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FOREWORD

The U. S. Environmental Protection Agency was created in response to
increasing public concern about the dangers of pollution to the health and
welfare of the American people and their enviromment. The complexities of
environmental problems originate in the deep interdependent relationships
between the various physical and biological segments of man’s natural and
social world. Solutions to these envirommental problems require an inte-
grated program of research and development using input from a number of
disciplines.

The Health Effects Research Laboratory was established to provide sound
health effects data in support of the regulatory activities of the EPA. Cul-
tural mammalian cell-line studies provide biological endpoints which can be
used to compare the potential health effects of various types of pollutants.
A multidisciplinary approach is necessary to evaluate the effects on biologi-
cal endpoints such as cytotoxicity, enhancement of virally directed cellular
transformation, alteration of cell membrane composition, changes in cyclic
nucleotide ratios, modification of chemical carcinogen metabolism, and asso-
ciation with genetic material.

The report that follows describes effects of varying time, type and
dosage of asbestos fibers on the above biological endpoints in cultured
mammalian cells. An understanding of the effects of asbestos on the indi-
vidual cell is important in determining the potential health effects of.
asbestos in drinking water.

and

R. J. Garner
Director
Health Effects Research Laboratory
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PREFACE

Man and his biosphere must be protected from the adverse effects of
asbestos acting by itself or in conjunction with other carcinogens. Efforts
to protect the environment need appropriate biological endpoints. In regards
to asbestos, the CBERG program of The Ohio State University contributes to
this goal via a multidisciplinary approach involving studies of

. cytotoxicity

. enhancement of virally directed cellular transformation
. the alteration of cell membrane composition

. changes in cyclic nucleotide ratios

. modification of chemical carcinogen metabolism and

association with DNA

The report that follows describes effects of varying both time and dos-—
age of asbestos fibers on the above biological endpoints in cultured mammal-
ian cells. Unlike chemical carcinogens, asbestos did not induce any DNA
damage or decrease the rates of DNA replication.

Human cell failure to form colonies was 65 percent with wide ranges of
all asbestos fibers. Syrian hamster cells in a different test system exhib-
ited greater differential dose-dependent effects on cell death with different
asbestos fibers. At low concentrations of selected forms of asbestos fibers
there was differential enhancement of virally-directed cellular transforma-
tion. Differential changes in surface membrane sugar—containing lipid and
proteins are reminiscent of such changes in transformed cells. Asbestos also
induced elevations in the ratio cyelic AMP/cyclic GMP. This change in the
ratio may be characteristic of the actions of a promoter of cell transforma-
tion rather than the actions of an agent which interacts with DNA to initiate
transformation. This promoter concept is supported by the evidence that there
is an enhanced benzo(a)pyrene association with cellular DNA after cell treat-
ment with asbestos fibers.

Effects of Selected Asbestos
on Gellular and Molecu-

lar Parameters

Ronald W. Hart, Ph.D.

The CBERG Group
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ABSTRACT

The purpose of this grant was to develop a cellular, biochemical and
molecular basis to compare the effects of five asbestos materials, short
chrysotile, intermediate chrysotile, crocidolite, tremolite and amosite.

The test systems employed were the normal human fibroblast cell strain
Detroit 550 and Syrian hamster embryonic cultures. The effects on 1) deoxy-
ribonucleic acid (DNA) damage, 2) DNA replication, 3) cytotoxicity, 4) vir-
ally directed cellular transformation, 5) cell membrane composition and 6)
cyclic nucleotide concentrations were studied.

Results of these studies were expressed as percentages of controls for
each of the variables measured. Neither induction of DNA per se nor replica-
tion of DNA was affected by treatment with phosphate buffered solution (PBS)
washed asbestos. Cytotoxicity (65 percent) was exhibited in human cells at
asbestos concentrations up to 10 ug/ml, but, in another system for measure—
ment of this factor (Syrian hamster cells), a greater dose and fiber (chryso-
tile intermediate > chrysotile mixed > chrysotile short > crocidolite >
tremolite > amosite > silica) dependence was observed. Virally induced
cellular transformation frequency increase was in the order amosite > chryso-
tile intermediate > crocidolite.

Cell membrane monosialoganglioside (GM,) is an index of a simpler cell
surface glycolipid pattern. For GM; the oréer was crocidolite > chrysotile
mixed > chrysotile intermediate > amosite. The reduction of molecular weight
of glycoproteins also is a sign of simplification of the cell surface. The
indicator of this process is the loss of a 85,000 molecular mass protein.

The greatest loss is after crocidolite treatment. The order for this loss

is crocidolite > chrysotile mixed > chrysotile intermediate > amosite.
Cellular ratios of cyclic nucleotides increased toward controls in the order
crocidolite > chrysotile intermediate > amosite > tremolite > silica. These
results are consistent with asbestos acting as a promoter of carcinogenesis
metabolism of benzo(a)pyrene.

