TECHNICAL SUBMISSION AUTOMOTIVE SULFATE EMISSIONS

Submitted to: ENVIRONMENTAL PROTECTION AGENCY HEARINGS ON DELAY OF THE 1977 CO AND HC AUTOMOTIVE EMISSION STANDARDS

January 29, 1975

420R75102

TECHNICAL SUBMISSION

AUTOMOTIVE SULFATE EMISSIONS

Submitted to:

ENVIRONMENTAL PROTECTION AGENCY HEARINGS ON DELAY OF THE 1977 CO AND HC AUTOMOTIVE EMISSION STANDARDS

January 29, 1975

PROPERTY OF: NATIONAL VEHICLE AND FUEL EMISSIONS LABORATORY LIBRARY 2000 TRAVERWOOD DRIVE ANN ARBOR, MI 45105

TABLE OF CONTENTS

Page No.

Sum	mmary	11
I.	Introduction	1
11.	Formation of Sulfate in Oxidation Catalyst Systems	2
III.	Measurement Techniques Used to Study Sulfate Emissions A. Collection of Sulfate Particulate	3 3 6 7
IV.	SO4 Emission Rates	8 8 10
	1. Factors Affecting SO_{4}^{\pm} Formation - Laboratory Studies	10
	a. Results for Monolithic Catalysts	12
	b. Results for Pelleted Catalysts	18
	c. Discussion of the Laboratory Data	2 2
•	2. Storage Phenomena	23
	3. Vehicle SO_4^- Emission	27
	a. Effect of Catalyst Type	28
	b. Effect of Gasoline Sulfur Level	41
	c. Effect of Catalyst Age and Noble Metal Loading	41
v.	Potential Methods for Controlling $S0^{-1}$ Emissions.	41
	A. Vehicle Tests of Limited Excess Air	41
	1. Vehicle Preparation and Base Line Testing	41
	2. Tests of Limited Excess Air	44
	B. Use of SO_4^{-} Traps	47
	1. Background	47
	2. Vehicle Test of 85% CaO/10% SiO ₂ /5% Na ₂ O	47
	3. Work on Improved Sorbents	52
	a. Calcium Compounds which Swell Less During	
	Sulfation	52
	b. CaO in a High Void Volume Shape	53
	c. Materials which Sorb Less SO ₂	53
	C. Other Information from EPA Contract 68-03-0497	55
	1. Effect of Catalyst Age	55
	2. Effect of Noble Metal Loading	56
Ref	ferences	59

SUMMARY

This document presents data generated by Exxon Research and Engineering Company on factors affecting the emission of sulfates from vehicles equipped with oxidation catalysts. Much of the data reported herein was developed as parts of two EPA contracts: Contract 68-03-0497, "An Assessment of Sulfate Emission Control Technology," and Contract 68-02-1297, "The Characterization of Particulate Emissions from Prototype Catalyst Vehicles."

Our major findings are as follows:

- Under FTP conditions monolithic catalysts emit about 10-15% of the sulfur in gasoline as sulfate. This is lower than the 25-35% emission rate previously reported by Exxon Research based on preliminary measurements on prototype catalysts.
- Under FTP conditions pelleted catalysts emit about 5-10% of the sulfur in gasoline as sulfate. This value is in agreement with earlier findings.
- Under high speed (60-70 mph) cruise conditions both types of catalyst emit about 25-35% of the sulfur in gasoline as sulfate, again in agreement with earlier findings.
- Storage of SO₂, SO₄^m, or both on catalyst surfaces occurs with both types of catalyst and accounts for many of the differences in SO₄^m emission rates observed.
- Significant differences exist between the amount of SO₄⁻ emitted from nominally similar monolithic catalysts. Catalysts from one manufacturer emitted less SO₄⁻ under certain conditions and also stored less sulfur oxide than did

nominally similar catalysts manufactured by another. The reasons for these differences are unknown.

- Reducing the amount of excess air used over a catalyst significantly lowers SO₄⁼ emissions. Removing air pumps could lower SO₄⁼ emissions by 50-75% in pelleted catalyst systems. We have yet to test this approach in vehicles using monolithic catalysts, but laboratory data indicate that air pump removal would also lower SO₄⁼ emissions in these systems. This fact should be considered in the delay decision because the higher the CO and HC emissions allowed, the less the need for air pumps.
- CaO was demonstrated to be effective in removing SO₄⁼ from exhaust, but trapping SO₂ and SO₄⁼ causes the sorbent to swell and unacceptable back pressure buildup occurs. Work is continuing to find better sorbents and to overcome this problem.

We have made no estimates of SO_4^{-} emission factors for production 1975 vehicles because all of our work has been done with cars modified to meet emission levels of 3.4 g/mi CO and 0.41 g/mi HC. Similarly we have not commented on the impact of automotive sulfate emissions on either atmospheric SO_4^{-} levels or human health because we have no data of our own in either of these two areas.

I. Introduction

To meet the 1975 interim emission standards for carbon monoxide (CO) and hydrocarbons (HC), most cars sold in the U. S. use emission control systems containing oxidation catalysts. In addition to meeting the statutory requirements for CO and HC control, these systems provide the additional benefits of lowering the reactivity, or smog-forming potential, of the hydrocarbons emitted $(1)^*$, and substantially reducing emissions of aldehydes (2), and polynuclear aromatics (3). Oxidation catalyst systems do, however, create their own special concerns. They require the use of unleaded, phosphorus-free gasoline, which places a burden on the petroleum industry. They also convert some of the sulfur naturally present in gasoline to sulfate particulate.

The purpose of this document is to present, in detail, the data generated by Exxon Research and Engineering Company on the factors affecting automotive sulfate emissions. Where relevant, we will also quote data developed by others. Much of the data which will be reported has been generated as parts of two EPA Contracts: Contract 68-03-0497, "An Assessment of Sulfate Emission Control Technology", and Contract 68-02-1279, "The Characterization of Particulate Emissions from Prototype Catalyst Vehicles". Both of these contracts are currently in progress at Exxon Research and Engineering Company.

^{*} Numbers in parentheses refer to references listed at the end of this paper.

The following topics will be discussed in this presentation:

- formation of sulfate in oxidation catalyst systems,
- measurement techniques used to study sulfate emissions,
- sulfate emission rates from oxidation catalyst-equipped vehicles, and
- methods which could potentially lessen automotive sulfate emissions.

II. Formation of Sulfate in Oxidation Catalyst Systems

Sulfur is present in gasoline in trace quantities, usually less than 0.1 wt. %. The amount of sulfur in any given gasoline sample is a function of the sulfur content of the crude from which the gasoline was made, and the refining processes used in making the gasoline. National average gasoline sulfur is about 0.03 wt. %. The only area of the country having a significantly different gasoline sulfur content is Southern California, where the average is 0.06 - 0.07 wt. %.

When gasoline is combusted in an internal combustion engine, sulfur is oxidized to sulfur dioxide (SO₂):

gasoline S + O2 engine SO2.

In vehicles without an oxidation catalyst, sulfur is emitted in that form. When an oxidation catalyst is present, some of the SO₂ formed in the engine is oxidized to sulfur trioxide (SO₃):

SO₂ + 1/2 O₂ oxidation catalyst SO₃.

- 2 -

The fraction of SO_2 converted to SO_3 is a function of the type of oxidation catalyst used, its operating temperature, the amount of excess oxygen present, and the residence time during which the SO₂ is in contact with the catalyst. Each of these subjects will be discussed in detail later in the presentation. In the exhaust system, SO₃ combines with the water present in the exhaust to form sulfuric acid (H₂SO₄):

$$SO_3 + H_2O \longrightarrow H_2SO_4$$
,

and is emitted as such. Since the analytical techniques used to measure the amount of H_2SO_4 in automotive exhaust are incapable of distinguishing between SO3, H_2SO_4 , and any products of reaction between H_2SO_4 and cations present in the exhaust, it is customary to refer to all of these materials as sulfate ($SO_4^{=}$) emissions.

