MOLECULAR SIEVE TESTS FOR CONTROL OF SULFURIC ACID PLANT EMISSIONS

Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711

RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into five series. These five broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The five series are:

- 1. Environmental Health Effects Research
- 2. Environmental Protection Technology
- 3. Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies

This report has been assigned to the ENVIRONMENTAL PROTECTION TECHNOLOGY series. This series describes research performed to develop and demonstrate instrumentation, equipment, and methodology to repair or prevent environmental degradation from point and non-point sources of pollution. This work provides the new or improved technology required for the control and treatment of pollution sources to meet environmental quality standards.

EPA REVIEW NOTICE

This report has been reviewed by the U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policy of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

MOLECULAR SIEVE TESTS FOR CONTROL OF SULFURIC ACID PLANT EMISSIONS

by

Karl R. Boldt and Richard F. Timmons

York Research Corporation One Research Drive Stamford, Connecticut 06906

Contract No. 68-02-1401, Task 2 ROAP No. 21ADH-006 Program Element No. 1AB014

EPA Project Officer: E. J. Wooldridge

Industrial Environmental Research Laboratory Office of Energy, Minerals, and Industry Research Triangle Park, NC 27711

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Research and Development Washington, DC 20460

ABSTRACT

A molecular sieve control system for sulfur dioxide from sulfuric acid plant tail gas was tested by York Research Corporation. The system, the PuraSiv S, was developed by Union Carbide Corporation, Linde Division, and is currently operating at the Coulton Chemical Corporation in Oregon, Ohio. The PuraSiv S utilizes a molecular sieve adsorbent material which releases SO₂ upon the application of heat. The SO₂ is then recycled for an additional 2 to 3 percent production of acid.

This report is an evaluation of the PuraSiv S based upon data gathered during a 4-week test program. Sulfur dioxide concentrations were continuously measured and recorded by a DuPont 460/l photometric gas analyzer at both the inlet and outlet gas streams. Average removal efficiency was 98.0 percent. Average SO₂ emissions from adsorbers during testing was less than 100 ppm.

This report was submitted in fulfillment of contract number 68-02-1401, Task Number 2 by York Research Corporation under the sponsorship of the Environmental Protection Agency. Work was completed as of March 4, 1975.

TABLE OF CONTENTS

		Page					
ABSTI	RACT	i					
LIST	OF FIGURES	iii					
LIST OF GRAPHS							
LIST	OF TABLES	v					
LIST	OF APPENDICES	vi					
LIST	OF APPENDIX FIGURES	vii					
ACKNO	DWLEDGMENT	viii					
I.	INTRODUCTION	1					
II.	SUMMARY	2					
III.	PROCESS DESCRIPTION AND OPERATION	4					
IV.	SAMPLING AND ANALYTICAL PROCEDURES	10					
	A. Location of Sampling Ports B. Sampling Procedures C. Analytical Procedures	11 11 15					
٧.	DISCUSSION OF TEST RESULTS	17					
	APPENDICES	45					

LIST OF FIGURES

FIGURE		PAGE
1	Flow Diagram Showing B-Plant, Coulton Chemical Corporation	5
2	Flow Diagram of PuraSiv S (showing Al Absorbing and A2 regenerating)	8
3	Location of Inlet Sample Point and Detail of Probe (not to scale)	12
4	Location of Outlet Sample Point	13

LIST OF GRAPHS

GRAPH		PAGE
1	Typical Cycle During Normal Operation - Adsorber Al	26
2	Typical Cycle During Normal Operation - Adsorber A2	27
3	Adsorber Efficiency Versus Time for Typical Cycle During Normal Operation	28
4	Process Upset - High Converter Exit Temperature	29
5	Process Upset - Malfunction of Condenser Controller Causing Erratic Converter Temperature	30
6	Process Upset - "Slug" of Sulfur Dumped into Burner	31
7	Plant Shutdown with PuraSiv Off-Line	32
8	Plant Shutdown with PuraSiv On-Line	33
9	Plant Startup	34
10	Plant Startup	35

LIST OF TABLES

TABLE		PAGE
1	S0 ₂ Test Summary	19
2	List of S0 ₂ Test Cycles	20
3	DuPont S02 Accuracy Calculations	36
4	Sulfuric Acid Mist Emission Results	37
5	Total Acid Emission Results	38
6	Chloride Emission Results	39
7.	Sulfide Emission Results	40
8	Hydrocarbon Emission Results	41
9	Oxides of Nitrogen Emission Results	42
10	Moisture Results	43
11	Orsat Readings	44

LIST OF APPENDICES

		PAGE
APPENDIX A	Installation and Operation of Continuous Monitoring System	45
APPENDIX B	Calculation of SO ₂ Mass Emission Rate	47
APPENDIX C	Wet Chemical Test Methods	49
APPENDIX D	Example Calculations for Wet Tests	60
APPENDIX E	S0 ₂ Data Summary (English Units)	61
APPENDIX F	S0 ₂ Data Summary (Metric Units)	67
APPENDIX G	Strip Chart	73
APPENDIX H	Raw Data Sheets - Wet Tests	201

LIST OF APPENDIX FIGURES

FIGURE		PAGE
Al	S0 ₂ Sampling Train	50
A2	Diagram of a Heated Midget Sample Train and Probe	52
А3	Sampling Train	54
A4	Hydrocarbon Sampling	56
A5	${ m N0}_{ m X}$ Sampling Train	57
A6	Flue Gas Collection by Leveling Bottle	59

ACKNOWLEDGMENT

York Research would like to express its appreciation to the staff of Coulton Chemical Corporation for the courtesy extended during the performance of this test series. Particular thanks are extended to Messrs. Dave Lovell, Leonard Stonestreet and Connelly Neal for the technical knowledge and assistance both in the preparation of test sites and during the actual testing.

We would also like to thank Messrs. Lou Fornoff of Union Carbide and Ed Wooldridge of the Environmental Protection Agency for their invaluable assistance throughout the project.

I. INTRODUCTION

York Research Corporation, under contract to the Environmental Protection Agency, Office of Research and Development, Industrial Environmental Research Laboratory, tested a sulfur dioxide control system designed and manufactured by the Union Carbide Corporation, Linde Division, and installed at the Coulton Chemical Corporation in Oregon, Ohio. Designated the PuraSiv S* process, the unit utilizes a molecular sieve adsorbent material which has an affinity for polar compounds. It is being used to remove sulfur dioxide from the tail gas stream of a contact sulfuric acid plant.

The PursaSiv S utilizes two adsorbing beds, one of which is "on-line" and one of which is being "regenerated" at any particular time. Normal cycle time is 4 hours; however, the cycle time can be increased or decreased from the norm as conditions dictate. The system has been operating at Coulton Chemical Corporation's B-Plant since February 4, 1973, although the adsorbing beds were replaced in November of that year. A second-generation, more durable sieve material was installed at that time. Actual usage of the new beds was about 11 months, since the plant experienced several shutdowns.

The B-Plant was rated at 200 tons of sulfuric acid per day; however, operational problems had reduced the production rate to 160 tons per day. The plant operators successfully increased the $\rm SO_2$ loading to the PuraSiv S in excess of maximum design loading for the test.

The specific task assignment entailed the continuous measurement of sulfur dioxide in order to perform a technical evaluation of the tail gas control system. Sampling sites were at the outlet of the adsorption bed prior to the inlet to the stack and at the inlet of the adsorbers following the Brink demister. A total of 118 cycles, 59 for each adsorber, were monitored between February 4, 1975 and March 4, 1975. Instrumentation used was a DuPont 460/l photometric gas analyzer with a two-point sampling system and dual range capability. In order to determine baseline tail gas component concentrations, wet tests were performed for the following: sulfuric acid mist, total acid, nitrogen oxides, hydrocarbons, chloride, sulfides, carbon dioxide, oxygen, and moisture.

^{*}Union Carbide trade name.

II. SUMMARY

Sulfur dioxide concentrations were measured at the outlet and inlet of the PuraSiv S unit at the Coulton Chemical Corporation in Oregon, Ohio. The plant is a typical contact sulfuric acid plant with a rated capacity of 200 tons per day. The PuraSiv S has a maximum design loading of 2800 ppm SO₂ at 10,500 SCFM.

The objectives of the test program were (a) to establish SO2 emission levels at maximum design loadings, (b) to document SO2 emission levels when a process upset caused inlet concentrations to go out of control, and (c) to determine the effect of tail gas impurities on the performance of the sieve. Objectives (a) and (b) were successfully obtained and can be found in detail in Section V of this report. Objective (c) was not obtained since the test program was far too short to complete a definitive study on tail gas impurities. However, baseline determinations of the following tail gas components were obtained and can be found in Section V: sulfuric acid mist, total acid, nitrogen oxides, hydrocarbons, chloride, sulfides, carbon dioxide, oxygen, and moisture.

Due to an operational difficulty with the plant during the test period, production rate was down to 160 tons per day with an accompanying drop in tail gas flow rate to 7500 SCFM. The plant operators, however, were able to increase the SO₂ loading to the PuraSiv S without endangering the equilibrium balance of the plant. This was accomplished by routing the recycled SO₂ directly to the combustion air inlet from the regenerating adsorber and bypassing the primary stripper.

The PuraSiv S unit is comprised of two adsorbing vessels which alternate functions at 4- or 5-hour intervals - i.e., at any particular time one vessel is adsorbing and the other is regenerating. During regeneration the desorbed S02 is piped to the combustion air inlet and recycled through the plant for an additional 2 to 3 percent production of sulfuric acid. The major portion (75 percent) of the stream leaving the adsorber is exhausted through the main tail gas stack, while a slipstream is taken from the outlet duct and used to regenerate the air dryer beds.

The S02 concentrations were measured at the adsorber inlet and in the outlet duct just prior to entering the main stack. Sulfur dioxide concentrations were printed on a strip chart, permitting instantaneous results and documentation of trends and patterns. Inlet values averaged from 2335 to 4800 ppm over individual cycles of operation. When inlet concentration is plotted versus time for a single cycle, the curve is characterized by a constant value during the first hour. The next 1½ hours give a rise of 500 ppm above the concentration seen during the first hour, followed by a drop to 100 ppm below the concentration seen the

first hour. The last hour is characterized by a return to the same value experienced during the first hour. The rise is caused by a "slug" of desorbed $S0_2$ from the regenerating adsorber which has been recycled through the plant. Since the desorption is followed by a flush of clean air through the bed, the slug of $S0_2$ is followed by a slug of clean air, accounting for a dilution of tail gas that shows up as a drop in inlet $S0_2$ concentration.

The pattern of outlet concentrations over a single cycle typically started at 15 to 50 ppm during the first hour, rising to 80 to 100 ppm during the second hour and continuing to a maximum of 120 to 180 ppm at the end of the cycle. Several process upsets were documented and two shutdowns were experienced; however, at no time was "breakthrough" noted. (Breakthrough is the point at which emissions increase sharply due to bed saturation.) The emissions exceeded the EPA limit of 4 pounds SO₂ per ton of acid (300 ppm) only during startup. The average emissions from A2 were 0.804 pounds SO₂ per ton of acid as measured over the entire range of test conditions.

Sixty percent of the test period saw loadings to the PuraSiv S in the range of 75 percent of maximum. Emissions, when averaged over separate cycles, were 62 ppm for adsorber A2 and 73 ppm for adsorber A1. At 100 percent of maximum design loading, which was experienced over 35 percent of the test period, emissions averaged 82 ppm for adsorber A2 and 111 ppm for adsorber A1. Five percent of the test period saw loadings of 100 percent of maximum design. Emissions during these cycles averaged 99 ppm for adsorber A2 and 107 ppm for adsorber A1. A short time before the test program, a problem with adsorber A1 was discovered. The bed support had broken and an unknown quantity of molecular sieve had been lost. The problem had not yet been corrected at the time of testing and, therefore, slightly lower efficiency was experienced from that unit.

The emissions from adsorber A2 were below 100 ppm, as emissions were averaged over several cycles. When averaged over individual cycles, however, emissions were as high as 118 ppm. Union Carbide has claimed that the emissions from the PuraSiv S average less than 100 ppm* per cycle, and this level was exceeded in 13 percent of the total number of cycles measured.

Average efficiency of $S0_2$ removal by adsorber A2 was 98.05 percent for $S0_2$ loadings up to 100 percent of design, while efficiency was 97.9 percent for loadings up to 110 percent of design.

*Union Carbide Corporation, "PuraSiv S Systems for Sulfuric Acid Plants - Technical Fact Sheet."

III. PROCESS DESCRIPTION AND OPERATION

The PuraSiv S system has been in operation at the B-Plant of Coulton Chemical Corporation since February 4, 1973. In November of that year the molecular sieve adsorbent material in the beds was replaced with a more durable second-generation sieve packing. The new adsorbent was claimed to have a useful life in excess of 3 years. At the onset of testing, the age of the new sieve was 15 months, although the actual usage had been approximately 11 months.

The B-Plant was designed to produce 200 tons per day of concentrated sulfuric acid. However, problems had been experienced with an electrical transformer on the electrostatic precipitator. This problem forced the use of a smaller standby transformer, which restricted the daily production to 160 tons.

The plant is a single adsorption contact plant, where combustion of sulfur-bearing feed produces a gas stream high in SO₂, which is then exposed to several sequential processes before the final product of sulfuric acid is realized. The feed is composed of molten sulfur, H₂S off-gas, and spent sulfuric acid waste from a nearby petroleum refinery. The tail gas from the adsorption process is the major source of emissions at the plant. Other emission sources include fuel combustion units for air heating. The tail gas flow rate fluctuates with production rate and ranges up to 10,500 SCFM, with an average SO₂ concentration ranging between 2500 and 5000 ppm. At design loading to the PuraSiv S, 1300 + 100 pounds of SO₂ are adsorbed over a 4-hour period.

Although the plant was operating at reduced capacity, a condition was induced during the test period whereby the weight of SO2 adsorbed on the PuraSiv S beds equalled or exceeded the design loading. The regeneration gas returning to the plant was piped directly to the combustion air inlet, bypassing the SO2 stripper, and increasing the SO2 concentration in the gas stream through the plant. Combined with the lengthening of the adsorption cycle beyond 4 hours, the resulting effect was to increase the loading to as much as 1560 pounds of SO2 absorbed per cycle.

Figure 1 is a schematic diagram which shows the basic flow pattern of the B-Plant. Two combustion chambers are utilized for the production of S02; one of which is fed molten sulfur, and the other hydrogen sulfide and alkylation spent acid supplied by the petroleum refinery. The combustion takes place at a high enough temperature to dissociate the spent acid and hydrogen sulfide into S02 and water vapor. The gas stream is humidified prior to the removal of dust and S03/acid mist in a lead-lined electrostatic precipitator. During normal equilibrium conditions virtually no S03/acid mist is formed at this stage of the process. However, during startup and shutdown procedures, and any other process imbalance which results in temperature fluctuations,

S03 and acid mist may form in considerable quantities.

The next stage of the process involves the removal of water vapor from the stream in order to prevent acid formation in the piping. This is accomplished by exposing the stream to circulating concentrated sulfuric acid in a drying tower. The temperature of the stream is then reduced to approximately 8250 F in a heat-exchange system prior to entering the first stage of the four-stage converter. At this point in the system the gas stream contains 9 to 10 percent SO2 with smaller amounts of CO2 and O2; the balance being nitrogen. The SO2 oxidation reaction is exothermic; thus, the temperature of the gas stream rises appreciably when passing through the converter. Heat exchangers are utilized between stages to cool the gas stream back to approximately 825°F before it enters the next stage of the converter. The practical upper limit of conversion for single absorption plants is about 98 percent. This appears to be the level at which the SO2 is in an equilibrium state with SO3 and although oxygen is available for the reaction, further oxidation will not take place unless partial removal of S03 takes place. The remaining S03 passes through the system unchanged.

The process stream leaves the conversion area at about 800°F but is cooled to 480°F prior to absorption. The absorption tower is similar in construction and operation to the drying tower. The gas is exposed to a circulating stream of 98 to 99 percent sulfuric acid, where the sulfur trioxide combines with the water in the acid and increases the strength to between 99.1 and 99.3 percent. Virtually 100 percent of the S02 is absorbed while the unconverted S03 (0.2 to 0.5 percent) passes through unabsorbed. A Brink demister is utilized at the tail end of the base plant to remove any acid mist carry-over from the absorber. Temperature at this point is about 90°F.

The tail gas stream is piped via a 24-inch diameter steel duct to the PuraSiv S unit where it is routed to one of two adsorbing vessels. The system is flexible in that cycle time can be increased or decreased from the 4-hour standard, depending on the $\rm SO_2$ load from the plant. During any particular cycle, one vessel is adsorbing and one vessel is being regenerated, thus returning the desorbed $\rm SO_2$ to the combustion air inlet.

The first hour of regeneration is spent flushing the bed with hot, dry air in order to bring the bed up to an optimum temperature. The bulk of $S0_2$ desorption takes place during the second hour after the bed has reached the desired temperature. The increase of $S0_2$ in the process gas stream during the second hour of regeneration is demonstrated by a 500 ppm increase in the $S0_2$ concentration in the tail gas and by a boost of acid strength in the absorber amounting to 0.002 percent. The last 2 hours of the regeneration cycle consist of bringing the bed

back to operating temperature by purging it with dry, ambient air.

The adsorbent in the PuraSiv S has a strong affinity for polar compounds, and since water is highly polar, water vapor will actually displace S0₂ from the bed. This causes no problem with plant tail gas as moisture is removed from the stream prior to conversion. The concentration of moisture in the PuraSiv S inlet stream was only 20 ppm.

Since ambient air is used for regeneration, it is imperative to remove moisture from the regeneration air, and this is accomplished with the use of two similar (although smaller) adsorption beds. These air dryers normally operate on 4-hour cycles. Adsorber regeneration air is drawn by fan F-1 through one air dryer at a constant 4625 SCFM and heated prior to introducing it into the regenerating adsorbers. The heater exhaust gases do not mix with the regeneration air. At the end of the initial 2 hours of the cycle, the heater cuts off and fan F-1 continues to flush the bed with dry air. Simultaneously, the alternate dryer is being regenerated with a slipstream of treated tail gas. Fan F-2 pulls this slipstream at a constant 2000 SCFM. Two hours of heating and 2 hours of cooling are required for regeneration of the air dryers. This process of adsorption/ regeneration is illustrated schematically in Figure 2, which shows adsorber Al adsorbing and adsorber A2 regenerating while air dryer A4 is drying and A3 is regenerating.

It is obvious from Figure 2 that there are two SO₂ emission points from the PuraSiv S: the main tail gas stack and the air dryer stack. The concentration of SO₂ in the main stack is equal to the SO₂ concentration of the gas entering the air dryer. Some SO₂ may adsorb on the air dryer bed during the last 2 hours of regeneration; however, this SO₂ will desorb upon the application of heat during the following regeneration cycle. Therefore, the weight rate of SO₂ leaving the adsorber will equal the weight rate of SO₂ emitted to the atmosphere from both stacks when averaged over an 8-hour period. For calculating the outlet SO₂ weight rate, the PuraSiv S was treated as a single emission source, using SO₂ concentration at the base of the stack and flow rate at the inlet to the adsorber.

An attempt was made to measure the inlet flow rate by traversing the duct with an S-type pitot tube, but the attempt had to be aborted before completion due to hazardous working conditions. The high SO₂ concentration and high internal duct pressure (2 inches of mercury) made it impossible to work without a sealed test port. A standard-type, fixed-point pitot tube had been installed at the inlet site for a previous test. Since the duct was sufficiently large in diameter for the unmeasured areas to have a significant effect upon the calculation of flow rate,

IV. SAMPLING AND ANALYTICAL PROCEDURES

At the initial coordination meeting between the representatives of Coulton Chemical, Union Carbide, the Environmental Protection Agency, and York Research Corporation, York Research proposed to perform a continuous monitoring study of the PuraSiv S process. The Environmental Protection Agency agreed to sponsor the study, provided that wet tests were performed using an acceptable method to verify the results of the gas analyzer. Following a long preparation period, during which several types of analyzers were discussed, the decision was made to use a DuPont 460/1 photometric gas analyzer equipped with a two-point sampling system. This instrument has a precision of 2 percent.*

Teflon sample lines with a 1/2-inch outside diameter were connected to the inlet and outlet of the absorber. A compressed air line was also connected to the instrument from the plant compressor The DuPont 460/1 utilizes a switching system powered by pneumatic valves and an air-powered arrangement is used to move the sample. The dual sample-point arrangement consists of twin aspirators and switching capability to operate the instrument in any one of four sampling modes. The first mode is a flush of instrument air through the sampling interface, through the sample handling system, and through one of the sample lines to the probe. During this flush of clean air, the instrument automatically sets the readout at zero. The second mode is a sample mode, during which some stack gas is extracted and concentration is measured at the sampling interface. step is a flush of clean air through the sampling system and back down the second sample line. Following this is a sample extraction and measurement from the second sampling location. Each step is automatically and sequentially controlled by a control station that can be programmed. In addition, a manual override is included so that any particular sample mode can be eliminated or held for an indefinite period of time. Normal cycle times are 30 seconds for each flush sequence and 90 seconds for each sample sequence.

Since the instrument had only one sampling interface, the calibration and range adjustment could not be made separately for each sample location. A high SO 2 removal efficiency characteristic of the PuraSiv S necessitated that a modification be made to the instrument that would permit an independent range and calibration adjustment for each sample location. This was accomplished by the inclusion of a separate 20 K potentiometer and solenoid switching arrangement that was actuated automatically whenever the sample position switched. The result was a separate calibration and range adjustment that showed no appreciable drift.

*As claimed by the manufacturer.

A. Location of Sampling Ports

The inlet sampling location was chosen by the existence of a maintenance platform and sample port utilized by plant personnel for taking their own samples. The inlet duct was approximately 25 feet above grade, circular (with a 24-inch diameter), and ran horizontally from the demister outlet to the PuraSiv S inlet. The sample port was located 30 feet downstream of the demister outlet and 8 feet upstream of the adsorber inlet. This port location is schematically illustrated in Figure 3. The instrument probe consisted of a piece of stainless steel tubing fitted through a tee, as illustrated in the lower right area of Figure 3. One leg of the tee was fitted with another length of tubing, which was connected to a sample line running to the plant control room. The sample probes were arranged so that the backflush of air from the DuPont instrument would not affect the sample taken by the control room personnel.

A special port coupling was designed so that the high SO₂ concentration and high internal duct pressure would not pose a hazard to the test crew when the wet tests were performed. The coupling is shown at the lower left of Figure 3. It was designed so that the probe could be sealed in place for testing but could be removed for cleanup. The major component was a 4-inch gate valve capped with a reducer down to 1-inch pipe thread. A 1-inch Swagelok fitting was threaded into the reducer and was used to seal the probe in place. The probe was glass heated by nichrome windings and sheathed in stainless steel.

It was originally intended to extract the PuraSiv S outlet sample from a port in the main tail gas stack approximately 25 feet above grade. This location, however, was immediately above the adsorber bypass inlet and a small amount of leakage around the closed bypass valve caused erroneous readings. The sample probe was then moved to an existing sample tap located in the outlet duct between the fan F-2 take-off and the inlet to the stack. This sample location, which was accessible at ground level, is schematically illustrated in Figure 4. The duct was horizontal and had a 36-inch diameter. The analyzer probe consisted of a piece of stainless steel tubing fitted into a 1-inch pipe coupling with a Swagelok reducing fitting. A 3-inch pipe coupling welded onto the duct at 90° to the analyzer probe served as the wet test sample port.

B. Sampling Procedures

Wet tests were performed at the inlet and outlet of the PuraSiv S for sulfuric acid mist, sulfur dioxide, sulfur trioxide, total acid, chloride, sulfides, oxides of nitrogen, hydrocarbons, oxygen, and carbon dioxide. With the exception of the acid mist tests, which were performed isokinetically using a button-hook-type nozzle on the probe, all wet tests were performed at a proportional sample rate with a plain probe.

Top View

Front View

Figure 4 Location of Outlet Sample Point

The acid mist tests were performed isokinetically at a single point just before the center line of the duct, using a modification of EPA Method 8. The single-point test was justified by the fact that acid mist particles leaving a demister are believed to be less than 5 microns in size,* and in this range particles tend to be evenly dispersed throughout the duct. Velocity measurements at the inlet were made with a standard-type pitot tube, and at the outlet they were made with an S-type pitot tube. The detailed test method can be found in Appendix C.

The mist tests were performed during the first week of the test period. However, the purge of the train had been accomplished without the filter in place. Since the SO₂ which was absorbed by the filter was not removed during the purge, the results were erroneously high and are not presented in this report. The tests were repeated later in the test program.

The tests for nitrogen oxides, using EPA Method 7, were performed during the first and last week of the test period. Total acid/ chloride tests were also performed during the first and last week of the test period. The sample gas was bubbled through Greenburg-Smith-type impingers containing 100 ml each of dis-Sample aliquots were then analyzed for total tilled water. acid and chloride. Hydrocarbon sampling was performed during the first week, whereas the testing had to be aborted during the last week when the heating element used to heat the grab flasks malfunctioned. Sulfides were analyzed from the sample catch in the iospropyl alcohol bubbler which is incorporated into the SO₂ and sulfuric acid mist sample trains. These tests were performed in the period between the first and last weeks Oxygen and carbon dioxide samples were taken during of testing. the first and last weeks of the test program and analysis was performed on-site using an Orsat analyzer. Moisture content of the inlet and outlet gas streams was determined during the middle of the program using the instrumentation method detailed in Appendix C.

Sample recovery and train preparation were undertaken in an enclosed trailer parked at the plant site in close proximity to the sampling locations. The sample recovery consisted of probe and glassware rinses with either distilled water or isopropyl alcohol. In the case of sulfuric acid mist tests, the filters were removed and placed in plastic petri dishes and sealed in plastic bags. With the exception of Orsat analysis and the SO₂ samples, which were analyzed on-site, all samples were transported in sealed containers to York Research Corporation's laboratory in Stamford, Connecticut, for final analysis.

*U.S. Environmental Protection Agency "Compilation of Air Pollutant Emission Factors," February 1972.

C. Analytical Procedures

Sulfur dioxide samples were analyzed on-site in a section of the plant laboratory. The samples were stored in Nalgene 4-ounce plastic sample bottles prior to analysis. Each sample was transferred to a 250-ml volumetric flask and diluted to that volume with distilled water. An aliquot was taken from this flask and placed in a 250-ml Erlenmeyer flask. The aliquot volume of straight isopropyl alcohol was added four times and the aliquot was then diluted to 80 ml with 80 percent isopropyl alcohol. A few drops of thorin indicator were added and the solution titrated to a pink end point with a standardized solution of 0.01 N barium chloride. Agitation was provided by a magnetic stirrer. Blanks of all solutions were analyzed on-site.

The acid mist samples were collected on Fiberglas filter discs, placed in plastic petri dishes, and sealed in plastic bags for transportation to York Research's laboratory. The first step in the analytical procedure was to macerate the filters individually in an aqueous medium in order to remove all sulfuric acid from each filter. The acid solution was then combined with an excess of sodium carbonate to form sodium sulfate in an alkaline medium. The solution was treated with barium chloride in order to precipitate barium sulfate out of solution; however, because this reaction takes place more readily in an acid medium, a quantity of hydrochloric acid was added prior to the addition of barium chloride. The resulting solution of sodium chloride with a barium sulfate precipitate has a turbidity which is proportional to the concentration of the sulfate. This turbidity was measured with a visible spectrophotometer at 450 nm and sulfate concentration was obtained from a standard curve.

Sulfur trioxide samples were stored in 4-ounce plastic sample bottles and transported to York Research's laboratory for analysis by titration with barium chloride. The samples were transferred to a 100-ml volumetric flask and diluted to that volume with distilled water. An aliquot was taken and transferred to a 250-ml Erlenmeyer flask prior to the addition of four times the aliquot volume of straight isopropyl alcohol.

A few drops of thorin indicator were added and the solution was titrated to a pink end point with a 0.01 N solution of barium chloride.

Determinations of total acid were performed in order to demonstrate the existence of other acids in addition to sulfuric acid. The samples were placed in glass jars and transported to York Research Corporation's laboratory for analysis. An aliquot of the sample was taken and placed in a 250-ml Erlenmeyer flask. The flask was placed on a magnetic stirrer and titrated with a standardized solution of sodium hydroxide to a phenolphthalein end point. The resulting volume of base necessary to neutralize the sample was then converted to milliequivalents of total acid.

Chloride analysis was performed on an aliquot from the same sample which was analyzed for total acids. A chloride selection ion electrode combined with a Corning Model 610 research pH meter was used to measure chloride concentration in the aliquot. The concentration multiplied by total volume of the sample resulted in chloride content of the sample.

Sulfide samples were obtained in solutions of 80 percent isopropyl alcohol and sealed in Nalgene 4-ounce plastic sample bottles for transportation to the Stamford laboratory. A sufficient amount of ammonium hydroxide was added to the samples to make the solution alkaline, after which the sulfide was combined with lead acetate in order to form a lead/sulfide precipitate. The amount of lead sulfide was determined colorimetrically by matching the color of the precipitate visually to known concentration standards.

Hydrocarbon samples were obtained in 500-ml glass grab flasks and transported to the Stamford laboratory in a foam-lined wooden packing crate. The samples were displaced from the flasks by injection of liquid mercury, thereby causing the sample to flow out of the flask and into a Perkin-Elmer Model 881 gas chromatograph (GC) utilizing a flame ionization detector. The GC was standardized with a known mixture of hexane and nitrogen, and an empty column was used so that separation of hydrocarbons did not occur. The chromatograms were then read as total hydrocarbons.

Analysis of nitrogen oxide samples was performed in the Stamford laboratory using a phenoldisulfonic acid method. The samples, which contained 0.1 normal sulfuric acid and absorbed nitrogen oxides, were transported to the laboratory in Nalgene 4-ounce plastic sample bottles. The acid was neutralized with sodium hydroxide and the solution was evaporated to dryness over moderate heat to avoid spattering. The residue was dissolved in 2 ml of phenoldisulfonic acid with constant stirring. Twenty milliliters of water were added to complete the dissolution of undissolved Upon the addition of 10 ml of concentrated ammonia, a trialkali salt of 6 nitro-l-phenol-2-4 disulfonic acid was formed, with a distinct yellow color which is proportional to the concentration. The color was read with a Bausch & Lomb Spectronic-20 visible spectrophotometer at 420 nm wave length, and the NO2 concentration was obtained from a calibration curve made specifically for that purpose.

