United States Environmental Protection Agency Region 10 1200 Sixth Avenue Seattle WA 98101 Alaska Idaho Oregon Washington June 2001 Office of Environmental Assessment # **Ecological Condition of the Upper Chehalis Basin Streams** # **Ecological Condition of Upper Chehalis Basin Streams** an Environmental Monitoring and Assessment Program (EMAP) Report ## Gretchen Hayslip and Lillian G. Herger June 21, 2001 U.S. Environmental Protection Agency, Region 10 Office of Environmental Assessment 1200 Sixth Avenue Seattle, Washington 98101 Publication Number: EPA-910-R-01-005 # Suggested Citation: Hayslip, G.A. and L.G. Herger, 2001. Ecological Condition of Upper Chehalis Basin Streams. EPA-910-R-01-005. U.S. Environmental Protection Agency, Region 10, Seattle, Washington. # **Table of Contents** | Lis | st of Tables | i | |-----|-----------------------------|----| | Lis | st of Maps and Figures | i | | Lis | st of Appendices | i | | I. | Basin Description | 1 | | П. | Project Description | 3 | | Ш | . Results | 8 | | | Water Column Chemistry | 9 | | | Physical Habitat Indicators | 2 | | | Biological Indicators | 8 | | IV | Discussion2 | 3 | | v. | References | 7 | | VI | Annendices | ın | | <u>List of Tables</u> | | |-----------------------|---| | Table 1 | Streams in the upper Chehalis basin by stream order4 | | Table 2 | General EMAP indicators | | Table 3 | Water column indicators5 | | Table 4 | Table of standards for freshwater (Washington State, 1992) | | Table 5 | Nutrients in the upper Chehalis basin | | Table 6 | Definition of five Large Woody Debris (LWD) size classes based on piece length and | | | diameter | | Table 7 | Levels of human influence | | Table 8 | Frequency of occurrence of aquatic vertebrates, upper Chehalis basin 2 nd order streams, | | | 1997 | | Table 9 | Description of benthic macroinvertebrate indicator metrics | | Table 10 | Sensitivity of selected monitoring parameters to forest management activities24 | | Table 11 | Expected direction of response for selected monitoring parameters to forest management | | | activities compared to what was found in the upper Chehalis basin | | | - | | | | | List of Maps | and Figures | | Map 1 | Map of the upper Chehalis basin | | Figure 1 | Percent of landuse/landcover in the upper Chehalis basin | | Figure 2 | Stream categories9 | | Figure 3 | Stream temperature | | Figure 4 | Stream Dissolved Oxygen (DO)10 | | Figure 5 | pH of streams | | Figure 6 | Total suspended solids (TSS) of streams | | Figure 7 | Bar chart of mean substrate quantity by size class in 2 nd order streams | | Figure 8 | Pie chart of percent of streambed with dominant particle size | | Figure 9 | Large Woody Debris (LWD) quantity for the medium and larger categories 15 | | Figure 10 | Mean LWD quantity by (pieces per 100m) class | | Figure 11 | Frequency of pools by depth class | | Figure 12 | Natural fish cover | | Figure 13 | Riparian vegetation cover (both canopy and mid-layer) | | Figure 14 | Pie chart of the mean percent riparian cover by species types in second order streams . 16 | | Figure 15 | | | Figure 16 | Mean riparian zone human influence from each of 10 disturbance categories 18 | | Figure 17 | | | Figure 18 | | | Figure 19 | | | | Percent of vertebrate species within each sensitivity guild | | Figure 21 | Total invertebrate taxa richness | | | EPT taxa richness | | Figure 23 | | | | | | List of Appen | di | <u>ces</u> | |---------------|----|--| | Appendix 1. | - | List of sites with associated stream identification number | | Appendix 2. | - | Summary statistics for water chemistry indicators | | Appendix 3. | - | Summary statistics for physical habitat metrics | | Appendix 4. | - | List of fish and amphibian species captured in the upper Chehalis basin 36 | | Appendix 5. | - | Species characteristics for aquatic vertebrate species | | Appendix 6. | - | Summary statistics for vertebrate (fish and amphibian) metrics | | Appendix 7. | - | Summary statistics for selected invertebrate metrics | ## I. BASIN DESCRIPTION The Chehalis River is a major basin in southwestern Washington state draining to the west into Grays Harbor. The upper portion of the Chehalis Basin is large, comprising almost 1300 square miles (see Map 1). The upper Chehalis lies within 2 main "ecoregions". Ecoregions are distinct geographic areas based on topography, climate, land uses, soils, geology, and naturally occurring vegetation. The upper Chehalis basin is primarily divided between the Puget Lowlands ecoregion (Omernik, 1987), in the eastern portion and the Coast Range ecoregion, in the west. The Puget Lowland Ecoregion includes the open hills and tablelands of glacial and lacustrine deposits in the Puget Sound valley (Omernik and Gallant, 1986). The upper Chehalis basin is in the southern portion of the ecoregion where the terrain consists of hills and low mountains. In the hilly areas, relief varies from 800 to 1,000 feet with some peaks exceeding 2,500 feet. Most of the land is forested with Douglas fir as the predominant tree species. Timber harvest is an important land use in the ecoregion. Cleared areas are farmed for grains, wheat, vegetables and other crops. Urban development is concentrated along waterways and near Interstate-5, which runs through the ecoregion. The western portion of the basin is within the Coast Range ecoregion, which is characterized by higher elevations, and the primary land use is commercial forestry. The Coast Range ecoregion includes the Pacific Coast Range mountains and coastal valley and terraces (Omernik and Gallant, 1986). The combination of maritime weather system and high local topographic relief results in large differences in local precipitation, which ranges from 55-125 inches average annual rainfall. Figure 1. Percent of Landuse/Landcover in the upper Chehalis basin The predominant land cover type in the upper Chehalis basin is forest (81%). Followed by agriculture (11%)(**Figure 1**). Urban use is concentrated in the lowlands, near the mainstem Chehalis River and the I-5 corridor. The cities of Chehalis and Centralia are the main urban centers. # II. PROJECT DESCRIPTION This document summarizes data collected in the upper Chehalis basin of Washington as part of the Regional Environmental Monitoring and Assessment Program (R-EMAP). The project is a cooperative effort between the Environmental Protection Agency (EPA) Office of Research and Development, EPA Region 10, and the Washington Department of Ecology (Ecology). Ecology conducted all field sampling for this project in 1997. # Environmental Monitoring and Assessment Program (EMAP) EMAP was initiated by EPA's Office of Research and Development (ORD) to estimate the current status and trends of the nation's ecological resources and to examine associations between ecological condition and natural and anthropogenic influences. The long-term goal of EMAP is to develop ecological methods and procedures that advance the science of measuring environmental resources to determine if they are in an acceptable or unacceptable condition. Two major features of EMAP are: - the use of ecological indicators, and - the probability-based selection of sample sites. Regional EMAP (R-EMAP) uses EMAP's indicator concepts and statistical design, and applies them to projects of smaller geographic scale and time frames. R-EMAP provides States and EPA Regional offices opportunities to use EMAP indicators to answer questions of regional interest. The following are general descriptions of the EMAP sample design and indicators. A more in-depth description can be found in Section II. # A. DESIGN – How to Select Stream Sites to Sample? ## **Background** Environmental monitoring and assessments are typically based on subjectively selected stream reaches. Peterson et al. (1998; 1999) compared subjectively selected localized lake data with probability-based sample selection and showed the results for the same area to be substantially different. The primary reason for these differences was lack of regional sample representativeness of subjectively selected sites. Stream studies have been plagued by the same problem. A more objective approach is needed to assess stream quality on a regional scale. EMAP uses a statistical sampling design that views streams as a continuous resource. This allows statements to be made in terms of length of the stream resource in various conditions (Herlihy et al., 2000). Sample sites are randomly selected from a systematic grid based on landscape maps overlaid with hydrography. The EMAP systematic grid provides uniform spatial coverage, making it possible to select stream sample locations in proportion to their occurrence (Overton et al., 1990). This design allows one to make statistically valid interpolations from the sample data to the entire length of stream in a study area, such as estimates of stream that are in "poor" condition. # Site Selection in the Upper Chehalis Study sites were selected from a sample population of all mapped (1:100,000 scale) 2nd order streams in the upper Chehalis basin, using EMAP-Surface Water protocols (Herlihy et. al., 2000). See **Map 1** for the location of the sites. | Stream Order | Percent | |------------------|---------| | 0* | 1 | | 1 st | 58 | | 2 nd | 19 | | 3 rd | 14 | | >3 rd | 7 | Table 1. Streams in the upper Chehalis basin by stream order. * (0 order streams are primarily unconnected reaches, side channels on large rivers or canals/ditches) Although 1st through 3rd order streams are usually wadeable and therefore suitable for sampling using EMAP protocols, this project was limited to 2nd order streams. Due to budget limitations, the sample size was restricted to 30 sites. This is generally considered an adequate sample number in which to describe this particular stream size. There
are approximately 454 km of 2nd order streams in the upper Chehalis basin. # B. INDICATORS - What to Measure at Each Selected Site? The objective of the Clean Water Act is to restore and maintain the chemical, physical and biological integrity of the Nation's waters. In order to assess the nation's waters it is important to measure water quality (water column parameters), physical habitat (watershed and instream measurements) and biological (fish and invertebrates communities) condition. EMAP uses ecological indicators to quantify these conditions. Indicators are simply measurable characteristics of the environment, both abiotic and biotic, that can provide information on ecological resources. Table 2 is a general list of the indicator categories used in EMAP to detect stress in stream ecosystems. The following section describes EMAP measurements in each of these indicator categories. | Indicator | Rationale | |---|--| | Water
column
chemistry | Water chemistry affects stream biota. Numeric standards are available to evaluate some water quality parameters. | | Watershed condition | Disturbance related to land use affects biota and water quality. | | Instream physical habitat and riparian condition | Instream and riparian alterations affect stream biota and water quality. Physical habitat in streams includes all physical attributes that influence organisms. | | Biological -
Benthic
macro
invertebrates | Benthic macroinvertebrates live on
the bottom of streams and reflect the
overall biological integrity of the
stream. Monitoring benthic
invertebrates is useful in assessing
the condition of the stream. | | Biological -
Fish and
amphibians | Fish and amphibians are meaningful indicators of biological integrity. They occupy the upper levels of the aquatic food web and are affected by chemical and physical changes in their environment. | Table 2. General EMAP Indicators # Water Column Chemistry Water chemistry characteristics influence the organisms that reside in streams. A great deal of information is available on the effects of specific chemicals on aquatic biota. Data for 13 water quality parameters were collected at all sites. Measurements of pH, dissolved oxygen (DO), stream temperature, conductivity, dissolved organic carbon (DOC), alkalinity, total nitrogen (TPN), total phosphorus (TP), Nitrite-Nitrate (NO₂-NO₃), ammonia (NH₃), chloride (Cl⁻), sulfate (SO₄) and total suspended solids. The rationale behind the selection of some of these water column measures is presented in **Table 3**. | Indicator | Importance to biota | Examples of human activities that influence this indicator | |---|--|--| | Stream
Temperature | - Influences biological activity - Growth and survival of biota | - Riparian shade reduction - Altered stream morphology | | Dissolved
Oxygen (DO) | - Growth and survival of fish - Sustains sensitive benthic invertebrates - Organic material processing | - Erosion - Addition of organic matter - Riparian shade reduction - Industrial and municipal waste | | pН | - Fish
production
- Benthic
invertebrate
survival | - Mining
- Addition of
organic matter | | Conductivity | - Indicator of
dissolved ions | - Agricultural returns, industrial input and mining. | | Nutrients - Total phosphorous (TP), Total nitrogen (TPN), Mitrite-Nitrate (NO ₂ -NO ₃), and Ammonia (NH ₃) | - Stimulates primary production -Accumulation can result in nutrient enrichment | - Erosion - Recreation, septic tanks and livestock - Stormwater runoff - Fertilization from agriculture, livestock waste and sewage Salmon overharvest | | Chloride (Cl') | - A surrogate
for human
disturbance
(Herlihy et al.
