
United States Environmental Protection Agency Environmental Sciences Research Laboratory Research Triangle Park NC 27711 EPA-600/2-79-194 October 1979

& EPA

Research and Development

Computer Program for Reducing Mass Spectra Data from GC/MS Systems

RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are:

- 1. Environmental Health Effects Research
- 2. Environmental Protection Technology
- 3. Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies
- 6. Scientific and Technical Assessment Reports (STAR)
- 7. Interagency Energy-Environment Research and Development
- 8. "Special" Reports
- 9. Miscellaneous Reports

This report has been assigned to the ENVIRONMENTAL PROTECTION TECH-NOLOGY series. This series describes research performed to develop and demonstrate instrumentation, equipment, and methodology to repair or prevent environmental degradation from point and non-point sources of pollution. This work provides the new or improved technology required for the control and treatment of pollution sources to meet environmental quality standards.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

COMPUTER PROGRAM FOR REDUCING MASS SPECTRAL DATA FROM GC/MS SYSTEMS

by

David Rosenthal
Research Triangle Institute
Post Office Box 12194
Research Triangle Park, North Carolina 27709

Contract No. 68-02-2745

Project Officer

Kenneth Krost
Atmospheric Chemistry and Physics Division
Environmental Sciences Research Laboratory
Research Triangle Park, North Carolina 27711

ENVIRONMENTAL SCIENCES RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711

DISCLAIMER

This report has been reviewed by the Environmental Sciences Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

ABSTRACT

Existing computer programs for deconvoluting mass spectrometry data derived from gas chromatography/mass spectrometry/computer systems were evaluated, and the most efficient method was introduced unto an EPA UNIVAC computer. The program chosen was that reported by Rindfleisch and his coworkers at Stanford University. The accompanying program listing is included. The Rindfleisch program was tested with both standard runs and environmental samples. Sample components were successfully identified by an independent computer search program with an accuracy approaching 80%.

This report was submitted in fulfillment of contract number 68-02-2745 by the Research Triangle Institute under the sponsorship of the U.S. Environmental Protection Agency. This report covers a period from September 2, 1977 to March 1, 1979, and work was completed as of March 1, 1979.

CONTENTS

Abstract		iii
Figures		vi
Tables .		viii
Charts .		ix
Abbreviat	tions	x
1.	Introduction	1
2.	Conclusions and Recommendations	3
3.	Literature Search of Existing Deconvolution	
	Methods	5
4.	Implementation and Testing of CLEANUP	24
5.	Implementation of the CLEANUP Program	
	on the UNIVAC Computer	67
6.	User Description of Program Operation	76
7.	Delivery to EPA	79
Reference	es	80
Appendic	es	
Α.	CLEANUP Source Listing	81
В.	"Extraction of Mass Spectra Free of Background and	
	Neighboring Component Contribution from Gas	
	Chromatography Mass Spectrometry Data"	151

FIGURES

Name		Page
1	Schematic representation of 14 scan window for masses 40-450 in core - a typical case	9
2	A typical singlet peak model for a given mass	10
3	Various types of situations which do not quality in histogram calculation	11
4	Peak detection histograms for sample processing window of Figure 1	12
5	Statistics of TIC vs scan number	13
6	Example of background subtraction for model peak	15
7	Peak model resolutions: two possible situations	18
8	Overall schematic of computer assisted qualitative analysis of GC/MS data	27
9	Five "raw" spectra used as input to CLEANUP	32
10	Resultant "cleaned-up" spectrum from Figure 9	33
11	Precleanup - A, postcleanup - B	34
12	TIC plot of brominated standards	36
13	Hardware TIC plot of GC/MS analysis of organics from coal pyrolysis	39
14	Typical precleanup of mass spectrum	40
15	Same spectrum after CLEANUP	40
16	Chemist's Printout from CLEANUP	44
17	Total ion current plot from test run	48
18	Graphic representation of possible settings of NTHIRD	60

19	Function of ITOM histogram window setting	61
20	Effects of linear error ratio	64
21	Effect of SATVAL on CLEANUP	66
22	Modules required for transfer of CLEANUP program to UNIVAC	68
23	Raw TIC of INCOS test data	71
24	Possible consequences of scan rate too rapid for CLEANUP	72
25	Chemist's printout of EPA test run generated at TUCC	73
26	Chemist's printout of EPA test run	74
27	Example of CLEANUP control cards for EPA UNIVAC	77

TABLES

<u>Number</u>		Page
1	Subroutines of CLEANUP by Function	20
2	Results of Comparison of Cleanup with Brominated Standards Searched for 26,209 Standards	37
3	Typical Printout for Identification of Coal Components (After CLEANUP)	41
4	Comparison of Selected Spectra from Coal Gasification Sample Searched Before and After CLEANUP	43
5	Description of Types of Samples Investigated to Test Out CLEANUP	47
6	Comparison of Manual US Computer Identification of GC-MS Run	49
7	CLEANUP Input Paramter Summary	58

CHARTS

Numb	<u>er</u>	Page
1	Summary of Calling Structure and Subroutine Function	19
2	Steps Involved in Processing of CLEANUP Test Data (1) Preparation for and Interface to CLEANUP Program	28
3	Steps Involved in Processing of CLEANUP Test Data (2) Preparation for and Interface to Search Program	29
4	Steps Involved in Processing of CLEANUP Test Data (3)	
	Generation of Versatec MS Plots from CLEANUP Files	31

ABBREVIATIONS

GC/MS - Gas Chromatography/Mass Spectrometry

TIC - Total Ion Current
A/D - Analog to Digital
MS - Mass Spectrometry

TUCC - Triangle University Computation Center

GC - Gas Chromatograph(y)

R - Correlation Coefficient

H - Hit M - Miss

I/O - Input/Output

SECTION 1

INTRODUCTION

Gas Chromatography/Mass Spectrometry (GC/MS) is an analytical method which has the potential capability of allowing the total automated identification of a complex mixture of pollutants. Implementation of such a technique depends on the availability of two types of new technology. The first, the automatic acquisition and storage of fast scan low resolution mass spectrometry data, has been available for some time. The first GC/MS system involving the continuous recording of mass spectral data from a mass spectrometer operating in cyclic mode was first reported by Hites and Biemann in 1968. At the present time these systems are commercially produced by many manufacturers.

The availability of computer programs for the analysis of this kind of data is at present still very limited. Although software development in this field constitutes a very active research area (roughly 100 papers are published yearly), very few integrated systems have yet been developed which are generally useful. This is in part due to the large variety of computer types, each with its own individual characteristics, but more importantly due to a general unavailability of broad based algorithms with an effective philosophy of approach. As a result, the vast majority of mass spectral runs are still being analyzed by hand.

The problem of the development of a generalized system for data analysis has two aspects. The first is how to separate mathematically the raw mixed spectra into well resolved components. The second is to assign a chemical structure to each resolved spectrum. Several approaches have been tried concerning the second problem, and one based on the pioneering work of Grotch had been successfully implemented and realized in the form of a library search program now resident at the RTI Mass Spectrometry Facility prior to this project. The early results of this search program however, had not been totally satisfactory, usually for the reason that the input spectra were not

sufficiently "clear", to allow unique identification. This problem was in large part alleviated by combining the search algorithm with an appropriate cleanup procedure. The implementation of each of these two stages and their effective combination turned out to enhance the capabilities of the entire system.

After a prototype system was developed which was shown to be effective, the CLEANUP programs which were developed were adapted to the EPA environment. Since manipulation of large data bases are much more easily accomplished in a large computer, it was felt that this process was best carried out by adapting data acquired using EPA's INCOS data system and processing them on a large computer. This approach had the dual advantage of making the programming effort much simpler, since core size limitations did complicate the programming, and in addition the processing could be accomplished independently, thus freeing the INCOS system to do other work. Again, the fact that programs were written in standard FORTRAN facilitated their transfer to the EPA UNIVAC computer.

Completion of the project by delivery of the program and its documentation to the contracting agency, is effected with this report and the accompanying listings (Appendix 1).

SECTION 2

CONCLUSIONS AND RECOMMENDATIONS

The work accomplished under this contract can be divided into four parts: (I) a literature search to determine the most effective algorithm for deconvolution of mass spectra; (II) implementing that algorithm on an existing computer and performing detailed tests of its efficiency, both from a chemical and machine standpoint; (III) making the program operational on the EPA UNIVAC computer installation using for input a tape created using the INCOS data acquisition system; (IV) making the necessary documentation and source code (Appendix 1) available to the contacting agency.

Three techniques were considered in Phase I: background subtraction, mass max analysis, and peak profile analysis. The peak profile analysis proposed in a recent article by Rindfleisch (Appendix 2) was ultimately chosen because of its demonstrated effectiveness in existing systems (the CLEANUP program) and because it incorporated the notions of background subtraction and mass max analysis as a starting point.

Once the Rindfleisch algorithm was chosen, the task of implementing that algorithm on the TUCC 370 was undertaken. First, a detailed study of the published algorithm was made in order to gain a better understanding of what was involved and to determine if improvements were necessary. Next, a copy of the Rindfleisch program modified to run on an IBM 370 was obtained through the cooperation of a group of chemists at the NASA Ames Air Force Base. This copy was then modified to run in a batch environment at TUCC and was subjected to extensive testing, both from a machine and chemical standpoint. This included running the program under the WATFIV compiler to insure program accuracy and machine independence, followed by testing with data acquired by a VARIAN CH-7

mass spectrometer. The test data consisted of three brominated standards, followed by fifteen runs involving a wide variety of environmental samples. The RTI library search program was used throughout to evaluate the output from CLEANUP. The laboratory standards were all correctly identified and correct identifications, approaching 80% were obtained on some environmental samples. In addition, some of the CLEANUP input parameters were studied in order to determine optimum settings.

Phase III, making CLEANUP operational in the EPA environment, consisted of three parts: obtaining a successful run of INCOS test data supplied by EPA on the TUCC 370, obtaining a successful run on the same data using a version of CLEANUP adapted to run on the EPA UNIVAC computer, and finally verifying that the output tape was compatible with the contracting agency's INCOS data acquisition software and yielded plausible output spectra.

This report, together with the accompanying listings and the installing of CLEANUP on the UNIVAC comprise the completion of Phase IV of this project.

It is now necessary to carry out a thorough testing of the programs to determine what conditions and sets of parameters must be used to obtain optimal results. The principles used in developing the software are sound, however, the programs need to be tuned to fit the acquisition conditions. Some attention should be given to control studies using known mixtures, because these give the best opportunity for evaluation of the system. A statistical evaluation of the results, especially when compared with other methods, would be very profitable.

SECTION 3

LITERATURE SEARCH OF EXISTING DECONVOLUTION METHODS

Phase I of this contract consisted of a literature search to consider available alternatives for the treatment of mass spectral mixtures, and thus arrive at a best method for deconvolution. Three general avanues of attack were examined: background subtraction, mass max, and peak profile analysis.

BACKGROUND SUBTRACTION

The technique of background subtraction is basically as follows. In its simplest form, a spectrum from either an unknown GC run or some blank run is chosen as a "background" spectrum. This spectrum is then subtracted from the unknowns within the run, and the resulting difference spectra are used for mass spectral identification.

In a slightly more refined version of the technique, the background spectrum is determined manually by visual inspection of a raw total ion current (TIC) plot, and in some instances several background spectra are chosen for use in different ranges of the chromatogram.

The difficulties associated with this approach are fairly obvious. Background spectra are not constant, either qualitatively or quantitatively. Thus, what constitutes the background in one section of the run may be very different from that in another. Additionally, background peaks arising from contaminants such as column bleed change in intensity especially during temperature programmed runs.

Thus the question of how the background subtraction is to be carried out is very difficult to answer. Even the mechanics of the subtraction can be done in a number of ways. Several unsophisticated schemes exist in which the background spectra are subtracted, peak for peak, from the raw digitized unknown. Invariably, some spectra are undercorrected, while in others, real data is eliminated from the output, making identification very difficult,

either by hand or by machine. Human interpreters often prefer to look at raw data over background subtracted, since they can learn to ignore certain peaks without the removal of key unknown peaks by a clumsy program.

More sophisticated approaches have been tried wherein only a fraction of the background spectrum is subtracted. The problem of course, is to determine the proper size of the fraction.

All in all the background subtraction approach was eliminated since it is not sufficiently flexible, can give erroneous results, and lacks a way in which a consistent algorithm can be proposed for automatic processing.

MASS MAX ANALYSIS

A second and more sophisticated approach to mass spectral deconvolution has been taken by Biemann and co-workers. This approach makes use of the principle that when a compound elutes from a GC column and is analyzed by continuous scan MS, the ions of each component show maximum intensity at some mean elution time.

The algorithm chosen, then, searches through each single ion trace for points of maximum intensity. The deconvoluted spectra are then defined as that collection of ions which have shown an intensity maximum within a given time window.

This approach was designed to allow the separation of mixtures of unknowns which are not sufficiently resolved to show individual TIC peaks, but which can be distinguished by the presence of single ion maxima which are not influenced by other ions not present in that particular unknown.

This idea is sound, and in fact, constitutes the first part of the $\operatorname{Rindfleisch}^4$ procedure, described below. The procedure is very rapid and has actually been incorporated into other commercially available deconvolution software systems.

The program is deficient because it does not take into account a number of facts.

 If a given ion shows a maximum at one point, it does not by any means guarantee that this ion will not be present in the other component.

- 2. If, as often occurs, an ion is present in both components in approximately equal amounts, the observed maximum may occur between the maxima of either component and be missed entirely by the system.
- 3. The technique does not take into account contributions from background noise or column bleed, and treats each ion in an all or
 nothing manner, and therefore cannot get a proper estimate of the
 intensity of peaks which derive from more than one source.

The method seems to have some merit for the purpose of identifying the presence of unresolved multiplets. However, it cannot accurately predict the actual spectra, and because of the deficiencies mentioned in the previous paragraphs, sometimes fails entirely, showing specious peaks, or missing multiplets.

PEAK PROFILE ANALYSES

The algorithm for the CLEANUP program herein described was originally due to Rindfleisch and co-workers at Stanford. Their program was part of an integrated GC/MS data reduction system which ran on a PDP-11/20. Following is a detailed description of the elements and mode of operation of this program. This information was gathered from the published work on the subject as supplemented by our copy of the listings and other documentation.

Raw spectra output from GC/MS systems differ from the library spectra of pure components for at least three definable reasons. CLEANUP attempts to correct mathematically these spectra in three distinct ways, corresponding to these known error sources. These are 1) Background noise and column bleed, 2) Signal saturation, 3) overlapping peaks. We will call the three portions of the program dealing with these problems Tasks 1, 2, and 3.

Errors arise for the following reasons. Superimposed on the eluant spectrum there will always be a certain constant level of background noise, and in addition other extraneous signals which normally rise slowly with increasing column temperature due to the elution of some of the liquid phase of the column. Task 1 is concerned with the distinction between the origin of these kinds of signals. Task 2 tries to reconstruct the actual intensity level of peaks which are so strong that they have exceeded the range of the A/D convertor. This is the problem of peak saturation. Task 3 is the reconstruction of peak intensities of two or more compounds which elute so closely to one another that their

mass spectral peaks are intermixed. The guiding principle which allows the CLEANUP program to function is that it uses information both in advance and after a particular scan to distinguish between real peak unknown information and extraneous data. Such issues as column bleed detection, doublet resolution, background detection, etc. are defined in the context of a region of scans rather than a single scan. The CLEANUP program makes use of fourteen MS scans in core at any one time (Figure 1). For tasks 1 and 2, only the seven innermost scans are used. For some details (e.g., background estimation), all 14 scans are needed. For multiplet resolution, all 14 scans are used. The processing proceeds from the beginning of the run to the end in a single pass always using 14 spectra. The spectrum window in core is progressively updated by the addition of one spectrum from one end and the dropping of one spectrum from the other.

The CLEANUP algorithm can be divided into stages from a programming point The first stage is the examination of the spectral window and determine whether or not an eluant is present at all. When a peak, or group of peaks is detected, then tasks 1, 2, and 3 can be undertaken to improve the quality of the raw data. The detection process is accomplished as follows: The program looks at a window seven scans wide as the input spectra move through the fourteen spectrum window in core. For each of the 411 masses in the seven scan window (each scan covers masses 40 to 450 the program does a primitive check to see if the window contains a simple maximum (Figure 2). As maxima are detected, histogram of the frequency of "singlet" maxima is created. Data are ignored if there are any "lumps" (indicating a doublet) or if peak saturation is observed anywhere in the window (Figure 3). In addition to the histogram of the number of occurrences of maxima (Figure 4), a record of a slightly modified total ion current is kept (Figure 5), i.e, once a singlet maximum is detected, a rudimentary approximation to column bleed and background is subtracted (corresponding to the lowest value in the 14 a.m.u. window), the ion current at the maximum is estimated via interpolation, and the resulting ion current is added into a peak amplitude record. When an appropriate number of scans have passed through the window (the statistics are updated continuously) a decision is made on the basis of the number of maxima observed and the total amplitude of those maxima whether an eluant is present. It should be mentioned here that at this

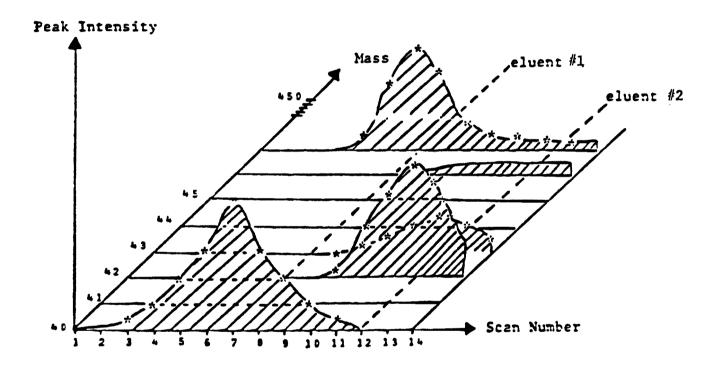
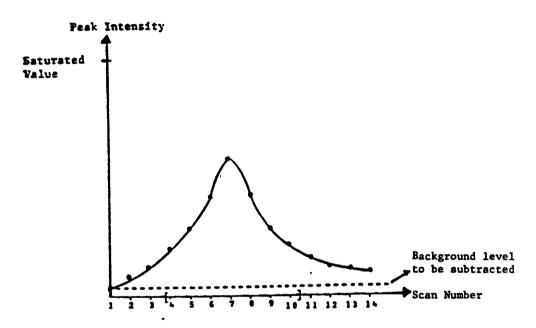



Figure 1. Schematic representation of 14 scan window for Masses 40-450 in core - a typical case.

[] - peak processing window

Figure 2. A typical singlet peak model for a given mass.

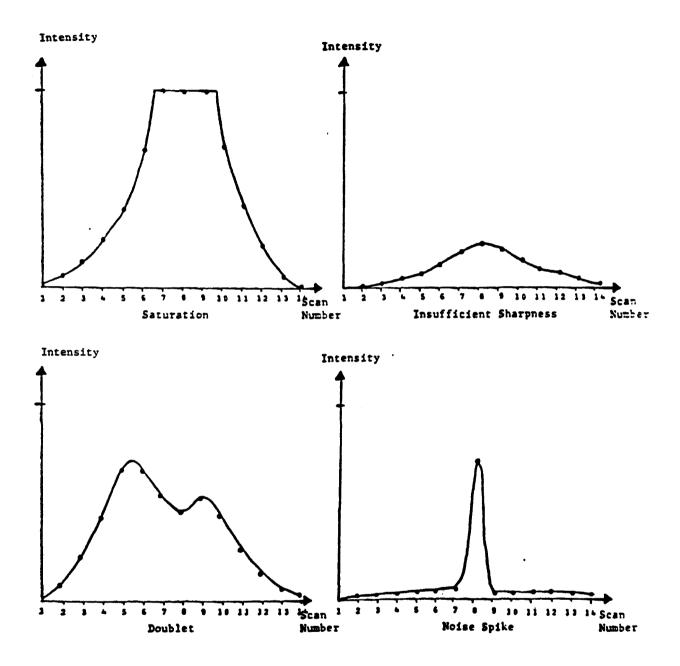


Figure 3. Various types of situations which do not qualify in histogram calculation.

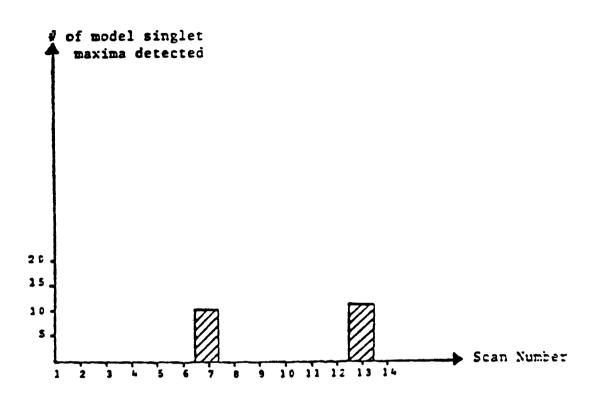


Figure 4. Peak detection histograms for sample processing window of Figure 1.

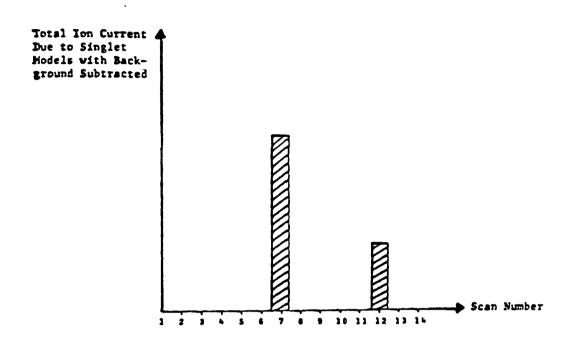


Figure 5. Statistics of TIC vs. scan number.

point in the program the "sharpness" of each candidate peak is computed. This number is a numerical approximation of the theoretical expression

$$\int \left| \frac{\mathrm{d}y}{y} \right|$$

which is a measure of the relative steepness of each individual peak. It is to be noted that this number is independent of the height of the peak. There is a provision in the CLEANUP program for the rejection of peaks not meeting a minimum sharpness threshold (Figure 3). Noise spikes are eliminated by the property of the steepness function which favors wider peaks over very narrow ones.

Once the presence of a peak is detected, the CLEANUP program begins its real work, namely, the deconvolution of the peak mixtures and the accounting for bleed, noise, etc. The CLEANUP program assumes linear superposition of ion currents due to different causes, <u>i.e.</u>, at any given point in time the total ion current can be represented as a simple sum of a background, column bleed, and whatever eluants are present. For the case of a singlet, the total ion current for a given mass Y(t) may be represented as a sum of three functions

$$Y(t) = P(t) + dt + c,$$

when the term dt represents the contribution to column bleed, c represents the contribution due to background noise, and P(t) is the peak contribution due to the signal. The problem lies in making an initial choice for the function P(t). The method used by CLEANUP is to examine the mass in the window with the sharpest non-saturated singlet maximum. This mass was stored by the previous phase of the program. The column bleed and background are then subtracted out (see Figure 6). Once the functional form of the model peak for a given mass is known, the contribution to the ion current due to the eluant compound at other masses can be computed via a least squares process, <u>i.e.</u>, for any given mass

$$Y(t) \stackrel{\sim}{\sim} pP(t) + dt + c$$

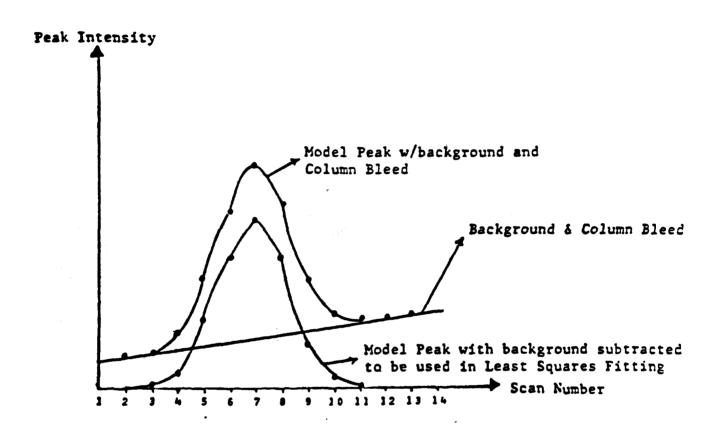


Figure 6. Example of background subtraction for model peak.

Here Y(t) is the total signal for that mass, which is made up of a contribution of the signal, column bleed, and background. The aim is to minimize

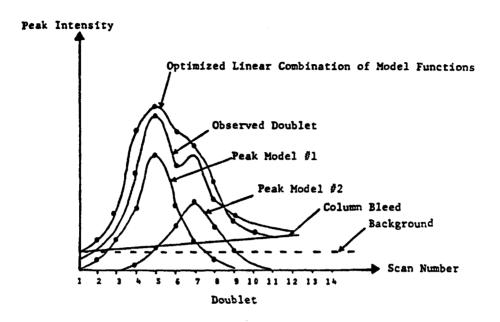
$$D = [Y(ti) - pP(ti) - dti - c]^{2}$$

in the interval covered by the peak, subject to the conditions

$$\frac{\delta D}{\delta p} = 0; \frac{\delta D}{\delta d} = 0; \frac{\delta D}{\delta c} = 0$$

This is done by a standard method. ⁵ It is important to realize that p, d and c are being varied in order to find the best possible match of three functions of fixed form (the model function P, a line through the origin, and a constant) to the given Function Y. The idea is that for a given eluant, all peaks will have the same functional form P(t) and that peaks of different masses corresponding to that eluant differ only in relative amplitude - something which is taken account for in the factor p in pP(t). Once the model function P(t) is determined for a mass that is relatively free of background noise, neighboring eluents, column bleed, etc., a meaningful interpolation can be made for those masses which are contaminated with noise and bleed, or which are saturated. In the case of saturated peaks, a routine is used which interpolates an approximation of the functional form of P(t) to obtain correct signal contributions for saturated points based on the non-saturated points on the fringe of each peak.

For doublet resolution, the model peak for the neighboring spectrum is added to the approximating function. Y(t) is then approximately by


$$Y(t) \stackrel{\sim}{\sim} pP(t) + rR(t) + dt + c$$

where R(t) is the model function for the second peak and r is its corresponding parameter. The idea is graphically illustrated for several cases in Figure 7.

A diagram of the detailed subroutines of the CLEANUP program, along with a short description of these function is shown in Chart 1 and Table 1.

SCOPE AND LIMITATIONS

Some comments regarding the scope and limitations of the CLEANUP program are in order.

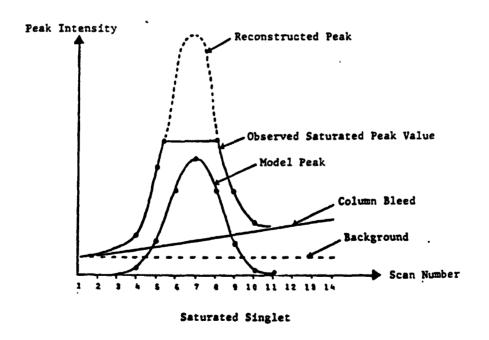


Figure 7. Peak model resolutions: two possible situations.

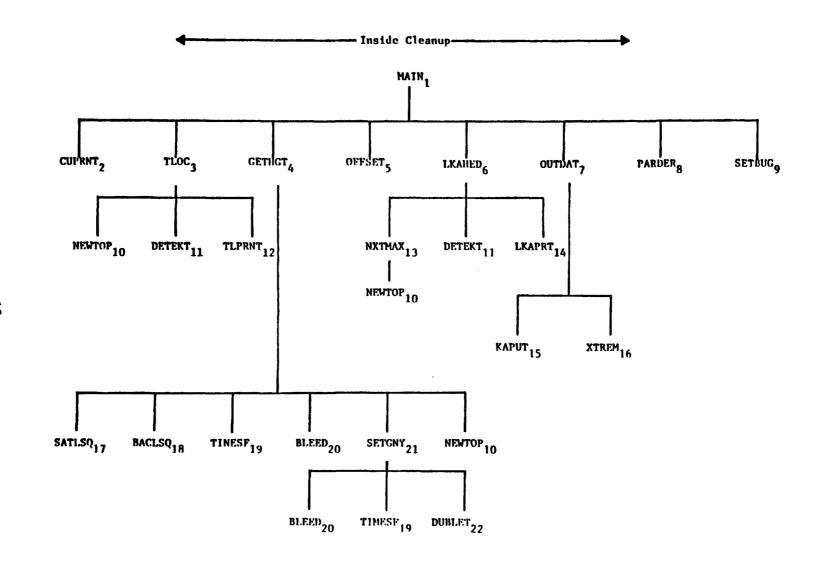


Chart 1. Summary of calling structure and subroutine function.

1. MAIN

is the root segment which calls all other routines.

2. CUPRNT

prints some debugging messages for MAIN.

3. TLOC

builds histograms for eluant detection, and selects the model peak for each compound. A model peak is the singlet which is sharpest, and its mass fragmentogram is 9 spectra wide. It is important to note that histograms contain "singlet" information, and we use this information to detect eluants.

4. GETHGT

is called after a spectrum has been detected, and is the executive for building the cleaned up spectrum from the raw data.

OFFSET

is called only in the event that an overlapping situation arises, and aligns the model peaks with respect to their modes in arrays GMN and HNU in anticipation of processing a doublet.

6. LKAHED

is called only if an eluant is detected. It looks ahead to see if another is present in the 14 spectrum window, and if so assigns the model peak and sets the flag OVLAP.

7. OUTDAT

prints report information for the run and writes the clean up spectra to disk.

8. PARDIR

is the operator communication subroutine. It sets some parameters which can be entered either from cards or from a terminal.

9. SETBUG

does some initialization of output buffers, and reads in the first 13 spectra.

10. NEWTOP

finds the actual mode and the displacement of this mode from the assumed mode as well as computing the integral |dy|/y (rate) from a singlet peak profile.

(continued)

11. DETEKT

examines histograms to determine if an eluant is present. The major criterion for an eluant to be detected is that its histogrammed total ion current be greater than MINTIC.

12. TLPRNT

prints some debugging messages for TLOC.

13. NXTMAX

builds histograms in the look ahead mode. Due to core limitations, it can only look ahead 3 spectra, and in the extreme case, i.e., the 3rd spectrum ahead is determined to be an eluant, the determination is done with less information than its predecessors. If 16 spectra are in core, NXTMAX can easily be set up to use exactly the same criteria as TLOC in building histograms. Some heuristics have been put in TLOC and DETEKT to take care of the minimal cases. This minimal situation occurs when a very weak eluant is found ahead, and then passed up when it becomes a primary candidate.

14. LKAPRT

prints some debugging message for LKAHED.

15. KAPUT

outputs to the line printer a short summary of the results of the programs processing.

16. XTREM

determines the minimum value and its subscript given an integer array and its length.

17. SATLSQ

processes saturated peaks, and tries to compute actual peak heights by taking the ratios of nonsaturated amplitudes in the saturated peak profile with their corresponding amplitudes in the model peak.

18. BACLSQ

does a least squares fit using the peak profile of a singlet, and a model peak to determine the singlets contribution to a detected spectrum.

19. TIMESF

uses a parabolic interpolation to place a peak profile on the same time co-ordinate as the model peak for a detected elutant.

20. BLEED

fits a line to a peak profile and uses goodness of fit, and average value of Y, where Y=mx+b, to see if the profile is column bleed.

21. SETGHY

is called only in the event of a doublet situation, and decides whether or not a given peak profile will be passed through the doublet resolver.

22. DUBLET

is the doublet resolver, and does the least square fit of two model peaks, and a doublet peak profile and puts the second peak contribution in a different array.

The construction of model peaks for an eluant depends on at least one mass in the processing window having a well defined, well resolved singlet. This requirement will not be satisfied if two eluants are within roughly one scan time of each other, or if there is an unsaturated peak for use as a model, i.e. in extremely bad run conditions.

Also the CLEANUP procedure breaks down in the case of interacting elutents because the ion currents are not longer a simple sum. This is an inherent limitation of the linear reconstruction model.

Finally, the program currently lacks the capability of providing the user with a visual TIC plot. This is essential in order to allow the user to analyze the final results.

SECTION 4

IMPLEMENTATION AND TESTING OF CLEANUP

Phase II of the contract consisted of implementing a version of the Rindfleisch program on the TUCC 370 and testing its performance. This involved obtaining an existing copy of CLEANUP and modifying it to run at TUCC, developing support software to facilitate the analysis of CLEANUP output, and extensive testing of CLEANUP on a variety of environmental samples.

INITIAL PROGRAM MANIPULATION

The first step in implementation of the CLEANUP program was to obtain a listing and initial documentation from the author. This was achieved with relatively little difficulty. Dr. Rindfleisch and his colleagues were very generous in providing us with full listings and some documentation of their program. Since these programs were designed to run on a PDP-11 computer, they were written in a combination of PDP-11 assembler language and a PDP-11 version of Fortran, which would have made their translation into standard Fortran a very difficult task. We were informed by the Stanford group, however, that another group of chemists at the NASA Ames Air Force Base had been working on a Fortran implementation of the Rindfleisch program and we were referred to that group.

The Ames scientists were cooperative in forwarding their versions of the Rindfleisch programs to us, however it was immediately clear when we received tapes from them that there were large discrepancies between their programs and a working system. There were numerous errors in the program, indicating that they had not been fully tested.

After some additional conversations with the Ames group, an improved version of their Rindfleisch program was sent to us which we began to use. The new program had been chnaged, and some of the errors, detected previously had been corrected. This new program was then reorganized to make it operational in the TUCC environment. The mode of inserting variable data and

options into the program was completely altered. The original programs were designed to operate interactively from a terminal, and the variables for each run were introduced in a conversational mode. If the results are not satisfactory, then the parameters are changed and the program re-run, etc. This process is continued until the operator is satisfied with the results, or feels that no further improvements can be made. Since in our environment programs must be run in a batch process, it was necessary to proceed somewhat differently. A set of trial parameters were obtained from the program authors, which were entered into the RTI program from cards. The effect of the program parameters on the output is discussed in 3.4.

The main body of the program was debugged by the use of the WATFIV compiler. This compiler is useful, not only because of its very well documented error messages, but because the compiler, by its nature, cannot operate using special system subroutines. This means that the entire program, if run under WATFIV, is insured to be compatible with other computers running with standard Fortran packages. By this procedure, the entire program was debugged and freed from a number of errors, particularly those relating to the initialization of variables prior to their use, which in our experience, has proven very difficult to trace down at later stages of program development.

SUPPORT SOFTWARE FOR CLEANUP

After the program ran freely, it was necessary to test it on some typical environmental data. In order to do this, GC/MS data which previously had been generated from environmental samples in the RTI laboratory were adapted to the CLEANUP program. This required the writing of several sets of programs: one translated raw mass spectral data into the input format required by CLEANUP; a second translated the output data from CLEANUP into a format required by the search program; a third set generated plot output from CLEANUP on an in-house VERSATEC plotter. A more detailed description of this software follows.

RTI Search System Interfacing

These programs accepted mass spectral data, which had been acquired on a Varian CH-7 mass spectrometer, and automatically selected spectra for introduction into a library search program. Selection of specific spectra was carried

out by the analysis of the total ion current (TIC) profile of the GC run. In the case of spectra acquired using the Varian system, the TIC profile was very easy to analyze numerically, because the data system was designed to acquire TIC information simultaneously with MS information throughout the course of the run. By means of a multiplexer, the data system acquired <u>ca</u>. 100 TIC points, which were received from an ion current electrode placed at the exit of the source of the spectrometer, during each MS scan. These TIC points were recorded on the output tape in a Varian coded format and it was possible to regenerate this TIC information in both numeric and graphic form from the original tape.

Whereas most other GC/MS computer systems generate TIC data by the summation of ion intensities for each mass spectrum run (software TIC), the hardware TIC data is much richer in detail since it produces <u>ca</u>. 100 points per GC scan rather than one in the software method. This advantage is particularly important when data are being scanned relatively slowly as compared with the TIC peak width. The TIC trace generated from the data encoded on the tape was very useful to evaluate the CLEANUP program, since CLEANUP does not produce any visual record of the GC run, but simply selects specific peaks for subsequent evaluation, in our case by means of library search. We compared the selection of spectra made by analysis of the hardware TIC trace with those spectra chosen by CLEANUP. This approach was extremely useful in the evaluation of the CLEANUP program. Figure 8 shows a schematic diagram of the RTI data processing system.

Splicing the CLEANUP program into te RTI data processing system consisted of two parts: formatting the data generated by the MS-7 GC/MS system so that it could be read as input by CLEANUP (Chart 2) and formatting the output generated by CLEANUP so that it could be used as input to the RTI library search program (Chart 3).

As these programs were being written, a tape was prepared of a standard GC/MS run on the RTI MS-7 GC/MS system and was hand carried to TUCC. After a few trials, we were successful in creating CLEANUP-compatible input data, getting CLEANUP to run to completion on that data, and finally obtaining a successful run on that data with the RTI search program.

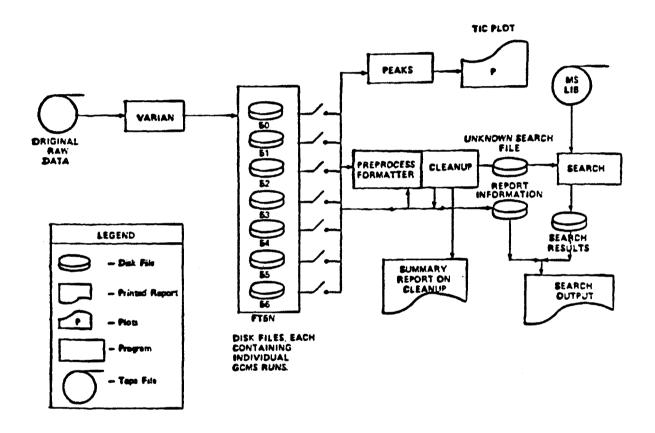


Figure 8. Overall schematic of computer assisted qualitative analysis of GC/MS data.

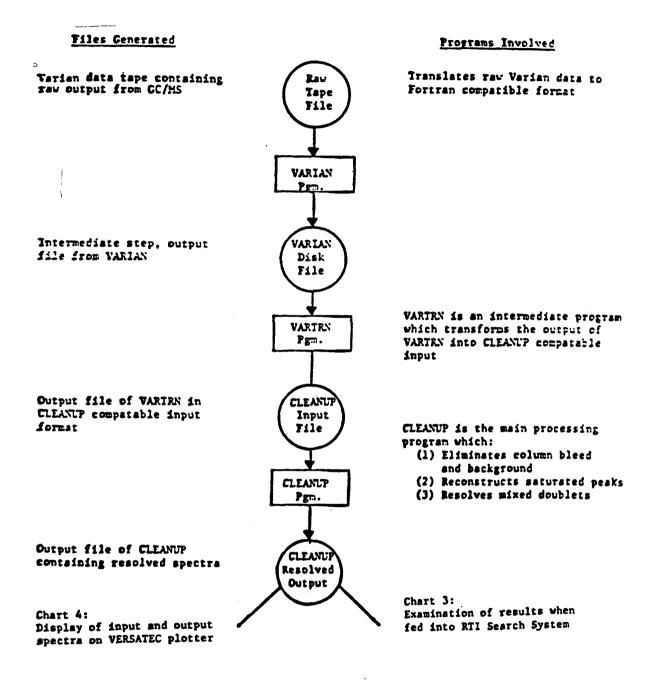
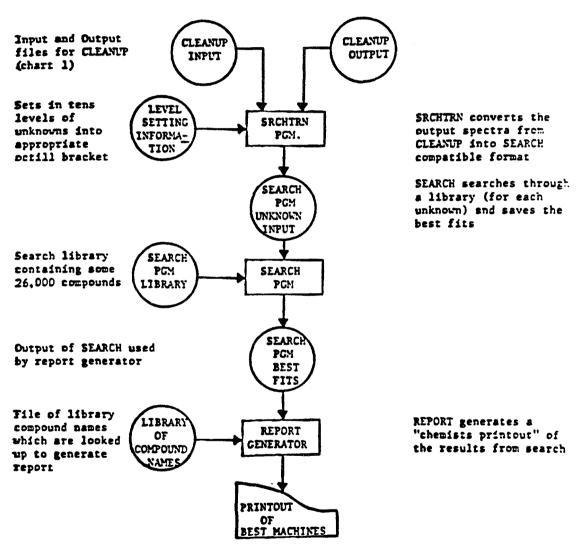



Chart 2. Steps involved in processing of CLEANUP test data (1). Preparation for and interface to CLEANUP program.

"Chemists Printout" of best choices for unknowns

Chart 3. Steps involved in processing of CLEANUP test data (2).

Preparation for and interface to search program.

Plot Out for CLEANUP

At this stage it was necessary to carry out a critical evaluation of the results to determine the efficacy of the CLEANUP algorithm. Although the CLEANUP program executed successfully, preliminary examination of the printed data for a few isolated cases indicated that the initial parameters chosen were not ideal, and that although the program seemed to recognize the presence of individual components in the GC run. the output spectra were not yet suitable for characterization of the unknown GC component. In order to proceed in an orderly manner, then, it was felt that a method for displaying the results of CLEANUP needed to be developed. Software to generate plots from MS data have been available for some time, however, these programs generate output intended for the university operated CALCOMP plotters which were entirely too slow to generate the hundreds of plots needed in the course of this investigation. An alternative approach of writing software to generate plots on an in-house VERSATEC electrostatic plotter (several orders of magnitude faster than the CALCOMP incremental plotters) was adopted. The process consisted of two steps. First a program at TUCC read the CLEANUP output spectra as input and generated picture records which were then written to tape. The tape was then hand carried to the RTI laboratory and read by a PDP-12 program which generated the actual plots. This method proved very economical, since plots were generated at low costs (50¢ per picture) and high speeds (ca. 20/30 sec/plot). In this fashion it was possible to generate up to 100 plots in an hour, a task which would have tied up the TUCC network CALCOMP plotters for several days. The entire scheme for generating plots together with already existing software is shown in Chart 4 with sample output in Figures 9-11.

TEST RUNS WITH CLEANUP

Brominated Standards

A preliminary evaluation of the CLEANUP program using two GC/MS runs was made. The first was a relatively simple mixture of a series of

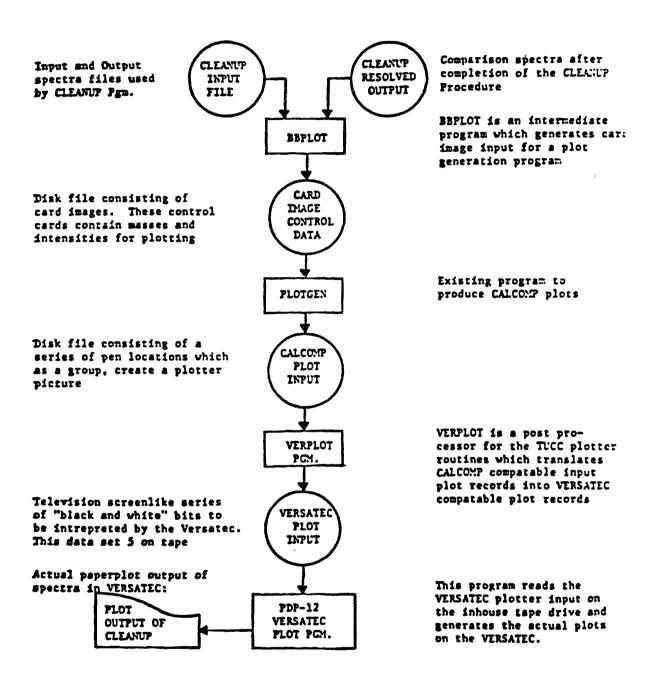


Chart 4. Steps involved in processing of CLEANUP test data (3). Generation of Versatec MS plots from CLEANUP files.

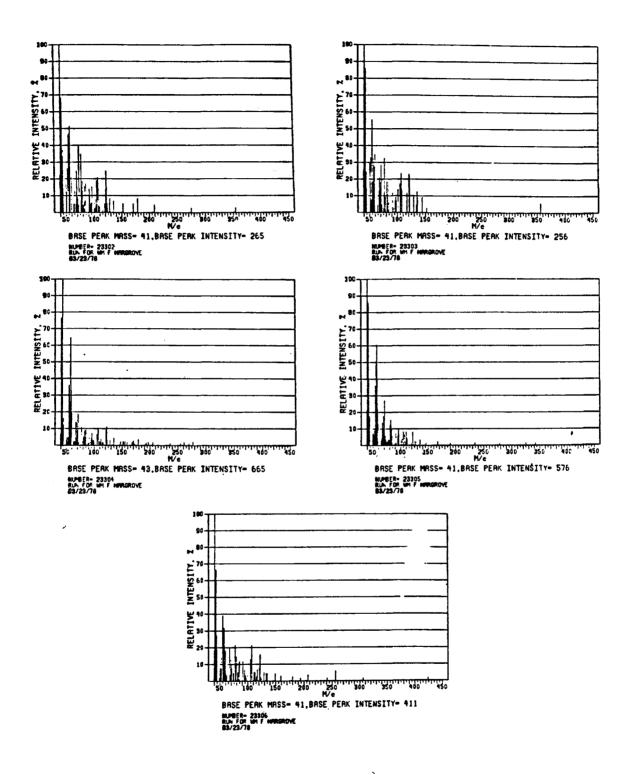


Figure 9. Five "raw" spectra used as input to CLEANUP.

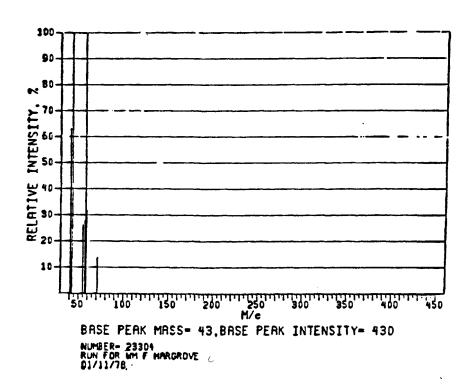


Figure 10. Resultant "cleaned-up" spectrum from Figure 9.

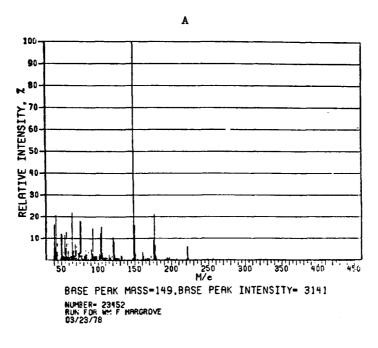


Figure 11. Precleanup - A, postcleanup - B.

brominated standard compounds. This series was chosen to serve as a control. The compounds in the run were known, and they were reasonably easy to identify.

In the case of the brominated standards, the CLEANUP procedure worked essentially perfectly. In the first section of the GC run the spectra were relatively free of background noise and the output spectra from the CLEANUP program resembled the original spectra very closely. This fact is not trivial in that it shows the CLEANUP procedure is essentially benign for the case of uncomplicated spectral data. Thus, if the original data are good, then the CLEANUP step does not alter them or degrade them in any way. This is a necessary condition of performance for a good CLEANUP program.

In the latter portions of the run, increasing amounts of background noise from column bleed became evident. In the case of weak spectra near the end of the run, the CLEANUP procedure became indispensible for the identification of several components. As it turned out, in addition to the brominated standards which were specifically put into the mixture, several additional components, many of them not containing bromine, were found. For example, spectrum number 23469 in the run had been seen many times previously during manual identification and never been identified. With the help of CLEANUP and SEARCH it was possible to identify this component as an alkylated phenol. The TIC trace of the run is given in Figure 12.

The results from the CLEANUP program are shown graphically in Figures 9 through 11. Figure 9 shows five successive spectra (the computer actually uses 7) from which a cleaned up spectrum is derived (Figure 10). Another pair of <u>pre</u> and <u>postCLEANUP</u> spectra are shown in Figure 11. A summary of the run is shown in Table 2.

Coal Run

The second GC/MS data set which was examined consisted of a low boiling fraction from a coal gasification process. With this data the situation was virtually the opposite from the previous case, i.e.,

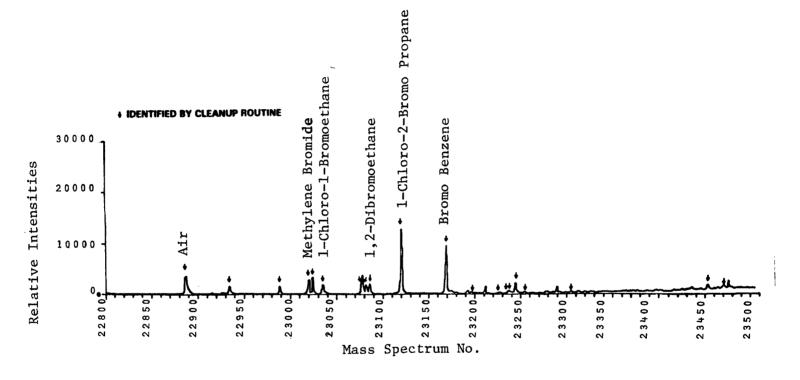
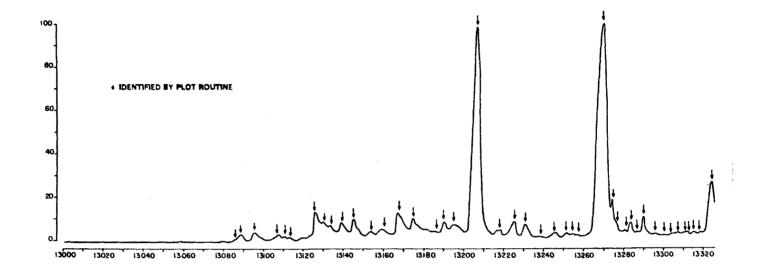


Figure 12. TIC plot of brominated standards.

Table 2. RESULTS OF COMPARISON OF CLEANUP WITH BROMINATED STANDARDS SEARCHED FOR 26,209 STANDARDS

		Preclea	anup	a.	Postcle	eanup	Elution
	Compound	Rank ^b	R	TIC Max.	Rank	R	Time
1.	methylene chloride ^a	1	.31	752	1	.67	15.63
2.	1,2-dichloroethane ^a	1	.33	672	1	.54	21.93
3.	methylene bromide	1	.36	720	1	. 49	25.55
4.	bromodichloromethan	e 1	.37	688	1	.43	26.00
5.	1-chloro-2-bromoeth	ane 1	.30	704	1	.43	27.30
6.	$\underline{\mathtt{n}} ext{-butyl}$ bromide	>5	<.19	512	2	.33	32.43
7.	ethylene bromide	3	.17	800	1	.31	33.25
8.	${\tt chlorobromopropane}^{\tt a}$	1	.28	1392	1	.37	37.22
9.	bromobenzene	>5	<.18	1088	2	.27	42.93
10.	dimethylphenol ^a	1	.31	320	1	. 45	46.20
11.	$\underline{\mathtt{n}}$ -butane $^{\mathbf{a}}$	>5	<.19	304	1	.53	49.35
12.	acetophenone ^a	>5	<.22	320	1	.39	51.10
13.	toluene ^a	>5	<.21	304	1	.60	52.97
14.	diethyl phthalate ^a	1	.33	478	1	.52	76.07
15.	octyl phenol ^a	>5	<.15	432	1	.52	78.05

a Compound was not knowingly part of standard mixture.


b The ordinal number of the similarity of the library component to the unknown. The program normally prints out the 5 best fits.

this sample consisted of a deliberately chosen, highly complex mixture, which would test the system to its limit to determine the most that could be expected from this program.

In this GC/MS data set, the chromatography conditions and the relatively slow sampling rate assured that the majority of MS scans would consist of mixtures, contain also background noise, column bleed, and other components in the system. Although the specific components in the mixture were not known, the nature of the sample gave strong clues as to what kinds of compounds were to be expected. A TIC plot of this run is shown in Figure 13.

Not surprisingly then, when raw coal run MS data were introduced into the MS search routines, the output was nearly totally useless, since the correlation coefficients were almost uniformly low and those compounds which were chosen as the closest fitting were obviously completely erroneous. We believe that we understand why this occurred. When samples are highly impure, numerous additional small peaks, particularly in the high molecular weight regions usually appear. The search system normally has no way of distinguishing these weak noise peaks from similar weak peaks which may be present in high molecular weight components. As a result, these peaks are picked up as possible molecular ions for high molecular weight components, and the results are entirely erroneous.

After the CLEANUP program had been applied to this set of data, the results, although far from perfect, improved noticeably. A sample of the search program output is shown in Table 3. Most of the high molecular weight noise was removed by CLEANUP, resulting in the identified compounds being of a much more "reasonable" nature. In addition, the search program's correlation coefficients rose dramatically, and indeed, most of the identified components seemed to be reasonable, based on the known origin of the sample. Thus hydrocarbons, low molecular weight phenols, and specific compounds containing heteroatoms such as thiophene and carbon disulfide were identified correctly by the search system with good correlation coefficients. We feel that this represents a remarkable achievement for such a difficult mixture. Figures 14 and 15 show a

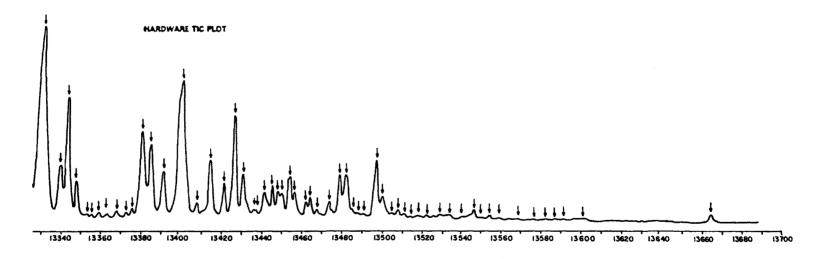


Figure 13. Hardware TIC plot of GC/MS analysis of organics from coal pyrolysis.