Analysis of carbon dioxide and oxygen was performed on-site using an Orsat analyzer. This is a standard apparatus which volumetrically measures gaseous components by absorption into a specific fluid. The samples were taken simultaneously at the inlet and outlet using leveling bottles with a solution of dilute sulfuric acid and methyl red.

V. DISCUSSION OF TEST RESULTS

In order to assess the efficiency of the PuraSiv S process, a 1-month source sampling and continuous monitoring program was undertaken. During this period 118 absorption cycles and a variety of transient conditions were measured. Thus, the test data obtained allowed for a complete mapping of system performance.

Copies of the original recorded strip charts can be found in Appendix C. Listings of SO₂ mass emission rate for each cycle are tabulated in Appendices E and F. Typical cycles for adsorbers Al and A2 are shown in Graphs 1 and 2, respectively; Graphs 4 through 10 depict various process unbalances and upsets.

The results of the continuous monitoring study were recorded on a parts per million by a volume basis. The analyzer utilizes a dual-range capability which permits the recorder to switch from the 0 to 5000 ppm inlet scale to the outlet 0 to 300 ppm scale. Example calculations demonstrating the technique used to arrive at the S02 mass emission rates are shown in Appendix B. gas flow rate was calculated by Coulton Chemical personnel and then corrected to standard conditions (70°F and 29.92 inches Hg). In determining the outlet mass emission rates, the inlet flow rate was used. This results in an average emission rate equal to the total of the main stack SO2 emission rate plus the air dryer stack emission rate, thus showing the PuraSiv S system to be the single source of SO2 emissions at the Coulton B-Plant. This is justified by the fact that both the Federal and state of Ohio Environmental Protection Agencies limit total emissions of acid plant tail gas rather than emissions from individual points within the plant.

A. Normal Operation

An unusually wide range of $\rm S0_2$ inlet concentrations to the PuraSiv S were experienced over the 4-week period, varying from a minimum average of 2335 ppm to a maximum of 4800 ppm per cycle, with peaks exceeding 5000 ppm during the recycle stages. The lower readings were recorded during the first 2 days of testing and were due in part to an improperly marked high-range calibration gas cylinder. The cylinder was recalibrated using the procedure outlined in the September 11, 1974 Federal Register.

After recalibration of the cylinders, correlation with wet tests was within 5 percent. The readings obtained during the first 2 days are listed in the mass emission tables in Appendix B, but they have been omitted from the summaries in Tables 1 and 2.

Since the plant was operating under the restriction of an undersized electrical transformer, neither acid production nor tail gas flow rate could be altered without imposing a serious equilibrium im-

balance on the plant. However, a simulation of variations in loadings to the PuraSiv S was performed by increasing the time of adsorption cycle and the $\rm SO_2$ concentration to the adsorber. Thus, we were able to exceed the maximum design loading conditions to the PuraSiv unit. These results are tabulated by categorization of:

- (a) adsorber vessel.
- (b) inlet concentration.
- (c) length of cycle.

In addition, Table 1 summarizes the results of average mass emission rates as a function of each of the above.

Inlet concentrations averaged less than 4000 ppm during 60 percent of the test period, while the outlet emissions averaged 62 ppm from adsorber A2 and 73 ppm from adsorber A1. The discrepancy is due to a problem with an adsorbent bed support in adsorber A1. The range of inlet concentrations, which represents maximum capacity of the beds at a flow rate of 7500 SCFM, is 4000 to 4500 ppm. These inlet concentrations were experienced over 35 percent of the test period, while the outlet of adsorber A2 averaged 82 ppm and adsorber A1 111 ppm. For the remaining periods (approximately 5 percent) the inlet concentrations of S02 to the PuraSiv exceeded 4500 ppm. At this time the concentration leaving adsorber A1 averaged 107 ppm and 99 ppm for A2.

Adsorbing vessels Al and A2 were designed to be identical in function and performance. Prior to testing, Al was found to have a defective bed support, which caused a quantity of molecular sieve to be lost from the system. As well as reducing the capacity of that bed, the loss of some adsorbent altered the flow distribution through the vessel, which resulted in slightly less efficiency for that unit.

Union Carbide Corporation guarantees that the PuraSiv S system is capable of reducing the average SO₂ emission level to less than 100 ppm* over a single cycle. A realistic evaluation, taking the bed support problem of Al into consideration, shows that the PuraSiv S emissions exceed this level in 13 percent of the total number of cycles measured. The highest SO₂ emission level from A2, averaged over a single cycle, was 118 ppm.

Graphs 1 and 2 represent typical cycles of normal operation for adsorbers A1 and A2, respectively. The adsorbers have similar curves with the exception of slightly higher emission concentration

*Union Carbide Corporation "PuraSiv S Systems for Sulfuric Acid Plants - Technical Fact Sheet."

TABLE 1. SO2 TEST SUMMARY

Cycle <u>Length</u>	Unit	No. of Cycles	Avg. Inlet ppm	Avg. Inlet lb/hr	Avg. Inlet kg/hr	Avg. Outlet ppm	Avg. Outlet lb/hr	Avg. Outlet kg/hr	Efficiency
4:00-4:20	Al	6	3672	276.6	125.59	92	6.91	3.14	97.5
4:21-4:40	Al	24	3164	235.0	111.54	65	4.84	2.20	97.9
>4:41	Al	2	3013	223.3	101.38	113	8.38	3.81	96.3
4:00-4:20	Al	6	4193	316.5	143.67	129	9.72	4.42	96.9
4:21-4:40	Al	12	4206	314.8	142.90	99	7.63	3.35	97.6
4:40-4:21	Al	2	4673	352.7	160.13	107	8.04	3.65	97.8
4:00-4:20 4:21-4:40 >4:41 4:00-4:20 4:21-4:40 4:00-4:20 >4:41	A2 A2 A2 A2 A2 A2 A2	2 23 5 9 8 4	3270 3211 3060 4196 4246 4619 4620	245.1 238.3 227.9 316.7 318.7 348.7 341.6	111.26 108.28 103.68 143.42 144.70 158.50 155.09	62 55 91 86 77 100 98	4.64 4.08 6.73 6.52 5.75 7.51 7.25	2.11 2.36 3.06 2.99 2.61 3.41 3.29	98.1 98.3 96.9 97.9 98.2 97.9

TABLE 2. LIST OF S02 TEST CYCLES

CYCLE	LENGTH:	4:00-4:20	UNIT:	Al	INLET CONDIT	IONS: <4000 ppm
Avg. Inlet ppm	Avg. Inlet lb/hr			Avg. Outlet lb/hr		Efficiency
2600 3870 3930	192.8 292.1 296.6	87.5 132.6 134.7	76 81 101	5.63 6.11 7.62	2.56 2.77 3.46	97.1 97.9 97.4
3765 3965 3905	284.2 299.3 294.7	129.0 135.9 133.8	99 103 91	7.47 7.77 6.87	3.39 3.53 3.12	97.4 97.4 97.7
CYCLE	LENGTH:	4:21-4:40	UNIT:	Al	INLET CONDIT	IONS: <4000 ppm
2795 2495 2610 3330 3290 3060 2590 3090 3460 2745 2780 3065 2960 3250 3335 3545 3195	207.2 185.0 193.0 249.9 243.9 226.9 192.0 229.1 256.5 203.5 205.5 226.6 218.9 240.3 246.6 262.1 236.2	94.1 84.0 87.9 113.5 110.7 103.0 87.2 104.0 116.5 92.4 93.3 102.9 99.4 109.1 112.0 119.0 107.2	85 57 76 80 76 63 67 49 77 38 46 53 51 63 64 82 62	6.30 4.23 5.63 5.63 5.63 4.67 4.97 3.63 5.71 2.82 3.40 3.92 3.77 4.66 4.73 6.06 4.58	2.86 1.92 2.56 2.69 2.56 2.12 2.26 1.65 2.59 1.28 1.54 1.78 1.71 2.10 2.15 2.75 2.08	97.0 97.7 97.1 97.6 97.7 97.9 97.4 98.4 97.8 98.6 98.3 98.3 98.3 98.1 98.1
3120 3385 2495 3510 3750 3645 3980	230.7 250.3 217.7 259.5 283.0 275.1 300.4	104.7 113.6 98.8 117.8 128.5 124.9	56 67 55 64 72 75 87	4.14 4.95 4.07 4.73 5.43 5.66 6.57	1.88 2.25 1.85 2.15 2.47 2.57 2.98	98.2 98.1 98.1 98.2 98.1 97.9 97.8
		136.4 4:41	87 UNIT:			97.8 PIONS: <4000 ppm
3045 2980	225.7 220.9	102.5 100.3	123 103	9.12 7.64	4.14 3.47	96.0 96.5

LIST OF SO₂ TEST CYCLES (CONTD.)

CYCLE	LENGTH:	4:00-4:20	UNIT:	Al	INLET	CONDITIONS:	4000-4500	maa
			W-1				7 0 0 0 T J 0 0	

Avg. Inlet ppm	Avg. Inlet lb/hr	Avg. Inlet kg/hr	Avg. Outlet ppm	Avg. Outlet lb/hr	Avg. Outlet kg/hr	Efficiency
4020 4075 4420 4275 4100 4265	303.4 307.6 333.6 322.7 309.5 321.9	137.7 139.7 151.5 146.5 140.4 146.1	107 103 141 136 134 152	8.08 7.77 10.64 10.27 10.11 11.47	3.67 3.53 4.83 4.66 4.59 5.21	97.3 97.5 96.8 96.8 96.7 96.4
CYCLE	LENGTH:	4:21-4:40	UNIT:	Al INLET	CONDITIONS:	4000-4500 ppm
4080 4130 4495 4490 4245 4065 4205 4005 4250 4255 4105 4150	301.7 305.4 332.0 313.9 306.8 317.4 302.3 320.8 321.7 309.8 313.2	137.0 138.7 150.7 150.7 142.5 139.3 144.1 137.2 145.6 146.0 140.7	94 97 113 110 97 89 112 97 109 91 99	6.95 7.17 8.36 8.13 7.17 6.72 8.45 7.32 8.23 6.87 7.47 8.76	3.16 3.26 3.80 3.69 3.26 3.05 3.84 3.32 3.74 3.12 3.39 2.57	97.7 97.6 97.5 97.6 97.7 97.8 97.3 97.6 97.4 97.9 97.6
CYCLE	LENGTH:	4:00-4:21	UNIT:	Al INLET	CONDITIONS:	>4500 ppm
4700 4645	354.8 350.6	161.1 159.2	114 99	8.60 7.47	3.90 3.39	97.6 97.9

LIST	OF	$S0_2$	TEST	CYCLES	(CONTD.)	ļ

CYCLE	LENGTH:	4:00-4:20	UNIT:	A2 INLET	CONDITIONS:	<4000 ppm
Avg. Inlet ppm	Avg. Inlet lb/hr	Avg. Inlet kg/hr	Avg. Outlet ppm	Avg. Outlet lb/hr	Avg. Outlet kg/hr	fficiency
2605 3935	193.1 297.0	87.7 134.8	54 70	4.00 5.28	1.82 2.40	97.9 98.2
CYCLE	LENGTH:	4:21-4:40	UNIT:	A2 INLET	CONDITIONS:	<4000 ppm
2755 2805 3440 3080 2750 2885 3230 2945 2740 2990 3235 2920 3305 3635 3460 3300 3145 2810 3550 3980 3700 3830	204.2 208.0 255.0 228.3 203.9 213.9 239.5 218.3 203.1 221.1 239.2 215.9 244.4 268.8 255.8 244.0 248.4 232.5 207.8 264.5 300.4 279.3 289.1	92.7 94.4 115.8 103.7 92.6 97.1 108.7 99.1 92.2 100.4 108.6 98.0 111.0 122.0 116.1 110.8 112.8 105.6 94.3 120.1 136.4 126.8 131.3	74 61 81 68 40 50 45 28 34 40 52 67 51 54 59 64	5.49 4.52 6.01 4.60 5.04 2.97 3.71 3.34 2.07 2.33 3.62 2.96 3.84 4.58 5.25 3.99 3.70 3.77 3.99 4.83	2.49 2.05 2.73 2.09 2.29 1.35 1.68 1.52 .94 1.11 1.64 1.34 1.74 2.08 2.38 1.78 1.81 1.68 1.71 1.81 2.19 2.02 2.19	97.3 97.8 97.6 98.0 98.5 98.5 98.9 98.9 98.4 98.4 98.4 98.4 98.4 98.4
CYCLE	LENGTH:	4:41	UNIT:	A2 INLET	CONDITIONS:	<4000 ppm
3065 3230 2715 2375 3915	227.2 239.5 201.3 176.1 295.5	103.2 108.7 91.4 80.0 134.2	111 107 66 102 67	8.23 7.93 4.89 7.56 5.06	3.74 3.60 2.22 3.43 2.30	96.4 96.7 97.6 95.7 98.3

LIST OF SO₂ TEST CYCLES (CONTD.)

								1
CYCLE	LENGTH:	4:00-4:20	UNIT:	A2	INLET	CONDITIONS:	4000-4500	ppm
Avg.	Avg.	Avg.	Avg.		Avg.	Avg.		
Inlet	Inlet	Inlet	Outlet		utlet		Efficiency	
	lb/hr	kg/hr			b/hr	kg/hr	ETTICIENCY	
ppm	10/111	KG/III	ppm	_ =	.D/ III	Kg/III		
4500	339.7	151.1	72		5.43	2.92	98.1	
4000	301.9	137.1	77		5.81	2.40	98.2	
4290	323.8	147.0	86		6.49	2.95	98.0	
4150	313.2	142.2	7 5		5.66	2.57	98.2	
4040	304.9	138.4	101		7.62	3.46	9 7. 5	
4225	318.9	144.8	106		8.00	3.63	97.5	
4365	329.5	149.6	118		8.91	4.05	97.3	
4090	308.7		75		5.66	2.57	98.2	
4100	309.5	140.5	68		5.13	2.33	98.3	
			• •					
CVCTE	፣ ውእነረጥህ•	4:21-4:40	TINITO .	7\ ')	דאו ן ביווי	CONDITIONS:	4000~4500	ກກໜ
CICUE	LENGIA.	4:21-4:40	ONTI.	AL	THIET	CONDITIONS.	4000-4500	ppm
4445	328.7	149.2	84		6.21	2.82	98.1	
4500	332.7	151.1	87		6.43	2.92	98.1	
4215	318.1	144.4	7 5		5.66	2.56	98.2	
4000	301.9	137.1	70		5.28	2.40	98.2	
4270	322.3	146.3	80		6.04	2.74	98.1	
4170	314.7	142.9	70		5.28	2.40	98.3	
4165	314.4	142.7	73		5.51	2.50	98.2	
4200	317.0	143.9	74		5.59	2.54	98.2	
CVCLE	T.FNCTH.	4:00-4:20	UNIT:	Δ2	ייים. דאד	CONDITIONS:	>4500 ppm	
CICHE	DDI(GIII.	4.00 4.20	ONTI.	A2	11/11/11	CONDITIONS.	74300 ppm	
4540	342.7	155.6	91		6.87	3.12	98.0	
4800	362.7		87		6.57	2.98	98.2	
4520	341.2		110		8.30	3.77	97.6	
4615	348.3		110		8.30	3.77	97.6	
CYCLE	LENGTH:	4:41	UNIT:	Α2	INLET	CONDITIONS:	>4500 ppm	
4620	341.6	155.1	98		7.25	3.29	97.9	

from Al. The typical curve of plant tail gas concentration has a period of higher $S0_2$, beginning at the start of the second hour in the PuraSiv cycle and continuing for $1\frac{1}{2}$ to 2 hours. This is caused by the desorbed $S0_2$ being released from the regenerating bed and recycled through the plant. Following the recycle period is a light lowering of $S0_2$ concentration, caused by a dilution of plant tail gas from the flush of cool air through the bed at the end of the regenerative cycle.

Efficiency of the PuraSiv S is represented by:

Inlet-Outlet Inlet

Graph 3 shows efficiency of adsorbers Al and A2 using the emission data from Graph 1 and Graph 2. Efficiency for each adsorber decreases with time and is relatively unaffected by inlet concentration. This is demonstrated by the fact that no discontinuities are shown where inlet concentration changes in the second and third hours of the cycle. Upon extrapolation of the curves, we would experience breakthrough. However, since we have no supporting mathematical data as to the limits involved, this phenomenon has not been predicted. The curves do show, however, that breakthrough would occur on Al before A2.

B. Transient Conditions

The analyzer, operating continuously, has documented emissions during several minor process upsets as well as recorded two plant shutdowns and startups. The delicate nature of the equilibrium balance of a contact sulfuric acid plant is responsible for drastic changes in SO₂ tail gas concentrations. Low SO₂ caused by a high converter temperature is responsible for the upset shown in Graph 4. As inlet concentration drops, so does emission level. The average emission level over the cycle, however, does not vary appreciably from normal operation.

Erratic converter temperature caused by a malfunction in a condenser controller is responsible for the upset represented in Graph 5. Again, the PuraSiv average emission does not vary appreciably from the emission found under normal conditions. The upset represented in Graph 6 is different in nature from the previous ones in that inlet concentration is excessively higher than normal (greater than 5000 ppm). The emission level rises rapidly during this period but drops when inlet concentration drops. It is obvious, however, that if the inlet concentration had continued at the high level for a longer period of time, then the emission would have reached 300 ppm (maximum scale) before the end of the cycle. This upset occurred when a sulfur plug in the burner feed line was dislodged, and a slug of sulfur was dumped into the burner.

Graph 7 and Graph 8 represent emissions recorded during two separate plant shutdowns. Graph 7 was a plant shutdown taking place on

February 9, 1975 due to a freezeup in the absorbing tower. During this shutdown the PuraSiv was taken off-line and tail gas was bypassed and vented to the atmosphere. Graph 8 depicts a shutdown which took place on February 13, 1975 in order to make repairs on an acid pump. During this shutdown the PuraSiv was left on-line with the obvious characteristic of low emission levels throughout.

Graph 9 and Graph 10 show the SO_2 concentrations experienced during two separate plant startups. Concentrations in excess of maximum scale on the instrument were experienced at both inlet and outlet locations. After the first two PuraSiv cycles, however, normal conditions were re-established.

C. Wet Tests

The results of the wet tests are shown in Tables 3 through 11 and define the location, date, and time of the tests. Results are in terms of averages plus or minus the 95 percent confidence limit. Sulfur trioxide results are not reported due to erroneously high values obtained. It is believed that incorrect purging of the sample train was responsible for the high results.

One of the original objectives of the test period was to define any change in performance of the adsorber over a period of 4 weeks and to correlate the change with the presence of tail gas impurities. The delicate nature of the acid plant equilibirum was responsible for constantly changing conditions: e.g., composition of feed, temperature of converter, and fluctuating of SO₂ by recycle. Daily performance change was documented; however, a performance change over 4 weeks would be unnoticeable because of the drastic changes mentioned above. In order to obtain documentation of performance versus time, a program with a time span of at least 6 months would be necessary.

The results of the tests for certain tail gas impurities - e.g., sulfide, chloride, and total acid - was dependent primarily upon composition of furnace feed. Due to their variable nature, these results are considered as base-line data.

It was noted that these compounds were adsorbed on the PuraSiv beds in varying degrees since the outlet wet tests yielded results which were generally lower than the inlet results. The effect of these compounds on the performance of the sieve material on both efficiency and life is unknown since wet tests were not performed on the desorbed gas returning to the plant.

 ω_{5}

TABLE 3. DUPONT SO2 ACCURACY CALCULATIONS

Date	Time	Test No.	Location	Method 6 ppm/v	DuPont ppm/v	X Difference	(x ²)
2/12	1035	1	Inlet	3322	3300	22	484
2/12	1147	2	Outlet	72.3	73	0.7	.49
2/12	1555	3	Inlet	3359	3385	26	676
2/14	0924	4A	Inlet	3176	3217	41	1681
2/14	0925	4B	Inlet	3022	3217	195	38025
2/14	1134	5	Oulet	115	102	13	169
2/14	1224	6	Outlet	15.1	7.5	7.6	57.76
2/17	1133	7	Inlet	2615	2500	115	13225
2/17	1135	8	Outlet	88.3	84	4.3	18.49
2/17	1320	9	Inlet	2749	2525	224	50176
2/17	1340	10	Outlet	16.2	10.5	5.7	32.5
2/17	1435	11	Outlet	45.7	39	6.7	44.9
2/18	1116	12	Outlet	120.6	135	14.4	207.4
2/18	1110	13	Inlet	3354	3400	46	2116

$$\bar{x} = \frac{1}{n_i} \sum_{i=1}^{n} x_i = 51.5$$

C.I. 95 =
$$\frac{\text{t.975}}{\text{n/n-1}}$$
 { n (Σx_i^2) = (Σx_i)²}

C.I. 95 =
$$\frac{2160}{14\sqrt{13}}$$
 {14 (106913.5) = (520418)}

Accuracy =
$$\{\frac{51.5 + 42.28}{1576.4}\}$$
 x 100 = 5.95%

TABLE 4. SULFURIC ACID MIST EMISSION RESULTS

<u>Date</u>	Time	Location	ppm/V	mg/SCM	kg/hr	kg/metric ton	mg/SCF	gr/SCF	lb/hr	lb/ton
2/20 2/20 2/20	1105 1230 1420	Inlet Inlet Inlet	1.04 3.66 *	4.27 14.97	.0540 .1891	.0095 .034	.121	.0019	.119	.019 .068
2/21 2/21 2/21	1022 1128 1225	Outlet Outlet Outlet	.22 .13 .21	.883 .530 .883	.0113 .0068 .0109	.002 .001 .002	.025 .015 .025	.0004 .0002 .0004	.025 .015 .024	.004 .002 .004
2/26 2/26 2/26 2/26	1117 1120 1315 1315	Inlet Outlet Inlet Outlet	1.47 1.06 1.89 1.24	5.90 4.27 7.27 4.98	.0762 .0549 .0975 .0639	.012 .009 .016 .0105	.167 .121 .206 .141	.0026 .0019 .0032 .0022	.168 .121 .215 .141	.025 .018 .032 .021
2/27 2/27	1032 1030	Inlet Outlet	1.40 .87	5.58 3.50	.0721	.012 .0075	.158 .099	.0024	.159 .099	.024 .015
AVERA	.GE	Inlet	1.89	7.60	.0978	.017	.215	.0033	.216	<u>+</u> .025
AVERA	GE.	Outlet	.62	2.51	.0321	.0065	.071	.0011	.071	<u>+</u> .009

^{*}Loss of sample during transportation.

TABLE 5. TOTAL ACID EMISSION RESULTS

Date	Time	Location	Meq/SCF*	Meq/SCM*
2/6	0927	Inlet	.143	5.050
2/6	0915	Outlet	.0189	.667
2/6	1030	Inlet	.135	4.767
2/6	1010	Outlet	.0225	.795
2/6	1110	Inlet	.131	4.626
2/6	1058	Outlet	.0262	.925
2/24	1452	Inlet	.122	4.308
2/24	1452	Outlet	.0179	.632
2/24	1040	Inlet	.0778	2.747
2/24	1040	Outlet	.0140	.494
2/25	1150	Inlet	.0605	2.136
2/25	1153	Outlet	.0193	.682
AVERAGE		Inlet	.111	<u>+</u> 1.259
AVERAGE		Outlet	.0198	<u>+</u> .146

^{*}Emissions are reported as milliequivalents of total acid, including $\ensuremath{\text{H}_2\text{SO}_4}$.

TABLE 6. CHLORIDE EMISSION RESULTS*

Date	Time	Location	ppm/V	mg/SCM	kg/hr	mg/SCF	gr/SCF	lb/hr
2/6	0927	Inlet	.911	2.871	.0471	.0813	.00125	.104
2/6	0915	Outlet	.025	.0777	.0013	.0022	.00003	.003
2/6	1030	Inlet	4.11	12.716	.2125	.36	.00555	.469
2/6	1010	Outlet	.010	.0330	.0005	.0009	.00001	.001
2/6	1110	Inlet	1.494	4.718	.0772	.133	.0205	.170
2/6	1058	Outlet	.026	.0836	.0013	.0024	.00004	.003
2/24	1452	Inlet	.370	1.166	.0191	.0330	.00051	.042
2/24	1452	Outlet	.009	.0285	.0004	.0008	.00001	.001
2/24	1040	Inlet	.201	.6362	.0104	.0180	.00028	.023
2/24	1040	Outlet	.019	.0617	.0010	.0017	.00003	.002
2/25	1150	Inlet	.578	1.818	.0299	.0515	.00079	.066
2/25	1153	Outlet	.009	.0279	.0004	.0008	.00001	.001
AVER	AGE	Inlet	1.277	3.988	.0660	.1128	.00481	<u>+</u> .105
AVER	AGE	Outlet	.016	.0521	.00082	.0015	.000022	<u>+</u> .001

^{*}Reported as Cl-.

TABLE 7. SULFIDE EMISSION RESULTS

Date	Time	Location	ppm/V	mg/SCM	kg/hr	mg/SCF	gr/SCF	<u>lb/hr</u>
2/14	0924	Inlet	<.5 ^t	<2	-	<.05	-	-
2/14	0925	Inlet	<.5	<2	-	<.05	-	-
2/14	1134	Outlet	6.87	21.68	.871	.614	.0095	1.92
2/14	1224	Outlet	6.18	19.49	.248	.552	.0085	.546
2/17	1133	Inlet	<.5	<2	-	<.05	-	-
2/17	1320	Inlet	12.0	37.80	.481	1.07	.016	1.06
2/20	1105	Inlet	14.4	45.20	.576	1.28	.020	1.27
2/20	1230	Inlet	13.1	41.32	1.656	1.17	.018	3.65
2/20	1420	Inlet	<.5	<2	-	<.05	-	-
2/21	1022	Outlet	<.5	<2	-	<.05	-	-
2 21	1128	Outlet	<.5	<2		<.05	-	-
2/21	1225	Outlet	19.0	59.68	.762	1.69	.026	1.68
AVERA	AGE	Inlet	5.93	18.90	-	.53	-	-
AVERA	AGE	Outlet	6.61	20.97	-	.59	_	-

^{*}Reported as CS_2 . tIndicates that concentration is below the detectable limit of the analysis method.

TABLE 8. HYDROCARBON EMISSION RESULTS*

<u>Date</u>	Time	Location	ppm/V	kg/hr	<u>lb/hr</u>
2/7	0840	Inlet	20.1	.911	2.01
2/7	0850	Inlet	71.9	3.26	7.19
2/7	0900	Inlet	t		
2/7	0910	Inlet	70.1	3.18	7.01
2/7	0920	Inlet	38.5	1.75	3.85
2/7	0930	Inlet	23.3	1.06	2.33
2/7	0940	Inlet	41.3	1.87	4.13
2/7	0950	Inlet	18.4	.834	1.84
2/7	1000	Inlet	58.9	2.67	5.89
2/7	1010	Inlet	29.9	1.36	2.99
2/7	1055	Outlet	5.3	.240	0.53
2/7	1105	Outlet	10.9	.494	1.09
2/7	1115	Outlet	8.2	.372	0.82
2/7	1125	Outlet	18.6	.844	1.86
2/7	1135	Outlet	11.5	.522	1.15
2/7	1145	Outlet	35.9	1.63	3.59
2/7	1155	Outlet	79.3	3.60	7.93
2/7	1205	Outlet	t		
2/7	1215	Outlet	51.3	2.33	5.13
2/7	1225	Outlet	35.6	1.61	3.56
AVERA	GE	Inlet	41.38	1.88	<u>+</u> 1.61
AVERA	GE	Outlet	28.51	1.29	<u>+</u> 1.89

^{*}Reported as Hexane.
tLoss of sample due to flask leakage.

TABLE 9. OXIDES OF NITROGEN EMISSION RESULTS

Date	Time	Location	ppm/V	mg/SCM	kg/hr	mg/SCF	gr/SCF x 10-5	lb/hr
2/6	1105	Inlet	13.2	.0293	. 32	.00083	1.28	.70
2/6	1105	Outlet	7.9	.0164	.19	.00046	.71	.42
2/6	1110	Inlet	19.5	.0391	.43	.00111	1.71	.94
2/6	1110	Outlet	9.2	.0198	.22	.00056	.86	.48
2/6	1115	Inlet	11.1	.0222	.27	.00063	.97	. 59
2/6	1115	Outlet	*					
2/6	1120	Inlet	16.7	.0361	.40	.00102	1.58	.89
2/6	1120	Outlet	13.5	.0292	.33	.00083	1.28	.72
2/6	1125	Inlet	9.1	.0192	.22	.00054	.84	.49
2/6	1125	Outlet	9.8	.0206	.24	.00058	.90	.52
2/6	1130	Inlet	14.8	.0310	. 35	.00088	1.35	.78
2/6	1130	Outlet	11.4	.0243	.28	.00069	1.06	.61
2/25	1400	Inlet	*					
2/25	1400	Outlet	21.5	.0403	.53	.00114	1.76	1.16
2/25	1405	Inlet	15.3	.0285	.38	.00081	1.24	.83
2/25	1405	Outlet	11.8	.0233	.29	.00066	1.02	.64
2/25	1410	Inlet	23.1	.0428	.57	.00121	1.87	1.25
2/25	1410	Outlet	11.2	.0236	.28	.00067	1.03	.61
2/25	1415	Inlet	18.6	.0365	.46	.00103	1.59	1.01
2/25	1415	Outlet	19.9	.0378	.49	.00107	1.65	1.08
2/25	1420	Inlet	21.0	.0379	.52	.00107	1.66	1.14
2/25	1420	Outlet	18.3	.0335	.45	.00095	1.46	.99
2/25	1425	Inlet	22.8	.0448	.56	.00127	1.96	1.23
2/25	1425	Outlet	11.4	.0216	.28	.00061	.94	.62
AVE	RAGE	Inlet	16.84	.0334	.41	.00095	1.46	+.17
AVE	RAGE	Outlet	13.26	.0264	.33	.00075	1.15	\pm .17

^{*}Loss of sample due to flask leakage.

