &	CAR OFFRURAL CALIBRATION MODE FROBLEM: FF CODE
FLAGS(2) FLAGS(3,5,7 FLAGS(4,5,8	,9,11)	1 - 50 1 - 4 1 - 50	NUMBER OF SPEEDS FOLLOWING SWITCH CHANGE CODE NUMBER OF SPEEDS FOLLOWING

THE ORIGINAL PROGRAM WAS WRITTEN APR 04, 1979 BY J. P. CHENG. THE LAST VERSION BEFORE THIS ONE WAS COMPLETED MAY 24, 1982 BY SDSB.

0

:

```
MODIFICATIONS MADE OCT 22, 1982 BY R. PARSONS, CSC, UNDER DELIVERY
  ORDER 6363-201, SUBTASK 025 (OPERATIONAL CHARACTERISTICS STUDY).
  FURTHER MODIFICATIONS MADE MARCH 8, 1983 BY M. K. MELICK, CSC.
C
  UNDER DELIVERY ORDER 4343-201, SUBTASK 025, OPERATIONAL
C
  CHARACTERISTICS STUDY.
  TEMPERATURE CORRECTION CODE ADDED APRIL 19,1983 BY M. K. MELICK.
C
  BUG IN POSTFL WRITE-OUT FIXED APRIL 25, 1983, MKM.
C
C
  01-20-84: MARY KAY MELICK. CHANGES MADE TO FACILITATE *BATCH*
C
              RUNS OF PREPAR. SEE LINE 144.
C
C
      INTEGER ASK, ANSWER, HEX, RESULT, POST, CHART
      INTEGER FCSW
      LOGICAL*1 CH(600), SIXTSW
      LOGICAL EQUC
      COMMON /IO/ ASK. ANSWER, HEX. RESULT, POST, CHART
      COMMON /BEGIN/ FCSW
      COMMON /LOGIC/ SIXTSW
C
C
  INITIATE RUN.
C
     CALL INIT
C
  II: FIRST CHARACTER'S INDEX RIGHT AFTER "FD" FIELD
  12: LAST CHARACTER'S INDEX JUST BEFORE "FD" FIELD
  II: LAST CHARACTER'S INDEX WHICH IS NOT A BLANK
  L1: FIRST CHARACTER'S INDEX OF A DATA LINE TO BE READ
 L2: LAST CHARACTER'S INDEX OF A DATA LINE TO BE READ
  ip: INDEX FOINTER FOR STARTING TO SEARCH A FIELD
 LOCATE THE FIRST 'FD' FIELD IN THE DATA FILE.
C' DATA HAS BEEN RE-FORMATTED BY APPLE PROGRAM
  SO THAT ALL FD. FE, FC CODES BEGIN IN COLUMN 1.
  ALSO, ONLY ONE FD, FE, OR FC PER LINE.
      IP = 1
      L.1 == 1
      L2 = 40
   10 READ (HEX.30.END=210) (CH(L).L=1.70)
   30 FORMAT (20(2A1,1X))
      CALL FINDST(CH, 40, 'FD', 2, IP, IFNSH, &10)
C
·(C)
  CUT OFF BLANK FIELDS AT RIGHT END OF DATA LINE.
C
      00.50 \text{ K} = 1, 20
        II = 40 - 2 * (K - 1)
        IF (EQUC(* *,CH(II))) GO TO 50
        GO TO 70
   50 CONTINUE
C
   70 I1 = IFNSH + 2 ·
      IP = IFNSH + 2
      L2 = II
C
\mathbb{C}
  THIS SECTION COMMENTED OUT SINCE APPLE RE-FORMATTED
   DATA DOES NOT HAVE TWO FD'S ON ONE LINE.
  LOCATE THE SECOND 'FD' FIELD IN THIS DATA LINE.
```

3

```
F1.1:100
```

Ľ

```
A 48
CMK CALL FINDST(CH, L2, 'FD', 2, IP, IFNSH, &170)
CMK
    GO TO 190
С
C LOCATE THE NEXT 'FD' FIELD.
C RESET CHARACTER INDICES FIRST
   SO L1 = II + 1
     L2 = II + 40
      IP = L1
   90 READ (HEX.30, END=210) (CH(L), L=L1, L2)
      CALL FINDST(CH, L2, 'FD', 2, IP, IFNSH, &110)
С
  CUT OFF BLANK FIELDS.
  110 DO 130 K = 1.20
        II = L2 - 2 * (K - 1)
        IF (EQUC(' ',CH(II))) 60 TO 130
        GO TO 150
  130 CONTINUE
\mathsf{C}
   IF THE NEXT 'FD' WAS FOUND, PROCESS CHARACTERS BETWEEN THE
  "FD" FIELDS. IF NEXT "FD" WAS NOT FOUND (IFNSH = 0).
C RESET L1, L2 AND IP (INDEX POINTER), AND CONTINUE SEARCH.
  150 IF (IFNSH .NE. 0) GO TO 190
     60 TO 80
C
C
 WORK ON THE CHARACTERS BETWEEN THE TWO 'FD' FIELDS.
C
  190 I2 = IFNSH - 1
     CALL OCSOUT(CH, I1, I2)
  BACKUP THE HEX FILE LINEPOINTER ONE LINE TO ALLOW REREAD OF
\Box
C
  CURRENT LINE AND SET INDICES TO SEARCH FOR MEXT 'FD' FIELD.
\mathbb{C}
      BACKSPACE HEX
      I1 = (I2 - L1) + 4
     L1 = 1
     L2 = 40
      IF = 11
      60 TO 90
  210 CALL CMD('$SOURCE OCS.C-TSAVE ',20)
      STOP
      END
```

```
1515. TZZT _
```

```
A 49
```

```
C
C
C
C
C
      SUBROUTINE INIT
C
   INIT PROMPTS FOR THE RUN TITLE, WRITES THE RESULT, CHART AND
C
   POST TABLE HEADERS. PROMPTS FOR THE NUMBER OF TEMPERATURES AND
C
   SETS THE LOGIC SWITCH FOR THE NUMBER READ.
      INTEGER ASK, ANSWER, HEX. RESULT, POST, CHART
      INTEGER NIEMPS
      REAL #4 COMM
      LOGICAL*1 SIXTSW, FMT
      LOGICAL*1 AST, BLNK, PT(81)
      DIMENSION COMM(25), FMT(1)
      DATA EMT / ** /
      COMMON /IO/ ASK, ANSWER, HEX, RESULT, POST, CHART
      COMMON /LOGIC/ SIXTSW
      COMMON /GRAPH/ AST, BLNK, PT
C
  INPUT COMMENT STATEMENT FOR OUTPUT HEADING.
C
C
      WRITE (ASK, 10)
      READ (ANSWER, 30) COMM
   10 FORMAT (' ', 'YOU ARE IN THE OCS PROGRÂM, ENTER INPUT COMMENTS'.
             ' (MAX OF 100 CHARACTERS)', /' ', 10('---:---I'))
    -+-
   30 FORMAT (25A4)
С
C
  WRITE OUTPUT HEADING.
C
      WRITE (CHART,50) COMM
      WRITE (RESULT.50) COMM
   15 7)
\mathbb{C}
C
  NUMBER OF TEMPERATURES MUST BE 5 OR 5.
   70 WRITE (ASK.75)
   75 FORMAT ('0', 'ENTER NUMBER OF TEMPERATURES (5 OR 6):')
      READ (ANSWER, FMT) NIEMPS
      IF (MTEMPS .EQ. 4) 00 TO 80
      IF (NTEMPS .NE. 5) GO TO 70
     SIXTSW = .FALSE.
\mathbf{C}
\mathbb{C}
  WRITE NUMBER OF TEMPERATURES TO POST
   80 WRITE (POST, 85) NTEMPS
   95 FORMAT(" ", I1)
C
   INTIALIZE ARRAY PT FOR CRAPHICS
\Box
\mathbb{C}
      DO 90 I=1,81
         PT(I)=BLNK
   90 CONTINUE
C.
      RETURN
      END
```

```
00000
```

C

C

C

C

C

C

0

SUBROUTINE OCSOUT(CH, I1, I2)

THE SUBROUTINE "OCSOUT" SEPARATES, CONVERTS, AND OUTPUTS TIME, VEHICLE ID, TEMPERATURE, SWITCH, AND SPEED VALUES FROM THE HEX DATA FILE. (BY J. P. CHENG 04/04/79)

MODIFICATIONS TO WRITE TO FILE POST ASSUME THAT THE FIRST FE CODE FOLLOWS THE FIRST FD. IF THIS IS NOT THE CASE, IT WILL BE NECESSARY TO CHANGE THE HEX INPUT FILE SO THAT THE FIRST FD PRECEDES THE FE CODE. THIS WILL NOT CHANGE ANY OF THE STATISTICS SINCE THE POST FILE ONLY CONTAINS DATA STARTING THE MINUTE AFTER THE CALIBRATION MODE. ASSUME FURTHER THAT THE CALIBRATION MODE FOLLOWS THE FIRST FD.

IF, IN ANY MINUTE, THERE HAPPENS TO BE MORE
THAN 60 SPEEDS, THE POST FILE WILL CONTAIN ONLY THE FIRST
60-THE REST BEING IGNORED.

INTEGER ASK, ANSWER, HEX, RESULT, POST, CHART
INTEGER FCSW
INTEGER NTEMPS, XX, FLAGS(12)
INTEGER FLGCT, SAVEFL
LOGICAL*1 CH(600), IN(14), BLANK, SIXTSW
LOGICAL*1 AST, BLNK, PT(81)
DIMENSION ITEMP(5), BUFFER(50), POSTBF(50)
DATA BLANK /' '/
DATA XX /' XX'/
DATA SAVEFL /1/
COMMON /IO/ ASK, ANSWER, HEX, RESULT, POST, CHART
COMMON /BEGIN/ FCSW
COMMON /CRAFH/ AST, BLNK, PT

0

ACCORDING TO REQUESTOR, NO SPLIT HEX PAIRS WILL OCCUR IN INPUT DATA: ...00 77 00 70 E0 ... INSTEAD OF ... 00 77 00 7E ... WILL NOT HAPPEN. THEREFORE THE NUMBER OF CHARACTERS TO BE PROCESSED IS ALWAYS AN EVEN NUMBER. IN ADDITION, THE NUMBER OF SPEEDS IS ALWAYS A MULTIPLE OF 4. SINCE EACH OPEED IS WRITTEN INTO THE INPUT DATA FILE AS TWO HEX PAIRS.

C C C

INITIALIZE NUMBER OF TEMPERATURES (NIEMPS) AS PER SIXTHSW

С

NTEMPS = 5 IF (SIXTSW) NTEMPS = 2

0

INITIALIZE FLAGS AND FLUCT

C

FLGCT=1 DO 20 I=1,12 FLAGS(I)=0 20 CONTINUE FLAGS(1)=SAVEFL

C

OBTAIN DD-HH-MM. : 101 % 102 CHARACTERS.

0

ASSUME I2 > I1 (SEQUENCE "FD FD" NEVER OCCURS). THUS, INT ALWAYS 0.

```
INT = I2 - I1 + 1
      DO 10 ID = 1.10
         IN(ID) = BLANK
   10 CONTINUE
C
   INT >= 10 => STORE (NO CONVERSION REQUIRED) THE FIRST 10 CHARACTERS.
C
C
   IN IN(1) THRU IN(10). THESE CORRESPOND TO DD HH MM VEID" IN OUTPUT.
C
   INT < 10 => BAD DATA - DUMP WHAT'S THERE (UNCONVERTED) INTO IN(1)
С
  THROUGH IN(INT).
\mathbf{c}
      IDTEST = 10
      IF (INT .LT. 10) IDTEST = INT
      DO 30 ID = 1. IDTEST
        IN(ID) = CH(I1 + ID - 1)
   30 CONTINUE
С
C
   INITIALIZE TEMPERATURES TO ZERO.
C
      DO 50 IT = 1. &
        ITEMP(IT) = 0
   50 CONTINUE
C
   INT < 12 => PROCESSING DONE => TEMPERATURES ALL O. NO CODES, AND N
C
   SPEEDS.
C
      IF (INT .LT. 12) GO TO 370
C
C
   FOR SIX TEMPERATURES:
С
     INT >= 22 => CONVERT THE NEXT & HEX PAIRS TO THE CORRESPONDING &
     TEMPERATURES, IN DEGREES CENTIGRADE, AND STORE IN ITEMP(1) THRU
\mathbb{C}
\mathbb{C}
     ITEMP(4).
C
     INT ( 22 => MISSING DATA, CONVERT THE (INT-10)/2 PAIRS AND USE THE
\mathbb{C}
     DEFAULT TEROES FOR THE MISSING PAIRS.
\mathbb{C}
\mathbb{C}
\mathbb{C}
\mathbb{C}
  FOR FIVE TEMPERATURES:
     INT >= 20 => CONVERT THE HEXT 5 MEX PAIRS TO THE CORRESPONDING 5
\mathbb{C}
     TEMPERATURES. IN DEGREES CENTIGRADE. AND STORE IN ITEMP(1) THRU
\mathbb{C}
     ITEMP(5). THE OUTPUT FIELD FOR THE SIXTH TEMPERATURE WILL CONTAIN "XX"
C
C
     TO INDICATE UNLY FIVE TEMPERATURES.
1
    INT < 20 => MISSING DATA, CONVERT THE (INV-10)/2 PAIRS AND USE THE
    DEFAULT ZEROES FOR THE MISSING PAIRS.
\mathbb{C}
\mathbb{C}
      K1 = I1 + 8
C
  KI IS THE INDEX OF THE URD DIGIT OF THE VEHICLE ID.
C
C
      ITTEST - NITEMPS
      IF (INT .LT. ((NTEMES#2) + 10)) ITTEST = (INT - 10) / 2
      DO 70 IT = 1. ITTEST
        K1 = K1 + 2
C
   K1, K1+1 ARE INDICES OF TWO HEX DIGITS IN "CH" REFRESENTING A
\mathbb{C}
C
   TEMPERATURE.
\mathbb{C}
   TEMPERATURE CORRECTION HERE.
C
С
         CALL CONTWO(CH, F1, F1 F 1, IT1, IT2)
```

```
무조리님 "하다라 _
         ITEMP(IT) = (16*IT1) + IT2 - 57
         RTEMP=FLOAT (ITEMP (IT))
        IF (RTEMP .LE. 90.) RTEMP=(0.82473*RTEMP)+0.4184
         IF (RTEMP .GT. 90.) RTEMP=(0.51254*RTEMP)+28.847
         ITEMP(IT)=IFIX(RTEMP)
    70 CONTINUE
       IF (SIXTSW) WRITE (RESULT, 230) (IN(L), L=1,10), ITEMP
       IF (SIXTSW) WRITE (CHART, 230) (IN(L), L=1, 10), ITEMP
C
       IF ( .NOT. SIXTSW) WRITE (RESULT, 330) (IN(L), L=1,10), (ITEMP(L),
             L=1.5). XX
       IF ( .NOT. SIXTSW) WRITE (CHART, 330) (IN(L), L=1,10), (ITEMP(L),
            L=1,5), XX
C
      N = 0
      NTOTAL=N
C
C
   FOR SIX TEMPERATURES:
      INT < 24 => PROCESSING DONE. INT > 24 => CHECK REMAINING (INT-22)
\mathbb{C}
     HEX PAIR(S) FOR THE FF, FC, FE, AND SPEED CASES AND PROCESS ACCORDINGLY.
C
C
C
C
   FOR FIVE TEMPERATURES:
\mathbb{C}
      INT < 22 => PROCESSING DONE. INT > 22 => CHECK REMAINING (INT-20)
   HEX PAIRS FOR THE FF, FC, FE, AND SPEED CASES AND PROCESS
C
C
     ACCORDINGLY.
\mathbb{C}
      IF (INT .LT. ((NTEMPS*2) + 12)) GO TO 350
   90 IGATE = 0
   110 K1 = K1 + 2
      K2 = K1 + 1
\mathbb{C}
C
   K1. K2 ARE INDICES OF NEXT PAIR OF HEX DIGITS IN "CH".
       IF (K2 + 2 .GT. I2) GO TO 350
       IF (IGATE .ME. 0) GO TO 130
\mathbb{C}
       IN(11) = CH(K1)
       IM(12) = CH(K2)
       IM(13) = CH(k1 + 2)
       IN(14) = CH(K2 + 2)
\mathbb{C}
   IF NO "FF," "FC." OR "FE" ARE FOUND, THEN THE DEXT
\mathbb{C}
   HEX DIGITS REPRESENT ONE SPEED DATUM POINT.
. C
   130 CALL FINDST(CH. K2, 'FF', 2, K1, IFNSH, &150)
       IF (N .NE. 0) WRITE (DESULT, 250) (BUFFER(I), I=1,N)
       FLGCT=FLGCT+1
       FLAGS (FLGCT) =N
       FLGCT=FLGCT+1
       FLAGS(FLGCT) = 5
       N = 0
0
       WRITE (RESULT, 290)
       WRITE (CHART, 290)
C
       60 TO 90
   150 CALL FINDST(CH, K2, 'FC', 2, K1, IFNSH, &170)
       IF (N .NE. 0) WRITE (RESULT,250) (BUFFER(I),I=1.N)
```

FLGCT=FLGCT+1

```
ティリファインブ _
```

A 53

```
FCSW = FCSW+1
      FLAGS (FLGCT) =N
      FLGCT=FLGCT+1
      FLAGS (FLGCT) =5
      N = 0
C
      WRITE (RESULT, 310)
      WRITE (CHART, 310)
\mathbb{C}
      GO TO 90
C
  170 CALL FINDST(CH, K2, 'FE', 2, K1, IFNSH, &190)
      IH = IFNSH
      IN(11) = CH(IH)
      IN(12) = CH(IH + 1)
      IN(13) = CH(IH + 2)
      IN(14) = CH(IH + 3)
C
      IF (N .NE. 0) WRITE (RESULT, 250) (BUFFER(I), I=1, N)
      WRITE (CHART, 332) (IN(L), L=11, 14)
C
  DETERMINE FE CODE
C
      FLGCT=FLGCT+1
      FLAGS (FLGCT) =N
      CALL FINDST(CH, K2+2, '0A', 2, K1+2, IFMD, %174)
      FLGCT=FLGCT+1
      FLAGS (FLGCT) =1
      GO TO 195
C
  174 CALL FINDST(CH, K2+2, 'OB', 2, K1+2, TFND, &176)
      FLOCT=FLOCT+1
      FLAGS(FLOCT) = 2
      GO TO 185
\mathbb{C}
  174 CALL FINDST(CH,K2+2,'02',2,K1+2,IFN5,&180)
      FLCCT=FLCCT+1
      FLAGS (FLGCT) =3
      00 TO 185
  180 CALL FINDST(CH, K2+2, 1031, 2, K1/2, IFND, & 186)
      FLOOT-FLOOT FL
      FLAGS (FLGCT) =4
  185 N = 0
      WRITE (RESULT, 270) (IN(L).L=11,14)
      IGATE # 1
      GO TO 210
  136 WRITE (RESULT, 280)
\mathbb{C}
  SEND FIRST PAIR OF CREED DATE TO BE CONVERTED
Ü
\mathbb{C}
  170 CALL CONTWO(CH. K1, D2, I/1, [T2)
      SPEED - ITL * 15 + 172
C
      IF (IT1 .GT. 0) GO TO 110
   SEND SECOND PAIR OF GREED SYTE TO BE CONVERTED. BUT FIRST.
   IT MUST BE CHECKED FOR THE '8' PROBLEM
C FIRST PLACE OF SECOND FAIR GETS OUT OFF WHEN CONVERTING MANUALLY.
   EXAMPLE: 00 B4 => 00000000 10110100 => 00001101.00 => 13.0.
   CONTWO GIVES (0*128 + 11*15 +1)/4 = 45. BAD NEWS.
```

```
7 17 0 COO _
```

```
C SOLUTION: CHANGE B4 TO THE EQUIVALENT 34 => 00110100 => 13.0.
      CALL CONFIX(CH, K1 + 2, K1 + 3, IT1, IT2)
      SPEED = (SPEED*128 + IT1*16 + IT2) / 4
C
  WRITE SPEED TO STRIP CHART
C
      IFIXED=(SPEED+1.5)
      IF (IFIXED .GT. 81) IFIXED=81
      PT(IFIXED) = AST
     WRITE(CHART, 331)SPEED.FT
C
      PT(IFIXED)=BLNK
C
   REPEAT DATE AND TIME AFTER 20TH AND 40TH SPEED SO THAT
   THERE IS ALWAYS AN IDENTIFIER SHOWING ON THE SCREEN.
      IF (N .EQ. 19 .OR. N .EQ. 39)
         WRITE(CHART, 230)(IN(L), L=1, 10)
C
C
   WRITE SPEED TO BUFFER FOR WRITING TO RESULT AND POST LATER
C
      N=N+1
      BUFFER (N) =SPEED
      IF (NTOTAL+1 .GT. 40) GO TO 210
      NTOTAL≔NTOTAL+1
      FOSTBF (NTOTAL) =SPEED
C
  210 \text{ K1} = \text{K1} + 2
C
      GO TO 110
C:
  FORMAT STATEMENTS
  230 FORMAT ('-', 3(2A1,1X), 4A1, 5I4)
  235 FORMAT(* *.201,1X.401,2X,401,514,1214)
240 FORMAT(* *.201,1X,401,2X,401,514,04,1214)
245 FORMAT(* *.20F5.1)
 250 FORMAT (7 7, 10F6.1)
270 FORMAT (7 7, 37X, 2(1X,2A1))
  280 FORMAT(' '. '***** BAD FE CODE ******')
  310 FORMAT (' ', '**** CALID MODE HERE
  330 FORMAT ('-', 3(2A1,1X), 4A1, 5I1, A4)
  331 FORMAT (' ',FG.1.91A1)
  332 FORMAT (38X.2(1X.2A1))
C
C
   WRITE FINAL SPEED COUNTS TO FLAGS, THEN SAVE LAST STATUS OF
   CAR ON/OFF URBAN/RURAL STATUS FOR MEXT MINUTE'S IDENTIFICATION
  350 FLOCT=FLGCT+1
      FLAGS (FLGCT) =N
C
      DO 350 I=1,11,2
        IF(FLAGS(I) .LE. 4 .AND. FLAGS(I) .ME. 0) SAVEFL=FLAGS(I)
  360 CONTINUE
C
   WRITE RESULT AND POST
C
      IF (N .NE. 0) WRITE (RESULT, 250) (BUFFER(I), I=1,N)
```

```
Constant of the second
      USER DESIRES HOT STARTS ONLY, AND DATA IS COLD
       IF (HOTCOL .EQ. HOT .AND. START .NE. 1) GO TO 500
      USER DESIRES COLD START ONLY, AND DATA IS HOT
       IF (HOTCOL .EQ: COLD .AND. START .NE. 2) GO TO 500
C
   OK, NOW SAFE TO ADD ON SECONDS IN SPEED AND ACCEL BANDS
С
DO 450 I=1,8
          ISPEED(I)=ISPEED(I)+TSPD(I)
          CSPEED(I)=CSPEED(I)+TSPD(I)
  450 CONTINUE
C
       DD 460 I=1,23
          IACCEL(I)=IACCEL(I)+TACC(I)
          CACCEL(I) = CACCEL(I) + TACC(I)
  460 CONTINUE
C
       DO 480 I=1,8
          DO 470 J=1.23
             IMATRX(J,I) = IMATRX(J,I) + TMTX(J,I)
             CMATRX(J,I) = CMATRX(J,I) + TMTX(J,I)
  470
          CONTINUE
  480 CONTINUE
C
       ISUM=ISUM+SEC(1)
       CSUM=CSUM+SEC(1)
С
   END OF READING/SUMMING
  500 CONTINUE
C
С
   GO GET MORE DATA
\mathbb{C}
       GD TO 300
\mathbb{C}
С
   FINALLY, DONE READING ALL DATA
  400 CALL FINCAL (OLOAN.ISPEED.IACCEL.IMATRX,ISUM)
       CALL FINCAL (LEUM , OSPEED, CACCEL, CHATRX, CSUM)
       80 TO 999
\mathbb{C}
\Box
   READ ERROR
  700 WRITE (MSINK, 710) LOAN. DATE, TRIPNO(1). TIME(1)
  710 FORMAT('O', "OH NO! READ ERROR ON LOAN /, IS.
                                                   , 13,
                                         HEK DAY '
     1...
                                             TIME ". IS,
     ٠4..
                                     TRIP NUMBER ', IJ/
      GO TO 999
C
Œ
   EARLY EOF
C
  300 WRITE(MSINK, 810) LOAM, Date(1), TIME(1), TRIFNO(1)
  810 FORMATC'O', "OH NO! DABLESSED EOF ON LOAN '.15.
         y 9 7 9 9
y 7 7 7 7
                                              HEX DAY '.IC.
     t.
                                                 TIME ', IS,
                                         TRIP NUMBER (,IC)
C
  999 STOP
       END
```

```
SUBROUTINE INIT(SHORT, LONG, BOX, SUM)
CC
   THIS SUBROUTINE ZEROES OUT ALL RUNNING SUMS
C
    . INTEGER SHORT(8), LONG(23), BOX(23,8), SUM
C
\Box
C
      DO 10 I=1,8
          SHORT(I)=0
   10 CONTINUE
C
      DO 20 I=1,23
         LONG(I)=0
   20 CONTINUE
C
      DO 40 I=1,23
          DO 30 J=1,8
             BOX(I,J)=0
   30
          CONTINUE
   40 CONTINUE
\mathbb{C}
      SUM=0
C
      RETURN
      END
```

```
SUBROUTINE LINIT (OLOAN, IRTN)
C
   THIS SUBROUTINE INITIALIZES THE LOAN NUMBER
C
      INTEGER OLOAN
C
      INTEGER TRPIN, SPDIN, MSOURC, MSINK, DEBUG, SPDOUT, ACCOUT, MTXOUT
\Box
      COMMON /IO/ TRPIN.SPDIN.MSOURC.MSINK.DEBUG.SPDOUT.ACCOUT.MTXOUT
\mathbb{C}
      IRTN=0
C
      READ(TRPIN, 100, END=800, ERR=700) OLOAN
  100 FORMAT(88X, 15)
      BACKSPACE TRPIN
      RETURN
C
C
  700 IRTN=10
      WRITE(MSINK,710)
  710 FORMAT('0', 'READ ERROR TRYING TO INITIALIZE LOAN.',
     + / ' ', 'CHECK THAT THE TRIP FILE IS ATTACHED TO',
           / ' ', 'THE CORRECT I/O UNIT NUMBER')
      RETURN
  800 IRTN=10
      WRITE (MSINK, 810)
   . + / '. CHECK THAT THE TRIP FILE IS ATTACHED TO',

/ '. THE CORRECT TO UNIT WHETE TRIP
```

810 FORMAT('0', "UNEXPECTED EOF TRYING TO INITIALIZE LOAN.',

/ ' ', THE CORRECT I/O UNIT NUMBER')

RETURN END

SUBROUTINE PROMPT

```
C
   THIS ROUTINE PROMPTS USER FOR THE RUN OPTIONS
C
C
      INTEGER*2 DEFALT, PARTIC, URBRUR, HOTCOL
      INTEGER*2 YES, NO, DAY, TRIP, URBAN, RURAL, ALL, HOT, COLD
C
      INTEGER TRPIN.SPDIN.MSOURC, MSINK, DEBUG, SPDOUT, ACCOUT, MTXOUT
C
      COMMON /IO/ TRPIN, SPDIN, MSOURC, MSINK, DEBUG, SPDOUT, ACCOUT, MTXOUT
      COMMON /OFTION/ DEFALT, PARTIC, URBRUR, HOTCOL
      COMMON /WORDS/ YES,NO,DAY,TRIP,URBAN,RURAL,ALL,HOT,COLD
C
C
   10 WRITE (MSINK, 100)
  100 FORMAT('0','YOU ARE IN THE OCS.S-SPEEDS PROGRAM.',
                 , "THE FOLLOWING ARE DEFAULT VALUES:",
           / 101,11.
                       COMPLETE PARTICIPANT DAYS ONLY',
                , 2.
                       URBAN AND RURAL TRIPS',
           777,73.
                      HOT AND COLD STARTS',
     +
            101,
           / '&','DO YOU WISH TO TAKE THE DEFAULT? (YE/NO): ')
C
      READ (MSOURC, 110) DEFALT
  110 FORMAT(A2)
      IF (DEFALT .EQ. YES) GO TO 300
      IF (DEFALT .ME. NO) GO TO 10
\Box
  120 WRITE (MSINK, 130)
  130 FORMAT(101,1YOU MUST HOW ANSWER THE FOLLOWING QUESTIONS:1,
         / 101.11. COMPLETE PARTICIPANT DAYS (LESS DATA)/.
                     OR PARTICIPANT TRIPS (MORE DATA) ? (DAZTR): *)
\mathbb{C}
      READ(MEOURO,110) PARTIC
      IF (PURISO ,ME. DAY ,AND, PARTIC ,ME. TRIP) SU TO 120
  140 WRITE (MSINK, 150)
  150 FORMAT('0',
     7 / 7%1,12. URBAN, CURAL, OR ALL TRIPST (UR/RU/AL): 1)
\mathbb{C}
      READ(MSOURC, 110) URBRUE
      IF (URBRUR .ME. URBAH ..MD. URBRUR .ME. RURAL .AMD.
         - URBRUR .ME. ALL) GO 10 110
\mathbb{C}
  160 WRITE(MSINK, 170)
  170 FORMAT('O',
     * / '%','S. HOT, COLD, OR ALL STARTST (HO/CO/AL): 1)
     READ (MSOURC, 110) HOTCOL
      IF (HOTCOL .ME. HOT .AMD. HOTCOL .ME. COLD .AMD.
         HOTCOL .ME. ALL) DO TO 180
С
      IF (PARTIC .EQ. DAY ...MB. URBRUR .EQ. ALL .AND.
```

HOTCOL .EQ. ALL) WRITE (MSINK, 180)

180 FORMAT('O', 'YOU HAVE JUST SELECTED ALL DEFAULT VALUES.',

+ /', 'NEXT TIME JUST ANSWER "YES" TO THE FIRST QUESTION!')

RETURN

C ASSIGN DEFAULT VALUES

C

300 PARTIC=DAY

URBRUR=ALL
HOTCOL=ALL
RETURN

:

END

```
SUBROUTINE CHECK (DATE, TRIPNO, DAYTR, TIME, SEC, IRTN)
C
   THIS SUBROUTING MAKES SURE THAT THE INFORMATION FROM THE TRIP
C
   FILE MATCHES THE INFORMATION IN THE SPEEDS FILE.
C
С
      INTEGER DATE(2), TRIPNO(2), DAYTR(2), TIME(2), SEC(2)
      INTEGER IRTN
C
      INTEGER TRFIN, SPDIN, MSOURC, MSINK, DEBUG, SPDOUT, ACCOUT, MTXOUT
C
      COMMON /ID/ TRPIN, SPDIN, MSOURC, MSINK, DEBUG, SPDOUT, ACCOUT, MTXOUT
C
ε
C
      IRTN=0
C
\mathbf{c}
С
      IF (DATE(1) .EQ. DATE(2) .AND. TRIPNO(1) .EQ.
                                                           TRIPNO(2) .AND.
          DAYTR(1) .EQ. DAYTR(2) .AND. TIME(1) .EQ.
                                                           TIME(2) .AND.
                  .EQ. SEC(2)) RETURN
          SEC(1)
C
   IF HERE, DATA IN TRIP AND SPEED FILES IS IN WRONG ORDER
С
C
      IRTN=10
      WRITE(MSINK, 910) DATE(1), DATE(2), TRIPNO(1), TRIPNO(2), DAYTR(1), DAYTR(2),
                      TIME(1), TIME(2), SEC(1), SEC(2)
  910 FORMAT('0', "OH NO! THIS PROGRAM HAS BOMBED BECAUSE THE',
         / ' ', DATA IN THE TRIP AND SPEED FILES DOES NOT MATCH."
           / ' ','CHECK THE ORDER OF EACH FILE.'
           / ' ', "HERE ARE SOME CLUES: ',
           7 701,1
                                                    SPEED FILE VALUE?,
                               TRIP FILE VALUE
           / " ","DAY NUMBER
                                        ', Id,'
                                                                   I 4.
     +
           / ' ','TRIT NUMBÉR
                                         . I±.
     4
                                                                    Iá.
                                        7. IS,7
7. IS,7
7. IS,7
                 , DAYS TRIP NUMBER
                                                                    Ιć,
           / ' '. 'I'ME AT START
                                                                   I6.
           / ' '.'LEN IN SEC
                                                                   I3)
\mathbb{C}
\mathbb{C}
\mathbb{C}
      RETURN
      END
```

```
SUBROUTINE FINCAL (NUM, SPEED, ACCEL, MATRX, SUM)
C
   SUBROUTINE TO CALCULATE AND PRINT OUT THE FINAL RESULS
C
C
      INTEGER NUM. SPEED (8), ACCEL (23), MATRX (23, 8), SUM
C
      INTEGER TRPIN, SPDIN, MSOURC, MSINK, DEBUG, SPDOUT, ACCOUT, MTXOUT
C
      REAL SPDFR (8)
      REAL ACCFR (23)
      REAL MATER (23.8)
C
      COMMON /IO/ TRPIN, SPDIN, MSOURC, MSINK, DEBUG, SPDOUT, ACCOUT, MTXOUT
C
C
   DEBUG HERE
C
      WRITE (DEBUG, 1) NUM, (SPEED (I), I=1,8), SUM
    1 FORMAT(15,817,110)
C
   CHECK HERE FOR DIVIDE BY ZERO
C
C
      IF (SUM .EQ. 0) GO TO 800
C
C
   OK, SAFE TO DIVIDE
      DO 100 I=1.8
         SPDFR(I)=FLOAT(SPEED(I))/SUM
  100 CONTINUE
C
      DO 200 I-1.23
         ACCER(I) =FLOAT(ACCEL(I)), SUM
  200 CONTINUE
      DO 400 I=1,23
         DO 300 J=1.3
             MATER(I.J) -FLOAT(MATEK(I.J))/SUM
  300
         CONTINUE
  400 CONTINUE
C
  HOW PRINT OUT THESE FRACTIONS
C.
      WRITE(SPDOUT, 450) NUM. (SPDER(I). I=1.8)
  450 FORMAT(I5,8F10.5)
\mathbb{C}
      WRITE(ACCOUT, 550) NUM, (ACCER(I), I=1,23)
  550 FORMAT(I5,23F10.5)
C
      DO 700 I=1.23
         WRITE (MTXOU), 550) MUM. RMATER (1, J), J=1, S)
  450
         FORMAT(I5, 9F10.5)
  700 CONTINUE
      RETURN
```

C

800 WRITE (MSINK, 810) NUM

810 FORMAT('0','ND TRIPS OCCURRED WITH THESE CHARACTERISTICS',
+ /'','IN LOAN NUMBER ', 15,
+ /'' BEWARE: OUTPUT FILES MAY HAVE "HOLES"')

RETURN END

BLOCK DATA Ľ С SPDIN, MSOURC, MSINK, DEBUG, SPDOUT, ACCOUT, MTXOUT C INTEGER#2 DEFALT, PARTIC, URBRUR, HOTCOL INTEGER #2 YES, NO, DAY, TRIP, URBAN, RURAL, ALL, HOT, COLD С COMMON /IO/ TRPIN, SPDIN, MSOURC, MSINK, DEBUG, SPDOUT, ACCOUT, MTXOUT COMMON /OPTION/ DEFALT, FARTIC, URBRUR, HOTCOL COMMON /WORDS/ YES, NO, DAY, TRIP, URBAN, RURAL, ALL, HOT, COLD C DATA TRPIN /2/, SPDIN /3/, MSOURC /5/, MSINK /6/, DEBUG /7/, SPDOUT /9/, ACCOUT /9/, MTXOUT /10/ С DATA YES /'YE'/, NO /'NO'/, DAY /'DA'/, TRIP /'TR'/. URBAN /'UR'/, RURAL /'RU'/, ALL /'AL'/, HOT /'HO'/, COLD /'CO'/ С C

END

C

:

```
PESS PESS
```

A 64

```
C
      IF (FCSW .LT. 1) GO TO 370
      IF (FCSW .EQ. 1) GO TO 365
С
      IF (SIXTSW) WRITE (POST, 235) (IN(I), I=1, 10), ITEMP, FLAGS
      IF (.NOT. SIXTSW)
     +WRITE(FOST, 240) (IN(I), I=1, 10), (ITEMP(I), I=1,5), XX, FLAGS
      IF (NTOTAL .EQ. 0) GO TO 370
      L1=1
      L2=0
      DO 262 K=2,12,2
         L2=L2+FLAGS(K)
         IF (FLAGS(K) .NE. 0) WRITE(FOST, 245) (FOSTBF(I), I=L1.L2)
         L1=L2+1
  262 CONTINUE
      GO TO 370
  365 FCSW=FCSW+1
C
  370 RETURN
      END
```

```
C
C
С
С
С
     SUBROUTINE CONTWO(CH, C1, C2, N1, N2)
C
  CONVERT TWO HEX DIGITS TO DECIMAL.
C
C
    LOGICAL*1 ARR(16), CH(600)
    INTEGER C1, C2, CHFND
С
    \Box
    N1 = -10000
    N2 = -10000
C
    CALL FINDC (ARR, 15, CH(C1), 1, 1, N1, CHFND, &10)
    -111 = 111 = 1
C
    CALL FINDC (ARR, 16, CH(C2), 1, 1, N2, CHFND, &10)
    N2 = N2 - 1
С
  10 RETURN
     END
```

:

```
A 66
C
C
C
C
C
       SUBROUTINE CONFIX(CH, CH1, CH2, DEC1, DEC2)
   SOLUTION TO THE 'B' PROBLEM IN THE FIRST CHARACTER OF SECOND SPEED
   PAIR. FORMULA IN MAIN DOES NOT WORK CORRECTLY IF FIRST CHARACTER IS IN
C RANGE 8 TO F (HEX).
C
       LOGICAL*1 ALL(16), FROBLM(8), CH(500)
       INTEGER CH1, CH2, CHFND, DEC1, DEC2
      DATA ALL /'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'E', 'C', 'C', 'D', 'E', 'F'/
DATA PROBLM /'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'/
C
C
       DEC1 = -10000
       DEC2 = -10000
C
С
    CALL FINDC(FROBLM, 8, CH(CH1), 1, 1, DEC1, CHFND, &10)
       DEC1 = DEC1 - 1
       GD TO 30
C
   10 CALL FINDC(ALL, 16, CH(CH1), 1, 1, DEC1, CHFND, &30)
       DEC1 = DEC1 - 1
\mathbb{C}
   30 CALL FINDC(ALL, 15, CH(CH2), 1, 1, DEC2, CHFND, &50)
       DEC2 = DEC2 - 1
\epsilon
   50 RETURN
       END
```

:

```
A 67
C
C
C
C
C
      BLOCK DATA
С
      COMMON /IO/ ASK, ANSWER, HEX, RESULT, POST, CHART
      COMMON /BEGIN/ FCSW
      COMMON /LOGIC/ SIXTSW
      COMMON /GRAPH/ AST, BLNK, PT
C
      INTEGER ASK, ANSWER, HEX, RESULT, POST, CHART
     INTEGER FCSW
      LOGICAL*1 SIXTSW
      LOGICAL*1 AST, BLNK, PT(81)
C
      DATA ASK 767, ANSWER 757, HEX 747, RESULT 777 . POST 787.
           CHART /9/
     DATA FOSW /0/
      DATA SIXTSW / .TRUE. /
      DATA AST / 1 1/2 BLNK / 1/2/
C
      END
```

OCS.SCAN

C C

C

C C C C

C C

C C C

DAY

HOUR

MINUTE

IDCODE

C

C C \Box

> C C

C C

C C

 \mathbb{C} C С

C C

C

C C

C \mathbb{C} \mathbb{C} C

 $\ddot{\mathbb{C}}$

C

C C

 \mathbb{C} \Box \Box C C

 \mathbb{C}

 \mathbf{C}

OCS.S-SCAN IS A DATA-VERIFICATION PROGRAM FOR USE ON XXX.FLAGS BEFORE RUNNING THE STATS PROGRAM.