This report was submitted in fulfillment of Grant No. R-804201 by The
CBERG Group under the sponsorship of the U.S. Envirommental Protection Agency
covering the period April 15, 1976, to July 1, 1978, and completed as of
August 15, 1978.
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SECTION I

INTRODUCTION

OBJECTIVES

The primary objective of this grant was to develop a cellular, biochemi-
cal and molecular data base for the comparative effects of fibrous asbestos
materials (short chrysotile, intermediate chrysotile, crocidolite, tremolite
and amosite) which are being used in the animal feeding studies being con-
ducted by the National Institute of Environmental Health Sciences. (1)
Specifically, the purpose of this project was to evaluate the ability of
these same materials to:

1) induce deoxyribonucleic acid (DNA) damage

2) modify DNA replication

3) induce cytotoxicity in vitro

4) modify virally directed cellular transformation
5) alter cell membrane composition

6) modify cyclic nucleotide concentration

SUMMARY OF RESULTS

Induction of DNA Damage

None of the asbestos materials used at any concentration studied induced
either unscheduled DNA synthesis (as measured by autoradiography), endonu-
clease sensitive sites (utilizing S, endonuclease), single-strand breaks (as
measured by sedimentation in alkaliflie sucrose) or double-strand breaks (as
measured by sedimentation in neutral sucrose) when asbestos samples were
washed prior to use in phosphate buffered saline and autoclaved to reduce
any contamination by biological material. Nonwashed autoclaved samples pro-
duced a low level of unscheduled DNA synthesis in a dose independent fashion
from .01-10 ug/ml. Although this finding is reproducible, the mechanism
underlying it is unclear. Since this effect is induced only by short chryso-
tile and intermediate chrysotile and not by any of the other materials, and
also since none of the fibers induced repaired regions sensitive to 313 nm
light [5 bromo deoxyuridine (BUdR) - incorporated regions], strand breaks or
endonuclease sensitive sites, it is assumed that the unscheduled DNA synthe-
sis observed may have been the result of either alterations in the cellular
membrane resulting in a greater exchange of hot and cold thymidine (TdR)
or the leakage of. cells into scheduled DNA synthesis in spite of the hydroxy-
urea blockage used to prevent this event.
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Modification of DNA Replication

No retardation or stimulation of DNA replication (a recently developed
in vitro assay for chemical carcinogens) was observed for any of the asbestos
fibers studied between concentrations of 0,0001 and 10 pg/ml when fibers were
washed and autoclaved prior to use. Nonwashed, autoclaved fibers, while
cytotoxic to varying degrees depending upon fiber type (see following sec-—
tion), exhibit only a minor retardation of DNA replication for the short and
intermediate chrysotile. This response may relate to a modest contamination
of the asbestos which we have observed via elution washing and have identi-
fied as a possible hydrocarbon of unknown character,

Cytotoxicity

The cytotoxic potential of both washed and unwashed samples of all forms
of asbestos studied was extremely constant in human cells. Even at "doses"
as high as 10 ug/ml cytotoxicity following a 24-hour exposure using human
fibroblast cell cultures yielded only a 65 percent reduction in colony forma-
tion. Thus, human fibroblasts are relatively resistant to the cytotoxic
effects of asbestos and show no differential in cytotoxicity relative to the
asbestos type used. On the other hand Syrian hamster embryo (SHE) cell cul-
tures exhibit a cytotoxic curve dependent upon dose and asbestos type. The
SHE cell system is composed of several cell types and cytotoxicity in this
system can be measured only by measuring total cell number and correcting
for any difference in growth rates. In this system, however, it appears
that cytotoxicity is chrysotile intermediate > chrysotile mixed > chrysotile
short > crocidolite > tremolite > amosite > silica.

Virally Directed Cellular Transformation

All forms of asbestos in the unwashed but autoclaved series increased
the frequency of virally directed transformation of human fibroblast cell
cultures with Snyder-Theiler Feline Sarcoma virus (ST FeSV) at dose levels
of .1 ug/ml or greater. The frequency of increase was similar for each form
of asbestos tested, with amosite > chrysotile intermediate > crocidolite.

Cell Membrane Composition

Membrane composition is modified by the various forms of asbestos tested
in a differential fashion. For example, after a 48-hour treatment with amo-
site at 10 ug/ml there was a significant increase in the labeling of mono-
sialoganglioside (GM,) and decreases in both disialoganglioside (GD,_) and
globoside GL-4 1e chrysotile (intermediate) caused a similar cﬁange in
GM., it caused a greater decrease in the gangliosides GD, and trisialogang-
lioside (GT.) than did amosite. The neutral glycolipid patterns of cells
treated witﬁ amosite or chrysotile (intermediate) showed no difference from
one another. Crocidolite also induced similar changes in membrane structure as
did chrysotile; however, the time to manifestation at the same dose was
greater for the former than for the latter material. The asbestos fibers
examined also appeared to have differential effects on the surface labeling
of glycoproteins. The label patterns of untreated cells and amosite treated
cells were identical, whereas those cells treated with chrysotile intermed-

2



iate and chrysotile mixed were similar to one another but different from the
controls. The glycoprotein labeling pattern of crocidolite treated cells was
remarkedly different from that obtained with either amosite or chrysotile.

Modification of Cyclic Nucleotide Ratios

The normal human fibroblasts were incubated for 48 hours with various
types of asbestos and chemical carcinogens. At least three different con-
centrations were used with each type of asbestos. Cyclic adenosine 3°,5,-
cyclic monophosphate (AMP) and cyclic guanosine 3’,5'-cyclic monophosphate
(GMP) were determined by radioimmunoassay. The data are given only for that
particular concentration of carcinogen which gives maximum response in alter-
ing the ratio of cyclic AMP to cyclic GMP. It is quite clear that the effects
of asbestos are dependent upon the type of fiber used. Silica, which is a
weak carcinogen, also has an effect on the cells that is similar to the
effects of certain forms of asbestos. Asbestos increases the ratio of cyclic
AMP to cyclic GMP by 26 to 65 percent, This increase is largely due to an
increase in the concentration of cyclic AMP. (See Table 1)



TABLE 1.

