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PREFACE

The Industrial Environmental Research Laboratory (IERL) of EPA has the
responsibility for insuring that air pollution control technology is
available for stationary sources. If control technology is unavailable,
inadequate, uneconomical or socially unacceptable, then development of
the needed control techniques is conducted by IERL. Approaches con-
sidered include process modifications, feedstock modifications, add-on
control devices, and complete process substitution. The scale of control

technology programs ranges from bench to full scale demonstration plants.

The Chemical Processes Branch of IERL has the responsibility for devel-
oping control technology for a large number (>500) of operations in the
chemical and related industries. As in any technical program the first

step is to identify the unsolved problems.

Each of the industries is to be examined in detail to determine if there
is sufficient potential environmental risk to justify the development of
control technology by IERL. Monsanto Research Corporation (MRC) has
contracted with EPA to investigate the environmental impact of various
industries which represent sources of emissions in accordance with EPA's
responsibility as outlined above. Dr. Robert C. Binning serves as
Program Manager in this overall program entitled, "Source Assessment."”
As a first step, MRC has developed a priority listing of the industries
in each of four categories: combustion, organic materials, inorganic
materials, and open sources. The purpose and intended use of this
listing is that it serve as one of several guides to the selection of
those sources for which MRC will perform detailed source assessments.
Source assessment documents will be produced by MRC and used by EPA to
make decisions regarding the need for developing additional control

technology for each specific source.

In order to analyze the severity of those sources in which the emission
points number in the thousands or hundred thousands, a statistical
approach is required such as the Monte Carlo simulation technique
described in this report. An example of this approach for analyzing

coal-fired steam electric utilities is included.
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SECTION I

INTRODUCTION
/

’
A prioritization listing of air pollution sources was

developed earlier to serve as a first step in selecting
industries for detailed study to determine whether a suffi-
cient potential environmental risk exists to justify the
development of control technology. Preparation of the
listing or relative ranking of emission sources involved the
use of an impact factor which is a worst case, integral
quantity. In current assessment studies, one of the potential
environmental impacts of a source is determined from the
source severity, defined as the ground level concentration
contribution of pollutants relative to some potentially
hazardous concentration of the same species. The frequency
distribution of the severity of well-documented source types
can be examined deterministically. However, source types
which are complex or involve a large number of emission
poirits require a statistical approach to simulate the fre-
quency distribution of the severity and ultimately permit

the assessment of the source.

The basic premise of the simulation approach is that detailed
information on all required factors and all emission points
for certain source types will not be obtained because of

time or cost limitations. When such detailed information
cannot be collected, the inputs can be described in terms of

a distribution of values. 1In many cases (e.g., electric



utility boiler capacities), these distributions are readily
available; for some sources, special approximating techniques
must be used to develop them. Having developed frequency
distributions for the inputs, a distribution of severity can
be calculated by means of a simulation technique. When
several input variables are treated as frequency distribu-
tions, the computation is extremely tedious; however. with a
high-speed digital computer, computation times are on the
order of a few seconds.

This document presents a methodology for describing the
severity distributions of various source types. A Monte
Carlo simulation technique is described together with effi-
cient algorithms for fitting the inverse Weibull, gamma,
normal, and log-normal cumulative density functions. Using
coal-fired steam electric utilities as an example, signifi-
cant correlation is demonstrated between deterministic and

simulated severity results.



SECTION II

SOURCE SEVERITY

The air pollution severity, S, of a given source should in
some way be proportional to the degree of potential hazard

it imposes upon individuals in its environment. The relative
hazard, H, from a specific emission can be defined as being
directly proportional to the delivered dose, the probability
of dose delivery, and number of people who would receive 1it,
and inversely proportional to the toxicity of the material

as follows:

NPY
LDgg

S « H « (1)
where S = source severity
H = relative hazard
N = number of persons
LDgy = lethal dose for 50% of the people exposed
P = probability of dose delivery
Y = delivered dose = B'-R'-[fx(t)dt

B' = average breathing rate
R' = lung retention factor
x (t) = concentration time history

The source severity is herein defined as the ratio of the
dose of a pollutant delivered to a population, relative to
some potentially hazardous dose. Since LD;,; data are not
available for human beings, another measure of potentially
hazardous dosage was used.



The potentially hazardous dose for a given pollutant from a

specific point source in a given region is defined as

follows: ’f{ﬁf ~ fﬁ,J{ f-,
t —_
2 p —
\PF = NB'R' LV(t) K dt (2)
S——
t
where WF = potentially hazardous dose, g

N = population exposed to a specific source, persons
B' = average breathing rate, m3/s-person

R' = lung retention factor for the pollutant of
interest (dimensionless factor, 0<R'<l)

K = safety factor = < 8)(—l—)

24 /\100
t = time
t, = start time, s
t, = finish time, s
TLV® = threshold limit value, g/m3

The total time of interest, T', is defined as:
T' =t, - t, (3)
Similarly, a hazard potential factor, F, is defined as:
F = TLV+K (4)
Since TLV is a constant,
Y, = N-B'«R'.T' (5)

The actual pollutant dose delivered, from a given point

Y
AI
source can be calculated as follows:



Yy = N-B‘-R'/ x(t) dt (6)

where x(t) = the actual ground level concentration time
history of a pollutant of interest emitted by
a specific point source, g/m3

The value of x(t) is very difficult to obtain and was there-
fore approximated by an average value, x. The total actual
dose delivered for a specific pollutant from a specific
source is then:

¥p = N-B'-R'.T':x (7)

Since our measure of source severity was defined as the

ratio of the two dosages, then:

WA _ N+B'-R'-T'*X
y_ = (8)
F N-B':R':T'.F

(9)

0n
i
< |

or
A. MATHEMATICAL STRUCTURE

The source severity, S, of the iEE material in the region

around the jEE source is expressed as the ratio of ;ij to

Fi; i.e.,

X:
L o= =t (10)
1j i

i

For the iE}—l emitted material, the severity vector, Si’ is
defined by:



S. = . (11)

where n = number of point sources emitting the iEE material

The mean and median severity for the iEE material may be
obtained from a cumulative frequency plot of Si' In addition,
n-fractiles, the standard deviation, and confidence limits
about the mean severity can be calculated. Since all of the
populations under consideration are finite, alternate

forms of the standard statistical equations were used (as
presented in Appendix A).

B. DERIVATION OF Y

Since source to receptor distances were not compiled, the

maximum ground level concentration for elevated point

sources, ¥ ,! was used:
max
2 Qo
Xmax — (12)
reuh?¢ '
Y
where Xmax = maximum ground level concentration, g/m3
n = 3.14159
e = 2.72
u = wind speed, m/s

lslade, D. H. (ed.). Meteorology and Atomic Energy.
Environmental Science Services Administration, Air
Resources Labs. Silver Spring. AEC Publication No.
TID-24190. July 1968. 445 p.
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h = emission height, m
o = vertical dispersion coefficient, m
o = horizontal dispersion coefficent, m

y
Q = emission rate, g/s

The average concentration, X, is a function of sampling time,

t, and it can be related to the maximum concentration Xma
2

X
as follows:

_ t, P
X = Xpax (13)
where t; = 3 min
t, = reference time period, min
p = 0.17
C. POLLUTANT SEVERITY EQUATIONS

For any material with a given TLV, the severity equation

t1\P
Xmax(EE)
= 8\/ 1
TV (ﬁ) (—‘100)

Assuming a national average wind speed of approximately

becomes:

(14)

0
<)

10 mph (4.5 m/s), an averaging period of 24 hours and

substituting the appropriate values, Equation 14 becomes:

0.17
Xmax(l440)
(TLV) (3.33 x 1073)

4)]
i
i<

0.35 Xmax

(TLV)3.33 x 10-3

105 ¥
max
TLV

2Turner, D. B. Workbook of Atmospheric Dispersion Estimates,
1970 Revision. U.S. Department of Health, Education, and
Welfare. Cincinnati. Public Health Service Publication

No. 999-AP-26. May 1970. 84 p.

7



(2)(105)QoZ
or S = (15)
neuhzcy(TLV)

The national average atmospheric stability is approximately

neutral. Hence, oy =0,, and:
ag
53-3 1.0 (16)
Y
Thus: S = 2100

38.43h2 (TLV)

or, 5§ = —2:20 (17)

(TLV)h?
Since the criteria pollutants (particulates, SOX, NOX, co,
and hydrocarbons) have established ambient air standards,
the appropriate standard (in g/m3) can be substituted for
the potential hazard factor, F. The severity equations for
the five criteria pollutants are shown in Table 1. (Detailed
derivations are shown in Appendix B).

/

Table 1. CRITERIA POLLUTANT SEVERITY EQUATIONS

Pollutant Severity equation
Particulate S = 70Qh—?2 (18)
SO, S = 50Qh~2 (19)
NO_ S = 315Qh=2.1 (20)
Hydrocarbons S = 162.50h™2 (21)
co S = 0.780Qh~2 (22)




SECTION III

SIMULATION METHODOLOGY

A. INTRODUCTION

In many statistical analyses of data, it is frequently
desired to consider a random variable which is a function
of other random variables. An example pertinent to air
pollution studies is given by the severity equations for
ground level concentrations of air pollutants. For example,
the severity equation for SO, emissions from the stacks of
coal-fired electric utility plants is given by:

s = 299 (19)

h2

where Q emission rate, g/s

h = emission height, m

The emission rate can be calculated from:

Q = (CC) (E) (% sulfur) (K;) (23)

where CC = coal consumed, g/yr
0.019 g SO, (1% sulfur coal)

E = emission factor =
g of coal consumed

% sulfur = percent of sulfur in the coal

K; = 3.171 x 1078 (to convert from g/yr to g/s)



(Ky) (CC) (% sulfur)

or S = (24)
h2

where K, = 3 x 107°

Next, consider a general setting where the random variable z
is a function of the random variables x;, ..., X, given by

z = £(x3, ..., xn) for some function f. Suppose the actual
distributions of the input random variables x,, ..., x are
known including their probability density functions (p.d.f.)
and the corresponding cumulative distribution functions
(c.d.f.). Then it seems reasonable to assume that the distri-
bution of the random variable z can be obtained. 1In a sense
this is true in that integral formulae have been developed
which give the probability density function and the cumula-
tive distribution function for z as a function of the same
functions for the xi.3 These formulae, however, are very
complicated even for the case of the simple sum, difference,
product, or quotient of two random variables. Also, even if
the integrals are successfully evaluated, the resulting
probability density function for z will in general not be
exactly one of the standard distributions and as a result
may be difficult to handle. There are certain special cases

3 In these in-

in which the resulting p.d.f. will be known.
stances, the analytical approach to finding z explicitly is
by far the best approach. In other instances certain sim-
plifying- assumptions about the distribution of z can be made
provided certain things are true about the coefficient of
variability or equivalently the coefficient of skewness of

the input variables.* However, in cases where there are more

3Parzen, E. Modern Probability Theory and Its Applications.
New York, John Wiley & Sons, 1960.

“Springer, C. H., et al. Probabilistic Models. Homewood,
Richard D. Irwin, Inc., 1968.
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than two input variables or there is considerable skewness
exhibited by the variables or the function f becomes compli-
cated, then the strict analytical approach to finding the

distribution of z explicitly will in general not be applicable.

In these cases, where the general approach of finding the
explicit distribution function for z is not applicable, an
alternate approach is to calculate "many" values of z for
explicit values of the input variables Xyg eons Xp and use
these values to estimate (rather closely if enough values of

z are known) such things as the mean, standard deviation,
etc., for z. Also, class intervals can be formed and a
frequency histogram and cumulative distribution plot can be
developed for the "many" calculated values of z. This will
yield a distribution of z without any knowledge of an
analytical formula for its p.d.f. or even without knowing
whether any of the known standard distributions of statistics
exist for the distribution. This approach is called the
deterministic approach because in this technique it is
possible to determine explicit values for z from explicit
values of the input variables x;, ..., X - This approach is
an approximation to the strictly analytical approach described
earlier. The deterministic approach works well whenever it

is possible to actually calculate the "many" values of z
deterministically from given values of the input variables.
The term "many" means at least 30 values for the purpose of
estimating the mean, standard deviation, and a 95% confidence
interval for the mean. (The t-test for finding confidence
intervals is discussed in Section V of this report.) However,
to obtain a better frequency histogram for z, 100 or more values
of z should be available. (A histogram can be constructed
with less values but it will tend to be less meaningful because

the number of class intervals will have to be smaller.)
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Finally consider the situation when either no explicit values
of the input variable are available from which values of z

can be calculated or the number of such values is too small to
permit calculation of enough values of z to determine useful
information regarding its distribution. 1In this situation a
tool commonly used is the probabilistic approach which uses a
computer simulation to obtain values for z. For example,
instead of knowing many values for the input variables

X1r eeesr X, only limited information may be available, such
as an estimate of the mean and possibly the range and symmetry
or skewness properties. Such situations are not amenable to
either the analytical or deterministic approach. 1In this case,
the input variables are fitted to some theoretical distribu-
tion and the small amount of available information about the
variables is used to determine the parameters of the distri-
butions. The computer is then used to sample a large number
of times from each input variable's distribution function and
to subsequently use these data to calculate a large number of
values of z from which the mean, standard deviation, etc.,

can be estimated and frequency histograms and cumulative
distribution plots for z can be prepared. Some of the
techniques and procedures used in such a computer simulation
are described below.

B. THEORY AND METHODOLOGY

The equation for the severity (S) of ground level concentra-
tions of SO, emissions from the stacks of coal-fired electric
utilities will be used to illustrate the methodology utilized

in the simulation approach. The severity equation is:

(K,) (CC) (% sulfur)

h2

where K2, % sulfur, CC, and h have the meanings defined earli-

er. Thus, the input random variables are % sulfur; CC, and h.

12



1. All Input Variables Independent

When all of the input random variables are independent, the
methodology is relatively simple. A large sample (e.g., of
size n) is drawn from the distribution of each of the input
variables. These data are then used one by one to calculate
n values of S. From these n values the mean, standard
deviation, etc., can be calculated and a frequency histogram

and cumulative distribution can be plotted.

Some comments are in order regarding the method by which
samples are drawn from the distribution of the input varia-
bles. First, it should be noted that the input variables

are restricted to one of four types of continuous distribu-
tions: the Weibull, normal, gamma, or log-normal distribu-
tion. The type of each input variable and the corresponding
parameters for its distribution function must thus be speci-
fied. The method of obtaining the "best" type for each
variable and the corresponding parameters is described in
Section V and the parameters for the SO, example are given in
Appendix C. In these goodness-of-fit procedures, it is
necessary to have a random sample of data points for the input
variable in order to be able to fit it to the proper distribu-
tion. However, certain situations may arise when that much
information about the input variable is not available. For
example, two extreme points on the distribution and either the
mean or mode may be known, or some information may be available
to determine whether the distribution is symmetric or skewed.
In such situations where the goodness-of-fit program is inoper-
able, it may still be possible to fit the variable to one of

the four distributions above and to obtain its parameters.

As a demonstration of the above procedure, consider the
following example. Suppose that for an input variable, x,

it is known with 95% confidence that the values of x will be

13



between e and e> (where e = 2.7..). Suppose also that the
mode of the distribution is known to be between e and e? and
that the mean is approximately equal to e3. These points then
indicate that x is a rather heavily skewed right distribution.

The graph for the p.d.f. of x may resemble the one shown below:

FREQUENCY

D =

t
e? es

Since it is known that the 0.025 point on the cumulative

graph is approximately equal to e and the 0.975 point is
approximately equal to e>, this information can be used alone
to calculate A and B in a Weibull fit (described later). Thus,
one finds that A = 1.25 and B = 7.29 x 1073. These values of
A and B yield a theoretical mean y = 47.7 which is larger than
the estimated e3 value for the mean. The theoretical mode is
14.2 which again is larger than the estimated mode. Thus, the
Weibull fit could be used as an approximation to the "true"
distribution of x, although it is not a very good fit as our
observations about the mean and mode indicate.

Another way of ogtaining a distribution for x is to assume
that it is log-normally distributed since. the log-normal
distribution is a right-skewed distribution. If x is assumed
to be a log-normal distribution, then log x must be normal.
Hence, by taking the logarithm of the 0.025 point and 0.975
point of x, the same points on the cumulative graph of log x
are obtained which were assumed to be normal. These points ‘!
are 1 and 5, respectively. Thus, the mean u of log x should.
be taken to be 3 and, since 1 and 5 are the 0.025 and 0.975

14



points, respectively, it is found that o = 1.2. The values
u =3 and o = 1.2 can thus be used as parameters to sample
from the normal for values of log x. By taking antilogarithms

of the sample, a sample for x can be obtained.

In view of the above discussion, it is evident that several
avenues are available for obtaining a distribution to fit the
given data or information about each input variable. The
simulation program (for the case of independent input varia-
bles) simply takes the parameters for the given type of dis-
tribution for an input variable and samples from this distri-

bution to obtain a random sample for that input variable.

The method by which the program selects the sample from a
given distribution varies with the distribution. The direct
approach is used for the Weibull and normal distributions.
The rejection method is used for the gamma distribution.
Finally, for the log-normal distribution, the direct approach
is used to sample from the normal with the mean equal to the
mean of log x and the standard deviation equal to the stan-
dard deviation of log x. These are sometimes obtained by
taking the log of the geometric mean and geometric standard
deviation of x. After obtaining a sample for log x, the
antilogarithm of these values gives a sample for x. These
methods of samplihg are further discussed later in this

report.

2. Dependent Input Variables

Consider what happens when two (or more) of the input varia-
bles are correlated to some degree. If this situation occurs,
and a sampling procedure is used such as the one discussed
above, which assumes independent variables, it will tend to
distort the mean as well as the distribution of the output

variable. For example, in the severity example it was found
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that the variables CC and h had a sample correlation coeffi-
cient of about 0.55. Thus, whenever CC and h were sampled
independently, large values of CC were allowed with small
values of h and vice versa. This procedure tended to distort
the "true" distribution of S by allowing unrealistically low
values for S and, more importantly, unrealistically high
values. These high values caused the simulated mean to be
16.0 whereas the true mean was 8.9 for the deterministic pop-
ulation calculation. Thus, some way was needed to account

for the correlation that existed between CC and h.

Consider two input variables, X and Y, which are correlated
with linear correlation coefficient R. This value of R can
either be estimated and supplied directly to the program or
it can be obtained by a simple regression on the sample data
for X and Y. Once R is obtained, the slope, B, and the Y-

intercept, A, for the regression line is given by:

_ R-SY
B = —5x (25)
A = YB - B(XB) (26)

where XB and SX are the mean and standard deviation of X,
and YB and SY are the corresponding parameters for Y. (This
assumes that X is taken as the independent variable in the
regression line.) If R had been supplied directly to the
program (without any sample data), then XB, SX, YB, and SY

would also be required in order to calculate A and B.
After A and B are obtained, the following relationship exists:
Y =A + BX = YB + B(X - XB) (27)

with an error term to account for the fact that the regres-

sion line is not an exact relation between X and Y. The
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next item needed is the standard deviation (or error), SE,

of Y due to the regression line estimate of Y. This is given

by:
SE = SY \/1 ~ R? (28)

Whenever R = 0 (indicating that X and Y are independent),
then SE = SY as would be expected (i.e., the standard devia-
tion of Y due to the regression line estimate is simply SY).
Also, if R = *1, then SE = 0 gs would be expected since

there is no deviation from the regression line in this case.

SE shown above is the standard deviation for Y when the
regression line estimate of Y is used and the value of X is
XB, which is not likely to occur often. Hence, a way to
compute the standard deviation (SD) of Y is needed using the
regression estimate of Y and any value of X. Intuition
suggests that the larger the deviation of X from XB, the
larger the error in estimates of Y. A formula for computing

SD is given by:

SD = SE 1+£+M (29)
n(sx)?2

where n is the sample size to be drawn from Y. Since these
simulations usually have large values of n, then for our
purposes SD is approximately equal to SE. However, the
correct formula is still used in the program for calculating
SD (the standard deviation of Y for a given X).

The method described below pertains to sampling from the
pair of variables X and Y where X and Y are correlated as
above with X independent and Y dependent. First, a value of
X is selected at random from the population describing X.
This value is then substituted into the regression equation

to obtain an estimate of Y which is taken as the expected
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value or mean of Y for this given value of X. Finally, the
standard deviation of Y, SD, is calculated for this value of
X. Then a sample is taken from the distribution of Y with
the mean given by the estimate of Y from the regression
equation and the standard deviation given by SD. This pro-
vides a "correlated" random value of Y associated with the
given value of X. This procedure is continued until the

desired sample size for X and Y is attained.

The following discussion pertains to the type of distribution
from which sampling is allowed for Y, the dependent variable
in the regression equation. Upon changing from one value of
X to the next, the above procedure will simply provide a new
mean and standard deviation for Y to be used for sampling
purposes. Since the normal and log-normal distributions are
the easiest distributions from which to sample when the mean
and standard deviation are known, the program allows the user
to select only one of these two distributions for sampling
from Y. However, the program is designed for expanding this
choice to the Weibull and gamma distributions if more sub-
routines are written and added. Whenever the log-normal
distribution is used for Y, the program performs the regres-
sion analysis for log Y as a function of log X, so that the
sample value for log Y is first calculated and then converted
to Y internally by taking antilogarithms. It must be remem-
bered that if one chooses to use the log-normal distribution
for Y and to supply R, XB, ¥YB, SX, and SY instead of supply-
ing the raw sample data, then the values of XB, SX, YB, and
SY must be given in terms of log X and log Y. That is, SB
must be the mean of log X, etc. If the raw data values are
supplied for X and Y respectively, the program automatically

converts to logs if Y is assigned a log-normal distribution.
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SECTION IV

EXAMPLE OF USE OF SIMULATION APPROACH
WITH COAL-FIRED ELECTRIC UTILITIES

In order to obtain an indication of how well the simulation
procedure approximates the "true" population, SO, emissions
from the stacks of coal-fired electric utilities were examined.
Data were available on % sulfur, coal consumed (CC), and stack
height (h) for 224 power plants in the U.S. This was consid-
ered to be the total population which was to be simulated by
using only a small number (24) of plants in order to obtain
information about the distributions of % sulfur, CC, and h.

