

Report on Supercritical and Near-Critical GO2 in Chemical Synthesis and Processing as Environmentally Benign Solvent Replacements

Report on Supercritical and Near-Critical CO₂ in Chemical Synthesis and Processing as Environmentally Benign Solvent Replacements

EPA Order Number: 1W-0590-NASA

Requisition/Reference Number: TM1150 QT-DC-01-001351

Eric J. Beckman
Bayer Professor of Chemical Engineering
Associate Dean for Research
School of Engineering
University of Pittsburgh
Pittsburgh, PA

Although the information in this document has been funded by the United States Environmental Protection Agency under contract number TM1150 QT-DC-01-001351 to University of Pittsburgh, it does not necessarily reflect the policy of the Agency and no official endorsement should be inferred. This document has been reviewed in draft by both internal EPA reviewers and external peer reviewers.

Peer Reviews of the Report

This document was reviewed in draft by both internal U.S. Environmental Protection Agency (EPA) reviewers and external peer reviewers who were chosen for their diverse perspectives and technical expertise in environmental science and engineering and in supercritical and near-critical CO₃ chemical topics. Dr. Richard Engler and John Blouin from EPA's Office of Pollution Prevention and Toxics and Dr. Endalkachew Sahle-Demessie from the Office of Research and Development read the initial draft and provided written comments on the document. Dr. Eric Beckman addressed these comments and incorporated changes where necessary into the draft in January 2002.

Five external peer reviewers read the revised document and provided further extensive written comments. The peer reviewers included Dr. Martin Abraham, University of Toledo; Dr. Joan Brennecke, University of Notre Dame; Dr. Joseph DeSimone, University of North Carolina; Dr. Phillip Jessop, University of California, Davis; and Dr. Barbara Knutson, University of Kentucky. These comments also were addressed and changes incorporated into the final document in May 2002. Dr. Barbara Karn of EPA's Office of Research and Development, National Center for Environmental Research, oversaw the project and reviews. Ted Just served as the Contract Officer. Many thanks go to the efforts of the author and reviewers.

Contents

Exe	cutive	Sumn	nary	1
1	Intr	oductio	o n	7
	1.1	Super	reritical Fluids	7
	1.2	Physi	ical Properties of CO ₂	9
	1.3		ronmental and Safety Advantages to Use of CO ₂ in nical Processes	10
	1.4		ronmental and Safety Disadvantages Inherent to Use O ₂ in a Process	11
	1.5	Chen	nical Advantages to Use of CO ₂ as a Solvent	12
	1.6	Chen	nical Disadvantages to Use of CO ₂ as a Solvent	15
	1.7	How	We Will Approach Our Analysis	17
	1.8	Opera	ating a Process Economically With CO ₂	18
	1.9	Scope	e of This Report	23
	1.10	A No	te on Cleaning by Using CO ₂	24
	1.11		Effect of Regulation on the Use of CO ₂ in Green Chemistry Chemical Processing	25
2	Rea	ctions	Using Gases	29
	2.1	Hydrogenation		29
	2.2		d-Phase Hydrogenations: Advantages to Use percritical Solvents	25 29 29 29
	2.3	Heterogeneous Hydrogenation in CO ₂		31
	2.4	Homogeneous Hydrogenation in CO ₂		36
		2.4.1	CO ₂ -Soluble Catalyst Design	36
		2.4.2	Engineering Rationale for Homogeneous Versus Heterogeneous Catalysis	37
		2.4.3	Chemical Rationale for Homogeneous Catalysis	39
		2.4.4	Homogeneous Hydrogenation and Material Synthesis	40

	2.5	Industrial Activity: Hydrogenation in CO ₂ 4			
	2.6	Summary: Hydrogenation in CO ₂			
	2.7	Hydro	oformyla	tion in CO ₂	43
		2.7.1	Homog	eneous Catalysis of Hydroformylation in CO ₂	44
		2.7.2	Heterog	geneous Hydroformylation in CO ₂	46
		2.7.3	Industri	al Activity: Hydroformylation in CO ₂	46
		2.7.4	Summa	ry: Hydroformylation in CO ₂	47
	2.8	Oxida	tion in Co	O ₂	47
-		2.8.1	Oxidati	ons in CO ₂ : Experimental Results	48
		2.8.2	Industri	al Activity: Oxidations in Supercritical Fluids	51
	2.9	Sumn	nary: Ga	seous Reactants in CO ₂	51
3	Poly	meriz	ation and	Polymer Processing	55
	3.1	Introd	luction .		55
	3.2	Polyn	nerization	ns: General Background	55
	3.3	CO ₂ a	s a Solve	nt for Polymer Systems	56
	3.4	Chain	Polymer	ization and CO ₂	60
	•	3.4.1	Free Ra	dical Solution Polymerization	60
		3.4.2	Heterog	geneous Free Radical Polymerizations	61
			3.4.2.1	Emulsion Polymerization in CO ₂	62
			3.4.2.2	Dispersion Polymerization in CO ₂	63
			3.4.2.3	Suspension Polymerization in CO ₂	64
			3.4.2.4	CO ₂ as Nonsolvent in Heterogeneous Polymerizations	65
		3.4.3	Other C	Chain Polymerizations in CO ₂	65
		3.4.4	Industri	al Activity: Chain Polymerizations in CO ₂	66
	3.5	Cond	ensation	Polymerizations	67
		3.5.1	Polyest	ers, Polyamides, Polycarbonates	67
		3.5.2	Polyure	ethanes	69

	3.6	Carbon Dioxide as a Monomer	70
	3.7	Industrial Activity: Condensation Polymers and CO ₂ as a Monomer	72
	3.8	Postpolymerization Processing of Polymers Using CO ₂	72
	3.9	Extrusion-Foaming Using CO ₂	74
	3.10	Industrial Activity: Postpolymerization Processing	77
	3.11	Use of CO ₂ in Polymer Science Applied to the Microelectronics Industry	77
	3.12	Industrial Activity: CO ₂ and Polymers in Microelectronics Manufacture	7 9
4	Oth	er Reactions in CO ₂	81
	4.1	Enzymatic Chemistry	82
	4.2	Diels-Alder Chemistry	84
	4.3	Lewis Acid Catalysis/Friedel-Crafts Chemistry	85
	4.4	CO ₂ as Reactant and Solvent	86
	4.5	Other Organic Reactions	87
	4.6	Industrial Activity: Friedel-Crafts Chemistry and Other Name Reactions	88
	4.7	Inorganic Chemistry: General	88
	4.8	Inorganic Chemistry: Metal Chelates	89
	4.9	İnorganic Chemistry: Industrial Activity	92
5	For	mation of Fine Particles Using CO ₂	95
	5.1	Production of Particles Using CO ₂ : RESS	95
	5.2	Creating Fine Particles Using CO ₂ : Nonsolvent Modes of Operation and PGSS	96
	5.3	Production of Fine Pharmaceutical Powders: Is This Green Processing?	97
	5.4	Comparisons With Current Processes	98
	5.5	Industrial Activity	100

6	Process Issues			
	6.1	Process Design Using Supercritical Fluids: Are CO ₂ -Based Plants Inherently Uneconomical?		
	6.2	How Does One Economically Recover a Catalyst and/or Product From CO ₂ ?		
	6.3	Where Would Process Improvements Enhance Opportunities for Green Chemistry in CO ₂ ?		
7	Rea	ctions at Interfaces and/or Multiphase Mixtures 107		
8	Impact of the Technology for a Sustainable Environment (TSE) Program on Use of CO ₂ as a "Green" Solvent			
	8.1	Description of Funded Projects in the TSE Program 111		
	8.2	Impact of the TSE Program		
	8.3	Technology Transfer From TSE-Sponsored Programs		
9	Mile	estones in Green Chemistry Using CO ₂		
10	Areas for Future Research on CO ₂ Technology			
11	References			

EXECUTIVE SUMMARY

This review specifically examines the use of carbon dioxide (CO₂) to create greener processes and products, with a focus on research and commercialization efforts performed since 1995. The literature reveals that use of CO₂ has permeated almost all facets of the chemical industry, and that careful application of CO₂ technology can result in products (and processes) that are cleaner, less expensive, and of higher quality.

Carbon dioxide is nonflammable and naturally abundant, with a Threshold Limit Value (TLV) that renders it less toxic than many organic solvents. Carbon dioxide is clearly a "greenhouse gas," but like water, if CO₂ can be withdrawn from the environment, employed in a process and then returned to the environment "clean," no environmental detriment accrues. CO₂'s combination of high TLV and high vapor pressure means that residual CO₂ left behind in substrates is not a concern with respect to human exposure—the same can certainly not be said to be true for many man-made and naturally occurring organic compounds. There is effectively no liability due to "residual" CO₂ in materials following processing—only water also enjoys this special situation.

Chemical advantages to use of CO, as a solvent. Carbon dioxide can provide not only environmental advantages, but also chemical advantages when applied strategically. First, CO, cannot be oxidized, and it is therefore particularly useful as a solvent in oxidation reactions. Next, cross-contamination of the other phase during liquid-liquid extraction is not really contamination. Although CO, will "contaminate" an aqueous phase upon contact in a process, a mixture of CO, and water clearly does not require remediation, unlike almost any other organic solvent. Further, CO, is generally immune to free radical chemistry. Carbon dioxide does not support chain transfer to solvent during free-radically initiated polymerization, and is hence an ideal solvent for use in such polymerizations. CO, is miscible with gases in all proportions above 31°C. Gases such as hydrogen and oxygen are poorly soluble in organic liquids and water, and hence in many twoand three-phase reactors the rate is limited specifically by the rate at which the gas diffuses across the gas-liquid interface. Liquid CO, can absorb much higher quantities of H, or O, than typical organic solvents or water, and supercritical CO, is completely miscible with such gases. Finally, CO, exhibits a liquid viscosity only 1/10 that of water. The surface tension in CO, also is much lower than that for conventional organic solvents, and the diffusivity of solutes is considerably higher. owing to carbon dioxide's low viscosity. Consequently, CO, would be expected to wet and penetrate complex geometries better than simple liquids, and reactants would be expected to diffuse faster within catalyst pores where CO, is the solvent.

Chemical disadvantages to use of CO₂ as a solvent. Carbon dioxide exhibits some inherent disadvantages where chemistry is concerned; some of these are unique

to CO₂, and others are common to any number of solvents. First, CO₂ exhibits a relatively high critical pressure and vapor pressure. These characteristics guarantee higher capital costs for a CO₃-based process relative to one using a conventional solvent, as well as the need for specialized equipment for laboratory work. These issues will not by themselves impede the commercialization of CO₂-based processes, as many commercial processes operate at pressures above 10 MPa. Second, CO, is a Lewis acid. When attempting to use amines as reactants, this can be a serious disadvantage, in that carbamate formation can slow the rate of the intended reaction and also can alter the solubility characteristics of the substrate. CO, has been shown to react reversibly with a number of enzymes (lysine residues, specifically), leading to low activity in the presence of CO₃. Unfortunately, CO₃ can be hydrogenated in the presence of noble metal catalysts to produce carbon monoxide (CO). If one is trying to hydrogenate a substrate in CO, over a heterogeneous platinum catalyst, production of CO will poison the catalyst and produce toxic byproducts. There has been a certain degree of controversy recently as to what extent the same reaction occurs over palladium catalysts. Next, dense CO, produces low pH (2.85) upon contact with water. This can render some biocatalytic and organic reactions problematic, in that many enzymes and catalysts are deactivated by low pH. Finally, CO, is a weak solvent. This is perhaps CO,'s greatest flaw, in that its inability to solvate compounds of interest at economical process pressures has inhibited its commercial use.

Operating a process economically with CO,. Operation of any process at high pressure typically involves higher costs than the analogous process operated at one atmosphere. If such a process is considered "green," but cannot be created and operated economically, then the process will be of academic interest only and its potential green benefits unrealized. There are some simple "rules of thumb" that one can use to lower the cost of a CO₃-based process. First, operate at high concentration. One way in which to minimize the cost of a CO,-based process is to minimize the size of the equipment, hence minimize the amount of solvent (CO₂) flowing through the process. Next, operate at as low a pressure as possible. Use of CO₃-philic functional groups in the design of substrates or catalysts can greatly lower the needed operating pressure, although it should be remembered that their use could easily raise raw material costs. Another classic technique for lowering operating pressure is to employ co-solvents—whether the use of co-solvent/CO, mixtures is green or not must be determined on a case-by-case basis. A final somewhat obvious route to the lowering of the operating pressure is by operating at subambient temperatures. Here, however, one must balance the advantage gained by reducing the operating pressure with the energy cost for cooling and any reduction in reaction rate. Although perhaps counterintuitive, recover products without highpressure drops. It has been noted that use of CO, as a solvent is advantageous because reduction of the pressure to one atmosphere results in the complete precipitation of any dissolved material, but use of such a route for product recovery raises costs, as one then must compress the make-up of CO₃. As gas compression is

energy-intensive and expensive, a greener route to product recovery is desirable. Finally, operate the process continuously if possible. The rationale for operating in a continuous mode is that the equipment can be smaller. Although this is usually straightforward for liquid substrates, it can be much more difficult for the processing of solids at high pressure.

This report focuses on CO₂-based processes where chemical reactions are taking place (i.e., green chemistry) or materials are being processed to create viable products. Hence, processes that contain only separations unit operations (for example, extractions and cleaning) were not specifically considered. Whereas this report does not explicitly address the state-of-the-art in cleaning using CO₂, it does evaluate several technological issues that are significant to the advancement of CO₂-based cleaning, including the design of high-pressure equipment and auxiliary agents for cleaning. In this report, a wide variety of process schemes were critiqued for their ability to provide a more sustainable process as compared to existing technology, using the 12 principles of green chemistry as a basis for judgments. Research and development conducted over the previous 5 years (1997-present) has been emphasized.

The extent to which conventional solvents are regulated will have a profound effect on the extent to which CO₂ is used as a solvent in the future. Carbon dioxide often has been described as a potential substitute for chlorofluorocarbons (CFCs). Because CFCs actually exhibit a number of advantageous properties, without the regulation restricting their use it is not likely that CO₂ would ever have been considered as a viable competitor. Although CFCs represent a somewhat extreme case, regulation does exert more subtle effects on the use of CO₂. From an engineering perspective, CO₂ is nearly always more difficult to employ as a solvent because one needs high-pressure equipment. Consequently, the extent to which a particular solvent is regulated, and the subsequent obstacles to the use of such a solvent in a chemical process, can tip the scales either in favor or against use of CO₂.

Milestones in green chemistry using CO₂. Perhaps the first true "green" application of CO₂ was the coffee decaffeination process scaled-up during the 1980s; this is a milestone as it showed that one could successfully scale and operate a CO₂-based process economically given a good design. In the 1980s, conventional wisdom claimed that CO₂'s solvent power resembled that of n-alkanes, despite a large body of experimental evidence to the contrary. The paper in *Science* by the DeSimone group on the CO₂-philicity of poly(perfluoroacrylates) in 1992 was a milestone both from the scientific standpoint, and from a dissemination perspective, as this publication served to quash the "CO₂ is like hexane" heuristic. With publications by Leitner's group and Tumas' group in the mid-1990s, showing the use of fluorinated ligands in homogeneous catalysis in CO₂, green chemistry in CO₂ began to rapidly permeate the chemistry community and be applied broadly as a solvent in organic transformations. In 1999, Brennecke published a study demonstrating the potential for use of ionic liquid/CO₂, biphasic mixtures as media for

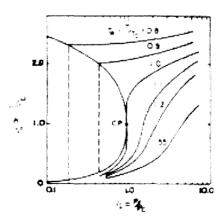
green chemistry—the first papers exploiting this biphasic system appeared in 2001. A number of researchers examined the strong potential for CO, to plasticize polymers, with several important papers appearing between 1985 and 1994. Exploitation of this science appeared in 1996 through 2001, as both industry and academia employed the plasticizing effect to enhance mixing in polymer systems.

Regarding commercial milestones, the introduction of the CarDio process for continuous production of polyurethane foam using CO₂ as the blowing agent has been extremely important, in that it is both green chemistry and commercially successful. Much more widely known is the construction (by DuPont) of a semi works facility to polymerize fluorinated monomers in carbon dioxide. Another series of commercial milestones occurred in 2000 to early 2001, when the pharmaceutical industry purchased (either in their entirety or substantial portions) Bradford Particle Design, Separex, and Phasex—three of the more significant commercial enterprises relying primarily on supercritical fluids technology. It will be interesting to see whether this leads to more rapid commercialization of CO₃-based processes or the reverse.

Areas for future research on CO₂ technology. In each section of this report, mention has been made of potentially useful avenues for future research: these are summarized below.

- The use of biphasic systems (including carbon dioxide as one component) for conducting reactions using gaseous components. Also, focus more on oxidations and hydroformylations versus hydrogenation in CO₂; the former reactions generate more waste and require more stringent conditions than hydrogenation, yet have received relatively less attention in the literature.
- Group contribution or, better yet, first principles models for the prediction of phase behavior in multiphase, multicomponent systems where carbon dioxide is one of the components; therefore, this should result in the design of "CO₂-philes" that do not include fluorine. Prediction of basic transport properties is needed as well.
- The design of systems for the rapid high-pressure treatment of solid articles (as in the development of silicon wafers) or the continuous coating of material using a CO₃-based solution.
- The use of CO₂ in microelectronics processing, which will involve simultaneous equipment and molecular design of great complexity.
- An indepth understanding of the mechanism for generation of CO and subsequent poisoning of noble metal catalysts in the presence of H₂ and CO₂.
- The design of catalysts for the generation of polyesters and commodity chemicals (aromatic acids) from CO₃; activation of CO₂ at low pressures.
- Explore the use of co-solvents for CO, in a more systematic manner to find mixtures that are technically, environmentally, and economically successful.

- The design of additives that would allow greater use of CO₂ in the extrusion foaming of polymers.
- The development of a set of fundamental design principles for the formation of particles via phase separation from mixtures that include CO₂ (under flow in a known geometry).
- Programs that focus on overcoming the various technical hurdles to the use of CO₂ in coating processes.


The Technology for a Sustainable Environment Program (TSE) has been highly successful in educating scientists in the use of CO₂ through their funding of sound basic research in this area. A direct consequence of this is that CO₂ is no longer considered an exotic solvent, but rather one more weapon in one's arsenal of sustainable technologies. In the past, the TSE program has solicited proposals from academia in the general area of green chemistry, giving principal investigators (PIs) complete freedom regarding the focus of the proposals. It might be useful for TSE staff also to publish a list of current high-profile effluent problems where innovative green chemistry solutions might contribute to broad industry or societal benefit. However, it should be stressed that moving from the current entirely curiosity-driven system to one that is entirely "target-specific" is not recommended, in that much of the truly innovative discoveries in green chemistry and processing might be lost.

Section 1

Introduction

1.1 Supercritical Fluids

Supercritical fluids are materials at temperatures above their critical value (T_c): at the critical temperature, the meniscus that separates the gas from liquid phases disappears, leaving a single phase. As one also can see from the generic phase diagram in Figure 1, the compressibility (a function of "V/"P) diverges at the critical point. At temperatures above T_c , the density of the material can be varied smoothly from "gas-like" to liquid-like values through variations to pressure [1]. Because a number of physical properties (viscosity, diffusivity, dielectric constant) are known to depend on fluid density [2], it is not surprising that physical properties of supercritical fluids are said to lie intermediate to those of liquids and gases. "Near-critical" is typically used to describe fluids at temperatures below the critical, but within 50 K. It should be noted that no firm definition exists for "near-critical." and

FIGURE 1 Generic phase diagram; reduced density as a function of reduced pressure and reduced temperature [1].

hence, the term "liquid" will be employed to describe fluids at temperatures close to but below T_c. Note that "liquid" can be used to denote the situation where a compressed liquid exists alone, or where a liquid exists in the presence of the associated vapor phase, although "saturated liquid" is normally used to denote the latter situation.

At constant pressure, the density of a fluid decreases as the temperature increases above T_c (see Figure 1). Further, to a first approximation, the solvent power of a fluid is proportional to its density [3]. Consequently, to successfully employ a supercritical fluid as a solvent, one should employ conditions such that the density is liquid-like, and hence, one should operate at temperatures relatively close (either above or below) to T_c. Because many reactions of interest currently carried out in liquids are conducted at temperatures between 273 and 423 K, those fluids that are of most interest to the scientific community exhibit critical temperatures in this range.

Critical temperature generally rises as the molecular weight of a material rises. and also if a material exhibits a significant self-interaction (hydrogen bonding, for example). Consequently, those fluids that exhibit T's in the range of most interest tend to be nonpolar fluids of relatively low molecular weight, as shown in Table 1. Although they exhibit accessible critical temperatures, many of the fluids shown in Table 1 have not been extensively investigated (in a solvent role) owing to inherent disadvantages. For example, reports during the early 1990s of violent side reactions (oxidations) have nearly extinguished the enthusiasm of the scientific community towards the use of N₂O as a solvent, despite a number of characteristics that render it superior to CO, as a solvent. The alkanes are flammable, and hence, interest in these materials as solvents has been limited to primarily academia over the past decade (a notable exception to this is the work by Magnus Harrod, described in a later section, on hydrogenation in propane). The fluoroalkanes and hydrofluoroalkanes exhibit a number of highly favorable physical characteristics, including nonflammability, commercial availability, and relatively low vapor pressures. Unfortunately, these fluids also are expensive and exhibit strong climate change potential, and interest in their use as solvents also has been relatively muted.

The concerns listed in the previous paragraph have effectively reduced the list of viable supercritical solvents to carbon dioxide, given that CO₂ is inexpensive, non-flammable, and *relatively* inert (see Table 1). Consequently, this report will focus entirely on the use of CO₂ (supercritical and liquid) as a solvent in the design of greener reactions and processes. Note that some industrial processes currently employ reactants (other than carbon dioxide) in the supercritical state (e.g., production of low density polyethylene from supercritical ethylene, and production of 2-butanol, and ultimately methyl ethyl ketone, from supercritical butene). These processes were designed and constructed without "green" issues in mind, however. Indeed, advances in catalyst design (both Ziegler-Natta type and metallocenes) have permitted the polyolefins industry to avoid using high-pressure ethylene (reducing energy input) while creating products with a broader array of physical properties.

TABLE 1 Critical Constants of Some Common Fluids [3].

Substance	Critical Temperature (°K)	Critical Pressure (bar)	Critical Volume (cc/mole)
CO ₂	304.1	73.8	160
SF ₆	318.7	37.6	198.8
Xenon	289.7	58.4	118.4
Ethylene	282.4	50.4	130.4
N ₂ O	309.6	72.4	97.4
Ethane	305.4	48.8	148.3
Propane	369.8	42.5	203.0
Butane	425.2	38.0	255.0
CF₄	227.6	37.4	139.6
CF ₃ H	299.3	48.6	132.7
$C_{2}F_{6}$	293.0	30.6	222.0
C ₂ F ₅ H	339.2	36.4	209.7
$C_{2}F_{4}H_{2}$	474.2	40.6	235.3
CH,OCH,	400.0	52.4	178.0
Propylene	364.9	46.0	181.0
Methanol	512.6	80.9	118.0
Water	647.3	221.2	57.1

It should be noted that water exhibits all of the same favorable properties as CO₂, except for an accessible critical temperature. Water's T_c of 647 K (and P_c of 212 bar) has for the most part limited its use (in the supercritical state) to processes that destroy organic compounds (complete oxidation) or to production of inorganic materials. Even this application is made difficult by the corrosive nature of supercritical water solutions. Recently, however, a number of researchers have begun to explore the use of superheated water (temperature between 373 K and 647 K) as a solvent for use in "green" reactions [4]. Superheated water exhibits a relatively low dielectric constant (~10), and thus can dissolve organic compounds. Superheated water also exhibits a relatively high ionization constant, and hence, researchers have (for example) employed superheated water to conduct Friedel-Crafts type acylations without the use of the traditional aluminum halide [4]. The use of superheated water in green chemistry, although a significant topic for inquiry, is outside the scope of this report—interested readers can consult the reviews in reference 4.

1.2 Physical Properties of CO,

The pVT properties of CO₂ have been known since the 1930s [5]; extensive data sets are available in the literature and on the Web in the form of correlations of

density, viscosity, dielectric constant, etc., as functions of temperature and pressure [6]. Note that CO_2 's critical pressure (and hence its vapor pressure in the "near-critical" or liquid regime) is significantly higher than analogous values for alkane, fluoroalkane, or hydrofluoroalkane fluids (Table 1). CO_2 's anomalously high critical pressure is but one result of the effect that CO_2 's strong quadrupole moment exerts on its physical properties. Although the high critical pressure is problematic, the most unfortunate outcome of the effect of quadrupole moment on physical properties was the premise, first advanced during the late 1960s, that CO_2 might prove to be a solvent whose strength would rival or surpass that of alkanes and ketones [3]. Because early models employed to calculate CO_2 's solvent power relied on a direct relationship between the Hildebrandt solubility parameter (δ) and the square root of the critical pressure $[(P_2)^{1/2}]$, the solubility parameter of CO_2 was overpredicted by 20 to 100 percent, leading to early inflated claims about the potential for using CO_3 to replace conventional organic solvents.

1.3 Environmental and Safety Advantages to Use of CO₂ in Chemical Processes

Carbon dioxide is nonflammable, a significant safety advantage in using it as a solvent. Also, it is naturally abundant, with a TLV (for airborne concentration at 298 K to which it is believed that nearly all workers may be repeatedly exposed day after day without adverse effects) of 5,000 ppm [7], rendering it less toxic than many other organic solvents (acetone, by comparison, has a TLV of 750 ppm, pentane is 600 ppm, chloroform is 10 ppm [7]). Carbon dioxide is relatively inert towards reactive compounds, which is another process/environmental advantage (byproducts owing to side reactions with CO₂ are relatively rare), but CO₂'s relative inertness should not be confused with complete inertness. For example, an attempt to conduct a hydrogenation in CO₂ over a platinum catalyst at 303 K will undoubtedly lead to the production of CO, which could poison the catalyst [8]. The same reaction run over a palladium catalyst under the same conditions will by contrast produce lesser amounts of CO as a byproduct [9], and knowledge of CO₂'s reactivity is vital to its use in green chemistry.

Carbon dioxide is clearly a "greenhouse gas," but also it is a naturally abundant material. Like water, if CO₂ can be withdrawn from the environment, employed in a process, then returned to the environment "clean," no environmental detriment accrues. However, although CO₂ could in theory be extracted from the atmosphere (or the stack gas of a combustion-based power plant), most of the CO₂ employed in processes today is collected from the effluent of ammonia plants or derived from naturally occurring deposits (for example, tertiary oil recovery as practiced in the United States [10]). Because industrially available CO₂ is derived from manmade sources, if CO₂ can be isolated within a process one could consider this a form of sequestration, although the sequestered volumes would not be high. Ultimately,

one should consider the source of CO₂ used in a process to adequately judge the sustainability of the process.

CO₂ is combination of high TLV and high vapor pressure means that residual CO₂ left behind in substrates is not a concern with respect to human exposure—the same certainly cannot be said to be true for many manmade and naturally occurring organic compounds. Because there is effectively no liability due to "residual" CO₂ in materials following processing. CO₂ is not considered a solvent requiring process reevaluation by the U.S. Food and Drug Administration. Only water also enjoys this special situation. Indeed, most of the commercial operations employing CO₂ as a solvent were initiated to take advantage of CO₂'s particular advantages in products designed for intimate human contact (such as food), or CO₂'s non-VOC designation (such as the foaming of thermoplastics). The recent commercialization of fabric cleaning using CO₂ benefits both from CO₂'s advantages in human-contact applications and situations where emissions appear unavoidable.

The simultaneous use of both hydrogen and oxygen in a reaction is obviously problematic from a safety standpoint, given that H_2/O_2 mixtures are explosive over a broad concentration range. Addition of CO_2 to mixtures of H_2 and O_2 expands the nonexplosive regime (in the gas phase), more so than if either N_2 or water vapor were added [11]. At this point, it is not clear to what extent the nonexplosive regime will expand further as one raises the density of the mixture (and hence the heat capacity).

In a final intriguing note regarding safety advantages inherent to the use of CO₂ as a solvent, DuPont scientists [12] discovered that addition of CO₂ to tetrafluoroethylene enhances the stability of that notoriously difficult-to-handle monomer, although the exact mechanism for the enhanced stability has not been published. What has been revealed is that addition of CO₂ to TFE vapor inhibits runaway decomposition and explosion of the monomer. In addition, the CO₂/TFE mixture behaves like an azeotrope, in that boiling of a mixture of the two does not significantly change the concentration of either the liquid or the vapor. According to the DuPont patent [12], this "azeotrope-like" behavior persists over a wide concentration range, behavior that is quite unlike that of typical azeotropic mixtures. The enhanced safety of CO₂/TFE mixtures relative to pure TFE is one of the reasons that DuPont constructed a semi-works polymerization plant employing CO₂ as solvent for the generation of fluoropolymers.

1.4 Environmental and Safety Disadvantages Inherent to Use of CO₂ in a Process

Because CO₂'s vapor pressure at room temperature exceeds 60 bar, use of CO₂ in a process clearly requires high-pressure equipment, creating a potential safety hazard relative to the same process operated at one atmosphere. In addition, uncontrolled release of large quantities of carbon dioxide can asphyxiate bystanders

owing to air displacement. These issues have not impeded the commercialization of CO₂-based processes, nor is it likely they will do so in the future. It should be remembered that the low density polyethylene polymerization process, first commercialized in the 1940s and still in operation today [13], runs continuously at 2.000 to 3.000 bar and 520 K with a highly flammable component, and hence, safe operation of a 100-200 bar CO₂-based plant is readily achievable using current technology. Operating an exothermic reaction in a high-pressure environment is accompanied by additional safety concerns versus the analogous reaction run at one atmosphere.

Whether to use liquid or supercritical CO, is a choice that actually involves safety as well as chemistry considerations. Although use of supercritical CO, almost always involves use of higher pressure (to achieve the same solubility of a given substrate as in the liquid phase), other factors also should be considered. First, supercritical CO, will exhibit a higher compressibility than liquid CO,, and hence the supercritical fluid will be better able to absorb excess heat evolved from an exothermic reaction whose rate suddenly exceeds typical operating conditions. On the other hand, use of saturated liquid CO₂ (in the presence of the vapor phase) would allow boiling to be used as a means to absorb excess heat. Use of supercritical CO, (versus liquid) could avoid complications owing to a phase separation occurring upon a departure from established temperature or pressure conditions within a given reactor. For example, if one is employing a mixture of oxygen, substrate, and liquid CO, in a particular process, a sudden drop in pressure owing to a perturbation in the process could lead to formation of a flammable gaseous phase—use of a supercritical mixture could avoid this problem as no vapor-liquid separation will be encountered. Indeed, it also should be remembered that the T_c of a mixture of CO, and other materials will differ from that of pure CO, (see, for example, reference 2 for useful correlations), and hence T-p conditions sufficient for supercritical operation with pure CO, may create a liquid in the case of the mixture.

1.5 Chemical Advantages to Use of CO₂ as a Solvent

Carbon dioxide can provide not only environmental advantages, but also chemical advantages when applied strategically, as described below.

 ${\bf CO_2}$ cannot be oxidized. In essence, carbon dioxide is the result of complete oxidation of organic compounds; therefore, it is particularly useful as a solvent in oxidation reactions. Use of almost any organic solvent in a reaction using air or ${\bf O_2}$ as the oxidant (the least expensive and most atom-efficient route) will lead to formation of byproducts owing to reaction of ${\bf O_2}$ and the solvent. Indeed, the commercial anthraquinone process used to generate ${\bf H_2O_2}$ requires the removal and regeneration (or incineration) of substantial volumes of such solvent byproducts [14]. Oxidation reactions in ${\bf CO_2}$ have consequently been investigated extensively over the past decade (see Section 2.8).

Because CO₂ is inert towards oxidation and also is nonflammable, CO₂ is one of the very few organic solvents that could be considered for the direct reaction of hydrogen and oxygen to form hydrogen peroxide [15]. This process has been under investigation for more than 2 decades, yet traditional organic solvents are not sufficiently inert/safe, and water exhibits productivity disadvantages.

CO₂ is benign, and hence cross-contamination of the other phase during liquid-liquid extraction is not really contamination. There are a number of large-scale chemical processes that employ biphasic (water-organic) mixtures—H₂O₂ production and hydroformylation of low molecular weight alkenes are but two examples [14]. In any contact between aqueous and organic phases, some cross-contamination is inevitable. The aqueous phase will require subsequent remediation to eliminate the organic contamination, but the organic phase may require drying to allow further use in the process.

Although CO₂ will "contaminate" an aqueous phase upon contact in a process. a mixture of CO₂ and water clearly does not require remediation (the CO₂ phase may, of course, require drying for further use). Consequently, CO₂ exhibits a particular advantage in processes where a biphasic reaction or liquid-liquid extraction against water is required. Eckert and colleagues [16] have, for example, investigated the use of phase transfer catalysts in CO₂/water mixtures. Further, the coffee decaffeination process employs a liquid-liquid extraction between CO₂ and water to recover the extracted caffeine [17].

CO₂ is an aprotic solvent. Clearly, CO₂ can be employed without penalty in cases where labile protons could interfere with the reaction.

CO, is generally immune to free radical chemistry. Because carbon dioxide does not support chain transfer to solvent during free radically initiated polymerization, it is an ideal solvent for use in such polymerizations, despite the fact that it is typically a poor solvent for high molecular weight polymers. In chain transfer, a growing chain (with a terminal radical) abstracts a hydrogen from a solvent molecule, terminating the first chain. The solvent-based radical may or may not support further initiation, and hence, chain transfer to solvent can lead to diminished molecular weight and diminished polymerization rate. Research conducted during the 1990s (primarily by J.M. DeSimone and coworkers) showed that CO, does not support chain transfer, as it is inert towards polymer-based free radicals [18]. Other researchers have examined small-molecule free radical chemistry in CO, to be viable as well [19]. Indeed, it is likely that most of the polymerizations currently conducted by DuPont in its semi-works facility are precipitation polymerizations, where the improved control over molecular weight and the enhanced safety inherent to use of TFE/CO, mixtures (see Section 1.3) more than makes up for any difficulties caused by polymer precipitation during the reactions.

CO₂ is miscible with gases in all proportions above 31°C. The rate of most processes where a gas reacts with a liquid is limited by the rate at which the gas

diffuses to the active site (either within a catalyst particle or simply to the liquid reactant). Gases such as hydrogen and oxygen are poorly soluble in organic liquids and water, and hence, in many two- and three-phase reactors the rate is limited specifically by the rate at which the gas diffuses across the gas-liquid interface.

Although phase separation envelopes exist with gases at lower temperatures, liquid CO₂ can absorb much higher quantities of H₂ or O₂ than typical organic solvents or water [20]. Hence, one can eliminate the dependence of the rate on gas transport into the liquid phase by employing CO₂. Although conventional wisdom might claim that this effect is achieved only through creation of a single phase (of CO₂, gaseous reactant, and liquid substrate), recent work in the literature shows that one can achieve high gas solubility and hence high rate while remaining two-phase (see Section 2).

It should be remembered that CO₂ will exhibit total miscibility with gases above 304 K only if those gases also exhibit critical temperatures less than or equal to 304 K. This includes commonly used reactant gases such as H₂, O₃, and CO, for example. Further, addition of any third component (here, a gas such as H₂, o₃, and CO) to a mixture of CO₂ and substrate (and catalyst, perhaps) will alter the phase behavior of the mixture. Because commonly used reactant gases such as H₂, O₃, and CO exhibit low critical temperatures [2], at typical reaction temperatures (273-373 K), the density of these gases, even under relatively high pressures used to compress CO₂, will be quite low (more gas-like than liquid-like). As such, we expect these gases to behave as nonsolvents towards the substrate and/or catalyst [21]. Thus, addition of large amounts of reactant gas to the mixture may solve one problem (diffusion limitations) and create another (phase separation).

CO₂ exhibits solvent properties that allow miscibility with both fluorous and organic materials. Carbon dioxide is miscible with a variety of low molecular weight organic liquids, as well as with many common fluorous (perfluorinated) solvents. The literature has shown previously that one can create a homogeneous mixture of certain fluorous and organic liquids at one temperature, where phase separation occurs on a temperature increase or decrease. Recently, Eckert's group has shown that one can employ CO₂ as a phase separation "trigger" in much the same way—addition of CO₂ (at pressures as low as 20-30 bar) to a mixture of organic and fluorous liquids creates a homogeneous single phase, while removal (through depressurization) returns the system to a two-component, two-phase system [22].

 CO_2 exhibits a liquid viscosity only 1/10 that of water. At liquid-like densities, CO_2 's viscosity is only 1/10 that of water, and hence Reynolds numbers ($\rho VD/\mu$, where V is fluid velocity. D is distance or length, ρ is fluid density, and μ is fluid viscosity) for flowing CO_2 will be approximately 10 times those for conventional fluids at comparable fluid velocity. Because convective heat transfer is usually a strong function of Reynolds number, heat transfer in a CO_2 mixture can be expected to be excellent. On the other hand, CO_2 's physical properties also lead to significant natural convection causing problems in some coatings processes. The extent to which natu-

ral convection is an issue is directly related to the magnitude of the Grashof number [23], which itself scales as ρ^2/v^2 . Because CO_2 exhibits a liquid-like density and a gaslike viscosity. Grashof numbers for CO_2 -based processes can be significantly higher than for analogous liquid processes.

The surface tension in carbon dioxide is much lower than that for conventional organic solvents, and the diffusivity of solutes is expected to be considerably higher, owing to CO₂'s low viscosity. Consequently, CO₂ would be expected to wet and penetrate complex geometries better than simple liquids. Further, solutes would be expected to diffuse faster within catalyst pores where CO₂ is the solvent than in analogous systems using conventional liquids.

1.6 Chemical Disadvantages to Use of CO₂ as a Solvent

Carbon dioxide exhibits some inherent disadvantages where chemistry is concerned; some of these are unique to CO₂, while others are common to any number of solvents.

 ${
m CO}_2$ exhibits a relatively high critical pressure and vapor pressure. As mentioned above, ${
m CO}_2$ exhibits high critical and vapor pressures; these characteristics guarantee higher capital costs for a ${
m CO}_2$ -based process relative to one using a conventional solvent, as well as the need for specialized equipment for laboratory work. Exothermic reactions pose special problems for operation in ${
m CO}_2$, given that high pressure is the baseline situation.

CO₂ exhibits a low dielectric constant. Carbon dioxide exhibits a dielectric constant of approximately 1.5 in the liquid state; supercritical CO₂ will exhibit values generally between 1.1 and 1.5, depending on density. This low dielectric can be both a process disadvantage and a chemistry disadvantage. Some reactions, for example, require polar solvents for best results. Further, low dielectric constant also suggests poor solvent power, and hence solubility in CO₂ can require much higher pressures for certain classes of solute than more polar compressible fluids (fluoroform, for example, which exhibits a liquid dielectric of ~10). On the other hand, the thermodynamic interaction between CO₂ and nonpolar methylene groups is not particularly favorable, and hence, ethane often is a better solvent for hydrocarbons than CO₂.

 ${
m CO}_2$ is a Lewis acid. Carbon dioxide will react with strong bases (amines, phosphines, alkyl anions) [24]. When attempting to use amines as reactants, this can be a serious disadvantage, in that carbamate formation can slow the rate of the intended reaction and also can alter the solubility characteristics of the substrate. Although alkyl-functional primary and secondary amines react readily with ${
m CO}_2$, tertiary amines are nonreactive. Further, the presence of electron-withdrawing groups in close proximity to the nitrogen atom (as in anilines) prevents formation of carbamates between ${
m CO}_2$ and such compounds. Carbon dioxide also will react (not surprisingly) with metal alkoxides, metal alkyls, and metal hydrides.

CO₂ has been shown to react reversibly with a number of enzymes (lysine residues, specifically), leading to low activity in the presence of CO₂ (although activity returns to normal following removal of the enzyme from the CO₂-rich environment) [25]. Because carbamate formation is reversible, even at high pressure, researchers have employed CO₂ as a protecting group for amines [26], and hence CO₂'s reactivity with amines can be an advantage as well as a disadvantage. Finally, because CO₂ reacts readily with carbanions to form relatively unreactive carboxylates, anionic polymerization cannot be conducted in carbon dioxide.

CO, can be hydrogenated in the presence of noble metal catalysts to produce CO. If one is trying to hydrogenate a substrate in CO, over a heterogeneous platinum catalyst, production of CO will poison the catalyst and produce toxic byproducts. Unfortunately, this reaction takes place at relatively mild temperatures [8]. There has been a certain degree of controversy recently as to whether the same reaction occurs over palladium catalysts. For example, Hancu and Beckman [15] demonstrated that hydrogenations could be conducted successfully in CO, (over palladium), although it should be noted that the hydrogenation in question was very fast and was conducted at 298 K. Subramaniam's group [27] was able to successfully conduct a hydrogenation reaction over palladium in a continuous reactor; no loss in catalyst activity was observed over a period of 1-2 days. By contrast. Brennecke and Hutchensen [28] found that a palladium catalyst deactivated rapidly during batch hydrogenations in CO₂. Subramaniam [29] recently investigated these apparent contradictions and found that higher temperatures (> 343 K) and greater residence times (such as would be found in batch reactions) lead to formation of CO that does ultimately poison the catalyst. This is an area where further research is certainly merited, given the potential importance of hydrogenation reactions.

