No. 74 PAPR. 1970

SNAKE RIVER TRANSECT STUDY

FEDERAL WATER
POLLUTION CONTROL
ADMINISTRATION
NORTHWEST REGION
PORTLAND, OREGON

SNAKE RIVER TRANSECT STUDY

Station No. 153018

July 29 and 30, 1969

Prepared by

Gary L. Burns

Working Paper No. 74

Technical Assistance and Investigations Branch
Office of Technical Programs
Federal Water Pollution Control Administration
Northwest Region
Portland, Oregon

April 1970

A Working Paper presents results of investigations which are to some extent limited or incomplete. Therefore, conclusions or recommendations—expressed or implied—are tentative.

CONTENTS

	Page
INTRODUCTION	•
Purpose	1 1 3 3
SUMMARY	5
Findings	5 9 12 14
Sampling Methods and Schedule	15 15
DISCUSSION	17
REFERENCES	25
APPENDIX	26

FIGURES

Figure 1	No.	Page No.
1	General Location Map	2
2	Temperature and Dissolved Oxygen Diurnal Values (Cross-Section Average)	6
3	Turbidity and Percent Saturation Diurnal Values (Cross-Section Average)	7
4	pH and Conductivity Diurnal Values (Cross-Section Average) ,	8
5	Total and Fecal Coliform Diurnal Values	10
6	Temperature and Dissolved Oxygen Diurnal Values (by station)	18
7	Turbidity and Percent Saturation Diurnal Values (by station)	19
8	Total and Fecal Coliform Diurnal Values (by station)	20
9	pH and Conductivity Diurnal Values (by station)	21
	TABLES	
Table No	<u>o</u> .	Page No.
1	Flow Measurements Snake River Near Clarkston, Wn.	11
2	Data from Upstream Survey	24

INTRODUCTION

Purpose

The Federal Water Pollution Control Administration (FWPCA),
Pollution Surveillance Branch, maintains a system of water quality
sampling stations on interstate waters in the Northwest Region.

Throughout the year the water samples are collected at these stations
and analyzed, and the data are used to evaluate water quality. Knowledge of conditions peculiar to these stations is valuable in the
evaluation of the data obtained. This study documents conditions
at Station No. 153018 located on the Snake River seven miles downstream from the Lewiston-Clarkston bridge (Fig. 1). Diurnal and
spatial variances occurring at the station were observed during a
24-hour period.

On February 25 through 29, 1969, a similar study was conducted at the station which was then located two miles upstream from the present Station No. 153018. This survey showed that an incomplete mixing condition is present at that location. As a result, the station was relocated at the present site to allow more mixing time and to take advantage of more homogenous sampling conditions.

<u>Objectives</u>

The objectives of the study were to answer the following . questions:

- 1. Does a uniform cross-section pattern exist at the sampling site?
- 2. What are the diurnal changes occurring in water quality at the station?
- 3. What are the influencing factors on water quality at this location?

Authority

Authorization for this study was from the Federal Water Pollution Control Act (33 U.S.C. et seq.) as amended. The study was performed by the Technical Assistance and Investigations Branch of the Office of Technical Programs as requested by the Pollution Surveillance Branch.

Sampling Program

- 1. Six water samples were collected every two hours for a 24-hour period. The initial sample collection was at 1200 hours (noon) on July 29, 1969, with the final samples taken at 1200 hours on July 30, 1969. Samples were also taken at six sites extending upstream from Station No. 153018 to above the confluence of the Clearwater River (Fig. 1).
- 2. Pre-survey soundings confirmed that the cross-section at Station No. 153018 had a uniform depth of 17.0 feet. Three equally-spaced sampling points were selected across the river. The sampling

points were located by means of airplane markers on a gauging car wire extended across the site. Samples were taken at 5-foot and 15-foot depths at each of these sampling points.

3. The following analyses were performed on the samples: pH, specific conductivity, dissolved oxygen, total alkalinity, total coliform, fecal coliform, and turbidity.

SUMMARY 5

Findings

- 1. The river had a uniform depth of 17 feet at the transection location.
- 2. The only discrepancy in cross-section station parameter values occurred in bacteriological concentrations and turbidity measurements.
- 3. The diurnal temperatures ranged from a high at 1200 hours (noon) of 23.5° $^{\circ}$ C to a low of 19.1° C at 0600 hours (Fig. 2).
- 4. The percent dissolved oxygen saturation values displayed a high of 115 percent at 1800 hours, decreasing to a low of 86 percent at 0600 hours, and then rising again (Fig. 3).
- 5. The dissolved oxygen concentration pattern indicated a high of 10.0 milligrams per liter (mg/1) at 1800 hours, then dropped to a low of 7.8 mg/1 at 0600 hours (Fig. 2).
- 6. The pH ranged from 7.5 to 8.5. Two maximum peaks occurred, the first at 1600 hours with an 8.4 value, and the second at 1800 hours with a value of 8.5. The minimum was 7.5 at 1200 hours (Fig. 4).
- 7. Specific conductivity values ranged from a maximum of 190 micromhos per centimeter (umho/cm) at 1400 hours, to a low of 158 umho/cm at 0600 hours (Fig. 4).
- 8. The bacteriological concentration count was the only parameter that did not display the general pattern of higher values occur-
- 1/ All parameter values quoted in the Findings are bi-hourly averages for the six cross-section samples.

