United States Environmental Protection Agency Environmental Monitoring Systems Laboratory P.O. Box 15027 Las Vegas NV 89114 EPA-600/4-79-078 December 1979

Research and Development

The RAPS Helicopter Air Pollution Measurement Program, St. Louis, Missouri 1974-76

RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are:

- 1. Environmental Health Effects Research
- 2. Environmental Protection Technology
- 3. Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies
- 6. Scientific and Technical Assessment Reports (STAR)
- 7. Interagency Energy-Environment Research and Development
- 8. "Special" Reports
- 9. Miscellaneous Reports

This report has been assigned to the ENVIRONMENTAL MONITORING series. This series describes research conducted to develop new or improved methods and instrumentation for the identification and quantification of environmental pollutants at the lowest conceivably significant concentrations. It also includes studies to determine the ambient concentrations of pollutants in the environment and/or the variance of pollutants as a function of time or meteorological factors.

THE RAPS HELICOPTER AIR POLLUTION MEASUREMENT PROGRAM ST. LOUIS, MISSOURI, 1974-1976

by

David T. Mage, Roy B. Evans, Charles Fitzsimmons, Norman Hester, Frank Johnson, Steve Pierett, George Siple and Robert Snelling

Monitoring Operations Division Environmental Monitoring and Support Laboratory Las Vegas, Nevada 89114

ENVIRONMENTAL MONITORING AND SUPPORT LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY LAS VEGAS, NEVADA 89114

DISCLAIMER

This report has been reviewed by the Environmental Monitoring and Support Laboratory-Las Vegas, U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

FOREWORD

Protection of the environment requires effective regulatory actions which are based on sound technical and scientific information. This information must include the quantitative description and linking of pollutant sources, transport mechanisms, interactions, and resulting effects on man and his environment. Because of the complexities involved, assessment of specific pollutants in the environment requires a total systems approach which transcends the media of air, water and land. The Environmental Monitoring and Support Laboratory-Las Vegas contributes to the formation and enhancement of a sound monitoring data base for exposure assessment through programs designed to:

- develop and optimize systems and strategies for monitoring pollutants and their impact on the environment
- demonstrate new monitoring systems and technologies by applying them to fulfill special monitoring needs of the Agency's operating programs

This report describes the 3-year airborne air-monitoring program conducted by the Las Vegas Laboratory as part of the Regional Air Pollution Study in the St. Louis, Missouri/Illinois, metropolitan area, 1974 to 1976. The data, obtained above the urban area using Las Vegas Laboratory helicopters, should be of great value to the air pollution modelers and analysts who are concerned with the transport and dispersion of pollutants through the atmosphere. The Air Quality Branch of the Monitoring Operations Division of this Laboratory should be contacted for further information pertaining to this report.

George B. Morgan
Director
Environmental Monitoring and Support Laboratory
Las Vegas, Nevada

PREFACE

This report describing the airborne measurement program carried out as part of the Regional Air Pollution Study (RAPS) is intended to give model developers and model users an insight into the vertical distribution of pollution over the St. Louis, Missouri/Illinois, metropolitan area. For those who seek only a general knowledge of the RAPS helicopter program, the main body of the report contains brief descriptions of the measurement program and examples of the results.

Seven field studies were performed:

Mission	Periods of Measurement
Summer 1974	July 15, 1974 - August 30, 1974
Fall 1974	November 3, 1974 - December 6, 1974
Winter 1975	February 10, 1975 - March 14, 1975
Summer 1975	July 14, 1975 - August 15, 1975
Winter 1976	Feburary 16, 1976 - March 19, 1976
Summer 1976	July 12, 1976 - August 13, 1976
Fall 1976	October 25, 1976 - November 19, 1976

The main text of the report shows how the airborne measurements for these studies were made. In conjunction with surface measurements taken at Regional Air Monitoring System stations and meteorological data taken from the RAPS Upper Air Sounding Network, these data can be used to construct a 3-dimensional picture of the pollution distribution over the St. Louis, Missouri/Illinois, metropolitan area. Appendices augment the text and are included primarily for the modelers who will use these data. For example, Section 3 of the text discusses use of a pressure transducer to measure the altitude of the helicopter in flight, whereas Appendix A presents the detailed equations which relate measured pressure and temperature to altitude and the results of the altimeter calibrations.

A logical way for the modeler to approach the RAPS helicopter data base is to decide on some prior basis which days are of interest for modeling--for example, a subset of days in which pollution levels were high, winds were from a particular direction, and the atmosphere was stable. The report answers the specific questions:

Were the helicopters flying on the days of interest?

Which flight patterns were flown?

At what times of day were measurements taken?

Which instruments were in operation?

The collected data described in this report have been compiled on magnetic tape and deposited within the RAPS data bank maintained by the U.S. Environmental Protection Agency at Research Triangle Park, North Carolina. Those who wish to use these data should contact that office:

U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711

The English units of measure used in this report are those established at the beginning of the study and correspond to the units presented on the data tapes. See Appendix F for conversion to metric equivalents.

ABSTRACT

This research program was initiated with the overall objective of providing measurement of air pollution and temperature gradient over the St. Louis, Missouri/Illinois, metropolitan area to complement surface measurements of air pollution by the Regional Air Monitoring System (RAMS) of the Regional Air Pollution Study (RAPS). These measurements aloft were made by instrumented helicopters provided with a data acquisition system for recording all aerometric data, together with navigational data and supplementary status information.

These data obtained during the 3-year period, 1974 to 1976, are intended to provide insight into the transport and diffusion processes for air pollutants and to enable model developers and other users to evaluate and analyze the suitability of simulation models for prediction and decision-making.

This report describes in detail the helicopter data collection program and catalogs the missions flown by date, time, flight pattern and purpose. These data, collected on magnetic tape, are deposited in the RAPS data bank maintained by the U.S. Environmental Protection Agency. Sufficient examples are provided, with figures and tables, to enable the prospective user of these data to understand the measurements and their limitations, and so facilitate usage of the data.

CONTENTS

<u>!</u>	Page
Disclaimer	ii
Foreword	iii
Preface	įν
Abstract	νi
List of Figures	viii
List of Tables	iх
List of Abbreviations	Х
1. INTRODUCTION	1
2. HELICOPTER MEASUREMENT PLATFORM	4
3. HELICOPTER INSTRUMENTATION SYSTEM	6
Instrument System Design Considerations	12
Description of Measurement Instrumentation	13
4. QUALITY ASSURANCE OF DATA	19
Calibration Standards	19
Calibration Procedures and Techniques	21
Instrumental Corrections	23
Instrument Response Time Corrections	30
Independent Interlaboratory Audits	33
5. DATA ACQUISITION AND PROCESSING	36
Data Acquisition	36
Data Edit	36
Data Calibration and Correction	36
6. APPLICATION OF RAPS HELICOPTER DATA TO RAMS SUPPORT MISSIONS	46
RAPS Flight Patterns and Sampling Criteria	46
Statistical Interpretations	47
Special Missions for Principal Investigators	49
special missions for remerpar investigators	
REFERENCES	50
BIBLIOGRAPHY	52
APPENDICES	53
A. Calibration Data	54
B. Audit Results	61
C. Instrument Calibration, Zero, and Span Drift Corrections	67
D. Users Guide to RAMS Support Missions	83
E. Description of Special Experiments for RAPS Principal	
Investigators	140
F. Summary Report of Helicopter Data	152
G Metric Conversion Table	194

LIST OF FIGURES

Number		Page
1.	RAPS S-58 helicopter	7
2.	RAPS helicopter sample manifold system	8
3.	RAPS helicopter data system	9
4.	Interior view of RAPS helicopter instrument system	11
5.	RAPS helicopter electrical system	14
6.	Instrument response to inflight temperature and pressure changes	27
7.	Schematic flow of RAPS helicopter data	37
8.	Schematic flow for RAPS helicopter data edit and analysis	38
9.	Example of RAPS data plot, parameter vs. altitude	44
10.	Example of RAPS data plot, parameter vs. time	45
11.	Location of RAMS stations and helicopter spiral sites	48

LIST OF TABLES

Number		Page
1.	RAPS Helicopter Instrumentation	10
2.	Instrument Drift Corrections	25
3.	Instrument Interferences	28
4.	Instrument Lag Times	29
5.	Lag Corrections to Air Quality Instruments	30
6.	Time Constants of Linear RAPS Instruments	31
7.	Summary of Audit Results	35
8.	Listing of Helicopter Data - Engineering Units	40
9.	Data Report Format	41

LIST OF ABBREVIATIONS

= non-methane hydrocarbon a.c. = alternating current NMCH AGL = above ground level nmi = nautical mile(s) BDCS = Bendix Dynamic Calibration NO. = nitric oxide System NO2 = nitrogen dioxide BCD = binary coded decimal = nitrogen oxide $N0_{x}$ bpi = bits per inch 03 = ozone OĂT B_{scat} = scattering coefficient = outside ambient temperature CH4 CIC = methane PAN = peroxyacetyl nitrate = Computer Instruments Corp. ppm = parts per million CO = carbon monoxide **RAMS** = Regional Air Monitoring d.c. = direct current System DAS **RAPS** = data acquisition system Regional Air Pollution Study = Data Device Corporation DDC = second(s) S DME = distance measuring SRM = Standard Reference Material = sulfur dioxide equipment S02 FAA = Federal Aviation TECO = ThermoElectron Corporation Administration THC = total hydrocarbons FID = flame ionization detector = volt(s) **GPT** = gas phase titration Va.c. = volts, alternating current Vd.c. = volts, direct current = hour(s) h = visual flight rules = hydrogen sulfide H₂S VFR = mercury VHF Hq = very high frequency i.d. = inside diameter = VHF omni-ranging VOR IBM = International Business = micrometer(s) $\mu g/m^3$ = micrograms per cubic meter Machines = kilometer(s) km = kilopascals kpa 1/min = liters per minute = meter(s) = meters per second m/s = millibar mb Meloy = Meloy Laboratories, Inc. MFE = MFE Corporation min = minute(s) = Monitor Labs, Inc. ML= millimeter(s) mm = Meteorology Research, Inc. MRI MSA = Mine Safety Appliances Co. MSL = mean sea level = neutral buffered potassium NBKI iodide

= National Bureau of Standards

NBS

1. INTRODUCTION

The Regional Air Pollution Study (RAPS) was the largest, most comprehensive air pollution investigation ever undertaken by the U.S. Environmental Protection Agency. It was conducted in the St. Louis, Missouri/Illinois metropolitan area, as representative of other urban areas and because a broad research and data base existed from previous studies in the region. In addition, the geography, topography, and source mix of the area were relatively easy to describe in model development. The aim of the study was to produce enough information on all the processes that determine the concentrations of air pollutants so that they could be described in a system of mathematical models encompassing entire metropolitan areas.

A model, in this context, is a mathematical portrayal of the interacting conditions and processes that represent environmental quality in a given geographical area. A validated air simulation model is a useful and often effective cost-saving tool for air quality management by air pollution control agencies. Model development involves evaluation of the accuracy of existing and future models in estimating ambient air pollution concentrations within metropolitan regions, using the best available data on sources, meteorological variables, and actual measured ambient concentrations. Model development was a primary purpose of the RAPS. Hopefully, it will also include the refinement of models to incorporate new knowledge about the transport, transformation, and deposition of air pollutants (Thompson and Kopczynski, 1975).

The RAPS encompassed several different types of activities. Applicable models have been developed and inventoried, and these models are being readied to accept data for testing. The 25-station Regional Air Monitoring System (RAMS) collected ground-level data for model validation over a circular area 80 kilometers (km) in diameter in the St. Louis area. The stations were instrumented to measure sulfur dioxide (SO₂), nitric oxide (NO), nitrogen dioxide (NO₂), ozone (O₃), hydrocarbons, aerosols, wind speed, wind direction, temperature, dew point and turbulence (Myers and Reagan, 1975). Winds and temperatures aloft were observed through pilot balloon (pibal) and radiosonde measurements at different sites in the study area (Zegel, 1976).

A vital part of the RAPS activities was the airborne measurement program conducted by the Environmental Monitoring and Support Laboratory-Las Vegas. Two specially instrumented helicopters were used in collecting data to complement the data being collected from fixed and mobile monitoring equipment on the ground and from monitoring equipment installed on other aerial platforms.

Intensive study periods were conducted during the summer, fall and winter seasons, from the summer of 1974 through the fall of 1976, as shown on page iv. During each period, the frequency of the routine measurements was increased and a variety of special experiments was conducted. Among these experiments were boundary layer studies, energy budget studies, and special plume studies. The intensive study periods also included measurements programs by rotary and fixed-wing aircraft.

As originally envisioned in early RAPS planning, the most ambitious of the regional air quality simulation models to be developed and tested against the RAPS data base would describe air quality, chemistry, and dispersion in an Eulerian system by superimposing a 3-dimensional grid over the St. Louis metropolitan area and solving the continuity equation for pollutants of interest across the grid.

Such models perform a mass balance on each grid cell, accounting for pollutant mass flow into and out of the cell, and the mass of pollutant created or destroyed within each cell. In planning the RAPS helicopter measurement program, the model area was assumed to be 40 km on a side and approximately centered on the Jefferson Memorial Arch. The area would extend vertically to the top of the mixed layer, estimated in early 1974 to vary from as little as 50 to 100 meters (m) above ground level (AGL) in the winter predawn hours to more than 1,000 m AGL in summer midafternoons. Minimum horizontal grid cell dimensions were expected to be 1 km on a side, with the vertical dimension divided into a number of layers which would depend on the desired degree of model resolution.

One presently operable Eulerian photochemical model, developed by Roberts et al. (1973), divides the mixing depth into ten layers. A cell of the RAPS grid, assuming this resolution with a mixed layer depth of 300 m would measure 1 km by 1 km by 30 m. The Eulerian model(s) would then yield pollutant concentrations averaged over the volume of the cell, and averaged over a time period probably not less than 1 hour.

The necessary input data for all such models include pollutant emissions and meteorology. Presently available Eulerian models require the additional input of topography and wind fields, though other models under development will possess the capability of calculating wind fields from synoptic meteorology (Johnson, 1972). Calculations in all of the models will begin from some known or assumed set of initial conditions, and in all models some known or assumed set of boundary conditions at the edges of the modeling grid will be used. The airborne monitoring program was envisioned in early RAPS planning, primarily for the purpose of establishing sets of 3-dimensional initial and boundary conditions, and as a vertical extension of the information being collected on the ground by the RAMS. Early planning envisioned year-round airborne platform measurements. The airborne platforms were also to provide special measurements for plume chemistry studies, studies of the spatial variability of pollutants over distances of a few kilometers, and support of urban energy budget studies.

The following section of this report describes the helicopter platforms chosen for the RAPS program, their air quality instrumentation and the results of the measurement program.

2. HELICOPTER MEASUREMENT PLATFORM

The requirements for the RAPS airborne measurement platforms were originally defined as follows:

- 1. unrestricted operation at low altitudes over urban areas
- 2. instrument and crew payload of about 1,000 kilograms
- 3. continuously available electric power of about 4 kilowatts
- 4. operating range of at least 2 hours, preferably 3 or more
- 5. reasonable operating costs.

Aircraft availability, logistics, and economics soon limited the scope of the RAPS airborne measurement program. The only platforms closely satisfying these criteria were the Bell 212 (military designation UH1N) and the Sikorsky S-58T (military designation H-34T). The purchase price of the Bell 212 (about \$750,000 in 1974) was beyond the scope of the RAPS budget, as was the cost of converting Sikorsky S-58's to S-58T's by adding a twin-turbine power pack (about \$400,000 in 1974). Lease costs for the Bell 212 were about \$20,000/month plus \$200/flight hour. Military UN1N's were unavailable. However, three single-engine military Sikorsky S-58's were available and met all RAPS requirements except that for unrestricted low-altitude urban operation.

Three Sikorsky S-58 helicopters were delivered by the EPA to a contractor in Los Angeles for modification for air quality monitoring. The first two were delivered April 15 and April 19, 1974, respectively. The third was delivered May 30, 1974. The three major tasks to modify the military aircraft to sampling platforms were:

- 1. design and drawings
- fabrication and assembly
- installation and checkout.

Completion and delivery was scheduled for June 17 for the first two systems and July 5 for the third.

To make the aircraft airworthy, the contractor assisted EPA personnel in routine air-frame and engine inspections and maintenance on the three helicopters. Repairs to structural and skin sections were made to helicopter No. 3. This and other unanticipated work, as well as a basic underestimate of the planned work, caused delivery to be delayed until July 17, August 2, and September 9 for the three ships respectively. The final cost of modification was on the order of \$160,000.

The Federal Aviation Administration (FAA) permitted use of single-engine helicopters in St. Louis at altitudes below 150 m AGL over locations where they could autorotate to a safe landing in the event of engine failure. Accordingly, the environs of the RAMS station sites were inspected from the air to find a nearby location for safe autorotations. FAA approval of these sites was obtained, and a helicopter data collection plan was devised to determine the initial and boundary conditions of the modeling grid. The plan consisted of vertical soundings over selected RAMS stations or nearby open areas. The soundings typically began at altitudes above the inversion base and extended downward to 60 m AGL.

HELICOPTER INSTRUMENTATION SYSTEM

Most airborne air quality measurement systems, whether in helicopters or in fixed-wing aircraft, have certain elements in common:

- 1. air-sampling manifolds designed to transport undisturbed air into the aircraft and to reduce its velocity
- 2. analyzers for continuous measurement of gaseous pollutants and certain aerosol characteristics
- 3. mass air-sampling devices to collect particulate matter on filters for later ground-based laboratory analysis
- 4. grab-sampling devices to collect air samples for analysis by gas chromatography to determine hydrocarbon and halocarbon concentrations
- 5. aircraft navigation system and clocks to provide continuous and accurate records of time and position in 3 dimensions
- 6. digital data-logging devices to record all of this information on magnetic tape for later computer processing.

One of the three Sikorsky S-58 helicopters with its side-mounted air intake probes and its temperature sensor is shown in Figure 1. Figure 2 is a block diagram of the plumbing between the probes and the instruments. Table 1 lists the analyzers and instrumentation which comprised the air quality measurement systems aboard the helicopters. The instrumentation complement changed somewhat during the course of the RAPS, and these changes are discussed in detail below. Figure 3 is a block diagram of the instruments and data system.

The RAPS helicopter air quality systems continuously measured concentrations of the following pollutants: ozone (by chemiluminescent reaction with ethylene); nitric oxide and total oxides of nitrogen (by catalytic reduction of nitrogen dioxide to nitric oxide and subsequent chemiluminescent reaction with ozone); carbon monoxide (by a technique utilizing dual-isotope fluorescence non-dispersive infrared detection); and sulfur dioxide (by flame photometry or by pulsed fluorescence). To measure light-scattering from aerosols, the helicopter installation also included an integrating nephelometer which utilized a preheater to minimize the influence of water vapor. Aerosol-size distributions over the range of 0.3 to 3 micrometers (μm) were continuously measured on certain flights by an optical particle-size counter. Ambient air temperature and dew point were also continuously recorded. Grab samples of air were collected in Tedlar bags for subsequent laboratory analyses by gas chromatography for specific hydrocarbon compounds. Particulates were collected on filter media for laboratory analyses to determine concentrations of sulfates, heavy metals, toxic

Figure 1. RAPS S-58 helicopter.

Figure 2. RAPS helicopter sample manifold system.

Figure 3. RAPS Helicopter data system.

Parameter Method	Method and Instrument		
NO, NO _X , (NO ₂ by Subtraction) Chemiluminescent O ₃	te (0 ₃ + C ₂ H ₄) (REM 612) e Infrared (Andros 7000) Photometry (Meloy SA160) me Ionization (MSA 11-2) c Scattering) (MRI 1550) d . Optical (Royco 220) d . (Cambridge CS137) d DME/VOR d . Barometric Pressure		

substances, or other parameters of interest. Figure 4 shows an interior view of the helicopter and the instrument system.

The most important considerations in selecting instruments for aerial monitoring of air pollutants were stability under flight conditions and shortness of response time (Mage and Noghrey, 1972) (Mage, 1975). Power requirements and weight were of secondary importance because suitable platforms with adequate electrical power and payload were available. Although vibrational stress on instruments used in any airborne platform is severe, and particularly so in helicopters, vibration was not a major contributor to instrument malfunctions.

Flight operations for RAPS were performed above 200 m mean sea level (MSL) (approximately 60 m AGL) to approximately 2,000 m MSL. Ambient operating temperatures inside the aircraft ranged from -20° to +50° C through the course of a year, although the actual range encountered in a given flight was much less. The instruments listed in Table 1 were selected for minimum altitude sensitivity; wherever possible, instruments with critical orifice or capillary flow control were selected to assure constant sample air flow.

Figure 4. Interior view of RAPS helicopter instrument system.

Other design considerations for the helicopter instrument systems included position measurement capabilities, sampling manifold design, use of capacitors to compensate sample pump-motor inductive power factors, and power switching arrangements to permit continuous operation of helicopter instrumentation while on the ground.

Position of the helicopters in flight was determined by triangulation with two different air navigation beacons. Each helicopter carried two digital Distance Measuring Equipment (DME) systems, each tuned to an air navigation The distance to each beacon was determined to within +0.1 nautical mile (nmi), and the VHF Omni-Ranging (VOR) bearing to one of the beacons was also recorded. The bearing was used to resolve a dual-position ambiguity resulting from triangulation. Aircraft indicated airspeed was determined and recorded to +1 knot. Aircraft heading was determined to within +1 degree via a synchro-to-digital converter attached to the magnetic compass. The relatively slow helicopter airspeed of 60 knots used on horizontal flight legs yielded a ratio of wind speed to indicated airspeed larger than is available with most fixed-wing aircraft. This ratio, together with the accurate position data from the DME/DME/VOR system, made possible a relatively accurate calculation of wind speed and direction. In comparison with simultaneous pibal data, the helicopters yielded wind speed measurements over 7-minute horizontal flight legs which agree to within 10 percent of the pibal wind data.

Helicopter intake probes and manifolds were made of 38-millimeter (mm) inside diameter (i.d.) stainless steel, and the probes and manifolds used for reactive pollutants (03, N0, N02, and S02) were lined with Kynar, a fluorocarbon plastic with properties similar to Teflon. All sample ducts and lines were made of Teflon tubing. Sample probes were located near the front of the helicopter's right side as shown in Figure 1, and the probes sampled undisturbed air during normal flight. At forward speeds greater than about 30 knots, the rotor wash trajectory strikes the fuselage well aft of the probe locations. To verify the rotor wash trajectory, flight tests were performed with the RAPS helicopters using ribbons attached at many points on the helicopter fuselage to indicate flow patterns.

Power distribution systems for the RAPS helicopters included provisions to supply power to air quality instrumentation in three ways: from aircraft 28-volt direct current (Vd.c.) power in flight; from 28-Vd.c. power provided by an auxiliary power unit while on the ground; and from 110-volt alternating current (Va.c.) power while on the ground. The ground power provisions were necessary to maintain instrument stability because instrument warm-up times varied from 30 minutes to a few hours, and because instrument calibrations sometimes changed after shutdown and restart. In normal operation during a RAPS intensive field study period, the instrument systems were operated continuously, 24 hours per day, without pause. The helicopter power distribution system permitted the instruments to be transferred from aircraft power to either of the alternate sources without interruption. Two 2,000-watt Unitron 28-Vd.c. to 110-Va.c, 60-hertz power inverters were carried aboard each helicopter for instrument in-flight power conversions from helicopter

generators. To reduce current loading on these inverters, the inductive power factor of each instrument was measured, and capacitors were added to the power distribution system to compensate for these power factors. Use of power-factor compensation reduced the total current loading by approximately 9 amperes or about 1,000 volt-amps of reactive "power". Figure 5 is a block diagram of the power distribution system. To minimize ground loops and electrical noise, all equipment racks were electrically isolated from the air frame at the mountings, but all were tied to a common point through heavy grounding cables.

The following section describes the instrumentation chosen for the RAPS helicopter measurement system.

DESCRIPTION OF MEASUREMENT INSTRUMENTATION

Gaseous Pollutants

The gaseous pollutants, carbon monoxide (CO), NO, NO $_{\rm X}$, O $_{\rm 3}$, SO $_{\rm 2}$, methane (CH $_{\rm 4}$) and total hydrocarbons (THC), were measured in real time by the helicopter system. Supplementing the continuous monitors, bag samples could be taken for subsequent analysis in the laboratory. All measurement methods were according to the techniques promulgated at that time in the Code of Federal Regulations or equivalent techniques, where available.

Carbon monoxide concentrations were measured with a Beckman/Andros Model 7000 analyzer. This analyzer quantified the concentrations by measuring the absorbence of infrared radiation by CO in the sample chamber utilizing the dual isotope fluorescence technique. The Model 7000 analyzer is designed to detect 0.1 parts per million (ppm) of CO and has as its lowest range of operation O to 20 ppm full-scale.

Both NO and NO₂ concentrations were measured by the same instrument. Two brands of instruments were used in the RAPS helicopters to measure oxides of nitrogen. Thermo Electron Corporation (TECO) Model 14B analyzers were used during the July-August and November-December 1974 RAPS field exercises, and Monitor Labs, Inc., (ML) Model 8440 analyzers were used during all other field exercises. Both analyzers monitor NO by measuring the light from the chemiluminescent reaction of NO with O3. Both brands of analyzer monitor the NO_x concentrations by catalytically reducing NO₂ to NO and then measuring the total NO as NO_x. Because the TECO 14B analyzer could not measure NO and NO_x simultaneously, two TECO instruments were used in each helicopter system. The ML 8440 was able to measure NO and NO_x simultaneously and one ML8440 could replace two TECO's. The TECO 14B had as its lowest range of operation 0 to 0.20 ppm full-scale. The ML 8440 operated on a lowest range of 0 to 0.20 ppm full-scale.

Ozone concentrations were measured with a REM Model 612 monitor. The REM instrument monitors 0_3 by measuring the light emitted by the chemiluminescent reaction of 0_3 with ethylene gas. The lowest level of detection for the REM was $0.001~\rm ppm$, and the lowest range of operation was $0~\rm to~0.20~\rm ppm$.

Figure 5. RAPS Helicopter electrical system.

Concentrations of SO_2 (measured as total sulfur) were monitored with a Meloy Laboratories, Inc., (Meloy) Model SA-160 analyzer. SO_2 is monitored by measuring the light produced by a chemiluminescent sulfur species in a hyperventilated hydrogen flame (a flame photometric detector). Because this analyzer responds to almost all sulfur compounds and not just to SO_2 , it is generally considered to be a "total-sulfur analyzer". The minimum detectable concentration of the SA-160 was 0.005 ppm.

Hydrocarbon concentrations (methane and total hydrocarbons) were measured with a Mine Safety Applicances Company (MSA) Model 11-2 monitor. In this instrument, the hydrocarbons are measured by means of a hydrogen flame ionization detector (FID). Total hydrocarbons (THC) are measured directly, while methane is measured on a separate flame after the air sample has passed through a stripper column that removes all other hydrocarbons. The lowest range of operation for the MSA analyzer for both THC and methane was 0 to 5.0 ppm full-scale.

Bag samples were collected in order that a more detailed compositional analysis might be done for the hydrocarbons. A bag sampler was designed to sequentially fill up to five Tedlar bags with ambient air. One of three flow rates, 28, 14, and 7 liters per minute (1/min), could be selected by a switch. A given flow setting also selected a fixed sampling time of 2, 4, or 8 minutes respectively to fill a 56-liter bag. All plumbing was stainless steel, including the three-way solenoid valves which controlled the flow to each bag. Valve seals were of Viton. Air was pumped into the bags by a small diaphragm pump which had been coated inside with Teflon. A prefilter cartridge of marble chips coated with manganese dioxide powder was put in the sample line to destroy 03 and thus protect the hydrocarbons in the sample from oxidation. Care was taken to keep the bags out of direct sunlight during transport and storage. Bags used in sampling were supplied by the various investigators. Because sample analyses were performed by outside investigators as listed in Appendix E, no bag sample data are included in this report.

Particulate Pollutants

Particulate levels were also measured by the helicopter system. Continuous readings were taken of the light-scattering coefficient in the 0.1-to 1- μm range of particle-size distribution. Filter samples were taken to examine mass loading and chemical composition.

The particulate light-scattering coefficient was measured by a Meteorology Research Inc. (MRI) Model 1550 integrating nephelometer equipped with a preheater. The instrument makes continuous measurements of the visual quality of the ambient air. The atmospheric extinction coefficient due to the scattering of light by both gases and aerosols is determined. The instrument has a sensitivity range of 10^{-5} to 10^{-2} reciprocal meters (m⁻¹); this corresponds approximately to a mass loading range of 0 to 3,800 micrograms per cubic meter (μ g/m³).

Particle-size distribution was provided by a Royco Model 220 aerosol-particle monitor. This monitor was coupled to a multichannel analyzer which scaled particle counts in eight size ranges. The Royco projects a beam of light through the air sample and measures the 90-degree scatter with a photomultiplier tube. The size and frequency of the pulses are an indication of the size and number of the particles. The analyzer detects particles larger than 0.5 μm in aerodynamic diameter. The multichannel analyzer can be adjusted to a wide range of pulse sizes.

Special filter samples were taken with the helicopter system. An attempt was made to provide isokinetic flow at the sample intake by using a tapered, machined probe tip. A filter holder was built to accommodate 37-mm diameter filters. Flow rates available through this system were 28 or 65 $1/\mathrm{min}$. Teflon $1-\mu\mathrm{m}$ pore size filter media were used and analyzed for sulfates during some RAPS flights. The airmover was a Gelman carbon vane pump and flow was determined by measuring the pressure drop across the filter with a Magnehelic gauge. Filter analyses were performed by outside investigators as listed in Appendix E, and no filter analysis data are included in this report.

Temperature and Pressure (altitude)

Temperature and dew point were determined continuously with an EG&G Vapormate II using a Model CS137 thermometer-hygrometer probe. The air temperature was sensed with a thermistor located in the direct path of the moving air. Dew point was determined by a condensation hygrometer, a thermoelectrically cooled mirror with an optical system which detects fogging of the mirror surface. The temperature sensor operated within the range of -40° to $+49^{\circ}$ C, with a temperature accuracy of $+0.8^{\circ}$ C.

The dew point sensor operated from -40° to +40° C. The listed accuracy of the dew point sensor varies with temperature range; accuracy is $\pm 0.8^{\circ}$ C in the range 0° to 49° C, $\pm 1.1^{\circ}$ C in the range -29° to 0° C, and $\pm 1.7^{\circ}$ in the range -40° to -29° C.

Pressure altitude was measured automatically by a Computer Instruments Corporation (CIC) Model 8000 electric altimeter. This device was plumbed into the aircraft static pressure line. Changes in static pressure are detected by a diaphragm which is mechanically linked to a potentiometer. Excitation is provided by aircraft 28 Vd.c., and output is nearly linear with altitude (based on the U.S. Standard Atmosphere model). According to the manufacturer, the range is from 305 m below sea level to 9,150 m ASL. Accuracy, according to CIC, is ± 12 m in the range of altitudes flown over St. Louis. The calibration data are given in Appendix A. The equations to correct the altitude for deviations from the standard atmosphere model, caused by synoptic pressure and temperature variations, are also listed in Appendix A.

Avionics

Avionics equipment were incorporated into the helicopter air monitoring system to provide data which were used to calculate position and wind fields, as described below.

True position was determined by three instruments which are not part of the normal aircraft navigation equipment, two Collins DME-40 transceivers and one Bendix RVA-33A VOR receiver. The DME (distance measuring equipment) transceivers measure line-of-sight distances from two VORTAC air navigation stations on the ground.

The VOR (VHF-omni-ranging) measures the bearing in degrees from one of the stations. Position was determined by triangulation of the two DME distances. The VOR bearing resolved which of the two possible DME intersects was the true position. Accuracy of the DME-40 was ± 0.1 nautical mile (185 m) within line-of-sight range. The accuracy of the VOR was about $\pm 5^{\circ}$ above 500 m AGL and within 16 km of the VORTAC station. At lower altitudes, radio beacon reception was less reliable, and resolution of the VOR bearing became as poor as $\pm 20^{\circ}$ near the ground.

Digital data from the DME and VOR instruments were fed directly into the data acquisition system as nautical miles and degrees respectively. Compass heading and indicated airspeed were also recorded. A Data Device Corporation (DDC) Model 4700 synchro-to-digital converter digitized the three synchro voltages from the ship's compass and output in real time the heading in degrees. The airspeed was measured with a CIC Model 7100 differential pressure transducer which was plumbed into the helicopter pitot and static pressure lines. Accuracy of the compass heading was $\pm 1^\circ$ and that of the airspeed was $\pm 1^\circ$ knot.

These data could be used to plot the helicopter course from a known position as if there were no wind effect on the helicopter. The vector distance (L) from the computed position to the true position over a period of time (Δt) is the distance the helicopter has been blown off course. The average wind speed is therefore $\bar{u} = L/\Delta t$, and the average wind direction is in the direction of the vector L. Because the accuracy of the true helicopter position was ± 0.2 nautical mile by DME measurements, it was necessary to fly about 10 minutes at 60 knots (true airspeed) with a 12-knot wind to obtain an accuracy on the order of $\pm 10\%$ for L.

Data Processing

The data logger at the center of the helicopter system was an ML Model 7200 R-D2 with digital clock modules C1-C4. The 7200 was equipped to input digital and analog signals, and it was interfaced to a Cipher Model 70 digital magnetic tape recorder.

Thumbwheel switches on the ML 7200 allowed codes to be entered for such things as range setting for the various air quality instruments and the Julian date. The normal scan rate during the RAPS missions was one 132-character record every 5 seconds. This record was output on magnetic tape in IBM-compatible 7-track binary coded decimal (BCD) code with a packing density of 200 bits per inch (bpi) (1 inch = 2.54 centimeters). This relatively low packing density was required to overcome vibration interferences.

Figure 3 is a block diagram of the total data system. All of the analog signals from the various air quality instruments were input first to a recorder selector panel. This allowed selected signals to be recorded on any of four channels of an MFE Corporation (MFE) Model M24CRAHA strip chart recorder. Although the recorder provided backup to the tape deck for four of the parameters, its primary use was for calibration and in-flight display.

All of the instruments discussed above had corrections that needed to be accounted for before the collected data were put into final form. The following section discusses the effects of pressure, temperature, humidity and other interferences. In addition, the lag and response times of the instruments are discussed and their corrections are outlined.

4. QUALITY ASSURANCE OF DATA

The quality assurance of the data obtained by the RAPS helicopters was given high priority in all stages of mission planning and execution. With the choice of the unpressurized S-58 helicopter for the airborne platform, the difference between the measurement conditions and calibration conditions became a major concern. Almost all of the pollution monitors which met the requirements of the Code of Federal Regulations were designed not for aircraft operation, but for ambient operation in a controlled temperature environment within a small range of ambient pressure corresponding to the normal synoptic variations. In order to assure the validity of the measurements made in flight, a comprehensive quality assurance program was implemented which covered the following five component segments:

- 1. Calibration Standards
- 2. Calibration Procedures and Techniques
- 3. Instrumental Corrections
- 4. Instrument Response Time Corrections
- 5. Independent Interlaboratory Audits

CALIBRATION STANDARDS

All measurements made by the RAPS helicopters were designed to conform to current Code of Federal Regulations Reference Methods and, where possible, all calibration standards were Standard Reference Materials (SRM) traceable to the National Bureau of Standards (NBS). The policy of the RAPS helicopter group was to prepare a secondary field standard and analyze it relative to an NBS primary standard. The NBS standard was kept in Las Vegas and the secondary standard was used daily in the field calibrations. This procedure was designed to prevent the accidental loss of the primary calibration standards through leakage during routine use and also to save on costs. The standards used are described below by pollutant.

Carbon Monoxide (CO)

The CO primary standard was an NBS SRM mixture of CO and nitrogen contained in an aluminum cylinder. The secondary standards were CO-ultrapure air mixtures prepared by Scott-Marin in aluminum cylinders to a nominal concentration of 15 ppm.

Oxides of Nitrogen (NO and NO₂)

The initial secondary NO standard was analyzed during 1973 to be 81 ppm by gas phase titration (GPT) (Rehme, 1976), as referenced to the Code of Federal

Regulations neutral buffered potassium iodide (NBKI) method for 03 analysis. When the cylinder was used in St. Louis during the Summer RAPS 1974 study, it was analyzed to be 77.5 ppm in reference to a RAMS station secondary NO standard. During the Fall RAPS 1974 mission, the cylinder was again compared to NBKI by GPT and was analyzed at 72 ppm. When an NBS-certified NO-N2 mixture was received in the Spring of 1975, the cylinder was again analyzed to be 72 ppm.

The RAPS helicopter field standard was recertified to a new value close to the RAMS measured value, and all data obtained previous to this audit were corrected for the change in the span factor. All other NO cylinder standardizations had very stable and reproducible results.

The NO standard was also related to the ozone standard through the GPT technique as discussed in the following section on ozone. During the period in 1974 when the NBS NO cylinder was on order, the GPT technique was used to check the NO cylinder values and to perform calibrations.

<u>Ozone</u> (03)

No NBS reference materials are available for 03 calibrations. The Code of Federal Regulations Reference Method for 0_3 calibration at that time used the oxidation of an NBKI solution as the calibration principle. In the spring of 1974, the 03 calibrations were being performed with a Dasibi 1002-AH 03 analyzer as a secondary standard. This monitor, which demonstrated long-term stability, was calibrated by the Code of Federal Regulations NBKI Reference Method for 03. This secondary reference Dasibi was also used to calibrate the NO cylinders by GPT; therefore, the O₃ and NO field standards were referenced either directly or indirectly to the Code of Federal Regulations Reference Method for 0_3 . This method of 0_3 calibration was used until June of 1975. At that time an NBS NO-in-N2 cylinder was received which allowed all secondary NO cylinders to be cross-compared directly to the NBS NO-in-No cylinder. During this same period, the accuracy of the NBKI ozone reference method came under close scrutiny and testing by the EPA. The Dasibi 03 monitor, which had been stable for nearly a year, developed electronic problems.

All of these developments required that an 0_3 calibration be performed by GPT referenced indirectly to an NBS cylinder of NO-in-N₂ as the primary reference material. The 0_3 calibration was performed daily by a GPT on the NO-NO_X analyzer using the secondary standard of NO-in-N₂.

Whenever the Dasibi 0_3 analyzer was repaired and found to be functioning properly, a GPT would be performed directly with an NBS NO-in-N₂ cylinder. Once calibrated, the Dasibi would be taken to the field as the secondary reference for 0_3 calibration. When the Dasibi was used as the secondary reference for 0_3 , it would be referenced periodically to a GPT on the NO-NO_x monitor using the secondary standard of NO-in-N₂, as referenced to an NBS NO-in-N₂.

Sulfur Dioxide (SO₂)

The SO_2 calibrations were performed with NBS-certified permeation tubes. SO_2 permeates through the Teflon wall of the tube at a known rate which is a function of the tube temperature. The permeation tubes were maintained at a constant temperature which was measured with a certified thermometer. Near the end of the warranted lifetime of the permeation tube, the tube was compared to a newly purchased NBS permeation tube prior to replacement to ensure equivalence between them.

Methane (CH₄) and Total Hydrocarbons (THC)

Methane and non-methane standards at low ppm concentrations were a problem for this study. Because NBS methane standards were out of stock at the beginning of the program, commercially prepared standards were used, which were found to be unstable. This problem was solved with the use of Scott-Marin cylinders of methane in air which proved to be stable. Although an NBS standard was not available directly, an independent certification was available by independent audits discussed later in this section.

Temperature

The temperature probes used in the initial studies, #627 and #629, were calibrated against an NBS-traceable Rosemount platinum thermometer in the range -10° to $+40^{\circ}$ C. The temperature data were fit by the least squares technique to a cubic equation with voltage as the independent variable. The maximum difference between the corrected data and any calibration point was 0.5° C. These corrections were made for the first five field studies.

The thermoelectric circuits of the first two temperature probes failed after the Winter RAPS 1976 mission and were replaced with new EG&G Vapormate II probes, #803 and #804. The temperature probes #803 and #804 were calibrated against an NBS-traceable Rosemount quartz crystal thermometer between -10° and $+40^{\circ}$ C at 5° C intervals. The temperature data were again fit by the least squares technique to a cubic equation with voltage as the independent variable. The maximum difference between the corrected data and any calibration point was 0.2° C. These corrections were made for the last two field studies. The calibration data for all four probes are given in Appendix A.

CALIBRATION PROCEDURES AND TECHNIQUES

Due to the extreme range of environmental conditions encountered in air quality monitoring from a helicopter platform, calibrations were required on a daily basis. For most calibrations in the RAPS program, the helicopters were parked in the hangar facilities. This was necessary to keep the instruments at reasonable temperatures and to provide thermal stability for the Bendix Dynamic Calibration System (BDCS). The BDCS must be kept in a given temperature range to allow the permeation tube oven to equilibrate at the desired temperature and to produce stable outputs and flows from the 03 generator. The BDCS was operated with a Bendix heatless air dryer and either an MSA catalytic oxidizer or an Aadco pure air generator. The latter was used

during the last four missions. These systems provided the zero-grade dilution air used in all calibrations of the 0_3 , oxides of nitrogen, $S0_2$, and C0 instruments. The zero air also was used to establish the zero input response of the 0_3 and oxides of nitrogen instrumentation.

Each calibration was performed in the following standard format, except for the first week or two of operation in the Summer RAPS 1974 project. The first item to be performed immediately after flight was the post-calibration zero. Without any monitor adjustment, zero air was sampled from the pure air generator. After equilibrium was achieved, the zero value from the monitor was recorded. Following this procedure, the air quality monitor was adjusted to zero and this pre-calibration zero was recorded. Following the zero adjustment, a known concentration of pollutant gas was introduced to the monitor. This span gas was formed in the BDCS by diluting the output of either a high concentration gas cylinder or permeation tube with zero air. With no span adjustment and after equilibrium of the signal, a postcalibration span reading was recorded. Next, the air quality sensor was adjusted to the appropriate signal level corresponding to the known input, and this value was recorded. This calibration sequence is based on the fact that a zero value adjustment of a given amount will directly affect the span value by the same amount. However, adjustment of a span value will not influence the zero value that has been pre-established. This method was applied for all SO2, O3, oxides of nitrogen, and CO instrumentation. The sequence was also applied to the nephelometer calibrations; however, in this particular monitor, span adjustments do affect zero values, and a re-zero was necessary.

Quality controls were performed frequently in many aspects of the RAPS helicopter operations. On a biweekly basis, multipoint calibrations were performed. The calibrations were implemented within the first week operation, midway through the project, and during the last week of the intensive studies. Zero-air tests were performed on the same schedule. Internal zeroes of the SO₂ analyzers and CO analyzers were compared to the Aadco pure air generator or the Bendix heatless air dryer and MSA catalytic oxidizer. Comparisons also were made between the in-flight zero-grade air (Linde or Matheson zero-grade air) and the Aadco pure air generator or the Bendix heatless air dryer and MSA catalytic oxidizer. These tests produced very favorable results for 03 and SO2, and oxides of nitrogen. A few problems occurred in the CO comparisons. A higher zero reading occasionally occured when sampling air from the Aadco pure air generator than when using air from the internal zero air scrubber of the CO monitor itself. The source of the problem is believed to be the difference in CO2 background between each of the zero-air sources. The ${\rm NO}_{\rm X}{\rm -NO}$ converter efficiencies were tested weekly, at a minimum, and when gas phâse titration was used for 03 calibrations, the converter efficiency was checked on a daily basis.

All flows were calibrated on the BDCS at least once a week, but any problems incurred with the BDCS required that calibration of flows be made more frequently.

During the first three intensive studies (Summer RAPS 1974, Fall RAPS 1974, and Winter RAPS 1975), the flowmeters used were certified only to about

5% accuracy. During the last four missions, an NBS-traceable Teledyne-Hastings Miniflo Calibrator was used for flow measurements. This allowed a $\pm 2\%$ accuracy for flow measurement. This accuracy with an approximate $\pm 2\%$ accuracy for field standards gave a calibration error of $\pm 4\%$; however, with the flows measured only once a week, the error could be as great as $\pm 8\%$ of the input value.

Primary calibrations of the MRI nephelometer were done in the field. The first primary calibration was performed immediately after set-up and again during the third week of the operation. This absolute calibration required two data points, the scattering coefficients for pure air and for pure Freon 12. The nephelometer was checked daily with an electronic test and zeroed and spanned according to the instruction manual.

Throughout the RAPS project the analysis of methane and non-methane hydrocarbons remained a difficult task. Two key problems restrained the collection of hydrocarbon data. The first problem was that of accurate standards for calibration described previously in section 4. The second problem was that of the MSA hydrocarbon analyzer catalyst stability. It was finally resolved that, because of frequent contamination (possibly phosphate), the catalysts (hopcalite) within the MSA were not reliable. Also, since the MSA hydrocarbon analyzer is much like a gas chromatograph, pronounced temperature fluctuations also become a problem. The catalyst problem was resolved by using hydrocarbon-free air from a cylinder rather than relying on the catalyst to supply hydrocarbon-free air to the flame.

After reviewing the problems encountered with the MSA analyzer and standards, it was determined that the hydrocarbon data were not defensible. All hydrocarbon data have been removed from the helicopter data base.

All Royco calibrations were performed with polystyrene latex beads manufactured by Dow Corning Corporation using a calibration system fabricated by the Las Vegas Laboratory's helicopter team. The Royco calibrations were performed each evening prior to a scheduled Royco flight.

During the first three missions when all flights were based at Scott Air Force Base, Illinois, the avionics were tested routinely with equipment loaned to the EPA by the Air Force. After deployment to Smartt Field, avionics test equipment had to be purchased. Until the avionics equipment was available, all avionics testing was done by test flights encircling a nearby VOR station, and by over-flights of landmarks to test the DME's. In-flight checks of the altimeter, VOR and DME data were also made routinely by comparison to the aircraft avionics which were completely independent systems.

INSTRUMENTAL CORRECTIONS

To assure the validity of the aerometric data, several operational tests were made on the instruments, both in the laboratory and in the field. A number of corrections and estimates of their magnitude are described. Of these, only zero drifts and span drifts were corrected for in the data base. The other corrections, such as response time and lag time, were of lesser

magnitude and did not justify the reprocessing of the entire data set. However, these are described in sufficient detail that the data user can make the corrections if the individual application calls for it.

Density Correction - Pressure and Temperature

Air pollution monitors produce an output that is proportional to the number of molecules (i.e., mass) in the sampling chamber, not the ratio of pollutant volume to air volume (ppm). To provide true ratios of pollutant to air, adjustments need to be made to instrumented outputs to correct for density changes in the air resulting from pressure and temperature variations. Pollution measurements should be corrected to reference conditions at 25° C and 760 mm mercury (Hg) pressure. The temperature of the air sampled from the helicopters was measured and recorded continuously. The pressure of the air can be derived from the voltage output of the altimeter. Given the temperature and pressure of the sampled air, it is tempting to apply simple ideal gas-law relationships to correct these data. However, since individual instrument response may deviate measurably from the ideal gas-law relationships, chamber studies must be performed for each instrument.

Theoretically, instruments should be calibrated with a standard gas mixture at 25° C and 760 mm Hg pressure. The instrument, however, makes its readings at the temperature and pressure of the gas in the sampling chamber, not outside ambient levels. Many pollution monitors control the temperature and pressure in their sampling chambers. If these devices function properly, instrument readings can be automatically referenced to the density of air at standard reference conditions. Those instruments that have temperature and pressure control mechanisms, however, were not designed to operate within the extremes encountered in operating the instruments in an unpressurized aircraft.

Also, atmospheric density changes are not the only effects caused by pressure and temperature changes. Temperature effects may cause electronic components to behave differently; pressure fluctuations may cause changes in flow rates that will affect instrument response; and temperature and pressure may affect the principle of detection (for example, infrared absorption peaks broaden as temperature and pressure increases). Because of these uncertainties in the data caused by pressure and temperature fluctuation, environmental chamber studies were undertaken to qualify the error in instrument output as a function of temperature and pressure and, if possible, to experimentally derive equations to correct these data.

<u>Span</u> and <u>Zero</u> <u>Drift</u> <u>Corrections</u>

Basically, two approaches were taken to isolate and identify environmentally caused detrimental effects to the signal output of the instruments:

 Experiments were designed to test in situ instrument response under actual conditions of changing environmental factors.

2. Laboratory equipment was used to simulate flight conditions.

The theory was that if a demonstrable effect is proved reproducible and quantified, the data can be corrected by factoring out the impact of these changing environmental parameters using an appropriate mathematical algorithm. Because they were designed for aircraft use, the following instruments were not tested for environmental response: CIC pressure altimeter, Cambridge ambient temperature and dew point temperature sensor, and MRI integrating nephelometer. The remaining instruments on board the helicopter (Table 1) were laboratory-tested using an environmental chamber facility. This chamber had a dynamic range for temperatures of -80° to +100° C and for altitude (pressure) of 600 m to 39 km MSL. A typical test range for temperature was 0° to 40° C and for altitude, 600 m to 3,000 m MSL.

Instrumental drift is defined in this discussion as the difference between the signal change measured in the environmental chamber and the signal change expected due to the change in atmospheric density. For example, the span drift of the REM 612B ozone monitor with altitude is:

(Chamber Drift) - (Density Drift) = Instrumental Drift (-0.9% of scale/305 m) - (-1.1% of scale 305/m) = +0.2% of scale/305 m

Thus, for a 1,000-m increase in altitude, this instrument shows a drift of only +0.7% of full-scale. Instrument drift results for selected instruments are summarized in Table 2.

TABLE 2. INSTRUMENT DRIFT CORRECTIONS

Instrument	Test	Full-Scale	Change
REM 612B Ozone	Pressure	0.2 ppm	0.7% of full-scale/1,000 m
REM 612B Ozone	Temperature		0.4% of full-scale/° C
Meloy SA160 SO ₂	Pressure	1 ppm	2.1% of full-scale/1,000 m
Meloy SA160 SO ₂	Temperature		0.36% of full-scale/° C
TECO 14B NO-NO _X	Pressure	1 ppm	6.3% of full-scale/1,000 m
TECO 14B NO-NO _x	Temperature		0.7% of full-scale/° C

The chamber tests were artificial representations of actual conditions of instrument usage. It is indeed important to test the instruments under normal operations to avoid possible artifacts inherent in laboratory tests. However, due to weight and space considerations, it was not practical to carry span gases onto the aircraft during flight; therefore, zero drift of the instruments was the only parameter that was examined for the RAPS helicopter system. Zero drift was examined by having the 03 and NO-NO $_{\rm X}$ instruments sample pure air from zero-grade air bottles, while the other instruments sampled ambient air passed through their internal scrubbers.

Zero drift of the instruments was examined during two in-flight regimes. First, the instruments were allowed to sample clean air during the time when the aircraft was making spiral descents. For this test, the aircraft performed a spiral descent from 1,525 m to 215 m MSL. The time required for such a maneuver is on the order of 10 minutes. Usually, the changes in ambient temperature and pressure are greatest during a spiral, and it is expected that the instruments would be most strongly affected during this period. Figure 6 shows instrument response versus altitude for 0_3 , N_0 , N_0 , N_0 , N_0 , N_0 , and N_0 . The outside ambient temperature (OAT) is also plotted for reference. For the instrumentation in this test the drifts observed were negligible, with the exception of that for the CO monitor.

Second, zero drift was examined for the time period of a typical flight, about 3 hours. The drifts of the instruments in this test, with the exception of the CO monitor, were less than 5% of full-scale. To compensate for the drift of these instruments in flight, zero levels were recorded periodically during measurement periods, and a linear interpolation of the zero drift was made to correct those data. (Daily span calibrations of all instruments indicate that the span drift with time was usually less than 5% of full-scale per day.)

The CO analyzer was extremely temperature sensitive, and under certain conditions it was not unusual for the zero drift of this instrument to be 30% to 100% of full-scale during a spiral. The corrections that would have to be made to these CO data are large and, therefore, these data contain a great deal of uncertainty. These data must be assumed to be suspect and if they are to be used in modeling analysis, the user should inspect the in-flight zero data, and compare CO with other pollutants when it peaks.

Interferences

In addition to those interferences specified by the manufacturers of the instruments used in the helicopter operations (Table 3), other interferences are known.

The Meloy SA160-2 is a total sulfur analyzer; it detects hydrogen sulfide (H_2S) and organic sulfides in addition to SO_2 . For the Meloy to be specific to SO_2 , a catalytic scrubber must be used. This scrubber system was not used on the helicopter system because it increased the response time; hence, H_2S and organic sulfides must be considered as possible positive interferents in the reported SO_2 data.

Figure 6. Instrument response to in-flight temperature and pressure changes.

TABLE 3. INSTRUMENT INTERFERENCES (as specified by the manufacturer)

Instrument	Parameter	Interferent	Remarks
REM 612B	03	None	Specific to ozone
TECO 14B	NO/NO ₂ /NO _X	None	Specific to NO
ML 8440	NO/NO ₂ /NO _X	None	Specific to NO
Beckman 7000	(Andros 7000)-C0	H ₂ 0 CO ₂	<pre>Interference < 1:10,000 Interference < 1:20,000</pre>
MSA 11-2	THC/CH ₄ /NMHC	None	None
Meloy SA160-2	Total Sulfur	None	Measures all sulfur compounds
MRI 1550B	Particles (Visibility)	H ₂ 0	Data valid for aerosols and particulates under following conditions:without inline heater when relative humidity <65%with inline heater when relative humidity >65%
Cambridge 137-C1	Temperature Dew Point	None	None

^{*}Standard Operating Condition

The flame photometric analyzer has a small negative interference since ambient $\rm CO_2$ levels (approximately 320 ppm) quench the flame and reduce the response of the instrument by approximately 10%. Calibration and operation with identical ambient $\rm CO_2$ levels produce no appreciable error from this effect. However, it must be assumed that the pure air generator used for calibration had some effect on $\rm CO_2$ concentration and therefore the $\rm SO_2$ interference is significant but less than $\rm 10\%$.

Winer et al. (1974) have shown that chemiluminescent NO-NO₂ analyzers respond quantitatively to peroxyacetyl nitrate (PAN) and a variety of organic nitrates and nitrites. In addition, the instruments also respond to nitroethane and nitric acid. These compounds are usually found in very low concentrations relative to NO and NO₂ concentrations and were not expected to be significant interferences in these measurements.

Non-chemical interferences were observed with most of the pollution monitoring equipment. During the July-August 1974 exercise, electronic

interference caused by radio transmission from the aircraft was observed. Large spikes in the pollutant monitor readings were detected in test data records corresponding to communications on the FM radios. Faraday cages were built around each pollutant monitor to shield it from radio interference. Little further interference was observed with the instruments other than an occasional small electrical response from the ozone monitor.

<u>Instrument Lag Time Corrections</u>

The following discussion provides the information to make corrections for lag time. The lag times of the air quality instruments flown during the RAPS support missions are functions of the following parameters:

- 1. instrument detector characteristics and internal flow rate
- velocity of air stream in the sample manifold which was determined by the air speed of the helicopter
- 3. the length and diameter of the sample manifold between the air intake probe and the instrument sample inlet

The total lag times of the instruments were determined through a series of in-flight tests. A solenoid valve was placed on the sample inlet probe to inject a span gas into the inlet. The solenoid valve was energized simultaneously with the start of a high-speed strip chart recorder. The length of the chart before the signal began to rise from the background was a measure of the lag time. The lag times, to the nearest second, for all the air quality instruments as used in the RAPS helicopters are listed in Table 4.

TABLE 4. INSTRUMENT LAG TIMES

Instrument	Lag Time			
MRI Nephelometer	2 seconds (estimated)			
Meloy 160 -S0 ₂	4 seconds			
REM Ozone	5 seconds			
ML NO _X	5 seconds			
ML NO	6 seconds			
Beckman CO	7 seconds			
MSA Hydrocarbon	5 seconds (estimated)			

The recommended lag corrections for these instruments, a function of the scan rate of the data acquisition system, are listed in Table 5.

The lag and response times of the EG&G temperature probes and altimeters have not been measured at the normal aircraft speed of 60 knots. EG&G lists a response time of 10 seconds in still air.

TABLE 5. LAG CORRECTIONS TO AIR QUALITY INSTRUMENTS

Scan Rate	MRI	Meloy	REM	ML NO	ML NO _X	Beckman	MSA
1 second	2	4	5	6	5	7	5
2 seconds	2	4	4	6	6	6	4
4 seconds	0	4	4	4	4	8	4
5 seconds	0	5	5	5	5	5	5

INSTRUMENT RESPONSE TIME CORRECTIONS

The following discussion provides the information to make corrections for lag time. Each of the monitoring instruments has a finite response time which results in the instruments being unable to measure the input signals exactly. If the instruments are linear first order systems, the input X and the output Y are related as

$$X(t-t_L) = Y(t) + \tau_1 \frac{dY(t)}{dt}$$
 (1)

where τ_1 = the time constant of the instrument system,

and t_L = the lag time of the instrument system.

All of the instruments used by the RAPS helicopter system may be modeled by equation 1, with one exception. The exception is the Meloy SA-160 $\rm SO_2$ analyzer which is non-linear and which is discussed separately in this section.