III. Measurement Techniques Used to Study Sulfate Emissions

A. Collection of Sulfate Particulate

Sulfate is present in automotive exhaust as fine particulate. To correctly measure the amount of SO4[™] emitted, it is necessary first to filter it from the exhaust. Exxon Research accomplishes this task with a device we call the Exhaust Particulate²Sampler, shown schematically in Figure 1. This device was designed to meet three basic criteria:

> The equipment must be compatible with constant volume sampling (CVS) procedures for gaseous automotive emissions and must allow operation of the Federal Test Procedure (FTP) mandated for the measurement of these emissions.

Figure 1 EXHAUST PARTICULATE SAMPLER

- 2. The sampling must be made under conditions in which a true proportional sample of the exhaust gas is taken for measurement, i.e., isokinetic sampling must be obtained.
- 3. The temperature at the point of sampling must be less than 90°F., to ensure the collection of all material that would be in particulate form in the atmosphere.

The major features of this sampler include a 7.5 ft. flow development tunnel, which is shorter than other devices developed for these measurements, and an advanced diluent air system. This latter point is important in that it allows low temperature ($\leq 90^{\circ}$ F.) sampling without excessive dilution and/or long flow development tunnels.

Diluent air is drawn into the particulate sampler in a manner analogous to that for a conventional CVS unit. This air is dehumidified, and filtered through a charcoal filter assembly. A portion of the dehumidified, filtered air is passed through an air-cooled heat exchanger which lowers its temperature to about 40°F. This chilled air is then blended with the remainder of the diluent air prior to being mixed with the exhaust gas. The amount of air passed through the heat exchanger is controlled by a signal from a thermocouple adjacent to the isokinetic sampling probe. When the probe temperature increases, the position of the mixing baffles is changed to divert more air through the heat exchanger. This increase in chilled air assures the maintenance of probe temperatures less than 90°F during the FTP.

- 5 -

Data demonstrating the ability of this system to maintain 90°F filter temperature without condensation of water on the filter, and to prevent significant loss of particulate material in the flow development tunnel or probes have been presented by Beltzer, <u>et al</u>. in SAE Paper 740286, "Measurement of Vehicle Particulate Emissions". A copy of this paper appears as Attachment I.

Exxon Research's dilution tunnel (10.9 cm diameter, 2.3 meters long) is smaller than those used by EPA (45.7 cm diameter, 4.5 meters long). However, in their soon to be published SAE Paper, "Sulfate Emissions from Catalyst Cars: A Review", Bradow and Moran of EPA, conclude that the two systems are equally effective. They state:

> "A comparison of the two systems has been conducted at EPA in Research Triangle Park where an Exxon-type. tunnel had been fabricated and installed on an engine dynamometer test stand. Sulfate determinations with the GM catalyst have been found to be comparable with both systems. Further, experimental determinations of wall losses indicated comparable performance. Thus, non-catalyst organic aerosol wall losses were about 3% of the aerosol handled and sulfate losses about 1% with the Exxon tunnel. Thus, both the Exxon and EPA dilution systems appear to be effective sulfate aerosol samplers."

B. Analysis of SO_{L}^{\perp} on Filters

The sulfate collected by the filter in the exhaust particulate sampler is leached from the filter with dilute nitric acid. The

- 6 -

leach solution is heated to boiling to drive off excess nitric acid, filtered to remove insoluble material, passed through an ion-exchange column to remove interfering cations, and then buffered with methenamine to a pH of 3-4. The resulting solution is titrated with barium perchlorate using Sulfanazo (III) as an indicator. This method has been found to be sensitive to levels of 2 μ g SO4⁼/cm² of filter, a level equivalent to about 0.0005 g/mi. SO4⁼ on the 1975 FTP. In their above mentioned paper, Bradow and Moran indicate that this method is one of several which, when correctly practiced, give comparable results.

C. Measurement of SO2

The measurement of SO₂ is necessary to close the sulfur balance around a car, i.e., to account for all of the sulfur consumed with the fuel. Exxon Research uses a Thermo Electron Corporation (TECO Model #40) SO₂ Analyzer which operates on a pulsed-fluorescence UV absorption principle. This instrument operates by exciting SO₂ molecules with ultraviolet light, and measuring the fluorescent light emitted as the SO₂ returns to ground state. The intensity of the fluorescence is itectly proportional to the SO₂ concentration.

This instrument is supposed to be specific for SO₂ and not affected by the other molecules typically found in auto exhaust. This, however, is not the case. Water vapor interferes with the operation of the system, and it is necessary to completely dry the gas sample prior to its introduction into the unit. We have also found that CO₂, CO, and O₂ strongly quench the fluorescence. The instrument is therefore sensitive to the composition of the background gas. To obtain accurate SO₂

- 7 -

concentrations it is necessary to calibrate the instrument with a background representative of the sample to be analyzed. For use with CVS system diluted exhaust, these problems can be circumvented by calibrating with dilute SO₂ in air. However, if the instrument is to be used to analyze raw exhaust or a synthetic exhaust blend, recalibration is necessary. Further development of instruments for measuring SO₂ would be helpful.

We also use the hydrogen peroxide (H2O₂) bubbler technique to determine average SO₂ concentrations in exhaust. In this technique, dilute or raw exhaust gas is filtered to remove SO₄⁼ particulate and passed through a bubbler containing 80 ml. of 3% H₂O₂ in high purity water. The SO₂ present in the exhaust is quantitatively oxidized to SO₄⁼ in this solution. Tests with bubblers run in series have shown that collection efficiency, at flows up to about 5 liters/minute, is greater than 95%. After increasing solution volume to 100 ml., the collected SO₄⁼ is analyzed using the same method as is used to analyze for SO₄⁼ leached off the particulate filters, except that the step involving ion exchange to remove cations which might interfere with the analysis is not necessary. IV. <u>SO₄⁼ Emission Rates</u>

A. SO, Emissions from Non-Catalyst Cars

Sufficient data have now been accumulated to demonstrate conclusively that non-catalyst cars emit very low levels of SO_4^{-1} . Table 1 contains a summary of the SO_4^{-1} emission rates measured on noncatalyst cars tested at Exxon Research. These data show conversions of gasoline sulfur to SO_4^{-1} of less than 1%, and are in general agreement with results published by $GM^{(4)}$ and Ford ⁽⁵⁾.

- 8 -

Table 1

SO2 and SO4 Emission data from Non-Catalyst Cars

Vehicle	Fuel Sulfur,%	Mode	SO2 g/mi.	Emissions % of Gasoline S	SO4 E g/mi. % م	missions f Gasoline S	% Sulfur Balance
1973 Chev	• 0.040	1972 FTP	*	* .	<0.007	<2.0	* .
, 11 TE	0.067	40 mph	*	*	0.004	·0.1	*
98. 12	H .	11	*	*	0.004	0.1	*
11 16	11	11	*	*	0.009	0.2	*
97 9E	11	11 · ·	*	*	0.0015	0.5	. *
1969 Ply.	0.140	1972 FTP	0.647	107	0.018	2.0	109
¥7 11	11	, i i	0.660	103	0.012	1.3	104
** **	0.056	"	0.268	115	0.007	2.1	117
11 11	11	"	0.262	110	0.007	1.7	112
TT TT	0.032	**	0.178	135	*	*	*
11 11	11	**	0.166	120	0.006	2.9	123
1974 Chev	0.019	1975 FTP	0.100	115	0.0014	1.07	116
11 II ·	**	40 mph	0.040	71.4	0.0003	0.36	71.8
11 1 1	щ	70 mph	0.056	93.3	0.0018	2.00	95.3
** **	0.091	1975 FTP	0.498	112	0.0024	0.36	113
** **	, H	40 mph	0.257	89.9	0.0006	0.14	90.0
17 17	11	70 mph	0.219	82.3	0.0027	0.66	83.0
11 _ 11	0.110	1975 FTP	0.466	117	0.0024	0.00	117
11 11	n	'40 mph	0.325	. 79.3	0.0008	0.13	79 /
17 17	11 · · ·	70 mph	0.269	83.5	0.0000	0.15	9/ 1
1074 Cher	0.065	1075 FTP	*	*	0.0027	0.55	04.1 *
1974 Chev	. 0.005	60 mph	*	*	0.002	0.4	*
17 17	0 032	1075 FTP	*	*	0.002	1 1	÷.
11 11	11	1975 FII	*	*	0.003	1.1	.
1074 Maga	n 0.065	1075 FTP	0.40	126	0.001	0.7	126
1974 11820	a 0.005	1975 FIF	0.40	116	0.002	0.4	116
	0 032	1075 ETP	0.22	122	0.000	1.6	126
11 11	"	1975 FIF	•	+	0.004	1.0	124 *
1076 Nord	- 0.065		0 10	75	0.000	0.0	75
1774 LONG		17/J FIF	0.12	109	0.001	0.4	109
11 11	0 022	1075 ETTE	0.13	120	0.000	0.0	100
11 11	11	19/3 FIF	0.00	120	0.000	0.0	120
		60 mpn	0.06	/0	0.000	0.0	/0