Date Time Location ppmmg/SCM mg/SCF gr/SCF 2/12 0930 Inlet 18 13.42 .380 .0058 2/12 1105 Outlet 5 3.71 .105 .0016 2/14 Inlet 20 14.90 .422 1450 .0065 Outlet 4 2.97 .084 2/14 1535 .0013 11.19 .317 .0049 2/15 1005 Inlet 15 3 2.22 .063 .0010 2/15 1120 Outlet 22 16.38 .464 2/16 0915 Inlet .0072 Outlet 5 2/16 1055 3.71 .105 .0016 18 13.42 .380 .0058 2/17 1325 Inlet 2/17 1445 Outlet 4 2.97 .084 .0013 2/18 Inlet 18 13.42 .380 .0058 1520 2.97 .084 2/18 4 .0013 1645 Outlet 13.42 0830 Inlet 18 .380 .0058 2/19 4 2.97 .084 2/19 1000 Outlet .0013

17

4

Outlet 5 3.71

Inlet 18.2 ± 1.5 13.58

Outlet 4.2 + .5 3.13

12.68

2.97

13.42

.359

.084

.380

.105

.385

.089

.0055

.0013

.0058

.0016

.0059

.0014

Inlet

Outlet

Inlet 18

2/20

2/20

2/21

2/21

AVERAGE

AVERAGE

0925

1050

0820

0955

TABLE 10. MOISTURE RESULTS

		TABLE 11. OF	RSAT READI	1GS	
Date	Time	Location	% CO2	<u> 8 02</u>	% C0
2/3	1530	Inlet	3.5	7.8	0.0
2/3	1530	Outlet	2.9	6.0	0.0
2/6	1100	Inlet	2.7	5.2	0.0
2/6	1100	Outlet	2.8	5.2	0.0
2/6	1200	Inlet	2.2	5.6	0.0
2/6	1200	Outlet	2.2	7.2	0.0
2/24	1030	Inlet	4.7	5.3	0.0
2/24	1030	Outlet	4.8	5.6	0.0
2/24	1120	Inlet	4.8	5.8	0.0
2/24	1120	Outlet	4.3	5.7	0.0
2/27	1300	Inlet	3.8	4.4	0.0
2/27	1300	Outlet	3.9	4.5	0.0
AVERAG	E	Inlet	3.6	5.7	0.0
AVERAG	E	Outlet	3.5	5.7	0.0

APPENDIX A

INSTALLATION AND OPERATION OF CONTINUOUS MONITORING SYSTEM

Description of Equipment

The DuPont 460/l operates on the principle that specific gases absorb radiant energy at specific wave lengths in proportion to their concentrations. The sample gas passes through a No. 316 stainless steel sample cell which is a tube with a quartz window covering each end. An ultraviolet light source projects a beam through the cell that is picked up by a photometric detection system. The detector consists of a series of optical filters that permit only the light of certain wave lengths to pass through. A prism splits the selected light beam in two and transmits each beam to a separate phototube. One measures the energy at 280 nm (measuring band) and the other the energy at 578 nm (the reference The difference between these resultants is equivalent to the amount of energy absorbed by the sample gas, which is then proportional to the pollutant concentration. The detector output is amplified and transmitted to the recorder, which provides an analog instrument output. Precision of this instrument is claimed by DuPont to be +2 percent.

The DuPont 460/1 was included with the capability of measuring gaseous concentrations at two separate sampling locations. An integral programmer determines which mode the analyzer is operating in at any given time. Since the instrument has only one sampling interface, it cannot sample two locations simultaneously; instead, it samples one location and backflushes the system with clean air before it samples the other location. Normal operation is to sample one location for 90 seconds and backflush for 30 seconds and to sample a second location for 90 seconds and backflush again for 30 seconds to complete one full cycle. The instrument also has the capability to measure $N0_X$; however, a measurement at either location increases the total cycle time by 12 minutes per reading. Since this would drastically reduce the number of $S0_2$ readings, it was decided that the $N0_X$ analysis mode would not be used so that trends and patterns of $S0_2$ emissions could be more clearly defined.

The recorder used with the DuPont 460/l was a Leeds & Northrup Speedomax H multipoint unit. A modified Leeds & Northrup Flexelect B programmer is an integral part of the recorder; it provides programmable, sequential sample-point selection and automatic zero control.

Installation

The entire DuPont system was permanently mounted in a 12-foot steel trailer and was complete with a sample-handling system and calibration input manifold, valves, and switches. Once at the site the necessary hookups were made, including:

- (1) electrical power (110 v).
- (2) compressed air (50 psig).
- (3) sample lines (24-inch od Teflon).
- (4) calibration standards (zero air and three ranges of SO₂).

After the instrument was set up, it became apparent that a single range for both sampling points would be ineffective since the inlet concentrations ranged from 2500 to 4000 ppm, while the outlet concentrations ranged from 0 to 150 ppm. A dual range capability was adapted to the instrument which allowed an inlet span of 0 to 5000 ppm and an outlet span of 0 to 300 ppm. The adaptation consisted of a relay and an extra 20 K potentiometer wired into the Flexelect; each sampling mode was transferred through a separate potentiometer, thus permitting independent calibration of each mode.

Operation

Normal operation of the plant is 24 hours per day. The analyzer also operated 24 hours per day and was left running even during shutdowns. Normal procedure was to calibrate with standard gases once per day per channel. Zero adjustment is automatic on the DuPont.

The sample cell windows were cleaned once per week. This insured that no build-up of foreign material interfered with the photometer.

APPENDIX B

CALCULATION OF SO2 MASS EMISSION RATE

(1) SO₂ Mass Rate to PuraSiv S Inlet

lb/hr inlet = (Q) x (ppm inlet) x
$$\frac{64.1 \text{ lb}}{\text{mole}}$$
 x $\frac{\text{mole}}{387 \text{ cu ft}}$ x $\frac{60 \text{ min}}{\text{hr}}$ $\frac{-6}{\text{ppm}}$

(2) S0₂ Mass Emission Rate

lb/hr outlet = (Q) x (ppm outlet) x
$$\frac{64.1 \text{ lb}}{\text{mole}}$$
 x $\frac{\text{mole}}{387 \text{ cu ft}}$ x $\frac{60 \text{ min}}{\text{hr}}$

$$x \frac{60 \text{ min}}{\text{hr}} \times \frac{10^{-6}}{\text{ppm}}$$

where:

Q = inlet flow rate as calculated by plant
 personnel - (SCFM)

ppm outlet = S0₂ concentration as measured by photometric analyzer.

(3) S0₂ Mass Collected by PuraSiv S per Cycle

$$\frac{1b \text{ SO}_2}{\text{cycle}} = \frac{1b}{\text{hr}} \text{ inlet - lb/hr outlet } x$$
 (t)

where: t = length of cycle in hours

(4) SO₂ Mass Emission on a Daily Basis:

$$\frac{1b S0_2}{day} = \frac{i = 1}{n} \times \frac{24 hr}{day}$$

where: n = number of cycles in a 24-hour period

(5) SO₂ Mass Emission Rate per Ton of Acid Produced:

$$1b/ton S0_2 = \frac{1b/day S0_2}{daily production rate}$$

(6) Efficiency of SO₂ Removal:

Efficiency =
$$100 \times \frac{lb/hr inlet - lb/hr outlet}{lb/hr inlet}$$

APPENDIX C

WET CHEMICAL TEST METHODS

Sulfur Dioxide

The test method followed in the collection of sulfur dioxide samples was a modified version of EPA Method 6, "Determination of Sulfur Dioxide Emissions from Stationary Sources."* The modification consisted of saving the catch from the isopropyl alcohol bubbler and analyzing the contents for sulfur trioxide and/or sulfides.

A glass probe, wound with nichrome wire and sheathed with stainless steel, was used to extract the sulfur dioxide samples. A glass wool prefilter in the end of the probe inhibited acid mist entrainment into the sample stream. The probe was attached to the sample train by means of a three-way stopcock tee utilizing ground-glass ball and socket joints. At the inlet sample location, where postive internal duct pressures were encountered, the pump was bypassed and the sample stream allowed to be pushed through the train and gas meter by the duct pressure. Adjustment of the sample flow rate was accomplished by turning the stopcock tee.

The midget impinger train included a midget bubbler containing 15 ml of 80 percent isopropyl alcohol initially, followed by two midget impingers in series with each containing 15 ml of 3 percent hydrogen peroxide initially. A final midget impinger was left blank in order to collect any carry-over from the previous impingers. Incorporated into the sample line between the final impinger and the pump (the gas meter at the inlet) was a drying tube filled with silica gel. The gas measured total sample volume and a rotameter measured sample flow rate (see Figure Al).

Sulfuric acid is soluble in isopropyl alcohol; therefore, any acid mist or sulfur trioxide will be scrubbed out in the midget bubbler, while sulfur dioxide will pass through. Available oxygen from the hydrogen peroxide in the second and third impingers combines with sulfur dioxide, forming the reactive trioxide, which is then readily absorbed in the water. A small amount of sulfur dioxide will remain in the isopropyl alcohol and must be removed prior to cleanup of the train. This is accomplished by pulling clean, sulfur-free air through the train, entraining the sulfur dioxide, and allowing the second and third impingers to scrub it out. The hydrogen peroxide impingers have a collection

*Federal Register, Vol. 36, No. 247, Thursday, December 23, 1971.

SO2 SAMPLING TRAIN

FIGURE A1

efficiency of 90 percent for $S0_2$, thereby providing a combined collection efficiency of 99 percent. The analysis has an accuracy of 1.53 standard error.

The cleanup was accomplished by transferring the contents of the first midget impinger to a 4-ounce plastic sample bottle and adding the alcohol rinse. The contents of the second, third, and fourth impingers were transferred to a second bottle and the distilled water rinse was added.

Sulfuric Acid Mist

Sulfuric acid is a liquid that forms droplets with extremely small diameters at temperatures less than 640°F. In order to catch these small particles, the sample gas was pulled through a high-efficiency Fiberglas filter contained in a stainless steel holder. These filters have a collection efficiency of 99.9 percent of particles greater than 0.3 microns as measured by the DOP test, and have an over-all efficiency of 98 percent of all particles greater than 0.05 microns. Prevention of water condensation on the filter, and hence the loss of the catch by leaching, was provided by enclosing the filter holder in an insulated box with a heating element and controller set to a temperature of 250°F. At this temperature, no condensation of water occurs, although sulfuric acid will remain in the liquid state (see Figure A2).

The filter was connected to the heated glass probe on the inlet side and to the three-way stopcock tee on the outlet side through ground glass to stainless steel ball and socket joints. The tee serves as connector between the filter holder and the inlet to the series of four sequential midget impingers. The first midget impinger is used to collect any sulfur trioxide that may have passed through the filter and contains 15 ml of 80 percent isopropyl alcohol. The second and third impingers in the series each contain 15 ml of hydrogen peroxide, collecting the sulfur dioxide from the sample stream. A fourth remains empty in order to collect any carry-over.

At the inlet, sulfuric acid mist tests were performed by the same method used for sulfur dioxide but without using the pump. The gas meter was used to measure total sample volume, while a rotameter measured sample flow rate. Gas velocity in the duct was measured with the use of a pitot tube (standard-type at inlet, S-type at outlet), and sample flow rate was adjusted to isokinetic conditions through the use of a needle valve inserted in the sample line prior to the gas meter.

The cleanup included removing the filter and carefully placing it in a sealed plastic container for storage until analysis. The contents of the first midget impinger and the alcohol rinse of the impinger and stopcock tee were transferred to a Nalgene 4-ounce plastic sample bottle. The contents of the second, third,

DIAGRAM OF A HEATED MIDGET SAMPLE TRAIN & PROBE

and fourth impingers were transferred to a separate 4-ounce plastic sample bottle, and a distilled water rinse was added to it. The collection efficiency of the train is 99.9 percent.

Sulfur Trioxide and Sulfides

Samples for these tests were obtained by drawing sample gas through a heated glass-lined probe and bubbling the gas through a series of four impingers, as described on page Cl. The first impinger contained 15 ml of 80 percent isopropyl alcohol, while the second and third contained 15 ml of 3 percent hydrogen peroxide, and the fourth remained empty. Sulfur trioxide forms sulfuric acid with the water in the isopropyl alcohol, while sulfur dioxide passes through the hydrogen peroxide upon purging of the train. A sample prefilter was used to prevent sulfuric acid from entering the probe. The collection efficiency is 95 percent.

The impingers were connected with glass U-connectors with groundglass ball and socket joints. A silica gel drying tube was used between the exit of the last impinger and the entrance to the pump in order to prevent water vapor from entering the pump. A gas meter was used to measure total gas sample volume on a dry basis. As with sulfur dioxide and sulfuric acid mist tests, no sample pump was used at the inlet location where internal duct pressure was allowed to push the sample through the train. Sample flow rate was adjusted by partially closing the stopcock tee.

Cleanup was accomplished by collecting the contents of the first impinger and the alcohol rinses of the impinger and the probe into a 4-ounce plastic sample bottle.

Total Acids and Chloride

The equipment for these tests included a stainless steel probe, large-diameter rubber tubing, and three impingers of the Greenburg-Smith design. 100 milliliters of distilled water were placed in each of the first and second impingers, while the third was modified by replacing the tip with an open tube extending to within 1/2 inch Three hundred grams of silica gel in the third of the bottom. impinger prevented water from entering the gas pump and gas meter. The impingers were linked using large-diameter rubber tubing; at the inlet location the precaution of taping the impinger to the bottle in order to prevent separation under pressure was taken. A sliding vane pump was used to pull the sample, while a standard gas meter was used to measure total sample volume. Sample flow rate was measured by timing the revolutions of the meter face, while adjustment of sample flow rate was maintained with a gate valve across the pump connections (see Figure A3).

The water samples were transferred to glass jars with Teflon lids and to this was added the distilled water rinse of probe, hoses,

SAMPLING TRAIN

FIGURE A3

and impingers. Collection efficiencies for both parameters above are 99 percent.

Hydrocarbons

Hydrocarbon samples were obtained in 500-ml glass grab flasks which are cylindrically shaped and have an opening at each end with a ground-glass stopcock. One end was connected to the heated glass-lined probe from which the sample was extracted, while the other end was attached to a sliding vane vacuum pump with large-diameter rubber tubing. Each flask was conditioned by wrapping it with a heating tape. Each was heated to approximately 130°F, being simultaneously purged with stack gas. After approximately 5 minutes of conditioning the flask, the sample was enclosed by shutting both valves. The flasks were transported to the Stamford laboratory in a foam-packed case for analysis by gas chromatography (see Figure A4). Collection efficiencies are 99.9 percent and analysis accuracy +0.5 percent of full-scale deflection.

Nitrogen Oxides

Nitrogen oxides were sampled using EPA Method 7, "Determination of Nitrogen Oxide Emissions from Stationary Sources."* The samples were obtained in 2-1 glass boiling flasks, encased in styrofoam and equipped with a three-way glass stopcock tee utilizing groundglass ball and socket joints. Twenty-five milliliters of a dilute sulfuric acid/hydrogen peroxide absorbing solution were placed in each flask prior to sampling. A sliding vane vacuum pump capable of producing 26 inches of Hg negative pressure was connected to the back of the tee via high-vacuum gum rubber, while the front of the tee was connected to the heated, glass-lined stack The vacuum induced by the pump was monitored with a mercury manometer, one leg of which was tied into the pump vacuum while the other leg was open to the atmosphere. After evacuating the flask, the pump inlet was pinched in order to see if a leak were present; if not, the three-way stopcock was positioned so that the flask was sealed and the probe open for purging. After purging, the sample was taken by turning the three-way stopcock very slowly, allowing the sample to enter the flask at a rate whereby the pressures were equalized after about 15 seconds (see Figure A5).

In order to ensure complete absorption of nitrogen oxides into the solution of dilute sulfuric acid/hydrogen peroxide, each flask was shaken vigorously for a period of 5 minutes. After a period of 16 hours, during which the solution and the sample gas come to an equilibrium state, the flasks were shaken again and a final pressure was obtained from the mercury manometer. The contents

*Federal Register, Vol. 36, No. 247, Thursday, December 23, 1971.

HYDROCARBON BAMPLING

FIGURE A4

PAGE 5

PAGE

of the flasks were transferred to 4-ounce plastic sample bottles; each flask and tee was rinsed twice with distilled water and the rinse added to the sample bottle. The collection efficiency was above 98 percent, and the precision was + 5 percent.

Moisture

Moisture tests were performed through the use of a Panametrics Model 2000 hygrometer. The hygrometer is a sensitive instrument for measurement of water vapor pressure that utilizes an aluminum oxide probe placed inside a stainless case through which a continuous stream of sample gas is pulled. Each probe is individually calibrated and comes with a curve of dew point versus meter reading. Computation of moisture concentration is performed by measuring gauge pressure of the gas stream and application toward a nomograph. The accuracy is within 1 percent absolute error.

At the inlet location the positive pressure of the gas stream pushed a sample through the probe holder, while a vacuum pump was utilized at the outlet. A 1-hour conditioning period for each test at each location assured that readings were not affected by residual moisture in the holder.

Orsat

Orsat analyses were performed on-site. Samples were obtained with two plastic 5-gallon leveling bottles. The bottles were set at unequal levels with the higher filled with a dilute solution of sulfuric acid/methyl red indicator while the lower bottle remained empty. With a rubber tube from a stainless steel probe inserted into the stack to the top of the higher bottle, the solution was allowed to flow to the lower bottle. After a suitable period of time, the tube ends were sealed and the sample analyzed (see Figure A6).

APPENDIX D

EXAMPLE CALCULATIONS FOR WET TESTS

(1) Weight of Component Found in Sample:

mg in sample = microliters of comp. x liters of liquid sample
liters of liquid sample

x specific gravity of component

(2) Parts per Million by Volume in Stack Gas:

 $ppm/V = \frac{mg \text{ in sample}}{std. \text{ cu ft dry gas sampled}} \frac{x}{mole} \frac{387 \text{ cu ft } x}{mole} \frac{1 \text{ mole}}{MW}$

$$x \frac{1 \text{ lb}}{454,000 \text{ mg}} x \frac{1}{10^{-6}}$$

(3) Pounds per Hour in Stack Gas:

 $\frac{1b/hr = mg \text{ in sample}}{std. \text{ cu ft dry gas sampled}} \times 0 \times \frac{60 \text{ min}}{1 \text{ hr}} \qquad \frac{1 \text{ 1b}}{454,000 \text{ mg}}$

where: Q = inlet flow rate as calculated by plant personnel

APPENDIX E
S02 SUMMARY DATA (ENGLISH UNITS)

1			Length				•				
		Time	of Cycle	ppm Avg	lb/hr Avg	ppm Avg	lb/hr Avg	ppm Max	lb/cycle	lb/day	1b S02
Dat	e Unit	Start	(hr)	Inlet	Inlet		Outlet		Adsorbed		ton acid
2/4	A2	1915	4:30	2655	202.4	83	6.33	147	882.3		
2/4	Al	2345	4:45	2335	178.0	83	6.33	144	815.4		
-											
2/5	A2	0430	5:00	2495	190.2	75	5.72	132	922.4	127.00	.79
2/5		0930	4:20	2400	182.9	67	5.11	111	800.1		
2/5	A2	1350	5:05	2810	208.3	71	5.26	138	1015.2		
2/5		1855	4:15	2535	187.9	76	5.63	144	774.6		
2/5	A2	2310	4:35	2720	201.7	64	4.74	126	886.3		
1											
2/6	Al	0345	4:35	2795	207.2	85	6.30	165	920.8	188.26	1.18
2/6	A2	0820	5:10	3065	227.2	111	8.23	183	1131.3		
2/6	Al	1330	5:00	3045	225.7	123	9.12	207	1082.9		
2/6	A2	1830	5:00	3230	239.5	107	7.93	195	1157.9		
2/6	Al	2330	5:00	2980	220.9	103	7.64	192	1066.3		
	_			_							
2/7	A2	0430	5:00	2715	201.3	66	4.89	129	982.1	133.44	.83
2/7	Al	0930	3:30	2600	192.8	76	5.63	135	655.1		
2/7	A2	1300	5:30	2375	176.1	102	7.56	120	927.0		
2/7	Al	1830	4:30	2495	185.0	57	4.23	123	813.5		
2/7	A2	2300	4:30	2755	204.2	74	5.49	141	894.2		
			4 40	0.63.6							
2/8	Al	0330	4:40	2610	193.5	76	5.63	153	876.1	133.06	.83
2/8	A2	0810	4:30	2805	208.0	61	4.52	144	915.7		
2/8	Al	1240	4:35	3330	249.9	80	5.93	162	1118.2		
2/8	A2	1715	4:30	3440	255.0	81	6.01	138	1120.5		
2/8	Al	2145	4:30	3290	243.9	76	5.63	135	1072.2		

SO₂ SUMMARY DATA (ENGLISH UNITS)

			Length								
1		Time	of Cycle	ppm Avg	1b/hr Avg	ppm Avg	lb/hr Avg	ppm Max	lb/cycle	lb/day	1b S02
Date	e Unit	Start	(hr)	_Inlet	Inlet	Outlet	Outlet	Outlet	Adsorbed	Outlet	ton acid
2/9	A2	0215	4:30	3080	228.3	62	4.60	111	1006.7	111.74	.70
2/9	Al	0645	4:30	3060	226.9	63	4.67	117	1000.0		
2/9	A2	1115	4:30	2750	203.9	68	5.04	114	894.9		i
2/9	Al	1545	4:30	2590	192.0	67	4.97	123	841.6		
2/9	A2	2015	4:05	2605	193.1	54	4.00	96	772.2		
		2245	4 22	0005							A ==
2/1	A2	2045	4:30	2885	213.9	40	2.97	72	949.2		.45
2/1	2 Al	0115	4:30	3090	229.1	49	3.63	105	1014.6	92.21	.58
2/1		0545	4:30	3230	239.5	50	3.71	111	1061.6	72.21	• 50
2/1		1015	4:40	3460	256.5	77	5.71	129	1170.4		
2/12		1455	4:35	2945	218.3	45	3.34	87	985.2		
2/1		1930	4:30	2745	203.5	38	2.82	72	903.1		
2/ 1/	- 111	100	1.30	2/43	203.3	30	2.02	, 2	J03.1		
2/1:	3 A2	0001	4:30	2740	203.1	28	2.07	57	904.6		
2/1:		2245	4:30	2780	205.5	46	3.40	7 5	909.5		
2/14	A2	0315	4:30	2990	221.1	33	2.44	72	984.0	80.21	.50
2/14	A1	0745	4:30	3065	336.6	53	3.92	123	1002.1		
2/14	A2	1215	4:35	3235	239.2	49	3.62	96	1060.1		
2/14	A1	1650	4:30	2960	218.9	51	3.77	96	968.1		
2/14	A2	2120	4:35	2920	215.9	40	2.96	78	976.0		
h /1 :	. 7.7	0155	4.30	2250	240 2	63	A 66	126	1060 4	114 50	72
2/1	Al	0155	4:30	3250	240.3	63	4.66	126	1060.4	114.58	.72
2/1	A2	0625	4:35	3305	244.4	52	3.84	102	1102.6		
2/15	Al	1100	4:35	3335	246.6	64	4.73	132	1108.6		
2/1	A2	1530	4:30	3635	268.8	62	4.58	129	1189.0		
2/15	5 Al	2000	4:40	3545	262.1	82	6.06	183	1194.9		

S02 SUMMARY DATA (ENGLISH UNITS)

			Length					•			
		Time			lb/hr Avg	ppm Avg	lb/hr Avg	ppm Max	lb/cycle	lb/day	1b S02
Date	Unit	Start	(hr)	Inlet		Outlet	Outlet		Adsorbed		ton acid
2/16	A2	0040	4:35	3460	255.8	71	5.25	126	1148.4	107.32	.67
2/16	Al	0515	4:25	3195	236.2	62	-	126	1023.0		
2/16	A2	0940	4:35	3300	244.0	53	3.92	105	1100.4		
2/16	Al	1415	4:30	3120	230.7	56	4.14	117	1019.5		
2/16	A2	1845	4:30	3360	248.4	54	3.99	111	1099.8		
2/16	Al	2315	4:40	3385	250.3	67	4.95	126	1145.0		
2/17	A2	0355	4:25	3145	232.5	50	3.70	78	1010.5	109.30	.68
2/17	Al	0820	4:30	2945	217.7	55	4.07	108	961.3	109.30	.00
2/17	A2	1250	4:40	2810	207.8	51	3.77	144	952.1		
2/17	Al	1730	4:30	-	-	85	6.28	162	932.1		
2/17	A2	2200	4:30		_	67	4.95	126	_		
2/1/	A2	2200	4.50			0 7	4.53	120	_		
2/18	Al	0230	4:30	_		78	5.76	165	_	139.78	.87
2/18	A2	0700	4:30	_	_	64	4.73	135	_		
2/18	Al	1130	4:30	4080	301.7	94	6.95	192	1326.4		
2/18	A2	1600	4:30	_	-	94	6.95	135			
2/18	Al	2030	4:30	3510	259.5	64	4.73	120	1146.5		
2/19	A2	0100	4:40	3550	264.5	54	3.99	117	1215.7	158.30	.99
2/19	Al	0550	4:35	4130	305.4	97	7.17	195	1366.9	130.30	• 33
2/19	A2	1025	4:30	4445	328.7	84	6.21	153	1451.2		
2/19	Al	1455	4:35	4495	332.0	113	8.36	213	1483.3		
2/19	A2	1920	4:40	4620	341.6	98	7.25	174	1560.3		
['-				4020	J=1. • U	70	1.23	±/3	1300.3		
2/20	Al	0001	4:25	4490	332.0	110	8.13	198	1430.4	155.76	.97
2/20	A2	0425	4:35	4500	332.7	87	6.43	162	1495.4		· - ·
2/20	Al	0900	4:30	4245	313.9	97	7.17	183	1380.3		

SO₂ SUMMARY DATA (ENGLISH UNITS)

Date	Unit	Time Start		ppm Avg Inlet		ppm Avg Outlet	lb/hr Avg Outlet		lb/cycle Adsorbed	lb/day Outlet	lb S0 ₂
2/20 2/20 2/20	Al	1330 1805 2230	4:35 4:25 4:35	4215 4065 3980	318.1 306.8 300.4	75 89 64	5.66 6.72 4.83	150 174 126	1432.0 1325.4 1354.7		
2/21 2/21 2/21 2/21 2/21	A2 A1 A2	0305 0735 1200 1640 2110	4:30 4:25 4:40 4:40 4:30	3750 3700 3645 4000 3980	283.0 279.3 275.1 301.9 300.4	72 59 75 70 87	5.43 4.45 5.66 5.28 6.57	141 123 159 141 162	1249.1 1213.9 1257.4 1384.2 1332.2	131.47	.82
2/22 2/22 2/22 2/22 2/22	Al A2 Al	0140 0630 1045 1520 1950	4:50 4:15 4:35 4:30 4:30	3915 3870 3830 4205 4270	295.5 292.1 389.1 317.4 322.3	67 81 64 112 80	5.06 6.11 4.83 8.45 6.04	129 159 138 186 138	1403.8 1215.5 1302.9 1390.3 1423.2	146.35	.91
2/23 2/23 2/23 2/23 2/23 2/23	A2 Al Al Al	0020 0455 0930 1400 1830 2305	4:35 4:35 4:30 4:30 4:35 4:25	4005 4170 4250 4164 4255 4200	302.3 314.7 320.8 314.4 321.7 317.0	97 70 109 73 91 74	7.32 5.28 8.23 5.51 6.87 5.59	183 174 198 123 181 156	1352.0 1418.2 1406.6 1390.0 1443.0 1375.4	155.20	.97
2/24 2/24 2/24 2/24 2/24	A2 Al A2	0330 0810 1210 1815 2215	4:40 4:00 6:05 4:00 3:55	4105 4540 - 4500 4700	309.8 342.7 - 339.7 354.8	99 91 130 72 114	7.47 6.87 9.81 5.43 8.60	189 195 204 138 207	1410.9 1343.3 - 1337.1 1355.9	183.26	1.15

S02 SUMMARY DATA (ENGLISH UNITS)

			Length								
		Time	of Cycle	ppm Avg	lb/hr Avg	ppm Avg	lb/hr Avg	ppm Max	lb/cycle	lb/day	1b S02
Date	Unit	Start		Inlet		Outlet	Outlet		Adsorbed		ton acid
2/25	A2	0210	4:00	4800	362.7	87	6.57	156	1424.5		
2/25	Al	0610	4:00	4645	350.6	99	7.47	174	1372.5		
2/26	A2	1010	4:10		-	100	7.55	186	-	199.32	1.25
2/26	Al	1420	4:15	-		129	9.74	237	-		
2/26	A2	1835	4:20	-	-	100	7.55	189	-		
2/26	Al	2255	4:10	-	-	111	8.38	195	_		
2 (0.7	- 0		4 3.5								_
2/27	A2	0305	4:15	-	•••	85	6.42	195	-	188.06	1.18
2/27	Al	0720	4:20	-	-	147	11.10	270	-		
2/27	A2	1140	4?10	4520	341.2	110	8.30	192	1387.1		
2/27	Al	1550	4:20	4020	303.4	107	8.08	171	1279.7		·
2/27	A2	2010	4:20	3935	297.0	70	5.28	141	1264.1		
2 (0.0											
2/28	Al	0020	4:15	3930	296.6	101	7.62	174	1228.2	186.52	1.17
2/28	A2	0435	4:10	4000	301.9	77	5.81	144	1233.7		
2/28	Al	0845	4:15	4075	307.6	103	7.77	213	1274.3		
2/28	A2	1300	4:15	4290	323.8	86	6.49	168	1348.6		
2/28	Al	1715	4:15	4420	333.6	141	10.64	255	1372.6		
2/28	A2	2130	4:15	4615	348.3	110	8.30	237	1445.0		
J	_										
3/1	Al	0145	4:15	4275	322.7	136	10.27	216	1327.8	196.52	1.23
3/1 3/1	A2	0600	4:10	4150	313.2	75	5.66	144	1281.4		
3/1	Al	1010	4:05	4100	309.5	134	10.11	249	1222.5		
3/1		1415	4:15	4040	304.9	101	7.62	177	1263.4		
β/1		1830	4:15	3765	284.2	99	7.47	207	1176.1		
3/1 3/1	A2	2245	4:15	4225	318.9	106	8.00	216	1321.3		
1											

