
OVERFIRE AIR TECHNOLOGY FOR TANGENTIALLY FIRED **UTILITY BOILERS BURNING WESTERN U.S. COAL**

Interagency **Energy-Environment** Research and Development Program Report

RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into seven series. These seven broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The seven series are:

- 1. Environmental Health Effects Research
- 2. Environmental Protection Technology
- 3. Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies
- 6. Scientific and Technical Assessment Reports (STAR)
- 7. Interagency Energy-Environment Research and Development

This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT RESEARCH AND DEVELOPMENT series. Reports in this series result from the effort funded under the 17-agency Federal Energy/Environment Research and Development Program. These studies relate to EPA's mission to protect the public health and welfare from adverse effects of pollutants associated with energy systems. The goal of the Program is to assure the rapid development of domestic energy supplies in an environmentally—compatible manner by providing the necessary environmental data and control technology. Investigations include analyses of the transport of energy-related pollutants and their health and ecological effects; assessments of, and development of, control technologies for energy systems; and integrated assessments of a wide range of energy-related environmental issues.

REVIEW NOTICE

This report has been reviewed by the participating Federal Agencies, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

OVERFIRE AIR TECHNOLOGY FOR TANGENTIALLY FIRED UTILITY BOILERS BURNING WESTERN U.S. COAL

by

Richard L. Burrington, John D. Cavers, and Ambrose P. Selker

C-E Power Systems
Combustion Engineering, Inc.
1000 Prospect Hill Road
Windsor, Connecticut 06095

Contract No. 68-02-1486 Program Element No. EHE624A

EPA Project Officer: David G. Lachapelle

Industrial Environmental Research Laboratory Office of Energy, Minerals, and Industry Research Triangle Park, N.C. 27711

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, D.C. 20460

FIELD TEST PROGRAM TO STUDY STAGED COMBUSTION TECHNOLOGY FOR TANGENTIALLY FIRED UTILITY BOILERS BURNING WESTERN U.S. COAL TYPES

BY

RICHARD L. BURRINGTON JOHN D. CAVERS AMBROSE P. SELKER

C-E POWER SYSTEMS
COMBUSTION ENGINEERING, INC.
WINDSOR, CONNECTICUT 06095

CONTRACT NO. 68-02-1486

EPA PROJECT OFFICER: DAVID G. LACHAPELLE

CONTROL SYSTEMS LABORATORY
NATIONAL ENVIRONMENTAL RESEARCH CENTER
RESEARCH TRIANGLE PARK
NORTH CAROLINA 27711

PREPARED FOR

U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT WASHINGTON, D.C. 20460

DISCLAIMER

"This report was prepared by Combustion Engineering, Inc. as an account of work sponsored by the Office of Research and Development, U.S. Environmental Protection Agency (EPA). Combustion Engineering, Inc. nor any person acting on behalf of Combustion Engineering, Inc.:

- "a. Makes any warranty or representation, expressed or implied including the warranties of fitness for a particular purpose or merchantability, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- b. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report."

ABSTRACT

This report presents the findings of a program designed to investigate and evaluate the effectiveness of employing overfire air as a method of reducing NO_X emission levels from tangentially fired boilers burning Western U.S. coal types. This work was performed under the sponsorship of the Office of Research and Development of the Environmental Protection Agency (Contract 68-02-1486). The results of this program are compared with the results obtained under Phase II "Program for Reduction of NO_X from Tangentially Coal Fired Boilers" (Contract 68-02-1367).

These test programs investigated the effect that variations in excess air, unit slagging, load and overfire air had on unit performance and emission levels. Additionally, the effect of biasing combustion air through various out-of-service fuel nozzle elevations was also investigated. The effect of overfire air operation on waterwall corrosion potential was evaluated during thirty (30) day baseline and overfire air corrosion coupon tests. The results of the corrosion coupon tests indicate that overfire air operation for low NO_{X} optimization will not result in significant increases in corrosion coupon degradation.

Overfire air operation and reductions in excess air levels were found to be effective in reducing NO $_{\rm X}$ emission levels. NO $_{\rm X}$ reductions of 20 to 30 percent were obtained when operating with 15 to 20 percent overfire air. These reductions occurred with the boilers operating at a total unit excess air of approximately 15 to 25 percent as measured at the economizer outlet. Unit loading exhibited a minimal effect on NO $_{\rm X}$ emission levels. Waterwall slag conditions were found to have wide and inconsistent effects on NO $_{\rm X}$ emission levels.