1 9 1

B. SO4 Emissions from Cars Equipped with Oxidation Catalysts

Data obtained by Exxon Research and others show wide variations in the amount of SO4^T emitted by cars equipped with oxidation catalysts, and adjusted to control emissions to 3.4 g/mi. CO and 0.41 g/mi. HC. For example, under FTP conditions, vehicles equipped with pelleted oxidation catalysts emit about 5% of the sulfur in gasoline as SO_4^{T} , while vehicles equipped with monolithic oxidation catalysts emit as much as 10-15% of the sulfur in gasoline as SO_4^{T} . At high speed cruise conditions, SO_4^{T} emissions from the two types of systems are comparable, at 25-35% conversion of the sulfur in gasoline.

Before trying to explain these differences and comment on their meaning, the data obtained in laboratory studies of the factors affecting SO4[®] formation, and vehicle tests demonstrating storage of SO4[®] on catalyst surfaces, will be presented. These two subjects provide the background necessary to resolve some of the differences observed in vehicle SO4[®] emission rates. It should be pointed out, however, that a complete explanation of these differences is not available, and many uestions still remain.

1. Factors Affecting SO4 Formation - Laboratory Studies

Thermodynamic equilibrium calculations for mixtures containing less than 100 ppm SO₂ and 1-5% O₂ show that at temperatures above about 1500°F, equilibrium conversion to SO₃ is very low, while at temperatures below about 800°F, equilibrium conversion to SO₃ is essentially 100%. The results of these calculations are shown in Figure 2. The conditions under which SO₃ concentration is a function of both temperature and oxygen content are exactly the conditions under which automotive oxidation catalysts operate.

- 10 -

To learn more about the effect of operating variables on SO_4^{-1} formation, a laboratory program to study the effects of catalyst type, O_2 concentration, temperature, and residence time on SO_4^{-1} formation was carried out. The equipment used in this study is shown schematically in Figure 3. The procedure used was as follows: A synthetic exhaust containing the components shown in the figure was blended and passed over a sample of commercial oxidation catalyst contained in the reactor tube. Temperature of the catalyst sample could be varied between room temperature and 1500°F. Conversions of SO₂, CO, and HC were measured using the TECO SO₂ analyzer described earlier, and conventional exhaust gas analytical instrumentation. The use of the Goksøyr-Ross technique ⁽⁶⁾ for SO₄⁻⁻ determination was attempted, but because of the low flow rates of sample available at that time, accurate values for SO₄⁻⁻ could not be obtained. This problem has now been solved, but the unit is being used for the SO₄⁻⁻ trap studies reported at the end of this paper.

The results of this study show significant differences between the behavior of monolithic and pelleted oxidation catalysts. Many of these differences appear to be related to the different tendencies of these catalysts to store SO_2 and SO_4^{-} . The results for monoliths are presented first, followed by the results for pellets, followed by a discussion of what conclusions can be drawn from this study. Since the measurement made was SO_2 in and out of the reactor, the results are reported in terms of SO_2 disappearance, which is the sum of SO_2 converted to SO_4^{-} and net SO_2 stored, if any, on the catalyst.

a. Results for Monolithic Catalysts

Figure 4 shows SO₂ disappearance as a function of temperature over a monolithic oxidation catalyst operated at a space velocity of

- 12 -

13 -

· 1

FIGURE 3 - LABORATORY REACTOR

62,500 v/v/hr. Data were obtained by changing catalyst temperature in $50-100^{\circ}F$. increments and maintaining that temperature until outlet SO_2 concentration stabilized. At temperatures below 600°F, essentially no SO_2 disappearance was found. Between 600 and 800°F, SO_2 disappearance rose rapidly towards the value for equilibrium conversion to SO_4^{-} . Above 800°F, SO_2 disappearance rate was maintained at 75% or more of the equilibrium conversion to SO_4^{-} .

Figure 5 shows SO₂ disappearance as a function of reactor exit oxygen concentration at 1000°F and a space velocity of 100,000 v/v/hr. for a monolithic catalyst. Reactor exit oxygen concentration is roughly equivalent to excess oxygen since it represents what remains after reaction with CO, H₂, and HC. SO₂ disappearance is relatively independent of O₂ concentration about 1% excess O₂, but drops sharply below 1% excess O₂. CO conversion, also shown in Figure 5, drops off much less than does SO₂ disappearance. The same is true of HC conversion, though these data are not shown.

Figure 6 shows the effect of space velocity on SO₂ disappearance over a monolithic catalyst at temperatures between 800 and 1100°F. Between 800 and 1000°F, the results show the expected decreases in disappearance with increased temperature and increased space velocity. The data obtained at 1100°F shows disappearance to be relatively independent of space velocity, which can be explained by the fact that at this temperature, the oxidation of SO₂ to SO₃ is limited by thermodynamic equilibrium. At 1100°F, storage of SO₂ or SO₄^m does not appear to be significant.

- 14 -

TEMPERATURE, °F

FIGURE 5

NOR NO ENTE OVVCEN

- 17 -

b. Results for Pelleted Catalysts

All of the data obtained in this study with pelleted catalysts show lower SO_2 disappearance rates than were observed with monolithic catalysts. Figure 7 shows SO_2 disappearance as a function of temperature at a space velocity of 28,500 v/v/hr. This is a lower space velocity than was used with the monolithic catalyst, but typical of that encountered in pelleted catalyst systems. SO₂ disappearance rates in this system do not approach the equilibrium for conversion to SO_4^- as closely as they did for the monolith.

Figure 8 shows SO₂ disappearance as a function of reactor exit oxygen concentration for a pelleted oxidation catalyst at a space velocity of 28,500 v/v/hr. These results are similar to those observed for monolithic catalysts except that instead of dropping sharply at O_2 concentration below 1%, as was the case with the monolith, with pellets, SO₂ disappearance decreases with decreasing O_2 concentration over the whole range of O_2 concentrations studied.

Figure 9 shows SO₂ disappearance as a function of space velocity and temperature for pelleted catalysts. Up to 1000°F, this relationship is as expected with SO₂ disappearance decreasing with increasing space velocity and temperature. As in the case of monoliths, the SO₂ disappearance data at 1100°F shows no space velocity effect, because at this temperature, the reaction is limited by thermodynamic equilibrium.

- 18 -

FIGURE 8

REACTOR EXIT OXYGEN CONCENTRATION, %

c. Discussion of the Laboratory Data

The results obtained by varying O₂ concentration, space velocity, and temperature are what would be predicted from simple equilibrium and kinetic considerations. The drop-off in SO₂ disappearance with decreasing O₂ concentration is of particular interest because it suggests a method of minimizing SO₄⁼ formation without significantly decreasing CO and HC conversion. More will be said on this subject in Section V on Control of SO₄⁼ Emissions. Space velocity effects probably do not offer a practical method of controlling SO₄⁼ emissions. It must be assumed that the auto manufacturers sized their catalyst systems to provide the degree of CO and HC control required. Decreasing catalyst volume, the only practical way of increasing space velocity on a vehicle, would probably result in unacceptable CO and HC emissions.