SO₂ SUMMARY DATA (ENGLISH UNITS)

Date	Unit	Time Start		ppm Avg Inlet		ppm Avg Outlet	lb/hr Avg Outlet		lb/cycle Adsorbed	lb/day Outlet	1b S0 ₂
3/2	Al	0300	4:15	4265	321.9	152	11.47	282	1319.3	204.34	1.28
3/2	A2	0715	4:15	4365	329.5	118	8.91	234	1362.5		
3/2	Al	1130	4:30	4150	313.2	116	8.76	198	1370.0		
3/2	A2	1600	4:20	4090	308.7	75	5.66	147	1313.2		
3/2 3/2 3/2 3/2	Al	2020	4:05	3965	299.3	103	7.77	171	1190.4		
3/3 3/3	A2	0025	4:20	4100	309.5	68	5.13	150	1318.9		
3/3	A1	0445	4:00	3905	294.7	91	6.87	159	1151.3		

APPENDIX F
S02 SUMMARY DATA (METRIC UNITS)

:			Length								kgS0 ₂ /
		Time	of Cycle	ppm Avg	kg/hr Avg	ppm Avg	kg/hr Avg	ppm Max	kg/cvcle	kg/dav	metric
Date	Unit	Start	(hr)	Inlet	Inlet	Outlet	Outlet	Outlet	Adsorbed	Outlet	ton acid
2/4	7 2	3035	4 - 20	2655	0.7 0.0	0.0	^ ^=				
2/4	A2	1915	4:30	2655	91.98	83	2.87	147	400.6		
2/4	Al	2345	4:45	2335	80.91	83	2.87	144	370.2		
2/5	A2	0430	5:00	2495	86.35	75	2.60	132	418.8	47.66	.40
2/5	Al	0930	4:20	2400	83.04	67	2.32	111	363.2	17.00	• • •
2/5	A2	1350	5:05	2810	94.57	71	2.39	138	460.9		
2/5	Al	1855	4:15	2535	85.31	76	2.56	144	351.7		
2/5	A2	2310	4:35	2729	91.57	64	2.15	126	402.4		
						• •		120	102.4		
2/6	Al	0345	4:35	2795	94.07	85	2.86	165	418.0	85.47	.59
2/6	A2	0820	5:10	3065	103.15	111	3.74	183	513.6	3372,	• 3 3
2/6	Al	1330	5:00	3045	102.47	123	4.14	207	491.6		
2/6	A2	1830	5:00	3230	108.73	107	3.60	195	525.7		
2/6	Al	2330	5:00	2980	100.29	103	3.47	192	484.1		
L	_										
2/7	A2	0430	5:00	2715	91.39	66	2.22	129	445.9	60.58	.42
2/7	Al	0930	3:30	2600	87.53	76	2.56	135	297.4		
2/7	A2	1400	5:30	2375	79.95	102	3.43	120	420.9		
2/7	Al	1830	4:30	2495	83.99	57	1.92	123	369.3		
2/7	A2	2300	4:30	2755	92.71	74	2.49	141	406.0		
h (0	2.1	0220	4 40	2610	07.05	- -	0.56				
2/8	Al	0330	4:40	2610	87.85	76	2.56	153	398.0	60.41	.42
2/8	A2	0810	4:30	2805	94.43	61	2.05	144	415.7		
2/8	Al	1240	4:35	3330	113.45	80	2.69	162	507.7		
2/8	A2	1715	4:30	3440	115.77	81	2.73	138	508.7		
2/8	Al	2145	4:30	3290	110.73	76	2.56	135	486.8		
2/9	A2	0215	4:30	3080	103.65	62	2.09	111	457.0	50.73	.35

SO₂ SUMMARY DATA (METRIC UNITS)

Date	Unit	Time Start	Length of Cycle (hr)	ppm Avg Inlet	kg/hr Avg Inlet	ppm Avg Outlet	kg/hr Avg Outlet				kgS0 ₂ / metric ton acid
2/9	Al	0645	4:30	3060	103.01	63	2.12	117	454.0		
2/9	A2	1115	4:30	2750	92.57	68	2.29	114	406.3		
2/9	Al	1545	4:30	2590	87.17	67	2.26	123	382.1		
2/9	A2	2015	4:00	2605	87.67	54	1.82	96	350.6		
2/11	A2	2045	4:30	2885	97.11	40	1.35	72	430.9		
2/12	Al	0115	4:30	3090	104.01	49	1.65	105	460.6	41.86	.29
2/12	A2	0545	4:30	3230	108.73	50	1.68	111	482.0		
2/12	Al	1015	4:40	3460	116.45	77	2.59	129	531.4		
2/12	Al	1455	4:35	2945	99.11	45	1.52	87	447.3		
2/12	Al	1930	4:31	2745	92.39	38	1.28	72	410.0		
2/13	Al	0001	4:50	2740	92.21	28	.94	57	410.7		
2/13	Al	2245	4:30	2780	93.30	46	1.54	7 5	412.9		
2/14	A2	0315	4:30	2990	100.38	33	1.11	72	446.7	36.42	.25
2/14	Al	0745	4:30	3065	102.88	53	1.78	123	455.0		
2/14	A2	1215	4:35	3235	108.60	49	1.64	96	481.3		
2/14	Al	1650	4:30	2960	99.38	51	1.71	96	439.5		
2/14	A2	2120	4:35	2920	98.02	40	1.34	78	443.1		
2/15	Al	0155	4:30	3250	109.10	62	2.12	126	481.4	52.02	.36
2/15	A2	0625	4:35	3305	110.96	52	1.74	102	500.6	3	
2/15	Al	1100	4:30	3335	111.96	64	2.15	132	503.3		
2/15	A2	1530	4:30	3635	122.04	62	2.08	129	539.8		
2/15	Al	2000	4:40	3545	118.99	82	2.75	183	542.5		j
1											

SO₂ SUMMARY DATA (METRIC UNITS)

Date	<u>Unit</u>	Time Start	Length of Cycle (hr)	ppm Avg Inlet	kg/hr Avg Inlet	ppm Avg Outlet	kg/hr Avg Outlet	ppm Max Outlet	kg/cycle Adsorbed	kg/day Outlet	kgS0 ₂ / metric ton acid
2/16	A2	0040	4:35	3460	116.13	71	2.38	126	521.4	48.72	. 34
2/16	Al	0515	4:25	3195	107.23	62	2.08	126	464.4		
2/16	A2	0940	4:35	3300	110.78	53	1.78	105	490.5		:
2/16	Al	1415	4:30	3120	104.74	56	1.88	117	462.19		
2/16	A2	1845	4:30	3360	112.77	54	1.81	111	499.3		
2/16	Al	2315	4:40	3385	113.64	67	2.25	126	519.8		
2/17	A2	0355	4:25	3145	105.56	50	1.68	78	458.8	49.62	. 34
2/17	Al	0820	4:30	2945	98.84	55	1.85	108	436.4		• • • •
2/17	A2	1250	4:40	2810	94.34	51	1.71	144	432.3		
2/17	Al	1730	4:30	_	_	85	2.85	162	-		
2/17	A2	2200	4:50	-	-	67	2.25	126	-		
2/18	Al	0230	4:30	-	_	78	2.62	165	-	63.46	.44
2/18	A2	0700	4:30	3090	-	64	2.15	135	-		
2/18	Al	1130	4:30	4080	136.97	94	3.16	192	602.2		
1/18	A2	1600	4:30	_	_	94	3.15	135	_		
2/18	Al	2030	4:30	3510	117.81	64	2.15	120	520.5		
2/19	A2	0100	4:50	3550	120.08	54	1.81	117	551.9	71.87	.49
2/19	A1	0550	4:35	4130	138.65	97	3.26	195	620.6		
2/19	A2	1025	4:30	4445	149.23	84	2.82	153	658.8		
2/19	Al	1455	4:25	4495	150.73	113	3.80	213	673.4		
2/19	A2	1920	4:41	4620	155.09	98	3.29	174	708.4		
2/20	Al	0001	4:24	4490	150.73	110	3.69	198	649.4	70.72	.49
2/20	A2	0425	4:35	4500	151.05	87	2.92	162	678.9		• • •
2/20	Al	0900	4:30	4245	142.51	97	3.26	183	626.1		

S02 SUMMARY DATA (METRIC UNITS)

Date	<u>Unit</u>	Time Start	Length of Cycle (hr)	ppm Avg Inlet	kg/hr Avg Inlet	ppm Avg Outlet	kg/hr Avg Outlet		kg/cycle Adsorbed		kgS02/ metric ton acid
2/20	A2	1330	4:35	4215	144.42	75	2.56	150	650.1		
2/20	Al	1805	4:25	4065	139.29	89	3.05	174	601.7		
2/20	A2	2230	4:25	3980	136.38	64	2.19	126	615.0		
2/21	Al	0305	4:30	3750	128.48	72	2.47	141	567.1	59.69	.41
2/21	A2	0735	4:25	3700	126.80	59	2.02	123	551.1	33 6 0 3	
a/al	Al	1200	4:40	3645	124.90	75	2.57	159	570.9		
2/21	A2	1640	4:30	4000	137.06	70	2.40	141	628.4		
2/21	Al	2110	4:30	3980	136.38	87	2.98	162	604.8		
2/22	A2	0140	4:50	3915	134.16	67	2.30	129	637.3	66.44	.46
2/22	Al	0630	4:15	3870	132.61	81	2.77	159	551.8	00	• - •
2/22	A2	1045	4:35	3830	131.25	64	2.19	138	591.5		
2/22	Al	1520	4:30	4205	144.10	112	3.84	186	631.2		
2/22	A2	1950	4:30	4270	146.32	80	2.74	138	646.1		
2/23	Al	0020	4:35	4005	137.24	97	3.32	183	613.8	70.46	.49
2/23	A2	0455	4:35	4170	142.87	70	2.40	174	643.9	70.40	• 40
2/23	Al	0930	4:30	4250	145.64	109	3.74	198	636.6		
2/23	A2	1400	4:30	4165	142.74	73	2.50	123	631.1		
2/23	Al	1830	4:35	4255	146.05	91	3.12	171	655.1		
2/23	A2	2305	4:25	4200	143.92	74	2.54	156	624.4		
2/24	Al	0330	4:45	4105	140.65	99	3.39	189	640.5	83.20	.57
2/24	A2	0810	4:00	4540	155.59	91	3.12	195	609.9	03.20	• • •
2/24	Al	1210	6:05	-	-	130	4.45	204	-		
2/24	A2	1815	4:00	4500	154.22	72	2.47	138	607.0		
2/24	Al.	2215	3:55	4600	161.08	114	3.90	207	615.6		

S02 SUMMARY DATA (METRIC UNITS)

Date	Unit	Time Start	Length of Cycle (hr)	ppm Avg Inlet	kg/hr Avg Inlet	ppm Avg Outlet	kg/hr Avg Outlet		kg/cycle Adsorbed		kgS0 ₂ / metric ton acid
2/25 2/25		0210 0610	4:00 4:00	4800 4645	164.67 159.17	87 99	2.98 3.39	156 174	646.7 623.1		
2/26	A2	1010	4:10	-	-	100	3.43	186	_	90.49	.62
2/26 2/26 2/26		1420 1835 2255	4:15 4:20 4:10	- - -	- -	129 100 111	4.42 3.43 3.80	237 189 195	- -		
2/27	A2	0305	4:15	-	-	85	2.91	195	_	83.38	.59
2/27 2/27 2/27	Al A2 Al	0720 1140 1550	4:20 4:10 4:20	- 4520 4020	- 154.90 137.74	147 110 107	5.04 3.77 3.67	270 192 171	- 629.7 581.0		
2/27	A2	2010	4:20	3935	134.84	70	2.40	141	573.9		
2/28 2/28	Al A2	0020 0435	4:15 4:10	3930 4000	134.66 137.06	101 77	3.46 2.63	174 144	557.7 560.1	84.68	.58
2/28 2/28 2/28	Al A2 Al	0845 1300 1715	4:15 4:15 4:15	4075 4290 4420	139.65 146.01 151.45	103 86 141	3.53 2.95 4.83	2.13 168 255	578.5 612.3 623.2		
2/28	A2	2130	4:15	4615	158.13	110	3.77	237	656.0		
3/1	Al A2 Al	0145 0600 1010	4:15 4:10 4:05	4275 4150 4100	146.51 142.19	136 75	4.66 2.57	216 144	602.8 581.8	89.22	.61
3/1 3/1 3/1	A1 A2 A1	1415 1830	4:05 4:25 4:15	4040 3765	140.51 138.42 129.03	134 101 99	4.59 3.46 3.39	249 177 207	555.0 573.6 533.9		
3/1	A2	2245	4:15	4225	144.78	106	3.63	216	599.9		

SO₂ SUMMARY DATA (METRIC UNITS)

Date	<u>Unit</u>	Time Start	Length of Cycle (hr)	ppm Avg Inlet	kg/hr Avg Inlet	ppm Avg Outlet			kg/cycle Adsorbed		kgS0 ₂ / metric ton acid
3/2	Al	0300	4:15	4265	146.14	152	5.21	282	599.0	92.77	.64
3/2	A2	0715	4:15	4365	149.59	118	4.05	234	618.6		
3/2	Al	1130	4:30	4150	142.19	116	3.98	198	622.0		
3/2	A2	1600	4:20	4090	140.15	75	2.57	147	596.2		
3/2	Al	2020	4:05	3965	135.89	103	3.53	171	540.4		
3/3	A2	0025	4:20	4100	140.51	68	2.33	150	598.8		
3/3	Al	0445	4:00	3905	133.79	91	3.12	159	522.7		

Tarif

111:

8		\$ 3		2
6 8 9 8 8 TAM		3		2.2
B.		÷ 1000		
0,0		9.0-9 B		
ido 90	80 70	60 40	40 30	20 10 00 2
8 8 12MN		9.79		
8 8 06 10	20 30	40 50 a	60 70	80 90 100
8 8 8		9 9		200
0.000.000.000.000		999		9
orace administration of the Market of the Ma		9 0 0 0 0 0		
0.00000		13 9 19 19		
0.00 n. q		, o,		2
100 10 PM90		Ja ²		
140 10 PM90	80 70		40 30	20 10 10
0.0.0.0		60 50 9 9 9 5 4 40 5 6		[
000	20 30	40 59	60 70	80 90 100
O D D D D D D D D D D D D D D D D D D D		9 B 19		2
9PM		9 1 9		
SPM S) j		

128

1818

100173

13

C

156

PAGE

GPM O O O CONTION **1** 2 **(33)** CONTROLS **©** C GUAPH 3 O **(E)** G O **(** 90 60 10 70 30 NAMA C C (3) C C @ 50 90 1110 80 20 40 60 70 100 C Œ 86 4PM C C **E (233) ©** ġ, C Œ ę = **©** Œ Van Mazinia A. **(ES)** Ø 2 100 (C) 60 7 50 40 CE Œ Ç 80 70 30 20 Ü CO. C \bigcirc C 8 2 2 ا ا د ا 70 G 22PM 10 90 100 BUFFALO NEW YORK 30 40 50 60 80 20 \bigcirc

PAGE

APPENDIX H

RAW DATA SHEETS - WET TESTS

- 1) SO₂ Calibration Standards
- 2) SO₂/Organic Sulfides
- 3) H_2SO_4 Mist/Organic Sulfides/ SO_3
- 4) Chloride/Total Acid
- 5) Nitrogen Oxides
- 6) Moisture
- 7) Orsat
- 8) Visible Emissions

Mater ia 1	Sampled for 50.	Σ.	•
Date	12/3/74		
Plant_	LAB.	Location CAL	GAS (4320 ppm)
Bar. Pre	essure_ 29.65		
Ambient	Temp. 65		
Run No.	313233		
Power St	tat Setting		
Filter (Jsed: Yes No		
Operator	KRB		
CLOCK 1	·	FLOW METER	METER TEMPERATURE
TIME	METER (Ft ³)	SETTING (CFM)	TM
1506	326. (50	SETTING (CFM)	65
		SETTING (CFM)	
1506	326.650	SETTING (CFM)	65
1506	326.650	SETTING (CFM)	65
1506	328.650	SETTING (CFM)	65
1506 1523 1545	328.650 330.675	SETTING (CFM)	65 65
1506 1523 1545	328.650 330.675	SETTING (CFM)	65 65

Comments:	TEST #	ma 50 ₂	ppm SOz
	•31 32	558,7 584,7	3716 3889 - AVG, = 3847 pp
	33	591.7	3935
.•	Impinger	Bucket No	
	Meter Bo	x No.	

302 200 7	JOB	NO.	4-	84	7	9.	. S
-----------	-----	-----	----	----	---	----	-----

Material	Sampled	for	SOz	
	-			

Date 2/2/75

Plant COULTON CHEMICAL Location CAL GAS (LOW RANGE)

Bar. Pressure 29.90 "Hg Comments:

Ambient Temp. 35

Run No. 1, 2, 3

Power Stat Setting -

Filter Used: Yes - No -

Operator KB

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1305	303.497	-	39
1352	305. 497	-	39
1415	307. 515		4!
1435	309. 515	_	49
1520	311.603	_	39
1540	313,609		39

Comments:

3

Impinger Bucket No.

Meter Box No.

U AATO 7 GHO SHITELE	ARTHA PRESTA SA	•
JOB NO. <u>4-8479-</u> 2		PAGE 204
Material Sampled for SOz		
Date 2575		
Plant COULTON CHEMICAL	Location CAL GAS	(IHI RANGE)
~~ ^7	"Hg Comments:	
Ambient Temp. 35		
Run No. 1, 2, 3	•	
Power Stat Setting	•	
Filter Used: Yes No		
OperatorKR		•

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
0930	<i>3</i> 27. 3 03	-	40
1005	358 303		40
1045	331, 330	-	41
1150	332 330	_	41
1502	335, 362	_	43
1532	336,362	-	43

Comments:	TEST #	mg Soz	205 maga	
		326.4	4104	
	5	8,558	4067	
	3	323.1	4087	
· · · · · · · · · · · · · · · · · · ·	Twbru	ger Bucket No		·
•	Meter	Box No.	· · · · · · · · · · · · · · · · · · ·	

ر من تبار بالمعالم المعالم الم	المائلة المائلين المبارية المب
JOB NO. 4-8479-2	PAGE 205
Material Sampled for SO =	TAUD .
Date 12/5/75	_
Plant COULTON CHEMICAL	Location CAL GAS (MID RANGE)
Bar. Pressure 29.87	"Hg Comments:
Ambient Temp. 40	_
Run No. 1, 2, 3	· · · · · · · · · · · · · · · · · ·
Power Stat Setting	<u>.</u> .
Filter Used: Yes _ No _	

CLOCK	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1410	339.405	_	48
1430	341.405	. — .	48
		_	
1250.	343.507	· ·	98
1550	345,507		48
1630	347.613	-	48
1700	349, 613	_	48

Comments:	TEST # mg, SOz ppm SOz	
	1 454.0 2900	
•	2 451.6 2885	·
	3 452.9. 2893	
•	Impinger Bucket No.	
•	Meter Box No	

GAS SAMPLI	NG FIELD DATA
JOB NO. 4.8479-2	PAGE 206
Material Sampled for 502	I AGU
Date 2/12/75	
Plant COULTON CHEM	Location WLE T
Bar. Pressure	"Hg Comments:
Ambient Temp. 28°	
Run No.	
Power Stat Setting	
Filter Used: YesNo	-

CLOCK TINE	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE
1035	6.81	.041	54
1045	7.22	.041	55
1055	7.63	140.	55
1102	7.81	.041	55
			•
	•		

Impinger Bucket	No.	
Meter Box No.		»·

JOB NO. 8479.2	PAGE
Material Sampled for 502	
Date 2 12 75	
Plant COULTON CHEMICAL	Location OUTLET
Bar. Pressure 79.90	
Ambient Temp.	
Run No. 2	
Power Stat Setting	
Politon Hoods Von No.	

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1147	9.35		CZ
1217	11.35		5)
gen (1996)	· · · · · · · · · · · · · · · · · · ·		
2			
		,	
	•		

Impinger	Bucket	No	·	 	 	
Meter Box	x No.				> "	

207

-			
rve	CAMOLITAIL		מיויםוו
LMJ	SAMPLING	ribble	DUTU

JOB NO. 4-8479-2	PAGE 20
Material Sampled for SO2	PAGE -0
Date 2 12 75	
Plant COULTON CHEMICAL	Location PURASIV INLET
Bar. Pressure 29.90	
Ambient Temp.	
Run No. 3	
Power Stat Setting	
Filter Used: YesNo	
Operator_KRB	

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1555	573.460		67
1625	574.460		62
	P _y		
·			

Impinger Bucket	No.		
Meter Box No.		•	> *

Date)/14/75	ORGANIC SUL	
	DULTON CHEM	Location [WLE 7	IRANER
Ambient	Temp. 30° 4 A	"Hg Comments:	
Filter	tat Setting Used: Yes No	<u> </u>	
CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
09.34	5,86	,04/	52
D95D	6.86	.04	54
	ο,		
omments	•		· ·

Impinger Bucket No.

Meter Box No.

NOAD 26 (12/67)

	NG FIELD DATA
JOB NO. 8479-2	PAGE 210
Material Sampled for SOZ &	ORGANIC -SULFIDES
Date 2 14 74	
Plant COULTON CHEMICAL	Location INLET DUCT
Bar. Pressure 29.90 30,24	• .
Ambient Temp30	
Run No. 4 B	• •
Power Stat Setting 70	-
Filter Used: Yes No J	-
Operator KB	

			•
CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
925	318,800	.05	41
940	219,800	.05	20
			-
	ر ۵ ک		
·			
	•		

Impinger	Bucket	No.	
Meter Box	c No.		s ''

GAS SAMPLING FIELD DATA · PAGE . 211 ORGANIC SULFIDES Material Sampled for_ Date 3 (14/7) CHEM Plant CourTO ~) UTLE T Location "Hg Comments: Bar. Pressure 30 30, Ambient Temp. Run No. Power Stat Setting Filter Used: Yes No

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
·//.34	78.12	0-10	55
1154	80.12	0.10	58
			•
	:		
			-
			j je kara waren
	,		

_			٠
Comme	n	ts	•
			•

Operator_

100

Impinger	Bucket N	·	
Meter Box	No.		 , , , , , , , , , , , , , , , , , , ,

JOB NO. 4. 8479-2	E ORGANIC SOLFINES
•	2 OK.G.IVIV C GOOVII GO
Date 2/14/73	
Plant COULTON CHEM.	Location OUTLET
Bar. Pressure 30:24	"Hg Comments:
Ambient Temp. 30	
Run No. 6	
Power Stat Setting	
Filter Used: Yes No	
Operator RLM	

CLOCK TIME	METER (Ft ³)	• FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1934	2,37	1,0	5 8
1245	4,29	1.0	58
			-
	· • • >		
			•
·			
	•		

I mpinger	Bucket	No.	
Meter Box	x No.		>,

GAS SAMPLING FIE	LD DATA
JOB NO. 4-8479-2	PAGE 213
Material Sampled for 502 & OR	GANIC SULFIDES
Date 2 17/75	
Plant COULTON CHEMICAL Locat	ion INLET
Bar. Pressure 30.00 "Hg C	omments:
Ambient Temp. 40	
Run No. 7	
Power Stat Setting	
Filter Used: Yes No	

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1133	320,900		60
1200	321,900	·	63
	• .		
	. • ···		·

Operator_

KB

Impinger	Bucket	No.	
Meter Box	× No		· ·

JOB NO. 4-8479-2	organic sulfides
Material Sampled for SO	OKAUMO 300, MO3
Date_ 2/17/75	
Plant COULTON CHEM	Location 007(E)
Bar. Pressure	"Hg Comments:
Ambient Temp. 40°	
Run No.	
Power Stat Setting	
Filter Used: Yes No	
Operator RLM	

CLOCK TINE	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1135	600.10	.06	64
1210	602 10	.06	69
			-
·	Py		
·			
	•		

Impinger	Bucket	No	•			
Moter Roy	v No				>	

	4-8479-2 GAS SAMI	PLING FIELD DATA	PAGE 215					
JOB NO.	al Sampled for SO 2	ORGANIC - SU	LFIDES					
Date	2/17/75	· · · · · · · · · · · · · · · · · · ·						
Plant	Plant COULTON CHEMICAL Location NLET							
Bar. Pr	essure	"Hg Comments:	• • •					
Ambient	Temp.							
Run No.	9							
Power S	Stat Setting							
Filter	Used: Yes No							
Operato	orKB							
CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE					
1350	324.020		69					
1350	325.020		69					
			-					
	0							
	,							
			* ************************************					
comments	• •							
	•	ucket No.						
	Meter Box No.							

JOB NO. 4-8479-2	SING TIEBS BAIA
Material Sampled for SO2	
Date 2 17 75	
Plant COULTON CHEMICAL	Location OUTLET
Bar. Pressure	
Ambient Temp.	
Run No. 10	
Power Stat Setting	
Filter Used: Yes No	
Operator_KRG	

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1340	600.000		62
1410	610,500		C4
			-
	0 2-		
	·		

Impinger	Bucket	No		
Meter Roy	No.		•	>'

Filter Used: Yes No Operator_

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1935	326.200		72
1505	328. 700		72
			-
	· · · · · · · · · · · · · · · · · · ·		
		·	

Impinger	Bucket	No	 	 			
	* * **						
Meter Box	k No.			 	·	»·	

JOB NO. 4-8479-2	· · · · · · · · · · · · · · · · · · ·
Material Sampled for 505	
Date_2/18/7	
Plant COULTON CHEM	Location OUTLET
Bar. Pressure	"Hg Comments:
Ambient Temp. 40	
Run No. 12	
Power Stat Setting	
Filter Used: Yes No	
Operator Rlh	

CLOCK TINE	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1116	613.160	. 13	63
1131	615,160	13	65
			-
·			-
	·		

Impinger	Bucket	No		 	····	
Meter Box	x No.			•	> .	

Run No. 13 Power Stat Setting Filter Used: Yes

Operator_KB

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1110	331.540		64
1130	332.540		64
	0 ,		
			and the second s
·		•	

Comments:

Impinger Bucket	No.	
Motor Poy No		•

219

PAGE .

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
.1165	339.100	.05	42
1117	339.55	.05	41
1500	341,100	, 0 <u>s</u>	44-
	٠. ٠		
			•
			·

Comments:

Filter Used: Yes V

Operator

Impinger	Bucket	No.
Meter Box	x No	

ING FIELD DATA PAGE.
HS SOY & ORGANIC SULES
Location PURASIV INCET
_"Hg Comments:
-C287

		·	<u> </u>
CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1530	341.500	.05	40
1335	3-4.830	,05	43
AND			
1914			
1430	345,000	70,	40
1500	E47,000 ·	.05	44
			·

Impinger Bucke	± No	 allendary described the same of the same o	
Meter Box No.			,

JOB NO. 4-84) 5-2	
Material Sampled for H	104 - ORGANIC SULFIDES
Date 5/2/75	
Plant COUCTON CHEM	Location OUTLET
Bar. Pressure 39.50	"Hg Comments:
Ambient Temp. 42	
Run No.	
Power Stat Setting 70	
Filter Used: Yes No 47-	D131
Operator_RLm	

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1022	347,015	.04	5 5
1012	349.015	,04	65
	0 ;		
			·
	•		

Impinger	Bucket	No.		
Meter Bo	c No.			>.

	٠
£ omments	:

PURGE 629.35

Impinger Bucket	t No	·				
Meter Box No.			*		·	>.

JOB NO. 9-8474-2 Material Sampled for Hosour ORGANIC SULFIDES Plant Courtow Chem Location Outlet Bar. Pressure 39.50 "Hg Comments: Ambient Temp. 45					
Power S	tat Setting 70 Used: Yes No #4	_ 2_C 130			
CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM		
1225	351.020	.04	57		
1315	353.020	.04	57		
			-		
	• • • •				
			·		
Comments	Impinger Bu	ıcket No.			

Meter Box No.

GAS SAMPLING FIELD DATA
JOB NO. 4-8475-2
Material Sampled for SO, FCD MIST
Date 0 106/7
Plant COUCTON CHEM Location NET
Bar. Pressure 39.90 "Hg Comments:
Ambient Temp. 30
Run No. / E Z
Power Stat Setting
Filter Used: Yes No #47 D/5/

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
.1117	353.100		3.8
1515	3\$ 3 ,800		50
			-
1315	356:533		48
1335	367.155		53
			•
			N. W. Charles

I mpinger	Bucket	No.		
Meter Box	No.	, 1	•	>.