To obtain a "random" sample, the first 24 plants on the list
were selected. Percent sulfur, CC, and h for these 24 plants
were then fitted to the four distributions considered in thé
simulation program. The distributions were then selected
which appeared to fit the data better on an overall basis
considering the SE, x2-value, actual class interval compari-
sons, and coefficient of skewness and measure of kurtosis
calculations. (These techniques of choosing the best fit are
discussed in Sections V and VI of this report.) For % sulfur,
the Weibull Maximum Likelihood Fit was selected and clipped at
the 5% and 99% points. For CC, the Weibull Least Squares Fit
was selected and clipped at the 5% and 99% points. Also, h
was found not to be independent of CC. Hence, it was decided
to treat h as a dependent variable correlated with the inde-
pendent variable CC by using the raw data on the 24 plants to
obtain R, the correlation coefficient. The coefficient of
skewness indicated that h was not normal but skewed to the

right. Furthermore, the coefficient of skewness and measure of
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kurtosis for log h indicated "near-normality." Hence, it

was decided to use the log-normal distribution for h.

The severity equation for SO, emissions from the stacks of
coal-fired electric utilities was discussed earlier and is
repeated below:

(Ky) (% sulfur) (CC)
S = (24)
h2

Using this function for S, the data, as indicated above, were
entered into the simulation program and 5,000 values were
calculated for S. Subsequently, the mean, standard devia-
tion, percentage with S > 1, maximum value, and minimum
value were calculated. A deterministic calculation of these
values was performed for all 224 plants in the population

and the results are compiled in the table below:

Table 2. RESULTS OF DETERMINISTIC CALCULATIONS

Simulated Deterministic
Parameter value value
Mean 9.25 8.9
Standard deviation 12.5 12.4
Maximum value 154.5 136.0
Minimum value 0.08 0.36
Percent having S > 1 91 95

Frequency histograms and cumulative frequency plots were
also drawn for both the simulated values and the determinis-

tic values of S and these are shown in Figures 1 and 2.
The large-sample Z test was performed to determine whether

there was a significant difference in the simulated and

deterministic mean values obtained above. The test, as
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might be expected, showed no significance in the difference
at the 0.01 or 0.05 levels. Furthermore, the F test for
significant difference in the variances was also negative,

indicating no significant difference.

As can be seen from the frequency histogram of both the
simulated and deterministic plots, the severity appears to

be log-normally distributed. Furthermore, the cumulative
plots for the simulated and deterministic values of S indi-
cate an extreme-value distribution, such as the log-normal
distribution. As can be seen by comparing the cumulative
plots for the simulated and deterministic values of S, parts
of the distributions agree very well whereas other parts do
not agree as well. This is considered acceptable since the
total population in the deterministic calculation has only
224 points and this is very much a discrete population,
whereas the simulation plot assumes a continuous distribution
for S. Moreover; the sample correlation coefficient, which
was calculated from the 24 plants in the sample, probably
does not completely represent the true picture of the actual
correlation between CC and h. For these reasons, the x 2
goodness-of-fit indicates an overall poor fit oflthe simu-
lated cumulative to the deterministic cumulative distribution.

However, keeping in mind the purpose behind a simulation
(viz., to obtain information about an output variable when
very little is known about the input variables) and the con-
ditions under which it is generally performed (viz., little
or no information about the true distributions of the input
variables), the simulated values of the mean, etc., and the
cumulative plots are actually remarkably close to the "true"

values.
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SECTION V

DISCUSSION OF NON-NORMALITY AND CHI-SQUARE
GOODNESS-OF-FIT TEST

There are many real-world situations in which massive amounts
of data are collected and analyzed. In many of these cases
the data come from a population which is finite. Thus, when
statistical methods are employed to analyze the data, the
underlying distributions are of the discrete type. However,
it is common practice to approximate these discrete distri-
butions with one or more of a large number of continuous
distributions. The reason, of course, is that continuous

distributions are much easier to handle.

After deciding to use continuous distributions in the
analysis of the data, the experimenter must decide which of
the many types of distributions available will most closely
approximate his data and yield the best results for his
purposes. In some situations, past experience leads the
experimenter to choose a particular type of distribution.
For example, the exponential distribution and one of its
generalizations, the gamma distribution, are often used to
describe the distribution of arrival and/or departure times
in a queueing theory problem. In reliability theory. the
exponential distribution and another of its generalizations,
the Weibull distribution, are often used to describe the
distribution of time-to-first-failure or mean time between
failures. In measuring air pollution, the log-normal dis-
tribution is often used to describe the distribution of the

concentrations of pollutants in the air. However, in many
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instances the experimenter may have no previous knowledge of
how his data "should" be distributed. In these instances it
is sometimes desirable simply to use the well-known normal
distribution to describe the data. With the assumption of
normality, many statistical tests and procedures become
trivial to apply. However, when normality is assumed and the
"true" distribution is non-normal, error is introduced into
the problem. Thus, when an experimenter assumes his data are
normally distributed in order to be able to apply statistical
tests that require the normal distribution, he is naturally
concerned with the extent to which his assumption distorts
the desired results. One of the purposes of this section is

to shed some light on questions of the above type.

This discussion is mainly concerned with data collected in
connection with air pollution analysis and it is frequently
the case that these data exhibit extreme value characteris-
tics. This means that the data are not symmetrically located
around the mode but instead have extreme values to one side
or the other of the mode which causes the mean to be shifted
to the right or left of the mode. Thus, the data cannot
generally be described by the normal distribution. Analytical
techniques that can be used to detect and measure certain
"degrees of non-normality"” of data will be discussed. Some
of the well-known extreme value distributions, e.g., the
Weibull, gamma, and log-normal distributions, will also be
reviewed and compared with the normal distribution for
different values of their parameters. Finally, the x2
goodness-of-fit test will be discussed to show how it can be
used to test the fit of the data to a given distribution.

A. CENTRAL LIMIT THEOREM AND T-TEST

Consider a given population which has an unknown distribu-

tion with a finite mean and variance. Let X;, ..., Xp denote
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a random sample from this population so that each xi is a
random variable with the same distribution as the underlying
population distribution. Table 3 gives the notation for
certain statistical parameters for both the sample and the

population.

Table 3. NOTATION USED FOR STATISTICAL PARAMETERS

Sample Population
Parameter notation notation
Mean X u
Variance (SD) 2 a?
Third central moment m3 u3
Fourth central moment mu ul+
th
k central moment mk Uy

In general, English letters are used to denote a sample
parameter and Greek letters are used to denote the corre-
sponding population parameter. The first result to be dis-
cussed is the so-called "law of large numbers." This law
states that each of the sample characteristics in the table
above (as well as some others to be discussed later) I
converges in probability to the corresponding population
parameter. It is instructive to see what this means for the
case of X, the sample mean. Let ¢ > 0 be any positive
member. Then: )

lim

n->o

[P(|§£—u|>e)] =0 (30)
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or iif [P(Iih-ulie)] =1 (31)

where ih denotes the mean of a sample of size n. This indi-
cates that the probability that the mean of a sample of size
n will differ from the true population mean by as much as

e > 0 (for any € > 0) approaches 0 as the sample size n
approaches +«., The same is true of the other sample

characteristics.

Practically speaking, the law of large numbers is of little
benefit unless one can determine how good the approximation
is as a function of sample size or unless confidence intervals
can be found for certain samples of size n 2 30 where the
population parameters are "reasonably approximated" by their
sample counterparts. Instead of simply taking the sample
parameter [e.g., X or (SD)2] as the value of the population
parameter (u or ¢2), it is usually desirable instead to
construct confidence intervals around the sample parameter
within which the target population parameter is assumed to
be with a certain degree of confidence. Since an approxima-
tion to the population mean and a confidence interval about
it seem to be of central importance in most statistical
analyses of data, procedures (and their limitations) for

accomplishing this task are described below.

First, it is necessary to consider some preliminary defini-
tions and results: A random variable is said to have a chi-
square distribution with n degrees of freedom if its p.d.f.

is given by:

1 X(%-l) e--)zs for X > 0

n
fxy) = | 22 1(3) ,

|

(32)

0 elsewhere
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suppose a random sample X;, ..., X, is available from a
normal population with mean, u, and variance, ¢2. Then the

random variable defined by:

- 2
(n liéSD) (33)

has a chi-square distribution with n-1 degrees of freedom.

Next, suppose that Z is a standard normal random variable
and x2 is any chi-square random variable with n degrees of

freedom. Then the random variable:

T = (34)

is defined to be the "Student t" random 'variable with n
degrees of freedom. The T variable is a symmetric distribu-
tion that looks very much like the normal except that its

tails are somewhat wider.

The T-test is used to find confidence intervals about the
mean of a sample. Let X;, ..., X, denote a sample of any
size from a normal distribution with unknown mean, p, and
n

T Xi
i=1
n

variance, o?2. Let X = be the sample mean and let (SD)?2

be the (unbiased) sample variance. By standard statistical
theorems, X is designateg as a normal random variable with

mean, u, and variance, QH. Also, by one of the results stated
(n-1) (sD) 2

g2
with n-1 degrees of freedom. Thus:

above, is found to be a chi-square random variable

X-u
O'/l/I_l i""u (35)

T = =
(S—E) sp/v/n
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is a "Student t" random variable with n-1 degrees of freedom.
Thus, by using a table for the T variable, one can find ta
such that: 2

P(|T] < t) =1-a (36)
2
for any given a. For example, if o = 0.05, then tg, 25 = 2.2
for 11 degrees or tg,g25 = 2.18 for 12 degrees of freedom,
etc. Hence given o and the number of degrees of freedom, a
value ta can be found such that
2
-t < T <t

3 %

4

with probability l-o. Thus, with ¢ = 0.05, one finds a 95%
confidence interval for T. For the T defined above, it is

found that |—§:H—| < tg.g25 with 95% confidence

sb/vn
> -ty 925 < < to.o02s
SD/v/n
= SD = SD
== X - tg 925 — < v <X+ tg.025 —
vn vn

Thus, an interval is obtained in which the population mean
lies with 95% certainty.

The above procedure will now be examined with reference to

the assumption of normality. It is useful to establish the
reason why it was necessary for the sample to be from a

normal population. This gquestion can be answered by reversing
the steps used above. In defining the T random variable, the

numerator had to be a standard normal random variable and the

’ 2
denominator had to be lﬁ where x2 had a chi-square distribu-
tion with n degrees of freedom. Thus, if the sample were
IX.
= i

taken from a non-normal population, the sample mean, X = 5

will not (in general) be a normal random variable and the
(n-1) (sD)?

o2

variable will not in general have a chi-square
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distribution. Thus, for non-normal populations, the ratio
used in defining the T variable will not produce a T variable
and, hence, the T-test is not strictly valid. 1In such cases,
the central limit theorem is used. This theorem states that
if a sample of size n is taken from any population with finite

mean, p, and variance, o2

, the sample mean, ih, approaches a
normal random variable in distribution as n increases. 1In
fact, for samples of size n > 30, the sample mean is so close
to a normal distribution that for all practical purposes it
can be considered normal. Thus, if a sample of size n > 30
is taken from any population and its mean is calculated, one
will obtain approximately a normal random variable with mean,

2
p (the unknown population mean), and variance EH (where o2 is

the unknown population variance). Hence, letting
X
g = 17U (37)
o//n

a standard normal random variable is obtained. Since o is
unknown in the above equation and the sample size is rela-
tively large (>30), o can be approximated by the sample
standard deviation, SD, to obtain

Xn-u

sb/vn

7 = (38)

for the standard normal random variable. Hence, the normal

probability table may be used to find a value ZQL such that
2

P(|z] _<_z%) =1-oa (39)

and, hence, obtain (as in the T-test)

X -7

n <u <X + 2

n

NjR
N8
NiR
318

with 100(1 - a)% confidence.
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If the above two procedures are compared, it is found that
the ratio under consideration for finding the values t or 2
a a

X~-u

sD/V/n
difference is the specific reference table used. If the

2
is the same in both cases, namely, » and the only

underlying population is normal and n is arbitrary, the T
table is used and if not, but n > 30, the normal table is
used. Actually, the T tables in most statistics books stop
at n = 30 (29 degrees of freedom) because for n > 30 the
variable defined by the above ratio can be considered to be
normal or T regardless of the underlying population distri-

bution. Hence, it would be useless to construct tables
beyond approximately n = 30 for the T variable since they
would simply duplicate the values that could be obtained

from a normal table.

It is sometimes desired to find a confidence interval when n
is less than 30 and our data are non-normal. Unfortunately,
there is no completely statisfactory analytical answer that
can be given in this case. However, statisticians have found
from experience that the normal approximations guaranteed by
the central limit theorem for samples of size n > 30 are still
very close to normal for most mound-shaped probability distri-
butions. In some cases, the approximation is valid for samples
as small as n = 5. Hence, in the case of n < 30, one can
simply calculate the confidence interval in the same way as
described above, assuming normality, and subsequently point
out the possible pitfalls that could occur if the underlying
distribution strays too far from normality (viz., the confi-
dence interval would no longer be valid and more sampling
would be required). An alternate approach for n < 30, when
there is reason to believe that the data are log-normally
distributed, is to apply the T-test to the logs of the data

and obtain a confidence interval.
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It is interesting to apply the above procedure to the data
for coal-fired electric utilities. Data are available for
224 power plants on coal consumption, stack heights, percent
sulfur in the coal used, and percent ash in the coal used.
The first 24 plants on the list were then selected and con-
sidered to be a random sample from the population of 224
plants. Using the 24 plants in the sample, the sample mean,
standard deviation, and 95% confidence limits on the mean
were calculated for each of the above types of data and these
were compared with the population parameters for all 224

plants. The results are provided in Table 4.

Table 4. COMPARISON OF RANDOM SAMPLE VALUES AND POPULATION MEAN
FOR COAL-FIRED ELECTRIC UTILITIES

Random sample values
Standard 95% confidence Population
Type of data Mean deviation interval mean
Coal consumed, kg/yr | 1,326 1,349 756;1,896 1,089
Stack height, m 93.6 36 78.4;108.8 101.3
Percent sulfur 1.82 1.15 1.33;2.31 2.48
Percent ash 12.25 4.1 10.52;14.0 13.03

As noted above, the 95% confidence interval contains the
population mean for each of the data types studied except
the percent sulfur. Using various statistical goodness-of-
fit tests (to be discussed later) on the data, it was found
that coal consumption was exponentially distributed almost
perfectly, the percent ash was log-normally distributed, and
stack height could not be fitted with much success to any of
the distributions that were tried. However, even with these
wide-ranging distributions (which are very much non-normal)
and a sample size of only 24, the T-test still provided
satisfactory results in every case except the percent sulfur

ased. Upon investigating the percent sulfur situation more
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closely, it was found that the range on the data in the sample
of the first 24 plants was from 0.4% to 4% whereas the popu-
lation data ranged from 0.4% to 6.2%. This indicates that,

in the case of percent sulfur, the random sample is probably
not very good. However, the 95% confidence interval for
percent sulfur was still relatively close to containing the

actual population mean.

B. COEFFICIENT OF SKEWNESS AND KURTOSIS AS ANALYTICAL
MEASURES OF NON-NORMAL DISTRIBUTIONS

In a symmetric distribution, every moment of odd order about
the mean (if existent) must be zero. Any such moment which

is not zero may thus be considered as a measure of the asym-
metry or skewness of the distribution. The simplest of these
measures is Mo which is of the third dimension in units of

the variable. In order to reduce this to zero dimension and
so construct an absolute measure, division by o3 is performed

and the ratio

u
y =3 (40)
03

is regarded as a measure of the skewness. Yl is called the

coefficient of skewness.

In statistical applications, unimodal continuous distributions
of the type shown in Figure 3 are often encountered. The
frequency curve forms a long tail to the right of the mode
and a short tail to the left. Thus, in calculating us' the
cubes of the positive deviations will generally outweigh the

negative cubes and, hence, u3 will be positive as will

u
y = —2, Thus, the above distribution is said to be skewed
1 o3

right or have positive skewness. Similarly., negative skew-

ness occurs when y < 0.
1
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Figure 3. Unimodal continuous distribution

Reducing the fourth moment uy to zero dimension in the same
y
way as above, the measure of kurtosis of a distribution is

defined as:

u
04

The measure of kurtosis is used as a measure of the degree of
flattening of a frequency curve near its center. The normal
distribution has a constant measure of kurtosis, y2 = 3.

Thus vy > 3 means that the distribution has a sharper peak,
thinne% shoulders, and fatter tails than the normal distribu-
tion. Likewise, y < 3 means that the distribution has
flatter peaks, fatier shoulders, and thinner tails than the

normal distribution. Figure 4 exhibits these features.

All of the above distributions are not skewed although curve 1
and curve 2 in Figure 4 would fail to be normal because of

deviations in their measures of kurtosis.

It can be shown that Yl = 0 and vy 3 for the normal distri-
2

bution. Hence the values of skewness and kurtosis for a
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Figure 4. Examples of kurtosis in distributions

given distribution can be used to compare it with the normal.
To obtain another reference point for comparisons, consider
the exponential distribution function whose probability

density is given by:

1/8 e X/8 for x > 0
£(X) = { } (42)

0 elsewhere

where B > 0 is an arbitrary parameter. By calculating the
necessary moments, etc., it is found that the exponential
distribution also has constant values for Yl and y2 indepen-

dent of the parameter B. These are given by:

vy = coefficient of skewness = 2
1
(43)
vy = measure of kurtosis = 9

Hence, another reference point is available for comparison
purposes. The exponential distribution is a one~tailed dis-
tribution which (as indicated above) is heavily skewed right
with a sharper peak, thinner shoulders and a fatter tail
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than that of the corresponding normal distribution. The
density function for the exponential distribution is graphed

below.

1/8

FREQUENCY

VALUE OF VARIABLE

Figure 5. Probability density function for
the exponential distribution

In the next sections, the formulae will be investigated for
various points of interest on the Weibull and gamma distribu-
tions as a function of their parameters. The mean, median,
mode, value of the p.d.f. at the mode (i.e., the maximum
value of the p.d.f.) and the coefficient of skewness and

measure of kurtosis will be considered.
C. WEIBULL DISTRIBUTION

The two-parameter family of Weibull density functions is

given by:
b
{abxb-l e % for x > 0}

£(X) = (44)

0 otherwise

where a, b > 0 are arbitrary parameters. The cumulative

distribution can be found in closed form and is given by:
b

l—e-aX for X > 0
F(X) = (45)

0 elsewhere

Graphs of the p.d.f. of the Weibull distribution for various

values of b are given below (for a = 1):
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Figure 6. Probability density function of the Weibull
distribution for various values of parameter b (for a = 1)

From Figure 6, it can be seen that for b = 3.26 the curve is
almost normal; for b = 2, it is skewed right with positive
kurtosis; and, for b = 1, it is an exponential curve. For

b = 1, it can be seen that the Weibull distribution reduces
precisely to the exponential distribution. 1In order to
observe how the curve changes for different values of a and
b, some of its points of interest are analytically calculated

below as a function of a and b. The following formulae are

used:
§ = mean = a_l/br(l+l/b) (46)
median = a /P (10g 2)1/P (47)

1/b
mode = a'l/b(]i’%l) (for b > 1; if b < 1, the mode = 0)
(48)
p-1\P-171/b

f (mode) = maximum value of p.d.f. = l}b(—6_> (49)

(for b > 1; if b < 1 the max. value = + «)
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62 = variance = a 2/P[r(142/b) - r2(1+1/b)1 (50)
o = standard deviation = Vg2 (51)
p = third central moment
= a73/P[r(143/b) - 3T (1+1/b)T (142/b)+2r3 (1+1/b) ]

= a 3/Pr(143/b) - 3po2-y3d (52)

fourth central moment

=
I

= a~4/PIr(144/b) - 4T (1+1/b)T (1+3/b) +
672 (1+1/b)T (1+2/b) - 3T%*(1+1/b)]

= a~4Pr1+a/p) - fup ~6uZo2-y® (53)
u
Yy = coefficient of skewness = -% (54)
1 o
i
Yy = measure of kurtosis = -% (55)
2 g

Letting a = 1, the above formulae are used to calculate the
points of interest for various values of b as given in
Table 5.