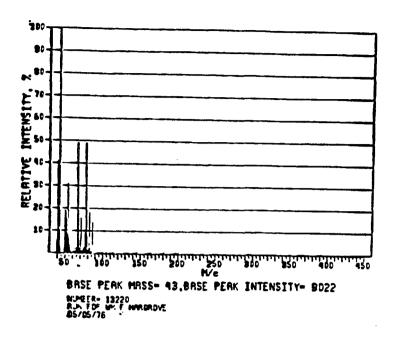


Figure 14. Typical precleanup of mass spectrum.

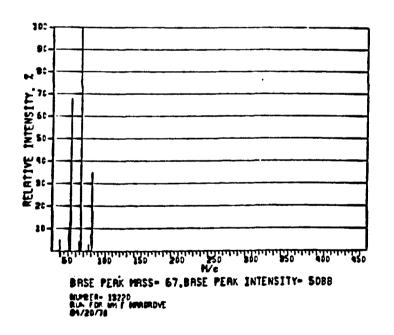


Figure 15. Same spectrum after CLEANUP.

	ID# R MNT FORMULA	NAME
TABLE	1. 622 0.47 88 0 4 4 8 7 2	FTHYL ÁCFTÁTE
. 멸	2. 2234 0.38 118 C 6 H 14 O 2	1-ISOPROPOXY-2-PROPANOL
	3. 2210 0.37 118 C 5 H 10 O 3	2-METHOXYETHYL ACETATE
1.	4. 649 0.34 88 C 5 H 12 O 1	ETHYL ISOPROPYL ETHER
Ψ	5. 615 0.33 88 C 4 H 8 O 2	BUTANDIC ACID (BUTYRIC ACID)
TYPICAL (AFTER C	SPEC # 4221 ELUTION TIME= 25.78 MIN ELUTION	TEMPE O TIC MAXE 848
돌범	IDW R HWT FORMULA	NAME
E C	1. 14543 0.59 236 C 7 F 8	TRIPLUGROMETHYL PENTAFLUGROBENZENE
₽ AI	2. 9749 0.35 186 C 6 F 6	HEXAFLUDROUS NATER (MODERNADOLINE
	3. 14540 0.55 236 C 6 F / P 1	PENTAPLUOROBENZENE SULPHENYL CHLORIDE
PR.	ID# R MMT FORMULA 1. 14543 0.59 236 C 7 F 8 2. 9749 0.35 186 C 6 F 6 3. 14540 0.35 236 C 6 F 7 P 1 4. 14395 0.17 234 C 6 CL 1 F 5 S 1 5. 13839 0.17 227 C 9 H 13 N 3 D 4	SOUEDXACALIDINE
PRINTOUT	SPEC # 4224 ELUTION TIME= 26.13 MIN ELUTION	
i i	ID# R MWT FORMULA	NAME
	i ngi ka ka ku is	4_UPVENE
Ö	2. 477 0.46 84 C 6 H 12	Z-METHYL-1-PENTENE METHYLCYCLOPENTANE CIS-2-HEXENE
7	3. 475 n.46 84 C 6 H 12	METHYLCYCLOPENTANE
⊢ P	4. 462 0.44 84 C 6 H 12	CISHZWHEXENE
DH N	5. 483 0.44 84 C 6 H 12	TRANS-2-HEXENE
FOR IDENTIFICATION OF	SPEC # 4241 ELUTION TIME# 28,12 VIN FLUYION ID# R MWT FORMULA 1. 354 0.69 78 C 6 H 6 2. 353 0.68 78 C 6 H 6 3. 352 0.68 78 C 6 H 6 4. 351 0.68 78 C 6 H 6 5. 350 0.51 78 C 6 H 6	NAME 2, GAMEXADIYNE 1,5-MEXADIYNE 1.5-MEXADIYNE
0 1		RENZENE
i	SPEC # 4247 ELUTION TIME# 28,82 MIN ELUTION	TEMPE O TIC MAXE 960
AI	IDE R MAT FTRMULA	NAME.
r. 1.	1. 471 0.54 84 C 6 H 12 2. 470 0.50 84 C 6 H 12	HEXENE 2
Ω	3. 445 0.48 84 C 5 H 8 U 1	CYCLOPENTANONE
Ş	4. 453 0.48 84 C 5 H 8 D t	2-METHYLCYCLOBUTANONE
Po [5. 1235 0.46 102 C 6 H 14 D 1	1-HEXANOL
COAL COMPONENTS	SPEC # 4256 ELUTION TIME= 29.87 MIN FLUTION	TEMP≈ 0 TIC MAX= 1136
တ ို့	ID# R MWT FORMULA	NAME"
54	1. 136 0.81 64 0 2 3 1	SULFUR DIOXIDE
53	2. 358 0.29 80 C 1 H 4 D 2 3 1	METHANESULFINIC ACID
56		
b.	4. 6579 0.24 159 C 2 F 3 N 1 D 2 S 1 5. 11530 0.23 203 H 1 N 3 D 4 S 3	TRIFLUDROMETHANESULFINIC ACID ISOCYANATE
	5. 11530 0.23 203 H 1 N 3 O 4 5 3	2H=1,3,5,2,4,6=TRITHIATRTAZIN=1,1,3,3=TETR

SPEC # 4211 ELUTION TIME= 24.62 HIN FLUTTON TEMP# 0 TIC MAXE 928

2H=1,3,5,2,4,6=TRITHIATRIAZIN=1,1,3,3=TETROXIDE

typical "before" and "after" pair of spectra from the coal run. Table 4 shows a comparison of a small selection of the data before and after CLEANUP. Complete accuracy is not claimed for this run, but CLEANUP improves the hit rate from nearly zero to an estimated 50%.

Several defects in the system emerged from this series of experiments. The most obvious defect involves situations in which strong peaks emerge from the column at sufficient amplitude to saturate the data acquisition system for a number of ions in several mass spectra. The most obvious case of this involves the component benzene (Figure 13, spectrum number ca. 13207), which eluted from the column as a very broad band extending for about 9 spectra (at 6 sec/scan this corresponds to a 54 second peak). This component showed saturated peak intensities for five major ions at m/z 50, 51, 52, 77, and 78. As a result of this situation, the 13 C isotope at m/e 79 was computed to have a relative intensity of 50%. As a result, the search program subsequently misidentified the major peaks in the spectrum and the search for benzene failed. This problem was compounded because, in addition, the large amount of benzene present caused other components, mainly from the "stationary" phase in the column to coelute, giving rise to a series of small peaks at high masses which the CLEANUP program dutifully processed and included in the unknown spectrum.

The problem of saturated peaks in spectrum identification is a serious one. Notwithstanding the fact that it is obviously wrong to try to identify components from a GC run when the amounts injected saturate the data acquisition system, these components are so strong and obvious that most investigators would be highly dissatisfied if simple compounds such as benzene were misidentified by a computer software system. There are several ways to remedy this situation. Currently, compounds with saturated peaks are labelled on the output printout (Figure 16) and thus warn the investigator of a potential problem. Also, a possible remedy for future development would be to raise cutoff limits on peak intensities when saturation was encountered so as to exclude weak peaks which otherwise would be accepted for searching.

Table 3. COMPARISON OF SELECTED SPECTRA FROM COAL GASIFICATION SAMPLE SEARCHED BEFORE AND AFTER CLEANUP

	Before CLEANUP				After CLEANUP	
WT	NAME	R		R	NAME	M
		Spectrum #13209 Elution Time = 24. TIC Max. 8081	. 38			
.8	(AK-33)Methylcyclopentadienyl Maganese Tricarbonyl	0.19	11	0.21	Ethyl 2-Keto-2-Penylethandate	17
0	Alpha-(Bromoethyl)Benzyl Alcohol	0.16	Ш	0.20	Ethyl 2-Hydroxy-2-Phenylethandate	10
0	P-Phenylene Diisocyanate	0.15	П	0.20	P-Phenylene Diisocyanate	1
3	2-Methylphenyl Azide (D-Tolyl Azide)	0.15	Ш	0.20	Alpha-(Bromomethyl)Benzyl Alcohol	2
		Spectrum #13219 Elution Time = 25. TIC Max. 654	.55			
8	7-Methyltridecane	0.15	11	0.43	2-pentanone	8
2	2,6-Dimethyl-3-Heptanone	0.14	11	0.42	Tri-Methylacetamide	1
1	3-Acetylpyridine	0.13	11	0.42	2-methy1-Pentanal	1
8	Ethyl 2-Keto-2-Phenylethandate	0.13	"	0.38	N-Butanal-D-Methyloxime	1
		Spectrum #13227 Elution Time = 26. TIC Max. 984	48			
10	Trichloroethylene	0.22	11	0.38	Trichloroethylene	1
2	1,1,1-Trifluoro-3-Chloropropane	0.16	Ш	0.23	1,1,1-Trifluoro-3-Chloropropane	1
6	N-Carbamoy1-2-Imino-1,3-Oxathiolane 2-Thisdatane	0.15 0.15	Ш	0.22 0.22	1,2-Dichloro-1,2-Difluoroethylene 1,1-Dichlorodifluoroethylene	1
		Spectrum #13233 Elution Time = 27. TIC Max. 862	18	5.22	1,1-52cm20.ddff1dof0ecmy1eme	•
02	1 / Private de la companya del companya del companya de la company					
32	1,4-Dibutoxybutane 1,3-Dimethoxy-2,2-Dimethylproprane	0.16 0.15	11	0.56	N-Heptane	10
2	1-(2-Butoxyethoxy)Ethanol	0.15	Ш	0.47	3-Methylhexane 2.3-Dimethylpentane	10
8	2,2-Dimethyl-5-Methylene-3,7-Dioxa-Octane	0.14	II	0.42	2-Methyl-3-Pentanone	10
		Spectrum #13248 Elution Time = 28. TIC Max. 559	93			
8	Methylcyclohexane	0.28	11	0.75	Methylcyclohexane	ç
8	Cycloheptane	0.24	11	0.74	Cycloheptane	
2	1-Methyl-1-Ethylcyclopentane	0.22	Ш	0.60	Cyclohexanone	-
В	Cyclohexanone	0.22	11	0.58	2-Methylcyclopentandne	
		Spectrum #13254 Elution Time = 29. TIC Max. 514	63			
6	2-Thianonane	0.21	Ш	0.40	2,2-Dimethylcyclobutanone	9
6	1-Octanethiol	0.19] [0.37	2-Cyclohexene-1-ol	ģ
8	1-Undecanethiol	0.17	H	0.37	Cycloheptane	9
32	l-Heptanethiol (N-Heptyl) Mercaptan	0.16	11	0.36	3-Cyclohexenol	ģ

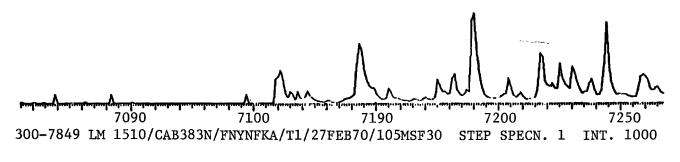
CLEAN UP	OF RAW D	ATA FILE CL	EANUP T	EST #1	ON 10/2	8/78
				· · · · · ·	-41 TTT	- -
******	*******		*****	********	*******	*****
SLOT S	PFC.	TETTEN	TICRAT	_H3X3Hb	- DOUELFT	? SAY. PEAK
						•
!	7110	16352.	99	32699.	NC.	i
	7130 7143	1714-	··· 47	61726.	YES	ĭ
 -	7144	16010.	33	7099.	NC -	
5	71 53 71 55	15939. ·	90	456. SERS.	NC	0
Ÿ	7159	2706.	44	684.	NC.	9
<u> </u>	71 65	7353. ⁻ 23997.	37 99	10775.	VES	
10	- 1117	6379.	37	2954.	PF5	0
11	7178	3256.	25	1906.	NC	
12	7197 7197	[8789.] 13812.	85	9435. T	YES	` "
	7189	116588.	92	Z8657. T	NC .	0
15	7171	34309.	 75	13336.	NC NC	- 3
17	7204	23102.	99	9807.	NΓ	
<u>i</u> a	72 09 72 1 6	7299. ~ 12211.	87	2605. 6535.	YE S	
- 50	7217	57833.	93	27078.	NE	<u>-</u>
21	7221	12304.	42	4179.	VES-	0
22	7225 7230	35864. 32739.	76	A797.	A E 2	o
74	7236	#971 .	31	2252.	\c	0
<u>25</u>	- 7238 -	18492. 55230.	- 88 99	3776. 25520.	NC	
27	7259	26381.	71	7812.	NΣ	0
78 29	7265 7282	7539. 137692.	50~ ··	1209. 32699.	NC NC	3
30	·	37614.	47	9796.	YES -	
31	7292	11621-	16	4320. 3074.	YES NC	
32 33	7293	7720.	23 17	2132.	AC	0
34	7799	7527.	-·-¥		AE2	0
35 36	73 72	3439.	42 -	1280. 70393	TYFS.	ĭ
37	7338	117416.	99	32099.	NC	
3R 39	7315 " 7322	176). 9331.	37	1171. 3156.	YFS	ŏ
43	7325	111516.	70	37699.	- NC	
41	7336	51139.	99 70	32699.	AC	1 ·-·-
42 43	7341 7346	144658. 32112.	39	16745.	NC	ŏ
-44	7351	36519.	46	13943.	YES YES	o
45 -	7355 7356	70510.	<u>99</u>	32699.	VE S	70
47	7358	3937.	. 7	2368.	TALE	0 ·
48 49	7362 7365	34024.	- '99 ` 5	32699. 744.	NC	0
50	7369	3231.	9	1244.	NĆ.	9
51	7373	8612. 8119.	21 14	3104. 2775.	YES	Ö
52 53	7392 7393	40291.	63	6558.	N.C	0
54	7384		32	5946. 2245.	NC NC	0
55	7385 7390 -	30808.	.55	32699.	7£5	<u>></u>
57	7392	194676.	78	20230.	<u>NC</u>	- 2
5P 59	7399 - 7403	73934.	26	7034.	YES	Ö
60	7404	5880.	2	7480.	YES	
61	7408	6438. 3782.	5.	2012.	YES :	···
63	7411	4782. 9557.	7	4904.	YF5	Ö
	7413	9117.	7	16888.	YES YES	0
65 66	-7417 -7421	44985. 288286.	34	- "32759. "	KC	
67	7431	161146.	53	32699.	NC .	
68	7437	772713. ~ 67547.	99 38	32699.	AE2	ò

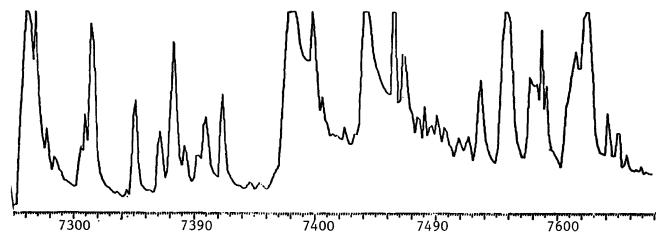
Figure 16. Chemist's printout from CLEANUP.

70	7439	פסטיק	74	5933.	NT -	 v
71	7445	48464.	43	15673.	YES	0
	7447	14978.	11	TORB.	YFS	
73	7448	32380.	28	7289.	NC_	0
74	7473	12165.	10	7736.	K[_	· · · · · · · · · · · · · · · · · · ·
75	7458	5804.	5	1529.	AE.	0
76	7459	15665.	15	3084. 6761.	NΓ.	0
——————————————————————————————————————	74 58	20917. R0867.	22 —	32699.	-vês	
79	7469	3856.	77	1986.	YES	ò
	7471-			1777	v FS	
Al	7472	21524.	28	3765.	NE	ŏ
H2	7478	759586.		32695.	NE NE	
93	7482	22038.	21	3463.	YES	0
	7483	7770.	A	1012.	VES	
95	7494	4966.	6	713.	YES	0
- 86	7486	5304.		1393.	&£ 4	
87	7439	124812.	67	18705.	NC	<u> </u>
88	7490	101103.	54	29322.	NC.	0
	7497	19823.	22	2731.	_ YES	<u> </u>
91	74 9 B 75 2 4	13503.		7777 1424.	YES	0
92	7555	81709	35	14600.	- - N C	
93	7511	307985	97	32699.	NC	2
94	7513-	33757	- ii -	7284	- NE -	
95	7516	2664.	3	514.	N.C	õ
96	7570	46239.	42	- 9673.	KC	·
97	7524	65144.	57	9421.	YES	Ō
98	7528	18459.	27	4667.	~~~	
99	7532	4643.	7	946.	NE	0
100	7514	5376.		1000.	NE	0
131	7544	17751.	_ 29	2080.	NE _	
102	7546	14371.	⁻ 25	3540.	NC -	
103	7552 7556	26179. 94184.	4.5	5355. 2004 e.	- AC	0
105	7557	100720.	53 99	22306.	VES"	0
136	7559	7718.	- ?; .		- NL	
107	7562	79764.	88	15105.	NC.	Ö
108	7564	133R0.	23	3684.	NC	- 0
199	7569	57043.	79	13283.	VE S	Ö
110	7571	20409.	31	4879		0
111	7573	29182.	42	6078.	YES	0
115	7577	10942.	17	3371.	NC	0
113	7588	27725.	40	6134	YFS	0
114	7590 7596	32307.	36	9176.	NC	0
ne	7602	97445.		22153. 7505	NC	0
117	7606	2180.	3	1647.	NC NC	0
118	7615	6393.	10	1785.	N.C	0
119	7619	3496.	5	1390.	YES	ő
120	7623	16928.	24	2310.	··- Nc · ·	— - 8 ——
121	7629	3851.	6	771.	YES	ŏ
122	7630	6274.	-10	700.	YFS	· · · · · · · · · · · · · · · · · · ·
123	7634	74177.	56	16870.	NC	Ö
124	7637	3056.	4	777.	AE 2	0
125	7639	4655.		1607.	NC	
126	7649 7659	3291		850.	NC	
128	7650	4311.	5	1597.	YES	0
129	7672	21496. 38809.	"34 " 99	8647. T	NC NC	2
130	7674	40(36.	48	15489.	YES	Z
131	1015	1339.	2	1022.	NC VES	0
1.5	7695	[9246.	34	- 6373	"KC ·	
1 1	7703	3835.	Ä	1041.	NE	ŏ
T24	77755	1525.		- 615		6
135	7710	1563.	3	1278.	NC	ō
136	1111	36074.	64	8902.	NC	0
13/	7723	79546.	53	7979.	NC	0
138	7775	10576.	_ 56	[758. T	NC -	

Figure 16, Continued.

Analysis of Environmental Samples


As a further test of the proper operation of the CLEANUP program, a series of runs were processed at RTI using data which had been previously analyzed by hand. Seven runs were processed which represented a selection of different types of samples which possessed a variety of functional group types. These runs are briefly described in Table 5. Of all of the runs for which data were available, one represented a very complex mixture containing a wide variety of components and was chosen for extended study. The sample was that derived from ambient air in a basement of a residence which had been built over an industrial chemical dump and which had been perfused with a large variety of organic components. The air sample when analyzed by GC/MS, showed the presence of in excess of 100 components. A total ion current plot of this run is shown in Figure 17. The sample was first processed by the CLEANUP program using the best available values for the input parameters, and the results compared with the manual identification. The results of this comparison are shown in Table 6.


Notwithstanding a small number of errors, it is obvious that the CLEANUP program is operating very successfully, and is capable of extracting correct spectra from mixtures and identifying them even in very difficult and complex mixtures. The table shows a number of interesting results. It should be noted that in the majority of cases, the manual identification and the computer results were the same. When this is combined with a high correlation coefficient (R>0.6), then the identification can be said to be correct and confirmed. In such cases the table entry is marked with an H (hit).

In some cases the computer results identified a component which is known to have a spectrum very similar to the manually identified compound. The correct identity often can be deduced by inspection, e.g. toluene might be identified as a methyl hexatriyne, or vinylidine chloride confused with dichloroethylene. This category comprises mainly isomers or homologues. These cases were also marked with an H. When the computer printed the manually identified compound as a 2nd to 5th choice, this number was also included in the table under the column heading, "Found".

All samples were run by description from TENAX GC cartridges.

	Type of Sample	Contents
1.	UNC smog chamber	esters nitrates dioxanes nitriles aldehydes hydrocarbons low m.w. alkyl aromatics ketones
2.	Oil shale volatiles	nitriles alcohols sulfur compounds ketones pyridines pyrazoles quinolines hydrocarbons aromatics
3.	Volatiles from in situ coal gasification (tar fraction)	alkanes alkyl aromatics very few hetero atom containing compounds
4.	Volatiles from in situ coal gasification (water fraction)	alkanes sulfur compounds pyridines oxygenated hydrocarbons
5.	Organics from air in basements	alkanes aromatics chlorines, bromine and fluorine containing compounds
6.	Organics in air in the vicinity of a Du Pont plant	halogenated hydrocarbons aldehydes ketones phenols nitro aromatics
7.	Organics near a pesticide plant	halogenated hydrocarbons sulfur compounds oxygenated hydrocarbons (aldehydes, ketones, phenols, esters)

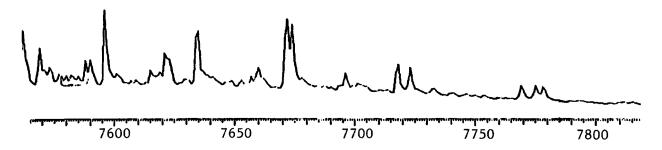


Figure 17. Total ion current plot from test run.

TABLE 6. COMPARISON OF MANUAL VS. COMPUTER IDENTIFICATION OF GC-MS RUN

Run #: 1510-CAB-3B3W-FNYNFKB

	SP#	Retention Time	Compound Identification	R	Hit or Miss	Found	Manual Identification
	7110	12.72	Dimethylamine	.84	М	5	Carbon dioxide
	7130	15.05	Vinyl fluoride	.63	Н		С ₃ н ₈ 0?
	7143	16.57	Acetone	.89	Н		Acetone
	7144	16.68	Fluorotrichloromethane	.85	Н		
48	7153	17.73	Vinylidine chloride	.78	H		Dichloroethylene
•	7155	17.97	Dichloromethane	.96	Н		Dichloromethane
	7159	18.43	Freon 113	.54	H		
	7165	19.13	Acetic acid	.71	М		С ₄ н ₈ 0?
	7175	20.30	2-Methylpentane	.80	Н		2-Methylpentane
	7177	20.55	1,2-Dimethylpropyl acetate	.55	М		^C 5 ^H 10
	7178	20.65	<u>n</u> -Butanal	.75	Н		Butanal
	7182	21.12	2,2-Dimethy1butane	.69	Н		3-methy1pentane
	7187	21.70	Hexafluorobenzene	.78	Н		Hexafluorobenzene
	7189	21.93	<u>n</u> -Hexane	.82	Н		n-Hexane
	7191	22.17	Chloroform	.63	Н		Chloroform
	7202	23.45	Perfluorotoluene	.71	Н		Perfluorotoluene
	7204	23.68	Methylcyclopentane	.77	Н		Methylcyclopentane
	7209	24.27	1,1,1-Trichloroethane	.68	Н		1,1,1-Trichloroethane
	7216	25.08	Isopropyl acetate	.76	Н		Isopropyl acetate

TABLE 6 (continued)

18 25.20 Benzene .90 H 20 25.67 Acetic acid .67 H 25 26.13 2-Methylhexane .78 H 30 26.72 3-Methylhexane .89 H 35 27.42 Dimethylcyclopentane .82 H 38 27.65 Trichloroethylene .75 H	Benzene Acetic acid
25 26.13 2-Methylhexane .78 H 30 26.72 3-Methylhexane .89 H 35 27.42 Dimethylcyclopentane .82 H	Acetic acid
30 26.72 3-Methylhexane .89 H 35 27.42 Dimethylcyclopentane .82 H	
35 27.42 Dimethylcyclopentane .82 H	2-Methylhexane
	3-Methylhexane
38 27.65 Trichloroethylene .75 H	^С 9 ^Н 14
70 II I I I I I I I I I I I I I I I I I	Trichloroethylene
44 28.35 <u>n</u> -Heptane .97 H	<u>n</u> -Heptane
59 30.10 Methyl isobutyl ketone .54 H	4-Methy1-2-pentanone
65 30.80 <u>n</u> -Heptyl formate .76 ?	^С 8 ^Н 18
81 32.78 1,5-Heptadien-3-yne .60 H	5 Toluene
89 33.60 3-methy1heptane .91 H	^C 8 ^H 18
92 33.95 Hexanal .61 H	C ₆ H ₁₂ O?
93 34.07 1,3-Dimethylcyclohexane .62 H	C ₈ H ₁₆
95 34.30 Ethyl <u>n</u> -butanoate .52 H	
00 34.77 4-Methyltriazole .46 ?	C8H16
03 35.12 <u>n</u> -Butyl acetate .42 H	n-Butyl acetate
05 35.35 3,4-Epoxy-2-hexanone .52 M	<u>n</u> -Octane
09 35.82 Tetrachloroethylene .58 H	Tetrachloroethylene
36.63 Hexamethylenecyclohexasiloxane .57 ?	
22 37.45 2,6-Dimethylheptane .78 H	с ₉ н ₂₀
25 37.80 Chlorobenzene .80 H	Chlorobenzene

TABLE 6 (continued)

SP #	etention Time	Compound Identification	R	Hit or Miss	Found	Manual Identification
7336	39.08	1,3-Dimethylbenzene	.83	Н		Ethylbenzene
7342	39.67	N-Methyl- $\underline{\mathbf{n}}$ -pentylhydrazine	.74	M	3	Xylene isomer
7346	40.25	3-Methyloctane	.81	Н		C ₉ H ₂₀
7351	40.83	Benzocyclobutane	.75	Н	3	Styrene
7355	41.30	p-Xylene	.77	Н	3	o-Xylene
7356	41.42	1,3-Dimethylcyclopentane	.40	?		
7358	41.65	1-Methy1-4-ethy1cyclohexane	.43	Н		^C 9 ^H 18
7361	42.16	<u>n</u> -Nonane	.69	Н		n-Nonane
7365	42.47	Diethyl methylvinylsilane	.51	?		
7369	42.93	1-Methylethylcyclohexane	.75	H		C ₉ H ₁₈
7373	43.40	Isopropylbenzene	.56	Н		Isopropylbenzene
7381	44.45	Cyclohexyl acrylate	.63	?		C ₃ -Alkylcyclohexane
7383	44.57	3-Methylnonane	.52	H		C ₁₀ H ₂₂
7384	44.68	Di(2-ethylhexyl) ether	.56	Н		
7385	44.80	2-Methyl-5-ethyl heptane	.28	Н		C ₁₀ H ₂₂
7390	43.38	Benzyl chloride	.58	Н	2	Chlorotoluene
7392	45.62	4-Azido-3-nitrotoluene	.37	M		
7399	46.43	Isopropylbenzene	. 38	Н		C ₃ -Alkylbenzene
7403	46.90	3-Methylnonane	.77	Н		C ₁₀ H ₂₂
7404 4	47.02	3-Phenyl-3-methylazetidine	.66	?		
7408 4	47.48	p-Menthan-9-ol	.45	Н	2	^C 10 ^H 20

TABLE 6 (continued)

SP#	Retention Time	Compound Identification	R	Hit or Miss	Found	Manual Identification
7409	47.60	β-Thujene	.41	Н		C ₁₀ H ₂₀
7412	47.83	Valeric acid	.66	Н	3	Heptanoic acid?
7413	48.07	4-n-Propy1-3-heptene	.42	M		C ₃ -Alkylbenzene
7417	48.53	Octamethylcyclooctasiloxane	.52	?		3
7420	49.00	o-Chlorobenzoyl chloride	.43	Н	2	Dichlorobenzene isomer
7431	50.17	1,3-Dichlorobenzene	.53	?		C ₄ -Alkylbenzene
7433	50.40	Cuminic aldehyde	.48	?		C ₃ -Alkylbenzene
7438	50.87	1- <u>p</u> -Menthadiene	.76	Н		C ₁₁ + C ₁₀ isomer
7439	51.10	Isobuty1cyclohexane	.51	M		Bromotoluene isomer
7444	51.80	<u>p</u> -Methylacetophenone	.68	Н	4	C ₄ -Alkylbenzene
7447	52.03	4-Ethylheptane	.53	Н	2	C ₁₁ H ₂₄ Isomer
7448	52.15	O-Decyl-hydroxylamine	.50	?		C ₁₁ H ₂₄ Isomer
7453	52.73	Bicyclo(4.4.0)decane	.42	?		C ₁₁ H ₂₄
7458	53.32	3,5-dimethy1methy1 benzoate	.33	M		C ₄ -Alkylbenzene
7459	53.43	Ar, α -dimethylstyrene	.50	н		
7463	53.90	Linalol	.39	?		C ₁₁ H ₂₂
7468	54.48	<u>n</u> -Undecane	.87	H		n-Undecane
7469	54.60	<u>t</u> -Buty1benzene	.28	?		
7471	54.83	Methyl benzoylacetylene	.36	М		Tetrachlorobenzene
7472	54.95	o,α-Dichlorotoluene	. 38	Н		Trichlorotoluene
7478	55.65	2,6-Dichlorotoluene	.70	Н		Dichlorotoluene

TABLE 6 (continued)

SP#	Retention Time	Compound Identification	R	Hit or Miss	Found	Manual Identification
7482	56.12	α-Neoisomenthol	.21	М		Pentachlorobutadiene
7484	56.23	Bicyclo(3.3.1)nonane-2-o1	.28	М		Trichlorobenzene
7485	56.35	Methyldichlorocyclopentadiene	.25	M	2	Trichlorobenzene
7486	56.58	3,4-Dimethy1styrene	.45	?		C ₅ -Alkylbenzene
7488	56.82	α -Pinene oxide	.77	н		C4H160
7490	57.05	2,6-Dichlotoluene	.85	н		Dichlorotoluene
7497	57. 87	N-Acetyl-phenylalanine	.21	М		
7498	57.98	2-Methylnonane	.43	Н		
7504	58.68	1,2,4-Trichlorobenzene	.43	Н		Trichlorobenzene
7506	58.80	1,2,4-trichlorobenzene	.48	Н		Trichlorobenzene
7511	59.50	Quinoline butiodide	.43	М	3	Naphthalene
7513	59.73	<u>n</u> -Dodecane	.65	?		Methyl salicylate
7515	60.08	Verbenone	.33	?		C ₁₂ H ₂₆
7520	60.55	1,3,5-Trichlorobenzene	.72	н		Trichlorobenzene
7525	61.02	Hexachlorobutadiene	.69	Н		Hexachlorobutadiene
7528	61.48	Carvone	.74	Н		?
7532	61.95	Pentobarbital-TMS ether	.20	M		Unsat. hydrocarbon
7534	62.18	Cyclohexylmethanol	.31	M		с ₁₃ н ₂₆
7544	63.35	$\alpha, 2, 4$ -trichlorotoluene	.37	Н		Trichlorotoluene
7546	63.58	2-Methy1-5-ethy1heptane	.64	?		C ₁₄ H ₂₈

TABLE 6 (continued)

SP#	Retention Time	Compound Identification	R	Hit or Miss	Found	Manual Identification
7552	64.28	Bornyl formate	.59	Н		C ₁₀ H ₁₆ (?)
7556	64.75	n-Tridecane	.67	Н		<u>n</u> -Tridecane
7558	64.87	α ,3,4-Trichlorotoluene	.67	Н		Trichlorotoluene
7559	65.10	Haloperidol	.28	M		Methylnaphthalene
7561	65.45	α ,3,4-Trichlorotoluene	.25	Н		Trichlorotoluene
7564	65.68	1-Methylnaphthalene	.61	Н		α -Methylnaphthalene
7568	66.27	Chlorophenyldibenzoazepine	. 32	M		C ₁₄ H ₃₀ ?
7571	66.50	1,2,3,4-Tetrachlorobenzene	.68	H		Tetrachlorobenzene
7573	66.73	α ,2,4-Trichlorotoluene	.63	Н		Trichlorotoluene
7577	67.20	2,5-Dimethylundecane	.48	H		C ₁₃ H ₂₆ isomer
7588	68.48	Acenaphthene	.50	н	2	Bipheny1
7590	68.72	1,2,3,4-Tetrachlorobenzene	.68	Н		Tetrachlorobenzene
7596	69.42	<u>n</u> -Tetradecane	.79	Н		<u>n</u> -Tetradecane
7602	70.12	2,6-Dimethylnaphthalene	.47	H		C ₂ -Alkylnaphthalene
7607	70.58	2-Amino-4-hydroxupteridine	.40	M		C ₂ -alkylnaphthalene
7615	71.63	α-murolene	.24	M		Alkylbenzene?
7619	72.10	1-Cyclohexyloctane	.39	Н	2	C ₁₆ H ₃₂
7623	72. 57	2,6-Di-t-butyl-1,4-benzoquinone	.61	Н		C ₆ H ₂₄ 0?
7624	73.27	7-Acetoxy-p-menth-1-en-3-one	.31	?		
7630	73.38	2,6-Dichlorobenzal chloride	.32	Н	2	Tetrachlorotoluene
7634	73.85	n-Pentadecane	.82	Н		<u>n-P</u> entadecane
7637	74.20	Methyl laurate	. 38	?		C ₁₅ H ₃₀

TABLE 6 (continued)

SP #	Retention Time	Compound Identification	R	Hit or Miss	Found	Manual Identification
7639	74.43	Trihydroxy benzoic acid, TMS	.19	M		C ₃ -Alkylnaphthalene
7649	75.60	Pentachlorobenzene	.38	?		C ₅ -Alkylbenzene
7659	76.77	Dicyclohexyl ether	.30	?		
7660	76.88	Diethyl phthalate	.68	Н		Diethyl phthalate
7672	78.28	Neopentylphosphonyldichloride	.41	M		Trimethylpentadiol diacetate
7674	78.52	n-Hexadecane	.58	Н		n-Hexadecane
7675	78.63	2-Phenyldecane	.39	Н		Sat. hydrocarbon
7696	81.08	Pristane	.66	Н		C ₁₈ H ₃₈
7703	81.90	Dimethylbenzylisobutyl ether	.23	М		C ₁₆ H ₃₂
7705	82.13	Methylfuranyl THP-ether	.29	M		
7710	82.72	Trimethylamine	.65	M		
7718	83.53	<u>n</u> -Tetradecane	.77	Н	3	n-Heptadecane
7723	84.23	Pristane	.82	Н		C ₁₉ H ₄₀
7775	90.30	Myristic acid	.48	н		?

An interesting situation occurred in a few cases in which manual identification was not possible or uncertain. In those cases the manual identification column contains a question mark. If in addition the R factor from the computer is sufficiently high, it is reasonable to assume that the computer identification is correct and the manual identification is incorrect. This is particularly true with closely spaced doublets where frequently it is nearly impossible to separate components manually. In these cases, the computer identification is more certain than the human one. When this occurred, a question mark or even an H was entered in the hit column. Components missed in the manual interpretation were marked with a dash in the appropriate column.

In a small number of cases, computer identification is undoubtedly wrong. This is usually accompanied by low R factors (R<0.3). Also when peaks are weak or small components of multiplets, it is difficult to identify them by computer. Such cases are marked with an M in the hit column ("Miss").

Comparison of figures clearly shows that the CLEANUP program materially simplifies the spectra prior to their submission to the search program. The data here presented show that by combining CLEANUP with an efficient search procedure, results can be obtained which are comparable with human interpretation. In summary, of 138 components, definite hits were obtained on 90 components, clear misses occurred in 26 cases, with 22 cases unclear. Removing the questionable category, the system recorded 78% hits and 22% misses, a rather remarkable performance for this very complex and convoluted mixture.

CLEANUP CONTROL PARAMETERS

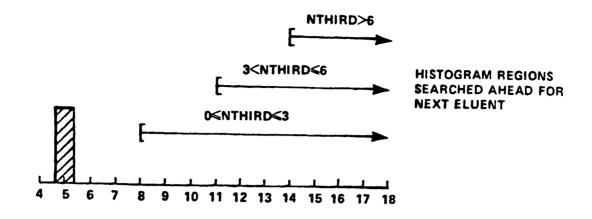
The conclusion of Phase II consisted of variation of the CLEANUP control parameters in order to determine their effect on the output spectra and to arrive at an optimum setting for each. The fifth of the eight runs described above was chosen as a test case. Most of the parameters represent threshold settings concerned with eluant detection: peak sharpness requirements, total ion current threshold, closest expected distance between neighboring eluants, the percent of each peak attributable to background, etc. Two parameters are simply switches controlling optional diagnostic messages useful for program debugging.

An attempt was made to determine optimal parameter settings by varying parameters in a regular manner and analyzing the results using the SPSS statistical package. This approach was not fruitful since there was no obvious demarcation between what constitutes reak peaks and noise peaks, and so the statistics did not show a clear preference for one setting of the parameters, but only a contininuum of change. Trial and error variation of the parameters, though less sophisticated, proved more effective. The general procedure was to vary each parameter in both directions about the value suggested by the program authors in the original CLEANUP documentation. A summary of conclusions and recommended values is shown in Table 7. The two things which most aided determining the effects of parameter variation were the "chemist's summary printout" of CLEANUP (Figure 17) and the output of the RTI search program (Table 4). It is to be emphasized that these values represent optimum settings for a VARIAN CH-7. Our suggested values for the INCOS test data are shown in Figure 27.

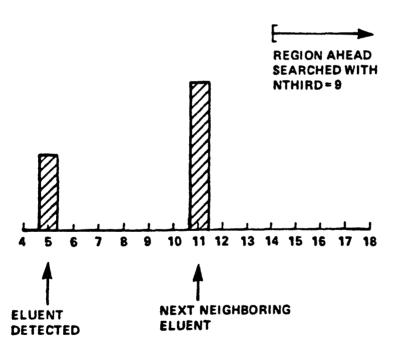
The chemist's printout is a summary list of components found by CLEANUP, along with information regarding the presence of doublets and saturated peaks. By comparing the change of the number of eluants indicated in the chemist's printout together with the most likely candidates for those eluants found by the RTI search program, it was possible to determine when erroneous peaks were beginning to be picked up by CLEANUP.

Following is a technical review of the analysis of parameters, primarily of interest to programming specialists.

The first two variables control the print options of the CLEANUP program and do not affect any internal calculations. Either variables can be set to 0 (do not print) or 1 (print). The first option (IPFLAG) determines whether or not the chemist's printout is to be printed. The listing of all eluants found by CLEANUP takes relatively little space, and has proved helpful in almost all test runs. We feel that the chemist's printout should always be requested. The second option (IDEBUG) determines whether or not intermediate calculations and decisions inside CLEANUP are to be printed. Information printed includes histogram

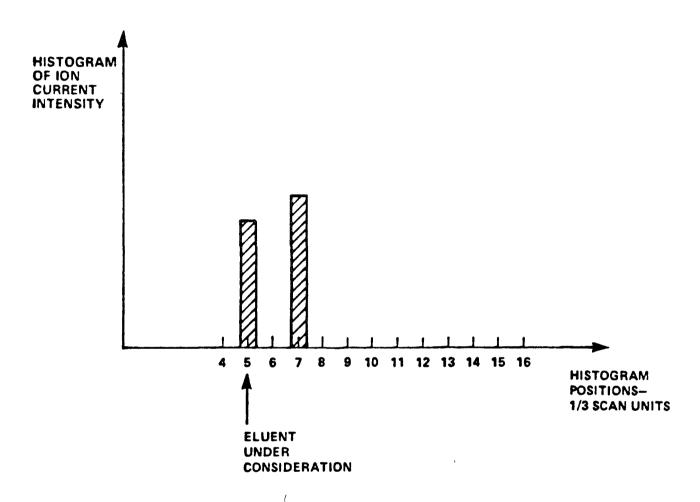

TABLE 7. CLEANUP INPUT PARAMETER SUMMARY

Name	Function	Possible values	Suggested values
IPFLAG	Determine whether or not to generate chemist's printout	1 = Generate printout 0 = Suppress printout	<pre>1 = Chemist's printout is helpful in all cases</pre>
IDEBUG	Determine whether or not to generate debugging output	1 = Generate printout 0 = Suppress printout	<pre>0 = Printout necessary only when looking for errors</pre>
NTHIRDS	Set minimum # of scans for expected doublets	3,6,9 in units of 1/3 scan	3 = Expected distance as short possible
ITOM	Set neighborhood in histogram window for eluent detection	1,2 units of 1/3 scans	2 = Widest setting
MINNY	Set minimum histogram ion current for 1 to 4 peak eluents	Any integer greater than or euqal to 0	1000 currently used, setting greater than 0 recommended
MINTIC	Set minimum histogram ion current for eluents with more than 5 peaks	Any integer greater than or equal to 0	1000 currently used and recommended, critical that setting greater than zero is used
RATM	Minimum rate for eluent detection	Any real number greater than 0.0	0.0 = No minimum cutoff for pearates appears necessary at this time
RATMXX	Eliminate column bleed from detected eluents by linear error ratio test	0.0 to 1.0	= .1, current value is .0756. is critical that this parameter not be 0.0
ILEFT	Set number of scans required for increasing ion current prior to prospective model peak mode	1,2	2 = As wide a neighborhood abou the mode as possible is recom- mended to ensure model accuracy
IRIGHT	Set number of scans required for decreasing ion current after prospective model mode	1,2,3	3 = Same as above
SATVAL	Tells CLEANUP instrument saturation value	All integers	= 200 below instrument saturation value (see text)


printouts, complete peak models, and decisions made as to whether the peak encountered was dismissed as noise, qualified as a singlet eluant, or whether the doublet resolver was invoked. With an average of 1 page of printout per eluant detected, the full printout for some test runs has frequently exceeded 200 pages. Although this information proved very helpful in finding some bugs in CLEANUP, we feel that unless thre is a specific need, this diagnostic output should be suppressed.

The first of the parameters affecting output spectra (NTHIRD) determines the closest distance which CLEANUP expects between neighboring eluants. Once the CLEANUP program detects an eluant from histograms of the ion current, it looks ahead in the histogram to determine if another eluant is in the vicinity just ahead. Although the variable NTHIRD is given in units of thirds of scans, only three values make a difference in terms of CLEANUP internal calculations. A value for NTHIRD of 3 means that neighboring eluants are expected no closer than 1 scan away, 6 means no closer than 2 scans, and 9 means that neighboring eluants are expected no closer than 3 scans from each other. The function of NTHIRD is shown graphically in Figure 18. From a theoretical point of view, there is no reason why this parameter should not be set to 3, setting the CLEANUP program to look for doublets within the finest possible grid. The danger of using a coarser setting is that some close pairs of eluants could be interpreted by the CLEANUP program as singlets, resulting in incorrect peak model choices and the deletion of unknowns. Our experience with varying this parameter over the test run however, showed only a mild dependence of results on the expected minimum distance, with the number of eluants decreasing by only 5% from the finest to the coarsest possible setting.

The detection window size (ITOM), has two possible values; 1 and 2, corresponding to the number of histogram positions which must be less than the central maximum in order for an eluant to qualify for detection. This is shown graphically in Figure 19. Currently, the most stringent setting is being used, requiring that histograms of ion currents for 2 members on either side of the central position be lower than the central value in order for an eluant to be detected. Statistics on this



HISTOGRAM
POSITIONS WHERE
1ST ELUENT IS
DETECTED

Example of Eluent Missed Due to Incorrect Setting of NTHIRD Parameter

Figure 18. Graphic representation of possible settings of NTHIRD.

The ion at position 5 would be rejected with ITOM = 2 because of the neighboring eluent at position 7, whereas with ITOM = 1, it would be accepted.

Figure 19. Function of ITOM histogram window setting.

parameter were obtained, but in view of the fact that the CLEANUP algorithm does not try to resolve doublets closer than 1 scan apart and breaks down entirely for a distance of 1/3 scan, it was decided to keep ITOM at its most rigorous value, 2.

The input parameters MINNY and MINTIC are minimum TIC histogram intensity thresholds for eluant detection. It is important to note that these ion currents are tested after background noise is subtracted. There are two threshold settings, one for spectra containing very few ions, (e.g. coronene), and one for spectra containing very few ions, (e.g. coronene), and one for spectra containing 5 or more ions. In addition, the reconstructed spectrum is required to have a total ion current equal or greater than MINTIC otherwise it is not written to the output file or noted in the chemist's printout. TIC threshold requirement was tested first by setting both parameters to 0, effectively eliminating the TIC minimum cutoff. The result of this test was to more than double the number of eluants detected by CLEANUP. Many of these eluants when processed by the RTI search program were found to have less than 5 compounds in the entire library which passed its two out of six strongest peaks presearch test, indicating that the peaks consisted mainly of noise. It is thus concluded that some TIC requirement is necessary. We now believe that the value of 1000, presently used, is too high. The optimum setting of this threshold must be determined individually for every data system.

The parameter (RATM) sets a minimum sharpness on each model peak before it can qualify as an eluant. The suggested value is 0, meaning that no eluents are rejected, sharpness being positive definite. This parameter was left at 0 for two reasons. First, there was no evidence of spurious eluants being introduced due to insufficient sharpness, and second, the distribution of sharpness values for the test run gave no clues as to a best setting.

The function of the linear error ratio (RATMXX) is to remove those single ion traces (fragmentograms) which contain column bleed. In order to do this, a least squares fit to a straight line is calculated for an ll scan window (5 scans on each side scan under consideration) and then

the ratio of the root mean square deviation of the peak shape about the line to the average value of the line is calculated (Figure 20). As indicated, peak shapes which are "too flat" can be eliminated by the error ratio criterion. Another useful property of the error ratio is that small peaks against very limited background noise will still be considered as eluants (b), whereas the same small ripple against a strong background would be dismissed as noise (c). We have varied the minimum error ratio requirement and we have demonstrated that the correct assignment of this variable is critical. The minimum error ratio requirement was reduced from the suggested .0756 to .002. Under these conditions CLEANUP found the same number of peaks as it had with the higher value found (the error ratio test is applied after an eluant has been detected in order to determine if reconstruction is worthwhile), but the CPU time required by the search program doubled and recognition performance markedly deteriorated. Extraneous peaks were admitted by CLEANUP, causing a large fraction of the unknowns to pass the presearch cycle of SEARCH and also causing misidentification in the search program due to the presence of those peaks.

The parameter ILEFT sets the number of scans which must show an increasing ion current prior to the mode in order for an ion fragmentogram to be considered as a model peak. Correspondingly, IRIGHT sets the number of scans required to show a decreasing ion current after the mode for model consideration. We feel that ILEFT and IRIGHT should be left at their maximum permissable values, 2 scans prior to and 3 scans after the mode. The CLEANUP algorithm achieves maximum efficiency when a typical singlet peak is 5 to 10 scans wide. If the scan rate is correctly "tuned" the most stringent setting for ILEFT and IRIGHT ensures that well-behaved individual ion traces are used as model peaks.

The parameter SATVAL defines the saturation value used by the program in order to determine when peaks are saturated and need to be reconstructed via a ratio approach. Although this number would be expected to be the theoretical maximum for the A/D convertor used in the data acquisition system, we have found it necessary to set SATVAL to a value slightly below the theoretical maximum. Thus, for the VARIAN

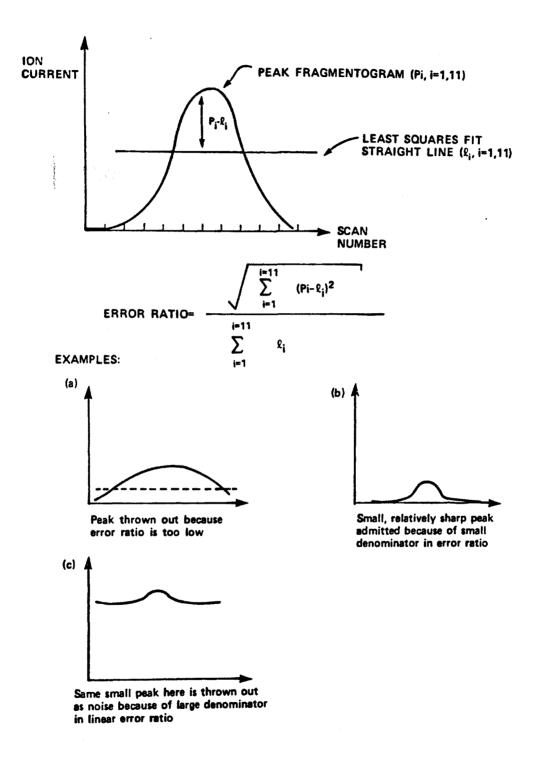
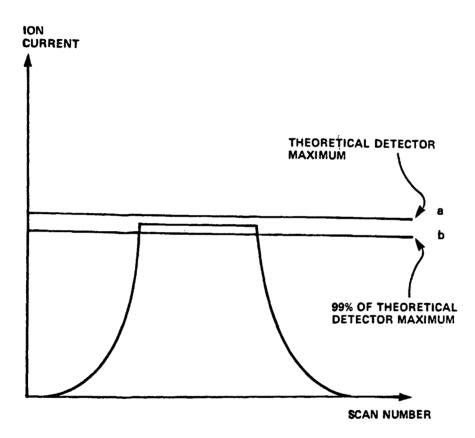



Figure 20. Effects of linear error ratio.

system, the maximum A/D output is 32,767 ($2^{15}-1$), we currently have SATVAL set to 32,000. For unknown reasons, A/D convertors often register values less than their maximum for known, saturated peaks. In such cases, saturated peaks can inadvertently be eliminated entirely as background noise (Figure 21).

Again, the values for the parameters shown in Table 7 are satisfactory for VARIAN CH-7 data. It must be realized however, that these values are instrument and data dependent, and optimum values for any particular data system must be determined empirically by adjustment of parameters, which will require some experience gained only with time.

With SATVAL setting at value (a), the saturated peak is constructed by CLEANUP to be entirely background noise, but with a slightly reduced setting (b) for SATVAL, the peak is recognized as saturated and handled by the correct routines.

Figure 21. Effect of SATVAL on CLEANUP.

SECTION 5

IMPLEMENTATION OF THE CLEANUP PROGRAM ON THE UNIVAC COMPUTER

Phase III of this contract consisted of making the CLEANUP program developed at RTI operational on the UNIVAC computer located at EPA. This work was carried out simultaneously with some improvements being made in the organization of the data formats in CLEANUP.

Because RTI's and EPA's environment for using the CLEANUP program are similar, it was decided to use the same CLEANUP source version for each. The general plan was to change the READ and WRITE statements inside CLEANUP to subroutine calls and then write a set of I/O subroutines for EPA and later a set of I/O routines for RTI's system.

There were two advantages to this approach. First, the CLEANUP program would require substantially less modification. In addition, if any bugs were to occur in CLEANUP in the future, it would be possible to investigate the problem by carrying out a debugging run at TUCC. This would verify whether the bug was a system oriented problem or an algorithm deficiency inside CLEANUP proper. If the problem was indeed a bug in CLEANUP, it could be corrected at TUCC. Systems problems at the UNIVAC would be corrected there. Modules required for these programs are shown on Figure 22. The code to be delivered to EPA consists of sections 1, 2 and 3. A short description of each of these modules follows.

Some minor modifications to the original CLEANUP program besides changing READ and WRITE statements were made. The most important of these was to expand the CLEANUP program so that it could process multiple runs on the same tape data set. To include this facility, the routines PARDIR (reading in the CLEANUP input parameters) and SETRUG (initializing the 14 spectra window with the first 13 spectra) had to be repositioned and rewritten.

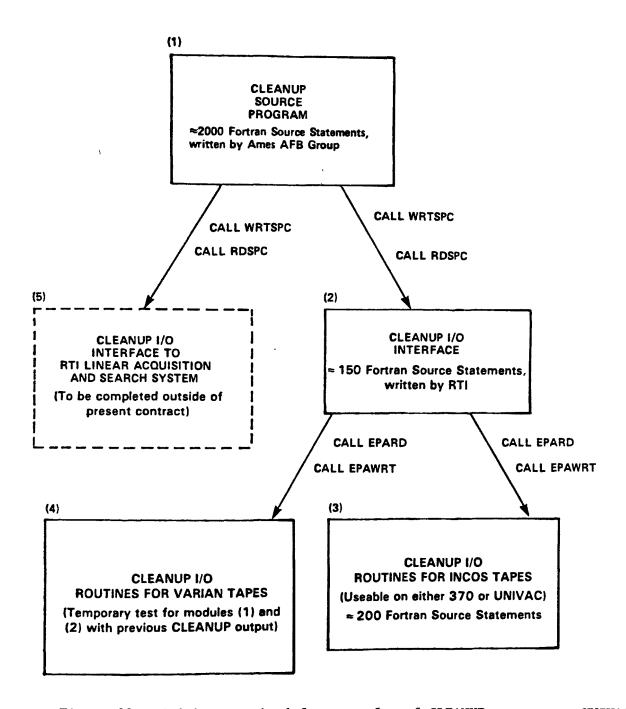


Figure 22. Modules required for transfer of CLEANUP program to UNIVAC.