Corrections for Linear Instruments

In general, when the concentration distribution in space is relatively uniform, the derivative dY(t)/dt will be small and the correction $(\tau_1 dY(t)/dt)$ need not be made. If the input to the instrument is a ramp function, the output will be an identical ramp, lagging the input by $\tau_1 + t_L$. The only times during the flight when the corrections will be significant will be when the helicopter passes through a plume in flight, or through the top or base of a thermal inversion where both temperature and concentration profiles may have a discontinuity in slope.

The response times of all the instruments were measured both on the bench with simulated flight conditions of flow rate and piping lengths and/or in-flight. The in-flight results are the most reliable for correcting the data because the test conditions are the measurement conditions in flight. The in-flight tests were performed by the injection of span gas through a solenoid valve mounted on the sample inlet tube. A high-speed strip chart recorder was energized simultaneously with the solenoid valve, and several traces of signal rise and fall were obtained. Another technique used was to analyze the signal after the helicopter passed through a plume. Once the plume is passed, the input X(t) is zero and the output Y(t) will be an exponential decay. When the output Y(t) is plotted against time on semilog paper, a straight line with slope $-1/\tau_1$ can be fit to these data. This latter technique has been used successfully with the MRI nephelometer as well as the other pollutant monitors. The time constant of the nephelometer is dependent on the helicopter airspeed since the flow through the detector chamber is provided by ram air into the sample manifold. At 60 knots indicated airspeed, the measured sample flow velocity was only 10 knots and the time constant was on the order of 3 seconds. The measured time constants of the instruments are listed in Table 6.

TABLE 6. TIME CONSTANTS OF LINEAR RAPS INSTRUMENTS

Pollutant	Instrument	Response Time Constant
Aerosol	MRI-Nephelometer	2.5 to 3.5 seconds
NO, NO _X	ML - 5-second setting	6.0 seconds
CO	Beckman/Andros	3.0 to 5.0 seconds
03	REM	2.0 to 2.5 seconds

Many numerical procedures are available to obtain derivatives from the tabulated values to make the correction given in equation 1. The procedure recommended is to use a numerical method (Wylie, 1960) as follows:

Given a sequence of five observations of Y at equally spaced intervals of time, $\Delta t = t_2 - t_1 = t_1 - t_0$, as follows

$$Y_0 @ t_0$$
 $Y_1 @ t_1$
 $Y_2 @ t_2$
 $Y_3 @ t_3$

Y4@t4,

then

$$\frac{(dY)}{(dt)} = \frac{Y_0 - 8Y_1 + 8Y_3 - Y_4}{12\Delta t}$$
 (2)

and
$$(X)_{t=2} = (Y)_{t=2} + \tau_1 \left(\frac{Y_0 - 8Y_1 + 8Y_3 - Y_4}{12\Delta t} \right)$$
 (3)

An alternate procedure for analysis of plume study data is to compute the derivative, using the natural logarithm of Y, £nY:

$$\frac{dY}{dt} = \frac{Y}{dt} \frac{d\ln Y}{dt}, \qquad (4)$$

where Y = the concentration in the plume minus the background level. This procedure is preferable because the solution to the equation,

$$X_{\text{max}e} - \frac{t^2}{2\sigma^2} = Y + \tau_i \frac{dY}{dt}$$
 (5)

with initial condition Y = 0 at $t = -\infty$, is of the form,

$$Y(t) = Ae^{-t/\tau_1} \left[1 + erf\left(\frac{t - \sigma^2/\tau_1}{\sigma \sqrt{2}}\right) \right], \qquad (6)$$

where erf = the error function, and A = a constant.

The ln Y(t) can be expanded as an infinite series in t:

where $a_n = constants$

If one differentiates lnY(t), the numerical procedure will give a more accurate value of the derivative since the procedure is most accurate for differentiating polynomial expressions. The correction equation is then:

$$X(t) = Y(t) \left[1 + \tau_1 \frac{d \ln Y(t)}{dt} \right]$$
 (8)

Corrections for Non-Linear Instruments

The Meloy 160 SO₂ flame photometric analyzer is non-linear by its very nature since the detection technique involves a chemical combination of two sulfur atoms which is a second-order process. In addition, the burner tip and optical windows degrade with time, changing the response character. All tests showed that the normalized responses to positive and negative steps were not identical, as would be the case for the linear instruments. Consequently, no correction could be made to the data by the techniques used for linear instruments. However, for normal conditions where spatial gradients are small, the correction for response time will be negligible.

The recommended technique for correcting the SO₂ data within a plume is to assume that the SO₂ plume has the same dimensions as the NO_X and scattering coefficient (B_{SCat}) plumes which can be found with the linear systems approach. The total area (A) under the SO₂-vs-time curve can then be mapped into a plume with the same dimensions (σ) as the NO_X and B_{SCat} plume using the Gaussian plume relation:

$$A = \chi_{\text{max}} \sigma \sqrt{2\pi}$$
 (9)

where \textbf{X}_{max} is the peak SO_2 concentration in a Gaussian plume of area, A, and standard deviation, σ_\bullet

INDEPENDENT INTERLABORATORY AUDITS

During all the RAPS field studies, interlaboratory audits were performed on a regular basis by the RAPS St. Louis laboratory staff. These audits were

performed after the last flight of the scheduled audit day in two different modes. In the first mode, the audit would be performed as soon as possible after the last flight and before the normal post-calibration procedure described previously in section 4. In the second mode, the audit would be performed as soon as possible after the normal post-calibration procedure and precalibration for the following day's flights.

Two major difficulties were continuously evident in the performance of these audits. The first difficulty arose because the aircraft hangars were not heated or air conditioned, and could not be held at a constant temperature or even within a prescribed temperature range. Although the BDCS was stored in a temperature-controlled calibration trailer the calibrations were performed in the uncontrolled hangar or on the taxi pad in front of the hangar when the aircraft could not be brought inside. In some cases the temperature differences between the calibration trailer and the hangar were as much as $\pm 20^{\circ}$ C.

The second problem which occurred throughout the RAPS intensive studies was the effect of ambient $\rm CO_2$ levels on the Meloy SA-160 flame photometric detectors for $\rm SO_2$. The St. Louis RAPS audit team used ultrapure air for $\rm SO_2$ calibration which was deficient in $\rm CO_2$. This difference resulted in a higher response to audit values than expected from the helicopter calibration values because the $\rm CO_2$ was not quenching the flame as it would in ambient monitoring or with a calibration source retaining ambient levels of $\rm CO_2$ (on the order of 320 ppm $\rm CO_2$).

The audit also showed two problems in the helicopter calibration process which were corrected immediately. The first problem was with the flow system providing dilution ambient air to the NO - NO $_{\rm X}$ analyzer through the BDCS. During the first three missions, the dilution air was split by a sample "tee" with a portion of the flow going to dilute the secondary NO standard flow and the excess flow exhausting to the atmosphere through a short length of tubing. When the BDCS was being used outside the hangar, the wind blowing across the exhaust tube created a variable back pressure and therefore unstable flow conditions at the "tee". This effect placed the calibration results as much as 25% below the audited values. The problem was corrected by using a longer length of exhaust tubing and shielding the exhaust point from transient air currents. The second problem was discovered during the beginning of the Summer RAPS 1976 mission and was the result of flow pressure gauges failing on the BDCS.

The CO audits documented a major problem with the Andros CO monitor. Large differences were observed whenever the monitor was exposed to rapidly changing temperatures. The bias in the CO audits was primarily due to the extreme temperature sensitivity of the zero response of the instrument. The difference in values of the audit was also partially attributed to varying levels of $\rm CO_2$ concentration in the different zero-air sources used by the helicopter team and the audit team.

The results of audits over the period of the RAPS studies of 1975 and 1976 are listed in Appendix B. Those for the 1974 studies are unlisted because the audit procedures for that period were unreliable. The values listed are the

mean slopes of the regression of helicopter instrument responses to the audit values. In some cases, a single span point was used with no regression calculation. The averages of these audit results are shown in Table 7 along with the number of audits and their standard deviation.

TABLE 7. SUMMARY OF AUDIT RESULTS

Pollutant	Number of Audits	Average Response To Audit Value	Standard Deviation of Response To Audit Value
CO	19	0.910	0.063
S0 ₂	24	0.934	0.194
NO	2 5	0.965	0.116
$NO_{\mathbf{X}}$	26	0.965	0.120
03	22	0.964	0.160

5. DATA ACQUISITION AND PROCESSING

DATA ACQUISITION

A schematic flow for the collection and processing of RAPS helicopter data is shown in Figure 7. As shown previously in Figure 3, the analog and digital outputs from the helicopter monitoring system were scanned by an ML Model 7200 R-D2 data acquisition system (DAS) and recorded on 7-track magnetic tape. The data were recorded at 200 bpi in binary coded decimal format. Each scan of the DAS produced a single 132-character record (120 in 1974 missions). The format of the raw data tape and a detailed data element description are shown in Appendix C.

Immediately after a flight, when possible, a voltage dump was obtained using a Versatec line printer. This dump was reviewed by the flight technician to identify any instrument or data system malfunctions, and an attempt was made to correct any malfunctions prior to the next flight. The raw data tapes were labeled, indexed, and archived for ultimate analysis.

DATA EDIT

Final data processing was performed on the U.S. Energy Research and Development Administration's (now the Department of Energy) CDC6400 computer in Las Vegas, Nevada. A system flow for the editing and analysis of the data is shown in Figure 8.

The raw data tape was first processed through the EDIT program which established the format, generated a working file of voltage units, and identified, through an exception-reporting technique, major data anomalies.

The resulting working file was then edited using an interactive text editor. The exceptions list generated by the EDIT program, together with the voltage dump and flight notes, was used to interactively edit the data. The result of this process was an edited voltage file. This file was archived on magnetic tape.

DATA CALIBRATION AND CORRECTION

The edited voltage file was processed through a calibration program, ADCAL, which converted voltages to calibrated engineering units and performed a number of data corrections. Preflight and postflight calibration data were input to the ADCAL program to provide the necessary calibration factors. Samples of the calibration form and coding record are found in Appendix C.

Figure 7. Schematic flow of RAPS helicopter data.

Figure 8. Schematic flow for RAPS helicopter data edit and analysis.

The following calibrations and corrections were made to the data:

- 1. instrument calibration (zero, span, range)
- 2. zero drift
- 3. span drift
- 4. dew point/frost point correction
- 5. altimeter calibration
- 6. airspeed calibration
- 7. outside air temperature calibration

A detailed description of the algorithms used for each of these calculations is found in Appendix C.

ADCAL produced a listing of calibrated engineering units as shown in Tables 8 and 9. These data, combined by mission, have been provided to the RAPS data base in 9-track ASCII format. A detailed description of the final data file format is found in Appendix C.

Data Analysis Applications

The helicopter data can be displayed using three computer-generated plotting routines:

- 1. parameter vs. altitude
- 2. parameter vs. time
- 3. parameter vs. parameter

Examples of plots are shown in Figures 9 and 10.

7146	ELAPSED TIME(HH)		NHI.	VOR DEG.	HENG DEG.	STATUS	03 PPM.	NO PPH.	NOX PPH.	502 PPM•	CO.	CH T NEG.C	CH4 PPM.	THC PPM.	OAT DEG.C	net neg.c	RSCAT 1/H F1	ALT T/HSL T	45Pb KN0T 5
INSTRUM	ENT STATU	ST 113	31101																
0515415		-9.9	-9.9	38.1	-9.9	21770440	.000	002	.004	007	-1.4		-9.9	-9.9	21.1	12.6	•7	433 435	59.1 59.5
0515415 0515510		-9.9 -9.3	-9,9	41.7	-9. 9 -9. 9	21220440 21220440	.000	001 001	.002	005	-1.6 -1.7	27.1 27.1	-9.9 -9.9	-9.9	20.8	12.2	• 8 • 7	436	56.1
0515510		-9.9	9,9	72.9	-9.9	21220440	.000	.001	.004	002	-1.6		-9.9	-9.9	19.9	12.1	.6	437	52.7
0515511	0 .33	-9.9	-9.9	58.6	-9.9	21220440	.000	.002	. 204	002	-1.9	27.4	-9.9	-9.7	19.0	12.2	.7	416	56.2
0515511		-9.9	-9,9	67.5	-9.9	21220440	.001	.002	.004	002	-1.8	27.5	-9.9	-0,3	19.6	12.4	• 7	441	55.0
0515512		-9.9	-9,9		-9.9	21220440	.000	001	.004	002	-1.5	27.5	-9.9 -9.9	-9.9 -9.3	19.6	12.2		447 447	52.3 53.2
05 1551 21 05 1551 31		-9.9 -9.9	-9.9 -9.9	73.6 75.6	-9.9 -9.9	21220440 21220440	.000	002	.002	002	-2.0	27.8 29.1	-9.9	-9.9	14.6	11.9	1.1	446	51.0
051531	• •	-9.9			-9.9	21223440	.001	.000	.004	002	-1.8	24.2	-9.9	-9.9	13.0	12.1	. A	444	54.3
0515814		-9.9		120.1	-9.9	01223440	.022	.021	.036	.001	7.9	27.3	-9.9	-9.4	18.5	12.4	•6	410	49.6
Q515814		-9.9		135.8	-9.9	01220440	.014	.095	.141	.001	15.6		-9.9	-9.9	15.6	12.4	. 0	419	49.2
05159151		10.9		124.9	-9.9	01220440	.012	.109	.140	.001	11.7		-9.9	-9.9	15.3	12.7	• 8	450	47.3
05159151		-9.9 -9.9		118.7	-9.9 -9.9	01220440 91220300	.009	.093	.123	.001	7.6	28.2	-9.9 -9.9	-9.9 -9.9	17.4	12.4	•7 •7	447 452	45.4 45.2
0515710		-9.9		124.5	-9.9	91220300	.014	.030	.044	.001	1.9	24.6	-9.9	-9.3		12.6	1.3	478	45.9
0515911		14.0		126.3	-9.9	91220000	019	.012	123	.001	1.3	24.7	-9.9	-9.9		12.2	•6	501	47.0
0515911	4.42	-9.9	5.1	126.6	-9.9	91220000	.024	.006	.013	.001	1.5		+ 9 . 9	-9.9		12.3	•6	522	47.0
0515912		0.0		126.2	-9, 9	91220300	.027	.003	.010	.001	1.7		-9.9	-9.9		12.3	•6	546	45.2
0515912		-9.3		126.4	-9.9	11223100	.028	.003	.008	-001	1.6		-9.9	-9.0		17.4	•6	570 597	45.6
05159130 05159131		-9,9 25,4		125.7	-9.9 -9.9	11223100 11223100	.031 .033	.000	.008	.001	1.6	29.8	-9.9	-9.9		12.4	•7	633	45.6
05159141		25.9		111.9	-9.9	11223100	.034	.000	.705	.001	1.9		-9.9	-9.9		11.5	.7	67 A	47.6
0515714		12.0		131.3	-9.9	11223100	.035	.003	.005	.001	2.0		-9.9	-9.3		11.7	.7	706	46.1
35159150	5.00	25.8	5.2	125.6	-9.9	11223100	.035	000	.307	.001	1.9	24.4	-9.9	-9.7	17.8	11.9	•6	714	50.4
05159159		25.5		127.4	-9.9	11227100	.036	.001	.006	.001	2.1		-9.9	-9.1		11.3	•7	762	45.5
06100101		25.7		122.1	-9.9	11223100	.035	.000	.007	.001	2.4		-9.9	-9.9		11.7	•7	748	50.2
35103161		25.7		115.8	-9.9 -9.9	11227100 11223100	.037	.001 000	.007	.001	2.5		-9.9 -9.9	-9.1		11.9	.7 .6	105 122	49.0 51.3
9510911		25.7		125.5	-9.9	11223130	.038	.001	.009	.001	2.5		-9.9	-9.9		11.7	.7	951	49.3
05107121		25.8		127.4	-9,9	11223100	.038	001	.008	.000	2,4		-9,9	-9.4		11.5	•7	872	51.2
06103125	5.58	25.9	4.6	126.4	-9.9	11223130	.037	001	.009	.001	7.4		-9.9	-9.3	14.0	11.4	.7	909	50.6
06 1031 70		26.0		132.5	-9.9	11223130	.034	.001	.014	.001	7.4		-9.9	-9.9			•6	914	54.1
0510013		. 4		128.8	-9.9	11223100	.034	.002	.013	.001	2.6		-9.9	-9,9			•7	955	51.1
05:03:40		26.2		131.4	-9, 9 -9, 9	11223100	.034	001 001	.011	.000	2.6		-9.9 -9.9	-0.9		11.0	•7	996	54.3
05100145 05100150		26.2		124.6	-9.9	11223100	.025	001	.019	.000	2.4		-9.9	-9,9		11.3	.7	1024	56.1 56.4
05103150		26.2		124.9	-9.9	11223100	.024	.001	.024	.001	7.4		-9.9	-9.0				1050	53.7
06161100		26.2		122.3	-9.9	11223100	.021	.004	.022	.001	2.5		-9.9	-9.q			.7	1059	54.8
06101105	6.25	26.3	5.0	119.7	-9.9	11223100	.019	.005	.029	.001	2.5		-9.0	-9.9	19.7	11.0	- 4	1019	53.4
05191110		26.3		121.7	-9.9	11223100	.017	.006	. 330	.000	2.5		-9.9	-9.9			.7	1110	55.6
06 101115		26.4		122.4	-9.9 -9.9	11223100	.015	.008	.833	.001	7.7		-9,9	-0.0			•7	1135	53.6
05 101120 05 10112		26.4 26.4		120.8	-9.9	11223100	.014	.010	.034	.000	2.5		-9.9 -9.9	-9.9			•7	1156	54.2
06 10117		26.5		117.8	-9.9	11223100	.012	.011	.035	.001	2.5		-9.9	-9.9			. B	1174	55.3 55.0
06:01:35		26.5		119.2	-9.9	11223100	.010	.010	.036	.001	2.5		-9.9	-9.9			.9	1230	54.6
26101140		26.5		116.1	-9.9	11223100	.009	.012	.039	.001	2.3		-9.9	-9.9	18.4		1.2	1257	53.9
05 101145		26.6		113.3	-9.9	11223100	.009	.015	.046	.001	2.6		-9.9	-9.3		10.7	1.5	1284	54.2
05101150	7.00	25.5		114.8	-9.9	11223100	.008	.017	.047	.045	2.6		-9.9	-9.9			2.3	1704	54.3
0510115		26.5		129.7	-9, 9	11223100	.008	-017	.050	.080	2.7		-9,9	-9.9			4.1	1347	54.4
06102100	7.17 7.25	26.5		141.5	-9. 9 -9. 9	11223100 11223100	.013	.010	.046	.130	2.7		-9.9 -9.9	-9.9			1.9	1388	60.3
05102105 06102110	7.33	26.4		132.4	-9.9	11223100	.035	.003	.013	.001	2.5		-9.9	-9.9			. 4	1425 1460	62.7
05102119		26.3		122.4	-9.9	11223100	.041	001	.007	.000	2.5		-9,9	-9.9				1487	67.7
06 1 821 20		26.2		127.6	-9.9	11223100	.043	008	.007	.001	2.6		-9.9	-9.9				1517	64.8

TABLE 9. DATA REPORT FORMAT

Field	Description					
TIME	Central Standard Time (h, min, sec)					
ELAPSED TIME	Elapsed time (min) since start of flight					
DME1, DME2	Range (nautical miles) from VORTAC station					
VOR	Heading (degrees) from VORTAC station to aircraft relative to magnetic north					
HDNG	Heading (degrees) of aircraft relative to magnetic north					
STATUS	Thumbwheel settings					
N1 = Flight status	N1 N2 N3 N4 N5 N6 N7 N8					
2,8 = Instrument zero ca 7 = No useful data	alibration					
N3 = DME Station 2 3 = 1	St. Louis Maryland Heights Scott AFB two If flight status (N1) n number) equals "0", these four characters are used to or record ground elevation r (feet) for altimeter					
N3 = DME Station 2 3 = 1 N4 = VOR Station N5, N6 = Spiral location (last digits of RAMS station N7, N8 = Transect tract number grab-bag sample number	St. Louis Maryland Heights Scott AFB two					
N3 = DME Station 2 3 = 1 4 = 3 N4 = VOR Station N5, N6 = Spiral location (last digits of RAMS station N7, N8 = Transect tract number grab-bag sample number 03 = Ozone, ppm	St. Louis Maryland Heights Scott AFB two If flight status (N1) n number) equals "0", these four characters are used to or record ground elevation r (feet) for altimeter					
N3 = DME Station 2 3 = 1 4 = 3 N4 = VOR Station N5, N6 = Spiral location (last digits of RAMS station N7, N8 = Transect tract number grab-bag sample number 03 = Ozone, ppm N0 = Nitric Oxide, ppm	St. Louis Maryland Heights Scott AFB two					
N3 = DME Station 2 3 = 1 4 = 3 N4 = VOR Station N5, N6 = Spiral location (last digits of RAMS station N7, N8 = Transect tract number grab-bag sample number 03 = 0zone, ppm N0 = Nitric Oxide, ppm N0 _x = Nitric Oxide + Nitrogen	St. Louis Maryland Heights Scott AFB two					
N3 = DME Station 2 3 = 1 4 = 3 N4 = VOR Station N5, N6 = Spiral location (last digits of RAMS station N7, N8 = Transect tract number grab-bag sample number 03 = Ozone, ppm N0 = Nitric Oxide, ppm	St. Louis Maryland Heights Scott AFB two					

```
= Total Hydrocarbon as Methane, ppm
THC
B_{SCAT} = Backscatter Coefficient (meters -1 x 10^4)
      = Temperature of CO instrument, ° C
COT
OAT
      = Outside Air Temperature, ° C
      = Dew Point, ° C
DPT
      = Altitude (feet) referenced to mean sea level
ALT
ASPD = Airspeed, knots
INSTRUMENT STATUS - Range setting for instrument
                                        N4
                                              N5
                                                    N6
                                                           N7
                     N1
                           N2
                                 N3
    N1 = 0_3 instrument range
         0 = non-operational
         1 = 0 to 20 parts per hundred million (pphm) full-scale
         2 = 0 to 200 pphm full-scale
    N2 = N0 instrument range
         0 = non-operational
         1 = 0 to 0.2 ppm full-scale
         2 = 0 to 0.5 ppm full-scale
         3 = 0 to 1.0 ppm full-scale
         4 = 0 to 2.0 ppm full-scale
         5 = 0 to 5.0 ppm full-scale
    N3 = N0_x instrument range (same as NO scale)
    N4 = S0_2 instrument range
         0 = non-operational
                                             4 = 10^{-6}
         1 = \text{Log}_{2 = 10-4}
                                             5 = 10^{-7}
                                             6 = 10^{-8}
          3 = 10^{-5}
                                             7 = 10^{-9}
    N5 = CO instrument scale
         0 = non-operational
         1 = 0 to 20 ppm full-scale
         2 = 0 to 50 ppm full-scale
         3 = 0 to 100 ppm full-scale
         4 = 0 to 200 ppm full-scale
```

N6 = Hydrocarbon instrument scale

0 = non-operational

1 = 0 to 5 ppm full-scale 2 = 0 to 20 ppm full-scale

N7 = Nephelometer instrument scale

0 = non-operational

1 = A/C

2 = B/D

 $3 = 0.01 \times A/C$

A value of -9.9 has been used as a null value indicating invalid Note: data or non-operation of an instrument.

Figure 9. Example of RAPS data plot, parameter vs. altitude.

Figure 10. Example of RAPS data plot, parameter vs. time.

6. APPLICATION OF RAPS HELICOPTER DATA TO RAMS SUPPORT MISSIONS

The data obtained during these missions were intended to provide insight to the 3-dimensional distribution of pollutants over St. Louis and how this distribution changes with time. During the 3-year period of field studies, the missions evolved from patterns which visited many RAMS stations a few times to patterns which visited a few RAMS stations many times. This development came about as the missions were optimized to obtain data which would be statistically significant and to aid model developers in making probability statements about their models. The fundamental RAMS support mission consisted of a climb to 1,100 m MSL enroute to the first RAMS station to locate the base and top of the inversion, if present. If no inversion were present or if the inversion base were fairly high, all transects between stations were flown at 600 m MSL and all spirals were flown from 600 m MSL to 60 m AGL over the RAMS stations.

If a low-level (<800-m) inversion were present, the transects between stations were flown 60 m below the inversion base. At the RAMS station, the helicopter would rise through the inversion base and spiral to the surface from 60 m above the inversion base.

RAPS FLIGHT PATTERNS AND SAMPLING CRITERIA

Ideally, 3-dimensional data should be collected over each site. This was not possible because a number of variables imposed limitations on the flight patterns.

Fuel limitations allowed the helicopters to fly for only about 2.5 hours during a typical warm summer day. During the winter when the air was denser, the aircraft got more lift and better fuel economy, and the flight times could be extended almost 1 hour beyond the summer average time.

Lambert Field (St. Louis International Airport) and several smaller airports are located in the greater St. Louis metropolitan area. The air traffic around these airports greatly hindered the mobility of helicopters in this area, and flight patterns were planned accordingly. In addition, FAA and safety considerations did not allow the helicopters to fly across the city at less than 150 m above the ground. Special permission was obtained to spiral down to 60 m above the ground over most of the RAMS stations. This low spiral was allowed only over areas that were clear and open and where a safe emergency landing could be made if necessary. This restriction prevented the helicopter from taking data over some of the ground stations in the downtown area.

Weather conditions also limited helicopter operations. Minimum conditions for VFR (visual flight rules) operation are visibility of 3 miles and a ceiling of at least 300 m AGL. Rain and snow usually prevented flying, and winds greater than 40 knots presented hazardous conditions besides reducing pollutants to low concentrations. Although night flying was possible, the limited visibility presented extra hazards and spirals could not be made to low altitudes.

Working within the limitations discussed, the flight patterns evolved considerably with each subsequent visit to St. Louis. The patterns used during each mission are discussed by mission date in Appendix D. The flight patterns are plotted on a map of St. Louis showing the locations of the RAMS stations and helicopter spiral sites, Figure 11. In Appendix D, Tables D-1 and D-2 list the latitude and longitude of each RAMS station and the coordinates of all special helicopter spiral sites used in the flight patterns. Table D-3 shows the locations of VORTAC radio navigation stations and Table D-4 is a user's guide to the individual missions. This table lists the times, patterns and dates for each mission, and a comment section on the table lists instruments that were known to be inoperative at the time of the flight.

The data files will indicate that the CO monitor was functioning most of the time. However, as mentioned earlier, the CO monitor was extremely temperature- and pressure-sensitive and these data should be used with a great deal of caution.

STATISTICAL INTERPRETATIONS

Each spiral was flown at a descent rate of approximately 150 m/min which took approximately 4 minutes, top to bottom. The in-flight measurements should be related to the RAMS station data 60 m below the spiral base, and theoretically they could be used to test model predictions for the average concentrations above the station. The emission inventory is subdivided into hourly average emissions which lead to predictions of hourly average Therefore, the hourly average concentration in the volume of concentrations. air 60 m to 210 m above the RAMS station is the smallest time average that can be computed on a consistent basis with the emission inventory. This hourly average is the average of 60 consecutive 1-minute average values. Because the helicopter was within this volume for only 1 minute, at best, the helicopter data can be construed only as a single random sample from a population of size 60 with unknown mean (μ) , and standard deviation (σ) . If the standard deviation is zero, the single sample defines the mean of the entire population. However, if the standard deviation of the population is finite, the single sample may be higher or lower than the mean, and on the average would be within one standard deviation of the mean 68% of the time.

When pollutant plumes from elevated sources are present in this volume above the RAMS station, the standard deviation may be quite large. In practice, the plume may alternately be present (1) and absent (0) with the

Figure 11. Location of RAMS stations and helicopter spiral sites.

computer model predicting the average (1/2), while the helicopter would measure either (1) or (0). Consequently, when these measurements are compared to model predictions, great care must be given to the interpretation of the difference between model prediction and measurement.

SPECIAL MISSIONS FOR PRINCIPAL INVESTIGATORS

In addition to their use in providing information on the vertical dimension of pollutant distribution over St. Louis, the RAPS helicopters also served as a platform for a number of investigators to do special experiments and studies. Experiments covered a wide range of subjects, from simply taking bag samples of air to making complicated plume measurements. Table E-1 of Appendix E gives a brief description of each experiment by date. Bag samples, filter samples and copies of the raw data tapes were normally supplied directly to the principal investigators for their analysis. Table E-1 and Appendix D list those tapes available through the RAPS data base. Principal investigators listed in Appendix E should be contacted directly for further data analysis information.

Some of these data were analyzed by Monitoring Operations Divísion personnel to study the locations of secondary pollutant (NO_2 and O_3) maxima within the urban plume. A paper was presented at the International Conference on Photochemical Oxidant Pollution and Its Control, in September, 1976 (Hester et al., 1976).

SUMMARY OF HELICOPTER DATA

Appendix F gives a summary of data available through the RAPS data base. Parameters measured along with maxima and minima values are presented for each flight.

REFERENCES

- Hester, N. E., R. B. Evans, F. G. Johnson, E. L. Martinez. Airborne Measurement of Primary and Secondary Pollutant Concentrations in St. Louis Urban Plume. In: Proceedings of the International Conference on Photochemical Oxidant Pollution and Its Control, Raleigh, North Carolina, Sept. 12-17, 1976.
- Johnson, Warren B. The Status of Air Quality Simulation Modeling. In: Proceedings of the Interagency Conference on the Environment, Livermore, California, October 19, 1972. Available through the National Technical Information Service, Springfield, Virginia.
- Mage, D. T. Instrument Time Response and Its Implications. Presented at the meeting, "Monitoring from Airborne Platforms for Environmental Quality Assessment," U.S. Environmental Protection Agency, Las Vegas, Nevada, March 26, 1975.
- Mage, D. T., and J. Noghrey. True Atmospheric Pollutant Levels by Use of Transfer Function for an Analyzer System. <u>Journal of the Air Pollution Control Association</u>, 22(2):115-118, February, 1972.
- Meyers, R. L., and Reagan, J. A. The Regional Air Monitoring System, St. Louis, Missouri, U.S.A., International Conference on Environmental Sensing and Assessment, Las Vegas, Nevada, September 14-19, 1975. Paper 8-6.
- Rehme, K. A. Application of Gas Phase Titration in Calibration of Nitric Oxide, Nitrogen Dioxide, and Ozone Analyzers. Calibration in Air Monitoring, American Society for Testing and Materials. ASTM STP 593, 1976. pp. 198-209.
- Roberts, P. J., Mei-Kao Liv, S. D. Reynolds and P. M. Roth. Urban Air Shed Photochemical Simulation Model Study. EPA-R4-73-030b, U.S. Environmental Protection Agency, Washington, D.C., July, 1973.
- Thompson, J. E., and S. Kopczynski. The Role of Aerial Platforms in RAPS. Presented at the meeting, "Monitoring from Airborne Platforms for Environmental Quality Assessment," U.S. Environmental Protection Agency, Las Vegas, Nevada, March 26, 1975.
- Winer, A. M., J. W. Peters, J. P. Smith, and J. N. Pitts, Jr. Response of Commercial Chemiluminescent NO-NO₂ Analyzers to Other Nitrogen-Containing Compounds. Environmental Science and Technicology, 18(13):118-1121. 1974.

Wylie, C. R., Jr. Advanced Engineering Mathematics, 2nd Edition. McGraw-Hill Book Co., New York, 1960. pp. 161-162.

Zegel, W. R. Regional Air Pollution Study: Expeditionary Research Program, Summer 1975. Rockwell International Air Monitoring Center, Creve Coeur, Missouri. Task Order No. 50, Final Report, EPA Contract No. 68-02-1081. EPA 600/3-76-016, 1976.

BIBLIOGRAPHY

- Gartrell, F. E., and S. B. Carpenter. 1955. Aerial Sampling by Helicopter: A Method for Study of Diffusion Patterns. <u>Journal of Meterology</u>, 12(3):215-219.
- McElroy, J. L., and F. Pooler, Jr. 1968. St. Louis Dispersion Study, Volumes I and II. National Air Pollution Control Administration Publication Number AP-53, United States Public Health Service, Arlington, Virginia.
- Morris, A. N., and P. L. Haagenson. 1974. Forecasting the Behavior of the St. Louis, Missouri, Pollutant Plume. <u>Journal of Applied Meteorology</u>, 13:901-909.
- Collis, R.T.H. 1972. Regional Air Pollution Study: A Prospectus. Final Report, EPA Contract 68-02-0207, Project 1365. Stanford Research Institute, Menlo Park, California.
- Schiermeier, F. A. 1967. A Study of the Urban Heat Island Over the St. Louis Metropolitan Area. Master's Thesis. St. Louis University, St. Louis, Missouri.
- Shir, C. C., and L. J. Shieh. 1974. A Generalized Urban Air Pollution Model and its Application to the Study of SO₂ Distributions in the St. Louis Metropolitan Area. Journal of Applied Meteorology, 13(2):185-205.
- St. Louis Air Quality Control Region Surveys of the Overhead Burden of SO₂ and NO₂ Using the Barringer Correlation Spectrometer December 1969 through March 1970. June 1970. Center for the Biology of Natural Systems, Washington University, St. Louis, Missouri.

APPENDICES

- Appendix A. Calibration Data
- Appendix B. Audit Results
- Appendix C. Instrument Calibration, Zero, and Span Drift Corrections
- Appendix D. Users Guide to RAMS Support Missions
- Appendix E. Description of Special Experiments for RAPS Principal Investigators
- Appendix F. Summary Report of Helicopter Data
- Appendix G. Metric Conversion Table

APPENDIX A

CALIBRATION DATA

Temperature Calibrations

Table A-1. Temperature Equation Coefficients (EG&G OAT Probes)

Table A-2. Comparison of Measured to Actual Temperature

Altimeter Calibrations

Table A-3. Altimeter Calibration Values

Table A-4. Comparison of Altimeter Calibrations

Table A-5. Altimeter Equation Coefficients

Altimeter Corrections

Dew Point/Frost Point Correction

Table A-6. Dew Point/Frost Point Conversions

APPENDIX A

CALIBRATION DATA

TEMPERATURE CALIBRATIONS

The four RAPS helicopter EG&G temperature probes were calibrated against NBS-traceable Rosemount quartz crystal thermometers. Probes 627 and 629 were in use for the first five missions until the failure of the thermoelectric cooling circuitry after the Winter RAPS 1976 mission. Probes 803 and 804 were used for the last two missions and they had identical responses for the temperature range of interest. During the first three missions, no record was kept of which probe (627 or 629) was in which helicopter. For these missions, an average calibration factor was used, which leads to a larger uncertainty than for the later missions. Table A-1 lists the coefficients fit to a cubic equation with voltage (MV) the independent variable, where

$$T^{\circ}C = C_1 + C_2 (MV) + C_3 (MV)^2 + C_4 (MV)^3$$
.

TABLE A-1. TEMPERATURE EQUATION COEFFICIENTS (EG&G OAT Probes)

Probe	c_1	C ₂	C3	C ₄
627/629	-16.4743	1.5904	-0.01839	0.000250
527	-16.5424	1.5438	-0.01597	0.000224
629	-16.5051	1.6497	-0.02129	0.000291
803	-16.0111	1.4923	0.01263	0.000174
804	-16.0111	1.4923	0.01263	0.000174

Table A-2 shows the comparison of the calibration equation to the actual temperature.

ALTIMETER CALIBRATIONS

The three CIC altimeters, serial numbers 02244-1, -2, and -3, were calibrated in an environmental chamber at the Las Vegas Laboratory in October, 1976. The results are shown in Table A-3.

TABLE A-2. COMPARISON OF MEASURED TO REFERENCE TEMPERATURE, °C

Reference Temperature	Probe 629	Probe 627	Probes 627/629	Probes 803/804
-10.0	-10.36	-10.13	-10.52	-9.95
- 5.0	- 5.21	-5.15	- 5.47	-5.06
0.0	+ 0.02	-0.09	- 0.30	-0.00
5.0	5.08	4.96	5.28	4.98
10.0	10.04	10.13	10.40	9.94
15.0	14.97	15.25	15.45	15.18
20.0	20.18	19.99	20.03	19.94
25.0	25.38	25.18	25.25	25.02
30.0	29.91	29.78	29.87	29.99
35.0	34.96	34.89	34.92	34.91
40.0	40.15	40.37	40.44	40.06

TABLE A-3. ALTIMETER CALIBRATION VALUES (Average of Three Runs)

Aneroid Barometer (Inches Hg)	Altitude (Feet)*	Altimeter-1 (Volts)	Altimeter-2 (Volts)	Altimeter-3 (Volts)
27.74	2,050	1.030	0.97	0.950
25.84	4,000	1.688	1.62	1.608
23.96	6,000	2.306	2.25	2.256
22.25	8,000	2.958	2.89	2.882
23.12	7,000	2.632	2.58	2.547
24.91	5,000	1.992	1.93	1.933
26.84	3,000	1.348	1.29	1.277
27.74	2,050	1.024	0.97	0.949

^{*}See metric conversion table in Appendix F.

Only one of these altimeters (-3) was calibrated at the factory at the time of purchase in September, 1973. The results shown in Table A-4 indicate a slight change over the 3-year period.

TABLE A-4. COMPARISON OF ALTIMETER CALIBRATIONS - SEPTEMBER 1973 vs. OCTOBER 1976 (Altimeter 02244-3)

Altitude (Feet)	Pressure (Inches Hg)	Voltage (9/73)	Voltage (10/76)
-1,000	31.019	0.0013	
0	29.921	0.3252	
1,000	28.856	0.6496	
2,050	27.740		0.949
3,000	26.840		1.277
4,000	25.842	1.6185	1.608
5,000	24.910		1.933
6,000	23.960		2.256
7,000	23.120		2.547
8,000	22.250		2.882
8,000	22.225	2.9085	

These data for the three altimeters were fit in the range for altitude (Z), up to 4,000 feet (1,219 m) to an exponential of form

$$P = P_0 e^{-kV}$$

where $\mathbf{P}_{\!0}$ and \mathbf{k} are coefficients for the altimeter.

The resulting values for P_0 and k are tabulated in Table A-5. The last column contains default coefficients which are used when the altimeter S/N was not recorded. The maximum deviation between predicted and actual pressure is 0.1 inch of mercury (Hg) which corresponds to 30 m. The actual errors will be less since a daily calibration point exists for each flight from the take-off and landing elevations at the airfield.

TABLE A-5. ALTIMETER EQUATION COEFFICIENTS

	S/N -1	S/N -2	S/N -3	S/N -(1,2,3)
P (Inches Hg)	30.990	30.860	31.038	30.868
k (Volts ⁻¹)	-0.10741	-0.10919	-0.11447	-0.10811

The altimeter calibration assumes a standard atmosphere, defined as 1013.15 millibars and 15° C at MSL, with a standard lapse rate of 0.65° C/100 m. Synoptic scale pressure deviations and temperature variations from the standard lapse rate must be corrected for. The correction assumes that the pressure difference (ΔP) between the standard pressure and measured pressure at the reference altitude, at take-off and landing, remains constant with height. The standard pressure (Ps) at the reference altitude (Zg) is computed by equation A-1. Equations A-2 and A-3 compute the pressure and elevation deviations from the standard equation, A-1.

$$Ps = 1,013.25 \left(1.0 - \frac{Zg}{44,331 \text{ m}}\right)^{5.2568}$$
 (A-1)

$$\Delta P = Ps - Pm$$
 (A-2)

$$Zc = 44,331 \text{ m} \left[1.0 - \left(\frac{Pm + \Delta P}{1,013.25}\right)^{0.19023}\right]$$
 (A-3)

where Ps = standard pressure, at Zg = reference altitude, where Pm = measured pressure, and Zc = the corrected altitude.

ALTIMETER CORRECTIONS

To correct for temperature variation from the standard lapse rate, the helicopter-measured temperature (Tm) at altitude (Z) was used with an assumption of linear temperature variation from the surface temperature (Tg) measured at ground elevation (Zg) to the temperature Tm measured at elevation Z.

$$Z = (Zc - Zg) \frac{1/2 (Tm + Tg)}{288.15 - 0.65 \left(\frac{Zc + Zg}{2}\right)} + Zg$$
 (A-4)

where Z = the helicopter altitude, $Tm = the absolute temperature, ^K, at Z, and Tg = the absolute temperature, ^K, at Zg.$

DEW POINT/FROST POINT CORRECTION

For a given vapor pressure, the temperature at which the vapor is in equilibrium with a water surface (dew point) is lower than the temperature at which the vapor is in equilibrium with an ice surface (frost point). This relationship is presented in Table A-6. The standard method for recording these data is in terms of dew point. Therefore, frost point temperatures measured at temperatures below freezing were converted to dew point values. Data from Table A-6 were approximated with three linear equations:

F. P.	D. P.	F. P.	D. P.	F. P.	D. P.	F. P.	D. P.
+32	+32.0	+10	+ 7.4	-12	-15.6	-33	-39.3
+31	+30.8	+ 9	+ 6.3	-13	-16.7	-34	-40.3
+30	+29.7	+ 8	+ 5.2	-14	-17.8	-35	-41.4
+29	+28.6	+ 7	+ 4.1	- 15	-18.9	- 36	-42.4
+28	+27.5	+ 6	+ 2.9	-16	-20.0	-37	-43.5
+27	+26.4	+ 5	+ 1.8	-17	-21.1	-3 8	-44.5
+26	+25.3	+ 4	+ 0.7	-18	-22.2	- 39	-45.6
+25	+24.1	+ 3	- 0.4	- 19	-23.3	- 40	-46.6
+24	+22.9	+ 2	- 1.5	-2 0	-24.3	-4 1	-47.7
+23	+21.8	+ 1	- 2.6	-2 1	-25.4	-42	-48.7
+22	+20.7	0	- 3.7	- 22	-26.4	-43	-49.8
+21	+19.6	- 1 - 2	- 4.8	-23	-27. 5	-44	-50.8
+20	+18.5	- 2	- 5.8	-24	-28.6	-45	-51.9
+19	+17.4	- 3	- 6.9	- 25	-29.6	- 46	-52.9
+18	+16.2	- 4	- 8.0	-26	-30.6	- 47	-54.0
+17	+15.1	- 5	- 9.1	-27	-31.7	-48	-55.0
⊦ 16	+14.0	- 6	-10.2	-2 8	-32.8	- 49	-56.1
+15	+12.9	- 7	-11.3	-29	-33.9	- 50	-57.1
⊦1 4	+11.8	- 8	-12.4	-30	-35.0	- 51	-58.2
+13	+10.7	- 9	-13.5	- 31	-36.1	-52	-59.2
⊦ 12	+ 9.6	-10	-14.6	- 32	-37.2	-53	-60.3
⊦ 11	+ 8.5	-11	-15.6	-33	-38.2		

APPENDIX B

AUDIT RESULTS

Table B-1. Carbon Monoxide (CO)

Table B-2. Sulfur Dioxide (SO₂)

Table B-3. Nitrogen Oxide (NO_X)

Table B-4. Nitric Oxide (NO)

Table B-5. Ozone (0_3)

TABLE B-1. CARBON MONOXIDE AUDIT RESULTS

Date	Linear Regression	RAPS#
17 Feb 75	y = 0.804x	1
17 Feb 75	y = 1.012x	2
20 Feb 75	y = 0.829x	1
20 Feb 75	y = 0.913x	2
25 Feb 75	y = 1.029x	1
25 Feb 75	y = 0.882x	2
22 Jul 75	y = 0.814x + 0.344	1
26 Jul 75	y = 0.887x	3
17 Feb 76	y = 0.860x - 0.40	3
17 Feb 76	y = 0.945x + 1.050	3
1 Mar 76	y = 0.913x + 0.79	3
11 Mar 76	y = 0.966x - 0.013	3
14 Jul 76	y = 0.929x + 2.787	1
15 Jul 76	y = 0.875x - 1.773	1
27 Jul 76	y = 0.903x + 3.197	2
1 Nov 76	y = 0.866x + 0.407	3
7 Nov 76	y = 0.922x + 1.713	3
8 Nov 76	y = 0.953x + 1.542	3
14 Nov 76	y = 0.983x + 0.7991	3
	MEAN OF SLOPES = 0.910	
	STANDARD DEVIATION = 0.0633	

TABLE B-2. SULFUR DIOXIDE AUDIT RESULTS

Date 	Linear Regression	RAPS#
17 Feb 75	y = 0.384x + 0.0339*	1
17 Feb 75	y = 0.863x - 0.0003*	2
20 Feb 75	y = 0.943x + 0.021	1
20 Feb 75	y = 0.916x - 0.0004	2
25 Feb 75	y = 0.895x - 0.0021	1
25 Feb 75	y = 0.832x - 0.006	2
26 Jul 75	y = 1.289x + 0.008	3
4 Aug 75	y = 0.922x - 0.023	1
13 Aug 75	y = 1.033x + 0.014	3
16 Feb 76	y = 1.378x - 0.011	3
17 Feb 76	y = 1.141x + 0.000	3
24 Feb 76	y = 1.154x + 0.011	1
1 Mar 76	y = 0.914x - 0.028	3
11 Mar 76	y = 1.159x + 0.022	3
14 Jul 76	y = 0.651x - 0.002	1
15 Jul 76	y = 0.661x - 0.0014	1
27 Jul 76	y = 0.899x - 0.004	2
9 Aug 76	y = 0.746x - 0.004	1
10 Aug 76	y = 0.854x + 0.003	1
31 Oct 76	y = 0.565x + 0.0004*	3
1 Nov 76	y = 0.554x + 0.0012*	3
7 Nov 76	y = 0.844x + 0.0077	3
8 Nov 76	y = 0.751x + 0.008	3
.4 Nov 76	y = 0.773x + 0.0087	3

MEAN OF SLOPES = 0.934

STANDARD DEVIATION = 0.194

^{*}Not included in calculations of mean and standard deviation because of anomalous behavior due to leakage and incorrect thermometer placements.

TABLE B-3. NITROGEN OXIDE AUDIT RESULTS

Date	Linear Regression	RAPS#
17 Feb 75	y = 0.781x - 0.001	1
17 Feb 75	y = 0.717x + 0.006	2
20 Feb 75	y = 0.957x + 0.001	1
20 Feb 75	y = 0.888x - 0.023	2
25 Feb 75	y = 0.983x + 0.0019	1
25 Feb 75	y = 0.982x + 0.002	2
22 Jul 75	y = 1.168x - 0.009	1
26 Jul 75	y = 1.005x - 0.005	3
4 Aug 75	y = 0.868x + 0.009	1
13 Aug 75	y = 0.928x + 0.002	3
16 Feb 76	y = 0.838x + 0.009	3
17 Feb 76	y = 0.969x + 0.001	3
17 Feb 76	y = 0.951x - 0.002	1
24 Feb 76	y = 0.969x - 0.004	1
3 Mar 76	y = 1.038x - 0.005	3
14 Jul 76	y = 0.951x + 0.003	1
15 Jul 76	y = 0.944x + 0.004	1
27 Jul 76	y = 0.934x + 0.001	2
9 Aug 76	y = 0.913x - 0.004	1
10 Aug 76	y = 0.939x - 0.004	1
31 Aug 76	y = 1.009x + 0.0046	3
1 Nov 76	y = 0.948x + 0.0059	3
7 Nov 76	y = 1.054x + 0.0013	3
8 Nov 76	y = 1.306x + 0.003	3
14 Nov 76	y = 1.086x + 0.0001	3
	MEAN OF SLOPES = 0.965	
	STANDARD DEVIATION = 0.116	

TABLE B-4. NITRIC OXIDE AUDIT RESULTS

Date	Linear Regression	RAPS#
17 Feb 75	y = 0.776x + 0.001	1
17 Feb 75	y = 0.719x + 0.006	2
20 Feb 75	y = 0.950x + 0.008	1
20 Feb 75	y = 0.883x - 0.016	2
25 Feb 75	y = 0.984x - 0.0025	1
25 Feb 75	y = 1.000x - 0.001	2
22 Jul 75	y = 1.177x - 0.008	1
26 Jul 75	y = 1.004x - 0.0005	3
4 Aug 75	y = 0.856x + 0.013	1
13 Aug 75	y = 0.947x + 0.002	3
16 Feb 76	y = 0.859x + 0.000	3
17 Feb 76	y = 0.974x - 0.004	3
17 Feb 76	y = 0.927x + 0.004	3
24 Feb 76	y = 0.961x - 0.002	1
1 Mar 76	y = 0.993x - 0.002	3
11 Mar 76	y = 1.041x - 0.004	3
14 Jul 76	y = 0.980x + 0.002	1
15 Jul 76	y = 0.950x + 0.002	1
27 Jul 76	y = 0.937x + 0.000	2
9 Aug 76	y = 0.861x - 0.014	1
10 Aug 76	y = 0.862x - 0.011	1
31 Oct 76	y = 0.992x + 0.0013	3
1 Nov 76	y = 0.984x - 0.0014	3
7 Nov 76	y = 1.048x - 0.0027	3
8 Nov 76	y = 1.324x - 0.0021	3
14 Nov 76	y = 1.087x + 0.0002	3
	MEAN OF SLOPES = 0.965	
	STANDARD DEVIATION = 0.120	

TABLE B-5. OZONE AUDIT RESULTS

Date	Linear Regression	RAPS#
17 Feb 75	y = 0.969x + 0.000	1
17 Feb 75	y = 1.097x + 0.010	2
20 Feb 75	y = 0.793x + 0.000	1
20 Feb 75	y = 0.596x + 0.000	2
25 Feb 75	y = 1.039x + 0.001	1
25 Feb 75	y = 1.007x + 0.005	2
26 Jul 75	y = 0.878x + 0.003	3
4 Aug 75	y = 0.821x + 0.002	1
13 Aug 75	y = 0.807x + 0.013	3
17 Feb 76	y = 0.865x - 0.001	3
24 Feb 76	y = 0.744x - 0.008	1
11 Mar 76	y = 0.922x + 0.002	3
14 Jul 76	y = 0.966x + 0.009	1
15 Jul 76	y = 1.135x + 0.014	1
27 Jul 76	y = 0.796x + 0.003	2
9 Aug 76	y = 1.110x - 0.008	1
10 Aug 76	y = 1.062x - 0.008	1
31 Oct 76	y = 1.153x + 0.004	3
1 Nov 76	y = 0.989x + 0.004	3
7 Nov 7 6	y = 1.153x + 0.004	3
8 Nov 76	y = 0.991x - 0.003	3
14 Nov 76	y = 1.240x + 0.010	3

APPENDIX C

INSTRUMENT CALIBRATION, ZERO, AND SPAN DRIFT CORRECTIONS

Calibration

- Figure C-1. Helicopter calibration form
- Figure C-2. Calibration coding record

Zero Drift

Figure C-3. Zero drift correction scheme

Span Drift

Figure C-4. Span drift correction scheme

Helicopter Data Tape Format

- Table C-1. Helicopter Data Tape Format
- Table C-2. Helicopter Data Tape Output
- Table C-3. Pre- and Post-calibration Factors
- Table C-4. ADCAL Calibration Values
- Table C-5. Calibrated Engineering Units Listing
- Table C-6. Final Data File Format

APPFNDIX C

INSTRUMENT CALIBRATION, ZERO, AND SPAN DRIFT CORRECTIONS

CAL IBRATION

As discussed in section 5, a calibration zero and single-point span were performed on the ozone, nitric oxide, nitrogen oxide, sulfur dioxide, carbon monoxide, and hydrocarbon instruments before and after each flight. These data were used to establish an instrument calibration factor and to correct for zero and span drift during a flight. In addition, instrument zeroes were obtained during the flight and are indicated by a numerical 2 or 8 coded in the flight status field. Examples of the records for pre- and postcalibration are shown in Figures C-1 and C-2.

ZERO DRIFT

The pre- and postflight, as well as the inflight zero calibrations were used for defining zero drift corrections. A linear interpolation was used to correct voltage values between successive zero calibrations. See Figure C-3.

SPAN DRIFT

The pre- and postcalibration data were used to correct for span drift during a flight. Two basic assumptions were used:

- 1. Instrument response is linear as a function of concentration.
- 2. Instrument response shift is linear as a function of time. See Figure C-4.

HELICOPTER DATA TAPE FORMAT

The format of the helicopter data tape is described in Table C-1, and the tape output itself is shown in Table C-2. Tables C-3 and C-4 are examples of the pre- and postcalibration data, inflight zero values, and calculated segment slopes which are part of the ADCAL output described previously. Table C-5 describes the calibrated engineering units listing. Table C-6 defines the file format for the data tapes submitted to the RAPS data base.

		C A	LIBK	AIIUN	FURM			Calibration Date			
		Calibr	ation Crew _	······			Helicopter	Post-Flight 🗀			
INSTRU	MENT	RANGE	TIME	DVM	INPUT	CALIBRA	ATION AND SOURCE I				
REM:	Zero Span					Rem S/N Ethylene Flow Zero Pot Dasibi S/N	Ambient Temp Ethylene Tank Pres Zero Air Source O ₃ Gen S/N	Ambient Pres	Air Fiow "HV" Setting 03 Gen Range		
ML: 110/110 _X	NO Span					Converter S/N Ambient Temp Flows: NO	Analyzer S/NAmbient PresNO	03			
MELOY: SO ₂	Zero Span		:			Meloy S/N Air Flow Bendix S/N Perm Tube #	Ambient Temp H ₂ Flow Caps On Oven Temp	Ambient Pres H ₂ Tank Pres Input Gauge B	% Input Gauge C%		
BECKMAN:	Zero Span		: :			Beckman S/N Internal Temp Bendix S/N CO Tank #	Ambient Temp Zero Pot Caps On CO Tank Pres	Ambient Pres Input Gauge A CO Tank Conc	% Input Gauge C%		
CAMBRIDGE:	Oat Zero Oat Span Dpt Zero Dpt Span					Cambridge OAT/DPT S/N _Balance Adjusted?		No 🗔			
MRI MEPS	Air					MRI S/N	Time Constant	Freon Type			

Figure C-1. Helicopter calibration form.

CALIBRATION CODING RECORD PAGE OF DATE: FLIGHT NO. CODED BY; PRE-FLIGHT CALIBRATION POST-FLIGHT CALIBRATION

Figure C-2. Calibration coding record.

Figure C-3. Zero drift correction scheme

$$f = \frac{v_1 - v_0}{\Delta T}$$

where V_0 = initial zero voltage, V_1 = shifted zero voltage, ΔT = elapsed time $(t_1 - t_0)$, and f = slope

The zero offset at any point in time (t) is then:

$$V_t = V_0 + f\Delta t$$

where V_t = corrected voltage at time (t), and Δt = t - t₀, t₀<t<t₁.

Figure C-4. Span drift correction scheme

$$f = \frac{S_1 - S_0}{\Delta t}$$

where S_0 = initial span (ppm/volt) S_1 = final span (ppm/volt) Δt = elapsed time (t_1 - t_0) f = slope

In order to convert from voltage (corrected for zero shift) to engineering units at any point in time (t):

$$C_t = V_t (S_0 + f\Delta t)$$
, ppm

where C_t = concentration (ppm) at time (t), V_t = voltage units at time (t), and Δt = t - t₀, t₀<t<t₁.

TABLE C-1. HELICOPTER DATA TAPE FORMAT

CHARACTER	FORMAT	DESCRIPTION
1	I1	Helicopter ID 1 = RAPS #1 2 = RAPS #2 3 = RAPS #3
2	I1	Last digit of year
3-5	13	Julian date
6	I1	<pre>0₃ Instrument range 0 = non-operational 1 = 0-20 pphm full-scale (f.s.) 2 = 0-200 pphm f.s.</pre>
7	II	NO instrument range 0 = non-operational 1 = 0-0.2 ppm f.s. 2 = 0-0.5 ppm f.s. 3 = 0-1.0 ppm f.s. 4 = 0-2.0 ppm f.s. 5 = 0-5.0 ppm f.s.
8	I1	NO _x instrument range (same as NO scale)
9	I1	SO ₂ instrument range 0 = non-operational 1 = log 2 = 10-4 3 = 10-5 4 = 10-6 5 = 10-7 6 = 10-8 7 = 10-9
10	I1	CO instrument range 0 = non-operational 1 = 0-20 ppm f.s. 2 = 0-50 ppm f.s. 3 = 0-100 ppm f.s. 4 = 0-200 ppm f.s.