COMPARATIVE TABLE OF ASBESTOS TYPE VS. TEST AT 1.0 (*) OR
10.0 (+) ug/ml FOR A 24 HOUR EXPOSURE EXPRESSED AS A % OF CONTROL

Test Crocidolite

Mixed
Chrysotile

Intermediate
Chrysotile

Short
Chrysotile

Tremolite

Amosite

Silica

*DNA Damage
(washed)

a) UDS
b) ESS (Sl)
c) ssb
d) dsb
e} BUdR
L S

* DNA Damage
(unwashed)

a) UQs

b) ESS(S1)

c) ssb

d) dsb

e} BUdR
Cytotoxicity
+ a) human

+ b) hamster °

+ Viral Trans-
formation

*CcAMP/cGMP

135

62

190

154

155

29

140

35
21

210

143

170

59

111

120

6

2

~i

125

40
67
230

111



Crocidolite Mixed Intermediate Tremolite Amosite Silica
Test Chrysotile Chrysotile
+Glycolipids
a) G 190 150 143 153
b)Y Gy 112 168 135 99
c) GDla 21.9 18.8 24,2 65.5
d\ c1y 22 30.4 45,8 98.3
e'Cerebroside 18.8 136 155 148
£) GL-4 50.1 86.9 67.9 70.5
+Glycoproteins
aYMW=148000 99.6 67.1 62.6 74.3
bYMW=85000 28.0 36.5 34.4 80.:2
¢\ MW=70000 33.5 48,6 78.0 70.2
*Metabolism 98 70 84 98 Qe
of B&P
*DI-BP
assoclation
a) peak 3 -
b) peak 4 750
“*Non DN-BP
association
a) peak 1 250
b) peak 2 700
°Ceils were counted in trypan blue and thus cytotoxicity was determined
oy vital dye exclusion.
* 1,0 ug/ml asbestos concentration.
+10.5 ug/ml 23bestos concentration.



SECTION 2

CONCLUSIONS

RELEVANCE OF PRESENT STUDIES TO CARCINOGENIC EFFECTS OF ASBESTOS

1. Asbestos in and of itself does not act as do most carcinogens by
damaging cellular DNA.

2. Unwashed asbestos can and does contain trace levels of polyaromatic
hydrocarbons which can produce DNA damage.

3. Compounds such as benzo(a)pyrene do associate with asbestos.

4. To varying degrees, depending on the form of asbestos used, asbestos
does modify membrane structure in the same direction as does various chemical
carcinogens.

5. Asbestos of all forms enhances virally directed transformation but
the level of enhancement is relatively independent of the form of asbestos
used.

6. Asbestos acts as would a promotor relative to the cyclic nucleotides.

7. There is an uptake of asbestos in normal human fibroblasts in cul-
ture.

8. Iron—containing asbestos leaches iron intracellularly but not extra-
cellularly.

Thus it is now apparent that specific forms of asbestos such as chryso—
tile can: (a) strongly associate with polyaromatic hydrocarbons; (b) be
taken up by fibroblasts as well as other éell types; (c) modify the metabo-
lism of polyecyclic aromatic hydrocarbons (PAH) yielding a metabolite that
associates strongly with DNA; (d) alter membrane structure in the direction
of a transformed cell; and (e) modify the cyclic nucleotides in the same
manner as a classical promotor of carcindgeﬁesis would be expected to do.

RELATIVE HAZARDS OF ONE FORM OF ASBESTOS VERSUS ANOTHER

It appears that crocidolite causes the most changes at the lowest dosage.
Surprisingly, this asbestos fiber is the least cytotoxic. Perhaps the surviv-
ing cells are the most affected by the asbestos entering these cells. Amosite

conversely was the most cytotoxic fiber, but had little effect based on the
other biologic parameters.



SECTION 3

NARRATIVE

METHODS
General

Cell Culture—-

Cultures are maintained in conventional CO, incubators at 37°C and rou-
tinely tested for pleuro-pneumonia—-like organisms. Cells were grown in
Earle’s Minimal Essential Medium (EMEM) supplemented with 1 mM sodium pyruvate,
2 mM glutamine, 1 percent non—essential amino acids and 10 percent fetal bo-
vine serum. Confluent monolayers were dispersed with trypsin plus methyl
cellulose. The determination of the generation time and various.cell cycle
parameters was made by standard autoradiographic procedures (2 through 7).

DNA Damage

Unscheduled DNA Synthesis—-—

In,this technique cells are incubated in the presence of radiolabel (gen-
erally "H-TdR) after exposure of the test cells to asbestos. The incorpora-
tion of radiolabel detected by autoradiography is a measure of excision re-
pair. Details of this procedure and its limitations have been explained
in detail elsewhere. Studies presented herein represent an average of 200
cells examined per point assayed. (2, 6, 7 through 11)

Strand-break Analysis—-

Our method for determining DNA strand-breaks has been published in
detail and for specific procedural aspects see 13 through 17. Generally,
however, our procedure is a modification of the classical McGrath and
Williams technique (18). Cells are layered onto a solution of 1 N NaCl,

0.01 M ethylenedinitrilo-tetraacetic acid (EDTA) on top of a 3.6 ml gradient
of 5-20 percent sucrose containing 2 M NaCl, 0.01 EDTA, and 0.33 M NaOH in a
4.0 ml polyallomer centrifuge tube. After lysis for 60 minutes at 23° C, the
denatured DNA is sedimented and fractions collected on paper strips. Our
analysis for weight-average molecular weights is done by a computer program
calibrated with single-stranded T4, A, and ¢ X~174 DNA's.