Rather than have CLEANUP call the I/O routines directly, it was decided to create an intermediate step consisting of an I/O interface called by CLEANUP which would in turn call the I/O routines. This was necessary because the only data used by CLEANUP for internal calculations are individual ion intensities while the INCOS tape data contained much additional identification information. Although not used by CLEANUP, these items were carried along to be able to write output spectra in the same format as on the original input tape. The interface served the dual function of keeping track of data not used directly inside CLEANUP and of making the I/O routines more versatile for use with other tasks.

The modification of the CLEANUP program involved roughly 500 statements: 100 statements for the rewritten routines inside CLEANUP, 200 statements for the I/O interface, and 200 statements for the I/O routines. To assure accuracy and quality control, several cross checks were made.

In order to insure the correctness of the modified CLEANUP source (1) and the I/O interface (2) a temporary set of I/O routines for reading the VARIAN CH 7 data (4) were written. These routines purposefully had exactly the same calling arguments as the INCOS tape I/O routines (3). These routines were written in standard FORTRAN and involved little more than READ and WRITE statements. It was then possible to test CLEANUP and the I/O interface on one of the eight trial runs. The prototype run was much more difficult to achieve than anticipated, mainly due to communication problems between the main CLEANUP source module and the I/O interface. However, because everything was in strict FORTRAN it was possible to use the WATFIV interpreter to find the majority of the CLEANUP bugs. The WATFIV interpreter again proved itself invaluable, not only in solving otherwise very subtle problems but also by insuring machine independence of the code. Thus, output of the CLEANUP source with the new I/O interface was verified against earlier output from the version of the CLEANUP program which was "spliced" into the RTI system.

It remained to test out the I/O routines (3) on an INCOS tape data set. After we were convinced that the I/O routines were operating properly, a program was written to generate a TIC plot of the first INCOS test run with the aid of the UNC plotter facility and the TUCC plotter routines. A reproduction of this plot is shown in Figure 23. This plot confirms that the data were correctly read and interpreted by the program.

Initially, running CLEANUP with INCOS test data on the TUCC IBM/370 detected only 8 eluants in the entire run. Closer examination of the data revealed that the average peak width for the INCOS runs extended over some 25 scans. Since the CLEANUP program derives its model singlets from a 7 scan window, not enough peak profile was available to obtain a good model shape (Figure 24). The simplest solution to this problem was to incorporate another parameter into the CLEANUP program which would average over a specified number of input spectra before any internal calculations were made. Once this modification was incorporated into CLEANUP, the same run was processed again, averaging over three spectra at a time. The results were much improved, showing a total of 72 eluants detected in the run (Figure 25).

After verification that the scan numbers of detected eluants agreed with the TIC plot (Figure 23) and checking the masses and intensities of detected eluants on the output tape against CLEANUP diagnostic printout, the task of duplicating this run with the same input tape on the UNIVAC computer was undertaken. A card copy of the CLEANUP source code was generated on the TUCC 370 and transported to the EPA UNIVAC when the source was recompiled and cross checking of its output. The chemist's printout of the test run on the UNIVAC is shown in Figure 26. The small discrepancies between this printout and the chemist's printout generated at TUCC are of a round-off type arising from hardware differences (i.e. word length, floating point arithmetic) between the two machines. These differences are too small to affect the performance of CLEANUP.

A second problem of greater concern occurred when trying to process multiple runs on a single tape with the EPA UNIVAC. Problems were encountered either when attempting to write a file mark at the end of

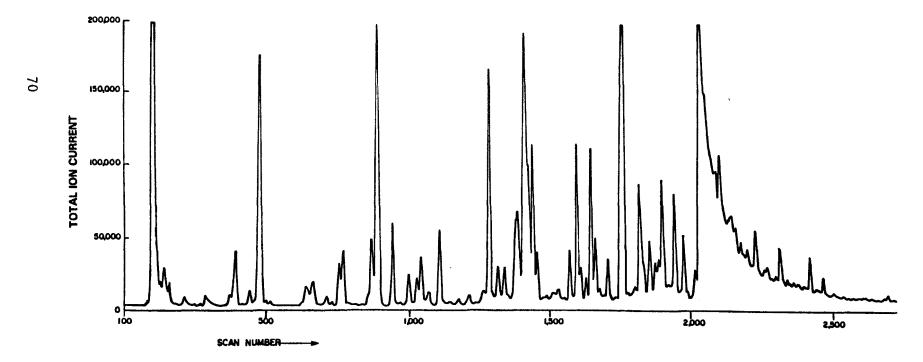
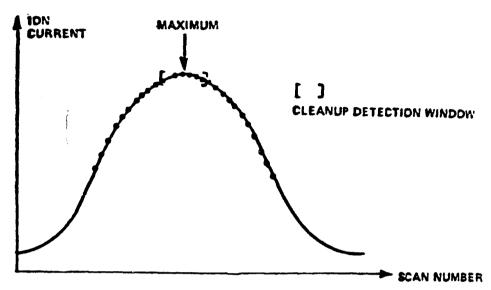



Figure 23. Raw TIC of INCOS test data.

VALID PEAK DISCARDED DUE TO FAILURE OF LINEAR ERROR RATIO TEST

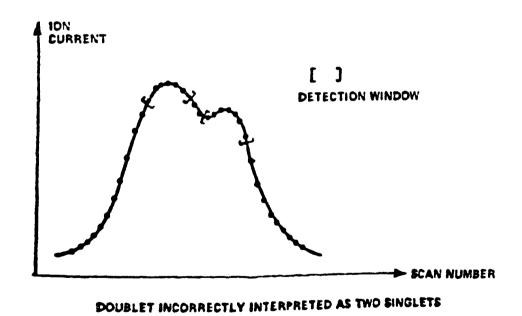


Figure 24. Possible consequences of scan rate too rapid for CLEANUP.

SLUT	SPEC.#	TUTION	TICRAT	MAX. AMP	DOUBLE 13	SAT. PEAKS	
1	-85	1935.	31	1775.	NU	0	
2	97	166949.	£7	104876.	NÜ	0	
3	130	2347.	13	1197.	YES	0	
4	142	14250.	47	4738.	NU	0	
5	145	14453.	51	8170.	NO	0	
6	169	2224.	33	1360.	NU	0	
7	217	4049.	54	2213.	NÜ	0	
8	442	5897.	44	2573.	NU	0	
9	4/5	147616.	92	53347.	NÜ	0	
10	499	1770.	25	857.	NÜ	0	
11	658	13973.	72	5954.	NU	U U	
15	709	0051.	65	1896.	NÚ		
13	856	5285.	45	1925.	YES	0	
14	865	41455.	99	9156.	NO	0	
15	886	166097.	91	41310.	NO	Ü	
16	904	1142.	23	561.	NU	Ú	
17	940	47802.	98	19710.	NO	0	
18	967	1046.	18	359 .	NO	ŭ	
19	1066	4617. 44296.	37	1066. 13477.	14U 14U	Ů	
20	1108		99	400.	NU	ŏ	
55 51	1150	1070. 4953.	18 51	1057.	NU	Ö	
23	1216 1205	87303.	59	24632.	YES	ŏ	
24	1588	67303. 69335.	55	24065.	NU	Ŏ	
25	1321	1810/-	69	5/51.	140	ŏ	
26	1561	7455.	12	4126.	YES	ŏ	
27	1384	35357.	59	10480.	NU	ŏ	
28	1387	3959.	6	2111.	NU	Ö	
29	1390	32065.	50	15483.	110	ŭ	
30	1417	116039.	73	32707.	YES	Ü	
. 31	1420	16945.	13	8773.	YES	0	
32	1429	61522.	67	12418.	110	Ü	
33	1435	5456.	13	2191.	NÜ	0	
34	1444	74365.	73	101/3.	NÚ	Ü	
35	1513	3418.	26	950.	YES	0	
30	1522	2146.	24	520.	YES	O	
37	1534	4649.	53	2150.	NÜ	Ú	
38	1570	24053.	97	12032.	NO	0	
39	1600	60520.	61	18903.	NO	0	
40	1630	11/92.	64	4708.	NU	0	
41	1648	1246.	1	677.	NU	Ü	
42	1651	77545.	84	16005.	NU	U	
43	1666	19490.	45	11114.	NU	Ü	
44	1681	2003.	18	663.	NO	Ů	
45	1711	24234.	72	/455.	NU	0	
46	1759	440031.	90	08273.	NO	0	
47 48	1822	69229.	98	21607.	YES	0	
49	1831	14281.	44	2935.	NÚ	Ų (
	1837	7724.	29	4362.	ΝÜ	Ü	
50 51	1876	1203.	3	491.	YES	0	
52	1897 1903	4384. 60098.	6	1005. 8852.	YES	0	
53	1905	10533.	93 27		NU	O O	
54	1939	1055. 4987.	27 11	3897. 909.	NU	O O	
54 55	1939 1945	4907. 56184.			YES	0	
56	1978	36425.	88 95	15042. 9039.	NU	0	
57	2020	11452.	49	3519.	NO	O O	
58	2029	227926.			YES	Ů	
59	2050	5058.	81 2	32760. 1514.	NU NO	0	
60	2104	31191.	ء 1	7311.	NO NO	0	
00	-107	31171.	31	1211.	140	U	

Figure 25. Chemist's printout of EPA test run generated at TUCC.

2 5 5 5 1	SPEC.	TOTION	TICRAT	MAX. AMP	BOUBLET?	SAT. PEAK
1_	8.5	1938.	31	1775.	NO	0
3	97 130	167000.	57	104876.	NO	0
	142	2347. 14250.	13 47	1197.	YES	0
5	145	14453.	51	4738. 8170.	NO NO	0
6	169	2224.	33	1366.	NO	<u>0</u>
7	217	4049.	54	2213.	NO	ŏ
9	442	5897.	44	2573.	NO	0
- 10	475	147816.	- 25 -	53347.	NO.	00
11	658	13973.	72	857. 5954.	N O	0
12	709	6052.	65	1898.		——
13	856	5285.	45	1925.	YES	ō
14	868	41455.	99	9156.	N O	0
16	904	166097.	91	41310.	NO.	<u> </u>
17	940	47802.	23 98	562. 19716.	NO NO	0
18	967	1046.	18	359	NO NO	
19	1066	4617.	37	1068.	N O	ŏ
50	1108	44296.	99	13477.	N O	0
21 22	1150	1070.	18	400.	NO.	0
23	1216	4953. 87303.	51 59	1057.	NO YES .	0
24	1288	69335.	33 -	24065	NO .	
25	1321	18167.	69	5751.	N O	Č
56	1 38 1	7455.	12	4126.	YE S	0
27 28	1384	35358. 3959.	59	2171.	NO NO	<u>0</u>
29	1390	32685.	50	15483.	NO.	ő
30	1417	116839.	73	732767.	YES	<u> </u>
31	1420	16945.	13	8773.	YES	0
35	1429	61523.	67	12418.	N O	0
33 34	1435	5456. 74385.	73	2191. 18173.	NO NO	0
35	1513	3418.	28	950.	YES	ŏ
36		2746.	24	520.	AE.2	0
37	1534	4649.	33	2156.	NO	0
38 39		29853. 60520.	97 61	12032.	N O N D	0
- 40		11792.	- 64	4708.	NO NO	- 6
41		1246.	1.	677.	NO	Ō
42		77546.	84	16005.	NO	0
43		19490.	45	11114.	NO NO	0
44		2603.	18 72	663. 7455.	NO	0
46		440632.	- 90 -	68274.	NO	 ō
47		69229.	98	21607.	YES	0
48		14281.	44	2935	NO.	0
49		7724. 1203.	29	4362.	NO	0
50 51		4384.	6	1083	YES	ŏ
52		60098.	93	8852.	NO	0
53	1906	10533.	27	3897.	NO.	0
54		4987.	11	909	YES	0
55 56		56184. 36425.	88 95	15042 • 9039 •	" NO NO	0
37		11452.		3519.	YES	0
58		227926.	81	32760.	NO	<u>0</u>
59		3858.	5	1514.	NO	0
60		31191.	. 31	7311.	YES	
62		2738. 1990.	3	850.	NO	ŏ
- 63		8014.	 15	3174.	NO	· 0
64		2661.	6	607.	VO	0
~ ~ ~65	7 227	14861.	27	3754	NO	0-
66		5288.	17	2042.	NO NO	0
67		18434. 2516.	43 12	5317. 643.	NO	8
68 69		2516. 21199.		10656	ÑŎ	0
70		1045.	7	657.	NO	D
71		10041.	43	2636.	NO.	0
		3222.	29	835.	N O	

Figure 26. Chemist's printout of EPA test run.

the output cleaned up spectra tape or when attempting to locate the beginning of a subsequent run on the input test tape. Because it was possible to detect file marks separating the three runs on the EPA test tape at TUCC with no difficulty, it was concluded that the problem lay with the UNIVAC. Notwithstanding that the systems staff for the EPA UNIVAC have been alerted to these difficulties, we recommend that for the present CLEANUP runs on the UNIVAC be limited to one input and output file per tape.

SECTION 6

USER DESCRIPTION OF PROGRAM OPERATION

The final phase of implementing CLEANUP in the EPA environment consisted of testing the output tape written by the UNIVAC on the contracting agency's INCOS acquisition system. Although numerous problems were encountered, they were all of a systems oriented nature (incorrect tape density, incomplete format information, etc.) which commonly occur with machine transfer. No internal algorithm changes to the CLEANUP program were necessary in order to successfully read the test tape and obtain plausible output spectra with the INCOS software.

A user oriented description for running CLEANUP on the UNIVAC follows. To execute CLEANUP at the UNIVAC, it is necessary to deliver two tapes (one containing the INCOS raw input spectra and one for the output spectra) along with a card deck containing program control information (Figure 27). Cards 1 through 5 and 19 through 25 comprise the Executive Control Language necessary for the UNIVAC system to recognize and run the CLEANUP program. Of these, it is necessary to change the underlined portions of cards 19 and 20 with each run because they specify the tape serial numbers for CLEANUP to use. Cards 21 and 22 specify the positions of the data sets on the input and output tapes in this example the input is read from the second file of tape B003KK and the output is written to the third file of tape B334KK. Cards 21 and 22 should be omitted if only one run is present on the input tape, and the cleaned up run is to be written on the beginning of the output tape. Card l - the "run" card contains the job name (CLNP) and the maximum time estimate in minutes (5). Although none of the present tests exceeded three minutes, it is conceivable that an increase of the time requirement could become necessary in the future.

```
WRUN 20CLNP/45/2,640265A010/KJK,5A010,5
                                                                   1
OPASSAD KJK
                                                                   2
JASG, A A.
JASG, T 4.
               . CONTAINS THE CONTRUL CARD DATA
DDATA, 1 4.
               . THE ACTUAL CONTRUL CARD DATA FULLOWS
      CLEANUP PRINT FLAG (IN 11)
0
      DEBUG PRINT SWITCH IN 11 (0=NU,1=YES)
                                                                   7
 3
      NUMBER OF INPUT SPECTRA TO AVERAGE (IN 12)
      MINIMUM THIRDS BETWEEN ELLUANTS (IN 11)
                                                                   9
        DETECTION WINDOW (IN 14)
                                                                   10
  1000
            MINIMUM FUR LESS THAN 5 PLAKS (IN 16)
                                                                   11
            MINIMUM FUR MORE THAN 4 PEAKS (IN 16)
  1000
                                                                   12
            MINIMUM QUALIFYING RATE (IN F8.4)
   .0000
                                                                   13
   .0350
            ERRUR RATIU (IN F8.4)
                                                                   14
  2
            PUINTS TO LEFT OF MODE (IN 13)
                                                                   15
  3
            POINTS TO RIGHT OF MUDE (IN 13)
                                                                   10
130000
            SATURATION VALUE (IN F6.0)
                                                                  17
MEILD
                                                                  18
DASG, TJH 7., 16D/////Q, B003KK
                                                                  19
                                     . INPUT TAPE
                                     . DUTPUT TAPE
JASG, TJH/W 9., 160/////4, 6334KK
                                                                  20
MOVE 7.,1 .SKIP 1 FILE OR INPUT TAPE-USE 2ND FILE
                                                                  21#
amove 9.,2 .Skip 2 files on output Tape-use 3kD file
                                                                  224
DXUT.F A.CLEANUP
                                                                  23
                . PUT A "SAFETY" END OF FILE ON OUTPUT TAPE
MMARK 9.
                                                                  24
af 11
               . END DF RUN
                                                                  25
```

*omit until multiple run processing is implemented.

Figure 27. Example of CLEANUP control cards for EPA UNIVAC.

Cards 6 through 17 comprise the control cards used by the CLEANUP program. It is important to note that the variables shown here have been optimized with respect to the EPA test data taken on the INCOS system and hence differ from those in Table 7 which were optimized with respect to the VARIAN CH-7 at RTI. The most important difference is the additional control card (card 8) which instructs CLEANUP to average over 3 spectra. Also the instrument saturation value was changed to 130,000 (card 17), the minimum thirds between ellutants was increased from 3 to 6 (card 9), and the error ratio requirement was reduced from .0756 to .035 (card 14). The changes in minimum thirds and error ratio were made in order to accommodate the wider peak width and smoother data generated on the INCOS system.

SECTION 7

DELIVERY TO EPA

Accompanying this report are listings of the CLEANUP program which currently is being run on the UNIVAC, completing Phase IV of the contract. A backup tape of the same programs will be kept by RTI as well as the version of CLEANUP at TUCC which runs on INCOS tapes.

It still will be necessary for the contracting agency to carry out a series of test runs in order to determine the best operating parameters for CLEANUP. The system will respond differently to data derived from different mass spectrometers, as well as data run under differing GC conditions.

The program affords considerable flexibility in operation by the suitable adjustment of variable input parameters. These will still need to be exercised until optimum operational conditions are determined.

REFERENCES

- 1. "Mass Spectrometer--Computer System Particularly Suited for Gas-Chromatography of Complex Mixtures," R. A. Hites and K. Biemann, Anall. Chem., 40, 1217 (1968).
- "Computer Techniques for Identifying Low Resolution Mass Spectra,"
 S. L. Grotch, Anal. Chem., 43, 1362 (1971).
- 3. "Reconstructed Mass Spectra. A Novel Approach for the Utilization of Gas Chromatograph-Mass Spectrometer Data." J. E. Biller and K. Biemann, Anal. Lett., 7, 515 (1974).
- 4. "Extraction of Mass Spectra Free of Background and Neighboring Component Contributions from Gas Chromatography/Mass Spectrometry Data," R. G. Dromey, M. J. Stefik, T. C. Rindfleisch, and A. M. Duffield, Anal. Chem., 48, 1368 (1976).
- 5. Stephen M. Pizer, "Numerical Computing and Analysis," Science Research Associates, Inc., Chicago, 1975, p. 358ff.