THIS PROGRAM READS THE FLAGS FILE IN A MANNER SIMILAR TO THE STATS PROGRAM. IF A READ-ERROR OCCURS. THE FROGRAM WILL WRITE A WARNING MESSAGE TO THE ERROR FILE AND MAKE AN ATTEMPT TO RE-READ THE LINE WITH A DIFFERENT FORMAT. THERE ARE ONLY TWO DATA FORMATS ASSOCIATED WITH THE FLAGS DATA.

THE PROGRAM WILL CHECK THE FOLLOWING DATA:

SHOULD BE SAME AS PREVIOUS DAY EXCEPT AT MIDNIGHT SHOULD BE SAME AS PREVIOUS HOUR EXCEPT ON THE HOUR SHOULD BE PREVIOUS+1 EXCEPT WHEN CAR OFF MORE THAN EIGHT HOURS

SHOULD BE SAME AS PREVIOUS IDCODE THROUGHOUT ENTIRE FILE

TO CHECK FOR MISSING SPEEDS AND TEMPERATURES, THE PROGRAM WILL CHECK THE CHANGE IN SPEEDS AND TEMPERATURES:

SPEED CHANGE SHOULD BE LESS THAN 7.0 MPH/SEC CHANGE SHOULD BE LESS THAN 10.0 DEGREES/MIN TEMP

I/O ASSIGNMENTS .

MNEMONIC	. UNIT #	FILE ASSIGNMENT	PURP OSE
INPUT	4	<pre>(INFUT FILE)</pre>	FLAGS FILE FROM PREPAR
MESSAG	7	<pre>< gutput file ></pre>	ERROR/WARNING MESSAGES

SEE PROGRAM OCS.S-STATS FOR DETAILED EXPLANATION OF THE THEORY OF THE FLAGS. THIS PROGRAM WILL USE MOST ASSUMPTIONS C MADE IN OCS.S-STATS AND THE SAME CENERAL STRUCTURE. - SOME OF THE EXTRA PROVISIONS MADE IN STATS ARE NOT HERE (EXAMPLE: FOSSIBILITY OF 5 OR 5 TEMPERATURES IS NOT HERE- THIS WILL WORK ONLY ON FILES WITH & TEMPERATURES.)

MAIN PROGRAM STRUCTURE:

READ NIEMPS (PROMPIL / LORGET NIEMPS) READ FIRST MINUTE'S LE RECORD INITIALIZE ODAY, OHOUP, UMIN, OID (OHOLD) DETERMINE STATUS OF CHE CHECK FOR STATUS CHANGE INSIDE FIRST MINUTE IF CAR IS ON. CALL BIHECK TO CHECK SPEEDS

READ NEXT MINUTE'S ID RECORD CHECK DAY. HOUR, MIN. 1D. FEMPS AGAINS OLD VERSIONS CHECK FOR STATUS CHANGE BETWEEN MINUTES IF CAR IS ON, CALL CARON TO CHECK SPEEDS CHECK FOR STATUS CHANGE INSIDE THIS MINUTE GET ANOTHER ID RECORD

SUBROUTINE CAROFF (DAY, TIME)

TYPECT(I)=0

:

ا ، ، ، ت ت ت

```
MARY KAY MELICK. MODIFIED SUBROUTINE CAROFF TO FIX
   03-07-84:
C
               BUE WHEN TRIPS CONTINUE DURING MIDNIGHT.
                                                            DISCOVERED
WITH OHIO DATA #312. NOTE: THIS ROUTINE WAS ENTIRELY
               RESTRUCTURED.
C
C
C
   SINCE THE RECORDING DEVICE ONLY RECORDS EVERY 20 MINUTES AFTER
C
   THE CAR HAS BEEN OFF FOR 9 HOURS, OFFCT(MINS) MUST BE CALCULATED
C
C
   INSTEAD OF SIMPLY INCREMENTED.
С
   ALSO, MUST CHECK FOR "ON THE HOUR" AND MIDNIGHT DISCONTINUITIES.
C
      INTEGER DAY, TIME
      INTEGER OFFCT, DIFF, OLDTIM
      INTEGER POST, DAYLG, TRIPLG, STOPLG, SPEDLG, TEMPLG, ONOFLG
      INTEGER SAVDAY, DAYTRP, COMPL, TYPECT(3), STRTCT(2)
C
      REAL DAYDIS
C
      LOGICAL*1 HOT
      LOGICAL*1 MIDNIT
C
C
      COMMON /IO/ POST, DAYLG, TRIPLG, STOPLG, SPEDLG, TEMPLG, ONOFLG
      COMMON /OFFMIN/ OFFCT
      COMMON /IDAYT/ SAVDAY, DAYTRE, COMPL, TYPECT, STRTCT
      COMMON /RDAYT/ DAYDIS
      COMMON /ONTYPE/ HOT
      COMMON /LMIDNT/ MIDNIT
C
\mathbb{C}
C
      WRITE (ONOFLE, 10) TIME
   10 FORMAT(' ','CAR OFF ',15)
C
\mathbb{C}
   SPECIAL HANDLING FOR MIDNIGHT DURING A CAROFF PERIOD .OR.
\mathbb{C}
   THE FIRST CAROFF MINUTE AFTER MIDNIGHT OCCURRED DURING
\mathbb{C}
   THE LAST TRIP.
C
   20 IF (TIME .NE. O .AND. (.NOT. MIDNIT)) 60 TO 30
C
C
     WRITE OUT DAY TOTALS AT MIDNIGHT
C
      DAYDIS=DAYDIS/1609.34
C
      WRITE (DAYLG, 22) COMPL, SAVDAY, DAYTRP, TYPECT, STRTCT, DAYDIS
   22 FORMAT(816,F10.3)
C
      MIDNIT=.FALSE.
C
      ZERO OUT DAY TOTALS
      DAYTRP=0
C
      DO 24 I=1.3
```

```
A 71
24 CONTINUE
         -- ... ·
       DO 26 I=1,2
          STRTCT(I)=0
    26 CONTINUE
 C
       DAYDIS=0.0
       SAVDAY=DAY
 C
 С
       CHECK THAT THIS IS NOT THE FIRST MINUTE OF A CAROFF PERIOD
 C
       IF (OFFCT .EQ. 0) GO TO 50
       OFFCT=OFFCT+2360-OLDTIM
       GO TO 40
 С
    TIME NOT MIDNIGHT. CHECK FOR HOUR CHANGEOVER AND 20 MINUTE
 C
    PROBLEMS BEFORE INCREMENTING OFFCT.
 C
    BUT FIRST, CHECK THAT THIS IS NOT THE FIRST MINUTE OF A CAROFF PERIOD
    30 IF (OFFCT .EQ. 0) GO TO 50
       DIFF=TIME-OLDTIM
       IF (DIFF .GT. 20) DIFF=DIFF-40
       OFFCT=OFFCT+DIFF
 C
    40 IF (OFFCT .GE. 480) HOT=.FALSE.
       OLDTIM=TIME
 C
       RETURN
 31:10
    SPECIAL HANDLING FOR FIRST MINUTE DURING CAROFF PERÍOD
    50 OFFCT=OFFCT+1
       OLDTIM=TIME
```

m・+ロー・ロリ

RETURN END C

:

```
SUBROUTINE ONOFF (DAY, TIME, OLDST, J, ONCT, TRIPCT)
C
      INTEGER DAY, TIME, OLDST, J, ONCT, TRIPCT
      INTEGER FLAGS(12)
      INTEGER POST, DAYLG, TRIPLG, STOPLG, SPEDLG, TEMPLG, ONOFLG
      INTEGER OFFCT
      LOGICAL*1 HOT
      DIMENSION FORGET (40)
      COMMON /IO/ FOST, DAYLG, TRIPLG, STOPLG, SPEDLG, TEMPLG, ONOFLG
      COMMON /STATUS/ FLAGS
      COMMON /OFFMIN/ OFFCT
      COMMON /ONTYPE/ HOT
С
      IF (FLAGS(J) .GT. OLDST) GO TO 50
      IF (FLAGS(J) .LT. OLDST)
     +CALL CARON(DAY, TIME, FLAGS(J+1), ONCT, TRIPCT, OLDST)
C
      RETURN
C
С
   COMPUTE LAST CARON STATS
   50 IF(FLAGS(J+1) .EQ. 0) GO TO 80
С
      JJ=FLAGS(J+1)
      READ(POST, 70)(FORGET(I), I=1,JJ)
   70 FORMAT(F6.1,19F5.1)
С
   80 CALL STATON (DLDST)
\mathbb{C}
C
  RESET ON AND OFF COUNTERS
\mathbb{C}
      ONCT=0
      OFFCT=0
      HOT=.TRUE.
C
      CALL CAROFF (DAY, TIME)
\mathbb{C}
      RETURN
      END
```

```
INTEGER FLASS(12)
LOGICAL*1 COMBIN
```

END

:

```
SUBROUTINE URBRUR (DAY, TIME, OLDST, K, ONCT, TRIPCT)
      INTEGER DATE TIME, OLDST, ONCT, TRIPCT
      INTEGER POST, DAYLG, TRIPLG, STOPLG, SPEDLG, TEMPLG, ONOFLG
      COMMON /IO/ POST, DAYLG, TRIPLG, STOPLG, SPEDLG, TEMPLG, ONOFLG
      COMMON /STATUS/ FLAGS
      COMMON /COMBO/ COMBIN
С
      COMBIN=.TRUE.
C
      IF (FLAGS(K) .GT. OLDST) GO TO 50
      WRITE (ONOFLG. 20)
   20 FORMAT(' ', 'RURAL TO URBAN CHANGE')
      GO TO 70
C
   50 WRITE (ONOFLG, 60)
   60 FORMAT(' ', 'URBAN TO RURAL CHANGE')
C
   70 IF (FLAGS(K) .EQ. 1 .DR. FLAGS(K) .EQ. 3)
             CALL CARON (DAY, TIME, FLAGS (K+1), ONCT, TRIPCT, OLDST)
      IF (FLAGS(K) .EQ. 2 .OR. FLAGS(K) .EQ. 4)
                            CALL CAROFF (DAY. TIME)
C
      OLDST=FLAGS(K)
      RETURN
```

С

С

C

BLOCK DATA

COMMON /ICE 1887, DAYLG, TRIPLG, STOPLG, SPEDLG, TEMPLG, ONOFLG
COMMON /STATE FLAGS
COMMON /IDEAT SAVDAY, DAYTRP, COMPL, TYPECT, STRTCT
COMMON /RDAYT/ DAYDIS
COMMON /LMIDNT/ MIDNIT

INTEGER POST, DAYLG, TRIPLG, STOPLG, SPEDLG, TEMPLG, ONOFLG INTEGER FLAGS(12)
INTEGER SAVDAY, DAYTRP, COMPL, TYPECT(3), STRTCT(2)
REAL DAYDIS
LOGICAL*1 MIDNIT

DATA POST /2/, DAYLG /3/, TRIPLG /4/, STOPLG /7/
DATA SPEDLG /8/, TEMPLG /9/, ONOFLG /10/
DATA FLAGS /12*0/
DATA SAVDAY /0/, DAYTRP /0/, COMPL /0/,
TYPECT /3*0/, STRTCT /2*0/
DATA DAYDIS /0.0/
DATA MIDNIT /.FALSE./

END

Appendix B

Data Reduction Programs

OCS-STATS.FOR

```
OCS.S-STATS IS THE 2 PROCESSOR FOR OCSDATA AFTER IT HAS BEEN
          THROUGH THE TRANSCRIPTION PROGRAM. THE TRANSCRIPTION
 2
 3
          PROGRAM OUTPUT USED BY THIS PROGRAM IS ESSENTIALLY THE SAME
          AS THE PAGEPRINTER OUTPUT SAVED AS FINALIZED; HOWEVER, THERE IS
 5
          AN ADDITIONAL FIELD APPENDED TO THE MINUTE IDENTIFICATION
          LINE--THE FLAGS FIELD.
                                    ALSO, THE SPEEDS ARE IN BLOCKS OF 3 BY 20.
 6
 7
          IF THERE ARE TWO SEPARATE CARON PERIODS DURING A MINUTE, THE SPEEDS
 8
          BLOCKS BEGIN AGAIN IN POSITION 1, NEXT LINE.
 9
10
11
          STRATEGY OF FLAGS:
          FLAGS(1)-FLAGS(12) CONTAIN INFORMATION TO READ SPEED DATA
12
13
          (IF PRESENT) OR GO DIRECTLY TO NEXT MINUTE IF NO SPEEDS.
14
       С
          FLAGS(1),(3),(5),(7),(9),(11) CONTAIN INFORMATION ON DRIVING STATUS
          I.E. CAR ON/OFF; URBAN/RURAL. FLAGS(2),(4),(6),(81),(10),(12) CONTAIN
15
       С
16
          THE NUMBER OF SPEEDS TO BE READ (IF THE CAR IS ON).
17
       С
18
       С
19
          SBM NOTE: This program could have been improved if the "tlags"
20
                       used a 2 X 6 matrix rather than a 1 X 12 matrix
21
       C
                       with odd and even values. This would have improved
22
       C
                       program efficiency because iteration could have been
23
       С
                       implemented easier. This is one feature that makes
24
       С
                       this program such a tacky one to follow. This would
25
                       also make it easier for all programmers and others
26
                       that may look at this code. The purpose of this
27
                       message is for remembering this when the next OCS
28
                       project is undertaken using higher-tech equipment
29
       C
                       and hopefully a more efficient program as well.
30
       С
31
32
          I/O UNIT ASSIGNMENTS:
                                                                       FILE
33
34
       С
          UNIT #
                     FILE ASSIGNMENT
                                           PURPOSE
                                                                      NAME
35
       С
          -----
                                           _____
36
       C
37
       С
            2
                    < INPUT FILE >
                                        DATA FILE WITH FLAGS
                                                                      FLAGS
       С
38
            3
                    < OUTPUT FILE >
                                        DAY STATISTICS
                                                                      -DAY
       C
39
                    < OUTPUT FILE >
                                       TRIP STATISTICS
                                                                      ~TRIP
       С
                    < OUTPUT FILE >
                                        SPEED/ACCEL BANDS
                                                                      ~CMP
40
            6
41
       С
            7
                    < OUTPUT FILE >
                                        STOP STATISTICS
                                                                      ~STOP
42
       C
            8
                    < OUTPUT FILE >
                                        SPEED/ACCEL BANDS
                                                                      ~BAND
43
       С
            9
                    < OUTPUT FILE >
                                        TEMPERATURES FOR PLOTTING
                                                                      - TEMP
44
       C
            10
                    < OUTPUT FILE >
                                        ERROR CHECKING FILE
                                                                      ~DIAG
45
       C
46
      C.
47
         SPECIFICALLY:
48
       C
          NUMERIC
                           MEANING
49
       C
                       CAR ON--URBAN
50
       C
             1
51
       ·C
             2
                       CAR OFF--URBAN
52
             3
                       CAR ON--RURAL
53
       C
                       CAR OFF -- RURAL
54
       С
          SOME TYPICAL EXAMPLES:
55
56
       С
            160 0 0 0 0 0 0
                                    0
                                       ด่
                                          0 0
```

0 0 0

57

58

C

1 28 2 0 1 17 0 0

2 0 0 0 0 0 0 0 0

151 2 1 0 0 0 0 0

C

С

C

С

С

C

С

С

C

С

С

С

С

C

C

С

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92 93

94 95

114

116

2

С 3 12 1 48 0 0 0 0 С С SBM NOTE: The above set of numbers is a set of sample input lines, each containing 12 flags. The С even ones tell how many speeds to read in С as input on the next lines. It is important С to know how many speeds will be read in so the С data will be read correctly in a looped read C statement. The odd numbered flags tell the car status as defined above. Each line represents С one minute. If the status does not change within the С Ç С С С С

minute, the unused flags are set to 0. If the status does change within the minute, the next pair of flags tell the status. If the vehicle is off, no speeds will be read in. The OFFTIME is then determined by setting the total number of points in the line to 60 and subtracting the number of speeds read. This is fine when no more than 1 'off engine' status, 2 or 4, is read on a given line. If there is greater than 1 off status on a given line, the first is set to I since it had to use up at least one second and the second one is given what's remaining of the 60 seconds on the line. Also, note in the above sample flag lines, on line 4, there is a number other than O associated with the even numbered flag when the motor is off. This number has no real meaning and occurred as a result of a hardware glitch in the testing. Perhaps as the speed

was about to be read, the status simultaneously

changed. These are rare occurrences. Such speed data

were kept in the input file, but are not used in the

NOTE: IF CAR IS TURNED OFF ANYTIME DURING A MINUTE, THE SPEEDS WILL NOT TOTAL 60.

TABLE OF POSSIBLE STATUS CHANGES (- MEANS IMPOSSIBLE COMBINATION)

Ĺ				•		
C		1	2	3	4	
C						-
С		ļ				ı
С		ı	URBAN	ON		١
С	1) ×	ON=>OFF	URB=>RUR	***	١
С						ļ
С		(URB			OFF	ĺ
C	2	OFF=>ON	Х	-	URB=>RUR	İ
С		i			•	İ
C		i on .			RUR	İ
С	3	RUR=>URB	_	X	ON=>OFF	i
Č						i
č		i	OFF	RUR		i
č	4	_	RUR=>URB	OFF=>ON	X	i
Č		i	NON "> OND	GIT OIL	^	i
C		'				1

calculations.

C THE WAY THAT THE FLAGS ARE SET UP MAKES DETERMINATION OF THE TYPE C OF STATUS CHANGE EASY. IF THE DIFFERENCE BETWEEN THE CURRENT C STATUS AND THE NEW ONE IS ONE (1), THE STATUS CHANGE IS AN ON-

8

162 163

164

165

166

167

168

169

170

171

172 173

174

С

С С

С

C

С

Page

IS DEFINED AS FOLLOWS: IF STOPCT > 1 THEN AVEDBS=DISTNC/(STOPCT-1) IF STOPCT = 1 THEN AVEDBS=DISTNC/STOPCT DISCOVERED WITH OHIO DATA #220. MARY KAY MELICK. 03-07-84: BUG FOUND: IF TRIP BEGINS BEFORE MIDNIGHT AND ENDS AFTER MIDNIGHT, ALL DAY TOTALS ARE ZERO FOR FIRST DAY AND EVERYTHING ADDED ONTO THE NEXT DAY. DISCOVERED WITH OHIO DATA #312. REASON: PROGRAM COULD ONLY DEAL PROPERLY WITH MID-NIGHT IF CAR IS TURNED OFF. SOLUTION: ADDED LOGICAL VARIABLE MIDNIT IN COMMON AREA /LMIDNT/ TO SUBROUTINES CARON AND CAROFF.

Listing	or (ncs_	STAT. FOR	at 13:12:38 (on Jun 9, 1986 for CCId=SHYX
175 176 177 178 179) () (2			WHEN MIDNIGHT OCCURS DURING A TRIP, THE VARIABLE MIDNIT IS SET TO .TRUE. IN SUBROUTINE CARON. THE NEXT TIME THE CAR IS TURNED OFF (END OF THIS TRIP) THE DAY TOTALS ARE WRITTEN OUT AND ALL VARIABLES ARE REINITIALIZED FOR THE NEXT (NOW CURRENT) DAY.
181	. (1-01-84:	CTEVEN D M	TCHI TH
. 182 183	. (1-01-84:	STEVEN B. MI BUG FOUND:	SUBROUTINE SPDACE LOGIC IS OBSCURE AND
184				DOG FOUND:	LIMITED TO SMALL BANDS. THE ENTIRE SPDACC
185		3			SUBROUTINE WILL BE COMPLETELY REWRITTEN ANYWAY
186		Ĵ			TO PUT SPEED BANDS IN ONE MPH INTERVALS RATHER
187	(2			THAN TEN. ALSO, THE ACCELERATION BANDS WILL
188	(BE INCREMENTED BY .25 RATHER THAN .5. AS IT
189	(TURNS OUT, EVEN THOUGH THE LOGIC OF THE FIRST
190	(VERSION OF SPDACE APPEARS NONETHELESS CORRECT,
191 192	(THERE WERE SOME POINTS THAT DUE TO ROUNDING ERROR TEND TO BE OFF BY ONE IN THE
193	Ò				ACCELERATION BANDS. THIS WAS DUE TO ROUNDING
194	Ì				ERROR. WHEN REAL NUMBER WERE ADDED TO RESULT
195	(IN AN INTEGER, ROUNDING ERROR OCCURRED.
196	(THIS OCCURRANCE WAS A SURPRISE, BUT WAS TESTED
197 198	(AND IT WAS FOUND THAT ADDING .01 TO THE 51 IN
198		5			THE EQUATION SOLVED THE PROBLEM, EVEN THOUGH THE NEW SPDACC ROUTINE DOESN'T USE THAT
200	Ò				OBSCURE, MORE EXPENSIVE METHOD.
201	(2		REASON:	TO GIVE GLEN ANOTHER PERSPECTIVE FOR HIS
202	(REPORT.
203	(SOLUTION:	REWRITE SPDACC SUBROUTINE WITH NEW ALGORITHM AND CHANGE SPEED BAND INCREMENTS TO ISEC AND
204 205	Č			,	ACCELERATION BAND INCREMENTS TO 15EC AND
206	Ċ			STATUS:	DONE. 11-06-84
207	(
, 208	(STEVEN D M	ICUD IN
209 210	(1-01-84:	STEVEN B. MI	ICHLIN IF THE CAR IS TURNED OFF AND BACK ON WITHIN
211	(BOO TOOND:	A GIVEN MINUTES TIME, SOME TIME MAY BE
212	ì				ATTRIBUTED TO THE PREVIOUS MINUTE AND SOME
213	(2			TO THE NEXT MINUTE. WHAT TO DO SUCH WITH DATA
214	(•	MUST BE DEALT WITH, IN ANY CASE. IS IT A
215	(054600	STALL, A STOP, DATA ERROR, OR WHAT.
216 217	(REASON:	THE CAROFF-ON IS HANDLED ON A CLOCK-MINUTE BY MINUTE BASIS. IF THE STOP IS LESS THAN A
218	Ċ				MINUTE, THIS DATA IS CONSIDERED AS PART OF
219	Ò				THE SAME TRIP. ALSO, IF THIS OCCURRED AT
220	C				STARTUP, THE REAL STARTUP WOULD HAVE BEEN
221	(CONSIDERED AS A HOT START.
222	(SOLUTION:	CHECK FOR STALLS WHEN THE CAR IS TURNED OFF AND THEN ON WITHIN A MINUTE. WRITE THEM IN
223 224	(DAYLOG AND CONSIDER THE DISTANCE, ETC AS
225	Č				PART OF THE SAME TRIP. THIS DIFFERENTIATES
226	(2			IT FROM A STOP. THIS REQUIRES KNOWING WHAT
227	(IS HAPPENING ON THE NEXT DATA LINE. THIS
228	(THEREFORE REQUIRED THE MAJOR WORK OF
229 230	(READING 2 LINES AT A TIME TO ALWAYS HAVE THE VALUES ON THE NEXT LINE AVAILABLE TO CHECK FOR
230	Č				STALL. IF A LINE ENDS IN 15 SECONDS OF ENGINE
232	Č				OFF, YOU DON'T YET KNOW IF IT IS STALL OR STOP

```
¤
```

```
Listing of OCS_STAT.FOR at 1.3:12:38 on JUN 9, 1986 for CCid=SHYX
          С
                                 UNTIL THE FIRST 45 SECONDS OF THE NEXT LINE
  233
  234
          С
                                 HAS BEEN LOOKED AT. IF THE NEXT 45 SECONDS
  235
          С
                                 ARE ENGINE OFF, THIS IS A STOP BY OUR
  236
          С
                                 DEFINITION, OTHERWISE IT IS STALL.
  237
          С
                      STATUS:
          С
  238
          С
  239
  240
               ..... DEFINITIONS OF VARIABLES......
  241
          С
  242
          С
                 С
                 FLAGS(12).....I*4...Odd...1,3,5,7,9,11;driving status
  243
  244
          С
                                           information; on/off; urban/rural.
  245
         С
                                    Even., 2, 4, 6, 8, 10, 12; number of speeds to
  246
         С
                                           read if the car is on.
  247
         С
                 HOT.....L*1...True when hot start, otherwise false.
  248
         С
                                      initially true.
  249
         C
                 250
         C
                 ID......I*4...Vehicle ID number.
  251
         C
                 252
         С
                 OFFCT.....I*4...Time (min) car was off before trip.
  253
         С
                 OLDST..........I*4...After 20 minutes off, counts once each
  254
         С
                                      20 minutes (counter).
  255
         С
                 ONCT......I*4...Length of trip (sec) =TOTSS+GOSC (counter)
  256
         С
                 2.....I*4...Unit 2: Input file: Data file with flags.
          C
  257
                 SAVDAY.....I*4...Specific day. See variation with DAYLOG
  258
         С
  259
         С
                 SIXTSW....L*1...
  260
         С
                 9.........I*4...Unit 9; Output file; Temperatures for plot
  261
         С
  262
                 263
         С
                 TRIPCT.....I*4...Sequential trip number.
  264
         C
  265
         С
               CALL FTNCMD('ASSIGN 2=SHYX:454.FLAGS;')
  266
               CALL FTNCMD('ASSIGN 2=454.FLAGS;')
  267
         С
               CALL FTNCMD('ASSIGN 3=-454.DAY;')
  268
         C
               CALL CMDNOE('$SET TIME=10', 12)
         С
               CALL FTNCMD('ASSIGN 4=-454.TRIP;')
  269
  270
               CALL FTNCMD('ASSIGN 6=-454.CMP;')
         С
  271
         C
               CALL FINCMD('ASSIGN 7=-454.STOP;')
  272
         C
               CALL FTNCMD('ASSIGN 8=-454.SPEED;')
  273
         С
               CALL FTNCMD('ASSIGN 9=-454.TEMP;')
         С
               CALL FTNCMD('ASSIGN 10=-454.DIAG;')
  274
  275
         С
               CALL EMPTYF('3 ')
         С
               CALL EMPTYF('4 ')
  276
               CALL EMPTYF('6 ')
  277
         C
  278
               CALL EMPTYF('8 ')
         C
         C
               CALL EMPTYF('9 ')
  279
         C
  280
               CALL EMPTYF ('10 ')
  281
         C
  282
         С
               CALL CMDNOE('$EMPTY -454? OK', 16)
  283
               INTEGER ITIME(6)
               CALL RUNTME( ITIME)
  284
  285
               CALL GUINFO
                           ( 'SIGNONID', ICCID )
               WRITE(3.19) ICCID, (ITIME(I), I = 1.
  286
               WRITE(4,19) ICCID, (ITIME(I), I = 1,
                                                       6)
  287
               WRITE(6.19) ICCID, (ITIME(I), I = 1,
  288
                                                       6)
               WRITE(7,19) ICCID, (ITIME(I), I = 1,
                                                       6)
  289
               WRITE(8.19) ICCID. (ITIME(I), I = 1.
  290
```

```
Listing of OCS_STAT.FOR at 13:12:38 on JUN 9, 1986 for CCId=SHYX
                 WRITE(9,19) ICCID, (ITIME(I), I = 1,
   291
   292
                 WRITE(10,19) ICCID, (ITIME(I), I = 1.
   293
            19
                 FORMAT(10X, A4, 2X, 6A4 // )
   294
           С
   295
                 WRITE (3,140)
                 WRITE (4,160)
   296
   297
                 WRITE (7,180)
   298
                 WRITE (9,200)
   299
                 WRITE (6,220)
   300
           С
   301
           C.
   302
                 LOGICAL*1 SIXTSW, STALFL, GO, HOT
   303
           С
   304
                INTEGER XX, DAY, DAYNXT, TIME, TIMENX, FLAGS, FLAGNX, OLDST, ONCT,
   305
                         TRIPCT, OFFCT, SAVDAY, DAYTRP, COMPL, TYPECT(3),
  306
                         STRTCT(2), SPBAND, PRBAND, ACBAND
          С
  307
  308
                 COMMON /CHCK/ DAYNXT, FLAGNX(12), IDNEXT, NDIFF, NFLGNX, NOFF,
  309
                        NOFFCN, NOFFSC, NSEC, NSECNX, NSTCNX, NSTCNX, NSIFLG(6),
  310
                        NSTFNX(6), NSTRIP, SPD(6,60), SPDNXT(6,60), TEMPNX(6),
  311
                3
                        TIMENX, INIT, SPBAND(81), PRBAND(43), ACBAND(43,81),
  312
                        ISBSAV, SPDSAV, GODI, STOPSC, STOPDI, NSTAT(2,6),
  313
                        NSTNX(2,6), NSTOT, NSTSEC, IFSTAL
  314
                COMMON /STATUS/ FLAGS(12)
  315
                 COMMON /STUFF/ DAY, ID, NFLAG, TEMP(6), INCSPD
  316
                 COMMON /LOGICL/ SIXTSW, STALFL, GO
  317
           C
  318
                 COMMON /OFFMIN/ OFFCT
  319
                 COMMON /IDAYT/ COMPL. DAYTRP, SAVDAY, STRTCT, TYPECT
  320
                 COMMON /ONTYPE/ HOT
          С
  321
  322
                 SIXTSW = .TRUE.
  323
                 DATA ONCT /O/, TRIPCT /O/
  324
          С
  325
          С
             ASSUME FIRST TRIP IS A HOT START. THIS IS LOGICAL, SINCE
  326
             TECHNICIANS USUALLY HAVE PREPARED THE CAR FOR A NEW RUN
  327
          С
             --FOR EXAMPLE. DYNO RUNS USED FOR QUALITY CONTROL.
  328
          С
             ALSO INITIALIZE OFFCT (MINS).
  329
  330
                 IFSTAL = 0
  331
                NSTRIP = 0
                NSTCNT = 0
  332
  333
                NSTOT = 0
  334
                NSTSEC = 0
  335
               STALFL = .FALSE.
  336
                HOT = .TRUE.
                OFFCT = 0
  337
  338
  339
                 .....WRITE TEMPERATURES TO TEMPLOG, AND INITIALIZE SAVDAY
          С
  340
                 ....DO FIRST READ.....
  341
          С
  342
  343
                READ (2,240) NTEMPS
  344
                 IF (NTEMPS .EQ. 5) SIXTSW = .FALSE.
  345
                 INIT = 1
                 CALL CHECK(TIME, OLDST)
  346
                 CALL CHECK(TIME, OLDST)
  347
          С
```

IF (SIXTSW) READ (2,160) DAY, TIME, ID, TEMP, FLAGS

348

6

 α

 ∞

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CC1d=SHYX
           С
                 IF ( .NOT. SIXTSW) READ (2,180) DAY, TIME, ID, (TEMP(1), I=1,5),
   349
   350
           С
                                                    XX, FLAGS
                 IF (SIXTSW) WRITE (9,300) DAY, TIME, ID, TEMP
   351
   352
                 SAVDAY = DAY
   353
   354
           C
                    ....DETERMINE STATUS OF FIRST RECORD
   355
   356
                    .....THE LINE BELOW IS DONE TO INITIALIZE OLDST AND TO CAUSE
   357
                           ADDRESS 20 TO CAUSE A GO TOO 40. A GO TO 40 WOULD HAVE
   358
           С
                           BEEN SUFFICIENT.
   359
   360
                 OLDST = FLAGS(1)
   361
   362
           С
                    .... CHECK FOR STATUS CHANGE BETWEEN MINUTES
   363
           С
   364
              20 IF (IABS(FLAGS(1) - OLDST) .EQ. 0) GO TO 40
   365
   366
                 IF (IABS(FLAGS(1) - OLDST) .EQ. 1) CALL ONOFF(TIME, OLDST, 1,
   367
                      ONCT, TRIPCT)
                1
   368
           C
   369
                 IF (IABS(FLAGS(1) - OLDST) .EQ. 2) CALL URBRUR(TIME, OLDST, 1,
   370
                      ONCT, TRIPCT)
   371
           С
   372
                 GO TO 60
   373
           C
   374
           С
             DO CARON OR CAROFF CALCULATIONS
   375
   376
            40 IF (FLAGS(1) .EQ. 1 .OR. FLAGS(1) .EQ. 3) CALL CARON(TIME,
   377
                      FLAGS(2), ONCT, TRIPCT, OLDST, 1)
   378
   379
                 IF (FLAGS(1) .EQ. 2 .OR. FLAGS(1) .EQ. 4) CALL CAROFF(TIME)
   380
           C CHECK FOR STATUS CHANGES INSIDE MINUTE
   381
   382
   383
              60 II = 3
   384
              80 IF (FLAGS(II) .EQ. 0) GO TO 120
   385
                 IF(NSTAT(1,INCSPD-1).NE. 2.AND.II .LE. NFLAG) OLDST = FLAGS(II-2)
   386
           C .
   387
                 IF (IABS(FLAGS(II) - OLDST) .EQ. 1) CALL ONOFF(TIME, OLDST, II,
                      ONCT, TRIPCT)
   388
   389
  390
                 IF (IABS(FLAGS(II) - OLDST) .EQ. 2) CALL URBRUR(TIME, OLDST, II,
   391
                      ONCT, TRIPCT)
                 IF ( .NOT. (IABS(FLAGS(II) ~ OLDST) .EQ. 0)) GO TO 100
   392
   393
   394
           С
                 .....The status has not changed, indicating
   395
           C
   396
           C
   397
           С
                 OLDST = IFSTAL
   398
             100 IF(NSTAT(1, INCSPD-1), NE. 2.AND, II .LE. NFLAG) OLDST = FLAGS(II)
   399
   400
           C 100 IF(ONCT .NE, 0 .AND.(FLAGS(II).EQ.2.OR.FLAGS(II).EQ. 4))
                                                               OLDST = FLAGS(II)
   401
           С
   402
                 IFSTAL = 0
                 II = II + 2
   403
   404
           C
                 IF (11 .GT. NFLAG) GO TO 20
   405
           C
```

IF (II .LE. 11) GO TO 80

406

7

В

9