1998) | - Industrial
discharge,
fertilizer use,
livestock waste,
and sewage. | Table 3. Water Column Indicators #### Physical Habitat Indicators Physical habitat in streams includes all those physical attributes that influence or provide sustenance to organisms within the stream. #### Some Useful Definitions- Habitat: **Bankfull width** -- The stream width measured at the average flood water mark. **Canopy** -- A layer of foliage in a forest stand. This most often refers to the uppermost layer of foliage, but it can be used to describe lower layers in a multistoried stand. **Channel** -- An area that contains continuously or periodically flowing water that is confined by banks and a stream bed. **Large Woody Debris** -- Pieces of wood larger than 5 feet long and 4 inches in diameter, in a stream channel. **Riparian area** -- An area of land and vegetation adjacent to a stream that has a direct effect on the stream. This includes woodlands, vegetation, and floodplains. **Sinuosity** -- The amount of bending, winding and curving in a stream or river. **Stream gradient** -- A general slope or rate of change in vertical elevation per unit of horizontal distance of the water surface of a flowing stream. **Substrate** -- The composition of the grain size of the sediments in the stream or river bottom, ranging from rocks to mud. **Thalweg** -- The deepest part of the stream Physical habitat varies naturally, as do biological characteristics, thus expectations differ even in the absence of human caused disturbance. Degradation of aquatic habitats by nonpoint source activities is recognized as one of the major causes for the decline of anadromous and resident fish stocks in the Pacific Northwest (Williams et al. 1989). The following three types of habitat variables are measured or estimated: #### **Continuous Parameters:** Thalweg profile (a survey of depth along the stream channel), and presence/absence of fine sediments were collected at either 100 or 150 equally spaced points along the stream reach. An observation of the geomorphic channel type (e.g. riffle, glide, pool) were made at each point. Crews also tally large woody debris along the reach. #### **Transect Parameters:** Measures/observations of bankfull width, wetted width, depth, substrate size, canopy closure, and fish cover were taken at eleven evenly spaced transects in each reach. Gradient measurements and compass bearing between each of the 11 stations are collected to calculate reach gradient and channel sinuosity. This category also includes measures and/or visual estimates of riparian vegetation structure, human disturbance, and stream bank angle, incision and undercut. #### **Reach Parameters:** Channel morphology class for the entire reach is determined (Montgomery and Buffington, 1993) and instantaneous discharge is measured at one optimally chosen cross-section. # **Biological Indicators** #### Fish/Aquatic Vertebrate Assemblage In some regions, fish are good indicators of long-term effects and broad habitat conditions because they are relatively long-lived and mobile (Karr et al., 1986). Fish assemblages integrate various features of environmental quality, such as food abundance and habitat quality. The physical degradation of streams can cause changes in the food web and the composition and distribution of habitats (Lonzarich, 1994). These are some of the reasons that stream fish assemblages may be better indicators of land-use impacts than single salmonid species (Karr, 1981). # Some Useful Definitions - Biota Aquatic Assemblage - an organism group of interacting populations in a given waterbody, for example, fish assemblage or a benthic macroinvertebrate assemblage. Benthic Macroinvertebrates animals without backbones, living in or on the sediments, and of a large enough size to be seen by the unaided eye (as captured with a 500µm mesh net). Also referred to as macroinvertebrates or benthos. When amphibians are collected in addition to fish the more general term aquatic vertebrate will be used. The objectives of the vertebrate assemblage assessments are to: 1) collect data for estimates of relative abundance of all species present in the assemblage, and 2) collect all except the most rare species in the assemblage. Fish were sampled with one-pass electro-fishing in all portions of the sample reach. Fish were identified, counted, and measured and voucher specimens were collected for species that were difficult to identify. Amphibians that were captured during electrofishing were identified and counted only. Although these methods were not used to estimate absolute abundance, standardized collection techniques were important for consistent measures of proportionate abundance of species. #### **Benthic Invertebrates Assemblage** Benthic invertebrates inhabit the sediment or surface substrates of streams. The benthic macroinvertebrate assemblages in streams reflect overall biological integrity of the benthic community. Monitoring these assemblages is useful for assessing the status of the water body and monitoring trends. Benthic communities respond to a wide array of stressors in different ways, thus it is often possible to determine the type of stress that has affected a macroinvertebrate community (Klemm et al., 1990). Because many macroinvertebrates have relatively long life cycles of a year or more and are relatively immobile, macroinvertebrate community structure is a function of past conditions. Macroinvertebrates are sampled from the two predominant habitat types (riffles and pools) using a D-frame kick net (500µm mesh). The habitat
types are described below: Riffle - a portion of the stream with relatively fast currents and shallow depth. Pool- a portion of a stream with reduced current velocity and greater depth. Five kick samples are collected from each habitat type and are composited by habitat type. A subsample of each composite, representing a predetermined equivalent substrate area, is processed for macroinvertebrates. For each sample, 300 organisms are identified to the finest practical taxonomic level. The macroinvertebrate method used in the upper Chehalis is slightly different than that used in other EMAP studies (Lazorchak et al., 1998) where macroinvertebrate data is collected at each transect regardless of habitat type. Photo: Overview of Chehalis basin from Ceres Hill Road (source: Washington Department of Ecology). # III. RESULTS #### A. Introduction Using the R-EMAP protocols described, data were collected from 26 upper Chehalis sites. In this report, we will only be presenting a portion of the indicators that were generated from the field data. This is due to the large volume of information that was collected. Additional indicators are summarized in Appendices 1-7. Description of the Upper Chehalis River Basin There are 455km of 2nd order streams in the upper Chehalis basin representing 19.4% of the total 2342km of streams in the basin (see **Table**1 in Section II). Using the EMAP sampling design to select a random sample of the 2nd order streams, 46 sites were evaluated for field sampling. Of these, only 26 were selected as "target sites" (useable sample sites). Reasons for exclusion of the remaining 20 sites are shown on the next page in **Figure 2**. The estimated stream length represented by the 26 samples is 345.3km of the total 454km, as the sample is assumed to be representative of both the "target" portion as well as reaches where access was denied (76% of the total). Each of 26 sites was sampled at least once during the 1997 field season. Figure 2. Stream Categories #### Data Analysis and Interpretation In this report, the primary method for evaluating indicators was cumulative distribution frequencies (CDFs). CDFs are graphs that show the complete data population above or below a particular value. The "population" in this report is the 2nd order streams of the upper Chehalis basin. For example, **Figure 3** shows that 40 percent of the 2nd order stream miles have temperatures below 14°C. # B. Water Column Chemistry In general terms, a water quality standard defines the goals for a waterbody by designating the use or uses to be made of the water, setting criteria necessary to protect those uses, and preventing degradation of water quality through antidegradation provisions. Water quality standards apply to surface waters of the United States, including rivers, streams, lakes, oceans, estuaries and wetlands. Under the Clean Water Act, each State establishes water quality standards which are approved by EPA. The State of Washington has established water quality standards that include water quality criteria representing maximum concentrations of pollutants that are acceptable, if State waters are to meet their designated uses. Data for 13 water column indicators were collected from 26 sites. The data from these sites were compared to current water quality standards of Washington (**Table 4**). Water quality criteria do not exist for all of the water column variables measured during the study. | Indicator | Standard for Washington | | |--------------------------|---|--| | Water Temperature | 16°C (Class AA)
18°C (Class A) | | | Dissolved Oxygen
(DO) | >9.5 mg/L (Class AA) >8
mg/L (A) | | | pН | 6.5 to 8.5 for both Class A and Class AA Waters | | **Table 4.** Table of standards for freshwater (Washington State, 1992). ¹Streams in the upper Chehalis are either Class A or AA, which are state designated use classifications (Merritt et al., 1999). The results reported below are for only those variables that have an applicable criteria and/or those that influence the biota. Sites were not continuously sampled and timing of sampling was not intended to capture the peak concentration of chemical indicators. Data interpretation reflects a single view in time at these representative locations. #### **Temperature** Because stream temperature is temporally variable, dependent on climatic conditions, a single measurement is of limited value in characterizing stream conditions. Temperature ranged from 10.7°C to 18.0°C. Using the Washington State criteria, no sites exceeded 18.0°C at the time of sampling. The median temperature was 14.4°C (see **Figure 3**). The sample period was from July 2nd to September 23rd. Figure 3. Stream temperature Figure 5. pH of streams. Figure 6. Total Suspended Solids (TSS) of streams. #### Dissolved Oxygen (DO) Dissolved oxygen is simply the oxygen dissolved in water that is available for organisms to use for respiration. Like temperature, DO is temporally variable and a single measurement is of limited value for characterizing stream condition. In the upper Chehalis basin, DO ranged from 8.6 mg/L to 15.7 mg/L (mean 12.2 mg/L). The State standard is >9.5 mg/L for AA and >8 for A streams. Less than 2% of the streams were below the AA standard (see Figure 4). Overall DO is relatively high (near saturation) based on these daytime measurements. This is an expected condition in streams with low temperature, good turbulence (relatively shallow, cobble bedded) and low primary productivity which is typical of forested streams. #### pН Another important water column variable, pH, is a numerical measure of the concentration of the constituents that determine water acidity. It is measured on a logarithmic scale of 1.0 (acidic) to 14.0 (basic) and 7.0 is neutral. The pH of the upper Chehalis basin study sites ranged from 6.8 to 8.7 with mean 7.5. Most (98%) of the stream miles were within the state criteria of 6.5 to 8.5 as shown in **Figure 5** (one site above 8.5). Measurements of pH collected during the day are typically elevated, as CO₂ is depleted due to photosynthesis which effectively