APPENDIX A CLEANUP SOURCE LISTING

```
SUBROUTINE EPARD
       SUBROUTINE EPARD

00035690
00035700
THIS ENTRY POINT READS ONE SCAN'S WORTH OF DATA PER CALL AND RETURNS00035710
IT TO THE CALLING ROUTINE IN COMMON BLOCKS IHDR AND INDATA.
00035720
                                                                                                                                                            00035730
00035740
            CONTON /HDR1/ NAME.HDRFLG.DATE.RUNHR.RUNMIN
CONTON /HDR2/ SAMPID.INAM
CONTON /HDR3/ RUNCON.SECSCN
CONTON /HDR4/ BUF4.LOPMAS.HIPMAS
CONTON /HDR4/ BUF4.LOPMAS.HIPMAS
CONTON /HDR/ JNAM.ISCN.IDBUF.IDHR.IDMIN.IRTMIN.IRTSEC.INMBAS.
                                                                                                                                                            00035750
00035760
00035770
                                                                                                                                                            00035780
00035790
          * IRBAS, IRTIC
          COMMON /INDATA/ INBUF.INSEQ.NIN
COMMON /OHDR/ ONAM.OSCN.ODBUF.ODHR.ODMIN.ORTMIN.DRTSEC.ONMBAS.
**ORBAS.ORTIC
                                                                                                                                                            00035800
00035810
00035820
          * ORBAS.ORTIC
COMMON /OTDATA/ OTBUFF.OTSEQ.NOUT
COMMON /FLAGS/ EOF
COMMON /FLAGS/ EOF
COMMON /FLAGS/ EOF
COMMON /IDBUF/ IRDR.IPTR1.IPTR2.IPRT3.IIN.IOUT
COMMON /IOBUF/ ITBUF1.CNTIN.CNTOUT.IOERR.ITBUF2
INTEGER*4 NAME(3), HDRFLG, DATE(2), RUNHR, RUNMIN, SAMPID(16), INAM(2),
* RUNCON(16), BUF4(11), LOPMAS.HIPMAS.JNAM(3), ONAM(3), ISCN, OSCN,
* IDEUF(2), ODBUF(2), IDHR, ODHR, IDMIN, ODMIN, IRTMIN, ORTMIN, IRTSEC,
* ORTSEC.INTBAS.ONTBAS.EOF
*, INSEC.OTSEQ.NIN, NOUT, INBUF(411), OTBUFF(411)
INTEGER*4 RCDLEN/80/, CNTIN, CNTOUT, ITBUF1(20), IBLANK/4H
* INSPC(26), IDD(11), OTSPC(26), SCNEND/0/, ITBUF2(20)
INTEGER*4 OTSPCX(3, 26), OTSEQX, OTSEQY
REAL*4 SECSCN, ORBAS, IRBAS, IRTIC, ORTIC
                                                                                                                                                              0003583
                                                                                                                                                            00035840
00035850
00035860
                                                                                                                                                            00035870
00035880
                                                                                                                                                            00035890
                                                                                                                                                            00035900
                                                                                                                                                            00035910
                                                                                                                                                            80035920
                                                                                                                                                            00035930
                                                                                                                                                            00035940
                                                                                                                                                            00035950
000
        SET SCAN FLAG, COUNTER.
                                                                                                                                                            00035960
                                                                                                                                                            00035970
             SCHEND=0
                                                                                                                                                            00035980
                                                                                                                                                            00035990
             NIN=Ø
                                                                                                                                                            00036000
מממ
        CLEAR TRANSFER ARRAY IN 'INDATA' BLOCK.
                                                                                                                                                            00036020
00036030
        DO 5 I=1.411
5 INBUF(I)=0
                                                                                                                                                            00036040
00036050
CALL BLKRD TO BRING A LOGICAL RECORD INTO THE BUFFER.
                                                                                                                                                            00036060
                                                                                                                                                            00036070
                                                                                                                                                            00036080
00036090
             CALL BLKRD
IF (IOERR.LT.0) GO TO 1000
                                                                                                                                                             00036100
00036110
         DECODE A LOGICAL RECORD (ASSUMED TO BE A SCAN HEADER).
                                                                                                                                                             00036120
           DECODE(RCDLEN,5000.ITBUF1) JNAM.IDD(1).ISCN.IDD(2).IDBUF.IDHR.
* IDD(3).IDMIN.IDD(4).IDD(5).IRTMIN.IDD(6).
* IRTSEC.IDD(7).IDD(8).INMBAS.IDD(9).IRBAS.IDD(10).IDD(11).IRTIC
                                                                                                                                                            00036190
                                                                                                                                                            00036200
                                                                                                                                                            00036210
00036220
00036230
C
  5000 FORMAT(3A4.A1.15.A2.2A4.13.A1.12.A4.A1.13.A1.12.A4.A2.14.A1.F9.0.
* A4.A1.F10.0)
                                                                                                                                                            00036240
00036250
CCC
         STOP IF NEW HEADER FOR RUN IS ENCOUNTERED. (ISCN=0)
                                                                                                                                                            00036260
00036270
00036280
00036290
             IF (ISCN.EQ.0) GO TO 110
         HANDLE SPECTRUM RECORD(S). AT LEAST ONE IS ASSUMED TO BE PRESENT.
                                                                                                                                                             00036300
```

```
00036310
                                                                                                                                                                                                                                                                                                                                                                                         00036320
00036330
00036340
                     CHECK BUFFER VIA POINTERS TO DETERMINE AMOUNT OF REMAINING DATA.
                     RETURN HERE IF MORE THAN ONE SCAN RECORD.
                                                                                                                                                                                                                                                                                                                                                                                         00036350
00036360
                 45 CALL BLKRD
IF (IDERR.LT.0) GO TO 2000
                                                                                                                                                                                                                                                                                                                                                                                         00036370
00036380
ב
ב
ב
                    DECODE A SPECTRUM RECORD.
                                                                                                                                                                                                                                                                                                                                                                                           00036390
                                                                                                                                                                                                                                                                                                                                                                                          00036400
                 80 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                          00036430
 C
                    ### DECODE (RCDLEN, 5005, ITBUF1) INSPC, INSEQ #### D0036450 ### D0036500 #### D003600 ### D003600 ### D003600 ### D003600 ### D003600 ### D003600 ### D003600 ##
С
      5005 FORMAT(2613,12)
                                                                                                                                                                                                                                                                                                                                                                                         00036510
00036520
                               DO 86 1=1.25.2
                                                                                                                                                                                                                                                                                                                                                                                         00036530
00036540
00036550
                               L=INSPC(I)
IF (L.NE.0) GO TO B3'
SCHEND=1
                                                                                                                                                                                                                                                                                                                                                                                         00036560
00036570
               GO TO 86
83 L=L-39
IF (L.LT.1.OR.L.GT.411) GO TO 86
INBUF(L)=INSPC(J)
                                                                                                                                                                                                                                                                                                                                                                                         00036590
                                                                                                                                                                                                                                                                                                                                                                                         00036610
00036620
                                 NIN=NIN+1
                 86 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                         00036630
200
                      CHECK WHETHER END-OF-SCAN ENCOUNTERED (MASS VALUE . 0).
                                                                                                                                                                                                                                                                                                                                                                                         00036640
                                                                                                                                                                                                                                                                                                                                                                                         00036650
                                 IF (SCNEND.EQ.0) GO TO 45
                                                                                                                                                                                                                                                                                                                                                                                         00036660
00036670
CCC
                                                                                                                                                                                                                                                                                                                                                                                        00036680
00036690
00036700
00036710
00036720
                      RETURN WHEN SCAN ENDS (SCNEND = 1).
                               SCHENT-SCHENT+1
RETURN
00036730
00036740
00036750
                    ENTRY POINT FOR WRITING OUTPUT TAPE FOR INCOS USE.
                               ENTRY EPAURT
מטטט
                                                                                                                                                                                                                                                                                                                                                                                        คือชี36760
                      WRITE SCAN HEADER TO TEMPORARY BUFFER FROM COMMON BLOCK OHDR.
                                                                                                                                                                                                                                                                                                                                                                                        00036780
00036850
                          ENCODE(RCDLEN.5000.ITBUF2) ONAM.IDD(1).OSCN.IDD(2).ODBUF.ODHR.
* IDD(3).ODMIN.IDD(4).IDD(5).ORTMIN.IDD(6).
* ORTSEC.IDD(7).IDD(8).ONMBAS.IDD(9).ORBAS.IDD(10).IDD(11).ORTIC
                                                                                                                                                                                                                                                                                                                                                                                        00036190
                    MOVE ENCODED HEADER RECORD TO OUTPUT BUFFER. WRITE A FULL BUFFER ASB0036900 ASB0000 AS
00000
Ē
                                                                                                                                                                                                                                                                                                                                                                                        00036940
00036950
                      STORE OTBUFF (PROCESSED OUTPUT SCAN) IN DISPC AS MANY TIMES AS
```

```
WHEN OTSPC IS FULL. IT IS ENCODED INTO ITBUF2.
                                                                                                                                                                     00036970
                                                                                                                                                                     00036980
00036990
00037000
      J=-1
OTSE0=1
DO 87 i=1.26
OTSPC(I)=0
DO 87 M=1.3
87 OTSPCX(M,I)=0
DO 100 I=1.411
                                                                                                                                                                    00037010
00037020
00037030
00037040
00037050
00037060
00037070
00037090
00037110
00037110
00037110
00037110
00037110
00037110
00037110
00037110
00037110
00037110
LOOP ENDING AT 188 USES J & L AS INDICES TO DTSPC:
         DATA IN DTSPC ARE:
MASS (1+39. WHERE 'I' IS THE INDEX OF DTBUFF);
AND INTENSITY. THE CONTENTS OF OTBUFF(I).
         MASS IS STORED IN OTSPC(J) AND INTENSITY IS STORED IN OTBUFF(L), WHERE L = J + 1.
               IF (OTBUFF(1).LE.0) GO TO 100
              J=J+2
L=J+1
OTSPC(J)=I+39
OTSPC(L)=OTBUFF(I)
IF (J.LT.25) GO TO 100
          ENCODE SCAN DATA FROM OTSPC TO ITBUF2.
  DO 88 M=1.26

I1=OTSPC(M)

I2=I1/100

I3=I1/10-I2*10

I4=I1-I3*10-I2*100

OTSPCX(1.M)=I2

OTSPCX(2.M)=I3

88 OTSPCX(3.M)=I4

OTSEQX=OTSEQX=0

OTSEQY=OTSEQX=0

ENCODE(RCDLEN.5040.ITBUF2) OTSPCX.OTSEQX.OTSEQY
          40 FORMAT(8011)

00037278
00037280

TRANSFER CARD IMAGE IN ITBUF2 TO DUTPUT BUFFER IN SUBROUTINE BLKWRT.00037290
00037300
00037300
00037310
00037320
00037320
00037320
00037320
00037330
00037330
00037330
00037330
00037330
 0000
        DO 90 K=1,26

OTSPC(K)=0

DO 90 M=1,3

90 OTSPCX(M,K)=0

OTSEQ=OTSEQ+1
                                                                                                                                                                    00037370
00037380
00037390
00037400
00037410
      100 CONTINUE
           SOME DATA REMAINS IN OTSPC (EVEN IF IT IS END-OF-SCAN ZEROS);
```

```
00037420
          WRITE IT OUT.
                                                                                                                                                                           00037490
    DO 103 M=1.26
I1=0TSFC(M)
I2=11/100
I3=11/10-12*10
I4=11-13*10-12*100
OTSFCX(1,M)=12
OTSFCX(2,M)=13
OTSFCX(2,M)=13
OTSFCX(3,M)=14
103 CONTINUE
OTSE0X=0TSE0/10
OTSE0Y=OTSE0-OTSE0X*10
ENCODE(RCDLEN,5040,ITBUF2) OTSPCX,OTSE0X,OTSE0Y
                                                                                                                                                                          00037510
00037520
00037530
00037550
00037550
00037560
00037560
00037590
00037600
00037610
00037620
00037640
00037640
00037650
00037650
          TRANSFER SCAN RECORD FROM ITBUF2 TO DUTPUT BUFFER.
              CALL BLKWRT
RETURN
ENTRY EPAHDR
ENTRY EPAHDR

C ENTRY POINT TO READ FILE HEADER RE
BUFFER.

C HERE WE CHECK FOR A PREVIOUS EOF...

IF (EOF.EO.0)GO TO 105

EOF=1

RETURN

105 CONTINUE

CALL BLKRD

IF (IDERR.LT.0) GO TO 2000

110 CONTINUE
          ENTRY POINT TO READ FILE HEADER RECORDS (4) AND TRANSFER TO OUTPUT
DECODE (RCDLEN, 5010, ITBUF1) NAME. HDRFLG. DATE. RUNHR. RUNMIN 5010 FORMAT (3A4, 1X, 15, 2X, 2A4, 13, 1X, 12, 46X)
                                                                                                                                                                           00037740
00037750
                                                                                                                                                                          00037760
00037770
00037780
00037790
00037800
00037810
00037880
     DO 120 I=1,20
120 ITBUF2(1)=ITBUF1(1)
CALL BLKRT
CALL BLKRD
               IF (10ERR.LT.0) GO TO 2000
DECODE(RCDLEN,5015.ITBUF1) SAMPID, INAM 5015 FORMAT(16A4.10X,A4.A2)
                                                                                                                                                                          00037890
                                                                                                                                                                         00037900
00037910
00037920
00037930
00037940
00037950
00038020
     DO 130 I=1,20
130 ITBUF2(1)=1TBUF1(I)
CALL BLKURT
CALL BLKCD
               IF (IOERR.LT.0) GO TO 2000
 С
   DECODE (RCDLEN, 5020, 1TBUF1)
5020 FUNNAT (16A4, 10X, F6, 2)
                                                                                          RUNCON. SECSON
                                                                                                                                                                           00038030
                                                                                                                                                                           00038040
     DO 140 I=1.20
140 ITBUF2(I)=ITBUF1(I)
CALL BLKWRT
CALL BLKRD
                                                                                                                                                                          00038050
00038060
                                                                                                                                                                           00038080
```

```
IF (IOERR.LT.0) GO TO 1000
                                                                                                                                                 00038090
C
 DECODE(RCDLEN.5025.ITBUF1)

BUF4.LOPMAS.HIP

5025 FORMAT(6x.2A4.6x.2A4.6x.2A4.6x.5A4.5x.13.1x.13)
                                                                             BUF4.LOPMAS.HIPMAS
                                                                                                                                                 00038178
                                                                                                                                                00038180
00038190
    DO 150 I=1.20
150 ITBUF2(I)=ITBUF1(I)
CALL BLKWRT
RETURN
                                                                                                                                                 00038200
                                                                                                                                                00038210
00038220
00038230
000
        END-OF-FILE PROCESSING (IDERR < 0).
                                                                                                                                                 00038240
 1000 IF (IOERR.NE.-2) GO TO 2000

EOF=1
CALL BLKWRT
CALL NTRAN$(IOUT.9,22)
WRITE(IPTRI,5830) CNTIN,CNTOUT.EOF
5030 FORMAT(' AT EOF CNTIN =',16.', CNTOUT =',16.' EOF = ',110)
                                                                                                                                                00038250
00038260
                                                                                                                                                 00038270
00038280
                                                                                                                                                 00038290
                                                                                                                                                00038300
00038310
מטטט
                                                                                                                                                 00038320
        ERROR PROCESSING.
                                                                                                                                                 00038330
         IOERR<-2
                                                                                                                                                 00038340
                                                                                                                                                 00038350
  2000 EDF=-IDERR
CALL BLKURT
CALL NTRAN$(IDUT.9.22)
WRITE(IPTR1.5035) CNTIN. CNTOUT. EDF
5035 FORMAT(' AT ERROR CNTIN = '.16.' CNTOUT = '.16.' EDF = '.110)
                                                                                                                                                 00038360
                                                                                                                                                00038380
                                                                                                                                                00038390
00038400
             RETURN
             END
             SUBROUTINE BLKRD
                                                                                                                                                00038420
                                                                                                                                                 00038430
        THIS SUBROUTINE TRANSFERS INPUT DATA FROM THE INCOS TAPE OF 128-WORD00038440 (512-CHARACTER) BLOCKS INTO A 20-WORD (80-CHARACTER) BUFFER. 00038450
        WHEN THE NTRAN BUFFER NO LONGER CONTAINS ENOUGH DATA FOR ONE LOGICAL00038470 (20 WORDS), THE TAIL OF THE BUFFER IS WRAPPED AROUND TO THE 00038480 BEGINNING OF THE BUFFER AND A NEW BLOCK READ INTO THE END OF THE 00038490 BUFFER VIA A CALL TO NTRANS.
                                                                                                                                                00038480
00038500
00038510
00038510
00038530
00038530
00038550
00038560
00038580
            COMMION /UNITS/ IRDR, IPTR1, IPTR2, IPRT3, I1N, IOUT
COMMION /IOBUF/ ITBUF1, CNTIN, CNTOUT, IOERR, ITBUF2
INTEGER*4 ITBUF1(20), CNTIN, CNTOUT, IOERR, ITBUF2(20)
INTEGER*4 IISTRT/1/, BLKLEN/128/, RCDLEN/20/, IIEND/0/,
ITBUF(10)
מטטט
         CHECK STARTING POSITION IN BUFFER. IF 11STRT > (IIEND-RCDLEN+1) READ A NEW BLOCK.
                                                                                                                                                00038580
00038590
                                                                                                                                                 00038600
             IF (IISTRT.LE.(IIEND -RCDLEN+1)) GO TO 40 IF (IISTRT.ED.(IIEND+1)) GO TO 20
                                                                                                                                                 00038610
                                                                                                                                                 00038620
                                                                                                                                                 00038630
ממממ
         IF BUFFER HAS INSUFFICIENT DATA TO READ. MOVE RECORD TO BEGINNING 0F00038640
BUFFER AND STRING A NEW INPUT BLOCK BEHIND IT.
                                                                                                                                                00038660
                                                                                                                                                00036670
             J=0
DO 10 I=IISTRT, IIEND
J=J+1
                                                                                                                                                00038690
```

```
10 IBUF(J)=IBUF(I)
IISTRT=J+1
GO TO 30
20 IISTRT=1
                                                                                                                                                00038700
                                                                                                                                                00038710
00038720
00038730
                                                                                                                                                00038740
                                                                                                                                                00038750
00038760
       CALL BLOCK READ SUBROUTINE (SIMULATED FOR IBM 370 TESTING).
      30 CALL NTRAN$(!IN.3.BLKLEN.IBUF(!ISTRT).10ERR.22)
                                                                                                                                                00038778
                                                                                                                                                00036780
            CHTIN=CHTIN+1
                                                                                                                                                00038790
00030800
UPDATE BUFFER LENGTH TO REFLECT NEWLY READ DATA.
                                                                                                                                                00038810
            IIEND = IISTRT+BLKLEN-1
IISTRT=1
                                                                                                                                                00038820
500
       PROCESS NEXT LOGICAL RECORD.
                                                                                                                                                00038840
      40 J=0
            IEND= I ISTRT+19
                                                                                                                                                00038850
                                                                                                                                                00038860
00038870
00038880
00038890
            DO 50 I=11STRT, IEND
J=J+1
ITBUF1(J)=1BUF(I)
     50 CONTINUE
CALL TRACE(IISTRT)
IISTRT=IEND+1
RETURN
                                                                                                                                               00038900
00038910
00038920
00038930
С
                                                                                                                                               00038940
00038950
00038960
            SUBROUTINE BLKWRT
0000000
       THIS SUBROUTINE FILLS A 512-CHARACTER (128-WORD) OUTPUT BUFFER WITH 80-CHARACTER RECORDS. WRAPAROUND IS USED TO MAKE THE BUFFER COMPLETELY FULL AS REQUIRED BY INCOS. THE BLOCKS, WHEN FULL, ARE ACTUALLY WRITTEN ON TAPE BY SUBROUTINE NTRANS.
                                                                                                                                               00038970
00038980
                                                                                                                                                00038990
                                                                                                                                               00039000
00039010
           COMMON /UNITS/ IRDR, IPTR1.IPTR2, IPRT3.IIN, IOUT
COMMON /FLAGS/EOF
COMMON /IOBUF/ ITBUF1, CNTIN, CNTOUT, IOERR, ITBUF2
INTEGER*4 IBUF(20), CNTIN, CNTOUT, IOERR, ITBUF2(20)
INTEGER*4 IBUF(20), OBUF(148)/148*44 /.BLKLEN/128/,
* RCDLEN/80/, IOSTRT/1/, IBLANK/44 /. IOEND/20/
EOUIVALENCE (IBUF(1), ITBUF2(1))
                                                                                                                                               00039020
00039030
00039040
                                                                                                                                               00039050
00039060
                                                                                                                                               00039070
00039080
00000
                                                                                                                                               00039090
00039100
00039110
       CHECK TO SEE WHETHER BUFFER IS ALREADY FULL TO 512 CHARACTERS.
        ALSO, PUT OUT THE LAST BLOCK(S) (THERE MAY BE TWO REQUIRED) AT END-
OF-FILE OR ERROR IN READING OR WRITING.
IF (IOSTRT.GT.128.OR.EOF.NE.0) GO TO 30
                                                                                                                                               00039120
00039140
                                                                                                                                               00039140
00039150
00039160
00039170
00039190
00039210
00039220
        STORE FILLED TRANSFER BUFFER INTO OUTPUT BUFFER OBUF.
      10 IDEND-IOSTRT+19
           J=0
DO 20 I=IOSTRT, IOEND
     J=J+1
20 OBUF(I)=IBUF(J)
10STRT=10END+1
RETURN
                                                                                                                                               00039230
00039240
                                                                                                                                                00039250
C
                                                                                                                                               00039260
```

```
UPON ENTERING AND FINDING A FULL BUFFER. WRITE IT TO TAPE.
                                                                                                                                                                                            00039270
         30 CALL NTRANS(IOUT, 1.BLKLEN, OBUF(1), IDERR, 22)
                                                                                                                                                                                            00039280
00039290
         31 CHTOUT=CHTOUT+1
                                                                                                                                                                                            00039310
          ADJUST CONTENTS OF OBUF SO THAT IT CONTAINS THE UNWRITTEN PORTION 0F00039330 A 80-CHARACTER RECORD. FILL THE REST OF OBUF WITH BLANKS. 00039340
                                                                                                                                                                                           00039340
00039350
        32 IOSTRT=1
33 IF (IOEND.LE.128) GO TO 50
34 J=0
                                                                                                                                                                                            00039360
                                                                                                                                                                                           00039370
00039380
                DO 40 1-129, 10END
                                                                                                                                                                                           00039390
00039400
        J=J+1
40 OBUF (J)=OBUF (I)
IOSTRT=J+1
IOEND=J
                                                                                                                                                                                           00039410
                                                                                                                                                                                           00039420
                                                                                                                                                                                           00039430
00039440
STORE BLANKS IN REMAINDER OF OBUF.
                                                                                                                                                                                            00039450
                                                                                                                                                                                           00039460
00039470
00039480
00039510
00039520
00039530
         50 DO 60 I=IOSTRT.148
         60 OBUF (1) = IBLANK
מממ
           GET THE LAST BIT OF DATA ONTO TAPE IF EOF OR ERROR.
                IF (IOEND.LT.IOSTRT.AND.EOF.GT.0) GO TO 30 IF (EOF.EQ.0) GO TO 10
                                                                                                                                                                                           00039490
00039500
בבכ
                                                                                                                                                                                           00039540
00039550
           OTHERWISE, FINISHED.
                                                                                                                                                                                           000395€0
                RETURN
             RETURN
END
BLOCK DATA
COMMON /FLAGS/ EDF
INTEGER*4 EOF/8/
COMMON /LOBUF/ ITBUF1, CNTIN, CNTOUT, IDERR, ITBUF2
INTEGER*4 ITBUF1(20), CNTIN, CNTOUT, IDERR, ITBUF2(20)
DATA CNTIN/0/, CNTOUT/0/, ITBUF1/20*4H /, IDERR/0/,
ITBUF2/20*4H /
FND
                                                                                                                                                                                           00039570
                                                                                                                                                                                           00039770
00039780
00039790
                                                                                                                                                                                           00039800
                                                                                                                                                                                           00039810
                                                                                                                                                                                           00033820
00039830
00039840
TITBUF Z/Z0*4H

END

C THIS SUBROUTINE WAS CALLED ONLY FROM CUEXEC SO

C CUEXEC WAS ELIMINATED AND ITS STATEMENTS WERE

C INSERTED IN GCMSOL WHICH WAS IN TURN MADE THE MAIN PGM.

C WM.F. HARGROVE 9/30/77

C. SUBROUTINE GCMSOL (CLNFLG)
                                                                                                                                                                                           00000010
00000020
                                                                                                                                                                                           00000030
00000040
                SUBROUTINE GCMSOL/CLNFLG)

WM.F. HARGROVE 9/30/77

SUBROUTINE GCMSOL/CLNFLG)

INTEGER CLNFLG

THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (GRANT NGR-65-020-632).

INTEGER MASBUF(6).VALBUF(6).AJACEN.AHEAD.ISO(1000)

INTEGER MAME.RDATE.BITMAP.GCTIME.LIBMAP.INTEG.LOMASS.MAD.ADS

INTEGER HIRSS.POINTS.TAPCNT.MAXSP.LSTCNT.DEVICE.SPCNO

INTEGER LSTMIN.SPEC.IND.IR.BK.NM.NTM.PNAME(32)

INTEGER HIST(10).UNIT.NNAME(18).IRNO

INTEGER NUSPEC.NMASS.OVLAP.EXPNAM.SRLIB(5).SECOND

INTEGER DDUBLT.QSATS.NLINE.RAWBUF.FSTPGE.FSTREC

INTEGER SATLST.SATINX.PASS1.ITOM.EOF

INTEGER GPEAK.SPARE1.SPARE2.SPARE3.SPARE4.SPARE7
                                                                                                                                                                                           000000050
00000060
00000070
00000080
 CCCC
                                                                                                                                                                                           00000090
00000100
                                                                                                                                                                                           00000110
                                                                                                                                                                                           00000120
00000130
                                                                                                                                                                                           00000140
                                                                                                                                                                                           00000170
                                                                                                                                                                                           00000190
```

```
INTEGER*4 TIMREM, TIMCHT
REAL SPARE5, SPARE6
REAL ISVPB, ISVP9
                    INTEGER*4 TIMREM.TIMCHT
REAL SPARE5.SPARE6
REAL ISVPB.ISVP9
REAL ONORM
REAL*8 (24.C1.C2.SGX.SHX
DIMENSION G(9),H(11).GNU(18).HNU(18)
COMMON PKHIST(28).NPHIST(28)
COMMON PKHIST(28).NPHIST(28)
COMMON PKHIST(28).NPHIST(28)
COMMON SG.SG2.SIG.SI.SIZ.AN.AA.BB.CC.DD
COMMON SG.SG2.SIG.SI.SIZ.AN.AA.BB.CC.DD
COMMON NAME(32).RDATE(5).BITMAP(64).GCTIME
COMMON MASP.LSTCNT.DEVICE(5).SPCNO
COMMON MASP.LSTCNT.DEVICE(5).SPCNO
COMMON RNAX(3).IR(3).BK(3).MK(3).NM(3).NTASS
COMMON RNAX(3).IR(3).BK(3).MK(3).NM(3).RTAS).GCMMON RNAX(3).IR(3).BK(3).MK(3).NM(3).RTAS).GCMMON RNAX(3).IR(3).BK(3).MK(3).NM(3).RTAS).GCMMON SPEC(14,411).IND(3.411).NUSPEC(411).NMASS
COMMON RNAX(3).IR(3).BK(3).MK(3).NM(3).RTAS).SPARE6.SPARE7
COMMON SPAREI.SPARE2.SPARE3.SPARE4.SPARE5.SPARE6.SPARE7
COMMON SPAREI.SPARE2.SPARE3.SPARE4.SPARE5.SPARE6.SPARE7
COMMON SYMB.ISVM9.ISVM9.ISVM9.ISVM7.SATLX.SIGLST
COMMON MODE1.MODE2.NLUCUT.NUPCUT.SATPKS(25).NSAT.EXPNAM(5)
COMMON MODE5.MODE2.NLUCUT.NUPCUT.SATPKS(25).NSAT.EXPNAM(5)
COMMON MODES.SPARES.SPAREA.SPARES.SPARE6.SPARE7
COMMON MODES.SCANDOS.SERMAS.NERR.SIGERR.SECOND(411)
COMMON MASSES.ISGMS(3).ISHMODE(3).GMODE.HMODE
COMMON MASSES.ISGMS(3).ISHMOS(3).IGMOSS.IHMOSS
COMMON MAGKER.SUMG.SUMG2
COMMON MAGKER.SUMGA.SUMGA.SUMGA.SUMGA.SUMGA.SUMGA.SUMGA.SUMGA.SUMGA.SUMGA.SUMGA.SUMGA.SUMGA.SUMGA.
                                                                                                                                                                                                                                                                                                                                                                                                                    00000200
                                                                                                                                                                                                                                                                                                                                                                                                                    00000210
                                                                                                                                                                                                                                                                                                                                                                                                                    00000220
00000230
00000240
                                                                                                                                                                                                                                                                                                                                                                                                                    00000250
                                                                                                                                                                                                                                                                                                                                                                                                                    00000260
                                                                                                                                                                                                                                                                                                                                                                                                                  00000270
00000280
00000290
                                                                                                                                                                                                                                                                                                                                                                                                                   00000300
                                                                                                                                                                                                                                                                                                                                                                                                                  00000310
00000320
                                                                                                                                                                                                                                                                                                                                                                                                                    00000330
                                                                                                                                                                                                                                                                                                                                                                                                                   00000340
                                                                                                                                                                                                                                                                                                                                                                                                                   00000350
                                                                                                                                                                                                                                                                                                                                                                                                                  00000360
00000370
00000380
                                                                                                                                                                                                                                                                                                                                                                                                                   00000390
                                                                                                                                                                                                                                                                                                                                                                                                                   00000400
                                                                                                                                                                                                                                                                                                                                                                                                                   00000410
                                                                                                                                                                                                                                                                                                                                                                                                                  00000420
                                                                                                                                                                                                                                                                                                                                                                                                                   00000430
                                                                                                                                                                                                                                                                                                                                                                                                                   00000440
                                                                                                                                                                                                                                                                                                                                                                                                                   00000450
                                                                                                                                                                                                                                                                                                                                                                                                                  00000460
00000470
                                                                                                                                                                                                                                                                                                                                                                                                                  00000460
                                                                                                                                                                                                                                                                                                                                                                                                                   00000500
                                                                                                                                                                                                                                                                                                                                                                                                                  00000510
00000520
00000530
                                                                                                                                                                                                                                                                                                                                                                                                                   00000540
                                                                                                                                                                                                                                                                                                                                                                                                                  00000550
00000560
                                                                                                                                                                                                                                                                                                                                                                                                                   00000570
                                                                                                                                                                                                                                                                                                                                                                                                                  00000580
                                                                                                                                                                                                                                                                                                                                                                                                                  00000590
                                                                                                                                                                                                                                                                                                                                                                                                                  BBBDBBBB
                                                                                                                                                                                                                                                                                                                                                                                                                  00000610
                                                                                                                                                                                                                                                                                                                                                                                                                  00000620
00000630
COMMON /IMAD/MAD
COMMON /IADS/ADS
COMMON /IADS/ADS
COMMON /IADS/ADS
COMMON /IAPPHAME
COMMON /IAPPHAME
COMMON /IAPPHAME
IHI, IH2, IFLAG1, IFLAG2 USED IN TLOC AND ITS BRANCHES.
HERE CLEANUP HAS BEEN GIVEN THE CAPABILITY OF MULTIPLE RUN
PROCESSING - AND THE I/O UNIT NUMBERS HAVE BEEN PUT IN A
COMMON BLOCK NAMED /UNITS/
                                                                                                                                                                                                                                                                                                                                                                                                                   00000640
                                                                                                                                                                                                                                                                                                                                                                                                                  00000650
                                                                                                                                                                                                                                                                                                                                                                                                                  00000660
                                                                                                                                                                                                                                                                                                                                                                                                                  00000670
00000680
                                                                                                                                                                                                                                                                                                                                                                                                                 00000690
                                                                                                                                                                                                                                                                                                                                                                                                                  00000710
00000720
00000730
                                                                                                                                                                                                                    WM F HARGROVE
11/29/78
                            IRDR=4
                            IPTR1=6
IPTR2=6
                                                                                                                                                                                                                                                                                                                                                                                                                  00000740
                                                                                                                                                                                                                                                                                                                                                                                                                  00000750
                                                                                                                                                                                                                                                                                                                                                                                                                   00000760
                            11N=7
                                                                                                                                                                                                                                                                                                                                                                                                                  00000770
```

```
10UT -9
                                                                                                                                                                                                         00000780
00000790
                  1RN0=0
C GET CONTROL PARAMETERS - PARDIR HAS BEEN REWRITTEN AS OF
                                                                                                                                                                                                         00000300
00000310
                                                                                                                                                                                                         00000820
00000830
                                                                                                                 12/12/78 WFH -
CALL PARDIR
C OPEN PRIMARY INPUT AND OUTPUT FILES
CALL OPNFIL
C START OF RUN PROCESSING LOOP
35 IRNO=IRNO+1
EDF=0
                                                                                                                                                                                                         00000840
                                                                                                                                                                                                         00000850
                                                                                                                                                                                                         00000860
                                                                                                                                                                                                         00000870
00000880
                                                                                                                                                                                                        00000910
00000920
00000930
00000940
                  MU=0
                  IH1 = 1
IH2 = 2
00000960
                                                                                                                                                                                                         00000970
                                                                                                                                                                                                         00000380
00000990
                                                                                                                                                                                                         00001000
                                                                                           RTI WFH 11/21/78
                 DO 17 I=1.9
G(I)=0.0
DO 10 I = 1.5
AHEAD(I) = 0
                                                                                                                                                                                                         00001020
00001030
00001040
DU 10 1 = 1.5

10 AHEAD(1) = 0

C THIS MOD INSERTED TO INITIALIZE THE ARRAY GPEAK

C INSERTED 11/14/78 - AT RT1 BY WFH

DO 11 1=1.3

DO 11 J=1.11

11 GPEAK(I,J)=0

C THIS MOD TO INITIALIZE ARRAY MSINGS...

C INSERTED 4/12/78 - AT RT1 BY WFH

DO 13 I=1.2

DO 13 J=1.50

13 MSINGS(1,J)=0

C THIS MOD ALSO TO INITIALIZE AN ARRAY LINGS...

C INSERTED 4/13/78 - AT RT1 BY WFH

DO 14 I=1.50

14 LINGS(I)=0

C THESE MODS ARE ALSO TO INITIALIXE ISVNB, ISVN9, ISVP8, ISVP9...

C INSERTED 4/14/78 - AT RT1 BY WFH

ISVP8=0.0

ISVP8=0.0

ISVN8=0

ISVN9=0

C VET ONDTHER MOD TO INITIALIZE THE MISTOCROMS - NEWLET BY MIST.
                                                                                                                                                                                                         00001050
00001060
                                                                                                                                                                                                         00001070
00001080
                                                                                                                                                                                                         00001090
00001100
                                                                                                                                                                                                         00001110
                                                                                                                                                                                                          00001130
                                                                                                                                                                                                         00001140
00001150
                                                                                                                                                                                                         00001160
                                                                                                                                                                                                         00001180
00001190
                                                                                                                                                                                                         00001200
00001210
00001220
00001230
                                                                                                                                                                                                         00001240
00001250
00001260
00001270
 ISVN8=0
ISVN9=0
C YET ANOTHER MOD TO INITIALIZE THE HISTOGRAMS - NPHIST.PKHIST
C INSERTED 4/14/78 - AT RTI BY WFH
DO 15 1=1.20
PKHIST(I)=0.0
15 NPHIST(I)=0
C STILL ANOTHER MOD TO INITIALIZE THINGS FOR TLOC - SPARE3 TO SPARE7
C INSERTED 4/17/78 BY WFH AT RTI
SPARE3=0
SPARE4=0
SPARE5=0.0
SPARE6=0.0
C ONCE AGAIN AN UNINITIALIZED VARIABLE - THIS TIME IN LKAHED
                                                                                                                                                                                                         00001280
00001290
00001300
00001310
                                                                                                                                                                                                          0000 1320
0000 1330
                                                                                                                                                                                                          00001340
                                                                                                                                                                                                          00001350
   C ONCE AGAIN AN UNINITIALIZED VARIABLE - THIS TIME IN LKAHED
                                                                                                                                                                                                          00001370
```

```
00001380
 C MOD INSERTED 4/20/78 AT RTI BY WITH
                OVLAP=0
D0 12 I = 1.25
SATLST(I) = 0
                                                                                                                                                                                  00001390
00001400
 12
                                                                                                                                                                                   00001410
 SATINX - I
C THIS MOD INSERTED TO INITIALIZE ISGMAS FOR A
C MOD DOWN INSIDE TLOC TO PREVENT LOOKING FOR
C ELUTANTS WHICH HAVE NO SUITABLE MODEL....
C RTI - BY WFH 5/24/78
                                                                                                                                                                                  90001420
                                                                                                                                                                                  00001430
                                                                                                                                                                                  00001440
00001450
                                                                                                                                                                                  00001460
        RTI - BY WFH 5/24/78

DO 16 1=1.3
ISHMAS(1)=-1
16 ISGMAS(1)=-1
NSLOT.NLINE USED IN KAPUT VIA OUTDAT.
                                                                                                                                                                                  00001470
                                                                                                                                                                                  00001480
                                                                                                                                                                                 00001490
00001500
00001510
00001520
 C
               MSLOT = 0
NLINE = 0
FSTPGE = 1
FSTRCC = 1
ANOTHER RANDOM VOID .. EH .. HUI NENG ...
                                                                                                                                                                                  00001530
L ANOTHER RANDOM VOID .. EH .. HUI NENG ...
NMASS=411
LSTCNT=0
C HERE THE CALL TO PARDIR HAS BEEN SHIFTED TO THE TOP
C AND CALLING ARGUMENTS TO SETBUG HAVE BEEN MODIFIED
C WM F HARGROVE
C CALL PARDIR(CLNFLG-11817 MINOTED
                                                                                                                                                                                  00001540
00001550
                                                                                                                                                                                 00001560
00001570
                                                                                                                                                                                  00001580
00001590
                                                                                                                                                                                  00001600
C CALL PARDIR (CLNFLG, UNIT, NNAME)
CALL SETBUG (NNAME, EOF)
IF (EOF, NE. 0) GO TO 50
C LOOP CONTROL MODIFIED SO PROGRAM WILL TERMINATE INSIDE MAIN
C CSECT - WFH RTI 9/31/78
C MAXSP=MAXSP=10
NS=13
                                                                                                                                                                                  00001610
                                                                                                                                                                                  00001620
                                                                                                                                                                                  00001630
00001640
                                                                                                                                                                                  00001650
                                                                                                                                                                                  00001660
         NS=13
40 NS=NS+1
     THE UPDATING OF SPCHO IS NOW DONE INSIDE TLOC WHERE THE SPECTRUM RECORDS ARE INPUT...
THIS WAS DONE SO THAT SPCHO COULD KEEP UP WITH GAPS IN THE SCAN NUMBERS...
                                                                                                                                                                                  00001690
                                                                                                                                                                                 00001700
00001710
00001720
00001730
                                                                                    WFH - RTI 6/15/78
      SPCNO-SPCNO+1
ALSO AN EOF FLAG WAS ADDED TO ENSURE TERMINATION INSIDE THE MAIN ROUTINE....
                                                                                                                                                                                 00001740
00001750
00001760
                CALL TLDC(NS.MI.M2.M3, IFOUND.EOF)

IF(EOF.EQ.1)GO TO 30

IFOUND = 0 IF NO SPECTRUM DETECTED.

IF(IFOUND.EQ.0) GO TO 40

MU=MU+1
                                                                                                                                                                                 00001770
00001780
00001790
 C
                                                                                                                                                                                 00001800
       IF(IFOUND.EU.0) GO TO 40

MU=MU+1

IF(MU.LE.1000)GO TO 23

CALL CUPRNIC(4.NPHIST.MASBUF.PKHIST.AVE.ERRMAX.

IERRZ.SPCNO.MODE2.MODE2)

URITE(IPTR2.24) SPCNO

24 FORMAT('-'.'**** CLEANUP TERMINATING DUE TO TABLE OVERFLOW ***.

1/.1X.'LAST SPECRUM NO. IS '.IS)

STOP 12

37 FORMAT.SPECRUM.
                                                                                                                                                                                  00001820
                                                                                                                                                                                  00001830
                                                                                                                                                                                 00001840
00001850
                                                                                                                                                                                  00001860
                                                                                                                                                                                 00001870
00001880
                                                                                                                                                                                 00001890
00001900
               ISO (MU) -SPCNO `
                CALL LKAHED(NS.M2.M3.DVLAP.G.H)

OVLAP = 1 IF ELUTANT DETECTED AHEAD.

1F(OVLAP.EQ.Ø) GO TO 25

CALL OFFSET(G.H.GNU.HNU.MODE1.MODE2)
                                                                                                                                                                                 00001910
                                                                                                                                                                                  02001940
```

```
C HOPEFULLY THE LAST FIX TO CUPRNT IN ORDER TO MAKE C WATFIV HAPPY... THE ONLY ARGUMENTS USED IN THIS CALL ARE MODE1 AND MODE2
                                                                                                                                                                                                                                               00001950
                                                                                                                                                                                                                                               00001960
00001970
Č
                LIFH.RTI 4/26/78
CALL CUPRNT(1.NPHIST.MASBUF.PKHIST.AVE.ERRMAX,
1ERR2,MODE1.MODE2,MODE2)
ABOVE PRINTS MODE1 AND MODE2
CONTINUE
                                                                                                                                                                                                                                               00001980
                                                                                                                                                                                                                                                00002000
C
25
                                                                                                                                                                                                                                               00002010
                                                                                                                                                                                                                                                00002020
                     ISKP=0
                                                                                                                                                                                                                                               00002030
00002040
                    PASS1 - 0
                    NDIS=1
THIS PASS FOR MASSES DETECTED TO LEFT OF DETECTED SPECTRUM
AND NOT RESOLVED
IT SHOULD BE NOTED THAT THE DOUBLET RESOLVER IS ONLY RUN ON
PASS 2.
CALL GETHGT(NS-2.M1.ISKP.DVLAP.NDIS.G.H.GNU.HNU)
THIS PASS FOR MASSES DETECTED AT THE SPECTRUM
                                                                                                                                                                                                                                                00002050
 מטטמי
                                                                                                                                                                                                                                               00002060
                                                                                                                                                                                                                                                 00002070
                                                                                                                                                                                                                                               00002080
00002090
                                                                                                                                                                                                                                               00002100
00002110
 בָּ
                                                                                                                                                                                                                                               00002120
00002130
00002140
00002150
                    NDIS=2
CALL GETHGT(NS-1,M2,ISKP,OVLAP,NDIS.G.H.GNU.HNU)
ISKP=1
                                                                                                                                                                                                                                               00002150
00002160
00002170
00002180
00002190
00002210
C THIS PASS FOR MASSES DETECTED TO THE RIGHT OF THE SPECTRUM CALL GETHGT(MS.M3.ISKP.OVLAP.NDIS.G.H.GNU.HNU)
C PRINT LEAST SQUARE ERROR STUFF IF DOUBLET FOUND IF (OVLAP.EQ. Ø) GO TO 550
IF (IDEBUG.EQ. Ø) GO TO 550
AVE = SIGERR/MERR
ERRMAX = ERRMAX/NERR
IMASS = RMASS
C HOPEFULLY THE LAST FIX TO CUPRNT IN ORDER TO MAKE
C C WATFIV HAPPY... THE ONLY ARGUMENTS USED IN THIS CALL ARE
C AVE AND ERRMAX

WFH.RTI 4/26/78
                     NDIS=3
                                                                                                                                                                                                                                               00002210
00002220
00002230
00002240
00002250
00002270
00002270
                  LIFH.RT1 4/26/78

CALL CUPRNT(2.NPHIST.MASBUF.PKHIST.AVE.ERRMAX.ERR2.

1MODE1.MODE2.MODE2)

**

**

**

**

**

**

CALL CUPRNT(5.NPHIST.MASBUF.PKHIST.AVE.ERRMAX.ERR2.

IERR2.SPCNO.MODE2.MODE2)

LIFTE(1PTR2.900)

LIFTE(1PTR2.900)

LIFTE(1PTR2.910)

ICOUNT = 0
  Č
                                                                                                                                                                                                                                               00002290
00002300
                                                                                                                                                                                                                                               00002310
00002320
00002330
00002340
  Ë
                                                                                                                                                                                                                                               00002350
00002360
 C
                   URITE(IPTR2,910)
ICOUNT = 0
DO 600 I = 1.6
MASBUF(I) = 0
VALBUF(I) = 0
DO 650 I = 1.411
IMASS = I + 39 - MAD
IF(SECOND(I) .EQ. 32767) GO TO 650
ICOUNT = ICOUNT + 1
IF (ICOUNT .LT. 7) GO TO 620
URITE(IPTR2,920) (MASBUF(J),VALBUF(J), J = 1.6)
CALL CUPRNT(6,MASBUF,VALBUF,PKHIST,AVE,ERRMAX,ERR2,
ISPCNO,MODE2,MODE2)
ICOUNT = 1
DO 610 J = 1.6
MASBUF(J) = 0
VALBUF(J) = 0
                                                                                                                                                                                                                                                00002370
00002380
00002390
                                                                                                                                                                                                                                                 00002400
  600
                                                                                                                                                                                                                                                00002410
00002420
00002430
                                                                                                                                                                                                                                                00002440
00002450
                                                                                                                                                                                                                                                 00002450
  C
                                                                                                                                                                                                                                                 00002490
                                                                                                                                                                                                                                                 00002490
00002500
00002510
                                                                                                                                                                                                                                                 00002520
   610
```

```
00002530
00002540
00002550
00002560
                MASBUF(ICOUNT) = IMASS
VALBUF(ICOUNT) = SECOND(I)
CONTINUE
 620
 CONTINUE

IF ( MASBUF(1) .EQ. C) CO TO 550

LRITE(IPTR2,920) (MASBUF(J),VALBUF(J),J=1,6)
CALL CUPRNT(6,MASBUF,VALBUF,PKHIST,AVE,ERRMAX,ERR2,
1SPCNO,MODE2,MODE2)

THE ABOVE EMPTIES THE BUFFER.
CALL OUTDAT(SRLIB,NNAME)
GD TO 40

C THIS MOD INSERTED IN CONJUNCTION WITH THE EOF FLAG ADDITION TO C TLOC
  650
                                                                                                                                                                                       00002570
                                                                                                                                                                                       คดดก2580
                                                                                                                                                                                       00002590
                                                                                                                                                                                       00002600
                                                                                                                                                                                       00002610
                                                                                                                                                                                       00002630
 C TLOC
C THE E
C TO HE
                                                                                                                                                                                       00002640
00002650
      THE END OF THE CLEANUP MAIN CSECT HAS BEEN MODIFIED TO HANDLE MULTIPLE RUN PROCESSING.
                                                                                                                                                                                       00002660
                                                                                                                                                                                       00002670
                                                                                             UM F HARGROVE
                                                                                                                                                                                      00002680
00002690
C END OF SPECTRUM RUN
30 CONTINUE
CALL CLSRUN(1SQ.MU)
GO TO 35
C END OF FILE AND TERMINATION OF CLEANUP PROGRAM
50 CALL CUPRNT(B.NNAME.VAIBUF.PKHIST.AVE.ERRMAX.
2ERR2.TIMCNT.MODE2.MODE2)
CALL CLSFIL
STOP
END
                                                                                                                                                                                       00002700
00002710
                                                                                                                                                                                      00002710
00002740
00002750
00002760
00002770
00002780
                                                                                                                                                                                       00002800
                                                                                                                                                                                       00002810
00002820
00002830
  000000000000
                   THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (GRANT NGR-05-020-632).
                                                                                                                                                                                      00002830
00002840
00002850
00002860
00002880
00002880
                                                                                                                                                                                      00002890
00002900
00002910
00002920
00002930
00002950
00002950
                   *** THIS ROUTINE USES A MODEL PEAK AND CURRENT PEAK
*** AND DOES A LEAST SQUARES TO COMPUTE THE
*** BACKGROUND AT PEAK CENTRE (ASSUMES LINEAR BACKGROUND).
                 INTEGER PKHGT.PASS1
COMMON PKHIST(20).NPHIST(20)
COMMON YMS.Y(9).YP5
                CONTION G(9)
CONTION /LSQ/PASS1
CONTION /BACKER/SG/SG2
REAL P/C
                                                                                                                                                                                      00002970
00002980
00002990
00003000
                                                                                                                                                                                       00003010
  00003020
00003030
00003040
00003050
                    *** SOLUTION OF THREE LINEAR EQUATIONS.
                   P * 5G**2 + C = SGY
                                                                                                                                                                                      00003060
00003070
                   P * SG
                                           + C . = SY
                                                                                                                                                                                       00003080
                                                                                                                                                                                      00003090
00003100
                          WHICH RESULT FROM THE LEAST SQUARE FITTING OF THE ERROR TERMS.
                                                                                                                                                                                       00003110
                                                                                                                                                                                      00003120
```

```
E(I) = P * G(I) + C - Y(I)
00000000
                     WE SOLVE FOR P AND SET PEAKHGT . P * GTOP.
                   IF( PASS1 .EQ. 1 ) GO TO 10
                 IF( PRSS1 .Eu. 1 ; GU 10 ;
PASS1 = 1
SG = 0
SG2 = 0
DO 5 ! = 1.9
SG = SG + G(!)/9
SG2 = SG2 + G(!) * G(!)/9
CONTINUE
                                                                                                                                                                                                                             00003210
00003220
00003240
00003250
5
10
                                                                                                                                                                                                                             00003250
00003260
00003270
00003280
00003290
00003310
00003310
                  CONTINUE

SY = 0

SYG = 0

DO 20 I = 1.9

SY = SY + Y(1)/9

SYG = SYG + Y(1) * G(1)/9

P = ( SYG - SY * SG )/( SG2 - SG * SG )

PKHGT = P * G(5)

C = SY - P * SG

RETURN

FND
 20
                                                                                                                                                                                                                             00003330
00003340
00003350
00003360
 C
                  RETURN
END
SUBROUTINE BLEED(Y, RATIO)
LEAST SQUARE FITS A LINE TO DATA TO DETERMINE ITS LINEARITY.
REAL AVY, AXX, AXX, X, B, M, RATIO
INTEGER N, I
REAL Y(7), ERROR, FIT(7)
AVY = 0
AXY = 0
AXX = 0
DO 200 I = 1.7
X = I - 4
AVY = AVY + Y(I)
AXX = AXX + X*X
AVY = AVY + X * Y(I)
AXX = AXX + X*X
AVY = AVY/7
AXX = AXX/7
B = AVY
T = AXY/AXX
Y = M X + B

EDDOED BOTTO COLUMN TIDE HOS BEEN MODIFIED SUBSTONTION Y
                                                                                                                                                                                                                             00003370
00003380
00003390
00003400
 С
                                                                                                                                                                                                                             00003420
00003430
00003440
00003450
                                                                                                                                                                                                                              00003460
00003470
                                                                                                                                                                                                                             00003470
00003480
00003500
00003510
00003510
00003520
00003540
00003560
00003560
 200
 0000000
      THE ERROR RATIO CALCULATION HAS BEEN MODIFIED SUBSTANTIALLY BECAUSE IT WAS FOUND TO BE HAYWIRE IN THE PREVIOUS VERSION. THE MOD IS A JOINT EFFORT OF DR/SHAH/PC/WFH ENTERED BY WFH-RTI 9/31/78
                                                                                                                                                                                                                             00003560
00003590
00003600
00003610
00003620
       1F(AVY.EQ.0)GO TO 400

RMS=0.0

DO 300 I=1.7

FIT(1)=M*(1-4)+B

ERROR=FIT(1)-Y(I)

300 RMS=RMS+ERROR*ERROR

RMS=SORT(RMS)/7.0

RHTIO=RMS/AVY
                                                                                                                                                                                                                              00003630
00003640
00003650
                                                                                                                                                                                                                              00003660
                                                                                                                                                                                                                               00003670
00003680
                                                                                                                                                                                                                               00003690
                                                                                                                                                                                                                               00003700
```

```
00003710
             RETURN
                                                                                                                                                                         00003720
00003730
    400 RATIO=0.0
RETURN
                                                                                                                                                                         00003740
00003750
00003760
              END
                THIS SUBROUTINE DOES ALL PRINTING FOR CLEANUP. PLEASE USE IT TO ADD NEW PRINTING IN ANY SUBROUTINE.
00003770
00003780
                                                                                                                                                                         00003790
                THE CALL STATEMENT ALLOWS FOR PASSING OF ARRAYS REALS AND INTEGERS.
                                                                                                                                                                         00003800
                                                                                                                                                                         00003810
                                                                                                                                                                        00003820
00003830
               THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (GRANT NGR-05-020-632).
                                                                                                                                                                        00003840
00003850
00003860
00003870
00003880
   SUBROUTINE CUPRNT(N, IAR, IAR2, AR, R1, R2, R3, I1, I2, I3)
INTEGER N, I1, I2, I3, IONE, NINE
REAL R1, R2, R3
THE DITMENSIONS OF IAR AND AR HAVE BEEN CHANGED TO SUIT WATFIV
THEY WERE AT 9...MUCH OF THIS CODE SEEMS NONSENSE...

UFH RTI 26/4/78

DIMENSION IAR(1), AR(1), IAR2(1)
COMMON / DUBBUG/IFLAG
COMMON / UNITS/ IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
DATA IONE, NINE/1,9/
                                                                                                                                                                        00003890
00003900
                                                                                                                                                                        00003910
00003920
00003930
00003940
00003950
                                                                                                                                                                        00003960
00003970
                                                                                                                                                                        00003980
00003990
00004000
00004010
                IFLAG IS RESET IF NO PRINTING IS TO BE DONE/
             IF (IFLAG.EQ.0) RETURN
GO TO (10.140.150.160.170.180.200.210).N
                                                                                                                                                                        00004020
00004030
                                                                                                                                                                        00004040
THE ABOVE IS A CASE STATEMENT FOR EXECUTING PRINT OPTIONS.C
                                                                                                                                                                        00004050
       GCMSOL RPINTING OF MODE1.MODE2
10 IF(IFLAG.EO.0)RETURN
URITE(IPTR2.510) 11.12
                                                                                                                                                                        00004080
                                                                                                                                                                         00004090
                                                                                                                                                                        00004100
              RETURN
                                                                                                                                                                        00004120
    140 IF(IFLAG.ED.0)RETURN
URITE(IPTR2,1400) R1.R2
RETURN
                                                                                                                                                                        00004130
00004140
                                                                                                                                                                        00004150
C
C
510
                FORMAT STATEMENTS FOLLOW.
                                                                                                                                                                        00004170
C
510 FORMAT(/1X," HISTOGRAM LOCATIONS OF THE TWO SPECTRA ARE:"/
-8X,"G-POSITION = ".12.2X,"H-POSITION = ".14)

1400 FORMAT(/" LEAST SQUARES ERROR STUFF FOR DUBLET:"/
-" AVE. ERR. AVE RMS ERR"
-./.1X.E15.8.4X.E15.8.//)

C THESE PRINT STATEMENTS HAVE BEEN ADDED AS PART OF THE
C GENERAL REVAMPING OF CUPRNT.... WFH RT1 9/31/78
                                                                                                                                                                         00004190
                                                                                                                                                                        00004200
00004210
00004220
00004230
                                                                                                                                                                         00004240
                                                                                                                                                                        00004250
     150 URITE(IPTR2.101)
101 FORMAT('-'.'START OF CONVERTED MASS SPEC CLEANUP PROGRAM')
                                                                                                                                                                        00004260
00004270
```

```
160 WRITE(IPTR2.24) II
24 FORMAT('-', '*** CLEANUP TERMINATING DUE TO TABLE OVERFLOW ***,
1/.1%, 'LAST SPECTRUM NO. IS '.15)
                                                                                                                                                                                                                                                                                                            00004290
                                                                                                                                                                                                                                                                                                            00004300
00004310
                                                                                                                                                                                                                                                                                                             00004320
                                                                                                                                                                                                                                                                                                            00004330
       170 IF(IFLAG.ED.0)RETURN 00004350

WRITE(IPTR2.900) 00004350

BB FORMAT(//.20%,' COMPUTED H(MODE) * Q',/) 00004360

URITE(IPTR2.910) 00004380

BE FORMAT(' MASS.VALUE MASS VALUE MASS VALUE
900
910
                                                                                                                                                                                                                                                                                                            00004400
00004410
Ç
                                                                                                                                                                                                                                                                                                            00004420
                                                                                                                                                                                                                                                                                                            00004430
        180 IF(IFLAG.EO.0)RETURN
WRITE(IPTR2.920) (IAR(I).IAR2(I).I=1.6)
920 FORMAT(6(3x.I3.1x.I5))
                                                                                                                                                                                                                                                                                                            00004440
00004450
                                                                                                                                                                                                                                                                                                            00004460
C CUPRNT STATEMENTS 7 AND 8 HAVE BEEN MODIFIED TO C FIT IN WITH THE SCHEME OF MULTIPLE RUN PROCESSING.

WITH F HARGROVE
11/29/78 RTI
                                                                                                                                                                                                                                                                                                            00004470
00004480
                                                                                                                                                                                                                                                                                                            00004490
00004500
                                                                                                                                                                                                                                                                                                            00004510
00004520
          200 LRITE(IPTR2.11) I2.(IAR(I).I=1.18)
11 FORMAT(IX. END OF PROCESSING FOR RUN * .12.
2' RUN TITLE: '.18A4)
                                                                                                                                                                                                                                                                                                            00004530
00004550
                          RETURN
                                                                                                                                                                                                                                                                                                           00004560
00004570
00004580
00004590
         210 WRITE(1PTR2.102)
102 FORMAT('-','****END OF CLEANUP PROCESSING****')
RETURN
                                                                                                                                                                                                                                                                                                            00004600
00004610
                           SUBROUTINE DETEKT (PKHIST.NPHIST.DTFLAG.NLWCUT.NUPCUT
                                                                                                                                                                                                                                                                                                            00004620
00004630
                                                                                                                                                                                                                                                                                                           00004640
00004650
                              THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (GRANT NGR-05-020-632).
                                                                                                                                                                                                                                                                                                           00004660
00004670
                                                                                                                                                                                                                                                                                                            00004680
                                                                                                                                                                                                                                                                                                          00004690
00004700
00004710
00004720
                         INTEGER PLIMIT.DTFLAG.CPLMIT.SVFLAG.CASE1
REAL MX.MX2.INTSUM
DIMENSION PKHIST(20).NPHIST(20)
COMMON /PARAMS/MINTIC.MINNY.NTHIRD.RATM
MINNY IS USED FOR FEWER THAN 5 PEAKS
REQUIRE TOTAL ION CURRENT FOR DETECTED SPECTRUM TO BE MINTIC
IN AND AROUND THE MAX IF 5 PEAKS LOCALLY.
COMMON /TOMS/ITOM
COMMON /CAHEA/AHEAD(5)
INTEGER AHEAD.ITOM
                                                                                                                                                                                                                                                                                                           000047.20
000047.30
000047.40
000047.50
000047.60
                                                                                                                                                                                                                                                                                                            99904780
                                                                                                                                                                                                                                                                                                            00004790
                            00004800
                           WE SCAN THE HISTOGRAMIC WINDOW *NL. NU@ FOR A MAXIMUM DTFLAG=0 INDX=NL
                                                                                                                                                                                                                                                                                                            00004810