```
B 10
```

```
Listing of OCS_STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
             120 IF(NSTAT(1,INCSPD - 1) .NE. 2) OLDST = FLAGS(II-2)
   408
                 IF(IFSTAL .NE. 0) OLDST = IFSTAL
           C 120 OLDST = FLAGS(II-2)
   409
           C 120 CONTINUE
   410
   411
           С
   412
           С
             READ NEXT RECORD
   413
           С
  414
                 CALL CHECK(TIME, OLDST)
  415
           С
                 IF (SIXTSW) READ (2,160,END=120) DAY, TIME, ID, TEMP, FLAGS
  416
           С
   417
           C
                 ....ERROR IN OLD PROGRAM FOR < 6 SPEEDS.. SHOULDN'T
  418
           C
                      USE "I", WHICH IS FLAG COUNTER.....
           С
  419
           C*ERROR
  420
                 IF ( .NOT. SIXTSW) READ (2,180,END=120) DAY, TIME, ID,
  421
  422
           С
                1(TEMP(1), I=1,5), XX, FLAGS
  423
           C*ERROR
  424
  425
                 IF (SIXTSW) WRITE (9,300) DAY, TIME, ID, TEMP
  426
           С
  427
                 GO TO 20
  428
           C
  429
           C
  430
           C 120 CALL FINISH
  431
                 STOP
  432
             140 FORMAT ('
                             COMPL
                                         DAYTRP TYPECT(2) STRTCT(1) DAYDIS '/
  433
                                 SAVDAY
                                             TYPECT(1) TYPECT(3) STRTCT(2)',
               1
  434
                2
                               LOAN#')
                                                 OLDST ', ' OFFCT
  435
             160 FORMAT ('
                            SAVDAY
                                        DAYTRP
                                                                             DISTN
                                                                    LOAN#'/
  436
                1 C
                             AVEDBS
                                          TOTSS
                                                       NSTRIP
                                           SAVTIM START '.
  437
                2
                                 TRIPCT
  438
                3
                                                  STOPCT
                                                                   ONCT
                                                                              GOSC'.
                               AVESPD
  439
                4
                                 NSTCHT '/)
             180 FORMAT ('
                                         DAYTRP
  440
                            SAVDAY
                                                     STOPCT '.
  441
               1
                               STOPDI
                                                  LOAN#'/
                                                          STOPSC ',
  442
                2
                                 TRIPCT
                                              TIME
  443
                3
                                     GODI
                                                   1/)
             200 FORMAT ('DAY
                                             TEMP(2) TEMP(4) TEMP(6)'/
  444
                                    I D
                                                        TEMP(5) '/)
  445
              1
                             TIME
                                    TEMP(1)
                                              TEMP(3)
             220 FORMAT (' SAVDAY
  446
                                    DAYTRP
                                              ONCT '/'
                                                              TRIPCT
                                                                        SAVTIM '.
                              LOAN# ' )
  447
              1
  448
             240 FORMAT (12)
             260 FORMAT (13, 15, 16, 6F4.0, 1214)
  449
  450
             280 FORMAT (13, 15, 16, 5F4.0, A4, 1214)
  451
             300 FORMAT (12, 15, 16, 6F4.0)
  452
                 END
                 SUBROUTINE CARON(TIME, N, ONCT, TRIPCT, OLDST, III)
  453
  454
           С
  455
           С
  456
                         SBM.....CARON STANDS FOR CAR ON.
           C
                         MARY KAY MELICK. MODIFIED SUBROUTINE CARON TO FIX
  457
             11-29-83:
           С
                         BUG WHEN CAR IS TURNED ON DURING A MINUTE AND NO SPEEDS
  458
           С
  459
           С
                         FOLLOW UNTIL THE NEXT MINUTE--ALIAS N=O. DISCOVERED WITH
  460
          ·C
                         OHIO DATA #206.
  461
  462
          С
             03-07-84:
                         MARY KAY MELICK. MODIFIED SUBROUTINE CARON TO FIX
          С
                         BUG WHEN TRIPS CONTINUE DURING MIDNIGHT. DISCOVERED
   463
                         WITH OHIO DATA #312.
  464
```

```
Þ
```

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
   465
   466
           C
             SUBROUTINE CARON LOGIC:
   467
           С
             READ N SPEEDS
           C IF NEW TRIP
   468
           С
   469
             THEN INITIALIZE COUNTERS
   470
   471
           С
             DO I=1,N
   472
           С
                IF STOP
   473
                THEN INCREMENT STOP COUNTERS: TOTAL STOPS
   474
                                                SECONDS AT THIS STOP
                ELSE INCREMENT GO COUNTERS: TOTAL GO SECONDS
   475
   476
   477
                CALL SPDACC TO DO SPEED AND ACCEL BAND FREQUENCIES
   478
   479
           С
                INCREMENT COUNTERS: TOTAL SECONDS
   480
           C
                                     DISTANCE TRAVELED
   481
           С
             END
   482
           С
   483
           С
              COMPUTE STATS:
   484
                AVERAGE SPEED(MPH)=DISTANCE(METERS)/TOTAL SECONDS
   485
                                      *2.237(MILE-SEC/METER-HOUR)
           С
                DISTANCE(MILES)=DISTANCE(METERS)/1609.34(METERS/MILE)
   486
           С
   487
                AVEDBS=DISTANCE/(TOTAL STOPS - 1)
  488
           С
                WRITE TO OUTPUT FILE TRIPLOG AND SPEEDLOG
           С
              END
   489
   490
           С
   491
           С
   492
           С
             THE STOP IS DEFINED AS FOLLOWS:
   493
                ANYTIME THE SPEED DROPS FROM GREATER THAN 10 MPH TO LESS THAN
                4 MPH AND THEN RETURNS TO GREATER THAN 10 MPH. HOWEVER, WHEN
   494
                THE CAR IS PARKED, THE FIRST ACCELERATION AND THE LAST
   495
                DECELERATION WILL BE CONSIDERED "STOPS." THE TIME SPENT AT A
   496
   497
                STOP INCLUDES ONLY THOSE SECONDS WHEN THE SPEED IS BELOW 4 MPH.
   498
   499
           С
             THE DISTANCE BETWEEN STOPS IS DEFINED AS FOLLOWS:
                THE DISTANCE TRAVELED WHEN THE CAR IS GOING 4 MPH AND GREATER.
   500
           С
   501
           С
                KEEP TWO COUNTERS:
   502
                  STOPDISTANCE (SPEED < 4)
   503
           С
                  GODISTANCE (SPEED >= 4)
  504
                THESE COUNTERS ARE RESET TO 0 AT THE END OF EACH STOP.
  505
             STOP SECTION LOGIC (MAIN LOOP):
  506
  507
                DO I=1,N
  508
          С
                  IF GO=TRUE
                  THEN IF SPEED < 10
  509
           С
                       THEN IF SPEED < 4
  510
           С
   511
                            THEN GO=FALSE
                                 STOPSEC=STOPSEC+1
   512
   513
                                 STOPDISTANCE=STOPDISTANCE+METERSPEED
   514
           С
                            ELSE GOSEC=GOSEC+1
   515
           С
                            GODISTANCE=GODISTANCE+METERSPEED
                       ELSE GOSEC=GOSEC+1
   516
           С
   517
           С
                       GODISTANCE=GODISTANCE+METERSPEED
           С
   518
   519
          C
                  ELSE (GO=FALSE) .
   520
           С
                      IF SPEED < 4
                       THEN STOPSEC=STOPSEC+1
   521
   522
                            STOPDISTANCE=STOPDISTANCE+METERSPEED
```

```
B ·12
```

```
Listing of OCS_STAT.FOR at 13:12:38 on JUN 9, 1986 for CCId=SHYX
  523
                       ELSE IF SPEED > 10
  524
          С
                            THEN STOPCT=STOPCT+1
  525
          С
                                 GO=TRUE
          С
  526
                                 TOTAL STOPSEC=TOTALSTOPSEC+STOPSEC
  527
          С
                                 WRITE OUTPUT TO FILE STOPLOG
  528
                                 GOSEC=GOSEC+1
  529
                                 GODISTANCE=GODISTANCE+METERSPEED
  530
                                 STOPSEC=0
  531
          С
                            ELSE GOSEC=GOSEC+1
  532
          С
                                 GODISTANCE=GODISTANCE+METERSPEED
  533
          С
                END
  534
          С
  535
          C
             OUTPUT FILES CONTENTS
  536
          С
  537
          С
          С
  538
             DAYLOG:
  539
          С
               COMPL:
                         O=PARTIAL DAY (*F AND *L DAYS)
  540
                         1=COMPLETE DAY
  541
                SAVDAY:
  542
               DAYTRP: TOTAL NUMBER OF TRIPS PER DAY # SAVDAY
  543
          С
                         NUMBER OF URBAN TRIPS
               URBCT:
  544
          С
               COMBCT: NUMBER OF COMBINATION TRIPS
          С
  545
               RURCT:
                        NUMBER OF RURAL TRIPS
          C
  546
               HOTCT:
                        NUMBER OF HOT STARTS
  547
          С
                COLDCT: NUMBER OF COLD STARTS
  548
               DAYDIS: TOTAL DISTANCE (MILES) TRAVELED DURING DAY # SAVDAY
  549
          С
  550
          C TRIPLOG:
          С
               SAVDAY: DAY AT BEGINNING OF TRIP
  551
  552
               TRIPCT: SEQUENTIAL NUMBER OF TRIP
  553
               DAYTRP: SEQUENTIAL NUMBER OF TRIP DURING DAY # SAVDAY
  554
                SAVTIM: 'CLOCK (24-HOUR) TIME AT BEGINNING OF TRIP
          С
  555
               TYPE:
                         1=URBAN
          С
                         2=COMBINATION
  556
          C
  557
                         3=RURAL
               START:
          С
  558
                        1=HOT START
  559
          С
                         2=COLD START
  560
          C
               OFFCT:
                        TIME(MINS) CAR WAS OFF BEFORE TRIP
          С
               AVESPD: AVERAGE SPEED DURING TRIP
  561
          Ċ
  562
               DISTNC: DISTANCE TRAVELED DURING TRIP
          C
               STOPCT: TOTAL NUMBER OF STOPS PER TRIP
  563
  564
               AVEDBS: AVERAGE DISTANCE BETWEEN STOPS DURING TRIP
  565
               ONCT:
                         LENGTH (SEC) OF TRIP = TOTSS+GOSC
                        TOTAL STOP SECONDS OF TRIP
  566
          С
               TOTSS:
          С
               GOSC:
                        TOTAL GO SECONDS OF TRIP
  567
  568
          C
  569
          С
             STOPLOG:
  570
               SAVDAY:
                        DAY AT BEGINNING OF TRIP # TRIPCT
          С
                        SEQUENTIAL TRIP NUMBER ASSOCIATED WITH STOP
  571
               TRIPCT:
               DAYTRP:
                        SEQUENTIAL NUMBER OF TRIP DURING DAY # SAVDAY
  572
          С
          C
               TIME:
                         TIME AT END OF STOP
  573
                STOPCT: SEQUENTIAL NUMBER OF STOP DURING TRIP # TRIPCT,
  574
          С
               STOPSC: LENGTH (SEC) OF STOP
  575
          С
               STOPDI: DISTANCE TRAVELED DURING "STOP"
  576
          С
          С
                         DISTANCE TRAVELED WHEN "GOING"
  577
               GODI:
  578
          С
  579
             SPEEDLOG:
               SAVDAY: DAY AT BEGINNING OF TRIP # TRIPCT
  580
```

```
581
          TRIPCT: SEQUENTIAL TRIP NUMBER
582
          DAYTRP: SEQUENTIAL NUMBER OF TRIP DURING DAY # SAVDAY
583
      С
          SAVTIM: TIME AT BEGINNING OF TRIP
584
          ONCT:
                 LENGTH (SEC) OF TRIP
      С
585
      С
          SPBAND: 1X81 MATRIX OF TIME SPENT IN EACH SPEED BAND
          PRBAND: 1X43 MATRIX OF TIME SPENT IN EACH ACCELERATION BAND
586
      С
587
      С
          ACBAND: 81X43 MATRIX THAT COMBINES SPBAND AND PRBAND
588
      C
           ..... DEFINITIONS OF VARIABLES......
      С
589
590
      С
      С
591
            ACBAND(43,81)...I*4...Acceleration band: see table in subroutine
592
      С
                               SPDACC.
593
      С
            594
      С
                               AVEDBS = DISTANCE / (total stops - 1)
            AVESPD......R*4...Average speed during trip (MPH).
      С
595
596
      С
            COMPL.......I*4...COMPL=0 Partial day; COMPL=1 complete day.
597
      С
598
      С
            599
      С
            600
      C
            601
      C
            DAYTRP........I*4...Trip number or trip number total. Varies
602
      C
                               with DAYLOG.
603
      С
            DISTNC......R*4...Distance travelled during trip (miles).
604
      С
            GODI......R*4...Distance travelled when going.
605
      С
            С
            I.....L*1...Iteration counter.
606
607
      С
            MIDNIT.....L*1...Set to TRUE when trip occurs during
      С
                              midnite.
608
            MILSPD(60).....R*4...Speed (MPH). See subroutine SPDACC.
609
      C.
610
      C
            GO.....L*1...True when motor is on; False when off.
            MTRSPD(60)....,R*4...Speed (Meters/sec). "METERSPEED"
      С
611
612
            613
      С
                               in the particular loop.
      C
            OLDST.......I*4...Old flag status. Used to compare with new.
614
            ONCT.......1*4...Length of trip (sec) = TOTSS + GOSC.
      С
615
            10......Unit 10; Output file; Error checking file.
616
      С
617
      C
            C
            PRBAND(43)....I*4...Matrix of time spent in each acceleration
618
619
      C
                               band
620
      С
            SAVDAY......I*4...Specific day. See variation with DAYLOG
      С
621
                               value.
            SAVTIM.....I*4...24 hour clock time at beginning of trip.
622
      С
623
      С
            SPBAND(81).....I*4...Speed band. See subroutine SPDACC.
624
      С
            8......Unit 8; Output file; Speed/Accel Bands.
      С
            START.....I*4...l=hot start. 2=cold start.
625
      С
            STOPCT.....I*4...See DAYLOG variation table. The number of
626
627
      С
                              stops.
            STOPDI.......R*4...Distance travelled during stop.
      С
628
      C
                              NOTE: THE UNITS OF THIS VARIABLE ARE
629
      С
                                  CHANGED DURING PROGRAM EXECUTION.
630
      · C
            7..... Unit 7; Output file; Stop statistics.
631
      C.
            STOPSC.........I*4...Length of stop (sec).
632
            STRTCT(2),...,... I*4...
633
      С
634
      С
            635
      C
            TRIPCT.....I*4...Sequential trip number.
      С
636
            637
      С
638
      С
            TWO.....1*4...Contains the Integer "2"; Hardly used.
```

В 1

```
Listing of OCS_STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
   639
           С
                                           Will change to "2" where required
   640
           С
                                           and delete later.
   641
           С
                   TYPECT(3).....I*4...
   642
           С
                 INTEGER STOPCT, SSTEMP, STOPSC, TOTSS, GOSC, SAVTIM, TWO, START
   643
   644
           С
   645
                 REAL MILSPD(60), MTRSPD(60)
           C
   646
   647
                 LOGICAL*1 SIXTSW, STALFL, GO, HOT, COMBIN, MIDNIT
   648
           С
   649
                 INTEGER XX. DAY, DAYNXT, TIME, TIMENX, FLAGS, FLAGNX, OLDST, ONCT,
   650
                         TRIPCT, OFFCT, SAVDAY, DAYTRP, COMPL, TYPECT(3),
   651
                         STRTCT(2), SPBAND, PRBAND, ACBAND
   652
           С
   653
                 COMMON /CHCK/ DAYNXT, FLAGNX(12), IDNEXT, NDIFF, NFLGNX, NOFF,
   654
                        NOFFCN, NOFFSC, NSEC, NSECNX, NSTCNT, NSTCNX, NSTFLG(6),
                2
   655
                        NSTFNX(6), NSTRIP, SPD(6,60), SPDNXT(6,60), TEMPNX(6),
                3
   656
                        TIMENX, INIT, SPBAND(81), PRBAND(43), ACBAND(43,81),
   657
                        ISBSAV, SPDSAV, GODI, STOPSC, STOPDI, NSTAT(2,6),
   658
                        NSTNX(2,6), NSTOT, NSTSEC, IFSTAL
   659
                 COMMON /STATUS/ FLAGS(12)
                 COMMON /STUFF/ DAY, ID, NFLAG, TEMP(6), INCSPD
   660
   661
                 COMMON /LOGICL/ SIXTSW, STALFL, GO
   662
           С
   663
                 COMMON /OFFMIN/ OFFCT
                 COMMON /IDAYT/ COMPL, DAYTRP, SAVDAY, STRTCT, TYPECT
   664
   665
                 COMMON /ONTYPE/ HOT
           CC
   666
   667
                 COMMON /RDAYT/ DAYDIS
   668
                 COMMON /COMBO/ COMBIN
   669
                 COMMON /LMIDNT/ MIDNIT
   670
           С
   671
                 DATA TWO /2/
   672
           С
   673
                 STALFL = .FALSE.
   674
                 WRITE (10,340) DAY, TIME, ID
   675
           C
   676
           С
              SET THE MIDNIGHT FLAG IF MIDNIGHT OCCURS DURING A TRIP
           С
              ONLY IF 'DURING' TRIP, NOT IF TRIP 'BEGINS' AT MIDNIGHT!
   677
   678
           C.
  679
                 IF (TIME .EQ. O .AND. ONCT .NE. O) MIDNIT = .TRUE.
  680
           C
  681
           С
              READ SPEEDS
           С
  682
                 IF. (N .EQ. 0) GO TO 220
  683
  684
           С
                 READ (2.380) (MILSPD(I), I=1,N)
   685
           C
   686
           С
                 ....RETRIEVE NEXT SPEEDSET FROM 'SPD' ARRAY.....
   687
           С
   688
                 IF (FLAGS(INCSPD*2 - 1) .EQ. 2 .OR. FLAGS(INCSPD*2 - 1) .EQ. 4)
                1INCSPD = INCSPD + 1
   689
           С
   690
                 ..... WATCH THIS (ABOVE) FOR POTENTIAL BUG.....
   691
           С
   692
           С
                 DO 20 I = 1, N
   693
              20 MILSPD(I) = SPD(INCSPD, I)
   694
   695
           C
```

INCSPD = INCSPD + 1

12

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 For CCiu-SHYX
   697
           C
   698
             CHECK IF THIS IS A NEW TRIP
           C
   699
   700
                 IF (ONCT .NE. 0) GO TO 80
   701
           С
   702
           С
              INITIALIZE COUNTERS FOR EACH CARON PERIOD
   703
           С
   704
                 NSTSEC
                                             NSTCNT
                               NSTSEC
   705
                 NSTOT
                          =
                               NSTOT
                                             NSTRIP
   706
                 NSTCNT
                          =
                               0
   707
                 NSTRIP
                          =
                               0
   708
                 GOSC
                               Ω
   709
                 STOPSC
   710
                 STOPCT
   711
                 AVEDBS
                 TOTSS
   712
                               0
   713
                           .FALSE.
   714
                 = N18MOO
                              .FALSE.
   715
           C
   716
           C THE FOLLOWING (JUNK) COMMENTED OUT DURING THE MIDNIGHT FIX:
   717
           C
   718
           C+MKM IF (TIME .NE. 0) GO TO 31
   719
           C*MKM
   720
           C*MKM DAYDIS=DAYDIS/1609.34
   721
           C*MKM WRITE(3,25)COMPL, SAVDAY, DAYTRP, TYPECT, STRTCT, DAYDIS
   722
           C*M25 FORMAT(816,F10.3)
   723
           C*MKM
   724
           C*MKM DAYTRP=0
   725
           C*MKM DO 26 I=1,3
   726
           C*MKM
                    TYPECT(I)=0
   727
           C*M26 CONTINUE
   728
           C*MKM DO 27 I=1,2
   729
           C*MKM
                    STRTCT(I)=0
   730
           C*M27 CONTINUE
   731
           C*MKM
   732
           C*MKM DAYDIS=0.0
   733
           C*MKM COMPL=1
   734
           C*MKM
   735
           C*M31 TRIPCT=TRIPCT+1
   736
           C*MKM DAYTRP=DAYTRP+1
   737
   738
             CONTINUE WITH INITIALIZING FOR A CARON PERIOD
           С
   739
   740
                 AVESPD = 0.0
                 NSTOT = 0
   741
   742
                 NSTSEC = 0
   743
                 NSTRIP = 0
   744
                 NSTCNT = 0.0
   745
                 DISTNC = 0.0
                 GODI = 0.0
   746
   747
                 STOPDI = 0.0
   748
                 SAVDAY = DAY
   749
                 SAVTIM = TIME
   750
                 TRIPCT = TRIPCT + 1
   751
                 DAYTRP = DAYTRP +. 1
   752
           С
   753
           C
                 ....Zero all "band" arrays.....
```

С

В

L

13

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
   755
                 DO 60 I = 1, 81
   756
                   SPBAND(I) = 0
          С.
   757
   758
                   DO 40 J = 1, 43
   759
                     PRBAND(J) = 0
   760
              40 ACBAND(J,I) = 0
   761
   762
              60 CONTINUE
   763
           C. TAKE CARE OF ODD SITUATIONS THAT OCCUR IMMEDIATELY AFTER THE
   764
   765
           C CALIBRATION MODE.
   766
           C·
   767
                 IF (MILSPD(1) .LE. 10.) GO TO 80
   768
                 GO = .TRUE.
           С
   769
   770
              MAIN CARON SECTION
   771
   772
   773
              CONVERT SPEED FROM MILES/HOUR TO METERS/SECOND TO AID IN
   774
              COMPUTING DISTANCE--(*0.447). LATER; CONVERT DISTANCE
   775
              BACK TO MILES--(/1609.34).
   776
           С
   777
           С
   778
           C
   779
              80 \ 00 \ 200 \ I = 1, N
   780
           C
                    STOP SECTION
   781
           С
   782
                   MTRSPD(I) = MILSPD(I) * 0.447
   783
                   IF ( .NOT, GO) GO TO 120
   784
           C
   785
                   IF (MILSPD(I) .GE. 10. .OR. MILSPD(I) .GE. 4.) GO TO 100
   786
   787
           C
                   .....MILSPD(I) IS < 4 .....
   788
           С
                   GO = .FALSE.
   789
                   STOPSC = STOPSC + 1
   790
   791
           С
   792
           C
                   .....Temporary write for error checking; used unit 3 for
   793
           C
                          convenience.
   794
           С
   795
                   WRITE(3.1000) I. STOPSC. TIME. INCSPD. MILSPD(I).SPD(INCSPD-1.I)
   796
                  FORMAT(' I=',12,' STOPSC=',14,' TIME=',13,' INCSPD=',12,
           C1000
   797
                          ' MILSPD(1)=',F5.1,' SPD=',F5.1)
           . С
  798
           С
                   .....THE BELOW IS TRUE SINCE WE ARE USING THE SPEED (MET/SEC)
   799
           С
   800
           С
                          TO DISTANCE (METER) OVER A 1 SECOND INTERVAL....
   801
           С
                   STOPDI = STOPDI + MTRSPD(I)
   80,2
   803
                   GO TO 180
           C .
   804
                   \dots MILSPD(I) > 4. \dots
   805
           С
   806.
   807
             100
                   GOSC = GOSC + 1
                   GODI = GODI + MTRSPD(1)
   808
                   GO TO 180
   809
   810
           С
   811
           С
                   ....STOP CONDITIONS.....
   812
```

В 1

```
8
```

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9. 1986 for CCid=SHYX
  813
             120 IF (MILSPD(I) .GE. · 10.) GO TO 140
  814
                   STOPSC = STOPSC + 1
  815
                   STOPDI = STOPDI + MTRSPD(I)
  816
           C
  817
           C
                   .....Temporary write for error checking; used unit 3 for
  818
           С
                          convenience.
  819
           С
  820
           C
                   WRITE(3,1000) I, STOPSC, TIME, INCSPD, MILSPD(I), SPD(INCSPD-1,I)
                   GO TO 180
  821
  822
           CC140
                   GOSC = GOSC + 1
  823
  824
           CC
                   GODI = GODI + MTRSPD(I)
           С
  825
           CC
                   GO TO 160
  826
  827
            140
                   STOPCT = STOPCT + 1
  828
  829
           CC160
                   STOPCT = STOPCT + 1
  830
                   TOTSS = TOTSS + STOPSC
  831
                   STOPDI = STOPDI / 1609.34
                   GODI = GODI / 1609.34
  832
  833
           С
  834
           C,
                   .... WRITE "STOPLOG" OUTPUT ON UNIT 7.....
  835
  836
                   WRITE (7.380) SAVDAY, TRIPCT, DAYTRP, TIME, STOPCT, STOPSC.
  837
               1 STOPDI, GODI, ID
                   GO = .TRUE.
  838
                   STOPSC = 0
  839
                   STOPDI = 0.0
  840
  841
                   GODI = MTRSPD(I) / 1609.34
                   GOSC = GOSC + 1
  842
           С
  843
  844
           С
                  SPEED BAND SECTION
            180 CALL SPDACC(ONCT, MILSPD(I), SPBAND, PRBAND, ACBAND, ISBSAV,
  845
                        SPDSAV)
  846
               1
  847
  848
                   INCREMENT TRIP COUNTERS SECTION
  849
                   ONCT = ONCT + 1
  850
                   DISTNC = DISTNC + MTRSPD(I)
                   DAYDIS = DAYDIS + MTRSPD(I)
  851
            200 CONTINUE
  852
  853 .
  854
             220 RETURN
  855
          С
  856
          С
             COMPUTE STATS FOR A CARON PERIOD
  857
  858
  859
             THE STOP SECTION DOES NOT CATCH STOPS AT ENDS OF TRIPS SINCE
             SPEED NEVER GOES ABOVE 10 MPH. FIND THOSE STOPS HERE AND WRITE
  860
  861
             RESULTS TO STOPLOG AND CORRECT TOTALSTOPSEC FOR TRIPLOG.
  862
          С
          . C
                 ....CALLED FROM ONOFF.....
  863
  864
          С
  865
                 ENTRY STATON(OLDST)
  866
                IF (ONCT .GT. 0) AVESPD = DISTNC * 2.237 / ONCT
                DISTNC = DISTNC /, 1609.34
  867
  868
                IF (STOPSC .EQ. 0) GO TO 240
                STOPCT = STOPCT + 1
  869
                TOTSS = TOTSS + STOPSC
  870
```

```
В 18
```

```
Listing of OCS_STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
   871
                 STOPDI = STOPDI / 1609.34
   872
                 GODI = GODI / 1609.34
   873
                 NSTOT = NSTOT + NSTRIP
   874
                 NSTSEC = NSTSEC + NSTCNT
   B75
           С
   876
           С
                   .....WRITE "STOPLOG" OUTPUT ON UNIT 7.....
   877
           C
   878
                 WRITE (7,380) SAVDAY, TRIPCT, DAYTRP, TIME, STOPCT, STOPSC,
   879
                1STOPDI, GODI, ID
           С
   880
                 STOPSC = 0
   881
                 STOPDI = 0.0
   882
                 GODI = 0.0
   883
   884
                 NSTRIP = 0
                 NSTCNT = 0
   885
   886
           С
   887
             240 IF (STOPCT .GT. 1) AVEDBS = DISTNC / (STOPCT - 1)
   888
                 IF (STOPCT , EQ. 1) AVEDBS = DISTNC
                 IF (HOT) GO TO 260
   889
   890
                 START = 2
   891
                 STRTCT(START) = STRTCT(START) + 1
   892
                 GO TO 280
           С
   893
   894
             260 START = 1
   895
                 STRTCT(START) = STRTCT(START) + 1
   896
           С
   897
             280 IF (COMBIN) GO TO 300
   898
                TYPECT(OLDST) = TYPECT(OLDST) + 1
   899
           С
   900
           С
                   .....WRITE "TRIPLOG" OUTPUT ON UNIT 4.....
   901
           С
   902 .
                 WRITE (4,400) SAVDAY, TRIPCT, DAYTRP, SAVTIM, OLDST, START, OFFCT,
   903
                1AVESPD, DISTNC, STOPCT, AVEDBS, ONCT, TOTSS, GOSC, NSTOT, NSTSEC,
   904
                210
                 GO TO 320
   905
   906
             300 WRITE (4,400) SAVDAY, TRIPCT, DAYTRP, SAVTIM, TWO, START, OFFCT,
   907
   908
                1AVESPD, DISTNC, STOPCT, AVEDBS, ONCT, TOTSS, GOSC, NSTOT, NSTSEC,
   909
   910
                 TYPECT(TWO) = TYPECT(TWO) + 1
           С
   911
   912
           С
   913
           C
   914
           С
   915
           С
             320 CONTINUE
   916
   917
           С
   918
           С.
                   .....WRITE "SPEEDLOG" OUTPUT ON UNIT 6 (COMPRESSED).....
   919
           С
                 WRITE (6,420) SAVDAY, TRIPCT, DAYTRP, SAVTIM, ONCT, ID
   920
   921
                 CALL CMPRES(SPBAND, PRBAND, ACBAND)
   922
           С
                   .....WRITE "SPEEDLOG" OUTPUT ON UNIT 8.....
   923
           С
           С
   924
   925
                 WRITE (8.420) SAVDAY, TRIPCT, DAYTRP, SAVTIM, ONCT, ID
                 WRITE (8.440) (SPBAND(1), I=1.81)
   926
                 WRITE (8,460) (PRBAND(I), I=1,43)
   927
   928
                 WRITE (8,480) ((ACBAND(I,J),I=1,43),J=1,81)
```

```
b.
```

Page

17

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
  929
              RETURN
         C
  930
           WRITE LAST (INCOMPLETE) DAY'S STATISTICS TO DAYLOG
  931
  932
              ENTRY FINISH
  933
              COMPL = 0
  934
  935
              DAYDIS = DAYDIS / 1609.34
  936
         C
                ..... WRITE "DAYLOG" OUTPUT ON UNIT 3.....
  937
  938
  939
              WRITE (3.500) COMPL, SAVDAY, DAYTRP, TYPECT, STRTCT, DAYDIS, ID
  940
              RETURN
  941
           340 FORMAT (' ', 'CAR ON ',3(16,5X) )
  942
  943
           360 FORMAT (F6.1, 19F5.1)
  944
           380 FORMAT (616, 2F10.3, 16)
           400 FORMAT (416, 212, 16, 2F10.3, 16, F10.3, 616)
  945
  946
           420 FORMAT (616)
          440 FORMAT (' '. 'SPEED '. 8116)
460 FORMAT (' '. 'ACCEL '. 4315)
480 FORMAT (' '. 'COMBIN '. 4315)
  947
  948
  949
  950
           500 FORMAT (816, F10.3, 16)
  951
              END
  952
              SUBROUTINE CAROFF(TIME)
  953
         С
  954
               SBM....CAROFF STANDS FOR CAR OFF.
  955
         С
  956
         С
  957
           03-07-84: MARY KAY MELICK. MODIFIED SUBROUTINE CAROFF TO FIX
                     BUG WHEN TRIPS CONTINUE DURING MIDNIGHT. DISCOVERED
  958
  959
         С
                     WITH OHIO DATA #312. NOTE: THIS ROUTINE WAS ENTIRELY
  960
                     RESTRUCTURED.
  961
           For the first 8 hours of "caroff", data is recorded once per
  962
  963
           minute. Then after 20 minutes, data is recorded every 20 minutes.
  964
           SINCE THE RECORDING DEVICE ONLY RECORDS EVERY 20 MINUTES AFTER
  965
  966
           THE CAR HAS BEEN OFF FOR 8 HOURS, OFFCT(MINS) MUST BE CALCULATED
           INSTEAD OF SIMPLY INCREMENTED.
  967
           ALSO, MUST CHECK FOR "ON THE HOUR" AND MIDNIGHT DISCONTINUITIES.
  968
  969
         С
              ..... DEFINITIONS OF VARIABLES.....
  970
         С
  971
         С
  972
                COMPL......I*4...COMPL=0 Partial day: COMPL=1 Complete day.
         C
  973
         C
                974
         С
                975
         С
                DAYTRP......I*4...Trip number or trip number total. Varies
  976
         C
         C
                                    with DAYLOG.
  977
                978
                MIDNIT.....L*1...Set to TRUE when trip occurs during
  979
         ·C
  980
         C
                                    midnight.
  981
         C
                982
         С
  983
         С
                                    the new.
         С
                984
                SAVDAY......I*4...Specific day. See variationwith DAYLOG
  985
         С
  986
                                    value.
```

```
.
```

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
                   TIME.....I*4...24 hour clock time at end of stop.
   988
           C
   989
           С
                   TYPECT(3),....I*4.,.
   990
           С
           Ç
   991
                 INTEGER DIFF, OLDTIM
   992
   993
   994
           C
   995
           С
   996
                 LOGICAL*1 SIXTSW, STALFL, GO, HOT, MIDNIT
           C
   997
   998
                 INTEGER XX, DAY, DAYNXT, TIME, TIMENX, FLAGS, FLAGNX, OLDST, ONCT,
  999
                         TRIPCT, OFFCT, SAVDAY, DAYTRP, COMPL, TYPECT(3),
                         STRTCT(2), SPBAND, PRBAND, ACBAND
  1000
  1001
           С
                 COMMON /CHCK/ DAYNXT, FLAGNX(12), IDNEXT, NDIFF, NFLGNX, NOFF,
  1002
                        NOFFCN, NOFFSC, NSEG, NSECNX, NSTCNT, NSTCNX, NSTFLG(6),
  1003
  1004
                        NSTFNX(6), NSTRIP, SPD(6,60), SPDNXT(6,60), TEMPNX(6),
  1005
                        TIMENX, INIT, SPBAND(81), PRBAND(43), ACBAND(43,81),
  1006
                        ISBSAV, SPDSAV, GODI, STOPSC, STOPDI, NSTAT(2,6),
  1007
                        NSTNX(2,6), NSTOT, NSTSEC, IFSTAL
  1008
                 COMMON /STATUS/ FLAGS(12)
  1009
                 COMMON /STUFF/ DAY, ID, NFLAG, TEMP(6), INCSPD
                 COMMON /LOGICL/ SIXTSW, STALFL, GO
  1010
  1011
           C
  1012
                 COMMON /OFFMIN/ OFFCT
  1013
                 COMMON /IDAYT/ COMPL, DAYTRP, SAVDAY, STRTCT, TYPECT
  1014
                 COMMON /ONTYPE/ HOT
           С
  1015
  1016
           C
  1017
                 COMMON /RDAYT/ DAYDIS
  1018
                 COMMON /LMIDNT/ MIDNIT
  1019
           С
  1020
           С
  1021
           С
  1022
                 STALFL = .FALSE.
                 IF ( .NOT. STALFL) WRITE (10,140) DAY, TIME, ID
  1023
  1024
          C
  1025
              SPECIAL HANDLING FOR MIDNIGHT DURING A CAROFF PERIOD .OR.
  1026
              THE FIRST CAROFF MINUTE AFTER MIDNIGHT OCCURRED DURING
              THE LAST TRIP.
  1027
  1028
           С
  1029
              20 IF (TIME .NE. 0 .AND. ( .NOT. MIDNIT)) GO TO 80
  1030
          С
  1031
          C
                 WRITE OUT DAY TOTALS AT MIDNIGHT
  1032
          С
                 DAYDIS = DAYDIS / 1609.34
  1033
  1034
           C
                 WRITE (3.160) COMPL. SAVDAY, DAYTRP, TYPECT, STRTCT, DAYDIS, ID
  1035
  1036
           C ·
                 MIDNIT ≈ .FALSE.
  1037
  1038
           С
           С
                 ZERO OUT DAY TOTALS
  1039
  1040
           С
  1041
                 DAYTRP = 0
  1042
           С
  1043
                 D0 \ 40 \ I = 1, 3
              40 \text{ TYPECT(I)} = 0
  1044
```

```
1045
1046
              DO 60 I = 1, 2
1047
            60 \text{ STRTCT(I)} = 0
1048
        С
1049
              DAYDIS = 0.0
1050
              COMPL = 1
1051
              SAVDAY = DAY
1052
        С
1053
        С
              CHECK THAT THIS IS NOT THE FIRST MINUTE OF A CAROFF PERIOD
        С
1054
1055
              IF (OFFCT .EQ. 0) GO TO 120
1056
              OFFCT = OFFCT + 2360 - OLDTIM
1057
              GO TO 100
1058
        С
        C TIME NOT MIDNIGHT. CHECK FOR HOUR CHANGEOVER AND 20 MINUTE
1059
           PROBLEMS BEFORE INCREMENTING OFFCT.
1060
1061
           BUT FIRST, CHECK THAT THIS IS NOT THE FIRST MINUTE OF A CAROFF PERIOD
1062
           80 IF (OFFCT .EQ. 0) GO TO 120
1063
1064
              DIFF = TIME - OLDTIM
1065
              IF (DIFF .GT. 20) DIFF = DIFF - 40
1066
              OFFCT = OFFCT + DIFF
1067
           100 IF (OFFCT .GE. 480) HOT = .FALSE.
1068
              OLDTIM = TIME
1069
1070
              INCSPD = INCSPD +
1071
        C
1072
              RETURN
1073
        С
1074
        С
           SPECIAL HANDLING FOR FIRST MINUTE DURING CAROFF PERIOD
1075
        С
          120 OFFCT = OFFCT + 1.
1076
1077
              OLDTIM = TIME
1078
              INCSPD = INCSPD + 1
1079
              RETURN
1080
        С
          140 FORMAT (' ', 'CAR OFF ', I6, 2(5X, I6) )
1081
          160 FORMAT (816, F10.3, 16)
1082
1083
1084
              SUBROUTINE ONOFF (TIME, OLDST, J, ONCT, TRIPCT)
1085
        С
        С
1086
1087
        С
              SBM.....ONOFF STANDS FOR 'ON OFF'.
1088
        С
        C
              ..... DEFINITIONS OF VARIABLES.....
1089
        С
1090
        С
                1091
        С
                FLAGS(12).....I*4...Odd...1,3,5,7,9,11;driving status
1092
        C
1093
                                            information; on/off; urban/rural.
        С
                                     Even..2,4,6,8,10,12; number of speeds to
1094
1095
        C .
                                             read if the car is on.
                FORGET(60).....R*4...Dummy variable read in. Number of fields
1096
        С
```

varies.

JJ.....I*4...Used as FLAGS(J+1) substitution once.

Could be changed.

HOT....L*1...

Page

19

В

21

Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX

1097

1098

1099

1100

1101

1102

С

С

C

С

C

```
ONCT.........I*4...Length of trip (sec) = TOTSS + GOSC.
1104
         C
                 2..... Data file with flags.
1105
         С
                 TIME..........I*4...24 hour clock time at beginning of trip.
1106
         C
                 TRIPCT.....I*4...Sequential trip number.
1107
         С
1108
               DIMENSION FORGET(60) '
         C
1109
         С
1110
1111
               LOGICAL*1 SIXTSW, STALFL, GO, HOT
         С
1112
1113
               INTEGER XX, DAY, DAYNXT, TIME, TIMENX, FLAGS, FLAGNX, OLDST, ONCT,
                       TRIPCT, OFFCT, SAVDAY, DAYTRP, COMPL, TYPECT(3),
1114
                       STRTCT(2), SPBAND, PRBAND, ACBAND, STOPSC
1115
1116
         С
               COMMON /CHCK/ DAYNXT, FLAGNX(12), IDNEXT, NDIFF, NFLGNX, NOFF,
1117
1118
                      NOFFCN, NOFFSC, NSEC, NSECNX, NSTCNX, NSTCNX, NSTFLG(6),
1119
                      NSTFNX(6), NSTRIP, SPD(6,60), SPDNXT(6,60), TEMPNX(6),
1120
              3
                      TIMENX, INIT, SPBAND(81), PRBAND(43), ACBAND(43,81),
1121
                      ISBSAV, SPDSAV, GODI, STOPSC, STOPDI, NSTAT(2,6),
1122
                      NSTNX(2,6), NSTOT, NSTSEC, IFSTAL
1123
               COMMON /STATUS/ FLAGS(12)
1124
               COMMON /STUFF/ DAY, ID. NFLAG, TEMP(6), INCSPD
1125
               COMMON /LOGICL/ SIXTSW. STALFL. GO
1126
         С
1127
               COMMON /OFFMIN/ OFFCT
               COMMON /IDAYT/ COMPL. DAYTRP, SAVDAY, STRTCT, TYPECT
1128
               COMMON /ONTYPE/ HOT
1129
1130
         С
1131
         С
1132
               IF (FLAGS(J) .GT. OLDST) GO TO 20
1133
              IF (FLAGS(J) .LT. OLDST) CALL CARON(TIME, FLAGS(J + 1), ONCT,
                   TRIPCT, OLDST, J)
1134
         С
1135
1136
              RETURN
1137
1138
         С
           COMPUTE LAST CARON STATS
1139
1140
            20 STALFL = .FALSE.
              IF (NSTAT(1, INCSPD) .EQ. 2) STALFL = .TRUE.
1141
1142
               IF ( .NOT. STALFL) GO TO 40
1143
         С
         С
                 .....WRITE "DIAGNOSTICSLOG" OUTPUT ON UNIT 10.....
1144
1145
         С
1146
              WRITE(10.2300) INCSPD.TIME.NFLAG.FLAGS(NFLAG).FLAGS(NFLAG-1).
1147
             1 NSTAT(1.INCSPD).NSTAT(2.INCSPD)
         C2300 FORMAT(' INCSPD=', I12,' TIME=', I5,' NFLAG=', I3,' FLAGS(NFLAG)=',
1148
                      13./' FLAGS(NFLAG-1)=', 13,' NSTAT(1, INCSPD=', 110,
1149
         С
             1
                       ' NSTAT(2, INCSPD=', 110/)
         C
             2
1150
         С
1151
1152
              WRITE (10,80) TIME, NSTAT(2,1NCSPD)
              IF(STOPSC .LT. 0) STOPSC = 0
1153
              STOPSC = STOPSC + NSTAT(2, INCSPD)
1154
1155
              GO = .FALSE.
              ONCT = ONCT + NSTAT(2, INCSPD)
1156
               IF(NFLAG .NE. J+1)
                                       OLDST = FLAGS(J)
1157
              IFSTAL = OLDST
1158
```

Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX

1103

С

NSTRIP = NSTRIP + 1

1159

1160

20

Page .