CONTENTS

	PAGE NO
Disclaimer	ii
Abstract	iii
List of Figures	vii
List of Data Sheets	xi
Conversion Table	xiii
List of Abbreviations and Symbols	xiv
Acknowledgment	ΧV
Section I	
Introduction	1
Conclusions	
Normal Operation	3
Biased Firing Operation	3
Overfire Air Operation	3
Recommendations	5
Summary	
Baseline Operation Study	6
Biased Firing Operation Study	11
Overfire Air Operation Study	11
Boiler Performance	22
Waterwall Corrosion Coupon Evaluation	22
Section II - EPA Contract 68-02-1486	
Objectives	
Task I - Unit Selection	26
Task II - Test Planning & Fabrication of Test Equipment	26
Task III - Installation of Instrumentation	27
Task IV - Baseline Operation	27
Task V - Biased Firing Operation	28
Task VI - Overfire Air Operation	30
Task VII - Preparation of Test Report and Analysis of Data	32
Discussion	
Task I - Unit Selection	33
Task II - Test Planning & Fabrication of Test Equipment	37
Task III - Installation of Instrumentation	37
Columbia Enougy Conton Unit #1	
Columbia Energy Center, Unit #1 Tasks IV, V & VI - Test Data Acquisition and Analysis	41
Task IV - Baseline Operation Study	45
Load and Excess Air Variation - Clean Furnace	45
Load and Excess Air Variation - Moderately Dirty Furnace	46
Load and Excess Air Variation - Dirty Furnace	47
Analysis of Results	47
Task V - Biased Firing Study	48
Fuel Flevations Out of Service Variation	48

CONTENTS (Cont.)

	PAGE NO
Analysis of Results	53 56 56 58
Analysis of Results	60 65 71
Huntington Station, Unit #2 Tasks IV, V & VI - Test Data Acquisition and Analysis Task IV - Baseline Operation Study	79 83 83 84 85 89 91 95 95 98
Waterwall Corrosion Coupon Evaluation	105
Alabama Power Company, Barry Station, Unit #2 Introduction	115
Conclusions Normal Operation	117 117
Objectives Task I	120 120 120 120 120
Task IV & V - Baseline and Biased Firing Test Programs	. 122 . 124

CONTENTS (Cont.)

	PAGE NO
Furnace Wall Deposit Variation	131
Task V - Biased Firing Study	131
Fuel Elevations Out-of-Service Variation	131
Task VIII - Unit Optimization Study	135
Load and Excess Air Variation	135
Furnace Wall Deposit Variation	139
OFA Location, Rate, and Velocity Variation	144
OFA Tilt Variation	148
Load Variation at Optimum Conditions	153
Furnace Performance	157
Waterwall Corrosion Coupon Evaluation	157
•	
Section IV - Application Guidelines	770
Introduction	170
Conclusions	171
Recommendations	170
Existing Steam Generating Units	172
New Steam Generating Units	172
Discussion Control Control	774
Design and Description of OFA Systems	174
Field Test Program	174
Exploratory Field Test Program - Existing Units	175
Effect on Unit Performance	176
Economic Evaluation	177
Applicability	
Existing Steam Generating Units	181
New Steam Generating Units	181
References	182
Appendices	
Appendix A - Wisconsin Power & Light Company	
Test Data & Results	183
Appendix B - Utah Power & Light Company	100
Test Data & Results	242
Appendix C - Alabama Power Company	272
Test Data & Results	289
	209
Appendix D - Compflow	201
Program Description	301

FIGURES

FIGURE		PAGE NO.
	(Section I)	
1 2 3	NO ₂ vs. Theoretical Air, Baseline Study, Maximum Load . NO ₂ vs. Theoretical Air, Baseline Study, 1/2 Load NO ₂ vs. Main Steam Flow, Baseline Study	. 9
4 5	CO ² vs. Theoretical Air, Baseline Study, Maximum Load . Carbon Heat Loss vs. Theoretical Air, Baseline Study	. 12
6	Maximum Load	
7	Study	. 14
8 9	NO. vs. OFA Damper Opening, Overfire Air Study NO. vs. Theoretical Air, Overfire Air Study,	. 15
10 11	NO, vs. Tilt Differential, Overfire Air Study	. 18
12	Test Series 2	. 20
13 14	Test Series 3	. 23
	(Section II)	
15 16	Typical Windbox of Tangential Firing System Unit Side Elevation - Columbia Energy Center,	. 34
17	No. 1	. 35
••	No. 2	. 36
	Section II: Columbia Energy Center, Unit #1	
18 19	Furnace Waterwall Deposit Pattern, Clean Furnace Furnace Waterwall Deposit Pattern, Moderate Slag	. 43
20	Furnace	. 44
20	Furnace	. 45

FIGURES (Cont.)