In addition to CO, it is likely that some formate could be created through hydrogenation of CO₂ over noble metals; formate has been observed during homogeneous catalysis [30] and theoretically could form under heterogeneous conditions as well.

Dense CO₂ produces low pH (2.85) upon contact with water. Carbon dioxide dissolves in water at molar concentrations [31] at moderate pressures (< 100 bar), rapidly forming H₂CO₃. This can render some biocatalytic reactions problematic, in that many enzymes are denatured (unfolded and/or deactivated) by low pH. Johnston's group has shown that buffering is possible but that impractically high ionic strength (for enzymatic reactions) is needed [32]. On the other hand, one could employ carbonic acid as a reagent, in which case CO₂ could be treated as a very low-cost, sustainable acid that does not require addition of a base for neutralization. Enick [33], for example, has employed carbonic acid, formed from CO₂/water, to extract contaminants from steel waste into water, where depressurization results in a rapid increase in pH and precipitation of the extracted materials. Carbonic acid formed from CO₂ and water reacts with hydrogen peroxide under basic conditions to produce a percarbonate species, which then can epoxidize alkenes [34].

In summary, the low pH of water in contact with liquid CO₂ can be an advantage or disadvantage, depending on the circumstances. Hancu and Beckman [15], for example, have investigated the generation of H₂O₂ in CO₂, where the product is stripped into water following synthesis in CO₂. The optimum pH for H₂O₂ stability is 2 to 4, so the low pH of water/CO₂ mixtures is an advantage for this process. The low pH of water in contact with CO₂ also enhances the back-extraction of caffeine in the decaffeination process for coffee. Clearly, however, the low pH of CO₂-water systems is a detriment to the processing of biomolecules.

CO₂ is a weak solvent (low polarizability per unit volume, low cohesive energy density). This is perhaps CO₂'s greatest flaw, in that its inability to solvate compounds of interest (hence requiring uneconomically high process pressures) has greatly inhibited its commercial use. This issue will be discussed in more detail in Section 3.3.

CO₂ poisons Ziegler-type polymerization catalysts. CO₂ will terminate olefin polymerizations that employ classical Ziegler (titanium halide) catalysts, hence preventing such polymerizations from being conducted in carbon dioxide.

1.7 How We Will Approach Our Analysis

Reaction schemes will be critiqued on their ability to provide a more sustainable process as compared to existing technology, using the 12 principles of green chemistry as a basis for judgments on sustainability. The basic principles of green chemistry have been outlined by Anastas and Warner [35], and are listed below:

- Prevention (alter process schemes and chemical pathways to prevent the generation of waste, rather than remediate waste once formed)
- 2. Atom economy
- 3. Less hazardous chemical synthesis
- 4. Designing safer chemicals
- Safer solvents and auxiliaries (create and employ solvents and process aids that, if emitted to the environment, exhibit a lower impact than currently used materials)
- 6. Design for energy efficiency
- 7. Use of renewable feedstocks
- 8. Reduce derivatives
- Catalysis (create catalysts that are more selective than current analogues, and that therefore produce lower volumes of byproducts during reactions)
- 10. Design for degradation

- 11. Real-time analysis for pollution prevention
- 12. Inherently safer chemistry for accident prevention.

If the properties of CO₂ and its many proposed applications are examined, several common trends appear vis-à-vis the 12 principles shown above. CO₂ has been proposed as a benign alternative to common organic solvents, and hence principle 5 comes into play. If one assumes that some proportion of the organic solvent that is employed in any chemical process will be emitted to the environment, then replacement of that solvent with CO₂ is a mode of prevention (principle 1), as CO₂ emissions are less problematic. The toxicity of CO₂ is lower than for many organic solvents (principle 4) and is naturally abundant (principle 7).

It should be noted that while use of CO₂ is within the scope of several of the principles of green chemistry, improper or ill-considered process design could lead to egregious violation of some of the others. Indeed, if use of CO₂ as a solvent leads to higher energy consumption or an inherently unsafe process, then some of the 12 principles will be followed while others are violated. Judgment of the net benefit must be done on a case-by-case basis.

Finally, the source of CO, used in any process should be considered within the framework of the 12 principles of green chemistry. CO, is naturally abundant, yet CO, employed in an industrial process is typically not captured from the atmosphere. Carbon dioxide is a byproduct (of sizeable volume) of the commercial ammonia process [14], and much of the commercially available CO, is derived from this source (after purification). CO, also can be captured from fermentation processes, yet this is not generally practiced commercially (owing to CO,'s low current value). Large deposits of CO, exist naturally in the United States; currently, these are tapped for use in tertiary recovery of petroleum in older fields in West Texas and Oklahoma [10]. If we examine the source of CO₂, we can come to different conclusions of CO, 's worthiness as a benign solvent. If, for example, CO, generated by the ammonia process is employed, then one could consider this as pollution prevention, because this CO, would otherwise be emitted to the atmosphere. If we employ CO, from natural deposits, this could be construed as "anti-sequestration," as this CO, would ordinarily remain underground. If CO, could be captured from the atmosphere (or power plant flue gas) in an energy efficient and economic manner, then used in a process, this would likely be the best source with respect to the 12 principles of green chemistry.

1.8 Operating a Process Economically With CO₂

Although use of CO₂ as a solvent is often considered to be "green." operation of any process at high pressure typically involves higher costs than the analogous process operated at one atmosphere. If such a process is considered "green." but cannot be created and operated economically, then the process will be of academic interest only

and its potential green benefits unrealized. There are some simple "rules of thumb" that one can use to render the cost of a CO₃-based process as low as possible.

Operate at high concentration. One way in which to minimize the cost of a CO_2 -based process is to minimize the size of the equipment. Given that CO_2 is typically proposed as a solvent (rather than a reactant), the most obvious means by which to minimize equipment size is to minimize the amount of solvent (CO_2) flowing through the process. Consequently, one should try to choose or design substrates such that they exhibit high solubility in CO_2 . In addition, those processes where CO_2 is employed as the minor component (use of CO_2 as a plasticizer in polymer processing, for example) are likely to be favored economically.

Another aspect of this issue is reflected in the typical phase behavior of compounds in CO_2 (see Figures 2 and 3). Note that in the typical phase diagram of a crystalline solid in CO_2 , an essentially pure solid phase exists in equilibrium with a solution. Given that the solid phase cannot be processed, one obviously makes use of the solution where CO_2 is usually the major component. For the case of liquid-liquid phase behavior, a CO_2 -rich phase exists in equilibrium with a substrate-rich phase. However, because CO_2 has been shown to lower the viscosity of solutions substantially, one can actually pump and process the substrate rich phase. Further, one can operate at lower pressure in addition to a higher concentration. Consequently, it may be beneficial to employ systems where liquid-liquid phase behavior occurs rather than liquid solid. Efficient operation of a process is both economically favorable and more environmentally friendly.

Operate at as low a pressure as possible. Operation of a process at high pressure is more expensive than at one atmosphere, owing to equipment design and construction, as well as the additional safety features that are necessary. Further,

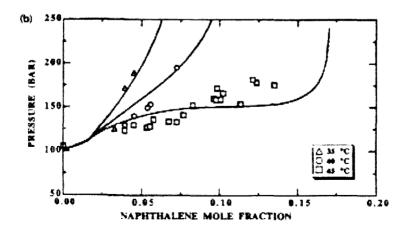


FIGURE 2 Solid-fluid phase behavior [1]: CO₂-naphthalene.

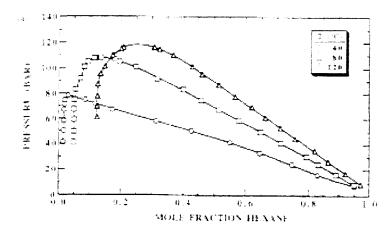


FIGURE 3 Liquid-liquid phase behavior [1]: CO,-hexane.

the capital cost of a high-pressure process is not linear with pressure, because the pressure ratings of certain vital equipment (flanges, for example) are available in discrete steps (60 bar, 100 bar, for example). In addition, the number of companies with experience in high-pressure process design drops dramatically as the operating pressure rises above 200 bar.

Clearly, these caveats strongly recommend operating at the lowest pressure possible. One means by which to accomplish this is in the chemical design of reactants and/or substrates. It has been known for a number of years that certain functional groups are more "CO₂-philic" (thermodynamically more CO₂-friendly) than others. Use of CO₂-philic functional groups in the design of substrates or catalysts can greatly lower the needed operating pressure, although it should be remembered that their use could easily raise raw material costs.

Given that carbon dioxide is a relatively feeble solvent, a classic technique for lowering operating pressure (or raising operating concentration) is to employ cosolvents. Methanol and ethanol are most commonly used [1, 36], but a wide range of organic solvents has been employed in this fashion, usually at concentrations below 40 percent. Regarding whether the use of co-solvent/CO₂ mixtures is green, one must make a determination on a case-by-case basis. For example, in a conventional chemical process, one must decide whether it is more efficient to use a low-pressure process with 100 percent organic solvent or a high-pressure process using only 5-10 percent organic solvent (for example) with the balance CO₂. To date, the typical answer has been to opt for the low-pressure, solvent-based process [37]. However, if the solvent (owing to the nature of the process) is to be emitted to the atmosphere, there are examples where the choice has been to opt for the CO₂/cosolvent route. In the UniCarb coatings process developed by Union Carbide during the 1980s and 1990s, CO₂ was employed to replace one component of a solvent mixture used in

spray coating, creating a CO₂/co-solvent-based process. The foaming of thermoplastics such as polystyrene [38] often is conducted using a mixture of CO₂ and an alkane, a more efficient route than employing either 100 percent alkane or 100 percent CO₂. One also can employ relatively lower process pressures by operating in the two-phase regime (gas-liquid) rather than employing pressures high enough to maintain a single phase; more about this option will be described in a later section.

Another somewhat obvious route to the lowering of the operating pressure is by operating at subambient temperatures. Here, however, one must balance the advantage gained by reducing the operating pressure with other impacts, such as the energy cost for cooling and any reduction in reaction rate owing to reduced temperature. Whereas dropping the temperature is an obvious mechanism to reduce the operating pressure, there are others that have received far less attention. For example, the identification of a minimum boiling azeotrope where CO, is the majority component could provide a solvent that is both green and exhibits a vapor pressure far lower than that of pure CO,. Azeotropes are desirable in that process steps requiring flashing of the material (or small leaks) will not change the composition of the solvent. Azeotropes can be at a maximum boiling point (where the vapor pressure of the mixture is higher than either of the pure component vapor pressures) or minimum boiling point (the opposite, and here desired situation) [39]. Although addition of a second component might lessen the sustainability of the solvent, a solvent that is mostly CO, is typically better than one that contains no CO,, and the reduction of the pressure through use of a minimum boiling azeotrope might lower the operating pressure sufficiently to allow economical scale-up of the process. Some CO₃-based azeotropes have been identified [40] as a result of research by CFC-producing companies in a search for alternative refrigerants. Consequently, most of the known CO, azeotropes are mixtures with fluorocarbons (also it is known that ethane forms an azeotrope with CO₂).

Recover products without high-pressure drops. It has been mentioned in the literature that use of CO₂ as a solvent is advantageous because reduction of the pressure to one atmosphere results in the complete precipitation of any dissolved material, rendering easy product recovery. This may be true, but use of such a route for product recovery raises costs, as one then must either recompress the CO₂ prior to reuse or compress the make-up of CO₂. As gas compression is energy-intensive and expensive, a greener route to product recovery is desirable.

One example of product recovery without a high-pressure drop is liquid-liquid extraction against water. A liquid-liquid extraction between an organic and aqueous phase inevitably cross-contaminates the phases, normally requiring remediation of one, and probably both phases. In the case of a water-CO₂ extraction, however, the inevitable cross-contamination is benign (carbonated water). Indeed, the CO₂-based coffee decaffeination process employs a water-CO₂ extraction to recover the caffeine, allowing the CO₂ to move in a loop at relatively constant pressure (see Figure 4). Further, the cross-contamination here is actually beneficial, as the low pH in the "CO₂-contaminated" water allows for a higher partition coefficient for

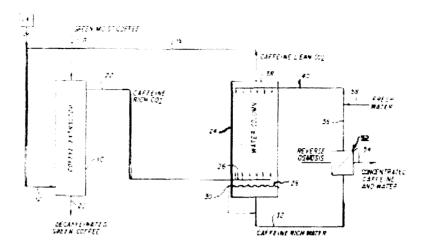


FIGURE 4 Process schematic for coffee decaffeination using CO₂ [1].

caffeine, but the "water-contaminated" CO, is a better extractant for caffeine than pure CO. Beckman and Hancu also employed a liquid-liquid extraction for the recovery of H,O, synthesized in CO, [15].

Operate the process continuously if possible. The rationale for operating in a continuous mode is that the equipment can be smaller while maintaining high productivity. Although this usually is straightforward for liquid substrates, it can be much more difficult for the processing of solids at high pressure. Indeed, there currently does not exist a viable means for introducing and removing solids continuously from a high-pressure (100 bar +) process. Those commercial CO₂-based processes that employ solids use either batch or semi-batch mode. An example of the latter is the coffee decaffeination process, where dual extraction columns are employed, such that one is in extraction mode while the other is being emptied and refilled [17].

In the late 1980s, Chiang and colleagues at the University of Pittsburgh developed a process (LICADO) for the cleaning of coal that employed a biphasic mixture of CO₂ and water [40]. Here, the coal was introduced to the process continuously as a slurry in water. If the use of a water slurry of solid substrate is tolerable, this is a useful means by which to introduce solids continuously into a high-pressure process.

A clever example of the use of phase behavior trends to accomplish continuous processing, as well as to recover products without large pressure drops, is shown by Charpentier and colleagues [41] in the examination of the continuous polymerization of fluorinated monomers in carbon dioxide. The monomers are soluble in CO₂ (as are many vinyl monomers), but the polymers are insoluble (also a relatively general trend). Thus, monomers can be recycled continuously through the continuously stirred tank reactor while the polymer precipitates and is collected.

Recover and reuse homogeneous catalysts and CO₂-philes. The discovery of CO₂-philes in the early 1990s allowed for the exploration of a number of processes in CO₂ that had been heretofore untenable, owing to CO₂'s feeble solvent power. Highly CO₂-soluble surfactants and catalyst ligands became available, leading to a number of important discoveries regarding chemistry in carbon dioxide. However, the new CO₂-philes are significantly more expensive than their CO₂-phobic counterparts, and it is important to the economics of a CO₂-based process that any CO₂-philes used in the process be recycled as extensively as possible. Note that the recycling of CO₂-philes not only makes good economic sense, but also is more sustainable than the case where the CO₃-philes are simply disposed.

Recovery and recycle of homogeneous catalysts are important whenever such catalysts are employed, because the metals employed in such catalysts are typically expensive. In the case of a CO₂-based process, the ligands also are likely to be expensive (they must be designed to exhibit high CO₂ solubility), and the need for effective catalyst recycle is even more important.

In summary, attention must always be paid to the economic viability of processes employing CO₂ as reactant and/or solvent, and CO₂-based processes are generally thought to be "green"; their benefits will never be realized if the cost of such processes dwarf that of conventional analogues.

1.9 Scope of This Report

This report will focus on CO₂-based processes where chemical reactions are taking place (i.e., green chemistry) or materials are being processed to create viable products. This will eliminate discussion of processes that contain only separations unit operations (e.g., extractions and cleaning). Further, this report will focus on CO₂ as a benign solvent (see Section 1.1 for rationale) as opposed to other potential fluids. Research conducted over the previous 5 years (1997-present) will be emphasized.

Clearly, a continuing challenge to the reader who is interested or actively involved in research involving CO₂ as a solvent is "can the use of CO₂ create new products, eliminate waste, save energy, and/or enhance safety to the point where the costs of the product are reduced *and* a more sustainable process is created?" The new DuPont fluoropolymer facility may be the first example of this, as the use of CO₂ has eliminated the need for fluorinated solvents *and* has made working with some of the monomers safer.

In each of the following sections, recent research on various aspects of green chemistry using CO, will be summarized. Whereas much of the published work in this area emanates from academic groups, it should be noted that some industrial concerns also have been quite active. Industry quite naturally tends to patent before they publish, and consequently a patent search was conducted for the period 1996-

2001 where finding the term "supercritical" in either the patent title or abstract was employed as the criteria defining a "hit." This search produced 450 hits for the time period in question. Well over one-half of these patents described inventions where CO, is used as the solvent in natural product extractions or cleaning. Of the remainder, academic inventors filed nearly one-half. In addition, a search using "CO, or carbon dioxide" in title or abstract (without supercritical) produced 1,500 additional "hits." although the vast majority of these did not involve use of CO, as a solvent. For each of the sections on CO₃-based research, a paragraph is appended that describes industrial activity (as described in patents) that is significant but not expressly mentioned in the main body of the section. Without question, the most active industrial entities (in producing U.S. patents) on the use of supercritical fluids in green chemistry/processing during 1996-2001 were DuPont, Micell Inc., and Thomas Swan (UK). Not surprisingly, each of these companies also has supported major commercialization efforts in CO₃-based chemistry and processing (DuPont—polymerization of fluoropolymers in CO,; Micell-dry cleaning in CO,; Thomas Swan-hydrogenations and alkylations in CO₂). All three have strong research ties to universities.

Applications for CO₂ that are not included in this report include extractions from natural products and food processing (such as the new orange juice pasteurization process from Praxair). Although these processes are important commercially, and are for the most part green, they also are mature and little innovation has emerged recently.

1.10 A Note on Cleaning by Using CO₂

There has been substantial effort made by both the academic and industrial communities to investigate the use of carbon dioxide in the cleaning of clothing, mechanical parts, and the surface of microelectronics components. Whereas this report will not explicitly address the state-of-the-art in cleaning by using CO₂, it will evaluate several technological issues that are significant to the advancement of CO₃-based cleaning.

For example, although carbon dioxide is not a particularly strong solvent (see Section 3.3), it will readily solubilize low molecular weight, volatile, nonpolar compounds. If the "contamination" to be removed using CO₂ falls into this category, then no additional fundamental science is required, and the economics of the design and construction of the equipment will determine whether the technology is practiced. Breakthroughs in the design of high-pressure cleaning equipment that could rapidly process individual parts (see Section 5) would greatly help to promote use of CO₂ as a cleaning solvent.

CO₂ is a weak solvent, and cleaning that requires the solubilization of polar, inorganic, or high molecular weight material will require the use of CO₂-soluble auxiliaries (surfactants, chelating agents). The discovery that certain fluorinated compounds are "CO₂-philic" during the early 1990s allows for rapid advancement in the design of such auxiliaries, and a discussion of the design of such auxiliaries is in-

cluded in this report. For the future, the design of CO₂-philic auxiliaries must likely include nonfluorinated building blocks, as fluorinated materials are very expensive (the fluoroalkyl sulfonate family) and are environmentally suspect [42].

For the case of microelectronics processing, cleaning is accompanied by the need to perform chemistry (photolithography, etching). These topics are included in later sections (see Sections 3.11 and 3.12).

Fabric cleaning recently has been commercialized by two groups in the United States (Micell Inc., and Global Technologies/DryWash). Major issues confronting these groups in the future include design of inexpensive surfactants that clean effectively in CO,, the design of high-pressure cleaning equipment that renders the process cost competitive, and competition from other "benign" cleaning technologies (such as the use of high flash point alkanes, silicones, and water). The use of silicones (Green Earth [43]) seems to present significant competition, as these materials are promoted as being more benign than perchloroethylene or PERC (they are, if TLV is any indication), they are used at one atmosphere (equipment is relatively inexpensive), and their use is backed by some large, relatively wealthy corporations (GE for silicone production, Procter and Gamble for surfactant production [43]). Indeed, even the design of more efficient conventional dry cleaning equipment (i.e., that using PERC as the solvent) represents a commercial challenge [44]; the volume of PERC used by dry cleaners in the United States has dropped dramatically over the past decade primarily owing to the use of "tighter" equipment (lower fugitive losses during cleaning). Indeed, significant consolidation occurred in the CO₃-based dry cleaning industry during early 2002. Chart Industries, Inc., a member of the DryWash consortium, decided to exit the CO₃-based dry cleaning business [45] after several years of disappointing growth (\$126,000 net sales in 2001); the connection to the consortium was maintained by some of their employees as a spin-out company (Cool Clean). Cool Clean recently purchased the Hangers franchising operation from Micell.

Finally, intellectual property (IP) issues also could inhibit the use of carbon dioxide in fabric cleaning. Unilever, for example, has filed a number of patents (and continuations in part, etc.) on the use of surfactants in CO₂ for the purpose of fabric cleaning [46], yet it is not clear whether this IP is meant to enhance Unilever's position in the field or merely to block the use of CO₂ in fabric cleaning.

In summary, this report will include several issues important to future cleaning applications for CO₂, namely the design of effective, low-cost auxiliaries and the design of lower cost equipment for use in parts cleaning.

1.11 The Effect of Regulation on the Use of CO₂ in Green Chemistry and Chemical Processing

The extent to which conventional solvents are regulated will have a profound effect on the extent to which CO, is used as a solvent in the future. For example, we

can examine the recent history of CFCs (vis-à-vis CO₂). CFCs were preferred as solvents for cleaning because they are non-flammable, relatively nontoxic (TLV of chlorodifluoromethane is 1000 ppm [7]), and inexpensive. As a result of research performed during the 1970s and 1980s, it became apparent that CFCs contributed to the chemical erosion of the stratospheric ozone layer, leading to the Montreal Protocols that outlined a timetable for the withdrawal of CFCs from use as solvents (and refrigerants, etc.). Carbon dioxide—often is described as a potential substitute for CFCs in cleaning (and also refrigeration). Because CFCs exhibited a number of highly favorable properties, without international agreements restricting their use, it is not likely that CO₂ would have been considered as a viable competitor.

Although CFCs represent a somewhat extreme case, regulations and policies do exert more subtle effects on the use of CO₂. This is seen most often when comparing the advantages and disadvantages of using conventional solvents to use of carbon dioxide. From an engineering perspective, CO₂ is nearly always more difficult to employ as a solvent because one needs high-pressure equipment. Consequently, the extent to which a particular solvent is regulated, and the obstacles to the use of such a solvent in a chemical process, can tip the scales either in favor or against use of CO₃. For example, acetone currently is not on the list of compounds that require reporting under Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA, also known as the Toxics Release Inventory (TRI) [47]). Neither is it listed as a "Hazardous Air Pollutant" [48] by the Office of Air Quality Planning and Standards at the U.S. EPA. Consequently, if a manufacturer currently was using carbon tetrachloride, for example, in a process where some of the solvent was emitted to the atmosphere, a natural approach to "greening" the process might be to first determine whether acetone could be substituted for carbon tetrachloride (the latter is included on both the TRI and classified as a hazardous air pollutant). Use of acetone in place of carbon tetrachloride would likely not involve any changes to the equipment used in the process, but use of CO₂ would most certainly require equipment redesign. Choosing alternative solvents based on environmental considerations has been systematized as SAGE, the solvent alternative guide, a Web-based interactive tool [49]; carbon dioxide is indeed one of the possible choices, depending on inputs, but no economic calculations are performed.

As shown above, current regulations affect application of CO_2 by rendering some conventional solvents better or worse (from the cost of complying with current regulations) than carbon dioxide. In addition, it is possible to envision how future regulations or policies also might affect the use of CO_2 in green processing. Given that CO_2 has been determined to play a role in global climate change, it is conceivable that the emission of CO_2 to the atmosphere will be regulated in the future. Consequently, a number of companies have begun instituting "trading credits" in CO_2 emissions, primarily on an internal basis. In these systems, CO_2 is assigned a "negative value," and thus use of CO_2 as a raw material allows one to theoretically reduce the cost of the process or product. If this practice becomes widespread (owing to future regulation

on CO₂ emissions), it likely will spur research and development on processes or products that consume CO₃.

Another area where future regulation could greatly impact the use of CO, is if restrictions are placed on the use of various fluorinated materials. Certain fluorinated materials have been found to be highly CO₃-soluble (see Sections 2.4.1, 3.3), and these materials have been applied in the design of highly CO₃-soluble auxiliaries (surfactants and chelating agents). To date, the expense of fluorinated compounds has greatly limited their use in commercial CO, technology, yet there are applications areas (such as microelectronics) where the cost of fluorinated compounds might not be an impediment to commercial use of CO, processing. However, it has been reported recently that certain fluorinated surfactants persist in the environment, causing concern within the environmental and public health communities. The EPA has proposed a Significant New Use Rule (SNUR) for perfluorooctanesulfonic acid and closely related compounds [42] requiring manufacturers to notify EPA at least 90 days before commencing the manufacture or import of these materials for a significant new use. This may be expanded to include perfluorinated carboxylic acids (and their precursors) as well. If the use of fluorinated compounds is restricted in the future, it could limit the use of CO, in certain areas of application. Needless to say. design of nonfluorinated CO₃-philic compounds would therefore become a priority in advancing the state of the science.

Section 2

Reactions Using Gases

2.1 Hydrogenation

Hydrogenation is widely used in industry at scales ranging from grams per year to tons per hour [50]. Hydrogenation is conducted at large scale in either the gas or liquid phase; further, while gas-phase reactions are performed over a solid catalyst (heterogeneous catalysis), liquid-phase reactions are conducted in either two (homogeneous catalyst, liquid and gas each present) or three (heterogeneous catalyst, liquid and gas each present) phase modes. Finally, heterogeneous catalysis is conducted in batch, continuous slurry, and fixed bed reactor configurations, although the latter is less common than the former two.

Despite the broad range of potential reactor configurations and reactions, we can, by examining the 12 principles of green chemistry described previously, make some general comments as to how the use of supercritical fluids (CO₂ primarily) can enhance (and possibly detract from) the sustainability and economic viability of a hydrogenation process. We will restrict this discussion to those hydrogenations currently conducted in the liquid phase—addition of a supercritical solvent to a gas-phase reaction will simply dilute the reactant concentrations, reducing the rate significantly. With some exceptions (described below), it is not likely that use of a supercritical solvent will enhance either the economic viability or the sustainability of a gas-phase hydrogenation.

Two areas where addition of CO₂ might benefit a gas-phase hydrogenation are flammability and catalyst defouling; addition of CO₂ to a mixture of hydrogen and a substrate will enlarge the nonflammable region, and CO₂ could help to prevent catalyst fouling by dissolving compounds that contribute to coke formation [51].

2.2 Liquid-Phase Hydrogenations: Advantages to Use of Supercritical Solvents

A number of hydrogenations (synthesis of unsaturated fatty acids, reduction of fatty esters to alcohols) are conducted commercially in organic solvents, and re-

placement of these solvents with benign carbon dioxide will reduce both liability (reduced flammability, potential toxicity issues) and the potential for volatile organic compound (VOC) emissions owing to fugitive losses. In addition, use of any supercritical fluid in a liquid-phase hydrogenation process can significantly alter the relative importance of fundamental processes governing the rate expression. In a three-phase hydrogenation, the rate can be governed purely by the kinetics of the reaction, but more likely will depend on the rate at which hydrogen diffuses from the gas phase to the active sites on the catalyst. The overall rate of transport is itself governed by three resistances in series: (1) the resistance to transport of H, across the gas-liquid interface. (2) the resistance to transport of H, through the liquid to the surface of the catalyst, and finally (3) resistance to transport of H, within the pores of the catalyst. Given that the overall rate is related to the sum of the resistances in series [52], one term can easily dominate the expression for the overall rate. Use of a supercritical fluid solvent (as opposed to a traditional liquid) eliminates the gas-liquid interface, as low T_c gases such as H_s, O_s, and CO are completely miscible with fluids above their critical point. However, this does not necessarily mean that the reaction will be kinetically controlled, as one must deal with the remaining two resistances to transport (i.e., bulk liquid to solid surface, interpore diffusion). Because the diffusion constant is embedded in each of these resistances, the use of a supercritical fluid also can aid in their elimination, although simply switching from a conventional liquid to a supercritical fluid solvent for hydrogenation by no means guarantees that the reaction rate will depend solely on the underlying kinetics.

It should be noted that significant effort is expended in hydrogenation reactor design to ensure that H_2 is well dispersed in the liquid phase—effective sparging greatly increases the contact surface area between the phases and hence the rate at which H_2 diffuses into the liquid. If use of a supercritical fluid allows for a reactor redesign (e.g., plug-flow versus continuous-stirred tank given that gas sparging is unnecessary), then it may be possible to enhance the selectivity of the reaction through reactor design improvement, reducing waste.

Indeed, selectivity is a major concern in any chemical process—hydrogenation is no exception. It is well known that solvents affect the yield and selectivity of various hydrogenation reactions where "one very useful, although fallible, generality is that in a series of solvents, the extremes in selectivity will be found at the extremes of the dielectric constant..." [50]. The supercritical fluids most often employed as hydrogenation solvents, propane and CO₂, exhibit dielectric constants at the lower end of the scale (1.5–1.7), and we might expect to see an effect on selectivity if a polar solvent is replaced by CO₂. In addition, the physical properties of supercritical fluids are readily varied over a significant range through changes to pressure and temperature, and it may be possible to affect selectivity by altering these variables. Finally, addition of CO₂ or operation above the critical point of the reactant mixture could aid in coke removal from the catalyst, prolonging its life or

maintaining favorable selectivity [51]. Clearly, enhancing selectivity of a reaction will ultimately reduce the volume of byproducts generated, and potentially the volume of waste emanating from a particular process.

Hydrogenation is generally exothermic, and removing heat from the process is thus more of a problem than injecting heat [53]. In this case, the use of a supercritical fluid may or may not be advantageous. Liquids are useful as heat transfer fluids in that one can employ the heat of vaporization to absorb excess heat. Convective heat transfer, which will depend on both fluid velocity and fluid physical properties, may or may not be more successful in a supercritical fluid, depending on the exact conditions. For example, the magnitude of heat transfer is related both to the Prandtl number and Reynolds number [23]: Prandtl numbers for supercritical fluids are typically lower than for liquids, while the Reynolds number for a supercritical fluid could be quite a bit higher (given that kinematic viscosity for supercritical fluids is high) at constant velocity. Heat removal is important, in that inability to effectively remove heat could lead to loss of selectivity. Liquid CO₂ could be useful in this regard, as boiling often is employed as a means by which to absorb excess heat.

2.3 Heterogeneous Hydrogenation in CO₂

As mentioned above, the key "green" driving force behind the use of a supercritical solvent rather than an organic solvent in a heterogeneous reaction is the elimination of transport resistance (owing to diffusion of the gas across the liquidvapor boundary) and potentially a more efficient reaction. Ease of separation of products from reactants also is often mentioned, but not typically evaluated. Indeed, products and reactants may be more easily separated in the conventional analog via a simple distillation. Baiker [54] has reviewed progress in heterogeneous reactions in supercritical fluids up to 1999; we will therefore cover only the most important discoveries made prior to 1999, and will focus on key strides made since then.

Harrod and colleagues [55] have successfully performed the hydrogenation of fats and oils using supercritical propane; propane was employed to allow for solubility of both the substrates (whose solubility in CO₂ is poor) and hydrogen, which is completely miscible with any supercritical fluid. The homogeneous propane/H_/substrate mixture was fed into a packed bed containing a commercial Pd catalyst—extremely high reaction rates were indeed achieved (gas-liquid transport resistance being eliminated) and the concentration of trans fatty acids (an undesirable byproduct) was reduced. Hence, the green advantages to this reaction would include reduced waste content and smaller and more efficient reactors. However, the use of propane is problematic, and it is not clear whether the process advantages due to faster reaction rate balance the disadvantages deriving from use of a flammable solvent and the problems inherent to high-pressure process design/development. Further, the catalyst deactivated quickly, an important problem for both economic and sustainable

reasons [51.52]. Tacke and colleagues [56] also investigated the hydrogenation of fats and oils (over a supported Pd catalyst), although they employed CO₂ as the supercritical solvent. Again, rates were shown to be significantly higher in the supercritical case (six-fold increase in space-time yields), and selectivity and catalyst lifetime also were improved. Each of these features contributes to enhancing the green potential of the process, while the need for high pressure operation detracts both from the cost and the sustainability (energy, unit operation complexity). Macher and Holmquist [57] also examined the hydrogenation of an oil in supercritical propane; similar results to those found by Harrod were obtained. King and coworkers [58] examined the hydrogenation of vegetable oil and fatty acid esters over nickel catalysts using both CO₂ and propane as supercritical solvents, and under conditions where *either one or two fluid phases* existed in the reactor. This approach is interesting, as it ultimately could prove to provide a useful engineering solution to the problem of solubilizing substrates in CO₂ at moderate operating pressures.

Indeed. Chouchi and coworkers [59] recently examined the hydrogenation of pinene (over Pd/C) in supercritical CO₂. They found that the rate of the reaction was significantly faster in the two-phase regime (i.e., lower pressures) than when the pressure was raised to the point where only a single fluid phase existed. The reason for this seems clear; the Chouchi study was performed by charging a known amount of each of the ingredients to the reactor, then pressurizing with CO₂. The partitioning of compounds between phases (in the two-phase system) must have been such that the concentration of reactants in the lower phase was higher than under single-phase conditions. In other words, raising the pressure to create a single phase simply diluted the reactants, lowering the rate. Note that the concentration of CO₂ in the lower phase (in the two-phase system) was likely to be substantial, as CO, should interact favorably with a volatile, low molecular weight compound such as pinene. Further, the concentration of hydrogen in the lower phase also must have been substantial to support the high rate observed, and hence we see that CO, can swell an organic substrate significantly and carry substantial amounts of hydrogen into a "swollen" liquid phase. Therefore, CO, could function as a "reversible diluent," much in the same way that it is employed as a "reversible plasticizer" in polymer science [60]. In this case, addition of CO, at relatively low pressures would enhance solubility of H, in the substrate, raising rates while not impacting process costs precipitously. Even safety could be improved, as previous work has shown that addition of CO, to a mixture of hydrogen and air expands the nonexplosive regime more so than addition of nitrogen [11]. As such, a sudden leak in the reactor, leading to a mixture of CO₂, air, and hydrogen, would still be safer than the same case where nitrogen was being used as the pressure-transmitting fluid. Use of CO, in such reactions could thus be green, safe, and practical.

Bertucco [61], and later Devetta [62], also showed the advantages of using a multiphase system in their work on the hydrogenation of an unsaturated ketone over a Pd/alumina catalyst. These researchers found that one could eliminate trans-

port resistance while operating in the three-phase (solid catalyst plus liquid plus gas) regime. Here again, the fact that CO₂'s presence in the lower liquid phase greatly enhances the solubility of hydrogen in the liquid (substrate plus CO₂) allows one to eliminate transport resistance without the need to apply pressure high enough to create one phase. Consequently, one could conceivably render the reaction more efficient (and hence less wasteful) and economically practical by using moderate pressures.

Arai and coworkers examined the hydrogenation of unsaturated aldehydes in both CO₂ and ethanol over a Pt/Al₂O₃ catalyst [63]. The selectivity of the reaction towards unsaturated alcohol in CO₂ was significantly better than that in ethanol: while increasing the pressure in the CO₂ case improved selectivity, the opposite occurred when increasing the hydrogen pressure in the ethanol analog. Indeed, here is a case where the use of CO₃ appears to enhance selectivity, and thus reduce waste in a reaction versus the "liquid" analog. It is not clear from the discussion by Arai whether this improvement in selectivity is enough to offset the difficulties involved in scaling up a high-pressure process, and whether the energy input to the CO₂-based analog is more or less than the liquid case. Interestingly, Arai did not observe the rapid catalyst deactivation formerly observed by Minder and colleagues [64] during hydrogenation in CO₂ over a platinum catalyst. Minder's results were readily explained by formation of CO and other poisoning species owing to the hydrogenation of CO₃ itself; it is not clear why Arai was able to avoid this problem.

Poliakoff and colleagues [65] have evaluated the efficiency of hydrogenation of a wide variety of substrates in supercritical fluids (propane and CO₂) over a Pd catalyst in a continuous flow reactor. Substrates included aromatic alcohols, aldehydes, ketones, unsaturated cyclic ethers, nitro compounds, oximes, and Schiff bases. Reactions were conducted at temperatures ranging from 360 to 670 K at pressures between 80 and 120 bar. All of the substrates examined could be hydrogenated to some extent, with measured space-time yields exceeding 2 x 10⁵ kg-h⁻¹-m⁻ for the hydrogenation of cyclohexene. Given the high temperatures employed, the relatively low pressure, the presence of significant amounts of hydrogen, and the low volatility of some of the substrates employed, it is highly likely that two or more phases existed in the reactor during the initial phases of the process, CO,'s density will not be "liquid-like" at these pressures and temperatures, and hydrogen will act as a nonsolvent owing to its low critical temperature (and hence low reduced density at the reaction conditions). Poliakoff examined the phase behavior in the cyclohexene-to-cyclohexane system and indeed found that multiple phases exist initially, while a single phase forms near the end of the reaction. Single-phase behavior results because the temperature increases to a point above the critical temperatures of both cyclohexene and cyclohexane. Whereas Poliakoff demonstrated the breadth of continuous hydrogenation in CO₃, lack of comparisons with traditional hydrogenation reactions make it difficult to judge whether the technology ultimately will be deemed "green." Catalyst lifetime, for example, is not mentioned—rapid loss in activity could render this technology less than adequate from both green and financial perspectives. If CO₂-based hydrogenation allows for elimination of significant volumes of solvent without greatly increasing energy or catalyst demand, then this technology ultimately could be both economically successful and green.

Subramaniam and coworkers [27] also examined the hydrogenation of cyclohexene to cyclohexane (over Pd/C) in supercritical CO₂, although under conditions where the system remained single phase throughout the reaction and the temperature was held at a constant 343 K. The reaction remained stable over periods exceeding 20 hours, and catalyst activity was maintained at a high level by pretreating the cyclohexene feed to remove deleterious peroxides. No CO or formate development was observed. Although this work does not suggest as to how or why such reactions could be considered "green," it does demonstrate that stable (with respect to temperature and pressure) catalytic hydrogenation in a continuous reactor using CO₂ as solvent is readily achievable. Again, the assumption here is that use of CO₂ will eliminate the gas-liquid interface, rendering the reaction more efficient and potentially less wasteful. Subramaniam has authored a comprehensive review on process design issues inherent to catalytic processes performed in carbon dioxide [52].

Hancu and Beckman [66] examined the hydrogenation of oxygen (production of H₂O₂) in CO₂ under both liquid and supercritical conditions. Hydrogen peroxide currently is produced via hydrogenation (over a Pd supported catalyst), then oxidation of a 2-alkyl anthraquinone (AQ) in an organic solvent (see Figure 5). Whereas H,O, is widely accepted as a green oxidant, the process by which it is manufactured exhibits a number of less-than-green attributes. First, use of the organic solvent (coupled with the liquid-liquid extraction against water used to recover the product) creates a significant contamination issue, one that currently is remedied using energy-intensive distillation. Further, because each of the reactions are transport controlled (again, by the rate of diffusion of H, or O, from the gas to liquid phase), CSTRs (continuous stirred tank reactors) are used, allowing for a range of anthraquinone residence times and hence over hydrogenation of the AQ to form waste byproducts. Gelbein [67] has estimated that one-third of the cost of H,O, can be tied directly to anthraquinone and solvent makeup/regeneration; approximately 150,000 tons of anthraquinone are produced each year simply to support consumption in the AQ process for producing hydrogen peroxide.

Hancu first examined the use of CO₂ as the organic solvent in the anthraquinone process by generating a highly CO₂-soluble analog to conventional alkyl anthraquinones (alkyl AQs exhibit solubilities in CO₂ that are three orders of magnitude below what is employed in the commercial process). These fluoroether-functional AQs exhibited complete miscibility with CO₂; maximum miscibility pressures were sensitive functions of anthraquinone composition and topology. Hancu showed that kinetic control could be obtained in both the hydrogenation and oxidation reactions using



FIGURE 5 Schematic of the Anthraquinone Route to Hydrogen Peroxide [15].

CO₂ as the solvent. Here, use of CO₂ eliminates the need for the distillation train, as contamination of the aqueous phase by solvent and other byproducts is not an issue. Further, although the solvent in the conventional process is prone to both hydrogenation and oxidation, this is not the case for the CO₂ analog.