FIGURE 2. Temperature and Dissolved Oxygen Diurnal Values (Cross-Section Average)

FIGURE 3. Turbidity and Percent Saturation Diurnal Values (Cross-Section Average)

FIGURE 4. pH and Conductivity Diurnal Values (Cross-Section Average)

ring from 1200 hours to 2400 hours, with the lower values present during late night and early morning (Fig. 5).

- 9. The total and fecal coliform densities displayed two maximum peaks—one of 3300 total coliforms per 100 milliliters

 (TC/100 ml), and 160 fecal coliforms per 100 milliliters (FC/100 ml)

 at 2400 hours, and another at 0600 hours with values of 3880 TC/100 ml

 and 196 FC/100 ml (Fig. 5). The increases were both 100 times the

 low values of 333 TC/100 ml and 1 FC/100 ml recorded at 1600 hours.
- 10. The flow measurements for the study period show an average hourly flow of 22,500 cubic feet per second (cfs). The data, as obtained from the U. S. Geological Survey, are shown in Table 1.

Conclusions

- The sampling station is located far enough downstream from pollution sources to allow sufficient mixing to produce optimum sampling conditions.
- 2. The differences in the diurnal values for coliforms and turbidity among the three cross-section sampling locations indicate incomplete mixing of solids. Data from previous surveys indicate this condition exists for an undetermined distance downstream from the sampling station.
- 3. With the exception of the bacteriological counts, the diurnal parameter patterns displayed higher values between 1200 hours and 2000 hours. The minimum recorded values appeared between the hours of 2400 and 1000.

FIGURE 5. Total and Fecal Coliform Diurnal Values (Cross-Section Average)

TABLE 1

FLOW MEASUREMENTS
SNAKE RIVER NEAR CLARKSTON, WASHINGTON

Date	Time	Gage Height	Discharge (cfs)	
July 29, 1969	1200 1400 1600 1800 2000 2200 2400	11.52 11.51 11.52 11.52 11.50 11.48 11.49	22,600 22,500 22,600 22,600 22,500 22,400 22,500	GE 22,500
July 30, 1969	0200 0400 0600 0800 1000	11.50 11.50 11.50 11.49 11.48	22,500 22,500 22,500 22,500 22,400	AVERAGE

- 4. The upstream factors that would have an influence on water quality are:
- a. Potlatch Forest, Inc., manufacturers of lumber, pulp, paper, and fuel products, discharges effluent into the Snake River a quarter of a mile above the confluence of the Clearwater River.
- b. The Lewiston city sewage treatment plant discharges effluent into the Clearwater River 0.8 miles above its confluence with the Snake River.
- c. The Clarkston city sewage plant is located on the Snake River, one mile below the confluence of the Clearwater River.
- d. Asotin sewage treatment plant discharges into Asotin Creek, just upstream from the mouth.
- e. Seabrook Farms Co. and Smith Frozen Foods, both processors of peas, are located in Lewiston and both have discharges into the Snake River.
- f. Meats, Inc., and Bristol Packing Co., located in Clarkston, discharge floor drainage and kill blood directly into the Snake River.
- g. A few feedlots are located adjacent to the rivers above and below the cities of Lewiston-Clarkston.

Recommendations

1. Sampling Station No. 153018 should be maintained as a permanent water quality monitoring station.

- 2. The samples should be collected on the south side of the transect station to provide better access and decrease travel time.
- 3. To maintain consistency, samples should be collected between mid-morning and mid-afternoon.
- 4. If feasible, during the low-flow periods, two samples (one on the north side and one on the south side) should be collected to confirm river mixing conditions.
- 5. An extensive study should be conducted, concentrating on the significance of bacteriological contributors located upstream from the sampling site.

STATION LOCATION AND DESCRIPTION

The station is located at river mile 132.9 of the Snake River, seven miles below the towns of Lewiston, Idaho and Clarkston, Washington. At this point, the Snake River turns westward after flowing through Hells Canyon (Fig. 1).

The specific location is: lat 46°25'30", long 117°10'30".

SAMPLING AND ANALYTICAL METHODS

Sampling Methods and Schedule

Water samples were collected every two hours during the 24-hour period. Collection was made at three pre-determined cross-section points, with two vertical profile samples taken at each of the three points. The samples were obtained using a Kemmerer 1/2 sampler. A single "haul" provided enough water to fill containers for chemical (dissolved oxygen, conductivity, pH, alkalinity, and turbidity) and bacteriological (total and fecal coliform) analyses.

Turbidity samples were shipped to the Federal Water Pollution .

Control Administration Laboratory in Portland, Oregon for analysis.

Dissolved oxygen samples were chemically stabilized at the time of collection for titration upon return to the field laboratory.

With the exception of turbidity measurements, all of the analyses were performed in a 17-foot enclosed laboratory trailer stationed near the sampling point.