As can be seen from Table 5 at b = 3.26, the Weibull distri-
bution function is "almost" normal. For example, its mean,
mode, and median all occur at approximately the same point.
Furthermore, its coefficient of skewness is near 0 and its
measure of kurtosis is near 3 at that value of b. As b
decreases from 3.26 to the values of 2.0, 1.5 and lower, the
curve becomes more and more non-normal. Its mode begins to
shift farther to the left of its mean (and median) indicating
a skewed right distribution. The coefficient of skewness
(as expected) begins to increase from 0.089 to 0.631, 1.08,
etc. Finally, the measure of kurtosis begins to increase

also, indicating sharper peaks, thinner shoulders and fatter
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Table 5. VALUES FOR VARIOUS POINTS OF INTEREST IN THE
WEIBULL DISTRIBUTION FOR VARIOUS VALUES
OF PARAMETER B (WHEN A = 1)

Value

Point of interest b=3.26 b=2.0 b=1.5 b=1.4| b=1.1
Mode 0.894 | 0.707 0.481 0.409 | 0.113
Value of f (mode) 1.26 0.858 0.745 0.736 | 0.808
Median 0.894 {1 0.833 0.783 0.770 ) 0.716
Mean (u) 0.896 | 0.886 0.903 0.911 | 0.965
Variance 0.091 | 0.215 0.375 0.436 | 0.771
3rd moment about u 0.002 | 0.0628 | 0.248 0.343 | 1.174
Standard deviation (o) 0.303 | 0.463 0.613 0.660] 0.878
F(u+o) 0.836 | 0.838 0.845 0.848 | 0.859
F(u-o0) 0.166 | 0.163 0.145 0.134 ] 0.081
% between u-o and u+to 67% 67.5% 70% 71.4% |77.8%
Coefficient of 0.089 | 0.631 1.08 1.19 1.73

skewness (= 0 for

normal)
Measure of kurtosis 2.73 3.244 4,384 4.838 ] 7.296

or excess (= 3 for

normal)
4th moment about 0.023 | 0.150 0.619 0.918 | 4.336

tails than the normal. At b = 1, the Weibull distribution
reduces to the exponential distribution with Yl = 2 and

Yz = 9. It can be seen that Yl and Yz are converging to

these values for when b = 1.1, yl = 1.73 and y2 = 7.3. Ifb
is allowed to attain values < 1, then as indicated earlier the
mode becomes 0 and the maximum value of f becomes +~. Further,
the parameters Yl and y2 continue to increase giving larger
values than those corresponding to the exponential distribu-
tion. When b > 3.26, the Weibull distribution becomes skewed
left and its kurtosis drops below 3. From the above discus-
sion it can be seen that the parameter b controls the shape
of the Weibull distribution, i.e., whether it is "almost"

normal or skewed right or left, etc.
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Consider what happens whenever the parameter, a, changes for
given values. Table 6 is similar to Table 5 except that the
value of a has been changed from 1.0 to 1.0 x 10~5. This
change in the value of a "stretches" the p.d.f. to cover
data that is wide ranging. It also causes the maximum value
of the p.d.f. to decrease to the point where the curve is
almost flat. The values of Yl and y2 do not change since

they are unitless measures and should not be affected.
D. GAMMA DISTRIBUTION

The gamma distribution is another of the extreme value dis-
tributions. The two-parameter family of the gamma p.d.f. is
given by:

———!'-——--Xa-le-x/B for X > 0

£(x) = { 8% (a) (56)

0 otherwise

where a, B > 0 are arbitrary parameters. It can be noted
that when o« = 1, the gamma distribution reduces to the
exponential distribution. When o = n/2 and B = 2 for a
positive integer n, thelgamma distribution reduces to the

chi-square distribution with n degrees of freedom.

The closed form for the cumulative distribution function of
the gamma distribution does not in general exist and in order
to use a table to look up its values one should consult a
table of the incomplete gamma function. Of course, if o« = 1,
the closed form exists and, if o« = n/2 and B = 2 for a posi-
tive integer n, the appropriate chi-square table can be used.
The graph of the p.d.f. of the gamma distribution for various
values of a with B = 1 (fixed) is shown in Figure 7.

As can be seen from Figure 7, the gamma distribution is a

skewed right distribution with relatively fat tails. The
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A4

Table 6.

VALUES FOR VARIOUS POINTS OF INTEREST IN THE WEIBULL DISTRIBUTION

FOR VARIQUS VALUES OF PARAMETER b (WHEN a = 1.0 X 10'5)
Values

Point of interest b =3.26 b=2.0 b=1.5 b=1.4 b=1.1
Mode 30.6 223.6 1,036 1,525 3,968
Value of f(mode) 0.037 0.003 0.0003 0.0002 0.00002
Median 30.6 263.4 1,687 2,870 25,140
Mean () 30.6 280.2 1,946 3,396 33,880
Variance 107.5 2.15 x 10" 1.74 x 108 6.06 x 108 9.50 x 108
3rd moment about u 79.8 1.97 x 106 2.98 x 109 1.78 x 1010 5.08 x 1013
Standard deviation (ag) 10.4 146.6 1,319 2,461 30,831
F (u+a) 0.836 0.838 0.845 0.848 0.859
F (u-0) 0.165 0.163 0.145 0.134 0.066
% between u-c and u+o 67.1% 67.5% 70% 71.4% 79.3%
Coefficient of 0.089 0.631 1.08 1.19 1.73

skewnessa
Measure of kurtosis® 2.73 3.248 4.39 4.82 7.294
4th moment about u 3.41 x 10% 1.5 x 10° 1.33 x 1013 1.77 x 101t 6.59 x 1018

aThe slight variations between the coefficient of skewness and the measure of kurtosis

Tables 5 and 6 are due to calculator round-off, and actually should be identical.

values shown in



FREQUENCY

VALUE OF VARIABLE

Figure 7. Probability density function for the gamma
distribution for various values of parameter o (for 8 = 1)

parameter o is the shape parameter and the parameter B is the
stretch parameter. To get an analytical picture of skewness,
kurtosis, etc., for the gamma distribution, some formulae are

provided below for calculating the mean, variance, etc.

U = mean = aof (57)
02 = variance = aB? (58)
mode = (a-1)8 (59)
. (a-1)%"1  _(a-1)
f(mode) = maximum value of p.d.f. = TV e (60)
o = standard deviation = voZ = g/a (61)
u3 = 2aB3 (62)
M = 3a2B" + 6aB" (63)
y = Ei _ 2aBg3 - 2 (64)
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_ 322" + 6aB"
a2

=3 + 6/a (65)

Q =
£
|

From the above formulae for Yl and Yz' it can be seen that
the gamma distribution always has a positive coefficient of
skewness and always has a measure of kurtosis > 3. Thus, it
will tend to be right skewed and have sharper peaks and
fatter tails than the corresponding normal distribution.
Only by changing the shape parameter to very large values of
a can the gamma distribution be made to approach the normal
distribution's values for Yl and Yz' When this is done, the
mean and the mode tend to become closer together as they
should for the normal distribution. For a = 1, the skewness
is 2 and kurtosis is 9 as it should be for the exponential
distribution of which it is a generalization. Finally, it
should be noted that for values of a < 1, the skewness and

kurtosis increase sharply to very large values.
E. LOG-NORMAL DISTRIBUTION

The two-parameter family of log-normal p.d.f. is given by:

{ L cmi/p(legXay g x > o}

XvY21R

0 elsewhere

£(X) =

where a is any real number and B > 0. A random variable with
this p.d.f. has the property that its logarithm to base e is
a normal random variable. A graph of the p.d.f. for the
log-normal distribution looks similar to the one shown in

Figure 8.

As can be seen, the log-normal distribution is another right
skewed distribution. Further it tends to have "heavier

tails" (i.e., larger kurtosis) than even the exponential
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FREQUENCY

VALUE OF VARIABLE

Figure 8. Probability density function
for the log-normal distribution

distribution. (This distribution is shown graphically by

Curran and Frank.?>)
F. SAMPLE SKEWNESS AND KURTOSIS

Previous discussions were concerned with theoretical distri-
butions and their analytical skewness and kurtosis. It is
also instructive to consider samples drawn at random from
some population. Consider the sample analogy of skewness
and kurtosis and observe how they can be used to predict
deviations from normality and toward some other distribution,
e.g., the exponential distribution, etc. Formulae are pre-
sented below which are used to produce unbiased estimates of

the variance and some other higher central moments about the

mean:
m; = third (unbiased) central moment about X
n n
=" -X) 3
w0 @2 L Ki¥ (66)

SCurran, T. C., and N. H. Frank. Assessing the Validity of
the Lognormal Model when Predicting Maximum Air Pollution
Concentrations. (Presented at the 68th Annual Meeting of

:ge Air Pollution Control Association, Boston. June 15-20,
75.)
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m, = fourth (unbiased) central moment about X
n2-2n+3 o 5
= — = — T (X, -X)"* -
(n-1) (n-2) (n-3) i=1 i
(2n-3) th ’
- -X) 2
n(m-1) (n=2) (n=3) [ijt (X;=X) ] (67)

(SD)2 = unbiased estimate of variance

1 n -
= s z (Xi—X) (68)
i=1
From the above, the sample coefficient of skewness, g;, and

measure of kurtosis, g,, can be constructed as follows:

m3
g = (SD) 3 (69)
my

The law of large numbers discussed earlier can now be en-
larged to include the sample parameters g; and g,; i.e., g;
and g, also converge in probability to their population
counterparts, Yl and Yz' as the sample size, n, becomes large.

Tables 7 and 8 provide the 0.05 and 0.01 points of the
distribution of the coefficient of skewness and the measure
of kurtosis, respectively, which can be used to evaluate the
sampling distributions for parameters g; and (g;-3). If a
given sample has a value of g; or (gy-3) beyond the 0.05
point, it may be deemed to be non-normal. In a stricter
test, the 0.01 point would be used. The tables for both g;
and (g,-3) are not complete and do not give values for small
numbers of samples in the case of (gy-3). More extensive
tables can probably be obtained from the original source
shown in the tables. If the calculated values of g; and
(g2-3) fall below the 0.05 value, this does not mean that

one can categorically accept normality. However, it is a
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Table 7. 0.05 AND 0.0l POINTS OF THE DISTRIBUTION
OF Y . THE COEFFICIENT OF SKEWNESS (NORMAL UNIVERSE)®6 2

Probability that y; will exceed listed
value in positive direction is
Sample size, n 0.05 point 0.01 point

25 0.711 1.061
30 0.661 0.982
35 0.621 0.921
40 0.587 0.869
45 0.558 0.825
50 0.533 0.787
60 0.492 0.723
70 0.459 0.673
80 0.432 0.631
90 0.409 0.596
100 0.389 0.567
125 0.350 0.508
150 0.321 0.464
175 0.298 0.430
200 0.280 0.403
250 0.251 0.360
300 0.230 0.329
400 0.200 0.285
500 0.179 0.255
750 0.146 . 0.208
1,000 0.127 0.180

aPoints listed are on the positive tail of the distribution;
with a minus sign attached, they are equally valid for the
negative tail.

Geary, R. C., and E. S. Pearson. Tests of Normality.
London, University College, 1938.
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Table 8. PERCENTAGE POINTS OF THE DISTRIBUTION
of YZ' THE MEASURE OF KURTOSIS (NORMAL UNIVERSE) ®

Probability that Probability that
vyo falls below vy2 falls above
listed value is: listed value is:
0.01 0.05 0.05 0.01
Sample size, n point point point point
200 -0.63 -0.49 0.57 0.98
250 -0.58 -0.45 0.52 0.87
300 ~0.54 -0.41 0.47 0.79
500 ~-0.43 -0.33 0.37 0.60
1,000 -0.32 -0.24 0.26 0.41
2,000 -0.23 -0.17 0.18 0.28
5,000 -0.15 -0.11 0.12 0.17

good indication that the distribution does not stray far
from normality (with respect to skewness and kurtosis) and
would not produce serious error in most statistical appli-

cations, assuming that it is a normal distribution.

As an example of the above procedure for using g; and g, and
the tables, consider the 224 power plants described earlier
and their data on coal consumption, plant capacity, percent
sulfur, percent ash, and stack height. Table 9 gives the
values of g;, g, and (g,-3) for these data.

From the conclusions shown in Table 9, it can be seen that,
with the exception of sulfur, normality of the sample data
can be denied on the basis of skewness and kurtosis alone.
Percent ash is denied because of skewness alone and the
others fail both tests. The natural question to ask at this
point is what distribution (if any) do the data fit if it is
definitely non-normal? Since g; = 2.05 and g, = 8.03 for
coal consumed and Yl = 2 and y2 = 9 for the exponential dis-
tribution, one might guess that the coal consumption data are
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Table 9. VALUES OF g;, 92 AND (g,-3) FOR POWER PLANT EXAMPLE

Type of data g, g5 (gp—3) Conclusions

Coal consumed 2.05] 8.03 5.03 Non-normal

Plant capacity 1.5 4.8 1.8 Non-normal

Stack height 1.46 | 5.14 2.14 Non-normal

Percent sulfur 0.25 ] 2.88 -0.12 Looks normal as far as

skewness and kurtosis
are concerned

Percent ash 0.48 | 3.04 0.04 Non-normal because of
slight right skewness;
kurtosis is satisfactory

almost exponentially distributed. In the next section,
another goodness-of-fit test called the chi-square goodness-
of-fit will be discussed. This technique can be used to
test how well sample data will fit any variety of distribu-
tions and it will be used to analyze the distribution of

coal consumed and percent sulfur in the power plants data.

G. THE CHI-SQUARE GOODNESS-OF-FIT TEST

The chi-square test for goodness-of-fit is a general non-
parametric statistical test of hypothesis used to test a
hypothesis, Hjy, of the form: The sample data are distributed
according to some given probability distribution. The chi-
square test compares a set of actual sample frequencies with
a set of frequencies that would be expected on the basis of
Hy. If the two sets compare well, the hypothesis is accepted
and the data are assumed to be distributed in the way claimed.
If the two sets of frequencies compare poorly, the hypothesis
is rejected. Since the sampling distribution that is used
tends to form a chi-square distribution under the given

hypothesis, the test is called a chi-square test.
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In order to formulate the chi-square test, let F;, ..., Fp
represent the actual frequencies of the sample data in n
class intervals. Under the hypothesis (H;) that the data
are distributed according to some given distribution
function, let £,, ..., £, be the theoretical frequencies
that would be expected for a sample of the same size from the
given distribution. If Hy; is to be true, sample values of
the quantity:
n (F.-f,)2
x2 = : — (71)

i i

will tend to form a chi-square distribution. Hence, given a
sample and its actual frequency, the theoretical frequencies
that would result from Hy can be calculated and substituted
into the above formula to obtain a value of x2. Then, by
looking at a chi-square table, one can determine whether the
sample value of x2 is significant enough (at whatever level
desired, usually 0.0l or 0.05) to be rejected as a value from
the chi-square distribution. If it is, the hypothesis H; is
rejected and if it is not, Hy is accepted. In the case of
rejection, the probability of error can be stated and one can
be as confident as desired in the rejection. However, if
rejection cannot be made at a given level of confidence, then
Hy is accepted but this cannot be done with any statement of

error concerned.

Before applying the chi-square test, one must consider the
number of degrees of freedom to be used for the sampling
distribution x2. Since the value for x? is extended over n
terms (where n = the number of class intervals), it may
appear that the sampling distribution has n degrees of
freedom. However, some of these degrees of freedom have been
utilized in the construction of the test. The given sample
size was used to determine -the theoretical frequency of that
sample size for each class interval. This reduces the number
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of degrees of freedom by one to n-l. The "given” distribu-
tion in Hy (the hypothesis to which the test is being applied)
is generally one of the many distributions available in
statistics and these are generally parametric families of
distributions with one, two, or more parameters. In calcu-
lating the theoretical frequencies for each class interval
from the given distribution, these parameters must be speci-
fied in some way. The usual methods of obtaining these
parameters for a given sample involve using the data in the
sample in some way (e.g., the method of moments, the method
of maximum likelihood, or the method of least squares). If
the sample data are used to determine the parameters, the
number of degrees of freedom must be further reduced by one
for each parameter so estimated. Thus, for a two-parameter
distribution, the total number of degrees of freedom finally
realized for the x2? test is n-3 (where n = the number of
class intervals used). If the distribution in the hypothesis
Hy has its parameters specified independently of the sample,
or if the theoretical frequencies are given without needing
to be calculated from a given distribution, it is not neces-
sary to reduce the number of degrees of freedom by any more

than one (i.e., to n-1).

Another consideration that arises with the chi-square test
which needs some discussion is the problem concerned with the
number of theoretical frequencies for each class interval.
‘It is a conservative rule that the theoretical frequencies

in any class interval be five or more. If this is not the
case, adjacent intervals should be pooled so as to accomplish
this task. When two class intervals are pooled, however, the
number (n) of class intervals is reduced by one, and, hence,
so is the number of degrees of freedom of x2. Thus, it is

of no benefit to try to use a large number of class intervals
to start the test for in the end these will have to be pooled
to obey "the rule of 5." Another point to observe is that.
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whenever the number of class intervals has to be reduced to
three or less in order to obey the "rule of 5," the number of
degrees of freedom for x2 drops to zero and, hence, the y2
test is not applicable. Thus, for very small sample sizes
(approximately 15 or less), the x2 test will not be very work-
able §nd other measures must be used to get fits to the data.

Actually, the "rule of 5" is conservative and need not be
strictly obeyed. For example, if a theoretical frequency for
some class interval is around four and the actual frequency
is close to that value, it would not be necessary to pool the
class intervals and thus reduce the number of degrees of
freedom. Furthermore, it has been observed that if an error
of 1% can be tolerated in the probabilities read from the
chi-square table at the 0.05 level or a 0.2% error at the
0.01 level, then the smallest theoretical frequency can be

as low as two 1f there are at least six degrees of freedom,
as low as one if there are 10 degrees of freedom, and as low
as 0.5 if there are 25 degrees of freedom. However, all of
these low frequencies should occur only once to be allowed;
otherwise, pooling must be used according to the "rule of 5"

described above.

The data from the power plants will now be used to demonstrate
the x2 test. Consider coal consumed, which on the basis of
skewness and kurtosis was guessed to be an exponential dis-
tribution. The method of least squares is used to arrive at
values of the parameters a and b in the Weibull distribution.
from the given data. These values were given by a = 9.7 x 10~%
and b = 0.9974. Since b & 1, the exponential distribution is
represented here. A bhi-square test will now be performed to
see if the data do indeed fit the exponential distribution.
Table 10 gives the actual and theoretical frequencies for nine
class intervals (determined by Sturge's rule) beginning with
the smallest value and proceeding through the largest value.
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Table 10. THEORETICAL AND ACTUAL FREQUENCIES FOR
NINE CLASS FREQUENCIES (COAL CONSUMED)

Class Theoretical Actual
interval frequency frequency
1 115.2 116
2 52.0 55
3 27.1 22
4 14.2 14
5 7.4 8
6 3.9 4
7 2.0 3
8 1.1 0
9 1.2 2

In order to obey "the rule of 5," the last four class inter-
vals are pooled into one with a theoretical frequency of 8.2
and an actual frequency of 9. Thus, six class intervals and
three degrees of freedom result. The value of x2 for this
table is 1.3. Referring to a x2 table, this value of x2 is
not significant at the 0.0l level or at the 0.05 level. 1In
fact, it becomes significant at the 0.8 level. This indicates
a very good fit and, hence, one can conclude that the data

are indeed exponentially distributed.

Recalling that the gamma distribution should also fit the
exponential distribution for o« = 1, a method of moments fit
was completed for the gamma distribution to the sample data
to obtain the parameters, o« = 1.06 and 8 = 1024.8. Upon
doing a x2 test, it was found that the number of degrees of
freedom was three and x2 = 1.9. This value of x2 was not
significant until the 0.6 level of significance. Hence, a
very good fit to the data was also obtained using the gamma
distribution.
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In view of the above discussion, one would certainly believe
that the x? test should reject normality of these data. Using
the maximum likelihood fit to the data (i.e., simply using

u = sample mean and ¢ = sample standard deviation) for the
normal, one obtains three degrees of freedom and a y2 value

of 31.6 which can be rejected at any level for three degrees

of freedom.

Since the log-normal distribution is a right skewed distribu-
tion, it is reasonable to believe that it may fit these data.
Indeed, the x2 tests yields six degrees of freedom with

x2 = 3.4. This value is not significant with this number of
degrees of freedom until the 0.75 or 0.8 level. Hence, the
log~-normal distribution also yields a very good fit to these
data.

Next, consider the % sulfur in the coal consumed. Since the
skewness and kurtosis tests earlier indicated a possible nor-
mal distribution for these data, the normal distribution was
fitted to the data by maximum likelihood and a x? test was

performed. The table for nine class intervals is shown below:

Table 11. THEORETICAL AND ACTUAL FREQUENCIES FOR
NINE CLASS INTERVALS (% SULFUR IN COAL)

Class Theoretical Actual
interval frequency frequency
1 22.3 32
2 31.4 28
3 46.5 37
4 50.0 51
5 39.0 42
6 22.0 26
7 9.1 4
8 2.7 1
9 1.0 3
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A clarification is in order to define the manner in which the
last few class intervals should be pooled. Since pooling the
last two intervals yields a theoretical frequency of 3.7 with
an actual frequency of 4, this will be used to obtain five
degrees of freedom and a x2 value of 10.3. This value of x2
is not significant at the 0.05 level (it becomes significant
at about 0.07 or 0.08). Hence, normality for % sulfur is
accepted although with some reservations. If the last three
intervals had been pooled, four degrees of freedom would have
been obtained and x? would be 9.2 which is not significant at

0.05 (it becomes significant also at about 0.07).

Since the fit to the normal distribution for % sulfur is
rather poor by x?2, various fits to other distributions may be
evaluated, viz., the Weibull (by both maximum likelihood and
least squares) and the gamma and the log—-normal distributions.
All of these distributions fail, although the Weibull maximum
likelihood comes closest with five degrees of freedom and a
x2 of 18.3. However, this value is significant at 0.01 and

consequently the fit is rejected with "99% confidence."

In order to perform chi-square, skewness, and kurtosis tests
on sample data, the amount of computation becomes very large.
Hence, a computer program was written to perform the compu-
tations involved in obtaining these measures for various
types of fits to the four distributions which have been
considered in this report: the Weibull, gamma, log-normal,
and normal distributions. This program and its method of

operations are described in Appendix D.
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SECTION VI

APPENDIXES
Standard Statistical Formulas for Finite Populations

Detailed Derivations of the Criteria Pollutant Severity
Equations

The Simulation Programs
The Goodness-0Of-Fit Program

Treatment of Correlated Data by Linear Transformation
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APPENDIX A

STANDARD STATISTICAL FORMULAS FOR FINITE POPULATIONS

In certain cases, when sampling from finite populations (e.g.,
brick kilns, cattle feedlots, etc.) and the sample size, n,

is small compared to the total population size, N, correc-
tions must be made to the standard deviation and confidence
limit calculations. It should be recognized that there is a
difference between the sample standard deviation and the

estimated population standard deviation. When dealing with

a population of 400 plants comprising a given source type,

N = 400. If 10 plants are surveyed for a stack height, age,
capacity, etc., n = 10. Using the data from those ten plants,
one can compute the means and standard deviations of the
various parameters. But the computed values are the biased
mean and standard deviation of the sample of 10 points.