Despite the promising laboratory results, Hancu's process in its original state exhibited a critical economic flaw, yet one that could be corrected given recent results. The fluoroether-functional AQ will be significantly more expensive than an alkyl AQ, and pressures required to maintain a homogeneous mixture will be high, despite the use of the CO,-philic AQ. If, however, we examine the results of Bertucco, Chouchi, and Devetta [59, 61, 62], it is clear that an alternative route exists where one could take advantage of the green aspects of CO₂ use while minimizing the AQ cost issues and reducing the operating pressure. The works cited in the previous sentence show that it is quite possible that one does not need to achieve a single phase of hydrogen, CO,, and substrate to eliminate gas-liquid diffusional limitations to reaction. In gas-liquid reaction systems, often the primary resistance to transport is the low solubility of the reactant gases in the liquid phase and slow diffusion across the interface. The high degree of swelling of a substrate by CO, can allow for significant increases in hydrogen solubility in the liquid phase, while the low viscosity of carbon dioxide enhances diffusion rates. Thus, it is quite likely that one could derivatize an anthraquinone with an inexpensive oligomer (such as a short chain polypropylene oxide or silicone) that would (a) not raise cost significantly, (b) transform the crystalline, high melting alkyl AQ to a low melting (or amorphous) derivatized AQ that would (c) swell significantly with CO, at moderate pressures (less than 100 bar), allowing (d) a low viscosity liquid phase with significant hydrogen solubility. This would render the oxidation process more tractable as well, because one could employ air (instead of O₂), where the nitrogen would by and large remain in the upper gas phase. Hence, a CO₃-based version of the AQ process could be rendered greener (through elimination of the solvent waste and energy load reduction), while not detracting from the economics.

As noted in Section 1.6, a key future research issue that will impact heterogeneous hydrogenations in CO₂ is the lifetime of the catalysts, particularly the widely used palladium catalysts. The literature contains examples of successful hydrogenations over Pd in CO₂, and also examples where the rapid formation of CO led quickly to catalyst poisoning and deactivation. Subramaniam's group recently has presented a rationale [29] for the seemingly contradictory results in the recent literature. They showed (using high pressure FT-IR) that CO forms very quickly (within minutes) on Pd in a mixture of CO₂ and H₂, and then over much longer times alters its mode of binding to reduce catalyst activity. Temperature is a key parameter in this process, where temperatures above 343 K seem to greatly accelerate the process. Longer residence times (as would be experienced in batch reactors or CSTRs) also enhance the rate of poisoning.

2.4 Homogeneous Hydrogenation in CO₂

2.4.1 CO,-Soluble Catalyst Design

Clearly, the most pressing issue one must deal with to conduct a homogeneous hydrogenation in a supercritical fluid is that of catalyst and substrate solubility. Carbon dioxide is without question the most popular solvent of those with a readily accessible (less than 370 K) critical temperature. However, CO₂ also is a feeble solvent [68, 69], whose inability to effectively solvate compounds of interest has greatly inhibited commercial development in the past. Although many metal-containing catalysts exhibit low solubility in carbon dioxide at moderate pressures, simple metal carbonyls are known to be miscible with CO₂ under relatively mild conditions [30, 70], and as such have been used successfully to catalyze reactions in carbon dioxide. In general, if the catalyst in question is a relatively volatile liquid, chances are good that it will exhibit accessible (less than 500 bar) miscibility pressures in carbon dioxide.

For the case of those metal catalysts whose ligand design renders them poorly soluble in CO_2 , work performed since 1990 [71-73] has identified a number of functional groups that are decidedly " CO_2 -philic", such that derivatization of catalyst ligands with such groups enhances the solubility of catalysts in CO_2 to the point where homogeneous hydrogenation reactions are feasible. The most widely used of the CO_2 -philic groups for catalyst ligand preparation are— (CF_2) -'s, used in $-(CH_2)_x(CF_2)_y$ - CF_3 "ponytails" where x ranges generally from 0 to 2 and y ranges from 0 to 6. The use of such groups creates a complex optimization problem for those wishing to scale up such processes:

 The solubility of the catalyst is sensitive to the length (and number) of the fluorinated ponytails—longer (or more) tails tends to lower the pressure required to solubilize a given concentration of catalyst [15, 74, 75]; lower operating pressure means lower capital investment. At the same time, increasing the percentage of fluorine in the catalyst raises the cost owing both to synthetic

- cost and increased catalyst molecular weight. The presence of the fluorines in the ligands can affect the electronic environment of the metal, either enhancing or detracting from the efficiency of catalysis.
- Recently, it has been shown that low molecular weight fluorinated sulfonate surfactants (perfluoroctanyl sulfonate [PFOS] and analogues) persist in the environment [42, 76]. If restrictions associated with PFOS type materials are extended to cover other low molecular weight fluorinated compounds, this would further raise the cost involved with the use of fluorinated catalysts.

Whereas conducting homogeneous hydrogenation in an alkane lessens problems owing to the weak solvent power of CO₂, the added liability due to the flammability of the mixture has dampened enthusiasm for such reactions. As mentioned previously, one must be aware that running a hydrogenation reaction in CO₂ can create byproducts owing to the reaction of hydrogen with CO₂ itself—such side reactions can be inhibited through proper catalyst design or choice of operating conditions.

2.4.2 Engineering Rationale for Homogeneous Versus Heterogeneous Catalysis

In homogeneous hydrogenation, the catalyst has been designed such that it is soluble in the liquid phase: the ligands of the catalyst usually are constructed to produce high selectivity to product. The rationale for conducting homogeneous hydrogenation reactions in CO₂ has three primary thrusts: (1) that operation in CO₂ eliminates the need for organic solvent, (2) operation in CO₂ eliminates the gas-liquid interface and hence allows for kinetic control over the reaction, and (3) use of CO₂ will alter the selectivity of the reaction (hopefully for the better). Much of the recent work on homogeneous hydrogenation has been directed at asymmetric synthesis, with the general hypothesis that use of CO₂ could possibly alter the enantioselectivity of the reactions concerned.

The rate of a homogeneous hydrogenation reaction conducted in an organic solvent or water is likely to be governed by the rate at which hydrogen diffuses across the vapor-liquid interface. As such, elimination of this interface (via operation in CO₂) eliminates this transport resistance. Indeed, because the catalyst in this case is soluble, elimination of the interface entirely eliminates transport resistance. To allow direct replacement of the organic solvent in a homogeneous hydrogenation reaction with CO₂, both the catalyst and the substrate must be soluble in CO₂. Consequently, the majority of the scientific effort in the literature on homogeneous hydrogenation in CO₂ is directed at synthesis of CO₂-soluble analogues of conventional catalysts. Substrates must be chosen that are CO₂-soluble, and hence one observes predominantly "model" compounds employed rather than necessarily compounds of industrial interest.

One could pose the question. "If a liquid substrate is being employed, why not simply run the reaction using the homogeneous catalyst neat, in the absence of any solvent?" The solubility of hydrogen in organic liquids typically is quite low, and hence running the hydrogenation of a neat substrate will encounter significant transport resistance (of hydrogen across the interface) to reaction. If carbon dioxide readily dissolves or swells the liquid phase (catalyst and substrate), the rate of reaction can increase owing to enhanced hydrogen concentration at the locus of reaction, despite the presence of CO₂, a diluent.

An example of the use of homogeneous catalysis to achieve an engineering goal was reported by Hancu and Beckman [15], who examined the generation of H,O, in CO, directly from H, and O, in a single step using a CO,-soluble palladium catalyst. This process has been examined in industry for more than 2 decades, as elimination of the anthraquinone from the process eliminates several unit operations and greatly reduces raw material input. If one examines Gelbein's numbers for the economics of H,O, production [67], one would estimate that using the direct route would reduce the cost of production by more than 50 percent, a significant amount for a commodity process. Hancu proposed that one could generate H,O, in CO₂ (from H₂ and O₂) using a soluble palladium catalyst, where the H₂O₂ then is rapidly stripped into water. The green aspects of this process include elimination of solvent waste and anthraquinone input/byproducts, elimination of the distillation train and the associated energy input, and elimination of several unit operations and the associated energy input. The process could be run continuously and the product recovered from CO, without a large pressure drop, rendering the process economics more favorable. Previous work on the direct route to H₂O₂ has focused on the balance between safety and productivity, where most of the patented processes employ water as the reaction medium to maintain safety. However, because the solubility of H, and O, in water is so low, the productivity of these processes is not sufficient to merit scale-up. In addition, the Pd catalysts employed tend to catalyze degradation of H,O, as well as formation, and hence running the reaction in water does not lead to the desired productivity. Hancu showed that one could employ a CO,-soluble catalyst, and run the reaction in CO, without transport limitations and in a nonexplosive concentration regime where rates are high. Future work is needed in this area with respect to optimizing catalyst performance and lifetime, yet this is a good example of the use of homogeneous hydrogenation in carbon dioxide to accomplish what are normally perceived to be process goals.

Unlike in the previous example, in cases where a separate aqueous phase is not present, one may be able to take advantage of the favorable properties of CO₂ (with respect to hydrogenation) while avoiding some of the negative process issues by employing a gas-liquid rather than one-phase system. For example, it is known that H₂ is poorly soluble in most organic liquids, and it is expected that a hydrogenation in organic solvent would be transport limited. If one knows the fundamental kinetic

parameters of the reaction, one should be able to predict at what [H₂] to [substrate] ratio the reaction could be controlled by the underlying kinetics, and calculate the target [H₂] for the reaction in the presence of CO₂. If the substrate is a liquid, one should be able to find conditions where a two-phase system (H₂-CO₂-substrate) exists, yet where substantial amounts of hydrogen are dissolved in the lower phase. As described previously, liquid-liquid phase diagrams of CO₂ and larger molecules are typically asymmetric, and hence operation at high concentrations of substrate is possible at relatively lower pressures. Further, the catalyst would be required to dissolve in a mixture of (primarily) substrate and CO₂, suggesting that one might not have to fluorinate the catalyst to achieve solubility in the proper phase. Thus, by operating in the two-phase region, one could operate at lower pressure with the original catalyst while also eliminating the need for the organic solvent and the transport resistance to reaction. Ideal substrates would be those that are relatively high in molecular weight, or are polar, yet also are liquids (or low melting solids, where CO₂ can depress the melting point [77]).

Another interesting possibility would, in fact, involve functionalization of the catalyst (fluorination) to allow better solubility in CO₂ while also operating in the two-phase regime. Here, the presence of the CO₂ in the lower phase would serve to not only allow higher hydrogen concentrations but also would solubilize the catalyst. Upon removal of the CO₂, the catalyst would precipitate, allowing recycle. This would support the CO₂-based analogy to recent work by Gladysz and colleagues [78], where a fluorinated catalyst was developed that was insoluble in the reaction solvent, but dissolved upon heating. Temperature was used as the reversible trigger to allow catalyst use and recovery. Recently, it has been shown that CO₂ itself also could be employed as a reversible solvation trigger [79].

2.4.3 Chemical Rationale for Homogeneous Catalysis

The final reason for conducting a homogeneous hydrogenation in CO₂ is the premise that use of CO₂ would alter the selectivity of the reaction in a positive way. Xiao, for example [80], examined the asymmetric hydrogenation of tiglic acid (2-methyl-2-butenoic acid) in CO₂ using a ruthenium catalyst; enantiomeric excesses in CO₂ were essentially no better than those found for the same reaction in methanol. Tumas [81] examined the hydrogenation of dehydroamino acids in CO₂ using a cationic rhodium catalyst—the fluorinated counteranion (3,5-bis(trifluoromethyl phenyl) borate [BARF] or triflate) enhanced solubility of the catalyst in CO₂. Tumas found somewhat better enantiomeric excesses for some substrates in CO₂ versus hexane or methanol, but overall the performance of CO₂ was comparable to that of the other organic solvents. Leitner [82] has used chiral iridium catalysts to perform the hydrogenation of imines in CO₂. The catalysts were modified (using fluoroalkyl ponytails) to permit solubility in CO₂. Enantiomeric excesses in CO₂ were comparable to those found for the same reaction in dichloromethane, while rates were found to be much higher for some substrates in CO₂ versus CH₂Cl₂.

Recently, Tumas [83] and Jessop [84] explored the use of biphasic mixtures of ionic liquids and carbon dioxide to perform hydrogenations. Ionic liquids are salts (typically ammonium or phosphonium) that exhibit melting temperatures near or below room temperature. Ionic liquids behave as polar solvents, yet exhibit vanishingly small vapor pressures. In both the Tumas and Jessop studies, a CO₂-insoluble catalyst was dissolved in the ionic liquid, which then is brought into contact with a mixture of CO₂, substrate, and hydrogen. As has been shown by Brennecke [85], ionic liquids absorb large amounts of CO₂ (mole fractions above 0.5) at pressures below 100 bar. Further, the ionic liquid does not measurably dissolve in CO₂. Consequently, both Tumas and Jessop were able to conduct reactions in the ionic liquid at very high rates (the high CO₂ swelling allowed for high H₂ solubility), where the product could be stripped from the ionic liquid into CO₂ and the catalyst retained in the ionic liquid for recycle. Note that this is an analogy of the two-phase CO₂/H₂/substrate mixture mentioned above, where the high swelling of the lower phase by CO₂ eliminates transport limitations, while two-phase operation permits use of moderate pressure.

To date, the ionic liquids (ILs) being explored as solvents are primarily based on imidazolium or pyridinium cations (some work also has been conducted on phosphonium ILs). Whereas these ILs are proposed as benign solvents (owing to their near-zero vapor pressures), it must be remembered that the toxicity and fate (in the environment) of such materials currently is not known. In addition, because large-scale manufacturing processes for these solvents have yet to be established, the impact of such processes on the environment also is not known. In summary, the <u>current crop</u> of ILs ultimately may or may not be judged to be benign solvents.

2.4.4 Homogeneous Hydrogenation and Material Synthesis

Watkins has explored a truly novel means by which to apply homogeneous hydrogenation in CO₂ to creation of metal nanoparticles and thin metal films. Watkins has found that certain metal complexes exhibit millimolar solubility in CO₂ at pressures below 100 bar. Exposure of these complexes to hydrogen under mild conditions reduces the metal to the zero valent state, inducing nucleation of pure metal. Watkins first employed this reaction to create small metal particles within polymer monoliths [86]. The complex is added to CO₂, and this solution is brought into contact with the polymer, which swells accordingly. Hydrogen then is introduced, which reduces the complex within the polymer, forming the nanoparticles. Recently, Nazem, et al. [87], and Howdle's group [88] have examined the impregnation of polymers with silver particle precursors, performing the reduction *in situ* to form the nanoparticle-impregnated material. In Howdle's work, the polymers involved (polylactic acid and analogues) were found to resist attachment by bacteria owing to the antibacterial properties of silver. Use of nanoparticles allowed for useful antibacterial properties, despite low loadings of silver.

Watkins has further extended [89] this concept into the realm of green chemistry by adopting the process for use in creating thin metal films. In the microelectronics industry, thin metal films can be generated on an inorganic substrate via vapor deposition, or via dip coating and reduction from an aqueous solution. The former can only be applied to volatile precursors, while the latter route produces very large volumes of metal-contaminated aqueous waste. Watkins has found that homogeneous hydrogenation of metal complexes in CO₂ allows generation of conformal metal films on substrates with submicron features, and that the only waste produced is a low molecular weight alkane byproduct. Small trenches and pits can be coated easily because CO₂'s low interfacial tension permits wetting of even complex features. Watkins has demonstrated this concept with platinum, palladium, and nickel—a recent paper [89a] shows that the concept can be extended to copper as well.

This technology is undeniably green, and could be readily applied to a variety of metal film applications, particularly if it can be demonstrated that metal deposition can be targeted (patterned).

2.5 Industrial Activity: Hydrogenation in CO,

Of the relatively small number of patents (1996-2001) that directly cover hydrogenation in supercritical fluids, two are worthy of special consideration. First. Harrod and colleagues [90] describe the hydrogenation of fatty acids in supercritical fluids, technology that has formed the basis for a small startup company in Europe. Likewise, Poliakoff and colleagues [91] have described the hydrogenation of a variety of substances in supercritical fluids, technology that has formed the basis/ motivation for a pilot-scale plant constructed for Thomas Swan Company (Durham. UK) by Chematur (Karlskoga, Sweden). It should be noted that Chematur, a company known for its supercritical water work (assets in both the United States and Europe), has acquired the high pressure-related portion of Rauma (Finland). increasing its capabilities in the design of processes capable of handling supercritical fluids. The Thomas Swan facility, which was scheduled to start up in September 2001 (and did in early 2002), will be able to generate 1,000 tons per year of products, including the results of hydrogenations and Friedel-Crafts acylations and alkylations conducted in supercritical fluids. At this time, it appears that the Swan facility will be used (at least in part) as a pilot-scale or semi-works facility to evaluate the use of supercritical fluids as solvents in various chemical reactions.

2.6 Summary: Hydrogenation in CO,

In summary, hydrogenation in supercritical fluids has been extensively investigated over the past decade, and it is clear that hydrogenation reactions can be successfully conducted in CO₂ and other fluids. It is not always clear, however, what if any green advantages are obtained via operation in a supercritical solvent, as many authors do not draw comparisons to conventional processes. Nevertheless, some generalizations can be made:

- 1. The primary rationale for use of a supercritical solvent in hydrogenation reactions is the elimination of transport limitations to reaction through enhancement of the solubility of hydrogen at the reaction locus. Hydrogen is poorly soluble in conventional hydrocarbon liquids and water, and use of CO₂ (and propane, to a lesser extent) as the solvent has been shown to enhance H₂ solubility and hence improve the efficiency of the reaction. Attaining kinetic control over the reaction can lead to reduced byproduct formation and lower energy input, although in the case of typically exothermic hydrogenations, energy removal is more important than energy addition.
- A key point that arises if one examines the recent literature is that one does not need to create a single phase (of supercritical fluid, substrate, and hydrogen) to create a situation where transport limitations can be eliminated [59, 61, 62]. For example, one can attain kinetic control over the reaction simply by ensuring that a significant amount of CO, is present in the liquid phase (maintaining a gas phase of CO,/H,). Here, the CO, functions as a diluent (and viscosity reducer) that enhances the solubility of hydrogen in the lower phase. The enhanced hydrogen solubility more than makes up for the dilution effect from the CO,. Although elimination of the resistance owing to transport of H, into the liquid phase does not by definition create kinetic control over the reaction (resistances owing to diffusion to and within the catalyst also exist), the previous work has shown that the solubility of H, in the liquid is typically the limiting factor. The use of CO, as the "H, solubility enhancing diluent" could have broad ramifications on the practicality for conducting hydrogenations in supercritical fluids, in that it could make the use of benign (and nonflammable) CO, more viable. For example, Harrod [55], as well as others, has employed propane as a supercritical solvent solely to enable formation of a single phase with substrates whose solubility in CO, is poor. It may be possible to both employ CO, as the "diluent" and eliminate transport limitations to reaction, rendering the reaction more efficient while avoiding the flammability problems inherent to propane. The use of CO₂ as "diluent" also could render the anthraquinone process described by Hancu [66] much more economically efficient as well as greener. This situation obviously best applies to liquids (or low melting solids) that are relatively nonvolatile. The use of a twophase (liquid-vapor) mixture also can help with heat transfer, as the boiling of the liquid can be employed to absorb excess heat.
- 3. Regarding asymmetric hydrogenations, the key green advantages to this work seem to be the elimination of organic solvent and improved selectivity. However, the results in the literature have not established that significantly greater selectivities are likely to be obtained solely through replacement of a conventional solvent with a supercritical fluid (primarily CO₂). Solvent polarity does impact selectivity, so it is possible that reactions will be identified where use of CO₂ provides selectivity benefits. Most of the work on asymmetric hydrogenation has employed homogeneous catalysts; catalyst lifetime and recovery are unresolved issues in this area.

4. The poisoning of noble metal catalysts via the formation of CO from CO₂ and H₂ could seriously impact the economic viability of hydrogenation processes conducted in carbon dioxide. Subramaniam [29] has begun to elucidate the effect of various process parameters on this process; more research in this area clearly is merited.

2.7 Hydroformylation in CO₂

Hydroformylation, the reaction of hydrogen and CO with an alkene to form aldehydes (Scheme I), is practiced industrially (the "oxo" process) on an enormous scale using alkenes of various chain lengths [14].

Scheme I:

$$\begin{array}{c} O \\ + CO + H_2 \end{array} \longrightarrow \begin{array}{c} O \\ R \end{array} \longrightarrow \begin{array}{c} H \\ \end{array}$$

In one form of the process, cobalt is fed to a reactor containing the oxo gas (H_2 and CO) and the alkene, where a reaction takes place to form the cobalt hydrocarbonyl, the active catalyst species. Alkene then is converted to aldehyde in the liquid phase (the liquid is either a mixture of alkene substrate and alkane solvent or simply the alkene alone). The reaction takes place under rather severe conditions, 200 to 300 bar and temperatures between 410 and 450 K. The reaction produces the needed aldehyde(s), as well as residual alcohols and alkane. The useful products are recovered, and the remainder are combusted. The selectivity of the process is approximately 85 percent to the aldehyde products. The catalyst is recovered as a cobalt "sludge" and regenerated/recycled. In a variation on the basic oxo process, a water-soluble cobalt catalyst is employed that can be recovered via retention in the aqueous phase at the end of the process. Hence, the reaction is biphasic in nature—poor solubility of higher alkenes limits this process to $C_2 - C_4$ alkenes.

The rationale for operating a hydroformylation reaction in a supercritical fluid is similar to that for hydrogenation. Hydroformylation involves the use of two gaseous reactants (CO and H₂), and hydroformylation of a nonvolatile or low volatility liquid substrate will likely be limited by the solubility and transport of the gaseous reactants from the vapor to the liquid phase. As for the case of hydrogenation in supercritical fluids, research on hydroformylation has been conducted using both homogeneous and heterogeneous catalysts. Further, the majority of the studies reported employed CO₂ as the solvent. The "green" rationale for exploring this class of reactions using supercritical fluid solvents is that creation of a more efficient reaction (kinetically controlled, more selective) will result in the production of fewer byproducts and

perhaps require lower energy input. Given the conditions under which the process currently is operated, if one could produce the same space-time yield of product using lower pressure and/or temperature, the savings could be significant.

In summary, the green premise behind conducting hydroformylation in CO₂ is not only to replace solvent (only a factor in some oxo processes), but also to create a more efficient reaction, and hence reduce byproduct waste and energy input.

2.7.1 Homogeneous Catalysis of Hydroformylation in CO,

Rathke and colleagues [70] reported the hydroformylation of an olefin in CO₂ in 1991. A cobalt carbonyl catalyst (soluble in CO₂ without modification) was used to promote the generation of butyraldehyde from propylene. CO₂, and hydrogen. Rathke reported that operating the reaction in CO₂ produced a somewhat improved yield of linear to branched aldehyde. The rate of formation of both cobalt intermediates and aldehydes was found to be similar to values found when the reaction was performed in conventional nonpolar solvents.

Leitner's group [92], as well as Erkey and colleagues [93], reported hydroformylation of an olefin in supercritical CO₂ using a homogeneous rhodium catalyst in 1998, where the now classic strategy of derivatizing the catalyst ligands with fluorinated ponytails was used to enhance catalyst solubility. Leitner found that the reaction (hydroformylation of 1-decene) readily goes to completion in CO₂, with catalyst activities similar to those reported in liquid systems. Erkey's results for 1octene are similar. As Leitner points out, the long-chain alkenes employed as substrates for the reactions in CO, would likely not be soluble in water, and hence the well-known aqueous Rh/triphenyl phosphine trisulfonate catalyst system cannot be used to generate long-chain aldehydes. Potentially, this is a means by which to produce valuable products while replacing an organic solvent with CO₂ (as long-chain aldehydes could only be produced in bulk or in organic solvent). Further, reaction in CO, will allow much higher CO and H, concentrations and potentially much faster rates. Indeed, Erkey and coworkers suspected that the high CO and H, concentrations were potentially the cause for differences in the rate expression between hydroformylation of 1-octene conducted in CO, (using a fluorinated phosphine Rh catalyst) versus that in a conventional liquid. Interestingly, Leitner found that internal olefins, which are "notoriously unreactive" in conventional solvents, are hydroformylated with high rates and excellent yields. Erkey examined the effect of ligand structure (most notably, position and nature of the fluorinated ponytail) on the rate of hydroformylation, and found that the activity decreased as the basicity of the ligand decreased. Increasing the fluorine content of the ligand would tend to enhance the solubility of the catalyst in CO,, but decrease the activity. Indeed, increasing the fluorine content of the ligand also will increase the cost (both through an increase to molecular weight and the inherent cost of fluorinated compounds). Consequently, an optimization problem is created, where increasing fluorine content to the ligand lowers certain capital and operating costs owing to lower required operating pressure, while raising catalyst cost. A possible solution to this problem would be to decouple the effects that create the optimization problem (i.e., find a way to enhance solubility of the catalyst without resorting to fluorination). Xiao's group at the University of Liverpool has examined this route [94], employing carbonyl groups attached to aryl phosphine ligands to enhance catalyst solubility in CO₂.

Akgerman's group has investigated homogeneous hydroformylation in supercritical CO, for a number of years [95]. In 1997, Guo and Akgerman reported the homogeneous hydroformylation of propylene in CO, using a soluble cobalt catalyst. Both the rate constant and the selectivity were found to be functions of pressure, each increasing significantly as pressure increased from 90 to 190 bar. The apparent effect of pressure on the rate constant was attributed to potential limitations in catalyst solubility in the CO propylene mixture—as pressure increased. the catalyst solubility should increase, accounting for the observed effect. In a follow-on study published in 1999, Guo and Akgerman employed transition state theory, coupled with partial molar volumes calculated using the Peng-Robinson equation of state, to attempt to explain the selectivity increase with increasing pressure. Calculations reproduced trends in both temperature and pressure-dependence of the rate and the selectivity. It is not clear whether this work has any "green" ramifications, as the substrate employed (propylene) is a highly compressible fluid itself, and might be expected to solubilize significant quantities of hydrogen and CO. In this case, addition of CO, would tend to dilute the reactant concentrations. thereby slowing the rate. On the other hand, if it could be shown that addition of CO, enhances the concentration of H, and CO significantly, then process advantages might be realized.

Xiao and coworkers [96] also have examined homogeneous hydroformylation in CO₂. They note, for example, that use of fluorinated aryl phosphine ligands (as part of a rhodium catalyst) leads both to higher solubility in CO₂ and higher reaction rates (the latter owing to both electronic affects and solubility limitations of alkyl-ated phosphine catalysts). Comparison of the rates of hydroformylation of acryl-ates in CO₂ and toluene showed the expected enhancement (in CO₂), owing to the considerable increase in solubility of the reactants (CO and H₂) in CO₂ versus toluene at the same pressure. Selectivities remained the same. As in other research on hydrogenation and hydroformylation in CO₂, the "green" advantages of the process are suggested to be the increased rates owing to the higher solubility of H₂ and CO in CO₂ versus typical organic solvents, plus the inherently benign nature of CO₂ versus other solvents. However, these attributes may be offset by the high pressure required to operate in CO₂ (energy and capital requirements likely will be higher) and the increased cost and potential environmental problems owing to the use of fluorinated catalyst ligands needed to provide reasonable solubility in CO₂.

It would be quite useful to explore the use of CO₂ as a swelling agent for a liquid hydroformylation system, where the dilution effect is offset by the enhanced

solubility of gaseous reactants in the liquid phase owing to the presence of CO₂. Catalysts could still be homogeneous yet not require fluorinated ligands, given that the continuous phase would be primarily alkyl-functional substrate (and product). Consequently, one could eliminate gas-liquid transport resistance while operating at substantially lower pressures than those required for single-phase operation. This indeed might be the process compromise that would provide the "greenest" operation. Note that this is the opposite to what many authors recommend [97]—whereas a single phase is the best option for some processes, in cases where CO₂/liquid substrate/gas reactive mixtures are being considered, two-phase operation has significant advantages. Indeed, if one could operate a hydroformylation at high space-time yield at lower pressures and temperatures than the current process owing to the presence of CO₂, the process would be both green and economically viable. As in the case of hydrogenation, the use of a two-phase (liquid-vapor) system would allow easy heat removal through boiling (and later condensation) of the liquid.

2.7.2 Heterogeneous Hydroformylation in CO,

Several research groups have evaluated heterogeneous catalysis of hydroformylation in CO,; generally, yields were good and selectivities to linear aldehyde were excellent. For example, Poliakoff [98] used a rhodium complex (aryl phosphine ligands) immobilized on silica—selectivity to linear aldehyde was more than 90 percent at 10 percent alkene (1-octene) conversion. Clearly, use of an immobilized catalyst eases catalyst recovery and reuse issues. Poliakoff found no drop in catalyst activity after 30 hours of continuous use. Abraham [99] also has examined heterogeneous hydroformylation of propylene, focusing on the design of the catalyst to optimize performance. At first, Abraham's group focused on support design to try to minimize product sorption, while more recent work has targeted the design of "tethered" rhodium catalysts to try to achieve the advantages of both homogeneous and heterogeneous catalysts. It is again interesting that researchers have neglected to examine the question "Under what conditions will the use of CO, provide better results than when using neat substrate?" Given that gases such as CO and hydrogen are poorly soluble in organic liquids, if CO, will swell the substrate substantially, then conditions may exist where the concentration of hydrogen in the liquid phase (of a two-phase mixture) may be such that the rate in such a situation is higher than in the neat substrate case, despite the presence of a diluent (CO₂). Such comparisons would be useful for the purposes of determining the viability of such CO₃-based processes.

2.7.3 Industrial Activity: Hydroformylation in CO₂

Only one industrial patent of note [100], assigned to Mitsubishi Chemical Co., was identified during our patent search. No scale-up work seems to have followed.

2.7.4 Summary: Hydroformylation in CO,

In summary, one could report many of the same conclusions regarding hydroformylation in CO₂ as for hydrogenation in CO₃. In hydroformylation, however, process conditions for the industrial route are rather severe, and hence if one could obtain the high yields and selectivities of the industrial process but at moderate conditions (p. T) via use of CO₂ as a solvent, the process would be both greener and less expensive. A rich area for further work is in hydroformylation in two-phase systems where CO₂ acts as the "reversible diluent."

2.8 Oxidation in CO,

At first glance, CO₂ appears to be an ideal solvent for use in oxidations. Unlike most organic solvents, CO₂ will not oxidize further in the presence of oxygen and catalysts, and use of CO₂ as the solvent eliminates the solvent byproduct waste stream that usually is expected in oxidations.

Many of the conclusions found from recent research on hydrogenation and hydroformylation in CO, also can be applied to oxidations conducted in CO,. However, although hydrogenation and hydroformylation focused exclusively on H₂ (and HJCO) as reagents, oxidations conducted in CO, have been pursued using a variety of oxidants. Clearly, however, the use of O, as a benign oxidant has received the most attention, as it is ultimately the least expensive and most atom-efficient route. Research on oxidation of substrates using O, in CO, has targeted the elimination of transport resistance (as for hydrogenation and hydroformylation) through the elimination of the gas-liquid interface. This is proposed to enhance the efficiency of the reaction, leading to fewer byproducts. As in the preceding cases, it would be extremely interesting to examine oxidation in a single-phase system where CO, is the minor component (a diluent for the substrate or swelling agent) or in a two-phase system where the substrate resides primarily in the lower phase. The role of the CO, is simply to enhance the solubility of oxygen in the substrate-rich phase, where we assume that the dilution effect owing to CO,'s presence is more than offset by the enhanced oxygen concentration. This would allow lower pressure operation and might eliminate the need for fluorinated catalyst ligands (for homogeneous processes) in that the catalyst must be soluble in a concentrated substrate-CO, mixture, rather than a mixture that is primarily CO, Indeed, Wu and colleagues [101] examined precisely this type of system, although it is not clear from the paper whether they recognized the ramifications of their work. Wu studied the oxidation of cyclohexane with oxygen in the presence of an iron porphyrin catalyst and acetaldehyde where CO, was the solvent. The yield (of cyclohexanol/cyclohexanone) increased with pressure up to approximately 100 bar, then decreased sharply at higher pressures. Phase behavior measurements were not made, but qualitative observations (via sapphire windows in the reactor) suggested that the drop in yield coincided with a transformation from two phase to one phase. In this system, the presence of significant quantities of CO₂ in the lower phase of a two-phase mixture allows for solubilization of substantial quantities of oxygen, providing for a high rate of reaction. Transformation to a one-phase mixture merely produced a dilution effect, lowering the rate.

An additional consideration that recommends the use of CO₂ as "diluent" rather than major component ("solvent") is that oxidations using O₂ typically are conducted using air (O₂/N₂). Air is superior from an economic standpoint, as use of O₂ mandates somewhat energy-intensive O₂-N₂ separation (and hence inadvisable from a green perspective). However, if one were to use O₂/N₂ in a single-phase system where CO₂ is the primary solvent, nitrogen would build up in the system unless a concerted effort (pressure reduction) was made to continuously remove it. In a two-phase mixture where CO₂ is the minor component, the nitrogen concentration in the lower phase would quickly saturate (equilibrium would be established with the upper phase), and this additional pressure drop and separation step is not needed (a green advantage).

2.8.1 Oxidations in CO,: Experimental Results

Clearly, the oxidation of cyclohexane (first to cyclohexanone/cyclohexanol, subsequently to adipic acid) is one of the more commercially important oxidations performed industrially (Scheme II) [14].

Scheme II:

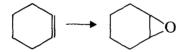
Cyclohexane is oxidized in the liquid phase using air (at temperatures of 395 to 435 K and pressures in the 10-20 bar range) to a mixture of cyclohexanone and cyclohexanol. Magnesium or cobalt salts are employed to catalyze the reaction. Srinivas and Mukhopadhyay [102] examined the oxidation of cyclohexane in CO₂ with oxygen at temperatures between 430 and 470 K and pressures up to approximately 200 bar. Interestingly, a catalyst is not mentioned by the authors, despite the fact that one is employed industrially. The authors found that the condition of the feed (one phase, two phase, proximity to a phase boundary) exhibited a strong effect on the product profile and the rate of product formation. Not surprisingly, given the discussion above, the highest rates (for both cyclohexane and cyclohexanol formation) were observed in the single-phase system where CO₂ was the minor component; that is, CO₂ was employed to homogenize the mixture of cyclohexane and oxygen, leading to high concentrations of each reactant and high rates.

Another oxidation process of great import industrially is the formation of epoxides from alkenes. Most important is probably the generation of propylene oxide from propylene. Currently, propylene oxide is produced via one of three processes (primarily). First, chlorohydrin (from chlorine and propylene) can be reacted with a base to generate propylene oxide and salt (Scheme III); a very large volume of wash water (40 times the volume of product, which is then treated and emitted) is required to work up the product.

Scheme III:

$$CI$$
 + $Ca(OH)_2$ + $CaCl_2 + H_2O$

One also can produce propylene oxide (PO) via a coproduct process where an intermediate is peroxidized with oxygen, and the oxygen transferred to propylene, creating propylene oxide and a byproduct alcohol (which then is transformed to a coproduct) [14]. The most widely used coproduct processes for PO production also create styrene or methyl tertiary butyl ether (Scheme IV).


Scheme IV:

There is significant interest in designing a process that only produces PO from propylene and oxygen, as methyl tertiary butyl ether is now environmentally suspect and the demand for styrene tends to fluctuate and that for PO remains consistently strong. As such, propylene oxide production is more energy intensive and wasteful than desired because a coproduct must be produced along with PO. Consequently, Baiker and colleagues [103] investigated the oxidation of propylene with an oxygen/hydrogen mixture using a Pt/Pd on TS-1 (titanium silicate) catalyst in a two-phase system (methanol was employed as the primary solvent). The reaction proceeds via formation of hydrogen peroxide from H₂ and O₂ over the Pd, followed by oxidation of propylene to PO. Both nitrogen and CO₂ were employed as solvents for the H₂/O₂ mixture. Baiker found that the yield of PO increased markedly on switching from nitrogen to CO₂ in the upper phase of the mixture, and that increasing pressure enhanced the yield still further. As in previous cases, these results

may derive from the simple fact that use of CO₂ as the solvent for the reactant gases allows for greatly enhanced concentrations of these gases in the lower (or liquid) phase, thereby enhancing the rates.

Eckert and colleagues, as well as Beckman, et al., have investigated an interesting route to alkylene oxides [104]. As shown originally by Richardson and colleagues [105], hydrogen peroxide will react with a bicarbonate salt under basic conditions to form the percarbonate ion, which then will react with alkenes to form the epoxide. This reaction is an analogy to epoxidation using a hydroperoxide (such as t-BuOOH). Liquid CO₂ will dissolve in molar quantities in water, forming carbonic acid. Beckman and Eckert each showed that a biphasic CO₂/H₂O₂/water mixture also will form percarbonate (upon the addition of appropriate amounts of base), and will epoxidize olefins such as cyclohexene oxide (Scheme V).

Scheme V:

The addition of a base is critical for achieving high activity. In general, sodium hydroxide is more effective than bicarbonate (likely as it raises the pH more effectively). Given Beckman's results, it would appear that percarbonate is formed both via reaction of H_2O_2 and bicarbonate and via direct reaction between CO_2 and H_2O_2 . Further, because the reaction is biphasic, addition of a CO_2 -philic surfactant enhanced the rate dramatically, as would be expected. Likewise, addition of a phase transfer catalyst (a tetraalkyl ammonium halide) also enhanced the rate. These epoxidations are intriguing as they employ only water, CO_2 , and H_2O_2 as reactants and a catalytic amount of base. The primary drawback to this route is that hydrogen peroxide, although usually considered a commodity chemical, currently is too expensive to use as an oxidant to produce PO.

A number of other researchers have examined the oxidation of alkenes to epoxides using a variety of chemical strategies in carbon dioxide. Birnbaum [106], for example, employed a fluorinated (and hence CO₂-soluble) porphyrin catalyst to oxidize cyclohexene to cyclohexene oxide. Not surprisingly, Birnbaum found that the selectivity was significantly higher in CO₂ than in organic solvent, as operation in CO₂ does not produce solvent oxidation products. Loeker [107] examined the oxidation of olefins in CO₂ using oxygen and aldehydes as sacrificial co-oxidants. The reaction was heterogeneous, although it was the steel walls of the high-pressure reaction vessel that were employed as the catalyst. Finally, Haas and Kolis [108] found that one could readily oxidize olefins in CO₂ using t-butyl hydroperoxide and a soluble Mo(CO)₆ catalyst as an oxygen transfer medium. Regarding epoxidations, the direct generation of propylene oxide from propylene would be the

most significant "green" advance to be made in this area, yet use of anything but oxygen (or air) as the oxidant currently is too expensive.

Wacker chemistry (the oxidation of an alkene to a ketone using a PdCl_/CuCl_catalyst) also has been examined using CO₂ as the sole solvent. Li and colleagues [109] examined the oxidation of 1-octene in CO₂ and found that operation in a mixture of CO₂ and methanol led to higher selectivity to the methyl ketone than operation in either CO₂ or methanol alone. Because the phase behavior of the system was not measured, the effects reported by Li cannot be explained completely. For example, although it is known that the PdCl₂ and CuCl₂ catalysts are soluble in methanol and poorly soluble in CO₂, it is not clear as to their solubility in the mixture of MeOH and CO₂. Li's group also examined the oxidation of acrylic acid to the analogous 3.3-dialkoxy propionate using a similar catalyst system.

In early 2002. Subramaniam's group [110] published the results of an interesting study on homogeneous oxidation performed in mixtures of carbon dioxide and conventional organic solvents (primarily acetonitrile). This study showed vividly that one can use judicious mixtures of solvent and CO₂ to truly optimize the performance of a reaction. Use of CO₂ alone necessitated high pressures (hundreds of bar to dissolve both substrate and catalyst), and the low polarity of pure CO₂ provided a nonideal medium for the catalyst. On the other hand, use of pure acetonitrile allowed operation at one atmosphere and provided the catalyst with a suitably polar environment, but the solubility of oxygen in the liquid phase was poor. When the right mixture of acetonitrile/CO₂ was employed, the catalyst activity was high, and all components (oxygen, substrate, and catalyst) dissolved at pressures of only tens of bar. Study of more examples of this type of system may yield processes that are both greener than current methods and economically practical, particularly if one can ultimately eliminate the need for the organic solvent and work with neat liquid substrates.

2.8.2 Industrial Activity: Oxidations in Supercritical Fluids

In a 1997 patent [111], Pitchai and colleagues (ARCO Chemical Co., now Lyondell Chemical Co., a leading producer of propylene oxide via the coproduct process) describe a process where propylene is converted to propylene oxide directly using a silver catalyst, where addition of CO, enhances the efficiency of conversion. It is known that Lyondell is actively working on a coproduct free route to propylene oxide [112], although it is not yet clear whether supercritical fluids are being employed in the current work.