BUdR Photolysis——

The method we use for BUdR photolysis was developed by Regan, Setlow and
Ley (19) and has been reported by us in several separate papers including ref-
erences 4, 5, 8, 17, and 20. Briefly, therefore, matched cell cultures are



labeled with either 3H--TdR (experimental) or 32PO (control), treated with
te§£ agents and permitted to repair in the presence of either 10 "~ M BUdR or
10 " M TdR for either 4 hours (a measure of the rate of repair) or 20 hours
(2 measure of extent of repair). Cells are then detached, adjusted for num-—
ber of dpm/cell, mixed and exposed to high-intensity 313 nm light in the same
cuvette, thereby breaking the BUdR-containing regions but not the TdR-con-
taining regions of the DNA., The number of breaks detected by sedimentation
in alkali permits one to calculate the number of repaired regions, while the
fluence of 313 mm light (21) required to saturate all such sites permits a
determination of the size of such repaired regions.

Endosites—-—

Essentially our endonuclease sensitive site assay is that of Wilkins and
Hart (22), with the exception that S, rather than ultraviolet (UV)-endo is
used, thus permitting recognition of single-stranded regions within the DNA.

DNA Replication

The number of cells performing DNA replication per unit time was deter-
mined by autoradiographic procedures described in previous pulications (3, 4,
5, 8, 17)., In this procedure cells are exposed for a given length to the
agent and “H-TdR added to the media for a prescribed length of time. After
varying lengths of time, coverslips to which the cells are attached are
removed and autoradiographs prepared. Those cells showing grains are assumed
to have gone through a round of DNA replication.

Cytotoxicity

Human Fibroblast Cell Cultures—-

The procedure we use for determining cytotoxicity via colony formation
has been published in a paper by Blakeslee (25). In this procedure precon-—
fluent monolayers are dispersed by trypsin and triturated to assure single
cell suspension. Two hundred and fifty cells were plated in 35 mm diameter
wells in EMEM supplemented with 10 percent fetal bovine serum, 1 mM sodium
pyruvate, 2 mM glutamine, 1X nonessential amino acids (growth medium) and
incubated with the cells for 24 hours. Six to eight wells were used for
each test concentration. At the end of the incubation period, cells were
washed and refed with growth medium. Cell cultures were incubated for 12
days, fixed in formalin or methanol, stained with Giemsa and clones contain-
ing fifty or more cells enumerated. Absolute and relative plating efficien-
cies were determined and survival curves calculated from the data.

Syrian Hamster Embryo (SHE) Cell Cultures——

SHE cultures are composed of a number of cell types, each with its own
particular in vitro life span and cloning potential. It is used due to its
capacity to be transformed in vitro and its low degree of spontaneous trans-
formation (26, 27). Due to the fact that SHE cultures are composed of multi-
ple cell types, standard cloning cannot be accurately performed on this sys-
tem, and therefore cytotoxicity can only indirectly be measured by the change
in cell number compared to a control culture (26, 27).



Modification of Virally Directed Transformation

Virus-—

Briefly, 10 percent cell-free tumor homogenates from ST FeSV infected
cats were prepared and stored in L-15 medium + 15 percent fetal bovine serum
(FBS) at -70°C in 1 ml aliquots.

Infectivity Assay—- 4

Cells wege trypsinized and seeded onto either 16 mm (4 x 10 cells) or
35 mm (1 x 10° cells) diameter wells (Costar, Cambridge, MA) in 1.0 ml EMEM
medium for the former and four ml for the latter and incubated 18 hours prior
to treatment. Cells pre-treated with asbestos prior to virus infection were
incubated with designated concentrations of asbestos for two, six or 24 hours,
washed and treated with 0.2 ml (11 mm wells) or 1.0 ml (35 mm wells) of DEAE
dextran (40 pg/ml) in serum—-free EMEM. After twenty minutes, the cells were
rinsed with EMEM + 5 percent FBS, infected at 0.05 ml per 16 mm wells or 0.2
ml per 35 mm wells with each of four twofold virus dilutions and allowed to
absorb for two hours. Four wells were used per dilution of virus. The
plates were rocked at 10 to 15 minute intervals to maintain an even distribu-—
tion of inoculum and, after adsorption, the inoculum was removed and replaced
with two ml or four ml of growth medium. Cells post—treated with asbestos
after virus infection were incubated with designated concentrations of chemi-
cals two, six or 24 hours after virus adsorption. The medium was removed
from infected cells and the cells treated with medium containing only asbes-
tos for 24 hours, washed and refed with growth medium. Cells were refed with
fresh growth medium only on the sixth day after infection and subsequently
fixed with buffered formalin and stained with Giemsa three to four days later.
Foci appear as discrete areas consisting of round, hyperrefractile, enlarged
fibroblast cells. These foci were counted at 25 to 40 times with a dissect—
ing microscope.