shifts the pH up. #### Total Suspended Solids (TSS) Inputs of fine sediment that result in high TSS in streams occur during high winter flows as there is a strong relation between turbidity and discharge. Summer low flows provide data for 'background' TSS levels which is useful as turbidity criteria are given in terms of amount of TSS beyond background. Washington State standards allow for an increase of 5 NTU for domestic water supplies when background is less than 50 NTU and no more that a 10% increase when turbidity is above 50 NTUs. TSS of streams in the upper Chehalis basin is shown in **Figure 6**. #### Nutrients Nutrient inputs to streams are important as substantial inputs (eutrophication) from anthropogenic sources can result in increased algal growth which can upset the ecological balance of the stream. Likewise, loss of nutrients from human activities can reduce stream productivity. For sample reductions in anadromous salmonid populations has diverted large quantities of nutrients away from Washington and Oregon streams and rivers (WDFW, 2000). #### **Phosphorous** Although there are no State criteria for phosphorus, EPA recommends a limit of <0.05 mg/L for streams that deliver to lakes and suggested limit of 0.1 mg/L in streams that do not deliver to lakes (MacKenthun, 1973 in MacDonald et al., 1991). Because of the low phosphorous content, streams in the Pacific northwest region are considered naturally nutrient poor and sensitive to nutrient inputs (Welch et al., 1998). None of the streams exceed the 0.1 mg/L limit. Mean annual phosphorus concentrations in small forested streams of the west slope of the Cascades are typically <0.06 mg/L (see McDonald et al., 1991). The principal means of increase of phosphorous in Pacific northwest streams are increased erosion rates and organic matter inputs. #### Nitrite-Nitrate (NO₂ NO₃) Inorganic nitrogen is the predominant form of nitrogen in lotic systems (Welch et al., 1998) and is readily assimilated by plants for growth. There is no national criteria for nitrate but concentrations of <0.3 mg/L (<300 eq/L) would probably prevent eutrophication (Cline 1973, in MacDonald et al., 1991). Approximately 75% of the streams have <0.3 mg/L nitrite-nitrate. The usual range in non-enriched streams is 1 - 0.5 mg/L so all are within this normal range (Welch et al, 1998). Low nutrients in the form of nitrate are characteristic of forest streams. This is similar to stream monitoring results from other Coast Range Ecoregion areas (Herger and Hayslip, 2000). As with other water quality measures, amounts of nitrogen are highly dependent on flow. | Nutrient | Mean | Minimum | Maximum
Value | |---------------------|------|---------|------------------| | Total
Phosphorus | .04 | .01 | .09 | | Nitrite-Nitrate | .27 | .01 | 1.24 | Table 5. Nutrients in the upper Chehalis basin, expressed as mg/L # C. Physical Habitat Indicators While there are currently no water quality criteria for physical habitat variables, they are very important for supporting designated uses and directly support the goal of the Clean Water Act. Watershed scale features (stream order, basin size, and gradient) describe the stream in the context of the overall landscape and provide context for the relationship of other physical habitat features. In this section we describe the physical characteristics of streams at a broad scale using indicators such as channel form and related measures. We also describe the physical characteristics of streams at a finer reach scale using indicators such as substrate size and pool habitat. We focus on those indicators of greatest importance to the biota. #### Channel Form In the upper Chehalis basin, 2nd order streams have a relatively small range of watershed area (mean 5,034 ac) and range of gradients (1.1 to 4.1%). Most of
the channels of the upper Chehalis basin have a pool-riffle type channel (Montgomery and Buffington, 1998). In this channel type, flow converges and scours on alternating banks resulting in a laterally oscillating sequence of bars, pools, and riffles. Also the presence of large roughness elements (large woody debris, boulders, etc.) act to force the flow, thereby influencing the channel form and complexity. The cross section of a stream channel (width and depth) provides information for evaluating total habitat space available for fish and other organisms. In the upper Chehalis basin, the mean thalweg depth (the depth along the deepest part of the stream) was 39.3 cm. Mean wetted stream width was 5.5m. #### Substrate Substrate describes the grain size of particles on the stream bottom, and ranges from rocks to mud. Stream substrate size is influenced by many factors including geology, gradient, flow and channel shape. The following describes the characteristics of surface substrate particle size in the basin. Substrate particle size data were collected at five locations along each of the 11 evenly spaced transects at each sample site. Data were expanded to reflect the proportion of the stream channel area. Overall, sand and fine (<0.06 mm) sized substrate was the most common (mean 32% and median 25% of the surface substrate) followed by coarse gravel (**Figure 7**). Although the fine sized substrate fraction was common, coarser substrate was more often the dominant substrate size (defined as > 50% of the streambed) in streams that had a dominant substrate type. In Figure 7. Bar chart of mean substrate quantity by size class in 2nd order streams. other words fines were present in most streams, but many streams had well sorted gravel and cobble substrate. Note, many channels did not have a dominant substrate size class and no streams were boulder dominated (Figure 8). Figure 8. Pie chart of percent of streambed with dominant particle size. #### Large Woody Debris (LWD) Large woody debris (LWD), as single pieces or in accumulations (i.e. log jams), alters flow and traps sediment, thus influencing channel form and related habitat features. The quantity, type and size of LWD recruited to the channel from the riparian zone and from hillslopes is important to stream function in channels that are influenced by LWD of various sizes. Loss of LWD without a recruitment source can result in long-term alteration of channel form as well as loss of habitat complexity in the form of pools, overhead cover, flow velocity variations, and retention and sorting of spawning-sized gravels. Field data were categorized into five size classes (very small, small, medium, large, very large) based on the following length/diameter matrix (**Table 6**). | Diameter
Class (m) | Length Class (m) | | | |-----------------------|------------------|---------|---------------| | | 1.5 - 5 | >5 - 15 | >15 | | 0.1 - 0.3 | Very
Small | Small | Medium | | >0.3 - 0.6 | Small | Medium | Large | | >0.5 - 0.8 | Small | Large | Large | | >0.8 | Medium | Large | Very
Large | **Table 6.** Definition of five LWD size classes based on piece length and diameter. LWD of all sizes was generally abundant (median 22 pieces/100m and mean 32 pieces). Only 4% of the streams had no LWD. Because larger sized pieces of LWD have a greater ability to influence channel form, analyzing the medium and larger sized pieces provides a different view of the LWD content of the streams (**Figure 9**). Larger pieces, capable of influencing channel form, were rare. No very large pieces were counted and the mean large size was 3 pieces/100m, median 1 piece/100m (**Figure 10**). Figure 10. Mean LWD quantity (pieces per 100m) by class. For the west side of the Cascades, the National Marine Fisheries Service (NMFS) suggests stream channels should have >80 pieces per mile (5 pieces per 100m) of LWD >24in (>60cm) diameter in order to be "properly functioning" (NMFS, 1996). Some of the streams of the basin met the NMFS criterion as the mean number of pieces in this large and very large size class averaged 2.5 pieces per 100m. #### Pools In streams, pools are areas of deeper, slower flowing water that are important habitat features for fish. The abundance of pools and their size and depth depends on the stream's power and channel complexity. Stream size, substrate size and abundance, and larger roughness element (e.g. LWD) availability all contribute to the frequency and quality of pools. Although the pool frequency is fairly high in the upper Chehalis basin (mean 1 pool per 2 channel widths of stream length), most of the pools are shallow, with mean pool depth of 24 cm (see **Figure 11**). Therefore, the deep pools useable by salmon were rare. #### Fish Cover Many structural components of streams are used by fish as concealment from predators and as hydraulic refugia (e.g. bank undercuts, LWD, boulders). Although this metric is defined by fish use, fish cover is also indicative of the overall complexity of the channel which is likely to be beneficial to other organisms. Using the metric of natural fish cover (includes overhanging vegetation, undercut banks, LWD, brush, and boulders), the mean areal cover proportion of 0.37 was estimated for the basin as shown in **Figure 12**. Using quartiles to define low, medium, high and very high, most streams are in the moderate range of natural fish cover. Few have very high amount of fish cover. #### Riparian Vegetation Riparian (stream bank) vegetation is important for several reasons: - influences channel form and bank stability through root strength; - source of recruitment for LWD that influences channel complexity and provide cover for fish; - provides inputs of organic matter such as leaves, and shades the stream which influences water temperature. Figure 9. Large Woody Debris (LWD) quantity for The Medium and larger categories expressed as pieces per 100m. Figure 11. Frequency of pools by depth class. Figure 12. Natural fish cover (undercut banks, overhanging vegegation, LWD, brush and boulders) Expressed as a proportion of the reach, riparian cover data were collected for three vegetation heights: 1. Canopy - >5m 2. Mid level - .5m to 5 m 3. Ground cover - <.5m Visual estimates of cover density and general structural/species vegetation classes (e.g. coniferous, deciduous) of each layer were recorded. Overall, riparian vegetation was dense and most streams had abundant riparian vegetation (**Figure 13**). The proportion of streams with riparian coverage was approximately 100% for most streams (mean 92%). Three types of riparian canopy (riparian vegetation >5m) cover types were considered, coniferous, deciduous, and mixed coniferous and deciduous cover. The riparian tree canopy of most streams is composed of deciduous species (e.g. alder, maple). Coniferous riparian canopy was generally rare (Figure 14). Figure 14. Pie chart of the mean percent riparian canopy cover by species types in second order streams of the upper Chehalis. In addition to riparian vegetation presence, stream shading from riparian canopy was assessed using densiometer readings at each of the 11 transects. Separate calculations from the bank and mid-channel were made. Overall, shade was high with mean bank shading of 91% and mean mid-channel shade of 77% (see Figure 15). #### Riparian Disturbance Indicators Removal or alteration of riparian vegetation reduces habitat quality and can result in negative effects to the stream biota. Riparian disturbance data were collected by examining the channel, bank and riparian area on both sides of the stream at each of the 11 transects and visually estimating the presence and proximity of disturbance (Hayslip et al., 1994). Eleven different categories of disturbance were evaluated. Each disturbance category is assigned a value based on its presence and proximity to the