The temperature effect data for pelleted catalysts could be interpreted as meaning that these catalysts are less active for SO₂ oxidation than are monoliths. This explanation seems unlikely, however, because both catalyst types show equivalent performance for CO and HC oxidation. The laboratory data are not in agreement with vehicle $SO_4^{=}$ emission data, which will be presented later in this paper. At high speed cruise conditions, where vehicle results should compare most directly with laboratory results, vehicle tests show the emission of $SO_4^{=}$ to be similar for both types of catalysts. Until the sulfur balance can be closed for both vehicle and laboratory tests, and sulfur oxide storage phenomena understood, the reasons for the differences between laboratory and vehicle test results will remain unexplained.

- 22 -

2. Storage Phenomena

Both monolithic and pelleted catalysts have a coating of high surface area alumina. It is well known that alumina can sorb both SO_2 and SO_4^- , the amounts being determined by temperature, and the structure of the alumina present. Alumina tends to store SO_2 or SO_4^- at lower temperatures, corresponding to lower operating speeds, and release them at higher temperatures corresponding to higher speeds. SO_4^- storage has been studied in some detail, though SO_2 storage has not received much attention. It is known, however, that alumina and other sorbents sorb SO_4^- more readily than SO_2 .

In early 1974, two sets of experiments were conducted to demonstrate $SO_4^{=}$ storage on pelleted catalysts, one in which the catalyst was conditioned with 0.14 wt. % sulfur fuel, the other in which it was conditioned with 0.004 wt. % sulfur fuel. The conditioning procedure used involved 500 miles of operation on the Federal Durability Driving Schedule (AMA Cycle) followed by a cold start 1975 FTP. After this conditioning procedure, the vehicle was operated for two hours at 60 mph cruise. The particulate filter was changed every 20 minutes to allow an evaluation of $SO_4^{=}$ emissions as a function of time. Data from these runs is summarized in Figures 10 and 11.

- 23 -

Figure 10 shows the results of tests with 0.14 wt. % S fuel on a pelleted catalyst conditioned with 0.14 and 0.004 wt. % S fuel. Initial SO_4^{-1} emissions from the run in which the catalyst was conditioned with 0.14 wt. % S fuel are much higher than initial SO_4^{-1} emissions from the run in which the catalyst was conditioned with 0.004 wt. % S fuel. After ~ 60 minutes both runs show the same SO_4^{-1} emission rate. This is strong evidence of storage. After the catalyst was conditioned with 0.14 wt. % S fuel, its surface contained an excess of SO_4^{-1} , which was released at the start of the run. Conversely, after conditioning with 0.004 wt. % fuel, the catalyst sorbed SO_4^{-1} at the start of the run.

Figure 11 shows the results of tests with 0.004 wt. % S fuel. The effect of conditioning is even more dramatic in this case. In the test with a catalyst conditioned with 0.14 wt. % S fuel, almost seven times as much SO₄^m was emitted during the first 20 minute period as at steady state after 60 minutes of operation.

After SO_4^{-} storage on pelleted catalysts was verified, we conducted a similar set of experiments to determine whether SO_4^{-} was stored on monolithic catalysts. The major change in the experiments on monoliths was that 175 miles of Federal Durability Driving Cycle mileage accumulation was used in conditioning the catalyst. For the pelleted catalyst, 500 miles of conditioning had been used. Results of these experiments appear in Figures 12 and 13. These tests show some of the same type of behavior as was seen with the pellets, but the storage effect is not as large.

Time, Min.

Sulfate Emissions at 60 mph Cruise Pelleted Catalyst, 0.004% Sulfur Fuel

Figure 12

Figure 13

Sulfate Emissions at 60 MPH Cruise Monolith Catalyst, 0.004% Sulfur Fuel

Time, Min.

Since this initial set of experiments was conducted, we have confirmed these storage effects in other tests. These tests all show very strong storage effects with pelleted catalysts, and lesser, but definite, storage effects with monoliths.

3. Vehicle SO4 Emission Data

In its May 30, 1974 submission to EPA of data on automotive sulfate emissions, in response to a request which appeared in the March 8, 1974 issue of the <u>Federal Register</u>, Exxon Research summarized its data on SO_4^{-1} emissions as follows:

- Over both pelleted and monolithic catalysts actual conversion of gasoline sulfur to SO4^m, and SO4^m emission rate, can differ. Under FTP or low speed cruise conditions, some of the SO4^m formed is stored on the catalyst, or possibly in the exhaust system. Stored SO4^m can be emitted at high speed conditions.
- In vehicles using monolithic oxidation catalysts,
 25-35% of the sulfur in gasoline is emitted as SO₄
 under FTP, 40 mph, and 60 mph cruise conditions.
- In vehicles using pelleted oxidation catalysts, only 5-10% of the sulfur in gasoline is emitted as SO₄⁻ under FTP and 40 mph cruise conditions. With these catalysts, storage of SO₄⁻ is a major factor. At 60 mph cruise conditions, at least part of the SO₄⁻ stored

- 27 -

at lower speeds is released, and SO_4^{m} emissions are similar to those observed with monolithic oxidation catalysts.

Recent data, obtained in the program described in Section III.B.3.a., suggest that over monolithic catalysts, no more than 10-15% of the sulfur in gasoline is emitted as SO_4^{-} during the FTP. Furthermore, substantial differences in SO_4^{-} emission rate may exist depending on which monolithic catalyst is used. Our earlier results were obtained on prototype catalysts using less controlled aging and conditioning techniques than were used in later programs. The 25-35\% emission of gasoline sulfur as SO_4^{-} for monoliths at 40 and 60 mph cruise is also found in our later data, but again substantial differences are found depending on which catalyst is used.

Our recent data on pelleted catalysts supports the estimate of no more than 10% emission of gasoline sulfur as SO_4^{m} under FTP conditions. However, at 40 mph cruise conditions, SO_4^{m} emission rates as high as 25% of gasoline sulfur were measured. At 60-70 mph cruise 25-35% of gasoline sulfur was emitted as SO_4^{m} . Details of the program in which these data were generated are given below.

a. Effect of Catalyst Type

Under EPA Contract 68-02-1279, "The Characterization of Particulate Emissions from Prototype Catalyst Vehicles", Exxon Research has measured SO₄^T emissions from seven different oxidation catalysts, four monolithic and three pelleted catalysts. The following procedure was used.

- 28 -

- Each catalyst was aged by operating for 2000 miles of AMA cycle on a fuel containing 0.004% sulfur.
- 2) The catalyst was removed from the car used for aging and mounted on a 1974 350 CID Chevrolet V-8, equipped with an air pump, and calibrated to control CO and HC to 3.4 g/mi. and 0.41 g/mi., respectively.
- The vehicle was then operated through the following series of tests on each of three fuels.
 - a. 200 miles of conditioning on the AMA cycle followed
 by a 16 hour cold soak.
 - b. 1975 FTP
 - c. 1 hour idle
 - d. 1 hour, 40 mph cruise
 - e. 2 hour, 60 or 70 mph cruise
 - f. overnight soak
 - g. 1975 FTP

SO4 emissions were measured for both 1975 FTP's, the idle, 40 mph, and 60-70 mph cruise modes. The three fuels used were:

- 1) the EPA reference fuel, which contains 0.019 wt. % sulfur,
- the EPA reference fuel doped with a 50% thiophene-50% t-butyl disulfide mixture to a sulfur content of 0.110%, and
- a high aromatic content fuel doped with the thiophene-t-butyl disulfide mixture to a sulfur content of 0.091%.