Virus induced foci were counted in nontreated and asbestos treated wells.
The mean number of focus forming units and standard deviation was determined
for each treatment time and significance determined by Student’s t-test.

Alterations in Cellular Membrane Composition

Surface Labeling——

For labeling in the presence of phosphate buffered saline (PBS) the media
was decanted, cells washed three times with PBS, and the incubation volume
adjusted to five ml with the same buffer (28,29). For labeling in the
presence of media alone, minimal essential medium (MEM) was employed for wash—
ing and final incubation volume adjustment. For labeling with media contain-
ing 10 percent FBS, the incubation volume was adjusted to five ml. Galactose
oxidase [Sigma Biochemical Type III (125 units/mg) or Grand Island Biological
Co. (100 units/mg)] (200-250 ug) was added to give a finmal concentration of
25 units per dish, and the plates were incubated in a Prec151on Scientific Co.
p~ Model 2 oven under CO,-0, atmosphere for three hours at 35°c. After incu-
bation, the dish was washed“twice with either PBS or MEM med&um and the
excess incubation mixture was aspirated. One (1) mCi of NaB™H with S.A. 9
Ci/mmol (New England Nuclear; stored in 0,01 N NaOH solution at —40 c) ovas
added and allowed to stand with occasiomnal shaking for 30 minutes at 37%.
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Finally, the cells were detached from the plates with a scraper having a
wide rubber blade. The reaction mixtures obtained from the various plates
were washed five times with PBS pH 7.4, and centrifuged at 1500 rpm for 10
minutes each time. The pelleted cells were suspended in 200 pul PBS, and
aliquots were taken for the glygcolipids and glycoproteins determinations.
For glycoproteins the cells (10 ) were digested in PBS (100 ul) containing
one percent sodium dodecyl sulfate (SDS) and five percent B-mercaptoethanol
and heated in a water bath at 85°C for 10 minutes.

SDS~Polyacrylamide Gel Electrophoresis—

Electrophoresis was performed according to the method of Weber and
Osborn (30). B-galactosidase, urease, albumin, peroxidase and lysosyme
with molecular masses of 130,000, 83,000, 68,000, 44,050 and 13,930 respec—
tively were used. The gels were sliced and each slice radioassayed.

Extraction of Syrian Hamster Cells Glycolipids (31)--

An aliquot (100 pl) of surface labeled cells (10 ) was homogenized with
1 ml of methanol for five minutes at room temperature, and chloroform (2 ml)
was added so that the final ratio was 30 volumes of chloroform: methanol (2:1,
v/v) to 1 volume of cells. The homogenate was left overnight at room tem-
perature for efficient extraction, and then centrifuged at 1500 rpm for ten
minutes and the precipitate washed twice with chloroform:methanol (1:1, v/v).

Isolation of Glycolipids (32)--

Following the extraction of lipid from the cells, polar glycolipids
(gangliosides) were separated from neutral glycolipids by the procedure of
Folch (33). After Folch partition the total upper layer was reduced in vol-
ume to one to two ml and dialyzed at 4°¢ against distilled water for 24 hours.
The dialized upper phase was evaporated to dryness under N2’ and the residue
extracted with a small volume of chloroform:methanol (2:1,"v/v). This frac-
tion represents a major part of the gangliosides and contains some neutral
glycolipids in minor quantities. The analysis of gangliosides was performed
by thin-layer chromatography (TLC) (Kontes/quantum, precoated TLC plates)
and developed in a solvent system (Tetrahydrofuran:0.5 percent aqueous KCl,
7:1, v/v). Standard gangliosides were run separately in the same system at
the same time. The standard gangliosides were detected with resorcinol reag-
ent. Zones having the same R_ as the standards were scraped with a razor
blade and counted for radioacgivity. The lower phase, containing the neutral
glycolipids, sulfatides, neutral lipid and phospholipid, was evaporated to
dryness and the glycolipid fraction separated according to Laine et al (34).
The isolated glycolipid fraction was separated into individual neutral gly-
colipids by TLC as described previously (35, 36).

Determination of Cyclic Nucleotide Levels

Incubation with Asbestos and Preparation of Cell-free Extracts——

Asbestos was suspended in the medium at the desired concentratiomns.
Cells were incubated in the medium containing asbestos for various time
periods (37, 38, 39). At the end of the incubation period, the medium was
poured off, and the cells were washed twice with five ml phosphate-saline
buffer (pH 7.4). Cells were harvested in two ml of five percent trichloro—
acetic acid (TCA) with the help of a rubber scraper. The cells in TCA were
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sonicated for 10 seconds and centrifuged at 4°c at 3000 rpm for 20 minutes.
The precipitate fraction was dissolved in 1 N NaOH and saved for measurement
of protein, which was determined by the method of Lowry (40). The TCA from
the supernatant fraction was removed by extracting three times with three
volumes of water-saturated diethyl ether. The ether layer was aspirated and
any traces of ethyl ether remaining afterothe last extraction removed by
heating the aliquots for 10 minutes at 50°C., The pH of the extracts was
adjusted to 6.2 by adding 0.1 volume of 1 M acetate buffer, pH 6.5.