                                                                                                                                                                                                                                                                                                           00004820
00004830
                         INDX=NL
NUM=NPH IST(NL)

TX=PKHIST(NL)

THE HISTOGRAMIC WINDOW +IDXL.IDXU@ IS WHERE A MAXIMUM
WILL OCCUR IF A SPECTRUM IS ELUTING.
                                                                                                                                                                                                                                                                                                           00004850
                                                                                                                                                                                                                                                                                                           00004870
```

```
NUM2=NPHIST(IDXL)
                                                                                                                                                                                           00004890
                                                                                                                                                                                           00004900
                INDX2=IDXL
               INDX2=IDXL
PX.NUM = MAX +NL.NU@ & MX2.NUM2 = MAX +IDXL.IDXU@
DO 10 I=NL.NU
IF ( MX .GE. PKHIST(I) ) GO TO 9
MX=PKHIST(I)
C
                                                                                                                                                                                           00004910
                                                                                                                                                                                           00004920
                                                                                                                                                                                           00004930
                                                                                                                                                                                           00004940
                                                                                                                                                                                           00004950
                NUM=NPHIST(I)
                                                                                                                                                                                           00004960
                 INDX=I
                CONTINUE
                                                                                                                                                                                           99994979
9
                CONTINUE

NOTE: +IDXL, IDXU@ IS WINDOW FOR DETECTING ELUTANT NOW

IF ( 1 .LE. IDXL .OR.  | .GT. IDXU ) GO TO 10

IF ( MX2 .GE. PKHIST(I) ) GO TO 10

GET MAXIMUM IN WINDOW + IDXL, IDXU @
                                                                                                                                                                                           00004990
00005000
                                                                                                                                                                                           00005010
C
                MX2=PKHIST(I)
NUM2=NPHIST(I)
                                                                                                                                                                                          00005020
00005030
                INDX2=1
CONTINUE
                                                                                                                                                                                          00005040
00005050
               CONTINUE

SEE IF IN RIGHT HISTOGRAM WINDOW, *IDXL,IDXU@

IF (INDX .GE. IDXL .AND. INDX .LE. IDXU ) GO TO 15

IF WE GET HERE THE ABSOLUTE MAXIMUM WAS NOT IN *IDXL,IDXU@

AND IDXL .LE. INDX2 .LE. IDXU

REQUIRE: 1. THAT TIC (INDX2) BE LARGER THAN ITS IMMEDIATE

NEIGHBORS.

2. THAT PKHIST(IDXU) + PKHIST(IDXU+1)

+ PKHIST(IDXL) .GE. MINTIC.

IF (MX2 .LT. PKHIST(INDX2+1) ) RETURN

IF (MX2 .LT. PKHIST(INDX2+1) ) RETURN

CHECK ON HOW CLOSE WE WILL ALLOW HISTOGRAM BUMPS.

DEFAULTS TO 2 SLOTS APART. SPECIAL FLAG ITOM IS

USED FOR FRAGMENTOGRAPHY RUNS TO TRY TO SEPARATE

DEUTERATED PEAKS FROM NON-DEUTERATED PEAKS.
10
C
                                                                                                                                                                                           00005070
00005080
С
                                                                                                                                                                                          00005090
00005100
00005110
מממממ
                                                                                                                                                                                          00005120
00005130
                                                                                                                                                                                          00005140
00005150
                                                                                                                                                                                           00005160
                                                                                                                                                                                          00005170
00005180
                  DEUTERATED PEAKS FROM NON-DEUTERATED PEAKS.
                                                                                                                                                                                          00005190
00005200
     THIS IS A TEMPORARY MOD IN ORDER TO GATHER STATISTICS ON THE INPUT PARAMETER ITOM – CODE \mathbf{6}
                                                                                                                                                                                          00005210
00005220
00005230
                                                                                                              WFH RTI 9/31/78
                                                                                                                                                                                           00005240
C ISPC=0
C ITYP=6
C WRITE(20,6251) ITYP,ISPC
C6251 FORMAT(A4,A4)
                                                                                                                                                                                          00005250
00005260
00005270
                                                                                                                                                                                          00005280
00005290
                                                                                                                                                                                         00005290
00005310
00005320
00005330
00005340
00005350
00005350
                IF ( ITOM .EQ. 1 ) GO TO 79
IF ( MX2 .LT. PKHIST(INDX2-2) ) RETURN
IF ( MX2 .LT. PKHIST(INDX2+2) ) RETURN
     TEMPORARY MOD IN ORDER TO GATHER STATISTICS ON THE INPUT PARAMETER ITOM - CODE 7
                                                                                                    WFH RTI 9/31/78
C ISPC=0
C ITYP=7
C URITE(20.6254) ITYP,ISPC
C6254 FORMAT(A4.A4)
                                                                                                                                                                                          00005380
00005390
00005400
              FORTHI (H4) .

CONTINUE

PKSUM = PKHIST(IDXL) + PKHIST(IDXL+1) + PKHIST(IDXU)

IF ( IDXL .NE. 4 ) GO TO 12

IF ( AHEAD(1) .EQ. 1 ) PKSUM = MINTIC

THE ABOVE GUARANTEES DETECTION IF SPECTRUM WAS DETECTED
                                                                                                                                                                                          00005410
                                                                                                                                                                                          00005420
                                                                                                                                                                                          00005430
r
                                                                                                                                                                                          00005450
```

```
12
C
C T
                                              AHEAD.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00005460
                                       CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00005470
00005480
00005490
            THIS IS A TEMPORARY MOD IN ORDER TO GATHER STATISTICS ON THE INPUT PARAMETER ITOM - CODE 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     96205500
96905510
96905520
96905530
96905560
96905560
96905560
96905610
96905610
96905610
96905610
96905620
96905620
96905630
96905640
96905630
96905640
96905670
96905670
96905730
96905730
96905760
96905760
96905760
                                                                                                                                                                                                                                                         WFH RTI 9/31/78
C 1TYP=5
C WRITE(20,6252) ITYP.ISPC.PKSUM
C6252 FORMAT(A4.A4.36X.A4)
IF ( PKSUM .LT. MINTIC ) RETURN
NLWCUT=1NDX2-2
NUPCUT=1NDX2+2
INDX=INDX2
C DTFLAG = 1 SAYS WE'VE FOUND ONE
DTFLAG=1
RETURN
15 CONTINUE
LE NOW SUM NUMBER DE BEOKE OND THE
   15
                                         CONTINUE

LE NOW SUM NUMBER OF PEAKS AND TIC.

IF ( IDXL .LT. 7 ) GO TO 16

MAKE SURE WE HAVE A HISTOGRAMIC BUBBLE

IF LOOKING AHEAD.

BUBBLE = PKHIST(INDX)

IF ( BUBBLE .LT. PKHIST(INDX-1) ) RETURN

IF ( BUBBLE .LT. PKHIST(INDX-2) ) RETURN

IF ( BUBBLE .LT. PKHIST(INDX-2) ) RETURN
     C
                                      IF ( BUBBLE .LT. PKHIST(INDX-1) ) RETURN

CONTINUE

PKSUM = NPHIST(IDXL)

IF IDXL = 9 THEN WE ARE LOOKING AHEAD, AND AN EARLIER

ELUTANT WAS DETECTED AT 6. WE ONLY SCANNED *9.100.

IF (IDXL .ED. 9) GO TO 150

PKSUM = PKSUM + NPHIST(IDXL + 1)

INTSUM = INTSUM + PKHIST(IDXL + 1)

IF ( IDXL .ED. 8 ) GO TO 100

HERE WE ONLY SCANNED *8.100

PKSUM = PKSUM + NPHIST(IDXU)

INTSUM = INTSUM + PKHIST(IDXU)

INTSUM = INTSUM + PKHIST(IDXU)

IF ( IDXL .ED. 7 ) GO TO 100

HERE WE SCANNED *7.100. IN ALL SPECIAL CASES A ELUTANT WAS DETECTED IN *4.5.60 SO WE DO NO LEFT BOUNDARY CHECKING.

SEE IF MAXIMUM OCCURRED ON LEFT BOUNDARY

IF ( INDX .NE. IDXL ) GO TO 100

PKSUM = PKSUM + NPHIST(IDXL-1)

INTSUM = INTSUM + PKHIST(IDXL-1)

GO TO 150

SEE IF MAXIMUM OCCURRED ON RIGHT BOUNDARY

CONTINUE

IF ( INDX .NE. IDXU ) GO TO 150

PKSUM = PKSUM + NPHIST(IDXU+1)

CONTINUE

IF ( INDX .NE. IDXU ) GO TO 155

IF ( AHEAD(1) .ED. 0 ) GO TO 155

IF ( AHEAD(1) .ED. 0 ) GO TO 155

PKSUM = MINTIC

IF ( PKSUM .LT. MINNY ) PKSUM = MINNY

CONTINUE

CHECK FOR FEWER THAN 5 PEAKS.
     16
     E
     C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00005810
00005820
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00005820
00005830
00005850
00005860
00005870
00005880
00005890
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00005900
00005910
00005920
00005930
     C
100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00005940
00005950
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00005960
00005970
     150
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00005980
00005990
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        800006010
      155
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00006030
```

```
THIS IS A TEMPORARY MOD IN ORDER TO GATHER STATISTICS ON THE INPUT PARAMETER ITOM - CODE 4
                                                                                                                                                                                                                                 00006050
                                                                                                                      WFH RTI 9/31/78
                                                                                                                                                                                                                                  00006080
                                                                                                                                                                                                                                  00006090
00006100
00006110
                                                                                                                                                                                                                                 00006120
                                                                                                                                                                                                                                 99996139
                                                                                                                                                                                                                                 00006140
                  CONTINUE
IF AT LEAST 5 PEAKS. THEN REQUIRE INTSUM > MINTIC.
IF (INTSUM .LT. MINTIC) RETURN
                                                                                                                                                                                                                                 00006150
00006160
                                                                                                                                                                                                                                 00006170
                 IF (INTSUM .LT. MINTIC) RETURN
CONTINUE
DTFLAG=1

IF ( NL .NE. 1 ) RETURN
NL = 1 --> WE ARE NOT LOOKING AHEAD, AND NEED HISTOGRAMIC
BOUNDS, NLWCUT AND NUPCUT.
SLEFT=0.0
SRIGHT=0.0
NUM1=INDX+1
NUM3=INDX+3
GET HISTOGRAMIC "WEIGHTS" TO THE LEFT AND RIGHT OF THE
MAXIMUM AT PKHIST(INDX).
J = 0
 18
                                                                                                                                                                                                                                 00006180
                                                                                                                                                                                                                                00006200
00006210
00006220
00006230
 ç
                                                                                                                                                                                                                                 00006240
                                                                                                                                                                                                                                 00006250
                                                                                                                                                                                                                                 00006260
00006270
                 MAXIMUM AT PKHIST(INDX),

J = 0

DO 20 I = NUM1, NUM3

J = J + 1

JJ = INDX - J

SRIGHT - SRIGHT + PKHIST(J))

SRIGHT - SRIGHT + PKHIST(I)

CONTINUE

NLUCUT = INDX - 2

NUPCUT = INDX - 2

NUPCUT = INDX + 2

IF ( SLEFT - SRIGHT ) 30,40,50

MORE "WEIGHT" TO RIGHT IF WE GET HERE

NUPCUT = NUPCUT + 1

GO TO 40

MORE "WEIGHT" TO LEFT IF WE GET HERE

NLUCUT = NLUCUT - 1

RETURN

END
                                                                                                                                                                                                                                 00006280
                                                                                                                                                                                                                                 00006290
                                                                                                                                                                                                                                 00006300
                                                                                                                                                                                                                                 00006310
00006320
                                                                                                                                                                                                                                00006330
00006340
00006350
 20
                                                                                                                                                                                                                                 00006360
00006370
                                                                                                                                                                                                                                00006380
00006390
C
30
                                                                                                                                                                                                                                 00006400
                                                                                                                                                                                                                                00006410
                                                                                                                                                                                                                                00006420
00006430
00006440
E
50
                 RETURN
END
SUBROUTINE DUBLET (G.H,Y,STORE,M,IHSPEC,GHGT,ISWD.NS)
REAL GHGT
INTEGER STORE,M,IHSPEC,ISWD.SECOND.NS.MAD
REAL KK ,LL.MM,NN
COMMON /DUBBER/C4.C1.C2.SG.SH
COMMON /MONTOR/MONSPC,MONMAS
COMMON /MONTOR/MONSPC,MONMAS
COMMON /IMAD/MAD
COMMON /IMAD/MAD
COMMON /UNITS / IRDR.IPTR1.IPTR2.IPTR3.IIN.IOUT
INTEGER 132766
REAL*3 C4.C1.C2.SG.SH
REAL*8 C4.C1.C2.SG.SH
REAL*8 SY.SGY.SHY.SG2.SH2.SGH
REAL*8 SY.SGY.SHY.SG2.SH2.SGH
**** ROUTINE TO RESOLVE A DUBLET USING TWO MODEL
**** INCLUDES A LINEAR BACKGROUND.
                                                                                                                                                                                                                                00006450
00006460
                   END
                                                                                                                                                                                                                                 00006470
                                                                                                                                                                                                                                00006480
00006490
                                                                                                                                                                                                                                00006500
00006510
00006520
00006530
                                                                                                                                                                                                                                00006540
00006550
                                                                                                                                                                                                                                00006560
00006570
00006580
                                                                                                                                                                                                                                00006598
00006600
```

```
00006620
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00006630
00006640
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00006650
00006660
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0000670
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00006680
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00006690
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0006690
00006710
00006710
00006730
00006730
00006740
00006750
00006760
00006780
00006780
00006810
                                                  E
                                          INITIALIZE SOME VARIABLES

ILOW = 3

IUP = 11

WE TRUNCATE THE SECOND MODEL AT THE 11TH POSITION SO AS
ONLY TO USE POINT WHERE REAL DATA WAS SUPPLIED.

AN = IUP - ILOW + 1

TEST TO SEE IF WE'VE ALREADY BEEN BY FOR THIS SPECTRUM

IF( ISWD . EQ. 0) GO TO 20

ISWD = 0

SG2 = 0

SG4 = 0

SH = 0

SH = 0
   Ë
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00006810
00006820
   C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00006830
00006840
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00006850
00006860
00006870
00006880
                                         SH2 = 0
SH2 = 0
SH = 0
DD SOME SUMS.
DD 10 I = ILOW, IUP
SG = SG + G(I)
SG2 = SG2 + G(I) * G(I)
SH2 = SH2 + H(I) * H(I)
SGH = SGH + G(I) * H(I)
CONTINUE
MAKE ALL AVERAGE VALUES
SG = SG/AN
SG2 = SG2/AN
SH2 = SH2/AN
SH3/AN
SH2 = SH2/AN
SH3/AN
SH3/AN
SH2 = SH2/AN
SH3/AN
SH3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00006890
00006900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00006910
00006920
    C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00006938
00006940
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00006950
00006960
00006970
00006980
     18
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00006990
00007000
00007010
00007020
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00007030
00007040
00007050
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00007050
00007060
00007050
00007050
00007050
00007100
00007110
00007110
      C
      20
                                              CONTINUE

SY=0

SY=0

SHY=0

DO 30 I = ILOW, IUP '

SY=SY + Y(I)

SHY=SHY + H(I) * Y(I)

CONTINUE

CY = SY/AN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00007140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          00007160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          00007170
00007180
        30
                                                 SY = SY/AN
SGY = SGY/AN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           00007190
```

```
SHY = SHY/AN

NOW SOLVE FOR P.Q.C

C5 = SGY - SY * SG

C3 = SHY - SY * SH

P = (C5 * C2 - C3 * C1 )/( C4 * C2 - C1 * C1 )

Q = (C3 - P * C1 )/C2

C = SY - P * SG - Q * SH

GHGT = P * G(7)

HHGT = Q * H(1HSPEC)

IF( GHGT .LT. ZERO ) GHGT = ZERO

IF( HHGT .LT. ZERO ) HHGT = ZERO

DO MEAN SQUARE ERROR CALCULATION

ERR = 0

ERRM = 0

DO 40 I = ILOW, IUP

GMD(I) = P * G(I)

HMD(I) = Q * H(I)

FIT(I) = GFD(I) + HMD(I) + C

ERRT1(I) = Y(I) - FIT(I)

ERRM = ERR + ERRT1(I) * ERRT1(I)

ERRM = ERR * ERR + ERRT1(I)

ERRM = SQRT(RMS)

SIGERR = SIGERR + ERRM

HER = SIGERR + ERR

NERR = NERR + 1

STORE = I

FLAG FOR SETGHY TO SIGNAL STORING OF NEW VALUE IN NUSPEC(M)

IF(HHGT .GT. 132766) HHGT = 132766

SECOND(M) = HHGT

CONTINUE

RETURN

SECTION OF NUMBER PROCES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   60007200
00007210
60007220
60007230
  C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00007240
00007250
00007260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00007270
00007280
00007280
00007300
00007310
00007330
00007330
00007350
00007350
00007350
00007360
00007360
00007360
00007400
00007400
00007400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00007270
  C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00007430
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00007440
00007450
00007470
00007470
00007490
00007510
00007510
00007530
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00007440
     С
                                                 CONTINUE
RETURN
CONTINUE
RETURN

C THIS SECTION OF DUBLET DEALS WITH PRINTING
C OUT OF MONITORED SPECTRA AND MONITORED MASSES
C IT WAS CONTENTED OUT BECAUSE NO EASY WAY OF
C INCORPORATING THIS DIAGONISTIC INTO THE
C MULTIPLE RUN PROCESSING SCHEME COULD
C BE THOUGHT OF. IT MAY BE REINSTITUTED IN THE
C EVENT OF SUBTILE DOUBLET RESOLUTION PROBLEMS.
C

LIM F HARGROVE
12/7/8 - RTI
C IF ( MONMAS .EQ. 0 ) RETURN
C IM = M + 39-MAD
C IS = NS - 6
C IF ( MONMAS .NE. IM .OR. MONSPC .NE. IS) RETURN
C WRITE(IPTR2.2500) ERR.ERRM
C WRITE(IPTR2.2500) IM.P.Q.C
C WRITE(IPTR2.2000) IM.P.Q.C
C WRITE(IPTR2.2300) (G(I).I = 3 . 11)
C WRITE(IPTR2.2300) (H(I).I = 3 . 11)
C WRITE(IPTR2.2300) (H(I).I = 3 . 11)
C WRITE(IPTR2.2300) GHGT.BAK.SCHT
C URRITE(IPTR2.2400) GHGT.BAK.SCHT
C999 RETURN
C2000 FORMAT(/// DOUBLET STUFF FOR MASS = '.I3./
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00007540
00007550
00007570
00007570
00007590
00007590
00007600
00007620
00007630
00007650
00007650
00007660
00007660
00007690
00007710
00007710
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00007730
00007740
00007750
00007760
     C2000 FORMAT(//. DOUBLET STUFF FOR MASS - '.13./
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00007770
```

```
C -.3(2X,F10.3))
C2100 FORMAT(//, Y-VALUES'./.5(2X,F7.0)./.4(2X,F7.0))
C2200 FORMAT(//, G-VALUES'./.5(2X,F7.4)./.4(2X,F7.4))
C2300 FORMAT(//, H-VALUES'./.5(2X,F7.4)./.4(2X,F7.4))
C2400 FORMAT(//, P * G(7) BACK GROUND P*G + Q*H + C '.
C -/.3(4X,F8.0)/)
C2500 FORMAT(//, RMS ERROR = '.E14.8.' MEAN ERROR = '.E20.8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00007780
00007790
00007800
00007810
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00007810
00007820
00007830
00007840
00007850
00007860
00007860
                                                   FORMAT(//.' RMS ERROR = '.E14.8.' MEAN ERROR = '.E20.8)
END
SUBROUTINE GETHGT(NS.MN.ISKP.OV.AP.NDIS.G.H.GNU.HNU)
INTEGER PKHGT.MNB.MI.MN.ISKP.JMPK.NUHGT
DIMENSION G(9).H(11).GNU(18).HNU(18)

**** THIS ROUTINE IS THE MAIN PROCESSING ROUTINE. IT

**** PICKS UP THE MASS INDICES THAT HAVE BEEN FLAGGED

**** IN THE DETECTION PHASE AND PROCEEDS TO HANDLE

**** BACKGROUND REMOVAL AND DOUBLET RESOLUTION AND

**** THE PROCESSING OF SATURATED PEAKS. IT IS CALLED

**** THREE TIMES IN PROCESSING ANY ONE COMPONENT DUE TO

**** THE SPREAD THAT CAN EXIST IN PEAK MODES FOR ANY

**** COMPONENT (PARTICULARLY THE LOW INTENSITY ONES).
INTEGER NAME.RDATE.BITMAP.GCTIME.LIBMAP.INTEG.LOMASS
INTEGER HAMSS.POINTS.TAPCNT.MAXSP.LSTCNT.DEVICE.SPCNO
INTEGER SPEC.IND.IR.BK.NM.NTM
INTEGER GPEAK.SPARE1.SPARE2.SPARE3.SPARE4.SPARE7
INTEGER ISUD.MAD
INTEGER NUSPEC.NMASS.OVLAP
INTEGER PASSI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00007850
00007850
00007900
00007910
00007930
00007940
  00007950
00007950
00007960
00007970
00007980
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00008000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00008020
                                                       INTEGER SECOND
INTEGER PASSI
INTEGER DDUBLT, DSATS, NL INE, BEDROK, AJACEN, SATLST, SATINX
REAL ISVP8, ISVP9
REAL HIST(10), YVAL
REAL SPARE5, SPARE6
REAL DNORM, RATIO
REAL PERCNT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00008030
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00008040
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00008050
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00008060
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00008070
00008080
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00008090
00008100
                                                       REAL UNDEN, RATIO
REAL **B GTHT
REAL**B GTHT
COMMON PKHIST(20).NPHIST(20)
COMMON YVAL(11)
COMMON GM4.GM3.GM2.GM1.G0.GP1.GP2.GP3.GP4
COMMON SG.SG2.SIG.SI.SI2.AN.AA.BB.CC.DD
COMMON NAME(32).RDATE(5).BITMAP(64).GCTIME
COMMON LIBMAP(17).INTEG.LOMASS.HIMASS.POINTS.TAPCNT
COMMON MASSP.LSTCNT.DEVICE(5).SPCHO
COMMON SPEC(14.411).IND(3.411).NUSPEC(411).NMASS
COMMON RMAX(3).IR(3).BK(3).MM(3).NTM(3).GPEAK(3.11)
COMMON SPARE1.SPARE2.SPARE3.SPARE4.SPARE5.SPARE6.SPARE7
COMMON RATMIN.RATEMX.SIGY0.SIGNXT.SIGLST
COMMON MASSP.LSTCM3.BLSVP9.SIGMA7.SATVAL.SATMAX
COMMON CSATLS/SATLST(25).SATINX
COMMON /CSATLS/SATLST(25).SATINX
COMMON /CSATLS/SATLST(25).SATINX
COMMON /CSATLS/SATLST(25).SATINX
COMMON /CSATLS/SATLST(25).SATINX
COMMON /CSATLS/SATLST(25).SATINX
COMMON /CSATLS/SATLST(25).SATINX
COMMON /CDUBS/SGMODE(3).SHMODE(3).GMODE.HMODE
COMMON /DUBS/SGMODE(3).SHMODE(3).GMODE.HMODE
COMMON /DUBS/SGMODE(3).SHMODE(3).SHMODE(3).SHMODE(3).SHMODE(3).SHMODE(3).SHMODE(3).SHMODE(3).SHMODE(3).SHMODE(3).SHMODE(3).SHMODE(3).SHMODE(3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00008110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00008130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00003150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00008160
00008170
00008180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00008190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00008130
00008200
00008210
00008220
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00008240
00008250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00008250
00008270
00008280
00008290
                                                          COMMON ADJACATAJACEBUG
COMMON ADJEBUGAIDEBUG
COMMON ACHEMPOADDUBLT, ONORM, OSATS, NL INE
COMMON ALSO PASSI
COMMON ALSO PASSI
COMMON ALROMANASASI
COMMON ALROMANASASI
COMMON ALROMANASASI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     000008300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00008310
00008320
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00008330
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00008350
```

```
COMTON /UNITS / IRDR. IPTR1. IPTR2. IPTR3. IIN. IOUT
EDUIVALENCE (YVAL(1). YM5). (YVAL(2). YM4). (YVAL(3). YM3) 60086376
EDUIVALENCE (YVAL(4). YM2). (YVAL(5). YM1). (YVAL(6). YØ) 60086376
EDUIVALENCE (YVAL(4). YM2). (YVAL(8). YP2). (YVAL(6). YØ) 60086376
EDUIVALENCE (YVAL(10). YP4). (YVAL(10). YP3) 60086376
EDUIVALENCE (YVAL(10). YP4). (YVAL(11). YP5) 60086376
DATA HIST/-1.8.-.6667.-2./ 6067.1. 1.3333.1.6667.2./ 60086418
DATA FERCHY. 6125/
DATA GTHT/ GETHGT/ 60086418
DATA BEDROK. 40/ 60086418
DATA BEDROK. 40/ 60086418
DATA BEDROK. 40/ 60086418
DATA GTHT/ GETHGT/ 70086418
DATA GTHT/ G
C
 C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00008780
00008790
00008800
                                                                DSATS = 0
HELLO JOEF DROMEY.....WHERE EVER YOU ARE...TAO
DO 1 I = 1.411
SECOND(I) = 32767
IF(OVLAP.EO.0) GO TO 6
HERE IF OVERLAPPING ELUTANT AHEAD.
GMX=0.0
INV=0.0
 C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00008810
00008820
     1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00008830
00008840
00008850
   C
                                                              GMX=0.0

HIXX=0.0

QDUBLT = 1

IDUB IS FLAG FOR SETGHY

IDUB = 1

DO 5 J=1,14

IF(HMX.LT.ENU(J)) GMX=GNU(J)

IF(HMX.LT.HNU(J)) HMX=HNU(J)

CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00008860
00008870
 C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00008880
00008890
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        60308900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00008910
 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00008930
```

```
C
                          NORMALIZE MODELS TO 1.0
                                                                                                                                                                                                                                                                            00008940
                      GMX=1.0/GMX
HMX=1.0/HMX
                                                                                                                                                                                                                                                                             00008950
                                                                                                                                                                                                                                                                            00006960
                      DO 7 J=1/14
GNU(J) =GNU(J) *GMX
HNU(J) =HNU(J) *HMX
CONTINUE
CONTINUE
                                                                                                                                                                                                                                                                             00008970
                                                                                                                                                                                                                                                                            000000000
                                                                                                                                                                                                                                                                            00008990
760
                                                                                                                                                                                                                                                                            00009000
00009010
                     CONTINUE

*** NOW START LOOPING THROUGH ALL THE SAVED MASSES

*** NOW START LOOPING THROUGH ALL THE SAVED MASSES

*** NOW MO=1.411

IF ( NUSPEC(MO) .NE. -1 ) GO TO 500

**NUSPEC(M) NE -1 IF INTENSITIES FROM EARLIER ELUTANT HAVE

BEEN ALREADY COMPUTED.

**IND(MN.MO)

IMASS = M

** ( 0 MEANS MASS ALREADY CONSIDERED AS A COMPONENT OF PREVIOUS

SPECTRUM.

IF (M.LT. 0) GO TO 500

IF M = 0 THEN MASS WAS NOT DETECTED AS PEAKING IN TLOC. SO TRY

FOR POSSIBLE DOUBLET.

IF (M.EO.0) M = MQ

MI=M+39
                                                                                                                                                                                                                                                                            00009020
                                                                                                                                                                                                                                                                            AAAAAAA
                                                                                                                                                                                                                                                                            00009040
                                                                                                                                                                                                                                                                            00009050
                                                                                                                                                                                                                                                                            00009060
                                                                                                                                                                                                                                                                            00009070
                                                                                                                                                                                                                                                                            00009080
                                                                                                                                                                                                                                                                            00009090
 C
C
                                                                                                                                                                                                                                                                            00009100
                                                                                                                                                                                                                                                                            00009110
                                                                                                                                                                                                                                                                            00009120
 Ë
                                                                                                                                                                                                                                                                             00009130
                                                                                                                                                                                                                                                                            00009140
00009150
Y0=SPEC(18.M)
C THIS MOD MADE AT RTI BECAUSE NO POSSIBLE REASON WAS SEEN C FOR HAVING AN EQ INSTEAD OF A GE IN CTHIS SITUATION.
                                                                                                                                                                                                                                                                            00009160
00009170
                                                                                                                                                                                                                                                                            00009180
                   R HAVING AN EQ INSTEAD OF A GE IN

SITUATION.

LIFH - RTI 6/14/78

IF (Y0.GE.SATVAL) GO TO 120

IF A DUBLET IS DETECTED RUN ALL MASSES THROUGH DOUBLET RESOLVER
IF (OVLAP.EO.1) GO TO 130

IF IMASS IS ZERO . THEN
NO SINGLET CONTRIBUTION DETECTED IN TLOC.
IF (IMASS . EQ. 0) GO TO 500

IF (NDIS .EQ. 1 .AND. AJACEN(1) .EQ. 1) GO TO 500

DON'T PROCESS ANY PASS ONE SINGLETS (MN=M1) IF A SPECTRUM
IMMEDIATELY PRECEDING THE CURRENTLY DETECTED SPECTRUM
UAS DETECTED. SINCE THIS SPECTRUM IS FOR MN=M2,
AND WE DON'T WANT TO INCLUDE SINGLETS FROM PREVIOUS SPECTRUM
IN IT'S IMMEDIATE SUCCESSOR.
BUT. WE MUST PROCESS SATURATED PEAKS IN ALL CASES.

YTH1=SPEC(17,M)
YP1=SPEC(13,M)
YP5=SPEC(13,M)
YP4=SPEC(112,M)
YP2=SPEC(112,M)
YP3=SPEC(111,M)
PUT MASSES ON MODE OF PEAK USING CUBIC INTERPOLATION
CALL NEWTOP (YVAL.RATEST.XTOP.YTOP.4)
MAKE SURE PEAKS ARE RISING FASTER THAN BACKGROUND.
THIS IS A VERY MINIMAL APPROXIMATIO OF BACKGROUND.
IF ((YTOP-YYS) .LT. 90 .AND. (YTOP-YPS) .LT. 90 ) GOTO 500

**** APPLY MINIMUM RATE CRITERION FOR HIGH MASS
**** PEAKS THAT CAN'T BE ISOTOPE PEAKS. TH'S ELIMINATES
                                                                                                                                                                                                                                                                            00009200
00009210
                                                                                                                                                                                                                                                                            00009220
00009230
 C
                                                                                                                                                                                                                                                                            00009240
00009250
 Ë
                                                                                                                                                                                                                                                                            00009260
00009270
                                                                                                                                                                                                                                                                            00009280
00009290
  00009300
                                                                                                                                                                                                                                                                            00009310
                                                                                                                                                                                                                                                                             00009320
                                                                                                                                                                                                                                                                            00009330
                                                                                                                                                                                                                                                                             00009340
                                                                                                                                                                                                                                                                             00009350
                                                                                                                                                                                                                                                                             00009360
                                                                                                                                                                                                                                                                             00009370
                                                                                                                                                                                                                                                                             00009380
                                                                                                                                                                                                                                                                            00009390
00009400
                                                                                                                                                                                                                                                                            00009410
                                                                                                                                                                                                                                                                            00009430
                                                                                                                                                                                                                                                                             00009450
  C
                                                                                                                                                                                                                                                                             00009460
   C
                                                                                                                                                                                                                                                                             00009480
                                                                                                                                                                                                                                                                             00009490
                                                                                                                                                                                                                                                                             00009500
   C
                                                                                                                                                                                                                                                                             00009510
```

```
**** BACKGROUND PEAKS AT THE LEADING EDGE OF COMPONENTS
*** NOTE THE COMPUTED RATES FOR BACKGROUND PEAKS ARE
*** ARE ALWAYS LOW BECAUSE THEIR INTENSITY VARIATION
**** IS CAUSED BY A DIFFERENT PROCESS TO NORMAL MASS
*** CHROMATOGRAM PROFILES FOR REAL COMPONENTS.
IF(RATEST.LT..095) GO TO 500
IF(M .LT. 140) GO TO 50

**** CORRECT FOR FINITE SWEEP OFFSET
**** REJECT ODDBALL PEAK-MODES
CONTINUE
                                                                                                                                                                                    00009520
מממממ
                                                                                                                                                                                    00009530
                                                                                                                                                                                    00009550
                                                                                                                                                                                    00009560
00009570
                                                                                                                                                                                    00009580
CC230
CCC
                                                                                                                                                                                    00009660
                                                                                                                                                                                    00009610
               CONTINUE
               CONTINUE
                                                                                                                                                                                    00009630
               *** HERE FOR EXCLUSION TEST ON PEAK TOP RELATIVE TO

*** HISTOGRAM MODE - IF "IH" IS OUTSIDE LIMITS THEN

*** PEAK IS REJECTED.

IF(XTOP LE. -1.5 , DR. XTOP GE. 1.5) GO TO 500

THE ABOVE REJECTS ANY PEAKS WITH FUNNY SHAPES, OR MODES NOT

IN HISTOGRAMMIC WINDOW.
                                                                                                                                                                                    00009640
                                                                                                                                                                                    00009650
00009660
                                                                                                                                                                                   00009670
00009680
Ę
                                                                                                                                                                                   00009690
00009700
TI=TH-39
H1=M+39
C FUNCTION SUBROUTINE CALL HAS BEEN SUBSTITUTED FOR ARITHMETIC
C IN ORDER TO ACCOMODATE MAGNETIC INSTRUMENTS...
C RTI - UFH 11/20/78
C TSHIFT = (MI - LOMASS)/DIVIS
                                                                                                                                                                                   00009700
00009700
00009710
00009730
              TSHIFT = (MI - LOMASS) /DIVIS
TSHIFT = SCAN(MI)
XTOP = XTOP + TSHIFT
DO 600 IJ = 1.10
IF(XTOP .LT. HIST(IJ)) GO TO 700
CONTINUE
IH = II + (NDIS-1) - 7
                                                                                                                                                                                    00009740
                                                                                                                                                                                   00009750
00009760
                                                                                                                                                                                    00009770
                                                                                                                                                                                    00009780
              00009790
00009800
700
C
C
C
C
                                                                                                                                                                                    00009810
                                                                                                                                                                                   00009820
00009830
                                                                                                                                                                                   00009840
00009850
Ë
                                                                                                                                                                                   00009860
00009870
                                                                                                                                                                                   00009880
00009890
                                                                                                                                                                                   00009900
00009910
00009920
00009930
C
C
C
                                                                                                                                                                                   00009940
                                                                                                                                                                                   00009960
00009980
                                                                                                                                                                            00010000
                                                                                                                                                                                   00010020
00010030
00010040
                                                      YTOR
                                                                                                YP3
                                                                                                                                              ← FLOOR
              IF THE CURVE STAYS ABOVE THE FLOOR IT GETS FLUSHED DO 110 II = 3.9
IF ( YVAL(II) .LE. FLOOR ) GO TO 111
CONTINUE
                                                                                                                                                                                   00010050
                                                                                                                                                                                   00010070
00010080
               GO TO 500
```

```
C
111
                                                      AND AWAY WE 6000000000000000 .... BLUB ...
                  CONTINUE
                                                                                                                                                                                                        00010090
                                                                                                                                                                                                       00010100
                   CALL BLEED (YVAL (3), OITAR)
THIS IS A TEMPORARY MOD IN ORDER TO GATHER STATICS ON THE INPUT PARAMETER ERRATIO - CODE 2

WEH RTI 9/31/78
                                                                                                                                                                                                        BON 10120
                                                                                                                                                                                                       00010130
                                                                                                                                                                                                       00010150
                                                                                                                                                                                                        00010100
                                                                                                                                                                                                        00010190
                                                                                                                                                                                                       ANA 18280
                                                                                                                                                                                                       00010210
00010220
00010230
00010240
00010250
                                                                                                                                                                                                        00010260
                                                                                                                                                                                                       00010270
00010280
                                                                                                                                                                                                       00010290
00010390
00010310
00010320
00010330
                                                                                                                                                                                                       00010330
00010340
00010350
00010370
                                                                                                                                                                                                       00010380
                                                                                                                                                                                                       00010400
00010410
00010420
00010430
                                                                                                                                                                                                       00010440
                                                                                                                                                                                                        PP010470
                                                                                                                                                                                                        00010480
                   IF (NOHI, GE. 23) GU IU DUU

MSS=NS+2-NDIS

CALL SATLSQ(NSS.M.RPKHGT.G.SPEC.SATVAL.MODEI.OVLAP.MODE2.PKHIST)

*** SAVE COMPUTED HEIGHT FOR LATER SO THAT IT CAN BE

*** NORMALIZED TO INTEGER SIZE

IF (IQUIT.EO. 1) GO TO 500

IQUIT = 1 IF SATURATED VALUES MODE IS NOT "NEAR"

SPECTRUM.

IQUIT = 2 IF WE WANT TO SKIP PEAK BECAUSE IT DOESN'T

BELONG IN THIS SPECTRUM.IT WAS IN OVERLAPPING PREDECESSOR.

IF (IQUIT.NE. 2) GO TO 125

NUSPEC(M) = -2

GO TO 500

CONTINUE

NSAT-NSAT+!

SATFKS(NSAT) = RPKHGT

REKHGT IS < 0 IF SUPERSATURATION ENCOUNTERED

NUSPEC(M) = -NSAT - 2

SAVE MAXIMUM SATURATED VALUE ENCOUNTERED FOR NORMALIZATION
                                                                                                                                                                                                        00010490
                                                                                                                                                                                                       00010500
00010510
00010520
00010530
    Ë
                                                                                                                                                                                                       00010530
00010540
00010550
00010560
00010570
00010580
                                                                                                                                                                                                       00010590
00010600
00010610
00010620
00010630
00010640
     125
    C
                                                                                                                                                                                                        00010650
                                                                                                                                                                                                        00010660
     c
```

```
IF(SATMAX.GT.RPKHGT) GO TO 500
SATMAX-RPKHGT
GO TO 500
***** HERE FOR HANDLING DOUBLETS IN THE SET
                                                                                                                                                                                                                                                                                                                       00010670
                                                                                                                                                                                                                                                                                                                       00010680
                                                                                                                                                                                                                                                                                                                      00010690
00010700
                      *** HERE FOR HANDLING DOUBLETS IN THE SET
CONTINUE
RUN ALL MASSES THROUGH DOUBLET RESOLVER IF OVLAP=1, IE,
DOUBLET SITUATION DETECTED.
IGPOS=MODE1
IHPOS=MODE2
NSD=NS+3-NDIS
IF(NDIS .NE. 2) GO TO 500
ONLY GO THROUGH DOUBLET RESOLVER WHEN WE ARE LOOKING AT
"SPECTRUM 7".
CALL SETGHY(NS,M,GNU,HNU,IGPOS,IHPOS,IDUB,GMX)
DO NOT MARK MASS AS A.READY FOUND "CONTRIBUTION" BY SETTING
IND(MN,MO) = 0.
SINCE THE DUBLET RESOLVER SAVES THE LARGEST CONTRIBUTION IN
THE ARRAY NUSPEC(M).
CONTINUE

*** HERE ONLY ON THIRD PASS AND ONLY THEN IF ANY
*** SATURATED PEAKS HAVE BEEN FOUND. NEED TO NORMALIZE
*** SO THAT EXTRAPOLATED VALUES CAN BE SAVED AS INTEGERS
IF( NSAT.EO. 8 .OR. NDIS .NE. 3 ) RETURN
SET LOWER BOUND ON SATINX.THIS ARRAY IS USED IN SATLSQ.
J = 10
IF ( SATLST(J) .NE. 8 ) GO TO 750
C
130
                                                                                                                                                                                                                                                                                                                      00010710
E
                                                                                                                                                                                                                                                                                                                       00010730
                                                                                                                                                                                                                                                                                                                      00010740
C
                                                                                                                                                                                                                                                                                                                      00010770
00010780
Ë
                                                                                                                                                                                                                                                                                                                       00010790
                                                                                                                                                                                                                                                                                                                       00010800
C
                                                                                                                                                                                                                                                                                                                      00010820
00010830
                                                                                                                                                                                                                                                                                                                      00010840
 500
                                                                                                                                                                                                                                                                                                                      00010860
00010870
00010880
00010890
C
                                                                                                                                                                                                                                                                                                                      00010910
                          J = J - 1
IF ( SATLST(J) .NE. Ø ) GO TO 750
                                                                                                                                                                                                                                                                                                                       00010930
                                                                                                                                                                                                                                                                                                                       00010940
                          CONTINUE
CONTINUE
SATINX =
                                                                                                                                                                                                                                                                                                                       00010950
723
750
                                                                                                                                                                                                                                                                                                                       000 10960
                                                                                                                                                                                                                                                                                                                       00010970
                         SHIINX = J

AMXNU=0.0

GET MAXIMUM VALUE IN SPECTRUM

DO 503 J=1.411

IF(NUSPEC(J).GT.AMXNU) AMXNU=NUSPEC(J)
                                                                                                                                                                                                                                                                                                                      00010980
00010990
Ε
                                                                                                                                                                                                                                                                                                                     00011000
00011010
00011020
                       DO 503 J=1.411

IF (NUSPEC(J).GT.AMXNU) AMXNU=NUSPEC(J)

CONTINUE

SATMAX WILL BE 0 IF ONLY SUPERSATURATION ENCOUNTERED..

IF (SATMAX.EQ. 0) SATMAX = SATVAL

IF (AMXNU.GT.SATMAX) SATMAX=AMXNU

AMXNU = SATMAX

NORMALIZE TO 32000

SATMAX=32000.8/SATMAX

NUSPEC(J) < 0 IF SATURATED VALUE FOR THAT MASS

DO 530 J=1.411

IF (NUSPEC(J)) 510.530.520

HERE IF SATURATED VALUE

IF (NUSPEC(J)) .EQ. -1 ) GO TO 530

IF (NUSPEC(J) .EQ. -2 ) GO TO 530

NC = -NUSPEC(J) .EQ. -2 ) GO TO 530

NC = -NUSPEC(J) .EQ. -2 ) GO TO 530

NC = SATPKS(NC) < 0 IF SUPER SATURATION.

IF (SATPKS(NC) < 0 IF SUPER SATURATION.

IF (SATPKS(NC) & SATPKS(NC) = AMXNU

NUSPEC(J) = SATPKS(NC) & SATMAX

QSATS = QSATS + 1

*** USE C13 ISOTOPE TO ASSIGN SATURATED PEAK TO THE

*** APPROPRIATE COMPONENT WHEN THERE ARE TWO COMPONENTS

*** CLOSE TOGETHER

QVLAP = 0 MEAHS NO ELUTANT DETECTED AHEAD AND CLOSE

IF (OVLAP .EQ. 0 ) GO TO 530
 503
                                                                                                                                                                                                                                                                                                                      00011030
                                                                                                                                                                                                                                                                                                                      00011050
                                                                                                                                                                                                                                                                                                                      00011060
                                                                                                                                                                                                                                                                                                                     00011070
C
C
                                                                                                                                                                                                                                                                                                                     00011100
                                                                                                                                                                                                                                                                                                                     00011120
00011130
C
510
                                                                                                                                                                                                                                                                                                                       00011140
                                                                                                                                                                                                                                                                                                                     00011150
C
                                                                                                                                                                                                                                                                                                                     00011170
00011180
                                                                                                                                                                                                                                                                                                                       00011190
                                                                                                                                                                                                                                                                                                                     00011200
00011210
 0000
                                                                                                                                                                                                                                                                                                                      00011220
00011230
                                                                                                                                                                                                                                                                                                                       00011240
```

```
MUSPEC(J+1) NOT EQUAL ZERO MEAN ISOTOPE PRESENT IN THIS
                                   ELUTANT

IF ( NUSPEC(J+1) .EQ. Ø ) GD TO 511

IF ( NUSPEC(J+1) .EQ. -1 ) GO TO 511

GO TO 530

NUSPEC(J) = Ø

MY = J + 39-MAD

QSATS = QSATS - 1

IF ( IDEBUG .EQ. Ø ) GO TO 530

LRITE(IPTR2,1000) MY

GO TO 530

NUSPEC(J) = NUSPEC(J) *SATMAX

CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                   00011250
                                        ELUTANT
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011260
00011270
00011260
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011290
00011300
511
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011310
00011320
00011330
00011340
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011350
00011360
  520
                                      CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011370
00011380
00011390
                                    CONTINUE
IF ( DSATS .GE. 1 ) QNORM = SATMAX
RETURN
FORMAT(// AJACENT FLAG = 13/)
FORMAT(// MASS 13, HAS NO C13 ISOTOPE PEAK .//)
  C3222
1000
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011400
                                    FORMAT(/, MASS ', I3, ' HAS NO C13 ISOTOPE PEAK ', //)
END
SUBROUTINE KAPUT( SPECNO, TOTION, TICRAT, ABMAX )
REAL TOTION, ABMAX
INTEGER SPECNO, TICRAT
COMMON /SLOTNO/NSLOT
COMMON /CFSTPG/FSTPGE
COMMON /CFSTPG/FSTPGE
COMMON /CHEMPO/QDUBLT, QNDRM, QSATS, NL INE
COMMON /UNITS/ IRDR, IPTR1, IPTR2, IPTR3, IIN, IQUT
INTEGER ODUBLT, QSATS, NL INE, ITOTS, NSLOT, FSTPGE
REAL QHORM
REAL YES!/' /, YES/'YES '/, YNOY/' NO '/
THIS ROUTINE DOES THE CHEMIST'S PRINTOUT
ODUBLT 1 IF THE SPECTRA 1S FIRST ELUTANT OF DUBLET.
OSATS NO. OF SATURATED PEAKS IN SPECTRUM.
NL INE LINE COUNT FOR EACH PAGE.
SPECNO SPECTRUM NUMBER
TOTION TOTAL ION CURRENT OF SPECTRUM.
TICRAT CLEANUP RATIO(SEE QUIDAT FOR DETAILS).
ABMAX MAXIMUM AMPLITUDE OF SPECTRUM.
NSLOT = NSLOT + 1
IF (NSLOT, EQ. 1) URITE (IPTR3, 1000)
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011420
                                                                                                                                                                                                                                                                                                                                                                                                                                                   00011440
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011450
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011460
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011470
                                                                                                                                                                                                                                                                                                                                                                                                                                                   00011480
                                                                                                                                                                                                                                                                                                                                                                                                                                                00011490
00011500
00011510
00011520
00011530
 מממממממ
                                                                                                                                                                                                                                                                                                                                                                                                                                                00011530
00011540
00011550
00011560
00011570
00011590
00011600
00011610
00011620
00011630
                                         IF (NSLOT.EQ. 1) WRITE (IPTR3, 1000)
                                 TEXTURE TO THE CONTROL OF THE CONTRO
                                                                                                                                                                                                                                                                                                                                                                                                                                                 00011640
                                                                                                                                                                                                                                                                                                                                                                                                                                                 00011660
                                                                                                                                                                                                                                                                                                                                                                                    DOUBLET?
    1000
                                                                                                                                                                                                                                                                                                                                                                                                                                                00011680
00011690
00011700
00011710
00011720
00011730
                                         SUBROUTINE LKAHED (NS.M2.M3.OVLAP.G.H)
   THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (GRANT NGR-05-020-632).
                                                                                                                                                                                                                                                                                                                                                                                                                                                00011740
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011760
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011770
                                                                                                                                                                                                                                                                                                                                                                                                                                                 00011780
                                              **** THIS ROUTINE USES THE SAME TECHNIQUES AS 'TLOC'
**** TO LOOK BEYOND THE PROCESSING WINDOW AND DETECT
**** IF THERE ARE ANY NEW COMPONENTS NEARBY. THIS IS
**** IMPORTANT FOR COMPENSATING FOR OVERLAP
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011800
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011810
                                                                                                                                                                                                                                                                                                                                                                                                                                                  00011820
```

```
*** INTERRACTIONS USING THE DOUBLET RESOLVER.
**** A MODEL PEAK IS SELECTED FOR ANY COMPONENT THAT
**** IS COMING UP DIRECTLY. THE RELATIVE DISTANCE
**** BETWEEN NEIGHBORING COMPONENTS IS ESTABLISHED
**** ACCURATELY FROM THE LOCAL HISTOGRAM PROFILES.
                                                                                                                                                                                                                                                                                                                                                                                                                     00011830
00011840
                                                                                                                                                                                                                                                                                                                                                                                                                       00011850
                                                                                                                                                                                                                                                                                                                                                                                                                     00011860
                                                                                                                                                                                                                                                                                                                                                                                                                      00011870
                                                                                                                                                                                                                                                                                                                                                                                                                      99911889
                                                                                                                                                                                                                                                                                                                                                                                                                      00011890
                                                                                ISVP8, ISVP9
                                 REAL ISVP8.ISVP9
INTEGER NAME.RDATE.BITMAP.GCTIME.LIBMAP.INTEG.LOMASS
INTEGER HIMASS.POINTS.TAPCNT.MAXSP.LSTCNT.DEVICE.SPCNO
INTEGER SPEC.IND.IR.BK.NM.NTM.BUBBLE
INTEGER GPEAK.SPARE1.SPARE2.SPARE3.SPARE4.SPARE7
SPARE5.SPARE6
INTEGER NUSPEC.NMASS.OVLAP
INTEGER NSP2.NSP3.NT2.NT3.SCNDPK.NERR.SECOND
REAL NXTRIE.RASS.ERRMAX.SIGERR
                                  REAL
                                                                                                                                                                                                                                                                                                                                                                                                                     00011900
                                                                                                                                                                                                                                                                                                                                                                                                                      00011920
                                                                                                                                                                                                                                                                                                                                                                                                                     00011930
00011940
                                                                                                                                                                                                                                                                                                                                                                                                                      00011950
                                                                                                                                                                                                                                                                                                                                                                                                                     00011960
                              REAL NXTRTE.RASS.ERRMAX.SIGERR

DIMENSION SCNDPK(3.11),NXTRTE(3),H(11),G(9)
COMMIND PKHIST(20).NPHIST(20)
COMMIND PKHIST(20).NPHIST(20)
COMMIND GM4(9)
COMMIND GM4(9)
COMMIND GM4(9)
COMMIND SG.SG2.SIG.SI.SI2.AN.AA.BB.CC.DD
COMMIND NAME(32).RDATE(5).BITMAP(64).GCTIME
COMMIND LIBMAP(17).INTEG.LOMASS.HIMASS.POINTS.TAPCNT
COMMIND MAXSP.LSTCNT.DEVICE(5).SPCND
COMMIND RMAXSJ.IR(3),IR(3),BK(3),NM(3).NTM(3),GPEAK(3.11)
COMMIND SPARE1.SPARE2.SPARE3.SPARE4.SPARE5.SPARE6.SPARE7
COMMIND RMAXSJ.ISVAS.ISVAS.ISVAS.SIGNXT.SIGLST
COMMIND ISVAB.ISVAS.ISVAS.ISVAS.SIGNXT.SIGLST
COMMIND MODE1.MODE2.NLWCUT.NUPCUT.SATPKS(25).NSAT.EXPNAM(5)
COMMIND /ERRORS/RASS.ERRMAX.NERR.SIGERR.SECOND(411)
COMMIND /ERRORS/RASS.ERRMAX.NERR.SIGERR.SECOND(411)
COMMIND /PARAMS/MINTIC.MINNY.NTHIRD.RATM
COMMIND /PARAMS/MINTIC.MINNY.NTHIRD.RATM
COMMIND /PARAMS/MINTIC.MINNY.NTHIRD.RATM
COMMIND /MASSES/ISGMAS(3).ISMMAS(3).IGMASS.HMASS
COMMIND /MASSES/ISGMAS(3).ISMAS(3).IGMASS.HMASS
COMMIND /MASSES/ISGMAS(3).ISMAS(3).IGMASS.HMASS
COMMIND /MASSES/ISGMAS(3).ISMAS(3).IGMASS.HMASS
COMMIND /MASSES/ISGMAS(3).ISMAS(3).IGMASS.HMASS
                                                                                                                                                                                                                                                                                                                                                                                                                     00011980
00011990
00012000
C
                                                                                                                                                                                                                                                                                                                                                                                                                     00012010
                                                                                                                                                                                                                                                                                                                                                                                                                     00012020
00012030
00012040
                                                                                                                                                                                                                                                                                                                                                                                                                     00012050
                                                                                                                                                                                                                                                                                                                                                                                                                    00012060
00012070
                                                                                                                                                                                                                                                                                                                                                                                                                  90912078
90912090
90912190
909121100
909121100
90912120
90912130
90912140
90912140
90912150
90912150
90912160
90912190
90912200
9091220
90912230
90912240
ç
                                 00012240
00012250
                                                                                                                                                                                                                                                                                                                                                                                                                  00012250
00012260
00012270
00012280
00012290
00012310
00012310
00012330
00012330
00012330
C
                                3
 4
C
                                                                                                                                                                                                                                                                                                                                                                                                                   00012360
00012370
5
                                                                                                                                                                                                                                                                                                                                                                                                                    00012380
00012390
                                                                                                                                                                                                                                                                                                                                                                                                                    00012400
```

```
C
                   OVLAP SET MEANS PRECEDING SPECTRUM CONTRIBUTED TO THIS ONE.
                                                                                                                                                                                                   00012410
                 OVLAP-0
                                                                                                                                                                                                   00012420
00012430
                 UNION - 1
                UNION * 1

UNION IS SET TO INDICATE WE WILL UNION SPECTRUM N-1'S
CONTRIBUTIONS WITH SPECTRUM N ONLY IF SPECTRUM N
DOESN'T HAVE AN OVERLAPPING ELUTANT.
CONTINUE
C
                                                                                                                                                                                                    00012440
2007
                                                                                                                                                                                                    00012450
                                                                                                                                                                                                    00012460
               DUESN'T HAVE AN OVERLAPPING ELUTANT.
CONTINUE
CALL NXTMAX(SPEC.NSP2.RNS2.YNS2.NT2.SATVAL

SCNDPK.NXTRTE.NSHIFT.IFLAG)
NSHIFT=1
NSP3=NS+2
CALL NXTMAX(SPEC.NSP3.RNS3.YNS3.NT3.SATVAL

SCNDPK.NXTRTE.NSHIFT.IFLAG)
NSHIFT=2
NSP4=NS+3
CALL NXTMAX(SPEC.NSP4.RNS4.YNS3.NT4.SATVAL

SCNDPK.NXTRTE.NSHIFT.IFLAG)
SCAN FROM MODE! + NTHIRD TO 13. SINCE THE CURRENT SPECTRUM EFFECTS HIST(2-B) WITH MODE! VARYING FROM 4 TO 6.
LOOKING FOR SPECTRUM IN *MODE!+NTHIRD.9 &
NL=MODE! + NTHIRD
SEE IF WE HAVE TO SCAN TOO CLOSE ( *7.8,9@)
IF ( NL .GE. 10 ) GO TO 10
SO NL .LE. 9
IDXL = NL
IDXU = 9
NU = 10
IAHEAD = 2
CALL DETEKT(PKHIST.NPHIST.OVLAP.NLWCUT.NUPCUT.NL.NU.IDXL .IDXU.
                                                                                                                                                                                                    00012470
                                                                                                                                                                                                   00012480
00012490
                                                                                                                                                                                                   00012500
00012510
00012520
                                                                                                                                                                                                    00012530
                                                                                                                                                                                                    00012540
00012550
                                                                                                                                                                                                    00012560
ב
כ
כ
                                                                                                                                                                                                   00012580
00012590
                                                                                                                                                                                                    00012600
                                                                                                                                                                                                   00012610
00012620
С
                                                                                                                                                                                                   00012630
00012640
C
                                                                                                                                                                                                   00012650
00012660
                                                                                                                                                                                                   00012670
00012680
                 TALLE DETEKT(PKHIST,NPHIST,OVLAP,NLWCUT,NUPCUT,NL,NU,IDXL ,IDXU,MD09012690
(DE2)
               *DE2)
                 (REZ)
IF ( OVLAP .EO. 1 ) GO TO 26
SCAN +9,130 FOR ELUTANT IN +10,120
NL = 9
IF ( NL .GE. 13 ) GO TO 20
IAHEAD = 3
                                                                                                                                                                                                    00012710
00012720
С
                                                                                                                                                                                                   00012720
00012730
00012740
00012750
00012760
00012770
00012780
00012790
 10
                  NU=13
                  IDXI = IA
                   IDXU=12
                 IDXU=12
CALL DETEKT(PKHIST,NPHIST,OVLAP,NLWCUT,NUPCUT,NL,NU,IDXL
, IDXU,MODE2)
IF(OVLAP,EQ.1) GO TO 26
SEE IF SPECTRUM AHEAD IN +13,150
NL = 12
                                                                                                                                                                                                    00012800
00012810
                                                                                                                                                                                                    00012820
00012830
 C
20
                 SEE IF SF
NL = 12
NU = 16
IDXL = 13
IDXU = 15
IAHEAD = 4
                                                                                                                                                                                                    00012840
00012850
                                                                                                                                                                                                    00012860
                  CALL DETEKT(PKHIST, NPHIST, OVLAP, NLWCUT, NUPCUT, NL, NU, IDXL, IDXU, MODE@0012880
                                                                                                                                                                                                    00012890
00012900
00012910
      *2)

IF ( DYLAP .EQ. 1 ) GO TO 26

SEE IF SPECTRUM AHEAD IN +16.180

NL = 15

NU = 19

IDXL = 16

IDXL = 16

IDXL = 18

THIS SEEMED AN OBVIOUS TYPO, SO IDXL HAS BEEN CHANGED

TO IDXU AS IN THE STMT BELOW

WFH RTI 9/31/78
 C
                                                                                                                                                                                                    00012930
                                                                                                                                                                                                    00012940
                                                                                                                                                                                                    00012950
00012960
00012970
 בככ
                                                                                                                                                                                                    00012980
                                                                                        WFH RTI 9/31/78
```

```
IDXU = 18
IAHEAD = 5
CALL DETEKT(PKHIST.NPHIST.OVLAP,NLWCUT.NUPCUT.NL.NU.IDXL.IDXU.MODE00013010
                                                                                                                                                                                                                                                                                                                                                                                                       00013020
00013030
00013040
                                 *2)
IF ( DVLAP .EQ. Ø ) GO TO 30
CONTINUE
      26
AHEAD(IMPL...

SET SPECTRUM AHEAD...

SET SPECTRUM AHEAD...

CONTINUE

RC0 = .5

RATEMX = RMAX(M2)

RATMIN = RATEMX * 0.25 * RC0

GMODE = SGMODE (M2)

JFLAG( = JFLAG(M2)

IGMASS = ISGMAS(M2)

STORE MODEL PEAK FOR THIS SPECTRUM

DD 2000 IJ=1.9

1000 GM4(IJ) = GPEAK(M2,IJ+1)

IF(OVLAP,ED.0) GD TO 95

HERE FOR OVERLAPPING SPECTRUM DOWN THE PIPE

MODEH = 6+ (MODE2-1)/3

MODEH IS RELATIVE SPECTRUM NUMBER OF OVER LAPPER.

C LABEL 40 HAS BEEN PUT TO BETTER USE....

C RTI WFH 11/20/78

IF(MODEH-10) 50.60.70

SO INDXH=1

GO TO 80

60 INDXH=2

GO TO 80

60 INDXH=2

GO TO 80

C STORE MODEL H

C THIS MOD INSERTED TO HELP WITH POOR INITIALIZATION

C OF H-PEAK PARAMETERS.....

IF(ISHMAS(INDXH).NE.-1)GD TO 40

OVLAP = 0

RETURN

"E ( MODEH .NE. 8 ) GO TO 89

**INDXH SILUTING AT SLOT 8.GIVE IT DETECTED T
                                      CONTINUE

AHEAD(IAHEAD) = 1

SET SPECTRUM AHEAD FLAG
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                        00013050
00013060
      C
30
                                                                                                                                                                                                                                                                                                                                                                                                      00013060
00013070
00013080
00013090
00013100
00013110
00013120
00013140
                                                                                                                                                                                                                                                                                                                                                                                                      00013140
00013150
00013160
00013170
00013180
00013190
00013200
00013210
                                                                                                                                                                                                                                                                                                                                                                                                      00013220
00013230
00013230
00013250
00013250
00013270
00013270
00013280
00013330
00013330
00013330
00013330
00013330
00013330
00013330
00013340
00013350
00013350
00013340
                   IF(ISHMAS(INDXH).NE.-1)GD TO 40

OVLAP = 0

RETURN

40 IF ( MODEH .NE. B ) GO TO 89

IF SPECTRUM ELUTING AT SLOT 8.GIVE IT DETECTED THERE.

DO 88 I = 1.11

H(I) = GPEAK(M3.I)

SH = SH + H(I)

IHMASS = ISGMAS(M3)

HNODE = SGMODE(M3)

IFLAG(INDXH) = JFLAG(M3)

GO TO 91

CONTINUE

HMODE = SHMODE(INDXH)

IHMASS = ISHMAS(INDXH)

DO 90 I=1.11

H(I) = SCNDPK(INDXH,I)

SH=SH + H(I)

CONTINUE

CONTINUE

SEE IF WEIRD H MODEL PEAK.

IE ( SH = R ) OWLAP = R
       RR
                                                                                                                                                                                                                                                                                                                                                                                                      00013430
00013440
00013450
00013460
00013470
       89
                                                                                                                                                                                                                                                                                                                                                                                                      00013480
00013490
00013500
                                                                                                                                                                                                                                                                                                                                                                                                      00013510
00013520
      90
91
C
                                                                                                                                                                                                                                                                                                                                                                                                      00013530
00013540
                                       SEE IF WEIRD H MODEL PEAK.
IF ( SH .LE. 0 ) OVLAP = 0
                                                                                                                                                                                                                                                                                                                                                                                                      00013560
```

```
IF ( SH .LE. 0 ) GO TO 95
CALL TIMESF( HMODE, H.11. GMODE )
ALIGN H-MODEL TO G-MODEL'S TIME CO-ORDINATE.
... ANOTHER VOID ... EH DOGEN ...
                                                                                                                                                                                                                                                                                                                                                                                                                                    00013570
                                                                                                                                                                                                                                                                                                                                                                                                                                     00013580
C
0
95
C
                                                                                                                                                                                                                                                                                                                                                                                                                                    00013590
00013600
                                  CONTINUE

SEE IF PREVIOUS SPECTRUM OVERLAPPED WITH THIS ONE.

IF ( UNION .EO. Ø ) GO TO 27

BUBBLE = .01 * GM4(5)

UNION = Ø IF PREVIOUS ELUTANT NOT OVERLAPPING WITH THIS ONE.

WE WANT TO MAKE SURE THOSE "SMALL CONTRIBUTIONS"

WHEN CALCULATING THE CURRENT SPECTRUM USING

THE DUBLET RESOLVER IN CONJUNTION WITH THE PREVIOUS

OVERLAPPING ELUTANT GET USED IF WE ARE AGAIN IN

AN OVERLAPPING SITUATION.

IF ( OVLAP EQ. Ø ) GO TO 29

ONLY DO BELOW IF DOUBLET IS AGAIN A DOUBLET

DO 28 M = 1.N19SS

IF ( SECOND(M) .LE. BUBBLE ) NUSPEC(M) = Ø

GO TO 27

OVLAP = 1. SO AGAIN IN OVERLAPPING SITUATION. DON'T UNION

N-1 WITH N. RATHER, CALCULATE N'S SPECTRUM(EXCEPT FOR

ZERO CONTRIBUTIONS FROM N-1) USING DUBLET RESOLVER.
                                                                                                                                                                                                                                                                                                                                                                                                                                    00013610
00013620
                                                                                                                                                                                                                                                                                                                                                                                                                                   00013630
00013640
00013650
00013660
00013660
 000000
                                                                                                                                                                                                                                                                                                                                                                                                                                   00013680
00013690
                                                                                                                                                                                                                                                                                                                                                                                                                                   00013700
00013710
00013720
  C
                                                                                                                                                                                                                                                                                                                                                                                                                                   00013730
00013740
00013750
  28
  CCCSCCC
                                                                                                                                                                                                                                                                                                                                                                                                                                   00013760
00013770
00013780
00013790
                                   N-1 WITH N. RATHER. CALCULATE N'S SPECTRUM(EXCEPT FOR ZERO CONTRIBUTIONS FROM N-1) USING DUBLET RESOLVER.

CONTINUE

OVERLAP = 0 SO NO DUBLET SITUATION.THEREFORE UNION.