```
7
```

```
Listing of OCS STAT.FOR at 13:112:38 on JUN 9, 1986 for CCId=SHYX
  1161
                NSTCNT = NSTCNT + NSTAT(2,INCSPD)
  1162
                INCSPD = INCSPD + 1
  1163
                GO = .FALSE.
  1164
                RETURN
  1165
             40 IF (FLAGS(J + 1) .EQ. 0) GO TO 60
  1166
  1167
  1168
          С
                JJ = FLAGS(J + 1)
 1169
          С
                READ (2,60) (FORGET(I), I=1,JJ)
 1170
 1171
             60 CALL STATON(OLDST)
 1172
 1173
 1174
                IF( NSTAT(1, J/2) .EQ. 2) GO TO 50
 1175
 1176
 1177
             RESET ON AND OFF COUNTERS
 1178
                ONCT = 0
 1179
 1180
                OFFCT = 0
 1181
                HOT = .TRUE.
 1182
          С
 1183
                CALL CAROFF(TIME)
 1184
          C 50 CALL CAROFF( TIME)
 1185
 1186
 1187
             80 FORMAT (' CAR STALL AT', 16, ' FOR ', 14, ' SECONDS')
 1188
 1189
            100 FORMAT (F6.1, 19F5.1)
 1190
 1191
                SUBROUTINE URBRUR(TIME, OLDST, K, ONCT, TRIPCT)
 1192
 1193
          C
 1194
          С
                SBM.....URBRUR STANDS FOR URBAN/RURAL MODES.
 1195
          С
                ..... DEFINITIONS OF VARIABLES.....
 1196
 1197
          С
                  COMBIN....L*1...
                  1198
- 1199
          С
                  FLAGS(12).....I*4...0dd...1,3,5,7,9,11;driving status
 1200
          С
                                             information: on/off; urban/rural.
                                      Even..2,4,6,8,10,12; number of speeds to
 1201
          С
 1202
          С
                                             read if the car is on.
                 OLDST.....I*4...Old on/off status to be compared to new,
 1203
          С
 1204
                 ONCT........I*4...Length of trip (sec) = TOTSS + GOSC
          С
                  10.......Unit 10; Output file; Error checking file.
 1205
          С
 1206
          С
                 1207
          С
                 TRIPCT.....I*4...Sequential trip number.
 1208
          C
 1209
          C
                LOGICAL*1 SIXTSW, STALFL, GO, HOT, COMBIN
 1210
          . С
 1211
                INTEGER XX, DAY, DAYNXT, TIME, TIMENX, FLAGS, FLAGNX, OLDST, ONCT,
 1212
                       TRIPCT, OFFCT, SAVDAY, DAYTRP, COMPL, TYPECT(3),
 1213
               1
 1214
               2
                       STRTCT(2), SPBAND, PRBAND, ACBAND
          С
 1215
                COMMON /CHCK/ DAYNXT, FLAGNX(12), IDNEXT, NDIFF, NFLGNX, NOFF,
 1216
                      NOFFCN, NOFFSC, NSEC, NSECNX, NSTCNX, NSTCNX, NSTFLG(6),
 1217
               1
 1218
               2
                      NSTFNX(6), NSTRIP, SPD(6,60), SPDNXT(6,60), TEMPNX(6),
```

```
В 2
```

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
  1219
                         TIMENX, INIT, SPBAND(81), PRBAND(43), ACBAND(43,81),
  1220
                         ISBSAV, SPDSAV, GODI, STOPSC, STOPDI, NSTAT(2,6),
  1221
                        NSTNX(2,6), NSTOT, NSTSEC, IFSTAL
  1222
                 COMMON /STATUS/ FLAGS(12)
                 COMMON /STUFF/ DAY, ID, NFLAG, TEMP(6), INCSPD
  1223
  1224
                 COMMON /LOGICL/ SIXTSW, STALFL, GO
  1225
           С
  1226
                 COMMON /OFFMIN/ OFFCT
  1227
                 COMMON /IDAYT/ COMPL. DAYTRP. SAVDAY. STRTCT. TYPECT
  1228
                 COMMON /ONTYPE/ HOT
           С
  1229
  1230
           С
  1231
                 COMMON /COMBO/ COMBIN
           С
  1232
  1233
                 COMBIN = .TRUE.
           С
  1234
  1235
                 IF (FLAGS(K) .GT, OLDST) GO TO 20
           С
  1236
           С
  1237
                   .....WRITE "DIAGNOSTICSLOG" OUTPUT ON UNIT 10.....
  1238
           C
                 WRITE (10.60)
  1239
              v
  1240
                 GO TO 40
  1241
           C
  1242
              20 WRITE (10,80)
  1243
           С
  1244
              40 IF (FLAGS(K) .EQ. 1 .OR. FLAGS(K) .EQ. 3) CALL CARON(TIME.
  1245
                     FLAGS(K + 1), ONCT, TRIPCT, OLDST, K)
  1246
                 IF (FLAGS(K) .EQ. 2 .OR. FLAGS(K) .EQ. 4) CALL CAROFF(TIME)
           С
  1247
  1248
                 OLDST = FLAGS(K)
  1249
                 RETURN
  1250
              60 FORMAT (' ', 'RURAL TO URBAN CHANGE')
              80 FORMAT (' ', 'URBAN TO RURAL CHANGE')
  1251
  1252
                 END
  1253
                 BLOCK DATA .
  1254
           С
                 COMMON /CHCk/ DAYNXT, FLAGNX(12), IDNEXT, NDIFF, NFLGNX, NOFF,
  1255
  1256
                        NOFFCN, NOFFSC, NSEC, NSECNX, NSTCNT, NSTCNX, NSTFLG(6),
                        NSTFNX(6), NSTRIP, SPD(6,60), SPDNXT(6,60), TEMPNX(6),
  1257
                        TIMENX, INIT, SPBAND(81), PRBAND(43), ACBAND(43.81),
  1258
  1259
                        ISBSAV. SPDSAV. GODI. STOPSC. STOPDI. NSTAT(2.6).
                        NSTNX(2,6), NSTOT, NSTSEC, IFSTAL
  1260
                 COMMON /STATUS/ FLAGS(12)
  1261
  1262
                 COMMON /STUFF/ DAY, ID, NFLAG, TEMP(6), INCSPD
  1263
                 COMMON /LOGICL/ SIXTSW, STALFL, GO
           С
  1264
                 COMMON /OFFMIN/ OFFCT
  1265
  1266
                 COMMON /IDAYT/ COMPL. DAYTRP, SAVDAY, STRTCT, TYPECT
                 COMMON /ONTYPE/ HOT
  1267
           С
  1268
                 COMMON /RDAYT/ DAYDIS
  1269
  1270
                 COMMON /LMIDNT/ MIDNIT
  1271
           С
           С
  1272
  1273
                 LOGICAL*1 SIXTSW, STALFL, GO, HOT, MIDNIT
           С
  1274
                 INTEGER XX. DAY, DAYNXT, TIME, TIMENX, FLAGS, FLAGNX, OLDST, ONCT,
  1275
                         TRIPCT, OFFCT, SAVDAY, DAYTRP, COMPL. TYPECT(3),
  1276
```

```
Ь
```

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
  1277
                        STRTCT(2), SPBAND, PRBAND, ACBAND
          С
  1278
  1279
          С
  1280
                DATA FLAGS /12*0/, SAVDAY /0/, DAYTRP /0/, COMPL /0/, TYPECT /3*0/
  1281
                1 , STRTCT /2*0/, DAYDIS /0.0/, MIDNIT / .FALSE. /
  1282
  1283
  1284
                SUBROUTINE SPDACC(ONCT, RSPEED, SPBAND, PRBAND, ACBAND, ISBSAV,
  1285
                           SPDSAV)
  1286
  1286.3
                THIS SUBROUTINE WAS TOTALLY REWRITTEN BY STEVEN B. MICHLIN
                USING A CHEAPER, MORE EFFICIENT AND MORE ACCURATE ALGORITHM
 1286.4
  1286.5
                THAN THAT PREVIOUSLY USED.
  1286.6
  1287
                SBM.....SPDACC STANDS FOR 'SPEED-ACCELERATION'.
  1288
          С
             THE SPEED BANDS ARE SET UP AS FOLLOWS:
  1289
          С
  1290
          C
  1291
          C
               SPEED(RSPEED)
                                   SPEED BAND(SPBAND)
 1292
          C
                0.0 - 1.0
                                         1
  1293
          C
                1.01 - 2.0
                                         2
  1294
          С
                2.01 - 3.0
                                          3
  1295
  1296
  1297
          С
               79.01 - 80.0
  1298
          C
  1299
                SPEED BANDS ARE DETERMINED BY ROUNDING UP THE SPEED.
  1300
  1301
  1302
          С
 1303
  1304
 1305
             THE ACCELERATION BANDS ARE SET 'UP AS FOLLOWS:
  1306
          С
  1307
               ACCEL(M/H-S)
                                     ACCEL BAND (PRBAND)
          С
                       - -5.01
  1308
          С
                                           1
  1309
          C
               ~5.00
                       - -4.76
          С
               -4.75
                       - -4.51
                                            3
 1310
 1311
          С
               -4.50
                      - -4.26
          С
               -4.25 - -4.01
  1312
          С
               -4.00 - -3.76
  1313
 1314
          C
          С,
 1315
 1316
          С
          С
               -1.00
                      - -0.76
                                            18
 1317
                      - -0.51
                                            19
 1318
          С
               -0.75
                                            20
 1319
          C
               -0.50
                       - -0.26
 1320
          С
               -0.25
                      - -0.01
                                            21
                                           22
          С
               -0.0099 - 0.0099
  1321
                      - 0.25
                                            23
          С
                0.01
  1322
  1323
          .С
                0.26
                       ~ 0.50
                                           24
                                            25
  1324
                0.51
                       - 0.75
          С
  1325
          С
                0.76
                       - 1.00
                                            26
          С
  1326
          С
  1327
  1328
          С
                                            39
  1329
          C
                4.01
                       - 4.25
  1330
                4.26
                       - 4.50
                                            40
```

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
  1331
                 4.51
                       - 4.75
                                             41
  1332
           С
                 4.76
                       - 5.00
                                             42
           С
                 5.10
  1333
                                             43
  1334
           С
  1335
           C
  1336
           С
           С
  1337
                 .....ACBAND SUBSCRIPT MAP (BELOW)......
  1338
           С
                     PICK SPEED BASED ON SPEED. 1.
  1339
           С
  1340
           С
                     SPEED BASED ON PREVIOUS SPEED BAND.
  1341
           C
  1342
           C
                  SPEED BAND>>
                                   1
                                           2
                                                    3
                                                            4
  1343
           С
                  ACCEL BAND
  1344
           С
                                  (1,1)
                                                 (1,3)
                      1
                                         (1,2)
                                                          (1,4)
                      2
  1345
           С
                                 (2,1)
                                         (2,2)
                                                 (2,3)
                                                          (2,4)
  1346
           C
                      3
                                 (3.1)
                                         (3,2)
                                                 (3,3)
                                                          (3,4)
  1347
                                 (4,1)
                                         (4,2)
           С
                                                 (4,3)
                                                          (4,4)
  1348
           C
  1349
           C
  1350
           C.
  1351
           С
                 ..... DEFINITIONS OF VARIABLES......
  1352
           C
  1353
           C
                   ACBAND(43.81), .I*4... Acceleration-Speed band: this array
           C
  1354
                                          contains the number of occurrances of
           C
  1355
                                          a specific acceleration at a specific
  1356
           C
                                          speed. See subscript map above.
  1357
           C
                   ACCEL......R*4...Acceleration (M/H-S). RSPEED - SPDSAV
  1358
           С
                   IACBND.......I*4...Numerical value of acceleration band
                                          number.
           С
  1359
  1360
           C
                   ISPEED........I*4...Numerical value of speed band.
  1361
           C
                   ISBSAV......I*4...Previous value of ISPEED.
  1362
           C
                   RSPEED......R*4...The actual speed.
                   SPDSAV......R*4...The previous speed value.
  1363
           С
  1364
           С
                   ONCT......I*4...Length of trip (sec) = TOTSS + GOSC
           С
  1365
                   PRBAND(43)....I*4...Matrix of time spent in each acceleration
  1366
           С
                                          band.
  1367
           C
                   SPBAND(81)....I*4...Speed band; This vector counts the number
           C
  1368
                                          of times in a specific speed band.
           С
  1369
  1370
           С
                 INTEGER ONCT, SPBAND(81), PRBAND(43), ACBAND(43,81)
 1371
           С
 1372
 1373
          С
                 ....SPEED BAND SECTION
 1374
          С
                 IF (RSPEED , LE. 80.0) GO TO 20
 1375
  1376
          С
                 .... THERE ARE 81 SPEED BANDS. YOU HAVE EXCEEDED THE 80th.
  1377
          С
  1378
          С
  1379
                 ISPEED = 81
  1380
                GO TO 40
  1381
                 ....ROUND UP THE VALUE OF THE SPEED TO GET THE SPEED BAND.
  1382
          С
  1383
              20 ISPEED = RSPEED + .9999
  1384
  1385
          С
                 .... THE BELOW STEP IS ESSENTIAL TO COVER THE CASE WHEN RSPEED=0
          С
  1386
  1387
          С
                        OTHERWISE ISPEED=O WHICH IMPOSSIBLE.
  1388
          С
```

```
Listing of OCS STAT.FOR at 13:\12:38 on JUN 9, 1986 for CCid=SHYX
  1389
                 IF (RSPEED , LE. 1.0) \cdot ISPEED = 1
  1390
           С
           C
  1391
                 .....INCREMENT THE NUMBER OF OCCURRANCES AT THAT SPEED BAND.
  1392
           С
  1393
              40 SPBAND(ISPEED) = SPBAND(ISPEED) + 1
           С
  1394
  1395
                 ..... ACCELLERATION BAND SECTION
  1396
           C
  1397
                 IF (ONCT .NE. 0) GO TO 60
  1398
           С
  1399
           С
                 .....SAVE THE PREVIOUS VALUE OF THE SPEED, SPEED BAND....
  1400 .
           C
  1401
                 SPDSAV = RSPEED
  1402
                 ISBSAV = ISPEED
  1403
                 RETURN
  1404
           С
  1405
           С
                 .....THE BELOW STATEMENT IS VALID BECAUSE 1 SEC INCREMENT.....
           C
  1406
  1407
              60 ACCEL = RSPEED - SPDSAV
                 IF (ACCEL .GE. - 5. .AND. ACCEL .LE. 5.) GO TO 100
  1408
  1409
                 IF (ACCEL .LT. -5.) IACBND = 1
                 IF (ACCEL .LT. - 5.) GO TO 80
  1410
                 IF (ACCEL .GT. 5.) JACBND = 43
  1411
  1412
                 IF (ACCEL .GT. 5.) GO TO 80
  1413
  1414
           С
                 .....THE EQUATION BELOW FINDS THE IACBND. ALTHOUGH IT IS
  1415
           С
                        UNOBVIOUS, IT WORKS, AND IS QUITE EFFICIENT COMPARED TO
  1416
           С
                        THE PREVIOUS WAY THIS WAS CALCULATED.
           C
  1417
  1418
                 IACBND = ACCEL * 4. + 22.00
  1419
                 IF (ACCEL .GE. .O1) IACBND = ACCEL * 4. + 22.9
  1420
                 IF (ABS(ACCEL) .LT. .01) IACBND = 22
  1421
              80 ACBAND(IACBND, ISBSAV) = ACBAND(IACBND, ISBSAV) + 1
  1422
                 PRBAND(IACBND) = PRBAND(IACBND) + 1
  1423
           С
  1424
           С
                 .....SAVE THE PREVIOUS VALUE OF THE SPEED, SPEED BAND....
           С
  1425
  1426
                 SPDSAV = RSPEED
                 ISBSAV = ISPEED
  1427
  1428
                 RETURN
  1429
                 SUBROUTINE CMPRES(SPBAND, PRBAND, ACBAND)
  1430
  1431
  1432
           С
                 SBM
           С
  1433
                 .....IN THIS SUBROUTINE, CMPRES, THE BANDS ARE COMPRESSED FROM
  1434
           С
  1435
           С
                        43 X 81 TO 23 X 8. THE ACTUAL CALCULATIONS, WHICH FIND
                        SPEED BANDS IN THE INCREMENTS SEEN IN SUBROUTINE SPDACC.
  1436
           C
                        ARE DONE THAT WAY TO MAKE IT EASY TO MANIPULATE THE
  1437
           C
  1438
           C
                        MATRIX TO GET OTHER BAND SIZES FOR THE FUTURE WITHOUT
  1439
           .C
                        HAVING TO RERUN THIS PROGRAM IN MODIFIED FORM. THE
                        PROGRAMMER CAN SIMPLY READ THE TAPES AND HAVE A SHORT
  1440
           С
                        PROGRAM THAT READS THE BIG MATRIX AND COMPRESSES IT TO
  1441
           С
                        A SMALL ONE. IN OUR CASE, WE'LL USE AN OUTPUT MATRIX
  1442
           С
  1443
           С
                        OF THE SIZE DEPICTED BELOW.
  1444
           С
              THE SPEED BANDS ARE SET UP AS FOLLOWS:
  1445
           С
  1446
```

```
B 28
```

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHVX
  1447
           С
                SPEED(MILSPD)
                                    ARRAY 'ISPD'
                                                        SPEED BAND(SPBAND)
           C.
                 0.0 - 10.0
                                       0 - 100
  1448
                                                               1
           С
                10.1 - 20.0
                                     101 - 200
  1449
                                                               2
           С
                20.1 - 30.0
  1450
                                     201 - 300
  1451
           С
                30.1 -
                        40.0
                                     301 - 400
  1452
           С
                40.1 -
                        50.0
                                     401 - 500
           С
                50.1 -
                                     501 - 600
  1453
                        60.0
                                                               6
                60.1 -
  1454
           С
                        70.0
                                     601 - 700
                                                               7
  1455
           С
                70.1 -
                                     701 -
           С
  1456
  1457
           С
              THE ACCELERATION BANDS ARE SET UP AS FOLLOWS:
  1458
           С
  1459
           С
                ACCEL(M/H-S)
                                   ARRAY 'IACCEL'
                                                          ACCEL BAND(ACBAND)
           С
  1460
                   - ~5.1
                                       - -51
                                                               1
                -5.0 - -4.6
                                     ~50 - -46
           С
  1461
                                                               2
                                     ~45 - -41
  1462
           С
                -4.5 - -4.1
                                                               3
  1463
                -4.0 - -3.6
                                     -40 - -36
  1464
                -3.5 - -3.1
                                     -35 - -31
                -3.0 - -2.6
                                     ~30 - -26
  1465
  1466
                -2.5 - -2.1
                                     ~25 - ~21
                                                               7
                -2.0 - -1.6
                                     -20 - -16
  1467
           С
                                                               8
                                     ~15 - -11
  1468
           С
                -1.5 - -1.1
                                                               9
  1469
           С
                -1.0 - -0.6
                                     ~10 - ~6
                                                              10
  1470
           C
                -0.5 - -0.1
                                      -5 - -1
                                                              11
                                       0 -
  1471
           С
                 0.0 - 0.0
                                             0
                                                              12
           C
                 0.1 - 0.5
                                      1 -
  1472
                                             5
                                                              13
  1473
           С
                 0.6 - 1.0
                                       6 - 10
                                                              1.4
                                      11 - 15
  1474
                 1.1 - 1.5
                                                              15
  1475
           С
                 1.6 - 2.0
                                      16 -
                                            20
                                                              16
  1476
           С
                 2.1 - 2.5
                                      21 -
                                            25
                                                              17
                 2.6 - 3.0
                                      26 -
  1477
                                                              18
           С
                                            30
                                      31 -
                 3.1 - 3.5
                                                              19
  1478
           С
                                            35
                 3.6 - 4.0
                                      36 - 40
  1479
           С
                                                              20
                 4.1 - 4.5
                                      41 - 45
                                                              21
  1480
           С
  1481
           С
                 4.6 -
                        5.0
                                      46 -
                                            50
                                                              22
           С
                                      51 -
                                                              23
  1482
                 5.1 -
  1483
           С
  1484
                 INTEGER SPBAND(81), PRBAND(43), ACBAND(43,81), SPBTWO(8),
  1485
  1486
                         PRBTWO(23), ACBTWO(23.8)
  1487
           С
  1488
                 DO 40 I = 1.8
 1489
                   SPBTWO(I) \approx 0
           С
 1490
                   DO 20 J = 1, 23
 1491
 1492
                     PRBTWO(J) = 0
 1493
              20
                   ACBTWO(J,I) = 0
           С
 1494
              40 CONTINUE
  1495
           С
 1496
                 DO 80 I = 1, 81
  1497
  1498
           С
  1499
                   II = I / 10. + .999
  1500
           C
           С
                 .....NOW CHECK FOR POINTS ABOVE 70 MPH
  1501
  1502
                   IF (II ,LE, 7) SPBTWO(II) = SPBTWO(II) + SPBAND(I)
  1503
                   IF (II .GT. 7) SPBTWO(8) = SPBTWO(8) + SPBAND(1)
  1504
```

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
  1505
                    IF (II .LE. 7) ACBTWO(12,II) = ACBTWO(12,II) + ACBAND(22,I)
  1506
                    IF (II .GT. 7) ACBTWO(12.8) = ACBTWO(12.8) + ACBAND(22.1)
  1507
                    DO 60 K = 1, 22
  1508
                      K1 = K / 2 + 1
  1509
                      KK = K + 21
  1510
  1511
                      RK = KK
  1512
                      KK1 = RK / 2 + 1.6
  1513
                  ....NOW CHECK FOR POINTS ABOVE 70 MPH
  1514
           С
  1515
                      IF (II .GT. 7 .AND. K .NE. 22) ACBTWO(K1.8) = ACBTWO(K1.8) +
  1516
  1517
                      ACBAND(K,I)
  1518
                      IF (II .LE. 7 .AND. K .NE. 22) ACBTWO(K1,II) = ACBTWO(K1,II) +
  1519
                       'ACBAND(K,I)
  1520
           С
                      IF(K .EQ. 22)
                                        GO TO 100
  1521
           C
           С
  1522
                  .....II CAN NOT EXCEED THE VALUE 7.....
  1523
  1524
                      IF (II .LE. 7 .AND. K .NE. 1) ACBTWO(KK1,II) = ACBTWO(KK1,II)
  1525
                      + ACBAND(KK, I)
  1526
                      IF (II .GT. 7 .AND. K .NE. 1) ACBTWO(KK1,8) = ACBTWO(KK1,8) +
  1527
                      ACBAND(KK,I)
  1528
               60
                   CONTINUE
           C
  1529
  1530
  1531
           С
                 ....NOW ADD POINTS FROM -.1 TO +.1 MPH/S ACCELERATION....
  1532
           С
  1533
              80 CONTINUE
  1534
           С
  1535
                  DO 100 K = 1, 22
                    K1 = K / 2 + 1.
  1536
  1537
                    KK = K + 21
  1538
                    RK = KK
  1539
                    KK1 = RK / 2. + 1.6
           С
  1540
  1541
                     IF(K .EQ. 22) GO TO 300
                    IF (K .NE. 1.) PRBTWO(KK1) = PRBTWO(KK1) + PRBAND(KK)
  1542
             100 IF (K .NE. 22) PRBTWO(KI) = PRBTWO(KI) + PRBAND(K)
  1543
  1544
           С
                  PRBTWO(12) = PRBAND(22)
  1545
  1546
           С
  1547
           С
                  ....NOW WRITE BANDS IN OUTPUT FILE ON UNIT 6....
  1548
           С
  1549
           С
                   .....WRITE "SPEEDLOG" OUTPUT ON UNIT 6 (COMPRESSED)....
           С
  1550
           С
  1551
  1552
                  WRITE (6,120) SPBTWO
  1553
                  WRITE (6,140) PRBTWO
                  WRITE (6,160) ((ACBTWO(I,J),J=1,8),I=1,23)
  1554
                  RETURN
  1555
           С
  1556
             120 FORMAT (' ', 'SPEED ', 816)
140 FORMAT (' ', 'ACCEL ', 2314)
160 FORMAT (' ', 'COMBIN ', 816)
  1557
  1558
  1559
  1560
  1561
                  SUBROUTINE CHECK (TIME.OLDST)
  1562
```

27

В

29

Page

C.....NDUMMY......I*4....Dummy variable used in conversion from

C.....NFLAG......I*4.....The current number of FLAGS that have

C.... NFLGNX..... I*4.... The next value of NFLAG.

C.....NSECNX......I*4.....The next value of NSEC.

C....NSTOP......I*4....Number of stop seconds.

nonzero values.

C....NSEC......I*4....The total number of speeds read in after a

C.....NSTFLG(6)...I*4.....Current stall flag value NSTFLG(I); 0=nostall;

C.....NOFFSC......I*4.....The off time in a given trip (seconds).

C....NSTCNT......I*4.....The number of stalls in a given trip.

C l=stall.
C....NSTFNX(6)...I*4....Next stall flag value NSTFLG(I); O=nostall;

1=stall.

C....NTRIP......I*4.....The number of trips on the current line.

C....NSTRIP.....I*4....The stall-time in a trip (seconds).

Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX

.....WRITTEN BY STEVEN B. MICHLIN....

....THIS SUBROUTINE IS USED TO CHECK FOR STALLS.

TO COUNT STALL TIME, WHICH IS 60 OR LESS

11-14-84, THIS SUBROUTINE WAS ADDED BECAUSE DATA

CONSECUTIVE SECONDS OF ENGINE OFF TIME, IT WAS

.....THIS SUBROUTINE READS TWO CONSECUTIVE LINES, CHECKS

WAS READ ONE LINE AT A TIME. IN ADDING A COUNTER

REALIZED THAT TO ACCURATELY DETERMINE STALL TIME,

TWO SIXTY SECOND LINES WITH FLAGS MUST BE CHECKED

SINCE A 60 SECOND STALL COULD OCCUR WITHIN TWO LINES.

FOR THE STALL CONDITION, AND APPROPRIATELY CHANGES THE

FLAG VALUES TO BE ABLE TO USE THE PREVIOUS VERSION OF

THE PROGRAM WITH AS LITTLE CHANGE AS POSSIBLE. IT IS

is the number of seconds of engine off or

can't be used as maximum Do-Loop limit.

stop time. If NN <= 60, it is the total

number of consecutive seconds of stall

line with FLAGS values. If NSEC < 60

then there is some stop or stall time.

time by definition in this program.

Fortran-77 to Fortran-4. Arrays in Fortran-4

stall in that minute time interval.

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574 1575

1576

1577

1578

1596

1597

1598 1599

1600

1601

1602

1603

1604 1605

1606

1607

1608 1609

1610

1611

1612

1613

1614 1615

1616

1617

1618 1619

1620

C

С

С

С

С

C

С

C

C

С

С

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHVX
          C....NTRPNX.....I*4....The number of trips on the next line.
  1621
  1622
          C....10...........
  1623
          1624
          C....SIXTSW.....L*1....Used to specify whether or not 5 or 6
  1625
                                   temperatures are to be input.
          C....SPD(6.60)...R*4....Array of speed values associated with each
  1626
  1627
                                   even numbered flag
          C....SPDNXT(6,60)R*4....The next SPD value.
  1628
 1629
          C.....8..................
 1630
          C.....7...........
          C....TEMP(6)....R*4....Temperature array to be read in.
 1631
 1632
          C....9.............
          C....TEMPNX(6)...R*4....The next temperature array to be read in.
 1633
 1634
          C.....TIME.......I*4.....Time on 24 hour clock.
          C.....TIMENX......I*4.....The next value of time on 24 hour clock read
 1635
 1636
 1637
          C....4,...........
 1638
          value would have been if the data was
 1639
          С
 1640
                                    flawless.
          С
  1641
 1642
          C
 1643
                LOGICAL*1 SIXTSW, STALFL, GO
 1644
                INTEGER XX. DAY, DAYNXT, TIME, TIMENX, FLAGS, FLAGNX, SPBAND.
                       PRBAND, ACBAND, OLDST
 1645
                COMMON /CHCk/ DAYNXT, FLAGNX(12), IDNEXT, NDIFF, NFLGNX, NOFF,
 1646
                      NOFFCN, NOFFSC, NSEC, NSECNX, NSTCNT, NSTCNX, NSTFLG(6),
 1647
                      NSTFNX(6), NSTRIP, SPD(6,60), SPDNXT(6,60), TEMPNX(6),
  1648
                      TIMENX, INIT, SPBAND(81), PRBAND(43), ACBAND(43,81),
 1649
               3
 1650
               Δ
                      ISBSAV, SPDSAV, GODI, STOPSC, STOPDI, NSTAT(2,6).
                      NSTNX(2.6), NSTOT, NSTSEC, IFSTAL
 1651
                COMMON /STATUS/ FLAGS(12)
 1652
 1653
                COMMON /STUFF/ DAY, ID, NFLAG, TEMP(6), INCSPD
                COMMON /LOGICL/ SIXTSW. STALFL. GO
 1654
 1655
                .....THE 'CURRENT' VALUE NOW EQUALS THE 'NEXT' VALUE OF
 1656
          С
          С
                      THE READ-IN VARIABLES AFTER WHICH A NEW VALUE WILL BE
 1657
 1658
          С
                      READ IN.
          С
 1659
 1660
          С
                NOFFSC = NOFFCN
          С
                NOFF = 0
 1661
 1662
 1663
                NFLAG = NFLGNX
                TIME = TIMENX
 1664
                                         ID = IDNEXT
                IF(IDNEXT ,NE. 0)
 1665
 1666
                DAY = DAYNXT
                NSEC = NSECNX
 1667
                NSECNX = 0
 1668
          С
 1669
 1670
                DO 60 I = 1, 6
                 NSTFLG(I) = NSTFNX(I)
 1671
                 FLAGS(I) = FLAGNX(I)
 1672
                 FLAGS(I + 6) = FLAGNX(I + 6)
 1673
                 TEMP(I) \approx TEMPNX(I)
 1674
                 NSTFNX(1) = 0
 1675
          С
 1676
 1677
                 D0 20 J = 1.2
                 NSTAT(J,I) = NSTNX(J,I)
 1678
             20
```

```
В 32
```

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
  1679
  1680
                    .....The below puts a 5 to check for no value given.
  1681
           С
  1682
           C
                     NSTNX(1,1)
                   NSTNX(1,1) = 0
  1683
           С
  1684
  1685
           C
                     .....The below step is there to automatically pad all
  1686
           C
                             stops and stalls with 1's for the case of the unknown
  1687
           C
                             where there are more than 1 stall or stop on the
  1688
           C
                             same 60 second input line. They total 60 - NSEC.
           C
                             These are also included in NSEC. *****
  1689
           С
  1690
                   NSTNX(2.I) = 0
  1691
           С
  1692
  1693
                   NDUMMY = FLAGNX(I*2)
  1694
           С
                   DO 40 J = 1, NDUMMY
  1695
  1696
                   SPD(I,J) = SPDNXT(I,J)
  1697
           C
  1698
              60 CONTINUE
           C
  1699
  1700
           C
  1701
           С
           С
  1702
                 .... USED IN TEMPERATURE AND FLAG READS.....
  1703
  1704
                 IF (SIXTSW) READ (2,460,END=420) DAYNXT, TIMENX, IDNEXT, TEMPNX,
  1705
                1FLAGNX
  1706
                 IF ( .NOT. SIXTSW) READ (2,480,END≈420) DAYNXT, TIMENX, IDNEXT,
  1707
                1(TEMPNX(I), I=1,5), XX, FLAGNX
           C
  1708
  1709
                 NFLGNX = 0
                 NSECNX = 0
 1710
           C
 1711
  1712
                 DO 100 I = 1, 6
           С
  1713
                   IF (FLAGNX(1*2 - 1) .NE. 0) NFLGNX = 2*1
  1714
 1715
           С
                   ....READ SPEEDS....
 1716
           С
 1717
           С
                   NN = FLAGNX(2*I)
 1718
                  IF (FLAGNX(I*2) .NE. 0) READ (2,500) (SPDNXT(I,J),J=1,NN)
 1719
 1720
                   IF (FLAGNX(I*2 - 1) .EQ. 0) GO TO 100
           C
 1721
                   IF ( .NOT. (FLAGNX(1*2 - 1) .EQ. 1 .OR. FLAGNX(1*2 - 1) .EQ. 3))
  1722
                      GO TO 80
 1723
                   NSECNX = NSECNX + FLAGNX(I*2)
 1724
 1725
                   NSTNX(1,I) = 1
 1726
                   NSTNX(2,I) = FLAGNX(1*2)
                   GO TO 100
 1727
           С
 1728
                  IF ( NOT, (FLAGNX(I*2 - 1), EQ. 2 .OR, FLAGNX(I*2 - 1), EQ. 4))
  1729
              80
 1730
                      GO TO 100
           C
  1731
                   IF (NFLGNX .EQ. 2 .AND. I .NE. 1) GO TO 100
  1732
           С
  1733
           С
                  ....IT'S PROBABLY A STALL....
 . 1734
           C
 1735
                   NSTNX(1,I)
  1736
```

```
t
```