2.9 Summary: Gaseous Reactants in CO₂

Clearly, carbon dioxide exhibits some significant advantages as a solvent in systems where one or more of the reactants is a gas under typical operating conditions. In such cases, operation in a liquid solvent almost always sets up a situation

where the reaction is controlled by diffusion of the gas through the gas-liquid interface. Consequently, use of CO₂ as the solvent can produce (at suitable pressure and temperature conditions) a single-phase substrate-gaseous reactant-CO₂ mixture, and eliminate transport resistance owing to the presence of the gas-liquid interface. This, in turn, can render the reaction more efficient and potentially lead to lower energy usage, smaller processes, and less waste. In addition, it is clear that use of CO₂ as the solvent exhibits special advantages in certain reactions where oxygen is employed as a reactant—because CO₂ will not oxidize, no solvent-based oxidation waste products will be produced in CO₂-based systems. Further, when hydrogen and oxygen are used together in a process (as in Baiker's [103] and Beckman's [15] work), use of CO₂ as the solvent can greatly enhance the safety of the process. Despite the successes noted in the literature, there are some interesting avenues of research in the general area of "use of gaseous reactants in CO₂" that have not been, but should be pursued.

First, a minority of the papers published on use of H₂, O₂, and/or CO in CO₂-based reaction systems employ a two-phase mixture in which to conduct the reaction; researchers opt instead to raise the pressure to a point where a single phase forms. Because CO₂ usually swells organic liquids extensively, conducting the reaction in a two-phase mixture could eliminate the transport resistance owing to gas diffusion into the liquid phase while permitting use of relatively low operating pressures. In many cases, if one simply knew the phase behavior of the gas/CO₂/substrate mixture, one could predict those conditions where high (enough) concentrations of gaseous reactant would exist in the lower, substrate-rich phase. Use of lower pressures facilitates equipment design and results in less stringent utilities requirements, and is thus a "green" advantage. In addition, operation in a two-phase mixture would allow use of air as an oxidant without a slow buildup of nitrogen in the mixture. Finally, as in the case for hydrogenations, use of a two-phase mixture would allow for heat transfer via liquid boiling and condensation.

Another significant point to be made regarding heterogeneous catalysis in CO₂-based systems is that elimination of the transport resistance owing to gasliquid diffusion may not render the reaction kinetically controlled, as one also must account for liquid-solid transport and pore diffusion within the catalyst. Typically, the effect of pore diffusion on the control of the reaction is mitigated by employing smaller catalyst particles, but this solution is not always practical at larger scales. In addition, it often is easier to operate using a fixed bed of catalyst rather than a slurry of particles. Because CO₂ is a low viscosity fluid, it may be possible in some situations to move from a slurry of particles to a fixed bed without sacrificing rate.

Finally, a number of researchers have shown that one can design catalysts that are soluble in CO₂, and can be operated without any transport constraints despite employing gaseous reactants and catalysts. However, recovery of a homogeneous (and typically valuable) catalyst from CO₂ is not a trivial problem, and its solution is required to allow homogeneous reactions in CO₂ to be both green and economically

viable. Naturally, one solution is to design catalysts that are relatively nontoxic and whose activity is high enough such that recovery is not necessary (as is the case currently with ethylene polymerization catalysts). In the case of all catalysts (homogeneous and heterogeneous), the effect of the presence of CO₂ on catalyst deactivation (perhaps through the formation of CO during hydrogenation) is an area that merits further scrutiny.

Section 3

Polymerization and Polymer Processing

3.1 Introduction

Polymerization and polymer processing in/with CO₂ exhibit some interesting yet seemingly contradictory trends. Some of the most successful commercial processes that employ CO₂ as a solvent involve polymeric substrates, yet the vast majority of polymers produced worldwide are produced in the complete absence of solvent. Indeed, polyolefins (polyethylene), vinyl polymers (styrenics, acrylontrile, butadiene), polyamides (nylons), and polyesters are generated principally in bulk polymerization processes [113]. Further, for the most part, commercial polymers are poorly soluble (many, in effect, are insoluble) in CO₂. However, owing to the asymmetry of polymer-CO₂ phase envelopes, even polymers that are poorly soluble in CO₂ will swell extensively under moderate CO₂ pressure, allowing for a number of applications using CO₂ as reversible diluent/plasticizer. CO₂ is used extensively in the foaming of polymers (both styrenics and polyurethanes), has been used as the solvent in coating processes (Union Carbide's UniCarb process), and currently is being explored at the developmental level in fluoropolymer synthesis (DuPont) and powder coating processing (Ferro Industries).

3.2 Polymerizations: General Background

Polymerizations typically are classified by the mode of polymerization (ring-opening, free-radical, etc.), by the type of monomer used (styrenics, acrylates) or by the type of linkage formed during polymerization (polyamides, polyesters). In addition, polymerizations can be conducted in the bulk state, in solution, or in one of many so-called "heterogeneous modes"—namely precipitation, suspension, dispersion, or emulsion.

Because CO₂ typically is proposed/employed as a benign solvent, the following discussion of polymer formation and processing in CO, will focus on those

applications where solvents ordinarily are used. However, where examples can be found in which use of CO₂ in a formerly solventless process can provide sustainable and other benefits, such applications also will be discussed.

3.3 CO₂ as a Solvent for Polymer Systems

Polymers present special problems regarding dissolution in any solvent—the very low entropy of mixing in polymer/solvent binaries (owing to the long chains of the polymer) requires a very favorable enthalpic interaction between polymer segments and solvent to ensure dissolution of substantial polymer concentrations [114]. This problem is magnified in the case of CO₂, given that CO₃'s solvent power is admittedly weak.

Although a significant portion of academic polymer-supercritical fluid phase behavior work has considered solutions where the polymer is the minor component, it is important to remember that the full-phase diagram offers several interesting regimes with regard to possible green applications. In Figure 6, we see a generic phase diagram of a polymer and a supercritical fluid [115], showing the various phase separation envelopes and the behavior both above and below the solvent critical temperature. As can be seen in Figure 6, the liquid-liquid phase envelope is asymmetric (owing to the large disparity in size between polymer and solvent) with the liquid-liquid critical point shifted towards the 100 percent solvent axis. This is important—it means that solubilization of low concentrations of polymer in solvent will require the highest pressures. Swelling of the polymer by the solvent (moving to the right along the x-axis in Figure 6) requires significantly lower pressures. Thus, in certain polymer-supercritical fluid mixtures, one can observe very high degrees of swelling (> 25 percent in polyacrylate-CO, mixtures, for example) at pressures of 100 bar and below [116]. The relatively low pressures required to elicit high degrees of swelling may be one reason why applications where CO, is the minor component have been successfully commercialized, while those employing dilute polymer solutions have not.

High-pressure phase behavior studies of polymers and supercritical fluids have been conducted since the late 1940s; the early work was performed to support the high-pressure polyethylene process. Ehrlich's group performed some of the best early work on the phase behavior of polyolefins in supercritical alkanes and alkenes [117]; these studies have been followed by numerous others on polyethylene:alkane or polyethylene:alkene mixtures [118].

In the late 1960s, Giddings suggested a simple correlation between solubility parameter and critical pressure that indicated that CO₂'s solvent power should be similar to that of pyridine [3]. However, the strong quadrupole moment of CO₂ affects carbon dioxide's pVT properties (including the critical pressure) without influencing its solvent strength. Consequently, early calculations of the solubility param-

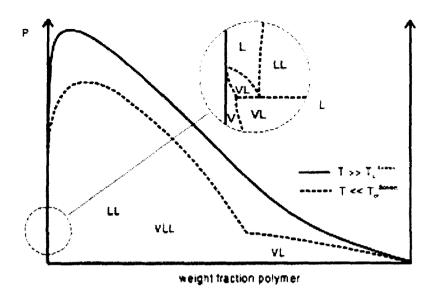


FIGURE 6 Qualitative P-x diagram of a polymer-CO₂ binary mixture, both above and below the critical temperature of the solvent [81]. Figure includes liquid-liquid (LL), vapor-liquid (VL), and three phase vapor-liquid-liquid (VLL) types of phase envelopes.

eter were invariably inflated. This actually was confirmed by the very study that proposed that CO₂'s solubility parameter should approach that of pyridine; polymers that would dissolve in pyridine were not soluble in carbon dioxide. Subsequent calculations performed during the early 1980s [see, for example, 119] using CO₂'s equation of state, strongly suggested that CO₂'s solubility parameter should approach that of normal alkanes. However, experimental work by Heller's group on the phase behavior of polymers performed during that time [120] clearly demonstrated that CO₂'s solvent power is inferior to that of n-alkanes—very few polymers tested by Heller showed any significant solubility in carbon dioxide at moderate (less than 200 bar) pressures. Experimental work by Johnston's group [121] suggested that solubility parameter was not the best means by which to characterize the solvent power of compressible fluids such as carbon dioxide. Johnston suggested instead that polarizability/volume is a better measure of solvent power; by this standard, CO₂ is judged to be a feeble solvent, in line with experimental evidence.

During this same time period, a number of researchers found that silicones [122] and fluorinated materials [1, 69, 123] exhibited miscibility with CO₂ at pressures well below those of alkanes of comparable chain length. Indeed, a calculation of the solubility parameter of CO₂ using the heat of vaporization and molar volume (of the liquid) would suggest values similar to those of fluoroalkanes or silicones [124]. In 1992, DeSimone and colleagues published the first reports that

describe a truly "CO₂-philic" polymer, a fluorinated polyacrylate [73]. Further work [125] showed that block copolymers of fluorinated acrylates and "CO₂-phobic" polymers were both soluble and able to form micelles in carbon dioxide.

It is interesting that the role of fluorine in the design of CO₂-philic materials has not been completely established. For example, although the poly(perfluoroacrylates) are the most CO₂-philic polymers known, it also is true that more poorly soluble fluoropolymers have been identified than highly soluble variants [118, 126]. Samulski and colleagues [127] have found experimentally that fluorine interacts specifically with the electron-poor carbon on CO₂, which would explain why addition of one or two fluorine atoms to aryl phosphine ligands or chelating agents tends to enhance CO₂-solubility significantly. Calculations using various levels of theory tend to predict no specific interactions with fluorine [128], suggesting that fluorine's role in the design of CO₂-philic materials is simply to lower the cohesive energy density. McHugh recently has suggested that fluorination can significantly enhance the "CO₂-philicity" of polymers if the fluorination creates a dipole in the material, providing a locus for quadrupole-dipole interactions with CO₂ [126a]. This appears to be an area where more fundamental research would help to create a clearer picture of the underlying phenomena.

As interest in applications for CO₂-philic polymers exploded in the 1990s [129], a small group of researchers continued to probe the fundamentals of CO, behavior with special regards to polymer solubility. Johnston's and Eckert's groups, using IR spectroscopy and computer calculations, proposed that Lewis acid-base interactions between CO, and carbonyl groups could explain the high swelling of polyacrylates by carbon dioxide [130, 131]. Calculations using various levels of theory tend to support the experimental evidence, at least where carbonyl groups are concerned [132]. Further, the specific interactions between Lewis base groups and CO, exhibit a much more significant effect on polymer-CO, phase behavior than small molecule-CO, phase behavior. McHugh's group published several seminal papers [118, 133] on the phase behavior of CO, and various homo- and copolymers in the mid-1990s. Conventional wisdom of the time would suggest that, because CO, is a low dielectric, low cohesive energy density solvent, it should only solvate polymers of similar characteristics. However, for the case of ethylene-acrylate copolymers, McHugh found that increasing the acrylate content lowered miscibility pressures, despite the fact that the acrylate is the polar comonomer. McHugh postulated quadrupole-dipole interactions as the cause; clearly, Lewis acid-base interactions could have played a role as well. For the case of n-alkyl acrylates, McHugh found that increasing the side chain length of the polymer initially would lower miscibility pressures, ostensibly due to the increased polymer free volume (and hence entropy of mixing). However, because enthalpic interactions between CO, and methylene groups are not favorable, increasing the side chain length beyond a certain point led to decreased miscibility. Johnston recently reported that polymers that exhibit low interfacial tensions (and hence low cohesive energy densities) also tended to exhibit low miscibility pressures in carbon dioxide [68].

Clearly, the phase behavior of polymers in CO₂ is tied to carbon dioxide's low cohesive energy density, but its Lewis acid character also will play a significant role if the polymer contains Lewis base groups. For example, Beckman found that polybutadiene, a very low cohesive energy density polymer, is more "CO₂-philic" than other vinyl polymers of higher cohesive energy density [134]. However, both polypropylene oxide and polyvinyl acetate exhibit lower miscibility pressures than polybutadiene, likely owing to the presence of Lewis base groups in each of the latter polymers despite exhibiting higher cohesive energy densities than polybutadiene.

Topology also plays a role in determining phase behavior. Beckman and Lepilleur [135] found that increases to polymer chain branching generally lowers miscibility pressure in CO₂. This result confirms earlier results on branched polyolefins in alkanes [136]. Finally, McHugh found that topology can play an extraordinary role in determining the phase behavior of polymers in CO₂. The miscibility pressures of polyvinyl acetate, for example, lie at pressures hundreds to thousands of bar lower than those for polymethyl acrylate (an isomer of PVAc) [133]. The underlying mechanism for this behavior is entirely unknown.

In the late 1990s, Beckman's group [137] proposed a hypothesis for design of CO,-. philic polymers that incorporated the earlier conclusions reached by both McHugh and Johnston. Beckman and colleagues proposed that CO,-philic polymers should incorporate monomers (or functional groups) that contain several features: high flexibility (and thus low Tg), low cohesive energy density, and Lewis base groups to provide loci for specific interactions between the polymer and CO₃. They demonstrated the effectiveness of the hypothesis by designing highly CO,-soluble ether-carbonate copolymers. Modified polydimethyl siloxane (PDMS) also was examined [138]—experimental work by Kiran [139] had shown that PDMS exhibits upper critical solution temperature (UCST) type phase behavior at room temperature, suggesting that the enthalpic interaction between PDMS and CO, is nonoptimal. Fink, et al., then showed that addition of Lewis base groups (in side chains) to PDMS lowered miscibility pressures in CO, by hundreds of bar. Finally, Wallen [140] has proposed that CO, can exhibit specific interactions other than simple Lewis acid-base type. Wallen has found, via both simulation work and experiment, that an aldehyde will exhibit interactions between the carbonyl oxygen and the carbon atom in CO, as well as a weak hydrogen bonding interaction between the aldehyde H and the oxygen in CO₂.

In summary, we have made great strides in our understanding of CO₂-polymer phase behavior since the days when "CO₂ is like hexane" was conventional wisdom. However, as shown by recent work from McHugh, Beckman, and Johnston, a fundamental understanding of CO₂-polymer thermodynamic behavior is still lacking. Poly(fluoroacrylates) are the most CO₂-philic polymers known, but their high cost renders their application problematic. If one could, from first principles, design a nonfluorinated, truly CO₂-philic polymer, this would greatly enhance the potential for industrial application of CO₂, both in polymer science and general chemical processing.

3.4 Chain Polymerization and CO,

In chain polymerizations, an initiating species is formed that contacts a monomer, creating the beginning of an active chain. This chain then grows rapidly to form the polymer molecule. Finally, a chain-terminating event may take place (or monomer may be depleted), ending growth of the chain in question. The various chain polymerization types then are further subdivided based on the type of initiating species, and also the relative rates of initiation and growth [141].

3.4.1 Free Radical Solution Polymerization

In free radical chain polymerization, an initiator (through thermal, chemical, or photochemical stimulation) forms an active radical that contacts a vinyl monomer, forming the growing chain. Termination takes place either through chain coupling or disproportionation. Molecular weight distributions can be broad (> 2.0), and average molecular weight rises rapidly with conversion, leveling off as long chains are continuously formed. Low-density polyethylene, polyacrylates, polystyrene, polyvinyl chloride, and other materials are formed using free radical initiation. Much of the total commercial volume of such polymers is synthesized in the absence of solvent in continuous processes containing only monomer, polymer, and initiator at temperatures sufficient to create a pumpable polymer melt.

As described above, the solubility of most polymers in carbon dioxide is relatively poor, and it is not surprising that early work on polymerization in CO, was relegated to precipitation polymerizations [142]. Although it could be claimed that the plasticizing effect of CO, on the precipitated polymer might enhance transport of monomer to the growing chain end, no significant advantages (versus the added complication of working at elevated pressure), green or otherwise, were realized from such processes, possibly because the presence of the monomer itself tended to plasticize the polymer. Consequently, one would only expect to observe a significant effect of added CO, during the later stages of polymerization, when the presence of CO, might inhibit the well-known Trommsdorf, or autoacceleration effect (the latter occurs when the increased viscosity of a polymer melt inhibits chain termination, leading to rapid increases in rate). Because CO, is a diluent, its presence also would lower the rate in general, which is a disadvantage [143]. Finally, vinyl polymerizations are exothermic, and great care would need to be taken to prevent uncontrolled pressure increases. In summary, the disadvantages inherent to operating a vinyl polymerization in CO, have greatly outweighed any advantages to date. In general, it is very hard to justify (from a "green" perspective) adding solvent to a solventless process.

One exception to this rule is in the surfactant-free precipitation polymerization of fluoromonomers [144], recently scaled up by DuPont to a semi-works size in North Carolina. Typically, fluoropolymers are generated via suspension polymer-

ization in water; the use of carbon dioxide as the solvent provides for a chain-transfer free solvent and eliminates the need for the surfactant (as noted previously, the EPA recently has filed a SNUR regarding fluorinated surfactants of the fluorosulfonate variety, possibly restricting their use in the future [42]). Interestingly, most fluoromonomer polymerizations are precipitation polymerizations (as shown by McHugh [126], many fluoropolymers are insoluble in CO₂). However, addition of CO₂ stabilizes tetrafluoroethylene, eliminates the need for fluorinated solvents and surfactants, and eliminates chain transfer to solvent. Indeed, a recent conversation with a DuPont customer [145] revealed that the fluorinated copolymers produced in CO₂ exhibit superior performance during extrusion, owing to fewer gels and a tighter composition distribution. In fluoropolymer polymerization, CO₂ provides green advantages, safety advantages, and product advantages.

Another possible application for precipitation polymerization in carbon dioxide involves acrylic acid [146]. Currently, poly(acrylic acid) is generated in an emulsion or suspension polymerization in a hydrocarbon continuous phase; removal of the alkane from the product is both energy intensive and waste forming. Use of CO₂ as the continuous phase allows the generation of dry, free-flowing, granular material.

Carbon dioxide also has been proposed as a diluent (reversible plasticizer) for reactions on preformed polymers, reactions that often take place within extruders during polymer processing. In theory, the plasticizing effect of CO₂ will reduce transport limitations of the reactants (in the otherwise highly viscous melt), leading to enhanced rate and thus more complete reaction in the same residence time. However, O'Neill and Beckman [143] found that in the case of the polyvinyl acetate-to-butyrate transition (a highly successful industrial process), the presence of the low molecular weight reactants was sufficient to plasticize the melt. CO₂ acted merely as a diluent, lowering the rate by reducing the concentration of the active species.

3.4.2 Heterogeneous Free Radical Polymerizations

Heterogeneous polymerizations are those where the polymer is not soluble in the continuous phase, or solvent [141]. These polymerizations can be subdivided further based on the thermodynamic affinity of the monomer for the solvent and the nature of the polymer stabilization:

- Emulsion
- Dispersion
- Suspension.

Although simple precipitation can be considered as a form of heterogeneous polymerization, it has been considered separately in the previous section.

3.4.2.1 Emulsion Polymerization in CO₂

In emulsion polymerization, neither the monomer nor the polymer is soluble (to any appreciable extent, there is always some measurable monomer solubility) in the continuous phase, and sufficient surfactant is present to form micelles (the locus of the polymerization) and to stabilize the large droplets of monomer that also are present (the latter form monomer reservoirs). The kinetics of the emulsion polymerization are such that (unlike in bulk or solution free radical polymerization) both high rate and high molecular weight are possible. Carbon dioxide, although not a powerful solvent, is miscible with a large variety of volatile, low molecular weight vinyl monomers [147]. As such, identifying a suitable candidate for emulsion polymerization is problematic, as one must find a monomer that exhibits a sizeable phase envelope under the conditions of interest, yet under conditions where the surfactant to be employed is miscible (in CO₂, the converse is much simpler to identify—a mixture where the monomer is miscible and the surfactant is not). This has proved to be difficult, and to date only acrylamide, acrylic acid, and N-vinyl formamide have been investigated in any detail [148]. The case for acrylamide is complicated further by the fact that it is a solid at temperatures below 353 K and has been employed as an aqueous solution—the presence of the water renders subsequent polymer particle size analysis difficult. Emulsion polymerization of water soluble monomers in CO, is a viable target in the context of green chemistry, in that the commercial route employs a kerosenebased continuous phase and also requires significant energy input to separate product from emulsion following polymerization.

The key issue in emulsion polymerization is the design of the surfactant—it must be soluble in CO, at moderate pressures, effective, and relatively low cost. Early work employed fluorinated surfactants (nonionic and anionic), as these were known to be CO₂-philic [148]. Results showed that one could indeed generate high polymer at high rates, but the surfactants employed were more valuable (even at 1 percent loading and below) than the polymers being generated, and recycle is difficult to achieve economically. Although silicone-functional surfactants also have been evaluated [149] in emulsion polymerization, their performance is not as good as their fluorinated cousins, and their cost can be quite high (for siloxane-based materials generated from the cyclic tetramer (D_s), cost is about 5 to 10 times as high as traditional hydrocarbon surfactants. For monofunctional materials created from the D₁ cyclic trimer, the cost approaches that of fluorinated materials). The practicality of the process would be greatly enhanced by discovery of an effective yet low-cost surfactant. In work to date, AIBN (azo bis(isobutyrnitrile)) usually was employed as the initiator, and process temperatures were set at 330-340 K to achieve reasonable polymerization rates (AIBN half-life at 343 K is ~ 4 hours). As such, process pressures were relatively high (> 200 bar). Clearly, use of an initiating system that operates at lower temperatures (photochemical or redox [141]) would lower the required process pressure and also render emulsion polymerization in CO₂ more practical (see, for example, [150]). It should be noted that such an initiator system would be more expensive than that currently employed, an added cost that must be factored into the total.

3.4.2.2 Dispersion Polymerization in CO,

Dispersion polymerization [151], where the monomer is soluble in the continuous phase (here CO₂) while the polymer is not, has seen extensive research activity over the past decade. Because most, if not all, vinyl monomers are miscible with CO, at relatively modest pressures (complete miscibility below 100 bar at 313 K in many cases), although high polymers are notoriously insoluble, dispersion polymerization seems well suited to adaptation to carbon dioxide. If a dispersion polymerization was conducted in a conventional liquid, a low molecular weight alcohol or alkane would be the preferred continuous phase, and thus CO, could replace a significant volume of organic solvent. Separation of the product polymer from the continuous phase in a CO₂ system would not require drying/devolatilization, a potentially significant energy savings. Because many vinyl monomers lend themselves to dispersion polymerization in CO₃, the key requirement to successful demonstration was finding a suitable stabilizer. Finally, because a successful dispersion polymerization produces a stable latex that then can form the basis for a coating formulation, it was hoped that the analogous process in CO, would produce a coating formulation that could be sprayed without VOC release.

Stabilizers for dispersion polymerization in conventional systems require a soluble component and an anchoring component—DeSimone's group prepared the first successful stabilization system from homo- and copolymers of fluoro-acrylate monomers [152]. Small amounts of these copolymers permitted the rapid polymerization of methyl methacrylate (MMA) in CO, in the form of monodisperse particles approximately 1 micron in size. Johnston's group later showed that stabilization of the particles was due in large part to effective solvation of the CO₃-philic, fluorinated blocks of the copolymer [153]. If conditions (temperature and pressure) were such that the fluorinated chains would collapse, flocculation of the particles would take place. Beckman and Lepilleur [154] also examined the dispersion of MMA in CO;; comb-type copolymers (acrylate backbone and fluoroether side chains) were employed. Once the backbone was above a certain chain length, monodisperse, micron-size particles could be formed rapidly. Finally, Howdle and colleagues [155] found that one could create a very simple but effective stabilizer for MMA polymerization, a fluoroether carboxylic acid. Hydrogen bonding between the acid and MMA's carbonyl provided anchoring sufficient to stabilize the dispersion and form small PMMA particles.

As in the case for emulsion polymerization, practical dispersion polymerization in CO₂ ultimately will require a stabilizer that is both sustainable and inexpensive, and the fluorinated materials investigated heavily during the 1990s are not

likely to be applied industrially. A reactive silicone (polydimethyl siloxane, acrylate terminated) has been applied as a stabilizer in MMA polymerization [156], but its performance was far less satisfying than the various fluorinated stabilizers that have been evaluated. As in the case of emulsion polymerization, use of an initiating system that operates at low temperature (versus the typical thermally triggered azoand peroxide compounds) would lower process temperature (and hence pressure) substantially. Finally, although micron-size particles of MMA (and other monomers) were readily formed, latex stability was relatively poor, with material settling out in a matter of hours (versus the desired days and weeks). This is not entirely surprising, as the low viscosity of CO₂ (1/10 that of water) produces a relatively high terminal settling velocity. If the cost of the stabilizer could be lowered and the stability of the latex improved, a CO₂-based dispersion could form the basis of a low-VOC coating system.

A potentially sustainable CO,-based (and hence solvent free) coating formulation might be developed even if the rapid settling of the latex cannot be corrected. If polymer particles, produced either in water or in CO, then recovered and dried. could subsequently be redispersed in CO₂, then the dry particles could be shipped from manufacturer to remote customer and still employ a non-VOC (CO,-based) spray-coating system. Use of such a system would save the large amount of energy needed to transport essentially solvent (CO, or water) for long distances. Johnston and colleagues have investigated the mechanics of particle redispersal and also the design of surfactants that would allow such polymerization and redispersal [157]. Their initial results are promising. Although not entirely similar, the commercial UniCarb process [37] was an early attempt to address the stability versus sustainability balance in spray coatings. The conventional coatings process employed polymer beads dispersed in a mixture of a good solvent and a poor, yet volatile solvent. The UniCarb process replaced the poor solvent with CO, (also a poor, yet volatile solvent) while retaining the good solvent to maintain the stability of the dispersion. Replacement of the poor solvent with CO, reduced VOC emissions by 60 percent.

One area where CO₂ would exhibit advantages over both water and organic solvents would be dispersion polymerization of hydrolytically sensitive monomers. In such a case, water would be green but technically infeasible, but apolar organics would be technically feasible yet not sustainable. DeSimone and Shiho have illustrated this using a glycidyl methacrylate monomer [158]. Again, if an effective, yet inexpensive surfactant could be identified, use of CO₂ in such an application would be both green and technically efficient.

3.4.2.3 Suspension Polymerization in CO₂

In suspension polymerization, neither the monomer nor the polymer are soluble in the continuous phase, but the stabilizer structure and concentration are such that

only droplets are formed (no micelles), and the kinetics of the polymerization resemble that of bulk polymerization. Suspension polymerization typically is applied to hydrophobic vinyl monomers in water, a process that is itself relatively green (although water remediation and energy use for drying represent targets for improvement). CO₂ has been used in the suspension polymerization of acrylic acid in CO₂ in the hopes of replacing the conventional hydrocarbon continuous phase. Polyacrylic acid is a very low-cost commodity material, and such a process must produce dry, free-flowing powder at relatively low pressure and with an inexpensive stabilizer [159].

3.4.2.4 CO₂ as Nonsolvent in Heterogeneous Polymerizations

Cooper and colleagues [160] have explored a novel application of CO₂ in heterogeneous polymerization. CO₂ is used as the porogen in the suspension polymerization of styrene/divinyl benzene, where the resulting porous beads form the basis for ion exchange resins. Typically, a hydrocarbon porogen is employed, must be separated from the product, and disposed after use. A good porogen must be miscible with the monomer (as is the case with CO₂ and styrene) yet immiscible with the polymer (as in CO₂/polystyrene). Generally, one alters the pore size and total surface area of the beads through alterations to porogen composition; Cooper showed that the same tunability could be achieved through pressure alterations to CO₂.

3.4.3 Other Chain Polymerizations in CO₂

Carbon dioxide has been employed as a solvent for cationic and metal-catalyzed ring-opening polymerization of various monomers in CO₂. Biddulph and Plesch first examined cationic chain polymerization of isobutylene in CO₂ in 1960 [161]; Kennedy later examined this reaction [162]. This work demonstrated that cationic polymerization is indeed viable, but the precipitation of the polymer lessens any advantages one might have derived from use of a green solvent. DeSimone later applied knowledge of CO₂-philic compounds to greater advantage by examining the homogeneous cationic polymerization of fluorinated monomers (both vinyl and functional oxetane) in CO₂ [163]. As the DeSimone group demonstrated earlier, polymerization of fluorinated monomers in CO₂ is a very effective technique for polymer production without the use of hydro fluorocarbon solvents.

Metathesis polymerization also is viable in CO₂, yet the hydrocarbon monomers employed produce polymers that rapidly precipitate on attaining even modest chain length [164]. The same is true for oxidative polymerizations of either pyrrole or dimethyl phenol. It has been shown that one can prevent the seemingly inevitable precipitation through use of fluorinated stabilizers (and hence formation of a

dispersion), but the high cost of the stabilizers has inhibited further consideration of such routes.

Not surprisingly, anionic polymerization in CO₂ produces, at best, carboxy-terminated oligomers, as the terminal anion reacts quickly with CO₂ to produce the less reactive carboxylate. Carbon dioxide also is an efficient chain terminator in Ziegler-Natta and metallocene-type catalyst systems—as such, CO₂ currently cannot be used as a solvent in controlled olefin polymerizations, the largest volume of polymerizations. Because these polymerizations tend to be low pressure gas-phase reactions of ethylene and propylene, it is not clear what role carbon dioxide could play even if the catalysts could tolerate its presence.

3.4.4 Industrial Activity: Chain Polymerizations in CO.

DuPont has filed a number of patents [165] describing the use of CO₂ as a solvent for chain polymerization of fluorinated monomers. This technology, plus patents filed by coworkers at the University of North Carolina [144], formed the basis for the construction of a semi-works facility in North Carolina with an annual capacity exceeding 1,000 tons of fluoropolymer (there are plans to expand this capacity significantly by 2006). 3M and Xerox also have obtained recent patents in this area [166], although their supercritical CO₂ research efforts were discontinued several years ago.

The European Union (EU) funded (1.5 million Euros, 12/97–12/00) a multi-year study (Superpol project) linking four universities with polymer manufacturers— Solvay, Goldschmidt, and DSM—to explore the use of supercritical fluids in polymer production. Although the consortium includes both prestigious universities and well-known companies, the results to date [167] have not significantly added to the information described above. Indeed, nothing shown in the most recent presentation (November 2001) by the Superpol group to the EU would be considered new by experienced researchers in the field, and strangely, no literature or patent references were included with this report. There is discussion of heterogeneous polymerization using fluorinated or silicone stabilizers, with results shown for the dispersion polymerization of methyl methacrylate. There is a discussion of additives for use with polyolefins, but the relationship of this work to CO,-based processing is not clear. The synthesis of fluoropolymers in CO, is described, noting the advantages of using CO, as a solvent versus water or hydrofluoroalkanes. Mention is made that carbon dioxide could be used effectively in cleaning of a variety of substrates. Needless to say, much of this information was known (through publications and patents) prior to 1997; thus, it is not clear what future impact the Superpol project will have on the use of carbon dioxide in polymer synthesis and processing in Europe. Solvay recently has acquired the fluoropolymers business of Ausimont, and may invest in CO,-based fluoropolymer polymerization technology in the future.

3.5 Condensation Polymerizations

3.5.1 Polyester, Polyamides, Polycarbonates

Condensation polymerization [141] occurs through the step-wise addition of difunctional monomers to each other, usually in a reaction that produces a small molecule byproduct (water or an alcohol, for example). Polyesterification (reaction of diol with diester or diacid) and polyamidation (reaction of diamine with diacid or diester) are two classic examples of great industrial importance. Because of the nature of these polymerizations, there are key differences with respect to chain polymerizations. Condensation polymerizations usually are endothermic, and heat must be applied to achieve a high rate of reaction. Unlike chain polymerization, molecular weight builds slowly in condensation reactions. Indeed, the statistics of condensation polymerization show that the extent of reaction of the active end groups must reach at least 95 percent to create polymer chains of reasonable length. Because each condensation (chain building) reaction is governed by equilibrium, removal of the small molecule byproduct is crucial in achieving high extent of reaction and high chain length.

Continuous industrial condensation polymerization processes all exhibit the same general elements [113]. The two monomers are added to the system in the correct proportions, and then heated and pumped into a U-shaped tubular reactor with the appropriate catalyst. Steam (or alcohol) is flashed from the reactor at its exit, and the resulting oligomer is pumped to a "finishing stage." Vacuum or flowing N₂ is applied to remove the small molecule, and slow mixing creates surface area to enhance the reaction rate. The oligomers are transformed to polymers. Temperatures in the process must be high enough to melt the polymer, and temperatures of 520-570 K are not uncommon.

Given the nature of condensation polymerizations, CO₂ has been applied as a diluent/plasticizer to enhance the removal of the small molecule, hence increasing molecular weight [168]. By dissolving in the polymer melt, CO₂ should reduce the viscosity and increase the rate of removal of the condensation byproduct. Clearly, for the process to be most successful, the small molecule should partition preferentially to the CO₂ phase. The green aspect of such a scheme is that use of CO₂ could allow better removal of the condensation byproduct at lower temperature, saving energy. The best example of this use of CO₂ is probably the work of Kiserow and DeSimone [169] on the CO₂-enhanced solid-state polymerization of polycarbonate. In bisphenol A polycarbonate production, diphenyl carbonate is reacted with bisphenol A to produce the polymer plus phenol. Many end users of polycarbonate (as well as nylon 6,6) practice "solid-state polymerization," where the purchased polymer is charged to a vacuum oven to increase molecular weight through additional reaction and byproduct removal. DeSimone showed that CO₂ could be employed to remove phenol from

polycarbonate oligomers at temperatures well below the T_g of the polymer (420 K), raising molecular weight substantially [169]. Later work [170] by Shi, et al., showed that limitations to the increase in molecular weight are due primarily to an imbalance in the concentration of the two types of endgroup on the polymer (hydroxyl and terminal carbonate)—this is a common problem in the solid-state polymerization of condensation polymers.

A general problem with using CO₂ to enhance condensation byproduct removal is the low solubility of some common byproducts in carbon dioxide. Water, the most common byproduct in polyamide generation, is poorly soluble in CO₂. In the formation of polyethylene terephthalate (the highest volume polyester), the polymer is formed via the self-condensation of the adduct of two moles of ethylene glycol and dimethyl terephthalate (see Scheme VI); the byproduct is ethylene glycol, also poorly soluble in CO₂. Indeed, the use of CO₂ to plasticize polymer melts and remove condensation byproducts is sound, sustainable processing, but this technique will only be truly effective if the byproduct is designed to partition strongly to CO₂.

Scheme VI:

Although energy reduction is an admirable part of green chemistry, the most significant targets for green chemistry in condensation polymers are probably not the polymerizations themselves, but rather the synthesis of the monomers. For example, diphenyl carbonate (monomer for polycarbonate) is synthesized from phosgene and phenol, and a sizeable effort has been made by industry to optimize the catalytic production of diphenyl carbonate from phenol and CO [171]. Bisphenol A (also a precursor to polycarbonate) is under scrutiny for possible deleterious effects on humans. Terephthalic acid (precursor for polyesters) is generated via an oxidation of p-xylene that produces some problematic waste streams [14]. DuPont has expended considerable effort in a joint venture with Genencor to create a bio-

chemical route to propane diol, another precursor to aromatic polyesters. Pilot-scale biological production of propane diol has been achieved, and a full-scale production is planned for the future [172]. Non-phosgene routes to di-isocyanates (precursors to polyurethanes) using CO₂ as a raw material have been investigated by both industry and academia [173]. Finally, the oxidation route to adipic acid (precursor to nylon 6.6), and the synthesis of caprolactam (precursor to nylon 6) are frequent targets of scientists involved in green chemistry, given the significant waste streams emitted by current processes [174]. Consequently, it would appear that real breakthroughs in green chemistry applied to condensation polymers will and should come in the area of more sustainable monomer synthesis. In some of these cases, CO₂ could play a significant role, but the primary research need appears to be more atom-efficient synthetic routes.

3.5.2 Polyurethanes

Polyurethanes are indeed condensation polymers but represent a special case, in that a small molecule is not produced during the primary polymerization reaction (where a hydroxyl group and isocyanate react to form a urethane linkage). Whereas polyurethanes are applied as fibers, coatings, and thermoplastics, their primary relevance to this report owes to their extensive use in foamed articles.

Polyurethane flexible slabstock foam has been produced via the "one-shot" process since the late 1950s [175]. A stream of polyol (a multifunctional hydroxyterminated oligomer, typically a polyether) is blended with water, catalysts, surfactants, and "blowing agents," then injected into a high-intensity mixing chamber with a multifunctional isocyanate. The resulting liquid blend is pumped evenly onto a moving belt, where polymerization occurs as hydroxyl groups react with isocyanates to form urethane linkages. Further, water reacts with isocyanate to form an amine group plus CO₂, where the amine subsequently reacts with another isocyanate to form a urea linkage. The heat of reaction boils the "blowing agent"; this plus the CO₂ released during the polymerization creates the foam, which is stabilized until cure by the added surfactant.

For decades, the preferred blowing agent was either a chlorofluorocarbon or methylene chloride; note that these blowing agents were simply emitted to the atmosphere during foam formation. Following adaptation of the Montreal Protocols in 1986, foam producers searched for alternatives. Compounds such as pentane and hydrofluoropropane have been evaluated and applied, yet these do not fully ameliorate the emissions problem (and, of course, hydrocarbons are flammable). In the late 1980s and early 1990s, Crain Industries created a CO₂-based process (CarDio [176]) where liquid CO₂ (3-5 percent by weight) is injected into the polyol stream at pressures above the vapor pressure of CO₂. The pressure then is gradually reduced, such that the pressure in the high intensity mixer is only 10-20 bar. The pressure then is reduced further via the use of a "gate-bar" assembly that expands the mixture to one

atmosphere and spreads it evenly onto the moving belt. The liquid mixture remains single phase through the mixing chamber because polyols absorb significant amounts of CO₂, even at low pressures. Plants operate the CarDio process in both Europe and the United States. The Bayer Corporation also has commercialized a CO₂-based, continuous polyurethane process [177]. In both the CarDio and Bayer processes, CO₂ directly replaces a large volume of organic solvent that would have been emitted to the atmosphere with little additional energy input (cooling the liquid CO₂). Consequently, polyurethane foam production using CO₂ as the blowing agent is an excellent example of green chemistry using carbon dioxide. It is interesting to note that the first patent proposing the use of CO₂ as the blowing agent for polyurethane foam was filed in 1959 [178]—it was only after perfection of the gate bar assembly in 1991, that Crain was able to successfully scale up a CO₂-based polyurethane foam line. Thus, the success of a green, CO₂-based chemical process can depend as much on mechanical design as on chemical design.

3.6 Carbon Dioxide as a Monomer

Since 1969, it has been known that carbon dioxide can be copolymerized with oxiranes to form poly(ether-carbonates) [179]. Production of a polycarbonate using CO₂ instead of phosgene (the usual route) is indeed a green process, in that not only is a harmful chemical replaced with a benign alternative, but also the production of substantial quantities of salt (the usual byproduct in polycarbonate production) is avoided. Poly(ether-carbonates) formed from oxiranes and CO₂ could be applied as degradable surfactants (using ethylene oxide) or low energy alternatives to polyester polyols in polyurethane manufacture (using propylene oxide). They also have been found to be the most CO₂-philic, nonfluorinated materials yet identified [137], and they could enhance the wider use of CO₂ as a benign solvent. There are, however, some key technical hurdles that have substantially prevented the commercialization of a CO₂-based route to a polycarbonate to date:

- Most of the catalysts developed to date have not demonstrated particularly high activity when used with either ethylene oxide or propylene oxide, the comonomers most likely needed to produce economically viable copolymers [180]. On the other hand, a number of catalyst systems have been shown to be highly effective in the copolymerization of CO₂ with cyclohexene oxide [181], although this copolymer has not attracted any significant industrial interest owing to monomer cost versus polymer properties.
- Those catalysts that have shown high activity in CO₂/propylene oxide copolymerizations have not permitted significant incorporation of CO₂ into the copolymer (typically less than 10 percent carbonate) [182].
- Catalysts developed to date tend to produce substantial amounts of low molecular weight, cyclic carbonate when used with either ethylene oxide or pro-

pylene oxide. In many cases, more than 80 percent cyclic material is produced. The low molecular weight cyclic cannot be polymerized, and current catalysts could not be employed economically.

Early work (1970s-1980s) focused on the assessment of zinc catalysts for the copolymerization of oxiranes and CO₂ [180]. These catalysts typically employed a reaction between a dialkyl zinc and a multihydroxyl-containing compound to create the active catalyst. Polymerization times were relatively long and significant amounts of cyclic carbonate were produced, yet alternating copolymer (100 percent carbonate) could be generated. Molecular weight distributions in these polymerizations could be very broad, often above 5.0. Nevertheless, a zinc system eventually was used to synthesize an ethylene oxide-CO₂ alternating copolymer that was applied commercially (PC Corp., Wilmington, DE) as a ceramic binder (this copolymer degrades cleanly to gaseous byproducts at temperatures above 470 K).