Analytical Procedures

The following laboratory methods were used for analysis: pH was determined with a Beckman Zeromatic Model pH meter.

Specific conductivity analyses were performed with an Industrial Instruments Model RC-16-B2 conductivity bridge.

Dissolved oxygen samples were titrated for quantity, using the

^{1/}The mention of brand names is for identification only and constitutes no endorsement by the United States Department of Interior, Federal Water Pollution Control Administration.

Alsterberg (Azide) modification of the Winkler Method as found in "Standard Methods." (1).

Alkalinity was determined by titration with a Hach Model DL-ER portable laboratory.

Turbidity was measured at the Portland Laboratory with a Hach Model 1860-A Turbiditimeter.

Fecal coliform determinations were conducted using the membrane filter method according to the procedure described by Geldreich (2). In studies by Geldreich (3) this method was confirmed as comparable to the most probable number method for fecal coliform as described in "Standard Methods" (1).

Total coliform densities were measured by the membrane filter method technique in "Standard Methods" (1).

All the bacteriological samples analyzed were incubated and counted in the field.

DISCUSSION

The cross-section parameter values for the sampling points are given in Figures 6 through 9. With the exception of bacteriological and turbidity values, the transect discrepancy is minimal. The cross-section pattern shows no location preference as to high or low values.

The cross-section averages for total and fecal coliform concentrations (Fig. 8) show the increasing values beginning at 2000 hours, then dropping again to a low at 1000 hours the next day. The patterns also indicate both values decreasing at 0200 hours. This pattern could be attributed to treatment plant operations upstream, with the daytime loads being detained in the plant system and flushed out with the evening high flows. The times of high concentrations (considering flow time), also coincide with clean-up operations from upstream meat and industrial processors.

The conductivity, pH, temperature, dissolved oxygen and percent saturation values all displayed an average (cross-section) diurnal pattern of higher values occurring between 0800 hours and 2200 hours (Fig. 6, 7 and 9). This pattern reflects the daytime schedule of industrial activities and the processes of photosynthetic organisms present in the river.

Examination of the data reveals that at times during the study total coliforms, dissolved oxygen, and temperature did not meet the Washington State Water Quality Standards⁽⁴⁾ which state:

FIGURE 6. Temperature and Dissolved Oxygen Diurnal Values (by station)

FIGURE 7. Turbidity and Percent Saturation Diurnal Values (by station)

FIGURE 8. Total and Fecal Coliform Diurnal Values (by station)

FIGURE 9. pH and Conductivity Diurnal Values (by station)

Total coliform organisms shall not exceed median values of 240...with less than 20% of samples exceeding 1,000 when associated with any fecal source....

Dissolved oxygen shall exceed 8.0 mg/1....

Temperature. No measurable increases shall be permitted... which result in water temperatures exceeding 68° F...

The dissolved oxygen values were below the Washington State Standards for only one sampling period. The total coliform concentrations were in excess of the Washington State Standards during the entire study. Temperature was in violation of the Standards during 75 percent of the study period.

Municipal waste sources in the lower Snake basin are concentrated in the Lewiston service area, where primary is the prevailing level of waste treatment. A total organic waste load equivalent to that from a population of 34,900 is discharged from the service area. The city of Lewiston accounts for about 30,000 population equivalents (PE). The Idaho Water Quality Standards (5) call for secondary waste treatment at Lewiston by June 30, 1970. In addition, the Washington Water Quality Standards (4) require installation of secondary treatment, disinfection facilities, and proper outfalls at Clarkston and Asotin by March 31, 1970.

The most significant source of waste in the area is the

Potlatch Forest Industries plant located in Lewiston. A complex of

manufacturing operations, the plant includes a large lumber mill, a

plywood plant, wood fabricating facilities, and an integrated pulp,

paper, and paperboard mill. The pulp and paper plant provides no treatment

of wastes, and available information on plant operations indicates that it has a waste-to-product ratio well above the norm for modern sulfate pulping plants. A total organic load of about 432,000 PE is discharged to the Snake River. The Idaho Water Quality Standards (5) require that Potlatch Industries provide primary treatment.

Seabrook farms, Inc., a pea and potato processing plant at Lewiston, also discharges without waste treatment. An organic load of about 50,000 PE is discharged into the Clearwater River. The Idaho State Water Quality Standards⁽⁵⁾ require that primary treatment be installed and connected to the city collection system by June 30, 1970.

Two meat packing plants in Clarkston, Washington have inadequate treatment. Bristol Packing Co. and Meats, Inc., discharge a total organic load of about 5,300 PE to the Snake River. The Washington State Standards⁽⁴⁾ call for primary treatment at these plants by March 31, 1970.

Agricultural animal waste discharges in the Lower Snake are a significant source of coliform bacteria and a source of some of the biochemical oxygen demand. The estimated organic waste potential of the animal population is equivalent to that from a population of 3.2 million people. An estimated 95 percent of the wastes generated are reduced by deposit to the land and natural decomposition, so that about 160,000 PE eventually reach waterways. Grazing and feeding farm animals are considered to be a major waste source, but their

impact on water quality is difficult to determine. Stream bank feedlots and dairies are situated at a number of points, providing an unrestrained source of serious bacterial contamination. Less concentrated but significant influences are pasture and grazing areas along
the water courses and drainage ditches. In many areas the stream
banks are not fenced, allowing the animals unrestricted access to the
water.