SINCE UNION = 1 WE'LL UNION SPECTRUM N-1'S CONTRIBUTIONS WITH OUR CURRENT SPECTRUM. N.

DO 6 M = 1.411

IF ( SECOND(M) .LE. 10 ) SECOND(M) = 0

IF ( SECOND(M) .NE. 32767 ) NUSPEC(M) = SECOND(M)

CONTINUE

DO 2480 IJ=1.9

G(IJ)=GM4(IJ)

CALL LKAPRT(7.NPHIST.PKHIST)

THE ABOVE PRINTS THE SECOND HALF OF THE HISTOGRAMS.

IF (JFLAGI .ED. 1) CALL LKAPRT(FIVE.I.R)

THIS HAPPENS IF THE MODEL IS FLAGGED AS FUNNY IN TLOC

CALL LKAPRT(THEE.IGMASS.G)

PRINT MODELS

IF (OVLAP .ED. 0) RETURN

CALL LKAPRT(ONE.I.R)

THE ABOVE PRINTS 'OVERLAPPING SPECTRUM FOUND' MSG.

IF (MODEH.GE.9.AND.MODEH.LE.11) GOTO 401

THE BELOW WRITES MODEH AS A WARNING THAT THE SECOND

ELUTANT IS VERY CLOSE

CALL LKAPRT(TWO.MODEH.H)

CONTINUE

MODEH = 12 DNIY IF NEXT MAX IS IN SLOTS 19.20 OF HISTOS.
                                                                                                                                                                                                                                                                                                                                                                                                                                   00013800
00013810
                                                                                                                                                                                                                                                                                                                                                                                                                                   00013820
00013830
00013840
00013850
00013860
   6
27
                                                                                                                                                                                                                                                                                                                                                                                                                                   00013860
00013870
00013880
00013890
00013990
00013910
00013920
00013930
00013940
00013950
00013960
00013970
00013980
    2400
    C
    C
    C
    C
                                                                                                                                                                                                                                                                                                                                                                                                                                     00013990
    Ë
                                                                                                                                                                                                                                                                                                                                                                                                                                     00014010
00014020
                                       CALL LKHPKI (100, FIDDER)...
CONTINUE

MODEH = 12 ONLY IF NEXT MAX IS IN SLOTS 19.20 OF HISTOS.

CALL LKAPRT (FOUR, IHMASS, H(2))

SEE IF FLAKEY MODEL WAS USED FOR INTERPOLATION

IF (IFLAG (INDXH) .EQ. 1) CALL LKAPRT (SIX, I, H)
      401
                                                                                                                                                                                                                                                                                                                                                                                                                                    00014030
00014040
     C
                                                                                                                                                                                                                                                                                                                                                                                                                                    00014050
00014060
     C
                                                                                                                                                                                                                                                                                                                                                                                                                                     00014070
00014080
                                         RETURN
                                       RETURN
END
THE CALL STATEMENT ALLOWS FOR PASSING OF ARRAYS
REALS AND INTEGERS.
THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT
FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND
GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
(GRANT NGR-05-020-632).
                                                                                                                                                                                                                                                                                                                                                                                                                                     00014090
00014100
00014110
     ממממממ
                                                                                                                                                                                                                                                                                                                                                                                                                                    00014120
                                                                                                                                                                                                                                                                                                                                                                                                                                     00014140
```

```
SUBROUTINE LKAPRT(N. JAR.AR)
INTEGER N. 10NE.NINE.MAD. 11AR(20)
INTEGER 1AR(1)
REAL AR(1)
COMMON / JUBBUG/IFLAG
COMMON / JIMAD/MAD
COMMON / JIMAD/MAD
COMMON / JIMAD/MAD
LONE.NINE/19/
IFLAG IS RESET IF NO PRINTING IS TO BE DONE/
IF (IFLAG.EQ.0) RETURN
IIAR(1)=IAR(1)-MAD
IF(1)=IAR(1)-IAR(1)=0
GO TO (80.90.100.110.120.130.140).N
THE ABOVE IS A CASE STATEMENT FOR EXECUTING PRINT
LIRITE(IPTR2.580)
RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00014150
00014160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00014170
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00014180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00014190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00014200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00014210
00014220
00014230
 C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014240
00014250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00014260
00014270
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014260
00014290
 E
80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00014300
                           THE ABOVE WRITE IS CALLED FROM LKAHED(BELOW ALSO)
WRITE(IPTR2.590) IIAR(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00014310
00014320
00014330
00014340
  5
90
                                         RETURN
    100
                                           WRITE(IPTR2.1000) (AR(I), I = IONE.NINE).IIAR(I)
                         WRITE(IPTR2,1000) (AR(I), I = IONE,NINE),IIAR(I)
RETURN
WRITE(IPTR2,1200)
RETURN
WRITE(IPTR2,1200)
RETURN
WRITE(IPTR2,1300)
RETURN
WRITE(IPTR2,1300)
RETURN
WRITE(IPTR2,1500)
DO 5 K=2,18
IIAR(K)=IAR(K)-MAD
IF(IIAR(K),LT.0)IIAR(K)=0
5 CONTINUE
WRITE(IPTR2,530) (IIAR(I), I = 10.18)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014350
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00014360
   110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014370
00014380
    128
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014390
    130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014410
00014420
    140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014430
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00014450
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014460
                                        LONTINGE
WRITE(IPTR2.530) (IIAR(I), I = 10.18)
LRITE(IPTR2.535) (AR(I), I = 10.18)
LRITES SECOND HALF OF HISTOGRAMS.
RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00014470
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00014480
00014490
00014500
00014510
00014520
  C
RETURN

580 FORMAT(/, OVERLAPPING SPECTRUM FOUND')

590 FORMAT(/, OVERLAPPING SPECTRUM FOUND')

590 FORMAT(/, OVERLAPPING ELUTANT IS CLOSE, RELATIVE SPEC. = '.14)

1000 FORMAT(/, MODEL USED FOR SINGLET RESOLUTION ',/.9F9.0,

-//, MASS OF MODEL = ',13)

1100 FORMAT(/, MODEL USED FOR DOUBLET RESOLUTION ',/.9F9.0,

-// MASS OF MODEL = ',13,/' NUTE: THIS MODEL HAS BEEN'

-// MASS OF MODEL = ',13,/' NUTE: THIS MODEL HAS BEEN'

-// MASS OF MODEL = ',13,/' NUTE: THIS MODEL HAS BEEN'

-// MASS OF MODEL = ',13,/' NUTE: THIS MODEL HAS BEEN'

-// INTERPOLATED TO THE MASS OF THE SINGLET MODEL')

FORMAT(' *** WARNING *** THIS SPECTRUM HAS A SUSPECT G-MODEL'

-/ PEAK'/.' POSSIBLE BACKGROUND PEAK USED AS MODEL'/

-/ EXAMINE MODEL USING LOOK IF YOU ARE WARY'/)

535 FORMAT(1X,9F9.0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014530
00014540
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00014550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014560
00014570
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00014560
00014590
00014600
00014610
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014620
00014630
                                       -." EXAMINE MODEL USING LOOK IF YOU ARE WARY'/)
FORMAT(IX.9F9.0)
FORMAT(IX
  535
530
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014640
00014650
    1500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014660
00014670
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014680
00014690
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00014700
  C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00014720
```

```
THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (GRANT NGR-05-020-632).
00014730
00014740
00014750
                                                                                                                                                      00014760
00014770
               THIS SUBROUTINE INTERPOLATES A PEAK TO THE MODE OF A PARABOLA THRU THE MIDDLE 5 POINTS. THE MODE IS FOUND USING A PARABOLIC LEAST SQUARE FIT THROUGH THE MIDDLE FIVE Y'S . THEN SOLVING FOR THE X DISPLACEMENT OF THE MODE FROM 0.
                                                                                                                                                      00014780
00014790
                                                                                                                                                      00014800
                                                                                                                                                      00014810
                                                                                                                                                      00014820
                            S0. IF Y = A + B * X + C * X**2
                                                                                                                                                      99914839
                                                                                                                                                      00014840
               X = -8/2C IS THE DISPLACEMENT.
                                                                                                                                                      00014850
                                                                                                                                                     00014850
00014860
00014870
00014880
00014890
                                                                                                                                                      00014910
00014920
                                                                                                                                                    00014930
                                                                                                                                                      00014940
00014950
                                                   ė
                                                                  -B/2C
                THE INTERPOLATION IS DONE BY A CUBIC FIT USING LAGRANGE'S METHOD.I.E., GIVEN THE 4 POINTS X0,X1,X2,X3, WE FIND L(X) AS FOLLOWS:
                                                                                                                                                      00014960
00014970
                                                                                                                                                      00014980
00014990
00015000
                            00015010
                                                                                                                                                      00015020
                                                                                                                                                      00015040
00015050
                             WITH THE X'S INTEGRALLY SPACED.
                                                                                                                                                     00015060
00015080
00015080
00015080
00015190
00015110
00015120
00015130
00015130
00015150
00015160
00015160
00015180
00015180
00015200
00015200
00015210
00015220
00015240
                                                                                                                                                      00015060
                IN EACH CASE WE INTERPOLATE FOR A NEW MIDDLE POINT, OR L(XI+DX). SO, THE ABOVE EQUATION REDUCES TO
                             L(X1+DX) = C0 * Y0 + C1 * Y1 + C2 * Y2 + C3 * Y3
                C0 = DX * (DX-1) (DX-2)/-6
C1 = (DX+1) (DX-1) (DX-2)/2
C2 = (DX+1) (DX) (DX-2)/-2
C3 - (DX+1) (DX) (DX-1)/6
                WHERE DX = -8/2C
      THIS ROUTINE HAS BEEN CHANGED SO THAT Y(I) ARE UNCHANGED AND A SMOOTHED RATE IS CALCULATED FROM THE WORK ARRAY Z(I) WFH RTI 9/31/78
                          C1,C2.C3.K1,K2.K3
               REAL
REAL
                                                                                                                                                      00015240
00015250
               REAL Z(11)
DIMENSION YOLD(11)
                                                                                                                                                      00015260
00015270
                                                                                                                                                      00015280
00015290
                 SAVED OLDIES
                                                                                                                                                      00015300
               XTOP = 2
```

```
XB = 2 * Y(4) - Y(5) - 2 * Y(6) - Y(7) + 2 * Y(8)

IF(XB .EQ. 0) RETURN

XTOP = .7 * (2 * Y(4) + Y(5) - Y(7) - 2 * Y(8))/XB

DX = XTOP

K1 = DX - 1

K2 = DX - 2

K3 = DX + 1

C1 = (DX * (K1) * (K2))/(-6)

C2 = ((K3) * (DX) * (K2))/(-2)

C4 = ((K3) * (DX) * (K1))/6
                                                                                                                                                                                                                                                                                                                           00015310
00015320
00015330
00015350
00015360
00015370
00015380
00015380
                                                                                                                                                                                                                                                                                                                            00015400
                                                                                                                                                                                                                                                                                                                            00015420
00015430
00015440
 ב
כ
כ
                               INTERPOLATE
YTOP = Y(5) * C1 + Y(6) * C2 + Y(7) * C3 + Y(8) * C4

IS = ISTART - 1

C ... SMOOTH PEAK ALITTLE BEFORE COMPUTING RATE.

Z(1)=(Y(1)+.1*Y(2))/1.1

DO 275 I=2.10

Z(1)=(Y(1)+.1*(Y(I-1)+Y(1+1)))/1.2

275 CONTINUE

Z(11)=(Y(11)+.1*Y(10))/1.1

C SEE MOD NOTE AT BEGINNING WFH RTI 9/31/78

DO 250 I = IS.8

250 IF ( Z(1) .EQ. 0 ) Z(I) = 1

C CALCULATE RATE TO BE AN APPROXIMATION OF
                                                                                                                                                                                                                                                                                                                            00015450
00015460
                                                                                                                                                                                                                                                                                                                             00015470
                                                                                                                                                                                                                                                                                                                            00015480
00015490
00015500
00015510
                                                                                                                                                                                                                                                                                                                            00015520
00015530
                                                                                                                                                                                                                                                                                                                           00015530
00015540
00015550
0001556W
00015570
00015590
00015600
 250
C
C
C
                                                                                                                                              ... HIGH RATE FOR SHARP PEAKS.
                                                          INTEGRAL (DY/Y)
RATE = 0

C SEE MOD NOTE AT BEGINNING UFH RTI 9/31/78
D0 300 1 = ISTART.6

300 RATE = RATE + (Z(I) - Z(I-1))/Z(I-1)
D0 400 I = 6.7

400 RATE = RATE + (Z(I) - Z(I+1))/Z(I+1)
                                                                                                                                                                                                                                                                                                                           00015610
00015630
00015640
00015640
00015660
00015660
00015660
00015690
00015790
00015730
00015740
00015740
00015760
000157780
000157780
                            RETURN
                            FND
                           SUBROUTINE NXTMAX(SPEC.NS.RATEMX.YMAX.NTMAX.SATVAL
SCNDPK.NXTRTE.NSHIFT.IFLAG)
  0000000
                              THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (GRANT NGR-05-020-632).1, ID2
                          INTEGER SPC.SCNDPK.IFLAG(3)
INTEGER RDATE.BITMAP.GCTIME.HIMASS.POINTS.TAPCNT
INTEGER NX.NTMAX.IYD.IDI.ID2
DIMENSION SPEC(14.411)
DIMENSION SCNDPK(3.11).NXTRTE(3)
COMMON PKHIST(20).NPHIST(20)
COMMON PKHIST(20).NPHIST(20)
COMMON GM4.GM3.GM2.GM1.G0.GP1.GP2.GP3.GP4
COMMON SG.SG2.SIG.SI.SI2.AN.AA.BB.CC.DD
COMMON NAME(32).RDATE(5).BITMAP(64).GCTIME
COMMON NAME(32).RDATE(5).BITMAP(64).GCTIME
COMMON MODES/SGMODE(3).SHMODE(3).GMODE.HMODE
COMMON /MODES/SGMODE(3).SHMODE(3).GMODE.HMODE
COMMON /FRIT/LLEFT.IRIGHT
COMMON /MASSES/ISGMAS(3).ISHMAS(3).IGASS.IHMASS
                                                                                                                                                                                                                                                                                                                            00015800
00015810
00015820
                                                                                                                                                                                                                                                                                                                            00015830
00015840
                                                                                                                                                                                                                                                                                                                            00015860
00015870
                                                                                                                                                                                                                                                                                                                            00015880
```

```
EQUIVALENCE (YM4.YM5(2))
EQUIVALENCE (YM3.YM5(3)),(YM2.YM5(4)),(YM1.YM5(5))
EQUIVALENCE (YM3.YM5(6)),(YP1.YM5(7)),(YP2.YM5(8))
EQUIVALENCE (YP3.YM5(9)),(YP4.YM5(10)),(YP5.YM5(11))
                                                                                                                                                                                                                   00015890
00015900
00015910
                                                                                                                                                                                                                    00015920
00015930
C
                 INTEGER LOCLBG, ILEFT
REAL NXTRTE, SCAN
REAL HIST(7), SLOPE, YMSMIN, YPSMIN
DATA HIST/-.3333.0...3333...6667.1.0.1.3333.1.6667/
                                                                                                                                                                                                                    00015940
                                                                                                                                                                                                                    00015960
00015970
00015980
מממם
                     **** ROUTINE TO LOOK AHEAD TO SEE IF THERE ARE ANY OTHER **** SPECTRA IN THE LOCAL REGION OF CURRENT SPECTRUM
                                                                                                                                                                                                                    00015930
                  11=NS-13-14*((NS-14)/14)
12=NS-12-14*((NS-13)/14)
13=NS-11-14*((NS-12)/14)
14=NS-10-14*((NS-11)/14)
15=NS-9-14*((NS-10)/14)
15=NS-9-14*((NS-9)/14)
17=NS-7-14*((NS-9)/14)
18=NS-5-14*((NS-6)/14)
119=NS-5-14*((NS-6)/14)
111=NS-3-14*((NS-5)/14)
111=NS-3-14*((NS-3)/14)
112=NS-2-14*((NS-3)/14)
113=NS-1-14*((NS-2)/14)
113=NS-1-14*((NS-2)/14)
                                                                                                                                                                                                                    00016010
00016020
                                                                                                                                                                                                                    00016030
                                                                                                                                                                                                                    00016040
00016050
                                                                                                                                                                                                                    00016060
                                                                                                                                                                                                                    00016080
                                                                                                                                                                                                                    00016100
                                                                                                                                                                                                                    00016120
                                                                                                                                                                                                                   00016130
00016140
00016150
00016160
 מטטטט
      TAKE OUT - THIS STATEMENT NO LONGER NECESSARY WITH SCAN SUBROUTINE INSERTED.
                                                                                                                                                                                                                    00016170
00016180
                                                                                                                                                                                                                   00016180
00016200
00016210
00016210
00016230
00016240
00016240
00016260
00016260
00016280
00016280
00016280
                                                                                                            WFH RTI 9/31/78
                  DIVISO = HIMASS - LOMASS
RATEMX=0.0
NTMAX=0
NPOS=NSH1FT+1
NOW LOOP THROUGH MASSES
  Ë
                   DO 68 M=1.411
  C
                   MI = M + 39
  כככ
                      MI IS THE ACTUAL MASS NUMBER
                                                                                                                                                                                                                    00016310
00016320
00016330
00016340
       Y0=SPEC(18.M)
THIS MOD MADE AT RTI BECAUSE NO POSSIBLE REASON
WAS SEEN FOR HAVING AN ED INSTEAD OF A GE IN
THIS SITUATION.
                 IF (YØ .GE. SATVAL) GO TO 60

YM1=SPEC(17.M)

IF (YØ .LE. YM1) GO TO 60

YP1=SPEC(19.M)

IF (YP1 .GE. YØ)

YP1=SPEC(19.M)

IF (YP1 .GE. YØ)

WE NOW HAVE YØ AT TOP OF PEAK

YM2=SPEC(110.M)

YP2=SPEC(110.M)

YP3=SPEC(111.M)
                                                                                                                                                                                                                     00016350
00016360
                                                                                                                                                                                                                    00016370
00016380
00016390
                                                                                                                                                                                                                     00016400
  C
                                                                                                                                                                                                                    00016410
00016420
                                                                                                                                                                                                                     00016430
  C
40
                                                                                                                                                                                                                    00016440
00016450
                                                                                                                                                                                                                     00016460
```

```
YM3=SPEC(15.M)
YM4 = SPEC(14.M)
YP4=SPEC(112.M)
YM5(1)=SPEC(13.M)
YY5 = YM5(1)
                                                                                                                                                                                                     00016470
00016480
00016490
                                                                                                                                                                                                     00016500
00016510
00016520
00016530
00016540
                YYS * YM5(1)
WE HAVE ONLY 14 SPECTRA IN CORE AT A TIME SO:
NSHIFT SPECTRA AVAILABLE TO RIGHT OF MODE
                                                                                                                                                                                                     90016550
90016550
90016570
90016580
90016590
90016690
                                                                    5
4
                                 12
               2
IF (NSHIFT-1) 41.42.43
YP5=SPEC(113.M)
GO TO 44
YP5 = 0.0
GO TO 44
YP4 = 0.0
YP5 = 0.0
CONTINUE
                                                                                                                                                                                                     00016610
00016620
00016630
41
42
                                                                                                                                                                                                     00016640
00016650
43
                                                                                                                                                                                                    90016550
90016670
90016670
90016670
90016700
90016700
90016720
90016720
90016720
90016720
90016750
90016750
90016750
90016760
90016760
90016780
90016780
              44
100
200
C
                                                                                                                                                                                                    00016810
00016820
00016830
000
                                                                                                                                                                                                    00016840
00016850
                                                                                                                                                                                                    00016860
00016870
                                                                                                                                                                                                    00016880
00016890
00016900
00016910
00016920
C
                                                                                                                                                                                                    00016930
00016940
                                                                                                                                                                                                    00016950
00016960
00016970
00016980
                                                                                                                                                                                                    00016990
00017000
00017010
00017020
00017030
00017048
C
```

```
LOCLBG = YY5 + 5 * SLOPE

300 CONTINUE
C TSHIFT = (MI - LOMASS)/DIVISO
C THIS SECTION CHANGED TO FUNCTION SUBROUTINE TO
C GAIN INSTRUMENT COMPATABILITY.
                                                                                                                                                                                                                                                                00017050
                                                                                                                                                                                                                                                               00017050
00017060
00017070
00017080
00017080
00017100
00017110
00017110
00017130
00017140
                                                                                                                              WFH RTI 9/31/78
                     TSHIFT=SCAN(MI)

IF(RATE.LT.RATEMX) GO TO 50

IF((YTOP - Y75) .GE. 160) GD TO 5000

IFLAG(NPOS) = 1

FLAG FUNNY MODEL POSSIBLE
GO TO 5500

IFLAG(NPOS) = 0

CONTINUE
GET HERE TO QUALIFY AS POSSIBLE MODEL FOR SPECTRUM RATEMX=RATE
С
                                                                                                                                                                                                                                                               00017160
00017170
00017180
00017190
00017210
00017220
00017220
00017230
00017230
00017230
00017250
00017250
00017250
00017250
00017350
00017310
00017310
00017330
00017330
 5000
 5500
                       RATEMX-RATE
 USE A LINEAR BACKGROUND FIRST CUT APPROXIMATION.
                     MODBKG = SPEC(11,M)
PICK MIN + SPEC(11,M): 11 .LE. IJ .LE. IS @
IF (MODBKG .GT. SPEC(12,M)) MODBKG = SPEC(12,M)
IF (MODBKG .GT. SPEC(13,M)) MODBKG = SPEC(13,M)
IF (MODBKG .GT. SPEC(14,M)) MODBKG = SPEC(14,M)
IF (MODBKG .GT. SPEC(14,M)) MODBKG = SPEC(14,M)
IF (MODBKG .GT. SPEC(15,M)) MODBKG = SPEC(15,M)
IF (NSHIFT .GE. 1) LOCLBG = MODBKG
USE CONSTANT BACKGROUND IF NO RIGHT END POINT AVAILABLE
DO 450 IJ = 1,11
SCNDPK(NPOS.IJ) = YM5(IJ) - MODBKG
CONTINUE
SHMDDE (NPOS.) = TSHIFT
  C
  C
  450
                        SHMODE (NPOS) - TSHIFT
                                                                                                                                                                                                                                                               00017350
00017360
00017370
00017380
00017390
00017400
00017410
00017420
  ב
כ
כ
                           SAVE TSHIFT FOR LATER USE
                        ISHMAS(NPOS) = MI
SAVE MASS OF MODEL PEAK
                      SAVE MASS OF FOURL FEHR
CONTRI = YTOP - LOCLBG
IF ( CONTRI .LE. Ø ) GO TO 60
TITTY = TSHIFT + XTOP
DO 500 I=1.7
IF (TITTY .LE. HIST(I)) GO TO 600
CONTINUE
   50
                                                                                                                                                                                                                                                               00017430
00017440
00017450
00017470
00017470
00017490
00017510
00017510
00017520
00017530
00017540
00017550
00017560
00017560
  500
                        CONTINUE
IH = 7 + I + 3*NSHIFT
  600
  00000000
                            IH IS IN ONE OF THE THREE SETS +8 TO 140.+11 TO 170 OR .+14 TO 200 AS A FUNCTION OF MSHIFT, MSHIFT = 0. 1 OR 2.
                           UPDATE HISTOGRAMS
                       PKHIST(IH) = PKHIST(IH) + CONTRI
NPHIST(IH) = NPHIST(IH) + 1
....JUST A MINOR VOID ..HUI NENG..
CONTINUE
                                                                                                                                                                                                                                                                00017570
00017580
00017590
00017600
00017610
  68
68
```

```
00017630
00017640
00017650
             NXTRTE (NPOS) - RATEMX
C
             RETILEN
                                                                                                                                                                 00017650
00017660
00017670
00017680
00017690
00017700
00017710
              SUBROUTINE OFFSET (G.H.GNU.HNU.GPOS.HPOS)
THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (GRANT NGR-05-020-632).
                                                                                                                                                                00017730
00017740
00017750
00017750
00017770
00017770
00017790
00017810
00017810
00017820
00017820
00017840
00017840
00017850
00017850
00017850
00017850
00017850
00017850
00017950
00017950
00017950
00017950
              *** BACKGROUND CORRECTED.
             DIMENSION G(9).H(11).GNU(18).HNU(18)
INTEGER GPOS.HPOS.HNUT(18).IHSPEC.JLOWER
REAL*8 0FST
DATA 0FST/OFFSET//
                ***STRETCH OUT THE MODEL PEAKS A LITTLE
             DO 10 I=1.18
GNU(I)=0
HNU(I)=0
CONTINUE
10
C
C
             CONTINUE
PUT G AND H INTO LONGER ARRAYS SO THAT THEY CAN BE ALIGNED TO SPECTRUM HISTOGRAMIC POSITIONS.

DO 30 1=1.9
GNU(1+2) = G(I)
CONTINUE
DON'T USE H(I), AND H(II).THESE ARE EXTRA FOR INTERPOLATION
IN LKAHED.

DO 110 1=1.9
HIUT(I) = H(I+1)
CONTINUE
                                                                                                                                                                 00017980
00017990
                                                                                                                                                                  00010000
                                                                                                                                                                 00018010
                                                                                                                                                                 00018020
00018030
00018040
30
Ē
                                                                                                                                                                 00018050
00018060
110
C
C
C
C
                                                                                                                                                                  00018070
                                                                                                                                                                 00018080
00018090
                                                                                                                                                                 00018100
               ALIGN TO SPECTRUM OF H MODEL
                                                                                                                                                                 00018120
00018130
00018140
              IHSPEC = 6 + (HPOS - 1)/3
000
               6 .LE. IHSPEC .LE. 11
                                                                                                                                                                 00016150
             JLOWER = IHSPEC - 4
DO 1000 I= 1.9
HNU(JLOWER) = HNUT(I)
                                                                                                                                                                  00018160
                                                                                                                                                                 00018170
00018180
             JLOWER = JLOWER + 1
CONTINUE
 1000
                                                                                                                                                                 20018200
```

```
00018210
00018220
00018230
00018240
00018250
0000
                                                                         NOW, HNU(IHSPEC) REPRESENTS THE MODE OF THE H-MODEL. AND GNU(7) IS THE MODE OF THE G-MODEL
                                                         RETURN
END
SUBROUTINE OUTDAT(SRLIB.NNAME)
INTEGER NNAME(18).MIN.MINI.MAX.MAXI
INTEGER NNAME(18).MIN.MINI.MAX.MAXI
INTEGER PDATE(5).PNAME(32).FLAG
INTEGER OUTSLT.MAXANP.EXPNAM.TICRAT
INTEGER OUTSLT.MAXANP.EXPNAM.TICRAT
INTEGER NAME.RDATE.BITMAP.GCTIME.LIBMAP.INTEG.LOMASS
INTEGER HIMASS.POINTS.TAPCNT.MAXSP.LSTCNT.DEVICE.SPCNO
INTEGER SPEC.IND.IR.BK.NM.NTM
INTEGER GPEAK.SPARE1.SPARE2.SPARE3.SPARE4.SPARE7
INTEGER NUSPEC.NMASS.OV.AP.SRLIB(5)
INTEGER DUBBLT.OSATS.NLINE
INTEGER DUBLT.OSATS.NLINE
INTEGER NUZEN.IMDLUT
REAL RMM(411).RTSP(411)
REAL CLASS(4)/4*' '.SUBCL(4)/4*' '.
REAL SPARE5.SPARE6
REAL*4 TOTION.SIGMA7
REAL SNATSUM.FORM(5)
REAL SATSUM.FORM(5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          000 18260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00018270
00018290
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00018300
00018310
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00018320
00018330
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00018340
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00018350
00018360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00018370
00018380
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00018390
00018400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00018410
00018420
00018430
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00018440
00018450
00018460
00018470
             REAL **A TOTION.SIGMAY REAL SVP8.ISVP9
REAL DNORM.ABMAX
REAL SATSUM.FORM(5)
REAL**B OTDT/* OUTDAT */.SOURCE/* /*
DIMENSION G(9).H(9).GNU(18).HNU(18)
COMMON YM5.YM4.YM3.YM2.YM1.Y0.YP1.YP2.YP3.YP4.YP5
COMMON YM5.YM4.YM3.YM2.YM1.Y0.YP1.YP2.YP3.YP4.YP5
COMMON NAM.GM3.GM2.GM1.G0.GP1.GP2.GP3.GP4
COMMON NAM.GM3.GM2.GM1.G0.GP1.GP2.GP3.GP4
COMMON NAME(32).RDATE(5).BITMAP(64).GCTIME
COMMON MAXSP.LSTCNT.DEVICE(5).SPCNO
COMMON MAXSP.LSTCNT.DEVICE(5).SPCNO
COMMON SPEC(14.41).IND(3.41).NUSPEC(411).NMASS
COMMON RMAX(3).IR(3).BK(3).NM(3).NTM(3).GPEAK(3.11)
COMMON SPARE1.SPARE2.SPARE3.SPARE4.SPARE5.SPARE6.SPARE7
COMMON RATMIN.RATEMX.SIGV9.SIGMAY.SIGLST
COMMON MODE1.MODE2.NLUGUT.NUPCUT.SATREX(25).NSAT.EXPNAM(5)
COMMON /PARAMS/MINTIC.MINNY.NTHIRD.RATM
COMMON /PARAMS/MINTIC.MINNY.NTHIRD.RATM
COMMON /PARAMS/MINTIC.MINNY.NTHIRD.RATM
COMMON /PRATES/ISGMAS(3).ISHMAS(3).IGMASS.IHMASS
COMMON /PRATES/ISGMAS(3).ISHMAS(3).IGMASS.IHMASS
COMMON /PRATES/ISGMAS(3).ISHMAS(3).IGMASS.IHMASS
COMMON /PRATES/ISGMAS(3).ISHMAS(3).IGMASS.IHMASS
COMMON /PUBBUG/IDEBUG
COMMON /MASSES/ISGMAS(3).ISHMAS(3).IGMASS.IHMASS
COMMON /CHEMPO/ODUBLT.QNORM.QSATS.NLINE
COMMON /UBBUG/IDEBUG
COMMON /UBBUG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00018480
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00018480
00018490
00018510
00018510
00018520
00018530
00018550
00018550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     90018560
90018570
90018580
90018590
90018600
90018610
90018630
90018630
90018650
90018650
   C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00018660
00018670
00018680
00018690
00018700
00018710
00018720
00018730
00018740
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00018760
00018770
00018780
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00016790
```

```
SPECNO - INCORPORATED INTO VARIABLE SPCNO MAXAMP - SHIFTED TO SAVE EXECUTION TIME TOTION.TICRAT - UNMODIFIED
                                                                                                                                                                                                                                 00018800
                                                                                                                                                                                                                                 00018810
00018820
                                                                                                      WM F HARGROVE
12/6/78
                                                                                                                                                                                                                                 00018830
                  EQUIVALENCE (EXPID, LIBBLK (84))
EQUIVALENCE (EXPID, LIBBLK (84))
EQUIVALENCE (AMP, LIBBLK (257))
EQUIVALENCE (AMP, LIBBLK (75))
EQUIVALENCE (LOMASX, LIBBLK (75))
EQUIVALENCE (SPECNO, LIBBLK (74))
EQUIVALENCE (SPECNO, LIBBLK (77))
EQUIVALENCE (TOTION, LIBBLK (77))
EQUIVALENCE (LSTCNX, LIBBLK (70))
EQUIVALENCE (GCTIMX, LIBBLK (70))
EQUIVALENCE (INTEGX, LIBBLK (89))
EQUIVALENCE (INTEGX, LIBBLK (49))
EQUIVALENCE (TICRAT, LIBBLK (72))
DATA HOW/IH
                                                                                                                                                                                                                                 00018840
                                                                                                                                                                                                                                 00018850
                                                                                                                                                                                                                                 00018860
                                                                                                                                                                                                                                 00018870
                                                                                                                                                                                                                                00018880
00018890
00018900
00018910
                                                                                                                                                                                                                                00018920
00018930
                                                                                                                                                                                                                                00018940
00018950
00018960
                                                                                                                                                                                                                                 00018970
00018980
      00016990
                                                                                                                                                                                                                                 00019000
                                                                                                                                                                                                                                 00019010
                                                                                                                                                                                                                                00019020
00019030
    IF(IGMASS.GT.0)GD TO 91
IF(IDEBUG.NE.0)WRITE(IPTR2.3334)
3334 FORMAT(1X.* SPECTRUM REJECTED FOR LACK OF SUITABLE MODEL*)
RETURN
                                                                                                                                                                                                                                00019050
                                                                                                                                                                                                                               00019060
00019060
00019070
00019090
00019100
      91 ISWEAK = IGMASS - 39
IF ( NUSPEC(ISWEAK) .GT. 0 ) GO TO 93
IF ( IDEBUG .EO. 0 ) GO TO 92
INEWM=!GMASS-MAD
CALL TRACE(IGMASS.MAD)
THIS WRITE STMT HAS BEEN MADE CONDITIONAL TO SAVE PAPER
WFH RTI 9/31/78
  C
                                                                                                                                                                                                                                00019110
                                                                                                                                                                                                                                00019140
00019150
IF (IDEBUG.ED.0)GD TO 92

WRITE (IPTR2.3333) INEWM
92 RETURN
93 CONTINUE
C CALL ZERO (LIBBLK.1024)
C SEE COMMENT AT TOP
                                                                                                                                                                                                                                00019160
                                                                                                                                                                                                                                00019180
00019190
00019200
                                                                                                                                                                                                                               00019200
00019210
00019220
00019230
00019240
00019250
00019270
00019270
00019290
                   COMMENT AT TOP

DO 30 I=1.1024

LIBBLK(I)=0

TOTION=0.0

CALL TRACE(NMASS)

DO 4 I = 1.NMASS

IF ( NUSPEC(I) .LT. 0 ) NUSPEC(I) = 0

SATSIM = 0
  C30
  C
                   IF (NUSPEC(I) .LT. 0 ) NUSPEC(I) - 5
SATSUM = 0
DD 5 I = 1:NMASS ,
NUZEN = NUSPEC(I)
IF (NUZEN .GE. SATVAL ) SATSUM = SATSUM + NUZEN
TOTION = TOTION + NUZEN
REJECT SPECTRUM IF TOTION IS LESS THAN MINIMUM TIC
IF (TOTION .LT. MINTIC ) RETURN
TICRAT IS CLEANUP RATIO
  4
                                                                                                                                                                                                                               00019300
00019310
00019320
00019330
                                                                                                                                                                                                                                00019340
  5
                                                                                                                                                                                                                                00019350
00019360
  C
                                                                                                                                                                                                                                MAN 19370
```

```
SIGMA? = SIGMA? - QSATS * SATVAL + SATSUM
SINCE COMPUTED SATURATED VALUES MAY CAUSE THE CLEANED UP
TIC TO EXCEED THE RAW, WE SUBSTITUTE CALCULATED VALUES
FOR MAXIMUM VALUES. THIS IS A LIMIT OF OUR 16 BIT INTEGER,
AND 24570 SATURATED DEFAULT VALUE IN OUR GC COLLECTION
                                                                                                                                                                                                                                                                     00019380
00019390
00019400
00019410
      AND 24570 SATURATED DEFAULT VALUE IN OUR GC C
PHASE.

IF ( TOTION .GE. SIGMA? ) TOTION = SIGMA? - 1
TICRAT=TOTION*100.0/SIGMA?

IF ( IDEBUG .EO. 0 ) GO TO 6

WRITE(IPTR2.1000) TOTION.SIGMA?.TICRAT.SATSUM
OUTSLT=0
LSTCNT=LSTCNT+1
CALL MOVE(EXPNAM.EXPID.5)

SEE COMMENT AT TOP

WFH - RTI 12/6/78
                                                                                                                                                                                                                                                                     00019420
00019430
00019440
00019450
                                                                                                                                                                                                                                                                      00019460
6
                                                                                                                                                                                                                                                                      00019480
00019490
00019500
 Č 51
C
C
C39
                                                                                                                                                                                                                                                                      00019510
00019520
00019520
00019530
00019550
      DO 39 I=1.5
39 EXPID(I)=EXPNAM(I)
CALL MOVE(NAME.PNAME.32)
THIS LOOP COMENTED OUT TO SUIT WATFIV AND BECAUSE IT SERVES
NO APPARENT PURPOSE...
WIFH AT RTI 4/25/78
                                                                       WFH - RTI 12/6/78
                                                                                                                                                                                                                                                                      00019560
00019570
                                                                                                                                                                                                                                                                      00019580
00019590
       DO 32 I=1.32
32 PHAME(I) = NAME(I)
SEE COMMENT AT TOP
                                                                                                                                                                                                                                                                      00019600
                                                                               WFH - RTI 12/6/78
                                                                                                                                                                                                                                                                      00019620
00019630
                INTEGX=INTEG
CALL MOVE(RDATE, PDATE, 5)
SEE CONTENT AT TOP
                                                                                                                                                                                                                                                                      00019640
                                                                              WFH - RTI 12/6/78
                                                                                                                                                                                                                                                                      00019660
00019670
                  DO 31 I=1.5
PDATE(I)=RDATE(I)
LOMASX=LOMASS
HIMASX=LIMASS
LSTONX=LSTCNT
SPECNO=SPCNO
CALL TRACE(NMASS)
MAXAMP DETERMINATION SHIFTED ...
IF ( IPFLAG .EO. Ø ) GO TO 12
MAXAMP=0
                                                                                                                                                                                                                                                                     00019670
00019680
00019690
00019710
00019710
00019730
00019730
00019740
00019760
00019770
            IF ( IPFLAG .EO. 0 ) GO TO 12

MAXAMP=0

DO 10 I=1.NMASS

10 IF (MAXAMP.LT.NUSPEC(I)) MAXAMP=NUSPEC(I)

COMPUTE ABSOLUTE MAXIMUM AMPLITUDE.

ABMAX = MAXAMP/ONORM

CALL KAPUT( SPCNO,TOTION,TICRAT,ABMAX )

THE ABOVE PRINTS OUT THE "CHEMISTS" MINIMUM STUFF.
                                                                                                                                                                                                                                                                      00019770
00019780
00019790
00019810
00019820
00019830
 C
 THE ABOVE PRINTS OUT THE "LHEITLDID" CONTINUE
CONTINUE
CALL SETMAS(LIBMAP, LSTCNT)
... CALL PUTFIL (OUTSLT, LIBBLK, LSTCNT)
4 CALL CHKFIL (OUTSLT, FLAG)
... IF (FLAG) 13.14.15
CONTINUE
LRITE (IPTR3.34) (LIBBLK(I), I=1,128)
34 FORMAT (3(/3214)/1314,10A4.914/)
IZ=0
DO 81 I=1.411
IF (NUSPEC(I), LE,0) GO TO 81
IZ=IZ+1
                                                                                                                                                                                                                                                                      00019830
00019840
00019850
00019860
00019870
00019880
                                                                                                                                                                                                                                                                       00019900
                                                                                                                                                                                                                                                                      000 19920
000 19930
                                                                                                                                                                                                                                                                       00019940
                                                                                                                                                                                                                                                                      00019950
                          1Z=1Z+1
```

```
00019960
                                                                                                                                                                                                                                                                                                                                                                             00019970
00019980
C
C
                                                                                                                                                                                                                                                                                                                                                                             00020000
                                                                                                                                                                                                                                                                                                                                                                             00020010
00020020
00020030
          THESE WRITE STMTS HAVE BEEN MADE CONDITIONAL FOR CONSISTENCY UFH RTI 9/31/78
                                                                                                                                                                                                                                                                                                                                                                             00020040
                              IF(IDEBUG.EQ.0)GD TO 85 00020050 00020050 00020050 00020050 00020050 00020050 00020050 00020050 00020050 00020050 00020050 00020050 00020050 00020050 00020050
     ## FORMAT(4X, SPECTRA = '.15,' NU. UP FERING

##D.'/)

## ITE(IPTR2.83) (JM(K), JSP(K), K=1, IZ)

## O0020100

## O002000

## O002000

## O002000

## O002000

##
83
85
C
60
         HERE IS THE MAIN OUTPUT STATEMENT WRITING THE CLEANUPED UP SPECTRUM TO A DISK DATASET THE CHANGE TO A SUBROUTINE CALL HAS BEEN MADE WITH THE ONSET OF MULTIPLE RUN PROCESSING AND A LINEAR SYSTEM.
                                                                                                                                                                                                                                                                                                                                                                          00020260
00020270
00020280
00020290
                                                                                                                                                                                                                                                                                                                                                                          00020290
00020310
00020320
00020330
00020330
00020350
00020350
00020350
00020350
00020390
00020390
000204410
                                                                                                                                                                                                     11/29/78
                              WRITE(9) SPCNO.NUSPEC
CALL WRISPC(SPCNO.NUSPEC.QDUBLT.TICRAT.IZ.TOTION)
N=(IZ+7)/8
IE=1
                                 iT=8
DO 62 I=1.N

C THIS MOD INSERTED TO BLOT OUT APPARENTLY USELESS WRITE STMT.

C WRITE (8,601) (RMM(K), RMSP(K), K=IF, IT)

C ANOTHER WRITE STMT MADE CONDITIONAL FOR CONSISTENCY'S SAKE

WEH RTI 9/31/78
                                                                                                                                                                                                                                                                                                                                                                            00020410
00020420
                IF(IDEBUG.E0.0)G0 TO 63
WRITE(IPTR2.602)(RMM(K).RMSP(K).K=IF.IT)
63 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                            00020430
00020440
                                 IF = IT+1
IT = IF+7
                                                                                                                                                                                                                                                                                                                                                                             00020450
                                                                                                                                                                                                                                                                                                                                                                            00020460
                              11=1++/
FORMAT(8(F5.1.F5.2)),
FORMAT(1X.8(F5.1.F5.2))
DO 61 1=1.411
RMT(1)=0.0
RMSP(1)=0.0
  00020470
  602
                                                                                                                                                                                                                                                                                                                                                                            00020480
00020490
                                                                                                                                                                                                                                                                                                                                                                            00020500
00020510
00020520
61
C
                                              BASM=MM(MAXI)/10
                                              BASE = MAX
                                                                                                                                                                                                                                                                                                                                                                            00020530
```

```
DO 50 1=1.1Z
HD1=JSP(1)
                                                                                                                                                                                                                                                                                                                                                00020540
                                                                                                                                                                                                                                                                                                                                               00020550
00020560
                                                   MSP(I) = (HD1/BASE) *10000
                                                                                                                                                                                                                                                                                                                                               00020570
00020580
                                      WRITE(8)MW. II. IZ. BASM. NNAME. SOURCE. FORM. (MM(K). MSP(K). K=1. IZ)
              CONTINUE

CONTINUE

DON'T WRITE BITMAP UNTIL LAST RECORD.

RETURN

HERE FOR WRITING BITMAP TO LIST.MAS

CALL ZERO(LIBBLK.1024)

DO 33 1=1.1024

LIBBLK(1)=0

OUTSLT = 0

LSTCNX=LSTCNT

READ(7.20)LIBBLK

CALL GETFIL (OUTSLT.LIBBLK.0)

CALL GETFIL (OUTSLT.LIBBLK.0)

IF (FLAG) 13.20.21

CONTINUE

CALL MOVE (LIBMAP, LIBBLK, 17)

DO 35 1=1.17

35 LIBBLK(1) = LIBMAP(1)

WRITE(IPTR3.36)LIBBLK

36 FORMAT(18)

CALL PUTFIL (OUTSLT.LIBBLK.0)

16 CALL CHKFIL (OUTSLT.LIBBLK.0)

CALL CHKFIL (OUTSLT.LIBBLK.0)

CALL PUTFIL (OUTSLT.LIBBLK.0)

CALL CHKFIL (OUTSLT.LIBBLK.0)
                           CONTINUE DON'T WRITE BITMAP UNTIL LAST RECORD.
                                                                                                                                                                                                                                                                                                                                                00020590
  12
                                                                                                                                                                                                                                                                                                                                               00020600
00020610
00020620
00020630
                                                                                                                                                                                                                                                                                                                                                00020640
                                                                                                                                                                                                                                                                                                                                               00020650
00020660
Ē
                                                                                                                                                                                                                                                                                                                                              00020670
00020680
00020690
00020700
ČCC
Č ... 20
                                                                                                                                                                                                                                                                                                                                               00020710
00020720
                                                                                                                                                                                                                                                                                                                                               00020730
Č.,21
                                                                                                                                                                                                                                                                                                                                               00020740
00020750
                                                                                                                                                                                                                                                                                                                                              00020760
00020770
                                                                                                                                                                                                                                                                                                                                              00020780
                                                                                                                                                                                                                                                                                                                                               00020800
C...16
C...13
C...
                                                                                                                                                                                                                                                                                                                                              00020810
00020820
                                                                                                                                                                                                                                                                                                                                             00020820
00020830
00020840
00020850
00020860
00020880
 Č...17
                            CALL CLSFIL (OUTSLT)
RETURN
1000 FORMAT(/.' TOTAL ION CURRENT ='.F8.0./.' UNC SIG ='.E15.8.
-'. TICRAT ='.I3/' SAT PEAK SUM ='.F12.0//)
3333 FORMAT(/.' SPECTRUM REJECTED BECAUSE MASS '.I3.'.THE '.
1' MODEL PEAK, HAS 0 CONTRIBUTION '/)
                                                                                                                                                                                                                                                                                                                                             00020890
00020900
                                                                                                                                                                                                                                                                                                                                               00020910
                                                                                                                                                                                                                                                                                                                                               00020920
                              SUBROUTINE PARDIR
                                                                                                                                                                                                                                                                                                                                               00020930
         THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (GRANT NGR-05-020-632).

FURTHER NOTE:
                                                                                                                                                                                                                                                                                                                                             00020940
00020950
  ממממ
       FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND 00020950 GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 00020970 (GRANT HGR-05-020-632).

FURTHER NOTE:
THIS VERSION OF PARDIR HAS BEEN COMPLETELY REWRITTEN IN ORDER TO ALLOW00021000 FOR PROCESSING OF MULTIPLE RUNS. THIS VERSION OF PARDIR IS ALSO USED 00021010 IN THE VERSIN OF CLEANUP SUPPLIED TO EPA BY RTI.THE FUNCTION OF 00021010 PARDIR IS TO READ IN CONTROL PARAMETERS FROM A TERMINAL OR 00021010 CONTROL CARDS THAT ARE CONSTANT ACROSS DIFFERENT RUNS. THE 00021010 MEANING OF THE VARIABLES READ HEREIN SHOULD BE SELF-DOCUMENTING 00021050 FROM THE ECHO MESSAGES.
                                                                                                                                                                                                         WM.F.HARGROVE
RTI 11/22/78
                                                                                                                                                                                                                                                                                                                                             00021080
00021090
                             COMMON /UNITS/ IRDR. IPTR1. IPTR2. IPTR3. IIN. IOUT INTEGER IRDR. IPTR1. IPTR2. IPTR3. IIN. IOUT
                                                                                                                                                                                                                                                                                                                                             00021110
```

```
CONTION /TOMS/ITOM
COMMON /PRNTFG/IPFLAG
CONTION /FRIT/ILEFT, IRIGHT
COMMON /CRATTMX/RATTMXX
COMMON /DUBBUG/IDEBUG
CONTION /PARAMS/MINTIC, MINNY, NTHIRD, RATM
COMMON /AVG/ NAVG, HAVG
INTEGER ITOM, IPFLAG, ILEFT, IRIGHT, IDEBUG, NTHIRD
REAL RATTMXX, RATM
INTEGER NAVG, HAVG
INTEGER MINNY, MINTIC
C PROMPT AND READ CONTROL PARMS - LIFTED FROM OLD CLEANUP SOURCE
C AN ADDITIONAL PARAMETER WAS ADDED TO AVERAGE N INPUT
C SPECTRA IF IT BECAME NECESSARY - AS WITH THE INCOS DATA
C
RTI - WFH 1/14/79
                                                                                                                                                                                                                                                                                                                00021120
                                                                                                                                                                                                                                                                                                                00021130
00021140
00021150
                                                                                                                                                                                                                                                                                                                00021160
00021170
00021180
                                                                                                                                                                                                                                                                                                             000211290
00021220
00021220
00021220
00021220
00021220
00021270
00021270
00021270
00021270
00021320
00021330
00021330
00021330
000213380
000213380
00021340
00021440
00021440
00021430
     WRITE(IPTR1.3240)
3240 FORMAT(IX.'ENTER CLEANUP PRINT FLAG(IN II):')
READ(IRDR.3241) IPFLAG
3241 FORMAT(II)
      WRITE(IPTR1.3242) IPFLAG
3242 FORMAT(IX, IPFLAG= , 11)
IPFLAG IS PRINT OPTION FLAG FOR CLEANUP

C IPFLAG IS PRINT OPTION FLAG FOR CLEANUP

C INITIALIZE DEFAULTS FOR VARIOUS PARAMETERS IN COMMON

LRITE(IPTR1.3100)

3100 FORMAT(1X, 'ENTER DEBUGGING SWITCH IN II (0=N,1=Y):')

READ(IRDR.3101) IDEBUG

3101 FORMAT(11)

LRITE(IPTR1.3103) IDEBUG

3103 FORMAT(1X, 'IDEBUG=', II)

C
           URITE(IPTR1.123)
123 FORMAT(1X. ENTER * OF INPUT SPECTRA TO AVERAGE IN 12:")
READ(IRDR.121) NAVG
                                                                                                                                                                                                                                                                                                               90021430
900214450
90021450
9002146U
90021470
90021480
90021590
90021590
90021510
90021530
90021530
90021530
    READ(IRDR,121) NAVG

121 FORMAT(12)

WRITE(IPTR1,122) NAVG

122 FORMAT(1X, 'NAVG=',12)

HAVG=NAVG/2+1

WRITE(IPTR1,3120)

3120 FORMAT(1X, 'MINIMUM THIRDS BETWEEN ELLUANTS IN I1:')

READ(IRDR,3121) NTHIRD

3121 FORMAT(11)

WRITE(IPTR1,3123) NTHIRD

3123 FORMAT(1X, 'THIRDS BETWEEN ELLUANTS=',11)
 WRITE(IPTR1.3130)
3130 FORMAT(1X, 'ENTER DETECTION WINDOW IN 14:')
READ(IRDR.3131) 1TOM
3131 FORMAT(14)
WRITE(IPTR1.3132) ITOM
3132 FORMAT(1X, 'DETECTION WINDOW=', 14)
C
                                                                                                                                                                                                                                                                                                               00021550
00021560
00021570
00021590
00021590
                                                                                                                                                                                                                                                                                                               00021610
00021620
00021630
00021640
     WRITE(IPTRI.3140)

3148 FORMAT(1X, ENTER MINIMUM FOR LT 5 PEAKS IN 16:')
READ(IRDR.3141) MINNY
3141 FORMAT(16)
WRITE(IPTRI.3143) MINNY
3143 FORMAT(1X, MINNY=",16)
                                                                                                                                                                                                                                                                                                               00021650
00021660
                                                                                                                                                                                                                                                                                                                00021670
                                                                                                                                                                                                                                                                                                                00021680
                                                                                                                                                                                                                                                                                                                00021690
```

```
URITE(IPTR1.3150)
3150 FORMAT(1X.*ENTER MINIMUM FOR MORE THAN 4 PEAKS IN 16:*)
READ(IRDR.3151) MINTIC
3151 FORMAT(16)
URITE(IPTR1.3152) MINTIC
3152 FORMAT(1X.*MINTIC=*.16)
                                                                                                                                                                                                                                   00021700
                                                                                                                                                                                                                                  00021710
00021720
                                                                                                                                                                                                                                   00021730
                                                                                                                                                                                                                                 06021740
00021750
00021760
00021770
WRITE(IPTR1,3160)
3160 FORMAT(IX.'ENTER MINIMUM QUALIFYING RATE IN FB.4:')
READ(IRDR,3161) RATM
3161 FORMAT(F8.4)
WRITE(IPTR1,3162) RATM
3162 FORMAT(IX.'RATM=',FB.4)
C
                                                                                                                                                                                                                                   00021786
                                                                                                                                                                                                                                 00021780
00021800
00021810
00021820
00021830
     WRITE(IPTR1.3170)
3170 FORMAT(1X, ENTER ERROR RATIO IN F8.4:')
READ(IRDR.3171) RATMXX
3171 FORMAT(F8.4)
WRITE(IPTR1.3172) RATMXX
3172 FORMAT(1X, 'RATMXX*', F8.4)
                                                                                                                                                                                                                                 00021840
00021850
00021870
00021870
00021880
00021900
00021910
00021910
00021930
00021930
00021930
                                                                                                                                                                                                                                  00021840
 WRITE(IPTRI,3180)
3180 FORMAT(1X.'ENTER POINTS TO LEFT OF MODE IN 13:')
READ(IRDR.3181) ILEFT
3181 FORMAT(13)
WRITE(IPTRI,3182) ILEFT
3182 FORMAT(1X.'ILEFT=',13)
C
                                                                                                                                                                                                                                 00021960
                                                                                                                                                                                                                                 00021980
00021990
     URITE(IPTR).3190)
3190 FORMAT(1X.'ENTER POINTS TO RIGHT OF MODE IN I3:')
READ(IRDR.3191) IRIGHT
3191 FORMAT(13)
URITE(IPTR1.3192) IRIGHT
3192 FORMAT(IX.'IRIGHT= '.I3)
RETIURN
                                                                                                                                                                                                                                   00022000
                                                                                                                                                                                                                                 00022010
00022020
                    FORMAT(I3)

WRITE(IPTR1,3192) IR IGHT

FORMAT(IX, 'IRIGHT= ', I3)

RETURN

END

SUBROUTINE SATLSQ (NS,M,RPKHGT,G,SPEC,SATVAL,GPOS,OVLAP,HPOS,PKH1S00022070

WRT)

THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT

FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND

GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(GRANT NGR-05-020-632).

THIS ROUTINE COMPUTES SATURATED VALUES IN THE

FOLLOWING WAY:

1. REMOVE LOCAL BACKGROUND FROM SATURATED PROFILE.

00022180

00022180
                  *T)

THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (GRANT NGR-05-020-632).
   00022180
00022190
                                  1. REMOVE LOCAL BACKGROUND FROM SATURATED PROFILE.
                                                                                                                                                                                                                                00022190
00022200
00022210
00022220
00022230
00022240
00022250
00022260
                                  2. COMPUTE THE RATIOS OF PEAK(I) MODEL(I) FOR NON-SATURATED POINTS IN THE PEAK.
                                     3. GET THE AVERAGE RATIO, AND MULTIPLY IT TIMES
THE MODEL MODE. THIS IS THE RETURNED SATURATED
                      VALUE.
REAL LOCLBG.GG.PKH1ST(20)
INTEGER SPEC(14.411).GPOS.OVLAP.HPOS
                                                                                                                                                                                                                                 00022270
```

```
00022280
                                                                                                                                                                                                                                                     90022290
90022300
90022310
90022320
90022330
                                                                                                                                                                                                                                                    00022330
00022350
00022350
00022360
00022370
00022390
00022410
00022410
00022430
00022440
00022440
00022440
0000000000000
                                                                                                                                                                                                                                                      00022460
                                                                                                                                                                                                                                                    00022480
00022480
00022490
00022500
00022510
                                                                                                                                                                                                                                                    00022520
00022530
00022540
00022550
5
                                                                                                                                                                                                                                                    00022560
00022570
00022580
00022590
C
                    IRIGH! * 0
NPTS = 12
NSATS = 0
DO 50 I = 1.NPTS
IF (Y(I).GE.SATVAL) GO TO 10
IF (ILFT.EQ.1) GO TO 20
                                                                                                                                                                                                                                                    00022600
00022610
                                                                                                                                                                                                                                                    00022610
00022620
00022630
00022640
00022660
                       COUNT POINTS TO LEFT OF FIRST SATURATED POINT
                                                                                                                                                                                                                                                    00022670
00022680
00022690
00022700
                    ILEFT - ILEFT + 1
GO TO 50
CONTINUE
                   CONTINUE
COUNT POINTS TO RIGHT OF LAST SATURATED POINT
IRIGHT = IRIGHT + 1
GO TO 50
FOUND FIRST SATURATED POINT
ILFT = 1
NSATS = NSATS + 1
NSATS COUNTS SATURATED VALUES.
CONTINUE
ILEFT = NUMBER OF POINTS TO LEFT OF FIRST SATURATED POINT.
IRIGHT = NUMBER OF POINTS TO RIGHT OF LAST SATURATED POINT.
FIND MIDDLE POINT OF SATURATED VALUES AND D MAKE SURE
7 IS IN +MID-1,MID+10.NOTE:THE INTERVAL IS CLOSED.
IDUIT = 0
IFIRST = ILEFT + 1
ILAST - ILEFT + NSATS
20
C
                                                                                                                                                                                                                                                   00022700
00022710
00022720
00022730
00022740
00022750
00022760
00022770
00022790
0002280
C
10
250000
                                                                                                                                                                                                                                                    00022810
00022820
                                                                                                                                                                                                                                                    00022830
00022840
                                                                                                                                                                                                                                                     00022850
```

```
000000
                        LLLLLSSSSRRR
                                                                                                                                                                                                                                                  00022870
80022880
00022890
00022900
                         IFIRST ILAST
                     RMID IS MIDDLE POINT OF SATURATED VALUES, AND REAL.
RMID = ( IFIRST + ILAST )/2.0
RWIND = 7.0 - RMID
NOTE: 7 IS INDEX OF CURRENT SPECTRUM.
7 MUST BE WITHIN (RMID-1.RMID+1).
                                                                                                                                                                                                                                                         00022910
00022920
                                                                                                                                                                                                                                                         00022930
00022940
00022950
 20000
                                                                                                                                                                                                                                                         00022960
00022970
                      ACTUALLY, RMID MUST BE IN +6.80 FOR SATURATED VALUE TO BE PROCESSED.

IF ( RWIND .LT. 0 ) RWIND = -RWIND

IF ( RWIND .LE. 1.0 ) GO TO 60

IQUIT = 1
                                                                                                                                                                                                                                                        00022980
                                                                                                                                                                                                                                                        00023000
00023010
00023020
                       RETURN
                     RETURN
CONTINUE
PRINT SATURATED MASS ENCOUNTERED STUFF
MASS = M + 39
SEE IF MASS BELONGS TO PREDESSOR.
DO 62 I = 1.SATINX
IF ( SATLST(I) .NE. MASS ) GO TO 62
SATLST(I) = 0
IQUIT = 2
RETURN
 60
                                                                                                                                                                                                                                                        00023030
00023040
00023050
00023060
 Ċ
                                                                                                                                                                                                                                                 00023070
- 00023080
                                                                                                                                                                                                                                                         00023090
                                                                                                                                                                                                                                                        00023100
00023110
                      RETURN
CONTINUE
 62
C
                      CONTINUE

DETERMINE IF THIS MASS BELONGS TO AN AJACENT SPECTRUM

IF ( OVLAP .EQ. 0 ) GO TO 70

NXTSPC = 6 + ( HPOS-1 )/3

SEE IF SATVALS OCCUR IN NEXT SPECTRUM CONTINUOUSLY

IF ( ILAST .LT. NXTSPC ) GO TO 70

RDIFF = NXTSPC - RMID

SEE IF RMID IS CLOSE TO NEXT SPECTRUM.

IF ( RDIFF .GT. 1 ) GO TO 70

GIVE UNDECIDED MASS TO SPECTRUM WITH BIGGEST TIC.

IF ( PKHIST(GPOS) .GE. PKHIST(HPOS) ) GO TO 65

IOUIT = 1

RETURN

CONTINUE
                                                                                                                                                                                                                                                        00023120
00023130
                                                                                                                                                                                                                                                        00023140
00023150
                                                                                                                                                                                                                                                       00023150
00023160
00023170
00023180
00023190
00023210
00023210
00023220
00023230
00023230
00023250
00023250
00023250
 С
  C
  С
CONTINUE
C FLAG FOR NEXT GUY TO AVOID.
SATLST(SATINX) = MASS
SATINX = SATINX + 1
IF ( SATINX .EQ. 26 ) SATINX = 25
CONTINUE
C THE LAST THREE ARGUMENTS Y.Y.Y) HAVE BEEN CHANGED TO
C SATVAL.SATVAL, SATVAL) TO SUIT WATFIV...THEY HAVE NO
C FUNCTION WITHIN SPEPRT.
C
                                                                                                                                                                                                                                                        00023270
00023280
00023290
00023300
                                                                                                                                                                                                                                                        00023310
00023320
00023330
00023340
        FUNCTION WITHIN SPERT.

WHH RTI 4/30/78

CALL SPERT(1,MASS,Y,SATVAL,SATVAL,SATVAL)
THE LAST TWO ARGUMENTS Y,Y) HAVE ALSO BEEN CHANGED TO SATVAL,SATVAL)
TO SUIT WATFIV... THEY HAVE NO APPARENT FUNCTION INSIDE SPERT
WHH RTI 4/30/78
                                                                                                                                                                                                                                                        00023350
00023360
                                                                                                                                                                                                                                                         00023370
00023380
00023390
   Č
                       00023400
00023410
00023420
00023430
   C
```

```
LOCLBG = Y(1)
SUBTRACT LEFT POINT FROM ALL VALUES AS AN APPROXIMATION
OF BACKGROUND.THIS IS TO BE SYMMETRIC WITH MODEL PEAK.
STOPF = 8
                                                                                                                                                                                                                                                                                                        00023440
                                                                                                                                                                                                                                                                                                       00023440
00023450
00023460
00023470
00023480
00023490
00023500
00023510
00023520
č
                       IF (LSTOP .NE. 0) GO TO 90
STOPF = 1
GO TO 105
                       CONTINUE
DO 100 I = 1.LSTOP
Y(I) = Y(I) - LOCLBG
CONTINUE
90
                                                                                                                                                                                                                                                                                                       00023530
00023540
00023550
105
                        CONTINUE
IF (STOPF .EQ. 1 .AND. RSTART .GT. NPTS) GO TO 900
IF UE GO TO 900 IT MEANS ALL VALUES ARE SATURATED
IF (RSTART .GT. NPTS) GO TO 120
DO 110 I = RSTART.NPTS
Y(I) = Y(I) - LOCLBG
                                                                                                                                                                                                                                                                                                       00023560
00023570
00023580
00023590
¢
                RATO = 0

RCOUNT = 0

IF (LSTOP .LT. 3) GD TO 300

DD 200 I = 3.LSTOP

GG = G(I-2)

IF (GG .LT. MINHGT ) GO TO 200

NOTE: MINGHT > 0

RATIOS(I) = Y(I) / GG

RATO = RATO + RATIOS(I)

RCOUNT = RCOUNT + 1

CONTINUE

CONTINUE

IF (RSTART .GT. 11) GD TO 350

DO 325 I = RSTART.11

GG = G(I-2)

IF ( GG .LT. MINHGT ) GO TO 325

RATIOS(I) = Y(I) / GG

RATO = RATO + RATIOS(I)

RCOUNT = RCOUNT + 1

CONTINUE

CONTINUE

CONTINUE

CONTINUE

IF (RCDUNT + C
110
                                                                                                                                                                                                                                                                                                       00023590
00023600
00023610
00023620
00023630
                                                                                                                                                                                                                                                                                                      00023640
00023650
00023660
00023660
00023680
00023690
00023710
00023720
00023720
C
200
300
                                                                                                                                                                                                                                                                                                       00023740
00023750
                                                                                                                                                                                                                                                                                                       00023760
00023770
00023770
00023790
00023800
                       CONTINUE
CONTINUE
IF(RCDUNT .LE. 1) GO TO 900
ABOVE TAKES CARE OF SUPER SATURATION
RATO = RATO/RCOUNT
IF(RATO .LE. 0) GO TO 900
THE ABOVE TAKES CARE OF A VERY FUNNY LOCAL BACKGROUND
RPKHGT = RATO * G(5)
THE ABOVE TAKES CARE OF SATURATED PEAKS WITH TO HIGH
OF BACKGROUND APPROXIMATIONS.
CALL SPEPRT(3,1,RPKHGT,LOCLBG,RATO,G(5))
RETURN
CONTINUE
                                                                                                                                                                                                                                                                                                      00023810
00023810
00023820
00023830
00023840
00023860
00023860
350
С
C
                                                                                                                                                                                                                                                                                                      00023870
00023890
00023910
00023910
00023930
00023930
00023950
                         CONTINUE
CALL SPEPRT(4,1,RPKHGT,RATO,RATO,RATO)
RETURN
900
                                                                                                                                                                                                                                                                                                       00023960
00023970
00023980
00023990
C THIS SUBROUTINE WAS INCORPORATED TO ACCOUNT FOR THE POSSIBILITY C OF DIFFERENT SCAN FUNCTIONS ON THE FINNIGAN QUADROPOLE SPECTROMETER AND TO ALLOW FOR MAGNETIC INSTRUMENTS IN THE FUTURE C UFH RTI 9/31/78
                                                                                                                                                                                                                                                                                                       00024000
00024010
                                                                                                                                                                                                                                                                                                       00024020
```

```
REAL FUNCTION SCAN(MASS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00024030
00024040
00024050
                                              INTEGER*4 MASS
REAL*4 HIMASS/450./.LOMASS/40./
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00024060
00024070
                                               RMASS * MASS
                                               SCAN=(RMASS-LOMASS)/(HIMASS-LOMASS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00024080
00024090
00024100
                                              RETURN
                                              END
                                               SUBROUTINE SETBUG (NNAME, EOF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00024110
 ε
        ### 20832) AND THE NATIONAL ARRONAUTICS AND SPACE ADMINISTRATION 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024150 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 00024250 0
                                               INTEGER CLNFLG
THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT
FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND
GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
(GRANT NGR-05-020-632).
COMMON ISVN8.ISVN9.ISVP8.ISVP9.SIGMA7.SATVAL.SATMAX
COMMON MODE1.MODE2.NLUCUT.NUPCUT.SATPKS(25).NSAT.EXPNAM(5)
REAL SATVAL
INTEGER AVGSPC(411).NAVG.HAVG
INTEGER AVGSPC(411).NAVG.HAVG
INTEGER EOF.LIBBLK.RDATE.LOMASS.HIMASS.ADS.POINTS.
ISPCNO.SPEC.NNAME(18)
COMMON /SCR/ LIBBLK(1824)
COMMON /SCR/ LIBBLK(1824)
COMMON /IMAD/ MAD
COMMON /IMAD/ MAD
COMMON /IMAD/ MAD
COMMON /AVG/ NAVG.HAVG
C READ IN RUN HEADER AND RETURN IF END OF FILE
CALL OPNRUN(LIBBLK.EOF)
IF (EOF.NE.0)RETURN
C HOUSE CLEANING FOR HISTORICAL VARIABLES STILL LEFT IN CLEANUP
NMASS=411
DO 10 1=1.2
18 RDATE(1)=LIBBLK(1+27)
C SETTING OF HIGH MASS. LOMASS AND OF * OF SPECTRA IN RUN
MASS=40
HIMASS=450
ADS=LIBBLK(38)
LOMASS=40
HIMASS=450
ADS=LIBBLK(36)
MAD=40-LOMASS
POINTS=40
C BY SERENDIPIDY NAME CAN BE MODIFIED TO CONTAIN THE RUN TITLE AND
C EXPNAM TO CONTAIN THE INSTRUMENT TYPE...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00024370
00024380
00024390
00024400
00024410
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00024430
00024440
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00024450
00024460
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00024470
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00024490
00024500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00024510
00024520
00024530
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00024540
00024550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00024560
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00024570
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00024580
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00024600
```

```
DO 20 I=1.10
20 NNAME(1)=LIBBLK(12+I)
DO 30 I=1.5
30 EXPNAM(1)=LIBBLK(7+I)
THE INTERNALS OF SETBUG HAVE BEEN MODIFIED SO AS TO
INCLUDE AN AVERAGING OVER THE INPUT SPECTRA
RTI - UFH 1/13/79
                                                                                                                                                                                                                                                                                                        00024610
                                                                                                                                                                                                                                                                                                        00024620
00024630
00024640
                                                                                                                                                                                                                                                                                                        00024650
                                                                                                                                                                                                                                                                                                        00024660
00024670
C INCLUDE AN AVERAGING OVER THE INPUT SPECTRA

C INITIALIZE MAIN SPECTRUM ARRAY IN CORE FOR ADDITION

DO 31 IK=1,411

31 SPEC(1,1K)=0

C READ IN NAVG SPECTRA FOR THE CURRENT CORE POSITION

DO 40 IJ=1,NAVG

IQUPD=8

C 10UPD ENSURES THAT THE QUE IN THE I/D ROUTINES IS

C UPDATED ONLY ONCE

C 114 TELLS WHICH QUEUE LOCATION TO UPDATE

IF(1J,EQ.HAVG)10UPD=1

CALL RDSPC(ISCND,AVGSPC,I,IQUPD,EOF)

IQUPD=0

IF(EOF,EQ.0)GD TO 34

C EOF HAS BEEN ENCOUNTERED BEFORE ALL 13 CORE POSITIONS WERE FILLED

WRITE(IPTR1,60)

60 FORMAT('-','**** UNABLE TO FILL 13 CORE POSITIONS - EOF ****')

STOP

34 CONTINUE

C NOW INCREMENT MAIN ARRAY IN CORE

DO 32 IK=1,411

32 SPEC(I,IK)=SPEC(I,IK)+AVGSPC(IK)

48 CONTINUE

C NOW DIVIDE BY NAVG IF NECESSARY
                                                                                                                                                                                                                                                                                                        00024680
00024690
00024700
                                                                                                                                                                                                                                                                                                        00024710
00024720
00024730
                                                                                                                                                                                                                                                                                                       00024740
00024750
00024760
00024770
                                                                                                                                                                                                                                                                                                        00024780
00024790
00024800
                                                                                                                                                                                                                                                                                                        00024810
00024820
                                                                                                                                                                                                                                                                                                        00024830
00024840
00024850
                                                                                                                                                                                                                                                                                                        00024860