Recent work in this area has focused on the development of "single-site" style catalysts to allow better control over molecular weight [181]. However, although these new catalysts have proved to be very effective in the copolymerization of cyclohexene oxide and CO₂, none have been able to solve the problems observed during copolymerizations of CO₂ and either ethylene oxide or propylene oxide. In general, in copolymerizations of CO₂ and propylene oxide, catalysts derived from aluminum exhibit high activity and produce predominantly copolymer with a narrow molecular weight distribution, yet allow little CO₂ incorporation into the copolymer [182]. Zinc catalysts allow for high levels of CO₂ in the copolymer, yet produce predominantly low molecular weight alkylene carbonate.

Indeed, the generation of copolymers of CO₂ and either propylene or ethylene oxide would represent green chemistry, as these materials would have ready markets and alternative routes to their production (via phosgene) are highly problematic from a sustainable viewpoint. Until the technical hurdles to efficient copolymerization (see above) can be overcome, a CO₂-based route to aliphatic polycarbonates, and indeed, aliphatic polycarbonates in general, will not enjoy widespread use. Whereas a variety of other polymers also have been generated from CO₂ [183], either the properties of these new materials (vis-à-vis their cost) have not been promising, or the efficiency of the polymerization has been low, and hence they are technical curiosities rather than potential avenues for green chemistry. Indeed, to achieve the highest impact (with respect to green chemistry), research should be directed at creating catalysts that target the efficient copolymerization of propylene oxide (or perhaps ethylene oxide) and CO₃.

Generation of an aliphatic polyester from CO₂ and an olefin would be a superb example of green chemistry with a ready market for the material. Aliphatic polyesters, although "green" materials in their own right (they degrade cleanly to nontoxic fragments in the environment), require multiple steps to prepare the monomers and then the polymer, and also significant energy input along the way. A chain polymer-

ization route to aliphatic polyesters starting from olefins and CO₂ would be both greener and less expensive than the current method. With the exception of one or two references in the late 1970s [184] and a 1949 patent [185], there has been no published scientific activity on this problem, despite the technical and commercial importance. Calculations performed at the University of Pittsburgh suggest that formation of a lactone (the immediate precursor to a polyester) from CO₂ and several olefins should be thermoneutral, and the reaction is at least theoretically tractable.

3.7 Industrial Activity: Condensation Polymers and CO₂ as a Monomer

As mentioned earlier, both Crain and Bayer have commercialized the use of CO₂ as the blowing agent in continuous polyurethane foam production—20+ plants currently operate using this technology. Further, PC Corp. (DE, USA) sells aliphatic polycarbonate (used as a ceramic binder) generated via the copolymerization of CO₂ and ethylene oxide.

Xerox has patented [186] a process where bisphenol A polycarbonate is generated from bisphenol A and diphenyl carbonate using CO₂ to extract the residual phenol. Further, Akzo-Nobel patented [187] the formation of a degradable surfactant via the copolymerization of ethylene oxide and CO₂, where the polymerization is terminated by a fatty acid. However, it is known that Xerox has ceased its research efforts on polymerization in CO₂, while Akzo-Nobel shut down its research efforts on CO₂/alkylene oxide copolymerizations in early 1998, during elimination of its corporate research department.

3.8 Postpolymerization Processing of Polymers Using CO₂

Polymers require far more postsynthesis processing than do small molecules, and it is not surprising that CO₂ plays a role in green postpolymerization processing of polymers. First, as mentioned previously, CO₂ will swell many polymers extensively, even those normally considered "CO₂-phobic." As shown in the generic phase diagram (Figure 6), this is because of the asymmetry of the liquid-liquid phase envelope, itself arising from the disparity in size (and hence vapor pressure) of the solvent and solute. Swelling a polymer with CO₂ will drop its viscosity significantly (depending on temperature, by orders of magnitude). This large drop in viscosity allows for a number of CO₂-enhanced processes. For example, Berens and Huvard [188a] demonstrated that the swelling of a polymer by carbon dioxide enhances the rate of infusion of model compounds. Kazarian and Eckert [188b] later exploited this effect in a novel way; they have shown that one can greatly enhance the kinetics of mixing of a CO₂-incompatible dye with a polymer. In this work, the dye and polymer are thermodynamically compatible, but the rate of infusion of the polymer by the dye is glacially slow. CO₂ plasticizes the polymer (while not actually

dissolving very much, if any, of the dye), lowering the viscosity and allowing fast blending. The dying of fabric and fibers using CO, has been extensively examined in Europe and the United States [189, 190]; the dve and polymer are thermodynamically compatible, and the dye is sparingly soluble in CO. Consequently, the dye partitions preferentially into the swollen polymer, where the CO, diluent enhances the kinetics of the thermodynamically favorable process. It is interesting to note that Johnston [191] outlined the fundamentals for such a process several years ago using a silicone polymer, CO,, and toluene as the model "infusant." The green aspect to this work is a reduction in energy required for mixing, as well as elimination of the aqueous waste stream commonly associated with dying operations. Further, use of CO, in place of water reduces air emissions and the need for drying of the fibers after dying [192]. Major challenges remaining in this process are in many ways "mechanical." How does one design a treatment chamber that allows fast charging, fast sample changeover, and rapid dying? Is there sufficient thermodynamic and transport information available to model and hence scale up the process? Note that this situation is analogous to that described for continuous polyurethane production using carbon dioxide—the chemical challenges were overcome long before the mechanical issues were settled. A further challenge would include redesigning conventional dyes to allow for higher CO, solubility, which would provide for more even coating.

Applying the concept of carbon dioxide as a "reversible plasticizer," Shine and Gelb [193] showed that one could mix a thermally labile bioactive compound (here a vaccine) into polycaprolactone. Howdle and colleagues [194] recently expanded this work into the tissue engineering field. CO_2 was used to swell an aliphatic polyester, depressing its T_g to well below room temperature. A temperature and shear-sensitive enzyme then was mixed with the swollen polymer; upon depressurization, the enzyme was found to be dispersed throughout the now foamed polymer, and to have retained its activity. Such a process allows the blending of temperature sensitive compounds with polymers without the need for additional solvent-based processing.

Powder coating processing provides another potential application for CO₂ as a sustainable and reversible plasticizer. Powder coatings (blends of low molecular weight functional polymer, crosslinking agent, pigments, and stabilizers) are considered green materials. as they can be applied directly to automobile and appliance bodies without any solvent. However, the means for production of powder coatings is itself wasteful and expensive. The raw materials are charged to an extruder for high shear mixing; the resulting pellets then are ground and sieved to create the proper size distribution. Waste from the grinding process cannot be re-extruded, as the polymers are quite naturally thermally sensitive. Ferro Corporation first patented [195] a process where CO₂ is used to swell the polymer, depressing its T_g (normally 310-320 K) to well below 270 K. The additives (pigments, etc.) then are mixed with the swollen polymer. Finally, the material is rapidly depressurized through

a nozzle to form a granular mixture. Note that material processed in this way can actually be recycled if necessary, as temperatures employed are low (313 K). PPG Corporation [196] also supported work in this area using hydrofluorocarbon fluids; this work was targeted at small colored batches. Other patents also have appeared recently [197]. The remaining challenges include elimination of a significant degassing problem upon film formation and the need to lower the operating pressure as much as possible to remain economical. Regarding the degassing problem, conventional powder coating formulations use benzoin as the degassing agent (to help eliminate air during film formation). However, it is not currently known why benzoin is effective as a degassing aid in conventional formulations, and therefore, the design of analogues for use in material processed in CO₂ currently is not possible. Indeed, both Ferro Corporation and PPG have ceased (at least for now) their research and development efforts in this area, owing to an inability to rapidly overcome these technical hurdles.

3.9 Extrusion-Foaming Using CO,

The extrusion-based foaming of polymers [38] is inherently sustainable in that small amounts of raw material (the polymer) are used to create valuable, lightweight parts. The low weight and/or low thermal conductivity of these parts ultimately saves energy in applications ranging from home and appliance insulation to transportation components. Although the parts themselves can be considered sustainable, the conventional method of fabrication releases a large volume of solvent to the atmosphere. Prior to the late 1980s, CFCs often were employed as blowing agents (pore-forming agents), as these solvents are low boiling, nontoxic, and nonflammable. Subsequent to the acceptance of the Montreal Protocols (1986), most foam producers switched from CFCs to hydrofluorocarbons, hydrocarbons, or mixtures of hydrocarbons and CO₂. Generally, there is a desire within the foamproducing industry to move to 100 percent CO, as the blowing agent in extrusion foaming, although some serious technical hurdles remain. A variety of polymers are extrusion-foamed, including polyolefins, polystyrene, and polyesters. It should be noted that although injection of a volatile blowing agent to the extruder is probably the most common means to induce foaming, use of "chemical" blowing agents (i.e., compounds that thermally decompose to form gases) also is employed.

The extrusion-based foaming of polymers is conceptually simple, yet requires complex analysis to fully understand the system. In the case of polystyrene, a fluid is injected into the extruder, where the pressure and temperature are sufficient (ostensibly) to create a single-phase mixture of blowing agent and polymer. Mixing is enhanced through strategic screw design. Following mixing, the melt is cooled (in some cases in a second, tandem extruder) to build melt strength, as the addition of the fluid greatly lowers the melt viscosity. The die is cooler still. Upon exiting the die, the rapid pressure drop creates a supersaturated solution, where small pores containing CO, nucleate and grow (nucleating agents often are added to stimulate

this process). The pores grow until the rapidly rising viscosity of the polymer (owing to cooling and loss of blowing agent) restricts further expansion. In conventional extruded foam, the cells are on the order of 100 to 1,000 microns in diameter. Microcellular foam [198], formed in much the same way albeit with higher concentration of CO₂ in the polymer melt, exhibits cells 50 microns and below in size.

The generation of foamed thermoplastics using CO₂ as the sole blowing agent is most definitely "green" processing, as the CO₂ replaces either organic or hydrofluorocarbon agents that would otherwise directly enter the atmosphere. A number of researchers have investigated the fundamentals of foam formation using high pressure CO₂, and several important conclusions have arisen [199]:

- The number of cells nucleated during a pressure quench in a CO₂-swollen polymer depends directly on the degree of swelling of the polymer. Swelling, in turn, rises as pressure rises and as temperature falls. To create more cells, conditions must be adjusted to ensure higher degrees of swelling.
- The growth of cells is dependent upon the degree to which CO₂ diffuses into the nuclei, and also the degree to which CO₂ expands as pressure drops. At the same time, growth is inhibited by the retractive force of the polymer melt, which increases as the temperature drops and CO₂ diffuses from the melt. To make smaller cells, growth must be restricted soon after nucleation, by vitrifying the system before the pressure drops to the point where CO₂ begins to expand significantly. If one desires to make a large number of very small cells, then in theory one should start with a high degree of swelling of the polymer by CO₂, and vitrify the material as soon as possible after nucleation of pores. Unfortunately, very high degrees of swelling lower the melt strength (related to viscosity) significantly, and pores tend to coalesce during growth [200].
- Our understanding of the fundamental processes that control foam morphology derives, in large part, to fundamental studies performed in academia and industry during the late 1980s and early 1990s. For example, early studies of the effect of pressure on the swelling of polymers by CO₂ by Berens and Huvard [201], Liao and McHugh [202], and Wissinger and Paulaitis [116] paved the way for future work on polymer foaming. Wang and Kramer [203] first explored the behavior of the glass transition of a polymer versus CO₂ pressure in 1983; this was followed by a seminal study by Condo and Johnston [60]. Fundamental studies of the viscosity of polymer-CO₂ melts, for example, were performed by Manke and also by Khan [204]. These studies provided the data that made later studies of foam formation more tractable. Although it is likely that similar work was performed in industry, little of it can be found in the open literature, and the academic work has been vital in providing a basis for recent foam research.

Foam formed using CO₂ as the sole blowing agent has been commercialized in a number of cases, yet the process is nonoptimal, as foam properties using CO₂ still

do not approach those when CFCs are employed as blowing agents. Although the foam-forming process is understood from an academic sense, a number of scientific/technical challenges remain before optimization can occur. These include:

- Shear effects on phase behavior. The phase behavior of CO₂-polymer mixtures generally is measured (in academia) under static conditions; there have been reports that the phase behavior of CO₂-polystyrene, for example, depends significantly on shear [205]. Measurement of high-pressure phase behavior under shear presents a significant experimental challenge, yet one that may have to ultimately be conquered if a full understanding of extrusion foaming is to be found
- Pressure limitations in conventional extruders. Although extruders theoretically can be operated at very high pressures (300+ bar), the typical operating pressure for a polystyrene foam extruder is approximately 100 bar at temperatures in excess of 470 K. At the same time, the swelling of polymers such as polystyrene is not sufficient under these conditions to produce foam of the same quality as can be produced with liquid blowing agents. Although raising the pressure is the usual remedy for insufficient swelling, it is not a viable one in this case, and additives must be developed that will allow enhanced swelling of "CO₂-phobic" polymers by CO₂ [206]. Further, these additives must be designed so as to be effective at low loadings (or else foam physical properties and cost will be adversely impacted).
- Rapid diffusion of CO₂. Compared to conventional blowing agents, CO₂ diffuses rapidly from foam pores—this rapid diffusion in practice contributes to foam collapse [207]. Consequently, there is a need to develop additives that will partition to the CO₂-polymer interface, then set up a barrier against CO₂ diffusion.
- High thermal conductivity of CO₂. Insulation is a prime application for foamed polymeric materials. Further, the effective thermal conductivity of a polymer foam, at low-foam density, is a strong function of the thermal conductivity of the gas inside the pores. Because CO₂ exhibits a significantly higher thermal conductivity than CFCs [208], larger quantities of foam may have to be employed to provide the same level of insulation if CO₂ is employed as the blowing agent. The blowing agent, although originally entrapped within the foamed polymer, will eventually diffuse out and be replaced by air diffusing in—the high diffusion coefficient of CO₂ renders this exchange faster with CO₂ than with chlorofluorocarbons. Thus, an additional challenge is to achieve high insulating value while employing CO₃.

Finally, a general conclusion that can be drawn from the extensive previous work on foaming is that, using the "swell-quench" method, one can generate a foam with either small pores (less than 10 microns) or low bulk density (less than 0.05 g/cc), but not both. Low bulk density requires the generation of very large numbers of small pores, and high swelling (and hence high nucleation density) but limited growth. Unfortunately, as

mentioned previously, high swelling also leads to low melt strength and pore coalescence. The lower limit for cell size in extruded foam with low bulk density (< 0.1 g/cc) appears to be approximately 50 microns. Consequently, researchers have explored new strategies for forming low bulk density, fine-celled foams. For example, Enick and colleagues [209] have generated molecules that will dissolve in CO₂, then self assemble to form gels. Removal of the CO₂ (via depressurization) leaves behind a porous structure with submicron cell size and bulk density below 0.05 g/cc.

In summary, the foaming of thermoplastics using CO₂ as the sole blowing agent is undeniably green polymer processing, in that use of CO₂ directly replaces organic solvent that ultimately would enter the atmosphere. The challenges to efficient use of CO₂ in foam production are given earlier—it should be noted that these are entirely technical and would provide excellent targets for future research.

3.10 Industrial Activity: Postpolymerization Processing

As mentioned earlier, a large number of patents have been issued for both the foaming of polymers with CO₂ and the use of CO₂ to dye textiles. For the case of polymer foaming, the technology has achieved commercial status, both macrocellular foam formation (Dow, for example) and microcellular foam formation (Trexel has licensed technology developed at MIT by Nam Suh and colleagues [210]). The textile work has been advanced to the pilot stage in Germany and in the United States.

3.11 Use of CO₂ in Polymer Science Applied to the Microelectronics Industry

The preparation of an 8-inch silicone wafer requires hundreds of individual process steps, of which approximately one-half involve washing [211]. It has been estimated that a single fabrication line will use more than 1 million gallons of solvent each year. In photolithography, the technique used to create patterned microelectronic components, a polymer layer is applied to an inorganic substrate by spin coating from solvent, then selectively imaged and developed (washed off) to create a pattern. To create the pattern, a mask is applied to the polymer layer, after which radiation is employed to either crosslink the accessible areas (leaving the hidden areas uncrosslinked). or degrade the accessible areas (leaving the hidden areas intact). The mask then is removed and the soluble material (in either case) is washed away. Photolithography currently employs significant volumes of either solvent or water to accomplish the developing (washing) step, and generates a substantial liquid effluent stream. The key to successful developing is to be able to efficiently change the solubility characteristics of the exposed portion of the resin. Carbon dioxide is a particularly intriguing solvent for use in microelectronics applications, not only because it is environmentally benign, but also because its vanishing low interfacial tension allows it to successfully wet and penetrate very small features on a component.

Initial work to apply carbon dioxide to the coating and photolithography processes dates to the mid-1990s; researchers at IBM and Phasex Corporation examined the design of resins specifically for use in CO₂-based developing [212]—the work by DeSimone's group on the miscibility of perfluoropolyacrylates showed the IBM researchers that such a process was feasible. A number of fluorine and siliconcontaining polymers were examined, and a photoacid generator was employed to develop the patterns; the most viable system seemed to be one where a random copolymer of a fluorinated acrylate and t-butyl methacrylate was used. Ober and colleagues [213] also have designed a photolithography system that could be developed using carbon dioxide. A block copolymer of a fluoroacrylate (CO,-soluble) and tetrahydropyrano methacrylate was synthesized. The polymer was spun-cast onto a substrate from a conventional solvent, and a photoacid generator was added. The system was masked, patterned (using 193 nm radiation) and developed with CO₃, demonstrating that 0.2-micron features could be produced. DeSimone also has postulated the design of fluorinated copolymers for use in photolithography [214]; both negative and positive resist systems are described. Interestingly, fluorinated materials are both highly CO₃-soluble and known to be relatively transparent to radiation in the 130 to 190 nm range [215] (the wavelengths to be employed in next generation systems).

DeSimone and colleagues have described a free-meniscus coating methodology using CO₂ to apply polymers to inorganic substrates, potentially eliminating the significant volume of solvent currently used for that purpose [214, 216]. DeSimone has demonstrated the concept using fluorinated polyethers, polymers whose high solubility in CO₂ is well known.

As suggested in recent articles in Chemical and Engineering News [217] and Technology Review [218], interest in the use of CO, in microelectronics processing is growing. To date, most of the industrial ventures involve partnerships between large, well-known chemical suppliers to the electronics industry (Praxair, Air Products) or microelectronics companies (IBM) and small firms with expertise in the design of high-pressure equipment (Supercritical Systems [219] (Fremont, CA; purchased by Tokyo Electron) and SC Fluids (Nashua, NH)). The efforts to date have focused on the use of mixtures of CO, and cosolvents as a means to overcome the feeble solvent power of CO, without having to resort to the design of CO,-philic materials. Clearly, technical challenges for the future include the ability to design CO,-philic materials for use in microelectronics processing that also are acceptable (from both technical and environmental perspectives) to the industry. Indeed, do we possess a firm understanding as to the underlying molecular foundation for high CO, solubility as well as transparency to radiation of a particular wavelength? Today, the answer is "no." Will these underlying mechanisms ultimately conflict with one another? Further, given the rapid throughput in the industry, can high-pressure systems be developed that will allow use of CO, at the throughputs required? Finally, the work to date on polymers for use in lithography has created materials where the exposed portion of the polymer is rendered insoluble in carbon dioxide (through action of a photochemically generated acid on a protected carboxylic acid). It is somewhat surprising that we have yet to see a system created where the exposed portion of the material is rendered soluble in CO₂ instead.

It is clear that if CO₂ can make significant inroads into the microelectronics processing industry, then potentially large volumes of organic solvents, and just as importantly water, could be replaced with CO₂—once again, there are clear technical challenges to be overcome.

3.12 Industrial Activity: CO₂ and Polymers in Microelectronics Manufacture

It was recently announced that Air Products and Chemicals had agreed to purchase equipment from SC Fluids for use in photoresist development using carbon dioxide [219]. SC Fluids also is working with ATMI (chemical supplier to the microelectronics industry) and IBM on photoresist development using CO₂ [219]. Ashland Specialty Chemicals has formed an alliance with Dainippon Screen and Kobe Steel to develop technology for microelectronics processing using CO, [220].

In addition to using CO₂ to strip material from wafer surfaces, industry has applied carbon dioxide processing to create porous materials that will function as a low dielectric substrate or film [221].

Section 4

Other Reactions in CO,

Researchers in both academia and industry (although most of the publications come from academic laboratories) have conducted a large number of reactions in carbon dioxide, demonstrating the feasibility for use of CO₂ in a broad range of applications. Again, we must pose the question "Is this green chemistry?" Further, what is the impact of this work on the greater chemical industry?

If we examine the "E-Factors," or mass of waste per mass of product for various industries, we find that chemicals and pharmaceuticals produce waste at a rate several orders of magnitude higher than that for bulk chemicals or petrochemicals (see Table 2). However, if we examine the impact of each industry (related to the E-Factor times the production rate), we see that the commodity segments still exercise the greater impact.

TABLE 2 Production and E-factors for various industry segments [222].

Industry Segment	Production (tons/year)	E-Factor (mass waste/mass product)
Oil Refining	$10^6 - 10^8$	~0.1
Bulk Chemicals	104-106	<1-5
Fine Chemicals	10 ² - 10 ⁴	5-50
Pharmaceuticals	10-103	25->100

Hence, if one had to choose the industry segments on which to focus research efforts in use of CO₂ in green chemistry, it would seem that the obvious choice would be bulk chemicals and petrochemicals. On the other hand, because fine chemicals typically are produced in batch mode in small volumes, the cost of high-pressure equipment for these industries may not be as much of an impediment as it would be for their commodity cousins.

Finally, as noted in a later section, the education of chemists in the use of CO₂ as a solvent has a value of its own, and as such, the publication of papers on reactions

that fall into this chapter has done much to "demystify" CO.. Therefore, these papers have significant educational value.

4.1 Enzymatic Chemistry

At first glance, enzyme/CO₂ mixtures appear as ideal reaction systems for the performance of green chemistry. Enzymes are naturally derived catalysts that are highly selective, but CO₂ is a naturally abundant, benign solvent. However, research into enzymatic reactions in CO₂ has dropped precipitously since the mid-1990s, and no commercialization of such processes currently is anticipated. The reasons for this are straightforward and scientifically based, deriving from the substantial research performed in this area during the 1990s.

Enzymes are naturally derived catalysts, proteins whose primary, secondary, and tertiary structures have evolved to create a catalyst that is highly selective and very active under a set of narrowly defined conditions. Enzymes are green catalysts, and their means of production (fermentation) also is typically a green process. In nature, enzymes perform their catalytic function in water, yet Klibanov (and others) showed that enzymes would function adequately (not as well as in water) in organic media provided that a small amount of water remains bound to the enzyme [223]. Further, although lipases (and other analogous enzymes) naturally perform hydrolysis reactions in an aqueous environment, these same enzymes were shown to perform esterification in an organic environment. Because enzymes do not dissolve in the organic solvents under consideration, enzymatic chemistry in organic solvents is governed by heterogeneous reaction kinetics. This, however, is not a drawback, as catalyst recovery is easier than for a homogeneous system. Given this background, enzymatic reactions in CO₂ seemed an ideal combination of green solvent with green catalyst.

During the early 1990s, a number of enzymes were evaluated in carbon dioxide. primarily in support of esterification reactions [224]. For the most part, activities were very low, much lower than for the same reaction conducted in a conventional organic solvent. In addition, rates in CO, were substantially lower than rates in other compressible fluids (ethane, propane, fluoroform). In some key publications, Russell and colleagues outlined the reason for CO,'s low activity-apparently carbon dioxide reacts with primary amine residues (primarily from lysine) to form carbamic acid and/or ammonium carbamates [225]. This derivatization was observed experimentally, and is apparently responsible for the reduced activity of many enzymes in CO, (note that not all enzymes suffer from this reduced activity, consistent with the fact that enzymes exhibit a range of protein sequences and macrostructure). Carbamate formation is reversible, as removal of the enzyme from CO, followed by examination of the rate in either water or another organic solvent reveals no change in inherent activity. Even bubbling of gaseous carbon dioxide through a suspension of enzyme in organic solvent can produce the reversible drop in activity. Consequently, interest in enzymatic chemistry using enzyme powder in CO, diminished greatly.

At this same time, advancements in the design of CO₂-philic surfactants allowed for the possibility of performing enzymatic chemistry in the aqueous core of micelles formed in carbon dioxide, a situation that would eliminate the problems due to carbamate formation (polar solvents destabilize the carbamates). Indeed, work by Randolph and Johnston [226], as well as Beckman and colleagues [227], showed that one could solubilize an enzyme in the core of a micelle, and then recover the protein via depressurization. However, CO₂ dissolves in water and forms carbonic acid, and not surprisingly the pH within the micelles was shown to be less than 3.0. Although Johnston showed that one could buffer such a system to pHs ranging from 5.0 to 6.0 [32], the ionic strength required was far higher than would normally be recommended for use with an active enzyme. Thus, realization of the full "green" potential of enzyme-CO₂ systems was again blocked by technical realities. Because CO₂ was the most widely preferred supercritical solvent, interest in enzymatic chemistry in CO₂ declined rapidly after the publication of the key papers described earlier.

Other issues to note regarding the use of enzymes in CO_2 include the need by the enzyme for a certain amount of bound water and the equilibrium nature of many of the reactions. Although CO_2 usually is considered a nonpolar solvent, it will solubilize approximately 2,500 ppm water at moderate pressures (100 bar, room temperature). Because enzymes will not function in organic media if stripped of all of their water, care must be taken to prevent CO_2 from dehydrating the enzyme. In addition, many of the enzymatic reactions that one might wish to perform in CO_2 are governed by equilibrium, and one must examine means by which to remove the byproduct or product from the neighborhood of the enzyme.

A final obstacle to use of enzymes in supercritical fluids lies in the poor solubility of many of the polar substrates that one might want to transform. For example, although many of the literature studies performed during the early 1990s examined esterifications, the starting material (carboxylic acid) usually was not particularly soluble in CO₂ (hardly surprising given what is known about CO₂).

The previous paragraphs make plain the technical hurdles that would need to be overcome to render enzymatic chemistry in CO₂ generally practical and useful. Either enzymes must be identified (or developed through a directed evolution-like process) that do not form carbamates with CO₂ (or where carbamate formation does not impede activity) or a way must be found to buffer a CO₂/water mixture without resorting to an ionic strength that will harm the enzyme. Conversely, identification of enzymes that thrive at low pH or high ionic strength also would be worthwhile in this regard.

If the problems described above could be overcome, a number of issues regarding the use of enzymes in compressible fluids could be evaluated. For example, work by Russell [228] using fluoroform showed that pressure (through its effect on fluid properties) could be used to tune enzyme activity and also, to a certain extent, selectivity for a given reaction path. However, given the preference

for CO₂ versus other compressible fluids, until the problems regarding CO₂ and enzymes are dealt with, enzymatic chemistry in compressible fluids will likely continue at only a very low level of research activity.

4.2 Diels-Alder Chemistry

The Diels-Alder reaction is employed on a large scale industrially to purify cyclopentadiene, and to a lesser extent, to manufacture anthraquinone [14]: it should be noted that these reactions proceed without solvent. A substantial body of literature exists concerning Diels-Alder chemistry in supercritical fluids. CO₂ in particular. For the most part, research on this particular reaction has been used (via analysis of the rate constants), to confirm the influence of concentration fluctuations (present near the critical point) on the rate of the reaction. In general, the rate reaches a maximum near T₂, dropping at both higher and lower pressures. However, this work currently is of scientific interest only, as control of a reaction in the neighborhood of a critical point is problematic at large scale. Tester and colleagues [229] report that most Diels-Alder rate constants in CO₂ can be correlated using a simple Arrhenius expression provided that the preexponential term varies linearly with fluid density, similar to what Roberts [230] observed using propane as the solvent. Lewis acid catalysts are effective (if soluble), as shown by Matsuo and coworkers using scandium triflate in CO₂ [231].

Although the literature on Diels-Alder chemistry in CO₂ at first glance appears uninteresting (from a green chemistry viewpoint), there are some publications that merit closer scrutiny. For example, Ikushima, et al. [232], published the results of a study of the cycloaddition of isoprene and methyl acrylate (Scheme VII), reporting that while one atmosphere conditions produced primarily the para isomer of the methyl acetoxy cyclohexene product, operation in CO₂ produced significant amounts (at some pressures the major component) of the meta isomer. If true, such a result suggests that use of CO₂ can alter product selectivities and would significantly impact the field of green

Scheme VII:

chemistry in critical fluids. However, subsequent work by Danheiser and Tester [233] revealed that the Ikushima group failed to note that multiple phases were present in the reactor, and that adequate sampling of the phases revealed that all conditions produced a 67-31 split of para and meta isomers. This again shows the importance of understanding the phase behavior of any reaction mixture under evaluation. Indeed, subsequent work by Danheiser and Tester on a wide range of Diels-Alder substrates revealed no effect of CO, pressure on regioselectivity.

Some additional observations on Diels-Alder chemistry in CO₂ include reports by Clifford and colleagues [234] that the endo:exo ratio of products in the reaction between methyl acrylate and cyclopentadiene exhibits a maximum versus pressure in CO₂. Totoe and colleagues [235] also observed differences in product selectivity between toluene and CO₂ in a 1.3-dipolar cycloaddition.

In summary, although there have been some intriguing reports on variations in selectivity in CO₂ versus conventional solvents, most of the research on Diels-Alder chemistry in CO₂ has been directed at deriving fundamental parameters rather than creating opportunities for green chemistry *per se*. The work by Danheiser and Tester should stand as a warning to those involved in chemistry in supercritical fluids—ignoring phase behavior effects is at one's own peril.

4.3 Lewis Acid Catalysis/Friedel-Crafts Chemistry

Friedel-Crafts chemistry is used extensively to perform liquid-phase alkylations and acylations, although it should be noted that the largest scale industrial processes do not employ solvent, and some have switched from the typical aluminum halide "catalyst" to support acidic catalysts [14]. However, fine chemical syntheses often employ relatively toxic solvents during Friedel-Crafts reactions, and this reaction presents a viable target for use of CO₂. Because Friedel-Crafts chemistry is usually performed in polar media, an obvious question is whether CO₂ (with its low dielectric constant) can actually support such reactions. Further, the primary environmental drawback to Friedel-Crafts chemistry is the need for large amounts of aluminum halide, and much recent research has focused on finding true catalysts for the various alkylations and acylations. Interestingly, many of the newer Friedel-Crafts "catalysts" are fluorinated and highly CO₂-soluble.

Chateauneuf and Nie [236] examined the alkylation reaction between methoxy benzene and triphenyl methanol using trifluoroacetic acid as catalyst. Kobayashi and coworkers [237] found that rhenium triflate promoted the acylation of aromatic compounds (as in Chateauneuf's work, if electron donating substituents were present on the aryl compound) with an anhydride. The reaction proceeded smoothly in either organic solvents or CO₂. Finally, Poliakoff's group examined the Friedel-Crafts alkylation of various activated aryl compounds using a supported (Deloxan) acid catalyst in CO₂ [238]. Although not large, the literature on Friedel-Crafts chem-

istry in CO, demonstrates that this reaction is indeed feasible, and that many of the Lewis acids proposed as catalysts are readily CO,-soluble.

Olah and colleagues [239] examined the acid catalyzed isobutene-isobutylene reaction in carbon dioxide; they found that CO₂ acted as a weak base, and use of CO₂ as a solvent lowered the acidity of the system and hence the alkylate quality. However, in cases where the acidity was increased to counteract this effect, the use of CO₂ decreased the amount of acid needed to perform the alkylation. Further, use of CO₂ increased the octane number of the product.

In a final intriguing note, Pernecker and Kennedy [240], during an investigation into the Lewis acid catalyzed polymerization of isobutylene in CO₂, found that addition of only the Lewis acid to carbon dioxide formed a product, either a solid precipitate or a second liquid. Removal of the CO₂ regenerated the original Lewis acid. On the other hand, incubation of a Lewis acid with the polymerization initiator, followed by addition to CO₂, resulted in no "CO₂-product" formation. Pernecker's results suggest that one might activate CO₂ itself for further reaction using a Lewis acid, but if the Lewis acid is presented with a more reactive substrate, it will preferentially bind to this substrate.

In summary, Friedel-Crafts chemistry is (in fine chemical synthesis) performed in solvent, and CO₂ represents a potentially useful and green substitute. Catalysts that would be used ordinarily to perform such reactions are soluble in CO₂ without further modification. The effective use of CO₃ then depends on substrate solubility.

4.4 CO, as Reactant and Solvent

This section will discuss those reactions where CO, is employed as reactant and solvent, yet where small molecules (rather than polymers, see Section 3) are formed as products. A large number of reactions using CO, as a raw material have been demonstrated in the laboratory, but very few such reactions are practiced commercially. For example, it has been shown in the literature that one can generate formic acid [241], dimethyl formamide [242], carboxylic acids [243], and methanol [244] using CO, as a reactant (and in many cases the solvent as well). To date, however, the economics of such processes have not been sufficiently favorable to warrant significant industrial attention. Part of the problem is that use of CO, to create commodities such as those listed above competes directly with use of highly reactive CO to create the same molecules. For example, methanol is produced from CO and hydrogen (synthesis gas, or syngas) in an atom-efficient process [14]. Further, the needed synthesis gas can be readily generated from coal, natural gas, or petroleum. To form methanol from CO,, an additional clean and inexpensive source of hydrogen would be needed. Further, the thermodynamics of the two routes are such that one can obtain twice the yield of methanol from the syngas route (at 470 K, for example) than the CO, route [245]. At present, CO, is used only to supplement syngas during methanol production if the ratio of hydrogen to CO is significantly higher than 2.0 (which can occur when natural gas is used as the syngas source). Other small molecules such as formic acid, formates, and formamides then are generated from methanol (plus CO, ammonia, alkyl amines)—this chemistry also is atom-efficient and alternative routes using CO₂ as a starting material have been unable to compete. In general, it is presumed that CO₂-based routes for basic commodity chemicals would be competitive if a relatively inexpensive, non CO₂-producing source of hydrogen can be developed [245]. Granted, CO is a much more toxic material than CO₂, yet syngas has been used successfully for decades in chemical processes, so this factor currently carries little weight.

The generation of dialkyl carbonates presents a similar example to those described above—a number of researchers have investigated the synthesis of dialkyl carbonates from CO₂ and alcohols using alkoxy tin catalysts [246]—in this process the equilibrium must be pushed towards product via the removal of alcohol. Meanwhile, the commercial process operates very effectively from CO and alcohol over relatively inexpensive copper catalysts [247].

Despite the negative results described above, it is important to note that approximately 110 megatons of CO₂ are consumed each year to produce low molecular weight products [245]. Most of this is consumed to generate urea; in addition, salicylic acid is synthesized (Kolbe-Schmitt reaction) from CO₂ and a phenolic salt, but alkylene carbonates are generated from the analogous alkylene oxides and CO₂. The alkylene carbonates are considered relatively benign solvents (they exhibit low toxicity and low vapor pressure), and their synthesis from CO₂ is an example of green chemistry. Monsanto, as well as academic researchers, have studied the synthesis of isocyanates from CO₂ [173]. Although the traditional route reacts amines with phosene, creating the isocyanate plus salt, the CO₂-based routes react the amine with CO₂ in the presence of strong dehydrating agent. The yields of such CO₂-based reactions are excellent, yet the cost of the dehydrating agent (or rather, its regeneration) has inhibited commercialization of such chemistry. Behr, among others, has reviewed a range of small molecule reactions that employ CO₂ as a reactant [248].

In summary, CO₂ has the potential to be a useful C₁ synthon but recent work, while scientifically interesting, has not led to processes that can effectively compete with existing routes/plants. Further, when considering CO₂ as a green reactant, one always must be cognizant of any energy differences required to employ CO₂ in a synthetic scheme versus a conventional reactant (such as CO). If use of CO₂ is more energy intensive, then one might create a situation where more CO₂ is created than chemically "sequestered."

4.5 Other Organic Reactions

As was mentioned previously, volatile metal carbonyls (for example) exhibit sufficient solubility (or sufficiently low miscibility pressures) to support catalysis

in CO₂ without catalyst modification. As such, there are a number of examples in the literature where CO₂ has been used as a "drop-in" replacement for catalytic reactions ordinarily conducted in organic solvents. Nevertheless, once Leitner and Tumas demonstrated in 1997 that one could perform homogeneous catalysis in CO₂ if the catalyst ligands were properly designed, a number of researchers have extended this work, examining a wide range of name reactions in CO₂. The importance of the Leitner and Tumas papers was perhaps to demonstrate that any catalyst could be rendered CO₂-soluble, if the fluorination of the ligands could be accomplished synthetically. Consequently, carbonylation [249], Heck and Stille couplings [250], vinylic substitution [251], hydrosilation [252], isocyanate trimerization [253], dechlorination [254]. Pauson-Khand cyclization [255], and others have been performed successfully in carbon dioxide. The use of fluorinated catalyst ligands is common, providing the solubility needed for the reaction to proceed smoothly.

Although these papers demonstrate the scope of "chemistry in CO₂." the impact of such work on the overall aims of green chemistry is not clear. Granted, such reactions would ordinarily be performed in an organic solvent, and use of CO₂ replaces such solvent use. On the other hand, the reactions described above typically are used for small volume, batch reactions, and the overall impact of this work on the greening of industrial chemistry will be small. Perhaps the most significant impact of this work on green chemistry is in its ability to show chemists that CO₂ is a viable solvent for a variety of reactions, and the greatest value of the work may be to educate the next generation of chemists.

4.6 Industrial Activity: Friedel-Crafts Chemistry and Other Name Reactions

Both Poliakoff [256] and Subramaniam [257] have patented alkylations in supercritical fluids, albeit using different types of catalysts. Each of these academic groups is/was working with an industrial partner (Thomas Swan and Engelhard, respectively), and the work ultimately may be transferred to industry.

Schiraldi and colleagues, as well as Harris and coworkers [259] have patented the esterification of specific substrates in carbon dioxide. Finally, a group at BASF has patented the generation of alpha-tocopherol (and derivatives) in carbon dioxide [260]. It is not clear at this time if these inventions are being pursued further by the companies involved.

4.7 Inorganic Chemistry: General

Obviously, most inorganic compounds are not soluble in carbon dioxide, and inorganic chemistry performed in or with CO₂ has been accomplished by finding ways around this seemingly intractable thermodynamic hurdle. The first inorganic

chemistry performed in a supercritical organic solvent was probably the work by Matson [261] at Battelle Pacific Northwest Laboratories in the late 1980s—an emulsion was formed in a supercritical alkane, and inorganic particles were generated via a reaction at the micellar interface between an inorganic and an organic precursor (note that when Matson performed his study, it was not possible to form micelles in CO₃). Recently, several research groups have adopted the same strategy to create metal nanoparticles within micelles formed in carbon dioxide. Naturally, the great strides made during the 1990s in the identification and application of CO₂-philes paved the way for this research. Both Fulton [262] and Roberts [263] have reported the formation of metals particles with diameters less than 20 nm by (a) creating an emulsion in CO, where the aqueous cores of the micelles contain metal ions as well as water, and (b) adding a reducing agent to the CO, such that a reaction occurs at the micellar interface between ion and reducing agent to nucleate the particles. Particle growth then occurs through micelle-micelle collisions— Roberts has shown that one can control the particle growth rate via control over the degree to which the micelles can collide and exchange contents. Further, changing the physical properties of the compressible continuous phase can alter the micellar collision rate.

An obvious question is "Is this green chemistry?" Because there currently is no sizeable industrial market for metal nanoparticles, this question is difficult to answer. Production of metal nanoparticles in a CO₂-continuous emulsion likely will be more environmentally friendly than the analogous reaction in an organic solvent. However, if such metal nanoparticles are ultimately applied commercially, there also may be other means by which to synthesize them, means that require no solvent at all. As can be seen by this and other such situations, it can be difficult to judge whether a process is green unless taken in context with competing processes—green seems not to be an absolute but rather a relative concept.

4.8 Inorganic Chemistry: Metal Chelates

Although separations will not expressly be covered in this report, the use of chelating agents for metal extraction should be noted. Many conventional chelating agents and their associated metal complexes are poorly soluble in carbon dioxide, and concepts on the design of CO₂-philic materials were applied very early to the design of CO₂-soluble chelating agents [264], showing that fluorination improved solubility. On the other hand, tri-alkyl phosphates and tri-alkyl amines, known to bind several types of metals, have been shown to be miscible with CO₂ at moderate pressures despite containing no fluorine. Various research groups [265] have demonstrated that one can extract metals (using the appropriate agent) from both solid and liquid matrices at high yields. Also, it has been shown that the phase behavior of the metal chelate can be substantially different from that of the agent (not surprising because at the very least the molecular weight of the chelate is much

greater than that of the agent). Finally, one of the first advances in the design of nonfluorous CO₂-philes came about as a result of work by Siever's group on chelating agent structure-solubility relationships [266]. It was shown that, in the case of copper-beta-diketone complexes, the solubility of analogues containing branched alkyl groups was superior to fluorinated analogues.