The data obtained from the upstream survey is shown in Table 2.

The appended data contains all the field data obtained on the survey.

TABLE 2
DATA FROM UPSTREAM SURVEY

Conductivity		D.O.	Turbidity
umho	pН	mg/l	JTU
217	8.5	9.6	0.6
244	8.7	9.6	0.6
190	7.6	9.2	0.3
255	8.5	10.4	0.5
250	8.4	10.6	0.7
249 ⁻	8.8	10.4	0.7
	217 244 190 - 255 250	217 8.5 244 8.7 190 7.6 - 255 8.5 250 8.4	217 8.5 9.6 244 8.7 9.6 190 7.6 9.2 255 8.5 10.4 250 8.4 10.6

^{*} Station locations shown in Figure 1.

REFERENCES

- (1) American Public Health Assoc., Inc. Standard Methods the examination of water and wastewater, 12th ed. 1962.
- (2) Geldreich, Edwin E., et al. Fecal coliform organisms medium for membrane filter technique. Journal American Water Works Assoc. 57:2, 208-214, 1965.
- (3) Geldreich, Edwin E. Sanitary significance of fecal coliforms in the environment. Water Pollution Control Research Series Publication No. WP-20-3. U. S. Department of the Interior, Federal Water Pollution Control Administration. 1966.
- (4) Washington Pollution Control Commission. A regulation relating to water quality standards for interstate and coastal waters of the State of Washington and a plan for implementation and enforcement of such standards. December 4, 1967.
- (5) Idaho State Department of Health. Implementation, enforcement and surveillance plan for the rules and regulations for standards of water quality for the interstate waters of Idaho. June 1967.

APPENDIX

STREAM SURVEY DATA

	PAGE OF _]
STATION NAME Snake River below CI	arkston, Washington
STATION No. 543016	Lab. Nos.
DATES OF SURVEY July 29-30, 1969	
FIELD CREW D. Bodien	WEATHER Hot & Dry
G. Burns	AIR TEMP
M. Grady	ALK. FACTOR:
	D.O. FACTOR
pH METER No. HWG - 20070	N OFLOW S
COND. BRIDGE No. 85563	·E ·C ·A
CURRENT METER NO.	KEY TO LOCATION IN
	CROSS SECTION.
REMARKS A & B taken under 1st Bell C & D taken between 2 & 3 Bell	
C & D Lakeli between 2 d 3 bell	<u>L</u>
E & F taken under 4th Bell A,C & E 1M below surface	
B,D,& F 15' below surface	River 17¹ deep
	at all 3 points
CHANNEL CROSS	SECTION

STATION NO. _543016

STREAM SURVEY DATA

PAGE 2 OF 12

	PARAMET	ER.		LOCATI	ON IN	CROSS	SECTIO	N (s	EE KEY	ON PAGE!)	ST	ATIST	IC S
			A .	В	C	D	E	F				MAX.	MIN.	AVG.
	TEMP.	~	23.8	24.0	23.4	23.8	23.2	23.0				24.0	23.0	23.5
	COND. p	mho:	189	193	185	189	185	182				182	193	187
	рН		7.4	7.9	7.3	7.3	7.5	7.4				7.3	7.9	7.5
1200	ALK.	TRANT												
111		ALUE		· · · · ·							,			
TIME	10.0.	TRANT	8.8	8.7	8.8	8.8	8.8	8.7				8.8	8.7	 8 . 8
	TURB. #	•	415	430	395	397	608	393		:				
	TURB.		1.7	1.8	0.8	1.4	1.0	1.7				1.8	0.8	1.2
	TEMP.	°C	25.2	22.8	22.6	23.0	22.8	23.2				25.2	22.8	23.3
	COND. M	emho.	193	1 89	193	188	186	188				193	188	190
	рН.		7.5	7.5	7.4	7.5	7.6	7.8				7.8	7.4	7.6
00	AIK.	TEANIT MI. MLUE												
1400	Tir	reant ml.	,				****							
TIME		ALUE	9.1	9.2	9.2	9.2	9.2	9.2				9.1	9.2	9.2
F	TURB. #		209	105	181	32	267	38						
			1.7	1.7	116	1.3	1.3	1.4				1.7	1.3	1.5