Radioimmunoassay of Cyclic Nucleotides--

Succinylated cyclic nucleotides were coupled to keyhole limpet homocya-—
nin as described by Steiner (41). This antigen was injected in rabbits to
produce the antiserum to cyclic nucleotides. The antiserum obtained has very
high specificity for cyclic nucleotides. Succinylatigscyclic nucleotide-
tryosyl methyl ester derivatives are iodinated with I-labeled cyclic nu-
cleotide derivative (5000 cpm) followed by 50 ul of 1:2000 dilution of
antiserum (cyclic GMP) or a 1:4000 dilution of antiserum (cyclic AMP). The
other details of this procedure are identical to those described by Steiner
(42). This method permits the measurement of cyclic nucleotides in the femto-
mole range (37, 38, 39, 43, 44).

For each measurement, five plates of cells were harvested individually.
The concentrations of cyclic nucleotides were measured in duplicate for each

plate. The standard errors of the mean were calculated from 10 values.

Measurement of PAH Metabolism and Binding to Cellular DNA

Isolation of DNA-—
DNA was isolated by either phenol extraction (45) or hydroxylapatite
chromatography (26, 27, 46, 47).

Degradation of DNA——

DNA was degraded to deoxynucleosides by either enzymic or chemical means
as appropriate: (i) the enzymic methods we employed were modified from those
used by Dipple, et al (48). In this method purified DNA is converted to mono-
nucleotides by incubation with bovine deoxyribonuclease I and snake venom
phosphodiesterase (12 hours, pH 7.5, 37%). Hydrolysis to nucleosides is
accomplished by either wheat germ (pH 6) or bacterial (pH 8.5) phosphatases
after pH adjustment. In our hands, this system gave quantitative hydrolysis
of carcinogen bound DNA as judged by cellulose TLC; (ii) when necessary, DNA
was hydrolyzed by incubation in 0.1 N HCI at 37°C (24 hours). Conversion to
bases was accomplished by boiling nucleosides in 0.1 N HC1 for 20 minutes (26,
27).

Analysis——

(1) Protein was quantitated by the Lowry method using either a BSA or
lypholized microsomal standard curve; (ii) DNA was quantitated, as appro-
priate, by either UV spectotroscopy, diphenylamine reaction, fluorescene or
total DNA phosphate content; (iii) the extent of RNA contamination of DNA
samples was determined by the orcinal reaction (27).
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Chromatography of Deoxynucleosides and Deoxynucleoside~hydrocarbon Products~-

Separation of the normal deoxynucleosides from the deoxynucleoside prod-
ucts was accomplished by chromatography on Sephadex LH-20 employing a water-
methanol gradient. Eluting fractions are monitored by ultraviolet spectro-
scopy continuously and, where appropriate, individual fractions are moni-
tored for radioactivity or fluorescence. Several scintillation counting
systems are presently employed in our laboratorieannd are Bsed as appro—
priate. Double label fractions are converted to CO, and "H,0 by a Packard
306 sample oxidizer and analyzed radiometrically in sé&parate Vials or are
analyzed directly employing a computer program (26,27).

Determination of DNA-Hydrocarbon Adducts—-

These studies were performed at two concentrations of benzo(a)pyrene and
four concentrations of each form of asbestos. The duration of benzo(a)pyrene
exposure was held constant and the duration of asbestos exposure varied
between zero and 48 hours at 12 to 24 hour intervals. The methodologies
employed in these studies are as follows: confluent monolayers of Syrian
hamster embryo cells and/or human fibroblast cells cultured as described
previously were treated with selected asbestos fibers at the desired con—
centration (0.1 to 1 pg/ml). At various timeg subsequent to the addition of
the asbestos, the media were inoculated with “H~benzo(a)pyrene (1-1.5 mCi/
mmole) at final concentration of one to two mM. Twenty—-four hours after the
hydrocarbon addition the medium was decanted, the monolayers rinsed three
times with PBS and the cells harvested in four ml of lysing solution (eight
M urea, containing 1 percent SDS, 0.01 M EDTA, and 0.24 M sodium phosphate,
pH 6.8). The DNA was then isolated by hydroxylapatite chromatography. The
isolated DNA was dialyzed and its concentration determined by DABA fluores-
cent techniques. The total amount of bound benzo(a)pyrene was determined by
liquid scintillation counting. The purified DNA was then hydrolyzed enzyma-
tically and the nature of the benzo(a)pyrene-deoxynucleoside adducts deter-
mined with Sephadex LH-20 chromatography (26,27).

CONCENTRATION EFFECTS

DNA Damage and DNA Replication

Only one concentration of asbestos (10 ug/ml) was employed to elicit
maximal response. Since little or no increase in DNA damage was observed
at this high concentration, no additiomal studies of concentration effects
were undertaken (49,50).

Cytotoxicity

For human Detroit 550 skin fibroblasts the dose response of plating
efficiency for amosite asbestos ranged from 58 to 90 percent of control.
A bimodal response was seen with greater survival in the middle range of
amosite concentrations and lower survival in the upper and lower ranges
(Table 2). Crocidolite had no effect at any concentration on cell plating
efficiency (Table 3). Chrysotile asbestos was in general more cytotoxic
at higher (0.1 - 10 ug/ml) doses of asbestos (Table 4)(51).
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TABLE 2. DETROIT 550 CELL SURVIVAL AFI'FR TREATMENT WITH CHOCTDOT.ITE ASBESTOS

Concentration ug/ml

10! 10° 107! 1072 1073 1074 1075 Conzrol

No. clones
per 25%) 32.3+3.5 |36.3+1.9 {33.043.1 ]35.5+2.9 |32.0+43.3 33.8+3.9 30.|64_-_’1.3 33.243.3
cells \a

Absolute
plating 12.9 .5 13.2 4.2 12.8 13.5 12.1 13.3
efficiency (2)(b) .