Again, we must pose the question. Is the use of chelating agents in carbon dioxide green chemistry/processing? The two most important cases for examination, where metals are processed/purified for sale and where metals must be removed from solid or liquid matrices to remedy an environmental problem, will be examined.

Regarding the first case, both copper and precious metals (platinum group metals, or PGMs) are purified using solvent extraction. In the case of copper, solvent extraction and electrowinning (SX-EW) have captured approximately 15 to 20 percent of the total amount of copper produced worldwide [267], replacing the significantly less green (owing to energy use and air emissions) conventional smelting process. In SX-EW, the metal first is extracted from the ore using sulfuric acid (along with substantial amounts of silver, lead, iron, zinc, and arsenic, plus a wide variety of minor components) via heap leaching, where the acid simply is allowed to flow by gravity through an ore pile. This acidic solution then is contacted with an organic solvent containing an extractant (one of a variety of amines, phosphates, or oximes) to draw the copper selectively into the organic phase (usually a high flash point alkane mixture). The copper is back-extracted into water, from where it is electrochemically reduced (electrowinning) to pure (99.99+ percent) copper. The solvent extraction step is, from a process perspective, somewhat simple, consisting of a series of mixer-settler tanks that are open to the environment.

Previous work has shown that copper can be extracted into carbon dioxide; further, it is likely that one could synthesize a highly CO₂-soluble analogue to one of the currently used commercial extractants for copper. Hence, one could construct a CO₂-based analogue to the current solvent extraction process. However, it is not likely that the cost of such a step would justify the move away from the currently used organic solvents. At present, the solvent extraction/back extraction steps contribute approximately 10 to 20 percent of the \$0.2/lb processing cost of copper using SX-EW, assuming that more than 90 percent of the extractant is recovered after each use [268]. Indeed, perhaps a far better target for green processing applied to copper refining would involve either conversion of the remaining traditional smelters over to SX-EW [269] or finding ways in which to lower the energy demand of the ore excavating/crushing/grinding process or the electrowinning step [270]. A further complication is that most copper refining is performed in either South America or Africa, where the regulatory and/or societal driving force for adopting green chemical processing is substantially less than in either Europe or the United States.

Platinum group metals, either those derived from ore or during the recycling of catalytic converters or electronics components, also are refined using solvent extrac-

tion [271]. The metal is extracted using strong acid (usually HCl), then purified by extraction into organic solvent using an auxiliary, where selectivity is achieved via both the design of the auxiliary and subsequent aqueous washing steps to remove unwanted trace metals. The extraction is multi-step, so as to sequentially remove the gold, platinum, palladium, and other PGMs. The metals then are reduced either chemically or electrochemically and recovered. The opportunities for the use of carbon dioxide to replace organic solvents in such processes mirror those in copper refining: however, the value of the metal is five orders of magnitude greater. Further, it has been shown that CO₃-soluble analogues can be designed to those compounds used to extract PGMs into organic solvents [272]. However, just as the value of PGMs makes the use of CO, more viable, so too does it promote the development of competing technologies. For example, IBC (Utah) has developed solid metal absorbents comprised of macrocycles tethered to polymeric resins [273]. These resins have been shown to selectively bind PGMs of various types, where the metals are recovered by back extraction following processing. If CO, is to be competitive in this arena, the ligands must be selective, should be as inexpensive as possible, and/or one must be able to recover them following binding and release of the metal. Both the ligands and their metal complexes must be highly soluble at low pressures (preferably CO,'s vapor pressure), as throughputs in this application will be very high. As in the case of coffee decaffeination, it would be highly preferable to reduce and/or capture the metals without depressurization of the CO., Given Watkin's research, it may be possible, for example, to reduce the metals using added hydrogen. Unlike in the case of conventional organic solvents, adding hydrogen to CO, produces neither safety nor mass transport problems. There are two features of this process that weigh in favor of CO; (a) the metal concentration is relatively low, meaning that employing a high ligand:metal ratio still allows for dilute ligand concentrations; and (b) aqueous flow rates can be higher than the point that causes breakthrough problems for solid sorbents. There may be opportunities for use of CO, in this industry.

Another application of potential interest is in the upgrading of so-called vacuum resid (or vacuum residual) in petroleum refineries [274]. Vacuum resid refers to low vapor pressure (hence relatively high molecular weight) fractions of the initial petroleum stream. In addition to hydrocarbons, this fraction contains a substantial quantity (more than 1,000 ppm) of a wide spectrum of metals (owing to the concentration effects of numerous upstream unit operations). Included in this mix of metal contaminants are considerable amounts of vanadium and nickel, metals that can deactivate the catalysts employed to crack petroleum into useable (salable) materials. Further, both the nickel and vanadium are complexed by porphyrin type materials present in the vacuum resid. If these metals could be easily and economically extracted, more of the initial petroleum stream could be employed to create saleable products, meaning less is simply burned.

Aqueous waste from electroplating operations generally contains substantial amounts of dissolved metals in a low pH (2.0 and below) medium. Chelating agents

dissolved in carbon dioxide can be used to extract many of the relevant metals from such low pH media [275], provided that the agents are designed to operate under such conditions. Generally, the strategy by which chelating agents are rendered CO₂-soluble involves the attachment of "CO₂-philic" functional groups to a moiety known to bind certain metals, and as such there are in theory no restrictions as to the type of chelating agent employed, so long as the functionalization chemistry can be performed. The competing technologies for CO₂ extraction include the use of precipitants, compounds that react with dissolved metals to form insoluble species, as well as chelating agent-functional ion exchange resins (solid sorbents). Precipitants are inexpensive, yet they produce a sludge that must be collected and disposed. Ion exchange resins (following back extraction) produce instead a concentrated (ideally) solution of the metals, which must be subsequently treated to recover the metal.

The most problematic application to analyze is where CO₃, plus a chelating agent. is being used to remove metals from a matrix to accomplish remediation. Indeed, the primary focus of green chemistry is the elimination of waste production, rather than the clean up of existing problems. Yet, the use of CO, to remediate metal contamination may be considered green processing in some circumstances. First, it has been shown by various research groups that a variety of metals can be extracted from solid matrices (including soil [276]) using chelating agents dissolved in carbon dioxide. If CO, was to be used to replace either an organic solvent or water in the washing of contaminated soil, this could be considered green processing, provided that the energy required for the process was equal to or less than that employed for the conventional route. A large amount of sludge (as much as 15 percent of soil throughput, created from suspended fine particles) is produced, for example, when soil is washed with water. Because carbon dioxide is a low density, low viscosity, low interfacial tension fluid, it is likely that sludge production would be greatly reduced if CO, were used to wash soil. On the other hand, because soil washing typically involves excavation of the contaminated material, remediation strategies that eliminate the problem without excavation (in situ remediation) should be preferred. Such strategies range from the use of green plants to absorb and concentrate metals, to the addition of agents to the oil that stabilizes the metals, thereby preventing their transport.

4.9 Inorganic Chemistry: Industrial Activity

Materials Technology Limited has obtained several patents [277] describing the use of high-pressure CO₂ to enhance the rate of curing of concrete, where the CO₂ actually dissolves in the concrete mixture and reacts with the matrix. Although one might consider this as sequestration of CO₂, and hence green chemistry, it should be remembered that the preparation of the concrete precursor involves the calcining of the raw material, where CO₂ is driven off while injecting significant energy. Thus, more CO₂ is probably produced during this sequence than is sequestered.

Both Texas Instruments [278] and Micron Technology [279] have patented inventions where inorganic chemistry is performed in CO₂ to support cleaning/processing of silicone wafers. The Micron patent describes the use of mixtures of CO₂ and etching chemicals to pattern inorganic substrates, while the Texas Instruments patent describes a process where inorganic contamination on wafers is first derivatized, then dissolved in CO₂ and removed. Note that in these patents, the use of CO₂ is designed to replace the use of water. In many parts of the world, significant water usage by industry is not sustainable, and there is a need to find replacement technologies for large-scale water usage.

Section 5

Formation of Fine Particles Using CO,

The controlled formation of particles (or powders) is important to several disparate industries, including those that manufacture pigments, pharmaceuticals, and catalysts. Needless to say, these diverse applications mandate a diverse set of specifications for the production of such particles. Not surprisingly, supercritical fluids (and carbon dioxide in particular) have made inroads into particle production to varying degrees, with penetration more significant in some industries versus others. In particular, the benign properties of carbon dioxide (vis-à-vis intimate contact with humans) have created substantial interest within the pharmaceutical production community for use of CO, in the generation of therapeutic particulate products. In some cases, the use of CO, is proposed to supplant the use of organic solvents, and such a process could rightly be termed green processing. In other cases, the use of CO, (plus auxiliaries, as will be described below) might actually be less "green" than a current process, but the characteristics of the product are superior, providing a performance rather than an environmental advantage. Further, because regulatory approval on new products or processes (in the pharmaceutical industry) can require years to obtain, the industrial impact of CO, processing of pharmaceutical powders may not occur for some time (if at all, naturally). However, recent industrial investment (by entities in the pharmaceutical industry) in supercritical fluid technology suggests that the level of interest remains high.

5.1 Production of Particles Using CO₂: RESS

The earliest particle formation process using CO₂ as the solvent is probably the often cited paper by Hannay and Hogarth in the 19th century, where depressurization of a CO₂-based solution created a precipitate "like snow" (see [1] for description). During the 1980s, researchers at Battelle's Pacific Northwest Laboratories created the RESS (Rapid Expansion of Supercritical Solution) process, where a solution (of solid in supercritical alkane) was sprayed through a nozzle (where the

outlet was at atmospheric pressure), creating fine particles [280]. Other researchers have explored the use of RESS to form particles since then, both from an experimental and theoretical standpoint [281]. As mentioned previously, CO₂ is not a particularly powerful solvent, and many of the solutes one might like to process using RESS require very high pressures (500 bar and above) to dissolve even small quantities of material—high CO₂ throughput will be needed to produce relatively small amounts of particles. The high CO₂ throughput (with its associated costs, capital and operating) has effectively inhibited the use of RESS on a commercial basis. This has rendered RESS generally less interesting than some competing CO₂-based particle formation technologies; these will be described below.

The most successful (from a developmental, if not yet truly commercial point of view) particle-forming processes are those that have taken what is known about CO₂'s thermophysical properties and applied these characteristics strategically. For example, as has been mentioned previously, it is well known that CO₂ is a rather feeble solvent—although problematic when attempting to use CO₂ in a RESS process, this characteristic is quite useful when CO₂ is employed as a nonsolvent to induce precipitation of a solute from organic solvent. Further, whereas high pressure is required to create dilute solutions of large molecules in CO₂, low pressures are sufficient to create solutions of CO₂ in large molecules (or solutions of compounds in organic solvent), as suggested in Figure 6. Saturated solutions of CO₂ (in either polymers or solute/solvent mixtures), sprayed through nozzles, have been used to generate fine particles.

5.2 Creating Fine Particles Using CO₂: Nonsolvent Modes of Operation and PGSS

Jung and Perrut have written an excellent review of the use of supercritical fluids to generate fine particles [281]; other reviews have appeared recently as well [282]. These reviews describe the wide variety of materials that have been micronized via CO₂-based processing, and the various modes in which such particle processes operate.

During the 1980s, Krukonis and colleagues [283] found that CO₂ could be employed as a nonsolvent to induce controlled precipitation of various solutes from organic solvent solution. The success of this approach derives from CO₂'s generally feeble solvent power yet its miscibility with a variety of volatile organic solvents. The use of CO₂ as a nonsolvent to produce particles has expanded significantly since then, where the typical "process" employs one of several nozzle designs to create an aerosol simultaneous with the induced-phase separation. As shown in the review by Jung and Perrut [281], an extraordinary variety of materials (many bioactive compounds) have been processed via one of the many nonsolvent routes, typically generating micron-size particles and smaller.

As noted in the section on polymer processing, the pressure required to create a concentrated mixture of polymer and CO₂ is significantly lower than that re-

quired to create a dilute solution of polymer in CO₂ (see Figure 6). As such, a number of researchers have explored the use of gas-saturated solutions (of either CO₂ in a polymer, or CO₂ in an organic solvent/solute mixture) to produce fine particles. The CO₂-saturated mixture is sprayed through a nozzle, and the rapid vaporization of CO₂ creates an aerosol and removes any organic solvent. The work by Ferro Corporation on the generation of powder coating formulations using CO₂ is an example of this type of processing, sometimes referred to as PGSS (particles from gas-saturated solutions).

Although a variety of materials have been micronized using carbon dioxide, it is clear that most of the industrial interest in such processes arises from pharmaceutical manufacturers. As such, we will focus on bioactive particle manufacture in discussing the green potential of these processes.

5.3 Production of Fine Pharmaceutical Powders: Is This Green Processing?

To determine whether CO₂-based particle formation processes are "green," one must first examine the ways in which particles currently are generated. First, it seems clear that the pharmaceutical industry is truly interested in the production of fine powders (particles) of controlled size and known purity. The design and testing of inhalable drugs is an ongoing area of significant research and business activity.

The CO₂-based particles processes described in the literature are green (and economical) to varying degrees. For example, although RESS employs CO₂ as the only solvent, the need for high CO₂ throughputs (owing to low solubility of target compounds) means that the energy budget for such a process will be high (energy needed for compression and purification of large volumes of CO₂). On the other hand, processes such as PGSS or the various nonsolvent modes of operation employ carbon dioxide at relatively low pressure and flow rates. Many of the antisolvent processes employ organic solvents (dimethyl sulfoxide (DMSO) most frequently), and care must be taken to "close the loop" on these solvents to avoid lowering the sustainability of the process. Because CO₂-based particle production processes are, at most, at the pilot scale, it is not clear to what extent the organic solvent can actually be recycled. Further, if the particle process requires regulatory approval (for use in manufacture of pharmaceuticals), it is not clear to what extent solvent recycle will be permitted.

Many pharmaceutical compounds are readily soluble in water, but they are poorly soluble in even polar solvents such as DMSO. Researchers at Bradford Particle Design dealt with this situation in a CO₂-based nonsolvent process by incorporating a cosolvent (an alcohol) that is miscible with both water and CO₂ [284]. Use of a coaxial nozzle and this cosolvent allowed Bradford Particle Design to produce fine particles from a variety of water-soluble compounds. Sievers and colleagues [285] have dealt with this problem via use of colliding streams of aque-

ous solution and CO₂ (prior to exiting the high pressure environment at a nozzle), where the CO₂ helps form (and dry) an aerosol of the aqueous solution. These two processes are noted because they each accomplish the formation of small particles of valuable compound using entirely sustainable solvent systems—CO₂/water/ethanol by Bradford Particle Design and CO₂/water by Sievers and colleagues. This mode of operation would seem to exhibit the highest green potential of the various CO₃-based powder processes.

5.4 Comparisons With Current Processes

The literature suggests that milling, crystallization, and spray drying currently are the most common means by which to generate powders (particles) from pharmaceuticals [282, 286]. Milling [287] is a relatively energy-intensive process, but requires no solvent and is readily scalable. Milling (including jet pulverizing) has been demonstrated to be able to create particles in the 1 to 5 micron range. The design and performance characteristics of various types of mills are known, and the process is readily scalable and can be rendered continuous [288]. However, temperature increases during milling can damage labile compounds, and strict control over particle size and particle morphology may either be lacking or inconsistent. Milling can create substantial waste if the distribution of particle sizes exhibits a substantial tail at the lower end of the scale. Replacement of milling with a CO₂-based process would seem to owe more to product concerns than to "green" concerns, if one of the various CO₂ processes can generate product consistently with the correct characteristics (size, distribution, shape, morphology).

Spray drying [288, 289] involves the atomization of a solution (product in solvent), the mixing of the droplets with a hot gas (usually air), followed by the drying of the droplets to form the particles. Particles can be produced whose sizes range from 2 microns up to 500 microns; theory on design and operation of spray dryers has been well studied. If water is being employed as the solvent, then the only significant "green" complaint that one might have with spray drying is that water's high heat of vaporization requires a significant energy input to the process. On the other hand, as in the case of milling, if the CO₂-based process generates particles of higher quality (closer adherence to size and morphology constraints) at a competitive price, then the CO₂ process could dominate despite potentially being less green. Obviously, if one is spray drying from organic solution, then recycle of the solvent is an additional consideration.

As for the cases of both milling and spray drying, crystallization is an oftenused industrial process where numerous variations are possible [288, 290]. Design principles for crystallizers have been investigated in depth in the past, and procedures for the design of crystallizers are readily available. If water is being used as the solvent, crystallization is already a relatively green process where perhaps high-energy input owing to the use of water as a solvent (recall the need to dry the product) or the need to treat the wastewater from the process could be seen as negatives. Again, however, crystallization may not be able to produce the particle characteristics desired by the end-users.

In summary, the use of carbon dioxide as a nonsolvent for the production of particles (primarily pharmaceutical particles) is not substantially more "green" than competing technologies (in some cases it could be less green). However, the use of CO, could provide better product, and its relatively green status provides no complications from a sustainability perspective. What seems to differentiate CO₃-based processes from their conventional competitors (crystallization, spray drying, milling) is a general lack of basic design equations that would allow ready creation of a design schematic, given product specific inputs (the usual situation in computeraided design of a unit operation of process). Research by DeBenedetti's group during the 1990s [291] suggested that the process by which particles are created during spraying of a solution into CO, could be modeled by considering the formation of fluid droplets and the transport of both CO, and solvent between the continuous phase and the droplet phase. However, recent work by Randolph and colleagues [292] suggests that true droplets never form in the spray process, and that particle formation can be described by gas-phase nucleation and growth within the expanding plume. Whereas this may seem (to an outsider) as merely an academic debate, accurate models of the particle formation process inevitably result in the identification of the correct dimensionless groups associated with the phenomena and the underlying mathematical relationships that will ultimately permit process design from first principles. Although there is general agreement that phase behavior (thermodynamics) and transport play roles in the effects of process conditions on particle characteristics, it is not clear that a universal set of design guidelines currently exists.

In summary, what appears to be needed in this CO₂-based sub-field is research on building a true engineering model for such processes, where the input of fundamental thermophysical parameters allows for the design and operation of equipment that can deliver product with the desired characteristics. Indeed, the proliferation of acronyms associated with CO₂-based particle production (see [281]) lends the impression that the various processes are in some way fundamentally different from one another, and thus one must experimentally evaluate each option (for a particular solute) to determine the proper operating mode to produce a given particle size and distribution. The lack of a defined "unit operation" with acknowledged theoretical underpinning makes it difficult to perform an engineering design and scale-up of such processes, hindering their wider use. Equipment for CO₂-based particle production is rather treated as "custom."

Another avenue of research (in this area) that has received relatively scant attention in recent years is the use of CO₂ to process/produce well-defined particles from pigments. It is known that pigment particle size (and extent of particle agglomeration) exhibits a strong effect on the ultimate color of the article receiving

the pigment. Pigments usually are milled mechanically: the use of a CO₂-based anti-solvent process could allow for the production of pigments with good control over the size and size distribution. Texter [293] has reviewed a number of solution-based methods (homogeneous and multiphase systems) for generating fine particles from pigments—most seem to rely upon controlled precipitation of pigment from a precursor solution (or emulsion) to form the particles. Naturally, CO₂ presents some advantages, as it can be readily separated from the organic solvent and it is itself benign. Whether such advantages allow CO₂-based processes to supplant traditional milling (which obviously uses no solvent) remains an open question, although preliminary results are promising [294].

5.5 Industrial Activity

There has been an interesting spate of industrial activity on particle formation using carbon dioxide over the past 3 years, much of it not expressly technology based. Bradford Particle Design (UK) helped pioneer the development of the "SEDS" process (solution-enhanced dispersion by supercritical fluids), where ethanol is added to an aqueous solution while it is sprayed into CO₂ to form particles. In early 2001, Inhale Therapeutics acquired Bradford Particle Design, demonstrating the interest by the pharmaceutical community in this technology. Interestingly, Bradford previously announced that Bristol-Myers-Squibb had licensed their technology for use in pharmaceutical manufacture; it is not clear as to the state of that alliance at this time. At nearly the same time (late 2000) as the Bradford acquisition, Lavipharm (Greece) announced the acquisition of Separex (France) and the purchase of a 30 percent stake in Phasex (US). Both Separex and Phasex are well known to the supercritical fluid community, having each worked on the fundamentals and design of numerous supercritical fluid processes.

The review by Jung and Perrut lists many of the patents awarded on CO₂-based processing for the generation of fine particles. In addition to Bradford Particle Design [284], a number of academics have patented aspects of the nonsolvent route to particle production, including Randolph [295] and Sievers [285], at the University of Colorado, and Subramaniam at the University of Kansas [296].

Regarding the PGSS-type processes, many of the patents that have appeared are related to applications in the coatings industry, including the Unicarb Process (mentioned previously), and powder coatings applications from Ferro (mentioned previously) and Morton [297].

Section 6

Process Issues

One of the foremost reasons why more supercritical CO,-based processes have not appeared over the past decade is that they are thought to be (and in many cases are) "too expensive," owing primarily to the added cost required to design, construct, and operate a high-pressure process. Although the discovery of "CO₃-philes" in the early 1990s was rightly hailed as a scientific/chemistry breakthrough, its impact would most likely have been felt during process design and scale-up, as the use of CO₃-philic substrates and catalysts would permit lower operating pressures. and would lower the cost of the process. Unfortunately, the high cost of fluorinated CO,-philes more than negated their effect on lowering operating pressure. Consequently, the recent work by Beckman on design of nonfluorous CO,-philes [137], while nominally a "polymer science" issue, is actually an example of the use of molecular design to lower process costs. Indeed, the work by Wallen on specific interactions between CO, and carbonyls [140], by DeSimone and Ober on design of polymers for photolithography with CO, developing [213, 214], and by Subramaniam on the use of expanded liquids for oxidations [110] are all examples of the use of molecular design to try to lower process pressure. As such, chemistry and engineering are inextricably intertwined when trying to optimize a CO,-based process.

6.1 Process Design Using Supercritical Fluids: Are CO₂-Based Plants Inherently Uneconomical?

The number of processing plants operating worldwide that employ supercritical CO₂ is slightly above 100 and growing steadily [298]. Most of the current plants use CO₂ to process food in some way (extraction of fractionation), yet other types of plants obviously are being brought on stream (for example, fluoropolymer synthesis by DuPont, hydrogenation by Thomas Swan, coatings by Union Carbide, polyurethane processing by Crain Industries). Despite this steady growth, there is a general sense (or unease) within both the academic and industrial communities

that there are elements connected to the design and construction of CO₂-based plants that effectively block greater use of the technology.

Several authors have reviewed various aspects of process design and costing of "supercritical" plants [299]; these reviews typically focus on a specific industry. For example, Perrut reports that for the case of extraction, the relative cost of a supercritical plant scales as $(V*Q)^{1/4}$, where V is the column volume and Q the flow rate. This is consistent with what we report in Section 1.8, where minimizing equipment size and flow rate will minimize process cost.

Each of the authors who has reviewed process design using supercritical CO₂ emphasizes that one needs access to the relevant fundamental parameters to complete and optimize the design. Such parameters include both the relevant thermodynamic model for the mixture(s) in question with the appropriate binary interaction parameters, reaction data (rate constants, heats of reaction, Ahrrenius constants), and transport constants (densities, diffusivities, and viscosities). Note that these parameters are exactly the same as would be required to design a one atmosphere process, and there is nothing inherently "foreign" about a CO₂-based process that inhibits design and costing. Indeed, high pressure alone is not sufficient to explain the perceived inhibition of CO₂-based process scale-up, given that hydroformylation operates at 200-300 bar at large scale, but low density polyethylene is produced at more than 2.000 bar. If one has access to the necessary basic information, one can employ software such as ASPEN to accomplish the process design, and ICARUS to handle the costing (the author has done so successfully with colleagues as part of consulting contracts).

We must conclude that, if the inhibition in the scale up of CO₃-based processes is real rather than perceived, then it must be due to a lack of the fundamental parameters needed for process design, plus other factors that would inhibit the commercialization of any "new" technology. For example, as mentioned previously, it is difficult at present to predict the effect of molecular structure on phase behavior in CO, of molecules that exhibit any substantial degree of complexity. Carbon dioxide exhibits both nonpolar tendencies (low dielectric constant) and "polar" properties (Lewis acidity, strong quadrupole moment), and predictions of phase behavior are not straightforward (as in the case of alkanes or alkenes). Recent work [300] has shown that the Statistical Associating Fluid Theory (SAFT) can provide good descriptions of the phase behavior of complex mixtures including CO,, yet the complexity of this model and/or lack of suitable parameters currently may limit its use industrially. Group contribution models have been applied to CO, solutions somewhat narrowly, generally targeting a single class of solutes [301]. What appears to be needed is a means to easily predict the properties of mixtures involving CO,, such that confident predictions of process requirements and costs can be made using conventional process software such as ASPEN. It also may be necessary for academics to conduct their own preliminary estimates of process cost for CO,-based alternatives to conventional processes to move such technologies beyond the discussion stage.

6.2 How Does One Economically Recover a Catalyst and/or a Product From CO,?

The problems associated with product recovery through use of a large pressure drop have been discussed in a previous section; although depressurization precipitates product efficiently, it is expensive (and energy-intensive) to continually compress and recompress CO₂ (assuming the process is continuous). As discussed previously, the coffee decaffeination process strips the extracted "product" (the caffeine) from CO₂ into water with only a small pressure drop across the liquid-liquid extraction column. Beckman and Hancu employed the same process to recover hydrogen peroxide generated in CO₂ from O₂ and H₃.

The fabric cleaning process developed by Micell [302] illustrates another means by which to recycle CO₂ without employing a large pressure drop. The CO₂ is employed as a pressurized liquid: following the cleaning cycle, the CO₂ is transferred to a vessel where a small pressure drop is used to create a vapor-liquid two-phase system. CO₂ then is drawn from the top of the vessel and recondensed, leaving behind a residue for disposal and allowing reuse of the CO₂. Energy is captured and reused as much as possible during the cycling of the CO₂.

Catalyst recycle is a more pressing need for supercritical fluid processes (owing to the custom design of CO₂-philic ligands) than conventional analogues, but also presents a more difficult problem. Homogeneous catalysts are designed to provide enhanced selectivity and kinetic control of reactions, yet without effective recycle their added cost prevents economical scale-up. Consequently, any green advantages gained through use of CO₂ as a solvent are more than counteracted by the green and economic disadvantages incurred by use of a homogeneous catalyst. As such, investigations into means by which to recover homogeneous catalysts from CO₂ play a vital role in enhancing the viability of green chemistry in CO₂.

For example, a collaboration between Tumas and the DeSimone group has investigated the design of metal catalysts that are tethered to crosslinked, polyfluoroacrylate polymer beads [303]. As noted earlier, fluoroacrylate polymers are the most CO₂-philic materials yet identified; because the crosslinked versions employed by Tumas cannot dissolve (they are, after all, crosslinked), they will swell in the presence of CO₂ to 300 percent of the their initial volume. Because the metalligand construct is tethered to the beads, the catalysts can be readily recovered after the reaction and potentially reused. Crooks [304] also has tried to address the catalyst recycle issue through design of dendrimer-supported metal catalysts; they have created Pd nanoparticles within dendrimers and employed these to support hydrogenation and other reactions. The outer shell of the dendrimers can be decorated with fluoroalkyl groups, and these macrocatalysts can be employed in CO₂. Finally, Keurentjes and coworkers [305] recently have published a method where catalysts are tethered to microporous inorganic supports for use in catalysis in CO₃.

The strategies employed by these three groups are extremely important, in that each has attempted to preserve the benefits of a homogeneous catalyst while coopting the primary benefit of a heterogeneous catalyst—the ability to easily recover the valuable metal. For each case, some key issues remain to be discussed: Does each "supported" catalyst preserve the activity and selectivity of the soluble parent? Are the reactions kinetically controlled or diffusionally limited? How fast does the metal "leach" from the supported catalysts?

Eckert [16], Tumas [306], and others have examined the use of phase transitions to allow recycle of catalysts and other valuable components in a CO₂ process. Eckert has found that addition of CO₂ to a mixture of organic and fluorocarbon solvents induces mixing, but removal of the CO₂ (by depressurization) rapidly leads to complete phase separation. Consequently, CO₂ can be employed as a reversible and benign "trigger" to allow a catalytic reaction while ultimately allowing segregation of the catalyst following reaction. Tumas has examined the use of a "pressure trigger" to attempt to recover the catalyst from a CO₂-continuous emulsion. At elevated pressure, a water-in-CO₂ emulsion forms where the catalyst is localized in the aqueous micellar cores. Reduction of the pressure breaks the emulsion, leading to a distinct aqueous phase housing the catalyst (which then could be reused).

6.3 Where Would Process Improvements Enhance Opportunities for Green Chemistry in CO₂?

As in the previous section, examples described here are not directly related to green chemistry, but solution of such problems would greatly enhance the viability of CO₂-based processes, and are intimately tied to green chemistry in carbon dioxide. For example, there remains no efficient means by which to inject and remove granular solids from a high-pressure system (screw feeders have been tried with limited success). There clearly are a number of areas (food processing) where continuous injection and removal of solids would greatly enhance the economic viability of a CO₂-based process, yet lack of the mechanical means by which to accomplish this relegates the process to batch or semi-batch operation. Note that the chemical basis for continuous polyurethane foam production using liquid CO₂ as the blowing agent was established in the early 1960s, whereas commercialization only occurred after development of the proper equipment in the early 1990s.

Over the past decade, there has been significant academic and industrial interest in cleaning processes using CO₂-cleaning of metal parts, electronics components, and fabrics, CO₂ is ideally suited to such applications owing to its low viscosity and environmentally benign nature, yet mechanical issues complicate application of CO₂ to these processes. For each of these applications, individual "pieces" must be rapidly inserted into a high-pressure chamber, the chamber then is sealed and pressurized, the "piece" is cleaned, and the chamber is depressurized and emptied. In an atmospheric operation, the operation of such a situation is trivially simple and easy to

scale (cost per part drops as chamber volume rises). The opposite currently is true for high-pressure operation; scale-up is nontrivial and the cost of the system rises rapidly as the size of the chamber rises. More efficient "piecework" operations at high pressure will not only render cleaning operations less expensive, but also coating and fabric dying operations. Finally, many proposed CO₂-based processes (including spin coating, lithography and developing, free meniscus coating) that are under examination in academic/industrial laboratories would benefit greatly from breakthroughs in the design of equipment designed to efficiently transfer parts in and out of high-pressure environments.

Section 7

Reactions at Interfaces and/or Multiphase Mixtures

Reactions at interfaces (or transport across interfaces to facilitate reaction) in CO₂-based systems have been proposed as a useful means by which to support green chemistry in carbon dioxide while easing separation problems post-reaction. Indeed, if catalyst, reactants, and products can be segregated effectively in various phases in the reactor, downstream separation is certainly easier. However, one is now also faced with thermodynamic (phase behavior) and transport limitations to reaction. A key proviso in attempting to use a biphasic system (with CO₂) to perform green chemistry is that the continuous component of each phase (CO₂ and the second component) should either both be environmentally benign (and hence cross-contamination is irrelevant) or should be immiscible over essentially the entire concentration regime. Thus, only the components of interest (reactants, products) are moving across the phase boundary.

Reactions making use of the CO,/water biphasic mixture have long been proposed as green alternatives to conventional reactions. Each of these solvents is inherently benign, they are immiscible over a broad range of concentrations, and the inevitable crosscontamination that occurs on phase contact does not require remediation. Eckert and colleagues [307] first examined the use of a conventional phase-transfer catalyst in a CO, water mixture and found that despite the lack of "CO, -philic" ligands, the tetra-alkyl ammonium bromide was effective at catalyzing the reaction across the interface. Although Eckert employed a phase-transfer catalyst, Johnston and colleagues (and later Tumas) enlarged the interfacial surface area through creation of an emulsion [308]. The enhanced surface area in the emulsion greatly enhanced the rate of the model reactions performed by these two groups (see Figure 7). Beckman and Hancu [34b] also examined the use of added surfactant to enhance reactivity in a CO,/water biphasic system. CO, dissolves in aqueous hydrogen peroxide. forming percarbonate (through two distinct mechanisms). The percarbonate ion (basic conditions are employed) then reacts with an alkene at the interface, forming the epoxide. The addition of surfactant to this system substantially enhanced the reaction rate, as did the addition of a phase-transfer catalyst. The usual caveat in CO₂/water biphasic

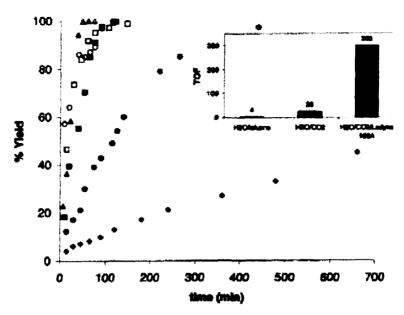


FIGURE 7 Time profile of formation of ethyl benzene from hydrogenation of styrene performed in biphasic water/toluene (♠), biphasic water/CO₂ (♠) and in emulsions using PFPE MW = 2500 (♠), PFPE MW = 740 (n), Lodyne 106A (○), or PBO-PEO (□) as surfactants. Reaction conditions: 50/50 wt % water/CO₂, 1.5% surfactant, 80 mM styrene, 1 mol % catalyst (to substrate), Rh/L = 1/6, 40 °C, 4000 psi. TOF values at 50% conversion are given as a comparison for biphasic H₂O/toluene. H₂O/CO₂, and H₂O/CO₂ emulsion systems [308].

mixtures is that the low pH can cause problems for some reactions [309]. Quadir and colleagues [310] used the CO₂/water biphasic system in an intriguing way; CO₂ was employed to alter the particle size distribution emanating from an emulsion polymerization in water.

The recent intense scientific interest in ionic liquids has created another possible biphasic system for use with carbon dioxide. Ionic liquids are salts (to date, ammonium and phosphonium salts) that exhibit melting temperatures close to or below room temperature. These materials exhibit manageable viscosities and essentially negligible vapor pressures, and are considered potentially benign solvent media. In 1999, Brennecke [311] observed that ionic liquids would absorb large quantities of CO_2 at relatively low pressure (mole fractions of ~ 0.6 at pressures below 100 bar), yet the amount of ionic liquid dissolved in CO_2 was below the detection limit of the instrument employed (and thus below 10^{-5} mole fraction). As such, the phase behavior of an ionic liquid in equilibrium with CO_2 resembles that of a crosslinked polymer in equilibrium with CO_2 (see Figure 8). Further, like polymer- CO_2 mixtures, the ap-

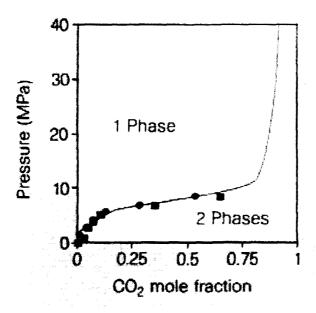


FIGURE 8 Phase behavior of carbon dioxide with the ionic liquid 1-butyl-3-methyl imidazolium hexafluorophosphate [311].

parent volume change resulting when mixing for an ionic liquid-CO₂ mixture is large and negative, such that the volume change upon swelling of the ionic liquid is rather small, despite the amount of CO₂ absorbed. Further, because CO₂ dissolves readily in the ionic liquid, transport across the interface is rapid.

A number of researchers have since exploited ionic liquid/CO₂ biphasic mixtures as media for green chemistry. Tumas [83] employed CO₂ as a reactant in the formation of dimethyl formamide from amines, postulating that the ionic liquid would stabilize the polar intermediate in the reaction. Both Cole-Hamilton [312] and Leitner [313] conducted catalytic reactions in an ionic liquid, employing CO₂ to both extract products (leaving the catalysts behind), and enhanced the solubility of gaseous reactants in the ionic liquid phase. Jessop and Eckert [84] examined asymmetric hydrogenation in an ionic liquid, again where the product is stripped into CO₂, leaving the catalyst behind. It would not be surprising to see other such efforts in the future. The previously stated (see Section 2) caveats regarding ionic liquids naturally still apply.

In theory, one also could conduct reactions across a CO₂-solid interface (other than heterogeneous catalysis) and a CO₂-organic liquid interface, although little work has been reported to date. The one notable example is the work by Eckert's group [16], where a phase-transfer catalyst (PTC) is used to promote the displacement reaction of benzyl chloride with solid potassium bromide (no reaction occurs

in the absence of the PTC). Brennecke [314] found that a simple esterification reaction conducted in a biphasic CO₂/organic mixture proceeded to a greater degree of conversion, possibly because the product partitioned preferentially to the upper. CO₂-rich phase. To render any of these interfacial reactions practical, the thermodynamics of the system must be well understood. Clearly, the extent to which reactants, products, byproducts, and solvents partition between the phases will determine the rate of reaction and the ability to recover both products and catalysts. In the case of ionic liquids, data and or models on the pVT and mixture behavior are entirely lacking, and partitioning behavior must still be determined experimentally.

Impact of the Technology for a Sustainable Environment (TSE) Program on Use of CO₂ as a "Green" Solvent

8.1 Description of Funded Projects in the TSE Program

- Are there concentrations or foci among the various projects funded?
- Are certain programmatic areas underrepresented?

The titles of projects funded under the TSE program (those that involve supercritical fluid technology) are shown in Table 3. We can further subdivide these projects by their primary focus, as has been done in the body of this report. For example, Grant Nos. R826115 (DeSimone) and R825338 (Russell) involve investigations of polymerizations in carbon dioxide and can be grouped together. In the DeSimone work, the primary emphasis is on the design of highly CO₂-soluble amphiphiles for support of dispersion polymerization in carbon dioxide. This work draws on previous successful demonstration by the DeSimone group that fluorinated polyacrylates are probably the most CO₂-philic polymers yet discovered, and that can be used to create CO₂-soluble stabilizers [73, 125, 152]. The Russell program focuses on the use of enzymes to generate polyesters at low temperature using activated substrates (divinyl esters). Supercritical fluids are employed in an attempt to control the molecular weight and molecular weight distribution.

The second group (Grant Nos. R826734 and R824731, Brennecke; 961355, Cummings; 9985598, John) contains programs that focus on the measurement of basic thermodynamic data/properties, information that would be needed to support design of green materials or processes where CO₂ is involved. For example, the program by Cummings attempts to use a combination of theoretical and experimental techniques to design and evaluate surfactants to be employed in carbon dioxide. The two programs directed by Brennecke each examine ways by which

TABLE 3 Projects Funded by the TSE Program.

Principal Investigator	Grant No.	Title	Institution
Abraham	R828206	Development of a Heterogeneous Catalyst for Hydroformylation in Supercritical CO ₂	University of Toledo
Akgerman	R828135	Homogeneous Catalysis in Supercritical Carbon Dioxide with Fluoroacrylate Copolymer Supported Catalysts	Texas A&M University
Beckman	R824730	Design and Synthesis of CO ₂ -Soluble Affinity Ligands for Use in CO ₂ Extraction of Proteins	University of Pittsburgh
Brennecke	R826734	Multiphase Reactive Equilibria in CO ₂ -Based Systems	University of Notre Dame
Brennecke	R824731	Phase Equilibria of CO, Based Reactions Systems	University of Notre Dame
Busch	9815321	Catalytic Oxidations in Supercritical Carbon Dioxide	University of Kansas
Cummings	9613555	Molecular-Based Study of Reversed Micelles in Supercritical CO ₂ for Solvent Substitution in the U.S. Chemical Industry	University of Tennessee
DeSimone	R826115	Nonionic Surfactants for Dispersion Polymerization in CO,	University of North Carolina
John	9985598	Clathrate Hydrates in Water-in-CO ₂ Microemulsions	Tulane University
Li	R828129	Water as a Solvent for Metal- Mediated Carbon-Carbon Bond Formations	Tulane University
Russell	R825338	Biocatalytic Polymer Synthesis in and from Carbon Dioxide for Pollution Prevention	University of Pittsburgh
Sievers	R824728	Replacement of Organic Solvents by Carbon Dioxide for Forming Aerosols in Coatings Processes	University of Colorado
Tanko	9524986	Supercritical CO ₂ and CHF ₃ as Alternative Solvents for Pollution Prevention	Virginia Polytechnic University

the often complex phase behavior involved in supercritical fluid reaction systems might be better modeled (predicted). Finally, the program directed by John examines the thermodynamics behind CO₂ clathrate hydrate formation, specifically in micellar systems.