TABLE C-1. (Continued)

CHARACTER	FORMAT	DESCRIPTION
11	I1	Hydrocarbon instrument range 0 = non-operational 1 = 0-5 ppm f.s. 2 = 0-20 ppm f.s.
12	Il	Nephelometer instrument range 0 = non-operational $1 = 0 \text{ to } 10 \times 10^{-4} \text{m}^{-1}$ $2 = 0 \text{ to } 40 \times 10^{-4} \text{m}^{-1}$ $3 = 0 \text{ to } 100 \times 10^{-4} \text{m}^{-1}$
13-18	3(12)	Clock time (h, min, s)
19-20	12	Bag sample number (00-99)
21-24	F4.1	DME #1
25-28	F4.1	DME #2
29-32	14	VOR (octal)
33-36	14	Compass heading (0-359°)
37-38		Not used
39	I1	Flight status 0 = on ground ref. altitude (ft) 1 = sampling mission 2 = instrument zero, in flight 3 = 4 = special mission 5 = 6 = 7 = no useful data 8 = instrument zero, on ground 9 =
40	I1	DME #1 station 1 = Troy 2 = St. Louis 3 = Maryland Heights 4 = Scott AFB
41	I1	DME #2 station (same as DME #1 options)

TABLE C-1. (Continued)

CHARACTER	FORMAT	DESCRIPTION
42	I1	VOR station (same as DME #1 options)
43-44	12	Use code: \ -when Bit #39 is 1 = last two digits of RAMS site number
43-46	14	Use code: -when Bit #39 is 0 = reference altitude in feet MSL
45-46	. 12	Use code: -when Bit #39 is 1 = bag number (0-99)
47-48		Not used
49-54	F6.4 °	0 ₃ , volts
55-60	F6.4	NO
61-66	F6.4	$NO_{\mathbf{X}}$
67-72	F6.4	\$0
73-78	F6.4	CO
79-84	F6.4	CO temperature
85-90	F6.4	Short (zero)
91-96	F6.4	Methane
97-102	F6.4	Total hydrocarbons
103-108	F6.4	Temperature
109-114	F6.4	DPT
115-120	F6.4	Visibility, B _{scat}
121-126	F6.4	Altitude (feet)
127-132	F6.4	Airspeed (knots)

ID	INSTR. STATUS	TIME	DME 1	2	VOR HD	" STA	T. USE	03	NO	NO _x	so₂	co	сот	SHORT	CH4	тнс	OAT	D.P.	B-SCAT	ALT.	KNOTS
35216	1331101	055849>	¢(2957	0050	6527359	729912	2944949	1+02407	+00394	+00753	-00022	+02938	+02727	-00900	+02927	+01447	+00270	+09219	+00514	-93643	+99309
~6216	1331101	10558455	ひとつりちて	(1059	7011359	780312	2004/05/20	1401607	+01209	+0.27/19	-00027	+13195	+07749	-0.00000	+82931	+01441	+09271	+00219	1+0077724	ピングラレコ	+63436
- 36216	1331101	10558582	ጎነበ 1 MG	ยหารค	6615359	780012	2022/05/2	1+01299	+02071	+92730	-000000	400007 L	+0.2725		+02931	+91425:	+99263	+03221	+69 (25)	~ ' D (E1 "	14-12-5-28
- 35216	1331191	10558552	122957	ากกรค	6597359	የሃባባ 12	2044055	ነ+ድገባኛል	+91764	+92493	-29007	+05733	+600313	-93300	+02925	<u>-491459</u> -	+00264	+00219	+00	2.17.7	4473100
::5016	1231191	เอรรรถวา	0(2957	22251	6561359	2) (101) (2	መሳባኒ ብኒሳ	ጉተመግባወብ	+P111P	401629	- 66つシフ	+91724	+62345	一したいほう	+92923	+01434	+113250	+20221	+ 89956.2	Table 1	(チェスンコン
- 75218	1331101	0539055	~<2957	いつりらい	5611779	75/0917	ግ፡-በጎብሃና	3401573	+00561	488975	-000000	-00017	+02361	+au-nu-	+92523	+91479:	+011259	+003220	140177233	- 1 - 1	99 D 37 B1
36215	1331101	(055910)	20140	2:051	6635359	7X0912	2000001	1+02141	+00228	+09491	-90027	-60449·	-92374	-00000	+02929	+014.14	+3/13/24	+00217	+09521-	HY ode occupator	in a life
76216	1331101	055915	ბოვიი	10051	6640359	7X0912	מיכייםכיבו	0∻02666	+00110	+003393	-600527	-00354	+03339	~ ∂ũũ₫.	+92927	+01447	+00263	+03218	400.24~	in (Elega Colates	H100000
J6316	1331101	10559235	COUNT.	`## #	6634359	780913	מאום. בכים)+02958·	+00054	+09245	-000002	-0:3038:	+D2334	-00383	402931	+01435	#50263	+63514	orthing car	2.121 1.	(サイド) たつふ
36215	1331101	P55935Y	7/2957	0052	653 535 91	78 921 3	20000000	0+03135	+00250	+03222	-00027	-00157-	181,004	01 i 30	+02029	+91455	+001765	+20219	(400×11×1	61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1413731 14003755
26216	1331101	0559ZOX	W.1531	.0052	6625359	780912	353.10K	+03334	+00044	+03213	-00027	-6313S-	+02507	-65050	+0.1925	1 01453	+0.325.5	+0021-	145 J. T.	4-1-2	1111111111111
33716	1331101	055005	MDC54	1910531	65033591	750912	2009082	0+03691	+90503	+801°3	-00021	+80015	+0.797 7	G 0000	∙սնեն։	401455	+9.0266	+00217	400000	* 64.5 .	430105 430105
5215	1331101	0559-19):	30255	0953	5371339	10013	27000000	9+03699	+30004	+00153	-80027	+00103-	H0237 9	-00399	172924	+111435	+90265	+00211	+89:156	r 194) Sett	1400000
05216	1531101	.0559/1510	W0152	(1952)	67293591	784712	2009085	1+03941	+000001	+99153	-00021	+55533	FD2891	+888300	viidase	491459 401459	#110766	+800214	(11) (15.7) (1 (4.000000)	n ne victoria.	1.004.51
25216	1331101	.0559502	0.0320	00520	6625339.	784912	20000XL	J + 035567	-02006	+02189	-63002	+00134	102322	6863 L	1029.06	40.142a	111 1353 100000	HUSZ 14	いいしゅうしゅ	ranan ing sa	400017
25216	1331101	.055955X	070256	0051	6591399	784212	SALIMAKE	1+03934	+80009	+00169	-907775	400320-	1472541 1472541	~893.67 F	4J2424	+91461	*90255	#877.114	introduce de la compania de la comp La compania de la co	… 15年に、こ	14000017 14000017
20215	1331191	YCD0030	7 3257	11750	55''C&''.	484.JU	CHORDER.	1+0.5266	+131010105	+09297	-937.72	+172319	192239	-00000	492222	+91820	ትር ጋልካና • በዕነንረር	10001	TALLES TO	e militar produce.	14001 0 7
05415	1001531	2200030 H	20325. Va o ez	00.40	54903359	(MADIE	20000000 20000000	140 40 15	+666653	*14611.00	-60000	**********	12.7389	092773	H1/0721	+01450	70 KOT 100705	TBUC14	anti ancio:	er er ar r Grander	(エロロコ フ コ
20216	1551191	900010X	4.0406 VOODE	(P))4(S)	50000007. 8604 75 0	2800 I.J	agrantine.	1400000	-000003	************	-60557	+5.55555	MUNICIPA MONITOR	~00203	#1222141 (100000 4	ማር 1450 ነገ 1651 4 47	かい (という	100011	.T	errager, er Leutserfort	27 - フラム (上のロフライ
76216	1221141	0600135	NO DE	00480	1624JDD. CCE12EO	1750,11 J	20000000	14514147	+0091b	ተህ ነገር ነት መውመታቸ	_F05,51	*50555	10000000 10000000000000000000000000000	andara Malang	90 13.16 1030 14	1014) 10147	#U 1/(110 #0000415	TUB/11	173 F 121	r 100 a5 ⊊ 100	11000000 11000000000000000000000000000
70010	1991131	060020X	7/1/1/20 7/1/1/20	00 4C	, מכנונות השתנונות	1754912 2744040	20000000	1404010	~0000.0	460 G	-600 J. 200	1 "3023"	ಗಣವರ್ಷವ -೧೨೧೦೧	(1 T.)	TUKUMA 1000000	1011417	T : 1,0m ;	TELLECT AND A CO	. Y AZZ NGC 11177 J.	er unit d emotion d	11000000
		090025X																			
		063030X 060035Y																			
		0660437																			
		060345X																			
		060050\0																			
		06005310																			
		060100%																			
		0501057																			
		06011050																			
		060115%																			
		06 01 20%																			
		050125×																			
		030130%																			
		06013510																			
		060140%																			
		36014522																			
		980150\n																			
		0001552																			
		2502000																			
		0602 0 52																			
		0002100																			
		06021530																			
		25022020																			
		0022589																			
		0G0230X0																			
362161	3311010	360235%	(J260)	90606	6273596	XM142	2310020	+24739-	⊦ 00049-	+00165	-09227	÷01002	+02995	69300	+02/53	+01412	490279	9+0017	1469401	-0745	9+12035
		360240X																			
		360245XX																			
		360250XY																			
		360255X																			

TABLE C-2. HELICOPTER DATA TAPE OUTPUT

TABLE C-3. PRE- AND POST-CALIBRATION FACTORS

CALIBRATION FACTORS:

INSTRUMENT RANGE SETTING

	_1		_2	-3	-4			-7	_8	-9
03	0.00	.10	1.00	0.00	0.00	0.00	0.00	0.00	_0.00	0.0C
0'4	0.00	-18	•25	•50	1.00	2.50	C . C O	0.00	0.10	0.00
NOX	0.00	.10	•25	.50	1.00	2.50	0.00	0.30	0.00	6.30
202	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
co	0.00	10.00	25.00	58.90	100.00	0.00	0.00	0.00	0.00	0.00
CH4	0.00	5.00	20.00	9.00	6.00	0.00	0.00	0.00	0.00	2.00
THC	0.00	5.00	20.00	0.00	0.00	0.00	9.00	0.03	0.10	0.00
NEPH	0.00	10.00	0.80	0.00	0.00	0.00	C.00	0.00	0.90	6.08

3

PRF-CAL	IBRATI	ON:		1500	504N			POST-CALIBRATION	7500				
	DAY	IIME		7ERO YQLIS	SPAN YQLIS	INPUI	-8-	DAYIIME.		TINGFIZ	SPAN YOLIS	ותקהוד	_B_
0.3	215.	19.45.	0.	0.000	1.580	•158	1	216. 20. 6.	0.	017	1.829	.148	1
NO	215.	21.16.	0.	.001	.981	•491	3	216. 19.44.	0.	.001	1.360	.752	3
AUX	215.	21.10.	0.	.001	.981	•491	3	216. 19.44.	0.	.010	1.350	.752	3
502	215.	23.15.	0.	002	.330	.413	1	216. 23. 5.	c.	.002	.420	.413	1
CO	215.	23. 5.	з.	0.000	1.470	14.690	1	216. 20. 6.	0.	179	1.275	14.680	1
CH4	215.	23. 0.	0.	-0.000	-0.000	-0.000	0	216. 20. 0.	c.	-3.000	-0.000	-0.000	C
THC	215.	23. 0.	٥.	-9.000	-0.000	-0.000	0	216. 20. 0.	0.	-0.000	-6.000	-6.000	ε
NFPH	215.	23.10.	0.	.023	.790	7.870	1	216. 22.57.	0.	.022	.790	7.783	1

ZERO LEVEL DATAL

TIME 03

TABLE C-4. ADCAL CALIBRATION VALUES

NEPHFLOMETER ZERO DATA: TIMES=23.10. 0. 22.57. 0. VOLTAGES= .0230 .0220 SLOPE	IEPHELOMETER ZERO DATA:	TIMES=23.10. 0. 22.57. 0.	VOLTAGES= .0230	*0550 SFJBE=	000000
---	-------------------------	---------------------------	-----------------	--------------	--------

NOX 502 CO

	-									
2311	5100	0.0000	.0010	.0010	0020	0.0000	-0.0000	-0.0000	4	DDE-CAL.
0515	5135	.0042	0003	.0062	0025	1820	.2935	.1438	1	IN-FLT-ZRO
0712	5105	.0120	0005	.0082	0026	.0989	.2881	.1414	?	IN-FLT-ZRO
0812	5:50	.0302	0010	.0055	0025	0406	.2865	.1420		IN-FLT-780
2510	5:00	0170	.0010	.0100	.0020	1700	-0.0000	-0.0000	4 5	POST-CAL.
SEGM	ENT SL	OPES:								
SEC	SMENT	03	МО	NOX	502	co	CH4	THC		
	1	.000000	000000	.000000	000000	000008	.00001	2 .000006	\$	
	2	.000001	000000	.000000	000000	000052	>00000	1000000)	
	3	.000005	000000	000001	.000000	000038	aooas	000000)	
	4	000001	.000000	.000000	.000000	000002	00000	5000003	3	
GAIN	INFOR	4ATION:	03	NO	чох	\$02	co	CH4	THC	ИЕРН
-		R (UNITS/V								
	POST-	LIGHT FLIGHT	.1000 .0810	•5005 •5603	•5005 •5644	1.2515 .9833	9.9864 11.5137	0.0000	3.0096 0.0090	9.9620 9.9744
	LI7ED	_IGHT	1.0000	1.0010	1.0010	1.2515	• 9986	0.0000	0.0000	• 9962
	PUST-I	FLIGHT	.8096	1.1206	1.1289	.9833	1.1514	0.0000	0.0000	.9974
SEGME	NT SL	PES: -	0000055	.0000015	.0300016 🤄	0000031	.0000020	0.0000000	0.0000000	.0000000

ALTITUDE REFERENCE INFORMATION: REFERENCE FEET= 440 CORRECTION = -.3379
ALTITUDE VOLTAGE= .3693 TEMPERATURE DEGREES CFLSIUS= 18.2

CH4 THC SEGMENT

TABLE C-5. CALIBRATED ENGINEERING UNITS LISTING

TIME	ELAPSED TIME(MN)		DMES	VOR Deg.	HONG DEG.	STATUS	03 PPM.	NO PPM•	NOX PPM.	SO2 PPM•	CO PPM.	On T	СН4 РРМ•	THC PPM.	OAT NEG.C	DPT DEG.C	RSCAT 1/P F	ALT T/MSL	ASPÖ Knots
INCTRUM	ENT STATU	S: 133	1101																
0515415	c 0.00	-9.9	-9.9	38.1	-9.9	21220440	.000	002	.004	002	-1.4	27.2	-9,9	-9.9	21.1	12.6	.7	433	54.1
0515415		-9.9	-9.9	41.7	-9.9	21220440	.000	001	.002	002	-1.6	27.1	-9.9	-9.9	20.8	12.2	•8 •7	435 436	58.5 56.1
0515510 0515510		-9.9 -9.9	-9.9 -9.9	243.2 72.9	-9.9 -9.9	21220440 21220440	.000	001 .001	.003	002	-1.7 -1.6	27.1 27.2	-9.9 -9.9	-9.9 -9.9	20.2	12.1	•6	437	52.7
9515511		-9.9	-9.9	58.6	-9.9	21220440	.000	.002	.304	002	-1.9	27.3	-9.9	-9. á	19.0	12.2	.7	476	56.2
05:55:1		-9.9	-9.9	67.5	-9.9	21220440	.001	.002	.004	002	-1.8	27.5	-9.9	-0.9	19.6	12.4	. 7	441	55.0
0515512		-9.9	-9.9		-9.9	21220440	.000	001	.004	002	-1.8	27.8	-9.9	-9.9	19.0 15.6	12.2	.8	447 447	52.3 53.2
0515512		-9.9 -9.9	-9.9 -9.9	73.6 75.6	-9.9 -9.9	21220440 21220440	.000	002 000	.002	002	-2.C	27.8 28.1	-9.9 -9.9	-9.9 -9.9	18.9	11.9	1.1	446	51.0
0515513		-9.9		121.5	-9.9	21220440	.001	.000	.004	002	-1.8	29.2	-9.9	-0.9	19.0	12.1	. 9	444	54.3
0515814	0 3.83	-9.9	5.0	120.1	-9.9	31229440	.022	.021	.036	.001	7.9	27.3	-9.9	-9.9	18.5	12.4	•6	430	48.6
0515814		-9.9		135.8	-9.9	01220440	.014	.095	-141	.001	15.f	27.5	-9.9	-9.9	19.6	12.4	• 8	439 450	49.2 47.3
9515815 0515315		10.9		124.9	-9, 9 -9, 9	01220440 01220440	.012	.109	.140 .123	.001	11.3	27.9	-9.9 -9.9	-9.9	18.3	12.7	•8 •7	447	45.4
05:59:0		-9.9		122.4	-9.9	91220000	.008	.058	.082	.001	7.6	28.5	-9.9	-9.0	17.3	12.7	.7	452	45.2
0515910	5 4.25	-9.9	5.0	124.5	-9.9	91220000	.014	.030	.044	.001	1.8	24.6	-9.9	-9.3	17.1	12.6	1.3	478	45.9
0515911		14.0		126.3	-9.9	91220000	.019	.012	.923	.001	1.3	29.7	-9.9	-9.9	17.2	17.2	•5	501	47.0
0515911 0515912		-9.9		126.6 126.2	-9.9 -9.9	91220000 91220000	.024 .027	.006 .003	.013	.001	1.7	28.8 28.8	-9.9	-9.9	17.7	12.3 12.3	•6 •6	522 546	47.0 45.2
05:59:2		-9.9		126.4	-9.9	11223100	.028	.003	.008	.001	1.6	28.8	-9.9	-9.a	17.9	12.4	•6	570	45.6
0515913		-9.9		125.7	-9.9	11223100	.031	. 902	.008	.001	1.6	28.8	-9.9	-9.3	17.8	12.4	-7	59.	46.8
0515913		25.4		118.4	-9.9	11223100	.033	.000	.006	.001	1.8	24.4	-9.0	-9.9	13.0	12.2	•7	633	45.6
0515914 0515914	-	25.9		111.9	-9.9 -9.9	11223100 11223100	.034	.000	.905	.001 .001	2.0	28.8	-9.9 -9.9	-9.9	17.9 19.0	11.7	•7	678 706	47.6 46.1
3515915		25.8		125.6	-9.9	11223100	.035	000	.307	.001	1.9	28.8	-9.9	-9.9	17.8	11.0	•6	734	50.4
3515915		25.8		127.4	-9.9	11223100	.036	.001	.006	.001	2.1	28.9	-9.9	-9.3	17.9	11.9	.7	762	45.5
05:00:0		25.7		122.1	-9.9	11223100	.0 35	.000	.007	.001	2.4	29.9	-9.9	-9.9	17.8	11.7	•7	788	50.2
35 : 00 : 0 35 : 00 : 1		25.7 25.7		115.8	-9.9 -9.9	11223100 11223100	.037	.001 000	.007	.001	2.5	29.9 29.8	-9.9 -9.9	-9.0	17.9	11.9	•7	805 822	48.0 51.3
05:00:1		25.7		125.5	-9.9	11223130	.038	.001	.009	.001	2.5	28.9	-9.9	-g a	18.0	11.7	• 7	951	49.3
9510912		25.8	4.7	127.4	-9.9	11223100	.038	001	.308	.000	2.4	29.9	-9.9	-9.3	17.9	11.5	•7	872	51.2
06:00:2		25.9		126.4	-9.9	11223130	.037	001	.009	.001	2.4	27.0	-9.9	-9,3	13.0	11.4	•7	903	50.6
06:00:3		26.0		132.5 128.8	-9.9 -9.9	11223100 11223100	•034 •034	.001	.014	.001	2.4 2.6	50.0	-9.9 -9.9	-9.9 -9.9	17.9	11.7	•6 •7	9 74 955	54.1 51.1
05:00:4		25.2		131.4	-9.9	11223100	.034	001	.011	.000	2.6	29.0	-9.9	-0.0	17.9	11.0	.7	996	54.3
05:00:4		26.2		129.4	-9.9	11223100	.032	001	.013	.001	2.4	20.0	-9.9	-9.3	19.0	11.3	.7	1024	56.1
06:00:5		26.2		124.6	-9.9 -9.9	11223100	.028 .024	007 -001	.019	.000	2.4	29.1	-9.9 -9.9	-9.9	19.0	11.3	.7	1034	56.4
06 + 01 + 0		26.2 26.2		122.3	-9.9	11223100	.021	.804	.022	.001	2.5	29.0	-9.9	-9.9	19.0	11.3	•8 •7	1050 1069	53.7 54.8
0510111		26.3		119.7	-9.9	11223100	.019	.005	.029	.001	2.5	29.9	-9.0	-9.9	13.2	11.0	.8	1089	53.4
06:01:1		26.3	2.0		-9.9	11223100	.017	.008	.930	.000	2.5	29.9	-9.9	-9.9	19.0	13.8	.7	1110	55.6
06:01:1		26.4		122.4	-9.9 -9.9	11223100 11223100	.015	.008	.033 .034	.001	2.7	28.9 28.9	-9.9 -9.9	-9.9	19.2 19.6	10.9	• 7	1135	53.8
05:01:3		26.4		118.7	-9.9	11223100	.013	.010	.035	.001	2.5	23.9	-9.9	-9.9	19.2	10.9	•7 •8	1156 1174	54.2 55.3
06 1011		26.5		117.8	-9.9	11223100	.012	.011	.038	.001	2.5	28.8	-9.9	-9.9	18.0	10.5	•8	1201	55.0
061011		26.5		119.2	-9.9	11223100	.010	.010	.038	.001	2.5	24.4	-9.9	-9.9	18.3	10.5	•9	1230	54.6
05:01:				116.1	-9, 9 -9, 9	11223100 11223100	.009	.012	.039	.001	2.5	28.8 29.8	-9.9 -9.0	-9.3	19.4	13.4	1.2	1257	53.9
051011				114.8	-9.9	11223100	.008	.017	.047	-045	2.8	24.7	-9.9	-9.9	19.5	10.7	1.5 2.3	1284 1304	59.2 54.3
05 1011	55 7 . 08	26.5	5.9	129.7	-9.9	11223100	.008	.017	.050	.080	2.7	28.8	-9.9	-9.9	13.6	9.5	4 - 1	1347	54.4
06:02:		26.5		141.5	-9.9 -9.9	11223100	.013	.010	. 946	. 130	2.7	28.9	-9.9	-9.9	19.7	9.3	1.9	1388	60.3
05:02:				136.3	-9.9	11223100 11223100	•025 •035	.007	.026	.001	2.5	29.9 29.9	-9.9 -9.9	-9.9 -9.9	19.2	7.2 7.1	.4	1425	62.7
05:02:				122.4	-9. 9	11223100	.041	001	.007	.000	2.5	28.9	-9.9	-9.9	19.3	7.2	.4	1460 1487	61.8
06 10 21			6.0	127.6	-9.9	11223100	.043	000	.007	.001	2.6	29.0		-9.9	19.3	7.4	. 4	1517	65.8

TABLE C-6. FINAL DATA FILE FORMAT

HEADER RECORD 1 FORMAT							
PARAMETER	CHARACTER	FORMAT	IDENTIFICATION				
1	1	A1	Aircraft ID				
2	2	I1	Year				
3	2 3		Not used				
4	4-6	13	Julian date				
5	7-10		Not used				
6	11-15	A5	Parameter #1 ID (0_3)				
7	16 - 20	A5	Parameter #2 ID (NŎ)				
8	21-25	A5	Parameter #3 ID (NO _X				
9	26-30	A5	Parameter #4 ID (SO2				
10	31-35	A 5	Parameter #5 ID (CO)				
11	36-40	A 5	Parameter #6 ID (COŤ				
12	41-45	A5	Parameter #7 ID (CH ₄				
13	46-50	A 5	Parameter #8 ID (THC				

TABLE C-6. (Continued)

HEADER RECORDS 2 AND 3 FORMAT							
PARAMETER	CHARACTERS ON RECORDS 2 & 3	FORMAT	RECORD 2 (PARAMETER)	RECORD 3 (UNITS)	LOCATION OF PARAMETER		
1	1-5	A5	DME 1	NMILES	19-22		
2	6-10	A5	DME 2	NMILES	23-26		
3	11-15	A5	VOR	DEG	27-29		
	16-20	A5	HEAD	DEG	30-34		
5	21-25	A5	-	-	70-73		
4 5 6 7 8 9	26-3 0	A5	ALT	FEET	74-77		
7	31-35	A5	ASPD	KNOTS	78 - 82		
8	36-4 0	A5	TEMP	DEG C	83-87		
9	41-45	A5	DPT	DEG C	88-92		
10	46-50	A5	BSCAT	1/M	93-96		
11	51-55	A5	03	PPM	97-105		
12	56-60	A5	03 NO	PPM	106-114		
13	61-65	A5	NO_{x}	PPM	115-123		
14	66-70	A5	S02	PPM	124-132		
15	71-75	A5	co ^r	PPM	133-141		
16	76-80	A5	CO T	DEG C	142-150		
17	81-85	A5	CH ₄	PPM	151-159		
18	86-90	A5	NMĤC	PPM	160-168		

TABLE C-6. (Continued)

DATA RECORDS FORMAT

PARAMETER	CHARACTER	FORMAT	IDENTIFICATION
1	1	A1	Aircraft ID
2	1 2 3	I1	Year
1 2 3 4	3	-	(not used)
4	4-6	13	Julian Date
5	7-8	12	Hours
6	9-10	12	Minutes
7	11-12	I2	Seconds
8	13-18	F6.2	Elapsed Time DME 1
9	19-22	F4.1 F4.1	DME 2
10	23-26	I3	VOR
11	27-29 30-34	F5.1	Heading
12 13	30-34 35	II	Flight Status
13	36 - 39	-	(not used)
15	40	A1	DME 1 CODE
16	41-44	, · · ·	(not used)
17	45	A1	DME 2 CODE
18	46-49	-	(not used)
19	50	A1	VOR CODE
20	51-54	A4	Activity Thumbwheels
21	55-56	A2	Bag Sample No.
22	57 - 58		(not used)
23	59+65	A7	Instrument Range
24	66-73	-	(not used)
25	74-77	I 4	Altitude (feet)
26	78-82	F5.1	Airspeed
27	83-87	F5.1	Temperature
28	88-92	F5.1	Dewpoint
29	93-96	F4.1	B _{scat} (Nephelometer)
30	97-105	E9.3	03 NO
31	106-114	E9.3	NO
32 33	115-123 124-132	E9.3	NO _X
33 34	133-141	E9.3	S02 C0
35 35	133-141 142-150	E9.3 E9.3	
36	151-159	E9.3	CO Temperature
37	160-168	E9.3	CH ₄ NMHC

[&]quot;Location of parameter" refers to the field occupied by a parameter value on a data record.

APPENDIX D

USERS GUIDE TO RAMS SUPPORT MISSIONS

```
Table D-1.
            Regional Air Monitoring Station (RAMS) Locations
Table D-2.
            Spiraling Locations Not Over RAMS Sites
Table D-3.
            VORTAC Radio Navigation Station Locations
Table D-4.
            Description of RAMS Support Missions
Table D-5.
            Users Guide to RAMS Support Missions
Figure D-1.
              Track 1, July-August 1974
Figure D-2.
              Track 5, July-August 1974
Figure D-3.
              Track 7, July-August 1974
Figure D-4.
              Track Red, November-December 1974
Figure D-5.
              Track Blue, November-December 1974
Figure D-6.
              Track North-South A, February-March 1975
Figure D-7.
              Track North-South B, February-March 1975
Figure D-8.
              Track Northeast-Southwest A, February-March 1975
Figure D-9.
              Track Northeast-Southwest B, February-March 1975
Figure D-10.
              Track Northwest-Southeast A, February-March 1975
              Track Northwest-Southeast B, February-March 1975
Figure D-11.
Figure D-12.
              Track East-West A, February-March 1975
Figure D-13.
              Track East-West B. February-March 1975
Figure D-14.
              Track East-West C, February-March 1975
Figure D-15.
              Track North-South Pattern, July-August 1975
Figure D-16.
              Track East-West Pattern, July-August 1975
Figure D-17.
              Track South-North Pattern, July-August 1975
Figure D-18.
              Track West-East Pattern, July-August 1975
Figure D-19.
              Track North-South Final, July-August 1975
              Track East-West Final, July-August 1975
Figure D-20.
              Track South-North Final, July-August 1975
Figure D-21.
Figure D-22.
              Track West-East Final, July-August 1975
              Track North-South Double, July-August 1975
Figure D-23.
Figure D-24.
              Track East-West Double, July-August 1975
              Track South-North Double, July-August 1975
Figure D-25.
              Track West-East Double, July-August 1975
Figure D-26.
              Track North-South Double Final, July-August 1975
Figure D-27.
              Track East-West Double Final, July-August 1975
Figure D-28.
              Track South-North Double Final, July-August 1975
Figure D-29.
              Track West-East Double Final, July-August 1975
Figure D-30.
              Tract North-Upwind (Crosswind) Pattern, February-March 1976
Figure D-31.
              Track East-Upwind (Crosswind) Pattern, February-March 1976
Figure D-32.
              Track West-Upwind (Crosswind) Pattern, February-March 1976
Figure D-33.
```

Track South-Upwind (Crosswind) Pattern, February-March 1976 Figure D-34. Track Southeast-Upwind (Crosswind) Pattern, February-March 1976 Figure D-35. Track West-Downwind Final, July-August 1976 Figure D-36. Figure D-37. Track West-East Double Background, October-November 1976 Track East-West Double Background, October-November 1976 Figure D-38. Figure D-39. Track North-South Double Background, October-November 1976 Track West-East Double Final Background, October-November 1976 Figure D-40. Track East-West Double Final Background, October-November 1976 Figure D-41. Track North-South Double Final Background, October-November 1976 Figure D-42.

TABLE D-1. REGIONAL AIR MONITORING STATION (RAMS) LOCATIONS

Station	Latitude	Longitude
101	N 38°38'08"	W 90°11'41"
102	38°38'30"	90°12'42"
103	38°41'29"	90°09'17"
104	38°39'42"	90°09'35"
105	38°36'18"	90°12'05"
106	38°36'59"	90°15'32"
107	38°36'41"	90°14'23"
108	38°39'08"	90°08'32"
109	38°44'57"	90°03'41"
110	38°37'17"	90°09'45"
111	38°34'14"	90°15'32"
112	38°38'52"	90°18'43"
113	38°43'37"	90°15'55"
114	38°47'38"	90°11 ' 13"
115	38°47'00"	90°03'25"
116	38°43'20"	89°58'39"
117	38°34'03"	90°00'34"
118	38°29'11"	90°12'48"
119	38°33'20"	90°21'48"
120	38°41'44"	90°26'06"
121	38°50'29"	90°19'20"
122	39°05'00"	90°12'08"
123	38°41'05"	89°48'53"
124	38°15'00"	90°08'53"
125	38°40'08"	90°43'15"

TABLE D-2. SPIRALING LOCATIONS NOT OVER RAMS SITES

	Latitude	Longitude
N	\ 38°35'24"	W 90°11'18"
	38°38'18"	90°16'30"
	38°44'07"	90°17'00"
	38°30'36"	89°49'00"
	38°28'00"	90°03'06"
	38°26'30"	90°16'30"
	38°34'00"	90°13'00"
	38°37'43"	90°12'33"
	38°31'15"	90°35'56"
	38°25'32"	90°01'06"
(Smartt Field)	38°56'00"	90°26'00"
(Smartt Field)	38°56'00"	90°26'00"
	(Smartt Field)	N 38°35'24" 38°38'18" 38°44'07" 38°30'36" 38°28'00" 38°26'30" 38°34'00" 38°37'43" 38°37'43" 38°25'32" (Smartt Field) 38°56'00"

TABLE D-3. VORTAC RADIO NAVIGATION STATION LOCATIONS

Name	Latitude	Longitude	UTM*
Troy	38°44'21"	89°55'07"	16SBT465913
St. Louis	38°51'38"	90°28'56"	15SYP185042
Maryland Heights	38°40'38"	90°37'30"	15SYN067830
Scott AFB	38°34'20"	89°53'08"	16SBT487728
	Troy St. Louis Maryland Heights	Troy 38°44'21" St. Louis 38°51'38" Maryland Heights 38°40'38"	Troy 38°44'21" 89°55'07" St. Louis 38°51'38" 90°28'56" Maryland Heights 38°40'38" 90°37'30"

^{*}Universal Transverse Mercator Grid Coordinates.

The flight patterns for all seven RAMS support missions are described below. A corresponding figure, a map of the St. Louis, Missouri/Illinois Metropolitan area, including the RAMS stations, shows the route taken by the helicopter. It should be noted that the spiral locations for sites 105, 106 and 113 were not over the RAMS stations. The spiral for site 105 was over an open field across the Mississippi River, as indicated on the figures. The spiral for site 106 was done over open athletic fields in Forest Park as shown in the figures. The spiral for site 113 was done over a golf course at a point just east of the indicated RAMS site. The latitude and longitude of these sites are listed in Table D-1. Also listed are coordinates of additional special spiral sites not associated with the RAMS sites (Table D-2).

JULY-AUGUST 1974

Three tracks were devised for RAMS support during the July-August exercise. These were designated Tracks 1, 5, and 7.

- Track 1. Scott AFB to site 118, to site 105, to site 106, to site 103, to site 113, a stop at Lambert Field for refueling, to site 121, to site 108, to site 115, to site 123, and return to Scott AFB. Later in the exercise as the pilots became more familiar with the area and the aircraft, more fuel was carried and the refueling stop at Lambert was eliminated. Track 1 is shown in Figure D-1.
- <u>Track 5.</u> Scott AFB to site 125, to site 105, to site 103, to site 123, and return to Scott AFB. Track 5 is shown in Figure D-2.
- Track 7. Scott AFB to site 117, to site 118, to site 106, to site 103, to site 102, to site 108, to site 115, to site 116, and return to Scott AFB. Track 7 is shown in Figure D-3.

NOVEMBER-DECEMBER 1974

Two tracks were used for this field exercise. They are designated in the flight records as Track Red and Track Blue.

- Track Red. Scott AFB to site 118, to site 119, to site 103, to site 102, to site 113, to site 121, to site 114, to site 108, to site 109, and return to Scott AFB. Track Red is shown in Figure D-4.
- <u>Track Blue.</u> Scott AFB to site 117, to site 105, to site 120, to site 121, to site 115, to site 116, to site 123, and return to Scott AFB. Track Blue is shown in Figure D-5.

FEBRUARY-MARCH 1975

Nine tracks were used during the February-March 1975 exercise. The flight patterns were designed to provide flux information along the North-South, East-West, Northeast-Southwest, and Northwest-Southeast lines. Two patterns were used for each direction, except for the East-West pattern, which required three flight patterns.

The nine flight patterns were for particular wind patterns, i.e., when the wind was from the North, the North-South patterns were flown. However, when the wind was from the opposite direction, the flight pattern was reversed and the mission log would indicate a South-North pattern.

- North-South A. Scott AFB to site 123, to site 116, to site 115, to site 114, to site 121, to site 113, to site 102, to site 105, to site 118, and return to Scott AFB. Pattern North-South is shown in Figure D-6.
- North-South B. Scott AFB to site 114, to site 113, to site 102, to site 105, to site 118, to site 43, to site 119, to site 44, and return to Scott AFB. Sites 43 and 44 were spiral sites over open fields to augment the information being obtained from the RAMS stations. The locations of these sites are shown with the rest of the flight pattern in Figure D-7.
- Northeast-Southwest A. Scott AFB to site 123, to site 115, to site 121, to site 108, to site 102, to site 119, to site 105, and return to Scott AFB. Pattern Northeast-Southwest A is shown in Figure D-8.
- Northeast-Southwest B. Scott AFB to site 103, to site 102, to site 106, site 120, to site 36, to site 119, to site 118, to site 43, and return to Scott AFB. Site 36 was a St. Louis County monitoring pattern in Figure D-9.
- Northwest-Southeast A. Scott AFB to site 106, to site 120, to site 121, to site 113, to site 103, to site 116, to site 118, and return to Scott AFB. This flight pattern is shown in Figure D-10.
- Northwest-Southeast B. Scott AFB to site 106, to site 103, to site 105, to site 109, to site 117, to site 118, to site 42, to site 41. Sites 41 and 42 were spiral locations chosen to augment the information obtained over the RAMS network. Site 41 was over an open field, approximately 1 kilometer north of the town of Freeburg, and site 42 was over an open field immediately north of Roachtown. All of the spiral locations are shown in Figure D-11.
- East-West A. Scott AFB to site 121, to site 120, to site 125, to site 119, and return to Scott AFB. The East-West A pattern is shown in Figure D-12.

- East-West B. Scott AFB to site 115, to site 108, to site 103, to site 105, to site 118, to site 106, and return to Scott AFB. This pattern is shown in Figure D-13.
- East-West C. Scott AFB to site 40, to site 123, to site 117, to site 109, to site 103, to site 105, to site 106, and return to Scott AFB. Site 40 was near the town of Mascoutah, Illinois, and is shown with the rest of the spiral sites in Figure D-14.

JULY-AUGUST 1975

Four basic patterns were used during the July-August 1975 exercise. However, during the course of the study, the patterns were modified to supply more information. By the end of the exercise, 16 patterns had been flown.

- North-South. Smartt Field to site 122, to site 102, to site 103, to site 106, to site 105, and return to Smartt Field. The North-South pattern is shown in Figure D-15.
- <u>East-West.</u> Smartt Field to site 123, to site 102, to site 103, to site 106, to site 105, and return to Smartt Field. The South-North pattern is shown in Figure D-16.
- South-North. Smartt Field to site 124, to site 102, to site 103, to site 106, to site 105, and return to Smartt Field. The South-North pattern is shown in Figure D-17.
- West-East. Smartt Field to site 125, to site 102, to site 103, to site 106, to site 105, and return to Smartt Field. The West-East pattern is shown in Figure D-18.
- North-South Final. Smartt Field to site 102, to site 103, to site 106, to site 105, to site 122, and return to Smartt Field. The North-South Final pattern is shown in Figure D-19.
- East-West Final. Smartt Field to site 102, to site 103, to site 106, to site 105, to site 123, and return to Smartt Field. The East-West Final pattern is shown in Figure D-20.
- South-North Final. Smartt Field to site 102, to site 103, to site 106, to site 105, to site 124, and return to Smartt Field. The South-North Final pattern is shown in Figure D-21.
- West-East Final. Smartt Field to site 102, to site 103, to site 106, to site 105, to site 125, and return to Smartt Field. The West-East Final pattern is shown in Figure D-22.

- North-South Double. Smartt Field to site 122, to site 102, to site 103, to site 106, to site 105, to site 102, to site 103, to site 106, to site 105, and return to Smartt Field. The North-South Double pattern is shown in Figure D-23.
- East-West Double. Smartt Field to site 123, to site 102, to site 103, to site 106, to site 105, to site 102, to site 103, to site 106, to site 105, and return to Smartt Field. The East-West Double pattern is shown in Figure D-24.
- South-North Double. Smartt Field to site 124, to site 102, to site 103, to site 106, to site 105, to site 102, to site 103, to site 106, to site 105, and return to Smartt Field. The South-North Double pattern is shown in Figure D-25.
- West-East Double. Smartt Field to site 125, to site 102, to site 103, to site 106, to site 105, to site 102, to site 103, to site 106, to site 105, and return to Smartt Field. The West-East Double pattern is shown in Figure D-26.
- North-South Double Final. Smartt Field to site 102, to site 103, to site 106, to site 105, to site 102, to site 103, to site 106, to site 105, to site 122, and return to Smartt Field. This pattern is shown in Figure D-27.
- East-West Double Final. Smartt Field to site 102, to site 103, to site 106, to site 105, to site 102, to site 103, to 106, to site 105, to site 123, and return to Smartt Field. This pattern is shown in Figure D-28.
- South-North Double Final. Smartt Field to site 102, to site 103, to site 106, to site 105, to site 102, to site 103, to site 106, to site 105, to site 124, and return to Smartt Field. This pattern is shown in Figure D-29.
- West-East Double Final. Smartt Field to site 102, to site 103, to site 106, to site 105, to site 102, to site 103, to site 106, to site 105, to site 125, and return to Smartt Field. This pattern is shown in Figure D-30.

FEBRUARY-MARCH 1976

Some of the same flight patterns were used as in the July-August 1975 field exercises. However, a different nomenclature was used to describe the pattern. Also, five new patterns were used. When patterns were repeated during the day they were numbered in sequence, for example North 1, North 2, and North 3.

The nomenclature used in the July-August 1975 exercise is given below with the February-March equivalents and Figures showing the patterns.

North-South = North 1 or North 2 or North 3 = Figure D-15.

North-South Double = North 1 & 2, or North 3 & 4 = Figure D-23.

North-South Double Final = North 4 = Figure D-27.

<u>East-West</u> = East 1 or East 2 or East 3 = Figure D-16.

East-West Double = East 1 & 2 or East 3 & 4 = Figure D-26.

East-West Double Final = East 4 = Figure D-28.

<u>South-North</u> = South 1 or South 2 or South 3 = Figure D-17.

South-North Double = South 1 & 2 or South 3 & 4 = Figure D-25.

South-North Double Final = South 4 = Figure D-29.

West-East = West 1 or West 2 or West 3 = Figure D-18.

West-East Double = West 1 & 2 or West 3 & 4 = Figure D-26.

<u>West-East Double Final</u> = South 4 = Figure D-30.

All five new patterns used during the February-March 1976 exercise fell into the general category of "Upwind Background Flights," also called "Crosswind Flights." Each of these flights used a single "upwind" RAMS site as its focus. The upwind sites for the patterns were:

West Upwind Background (crosswind) = RAMS site 125

South Upwind Background (crosswind) = RAMS site 124

East Upwind Background (crosswind) = RAMS site 123

North Upwind Background (crosswind) = RAMS site 122

Southeast Upwind Background (crosswind) = RAMS site 117

Each of the "Upwind Background" patterns followed a common practice of flying to the upwind site at 1,000 feet MSL from Smartt Field. At the site, a right turn was made (90° to the wind direction) and the helicopter flew out from the site for 10 nautical miles at 1,000 feet MSL. At the end of the

10 nautical mile leg, the helicopter ascended to 2,000 feet MSL and flew back to the site. The helicopter then spiraled down 1,000 feet MSL and the helicopter flew out from the site 10 nautical miles in the opposite direction to the first leg, 270° to the wind direction. At the end of this leg, the helicopter ascended to 2,000 feet MSL to return to the site where it spiraled down to 200 feet AGL. The helicopter ascended to 1,000 feet MSL and again flew a 10 nautical mile leg at 90° to the wind direction. The pattern was repeated as many times as time would allow, and then the helicopter returned to Smartt Field. These patterns are depicted in Figures D-31 through D-35.

JULY-AUGUST 1976

This field exercise used the same flight patterns as described under the February-March exercise plus the addition of one new pattern. The new pattern was a "Downwind Pattern" designed to examine the pollution concentrations over the RAMS site furthermost downwind. The pattern was described as a West Downwind Final and the helicopter flew from Smartt Field to site 102, to site 103, to site 106, to site 105, to site 123, and returned to Smartt Field. This pattern is shown in Figure D-36.

OCTOBER-NOVEMBER 1976

The same "Double" patterns used during the Summer RAPS 1975 missions were used during the first week of operations. During the second week and for the rest of the exercise, six of the eight "double" patterns were modified slightly to include flight legs to measure the upwind concentration. These legs were flown in a similar pattern to the background flights described above. The South-North Double and the South-North Double Final were not modified because the flight times were too long to allow additional flying. The remaining double pattern covered the same RAMS sites and in the same order as those during the Summer RAPS 1975 exercise.

The West-East Double Background Pattern is shown in Figure D-37.

The East-West Double Background Pattern is shown in Figure D-38.

The North-South Double Background Pattern is shown in Figure D-39.

The West-East Double Final Background Pattern is shown in Figure D-40.

The East-West Double Final Background Pattern is shown in Figure D-41.

The North-South Double Final Background Pattern is shown in Figure D-42.

TABLE D-5. USERS GUIDE TO RAMS SUPPORT MISSIONS

HELICO	HELICOPTER SUPPORT MISSIONS								
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments					
8/13/74 4225	Track 1	I	0635 1040						
8/14/74 4226	Track 1	I	0900 1144						
8/14/74 4226	Track 1	I	1411 1654						
8/15/74 4227	Wood River Refinery	I	0818 0945	Special Study See Table E-l					
8/15/74 4227	Track l	I	1116 1354						
8/16/74 4228	St. Louis Pt. Sources	I	0820 0945	Special Study See Table E-1					
8/16/74 4228	Track 5	I	1100 1308						
8/19/74 4231	Track 7	II	0650 0810						
8/19/74 4231	Track 7	II	0930 1035						
8/19/74 4231	Track l	II	1230 1325						
8/19/74 4231	Track 7	I	1417 1604						

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS								
Date: Calendar Julian	Mission Description	Heli- copter No.	Time Period (CST)	Comments					
8/20/74 4232	Track l	I	0704 1032						
8/20/74 4232	RAMS Site 103	II	1400 1645	Special Study See Table E-l					
8/21/74 4233	Track 7	I	0626 0810						
8/21/74 4233	Track l	II	0842 1227						
8/21/74 4233	Track 5	II	1351 1522						
8/22/74 4234	Track 7	II	0634 0836						
8/22/74 4234	Track l	I	0653 0908						
8/26/74 4238	Track 1	II	0938 1221						
8/26/74 4238	Track 5	I .	1440 1646						
8/26/74 4238	Track 1	II	1531 1720						
8/27/74 4239	Track l	II	0634 0840						

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS							
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments				
8/27/74 4239	Track 7	II	0957 1140					
11/12/74 4316	Blue Track	I	0840 1040					
11/12/74 4316	Blue Track	I	1314 1510					
11/14/74 4318	Blue Track	I	0736 1005					
11/14/74 4318	Blue Track	I	1132 1318					
11/15/74 4319	Blue Track	I	1149 1424					
11/16/74 4320	Red Track	I	0800 1030					
11/16/74 4320	Red Track	I	1142 1400					
11/20/74 4324	Blue Track	II	0713 0934					
11/20/74 4324	Blue Track	II	1145 1401					
11/21/74 4325	Blue Track	I	0739 0957					

TABLE D-5. (Continued)

HELICOPTER SUPPORT MISSIONS				
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments
11/21/74 4325	Blue Track	II	1002 1207	
11/21/74 4325	Blue Track	I	1150 1425	
11/21/74 4325	Blue Track	II	1350 1558	
11/22/74 4326	Red Track	I	1313 1546	
11/23/74 4327	Red Track	I	0939 11 4 2	
11/25/74 4329	Red Track	I	0735 1013	
11/25/74 4329	Red Track	I	1219 1452	
11/25/74 4329	Red Track	II	1446 1646	
11/26/74 4330	Red Track	I	0729 0851	
11/26/74 4330	Red Track	II	0925 1143	
11/26/74 4330	Red Track	II	1256 1540	

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS				
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments	
11/26/74 4330	Red Track	I	1455 1644		
11/27/74 4331	Blue Track	I	0730 1002		
11/27/74 4331	Blue Track	II	0937 1136		
11/27/74 4331	Blue Track	I	1119 1320		
11/27/74 4331	Blue Track	II	1415 1626		
11/28/74 4332	Red Track	I	0718 0930		
11/28/74 4332	Blue Track	I	1005 1225		
11/28/74 4332	Red Track	I	1342 1628		
12/2/74 4336	Red Track	I	0807 1025		
12/2/74 4336	Red Track	II	1019 1211		
12/2/74 4336	Red Track	I	1305 1551		

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS				
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments	
12/3/74 4337	Blue Track	II	0711 0925		
12/3/74 4337	Blue Track	II	1401 1542		
12/4/74 4338	Baldwin, IL Power Plant Plume	II	1051 1250	Special Study See Table E-l	
12/3/74 4338	Blue Track	III	1204 1414		
12/3/74 4338	Blue Track	II	1401 1605		
12/5/74 4339	Red Track	III	0725 0949		
12/5/74 4339	Red Track	II	0937 1136		
12/5/74 4339	Red Track	III	1204 1425		
12/5/74 4339	Red Track	II	1358 1537		
12/5/74 4339	Square Track	III	1616 1715	Special Track	
12/6/74 4340	Red Track	II	0712 0918		

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS				
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments	
12/6/74 4340	Red Track	III	0857 1115		
12/6/74 4340	Square Track	II	1105 1247	Special Track	
2/3/75 5034	Northeast—Southwest	III	0838 1100		
2/3/75 5034	Northeast—Southwest	III	1326 1521		
2/6/75 5037	Northwest—Southeast	II	1310 1610		
2/7/75 5038	East-West-A	II	0731 0927		
5/7/75 5088	East-West-B	I	0842 1039		
5/7/75 5088	East-West-C	II	1046 1234		
2/8/75 5039	Northwest—Southeast	I II	0855 1130	Two tapes Parallel flights	
2/9/75 5040	Northwest—Southeast	II	0836 1053		
2/9/75 5040	Northwest—Southeast	I	0920 1133		

TABLE D-5. (Continued)

HELICOI	HELICOPTER SUPPORT MISSIONS					
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments		
2/9/75 5040	Northwest—Southeast	I II	1340 1550	Two tapes Parallel flights		
2/10/75 5041	South—North	I	0738 1002			
2/10/75 5041	South-North	II	0800 1030			
2/10/75 5041	South-North	II	1300 1440			
2/10/75 5041	South—North	I	1304 1510			
2/12/75 5043	Northwest—Southeast	II	0823 1031	O ₃ Inoperative		
2/12/75 5043	Northwest—Southeast	II	1203 1402	O ₃ Inoperative		
2/13/75 5044	Northeast—Southwest	II	0852 1046	O ₃ Inoperative		
2/13/75 5044	Northeast—Southwest	I	0918 1123			
2/13/75 5044	Southeast—Northwest	II	1301 1438			
2/13/75 5044	Southeast—Northwest	I	1402 1614			

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS				
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments	
2/17/75 5048	West—East	I	0900 1045		
2/17/75 5048	West-East	I	1046 1221		
2/17/75 5048	West-East	II	1115 1420		
2/17/75 50 4 8	West-East	I	1420 1530		
2/17/75 5048	West-East	Ī	1530 1640		
2/18/75 5049	Southwest—Northeast	II	0721 0913	,	
2/19/75 5050	Northwest—Southeast	II	0716 0916		
2/19/75 5050	Baldwin, IL Power Plant Plume	II	1148 1557	Special Study See Table E-1	
2/20/75 5051	Background Flight	I	0730 1130		
2/20/75 5051	Southwest—Northeast	II	0739 0912		
2/20/75 5051	Background Flight	II	1034 1334		

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS				
Date: Calendar Julian	Mission Description	Heli- copter No.	Time Period (CST)	Comments	
2/20/75 5051	Southwest—Northeast	I	1250 1451		
2/21/75 5052	Alton Area Spirals	II	1403 1616	Special Study	
2/26/75 5057	Northwest—Southeast Double	II	0659 0852		
2/26/78 5057	Northwest—Southeast Double	II	0853 1008		
2/26/75 5057	Northwest—Southeast Double	I	0715 1052		
2/26/75 5057	Northwest—Southeast Double	II	1037 1335		
2/27/75 5058	Baldwin, IL Power Plant Plume	II	0648 0939	Special Study See Table E-1	
2/27/75 5058	North—South	II	1212 1351	O ₃ Inoperative	
2/28/75 5059	Northwest—Southeast	II	0753 1012		
2/28/75 5059	Northwest—Southeast	I	0854 1053	⁰ 3 Inoperative	
2/28/75 5059	Northwest—Southeast	II	1214 1406		

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS				
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments	
3/1/75 5060	Labadie Plume Study	II	0902 1230	Special Study See Table E-l	
3/2/75 5061	Northwest—Southeast	I	0757 0932		
3/4/75 5063	North-South Double	I	0630 0953		
3/4/75 5063	North-South Double	II	0700 0954		
3/4/75 5063	North-South Double	I	1151 1446		
3/4/75 5063	North-South Double	II	1215 1605		
3/5/75 5064	Southwest-Northeast	I	0655	NO and NO $_{ m X}$ Inoperative	
3/5/75 5064	Southwest—Northeast Double	II	0657 1053		
3/5/75 5064	Southwest-Northeast Double	II	1247 1603		
7/14/75 5195	West-East	III	0716 0930		
7/14/75 5195	West-East	I	0800 1017		

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS				
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments	
7/14/75 5195	West—East	I	1109 1254		
7/14/75 5195	West-East Double	III	1100 1300		
7/15/75 5196	West-East Double	I	0758 1027		
7/15/75 5196	West-East Double	III	1100 1416		
7/15/75 5196	Oxidant Max Study	I	1410 1645	Special Study See Table E-1	
7/16/75 5197	South—North	III	0705 0845		
7/16/75 5197	South—North	I	0810 1002		
7/16/75 5197	South—North	I	1117 1250		
7/16/75 5197	South-North	III	1215 1434		
7/17/75 5198	West—East	III	0700 0910		
7/17/75 5198	West-East	I	0806 0949		

TABLE D-5. (Continued)

HELICOI	HELICOPTER SUPPORT MISSIONS				
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments	
7/17/75 5198	West — East	III	1109 1315		
7/17/75 5198	West — East	I	1242 1342		
7/18/75 5199	South - North Double	III	0700 1000		
7/18/75 5199	Oxidant Max Study	I	0829 1130	Special Study See table E-1	
7/18/75 5199	West - East Double	III	1126 1404		
7/18/75 5199	Oxidant Max Study	I	1239 1526	Special Study See table E-1	
7/19/75 5200	West — East	III	0707 0910		
7/19/75 5200	West — East	I	0810 0959		
7/19/75 5200	West - East	I	1107 1252		
7/19/75 5200	West - East	III	1226 1411		
7/22/75 5203	East - West	III	0658 0850		

TABLE D-5. (Continued)

HELICO	PTER SUPPORT MIS	SSION	S	
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments
7/22/75 5203	East - West	I	0805 0956	
7/22/75 5203	South — North	III	1124 1330	
7/22/75 5203	South - North	I	1200 1525	
7/23/75 5204	South - North	III	0706 0930	
7/23/75 5204	South - North	I	0807 1023	
7/23/75 5204	South - North Double	I	1220 1545	
7/24/75 5205	West - East Double	III	0701 1004	NO and NO _x inoperative
7/24/75 5205	North - South Double	I	1104 1430	SO ₂ inoperative
7/24/75 5205	Station 108 Spirals	III	1330 1615	Special Study See table E-l
7/25/75 5206	North - South	III	0715 0929	
7/25/75 5206	North - South	I	0800 1010	

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS				
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments	
7/25/75 5206	North - South Double	III	1102 1334		
7/25/75 5206	Oxidant Max Study	I	1340 1545	Special Study See table E-l	
7/26/75 5207	East — West	III	0704 0928		
7/26/75 5207	East — West	I	0812 1025		
7/26/75 5207	East - West Double	III	1111 1403		
7/27/75 5208	West - East Double	II	0824 1054		
7/27/75 5208	West - East Double	III	1105 1350		
7/28/75 5209	West - East Double	III	0700 0948		
7/28/75 5209	North — South Double	III	1312 1538		
7/29/75 5210	North - South	III	0708 0918		
7/29/75 5210	East - West Double	III	1246 1535		

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS					
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments		
7/30/75 5211	East - West Double	III	1103 1230			
7/30/75 5211	Sulfur Transformation Study	II	1107 1440	Special Study See table E-l		
7/31/75 5212	East - West Double	II	0750 1005			
7/31/75 5212	East - West Double	II	1157 1423			
8/3/75 5215	North — South Double	I	1100 1340			
8/3/75 5215	Oxidant Max Study	II	1248 1457	Special Study See table E-1		
8/4/75 5216	Labadie Plume Study	I	0638 1031	Special Study See table E-l		
8/5/75 5217	Labadie Plume Study	II	0717 1044	Special Study See table E-l		
8/5/75 5217	Labadie Plume Study	II	1210 1510	Special Study See table E-1		
8/6/75 5218	North - South Double	I	1158 1422			
8/6/75 5218	Oxidant Maximum Study	II	1230 1440	Special Study See table E-1		
8/7/75 5219	Heli∞pter Parallel Flight	I, II	071 <u>9</u> 0816	Two Tapes		

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS					
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments		
8/8/75 5220	South-North Double	I	0720 1022			
8/10/75 5222	West-East Double	II	1100 1332			
8/11/75 5223	West-East Double	ΙΙ	0630 0930			
8/12/75 5224	West-East Double	II	0708 0943			
8/12/75 5224	West-East Double	II	1110 1350			
2/14/76 6045	East-West Double	III	0709 1004	SO ₂ Inoperative		
2/14/76 6045	South-North Double	III	1200 1600	SO ₂ Inoperative		
2/15/76 6046	South-North Double	III	0715 1034			
2/17/76 6048	East-West	III	0700 1000			
2/19/76 6050	West-East Double	III	0707 1014			
2/19/76 6050	West-East	III	1210 1400			

TABLE D-5. (Continued)

HELICOI	HELICOPTER SUPPORT MISSIONS					
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments		
2/20/76 6051	South-North Double	III	0711 1113			
2/21/76 6052	South—North	III	1056 1400			
2/22/76 6053	North—South	III	0710 0852			
2/22/76 6053	Temperature Profile	III	1600 1800	Special Study See Table E-1		
2/23/76 6054	Temperature Profile	I	0514 0914	Special Study See Table E-1		
2/23/76 6054	Special Spirals Temperature Profile	I	1549 1750	Special Study See Table E-1		
2/24/76 6055	Temperature Profile	I	0700 1000	Special Study See Table E-1		
2/26/76 6057	Parallel Flights	I	1106 1817	Special Flights Three Tapes		
2/27/76 6058	West-East	I	0738 0950			
2/28/76 6059	East-West Double	III	0803 1140			
3/1/76 6061	South-North Double	III	0710 1130			

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS					
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments		
3/1/76 6061	South—North	III	1209 1336			
3/6/76 6066	Temperature Profiles	III	0644 2300	Special Study See Table E-1 7 Tapes		
3/7/76 6067	Temperature Profiles	III	0634 1200	Special Study See Table E-1 3 Tapes		
3/9/76 6069	North—South Background	I	0727 1049			
3/9/76 6069	Spiral, Sta 103, 108	I	1314 1500	Special Flight		
3/10/76 6070	West-East Double	I	0718 1021			
3/10/76 6070	West-East	I	1317 1528			
7/16/76 6198	West Upwind	I	0728 1003			
7/16/76 6198	North Upwind	II	0828 1109			
7/16/76 6198	North Upwind	I	1216 1512			
7/19/76 6201	South Upwind	I	0614 0941			