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
           С
                   NSTNX(2,I)
  1737 .
  1738
           С
  1739
           C
                   ....PAD "1's"....
  1740
           С
                    ***REMOVE THIS SECTION LATER***
  1741
           C
  1742
                   IF ( .NOT, (NFLGNX .GT. 4 .AND. (FLAGNX(1) .EQ. 2 .OR, FLAGNX(1)
  1743
                        .EQ. 4) .OR. (NFLGNX .GT. 6 .AND. (FLAGNX(2) .EQ. 2 .OR.
  1744
                       FLAGNX(2) .EQ. 4)))) GO TO 90
  1745
                   NSECNX = NSECNX + 1
  1746
                   NSTNX(1,I) = 2
  1747
           С
                   ....ONE SECOND FOR THE PADDED MULTIPLE 'ENGINE OFF' ON SAME LINE
  1748
           С
  1749
           С
  1750
                   NSTNX(2.I) = 1
  1751
           С
  1752
           С
  1753
           С
                   .....SPEED VALUES WERE INSERTED IN INPUT FILES IN AN UNUSUAL
                          WAY TO SAVE FILE SPACE. THIS WAS *NOT* DONE BY ME..SBM
  1754
  1755
                          FOR NEXT OCS PROGRAM. USE INTEGERS TO SAVE SPACE. FOR
  1756
           C
                          EXAMPLE, SPEED MULTIPILED BY 100.
  1757
           С
  1758
           C
                             XX.0======>XX.00
  1759
           С
                             XX.3=====>XX.25
  1760
           С
                             XX.5======>XX.50
           С
  1761
                             XX.8======>XX.75
                             XX.0======>XX.00
  1762
           С
           С
  1763
           С
                   .....THE BELOW DO-LOUP CORRECTS FOR THE ABOVE SPECIAL CASE...
  1764
  1765
           С
  1766
           С
  1767
             90
                   DO 50 J = 1, NN
                     ISPEED = SPDNXT(I,J)
  1768

    ISPEED

  1769
                     DEL = SPDNXT(I,J)
                     IF(ABS(DEL - .3) .LT. .01) SPDNXT(I,J) = ISPEED + .25
IF(ABS(DEL - .8) .LT. .01) SPDNXT(I,J) = ISPEED + .75
  1770
  1771
             50
  1772
           С
  1773
           С
  1774
           С
             100 CONTINUE
  1775
  1776
                 NPAD
                        =
  1777
                               Ω
                IF ( .NOT. (NFLGNX .EQ. 2 .AND. (FLAGNX(1) .EQ. 2 .OR. FLAGNX(1)
  1778
  1779
                1 .EQ. 4))) GO TO 120
  1780
           С
                  .....IT'S DEFINITELY A 60 SECOND 'ENGINE OFF'
  1781
           С
  1782
           С
                 NSECNX = 60
  1783
  1784
                 NSTNX(1,1) = 0
  1785
  1786
           С
                  ....60 SECONDS FOR AN 'ENGINE OFF'
  1787
           ·C
                 NSTNX(2.1) = 60
  1788
           С
  1789
             120 IF ( .NOT. (NFLGNX .GT. 4 .AND. (FLAGNX(1) .EQ. 2 .OR. FLAGNX(1)
  1790
  1791
                1 .EQ. 4))) GO TO 140
  1792
                 NSTNX(1.1) = 0
  1793
                 NSTNX(2.1) = 60 - FLAGNX(2)
  1794
                 NSTNX(1,2) = 1
```

```
1796
               NSTNX(2,2) = FLAGNX(2)
1797
           610 IF(,NOT,(
1798
         С
                                             (FLAGNX(1).EQ.2.OR.FLAGNX(1).EQ.4)))
1799
           140 IF ( .NOT. (NFLGNX .GE. 4 .AND. (FLAGNX(1) .EQ. 2 .OR. FLAGNX(1)
1800
              1 .EQ. 4))) GO TO 180
1801
         С
1802
               NPAD =
               NPDNUM =
1803
                           NPDNUM + 1
1804
1805
         С
                 .....EVERY OTHER ONE WILL STALL OUT UNTIL LAST SO PUT 2 IN
1806
         C
                        THE NSTNX(1,1*2-1) FOR ONES THAT FLAGNX(1)=2 OR 4.....
1807
         С
1808
         С
                 .... PAD "1's" IN FOR THE STALLS.....
1809
         С
1810
               0 = MUQN
               NDUMMY = FLOAT(NFLGNX) / 4.5
1811
1812
         С
1813
               DO 160 I = 1, NDUMMY \cdot
1814
                 IF(FLAGNX(I*4-3) .NE. 2 .AND. FLAGNX(I*4-3) .NE. 4) GO TO 170
1815
                 NSTNX(2, 1*2-1) = 1
1816
                 NSTNX(1.1*2-1) = 2
                 NDUM = NDUM + NSTNX(2,I*2-1)
1817
                 IF(FLAGNX(I\pm4-1) .NE. 1 .AND. FLAGNX(I\pm4-1) .NE. 3) GO TO 160
1818
1819
                 NSTNX(2,I*2) = FLAGNX(I*4)
1820
                 NSTNX(1,1*2) = 1
1822
               NDUM = NDUM + NSTNX(2, I*2)
1822.2
           160 CONTINUE
1822.5
               GO TO 171
1822.6
           170 \text{ NDUMMY} = \text{NDUMMY} - 1
1822.7
           171 CONTINUE
1823
         С
1824
         С
                 .....UNPAD THE LAST VALUE.....
1825
         С
1826
               IF(FLAGNX(NDUMMY*4-3) .NE. 2 .AND.FLAGNX(NDUMMY*4-3).NE. 4)GOTO 161
1827
               NSTNX(2.NDUMMY*2-1) = 61 - NDUM
1828
               NSTNX(1,NDUMMY*2~1) = 2
1829
               NSECNX = 60
1830
          161
              CONTINUE
1831
         С
1832
         С
1833
               IF( NFLAG .EQ. 2 .OR. FLAGS(NFLAG-1) .EQ. 1 .OR.
                  FLAGS(NFLAG-1).EQ. 3 ) GO TO 180
1834
              NDIFF = 60 - NSEC
1835
                     = NDIFF + 1
1836
              IF( NN .LT. 60 ) GO TO 320
1837
              GO TO 400
1838
         С
1839
1840
         С
                 .....EVERY OTHER ONE WILL STALL OUT UNTIL LAST SO PUT 2 IN
1841
        С.
1842
                        THE NSTNX(1, I*2) FOR ONES THAT FLAGNX(1)=1 OR 3.....
         С
```

180 IF (:NOT. (NFLGNX .GT. 2 .AND. (FLAGNX(1) .EQ. 1 .OR. FLAGNX(1)

32

Page

Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCId=SHYX

NSTNX(2,2) = FLAGNX(4)

.EQ. 3))) GO TO 200

NSTNX(2,2) = 60 - FLAGNX(2)

NSTNX(2,1) = FLAGNX(2)

NSTNX(1,1) = 1

NSTNX(1,2) = 0

1795

1843

1844 1845

1846

1847 1848

```
В
3
```

33

Page

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCId#SHYX
                IF (NFLGNX,GT,4) NSTNX(2,2) = 60 - FLAGNX(2) - FLAGNX(6)
  1850
  1851
                IF (NFLGNX .GT. 4) NSTNX(1,3) = 1
  1852
                IF (NFLGNX, GT, 4) NSTNX(2,3) = FLAGNX(6)
  1853
          C 630 IF(.NOT.(
                                              (FLAGNX(1).EQ.1.OR.FLAGNX(1).EQ.3)))
  1854
            200 IF ( .NOT. (NFLGNX .GE. 6 .AND. (FLAGNX(1) .EQ. 1 .OR. FLAGNX(1)
               1 .EQ. 3))) GO TO 240
  1855
  1856
  1857
          С
                   .... PAD "1's" IN FOR THE STALLS.....
  1858
          С
                NPAD = 1
  1859
          C
  1860
  1861
                NDUM = 0
 1862
                NDUMMY = NFLGNX / 4. + 1.
  1863
          С
          С
  1864
  1865
                DO 220 I = 1, NDUMMY
  1870
                  IF(FLAGNX(1*4-3) .NE. 1 .AND. FLAGNX(1*4-3) .NE. 3) GO TO 210
  1871
                  NSTNX(2,I*2-1) = FLAGNX(1*4-2)
  1872
                  NSTNX(1,I*2-1) = 1
                  NDUM = NDUM + NSTNX(2, I*2 - 1)
  1873
  1873.2
            210
                  IF(FLAGNX(1+4-1) .NE. 2 .AND. FLAGNX(1+4-1) .NE. 4) GO TO 225
  1873.4
                  NSTNX(2,I*2) = 1
  1873.6
                  NSTNX(1,I*2) = 2
                  NDUM = NDUM + NSTNX(2,I*2)
  1873.8
  1874
            220 CONTINUE
  1874.2
                GO TO 226
                            NDUMMY - 1
            225 NDUMMY =
  1874.5
  1874.7
            226 CONTINUE
  1875
          С
          С
                   .....UNPAD THE LAST VALUE.....
  1876
  1877
          С
                IF(FLAGNX(NDUMMY*4-1) .NE. 2.AND.FLAGNX(NDUMMY*4-1).NE. 4)GOTO 221
  1878
  1879
                NSTNX(2,NDUMMY*2) = 61 - NDUM
                NSTNX(1,NDUMMY*2) = 2
  1880
  1881
                NSECNX = 60
           221 CONTINUE
  1882
  1883
          С
  1884
          С
                IF( NFLAG .EQ. 2 .OR. FLAGS(NFLAG-1) .EQ. 1 .OR.
  1885
  1886
               1 FLAGS(NFLAG-1).EQ. 3 ) GO TO 240
                NDIFF = 60 - NSEC
  1887
                NN = NDIFF + 1
  1888
                IF( NN .LT. 60 ) GO TO 320
  1889
  1890
                GO TO 400
  1891
          C
            240 CONTINUE
  1892
  1893
          С
  1894
          С
                INIT = 1
  1895
          С
  1896
          С
                IF ( .NOT. (NFLGNX .EQ. 2 .AND. (FLAGNX(1) .EQ. 2 .OR. FLAGNX(1)
  1897
               1 .EQ. 4))) GO TO 280
  1898
                                                                      1
  1899
  1900
                NSTNX(1,1) = 0
                NSTNX(2.1) = 60
  1901
                IF (FLAGS(NFLAG - 1) .EQ. 2 .OR. FLAGS(NFLAG - 1) .EQ. 4)
  1902
               1 GO TO 260
  1903
  1904
                NSTAT(1.NFLAG/2) = 0
```

IF (FLAGNX(1) .EQ. 2 .OR. FLAGNX(1) .EQ. 4) NN = NDIFF + 60 -

1960

1961

1962

NN = NDIFF + 1

INSECNX

Page

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
  1963
                 IF (((FLAGNX(1) .EQ. 2 .OR, FLAGNX(1) .EQ. 4)) .AND. NFLGNX .EQ.
  1964
                12) NN = NDIFF + 60
  1965
           C.
  1966
           C
                 ....IF NN > 60, IT IS AN OFF, NOT A STALL....
                 IF (NFLAG .EQ. 2 .AND. (FLAGNX(1) .EQ. 1 .OR. FLAGNX(1) .EQ. 3))
  1967
  1968
                1 GO TO 400
  1969
           С
  1970
           C
  1971
           С
                 .... BEWARE OF THE CASE AFTER A STALL AND COMBINING THE
  1972
           С
                        STALL SECONDS. THAT NSEC CAN BE LESS THAN 60....
  1973
           С
                 IF (NN .LE. 60 .AND. NFLAG .NE. 2) GO TO 320
  1974
 1975
  1976
                 NSTAT(1,NFLAG/2) = 0
  1977
                 NSTAT(2,NFLAG/2) = NDIFF
  1978
                 NSTNX(1,1) = 0
  1979
           C
  1980
           С
                 .... THE BELOW IS TRUE ONLY WHEN FLAGNX(NFLGNX-1) NE. 2 OR 4
  1981
           С
  1982
                 IF (FLAGNX(NFLGNX - 1) .NE. 2 .AND. FLAGNX(NFLGNX - 1) .NE. 4)
  1983
                INSTNX(2,1) = 60 - NSECNX
           С
  1984
                 GO TO 400
  1985
  1986
           С
  1987
           C
                 .....COMBINE THE STALL SECONDS WHICH CONTINUES FROM THE PREVIOUS
  1988
           С
                        LINE....
  1989
           C
             320 IF (NFLGNX .EQ. 2 .AND. FLAGNX(2) .EQ. 0) GO TO 400
  1990
  1991
           С
                 .....ITS A STALL. SO NSTAT(1.1) = 2: 1=ON: 0=OFF: 5=INITIALIZED
  1992
           С
  1993
           C
                                 FIX LATER
  1994
                 NSTAT(1,NFLAG/2) = 2
           C
  1995
  1996
                 NDUMMY = FLAGNX(2)
           С
  1997
                 DO 340 I = 1, NDUMMY
  1998
  1999
             340 SPD(NFLAG/2, FLAGS(NFLAG) + I) = SPDNXT(1, I)
                 FLAGS(NFLAG) = FLAGS(NFLAG) + FLAGNX(2)
  2000
  2001
                 NSTAT(1,NFLAG/2) \approx 2
  2002
                 NSTAT(2,NFLAG/2) = NN
  2003
           C.
  2004
                 NFLGNX = NFLGNX - 2
 2005
          С
                       = NFLGNX / 2
 2006
                 MUUM
          С
 2007
                 DO 380 I = 1, NDUM
 2008
          С
  2009
  2010
           CC .
                   IF (I .GT. 6) GO TO 380
                   IF (I .LT. 7) NSTNX(1,I) = NS1NX(1,I+1)
  2011
                   IF (I,LT, 7) NSTNX(2,I) = NSTNX(2,I+1)
  2012
  2013
          . C
                   NDUMMY = FLAGNX(I*2+2)
  2014
                   IF(NDUMMY , EQ. 0) GO TO 370
  2015
  2016
  2017
                   DO 360 J = 1. NDUMMY
                              = SPDNXT(I + 1.J)
  2018
                   TEMPP
                   PRINT 2000, TIME, 1, J, TEMPP
  2019
           C2000
                   FORMAT(' TIME=',14, ' 1=',13, ' J=',13, ' TEMPP=', F5.1)
  2020
```

В

Page

```
لا
د
د
```

```
Listing of OCS STAT.FOR at 13:12:38 on JUN 9, 1986 for CCid=SHYX
  2021
                  SPDNXT(I.J) = TEMPP
           С
  2022
  2023
             370 \text{ FLAGNX}(2*1) = \text{FLAGNX}(2*1+2)
             380 \text{ FLAGNX}(2*I-1) = \text{FLAGNX}(2*I + 1)
  2024
  2025
  2026
                 FLAGNX(NFLGNX + 1) = 0
                 FLAGNX(NFLGNX + 2) = 0
  2027
  2028
                 NSTNX(1.NFLGNX/2 + 1) = 5
           С
                 NSTNX(1,NFLGNX/2+2) =
  2029
                 NSTNX(2.NFLGNX/2 + 1) = 0
  2030
           C
  2031
                 NSTNX(2,NFLGNX/2+2)
  2032
  2033
  2034
             400 \text{ INIT} = 0
  2035
                 INCSPD = 1
  2036
                 RETURN
             420 IF (OLDST NE. 2 .AND. OLDST .NE. 4) CALL STATON(OLDST)
  2037
  2038
                 CALL FINISH
  2039
                 STOP
  2040
             440 FORMAT (' MORE THAN 60 SPEEDS IN A MINUTE-IMPOSSIBLE!!!')
  2041
             460 FORMAT (13, 15, 16, 6F4.0, 1214)
  2042
             480 FORMAT (13, 15, 16, 5F4.0, A4, 1214)
  2043
             500 FORMAT (F6.1, 19F5.1)
  2044
  2045
                 SUBROUTINE RUNTME(ITIME)
  2046
                 DIMENSION ITIME(6)
  2047
                 CALL TIME(22.0, ITIME)
  2048
                 RETURN
  2049
                 END
```

OCS-CMP.FOR

```
VS FORTRAN
                                                 DATE: MAR 16. 1987 TIME: 11:23:07
                                                                                                      PAGE:
LEVEL 1.3.1 (FEB 1984)
REQUESTED OPTIONS (EXECUTE): TEST
OPTIONS IN EFFECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED NOTEST TRMFLG
                                                                                                   SRCFLG SYM
                    OPT(0) LANGLVL(77) NOFIPS FLAG(1) NAME(MAIN ) LINECOUNT(60) CHARLEN(500)
                                                                                                      SDUMP
            PROGRAM OCS CMP.FOR
                  THIS PROGRAM IS USED TO COMBINE OPERATIONAL CHARACTERISTIC STUDY
                  DATA (GENERATED BY THE PROGRAM OCS STAT.FOR) INTO TRIPS ACCORDING
                  TO A USER SPECIFIED BETWEEN TRIP TIME LIMIT.
                  PROGRAMMER: STEVE MICHELIN
                  3/16/87 - MODIFIED PROGRAM TO INCLUDE OFFCT IN TOTAL SECONDS AND
                            STOP SECONDS FOR COMBINED TRIPS. ALSO PUT IN OPTION
                            FOR HEADERS IN OUTPUT OR NO. ALSO CLEANED UP CODE AND
                            PUT IN COMMENTS. JDC.
ISN
                   INTEGER*4 SVDAYI(125), TRPCT1(125),
                                                        DYTRP1(125),
                                                                      SVTIM1(125),
                             TYPE1(125),
                                          START1(125).
                                                        OFFCT1(125),
                             STPCT1(125), TOTSC1(125).
                                                        STPSC1(125),
                                                                       GOSC1(125),
                            LOAN1(125).
                                          ECH011(125),
                                                        WH01(125),
                                                                      GOOD1(125);
                            DATE1(125).
                                          ECH031(125),
                             SVDAY2(125), TRPCT2(125),
                                                        DYTRP2(125),
                                                                      SVTIM2(125),
                             TYPE2(125).
                                          START2(125).
                                                        OFFCT2(125).
                                                        STPSC2(125),
                             STPCT2(125), TOTSC2(125),
                                                                       GOSC2(125).
                             LOAN2(125),
                                          ECH012(125),
                                                        WH02(125),
                                                                      GOOD2(125),
                             DATE2(125).
                                          ECH032(125).
                                                        ITIME(6).
                                          ERR2(125),
                                                        ERR3(125).
                                                                      ERR4(125),
                             ERR1(125),
                             NEWTRP(125)
                   INTEGER*4 OFFSEC/O/, TOTSEC/O/, TOTSTP/O/
ISN
             С
ISN
                   REAL*8
                             AVSPD1(125), AVDBS1(125),
                                                      AVSPD2(125), AVDBS2(125),
                              DSTNC1(125). DSTNC2(125)
                   CHARACTER DATFLE*30, OUFLE*7, CONSOL*10
ISN
          4
ISN
                   CHARACTER HEADER, YES/'Y'/, NO//N'/
             С
                DEFINE INPUT FILE AS SHYY: OCS.D-TRIPS. THIS SHOULD BE DATA
             С
                GENERATED FROM THE PROGRAM OCS STAT.FOR.
                DEFINE OUTPUT FILE AS -TRIP. CONSOLE AS *MSOURCE*.
ISN
                   DATFLE = 'SHYY: OCS. D-TRIPS'
          6
ISN
          7
                   OUFLE = '-TRIP'
ISN
          8
                   CONSOL = '*MSOURCE*'
                   OPEN (O, FILE=CONSOL
ISN
          9
                                           )
                   OPEN (5. FILE=DATFLE
ISN
         10
ISN
         11
                   OPEN (6, FILE=OUFLE
              С
ISN
         12
                   CALL FINCMD('SET ATTENTION=ON:')
                GET USER SPECIFIED BETWEEN TRIP TIME LIMIT.
                   WRITE(0.*) 'ENTER A BETWEEN TRIP TIME LIMIT:
ISN
         13
                   READ (0,*) ITOLER
ISN
         14
                   WRITE(0,*) 'TOLERANCE IS ', ITOLER
ISN
         15
```

```
T <sup>3</sup> C
```

```
LEVEL 1.3.1 (FEB 1984)
                       VS FORTRAN
                                                DATE: MAR 16, 1987 TIME: 11:23:07 NAME: MAIN PAGE:
              *....*...1.......2......3..........44........5......6......7.*......8
              C CHECK IF USER WANTS HEADERS IN OUTPUT FILE -TRIP.
                    WRITE(0,*) 'DO YOU WANT HEADERS IN OUTPUT FILE -TRIP? (Y/N):
ISN
         16
ISN
         17
                    READ (0,505) HEADER
               505 FORMAT(A1)
ISN
         18
              C READ IN ORIGINAL OCS TRIP DATA.
ISN
         19
                    NPAGE = 1
ISN
         20
                    NBACK = 0
ISN
         21
                    NEND
                               0
         22
                    CONTINUE
ISN
                    IF(NBACK .EQ. 1) BACKSPACE 5
         23
I SN
                           = 1
ISN
         25
                    NBACK
              С
ISN
         26
                    DO 200 I = 1, 1000
         27
                    READ(5, 100, END=250)
ISN
                               SVDAY1(I), TRPCT1(I), DYTRP1(I), SVTIM1(I), TYPE1(I),
                               START1(I), OFFCT1(I), AVSPD1(I), DSTNC1(I), STPCT1(I),
                               AVDBS1(I), TOTSC1(I), STPSC1(I), GOSC1(I), LOAN1(I), ECHO11(I), WHO1 (I), ECHO31(I), DATE1(I), GOOD1(I)
               100 FORMAT(416, 212, 16, 2F10.3, 16, F10.3, 316, 15, 312, 17, 12)
1 S N
         28
ISN
         29
                    DYTRP2(I) = 0
         30
                    TRPCT2(I) = 0
ISN
         31
                    ICOUNT = I - 1
ISN
                    IF( I .EQ. 1 ) GO TO 200
ISN
         32
ISN
         33
                    IF( LOAN1(I) .NE, LOAN1(I-1) ) GO TO 300
ISN
         34
               200 CONTINUE
              С
         35
ISN
               250 CONTINUE
                    NEND = 1
ISN
         36
ISN
         37
               300 CONTINUE
              C---+---1---+---2---+---3----+----4----+---5----+----6---+----7--
              C COMBINE TRIPS IF THE OFFCT FALLS WITHIN THE USER SPECIFIED LIMIT.
ISN
         38
                    TRPCT2(1) = 0
ISN
         39
                    J = 0
         40
                    DO 500 I = 1, ICOUNT
ISN
         41
                    IF(OFFCT1(I) .GT. ITOLER .OR. I .EQ. 1) THEN
ISN
              C TRIP NOT WITHIN LIMIT.
ISN
         42
                      ERR1(J) = 0
ISN.
         43
ISN
         44
                      ERR2(J) = 0
ISN
         45
                      ERR3(J) =
                                0
                      ERR4(J) =
ISN
         46
                                 0
         47
                      NEWTRP(J)
ISN
                                =
                      SVDAY2(J) = SVDAY1(I)
ISN
         48
ISN
         49
                      IF(I .EQ. 1) THEN
                      TRPCT2(J) = 1
ISN
         50
```

ELSE

ISN

```
B
```

```
3
                                                DATE: MAR 16, 1987 TIME: 11:23:07
                                                                                    NAME: MAIN
                                                                                                    PAGE:
LEVEL 1.3.1 (FEB 1984)
                            VS FORTRAN
             TRPCT2(J) = TRPCT2(J-1) + 1
         52
ISN
ISN
         53
                     ENDIF
                     IF(SVTIM1(I) .LT. SVTIM1(I-1) .OR. I .EQ. 1 .OR.
         54
ISN
                              OFFCT1(I).GE.1440) THEN
                       DYTRP2(J) = 1
         55
ISN
ISN
                     ELSE
                       DYTRP2(J) = DYTRP2(J-1)
ISN
         57
                     ENDIF
ISN
         58
             С
ISN
         59
                     SVTIM2(J)
                                =
                                    SVTIM1(I)
ISN
         60
                     TYPE2 (J)
                                =
                                   TYPE1 (I)
                     START2(J)
                                    STARTI(I)
ISN
         61
                     OFFCT2(J)
                                    OFFCT1(I)
ISN
         62
                     AVSPD2(J)
                                    AVSPD1(I)
ISN
         63
ISN
         64
                     DSTNC2(J)
                                    DSTNC1(I)
ISN
         65
                     STPCT2(J)
                                    STPCT1(I)
ISN
         66
                     AVDBS2(J)
                                    AVDBS1(I)
                     TOTSC2 (J)
                                   TOTSC1 (I)
ISN
         67
                     STPSC2(J)
                                    STPSC1(I)
ISN
         68
ISN
         69
                     GOSC2 (J)
                                    GOSC1 (1)
                     LOAN2 (J)
                                    LOANI (I)
ISN
         70
ISN
         71
                     ECH012(J)
                                =
                                    ECH011(I)
                                    WH01 (I)
ISN
         72
                     WH02 (J)
ISN
         73
                     ECH032(J)
                                    ECH031(I)
         74
                     DATE2 (J)
                                    DATE1 (I)
ISN
         75
                     GOOD2 (J)
                                   GOOD1 (I)
ISN
             C TRIP WITHIN LIMIT.
             С
         76
                   ELSE
ISN
         77
                     OFFSEC = OFFCT1(I) * 60
ISN
         78
                     TOTSEC = TOTSC1(I) + OFFSEC
ISN
ISN
         79
                     TOTSTP = STPSC1(I) + OFFSEC
             C
                     NEWTRP(J) = NEWTRP(J) + 1
ISN
         80
                                                   TYPE2(J) = 2
                     IF(TYPE2(J) .NE. TYPE1(I) )
ISN
         81
             С
ISN
         83
                     DSTNC2(J) = DSTNC2(J) + DSTNC1(I)
ISN
         84
                     STPCT2(J) = STPCT2(J) + STPCT1(I)
                     TOTSC2 (J) = TOTSC2(J) + TOTSEC
ISN
         85
             С
                     AVDBS2(J) = DSTNC2(J) / (STPCT2(J) )
ISN
         86
                     AVSPD2(J) = (DSTNC2(J) * 3600) / TOTSC2(J)
ISN
         87
             С
ISN
         88
                     STPSC2(J) = STPSC2(J) + TOTSTP
ISN
         89
                     GOSC2(J) = GOSC2(J) + GOSC1(I)
             С
         90
                     IF(ECHO12(J) .NE. ECHO11(I)) ERR1(J)
                                                           = 1
ISN
                     IF(WHO2 (J) .NE. WHO1 (I) ) ERR2(J)
                                                           ≂ 2
ISN
         92
         94
                     IF(ECH032(J) .NE. ECH031(I) ) ERR3(J)
                                                           ≈ 3
ISN
                     IF(GOOD2 (J) .NE. GOOD1 (I) ) ERR4(J)
ISN
         96
              С
ISN
         98
                   ENDÍF
              С
                  CONTINUE
ISN
              500
```

```
VS FORTRAN
                                                 DATE: MAR 16, 1987 TIME: 11:23:07
                                                                                        NAME - MAIN
LEVEL 1.3.1 (FEB 1984)
                                                                                                     PAGE:
              C WRITE COMBINED TRIP DATA TO TEMPORARY FILE -TRIP.
                   D0 700 I = 1. J
ISN
        100
                   IF(HEADER.NE.VES)GO TO 580
ISN
        101
ISN
        102
                   TESTI = FLOAT(I) / 50.
ISN
        103
                   IF( I .EQ. 1 .OR. TESTI .EQ. 1.0 .OR. TESTI .EQ. 2.0) THEN
                                      'SIGNONID',
ISN
        104
                   CALL GUINFO(
                                                                ICCID)
                                      '$=ON ',
ISN
        105
                   CALL CUINFO(
                                                                1 ) ·
ISN
        106
                   CALL TIME(
                                       22. 0.
                                                                ITIME)
             C
ISN
        107
                   WRITE(6.510) (ICCID, ( ITIME(K), K = 1.
                               ITOLER, J, LOAN2(I), NPAGE)
ISN
        108
              510 FORMAT('1', 10X, A4, 2X, 6A4, 10X, 'OFFCOUNT LIMIT=', I3, 9X,
                                          LOAN#=', I4, 10X, 'PAGE ', I3)
                  113.2X.'TOTAL TRIPS
ISN
        109
              550 FORMAT (/, SAVDAY
                   WRITE(6.550)
I SN
        110
                                        DAYTRP OLDST ', ' OFFCT
                                                                            DIS'.
                  2'TNC.
                                 AVEDBS
                                             STPSC
                                                       LOAN#
                                                                  DATE '.
                     ERRORS',/,
                                              TRIPCT
                                                      SAVTIM START ',
                              AVESPD
                                                 STOPCT
                                                                TOTSC
                                                                            GOSC'
                                         TRPFLG #COMB ',/)
                                FLAGS
             С
ISN
        111
                   NPAGE = NPAGE + 1
ISN
        112
                   ENDIF
             C
              580 CONTINUE
ISN
        113
        114
                   WRITE(6,600)
I SN
                              SVDAY2(1), TRPCT2(1), DYTRP2(1), SVTIM2(1), TYPE2(1),
                              START2(1), OFFCT2(1), AVSPD2(1), DSTNC2(1), STPCT2(1),
                              AVDBS2(I), TOTSC2(I), STPSC2(I), GOSC2(I), LOAN2(I), ECHO12(I), WHO2 (I), ECHO32(I), DATE2(I), GOOD2(I),
              5 ERRI(1), ERR2(I), ERR3(I), ERR4(I), NEWTRP(I)
600 FORMAT(416, 212, 16, 2F10.3, 16, F10.3, 316, I5, 312, I7, 612)
ISN
        115
             С
ISN
        116
            · 700 CONTINUE
ISN
        1117
                   IF(NEND .EQ. 0) GO TO 10
               TERMINATE.
             С
ISN
        118
                   STOP
ISN
        119
                   END
*STATISTICS*
             SOURCE STATEMENTS = 113, PROGRAM SIZE = 35232 BYTES, PROGRAM NAME = MAIN
                                                                                    PAGE: 1.
*STATISTICS*
              NO DIAGNOSTICS GENERATED.
**MAIN** END OF COMPILATION ) *****
```

LEVEL 1.3.1 (FEB 1984) VS FORTRAN DATE: MAR 16, 1987 TIME: 11:23:22 PAGE: 5

SUMMARY OF MESSAGES AND STATISTICS FOR ALL COMPILATIONS

STATISTICS SOURCE STATEMENTS = 113, PROGRAM SIZE = 35232 BYTES, PROGRAM NAME = MAIN PAGE:

STATISTICS NO DIAGNOSTICS GENERATED.

MAIN END OF COMPILATION 1 ******

****** SUMMARY STATISTICS ****** O DIAGNOSTICS GENERATED. HIGHEST SEVERITY CODE IS O.

Appendix C

Histograms: Urban Only Trips

Trips Separated By An Engine Off Period Exceeding 10 Minutes

Histogram Key:

LEFT-END = Lower limit of interval TOT % = Percent of total trips

found in interval

COUNT = Number of trips in interval

```
LEFT-END
        TOT% COUNT
        4.4
              44 +XXXXXXXXXXXXXXXXXXXXXXX
2.0000
         2.2
              22 +XXXXXXXXXXX
4.0000
        3.7
             37 +XXXXXXXXXXXXXXXXXXXX
6.0000
        4.2
             42 +XXXXXXXXXXXXXXXXXXXXXXX
8.0000
        5.4
             54 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
10.000
        6.0
             60 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
12,000
        9.3
             14.000
        10.4
             16.000
        9.7
             18.000
        7.9
             20.000
        10.3
             22.000
        7.7
             24.000
        5.6
             26.000
         3.5
             35 +XXXXXXXXXXXXXXXXXXXXX
28.000
        2.5
             25 +XXXXXXXXXXXXXX
30.000
       1.9
             19 +XXXXXXXXXX
32.000
        1.5
             15 +XXXXXXXX
34.000
        1.4
             14 +XXXXXXX
36.000
         . 5
              5 +XXX
38.000
              3 +XX
40,000
              3 +XX
         . 3
42.000
              3 +XX
         . 3
44.000
              3 +XX
46.000
         . 2
              2 +X
        . 1
48.000
              1 +X
50.000
         . 2
              2 +X
52,000
        O.
              0 +
54.000
        0.
              0 +
56.000
        0.
              0 +
58.000
        Ü.
              0 +
60,000
         . 1
              1 +X
62.000
              1 +X
         . 1
TOTAL
       100.0 1000 (INTERVAL WIDTH= 2.0000)
```

C 2

TOT% COUNT

. 3

3 +XX

.4 4 > 35.000 100.0 1000 (INTERVAL WIDTH= 1.0000)

34.000

TOTAL

LEFT-END

```
1.0000
             35 +XXXXXXXXXXXXXXXXXXX
2.0000
        5.1
             51 +XXXXXXXXXXXXXXXXXXXXXXXXXXX
3.0000
        7.1
             4.0000
        9.5
             9.0
             5.0000
6.0000
       10.4
            7.0000
        9.1
             8.0000
        8.3
             9.0000
        6.1
             10,000
             51 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
        5.1
11,000
        4.2
             42 +XXXXXXXXXXXXXXXXXXXXXXXXX
12,000
        3.0
             30 +XXXXXXXXXXXXXXX
13,000
        3.6
             36 +XXXXXXXXXXXXXXXXXXX
14.000
        2.1
             21 +XXXXXXXXXXX
15,000
        2.3
             23 +XXXXXXXXXXXX
16.000
        1.8
             18 +XXXXXXXXX
17.000
        1.6
             16 +XXXXXXXXX
18,000
        1.7
             17 +XXXXXXXXX
19.000
        1.2
             12 +XXXXXX
20,000
             11 +XXXXXX
        1.1
             5 +XXX
21,000
        . 5
22,000
         . 9
             9 +XXXXX
23.000
         . 3
             3 +XX
24,000
         . 3
             3 +XX
25.000
         . 6
             6 +XXX
26.000
         . 2
             2 + X
        . 4
27.000
             4 +XX
28.000
         . 2 .
             2 +X
29.000
        0.
             0 +
30.000
        0.
             0 +
31,000
        0.
             0 +
        . 1
32,000
             1 +X
        Ο.
33,000
             0 +
```

C 3

TRIP DISTANCE (0-25 miles)

each X = 2 trips

```
LEFT-END
          TOT% COUNT
          10.5
                8.5
 .50000
                 1.0000
           8.1
                 1.5000
           7.6
                 2.0000
           5.2
                 52 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
2.5000
           5.3
                 53 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3.0000
           6.0
                 60 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3.5000
           4.0
                 40 ÷XXXXXXXXXXXXXXXXXXXX
4.0000
           6.5
                 4.5000
           4.2
                 42 +XXXXXXXXXXXXXXXXXXXXXXX
5.0000
           2.8
                 28 +XXXXXXXXXXXXXXX
5.5000
           4.5
                 45 +XXXXXXXXXXXXXXXXXXXXXXX
6.0000
           3.6
                 36 +XXXXXXXXXXXXXXXXXXX
6.5000
           2.3
                 23 +XXXXXXXXXXXX
7.0000
           2.0
                 20 +XXXXXXXXXX
                 15 +XXXXXXXX
7.5000
           1.5
8.0000
           1.1
                 11 +XXXXXX
8.5000
           1.5
                 15 +XXXXXXXX
9.0000
           1.3
                 13 +XXXXXXX
9.5000
           1.1
                 11 +XXXXXXX
10.000
           1.9
                 19 +XXXXXXXXXX
           . 9
10.500
                 9 +XXXXX
11,000
           1.3
                 13 +XXXXXXX
11.500
           1.3
                 13 +XXXXXXX
12,000
           1.2
                 12 +XXXXXX
12,500
                  9 +XXXXX
            . 9
13,000
                  B +XXXX
            .8
13.500
                  3 +XX
14.000
                  3 +XX
14.500
                  4 +XX
            . 5
                  5 +XXX
15.000
15,500
                  2 +X
16.000
            . 3
                  3 +XX
16.500
                  2 +X
17.000
                  2 +X
17.500
                  2 +X
18,000
                  0 +
                  2 +X
18.500
                  4. +XX
19.000
19.500
                  1 +X
20,000
                  1 +X
20.500
                  1 +X
21,000
                  1 +X
21.500
                  0 +
           0.
22,000
                  1 +X
22.500
           0.
                  0 +
23,000
                  0 +
           0.
23.500
           0.
                  0 +
24.000
                  0 +
           0.
24.500
           0.
                  0 +
                  4 > 25.000
TOTAL
         100.0 1000 (INTERVAL WIDTH= .50000)
```

TRIP DISTANCE (0-2 miles)

each X = 1 trip