The programs by Tanko (9524986) and Li (R828129) examine chemical reactions (or classes of reactions), where use of CO₂ as the primary solvent might render the process inherently greener. Tanko's work focuses on free radical chemistry in CO₂, and that of Li examines C-C bond formation in a broad sense and examines reactions in water, CO₂, and ionic liquids.

Another group of grants proposes to examine the creation of homogeneous catalysts for use in CO₂—here fluorinated ligands are employed to render traditional organometallic catalysts CO₂-soluble, allowing the examination of a broad range of reactions. Busch (9815321) proposes to examine oxidation chemistry, but Akgerman (R828135) proposes to study hydrogenations and hydroformylations. The Akgerman work adopts a slightly different tactic to create the CO₂-soluble catalysts, where a fluoroacrylate polymer is employed as the support for a number of metal species.

Finally, the remaining projects examine other facets of green chemistry and engineering in CO₂. The Abraham work (R828206) examines hydroformylation in CO₂ using a heterogeneous catalyst. Sievers proposes to create small inorganic particles of controlled size and composition by using CO₂ to create an aerosol from an aqueous solution. The Beckman program (R824730) studied the design and application of highly CO₂-soluble amphiphiles for use in extraction.

Just as interesting as the nature of the projects supported by the TSE program are the research areas that are, in a sense, missing. It is important to note that the TSE program is small relative to the total number of U.S. research grants from various agencies that support CO,-based green chemistry, and that it cannot be expected to provide support in all of the potentially interesting areas relevant to green chemistry in CO₂. Nevertheless, there are some important subcategories that are not represented in Table 2. For example, it is likely that the use of CO, in microelectronics processing is going to receive increased research scrutiny in the next 5 years by industry, yet there are no TSE projects that address this application area. As shown in Section 3, the groundbreaking papers have, in fact, already been published by researchers such as Ober (Cornell), Watkins (University of Massachusetts), and Wetmore-Gallagher (Phasex Corporation). Other research areas that are underrepresented include the use of CO, in polymeric foams, CO, as a raw material, and any number of topics involving process design and optimization. Regarding fundamentals, it is somewhat strange that there are no programs in Table 2 that ask the question, "Why are CO,-philes CO,-philic?" or "Can we predict, using first principles, the chemical structure of CO₂-philic materials?" Or finally, "Can one adequately predict the phase compositions in multiple-phase systems where CO, is present?" These would seem to be useful areas for fundamental academic research.

8.2 Impact of the TSE Program

- Is the TSE program leading the field or following?
- Can results (publications and patents) from TSE-sponsored programs be considered milestones in the field (green chemistry in supercritical fluids)?

Because the nature of the work sponsored by the TSE program (the CO₃-based programs) is spread over a number of different subcategories, the impact differs as one moves from one group of projects to the next. For example, the key publications regarding the design of "CO₃-philic" materials were published before 1995; these included the papers by the DeSimone group in Science [73, 125, 152], those by the Beckman group [71, 123], and those by the Johnston group [72]. These papers served to establish that certain fluorinated materials were highly CO₃-soluble, and that one should be able to design functional CO₂-soluble materials from them. In this respect, the programs directed by DeSimone and Beckman can be said to follow up on earlier discoveries. Further, it could even be proposed that the groundbreaking papers mentioned above were made possible by work on CO,-fluorocarbon interactions published during the mid to late 1980s [123a, 315]. However, during the 1980s, conventional wisdom claimed that CO, behaved like an alkane insofar as solvent strength was concerned, and changing that wisdom required a significant body of published work. The "CO₃-is-like-hexane" heuristic likely survived well into the 1990s; the DeSimone Science paper in 1992 [73] did as much as anything else to eliminate it. In summary, the DeSimone and Beckman programs could rightly be considered "followon" work to successful earlier discoveries, and one might propose that industry alone could have supported them. However, the chemical industry generally is conservative, owing to a sizeable investment in currently operating facilities, and it is not likely that the DeSimone or Beckman programs could have been entirely industry supported during the time period that the TSE program provided support.

The same issues apply to the programs focusing on the design of CO₂-soluble homogeneous catalysts (Busch, Ackerman, Li). The groundbreaking work in this field was performed by Leitner's group at Max-Planck (Muelheim) and the Tumas group at Los Alamos National Laboratory from 1994 to 1996. These two groups showed that homogeneous catalysis in CO₂ could be conducted via redesign of the catalyst ligands to produce high CO₂-solubility. As in the case of the DeSimone and Beckman work, the Busch, Li, and Akgerman programs then could be considered as follow-on work rather than truly pathbreaking. However, one also could question why, given that DeSimone's paper appeared in *Science* in 1992, did the design of fluorinated ligands to support homogeneous catalysis in CO₂ not appear in the literature until 1995-96? The answer may be that transfer of the basic knowledge surrounding design of CO₂-philic compounds did not pass easily across disciplinary boundaries. On the other hand, it may owe as much to the fact that the chemistry community as a whole had yet to embrace the use of homogeneous catalysts.

The Tanko and Abraham programs focus on a particular chemistry (hydroformylation, free radical reactions), and their relatively narrow focus tends to limit their impact. Indeed, the early work by DeSimone on free radical polymerization in CO₂ (pre-1995) showed clearly that free radical reactions were quite feasible in CO₂, provided that the reactants were themselves soluble. Whereas the description of the Li program mentions CO₂ as a green solvent. Li's work has focused almost entirely on use of water as a green solvent. Consequently, Li's impact in the literature has been significant, but not where use of CO₂ as a solvent is concerned.

The two programs directed by Brennecke and that of Cummings are designed to support the eventual scale up and analysis of processes employing CO₂ as a green solvent. If one is eventually to commercialize a CO₂-based process employing several reactants and products, knowledge of the phase behavior as a function of conversion/time will be essential in optimizing the process design. Generally, the modeling of the phase behavior occurs later in the design process than analysis of the chemistry (i.e., rates, byproducts), and we would not be expected to see the impact of such modeling work until a number of CO₂-based processes are brought forward to the pilot stage and beyond. In general, good models for phase behavior are extremely important to process design, but fail to attract the glamour inherent to the design of a new catalyst system.

It should be noted that one outcome of the Brennecke work is that one can readily predict the existence of azeotropes, given some fundamental knowledge of the phase behavior of a binary mixture. As mentioned earlier, minimum boiling azeotropes where CO_2 is one of the components could be "next generation" green solvents, depending on the identity of the second component. Such azeotropes would maintain their composition during various unit operations while exhibiting a lower vapor pressure than pure CO_2 , rendering their use somewhat more practical. If the Brennecke work could be used to predict the existence of such azeotropes, it could speed the discovery of such next generation solvents.

The other projects in Table 3 are somewhat outside the mainstream of green chemistry in CO₂ and have failed to attract widespread interest. The work by Russell, for example, is noteworthy in the fact that a rapid polyesterification reaction was demonstrated at low temperature (producing high molecular weight polymer), rather than demonstrating a potential new application for use of CO₂ as a solvent.

In summary, the most significant observation of the projects in Table 2 is that most could rightly be considered follow-on work to (in many cases) the investigators' own earlier groundbreaking results. Given that most new science is incremental in nature, this is not entirely surprising. Further, one of the more important aspects of the TSE program is the education of the next generation of scientists and engineers to appreciate the use of CO₂ as a green solvent—use of CO₂ as a solvent is fast becoming "mature," an achievement due in large part to sustained funding in the area from EPA and National Science Foundation.

8.3 Technology Transfer From TSE-Sponsored Programs

- Are results from TSE-sponsored projects being transferred to the industrial sector?
- Which chemistries/processes currently are being investigated at the pilot scale?
 Full scale?
- Have new companies been created to commercialize results derived from TSEsponsored programs?

The largest industrial applications for liquid/supercritical CO₂ are presently tertiary oil recovery, foaming of polymers (polyurethanes and thermoplastics), and food processing (extraction of coffee, tea, hops, and other natural products). In addition, several new applications are in various stages of development: pasteurization of orange juice, fabric dry cleaning, and polymerization of fluoromonomers. The latter two applications were transferred from academia to industry, yet these pre-date the TSE program.

There are a number of reasons why more CO_2 -based processes are not transferred from academia to industry, with or without TSE funding. For example, although technically highly successful, fluorinated CO_2 -philes have not found industrial application simply because they are very expensive. Of the 13 projects shown in Table 2.6 (Beckman, DeSimone, Busch, Akgerman, Li, and Cummings) rely heavily on the use of fluorinated CO_2 -philes. Although each of these projects has been technically successful and added to the overall knowledge base on CO_2 technology, they have not been transferred to industry, and are not likely to be transferred, owing to the cost of the CO_2 -phile (and/ or lack of a viable means by which to recycle the CO_2 -phile).

Indeed, in cases where homogeneous catalysis in CO₂ is under consideration, effective recycle/recovery of the catalyst is a primary hurdle preventing transfer to industry, even if the ligands are nonfluorinated. The projects by John (clathrate formation in micelles) and Akgerman (use of polymeric supports for homogeneous catalysis) could be considered to incorporate aspects of catalyst recovery, but these techniques currently are not employed by industry.

Regarding the other projects, some (Brennecke's two projects) involve primarily basic science that would be used to support scale-up, while others (Abraham, Tanko) have focused on chemistries that are relatively narrow in scope and scale-up is dependent on economic comparisons between a CO₃-based process and conventional processes. For the case of the program by Russell, although the enzymatic route to formation of an aliphatic polyester was very successful, the use of the activated diester renders the process too expensive for further consideration by industry.

The Sievers project focused on the creation of small inorganic particles via formation of an aerosol from water using CO, as the "propellant." Although the

work described in the TSE abstract has not been transferred to industry, Sievers has commercialized a related spin-off—the formation of small drug particles (inhalable pharmaceuticals) via formation of an aerosol from water using CO, as propellant.

In summary, if perhaps little of what TSE has funded in the CO₂ arena has been directly transferred to industry at this point, it has kept CO₂ technology on industry's radar screen—if some of the technical hurdles mentioned in this report can be overcome, it is likely that industry will embrace the technology. Thanks to funding from TSE and other such programs, CO₂ is no longer considered "exotic" technology by industry. This is perhaps the most significant accomplishment of the program. Finally, the TSE program has supported the training of a number of scientists and engineers in CO₂-based technology; the movement of these younger scientists into industry represents a very effective means of technology transfer.

A final interesting aspect of the use of CO, as a process solvent is that a large number of large chemical companies in the United States and Europe have experimented with CO₂ technology, often attempting to target CO₂ at narrow problems within their respective businesses. Historically, this has been a somewhat "hit-or-miss" approach, and companies will form task forces to explore CO, technologies, eliminate them after short periods if a promising application does not present itself, then re-form them (often years later) if another opportunity seems to present itself. A company such as Air Products and Chemicals has had several distinct flirtations with CO, over the years, some resulting in spin-off companies. There have been several occasions where a company will explore a CO₃-based technology, then cancel the project while patenting and/or presenting the work publicly. The topic is subsequently picked up by an academic group and broadened, then reintroduced to industry through the usual channels of publications and scientific meetings. Consequently, the technology transfer proceeds via an industry-to-academia-to-industry route. For example, some of the earliest work on the solubility of fluorinated polymers in CO, was conducted by the Phasex Corporation (itself working for other industrial clients). This work ultimately filtered into academia, which greatly broadened the scope and advanced the science. Subsequently, the use of fluorinated CO₂-philes has completely permeated both academia and industry.

Milestones in Green Chemistry Using CO₂

Designating particular achievements as milestones is, of course, subjective. There are several types of milestones that one can consider with regard to green chemistry in carbon dioxide—purely scientific milestones, milestones in the dissemination of information on use of CO₂, and milestones in commercialization. Perhaps the first true "green" application of CO₂ was the coffee decaffeination process scaled up during the 1980s; this is a milestone as it showed that one could successfully scale a CO₂-based process and operate such a process economically when given a good design.

For example, in the 1980s, conventional wisdom claimed that CO,'s solvent power resembled that of n-alkanes, despite a large body of experimental evidence to the contrary. During the period 1988–1992, a number of research groups (Smith [261], Johnston [72], Enick [123a] & Brady, Beckman [123b]) reported that fluorinated materials, as well as silicones, exhibited significantly better thermodynamic compatibility with CO, than alkanes. The paper in Science by the DeSimone group [73] on the CO, philicity of poly (per-fluoroacrylates) in 1992 was a milestone both from the scientific standpoint and from a dissemination perspective, as this publication served to quash the "CO2-is-like hexane" heuristic. Interestingly, it was another 3 years before the information of the CO,-philicity of fluorinated materials found its way into the synthetic organic chemistry community. With publications by Leitner's group [241] and Tumas' group [81] showing the use of fluorinated ligands in homogeneous catalysis in CO,, green chemistry in CO, began to rapidly permeate the chemistry community. Once it was demonstrated that effectively any catalyst could ultimately be rendered CO,-soluble, CO, was applied broadly as a solvent in organic transformations by both the academic and industrial communities. In 1999, Brennecke [85] published a study demonstrating the potential for use of ionic liquid/CO, biphasic mixtures as media for green chemistry—the first papers exploiting this biphasic system appeared in 2001.

Beckman published the first reports claiming that a nonfluorinated CO₂-philic polymer could be designed in 2000. This work was based on earlier fundamental

studies on CO₂-polymer phase behavior conducted by McHugh [133]. Johnston [68], and Eckert [131]. It is too early to say whether such technology will ultimately permeate the community and render design of CO₂-philic materials more economically viable.

A number of researchers examined the strong potential for CO₂ to plasticize polymers, with several important papers appearing between 1985 and 1994. Exploitation of this science appeared in 1996 through 2001, as both industry (Ferro [195], PPG [196]) and academia (Howdle [88], Eckert [188b]) employed the plasticizing effect to enhance mixing in polymer systems.

Regarding commercial successes, the introduction of the CarDio process for continuous production of polyurethane foam using CO₂ as the blowing agent has been extremely important, in that it is both green chemistry and commercially successful. However, because CarDio was conducted entirely by industry with no R&D support from academia, it is little known within academic circles. Much more widely known is the construction (by DuPont) of a semi-works facility to polymerize fluorinated monomers in carbon dioxide, as this technology was transferred (in part) from academia (work by DeSimone's group at North Carolina). The same probably is true for the cleaning of fabrics (dry cleaning) using CO₂. The recent development of a large-scale process to pasteurize orange juice using CO₂ also is an important step forward in green processing using CO₂, but like CarDio, process development is occurring entirely within industry and the project has not received wide notice.

The introduction of CO₂ to microelectronics processing began with preliminary work by the Phasex Corporation and IBM in 1995 and 1996, given the DeSimone *Science* paper showing that perfluoroacrylate polymers are readily miscible with CO₂. Again, because the preliminary work was conducted primarily by industry and was disseminated to a relatively narrow audience (the microelectronics industry), extensive interest in this topic did not begin until several years later, when both Ober's group (Cornell) and the DeSimone group (University of North Carolina) began to play active roles. Now, the use of CO₂ in microelectronics processing is considered sufficiently noteworthy to merit an article in *Chemical & Engineering News*. The work by Watkins on creation of thin metal films via chemistry in CO₂ [89] will likely enhance interest further.

Another series of commercial milestones occurred in late 2000/early 2001, when the pharmaceutical industry purchased (either in their entirety or substantial portions) Bradford Particle Design, Separex, and Phasex—three of the more significant commercial enterprises relying primarily on supercritical fluids technology. It will be interesting to see whether this leads to more rapid commercialization of CO₃-based processes or the reverse.

In summary, milestones in green chemistry using CO₂ have occurred on scientific achievement, as was the case with the discovery of CO₂-philic polymers by DeSimone in 1992, and also the dissemination of fundamental science to industries or commu-

nities for whom CO₂ had previously been considered an exotic technology. In this report, a number of technical hurdles to increased use of CO₂ in green chemistry have been outlined. It is hoped that future milestones will occur by overcoming these hurdles. Finally, it should be noted that some scientific milestones that have occurred in this field might be considered the result of a particular researcher recognizing the broader implications of a narrowly focused study published previously. Although some of the projects supported by the TSE program could be said to be somewhat narrowly focused, it may be too early to judge whether they could lead to breakthroughs. Unfortunately, breakthroughs cannot be readily designed a priori.

Areas for Future Research on CO₂ Technology

In each of the previous sections, mention has been made of potentially useful avenues for future research; these are summarized below (in no particular order).

- The use of biphasic systems (including carbon dioxide as one component) for conducting reactions using gaseous components.)
- A greater focus on oxidations and hydroformylations versus hydrogenation in CO₂; the former reactions generate more waste and require more stringent conditions than hydrogenation, yet have received relatively less attention in the literature (with respect to the sub-field of reactions in CO₂).
- Group contribution or, better yet, first principles models for the prediction of
 phase behavior in multiphase, multicomponent systems where carbon dioxide
 is one of the components. Prediction of basic transport properties is needed as
 well.
- A fundamental understanding of the effects of chemical structure and topology
 on the phase behavior of molecules in carbon dioxide; this should, therefore,
 result in the design of "CO₂-philes" that do not include fluorine. This is perhaps a subset of the previous bullet, but no less important.
- An understanding of the fundamentals behind solvation of hydrophilic compounds (including water) in CO₂-based emulsions; also, thermodynamics and transport properties of the CO₂-water interface are important. This would address the frustrating observation that not all CO₂-soluble amphiphiles can solubilize water.
- The design of equipment that would allow rapid injection and removal of solids from high pressure, CO₂-rich environments. Also, the design of systems for the rapid high-pressure treatment of solid articles (as in the development of silicon wafers) or the continuous coating of material using a CO₂-based solution.

- The use of CO, in microelectronics processing.
- An indepth understanding of the mechanism for generation of CO and subsequent poisoning of noble metal catalysts in the presence of hydrogen and CO₃.
- The design of catalysts for the generation of polyesters and commodity chemicals (aromatic acids) from CO₃; activation of CO₃ at low pressures.
- The identification of azeotropes that include CO₂. Also, it would be useful to
 explore the use of co-solvents for CO₂ in a more systematic manner and to find
 mixtures that are technically, environmentally, and economically successful.
- The design of additives that would allow greater use of CO₂ in the extrusion foaming of polymers. Also, the generation of low density, fine-celled foams using CO₂ as the blowing agent.
- The development of a set of fundamental design principles for the formation of
 particles via phase separation from mixtures that include CO₂ (under flow in a
 known geometry).
- Programs that focus on overcoming the various technical hurdles to the use of CO₂ in coating processes. For example, although problems in using CO₂ to process powder coating formulations differ greatly from problems encountered in preparing emulsion coating formulations using CO₂, the problems are inherently technical in nature.

With respect to the TSE program, in the past, the program has solicited proposals from academia in the general area of green chemistry, giving investigators complete freedom regarding the focus of the proposals. It also might be worthwhile for the program directors to (not in place of) set some green chemistry targets for investigators to attack. For example, in the recent past the Monsanto Company identified environmental problems of paramount importance (to Monsanto, of course), and then asked for proposals from the scientific community at-large regarding potential solutions. The winning investigators received \$500,000 to \$1 million to generate a prototype of their solution. Innovention has created a Web site that lists synthetic problems of primary importance to this company and its clients, with "rewards" listed for successful solutions contributed from the outside. Given that the staff at the U.S. EPA is likely more familiar with pressing environmental problems than typical academic chemists and engineers, it also might be useful for TSE staff to publish a list of current high-profile effluent problems where innovative green chemistry solutions might contribute to broad industry or societal benefit. TSE then could fund some proposals that attack the priority problems, and some that are more curiosity-driven or more fundamental. However, it should be stressed that moving from the current curiosity-driven system to one that is entirely "target-specific" is not recommended, in that much of the truly innovative discoveries in green chemistry and processing might be lost.

References

- 1. McHugh. M.A., Krukonis, V.J. 1994. Supercritical Fluid Extraction. 2nd ed. Butterworth-Heinemann Boston, MA; (b) Brunner, G. Gas extraction. Darmstadt (FRG): Steinkopff Verlag.
- 2. Reid, R.C., Prausnitz, J.M., Poling, B.E. 1987. *The Properties of Liquids and Gases.* 4th ed. New York: McGraw-Hill.
- 3. Giddings, J.C., Myers, M.N., McLaren, L., Keller, R.A. 1969. Science 162:67; (b) Giddings, J.C., Myers, M.N., King, J.W. J. Chromatogr. Sci. 7:276.
- Siskin, M., Katrizky, A.R. 2001. Chem. Rev. 101:825; (b) Katritky, A.R., Nichols, D.A., Siskin, M., Murugan, R., Subramaniam, B.M. 2001. Chem. Rev. 101:837; (c) Savage, P. 1999. Chem Rev. 99:651.
- Michels, A., Michels, C. 1936. Proc. Roy. Soc. (London) A. 153:201; (b) Michels, A., Michels, C., Wouters, H. 1936. Proc. Roy. Soc. (London) A. 153:214.
- 6. Angus, S., Armstrong, B., de Reuck K.M. 1976. (on basis of surveys and equations produced by V.V. Altunin) *Carbon Dioxide*. Oxford, New York.
- 7. Praxair Material Data Safety Sheet, P-4574-H, May 1999; (b) CRC Handbook of Chemistry and Physics, 76th ed. D.R. Lide (ed). 1996. CRC Boca Raton, FL, Chapter 16.
- 8. Minder, B., Mallat, T., Baiker, A. 1996. 3rd International Symposium on High-Pressure Chemical Engineering, Zurich, 139.
- 9. Solymosi, F., Erdohelyi, E., Lancz, M. 1985. *J. Catal.* 95:567. Erdohelyi, A., Pasztor, M., Solymosi, F. 1986. *J. Catal.* 98:106.

- Lake, L.W. 1989. Enhanced Oil Recovery. Englewood Cliffs, NJ: Prentice Hall; (b) Chakma, A., Islam, M.R., Berruti, F. (eds.). Enhanced Oil Recovery. 1991. Am. Inst. Chem. Eng. Symp. Ser. 280, New York.
- 11. Pande, J.O., Tonheim, J. 2001. Proc. Safety Progr. 20:37.
- 12. Van Bramer, D.J., Shiflett, M.B., Yokozeki, A. 1994. US Patent No. 5,345,013.
- 13. Rodriguez, F. 1996. *Principles of Polymer Systems*. 4th ed. New York: McGraw-Hill.
- 14. Weissermel, K., Arpe, H-J. 1997. *Industrial Organic Chemistry*. 3rd ed. Weinheim (FRG): VCH-Wiley.
- 15. Hancu, D., Beckman, E.J. 2001. Green Chem. 3:80.
- Eckert, C.A., Liotta, C.L., Culp, C.W., Lamb D.R. In: Jessop. P.G. Leitner, W. (eds.). 1999. *Chemical Synthesis Using Supercritical Fluids*. Weinheim, GER: Wiley VCH, p 446.
- Zosel, K. US Patent No. 3,806,619. April 23, 1974; (b) Prasad, R., Gottesman,
 M., Scarella, R.A. US Patent No. 4,246,291. January 20, 1981.
- 18. Kendall, J.L., Canelas, D.A., Young, J.L., DeSimone, J.M. 1999. *Chem. Rev.* 99:543.
- Tanko, J.M., Blackert, J.F. 1994. Science 263:203; Hadida, S., Super, M.S., Beckman, E.J., Curran, D.P. 1997. J. Am. Chem. Soc. 119:7406.
- 20. Tsang, C.Y., Street, W.B. 1981. Chem. Eng. Sci. 36:993.
- 21. Hsiao, Y-L., DeSimone, J.M. 1997. *J. Polym. Sci.* Part A: Polym. Chem. 35: 2009.
- 22. Eckert, C.A. Presented at the International Symposium on Supercritical Fluid Technology. Myrtle Beach, SC, August 18-23, 2001.
- 23. Welty, J.R., Wicks, C.E., Wilson, R.E. 1984. Fundamentals of Momentum, Heat, and Mass Transfer. 3rd ed. New York: John Wiley & Sons.
- Inoue, S., Yamazaki, N. 1982. Organic and Bioorganic Chemistry of Carbon Dioxide. New York: John Wiley & Sons; (b) West, K.N., Wheeler, C., McCarney, J.P., Griffith, K.N., Bush, D., Liotta, C.L., Eckert, C.A. 2001. J. Phys. Chem. A 105:3947.
- 25. Mesiano, A.J., Beckman, E.J., Russell, A.J. 1999. Chem Rev 623.
- Wu, Y. US Patent No 4.483.888. November 20.1984.

- 27. Arunajatesan. V., Subramaniam, B., Hutchenson, K.W., Herkes, F.E. 2001. *Chem. Eng. Sci.* 56:1363.
- 28. Hutchensen, K.W., Herkes, F.E., Walls, D.J., Das, T.K., Brennecke, J.F. 2001. Presentation at the ACS Annual Meeting.
- Arunajatesan, V., Subramaniam, B., Hutchensen, K.W., Herkes, F.E. 2001.
 Presentation 176d at the AIChE Annual Meeting, Reno, NV.
- Jessop, P.G., Hsiao, Y., Ikariya, T., Noyori, R. 1996. J. Am. Chem. Soc. 118:344.
- 31. Wiebe, R., Gaddy, V.L. 1940. J. Am. Chem. Soc. 815.
- 32. Holmes, J.D., Ziegler, K.J., Audriani, M., Lee, C.T., Bhargava, P.A., Steytler, D.C., Johnston, K.P., 1999. *J. Phys. Chem. B* 103:5703.
- 33. Enick, R.M., Beckman, E.J., Shi, C.M., Xu, J.H. Chordia, L. 2001. *Energy & Fuels* 15:256.
- Nolen, S.A., Liu, J., Brown, J.S., Pollet, P., Eason, B.C., Griffith, K.N., Glaser, R., B.h, D., Lamb, D.R., Liotta, C.L., Eckert, C.A., Thiele, G.F., Bartels, K.A. 2002. *Ind. Eng. Chem.* 41:316; (b) Hancu, D., Beckman, E.J. 2002. *Acc. Chem. Res.* 35:757.
- 35. Anastas, P.T., Warner, J.C. 1998. *Green Chemistry, Theory and Practice*. New York: Oxford University Press, p 30.
- 36. Eckert, C.A., Bush, D., Brown, J.S., Liotta, C.L. 2000. *Ind. Eng. Chem. Res.* 39:4615; (b) Lucien, F.P., Foster, N.R. 2000. *J. Supercrit. Fl.* 17:111.
- Chinsoo, L., Hoy, K.L., Donohue, M.D. US Patent No. 4,923,720. May 8, 1990;
 Chinsoo, L., Hoy, K.L., Donohue, M.D. US Patent No. 5,027,742. July 2, 1991; (c)
 Hoy, K.L., Nielsen, K.A., Chinsoo, L. US Patent No. 5,108,799. April 28, 1992.
- 38. Suh, K.W. 1991. *Polystyrene and Structural Foam in Polymeric Foams*. D. Klempner, K.C. Frisch (eds.). New York: Oxford University Press, p 151.
- 39. Khoury, F.M. 1995. Predicting the Performance of Multi-Stage Separation Processes. 2nd ed. Boca Raton, FL: CRC Press.
- 40. Chiang, S-H., Klinzing, G.E. US Patent No. 4,613,429. September 23, 1986.
- 41. Charpentier, P.A., DeSimone, J.M., Roberts, G.W. 2000. *Chem. Eng. Sci.* 55:5341; (b) Charpentier, P.A., Kennedy, K.A., DeSimone, J.M., Roberts, G.W. 1999. *Macromolecules* 32:5973.
- 42. Perfluorooctyl sulfonates; proposed Significant New Use Rule. 2000. Fed. Reg. 65(202):62319.

- 43. www.greenearthcleaning.com; (b) Berndt, D.R., Griffiss, J.M. US Patent No. 5,942,007. August 24, 1999.
- 44. Feder, B.J. New York Times February 15, 2000, Section C, p 1.
- 45. www.chart-ind.com/news.html.
- Jureller, S.H., Kerschner, J.L., Murphy, D.S. 2000. US Patent No. 6, 148,644; (b)
 Jureller, S.H., Kerschner, J.L., Harris, R. 1997. US Patent No. 5,683,473; Jureller,
 S.H., Kerschner, J.L., Bae-Lee, M., Del Pizzo, L., Harris, R., Resch, C., Waja, C.
 1996. PCT Int. Appl. WO 9627704.
- 47. US EPA, Office of Environmental Information, EPA 260-B-01-001, March 2001.
- 48. Air Toxics Web Site CAA: original list of hazardous air pollutants: http//www.epa.gov/ttnatw01/orig189.html.
- 49. http://www.clean.rti.org.
- 50. Rylander, P.N. 1985. Hydrogenation Methods. Orlando, FL: Academic Press.
- Subramaniam, B. 2001. Appl. Catal. A: Gen. 212, 199; (b) Subramaniam, B., Arunajatesan, V., Lyon, C.J. 1999. Stud. Surf. Sci. Catal. 126:63; (c) Subramaniam, B., Ashraf, J. In: Innovations in Supercritical Fluids. 1995. ACS Symposium Ser. 608:246; (d) Ginosar, D.M., Subramaniam, B. 1994. Stud. Surf. Sci. Catal. 88:327; Ginosar, D.M., Subramaniam, B. 1995. J. Catal. 152:31; Baptiste-Nguyen, S., Subramaniam, B. 1992. AIChE J. 38:1027.
- 52. Subramaniam, B., Lyon, C.J., Arunajatesan, V. 2002. *Appl. Catal. B: Envir.* 37:279.
- 53. Satterfield, C.N. 1980. *Heterogeneous Catalysis in Practice*. New York: McGraw-Hill.
- 54. Baiker, A. 1999. Chem. Rev. 99:453.
- van den Hark, S., Harrod, M., Moller, P. 1999. J. Am. Oil Chem. Soc. 76:1363;
 (b) van den Hark, S. Harrod, M. 2001. Appl. Cat. A-Gen 210:207.
- 56. Tacke, T., Wieland, S., Panster, P. 1996. 3rd International Conference on High Pressure Chemical Engineering, Zurich, pp 17-21.
- 57. Macher, M.B., Holmquist, A. 2001. Eur. J. Lip. Sci. Tech. 103:81.
- King, J.W., Holliday, R.L., List, G.R., Snyder, J.M. 2001. J. Am. Oil Chem. Soc. 78:107; (b) Andersson, M.B.O., King, J.W., Blomberg, L.G. 2000. Green Chem. 2:230.

- 59. Chouchi, D., Gourgouillon, D., Courel, M. Vital, J., da Ponte, M.N. 2001. *Ind. Eng. Chem. Res.* 40: 2551.
- Condo, P.D., Paul. D.R., Johnston, K.P. 1994. Macromolecules 27:365; (b) Condo, P.D., Johnston, K.P. 1994. J. Polym. Sci., Part B, Polym. Phys. 32:523.
- 61. Bertucco, A., Canu, P., Devetta, L., Zwahlen, A.G. 1997. *Ind. Eng. Chem. Res.* 36:2626.
- 62. Devetta. L., Giovanzana, A., Canu, P., Bertucco, A., Minder, B.J. 1999. *Catal. Today* 48:337.
- 63. Bhanage, B.M., Ikushima, Y., Shirai, M., Arai, M. 1999. Catal. Lett. 62:175.
- 64. Minder, B., Mallat, T., Pickel, K.H., Steiner, K., Baiker, A. 1995. Catal. Lett. 34:1.
- 65. Hitzler, M.G. Smail, F.R., Ross, S.K., Poliakoff, M. 1998. Org. Proc. Res. Dev. 2:137.
- Hancu, D., Beckman, E.J. 1999. Industr. Eng. Chem. Res. 38:2824; (b) Hancu,
 D., Beckman, E.J. 1999. Industr. Eng. Chem. Res. 38:2833; (c) Hancu,
 D., Beckman, E.J. 2000. Ind. & Eng. Chem. Res. 39:2843.
- 67. Gelbein, A.P. 1998. CHEMTECH 28:1.
- 68. O'Neill, M.L., Cao, Q., Fang, M., Johnston, K.P., Wilkinson, S.P., Smith, C.D., Kerschner, J.L., Jureller, S.H. 1998. *Ind. Eng. Chem. Res.* 37:3067.
- 69. Consani, K.A., Smith, R.D. 1990. J. Supercrit. Fl 3:51.
- Klingler, R.J., Rathke., J.W. 1994. J. Am. Chem. Soc. 116:4772; (b) Rathke.
 J.W., Klingler, R.J., 1993. US Patent No. 5,198,589; (c) Rathke, J.W., Klingler,
 R.J., Krause, T.R. 1991. Organometallics 10:1350; (d) Warzinski, R.P., Lee.
 C-H., Holder, G.D. 1992. J. Supercrit. Fluids 5:60.
- 71. Fink, R., Hancu, D., Valentine, R., Beckman, E.J. 1999. *J. Phys. Chem B* 103:6441.
- 72. Harrison, K., Goveas, J., Johnston, K.P., O'Rear, E.A. 1994. *Langmuir* 10:3536.
- 73. DeSimone, J.M., Guan, Z., Elsbernd, C.S. 1992. *Science* 257:945.
- 74. Palo, D.R., Erkey, C. 2000. Organomet. 19:81.
- 75. Smith, D.C., Stevens, E.D., Nolan, S.P. 1999. *Inorg. Chem.* 5277.
- 76. 2000. Chem. Eng. News 78(21):9; 2001. Chem. Eng. News 79(5):7.

- 77. Jessop, P.G., DeHaai, S., Wynne, D.C. 2000. *Chem. Commun*, 693.
- 78. Wende, M., Meier, R., Gladysz, J.A. 2001. J. Am. Chem. Soc. 123:11490.
- Jessop, P.G., Olmstead, M.M., Ablan, C., Grabenauer, M., Sheppard, D., Eckert, C.A., Liotta, C.L., 2002. *Inorg. Chem.* 41:3463; (b) Jessop, P.G., Brown, R.A., Pollet, P., McKoon, E., Ngo, T., Eckert, C.A., Liotta, C. L. In: Jessop, P. G.; Brown, R. A.; Pollet, P.; McKoon, E.; Ngo, T.; Eckert, C. A.; Liotta, C. L. (eds.). 2001. *The Use of Neoteric Solvents for Hydrogenation and Other Asymmetric Reactions*. Boulder, CO.
- 80. Xiao, J., Nefkins, S.C.A., Jessop, P.G., Ikariya, T., Noyori, R. 1996. *Tetrahed. Lett.* 37:2813.
- 81. Burk, M.J., Feng, S., Gross, M.F., Tumas, W. 1995. J. Am. Chem. Soc. 117:8277.
- 82. Kainz, S., Brinkman, A., Leitner, W., Pfaltz, A. 1999. *J. Am. Chem. Soc.* 121:6421.
- 83. Liu, F., Abrams, M.B., Baker, R. T., Tumas, W. 2001. Chem. Commun. 433.
- 84. Brown, R.A., Pollet, P., McKoon, E., Eckert, C.A., Liotta, C.L., Jessop, P.G. 2001, *J. Am. Chem. Soc.* 123:1254.
- 85. Blanchard, L.A., Hancu, D., Beckman, E.J., Brennecke, J.F. 1999. *Nature* 399:28.
- 86. Watkins, J.J., McCarthy, T.J. 1995. Chem. Mat. 7:1991.
- 87. Nazem, N., Taylor, L.T., Rubira, A.F. 2002. J. Supercrit. Fl. 23:43.
- 88. Morley, K.S., Marr, P.C., Webb, P.B., Berry, A.R., Allison, F.J., Moldovan, G., Brown, P.D., Howdle, S.M. 2002. *J. Mat. Chem.* 12:1898.
- Blackburn, J.M., Long, D.P., Cabanas, A., Watkins, J.J. 2001. Science 294:141:
 (b) Fernandes, N.E., Fisher, S.M., Poshusta, J.C., Vlachos, D.G., Tsapatsis, M., Watkins, J.J. 2001. Chem. Mat. 13:2023; (c) Blackburn, J.M., Long, D.P., Watkins, J.J. 2000. Chem. Mat. 12:2625; (d) Long, D.P., Blcakburn, J.M., Watkins, J.J. 2000. Adv. Mat. 12:913; (e) Watkins, J.J., Blackburn, J.M., McCarthy, T.J. 1999. Chem. Mat. 11:213.
- 90. Harrod, M., Moller, P. July 24, 2001. US Patent No. 6.265,596.
- 91. Poliakoff, M., Swan, T.M., Tacke, T., Hitzler, M.G., Ross, S.K., Wieland, S. December 5, 2000. US Patent No. 6,156,933.
- Koch, D., Leitner, W. 1998. J. Am. Chem. Soc. 120:13398; (b) Kainz, S., Leitner, W. 1998. Catal. Lett. 55:223; (c) Francio, G, Leitner, W. 1999. Chem. Commun. 1663.

- Palo, D.R., Erkey, C. 1998. Ind. Eng. Chem. Res. 37:4203; (b) Palo, D.R., Erkey.
 C. 1999. Ind. Eng. Chem. Res. 38:3786; (c) Davis, T., Erkey, C. 2000. Ind. Eng. Chem. Res. 39:3671.
- 94. Hu, Y., Chen, W., Xu, L.J., Xiao, J.L. 2001. Organometallics 20:3206.
- Guo, Y., Akgerman, A. 1997. Ind. Eng. Chem. Res. 36:4581; (b) Guo, Y.,
 Akgerman, A. 1999. J. Supercrit. Fl. 15:63; (c) Lin, B., Akgerman, A. 2001.
 Ind. Eng. Chem. Res. 40:1113.
- 96. Banet Osuna, A.M., Chen, W., Hope, E.G., Kemmitt, R.D.W., Paige, D.R., Stuart, A.M., Xiao, J., Xu, L. 2000. *J. Chem. Soc. Dalt. Trans.* 22:4052.
- 97. Kie, J., Han, B., George, M.W., Yan, H., Poliakoff, M. 2001. *J. Am. Chem. Soc.* 123:3661.
- 98. Meehan, N.J., Sandee, A.J., Reek, J.N.H., Kamer, P.C.J., van Leeuwen. P.W.N.M., Poliakoff, M. 2000. *Chem. Commun.* 1497.
- 99. Tadd, A.R., Marteel, A., Mason, M.R., Davies, J.A., Abraham, M.A. 2002. Ind. Eng. Chem. Res. ASAP; (b) Snyder, G., Tadd, A., Abraham, M.A. 2001. Ind. Eng. Chem. Res. 40:5317; (c) Dharmidhikari, S., Abraham. M.A. 2000. J. Supercrit. Fl 18:1.
- 100. Ojima, I., Urata, H. US Patent No. 5,962,744. Oct. 5, 1999.
- 101. Wu, X-W., Oshima, Y., Koda, S. 1997. Chem. Lett. (Japan) 1045.
- 102. Srinivas, P., Mukhopadhyay, M. 1997. Ind. Eng. Chem Res. 36:2066.
- 103. Jenzer, G., Mallat, T., Maciejewski, M., Eigenmann, F., Baiker, A. 2001. Appl. Catal. A: Gen. 125.
- 104. Nolen, S.A., Lu, J., Brown, J.S., Pollet, P., Eason, B.C., Griffith, K.N., Glaeser, R., Bush, D., Lamb, D.R., Liotta, C.L., Eckert, C.A., Thiele, G.F., Bartels, K.A. 2002. *Ind. Eng. Chem. Res.* 41:316; (b) Hancu, D., Green, J., Beckman, E.J. 2002. *Industr. Eng. Chem.* 41:4466.
- Yao, H., Richardson, D.E. 2000. J. Am. Chem. Soc. 122:3220; (b) Richardson,
 D.E., Yao, H., Frank, K.M., Bennett, D.A. 2000. J. Am. Chem. Soc. 122:1729.
- 106. Birnbaum, E.R., Le Lacheur, R.M., Horton, A., Tumas, W. 1999. *J. Molec. Cat. A: Chem.* 139:11.
- 107. Loeker, F., Leitner, W. 2000. Chem. Eur. J. 6:2011.
- 108. Hans, G.R., Kolis, J.W. 1998. Organomet. 17:4454.
- 109. Jiang, H., Jia, L., Li, J. 2000. Green Chem. 2:161.