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS					
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments		
7/19/76 6201	South Upwind	II	0719 1037			
7/20/76 6202	West Upwind	II	0616 0912			
7/20/76 6202	West Upwind	I	0723 1009			
7/23/76 6205	Project DaVinci	I	0433 0743	Special Study See Table E-1		
7/23/76 6205	Project DaVinci	II	0545 0900	Special Study See Table E-1		
7/23/76 6205	Project DaVinci	I	0833 1129	Special Study See Table E-1		
7/29/76 6211	West Upwind	I	0613 0651	Flight Aborted		
7/29/76 6211	Temperature Profiles	I	1731 2314	Special Study See Table E-l		
7/30/76 6212	South Upwind	I	0619 0957			
7/30/76 6212	Temperature Profile	II	0826 1034	Special Study See Table E-1		
7/30/76 6212	Temperature Profile	I	1120 1345	Special Study See Table E-l		

TABLE D-5. (Continued)

HELICOPTER SUPPORT MISSIONS					
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments	
7/30/76 6212	Parallel Flight	I	1446 1625	Special Flight Two Tapes	
8/1/76 6214	Temperature Profile	III	1052 1300	Special Flight See Table E-l	
8/2/76 6215	Temperature Profile	II ·	0456 0657	Special Flight See Table E-l	
8/2/76 6215	North Upwind	III	0806 1108		
8/2/76 6215	Southeast Upwind	III	1318 1613		
8/3/76 6216	Temperature Profile	II	0435 0635	Special Flight See Table E-l	
8/3/76 6216	East Upwind	III	0559 0843		
8/3/76 6216	Temperature Profile	II	0730 0927	Special Flight See Table E-l	
8/3/76 6216	East - West Double	III	1033 1318		
8/3/76 6216	East-West Double	II	1047 1313		
8/3/76 6216	East Upwind	II	1517 1748		

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS					
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments		
8/4/76 6217	Temperature Profile	II	0504 0619	Special Study See Table E-l		
8/4/76 6217	Temperature Profile	III	0806 1016	Special Study See Table E-l		
8/4/76 6217	South-North Double	II	0735 1030			
8/6/76 6219	West Upwind	III	0620 0754			
8/7/76 6220	North Upwind	I	0604 0840			
8/07/76 6220	North Upwind	III	0708 0952			
8/07/76 6220	North Upwind	I	1102 1358			
8/07/76 6220	North Upwind	III	1207 1512			
8/8/76 6221	Temperature Profile	III	0430 0750	Special Study See Table E-1		
8/8/76 6221	Portage-Des-Sioux Plume	I	0635 0930	Special Study See Table E-l		
8/09/76 6222	South Upwind	I	1121 1324			

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS					
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments		
8/10/76 6223	South Upwind	I	0642 0916			
8/11/76 6224	East Upwind	III	1217 1621			
8/12/76 6225	Portage-Des-Sioux Plume	I,III	0615 1500	Special Study See Table E-1,2 Tapes		
8/13/76 6226	West Upwind	I	0658 0941			
8/13/76 6226	West Upwind	III	0729 1003			
10/26/76 6300	East-West Double	III	0555 0900			
10/26/76 6300	East-West Double Final	III	1030 1305			
10/27/76 6301	North-South Double	III	0600 0820			
10/27/76 6301	North-South Double	III	1015 1245			
10/28/76 6302	South-North Double	III	1050 1340			
10/28/76 6302	South-North Double	III	1330 1605			

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS					
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments		
10/29/76 6303	West-East Double Double	III	0700 0940			
10/29/76 6303	South-North Double	III	1115 1400			
11/1/76 6306	South-North Double Final	III	0850 1154			
11/1/76 6306	South-North Double	III	1348 1637			
11/2/76 6307	West-East Double Background	III	0710 0952			
11/2/76 6307	West-East Double Background	III	1131 1355			
11/3/76 6308	West-East Double Background	I	0715 1018			
11/3/76 6308	West-East Double Final Background	III	1145 1505			
11/4/76 6309	North—South Double Background	III	0716 1020			
11/4/76 6309	North-South Double Background	III	1144 1447			
11/5/76 6310	West-East Double Background	III	0707 1019			

TABLE D-5. (Continued)

HELICO	HELICOPTER SUPPORT MISSIONS					
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments		
11/6/76 6311	West-East Double Final Background	III	1230 1600			
11/8/76 6313	North-South Double Background	III	0650 0947			
11/8/76 6313	Labadie Plume Study	III	1227 1535	Special Study See Table E-l		
11/9/76 6314	West-East Double Background	III	0810 1140			
11/9/76 6314	Labadie Plume Study	III	1245 1525	Special Study See Table E-l		
11/10/76 6315	North-South Double Background	III	0807 1108			
11/10/76 6315	West-East Double Double Background	III	1219 1453			
11/11/76 6316	North-South Double Background	III	0656 1013			
11/11/76 6316	North-South Double Final Background	III	1115 1416			
11/12/76 6317	North-South Double Background	III	0648 1003			
11/12/76 6317	Labadie Plume Study	III	1130 1430	Special Study See Table E-l		

TABLE D-5. (Continued)

HELICOF	HELICOPTER SUPPORT MISSIONS					
Date: Calendar Julian	Mission Description	Heli - copter No.	Time Period (CST)	Comments		
11/15/76 6320	North-South Double Background	III	0649 1009			
11/15/76 6320	East-West Double Final Background	III	1115 1416			
11/16/76 6321	South-North Double	III	0706 0959			
11/16/76 6321	South-North Double Final	III	1104 1356			
11/17/76 6322	West-East Double Background	III	0923 1239			
11/17/76 6322	West East Double Final Background	III	1325 1603			
11/18/76 6323	West-East Double Background	III	0700 1025			
11/18/76 6323	West-East Double Final Background	III	1141 1500			

Figure D-1. RAMS Network - Track 1

Figure D-2. RAMS Network - Track 5

Figure D-3. RAMS Network - Track 7

Figure D-4. RAMS Network - Track Red

Figure D-5. RAMS Network - Track Blue

Figure D-6. RAMS Network - North-South A

Figure D-7. RAMS Network - North-South B

Figure D-8. RAMS Network - Northeast-Southwest A

Figure D-9. RAMS Network - Northeast-Southwest ${\tt B}$

Figure D-10. RAMS Network - Northwest-Southeast A

Figure D-11. RAMS Network - Northwest-Southeast B

Figure D-12. RAMS Network - East-West A

Figure D-13. RAMS Network - East-West B

Figure D-14. RAMS Network - East-West C

Figure D-15. RAMS Network - North-South Pattern

Figure D-16. RAMS Network - East-West Pattern

Figure D-17. RAMS Network - South-North Pattern

Figure D-18. RAMS Network - West-East Pattern

Figure D-19. RAMS Network - North-South Final

Figure D-20. RAMS Network - East-West Final

Figure D-21. RAMS Network - South-North Final

Figure D-22. RAMS Network - West-East Final

Figure D-23. RAMS Network - North-South Double

Figure D-24. RAMS Network - East-West Double

Figure D-25. RAMS Network - South-North Double

Figure D-26. RAMS Network - West-East Double

Figure D-27. RAMS Network - North-South Double Final

Figure D-28. RAMS Network - East-West Double Final

Figure D-29. RAMS Network - South-North Double Final

Figure D-30. RAMS Network - West-East Double Final

Figure D-31. RAMS Network - North-Upwind (Crosswind) Pattern

Figure D-32. RAMS Network - East-Upwind (Crosswind) Pattern

Figure D-33. RAMS Network - West-Upwind (Crosswind) Pattern

Figure D-34. RAMS Network - South-Upwind (Crosswind) Pattern

Figure D-35. RAMS Network - Southeast-Upwind (Crosswind) Pattern

Figure D-36. RAMS Network - West Downwind Final Pattern

Figure D-37. RAMS Network - West-East Double Background

Figure D-38. RAMS Network - East-West Double Background

Figure D-39. RAMS Network - North-South Double Background

Figure D-40. RAMS Network - West-East Double Final Background

Figure D-41. RAMS Network - East-West Double Final Background

Figure D-42. RAMS Network - North-South Double Final Background

APPENDIX E

DESCRIPTION OF SPECIAL EXPERIMENTS
FOR RAPS PRINCIPAL INVESTIGATORS

TABLE E-1. DESCRIPTION OF SPECIAL EXPERIMENTS FOR RAPS PRINCIPAL INVESTIGATORS

Calendar and Julian Date		Data Tape Available Yes No
8/15/74	A flight was made in a square pattern at constant altitude around the Wood River, Illinois, and Alton, Illinois, refinery complex to assess the emissions; particular emphasis was placed on examination of hydrocarbon concentrations.	Х
4227	Principal Investigator - Mr. Stan Kopczynski, EPA.	
8/16/74	Flights were made in square patterns at constant altitude around four point sources in the St. Louis Metropolitan area. The point sources were the Chrysler assembly plant, General Motors assembly plant, American	X
4228	Can Co., and Monsanto Chemicals (E. St. Louis). Principal Investigator - Mr. Stan Kopczynski, EPA.	
8/20/74	Cross patterns were flown over RAMS site 103 in coordination with ground monitoring units to determine the 3-dimensional distribution of ozone around the monitoring site.	X
4232	Principal Investigator - Mr. Lou Chaney, Univ. of Michigan.	
12/4/74	Vertical profiles and horizontal cross sections were made of the Baldwin, Illinois, power plant plume at intervals downwind of the stacks to characterize the emissions.	Х
4338	Principal Investigator - Dr. Rudolph Husar, Washington University, St. Louis.	
2/19/75	Vertical profiles and horizontal cross sections were made of the Baldwin, Illinois, power plant plume at intervals downwind of the stacks to characterize the emissions.	X
5050	Principal Investigator - Dr. Rudolph Husar, Washington University, St. Louis.	

TABLE E-1. (Continued)

Calendar and Julian Date		Data Tape Available Yes No
2/27/75 5058	Plume study same as February 19, 1975 (Morning Flight).	Х
2/27/75 5058	Plume study same as February 19, 1975 (Afternoon Flight).	Х
3/1/75 5060	Plume study same as February 19, 1975 (Morning Flight)	X
3/1/75 5060	Plume study same as February 19, 1975 (Afternoon Flight)	X
3/3/75 5062	Plume study same as December 4, 1975.	X
7/15/75 5196	Cross sections and vertical profiles were made of the St. Louis urban plume to determine the position of maximum 0_3 concentrations and to characterize the pollutant transport downwind of the city. Principal Investigator - Mr. E.L. Martinez, EPA.	X
7/18/75 5199	Same as July 15, 1975, 03 study of the urban plume.	X
7/23/75	Bag samples of air were taken at various altitudes over RAMS sites 103 and 108 for hydrocarbon analysis.	Х
5204	Principal Investigator - Mr. Stan Kopczynski, EPA.	
7/24/75	Bag samples of air were taken at various altitudes over RAMS site 108 for hydrocarbon analysis.	X
5205	Principal Investigator - Mr. Stan Kopczynski, EPA.	

(Continued)

Calendar and Julian Date		Data Avail Yes	
7/24/75	Flight patterns were flown along freeways, near power plants, and over "clean" rural areas to collect particulate filter samples which were to be analyzed by electron microscopy.		Х
5205	Principal Investigator - Mr. Ron Draftz, Illinois Institute of Technology.		
7/25/75 5206	Same as July 15, 1975 0_3 study of the urban plume.	X	
7/30/75 5211	An experiment was run to examine sulfur transformations in the St. Louis area. Particulate filters and glass canister packed with an absorbant were used for the study. Air was drawn through the filters and the absorbant and the filters at locations upwind of the city, in the city center, and downwind of the city. Principal Investigator - Dr. William Wilson, EPA.	Х	
8/3/75 5215	Same as July 15, 1975, 03 study of the urban plume.	X	
8/4/75 5216	Same as February 19, 1975, plume study (Morning).	X	
8/4/75 5216	Same as February 19, 1975, plume study (Afternoon).		Х
8/4/75	Repetitive spirals from 4500 feet MSL down to 200 feet AGL at RAMS site 103 were done to determine the particulate-size distribution with the Royco 220 analyzer.		X
5216	The Royco system malfunctioned.		

143

TABLE E-1. (Continued)

Calendar and Julian Date		Data Tap Availabl Yes N
8/4/75 5216	Metal cans were pumped full of air for subsequent laboratory analysis for fluorocarbons. One sample was taken upwind of the city and five samples were taken across the urban plume downwind of the city. Principal Investigator - Dr. Jack Durham, EPA.	
8/5/75 5217	Same as February 19, 1975, plume study (Morning).	X
8/5/75 52 17	Same as February 19, 1975, plume study (Afternoon).	X
8/5/75 5217	Same as August 4, 1975, study with cans for fluorocarbon analysis.	
8/5/75 5217	Same as July 30, 1975, study of sulfur transformations.	
8/6/75 5218	Same as July 15, 1975, 0_3 study in the urban plume.	X
8/7/75 5219	Helicopter spirals were made over RAMS sites 122, 114, 118, and 103 from 4,000 feet MSL to 1,000 feet MSL to determine particulate-size distribution with a Royco 220 and supporting equipment. Principal Investigator - Dr. Jim Peterson, EPA.	
3/7/75	Bag samples for hydrocarbon analysis were taken upwind and downwind	
5219	of the Wood River refinery complex. Principal Investigator - Mr. Stan Kopczynski, EPA.	

Calendar and Julian Date		Data Tape Available Yes No
8/7/75	Bag samples for CO analysis were taken at various altitudes above RAMS site 108. Data correlated with ground monitors to determine the 3-dimensional distribution of CO.	Х
5219	Principal Investigator - Mr. Lou Chaney, Univ. of Michigan.	
8/8/75 5220	Same as July 30, 1975, study of sulfur transformation.	X
8/8/75	Bag samples were taken to determine the changes in hydrocarbon composition across the city. Samples were taken upwind, near the center, and downwind of the city.	Х
5220	Principal Investigator - Mr. Stan Kopczynski, EPA.	
8/8/75	Multi-stage high volume samples of air were collected for subsequent chemical analysis. High volume samples were collected upwind of the city and at several locations over the downtown area.	Х
5220	Principal Investigator - Dr. William Wilson, EPA.	
8/8/75	Sulfur hexafluoride was released from towers to simulate stack emissions. The helicopters collected air samples in syringes along cross sections of the extended plume path at several intervals to determine plume dispersion characteristics.	Х
5220	Principal Investigator - Dr. Fred Shair, California Institute of Technology.	
8/9/75 5 22 1	Same as August 8, 1975, sulfur hexafluoride release.	Х
8/11/75 5223	Same as August 8, 1975, sulfur hexafluoride release.	Х

145

TABLE E-1. (Continued)

Calendar and Julian Date		Data Tape Available Yes No
8/11/75 5223	Same as July 18, 1975, NO study of urban plume.	>
8/12/75 5224	Bag samples were taken upwind and downwind of the Wood River refinery complex for hydrocarbon analysis.)
8/12/75 5224	Same as August 8, 1975, bag study across the city.	>
8/12/75 5224	Same as August 7, 1975, study of CO distribution.)
8/13/75 5225	Orbits were made at 4,000, 3,000, 2,000 and 1,000 feet over RAMS site 118 to determine particulate-size distribution with the Royco 220 and supporting equipment.)
8/15/75 5 227	Same as August 8, 1975, sulfur hexafluoride plume study.	;
8/15/75 5227	Same as August 8, 1975, hydrocarbon bag sampling experiment.	;
2/22/76 6053	Vertical spirals were made over a number of RAMS ground stations and over the RAMS pibal stations. The emphasis was on collecting temperature soundings. The vertical profiles were, to the extent possible, taken at the same time as radio-sondes were launched. Principal Investigator - Dr. Jason Ching, EPA.	X

TABLE E-1. (Continued)

Calendar and Julian Date		Data Avail Yes	
2/23/76 6054	Same as February 22, 1976, temperature profile studies (Morning).	Х	
2/23/76 6054	Same as February 22, 1976, temperature profile study (Afternoon).	X	
2/24/76 6055	Same as February 22, 1976, study of temperature profiles.	Х	
2/25/76 6056	Vertical profiles were made over RAMS sites 118 and 103 to determine the size distribution of particulate matter with the Royco 220 and supporting equipment. Principal Investigator - Dr. Jim Peterson, EPA.		Х
3/6/76 6066	Vertical profiles were made over Smartt Field and other selected sites to obtain temperature profiles. Seven missions were flown on this date. Principal Investigator - Dr. James McElroy, EPA.	X	
3/7/76 6067	Same as March 6, 1976, temperature profiles. Three missions were flown on this date.	X	
7/16/76 6198	Same as February 25, 1976, Royco mission.		X
7/20/76 6202	Same as February 25, 1976, Royco mission.		X

TABLE E-1. (Continued)

Calendar and Julian Date		Data Avail Yes	
7/20/76 6202	Same as July 15, 1975, 03 study of urban plume.		Х
7/22/76	Same as July 15, 1975, 0_3 study of urban plume.	Χ	
7/23/76 6205	Cross sections and vertical profiles were made of the St. Louis urban plume in support of the DaVinci balloon flights. Three flights were made on this date. Principal Investigator - Dr. Bernie Zak, Sandia.	X	
7/23/76 6205	Same as February 25, 1976, Royco mission.	X	
7/23/76 6205	Same as July 15, 1975, 0_3 study of urban plume.		Х
7/26/76 6208	Same as February 25, 1976, Royco mission.	X	
7/27/76 6209	Same as March 6, 1976, temperature studies.		X
7/28/76 6210	Vertical profiles were made over RAMS sites 122 and 114 do determine the size distribution of particulate matter with the Royco 220 and support equipment. Principal Investigator: Dr. Jim Peterson, EPA.		X

TABLE E-1. (Continued)

Calendar and Julian Date		Data Avail Yes	
7/29/76 6211	Vertical profiles were made over Sangamon, Illinois, to provide information on the temperature structure of the atmosphere. The work was done to support studies done by Argonne National Laboratories. Principal Investigator - Dr. Bruce Hicks, Argonne National Laboratory.	х	
7/30/76 6212	Same as March/6, 1976, temperature studies.	X	
7/30/76 6212	Same as February 22, 1976, temperature studies.	X	
7/31/76 6213	Study of plume behavior, Portage-Des-Sioux Power Plant.		X
8/1/76 6214	Same as February 22, 1976, temperature studies.	X	
8/2/76 6215	Same as March 6, 1976, temperature profile study.	X	
8/2/76 6215	Same as February 25, 1976, Royco mission.		X
8/3/76 6216	Same as March 6, 1976, temperature profile study.	X	
8/4/76 6217	Same as March 6, 1976, temperature profile study.	X	

Calendar and Julian Date		Data Avail Yes	•
8/8/76 6221	Same as March 6, 1976, temperature profile study (Early morning).	Х	
8/8/76 6221	Same as July 31, 1976, study of Portage-Des-Sioux plume (Mid-morning).	X	
8/10/76	A downward-looking radiometer was carried by the helicopter to measure	Χ	
6223	the reflected light intensity		
8/10/76 6223	Same as July 15, 1975, 03 study of urban plume.)
8/12/76	Same as July 31, 1976, study of Portage-Des-Sioux plume. Four flights were made on this date.	Х	
6225	were made on this date.		
11/8/76 6313	Horizontal cross sections and vertical profiles of the Labadie power plant plume were made to gather pollution data for coordination with data being collected by the California Institute of Technology on sulfur hexafluoride dispersion. The sulfur hexafluoride was released concurrent with helicopter measurements, and data on sulfur hexafluoride concentrations were collected both on the ground and in the air by Cal. Tech. researchers. Principal Investigator - Dr. Fred Shair, California Institute of Technology.	X	
11/9/76 6314	Same as November 8, 1976, sulfur hexafluoride study.	X	

TABLE E-1. (Continued)

Calendar and Julian Date		Data Tape Available Yes No
11/12/76 6317	Same as November 8, 1976, sulfur hexafluoride study.	X

APPENDIX F

SUMMARY REPORT OF HELICOPTER DATA

This brief summary of measurements is provided as a preview of the data in each flight. It proceeds in chronological order and includes data flights within the following periods: 22574 - 23974 (Julian Day 225, 1974 to Day 239, 1974), 31674 - 34074, 03475 - 06475, 19475 - 22475, 04576 - 07276, 19876 - 22676 and 30076 - 32376. Flight times are based on the first to last records with thumbwheel N1 set to 1 or 4, except for flights 80, 81 and 110 which are based on N1=2. Flight numbers correspond to the sequential files archived in the Regional Air Pollution Study data bank at the EPA National Computer Center. A complete copy of the data is available from the National Technical Information Service. For further information on the data and the NTIS accession number contact:

Chief, Data Management and Analysis Section ESRL MD AMAB (MD-80) Environmental Protection Agency Research Triangle Park, NC 27711

Appendix D contains descriptions of the RAMS support missions. The list of sites flown over is derived from the N5 and N6 thumbwheel settings. These correspond to the last two digits of the RAMS station number (Table D-1). Other sites are identified in Table D2. The order presented is in the sequence contained within the flight data record. It may not be a complete list for any given flight and a note, "SEE FLIGHT DESCRIPTION", was inserted for each flight with no sites indicated. Appendix E provides information on the special missions.

The maxima and minima presented in the summary are in the units originally recorded. Users of these data are cautioned to apply their own editing standards to the data. Editing codes appearing in this summary are not in the basic data record. The notation, **, is substituted for values generated from excessive instrument noise, or relational inconsistency. Some of this noise was probably due to RFI from radio communications, other to instrument instability. A BMDL (below minimum detectable limit) is substituted for gas or b $_{\rm SCat}$ minima less than zero. No valid 03 maximum above 0.30 ppm was seen in summer flights nor above 0.10 ppm in winter flights. None of the CO data above 10.0 ppm appear to be valid. An upper limit of 30.0 m $^{-1}$ applies to b $_{\rm SCat}$. OAT (outside ambient temperature) and DPT (dew point temperature) are quite noisy. These data were limited to a range of -30.0°C to +50.0°C further, DPT must be less than OAT. Additional editing was also

done based upon examination of some flight records. In several instances the NO values exceed the NO_{X} values; however, this is due to the different response characteristics of the measurement systems. The OAT and DPT data in flights 27 - 33 are erratic and *** was substituted for them. Also in flights 214 - 225 the NO and NO_{X} do not have mutually supporting patterns so a substitution of *** was made in several cases. Finally, blanks indicate no valid measurements are available.

									_
JULIAN DAY = 225 Y						- 10:42:7	20 FLIGHT	NO. =	1
SITES FLOWN OVER:	18 5	6 3	13 21	8 15					
PARAMETERS: 03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL	L)
MINIMA: .OC1	• 002	BMDL	BMDL	BMDL	20.3	**	• 2	2428 51	
MAXIMA: .101	•338	.282	.765	3.4	24.1	23.2	2.5	2620. FI	1.
1111 TAN DAY - 224 Y	EAD - 4074	MER	AUC 14	TIMEC.	00.00.53	- 44-44-9		NO =	2
JULIAN DAY = 226 Y SITES FLOWN OVER:		16 3		8 15		- 11:44:	IQ LETOUI	NO	٤
PARAMETERS: 03	NO 2	NOX	\$ 02	° 13	OAT	DP T	BSCAT	ALT (MSL	1
MINIMA: .017	BMDL	BMDL	.001	BMDL	**	DF (.4	ALI (MSE	_ ,
MAXIMA: .122	• 166	•397	•356	8.2	**		6.7	3251 • F1	T .
***************************************	• 100	• 371	•330	0.2			5.,	36310 11	• •
JULIAN DAY = 226 Y	EAR = 1974	uED.	AUG 14	TIMES:	14:28:12	- 16:49:3	2 FLIGHT	NO. =	3
SITES FLOWN OVER:	18 5	6 3	13 21						-
PARAMETERS: 03	NO	NOX	\$02	coʻ	TAO	DPT	BSCAT	ALT (MSL	
MINIMA: .042	BMDL	•055	BMDL	BMDL	**	• • •	.8	712 1 1712	
MAXIMA: .180	• 093	.449	.142	5.0	**		5.6	5093 . FT	۲.
	VU/3	• • • • •	• 142	7.0			7.0	30731	•
JULIAN DAY = 227 Y	EAR = 1974	THU.	AUG 15	TIMES:	08:22:11	- 09:49:1	6 FLIGHT	NO. =	4
SITES FLOWN OVER:	40								
PARAMETERS: 03	NO	NOX	\$ 0 2	£0	TAO	DPT	BSCAT	ALT (MSL	_)
MINIMA: .015	BMDL	.028	BMDL	BMDL	**	• • •	-9		
MAXIMA: .073	• D6 6	.166	.487	5.2	**		12.1	1661. FT	r .
7	••••	-,	•	,,,,			,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
_							_		
JULIAN DAY = 227 1						- 13:44:()5 FLIGHT	NO . =	5
JULIAN DAY = 227 1 SITES FLOWN OVER:			AUG 15 13 21	TIMES: 8 15)5 FLIGHT	NO . =	5
						- 13:44:(DPT)5 FLIGHT BSCAT	NO. =	-
SITES FLOWN OVER:	18 5	6 3	13 21	8 15	23				-
SITES FLOWN OVER: PARAMETERS: 03	18 5 NO	6 3 NOX	13 21 \$02	8 15 CO	23 Oat		BSCAT		.)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016	18 5 NO + 006	6 3 NOX •025	13 21 \$02 BMDL	8 15 CO BMDL	23 OAT 16.3		BSCAT	ALT (MSL	.)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146	18 5 NO • UO6 • 115	6 3 NOX •025 •226	13 21 \$02 BMDL •111	8 15 CO BMDL **	23 0AT 16.3 27.4	DPT	BSCAT •6 2•7	ALT (#SL	.)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228	18 5 NO .UO6 .115	6 3 NOX .025 .226	13 21 \$02 BMDL .111	8 15 CO BMDL **	23 0AT 16.3 27.4	DPT	BSCAT •6 2•7	ALT (#SL	.)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 SITES FLOWN OVER:	18 5 NO • UC6 • 115 /EAR = 1974 80 60	6 3 NOX .025 .226 FRI,	13 21 \$02 BMDL .111 AUG 16 70	8 15 CO BMDL **	23 0AT 16.3 27.4	DPT - 10:02:	BSCAT .6 2.7	ALT (MSL 3198. FT NO. =	6
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03	18 5 NO • UC6 • 115 /EAR = 1974 80 60 NO	6 3 NOX +025 +226 FRI, 10 90 NOX	13 21 \$02 BMDL •111 AUG 16 70 \$02	8 15 CO BMDL ** TIMES:	23 OAT 16.3 27.4 08:23:52	DPT - 10:02:5 DPT	BSCAT •6 2•7	ALT (#SL	6
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL	18 5 NO • UC6 • 115 /EAR = 1974 80 60 NO • 007	6 3 NOX -025 -226 FRI, 10 90 NOX -005	13 21 S 02 B M D L • 1111 AUG 16 70 S 02 B M D L	8 15 CO BMDL ** TIMES: CO BMDL	23 0AT 16.3 27.4 08:23:52 0AT 20.3	DPT - 10:02:5 DPT **	BSCAT .6 2.7	ALT (MSL 3198. FT NO. = ALT (MSL	6
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03	18 5 NO • UC6 • 115 /EAR = 1974 80 60 NO • 007	6 3 NOX +025 +226 FRI, 10 90 NOX	13 21 \$02 BMDL •111 AUG 16 70 \$02	8 15 CO BMDL ** TIMES:	23 OAT 16.3 27.4 08:23:52	DPT - 10:02:5 DPT	BSCAT .6 2.7	ALT (MSL 3198. FT NO. =	6
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL	18 5 NO • UC6 • 115 /EAR = 1974 80 60 NO • 007	6 3 NOX -025 -226 FRI, 10 90 NOX -005	13 21 S 02 B M D L • 1111 AUG 16 70 S 02 B M D L	8 15 CO BMDL ** TIMES: CO BMDL	23 0AT 16.3 27.4 08:23:52 0AT 20.3	DPT - 10:02:5 DPT **	BSCAT .6 2.7	ALT (MSL 3198. FT NO. = ALT (MSL	6
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .072	18 5 NO • UO6 • 115 VEAR = 1974 80 60 NO • 007 1•130	6 3 NOX +025 +226 FRI, 10 90 NOX +005 1-300	13 21 \$02 BMDL •111 AUG 16 70 \$02 BMDL •251	8 15 CO BMDL ** TIMES: CO BMDL **	23 0AT 16.3 27.4 08:23:52 0AT 20.3 28.6	DPT - 10:02:5 DPT ** 28.5	BSCAT •6 2•7 55 FLIGHT BSCAT	ALT (MSL 3198. FT NO. = ALT (MSL 1820. FT	6 L)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: .072 JULIAN DAY = 228 JULIAN DAY = 228	18 5 NO • 906 • 115 VEAR = 1974 80 60 • 007 1•130 VEAR = 1974	6 3 NOX .025 .226 FRI, 10 90 NOX .005 1.300	13 21 \$02 BMDL •111 AUG 16 70 \$02 BMDL •251	8 15 CO BMDL ** TIMES: CO BMDL **	23 0AT 16.3 27.4 08:23:52 0AT 20.3 28.6	DPT - 10:02:5 DPT ** 28.5	BSCAT •6 2•7 55 FLIGHT BSCAT	ALT (MSL 3198. FT NO. = ALT (MSL 1820. FT	6 L)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: .072 JULIAN DAY = 228 SITES FLOWN OVER:	18 5 NO 906 115 VEAR = 1974 80 60 NO 007 1-130 VEAR = 1974 25 5	6 3 NOX .025 .226 FRI, 10 90 NOX .005 1.300	13 21 \$02 BMDL •111 AUG 16 70 \$02 BMDL •251	8 15 CO BMDL ** TIMES: CO BMDL ** TIMES:	23 0AT 16.3 27.4 08:23:52 0AT 20.3 28.6	DPT - 10:02:9 DPT ** 28.5 - 13:05:9	BSCAT .6 2.7 55 FLIGHT BSCAT	ALT (MSL 3198. FT NO. = ALT (MSL 1820. FT	6 L) T.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .072 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03	18 5 NO .UC6 .115 VEAR = 1974 80 60 .OC7 1.130 VEAR = 1974 25 5	6 3 NOX .025 .226 FRI, 10 90 NOX .005 1.300 FRI, 3 23 NOX	13 21 \$02 BMDL •111 AUG 16 70 \$02 BMDL •251 AUG 16 \$02	8 15 CO BMDL ** TIMES: CO BMDL **	23 0AT 16.3 27.4 08:23:52 0AT 20.3 28.6 11:03:58	DPT - 10:02:9 DPT ** 28.5 - 13:05:9	BSCAT •6 2•7 55 FLIGHT BSCAT	ALT (MSL 3198. FT NO. = ALT (MSL 1820. FT	6 L) T.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .072 JULIAN DAY = 228 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .072	18 5 NO .UC6 .115 /EAR = 1974 80 60 NO .OC7 1.130 /EAR = 1974 25 5 NO BMDL	6 3 NOX -025 -226 FRI, 10 90 NOX -005 1-300 FRI, 3 23 NOX BMDL	13 21 \$02 BMDL •111 AUG 16 70 \$02 BMDL •251 AUG 16 \$02 BMDL	8 15 CO BMDL ** TIMES: CO BMDL ** TIMES: CO BMDL	23 0AT 16.3 27.4 08:23:52 0AT 20.3 28.6 11:03:58 0AT **	DPT - 10:02:5 - 10:02:5 - 13:05:5	BSCAT .6 2.7 55 FLIGHT BSCAT	ALT (MSL 3198. FT NO. = ALT (MSL 1820. FT NO. = ALT (MSL	6 L) 7 L)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .072 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03	18 5 NO .UC6 .115 /EAR = 1974 80 60 NO .OC7 1.130 /EAR = 1974 25 5 NO BMDL	6 3 NOX .025 .226 FRI, 10 90 NOX .005 1.300 FRI, 3 23 NOX	13 21 \$02 BMDL •111 AUG 16 70 \$02 BMDL •251 AUG 16 \$02	8 15 CO BMDL ** TIMES: CO BMDL **	23 0AT 16.3 27.4 08:23:52 0AT 20.3 28.6 11:03:58	DPT - 10:02:9 DPT ** 28.5 - 13:05:9	BSCAT .6 2.7 55 FLIGHT BSCAT	ALT (MSL 3198. FT NO. = ALT (MSL 1820. FT	6 L) 7 L)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .072 JULIAN DAY = 228 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .072	18 5 NO .UC6 .115 /EAR = 1974 80 60 NO .OC7 1.130 /EAR = 1974 25 5 NO BMDL	6 3 NOX -025 -226 FRI, 10 90 NOX -005 1-300 FRI, 3 23 NOX BMDL	13 21 \$02 BMDL •111 AUG 16 70 \$02 BMDL •251 AUG 16 \$02 BMDL	8 15 CO BMDL ** TIMES: CO BMDL ** TIMES: CO BMDL	23 0AT 16.3 27.4 08:23:52 0AT 20.3 28.6 11:03:58 0AT **	DPT - 10:02:5 - 10:02:5 - 13:05:5	BSCAT .6 2.7 55 FLIGHT BSCAT	ALT (MSL 3198. FT NO. = ALT (MSL 1820. FT NO. = ALT (MSL	6 L) 7 L)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: .072 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: .062	18 5 NO • UC6 • 115 /EAR = 1974 80 60 • 007 1•130 /EAR = 1974 25 5 NO BMDL 1•470	6 3 NOX .025 .226 FRI, 10 90 NOX .005 1.300 FRI, 3 23 NOX BMDL 1.380	13 21 \$02 BMDL 1111 AUG 16 70 \$02 BMDL 251 AUG 16 \$02 BMDL 1.820	8 15 CO BMDL ** TIMES: CO BMDL ** TIMES: CO BMDL **	23 0AT 16.3 27.4 08:23:52 0AT 20.3 28.6 11:03:58	DPT - 10:02:9 DPT ** 28.5 - 13:05:9 DPT ** **	BSCAT .6 2.7 55 FLIGHT BSCAT 58 FLIGHT	ALT (MSL 3198. FT NO. = ALT (MSL 1820. FT NO. = ALT (MSL 3121. FT	6 L) T. 7 L)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: .072 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL NAXIMA: .062	18 5 NO .UC6 .115 VEAR = 1974 80 60 .OC7 1.130 VEAR = 1974 25 5 NO BMDL 1.470 VEAR = 1974	6 3 NOX .025 .226 FRI, 10 90 NOX .005 1.300 FRI, 3 23 NOX BMDL 1.380 MON,	13 21 \$02 BMDL 1111 AUG 16 70 \$02 BMDL .251 AUG 16 \$02 BMDL 1.820	8 15 CO BMDL ** TIMES: CO BMDL ** TIMES: CO BMDL **	23 0AT 16.3 27.4 08:23:52 0AT 20.3 28.6 11:03:58	DPT - 10:02:9 DPT ** 28.5 - 13:05:9 DPT ** **	BSCAT .6 2.7 55 FLIGHT BSCAT 58 FLIGHT	ALT (MSL 3198. FT NO. = ALT (MSL 1820. FT NO. = ALT (MSL 3121. FT	6 L) 7 L)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: .072 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: .032 JULIAN DAY = 231 SITES FLOWN OVER:	18 5 NO . UC6 . 115 /EAR = 1974 80 60 NO . 007 1.130 /EAR = 1974 25 5 NO BMDL 1.470 /EAR = 1974 17 18	6 3 NOX .025 .226 FRI, 10 90 NOX .005 1.300 FRI, 3 23 NOX BMDL 1.380 MON, 6 2	13 21 \$02 BMDL 1111 AUG 16 70 \$02 BMDL 1.820 AUG 19 3	8 15 CO BMDL ** TIMES: CO BMDL ** TIMES: CO BMDL **	23 0AT 16.3 27.4 08:23:52 0AT 20.3 28.6 11:03:58 0AT **	DPT - 10:02:9 DPT ** 28.5 - 13:05:9 PPT ** **	BSCAT .6 2.7 55 FLIGHT BSCAT BSCAT BSCAT	ALT (MSL 3198. FT NO. = ALT (MSL 1820. FT NO. = ALT (MSL 3121. FT	6 L) 7 L)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .072 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .062 JULIAN DAY = 231 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .062	18 5 NO . UC6 . 115 /EAR = 1974 80 60 . OC7 1.130 /EAR = 1974 25 5 NO BMDL 1.470 /EAR = 1974 17 18 NO	6 3 NOX .025 .226 FRI, 10 90 NOX .005 1.300 FRI, 3 23 NOX BMDL 1.380 MON, 6 2 NOX	13 21 \$02 BMDL 1111 AUG 16 70 \$02 BMDL 1.820 AUG 19 3 \$02	8 15 CO BMDL ** TIMES: CO BMDL ** TIMES: CO BMDL **	23 OAT 16.3 27.4 08:23:52 OAT 20.3 28.6 11:03:58 OAT **	DPT - 10:02:9 DPT ** 28.5 - 13:05:9 DPT ** - 08:12:9	BSCAT .6 2.7 55 FLIGHT BSCAT BSCAT BSCAT BSCAT	ALT (MSL 3198. FT NO. = ALT (MSL 1820. FT NO. = ALT (MSL 3121. FT	6 L) 7 L)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA:	18 5 NO .UC6 .115 /EAR = 1974 80 60 NO .007 1.130 /EAR = 1974 25 5 NO BMDL 1.470 /EAR = 1974 17 18 NO BMDL	6 3 NOX .025 .226 FRI, 10 90 NOX .005 1.300 FRI, 3 23 NOX BMDL 1.380 MON, 6 2 NOX PMDL	13 21 \$02 BMDL 1111 AUG 16 70 \$02 BMDL 1.820 AUG 19 3 \$02 .()0	8 15 CO BMDL ** TIMES: CO BMDL ** TIMES: CO BMDL **	23 OAT 16.3 27.4 08:23:52 OAT 20.3 28.6 11:03:58 OAT **	DPT - 10:02:9 DPT ** 28.5 - 13:05:9 DPT ** - 08:12:9	BSCAT .6 2.7 55 FLIGHT BSCAT BSCAT BSCAT BSCAT BSCAT BSCAT 1.0	ALT (MSL 3198. FT NO. = ALT (MSL 1820. FT NO. = ALT (MSL 3121. FT	6 L) 7 L)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .146 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .072 JULIAN DAY = 228 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .062 JULIAN DAY = 231 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .062	18 5 NO . UC6 . 115 /EAR = 1974 80 60 . OC7 1.130 /EAR = 1974 25 5 NO BMDL 1.470 /EAR = 1974 17 18 NO	6 3 NOX .025 .226 FRI, 10 90 NOX .005 1.300 FRI, 3 23 NOX BMDL 1.380 MON, 6 2 NOX	13 21 \$02 BMDL 1111 AUG 16 70 \$02 BMDL 1.820 AUG 19 3 \$02	8 15 CO BMDL ** TIMES: CO BMDL ** TIMES: CO BMDL **	23 OAT 16.3 27.4 08:23:52 OAT 20.3 28.6 11:03:58 OAT **	DPT - 10:02:9 DPT ** 28.5 - 13:05:9 DPT ** - 08:12:9	BSCAT .6 2.7 55 FLIGHT BSCAT BSCAT BSCAT BSCAT	ALT (MSL 3198. FT NO. = ALT (MSL 1820. FT NO. = ALT (MSL 3121. FT	6 L) 7 L) 7 L)

JULIAN DAY = 231 SITES FLOWN OVER:		MON, 5 16	AUG 19	TIMES:	09:31:20 -	10:38:00 FLIGHT	NO . = 9
PARAMETERS: 03		NOX	S 0 2	CO	OAT	DPT BSCAT	ALT (MSL)
MINIMA: .013		.007	BMDL	BMDL	21.8	13.4	AL 11 522
MAXIMA: .107		.028	.079	2.4	25.9	22.4 6.8	1620. FT.
JULIAN DAY = 231	YEAR = 1974	MON.	AUG 19	TIMES:	12:32:20 -	15:02:00 FLIGHT	NO. = 10
SITES FLOWN OVER:		6 3	13 21	8 15		-	
PARAMETERS: 03	NO I	NOX	S 0 2	CO	OAT	DPT BSCAT	ALT (MSL)
MINIMA:		.038	.005		26.0	14.3 1.6	
MAXIMA:	• 069	·20 9	.243		31.1	22.7 22.1	1864. FT.
JULIAN DAY = 231	YEAR = 1974	MON.	AUG 19	TIMEC.	14:17:28 -	16-04-38 FLIGHT	NO. = 11
SITES FLOWN OVER:		6 2	3 8	15 16		(0.04130 (210))	
PARAMETERS: 03		NOX	205	co	OAT	DPT BSCAT	ALT (MSL)
MINIMA: BMDL	. 012	.033	BMDL	BMDL	21.4	** 1.1	
MAXIHA: .160		.106	.423	9.6	29.0	21.9 5.2	2101. FT.
JULIAN DAY = 232	YEAR = 1974	TUE.	AUG 20	TIMES:	07:05:36 -	10:32:47 FLIGHT	NO. = 12
SITES FLOWN OVER:		6 3	13 21	8 15	23		
PARAMETERS: 03	NO !	NOX	\$ 02	CO	OAT	DPT BSCAT	ALT (MSL)
MINIMA: .006	• 009	.008	BMDL	BMDL	14.6	** .1	
MAXIMA: .192	• 386	• 295	1-140	**	24.6	22.0 7.3	5995. FT.
JULIAN DAY = 232	YEAR = 1974	TUE,	AUG 20	TIMES:	09:28:25 -	11:00:50 FLIGHT	NO. = 13
SITES FLOWN OVER:	3 3	3					
PARAMETERS: 03		NOX	\$02	CO	OAT	DPT BSCAT	ALT (MSL)
MINIMA:		-079	-001	BMDL	23.8	19.5 3.6	
MAXIMA:	. 083	.152	.10,4	5.5	28.6	23.3 8.4	1357. FT.
JULIAN DAY = 232		TUE,	Ane 50	TIMES:	14:19:20 -	15:27:08 FLIGHT	NO. = 14
SITES FLOWN OVER:	38		000				()
PARAMETERS: 03	***	NOX .012	\$02 •003	CO BMDL	0AT 27.5	DPT BSCAT 15.8 2.4	ALT (MSL)
MINIMA: MAXIMA:		.084	. 043	2.2	31.8	20.4 5.3	1586. FT.
MAAMA:	• 003	• 004	• 643	2.5	31.0	2004 303	13001 771
JULIAN DAY = 233	YEAR = 1974	WED.	AUG 21	TIMES:	06:26:40 -	07:23:50 FLIGHT	NO. = 15
SITES FLOWN OVER:		2					
PARAMETERS: 03		NOX	502	CO	OAT	DPT BSCAT	ALT (MSL)
MINIMA: .003		.011	• 00 0	BMDL	**	** 1.2	
MAXIMA: .122	.079	-117	.270	2.6	23.2	** 3.7	3570. FT.
JULIAN DAY = 233	YEAR = 1974	WED.	AUG 21	TIMES:	08:43:20 -	12:25:20 FLIGHT	NO. = 16
SITES FLOWN OVER:	18 5	6 3	13 21	8 15	5 23		
PARAMETERS: 03		NOX	\$02	CO	DAT	DPT ESCAT	ALT (MSL)
MINIMA:		BMDL	- 60 0	BMDL	19.8	** .2	
MAXIMAI	•8º6	•987	1.990	6.5	**	22.5 6.7	4741. FT.

		•						
JULIAN DAY = 233	YFAR = 1074	MED.	AUG 21	TIMES:	13:52:15 -	15:23:05	FLIGHT	NO. = 17
SITES FLOWN OVER:	25	w.c.y	X00 C1		,,,,,,,,			
				••			BSCAT	ALT (MSL)
PARAMETERS: 03	NO OB	NOX	\$02	CO	OAT	DPT		ALI (MSL)
MINIMA:	•006	.011	BMCL			11.5	. 8	
MAXIMA:	.030	.098	.190	3.6	31.2	20.6	3.2	4073. FT.
JULIAN DAY = 234	YEAR = 1974	THU.	AUG 22	TIMES:	06:39:56 -	08:36:16	FLIGHT	NO. = 18
SITES FLOWN OVER:	17 18	6 2	3 8	15 16				
PARAMETERS: 03	NO	NOX	\$ 02	εο.	TAG	DPT	BSCAT	ALT (MSL)
MINIMA: BMDL		.030	• 600	BMDL	21.1	15.0	.4	712 7 7 7 7 7
				**	25.8	20.7	14.1	3565. FT.
MAXIMA: .087	• 136	.255	•446	* *	23.0	20.7	14 • 1	3303 · F1 ·
JULIAN DAY = 234	YEAR = 1974	THU.	AUG 22	TIMES:	07:10:00 -	09:07:30) FLIGHT	NO. = 19
SITES FLOWN OVER:	18 5.	6 3	13 21	8 15	23			
PARAMETERS: 03	NO	NOX	SO 2	CD	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: BMDL		BMDL	BMDL	BMDL	16.6	**	. 1	
	•238	.243	.654	2.4		21.3	6.4	2961. FT.
MAXIMA: •072		. 2 4 3	•0,4	2.4	2301	2103	0.4	2/010
JULIAN DAY = 234	VEAD - 1074	~ U	Aug 72	TIMEC.	11.05.20 -	12-16-50	FITCHT	NO = 20
					11.03.20	12.10.70	, , , , ,	HO LO
SITES FLOWN OVER:								
PARAMETERS: 03	NO	NOX	\$ 02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .019		BMDL	- CC O	- 9		15.8	• 6	
MAXIMA: .092	. 056	.088	.826	9.8	26.4	21.0	11.2	2373. FT.
JULIAN DAY = 234	YEAR = 1974	THU,	ANE 55	TIMES:	11:05:30 -	12:17:00) FLIGHT	NO. = 21
SITES FLOWN OVER:	SEE FLIG	HT DES	CRIPTION					
PARAMETERS: 03	NO	NOX	\$07	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .017	RMDL	BMDL	BMDL	BMDL	20.3	**	• 3	
MAXIMA: .072	_	.023	.570	1.5	23.8	22.4	14.8	2305. FT.
		•00	•3,0		23.0	22.7	1400	23031 110
JULIAN DAY = 238	YEAR = 10-4	MAN.	AHE 26	TIMES.	00-40-35 -	12.21.46		NO - 22
SITES FLOWN OVER:		3 13		23 23		12:21:4:	, LE 1011	NU 22
				23 23 CO				
– –	NO	NOX	\$02		OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• 023	BMDL	.000	BMDL	24.1	18.3	- 2	
MAXIMA:	1.300	1.410	-962	**	36.3	26.9	5.9	2203. FT.
JULIAN DAY = 238	YEAR = 1974	MON,	AUG 26	TIMES:	15:10:0n -	16:46:05	FLIGHT	NO. = 23
SITES FLOWN OVER:	25 5	3 23						
PARAMETERS: 03	N O	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .02	1 BMOL	PMDL	BMDL	BMDL	21.4	15.6	2.8	HE THOE
MAXIMA: .15	0 .451	.470	1.650	7.6	30.1	22.7	15.9	3209. FT.
				, 0	2001	E E • 1	13.7	36 UY . FI.
JULIAN DAY = 238	YEAR = 1974	MON-	AUG 26	TIMES -	15:31:54 =	17.10-27		NO - 31
SITES FLOWN OVER:	18 5	6 3	13 21	8 15	1/4/14/74 7	11:17:37	FLIGHT	NU. = 24
PARAMETERS: 03	NO	NOX	\$02	CO				
		MVX			OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• 0(-8		• i : 10	BMDL	29.4	19.4	3.0	
MAXIMA:	•139		•568	**	33.2	22.7	6.7	1427. FT.

JULIAN DAY = 239						- 08:40:35	FLIGHT	NO. = 25
SITES FLOWN OVER: PARAMETERS: 03		6 3 NOX	13 12 \$02	8 15 Co	23 0AT	DPT	BSCAT	ALT (MSL)
MINIMA:	.003	.021	BroL	BMDL	23.0	16.2	.3	ALT CHULL
MAXIMA:	.744	.791	2.940	. 9	26.5	22.5	6.6	1798 . FT .
JULIAN DAY = 239	WE 10 - 107/	THE 4	.uc 37	7 7 44 5 6 -	00-59 44	44-70-44	C1 TC 11 T	40 - 24
SITES FLOWN OVER:		6 2	3 2	15 16		- 11:39:40	FIGHI	NU. = 20
PARAMETERS: 03		NOX	\$02	, co	DAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL	.016	BMDL	BMDL	22.4	19.6	• 6	
MAXIMA:	1.370 1	-210	2.500	3.9	28.4	22.8	3.5	2245. FT.
JULIAN DAY = 316	VEAD - 1074	THE. N	inu 12	TIMEC.	00.20.00	- 10-61-60	CLICHT	NO = 27
SITES FLOWN OVER:			16 23	ilmes:	07120100	- 10:41:40	FLIGHT	NU - 21
PARAMETERS: 03		NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .00		BMDL	BMDL	BMDL	-29.0	**	• 3	
MAXIMA: .04	.008	.017	.007	• 6	-11.4	-16.6	1.2	2223. FT.
ANT TAN AAW - 74.	WE40 - 4074	****			47-54-64	40-50-44		36
JULIAN DAY = 316 SITES FLOWN OVER:		2 21	15 16	53 11ME2:	13:21:01	- 15:09:41	FLIGHT	NO. = 20
PARAMETERS: 03		NOX	\$02	, C O	TAO	DPT	BSCAT	ALT (MSL)
MINIMA: .08	***	.003	BMDL	BMDL	***	***	•1	NE 7 4 DE 7
MAXIMA: .03		.109	•005	9.0	***	***	1.2	2190. FT.
100 TAN DAY - 749	VEAD - 1074	TULL B	10V 44	TIMEC.	070-40	- 40.05.40	E1 1007	NO - 20
JULIAN DAY = 318	YEAR = 1974	THU, N			07:38:10	- 10:05:10	FLIGHT	NO. = 29
SITES FLOWN OVER:	5 6 2	20 21	15 16	23				
SITES FLOWN OVER: PARAMETERS: 03	5 6 2 NO	20 21 NOX		23 CO	07:38:10 OAT	DPT	FLIGHT BSCAT BMDL	NO. = 29 ALT (MSL)
SITES FLOWN OVER:	S 6 2 NO L BMDL	20 21	15 16 \$02	23	OAT	DPT	BSCAT	
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMI	5 6 2 NO L BMDL	NOX BMDL	15 16 SO2 BMDL	23 C0 •1	OAT	DPT	BSCAT BMDL	ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMI MAXIMA: .08	5 6 2 NO L BMDL 2 •019	20 21 NOX BMDL .041	15 16 \$02 BMDL -003	23 C0 •1	0AT ***	DPT ***	BSCAT BMDL 1.4	ALT (MSL) 7258. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMI MAXIMA: .08 JULIAN DAY = 318	5 6 2 NO L BMDL 2 .019	20 21 NOX BMDL •041	15 16 S02 BMDL -003	23 CO .1 **	0AT ***	DPT ***	BSCAT BMDL 1.4	ALT (MSL) 7258. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMI MAXIMA: .08 JULIAN DAY = 318 SITES FLOWN OVER:	5 6 2 NO DL BMDL 2 -019 YEAR = 1974	20 21 NOX BMDL -041 THU, N	15 16 S02 BMDL -003 NOV 14 15 16	23 CO .1 ** TIMES: 23	0AT *** ***	DPT *** ***	BSCAT BMDL 1.4 FLIGHT	ALT (MSL) 7258. FT. NO. = 30
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 08 MAXIMA: 08 JULIAN DAY = 318 SITES FLOWN OVER: PARAMETERS: 03	5 6 2 NO L BMDL 2 -019 YEAR = 1974 S 6 2	20 21 NOX BMDL -041 THU, A 20 21 NOX	15 16 SO2 BMDL -003 NOV 14 15 16 SO2	23 CO .1 ** TIMES: 23 CO	0AT ***	DPT *** ***	BSCAT BMDL 1.4 FLIGHT BSCAT	ALT (MSL) 7258. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMI MAXIMA: .08 JULIAN DAY = 318 SITES FLOWN OVER:	5 6 2 NO L BMDL 2 -019 YEAR = 1974 S 6 2 NO	20 21 NOX BMDL -041 THU, N	15 16 S02 BMDL -003 NOV 14 15 16	23 CO .1 ** TIMES: 23	OAT *** *** 11:33:45	DPT *** *** - 13:09:45	BSCAT BMDL 1.4 FLIGHT	ALT (MSL) 7258. FT. NO. = 30
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 08 MINIMA: 08 JULIAN DAY = 318 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 08	5 6 2 NO L BMDL 2 -019 YEAR = 1974 S 6 2 NO	NOX BMDL D41 THU, A 20 21 NOX BMDL	15 16 \$02 BMDL -003 NOV 14 15 16 \$02 BMDL	23 CO .1 ** TIMES: 23 CO BMDL	OAT *** 11:33:45 OAT ***	DPT *** - 13:09:45	BSCAT BMDL 1.4 FLIGHT BSCAT .2	ALT (MSL) 7258. FT. NO. = 30 ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMI MAXIMA: 08 JULIAN DAY = 318 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 06 MAXIMA: 6	5 6 2 NO L BMDL 2 .019 YEAR = 1974 5 6 2 NO 16 BMDL + .007	NOX BMDL •D41 THU• A 20 21 NOX BMDL •013	15 16 \$02 BMDL -003 NOV 14 15 16 \$02 BMDL -004	23 CO .1 ** TIMES: 23 CO BMDL 5.2	OAT *** *** 11:33:45 OAT ***	DPT *** - 13:09:45 DPT ***	BSCAT BMDL 1.4 FLIGHT BSCAT .2 2.5	ALT (MSL) 7258. FT. NO. = 30 ALT (MSL) 2365. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMI MAXIMA: 08 JULIAN DAY = 318 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 06 MAXIMA: 4	5 6 2 NO L BMDL 2 .019 YEAR = 1974 5 6 2 NO 16 BMDL + .007	NOX BMDL •D41 THU• A 20 21 NOX BMDL •013	15 16 \$02 BMDL -003 NOV 14 15 16 \$02 BMDL -004	23 CO .1 ** TIMES: 23 CO BMDL 5.2	OAT *** *** 11:33:45 OAT ***	DPT *** - 13:09:45 DPT ***	BSCAT BMDL 1.4 FLIGHT BSCAT .2 2.5	ALT (MSL) 7258. FT. NO. = 30 ALT (MSL) 2365. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMI MAXIMA: 08 JULIAN DAY = 318 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 06 MAXIMA: 4 JULIAN DAY = 319 SITES FLOWN OVER:	5 6 2 NO NO NO YEAR = 1974 S 6 2 NO NO NO NO NO YEAR = 1974 S 6 2	20 21 NOX BMDL .041 THU, A 20 21 NOX BMDL .013	15 16 SO2 BMDL -003 NOV 14 15 16 SO2 BMDL -004 NOV 15 15 16	23 CO .1 ** TIMES: 23 CO BMDL 5.2	OAT *** *** 11:33:45 OAT *** ***	DPT *** - 13:09:45 DPT *** - 14:24:55	BSCAT BMDL 1.4 FLIGHT BSCAT .2 2.5	ALT (MSL) 7258. FT. NO. = 30 ALT (MSL) 2365. FT. NO. = 31
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 08 JULIAN DAY = 318 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 06 MAXIMA: 07 JULIAN DAY = 319 SITES FLOWN OVER: PARAMETERS: 03	5 6 2 NO L BMDL 2 -019 YEAR = 1974 5 6 2 NO 16 BMDL +* -007 YEAR = 1974 5 6 2 NO	20 21 NOX BMDL .041 THU+ N 20 21 NOX BMDL .013	15 16 SO2 BMDL -003 NOV 14 15 16 SO2 BMDL -004 NOV 15 15 16 SO2	23 CO .1 ** TIMES: 23 CO BMDL 5.2 TIMES: 23 CO	OAT *** *** 11:33:45 OAT *** ***	DPT *** - 13:09:45 DPT *** - 14:24:55	BSCAT BMDL 1.4 FLIGHT BSCAT .2 2.5 FLIGHT	ALT (MSL) 7258. FT. NO. = 30 ALT (MSL) 2365. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMI MAXIMA: 08 JULIAN DAY = 318 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 06 MAXIMA: 4 JULIAN DAY = 319 SITES FLOWN OVER:	5 6 2 NO L BMDL 2 -019 YEAR = 1974 5 6 2 NO 26 BMDL ** -007 YEAR = 1974 5 6 2 NO 00 000	20 21 NOX BMDL .041 THU, A 20 21 NOX BMDL .013	15 16 SO2 BMDL -003 NOV 14 15 16 SO2 BMDL -004 NOV 15 15 16	23 CO .1 ** TIMES: 23 CO BMDL 5.2	OAT *** *** 11:33:45 OAT *** ***	DPT *** - 13:09:45 DPT *** - 14:24:55	BSCAT BMDL 1.4 FLIGHT BSCAT .2 2.5	ALT (MSL) 7258. FT. NO. = 30 ALT (MSL) 2365. FT. NO. = 31
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 08 JULIAN DAY = 318 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 06 MAXIMA: 07 JULIAN DAY = 319 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 06 MINIMA: 07 MINIMA: 07 MINIMA: 08	5 6 2 NO L BMDL 2 -019 YEAR = 1974 5 6 2 NO 26 BMDL ** -007 YEAR = 1974 5 6 2 NO 00 000	20 21 NOX BMDL .041 THU+ N 20 21 NOX BMDL .013 FRI+ N 20 21 NOX .004	15 16 S02 BMDL -003 NOV 14 15 16 S02 BMDL -004 NOV 15 15 16 S07 BMDL	23 CO .1 ** TIMES: 23 CO BMDL 5.2 TIMES: 23 CO BMDL	OAT *** 11:33:45 OAT *** 11:50:30 OAT ***	DPT *** - 13:09:45 DPT *** - 14:24:55 DPT ***	BSCAT BMDL 1.4 FLIGHT BSCAT .2 2.5 FLIGHT BSCAT BMDL	ALT (MSL) 7258 • FT • NO = 30 ALT (MSL) 2365 • FT • NO = 31 ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 08 JULIAN DAY = 318 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 05 MAXIMA: 07 JULIAN DAY = 319 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 04 MAXIMA: 05 MINIMA:	5 6 2 NO DL BMDL 62 • 019 YEAR = 1974 NO 06 BMDL • 007 YEAR = 1974 S 6 2 NO 01 • 014	20 21 NOX BMDL -041 THU+ A 20 21 NOX BMDL -013 FRI+ A 20 21 NOX -029	15 16 \$02 BMDL -003 NOV 14 15 16 \$02 BMDL -004 NOV 15 15 16 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$0	23 CO .1 ** TIMES: 23 CO BMDL 5.2 TIMES: 23 CO BMDL 9.8	OAT *** *** 11:33:45 OAT *** ***	DPT *** - 13:09:45 DPT *** - 14:24:55 DPT *** ***	BSCAT BMDL 1.4 FLIGHT BSCAT .2 2.5 FLIGHT BSCAT BMDL 21.2	ALT (MSL) 7258. FT. NO. = 30 ALT (MSL) 2365. FT. NO. = 31 ALT (MSL) 2410. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 08 JULIAN DAY = 318 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 03 MAXIMA: 03 JULIAN DAY = 319 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 04 JULIAN DAY = 320 JULIAN DAY = 320	5 6 2 NO L BMDL 2 -019 YEAR = 1974 5 6 2 NO 06 BMDL + -007 YEAR = 1974 5 6 2 NO 0L -010 + -014	20 21 NOX BMDL -041 THU+ N 20 21 NOX BMDL -013 FRI+ N 20 21 NOX -034 -029	15 16 \$02 BMDL -003 NOV 14 15 16 \$02 BMDL -004 NOV 15 15 16 \$02 BMDL -001	23 CO .1 ** TIMES: 23 CO BMDL 5.2 TIMES: 23 CO BMDL 9.8	OAT *** *** 11:33:45 OAT *** *** 11:50:30 OAT *** ***	DPT *** - 13:09:45 DPT *** - 14:24:55 DPT *** ***	BSCAT BMDL 1.4 FLIGHT BSCAT .2 2.5 FLIGHT BSCAT BMDL 21.2	ALT (MSL) 7258. FT. NO. = 30 ALT (MSL) 2365. FT. NO. = 31 ALT (MSL) 2410. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMI MAXIMA: .08 JULIAN DAY = 318 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .09 MAXIMA: .09 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMI MAXIMA: .09 JULIAN DAY = 320 SITES FLOWN OVER: JULIAN DAY = 320 SITES FLOWN OVER:	5 6 2 NO L BMDL 2 -019 YEAR = 1974 5 6 2 NO 16 BMDL 1007 YEAR = 1974 5 6 2 NO L -000 14 -014	20 21 NOX BMDL -041 THU+ N 20 21 NOX BMDL -013 FRI+ N 20 21 NOX -029 SAT+ N 21 14	15 16 SO2 BMDL -003 NOV 14 15 16 SO2 BMDL -004 NOV 15 15 16 SO2 RMDL -001	23 CO .1 ** TIMES: 23 CO BMDL 5.2 TIMES: 23 CO BMDL 9.8	OAT *** 11:33:45 OAT *** 11:50:30 OAT *** ***	DPT *** - 13:09:45 DPT *** - 14:24:55 DPT *** - 10:41:04	BSCAT BMDL 1.4 FLIGHT BSCAT .2 2.5 FLIGHT BSCAT BMDL 21.2	ALT (MSL) 7258 • FT • NO • = 30 ALT (MSL) 2365 • FT • NO • = 31 ALT (MSL) 2410 • FT •
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 08 JULIAN DAY = 318 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 08 JULIAN DAY = 319 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 08 JULIAN DAY = 320 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 08 JULIAN DAY = 320 SITES FLOWN OVER: PARAMETERS: 03	S 6 2 NO L BMDL 2 -019 YEAR = 1974 S 6 2 NO 06 BMDL + 0007 YEAR = 1974 S 6 2 NO L 0000 + 014 YEAR = 1974 NO NO	20 21 NOX BMDL -041 THU+ N 20 21 NOX BMDL -013 FRI+ N 20 21 NOX -029 SAT+ N 21 14 NOX	15 16 SO2 BMDL -003 NOV 14 15 16 SO2 BMDL -004 NOV 15 15 16 SO2 BMDL -001	23 CO .1 ** TIMES: 23 CO BMDL 5.2 TIMES: 23 CO BMDL 9.8	OAT *** 11:33:45 OAT *** 11:50:30 OAT *** *** 08:40:29 9 OAT	DPT *** - 13:09:45 DPT *** - 14:24:55 DPT *** - 14:24:55	BSCAT BMDL 1.4 FLIGHT BSCAT .2 2.5 FLIGHT BSCAT BMDL 21.2 FLIGHT BSCAT	ALT (MSL) 7258. FT. NO. = 30 ALT (MSL) 2365. FT. NO. = 31 ALT (MSL) 2410. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMI MAXIMA: .08 JULIAN DAY = 318 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .09 MAXIMA: .09 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMI MAXIMA: .09 JULIAN DAY = 320 SITES FLOWN OVER: JULIAN DAY = 320 SITES FLOWN OVER:	5 6 2 NO L BMDL 2 -019 YEAR = 1974 S 6 2 NO C BMDL + -007 YEAR = 1974 S 6 2 NO L -014 YEAR = 1974 NO L -014	20 21 NOX BMDL -041 THU+ N 20 21 NOX BMDL -013 FRI+ N 20 21 NOX -029 SAT+ N 21 14	15 16 SO2 BMDL -003 NOV 14 15 16 SO2 BMDL -004 NOV 15 15 16 SO2 RMDL -001	23 CO .1 ** TIMES: 23 CO BMDL 5.2 TIMES: 23 CO BMDL 9.8	OAT *** 11:33:45 OAT *** 11:50:30 OAT *** ***	DPT *** - 13:09:45 DPT *** - 14:24:55 DPT *** - 10:41:04	BSCAT BMDL 1.4 FLIGHT BSCAT .2 2.5 FLIGHT BSCAT BMDL 21.2	ALT (MSL) 7258 • FT • NO • = 30 ALT (MSL) 2365 • FT • NO • = 31 ALT (MSL) 2410 • FT •