stream (1.67, in channel or on bank; 1.0, within 10m of stream; 0.67, beyond 10m from stream;, and 0, not present). All types of disturbance were observed in the riparian zones of the upper Chehalis streams. Some, such as row crops, mining, and pipes, were very rare both in overall mean and frequency of occurrence (number of sites). The most common form of riparian disturbance was logging (31%), followed by pasture (25%) and roads (21%) (**Figure 16**). Data were expanded to calculate a proximity-weight disturbance index for each reach (Kaufmann et al., 1999). This index combines the extent of disturbance (based on presence or absence) as well as the proximity of the disturbance to the stream. Categories of disturbance were defined using quartile ranges of the data (**Table 7**). Figure 13. Riparian vegetation cover (both canopy and mid layer Figure 15. Mid-channel shade Figure 17. All riparian disturbance all types Figure 16. Mean riparian zone human influence from each of 10 disturbance categories. | Data Range | Level of Human Influence | |------------|--------------------------| | 04 | Low | | > .48 | Medium | | > .8 - 1.2 | High | | > 1.2 | Very High | Table 7. Levels of human influence Generally the level of human influence is low (<0.4) for the separate categories based on mean values (see Appendix 3). However, when all disturbance categories are accounted for, most sites have a high level of human influence (mean 1.34 and median 1.1) (Figure 17). Approximately 40% of the stream km have very high evidence of human influence when all sources were combined. # D. Biological Indicators #### Fish and Amphibian Resources Fish were sampled at all sites and amphibians were observed in 42% of stream km. A total of 20 different species were sampled, representing 15 fish species and 5 amphibian species. Fish species are listed in Figure 18 and the relevant statistics are in Table 8. | Statistic | # of
Sites | % of
Stream
Length | Comment | |--|---------------|--------------------------|-------------| | Sites with Fish |
26 | 100 | 15 species | | Sites with salmonids | 26 | 100 | | | Sites with
Amphibians | 11 | 42 | 5 species | | Sites with non-
native fish | 1 | 4 | Pumpkinseed | | Sites with non-
native
amphibians | 1 | 4 | Bull frog | | Sites with non-
native
vertebrates | 2 | 8 | | **Table 8.** Frequency of occurrence of aquatic vertebrates, upper Chehalis 2nd order streams, 1997. Non-native species were rare in the basin's 2nd order streams. Only 1 non-native fish species (pumpkinseed) was sampled at one site, representing 4% of the stream km. In addition, only one non-native amphibian (bull frog) was sampled at one site. Although non-native species were rare, this study does not assess the presence/abundance of hatchery fish. The Salmonidae family, which includes trout and salmon, was the most broadly distributed vertebrate family in the basin, followed by the Cottidae family (sculpins). Coho salmon and coastal cutthroat trout were the most broadly distributed salmonid species (see **Figure 18**). Coho salmon occur along the Pacific coast from northern California to Alaska (Wydoski and Whitney, 1979). This anadromous fish spawns and juveniles rear in freshwater from 1 to 2 years before migrating to the ocean. Coho are an important commercial and popular sport fish and are one of the more commonly found salmonids in Western Washington. Coastal cutthroat trout are the only cutthroat sub-species that is native to the west coast of North America from northern California to southeast Alaska (Wydoski and Whitney, 1979). Coastal cutthroat trout use a variety of habitats, including large and small rivers, very small. ocean-connected, streams and isolated stream reaches above migration barriers. Often, coastal cutthroat trout are the only salmonid species present in high elevation streams (Connelly and Hall, 1999). This species has a variety of life history strategies with anadromous, fluvial and resident forms as well as intermediates (Trotter. 1989). Currently, coastal cutthroat trout are proposed as a threatened species under the Endangered Species Act for Washington State. The dominant sculpin (cottid) species are the reticulate and riffle sculpin, both of which are native to coastal streams of Washington and Oregon north to the Puget Sound with disjunct distribution in central and northern California (Lee et al., 1980). We grouped these two species together as they were often indistinguishable from one another. Several native fish were found rarely (<5% of the estimated stream miles). These were the redside shiner, longnose dace and the northern pikeminnow. #### Fish Guild descriptions: It is useful to group fish by how sensitive they are to pollution and other human disturbances. Also, fish can be grouped by their temperature preferences. These groups are called guilds. The fish guild classification that we use in this report is based on Zaroban et al. (1999). The following classifications are used to build indices of biological integrity (IBIs) but they are also useful for providing an overview of the species within the ecoregion: Temperature guilds - 3 classifications; warm, cool, and cold water preference. Sensitivity guilds – tolerant, intermediate, and sensitive are classifications based on species ability to tolerate pollution and disturbance that is human induced. Most upper Chehalis basin vertebrates are cool and coldwater species and are of intermediate sensitivity to human disturbance (see Figures 19 and 20, respectively). #### Benthic invertebrates Benthic macroinvertebrate assemblages reflect overall biological integrity of the stream and monitoring these assemblages is useful in assessing the current status of the water body as well as long-term changes (Plafkin et al., 1989). Benthic invertebrate data collected from riffle habitats were available from all sample reaches. The following four metrics were used in the analysis: taxa richness, EPT taxa richness, intolerant taxa richness and percent EPT. See Table 9 for a more in depth description of each metric. The metric "taxa richness" gives an overall indication of the variability of macroinvertebrate communities in the upper Chehalis basin (**Figure 21**). The total number of taxa ranges from 5 to 60 species. In an assessment of Oregon Coast Range Ecoregion streams, Canale (1999) found critical levels of total taxa richness of less 30 taxa and EPT taxa richness of less than 18 taxa as indicative of impaired stream condition based on analyses developed from Oregon reference sites. In an assessment of Puget Lowland Ecoregion streams in the King County area (Karr and Chu,1999), EPT taxa richness of less Figure 18. Fish Species found in the upper Chehalis basin, 2nd order streams, 1997. Figure 19. Percent of vertebrate species within each temperature guild. Median, 75-25% quartiles, and non-outlier min-max, shown with inner box, and bars. Tolerance category Figure 20. Percent of vertebrate species within each sensitivity guild. Median, 75-25% quartiles, and non-outlier min-max, shown with inner box, and bars than 15 taxa was found to be indicative of an impaired condition based on reference sites from the Puget Lowlands Ecoregion. In the upper Chehalis, approximately 90% of stream km had <30 taxa richness (Figure 21) and approximately 32% had <18 EPT taxa (Figure 22). | Metric | Description | - Rationale | |--------------------------------|---|--| | Taxa
richness | The total number of different taxa describes the overall variety of the macroinvertebrate assemblage. Useful measure of diversity or variety of the assemblage. | Decreases with low water quality associated with increasing human influence. Sensitive to most types of human disturbance. | | EPT taxa richness | Number of taxa in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddis flies). | In general, these taxa are sensitive to human disturbance. | | Percent
EPT | Percent of the total
sample organisms that
are Ephemeroptera,
Plecoptera and
Trichoptera. | A composite measure for identity and dominance. | | Intolerant
taxa
richness | Taxa richness of those organisms considered to be sensitive to. perturbation | Taxa that are intolerant to pollution based on classification from Wisseman, 1996. | Table 9. Description of benthic macroinvertebrate indicator metrics (Resh and Jackson, 1993 and Resh, 1995). As with fish, invertebrates can be grouped by their sensitivity to pollution. **Figure 23** shows the total number of taxa (taxa richness) of those organisms considered to be sensitive to pollution. Figure 21. Total invertebrate taxa richness Figure 22. EPT taxa richness Figure 23. Intolerant taxa richness Photo: Sage Creek, Upper Chehalis basin. (Source: Washington Department of Ecology) # IV. DISCUSSION In the upper Chehalis basin the primary land cover type is forest (81%). Much of this forested land is currently being actively managed, or has been harvested at some point in the past. The second largest land cover type in the basin is agriculture (11%). We found that 40% of the stream miles had very high evidence of human influence in the riparian area (when all sources of human influence were combined). The largest sources of human influence in the riparian areas were logging, pasture and roads. The R-EMAP project was designed to evaluate the overall condition of the basin. The data provides a large base of information, which while not necessarily designed to investigate specific activities, can be used to assess human influence on streams in the upper Chehalis basin. When examining the effect of human influences on aquatic ecosystems, it is often difficult to decide which indicators to examine. In the upper Chehalis basin, the major land cover type and the largest source of human influence in the riparian area is forestry. Therefore, we will evaluate some indicators that have been suggested to be sensitive to forestry in the northwest (McDonald et al., 1991). In **Table 10**, indicators are ranked according to their sensitivity to forest activities as follows: - 1 = directly affected and highly sensitive - 2 = moderately affected and somewhat sensitive - 3 = indirectly affected and not very sensitive - 4 = largely unaffected | Parameter | Forest
Harvest | Road building and maintenance | |------------------------|-------------------|-------------------------------| | pH | 3 | 3 | | Nitrogen | 2 | 3 | | Phosphorus | 2 | 3 | | Temperature | 1-2 | 3 | | Canopy
opening | 1-3 | 2 | | LWD | 1 | 4 | | Riparian
vegetation | 1-3 | 3 | | Pool
Parameters | 2 | 1 | | Macro invertebrates | 1 | 1 | **Table 10.** Sensitivity of selected monitoring parameters to forest management activities, assuming average management practices (from McDonald et al., 1991). In the following discussion and in **Table 11**, the results from the upper Chehalis basin are compared to what we would expect based on examining indicators that are sensitive to forest management activities. Note, that we are only evaluating some of the indicators measured by the R-EMAP study. #### Water Column Chemistry The available data indicates that pH is not sensitive to most forest management activities (McDonald et al., 1991). In the upper Chehalis basin, we found only 2% of the stream miles were above the Washington State pH criteria. Forest management activities can alter many parts of the nitrogen cycle, and this makes it difficult to generalize about the effect of these activities. In the upper Chehalis basin, 75% of the streams have < .03 mg/L nitrite-nitrate (a suggested level to prevent eutrophication). All streams in the upper Chehalis basin fall within the usual range found in