What is really desired is an unbiased estimate of the mean

and standard deviation of the population of 400 plants. The
symbol """ will be used over another symbol to stand for an
estimate. Assume that a sample mean, X, and a sample standard

deviation, SD, have been computed. An estimate, i, of the

total population mean, u, is:
i =X (A-1)

where X = == (a-2)

An estimate of the population standard deviation, ¢, is

simply:

6 = SDN— \—— (A-3)

where SD = sample standard deviation = %anZXZ—(Zx)Z (a-4)
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Earlier it was indicated that the sample standard deviation
gave a biased estimate of the corresponding population param-
etef. The first square root factor in Equation A-3 corrects
for this bias. As the sample size, n, becomes larger, the
factor approaches unity; hence, the bias is less for larger
sample sizes than for small ones. The following table shows
this tendency:

Table A-1l. FIRST SQUARE ROOT FACTOR IN EQUATION A-3
AS A FUNCTION OF SAMPLE SIZE

Sample size n
(n) n-1

2 1.4142

5 1.1180

10 1.0541

50 1.0102

100 1.0050
1,000 1.0001

The second factor, §ﬁ_' in Equation A-3 adjusts for finite
population size, and, if n = N, the correction factor is

unity or,
6 = SD (A-5)
which is logical since the sample size is equal to the popu-

lation size. There is one more important parameter used in
calculating confidence limits and that is the estimated

standard error of the mean, 82:
~ _ 0 [N-n _
02'_/;1‘ N-1 (A-6)
Confidence limits on j§ are thus:
i * Ko— A-7
oo+ Kox ( )



where K is the standard "Student t" variable with (n-1)

degrees of freedom, and unless otherwise specified should
be for the 95% (a

= 0.05) confidence level.

The preceding formulae are summarized for reader convenience
below:

Quantity Formula
Sample mean, X: E% (A-2)
2 2
Sample standard deviation, SD: \LQZX n(Zx) (A-4)
Estimated population mean, ii: X (A-1)
Estimated population SDJ n JN—l (A-3)
standard deviation, o: n-1 N
Estimated standard g N-n
error of mean, o=: N-1
X /n
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APPENDIX B
DETAILED DERIVATIONS OF THE CRITERIA
POLLUTANT SEVERITY EQUATIONS

1. CO SEVERITY EQUATION

Since the primary standard for carbon monoxide, CO, is for a

l1-hour averaging time, t = 60 minutes and ty; = 3 minutes.
Given X = —E—Q? (B~1)
max meuh

Correcting for averaging time:

3\0.17
Xmax ~ Xmax<€5> (B~2)
3

2 0

0.17
Teuh? —3)

2 Q(0.6)
weuh

1.2 O
(3.14) (2.72) (4.5)h~

- 3.12 x 10~2

max ( hZ 10 (B-2)
X,
T (B~3)

or

>
|

Given S =

For the criteria pollutants, F is set equal to the primary
standard which is 0.04 g/m3 for CoO.

X -2 -2
Then, s = gax - (3.12 xolg4 ) Oh
and Sco = 94%%—9 (B~4)
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2. HYDROCARBON SEVERITY EQUATION

The primary standard for hydrocarbons is for a 3-hour
averaging time. Thus, t = 180 minutes and ty = 3 minutes.

2 Q _ 0.052 0

Given Xmax - Teuh® = VA (B-1)
Xmax -~ *max (180)
=-0.5 Xmax
_ (o.5)(g5052)Q - 00260 0 (B-5)
For hydrocarbons, Fpe = 1.6 x 10~% g/m3
X, -2
_ Xmax _ 0.026 Qh _
‘Then S=F 1.6 x 107 (B-6)
_ 162.5 Q oy
and Sue = TRz (B-7)
3. PARTICULATE SEVERITY EQUATION
The primary standard for particulate is for a 24-hour
averaging time.
- 3 \0.17
Xmax ~ xmax(l440)
_ (0.052)0(0.35) _ (0.0182}0Q (B-8)
- hZ - h-
For particulates, Fp = 2.6 X 10~-% g/m3
X -2
_ Xmax _ 0.0182 oh _
$=F ~26x107 (8-9)
70
and Sp = ‘pro (B-10)
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4. SOX SEVERITY EQUATION

The primary standard for SOx is for a 24-hour averaging time.

Thus, Xy = 12;9%3219 (B-11)
The primary standard is 3.65 x 10~% g/m3.
F = 3.65 x 10~%
SOy -
and s = Xmax _ (0.0182)Qh=2 (B-12)
F 3.65 x 10 °¢
and Sso,, = 228 (B-13)

5. SEVERITY EQUATION FOR NOx
Since NOx has a primary standard with a l-year averaging

time, the correction equation cannot be used. Instead

max 3
the following equation is used:

- _2.03 Q _1/ h\? _
X = —qux exp [7(0 )] (B-14)

A difficulty arises, however, because a distance, X, from
emission point to receptor, is included. To overcome this,

the following rationale is proposed:

. _ 20 -
The equation Xmax - Teuh?Z (B-1)
is valid for neutral conditions or when o, = Gy' This
maximum occurs when
h = /Zoz (B-15)
and, since o = aX (B-16)

a . . .
Personal communication. Bruce Turner, Environmental Pro-
tection Agency.
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then the distance Xmax where the maximum concentration occurs
1

) h \b )
is, X = [—— (B-17)
max <,§;>

For neutral conditions, a = 0.113 and b = 0.911.

The following sample calculations illustrate the concentra-

tion estimates.

Assume Q = 10 g/s and h = 50 m, then

50 \1-098
Xmax = (6—1'5) = 548.7 m (B-18)
and Oz = (0.113)(548.7)0‘911 = 35.4 m

4.5 m/s, then

—_ 2.03 Q l( h>2
X = =% — ©XP | ~5(—
2" X nax [ 2\o,

o (2.03) (10) exp [_0_5< 50 2]

Assume u

(35.4) (4.5) (548.7) 35.4

(2.32 x 10-%) (0.369)

or X = 8.57 x 1075 g/m3 (B-19)

Simplifying Equation B-14, since o, = 0.113 x0.911 @ and

u=4.5m,

—_ 40 _1/ h\?
X = T.911 ©¥P [ 56?‘)] (B-20)
X yA
max
« _ h \1-098
max  \0.16
= 7.5 hl1.098 (B-21)
40 _ 40

and
x1.911 (7.5 hl1-098)1.911
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_ 2
X = 0'_08ﬂ exp -%. (_ll_.)
h2.1 o

0.113 x0.911

Q
I

0.113[(7.5)h1-170.911

= 0.71 h
Therefore,
— _0.085 9 1( h )2 0.085 Q
= ——= ex -5 77— = ——>= .371
X 2.1 P [ 2\0.71 h 2.1 (0.371)
— 3.15 x 102 @
= B-22
XNOy hZo1 ( )

Substituting Q and h:

8.5 x 10-° g/m3

X
Therefore:

-2 2
T =3:15x10770 _ 2.030Q ., [_%<_h> ] (B-23)

h2.1 0, % Oz

The NO, standard is 1.0 x 10"% g/m3. Therefore,
F=1x 10"% g/m3

and the NOx severity equation is:

s = (3.15 x 1072)gh=2-!
NOx 1 x 10-*%

312 ? (B-24)
h -
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APPENDIX C

THE SIMULATION PROGRAMS

1. THE INPUT TO THE PROGRAM

In this section, details regarding the input to the simula-
tion program are discussed. The input is divided into nine
groups, some of which are always required and some of which
are optional. Each of these groups is discussed in the order

in which it should appear in practice.

a. Input Groups

Group l: This is a required group and should appear first.
It is a single card containing three pieces of data: a title
and two flags to indicate later options. The format is 20a2,
215.

(ITIL(I),I=1,20) - a title which will be printed as such on
output and which will appear below the x-axis on plots.

This is read in columnsa 1—40.

LT - an integer in cols 41-45. Suppose it has been decided
that there is a correlation between a pair of input
variables such that a simple regression must be performed
to obtain the regression line and SE for sampling pur-
poses as described in a previous section. Then as men-
tioned earlier; the user has the option of either
supplying the program with the raw data and having the
regression analysis performed on these data or supplying
R, XB, SX, ¥YB, and SY directly and using these directly
to obtain the regression line information. By the use
of the flag LT, the user signals the program which option

dColumns are subsequently abbreviated as: cols.
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should be exercised. If LT = 0 (i.e., cols 41-45 are
left blank), the program will expect raw data upon which
to perform the regression analysis. If LT = 1 (actually
any integer other than 0), the program will expect to
read in R etc. to perform the regression analysis. 1In
either case, data must be read into the program. However,
these data will not be placed as the second group but

rather will appear in Group 8 to be discussed below.

The option is available to run the program with no
dependent variables. In this case LT = 0 and the
number of independent variables NDVAR = (0. NDVAR is

in Group 3.

NCFLAG - an integer in cols 46-50. This flag provides the
option of using Sturge's rule to set up the number of
class intervals and using a value of XMIN and XMAX ob-
tained from the first 50 or so values of the output
variables to establish W and the resulting class inter-
vals. If NCFLAG = 0 (cols 46-50 are blank), Sturge's
rule and XMIN and XMAX as described earlier will be used
as indicated above. If NCFLAG 1 (anything # 0) the

user can read into the program the number, NINT, of

class intervals he wishes to use and the value XMIN of
the left endpoint of the first class interval and the
width, W, of each succeeding class interval. If the
user decides to read in NINT etc., this information will
be on a card in Group 9 of the input.
Group 2:' This is a required group and consists of a single
card with three pieces of data: XSAMP, XP@P, and NSAMP. The
format is 2F10.3, I5. This program was originally designed
to simulate the severity, S, of air pollution concentrations.
In doing so, it is sometimes desired to know how many plants

from the sample and from the population have predicted
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severity below 0.1, between 0.1 and 1, and above 1. Thus, the
program automatically monitors the number of simulated values
of S that fall in these ranges. It then divides the number

in each range by the simulated sample size (usually 5,000 or
more) to obtain the relative frequency of each range. It

then multiplies these relative frequencies by the actual
sample size, XSAMP, and population size, XP@P, to give the
required predictions for each range. Thus, the prdgram re-
quires XSAMP and XP@P in real format and this is the place
that it is provided. Also, the sample size, NSAMP, is entered
in integer form to be used (if required) for reading in the

raw data for the regression analysis later.

Of course, if the distributions from samples have not been
estimated, or if a person is simply not interested in the

values between 0.1 and 1, etc., then XSAMP and XP@P can be
left blank (and also NSAMP if a regression analysis on raw
data is not being performed). However, if these values are

left blank, the blank card must still be supplied as Group 2.

Group 3: This is a required group and consists of a single
card containing four pieces of information, all integers.

The format is 4I5. Due to restricted core size, samples can-
not be drawn as large as required (usually 5,000 or more) for
each input variable in order that all of these can be used at
one time to calculate values of the output variable. Instead,
small samples must be drawn out for each input variable and
that many values of the output variable must be calculated.
This is followed by the statistical manipulations desired
[for example keeping a running S and £(S)2 for later use in
finding the mean and standard deviation of output variables]
and a repetition of the process as many times as needed to
generate the desired sample size. The parameters on this

card dictate the manner in which the program does this.
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NGR@UP - an integer in cols 1-5, which tells the program the

sample size for each pass. This number must be < 50.

NPASS - an integer in cols 6-10 which tells the program how
many passes to make, drawing out samples of size NGR@UP
at each pass. Clearly, the final sample size will be
NGR@GUP*NPASS.

NIVAR - an integer in cols 11-15. This parameter tells the
program how many of the input variables are independent.
For example, in a given equation there may be five input
variables. The user may decide that one of the variables
(e.g., Y) is dependent on (or correlated with) another
variable (e.g., X) and that the other three variables
are independent. Then NIVAR in this case would be taken
to be four: the three that are given independent and
the independent variable X in the correlation or regres-
sion equation. Thus, there would be one dependent
variable, Y, the variable that will be dependent in the

regression equation.

NDVAR - an integer in cols 16-20 which gives the number of
dependent input variables. 1In the example above, NDVAR
would be one. However; in general, two or more pairs of
correlated variables may be present in the equation so
that NDVAR could be two or more. The program does not
allow a variable to be independent on one pair for
correlation purposes and dependent in another. However,
the same independent variable can be used for two or
more dependent variables and by proper choice this is
all that one should ever need.

A word of caution is in order at this point. TIf NDVAR
is > 2, a regression analysis must be performed for each
correlated pair in order to obtain the regression equa-

tion to be used for sampling purposes. It was pointed
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out earlier that the flag LT in the first data group
gave the user the option of either reading in raw data
or supplying R etc., directly. The user is cautioned
here that if two or more regression fits are necessary,
they must both be performed in the same manner, either
both with raw data or both with user supplied values of
R etc. The program uses LT to get into one of two loops:
either read raw data for X; and Y;, perform a regression
analysis and then repeat for X, and Y, etc. until the
number of dependent variables is exhausted; or, read R
etc. for X; and Y;, perform a regression analysis and
then read R etc. for X, and Y, etc. until the number of
dependent variables is exhausted. Finally, it should be
noted that NIVAR + NDVAR (= the total number of variables)

must be < 10.

Group 4: This is a required group and consists of a single
card containing codes which tell what type of distribution is
to be used for sampling from the independent variables. The
values on the card are integers punched in 16I5 format (actu-
ally all 16 will not be used). The values on the card are
read into an integer array IC@DE(I) from I = 1 to NIVAR. Thus,
ICZDE (1) is the code which tells what type of distribution
independent variable 1 has, etc. The distributions and their

corresponding codes are listed below:

code 1 = Weibull distribution
code 2 = normal distribution
code 3 = gamma distribution

code 4 = log-normal distribution

For example, suppose three independent variables exist and
they are ordered as VAR;, VAR,, VAR3. Suppose VAR; has a
Weibull distribution while VAR, has a normal and VAR3; a log-
normal distribution. Then the data card would look like the
line below:
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cols 1-5 6-10 11-15

In setting up the function card (to be discussed later), one
must exercise caution to be certain that the variables so
ordered above will appear in their proper places in the

function.

Group 5: This group of data may consist of more than one
card depending on the number of independent variables con-
tained in the function. This is the place where the program
is given the parameters that go along with the distribution
selected for each input (independent) variable. For each
distribution, the parameters are listed which the program

needs for it as shown below:

Distribution Program parameters
Weibull - A and B
normal + p and o
gamma -+~ a and B

log-normal » y and ¢ for log X or equivalently
the log of geometric u and geometric
o for X.

These parameters are read into a matrix PAR(I,J) which is a
dimensional 10 x 2. Thus, each row of the matrix has two
components and the rows correspond to the given variables.
The parameters for independent variable 1 should be read into
the first row; independent variable 2 into the second row,
and so on until the independent variables are exhausted.
Thus, the program reads values into PAR(I,J) row-wise, i.e.,
it reads parameters for independent variable 1 into row 1 as
the first two values on the data card, etc. The parameters
are expected in the same order as listed in the table above,
i.e., for the Weibull distribution, A first then B etc. The
format is 8E10.3.
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As an example, consider the situation described above where
three independent variables (VAR;, VAR,, and VARj3) were
present and these were Weibull, normal, and log-normal dis-
tributions, respectively. The data card for the parameters
should contain A then B for the Weibull as the first two
entries; then u then o for the normal as the next two entries;
and, finally, p then ¢ for log VAR3 (or the log of geometric

p then geometric ¢ for VAR3) as the last two entries. Thus,
there would be six fields (of the eight total) taken up on
the card and it might look as that shown below:

cols 1-10 11-20 21-30 31-40 41-50 51-60
— P SN —— P N S N~ P —
A B i ] M (o]

where the last pu and o are for log VARj.

Group 6: This group of data may consist of more than one
card depending on the number of independent variables. Some-
times in fitting continuous distributions to raw data or real-
world situations, the continuous distributions tend to take
on extremely high or extremely low values which are unrealis-
tic for the given data. This is a particular problem with
extreme-value distributions like the Weibull, gamma, or log-
normal distributions. Hence, it is desired to "clip" the
continuous distributions at appropriate points to keep these
unusually large or small values from occurring. This is the
data group in which the program is instructed at which points
to clip the (independent) distributions. The lower and upper
clip for each variable is read into a two-dimensional array
CLIP(I,J) which is dimensioned 10 x 2. The procedure of
reading one row containing a low clip and high clip, respec-
tively for each independent variable in the order in which
they are coded in IC@DE, is the same as that used for the

parameters.

72



The following discussion pertains to the means by which the
distributions are clipped. The direct approach to sampling
from the Weibull distribution uses the cumulative distribu-
tion function to obtain a sample value for X from a given
random number, R. Hence, to clip the distribution so that
it does not allow values of X below some given value or above
some other given value, all that is needed is to find at
which points, C; and C,, between 0 and 1, these low and high
values occur on the distribution. The program is then
supplied with these points, C; and C,, and it will automat-
ically clip the random number generator so that the random
numbers generated will be between C; and C,; hence, the
corresponding X-value will be in the correct range also.

For example, suppose it is desired to exclude values of X
below 10 or above 6,000 and that these points occur at

C; = 0.02 and C, = 0.96, respectively, on the cumulative
distribution for the Weibull. The program is then supplied
with these parameters (viz., 0.02 and 0.96) as the values
for the array CLIP(I,J) and the random number generator is
clipped according to the equation below:

R= (0.96 - 0.02)R + 0.02 = 0.94R + 0.02
This equation will automatically be set up internally.

Next, the problem of clipping the normal and log-normal
distributions is discussed. The direct approach to sampling
frbm these distributions uses the probability density func-
tion and not the cumulative distribution function. Hence,

the clips in these cases cannot be applied in the same manner.
Thus, a very direct approach was used for clipping the values
of the variable X in this case. The program was supplied
with the actual lowest value that X was allowed to assume and
likewise the highest value that X was allowed to assume. The
program then samples from normal with no restrictions. If

the sample value obtained is between the low and high value
\‘
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supplied, it is retained. Otherwise, the program samples
again and continues to do so until it obtains a value in the
proper range. Then the program continues the above procedure
until the desired sample size is attained. A word of caution
is in order. 1In supplying clips for the normal, low and high
values for X are supplied directly. However, in supplying
clips for the log-normal, low and high wvalues for log X,

not X, should be supplied.

If any or all of the variables are to be unclipped, this
card(s) must still be supplied. To leave the Weibull distri-
bution unclipped, values of 0.0 and 1.0, respectively, are
supplied for the low and high clip. To leave the normal or
log-normal distribution unclipped, extremely low or extremely
high values (for example, 1.0 x 10”!8 and 1.0 x 10!8) are
supplied for the low and high clip.

Group 7: This data group may consist of more than one card
depending on the number, NDVAR, of dependent variables. If
NDVAR is > 1, the program in this data group is given two
pieces of information about each dependent variable:

(1) which independent variable it is correlated with (i.e.
the number of the independent variable, e.g., 1 for VAR,
etc.); and (2) the type of distribution to be used in sam-
pling for values of the dependent variable (either normal = 2
or log-normal = 4, at present structure). These codes for
the dependent variables are read into a two-dimensional
integer array IDC@DE(I,J) which is a 10 x 2 matrix. Hence,
each row of IDC@DE corresponds to a dependent variable in
the same order as the dependent variables are entered, i.e.,

row 1 for variable 1, etc.

For example, suppose there are five input variables, four of

which are independent and one of which is dependent. Suppose
further that for the numbering used on the independent vari-
ables, the dependent variable is correlated with the third
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independent variable and the log-normal distribution is
desired for sampling from the dependent variable. The data

card for this group would then appear as follows:

cols 1-5 6-10
3 4

Group 8: This data group is optional and must appear only

if NDVAR is > 1. It may consist of more than one card. This
data group will contain the information necessary to perform
the regression analysis between the independent variables and
dependent variables. Depending on the value of the flag LT
in Group 1, this data group will contain either the raw data
for the pair(s) of correlated variables (independent variable
then dependent variable) or the values of R, XB, SX, YB, SY
(in that order) for the independent variable X and the
dependent variable Y. The format on all cards is 8E10.3.

Note that if NDVAR is > 2, the raw data must appear as

follows:

Independent VAR,
Dependent VAR,

Independent VAR,
Dependent VAR,

(Even if Independent VAR, = Independent VAR,;)

etc.

Further, if NDVAR is > 2 and it is desired to enter the

values of R, etc. it must appear as below:
{Rl, XB;, SX;, YB;, SYI}

{Rz, XBz, SXZ, YBz, SY2} etc.
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Group 9: This data group is optional and will appear only

if NCFLAG # 0 on the first data card. 1In this group, specific
values of NINT (number of class intervals), XMIN (beginning
left endpoint) and W (width of class intervals) are read into
the program. As mentioned previously, if NCFLAG = 0, the
program will establish class intervals of its own and this
data group is omitted. The format used for this group is
I5,2F10.3.

b. The Function Card

Whenever changes are made from one run of this program to
another run, they are generally made from one function
(describing an output random variable as a function of input
random variables) to another function (with different input
and output random variables). Hence, it is necessary to
change one card in the program itself, which will be referred
to as the function card. It appears as a card in the function
subprogram SF with calling argument IVAL and common arguments
VAR(I,J) (as well as some other dummy arguments).

VAR(I,J) is a 51 x 10 matrix in which the samples drawn from
the distributions of the input variables are stored for each
pass from 1 to NPASS. These samples are stored columnwise,
i.e., column 1 contains the sample from VAR;, etc., until all
of the independent variables are sampled. 1In the first column
after the NIVAR, the dependent variables are stored until they
are exhausted. After storing the values in VAR(I,J) .in this
way, the NGR@UP values of the output variable for this pass-
are calculated. 1In this calculation, the function card,

defined above, is used.