JOB NO. Y-8479-2	NG FIELD DATA PAGE 226
Material Sampled for Huso4	M2L 203-
Date 2 27 75	
Plant COULTON CHEMICAL.	Location INLET
	"Hg Comments:
Ambient Temp. 30	
Run No. 3	
Power Stat Setting	
Filter Used: Yes No	
Operator_	

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
.1035	362,000		30
1110	365,000		37
	· • • • • • • • • • • • • • • • • • • •		
		•	
			-
	•		

Impinger	Bucket	No	**************************************			
Meter Box	No.				:	• 1

GAS SAMPLE	ING FIELD DATA
JOB NO. 4-8479-2 BAS SATTE	PAGE 227
Material Sampled for 50	Dr. Ació Mist
Date 0/26/75	
Plant COULTON CHEM	Location OVTLET
Bar. Pressure 29.90	"Hg Comments:
Ambient Temp. 35	82
Run No.	
Power Stat Setting 65	
Filter Used: Yes V No# 47	D86
Operator JF, R(m	

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1120	111.045	.04	35
12/2	113.045	, b ^U	48
	•		-
The state of the state of	0 >		
) 20 mg			
			in a planting of the second se
	•		

Impinger Bucket No	 	
•		
Meter Box No.	•	•

	· 1	•	
CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1315	113.070	.04	42
(455	116.550	104	55
			_
	. D ,		
·			·
	•		

Operator IF + RLM

Impinger	Bucket	No.	
leter Box	k No.	> '	

-		PLING FIELD DATA	· · · · · · · · · · · · · · · · · · ·
JOB NO	· 8479-Z	.	PAGE 229
Materia	al Sampled for /t, SO	1,503	
Date	7cb 27, 1975		
Plant_	Coulter	Location outle	<u>(</u>
Bar. P.	cessure 29.92	"Hg Comments:	
Ambien	t Temp. 18-		
Run No	.3		
Power :	Stat Setting 65	47-101	8
Filter	Used: Yes No		
	or RUI JF		
Operati			
CLOCK	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1030	115.5-60		26
1130	116.975	•	30
		•	•
85.7	D :	A STATE OF THE STA	

Impinger Bucket No.	
Mater Roy No	•

	NG FILLU DAIA
JOB NO. 4-9471-2	And Cartes and the second
Material Sampled for MINGRAL	ACIDS, HALOGENS
Date_ 2/6/75	
Plant COULTON CHEM.	Location NLET
Bar. Pressure 29.63	"Hg Comments:
Ambient Temp 36	
Run No.	
Power Stat Setting	
Filter Used: Yes No V	
Operator Rum	
•	

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE
0927	16,00	1.17	49
1021	76.00	1,17	53
			•
	D :-		
	·		

Impinger	Bucket	No					
Meter Box	x No.				•	. •	

JOB NO	4-8479-2	LING FIELD DATA	PAGE 231'
·	1 Sampled for MINERAL	HCIDS - HALOS	ens
	2/6/75		
Plant (OUITON CHENI	Location WLF	
Bar. Pr	ressure 29.60		
Ambient	Temp. 3-0		
Run No.			
Power S	Stat Setting		
•	Used: Yes No		
Operato	or Alm		
CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1030	576.20	1.20	46
1100	636.20	···/::30	60
	And the second s		
	6 5	and the second s	
94	and the second s		
	en e		and the second of the second o
·	e e e e e e e e e e e e e e e e e e e		
	Company of the second s	a salah s	
Comments	•		
	Impi nger Bu	ucket No	

Meter Box No.

Y

GAS	SAMPLING	FIELD	DATA
	OUTITOTIO		Unit

JOB NO. 8479-2 Material Sampled for MINERAL A	ACIDS #4 4 LOGENS
Date 2/6/75	
Plant COUITON CHEM	Location NIET
Bar. Pressure 25.60	"Hg Comments:
Ambient Temp. 30	
Run No. 3	
Power Stat Setting	
Filter Used: YesNo	
Operator_RLM	

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
7110	636,40	1.7	식니
1205	696.40	1.7	76
			-
·			
	•		

Impinger	Bucket	No.	-	
Meter Box	k No.			•

	GAS SAME	LING FIELD DATA	
JOB NO.	8479-2 1 Sampled for MINERAL	ACIDS - LIALING	PAGE 233
Date	2 6 75		
Plant_	COULTON CHEMICAL	Location PURASI	V OUTLET
Bar. Pr	essure_ <u>29.60</u>		
Ambient	Temp. 35		
Run No.			
Power S	tat Setting		
Filter	Used: Yes No J		
Operato	or		·. •
CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
0.915	382.685	1.0	48
1004	443.802	1,0	50
4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	•		_
	• •		
r rann sen se ri			and the second s
Comments	•		

Impinger Bucket No.________
Meter Box No.________

GAS SAMPLING FIELD DATA

Material Sample Date Z · 6 ·	ed for MINERAL ACIDS HALOGENS
	ON CHEMICAL Location OUTLET
Bar. Pressure_	29.60 "Hg Comments:
Ambient Temp	30
Run No. 2	
Power Stat Sett	ting
Filter Used: \	Yes <u>No</u>

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1010	3.802	1.6	48
1048	65.602	1.6	52
	• • • •		
	•		

Comments:

Operator 6

Impinger	Bucket	No.	
Meter Box	x No.		> '

GAS SAMPLING FIELD DATA

JOB NO. <u>8479-2</u>	PAGE _ 23
Material Sampled for MINERAL ACIDS, HALOGENS	
Date 2.6.75	
Plant COULTON CHEMICAL Location OUTLET	 .
Bar. Pressure 29.60 "Hg Comments:	
Ambient Temp. 30	
Run No. 3	
Power Stat Setting	
Filter Used: Yes No X	
Operator_ GV<	

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1058	5.60	1.6	48
1136	65.65	1. 6	53
		a, a de la companya	- *
		u • w · · · · · · · · · · · · · · · · · ·	

Impinger Bucket No			_
Meter Box No.		8.	

GAS SAMPLI	NG FIELD DATA
JOB NO. 4-8475->	PAGE 236
Material Sampled for HALOGENS	MINERAL ACIDS
Date 2/24/75	
Plant COULTON CHEM	Location WLET
Bar. Pressure 29,85	"Hg Comments:
Ambient Temp. 38	
Run No.	
Power Stat Setting	
Filter Used: Yes No -	

			·
CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
145Z	651,910		40°
1550	711.910		40°
	0 >		
·			•
		•	

Impinger	Bucket	No		 	 		_
Meter Box	c No.		•		•	> *	

GAS	SAMPI	ING	FIELD	DATA

JOB NO. <u>Y-8479-2</u>	ni en
Material Sampled for Halogens + MINERAL -ACIDS	PAGE 237
Date 7.1 25 1975	
Plant Coulta Chenical Location INLET	
Bar. Pressure 29, 80 "Hg Comments:	
Ambient Temp. 35	
Run No. 2	
Power Stat Setting	
Filter Used: Yes No	
Operator KB AS.	

CLOCK TINE	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
10.40	718.600		40
1140	827.540		45
tew weeks		and the second second	•
			25.5
· 4 . 14			

Impinger	Bucket	No.			
Meter Box	c No.			> ·	

GAS	SAMPLI	NG :	FIEL	D	DA	TF

JOB NO. Y-8479-2		PAGE 238
Material Sampled for Hologens +	Mincial acids	*****
Date 706 25,1975		
	Location Inlet	
Bar. Pressure 29,80	"Hg Comments:	
Ambient Temp. 35		
Run No.		
Power Stat Setting		
Filter Used: Yes No		
Operator KB + AS		

CLOCK TINE	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1150	827.930		41
1529	967.550		.44
	•		-
·	• • • •		
			•

Impinger Buck	et No			
Meter Box No.			>.	

GAS SAMPLING FIELD DATA

Operator CCM		
Filter Used: YesNo Operator_C(m		
Power Stat Setting		447. 1984.
Run No.		다. 1일 100 - 1일 140 - 1일
Ambient Temp. 38		
Bar. Pressure 2005 "Hg	Comments:	
Plant Courn CHEM Lo	ecation OUTLE	1
Date 2/24/75		
Material Sampled for HALOGENS,	MINERAL ACI	
JOB NO. 4-8479-2		PAGE 239

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1452	712.627	LICEM	48
1550	72.780	1,00FM	62
And the	And the second s		_
	to the contract of the contrac		
NECES INC.			
The second second second	and the second s		And the second s
	•		

comments:

Impi nger	Bucket	No		
	·	·	•	
Meter Ro	x No.		•	

GAS SAMPLING FIELD DATA

JOB NO. <u>Y-8479-</u> 2	
Material Sampled for HAlocons + n	VINEWAL HOLLS PAGE .240
Date Ful 25 1975	
Plant Coulton Chemical	Location CUTLET:
Bar. Pressure 29, 90	"Hg Comments:
Ambient Temp. 35	
Run No. 2	
Power Stat Setting	
Filter Used: Yes No	· • • ·
Operator RIM, JF	

CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
1040	772.880	1.0	38
1146	x32, 940	1,0	5-4
			-
14	ره.		
	th Control		
			·

Impinger Bucket	No			
Meter Box No.	• .	•	•	y .

JOB NO. Y-8427-2	PAGE 241
Material Sampled for HAlogia + Maria - HODS	- 241
Date 7el 25 1925	• .
Plant Coulder Change Location Out of	
Bar. Pressure Comments:	-

Run No.

Power Stat Setting

Filter Used: Yes No

Operator JF + RLM

			•
CLOCK TIME	METER (Ft ³)	FLOW METER SETTING (CFM)	METER TEMPERATURE TM
11.5.3	833.294	1.0	39
1250	893.853	1.0	54
er Corres Laboratoria.	en e	and the second s	
4.0	• • • • • • • • • • • • • • • • • • •		
·			
o family			
A		and the second second	

Impinger	Bucket	No		·	 		-
Meter Box	x No.				•	» .	

OXIDES OF NI	TROCEN	FIELD_	DATA			
Job No. 8479-3 Client EPA Plant Location COULTON CHE	MICF	34				
Unit No. INCET TO PURA	SIV					
Sampling Location INLET			····			
Operator						
	53	54	50	55	52	51
Run Number	١	Z	3	4	5	6
Date	2/6	2/6	2/6	2/6	2/6	36
Flask Number	72	10	58	25	46	8
Flask Volume Corrected(liters)(V_f)	2,088	2.040	2,017	2.075	2,082	2,014
Initial Flask Vacuum(in.Hg)(Pi)	24.9	25.1	24.9	24.8	25.6	25.0
Final Flask Vacuum(in.Hg) (Pf	-1.4	-1.3	1.0	- ,9	ر بر کر	ئ
Flask Temperature ($T_{ m f}$)	40	40	40	40	40	40
% 02				3		

OXIDES OF NITROGEN FIELD DATA

Job No. 8479 - 2						
Client EPA		···				
Plant Location COULTON C	14EC	UCAL	-			
Unit No. OUTLET TO PUF	3851)		•			
Sampling Location OUTLET	<u> </u>					
Operator_CK		· ·				
	5-6	57	-	58	59	60
Run Number		2	3	4	5	6
Date	2/6	3/6	2/6	2/6	3/6	3/6
Flask Númber	24	18	33	32	28	27
Flask Volume Corrected (liters) (Vf)	2.057	2.079	2.05	2.046	2.058	2,107
Initial Flask Vacuum(in.Hg)(Pi)	24	245	200	249	25	25
Final Flask Vacuum(in.Hg) (Pf	6	ح	5	- B	7.1	3
Flask Temperature (T $_{ m f}$)	40	40		40	40	40
% 0 2	6.0	6.0)	6.0	6.0	6.0

					-		Į.
OXIDES OF NI	TRO	GEN	FIELD	DATA .		, ser	
Job No. <u>U-8475-2</u>							
Client EPA	-				* 11		
Plant Location COULTON CHE	- M						
Unit No. PURASIV							
Sampling Location / NLET				· ·			
Operator K B						;	
Operator	(61	62	6:3	64	65
	1	B	23	38	43	5B	1 R
Run Number	-	1	,				60
Date	3/	9J	9/25	0/05	-/3·	250	9/200
Flask Number	4	6	28	10	58	8	جد
Flask Volume Corrected(liters)(V _f)	3,0	82	2.058	2,040	2.017	7.014	3.088
Initial Flask Vacuum(in.Hg)(Pi)	2		23./	23.3	23,3	23,2	23.4
Final Flask Vacuum(in.Hg) (Pf		<	1.0	1, 3	0	1.8	0
Flask Temperature (T _f)	40		40	40	40	40	40

% 02

OXIDES OF NITROGEN FIELD DATA

Job No. 4-8479-2									
Client FPA	Client FPA								
Plant Location COULTON CHE	_m								
Unit No. TURASIV	4 - 8 - 74 - 3	· .							
Sampling Location DUTLET			····						
Operator RLM J. F.									
, , , , , , , , , , , , , , , , , , ,	66	67	68	68	70	71			
Run Number	10	Zß	FB	48	515	6,c			
Date	125	opi	2/25	2/25	26,	2/25			
Flask Number	25	73	94	えフ	32	18			
Flask Volume Corrected(liters)(V_f)	2,02	ووه ^{بک} ر	2057	2,107	2.046	2.079			
Initial Flask Vacuum(in.Hg)(Pi)	24.8	25.4	25.0	24.6	24.6	24.9			
Final Flask Vacuum(in.Hg)(Pf	2.5	1,9	0	20	2.8	2,3			
Flask Temperature (Tf)	YO	40	40	40	40	40			
% 02				, i					

PAGE 246

JOB NO. 4-8479-Z

DATE - 2/12/75

TIME - 0930-1105

INLET READING - .210

OUTLET READING - .195

INLET DEW POINT - 56°C

OUTLET DEW POINT - 65°C

INLET MOISTURE - 18 ppm

OUTLET MOISTURE - 5 ppm

PAGE 247

JOB NO. 4-8479-2

DATE - 2/14/75

TIME - 1450-1535

INLET READING - . 212

OUTLET READING - . 180

INLET DEW POINT - 55°C

OUTLET DEW POINT - 66°C

INLET MOISTURE - 20 ppm

OUTLET MOISTURE - 4 ppm

PAGE 248

JOB NO. 4-8479-2

DATE - 2/15/75

TIME - 1005-1120

INLET READING - . 200

OUTLET READING - . 175

INLET DEW POINT - 58° C

OUTLET MOISTURE - 15 ppm

OUTLET MOISTURE - 3 ppm

PAGE : 249

JOB NO. Y-8479-2

DATE - 2/16/75

TIME - 0915-1055

INLET READING - 1215

OUTLET READING - 1195

INLET DEW POINT - 54°C

OUTLET MOISTURE - 22 ppm

OUTLET MOISTURE - 5 ppm

PAGE 250

JOB NO. Y-8479-2

DATE - 2/17/75

TIME - 1325 - 1445

INLET READING - .210

OUTLET READING - .180

INLET DEW POINT - 56°C

OUTLET DEW POINT - 66°C

INLET MOISTURE - 18 ppm

OUTLET MOISTURE - 4 ppm

PAGE 251

JOB NO. 4-8479-2

DATE - 2/18/15

TIME - 1445-1520

INLET READING - 210

OUTLET READING - 180

INLET DEW POINT - 66°C

OUTLET MOISTURE - 18 ppm

OUTLET MOISTURE - 4 ppm.

PAGE 252

JOB NO. 9-8479-2

DATE - 2/19/75

TIME - 0830-1000

INLET READING - .2/0

OUTLET READING - .180

INLET DEW POINT - 56°C

OUTLET DEW POINT - 66°C

INLET MOISTURE - 18 ppm

OUTLET MOISTURE - 4 ppm

PAGE 253

JOB NO. Y-8479-2

DATE - e/20/15

TIME - 0925-1050

INLET READING - ,210

OUTLET READING - ,195

INLET DEW POINT - 56°C

OUTLET MOISTURE - 18 ppm

OUTLET MOISTURE - 5 ppm

PAGE 254

JOB NO. 9-8479-2

DATE - 2/21/75

TIME - 0820-0955

INLET READING - ,210

OUTLET READING - ,195

INLET DEW POINT - 56°C

OUTLET DEW POINT - 65°C

INLET MOISTURE - 18 ppm

OUTLET MOISTURE - 5 ppm

JOB NO. <u>Y-84792</u>

ORSAT FIELD DATA

Location INLET - OUTLET	_ Comments:
Date 2/3/75	
Time /530	-
Operator JF	

Test	(CO ₂) Reading l	(0 ₂) Reading 2	(CO) Reading 3
INLET	3.5	7.8	0,0
OUTLET	5,9	6.0	0.0

PA GE : 256

JOB NO. 48479-2 ORSAT FIELD DATA

Location INCET-OUTLET	Comments:
Date 2/6	
Time	
Operator TF	

Test	(CO ₂) Reading 1	(0 ₂) Reading 2	(CO) Reading 3
INLET	て, S	2.5	0,0
INLET	5,8	5.2	0.0
	-		·
	·		

αΩτ	NO.4-8479-2	ORSAT	FIELD	DATA
JUB	NO.			

Location INLET-OUTLET	Comments:
Date 2/6/75	_
Time /200	_
Operator	_

			L
Test	(CO ₂) Reading 1	(0 ₂) Reading 2	(CO) Reading 3
INLET	2.2	5.6	0.0
OUTCET	ح،ح	5.7	0,0

JOB	NO.	4-8479-	2	ORSAT	FIELD	DATA
$\sigma \sigma \nu$	110 .					

Location INLET-OUTCET	Comments:
Date 2/24/75	
Time /C)30	
Operator JF	

			<u> </u>
Test	(CO ₂) Reading 1	(0 ₂) Reading 2	(CO) Reading 3
INLET	4.7	5.3	0.0
OUTLET	4.8	5.6	0.0
		·	

JOB NO. 4-8479-Z

ORSAT FIELD DATA

Location INLET - OUTLET	Comments:
Date 2/24/75	
Time //20	
Operator JF	

Test	(CO ₂) Reading 1	(0 ₂) Reading 2	(CO) Reading 3
INLET	4.8	(.8	0,0
INLET	4,3	5.7	0.0

JOB NO.<u>Y-8479-</u>Z

ORSAT FIELD DATA

Location /NLET-OUTLET	Comments:
Date 2/27/75	
Time 1300	
Operator	

Test	(CO ₂) Reading 1	(0 ₂) Reading 2	(CO) Reading 3
INLET	3.8	4.4	<i>O.</i> 0
OUTLET	3.9	4.5	0,0

REPORT NO. Y-8479-2

VISUAL EMISSIONS

ENVIRONMENTAL PROTECTION AGENCY

PAGE 261

Outher

NLET

RECORD OF

EQUIPMENT LOCATION (ADDRESS) TOLE do, OHIO

RECORD OF VISIBLE EMISSIONS

			FROM	<i>11</i> ·	20	Р.М.	TO L	<u>: 44</u> 4. M		-4		,					
Start	hour		T	T			\Box	1 7		T		T					\neg
R. No.	%	Min. 01	02	03 0	4 05	06	07	08 09	9 10	11 12	13	14	لــــــــــــــــــــــــــــــــــــ	6 1	/	8 19	
6	100	··inii	TŤT!	ŤΠŤ	ППТ	ППТ	minn	ŤĦŤ	THIT	mmi	тттт	ш	ĬΠΠ	ĬПТ	ÌШ	miin	πñ
4%	95				HHI						}	}	 	+++			H
4%	90				$\Pi\Pi\Pi$	Ш											Ш
414	85				ЩЦ	1111		HHH	11111			$\Pi\Pi$					П
4	80				++++	╇╏ ╇╇	+	HHHH	.	11111	444444	11111	\square	+	Ш		Ш
3%	75	╼╼╁╁╁╁┼┵	HHH		++++	╁╅╁╂╌	┟╏┩ ╂╇╇	┝╀╁╁┼╁	-	+++++	┼┼┼┼┼	++++	╀┼┼┼	-4-4-4-		\cdots	Ш
3%	70 65	╼╾╂╁╂╂╂╂	┝╁╄╀╂┥	╎┤┊╏ ┋	╁╂┼╂╂	╃╇╂╂╃╌	┌┤╀┸┿┤	┌╂╌┼╌╂╶╉	╶╊╼┧┼╆╄╄╌	╏ ╋╋╋╋	┞┩┢┩ ┩	╁╁╁╁	1 + 1 + 1		┝┧┿╂╴	┡╋┋	Н
3	60	╼╼╊╅╁╂┼┼	╒ ╇╃╃	┝┦╌┼┼┼	∤ ╃┼┼╅	╇┿┿╊╌	┟╂╃╃┪	┟╊╂╃╃	╁┼┦╂╂┽	┸	╀╀╀┼	╀┼┼	╃╁╀╬╢	+++	┝┼┼┼	┞ ┼┾╂╾╂┼	₩
24	55	╼╼╂╂╂╣╂╅	 	++++	╿	 	┍┼┼┿┼┥	/ 	╀┼┼┼┼	++++	 	╀┼┼	╁╅╅┪	┍╀╃┟	1	╎┤┤ ┤┤	++1
21/2	50	11111										11111	1111				Π
24	45																Ш
2	40					Lilli.					ШШ	ШП		$\perp \perp \perp$			Ш
14	35				1444		نـــا ــا	44-41	1:11		1111	غبنا	1	444			Ш
113	30	╼╌┥╅╀╁╁┼	┵┼┼┼	++++	┡╏╏	┺╁╁┧╼╶	نب نبا نا	HH:HH	╌╁┼╾╁╎┼╸	++++	4-+++	+1-1-1	1			┞╁┧╏╅╏	HH
11/4	25	╾╌╁╁┼┼	┾╁┼┤	ĬĬĬĬ	++++	┋ ┋┋	┍╃╀╃┼	++++	┆ ┩╍╄╄┱┙	╶ ┋	┟╺ ╽ ╾ ╏	╁┠╂╃╇	╃┋┋ ┪	╌╀╼╂╁	▎ ▎ ▎	╎ ┆┧╁╂╌	++-
34	15	╶╶┈ ┨ ┞╋╂╂	- 	└ ┤ ┤ ┋	╀╌╌┺	╇╋╅┋	┍┩╈╍┾┦	┾╄┿	-+++++	╃╃╃╃	┞┡┋┋	 	++++		┟╅╇╂┥	╎┋┋ ╅┩╅┪	++1
1/2	10	- 	++++	├ ┼ ┞╇ ┿	 	; † † † • -		,†+++	┝┿╃╂┑┿┤	╌┦╌╃╌┦╌╃╌	⁺₁ ∮╂┼	╅╅╅┪	1-;++-	+++		 	Hi
74	5	- 	++++	 	1111		:		++ : -+-	1+1+	111111	!!!!	11111	111			H
0	0	*000000	200200	XXX		20000	00000	CXXX	XXXXXX	XXXX	XXX	XXX	XXX	XXX	333	****	OK.
Start	'hour [']			7	Π		Ī	TT									\exists
R. No.	۹,	Min 21	22	$\frac{1}{23} - \frac{1}{2}$	4 29	26		لــــــــــــــــــــــــــــــــــــ		31 32	33	34	15 3	5 3	7 3	8 39	40
5	100	Time i	تتثث	ÍÍ TÍ		ייוודי	TTTT	تتبثث	```	7111	الثنيية	THI		ŤΠ	1111	î	آتا
44	95	╼╼╀╃╂╅╁╪	╼	┝┼╀┿┪╸	┩┯┿┩┪	╅╋╂┪	┸╂╂╽╅	╌╄╌┋╍╸╄╼╊	╅╅╸╂╋┪	╼╇╼╄┾┟╍╋	┤┦┡ ┢┫┤	┦ ╴┞╸┞╼┿╾╄╴	╿ ┊┦┦╌	++!-		╏ ╏╃╃╃┞	+++
411	90		╶┼┼┼┼	+++	1 * * * *	++++-	**		++: 1++!	+++++	1	† <i>†</i> †††	1:11	1-1-1-1	l -	+++++	
4'5	85		1111		++++	++++			+ ;	7:11	 - ;+++		† † † † †	1-11			\mathbf{H}
4	80									7717							
3%	75										$\Pi\Pi\Pi\Pi$						\coprod
.3"չ	70			1111	1.1.1.1	1111.		4 1		1 : : : !			7			11111	111
	ـــعب			444	1-1-1-1	++++		4.4		-1-1-1	11111	++++	HHH	+++	1		111
3	60			1111	1++	لللللا		4-44			HHH	1444	++++	-4-44-		╀┼┼┼┼	###
2%	55 50	╾╼╅┊┸┿╀╃	4444	└┋┋	╀┼┼┼	╂╁┼╁┯╵			╌┵┼┼┼	╁╁┧	┡┥┼┼╅	┞┋ ┼╅╇	 ᠯᠯᡶᠳ	╼┼┼╌		╂┼┼┼┼	##
215	45		- - 		╀┿┵╄	╅╼╂╂╌	┵┼┍╇┥	╌╂┶┸╅	+++++	-┝ ┿┿┼╋	 	┩╃ ┾╅┿	++-+			╀╀┼┼┼┼┼	++-1
2	40		- 	┞┋┋	╅┼╃╅╋	╅┼┼┼		++++	┩ ┪╅┋	· } • • 	┞ ╃┦ ┦ ╪┥	! 	 - - 	╶╃╌ ┩╌	├┤╎	╏ ┾┼╂╂	HH
15	35	- 1111 7	- 		╏ ┷╅┼┼	++++			+++++	╅╅╃	╀┼┼	 	 	++-		 	HH.
135	30											11111					Ш
14	25														$\square \square$		Π
1	20																Ш
3,4	15		4444	444	1111	11111	للنلذ	4-4		1141.	11111					+++++	Ш
<i>y</i> ₁	10	─-}\	4444	414	ببلنه	4444	-11-4		14:44	-+++-	╀┼┼┼┼	1111	μ	╌┩┪┾╌	$\Box\Box$		##
7/4	5	*****		***		XXXXX	x solution in		XXXXX			be true	hick	مالعلا	ANN.		
			20000	XXXXXX	20000	ACCOPACY	TOOK	WOVE	CCCOPROC		CORPOCE.	CONTO	200.000	XX XX	XXXX	300000	300
Starty		, ,		1	1 1	1	1	1 1									
5.5.17	hour		1	1	1 1	- 1	- 1			1 1]	ļ
R. No.	hour %	Min. 41	42	43 4	44 15	5 46	17	48 4	9 50	51 5	53	54	55 5	6 !	ļ	58 59	
	%	Min. 41	42	43 (44 45		- 	48 4	9 50	51 5	53	54	55 5	ПП	, <u></u>	58 59	111
R. No.		Min. 41	42	<u></u>	44 15	5 46	- 	48 4	9 90 1	51 5	53	54	55 5	5 !		58 59	∰ °°
R. No.	% 100 95 90	Min. 41		Щ		- <u>46</u>	- 		111111		53	54	55 5	5 5		58 59	
R. No. 5 434 435 434	% 100 95 90 85											54				58 59	
R. No. 5 4½ 4½ 4½ 4 4	% 100 95 90 85 80														[. ,	58 59	
R. No. 5 4% 4% 4% 4 3%	% 100 95 90 85 60 75											54				58 59	60
R. No. 5 414 412 414 4 4 314 315	% 100 95 90 85 80 75															58 59	60
R. No. 5 41/4 41/4 41/4 41/4 4 31/4 31/5 31/6	% 100 95 90 85 60 75 70															58 59	
R. No. 5 4 1/4 4 1/4 4 1/4 4 3 1/4 3	% 100 95 90 85 60 75 70 65															58 59	60
R. No. 5 4% 4% 4% 4% 3% 3% 3% 3% 3% 3%	% 100 95 90 85 60 75 70 65 60															58 59	60
R. No. 5 4 1/4 4 1/6 4 1/4 4 1/4 4 1/4 4 1/4 3 1	% 100 95 90 85 60 75 70 65															58 59	60
R. No. 5 4% 4% 4% 4% 3% 3% 3% 3% 3% 3%	% 100 95 90 85 60 75 70 65 60 55 53 45															58 59	60
R. No. 5 434 435 434 4334 334 334 234 234 234 214 2	% 100 95 90 85 40 75 70 65 60 55 \$3 45 40															59	60
R. No. 6 434 435 434 4334 334 334 324 225 234 215	% 100 95 90 85 60 75 60 65 60 55 45 40 35															59	60
R. No. 5 434 455 444 44 334 336 334 324 28 244 21 14 15 14	% 100 95 90 85 70 75 70 65 60 45 40 35 30 25															59 59	60
R. No. 5 41/4 41/4 4 31/4 31/4 31/4 31/4 31/4 31	% 100 95 90 85 60 75 70 65 60 55 50 45 40 33 25 20																60
R. No. 5 41/4 41/5 41/6 41/6 4 33/6 33/6 33/6 22/6 22/6 21/6 11/6 11/6 11/8 11/8	% 100 95 90 85 50 75 70 65 60 55 53 40 33 30 25 20																60
R. No. 5 434 455 414 4 334 334 334 324 225 224 21 125 134 134 135	% 100 95 90 85 50 75 70 65 55 50 45 40 33 30 25 20 15																60
R. No. 5 41/4 41/5 41/6 41/6 4 33/6 33/6 33/6 22/6 22/6 21/6 11/6 11/6 11/8 11/8	% 100 95 90 85 50 75 70 65 60 55 53 40 33 30 25 20																600

NOTE: Each small square represents an individual reading of intensity corresponding to that shown in the left-hand column over a time span of 14 minute. Insight an TST in the top row of blank squares to indicate the exact minute of the start of observation. In the next square after the ST, insert the hour in which the measurement was made. Each page of this form can thus be used to record 1 hour of measurements.