FIGURE		PAGE NO
21	NO2 vs. Theoretical Air, Baseline Study	48
22	CO ² vs. Theoretical Air, Baseline Study	49
23	Carbon Heat Loss vs. Theoretical Air, Baseline Study	50
24	Unit Efficiency vs. Excess Air, Baseline Study	52
25	NO2 vs. Theoretical Air, Biased Firing Study	54
26	Fuel Elevation Out-of-Service vs. NO ₂ , Biased Firing Study	55
27	Unit Efficiency vs. Excess Air, Biased Firing Study	57
28	NO ₂ vs. Theoretical Air, Overfire Air Study	61
29	CO ² vs. Theoretical Air, Overfire Air Study	62
30	Carbon Heat Loss vs. Theoretical Air, Overfire Air	63
31	Study	64
31 32		66
	Unit Efficiency vs. Excess Air, Overfire Air Study	
33	Chordal Thermocouple Locations	67
34	Elevation vs. Furnace Heat Absorption - Baseline Study	6 8
35	Elevation vs. Furnace Heat Absorption - Biased Firing Study	69
36	Elevation vs. Furnace Heat Absorption - Overfire	70
37	Air Study	70 72
38	Typical Corrosion Probe Temperature Range	72 73
39	Gross MW Loading vs. Time - Baseline Corrosion Probe	73
	Study	74
40	Gross MW Loading vs. Time - Overfire Air Corrosion Probe Study	75
41	As-Fired Ash and Coupon Deposit Analysis, Baseline	
42	Study	77
	Air Study	78
	Section II: Huntington Station, Unit #2	
43	Furnace Waterwall Deposit Pattern - Clean Furnace	80
44	Furnace Waterwall Deposit Pattern - Moderate Slag _ Furnace	81
45	Furnace Waterwall Deposit Pattern - Heavy Slag	_ •
	Furnace	82
46	NO2 vs. Theoretical Air, Baseline Study	86

FIGURES (Cont.)

FIGURE		PAGE	NO.
47 48 49 50 51	CO vs. Theoretical Air, Baseline Study	8	37 38 90 92
52	Study	9	93 94
53	Carbon Heat Loss vs. Theoretical Air, Biased Firing		
54 55 56 57	Study	. <u>1</u>	96 97 01 02
58 59	Study	,]: ,]:	03 04 06
60	Waterwall Corrosion Probe Locations, Huntington Station, No. 2		07
61	Typical Corrosion Probe Temperature Ranges, Huntington Station, No. 2	. 1	08
62	Gross MW Loading vs. Time - Baseline Corrosion Probe Study	_	09
63	Gross MW Loading vs. Time - Overfire Air Corrosion Probe Study	-	10
64	As-Fired Ash and Coupon Deposit Analysis, Baseline	_	
65	Study	_	13 14
	Section III: Barry Station, Unit #3		
66 67 68 69	Unit Side Elevation, Barry Station, No. 2	. 1	16 21 23 25
70	Typical Corrosion Probe Temperature Range, Barry		26
71	Station, No. 2	. 1	27
72 73	CO vs. Theoretical Air, Baseline Study Percent Carbon Loss vs. Theoretical Air, Baseline	. 1	28
74 75 76	Study	. 1	129 130 132 133

FIGURES (Cont.)