Relative
plating 97 110 99 110 96 100 90
efficiency (%) (c)

(z) Cells treated 24 hours, washed and refed with cloning medium

(b) APE- 250 cells were seeded in 35 mm wells, grown in MEM(E) + 103 FBS plus NaPyr, NEAA, EAA, gluNH,,
5% €O, humidifled atmosphere for 12 days at 37°C

(c) RPE - compared to control cells grown under same condltions

Enhancement of Virally Directed Cellular Transformation

There was no dose—~dependent effect of amosite asbestos fibers on ST FeSV
transformation (Figure 1). No enhancement could be demonstrated at any dose
employed. Only significant suppression could be demonstrated with both
chrysofile and crocidolite asbestos, no dose response could be demonstrated
(Figures 2 and 3).

Cell Membrane Composition

Due to the complexity and time—consuming character of the assays for
cell membrane composition, only 10 ug/ml concentrations of asbestos were
employed. As time permits dose responses at one and 0.01 u/ml will be exam-
ined for selected fiber types (28,29).

Modification of Cyclic Nucleotide Ratios

The ratio of cyclic AMP to cyclic GMP at 24 hours was 130 percent of
the ratio in the control at five ug/ml amosite concentrations (Figure 4).
At 48 hours amosite concentrations of 0.05 to five ug cyclic AMP/cyclic
GMP showed no differences (150-170 percent of control). Crocidolite, how
ever, showed a paradoxical dose response consistent at 0.05, 0.5 and 5.0
ug/ml. With higher concentrations of asbestos, there was a reduction in
the lesser cyclic AMP/cycle GMP ratio (Figure 5). Incubation with 0.01
to 10 um/ml chrysotile (short) or chrysotile (intermediate) did not demon-—
strate that alteration in cyclic AMP/cyclic GMP varied directly with asbes—
tos concentration (Figure 6). The cyclic nucleotide ratio, however, did
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TABLE 3.

LETROTT 550 CELL. SURVIVAL AFTER TREATMENT WITH AMOSITE ASBESTOS

Concentration

pg/ml

10! 10° 107! 1072 1073 1074 1075 Control
No.clones }
per 250 cells | 23.8+4.3 | 24.8+1.8 | 28.2¢4.9 | 30.7¢3.5 | 30.5¢3.3 | 26.3+h.2 | 20.045.7 | 34.0+1.0
Absolute
plating 9.5 9.9 11.3 12.3 12.2 10.5 8.0 13.6
efficiency (%)
Relative .
plating 710" 72.9 82.9 90.3 89.7 77.4 58.8 o
efficlency (%)
*~ = (P)-0.05-0.00} determined by student t test.

[ ]
TABLE 4. DETROIT 550 CELL SURVIVAL AFTER TREATMENT WITH CHRYSOTILE ASBESTOS
Concentration
pug/ml

10! 10° 107! 102 1073 107k 1075 Control
Ho. clones
per 250 cells 19.3¢3.5 | 23 +3.1 | 22.584.6 | 26.7+¢4.4 | 33.2¢h.9 | 22.3+h.0 | 29.0¢3.0 | 33.345.0
Absolute
plating 1.7 9.3 9.0 10.7 13.3 8.8 11.6 13.3
efficlency (%)
Relative %
plating 58.0 69.4 68.0 80.2 100 66.4 87.1 __
efficiency (%)

= ={P) 0.050-0.00] determined by student t test
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exhibit a dose response t¢ tremolite. This finding is the opposite of that
found with cells incubated with the known chemical carcinogens, benzo(a)-
pyrene and nitrosodimethyl amine (Figures 7 and 8)(39, 43, 44).

Modification of Chemical Carcinogen Metabolism and Association with DNA

This study was initiated at the beginning of the last grant period, so it
is too early to include such data.

TIME EFFECTS

DNA Damage and DNA Replication

Since neither extent of DNA damage nor amount of DNA replication was

altered after treatment of cells with PBS-leached asbestos, no time studies
were attempted in this area.

Cytotoxicity

Not determined at this time.

Enhancement of Virally Induced Cellular Transformation

Amosite asbestos fibers inhibited ST FeSV directed transformation if the
asbestos was introduced six hours prior to or two hours after viral infec-
tion, At all other times transformation frequency did not differ from con-
trol values (See Figure 1). Chrysotile fibers enhanced virally of 0.001
ug/ml) at all times of asbestos fiber exposure relative to viral infection
(See Figure 2). Crocidolite, in general, showed enhancement of virally
directed transformation at all times of asbestos incubation relative to viral
infection times (See Figure 3). At 10 pg/ml the enhancement was most notable
when the ST FeSV infection occurred either simultaneously with or within two
hours of the asbestos induction (See Figure 3)(51).