```
LEFT-END
           TOT% COUNT
                  0.
            4.6
 .10000
            1.4
                  14 +XXXXXXXXXXXXXXX
 .20000
            1.9
                  19 +XXXXXXXXXXXXXXXXXXXX
 .30000
            2.1
                  21 +XXXXXXXXXXXXXXXXXXXXXXXX
 .40000
            . 5
                  5 +XXXXX
 .50000
            1.4
                  14 +XXXXXXXXXXXXXXX
 .60000
            2.2
                  22 +XXXXXXXXXXXXXXXXXXXXXX
 .70000
            1.7
                  17 +XXXXXXXXXXXXXXXXX
 .80000
            1.4
                  14 +XXXXXXXXXXXXXXX
 .90000
            1.8
                  18 +XXXXXXXXXXXXXXX
 1.0000
            1.8
                  18 +XXXXXXXXXXXXXXXXXX
 1.1000
            1.5
                  15 +XXXXXXXXXXXXXXXX
 1.2000
            1.2
                 12 +XXXXXXXXXXXXX
1.3000
            1.8
                  18 +XXXXXXXXXXXXXXXXX
 1.4000
            1.8
                  18 +XXXXXXXXXXXXXXXXX
 1.5000
            1.7
                  17 +XXXXXXXXXXXXXXXXX
 1.6000
            1.2
                 12 +XXXXXXXXXXXX
 1.7000
            2.0
                  20 +XXXXXXXXXXXXXXXXXXXXX
            1.0
 1.8000
                  10 +XXXXXXXXXX
 1.9000
            1.8
                  18 +XXXXXXXXXXXXXXXXX
           65.2
                 652 > 2,0000
TOTAL
          100.0 1000 (INTERVAL WIDTH= .10000)
```

C 5

AVERAGE DISTANCE BETWEEN STOPS (0-5 miles) each X = 2 trips

LEFT-END	тот%	COUNT	
0	7 0	7.0	+xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
0.	7.0 9.3		+xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 10000			+xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 20000	11.9 12.9		+xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. 30000	11.7		+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
. 40000 . 50000	10.5		+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.60000	8.2		+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
. 70000	5.3		+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.80000	5.3		+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.90000	3.7		+XXXXXXXXXXXXXXXXXXXXXX
1.0000	2.0		+××××××××
1,1000	1.6		+xxxxxxx
1.2000	1.4		+XXXXXX
1.3000	. 7		+xxxx
1.4000	1.7		+XXXXXXXX
1.5000	1.3		+xxxxxx
1.6000	. 4		+xx
1.7000	. 5	5	+xxx
1.8000	. 2	2	+X
1.9000	. 2	2	+X
2,0000	. 7	7	+xxx
2.1000	. 5	5	+XXX
2.2000	. 2	2	+X
2.3000	. 2	2	+X
2.4000	. 2	2	+X
2.5000	. 1	1	+X
2.6000	. 2	2	+X
2.7000	Ο.	0	+
2.8000	. 2	2	+X
2.9000	. 1		+X
3.0000	. 2		+X
3.1000	. 1		+X
3.2000	Ů.	0	
3.3000	0.	0	
3.4000	0.	0	
3.5000	0.	0	
3.6000	0.	0	
3.7000	0.	0	
3.8000	. 1		+X
3.9000	0.	Ü	
4.0000	3 . ع		+XX
4,1000	0.	0	
4:2000	. 1		+X
4.3000	0.	0	
4.4000	0.	0	
4.5000	0. 0.	0	
4.6000	0.	0	
4.7000 4.8000	. 1		+X
4.9000	0.	Ó	
4.5000	0.	U	
	. 9	9	> 5.0000
TOTAL	100.0		(INTERVAL WIDTH= .10000)

TIME SINCE LAST TRIP (0-24 hours)

each X = 3 trips

```
TOT% COUNT
LEFT-END
                 ٥.
           25.0
 .50000
           15.7
                 1.0000
            8.6
                  86 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.5000
            7.2
                  72 +XXXXXXXXXXXXXXXXXXXXXXXX
2.0000
                  36 +XXXXXXXXXXXX
            3.6
                  34 +XXXXXXXXXXXX
2.5000
            3.4
3.0000
                  31 +XXXXXXXXXXX
            3.1
3.5000
            2.2
                  22 +XXXXXXXX
4.0000
            2.1
                  21 +XXXXXXX
                  27 +XXXXXXXXX
 4.5000
            2.7
 5.0000
            1.1
                  11 +XXXX
5.5000
            1.0
                  10 +XXXX
 6.0000
                   5 +XX
            . 5
                   5 +XX
 6.5000
             . 5
            . 2
 7.0000
                   2 +X
 7.5000
            . 4
                   4 +XX
            1.6
                  16 +XXXXXX
 8.0000
                  21 +XXXXXXX
 8.5000
            2.1
 9.0000
            11.1
                  11 +XXXX
 9.5000
            1.6
                  16 +XXXXXX
                  17 +XXXXXX
 10.000
            1.7
 10.500
            1.1
                  11 +XXXX
 11.000
            1.1
                  11 + XXXX
 11,500
            1.3
                  13 +XXXXX
 12.000
             . 9
                   9 +XXX
 12.500
                   9 +XXX
             . 9
 13,000
                   6 +XX
             . 6
 13,500
             . 8
                   8 +XXX
 14.000
                  13 +XXXXX
            1.3
 14.500
                   4 +XX
 15.000
                   2 +X
             . 2
             . 2
 15.500
                   2 +X
 16.000
                   4 +XX
             . 4
 16.500
             . 3
                   3 +X
 17.000
             . 2
                   2 +X
 17,500
             . 5
                   5 +XX
 18.000
                   1 +X
 18.500
                   1 +X
 19.000
                   4 +XX
 19.500
                   4 +XX
 20,000
                   1 +X
 20,500
                   1 +X
             . 1
 21.000
                   1 +X
 21.500
             . 4
                   4 +XX
 22,000
                   1 +X
 22,500
                   3 +X
             . 3
 23,000
                   4 +XX
             . 4
 23,500
             . 1
                   1 +X
            1.8
                   18 > 24,000
                1000 (INTERVAL WIDTH= .50000)
 TOTAL
          100.0
```

TOTAL

100.0

```
LEFT-END
             TOT% COUNT
 10.000
             0.
                      0 +
 11,000
             2.1
                     21 +XXXXXXXXXXXXXXXXXXXXXX
 12.000
              2.0
                     20 +XXXXXXXXXXXXXXXXXXXXX
 13.000
             2,1
                     21 +XXXXXXXXXXXXXXXXXXXXXX
 14.000
            . 1.9
                     19 +XXXXXXXXXXXXXXXXXXXXX
 15.000
              1.8
                      18 +XXXXXXXXXXXXXXXXX
 16.000
              1.6
                     16 +XXXXXXXXXXXXXXXX
 17,000
              . 6
                      6 +XXXXXX
 18.000
              2:2
                     22 +XXXXXXXXXXXXXXXXXXXXXX
 19.000
             1.5
                     15 +XXXXXXXXXXXXXXX
20.000
              1.0
                     10 +XXXXXXXXXX
 21.000
             1.3
                     13 +XXXXXXXXXXXXX
 22.000
               . 9
                      9 +XXXXXXXXX
 23.000
               . 5
                      5 +XXXXX
 24.000
               . 9
                      9 +XXXXXXXXX
 25.000
               . 6
                      6 +XXXXXX
 26.000
             1.5
                     15 +XXXXXXXXXXXXXXXX
 27.000
             1.0
                     10 +XXXXXXXXXX
 28.000
             1.2
                     12 +XXXXXXXXXXXX
 29.000
              . 3
                      3 +XXX
30.000
              . 7
                      7 +XXXXXXX
31.000
             1.0
                      10 +XXXXXXXXXX
32.000
             1.3
                     13 +XXXXXXXXXXXXX
33,000
               . в
                      8 +XXXXXXXX
34.000
               . 7
                      7 +XXXXXXX
35.000
                      6 +XXXXXX
               . 6
36.000
               . 6
                      6 +XXXXXX
37.000
             1.0
                     10 +XXXXXXXXXX
38.000
                      7 +XXXXXXX
              . 7
39.000
              . 8
                      8 +XXXXXXXX
40.000
             1.0
                     10 +XXXXXXXXXX
41.000
               . 4
                      4 +XXXX
42.000
               . 5
                      5 +XXXXX
43.000
               . 3
                      3 +XXX
                      3 +XXX
44.000
               . 3
45.000
                      4 +XXXX
46.000
                      4 +XXXX
47.000
               . 3
                      3 +XXX
48.000
                      4 +XXXX
49.000
                      4 +XXXX
50.000
             0.
                      0 +
51.000
               . 2
                      2 +XX
52.000
               . 3
                      3 +XXX
                      5 +XXXXX
53.000
               . 5
54.000
                      4 +XXXX
55.000
                      4 +XXXX
56.000
               . 6
                      6 +XXXXXX
57.000
                      1 +X
58.000
               . 2
                      2 +XX
59.000
              . 7
                      7 +XXXXXXX
            59.0
                    590 > 60.000
```

1000 (INTERVAL WIDTH= 1.0000)

C 8 TOT% COUNT

6.5

LEFT-END

86,000

TOTAL

.2 2 > 90.000 100.0 1000 (INTERVAL WIDTH= 2.0000)

C

```
LEFT-END
        TOT% COUNT
         4.5
               .50000
         1.5
               15 +XXXXXXXXXXXXXXX
1.0000
               29 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
         2.9
1.5000
         2.2
               22 +XXXXXXXXXXXXXXXXXXXXXXX
2.0000
         3.4
               2.5000
         3.9
               3.0000
         2.9
               3.5000
               4.3
4.0000
         3.6
               4.5000
         3.7
               5.0000
         2.8
               5.5000
         2.4
               24 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6.0000
         2.5
               25 +XXXXXXXXXXXXXXXXXXXXXXXXXXXX
6.5000
         3.3
               7.0000
         2.8
               28 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7.5000
         2.8
               8.0000
         2.7
               8.5000
         3.2
               9.0000
         2.8
               28 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
9.5000
         3.4
               10.000
         1.7
               17 +XXXXXXXXXXXXXXXXXX
         2.2
10.500
               22 +XXXXXXXXXXXXXXXXXXXXXXXX
11.000
         2.5
               25 +XXXXXXXXXXXXXXXXXXXXXXXXXXXX
11.500
         2.7
               27 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
12.000
               24 +XXXXXXXXXXXXXXXXXXXXXXXXXXXX
         2.4
12.500
         2.1
               21 +XXXXXXXXXXXXXXXXXXXXXX
13.000
         1.8
               18 +XXXXXXXXXXXXXXXXXX
13.500
         1.5
               15 +XXXXXXXXXXXXXXXX
14.000
         1.0
               10 +XXXXXXXXXX
14.500
               18 +XXXXXXXXXXXXXXXXX
         1.8
15,000
         1.0
               10 +XXXXXXXXXX
15.500
               11 +XXXXXXXXXXXX
         1.1
16.000
          . 8
               8 +XXXXXXXX
16.500
          . 7
               7 +XXXXXXX
17.000
          . 7
               7 +XXXXXXX
17.500
         1.4
               14 +XXXXXXXXXXXXXXX
18.000
               3 +XXX
18,500
               5 +XXXXX
19.000
          . 6
               6 +XXXXXX
19.500
               7 +XXXXXXX
20,000
          . 8
               8 +XXXXXXXX
20.500
          . 9
               9 +XXXXXXXXX
21.000
               4 +XXXX
21.500
               8 +XXXXXXXX
          . 8
22.000
               12 +XXXXXXXXXXXXX
         1.2
22.500
               5 +XXXXX
          . 5
23,000
         1.0
               10 +XXXXXXXXXX
23.500
          . 6
               6 +XXXXXX
24.000
          . 3
               3 +XXX
               5 +XXXXX
24,500
          . 5
         3.9
               39 > 25.000
TOTAL
        100.0
             1000 (INTERVAL WIDTH= .50000)
```

```
LEFT-END
         TOT% COUNT
          5.7
               .50000
              10.1
              1.0000
         11.9
               1.5000
          8.4
2.0000
          9.8
               2.5000
          6.3
               √5.0
3.0000
               50 +XXXXXXXXXXXXXXXXXXXXXXXXXXX
3.5000
          4.1
               41 +XXXXXXXXXXXXXXXXXXXXXXX
4.0000
          3.4
               34 +XXXXXXXXXXXXXXXXXX
4.5000
          3.6
               36 +XXXXXXXXXXXXXXXXXXX
5.0000
               17 +XXXXXXXXX
          1.7
5.5000
          2,0
               20 +XXXXXXXXXX
6.0000
          2.3
               23 +XXXXXXXXXXXX
6.5000
          1.7
               17 +XXXXXXXXX
7.0000
          1.7
               17 +XXXXXXXXX
7.5000
          1.5
               15 +XXXXXXXX
          . 7
8.0000
               7 +XXXX
8.5000
          . 9
               9 +XXXXX
9.0000
          1.5
               15 +XXXXXXXX
9.5000
         1.1
               11 +XXXXXX
10.000
         1.2
               12 +XXXXXX
10.500
               7 +XXXX
          . 7
11.000
          . 4
               4 +XX
11.500
          1.6
               16 +XXXXXXXX
12.000
          . 5
               5 +XXX
12.500
          . 9
               9 +XXXXX
13.000
          1.1
               11 +XXXXXX
          . 3
13.500
               3 +XX
          . 8
14.000
                8 +XXXX
14.500
               7 +XXXX
          . 7
15.000
          . 5
                5 +XXX
15.500
                2 +X
          . 2
16.000
          . 5
                5 +XXX
16.500
          . 3
                3 +XX
17.000
          . 4
                4 +XX
17.500
                3 +XX
          . 3
18.000
          . 5
                5 +XXX
18.500
          . 5
                5 +XXX
19,000
          . 4
                4 +XX
19.500
          . 6
                6 +XXX
         4.2 42 > 20.000
TOTAL
        100.0 1000 (INTERVAL WIDTH= .50000)
```

NUMBER OF TRIPS MADE PER DAY (0-17)

each x = 1 day

URBAN DAYS

MIDPOINT	ні СТ%	COUNT
0.0	9.0	17 +XXXXXXXXXXXXXXXXX
1.0	6.4	12 +XXXXXXXXXXXX
2.0	11.2	21 +XXXXXXXXXXXXXXXXXXXXXX
3.0	14.4	27 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4.0	10.1	19 +XXXXXXXXXXXXXXXXXXXX
5.0	14.4	27 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6.0	8.0	15 +XXXXXXXXXXXXXXX
7.0	8.0	15 +XXXXXXXXXXXXXXX
8.0	8.0	15 +XXXXXXXXXXXXXXXX
9.0	4.3	8 +XXXXXXXX
10.0	2.7	5 +XXXXX
11.0	1.1	2 +XX
12.0	0.0	0 +
13.0	0.5	1 +X
14.0	0.0	0 +
15.0	0.5	1 +X
16.0	1.1	2 +XX
17.0	0.5	1 +X
TOTAL		188 (INTERVAL WIDTH= 1.0000)

Appendix D

Histograms: Urban And/Or Rural Trips

Trips Separated By An Engine Off Period Exceeding 10 Minutes

Histogram Key:

LEFT-END = Lower limit of interval TOT % = Percent of total trips

found in interval

COUNT = Number of trips in interval

```
LEFT-END
       TOT% COUNT
       4.1
            52 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
2.0000
       2.1
            26 +XXXXXXXXXXXXX
4.0000
       3.7
            46 +XXXXXXXXXXXXXXXXXXXXXXXXXX
6.0000
       4.1
            51 +XXXXXXXXXXXXXXXXXXXXXXXXXXXX
8.0000
       5.0
            10.000
       5.9
           12.000
       8.4
           14.000
       9,8
           16.000
       9.2
           18.000
       7.3
           20.000
       9.6
           22.000
       7.1
            24.000
       5.7
            26.000
       3.6
            45 +XXXXXXXXXXXXXXXXXXXXXXXX
28.000
       2.9
            36 +XXXXXXXXXXXXXXXXXXX
30,000
       2.1
            26 +XXXXXXXXXXXXX
32.000
       1.9
            24 +XXXXXXXXXXXX
34.000
       1.8
            23 +XXXXXXXXXXXX
36.000
        .8
           10 +XXXXX
38.000
        1.0
           12 +XXXXXX
40.000
        . 9
            11 +XXXXXX
42.000
        . 7
            9 +XXXXX
44.000
        . 7
            9 +XXXXX
46.000
        . З
            4 +XX
48.000
        . З
            4 +XX
50.000
            6 +XXX
52.000
            1 +X
54.000
        . 1
            1 +X
56.000
        . 2
            2 +X
       0.
58.000
            0 +
60.000
            2 +X
62.000
            1 +X
TOTAL
      100.0 1255 (INTERVAL WIDTH= 2.0000)
```

```
LEFT-END
       TOT% COUNT
0.
        0.
             0 +
1.0000
        3.5
             44 +XXXXXXXXXXXXXXXXXXXXXXXX
2.0000
        5.2
             3,0000
        7.5
             94 +xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
4.0000
        10.3
            8.7
5.0000
            6.0000
        10.3
            7.0000
        8.3
            8.1
8.0000
            9.0000
        6.1
             10.000
        5.3
             11,000
        4.1
             52 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
12.000
        3.1
             39 +XXXXXXXXXXXXXXXXXX
13.000
        3.3
             42 +XXXXXXXXXXXXXXXXXXXXXX
14.000
        2.2
             27 +XXXXXXXXXXXXXXX
15.000
        2.2
             27 +XXXXXXXXXXXXXXX
16,000
        1.8
             22 +XXXXXXXXXXXX
17,000
        1.5
             19 +XXXXXXXXXX
18,000
        1.5
             19 +XXXXXXXXXXX
19.000
        1.4
             17 +XXXXXXXXX
20,000
        1.2
             15 +XXXXXXXX
21,000
             8 +XXXX
        . 6
22.000
        1.0
             12 +XXXXXX
        . 3
23.000
             4 +XX
         . 4
24.000
             5 +XXX
25.000
         . 5
             6 +XXX
26.000
             2 +X
27.000
             5 +XXX
28.000
         . 2
             2 +X
29.000
         . 1
             1 +X
30.000
             1 +X
         . 1
31.000
             0 +
32.000
             2 +X
         . 2
33.000
        O.
             0 +
34,000
         . 2
             3 +XX
         . 5
             6 > 35.000
TOTAL
       100.0 1255 (INTERVAL WIDTH= 1.0000)
```

D

4

```
LEFT-END
         TOT% COUNT
0.
         10.1
              .50000
         8.3
              1.0000
         8.0
              1.5000
         6.8
              2.0000
               4.9
2.5000
         5.0
               3.0000
         5.4
               3.5000
         3.8
               48 +XXXXXXXXXXXXXXXXXXXXXXXXX
4.0000
        6.2
               4.5000
         4.0
               50 +XXXXXXXXXXXXXXXXXXXXXXXXXXX
5.0000
         2.6
               33 +XXXXXXXXXXXXXXXXXX
5.5000
         3.B
               48 +XXXXXXXXXXXXXXXXXXXXXXXXX
6.0000
         3.3
               42 +XXXXXXXXXXXXXXXXXXXXXX
6.5000
         2.2
               28 +XXXXXXXXXXXXXX
7.0000
         1.9
               24 +XXXXXXXXXXXX
7.5000
         1.5
               19 +XXXXXXXXXX
8.0000
         1.4
               17 +XXXXXXXXX
8.5000
         1.5
               19 +XXXXXXXXXX
9.0000
         1.7
               21 +XXXXXXXXXXX
9.5000
         1.0
               13 +XXXXXXX
10.000
               21 +XXXXXXXXXXXX
         1.7
10.500
          . 8
               10 +XXXXX
11.000
               16 +XXXXXXXX
         1.3
11.500
               14 +XXXXXXX
         1.1
12,000
         1.0
               12 +XXXXXX
12,500
          . 8
               10 +XXXXX
13.000
          . 7
               9 +XXXXX
13.500
               5 +XXX
14.000
          . З
               4 +XX
14.500
               6 +XXX
          . 5
15.000
          . 5
               6 +XXX
15.500
          . 4
               5 +XXX
16,000
               5 +XXX
16.500
               3 +XX
17.000
               4 +XX
17.500
               5 +XXX
18.000
          . 2
               2 +X
18.500
               3 +XX
          . 2
19.000
          . 6
               7 +XXXX
19.500
          . 3
               4 +XX
20,000
          . 1
               1 +X
          . 2
               3 +XX
20.500
21:000
          . 1
               1 +X
21.500
         Ο.
               0 +
22.000
               2 +X
22.500
               1 +X
23.000
               4 +XX
23.500
          . 2
               2 +X
24.000
          . 1
               1 +X
24.500
                1 +X
          . 1
         3.0
               38 > 25.000
TOTAL
        100.0 1255 (INTERVAL WIDTH= .50000)
```

each X = 1 trip

TRIP DISTANCE (0-2 miles)

LEFT-END	TOT%	COUNT
0.	4.6	58 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.10000	1.4	17 +XXXXXXXXXXXXXXX
. 20000	1.8	23 +xxxxxxxxxxxxxxxxxxx
. 30000	1.8	22 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
. 40000	. 6	7 +XXXXXX
.50000	1.5	19 +XXXXXXXXXXXXXXXXXXXXX
. 60000	2.1	26 +XXXXXXXXXXXXXXXXXXXXXX
. 70000	1.4	17 +XXXXXXXXXXXXXXX
. 80000	1.4	17 +XXXXXXXXXXXXXXXX
. 90000	2.0	25 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.0000	1.9	24 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.1000	1.6	20 +xxxxxxxxxxxxxxxxx
1.2000	1.4	.18 +XXXXXXXXXXXXXXX
1.3000	1.5	19 +xxxxxxxxxxxxxxxx
1.4000	1.6	20 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.5000	1.5	19 +XXXXXXXXXXXXXXXXXXXXX
1.6000	1.1	14 +XXXXXXXXXXXXX
1.7000	1.6	20 +XXXXXXXXXXXXXXXXXXXXX
1.8000	1.0	13 +XXXXXXXXXXXX
1.9000	1.6	20 +XXXXXXXXXXXXXXXXXXXX
	66.7	837 > 2.0000
TOTAL	100.0	1255 (INTERVAL WIDTH= .10000)

D 5

AVERAGE DISTANCE BETWEEN STOPS (0-5 miles) each X = 2 trips

```
LEFT-END
       TOT% COUNT
        6.9
            . 10000
        8.8
           .20000
       11.5
           .30000
       11.7
           .40000
       11.0
.50000
       9.7
           .60000
       7.6
            .70000
        4.6
            .80000
        4.7
            .90000
        3.7
            1.0000
        2.2
            28 +XXXXXXXXXXXXXXX
1.1000
       1.8
            22 +XXXXXXXXXXXX
1.2000
       1.3
           16 +XXXXXXXXX
1.3000
       1.0
            13 +XXXXXXX
1.4000
       1.8
            22 +XXXXXXXXXXX
1.5000
        1.1
            14 +XXXXXXX
        . 6
1.6000
            8 +XXXX
1.7000
        . 4
             5 +XXX
1.8000
             6 +XXX
        . 5
        . 4
1.9000
             5 +XXX ,
2.0000
        . 7
             9 +XXXXX
2.1000
        . 6
            7 +XXXX
             4 +XX
2.2000
        . 3
2.3000
        . 3
             4 +XX
2.4000
        . 2
             2 +X
2.5000
        . 4
             5 +XXX
        . 4
             5 +XXX
2.6000
             5 +XXX
2.7000
        . 4
2.8000
        . 3
            4 +XX
2.9000
        . 7
            9 +XXXXX
        . 2
             2 +X
3.0000
3.1000
        . 1
            1 +X
3.2000
        . 2
             3 +XX
3.3000
        . 2
             3 +XX
3.4000
             0 +
3.5000
        0.
             0 +
3.6000
        . 1
             1 +X
3.7000
             0 +
        0.
3.8000
             1 +X
        . 1
             2 +X
3.9000
        . 2
4.0000
        . 3
             4 +XX
        0.
4.1000
             0 +
4.2000
       . 1
             1 +X
4.3000
        . 1
             1 +X
4.4000
        Ο.
             0 +
4.5000
        0.
             0 +
4.6000
             1 +X
        . 1
4.7000
        0.
             0 +
4.8000
        . 2
             2 +X
4.9000
        . 2
             2 +X
        2.5
            32 > 5.0000
      100.0 1255 (INTERVAL WIDTH= .10000)
TOTAL
```

U

7

```
LEFT-END
           TOT% COUNT
           24.7
                  .50000
           15.9
                 1.0000
            9.0
                  113 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.5000
                  86 +XXXXXXXXXXXXXXXXXXXXXX
            6.9
2.0000
            3.7
                  47 +XXXXXXXXXXXX
2.5000
            3.7
                  46 +XXXXXXXXXXXX
3.0000
            2.9
                  37 +XXXXXXXXXX
3.5000
            2.5
                  31 +XXXXXXXX
4.0000
            2.5
                  31 +XXXXXXXX
4.5000
            2.4
                  30 +XXXXXXXX
5.0000
            1.0
                  13 +XXXX
5.5000
             . 9
                  11 +XXX
6.0000
             . 5
                   6 +XX
6.5000
             . 4
                   5 +XX
7.0000
             . 2
                   3 +X
7.5000
             . 4
                   5 +XX
8.0000
            1.6
                  20 +XXXXX
8.5000
            2.3
                  29 +XXXXXXXX
9.0000
            1.0
                  12 +XXX
9.5000
            1.5
                  19 +XXXXX
10,000
            1.4
                  18 +XXXXX
            1.0
10.500
                  12 +XXX
11.000
            1.4
                  18 +XXXXX
11.500
            1.2
                  15 +XXXX
12,000
            . 9
                  11 +XXX
12,500
             . 8
                  10 +XXX
13.000
             . 7
                   9 +XXX
13,500
            . 6
                   8 +XX
14.000
            1.4
                  17 +XXXXX
                   5 +XX
14.500
             . 4
15.000
             . 5
                   6 +XX
15.500
             . 4
                   5 +XX
16,000
                   5 +XX
16.500
             . 3
                   4 +X
17,000
                   4 +X
             . 3
17.500
             . 5
                   6 +XX
18.000
                   1 +X
             . 1
18.500
                   1 +X
19.000
                   5 +XX
19.500
             . 3
                   4 +X
20.000
             . 2
                   2 +X
20.500
             . 2
                   2 +X
21,000
             . 1
                   1 +X
21.500
             . 3
                   4 +X
22,000
             . 2
                   2 +X
22.500
             . 2
                   3 +X
23.000
             . З
                   4 +X
23,500
             . 2
                   2 +X
            1.4
                  18 > 24.000
TOTAL
          100.0
                1255 (INTERVAL WIDTH= .50000)
```

TIME SINCE LAST TRIP (10-60 minutes)

each X = 1 trip

```
LEFT-END
            TOT% COUNT
 10,000
             Ο.
 11,000
             2.4
                     30 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 12.000
           . 1.8
                     23 +XXXXXXXXXXXXXXXXXXXXXXXX
 13.000
             1.9
                     24 +XXXXXXXXXXXXXXXXXXXXXXXXXXX
 14.000
             1.8
                     23 +XXXXXXXXXXXXXXXXXXXXXXXXXX
 15.000
             1.9
                     24 +XXXXXXXXXXXXXXXXXXXXXXXXXXXX
 16.000
             1.5
                     19 +XXXXXXXXXXXXXXXXXXX
 17.000
             1.0
                     12 +XXXXXXXXXXXX
 18.000
             1.8
                     23 +XXXXXXXXXXXXXXXXXXXXXX
 19.000
             1.4
                     18 +XXXXXXXXXXXXXXXX
 20.000
             1.0
                     12 +XXXXXXXXXXXXX
 21.000
             1.4
                     17 +XXXXXXXXXXXXXXXXX
 22,000
              . 9
                     11 +XXXXXXXXXXXX
 23,000
                     7 +XXXXXXX
 24.000
                     15 +XXXXXXXXXXXXXXX
             1.2
 25.000
              . 6
                     7 +XXXXXXXX
 26.000
                     17 +XXXXXXXXXXXXXXXXX
             1.4
27.000
             1.0
                     13 +XXXXXXXXXXXXX
 28,000
             1.0
                     12 +XXXXXXXXXXXX
 29,000
              . 2
                      3 +XXX
              . 6
 30,000
                      8 +XXXXXXXX
 31,000
              . 8
                     10 +XXXXXXXXXX
 32.000
                     15 +XXXXXXXXXXXXXXX
             1.2
 33.000
             1.0
                     12 +XXXXXXXXXXXX
 34.000
                      B +XXXXXXXX
 35,000
              . 6
                      7 +XXXXXXX
 36.000
                     7 +XXXXXXX
              . 6
 37,000
             1.0
                     13 +XXXXXXXXXXXXX
 38.000
             , .9
                     11 +XXXXXXXXXXX
 39.000
              . 8
                     10 +XXXXXXXXXX
 40.000
             1.0
                     13 +XXXXXXXXXXXXX
 41.000
                      5 +XXXXX
 42.000
              . 5
                      6 +XXXXXX
 43.000
                      6 +XXXXXX
              . 5
 44.000
              . 2
                      3 +XXX
 45.000
                      5 +XXXXX
 46.000
               . 5
                      6 +XXXXXX
                      3 +XXX
 47.000
 48.000
               . 6
                      7 +XXXXXXX
 49.000
                      4 +XXXX
               . 3
 50.000
                      3 +XXX
 51.000
                      2 +XX
 52.000
                      3 +XXX
 53,000
                      5 +XXXXX
 54.000
                      7 +XXXXXXX
               . 6
 55.000
                      4 +XXXX
                      7 +XXXXXXX
 56.000
              . 6
 57.000
                      2 +XX
 58.000
                      2 +XX
 59.000
               . 9
                     11 +XXXXXXXXXXXX
            59.0
                    740 > 60.000
 TOTAL
           100.0 1255 (INTERVAL WIDTH= 1.0000)
```