00024870
                                                                                                                                                                                                                                                                                                        00024880
32 SPEC(1,1K)=SPEC(1,1K)+AVGSPC(40 CONTINUE
C NOW DIVIDE BY NAVG IF NECESSARY
IF (NAVG.EQ.1)GD TO 47
DO 46 IK=1,411
46 SPEC(1,1K)=SPEC(1,1K)/NAVG
47 CONTINUE
50 CONTINUE
C NOW SET INTERNAL SPECTRUM NUMBER
SPCNO=ISCNO-6**NAVG-HAVG
RETURN
END
                                                                                                                                                                                                                                                                                                        99924899
                                                                                                                                                                                                                                                                                                       00024900
00024910
                                                                                                                                                                                                                                                                                                        00024920
                                                                                                                                                                                                                                                                                                      00024930
00024940
00024950
00024960
                                                                                                                                                                                                                                                                                                       00024970
00024980
                                                                                                                                                                                                                                                                                                       00024990
00025000
                            FND
                                                                                                                                                                                                                                                                                                      80025000
80025010
80025020
80025030
80025040
80025050
90025060
80025060
                            SUBROUTINE SETGHY(NS.M.GNU.HNU.GPOS.HPOS.ISW.GMX)
  םטטטט :-
                               *** THIS ROUTINE ACTUALLY DOES THE SETUP AND
*** INTERPOLATION PRIOR TO DOUBLET RESOLUTION
*** IT CALLS THE DOUBLET RESOLVER.
                           INTEGER NAME.RDATE.BITMAP.GCTIME.LIBMAP.INTEG.LOMASS
INTEGER HIMASS.POINTS.TAPCNT.MAXSP.LSTCNT.DEVICE.SPCNO
INTEGER SPEC.IND.IR.BK.NM.NTM
INTEGER GPEAK.SPARE1.SPARE2.SPARE3.SPARE4.SPARE7
SPARE5.SPARE6
INTEGER GPOS.HPOS
INTEGER NUSPEC.NMASS.OVLAP.ISW
INTEGER STORE
REAL ISVPB.ISVP9
REAL JRYPS.
                                                                                                                                                                                                                                                                                                      00025070
00025090
00025100
00025110
00025120
                                                                                                                                                                                                                                                                                                      00025130
00025140
                                                                                                                                                                                                                                                                                                        00025150
                                                                                                                                                                                                                                                                                                      00025160
00025170
                            REAL
                                                            DMX
                                                            GMX
                            REAL
  C
                                                                                                                                                                                                                                                                                                        00025180
```

```
DIMENSION GNU(18).HNU(18).Y(18)
CONTION PKHIST(20).NPHIST(20)
CONTION PKHIST(20).NPHIST(20)
CONTION YTS.YM4.YM3.YM2.YM1.Y0.YP1.YP2.YP3.YP4.YP5
CONTION GM4.GM3.GM2.GM1.G0.GP1.GP2.GP3.GP4
CONTION SG.SG2.SIG.S1.S12.AN.AB.BB.CC.DD
CONTION NAME(32).RDATE(5).BITMAP(64).GCTIME
CONTION LIBMAP(17).INTEG.LDMASS.HIMASS.POINTS.TAPCNT
CONTION MAXSP.LSTCNT.DEVICE(5).SPCNO
CONTION SPEC(14.411).IND(3.411).NUSPEC(411).NMASS
CONTION SPACE(14.411).IND(3.411).NUSPEC(411).NMASS
CONTION SPACE(11.SPARE2.SPARE3.SPARE4.SPARE5.SPARE6.SPARE7
CONTION RATMIN.RATEMX.SIGY0.SIGNAT.SIGLST
CONTION MODEI.HMDDE2.NLUCUT.NUPCUT.SATPKS(25).NSAT.EXPNAM(5)
CONTION MODEI.HMDDE2.NLUCUT.NUPCUT.SATPKS(25).NSAT.EXPNAM(5)
CONTION MODEI.HMDDE2.NLUCUT.NUPCUT.SATPKS(25).NSAT.EXPNAM(5)
CONTION MODEI.HMDE2.NLUCUT.NUPCUT.SATPKS(25).NSAT.EXPNAM(5)
CONTION CRATMX.RATMXX
INTEGER BEDROK
DATA BEDROK/40/
                                                                                                                                                                                                                                                                         88825198
                                                                                                                                                                                                                                                                        00025200
00025210
00025220
00025230
                                                                                                                                                                                                                                                                         00025240
00025250
                                                                                                                                                                                                                                                                        00025260
00025270
00025270
00025280
00025300
                                                                                                                                                                                                                                                                        00025310
00025310
00025320
00025330
00025340
00025350
                     DATA BEDROK/40/
                                                                                                                                                                                                                                                                         00025360
                                                                                                                                                                                                                                                                       90025360
90025370
90025380
90025390
90025400
90025410
90025410
90025430
90025430
90025440
90025460
90025460
90025590
90025590
90025590
                        DO ROTARY BUFFER INDEXING OF SPEC(14.NUMMASSES)
                  DD KUIRC,

J = 13

DO 1000 I=1,13

K = J - 1

IJ = NS - K - 14 * ((NS - J)/14)

Y(I) = SPEC(IJ,M)

J = J - 1

J = J - 1
1000
                      DO NOT LET ANY PEAKS WITH SATURATED VALUES IN THEIR PROFILES PASS THROUGH DOUBLET RESOLVER.

DO 50 I= 1.11
IF ( Y(1) .GE. SATVAL ) GO TO 5
Ë
                       CONTINUE
50
                                                                                                                                                                                                                                                                          00025520
00025530
LE TRY TO ELIMINATE BACKGROUND PEAKS FROM PASSING THROUGH DOUBLET FILTER: SO, LET K1 = .0125 * Y(7), AND K2 = .0125 * G(7). THEN: LIMERE M = MAX+K1, K20, LET D = MIN+M-700, AND D = MAX+D-300 (UE USE AN ABSOLUTE MAX OF 70 SO AS NOT TO MISS HIGH MASS PEAKS WITH SMALL CONTRIBUTIONS WHEN THE BASE PEAK IS LARGE, AND A MIN OF 30 FOR LOW AMPLITUDE DRIBBLE.)
                                                                                                                                                                                                                                                                         00025540
00025550
00025560
00025570
                                                                                                                                                                                                                                                                         00025570
00025580
00025590
00025600
00025610
00025630
00025640
                       . * * Y(7)
                                                                                                                                                                     ---- + Y(7) - E
                                                                                                                                                                                                                                                                         90025640
90025650
90025670
90025670
90025690
90025700
90025710
90025720
                       IF THE FRAGMENTOGRAM STAYS IN THE ABOVE ENVELOPE FROM Y(3) TO TO Y(11). THEN WE CONSIDER IT A BACKGROUND PEAK.
                       D = .0125
K1 = D * Y(7)
LE MUST RECALL THAT G(7) HAS BEEN NORMALIZED IN GETHGT
K2 = D * GNU(7)/GMX
DMX = K1
IF ( DMX .LT , K2 ) DMX = K2
DMX IS MAX+K1.K20
IF ( DMX .GT. 70) DMX = 70
 C
                                                                                                                                                                                                                                                                           00025730
00025740
                                                                                                                                                                                                                                                                            90025759
 C
                                                                                                                                                                                                                                                                           00025760
```

```
DMX = MIN+DMX.700
IF(DMX .LT. BEDROK ) DMX = BEDROK
DMX = MAX+BEDROK.DMX0
E1 = Y(7) + DMX
E2 = Y(7) - DMX
D0 100 I = 3.11
IF (Y(I) .GT. E1 +OR. Y(I) .LT.
CONTINUE
                                                                                                                                            00025770
C
                                                                                                                                            00025780
                                                                                                                                             00025790
C
                                                                                                                                            00025800
00025810
                                                                                                                                            00025820
00025830
00025840
                                                •OR. Y(1) .LT. E2) GO TO 200
 188
                                                                                                                                            00025850
00025860
            GHGT
            RETURN
CONTINUE
                                                                                                                                             00025870
                                                                                                                                            00025880
00025890
00025990
00025910
00025920
00025930
              WE NOW TRY TO ELIMINATE LOCALLY "NEARLY LINEAR" CONTRIBUTIONS BY FITTING A LINE TO THE LOCAL FRAGMENTOGRAM IN A LEAST SQUARES WAY, AND EXAMINING
                      RATIO = (ROOT MEAN SQUARE ERROR)/(AVERAGE VALUE OF Y(I))
                                                                                                                                            00025940
00025950
00025960
              THIS TEST HAS BEEN VERY SUCESSFUL IN ELIMINATING COLUMN
    BLEED.

CALL BLEED(Y(5).RATIO)

THIS MOD INSERTED ON A TEMPORARY BASIS TO GATHER STATISTICS
ON ERROR RATIO - CODE 3
                                                                                                                                            00025970
00025980
                                                                                                                                            00026000
מטטט
                                                                                                                                            00026010
00026020
00026030
                                                                          WFH RTI 9/31/78
            ITYP=3
ISPC=SPCNO
C URITE(20,6250) ITYP,ISPC.RATIO.RATIO
C6250 FORMAT(2A4,20X,2A4)
IF (RATIO GT. RATMXX) GO TO 290
GHGT = 0
                                                                                                                                            00026040
00026050
                                                                                                                                            00026060
          GHGT = 0
RETURN
CONTINUE
ALSO. IF Y(I) IS NON INCREASING FOR 1=4.9, IE,Y(I) .GE. Y(I+1),
THEN DON'T CONSIDER. AS IT IS EITHER BACKGROUND
OR TAIL OF PRECEDING PEAK
DO 300 I = 4.9
IF ( Y(I) .LT. Y(I+1) ) GO TO 400
CONTINUE
GHGT = 0
                                                                                                                                            00026070
                                                                                                                                            00026080
290
C
                                                                                                                                           00026090
00026100
00026110
00026120
                                                                                                                                            00026130
00026140
                                                                                                                                            00026150
                                                                                                                                           00026160
00026170
00026180
00026190
            GHGT = 0
RETURN
 400
            CONTINUE
   00026200
00026210
00026220
00026230
00026230
00026250
מטטט
C
                                                                                                                                            00026260
00026270
00000000
                                                                                                                                           00026280
00026290
              *** NOW USE LEAST SQUARES DOUBLET RESOLVER TO GET *** THE AMPLITUDE OF THE COMPONENT AT THE DETECTED SPECTRUM.
                                                                                                                                           00026300
00026310
00026320
                                                                                                                                            00026330
            IHSPEC = 6+(HPOS-1)/3
                                                                                                                                            00026340
```

```
C
                      IHSPEC = 6 - 11
                                                                                                                                                                                                        00026350
                  STORE = 0
STORE WILL BE SET 1 BY DUBLET IF M QUALIFIES FOR NEW AMPLITUDE.
CALL DUBLET (GNU, HNU, Y, STORE, M, IMSPEC, GHGT, ISW, NS)
                                                                                                                                                                                                        00026360
00026370
00026360
 C
 000000
                                                                                                                                                                                                        00026390
00026400
                     SAVE THE COMPONENT CONTRIBUTING TO THE DETECTED SPECTRUM.
                                                                                                                                                                                                        00026410
                     SAVE CONTRIBUTION WITH MINIMUM ERROR.
                                                                                                                                                                                                         00026430
                                                                                                                                                                                                        00026440
00026450
                   IF (GHGT .GT. 32767) GHGT = 32767
MADE SURE NO INTEGER OVERFLOW
IF (GHGT .LE. 10) GHGT = 0
HE IGHTS LE 10 ARE CONSIDERED ARTIFACTS OF THE DOUBLET RESOLVER
IF (STORE .EQ. 1) NUSPEC(M) = GHGT
  C
                                                                                                                                                                                                        00026460
00026470
  C
                                                                                                                                                                                                        00026480
C THIS SUBROUTINE DOES ALL PRINTING
C FOR CLEANUP. PLEASE USE IT TO ADD NEW PRINTING
IN ANY SUBROUTINE.
C THE CALL STATEMENT ALLOWS FOR PASSING OF ARRAYS
C REALS AND INTEGERS.
C THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT
C FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND
C GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
C GRANT NGR-05-020-632).
SUBROUTINE SPEPRT(N.IAR.AR.RI.R2.R3)
INTEGER N.IONE.NINE.MAD
REAL RI.R2.R3
C THE DIMMENSIONS OF AR AND IAR HAVE BEEN SET TO (1).(1) FROM
C TO HELP WITH WATFIV....

LIFH PTI 4/78/70
                                                                                                                                                                                                        00026490
  <u>C</u>
                                                                                                                                                                                                        00026500
00026510
00026520
                                                                                                                                                                                                        00026530
00026540
                                                                                                                                                                                                        00026550
00026560
00026570
00026580
                                                                                                                                                                                                         00026590
                                                                                                                                                                                                        00026600
                                                                                                                                                                                                        00026610
00026620
                                                                                                                                                                                                         00026630
                                                                                                                                                                                                         00026640
                                                                                                                                                                                                         00026650
                                                                                                                                                                                                        00026660
00026678
00026680
00026690
                    DIMENSION IAR(1), AR(1)
                   DIMENSION IAR(I).AR(I)
COMMON /DUBBUG/IFLAG
COMMON /IMAD/MAD
COMMON /UNITS/ IRDR.IPTRI.IPTR2.IPTR3.IIN.IOUT
DATA IONE.NIME/1.9/
IFLAG IS RESET IF NO PRINTING IS TO BE DONE/
IF (IFLAG.EO.9) RETURN
GO TO (40.50.60.70).N
THE ABOVE IS A CASE STATEMENT FOR EXECUTING PRINT
OPTIONS.C
NOW DO STALSO OUTPUT
IIAR=IAR(I)-MAD
URITE(IPTR2.600) IIAR
                                                                                                                                                                                                        00026700
00026710
00026720
00026730
00026740
00026750
   C
                                                                                                                                                                                                        00026750
00026760
00026770
00026780
00026790
   48
                     WRITE(IPTR2,600) IIAR
                                                                                                                                                                                                         00026810
                     RETURN
                    THE ABOVE WRITE IS FOR MASS OF SATURATION WRITE(IPTR2,550) R1
WRITE(IPTR2,610)
IUP = IAR(1)
WRITE(IPTR2,535) (AR(I),I=IONE,IUP)
BETIEN
                                                                                                                                                                                                         00026820
   C
50
                                                                                                                                                                                                        00026830
00026840
00026850
00026860
                                                                                                                                                                                                         00026870
00026880
                    RETURN
WRITE(IPTR2.800)
WRITE(IPTR2.560) AR(1).R1.R2.R3
WRITE(IPTR2.900)
    60
                                                                                                                                                                                                          00026890
                                                                                                                                                                                                         00026900
                        URITES RPKHGT LOCAL BACKGROUND RATIO.G(5)
                                                                                                                                                                                                         00026910
    C
                                                                                                                                                                                                         00026920
                     RETURN
```

```
00026930
00026940
00026950
70
C
                 WRITE(IPTR2,700)
THE ABOVE WRITES SATURATED DEFAULT VALUE.
    THE ABOVE URITES SATURATED DEFAULI VALUE.

RETURN

FORMAT STATEMENTS FOLLOW.

SO FORMAT(.8X.7F7.0./.8X.6F7.0./)

FORMAT(8X./' SATURATED VALUE = '.F7.1)

FORMAT(8X./' PEAK HEIGHT = '.F7.0./.8X.' BACK GROUND = '.F7.0.

-/.8X.' PEAK TO MODLEL RATIOS AVERAGE. RATIO = '.E15.8./.8X.

-/. (G(5) = '.F7.0./)

SO FORMAT(.' SATURATION ENCOUNTERED. MASS = '.14./)

FORMAT(.' SATURATION ENCOUNTERED './.8X.

-PEAK HEIGHT DEFAULTS TO MAXIMUM VALUE '//)

BO FORMAT(.' SATURATED PEAK ANAYLSIS '/)

900 FORMAT(.' NOTE: PEAK HEIGHT = RATIO X G(5)'/)

END

END
C
535
550
                                                                                                                                                                                                                   00026960
                                                                                                                                                                                                                   96026989
                                                                                                                                                                                                                   00026990
568
                                                                                                                                                                                                                 00025950
00027000
00027010
00027020
00027030
00027040
600
700
                                                                                                                                                                                                                 00027050
00027050
00027060
00027070
00027080
00027190
00027190
00027120
00027130
00027140
00027150
00027160
00027160
00027160
00027190
00027200
00027200
00027200
00027230
00027230
00027230
00027330
00027330
800
END
SUBROUTINE TIMESF (DELTIM, Y, N, GTIME)
REAL GTIME
INTEGER N
REAL RATE, DELTIM
C Y HAS BEEN REDIMENSIONED DOWN FROM 15 TO 1
C TO MAKE THIS THING WATFIV COMPATABLE - WFH RTI 4/25/78
DIMENSION Y(1)
                    THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (GRANT NGR-05-020-632).
                     THIS SUBROUTINE TIME ALIGNS A PEAK AT A GIVEN MASS
THE SAME TIME CO-ORDINATE SYSTEM AS THE MODEL'S MAS
(THE TIME CO-ORDINATE IS GTIME FOR MODEL)
                                                                                                                                                                MASS.
                                     DELTIM=(M-LOMASS)/(HIMASS-LOMASS)
                                      Y IS THE ABCISSAS OF THE FRAGMENTOGRAM AT MASS M.
                    THIS ALIGNMENT IS DONE BY A CUBIC FIT USING LAGRANGE'S METHOD.I.E., GIVEN THE 4 POINTS X8,X1,X2,X3, WE FIND L(X) AS FOLLOWS:
                                                                                                                                                                                                                 00027330
00027340
00027350
00027360
00027370
00027380
00027390
00027410
                                     L(X)=+(X-X1)(X-X2)(X-X3)/((X0-X1)(X0-X2)(X0-X3))@Y0 +
+(X-X0)(X-X2)(X-X3)/((X1-X0)(X1-X2)(X1-X3))@Y1 +
+(X-X0)(X-X1)(X-X3)/((X2-X0)(X2-X1)(X2-X3))@Y2 +
+(X-X0)(X-X1)(X-X2)/((X3-X0)(X3-X1)(X3-X2))@Y3
                                     WITH THE X'S INTEGRALLY SPACED.
                    IN EACH CASE WE INTERPOLATE FOR A NEW MIDDLE POINT.OR L(X1+DX). SO. THE ABOVE EQUATION REDUCES TO
                                                                                                                                                                                                                 00027410
                                                                                                                                                                                                                  00027430
                                      L(X1+DX) = C0 * Y0 + C1 * Y1 + C2 * Y2 + C3 * Y3
                                                                                                                                                                                                                 00027440
00027450
                    C0 = DX * (DX-1)(DX-2)/-6
C1 = (DX+1)(DX-1)(DX-2)/2
C2 = (DX+1)(DX)(DX-2)/-2
                                                                                                                                                                                                                  00027476
                    C2 = (DX+1) (DX) (DX-2)/-
C3 = (DX+1) (DX) (DX-1)/6
                                                                                                                                                                                                                  00027480
                                                                                                                                                                                                                  00027490
                                                                                                                                                                                                                  00027500
```

```
WHERE DX - GTIME - DELTIM
                                                                                                                                                                                                                                                                                                                         00027510
00027520
00027530
00027550
00027550
00027560
00027560
00027590
00027590
                         INTEGER I
REAL C1.C2.C3.DTIME
REAL Y1.Y11.YMID.K1.K2.K3.K4.DXPOS
DIMENSION YOLD(15)
CCC
                          DO 50 I=1.M
YOLD(I) = Y(I)
CONTINUE
                                                                                                                                                                                                                                                                                                                        00027610
00027630
00027630
00027630
00027650
00027660
00027660
00027690
00027700
00027700
00027700
00027700
00027700
00027700
00027700
00027700
00027700
00027700
00027700
00027700
00027700
00027700
00027700
00027700
00027700
00027810
00027810
00027810
00027810
00027810
00027810
00027810
00027810
00027900
00027910
00027910
00027910
00027910
00027910
50
מממ
                               SAVED OLDIES
                       DX = GTIME - DELTIM

DXPOS = DX

IF ( DXPOS .LT. 0 ) DXPOS = -DX

IF ( DXPOS .LT. 0.00001) RETURN

DON'T INTERPOLATE FOR SMALL VALUES OF DX

K1 = DX - 1

K2 = DX - 2

K3 = DX + 1

K4 = DX + 2

C1 = (DX * (K1) * (K2))/(-6)

C2 = ((K3) * (K1) * (K2))/(-2)

C3 = ((K3) * (DX) * (K1))/6
C
200
                                INTERPOLATE
                           JN = N - 2

DO 100 I=2.JN

Y(I)=C1*YDLD(I-1) + C2*YOLD(I) + C3*YOLD(I+1) + C4 * YOLD(I+2)

CONTINUE
 100
                          E1= C4
E1= C4
E2= ((K4) * (DX) * (K1))/2
E3= ((K4) * (K3) * (K1))/(-2)
E4= ((K4) * (K3) * (DX))/6
NN = N - 1
Y(NN) = Y(N-3) * E1 + Y(N-2) * E2 + Y(NN) * E3 + Y(N) * E4
C
                           DO 275 I = 2,NN
IF(Y(1) .LT. 0) Y(1) = 0
CONTINUE
 275
                            RETURN
                          END
SUBROUTINE TLOC(NS.MI.M2.M3.IFOUND.EDF)
THIS COMPUTER PROGRAM WAS DEVELOPED WITH THE FUNDING SUPPORT
FROM THE NATIONAL INSTITUTES OF HEALTH (GRANTS RR-612 AND
GM-20832) AND THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
(GRANT NGR-05-020-632).
**** THE MAIN FUNCTION OF THIS ROUTINE IS TO EXAMINE
**** THE CURRENT DATA IN THE PROCESSING WINDOW
**** AND DETECT WHEN THERE IS A COMPONENT PRESENT IN THE
**** WINDOW. THIS IS DONE BY KEEPING A HISTOGRAM OF
**** HOW MANY PEAK MODES ARE MAXIMIZING WITHIN
**** THE WINDOW. A HISTOGRAM IS ALSO KEPT OF THE
                            END
                                                                                                                                                                                                                                                                                                                        00027990
00028000
00028010
00028020
00028030
                                                                                                                                                                                                                                                                                                                        80028040
80028050
60028060
60028060
                                                                                                                                                                                                                                                                                                                         00028080
```

```
*** 10N CURRENTS ASSOCIATED WITH THE PEAKS THAT ARE

*** ARE MAXIMIZING. THIS LATTER MEASURE IS MORE

*** EFFECTIVE FOR COMPONENT DETECTION. AN INDEX

*** SET IS KEPT OF THOSE MASSES THAT HAVE MAXIMIZED

*** IN THE WINDOW (ARRAY 'IND'). DURING THIS WHOLE

*** PROCESS A MODEL PEAK FOR THE COMPONENT IS ALSO

*** CHOSEN 'GPEAK' USING A SHARPNESS CRITERION.

PARAMETER EOF ADDED - SEE COMMENT NEAR CALL STMT IN MAIN

WEH RTI 9/31/78

INTEGER NAME.RDATE.BITMAP.GCTIME.LIBMAP.INTEG.LOMASS

INTEGER HIMASS.POINTS.TAPCHT.MAXSP.LSTCHT.DEVICE.SPCHO

INTEGER SPEC.IND.IR.BK.NM.NTM.RECHO.FLAG.KSTOR(50).MAD.

IKMAD(2.58)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00028090
 0000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00028100
00028110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00028130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00028140
00028150
00028160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00028160
00028170
00028180
00028190
00028200
00028210
00028220
00028230
00028240
00028250
00028250
INTEGER SPEC. IND. IR.BK.NM.NTM.RECNO.FLAG.KSTOR(5)
IKMAD(2.58)
INTEGER NUSPEC.NMASS.OVLAP.EOF
INTEGER MODBKG.LOCLBG
INTEGER GPEAK.SPARE1.SPARE2.SPARE3.SPARE4.SPARE7
INTEGER FSTREC.AJACEN.AHEAD
REAL SPARE5.SPARE6
C THIS HAS BEEN INSERTED FOR THE AVERAGING FACILITY
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00028270
00028280
                                                                                                                                                                                                                                                                   RTI WFH 1/14/79
            INTEGER NAVG.HAVG.AVGSPC(411)
REAL **8 TLC/* TLOCXX */
REAL ISVP8.ISVP9
THE IDENTIFIER DIB HAS BEEN CHANGED TO SCAN TO MAKE
LIAY FOR THE NEULY INCORPORATED FUNCTION SUBROUTINE
LIFH RTI 9/31/78
REAL F1.F2.F3.YTOP.HIST(7).SLOPE.SCAN
CONTRON PKHIST(20).NPHIST(20)
CONTRON YTTS(11)
FORTON GHA.GM3.GM2.GM1.GR.GP1.GP2.GP3.GP4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00028280
00028290
00028300
00028310
00028320
00028330
00028340
00028350
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00028350
00028360
00028370
00028380
00028390
00028400
00028410
                                        COMMON PKHIST(20), NPHIST(20)
COMMON PKHIST(20), NPHIST(20)
COMMON GMA,GM3,GM2,GM1,G0,GP1,GP2,GP3,GP4
COMMON GMA,GM3,GM2,GM1,G0,GP1,GP2,GP3,GP4
COMMON SG,SG2,SIG,SI,SI2,AN,AA,BB,CC,DD
COMMON NAME(32),RDATE(5),BITMAP(64),GCTIME
COMMON LIBMAP(17),INTEG,LOMASS,HIMASS,POINTS,TAPCNT
COMMON MASSP,LSTCNT,DEVICE(5),SPCNO
COMMON RYAX(3),IR(3),BK(3),NM(3),NTM(3),GPEAK(3,11)
COMMON RYAX(3),IR(3),BK(3),NM(3),NTM(3),GPEAK(3,11)
COMMON SPARE1,SPARE2,SPARE3,SPARE4,SPARE5,SPARE6,SPARE7
COMMON SPARE1,SPARE2,SPARE3,SPARE4,SPARE5,SPARE6,SPARE7
COMMON SYMB,ISVM9,ISVM9,ISVM9,ISVM9,SATVAL,SATMAX
COMMON MODE1,MODE2,NLWCUT,NUPCUT,SATPKS(25),NSAT,EXPNAM(5)
COMMON MODE5/SGMODE(3),SHMODE(3),GMODE,HMODE
COMMON MODES/SGMODE(3),SHMODE(3),GMODE,HMODE
COMMON MASSES/ISGMAS(3),ISHMAS(3),IGMASS,IHMASS
COMMON MAJACHT/AJACEN(2)
COMMON MAJACHT/AJACEN(2)
COMMON MAJACHT/AJACEN(2)
COMMON MAJACHT/AJACEN(2)
COMMON MAJACHT/AJACEN(2)
COMMON MAJACHT/AJACEN(4)
COMMON MAJACHT/AJACEN(4)
COMMON MAJACHT/AJACEN(5)
COMMON MAJACHT/AJACEN(5)
COMMON MAYOR NAVG,HAVG
COMMON MAYOR SARSES OF SINGLETS IN HISTOGRAMS.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00028430
00028440
00028450
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00028460
00028470
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00028430
00028490
00028500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00028510
00028520
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00028530
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00028540
00028550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00028560
00028570
   C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00028590
00028600
                                          COMMON /IMAD/MAD

MSINGS SAVES MASSES OF SINGLETS IN HISTOGRAMS.

EQUIVALENCE (YM4, YM5(2))

EQUIVALENCE (YM3, YM5(3)), (YM2, YM5(4)), (YM1, YM5(5))

EQUIVALENCE (YB, YM5(6)), (YP1, YM5(7)), (YP2, YM5(8))

EQUIVALENCE (YP3, YM5(9)), (YP4, YM5(10)), (YP5, YM5(11))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00028610
00028620
   C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00028630
00028640
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00028660
```

```
DATA HIST/-.3333.0...3333..6667,1.0,1.3333.1.6667/
*** CIRCULAR QUEUE TO CONTROL CURRENT DATA SET

11=NS-13-14*((NS-14)/14)

12=NS-12-14*((NS-13)/14)

13=NS-11-14*((NS-12)/14)

14=NS-10-14*((NS-10)/14)

15=NS-9-14*((NS-10)/14)

15=NS-9-14*((NS-9)/14)

17=NS-7-14*((NS-9)/14)

18=NS-6-14*((NS-9)/14)

19=NS-5-14*((NS-6)/14)

110=NS-4-14*((NS-6)/14)

111=NS-3-14*((NS-6)/14)

112=NS-2-14*((NS-3)/14)

113=NS-1-14*((NS-3)/14)

113=NS-1-14*((NS-1)/14)

114=NS-14*((NS-1)/14)

*** READ IN NEXT SPECTRUM

NOTE: NS = 14.15....MAXSPEC - 10

FIRST RECORD TO BE READ IS NUMBER 13.

RECNO = NS
                                                                                                                                                                                                                                                                                                                                                                                        00028670
C
                                                                                                                                                                                                                                                                                                                                                                                        00028680
00028690
                                                                                                                                                                                                                                                                                                                                                                                       00028690
00028710
00028710
00028720
00028730
00028730
00028750
00028760
00028760
                                                                                                                                                                                                                                                                                                                                                                                        00028780
00028790
                                                                                                                                                                                                                                                                                                                                                                                        00028800
00028810
00028620
00028330
 000
                                                                                                                                                                                                                                                                                                                                                                                         00028840
                                                                                                                                                                                                                                                                                                                                                                                        00028850
00028860
                                 FIRECNO = NS
INSLT=1
                                                                                                                                                                                                                                                                                                                                                                                        00028870
00028880
C THE PRIMARY INPUT STATEMENT HAS BEEN MODIFIED TO INCLUDE C AN AVERAGING FACILITY OVER NAVG INPUT SPECTRA RTI - WFH 1/13/79
                                                                                                                                                                                                                                                                                                                                                                                        00028890
00028900
00028910
00028920
C INITIALIZE CURRENT SPECTRUM IN CORE

DO 90 IK=1.411

90 SPEC(114.1K)=0

C ADD AS MANY INPUT SPECTRA AS NECESSARY TO CORE SPECTRUM

DO 92 IJ=1.NAVG

C IQUPD ENSURES THAT THE QUEUE DOWN INSIDE THE READ ROUTINES IS

C UPDATED ONLY ONCE OVER THE SPREAD OF NAVG INPUT SPECTRA

IQUPD=0

IF (1J.EO.HAVG) IQUPD=1

C IQUPD TELLS WETHER OR NOT TO UPDATE READ ROUTINE QUEUE

C 114 TELLS RDSPC QUEUE POSITION

CALL RDSPC(ISCNO.AVGSPC.114.1QUPD.EOF)

IQUPD=0

IF (EOF.EQ.0)GO TO 4
                                                                                                                                                                                                                                                                                                                                                                                        00028930
                                                                                                                                                                                                                                                                                                                                                                                         00028950
                                                                                                                                                                                                                                                                                                                                                                                        00028960
                                                                                                                                                                                                                                                                                                                                                                                        00028970
00028980
                                                                                                                                                                                                                                                                                                                                                                                        00028990
00029000
00029010
00029020
                                                                                                                                                                                                                                                                                                                                                                                        00029020
00029040
00029040
00029050
00029070
00029080
00029090
00029110
00029110
 IQUPD=0

IF (EQF.EQ.0)GO TO 4

RETURN

C READ ONWARD...

4 CONTINUE

DO 97 IK=1,411

97 SPEC(114.IK)=SPEC(114.IK)+AVGSPC(IK)

92 CONTINUE

C DIVIDE AS NECESSARY

IF (NAVG.EQ.1)GO TO 94

DO 95 IK=1,411

95 SPEC(114.IK)=SPEC(114.IK)/NAVG

94 CONTINUE

C NOW UPDATE SPECTRUM NUMBER

SPCNO=1SCNO-7*NAVG+HAVG-1

C THE FOLLOWING TEN STMENTS OR SO HAVE BEEN DISCARDED

C TO MAKE WAY FOR MULTIPLE RUN PROCESSING AS WELL

C AS THE CONTION BLOCK /CRAUBU/ AS NEITHER SERVES ANY

C USEFULL PURPOSE.
                                                                                                                                                                                                                                                                                                                                                                                        00029120
00029130
00029140
00029150
00029160
00029160
00029160
                                                                                                                                                                                                                                                                                                                                                                                          00029200
                                                                                                                                                                                                                                                                                                                                                                                          00029220
00029230
00029240
              USEFULL PURPOSE.
                                                                                                                                                      WFH - RTI
12/6/78
                                                                                                                                                                                                                                                                                                                                                                                          80029258
```

```
C 2
C 3
C 3
C 620
C 10
          GO TD 620
URITE(1PTR2.31)
2 CALL TLPRNT(3.NPHIST.PKHIST.XY.XY.XY.1.1.1)
STOP 16
31 FORMAY(* ****FATAL READ ERROR ON MAIN INPUT FILE-IN TLOC****)
                                                                                                                                                                                                                                                                          00029260
00029270
00029280
00029290
00029300
                                                                                                                                                                                                                                                                           00029310
00029320
00029330
                     RETURN
DO 10 M=1.NMASS
SPEC(114.M) = RAUBUF(M)
NOW, WE'RE OFF AND RUNNING WHILE THE DISK IS HUMMING ...
NS3=NS-11
M3=NS-3**((NS3-1)/3)
M2=NS3-1-3**((NS3-2)/3)
M1=NS3-2-3**((NS3-3)/3)
RMAC(M3)=0
SCMOINE(M3)=0
BK(M3)=0
IR(M3)=0
ISGMAS(M3) = -1
NMAX=0
SIGMAT=0.0
                       RETURN
                                                                                                                                                                                                                                                                         00029340
00029353
00029360
00029370
                                                                                                                                                                                                                                                                         90029379
90029380
90029390
90029400
90029410
                                                                                                                                                                                                                                                                          00029430
00029440
00029450
                     NMAX=0
SIGMA7=0.0
IFLAG(M3) = 0
NAVE = 0
LINGS IS SET UP IN NXTMAX AND CONTAINS STUFF FROM HIST 10.11
WHICH BECOMES HIST OF 7.8 HERE.
DO 12 I = 1.50
MSINGS(IH1.) = MSINGS(IH2.1)
MSINGS(IH2.I) = LINGS(I)
SET MINX FOR STORING IN MSINGS.
DO 13 I = 1.49
IF (LINGS(I) .EQ. 0) GO TO 14
CONTINUE
                                                                                                                                                                                                                                                                          00029460
00029470
                                                                                                                                                                                                                                                                          00029480
ç
                                                                                                                                                                                                                                                                           00029500
                                                                                                                                                                                                                                                                           00029510
12
C
                                                                                                                                                                                                                                                                           00029520
                                                                                                                                                                                                                                                                          00029530
00029540
                                                                                                                                                                                                                                                                         00029550
00029560
                       CONTINUE
 13
14
                      MINX = I
LINX = I
DO 17 J = 1.I
LINGS(J) = 0
                                                                                                                                                                                                                                                                         00029570
00029580
                                                                                                                                                                                                                                                                         00029590
00029600
 17
                       NINX = 1
DO 18 I = 1.50
IF(MSINGS(1H1.1) .EQ. 0 ) GO TO 19
                                                                                                                                                                                                                                                                         00029610
00029620
                                                                                                                                                                                                                                                                        00029620
00029630
00029650
00029650
00029670
00029680
00029680
                     IF (MSINGS(MI.1) .EU. 8 ) GD 10 19
CONTINUE
CONTINUE
CONTINUE
NINX = 1
OINX IS USED FOR STORING HISTOGRAMED MASSES IN H(5-6)
NOW MOVE DETECTION FLAG FOR PREVIOUS SPECTRUM INTO
THE FLAG FOR ITS IMMEDIATE PREDECESSOR. THIS IS USED
IN GETHGT SO SINGLETS FROM IMMEDIATED PREDECESSORS
ARE NOT INCLUDED IN THEIR IMMEDIATE SUCESSORS.
AJACEN(1) = AJACEN(2)
AJACEN(2) = 0
LOUP THROUGH ALL MASSES AND RESET FOUND INDICES.
DO 15 M=1.411
IND(M3.M)=0
NPHIST(8) = ISVN8
NPHIST(9) = ISVN9
PKHIST(9) = ISVP9
DO 16 J=1.6
PKHIST(J) = PKHIST(J+3)
CONTINUE
 18
                       CONTINUE
 00000
                                                                                                                                                                                                                                                                        0002959
00029710
00029710
00029720
00029740
00029740
00029760
00029760
00029780
00029780
Ω
                                                                                                                                     AND RESET FOUND INDICES.
 15
                                                                                                                                                                                                                                                                         00029810
00029820
 16
                                                                                                                                                                                                                                                                         00029830
```

```
PKHIST(1) *PKHIST(4) .... PSHIST(6) *PKHIST(9)
PKHIST(7) = (SPARE5)
PKHIST(8) = (SPARE6)
PKHIST(9) = 0
DD 231 J = 1.6
NPHIST(J) = NPHIST(J+3)
CONTINUE
NPHIST(1) *NPHIST(4) .... NPHIST(6) *NPHIST(9)
NPHIST(7) = SPARE3
NPHIST(8) = SPARE4
NPHIST(8) = 0
NPHIST(10) = 0
NPHIST(10) = 0
NPHIST(11) = 0
PKHIST(11) = 0
PKHIST(11) = 0
DO 43 I = 2.5
AHEAD(I-1) = AHEAD(I)
AHEAD(S) = 0
THE ABOVE IS A BINARY LIST OF SPECTRA DETECT
C
                                                                                                                                                                                                                                                                                                                    00029840
                                                                                                                                                                                                                                                                                                                   00029850
00029860
00029870
00029890
                                                                                                                                                                                                                                                                                                                    00029890
231
                                                                                                                                                                                                                                                                                                                   00029890
00029900
00029910
00029920
00029930
00029940
                                                                                                                                                                                                                                                                                                                   00029960
00029970
                                                                                                                                                                                                                                                                                                                   00029980
00029990
00030000
  43
                               THE ABOVE IS A BINARY LIST OF SPECTRA DETECTED AHEAD.
WE SHIFT IT LEFT AT EACH NEW SPECTRUM SEARCH.IT IS
USED TO GUARANTEE ANY SPECTRUM DETECTED AHEAD IS ALWAYS
PROCESSED.
                                                                                                                                                                                                                                                                                                                   00030010
                                                                                                                                                                                                                                                                                                                   00030010
00030020
00030030
00030040
00030050
  חחחחחחח
         STATEMENT REMOVED BECAUSE NO LONGER NEEDED WITH SCAN ROUTINE WFH RTI 9/31/78
                                                                                                                                                                                                                                                                                                                  00030060
00030070
00030080
00030090
00030100
00030110
00030120
                           DIB = HIMASS - LOMASS
DO 70 M=1.411
RUN THROUGH MASSES
Y0=SPEC(18.M)
SAVE FOR CLEAN UP RATIO, TICRAT
SIGMA7 = SIGMA7 + Y0
IF(Y0.GE.SATVAL) GO TO 65
*** MARK SATURATED MASSES FOR LATER PROCESSING
YM1=SPEC(17.M)
YP1=SPEC(19.M)
TEST FOR SINGLET
  C
  C
                                                                                                                                                                                                                                                                                                                   00030130
00030140
00030150
00030160
   ε
                                                                                                                                                                                                                                                                                                              00030170
00030180
00030190
00030200
00030210
00030220
00030230
00030250
00030250
00030250
    . Y0
                                                                                                                                                                              <-- SHAPE REQUIREMENT.
                           YP4

IF (YØ .LE. YM1) GO TO 70

IF (YØ . LE. YP1) GO TO 70

IF (YØ . LE. YP1) GO TO 70

YM2=SPEC(16.M)

YM3=SPEC(11.M)

YM3=SPEC(11.M)

YM4=SPEC(14.M)

YM5=SPEC(112.M)

YM5=SPEC(113.M)

YM5=SPEC(113.M)

YM5=YM5(1)

TEST LEFT SLOPE OF PEAK

ILEFT IS REQUIRED NUMBER OF STRICKLY DECREASING LEFT POINTS

IF (YM1 .LE. YM2) GO TO 65

IF (ILEFT .EO. 2) GO TO 44

IF (YM2 .LE. YM3) GO TO 65

IF (ILEFT .EO. 3) GO TO 44
                                                                                                                                                                                                                                                                                                                   00030270
00030290
00030290
00030300
00030310
00030320
00030330
000303340
00030350
                                                                                                                                                                                                                                                                                                                     00030360
00030370
                                                                                                                                                                                                                                                                                                                     00030360
00030390
                                                                                                                                                                                                                                                                                                                     00030400
00030410
```

```
IF (YM3 .LE. YM4) GO TO 65
CONTINUE
TEST RIGHT SLOPE OF PEAK
                                                                                                                                                                                                                                                                                                                                                                                                                                       00030420
TEST RIGHT SLOPE OF PEAK

IRIGHT IS REQUIRED NUMBER OF STRICKLY DECREASING RIGHT POINTS

IF (YP1 .LE. YP2) GO TO 65

IF (IRIGHT .EQ. 2) GO TO 45

IF (IRIGHT .EQ. 3) GO TO 45

IF (YP2 .LE. YP4) GO TO 65

IF (IRIGHT .EQ. 3) GO TO 45

IF (YP3 .LE. YP4) GO TO 65

CONTINUE

COLCULATE VALUE AT MODE OF PEAK.YTOP. AND

CALCULATE VALUE AT MODE OF PEAK.YTOP. AND

CALL MEWTOP (YM5.RATE.XTOP. YTOP.4)

CIF XTOP IS OUT OF RANGE THE PEAK IS NOT ELUTING HERE OR

CHAKE SURE THE PEAK IS INCREASING FASTER THAN BACKGROUND

IF (XTOP .LE. -1. .OR. XTOP .GE. 1.) GO TO 65

MAKE SURE THE PEAK IS INCREASING FASTER THAN BACKGROUND

IF (YTOP.GE.SATVAL.OR.YP1.GE.SATVAL.OR.YM1.GE.SATVAL)GO TO 65

IF (YYOP.GE.SATVAL.OR.YP1.GE.SATVAL.OR.YM1.GE.SATVAL)GO TO 65

IF (YYOP.GE.SATVAL.OR.YP3.GE.SATVAL.OR.YM4.GE.SATVAL)GO TO 65

IF (YM2.GE.SATVAL.OR.YM3.GE.SATVAL.OR.YM4.GE.SATVAL)GO TO 65

CPREVENT SUPER SATURATION BY ABOVE

SEE IF RATE IS MAXIMUM TO QUALIFY AS MODEL PEAK

MODEL = 0

MI = M + 39

SLOPE = (YP5 - YY5)/I0

LOCLBG = YY5 + SLOPE * 5

C CHANGED TO HAVE FUNCTION SUBROUTINE TO HAVE DIFFERENT INSTRUMENTS

CTSHIFT=SCAN(MI)

TSHIFT=SCAN(MI)

TSHIFT = (MI - LOMASS)/DIB
                                                                                                                                                                                                                                                                                                                                                                                                                                       88838438
                                                                                                                                                                                                                                                                                                                                                                                                                                       00030440
                                                                                                                                                                                                                                                                                                                                                                                                                                      00030450
00030460
00030470
                                                                                                                                                                                                                                                                                                                                                                                                                                       00030490
00030490
00030500
                                                                                                                                                                                                                                                                                                                                                                                                                                      00030510
00030520
                                                                                                                                                                                                                                                                                                                                                                                                                                      00030530
00030540
                                                                                                                                                                                                                                                                                                                                                                                                                                    00030550

00030550

00030550

000330580

000330590

000330590

00030690

00030630

00030640

00030670

00030670

00030670

00030740

00030740

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030750

00030850

00030850

00030850

00030850
                                        TSHIFT=SCAN(MI)
TSHIFT = (MI - LOMASS)/DIB
IF(RATE.LT.RMAX(M3)) GO TO 50
    C
                                      IF (KHIE.LI.KIPACIS), GO 10 30
MODEL = 1
IF ((YTOP - YYS) .GE. 160) GO TO 2000
IFLAG (M3) = 1
FLAG AS FUNNY MODEL
GO TO 2500
IFLAG (M3) = 0
    C
    2000
2500
                                       CONTINUE
RMAX(M3) = RATE
                                   C
                                                                                                                                                                                                                                                                                                                                                                                                                                     00030890
00030900
00030910
                                                                                                                                                                                                                                                                                                                                                                                                                                     00030920
00030930
00030940
00030950
   C
                                                                                                                                                                                                                                                                                                                                                                                                                                     00030960
00030970
     40
                                        ISGMAS(M3) = MI
SGMODE(M3)=TSHIFT
                                                                                                                                                                                                                                                                                                                                                                                                                                       00030990
```

```
BK(M3) = MODBKG

50 CONTINUE

XY=YTOP ~ (LOCLBG)

IF (XY.LE. 0 ) XY = 1.0

C SIGY0 (EXCEPT IN COMMON DECLARATIONS) APPEARS ONLY IN THIS

C STATEMENT. HENCE IT HAS BEEN CONTENTED OUT.

C

SIGY0=SIGY0 + XY

TITTY = TENTET Y
                                                                                                                                                                                 00031000
00031010
00031020
00031030
00031040
                                                                                                                                                                                 00031050
00031060
00031070
00031080
00031090
               SIGY0=SIGY0 + XY
TITTY = TSHIFT + XTDP
DO 800 IJ = 1.7
IF (TITTY .LT. HIST(IJ)) GO TO 900
CONTINUE
      00031100
00031110
00031120
 800
900
 C
                                                                                                                                                                                 00031130
00031140
00031150
                                                                                                                                                                                 00031160
00031170
 ç
                                                                                                                                                                                 00031180
                                                                                                                                                                                00031200
00031210
00031210
00031220
00031230
00031250
00031250
00031250
00031270
000313290
00031330
00031330
00031330
00031330
000313330
000313330
 C
 C
 E
  925
 950
C
                                                                                                                                                                                 00031380
00031390
  č
                                                                                                                                                                                 00031400
00031410
00031420
00031430
00031440
00031450
  970
                                                                                                                                                                                 00031450
00031460
00031470
00031480
00031500
  960
                                                                                                                                                                                 00031510
00031520
   990
                                                                                                                                                                                 00031520
00031530
00031550
00031560
                    SAVE MAXIMUM OF 50 MASSES DUE TO CORE LIMITATIONS
  65
                  CONTINUE
                  NMAX=NMAX+1
SAVE MASS THAT IS CONSIDERED A CONTRIBUTION
NMAX IS NUMBER OF MASSES MAXIMIZING.
  C
                                                                                                                                                                                  00031570
```

```
IND(M3,M) = M
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00031580
00031590
  70
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00031600
00031610
00031610
00031620
00031630
                                                               NOW CHECK FOR DETECTED SPECTRUM IN +4.5.60
                                                     NU=9

IDXL=4

IDXU=6

SPARE3=NPHIST(10)

SPARE4=NPHIST(11)

SPARE5=PKHIST(10)

SPARE6=PKHIST(11)

ISVNB=NPHIST(8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00031640
00031650
00031660
00031670
00031680
00031690
00031700
00031710
00031730
00031730
00031730
00031740
00031770
00031770
00031770
ISVN9=NPHIST(9)
ISVP8=PKHIST(8)
ISVP9=PKHIST(9)
CALL DETEKT(PKHIST, NPHIST, IFOUND, NLWCUT, NUPCUT

NL, NU, IDXL, IDXU, MODE1)
C MODE1 IS THE LOCATION HISTOGRAMICALLY OF THE SPECTRUM,
C 4.LTE, MODE1, LTE, 6
C IFOUND IS 1 IF SPECTRUM DETECTED.
C PUT IN HEURISTIC FIX FOR THE CASE WHERE NO SUITABLE
C MODEL IS FOUND - INSERTED AT RTI BY WFH - 5/23/78
C
C MODEL IS FOUND - INSERTED AT RTI BY WFH - 5/23//8

IF (ISGMAS(M3).E0.-1.AND.ISGMAS(M2).EQ.-1)IFOUND=0

IF (IFOUND.NE.1) GO TO 888

AJACEN(2) = 1

C SETS SPECTRUM DETECTED FLAG.
C TEMPORARY MOD HAS BEEN ADDED TO GATHER STATISTICS ON

C PEAK RATES-

C UBS:1

C WRITE(20.6251) IOBS.SPCND.RMAX(M3)

C6251 FORMAT(A4.A4.12X,A4)

IF (RMAX(M3).GE. RATM) GO TO 889

AJACEN(2) = 0

CALL PUTNUM('SPEC. REJECTED FOR MIN. RATE, SPEC =',SPCND) 00031930

CALL TLPRNT(4.NPHIST.PKHIST.RMAX(M3))

C WRITE(IPTR2.32)SPCND.RMAX(M3)

C WRITE(IPTR2.
                                                FORMAT(' SPEC. REJECTED FOR MIN. RATE, SPEC = ',16/'
*.3/)
GO TO 888
CONTINUE
IFOUND = 1 IF SPECTRUM DETECTED.
CALL TLPRNT(1, SPEC, SPEC, XY, XY, XY, SPCNO, NLWCUT, NUPCUT)
CALL TLPRNT(2, NPHIST, PKHIST, XY, XY, XY, 1, 1, 1)
IF ( IDEBUG .EQ. 0 ) GO TO 888
CALL TLPRNT(5, NPHIST, PKHIST, XY, XY, XY, 1, 1, 1)
WRITE(IPTR2, 5000)
DO 9 KX=1,2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00031950
00031990
00032010
00032010
00032030
00032030
00032050
    889
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00032050
00032070
00032070
00032080
00032100
00032110
00032120
       C
                                                        DO 9 KZ=1.2
DO 9 KZ=1.50
KMAD(KX,KZ)=MSINGS(KX,KZ)-MAD
IF(KMAD(KX,KZ),LE.0)KMAD(KX,KZ)=0
CONTINUE
                                                        CONTINUE

DO 885 I = 1.5

JLOW = (I - 1) * 10 + 1

JLOW = 1.11....41

JUP = JLOW + 9
        9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00032130
00032140
        C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00032150
```

```
C JUP = 10.20.....50
IF (KMAD(IHI.JLOW) .LE. 0) GO TO 886
C YET ANOTHER MOD TO TLPRNT
C
                                                                                                                                                                                                                                                                                                                                                                                                                      00032160
                                                                                                                                                                                                                                                                                                                                                                                                                     00032160
00032170
00032180
00032190
00032200
00032210
00032220
00032220
00032230
                                                                                                                                                                           WFH RTI 10/1/78
                                    DO 731 1K-1.50
            731 KSTOR(IK)=KMAD(IHI.IK)
CALL TLPRNT(6.KSTOR.PKH1ST.XY.XY.XY.JLOW.JUP.1)
WRITE(IPTR2.5100) (KMAD(IHI.K), K = JLOW.JUP)
  885
                                    CONTINUE
  886
   668
                                     CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                       00032260
                                    NM(M3) = NMAX
SAVE NUMBER OF MASSES MAXIMIZING
                                                                                                                                                                                                                                                                                                                                                                                                                       00032270
                                                                                                                                                                                                                                                                                                                                                                                                                       00032280
 | SHVE NOISER OF PASSES PHX[1][2] | 08032280 | 08032280 | 08032280 | 08032280 | 08032280 | 08032280 | 08032280 | 08032300 | 08032300 | 08032310 | 08032310 | 08032310 | 08032310 | 08032310 | 08032310 | 08032310 | 08032320 | 08032320 | 08032320 | 08032320 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 08032330 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 0803230 | 080320 | 0803200 | 0803200 | 0803200 | 0803200 | 0803200 | 0803200 | 0803200 | 0803200 | 0803200 | 0803200 | 0803200 | 0803200 | 
00032330
00032340
00032350
00032360
                                                                                                                                                                                                                                                                                                                                                                                                                       00032370
                                                                                                                                                                                                                                                                                                                                                                                                                      00032380
                                                                                                                                                                                                                                                                                                                                                                                                                      00032390
                                                                                                                                                                                                                                                                                                                                                                                                                      00032400
                                                                                                                                                                                                                                                                                                                                                                                                                      00032410
00032420
00032430
                                                                                                                                                                                                                                                                                                                                                                                                                      00032440
00032450
                                                                                                                                                                                                                                                                                                                                                                                                                   00032460
00032490
00032490
00032500
00032510
00032520
00032550
00032550
00032550
00032550
00032550
00032550
00032560
0003260
0003260
0003260
00032660
00032660
00032670
                                     URITE(7.521)

IP=1

URITE(7.22)11

FORMAT(16)

THIS DOES TLOC STUFF
     Č
     C 21
C 22
C
                     THIS DOES TLDC STUFF
RETURN
30 IF (IFLAG.EQ:0)RETURN
WRITE(IPTR2,1400)
WRITE(IPTR2,530) (IAR(I).I=IONE.NINE)
ABOVE WRITES NPHIST
WRITE(IPTR2,535) (AR(I).I=IONE.NINE)
ABOVE WRITES PKHIST
                                                                                                                                                                                                                                                                                                                                                                                                                      00032680
                                                                                                                                                                                                                                                                                                                                                                                                                       00032700
00032710
                                                                                                                                                                                                                                                                                                                                                                                                                       00032720
00032730
     C
     C
```

```
00032750
             RETURN
   RETURN

515 FORMAT(/,10('-----'))

20 FORMAT(|H|,1X.' ******* SPECTRUM DETECTED ******','
-/* SPECTRUM NO. 15 '.15.'. LEFT AND RIGHT HISTOGRAM BOUNDS '.
-*ARE ',15.' AND',15.'.')

30 FORMAT(/, 'PEAK HIST '/,8X.916.//' ION CURRENT HIST ')

35 FORMAT(1X.9F9.0)

400 FORMAT(' HISTOGRAM POSITIONS 1 - 9 ...'/)

THESE MODS HAVE BEEN ADDED WITH ADDITIONAL STATEMENTS (WRITE)

BEING INCORPORATED IN TLOC
                                                                                                                                                                      00032760
00032770
C515
520
                                                                                                                                                                      00032780
00032790
00032800
535
                                                                                                                                                                       00032810
1400
                                                                                                                                                                      00032820
                                                                                                                                                                       00032830
                                                                                                                                                                      00032840
00032850
                                                                                                  WFH RTI 9/31/78
      40 LRITE(IPTR2.31)
31 FORMAT(" ***FATAL READ ERROR ON MAIN INPUT FILE IN TLOC***)
RETURN
50 IF(IFLAG.EO.0)RETURN
LRITE(IPTR2.32) II.R1
FORMAT(" SPEC. REJECTED FOR MIN. RATE, SPEC = ",16/" RATE = ",F1000032910"
20032920
RETURN
                                                                                                                                                                      00032980
C
                                                                                                                                                                     00032990
00033000
  00033010
00033020
00033030
00033040
             RETURN
C
      80 WRITE(IPTR2,55)
55 FORMAT(1X,'INCORRECT NUMBER OF RECORDS SPECIFIED - ',
1'EXECUTION NOT AFFECTED')
RETURN
                                                                                                                                                                     00033050
00033060
                                                                                                                                                                      00033070
                                                                                                                                                                      00033080
                                                                                                                                                                      00033090
             END
SUBROUTINE XTREM(ARRAY,NPTS,XMIN,MININD,XMAX,MAXIND)
INTEGER ARRAY(411),XMIN,MININD,XMAX,MAXIND
XMIN=ARRAY(1)
XMIN=ARRAY(1)
MININD=1
MAXIND=1
IF(NPTS,LE.1)RETURN
DD 2 I=2,NPTS
IF(ARRAY(1),GE,XMIN)GO TO 1
XMIN=ARRAY(1)
MININD=1
                                                                                                                                                                     00033100
                                                                                                                                                                     00033120
00033130
00033140
00033150
00033160
                                                                                                                                                                     00033170
00033180
00033190
00033200
00033210
             MININD=I
GD TO 2
IF(ARRAY(I).LE.XMAX)GO TD 2
XMAX=ARRAY(I)
                                                                                                                                                                     00033220
00033230
1
                                                                                                                                                                      00033240
              CONTINUE
RETURN
                                                                                                                                                                     00033250
00033260
2
              END
                                                                                                                                                                      00033270
              SUBROUTINE OPHFIL
                                                                                                                                                                      00033280
             SUBRUUTINE UPNETE
INTEGER CLNFLG
INTEGER MASBUF(6), VALBUF(6), AJACEN, AHEAD, 1SQ(1000)
INTEGER MAME, RDATE, BITMAP, GCTIME, LIBMAP, INTEG, LOMASS, MAD, ADS
INTEGER HIMASS, POINTS, TAPCNT, MAXSP, LSTCNT, DEVICE, SPCNO
                                                                                                                                                                     00033300
00033310
                                                                                                                                                                     00033320
```

```
INTEGER LSTMIN.SPEC.IND.IR.BK.NM.NTM.PNAME(32)
INTEGER HIST(10).UNIT.NNAME(18).IRNO
INTEGER NUSPEC.NMASS.OVLAP.EXPNAM.SRLIB(5).SECOND
INTEGER ODUBLT.OSATS.NLINE.RAUBUF.FSTPGE.FSTREC
INTEGER SATLST.SATINX.PASSI.ITOM.EOF
INTEGER GPEAK.SPARE1.SPARE2.SPARE3.SPARE4.SPARE7
INTEGER*4 TIMREM.TIMCNT
REAL SPARE5.SPARE6
REAL ISVPB.ISVP9
REAL ONORM
                                                                                                                                                                                                                                                                                                                                                                                                                         00033340
00033350
00033360
                                                                                                                                                                                                                                                                                                                                                                                                                          00033370
                                                                                                                                                                                                                                                                                                                                                                                                                         00033380
00033390
                                                                                                                                                                                                                                                                                                                                                                                                                         000333400
00033410
00033420
          REAL SPARE5, SPARE6
REAL ISVP8, ISVP9
REAL QNORM
REAL*8 C4.C1.C2.SGX.SHX
DIMENSION G(9), H(11).GNU(18), HNU(18)
COMTON PKHIST(20), NPHIST(20)
COMTON YM5, YM4, YM3, YM2, YM1, Y0, YP1, YP2, YP3, YP4, YP5
COMTON GM4, GM3, GM2, GM1, G0, GP1, GP2, GP3, GP4
COMTON SG, SG2.SIG, SI, S1, S12, AN. AA. BB, CC, DD
COMTON NAME(32), RDATE(5), BITMAP(64), GCTIME
COMTON HAME(32), RDATE(5), BITMAP(64), GCTIME
COMTON MAXSP, LSTCNT, DEVICE(5), SPCND
COMTON SPEC(14, 411), IND(3, 411), NUSPEC(411), NMASS
COMTON RMAX(3), IR (3), BK (3), NM(3), NTM(3), GPEAK(3, 11)
COMTON SPARE1, SPARE2, SPARE4, SPARE5, SPARE6, SPARE7
COMTON NAME (32), RSYP9, SIGNAT, SIGLST
COMTON MODE1, MODE2, NLUCUT, NUPCUT, SATPKS(25), HSAT, EXPNAM(5)
COMTON MODE1, MODE2, NLUCUT, NUPCUT, SATPKS(25), HSAT, EXPNAM(5)
COMTON VINITS/ IRDR, IPTRI, IPTR2, IPTR3, IIN, IOUT
THIS COMPRISES THE FIRST OF SIX SUBROUTINES FOR THE EPA I/O
INTERFACE TO THE CLEANUP PROGRAM, IN THE RTI SYSTEM, THE
PRIMARY INPUT AND OUTPUT FILES WOULD BE OPENED HERE, FOR EPA
ONLY A DUMTY RETURN IS NECESSARY.

WM,F, HARGROVE
PTI 11/25/78
                                    REAL
                                                                                                                                                                                                                                                                                                                                                                                                                        00033430
00033440
00033450
00033460
00033470
                                                                                                                                                                                                                                                                                                                                                                                                                        00033480
00033490
00033500
00033510
                                                                                                                                                                                                                                                                                                                                                                                                                        00033520
00033530
00033540
                                                                                                                                                                                                                                                                                                                                                                                                                       00033540
00033550
00033550
00033570
00033580
00033590
00033610
00033610
00033630
00033630
00033630
00033630
   Č
                                                                                                                                                                                                                                 WM.F.HARGROVE
RTI 11/25/78
 EQUIVALENCE (RSEC, ISEC)

C NOW PICK UP SATURATION VALUE FROM TTY...

WRITE(IPTR1,3110)

3110 FORMAT(1X. ENTER SATURATION VALUE IN F6.0:')

READ(IRDR,3112) SATVAL

3112 FORMAT(F6.0)

WRITE(IPTR1,3113) SATVAL

3113 FORMAT(1X. SATVAL= '.F8.1)

PETURN
                                                                                                                                                                                                                                                                                                                                                                                                                        0003360
00033670
00033690
00033700
00033710
00033710
00033720
00033750
00033760
00033760
                                        RETURN
                                        END
              SUBROUTINE CLSFIL
THIS COMPRISES THE SECOND OF SIX SUBROUTINES FOR THE EPA I/O
INTERFACE TO THE CLEANUP PROGRAM. IN THE SYSTEM, THE
PRIMARY INPUT AND OUTPUT FILES WOULD BE CLOSED HERE. FOR EPA
ONLY A DUMMY RETURN IS NECESSARY.
                                                                                                                                                                                                                                                                                                                                                                                                                          00033780
00033790
                                                                                                                                                                                                                                                                                                WM.F.HARGROVE
                                                                                                                                                                                                                                                                                                                                                                                                                          00033800
00033810
                                                                                                                                                                                                                                                                                                RTI 11/25/78
                                                                                                                                                                                                                                                                                                                                                                                                                          00033820
00033830
00033840
00033850
                                        RETURN
              SUBROUTINE ĆLSRUN(190,MU)
THIS COMPRISES THE THIRD OF SIX SUBROUTINES FOR THE EPA I/O
INTERFACE TO THE CLEANUP PROGRAM. IN THE RTI SYSTEM, THE
FIRST, LAST, AND NUMBER OF SCANS WOULD BE INSERTED INTO THE HEADER
RECORD WHICH WOULD THEN BE WRITTEN OUT. FOR EPA ALL THAT IS NEEDED
C THIS LUID.
C INTERFACE TO THE C INTERFACE TO THE C FIRST. LAST. AND NUTBEL C RECORD WHICH WOULD THEN E C IS A RETURN.
INTEGER MU. ISQ(1000)
                                                                                                                                                                                                                                                                                                                                                                                                                          00033860
00033870
00033860
                                                                                                                                                                                                                                                                                                                                                                                                                           00033890
                                                                                                                                                                                                                                                                                                                                                                                                                           00033900
```

```
RETURN
END
SUBROUTINE OPNRUN(LIBBLK.IEOF)
SUBROUTINE OPNRUN(LIBBLK.IEOF)
SUBROUTINE OPNRUN(LIBBLK.IEOF)
O0033930
THIS COMPRISES THE FOURTH OF SIX SUBROUTINES FOR THE EPA I/O INTERFACE00033940
TO THE CLEARNUP PROGRAM. THE HEADER RECORDS ARE READ IN
AND WRITTEN DUT AGAIN AND THE CIRCULAR QUEUE FOR KEEPING TRACK OF SCAN00033950
TIMES IS INITIALIZED. THE MAIN DIFFERENCE BETWEEN EPA'S OPNRUN AND
00033970
RTI'S OPNRUN IS THAT HERE FOR EPA SATVAL IS READ IN FROM THE TTY.
00033990
WHEREAS RTI'S SETUP PICKS IT OFF THE RUN HEADER RECORD.
00033990
INTEGER LIBBLK(1024).EOF.NS
INTEGER LIBBLK(1024).EOF.NS
INTEGER RTR. 10TTP1 10TTP2 TETE?
   RTI 11/
INTEGER LIBBLK(1024).EOF.NS
INTEGER IRDR.1PTR1.1PTR2.1PTR3.11N.10UT.1EOF.ISEC
REAL SATVAL.SECSCN.RSEC
INTEGER NAME(3).HDRFLG.DATE(2).RUNHDR.RUNMIN.
1SAMPID(16).INAM(2).RUNCON(16).BUF4(11).LDPMAS.HIPMAS.
2RETMIN(14).RETSEC(14).BLANK/' '/.INCOS(2)/'INCO'.'S
COMMON /HDR1/ NAME.HDRFLG.DATE.RUNHDR.RUNMIN
COMMON /HDR2/ SAMPID.INAM
COMMON /HDR3/ RUNCON.SECSCN
COMMON /HDR3/ RUNCON.SECSCN
COMMON /HDR4/ BUF4,LDPMAS.HIPMAS
COMMON /FLAGS/ EOF
                                                                                                                                                                                                                                                                                                                                                                                                                                      00034020
                                                                                                                                                                                                                                                                                                                                                                                                                                    00034040
00034050
00034050
00034060
00034080
                                                                                                                                                                                                                                                                                                                                                                                                                                    00034090
00034100
00034110
                                                                                                                                                                                                                                                                                                                                                                                                                                    00034120
00034130
   r.
                                                                                                                                                                                                                                                                                                                                                                                                                                  00034140
00034150
00034160
00034170
00034180
00034190
00034210
   COMMON /UNITS/ IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT COMMON /COUEUE/ RETMIN.RETSEC.NS
C INITIALIZE CIRCULAR QUEUE FOR SAVING SCAN TIMES
   NS=0
C HAND CONTROL TO PADDOCK
  C HAND CONTROL TO PADDOCK

CALL EPAHDR

1EOF=EOF

1F(IEOF.EQ.1)RETURN

C NOW PUT THINGS IN THEIR APPROPRIATE PLACES FOR CLEANUP

IF (HDRFLG.EQ.0)GD TO 10

WRITE(IPTR1.20)

20 FORMAT(IX.'*** EXEXUTION TERMINATING, INCORRECT FORMAT OF HEADER

1RECORD DETECTED AT BEGINNING OF FILE IN OPNFIL***
                                                                                                                                                                                                                                                                                                                                                                                                                                    00034210
00034220
00034230
                                                                                                                                                                                                                                                                                                                                                                                                                                  00034240
00034250
00034260
00034270
00034270
00034290
00034310
00034310
00034310
00034320
00034320
00034350
00034350
00034400
00034400
00034410
00034410
IRECORD DETECTED AT BEGIN

STOP

C NOW PICK UP DATE

10 CONTINUE

DO 30 I = 1,2

30 LIBBLK (I+30) = DATE (I)

C SET UP INSTRUMENT NAME

DO 35 I = 10.12

35 LIBBLK (I) = BLANK

DO 40 I = 1,2

40 LIBBLK (I+7) = INCOS (I)

C RUN SAMPLE ID

LIBBLK (29) = BLANK

LIBBLK (30) = BLANK

DO 50 I = 1,16

50 LIBBLK (I+12) = SAMPID (I)

C REMARKS ON RUN CONDITIONS

DO 60 I = 1,16

60 LIBBLK (I+137) = RUNCON (I)

LIBBLK (155) = BLANK

LIBBLK (155) = BLANK

LIBBLK (154) = BLANK

C PICK UP SCAN RATE

RSEC = SECSCN
                                         STOP
                                                                                                                                                                                                                                                                                                                                                                                                                                    00034450
                                                                                                                                                                                                                                                                                                                                                                                                                                    00034460
00034470
                                      RSEC - SECSON
                                                                                                                                                                                                                                                                                                                                                                                                                                    00034480
```

```
C LIBBLK(57)=ISEC
C MOVE IN MASS SCAN RANGE
LIBBLK(42)=LOPMAS
LIBBLK(43)=HIPMAS
C SET HDRFLG = FIRST SPECTRUM NUMBER IN RUN
LIBBLK(36)=HDRFLG
C SET MAXIMUM NUMBER OF SPECTRA IN RUN
LIBBLK(38)=1000000
RETURN
FND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00034490
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00034500
00034510
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00034520
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00034530
00034540
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00034550
00034560
END

SUBROUTINE RDSPC(SPCND, AVGSPC, 114, 10UPD, 1EOF)

C THIS COMPRISES THE FIFTH OF SIX SUBROUTINES FOR EPA 1/0

C INTERFACE TO THE CLEANUP PROGRAM, HERE IS WHERE CLEANUP

C REQUESTS THAT A SCAN RECORD BE READ, ASIDE FROM THE 1/0

C STATEMENTS, THE LOGIC IS THE SAME AS FOR THE RTI LINEAR

C SYSTEM.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00034570
00034580
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  98034588
98034590
98034640
98034640
98034638
98034638
98034638
98034650
98034650
98034650
98034690
98034710
98034710
98034710
 C SYSTEM.

UM.F. HARGROVE
20034630
20034640
20034640
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034600
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034600
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034600
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034600
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
20034660
2003
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00034840
00034850
00034870
00034890
00034890
     00034900
00034910
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00034920
00034930
00034940
00034950
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00034960
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00034990
00034990
00035000
00035010
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00035020
00035030
00035040
00035050
           SUBROUTINE WRTSPC(SPCNO.NUSPEC.DUBLT.RATE.NPK.TICIN)
C THIS COMPRISES THE LAST OF SIX SUBROUTINES FOR THE EPA
C I/O INTERFACE TO THE CLEANUP PROGRAM. THE CLEANED UP SCAN
```

```
C RECORD IS REFORMATTED AND NECESSARY INFL. MATION IS RETRIEVED C FROM A CIRCULAR QUEUE. THE LOGIC EXACTLY PARALLELS THAT FOR C THE RTI LINEAR ACQUISITION SYSTEM VERSION.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00035070
00035080
00035090
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00035100
00035110
00035120
00035130
INTEGER SPCNO, NUSPEC(411). DUBLT, NIN, RATE
REAL TICIN
INTEGER INAM(3), ISCN. IDBUF(2), IDHDR. IDMIN, IRTMIN, IRTSEC. 17,
1 INMBAS, INBUF(411), INSED, ONAM(3), OSCN. ODBUFF(2), ODHR,
2 ODMIN, ORTMIN, ORTSEC, ONMBAS, OTBUFF(411), OTSEO, NOUT, NPK
REAL IRBAS, IRTIC, ORBAS, ORTIC, CFACT
INTEGER NS, RETMIN(14), RETSEC(14)
COMMON / INDATA / INBUF, IDBUF, IDHDR, IDMIN, IRTMIN,
1 IRTSEC, INMBAS, IRBAS, IRTIC
COMMON / INDATA / INBUF, INSEQ, NIN
COMMON / ODDATA / ONAM, OSCN, ODBUFF, ODHR, ODMIN, ORTMIN,
2 ORTSEC, ONMBAS, ORBAS, ORTIC
COMMON / OTDATA / OTBUFF, OTSEQ, NOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, IPTR1, IPTR2, IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, INTERS / IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, INTERS / IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, INTERS / IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, INTERS / IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, INTERS / IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, INTERS / IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, INTERS / IPTR3, IIN, IOUT
COMMON / UNITS / IRDR, INTERS / IPTR3, INTERS / I
                                            INTEGER SPCNO. NUSPEC (411). DUBLT. NIN. RATE
                                           REAL TICIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00035140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00035150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00035160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00035170
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00035180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00035190
00035200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00035210
00035220
00035220
00035230
00035240
00035250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00035260
00035270
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00035280
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00035290
00035300
00035310
00035320
00035330
00035340
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  00035350
00035360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00035360
00035370
00035380
00035390
00035400
00035410
00035420
00035430
                      ORBAS=0
ONMBAS=0
ONTIC=0.0
NOUT=0
DO 40 I=1.411
IF (NUSPEC(I).LE.0)GO TO 30
ORTIC=ORTIC+NUSPEC(I)
NOUT=NOUT+1
30 CONTINUE
IF (NUSPEC(I).LT.ORBAS)GO TO 40
ORBAS=NUSPEC(I)
ONMBAS=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00035450
00035460
00035470
00035480
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00035490
00035500
00035510
00035520
00035530
                                           ONMBAS = I
                         40 CONTINUE
```