non-enriched streams which is 1.5 mg/L (Welch et al, 1998). | Parameter | Expected direction of response to Forest Management activities | Direction
of response
found in
Upper
Chehalis | |---|--|---| | pН | | | | Nitrogen | | | | Phosphorus | | | | Temperature | • | | | Canopy opening | • | | | LWD | 4 | - | | Deciduous
Riparian
Vegetation | • | • | | Pool Depth | 4 | 1 | | Pool
Frequency | _ | | | Macro
invertebrate
(EPT taxa
richness) | | • | **Table 11.** Expected direction of response for selected monitoring parameters to forest management activities compared to what was found in the upper Chehalis basin. Studies in the Pacific northwest indicate that forest management activities are unlikely to substantially increase phosphate concentrations on aquatic ecosystems (McDonald et al., 1991). In the second order streams of the upper Chehalis basin we found no streams had phosphorus above .1 mg/L (a suggested level). Forest cover provides shade to streams and a reduction in the forest cover along streams can increase the solar radiation and hence peak summer stream temperatures. In this project, using a single measurement, we found no streams that were above the Washington State criteria of 18°C. This is not unexpected as stream temperature is variable and dependent on climatic conditions. Using a single measurement, it is unlikely to represent peak stream temperatures. #### Physical Habitat The primary influence of management activities on the riparian areas is the direct removal of vegetation. The removal of the riparian canopy, by increasing direct solar radiation to the stream, can cause marked increases in water temperature. Both coniferous and deciduous species are effective in stream shading. In the upper Chehalis basin, the amount of shade was high, 91% of the stream miles were classified as shaded when shade was measured near the streambank. When measured in the middle of the stream, 77% of the stream miles were shaded. Therefore, decreased bank stability and increased solar radiation from riparian vegetation removal would not appear to be a widespread problem. Although the riparian canopy provides adequate shade to these streams, these trees are mostly deciduous. Conifierous trees, which provide much greater structural function in streams due to their size, were a much less common component of the riparian vegetation. The amount of LWD in streams of the Pacific northwest has been reduced from historical levels by forest management activities. No streams in the upper Chehalis basin had very large pieces (> 0.8 m in diameter) of LWD. The mean number of large sized LWD (.8 m - >.5 m) was 2.5 pieces per 100 meters of stream. NMFS recommends 5 pieces per 100 meters of stream. The abundance of pools and their size and depth depends on the stream's power and channel complexity. Stream size, substrate size and abundance, and larger roughness element (e.g. LWD) availability all contribute to the frequency and quality of pools. In the upper Chehalis, while pools were frequent, they were also quite shallow (mean depth 25cm), with 63% of the pools in the less than .5m depth category. #### Aquatic Biota Benthic macroinvertebrates reflect the overall biological integrity of streams. The number of mayfly, stonefly and caddisfly taxa (EPT taxa richness) is one of the most commonly used measures of the invertebrate community. EPT taxa richness was found to decrease with increasing forest management activities in the Umpqua National Forest in Oregon (Fore et al., 1996). In an assessment of Oregon Coast Range streams, Canale (1999) found a EPT taxa richness of 18 and below as indicative of impaired stream condition based on analyses developed from Oregon reference sites. In the upper Chehalis basin, approximately 32% of the stream miles had less than 18 EPT taxa. #### **SUMMARY** The objective of this R-EMAP project was to evaluate the condition of 2nd order streams in the upper Chehalis basin. The primary human activity in the upper Chehalis basin is forest management. We found little evidence of acute or severe impairment, as might be expected from the relatively low level of industrial development in the basin. However, we did find evidence of nonpoint source impairment. In general, the parameters we measured in the upper Chehalis basin R-EMAP study responded as we would have expected them to respond to forest management activities. The exception to this was temperature, which was largely due to our measurement method. However, LWD and pool depth were low and deciduous riparian vegetation was increased as would be expected to result from forest management. Sensitive macroinvertebrate taxa were also low. # V. REFERENCES - Canale, G. 1999. BORIS Benthic evaluation of ORegon rIverS. Draft report. Department of Environmental Quality Laboratory Biomonitoring Section. Portland, Oregon. - Cline, C. 1973. The effects of forest fertilization on the Tahuya River, Kitsap Peninsula, Washington. Washington State Department of Ecology. Olympia. 55pp. - Connolly, P.J. and J.D. Hall. 1999. Biomass of coastal cutthroat trout in unlogged and previously clear-cut basins in the central Coast Range of Oregon. Transactions of the American Fisheries Society 128:890-899. - Fore, L.S, J.R. Karr, and R.W. Wisseman. 1996. Assessing invertebrate responses to human activities: evaluating alternative approaches. Journal of the North American Benthological Society. Volumne 15 (2):212-231. - Hayslip, G., D.J. Klemm and J.M. Lazorchak. 1994. 1994 Field Operations and Methods Manual For Streams in the Coast Range Ecoregion of Oregon and Washington and the Yakima River Basin of Washington. Environmental Monitoring Systems Laboratory. U.S. Environmental Protection Agency. Cincinnati, Ohio. - Herger, L.G. and G. Hayslip. 2000. Ecological condition of streams in the Coast Range ecoregion of Oregon and Washington. EPA-910-R-00-002. U.S. Environmental Protection Agency, Region 10, Seattle, Washington. - Herlihy, A.T., D.P. Larsen, S.G. Paulsen, N.S. Urquhart, and B.J. Rosenbaum. 2000. Designing a spatially balanced randomized site selection process for regional stream surveys: the EMAP midAtlantic pilot study. Environmental Monitoring and Assessment 63:95-113. - Karr, J.R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6(6)21-27. - Karr, J.R., and E.W. Chu. (1999). Restoring Life in Running: Better Biological Monitoring. Island Press, Washington, D.C. 206pp. - Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant, I.J. Schlosser. 1986. Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey, Special Publication 5. State of Illinois, Champaign. - Kaufmann, P.R., P. Levine, E.G. Robison, C. Seeliger, and D.V. Peck. 1999. Quantifying physical habitat in wadeable streams. EPA 620/R-99/003. Environmental Monitoring and Assessment Program, U.S. Environmental Protection Agency, Corvallis, OR. - Klemm, D. J., P.A. Lewis, F. Fulk, and J.M. Lazorchak. 1990. Macroinvertebrate field and laboratory methods for evaluating the biological integrity of surface waters. Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio. EPA-600-4-90-030. - Lazorchak, J.M., Klemm, D. J., and D.V. Peck (editors). 1998. Environmental Monitoring and Assessment Program Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. EPA/620/R-94/004F. U.S. Environmental Protection Agency, Washington, D.C. - Lee, D.S., C.R. Gilbert, C.H. Hocutt, R.E. Jenkins, D.E. McAllister, and J.R. Stauffer Jr. 1980 et seq. Atlas of North American freshwater fishes. Publication #1980-12 North Carolina Biological Survey. North Carolina State Museum of Natural History. - Lonzarich, D. 1994. Dynamics of stream fish assemblages and the application of a habitat-species index to Washington Streams. *in* The Effect of Forest Practices on Fish Populations. T.P. Quinn and N.P. Peterson. Timber, Fish and Wildlife (TFW-F4-94-001). School of Fisheries and Center for Streamside Studies. University of Washington. Seattle, Washington. - MacDonald, L.H., A.W. Smart, and R.C. Wissmar. 1991. Monitoring guidelines to evaluate effects of forestry activities on streams in the Pacific Northwest and Alaska. U. S. Environmental Protection Agency, Region 10, Water Division, Nonpoint Source Section. EPA/910/991-001. Seattle, WA. - MacKenthun, K.M. 1973. Toward a cleaner environment. U.S. Environmental Protection Agency. Washington D.C. - Merritt, G.D., B. Dickes, and J.S. White. 1999. Biological assessment of small streams in the Coast Range ecoregion and the Yakima River Basin. Washington State Department of Ecology. Publication No. 99-302. Olympia, Washington. - Montgomery, D.R. and J.M. Buffington. 1993. Channel classification, prediction of channel response, and assessment of channel conditions. Report for TFW-SH10-93-002. University of Washington, Seattle, Washington. - Montgomery, D.F. and J.M. Buffington. 1998. Channel processes, classification and esponse *in* River ecology and Management: lessons from the Pacific Coastal Ecoregion. R. J. Naiman and R. E. Bilby *editors*. Springer Press, New York. - Omernik, J.M. 1987. Aquatic ecoregions of the conterminous United States—map supplement. Annals of the Association of American Geographers. 77:118-125. - Omernik, J.M. and A. Gallant, 1986. Ecoregions of the Pacific Northwest. EPA 600/3-86/033. U.S. Environmental Protection Agency, Office of Research and Development. Corvallis, OR. - Overton, W.S., D. White, and D.L. Stevens, Jr. 1990. Design Report for EMAP, Environmental Monitoring and Assessment Program. EPA 600/3-91/053. U.S. Environmental Protection Agency, Corvallis, OR. - Peterson, S.A., D.P. Larsen, S.G. Paulsen, and N.S.
Urquhart. 1998. Regional lake trophic patterns in the northeastern United States: three approaches. Environmental Management 22:789-801. - Peterson, S.A., N.S. Urquhart, and E.B. Welch. 1999. Sample representativeness: a must for reliable regional lake condition estimates. Environmental Science and Technology. 33:1559-1565. - Trotter P.C. 1989. Coastal cutthroat trout: a life history compendium. Transactions of the American Fisheries Society 118:463-473. - Washington Department of Fish and Wildlife. 2000. Pacific Salmon and Wildlife: Ecological Context, Relationships and Implications for Management. WDFW Special Edition Technical Report. Olympia, Washington. - Washington State. 1992. Chapter 173-201 WAC, Water Quality Standards for surface waters of the State of Washington. Statutory Authority: Chapter 90.48 RCW. 92-24-037 (Order 92-29), 173-201A-010, filed 11/25/92. Olympia, Washington. - Welch, E.B., J.M. Jacoby, and C.W. May. 1998. Stream quality in River ecology and Management: lessons from the Pacific Coastal Ecoregion. R. J. Naiman and R. E. Bilby editors. Springer Press, New York. - Wisseman, R. 1996. Benthic Invertebrate Biomonitoring and Bioassessment in Western Montane Streams. Aquatic Biology Associates, Inc. Corvallis, OR. - Wydoski, R.S. and R.R. Whitney. 1979. Inland fishes of Washington. University of Washington Press. Seattle, Washington. - Zaroban, D.W., M.P. Mulvey, T.R. Maret, R.M. Hughes, and G. D. Merritt. 1999. Classification of species attributes for Pacific Northwest freshwater fishes. Northwest Science. 73(2) 81-93. # VI. APPENDICES Appendix 1. List of sites with associated stream identification number. | Map # | * Site ID. | Latitude | Londitude | TRS | COUNTY | 7.5 Quad. Map | |-------|------------|-----------------------|---------------|--------------|-----------------|----------------| | 5 | | 3.700 | | T15N-R3W-S29 | LEWIS | Rochester | | 6 | | 46.4733027778 | | | LEWIS | Boistfort Peak | | | WACH97-010 | | | T12N-R5W-S27 | LEWIS | Elochoman Pass | | | WACH97-014 | 46.5690722222 | 123.29545 | T13N-R5W-S34 | LEWIS | Pe Ell | | 15 | WACH97-015 | 46.7624305556 | 123.315294444 | T15N-R5W-S28 | LEWIS | Cedarville | | | WACH97-017 | 46.6101416667 | 122.619944444 | T13N-R1E-S13 | LEWIS | Mayfield Lake | | 19 | WACH97-019 | 46.6556027778 | 123.263708333 | T14N-R5W-S35 | LEWIS | Doty | | 22 | WACH97-022 | 46.9599888889 | 123.081538889 | T17N-R3W-S17 | THURSTON | Little Rock | | 25 | WACH97-025 | 46.8167611111 | 122.769194444 | T15N-R1W-S2 | THURSTON | Bucoda | | 28 | WACH97-028 | 46.7093527778 | 123.19475 | T14N-R4W-S9 | LEWIS | Rainbow Falls | | 29 | WACH97-029 | 46.8979138889 | 123.018972222 | T16N-R3W-S2 | THURSTON | Little Rock | | 30 | WACH97-030 | 46.4486111111 | 123.338511111 | T11N-R5W-S7 | LEWIS | Elochoman Pass | | 33 | WACH97-033 | 46.9144055556 | 123.050716667 | T17N-R3W-S34 | THURSTON | Little Rock | | 37 | WACH97-037 | 46.9890388889 | 123.22595 | T17N-R4W-S6 | GRAYS