On a single pass of the program, the values of the output
variable from I = 1 to NGRPUP are calculated. For a given value

of I, this information is transferred to the subprogram SF as

76



IVAL. For this value of IVAL, a value SF of the output
variable is calculated according to the rule specified on the
function card. Thus, caution should be exercised in construc-
ting the function card so that it reflects the true function
of the input variables in the proper order in which they

appear in VAR(I,J).

As an example, consider the function

g = 3.1*A*B2
C*D+E
(where * denotes multiplication). Suppose variables A, C, D,

and E are taken to be independent and B is dependent and
correlated with variable E. If the independent variables are

numbered as below:

M O O P
I
B W N

then automatically, variable B will be numbered 5 in VAR(I,J),
i.e., column 5 will contain the values of E. Thus the SF

card would be:

SF = (3.1*VAR(IVAL,1l)*(VAR(IVAL,5)**2)/
(VAR (IVAL,2) *VAR(IVAL, 3)+VAR(IVAL,4))

c. Example of Overall Input Data

Suppose it is desired to simulate the severity, S, of SO,
emissions from coal-fired electric utilities. The severity

equation is given by:

1 - (30.1) (% sulfur) (CC)
. 2

77



where % sulfur = percent of sulfur in coal used

CC = coal consumed in 10% kg/yr

h = stack height in meters

Assume that % sulfur and CC are to be independent and h is to
be correlated with coal consumed. Suppose the type of dis-
tribution for each input variable has been determined along
with the corresponding parameters and clips according to the

information in the table below.

Table C-1. VARIABLES, DISTRIBUTIONS, PARAMETERS AND CLIPS
FOR COAL-FIRED ELECTRIC UTILITIES EXAMPLE

Type of variable
Variable distribution Parameters Clips
2 sulfur-1 2 (normal) pu=2.5 o=1.1} 0.025 and 1.0
cc-2 1 (Weibull) A=9.7x10""% B=1.0| 0.05 and 0.99
h-3 4 (log-normal) -3 -8

4Not needed since this variable is dependent and, hence,
correlated.

Assume that the sample size from which the parameters were
obtained is 224 out of a population of 600. (This is not a
situation where a simulation is required but it can serve as
an example.) Suppose that the program is instructed to set
up its own class intervals and to perform a regression
analysis on the raw data for CC and h. Finally, assume that
a simulated sample size of 5,000 is desired. Then the input
data would appear as shown in Table C-2. In Table C-2, the
values that should appear on the card(s) are underlined and
the columns in which they should appear are shown in paren-

theses beside them.
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6L

Table C-2. SUMMARY OF INPUT DATA BY GROUPS FOR COAL-FIRED
ELECTRIC UTILITIES EXAMPLE

Group
number Input data®

I Titles (1-40) (blank) (41-45) (blank) (46-50)

II 224.0 (1-10) 600.0 (11-20) 224 (21-25)

IIT 50 (1-5) 100 (6-10) 2 (11-15) 1 (16-20)

v 2 (1-5) 1 (6-10)

\Y/ 2.5 (1-10) 1.1 (11-20) 9.7x10~% (21-30) 1.0 (31-40)
VI 0.025 (1-10) 1.0 (11-20) 0.05 (21-30) 0.99 (31-40)
VII 2 (1-5) 4 (6-10)

VIIT Raw data for CCb

Raw data for hb
IX Omitted

qUnderlined information represents input data which is to be placed
in columns designated by parentheses.

bEight per card in format 8E10.3.



2. DESCRIPTION OF OUTPUT

There are two forms of output from the simulation program:
(1) printed output, which is divided into three parts; and
(2) the frequency histogram and cumulative frequency function

of the simulated sample of output values.

a. The Printed Output

The first item that is printed out is the title read in on
the first card of the input. The next item printed is the
mean and standard deviation of the output variable. The
probabilities that the output variable lies in the range

< 0.1, between 0.1 and 1, and > 1, respectively, are subse-
quently printed. These are followed by the number of plants
(outcomes) from the sample which are predicted to fall in
each of these three ranges, respectively, and then by the
same numbers for the population. These are printed as
SNUM(1), SNUM(2), SNUM(3), PNUM(l), PNUM(2), and PNUM(3) for
sample number in range 1, etc. Finally, a table is printed
out which gives the class intervals, the actual frequency of
the sample in each class interval, and the cumulative fre-
quency function for the right endpoint of the class interval.

A few special comments are provided regarding the first and
last class intervals. The first class interval printed has as
its left endpoint the minimun value of the outpﬁt variable in
the whole sample of size NGRPUP*NPASS. Its right endpoint is
the minimum value found in the first NGR@UP values of the
output variables, for it is after the first pass that the
program automatically sets up class intervals. The last
class interval printed has its left endpoint equal to the
maximum value obtained on the first pass from the first
NGR@UP values and its right endpoint is the overall maximum
value for the whole sample. If the user supplies his own
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class intervals and the lowest value supplied is lower than
the actual minimum value calculated by the program, the first
class interval will then look "backwards." For example,
suppose the user supplied 0 as the beginning class interval
value and the lowest observed value was 0.03 during the
simulation. The first two lines for the first two class

intervals would then appear something like the following:

Class interval Actual frequency Cumulative frequency
From 0.03 to 0.0 0.0 0.0
From 0.0 to O+W ? ?

Likewise, the last class interval could appear "strange" in
a similar situation. If one wishes to know XMIN and XMAX for
the whole sample, these can be found as indicated above.

b. The Plots

The output plots from the simulation program are self-

explanatory and will not be further discussed.
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Table C-3. COMPUTER LISTINGS OF THE SIMULATION PROGRAMS

BIT TRAN(16)
DIMENSION AF(35)+CF(35)+ITILI20)+EMP(3)+PROB(3),
ISNUM(3) «PNUM(3) +XE(35)CLIP(10+2) +KAF(35)
COMMON JCOCE{1U)+VAR(S1+120)+PAR(10+2)+SFV{51)+IDCODE(10+2)
1COR(10¢5)+XSR(250) +YSR(2D0)
THIS PROGRAM IS UVESIGNED TO PERFORM A COMPUTER
SIMULATION TO OBTAINM VALUES OF ONE RANDOM VARIABLE
DEFINED AS A FUNCTION OF OTHER RANDOM VARIABLES.
ALL THE RANDOM VARIAULES ARE ASSUMED TO BE
CONTINUOUS AND CAN BE ANY ONE OF FOUR DIFFERENT
DISTRIBUTIONS: THE WLIBULLe THE NORMAL: THE GAMMA.
OR THE LOG-NORMAL., FURTHERMOREs. THE PROGRAM WILL
ACCOUNT FOR CORRELATION BETWEEN CERTAIN PAIRS OF
THE INPUT VARIABLES.
READ(1+100)TRANICOL1+CY1lsCY2¢XI1eXI2¢ANGL
WRITE(S+500) TRANJICOL1+CY1+CY24XI1eXI2¢ANGL
READ{1+12) (ITIL(I)+I=1+20)LTsNCFLAG
READ(1413) XSAMP.XPOP,NSAMP
READ(1+10) NGROUP(NPASS+NIVAR,NDVAR
SMEAN=0,0
SS@=0,0
XMIN=1,0E18
XMAX=0.0
DO 25 I=1,35
25 AF(I)=0,.0
DO 26 I=1,3
26 EMP(I)=0.0
CALL RANDU(94+IY.YFL)
Ix=1Y
READ(1+10) (ICODE(I)+I=1+NIVAR)
READ(1+11) ((PAR(T¢J) +J=1¢2)¢I=14NIVAR)
11 FORMAT(8E10,3)
READ(1+411) ((CLIP(TouJ)eJ=1+2)¢I=14NIVAR)
IF(NDVAR,EQ.0) 60 TO 8
READ(1¢10) ({IDCODE(I+J)1Jd=1+2) ¢ I=1+NDVAR)
IF(LT.EG.0) GO TO 60
DO 70 I=1.NDVAR
IROW=I
CALL SR{IWSAMP.IROW.LT)
70 CONTINUE
GO TO 38
60 DO 40 I=1.NDVAR
JROW=I
READ(1+11) (XSR(K) +K=1«NSAMP)
READ(1¢11) (YSR(K) ¢K=1¢NSAMP)
KO=IDCODE(I«2)
IF(KU.EQe4) GO TO 52
GO TO 50
52 DO 51 U=1.NSAMP
XSR{J)=SALOGI(XSR(J))
YSR{JI=LLOGI(YSR(J))
51 CONTINUE
50 CALL SK{HMSAMP«IKOW,LT)
40 CONTINUE
# IPASS=1
22 DO 3 I=1+N]IVAR
IcoL=1
KK = ICCLDE(I)
GO TO (4454€¢7)+ KK
4 Cl=CLIP(1.1)

[aNsXaNaNaNaNsNaNsg]

82



Table C-3 (continued). COMPUTER LISTINGS
OF THE SIMULATION PROGRAMS

C2=CLIP(I1.+2)
CALL WSAMP (NGROUP ¢ IX+ICOL,C1+C2)
GO TO 3
5 C1=CLIP(1+1)
C2=CLIP(l.2)
CALL NORSAM(NGROUP+IX+ICOL¢C14C2)
GO TO 3
6 CALL GAMSAM(NGROUP,IX,ICOL)
60 YO 3
7 C1=CLIP(I.+1)
C2=CLIP(I,2)
CALL LOGSAM(NGROUP+IX<¢ICOL«C1l:C2}
3 CONTINUE
IF(NDVAR.EQ,0) GO TO 9
DO 41 I=1,NDVAR
IVAR=IDCUODE(I+1)
KO=IDCODE(I+2)
ICOL = I+NIVAR
IDVAR=I
GO TO(H2+43¢4%4845) KO
42 CONTINUE
GO TO 41
43 CALL NCSAMP({NGROUP«NPASS+IX+ICOL+IVAR.IDVAR)
60 TO 42
44 CONTINUE
G0 70 41
45 CALL LCSAMP (NGROUP NPASS+IX.ICOL+IVAR,IDVAR)
41 CONTINUE
9 CONTINUE
IF(TRAN{1)) CALL BACKT(NGROUP+ICOL1+CY1+CY2¢TRAN+XI1+1XI2¢ANGL)
CALL SEVCAL (NGROUP+XMINsXMAX+SMEAN+SSQ)
IF(IPASS.GT.1) GO TO 20
NCINT=NGROUP*NPASS
CALL CINT(NCINT +XMINeXMAXNINT«XE+WsNCFLAG)
20 CALL AFREQ(NGROUP(NINTXE.AF+.EMP)
IF(IPASS.EQ.,NPASS) GO TO 21
IPASS=IPASS+1
GO TO 22
21 FN=FLOAT(NCINT)
DO 23 I=1+3
PROB(II=EMP(I)/FN
SNUM( I)=XSAMP*PROB(I)
PNUM( 1) =APCP=PROB{ 1)
23 CONTINUE
SDEV=( (FN*SSW) ~(SMEAM*SMEAN) ) /(FN*(FN=-1,0))
SDEV = SURT(SDEV)
SMEAN = SMEAN/FN
S=0.0
NCL=NINT+2
DO 24 I=i.nCL
S=S+AF (1} /FN
CF(I)=S
2% CONTINUE
CALL OUTPUT (SMEANSDEV «PROBySNUM+PMUF ¢ AF « CF+ XSAMP + XPOP,
ININToXE+ITIL+XMLite XMAX)
KT=40
NCIMT=IFIX(XFOP)
CALL CLlPLOT{(MCINT ¢SMEAN«SOEV «NINT ¢WoeXE ¢ XMIN¢XMAX«CFeITILWKT)
00 333 1=1.325
333 KAF(XI}=((AF(I)/FN)*XPOP)+.5

CALL FDPLOT(NCINT,SMEANISDEV NINT ¢WoXE«XMIN|XMAXWKAF«ITIL KT}
10 FORMAT(1615)
12 FORMAT(20A2+215)
13 FORMAT(2F1043+15)
100 FORMAT(16L1+12+1X+5E10.3)
500 FORMAT(1HO,y 16L14+12¢1X+5L15.7)
END
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Table C-3 (continued).

OF THE SIMULATION PROGRAMS

SUBROUTINE SR(MM.IROW:LT)

COMMON ICODE(10)+VAR(S1+10)+PAR(10+2)+SEV(51)+IDCODE(102",

1COR(10¢5)+XSR(250).YSK(250)

: THIS SUBROUTINL DOtS &LI1THER A SIMPLE REGRESSION ON

THE INPUT RAw DATA FOK TwQ CORRELATED VARIABLES OR
READS IN THE VALUES OF Ry XBs SX¢ YBe AND SY AND
CALCULATES THE REGARESSION LINE FROM THESE VALUES.,
IN EITHER EVENT. THE VALUES OF THE INTERCEPT A,
SLOPE B+STANDARD ERROR IN REGRESSION LINE SE. AND XB
AND SX AKE STORED IN THE IROW ROW OF AN ARRAY
COR(I+J) TO BE USED LATER IN THE SUBROUTINES WHICH
DRAW SAMPLES FROM THE DEPENDENT VARIABLLS,

IF(LT.NE.DO) GO TO 3

FN = FLOAT(MM)
S1 = 0.0

S§2 = 0,0

D0 1 I=1.,MM
S1 = S1+XSKR{I}
S2 = S2+YSR(I)
CONTINUE

X8 = S1/FN

YB = S2/FN

S1 = 0.0

S2 = 0.0

S = 0,0

DO 2 I=1.MM

Sl = S1+(XSRII)=~XB)*%x2
S2 = S24(YSR(I)=-YB)==»2
S = S+{(XSRUI)=XB)*(YSR(I)=~YB)
CONTINUE

VX = S1/(FN=1.0)

VY = S2/(FN~-1,.0)

SX = SURT(VX)

SY = SQRT(VY)

8 S/81

a YB~XB*B

R = (B*SX)/<Y

60 TO &

READ(1¢10) R, XB+SX.YB,SY
FORMAT(BL10,.3)
B=(R%SY)/SX

A=YB=-XB*B

R2=R*%2

ARG=" s =K2

SE=SY=*SGR (ARG)
COR(IROW:1)=A
COR(IROWe2)=R
COR(IROW,3)=8E
COR(IROW«4)=XB
COR(IROW.S)=SX

RETUR

ENC

SUBROUTINE WSAMP{NGROUP+IXsICOLsC1+C2)

COMMON {CODE(10)+VAR(S51+10)+PAR(10¢2)+SEV(51)
THIS SUBROUTINE DHKAWS A SAMPLE OF SIZE NGROUP FROM
THE WEIBULL DISTRIBUTION FUNCTION, THE PARAMETERS
A AND B TO bk USEUD FOR THE WEIBULL ARE UBTAINED
FROM THE ARFAY PAR({I+J}. THE DISTRIBUTION HAS
LOWER AND UPPER ‘CLIPS Cl AND C2 RESPECTIVELY
(SUPPLIEL FROM THF MAINMLINE), THEL SAMPLE IS
STORED IN THE ICOL COLUMN OF THE ARKAY VAR{Isuv).
THf METHOD USED IN SAMPLING IS THE DIRECT APPROACH,

A=PAR{1COL.1)

H=PAR(ICOL«2)

P=1.0/8

DO 1 .=1+NGROUP

CALL FALNDUIEXWIYWR)

1X=1Y

IF(RerQ.1,0) GO TO 2

R=(C2=Cl)*R+(C1

ARG=1.0/(1.0-R)

VAR(I+ICOL)=(ALOG(ARG)/A)»sP

CONTINUE

RETURN

Enb
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Table C-3 (continued).

- o

OF THE SIMULATION PROGRAMS

SUBROUTINE NORSAM{NGROUP+IX+ICOLCi~C2)

CCMMON 1CODE (10) s VAR(S141U)¢PARI10+2)SEV(51)
THIS SUBROUTINE DOES PRECISELY THE SAME THING AS
THE WSAMP SUBROUTINE EXCEPY THAT IT DRANS THE
GIVEN SAMPLE FROM THE NORMAL DISTRIBUTION INSTEAD
OF THE WEIBULL, THE DIRECY APPROACH IS ALSO USED
HERE o

XBAR=PAR(ICOL 1}

SD=PAR(ICOUL+2)

TPI=2¢0%3.14159.

VO 1 I=1.NGRUUP

CALL RANDU(IX.IYeR1)

IX=1Y

IF(R1.EQ,0.0) 60 TO 2

ARG=1+0/(R1%*R1)

ARG=ALOG (ARG)

TX=SART(ARG)

CALL RANDU(IX+1Y+R2)

IX=1Y

R2=R2%TPI

VAR{I+ICOL)=XBAR+SDxTX%SIN(R2)

IFC{VAR(I+ICOL) +LTeC1)eOR.(VAR(IVICOL).GT.C2)) GO TO 2

IF(ICODE(ICOL).NEW2) GO TO 1

IF(VARLI,ICOL).LT,0,0) 60 TO 2

CONTINVE

RETURN

END

SUBROUTINE LOGSAM(NGROUP (IX,ICOL«C1.C2)

COMMON ICODE(10)-VAR(S1+10)3PAR(10+2)SEV(5H1)
THIS SUBRNUTINE SAMPLES FROM THE LOG~NORMAL
DISTRIBUTION IN PRECISELY THE SAME MANNER AS
NORSAM AND WSAMP DO FROM THE NORMAL AND WEIBULL
RESPECTIVELY. IT ALSO USES THE DIRECT APPROACH,

CALL NORSAM(NGROUP,IX.ICOL.C1,C2)

00 1 I=1.NGROWP

VAR(I+ICOLISEXPIVAR(IyICOL)"

CONT INUE

RETuURI

END

SUBROUTINE GAMSAM(NGROUP.IX+.ICOL)

COMMON ICODE(10)«VAR({51¢10)+PAR(10¢2)¢SEV(52)
THIS SUBROUTINE SAMPLES FROM THE GAMMA UISTRIBUTION
IN THE SAME MANNER AS THt ABOVE SUBROUTINES SAMPLE
FROM THEIR RESPECTIVE ODISTRIBUTIONS. THE ONLY
DIFFERENCE IS THAT THIS SUBRQUTINE USES THE
REJECTION METHOD FOR SAMPLING FROM THE GAMMA,

ALPHA=PAR(ICOL1)

BETA=PAR(ICOL«2)

XU=BETA® (ALPHA+5,.0%SQRT(ALPHA))

AM1=ALPHA=1,.0

CALL. GAMMA(ALPHAGA.I)

CON=GA* (BETA®*ALPHA)

YUS((AM1)*®*AM1)/(GASBETA%EXP (AM1))

D0 1 T=1.NGROUP

CALL RANDU(CIX IYe¢XVAL)

IX=1Y

CALL RANDU(CIX IY.YVAL®

IX=1Y

XVALE=XVAL®XU

YVAL=YVAL*YL

FXVAL=GDF { XVAL ¢ ALPHA +BETA+CON)

IF(YVALJ.LEJFXVAL) GO TO 3

60 Y0 2

VAR(I«ICOL)=XVAL

CONTINUE

RETURN

END
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Table C~3 (continued).

10
15
50
60
62
64
70
80

110

120
130

OF THE SIMULATION PROGRAMS

FUNCTION GDF(X:ALPHABETA+«CON)
THIS SUBPR{-GRAM EVALUATES THE PROBABILITY DENSITY
FUNCTION FOR THE GAMMA OISTRIBUTION AT THE POINTY
Xe THE GAMMA PARAMFETERS ARE ALPHA AND BETA AND
THE CONSTANT CON IS GIVEN BY CON=GAS(BETA%sALPHA)
WwHERE GA IS THE GAMMA FUNCTION EVALUATED AT ALPHA,

ARG1=~(X/BETA)

ARG2=ALPHA=~1,0

GDF=( (X*3ARG2)*EXP(ARG1) }/CON

RETURN

END

SUBROUTINE GAMMA(XX.GXsIER)
THIS SUBROUTINE EVALUATES THE GAMMA FUNCTION AT
THE POINT XX. THE VALUE IS STORED AND HKETURNED IN
THE LOCATION GX,
IF(XX=34.516¢64
IER=2
6X = 1,0E18
RETURN
X=XX
ERR=1.0E~-6
IER=0
6X=1.0
IF(X=2,0)50+:50415
IF(X=2,011104110+15
X=X=1,0
GX=GX2X
60 10 10
IF(X~1.0)60,120,4110
SEE IF X IS NEAR NEGATIVE INTEGER OR ZERO
IF{X=-ERRY62+62:80
K=X
Y=FLOAT(K}=X
IFCABS(Y)=ERR)130+13064
IF(1.0-Y=-ERR)130+130.:70
X NOT NEAR A NEGATIVE INTEGER OR ZERO
IF(X=1.0)80.804+110
GX=2GX/X
X=X+1,0
G0 TO 70
YSXel,U

GYZ1,04Y#(=0,57710174+Y2(¢0,9858540+4Y+(=0,8764218+Y+(+0,8328212+

1Y% (=0,5684729+Y%(+0,2548205+Y%(=0.,05149930)11))))
GX=GX*oY

RETURN

IER=1

RETURN

END
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GAMMAMO2

GAMMAMO4
GAMMAMOS

GAMMA

GAMMA

GAMMA

GAMMA

GAMMA

GAMMA
GAMMA

10

12

18

22

27

29
30
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Table C-3 (continued).