The fuels were always tested in the order listed above.

SO2 and SO4^m measurements for all catalyst/fuel combinations are given in Table 2. In this table SO2 and SO4^m emissions in g/mi. and percent of gasoline sulfur are reported for the average of the two FTP's, and for the 40 mph, and the 60-70 mph cruise. The fraction of gasoline sulfur accounted for by the sum of the SO₂ and SO4^m emitted is also reported. These data are also presented graphically in Figures 14-19. Figure 14 shows SO₂ and SO4^m emissions for the monolithic catalysts for FTP conditions; Figure 15, for 40 mph cruise; and Figure 16, for 60-70 mph cruise. Figure 17 shows SO₂ and SO4^m emissions for the pelleted catalysts for FTP conditions; Figure 18, for 40 mph cruise; and Figure 19 for 60-70 mph cruise.

In interpreting the data presented in Table 2, and in Figures 14-19, it should be remembered that, with the exception of Mono (III) monolith, only one sample of each catalyst was tested. Replicate testing should be carried out before any action is taken based on these data. With that caution in mind, the following observations can be made.

- Under FTP conditions, no more than 10-15% of the sulfur in gasoline is emitted as SO_4^- when monolithic oxidation catalysts are used. This is lower than the 25-35% reported earlier.
- The Mono II catalyst showed lower SO_4^- emission rates at 40 mph than did the other two brands of monoliths tested. For the FTP and at 60-70 mph the SO_4^- emissions from this catalyst were comparable to SO_4^- emission rates from the other two brands of monoliths. The lower SO_4^- emission rates from

TABLE 2

SO₂ AND SO₄⁼ EMISSION DATA FROM EPA CONTRACT NO. 68-02-1279

			:	SO2 Emissions	S	% Sulfur	
Catalyst	Fuel Sulfur, %	Mode	g/mi	% of Gasoline S	g/mi	% of Gasoline S	Balance
			MONOLITHIC	CATALYSTS			
Mono (I)	0.019	FTP	0.00	0.00	0.005	2.1	2.1
		40 mph	0.00	0.00	0.019	12.8	12.8
		60-70 mph	0.00	0.00	0.016	13.2	13.2
	0.110	FTP	0.220	37.3	0.091	10.5	47.8
		40 mph	0.092	25.9	0.163	30.4	56.3
	• •	60-70 mph	0.014	2.9	0.088	12.2	15.1
	0.091	FTP	0.143	29.1	0.110	14.8	43.1
		40 mph	0.080	25.8	0.122	25.7	51.5
		60-70 mph	*	*	0.092	15.7	*
Mono (II)	0.019	FTP	0.043	39.8	0.005	3.1	42.9
		40 mph	0.060	85.7	0.010	9.4	95.1
		60-70 mph	0.035	23.8	0.016	7.2	31.0
	0.110	FTP	0.422	71.6	0.077	7.5	79.1
· .		40 mph	0.317	83.9	0.088	15.3	99.2
		60-70 mph	0.343	79.6	0.109	16.7	96.3
· .	0.091	FTP	0.422	85.1	0.087	4.4	89.5
		•• 40 mph	0.257	74.8	0.069	13.1	87.9
		60-70 mph	0.312	79.6	0.093	15.8	95.4
Mono (III)-1	0.019	FTP	0.072	67.9	0.003	1.9	69.8
		40 mph	0.000	0.0	0.021	20.3	20.3
		60-70 mph	0.050	30.9	0.018	7.4	38.3
	0.110	FTP	0.302	50.0	0.040	4.3	54.3
		40 mph	0.050	12.5	0.294	47.7	60.2
		60-70 mph	0.188	21.8	0.105	8.1	29.9
	0.091	FTP	0.063	21.9	0.032	4.2	26.1
		40 mph	0.069	21.2	0.265	52.9	74.1
		60-70 mph	0.172	20.3	0.098	7.8	28.1

- 31 -

TABLE	2.((CONT.)	

			:	SO2 Emissions	:	SO4 ⁼ Emissions	% Sulfur
Catalyst	Fuel Sulfur, %	Mode	g/mi	% of Gasoline S	g/mi	% of Gasoline S	Balance
Mono (III)-2	0.019	FTP	0.021	18.4	0.011	6.5	24.9
	•	40 mph	0.000	0.0	0.024	26.5	26.5
		60-70 mph	0.029	36.7	0.039	32.9	69.6
	0.110	FTP	0.154	26.6	0.098	11.0	37.6
		40 mph	0.072	18.3	0.282	46.0	64.3
		60-70 mph	0.177	44.9	0.182	31.0	75.9
	0.091	FTP	0.226	47.0	0.108	14.6	61.6
		40 mph	0.098	29.8	0.257	51.0	80.8
		60-70 mph	0.008	2.4	0.177	35.7	38.1
			PELLETED	CATALYSTS			
Pellet (T)	0.019	FTP	0.087	87.0	0.004	2.6	89.6
TETTER (T)		40 mph	0.000	0.0	0.002	1.5	1.5
		60-70 mph	*	*	0.043	36.0	*
	0.110	FTP	0.121	12.6	0.030	2.9	15.5
		40 mph	0.000	0.0	0.167	27.2	27.2
		60-70 mph	0.000	0.0	0.166	25.3	25.3
	0.091	FTP	0.102	19.5	0.018	2.5	22.0
	· · ·	. 40 mph	0.035	9.5	0.126	22.4	31.9
		60-70 mph	0.208	50.5	0.074	12.0	62.5
Pellet (TT)	0.019	FTP	0.034	32.7	0.007	4.5	37.2
	· ·	40 mph	0.010	14.7	0.010	9.8	24.5
		60-70 mph	0.035	46.1	0.031	27.1	73.2
	0.110	FTP	0.161	27.1	0.037	3.8	30.9
	· · · · · ·	40 mph	0.122	32.8	0.142	25.1	57.9
		60-70 mph	0.211	49.5	0.230	36.1	85.6
	0.091	FTP	0.123	25.7	0.031	4.6	30.3
	0.072	40 mph	0.088	28.8	0.108	22.8	51.6
		60-70 mph	0.008	2.1	0.154	27.2	29.3

- 32

F

			SO ₇ Emissions		SO ₄ Emissions		% Sulfur	
Catalyst	Fuel Sulfur, %	Mode	g/mi	% of Gasoline S	g/mi	% of Gasoline S	Balance	
ellet (III)	0.019	FTP	0.023	14.7	0.023	9.8	24.5	
		40 mph	0.003	4.2	0.019	17.4	21.6	
·.		60-70 mph	0.026	35.5	0.027	24.6	70.1	
	0.110	FTP	0.066	12.1	0.080	10.3	22.4	
		40 mph	0.048	11.3	0.156	24.0	35.3	
		60-70 mph	0.129	39.3	0.145	29.2	68.5	
	0.091	FTP	0.127	26.6	0.077	10.7	37.3	
		40 mph	0.071	21.8	0.159	32.7	54.5	
		60-70 mph	0.154	42.5	0.166	30.4	72.9	

TABLE 2 (CONT.)

· .

I.

34

I

Fue1

L

ŝ

1

FIGURE 18

SO2 and SO4 Emissions For Pelleted Catalysts At 40 Mph Cruise

1

38

ï

Fuel

 SO_4 emission rates from the Mono (II) catalyst are <u>not</u> the result of increased SO_4 storage, since this catalyst showed the lowest tendency to store sulfur oxides of any of the catalysts tested.

- The previously reported low (about 5-10%) SO_4^{m} emission rates for pelleted catalysts under FTP conditions were again observed. However, higher (no more than 25-35%) than previously reported SO_4^{-} emission rates were observed at 40 mph cruise when using pelleted catalysts. This may be due to release of stored SO_4^{-} , since the 40 mph cruise mode was the first run after the FTP.
- SO₄ emission rates at 60 or 70 mph cruise were similar for both monoliths and pellets and ranged up to 35%.