HARBOR | Capitol Peak | | 39 | WACH97-039 | 46.57415 | 122.972430556 | T13N-R2W-S31 | LEWIS | Napavine | | 41 | WACH97-041 | 46.6816944444 | 122.734955556 | T14N-R1E-S19 | LEWIS | Onalaska NW | | 42 | WACH97-042 | 46.3705055556 | 123.151405556 | T10N-R4W-S11 | COWLITZ | Elochoman Lake | | 43 | WACH97-043 | 46.945080 5556 | 123.161516667 | T17N-R4W-S22 | GRAYS
HARBOR | Capitol Peak | | 45 | WACH97-045 | 46.870325 | 122.816219444 | T16N-R1W-S16 | THURSTON | Bucoda | | 58 | WACH97-048 | 46.6334638889 | 123.193097222 | T13N-R4W-S9 | LEWIS | Rainbow Falls | | 50 | WACH97-050 | 46.9890722222 | 123.204141667 | T17N-R4W-S5 | GRAYS
HARBOR | Capitol Peak | | 53 | WACH97-053 | 46.8717694444 | 123.146186111 | T16N-R4W-S14 | THURSTON | Oakville | | 54 | WACH97-054 | 46.406475 | 123.108716667 | T11N-R3W-S30 | LEWIS | Wildwood | | 56 | WACH97-056 | 46.7366638889 | 123.269391667 | T14N-R5W-S2 | LEWIS | Doty | | 58 | WACH97-058 | 46.7047277778 | 123.117238889 | T14N-R3W-S18 | LEWIS | Adna | | 59 | WACH97-059 | 46.5203138889 | 123.161822222 | T12N-R4W-S15 | LEWIS | Boistfort | Appendix 2. Summary statistics for water chemistry indicators. | | | | | 95% | | | | | 4,900 | Standard | Standard | |---------------------------------------|-------------|----|------|-------|--------|--------|--------|-------|----------|-------------|----------| | indicator | Units | n | Mean | Conf. | Median | - Min. | . Max. | Range | Variance | - Deviation | Error | | Alkalinity | mg/L | 26 | 30.0 | 4.0 | 29.3 | 17.1 | 55.4 | 38.3 | 100.301 | 10.015 | 1.964 | | Chloride (CI-) | mg/L | 26 | 4.45 | 1.10 | 3.49 | 1.91 | 12.2 | 10.29 | 7.451 | 2.730 | 0.535 | | Conductivity | uS/cm | 25 | 73.0 | 10.2 | 68.8 | 43.5 | 142.4 | 98.9 | 605.708 | 24,611 | 4.922 | | Dissolved oxygen (DO) | mg/L | 26 | 12.4 | 0.8 | 12.2 | 8.6 | 15.7 | 7.1 | 4.339 | 2.083 | 0.409 | | Dissolved organic carbon
(DOC) | mg/L | 26 | 3.0 | 0.6 | 2.4 | 1.1 | 7.9 | 6.8 | 2.367 | 1.539 | 0.302 | | Ammonia (NH ₃ _N) | mg/L | 26 | 0.01 | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.000 | 0.003 | 0.001 | | Nitrate-nitrite (NO ₂₃ _N) | mg/L | 26 | 0.27 | 0.10 | 0.20 | 0.01 | 1.24 | 1.23 | 0.063 | 0.250 | 0.049 | | рН | pH
units | 26 | 7.56 | 0.16 | 7.54 | 6.76 | 8.67 | 1.91 | 0.164 | 0.404 | 0.079 | | Total phosphorus | mg/L | 26 | 0.04 | | 0.04 | 0.01 | 0.09 | 0.08 | 0.001 | 0.025 | 0.005 | | Sulfate (SO ₄) | mg/L | 26 | 1.90 | 0.50 | 1.76 | 0.31 | 4.26 | 3.95 | 1.563 | 1.250 | 0.245 | | Total persulfate nitrogen | mg/L | 26 | 0.46 | 0,14 | 0.38 | 0.15 | 1.54 | 1.39 | 0.112 | 0.335 | 0.066 | | Stream flow | CFS | 26 | 4.82 | 2.21 | 3.64 | 0.04 | 21.64 | 21.6 | 29.986 | 5.476 | 1.074 | | Water temperature | deg C | 26 | 14.1 | 0.7 | 14.4 | 10.7 | 18 | 7.3 | 2.831 | 1.683 | 0.330 | | Total suspended solids | mg/L | 26 | 4 | 1 | 3 | 1 | 13 | 12 | 12.215 | 3.495 | 0.685 | AlK, DOC, CI each had one estimated value. SO_4 , NO_{23} , NH_3 , and TSS had 3,1,20, and 4 undectable readings. **Appendix 3.** Summary statistics for physical habitat metrics | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | | 95% | | | | | | Standard | 302 200 | |---------|--|----------|-------------|-------|--------|--------|-------|-------|-------|--|-----------|---------| | type | Indicator | units | Indicator - | Mean | Conf. | Median | Min. | Max. | Range | | Deviation | Error | | channel | reach length / mean bankfull width | count | #ch_widths | 23.8 | 3.234 | 22.9 | 11.0 | 39.5 | 28.5 | | 8.007 | 1.570 | | channel | mean undercut bank distance | m | XUN | 0.0 | 0.016 | 0.1 | 0.0 | 0.1 | 0.1 | 0.002 | 0.039 | 0.008 | | channel | mean bankfull width | m | XBKF_W | 9.3 | 1.630 | 9.3 | 3.8 | 19.2 | 15.4 | 16.276 | 4.034 | 0.791 | | channel | mean bankfull height | m | XBKF_H | 0.7 | 0.089 | 0.7 | 0.3 | 1.4 | 1.1 | 0.048 | 0.219 | 0.043 | | channel | reach length | m | REACHLEN | 200.4 | 28.250 | 150.0 | 150.0 | 360.0 | 210.0 | 4891.846 | 69.942 | 13.717 | | channel | mean water slope of reach | % | XSLOPE | 1.5 | 0.533 | 1.1 | 0.0 | 4.1 | 4.1 | 1.743 | 1.320 | 0.259 | | channel | sinuosity | unitless | SINU | 1.3 | 0.112 | 1.2 | 1.0 | 2.4 | 1.4 | 0.076 | 0.277 | 0.054 | | channel | mean thalweg depth | cm | XDEPTH | 39.3 | 5.426 | 42.6 | 17.2 | 64.5 | 47.2 | 180.437 | 13.433 | 2.634 | | channel | std. dev. thalweg depth | cm | SDDEPTH | 22.8 | 3.698 | 23.1 | 8.9 | 49.2 | 40.3 | 83.826 | 9.156 | 1.796 | | channel | mean wetted width | m | XWIDTH | 5.5 | 0.929 | 5.2 | 1.5 | 11.6 | 10.1 | 5.290 | 2.300 | 0.451 | | channel | wetted width/depth | unitless | XWD_RAT | 20.7 | 3.196 | 21.1 | 5.5 | 35.2 | 29.7 | 62.624 | 7.914 | 1.552 | | channel | % reach with glides | % | PCT_GL | 53.2 | 9.805 | 46.3 | 20.7 | 100.0 | 79.3 | 589.259 | 24.275 | 4.761 | | channel | % reach with riffles | % | PCT_RI | 29.7 | 6.962 | 31.5 | 0.0 | 64.0 | 64.0 | 297.071 | 17.236 | 3.380 | | channel | % reach with falls | % | PCT_FA | 0.1 | 0.105 | 0.0 | 0.0 | 1.0 | 1.0 | 0.067 | 0.259 | 0.051 | | channel | % reach with rapids | % | PCT_RA | 5.9 | 3.656 | 1.3 | 0.0 | 29.0 | 29.0 | 81.952 | 9.053 | 1.775 | | channel | % reach with cascades | % | PCT_CA | 0.3 | 0.313 | 0.0 | 0.0 | 3.3 | 3.3 | 0.602 | 0.776 | 0.152 | | channel | % reach with fast water types | % | PCT_FAST | 36.0 | 8.968 | 38.5 | 0.0 | 70.0 | 70.0 | 492.954 | 22.203 | 4.354 | | channel | % reach with slow water types | % | PCT_SLOW | 64.0 | 8.968 | 61.5 | 30.0 | 100.0 | 70.0 | 492.954 | 22.203 | 4.354 | | channel | % reach with pools | % | PCT_POOL | 10.7 | 4.505 | 8.8 | 0.0 | 40.0 | 40.0 | 124.391 | 11.153 | 2.187 | | channel | % reach with dry/submerged flow | % | PCT_DRS | 0.0 | 0.000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 | 0.000 | | channel | #ch widths/#residual pools | unitless | pool_freq | 2.1 | 0.486 | 1.9 | 0.5 | 4.9 | 4.5 | 1.451 | 1.204 | 0.236 | | cover | area covered by all types but algae | frac | XFC_ALL | 0.4 | 0.075 | 0.3 | 0.1 | 0.8 | 0.7 | 0.034 | 0.184 | 0.036 | | cover | area covered by natural. obj. | frac | XFC_NAT | 0.4 | 0.073 | 0.3 | 0.1 | 0.8 | 0.7 | 0.033 | 0.181 | 0.035 | | cover | area covered by large obj. | frac | XFC_BIG | 0.2 | 0.051 | 0.2 | 0.0 | 0.5 | 0.5 | 0.016 | 0.126 | 0.025 | | lwd | volume LWD class 1 | m3/m2 | V1W_MSQ | 0.0 | 0.021 | 0.0 | 0.0 | 0.2 | 0.2 | 0.003 | 0.053 | 0.010 | | lwd | volume LWD class 2 | m3/m2 | V2W_MSQ | 0.0 | 0.021 | 0.0 | 0.0 | 0.2 | 0.2 | 0.003 | 0.051 | 0.010 | | lwd | volume LWD class 3 | m3/m2 | V3W_MSQ | 0.0 | 0.017 | 0.0 | 0.0 | 0.1 | 0.1 | 0.002 | 0.041 | 0.008 | | lwd | volume LWD class 4 | m3/m2 | V4W_MSQ | 0.0 | 0.011 | 0.0 | 0.0 | 0.1 | 0.1 | 0.001 | 0.027 | 0.005 | | lwd | volume LWD class 5 | m3/m2 | V5W_MSQ | 0.0 | 0.000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 | 0.000 | | type | | | | | 95% | | | | | | | Standard | |-------|--|--------|-----------|-------|--------|--------|------|-------|-------|--------------|-----------|----------| | lwd |
Indicator | units | Indicator | Mean | Conf | Median | Min. | Max. | | | Deviation | Error | | lwd | count LWD class 1 | #/100m | C1WM100 | 32.3 | 12.359 | 22.2 | 0.0 | 124.0 | 124.0 | | 30.598 | 6.001 | | | count LWD class 2 | #/100m | C2WM100 | 19.1 | 6.944 | 12.7 | 0.0 | 63.3 | 63.3 | | | 3.372 | | lwd | count LWD class 3 | #/100m | C3WM100 | 7.7 | 2.979 | 5.0 | | 25.0 | 25.0 | | 7.375 | 1.446 | | lwd | count LWD class 4 | #/100m | C4WM100 | 2.5 | 1.095 | 1.5 | | 10.0 | 10.0 | | 2.711 | 0.532 | | lwd | count LWD class 5 | #/100m | C5WM100 | 0.0 | 0.000 | 0.0 | | 0.0 | 0.0 | | | 0.000 | | pool | number of residual pools | count | NRP | 13.7 | 2.602 | 12.5 | | 31.0 | 26.0 | | 6.442 | 1.263 | | pool | number of pools depth> 50 cm | count | RPGT50 | 2.5 | 0.706 | 2.0 | 0.0 | 6.0 | 6.0 | | 1.749 | 0.343 | | pool | number of pools depth> 75 cm | count | RPGT75 | 1.3 | 0.465 | 1.0 | 0.0 | 3.0 | 3.0 | 1.325 | 1.151 | 0.226 | | pool | number of pools depth> 100 cm | count | RPGT100 | 0.5 | 0.261 | 0.0 | 0.0 | 2.0 | 2.0 | 0.418 | 0.647 | 0.127 | | pool | max res. depth of deepest pool | cm | RPMDEP | 100.6 | 25.929 | 89.8 | 37.3 | 360.8 | 323.5 | 4121.087 | 64.196 | 12.590 | | pool | vert. profile of largest res. pool | m2 | RPMAREA | 18.2 | 5.436 | 14.7 | 1.8 | 49.7 | 47.9 | 181.150 | 13.459 | 2.640 | | pool | max. pool volume | m3 | RPMVOL | 42.9 | 17.212 | 26.1 | 2.5 | 153.8 | 151.4 | 1815.868 | 42.613 | 8.357 | | pool | mean res. pool width | m | RPXWID | 2.5 | 0.413 | 2.4 | 0.9 | 5.2 | 4.2 | 1.048 | 1.024 | 0.201 | | pool | mean res. pool depth | cm | RPXDEP | 24.2 | 4.034 | 24.6 | 9.1 | 46.6 | 37.5 | 99.738 | 9.987 | 1.959 | | pool | mean pool length | m | RPXLEN | 14.9 | 3.273 | 14.7 | 3.1 | 31.0 | 27.9 | 65.667 | 8.104 | 1.589 | | pool | mean res. pool area | m2 | RPXAREA | 4.1 | 1.223 | 3.4 | 0.4 | 9.9 | 9.6 | 9.174 | 3.029 | 0.594 | | pool | mean pool volume | m3 | RPXVOL | 8.3 | 3.271 | 5.7 | 0.4 | 33.5 | 33.1 | 65.602 | 8.100 | 1.588 | | human | all human dist. (prox. wtd. sum) | frac | W1_HALL | 1.3 | 0.392 | 1.1 | 0.0 | 3.7 | 3.7 | 0.941 | 0.970 | 0.190 | | human | non-agric. human dist. (prox. wtd sum) | frac | W1_HNOAG | 1.1 | 0.314 | 0.9 | 0.0 | 3.1 | 3.1 | 0.605 | 0.778 | 0.153 | | human | agric. human dist. (prox. wtd. sum) | frac | W1_HAG | 0.3 | 0.174 | 0.0 | 0.0 | 1.5 | 1.5 | 0.186 | 0.431 | 0.085 | | human | channel revetment (prox. wtd. index) | frac | W1H_WALL | 0.0 | 0.032 | 0.0 | 0.0 | 0.3 | 0.3 | 0.006 | 0.080 | 0.016 | | human | logging dist.(prox. wtd. index) | frac | W1H_LOG | 0.3 | 0.120 | 0.3 | 0.0 | 0.8 | 0.8 | 0.089 | 0.298 | 0.058 | | human | road (prox. wtd. index) | frac | W1H_ROAD | 0.2 | | 0.3 | 0.0 | 0.6 | 0.6 | 0.031 | 0.177 | 0.035 | | human | pipes (prox. wtd. index) | frac | W1H_PIPE | 0.0 | | 0.0 | 0.0 | 0.2 | 0.2 | 0.001 | 0.036 | 0.007 | | human | landfill/trash (prox. wtd. index) | frac | W1H_LDFL | 0.1 | | 0.0 | 0.0 | 1.0 | 1.0 | 0.057 | 0.240 | 0.047 | | human | park (prox. wtd. index) | frac | W1H_PARK | 0.1 | | 0.0 | 0.0 | 0.7 | 0.7 | 0.047 | 0.216 | 0.042 | | human | row crops (prox. wtd. index) | frac | W1H_CROP | 0.0 | · | 0.0 | 0.0 | 0.2 | 0.2 | 0.001 | 0.033 | 0.006 | | human | pasture (prox. wtd. index) | frac | W1H_PSTR | 0.3 | | 0.0 | 0.0 | 1.5 | 1.5 | 0.183 | 0.428 | 0.084 | | human | mines (prox. wtd. index) | frac | W1H_MINE | 0.0 | | 0.0 | 0.0 | 0.1 | 0.1 | 0.000 | 0.014 | 0.003 | | human | buildings (prox. wtd. index) | frac | W1H_BLDG | 0.1 | | 0.0 | 0.0 | 0.7 | 0.7 | 0.057 | 0.239 | 0.047 | | human | pavement (prox. wtd. index) | frac | W1H_PVMT | 0.1 | | 0.0 | 0.0 | 0.7 | 0.7 | 0.055 | 0.235 | 0.046 | | | | | | 1784
1787 | 95% | | Min. | | Dance | Variance | Standard
Deviation | | |----------------------|--|----------|-------------|--------------|-------|---------------|-------------|-------|-------|----------|-----------------------|-------| | type | indicator in the state of s | units | Indicator | Mean | 0.062 | Median
1.0 | мит.