STREAM SURVEY DATA

PAGE 3 OF 12

PARAMETER	· 1	LOCATI	0N. IN	CROSS	SECTION	7 (SE	E KEY ON	PAGE 1)	ST	ATIST	ics
	A	В	· C	D	E	F				MAX.	MIN.	AVG.
TEMP: °C	23.4	23,2	23.0	23.0	23.0	23.2				23.4	23.0	23.1
COND. µmho	194	188	186	186	184	188				194	184	188
pH.	8.0	8.4	8.4	8.5	8.5	8.5				8.5	8.0	8.4
ALK. MI. VALUE		·										
D.O. TITEANT ma/1. VALUE	9.7	9.7	9.7	9.7	9.7	9.7		•		9.7	9.7	9.7
TURB. #	43	37	42	208	205	198		:				
	1.4	1.4	1.1	0.8	1.2	.0.8				1.4	0.8	1.1
TEMP. °C	23.8	23.2	22.8	22.8	23.0	23.0				23.8	22.8	23.1
COND. , µmho	190	188	187	183	182	185				190	182	186
ρΗ	8.3	7.4	7.5	7.4	7.5	7.7				8.3	7.4	7.6
ALK. TITRANIT MI. VALUE										v		
DO TIPEANT		,										
mg/1. VALUE	10.0	10.0	9.9	10.0	9.9	10.0				10.0	9.9	10.0
TURB. #	324	139	219	139	217	264						
	1.1	0.8	1.1	0.8	0.8	1.0			•	1.1	0.8	0.9
	COND. µmho pH ALK. TITRANT ml. VALUE TURB. # TEMP. °C COND. µmho pH ALK. TITRANT MI. VALUE TURB. # TEMP. °C COND. µmho pH ALK. TITRANT MI. VALUE TURB. # TURB. #	A TEMP °C 23.4 COND. μmho 194 pH 8.0 ALK. TITRANT ml. YALUE D.O. TITEONT yALUE 9.7 TURB. # 43 TEMP. °C 23.8 COND. μmho 190 pH 8.3 ALK. TITEONT yALUE D.O. μmho 190 pH 8.3 ALK. TITEONT ml. yALUE D.O. μmho 190 pH 8.3 ALK. TITEONT ml. yALUE D.O. TITEONT ml. yALUE D.O. TITEONT ml. yALUE D.O. TITEONT ml. yALUE D.O. TURB. # 324 1.1	A B B TEMP: °C 23.4 23.2 COND. pmho 194 188 PH 8.0 8.4 ALK. mg/! VALUE 9.7 9.7 P.7 TURB. # 43 37 1.4 1.4 TEMP. °C 23.8 23.2 COND. pmho 190 188 PH 8.3 7.4 ALK. mg/! VALUE D.O. mg/! VALUE D.O. mg/! VALUE 10.0 10.0 TURB. # 324 139 1.1 0.8	A B C TEMP °C 23.4 23.2 23.0 COND. μmho 194 188 186 pH 8.0 8.4 8.4 ALK Mg/I VALUE D.O. TITEONT MI. VALUE 1.4 1.4 1.1 TEMP. °C 23.8 23.2 22.8 COND. μmho 190 188 187 pH 8.3 7.4 7.5 ALK Mg/I. VALUE D.O. μmho 190 188 187 pH 8.3 7.4 7.5 ALK Mg/I. VALUE D.O. Mg/I. VALUE D.O. Mg/I. VALUE D.O. Mg/I. VALUE 1.1 0.8 1.1	A B C D TEMP °C 23.4 23.2 23.0 23.0 COND. μmho 194 188 186 186 pH 8.0 8.4 8.4 8.5 ALK. mg/ι VALUE D.O. mg/ι VALUE 9.7 9.7 9.7 9.7 TURB. # 43 37 42 208 TEMP. °C 23.8 23.2 22.8 22.8 COND. μmho 190 188 187 183 pH 8.3 7.4 7.5 7.4 ALK. mg/ι VALUE D.O. μmho 190 188 187 183 pH 8.3 7.4 7.5 7.4 ALK. mg/ι VALUE D.O. μmho 190 10.0 9.9 10.0 TURB. # 324 139 219 139 1.1 0.8 1.1 0.8	A B C D E TEMP C 23.4 23.2 23.0 23.0 23.0 COND pmb 194 188 186 186 184 pH 8.0 8.4 8.4 8.5 8.5 ALK TITRANT M. VALUE D.O. TITEQNIT M. VALUE TURB. # 43 37 42 208 205 TURB. # 43 37 42 208 205 TEMP C 23.8 23.2 22.8 22.8 23.0 COND pmb 190 188 187 183 182 pH 8.3 7.4 7.5 7.4 7.5 ALK MALK MALK MALK MALK MALK MALK MALK M	A B C D E F TEMR °C 23.4 23.2 23.0 23.0 23.0 23.2 COND. μmho 194 188 186 186 184 188 pH 8.0 8.4 8.4 8.5 8.5 8.5 ALK MITRANT MI VALUE D.O. TITEGNT MOVILLE 9.7 9.7 9.7 9.7 9.7 9.7 TURB. # 43 37 42 208 205 198 TEMP. °C 23.8 23.2 22.8 22.8 23.0 23.0 COND. μmho 190 188 187 183 182 185 pH 8.3 7.4 7.5 7.4 7.5 7.7 ALK MOVILLE 10.0 10.0 9.9 10.0 9.9 10.0 TURB. # 324 139 219 139 217 264 1.1 0.8 1.1 0.8 0.8 1.0	A B C D E F TEMP °C 23.4 23.2 23.0 23.0 23.0 23.2 COND μmho 194 188 186 186 184 188 pH 8.0 8.4 8.4 8.5 8.5 8.5 ALK MITTANT NALUE D.O. Titegnit Name 19.7 9.7 9.7 9.7 9.7 9.7 TURB. # 43 37 42 208 205 198 TEMP °C 23.8 23.2 22.8 22.8 23.0 23.0 COND μmho 190 188 187 183 182 185 pH 8.3 7.4 7.5 7.4 7.5 7.7 ALK MITTANT NALUE D.O. μmho 190 188 187 183 182 185 pH 8.3 7.4 7.5 7.4 7.5 7.7 ALK MITTANT NALUE D.O. μmho 190 188 187 183 182 185 pH 8.3 7.4 7.5 7.4 7.5 7.7 ALK MITTANT NALUE D.O. μmho 190 188 187 183 182 185 TITTENT NALUE D.O. Μαζ/Ι VALUE 10.0 10.0 9.9 10.0 9.9 10.0 TURB. # 324 139 219 139 217 264	A B C D E F TEMP C 23.4 23.2 23.0 23.0 23.0 23.2 COND. μmho 194 188 186 186 184 188 PH 8.0 8.4 8.4 8.5 8.5 8.5 ALK mg/l VALUE D.O. mg/l VALUE 9.7 9.7 9.7 9.7 9.7 9.7 TURB. # 43 37 42 208 205 198 TEMP C 23.8 23.2 22.8 22.8 23.0 23.0 COND. μmho 190 188 187 183 182 185 PH 8.3 7.4 7.5 7.4 7.5 7.7 ALK mg/l VALUE D.O. μmho 190 188 187 183 182 185 PH 8.3 7.4 7.5 7.4 7.5 7.7 ALK mg/l VALUE D.O. mg/l VALUE D.O. mg/l VALUE D.O. mg/l VALUE D.O. mg/l VALUE 10.0 10.0 9.9 10.0 9.9 10.0 TURB. # 324 139 219 139 217 264	A B C D E F F	A B C D E F	A B C D E F MAX MIN. TEMP C 23.4 23.2 23.0 23.0 23.0 23.2 23.0 23.4 23.0 COND µmho 194 188 186 186 184 188 194 184 PH 8.0 3.4 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.5 ALK TITERANT MAIL MAIL MAIL MAIL MAIL MAIL MAIL MAIL