JULIAN DAY = 320		SAT,	NOV 16	TIMES:	11:47:30	- 13:48:05	FLIGHT	NO. = 33
SITES FLOWN OVER:		3 3	13 21					
PARAMETERS: 07	NO	NOX	S 0 2	CO	OAT		BSCAT	ALT (MSL)
MINIMA: BMD	L BMDL	BMDL	BMDL	BMDL	***	***	BMDL	
MAXIMA: .04	9 .107	.137	.007	8.5	***	***	6.9	2076. FT.
JULIAN DAY = 324	YEAR = 1974	WED.	NOV 20	TIMES:	07:20:10	- 09:26:00) FLIGHT	NO. = 34
SITES FLOWN OVER:			21 15					
PARAMETERS: 03	• • • •	NOX	\$02	co	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .03	•••	BMDL	.000	BMDL	-2.2	-18.4	BMDL	HET THOUSA
		_						2460 55
MAXIMA: *	* .017	.033	• 02 0	1.0	9.5	5.4	• 5	3680. FT.
JULIAN DAY = 324	YEAR = 1974	WED.	NOV 20	TIMES.	11.51:05	- 43:52:29	FLIGHT	NO. = 35
SITES FLOWN OVER:		6 20	21 15			1 3-52		
PARAMETERS: 03		NOX	\$02	Co	OAT	DPT	BSCAT	ALT (MSL)
						- · ·		MEI (MSE)
MINIMA: .00		•000	BMDL	BMDL	**	-8.0	BMDL	
MAXIMA: *	* **	•020	•U85	-1	13.4	9.7	1.0	3598. FT.
JULIAN DAY = 325	YFAR = 1974	T Hora	Nov 21	TIMES:	07:49:20	- 09:54:20	FLIGHT	NO. = 36
SITES FLOWN OVER:				16 23				
PARAMETERS: 03	• • •	NOX	\$02	Co	OAT	DPT	BSCAT	ALT (MSL)
	***-				•	Dri		MET (MOL)
MINIMA: BMD		BMDL	BMDL	BMDL	-5.5		1	
MAXIMA: *	* •651	•675	• 005	9.0	4.7		3.6	3464. ET.
JULIAN DAY = 325	YFAR = 1974	THU.	NOV 21	TIMES:	10-10-15	- 12:06:55	FLIGHT	NO. = 37
SITES FLOWN OVER:			21 15			,		
PARAMETERS: 03		NOX	\$02	(0	OAT	DPT	BSCAT	ALT (MSL)
								ALI (MSL)
· · · · · · · · · · · · · · · · · ·	9 BMDL	BMDL	BMDL	BMDL	1.1	-21.6	BMDL	
MAXIMA: .04	2 .023	.043	•124	1.9	7.7	-4.5	• 9	3506. FT.
JULIAN DAY = 325	YFAR = 1974	THU.	NOV 21	TIMES .	11.55.25	- 14-17-39	FLIGHT	NO. = 38
SITES FLOWN OVER:			21 15			14.17.22	, , , , , , , , , , , , , , , , , , , ,	
PARAMETERS: 03		NOX	802	co				
				ισ	TAG	DPT	BSCAT	ALT (MSL)
MINIMA: .01		BMDL	BMDL		-2.2			
MAXIMA:	.024	.048	• 0 07		7.8			3406. FT.
JULIAN DAY = 325	YEAR = 1974	THU	NOV 21	TIMES.	14.01.25	_ 15.44	. El teut	NO = 20
SITES FLOWN OVER	17 5	6 20	21 15	16 23		- 13247530	,	HV = - 37
PARAMETERS: 03		NOX						
	•••		\$62	co_	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .0		.002	• 601	1	4.9	-11.0	• 2	
O. CAMIKAM	57 •029	.052	• 194	3.6	10.3	-1.5	1.2	2130. FT.
JULIAN DAY = 326	YFAR = 1974	Fol.	NOv 22	TIMEC -	13.70.75	45.75.35		
SITES FLOWN OVER		3 2			10107733	- 15:45:35	FLIGHT	NO. = 40
PARAMETERS: 0					-			
		NOX	\$ 02	c o	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .0		.004	BMDL		10.0	2.9	- 2	
MAXIMAI	** •610	.046	• .4 1		16.3	12.5	2.3	3498. FT.

						•	· · · ·		
JULIAN DAY =	32.7	YEAR = 1974	SAT.	NOV 23	TIMES: 0	9:43:00	- 11:33:00) FLIGHT	NO. = 41
ITES FLOWN O	VER:	18 10	3 2	10 21	14 8	9			
ARAMETERS:	03	NO	NOX	\$ 02	Co	OAT	DPT	BSCAT	ALT (MSL)
INIMA:	.012	BMCL	EMDL	BWDL	BMDL	10.0	- •		ALT CHOLY
							-20.0	•6	24.02
AXIMA:	.071	• 005	•030	• 604	2.3	15.1	**	2.5	2103. FT.
ULIAN DAY =	320	VEAD = 1074	MON.	NOV 25	TIMEC. O	7 - 44 . 15	- 10:00:35	FITCUT	NO. = 42
						9	- 10:00:33	. LE TOUT	10 42
ITES FLOWN O		18 19	3 2	13 21	4 8	•			
ARAMETERS:	03	NO	NOX	802	CD	OAT		BSCAT	ALT (MSL)
INIMA:	.003	BMDL	BMDL	BMDL		-4.8	-29.3	BMDL	
AXIMA:	. 058	• 035	.049	• 003		- 3	-3.9	4.7	3333. FT.
ULIAN DAY =	329	YEAR = 1974	MON.	NOV 25	TIMES: 1	2:30:25	- 14:51:50	FLIGHT	NO. = 43
ITES FLOWN O		18 19	3 2	13 21		9			
ARAMETERS:	03	NO	NOX	\$02	co	OAT	DPT	BSCAT	ALT (MSL)
	.002						• • •		ALI WISE
INIMA:		BMDL	BMDL	BMDL	BMDL	-7.7		BMDL	
AXIMA:	. 039	.024	.C36	.002	6.4	5.2	-1.8	4.5	3515. FT.
ULIAN DAY =	329	YEAR = 1974	MON.	NOV 25	TIMES: 1	4:53:25	- 16:34:15	F1 IGHT	NO = 44
ITES FLOWN O	VFR.	18 19	3 2	13 21	14 8	9			
ARAMETERS:	03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
INIMA:	.002		BMDL	.001	BMDL	-16.5		BMDL	***************************************
AXIMA:	**	•217	.104	.175	4.1	6.5	**	1.2	3510. FT.
NAIRNI	- *	• 2 11	• 104	•113	~ • •	0.7	**	1.2	3510. 11.
		4074							
ULIAN DAY =					IIMES: 0	17:37:53	- 08:49:53	FITCH	NU. = 45
ITES FLOWN O	VER:	18 19	2 2	13					
ARAMETERS:	0.3	NO	NOX	S 02	CO	OAT	DP T	BSCAT	ALT (MSL)
INIMA:	.0.6	BMDL	BMDL	BMDL	BMDL	-2.9	**	BMDL	
AXIMA:	. 054	- 055	.081	.008	BMDL	2.5	-3.9	1.7	3416. FT.
	***	• • • • • • • • • • • • • • • • • • • •	••••					•••	
***					T	0.42.50	44 /4 /		
ULIAN DAY =		YEAR = 1974					- 11:41:40	FLIGHT	NO. = 46
ITES FLOWN O		18 19	3 2			9			
ARAMETERS:	03	NO	NOX	802	CO	OAT	DPT	BSCAT	ALT (MSL)
INIMA:	.008	BMDL	BMDL	.001	BMDL	-4.9	**	BMDL	
AXIMA:	**	.106	.057	•103	2.5	**	**	8.1	4160. FT.
ULIAN DAY =	330	YEAR = 1974	TUE.	NOV 26	TIMES: 1	3:10:35	- 15:40:15	FLIGHT	NO. = 47
ITES FLOWN O		18 19	3 2			9			
ARAMETERS:	03	NO	NOX	502	co	OAT	DPT	BSCAT	ALT (MSL)
	BMDL		BMDL	.(01	BMDL	-14.3	**	•1	ALT THOLE
INIMA:		BMDL							2404
AXIMA:	**	• 033	.049	- 569	7.2	8.8	-3.7	1.8	3601. FT.
				_				_	
	330	YEAR = 1974	TUE,				- 16:33:05	FLIGHT	N0. = 48
ULIAN DAY =		18 19	3 2	13 21	14 8	9			
	VER:	10 17							
ITES FLOWN O	VER:	NO 17	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
ITES FLOWN O Arameters:	03	NO	NOX	_	CO		-		ALT (MSL)
ULIAN DAY = ITES FLOWN O ARAMETERS: INIMA: AXIMA:				SOZ BMDL -691	C O	0AT 2.9 8.1	DPT -11.6 -3.9	•3 1.5	ALT (MSL)

JULIAN DAY = 331 YE Sites flown over:	AR = 1974 17 5	WED.	NOV 27 21 15	TIMES: 0	7:34:40	- 09:53:3	O FLIGHT	NO. = 49
PARAMETERS: 03 WINIMA: .001	NO BMDL	NOX BMDL	\$02	CO BMD L	0AT -2.8	DPT -16.8	BSCAT BMDL	ALT (MSL)
MAXIMA: .061	•050	.044		##	4.6	-1.3	1.7	3790. FT.
MANIMA: •001	•020	• • • •			4.0	- 10 3	•••	3() () () (
JULIAN DAY = 331 YE	AR = 1974	WED.	NOV 27	TIMES: C	9:50:39	- 11:27:4	9 FLIGHT	NO. = 50
SITES FLOWN OVER:	17 5	€ 20						
PARAMETERS: 03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .019	BMDL	BMDL		BMDL	-16.5	**	BMDL	
MAXIMA: .079	.315	• 035		.8	7.4	2.9	1.9	3312. FT.
	4074		22		4 20 25	499.	F1 *C11*	NO C4
JULIAN DAY = 331 YE	AR = 1974 17 5			11MES : 1	1:28:25	- 13:0/:4	5 FL16M1	NU. = 51
SITES FLOWN OVER: PARAMETERS: 03	NO .	6 20 NOX	\$02	10 Z3	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .031	BMDL	BMDL	302	BMDL	4	-15.8	BMOL	MET (MSE)
MAXIMA: .057	• 094	-093		1.0	7.8	-7.3	•8	2288 • FT •
natina (6)	•0/4	•0,5		****	, , ,		••	22000
JULIAN DAY = 331 YE	AR = 1974	WED.	NOV 27	TIMES: 1	4:16:20	- 16:22:1	O FLIGHT	NO. = 52
SITES FLOWN OVER:	17 5	6 20		3				
PARAMETERS: 03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .007	BMDL	BMDL		BMDL	4.6	-11.9	•1	
MAXIMA: **	•031	.056		. 8	9.9	-5.4	2.6	2207. FT.
4114 74 b				71HF0 - 1		00-70-4		uo - 57
JULIAN DAY = 332 YI SITES FLOWN OVER:	18 19	3 2				- 09:30:1	2 FF16H1	NO. = 53
PARAMETERS: 03	NO 17	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .006	BMDL	.003	302	BMDL	-16.5	-22.3	BMDL	MET CHISE?
MAXIMA: **	.160	.186		* *	12.2	**	**	3514. FT.
JULIAN DAY = 332 Y					1(1:44:35	- 12:21:2	5 FLIGHT	NO. = 54
SITES FLOWN OVER:	17 5	6 20						
PARAMETERS: 03 MINIMA:	NO BMDL	NOX BMDL	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MAXIMA:	DMUL	BHUL						
**************************************	n c e				-2.2	-10.8	-3	24:17
	830.	.098			5.5	-2.3	8.9	2147. FT.
JULIAN DAY = 332 Y		-098	NOV 28	TIMES:	5.5	-2.3	8.9	
JULIAN DAY = 332 Y Sites flown over:		.098 THU,	NOV 28 13 21	TIMES:	5.5	-2.3	8.9	2147. FT. No. = 55
SITES FLOWN OVER: PARAMETERS: 03	EAR = 1974	.098 THU, 3 2		TIMES: 14 8	5.5 13:45:26	-2.3	8.9 6 FLIGHT	NO. = 55
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL	EAR = 1974 18 19 NO BMDL	.098 THU, 3 2 NOX .001	13 21	14 8 CO BMDL	5.5 13:45:26 9 OAT -2.9	-2.3 - 16:29:5	8.9	
SITES FLOWN OVER: PARAMETERS: 03	EAR = 1974 18 19 NO	.098 THU, 3 2	13 21	14 8 CO	5.5 13:45:26 9 OAT	-2.3 - 16:29:5	8.9 6 FLIGHT PSCAT	NO. = 55
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL HAXIMA: •Ú73	EAR = 1974 18 19 NO BMDL -26U	.098 THU, 3 2 NOX .001 .282	13 21 SUZ	14 8 CO BMDL **	5.5 13:45:26 9 OAT -2.9 5.6	-2.3 - 16:29:5 DPT -15.3 -1.3	8.9 6 FLIGHT PSCAT •2 1.7	NO. = 55 ALT (MSL) 3705. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMOL MAXIMA:	EAR = 1974 18 19 NO BMDL -26U	.098 THU, 3 2 NOX .001 .282	13 21 SUZ	14 8 CO BMDL **	5.5 13:45:26 9 OAT -2.9 5.6	-2.3 - 16:29:5 DPT -15.3 -1.3	8.9 6 FLIGHT PSCAT •2 1.7	NO. = 55 ALT (MSL) 3705. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: .073 JULIAN DAY = 333 Y SITES FLOWN OVER:	EAR = 1974 18 19 NO BMDL .26U EAR = 1974	.098 THU, 3 2 NOX .001 .282	13 21 SU2 NOV 29	TIMES:	5.5 13:45:26 9 0AT -2.9 5.6	-2.3 - 16:29:5 - DPT -15.3 -1.3	8.9 6 FLIGHT PSCAT .2 1.7 6 FLIGHT	NO. = 55 ALT (MSL) 3705. FT. NO. = 56
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 0473 JULIAN DAY = 333 Y SITES FLOWN OVER: PARAMETERS: 03	EAR = 1974 18 19 NO BMDL .26U EAR = 1974 3	.098 THU, 3 2 NOX .001 .282 FRI.	13 21 SU2 NOV 29	TIMES:	5.5 13:45:26 9 OAT -2.9 5.6 13:44:01 OAT	-2.3 - 16:29:5 - DPT -15.3 -1.3 - 16:19:5	8.9 6 FLIGHT PSCAT •2 1.7	NO. = 55 ALT (MSL) 3705. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: .073 JULIAN DAY = 333 Y SITES FLOWN OVER: PARAMETERS: 03	EAR = 1974 18 19 NO BMDL .26U EAR = 1974	.098 THU, 3 2 NOX .001 .282	13 21 SU2 NOV 29	TIMES:	5.5 13:45:26 9 0AT -2.9 5.6	-2.3 - 16:29:5 - DPT -15.3 -1.3	8.9 6 FLIGHT PSCAT .2 1.7 6 FLIGHT	NO. = 55 ALT (MSL) 3705. FT. NO. = 56

JULIAN DAY = 336	VEAD = 1074	MON -	ner 2	TIMES - O	8.42.55	- 10.25.9		NO = 57
SITES FLOWN OVER:	18 19			14 8	9	- 10:23:) TEIGHT	NO 37
PARAMETERS: 03	NO	NOX	\$02	, το ς	OAT	DeT	BSCAT	ALT (MSL)
MINIMA:	BMDL	BMDL	BMDL	•	-4.8	-4.8		
MAXIMA:	• 086	•112	• 691		.3	8		3274. FT.
JULIAN DAY = 336	VEAR - 1074	MAN	NEC 2	TIMES . 4	0-32-05	- 12-10-6	15 rt -cuT	NO. = 58
SITES FLOWN OVER:		3 2			9	- 12.10.0	, teleu.	100 - 30
PARAMETERS: 03	NO	NOX	502	'ico i	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• 001	.001	-000	BMDL	**	-18.2	• 2	
MAXIMA:	-188	.208	.351	2.6	1.0	-3.4	2.7	1955. FT.
JULIAN DAY = 336	VEAD = 1074	MAN.	057 2	TIMEC . 1	3.13.01	- 15-51-3	A FLICHT	NO. = 50
SITES FLOWN OVER:			3 2	13 21	14 8		O ILIONA	100 - 37
PARAMETERS: 03	NO	NOX	\$02	ς0	OAT	DeT	BSCAT	ALT (MSL)
MINIMA:	BMDL	BMDL	BMDL	RWDL	-3.5	-18-6		,
MAXIMA:	.881	.850	.006	**	3.5	 3		3455. FT.
JULIAN DAY = 337	YFAR = 40~/	THE	DEC 3	TIMES. O	7.20.02	- 00-20-0	2 FI TENT	NO. = 60
SITES FLOWN OVER:	17 5		21 15		1120-02	- 07.20.0		1100 - 00
PARAMETERS: 03	'`NO	NOX	\$02	່ັເວ້ິ	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: BMD		BMDL	.000	BMDL	-14.1	**		
MAXIMA: *:		1.250	11.000	5.0	**	3.7		3292. FT.
JULIAN DAY = 337	YEAD = 107/	THE.	ner 3	TIMEC - 1	4-01-35	- 15.42.3	O FLIGHT	NO. = 61
SITES FLOWN OVER:	17 5			16 23	4.01.55	1314613		NO - 01
PARAMETERS: 03	NO NO	NOX	\$02	60	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .00) BMDL	BMDL	• 66D		6	**		
MAXIMA: .06	3 . 493	.143	• 975		**	-2.6		2033. FT.
JULIAN DAY = 338	YFAR = 1074	WED.	DEC 4	TIMES: 1	1:00:10	- 12:31:0)5 EL TENT	NO. = 62
SITES FLOWN OVER:		,,	7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,	122071	70
PARAMETERS: 03		NOX	\$02	CO	DAT	DPT	BSCAT	ALT (MSL)
MINIMA: BMD	L BMDL	BMDL	.001	BMDL	-23.3	-26.6		
MAXIMA: 4:	* 1 _* 320	1.310	15.600	7.4	**	2.5		2144. FT.
JULIAN DAY = 338	YFAR = 1974	MED-	DEC 4	TIMES: 1	2:04:45	- 14:14-2	S FLIGHT	NO. = 63
SITES FLOWN OVER:		6 20		16 23	2.04.45	, 4. , 4.		110 05
PARAMETERS: 03	NG	NOX	\$ 02	co.	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: BMD	L BMDL	.001	BMDL	BMOL	-2.2	-24.9	•	
MAXIMA: .05	0 .067	-118	.010	9.1	3.0	1.3		2833. FT.
JULIAN DAY = 338	VEAD - 4034		ner 4	TIMEC. 4	4.05.37	_ 15.57.	12 12	NO - 44
SITES FLOWN OVER:		6 20		16 23	-:05:03	- 13:37:	.a Fr16H1	NU • - 04
PARAMETERS: 03		NOX	\$02	CO CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: •03	***	BMDL	• 95 1	BMDL	**	-27.2	••••	
MAXIMA: *		. 674	.188		6.4	3.5		3460. FT.

1111 1 11 11 11 11 11 11 11							
JULIAN DAY = 559 YE	AR = 1974	THU.	DEC 5	TIMES: 07:31:	sn - ne-sn-ne	FLIGHT	NO. = 65
SITES FLOWN OVER:	18 19				75 - 07.70. 0.	, , , , , , , , , , , , , , , , , , , ,	
		3 2			_		
PARAMETERS: 03	NO	NOX	802	CO 0 V		BSCAT	ALT (MSL)
MINIMA: BMPL	BMDL	- 001	BMDL	BMDL -2.	2 -18.4	• 2	
MAXIMA: 044	.234	.267	.610	8.4 8.9	3	3 • 8	3323 · FT ·
•	• -	- 201					•
JULIAN DAY = 339 YE	AR = 1974	THU.	DEC 5	TIMES: 09:53:	23 - 11:23:58	FLIGHT	NO. = 66
SITES FLOWN OVER:	18 19	3 2	13 21				
PARAMETERS: 03	NO	NOX	\$02	CO OA		BSCAT	ALT (MSL)
					•	DJCHI	MET (MOE)
	BMDL	BMDL	• CD1	**			
MAXIMA: **	•26D	.075	• ü2 9	21.	3 9.7		2049. FT.
1111 T. H W = 170 W.	403/			43.00	. 4(.25.7)		NO - 47
JULIAN DAY = 339 YE		THU,	DEC 2	TIMES: 12:08:	09 - 14:20:04	FLIGHT	MO = 01
SITES FLOWN OVER:	18 19	3 2		14 8 9			
PARAMETERS: 03	NO	NOX	S 0 2	CO 04	T DPT	BSCAT	ALT (MSL)
MINIMA: .059	BMDL	BMDL	BMDL	BMDL 2.	9 -11.6	• 3	
MAXIMA: .055	.055	.084	• 199	** 8.		2.8	3233. FT.
	•033	• • • •	• 1.37	•	,	2.0	
JULIAN DAY = 339 YE	EAR = 1974	THU.	DEC 5	TIMES: 13:58:	35 - 15:36:40) FLIGHT	N0. = 68
SITES FLOWN OVER:	18 19		13 21				
FARAMETERS: 03	NO	NOX	\$02	CO OA	T DPT	BSCAT	ALT (MSL)
			.601	BMDL *	-	DUCKI	MET (MOE)
5 · · · · · · · · · · · · · · · · · · ·	BMDL	BMDL					2-74
MAXIMA: .073	. 235	.102	-297	.5 11.	7 11.5		2071. FT.
JULIAN DAY = 339 YI	FAR = 1974	THII.	DEC 5	TIMES: 16:18:	27 - 17:11:12	2 FLIGHT	NO. = 69
JULIAN DAY = 339 Y	EAR = 1974	THU+	DEC 5	TIMES: 16:18:	27 - 17:11:12	? FLIGHT	NO. = 69
SITES FLOWN OVER:	SEE FLIG	HT DES	CRIPTION				
SITES FLOWN OVER: PARAMETERS: 03	SEE FLIG	HT DES	RIPTION SO2	CO OA	T DPT	BSCAT	NO. = 69
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL	SEE FLIG NO BMDL	NOX NOX .0:16	RIPTION SO2 PMDL	CO OA BMDL 2.	T DPT	BSCAT	ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03	SEE FLIG	HT DES	RIPTION SO2	CO OA	T 0PT	BSCAT	
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL	SEE FLIG NO BMDL	NOX NOX .0:16	RIPTION SO2 PMDL	CO OA BMDL 2.	T DPT	BSCAT	ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: •078	SEE FLIG NO BMDL •151	NOX NOX .006 .203	RIPTION SO2 BMDL .034	CO OA BMDL 2. 3.1 6.	T 0PT 9 -3.3 5 .3	85CAT •7 1•8	ALT (MSL) 2024. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: .078 JULIAN DAY = 340 Y6	SEE FLIG NO BMDL •151	NOX .006 .203	CRIPTION SO2 EMDL .004	CO OA BMDL 2. 3.1 6.	T 0PT 9 -3.3 5 .3	85CAT •7 1•8	ALT (MSL) 2024. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YI SITES FLOWN OVER:	SEE FLIG NO BMDL •151 EAR = 1974 18 19	NT DES(NOX .006 .203 FRI, 6 3	RIPTION SO2 EMDL .004 DEC 6 2 21	CO OA BMDL 2. 3.1 6. TIMES: 07:17: 14 8 9	T DPT 9 -3.3 5 .3 15 - 09:18:20	BSCAT •7 1•8	ALT (MSL) 2024. FT. NO. = 70
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YE SITES FLOWN OVER: PARAMETERS: 03	SEE FLIG NO BMDL •151 EAR = 1974 18 19 NO	NOX .0 06 .203 FRI, 6 3	RIPTION SO2 EMDL .004 DEC 6 2 21	CO OA BMDL 2. 3.1 6. TIMES: 07:17: 14 8 9 CO OA	T DPT 9 -3.3 5 .3 15 - 09:18:20 T DPT	85CAT •7 1•8	ALT (MSL) 2024. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YE SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 001	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL	NOX .006 .203 FRI, 6 3 NOX .001	RIPTION \$02 EMDL .004 DEC 6 2 21 \$02 .000	CO OA BMDL 2. 3.1 6. TIMES: Q7:17: 14 8 9 CO OA BMDL 5.	T	BSCAT •7 1•8	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YE SITES FLOWN OVER: PARAMETERS: 03	SEE FLIG NO BMDL •151 EAR = 1974 18 19 NO	NOX .0 06 .203 FRI, 6 3	RIPTION SO2 EMDL .004 DEC 6 2 21	CO OA BMDL 2. 3.1 6. TIMES: 07:17: 14 8 9 CO OA	T DPT -3.3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	BSCAT •7 1•8	ALT (MSL) 2024. FT. NO. = 70
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YE SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 001	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL	NOX .006 .203 FRI, 6 3 NOX .001	RIPTION \$02 EMDL .004 DEC 6 2 21 \$02 .000	CO OA BMDL 2. 3.1 6. TIMES: Q7:17: 14 8 9 CO OA BMDL 5.	T	BSCAT •7 1•8	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YE SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 001 MAXIMA: 058	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL 112	FRI, 6 3 NOX +203 FRI, 6 3 NOX +001 +147	CRIPTION SO2 BNDL .UG4 DEC 6 2 21 SO2 .CGO .451	CO OA BMDL 2. 3.1 6. TIMES: 07:17: 14 8 9 CO OA BMDL 5. 4.8 11.	DPT 9 -3.3 5 .3 15 - 09:18:20 T DPT 2 -8.0 2 5.2	BSCAT •7 1•8) FLIGHT BSCAT	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL) 3468. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 001 MAXIMA: 058 JULIAN DAY = 340 YI	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL 112 EAR = 1974	FRI, 6 3 NOX -203 FRI, 6 3 NOX -001 -147	CRIPTION SO2 EMDL .UG4 DEC 6 2 21 SO2 .CGO .451	CO OA BMDL 2. 3.1 6. TIMES: 07:17: 14 8 9 CO OA BMDL 5. 4.8 11.	DPT 9 -3.3 5 .3 15 - 09:18:20 T DPT 2 -8.0 2 5.2	BSCAT •7 1•8) FLIGHT BSCAT	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL) 3468. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 001 MAXIMA: 058 JULIAN DAY = 340 YI SITES FLOWN OVER:	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL 112 EAR = 1974 18 19	HT DES NOX .0.6 .203 FRI, 6 3 NOX .001 .147	CRIPTION SO2 PMDL	CO OA BMDL 2. 3.1 6. TIMES: Q7:17: 14 8 9 CO OA BMDL 5. 4.8 11. TIMES: 09:10: 14 8 9	T DPT -3.3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	BSCAT .7 1.8) FLIGHT BSCAT	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL) 3468. FT. NO. = 71
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 001 MAXIMA: 058 JULIAN DAY = 340 YI	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL 112 EAR = 1974	FRI, 6 3 NOX -203 FRI, 6 3 NOX -001 -147	CRIPTION SO2 EMDL .UG4 DEC 6 2 21 SO2 .CGO .451	CO OA BMDL 2. 3.1 6. TIMES: 07:17: 14 8 9 CO OA BMDL 5. 4.8 11.	T DPT -3.3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	BSCAT •7 1•8) FLIGHT BSCAT	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL) 3468. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 001 MAXIMA: 058 JULIAN DAY = 340 YI SITES FLOWN OVER:	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL 112 EAR = 1974 18 19	HT DES NOX .0.6 .203 FRI, 6 3 NOX .001 .147	CRIPTION SO2 PMDL	CO OA BMDL 2. 3.1 6. TIMES: Q7:17: 14 8 9 CO OA BMDL 5. 4.8 11. TIMES: Q9:10: 14 8 9 CO OA	T DPT -3.3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	BSCAT .7 1.8) FLIGHT BSCAT FLIGHT BSCAT	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL) 3468. FT. NO. = 71
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 001 MAXIMA: 058 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 058	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL 112 EAR = 1974 18 19 NO	HT DES NOX .0.6 .203 FRI, 6 3 NOX .001 .147 FRI, 6 3	RIPTION SO2 PNDL .004 DEC 6 2 21 SO2 .650 .451 DEC 6 2 21 SO2	CO OA BMDL 2. 3.1 6. TIMES: Q7:17: 14 8 9 CO OA BMDL 5. 4.8 11. TIMES: Q9:10: 14 8 9 CO OA	DPT -3.3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	BSCAT .7 1.8) FLIGHT BSCAT	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL) 3468. FT. NO. = 71
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 001 MAXIMA: 058 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 07 MINIMA: 005	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL 112 EAR = 1974 18 19 NO BMDL	HT DES NOX .0:6 .203 FRI, 6 3 NOX .U01 .147 FRI, 6 3 NOX	CRIPTION SO2 PROL .004 DEC 6 2 21 SO2 .500 .451 DEC 6 2 21 SO2 BMDL	CO OA BMDL 2.3.1 6. TIMES: Q7:17:14 8 9 CO OA BMDL 5.4.8 11. TIMES: O9:10: 14 8 9 CO OA BMDL 2.	DPT -3.3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	BSCAT .7 1.8) FLIGHT BSCAT BSCAT BSCAT BSCAT	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL) 3468. FT. NO. = 71 ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 058 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 07 MINIMA: 005 MINIMA: 005 MAXIMA: 005	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL 112 EAR = 1974 18 19 NO BMDL 030	FRI, 6 3 NOX .001 .147 FRI, 6 3 NOX .001 .147	RIPTION SO2 BMDL .UG4 DEC 6 2 21 SO2 .CGO .451 DEC 6 2 21 SO2 BMDL .G79	CO OA BMDL 2. 3.1 6. TIMES: 07:17: 14 8 9 CO OA BMDL 5. 4.8 11. TIMES: 09:10: 14 8 9 CO OA BMDL 2. 2.6 10.	T	BSCAT .7 1.8) FLIGHT BSCAT BSCAT BSCAT .4 3.8	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL) 3468. FT. NO. = 71 ALT (MSL) 2907. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YESITES FLOWN OVER: PARAMETERS: 03 MINIMA: 058 JULIAN DAY = 340 YESITES FLOWN OVER: PARAMETERS: 07 SITES FLOWN OVER: PARAMETERS: 07 MINIMA: 005 MAXIMA: 061 JULIAN DAY = 340 YESITES FLOWN OVER: PARAMETERS: 07 MINIMA: 005 MAXIMA: 061	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL 112 EAR = 1974 18 19 NO BMDL 030	FRI, 6 3 NOX .001 .147 FRI, 6 3 NOX .001 .147 FRI, 6 3 NOX .067 FRI, FRI, FRI, FRI, FRI, FRI, FRI, FRI,	RIPTION SO2 EMDL .UG4 DEC 6 2 21 SO2 .CGO .451 DEC 6 2 21 SO2 BMDL .G79	CO OA BMDL 2. 3.1 6. TIMES: 07:17: 14 8 9 CO OA BMDL 5. 4.8 11. TIMES: 09:10: 14 8 9 CO OA BMDL 2. 2.6 10.	T	BSCAT .7 1.8) FLIGHT BSCAT BSCAT BSCAT .4 3.8	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL) 3468. FT. NO. = 71 ALT (MSL) 2907. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 058 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 07 MINIMA: 005 MINIMA: 005 MAXIMA: 005	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL 112 EAR = 1974 18 19 NO BMDL 030	FRI, 6 3 NOX .001 .147 FRI, 6 3 NOX .001 .147 FRI, 6 3 NOX .007 FRI, HT DES	CRIPTION SO2 PMDL UG4 DEC 6 2 21 SO2 .CGO .451 DEC 6 2 21 SO2 BMDL .G79 DEC 6 CRIPTION	CO OA BMDL 2. 3.1 6. TIMES: 07:17: 14 8 9 CO OA BMDL 5. 4.8 11. TIMES: 09:10: 14 8 9 CO OA BMDL 2. 2.6 10.	DPT -3.3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	BSCAT .7 1.8) FLIGHT BSCAT BSCAT BSCAT .4 3.8	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL) 3468. FT. NO. = 71 ALT (MSL) 2907. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YESITES FLOWN OVER: PARAMETERS: 03 MINIMA: 058 JULIAN DAY = 340 YESITES FLOWN OVER: PARAMETERS: 07 SITES FLOWN OVER: PARAMETERS: 07 MINIMA: 005 MAXIMA: 061 JULIAN DAY = 340 YESITES FLOWN OVER: PARAMETERS: 07 MINIMA: 005 MAXIMA: 061	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL 112 EAR = 1974 18 19 NO BMDL 030	FRI, 6 3 NOX .001 .147 FRI, 6 3 NOX .001 .147 FRI, 6 3 NOX .067 FRI, FRI, FRI, FRI, FRI, FRI, FRI, FRI,	RIPTION SO2 EMDL .UG4 DEC 6 2 21 SO2 .CGO .451 DEC 6 2 21 SO2 BMDL .G79	CO OA BMDL 2. 3.1 6. TIMES: 07:17: 14 8 9 CO OA BMDL 5. 4.8 11. TIMES: 09:10: 14 8 9 CO OA BMDL 2. 2.6 10.	DPT -3.3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	BSCAT .7 1.8) FLIGHT BSCAT BSCAT BSCAT .4 3.8	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL) 3468. FT. NO. = 71 ALT (MSL) 2907. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 058 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 07 MINIMA: 005 MINIMA: 005 MINIMA: 005 MINIMA: 0061 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 03	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL 112 EAR = 1974 18 19 NO BMDL 030 EAR = 1974 SEE FLIG	FRI, 6 3 NOX .001 .147 FRI, 6 3 NOX .001 .147 FRI, 6 3 NOX .001 .147 FRI, 6 3 NOX .0067 FRI, HT DES NOX	CRIPTION SO2 PMDL UG4 DEC 6 2 21 SO2 .CGO .451 DEC 6 2 21 SO2 BMDL .G79 DEC 6 CRIPTION	CO OA BMDL 2. 3.1 6. TIMES: 07:17: 14 8 9 CO OA BMDL 5. 4.8 11. TIMES: 09:10: 14 8 9 CO OA BMDL 2. 2.6 10.	T	BSCAT .7 1.8 D FLIGHT BSCAT BSCAT BSCAT .4 3.8 S FLIGHT	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL) 3468. FT. NO. = 71 ALT (MSL) 2907. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 078 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 058 JULIAN DAY = 340 YI SITES FLOWN OVER: PARAMETERS: 07 MINIMA: 005 MAXIMA: 005 MINIMA: 005	SEE FLIG NO BMDL 151 EAR = 1974 18 19 NO BMDL 112 EAR = 1974 18 19 NO BMDL 030 EAR = 1974 SEE FLIG	FRI, 6 3 NOX .001 .147 FRI, 6 3 NOX .001 .147 FRI, 6 3 NOX .007 FRI, HT DES	RIPTION S02 PMDL .004 DEC 6 2 21 S02 .000 .451 DEC 6 2 21 S02 BMDL .079 DEC 6 CRIPTION S02	CO OA BMDL 2. 3.1 6. TIMES: Q7:17: 14 8 9 CO OA BMDL 5. 4.8 11. TIMES: 09:10: 14 8 9 CO OA BMDL 2. 2.6 10. TIMES: 12:08: CO OA	DPT -3.3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	BSCAT .7 1.8 D FLIGHT BSCAT BSCAT BSCAT .4 3.8 S FLIGHT	ALT (MSL) 2024. FT. NO. = 70 ALT (MSL) 3468. FT. NO. = 71 ALT (MSL) 2907. FT.

	(GAS DAIA II	4 FFR9	UNI AND	DFT IN	0.0 0.9	D3CN 10 /1		
JULIAN DAY = 34	YEAR = 1975	MAN.	FER 3	TIMES:	08:49:39	- 10:45:04	FLIGHT	NO. = 73
SITES FLOWN OVER:		21 8	19		• • • • • •			
PARAMETERS: 03		NOX	\$02	-0	OAT	Ted	BSCAT	ALT (MSL)
				c _o		- •	52cm1	AL F THEE
MINIMA:	BMDL	BMDL	BMDL		-3.5	-22.0		3290 - FT -
MAXIMA:	• ü2 7	.047	- ≎≎6		. 4	-1.1		25 A.S. + 1 +
								··· ,
JULIAN DAY = 34	YEAR = 1975	MON.	FEB 3	TIMES:	13:34:15	- 15:20:23	FLIGHT	NO = /4
SITES FLOWN OVER:	17 3	2 6	20 36	19 19	3			
PARAMETERS: 03	NO	ÑOX	502	Co	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• ü01	•035	•⊍00		-2.2	-4.2		
MAXIMA:	. 023	.044	• 0 n 9		4.6	1.3		2825. FT.
		• • • • •	• • • •		***			•
JULIAN DAY = 35	YEAR = 1975	TUE	FER 4	TIMES:	08:42:00	- 09:25:28	FLIGHT	$NO_{-} = 75$
SITES FLOWN OVER:					500.000	4		•
PARAMETERS: 03		NOX	\$02	c o	O A T	nP T	BSCAT	ALT (MSL)
MINIMA: .00			301 B#0L		**	Dr I	BMDL	MET ANGES
	· · · · · · · ·	• 012	-	. 6	-2.2		BMDL	943. FT.
MAXIMA: •02	2 • 607	.022	.691	3.0	2.3		BMUL	943. 11.
JULIAN DAY = 37	VEAR - 1075	Tan	1 E D	TIMES -	14.27.14	- 44-03-32	THATE	NO. = 76
		5 9				10.02.2		1100
SITES FLOWN OVER:				42 4			56647	ALT AMOUN
PARAMETERS: 03		NOX	S 0 2	Cū	OAT	OP T	BSCAT	ALT (MSL)
MINIMA: .00		BMDL	BMDL		-11.3			2224 - 7
MAXIMA: .06	1 •მშ8	•1∃6	• 156		-5.1			2384 . FT.
JULIAN DAY = 38	VEAS - 4075	E 0.7	150 7	TIME(.	07-61-55	- 10.43.45	E FI TOUT	NO = 77
SITES FLOWN OVER:			FEB /	11662	37541530	- 97213.4.	, LTION,	100 - 77
				CO	0.47	TRA	00017	ALT (MCL)
PARAMETERS: 03		NOX	\$02	r o	OAT	UPI	BSCAT	ALT (MSL)
MINIMA: BMD		BMDL	BMDL		-11.4		BMDL	
MAXIMA: .05	9 • 072	.098	•528		-7.5		1.6	3308. FT.
**** *** * * * * * * * * * * * * * * *	ucan - 4075		7	T. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	00-10-64	10-24-06	F. 75.11 T	NO - 76
JULIAN DAY = 38					05:40:20	- 10:26:01	FLIGHT	NO. = 78
SITES FLOWN OVER:		5 3	8 15					
PARAMETERS: 03		NOX	\$02	ÇO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .02		BMDL	BMDL	BMDL		**	BMDL	
MAXIMA: -04	6 .051	.033	• ↓∂3	1.6	-5.9	-12.1	1 • 7	3321. FT.
**** **** BAU - 30	WEAR - 4075	F 0.*	r-n -	T.W.C.	40.57.55	43-20-4	5 F1 750=	NA - 30
JULIAN DAY = 38	·	-	•		10:57:59	- 12:29:10	J FLIGHT	NU . = /9
SITES FLOWN OVER:		3 17						
PARAMETERS: 03	NO	NOX	S 0 2	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: -01	3 BMDL	EMDL	BMDL		-8.3	-14.6	BMDL	
MAXIMA: .05	7 .028	.039	•5⊜2		-2.ò	-5.2	2.7	3030. FT.
			,					
					43 86 4-	4		
JULIAN DAY = 38					13:29:12	- 16:07:27	r FLIGHT	NO. = 80
SITES FLOWN OVER:								
PARAMETERS: 03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:						-		
MAXIMA:								FT.

JULIAN DAY = SITES FLOWN OF	38 YEA	R = 1975 SEE FLIG	FRI,	FEB 7	TIMES:	14:05:06	- 14:58:46	FLIGHT	NO. = 81
PARAMETERS:	03	NO	NOX	\$02	co	OAT	DPT	BSCAT	ALT (MSL)
MAXIMA:									FT.
JULIAN DAY =		R = 1975			TIMES:	09:07:20	- 11:31:00) FLIGHT	NO. = 82
SITES FLOWN OF PARAMETERS:	VER: 03	6 20 1	21 13 Nox	2 3 \$02	16 18 CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	•003	BMDL	-001	.021	•	-7.0	-11.3	.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
MAXIMA:	.052	. 145	.158	.077		. 8	-3.3	1.9	3260. FT.
JULIAN DAY =	39 YEA	R = 1975	• TA 2	FEB 8	TIMES:	09:03:55	- 11:22:50) FLIGHT	NO. = 83
SITES FLOWN OF	VER:	6 20	21 2	3 18					
PARAMETERS:	03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
APINIM:	BMDL	BMDL	-001	BMDL	BMDL	-10.4	-11.6		
MAXIMA:	.060	.494	-394	•026	9.2	**	**		4019. fT.
JULIAN DAY =	40 YEA	R = 1975	SUN,	FER 9	TIMES:	08:49:30	- 10:53:35	FLIGHT	NO. = 84
SITES FLOWN OF			21 13	2 3	•				
PARAMETERS:	03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: Maxima:	BMDL	BMDL	BMDL	• 00 0	BMD L	-20-2 -13-4		BMDL 3.0	3231. FT.
maxima:	.023	-010	.019	•06 6	**	-13.4		3.0	3231. 71.
JULIAN DAY =							- 11:27:54	FLIGHT	NO = 85
SITES FLOWN O	VEK:	6 3 NO	5 9 NOX	17 18 \$02	42 41 c ⁰	DAT	DpT	BSCAT	ALT (MSL)
MINIMA:	• 005	BMDL	BMDL	BMDL	BMDL	-20.7	νρ.	Pacul	ME! AMSEN
MAXIMAI	.057	-018	.029	•00 9	**	-14.1			3292. FT.
JULIAN DAY =	40 YEA	R = 1975	SUN.	FEB a	TIMES:	14:07:11	- 15:39:56	FLIGHT	NO. = 86
SITES FLOWN O		6 3	9 17	18 42					
PARAMETERS:	03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	•008 043	- 003	-010	BMDL	.3	-16.5	-22.3		
MAXIMA:	.043	• 031	•052	.017	2.8	-10.4	-13.9		2142. FT.
JULIAN DAY =	_	R = 1975					- 15:42:34	FLIGHT	NO. = 87
SITES FLOWN O		5 3	5 9	17 18	42 41		_		
PARAMETERS: Minima:	O3 BMDL	NO • UÚZ	NOX •007	\$02 •⊕50	CO BMD L	0AT -15.1	DPT	BSCAT	ALT (MSL)
MAXIMA-	.086	.409	•418	•656	2.0	-9.4		.4	1908. FT.
	• • • •	• • • • • • • • • • • • • • • • • • • •	-4,0	•••••	2.0	7.4		1101	1900 - 11 -
JULIAN DAY =	41 YEA	R = 1975	MON.	FEB 10	TIMES:	07:49:10	- 09:52:05	FLIGHT	NO. = 88
SITES FLOWN O		18 5	2 13	21 14	15 16		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
PARAMETERS:	03	NO	NOX	\$02	c o	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.012	BMDL	BMDL	BWDL	BMDL	-14.3	**	PMDL	
MAXIMA:	•055	• U25	.049	• t ^{.,} 5	1.5	8.8	-9.8	• 6	4598. FT.