31

30

31

30

COMPUTER LISTINGS

OF THE SIMULATION PROGRAMS

SUBROUTINE LCSAMP(NGROUP +NPASS,IXsJICOL+IVARsIDVAR)
COMMON ICODE(10)yVAR({S51¢10) +PAR(10¢2)+SEV(51)+IDCODE(10¢2 «

1CUR(10.5)

THIS SUBROUTINE DRAWS A SAMPLE OF SIZE NGROUP FOR

A DEPLNDENT INPUT VARIABLE FROM THE LOG-NORMAL
DISTRIBUTION, IVAR IS THE SUBSCRIPT OF THE
INDEPENOENT VARIABLE WITH WHICH THE GIVEN DEPENDENT
VARIABLE IS CORRELATEO, IDVAR IS THE NUMBER OF

THE DEPENDENT VARIABLE., ICOL IS THE COLUMN OF THE
STORAGEL ARRAY VAR(I+J) IN WHICH THE SAMPLE IS
STORED. THE METHOD USED 1S THE ONE DISCUSSED IN

THE DESCRIPTION OF THIS PROGRAM,

YINT=COR(I1DVAR+1)
SLOPE=CUR(IDVAR.2)
SE=COR(IDVAR3)
XBAKRS=COR(IUVAR+4)
SDS=COR{IDVAR.5)
FN=NGROU* ¥NPASS
TPI=2.0%3.14159

DO 30 I=1e«NGROUP
AVAR=ALOG(VAR(I+IVAR))
XBAR=YINT+(SLOPE=®AVAR)

T1=(({AVAR~-XBARS) = (AVAR-XBARS) )/ (FN*SDS=SDS)

SO=SE*(1,0+1.0/FN+T1)

CALL RANDUCIX+IY4R1)

IX=1Y

IF(R1,E€.,0.,0) GO TO 31
ARG=1,0/(R1%R1)

ARG=ALOG (ARG)

TX=SQRT (ARG)

CALL RANDUIIRIYWR2)

IX=1Y

R2=R2*TPI
VAR(I«ICOL)=XBAR+(SD*TX%SIN(R2))
VAR(I+ICOL)=EXP{VAR({TI,ICOL})
COMTINUE

RETURN

END

SUBKOQUTINE NCSAMP(NGROUP «MPASS+IX+1CLOLsIVARIDVAR:
COMMON ICODE(10)+VAR(S1+10)+PAR(10¢2)SEV(51)+IDCODE(1N+2 «

1COR(10.+5)

THIS SUBROUTINE DOES THt SAME THING AS LCSAMP
ABOVE EXCEPT THAT IT CRAWS THE SAMPLE FUR THE
DEPENDENT VARIABLE FROM A NORMAL OISTRIBUTION.

YINT=COR(IDVAR+1)
SLOPE=CUR(IDVAR2)
SESCOR(IDVAR43)
XBARS=COK({IDVAR+4)
SDS=COR(IDVAR+S)
FN=NGROUP*NPASS
TPI1=2.0%3.14159

DO 30 I=Y+NGROUP
XBAR=YINT+(SLOPE*VAR(I+IVAR))

T1=((VAR(I+IVAR)~XBARS) = (VAR(I¢IVAR) =XBARS)/(FNSDS*SDS)

SO=SE*(1.0+1./FN+T1)

CALL RANMDUCIX¢«IY+R1)

IX=1Y

IF(R1.£8,0.0) 60 TO 31
ARG=1.,0/(R1%Rl)

ARG=ALOG (ARG)

TX=SORT(ARG)

CALL RANDU{IX+IY+R2)

IX=1Y

R2zR2*TP1
VAR{1+ICOL)=XBAR+(SD*TX*SIN(R2) ;-
IF(VAR(I ICOL)«LT.0.0} GO TO 31
CONTINUE

KETURMN

END
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Table C-3 (continued). COMPUTER LISTINGS
OF THE SIMULATION PROGRAMS

SUBROUTINE RANDU(IX+IY.YFL)
THIS SUBROUTINE GENERATES A PSEUDO-RANUUM NUMBER
BETWEEN O ANO 1 AND RETURNS IT IN THE PARAMETER
YFLe IT ALSO RETURNS A VALUE OF 1Y WHICH IS TO BE
USED AS IX IN THE NEXT PASS THROUGH THIS SUBROUTINE.
I¥Y=1X»899
IFLIY) Ss606
S 1Y=1Y7+52767+1
6 YFL=IY
YFL=YFL/32767T,
RETURN
ENO

(s EsRaNal

SUBROUTINE BACKY (NGROUP +ICOL1+CY1+CY2¢TRAN«XI1¢XI2,ANGL)
THIS SUBROUTINE PERFORMS THE
TRANSFORMATION BACK TO ORIGINAL
DATA VALUES AFTER LINEAR
TRANSFORMATION PER PARA 19.8 OF
STATISTICAL THEORY WITH ENGINEERING
APPLICATIONS, HALD, WILEY, 1967,
THE TRANSFORMATION MAKES
CORRELATION COEFFICIENT ZERO OF
DATA PAIRS OF PARTIALLY CORRELATED
DATA WITH MEANS OF ZERO., A SECOND
TRANSFORMATION 1S REQUIRED TO
ADD A CONSTANT TO THE DATA TO
MAKE IT POSITIVE SO THAT LOGS
CAN BE TAKEN.

WRITTEN B8Y LEE MOTE - 3/10/76

XI1 1S MEAN OF X
XI2 IS MEAN OF Y
ANGL IS ANGLE OF ROTATION IN
RADIANS
Y1 IS TRANSFORMED ARRAY FOR
INDEPENDENT VARIABLE
Y2 IS TRANSFORMED ARRAY FOR
DEPENDENT VARIABLE
X1 IS RESTORED VALUES OF
INDEPENDENT VARIABLE
X2 IS RESTORED VALUES OF
DEPENDENT VARIABLE
BIT TRAN(16)}
DIMENSION X1(S51)¢ X2(51)+Y1(51)4Y2(51)
COMMON ICODE(10)+VAR(S1+¢10)+PAR(10+2) ¢SEV(51)+30CODE(L0¢2) ¢
1COR(10+5) +XSR(250) +YSR(250)
N=NGROUP
ICOL2=ICOL1+1
D0 1 I=1.N
Y1(I)=VAR{1.ICOL1)=CY1
Y2(I)=VAR(I.1COL2)-CY2
IF(TRAN(2))Y1(I)=ALOGIVAR(I«ICOLL))=CY1
IF{TRAN{(3))Y2(I)=ALOGIVAR(I(ICOL2))=CY2
1 CONTINUE
DO 2 I=1.N
X1(I)=XI14Y1(I1)*COS(ANGL) ~Y2(I)sSIN({ANGL)
X2(1)=XI124Y1(I)=SIN(ANGL) +Y2(1)#COS(ANGL)
IF(TRAN(2))IX1(T)=EXP(X1(I))
IF(TRAN(3)) X2(I)=EXP{X2(1))
CONTINUE

OOOODOOODNOO0000O0NONAO0DNONNO00

oaon

DO 3 I=1«N

VAR(I.ICOL1)=X1(T)
3 VAR(I.ICOL2)=X2(1)

RETURN

END
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Table C-3 (continued). COMPUTER LISTINGS
OF THE SIMULATION PROGRAMS

FUNCTION SF(IVAL)
COMMON ICODE(10)VAR(5141C)¢PAR(10:2)SEV(51)

THIS SUBPROGRAM EVALUATES THE OUTPUT VARIABLE SF

AT A PARTICULAR VALUE IVAL ASSOCIATED WITH THE

INPUT VARIABLE ARRAY VAR(IsdJ)e
SF=({30+1243%VAR(IVAL+1!'«VARIIVAL+2)} )/ (VAR(IVAL+3)*VAR(IVAL13))
RETURN
END

SUBROUTINE SEVCAL (NGROUP«XMIN¢XMAX ¢SMEANSS@)

COMMON ICODE(10)+VAR(51+10)+PAR(10+2)+SEV(52)
THIS SUBROUTINE CALCULATES THE NGROUP VALUES OF
SEVERITY .OR OUTPUT VARIABLE) AND STORES THEM IN
THE ARRAY SEV(I) FOR LATER USE. IT ALSO KEEPS
TRACK OF A RUNNING SUM OF SEVERITIES. SUM OF THE
SQUARES OF SEVERITIES. AND AN OVERALL XMIN ANL
XMAX VALUE FOR SEVERITY.

DO 1 I=14NGROUP

SEV(I)=SF(I)

SMEAN=SMEAN+SEV(I)

SSQ=SSu+(SEV(1)*s2)

IF(SEVII)eLT.XMIN) XMINSSEVI(I.

IF(SEV(I)eGT4XMAX) XMAX=SEV(I)

CONTINUE

RETURN

END
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Table C-3 (continued).
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OF THE SIMULATION PROGRAMS

SUBROUTINE CINTI(NCIMT+XMINXMAX NINT+XE+WeNCFLAG)

DIMENSIGN XE(3%5)
THIS SUBROUTINt ESTABLISHES THE CLASS INTERVALS VO
BE USELD IN THE PROGRAM. THIS SUBROUTINt IS
BRANCHED TO AFTER THE FIRST PASS OF NGRUUP VAL tS
OF THE QUTPUT VARIABLE SEV ARE CALCULATED. I1
THEN USES THESE VALUES AND STURGES® RULE FOR
SETTING UP THE CLASS INTERVALS OR 1T READS THE
NECE <SARY DATA AND SETS UP THE CLASS INTERVALS
THAT THE USER DESIRES TO HAVE.

IF(NCFLAGsNE.D) GO TC 2

XN=FLOAT(NCINT)

NINT=1e543.38AL06GU (XN)

IF (XMAX,6T.5040) XMAX = 50.0

W {XMAX~XMIN) /FLOAT(NINT)

W=W4 0001w

60 TO 3

READ(1+SININT e XMINeW

FORMAT(IS«2F10.3)

XE(1) = XMIN

K=NINT+1

00 1 I=2.K

XE(Y)ISXE(I=1)+W

CONTINUE

RETURN

ENU

SUBROUTINE AFREQ(NGROUP+NINT +XE+AF+EMP)

DIMENSION XE(35)+AF(35)EMP(3)

COMMON ICODE(10)+VAR{S1410)PAR(10+2)+SEV(51)
THIS SUBROUTINE ACCEPTS NGROUP VALUES OF SEVERITY
SEV (OR OUTPUT VARIABLE) AND SEPARATES THEM INTO
THE NINT CLASS INTERVALS WITH ENDPOINTS IN THE
ARRAY XE. THE ACTUAL FREQUENCIES ARE COUNTED IN
THE REAL ARRAY AF, FURTHER. THE NUMBER OF
OBSERVED VALUES OF SEv BELOW .1« BETWEEN .1 AND 1.
AND ABOVE 1 ARE COUNTED AND STORED IN THE ARRAY
EMP(1}y I=1:2+3,

DO 1 J=1.NGROUP

IF(SEVIJ).6E.XE(1)) GO TO 2

AF{1)=AF(1)+1,0

GO TO 1

DO 3 I=1¢NINT

IFC(SEVIJ) eGEXF(I)) o ANDe (SEVIUI LT, XE(I#+1))) GO TO 4

GO TO 3

AF{I+1)I=AF({I+1)+1.0

GO TC 1

CONTINUE

AF {NINT+21=AT (NINT4Z2 +1.0

CONTINUE

DO 5 J=1 ,NGR.LUP

IF(SEV(J)sLE.+1) 6O TO 7

IF(SEV(Y).6T.1.0) GO TC 8

EMP(2)=EMP(2)+1.0

GO TC 5

EMP(1)=EMP(1)+1.0

60 TO S

EMP(3)SEMP(3)+1,.0

CONTINUF

RETURN

ENC
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Table C-3 (continued). COMPUTER LISTINGS
OF THE SIMULATION PROGRAMS

SUBROUTINE OUTPUT (SMEANSOEV +PROb + SNUMJPNUMeAF ¢ CF « XSAMP X "OP
ININToXE o ITIL« XMIN«XMAX)

OIMENSION PROB(3) +SNUM(3) «PNUM(3) ¢AF(35)+CF{35)XE(35),ITIL(20)
THIS SUBROUTINE PRINTS THE OUTPUT OF THE PROGRAM
INCLUDING MEANs STANDARU DEVIATIONs ETCe.

WRITE(S5«10) (ITIL(I)+I=1+20)

10 FORMAT(1H1+40X+20A2)

WRITE(5+1) SMEAN+SDEV

WRITE(S5+2) PROB(1).PROB(2)PRCB(3)

WRITE(S5+3) XSAMP+SNUM({1)+SNUM(2) +SNUM(3)

WRITE(Se4) XPOP+PNUM({1)¢PNUM(2) +PNUM(3)

WRITE(5+5)

K=NINT+1

XLE=XMIN

WRITE(Se7) XLE«XE(1)+AF(1)+CF(1)

D0 6 1 = 24K

o WRITE(S+7) XE(I=1)eXE(I)sAF(I)sCF(I)
XRE=XMAX
WRITE(S¢7) XE(NINT+1) «XRE+AF(NINT42) +CF(NINT+2)
1 FORMAT({1HO+*THE SAMPLE MEAN IS '+E14,.,7//
1' THE SAMPLE STANDARD DEVIATION IS '+E14,7)
2 FORMAT(1HO+®* PROB(S.LE.el) = *¢E14,7/
1' PROBUeleLToSelEele0) = *4E14,7/°* PROB(S,6T,1,0) = "+E14,7)
3 FORMAT(1HO///* XSAMP = "4E14,7/' SNUM(1) = 'El14.7/
1° SKHUM(2) = *4E14,7/% SNUM(3) = '+E14,7)
4 FORMAT(LIHO///® XPOP = '+E14.7/' PNUM(1) = *«E14,7/
1° PNUM(2) = *+E14,7/' PNUM(3) = 'E14.7)
S FORMAT(1HO//////73Xs'CLASS INTERVALS'®¢19X¢YACTUAL ¢ REWUENCY!.
120X, *CUMULATIVL FREQUENCY?')
7 FORMAT(IHO¢*FROM *¢E11.4¢2Xe'TO "+E11.4¢10XsEL14.T920X+ELL,7)
RETURN
END
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Table C-3 (continued). COMPUTER LISTINGS
OF THE SIMULATION PROGRAMS

SUBROUTINE C1PLOT(N+XBAR¢SD'NINTeWeXEoXMIN«XMAX«CFREQeITILLT)
THIS SUBROUTINE DRAWS A CUMULATIVE FREQUENCY PLOT
FOR A GIVEN SET OF DATA, TVHE VARIABLES AND THEIR
DESCRIPTION ARE GIVEN BELOW:
N =NUMBER OF OBSERVATIONS
NINT =NUMBER OF CLASS INTERVALS
XMIN =MINIMUM VALUE
XMAX SMAXIMUM VALUE
[ =WIDTH OF CLASS INTERVALS
XE =VECTOR OF ENDPOINTS OF CLASS INTERVALS
BEGINNING WITH XE{(1)=XMIN AND GOING TO
XE(NINT+1)=XMAX
KOUNT =VECTOR CONTAINING THE NUMBER OF OBSERVATIONS
THAT FALL IN THE VARIOUS CLASS INTERVALS
CFREQ =VECTOR GIVING THE CUMULATIVE FREQUENCIES
ITIL =CAPTION OR HEADING BELOW X-AXIS
LT =LENGTH OF THE X=-AXIS TITLE IN ACTUAL LEYTERS
XBAR =MEAN OF SAMPLE
SD =STANDARD DEVIATION OF SAMPLE
DIMENSION XE(35)+CFREQ(35).ITIL(20)
IPLOT=6
I=MSCFA(IPLOT.*PL")
FN=FLOAT(N)
NV=NINT+1
D0 1 I=1lsNV
CFREQ{I)}=CFREQ(X)*FN
CALL PLOTS(IDUM.IDUM.IPLOT)
CALL PLOT(1+0+0.0¢=2)
XINTSFLOAT(NINT)+1.0
CALL AXIS(0s0¢0.0¢ITILe=LT+XINT+020¢XE(L) oW}
FACT=.9
CALL FACTOR(FACT)
DELTAV=FLOAT(N/10)+1,
CALL AXIS(0,40,¢*NUMBER OF PLANTS®*:16410,¢90,¢0,.0ELTAV}
CALL FACTOR(1.0)
CALL PLOT(0.0¢10.0%FACT3)
CALL PLOT(XINT«10,0%FACTs2)
XE(NINT+2)=XE(1)
XE(NINT+3)=wW
CFREQ{NINT+2)=0,0
CFREQ(NINT+3)=DELTAV/FACT
CALL LINE(XE+CFREQ'NINT+141¢1.11)
CALL SYMBOL(XINT+4.04,21+*SAMPLE SIZE = '+0,0414%)
XN=FLOAT (N)
CALL NUMBER(99940¢999.0¢¢21¢XN10,09-1)
CALL SYMBOL(XINT¢3,5¢¢21¢MIN, VALUE = "4¢0.,0413}
CALL NUMBER(999,0¢999.0v¢21+XMINe¢0s04+2)
CALL SYMBOL(XINT3¢04,21¢?'MAX, VALUE = *¢0.0¢13)
CALL NUMBER(999¢0¢999,0v+21¢XMAX¢0e0¢2)
CALL SYMBOL(XINT+245¢.21¢'MEAN = *4040+7)
CALL NUMBER(999,0¢999,0¢¢21+4XBAR¢040+2)
CALL SYMBOL(XINT12¢01,21+¢STD, DEVe < *¢0.,0412)
CALL NUMBER(999,0¢999.0¢¢21¢SD+0,0+2)
CALL PLOT(0.0¢040+-3)
CALL PLOT(30.040,04-3)
RETURN
END
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Table C-3 (continued). COMPUTER LISTINGS
OF THE SIMULATION PROGRAMS

SUBROUTINE FOPLOT (M ¢ XBAR«SD+«NINT oW eX s XMIN,XMAX ¢ KOUNT +ITIL LT
THIS SUBROUTINE (GRAWS A FREQUENCY HISTOGRAM FOR A
GIVEN SET OF DATA., THE VARIABLES AND THEIR
DLSCRIPTION ARE GIVEN BLLOWS
N =NUMBER OF OBSERVATIONS
NINT =NUMBER OF CLASS INTFRVALS
XMIN =MINIMUM VALUE
XMAX =MAXIMUM VALUE
W SWIDTH OF CLASS INTERVALS
XE =VECTOR OF ENDPOINTS OF CLASS INTERVALS
HEGINNING WITH XE(1)=XMIN AND GOING TO
XE(NINT+1)=XMAX

KOUNT =VECTOR CONTAINING THE MUMBER OF OBSERVATIONS
THAT FALL IN THE VARIOUS CLASS INTERVALS

CFREQ =VECTOR GIVING THE CUMULATIVE FRLQUENCIES

ITIL =CAPTION OR HEADING BELOW X=-AXIS

LT SLENLGTH OF THE X-AXIS TITLE IN ACTUAL LETTERS

XBAR =MEAN OF SAMPLE

SD =STANDARD DEVIATION OF SAMPLE

OIMENSION XE(35)+KOUNTI35)¢ITIL(20)YK(35)eX{35)

IPLOT=6

I=MSCFA(IPLOT.'PL")

NINT=NINT=Z

00 3 I=1.,20

3 XE(I)=x(I)

CALL PLOTS(IDUM,IDUM,IPLOT)

CALL PLOT(1.0¢0,0¢-2)

XINT=FLOAT(NINT)+1.0

CALL AXIS(UeOeB40vITILo=LTsXINT90,0¢XE(L1)} W)

KK=NINT+2

D0 1 K=1.KK

M=KOUNT (k)

1 YK(K)SFLOAT(M)

YK{NINT+3)=0.0

CALL SCALE(YK+8,0«NINT+3:1)

YK(NINT+4)=SYK(NINT+5)

CALL AXIS(=1,0:0.0+"NUMBER UF OBSERVATIONS®¢22:8.0+90,0¢

1YK(NINT+3) « YK{NINT+4))

YVALSYKR(1)/YKININT+4)

CALL SYMBROL(=,5+YVALv+08+¢1140,0¢=1)

LOL=NINT+1

DO 2 I=1,LDL

XE(I)=SXE(I)+W/2,0

2 YK(T)SYK(I+1)

XE(NINT+2)=XE(1)=-w/2,0

XEALINT+3)=w

YK(MINT42Y 0,

YKI(NINTe =YRININT+&

YVAL=YK{1)/YKININT+3)

CALL PLOUT(.54.YVALs2)

CALL LINE(XE«YKeNINT#14141411)

CALL SYMABOL(XINTe4.0s i "SAMPLE SIZE *e0e0014)

XN=FLOAT ()

CALL NUMBER(999.01999.0¢¢21+XN10.0¢~1)

CALL SYMROL(XINT+3«5¢.21e*MiN, VALUE = *40+0.:13)

CALL NUFBER(999,0¢999.09421+XMINs0,0+2)

CALL SYMBOL(XINTe3,00,219%1 4%, VALUE = *,0.,0,13)

CALL NUMBER(999,00999,04421vXMAXe0,042)

CALL SYMBOL(XINT12¢5¢.21¢'MEAN = *40.0+7)

CALL NUMBER({999,0+999,0+4211XEAR0,0+2)

CALL SYMBOLIXTNT+Z.24,214°S1D, UDEV, = *¢0.0¢12)
CALL NUMBER(9399,06+999.0¢,21+1SDe0.0¢2)

CALL PLOT(UO+0.00~3)

CALL PLOY(30.0¢04,0+~3"

MINTSENINT+1

RET! KN

ENe
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APPENDIX D

THE GOODNESS-OF-FIT PROGRAMS:7-12

The goodness-of-fit program is designed to take sample data
from some population with an unknown distribution and "fit"
the-data to various continuous distributions by one of the
standard procedures of statistics. The program will print
out various sample parameters, such as the mean, standard
deviation, coefficient of skewness, and measure of kurtosis.
It will also print out the corresponding parameters for the
theoretical continuous distributions which are fitted to the
data. Finally, using Sturge's rule to set up class intervals,
the program will calculate the chi-square value to be used in
a chi-square test for goodness-of-fit as discussed earlier.
In addition, using the right endpoints of the class intervals
as comparison points, the program calculates the residual sum
of the squares of the difference in the theoretical cumula-
tive distribution and the actual cumulative distribution.

All of the calculations indicated above can be used to deter-
mine how well the given theoretical distribution fits the

actual data.