STREAM SURVEY DATA

PAGE 4 OF 12

	PARAMETER.		LOCATI	ON. IN	CROS5	SECTIO	N (SE	E KEY C	N PAGE !)	ST	ATIST	ICS
		A	В	C	D	E	F				MAX.	MIN.	AVG.
	TEMP. °C	22.8	22.4	22.4	21.8	22.2	22.4				22.8	21.8	22.3
	COND. pmho	182	182	180	180	176	172				182	172	179
	pH ·	8.3	8.6	[.] 8.6	8.5	8,6	8.6				3.6	8.3	8.5
2000	ALK. mil. VALUE												
TIME	D.O. TITEANT	9.9	10.0	9.8	9.8	9.8	9.9			-	10.0	9.8	9.9
	TURE. #	250	128	201	206	222	216		:				
		1.1	1.2	1.3	1.4	1.1	0.8				1.4	0.8	1.2
	TEMP. °C	21.0	21.4	21.6	21.4	21.6	21.8	, , , , , , , , , , , , , , , , , , , ,			21.8	21.0	21.5
	COND. µmho	172	174	171.	169	165	168				174	165	170
	рН	8.2	8.3	8.4	8.4	8.4	8.3				8.4	8.2	8.3
2200	ALK. TITEANT ALK. VALUE				·								
1 1	D.O. TIPEANT			•									
H M I	mg/1. VALUE	9.2	9.2	9.3	9.2	9.3	9.2				9.3	9.2	9.2
F	TURB. #	207	202	212	195	217	203						
		0.8	0.8	0.8	0.8	0.8	0.6				0.8	0.6	0.8

STATION NO. 543016

STREAM SURVEY DATA

PAGE 5 OF 12

	PARAM	ETER.	. !	LO CATI	ON IN	CROSS	SECTION	J (SE	E KEY	ON PAGE!)	ST	ATIST	ics
			A .	В	C	D	E	F				MAX.	MIN.	AVG.
	TEMP.	<i>e</i> C	20.6	20.4	20.4	20.6	20.6	21.0				21.0	20,4	20.6
	COND.		168	164	165	167	165	163				168	163	165
	. pH		7.6	8.1	8.1	8.0	8.1	8.1	·	•		8.1	7.6	8.0
2400	ALK.	TITRANT MI VALUE							······································					
TIME	D.O. mg/1.	TITEANT VALUE	8.3	8.5	8.5	8.5	8.5	8.5	*** **********************************			8.5	8.3	8.5
	TURB.	/ 	208	213	218	183	204	209					·	
		· · · · · ·	0.7	0.7	0.6	1.0	1.0	0.7				1.0	0.6	0.8
	TEMP	. °C	20.2	19.6	19.8	19.8	19.8	20.2				20.2	19.6	19.9
	COND.	· µmho.	164	148	164	167	168	164	· · · · · · · · · · · · · · · · · · ·			168	148	163
	рН	,	8.0	8.0	7.9	7.9	7.9	7.9				8.0	7.9	7.9
0200	ALK.	TITEANIT MI. VALUE							·					
	D.O.	TIFEANT MI.								·				
TIME	mg/l.	VALUE	8.4	8.2	8.0	8.3	8.4	8.2				8.4	8.0	8.3
F	TURB. 7	ļ	214	193	224	2.05	210	215	·					
			0.6	0.8	0.8	0.7	1.0	0.7	•			1.0	0.6	0.8
		<u> </u>												