The low SO4⁻ emission rates combined with low storage of sulfur oxides found with the Mono (II) catalyst is worthy of further study. This catalyst sample was supposedly representative of those manufactured for commercial use, and therefore should have been capable of good control of CO and HC. Data for the FTP runs with this catalyst, presented in Table 3, show that it did, in fact, control CO and HC near or below our targets of 3.4 and 0.41 g/mi., respectively.

Table 3 - FTP Emissions From Monolithic Catalysts

Catalyst	<u>CO</u>	HC
Mono (I)	3.00	0.74
Mono (II)	2.45	0.40
Mono (III)-1	3.21	0.35
Mono (III)-2	1.49	0.22

- 40 -

b. Effect of Gasoline Sulfur Level

In our previous submission to EPA on automotive sulfate emissions, Exxon Research reported that, in catalyst vehicles, these emissions in g/mi. were proportional to gasoline sulfur level. No further studies to investigate this question have been carried out. The data used to reach this conclusion in our earlier report are reproduced in Tables 4 and 5.

c. Effect of Catalyst Age and Noble Metal Loading

Exxon Research has obtained limited data in these two areas under EPA Contract 68-03-0497. Since this contract is discussed in detail in Section V, presentation of these data will be delayed until Section V.C.

V. Potential Methods for Controlling SO4 Emissions

In Figures 5 and 8, laboratory data indicating that SO4Th emissions can be limited by limiting excess air were presented. In this section, vehicle tests of this concept, as well as data obtained in a study of the feasibility of trapping SO4Th in the exhaust system on a suitable sorbent, will be presented. Both of these studies were conducted as parts of EPA Contract 68-03-0497, "An Assessment of Sulfate Emission Control Technology". Work under this contract is still in progress at Exxon Research, and the data reported herein are limited to those available as of December 19, 1974, the last monthly reporting period for which data have been submitted.

A. Vehicle Tests of Limited Excess Air

1. Vehicle Preparation and Baseline Testing

The vehicle tests of the effect of limited excess air on SO4 emission rate were conducted on a production model 1975 350 CID Chevrolet

	Sulfa	ate Emissic	ns From Monoli	thic Oxidation Cat	alysts
Catalys	<u>t</u>	No. of <u>Tests</u>	Fuel <u>Sulfur, %</u>	SO4 Emissions, g/mi	Conversion $S \longrightarrow SO_1^{-}, \%$
			<u>1972 FT</u>	<u>P</u>	
Monolith	A	5	0.067	0.119	21
		⁻ 4	0.032	0.064	24
		3	0.004	0.010	29
Monolith	В	2	0.067	0.145	25
		2	0.032	0.061	23
		2	0.004	0.014	41
		• ·	40 mph cr	uise	
Monolith	A	2	0.067	0.158	28
		2	0.032	0.055	20
		2	0.004	0.008	35
Monolith	В	5	0.067	0.090	16
		4	0.032	0.048	17
		3	0.004	0.005	18
			<u>60 mph cr</u>	uise	
Monolith	A	2	0.140	0.253	32
		2	0.004	0.007	29

<u>Table 4</u>

Table 5

Su	lfate Emiss	ions from A P	elleted Oxidation C	atalyst
Catalyst	No. of <u>Tests</u>	Fuel Sulfur, %	SO4 ⁼ Emissions, g/mi.	Conversion S →> SO4 ⁻ , %
		<u>1975</u>	FTP	
Pelleted	3 2 3 2 3	0.140 0.065 0.056 0.034 0.004	0.111 0.036 0.015 0.011 0.003	10.6 5.8 3.2 4.2 7.7
		40 mph	cruise	
Pelleted	22	0.065 0.034 60 mph	0.049 0.009	12.8 4.7
Pelleted	6 5 6 5	0.140 0.056 0.032 0.004	0.313 0.113 0.063 0.007	35.6 31.4 27.7 26.0

- 42 -

V-8 modified to control CO and HC emissions to 3.4 and 0.41 g/mi. respectively. This modification consisted of adding an air pump to inject secondary air ahead of the oxidation catalyst. The catalyst used was the pelleted catalyst received with the vehicle.

The unmodified test vehicle was first broken in with 2,000 miles of AMA cycle operation on an unleaded, low sulfur fuel. It's 1975 FTP emissions were then measured and found to be 8.3 g/mi. CO and 0.48 g/mi. HC, well below the standard of 15 g/mi. CO and 1.5 g/mi. HC for which the vehicle was designed, but above the 3.4 g/mi. CO, 0.41 g/mi. HC level at which the tests were to be conducted. Adding an air pump lowered these emissions to 3.5 g/mi. CO and 0.27 g/mi. HC. A series of baseline tests were then conducted using two fuels (0.032 and 0.012 wt. % sulfur) and two different modes of conditioning (500 miles of simulated turnpike driving and 500 miles of simulated city driving). Each test consisted of the following series of operating modes:

1. 500 miles of conditioning followed by an overnight cold soak

2. 1975 FTP

3. 20 minute idle

4. 2 hours at 60 mph during which time SO4 was measured for each 30 minute interval

5. Overnight cold soak

6. 1975 FTP

SO4 emission results for the baseline runs are reported in Table 6.

- 43 -

The data in Table 6 show an average SO_4^{--} emissions equivalent to about 4% of the sulfur in the gasoline used under FTP condition. This is in good agreement with the FTP results for pelleted catalysts presented earlier in Tables 2 and 5. The 60 mph cruise runs were two hours in duration with separate SO_4^{--} samples taken for each half hour interval. SO_4^{--} emissions were highest during the first half hour of operation and gradually decreased with time. By the final half hour, SO_4^{--} emissions were down to the 25-35% of gasoline sulfur reported above. This initial high rate of SO_4^{--} emission is due to the release of stored sulfate.

A similar pattern was observed with SO_2 emissions. At the beginning of the 60 mph run, high levels of SO_2 emission were recorded as the result of stored SO_2 . As the test proceeded, SO_2 emission rates dropped to a steady state level comparable to the levels reported in Table 2.

2. Tests of Limited Air

The effect of limited air was tested using the 0,032 wt. % sulfur fuel and both turnpike and city driving preconditioning. The operating sequence outlined above was followed with air injection used only for the first two minutes of each FTP and not at all under cruise conditions. This limited use of air injection raised FTP CO emissions to an average of 5.4 g/mi. and HC emissions to an average of 0.31 g/mi., both well below the 1975 California standards. The effect of SO_4^{m} emissions was dramatic, about a 75% reduction in SO_4^{m} emissions under FTP conditions, and about 60% reduction in SO_4^{m} emissions at 60 mph

		S0 ₂ 1	Emissions	so4 = B	Emissions	% Sulfur
Fuel Sulfur,%	Mode	g/mi.	% of Gasoline S	g/mi.	% of Gasoline S	Balance
		5	TURNPIKE DRIVING PR	ECONDITIONIN	G	
0.032	FTP *	0.044	24	0.010	4.2	28
	60 mph-1 **	0.19	144	0.168	84	228
	2	0.13	94	0.099	47	141
	3	0.11	80	0.076	37	117
	4	0.08	60	0.061	30	90
0.012	FTP *	0.020	30	0.0025	3.6	34
	60 mph-1**	0.066	122	0.084	103	225
	2	0.059	107	0.054	65	172
	3	0.059	105	0.050	59	164
	4	0.083	145	0.052	61	206
		· (CITY DRIVING PRECON	DITIONING		
0.032	FTP *	0.055	33	0.0088	3.6	37
	60 mph-1 **	0.15	106	0.15	72	178
	2	-0.09	64	0.080	38	102
	<u>3</u>	0.10	70	0.081	. 38	108
	4	"0.08	55	0.075	34	89
0.012	FTP *	0.055	82	0.0048	4.6	87
	60 mph-1 **	0.09	164	0.081	96	260
	2	0.04	78	0.034	41	119
	3	0.04	78	0.037	46	124
	4	0.04	78	0.033	41	119

SO₂ and SO₄⁻ Emissions from a 1975 Chevrolet with Air Pump During Baseline Testing

Table 6

* Average of the initial and final FTP tests.