’Mendenhall, W., and R. L. Scheaffer. Mathematical Statistics
with Applications. North Scituate, Duxbury Press, 1973.

8Wwalpole, R. E., and R. H. Myers. Probability and Statistics
for Engineers and Scientists. New York, The MacMillan Co.,
1972.

9siegel, S. Nonparametric Statistics. New York, McGraw-Hill
Book Co., 1956.

10pyncan, A. J. Quality Control and Industrial Statistics.
Chicago, Richard D. Irwin, Inc., 1952.

llcramer, H. Mathematical Methods of Statistics. Princeton,
Princeton University Press, 1946. 575 p.

1201¢, W. R., and D. T. Magee. Random Sampling as an
Inexpensive Means for Measuring Average Annual Air
Pollutant Concentrations in Urban Areas. (Presented at
the 68th Annual Meeting of the Air Pollution Control
Association, Boston. June 15-20, 1975.
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1. THEORETICAL DISTRIBUTIONS USED AND THE METHODOLOGY
UTILIZED FOR FITTING THEM TO THE DATA

There are four distributions which are used in the goodness-of-
fit program: the normal distribution, the Weibull distribu-
tion, the gamma distribution, and the log-normal distribution.
These represent a wide range of continuous distributions and
are, therefore, deemed sufficient to cover most (if not all)

of the data encountered.

Three methods are routinely used in statistics for fitting
data to a continuous distribution: the method of maximum

likelihood, the method of moments, and the method of least
squares. The theoretical aspects of these methods are dis-
cussed in the statistics texts listed in the references at
the end of this report. The applications of these methods
to the specific distributions under consideration are dis-

cussed below.

First, the data are fitted to the Weibull distribution by
two methods: the method of maximum likelihood and the method
of least squares. For the method of maximum likelihood, the
following system of equations (in the parameters a and b)

need to be solved:

n n b
[ — - I X. 7 =0 (D-1)
a . i
i=1
| )
n n b
04+3% logX, —-az: X.  logX, =20 (D-2)
b . i . i i
i=1 i=1

where n = sample size and the {Xi}n are the sample data
i=1
values. Eliminating "a" from the system we obtain the

following equation in b alone:

|

\
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D
~a i log Xi -1=0 (D-3)

The program uses a numerical scheme called the method of
false position to solve the above equation for b. Then it
obtains "a" by a substitution of b into Equation D-1. Thus,
the necessary parameters, a and b, in the Weibull distribu-

tion function are obtained.

For the method of least squares, the right endpoints of the
class intervals are taken as the x-values and their cumulative
distribution values are taken as the y-values to be trans-
formed by the usual double-log transformation and used in the
method of least squares for obtaining "a" and b. Since the
cumulative d%stribution value for the right endpoint of the
last class interval is 1.0 and this value cannot be allowed
in the double-log transformation, log (log I%Y ), the Y-
value for the last class interval is set at 0.999.

The next fit considered is the normal distribution. The
sample mean, X, and the (unbiased) sample standard deviation
are taken as the values for u and o in the normal distribution
function. This is "almost" a maximum likelihood fit to the
normal. Actually, the maximum likelihood estimators of u and
o are the sample mean and the biased sample standard devia-
tion. However, the unbiased standard deviation should work

as well or better.

The next distribution used is the gamma distribution. The
data are fitted to this:distribution by the method of moments
(since this method is easy to apply to the gamma). The method
of moments yields the system of equations below (in the param-
eters o and B) to be solved:
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n
X Xi
op = =1 (D-4)
Z(Xi—i)2 (biased variance used
a2 = ——— in method of moments) (D-5)

n

Squaring the first equation and dividing it by the second

one obtains:

X, 2
i
2
q = n - - n X (D-6)
=X -X) 2
Z(Xi X) Z(Xi X)
n

The program uses the above equation to obtain o directly and
subsequently substitute this value into the first equation to

R X}

obtain B directly.

Finally, consider fitting the log-normal distribution to the
data. If the data are to be log-normally distributed, the
natural logarithms of the data points should be approximately
normal. Hence, to perform a log-normal fit to the data, the
logarithm of each data point is obtained and used as data for
which to perform a maximum likelihood fit to the normal as
described earlier. That is, the mean of the sample of log
values is used as p and the unbiased sample standard deviation

of the log values is used as ¢ for the normal distribution.

The above remarks conclude the discussion of the theoretical
distributions used and the methods for fitting the data to

each of them individually.
2. FORM AND DESCRIPTION OF OUTPUT

The first thing printed out is a title describing the data
whi%h are to be analyzed. The sample statistics are then

\ .

‘.



printed out, including X, standard deviation, m; (third
central moment), g, (coefficient of skewness), etc. The
various distributions are subsequently fitted one by one in
the manner described above and the information described in
the introduction to this section is printed out for each of
the fits. The first fit is the Weibull Maximum Likelihood

Fit and the last one is the Log-Normal Fit. In the section
for each fit, the class intervals and the corresponding
theoretical frequency and actual frequency of the data in
these class intervals are printed out. 1In calculating the
value of chi-square, the program automatically pools frequency
classes on the upper and lower tails until they obey "the rule
of 5" for the chi-square test. 1In calculating the number of
degrees of freedom, the program automatically reduces the
number of class intervals to take into account the pooling of

the class intervals described above.

One should keep in mind, howe;er, that the program does
nothing about a class interval with a theoretical frequency
less than five unless it occurs as the first or last class
interval. In that case, the program simply pools it with

the class interval below or above it until "the rule of 5" is
obeyed. Since most distributions (including the theoretical
ones being discussed) will generally not have small frequency
class intervals in their center (except for bimodal ones),
this procedure will for the most part take care of any neces-
sary reduction to obey "the rule of 5." However, if more
reduction is deemed necessary,‘this can easily be done by
hand, since the class intervals and the frequencies will be
printed out in the output. As an example of the above, con-
sider the following table of class intervals and frequencies:
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Table D-1. THEORETICAL AND ACTUAL FREQUENCIES
FOR VARIOUS CLASS INTERVALS

Class Theoretical Actual
interval frequency frequency
1 82.1 84
2 53.8 57
3 35.6 34
4 22.2 14
5 13.2 14
6 7.7 6
7 4.3 7
8 2.4 5
9 2.8 3

The program will pool the last two class intervals producing
eight class intervals and, therefore, 8-3 = 5 degrees of
freedom. Class interval 7 does not obey "the rule of 5"
either. However, since it is close to five, the error
produced in leaving it alone and adding one more degree of
freedom to the test is small. Furthermore, if it were pooled
with class interval 6 above it, the resulting value of chi-
square would be less but so also would the number of degrees
of freedom and the final conclusion would be nearly the same.

3. FORM OF INPUT

The input to the program is divided into two parts. The first
part consists of a single card containing three pieces of
information about the data to be analyzed, namely:

N = sample size (in cols 1-5, integer and right justified)

ITIL“I),I=1,30 = title of the data (in cols 6-65 anywhere)
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NFLAG = variable telling whether this is the last data set to
be analyzed by the program on this run. If NFLAG = 0
(i.e., the card is blank in col 80), then the program
expects to analyze another data set after completing
this one. If NFLAG =1 (i.e., the card has a 1 in col
80), this signals the last data set and the program will

terminate after analyzing the current data.

The second part of the input contains the values of the data
punched eight per card under an F10.3 format until the data
are exhausted. The format for reading the data into the

program could easily be changed, if desired.
A listing of the program and output pertaining to the coal-

fired electric utility data is given in Appendix C for

reference purposes.
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Table D-2. COMPUTER LISTINGS OF THE
SIMULATION PROGRAMS - GOODNESS-OF-FIT PROGRAM

DIMENSION XE(20)+AF(20)+XSR(20)¢YSR(20)+XES(20)¢AFS(20) ¢RF (20)
DIMENSION ITIL(30)
COMMON CATA(S500) +XMIN¢XMAX e XBARSDLY
THAIS PROGRAM IS DESIGNWED TO TAKE SAMPLE DATA FHROM
SOME POPULATION w»ITH AN UNKNOWN DISTRIBUTION AND
"FIT" THIS DATA TO VARIOUS CONTINUOUS DISTRIBUTIONS
BY ONE OF THE STANDARD PROCEDURES CF STATISTICS.
THE. PROGHRAM WILL PRINT OUT VARIOUS SAMPLE PARAMETERS
SUCH AS MEAN. STANDARD UEVIATION,COLFFICIENT OF
SKEWNESSe AND MEASURE OF KURTOSIS. 1T WILL ALSO
PRINT OUT THE CORRESPONDING PARAMETERS FOR THE
THEORETICAL CONTINUOUS UISTRIBUTIONS WHICH ARE
FITTED TO THE DATA. FINALLY: USING STURGE'S RULE
TO SET UP CLASS INTERVALSs THE PROGRAM WILL
CALCULATE THE CHI=-SQUARE VALUE TO BE USED IN A
CHI-SQUARE TEST FOR GOODNESS=OF=FIT. 1IN ADOITION:
USING THE R1GHT ENDPOINTS OF THE CLASS INTERVALS
AS COMPARISON POINTS, THE PROGRAM CALCULATES THE
RES1JUaL SUM OF THr SQUARES OF THE DIFFERENCE IN
THt THEORETICAL CUMULATIVE DISTRIBUTION AND THE
ACTUAL CUMULATIVE OISTRIBUTION,
S READ(1e1) NelITIL(I)eI = 1¢30)+NFLAG
1 FORMAT(IS+30A2¢10Xe15)
READ(1¢2) LDATA(I) I = 14N)
2 FORMAT(8F10.3)
WRITE(Se¢10)(ITIL(I) I=1430)
10 FORMAT(1H1+30X¢30A2)
CALL SSTAT(N)
CALL CINT(NsXMIN¢XMAX+«NINToWeXES¢AFS)
C WEIBULL MAXIMUM LIKELIHOOD FIT
CALL RELOAD(XESeAFS«YE+AFeNINT)
CaliL SOLVE(N+AsB)
IF(P.LT+0.0)G60 TO 3
CALL TSKEW(A.B)
CALL RFWEIB(NINT XE«A+BoRF)
CALL RELOAD(XES+AFS+XE+AF¢NINT)
CALL CHIVST(N'NINT'RF¢AFe¢XE)
[ WEIBULL LEAST SQUARES FIT
3 CALL RELOAU(XES+AFS+XE+AFININT)
CALL SETUP(NeNINT+XE+AF+XSRsYSR)
CALL SR(NINT+XSR+YSReA+B)
CALL TSKEW(A.B)
CALL RFWEIB(NINT+XEsAvB¢RF)
CALL RELOAD(XES+AFS«XEsAF«NINT)
CALL CHITST(NSNINT«RF+AF+XE)
c NORMAL FIT
WRITE(5.20)
20 FORMAT(L1HY/////753%X+'NORMAL FIT*)
CALL RELOAD(XES+AFSe+XE+AF+«NINT)
CALL RFNORM(NINT«XEsXBAReSDEVRF)
CALL RELOAD(XES+AFS+XEsAF«NINT)
CALL CHITST(NNINT+RFeAFXE)
[ GAMMA METHOD OF MOMENTS FIT
CALL RELOAD(XES+AFSe+XE+AF¢NINT)
CALL GSOLVE(XBAR+SDEV+ALPHA'BETA«N)
IF(ALPHA.LT.1.0) 60 TO 50
CALL RFGAM(NINT+XE+ALPHAJBETARF)
CALL RELOAD(XES'AFSXE+AF yNINT)
CALL CHITST(N'NINT«RFsAFIXE)
60 TO S1

OO0 ONONOON0NONON

50 WRITE(552)
52 FORMAT{1HO+*THE GAMMA DISTRIBUTION WILL NOT FIT THIS DATA')
[ LOG NORMAL FIT
51 WRITE(5+100)
100 FORMAT(1HL////7/53X«*LOG NORMAL FIT*")
DO 101 I=leN
DATA(I) = ALOG(DATA(I))
101 CONTIMNUE
CALL SSTAT(N)
CALL CINT(NsXMIN«XMAXeNINT«WeXES+AFS)
CALL RELUAD(XES+AFSeXE«¢AF«NINT)
CALL RFNORM{NINT +XE+XBAR«SDEV RF)
CALL RELOAD(XES¢AFSeXE+AF+NINT)
CALL CHITST(NJNINT+RF¢AF+XE)
IF{NFLAG.EQ.D0) GO TO S
CONTINVE
ENOD
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Table D-2 (continued). COMPUTER LISTINGS OF THE
SIMULATION PROGRAMS - GOODNESS-OF-FIT PROGRAM

SUBROUTINE RFNORM{NINT«+XE+XBAR+SDEV+RF)
DIMENSION XE(20)RF120)

c THI~ SUBROUTINE IS DESIGNED TO CALCULATE THE
- THEORETICAL RELATIVE FREQUENCY RF OF THt NORMAL
[ OISTRIBUTION WITH MEAN XBAR AND STANDARD DEVIATION
[ SDEV OVER THE CLASS INTERVALS WHOSE ENDPOINTS ARE
c GIVEN IN TH® ARRAY XE. NINT IS THE NUMBER OF
4 CLASS INTERVALS REPRESENTED.
DO 1 I=1+NINT
1 RF({I)=C.0
IF((XBAR=3.%SDEV).LT.XE(2)) 60 TO 2
XE(1) = G0
GO TO 3
2 XE(1) = XBAR=3.sSOEV
3 M = NINT=1
S = 0.0
DO 6 1 =1:M
DX = (XE(I+1)=XE(I))/1000.,0
CALL INTEG(XE(I)«XE(I4+1)+DXeXBAR'SDEVeRF(I))
S = S¢RF(I)
6 CONTINUE
RF(NINT) 1.0-8
RETURN
END
SUBROUTINE TMTEG(CeDeDX ¢ XBAR+SDEV V)
c ThIS SJURQUTIVE CALCULATES THE INTEGRAL OF THE
c NORMAL PROBABILITY DENSITY FUNCTION PUF WITH MEAN
c XBAR AN STANUARD DOF VIATION SDEV OVER THE INTLRVAL
c € TC U IN INCREMENTS OF DX BY THE TRAPEZOlDAL
[+ RULE. 1000 ITERATIONS ARE USED.
vV = 0.0
A2 = SORT(2.%3.14159)eSDEV
Y1 = POF(Ce«XBAR+SDEV.A2)
Y2 = Y1l
DO 1 1 = 141000
X1 = FLOAT(I)
X2 = C + XI*DX
Y1 = Y2
Y2 = POF(X2.XBAR+SDEV.A2)
1 V= Ve 5=(Y1+Y2)=0DX
RETURN
END
FUNCTION POF (X+XBAR+SDEVA2)
[ THIS FUNCTIOM EVALUATES THE NORMAL ODENSITY
< FUNCTION wiT+ McAN XBAR AND STANDARD DEVIATION
c SDEV AT THF POINT X, THE ARGUMENT A2 IS A
c CONSTANT TRANSEERRED IN WITH VALUE -~
c A2=SQORT(2%FI)*SDEV,

Al = ((X=-XBAR)/SDEV)»s2
ARG = =.5%A1

POF = EXP(ARG)/A2
KRETURN

EN(
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Table D-2 (continued). COMPUTER LISTINGS OF THE
SIMULATION PROGRAMS - GOODNESS-OF-FIT PROGRAM

SUBROUTINE SETUP(N«NINTXE+AFsXSR¢YSR)
DIMENSION XE(20)+AF(20)+XSR(20)YSR(20)

c THIS SUBROUTINE ACCEPTS THE DATA AFTER IT IS
c ARRANGED INTO CLASS INTERVALS AND ACTUAL
c FREQUENCIES HAVE BEEN CALCULATED AND SETS UP THE
c RIGHT ENDPQINTS OF THE CLASS INTERVALS WITH THEIR
c RESPECTIVE CUMULATIVE FREQUENCIES FOR THE LEAST
c SOUARES FIT TO THE WEIBULL.

S = 0.0

XN = FLOAT(N)

00 1 I=14NINT

XSR(I) = XE(I+1)

§ = S+AF(I)

1 YSR(1) = S/XN

YSR(NINT)}=4999 .

DO 2 I=1«NINT

XSR(I) = ALOG(XSR(I))

ARG = 1.,0/(1,0=YSR(I))

ARG = ALOG{ARG)

YSR(I) = ALOG(ARG)

2 CONTINUE

RETURN

END

FUNCTION F(Ns8)
c THIS FUNCTION SUBPROGRAM CALCULATES THE EQUATIC
= VALUE AT A POINT B FOR THE EQUATION USEUL 1IN
C SOLVING FOR B8 IN THE WEIBULL MAXIMUM LIKELIHOOD
c FITe N IS THE TOTAL NUMBER OF DATA POINTS,

DIMENSION XB(500)ALXB(S500)
COMMON X(500)
S1=0.,0
$2=0.9
$3=0.0
00 1 (=14N
XB(I)=X(I)*»b
ALXB(I)=ALOG(XB(I))}
S1=S1+XB(I)*ALXB(I)
$2=82+XB(1I)

1 S3=S3+ALXB(1)
FN=FLOAT({N)
FNS1/FN
F=(81/82)~FN*S3~-1.0
RETURN
ENO
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Table D-2 (continued).

oo non

Nnao

COMPUTER LISTINGS OF THE

SIMULATION PROGRAMS - GOODNESS-OF-FIT PROGRAM

SUBROUTINE TSKLW(A+8)
THIS SUBROUTINE CALCULATES AND PRINTS THE
THEORETICAL VALUES OF THE MEANs VARIANCE, STANDAFR
DEVIATIONs THIRD AND FOURTH CENTRAL MOMENTS,
COEFFICLIENT OF SKEWNESSe AND MEASURE OF KURTOSIS
FOR THE WEXBULL DISTRIBUTION FUNCTION WITH
PARAMETERS A AND B GIVEN, IT ALSO EVALUATES AND
PRINTS THE I AND J POINTS OF THE FUNCTION FOR I=1,
~=¢ 5 AND J=99y ===, 95,
Y1=1,04(1,0/B)
Y2=1.0+4(2.,0/8)
¥3=21,0+(3.0/B)
Y4=1.04(4.0/8)
CALL GAMMA(Y14G1.1)
CALL GAMMA(Y2+62+J)
CALL GAMMA(Y3,:63¢K)
CALL GAMMA{Y4 . GUsL)
Al = Asx(~1,0/B)
A2=Axx(~-2,0/8)
A3=A*s(=3,0/B)
A4z=Ass(~4.0/B)
XMU = Al1#61
SIGMA2=(G2=G1l%%2)%A2
SIGMA=SQRTISIGMA2)
X3=(63-3.,9G18G2+2,0%G1%*3)%A3
XS (GH=U4 %6163 +6.0%G22G1%22,0=3.5Glx%l,0)sA4
SIGMA3=SIGMA**3,0
SIGMA4=SIGMAs»4,0
GAMMAL1=X3/SIGMA3
GAMMA2=X4/SIGMAY
WRITE(D¢1) GAMMAL+GAMMA2
1 FORMAT(1H /*COEFFICIENT OF SKEWNESS ~ *«F10+3¢10Xe*MEASURE OF
.IOSIS = *4F10.3)
WRITE(S¢2)XMU+SIGMA¢ySIGMA+ X3¢+ X4
2 FORMATI(® MEAN = '+E14,.T7+5Xe'VARIANCE = "+E14,7¢5Xe*STANe DEV,
1E14,7/77° THIRD CENTRAL MOMENT = v,E£14,7+5Xs
1'FOURTH CENTRAL MOMENT = *,E14,7)
P=1,0/8
00 3 1=1.5
K=100-1
XP1=FLOAT(1)/100.0
XpP2=1,0-XP1
ARG1=1.0/(1,0=XP1)
ARG2=1,0/(1.,0=-XP2)
P1=(ALOG(ARG1)/A) =»P
P2=(ALOG(ARG2)/A) *sP
WRITE(Se&)L1eKeP1eP2
¢ FORMAT(1HO¢*THE *+I2.* AND *+12+° POINTS ARL *+E14,7+° AM .
1E14%,7)
3 CONTINUE
RETURN
END

FUNCTION WF({X+AeB)
THIS FUNCT ON SUBPROGRAM EVALUATES THE CUMULATIVE
WEIBULL DISTRIBUTION FUNCTION WITH PARAMETERS A
AND 8 AT THE POINT X.