Source of Air Contaminants Couffon (HEMICAL (H2504 PROduction)
Type of Air Contaminants SD2, 503 & Acid mist
Point of Discharge: Stack Other
Point of Observation:
Distance to Base of Point of Discharge, feet
Height of Point of Discharge Above Ground Level, feet
Background Description GRAY OVEREAST SKY ITS ALSO SNOW, NO
Weather: Clear Overcast Partly Cloudy Other SNOWING
Wind Direction North Wind Velocity, mi/hr 3-5
Plume Description: Detached: Yes No No
Color: Black White Other 100 E
Plume Dispersion Behavior: Looping Coning Fanning
Lofting Furnigating See Comments
Estimated Distance (feet) Plume Visible (Maximum) (Minimum)
Comments READING VERY DIFFICULT DUE to take WEATHER CONDITIONS: INCLUDING SKY COLOR &
WEATHER CONS. FINCHEDING SKY COLOR &
StERM production located VERY NEAR STACK
Signed alan Setherland Title Smoke READER
Signed Clan Sutherland Title Smoke READER ENVIRONMENTAL
ENGINEER

INLET outlet

RECORD OF VISIBLE EMISSIONS

ENVIRONMENTAL PROTECTION AGENCY

EQUIPMENT LOC ATION (ADDRESS)_

		SERVA	·					1			,		Fe	T				,	т	,	
Start/h	nour					<u> </u>	<u> </u>	<u>L</u> _		<u> </u>	<u> </u>	<u> </u>	<u></u>	<u>L.</u> .	<u>L</u> _		<u></u> .	1	<u> </u>	<u> </u>	L.,
No.	%_	Min.	01	02	03 0	4 0	5 (06	07	08 (9	10	11 1	2	13	14	15	16	17	18	19
6	100					Ш	\prod	Ш			$\Pi \Gamma$		ШП	$\Pi\Pi$	Ш	\prod			$\Pi\Pi$	Ш	\prod
434	95		$\prod \prod$			Ш	Ш	\prod	$\coprod \coprod$		\prod		Ш				Ш	Ш	$\prod $		111
41/2	90					\coprod	Ш	Ш	\coprod	Ш	ΠI	ШП	Ш	Ш	$\Pi\Pi$			ПП	Ш	Ш	Ш
414	85					Ші	$\Pi\Pi$	Ш			$\Pi\Pi$		Ш	Ш				$\Pi\Pi$	$\Pi\Pi$	Ш	$\Pi\Pi$
4	80	IT				$\Pi\Pi$	Ш	Ш	Ш		HI		$\Pi\Pi$	$\Pi\Pi$	$\Pi\Pi$	$\Pi\Pi$	THI	$\Pi\Pi$	TITI	ПП	TIT
3%	75					Ш	ШП				ΤΠ		TITI	ПП	$\Pi\Pi$			$\Pi\Pi$	TTTT		Π
31/3	70					Ш	Ш	ΠI			III		$\Pi\Pi$			\Box	7777			$\Pi\Pi$	111
3%	65					$\Pi\Pi$	$\Pi\Pi$				$\Pi\Pi$	$\Pi\Pi$	$\Pi\Pi\Pi$	$\Gamma \Gamma \Gamma$	$\Pi\Pi$		$\Pi\Pi\Pi$	$\Pi\Pi\Pi$	$\Pi\Pi$		TTI
3	60					$\Pi\Pi$	ΠT	Ш			$\Pi \Pi$			$\Pi\Pi$		7111	$\Pi\Pi\Pi$	$\Pi\Pi$	TITT	7777	Π
24	55					Ш	Ш	LL					$\Pi\Pi$	Ш			$\Pi\Pi$			Ш	m III
215	50					LLLL	Ш				Ш		$\Pi\Pi\Pi$	Ш				$\Pi\Pi$	$\Pi\Pi$	Ш	Ш
2'4	45		ШШ		ШШ	\coprod	Ш	\coprod			Ш		\prod	$\Pi\Pi$			Ш	ШЦ		Ш	Ш
2	40					Ш	LL!!		Πii		Hi		$\Pi\Pi\Pi$	$\Pi\Pi$			$\Pi\Pi$		$\Pi\Pi$	\prod	Ш
14	35					111					Π			Π				$\Gamma \sqcup$		\prod	\coprod
115	30	↓				111	1.44	1-1-		11:1				Ц.	11.		1		Ш		Ш
1%	25				Hiii	لنلن	للل	LL	لنبل	liil				LLL		Ш	1111	Ш	Ш	\coprod	Ш
1]	20		\coprod		ШП	1 1 7 4	Ш	LΙ		443	Π	Ш		HII	Ш	Щ	\coprod	\coprod	Π	\coprod	Ш
*	15				4	11	1	1.1.	444	1111	1	ننبا	111	Ш.	444	1111	المدنيا	.	1111	414	Ш.
3/3	10				1	444	LLL.	4-4-	\perp		44.	LL	1	-1-1-1	11,1	441	444.	أأبل	.	1111	111
1/4	5	-11	$\Pi\Pi$		أسعبوا	Li.L.	الطمأعل	ماءندا	المليا	أحادا	مسارل	تبليل	لسل	أحيادا	الملا	أعلما	أحاط	الماما	للدليان	الملالط	اداماء
0	0	X20	0250	022220	XXXX	XXXX	XXX.	CXX	XXXX	SCXXX	SYN.	PRXXX	XXXX	Y.Y.	AXXX	XXX	XXX	XXX	10000	AXXX	AXZ.
Start	hour		\top	T	1	T	Ī	T -	-	T	T	1-]	T	T	T	T	Ţ	1	T	T
No.	%	Min	<u></u>	22	2) ;	4 :	5 :	<u>L</u>		<u> </u>	J 29	1)	 31 3	12	33 ,	<u>]</u> 34	<u>.1</u> .15	<u>1</u> 3/5	J 37	J 38	39
5	100	T				1	TIT			TIT	TT.	T^{*}	THE	ПП	$\Pi\Pi$		111	1111		1:11	Ш
4%	95			++++		***	11 ††	111	+ 1 1	-++-+	1 1 1 1	' 	 	1-1-1-	#11	+++	T 111	1111	11:1	1111	111
41,	90		11111			1,77	1711	T:1	11 *	7	11+	1111	†† †	T	1111	1111	111	1111	1111		$\Pi\Pi$
4'0	85		11111	1111		++++	111	$\Gamma^{(1)}$	1 1 1	$\pm \pi$	11:	-+1++	1-11		 	1111		1771	$\prod \prod$		\Box
4	80				 			1	[[:::	7711	1111	++++	††!†	 	1111	1111	1			1111	711
314	75				 	- 		\Box		77++	1	+++	T!!!	ТП.	1111	1111	1111	1111	111		\mathbf{T}^{\dagger}
377	70	11	7777	7 7 7 7 7		1	1		-: :		117	<u>iiii</u>	11-11-	1111	111	1111	1111	7-7-7	1111	1111	
2/2	Üν			الدنيي		L. L.	تنت	نبل	لنبل		Lil	HIII	TET	$\Pi\Pi$	Ш			Ш	Ш		\coprod
3	60		$\Pi \Pi$			Lii		\Box .	II.				11,1	Ші	ПП			$\prod \prod$			\prod
24	55			اللا			$\Pi\Pi$			1111			ПП					$\Pi\Pi$			Ш
21/5	50						$\Box\Box$	Π^{-}			Ĺ				Ш		TIT	$\Pi\Pi$		Π	Ш
214	45								- T-		Π	Lili	Ш	Ш	Ш			III			
2	40	\Box	مدلنا	Til		Lill		تتلل			Ш		آنكذ	Π	ШП	ШП	أنلنا	ЦĿ	Ш	ШП	Ш
174	35	$-\Pi$	Ш					ا ا	Ī					Ш	\prod	$\Pi\Pi$		Ш	\prod	$\coprod\coprod$	Π
111	30		HH	للبلن	444	1-1-	1111	+++	1	444	444	\prod	444	1411	\coprod	\prod	4	1-1-1	444	4447	44
11/4	25		444	لللله		111	4-4		السا	44	Π	Щ	114	لننا	441	1411	444	أخبا	444	-	441
1	20		\coprod			14.	1:11	1	لنا		Ш			ЦΠ		Ш	1111	11.1	لنبل	أخار	44
3/4	15	$\perp \perp \parallel$	لللثا		آنيا	تنبا	تلنا		تنبا	أخنا	ШĬ.	LII	Ш		$\prod_{i \in I}$		النلا	نندا	ЩЦ	1111	Ш
1/2	10		ШП	$\Pi\Pi$	\prod	L	444				$\Pi \Gamma$			Ш		Π		1111	\coprod	\prod	Ш
74	5			مأرابواه		للبالما	أحنا	بالد أيوا	امردلين			ألليا	تنكل	تنالل			وأخمادل	بأبليل	CANA B		أبايل
0	0		KOKK	2000	63333	XXXX		65 /2	XXX	XXXX	$\Delta \Delta S$	XXX	XXXX	XXXX	(CXX)	8833	COXX	XXX	XXXX	2023	XXX
tert/h	nout			\Box	1			1	7	7		T		1		T	T			T	7
No.	%	Min.	41	42				46	17		40	50	51	42	53	54	55	56	<u> </u>	58	59
	100			+H+	1	111			-				1444	11	444	444	4414	444	444	4.44	1111
4%	95		$\sqcup \sqcup \sqcup$	4444	غبنا	11	114			1111	111	$\Box \Box$		44	111	444	-144	4,41	1111	444	411
41/3	90		ЦШ	1111			ШЛ		444					Ш	\prod	4441	111	444	441	+	44
414	85			44			ننا	111	411		H			للنبا	444	444	444	444	1111	4444	أبلزم
4	80				1111	1	++++	1441	114			-4-4-4-		11:	4444	444		┪╌┤╌	4444	╁╁╁┩	444
3%	75		1111		 	111	1444	++++	444	┵╌┼╌			┵┾┾	111	444	╀┼┼	-4-4-4-	1:4	╁╁╁┧	┥┼┥╁	444
31/	70	$-\bot\!\!\!\!\bot$	++++			+++	144	****	┥┵┼	++++	+++	-	4444	1++1	┧┷╅┥			┷┷╅	+++	╌┟╁╼┟╁	-+-
31/4	65			+++			╁╁┼	╅┯┼╁	-++-	+	4-1-4-4	444	4-1-4-4	444	44	++++	╼┾┼	┩╼╅╼╁╂	╁┼┼╏	+ $+$ $+$ $+$	╃╃
3	60			+++-		 	++++	 	╅╅╬		+++	+++	╅╅╧┺	┧┿┿╅	┦╂┼	╁┼┼┤	╌╂┪	+++	┥ ┤ ╅┪	╌┤╌┼╾┼┼	+++
2%	55 85					444		++++	┵┿┵	+-:-	+++		╁╁╁		╅╂╋┆	_1	-14-14	╅┾┽	+++	╁┼┼	+++
2%	50					+++	+-++					+++!			╌┞╼╁╼┼],		┩╃┿┆	╁╀╂╏	44-14	+++
2%	45			444	H + H	++++	+- +	4			┦┿╇┥	444	4-+-	++++	++++	╅╁┼╁		4- - -	++++	4444	-+++
2 12	40					٠	++++	+	44	++++	14.	-}-;-;-}-	┦┪┼	╁┽╂	┧┼┼┼	┵┼┼┼	┿╅┿	1-1-11	┪╌┼┥╼	┽┽┼	-++-
11/2	35 30			++++			╿	++++			1444		╅╁┟┾	┦┿┩┩	444	╅┿╅	╌┋┪╬╌	┿╀╃	╢	╅╬╅	╌┼┼╌┞╌
	30 26					1			╌┼╌┼	+	+++	++++	444	╀┼┼	+++	4+++	╃╬┿	╂╇╇	╌┦╌┾╌╂	┪┪╍┝┿	+++
τ	25 20				 	+	4-4-		++-+	· -	╁┼┼	++++	4++-	╁÷╁┪	┼┼┼	-	╼┝┽╌┝┤╴	╁┽┽		┩┥╍┾┼	-++-}
113		1 1		1.1	1		JJII.	4-4-4	-1-1-4	النال			للتلل	1111				1111	44-1	4-1-4-	┵┼┼
1					1 1	1		1 1 .		1 1 1 1	1177	77	11:11	17:7	1.1 1 :	7717	11.11.	7-7-11	3 1 1 1	111	1 1 2
1 1	15				1		عنلل	نـــــــــــــــــــــــــــــــــــــ	-	444	HH		11-1-		┩╣	44!4		1-1-11	╂┪╂	444	+H
1				****			عنلل	نـــــــــــــــــــــــــــــــــــــ								++!+			 		+++

NOTE: Each small square represents an individual reading of intensity corresponding to that shown in the left-hand column over a time span of 14 minute. This of an 18 in the top row of blank squares to indicate the exact minute of the start of observation. In the next square after the 18 insert the hour in which the measurement was made. Each page of this form \boldsymbol{can} thus be used to record 1 hour of pressurements.

RECORD OF VISIBLE EMISSIONS

EQUIPMENT LOCATION (ADDRESS)

Start				<u>9:30</u>					6		
	hour	777			1				T	1	T T T
R. No.	1 %	Min. 01	02	03 04	05 06	07 08	09 10	11 12	13 14	15 16	1/ 18 19
6	100	<u></u>	πñτ	ıııııı	تتست	Tini	mmni	minite	minin	ייידודו	וונווווווווו ווווו
4%	95_		†		<u> </u>	<u> </u>	 	┍┩ ┝╉┿┧┿╊	┝╋┧╇╂╂╇┦	 	╊ ┋╋
4/4	90										
471	85		$\Pi\Pi\Pi$			11111					
4	80		╁╁╁╂╁	┩┩┩ ╇	111111	111111	<u> </u>				
314	75		┩ ╁╁╁┼┾	╁╁╁╁┼┼┼┼	+++++	++++++	╁╀╁┺┵┼╀	┝╅╅╋╄┼╁╂┼╌		+1+1+1	┩ ┵╃╃┩┩
31/4	70 65	╼╾╂╁╂╂┨	┟╄┡╄╄	╇╂╄╁┼┼	┞ ╏ ╃╃┼┟┤	┤┤┦┺┋╏	┊┾╅╂╁┼	╒╏┋┋	┝╋╄╁┼╁┤┾╎	╒ ┫ ┊ ┯╌ ┢ ╂╌╂╌╏╌	╂┊╄╂╏┦╟╃╂╋╃┥
-3^-	60	╾╾╂╊╂╂┦	╁ ┋ ╃╉╋	╃┩╃┼┼┼	┼ ╃┼┼┼┼	┼┿╅┙┿╇╋	┊ ╄╃╃╁╇╃╋	┍╃┹┢╇╄┼╂╂╅	╶╊╋┡┼╂╁┼┤	┖╋╃┞┦┋ ╉┥┞	╃ ╀ ┦╏╏ ┼╋╋┺╂╂┦
24	55	╼╼╅╂╂╣┨	////	11111	Hittiti	╅┦╋╸╀╋╂	╇┝┟┟╃┿╇┢	╎ ┼┞┼┼┼┼┼┼	┋	┝╊╡┊╄╋╄┺┟	┨┍┍╂┨╏╇╅┫ ╋┩
214	50		111111	111111		111111	r ! 			+++++	
24	45										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2	40										
14	35		11111	111111							
113	30		44444	 	∔ ∔∔∔∔	4424-44	1. 11	╌╁╁╁╁			
1%	25 20		44444	┧ ╂┼╬┼┼┼	4-4-4-4	++++++	 ┇┋╏╏┋	┝╅╇╇╇╇╌╏╌╏╪		╌╃┾┊┦╀┦┽╅	{
*	15	╼╌┤╀╁┼	╂┼┼┼	╀╂╃╄╄┇╌	+++++	+++++	┖ ┤┽┼┼┽┼┼	┍╅╃╃┪┩╇╅┖	- ∔┼┼┼┼┼	-++-+-	╘ ┪ ┩╏╏╏ ╂╅╅╂╄┪
1/2	10		╽ ┋┋	++!!++		╵ ┼┼┼┼	╎ ┼┿╈┢┷╁┢╸	++++++	╁╅╁╃╅┼┩	╼┫╼╡╼╸╂═╂╍╛╸╽╌╒	┨ ┾ ┩╏ ╂┼┼┼┼┼┼┼
1/4	5		1111 1	+++++		, , } + { i -		111+111	}}	-	}
0	0	XXXXX	XXXXXX	XXXXXXXXX	/XXXXXX	KONSONS	08882828	2000 XXXX		*********	*SCHOOLSEX VOSE
Stert/	'hour								T	7 7	
l. No.	1%	Min. 21	22	23 24	75 28	77 29	29 ()	31 32	33 , 34	35 36	37 38 39
5	100		$\Pi\Pi\Pi\Pi$								
4%	95							+++++			
41.2	90										
4'4	85										
4	80		HHH	111111		ЦШ			111111		
34	75		11111	1111111					111111		1
_3'	70		الللك						++++++		
	60	 	┊ ╅ ┩ ┪┿┿	┞╋ ╇┨╉╂┼╀		+ + + + + +	┊ ╼╾ ┩╺ ┠╼╍ ┩╺ ┠╌	╌ ┼╃╌┧┾╌┆╃╴╏╌┼╏╌	╌┼╁╁╀╀╃╀	╼┡╼┶╘╼╅╃╼╇╇	┩╇┧ ┥╏╇┼╊╋╈╃╣
24	55	╼╾╀┼┼┼	┪╸┩┩┋	┌┩┋ ┩╃┼┼		╵┈┋╸	┊ ┼┼┼┼┼┼	╼╁╀╌┰┯┦╃╌┠┿┪┩	╼┦╋╊┦╌┠┼┼┤	╼╄╼┾┊╌╆╁╌╂╃	┋ ╋╅╀╄┿┼┦╃╄╅
21/5	50		╿ ┩┧┼┼	} 	+++++	++}- - -	┋ ┼┼┼	╺ ┋	· ╀┼┼┼	╼╄╀┼╌╆╂╌┞┦╸	┦┪╏ ┪╅╅
21/4	45		11 	* 	' 	╌ ┿┼ ┊╄┞ ┼╸	 	┩┩╏ ┑╀┼┼┼┼┼┼	++++++++	++++	1:111:11
2	40		11111								
15	35										
1,7	30		11111	1-11-11-1	11111					11.1.1.1	
114	25		11111	11111	44-444	++1++++		++++++	1111111	dlu: li .i	
			++-+-				* ;			╼╄╼╁╼╅╼┟╼┢╼┢╼╺	1-11-11-11-11-1
1	20			╀╃╂╃╀┼		┍ ╺╶ ┠╌ ┻╼╇╍╇╍╇╍	╸ ╸	╼╁╌╀╌╁┾╌┦╼┦╼╃┪			
*	20 15				• • • • • • • • • • • • • • • • • • • •	†		++			
*4 1/2	20 15 10										
*	20 15	XXXX	***	****	on the re						
½ ½ ¼ 0	20 15 10 5 0	XXX		\$160.0				**********	****		
% ½ ¼ 0	20 15 10 5 0	Min. 4		*** *********************************	\$\$\$\$\$\$\$\$\$\$	***		***		55 56	7 58 59
% % 0 Start/	20 15 10 5 0	Min. 4	42	\$ ***	15 46	17 48	43 50	51 52	53 54		
1/2 1/3 0 Start/1 . No.	20 15 10 5 0 nour %	Min. 4	42	43 44	15 46	17 48	43 50	51 52	53 54		58 59
% % 0 Start/	20 15 10 5 0	Min. 4	42	43 44	15 46	17 48	43 50	51 52	53 54		58 59
% % % % % % % % % % % % % % % % % % %	20 15 10 5 0 nour % 100 95 90 85	Min. 4	42	43 44	15 46 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17 48	43 50	51 52	53 54		58 59
% % 0 Starty, No. 5 4% 4% 4% 4	20 15 10 5 0 nour % 100 95 90 85 80	Min. 4	42	43 44	15 46	17 48	43 50	51 52	53 54		58 59
% % 0 Starty, No. 5 4% 4% 4 3% 4	20 15 10 5 0 8 100 95 90 85 80 75	Min. 4	42	43 Ad	15 46	37 46	43 50	51 52	53 54		58 59
% % % % % % % % % % % % % % % % % % %	20 15 10 5 0 mour % 100 95 90 85 80 75	Min. 4	42	43 44	15 46	17 48	42 50	51 52	53 54		58 59
% % % % % % % % % % % % % % % % % % %	20 15 10 5 0 nour % 100 95 90 85 75 70 65	Min. 4	42	43 Ad	15 46	17 48	42 50	51 52	53 54		58 59
% % % % % % % % % % % % % % % % % % %	20 15 10 5 0 nour % 100 95 90 85 80 75 70 65	Min. 4	42	43 Ad	15 46	17 48	49 50	51 52	53 54		58 59
5 Start/n 5 No. 5 444 444 444 444 334 334 334 33 24	20 15 10 5 0 nour % 100 95 90 85 80 75 70 65 60 55	Min. 4	42	43 Ad	15 46	37 48	42 50	51 52	53 54		58 59
5 Starty, No. 5 444 445 444 334 334 334 33 224 28	20 15 10 5 0 8 100 95 90 85 80 75 70 65 60 55	Min. 4	42	43 Ad	15 46	17 46	43 50	51 52	53 54		58 59
5 Starty No. 5 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20 15 10 5 0 nour % 100 95 90 85 80 75 70 65 60 55	Min. 4	42	43 Ad	15 46	17 48	49 50	51 52	53 54		58 59
5 tarty, No. Starty, 4½, 4½, 4½, 4½, 4½, 3½, 3½, 3½, 3½, 2½, 2½, 2½, 2½, 2½, 2½, 2½, 2½, 2½, 2	20 16 10 5 0 7 100 95 90 85 80 75 70 65 60 55 50 40 35	Min. 4	42	43 64	45 46	17 48	49 50	51 52	53 54		58 59
5 A 4 A 3 3 A 3 A 2 B 2 B 2 B 2 B 2 B 2 B 2 B 2 B 2 B 2	20 15 10 5 0 7 100 95 90 85 80 75 70 65 60 55 45 40 35	Min. 4	42	43 64	15 46	17 48	42 50	51 52	53 54		7 58 59
50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 15 10 5 0 100 95 90 85 80 75 60 55 60 55 40 33 25	Min. 4	42	43 64	15 46	17 46	49 50	51 52	53 54		7 58 59
% % % % % % % % % % % % % % % % % % %	20 16 10 5 0 100 95 90 85 80 75 60 65 60 55 40 35 30 25 20	Min. 4	42	43 AA	15 46	17 48	49 50	51 52	53 54		7 58 59
% by 1/2 both 1/2 bot	20 16 10 5 0 7 100 95 85 80 75 70 65 60 55 50 40 35 30 25 15	Min. 4	42	-3 AA	15 46	37 48	49 50	51 52	53 54		7 58 59
% 5	20 15 10 5 0 100 8 100 95 90 85 80 75 70 65 65 45 40 25 25 20 21 10	Min. 4	42	43 64	15 46	17 48	49 50	51 52	53 54		7 58 59
44 51 6 8 8 8 8 8 8 8 8 8 8 8 8 8	20 16 10 5 0 7 100 95 85 80 75 70 65 60 55 50 40 35 30 25 15	Min. 4	42	43 64	15 46	17 48	49 50	51 52	53 54		(7 58 59

NOTE: Each small square represents an individual reading of intensity corresponding to that shows in the left-hand column over a time span of 14 minute. Insign an 15 in the top row of blank squares to indicate the exhibit minute of the start of observation. In the next square after the 31, insert the hour in which the measurement was made. Each page of this form can thus be used to record 1 hour of measurements

Source of Air Contaminants Courton CHEMICAL (H2 SOY PLANT) Outles
Source of Air Contaminants
Type of Air Contaminants 502 503 Reid mist
Point of Discharge: Stack Other
Point of Observation:
Distance to Base of Point of Discharge, feet
Height of Point of Discharge Above Ground Level, feet
Background Description 6284 SKY
Weather: Clear Overcast Partly Cloudy Other SNOWING Wind Direction South Wind Velocity, mi/hr 3-5
Plume Description: Detached: Yes No
Color: Black White Other IVONE
Plume Dispersion Behavior: Looping Coning Fanning
Lofting Fumigating See Comments
Estimated Distance (feet) Plume Visible (Maximum) (Minimum)
Comments READING VERY difficult due to FHE
Sky color AND JNOWING, THERE WAS ALSO
Steam From A NEARBY EXHAUST COURRING HIS
Stack At times.
Signed Clan Setherland Title SUV. SNG, WEEK
Smoka RENdER

COME	PANY I	NAME	17.	er L	fo.	رر		TH	E. 11	ובו	1/10 M. M.	<u>-</u>							EC OR		
EQUIF	MENT	LOC ATI	ON (#	DORE	ss)	13	18	1	C/-	0	1/.0							٧	SIBL	E EMI	SSION
TIME	OF 0	BSERVATI	ON: 1	FROM.	11:	00	A. P.	М. М. Т(12:	A.I 1- P.I	м. м. с	ATE	F	26	_6						
			-				ι	1	Τ			γ	Γ	T	1		T		r		
Start R. No.		Min.	 01	C2 (03 (4 0	L)6 (17 (13 (J	0 1	1 1	2 1	L	14	15 1	6 1	Ļ	8 1	9 20
5	100				Ш	Ш	Ш	ĽП	$\Pi\Pi$	Ш	Ш	Ш	Ш	ÎΠ	ĬШ		Ш	ĬIJ	Ή	Ш	Шĥ
4%	95		+1+1	H + 1	╅╀┿┼	╂┼┼┼	HH	╂┧┤┪	╃╁╁╂	╁╁┾╁	$\frac{1}{1}$	╁╁╁╂	┞ ┼┼┤	 ∔┽┼	H + H	┨╏╂	╂╉┤╅╴	HHH	+!}-		
4%	85								1111	111	Π			<u> </u>	<u> </u>		<u> </u>	<u>H</u> ++	<u> </u>		
4	80			\Box	4444	++++	HH	111	$\downarrow\downarrow\downarrow\downarrow$	$H \downarrow \downarrow$	111	1111	Ш	111	Ш	\prod	Ш	Ш	ПП		Ш
3%	75			++++	╁╁┼	╂╂╂	$\{ \} \} \}$	╂╅╂	$\dagger \dagger \dagger \dagger$	╂╂╀	++++	HH	{ ┼┼	╂╀╂	HH	HH	╅╫┼	╁┼┼┼	╁┼╁┼		HHH
31/4	65							ПП	1111		1111		Ш					山口			
3 24	55	╼╼╁╁╁	+++	 	+++	+++	╎ ┤┤	Ì ∮∔}	╅╍╁┧	╂╇┝╂	╂╂	++++	╁┼┼	╁┼┼┼	H + 1	 	++++	╁╀┼	1++		+++
21/2	50							計計													
2'4	45		-+++-	1-111	+	11++	╁╀┼	┞ ┝┿╅	444	╁┋╏	4444	11	1444	HH	H++	HHH	 	HH	1111		
14	35			++++	11	1	++11		4 4 4	+++	1+++	 	╎┤ ┿╅	++-::	┡ ┪╌╁┽	╁┼┼	 	+++			++++
113	30				1	TITE		\square							1		T	1			
11/4	25 20		+++	┝┿┿┼	┼┼┿	┿╀╇╃╌	┋	+++	++++	111	+++-	╁┼┑┼╴	╁┼┼		HH	 	++++			┥╃╃╸	$\frac{1}{1}$
*	15					1					111				世1						
1/2	10	} ;{;	╌╅┪╂┥	┝╇╅┵┲	+++	++++	1+++		1-1-		HI.	1-4-	+++	+1-1-	11:1	1	4-1-		144	444	
ō	ŏ	200	XX	CLICX	XYX	WX	SOC	OCC	XXX	ZXX	XXX	dead	XXX	DIN.	XX	COX.	XXX	CCC	CERC	d KA	XXX
Start				T	1	T	1	T			<u> </u>		1	<u></u>	T			1			
	,		_l	_L	1	L	<u> </u>	<u> </u>]	l]	L	L	<u>L_</u> _	<u> </u>		l	L	L		
R. No.	100	Min.	<u> </u>	22 (1 11	4	') - T [T	20 11777	7 7	1 T T	19	1) (1	11 () 	12 (1111	13	34 (35 3	35 3 1 1 1 1 1	7 3 7 7 7	8 3	9 40
4	95		╌┾┶┿┪	++++			╅╅╋	+++!	+	╞ ┤╌┝	++++	├ ┼┽╬╌	├ ┼┼┼	╁┼┼	1111	1-1-1-	╅╪╂╢	╂┿╂╌	╽┼┼╌	╏╌╂╼╂╼	++++
4.1	90				III.				11.1			1111	1.111	Ш.Т.	Ш	III	111-				Ш
415	85		╌┼┼┼	+++	4 - 4 4	++++	- ;-;-	+•••	++++	++++	╁╀┵┆╌	∮ ┽╃┡╌	┝ ╺┋	┾┞┿╇	┝ ┾┼╌	╁╂╀┼	┩ ┩╃┤╌	┡┋ ╌┞┦╶		╁┼┼┼	
34	75		1111		-j- <u> - </u> -		1 4 4		1-1-4-	 	+	+++1-	† † † †	 	1++1-	1111	1111	1-1-1-			+++
37	70_	[]	411	1:11		خنت	-	:::	<u> </u>	1		1 1 1 1	1111	<u> </u>	1111	1111	1 1 / i	! ! ! ! ! ! ! ! !	-+	-1-1-1-	
3	60			++++	1::1	 		+++	1-1-1-1	++++	╁╼┿┶	 	╅╅┪	╂┼┼	[11:1-	1111	+++		
24	55			1111		Ш		-		Ш			ПI						111		
21/2	50 45		++++	+++	 	 			┆ ┊╇╇	 	++++	╁╁┼	┝┿┼┼╌	┧ ┩ ╂╴	╁╂┼┤╌	 	╁┼┼-	 -		1	HHH
2	40		1			Ш			. 4-4-4-					1-1-1-	1-1-1-		$\Pi \Gamma$	1			
15,	35 30		1	111	1	1-1-		4.1	1	Щ.	11.				11-11-	1777					
11/4	25		1111	1:::	. - - - 	-	┝┥┽┝	1	 - 	- - - 	 		1 1 1	 	++++	╁┼┼┼	+++-		+++-	+++	HHH
1	20				Ш						Ш	!								\Box	Ш
1/2	15	}	++++	╌┼┼	┧┾╅╂╸		╌╅╃╌		+++	╁┽┽	+++-	┟┼┼┼	┞┼┽┼╌		╁┼┼		╁╅╀╌		+++	-1-1-1-1	┝┥┽╃┫
1/2	5								+++									- - -	111		
<u> </u>	0	30000	XXXX	ZXXX.	CXXO	MUQ	XXX	XXXX	XXXX	XXX	XXX	KKKA	XXI	XXX	CXX	XXX	(2006)	XXX	CK. N		
Stert					<u> </u>				Ĺ												
R. No.	% 100		41	42	42				:,]]][W 5		2 .		54 :		50		8 5	9 60
43/4	95	╼╌╂╂╂	╃╂┼	-{}}	┵┷┶	1+++	┞╂╅		++++	-41	┧┼╀┼		┟┼┼	├ ┤╌	┨╌┼┼┼	┟┾┾	Hit	1+++-			
41/2	90																				
41/4	85	╼╼╁┼╅╅	++++	┩╃┼	111	┼┼-	┝┱╀╃╌	 - 	+++	 	-		++-		- - -	╁┧╁╄╌	 ┩┥ ┼	 		+++	1
3%	75			1+++	1111	1-+-				111					+++	<u> </u>	1111		111		
31/3	65		4444	444	4-14-	1	1		1-1-1-								111				
3	60		1111	+ +	++++	1:11		++++	1-1-1-	+++	! 		╏╸┞╼╂╼	├	<u> </u>	+++	┞ ┼┼	- - -		+++	
2% 2%	55								Ш				Ш		III	Ш	Ш	Ш			Ш
21/2	50 45		╂┼┼		++++		+++	┝╃╀┾	+++	+++-	++++	┝╁╂┼	┟╂┩┤╌	+++	HH+	+-	╁┼┼	 	╌┾╼╂╌	++++	+++-
2	40					1-1-1-	111				1 1 1 1			<u> </u>			1:1:1				
11/2	35 30_		+++	1	++-	 	-	1-1	111	 	\prod	Щ	H-1-1-		HII	111	111	- - -	$- \prod$	$+\Pi$	444
122	25				+++-	j		1	 		 	+++-	┟┧┽╌┕╴	111	╌┼┼	╁╁┿				++++	++++
	20			-1	1		111		111												Ш
¥ 	15		4111	+		-	┝╃┿┾		+++	 	 		┟┼┦╌┝	┧┷┧┾╸	H + H	╁┼┼┼	╁╁┼┼	┧┼┼┼	4.44	┼┼┼	+++
×	5		111	Line.				† - 	1-1-	III											
0	1 0	JATE	WX	XXXX	ING	XXXX	XXX	אנגעו	VX VIII	V KVI	1/2//		VYV	ونهدي	118	WY	والماله	1111	win	لأنباط	

NOTE: Each small square represents in individual reading of intensity corresponding to that shown in the left-hand column over a time span of 14 minute. Insert an 1811 in the top row of blank squares to indicate the exact minute of the start of observation. In the next square after the 1811, insert the hour in which the measurement was made. Each page of this form can thus be used to record 1 hour of evacurements.