```
D 9
```

```
LEFT-END
       TOT% COUNT .
        6.5
             2.0000
        6.9
             4.0000
       10.4
            6.0000
        8.3
            8.0000
        7.8
             10.000
        6.9
             12.000
        7.5
             14.000
        6.8
             16.000
        5.6
             18.000
        5.7
             20.000
        4.0
             50 +XXXXXXXXXXXXXXXXXXXXXXXXXX
22.000
        2.3
             29 +XXXXXXXXXXXXXXXX
24.000
        2.9
             37 +XXXXXXXXXXXXXXXXXXXXX
        2.2
26,000
             27 +XXXXXXXXXXXXXXX
28.000
        1.7
             21 +XXXXXXXXXXXX
30.000
        1.8
             23 +XXXXXXXXXXXX
32,000
        1.2
             15 +XXXXXXXX
34,000
        .1.0
             13 +XXXXXXX
36.000
        1.5
             19 +XXXXXXXXXXX
38,000
        1.4
             17 +XXXXXXXXXX
40.000
         . 8
             10 +XXXXX
42,000
        1.2
             15 +XXXXXXXX
44 000
        1.0
             13 +XXXXXXX
         . 5
46.000
             6 +XXX
48,000
             5 +XXX
50,000
             3 +XX
52,000
         . 3
             4 +XX
             5 +XXX
54,000
         . 2
56.000
             2 +X
58.000
             2 +X
60.000
         . З
             4 +XX
62.000
             1 +X
         . 1
64.000
             2 +X
66,000
             1 +X
             2 +X
68.000
70.000
         . 2
             3 +XX
             0 +
72.000
        Ú.
74.000
             1 +X
         . 1
76.000
             1 .+X
         . 1
78,000
         . 1
             1 +X
80.000
        0.
             0 +
82.000
        0.
             0 +
        . 1
84.000
             1 +X
             0 +
86.000
        Ο.
88,000
         . 1
             1 +X
        1.0
             13 > 90.000
TOTAL
       100.0 1255 (INTERVAL WIDTH= 2.0000)
```

TOTAL TIME MOVING (0-25 minutes) each X = 1 trip

LEFT-END	тот%	COUNT .	
0.	4.5	56 +XXXX	***************************************
.50000	1.5		XXXXXXXXXXXX
1.0000	2.7	34 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.5000	2.2	28 +XXXX	XXXXXXXXXXXXXXXXXXXXX
2.0000	3.2	40 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
2.5000	4.0	50 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3.0000	3.1	39 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3.5000	3.7	46 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4.0000	3.5	44 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4.5000	3.7	46 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
5.0000	2.6	33 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
5.5000	2.2	27 +XXXX	XXXXXXXXXXXXXXXXXXXXX
6.0000	2.2		XXXXXXXXXXXXXXXXXXXXX
6.5000	3.0	38 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7.0000	2.9	36 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7.5000	2.5	32 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
8.0000	2.5	32 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
8.5000	3.3	41 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
9.0000	2.4		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
9.5000	3.1	39 +XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
10.000	1.5	19 +XXXX	KXXXXXXXXXXXX
10.500	2.3	29 +XXXX	XXXXXXXXXXXXXXXXXXXXXXX
11.000	2.3		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
11.500	2.5		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
12.000	2.1	26 +XXXX	XXXXXXXXXXXXXXXXXXX
12.500	1.7	•	XXXXXXXXXXXXXX
13.000	1.5		XXXXXXXXXXXX
13.500	1.5	19 +XXXX	XXXXXXXXXXXXX
14.000	1.0	12 +XXXX	
14.500	1.8	22 +XXXX	KXXXXXXXXXXXXXX
15.000	1.4	17 +XXXX	KXXXXXXXXXX
15.500	1.0	12 +XXXX	KXXXXXX
16.000	1.0	13 +XXXX	XXXXXXXX
16.500	.9	11 +XXXX	KXXXXX
17.000	. 6	7 +XXXX	XXX
17.500	1,4	18 +XXXX	KXXXXXXXXXXX
18.000	. 4	5 +XXXX	· · · · · · · · · · · · · · · · · · ·
18.500	. 6	8 +XXXX	KXXX
19.000	. 6	8 +XXXX	XXXX
19.500	. 6	7 +XXXX	KXX
20.000	. 8	10 +XXXX	XXXXX
20.500	. 9	11 +XXXX	XXXXXX
21.000	. 5	6 +XXXX	XX
21.500	. 7	9 +XXXX	XXXXX
22.000	1.1	14 +XXXX	XXXXXXXX
22.500	. 4	5 +XXXX	X
23.000	1.0	13 +XXXX	XXXXXXXX
23.500	. 6	7 +XXXX	
24.000	. 4	- 5 +XXXX	X
24.500	. 5	6 +XXXX	XX
	7.9	99 > 25.	
TOTAL	100.0	1255 (INT	ERVAL WIDTH= .50000)

TOTAL TIME STOPPED (0-20 minutes) each X = 2 trips

LEFT-END	тот%	COUNT
Ο.	6.3	79 +xxxxxxxxxxxxxxxxxxxxxxxxx
.50000	10.3	129 +xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
1.0000	11.3	142 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.5000	8.0	101 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
2.0000	9.3	117 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
2.5000	6.3	79 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3.0000	5.2	65 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3.5000	3.8	4B +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4.0000	3.7	46 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4.5000	3.5	44 +XXXXXXXXXXXXXXXXXXXXX
5.0000	1.8	22 +XXXXXXXXXX
5.5000	2.1	26 +XXXXXXXXXXXX
6.0000	2.2	27 +XXXXXXXXXXXXX
6.5000	1.7	21 +XXXXXXXXXX
7.0000	1.5	19 +XXXXXXXXX
7.5000	1.5	19 +XXXXXXXXX
8.0000	1.0	13 +XXXXXX
8.5000	. 9	11 +XXXXXX
9.0000	1.5	19 +XXXXXXXXX
9.5000	1.0	13 +XXXXXXX
10.000	1.2	15 +XXXXXXX
10.500	1.0	12 +XXXXXX
11.000	. 6	8 +XXXX
11.500	1.4	18 +XXXXXXXX
12.000	. 6	7 +XXXX
12.500	1.0	12 +XXXXXX
13.000	1.0	13 +XXXXXXX
13.500	. 2	3 +XX
14.000	. 9	11 +XXXXXX
14.500	. 6	7 +XXXX
15.000	.5	6 +XXX
15.500	. 4	5 +XXX
16.000	. 5	6 +XXX
16.500	. 2	3 +xx
17.000	. 5	6 +XXX
17.500	. 3	4 +XX
18.000	. 5	6 +XXX
18.500	. 5	6 +XXX
19.000	. 4	5 +XXX
19.500	. 5	6 +XXX
	4.5	56 > 20.000
TOTAL	100.0	1255 (INTERVAL WIDTH= .50000)

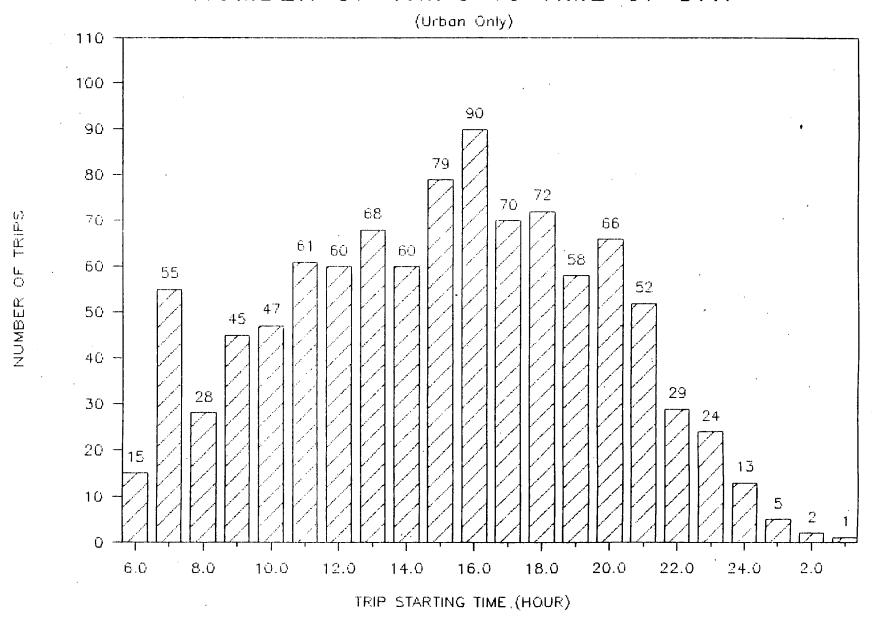
TOTAL

MIDPOINT HIST% COUNT

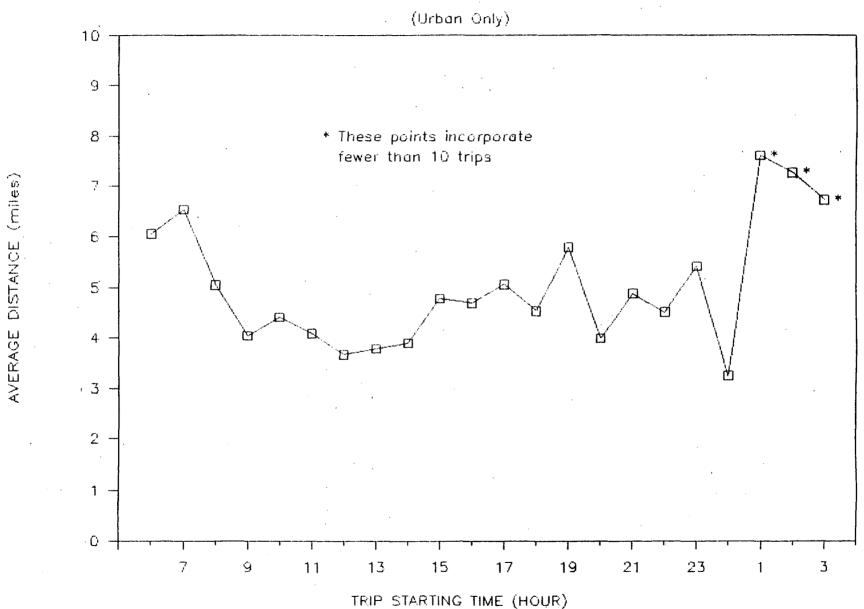
0.0	6.8 17	+XXXXXXXXXXXXXXXX
1.0	4.8 12	+XXXXXXXXXXX
2.0	10.4 26	+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3.0	12.4 31	+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4.0	11.2 28	+xxxxxxxxxxxxxxxxxxx
5.0	13.9 35	+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
6.0	11.6 29	+xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
7.0	10.0 25	+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
8.0	8.4 21	+XXXXXXXXXXXXXXXXXXXXX
9.0	4.4 11	+XXXXXXXXXX
10.0	2.8 7	+XXXXXXX
11.0	0.8 2	+XX
12.0	0.4 1	+X
13.0	0.8 2	+XX
14.0	0.0 0	+
15.0	0.4 1	+X
16.0	0.8 2	+XX
17.0	0.4 / 1	+X

251 (INTERVAL WIDTH= 1.0000)

Appendix E

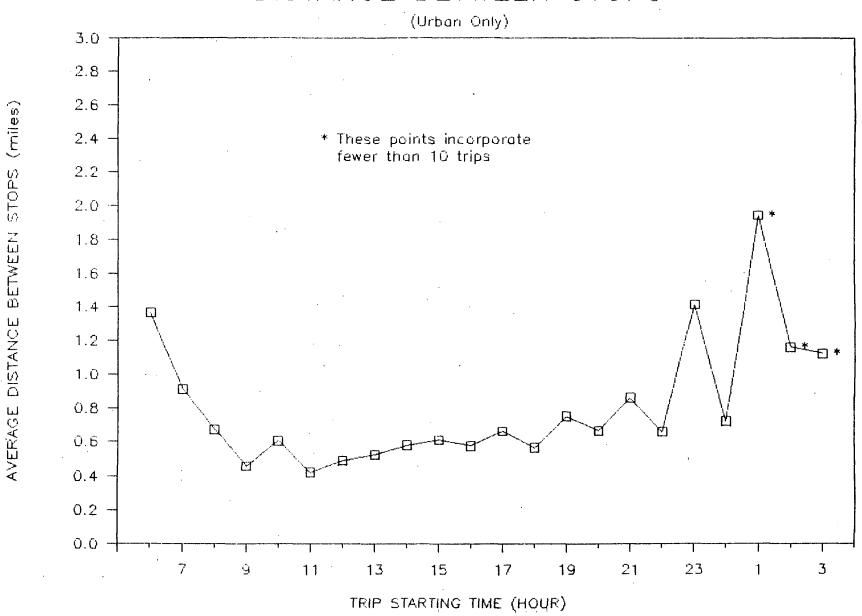

Graphs

Trip Parameter vs. Trip Starting Time Urban Only Trips

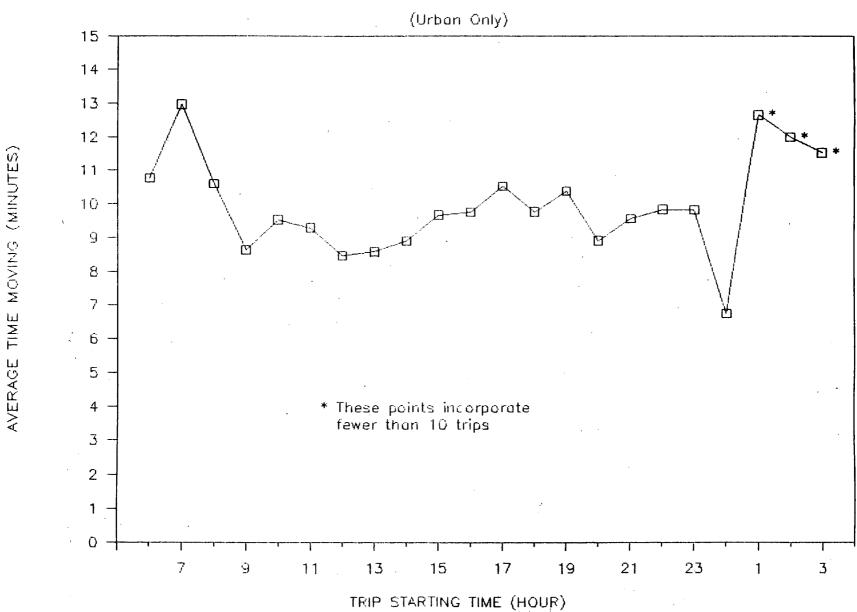

Trips Separated By An Engine Off Period Exceeding 10 Minutes

E 2

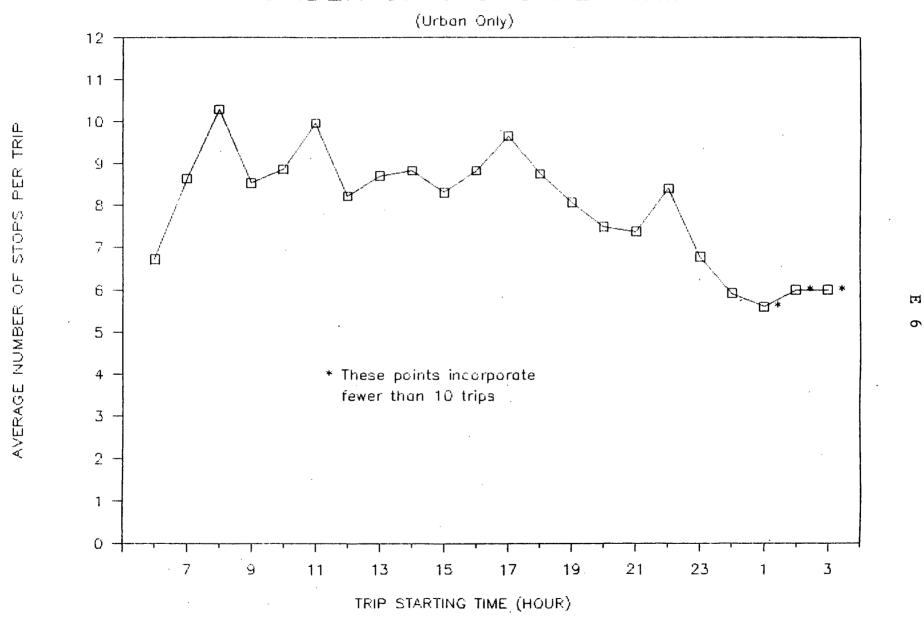
NUMBER OF TRIPS vs TIME OF DAY



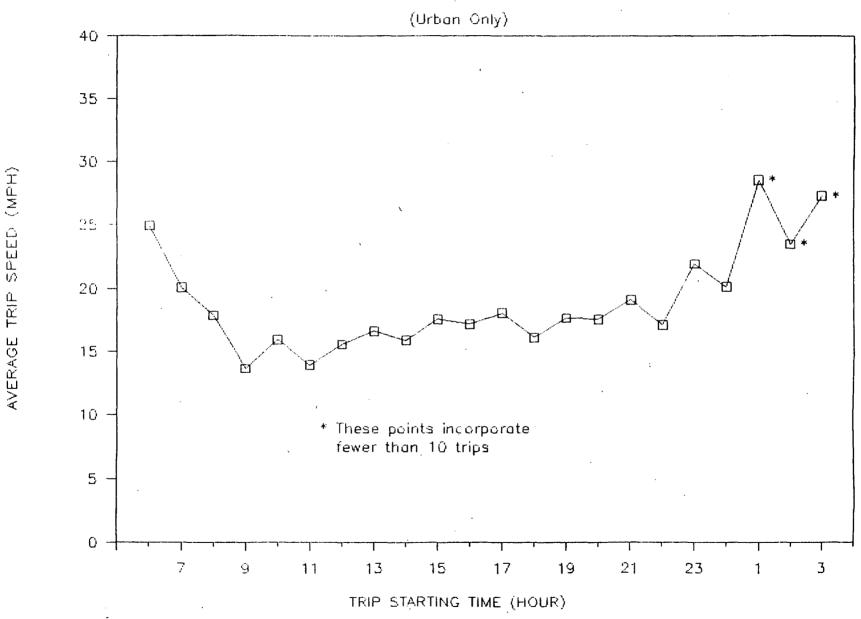
AVERAGE DISTANCE TRAVELLED


[I]

DISTANCE BETWEEN STOPS

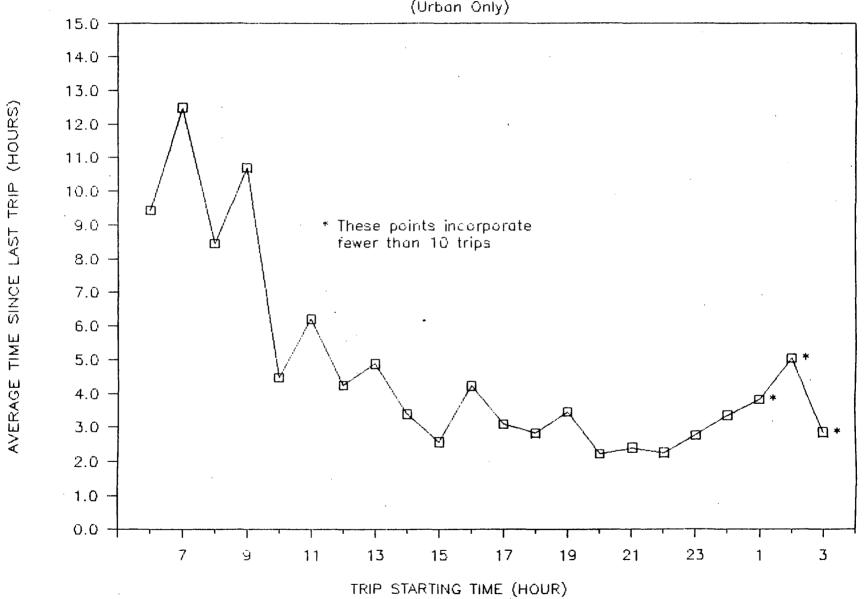

E 4

TIME MOVING PER TRIP



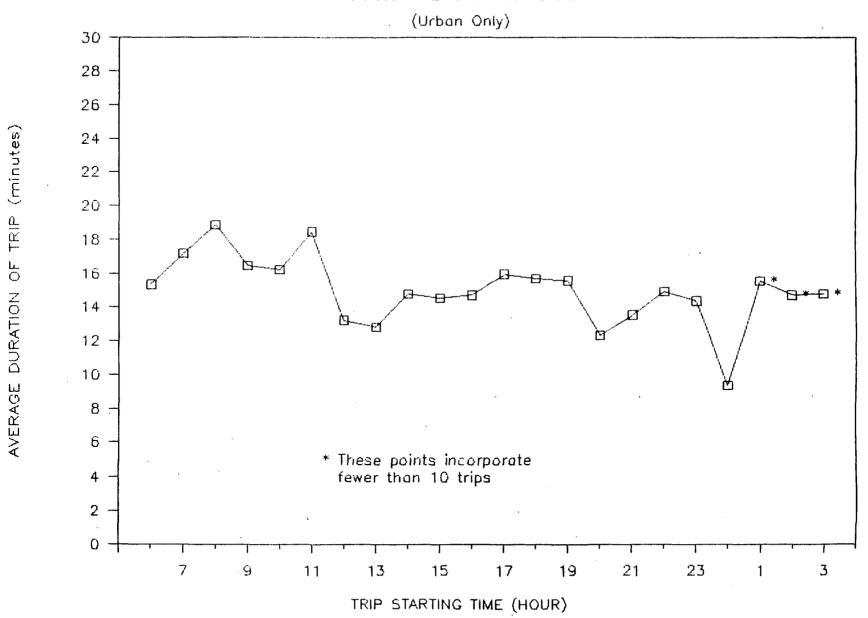
[Ŧ]

NUMBER OF STOPS PER TRIP

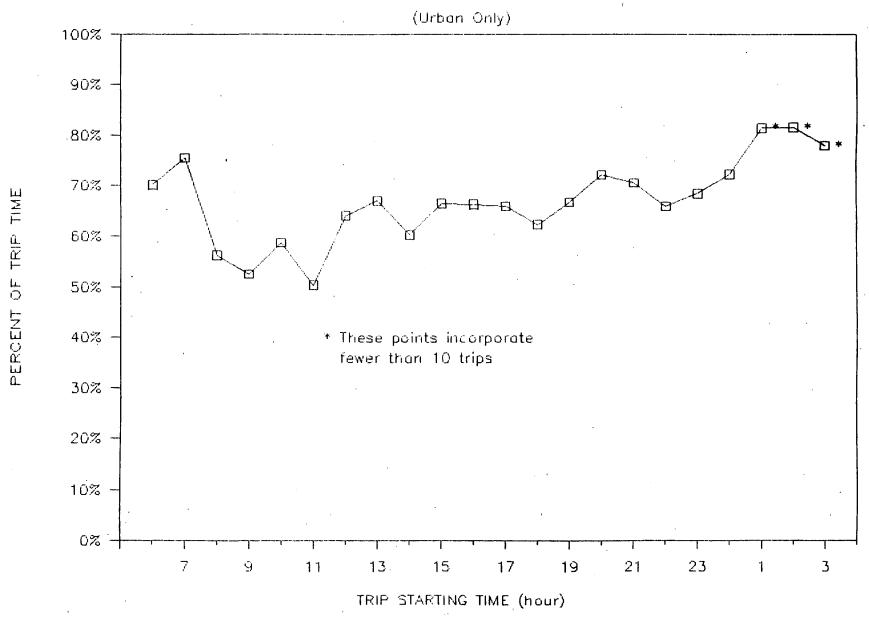

AVERAGE TRIP SPEED

H

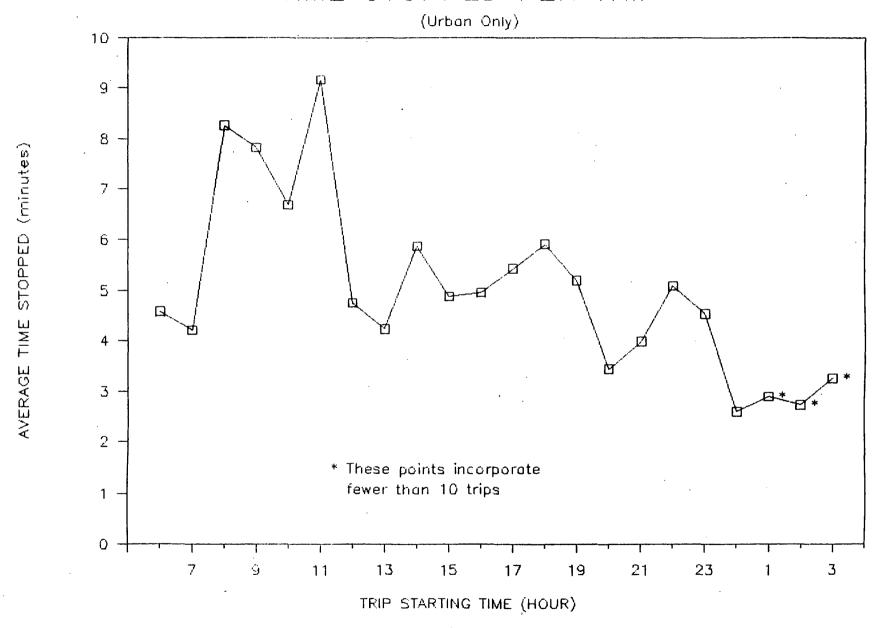
TIME SINCE LAST TRIP



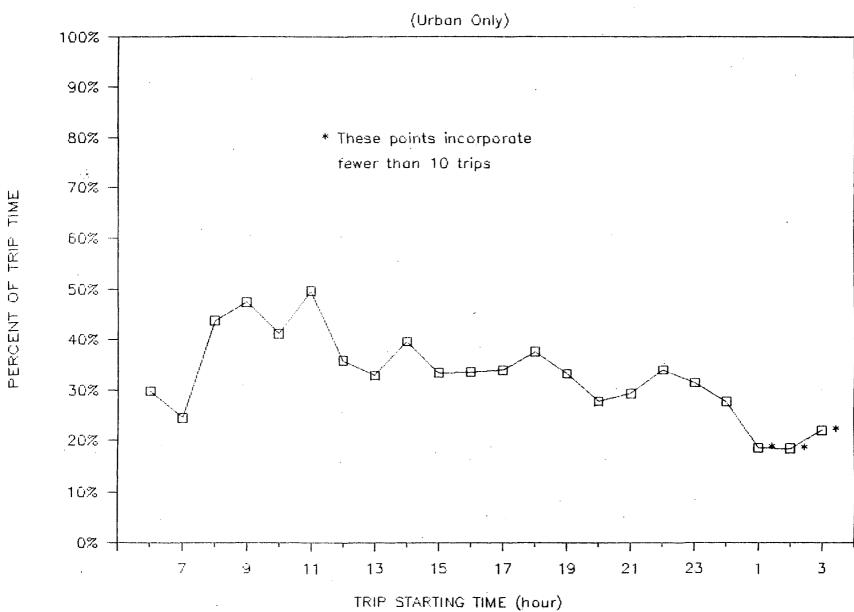
[1]


 ∞

TRIP DURATION



E 9


FRACTION OF TIME MOVING

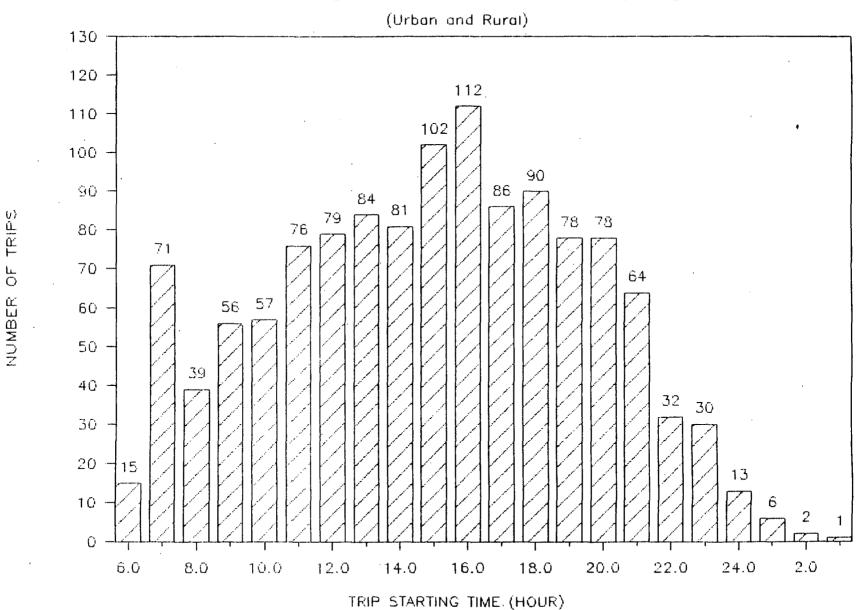
TIME STOPPED PER TRIP

FRACTION OF TIME STOPPED

E 12

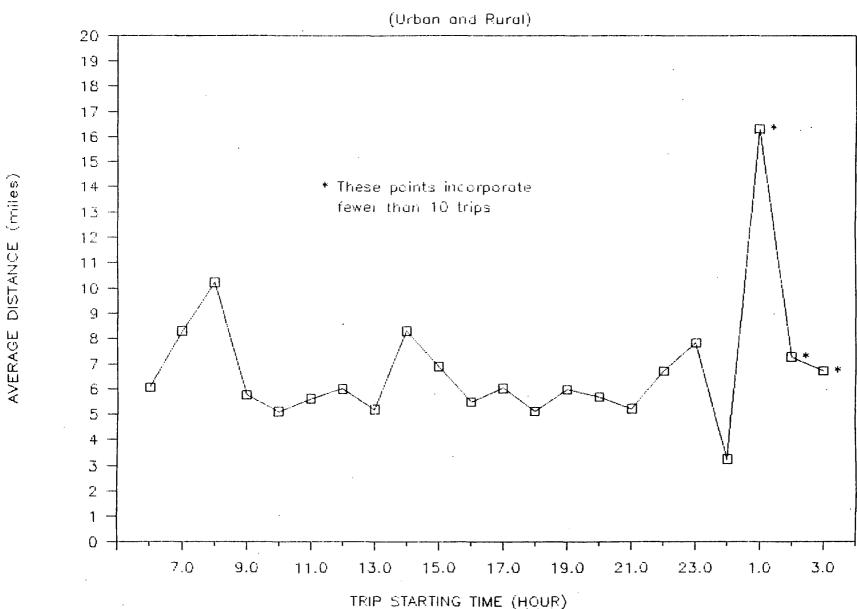
URBAN TRIPS ONLY - AVERAGE VALUES Minimum of 10 minutes engine off time between trips

TRIP STARTING TIME	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0
VEHICLES	15	55	28	45	47	61	60	68	60	79	90
AVE SPEED (mph)	25.0	20.1	17.9	13.6	15.9	13.9	15.6	16.6	15.9	17.6	17.2
DISTANCE (miles)	6.06	6.54	5.05	4.05	4.42	4.10	3.68	3.80	3.91	4.78	4.70
# OF STOPS	6.7	8.6	10.3	8.5	8.9	10.0	8.2	8.7	8.8	8.3	6.8
AVE DISTANCE btwn STOPS (miles)	1.4	0.91	0.67	0.46	0.61	0.42	0.49	0.53	0.58	0.61	0.58
ENGINE OFF (hours)	9.4	12.5	8.4	10.7	4.5	6.2	4.3	4.9	3.4	2.6	4.2
TRIP TIME (min)	15.4	17.2	18.9	16.5	16.2	18.5	13.2	12.8	14.8	14.6	14.7
STOP TIME (min)	4.6	4.2	8.2	7.8	6.7	9.2	4.8	4.2	5.9	4.9	5.0
MOVING (min)	10.8	13.0	10.6	8.6	9.5	9.3	8.5	8.6	8.9	9.7	9.8
TRIP STARTING TIME	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	1.0	2.0	3.0
VEHICLES	70	72	58	66	52	29	24	13	5	2	1
RVE SPEED (mph)	18.1	16.1	17.7	17.6	19.1	17.2	21.9	20.1	28.6	23.5	27.3
DISTANCE (miles)	5.07	4.54	5.80	4.00	4.88	4.52	5.43	3.26	7.61	7.28	6.73
# OF STOPS	9.7	8.8	8.1	7.5	7.4	8.4	6.8	5.9	5.6	6.0	6.0
AVE DISTANCE btwn STOPS (miles)	0.66	0.57	0.75	0.67	0.86	0.66	1.4	0.72	1.9	1.2	1.1
ENGINE OFF (hours)	3.1	2.8	3.5	2.2	2.4	2.3	2.8	3.4	3.8	5.0	2.9
TRIP TIME (min)	16.0	15.7	15.6	12.4	13.6	14.9	14.4	9.4	15.6	14.7	14.8
STOP TIME (min)	5.4	5.9	5.2	3.4	4.0	5.1	4.5	2.6	2.9	2.7	3.3
MOVING (min)	10.5	9.8	10.4	8.9	9.6	9.8	9.8	6.8	12.7	12.0	11.5


Appendix F

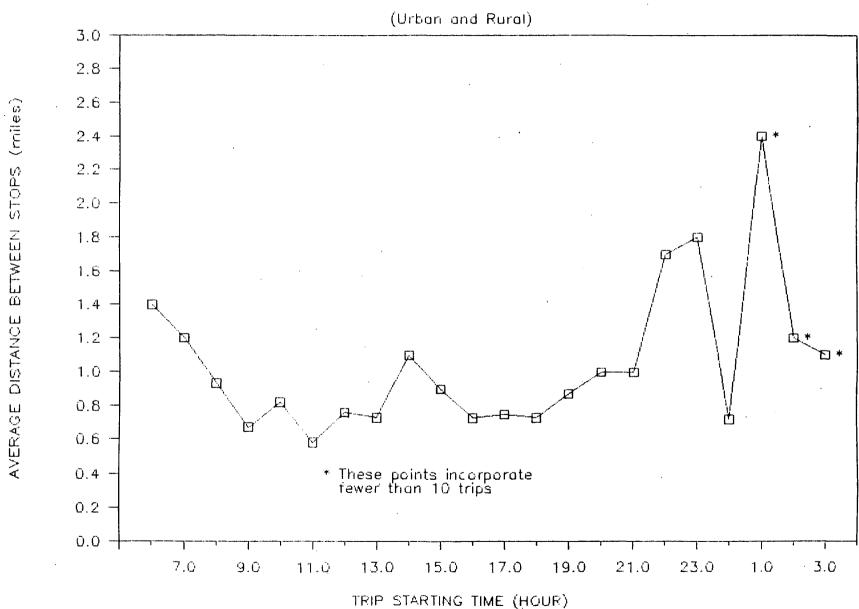
Graphs

Trip Parameter vs. Trip Starting Time Urban And/Or Rural Trips

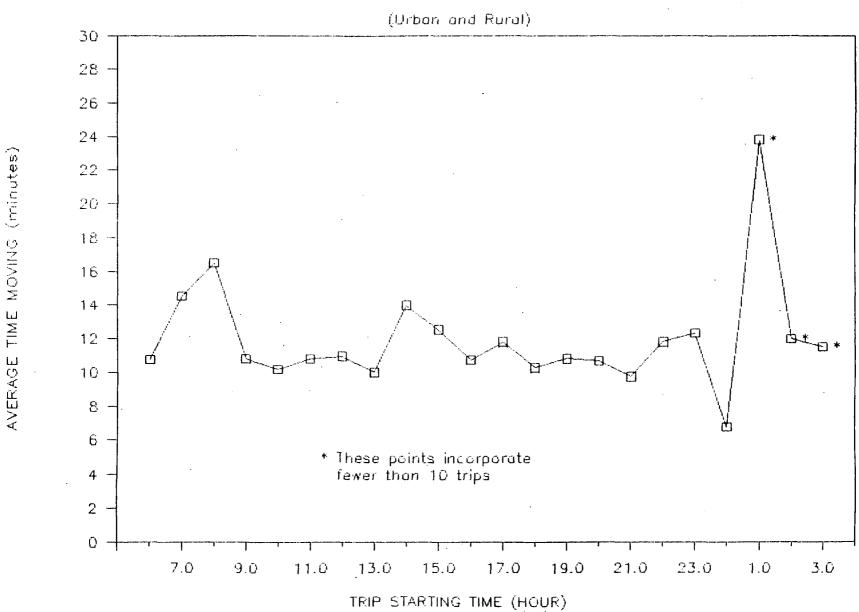

Trips Separated By An Engine Off Period Exceeding 10 Minutes

NUMBER OF TRIPS VS TIME OF DAY

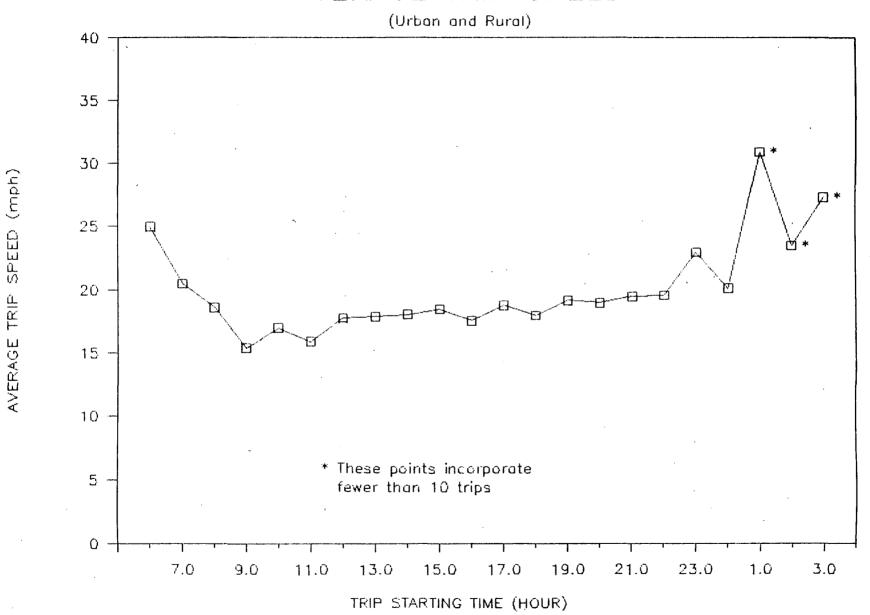
2


AVERAGE DISTANCE TRAVELLED

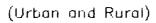
NUMBER OF STOPS PER TRIP

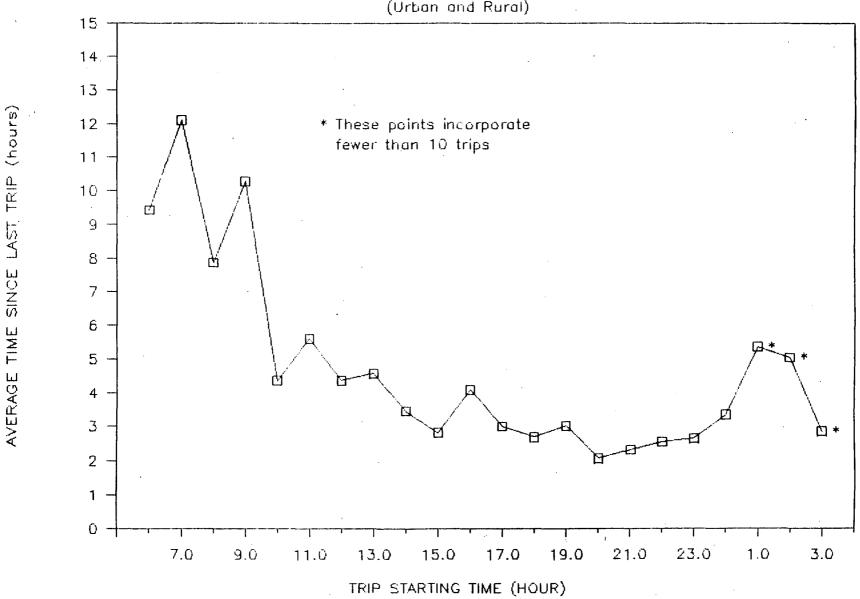


DISTANCE BETWEEN STOPS


G

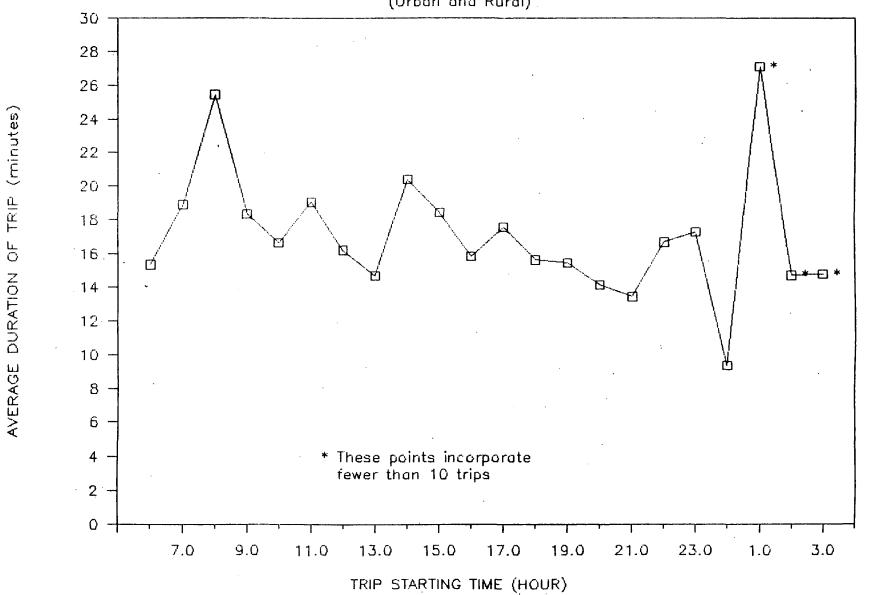
TIME MOVING PER TRIP




9

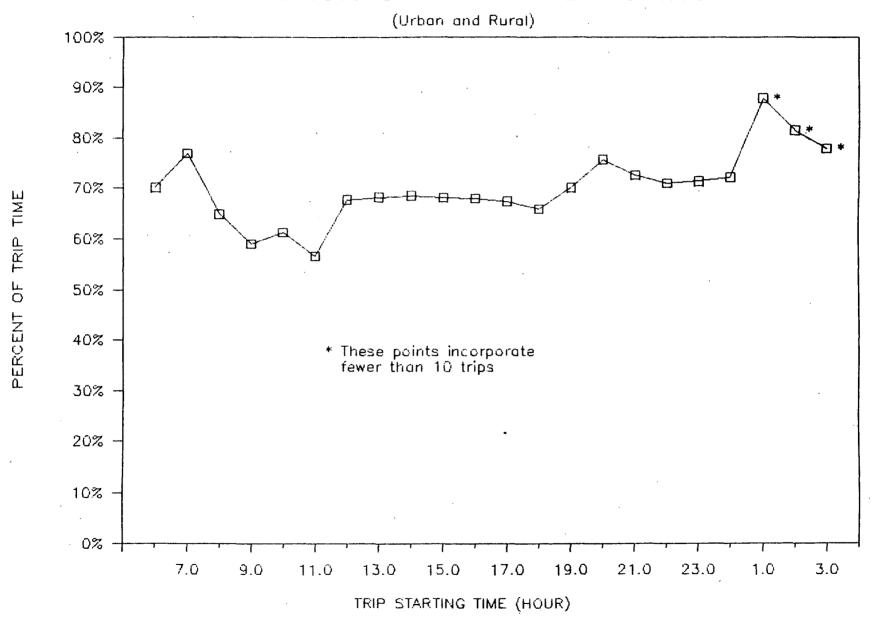
AVERAGE TRIP SPEED

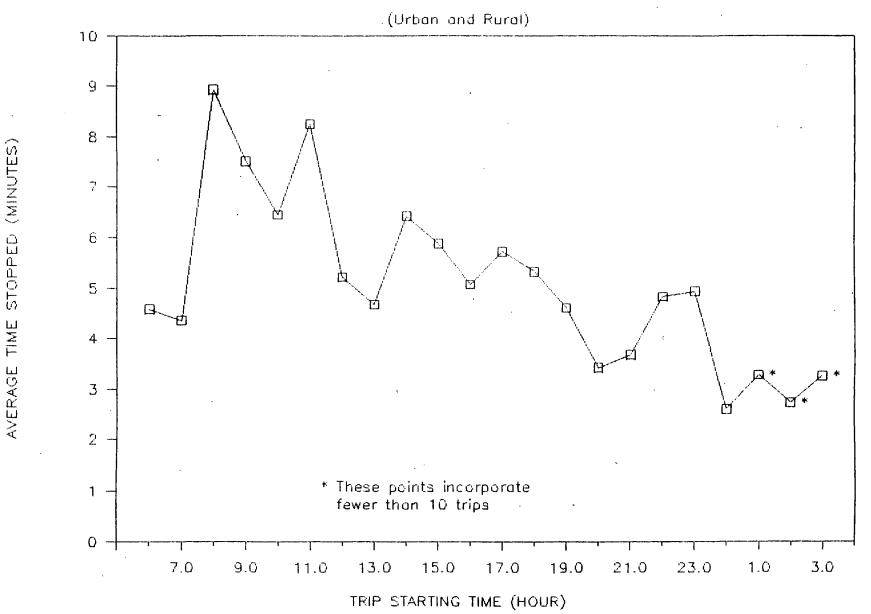
TIME SINCE LAST TRIP



ㅂ ∞

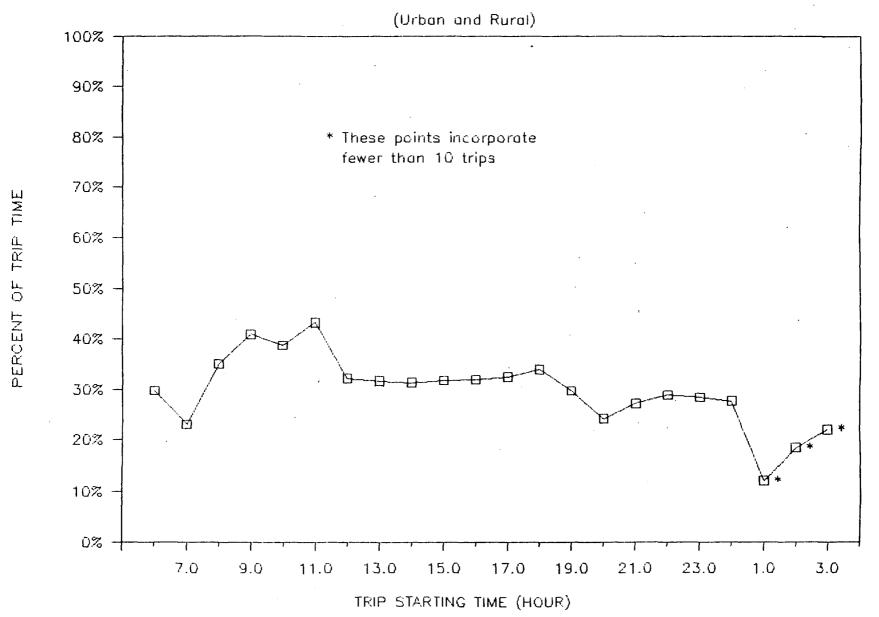
TRIP DURATION


(Urban and Rural)


퍼

9

FRACTION OF TRIP TIME MOVING



TIME STOPPED PER TRIP

T T

FRACTION OF TRIP TIME STOPPED

URBAN AND RURAL TRIPS - AVERAGE VALUES Minimum of 10 minutes engine off time between trips

TRIP START TIME	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0
VEHICLES	15	71	39	. 56	57	76	79	84	81	102	112
AVE SPEED (mph)	25.0	20.5	18.6	15.4	17.0	15.9	17.8	17.9	18.1	18.5	17.6
DISTANCE (miles)	6.06	8.30	10.24	5.77	5.11	5.62\	6.01	5.20	8.31	6.91	5.52
# OF STOPS	6.7	8.5	10.6	8.8	8.4	9.6	8.3	8.4	10.0	8.8	9.0
AVE DISTANCE btwn STOPS (miles)	1.4	1.2	0.93	0.67	0.82	0.58	0.76	0.73	1.1	0.90	0.73
ENGINE OFF (hours)	9.4	12.1	7.9	10.3	4.4	5.6	4.4	4.6	3.5	2.8	4.1
TRIP TIME (min)	15.4	18.9	25.4	18.3	16.6	19.1	16.2	14.7	20.4	18.4	15.8
STOP TIME (min)	4.6	4.4	8.9	7.5	6.4	8.2	5.2	4.7	6.4	5.9	5.1
MOVING TIME (min)	10.8	14.5	16.5	10.8	10.2	10.8	11.0	10.0	14.0	12.6	10.8
TRIP START TIME	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	1.0	2.0	3.0
VEHICLES	86	90	78	78	. 64	32	30	13	6	2	1
AVE SPEED (mph)	18.8	18.0	19.2	19.0	19.5	19.6	23.0	20.1	30.9	23.5	27.3
DISTANCE (miles)	6.05	5.13	5.99	5.71	5.24	6.73	7.84	3.26	16.31	7.28	6.73
# OF STOPS	9.9	8.4	7.7	7.5	7.0	8.1	7.0	5.9	6.8	6.0	6.0
AVE DISTANCE btwn STOPS (miles)	0.75	0.73	0.87	1.0	1.0	1.7	1.8	0.72	2.4	1.2	1.1
ENGINE OFF (hours)	3.0	. 2.7	3.0	2.1	2.3	2.6	2.6	3.4	5.4	5.1	2.9
TRIP TIME (min)	17.6	15.6	15.4	14.1	13.5	16.7	17.3	9.4	27.1	14.7	14.8
STOP TIME (min)	5.7	5.3	4.6	3.4	3.7	4.8	4.9	2.6	3.3	2.7	э.э
MOVING TIME (miri)	11.8	10.3	10.8	10.7	9.8	11.8	12.4	6.8	23.8	12.0	11.5

Appendix G Participant Survey

- Sample Questionnaire
- Summary of Answers

DATE: 7/6/83 ID #: 324

Attachment C

DAY: **87** HOUR: **13** MIN: **33**

OCS Driver/Vehicle Questionnaire

At time of ocs installation, initialization of bata tape
OCS Test Car: Make CHEVY Model CHEVETT Year 1/2
V.I.N. 161AB68080 13894
OCS Instrument Package Number: 1 2 3 (circle one)
Date: 7-6-73 Time: \$ 14:15 AM/PM
Fuel tank level (to nearest 1/8): 78 Amount of fuel required to fill: 1.9
Odometer Reading: 6856.2
Tape initialized by: ARK CF
Installed by:
Speed sensor calibrated and quality control procedure run by: $ARRELLE$, on $7-6-83$
Quality control procedure was (check one):
the dynamometer procedure.
an EPA approved alternate.
At the Time of Participant Intreview
Questions for the participant. Should be filled in before he drives the test car.
1. Vehicle model and year (participant's car): 79 CheveTTE
Manufacturer's Vehicle Identification Number (VIN):
2. Date purchased # 79 Month Year

3. How many miles/year is your car driven?