0.5 | | 0.5 | | 0.154 | 0.030 | | Riparian | frac of reach with canopy | frac | XPCAN | 0.9 | | 1.0 | 1.0 | | 0.0 | | 0.013 | 0.002 | | Riparian | frac of reach with understory | frac | XPMID | 1.0 | 0.005 | 1.0 | 1.0 | 1.0 | 0.0 | 0.000 | 0.010 | | | Riparian | frac with both canopy and understory | frac | XPCM | 0.9 | 0.062 | 1.0 | 0.5 | 1.0 | 0.5 | 0.024 | 0.154 | 0.030 | | Riparian | frac with all three veg classes | frac | XPCMG | 0.9 | 0.062 | 1.0 | 0.5 | | 0.5 | | 0.155 | 0.030 | | | frac of reach covered by canopy | frac | XC | 0.3 | | 0.4 | | 0.7 | 0.6 | | 0.166 | | | Riparian | frac of reach covered by | IIac | <u> </u> | 0.4 | 0.007 | 0.4 | 0.1 | 0.7 | | 0.020 | | | | Riparian | groundcover | frac | xg | 0.7 | 0.066 | 0.7 | 0.4 | 1.0 | 0.6 | 0.026 | 0.163 | 0.032 | | rupanan | frac of reach covered by large | 1140 | , a | 0., | 0.000 | | | | | | | | | Riparian | woody veg | frac | XCMW | 0.7 | 0.105 | 0.7 | 0.2 | 1.1 | 0.9 | 0.068 | 0.260 | 0.051 | | Riparian | frac of reach with any veg cover | frac | XCMG | 1.6 | 0.094 | 1.6 | 1.2 | 2.0 | 0.9 | 0.054 | 0.232 | 0.045 | | | frac of reach covered by any woody | | | | | | | | | | | | | Riparian | veg | frac | XCMGW | 0.9 | 0.141 | 1.0 | 0.2 | 1.4 | 1.2 | 0.121 | 0.348 | 0.068 | | <u></u> | frac of reach with coniferous dom | | | | | | | | | | 2 227 | | | Riparian | canopy | frac | PCAN_C | 0.0 | 0.015 | 0.0 | 0.0 | 0.2 | 0.2 | 0.001 | 0.037 | 0.007 | | Pinorion | frac of reach with deciduous dom | frac | PCAN_D | 0.6 | 0.103 | 0.6 | 0.1 | 1.0 | 0.9 | 0.065 | 0.254 | 0.050 | | Riparian
Riparian | frac of reach with mixed canopy | frac | | 0.8 | | | 0.0 | 0.9 | 0.9 | 0.062 | 0.234 | 0.030 | | | | | PCAN_M | 0.3 | | 0.2 | 0.0 | 0.9 | 0.5 | | 0.249 | | | Riparian | frac of reach without canopy veg | frac | PCAN_N | 0.1 | 0.061 | 0.0 | 0.0 | 0.5 | 0.5 | 0.023 | 0.151 | 0.030 | | Riparian | mean %canopy cover at LF & RT banks | % | XCDENBK | 91.0 | 3.420 | 93.4 | 73.5 | 100.0 | 26.5 | 71.688 | 8.467 | 1.660 | | Riparian | mean % canopy cover midstream | % | XCDENMID | 77.4 | 7.413 | 81.8 | 23.8 | 99.7 | 75.9 | 336.860 | 18.354 | 3.599 | | subst | mean substrate embeddedness | % | XEMBED | 55.1 | 9.234 | 51.3 | 13.9 | | 86.1 | 522.694 | 22.863 | 4.484 | | | log10(est geom mean substr dia. | | | 00 | 0.20 | 31.0 | 10.0 | 100.0 | | OLL:00-1 | 22.000 | 4.404 | | subst | mm) | unitless | LSUB_DMM | 1.2 | 0.452 | 1.5 | -2.3 | 3.0 | 5.3 | 1.250 | 1.118 | 0.219 | | subst | % substrate fines class | % | PCT_FN | 20.0 | 9.870 | 7.3 | 0.0 | 94.5 | 94.5 | 597.157 | 24.437 | 4.792 | | subst | % substrate fine gravel class | % | PCT_GF | 11.7 | 3.865 | 9.1 | 0.0 | 36.4 | 36.4 | 91.565 | 9.569 | 1.877 | | subst | % substrate sand class | % | PCT_SA | 12.0 | 5.839 | 7.3 | 0.0 | 63.6 | 63.6 | 208.971 | 14.456 | 2.835 | | subst | % substrate hardpan class | % | PCT_HP | 4.1 | 3.314 | 0.9 | 0.0 | 36.4 | 36.4 | 67.321 | 8.205 | 1.609 | | subst | % substrate boulder class | % | PCT_BL | 7.9 | 5.041 | 1.8 | 0.0 | 47.3 | 47.3 | 155.753 | 12.480 | 2.448 | | subst | % substrate cobble class | % | PCT_CB | 14.9 | 5.704 | 13.6 | 0.0 | 45.5 | 45.5 | 199.410 | 14.121 | 2.769 | | subst | % substrate coarse gravel class | % | PCT_GC | 19.6 | 4.641 | 18.2 | 0.0 | 38.2 | 38.2 | 132.048 | 11.491 | 2.254 | | subst ' | % substrate bedrock class | % | PCT_BDRK | 8.8 | 5.729 | 1.8 | 0.0 | 54.5 | 54.5 | 201.175 | 14.184 | 2.782 | | subst | % substrate other class | % | PCT_OT | 0.1 | 0.144 | 0.0 | 0.0 | 1.8 | 1.8 | 0.127 | 0.357 | 0.070 | | type | indicator | unlle | in dica | or Mean | 95%
Cloud | Median | Min | Max. | Rance | | Standard
Deviation | Marie Control of the | |-------|----------------------------------|-------|---------|---------|--------------|--------|-----|----------------|-------|---------|-----------------------
---| | | %substrate sand or fines | % | PCT SAI | | 1 | 33.00 | | 230 2 30 30 60 | 96.4 | 511.252 | 22.611 | 4.434 | | subst | %substrate < coarse gravel | % | PCT_SF | 3F 43.7 | 10.506 | 39.1 | 3.6 | 100.0 | 96.4 | 676.623 | 26.012 | 5.101 | | subst | %substrate > fine gravel | % | PCT_BIG | R 51.3 | 11.360 | 55.5 | 0.0 | 94.5 | 94.5 | 791.013 | 28.125 | 5.516 | | subst | %substrate wood or organic class | % | PCT_OR | G 0.8 | 0.596 | 0.0 | 0.0 | 5.5 | 5.5 | 2.177 | 1.475 | 0.289 | All LWD counts are for the active channel 26 samples for all physical habitat indicators **Appendix 4.** List of fish and amphibians species. Extent of distribution indicated by percent of the total stream km represented by the sample. | | am kin represented by | the sample. | | | The state of s | |-----------------|-----------------------|-------------------|---------------------------|---------------|--| | Family | Genus | Species | Common name | # of
sites | % stream
km | | | | Fishes | | | | | Catostomidae | Catostomus | macrocheilus | largescale sucker | 2 | 8 | | Centrarchidae | Lepomis | gibbosus | pumpkinseed | 1 | 4 | | Cottidae | Cottus | gulosus/perplexus | riffle/reticulate sculpin | 23 | 88 | | Cottidae | Cottus | rhotheus | torrent sculpin | 20 | 77 | | Cyprinidae | Rhinichthys | osculus | speckled dace | 5 | 19 | | Cyprinidae | Richardsonius | balteatus | redside shiner | 1 | 4 | | Cyprinidae | Ptychocheilus | oregonensis | northern pikeminnow | 1 | 4 | | Cyprinidae | Rhinichthys | cataractae | longnose dace | 1 | 4 | | Gasterosteidae | Gasterosteus | aculeatus | threespine stickleback | 5 | 19 | | Petromyzontidae | Lampetra | tridentata | Pacific lamprey | 14 | 54 | | Petromyzontidae | Lampetra | richardsoni | western brook lamprey | 5 | 19 | | Salmonidae | Oncorhynchus | clarki | cutthroat trout | 22 | 85 | | Salmonidae | Oncorhynchus | kisutch | coho salmon | 24 | 92 | | Salmonidae | Oncorhynchus | mykiss | rainbow trout/steelhead | 14 | 54 | | Umbridae | Novumbra | hubbsi | Olympic mudminnow | 2 | 8 | | | | Amphibians | | | | | Hylidae | Pseudacris | regilla | Pacific treefrog | 3 | 12 | | Leiopelmatidae | Ascaphus | truei | tailed frog | 3 | 12 | | Ranidae | Rana | aurora | red-legged frog | 6 | 23 | | Ranidae | Rana | catesbiana | bullfrog 1 | | 4 | | Salamandridae | Taricha | granulosa | rough-skin newt | 1 | 4 | **Appendix 5.