JULIAN DAY = 41	YEAR = 1975 Mg	N. FEB 10	TIMES: 08:09:00) - 10:17:5	5 FLIGHT	NO. = 89
SITES FLOWN OVER:	19 43 18					
PARAMETERS: 03	NO NO	\$02	EO OAT	DpT	BSCAT	ALT (MSL)
MINIMA:	BMDL BMD	L .000	BMDL -29.4	**	• 1	
MAXIMA:	.263 .28	5 1.180	** 2.1	-6.1	15.3	3387. FT.
•	•					•
JULIAN DAY = 41	YEAR = 1975 MG	N. FEB 10	TIMES: 13:20:18	- 14:43:03	3 FLIGHT	NO. = 90
SITES FLOWN OVER:	10 43 18	•				
PARAMETERS: 03	NO NO		CO OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.000 .00		-2.7	-4.3	•6	
MAXIMA:	•019 •03		3.5	-1.5	15.2	1941. FT.
JULIAN DAY = 41	YEAR = 1975 Mc	N. FEB 10	TIMES: 13:16:40) - 14:58:00) FLIGHT	NO. = 91
SITES FLOWN OVER:	18 5 2					
PARAMETERS: 03	NO NO		CO OAT	DpT	BSCAT	ALT (MSL)
MINIMA: .01	BMDL .0	4 BMDL	BMDL -10.4	-11.6	BMDL	
MAXIMA: .04	2 •044 .05	8 .008	1.2 2.4	-4.6	.3	3058. FT.
	•	- 00				
JULIAN DAY = 43	YEAR = 1975 WE	D. FEB 12	TIMES: 09:37:45	- 10:14:5	5 FLIGHT	NO. = 92
SITES FLOWN OVER:	6 20 21		16 18			
PARAMETERS: 03	NO NO		CO OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	RMpL .00	5 .004	BMDL -6.3		• 5	
MAXIMA:	• 053 • 09	8 .198	5.09		3.5	1893. FT.
JULIAN DAY = 43	YEAR = 1975 WE	D. FEB 12	TIMES: 12:14:28	- 14:02:08	B FLIGHT	NO. = 93
SITES FLOWN OVER:	6 20 21					
PARAMETERS: 03	NO NO	\$02	CO OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL .00	3 -991	-4.0		• 5	
MAXIMA:	•016 •06	3 .078	•3		3.1	1539. FT.
JULIAN DAY = 44				2 - 10:46:57	2 FL16HT	NO. = 94
SITES FLOWN OVER:	23 15 21		•			
PARAMETERS: 03	NO NO		CO OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL PMI		BMDL -7.5	**	BMDL	
MAXIMA:	-040 -06	5 .297	** -1.6	**	4 • 8	2381. FT.
	YEAR = 1975 T			5 - 11:23:0	5 FLIGHT	NO. = 95
SITES FLOWN OVER:						
PARAMETERS: 03			CO OAT	DPT	BSCAT	ALT (MSL)
MINIMA: BMD			BMDL -10.4	-18.4	BMDL	2022
MAXIMA: • 68	3 •156 •17	6 •195	** -1.0	-5.8	3.0	3277. FT.
••••			#**** 43 F4 5	44.45.5		
			TIMES: 13:01:5	1 - 74:75:0	O FLIGHT	NO. = 96
SITES FLOWN OVER:	41 42 18	• , -			00017	41 T (MC) \
PARAMETERS: 03	NO NO		CO OAT	DPT	BSCAT	ALT (MSL)
MINIMA: MAXIMA:	8 MDL 9 ME - 071 - 07		.9 -4.0 **2	-6.4 -2.6	.5 1.9	1559. FT
MARIMAT	.071 .07	£ • 1115	** ~ *C	-2.0	1.7	1237 - 11

	•		,,, 1,4, 0.0	•	200 000	
JULIAN DAY = 44	YEAR = 1975 THUS	EEB 13 1	TIMES: 14:1	3:35 -	16:00:35 FLIGHT	NO. = 97
SITES FLOWN OVER:	18 16 3 2	13 21	20 6			
PARAMETERS: 03	NO NOX	\$02		OAT	DPT PSCAT	ALT (MSL)
MINIMA: .019		BMDL			11.6 BMnL	
MAXIMA: .081		.004	4.4	. 3	-4.2 2.7	1989. FT.
		* 004	7.7	••		
JULIAN DAY = 48	YEAR = 1975 MON.	FEB 17 1	TIMES: 09:1	5:45 -	10:39:50 FLIGHT	NO. = 98
SITES FLOWN OVER:	19 25 20 21					
PARAMETERS: 03	NO NOX	S 0 2	CO	OAT	DPT BSCAT	ALT (MSL)
MINIMA: .006		BMDL	-	2.2		
MAXIMA: .UZ8		•692		4.2		1990. FT.
			•••			•
JULIAN DAY = 48	YEAR = 1975 MON.	FEB 17 1	TIMES: 10:5	3:25 -	12:18:35 FLIGHT	NO = 99
SITES FLOWN OVER:	6 18 5 3	8 15	16			•
PARAMETERS: 03	NO NOX	\$02	r0	DAT	DPT BSCAT	ALT (MSL)
MINIMA: .GC		BMDL	•	2.2		
MAXIMA: .028		.03		5.3		2725. FT.
MAXIMA: *UZG	,154	• (102	2.0	,.,		L. L. J
JULIAN DAY = 48	YEAR = 1975 MON.	FEB 12 1	TIMES: 11:3	2:01 -	14:16:16 FLIGHT	NO. = 100
SITES FLOWN OVER:	The state of the s			21		
PARAMETERS: 03		\$07		OAT	DPT BSCAT	ALT (MSL)
MINIMA: .003		• 002		5	-2.7 .5	
MAXIMA: .037		.076		4.6	.9 1.4	2080. FT.
					• • • • • • • • • • • • • • • • • • • •	
JULIAN DAY = 48	YEAR = 1975 MON.	FEB 17 1	FIMES: 13:3	6:55 -	14:56:45 FLIGHT	NO. = 101
SITES FLOWN OVER:	6 18 5 3	8 15	16			
PARAMETERS: 03	NO NOX	\$02	C O	DAT	DPT BSCAT	ALT (MSL)
MINIMA: .00	3 BMDL .007	BMDL	BMDL		_	
MAXIMA. 03		.004	1.4			2037. FT.
• • • • • • • • • • • • • • • • • • • •			• • •			•
						`
JULIAN DAY = 48	YEAR = 1975 MON.	FEB 17 '	TIMES: 15:1	2:45 -	16:32:10 FLIGHT	NO. = 102
SITES FLOWN OVER:	6 5 3 9	17 23	41			
PARAMETERS: 03	NO NOX	\$02	CO	DAT	DPT BSCAT	ALT (MSL)
MINIMA: .OE	2 BMD1 .007	PMDL	BMDL -	2.2		
MAXINA: .03		. 601	1.5	5.0		2257. FT.
JULIAN DAY = 49	YEAR = 1975 TUE+	FEB 18	TIMES: 07:2	5:42 -	09:04:02 FLIGHT	NO. = 103
SITES FLOWN OVER:	18 19 36 20	6 2	3			
PARAMETERS: 03	KON ON	\$ 0 2	C O	DAT	DPT BSCAT	ALT (MSL)
MINIMA: .OC	2 BMDL .001	• 661	BMDL	• 3	-2.0 .8	
MAXIMA: .04	8 .136 .276	•663	**	3.0	.0 9.6	1609 . FT.
				- · -	, , , , , , , , , , , , , , , , , , ,	
JULIAN DAY = 50	YEAR = 1975 WED.	FEB 19	TIMES: 07:2	2:15 -	09:17:00 FLIGHT	NO. = 104
SITES FLOWN OVER:	6 20 13 2	3 16	18 41			
PARAMETERS: 03	NO NOX	\$ 0.2	CO	DAT	DPT ESCAT	ALT (MSL)
MINIMA:	BMDL BMDL	BFDL	BMDL -	5.9	-8.1 .7	
MAXIMA:	•159 •151	• 212		5	-4.6 3.4	1847. FT.
				-	- "	** ** * * * * * * * * * * * * * * * *

JULIAN DAY = 50 Sites flown over:	YEAR = 1975	WED,	FEB 19	TIMES:	11:56:32	- 15:45:0	Z FLIGHT	NO. = 105
PARAMETERS: 03	NO BMDL	NOX BMDL	SO2 BMDL	CO	0AT -5.2	0PT -27.0	BSEAT RMBL	ALT (MSL)
MAXIMA:	769	875			3.0		9.3	3788. FT.
BAREAL	•107	.013	11 • 600		3.0	-5.1	y•3	3/00. 11.
JULIAN DAY = 51				TIMES:	07:29:06	- 11:29:0	1 FLIGHT	NO. = 106
SITES FLOWN OVER:		43 43	43					
PARAMETERS: 03	NO	NOX	\$02	CO	TAG	DPT	BSCAT	ALT (MSL)
MINIMA: BMD		BMDL	BMDL	BMDL	-2.2	-17.0		
MAXIMA: .US	3 1.240	1.240	•712	2.4	**	**		4553. FT.
JULIAN DAY = 51 SITES FLOWN OVER:		THU • 19 36	FEB 20 6			- 09:12:4	2 FLIGHT	NO. = 107
PARAMETERS: 03	NO	NOX	\$02	CO	OAT	Del	BSCAT	ALT (MSL)
MINIMA: .DO	3 BMDL	BMOL	BMDL	•	6	-18-2	BMDL	
MAXIMA: .05	1 -116	.177	.413		5•2	-1.5	2.4	2892. FT.
JULIAN DAY = 51	YFAR = 1975	THU.	FFR 20	TIMES -	10-45-05	- 13:00:5	5 F1 T6HT	NO. = 108
SITES FLOWN OVER:			43 43		43 43			3 43 43
PARAMETERS: 03		NOY	\$02	co	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	B Mp L	BMD	.001	• •	•8	-14-4	•1	
MAXIMA:	. 007	.014	.001		10.6	-5.7	1.2	2907. FT.
	YEAR = 1975					- 14:43:1	O FLIGHT	NO. = 109
SITES FLOWN OVER:	• • • • • • • • • • • • • • • • • • • •	6 2		15 23				()
PARAMETERS: 03		NOX emdl	SO2 BMDL	BWD F CO	OAT	ppT -16.6	BSCAT	ALT (MSL)
SO. :AMINIMA: .06		.045	.0n8		-2.2 12.2	-1.1		3381. FT.
MAKIMA: •UC	U • U,c 1	.043	• ∪ੁ10	•6	12.2	~101		39014 114
JULIAN DAY = 51				TIMES:	14:52:15	- 15:32:3	5 FL16HT	NO. = 110
SITES FLOWN OVER:								
PARAMETERS: 03	NO	NOX	205	€0	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: Maxima:								FT.
JULIAN DAY = 52	YEAR = 1975	EDT	EED 24	TIMEC.	11-14-24	- 16-11-0	O FLICHT	NO. = 111
JULIAN DAY = 52 SITES FLOWN OVER:	, ,	3 4	5 6		9	10-11-0	, , 61011	///
PARAMETERS: 03		NOX	\$02	co	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .00		.001	BMDL	BMDL	5.6	-3.6		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
MAXIMA: .G7		.561	1.650	8.3	17.9	2.9		4977. FT.
· · · · · · · · · · · · · · · · · · ·	. • • • • • •							
	YEAR = 1975				08:10:10	- 09:48:0	O FLIGHT	NO. = 112
SITES FLOWN OVER:		21 2	3 16				0.01-	
PARAMETERS: 03		NOX	\$02	03	OAT	Tqq -20 0	BSCAT	ALT (MSL)
MINIMA:	BMOL	BMDL	BMDL	BMDL	-2.2	-20•0 -5•8	840L 8	3332. FT.
MAXIMA:	.060	.089	. 68	• 7	4.2	~ ⊅•∂	• 6	apar e file

JULIAN DAY = 57	YEAR = 1975 WED.	FEB 26	TIMES: 0	8:25:55	- 11:46:	50 FL16H	T NO. = 113
SITES FLOWN OVER:	6 20 21 3	2 3	16 18	6 3	5 9	17 18	42 41
PARAMETERS: 07	NO NOX	\$02	c o	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .00		BMDL	BMDL	-3.5	-20.0		
MAXIMA: .OF	•	• 508	1.6	6.7	-5.2		4102. FT.
	000	- 50					·
JULIAN DAY = 57	YEAR = 1975 WED.	FEP 26	TIMES: 0	9:58:30	- 11:02:	15 FLIGH	T NO. = 114
SITES FLOWN OVER:	6 3 5 9	17 18				,	
PARAMETERS: 07	NO NOX	\$02	co	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL BMDL	BMDL	.1	.6	-10.2	• 2	
MAXIMA:	.140 .179	. 281	2.6	4.6	-5.4	1.2	2001. FT.
							-
JULIAN NAY = 57	YEAR = 1975 WED,	FEB 26	TIMES: 1	1:43:54	- 14:35:	09 FLIGH	T NO. = 115
SITES FLOWN OVER:			16 18	6 3	5 9	18 42	40
PARAMETERS: 07		\$02	co	OAT	0 p T	BSCAT	ALT (MSL)
MINIMA:	BMOL BMOL	BMDL	BMDL	. 9	-12.9	• 1	
MAXIMA-	.094 .120	.685	8.0	**	1.8	1.2	2046. FT.
•							·
JULIAN DAY = 58	YEAR = 1975 THU,	FEB 27	TIMES: 0	6:54:55	- 09:29:	00 FLIGH	T NO. = 116
SITES FLOWN OVER:							
PARAMETERS: 03	NO NOX	\$ 02	CO	DAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL BMDL	BMDL	BMDL	-4.8		• 2	
MAXIMA:	.788 .871	2.390	3.5	3.0		7.1	3497. FT.
						,	
	YEAR = 1975 THU,				- 14:50:	03 FL16H	T NO. = 117
SITES FLOWN OVER:	23 16 15 14	21 13	2 5	18	,		
PARAMETERS: 03	NO NOX	\$02	CO	DAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BNDL BMDL	• UD 1	BMDL	2		•1	
MAXIMA:	•028 •040	. 991	3.2	5.9		1.1	1973. FT.
						•	
JULIAN DAY = 59	YEAR = 1975 FRI.	FEB 28	TIMES: 0	8:05:55	- 09:59:	O5 FLIGH	T NO. = 118
SITES FLOWN OVER:							
PARAMETERS: 03	****	\$ 0 2	CO	TAO	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL BMDL	BMDL	BMDL	-1.6		. 1	
MAXIMA:	-018 -037	•67 3	2.7	4.8		2.5	3389. FT.
JULIAN DAY = 59	VEAD - 1075 #-*	frn 70	TTMEA - 0	0.02.44	40-40	24	
SITES FLOWN OVER:				7:05:40	- 10:48:	20 FL16H	T NO. = 119
PARAMETERS: 03		.,	-		A - -	0.6	
rG. : AMINIMA:		\$02	Ç0	TAO	DP T	BSCAT	ALT (MSL)
MAXIMA: .05		BMDL	BMDL	-2.2	-18.4	.1	3460
	U •U17 •U94	.007	6.3	6.0	.1	2.1	3409. FT.
JULIAN DAY = 59	YEAR = 1975 FRI,	FFR 78	TIMES - 4	2.24.65	_ 17.57.	/ E . E . T C !!	T NO. = 120
SITES FLOWN OVER:				C-E0:43	13.33.	-> artou	1 NO - 120
PARAMETERS: 03	NO NOX	\$ 02	CO 18	OAT	DPT	BSCAT	A1 7 (MC) 3
MINIMA:	BMDL BMDL	502 EMDL		.9	UP 1		ALT (MSL)
MAXIMA:	• 954 • 114	• 35	9MDL 1.8			.3	24/7
HA A COLA	FU. 9 6114	• 3.3	1 • 6	7.1		1.7	2n63. FT.

JULIAN DAY = 60 Y	EAR = 1975 SAT.	MAR 1	TIMES: 09:14:1	2 - 12:16:	17 FLIGH	IT NO. = 121
SITES FLOWN OVER:	SEE FLIGHT DES					
PARAMETERS: 03	NO NOX	\$ 02	CO OAT		BSCAT	ALT (MSL)
MINIMA:	BMDL BMDL .351 .384	• ୍ର ୍	BMDL -5.1		• 5	
MAXIMA:	.351 .384	•535	9.3 3.4	-•3	2 • 3	2853. FT.
JULIAN DAY = 61 Y	E 8 D - 1075 CITM	WAD 2	TIMES - 08.00.	r - 0000501		T NO - 122
SITES FLOWN OVER:	6 20 21 13			15 - 09:25:	O FLIGH	11 NO 122
PARAMETERS: 03	NC NOX	502	CO OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .D29	BMDL BMDL	Přint	BMDL -13.7		BMDL	MEI (MOE)
GRO. :AMIKAM	•009 •023	• CG4	6.5 -5.7		1.6	1973. ft.
	1009	•004	***	10.0	,	17130 710
JULIAN DAY = 63 Y	EAR = 1975 TUE.	MAR 4	TIMES: 06:39:0	11 - 09:53:	11 F. TGH	T NO. = 123
SITES FLOWN OVER:	23 16 15 14			4 13 2	5 18	
PARAMETERS: 03	NO NOX	\$02	CO OAT		BSCAT	ALT (MSL)
MINIMA: .000	BMDL BMDL	BMDL	BMDL -9.0		BMDL	
MAXIMA: .063	.616 .664	.955	5.4 .1		6.2	2104 . FT
	0010			****		2.0.0
JULIAN DAY = 63 Y	EAR = 1975 TUE.	MAR 4	TIMES: 07:11:1	5 - 09:44:	55 FLIGH	T NO. = 124
SITES FLOWN OVER:	23 16 15 14					43 19
PARAMETERS: 03	NO NOX	\$02	CO 0A1	DeT	BSCAT	ALT (MSL)
MINIMA: BMDL	BMDL BMDL	• 690	BMDL -5.3		• 4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
MAXIMA: .076	1.160 1.210	3.260	7.8 -1.1		16.8	2423. FT.
	10100 10210	J. 1.00	,	'		E1230 113
JULIAN DAY = 63 Y	EAR = 1975 TUE,		TIMES: 11:59:4	D - 14:46:4	5 FLIGH	T NO. = 125
SITES FLOWN OVER:	23 16 15 14	21 13	2 5 18 1	4 13 2	5 18	43 19
PARAMETERS: 03	NO NOX	SO 2	CD OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .014	BMDL -005	. 690	BMDL -2.9	-17.7	• 1	
MAXIMA: .056	.066 .150	-168	** 5.5	-5.4	8.1	2168. FT.
JULIAN DAY = 63 Y						
SITES FLOWN OVER:	23 16 15 14					43 19
PARAMETERS: 03	NO NOX	S 0 2	CO OAT		BSCAT	ALT (MSL)
PCO : AMINIM	-004 -016	• 00 0	BMDL -2.2		.7	
TAXIMA: .095	.203 .229	•25 6	5.7 4.0)	6.5	2016. FT.
JULIAN DAY = 64 Y	407F NES	*** F	****** 07.84.4	00 - 40-40-	EO E1 764	IT NO - 127
			99 70 71	5 1 5 23)U FL167	11 NO 121
SITES FLOWN OVER:						(#4.)
PARAMETERS: 03	NO, NOX	\$02	CO OA1	- •	BSCAT	ALT (MSL)
MINIMA: .005		BMDL	BMDL -2.2		- 3	
MAXIMA: .056		.296	9-3 6-1	-1.1	5 • 4	2675. FT.
JULIAN DAY = 64 Y	CAD - 4075 'UFP	MAD F	TIMES - 07.02.5	22 - 10.20-	42 F1 TE1	IT NO. = 179
			2 3 5	19 6 2	8 21	15 23
SITES FLOWN OVER:	43 18 19 36				BSCAT	
PARAMETERS: 03	NO NOX	\$02	CO OAT			ALT (MSL)
MINIMA: .076	BWDF BWDF	• ⊍≏0	BMDL .		. 4	2011
MAXIMA: .049	•101 •112	•196	** 5.9	•	1.8	2046. FT.

	4055			~	47.04.43	45.50.	12 EL TEUT	NO_ = 129
JULIAN DAY = 6		MED.	MAR 5	TIMES:	75:04:42	- 15:50:		•
SITES FLOWN OVE		6 2			43 18	19 36	- •	-
· · · · · - · - · · •	D3 NO	NOX	S 0 2	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .	ე∃ე BMDL	• 001	<u>- 070</u>		7.1		• 5	
MAXIMA: .	087 • 021	• 050	.í48		14.9		1.6	1930. FT.
						44 **		40 - 470
JULIAN DAY = 19				TIMES:	13:06:46	- 14:55:	21 FF16H1	NO. = 130
SITES FLOWN OVE	R: SEE FLIG	HT DES						
PARAMETERS:	03 NO	NOX	S 0 2	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .	OC2 BMDL	BMDL	BMDL	BMDL	10.0	4.6	• 1	
MAXIMA: .	052 -359	.420	. 286	2.3	20.2	**	6.8	1787. FT.
							<u>.</u>	
JULIAN DAY = 19	4 YEAR = 1975	SUN	JUL 13	TIMES:	13:04:11	- 15:02:	16 FLIGHT	NO. = 131
SITES FLOWN OVE	R: 99							
PARAMETERS:	03 NO	NOX	\$02	60	DAT	DPT	BSCAT	ALT (MSL)
MINIMA: .	010 BMDL	BMDL	BMDL		4.4		-,3	
	052 +309	.364	.664		11.4		6.2	1776. FT.
JULIAN DAY = 19	5 YEAR = 1975	MON.	JUL 14	TIMES:	07:26:09	- 09:21:	59 FLIGHT	N0. = 132
SITES FLOWN OVE	R: 2 2	3 5					-	
	03 NO	NOX	S 02	CO	DAT	DPT	BSCAT	ALT (MSL)
• •	038 BMDL	BMDL	• 00 0	BMDL	16.4	7.4	• 5	
	050 -155	.219	. 065	4.6	20.7	13.4	6.8	3597. FT.
					_			. •
JULIAN DAY = 19	5 YEAR = 1975	MON.	JUL 14	TIMES:	08:01:51	- 10:10:	16 FLIGHT	NO = 133
SITES FLOWN OVE	R: 25 2	3 6	5					•
PARAMETERS:	03 NO	NOX	\$02	c٥	DAT	DPT	BSCAT	ALT (MSL)
	DG7 BMDL	BMDL	. 691	BMDL	14.7	8.2	• 3	***************************************
	048 -196	_264	. (134	1.9	21.9	15.0	5.1	2344. FT.
-	• • • • • • • • • • • • • • • • • • • •	•••	• 1,7= -	•••	2,			£3446
JULIAN DAY = 19	5 YEAR = 1975	MON,	JUL 14	TIMES:	11:13:42	- 12:54:	12 FLIGHT	NO. = 134
SITES FLOWN OVE	R: 25 2	3 6	5					
PARAMETERS:	03 NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .	U12 BMDL	BMDL	. სმ ი	BMDL	15.0	10.0	- 4	
MAXIMA: .	ũ69 • J62	.222	.025	**	27.4	16.3	2.3	3053 . FT.
JULIAN DAY = 19		,	JUL 14	TIMES:	12:20:25	- 13:53:	05 FLIGHT	NO. = 135
SITES FLOWN OVE		6 7	25					
PARAMETERS:	03 NO	NOX	\$02	CO	DAT	DPT	BSCAT	ALT (MSL)
MINIMA: .	O38 BMDL	BMDL	BMDL	BMDL	**	**	•1	
MAXIMA: .	077 .011	.034	.054	2.2	27.3	23.5	1.5	2199. FT.
		-						
JULIAN DAY = 19		TUE,	JUL 15	TIMES:	02:59:55	- 10:17:	25 FLIGHT	NO. = 136
SITES FLOWN OVE	R: 25 2	36	5 2	3 6	5 5			, = •
PARAMETERS:	03 NO	NOX	\$ 0 2	CO	TAO	DPT	BSCAT	ALT (MSL)
MINIMA: .	U'2 BMDL	.000	PMDL	BMD	19.7	10.0	.6	
. : AFIXAM	113 -443	.544	.270	4.8		17.5	8.9	3665. FT.
			- *			,,,,	0.,	2021 F14

JULIAN DAY = 1						11:18:08	- 14:15:5	3 FLIGHT	NO. = 137
SITES FLOWN OV	ER:	25 2	3 6	5 2	3 (5 25			
PARAMETERS:	03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• 0 3 Z	BMDL `	BMDL	BMDL	BMDL	**	8.9	• 2	
:AMIXAM	.086	•114	-148	.671	3.6	28.9	**	2.1	3513. FT.
				•	•	-0-7			
JULIAN DAY = 1				JUL 75	TIMES:	13:18:25	- 15:26:25	FLIGHT	NO. = 138
SITES FLOWN OV		33 55 6	66 88						
PARAMETERS:	03	NO	NOX	S 0 2	CO	OAT	DP T	BSCAT	ALT (MSL)
MINIMA:	.037	BMDL	BMDL	• £0 0	BMDL	**	11.2	. 3	
MAXIMA:	•157	•013	.060	• 93 6	2.1	29.5	27.9	3 • 1	4686. FT.
100 TAN BAY - 4	_ ~	FAD - 4005						_	
JULIAN DAY = 1				JUL 16	IIMES:	07:17:03	- 08:50:53	FLIGHT	NO = 139
SITES FLOWN OV		24 2	3						
PARAMETERS:	03	NO	NOX	\$02	CO	TAO	DPT	BSCAT	ALT (MSL)
	• 0 3 3	BMDL	BMDL	• 09 0	BMDL	**	* *	•1	
MAXIMA:	. 065	• o77	•110	- 041	2.4	25.4	* *	4.7	3607. FT.
							•		
	07 1	4075		47	*****	00 07 07	00 10 00		
JULIAN DAY = 1					ITWE2:	04:02:02	_ 09:40:20	LETPHI	NO. = 140
SITES FLOWN OV		24 2	3 6	5		_			
PARAMETERS:	03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	-014	BMDL	-002	.000	BMDL	19.6	8.9	1.0	
MAXIMA:	.134	• 0 ⁴⁹	-106	•113	3 • 4	28.0	17.6	7.2	3845. FT.
1111 74 N NAV - 1	07 W1	EAD - 4	MED	1111 14	TIMEC.	11:21:34	- 43.57.4/	EL TOUT	NO - 1/1
JULIAN DAY = 1			3 6	JUL 16 5	1 TME 2 1	11:21:34	- 12:5/:14	LEIGHI	NU 141
SITES FLOWN OV		- · -	_	=					
PARAMETERS:	03	NO	NOX	S 0 2	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• 023	BMDL	BMDL	.000	BMDL	22.0	10.6	1.9	2//7 57
MAXIMA:	.097	.064	.111	•0g1	4.8	30.6	16.7	2.4	2443. FT.
JULIAN DAY = 1	97 Y	EAR = 1975	MEN.	Jul 16	TIMES:	12:27:35	- 13:45:00	FLIGHT	NO = 142
SITES FLOWN OV		2 3	6 5	24	1211033	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
PARAMETERS:	03	NO	NOX	\$02	cΟ	OAT	DpT	BSCAT	ALT (MSL)
MINIMA:	.059	BADL	BMDL	BMDL	. 4	23.7	DP 1	2.0	NET COLD
MAXIMA:	.037	•118	135	• 6-7 0		27.7		8.6	2553. FT.
MAXIMAT	• 000	• • • •	. 133	• U- U	3 • 3	27.7		8.0	27730
JULIAN DAY = 1	98 YI	EAR = 1975	THU,	JUL 17	TIMES:	07:15:34	- 08:59:19	FLIGHT	NO = 143
SITES FLOWN OV	ER:	25 2	3 6	5					
PARAMETERS:	03	NO	NOX	\$ 02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.006	BMDL	BMDL	BMDL	BMDL	22.5		2 • D	
MAXIMA:	-077	•445	.500	1.420	3.5	26.8		8.2	2101. FT.
PRESENT		• ~ ~ >	- J J J	14350		2013		-	
								_	
JULIAN DAY = 1	98 1	EAR = 1975	THU+	JUL 17	TIMES:	09:09:08	- 10:38:18	FLIGHT	NO = 144
SITES FLOWN OV		25 2	3 6	5					
PARAMETERS:	03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.017	BMDL	•002	.070	BMDL	22.4	15.0	2.4	
MAXIMA:	099	.079	.149	. 59	1 • 8	29.0	20.7	8.7	2160. FT.
- -		•	-						

JULIAN DAY = 1	98 YE	AR = 1975	THU.	JUL 17	TIMES:	11:17:46	- 13:11:41	FLIGHT	NO. = 145
SITES FLOWN OV		25 2	3 6	5					
PARAMETERS:	0 3	NO	NOX	\$02	c٥	DAT	DPT	BSCAT	ALT (MSL)
MINIMA:	0:5	BMDL	EMDL	PMDL	BMDL	19.2		2.3	
MAXIMA:	.113	.178	205	.201	2.9	31.0		13.0	4177. FT.
maxima.	• • • •	• • • •		• - (: ;	20,	3			
JULIAN DAY = 1	IOR VE	AD = 1075	THU.	JUL 17	TIMES:	12:47:47	- 13:43:17	FLIGHT	NO. = 146
SITES FLOWN ON		2 6	5	102 ,.					
	03	้ทอ	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
PARAMETERS:	_			BMDL	BMDL	26.2	14.6		
MINIMA:	• 041	BMDL	.003		**	33.1	20.9	1:3	1749. FT.
MAXIMAI	.098	.013	-074	•¢ ₀ 5		2200	2007	7**	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
****	100 W	AD - 4075	•••	10	71MFC-	07-04-53	- 09:55:08	EI TEHT	NO = 147
JULIAN DAY = 1		24 2	3 6	5 2	3 (- 07.77.00	LIGHT	10 - 141
SITES FLOWN OF			-				N T	BSCAT	ALT (MSL)
PARAMETERS:	03	NO.	NOX	\$ 02	CO.	OAT	• • •	•	MET (MOE)
MINIMA:	•012	BMDL	BMDL	BMDL	BMDL	22.1	13.6	1.3	7404 FT
MAXIMA:	.071	.087	•127	• 101	2.9	28.4	21.6	3.1	3681. FT.
		4075		45		20.20.24	44-24-24	£1.16.117	NO - 449
JULIAN DAY =					IIME2:	08:39:36	- 11:24:31	FLIGHT	NU - 140
SITES FLOWN OF		SEE FLIG							
PARAMETERS:	Q 3	NO	NOX	502	CO	OAT	** *	BSCAT	ALT (MSL)
WINIMA:	BMDL	BMDL	BWDF	• ∪⊋D	BMDL	22.4	12.0	1.9	
MAXIMA:	• 120	- 047	• 0 5 5	•002	9.6	31.2	22.5	3.6	3606. FT.
JULIAN DAY =	199 YI	EAR = 1975	FRI,	JUL 18	TIMES:	11:34:25	- 13:55:05	FLIGHT	NO - = 149
SITES FLOWN O	VER:	2 3	6 5	2 3	6 9	5 25			
PARAMETERS:	03	NO	NOX	507	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• 6 2 6	BMDL	BMDL	BMDL	BMDL	23.2	13.6	1 - 2	
MAXIMAT	.075	.240	.271	.097	2.8	30.6	20.7	4.7	2404. FT.
JULIAN DAY =	199 Yı	EAR = 1975	FRI.	JUL 18	TIMES:	11:52:11	- 13:49:11	FLIGHT	NO_ = 150
SITES FLOWN O	VER:	SEE FLIG	HT DES	CRIPTION					•
PARAMETERS:	03	NO	NOX	\$ 02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.042	BMDL	BMDL	.:01	.0	21.9	15.5	1.2	
MAXIMA:	• 1n3	• U16	.023	-007	2.4	32.5	22.0	3 • 8	3561. FT.
					-			-	
JULIAN DAY =	200 YI	EAR = 1975	SAT.	JUL 19	TIMES:	07:07:14	- 09:09:46	FLIGHT	NO. = 151
SITES FLOWN OF		25 2	3 6	5	_		-, -,-,-	· · •	
PARAMETERS:	0?	NO	NOX	502	Co	DAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.006	BMDL	BMDL	- 650	BMDL	21.7	17.0	.6	
MAXIMA:	.029	• 057	.074	-108	2.8	27-1	22.6	2.1	2172. FT.
- •			-0.4	71.5	2.00			1	E116 F14
JULIAN DAY =	200 YE	EAR = 1975	SAT.	JUL 19	TIMES:	08:18:28	- 09:48:08	EL TGUT	NO. = 152
SITES FLOWN OF		25 2	3 6	5			07.40.00	LLION	MO4 - 17E
PARAMETERS:	03	NO	NOX	\$02	CO	TAO	DPT	DCCAT	41 T (mni 1
MINIMA:	•012	BMDL	BMDL	BMOL				BSCAT	ALT (MSL)
MAXIMA:	[129	•030	.057	• 1a-1	8MDL 3.9	21.6	15.6	3.4	7/77 **
	• • •	-0.70	• 60)	• 247.1	3.9	30.7	21.6	2.1	3472. FT.

JULIAN DAY = 200 SITES FLOWN OVER:	25 2 3	SAT.	5	TIMES:	11:19:23 -	12:52:03	FLIGHT	NO. = 153
PARAMETERS: 03		NOX	205	CO	OAT	DPT E	SCAT	ALT (MSL)
MINIMA: .015		BMDL	•600	BMDL	26.2	20.0	• 8	
MAXIMA: .063	•058	.102	.092	1.0	33.8	23-2	2.1	2217. FT.
JULIAN DAY = 200			JUL 19	TIMES:	12:34:28 -	14:10:13	FLIGHT	NO. = 154
SITES FLOWN OVER:		6 5	25					
PARAMETERS: 03		NOX	205	CO	OAT	DPT B	SCAT	ALT (MSL)
MINIMA: •037		BMDL	• 66 0	BMDL	25.9	16.8	.6	
MAXIMA: .062	• 042	.066	.048	3.3	31.2	23.0	2.2	2091. FT.
JULIAN DAY = 203 SITES FLOWN OVER:		TUE,	JUL 22	TIMES:	07:59:00 -	09:50:05	FLIGHT	NO. = 155
PARAMETERS: 03	NO I	NOX	\$02	CO	DAT	DPT B	SCAT	ALT (MSL)
MINIMA: -011		BMDL	BMDL	BMDL	22-1	11.7	.7	
MAXIMA: .063	.378	• 3 ⁹ 3	.038	3.1	28•2	20.2	3.8	3125 · FT ·
JULIAN DAY = 203 Sites flown over:		TUE,	JUL 22	TIMES:	00:18:24 -	10:36:44	FLIGHT	NO. = 156
PARAMETERS: 03		NOX	\$ 02	c o	OAT	DPT B	SCAT	ALT (MSL)
MINIMA: +096		BMDL	BWDF	BMDL	23.1	14.6	• 2	1121 (1752)
MAXIMA: .065		.163	•004	2.0	30.1	19.2	4.5	1811. FT.
JULIAN DAY = 203 SITES FLOWN OVER:		TUE,	JUL 22	TIMES:	11:27:05 -	13:17:05	FLIGHT	NO = 157
PARAMETERS: 03		NOX	\$02	CO	DAT		SCAT	ALT (MSL)
MINIMA: .U44		BMDL	BMDL	BMDL	22.7	8.5	- 8	
MAXIMA: .116	.145	•206	.051	2.4	32.8	20.9	3 - 4	3696. FT.
JULIAN DAY = 203 SITES FLOWN OVER:		TUE,	JUL 22	TIMES:	13:15:31 -			
PARAMETERS: 03	NO	NOX	\$02	CO	OAT	DPT E	SCAT	ALT (MSL)
MINIMA: .063		BMDL	BMDL	BMDL	26.2	14.6	1.0	
MAXIMA: .121	• 630	• 055	.004	.8	33.8	21.6	2.9	2212. FT.
JULIAN DAY = 204 Sites flown over:		WED,	JUL 23	TIMES:	07:14:40 -	09:03:05	FLIGHT	NO. = 159
PARAMETERS: 03	NO	NOX	\$02	CO	OAT	DPT (SCAT	ALT (MSL)
MINIMA: .022			.000	.1	27.5	18.8	• 9	
MAXIMA: .064			.071	2.5	31.0	23.4	6.9	2689. FT.
JULIAN DAY = 204 SITES FLOWN OVER:	YEAR = 1975 24 2	WED,	JUL 23	TIMES:	08:13:53 -	10:06:33	FLIGHT	NO. = 160
PARAMETERS: 03		NOX	502	CO	OAT	DPT 1	BSCAT	ALT (MSL)
MINIMA: 020		•001	BMDL	BMDL	26.2	19.6	. 8	
MAXIMA: .174		-343	•142.6	5.4	33.8	24.6	6.6	2200. FT.

						4 73.54	41-17-7	1 F1 T6 UT	NO = 141
JULIAN DAY =			WED,	JUL 23	TIMES: T	1:32:01	- 14:47:5	i LETOUI	140 101
SITES FLOWN O		24 2	3 6	5 2	3 6	5 24			()
PARAMETERS:	03	NO	NOX	\$02	.co	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMOL	BMDL	BMDL	BMDL	BMDL	23.1	10.0	• 1	4000
MAXIMA:	.068	-338	• 493	.418	2.7	35.D	25.3	4.2	1822. FT.
					_		40.00.4		443
JULIAN DAY =	205	YEAR = 1975	THU,	JUL 24	TIMES: D	7:00:35	- 10:03:1	2 F [16 H I	NU. = 162
SITES FLOWN C	VER:	25 2	3 6	5 2	3 6	5 25			
PARAMETERS:	03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• 009	BMDL	PMDL	BMDL	BMDL	21.3	17.5	• 6	
MAXIMA:	.053	1 • 4 º Ö	1.340	.002	2.9	26.0	21.8	2.9	1968. FT.
JULIAN DAY =	205	YEAR = 1975	THU.	JUL 24	TIMES: 1	1:22:25	- 14:18:4	O FLIGHT	NO. = 163
SITES FLOWN (22 2	3 6	5 2	36	5 22			
PARAMETERS:	03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• D^-2	BMDL	.002	BMDL	BMDL	**	19.6	• 2	
MAXIMA:	.080	-240	.294	.047	7.1	33.6	* *	3.4	2188. FT.
·	•	_	•						
JULIAN DAY =	205		THU,	JUL 24	TIMES: 1	3:50:09	- 16:19:1	4 FLIGHT	NO. = 164
SITES FLOWN	DVER:	30 31	32 33	34 35	36 37	38 39	40 41	42	
PARAMETERS:	03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.001	BMDL	BMDL	- 601	BMDL	24.8	18.0	• 8	
MAXIMA:	.049	• 1¢7	.181	.135	3.0	28.6	21.9	1.7	1828. FT.
JULIAN DAY =					TIMES: 0	7:17:19	- 09:25:4	4 FLIGHT	$NO \cdot = 165$
SITES FLOWN	OVER:	22 14	2 3	6 5					
PARAMETERS:	03	NO	NOX	205	co.	OAT	DpT	BSCAT	ALT (MSL)
MINIMA:	• 010	BMDL	BMDL	BMDL	BMDL	15.4	**	•1	
MAXIMA:	.066	1.340	1-330	5.300	2.9	23.5	18.0	10.9	5927. FT.
JULIAN DAY =					TIMES: 0	8:10:48	- 09:58:4	3 FLIGHT	N0. = 166
SITES FLOWN		22 2	3 6	5 14					
PARAMETERS:	0.3	NO	NOX	\$ 02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• 04.6		EMDL	BMDL	BMDL	15.5	10.0	• 2	
MAXIMA:	- 070	1.390	1.400	3.110	2.4	28.5	21.6	14.1	6059. FT.
A 1 4 A A A A A A A A A A A A A A A A A	26.4				_				
JULIAN DAY =							- 13:20:4	9 FLIGHT	NO. = 167
SITES FLOWN		22 2	3 6	5 2	36	5 22			
PARAMETERS:	03	NO	NOX	\$02	CO	TAG	DpT	RSCAT	ALT (MSL)
MINIMA:	.046	BMOL	BMDL	• (00	BMDL	22.1	9.4	1.1	
MAXIMA:	* *	-016	.033	.035	2.7	26.5	15.0	2 • 1	1662. FT.
					-				-
	201								
JULIAN DAY =	206	TEAR = 1975	FRI,	JUL 25	TIMES: 1	2:55:40	- 14:41:2	5 FLIGHT	NO. = 168
SITES FLOWN (SEE FLIG							
PARAMETERS:	03	NO	NOX	S 0 2	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• 028	- · · · · -	•000	BMDL	BMDL	26.2	10.0	•7	
APIXA"	.172	.048	• DR7	• 19 3	1.0	29.5	16.3	2.2	1931. FT

	40.55				•		
JULIAN DAY = 207 YE	AR = 1975	SAT.	JUL 56	TIMES:	07:06:20 -	09:28:05 FLIGHT	T NO. = 169
SITES FLOWN OVER:		2 3	6 5				
PARAMETERS: 03		NOX	\$02	CO	OAT	DPT BSCAT	ALT (MSL)
MINIMA: .008		BMDL	• 06 0	BMDL	14.3	** .3	
GTÚ. :AMIKAM	. 214	.282	-148	3 • 8	23.9	18.8 7.6	6032. FT.
410 *AU DAW 203 W	4075						
JULIAN DAY = 207 YE		SAI	10F 59	TIMES:	08:21:44 -	10:14:34 FLIGHT	' NO. = 170
SITES FLOWN OVER:		2 3	6 5				
PARAMETERS: 03		NOX	802	CO	TAO	DPT BSCAT	ALT (MSL)
MINIMA: .038		.000	BMDL	BMDL	14.6	2.9 BMDL	
MAXIMA: .160	. 045	•093	• 02 5	2.5	28.9	23.2 3.7	6461. FT.
JULIAN DAY = 207 YE	AD = 1075	CAT.	1111 26	TIMEC.	11.25.78 _	14.01.57	· NO - 474
SITES FLOWN OVER:		3 6	5 2	3 6		14:01:33 FEIGHI	NU = 171
PARAMETERS: 03		NOX	\$02			A-7 B-64-	()
		BMDL	_	CO	OAT	DPT BSCAT	ALT (MSL)
			• 00 0	BMDL	21.3	1.2	3447
MAXIMA: .145	.076	.151	.095	4 • 3	26.6	3•1	2113. FT.
JULIAN DAY = 208 YE	EAR = 1975	SUN.	JUL 27	TIMES:	08:22:40 -	10:44:15 FLIGHT	NO. = 172
SITES FLOWN OVER:		3 6	5 2				
PARAMETERS: 03	NO	NOX	S 0 2	CO	OAT	DPT BSCAT	ALT (MSL)
MINIMA: .001		BMDL	BMOL	BMDL	21.4	10.9 .7	
MAXIMA: .078		.884	• 609	9.5	32.3	22.5 2.8	2490. FT.
				_		40 -4 4- 5.4-	
JULIAN DAY = 208 YE	EAR = 1975	SUN	JUL 27	TIMES:	11:16:07 -	13:31:42 FLIGHT	NO. = 173
SITES FLOWN OVER:		3 6	2 3	6 5	_		
PARAMETERS: 03		NOX	\$02	co	OAT	DPT BSCAT	ALT (MSL)
MINIMA: .027	BMDL		BMDL	BMDL	26.6	16.3 1.7	
MAXIMA: .101	• 032		. 483	1.9	31.0	21.3 3.6	1641. FT.
JULIAN DAY = 209 YI	EAD ± 1075	MON.	3111 28	TIMES -	07:15:39 -	09:49:19 FLIGHT	NO. = 174
		3 6	5 2	3 6	5 25	0,11,11, ,210,,,	
SITES FLOWN OVER:		NOX	502	co	OAT	DPT BSCAT	ALT (MSL)
PARAMETERS: 03	ANDL	NUX	• 000	BMDL	23.1	18.3 1.3	HET (MOE)
MINIMA: .002	•627		1.650	4.3	28.4	24.1 11.1	1760. FT.
MAXIMA: **	• 0 2 7		11070	703	2004	_,_,	
JULIAN DAY = 209 YE	EAR = 1975	MON.	JUL 28	TIMES:	13:19:47 -	15:26:57 FLIGHT	NO. = 175
SITES FLOWN OVER:		3 6					
PARAMETERS: 03	NO	NOX	\$ 0 2	CO	OAT	DPT BSCAT	ALT (MSL)
MINIMA: .036	BMDL	· • ·	BMDL	BMDL	27.7	15.8 1.0	
MAXIMA: .098	.060		.578	2.8	31.8	20.5 7.5	1668. FT.
			•	2.0	21-0	= 2	· · · · ·
_					n= n = =4	00.05.04	T NO - 471
JULIAN DAY = 210 YI		TUE,	JUL 79	TIMES:	07:08:31 -	UY:US:UT FLIGHT	I NU. = 1/6
SITES FLOWN OVER:	24 2					NOT BOOKET	41 T /MC: \
PARAMETERS: 03		NOX	\$ 02	CO	OAT	DPT BSCAT	ALT (MSL)
MINIMA: +D11		BMDL	• 600	BMOL	22.7	18.3	2074 57
MAXIMA: .072	• 96 4	.193	•1~9	1.8	26.8	22.6 5.6	2036. FT.

JULIAN DAY = 210	YEAR = 1975	TUE,	JUL 29	TIMES:	12:55:00	- 15:09:4	5 FLIGHT	NO. = 177
SITES FLOWN OVER		3 3	6 5	2 3	5 6 5	23		
PARAMETERS: 0	3 NO	NOX	\$02	¢0	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	39 BMDL	BMDL	.013	BMDL	27.4	14.1	3.4	
_	05 .099	.149	.947	2 • 4	31.1	20.5	8 • 7	1665. FT.
***************************************			•	2 . 4				
JULIAN DAY = 211	YFAR = 1975	WFD.	JUL 3n	TIMES:	11:11:45	- 12:29:5	5 FLIGHT	NO. = 178
SITES FLOWN OVER		3 6	5		• • • • • • • • •			
	3 NO	NOX	s 02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL	BMDL	BMDL	BMDL	26.9	19.6	2.7	
MAXIMA:	• 014	•028	• £38	1.7	32.0	22.8	5.5	1665 . FT .
"RAIMA"	• 0 1 4	•026	•636		32.0			
JULIAN DAY = 211	VFAR = 1075	WED.	JH 30	TIMES:	11:13:13	- 14:28:59	7 F. 16HT	NO. = 179
SITES FLOWN OVER	CEE #1 16	UT NES	CRIPTION			• • • • • • •		
-) NO	NOX	\$02	co	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	US BMDL	BMDL	BMDL	BMDL	21.4	14.6	1.6	HE. INCE.
-			• €78		33.1		6.2	2722. FT.
MAXIMA:	• 042	.095	• 1.70	4.3	22+1	23•7	0 • 2	2122 710
JULIAN DAY = 212) VEAD - 1075	TU11.	1111 7. 1	TIMES.	08-04-05	- 00-50-11) FLIGHT	NO. = 180
SITES FLOWN OVE	•	3 6				. 07.27.11	1 2 2 0 1	
PARAMETERS:		NOX	\$02	c o ()) <u>24</u> 0At	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL		•003	BMDL	21.4	14.6	• 2	HET THISE
		-002		5.6	28.0	20.4	8.5	2067. FT.
MAXIMA:	. 078	•113	• 69 9	2.0	20.0	20.4	0.5	2007. 11.
JULIAN DAY = 21;	YEAR = 1975	THU.	JUL 31	TIMES:	12:11:49	- 14:01:39	rt Icut	NO. = 181
SITES FLOWN OVE		3 6	5 2	3 ((1000	1011	
	3 NO	NOX	\$02	co '	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL	.006	BMDL		26.2	14.6	• 3	
MAXIMA:	• 022	.068	.561		31.2	19.2	2.3	1598 . FT.
	7522	••••			3.00	1,702	2.73	13701
JULIAN DAY = 21	5 YEAR = 1975	\$11N+	AUG 3	TIMES:	11:18:32	- 12:14:5	7 FLIGHT	NO = 182
SITES FLOWN OVER	22 2	3 6	•					•
PARAMETERS:)3 NO	NOX	\$ 0 2	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	4 BMDL	BMDL	•000	BMDL	19.2	15.0	1.1	
	ú63 . 017	.029	.02 7	1.6	26 • 4	20.3	3.6	2645. FT.
JULIAN DAY = 21	YEAR = 1975	SUN.	AUG 3	TIMES:	12:54:05	- 14:56:4	5 FLIGHT	NO. = 183
SITES FLOWN OVER			CRIPTION			*		
PARAMETERS:)3 NO	NOX	\$ 0 2	CO	DAT	DPT	BSCAT	ALT (MSL)
*INIMA: .	006 BMDL	.001	• 00 0	EMDL	20.3	9.9	•6	
	97 .680	.118	•050	2.4	29.5	19.2	3.5	3527. FT.
				<u> </u>		,,,,	3 42	
JULIAN DAY = 21	5 YEAR = 1975	MON.	Au6 4	TIMES:	06:46:02	- 10:09:4	D FLIGHT	NO. = 184
SITES FLOWN OVER	: SEE FL16	HT DES	CRIPTION					
PARAMETERS:) NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .:	18 BMDL	BMDL	•000	BMDL	16.2	**	• 2	uti (Mot)
	5:5 .074	.126	.427	1.9	27.1	16.3	2 - 1	5575. FT.
	- -	•,	~ = · · · •	1.7	21.1	10.3	C = 1	22/2 · 11 ·

1414 T.N W 24 5						
JULIAN DAT = 217	YEAR = 19/5	TUE, AUG 5	TIMES:	07:27:31 -	10:09:46 FLIGHT	NO. = 185
SITES FLOWN OVER PARAMETERS:		IT DESCRIPTION				
	NO BMDL	NOX SOS	CO	OAT	DPT BSCAT	ALT (MSL)
	04 BMDL 080 •159	-002 BMDL	BMDL	20.3	- 4	
muximu.	100 - 139	·224 ·597	2,3	26.3	3.4	4092 = FT.
JULIAN DAY = 217	YFAR = 1075	THE ANG S	TIMEC.	4-149-3-	15:04:35 FLIGHT	NO - 40/
SITES FLOWN OVER		T DESCRIPTION	I I MES :	12:10:25 -	13: 94: 33 FLIGHT	NU - 180
	3 NO	NOX SOZ	Co	OAT	DPT BSCAT	AL T (MOL)
)(:2 BMDL	BMDL .000	BMDL	21.4	9.9 .8	ALT (MSL)
		1.340 3.950	5.9	30.6	** 9.7	4167. FT.
	, ,,-		,	30.0	,,,,	4101. 71.
JULIAN DAY = 21;	YEAR = 1975	WED, AUG 6	TIMES:	12:08:25 -	14:06:10 FLIGHT	NO. = 187
SITES FLOWN OVER	22 2	3 6 5 5	22		, -1011	10.
PARAMETERS: ()3 NO	NOX SOZ	CO	OAT	DPT BSCAT	ALT (MSL)
MINIMA: +(46 BMDL	BMDL BMDL	BMDL	20.5	11.2 .9	
MAXIMA: .	067 •019	.033 .043	2.8	24.6	16.4 2.6	2136 . FT.
						•
			TIMES:	12:37:26 -	14:39:56 FLIGHT	NO = 188
SITES FLOWN OVER		HT DESCRIPTION				
	03 NO	NOX SOS	CO	OAT	DPT BSCAT	ALT (MSL)
	DES BMDL	.003 PMDL	BMDL	16.3	10.4 1.0	
MAXIMA: .(98 •025	·060 ·019	.9	27.5	26.8 3.1	2936. FT.
SIN TAN DAY = 210	VEAD - 1075	THE AUG 7	TIMES.	07-49-24 -	08:13:56 FLIGHT	NO - = 180
SITES FLOWN OVER		HT DESCRIPTION	121165.	0151	08.13.30	104 - 107
	3 NO	NOX SO2	CO	TAO	DPT BSCAT	ALT (MSL)
	16 BMDL	BMDL BMDL	BMDL	15.0	10.9	
	164 .035	.075 .001	1.1	20.3	19.2 2.3	1554. FT.
JULIAN DAY = 219			TIMES:	07:30:20 -	08:14:50 FLIGHT	NO. = 190
SITES FLOWN OVER	: SEE FLIG	HT DESCRIPTION				
)3 NO	NOX SOS	CO	OAT	OPT BSCAT	ALT (MSL)
)22 BMDL	BMDL BMDL	BMDL	17.1	8.9 .7	44 70
MAXIMA: .(055 •031	. 063 . 047	1.0	19.1	12.7 1.9	1679. FT.
480 T.N. D.W 33/) WEAR - 4075	FRI. AUG 8	TIMEC.	07:27:57 -	00-48-42 FLIEUT	NO. = 191
JULIAN DAY = 220 SITES FLOWN OVER		FRI, AUG 8	3 6		01140145 1510111	
	7: 24 2 03 NO	NOX SO2	co	OAT	DPT BSCAT	ALT (MSL)
)3 NU 315 BMDL	BMDL .000	1.3	14.7	8 .5	
	378 •118	.163 .089	**	22.7	17.0 4.8	3710. FT.
CRAIMAS #1	310 • • • • •					
JULIAN DAY = 222	2 YEAR = 1975	SUN. AUG 10	TIMES:	11:10:00 -	13:32:37 FLIGHT	NO. = 192
SITES FLOWN OVER		3 6 5 2	3 6			
)3 NO	NOX SO2	¢0	OAT	DPT BSCAT	ALT (MSL)
MINIMA:	314 BMDL	.003 BMDL	BMDL	22.6	14.6 2.1	
	112 -175	.243 . 98	. 9	31.1	19.1 6.3	1696. FT.
•						

•					-		
JULIAN DAY = 223 Y	FAR = 1975	MON.	Aug 11	TIMES: 00	:37:51 -	09:27:46 FLIGHT	$100 \cdot = 193$
SITES FLOWN OVER:	25 2	3 6	5 2	3 6	5 25		
PARAMETERS: 03	NO	NOX	\$02	c0	OAT	DPT BSCAT	ALT (MSL)
	BMDL	•002	BMDL	BMDL	**	**	
				3.4	29.5	27.3	2849 - FT.
120. AMIKAM	•221	•273	•68 6	3.4	27.7	21.3	2047- 410
			4110 40	***** O	7-00-74	00-/1-71 #1 1641	NO. = 104
JULIAN DAY = 224 Y	EAR = 1975	TUE,	AUG 72	IIMES: D	1:09:30 -	99:41:31 FL16H	100 - 174
SITES FLOWN OVER:	25 2	3 6			5 25		+ /=0.3
PARAMETERS: 03	NO	NOX	S 0 2	CO	OAT	DPT BSCAT	ALT (MSL)
MINIMA: .012	BMDL	•000	BEDL	BMDL	26.2	14.6 1.5	
MAXIMA: .151	• 032	• 135	.003	2.8	32.1	20.3 2.8	1665. FT.
JULIAN DAY = 224 Y	EAR = 1975	TUE,	AUG 12	TIMES: 1	1:23:18 -	13:18:53 FLIGHT	NO. = 195
SITES FLOWN OVER:	25 2	3 6	5 2	3 6	5 25		
PARAMETERS: 03	NO	NOX	\$ 02	c O	OAT	DPT BSCAT	ALT (MSL)
MINIMA: .035	BMDL	BMDL	BMDL	BMDL	31.6	10.9 1.3	
MAXIMA: .147	.144	.160	.139	1.8	36 - 8	19.6 2.6	1698. FT.
	• • • • •	• • • •	•	,,,	20.0	,,	
JULIAN DAY = 45 Y	FAD = 1076	CAT.	FFR 44	TIMES . O	2.20.34 -	10-02-19 FLIGHT	NO. = 196
SITES FLOWN OVER:	23 2	3 6			5 23	70.02017	
PARAMETERS: 03	NO 2	NOX	\$02	ີເດິ	OAT	OPT BSCAT	ALT (MSL)
MINIMA: .036	BMDL	BMDL	201	BMDL	•2	•3	NET CHOEF
	•032	•048		.9	6.8	10.5	3789. FT.
MAXIMA: .054	• 432	• 040		• 7	0.0	10.5	31076 716
4111 TAN ABY	CAD - 403/		FFD 41	TIMER - 4	1-10-20	45-77-55	407
						15:32:55 FLIGHT	NO . = 141
SITES FLOWN OVER:	24 2	3 6	-		5 24		
PARAMETERS: 03	NO	NOX	802	CO	OAT	DPT BSCAT	ALT (MSL)
MINIMA: -009	BMDL	BMDL		BMDL	6.3	• 8	
MAXIMA: .045	• 146	-165		2.7	12.9	7.1	2288. FT.
JULIAN DAY = 46 Y		50				10:33:54 FLIGHT	NO. = 198
SITES FLOWN OVER:	24 2	36		36	5		
PARAMETERS: 03	NO	NOX	\$ 02	CO	OAT	DPT BSCAT	ALT (MSL)
GSO. :AMINIM	BMOL	BMDL	• U2 O	BMDL	12.1	11.1 -9	
MAXIMA: .048	• 076	-141	• U2 2	1.6	20.6	13.8 1.6	3462. FT.
							-
JULIAN DAY = 48 Y	EAR = 1976	TUE,	FEB 17	TIMES: 0	7:08:37 -	08:20:02 FLIGHT	NO. = 199
SITES FLOWN OVER:	23						
PARAMETERS: 07	NO	NOX	\$02	CO	OAT	DPT BSCAT	ALT (MSL)
FCO. :AMINIM	BMDL	PMDL	BMDL	BMDL	2.7	• 4	NET THEF
COC. :AMIXAM	• 031	.040	. 067	• 5	11.6	3.3	3424. FT.
				• ,		J • J	34644 F14
JULIAN DAY = 49 Y	FAR = 1074	UEN.	EED 12	TIMEC. 4		44.40.75 5.20.	
SITES FLOWN OVER:	21	# L V #	1 6 10	117532 1	- 20:10	14:19:33 FE16H	NO = 200
PARAMETERS: 03	CN CN	NOX	\$ 0 2	- 0			
• • • • • • • • • • • • • • • • • • • •				CO	OAT	DPT BSCAT	ALT (MSL)
	BMDL	BMDL	• (2 0	BMDL	3.5	• 7	
MAXIMA: .0'6	.111	•132	. 62	. 8	8 • 9	1.0	1980. FT.