```
A. 0 - 5,000

B. 5,000 - 10,000

C. 10,000 - 15,000

D. 15,000 - 20,000

E. 20,000 - 30,000

F. Over 30,000
```

- 4. Where is this driving done?
 - A. City expressways:

B. Major city streets:

```
1. 75% (almost all)
2. 51 - 75% (most)
3. 21 - 50% (some)
4. 0 - 20% (little or none)
```

C. City side streets:

```
1. 75% (almost all)
2. 51 - 75% (most)
3. 21 - 50% (some)
4. 0 - 20% (little or none)
```

D. Rural expressways:

```
1. 75% (almost all)
2. 51 - 75% (most)
3. 21 - 50% (some)
4. 0 - 20% (little or none)
```

E. Other rural roads:

- 5. How is this driving done?
 - A. To and from work:

```
1. 75% (almost all)
2. 51 - 75% (most)
3. 21 - 50% (some)
4. 0 - 20% (little or none)
```

-3-

Shopping and errands:

В.

```
1.____ 75% (almost all)
               2. 51 - 75% (most)
3. 21 - 50% (some)
4. 0 - 20% (little or none)
      C.
               Business (not to and from work):
            1. 75% (almost all)
2. 51 - 75% (most)
3. 21 - 50% (some)
4. 0 - 20% (little or none)
      D.
               Other (social, vacations, etc.), please state:
               1. 75% (almost all)
2. 51 - 75% (most)
3. 21 - 50% (some)
              4. 0 - 20% (little or none)
6. How did you get here today?
      A. City streets
B. Expressway
      C. Rural roads
D. Combination of above
7. Approximately how many miles did you travel to get
here? <u>50</u>
      How is your car used?
      A. Driver only:
               1. 75% (almost all)
2. 51 - 75% (most)
3. 21 - 50% (some)
4. 0 - 20% (little or none)
               Driver and one passenger:
      В.
               1. 75% (almost all)
               2. 51 - 75% (most)
               3. 21 - 50% (some)
4. 0 - 20% (little or none)
               Driver and 2 or more passengers:
      C.
               1.____ 75% (almost all)
               2. 51 - 75% (most)
3. 21 - 50% (some)
4. 0 - 20% (little or none)
```

4

		D.	Driver only with heavy cargo:
			1. 75% (almost all) 2. 51 - 75% (most) 3. 21 - 50% (some) 4. 0 - 20% (little or none)
		E.	Driver, passengers, and cargo:
			1 75% (almost all) 2 51 - 75% (most) 3 21 - 50% (some) 4 0 - 20% (little or none)
	9. car?		g a typical week how many different people drive your
	·	A C	Usually only one Usually only two Three or more people may drive the car during a typical week.
	(One	trip	typical day, how many trips are made with your car? is defined as starting the engine, driving some
	compe		our car operated regularly on unpaved roads, in a, or hauling loads heavier than for which it was
	·	A. B. C.	Yes No Don't know
٠.	many appl:	miles	u drive your car to and from work, approximately how is that trip, one way? 7 (Enter N/A if not If you enter N/A here also enter N/A on the next ions.)
	13.	Would	you, in your judgement, consider that
		A B C D	an urban trip a rural trip a combination of both urban and rural driving N/A
	14.	At app 2:45	proximately what time to do you leave for work?

16. Approximately how long does this trip take you, on the average? hours minutes
17. Do you keep record of the fuel economy of your car?
A. Yes B. No
We are interested in the fuel economy people actually get with their cars. If the answer above was yes, answer questions $18-20$, otherwise enter N/A.
18. How many miles per gallon do you get with your car?
A mpg in the city B mpg on the highway C mpg combined city and highway D N/A
19. Are you concerned with the fuel economy of your car?
A. Yes No
20. What type of tires do you use on your car?
A. Bias-ply B. Bias-belt C. Radial l. Steel-belted 2. Fiberglass-belted 3. Other
(If participant does not know this, contractor should look at the tires and find out.)
The test car was turned over to participant for the beginning of the test period on:
7-6-83 /6:20 AM (PM) Date Time
At Time of OCS Data Tape Removal
Time: AM/PM Amount of fuel
(to nearest 1/8): required to fill:
Instruments rmvd by: Tape removed by:

Summary From Participant Questionnaire*

1. How many miles/year is your car driven?

Ranges	Responses
0- 5,000	2
5,000-10,000	7
10,000-15,000	23
15,000-20,000	9
20,000-30,000	3
Over 30,000	2
Total Response =	46

Where is this driving done?**

Fraction of Time	City Express- ways	Major City Streets	City Side Streets	Rural Express- ways	Other Rural Roads
76-100% (almost all)	7	3	. 2	1	. 0
51-75% (most)	9	17	6	5	1
21-50% (some)	19	17	12	18	. 7
0-20% (little)	11	9	25	22	<u> 38</u>
Total Responses	46	46	45	46	46

3. How is this driving done?**

Fraction of time	To and from Work	Shopping & Errands	Business	Other (Vacations, etc.)
76-100% (almost all)	11	4	1	0
51-75% (most)	12	8	2	3
21-50% (some)	12	22	14	15
0-20% (little)	11	12	29	<u> 27</u>
Total Responses	46	46	46	45

^{*} Forty-six of the forty-seven participants used in this analysis responded.

^{**} The combined fractions of time indicated by some participants exceeded 100%.

4. How is your car used?*

Fraction of Time	Driver Only	Driver & 1 Psgr.	Driver & 2+ Psqr	Driver & Heavy Cargo	Driver, Psgrs, Cargo
76-100% (almost all)	22	3	2	0	0
51-75% (most)	8	7	3	0	0
21-50% (some)	7	15	6	4	4
0-20% (little)	9	20	_35	42	42
Total Responses	46	45	46	46	46

5. During a typical week, how many different people drive the car?

Options	Responses
Usually only one	31
Usually only two	14
Three or more	_1
Total Response =	46

6. On a typical day, how many trips are made with your car? (One trip is defined as starting the engine, driving some distance, and stopping the engine.)

Answers varied from 1 to 15.

7. Is your car operated regularly on unpaved roads, in competition, or hauling loads heavier than for which it was designed?

Total Response = 46

8. If you drive your car to and from work, approximately how many miles is that trip, one way?

Answers varied from 1/4 to 30 miles. Fifteen participants answered with "N/A". Forty-six participants responded.

^{*} The combined fractions of time indicated by some participants exceeded 100%.

9. Would you, in your judgement, consider that:

Options	Responses
An urban trip A rural trip A combination N/A	26 1 4 15
Total Response =	46

10. At approximately what time do you leave for work?

Answers varied from 6 a.m. to 9 p.m. Nineteen of the participants indicated a time. Sixteen of these left for work between 6 a.m. and 9 a.m., as follows:

> 6:00 - 6:59 5 7:00 - 7:59 8 8:00 - 9:00 3

- 11. What would you say is your average speed during this trip?

 Answers varied from 20 to 65 mph.
- 12. Approximately how long does this take you?
 Answers varied from 2 minutes to 1-1/2 hours.
- 13. Do you keep a record of the fuel economy of your car?

Yes			13
No			33
Total	Responses	=	46

14. How many miles per gallon do you actually get with your car?

City	13-27 mpg
Highway	16-35 mpg
Combined	14-39* mpg

^{*} The participant responding with 39 mpg did not answer the city and highway parts of the question.

G 10 15. Are you concerned with the fuel economy of your car?

Yes 28 No 16 Total Responses = 44

16. What type of tires do you use on your car?

Bias-ply Bias-belt 0 Radial Total Responses = 40

If radial, what type?

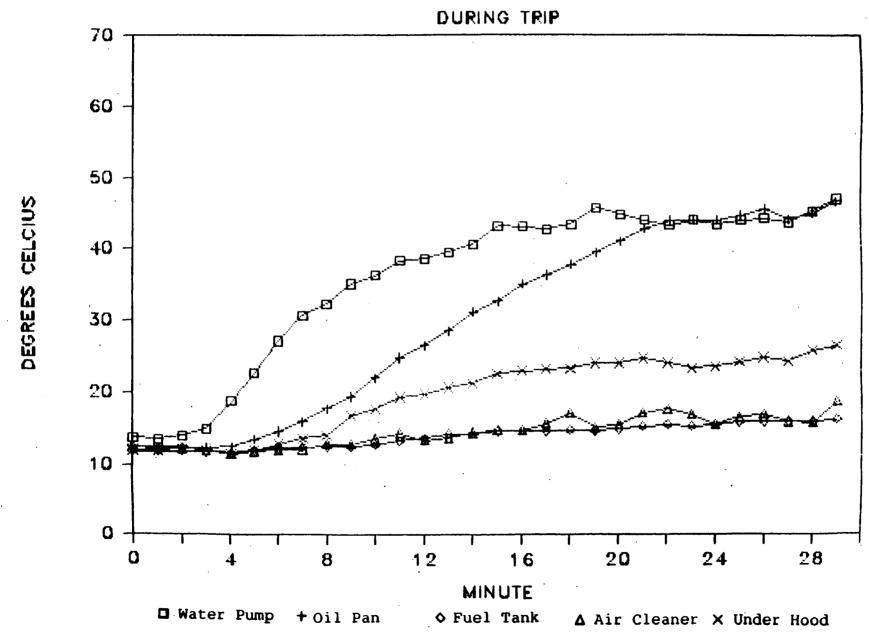
Steel-belted 2
Fiberglass-belted 2
1 Steel-belted Total Responses = 35

Appendix H

Temperature Analysis

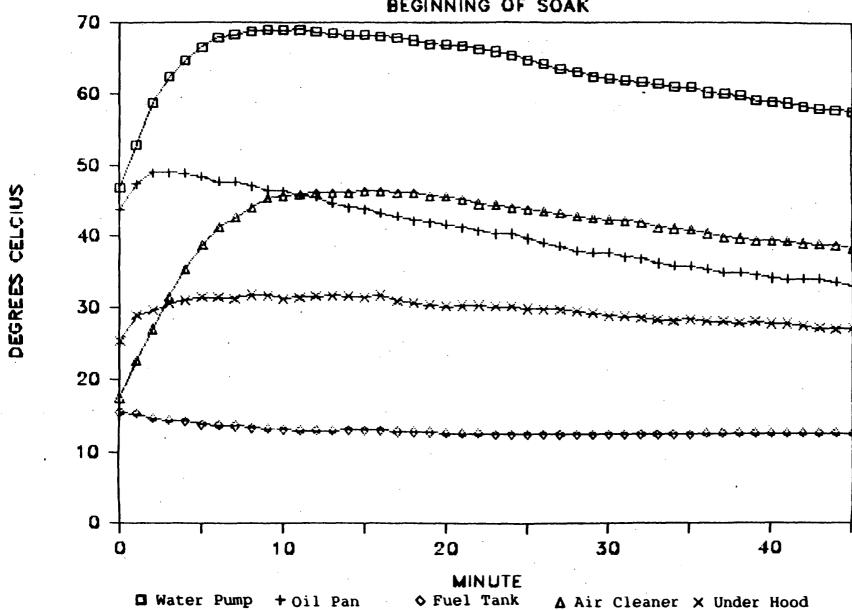
This appendix contains an expanded discussion of the temperature analysis described in the main text. Some parts were included in the Summary of Temperature Analysis (Section IX of main text), but are repeated here for continuity. The discussion is divided into four sections: typical trip temperatures versus time, average soak period, individual temperature profiles, and soak periods.

A. Typical Trip Temperatures vs. Time


The temperatures obtained for the typical trip are shown in Figure H-1. At the start of the trip all of the temperatures are clustered at 12°C. As the trip progresses, the water pump exhibits a fairly steep increase in temperature, reaching a level more than 30°C above "ambient" or pre-trip levels within fifteen minutes, and remaining fairly steady for the remainder of the trip. The oil pan temperature also rises about 30°C, but does so more gradually, taking over twenty minutes to do so before leveling off. The remaining temperatures: the fuel tank, air cleaner, and underhood, show gradual increase of 4°C, 6°C and 15°C, respectively, beginning around four minutes after the trip begins, and never appearing to level off.

B. Average Soak Period

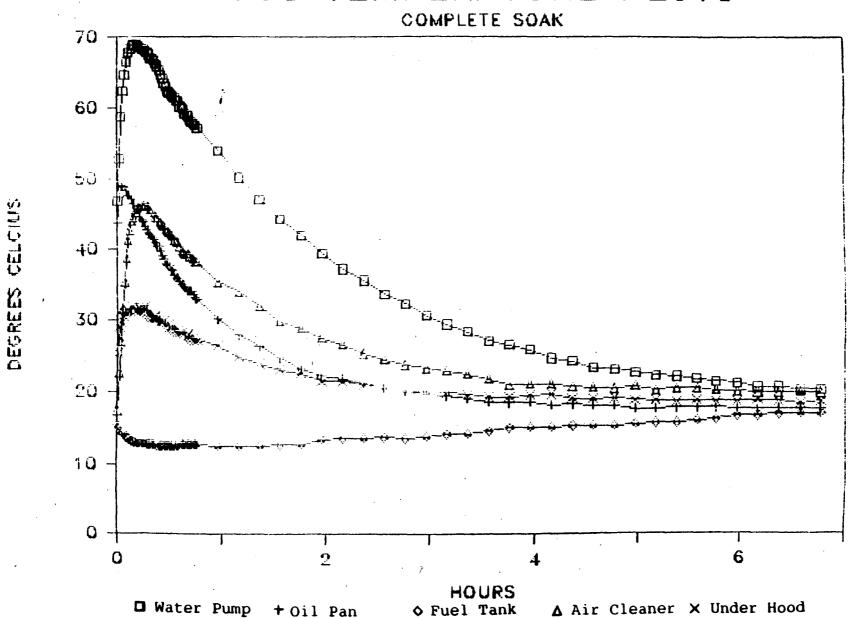
Significant changes occur in the temperature profiles when the vehicle completes its trip. The first portion of the soak is characterized by the vehicle's response to having its cooling system shut off, and having to dissipate the engine heat in another manner. The second portion is characterized by the vehicle components cooling down to near ambient levels.


Figure H-2 shows the temperature profiles for the first forty-five minutes after engine shutoff, plotted at one minute intervals. The water pump temperature jumps 20°C to a peak level of nearly 70°C in the first ten minutes of the soak before beginning to cool off toward the ambient temperature.

The oil pan temperature rises slightly, approximately 5°C to a peak level of 50°C, before beginning to fall off after only five minutes of soak. The fuel tank temperature begins dropping as soon as engine shutoff occurs to around 12°C after ten minutes, after which it exhibits a profile that appears to track the ambient temperatures. (As noted earlier, this temperature is measured on the underside of the fuel tank, and

H 3
Figure H-1

BEGINNING OF SOAK


does not appear to represent the temperature of the fuel in the tank.) The temperature at the air cleaner rises markedly, almost 30°C, in this portion of the soak. After ten minutes, it eclipses the oil pan temperature, reaching a peak of just under 50°C after fifteen minutes before it begins to cool off. The underhood temperatures rises slightly, about 5°C, to a peak level of just over 30°C before beginning to fall off.

The complete soak, with the temperatures plotted every minute for the first forty-five minutes and every twelve minutes thereafter, is shown in Figure H-3. The water pump, oil pan, air cleaner, and underhood temperatures all exhibit decay down to a presumed ambient temperature. The fuel tank temperature rises through the soak period, apparently tracking a rise in the ambient temperature. This rise should be expected, as all but one of these ten trips occurred in the morning with the soak occurring during the midday hours. After around five and one-half to six hours soak, the measured temperatures have converged to the same level. After this point, the temperatures move along together, tracking the ambient level.

Beginning at twenty minutes after the soak begins, exponential decay curves were fit to the water pump, oil pan, air cleaner, and underhood temperatures. These were first adjusted by subtracting the fuel tank temperature in order to model decay to ambient temperature. These models fit the data extremely well, with R² values over .99 in each case. The resulting decay constants, when time is measured in minutes, are .007, .011, .008, and .007 (1/minutes) for the water pump, oil pan, air cleaner, and underhood temperatures, respectively. To put these values in perspective, Table H-1 shows the time required for the difference between the peak soak temperatures and ambient temperatures to be reduced to 50 percent, 20 percent, 10 percent, 5 percent, and 1 percent of their original values for the decay constants of .007 and .011 (1/minutes). These may be useful in determining when a vehicle is experiencing a "hot start" versus a "cold-start".

C. Individual Temperature Profiles

Time-temperature profiles for individual trips were also developed in order to make comparisons between trips, and to see how well the "average trip" reflects individual trips. Three trips were chosen for this portion of the analysis: a trip representing a summer day (loan #234), a trip representing a winter night (loan #468, first trip), and a trip representing a winter day (loan #468, second trip). Since the last two of these involve the same vehicle some consideration may also be given to the differences between trips for an individual vehicle.

H-3

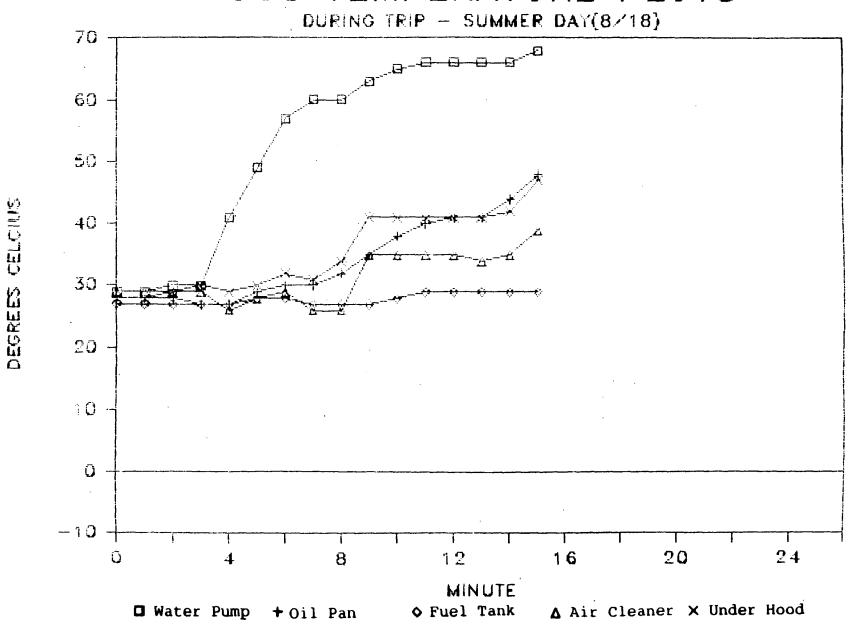
H 7 Table H-1

Hot Soak Times

Time Required to Reduce Temperature Difference to Indicated Percentage of Original

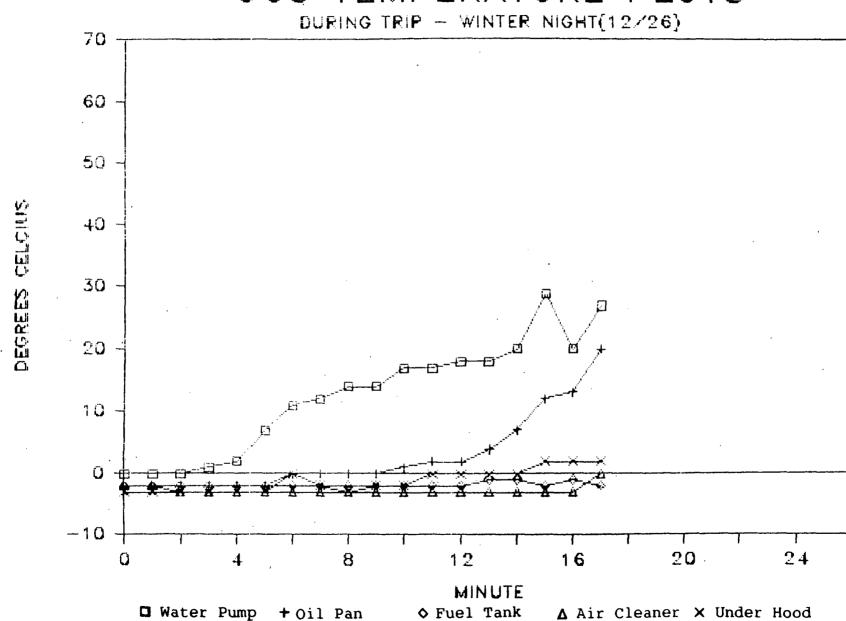
Decay Constant					
(1/minutes)			(hrs:mi	n)	
	50%	20%	10%	5%	1%
.007	1:39	3:50	5:29	7:08	10:58
.011	1:03	2:26	3:29	4:32	6:59

Figures H-4 through H-6 show the temperature profiles developed from these three trips. The rise in water pump temperature is significantly steeper and higher for the summer trip, although in all three trips the pattern closely reflects that of the average trip. The rise in oil pan temperature is similar for all three trips. The summer day and winter night trips, however, are not long enough for this temperature to rise up to the level of the water pump as it does in the average trip. The fuel tank and air cleaner temperature profiles are similar for all these trips. The underhood temperature profile differs somewhat from trip to trip. the two day trips this temperature appears closely linked to the oil pan temperature. The winter day trip, which lasts The winter day trip, which lasts longer, shows the underhood temperature leveling off after eighteen minutes, whereas the oil pan temperature continues to rise. This is not seen in the summer day trip due to its shorter length. The underhood temperature profile in the winter night trip is more reflective of the average trip, exhibiting a rise above the fuel tank and air cleaner temperatures, but well below the oil pan and water pump temperatures.


D. Soak Periods

Figures H-7 through H-9 show the time-temperature profiles for the first forty-five minutes of the soak periods. different trips exhibit profiles quite similar to the average trip in: 1) the slight rise in the oil pan temperature, 2) the steep rise in the air cleaner temperature, and 3) the relative inactivity of the fuel tank temperature. There is a striking difference in the behavior of the water pump temperatures. The two winter trip profiles show water pump temperature rises of over 30°C to peak levels above 60°C. Meanwhile the summer trip profile shows only a slight increase of around 5°C to a peak This may reflect some maximum attainable level of 75°C. temperature. The rises associated with the underhood temperature also differ from trip to trip. This may be a carryover effect due to the length of the trips, however as the two short trips show more of a rise in the underhood temperature than do either the longer winter day trip or the average trip.

Figures H-10 through H-12 show the time-temperature profiles for the complete soak periods. The pattern of decay to ambient seen in the average trip is seen again here for all three trips. Note that for the winter night trip, the fuel tank is cooling off during the soak overnight.


H 9 Figure H-4

OCS TEMPERATURE PLOTS

H 10 Figure H-5

OCS TEMPERATURE PLOTS

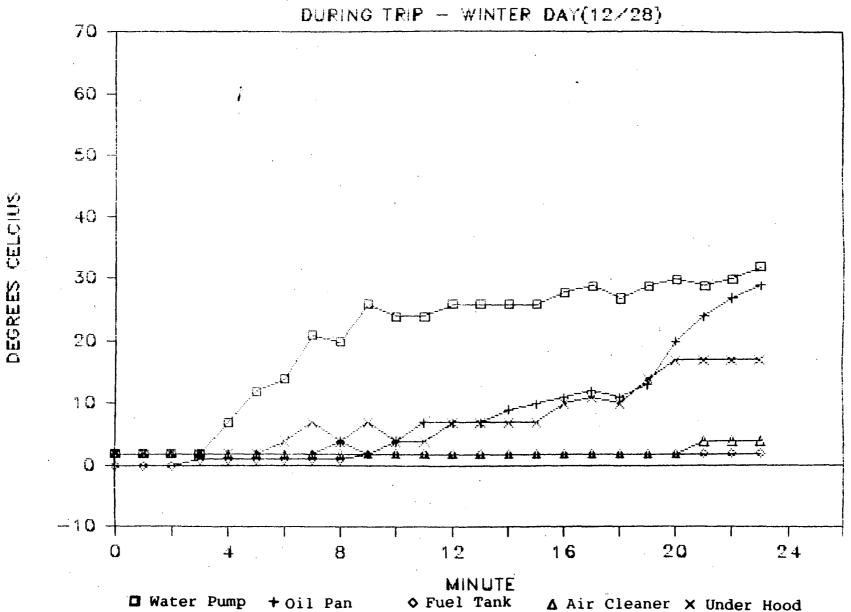
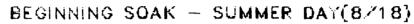
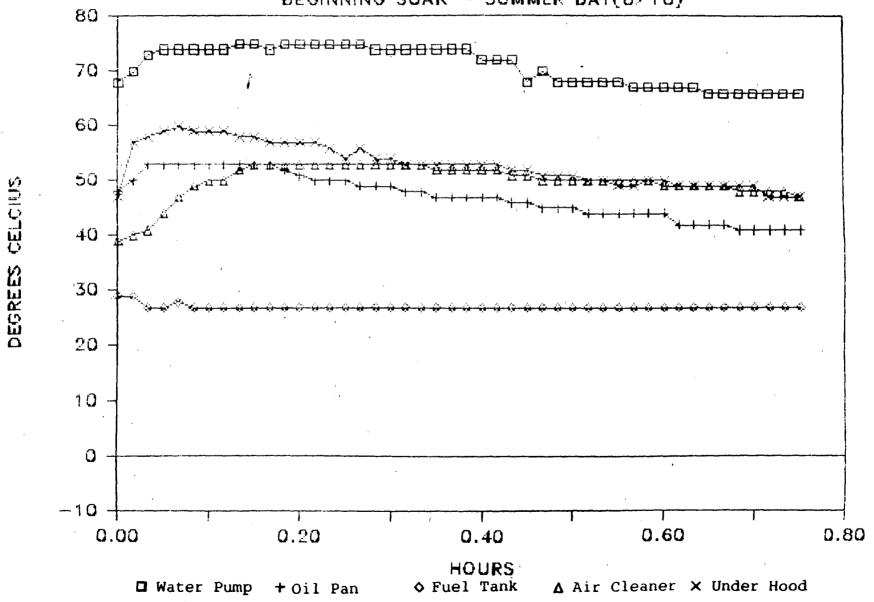
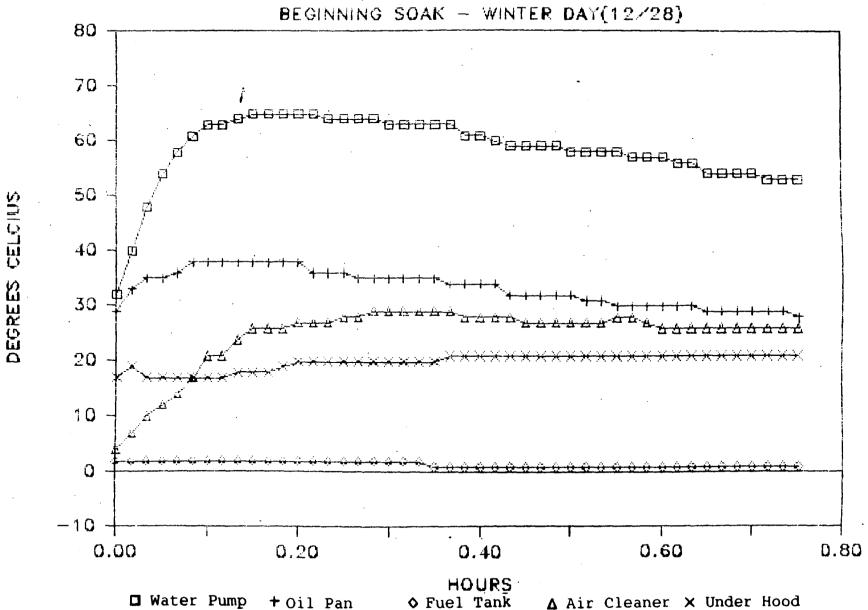
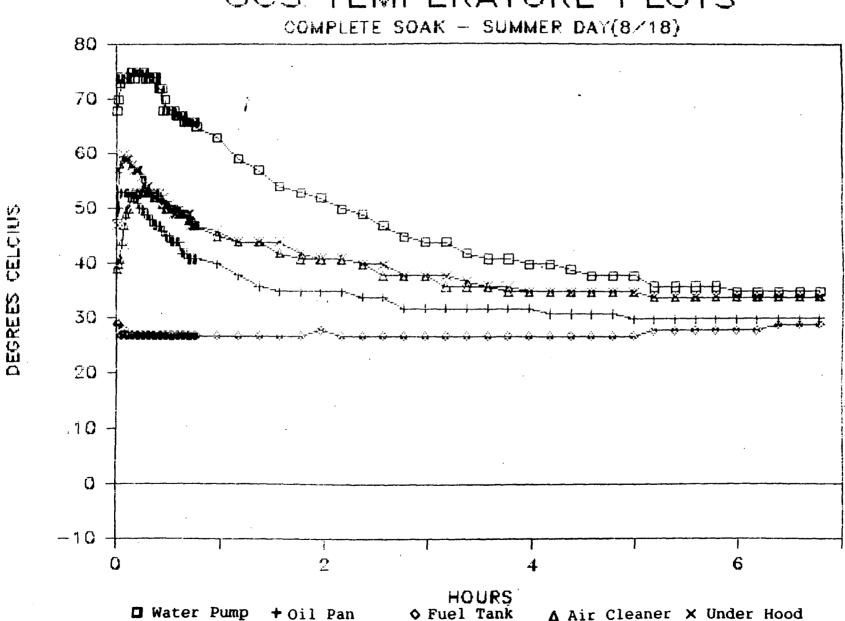




Figure H-6

BEGINNING SOAK - WINTER NIGHT(12/26) 80 70 60 50 DEGREES CELCIUS 40 30 20 70 0 -100.00 0.60 0.20 0.40 0.80 HOURS △ Air Cleaner × Under Hood


♦ Fuel Tank


□ Water Pump

+Oil Pan

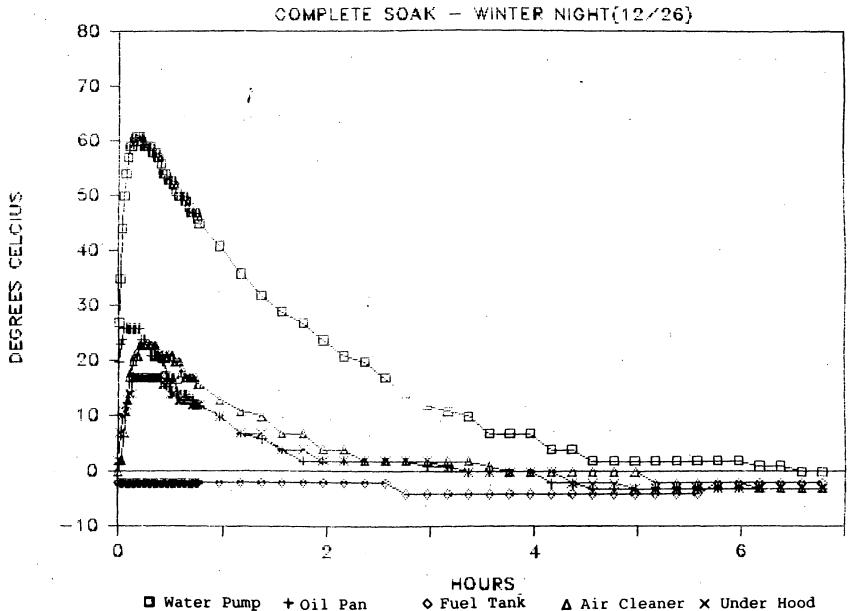

H 13 Figure H-8

Figure H-9

10 H L5

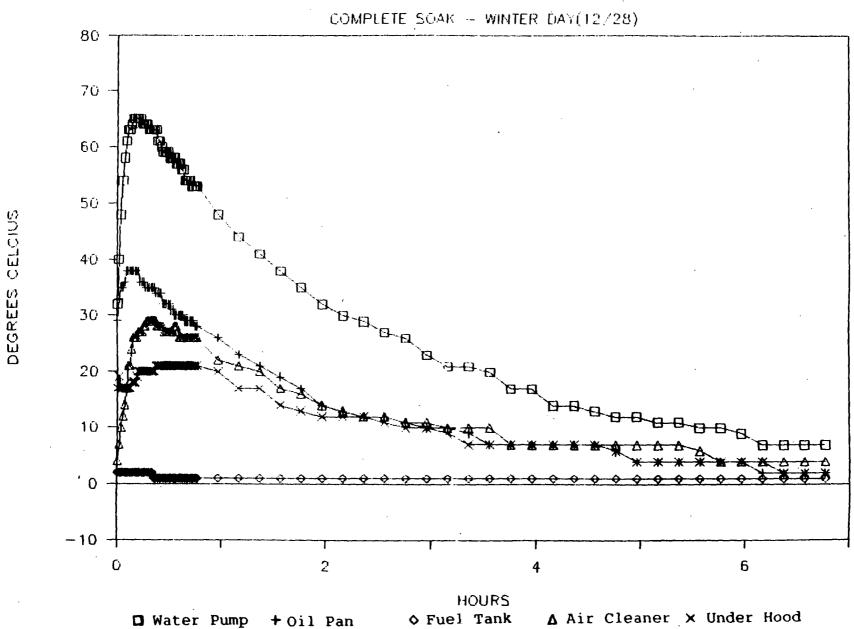


Figure H-12

Figure H-12