Alteration of Cell Membrane Composition

The alteration of the cell membrane glycolipids (Table 5) and glycopro-
teins (Figures 9 to 11) by chrysotile asbestos was tested at two, 24, 48 and
72 hours of incubation (28,29). At two hours there was little change in the
glycolipids or glycoproteins but at 24, 48, and 72 hours the ganglioside com-
position in the cell membrane progressively lost sialic acid moieties. This
loss is reflected in a shift from GD,, and GT, to GM. and GM,, simpler gang-
liosides. Surface glycoproteins aftetr two hoiurs of asbestos incubation were
unchanged. At 24 and 48 hours there was a loss of total glycoprotein as
well as a reduction in the higher molecular mass proteins. At 72 hours
there was a rebound in the total surface glycomolecular mass constituent
(Figure 11).
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ALTERATION IN THE RATIO OF CYCLIC AMP TO CYCLIC GMP
IN NORMAL HUMAN FIBROBLASTS EXPOSED TO AMOSITE
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Figure 4. The effect of various concentrations of amosite on the ratio of cyclic AMP to
cyclic GMP in normal human fibroblasts. The ratio of cyelic AMP to cyclic GMP in control
cells is expressed as 100% and the ratio in the asbestos-treated cells is expressed as a
percent (%) of control value. —~——w- , control; o o, 0.05 ug/mi, A—A, 0.5 ug/ml;
0—-g, 5.0 pg/mi.




ALTERATION IN THE RATIO OF CYCLIC AMP TO CYCLIC GMP
IN NORMAL HUMAN FIBROBLASTS EXPOSED TO CROCIDOLITE
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Figure 5. The effect of various concentrations of crocidolite on the ratio of cyclic AMP
to cyelic GMP in normal human fibroblasts. The ratio of cyclic AMP to cyclic GMP in the
control cells incubated without asbestos is taken as 100%. The ratio of cyclic AMP to
cyclic GMP in the asbestos-treated cells is expressed as a percent (%) of control value.
------ » control; o—~——o0, 0.05 pg/ml; A——A, 0.5 ug/ml; m—0, 5.0 ug/ml.
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ALTERATION IN THE RATIO OF CYCLIC AMP TO CYCLIC GMP IN
NORMAL HUMAN FIBROBLASTS EXPOSED TO BENZO (A)PYRENE
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Figure 7. The effect of benzo(a)pyrene on the ratio of cyclic AMP to cyclic GMP in
normel humen fibroblasts. Benzo(a)pyrene (BP) was dissolved in dimethylsulfoxide (DMSO).
The ratio of cyeclic AMP to cyclic GMP is expressed as 100% of the control value. --—-—- s
control DMSO only; o—o, 1 uM BP; A—-A, 10 uM BP; c—=8, 100 uM BP.



£z
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Figure 8. The effect of nitrosodimethylamine on the ratio of cyclic AMP to cyclic GMP
in normal humen fibroblasts. The ratio of cyclic AMP to cyclic GMP in the control cells
is expressed as 100%. The ratio of cyclic AMP to cyclic GMP in nitrosodimethylamine-
treated cells is expressed as a percent (%) of control value. --——-- , control; o-——o0,
2 mM; A—A, 20 mM; 0—0, 200 mM nitrosodimethylamine.
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TABLE 5. RELAYIVE DISTRIBUTION OF SURFACE LABELED GLYCOL1PIDS
OF SYRIAN HAMSTER EMBRYONIC CELLS

Percentage labeling®

Untreated Chrysotile asbestos treated cells
Compounds cells 2 hr 2k hr b8 hr 72 hr

Polar glycolipids

Monosialoganglioside (GMI) 2h.9 &+ 2.33 25.2 t 2.05 26.0 t 2.47 37.5 + 1.62 8.1 t 2.05

Monopialoganglioside (Gna) 30.3 & 3.7h4 29.8 ¢t 1.76 48.1 t 2.89 51.2 t 0.91 K3.1 + 1.20

Dislaloganglioside (Gbls) 20.7 * 1.97 20.2 t 2.96 6.9 & 1.89 3.9 ¢ 1.12 Loy 4+ 1.68

Trisialoganglioside (cha 2k.0 t 3,39 24,7 t 3,25 18.8 t 1.h8 7.3 t 1.86 h.2 ¢+ 0.89
Nuutru} g}ycolipidu

“Glucocerebroside"” 32.8 & 1.69 30.5 ¢ 1.20 21.2 % 1.76 26.h % 0.56 29.6 % 1.06

Cerebroside 3.1 * 1.56 36.0 1 1.20 35.4 ¢t .24 h2.4 + 1.69 56.5 t* 1.62

Globoside GL-h 35.9 ¢ o0.h2 33.4 t 2.h0 §3.3 t 2.47 3.2 t 2.26 13.8 t 0.56

* Dased on TIC comparison with known glycolipid standards
Mean & standard deviation, n = 2
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Figure 10.
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Changes in Cyclic Nucleotide Ratios

Brief (six hours) exposures of Detroit 550 human fibroblasts to either
amosite or crocidolite asbestos decreased the cyclic AMP/cyclic GMP below the
control value (See Figures 4 and 5). At 24 hours the ratio for both amosite
and crocidolite fibers bracketed the control ratio. At 48 hours the ratio
was almost universally greater than that of the control (39, 43, 44).

Modification of Chemical Carcinogen Metabolism and Association with DNA

No time studies of alteration of this factor are presented here.
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SECTION 4

NEGATIVE OR NEGLIGIBLE RESULTS OF STUDIES WITH ASBESTOS

All asbestos fiber types at the highest concentration employed had little
or no effect on induction of DNA damage based on unscheduled DNA synthesis if
the samples were washed. Unwashed fibers caused small amounts oﬁSDNA dimage.
Crocidolite caused no cytotoxicity at fiber concentrations of 10 ~ - 10

ug/ml.
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