							20077 277	****	
JULIAN DAY =	50	YEAR = 1976		FEB 19	TIMES: 0	7:19:05	- 10:13:3	THAT IS O	NO = 201
SITES FLOWN OF	VER:	25 2	3 6	5 2	3 6	5 25			NO - LUI
PARAMETERS:	03	NO	NOX	\$02	c0	OAT	DeT	TADE	ALT (MSL)
MINIMA:	• 009	BMDL	BMDL	. 900	BMDL	-10.6	-23.7	.4	MET CHOEN
MAXIMA:	.058	• 034	.058	•692	• 7	9.3	3.4	3.0	3320. FT.
				V 0 E	• ,	7.5	3.4	3.0	33 EU - F1 -
JULIAN DAY =	50	YEAR = 1976	THU.	FEB 19	TIMES: 1	2:22:40	- 13:53:3	D FLIGHT	NO. = 202
SITES FLOWN OF	VER:	25 2	3 3	3			,,		
PARAMETERS:	03	NO	NOX	\$02	c _o	DAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.025	BMDL	BMDL	• 600	BMDL	6.5	-10.3	•3	HET CHOLY
MAXIMA-	.051	• 029	-044	.002	4.6	13.6	5	.8	2120. FT.
•	•••	•02	•044		7.0	13.0	,	• 0	2120. +1.
JULIAN DAY =	51	YEAR = 1976	FRI.	FEB 20	TIMES: 0	7:17:35	- 11:13:1	5 eLIcuT	NO. = 203
SITES FLOWN O	VER:	24 2	3 6	5 2	3 6	5 24		,	
PARAMETERS:	03	NO	NOX	\$ 02	co	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.000	BMDL	BMDL	BMDL	BMDL	5.9	-15.8	. 2	
MAXIMA:	.082		1.440	.688	**	13.1	-1.8	1.9	3416. FT.
									34100 710
JULIAN DAY =	52	YEAR = 1976	SATE	FEB 21	TIMES: 1	1:01:52	- 13:59:5	7 FLIGHT	NO. = 204
SITES FLOWN O	VER:	24 2	3 6	5 24	32				
PARAMETERS:	03	NO	NOX	\$02	co	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.022	BMDL	BMDL	BMDL	BĂDL	6.4	-3.6	• 5	
MAXIMA:	• 059	-060	.055	• 002	2.7	15.9	6.8	1.0	3320. FT.
JULIAN DAY =					TIMES: 0	7:19:21	- 08:53:1	1 FLIGHT	NO. = 205
SITES FLOWN O		22 2	3 6	5					
PARAMETERS:	03	NO	NOX	S _O 2	CO	DAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL	BMDL	BMDL	BMDL	BMDL	-5.3	-9.5	• 5	
MAXIMA:	. 045	• 027	BMDL	.077	8.7	-•2	-3.7	2.6	2321. FT.
							40-55-5		- 204
JULIAN DAY =							- 19:55:2	2 FLIGHT	NO. = 200
SITES FLOWN O		31 20		•	17 10		18 10		
PARAMETERS:	03	NO	NOX	\$ 02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL	BMDL	BMDL	BMDL	BMDL	1.2	-6.6	.5	22/8 54
MAXIMA:	. 064	• 177	.223	•56 0	2.7	10.8	2.6	1.5	2248. FT.
JULIAN DAY =	٠,	W. 4D - 4074	MAN	FC 023	TIMES . O	5-18-05	- 00-12-4	5 FLIGHT	NO = 207
				6 41	3 9	16 9	3 41	6 19 47	2 25 32
SITES FLOWN O		32 25			-	OAT	DPT	BSCAT	ALT (MSL)
PARAMETERS:	03	NO	NOX	\$02	CO	-16.5	-	BMDF	WEI CHOEN
MINIMA:	BMDL		BMDL	• 900	BMDL		-2.8	3.9	4287. FT.
MAXIMA:	**	.147	.392	•7 ^m 5	2.7	3.3	-2.0	3.7	75014 114
	F /	YEAR = 1976	MAN	E E D 27	TIMES - 1	15.50.57	- 18:52:3	2 FLIGHT	NO. = 208
JULIAN DAY =		75 AK = 17/0	MUN 9	6 3	9 16	9	.0.72.		
SITES FLOWN O		32 25		502	C 0	OAT	DPT	BSCAT	ALT (MSL)
PARAMETERS:	03	NO - M	NOX	. 061		-10.2	-18.4	-3	
MINIMA:	- 9€7		BMDL	• 201	• O	17.4	-10.4	1.3	4530. FT.
MAXIMA:	. 358	• 273	.293	• " "	* *	7 7 9 74	• 1.1	• • •	- · · ·

						7-04-05	- 40-24-00		NU - 300
JULIAN DAY =						17:00:05	- 10:21:00	LEIGHI	NU - 207
SITES FLOWN OF			14 9	3 41		42 25	32	0.01.	A) 7 (MC)
PARAMETERS:	03	NO	NOX	\$02	Ç0	OAT	DPT 2000	BSCAT	ALT (MSL)
MINIMA:	• 003	BMDL	BMDL	BMDL	BMDL	3.7	-29.0	• 2	4407
MAXIMA:	**	- 001	-010	• 066	4 - 4	18.6	2	1.6	4403. FT.
						4.40.30	42-20-//	* *****	31-
JULIAN DAY =		AR = 1976	THU,	FEB 26	TIMES: 7	7:19:29	- 12:28:44	. FTIENI	NO. = 210
SITES FLOWN OF		42							
PARAMETERS:	03	NO	NOX	sos	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL	BMDL	BMDL	BMDL	• 6	4.7		. • 1	4.2.4
MAXIMA:	• ú58	•019	•035	• 690	2.4	12.0		4.1	4334. FT.
	F7 W-	4074	• •	***	TIMEC . 4	1-40-44	- 15:52:36	ELICUT	NO = 244
JULIAN DAY =					IIME2: I	4:10:40	- 15:52:50	1,51011	NO 211
SITES FLOWN OF			63 64	65	_				()
PARAMETERS:	03	NO	NOX	\$ 02	CO	TAO	DPT	BSCAT	ALT (MSL)
MINIMA:	• 000	BMDL	BMDL	- 69 0	BMDL	9.7		• 2	
MAXIMA:	.042	• U ⁵ 1	•098	•235	2.6	15.3		3.0	3134. FT.
					T. W. C	4-22-45	40.47.40		NO - 343
JULIAN DAY =		AR = 1976	I HU g	FEB 26	1 TWE2: 1	0:22:10	- 18:17:10	LETONI	NU 212
SITES FLOWN O		42							
PARAMETERS:	03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• ତୂର୍ଷ	BMDL	BMDL	• 00 0	• 2	9.7		• 3	
MAXIMA:	• 0 72	- 005	•047	. 046	2.9	17.5		2.8	3475. FT.
JULIAN DAY =	58 VE	AD = 1076	En I	EED 27	TIMEC. O	9 - 00 - 52	- 12-01-02		NO. = 213
SITES FLOWN O		60 6D		3 6	5 30	0.00.32	- 12:01:01	LETONI	MU 213
PARAMETERS:	03	NO	NOX	\$02		0.4.7			
MINIMA:		BMDL	BMDL	BMDL	CO BMDL	OAT	DPT	BSCAT	ALT (MSL)
MAXIMA:	• 016						-16.6	• 3	2404
"AKIMAI	•076	.061	.101	.252	• 7		-1.3	2.0	3401. FT.
JULIAN DAY =	50 VE	AD - 1074	CAT	0 033	TIMEC. O		- 11:42:00		NO = 347
SITES FLOWN OF		23 2	3 6	5 2	3 6	5 23	32	LEIGHI	NU 214
PARAMETERS:	03			2 6	ס כ	7 / 1	17		
MINIMA:	U S				• •				
(1 T (4 T) (M T	015	NO BMD	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MAYTMA.	-015	BMDL	BMDL	PMDL	BMDL	0AT 6.5	DP T **	• 2	
MAXIMA:	-015 -068					OAT	DPT	-	ALT (MSL) 3905 - FT.
MAXIMA:		BMDL	BMDL	PMDL	BMDL	0AT 6.5	DP T **	• 2	
	• 968	BMDL ###	BMDL •234	eMDL •024	8MDL 1.0	0AT 6.5 13.0	DPT ** 4.6	2.9	3905 - FT -
JULIAN DAY =	.068	BMDL *** AR = 1976	BMDL •234	PMDL •U24	BMDL 1.0	0AT 6.5 13.0	DPT ** 4.6 - 11:30:09	2.9	
JULIAN DAY = SITES FLOWN OF	•068 61 YE VER:	BMDL *** AR = 1976 32 24	BMDL •234 MON• 2 3	BMDL •U24 MAR 1 6 5	BMDL 1.0 TIMES: 0	0AT 6.5 13.0 7:10:34 6 5	DPT ** 4.6 - 11:30:09 24 32	.2 2.9 FLIGHT	3905 • FT • NO = 215
JULIAN DAY = SITES FLOWN OF PARAMETERS:	• 968 61 YE VER: 03	BMDL #** AR = 1976 32 24 NO	BMDL •234 MON• 2 3	PMDL •U24 MAR 1 6 5 \$02	BMDL 1.0 TIMES: 0 2 3 C0	0AT 6.5 13.0 7:10:34 6 5 0AT	DPT ** 4.6 - 11:30:09 24 32 DPT	.2 2.9 FLIGHT	3905 - FT -
JULIAN DAY = SITES FLOWN OF PARAMETERS: MINIMA:	• 968 61 YE VER: 03 • 902	BMDL #** AR = 1976 32 24 NO BMDL	BMDL •234 MON• 2 3 NOX BMDL	PMDL -U24 MAR 1 6 5 S02 BMDL	BNDL 1.0 TIMES: 0 2 3 CO BMDL	OAT 6.5 13.0 7:10:34 6 5 OAT	DPT ** 4.6 - 11:30:09 24 32 DPT **	.2 2.9 FLIGHT BSCAT	3905 - FT - NO = 215 ALT (MSL)
JULIAN DAY = SITES FLOWN OF PARAMETERS:	• 968 61 YE VER: 03	BMDL #** AR = 1976 32 24 NO	BMDL •234 MON• 2 3	PMDL •U24 MAR 1 6 5 \$02	BMDL 1.0 TIMES: 0 2 3 C0	0AT 6.5 13.0 7:10:34 6 5 0AT	DPT ** 4.6 - 11:30:09 24 32 DPT	.2 2.9 FLIGHT	3905 • FT • NO = 215
JULIAN DAY = SITES FLOWN OF PARAMETERS: MINIMA:	• 968 61 YE VER: 03 • 902	BMDL #** AR = 1976 32 24 NO BMDL	BMDL •234 MON• 2 3 NOX BMDL	PMDL -U24 MAR 1 6 5 S02 BMDL	BNDL 1.0 TIMES: 0 2 3 CO BMDL	OAT 6.5 13.0 7:10:34 6 5 OAT	DPT ** 4.6 - 11:30:09 24 32 DPT **	.2 2.9 FLIGHT BSCAT	3905 - FT - NO = 215 ALT (MSL)
JULIAN DAY = SITES FLOWN OF PARAMETERS: MINIMA: MAXIMA;	.068 61 YE VER: 03 .002	BMDL #** AR = 1976 32 24 NO BMDL -161	MON. 2 3 NOX PMDL 271	MAR 1 6 5 SOZ BMDL . 057	BMDL 1.0 TIMES: 0 2 3 CO BMDL **	OAT 6.5 13.0 7:10:34 6 5 OAT ** 21.2	DPT ** 4.6 - 11:30:09 24 32 DPT ** 13.6	PLIGHT BSCAT 6 5.2	3905 • FT • NO . = 215 ALT (MSL) 1855 • FT •
JULIAN DAY = SITES FLOWN OF PARAMETERS: MINIMA: MAXIMA: JULIAN DAY =	.068 61 YE VER: 03 .002 .072	BMDL *** AR = 1976 32 24 NO BMDL -161 AR = 1976	MON. 2 3 NOX PMDL. 271	MAR 1 6 5 SOZ BMDL . 057	BMDL 1.0 TIMES: 0 2 3 CO BMDL **	OAT 6.5 13.0 7:10:34 6 5 OAT ** 21.2	DPT ** 4.6 - 11:30:09 24 32 DPT **	PLIGHT BSCAT 6 5.2	3905 • FT • NO . = 215 ALT (MSL) 1855 • FT •
JULIAN DAY = SITES FLOWN OF PARAMETERS: MINIMA: MAXIMA: JULIAN DAY = SITES FLOWN OF	.068 61 YE VER: 03 .002 .072	BMDL *** AR = 1976 32 24 NO BMDL •161 AR = 1976 2 3	MON. 2 3 NOX PMDL .271	MAR 1 6 5 SOZ BMDL . U57	BMDL 1.0 TIMES: 0 2 3 CO BMDL **	OAT 6.5 13.0 7:10:34 6 5 OAT 21.2 2:09:42	DPT	FLIGHT BSCAT 6 5-2 FLIGHT	3905 • FT • NO . = 215 ALT (MSL) 1855 • FT • NO . = 216
JULIAN DAY = SITES FLOWN OF PARAMETERS: MINIMA: MAXIMA: JULIAN DAY = SITES FLOWN OF PARAMETERS:	.068 61 YE VER: 03 .002 .072	BMDL *** AR = 1976 32 24 NO BMDL •161 AR = 1976 2 3 NO	MON. 2 3 NOX PMDL .271 MON. 6 5 NOX	eMDL .U24 MAR 1 6 5 SOZ BMDL .U57 MAR 1 SOZ	BMDL 1.0 TIMES: 0 2 3 CO BMDL **	OAT 6.5 13.0 7:10:34 6 5 OAT ** 21.2 2:09:42 OAT	DPT	FLIGHT BSCAT .6 5.2 FLIGHT BSCAT	3905 • FT • NO . = 215 ALT (MSL) 1855 • FT •
JULIAN DAY = SITES FLOWN OF PARAMETERS: MINIMA: MAXIMA: JULIAN DAY = SITES FLOWN OF PARAMETERS: MINIMA:	.068 61 YE VER: 03 .002 .072 61 YE VER: 03 .040	BMDL *** AR = 1976 32 24 NO BMDL •161 AR = 1976 2 3 NO BMDL	MON 2 3 NOX PMDL 271 MON 5 NOX BMDL	MAR 1 6 5 SOZ BMDL .057	BMDL 1.0 TIMES: 0 2 3 CO BMDL ** TIMES: 1 CO BMDL	OAT 6.5 13.0 7:10:34 6 5 OAT ** 21.2 2:09:42 OAT -17.3	DPT ** 4.6 - 11:30:09 24 32 DPT ** 13.6 - 13:35:57	FLIGHT BSCAT .6 5.2 FLIGHT BSCAT .8	3905 • FT • NO . = 215 ALT (MSL) 1855 • FT • NO • = 216 ALT (MSL)
JULIAN DAY = SITES FLOWN OF PARAMETERS: MINIMA: MAXIMA: JULIAN DAY = SITES FLOWN OF PARAMETERS:	.068 61 YE VER: 03 .002 .072	BMDL *** AR = 1976 32 24 NO BMDL •161 AR = 1976 2 3 NO	MON. 2 3 NOX PMDL .271 MON. 6 5 NOX	eMDL .U24 MAR 1 6 5 SOZ BMDL .U57 MAR 1 SOZ	BMDL 1.0 TIMES: 0 2 3 CO BMDL **	OAT 6.5 13.0 7:10:34 6 5 OAT ** 21.2 2:09:42 OAT	DPT	FLIGHT BSCAT .6 5.2 FLIGHT BSCAT	3905 • FT • NO . = 215 ALT (MSL) 1855 • FT • NO . = 216

JULIAN DAY = 66	YEAR = 1976 SAT.	MAR 6	TIMES:	06:49:33	- 07:19:53	3 FLIGHT	NO. = 217
SITES FLOWN OVER:	32 21 32						
PARAMETERS: 03	NO NOX	\$02	¢Ο	DAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL BMDL	BMDL	BMDL	-5.2	-23.2	• 2	NET CHOLD
MAXIMA:	*** .229	.101	.4	-2.5	-2.6	2.6	3774. FT.
		••••	• •	2.73	2.0	2.0	31146 116
110 244 NAV - 44	MPAG 67		_				
	YEAR = 1976 SAT.	MAR 6	TIMES:	07:58:29	- 08:54:29	FLIGHT	NO. = 218
SITES FLOWN OVER:	32 21 32						
PARAMETERS: Q3	NO NOX	\$07	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL BMDL	BMDL	BMDL	-5.6	-23.3	• 2	
MAXIMA:	*** .452	• 001	.9	-1.8	-2.3	1.3	3892. FT.
JULIAN DAY = 66	YEAR = 1976 SAT.	MAR 6	TIMES:	10:19:33	- 11:01:53	FLIGHT	NO = 219
SITES FLOWN OVER:	32 21 32						• - •
PARAMETERS: 03	NO NOX	\$02	CO	OAT	DeT	TAJZB	ALT (MSL)
MINIMA:	BMDL BMDL	BMDL	BMDL	-5.5	-23.2	•3	ME! WISE
MAXIMA.	*** :343	.002	1.1	-3.5	-2.2	4.4	3926 . FT .
naaene	*** *343	• 002	,1•1	• •	-2.2	4,4	3720 · F1 ·
1111 14 m 4.4 m	MPAR - ARMA ALM	***	***	43.30.00	40.44.4		
JULIAN DAY = 66	YEAR = 1976 SAT,		TIMES:	13:32:01	- 15:10:06	FLIGHT	NO. = 550
SITES FLOWN OVER:							
PARAMETERS: 03		\$02	CO	OAT	•	BSCAT	ALT (MSL)
MINIMA:	BMDL BMDL	BMDL	BMDL	-3.5	-20.4	BMDL	
MAXIMA:	*** .316	-002	1.6	8 - 1	-2.6	• 9	3830. FT.
		- •					
188 TAN 647 = 66	YEAR = 1976 SAT.	MAD Á	TIMEC.	17-28-00	- 18:17:30	FLIGHT	NO = 221
SITES FLOWN OVER:		HAR U	11,7201	1	,,,,,,,,,		
	NO NOX	\$ 02	-0	OAT	DPT	BSCAT	ALT (MSL)
PARAMETERS: 03			CO.				ALI MASE
MINIMA:	BMDL BMDL	BMDL	BMDL	-1.1	-13.9	. 4	70.04 . 7
MAXIMA:	*** •314	• 002	1.3	8 • 6	-2.2	.7	3801. fT.
			_				
JULIAN DAY = 66	YEAR = 1976 SAT.	MAR 6	TIMES:	19:53:25	- 20:42:30	FLIGHT	NO - 255
SITES FLOWN OVER:				_			
PARAMETERS: 03	NO NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL BMDL	BMDL	BMDL	-1.2	-13.0	. 4	
MAXIMA:	.007 .028	•002	1.5	7.0	-1.3	1.0	3849. FT.
JULIAN DAY = 66	YEAR = 1976 SAT	MAR 6	TIMES:	21:54:54	- 22:42:44	FLIGHT	NO. = 223
SITES FLOWN OVER:							
PARAMETERS: 03		\$ 0 2	CO.	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL .000	BMDL	BMDL	-1.2	-12.0	• 2	
		•102	1.1	-	-1.1	- 9	3794 . FT .
MAXIMA:	.007 .036	+ 12 U Z .	** *		·	•	•
	YEAR = 1976 SUN	MAD 7	TIMES -	06-66-18	- 07:36:3	S FLIGHT	NO. = 224
JULIAN DAY = 67		TOME !	I I MES :	00344.10	G (- 2 C - 2 .		.,
SITES FLOWN OVER:				4 T	DPT	BSCAT	ALT (MSL)
PARAMETERS: 03		\$02	CO	OAT			ML ("SL)
MINIMA: BMD		BADF	BMDL		-22.6	•1	3777. FT.
* * * * * * * * * * * * * * * * * * * *	n +++ ₹?/	- 7	2.0	4.1	-1.5	1.2	3111. 11.

IULIAN DAY =	67 YE	AR = 1976	SUN,	MAR 7	TIMES:	08:13:27	- 08:59:22	2 FLIGHT	NO. = 225
TITES FLOWN OF		32 21	32						
ARAMETERS:	0.3	NO	NOX	\$02	€0	DAT	DPT	BSCAT	ALT (MSL)
INIMA:	BMDL	BMDL	BMDL	BMDL	BMDL	- 1	-22.8	• 1	
AXIMA:	.040	***	•270	.002	**	4. Ú	8	1.2	3786. FT.
						40.20.44	47.30.46		224
ULIAN DAY =		AR = 1976		MAR 7			- 13:28:11	i Erieni	NO 550
SITES FLOWN O		32 20	6 88	89 3	88 6		5 D T	BSCAT	ALT (MSL)
PARAMETERS:	03	NO	NOX	\$02	CO	OAT	DP T		MEI (MOL)
*INIMA:	BMDL	BMDL	BMDL	BMDL	BMDL **	.4	-24.4 8	• 1 • 8	3844 . FT.
MAXIMA:	.042	***	•149	•002	**	9.7	0	• 0	3044. 11.
JULIAN DAY =	AQ YE	AR = 1076	TUE	MAP 9	TIMES:	07:36:29	- 10:49:59	FLIGHT	NO = 227
SITES FLOWN O		22 22	22 22	2 3	6 5		••••		
PARAMETERS:	03	NO	NOX	soz	ζ0 ΄	OAT	0 p T	BSCAT	ALT (MSL)
MINIMA:	BMDL	BMDL	BMDL	302	BMDL	~1.8	-3.5	.6	
MAXIMA.	**	1.420	1=350		7.4	9.1	2.6	4.5	1931. FT.
"AAA"IN"		1.720	1:330		,	7-1	2.0	443	17314 7.4
JULIAN DAY =	69 YE	AR = 1976	TUE.	MAR 9	TIMES:	13:24:55	- 16:29:40	FL1GHT	NO. = 228
SITES FLOWN O		8 3	8 3	8 3	8 3	8 3	8 3	8 32	
PARAMETERS:	0.3	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.027	BMDL	BMDL		BMDL	2.6	-10.3	• 5	
MAXIMA:	.067	• 03 Õ	.057		2.4	12.8	• 9	1.6	2926. FT.
									
							- 10:21:20) FLIGHT	NO. = 55A
SITES FLOWN O		25 2	3 6				_		
PARAMETERS:	03	NO	NOX	\$02	CO	DAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• 004	BMDL	BMDL	BMDL	BMDL	2.6	-2.8	. 6	
MAXIMA:	•074	.124	.167	.202	1.9	11.0	4 • 7	3.3	3341. FT.
JULIAN DAY =	70 YE	AR = 1976	MED.	MAR 40	TIMES .	12.14.21	- 15-28-01	FITEUT	NO 230
SITES FLOWN O	VFR:	25 2	3 6	5 2	25	13-10-31	13.20.01	7 6 10 11	NO 230
PARAMETERS:	03	NO -	NOX	\$02	co	DAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• 026	BMDL	BMDL	•00n	BMDL	3.5	-5.7	•7	ALI (MSL)
MAXIMA:	. 054	.035	.070	.033	1.7	16.0	7.0	3.1	33'50. FT.
	• • • •	• • • •	•0.0	• (-3-3		10.0	7.0	3.1	337V. FI.
									,
JULIAN DAY =	72 YE	AR = 1976	FRI.	MAR 12	TIMES:	09:55:09	- 10:47:30	FLIGHT	NO = 231
SITES FLOWN O	VER:	71 71	70						
PARAMETERS:	03	NO	NOX	502	£Ο	DAT	Dp T	BSCAT	ALT (MSL)
MINIMA:	BMDL	BMDL	•002	BMDL	BMDL	15.4	4.1	•5	ALT WISE
MAXIMA:	.065	1.350	_	126.000	.7	18.6	10.9	25.6	1484. FT.
•							,		17078 [18
JULIAN DAY =		AR = 1976		JUL 16	TIMES:	07:27:10	- 10:03:20) FLIGHT	NO. = 232
SITES FLOWN O		31 25	2 3	6 5	3 6	5 32			•
PARAMETERS:	0.3	NO	NOX	\$02	CO	DAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL	BMDL	BMDL	BMDL	BMDL	19.8	9.3	- 3	
TAMIKAT	• 084	. 064	.171	-144	* *	26.8	16.8	1.3	3066. FT.

	• • • • • • •				,	736N1 IN 17F	• •	
JULIAN DAY = 198	YEAR = 1976	Fol.	Ant 16	TIMES - OR	. 32.44	- 11.00.67	FITCUT	40 - 277
SITES FLOWN OVER:	31 22	2 3	6 5	2 3	6 5	72	LETOUI	NU 233
PARAMETERS: 03	NO	NOX	\$02					
MINIMA:	BMDL	BMDL		CO.	TAG		SCAT	ALT (MSL)
MAXIMA:		_	BMDL	BMDL	15.5	4.6	•1	
maara;	• 021	•01 0	• 029	8.4	27.6	14.6	1.6	3512. fT.
*** *** *** - 400	WELL . 4694							
JULIAN DAY = 198	YEAR = 19/6	FRI,	JUL 16	TIMES: 12	:16:55	- 15:12:15	FLIGHT	NO. = 234
SITES FLOWN OVER:	31 2	36	5 2	36	5 22	32		
PARAMETERS: 03	NO	NOX	\$02	CO	OAT	DPT B	SCAT	ALT (MSL)
MINIMA: .04	3 BMDL	BMDL	•000	BMDL	17.0	7.2	• 5	
MAXIMA: .07	3 .010	•023	.023	1.3	28.4		1.3	4n69. FT.
				•••				40070 110
JULIAN DAY = 201	YFAR = 1976	MON.	J 111 10	TIMES - DA	-14-26	- 00-40-41	FITGUT	MO = 235
SITES FLOWN OVER:	31 24	2 3	6 5	2 3	6 5	32	LIGHT	NO 233
PARAMETERS: 03		NOX	\$02	-				4 ()
FINIMA: .D2		BMDL	BMDL	ξ0	DAT	-,	SCAT	ALT (MSL)
				BMDL	21.1	11.8	-6	
MAXIMA: .11	6 .172	.220	• 1 ⁷ 1	**	28.3	17.6	3.1	3049. FT.
	w 465/				4	40.34.43		
JULIAN DAY = 201		-				- 10:36:13	FLIGHT	NO. = 236
SITES FLOWN OVER:		2 6	5 2	36	5 32			
PARAMETERS: 03		NOX	\$02	CO	OAT	•	SCAT	ALT (MSL)
MINIMA: .02.	2 eMpL	BMDL	BMDL	BMDL	20.3	10.3	.8	
MAXIMA: .12	3 •181	.238	.074	1.7	30.4	18.2	3.4	3597. FT.
JULIAN DAY = 201	YEAR = 1976	MON.	Jul 19	TIMES: 12:	49:06	- 14:17:51	FLIGHT	NO. = 237
SITES FLOWN OVER:								
PARAMETERS: 03		NOX	\$02	¢0	OAT	DPT B	SCAT	ALT (MSL)
MINIMA: .00		BMDL	BMDL	BMDL	22.6		1.5	•
MAXIMA: .14	,	-341	.274	3.7	34.5		6.1	3197. FT.
MUNICIPAL	• • • • • •	•3••	• • • • • • • • • • • • • • • • • • • •	501			• • •	
JULIAN DAY = 201	VC40 - 4074	MON -	1111 10	TIMES - 12	-40-20	- 14:14:05	FLIGHT	NO. = 238
			30L 17	11/123. 12	. 4 / 1 1 0	14017422	, 220	
SITES FLOWN OVER:		15 Nox	\$02	ξO	TAO	DPT B	SCAT	ALT (MSL)
PARAMETERS: 03				BMDL	23.7			MET (III)E)
MINIMA: .06		BMDL	RMDL		32.8		1•1 3•3	3167. FT.
MAXIMA: .14	2 .228	.398	.641	• 8	32.0	**	3.5	31011 11,
					40 17	00.44.20	CL TCHT	NO - 270
JULIAN DAY = 202	YEAR = 1976	TUE,	INF 50	TIMES: UO	:12:33	- 09:11:20	FEIGHT	NO. = 239
SITES FLOWN OVER:		2 3	6 5	2 3	6 5	32		
PARAMETERS: 03	NO	NOX	\$02	CO	TAO		SCAT	ALT (MSL)
MINIMA: .60	2		BMDL	BMDL	22.0	14.9	• 8	
MAXIMA: .06	-		•679	1.6	30.0	22.1	3.2	2314. FT.
OHAZNA: • WO	-							
JULIAN DAY = 202	VCAD = 1074	THE -	JH 20	TIMES: 07	:25:50	- 10:08:35	FLIGHT	NO. = 240
		2 3	6 5	2 3	6 5		- - · ·	
SITES FLOWN OVER:			805	້ເດີ	047	DPT E	SCAT	ALT (MSL)
PARAMETERS: 03		NOX		BMDL	22.1	15.2	.6	
MINIMA: •03		BMDL	.000		31.0	23.1	2.4	3637. FT.
MAXIMA: .0?	3 .022	.048	• ∜° 8	.7	J (• U	,2 3 4 1	_ • •	

JULIAN DAY =	202	YEAR = 1976	TUE,	Jul 20	TIMES:	12:38:15	- 14:11:20	FLIGHT	NO. = 241
SITES FLOWN O		15							
PARAMETERS:	03	NO	NOX	S 0 2	CO	OAT		BSCAT	ALT (MSL)
MINIMA:	• 0 3 2	BMDL	BMDL	BMDL	BMDL	29.6	14.9	. 8	
MAXIMA:	.096	.012	.015	.637	2.0	35.4	21.9	1.5	1679. FT.
JULIAN DAY =	204	YFAR = 1976	THU.	JUL 22	TIMES:	12:28:15	- 15:16:30	FLIGHT	NO. = 242
SITES FLOWN C			32	22					
PARAMETERS:	03	NO	NOX	\$ 02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.021	BMDL	BMDL		BMDL	24.7	11.5	•5	
MAXIMA:	.155		.030		1.2	36.3	30.5	1.4	4121. FT.
***************************************	. , , ,	•					-		•
JULIAN DAY =	205	YEAR = 1076	FDI.	Jul 23	TIMES:	04:33:35	- 07:42:40	FL16HT	NO. = 243
SITES FLOWN C			76 76	76 76					- · · · -
PARAMETERS:	03	NO	NOX	\$02	το.	OAT	DpT	BSCAT	ALT (MSL)
MINIMA:	BMDL		BMDL	302	BMDL	23.7	#1#	•9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
MAXIMA:	_070		·870		2.6	30.0	**	5.3	3778 . FT.
WAYTUR:	.070	•100	•070		2.00	30.0		,,,	3.101 7.1
JULIAN DAY =	2.5	VEAD - 40-4	£01.	1111 23	TIMEC.	05.45.51	- 09:00:11	F1 16HT	NO. = 244
SITES FLOWN (31 6	2 3	9 23		0):4):)	- 07.00.11	, , ,	1104 - 244
PARAMETERS:	03	NO	NOX	205	~ co	DAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.010		BMDL	306	BMDL	24.9	16.4	•6	ALT THISE?
MAXIMA:	.128		.274		2.4	31.4	22.3	2.9	3056. FT.
TRAINE.	• 120	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		2.4	3104	1003		30301 111
JULIAN DAY =	205	YFAR = 1076	FOT.	Jul 23	TIMES.	08+34+20	- 11:28:55	FLIGHT	NO. = 245
SITES FLOWN (32			•			
PARAMETERS:	03	NO.	NOX	\$ 02	cΟ	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.056		BMDL		BMDL	23.1	**	•6	oc.
MAXIMA:	.129	-	.022		**	33.3	**	2.5	3037. FT.
			•			2343			3,3,0
JULIAN DAY =	205	YEAR = 1976	FRI.	JUL 23	TIMES:	13:13:30	- 16:03:30	FLIGHT	NO. = 246
SITES FLOWN (32					,,	
PARAMETERS:	03	NO.	NOX	\$ 02	Co	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	• né 1	BMDL	BMDL		BMDL	**		.6	
MAXIMA:	. 145	.010	.016		1.0	35.0		4.9	4191. FT.
••									
JULIAN DAY =	210	YEAR = 1976	WED.	JUL 28	TIMES:	07:46:35	- 08:19:31	FLIGHT	NO. = 247
SITES FLOWN (31 25	2 3	6 5					
PARAMETERS:	03	NO	NOX	\$ 02	co	OAT	Dp T	BSCAT	ALT (MSL)
MINIMA:	• 011	BMDL	BMDL	BMDL	BMDL	27.6	17.8		
MAXIMA:	.168		•037	.021	1.1	33.5	24.3		2170. FT.
•		- - ·					****		#1104 P14
JULIAN DAY =	ž11	YEAR = 1976	THU.	JUL 29	TIMES:	06:13:55	- 06:50:50	f) fcuT	NO. = 248
SITES FLOWN (32					121011	HOT - E40
PARAMETERS:	03	NO	NOX	\$02	c o	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	BMDL		.012	•000	.5	22.0	20.2	.7	ALI (MOL)
MAYTWA .	177		.758	• 611	3.0		22.8	2.3	2114 **
			• • •	• • •	3.0	L W # J	E E O	6.3	2116. FT.

				DOCK! IN 114	
JULIAN DAY = 211 Y	TEAR = 1976 THUS	Jul 29 TIM	FS+ 17-31-40	- 23-40-18	EL TOUT NO - 3/0
SITES FLOWN OVER:	31 81 82 83	84 85 86	87 88 89		93
PARAMETERS: 03	NO NOX		CO OAT		· =
MINIMA: .004	BMDL BMDL	7 7	MDL 22.5	14.8	
MAXIMA: .120	•140 •212		1.5 32.4		.6 7.0 3105. FT.
	50.0		10- 36-4	23.2	7.u 3105. FI.
JULIAN DAY = 212 Y	TEAR = 1976 FRT.	JIH 30 TIME	ES + 82+84+88	- 04.24.35	EL TENT NO - 250
SITES FLOWN OVER:	31 21	TOL 30 11111	10. 02.)[.]	- 04.24:33	FEIGH! NO 230
PARAMETERS: 03	NO NOX	502	CO OAT	DPT B	CAT ALT (MC)
MINIMA: .013	BMDL BMDL	- -	CO OAT	14.3	SCAT ALT (MSL) •6
MAXIMA: .119	•802 •932		2.6 34.4		•0 6•9 3271• FT•
	*802 *732	•00.4	2.0 34.4	~ ~ (3271. +1.
JULIAN DAY = 212 Y	YFAR = 1076 FDT.	188 30 TIM	EC . 04.24.E4	- 00.54.44	F. *CUT = 354
SITES FLOWN OVER:					LF 1841 NO 531
PARAMETERS: 03		•			
MINIMA: •010			CO OAT	*···	SCAT ALT (MSL)
MAXIMA: 121			MDL 16.8	**	2 7.7 7037. FT
BANTBA: 4171	. 302 . 408	1.010	3.1 29.4	23.8	7.7 7037. FT.
JULIAN DAY = 212 Y	**** * 1074 ***	1 70 714	Fr. 09.37.20	40.77.40	FLIGHT NO_ = 252
SITES FLOWN OVER:	31 90 FRI	ANC SO ITM	ES: Uciziizu	- 10:33:40	LE16H1 NO" = 525
•		000	-0 047	5.7 6.	
PARAMETERS: 03	NO NOX		CO OAT		CAT ALT (MSL)
MINIMA: BMDL	BMDL BMDL		MDL 17.8	3.5	.4
MAXIMA: .098	•020 •072	•133	2 • 8 34 • 5	25.0	3.2 7954. fT.
JULIAN DAY = 212 Y	VEAD + 1074 EDI-	1111 3A 37M	cc. 11.17.3A	- 13-37-45	EL 1007 NO. = 253
	31 32	405 20 11M	E3. 11.11.30	- 13.31.43	LETON: MO 532
SITES FLOWN OVER:	-	\$02	CO OAT	DPT B	SCAT ALT (MSL)
PARAMETERS: 03	NO NOX		MDL 16.8	-2.9	+2
MINIMA: .046					• 2 3 • 6 7354 • FT •
TAMIXAM : 160	•020 •032	.001	1.8 33.9	27.9	5.0 F334. F1.
JULIAN DAY = 212 1	w.c.a.c 4074	Lut 30 TIM	EC. 14.44.15	- 16-25-15	FI 164T NO = 254
		10C 30 11M	23: 14:40:17	- 10.27.17	
SITES FLOWN OVER:	31 21		CO OAT	DPT B	SCAT ALT (MSL)
PARAMETERS: 03	NO NOX		CO OAT MDL 28.7		SUM ALI MALE
MINIMA: .000					7.5 3268 FT.
MAXIMA: .096	.908 1.150	1.420	1.5 38.1	22.1	7.5
JULIAN DAY = 214	ween - 4034 6344	AUC 4 TTM	EC. 48.52.00	12-50-50	FI 16HT NO. = 255
	AFAK = 1310 2001	ADO I IIM	E2: 10:72:00	- 12.37.30	1210111 1101 233
SITES FLOWN OVER:	8 32		CD OAT	DPT B	SCAT ALT (MSL)
PARAMETERS: 03	NO NOX	• •		• • • •	•1
SSO. :AMINIM			MDL 11.8	-9.1	
820. :AMIXAM	•176 •218	•133	2.3 25.3	13.5	1.5 5524. FT.
			01 13	04.54.70	ELICUT NO - 254
JULIAN DAY = 215	YEAR = 1976 MON.	AUG 2 TIM	F2: 04:20:13	0 - 0013013U	LF TRUI 40 530
SITES FLOWN OVER:	SEE FLIGHT DES	CRIPTION			
PARAMETERS: 03	NO NOX	0.0	CO. OAT	-	SCAT ALT (MSL)
MINIMA: .022	BMDL BMDL	•96 0	8.9		• 2
MAXIMA: .078	.038 .069	. ₹36	21.4	15.8	1.0 6007. FT.
· · ·					

	•				
110 TAN .AV = 215	VEAD - 1076 MAN	Aug 2	TIMES - 08-04-31	- 11:06:46 FLIGHT	NO = 257
SITES FLOWN OVER:	31 22 22 22	22 22	22 32	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		205	CO OAT	TADZ8 Ted	ALT (MSL)
PARAMETERS: 03	NO NOX				MET WISE
MINIMA: -025		• 000	BMDL 8.5	-4.6 BMDL	4030 FT
ANIMA: .064	•009 .016	.001	3.1 26.0	12.0 .7	6870. FT.
JULIAN DAY = 215	YEAR = 1976 MON.	AUG 2	TIMES: 13:17:30	- 16:12:35 FLIGHT	NO. = 258
SITES FLOWN OVER:	31 2 3 6			23 32	
PARAMETERS: 03	NO NOX	S 02	CO OAT	DPT BSCAT	ALT (MSL)
MINIMA: .014		•000	BMDL 19.5	6.9 BMDL	
	gg	.199	2.7 27.4	11.9 1.2	3013. FT.
STC. : AMIKAM	•109 •142	• 177	2.1 21.4	1107	30130 110
		_			
JULIAN DAY = 216	YEAR = 1976 TUE,	Αυ 6 3	TIMES: 04:35:40	- 06:35:20 FLIGHT	NO. = 259
SITES FLOWN OVER:	SEE FLIGHT DES	CRIPTION			
PARAMETERS: 03	XON ON	\$02	CO OAT	DPT BSCAT	ALT (MSL)
MINIMA: .DOC)	- 000	BMDL 8.6	** •2	_
MAYIMA: .090	}	1.880	6_9 18.5	13.5 5.4	6903. FT.
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1303	
JULIAN DAY = 216	MEAD - 4074 THE	AUC 7	TIMES - OF SOLD	- 08:41:50 FLIGHT	NO - = 260
-					1100 - 200
SITES FLOWN OVER:		_			
PARAMETERS: 03	NO NOX	\$ 02	CO OAT	DPT BSCAT	ALT (MSL)
MINIMA: .057		• 0.0 0	BMDL 14-9	6.4 -3	
MAXIMA: -105	• 389 • 467	•704	3.1 21.4	13.4 4.1	3477. FT.
JULIAN DAY = 216	YEAR = 1976 TUE,	AUG 3	TIMES: 07:29:55	- 09:26:50 FLIGHT	NO. = 261
				- 09:26:50 FLIGHT	NO. = 261
SITES FLOWN OVER:	SEE FLIGHT DES	CRIPTION			
SITES FLOWN OVER: PARAMETERS: 03	SEE FLIGHT DES	CRIPTION SO2	CO OAT	DPT BSCAT	NO. = 261
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI	SEE FLIGHT DES NO NOX	CRIPTION SO2 +000	CO OAT	DPT BSCAT	ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03	SEE FLIGHT DES NO NOX	CRIPTION SO2	CO OAT	DPT BSCAT	
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI	SEE FLIGHT DES NO NOX	CRIPTION SO2 +000	CO OAT	DPT BSCAT	ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .097	SEE FLIGHT DES NO NOX	\$02 •000 2•580	CO OAT BMDL 8.6 ** 21.6	DPT BSCAT ** •2 14•2 4•5	ALT (MSL) 6944. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .097 JULIAN DAY = 216	SEE FLIGHT DES NO NOX	\$02 •000 2.580	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT	ALT (MSL) 6944. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .097 JULIAN DAY = 216 SITES FLOWN OVER:	SEE FLIGHT DES NO NOX 	CRIPTION \$02 .000 2.580 AUG 3 6 5	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32	ALT (MSL) 6944. FT. NO. = 262
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .097 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3	CRIPTION \$02 •000 2•580 AUG 3 6 5 \$02	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT	ALT (MSL) 6944. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .013	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3 NO NOX Y BMDL BMDL	CRIPTION S02 .000 2.580 AUG 3 6 5 S02 .000	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMbL 10.8	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .097 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3 NO NOX Y BMDL BMDL	CRIPTION \$02 •000 2•580 AUG 3 6 5 \$02	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT	ALT (MSL) 6944. FT. NO. = 262
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .013	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3 NO NOX Y BMDL BMDL	CRIPTION S02 .000 2.580 AUG 3 6 5 S02 .000	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMbL 10.8	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .096 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .106	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3 NO NOX P BMDL BMDL 2 • 036 • 081	AUG 3 6 5 802 .000 2.580 AUG 3 6 5 802 .000 .169	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMpL 10.8 3.9 26.9	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2 1.8	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .096 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .106	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3 NO NOX P BMDL BMDL 2 • 036 • 081	AUG 3 6 5 802 .000 2.580 AUG 3 6 5 802 .000 .169	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMpL 10.8 3.9 26.9	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2 1.8	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .096 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .016 MAXIMA: .106	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3 NO NOX P BMDL BMDL 2 • 036 • 081	AUG 3	CO OAT 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMpL 10.8 3.9 26.9	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2 1.8 - 13:11:40 FLIGHT	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .097 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .017 MAXIMA: .107 JULIAN DAY = 216	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 NO NOX P BMDL BMDL • 036 • 081 YEAR = 1976 TUE, 31 2 3 6	AUG 3 502 .000 2.580 AUG 3 .000 .169	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMDL 10.8 3.9 26.9 TIMES: 10:49:55 3 6 5 23	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2 1.8 - 13:11:40 FLIGHT	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT. NO. = 263
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .103 MAXIMA: .103 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3 NO NOX YEAR = 1976 TUE, 31 2 3 6 NO NOX	AUG 3 6 5 800 2.580 AUG 3 6 5 802 .000 .169	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMDL 10.8 3.9 26.9 TIMES: 10:49:55 3 6 5 23 CO OAT	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2 1.8 - 13:11:40 FLIGHT 32 DPT BSCAT	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .097 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .107 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .107 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .027	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3 NO NOX 7 BMDL BMDL 2 • 036 • 081 YEAR = 1976 TUE, 31 2 3 6 NO NOX	AUG 3 6 5 800 -000 -169 -000 -169	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMDL 10.8 3.9 26.9 TIMES: 10:49:55 3 6 5 23 CO OAT BMDL 15.5	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2 1.8 - 13:11:40 FLIGHT 32 DPT BSCAT 4.9	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT. NO. = 263 ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .103 MAXIMA: .103 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3 NO NOX 7 BMDL BMDL 2 • 036 • 081 YEAR = 1976 TUE, 31 2 3 6 NO NOX	AUG 3 6 5 800 2.580 AUG 3 6 5 802 .000 .169	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMDL 10.8 3.9 26.9 TIMES: 10:49:55 3 6 5 23 CO OAT	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2 1.8 - 13:11:40 FLIGHT 32 DPT BSCAT	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT. NO. = 263
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .097 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .107 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .107 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .027	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3 NO NOX 7 BMDL BMDL 2 • 036 • 081 YEAR = 1976 TUE, 31 2 3 6 NO NOX	AUG 3 6 5 800 -000 -169 -000 -169	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMDL 10.8 3.9 26.9 TIMES: 10:49:55 3 6 5 23 CO OAT BMDL 15.5	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2 1.8 - 13:11:40 FLIGHT 32 DPT BSCAT 4.9	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT. NO. = 263 ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: 097 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 017 MAXIMA: 017 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 027 MINIMA: 099	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3 NO NOX BMDL BMDL 036 •081 YEAR = 1976 TUE, 31 2 3 6 NO NOX	AUG 3 502 .000 2.580 AUG 3 6 5 802 .000 .169 AUG 3 5 2 802 .000	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMDL 10.8 3.9 26.9 TIMES: 10:49:55 3 6 5 23 CO OAT BMDL 15.5 8.4 24.5	DPT BSCAT ** .2 14.2	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT. NO. = 263 ALT (MSL) 3015. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: 099 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 017 MAXIMA: 107 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 026 MINIMA: 099 JULIAN DAY = 216	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3 NO NOX P BMDL BMDL BMDL 0036 081 YEAR = 1976 TUE, 31 2 3 NO NOX YEAR = 1976 TUE, 31 2 3 NO NOX	AUG 3 502 .000 2.580 AUG 3 6 5 802 .000 .169 AUG 3 5 2 802 .000 .070	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMDL 10.8 3.9 26.9 TIMES: 10:49:55 3 6 5 23 CO OAT BMDL 15.5 8.4 24.5 TIMES: 15:31:21	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2 1.8 - 13:11:40 FLIGHT 32 DPT BSCAT 4.9	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT. NO. = 263 ALT (MSL) 3015. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .103 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .023	SEE FLIGHT DES NO NOX YEAR = 1976 TUE, 31 23 2 3 NO NOX Y BMDL BMDL BMDL 0036 081 YEAR = 1976 TUE, 31 2 3 6 YEAR = 1976 TUE, 31 2 3 6	AUG 3 5 2 502 .000 .070 .070	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMDL 10.8 3.9 26.9 TIMES: 10:49:55 3 6 5 23 CO OAT BMDL 15.5 8.4 24.5 TIMES: 15:31:21 6 32	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2 1.8 - 13:11:40 FLIGHT 32 DPT BSCAT 4.9 .7 12.6 1.5 - 17:46:46 FLIGHT	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT. NO. = 263 ALT (MSL) 3015. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .103 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03	SEE FLIGHT DES NO NOX 12 1 23 2 3 1 23 2 3 1 23 2 3 1	AUG 3 5 2 5 000 AUG 3 6 5 8 02 - 000 - 169 AUG 3 5 2 8 000 - 070	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMDL 10.8 3.9 26.9 TIMES: 10:49:55 3 6 5 23 CO OAT BMDL 15.5 8.4 24.5 TIMES: 15:31:21 6 32 CO OAT	DPT BSCAT ** .2 14.2	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT. NO. = 263 ALT (MSL) 3015. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .103 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .015	SEE FLIGHT DES NO NOX 12 1 23 2 3 1 23 2 3 1 2 3	AUG 3 5 2 000 000 000 000 000 000 000 000 000	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMDL 10.8 3.9 26.9 TIMES: 10:49:55 3 6 5 23 CO OAT BMDL 15.5 8.4 24.5 TIMES: 15:31:21 6 32	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2 1.8 - 13:11:40 FLIGHT 32 DPT BSCAT 4.9 .7 12.6 1.5 - 17:46:46 FLIGHT	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT. NO. = 263 ALT (MSL) 3015. FT. NO. = 264
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDI MAXIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .103 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03 MINIMA: .093 JULIAN DAY = 216 SITES FLOWN OVER: PARAMETERS: 03	SEE FLIGHT DES NO NOX 12 1 23 2 3 1 23 2 3 1 2 3	AUG 3 5 2 5 000 AUG 3 6 5 8 02 - 000 - 169 AUG 3 5 2 8 000 - 070	CO OAT BMDL 8.6 ** 21.6 TIMES: 10:33:35 2 3 6 5 CO OAT BMDL 10.8 3.9 26.9 TIMES: 10:49:55 3 6 5 23 CO OAT BMDL 15.5 8.4 24.5 TIMES: 15:31:21 6 32 CO OAT	DPT BSCAT ** .2 14.2 4.5 - 13:16:50 FLIGHT 32 DPT BSCAT .2 1.8 - 13:11:40 FLIGHT 32 DPT BSCAT 4.9 .7 12.6 1.5 - 17:46:46 FLIGHT DPT BSCAT	ALT (MSL) 6944. FT. NO. = 262 ALT (MSL) 6742. FT. NO. = 263 ALT (MSL) 3015. FT. NO. = 264

JULIAN DAY = 217 YEAR =	1976 NED 400	4 TIMES.	05-04-45	04-40-65		
SITES FLOWN OVER: SEE	LIGHT DESCRIPT	4 11ME2	U>1U4145	- 00:18:05	FLIGHT	NO. = 265
PARAMETERS: 03 NO	NOX SO		OAT	nPT	BSCAT	ALT (MSL)
MINIMA: .016 BMD	. BMDL .[.		9.7	p. v	•5	ME: /MOE'
MAXIMA: .106 BMD			22.0		1.5	7190. FT.
		•			***	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
JULIAN DAY = 217 YEAR =	1976 WED. AUG	4 TIMES.	D7-34-40 .	_ 10.20.05	EI TEUT	NO - 244
SITES FLOWN OVER: 31	24 2 3 6	5 2 3	6 5		FLIGHT	NO 200
PARAMETERS: 03 NO	NOX SO		OAT		BSCAT	ALT (MSL)
MINIMA: .025 BNDI	BMDL .U!	OO BMDL	18.4	-,	• 7	
MAXIMA: .114 BMDI	.157 .00	01 4.8	27.4		2•2	3208. FT.
JULIAN DAY = 217 YEAR =	1976 WED, AUG	4 TIMES:	08:10:40	- 10:15:40	FLIGHT	NO. = 267
SITES FLOWN OVER: 31 PARAMETERS: 03 NO	110V 60					
PARAMETERS: 03 NO minima: +053 bmd	NOX SOZ L BMDL +60		0AT 9.5	DPT E		ALT (MSL)
MAXIMA: .195 .029			25.0	14.5	2.2	8454. FT.
	• • • • • • • • • • • • • • • • • • • •	,,	23.0	1447	2.5	04246 716
JULIAN DAY = 217 YEAR =	1976 NED. ANG	4 TIMES:	12:52:21 -	- 15:57:01	FLIGHT	NO = 268
SITES FLOWN OVER: 31				13131101		
PARAMETERS: 03 NO	NOX SOZ	2 60	OAT	DPT 6	95CAT	ALT (PSL)
MINIMA: .008 BMD	L BMDL BMD	L BMDL	15.8	7.3	1.0	
MAXIMA: .211 .00	7 .040 .00	11 **	29.5	12.6	1.9	4589. FT.
JULIAN DAY = 217 YEAR =	1976 WED. AUG	4 TIMES:	17:19:33 -	- 19:35:28	FLIGHT	NO. = 269
SITES FLOWN OVER: 61	NOX SOZ	e co	OAT	DPT E	SCAT	ALT (MSL)
PARAMETERS: 03 NO minima: +036 BMD			16.8	7.5	.9	MET THISE
MINIMA: +036 BMD MAXIMA: +122 +019			29.0	14.5		4501. FT.
DEATHER SIZE			2770	,		•
JULIAN DAY = 219 YEAR =	1976 FRI. AH6	6 TIMES:	06:20:20 -	- 07:53:25	FLIGHT	NO. = 270
SITES FLOWN OVER: 31	25 2 3 32					
PARAMETERS: 03 NO	NOX SO	? co	DAT	• • •	BSCAT	ALT (MSL)
MINIMA: .007 BMD			18.7	10.9	• 3	
MAXIMA: .058 .01	8 .0 06 .00	1 3.8	23+8	21.1	6.4	2916. FT.
		7 TIMES:	04.04.15	_ ng.30.45	FLIGHT	NO. = 271
JULIAN DAY = 220 YEAR =		5 2 3		32	, , ,	NOT - 211
SITES FLOWN OVER: 31			OAT		BSCAT	ALT (MSL)
PARAMETERS: 03 NO MINIMA: .009 BMD			12.0	**	• 3	
MINIMA: .009 BMD MAXIMA: .061 .04	-		20.7	15.7	3.7	6909 - FT -
PRAZERZ - UOI - 04		· ·				
JULIAN DAY = 220 YEAR =	1976 CAT. AUG	7 TIMES:	07:08:15	- 09:50:45	FLIGHT	NO. = 272
SITES FLOWN OVER: 31		5 2		32		
PARAMETERS: 07 NO	NOX SO		DAT		BSCAT	ALT (MSL)
MINIMA: .020 BMD	L BMDL •0		12.2	**	.1	6445. FT.
MAXIMA: ,067 .05	6 •091 •	44 2.5	23.3	14.0	3.2	CONT. FI.

JULIAN DAY = 220	rfar = 1976	cAT.	Au6 7	TIMES: 1	11:02:01	- 13:56:5	1 FL16HT	NO. = 273
SITES FLOWN OVER:	2 3	6 5	2 3	5 6	22			
PARAMETERS: 03	NO	NOX	802	co.	DAT	DPT	BSCAT	ALT (MSL)
MINIMA: .031	BMDL	BMDL	BMDL	•	9.5	-11.0	• 2	
MAXIMA: .077	•027	.049	.001		25.4	14.0	1.8	8117. FT.
- AKI (18)	•02•	•047	• 00.		23-4			
JULIAN DAY = 220	WEAR - 4074		AUC 7	TIMEC. 4	12.47.25	_ 15-11-0)	NO. = 274
				6 5	22 32	- 15.11.0	, , , , , , , , , , , , , , , , , , , ,	1100 - 214
SITES FLOWN OVER:	31 2	6 5	-	c o	22 32 OAT	DPT	BSCAT	ALT (MSL)
PARAMETERS: 03	NO	NOX	\$ 02					MET (MSE)
MINIMA: .039	BMDL	BMDL	• 00 0	BMDL	10.9	-9.3 12.9	.1 1.9	6871. FT.
MAXIMA: . OP1	•022	.048	.201	5.9	25.6	12.7	1 • 7	0077. 71.
4411 T. H. N. W. G. 334	N-40 - 4074		AC 0		1/-79-4/	- 07-/5-7		NO - 275
JULIAN DAY = 221	YEAR = 1976	SUN	AUG 8	11WF2: (14:30:14	- 0/:45:5	D LETON!	NU. = 2/3
SITES FLOWN OVER:	SEE FLIG							
PARAMETERS: 03	NO	NOX	\$02	CO.	OAT	DP T.	BSCAT	ALT (MSL)
MINIMA: .003	BMDL	PMDL	• 600	BMDL	11.2	**	BMDL	4047
MAXIMA: .085	1.400	1.400	2.280	5.3	19.6	13 • 5	7•9	6813. FT.
	ws.a.s. 4074		A.U.C. 6	*****		0 25-6		NO - 274
JULIAN DAY = 221		SUN,	AUB B	11ME2: (30:35:10	- 09:30:0	8 LF10H1	NU - = 210
SITES FLOWN OVER:	31 32			••			06544	44 T (MC)
PARAMETERS: 03	NO	NOX	205	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: BMDL	BMDL	BMDL	BMDL		13.0	14.2	•2 3•6	7209. FT.
MAXIMA: .077	-824	•946	1.240		22.5	1402	3.0	12U7 + 1 +
JULIAN DAY = 222	VEAR = 1076	MON.	AUG 9	TIMES - 1	11-21-55	- 13-22-4	7 et seut	NO. = 277
SITES FLOWN OVER:	31 24	2 3	6 5	2 3	6 5	32		NO E11
PARAMETERS: 03	NO NO	NOX	\$02	້ເວັ	TAO	DPT	BSCAT	ALT (MSL)
MINIMA: +016		BMDL	BMDL	CO	18.3	0 1 1	÷3	HE! (HOL)
MAXIMA: .072	•036	.061	.104		29.4		1.2	3075. FT.
WAZIIAT TOTE	••••	•••	• • • •		2704		1.6	30134 114
JULIAN DAY = 223	YFAR = 1976	TOF.	AUG 10	TIMES: (06:45:15	- 09:29:35	5 F1 16H7	NO_ = 278
SITES FLOWN OVER:	31 24	2 3	6 5	32		******		
PARAMETERS: 03	NO	NOX	\$02	c.0	OAT	DeT	BSCAT	ALT (MSL)
MINIMA: .012	BMDL	PMDL	BMDL	•	21.5	6.9	• 2	,
MAXIMA: .264	• D56	-112	.218		**	30.8	1.7	3032. FT.
								.,,
JULIAN DAY = 224	YEAR = 1976	WED.	AUG 11	TIMES: 1	12:16:15	- 16:18:20	D FLIGHT	NO. = 279
SITES FLOWN OVER:	31 2	2 3	6 5	2 3	6 5	32	. 1011	
PARAMETERS: 03	NO	NOX	502	CO	DAT	DPT	BSCAT	ALT (MSL)
MINIMA: .047	BMDL	BMDL	• C 0 0	BMDL	22.1	10.1	• 5	
MAXIMA: .108	-042	.094	.647	3.5	33.6	22.8	3.1	5062. FT.
JULIAN DAY = 225		THU,	AUG 12	TIMES: (06:20:40	- 08:42:3	6 FLIGHT	NO. = 280
SITES FLOWN OVER:	31 32			_				
PARAMETERS: 03	NO	NOX	\$02	c o	OAT	DpT	BSCAT	ALT (MSL)
MINIMA: BMDL	BMDL	BMDL	BMDL		24.4	12.7	• 1	
MAXIMA: .0°4	1.410	1.280	2.770		28+0	**	5.0	3637. FT.