** Species characteristics classification for aquatic vertebrate species. Classification based on Zaroban et al. (1999). | Family/Species | Common Name | Tolerance | : Habitat | Temperature | Feeding | |-------------------------------|---------------------|-------------------|----------------|-------------|---------------------------------| | | | ish Species | | | S. S. S. S. C. L. C. S. Landing | | Catostomidae | | | | | | | Catostomus macrocheilus | largescale sucker | tolerant | benthic | cool | omnivore | | Centrarchidae | | | | | | | Lepomis gibbosus¹ | pumpkinseed | tolerant | water column | cool | invert/piscivore | | Cottidae | | | | | | | Cottus perplexus | reticulate sculpin | intermediate | benthic | cool | invertivore | | Cottus gulosus | riffle sculpin | intermediate | benthic | cool | invertivore | | Cottus rhotheus | torrent sculpin | intermediate | benthic | cold | invert/piscivore | | Cyprinidae | | | | | | | Ptychocheilus oregonensis | northern pikeminnow | tolerant | water column | cool | invert/piscivore | | Rhinichthys cataractae | longnose dace | intermediate | benthic | cool | invertivore | | Rhinichthys osculus | speckled dace | intermediate | benthic | cool | invertivore | | Richardsonius balteatus | redside shiner | intermediate | water column | cool | invertivore | | Gasterosteidae | | | | | | | | threespine | | | | | | Gasterosteus aculeatus | stickleback | tolerant | hider | cool | invertivore | | Petromyzontidae | | | | | | | Lampetra tridentata | Pacific lamprey | intermediate | hider | cool | filter feeder | | t and a state of the outer of | western brook | :41:_4 _ | Lide. | ! | file and a salar. | | Lampetra richardsoni | lamprey | intermediate | hider | cool | filter feeder | | Salmonidae | | (4), | harden eelumen | cold | invertivore | | Oncorhynchus kisutch | coho salmon | sensitive | water column | | | | Oncorhynchus clarki | cutthroat trout | sensitive | water column | cold | invert/piscivore | | Oncorhynchus mykiss | rainbow trout | sensitive | hider | cold | invert/piscivore | | Umbridae | | 4 - 1 - 1 - 1 - 1 | | | invertivore | | Novumbra hubbsi | | tolerant | hider | warm | invertivore | | | | Amphibians
T | | 1 | T | | Leiopelmatidae | | | h | | | | Ascaphus truei | tailed frog | sensitive | benthic/hider | cold | invert/carnivore | | Hylidae | <u> </u> | | | | : | | Pseudacris regilla | Pacific tree frog | tolerant | lentic | none | invert/carnivore | | Ranidae | | ļ | | | | | Rana aurora | red-legged frog | intolerant | edge | none | invert/carnivore | | Rana catesbiana¹ | bullfrog | tolerant | lentic | warm | invert/carnivore | | Salamandridae | | | | | , | | Taricha granulosa | rough-skinned newt | tolerant | edge | none | invert/carnivore | Appendix 6. Summary Statistics for vertebrate (fish and amphibian) metrics. | | | 95% | | | | | | Standard | Standard | |------------------------|------
--|--------|------|-------|-------|----------|-----------|----------| | Metric (% individuals) | Mean | A STATE OF THE STA | Median | Min. | Max. | Range | Variance | Deviation | Error | | Sensitive | 34.6 | 8.9 | 30.3 | 4.9 | 96.0 | 91.1 | 490.001 | 22.136 | 4.341 | | Intermediate | 62.9 | 9.3 | 66.9 | 4.0 | 92.8 | 88.8 | 527.123 | 22.959 | 4.503 | | Tolerant | 2.5 | 4.0 | 0.0 | 0.0 | 49.6 | 49.6 | 97.436 | 9.871 | 1.936 | | Benthic | 61.8 | 9.2 | 65.5 | 4.0 | 92.5 | 88.6 | 517.203 | 22.742 | 4.460 | | Hider | 14.1 | 9.0 | 5.3 | 0.0 | 92.7 | 92.7 | 491.342 | 22.166 | 4.347 | | Water column | 24.1 | 6.2 | 20.5 | 3.4 | 63.1 | 59.7 | 233.856 | 15.292 | 2.999 | | Cold | 61.6 | 12.2 | 67.9 | 4.9 | 100.0 | 95.1 | 916.1Ò0 | 30.267 | 5.936 | | Cool | 38.0 | 12.1 | 32.1 | 0.0 | 95.1 | 95.1 | 892.323 | 29.872 | 5.858 | | Warm | 0.4 | 0.8 | 0.0 | 0.0 | 10.1 | 10.1 | 3.911 | 1.978 | 0.388 | | Filter feeder | 1.1 | 0.6 | 0.7 | 0.0 | 6.3 | 6.3 | 2.049 | 1.431 | 0.281 | | Omnivore | 0.0 | 0.1 | 0.0 | 0.0 | 0.9 | 0.9 | 0.034 | 0.184 | 0.036 | | Invertivore | 55.7 | 11.2 | 49.7 | 0.0 | 100.0 | 100.0 | 774.027 | 27.821 | 5.456 | | Invert/piscivore | 43.2 | 11.2 | 48.3 | 0.0 | 100.0 | 100.0 | 771.192 | 27.770 | 5.446 | Appendix 7. Summary statistics for selected invertebrate metrics. | | | 95% | | | | | | Standard | Standard | |--------------------------------|--------|--------------|--|----------|---------|---------|-------------|-----------|----------| | Indicator | Mean | Conf. | Median | Min. | Max. | Range | Variance | Deviation | Error | | Total invertebrate | | | | | | | | | | | abundance | 2441.3 | 1222.8 | 1444.0 | 278.1 | 15467.8 | 15189.7 | 9165890.458 | 3027.522 | 593.746 | | Total number of taxa | 38.7 | 3.0 | 39.0 | 27.0 | 54.0 | 27.0 | 53.565 | 7.319 | 1.435 | | EPT abundance | 878.5 | 232.9 | 793.8 | 36.7 | 2164.2 | 2127.5 | 332535.466 | 576.659 | 113.092 | | Number EPT taxa | 21.8 | 2.6 | 21.0 | 8.0 | 33.0 | 25.0 | 42.162 | 6.493 | 1.273 | | No. Non-insect taxa | 5.6 | 0.9 | 5.0 | 2.0 | 11.0 | 9.0 | 4.654 | 2.157 | 0.423 | | % Non-insects | 12.3 | 6.5 | 7.1 | 2.0 | 74.1 | 72.2 | 255.263 | 15.977 | 3.133 | | No. Ephemeroptera taxa | 7.1 | 1.0 | 7.0 | 3.0 | 12.0 | 9.0 | 5.866 | 2.422 | 0.475 | | % Ephemeroptera | 21.5 | 6.2 | 18.3 | 1.8 | 58.7 | 56.8 | 236.987 | 15.394 | 3.019 | | No. Plecoptera taxa | 7.2 | 1.1 | 7.0 | 1.0 | 13.0 | 12.0 | 7.145 | 2.673 | 0.524 | | % Plecoptera | 10.1 | 2.0 | 9.1 | 0.2 | 21.4 | 21.2 | 25.568 | 5.056 | 0.992 | | No. Trichoptera taxa | 7.5 | 1.3 | 7.0 | 2.0 | 14.0 | 12.0 | 10.338 | 3.215 | 0.631 | | No. Predator taxa | 12.0 | 1.5 | 12.0 | 5.0 | 19.0 | 14.0 | 13.318 | 3.649 | 0.716 | | % Predators | 12.7 | 3.5 | 12.2 | 1.4 | 45.2 | 43.8 | 74.645 | 8.640 | 1.694 | | No. Parasite taxa | 1.9 | 0.2 | 2.0 | 1.0 | 3.0 | 2.0 | 0.266 | 0.516 | 0.101 | | % Parasites | 3.2 | 1.0 | 2.3 | 0.4 | 9.6 | 9.2 | 6.406 | 2.531 | 0.496 | | No. Collector-gather | | | | | | | Î | | - 1 | | taxa | 11.1 | 0.9 | 11.0 | 8.0 | 16.0 | 8.0 | 4.634 | 2.153 | 0.422 | | % Collector-gatherers | 47.1 | 7.1 | 49.2 | 14.2 | 81.3 | 67.2 | 308.087 | 17.552 | 3.442 | | No. Collector-filterer | | | | 4.0 | | ا م | 0.496 | 0.607 | 0.137 | | taxa | 2.4 | 0.3 | 2.5 | 1.0 | 3.0 | 2.0 | 0.486 | 0.697 | 0.137 | | % | 0.8 | 0.7 | 0.1 | 0.0 | 6.4 | 6.4 | 2.676 | 1.636 | 0.321 | | Macrophyte-herbivores | 0.0 | 0.7 | 0.0 | 0.0 | 0.7 | 0.7 | 0.021 | 0.144 | 0.028 | | % Piercer-herbivores | 16.4 | 5.4 | 12.4 | 0.8 | 67.6 | 66.7 | 178.056 | 13.344 | 2.617 | | % Scrapers | 4.1 | 1.8 | 2.7 | 0.0 | 19.2 | 19.0 | 19.305 | 4.394 | 0.862 | | % Shredders | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 | 0.000 | | % Xylophages | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | 1.8 | 0.145 | 0.381 | 0.075 | | % Omnivores | | 5.9 | 31.6 | 14.6 | 77.3 | 62.7 | 215.048 | 14.665 | 2.876 | | % Dominant taxa | 32.5 | 3.9 | 66.9 | 53.4 | 93.3 | 39.8 | 92.246 | 9.604 | 1.884 | | % 5 Dominant taxa | 67.9 | 2.7 | | | | 25.5 | | 6.710 | 1.316 | | % 10 Dominant taxa | 82.2 | | | 0.3 | | 0.5 | | 0.108 | | | Eveness | 0.7 | 0.0 | 0.7 | 0.0 | | | | | | | Tolerant species | 4.0 | 0.7 | 4.0 | 1.0 | 8.0 | 7.0 | 3.078 | 1.755 | 0.344 | | richness
% Tolorant | 10.2 | | | | | 54.7 | 144.484 | 12.020 | 2.357 | | % Tolerant | 10.2 | | | <u> </u> | | | | | | | intolerant species
richness | 3.8 | 0.7 | 4.0 | 1.0 | 8.0 | 7.0 | 2.802 | 1.674 | 0.328 | | % Intolerant | 7.2 | | | | | | 38.962 | 6.242 | 1.224 | | No. Long-lived taxa | 6.2 | | | | | 7.0 | 4.185 | 2.046 | 0.401 | | % 3 Dominant taxa | 55.6 | | | | | | 152.126 | 12.334 | 2.419 |