** Numbers after the 60 mph indicates 1st, 2nd, etc. 30 minutes of operation at 60 mph cruise.

- 45

1

cruise. Data for these tests is presented in Table 7. Similar tests on a monolithic catalyst system are expected to be completed within the next month.

These vehicle tests, together with the laboratory data presented earlier, offer strong evidence that limiting excess air will reduce SO_4 ⁼ emissions appreciably. This point should be considered by EPA in deciding whether to grant a delay in enforcement of the 1977 CO and HC standards for the following reason. The higher the CO and HC standards, the less need for air pumps. An appreciable fraction of the catalyst-equipped vehicles meeting 1975 Federal emission standards do not use air pumps. Many of these vehicles also meet 1975 California CO and HC emissions standards. If not required to meet CO and HC standards, the 27-33/car cost(7) of the air pump and its associated plumbing would likely be sufficient incentive for their removal. If 1975 Federal standards were extended through 1977, it is likely that an even greater number of cars which used catalysts would not use air pumps. If 1975 California CO and HC standards were imposed for the 1977 model year nationwide, it is still likely that a significant number of cars could be designed without air pumps. However, maintaining the statutory 3.4 g/mi. CO, 0.41 g/mi. HC standards in 1977 would make it very unlikely that air pumps could be eliminated.

B. Use of SO₄ Traps

1. Background

On November 6, 1973, Exxon Research testified before the Committee on Public Works of the U. S. Senate on the subjects of gasoline desulfurization and automotive sulfate emissions. At that time we indicated that it might be possible to trap $SO_4^=$ on a solid sorbent in the exhaust system. This position, which was based on work done at Exxon Research in the mid-1960's, was amplified in a November 16, 1973 letter to Senator Jennings Randolph, Chairman of the Committee on Public Works. This letter appears as Attachment II.

A program to study the feasibility of $SO_4^{=}$ traps was included as part of EPA Contract 68-03-0497, "An Assessment of Sulfate Emission Control Technology". This program included both vehicle durability tests and a laboratory screening program to find new sorbents. The first vehicle durability test was carried out using 1/8" pellets of 85% CaO/10% SiO₂/5% Na₂O as the sorbent. Results of this test are presented below.

2. Vehicle Test of 85% Ca0/10% Si02/5% Na20 as an SO4 Sorbent

The test was conducted using a 1973 351 CID Ford V-8 equipped with an air pump and two Engelhard PTX-IIB oxidation catalysts in the post manifold position. Prior to testing the SO_4^{-1} trap, the vehicle, without trap, was operated for 2,000 miles of AMA cycle on a fuel containing 0.048 wt. % sulfur. SO_4^{-1} emissions were then measured at 40 mph cruise conditions, were 0.066 g/mi., equivalent to about 37% of the sulfur in the gasoline.

Table	7
-------	---

S02	and	SO4	Emissions	in	Vehicle	Test	of	Limited	Excess	Air
-----	-----	-----	-----------	----	---------	------	----	---------	--------	-----

Preconditioning	Mode	,50 ₂ g/mi.	Emissions <u>% of Gasoline S</u>	504 ⁼ g/mi.	Emissions <u>% of Gasoline S</u>	% Sulfur Balance
	All Tests w	dth 0.0	32 wt.% S Fuel			
Turnpike	FTP *	0.14	130	0.0020	0.8	131
	60 mph-1 **	0.34	244	0.093	44	288
	2	0.26	179	0.034	16	195
	3	0.16	109	0.026	11	120
	4	0.16	105	0.026	11	116
City	FTP *	0.19	121	0.0032	1.2	122
	60 mph-1 **	0.24	213	0.053	32	245
	- 2	0.23	212	0.010	5.8	218
	3	0.34	312	0.0016	1.0	313
	4	0.11	99	0.0018	1.0	100

* Average of the initial and final FTP tests.

** Numbers after the 60 mph indicate 1st, 2nd, etc. 30 minutes of operation at 60 mph cruise.

The car was then equipped with an SO4⁻ trap consisting of a GM toeboard catalyst reactor filled with 1/8" pellets of 85% CaO/10% SiO₂/ 5% Na₂O. With fresh sorbent, SO₄⁻ emissions at 40 mph were reduced to 0.003 g/mi., a reduction of 96%. The trap was tested for a total of 26,500 miles, during which time SO₄⁻ removal generally remained above 95%. Data on SO₄⁻ emissions during this test are presented in Table 8.

While CaO is a very active sorbent, it does possess one inherent liability, in that its volume increases significantly as it sulfates. Based on crystalline densities, the complete sulfation of CaO to CaSO₄ would produce a three-fold increase in volume. While the pellets are somewhat porous, they cannot accommodate such an expansion internally and must expand into the void volume of the bed. This expansion will cause the pressure drop across the bed to increase as degree of sulfation increases. During the 26,500 miles described above, pressure drop across the sulfate trap increased from an initial value of 4" of H₂O to a final value of 115-140" of H₂O at 40 mph cruise conditions. Pressure drop data as a function of mileage for the trap are presented in Figure 20.

Despite the swelling and high pressure drop encountered with the CaO sorbent, attrition was not a problem. Calcium emission rates were measured periodically through the run. The maximum observed value was 3.7×10^{-4} g/mi., lower than the approximately 6.5×10^{-4} g/mi. observed on vehicles without traps. On vehicles without a CaO trap, calcium emissions occur as a result of the combustion of lube oil

- 49 -

Table 8

Trap Mileage	Mode	SO4 Emissions, g/mi.	Z SO ₄ Removed
Base Car *	40 mph	0.066	
· 0	40	0.003	96
•	40	0.005	92
	60	0.002	
1,000	40	0.001	98
1,100 **	40	0.002	97
2,000	40	0.002	97
3,000	40	0.002	97
	40	0.004	94
6,000	40	0.002	97
8,000	40	0.002	97
11,000	40	0.002	97
	40	0.003	96
	1975 FTP	0.005	
15,000	40 mph	0.001	98
	40	0.001	98
	1975 FTP	0.005	
19,000	40 mph	0.0005	99 ·
	. 40	0.0005	99
	1975 FTP	0.001	
22,000	40 mph	0.001	98
	40	0.001	98
	1975 FTP	0.003	
26,500	40 mph	0.008	. 88
	40	0.003	9 6
	1975 FTP	0.003	

.

Summary of Results Obtained During Testing of 85% CaO/10% SiO₂/5% Na₂O As A Sulfate Sorbent

* Fuel Sulfur Content = 0.048 wt.%

·

** Fuel Sulfur Content changed to 0.032 wt.% for the remainder of the test

THOUSANDS OF MILES

۰ 151 - which typically includes calcium containing additives. Assuming the maximum calcium emission rate, slightly over 10 grams of calcium or 20 grams of sorbent was emitted during the entire durability test. This is less than 1% of the charge, and less calcium than would typically be emitted as lube ash in a non-trap car.

3. Work on Improved Sorbents

While the test of $CaO/SiO_2/Na_2O$ as sorbent showed that it is possible to trap SO_4^{m} in the exhaust, the high pressure drop encountered with this material made its use in pelleted form unattractive. Three approaches to improved sorbents have been considered. These are:

• calcium compounds which swell less after sulfation,

- CaO in a high void volume shape, and
- materials which sorb less SO₂.