JULIAN DAY = 225 Y	EAR = 1976 THU.	Aug. 12	TIMES - DA.20.28	- 00-04-75 ELTCHT	. 40 - 254
SITES FLOWN OVER:	31 32		11ME3: 00:20:38	- 03:00:33 LF16H1	NU. = 287
PARAMETERS: 03	NO NOX	\$ 02			
MINIMA: .005			CO OAT	DPT BSCAT	ALT (MSL)
MAXIMA: .079		.000	BMDL **	12.6 .9	
MAXIMA: 6U17	1.280 1.380	3.05 0	5.2 28.0	20.6 7.7	3513. FT.
AIII *AA. AAW 227 W					
JULIAN DAY = 226 Y	EAR = 1976 FRI,	AUG 13	TIMES: 07:56:45	- 10:02:43 FLIGHT	NO. = 282
SITES FLOWN OVER:	2 3 6 5	2 3	6 5 32		
PARAMETERS: 03	NO NOX	\$02	CO OAT	DPT BSCAT	ALT (MSL)
MINIMA: .004	BMDL BMDL	.000	24.3	17.3 BMDL	
MAXIMA: .122	•253 •339	• 633	30.6	22.3 4.2	3088. FT.
			2000	700	30000
JULIAN DAY = 226 Y	FAR = 1976 FOT.	Aug 13	TIMES - 07-59-41	- 10-41-11 ELTONT	NO 283
SITES FLOWN OVER:	31 25 25 25	25 32	11863. 01.37.41	10.47.11 72.10.1	NO - 203
PARAMETERS: 03	NO NOX	\$02	.0 0.7	207 2-64-	/
MINIMA: .018	BMDL BMDL	302	TAO O3	DPT BSCAT	ALT (MSL)
			BMDL 23.9	14.9 1.5	
MAXIMA: .090	.017 .049		1.8 30.2	22.3 3.8	3058. FT.
200 w					
JULIAN DAY = 300 Y	EAR = 1976 TUE,	OCT 26	TIMES: 05:59:55		NO. = 284
SITES FLOWN OVER:	31 23 2 3				
PARAMETERS: 03	NO NOX	\$02	CO OAT	DPT BSCAT	ALT (MSL)
MINIMA: .003	BMDL BMDL		BMDL -5.6	-12.1 .5	
MAXIMA: .050	•783 •986		3.3 7.0	2.9 5.2	7096. FT.
JULIAN DAY = 300 Y	'EAR = 1976 TUE,	OCT 26	TIMES: 10:37:48	- 13:05:24 FLIGHT	NO. = 285
SITES FLOWN OVER:	31 2 3 6			32	
PARAMETERS: 03	NO NOX	\$02	CO OAT	DPT BSCAT	ALT (MSL)
OSO : AMINIM	BMDL BMDL		BMDL 2.4	_10.3 .6	
MAXIMA: .053	•129 •176		3.2 11.5	1.9 2.9	3369. FT.
MAKIMA. COSS	0127			•••	•
**** * ** * * * * * * * * * * * * * *					
	PEAD = 107% MEN.	OCT 27	TIMES - 06-09-36	- 07:49:00 FLIGHT	NO = 286
			TIMES: 06:09:36	- 07:49:00 FLIGHT	NO = 286
SITES FLOWN OVER:	31 22 2 3	6 5	2 3 6 5		
SITES FLOWN OVER: PARAMETERS: 03	31 22 2 3 NO NOX		2 3 6 5 CO OAT	DPT BSCAT	NO. = 286 ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 000	31 22 2 3 NO NOX BMDL .001	6 5	2 3 6 5 CO OAT •0 •6	DPT BSCAT -1.1 1.2	ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03	31 22 2 3 NO NOX	6 5	2 3 6 5 CO OAT	DPT BSCAT	
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 000	31 22 2 3 NO NOX BMDL .001	6 5	2 3 6 5 CO OAT •0 •6	DPT BSCAT -1.1 1.2	ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 000 MAXIMA: 012	31 22 2 3 NO NOX BMDL .001 .100 .136	6 5 \$0?	2 3 6 5 CO OAT .0 .6 3.8 4.4	DPT BSCAT -1.1 1.2 1.4 3.5	ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 0000 MAXIMA: 012 JULIAN DAY = 301	31 22 2 3 NO NOX BMDL .001 .100 .136	6 5 802 0CT 27	2 3 6 5 CO OAT .0 .6 3.8 4.4 TIMES: 10:25:44	DPT BSCAT -1.1 1.2 1.4 3.5 - 12:38:24 FLIGHT	ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 000 MAXIMA: 012 JULIAN DAY = 301 SITES FLOWN OVER:	31 22 2 3 NO NOX BMDL .001 .100 .136 VEAR = 1976 WED, 31 2 3	6 5 802 0CT 27 5 2	2 3 6 5 CO OAT .0 .6 3.8 4.4 TIMES: 10:25:44 3 6 5 22	DPT BSCAT -1.1 1.2 1.4 3.5 - 12:38:24 FLIGHT	ALT (MSL) 1588 • FT • NO • = 287
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 0000 MAXIMA: 012 JULIAN DAY = 301	31 22 2 3 NO NOX BMDL .001 .100 .136 YEAR = 1976 WED, 31 2 3 6 NO NOX	6 5 802 0CT 27 5 2	2 3 6 5 CO OAT .0 .6 3.8 4.4 TIMES: 10:25:44 3 6 5 22 CO OAT	DPT BSCAT -1.1 1.2 1.4 3.5 - 12:38:24 FLIGHT 32 DPT BSCAT	ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 000 MAXIMA: 012 JULIAN DAY = 301 SITES FLOWN OVER:	31 22 2 3 NO NOX BMDL .001 .100 .136 VEAR = 1976 WED, 31 2 3	6 5 802 0CT 27 5 2	2 3 6 5 CO OAT .0 .6 3.8 4.4 TIMES: 10:25:44 3 6 5 22 CO OAT BMDL .6	DPT BSCAT -1.1 1.2 1.4 3.5 - 12:38:24 FLIGHT 32 DPT BSCAT -1.4 1.1	ALT (MSL) 1588 • FT • NO . = 287 ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 000 MAXIMA: 012 JULIAN DAY = 301 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL	31 22 2 3 NO NOX BMDL .001 .100 .136 YEAR = 1976 WED, 31 2 3 6 NO NOX	6 5 802 0CT 27 5 2	2 3 6 5 CO OAT .0 .6 3.8 4.4 TIMES: 10:25:44 3 6 5 22 CO OAT	DPT BSCAT -1.1 1.2 1.4 3.5 - 12:38:24 FLIGHT 32 DPT BSCAT	ALT (MSL) 1588 • FT • NO • = 287
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 000 MAXIMA: 012 JULIAN DAY = 301 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL	31 22 2 3 NO NOX BMDL .001 .100 .136 VEAR = 1976 WED, 31 2 3 6 NO NOX .002 BMDL	6 5 802 0CT 27 5 2	2 3 6 5 CO OAT .0 .6 3.8 4.4 TIMES: 10:25:44 3 6 5 22 CO OAT BMDL .6	DPT BSCAT -1.1 1.2 1.4 3.5 - 12:38:24 FLIGHT 32 DPT BSCAT -1.4 1.1	ALT (MSL) 1588 • FT • NO . = 287 ALT (MSL)
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 000 MAXIMA: 012 JULIAN DAY = 301 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 028	31 22 2 3 NO NOX BMDL .001 .100 .136 VEAR = 1976 WED, 31 2 3 NO NOX .002 BMDL .205 .242	6 5 \$02 0CT 27 5 2 \$02	2 3 6 5 CO OAT .0 .6 3.8 4.4 TIMES: 10:25:44 3 6 5 22 CO OAT BMDL .6 2.7 6.9	DPT BSCAT -1.1 1.2 1.4 3.5 - 12:38:24 FLIGHT 32 DPT BSCAT -1.4 1.1 1.9 6.7	ALT (MSL) 1588. FT. NO. = 287 ALT (MSL) 2174. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 000 MAXIMA: 012 JULIAN DAY = 301 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 028	31 22 2 3 NO NOX BMDL .001 .100 .136 VEAR = 1976 WED, 31 2 3 NO NOX .002 BMDL .205 .242	6 5 \$02 0CT 27 5 2 \$02	2 3 6 5 CO OAT .0 .6 3.8 4.4 TIMES: 10:25:44 3 6 5 22 CO OAT BMDL .6 2.7 6.9	DPT BSCAT -1.1 1.2 1.4 3.5 - 12:38:24 FLIGHT 32 DPT BSCAT -1.4 1.1 1.9 6.7	ALT (MSL) 1588. FT. NO. = 287 ALT (MSL) 2174. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 0000 MAXIMA: 012 JULIAN DAY = 301 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 8MDL MAXIMA: 028 JULIAN DAY = 302 Y	31 22 2 3 NO NOX BMDL .001 .100 .136 VEAR = 1976 WED. 31 2 3 NO NOX .002 BMDL .205 .242	6 5 \$02 0CT 27 5 2 \$02	2 3 6 5 CO OAT .0 .6 3.8 4.4 TIMES: 10:25:44 3 6 5 22 CO OAT BMDL .6 2.7 6.9 TIMES: 09:58:00	DPT BSCAT -1.1 1.2 1.4 3.5 - 12:38:24 FLIGHT 32 DPT BSCAT -1.4 1.1 1.9 6.7 - 12:35:00 FLIGHT	ALT (MSL) 1588. FT. NO. = 287 ALT (MSL) 2174. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 000 MAXIMA: 012 JULIAN DAY = 301 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 028 JULIAN DAY = 302 Y SITES FLOWN OVER:	31 22 2 3 NO NOX BMDL .001 .100 .136 VEAR = 1976 WED 31 2 3 NO NOX .002 BMDL .205 .242 VEAR = 1976 THU 31 24 2	6 5 502 0CT 27 5 2 502 0CT 28	2 3 6 5 CO OAT .0 .6 3.8 4.4 TIMES: 10:25:44 3 6 5 22 CO OAT BMDL .6 2.7 6.9 TIMES: 09:58:00 3 6 5 32	DPT BSCAT -1.1 1.2 1.4 3.5 - 12:38:24 FLIGHT 32 DPT BSCAT -1.4 1.1 1.9 6.7 - 12:35:00 FLIGHT	ALT (MSL) 1588. FT. NO. = 287 ALT (MSL) 2174. FT.
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 0000 MAXIMA: 012 JULIAN DAY = 301 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 028 JULIAN DAY = 302 Y SITES FLOWN OVER: PARAMETERS: 03	31 22 2 3 NO NOX BMDL .001 .100 .136 VEAR = 1976 WED, 31 2 3 NO NOX .002 BMDL .205 .242 VEAR = 1976 THU, 31 24 2 NO NOX	6 5 \$02 0CT 27 5 2 \$02	2 3 6 5 CO OAT .0 .6 3.8 4.4 TIMES: 10:25:44 3 6 5 22 CO OAT BMDL .6 2.7 6.9 TIMES: 09:58:00 3 6 5 32 CO OAT	DPT BSCAT -1.1 1.2 1.4 3.5 - 12:38:24 FLIGHT 32 DPT BSCAT -1.4 1.1 1.9 6.7 - 12:35:00 FLIGHT DPT BSCAT	ALT (MSL) 1588 • FT • NO • = 287 ALT (MSL) 2174 • FT •
SITES FLOWN OVER: PARAMETERS: 03 MINIMA: 000 MAXIMA: 012 JULIAN DAY = 301 Y SITES FLOWN OVER: PARAMETERS: 03 MINIMA: BMDL MAXIMA: 028 JULIAN DAY = 302 Y SITES FLOWN OVER:	31 22 2 3 NO NOX BMDL .001 .100 .136 VEAR = 1976 WED 31 2 3 NO NOX .002 BMDL .205 .242 VEAR = 1976 THU 31 24 2	6 5 502 0CT 27 5 2 502 0CT 28	2 3 6 5 CO OAT .0 .6 3.8 4.4 TIMES: 10:25:44 3 6 5 22 CO OAT BMDL .6 2.7 6.9 TIMES: 09:58:00 3 6 5 32	DPT BSCAT -1.1 1.2 1.4 3.5 - 12:38:24 FLIGHT 32 DPT BSCAT -1.4 1.1 1.9 6.7 - 12:35:00 FLIGHT DPT BSCAT -9.1 .7	ALT (MSL) 1588 • FT • NO • = 287 ALT (MSL) 2174 • FT •

SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 24 32 PARAMETERS: 03 NO NOX SOZ CO OAT DPT BSCAT ALT (MSL) MINIMA: .016 BMDL BMDL MAXIMA: .024 .126 .165 .32 10.4 -1.0 1.9 4417. FT. JULIAN DAY = 303 YEAR = 1976 FRI, OCT 29 TIMES: 07:11:16 - 09:39:44 FLIGHT NO. = 290 SITES FLOWN OVER: 31 25 2 3 6 5 2 3 6 5 32 PAPAMETERS: 03 NO NOX SOZ CO OAT DPT BSCAT ALT (MSL) MINIMA: .043 .759 .900 .992 *** 8.0 -1.1 4.1 3381. FT. JULIAN DAY = 303 YEAR = 1976 FRI, OCT 29 TIMES: 11:20:00 - 13:55:20 FLIGHT NO. = 291 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 24 32 JULIAN DAY = 303 YEAR = 1976 FRI, OCT 29 TIMES: 11:20:00 - 13:55:20 FLIGHT NO. = 291 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 24 32 JULIAN DAY = 303 YEAR = 1976 FRI, OCT 29 TIMES: 11:20:00 - 13:55:20 FLIGHT NO. = 291 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 24 32 JULIAN DAY = 306 YEAR = 1976 MON, NOV 1 TIMES: 09:01:12 - 11:49:24 FLIGHT NO. = 292 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 32 JULIAN DAY = 306 YEAR = 1976 MON, NOV 1 TIMES: 09:01:12 - 11:49:24 FLIGHT NO. = 292 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 32 JULIAN DAY = 306 YEAR = 1976 MON, NOV 1 TIMES: 09:01:12 - 11:49:24 FLIGHT NO. = 292 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 32 JULIAN DAY = 306 YEAR = 1976 MON, NOV 1 TIMES: 09:01:12 - 11:49:24 FLIGHT NO. = 292 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 32 PARAMETERS: 03 NO NOX SOZ CO OAT OPT BSCAT ALT (MSL) MAXIMA: .002 BMDL BMDL .004 BMDL .4.9 -21.9 BSCAT ALT (MSL) MINIMA: .002 BMDL BMDL .004 BMDL .11.0 -4.0 .4 MAXIMA: .002 BMDL BMDL .004 BMDL .11.0 -4.0 .4 MAXIMA: .008 BMDL BMDL .004 BMDL .11.0 -4.0 .4 MAXIMA: .008 BMDL BMDL .004 BMDL .11.0 -4.0 .4 MAXIMA: .008 BMDL BMDL .004 BMDL .11.0 -4.0 .9 PARAMETERS: 03 NO NOX SOZ CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL .000 BMDL .11.0 -4.0 .9 PARAMETERS: 03 NO NOX SOZ CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL .000 BMDL .004 BMDL .000	JULIAN DAY = 302				TIMES: 1:	3:40:08 5 24	- 16:03:08	FLIGHT	NO . = 289
#AXIMA: .004 .126 .165	PARAMETERS: 03	NO	NOX		CO	OAT	DPT	•	ALT (MSL)
SITES FLOWN OVER: 31 25 2 3 6 5 2 3 6 5 32 PARAMETERS: 03 NO NOX SO2 CO OAT DET BSCAT ALT (MSL) MINIMA:		· · · · · -							4417. FT.
PARAMETERS: 03 NO NOX S02 CO OAT DPT BSCAT ALT (MSL) MINIMA: .001 BMDL .001								FL1GHT	NO. = 290
MAXIMA: .043 .759 .900 .992 ** 8.0 -1.1 4.1 3381. FT. JULIAN DAY = 303 YEAR = 1976 FPI, OCT 29 TIMES: 11:20:00 - 13:55:20 FLIGHT NO. = 291 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 24 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .013 BNDL BMDL .4001 BNDL 6.1 ** .2 MAXIMA: .046 .125 .153 .120 3.2 13.6 -1.1 3.2 3912. FT. JULIAN DAY = 306 YEAR = 1976 MON, NOV 1 TIMES: 09:01:12 - 11:49:24 FLIGHT NO. = 292 SITES FLOWN OVER: 31 24 2 3 4 5 2 3 6 5 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BNDL BMDL .001 BNDL 4.9 -21.9 .3 MAXIMA: .052 .164 .211 .154 .8 12.8 3.1 4.2 4536. FT. JULIAN DAY = 306 YEAR = 1976 MON, NOV 1 TIMES: 13:56:02 - 16:32:34 FLIGHT NO. = 293 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 24 32 JULIAN DAY = 306 YEAR = 1976 MON, NOV 1 TIMES: 13:56:02 - 16:32:34 FLIGHT NO. = 293 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 24 32 MAXIMA: .052 BNDL BNDL .004 BNDL 11.0 -4.0 .4 MAXIMA: .022 BNDL BNDL .004 BNDL 11.0 -4.0 .4 MAXIMA: .022 BNDL BNDL .004 BNDL 11.0 -4.0 .4 MAXIMA: .028 BNDL BNDL .004 BNDL 11.0 -4.0 .4 MAXIMA: .008 BNDL BNDL .000 BNDL 8.5 1.6 .9 1.7 192P. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 07:42:31 - 09:51:59 FLIGHT NO. = 294 SITES FLOWN OVER: 25 2 3 6 5 2 3 6 5 25 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BNDL BNDL .000 BNDL 8.5 1.6 .9 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BNDL BNDL .000 BNDL 8.5 1.6 .9 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BNDL BNDL .000 BNDL 8.5 1.6 .9 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .001 BNDL BNDL BNDL BNDL BNDL BNDL BNDL BNDL	PARAMETERS: 03	NO	NOX	\$ 02	CO	OAT	DPT		ALT (MSL)
SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 24 32 PARAMETERS: 03 NO NOX SOZ CO OAT DPT BSCAT ALT (MSL) MINIMA: .013 BMDL BMDL .001 BMDL 6.1 ** .2 3912. FT. JULIAN DAY = 306 YEAR = 1976 MON, NOV 1 TIMES: 09:01:12 - 11:49:24 FLIGHT NO. = 292 SITES FLOWN OVER: 31 24 2 3 4 5 2 3 6 5 32 PARAMETERS: 03 NO NOX SOZ CO OAT DPT BSCAT ALT (MSL) MAXIMA: .008 BMDL BMDL .001 BMDL 4.9 -21.9 .3 ALT (MSL) MINIMA: .008 BMDL BMDL .001 BMDL 4.9 -21.9 .3 ALT (MSL) MINIMA: .008 BMDL BMDL .004 BMDL 11.0 -4.0 .4 ALT (MSL) MINIMA: .022 BMDL BMDL .004 BMDL 11.0 -4.0 .4 ALT (MSL) MINIMA: .022 BMDL BMDL .004 BMDL 11.0 -4.0 .4 ALT (MSL) MINIMA: .022 BMDL BMDL .004 BMDL .100 -4.0 .4 ALT (MSL) MINIMA: .022 BMDL BMDL .004 BMDL .100 -4.0 .4 ALT (MSL) MINIMA: .025 BMDL BMDL .006 BMDL .007 BMDL .008 BMDL .009 BMDL						•			3381. FT.
PARAMETERS: 03 NO NOX SO2 CO 0AT DPT BSCAT ALT (MSL) MINIMA: .046 .125 .153 .120 3.2 13.6 -1.1 3.2 3912. FT. JULIAN DAY = 306 YEAR = 1976 MON, NOV 1 TIMES: 09:01:12 - 11:49:24 FLIGHT NO. = 292 SITES FLOWN OVER: 31 24 2 3 4 5 2 3 6 5 32			FRI,	OCT 29	TIMES: 1	1:20:00	- 13:55:20	FLIGHT	NO. = 291
#AXIMA: .046 .125 .153 .120 3.2 13.6 -1.1 3.2 3912. FT. JULIAN DAY = 306 YEAR = 1976 MON, NOV 1 TIMES: 09:01:12 - 11:49:24 FLIGHT NO. = 292 SITES FLOWN OVER: 31 24 2 3 4 5 2 3 6 5 32 PARAMETERS: 03 NO NOX SOZ CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMOL PMDL .001 BMDL 4.9 -21.9 .3 MAXIMA: .052 .164 .211 .154 .8 12.8 3.1 4.2 4536. FT. JULIAN DAY = 306 YEAR = 1976 MON, NOV 1 TIMES: 13:56:02 - 16:32:34 FLIGHT NO. = 293 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 24 32 PARAMETERS: 03 NO NOX SOZ CO OAT DPT BSCAT ALT (MSL) MINIMA: .022 BMDL BMDL .004 BMDL 11.0 -4.0 .4 MAXIMA: ** .110 .137 .363 5.2 16.6 .9 1.7 192P. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 07:42:31 - 09:51:59 FLIGHT NO. = 294 SITES FLOWN OVER: 25 2 3 6 5 32 PARAMETERS: 03 NO NOX SOZ CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .008 BMDL BMDL BMDL .000 BMDL 8.5 1.6 .9 JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 11:35:40 - 13:52:16 FLIGHT NO. = 295 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 25 32 JULIAN DAY = 307 BMDL BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .074 .156 .210 .079 6.4 19.2 8.6 1.9 1965. FT. JULIAN DAY = 308 YEAR = 1976 MED, NOV 3 TIMES: 07:16:04 - 10:17:48 FLIGHT NO. = 296 SITES FLOWN OVER: 31 2 5 6 5 2 3 32 PARAMETERS: 03 NO NOX SOZ CO OAT DPT BSCAT ALT (MSL) MINIMA: .021 BMDL BMDL BMDL BMDL BMDL HMDL HMDL HMDL HMDL HMDL HMDL HMDL H	PARAMETERS: 03	NO	NOX	\$02	ÇO	OAT	DPT		ALT (MSL)
SITES FLOWN OVER: 31 24 2 3 4 5 2 3 6 5 32 PARAMETERS: 03 NO NOX SOZ CO OAT DPT BSCAT ALT (MSL) MININA: .008 BMDL EMDL .201 BMDL 4.9 -21.9 .3 MAXIMA: .052 .164 .211 .154 .8 12.8 3.1 4.2 4536. FT. JULIAN DAY = 306 YEAR = 1976 MON, NOY 1 TIMES: 13:56:02 - 16:32:34 FLIGHT NO. = 293 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 24 32 PARAMETERS: 03 NO NOX SOZ CO OAT DPT BSCAT ALT (MSL) MINIMA: .022 BMDL BMDL .004 BMDL 11.0 -4.0 .4 MAXIMA: ** .110 .137 .063 5.2 16.6 .9 1.7 192P. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOY 2 TIMES: 07:42:31 - 09:51:59 FLIGHT NO. = 294 SITES FLOWN OVER: 25 2 3 6 5 2 3 6 5 32 PARAMETERS: 03 NO NOX SOZ CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .008 BMDL BMDL BMDL .000 BMDL 11.7 4.0 .9 MAXIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .031 BMDL BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .031 BMDL BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .008 BMDL BMDL BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .008 BMDL BMDL BMDL BMDL BMDL BMDL BMDL BMDL									3912. FT.
PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL EMDL .001 BMDL 4.9 -21.9 .3 MAXIMA: .052 .164 .211 .154 .8 12.8 3.1 4.2 4536. FT. JULIAN DAY = 306 YEAR = 1976 MON, NOY 1 TIMES: 13:56:02 - 16:32:34 FLIGHT NO. = 293 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 24 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .022 BMDL BMDL .004 BMDL 11.0 -4.0 .4 NAXIMA: ** .110 .137 .363 5.2 16.6 .9 1.7 192P. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 07:42:31 - 09:51:59 FLIGHT NO. = 294 SITES FLOWN OVER: 25 2 3 6 5 2 3 6 5 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .068 .077 .125 .3.99 2.5 13.6 5.8 1.9 2018. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 11:35:40 - 13:52:16 FLIGHT NO. = 295 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 25 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .074 .156 .210 .079 6.4 19.2 8.6 1.9 1965. FT. JULIAN DAY = 308 YEAR = 1976 MED, NOV 3 TIMES: 07:16:04 - 10:17:48 FLIGHT NO. = 296 SITES FLOWN OVER: 31 25 25 25 2 3 6 5 2 3 32 MINIMA: .074 .156 .210 .079 6.4 19.2 8.6 1.9 1965. FT. JULIAN DAY = 308 BMDL BMDL BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .074 .156 .210 .079 6.4 19.2 8.6 1.9 1965. FT.								FLIGHT	NO. = 292
MAXIMA: .052 .164 .211 .154 .8 12.8 3.1 4.2 4536. FT. JULIAN DAY = 306 YEAR = 1976 MON, NOV 1 TIMES: 13:56:02 - 16:32:34 FLIGHT NO. = 293 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 24 32 PARAMETERS: 03 NO NOX S02 CO OAT DPT BSCAT ALT (MSL) MINIMA: .022 BMDL BMDL .004 BMDL 11.0 -4.0 .4 MAXIMA: ** .110 .137 .063 5.2 16.6 .9 1.7 192P. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 07:42:31 - 09:51:59 FLIGHT NO. = 294 SITES FLOWN OVER: 25 2 3 6 5 2 3 6 5 32 PARAMETERS: 03 NO NOX S02 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .068 .077 .125 .3.09 2.5 13.6 5.8 1.9 2018. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 11:35:40 - 13:52:16 FLIGHT NO. = 295 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 25 32 PARAMETERS: 03 NO NOX S02 CO OAT DPT BSCAT ALT (MSL) MINIMA: .058 BMDL BMDL BMDL BMDL BMDL BMDL BMDL BMDL	PARAMETERS: 03	NO	NOX	\$02	CO	OAT	DPT		ALT (MSL)
SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 24 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .022 BMDL BMDL .004 BMDL 11.0 -4.0 .4 MAXIMA: .** .110 .137 .363 5.2 16.6 .9 1.7 192P. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 07:42:31 - 09:51:59 FLIGHT NO. = 294 SITES FLOWN OVER: 25 2 3 6 5 2 3 6 5 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .008 .077 .125 .3.99 2.5 13.6 5.8 1.9 2018. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 11:35:40 - 13:52:16 FLIGHT NO. = 295 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 25 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 JULIAN DAY = 308 YEAR = 1976 MED, NOV 3 TIMES: 07:16:04 - 10:17:48 FLIGHT NO. = 296 SITES FLOWN OVER: 31 25 25 25 2 3 6 5 2 3 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) JULIAN DAY = 308 YEAR = 1976 MED, NOV 3 TIMES: 07:16:04 - 10:17:48 FLIGHT NO. = 296 SITES FLOWN OVER: 31 25 25 25 2 3 6 5 2 3 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL BMDL BMDL BMDL BMDL BMDL BMDL						4	· •	4.2	4536. FT.
PARAMETERS: 03 NO NOX S02 CO OAT DPT BSCAT ALT (MSL) MINIMA: .022 BMDL BMDL .004 BMDL 11.0 -4.0 .4 MAXIMA: *** .110 .137 .063 5.2 16.6 .9 1.7 192F. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 07:42:31 - 09:51:59 FLIGHT NO. = 294 SITES FLOWN OVER: 25 2 3 6 5 2 3 6 5 32 PARAMETERS: 03 NO NOX S02 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL .C00 BMDL 8.5 1.6 .9 MAXIMA: .068 .077 .125 .309 2.5 13.6 5.8 1.9 2018. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 11:35:40 - 13:52:16 FLIGHT NO. = 295 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 25 32 PARAMETEPS: 03 NO NOX S02 CO OAT DPT BSCAT ALT (MSL) MINIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 JULIAN DAY = 308 YEAR = 1976 WED, NOV 3 TIMES: 07:16:04 - 10:17:48 FLIGHT NO. = 296 SITES FLOWN OVER: 31 25 25 25 2 3 6 5 2 3 32 PARAMETERS: 03 NO NOX S02 CO OAT DPT BSCAT ALT (MSL) JULIAN DAY = 308 YEAR = 1976 WED, NOV 3 TIMES: 07:16:04 - 10:17:48 FLIGHT NO. = 296 SITES FLOWN OVER: 31 25 25 25 2 3 6 5 2 3 32 PARAMETERS: 03 NO NOX S02 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL BMDL BMDL BMDL BMDL BMDL BMDL								FLIGHT	NO. = 293
MAXIMA:		NO	NOX	\$02	CO	OAT	DPT		ALT (MSL)
SITES FLOWN OVER: 25 2 3 6 5 2 3 6 5 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL .000 BMDL 8.5 1.6 .9 MAXIMA: .068 .077 .125 .309 2.5 13.6 5.8 1.9 2018. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 11:35:40 - 13:52:16 FLIGHT NO. = 295 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 25 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .074 .156 .210 .079 6.4 19.2 8.6 1.9 1965. FT. JULIAN DAY = 308 YEAR = 1976 WED, NOV 3 TIMES: 07:16:04 - 10:17:48 FLIGHT NO. = 296 SITES FLOWN OVER: 31 25 25 25 2 3 6 5 2 3 32 PARAMETERS: 07 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL BMDL BMDL BMDL 4.6 -22.1 .2		_							192F. FT.
MINIMA: .008 BMDL BMDL .C00 BMDL 8.5 1.6 .9 MAXIMA: .068 .077 .125 .3 ₉ 9 2.5 13.6 5.8 1.9 2018. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 11:35:40 - 13:52:16 FLIGHT NO. = 295 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 25 32 PARAMETEPS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .074 .156 .210 .079 6.4 19.2 8.6 1.9 1965. FT. JULIAN DAY = 308 YEAR = 1976 WED, NOV 3 TIMES: 07:16:04 - 10:17:48 FLIGHT NO. = 296 SITES FLOWN OVER: 31 25 25 25 2 3 6 5 2 3 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL BMDL BMDL BMDL 4.6 -22.1 .2							- 09:51:59	FLIGHT	NO - = 294
MAXIMA: .068 .077 .125 .399 2.5 13.6 5.8 1.9 2018. FT. JULIAN DAY = 307 YEAR = 1976 TUE, NOV 2 TIMES: 11:35:40 - 13:52:16 FLIGHT NO. = 295 SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 25 32 PARAMETEPS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .074 .156 .210 .079 6.4 19.2 8.6 1.9 1965. FT. JULIAN DAY = 308 YEAR = 1976 WED, NOV 3 TIMES: 07:16:04 - 10:17:48 FLIGHT NO. = 296 SITES FLOWN OVER: 31 25 25 25 2 3 6 5 2 3 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL BMDL BMDL BMDL 4.6 -22.1 .2									ALT (MSL)
SITES FLOWN OVER: 31 2 3 6 5 2 3 6 5 25 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .031 BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .074 .156 .210 .079 6.4 19.2 8.6 1.9 1965. FT. JULIAN DAY = 308 YEAR = 1976 WED, NOV 3 TIMES: 07:16:04 - 10:17:48 FLIGHT NO. = 296 SITES FLOWN OVER: 31 25 25 25 2 3 6 5 2 3 32 PARAMETERS: 07 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL BMDL BMDL 4.6 -22.1 .2		–							2018. FT.
MINIMA: .031 BMDL BMDL BMDL BMDL BMDL 11.7 4.0 .9 MAXIMA: .074 .156 .210 .079 6.4 19.2 8.6 1.9 1965. FT. JULIAN DAY = 308 YEAR = 1976 WED, NOV 3 TIMES: 07:16:04 - 10:17:48 FLIGHT NO. = 296 SITES FLOWN OVER: 31 25 25 25 2 3 6 5 2 3 32 PARAMETERS: 02 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL BMDL BMDL 4.6 -22.1 .2								FLIGHT	NO. = 295
MAXIMA: .G74 .156 .210 .U79 6.4 19.2 8.6 1.9 1965. FT. JULIAN DAY = 308 YEAR = 1976 WED, NOV 3 TIMES: 07:16:04 - 10:17:48 FLIGHT NO. = 296 SITES FLOWN OVER: 31 25 25 25 2 3 6 5 2 3 32 PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .OU8 BMDL BMDL BMDL BMDL 4.6 -22.1 .2				-	-				ALT (MSL)
PARAMETERS: 0 ² NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL BMDL BMDL 4.6 -22.1 .2									1965. FT.
PARAMETERS: 03 NO NOX SO2 CO OAT DPT BSCAT ALT (MSL) MINIMA: .008 BMDL BMDL BMDL BMDL 4.6 -22.1 .2	JULIAN DAY = 308	YEAR = 1976	WED,	NOV 3	TIMES: 0	7:16:04		FLIGHT	NO. = 296
DINE DINE DINE	PARAMETERS: 03	NO	NOX	\$02	CO	OAT	DPT		ALT (MSL)
		~ •							2911. FT.

JULIAN DAY = 30	14 80	EAR = 1976	WED.	NOV 3	TIMES: 11	-47-58	- 15-02-	TR FLICHT	NO - 207
SITES FLOWN OVE	ER:	31 2	3 6	5 2	3 6	5 25	25 25		NO 297
PARAMETERS:	03	NO	NOX	\$02					
		BMDL			C ₀	OAT	DP T	BSCAT	ALT (MSL)
•	• 013		BMDL	EMDL	BMDL	6.7	-20.4	•1	
MAXIMA:	.047	• 158	•261	•388	**	13.8	-7.3	• 9	2211. FT.
JULIAN DAY = 3	(19 YI	EAR = 1076	THU.	NOV 4	TIMES: 07	-17-08	- 10-22-	OR -11T	NO. = 298
SITES FLOWN OV	ĔR:	31 22	22 22	2 3	6 5	2 3	6 5	co kright	100 - 270
PARAMETERS:	03	NO	NOX	\$ 02					
				302	CO	OAT	DPT	BSCAT	ALT (MSL)
- · · - · · •	•017	BMDL	BMDL		BMDL	-4.9	-10.8	• 5	
MAXIMA:	. 033	• 021	-165		1.5	2.4	-3.6	2.4	3286. FT.
JULIAN DAY = 3	09 YI	EAR = 1976	THU.	NOV 4	TIMES: 11	:47:29	- 14:43:	41 FL16HT	NO = 200
SITES FLOWN OVE		31 2	3 6	5 2		5 22	22 22		
PARAMETERS:	03	NO	NOX	\$02	co o	OAT			41 - (-01)
		BMDL		302	•		DPT	BSCAT	ALT (MSL)
· ·	• 014		BMDL		BMDL	-4.1	-10.3	•5	
MAXIMA:	•037	• 092	•115		3 • 1	3.9	-5.5	1.2	2779. FT.
JULIAN DAY = 3	10 YI	EAR = 1976	FRI,	NOV 5	TIMES: 07	:09:48	- 10:18:	48 FLIGHT	NO. = 300
SITES FLOWN OV		31 25	25 25	2 3			6 5	32	
PARAMETERS:	03	NO	NOX	205	čo	OAT	DPT	BSCAT	ALT (MSL)
	.000	BMDL	BMDL	Suc	BMDL	-3.7	-10.7	•5	ALT (MSE)
MAXIMA:	**					7 1 7			2393. FT.
WWXTWW:	* *	• 648	•760		2.4	3.0	-4.3	3.6	2343 + 11+
JULIAN DAY = 3	11 Y	EAR = 1976	SAT,	NOV 6	TIMES: 12	:33:02	- 15:54:	18 FLIGHT	NO. = 301
		EAR = 1976 31 2						18 FL1GHT	NO. = 301
SITES FLOWN OV	ER:	31 2	3 6	5 2	3 6	5 25	25 25	32	
SITES FLOWN OVER PARAMETERS:	ER: 03	31 2 NO	3 6 NOX	5 2 \$02	3 6 CO	5 25 OAT	25 25 DPT	32 BSCAT	NO. = 301 ALT (MSL)
SITES FLOWN OVER PARAMETERS: MINIMA:	03 •011	31 2 NO BMDL	3 6 NOX BMDL	5 2 802 BMDL	3 6 CO BMDL	5 25 0AT 9.0	25 25 DPT -4.0	32 BSCAT .5	ALT (MSL)
SITES FLOWN OVER PARAMETERS: MINIMA:	ER: 03	31 2 NO	3 6 NOX	5 2 \$02	3 6 CO	5 25 OAT	25 25 DPT	32 BSCAT	
SITES FLOWN OVER PARAMETERS: MINIMA:	03 •011	31 2 NO BMDL	3 6 NOX BMDL	5 2 802 BMDL	3 6 CO BMDL	5 25 0AT 9.0	25 25 DPT -4.0	32 BSCAT .5	ALT (MSL)
SITES FLOWN OV PARAMETERS: MINIMA: MAXIMA:	03 •011 •059	31 2 NO BMDL •141	3 6 NOX BMDL •193	5 2 SO2 BMDL •982	3 6 CO BMDL 3.4	5 25 OAT 9.0 17.2	25 25 DPT -4.0 3.0	32 BSCAT .5 1.7	ALT (MSL) 2949. FT.
SITES FLOWN OVER PARAMETERS: MINIMA:	03 •011 •059	31 2 NO BMDL •141	3 6 NOX BMDL •193	5 2 S02 BMDL •982	3 6 CO BMDL 3.4 TIMES: 06	5 25 0AT 9.0 17.2	25 25 DPT -4.0 3.0 - 09:46:	32 BSCAT .5	ALT (MSL) 2949. FT.
SITES FLOWN OV PARAMETERS: MINIMA: MAXIMA:	ER: 03 •011 •059	31 2 NO BMDL •141	3 6 NOX BMDL •193	5 2 SO2 BMDL •982	3 6 CO BMDL 3.4 TIMES: 06	5 25 0AT 9.0 17.2	25 25 DPT -4.0 3.0 - 09:46:	32 BSCAT .5 1.7	ALT (MSL) 2949. FT. NO. = 302
SITES FLOWN OV PARAMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OV	ER: 03 •011 •059	31 2 NO BMDL •141	3 6 NOX BMDL .193	5 2 S02 BMDL •982	3 6 CO BMDL 3.4 TIMES: 06	5 25 0AT 9.0 17.2	25 25 DPT -4.0 3.0 - 09:46:	32 BSCAT .5 1.7	ALT (MSL) 2949. FT.
SITES FLOWN OVER A SITE FLOWN	ER: 03 •011 •059 13 Y(ER: 07	31 2 NO BMDL •141 EAR = 1976 31 22 NO	3 6 NOX BMDL .193 MON, 22 22 NOX	5 2 SO2 BMDL •982 NOV 8 2 3 SO2	3 6 CO BMDL 3.4 TIMES: 06	5 25 0AT 9.0 17.2	25 25 DPT -4.0 3.0 - 09:46: 6 5	32 BSCAT .5 1.7 42 FLIGHT	ALT (MSL) 2949. FT. NO. = 302
SITES FLOWN OVER ARMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER ARMETERS: MINIMA:	ER: 03 •011 •059 13 YI ER: 07 •004	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL	3 6 NOX BMDL .193 MON, 22 22 NOX BMDL	5 2 S 0 2 B M D L • 9 8 2 N 0 V 8 2 3 S 0 2 • 0 0 0	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL	5 25 OAT 9.0 17.2 :54:36 2 3 OAT -4.3	25 25 DPT -4.0 3.0 - 09:46: 6 5 DPT -21.9	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7	ALT (MSL) 2949. FT. NO. = 302
SITES FLOWN OVER ARMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER ARMETERS: MINIMA:	ER: 03 •011 •059 13 Y(ER: 07	31 2 NO BMDL •141 EAR = 1976 31 22 NO	3 6 NOX BMDL .193 MON, 22 22 NOX	5 2 SO2 BMDL •982 NOV 8 2 3 SO2	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO	5 25 0AT 9.0 17.2 :54:36 2 3 0AT	25 25 DPT -4.0 3.0 - 09:46: 6 5 DPT	32 BSCAT .5 1.7 42 FLIGHT	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL)
SITES FLOWN OVER ARMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER ARMETERS: MINIMA:	ER: 03 •011 •059 13 YI ER: 07 •004	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL	3 6 NOX BMDL .193 MON, 22 22 NOX BMDL	5 2 S 0 2 B M D L • 9 8 2 N 0 V 8 2 3 S 0 2 • 0 0 0	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL	5 25 OAT 9.0 17.2 :54:36 2 3 OAT -4.3	25 25 DPT -4.0 3.0 - 09:46: 6 5 DPT -21.9	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL)
SITES FLOWN OVER A SITE FLOWN OVER A SITES FLOWN OVER A SITE FLOWN	03 .011 .059 13 Y(ER: 03 .004	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL •209	3 6 NOX BMDL •193 MON, 22 22 NOX BMDL •290	5 2 \$02 BMDL •982 NOV 8 2 3 \$02 •000 •271	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3	25 25 DPT -4.0 3.0 - 09:46: 6 5 DPT -21.9 -9.4	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT.
SITES FLOWN OVER ARMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3	ER: 03 .011 .059 13 YI ER: 07 .004 .050	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL •209	3 6 NOX BMDL •193 MON, 22 22 NOX BMDL •290	5 2 \$02 BMDL •982 NOV 8 2 3 \$02 •000 •271	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3	25 25 DPT -4.0 3.0 - 09:46: 6 5 DPT -21.9 -9.4	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT.
SITES FLOWN OVER A SITE FLOWN OVER A SITES FLOWN OVER A SITE FLOWN	ER: 03 .011 .059 13 YI ER: 07 .004 .050	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL •209 EAR = 1976	3 6 NOX BMDL •193 MON, 22 22 NOX BMDL •290	5 2 S 0 2 B M D L • 98 2 NO V 8 2 3 S 0 2 • 0 0 0 • 2 7 1	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3 .U	25 25 DPT -4.0 3.0 - 09:46: 6 5 DPT -21.9 -9.4 - 15:16:	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT. NO. = 303
SITES FLOWN OVER ARMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3	ER: 03 .011 .059 13 YI ER: 07 .004 .050	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL •209	3 6 NOX BMDL •193 MON, 22 22 NOX BMDL •290	\$ 2 \$02 BMDL .982 Nov 8 2 3 \$02 .000 .271	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3 .U	25 25 DPT -4.0 3.0 - 09:46:6 6 5 DPT -21.9 -9.4 - 15:16:	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8 22 FLIGHT BSCAT	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT.
SITES FLOWN OVER A SITE FLOWN OVER A SIT	ER: 03 .011 .059 13 YI ER: 07 .004 .050	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL •209 EAR = 1976	3 6 NOX BMDL •193 MON, 22 22 NOX BMDL •290	5 2 S 0 2 B M D L • 98 2 NO V 8 2 3 S 0 2 • 0 0 0 • 2 7 1	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3 .U	25 25 DPT -4.0 3.0 - 09:46: 6 5 DPT -21.9 -9.4 - 15:16:	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT. NO. = 303 ALT (MSL)
SITES FLOWN OVER A SITE FLOWN OVER A SIT	ER: 03 •011 •059 13 YO ER: 07 •050 13 YO ER: 07 •002	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL •209 EAR = 1976 50 NO BMDL	3 6 NOX BMDL .193 MON, 22 22 NOX BMDL .290 MON, NOX BMDL	\$ 2 \$02 BMDL .982 Nov 8 2 3 \$02 .000 .271	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3 .U	25 25 DPT -4.0 3.0 - 09:46:6 6 5 DPT -21.9 -9.4 - 15:16:	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8 22 FLIGHT BSCAT	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT. NO. = 303
SITES FLOWN OVER A SITES FLOWN O	ER: 03 011 059 13 YI ER: 07 .004 .050	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL •209 EAR = 1976 50 NO	3 6 NOX BMDL .193 MON, 22 22 NOX BMDL .290	\$ 2 \$02 BMDL .982 Nov 8 2 3 \$02 .000 .271	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8 TIMES: 13	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3 .U	25 25 DPT -4.0 3.0 - 09:46: 6 5 DPT -21.9 -9.4 - 15:16:	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8 22 FLIGHT BSCAT .2	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT. NO. = 303 ALT (MSL)
SITES FLOWN OVER A SITE FLOWN OVER A SIT	ER: 03 •011 •059 13 YO ER: 07 •050 13 YO ER: 07 •002	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL •209 EAR = 1976 50 NO BMDL	3 6 NOX BMDL .193 MON, 22 22 NOX BMDL .290 MON, NOX BMDL	\$ 2 \$02 BMDL .982 Nov 8 2 3 \$02 .000 .271	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8 TIMES: 13	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3 .U	25 25 DPT -4.0 3.0 - 09:46: 6 5 DPT -21.9 -9.4 - 15:16:	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8 22 FLIGHT BSCAT .2	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT. NO. = 303 ALT (MSL)
SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: MAXIMA: MAXIMA: MAXIMA: MAXIMA:	ER: 03 011 059 13 YI ER: 07 004 050 13 YI ER: 07 002	31 2 NO BMDL -141 EAR = 1976 31 22 NO BMDL -209 EAR = 1976 50 NO BMDL 1-210	MON, 22 22 NOX BMDL 290 MON, NOX BMDL 1.370	\$ 2 \$02 BMDL .982 NOV 8 2 3 \$02 .000 .271 NOV 8 \$ 502 BMDL 3.180	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8 TIMES: 13	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3 .U ::17:06 0AT 1.8 9.0	25 25 DPT -4.0 3.0 - 09:46: 6 5 DPT -21.9 -9.4 - 15:16: DPT ** -13.3	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8 22 FLIGHT BSCAT .2 7.1	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT. NO. = 303 ALT (MSL) 4269. FT.
SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 JULIAN DAY = 3	ER: 03 •011 •059 13 YI ER: 07 •004 •050 13 YI ER: 07 •002 •054	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL •209 EAR = 1976 50 NO BMDL 1•21D	MON, 22 22 NOX BMDL .290 MON, NOX BMDL .290 TUE,	\$ 2 \$02 BMDL .982 NOV 8 2 3 \$02 .000 .271 NOV 8 \$502 BMDL 3.180	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8 TIMES: 13 CO BMDL 1.0	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3 .U ::17:06 0AT 1.8 9.0	25 25 DPT -4.0 3.0 - 09:46: 6 5 DPT -21.9 -9.4 - 15:16: DPT ** -13.3	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8 22 FLIGHT BSCAT .2 7.1	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT. NO. = 303 ALT (MSL) 4269. FT.
SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA:	ER: 03 011 059 13 YI ER: 07 004 050 13 YI ER: 07 14 YI ER:	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL •209 EAR = 1976 50 NO BMDL 1•210	MON, 22 22 NOX BMDL 290 MON, NOX BMDL 1.370	\$ 2 \$02 BMDL .982 NOV 8 2 3 \$02 .000 .271 NOV 8 \$ 502 BMDL 3.180	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8 TIMES: 13 CO BMDL 1.0	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3 .U ::17:06 0AT 1.8 9.0	25 25 DPT -4.0 3.0 - 09:46: 6 5 DPT -21.9 -9.4 - 15:16: DPT ** -13.3 - 11:40: 6 5	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8 22 FLIGHT BSCAT .2 7.1	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT. NO. = 303 ALT (MSL) 4269. FT. NO. = 304
SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 JULIAN DAY = 3	ER: 03 •011 •059 13 YI ER: 07 •004 •050 13 YI ER: 07 •002 •054	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL •209 EAR = 1976 50 NO BMDL 1•21D	MON, 22 22 NOX BMDL .290 MON, NOX BMDL .290 TUE,	\$ 2 \$02 BMDL .982 NOV 8 2 3 \$02 .000 .271 NOV 8 \$502 BMDL 3.180	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8 TIMES: 13 CO BMDL 1.0	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3 .U ::17:06 0AT 1.8 9.U	25 25 DPT -4.0 3.0 - 09:46:6 6 5 DPT -21.9 -9.4 - 15:16: DPT ** -13.3 - 11:40:6 5 DPT	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8 22 FLIGHT BSCAT .2 7.1	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT. NO. = 303 ALT (MSL) 4269. FT.
SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS:	ER: 03 -011 -059 13 YI ER: 07 -064 -050 13 YI ER: 07 -002 -054	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL •209 EAR = 1976 50 NO BMDL 1•210	MON, 22 22 NOX BMDL 290 MON, NOX BMDL 1.370	\$ 2 \$02 BMDL .982 NOV 8 2 3 \$02 .000 .271 NOV 8 \$ 502 BMDL 3.180	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8 TIMES: 13 CO BMDL 1.0	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3 .U ::17:06 0AT 1.8 9.0	25 25 DPT -4.0 3.0 - 09:46: 6 5 DPT -21.9 -9.4 - 15:16: DPT ** -13.3 - 11:40: 6 5	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8 22 FLIGHT BSCAT .2 7.1	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT. NO. = 303 ALT (MSL) 4269. FT. NO. = 304 ALT (MSL)
SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MAXIMA: JULIAN DAY = 3 SITES FLOWN OVER AMETERS: MINIMA: MINIMA: MINIMA:	ER: 03 011 059 13 YI ER: 07 004 050 13 YI ER: 07 14 YI ER:	31 2 NO BMDL •141 EAR = 1976 31 22 NO BMDL •209 EAR = 1976 50 NO BMDL 1•21D EAR = 1976 31 25 NO	MON, 22 22 NOX BMDL -290 MON, NOX BMDL 1-370 TUE, 25 25 NOX	\$ 2 \$02 BMDL .982 NOV 8 2 3 \$02 .000 .271 NOV 8 \$ 502 BMDL 3.180	3 6 CO BMDL 3.4 TIMES: 06 6 5 CO BMDL 3.8 TIMES: 13 CO BMDL 1.0	5 25 0AT 9.0 17.2 :54:36 2 3 0AT -4.3 .U ::17:06 0AT 1.8 9.U	25 25 DPT -4.0 3.0 - 09:46:6 6 5 DPT -21.9 -9.4 - 15:16: DPT ** -13.3 - 11:40:6 5 DPT	32 BSCAT .5 1.7 42 FLIGHT BSCAT .7 10.8 22 FLIGHT BSCAT .2 7.1	ALT (MSL) 2949. FT. NO. = 302 ALT (MSL) 2324. FT. NO. = 303 ALT (MSL) 4269. FT. NO. = 304

JULIAN DAY = 314	YEAR = 1976	ŢUE,	NOV 9	TIMES:	13:21:08	- 15:06:44	FLIGHT	NO. = 305
SITES FLOWN OVER:	50							
PARAMETERS: 03	N O	NOX	205	c o	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .OF	6 BMDL	BMDL	BMDL	BMDL	9.4	-5.8	• 2	
MAXIMA: .00		.768	1.810	4.8	19.0	• 0	1.6	3912. FT.
	U VO/L	•100	10010	7.0	,,,,	• •	•••	
JULIAN DAY = 315	YEAR = 1976	WED.	NOV 10	TIMES:	08:08:29	- 11:07:49	FLIGHT	NO. = 306
SITES FLOWN OVER:	•	2 3	6 5					
PARAMETERS: 03		NOX	\$02	co	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .00	• • • • • • • • • • • • • • • • • • • •		• 600	BMDL		-9.0	.4	HET THISE
		BMDL	•137	4.9	• 0 6•9	-3.7	1.2	2319. FT.
MAXIMA: .03	9 •280	.341	• 131	4.7	0.7	-3•1	1 • 6	23 17 a FT a
JULIAN DAY = 315	VEAD - 1076	uen	NOV 10	TIMES .	12.20.12	- 14-53-00		NO. = 307
SITES FLOWN OVER:		3 6				32	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	40 201
							D-64-	()
PARAMETERS: 03	•••	NOX	\$02	ÇO	OAT	DpT	BSCAT	ALT (MSL)
MINIMA: .OC		BMDL	BMDL	.0	1.8	-7.1	• 5	
MAXIMA: .04	8 .278	.323	• 15 2	6•.0	10-1	-4.2	1.5	2436. FT.
	•							
JULIAN DAY = 316	YEAR = 1976	THU,	NOV 11	TIMES:	07:55:48	- 10:11:13	5 FLIGHT	N0. = 308
SITES FLOWN OVER:	31 31	22 2	3 6	5 2	3 6	5 32		
PARAMETERS: 03	NO NO	NOx	\$02	CO	TAO	DPT	BSCAT	ALT (MSL)
MINIMA: . Of	3 AMDL	BMD	BMDL	BMDL	-5.3	-15.4	• 2	
MAXIMA: .04		.387	.160	3.0	4.0	-5.9	3.5	3759. FT.
		••••	• • • •	•				
JULIAN DAY = 316	YEAR = 1976	THILL	NOV 11	TIMES:	11:21:00	- 14:11:20	FLIGHT	NO = 309
SITES FLOWN OVER:		6 5						
PARAMETERS: 03		NOX	\$02	co	TAO	DPT	BSCAT	ALT (MSL)
MINIMA: .01		BMDL	BMDL	BMDL	-4.1	-11.0	1.6	WEI (MOE)
							-	22/2 57
MAXIMA: .03	.109	.148	.106	3 • 1	2 • 5	-6•8	3.4	2347. FT.
1411 TAN DAY - 247	WEAR - 4074	***	NCH 45	T1#55.	04540-00	40-03-5		NO - 740
JULIAN DAY = 317						- 10:02:50	0 LT10H1	NO. = 310
SITES FLOWN OVER		2 3				32		
PARAMETERS: 03		NOX	\$02	CO	OAT	DPT	BSCAT	ALT (FSL)
MINIMA: .QU		RMDL	• 600	BMDL	-6.1	-12.8	•7	
MAXIMA: .03	.641	. 789	1.640	**	-1.0	-6.5	3.9	2018. FT.
							_	
JULIAN DAY = 317		FRI,	NGV 12	TIMES:	11:46:20	- 13:58:27	7 FLIGHT	$NO \cdot = 311$
SITES FLOWN OVER:	: 50							
PARAMETERS: 03	NO NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA: .DO	3 BMDL	RMDL	• 691	BMDL	-7.6	-16.2	• 2	
MAXIMA: .U.		-913	2.200	1.7	2.3	-7.9	4.1	43 U5 . FT .
•	•	. , .		• • •		• • •	,	
JULIAN DAY = 320	YEAR = 1076	MON-	NOV 15	TIMES:	06:49:16	- 10:04:20	THOIS O	NO. = 312
SITES FLOWN OVER:		2 3						516
PARAMETERS: 0		NOX	\$0?	2 3 CO	0 > 0 # T	DPT	BSCAT	ALT /MCL 3
								ALT (MSL)
MINIMA: +00		BMDL	PMDL	BMDL	-2.2	-13.3	.6	
MAXIMA: .0"	8 •533	•679	•548	5.5	4.1	-3.9	8.1	2450 - FT

				****	2.0		JUNE 11	· m ·	
JULIAN DAY = 32	20 Y	EAR = 1976	MON.	NOV 15	TIMES - 1	11-22-24	- 13.42.4	A	NO. = 313
SITES FLOWN OVE		31 2	3 6	5 2	3 6	5 23	- 13.72.4	4 FEIGHT	MU 313
PARAMETERS:	03	NO	NOX	S o z	.00	OAT	DeT	BSCAT	()
	001	BMDL	BMDL	• 001	EMDL	5	-18.4		ALT (MSL)
- · ·	052		1.300	.070	**	9.3		•1	20/7 -
······································	.072	10220	1.200	•0/0	**	y.3	-1.3	12.0	2967. FT.
JULIAN DAY = 3	21 ¥	FAR = 40-4	THE.	NOV 14	TIMEC - (17.04.77	. 00-50-4	7	NO - 74/
SITES FLOWN OVE	- • •	31 24	2 3	6 5	11053 - (2 LEIGHI	NU - 314
PARAMETERS:	03	NO	NOX	\$02	2 3 CO	6 5	32 DPT	BSCAT	
***	BMDL	n o	NUX	BMDL		0AT -2.7			ALT (MSL)
	.043				BMDL		-9.1	• 7	22/0
MAXIMA.	• 043			1.860	6.0	6.1	9	9.5	2348. FT.
JULIAN DAY = 3	21 Y	TAD = 1074	-115	May 14	T	11.00.52	- 17.50.2		NO - 746
SITES FLOWN OV		31 2	3 6		3 6	5 24		O FEIGHT	NU. = 313
PARAMETERS:	03	NO Z	NOX	\$02		OAT			(
		NO	NUX	•00 7	CO BMD L	3.8	DP T	BSCAT	ALT (MSL)
	- 010			-310	2.4	10.4	-8.3 -1.0	•6 3•8	2906 . FT.
WWYINU:	.053			-310	2 • 4	10.4	-1.0	3.0	2900 · FI ·
JULIAN DAY = 3	22 1	FAR = 1076	HED.	NOV 17	TIMES .	10-22-28	- 12-38-6	A clicut	NO. = 316
SITES FLOWN OV		31 25	2 3	6 5		77.23.20	- 12.30.7	o telou.	1101 - 510
PARAMETERS:	03	NO 27	NOX	\$02	3 CO	OAT	DPT	BSCAT	ALT (MSL)
	• 008	BMDL	BMDL	• 000	BMDL	1.9	-13.8		MET THSE
	.052	• U99	.147	.514	4.3	12.3	2.5	3.7	2885. FT.
mnninn.	• 472	• 0 7 7	• 1 • 1	•314	7.5	12.5	,	J	20030 11,
JULIAN DAY = 3	22 1	TEAR = 1976	WED.	NOV 17	TIMES:	13:30:52	- 16:00:4	4 FLIGHT	NO. = 317
SITES FLOWN OV		31 2	2 3	6 5	2 3	6 5	25 32		
PARAMETERS:	03	NO T	NOX	\$02	o	OAT	DeT	BSCAT	ALT (MSL)
	. 027	BMDL	BMDL	.001	•	9.0		. 4	
	055	•033	.051	.143	3.9	17.2	4.4	2 • 1	2982. FT.
MUNITUR.	• 0 7 7	•033	•071	• • • •	24,	11.00	404		
JULIAN DAY = 3	23 1	FAR = 1976	THU.	NOV 18	TIMES:	07:00:01	- 10:25:2	5 FLIGHT	NO. = 318
SITES FLOWN OV		31 25	2 3	6 5	2 3				
	03	NO	NOX	\$ 02	CO	OAT	DPT	BSCAT	ALT (MSL)
	.005	BMDL	EMDL		BMDL	4.5	-7.0	• 3	
	.057	• 283	•366		7.8	16.2	4.9	3.8	2890. FT.
OBSTRA	• 657	• 600	4500		, - -	-			
JULIAN DAY = 3	23 1	YEAR = 1976	THU.	NGV 18	TIMES:	11:42:52	- 14:39:	16 FL16HT	NO. = 319
SITES FLOWN OV		31 2	3 6	5 2	3 6	5 25	32		
PARAMETERS:	03	NO	NOX	\$02	CO	OAT	DPT	BSCAT	ALT (MSL)
MINIMA:	.018		BMDL		BMDL	14.2		• 2	
MAXIMA:	082	• 198	.245		4.4	26.1		3.4	3022. FT.
·· maanna	J J L								

APPENDIX G

METRIC CONVERSION TABLE

English unit	Multiply by	to obtain metric unit
foot	0.3048	meter
inch	2.54	centimeter
knot	0.5144	meters per second
millibar	100	pascal
nautical mile	1,852	meters
mile	1.609	kilometers

	TECHNICAL REPORT DATA		
(Pi	lease read Instructions on the reverse before	ompleting)	
1. REPORT NO. EPA-600/4-79-078	2.	3. RECIPIENT'S ACCESSION NO.	
4. TITLE AND SUBTITLE THE RAPS HELICOPTER AIR POLLI PROGRAM, ST. LOUIS, MISSOURI		5. REPORT DATE December 1979 6. PERFORMING ORGANIZATION CODE	
7.AUTHOR(S) David T. Mage, Roy Charles Fitzsimmons, Norman I Steve Pierett, George Siple a	Hester, Frank Johnson	8. PERFORMING ORGANIZATION REPORT NO.	
9. PERFORMING ORGANIZATION NAME AN U.S. Environmental Protection Office of Research and Develo	10. PROGRAM ELEMENT NO. 1AA603		
Environmental Monitoring and Las Vegas, NV 89114		11. CONTRACT/GRANT NO.	
12. SPONSORING AGENCY NAME AND ADDUCTOR OF THE PROPERTY OF THE AND ADDUCTOR OF THE ADDUCTOR OF	n AgencyLas Vegas, NV	13. TYPE OF REPORT AND PERIOD COVERED Final 1974-1976	
Office of Research and Develo Environmental Monitoring and		14. SPONSORING AGENCY CODE	
Las Vegas, Nevada 89114	Support Laboratory	EPA/600/07	

15. SUPPLEMENTARY NOTES

None

16. ABSTRACT

This research program was initiated with the overall objective of providing measurement of air pollution and temperature gradient over the St. Louis, Missouri/Illinois, metropolitan area to complement surface measurements of air pollution by the Regional Air Monitoring System (RAMS) of the Regional Air Pollution Study (RAPS). Measurements aloft were made by instrumented helicopters provided with a data acquisition system for recording all aerometric data, together with navigational data and supplementary status information.

These data obtained during the 3-year period, 1974 to 1976, are intended to provide insight into the transport and diffusion processes for air pollutants and to enable model developers and other users to evaluate and analyze the suitability of simulation models for prediction and decision-making.

This report describes in detail the helicopter data collection program and catalogs the missions flown by date, time, flight pattern and purpose. These data, collected on magnetic tape, are deposited in the RAPS data bank maintained by the U.S. Environmental Protection Agency. Sufficient examples are provided, with figures and tables, to enable the prospective users of these data to understand the measurements and their limitations and so facilitate usage of the data bank.

17. KEY WORDS AND DOCUMENT ANALYSIS					
a. DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group			
air pollution helicopter temperature inversions mathematical models	airborne operations data collection RAPS St. Louis, Missouri	01C 04A 04B 13B			
18. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report) UNCLASSIFIED	21. NO. OF PAGES			
RELEASE TO PUBLIC	20. SECURITY CLASS (This page) UNCLASSIFIED	22. PRICE			