STATION NO. _____ 543016

STREAM SURVEY DATA

PAGE 6 OF 12

Ė	20000			LOCATI	0N · IN	CROS5	SECTION	J (SE	E KEY	ON PAG	E 1)	ST	ATIST	ics
	PARAM	EIER	A	В .	С	D	E	F				MAX.	MIN.	AVG.
	TEMP:	. eC	19.6	19.6	19.4	19.8	19.8	19.8				19.8	19.4	19.7
	COND.	hwpo	157	159	160	161	158	158				161	157	159
0400	pН		7.9	7.9	7.8	7.8	7.9	7.8				7.9	7.8	7.9
	ALK.	TITRANT MI. VALUE							- 11				•	
TIME	D.O. mg/1.	TITEANT VALUE	8.0	8.0	8.1	8.0	8.0	8.0				8.1	8.0	8.0
	TURB. #		184_	225	4	34	43	57						·
			0.8	0.6	0.6	0.5	0.5	0.7				0.8	0.5	0.6
	TEMP	. `℃	18.6	19.0	18.8	19.2	19.2	19.6	•			19.6	18.6	19.1
	COND.	. µmho	153	159	159	160	159	159	<u>.</u>			160	153	158
	рН		7.8	7.8	7.7	7.7	7.8	7.7				7.8	7.7	7:8
0090	ALK.	TITEANIT MI. VALUE										t t		
	D.O.	TITEANT MI		,	415									
TIME	mg/1.	VALUE	7.7	7.7	7.9	7.8	7.9	7.7				7.9	7.7	7.8
F	TURB. 7	#	92	4	26	41	56	91						
			1.2	0.7	0.7	0.4	0.8	0.8				1.2	0.4	0.8
		,												,

STREAM SURVEY DATA

PAGE 7 OF 12

	PARAMETER		LOCATI	ON.IN	CROSS	SECTIO	N (SE	E KEY O	N PAGE 1)	ST	ATIST	IC S
		A	В	C	D	E	F				MAX.	MIN.	AVG.
•	TEMP. °C	19.4	19.6	19.5	19.6	19.6	19.4				19.6	19.4	19.5
	COND. pmho	172	154	162	164	164	160				172	154	163
0800	pH ·	7.5	7.7	7.8	7.8	7.8	7.8				7,8	7.5	7.7
0	ALK. TIRANT									,			
TIME	D.O. TITEANT	8.0	7.9	7.9	7.9	8.0	7.9				8.0	7.9	7.9
	TURB. #	3 ·	25	38	54	90	1		:				
		0.8	0.7	0.4	0.6	0.4	0.4		•		0.8	0.4	0.6
	TEMP. °C	21.2	20.8	20.8	21.2	21.0	21.0				21.2	20.8	21.0
	COND. µmho	182	179	177	176	172	175	·			182	172	177
	рН	7, . 5	7.7	7.6	7.7	7.6	7.8				7.8	7.5	7.7
1000	ALK. TITEAUT	8.2	8.2	8.2	8.2	8.2	8.2			<u> </u>	8.2	8.2	8.2
	D.O. TIPEANT												
TIME	mg/1. VALUE	8.2	8.2	8.2	8.2	8.2	8.2				8.2	8.2	8.2
F	TURB. #	21	38	50	62	1	6			_			
		0.5	0.7	0.6	0.8	0.7	0.5		· · · · · · · · · · · · · · · · · · ·	·	0.8	0.5	0.6
						·							

STATION NO. Special Run

STREAM SURVEY DATA

PAGE 8 OF 12

	PARAMETER.		LOCATI	ON IN	CROS5	SECTIO	N (SE	E KEY O	N PAGE!)	ST	ATIST	ics
		1	2	3	4	5	6				MAX.	MIN.	AVG.
	TEMP. °C												
	COND. pmho	217	244	190	.255	250	249						
	рН	8.5	8.7	7.6	8.5	.8.4	8.8		·				
	ALK. TITRANT												
	mg/I. VALUE												
TIME	D.O. TITEANT	9.6	9.6	9.2	10.4	10.6	10.4						
-	TURB. #	216	550	706	13	4	695						
		0.6	0.5	0.3	0.5	0.7	0.7						
	TEMP. °C				d- nt								
	COND. umho.	leep	deep	course	r mid- fluent	Ige							
	ρΗ	21	2.	_	ate	bridge	and						
	ALK. TITEANT	r Rapids channel	Rapids channe	y golf	clearve ep PF1	12	Ramp ne1						
. !!!	D.O. TIFEANT	elow R	above R. side d		below dec	highway d.channel	Boat						
TIME	mg/1. VALUE	le be	le abo	landing deep no.s	; mile be	Under 1	Public				_		
		, E III.	ž mi.	Boat 2'	\$ m 3 th	'n	<u>P</u>						
	<u> </u>									·			,