ARG==(AS{X2%3))

WF=1.,0-EXP(ARG)

RETURN

END
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Table D-2 (continued). COMPUTER LISTINGS OF THE
SIMULATION PROGRAMS - GOODNESS-OF-FIT PROGRAM

SUBROUTINE RFWEISB(NINTXE+AyBRF)
DIMENSION XE(20)¢RF(20)CF(20)

c THIS SUBROUTINE CALCULATES THE RELATIVE FREQUE*CY
c RF OVER THE CLASS INTERVALS WHOSE ENDPOINTS ARE
C THE ARRAY XE FOR THE WEIBULL DISTRIBUTION FUNCTION
[ WHOSE PARAMETEHRS ARE A AND B, NINT IS THE NUMBER
c OF CLASS INTERVALS.
MM = NINT-l
00 5 I = 1:MM
XVAL = XE(1I+]1)
CF{Y) = WF(XVAL+AB)
5 CONTINUE
CF(NINT) = 1,0
RF(1) = ¢cF(1)
00 6 I = 2+NINT
6 RF(I) = CF(I)~CF(I~1)
KETURN
END
SUBROUTINE SR(NINT+XSR+YSRvAB)
c THIS SUBROUTINE CALCULATES THE PARAMETERS A AND B
[ FOR THt WItBULL DISTRIBUTION FUNCTION BY THE LEAST
c SAUARES METHOO. THE ALREADY SETUP ARRAYS XSR ANU
c YSR ARL SUPPLIED TO THE SUBROUTINE. NINT IS THE
[4 NUMBER OF CLASS INTERVALS.
DIMENSION XSK{20)YSH(20)
FN=FLOATI(NINT)
S1 = 0,0
S2 = 0.0
0O 1 ISl NINT
S1 = S1+4XSR{I)
S2 = S2+YSRi{I)
1 CONTINUE
X8 = S1/FN
YB = S2/FN
s$1 = 0.0
$2 = 0.0
S = 0.0
DO 2 I=1+NINT
S1 = S1+{XSR(I)-XB8)=*xg
§2 = S2+(YSR(I)-Y3)=#2
S = S+(XSR(I}=XB)*{YSRII)=YB)
2 CONTINUE
VX = S1/(FN-1,0)
VY = S2/(FN~1.0)
SX = SQRTI(VX)
SY = SWRT(VY)
B = S/S1
AL = YR-XB#*B
A = EXP(AL)
R = (B*SX)/SY
R2 = R®%2
ARG = (Bs(l.=-R2})/(FN=2,0)
SE = SURT{ARG)
SB = SE/SQRT(S1:»
TV = B/SB
WRITE(5¢400)
400 FORMAT(1HO0+/////753X«*WEIBULL LEAST SQUARES f1IT7*)
WRITE(5+10)A+B

10 FORMAT(1HO+*WEIBULL PARAMETERS ARE 6 = 0.0 A= v Elul,
15X« 'B = YeElU.H)
WRITE(S+12)R4R24SE¢SBsTV

11 FORBATIIHO 'R = *¢E12,49¢5X¢'RSQ = "+1E12.445X4?SE - '4E12,4,
15Xe-SB = ?eE12.4¢5Xe Ty = 0,€£12,4)
RETURN
END
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Table D-2 (continued). COMPUTER LISTINGS OF THE
SIMULATION PROGRAMS - GOODNESS-OF-FIT PROGRAM

SUBROUTINE RELOAD(XES+AFS+XE+AFNINT)

DIMENSION XES(20) ¢AFS(20) ¢ XL (20) +AF(20)
THE ARRAYS XE OF CLASS INTERVAL ENDPOINIS AND AF
OF ACTUAL FREQUENCIES ARE ALTERED IN CEKTAIN PARTS
OF THIS PROGRAM TO FIT THE NEEDS AT THE TIME,
THUS, RATHEK THAN RECALCULATE THEM EVERYTIME THEY
ARE NEEDEDes THEY WERE STORED IN SAVED ARRAYS XES
AND AFS UPON INITIAL CALCULATION, THIS SUBROUTINE
SIMPLY RELOADS THE WORKING ARRAYS XE AND AF WITH
THEIR SAVED VALUES.

DO 1 I = 14NINT

XEC(I) = XES(I)

AF{1) = aFSI(I)

1 CONTINUE

XE(NINT#+1) - XES(NINT+1)

RETURN

END

(s NaRsResNeNeNa Nyl

SUBROUTIME GSOLVE (XBAR.SDEV+ALPHA+BETAN)
THIS SUSROUTINE FITS THE GAMMA DENSITY FUNCTION TO
THE GIVEN DATA BY THE METHOD Of MOMENTSe. XBAR AND
SDEV ARE THE MEAN AND STANDARD DEVIATION OF THE
GIVEN DATA WHILE ALPHA AND BETA ARE THE CALCULATEC
PARAMETERS FOR THE GAMMA DENSITY FUNCTION, N IS
THE TOTAL NUMBER OF DATA POINTS IN OUR SAMPLE. IN
ADDITIUNs THIS SUBROUTINE CALCULATES ANUL PRINTS
THE THEORETICAL ‘VALUES OF THE MEANs STANDARD
DEVIATIONe COEFFICIENT OF SKEWNESS: ETCe FOR THE
FITTED GAMMA FUNCTION,
FN=FLOAT (N}
ALPHA= (FN*XBAR*XBAR)/ ( (FN=1,0)*SDEV*SDEV)
BETA=XBAR/ALPHA
X3=2,0¢«ALPHASBETA®BETA*BETA
61=2.,0/SQRT(ALPHA)
XU=(13,0%ALPHAX%2)+(6,0%ALPHA) ) =BETAss4
62=3.0+6./ALPHA
VAR=SNEV%SDEV
WRITE(S+1)
1 FORMAT(L1H1Z//7//53X¢'GAMMA METHOD OF MOMENTS fFIT*»
WRITE(S5+2) ALPHABETA
2 FORMAT(1HO¢'GAMMA PARAMETERS ARE: " ¢YALPHA = 94E14,7¢5X,*BETA = *
1¢E14.7)
WRITE{S+3)XBAR'VAR+SDEV1X3eXU4e01e62
3 FORMATI(LHO«*XBAR = "sE14.7¢5Xe VAR = *¢E34¢7+5X«*SDEV = ¢,
1€14,745X//7*THIRD CENTRAL MOMENT = *4E14.7.%K,'FOURTH CENTCAL MOMEN
2T = *4E14,7+5X//'COEFFICIENT OF SKEWNESS = *,E14.7,5X.
3*MEASURE OF XURTOSIS = "+E14.7)
RETURN
END

[sRaNaNaNaNeNaNeNeNel
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Table D-2 (continued). COMPUTER LISTINGS OF THE
SIMULATION PROGRAMS - GOODNESS-OF-FIT PROGRAM

SUBKOUTINE RFGAM(NINT«XE+ALPHA«BETAWRF)

DIMENSION XE(20)+RF 20)
THIS SUBROUTINE SETS UP THE ARRAY OF RELATIVE
FREQUENCIES RF FOR THE GAMMA DENSITY FUNCTION wiTr
PARAMETERS ALPHA AND BETA., XE IS THE ARRAY OF
CLASS INTERVAL ENDPOINTS AND NINT IS THt NUMBER OF
CLASS INTEKVALS.

DO 1 I=1eNINT

1 RF(I)=0.0

XE(1)=1.0E=~05

M = NINT-1

S = 0.0

DO 4 1 = 1M

OX=(XE(I+1)=XE(I)}/1000,0

CALL GINTEGU(XE(I) +XE(I+1)+OXeALPHA+BETARF(I1})

S = S+RF({I)

4 CONTINUE

RFININT) = 1.0 - S

RFTURN

END

[s Nz EsNaNal

SUBROUTINE GINTEG(CsDeOXyALPHABETA V)
THIS SUBROUTINE INTEGRATES THE GAMMA DENSITY
FUNCTION WITH PARAMETERS ALPHA AND BETA OVER THE
INTERVAL & TO Do IT USES 1000 ITERATIUNS OF THE
TRAPEZOJOAL RULE WHERE THE INCREMENT SIZE IS uUX,
THE VALUE V OF THE INTEGRAL IS RETURNED TQ RFGAM
AS -THE RELATIVE FREQUENCY OF THE GAMMA UDENSITY FOR
THE INTERVAL C Y0 O-.

v=0,0

CALL GAMMA(ALPHA+G. 1)

CON=(BETA**ALPHA ) xGA

Y1=G6OF (C+ALPHA+BETA+CON)

Y2=v1

D0 1 I=1,1000

XI=FLOAT(I}

X2=C+XI%0X

Y1=Y2

Y2=GDF (X2 +ALPHA +BETA,CON)

Vz=Ve,53(rv2+Y1)*0X

1 CONTINUE
RETURN
END

"oOoODNOOO

FUNCTION GOF(X+ALPHA+BETA+CON)
TH1S SUSBPROGRAM EVALUATES THE GAMMA DENSITY
FUNCTION WITH PARAMETERS ALPHA AND BETA AT THE
POINT X, LON 1S A CONSTANT SUPPLIED TL GUF HAVING
VALUE (BeTA®*ALPHA)*GA wHERE GA IS THE GAMMA

© FUNCTION EVALUATED AT ALPHA.

ARG1=-(X/BETA)

ARG2=ALPHA=1,0

GDF=( (X*$ARG2)*EXP(ARG1))/CON

RETURN

END

[z NaRsNaNe]
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Table D-2 (continued). COMPUTER LISTINGS OF THE
SIMULATION PROGRAMS - GOODNESS-OF-FIT PROGRAM

SUBROUTINE SSTAT (N)
COMMON X(500)¢ XMINe XMAX, XBAR: SDEV
[ THIS SUBROUTINE CALCULATES AND PRINTS THE SAMPLE
c STATISTICS FOR THE GIVEN DATA.
§=0,0
DO 1 I=14N
1 S=S+x(I)
XBAR=S/FLOAT(N)
§2=0.0
$3=0,0
S4=0,0
00 2 I=1.N
$2=8S2+(X(1)=XBAR) *%2
§3=S3+(X{I)~-XBAR)*%3
2 S4=Su+ix{(I)=-XBAR)*su4
VAR=S2/FLOAT(N=1)
SDEV=SQRT(VAR)
FN=FLOAT (N}
XM3=(FN/{(FN-1+0)*(FN=-2,0)))%S3
XT1=((FNE®2,0=2,%FN+3.0)/((FN=1e0)*%(FN=2.0)}%(FN=3,0)))sS4
XT2=2( (3008 (FN=1)%(2.*%FN=3.0))/(FN*(FN=2+,0)®%(FN=3,0)))*VAR*s2
XMY=XT1=-XT2
61=XM3/SDEVs®3
62=XM4/SDEV=Y
XMIN=X(1)
XMAX=X(1)
00 3 I=1.N
IFIX{I)eLT«XMIN) XMIN=X(I)
IFI{X(I)eGTosXMAX) XMAX=X(])
3 CONTINUE
WRITE(5¢10)
10 FORMAT(52X+*SAMPLE STATISTICS')
#RITE(S+11) XBAR'VAR¢SDEV+XM3 ¢ XM4 461462 XMIN, XMAX
11 FOP~AT(1HO *XBAR = " oE14,7 45X VAR =¢ (E14,7¢5Xe*SD = *,E14,7.5X//
1% M3 = "JE1Ge7eSXe'™™MY = G EL14,T70//7° 61 = 'eE1R,Te5X0e'62 = '
1E1H 7 eSXe ' XMIN = *¢E1%.7+SXe*XMAX = *4EL14.T7)
RETURN
END

SUBROUTINE CINT{(N«XMIN:XMAX+NINTyWe¢XEeAF)
DIMENSION XE(20)AF(20)
COMNMON X(500)
THIS SUBROUTINE SETS UP THE TLASS INTERVALS FOR
THE GIVEN DATA USING STURGL'S RULE TO DETERMINE
THE NUMBER = NINT - OF CLASS INTERVALS. IT ALSO
SORTS THE ORIGINAL DATA INTO THESE CLASS INTERVALS
COUNTING THE NUMBER 14 EACH BY USE OF THE ARRAY AF
OF ACTUAL FREQUENCIES.,
XN = FLOATI(N)
NINT = 1.5 ¢ 343 sALOGLO(XN)
W = (XMAX = XMIN}/FLOAT(NINT)
W =W+ ,00001%W
XE(1) = XMIN
K = NINT + 1
DO 10 I = 2K
10 XE(Y1) = XE(1I=1) + MW
D0 1 I=1eNINT
1 AF(I)=0.0
D0 2 J=1.N
00 3 I = 1eNINT
IF(X(J) oGEJXE(I)«ANDX{J} LT, XE(I+1)) GO TO 4
G0 T0 3
4 AF(I)=AF(I)41.0
GO TO 2
3 CONTINUE
2 CONTINUE
RETURN
END

a0 n
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Table D-2 (continued).
SIMULATION PROGRAMS

nfTOOONOO0N0

SUBROUTINE CHLTST(N«NINTsRFeAF+XE)
DIMENSION AF(20)+RF(20)+TF(20)¢XE(20)
THIS SUJROUTINE CALCULATES THE THEORETICAL
FREQUENCIES FOR THE CLASS INTERVALS AND PRINTS THE
TABLE OF CLASS INTERVALS WITH THEIR RESPECTIVE
THEORETICAL AND ACTUAL FREQUENCIES. IT ALSO
CALCULATES AND PRINTS THE VALUE OF SSEs THE SUM OF
THE SQUARES OF THE ERROR, FINALLYe IT CALCULATES
AND PRINTS THE VALUE OF CHI-SQUARE AND ITS
ASSOCIATED DEGREES OF FREEDOM FOR THIS DATA,
FN = FLOATIN)
DO 7 I=1eNINT
T TF(I)=RFII)*FN
WRITE(S.10)
10 FORMAT(1HO ' CLASS INTERVALS*+20X¢*THE ORETICAL FREQUENCY' 20X+
1°ACTUAL FREQUENCY'")
DO 11 I=1.NINT
11 WRITE(S+12) XE(I)eXE(I+1)eTF(I)AF(I)
12 FORMAT(LHO¢*FROM *+F10¢2+' TO *¢Fl0.2¢15XeF10.3¢30X¢F10.3)

S1 = 0.0
S2 = 0.0
SSE = 0.0

DO 30 1 = 1eNINT
S1 = §1 © RF(I)
S2 = S2 +{AF(I1/FN)
SSE = SSE + (S1eS2)%s2
30 CONTINUE
WRITE(Se31) SSE
31 FORMAT(1404¢*SSE - "4F16.7)
K=NINT
S LEl
DO T I=1+VINT
IF(TF(I).6GE.5.0) GO TO 21
TFOI+MISTR(I+L)+TF(D)
AF(I+1)=AF(I+1)+AF(T)
L=L+1
20 CONTINUE
21 DO 22 I=1+NINT
IF(TF(NINT=I+1).GE«5.0) GO TO 23
TFNINT=T)I=STFI(NINT=-I)+TF(NINT=1+1)
AF(LINT=1)=AF(NINT-1)+AF(NINT=141)
KsK-1
22 CONTINMUE
23 S$=¢.0
DO ¢4 I=LsK
24 S=S+. (TF{I)=AF(I))»*2,0)/TF(I)
NDF =K -L.-2
WRITE({S5+50) S.NOF
5¢ FORMAT(1HO//*CHI=SQUARE - "+F15,6+* WIT- *,13,¢ DEGREES OF FREEQOM
1*)
RETURN
END
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Table D-2 (continued). COMPUTER LISTINGS OF THE
SIMULATION PROGRAMS - GOODNESS-OF-FIT PROGRAM

aoooo00n

71

2
11

70

75

20

101
12
100

S50

400

500

SUBROUTINE SOLVE(N+A+BT

COMMON Xx(500)
THIS SUBROUTINE SOLVES -OR THE PARAMETERS A AND B
IN THE WEIBULL DISTRIBUTION FUNCTON BY THE METHOD
OF MAXIMUM LIKELIHOOD. 1IT USES THE METHOD OF
FALSE POSITION IN THE SOLUTION PROCEDURE, N IS
THE TOTAL NUMBER OF DATA POINTS AND XX IS THE
ARRAY OF DATA POINTS.

X1 = 1,0

X2 = 2.0

Y1 = F{N,X1)

Y2 = F{N X2)
IF((YLlelTe040eANDY2,6Te040)¢O0R{Y1,G6To0,0sAND.Y2,LT.0.0)} GO TO
170

X1 X2

Y1 = Y2

X2 = X2 + 1.0

Y2 = F(NX2)
IF(X1.67.10.0) GO TO 2
60 70 71

WRITE(5.11)

FORMAT(' BETA IS > 10.0 OR < 1.0 OR THERE IS AN EVEN NUMBER OF
1ROOTS BETWEEN TWO INTEGER VALUES')
==1.0
RETURN
IF(Y1lelLTe0.04ANDeY2.6T.0.0) GO TO 75
K

O N

10 3

1-Y1%((X2-X1)/7(Y2=-Y1))
FINeX)

(ABS(Y)sLE..00001) GO TO 100
IF((YoelLTe0:s0eANDeL+sEQe1)eIRe(YeGTe0.,0,AND.LEQ,2)) GO TO 5
X2 = X '
Ye =y
K=K+ 1
IF({K.GE,5000) GO TO 101
GO TO 3
X1 = X
Yi =y
60 TO 20
WRITE(5+12) .

FORMAT(* THE NUMBER OF ITERATIONS EXCEEDED 5000°)
B8=x

S=0.0

DO 50 I=1.N

S=S+XX(T)xs8

A=FLOAT(N}/S

WRITE(S.400)

FORMATU{1HO/////750X+« *WEIBULL MAXIMUM LIKELIHOOD FIT*}
ARITE(S5+:500) A+B

FORMAT (1HQ 4 *WEIBULL PARAMETERSS ARE G = 0,0+« A = v,E14,4,
1'B = "+E14.4)

RETURN

ENU

nx o

L
G0
K
L
xX=
Y
IF
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APPENDIX E

TREATMENT OF CORRELATED DATA BY LINEAR TRANSFORMATION
1. THEORETICAL DISCUSSION OF LINEAR TRANSFORMATION

Dependent (correlated) input variables are discussed in
Section IV.B.2. If the original variables are binormally
distributed, by linear transformation of variables, it is pos-
sible to find two normally distributed and stochastically
independent linear functions of these variables.!3 Assume
that X1 and X2 are correlated variables. With the intro-
duction of variables Y1 and Y2, we can transform the (X1, X2)
variables to the (Y1, Y2) coordinate system which will have
its origin in the point (X1, X2) = (&1, £2) and the Y-axis
will form angle o with the X-axis.

Y1l (X1 - £E1) cos o + (X2 - £2) sin a (E-1)

Y2 = =(X1 - €l1) sin o + (X2 - £2) cos a (E-2)

The correlation coefficient of (Y1, Y2) depends on the angle
a. The following equation is used to find a value for o for

which the correlation coefficient is zero.

208182 -
tan 2¢ = —— for S8; # S, and a = +~ for S; = S, (E-3)
2_a. 2 4
51°-S;
where p = correlation coefficient of (X1, X2) data pairs

S, = sample standard deviation of X1 data
S, = sample standard deviation of X2 data

The data values (Y1, Y2) may be restored to the original
values (X1, X2) by the following inverse transformations:

13Héld, A. Statistical Theory with Engineering Applications.
Ng( York, John Wiley & Sons, Inc., 1952. p. 596-599.
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X1

£l + Y1 cos a - Y2 sin « (E-4)
X2 = -2 + Yl sin o + Y2 cos « (E-5)

The above equations were implemented using APL language on a
time-sharing terminal. Using the population data for coal
consumption and stack heights, the (X1, X2) data pairs were
correlated with p = 0.559. After transformation the correla-
tion coefficient p = (2.978E - 17) which is essentially zero.

2. SIMULATION IMPLEMENTATION

The variables coal consumed (CC) and stack height (H) were
treated as log-normal distributions. The transformation of
the 24 sample values for CC and H were performed on the APL
terminal as previously discussed. The correlation coefficient
for CC with H was 0.3705. After transformation, the correla-
tion coefficient was 9.9E-17, which is essentially zero.

Table E-1 lists the inputs and results of various simulation

runs.

Equations E-4 and E-5 were implemented in a subroutine in the
simulation program to restore the transformed data to actual
values (see Table C-3 for a listing of the program), with
the result that the mean severity was 9.31. The simulation
was repeated with stack height considered as an independent
variable. The mean value of severity was 11.25. The t-test
was made to see if these values were significantly different
from the mean severity 6f 9.25 arrived at earlier in this

report. 1"

l4plder, H. L., and Roessler, E. B. Introduction to Proba-
bility and Statistics. San Francisco, W. H. Freeman and
Company, 1968. p. 136-140.
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Table E-1. COMPARISON OF SIMULATION RESULTS

Standard
Method Parameter Mean deviation Comment
Section IV.B.2 | Coal consumeda 1326 1329 A = Q0.9487E - 3
B = 0.9856
Stack heightsb 93.6 |° 36 Dependent variable
Percent sulfurc 1.82 1.15° A = 0.3039
B = 1.667
Resultant severitya 9.25 12.48
Variables Stack heightsd 4,472 | 0.3751 Log-~normal
a . R R
Freated as Resultant severity (11.25 19.17 distribution
independent
Transformation | Coal consumede 0.0 | 0.9731 Transformed
of . Stack heightse 0.0 | 0.3442 Transformed
variables
Resultant severity | 9.31 12.0

aCoal consumption in kg/yr; stack height in m; severity is dimensionless.

Stack height treated as a dependent variable correlated with coal
consumed.

CSame value used for each simulation.
Stack height treated as an independént variable.

e . . .
Coal consumed and stack heights linearly transformed to make correlation
coefficient zero; both were treated as log-normal distributions.

The t-test assumes that the variate X is normally distributed
with mean o¢. If all possible samples of n variates are

taken from this population and their means are denoted by X,
then

t = é_’—:“- (E-6)
X
S =8 I (E-7)
= _S -
Sg = = (E-8)
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where t = value from table of the Student t-distribution
with n-1 degrees of freedom

X = mean of X
y = population mean
S— = standard deviation of X

é = sample standard deviation

S = standard deviation corrected for small sample
size

n = sample size

In the sample calculation as shown below, it is assumed
that the population mean of 9.25 is from the simulation
results of Section IV.B.2. From a reference table,
t(23) = 2.807 at the 99% confidence level.

sy = 1217 (\[%—) = 3.998
/23
e o 11.25 - 9.25 _ o

3.998

Since the above t value is less than 2.807, it is concluded
that the means are from the same population. This is also
true for the mean of the simulation using the linear trans-
formation.

The F-distribution allows one to test whether the variances
of two means are from the same population.l® A confidence
level such as 99% (significance level of 1%) is selected.

A null hypothesis of (01)2 = (03)? is made. The alternative
is (07)2 # (02)2 and the samples are not from the same

15Koosis, D. J. Statistics. New York, John Wiley and Sons,
Inc., 1972. p. 155-160.
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populations with the same variance. Usually. the larger

variance is divided by the smaller:
(81)2

(S5)2

F = where S; > S,

For the case of treating stack height as an independent

variable,

(12.48)2

For a sample size of 24, the critical region is F >2.72
(found from a table). Thus, it is concluded that the vari-
ances are not significantly different at the 1% confidence
level. It thus appears that linear transformation is a
valid method to use with correlated data.
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