- Busch, D.H., Wei, M., Musie, G.T., Subramaniam, B. 2002. J. Am. Chem. Soc. 124:2513.
- 111. Pitchai, R., Kahn, A.P., Gaffney, A.M. US Patent No. 5,625,084. April 27, 1997.
- 112. McCoy, M. 2001. Chem. Eng. News 79(43):19.
- 113. Kumar, A., Gupta, R.K. 1998. Fundamentals of Polymers. New York: McGraw-Hill.
- 114. Flory, P.J. 1953. *Principles of Polymer Chemistry*. Ithaca, NY: Cornell University Press.
- 115. Wiesmet, V., Weidner, E., Behme, S., Sadowski, G., Arlt, W. 2000. J. Supercrit. Fl. 17:1.
- Wissinger, R.G., Paulaitis, M.E. 1987. J. Polym. Sci., Part B, Polym. Phys. 25:2497; (b) Wissinger, R.G., Paulaitis, M.E. 1991. J. Polym. Sci., Part B, Polym. Phys. 29:631.
- 117. Ehrlich, P. 1965. *J. Polym. Sci. A* 3:31; (b) Ehrlich, P., Mortimer, G.A. 1970. *Adv. Polym. Sci.* 7:386.
- 118. Kirby, C., McHugh, M.A. 1999. Chem Rev. 99:565.
- 119. Allada, S.R. 1984. Ind. Eng. Chem. Proc. Des. Dev. 23:344.
- 120. Orr, F.M., Heller, J.P., Taber, J.T., Card, R.J. 1983. CHEMTECH 482.
- 121. McFann, G.J., Howdle, S.M., Johnston, K.P. 1994. AIChE J. 40:543.
- 122. Sikorski, M.E., Lundberg, J.L. 1983. Abstract HS 22, American Physical Society Meeting, Detroit, MI; (b) Harris, T.V., Irani, C.A., Pretzer, W.R. September 3, 1991. US Patent No. 5,045,220.
- Iezzi, A., Bendale, P., Enick, R.M., Turberg, M., Brady, J. 1989. Fl. Phase Equil. 52:307; (b) Hoefling, T.A., Enick, R.M., Beckman, E.J. 1991. J. Phys. Chem. 95:7127 (c) Hoefling, T.A., Newman, D.A., Enick, R.M., Beckman, E.J. 1993. J. Supercrit. Fl. 6:165; (d) Hoefling, T.A., Newman, D.A., Enick, R.M., Beckman, E.J. 1993. J. Supercrit. Fl. 6:205.
- 124. Ghenciu, G.G. 1997. Extraction of proteins in liquid carbon dioxide. Ph.D. thesis. University of Pittsburgh.
- 125. McClain, J.B., Betts, D.E., Canelas, D.A., Samulski, E.T., DeSimone, J.M., Londono, J.D., Cochran, H.D., Wignall, G.D., Chillura Martino, D., Triolo, R. 1996. *Science* 274:2049.
- 126. McHugh, M.A., Park, I-H., Reisinger, J.J., Ren, Y., Lodge, T.P., Hillmyer, M.A. 2002. *Macromolecules* 35:4653; (b) DiNoia, T.P., Conway, S.E., Lim, J.S.,

- McHugh, M.A. 2000. J. Polym. Sci., Part B: Polym. Phys. 38:2832; (c) Lora, M., Lim, J.S., McHugh, M.A. 1999. J. Phys. Chem. B 103:2818; Mertogan, C.A., McHugh, M.A., Tuminello, W.H. 1999. J. Appl. Polym. Sci. 74:2039.
- Dardin, A., DeSimone, J.M., Samulski, E.T. 1998. J. Phys. Chem. 102:1775; (b)
 Dardin, A., Cain, J.B., DeSimone, J.M., Johnson, Jr., J.C.S., Samulski, E.T. 1997.
 Macromolecules 30:3593.
- Diep, P., Jordan, K.D., Johnson, J.K., Beckman, E.J. 1998. J. Phys. Chem. A 102:2231.
- 129. Supercritical fluids. 1999. *Chem. Rev.* 99; many of the articles in this issue describe the use of CO₂-philic materials.
- 130. Meredith, J.C., Johnston, K.P., Seminario, J.M., Kazarian, S.G, Eckert, C.A. 1996. J. Phys. Chem. 100:10837.
- Kazarian, S.G., Vincent, M.F., Bright, F.V., Liotta, C., Eckert, C.A. 1996. J. Am. Chem. Soc. 118:1729.
- 132. Nelson, M.R., Borkman, R.F. 1998. J. Phys. Chem. A 102:7860.
- 133. Rindfleisch, F., DiNoia, T.P., McHugh, M.A. 1996. J. Phys. Chem. 100:15581.
- 134. Beckman, E.J. (unpublished results)
- 135. Lepilleur, C., Beckman, E.J. 1997. Fluid Phase Equil. 134:285.
- 136. Kleintjens, L.A., Koningsveld, R., Gordon, M. 1980. *Macromolecules* 13:303; (b) Chen, S-J., Banaszak, M., Radosz, M. 1995. *Macromolecules* 28:1812.
- 137. Sarbu, T., Styranec, T., Beckman, E.J. 2000. Nature 405:165.
- 138. Fink, R., Hancu, D., Valentine, R., Beckman, E.J. 1999. J. Phys. Chem. B 103:6441.
- 139. Xiang, Y., Kiran, E. 1995. Polymer 36:4817.
- Wallen, S. International Symposium on Supercritical Fluid Technology. 2001.
 Myrtle Beach, SC.
- Odian, G. Principles of Polymerization. 3rd ed. 1991. New York: John Wiley & Sons.
- Fukui, K., Kagiya, T., Yokota, H., Toriuchi, Y., Kuniyoshi, F. 1970. US Patent No. 3.522.228.
- 143. O'Neill, M.L., Newman, D., Beckman, E.J. 1999. *Polym. Eng. Sci.* 39:862.
- Romack, T.J., DeSimone, J.M. 1995. Macromolecules 28:8429; (b) Romack, T.J.,
 DeSimone, J.M. 1997. US Patent No. 5,674,957; (c) Romack, T.J., DeSimone,

- J.M. 1999. US Patent No. 5,939,501; (d) Romack, T.J., DeSimone, J.M. 1999. US Patent No. 5,939,502; (e) Romack, T.J., DeSimone, J.M. 1999. US Patent No. 5,981,673.
- 145. George, E.R. (Zeus, Inc.) 2002. (personal communication)
- 146. Romack, T.J., Maury, E.E., DeSimone J.M. 1995. Macromolecules 28:912.
- 147. Hyatt, J.A. 1984. J. Org. Chem. 49:5097.
- 148. Adamsky, F., Beckman, E.J. 1996. The Polymeric Materials Encyclopedia. Salamone, J.C. (ed.). CRC Press. Boca Raton, FL Volume 1: A-B, p 54: (b) Singley, E.J. 1997. Development of fluoroether amphiphiles and their applications in heterogeneous polymerizations in supercritical carbon dioxide. Ph.D. thesis. University of Pittsburgh.
- 149. Fink, R., Beckman, E.J., Hildebrandt, V. 2000. PCT Int. Appl. WO 0053639; (b) Fink, R., Beckman, E.J. 2002. *Ind. Eng. Chem. Res.* (submitted)
- 150. Bunyard, W.C., Kadla, J.F., DeSimone, J. M. 2001. J. Am. Chem. Soc. 123:7199.
- Barrett, K.E.J. Dispersion Polymerization in Organic Media. 1975. New York: John Wiley and Sons.
- DeSimone, J.M., Maury, E.E., Mencelogu, Y.Z., McClain, J.B., Romack, T.R., Combes, J.R. 1994. Science 265:356; (b) Canelas, D.A., Betts, D.E., DeSimone, J.M. 1996. Macromolecules 29:2818; Canelas, D.A., DeSimone, J.M. 1997. Macromolecules 30:5673
- O'Neill, M.L., Yates, M.Z., Harrison, K.L., Johnston, K.P., Canelas, D.A., Betts, D.E., DeSimone, J.M., Wilkinson, S.P. 1997. *Macromolecules* 30:5050;
 Yates, M.Z., O'Neill, M.L., Johnston, K.P., Webber, S., Canelas, D.A., Betts, D.E., DeSimone, J.M. 1997. *Macromolecules* 30:5060.
- 154. Lepilleur, C., Beckman, E.J. 1997. Macromolecules 30:745.
- 155. Christian, P., Giles, M.R., Griffiths, R.M.T., Irvine, D.J., Major, R.C., Howdle, S.M. 2000. *Macromolecules* 33:9222.
- 156. Shaffer, K.A., Jones, T.A., Canelas, D.A., DeSimone, J.M., Wilkinson, S.P. 1996. *Macromolecules* 29:2704.
- Yates, M.Z., Li, G, Shim. J.J., Maniar, S., Johnston, K.P., Lim, K.T., Webber, S. 1999. Macromolecules 32:1018; (b) Li, G, Yates, M.Z., Johnston, K.P., Lim, K.T., Webber, S. 2000. Macromolecules 33:1606.
- 158. Shiho, H., DeSimone, J.M. 2001. Macromolecules 34:1198.
- 159. Romack, T.J., Maury, E.E., DeSimone, J.M. 1995. Macromolecules 28:912.

- 160. Wood, C.D., Cooper, A.I. 2001. Macromolecules 34:5.
- 161. Biddulph, R.H., Plesch, P.H. 1960. J. Chem. Soc. 3913.
- 162. Pernecker, T., Kennedy, J.P. 1994. Polym. Bull. (Berlin) 33:13.
- 163. Clark, M.R., DeSimone, J.M. 1994. *Polym. Prep. (Am Chem Soc, Div. Polym. Chem.)* 35:482; (b) Clark, M.R., DeSimone, J.M. 1995. *Macromolecules* 28:3002.
- Mistele, C.D., Thorp, H.H., DeSimone, J.M. 1996. J. Macronol. Sci A 33:953;
 (b) 1998. US Patent No. 5,840.820.
- 165. Debrabander, E.F., Brothers, P.D. April 18, 2000. US Patent No. 6,051,682; (b) Wheland, R.C., Brothers, P.D. August 22, 2000. US Patent No. 6,107,423; (c) Wheland, R.C., Brothers, P.D., Anolick, C., Stewart, C.W. May 8, 2001. US Patent No. 6,228,963; (d) Brothers, P.D. August 15, 2000. US Patent No. 6,103,844.
- 166. Cunningham, M.F., Mahabadi, H.K. May 2, 2000. US Patent No. 6,057,409.;(b) Eian, G.L., Elsbernd, C.L.S. September 24, 1996. US Patent No. 5,559,198.
- 167. http://europa.eu.int/comm./research/growth/gcc/pressroom.html
- Burke, A.L.C., Givens, R.D., Jikei, M., DeSimone, J.M. 1997. *Polym. Prep.* 38:387; (b) Givens, R.D., Jikei, M., DeSimone, J.M. 1997. *Polym. Prep.* 38:468.
- 169. Gross, S.M., Roberts, G.W., Kiserow, D.J., DeSimone, J.M. 2000. *Macromolecules* 33:40.
- 170. Shi, C., DeSimone, J.M., Roberts, G., Kiserow, D.J. 2001. *Macromolecules* 34:7744.
- 171. Chaudhari, R.V., Gupte, S.P., Kelkar, A.A., Kanagasabapathy, S., Radhakrishnan, S. US Patent No. 5,917,077. June 29, 1999.
- 172. 2001. Chem. Eng. News 79(21):27.
- 173. McGhee, W.D., Stern, M.K., Waldman, T.E. August 3, 1993. US Patent No. 5,233,010.
- 174. Hoelderich, W.F., Dahlhoff, G. 2001. Chem. Innov. 29.
- 175. Klempner, D., Frisch, K.C. *Handbook of Polymeric Foams*. 1991. New York: Oxford University Press.
- 176. Fiorentini, C., Griffiths, A.C.M. May 13, 1997. US Patent No. 5,629,027; (b) Fiorentini, C., Griffiths, A.C.M. Septem, ber 9, 1997. US Patent No. 5,665,287; (c) Fiorentini, C., Griffiths, A.C.M. June 17, 1997. US Patent No. 5,639,483.

- 177. Sulzbach, H-M., Steilen, H., Raffel, R., Eiben, R., Ebeling, W. October 3, 2000. US Patent No. 6,127,442.
- 178. Merriman, P. May 18, 1965. US Patent No. 3,184,419.
- Inoue, S., Koinuma, H., Tsuruta, T. 1969. Makromol. Chem. 130:210; (b)
 Inoue, S., Koinuma, H., Tsuruta, T. 1969. J. Polym. Sci. B 7:287.
- Inoue, S. 1976. CHEMTECH 588; (b) Rokicki, A., Kuran, W. 1981. Macromol. Sci. – Rev. Macromol. Chem. C21:135; (c) Kuran, W. 1998. Prog. Polym. Sci. 23:919.
- Aida, T., Inoue, S. 1982. Macromolecules 15:682; (b) Aida, T., Ishikawa, M., Inoue, S. 1986. Macromolecules 19:8; (c) Darensbourg. D., Holtcamp, M. 1995. Macromolecules. 28:7577; (d) Super. M., Berluche, E., Costello, C., Beckman, E.J. 1997. Macromolecules 30:368; (e) Cheng, M., Moore, D.R., Reczek, J.J., Chamberlain, B.M., Lobkovsky, E.B., Coates, G.W. 2001. J. Am. Chem. Soc. 123:8738.
- 182. Buzdugan, E., Beckman, E.J. Presented at the 6th International Conference on CO, Utilization. Breckenridge, CO, September 10–14, 2001.
- 183. Super, M., Beckman, E.J. 1997. Trends. Polym. Sci. 5:236.
- Soga, K., Hosoda, S., Tazuke, Y., Ikeda, S. 1975. J. Polym. Sci. Polym. Lett. 13:265; (b) K. Soga, M. Sato, S. Hosoda, S. Ikeda. 1975. J. Polym. Sci. Polym. Lett. 13:543.
- 185. Sargent, D.E. 1949. US Patent No. 2,462,680.
- 186. Odell, P.G. December 16, 1997. US Patent No. 5,698,665.
- 187. Kim, K-S., Danishevsky, S., Peterson, C.B. August 8, 2000. US Patent No. 6,100,372.
- 188. Berens, A.R., Huvard, G.S., Korsmeyer, R.W., Kunig, F.W. 1992. J. Appl. Polym. Sci. 46:231; (b) Kazarian, S.G., Brantley. N.H., West, B.L., Vincent, M.F., Eckert, C.A. 1997. Appl. Spectr. 51:491.
- 189. Montero, G.A., Smith, C.B., Hendrix, W.A., Butcher, D.L. 2000. *Ind. Eng Chem. Res.* 39:4806.
- Bach, E., Cleve, E., Schollmeyer, E., Bork, M., Korner, P. 1998. Melliand Int.
 3:192; (b) Bach, E., Cleve, E., Schollmeyer, E., Vardag, T., Korner, P. 1999.
 2:165; (c) Argyle, M.D., Propp, W.A. January 20, 1999. US Patent No.
 5,709,910; (d) Eggers, R., von Schnitzler, J., Truckenmuller, K. August 17,
 1999. US Patent No. 5,938,794; (e) Schollmeyer, E., Bach, E., Cleve, E., Bork,
 M., Steinhauer, M., Korner, J-P. September 21, 1999. US Patent No. 5,953,780;

- (f) Eggers, R., von Schnitzler, J., Huber, R., Worner, G. September 28, 1999. US Patent No. 5.958,085.; (g) Eggers, R., von Schnitzler, J., Worner, G. October 26, 1999. US Patent No. 5.972,045; (h) Smith, C.B., Montero, G.A., Hendrix, W.A., April 11, 2000. US Patent No. 6.048,369; (i) Poddevin, N., Fages, J., Guidoin, R. September 19, 2000. US Patent No. 6.120,558; (j) Hendrix, W.A., Montero, G.A., Smith, C.B., Butcher, D.L. July 17, 2001. US Patent No. 6.261,326.
- Shim, J.J., Johnston, K.P. 1991. AIChE J. 37:607; (b) Shim, J.J., Johnston, K.P. 1989. AIChE J. 35:1097.
- 192. Hendrix, W.A. 2001. J. Industr. Tex. 31:43.
- 193. Shine, A.D., Gelb, J. 1998. US Patent No. 5.766,637.
- 194. Howdle, S.M., Watson, M.S., Whitaker, M.J., Davies, M.C., Shakesheff, K.M., Popov, V.K., Mandel, F.S., Wang, D.J. 2001. *Chem. Commun.* 109.
- Mandel, F. April 25, 2000. US Patent No. 6.054,103; (b) Mandel, F. November 30, 1999. US Patent No. 5, 993,747; (c) Mandel, F., Green, C.D., Scheibelhoffer, A.S. August 20, 1996. US Patent No. 5,548,004.
- 196. Beckman, E.J., O'Neill, M. February 6, 2001. US Patent No. 6,184,270.
- 197. Mura, G., Pozzoli. December 9, 1994. S. Eur. Pat. Appl. 94119470.6.
- 198. Pierick, D. The MuCell molding technology: microcellular foam. Paper presented at the Molding '99 Meeting, New Orleans, LA, March 1-3, 1999.
- Goel, S., Beckman, E.J. 1995. AIChE J. 41:357; (b) Stafford, C.M., Russell,
 T.P., McCarthy. T.J. 1999. Macromolecules 32:7610; (c) Arora, K.A., Lesser,
 A.J., McCarthy, T.J. 1998. Macromolecules 31:4614.
- Sparacio, D., Beckman, E.J. Generation of microcellular biodegradable polymers using supercritical carbon dioxide. In: M. Hunt, T. Long (eds.). Solvent-Free Polymerizations and Processes: Minimization of Conventional Organic Solvents. 1998. ACS Symposium Ser. 713:181-195.
- 201. Berens, A.R., Huvard, G.S. In: Supercritical Fluid Science and Technology. 1989. *ACS Symposium Ser.* 406:207.
- Liau, I.S., McHugh, M.A. 1985. High pressure solid polymer-supercritical fluid phase behavior. In: J.M.L. Penninger, M. Radosz, M.A. McHugh, V.J. Krukonis (eds.). Supercritical Fluid Technology. Amsterdam: Elsevier, 415.
- 203. Wang, W., Kramer, E.J., Sachse, W.H. 1982. *J. Polym. Sci. Polym. Phys. Ed.* 20:1371.
- 204. Kwag, C., Manke, C.W., Gulari, E. 1999. J. Polym. Sci. Polym. Phys.

- 37:2771; (b) Royer, J.R., Gay, Y.J., DeSimone, J.M., Khan, S.A. 2000. *J. Polym. Sci. Polym. Phys.* 38:3168.
- 205. Suh. K. Extruded thermoplastic foams produced with supercritical fluids. Paper presented at the Conference on Supercritical Fluids in Materials Processing and Synthesis. Switzerland: Davos, September 26–October 1, 1999.
- Wilkes, G.R., Bly, K.A., Dunbar, H.A., Uhl, E.R., Zwynenburg, J.L. November 30, 1999. US Patent No. 5,993,706.
- 207. Cebien, J. Bayer Corporation (personal communication).
- Perry, R.H., Chilton, C.H. 1973. Chemical Engineering Handbook. 5th ed. New York: McGraw-Hill.
- Shi, C., Huang, Z., Kilic, S., Xu, J., Enick, R.M., Beckman, E.J., Carr, A.J., Melendez, R.E., Hamilton, A.D. 1999. *Science* 286:1540.
- 210. Park, C.B., Suh, N.P., Baldwin, D.F. April 18, 2000. US Patent No. 6,051,174.
- International Roadmap for Semiconductors. 1999. Semiconductor Industry Association, San Jose, CA.
- 212. Allen, R.D., Wallraff, G. September 9, 1997. US Patent No. 5,665,527.
- Pryce Lewis, H.G., Weibel, G.L., Ober, C.K., Gleason, K.K. 2001. Chem. Vap. Dep. 7:195; (b) Sundararajan, N., Yang, S., Ogino, K., Valiyaveettil, S., Wang, J., Zhou, X., Ober, C.K., Obendorf, S., Allen, R.D. 2000. Chem. Mat. 12:41; (c) Yang, S., Wang, J., Ogino, K., Valiyaveettil, S., Ober, C.K. 2000. Chem. Mat. 12:33.
- Taylor, D.K., Carbonell, R., DeSimone, J.M. 2000. Ann. Rev. Energy Envir.
 25:115; (b) Kendall, J., DeSimone, J.M., Carbonell, R.G., McAdams, C.L. 2002.
 PCT Int. Appl. WO 0231596.
- Brodsky, C., Byers, J., Conley, W., Hung, R., Yamada, S., Patterson, K., Somervell, M., Trinique, B., Tran, H.V., Cho, S., Chiba, T., Lin, S-H., Jamieson, A., Johnson, H., Vander Heyden, T., Willson, C.G. 2000. J. Vac. Sci. Tech. B 18:3396.
- 216. Carbonell, R.C., DeSimone, J.M., Novick, B.J. US Patent No. 6,083,565; (b) DeSimone, J.M., Carbonell, R.C. US Patent No. 6,001,418.
- 217. McCoy, M. 2001. Chem. Eng. News 79(38):10.
- 218. Voss. D. 2002. Tech. Rev. 105:27.
- 219. 2001. Chem. Eng. News 79(38):10.

- 220. 2001. Chem. Eng. News 79(50):14.
- Agarwal, V.K. US Patent No. 6,306,754. October 23, 2001; (b) Lee, H-J., Jeng,
 D. G-K. November 20, 2001. US Patent No. 6,319,858.
- 222. Sheldon, R.A. 2001. Coll. Lect. of Summer Schools on Green Chemistry. In: Tundo, P., Clemenza, L., Perosa, A. (eds.), 41.
- 223. Klibanov, A.M. 1997. Trends Biotechnol. 15:97.
- 224. Mesiano, A., Beckman, E.J., Russell, A.J. 1999. *Chem. Rev.* 99L:623.
- Kamat, S., Barrera, J., Beckman, E.J., Russell, A.J. 1992. Biotech. Bioeng. 40:158. (b) Kamat, S., Critchley, G., Beckman, E.J., Russell, A.J. 1995. Biotech. Bioeng. 46:610.
- 226. Johnston, K.P., Harrison, K.L., Clarke, M.J., Howdle, S.M., Heitz, M.P., Bright, F.V., Carlier, C., Randolph, T.W. 1996. *Science* 271:624.
- Ghenciu, E., Russell, A.J., Beckman, E.J. 1998. Biotech. Bioeng. 58:572.
 (b) Ghenciu, E.G., Beckman, E.J. 1997. Industr. Eng. Chem. 36:5366.
- 228. Chaudhary, A.K., Beckman, E.J., Russell, A.J. 1995. *J. Am. Chem. Soc.* 117:3728.
- 229. Weinstein, R.D., Winslo, A.R., Danheiser, R.L., Harris, J.G., Tester, J.W. 1996. *J. Phys. Chem.* 100:2337.
- 230. Reaves, J.T., Roberts, C.B. 1999. Ind. Eng. Chem. Res. 38:855.
- 231. Matsuo, J., Tsuchiya, T., Odashima, K., Kobayashi, S. 2000. Chem. Lett. 178.
- 232. Ikushima, Y., Saito, N., Arai, M. 1992. J. Phys. Chem. 96:2293.
- 233. Renslo, A.R., Weinstein, R.D., Tester, J.W., Danheiser, R.L. 1997. *J. Org. Chem.* 62:4530.
- 234. Oakes, R.S., Heppenstall, T.J., Shezad, N., Clifford, A.A., Rayner, C.M. 1999. *Chem. Commun.* 1459.
- 235. Totoe, H., McGowin, A.E., Turnbull, K. 2000. J. Supercrit. Fl. 18:131.
- 236. Chateauneuf, J.E., Nie, K. 2000. Adv. Envir. Res. 4:307.
- 237. Kawada, A., Mitamura. S., Matsuo, J., Tsuchiya, T., Kobayashi, S. 2000. Bull. Chem. Soc. Japan 73:2325. (b) Kobayashi, S., Manabe, K. 2000. Pure Appl. Chem. 72:1373.
- 238. Hitzler, M.G., Smail, F.R., Ross, S.K., Poliakoff, M. 1998. Chem. Commun. 359.

- Olah, G.A., Marinez, E., Torok, B., Surya Prakash, G.K. 1999. *Catal. Lett.* 61:105.
- 240. Pernecker, T., Kennedy, J.P. 1994. *Polym. Bull.* Berlin 32:537.
- Fornika, R., Gorls, H., Seemann, B., Leitner, W. 1995. *Chem. Commun.* 1479;
 Leitner, W. 1995. *Angew. Chem. Int. Ed. Eng.* 34:2207.
- 242. Jessop, P.E., Hsiao, Y., Ikariya, T., Noyori, R. 1996. J. Am. Chem. Soc. 118:344.
- 243. Shi, M., Nicholas, K.M. 1997. J. Am. Chem. Soc. 119:5057.
- 244. Ushikoshi, K., Mori, K., Watanabe, T., Takeuchi, M., Saito, M. 1998. Advances in chemical conversions for mitigating carbon dioxide. In: T. Inui, M. Anpo, K. Izui, S. Yanagida, T. Yamaguchi (eds.). Studies in Surface Science and Catalysis. New York: Elsevier Science, Volume 114, p.357.
- 245. Arakawa, H., et al. 2001. Chem. Rev. 101:953.
- 246. Yamazaki, N., Nakahama, S., Higashi, F. 1979. Ind. Eng. Chem. Prod. Res. Dev. 18:249.
- 247. Shaikh, A-A. G. Siyaram, S. 1996. Chem. Rev. 951.
- 248. Behr, A. 1988. Carbon dioxide activation by metal complexes. New York: VCH; (b) Halmann, M.M. 1993. Chemical fixation of carbon dioxide: methods for recycling CO2 into useful products. London: CRC Press; (c) Gibson, D.H. 1996. Chem. Rev. 96:2063. Also, see reference 124 from our reference 245.
- 249. Jia, L., Jiang, H., Li, J. 1999. *Green Chem.* 1:91; (b) Kishimoto, Y., Ikariya, T. 2000. *J. Org. Chem.* 65:7656.
- Morita, D.K., Pesiri, D.R., David, S.A., Glaze, W.H., Tumas, W. 1998. Chem. Commun. 1397; (b) Chen, W., Xu, L., Xiao, J. 2000. Org. Lett. 2:2675; (c) Bhanage. B.M., Ikushima, Y., Shirai, M., Arai, M. 1999. Tetrahed. Lett. 6427; (d) Osswald. T., Schneider, S., Wang, S., Bannwarth, W. 2001. Tetrahed. Lett. 42:2965.
- 251. Cacchi, S., Fabrizi, G., Gasparrini, F., Villani, C. 1999. Synlen. 3:345.
- 252. He, L-N., Choi, J-C., Sakakura, T. 2001. Tetrahed. Lett. 42:2169.
- 253. Montilla, F., Clara, E., Aviles, T., Casimiro, T., Aguicar Ricardo, A., Nunes de Ponte, M. 2001. *J. Organomet. Chem.* 626:227.
- 254. Kabir, A., Marshall, W.D. 2001, Green Chem. 3:47.
- 255. Jeong, N., Hwang, S.H. 2000. Angew. Chem. Int. Ed. Eng. 39:636.

- 256. Poliakoff, M., Swan, T.M., Tacke, T., Hitzler, M.G., Ross, S.K., Wieland, S., Smail, ER, October 16, 2001. US Patent No. 6,303,840.
- 257. Subramaniam, B., Clark, M.C. May 25, 1999. US Patent No. 5,907,075.
- 258. Ritter, S.K. 2001. Chem. Eng. News 79(40):63.
- Harris, R., Jureller, S.H., Kerschner, J.L., Trzasko, P.T., Humphreys, R.W.R. November 2, 1999. US Patent No. 5,977,348.; (b) Schiraldi, D.A., Brown, J.S., Chandler, K., Eckert, C.A., Hurley, J.S., Lamb, D.R., Lesutis, P.H., Liotta, C.L. March 20, 2001. US Patent No. 6,204,386.
- 260. Lowack, R., Meyer, J., Eggersdorfer, M., Grafen, P. June 4, 1996. US Patent No. 5,523,420.
- Matson, D.W., Fulton, J.L., Smith, R.D., Consani, K.A. August 24, 1993. U.S. Patent No. 5,238,671.
- 262. Ji, M., Chen, X.Y., Wai, C.M., Fulton, J.L. 1999. J. Am. Chem. Soc. 121:2631.
- 263. Cason, J.P., Khamwasadkar, K., Roberts, C.B. 2000. *Ind. Eng. Chem. Res.* 39:4749.
- 264. Laintz, K.E., Wai, C.M., Yonker, C.R., Smith, R.D. 1991. J. Supercrit. Fl. 4:194.
- Erkery, C. 2000. J. Supercrit. Fl. 17:259. (b) Wai, C.M., Wang, S. 1997. J. Chromat. A 785:369. (c) Smart. N.G., Carleson, T., Kast, T., Clifford, A.A., Burford, M.D., Wai, C.M. 1997. Talanta 44:137.
- Lagalante, A.F., Hansen, B.N., Bruno, T.J., Sievers, R.E. 1995. *Inorg. Chem.* 34:5781. (b) Anderson, W.C., Sievers, R.E., Lagalante, A.F., Bruno, T.J. 2001.
 J. Chem. Eng. Data 45:1045.
- Dicinoski, W. 2000. Min. Mag. 182:258, 260, 262; (b) White, R.H. 1999. In: Copper Leaching, Solvent Extraction, and Electrowinning. Soc. Min. Metall. Explor. Littleton, CO: p 229: (c) Townsend. B., Sievers, K.J. 1990. Min. Mag. 162:26, 29, 32, 35; (d) Flett, D.S. 1974. Inst. Mining Met. Trans. Sect. C 83:C30.
- Olper, M., Maccagni, M., Buisman, C.J.N., Schultz, C.E. 1999. Proceedings of the Copper '99-Cobre 99th International Conference (4th). Young, S.K. (ed.). Min., Met., & Mat. Soc. 4:597; (b) Valic, D., Tombalakian, A.S., Alfantazi, A., Moskalyk, R.R. 1999. Proceedings of the Copper '99-Cobre 99th International Conference (4th). Young, S.K. (ed.). Min., Met., & Mat. Soc. 3:711.
- 269. Davenport. W.G. 1999. Proceedings of the Copper '99-Cobre 99th International Conference (4th). Young, S.K. (ed.). *Min., Met., & Mat. Soc.* 1:55.
- 270. Braun, T.B. 1981. J. Met. 33:59.

- Benner, L.S., Suzuki, T., Meguro, K., Tanaka, S. (eds.). 1991. Precious Metals: Science and Technology. Int. Prec. Met. Inst., Allentown, PA. (b) Harris, G.B.A. 1993. In: Mishra, R.K. (ed.). Toronto, Canada: Precious Metals Pergamon Press, p 351.
- 272. Powell, C.J., Beckman, E.J. 2001. *Ind. Eng. Chem. Res.* 40:2897.
- Izatt, R.M., Bradshaw, J.S., Bruening, R.L. 1996. *Pure Appl. Chem.* 68:1237;
 (b) list of publications on IBC Web site, http://www.ibcmrt.com/publications
- 274. Sherman, J.H., Hershberger, J.W., Taylor, R.T., Garrett, G.M. 2000. PCT Int. Appl. WO 0056842; (b) Bertus, B.J., Walker, D.W. 1988. US Patent No. 4,727,053; (c) Macedo, J.C.D., Duarte, M.A. I., 1994. Appl. Cat. A 110:87; (d) Roussel, J-C., Boulet, R. 1995. Pet. Refin. I(Crude Oil, Petroleum Products, Process Flowsheets) 1-15:453-60; (e) Pearson, C.D., Green, J.B. 1993. Energy & Fuels 7:338; (f) Mitchell, P.C.H. 1990. Catal. Today 7:439; Reynolds, J.G. 1988. US Patent No. 4,789,463.
- Li, J-T., Beckman, E.J. 1998. *Ind. Eng. Chem. Res.* 37:4768; (b) Laintz,
 K.E., Hale, C.D., Stark, P., Rouquette, C.L. 1998. *Anal. Chem.* 70:400.
- 276. Yu, J.-J., Chiu, K-H., Wang, S. 2001. J. Chin. Inst. Chem. Eng. 32:263; (b) Lin, Y., Wu, H., Smart, N.G., Wai, C.M. 2001. Sep. Sci. Tech. 36:1149; (c) Gervais, F., Perre, C., Sarrade, S., Moszkowicz, P., Barna, L. 1999. Recents Progres en Genie des Procedes. 13:197; (d) Shamsipur, M., Ghiasvand, A.R., Yamini, Y. 2001. J. Supercrit. Fl. 20:163; (e) Wai, C.M., Waller, B. 2000. Ind. Eng. Chem. Res. 39:4837; (f) Kersch, C., Woerlee, G.F., Witkamp, G.J. 2002. In: Liddell, K.C. (ed.). Metal Separation Technologies Beyond 2000: Integrating Novel Chemistry With Processing. Min., Met, and Mat. Soc., Warrendale, PA.
- 277. Baglin, F.G. US Patent No. 5,897,704. April 27, 1999; (b) Jones, R.H. October 12, 1999. US Patent No. 5,965,201.
- 278. Douglas. M.A., Templeton, A.C. February 9, 1999. US Patent No. 5,868.856.
- 279. Vaartstra, B.A. November 12, 2000. US Patent No. 6,149,828.
- 280. Matson, D.W., Peterson, R.C., Smith, R.D. 1987. J. Mat. Sci. 22:1919.
- 281. Jung, J., Perrut, M. 2001. J. Supercrit. Fl. 20:179.
- 282. Bungert, B., Sadowski, G., Arlt, W. 1998. Ind. Eng. Chem. Res. 37:3208; (b) Kompella, U.B., Koushik, K. 2001. Crit. Rev. Ther. Drug Carr. Sys. 18:173; (c) Reverchon, E., Della Porta, G. 2001. Pure Appl. Chem. 73:1293; (d) Marr, R., Gamse, T. 2000. Chem. Eng. Proc. 39:19; (e) Palakodaty, S., York, P. 1999. Pharm. Res. 16:976; (f) Reverchon, E. 1999. J. Supercrit. Fl. 15:21.

- Gallagher, P.M., Coffey, M.P., Krukonis, V.J., Klasutis. N. 1989. In: Johnston. K.P., Penninger, J.M.L. (eds.). Supercritical Science and Technology. ACS Symp. Ser. 406, American Chemical Society, Washington, DC.
- Hanna, M., York, P. 1994. World Patent WO 95/01221; (b) Hanna, M., York.
 P. 1995. World Patent WO 96/00610; (c) Hanna, M., York. P. 2000. US Patent No. 6,063,138.
- Sievers, R.E., Karst, U. 1995. Eur. Pat. 0 677 332. 1997. US Patent No. 5.639,441; (b) Sievers, R.E., Karst, U., Milewski, P.D., Sellers, S.P., Miles, B.A., Schaefer, J.D., Stoldt, C.R., Xu, C.Y. 1999. Aer. Sci. Tech. 30:3; (c) Sievers, R.E., Karst, U. 2000. US Patent No. 6.095,134.
- 286. Maa, Y-F., Prestrelski, S.J. 2000. Curr. Pharma. Biotech. 1:283.
- 287. Thibert, R., Tawashi, R. Microspheres, microcapsules, and liposomes. 1999. *Prep. Appl.* 1:327.
- 288. Perry, R.H., Chilton, C.H. 1973. *Chemical Engineer's Handbook*. 5th ed. New York: McGraw-Hill.
- Kileen, M. 1994. Powder Bulk Eng. 8:39; (b) Mortensen, S., Lohmann, D. Chem-Tech. 1992. 21:72; (c) Weers, J. 2000. Innov. Pharma. Tech. 1:111, 114; Jono, K., Ichikawa, H., Fukumori, Y. 2000. Powd. Tech. 113:269.
- 290. Shekunov, B., York, Y.P. 2000. J. Cryst. Growth 211:122.
- Weber, M., Russell, L.M., DeBenedetti, P.G. 2002. J. Supercrit. Fl. 23:65; (b) Werling, J.O., Debenedetti, P.G. 2000. J. Supercrit. Fl. 18:11; (c) Werling, J.O., Debenedetti, P.G. 1999. J. Supercrit. Fl. 16:167; (d) Kwauk, X., Debenedetti, P.G. 1993. J. Aerosol. Sci. 24:445; (e) Tom, J.W., Debenedetti, P.G. 1991. J. Aerosol Sci. 22:555; (f) Debenedetti, P.G. 1990. AIChE J. 36:1289.
- 292. Lengsfeld, C.S., Delplanque, J.P., Barocas, V.H., Randolph, T.W. 2000. J. Phys. Chem. B 104:2725.
- 293. Texter, J. 2001. Reactions and synthesis in surfactant systems. *Surfact. Sci. Ser.* 100:577.
- 294. Hong, L., Guo, J., Gao, Y., Yuan, W-K. 2000. Ind. Eng. Chem. Res. 39:4882.
- Manning, M.C., Randolph, T.W., Shefter, E., Falk, R.F. 1999. US Patent No. 5,981,474; (b) Manning, M.C., Randolph, T.W., Shefter, E., Falk, R.F. 1998. US Patent No. 5,770,559.
- Subramaniam, B., Saim, S., Rajewski, R.A., Stella, V. 1999. US Patent No. 5,874.029; (b) Subramaniam, B., Saim, S., Rajewski, R.A., Stella, V. 1998. US Patent No. 5,833,891.

- Daly, A.T., Decker, O.H., Wursthorn, R. 1998. US Patent No. 5,766,522; (b)
 Daly, A.T., Shah, N.B., Cornell, G.D., Wursthorn, K.R. US Patent No. 5,708,039.
- 298. Chordia, L. Presented at the 5th Internaional Symposium on Supercritical Fluids. Atlanta, GA, April 8-12, 2000.
- 299. Perrut, M. 2000. Ind. Eng. Chem. Res. 39:4531; (b) Hauthal, W.H. 2001. Chemosphere 43:123; (c) Smith. C.W., Huse, G. 1998. In: McHardy, J., Sawan, S.P. (eds.). Supercrital Fluid Cleaning. Westwood, NJ: Noyes Publishing, p 245.; (d) Cygnarowicz-Provost, M. 1996. In: King, J.W., List, G.R. (eds.). Supercritical Fluid Technology for Oil and Lipid Chemistry. Champaign, IL: AOCS Press, p 155; (e) Gani, R., Hytoft, G., Jaksland, C. 1997. Appl. Therm. Eng. 17:889.
- Colina, C.M., Hall, C.K., Gubbins, K.E. 2002. Fl. Phase Equil. 194-197:553;
 (b) Blas, F.J., Galindo, A. 2002. Fl. Phase Equil. 194-197:501;
 (c) Byun, H-S., Kim, K., McHugh, M.A. 2000. Ind. Eng. Chem. Res. 39:4580;
 (d) Zhang, Z-Y., Yang, J-C., Li, Y-G. 2000. Fl. Phase Equil. 169:1.
- Diaz, S., Espinosa, S., Brignole, E.A. 2000. Computer-Aided Chem. Eng. 8:319; (b) Artal, M., Munoz Embid, J., Velasco, I., Berro, C., Rauzy, E. 2001. Fl. Phase Equil. 178:119; (c) Espinosa, S., Diaz, S., Brignole, E.A. 2000. Comp. Chem. Eng. 24:1301; (d) Jaubert, J-N., Coniglio, L. 1999. Ind. Eng. Chem. Res. 38:5011; Keshtkar, A., Jatali, F., Moshfeghian, M. 1997. Fl. Phase Equil. 140:107.
- 302. http://www.micell.com
- 303. Crette, S.A., DeSimone, J.M., Carbonell, R.G., Tumas, W., Brady, J.T. Abstracts of papers for ACS Meeting, August 20, 2000, 220: 413, part 2.
- Crooks, R.M., Lemon, B.I., Sun, L., Yeung, L.K., Zhao, M.Q. 2001. *Top. Curr. Chem.* 212:81.
- van der Broek, L.J.P., Goetheer, E.L.V., Verkerk, A.W., de Wolf, E., Deelman, B.J., van Koten, G., Keurentjes, J.T.F. 2001. *Ang. Chemie Int. Ed.* 40:473.
- 306. Jacobsen, G.B., Lee, C.T., Johnston, K.P., Tumas, W. 1999. *J. Am. Chem. Soc.* 121:11902.
- 307. Chandler, K., Culp, C.W., Lamb, D.R., Liotta, C.L., Eckert, C.A. 1998. *Ind. Eng. Chem. Res.* 37:3252.
- 308. Jacobsen, G.B., Lee, C.T., Johnston, K.P. 1999. J. Org. Chem. 64:1201, 1207.
- 309. Bonilla, R.J., James, B.R., Jessop, P.G. 2000. Chem. Commun. 941.

- 310. Quadir, M.A., Snook, R., Gilbert, R.G., DeSimone, J.M. 1997. Macromolecules 30:6015.
- 311. Blanchard, L.A., Hancu, D., Beckman, E.J., Brennecke, J.F. 1999. *Nature* 399:28.
- 312. Sellin, M.F., Webb, P.B., Cole-Hamilton, D.J. 2001, Chem. Commun, 781.
- 313. Bosmann, A., Francio, G., Janssen, E., Solinas, M., Leitner, W., Wasserscheid, P. 2001. *Angew. Chemie Int. Ed. Eng.* 40:2697.
- 314. Blanchard, L.A., Brennecke, J.F. 2001. Green Chem. 3:17.
- 315. Sigman, M.E., Lindley, S.M., Leffler, J.E. 1985. J. Am. Chem. Soc. 107:1471.