Source of Air Contaminants Coulton (HENICOL (Hz Soy Plust)
Type of Air Contaminants Siz Siz Re. of mist
Point of Discharge: Stack Other
Point of Observation: Distance to Base of Point of Discharge, feet
Height of Point of Discharge Above Ground Level, feet 60 FT
Background Description Gzry Sky
Weather: Clear Overcast Partly Cloudy Other Snow.n.6
Wind Direction South Wind Velocity, mi/hr 3-5
Plume Description:
Detached: Yes No X
Color: Black White Other NONE
Plume Dispersion Behavior: Looping Coning Fanning
Lofting Furnigating See Comments
Estimated Distance (feet) Plume Visible (Maximum) (Minimum)
Comments READINGS USEN SIA STEPHEN Sus to Pain
Comments READINGS VERY difficult due to from BACKGROWN DE STERM AF TIME COURTING ESTACK.
Esfact.
Signed Clan Satherland Title Sur Sul. South Rendered
Smike Kenderd

Out LET

NLET

RECORD OF

VISIBLE EMISSIONS

EQUIPMENT LOCATION (ADDRESS) TO LESO, OHIO

TIME OF OBSERVATION: FROM 1:15 P.M. TO 2:15 P.M. DATE FOR 6

NOTE: Each small square represents an individual reading of intensity corresponding to that shown in the left-hand column over a time span of 12 minute. Insert an "S" in the top row of blank squares to indicate the exact minute of the start of observation. In the next square after the "S", insert the hour in which the measurement was made. Each page of this form can thus be used to record 1 hour of measurements.

Milter !
Source of Air Contaminants [HEMICAL (H2SOY PLANT) outher
Type of Air Contaminants 502 503 Acid Mist
Point of Discharge: Stack Other
Point of Observation:
Distance to Base of Point of Discharge, feet
Background Description Gzry Skly
Weather: Clear Overcast Partly Cloudy Other 5 New 4 Wind Direction 5 South Wind Velocity, mi/hr 3-5
Plume Description: Detached: Yes No Color: Black White Other Now E
Plume Dispersion Behavior: Looping Coning Fanning See Comments
Estimated Distance (feet) Plume Visible (Maximum) (Minimum)
Comments KEALING URRY difficult due to poor backGrund or Steven at times coverile Stace
Signed Clan Satherland Title Env. Success

90

PAGE

ENVIRONMENTAL PROTECTION AGENCY VISIBLE EMISSIONS EQUIPMENT LOCATION (ADDRESS) A.M. P.M. TO/0505 P.M. Start/hour R. No. 01 03 04 05 06 08 09 10 100

	80		Ш	Ш	Ш	Ш	11	Ш	111	$\perp \downarrow$	Ш	11	11.	Ш	Ш			Ш	Ш	Ш	1	Ш		$\sqcup \bot$	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш
3%	75		Ш	Ш	Ш	Ш	Π		Ш	Ш	Ш		11	Ш		Ш	Π	Π	Ш		$T\Pi$		П	Ш	Ш		П	П	П		Π	Ш	П
314	70		П	Ш	Π	П	П	Π	Π	Π	\prod	$\Pi\Pi$	П	П		ITT		711	ΠT	111	717	T	П	ITT	Π	77	11	17	11	T	Π	111	Π
3%	65		TTT	Ш		\Box	7		Π^{\dagger}	T	1 1		TT			П	1117	111	111	111	-11	-111	11	111	111	\top	-1-1	-11	17	tΠ	++	111	11
3	60		++-	† † †	4-4-4	+++		+++	+++	++	†++	+-+	++-	} -	++-	+++	+++	┿╃╃	+++	+++	++1	╼┿┤	-++.	┝┼┼	╋╃┩		-+-	++	-++	1 	++	1-1-1	+1
24	55	+	++-!-	┾┾┿	+++		++	+++	+++	· [-] -	╀┼	rf +	1- -	+-+	├ ┿┿╼	∤-}- }-	╬╅┿┪	╌┾╅┿	╁┟╁	4 14					-1-4 +	++	-14		++	+-1-1	╼╁╌	╅┿┼	+1
	1 55		₽₽₽	+++	4-1-1	∤-∮-∔	-+-	+++	┢╅┿	++-	}} -i	1	11	4-4-4	111	-1-1	1-4-4	+++	4-4-4	411	-4-4-1	-444	++	₩	444	14		-14	++	114	Н-	+++	41
21/1	50 45		Ш	Ш	ш	1	44	444	1-1-1	1-12	144	44		1-1-	14.	11	$\sqcup \sqcup$	111	111	411	111	111	Ш.	Ш	Ш	LL.	.11	Ш	41		Ш	Ш	11
24	45		111	$\Pi \Pi$	111	111	11.	111	Ш.	11		11	11				1111	11.	111	111	111	11,	11	Ш	111	11	11	11	\mathbf{I}	! ! !	Πi	$\Pi\Pi$	
2	40		Ш	Ш	TIT	П	TT			TT		7.7	TT			\Box \top		1.7.7	Tit		711	-1-1-1	77	Π			- 1	TI	TT		Π	Ш	\Box
14	35		+++	†† †	†† - †	1-1-1	++-	***	; †-:-	++-	! ! !	11	1.1	• • •	- 1-1	1-1-+	1 + + +	+;+	+++	+	- -∤ + ¹	111	-++-	┿╇╏	+++	++		11	++	1-1-	++	1 ! 1	+1
15	30		[-+- 	1++	+++		++-	++1	1++	4.4.	-+1	† -→	j-+ +	+		-	ſ -∳-	╌╂╼┾╼	4-4-4	++-		-+4-4	- i 🖡 .	بنب	4-6-4	+-+		-+-	++	╁┤┤	-+-	+++	44
		 -	∳ ╼╄╼┼┉	₩	+++	┝╇╌	.++	444	┝╄┿	-	- ↓.↓	+ +	14.	-4-4	- .			4 1 4	4-4-4	4-4-4	-1-4				444	. ;-;-	44	11		44		+++	44
11/4	25		Ш.	ш	44	44	44	نبل	4	\bot	Ш	1	44.	1		1		-11-	Ш	اخلا	-1-11	\coprod	11.	111	111	11.	-11	11.	Ш	Ш	Ш	Ш	ш
<u> </u>	25		Ш.	Ш	: 1.	Ш	11	444	1.	LU	L		Ц.		Ш	Li		\perp	Ш	111	1.1	m III	\perp L		ΠI	$\perp 1$	Ţ	$_{ m IL}$	Π		П	Ш	Π
*	15	i	Ш	Hi	111	111	15	i. i	i I i					1			$\Pi^{\dagger}\Pi$	$T \cup T$	Ш	7 ! 1	1	$T\Pi$	TI	ПТ		\top		77	TT	H	Π	П	T1
15	10		Π	11			T								1	++	1:44	111	+++	→ ;-1	**;4	177		77	171	11	j	- 1	11	11	11	111	T 1
1/4	5		111	111	111	7.7	7-		7	11		17	4 .4 .	17		-با-ب		1:1	+1-1-	+++	-1-4-4	++:		1	1-1-1	++	77	++	++	111	+	†††	H
0	1-5-		200	z z	rt . Lat	لأنزاح	*	100	alz.	-X & 1		J-14	י לאלי		2122	ملحاد		N IN	XX	املك	d x .:	tel l	kir lz	e la te	L.N.	w.	1 . t	dd	de	l ud	NC/A	lw	del
Start				DOG	7526			1	2025)	KX.	DCD!	20/2	3	69,71 	2828	MAKE A	NGCT.	702	2002	ניענ		7	2000		AAZ.	E.YA T	CV2	2004 	D A.		· Day		ans.
R. No.		Min.		Ļ	22		ر د	ا	<u> </u>	25		28		ا	29		J	10	31	<u>_</u>		33 .	34		35	<u>_</u>			,	38		<u> </u>	
5	100		بنايا	للنا	بين	т,	- 	7	,	ŦŤ	T	ŤŦ	· 	7			77:	· • • •	+	7 7 7	بنيل	~~	7 T	, , , ,	TT-		<u>-</u> -	77	7.1	Ϋ́	. , , `	TTT	T)
			+++	₩	++1	┵┽	-++-	444	-	4-4-	╁┼┼	++.	Į 1.	44	+4.	↓ ↓↓	444	14.	4-4-4	∔∔-J	444	. 	4.41	HH	1 11	44	++	4-4-	++	1-1-1	++	444	11
4%	95		₩	₩	╁╁┧	┢╅╇	4	441	144.	44.	Ш	44.	4.4.	Ш	-1-	٠	111	111	 	444	والمالم	-444	4.4	1-1-1	144	++		44	+	أساسا		111	4-1
41,	90		111	14	444	444	44.	441	44.	11	LLL	1.	1:1	ļ ļ.,	11	٠.	أرأسا	414	الل	Ш	1	444	Ш	Ш	انا	11	1.1	Ш	$\perp \perp \perp$		ш	Ш	11
414	85			\coprod	Ш	Ш	ے أے اس	iLi	غث	11	Ш	1:		Н.	H.	ШΕ	Ш	HI	Ш	Ш	1.1	Ш	\mathbf{H}	Ш	Ш		Ш	11	Ы	Lil		Ш	
44	80		Ш	\Box	Π		11	Ш		H		T	1			Γ		$\Pi \Pi$	$\Pi \Gamma$	Π	11	Π			Γ		77	Π	1		1	Ш	H
3%	75		\Box	Ш	Π	Π	TT	17.			Ш	1	-			7	777	TIT		117	711	Π			T	\Box	77	7-1	1	iT:		Ħ	Ţ
314	70		1 1	111	1	77	77		. 1	, 1		1		• • •	' i i '	· ;	1111	117	117	-	+++	المالة.	7-1-	-	+-+-+	+	++	**	++	1-1-		***	
			,	4.4.				111		: : ·		1 :	; ;		ii		; : . :	133	iti	111	111	111	171	11	++*	++	11	11	111	1	++	+++	+4
3	60			+++	┵┿┿)- -	++		-++	++-	++;	++	٠٠;		-4-	╌┾╼╅╌	┞ ╼╼ ┩	++-	╇┦┿	4-4-4	++	+++	++		++•	- }	++	44.	++-	 		1 i+i	+1
					+++	-4-6-	++	+++		++-		₩.	1. 14	4	-+-	11	1-11	+		111	444	-14-	44	44	+;,	44	4	+-	++		++.	1-1-1	H
2×	55		₩	44	444	44	4	141	44	4-1-	Ш	+-	أحن	نہ نہا	444	Ц.	1111		Ш.	1il	44	-1-1-4	4.4.	$\sqcup \bot$	444		44	11	44	Ш		111	44
21/5	50		غلا		Ш	41	11	لنا	4	44	111	11		الما	نلن	<u>ال</u> ا	بنبا	:11	111	1	Ш	Ш	1.1.		11.		11	1 1		Ш.	لمنا	Ш	Ш
214	45	-1	LLL		للنا	14		Ш	Ш	\perp	Ш	L						1	П	77	TL	Π	i i		Π :		TI	H.	1.1		ΞΙ.	Π	Lί
2	40		Π	1	\Box	T	Π	Ш	11	Π	111	Π		1	77		Π		177		777		7.7		Π	77	77	- T	\Box		11	Ш	TI.
1%	35		\Box	111	111	++	+-	+++	-+-	-	ш	1.	ا نا ا		117	41-	╀┸┸	+	+++	++-+	+	+++	+11	++	111	77	11		++		\rightarrow	111	11
115	30		- -	1++-	1 † 	++	++	+++	++	+++	 	alag	++1		++-			1 - 	┝╼┾╌┼			+++	4-1-1	┝╅╃╸	┿┿	-1-+		++	++	├	++	+++	++
1%	25		-++-	+++	+++	+-	++	┿┿	+7	1-4-	++	-+-		+-+	-		╏╸╏╸┫╺ ╋	4+4-	++-	44-4	++1	┿┿	++-	-+-	++			+	++	! - - j	++	4-4-	+1
- i -			} ╼╇╼╄╼╴	++	+++	44	++-	+4-4		나	 	++-	!	فسوء	++-		 -	. - -	 -		-4-4-4	-++-	4-44	L ;	₩	4-4	4.4		4- -			+++	+1
	20		┷╅┷	1-1-	₽,	44.	44	14	44	4-1-1	144		411	1.1.	11	44.	1111		111	+	444	144	414	44-	111	1-1-	-		444	-1-		+11.	11
1/4	15		الملك	LίΙ	111		Ш	Ш		لللنا	Ш	11	(<u>i i</u>	نـنا	\perp	<u>L.L</u>	1111	1.1.1.	Hi.	Π_{i}	1.1	111	Ш	_!_	Ш	.1_1.	المنا	. 1.	Ш	LLi	41	Ш	Ш
72	10	_ 1	Ш	Ш	Ш	П	Ti	Ш		1.1.	П	1			777		ΠT			TT	777	$\top \top \top$		11	Π	1		T	TT	П	T	Ш	\Box
7/2	5		π	111.	Π	\Box	77	TTI	11	T	П	7.7		7		-	T	-	117	11-1		117	771	11	1	11	77	7-		1		Π	П
0	0	- 3	OK.	**	ᅓ	4	埉	W	××	44	XX	なん	ציל	74	₩.	W.	dow	بلناد	XX.	牀	עלט	24	ttt		***	7	农	تلتا	W	S	ふさ	W	17
Storty			- A	- ACT	1	(30/		DOM:	LNCV	7	Z			-				1	N S N S	220	aon.	CRO	005	200	2021				201		ZM.	NE A	36
R. No.		Min.	4	<u></u>	42		<u> </u>		4	$\frac{1}{45}$		46		7	48		133	<u> </u> 50	51	ا۔ ــ	2	<u> </u>	- <u> </u>] 55	ل- ج	<u></u>	-누	,	- <u> </u> 58		59	ــــا _ـ ـــ
. 8	100		TT	m	m	ПТ	77	777		-7-	TT	TT.	ורדי	T	ΠŤ		17	717	TIT	רוד		177	TT	1	1:1	77	77	77	T	7		m	\Box
		+	┍╂┿┙	 	╅╅┪	-++	-	+++	++	++-	₩	++	1 -}-	++4	+	+++-	╽ ┼┼╃	+++-	╁┼	┪╃┪		┽┼┼	++-	└ ╁┼	╅╅╅	-+	++	7+	++-	++-	-+4-	╅╅┪	44
4%	95		┝╂╃╾	#	┾╃┥		4+	₩	+	╁╂	111	-1-1-	+4-1	ш	44-	44	1444	444	44	444	4-4-4	444	41-	144-	╌┼┼┼	++	-+-	++	44	₩	-++	╁┼┧	44
41/3	90		HH	Ш	ш	Ш	44	444	4	44	111	44	1-1-	ш	11	111	لندا	411	$\Pi \Gamma$	111	11,	44	44	111	111	-11	44	11	44	444	-+-	111	11
				1 1 1	111	Ш	Ш	Ш	خك	Ш	Ш	ĹĹ.	ĹÙ		Ш			$_{\rm LLL}$	$\Pi \Pi$	ILI	Ш	Π	Ш	Ш	Π	Ш	ii.	Ш	Ш	Ш	_11_	لنا	ш
4%	85		Ш	ш						1 1	111	10	111		1 i					T	777	17	TT.		Ш		$_{\rm LL}$		1.1	111	- 1	Ш	Ш
4	80		$\pm \pm$	\coprod		\coprod	ш	:11								<u>-11</u>	LLLi	LiL	Lil	111		441						7					
	80	_	#			H	+	H	+	11	H	++	111		-	++-		╁┼┼	HH	†††	11	†††	-++-		TT	11	. 1 1	:)	П	111	-+-	Ш	11
4 3¾	80 75						#	++	#	+		#			+			+++		+++	#	111	#		11	+	+-	+-}	H		#	\prod	H
3½ 3½	80 75 70						#		1									 					#			1	++		H		#		\parallel
3½ 3½ 3½ 3¼	80 75 70 65						#		#	#																 		+-			#		#
4 3½ 3½ 3½ 3 3	80 75 70 65 60						++																			 					#		#
4 3½ 3½ 3¼ 3 2%	80 75 70 65 60 55						++																										
4 3½ 3½ 3½ 3 3	80 75 70 65 60																											**					
4 3½ 3½ 3¼ 3 2 2½ 2½ 2½	80 75 70 65 60 55 50 45																																
4 3½ 3½ 3½ 3 2½ 2½ 2½ 2½	80 75 70 65 60 55 50 45																																
4 3½ 3½ 3½ 3 2½ 2½	80 75 70 65 60 55 50 45																																
4 3% 3% 3% 3 2% 2% 2% 2% 2%	80 75 70 65 60 55 50 45 40				-								+ +								┿┽┵							4-4-					
4 3½ 3½ 3½ 3 2½ 2½ 2½ 2 1½ 1½	80 75 70 65 60 55 50 45 40 35			Ш	Ш						Π	+	+ + -	7-	-						#												
4 3½ 3½ 3½ 3 2 2½ 2½ 2 1½ 1½	80 75 70 65 60 55 50 45 40 35 30 25					H.	\coprod			+											┿┽┵												
4 3% 3% 3% 3% 3 2% 2% 2% 2% 2 1% 1%	80 75 70 65 60 55 50 45 40 35 30 25			Ш			\coprod	Ш			Π		+ + -					111			#												
4 3½ 3½ 3½ 3 2 2 2 2 1 1 1 1 1 1	80 75 70 65 60 55 50 45 40 35 30 25 20						$\frac{1}{1}$														#								++				
4 3% 3% 3% 3 2% 2% 2% 2% 1 1 1 1 1 1 1 1 1	80 75 70 65 60 55 50 45 40 35 30 25 20																												++		#		
4 3% 3% 3% 3% 3 2% 2% 2% 2% 2 1% 1% 1%	80 75 70 65 60 55 50 45 40 35 30 25 20 15																												++		#		
4 3% 3% 3% 3% 3 2% 2% 2% 2% 2 1% 1% 1%	80 75 70 65 60 55 50 45 40 35 30 25 20																2												++		#		

NOTE: Each small square represents an individual reading of intensity corresponding to that shown in the left-hand column over a time span of 14 minute. Insert an 1511 in the top row of blank squares to indicate the exact minute of the start of observation. In the next square after the S', insert the hour in which the measurement was made. Each page of this form can thus be used to record 1 hour of measurements.

121681

$oldsymbol{arphi}$
Source of Air Contaminants Cartford (HEINICH (HZ. Soy Plant) Just
Type of Air Contaminants 502 503 And mist
Point of Discharge: Stack Other
Point of Observation:
Distance to Base of Point of Discharge, feet
Height of Point of Discharge Above Ground Level, feet 60 Ft
Background Description Blue 5Ky
Weather: Clear Overcast Partly Cloudy Other
Wind Direction Soutswest Wind Velocity, mi/hr 10-12
Plume Description:
Detached: Yes No No
Color: Black White Other
Plume Dispersion Behavior: Looping Coning Fanning
Lofting Fumigating See Comments
Estimated Distance (feet) Plume Visible (Maximum) (Minimum)
•
Comments LENdus At times impossible Sive
Stening Completely Stack for 5 from the possible Since
IN force CASES I Just marker of AS U.
Signed Win Satherland Tille Sov. S. S. D. ecc. Smite Render.
T D .
Smoke Kender

		IAME_			<u> </u>			-					<u> </u>										EC OF			OM.
EQUIP	MENT	LOC A	TIO	N (A	NDOR	ES:	s)	70	<u> </u>	4	0,	_0	4/10	2					 ,			•				U .1
TIME	OF 05	SERV	TIC	N; I	FROP	w	2:	50	P	.м. •м.	70	3.5	D P	м. м.	DA	TE	2	125	4/7	3						
Start	liour			Π	T	T			T	7			T	T	T			T	T	T	T	1		T	T	٦
R. No.	4,	Min.	0	1	02	03)4	05	06	0	7	08	09	10	1	1	12	13	14	15	16	1 /	19	19	70
<u>6</u>	95		╟┼	╁┼┼	-++-	++	╁╅┼	╀┾╀┩	╌┡┽┼	╁╂┪	┼├	+++	111	++-	++	┿┼	╽┽┼	╅╅		┊ ╏┼┟┙		- - - - + - i	+++	$\frac{1}{1}$	+++	H
414	90		1				111		#	Ш	\Box					111								1111	111	H
414	80		╁┼	+++	+++	++	+++	╁┼┼	╌┼┼	╁┼┼	+-	+++	+++-	111	-++	╀┤┼	╁┼╁┧	+++	+++	++++	+++	╌╁╼┝┤	+++	++++	╌┼┼╌	H
3%	75			丗			111			##	11									++++			1111		}}	H
3½ 3½	65		+++	111	111		+++	++-	+++	╁┼┼	H		+++	+++	+	₩	HH	++			++-		1.4	$\Pi\Pi$	\prod	H
3	60		Hj			1	111	Ш		†††	\pm				++	1	 	+++		111			+++	+++	+++	H
21/4	55 50		\prod	ĻĮ.	44	-44	+++	Ш	444	+++	H	+++	ļ.,.		4	11	111		111					1111	\prod	П
2'4	45		+++	HH	+++	Ħ	+++	+++	+++	+++	++	++++		++	++	+++	+++!			++++		-++(-	++++	++++	+++	H
2	40 35		11	Ш			1		H	HI	H	1			-11	+++	III	11.						Ш	111	
113	30		++	╁┼┤	+++	+†	╬╅	111	+++	+-	+	.	4+		+	+++	-	┼┤.:	-++-	444	+	-	╀╀	1+++	╁┼┼	H
1%	25			Ш		H	11.			Ţ,	Π.					H							Ші		111	
1 4	20 15		++-	 	+++	++	+++	 	444	++-	++-		++-		+	++	++++	++1	╏	1		+++	╁┼┼	+++	+++-	H
13	10					1		1			 				Ť	1	1						1+++		111	Ħ
%	5	- t	J.		N.	4		Like			245		لخانك	2	بريد	nkh.	ww	***			XXX			CONT.		X
			200		AT TOO		<u> </u>	CASC 10	ροα	#XX	XX.	2000	0000	(XXX)	ζ Τ ζ. 	XXX		<i>1</i> 306X	200	KNOOLO		XXXX	1	6000	pens	ימא מא
Start	'hour						:	<u> </u>		L			1						1	1			1	<u>l</u>		
R. No.	%	Min.		1	22	2 /) ;	4	.',	28				29	1))1	32	33	34	.15	315		<u>) </u>	39	40
6	95		1	╁┼┼	+++	++	++4	4	╅╫	₩	ļ J.	+++	4144	4	4	+++	} ∔∔	+++	- + + + -	11:	+-+	1444	11:	1++	++++	H
411	90				11	++		<u> </u>		Π.	1				4-	+++-	111									Ц
415	85		4+-	111	44	44	++		+++	-		+++	+ + +	44		+++	++++	+++	-11-1			1	11-	444	444	\mathbb{H}
34	75		++				+ + 	-}- }	- - - -	, , ,			+		+	111	<u> </u>	11:	4++1	111		+++	111	ŀ .	iiii	H
214	30					++				: : :	;	 		; ;		rer			1	1	, , ,	- : + . - : + :	·: : :		+++	H
3	60			i.		\Box		1-1-	111		•			- [-[1]	+	+++	┥┿╅	1++		+++	++:		111	11 1	1	Н
2% 2%	52		4	44	44	11	\prod		111	-			1111	11	Ц	Щ.		11:3	1		11.		1131	111	111	\Box
214	45		#	1	111	++	444	+++	+++				1	11	+	++-		++-	-	+	╁			+		Н
	40 35			سندا	\prod	1	Щ		Ш	Ш	4	1		Ш	II				Ш			777		, , , ,	Ш	Д
15,	30		#		1::	++	Π	1.11	+++	μ.	-1-	+++	1	+++	+	++-	1 1 1 1	4	++++	+++	++-+	-++	+++	++	+++	H
11/4	25		4			++		Ш	14.	L			I	T	II.		111		Ţij.			1	144			П
*	20 15		┽	+++	+-+	++	┿┼	+++-	+++	+++		1	+	+++	4	+	+++	44		-	╅┿╇		++++	 	+++	Н
<i>y</i> ₁	10		1	Ш		\Box	Ш		111		-		11:								+		Ш			
0	5		232	380	SOO	XX.	abot.		DOOR.	202	/20	2XX	200	ΩV.	**	(VX	SPEE	XXXX	1	232/3	XX	XXXX	***	COOK X	200	X.
Stert					1					T			1		T	¥.7.4.	-	37.024		T			1	1		Ť
R. No.	*	Min.		1	42	- <u>-</u>	, -	4	45	46		7	45	49	<u> </u>	1 6	1	! 52	53		55	ــــــــــــــــــــــــــــــــــــــ	 	<u> </u> 58	<u> </u>	آب 60ء
5	100		T		\prod								1,11	1.1		TT.	ÜΠ			Œ		ĬĬII				
434	95			Ш		Ų		11.		Щ		Ш	Ш			\prod									111	
41/4	90 85		++			++			₩				++++	++-	-1-1-	++			+++	H + H			╂┼┼┧	+		H
- 4	80		44.	444		Π		1	111	Ш	_			11	11-			11.					+++	+	##	П
3¾ 3%	75 70	——H	++		+++	+	1 1	1	++-		Н	+++		+		++-		+++	╌╏╇╂┥	╁┼┼			+++		+++	H
3!4	65		17				#			-	Ш					Ш		4++-i	111		+++				1	\Box
3	60 55		Ŧ		+++		╫	111	++	-	H	+++		444	++	++-	+++	1	╌┼┼	+++				 	+:+	H
21/5	50										Ш	1.11	1 1	╅┼╅	1	1		111	##						11	
21/4	45	-	╫		++-	#	÷÷÷	╅┿┿	+++	-+	Щ	++	1					$\mathbb{H}_{\mathbb{H}}$	+			- - -	+++		+++	
12	35						111		111					J.,	II				Π	$1 \cdot 1$	<u> </u>					Ħ
11/4	30) 25		++	$\downarrow\downarrow\downarrow$	111		111	 	14					+++		H		1111			1		++++	+++	+++	
1	20		11			1									1			Ш						1		H
¥:	10								11/													7-7-7-	1-1-1	1 1 1		
Ж	5																			288					لنتا	
0	U	X	200	8 885	5000	XX	XXXX	XXX	XXX	XX	δÖ	XXX	XXXX	XXX	XXX	555 5	ZXX	XXXX	50000		3000	∞				οĸ

NOTE: Each small square represents an individual reading of intensity corresponding to that shown in the left-hand column over a time span of 12 minute. This int an 11St in the top revi of blank squares to indicate the exact minute of the start of observation. In the next square after the 13t, insert the hour in which the measurement was made. Each page of this form can thus be used to record 1 hour of measurements.