TOTAL COLIFORMS

PAGE 9 OF 12

STATION NO. ___ 543016____

TIME			L	OCATIO	7 17	J CF	ROSS .	SECTION	J (:	SEE KEY	ON P	age ()	AVERAGE
		A			. В					С	HOPALI II		
	50 11).	10 ~.	1 ^{ml.}	number /100 ml.	50 ^{ml} ·	10 m/	1 ml.	number /100 ml.	50 ⁿ	10 10	1 11.	number /100 ml	/100 ml.
1200	28			56		14		_140			09	900	
1400	.,		13	1300			07	7.00		18		180	
1600		42	to to see the state of the stay when	420		22		220	_12			24	
1800	_09			18			10	100.0		36		360	
2000			33	3300			24	2400			10	1000	
2200			66	6600			25	2500			17	1700	
2400			05	500			35	3500			6.4	6400	,
0200		17		. 170		11		110			14	1400	
0400		25		250			38	,3800,			30	3000	An i man and an analysis and a second
0.600	- *****		22	2200			56	_5600			38	3800	
0800			22	2200			_22	_2200			30	3000	
1000			22	2200			_22	2200			27	27.00	
						•						 	
AVERAGE				1601				2031				2039	

TOTAL COLIFORMS

PAGE 10 OF 12

STATION NO. ____ 543016

TIME	LOCATION IN CROSS SECTION (SEE KEY ON PAGE 1)												AVERAGE
		D			•		E			MOMERC			
	50 ml 10	m).,]	1 ml.	100 ml.	50 ml.	10 m/.	1 ^{ml} .	number 1100 ml.	50 ml.	10 ^{ml.}	1.04.	number- /100 ml.	/100 ml. FOR A-F
1200			17	1700			_8	800			10	1000	766.
1400	10			100		16		60		117		1170	585
1600	07			700	12			_24		_61		610	333
1800			20	2000_		20		200		_50		5.00	680
2000		3	30	3000			33	3300			43	4200	2867
2200			53	6300		21		_210			22	2200	3252
2400			13	1300			49	4900			· 		3320
0200			19	1900			07	700			51	5100	1564
0400			1.5	1500		07		7.0			29	2900	1920
0600			37	3700			30	_3000			50	5000	
0800		3	35	3500_			32	3200			20	2000	2684
1000			33	3300			23	2300			16	1600	2384
AVERAGE				2417				1564				2389	2020

FECAL COLIFORMS

PAGE 11 OF 12

STATION NO. 543016

TIME			L	OCATIO	7 1	M CF	2055	SECTION	J (SE	E KEY	ON PA	GE ()	AVERAGE
		A				В		·		NOWELLO			
	50 11.	10 ml.	1 ^{ml.}	number /100 ml.	50 ml.	10 m/.	.1 ^{mi.}	number /100 ml.	50 mi.	10 ml.	1 nd.	number 100 ml.	/100 ml,
1200	0		***	- `	0	- •		-	00				
1400	1			2	3			66	0			- .	
1600	0				0				0	•		-	
1800	0				2			4	0				
2000	2		•	4	0			**	0			-	
2200	5			10	14			28	8			16 .	
2400	45			90	_61			122	76			152	
0200	54			.108	_29			58	22			44	
0400	42			84		11		110	33			66	
0600	_71	water to 1941 c		142	47			94		15_		150	
0800	16			32	_20			40	18			36	
1000	0		. ,		4			8	3			66	
					·								
AVERAGE				39				39				39	

fecal Coliforms

PAGE 12 OF 12

STATION NO. 543016

TIME		LOCATION IN CROSS SECTION (SEE KEY ON PAGE 1)												
			D		•		E			AVERAGE HUME!!				
	50 ml.	10 ml.	1 ml.	number /100 ml.	50 Ml.	·10 m/.	1 ml.	number /100 ml	50 mil.	10 ml.	1 nd.	number /100 ml.	/100 m(, A-F	
1200	1			2	0		- was decided as a second		1		To the end of the end	2	1	
1400	1			2	0				0				2	
1600	0			_	0	***********			0					
1800	5			10	1			2	0		***********		3	
2000	00		·	_	1			2	0			_	1	
2200	12			24	12			Ż4 ·	50			100	19	
2400	.80			160	************	26_		260			→ ,		157	
0200	18		4	. 36	25			50	16			32	55	
0400	22		·	44	100		· 	200	127			254	126	
0600		22		220		. 30	* * *\$51-\$ -P\$-\$93-MAR\$ \$1-3 -3-1-	300		27	ma paracragas mana i s	270	196	
0800	41		······································	82	42		** ***	.84	41			82	59	
1000	6			12	0				3			6	6	

			y die design ment die behalt in bestellt sein. Mit design in mentalbelieben in helpfale i	- Constitution in Constitution							•			
AVERAGE				49				77				62	52	