FIGURE		PAGE NO
77	Furnace Slag Pattern - Heavy Slag Furnace	134
78	NO2 vs. Theoretical Air, Biased Firing Study	136
79	CO vs. Theoretical Air, Biased Firing Study	137
80	Percent Carbon Loss vs. Theoretical Air, Biased Firing Study	138
81	Firing Study	140
82	CO'vs. Theoretical Air, Overfire Air Study	141
83	Percent Carbon Loss vs. Theoretical Air, Overfire Air Study	142
84	Unit Efficiency vs. Excess Air	143
85	Furnace Slag Pattern - Clean Furnace	145
86	Furnace Slag Pattern - Moderate Slag Furnace	146
87	Furnace Slag Pattern - Heavy Slag Furnace	147
88	NO2 vs. Theoretical Air, Overfire Air Study	
89	CO vs. Theoretical Air, Overfire Air Study	150
90	Percent Carbon Loss vs. Theoretical Air, Overfire	150
90		151
91	Air Study	152
		132
92	Percent Carbon Loss vs. Tilt Differential, Overfire	154
03	Air Study	154 155
93	NO we Main Steem Flow	-
94 05	NO ₂ vs. Main Steam Flow	156
95 06	Chordal Thermocouple Locations on Furnace Waterwalls	158
96 07	Average Centerline Absorption Profile - Test 14 Average Centerline Absorption Profile - Test 24 Average Centerline Absorption Profile - Test 33	159
97	Average centerline Absorption Profile - lest 24	160
98	Average Centerline Absorption Profile - lest 33	161
99	Average Centerline Absorption Profile - All Tests	162
100	Gross MW Loading vs. Time - Baseline Corrosion Probe	
	Study	164
101	Gross MW Loading vs. Time - Biased Firing Corrosion	
	Probe Study	165
102	Gross MW Loading vs. Time - Overfire Air Corrosion	
	Probe Study	166
103	Ash Analysis	169
	Section IV: Application Guidelines	
104	Overfire Air System Costs	178

DATA SHEETS

SHEET		PAGE	NO.
A1, A2	Baseline Operation Study - Emissions Test Data,	104	105
A3, A4	Columbia #1	_	
A5, A6	Columbia #1	186,	187
•	Columbia #1	188,	189
A7, A8	Baseline Operation Study - Test Data, Columbia #1	190,	191
A9, A10	Biased Firing Operation Study - Test Data, Columbia #1	192.	193
A11 - A13	Overfire Air Operation Study - Test Data, Columbia #1		
A14, A15	Baseline Operation Study - Test Results,		
A16, A17	Columbia #1		
A18 - A27	Columbia #1	199,	200
	Columbia #1	201 -	204
A22 - A25	Rates KW/m ² . Columbia #1		
A26 - A29 .	Biased Firing Operation Study - Waterwall Absorption Rates, KW/m ² , Columbia #1		
A30 - A35	Overfire Air Operation Study - Waterwall Absorption		
A36 - A41	Rates, KW/m ² , Columbia #1		
A42 - A47	Columbia #1	219 -	224
	Columbia #1	225 -	230
A48 - A56	Overfire Air Operation Study - Board & Computer Data, Columbia #1	231 -	239
A57	Waterwall Corrosion Coupon Data Summary - Baseline Test, Columbia #1		240
A58	Waterwall Corrosion Coupon Data Summary -		241
B1, B2	Overfire Air Test, Columbia #1		
B3, B4	Huntington #2	243,	244
·	Huntington #2	245,	246
B5, B6	Overfire Air Operation Study - Emissions Test Data, Huntington #2	247,	248
B7, B8	Baseline Operation Study - Test Data, Huntington #2		250
B9, B10	Biased Firing Operation Study - Test Data,		
	Huntington #2	. 201,	, 234

DATA SHEETS (Cont.)

SHEET		PAGE	NO.
B11 - B13	Overfire Air Operation Study - Test Data,	252	255
B14 - B17	Huntington #2	253 -	255
511	Huntington #2	256 -	259
B18, B19	Biased Firing Operation Study - Test Results.		
B20 - B23	Huntington #2	260,	261
DEC - DES	Huntington #2	262 -	265
B24 - B29			
200 205	Huntington #2	266 -	271
B30 - B35	Biased Firing Operation Study - Board & Computer Data, Huntington #2	272 -	277
B36 - B44	Overfire Air Operation Study - Board & Computer Data,	L/L -	
	Huntington #2	278 -	286
B45	Waterwall Corrosion Coupon Data Summary -		007
B46	Baseline Test, Huntington #2		287
640	Overfire Air Test, Huntington #2		288
C1	NO _X Test Data Summary - Baseline Study Before		
	Modification, Barry #2		290
C2	NO _X Test Data Summary - Biased Firing Study		291
C3	Barry #2		231
	Modification, Barry #2		292
C4	NO _x Test Data Summary - OFA Location, Rate and		
CE	Velocity Variation, Barry #2		293
C5	NO _X Test Data Summary - OFA Tilt and Load Variation, Barry #2		294
C6	Waterwall Absorption Rates, kg-cal/hr-cm2 -		,
	Right Wall Centerline Tube Rates, Barry #2		295
C7	Waterwall Absorption Rates, kg-cal/hr-cm2 -		000
C8	Front Wall Centerline Tube Rates, Barry #2 Waterwall Absorption Rates, kg-cal/hr-cm ² -		296
CO	Right Wall, Rear Wall, Left Wall, Front Wall,		
	Barry #2		297
C9	Waterwall Corrosion Coupon Data Summary -		000
C10	Baseline Test, Barry #2		298
CIU	Waterwall Corrosion Coupon Data Summary - Biased Firing Test, Barry #2		299
C11	Waterwall Corrosion Coupon Data Summary -		
	Overfire Air Test, Barry #2		300