Source of Air Contaminants Street (Countrol Chemical)
Type of Air Contaminants
Point of Discharge: Stack Other
Point of Observation:
Distance to Base of Point of Discharge, feet
Height of Point of Discharge Above Ground Level, feet
Background Description
Weather: Clear Overcast Partly Cloudy Other
Wind Direction Wind Velocity, mi/hr
Plume Description:
Detached: Yes No No
Color: Black White Other None
Color: Black Write Other
Plume Dispersion Behavior: Looping Coning Fanning
Lofting Fumigating See Comments
Lorend rumgating See Comments
Estimated Distance (feet) Plume Visible (Maximum) (Minimum)
Comments No EMISSIONS VISIBLE FROM STACK & READINGS
Were At times Questionable due to the Leaders View being obsuzed by Steam from wearby
equipment.
Signed alar Suffer Card iile Smoke Reader

COM	PANY	NAMI				u						<u>(</u>	//	4	٤	1	7/	رے	~	<u>८</u>						_					R	ec o	PD C	۳		
8011	PMEN	T 1 0/		ON.	f a	hnø	# C	c l	7	10	5/	e	? -	/	. د		Ü)	/, (,											VI	SIB	LE E	МІ	SSI	2 NC
EQUI	PMER	1 1000	, , , , ,	UN	, ~	DUN		1:	20	<u> </u>	,	۸.۸	4.		2) //\r	Α.	М.						1-	_	_/	,									
TIME	OF C	DSER	VAT	ION:	F	RON	1 _		<u> </u>	<u>~</u> _	F	٥.٨	1. 1	to	<u>ئے</u>	-	Р.	м.	. 1	DAT	E.		L	<u> </u>		_ 1	<u>ر</u>									
Start	/hour		Т	T		Τ	_	_	T			7		7		T		T		T			٦		T	_	Γ	1		Т			T	7		٦
R. No	. 8	Mi	n.	01		2	0	3	04	0	5	œ	;	07	,	08		09		10	1	1	1	2	13	_	14	15	5	16	1		18	19	3	20
4%	100		╂┼	HH	++	╁┼┼	+	++	╫	H	╂┼┤	+	4+	╌┤╅	+	+	++-	+	+++	+++	\vdash	++	+	-++	H	++	╂┼	H	H			\vdash		H	\prod	H
4%	90		11	Ш	11	Ш	7	1	П	II	П	#	1	1	H	Ţ	1	T	111	\prod	I	Ш	\perp	-	П	11	14	11		1	11		11		#	Ħ.
414	85		1	+++	++	†††	+		+++	++	1++	++	-{-	Ħ	+	+	++-	}	╂┼┪	╁┼┤	+	┢╂┧	+	++		+	╂╂┧	╁	╁╁┤	++	-}}-	H	╁┼┼	++-	+	Н
3%	75		\prod		\prod	117	1	H	111	H	П	#	11	\prod		Ħ				111			-1	#		#	Ш	\sharp	**!		#			Ш	#	Ħ.
31/4	70 65		$\dagger \dagger \dagger$	• • • • • • • • • • • • • • • • • • • •	++	† † †	\pm	+	111	+		+	1	11	$\dot{\mathbf{I}}$	$\dagger \dagger$	+	+	+++	+++	+	}}}	+	+	H	+	╂┦┪	+	111	+	+}-	+ + +	+++	H	++-	Н
3 24	60 55		111	Щ	\prod		\Box	1	\prod	-	Π	#	H	H	+	\prod	П				7			11	Ш	7	111			#	11	11			\bot	П
21/2	50		111	†††	H	H	++	++	H	+		#	+	††	††	11		+	╅╅╽	+++	4-		╁	++		++	╁┼┤	╫	+++	+	╁╂-	++	}	H	++	Н
214	45 40		Ш		H	Щ	\Box	\Box	П	++		\prod	-1-	+4.	Π	\prod	1	I	Ш	11		П	1	11		-	Ш	П	I,		1				11	Д
14	35		11	tf	H	111	++	1.	. i i. L i .	4-4		1	\mathbb{H}	1	11	1		} }-	1++	111	+	}-}-}		+ :	1	-}-}	╁┼┤	╁╅	4-6-4	+	++	-		H	++	H
11/4	30 25		11.		1-	1	44	44	Щ	1	-	П		\prod	11	11	Π		 -		1	1].			1	+1	4-1	-	+ -					П
	20		1	L	††	111	Н	++	:†!	∔∮- • ⊷		1	<u>;</u> ;	11	· † †	\mathbf{H}	j-j-1		<u>i</u> ††	+++	-1-	+	1	- - -	-	##	1-1-4	${\rm H}$	$\pm i \pm$. -	++-	++		++	+	Н
1/3	15		╂	╁┼┼	+	 		++-	++-			+	-	1	H	₩	1-1-4	-	H	11	- 4	Ш	H	Ţ.,.	+	11	П	44	IJ	-	1.			77	\prod	H
1/4	5		Ш,		++-		\Box	-151	امار	4		1	+	+	I	1	. I-		 . Lua]	+	+-+	1	-		 -	Ш	+1	1-1-1	廿	++			H	世	<u>d</u>
0	1 0	`		VE.	3		252	56.		Y	0.7	3 p. C	733	ď	X	Ħ	90	20	KK	100	(K	201	Ų.	IOC		2X.	KAK.	XX		20.	XV	RO	223	3(2)	X	L
Start	/hour		T															T	-	1					T			1					T			7
R. No.		Mi	n,	21	_ 7	2	5	3	-4		')	26)	7.7	•	21		29		1)	3	1	3	?	33		34	35	·	36 36	3	7	38	3	}	40
44	95		Ш	H	\prod	Щ	1	1	11-	Ţ	,,,,,	П	 	П	41.	Ţ			П		+	11			П	\prod	Ш	Ц	111	1	1			П	П]
41,	90		\coprod	1	†		H	++	1 -	+	++	$\dagger \dagger$	11	1	1	++		-+-	+	1++		++	-	4-	+	+	111	+	+	╅		+++	++-	++	+++	\exists
415	85 80		11	П	H	\prod	H	. +-+ .		μ.	1	++	+,	- }	ļ.,	++	, ;		Π.	111			H	-	#	11-	Ш	\prod	1	1	11		1	Щ	\prod	7
3%	75		111		+			+4-	∤−k-i⊷ k-k-k-		+	11	÷	1	+ +	+	++	+	1++	+++	+	+++	++	+1	++	+	+++	++	11	++	++-	-+-	+	+	111	-
3%	70		<u>ii</u> i	1	-	1-1-	++	11	11		1	::	;;	i		: !	: :	; ;		H	Ţ.,	-	; -; ; -;		T	7		++		+	++-	-	-	++	11	7
3	60											\parallel		1	-4 - 4 -	1	++			廿	1	++	1	1	#	\perp		1	1	力	1				H	1
2%	55 50		╁┼┼		+-		+-}	+-		-	++	₩	-	+	<u>ئ</u> ا- ۋ	+	$+ \downarrow \downarrow$	+:	141	+++	+-	44	1	-14	-11	#	1++	₩	1	+	-}}-			++	\square	-}
2%	45				++-	1	\Box	1-1-	1	-	1	#	1-	* +	1	1		1		1	井	T	\Box	11	#	11-		#		#	11	11		#	111	1
176	35		##	+++	H-		H	+++	1	-	++	+	١.,	<u>- </u>	ļ.,	+-	+++	+	H	++-	\mathcal{H}	++	H		++	#	H	╫	Hi	+	+-	++		#	111	\dashv
15	30		Ш	1	I		Ц	耳		1		H		7		I	+++	#				-	+-	+	#	#	Ш	Ц	-	1	11	111	-	#	Щ	7
1	25		†††		\dagger	1	++	++	+	+-	+	tt		•	1	++-	1	+	H	+++	+	++	╁┼	+++	╫	+-	++	╫	 	+	4-4-4	+4	-H-		-+++	-
1/4	15		\prod		Π.	44	Π	TH	\prod		П	Π.	П	ĻŢ.	1	Π.		П	1		П	\Box	L.		1	\blacksquare		7	П		-	111	111	\downarrow	П	7
74	5		\coprod		仕		П	丗			44	止	<u> </u>	٠,	1			+i				+1		#	- - -	# -	H	<u>H</u>	1-1+	1	4-1	++	#	+	╁╂╅	-
0	1 0	<u></u>	(10 K)	200	2	XXX		123	100	30	22	**	æ	X	K	90	24	22	90		<u>u</u>	10b	<u>Z</u>	0	300	MK	27	70	4.2	العا	23	204	<u> </u>		KĎ	×
Stort				1								\perp		1		_					_}						L.									
R. No.	100	Mi	n.	41	7	17	4.	3	14		5	4€ TT	7	17	, 1-7:	49		43		50) T T T	5	1	Ę.	2	53	TT	54 1 T T	5!		56	نالل پَانِ	7	58	5	3	60 7
43%	95		#		-	++	+	+++	++	-	+	#	+	+			+++	+-	+++	╁┼	+	+	+	+	+	++	++	+	++÷	++	#1	┼┼	++	₩	+++	4
41/2	90 85		Ш		H		, [111	71		Д	Π.		Ţ	\Box	1	111	7		Ш	\parallel	#	I	1	\prod	I	П	H		\prod	Π	Ţ	H	П	Щ	7
4	80		111-	-	士		\coprod		1		-14	#	++-	廿	+-		1	1-	+		-	++	H	+++	\coprod	1		+	╟	++		+	1	++	+++	1
3%	75			Π	1		++	111	#	4	4	H	H	H		H	, 1	1	H	Ш	Ц	7	H	Ц	-	H-	П	П	Щ	H	4	H	Щ		\prod	7
314	65			山上	士		廿	11	1		#	#	+	世			1-1-	1	++		± 1	廿	$\dagger \dagger$	1	+	+		1	L	44	╫	\coprod			++	_
3 2 ¼	60 55		+++		#	H	+-	+ + +	++		H	#	#	H	H	H		+	H	Π	$\overline{\Box}$	\prod	H	+++	17	\prod	\prod	17	1	\mathbf{H}	H	H	H	4		-
2%	50		Ш		丰	世	++	##	#		#	#	#	I			4-4-4. 1-4-1	#	#		\coprod	#	#	+-+-		#		士	坩	#	$\!$		1		++!	
21/4	45		+++	++	+	╟┼	++	┼┼	++-	Н	++	₩-	 		++	Η.	!#	- -	1	$H\overline{H}$	H	#	H		#	Н	HÍ	H-	Щ	1	+	+	4-	4-	4	4
14	35		Щ		T		Ħ	Щ	1	_	+	-	1				11	11	#		⇈	#	#	#	#	#	出	力	II.	#	#1		丁二		Щ	7
11/4	3ð 25				-	 	H	Ш		إبا		 	1 . -	+		+	++	+	++	H			4	+++	#	+	++	+	-++	+	++1	++	++-	╁	H	.{
1	20		\Box		H		11	#			#	ij	-	1	\Box		111	#1		Ш	7	#	#	Ш	_		4	H	1	77	~	7	1	#	卭	1
% - %	15					+	**				4		+		 - -		17	11	+	-	+	╫	\forall		+	++	+	+		1+	4-1-1		++-	#	士	1
- 1	5		200								612		2			7	24					,		1	Į,	,,,	-			þ.		1	147	اناد		zh

NOTE: Each small square represents an individual reading of intensity corresponding to that shown in the left-hand column over a time span of 14 minute. Insert an TST in the top row of blank squares to indicate the exact minute of the start of observation. In the next square after the ST, insert the hour in which the measurement was made. Each page of this form can thus be used to record 1 hour of measurements.

Source of Air Contaminants Countron CHEM. CAL (HZ 504 PROJUCTION)
Type of Air Contaminants 503, Acid Mist
Point of Discharge: Stack Other
Point of Observation:
Distance to Base of Point of Discharge, feet
Height of Point of Discharge Above Ground Level, feet
Background Description SKY
Weather: Clear Overcast Partly Cloudy Other Juowin G
Wind Direction Wind Velocity, mi/hr
Will Direction 700% Williams Velocity, Mily III
Plume Description:
Detached: Yes No X
Color: 8lack White Other /VONE
Plume Dispersion Behavior: Looping Coning Fanning
Lofting Furnigating See Comments
Lotting Tuningstring Geo Considents
Estimated Distance (feet) Plume Visible (Maximum) (Minimum)
Comments READING WAS VERY SIFFICULT due to
for WENTHER CONDITION; IC. SHY COLOR AND
Comments READING WAS VERY DIFFICULT DUE to for WEATHER CONDITION; IC. SHY COLOR AND StEAM FROM AT TIMES COVERING
FAR STACK
$\mathcal{L}_{\mathcal{L}}$
Signed Man futherland Tille Env. Intineer Smike Render
Smike Kinder

C OM	PANY NA PMENT L OF OBS	ME	<u>//a</u>	uh	1	بدو			<u>4/8</u>	mı	CA	<u>_</u>						R	EC OR	D OF		
more to	DAZENT I	OC ATU	~ ⊌	none	cci	7	56	ea	10) <i>H</i> ¹	0						٧	ISIBL	E EM	SSION	15
EQUI	rmen i L	~~ × 1 11	ON (A	0011		ΛΛ	A	.м.	2	/// A	.м.		2	12	-/	2						
TIME	OF OBS	ERVATI	ON; F	ROM		<u> </u>	Р	,M. '	ro 🚣	.00 p	.м.	DATE		14		/>						
Stort	/hour	T	T		T	T	T	1	T		\top	T	T	T	T	T	T		T	T		
R. No.	. %	Min.	01 (02 ()3	04	05	06	07	98	09	10	11	12	13	14	15	16 1	/	18 1	9 20	0
43	95		┸	╁╂╂╉	+++	+++	╁╅╂	HH	╫╫	╁╂╀	╫╁	++++			414		┝╂┼┼┼	╂╃╃╂	╂╁╁	╀┼┼	╂┼┼┼┩	
4%	90			Ш	Ш					1111					111			1 111		1111	Ш	٠
435	85	-++	++++	╂╂╂╂	╫╫	++++	+++	HH	1111	++++	╽ ┼┼┾	╁╂╂┤╌	╟╫┼		+++	╫╫	╁╫╫	╅╃┟┼	╁┼┼┼	╂╁╁┼	╁╁╁╅┩	,
3%	75			1111	111	\Box			##	###								**			Ш	
31/3 31/4	65	- 	++++	╁╀┼┤	╫╫	+++	+++	╂┼┼	}}``	╫╫	╿ ┼┼┼	+++	4++	+++	╂╂┼	+++	HHH	╂╁╁┼	┞┼┼┼	╁┼┼┼	╫╫╢	
3	60		1111	!!!!		###			11:1	1111	!!!!									; ;;;;		
215	55 50	╾╂╂╂	++++	┥╄╂╋	╀┼┼╃	╂╂╂	+++	╁┼┼	∤} ÷÷	╂┼	} }}		+++-	1++	╁┼┼┤	╁╁┼	╺╁╅┼╂	╂┼┼╂	╎ ┼┼	╀┼╁╂╸	╀╁╁┦	
24	45		1111	1111	Ш	11.	Ш			111					11:1			† ‡ †		1111	Ш	
114	35	╾╂╂╁	╁╅┊┿	╁╁┼	╂	4 4	+++;	┪╌┼┤	4 4		╀┦┼┷	┡ ╂╂┿┥	1111	++-:	╂╁╁┧	+++	╁╅┼	╅╬┼	 -}-+}-	╁╂┼╋╌	 	
13	30			$\Box\Box$										П.:	44.4.4		1				Ш	
18	25	╼╂╊╃	╂┼┼	╂╂┼┼	╂╂╂	╁┼╃┩	╂╅╀┪	+++	╂╄┿	+++-		+++-	+++	╌╏╌╁╼╅	4441	-}-}-	╅╬╁	╀┼	╎╎╏	╂╂╂	╂╂╂┨	
34	15		1111	****											111	Ш	1::			Ш	Ш	
15 X	10	╾╂╂╂	-++++	╅╂┪÷	++++	+++	╁┼┼	++	ŧ ∮ ∳∮	+	++-	1-4		111	╂╂┼	╃╂╂┫	┥┽┼	1+++	╌┼┼╁	╫╫		
0	10	2.67	1,44		8	- 10 12 12 12 12 12 12 12 12 12 12 12 12 12	سند	3.0	*****	ېلور نګ	2013	350	Rinks	000	448	N/O	1080	2088	4 4	10	্ চন্দ্ৰ	,
Start	/hour	T	T -	T	1	T	T	T	7-	T-	T]	T	T	T	T -			T		
A. No.		Min.	<u></u>	22 :	,	.4	.l 25	20	٠,-	29	~;	15		J	33	34	J 35	.L 36 3	7 :	38 3	9 40	0
6	100		ПП	Ш	Ш	L	111		Ш			IL					ТШ			IIII		
45	95	- { 	╁┼┼╄	╂╁┼┼	╂╀┼┤	j	┧┼┼	44	╻ ╅┋┡		4++	┧┼┼┼	++++	++	++++	++++	╅┼┼	╅┿┼╅	+++-	╂╂╅╂	++++	
4%	85			1111	1 + + 1	 	+++	1:	1 4 1.e. • 4.d.s	4- -4 4-4-4-		1111	1111				111	1111				
334	80 75	╼╂┼┼	++++	╎ ┼┼┼	╁╁┧┶	1	╂┼┼	++-	. + i i	┷╁┤┿┙	44-4	╁┞┼┆	444	+++	┩┼┼┼	╂╂┼	4,	╁╂╂┩		╁╁┼	+++-1	
3.5	70		111-	1111	1-1-	1-1-1		1	-! - :	7		++++	++++	++++	111	111	1	****		++	++++	
1 3	60	-1111	++++	+++	++++	+++	╀┼┼	+++		++++		╂┼┼	4+++	+++	╂╂╁╂	+++	444	╁╅┼	++-	╁┼┼	├ ┼┼┤	
24	55				1:11			1	- -				III		1111			<u> </u>	+++			
2½ 2¼	50 45		++++	╁┼┼	╂┸╀	+++	╀╀┪	╂┼	+++	╫┼┼	+++	++++	+++	444	###	╃┾┊┩	╁┼┼	HHH		╀╌┼	HHH	
2	40												111	1111	1111	1111	11:	1 + + 1 -	+++-	111		
15	35 30	╼╂╅╂╂	H +	H + H	1+++	 	HHH	ļ	سنبا		111.		11!!	111	HH	$\{\{\}\}\}$	HH	HHIII	-++-	┋┋		
14	25													1111					111			
1 1	15	╼╂╂╂╂	╅╫╂╌		╃┼┼╃	! 	╁┋╅	111		4-4	444		-	144	HH	╂┵┼	-{-{-}}-		+++	 - - -		
5,	10		1111								111:		1111	117	1111	1111			111			
7	5	JIII	IIII.		Щ	ЩЩ	Щ	مالح					J.,				البزيل		7 327	and	Щ.,	,
C C C C C C C C C C C C C C C C C C C		7 9 3	th o	0 762	řĚĚ	700	1	; `	7000		7	7.72	1	13.00	100		132	<u> </u>	2003	Othe	3232	-
Stort			<u> </u>	<u> </u>	ļ	<u> </u>	<u></u>	<u> </u>	ļ	ا	ل	<u> </u>	<u> </u>	<u></u>	<u></u>	<u>l</u>	ل	اِ ــــالِ	<u></u> ,	<u></u>	إيليا	_
R. No.	100	Min.		12 -4 		44	45 !] []	46 TTT	17	49		50 1111	51 1111	-2,	53 [] []	54 1111		95 : 			9 60	J.
4%	95											1111	 	111	1111	111	111					
41/2	90 85	-1111	$\Pi\Pi$		Ш	111	Щ	11	11			\prod	11:1		Ш	Ш			111	\prod		
4	80			111				111			1+11		11:	1111	•		1111	111				
3%	75 70		144	┞╀┼	1111	144	╂╂┼	1-11	+++	1	++ -			111	1441	$\{ \} \} \}$	 	╀┼┼	+++	+++	HHH	
314	65													++++	111			+++-				
3 2%	60 55		╂╂╁╌	+++		╂┼┼	╂╂╁╂	╀┼┼	111		111	1111	HH	+++	╀┼	╁╁┼┨	++++	╀┼┼┤	╁╁┼	HH		
2%	50		<u> </u>	世		<u> </u>	!!!!	!!!!		<u></u>	<u> </u>	1111	1111	+++-	111	<u> </u>	1111		#	吐	出出	
2%	45	-HH	$H = \overline{A}$	HH	 ₩₩		1+++	HH		-1-	-{-	\prod	1:17	44	441	Нij		$\left\{ +\right\} \left\{ \right\}$	444	++-		
14	35		<u> </u>	Ш		Ш	1111	Ш			1111			1111	111;							
1%	30 25		+++	+++	1	144	\Box		++-1		111	HII	444	1111	++-	HH	1111		+++	 		
	20					111	1111	Щ	111		1111	_	111	Ш	111		111		1		世出	
% %	15		 			╎┧┵┵	╂╂┼	H_{i}	╅╅┆		HI	+++	441-	444	$H\overline{H}$	╁┼┤╀	411	╂┼┼┼		+++	HH	
×	5	-11:1							+++			Ш	$t't^{\dagger}$		1111		<u> </u>				世出	
8	0	15.34	7600	10.0	56_	7	2	200	$\mathfrak{T}\mathfrak{D}_{A}$	112	577	75 P	1200	1111	100	000	3347	以作	O.K.	YOU		L

NOTE: Each small square represents an individual reading of intensity corresponding to that shown in the left-hand column over a time span of 14 minute. Insert an "S" in the top row of blank squares to indicate the exact minute of the start of observation. In the next square after the "S", insert the hour in which the measurement was made. Each page of this form can thus be used to record 1 hour of measurements.

Source of Air Conteminants Stack (Coulton Chemica L)
Type of Air Contaminants Sox, Africando expected.
Point of Discharge: Stack Other
Point of Observation:
Distance to Base of Point of Discharge, feet
Height of Point of Discharge Above Ground Level, feet
Background Description <u>Clear blue</u> SKY
Weather: Clear Overcast Partly Cloudy Other Suny
Wind Direction Wind Velocity, mi/hr
Plume Description: Detached: Yes No COLOR: Black White Other
Plume Dispersion Behavior: Looping Coning Fanning See Comments
Estimated Distance (feet) Plume Visible (Maximum) (Minimum)
Comments No Emissions visible from Strick a due to wind
direction as opposed to Sun position it was impossible
for the Zender to position himself to meet both
of the EPA method #9 ReQuirements. Also Readings
of times were obsured by Steam.
inned Alan Sathanda de Sanda Kencher

C GMP EQUIP TIME	ANY A	AME_		<u> </u>	24/	1/3	لدو	(40	<u>~~</u>	/<	R	<									RI	EC O	PD ()	F	
80445	44 6 47	1004	TIO	N (A	DOBI	755)	7	0	Ge	1), -	0	IJ,	٥									V	SIBI	LE EI	MIS	SION
EUUIF	MEN			" \ ^		10:	1.3 C	<u> </u>	A.A	4.	1/2	3	A.M	١.			<u> </u>	27	איזר								
TIME	OF 03	SERV	ATIC	n: 1	FROM				.P.N	4. TC	74.	<u> </u>	P.M	!. 1	DATE	E _4	5/_	~4									
Start	heur						I					I				floor			\prod			I			T	T	
R. No.	100	Min.	0	1	02	03	04	05	ne TIT	111	17 111	08	0		10	11	· · ·	12 1 T : 1	13 111	14	15	16	1	7 4	19	19	20
44	95		11		##				111	111	111	##		Ш	1	井	1	1111	11	† † † }		<u> </u>	11:			丗	丗
44	90 85	-	<u> </u>				<u> </u>	+++	Ш		+++	11			#	\coprod	H	+++	+++-		} 	Ш	††		+++	++-	+++
3%	80 75		11		\prod	\prod		+++	\prod	+++	111	111	+		\coprod	\coprod	Ш		\prod	1111	\prod	\prod	\prod		Ш	Ш	\prod
31/2	70		<u> </u>	Ш	117		***	111	Щ	111	117	+++			111	#	Ш	1-1-1	#	11:		\Box	#			丗	#
31/4	65 60		 		+++	<u> </u>			+	##	111	#	++-		壯	+-		+++	++!				1	-++		+++	+++
215	55 50		1	+++	4#	+++	###	+++		+++	++	+++	1-1-	++1		+	+++		+++			H	+			\prod	##
21/4	45		11	111	-11		11.	+++	\square	1	1-4-4-	+++		11.	11				11+				-			##	#
114	35		İΙ		+++		→ i i	+++	1		11	1		+++	+++	#	 	++ :	+++		 	士	+		+++		Ш
174	30 25		++-	} †÷†	+++	 	444	+++	+++	-1-	-	+	-+	++-	 - .	╁	+	$H \div i$	+++	+	├ ┼╍	+	11.	+++	++-	+++	+++
二	20		4	1	111		П.		+++	-11	+++			++	+++	1			++-				11		11	\Box	##
- 5	10			+ + + +	+++-	┊╸ ┋╸╋	+++		++		++	-		- - 		-	┷╍┾ ┷┿╅	┩╼╇╼╍╼ ┲╾┞╼╈╼	#		4		·j· ;		#	Ш	丗
0	5	30	27	#10	2002	No.	XX	15 ¹ 43	D 3.	200		XX	795	303	700	Δß	3	O.H.	222		75C)	2		NO.	9500	28	XX
Start	'hour	1		-	T	1	Τ	T			-	1	7		1-	-			1	T	Τ-	-			1	T	
R. No.		Min		1	1 22	1_	<u>:1</u> _	<u>ا</u>		1 :	<u> </u>	79	ل	-	 	1		<u></u>	33	<u> </u>	<u></u> .	<u></u>		7	<u> </u>	33	
6	100		ПÌ	ÌЩ	Ì	ĬП	i.	ΪÍ	ТÜ	Ш	П	Ì	İ	Ï	II.	<u>.,</u>	III.			TI	Шī		11		Ť	Щ	Π
41,	95		╫	╁┼┼	╁┼	+++	┦┪┪	+	${}^{++}$	44	∮ ∮≟	-	+	++	1++	ļ	+++-		+++	+++	++++	+++	- -	++	╫	+++	##
41	85 80				#	-	1	11		-	-	1		Ţij.	117	4	H		\prod	111	1	11	1		11-	Щ	\square
34	75				+++		4-6-4-4 4-6-4-4		+++		 	• • • •	+++		111	1-1	4-4-		1111	111	-	++	†† _!		H.	717	†† 1
<u>; ;;.</u>	بتت					<u>.</u>	П	III	iii	;;.			الم	: ; ;	ijĖ	İİ	Ξİ			1		\Box	-			Π.	
2×	60 55		+	-		+++	H +	+++	₩	<u>.</u>	٠,	+	++	+!!	₩	1	++	++++	+++	+++	+++	++	+	1	++-		++-
21/3	50 45		-		1	Ш	111	Ш	11	+	ΓŢ	1		7					Ш	11		-11		1	1	11	Щ
2	40		+					حضاضا	#	1:				世								:- -		+	11	丗	世
1%	35 30		+	1	111	1	1	$\frac{\cdot}{1}$	111	-++	1.	Ц.	1 1	++-	1			نبن	+++	+++	1		+	444	+++	- - 	
114	25 20			1	1									-1		- -	111		111			- -					#
*	15		#		1	41-			Щ	11:				+++	+++			₽₽÷ ₽₽					ا ا	11	1	廿	
у, Уд	10		+		1:1		-	11	111	سلب منالفاً		1	H	┧╅┼		-	├ ┆÷-		11:11	+++			4	44	##	+	#
6	0	X	XXX	ZXXX	200	OXO	XXX		288	333	<u> </u>			出在	0 442	Ø.	10 4	460		XXX	CA CA	48	200	X 3	201	353	302 x
Stort																										丄	
K. No.	100	Min.		1	42	43	54	45	111		17 []	45	4		54) 	51	, 		53 '	54	55	56 		•	58	59	E0
4%	95		II		111			: 11					+++										-				丗
4%	90 85		11		1					1 ; ; ; 1 1 1				+++		-	111		+++			-	1		1		+++
314	90 75				11			-	الله	+++		-							+++				-		++-	111	ŢŢļ
3%	70 6 5		1							-1-1			_													Ħ	Щ
3	60		1						+++	坩		1					\mathbb{H}	+	111				#1-				世
2%	55 20		++	1:1	<u>'-1-1-</u>	+++	+++	+++	44		+++	<u> </u>		+++	+++	+		!!	+++	4++	- 		#-		_;	+++	
2%	40		#		111				Щ		+++		Щ		11				Щ	111					1 4		
14	33		ii		17		+++						1	11				1	11				Ш	-1-		+++	#
11/2	30 23	. !	_ i	44	<u> </u>				Щ.			+	-	1+	H	4	-	44	11:				+-	++-	11+	+	٠- ابسوم
3	20 15				1,				111	1	1	+	777		-			HH	++				++-	: +	+++	\mathbb{H}	4
73	10					:		777			t-t-;-		7-4-1		1-	~									-		刊
- î	Ü	×				XX		90	3	X.2	400	50		XX	4.15	30	K)			200	ō (YY)	202	₩.	2002		*	**

NOTE: Each small square represents an individual reading of intensity corresponding to that shown in the left-hand column over a time span of 14 minute. Too of the 1551 in the top row of blank squares to indicate the exact minute of the start of observation. In the next square after the 131, insert the hour in which the measurement was made. Each page of this form can thus be used to record 1 hour of measurements.

Source of Air Contaminants
Type of Air Contaminants 50x NOx Hydrocarbons
Point of Discharge: Stack Other
Point of Observation: Distance to Base of Point of Discharge, feet 160 ft Height of Point of Discharge Above Ground Level, feet 40 ft
Background Description Road (Standing) Grey Overcast Sky
Weather: Clear Overcast Partly Cloudy Other Sway at times Wind Direction Sw Wind Velocity, mi/hr 10-12
Plume Description: Detached: Yes No Color: Black White Other Nowe
Plume Dispersion Behavior: Looping Coning Fanning See Comments
Estimated Distance (feet) Plume Visible (Maximum) (Minimum)
Impossible due to Steam Generated by Nearby Equipor
williest Covered The Stand, when Sun is out, the
chservers back and Read At RIGHT ANGLE to direction of
Cigned alan Setherland Title Smake Reales

TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing)		
1. REPORT NO. 2. E PA-600/2-76-047	3. RECIPIENT'S ACCESSION NO.	
4. TITLE AND SUBTITLE Molecular Sieve Tests for Control of Sulfuric	5. REPORT DATE March 1976	
Acid Plant Emissions	6. PERFORMING ORGANIZATION CODE	
Karl R. Boldt and Richard F. Timmons	8. PERFORMING ORGANIZATION REPORT NO.	
9 PERFORMING ORGANIZATION NAME AND ADDRESS York Research Corporation One Research Drive Stamford, Connecticut 06906	10. PROGRAM ELEMENT NO. 1AB014; ROAP 21ADH-006 11. CONTRACT/GRANT NO. 68-02-1401, Task 2	
EPA, Office of Research and Development Industrial Environmental Research Laboratory Research Triangle Park, NC 27711	13. TYPE OF REPORT AND PERIOD COVERED Task Final; 9/74-12/75 14. SPONSORING AGENCY CODE EPA-ORD	

15. SUPPLEMENTARY NOTES Project officer for this report is E.J. Wooldridge, Ext 2547.

16. ABSTRACT The report gives results of tests of a molecular sieve control system for sulfuric acid plant tail gas. The system, the PuraSiv S, was developed by Union Carbide Corporation and is now operating at the Coulton Chemical Corporation's plant in Oregon, Ohio. The PuraSiv S utilizes a molecular sieve adsorbent material that releases SO2 when heat is applied. The SO2 is recycled for an additional 2-3% production of acid. The report evaluates the PuraSiv S, using data gathered during a 4-week test period. SO2 concentrations were continuously measured and recorded by a DuPont 460/1 Photometric Gas Analyzer at both the inlet and outlet gas streams. Average removal efficiency was 98.0%. Average SO2 emissions during the tests were below 100 ppm.

17. KEY WO	ORDS AND DOCUMENT ANALYSIS	
DESCRIPTORS	b. IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group
Air Pollution Sulfuric Acid Chemical Plants Absorbers (Materials) Surlfur Dioxide Adsorption	Air Pollution Control Stationary Sources Molecular Sieves Tail Gas PuraSiv S	13B 07B 07A 11G
B. DISTRIBUTION STATEMENT Unlimited	19. SECURITY CLASS (This Report) Unclassified 20. SECURITY CLASS (This page) Unclassified	21. NO. OF PAGES 280 22. PRICE