60 OTBUFF(1) = CFACT**NUSPEC(1) +. 05
C NOW EVERYTHING IS READY FOR PADDOCK'S OUTPUT ROUTINE CALL EPAWRT
RETURN
END

APPENDIX B

"EXTRACTION OF MASS SPECTRA FREE OF BACKGROUND AND NEIGHBORING COMPONENT CONTRIBUTION FROM GAS CHROMATOGRAPHY MASS SPECTROMETRY DATA"

R. G. DROMEY, M. J. STEFIK, T. C. RINDFLEISCH, AND
A. M. DUFFIELD, ANAL. CHEM., 48, 1368(1976)

Reprinted with permission from Analytical Chemistry. Copyright by the American Chemical Society.

Extraction of Mass Spectra Free of Background and Neighboring Component Contributions from Gas Chromatography/Mass Spectrometry Data

R. G. Dromey, 1 Mark J. Stefik, Thomas C. Rindfleisch, 2 and Alan M. Duffield 2

Departments of Computer Science, Genetics, and Chemistry, Stanford University, Stanford, Calif. 94305

An effective, minicomputer-based method is described for systematically extracting resolved mass spectra of mixture components from GC/MS data. Using tabular peak models derived directly from the raw data, the spectra have column bleed background removed and are corrected for interference from neighboring elutants and peak saturation. Individual components are detected in the data by means of a pair of histograms which statistically characterize the positions of mass fragmentogram peak modes. These data-adaptive cor-

haracterize the positions of with the increase. These data-adaptive coridentification in h

1368 · ANALYTICAL CHEMISTRY, VOL. 48, NO. 9, AUGUST 1976

rections avoid costly iterative numerical procedures and allow obtaining representative mass spectra from GC/MS data of complex mixtures on a routine basis. Using this approach, components that elute within less than two spectral scan times of each other can be detected and their mass spectra well resolved.

With the increasing application of gas chromatography/ mass spectrometry (GC/MS) systems to mixture component identification in biomedical research (1, 2) and other areas (3), it has become important to be able to systematically isolate and identify minor components in the complex mixtures being analyzed. Because of instrumentation limitations, the mass

¹ Present address, Research School of Chemistry, Australian National University, Canberra, A.C.T., Australia.
² Present address, School of Physiology and Pharmacology, University of New South Wales, 2033, Australia.

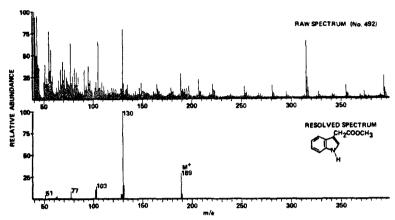


Figure 1. (a) Spectrum of indole acetic acid 3-methyl ester from a GC/MS analysis of human urine before processing. (b) Resolved spectrum of indole acetic acid 3-methyl ester

spectra obtained from a GC/MS analysis of a complex mixture are often markedly different from the spectra of the corresponding pure compounds. Differences may be caused by contributions from unresolved neighboring components during partial separation and also from GC septum and column bleed. These extraneous contributions may severely distort the relative intensities of ions in the mass spectrum of a particular component as well as contribute peaks that are not characteristic of the component being examined. Characterization and removal of these spurious ion contributions is especially important in the analysis of minor constituents where the mass spectra of interest may be substantially masked or distorted.

Our objective has been to implement a solution to these problems which is general and can systematically and reliably resolve GC/MS data with a minimum of human intervention. At the same time we have constrained the design so that the programs can run on a laboratory minicomputer. The first of these objectives has necessitated the use of a relatively complex mathematical treatment of the GC peak profile analyses as compared to that previously reported by Biller and Biemann (4). Both the present approach and that of Ref. 4 are based on analyses of mass fragmentogram profiles (4-6), a method which has been in use in various laboratories including our own, for a number of years. The method described here, however, differs substantially in the extraction of information from the profiles and thereby avoids several serious limitations inherent in the system described previously (4). By using tabular models of the elutant peak shapes together with a polynomial approximation to the GC background, and by deploying the elutant location and multiplicity information gained in analyzing individual fragmentogram profiles to assist in analyzing the others, we can achieve significant advantages in the quality of the reduced data. These include better final GC resolution, the proper assignment of ions to resolved elutant spectra (whether or not they are shared between neighboring components), more accurate spectral amplitudes free from background contributions, and the recovery of usable information from distorted data as in satutated peaks. We feel these improvements are important to a system which can reliably extract component spectra of sufficiently high quality from GC/MS runs to enable more definitive library matching, easier human interpretation of unknowns, and even the addition of extracted spectra to a library as authentic spectra. In our experience, these are essential assets for a GC/MS data system which is to be routinely

applied in medical research and amply justify the complexity of the analysis.

EXPERIMENTAL

The GC/MS computer system used in this investigation consists of a Finnigan 1015 Quadrupole mass spectrometer interfaced to a PDP-11/20 minicomputer system for data acquisition. In one frequent mode of operation a complete mass scan (from mass 40 to 450) is completed each 3.7 s and 600 consecutive mass spectra are collected during a typical GC/MS analysis. Our initial experience of comparing the experimental mass spectra from a complex GC/MS analysis with a library of known mass spectra produced very poor results because of contamination of the experimental data by spectra of column bleed and of neighboring, unresolved components. Tolerable matches were only achieved when a component was present in large quantity in the GC/MS analysis. In order to overcome these problems, we have developed a computer program capable of systematically extracting from the raw GC/MS data, spectra representative of the pure elutant compounds.

The raw mass spectrum (Figure 1a) of indole acetic acid 3-methyl ester obtained from a GC/MS analysis of the acidic fraction (after methylation) of human urine typifies this situation. This component elutes at or near spectrum number 492 in the total ion plot (TIC) shown in Figure 2. Closer examination of Figure 2 shows that this component is submerged both in mass spectral contributions from neighboring components and background from GC column bleed. For comparison, a library spectrum (7) of indole acetic acid 3-methyl ester is shown in Figure 3. Figure 1b shows how, after processing the raw GC/MS data by the method described below, we can retrieve a high quality mass spectrum of indole acetic acid 3-methyl ester free from the anxironmental perturbations research in Figure 1b.

the environmental perturbations present in Figure 1a.

Thus, in the systematic analysis of GC/MS data the problem is first to detect where in the GC trace each component shows its maximum ion intensity and then to extract from these regions representative spectra for each of the detected components. The extracted mass spectra should be as free as possible from intensity distortions relative to their library counterparts, and from the presence of extraneous ions (e.g., peaks from either neighboring components or gas chromatographic column bleed).

DESCRIPTION OF METHOD

To obtain a reliable solution to these problems, it is necessary to analyze a number of spectra on either side of the ion current maximum for each elutant. A basic assumption of our approach is that the mass spectra of two neighboring unresolved elutants can be distinguished; that is, there exist some masses for which ions occur in the mass spectrum of one component but not in the other and vice versa. A schematic representation for two closely spaced elutants is given in Figure 4. By locating the "resolved" or singlet fragmentogram peaks at such masses (detected on the basis of profile mor-

ANALYTICAL CHEMISTRY, VOL. 48, NO. 9, AUGUST 1976 . 1369

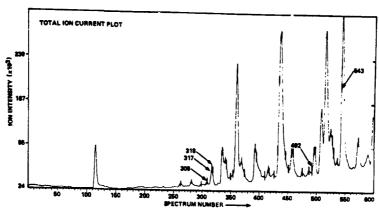


Figure 2. Total ion current plot for a GC/MS analysis of a urine sample. Components were found at vertical bar marks on TIC

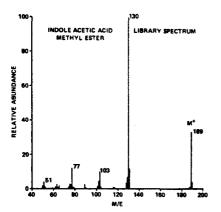


Figure 3. Mass spectrum of indole acetic acid 3-methyl ester taken from a library of biological compounds

phology), one can infer directly the positions of the elutants present and derive tabular models of the individual peak shapes. These models can be used subsequently to separate the unresolved fragmentogram complexes. The use of tabular peak models derived from the data itself accurately accommodates the a priori unknown peak profiles of particular elutants without solving for multiparameter, nonlinear model functions. Since the data are sampled often enough to satisfy the sampling theorem (8), these tabular models contain the necessary information to reconstruct a continuous peak envelope and can therefore be used as if they were continuous analytical models. For the typical peak shapes encountered, the collection of 5-10 mass spectra per singlet elutant peak represents a sampling frequency greater than twice the Fourier bandwidth of the peak. In addition, the mass by mass analysis of the fragmentogram peak complexes facilitates the mass dependent subtraction of background. (The large variation in background levels for different masses is a function of both the type of GC column used and the mixture being analyzed.)

By addressing the problem in this way, we have been able to produce accurate intensity information for the processed mass spectra and simultaneously distinguish with greater confidence which masses contribute to particular elutant spectra. We have been able to distinguish reliably elutants coming off within one and a half to two spectral scan times of each other. The succeeding sections discuss in more detail the

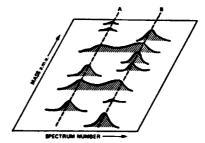


Figure 4. A schematic representation of the set of partial mass fragmentograms for two closely spaced elutants. Components A and B have some masses in common

procedures used to detect and resolve the mass spectra of unique elutants.

Detection of Elutants in GC/MS Data. Elutant detection involves finding the location of each mixture component in the GC/MS data, even if it does not have a corresponding peak maximum in the overall total ion current trace. Ideally for a given elutant, the fragmentograms for all its ion masses will show maxima at the same time and, in practice, this holds for well-resolved materials. However, for partially resolved mixtures, the complicating factors of peak overlap and background contributions can cause fragmentogram maxima for neighboring components to show significant variation in their positions on the time axis. Reliable position information for each elutant is best derived from the fragmentogram profiles containing singlet peaks for that elutant, that is, from fragmentograms at those spectral masses unique to the elutant relative to its neighbors.

The approach used for elutant detection is to compute two histograms of candidate singlet peak positions and to select as elutant locations significant histogram maxima. The first histogram measures the number of singlet mass fragmentogram profiles which reach maxima in each time interval. The second histogram measures the total singlet ion intensity above background at these maxima. These two types of histogram contribute complementary information for judging elutant locations. At a given elution time, the histograms include fragmentogram peak maxima from all masses over seven spectra. The position of each maximum is determined by a parabolic least squares interpolation about the top five points in the sampled peak data. If the intensities of the five points contributing to the maximum are Y_{-2} , Y_{-1} , Y_0 , Y_1 , and Y_2 , then the expression for the time coordinate of the maximum

1370 - ANALYTICAL CHEMISTRY, VOL. 48, NO. 9, AUGUST 1976

$$t = \frac{7(2Y_{-2} + Y_{-1} - Y_1 - 2Y_2)}{10(2Y_{-2} - Y_{-1} - 2Y_0 - Y_1 + 2Y_2)}$$

The time coordinates of maxima are estimated to one third of the time to collect each spectrum in order to separate very close neighbors. Because we measure peak locations to one third of a spectral scan time, appropriate shifts are also induded to account for the fact that higher masses are measured later in each spectral scan than lower masses. To build these histograms, the program examines the profiles of each mass fragmentogram in the data. Only peaks with intensities above a prescribed threshold are added into their appropriate time positions in the histograms. Peaks that are obvious multiplets (multiple extrema) are not incorporated into the histograms but are marked for later resolution. After all of the histogram information is collected for a given region, components are defined to be detected at locations where both the intensity and peak count histograms show maxima that are above a threshold. This statistical approach, looking for "clusters" of fragmentogram peaks in the histograms, does not depend upon a correct decision for each peak but rather on a preponderance of good decisions looking over all of the data. It will fail to resolve elutants very close together which do not have enough distinguishing mass spectral components as described above. In general, however, using this approach we are able to detect and resolve spectra reliably that elute with a separation in time as small as one and a half to two spectral scan times. (Two scan times correspond to 25% of a typical GC peak width at the scan rate we use.) Elutants this close often do not show multiple extrema in the fragmentogram profiles of masses common to both spectra and could not be separated properly except for this type of procedure. If two elutants are separated by less than 1.5 scan times, resolution becomes less certain depending on their relative concentrations and mass spectral distinctness.

Estimation of Spectral Intensities and Background for Well Resolved Elutants. Once the locations of elutants in the GC effluent have been determined, we proceed to compute a resolved spectrum for each material. To illustrate the principles involved in spectral amplitude and background estimation, we consider the simple case of an elutant that is well separated in time from its nearest neighbors. This analysis will be extended to the more complicated case of multiplet resolution in a later section. By "well-separated" we imply only that there are no maxima in the elutant detection histograms for three or four spectra on either side of the elutant under consideration. In such a situation, each of the mass fragmentogram profiles in the vicinity of the elutant will consist of a background on which is superimposed a peak with amplitude representative of the elutant spectral component at that mass. The background (contributed by both GC column bleed and possible tailing from nearby, high-concentration elutants) is distinguished from the elutant peak by the fact that it varies much more slowly with time. Reasonable estimates can be made by assuming that, for any particular mass fragmentogram, the background amplitude varies at most linearly with elution time in the vicinity of a given elutant. This approach to background determination, using the actual fragmentogram characteristics around each elutant, automatically tracks changes in the bleed levels observed during a run. It should be noted that our model is a first-order approximation subject to some error. A more accurate anproximation would involve representing the background variations over a larger span of spectral scans than we are able to manage with the current program organization and computer memory limitations. We feel that the linear estimate is justified, however, in that it produces results within the error limits from other data uncertainties.

To complete the estimation process, we use a model peak

to determine the contribution of each mass fragmentogram to the elutant spectrum. Much work has been done on the analytic approximation of gas chromatographic peak shapes (9, 10). Our experience has been that relatively simple models do not adequately approximate the range of shapes encountered and more complex models require large amounts of computing to determine model parameters. Noting that a separate model must be developed for each elutant and with a view toward obtaining the peak shape and definition necessary for multiplet resolution within reasonable computing resources, we have approached the problem by using tabular peak models taken from the data itself. Such models, defined at discrete sample points, can be evaluated at any required intermediate point by interpolation (since the sampling theorem is satisfied) and automatically reflect any peak asymmetries which may be present. For a given elutant, the model will be independent of mass, assuming that relative molecular fragmentation probabilities do not change with elutant pressure within the mass spectrometer. A number of criteria should be satisfied by the tabulated model peaks. They should be singlet peaks superimposed on as small a background as possible and they should be relatively intense in order to ensure a good signal-to-noise ratio and good definition of peak skirts.

Candidate singlet peaks may be distinguished from doublet or background peaks by the feature that they are relatively sharp. One way to measure peak "sharpness" is to use a logarithmic rate function defined as follows:

$${\rm rate} = \sum_{t=1}^{3} \left[\frac{(Y_{t-1} - Y_t)}{Y_t} + \frac{(Y_{-(t-1)} - Y_{-t})}{Y_{-t}} \right]$$

where the Y_t are evaluated at equal scan widths at each side of the mode of the peak. It can be seen that this rate will be large for peaks which are sharp and smaller for peaks which are broad. The rate as defined is also independent of amplitude for peaks of identical shape. A peak with a computed rate below a threshold appropriate to the experimental conditions is considered to be either an artifact of the gas chromatograph (background peak) or a multiplet and is not included in the detection histograms.

During the process of computing the detection histograms, a list is kept of the unimodal fragmentogram peaks having the highest rate factors in the region under analysis. When a component is detected in a given region, a model peak is then immediately in hand that can be used in the peak height estimation and background removal process. The local minima just on either side of the model peak are used as estimates of the local background (a straight line through the greatest of these minima is removed before the model peak is used for analysis). The selection of the peak with the highest rate factor as our model peak has worked well in producing models which are singlets and suffer least from interference by background and neighboring fragmentogram peaks.

Given the fragmentogram peak model for this case of a well-separated elutant, we can now correct the individual mass fragmentograms for background and estimate true mass spectral intensities for the elutant. For the fragmentograms exhibiting peak maxima "near" the location of this elutant (see below for detailed selection criteria), each peak in the set is quadratically interpolated to align it on a common time origin (this removes the time shift between collection of low and high mass data). This is done by fitting a parabola through successive groups of three points near the peak mode and interpolating to give four equally spaced points about the mode, separated by one spectral scan time. With the peaks in this standard form, they are ready for the least squares analysis below. Assuming a linear background model over the region of 5 to 10 scan intervals under consideration, the local background B_t at time t is approximated by

ANALYTICAL CHEMISTRY, VOL. 49, NO. 9, AUGUST 1976 • 1371

$$B_t \sim c + dt$$

where c is the background offset and d is its slope. The interpolated elutant peak model is normalized to unit area and has amplitudes P_t at times t. Then for a given mass fragmentogram, the amplitude of the actual fragmentogram profile Y_t at time t can be approximated by

$$Y_t \sim pP_t + (c + dt)$$

where p measures the elutant amplitude above background. Note that this model assumes a superposition principle based on the earlier assumption of constant relative fragmentation probabilities and a linear encoding of ion current information. If ion current data are obtained from nonlinear electronic systems or read from film, the peak model itself would be amplitude dependent and this linear analysis could not be applied until appropriate amplitude linearization corrections were made. From the above model, we can derive a least squares estimate for the elutant amplitude p and the background parameters c and d by minimizing the error function

$$E = \sum (Y_t - pP_t - c - dt)^2$$

according to the conditions

$$\frac{\partial E}{\partial p} = \frac{\partial E}{\partial c} = \frac{\partial E}{\partial d} = 0$$

The summation in the error function is over all available points in the peak profile as well as the neighboring background points within the window of scans contained in the computer's memory. These conditions yield three linear equations in the three parameters which can be solved by standard techniques (11). From the solution of these equations for the value of p, we get the spectral intensity for the mass under consideration. This analysis is applied to all mass fragmentograms with maxima near the elutant location to obtain the complete, intensity-corrected spectrum. It is worth noting that this method, using a tabular model peak derived from the data and elutant locations obtained from the detection histogram analysis, reduces the calculation for each mass spectrum intensity to the solution of a set of linear equations. Specifically, this avoids iterative methods for determining the parameters of a theoretical peak model and for determining elutant time positions.

Fragmentograms are selected for this analysis on the basis of several criteria. Given the nominal elutant position from the detection histogram analysis, a fragmentogram is excluded (mass spectrum assigned zero intensity) if it has no local peak maximum or if its maximum is displaced from the reference elutant position by more than two thirds of a spectral scan time on either side. Each fragmentogram peak meeting this test must also have an acceptably high rate factor, to be included in the analysis. For peaks of masses greater than 200 amu, we require a rate factor greater than 25% of the rate for the model peak. This restriction is useful for eliminating contributions caused by peaking in column bleed components. In carefully examining GC/MS data sets, we can observe that masses characteristic of the spectra of column bleed components show maxima in their mass fragmentograms just prior (one to two spectra) to the elution of an actual component. In essence, the component appears to "push" the bleed out ahead of itself. Because these peaks are formed by a different process than normal elutant mass fragmentogram peaks, they usually have a much broader shape. Consequently their rate factors will be significantly reduced and they can be eliminated by the rate threshold criterion. The combination of the fragmentogram peak location criterion together with the minimum rate criterion effectively discriminates against extraneous contributions to the intensity-corrected spectra without removing authentic mass peaks.

Extraction of Poorly Separated Elutant Spectra. Many instances arise in the analysis of GC/MS data where two or more elutants are poorly resolved by the gas chromatograph. The resulting mass spectra in such a region exhibit ion intensity distortions which reflect the interactions (overlap) between adjacent elutants in addition to the ion contributions of background. The extension of the above procedures to the general case is not difficult. Through the histogram detection and model procedures, one can extract normalized peak models P, Q, R, ... for the various elutants present. Then with the assumption of a linear background, the elutant contributions to each fragmentogram profile Y can be estimated by minimizing the error function

$$E = \sum (Y_t - pP_t - qQ_t - rR_t - \ldots - c - dt)^2$$

with respect to the elutant amplitudes p, q, r, \ldots , and the background coefficients. Sets of linear equations result for each mass to extract the resolved spectra. In practice, we have not implemented this full procedure beyond the doublet case. Through the following approximations, reasonable results are achievable within available minicomputer resources. Using the histogram method described earlier, neighboring elutants are handled with a "look ahead" procedure. That is, information about an elutant that has just been detected is stored and the detection algorithm is applied to the data in the immediate neighborhood by extending the range over which the detection histograms are calculated. If by including this extended region an additional elutant is detected, we record the position of its mode, select a model peak for this second elutant using the rate criterion, and initiate a doublet resolver algorithm. At present, the extended histograms project four spectral scan widths beyond the position where the first elutant of the multiplet was detected (limited by computer memory). The same criteria are applied as in the singlet case to decide which fragmentogram peaks belong to the pair of detected components. The model used to process the composite fragmentogram peaks (many of which may be singlets belonging to either elutant) assumes that there are two overlapping peaks superimposed on a linear background. The doublet model represents an oversimplification of some situations as, for example, in the case where 3 components elute within a very brief interval. By applying it, however, to successive pairs of clutant peaks (taking first-order account of peak tail contributions from any earlier elutant), it provides acceptable accuracy and peak resolution effectiveness. As indicated above, a fit of the two peak models P and Q with a linear background to the fragmentogram profile Y may be described by the approximation

$$Y_t \sim pP_t + qQ_t + c + dt$$

Minimizing an error function analogous to the earlier singlet case results in 4 linear equations in the peak amplitudes p and q and the background parameters c and d. This set of equations again can be solved by standard methods.

In cases where peaks are actually singlet peaks, the solution should yield zero for the amplitude of the missing component. In practice, for such cases the amplitude of the second component is a very small positive or negative value which is representative of how well the model fits the data. Amplitude results for masses that belong to the second component of the doublet are stored temporarily until this component is moved into the processing window at which time they are incorporated into the analysis of the newly detected component.

Reconstruction of Saturated Peaks in Elutant Spectra-From a practical viewpoint, a fairly common occurrence in

1372 · ANALYTICAL CHEMISTRY, VOL. 48, NO. 9, AUGUST 1978

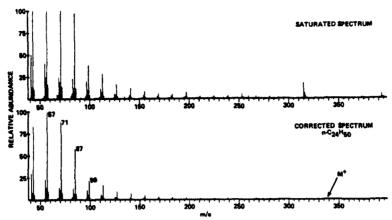


Figure 5. (a) Saturated unprocessed mass spectrum for tetracosane. (b) Spectrum of tetracosane after processing and correction for satura-

GC/MS data collection systems is the problem of mass peak saturation. Saturated peaks occur when the concentration of a component in the ion source is such that for one or more ion masses the detection system analog-to-digital converter becomes overloaded. Saturated peaks are easily detected because of their characteristic flat tops which have an amplitude determined by the overload limit of the detection system (e.g., the saturation value is 4095 for a twelve-bit analog-to-digital converter).

To obtain accurate amplitudes for component spectra that include saturated mass peaks, we must reconstruct these peaks to estimate their true amplitudes. A convenient way to do this in the singlet case is to use the least squares model that we derived in the preceding sections. To actually apply it for reconstruction of saturated mass fragmentogram peaks, we need to make a small modification to the equations. Instead of summing over all the points in the peak, we sum over only those points that are not saturated in the fragmentogram. As an estimate of the peak mode, we use the mode of the intensity histogram for the component being analyzed. An example of reconstruction of a mass spectrum with saturated ion intensities is given in Figure 5. Figure 5a shows a saturated spectrum of tetracosane (spectrum number 545 in Figure 2) and Figure 5b is the corresponding reconstructed spectrum. It is clear that the reconstructed spectrum will give a far better match with a library spectrum than the saturated spectrum which is badly saturated at masses 43, 57, and 71.

Before leaving the discussion of saturation, we should point out that we have not in practice extended the procedure for saturation correction of singlet peaks to the doublet case as we believe that it would be inadequate for reliable intensity estimates. If too many points are overloaded, there will be insufficient data to accurately estimate the amplitude of each multiplet component. Despite such correction algorithms, there is no substitute for the collection of good quality raw data at the start.

RESULTS AND DISCUSSION

The program based on the algorithm outlined in the preceding sections has been tested on a wide variety of biological samples. It fits comfortably into a DEC PDP 11/45 computer (with 28K words of memory) and takes approximately 8 min to analyze a raw GC/MS data set of 600 mass spectra (scanned from masses 40 to 450). Much of this time is spent in reading the raw data from the disk and other input—output operations. Copies of the program, which is written in FORTRAN, are available from the authors. Currently, this program forms part

of an automated analysis system for the GC/MS analysis of urine and blood samples. The program reduces the raw GC/MS data set of approximately 600 spectra to a set of about 60 resolved elutant spectra which are then matched against a library of mass spectra of biological compounds. This whole process takes about 20 min and produces an analysis of the sample, with known compounds in the mixture identified and the remaining unknown set marked for further study by chemists or other DENDRAL programs (12–14).

In evaluating performance of the program, a major issue is how well it is able to detect elutants in the data. The vertical bars on the TIC (Figure 2) indicate all the places where the program detected and isolated a component from the raw GC/MS data. The program's power of detection is illustrated for example by the elutant detected near spectrum number 492 in the total ion current plot shown in Figure 2. Although there is no evidence of a maximum in the TIC in the region near 492, the program was able to detect and isolate a good quality spectrum of indole acetic acid methyl ester (Figure 1). In the raw data, this spectrum is clearly submerged in background and overlapping contributions. A comparison of the resolved spectrum (Figure 1b) with a library spectrum (Figure 3) shows that the basic spectral intensity profiles are very similar even including the very low intensity ion of mass 89. Some very small ions (of intensity less than 5% relative abundance) are absent from the resolved spectrum because they have been lost in the background noise. It is worth noting that there are no peaks present in the resolved spectrum that are not in the library spectrum, that is, the extraneous mass spectral peaks in the raw data including peaks at masses 105, 253, and 315 are not included in the resolved spectrum. The relative intensities of the mass spectral peaks at masses 51, 62, 65, and 77 have been changed significantly from their levels in the raw data. This illustrates the importance of correcting the intensities for background. The mass spectral peaks at masses 51, 52, 63, 78, and 129 appear to maximize near spectrum 496 in the raw data instead of spectrum 492 because of the overlapping contributions of a poorly resolved elutant. Similar examples of the power of this technique exist in other parts of the GC profile in Figure 2.

The detectability of unresolved elutants is clearly a function of their amplitude relative to neighboring components and background. One way to characterize this is to measure the ratio of the total ion intensity (sum of the mass spectrum amplitudes) in the resolved spectrum compared to that in the unprocessed spectrum including background and overlap effects. The mass spectrum of the processed component at

ANALYTICAL CHEMISTRY, VOL. 48, NO. 9, AUGUST 1976 . 1373

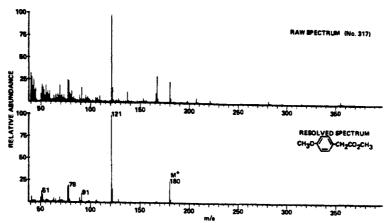


Figure 6. (a) Mass spectrum of 4-methoxyphenylacetic acid methyl ester before processing. (b) Resolved mass spectrum of 4-methoxyphenylacetic acid methyl ester

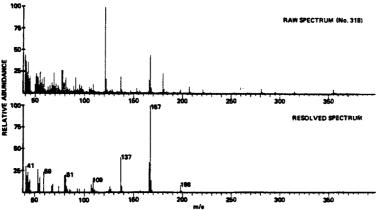


Figure 7. (a) Spectrum of an unknown aromatic ester before processing. (b) Resolved spectrum of unknown ester in Figure 7a

spectrum number 492 comprises only 4% of the total raw ion current. It can be expected that there will be problems detecting components with an ion current ratio that falls much below a level of 4%. Also if two compounds elute within less than 1.5 to 2 spectral scan times of one another, there is an increasing chance that the program will make the wrong decision as to whether there is one or actually two elutants present. Such errors are dependent on the ion current ratio between adjacent elutants, the similarity of their mass spectra, and the stability with which peak positions can be determined.

As an example of doublet resolution, consider the region near spectrum numbers 317 and 318 in Figure 2. The program detects that there are two elutants present and Figures 6 and 7 illustrate the raw and resolved spectra at these locations. The spectrum in Figure 6b is a good representation for 4-methoxyphenylacetic acid methyl ester. The other component is an unknown aromatic ester.

We have evaluated the efficiency of background removal for singlet elutants by examining their mass fragmentograms. After calculating the least squares peak and background levels, we concluded that the computed results are consistent (within 5-10%) with human estimates. They tended to be less accurate for very weak peaks whose shapes were more sensitive to noise distortions.

For the multiplet case, where the peak profiles can be considerably more complex, there is a stronger possibility that

the model will not produce accurate amplitude information. In such cases, as when there are three rather than two elutants present, there is a danger that background contributions will be incorrectly estimated particularly with the limited number of scans that can be held in our minicomputer memory at one time. We feel however that use of a more complex model for triplets is not likely to be able to guarantee much greater precision. A sequential application of the doublet model has produced acceptable results in our experience with the program. Problems most frequently occur when a small amount of an elutant occurs just prior to, or just after, an elutant of high concentration. The intensities of peaks in the small elutant that are common to the large elutant tend to be less accurately calculated than singlet peaks and sometimes may even be discarded as negligible if their intensity relative to the large peak falls much below 10%. This may be especially important for the molecular ions of compounds with the same molecular weight which would be expected to elute near each

Comparison with library mass spectra has indicated that correction of intensities for saturated singlet peaks is satisfactory. However, as expected, the accuracy of the calculation decreases as peaks become more heavily saturated. In our case, we are working with model peaks that extend over nine points (i.e., nine scan widths). If more than four of a peak's nine points are saturated, we can expect that its estimated intensity

1874 . ANALYTICAL CHEMISTRY, VOL. 48, NO. 9, AUGUST 1976

will have only limited accuracy because there is insufficient information left to accurately characterize its shape

Conditions arise in the raw GC/MS data for which it is not possible to extract resolved mass spectra unambiguously. One case is when the elutant-to-background ratio falls significantly below 5%. In these cases, the very weak intensity ions, including isotope ions, usually do not appear in the resolved mass spectra. The other difficulties arise when it is not possible to detect the presence of multiple elutants because they occur within less than one mass spectrum scan time of each other. In this case, the processed spectrum represents the mixture of the two elutants.

In general, we have found that the present system works very well and is capable of detecting and isolating high quality representative mass spectra in GC/MS experiments involving complex biological mixtures.

ACKNOWLEDGMENT

We thank D. Smith, W. Pereira, and W. Yeager who have contributed in a major way to the continued refinement of the computer programs implementing these algorithms and to the critique of results from their operational use in our laboratory. We also acknowledge the work of B. E. Blaisdell of Juniata College, Huntingdon, Pa., on an exploratory alternative approach to the present problem.

LITERATURE CITED

R. A. Hites and K. Biermann, *Anal. Chem.*, 42, 855 (1970).
 C. C. Sweeley, N. D. Young, J. F. Holland, and S. C. Gates, *J. Chromatogr.*, 99, 507 (1974).

- W. H. McFadden, "Techniques of Combined Gas Chromatography/Mass Spectrometry: Applications in Organic Analysis", Wiley Interscience, London, 1973.
 J. E. Biller and K. Biernann, Anal. Lett., 7, 515 (1974).
 R. E. Summons, W. E. Pereira, W. E. Reynolds, T. C. Rindfleisch, and A. M. Dufffeld, Anal. Charm, 46, 522 (1974).
 R. N. Stillwell, 22nd Annual ASMS Conference—Mass Spectrometry, Philadelphia, Pa., 1974, p. 454.
 "Mass Spectra of Compounds of Biological Interest", U.S. Al. Energy Comm. Rep., No. TRD-28553, S. P. Markey, W. G. Urban, and S. P. Levine, Ed.

- Comm. Rep., No. 110-28353, S. P. Markey, W. G. Urban, and S. P. Levine, Ed.

 (8) See for example: R. S. Ledley, "Digital Computer and Control Engineering", McGraw-Hill Book Co., New York, 1960, p 742.

 (9) E. Grushka, M. N. Myers, and J. C. Glddings, Anal. Chem., 42, 21 (1970).

 (10) C. D. Scott, D. C. Chilcote, and W. W. Pitt, Clin. Chem. (Winston-Salem, N.C.), 16, 837 (1970).

 (11) See for example: S. D. Conte and C. de Boor, "Elementary Numerical Analysis: An Algorithmic Approach", McGraw-Hill Book Co., New York, 1972, p 241 and following.

 (12) A. Buchs, A. B. Delfino, A. M. Duffield, C. Djerassi, B. G. Buchanan, E. A. Felgenbaum, and J. Lederberg, Helv. Chim. Acts, 53, 1394 (1970).

 (13) R. E. Carhart, D. H. Smitth, H. Brown, and C. Djerassi, J. Am. Chem. Soc., 97, 5755 (1975).

 (14) R. G. Dromey, B. G. Buchanan, D. H. Smith, J. Lederberg, and C. Djerassi, J. Org. Chem., 46, 770 (1975).

RECEIVED for review September 15, 1975. Accepted April 30, 1976. This work was supported by grants (Nos. RR-612 and GM-20832) from the National Institutes of Health and (No. NGR-05-020-632) from the National Aeronautics and Space Administration.

(Pi	TECHNICAL REPORT DATA lease read Instructions on the reverse before co	ompleting)	
EPA-600/2-79-194	2.	3. RECIPIENT'S ACCESSION NO.	
4. TITLE AND SUBTITLE COMPUTER PROGRAM FOR REDUCING MASS SPECTRA DATA FROM GC/MS SYSTEMS		5. REPORT DATE October 1979 6. PERFORMING ORGANIZATION CODE	
7. AUTHOR(S) D. Rosenthal		8. PERFORMING ORGANIZATION REPORT NO.	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Research Triangle Institute P.O. Box 12194 Research Triangle Park, N.C. 27709		10. PROGRAM ELEMENT NO. 1AD712 BD-014 (FY - 78) 11. CONTRACT/GRANT NO. 68-02-2745	
Environmental Sciences Research Laboratory - RIP,NC Office of Research and Development U.S. Environmental Protection Agency Research Triangle Park, N.C. 27711		13. TYPE OF REPORT AND PERIOD COVERED Final 9/77 - 3/79 14. SPONSORING AGENCY CODE EPA/600/09	

16. ABSTRACT

Existing computer programs for deconvoluting mass spectrometry data derived from gas chromatography/mass spectrometry/computer systems were evaluated, and the most efficient method was introduced unto an EPA UNIVAC computer. The program chosen was that reported by Rindfleisch and his co-workers at Stanford University. The accompanying program listing is included. The Rindfleisch program was tested with both standard runs and environmental samples. Sample components were successfully identified by an independent computer search program with an accuracy approaching 80%.

17. KEY WORDS AND DOCUMENT ANALYSIS			
a. DESCRIPTORS	b. IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group	
Air pollution *Computer system programs *Data reduction *Mass spectra Gas chromatography Mass spectroscopy		13B 09B 20H 07D	
18. DISTRIBUTION STATEMENT RELEASE TO PUBLIC	19. SECURITY CLASS (This Report) UNCLASSIFIED 20. SECURITY CLASS (This page) UNCLASSIFIED	21. NO. OF PAGES 169 22. PRICE	