This last approach is being taken because the $CaO/SiO_2/Na_2O$ material appeared to sorb about 50% of the SO₂ passing through the trap. This reduces potential SO_4^{-} sorption capacity and increases further swelling, and is therefore undesirable. The results to date in each of these areas are discussed below.

a, Calcium Compounds Which Swell Less During Sulfation

One such material was tested, $CaCO_3$. Converting $CaCO_3$ to CaSO₄ increases volume 1.4 times, much less than the three-fold increase which occurs when CaO is converted to $CaSO_4$. A vehicle test was conducted on 4/17 mesh marble chips (marble is essentially pure $CaCO_3$), but this material did not sorb SO_4^{-} . We speculate that this is because of the very low surface area of the marble chips, which did not allow good gas-solid contacting. CaCO₃ will be reevaluated when pellets of compressed CaCO₃ powder are available. Attempts to form such pellets without binders were unsuccessful. Forming the pellets with binders will be attempted in the near future.

b. CaO In A High Void Volume Shape

Girdler Catalyst Company is currently fabricating $CaO/SiO_2/Na_2O$ sorbent into 5/8"O.D X 3/8"I.D. X 1/4" high rings, a high void volume shape. We plan vehicle tests to determine whether this shape reduces pressure drop sufficiently, while maintaining SO4^T sorption efficiency, to allow the use of this sorbent.

c. Material Which Sorb Less SO2

A laboratory program is now underway to screen new sorbent materials using the equipment shown in Figure 3. 15 ppm SO_2 is blended into a synthetic exhaust and 5 ppm SO_3 is added by controlled evaporation of dilute H_2SO_4 . The first sorbent tested in the unit was 85% CaO/10% $SiO_2/5$ % Na₂O, the material used in the vehicle durability test. It was tested to provide a base against which other material could be tested. In a three hour test at 900°F, 100,000 V/V/hr space velocity, a 13 ml sample of sorbent removed all SO_3 and >90% of SO_2 .

Of the new materials tested, a number can be eliminated from further consideration. Norton #4102 Al2O3 collected only 55% of the SO3. We plan to test other forms of Al_2O_3 . A test of BaO as a sorbent failed when the material hydrated to form $Ba(OH)_2$ and melted. A sample of commercially available MgO manufactured by Harshaw dropped from 100% SO_4 removal to 17% SO_4 removal in four hours. Marble chips dropped from 74% SO_4 removal to 50% SO_4 removal in four hours. The following materials were identified as being potentially useful sorbents:

- zirconia
- 80% CaO/20%SiO₂, and
- Micro-Cel, a commercially available calcium silicate.

A description of the tests of each of these materials is presented below.

Harshaw zirconia, in the form of very strong pellets, gave, in sequential tests, 100 and 84% sulfate trapping efficiences. Since the test temperature is in the range of the zirconium sulfate decomposition temperature, these results suggest that the sorbent may be reacting with the acid to form the sulfate, which then decomposes to sulfur dioxide and oxygen. Unfortunately, the sulfur dioxide results were not sufficiently accurate to determine if the outlet sulfur dioxide concentration increased. Further testing will be done with this material.

An 80% CaO/20% SiO₂ composition was prepared in an attempt to produce a stronger calcium containing pellet. In addition, this composition allowed the assessment of the effect of sodium oxide on the trapping efficiency, by comparison with the benchmark material. The 80% CaO/20% SiO₂ removed all of the sulfuric acid, but only a small amount of the sulfur dioxide. Thus sodium oxide enhances trapping efficiency for the dioxide. However, sodium oxide acts as a binder, since its elimination decreased pellet strength. Development of a suitable binder material, which did not sorb SO₂, would allow strong CaO pellets with increased SO₄[±] capacity to be made.

- 54 -

Micro-Cel, the commercial $CaSiO_3$ sorbed 100% of the SO_4^{-} in the first hour, and 97% in the second hour of testing. SO_2 trapping efficiency was 15% in the first hour and 7% in the second hour. Forming this material into strong pellets is a problem.

Finally MgO, in certain forms also shows promise. One sample trapped 100% of the SO_4^- in the feed but none of the SO_2 in a 4.5 hour test. Further tests are planned on these and other materials.

C. Other Information from EPA Contract 68-03-0497

As parts of this contract, the effects of catalyst age and noble metal loading were also investigated. These results are reported below.

1. Effect of Catalyst Age

A pelleted oxidation catalyst which had operated for 25,000 miles of AMA cycle on lead sterile (<0.01 gPb/gal) fuel, was mounted on the 350 CID Chevrolet used for the other work in this contract. Tests were conducted using the 0.032 wt.% sulfur fuel after preconditioning with 500 miles of city driving, and again after preconditioning with 500 miles of turnpike driving. Average CO and HC emissions for the four FTP tests involved in this sequence were 3.1 and 0.29g/mi respectively. S04^m emissions data are presented in Table 9.

As might be expected, the aged catalyst gave lower SO_4^{-} emissions than a fresh catalyst (Table 6), but the reduction was not as great as when reduced air was used. These data indicate that SO_4^{-} emissions will not increase as catalysts age in customer use.

2. Effect of Noble Metal Loading

In this test, a standard 260 in^3 GM catalyst reactor was loaded with higher noble metal content catalyst normally used for the 160 in^3 GM catalyst reactor.

Table 9

SO2 and SO4 Emissions With An Aged Catalyst

Fuel Sulfur Content = 0.032 wt.%

Preconditioning	Mode	50 ₂ g/mi	Emissions <u>% of Gasoline S</u>	S04 ⁼ g/m1.	Emissions <u>% of Gasoline S</u>	% Sulfur Balance
Turnpike	FTP *	0.027	17	0.0037	1.4	18
-	60 mph-1 **	0.14	97	0.164	75	172
	2	0.11	79	0.063	29	108
	3	0.13	87	0.048	22	109
	4	0.08	61	0.035	16	77
City	FTP *	0.047	29	0.009	3.3	32
	60 mph-1**	***	***	0.14	61	***
	2	***	***	0.063	27	***
	3	***	***	0.061	27	***
	4	***	***	0.051	24	***

* Average of the initial and final tests.

** Number after the 60 mph indicates 1st, 2nd, etc. 30 minutes of operation at 60 mph cruise.

*** Accurate data not available due to air leak in SO2 detector.

This resulted in about a 60% increase in the amount of Pt-Pd present in the catalyst bed. The high loading charge was tested with 0.032 wt.% of sulfur fuel after 500 miles preconditioning on turnpike operation. The SO_4^{\pm} measurements made (Table 10) showed no increase in SO_4^{\pm} emissions compared with normal catalyst loading (Table 6).

Table 10

SO2 and SO4 Emissions With A High Noble Metal Loading Catalyst

Fuel Sulfur Content = 0.032 wt.%

Preconditioning	Mode	SO ₂ Em <u>g/mi. %</u>	issions of Gasoline S	SO4 ¹ <u>g/mi.</u>	Emissions <u>% of Gasoline S</u>	% Sulfur Balance
Turnpike	FTP * 60 mph-1** 2 3 4	0.052 0.14 0.13 0.10 0.064	35 114 95 75 50	0.004 0.16 0.11 0.076 0.069	1.9 88 58 38 36	37 202 153 113 86
						1 58 1

* Average of the initial and final FTP tests.

Ν.

** Number after the 60 mph indicates 1st, 2nd, etc. 30 minutes of operation at 60 mph cruise.

References

- E.E. Wigg, "Fuel-Exhaust Compositional Relationships in Current and Advanced Emission Control Systems", API Paper 62-72, May 11, 1972.
- 2) <u>Ibid.</u>
- G.P.Gross, "Automotive Emissions of Polynuclear Aromatic Hydrocarbons", SAE Paper 740564, Sept. 10-13, 1973.
- "General Motors Response to the March 8, 1974 Federal Register
 Regarding Automotive Sulfate Emissions: A Status Report", May, 1974.
- 5) "Ford Response to EPA Request for Data On Automotive Sulfate Emissions, Federal Register Vol. 39, No. 47, Pg. 9229, March 8, 1974", Submitted May 7, 1974.
- 6) A. Goksøyr and K. Ross, J. Inst. Fuel, 35:177-9 (1962).
- 7) "Report by the Committee on Motor Vehicle Emissions, Commission of Sociotechnical Systems, National Research Council", November, 1974.