CONVERSION FACTORS

SI METRIC UNITS TO ENGLISH UNITS

To Convert From	<u>To</u>	Multiply By
kg/s	10 ³ LB/HR	7.936640
ng/J	LВ/10 ⁶ ВТU	2.326E-3
MJ/s	10 ⁶ BTU/HR	3.412141
ug/J	LB/10 ⁶ BTU	2.326
kJ/kg	BTU/LB	4.299226E-1
MPa	PSIA	1.450377E+2
KW/m ²	10 ⁶ BTU/HR-FT ²	3.16998E-1

ENGLISH UNITS TO SI METRIC UNITS

To Convert From	<u>To</u>	Multiply By
10 ³ LB/HR	kg/s	1.259979E-01
PSIA	MPa	6.894757E - 3
LB/10 ⁶ BTU	ng/J	4.29922E+2
LB/10 ⁶ BTU	ug/J	4.29922E-1
10 ⁶ btu/hr	MJ/s	2.930711E-1
BTU/LB	kJ/kg	2.326
10 ⁶ BTU/HR-FT ²	KW/m ²	3.154594

 $^{0}F = 1.8(^{0}C)+32^{0}$

ABBREVIATIONS AND SYMBOLS

Abbreviations	<u>Definitions</u>
NO _x	Oxides of Nitrogen
THĈ	Total Hydrocarbons
NA	Not Available
X-S	Excess
WW	Waterwall
MCR	Maximum Continuous Rating
TA	Theoretical Air to Fuel Firing Zone
EA	Excess Air
FFZ	Fuel Firing Zone
NSPS	New Source Performance Standard
Symbols .	
NO ₂	Nitrogen Dioxide
co	Carbon Monoxide
02	0xygen
s0 ₂	Sulfur Dioxide
co ₂	Carbon Dioxide

ACKNOWLEDGMENTS

The authors wish to acknowledge the constructive participation of Mr. D. G. Lachapelle, EPA Project Officer, in providing the program direction necessary for its successful completion.

The cooperation and active participation of the following companies and, in particular, the personnel at the respective plants were essential to successfully conducting the various test program phases.

- 1. Alabama Power Company Barry Station, Unit #2
- Utah Power and Light Company Huntington Station, Unit #2
- 3. Wisconsin Power and Light Company Columbia Station, Unit #1

The results presented in this report represent the effort of many Combustion Engineering, Inc. personnel whose participation was required for its successful completion. In particular the technical contributions made by R. F. Swope, R. W. Robinson, E. R. LePage, L. A. Ratte, M. S. Hargrove and K. M. Cerrato are gratefully acknowledged.

SECTION I

INTRODUCTION

The emphasis on improved quality of the environment has led to the design of coal fired steam generators with the capability of using overfire air to reduce and control NO_X emission levels. For tangentially fired steam generators, the overfire air is admitted through registers in an extended windbox.

Previous work with coal fired steam generators has demonstrated that overfire air simulation with tangential firing is effective in reducing NO_X emission levels by as much as 50 percent of uncontrolled values.

Some of this previous work was performed by Combustion Engineering, Inc. under an EPA-sponsored two-phase program to identify, develop and recommend the most promising combustion modification techniques for the reduction of NO_X emissions from tangentially coal fired utility boilers with a minimum impact on unit performance.

This two-phase program is briefly described as follows:

Phase I (performed under EPA Contract 68-02-0264) consisted of selecting a suitable utility boiler to be modified for experimental studies to evaluate NO_X emission control. Phase I also included the preparation of preliminary drawings, a detailed preliminary test program, a cost estimate and detailed schedule of the program phases and a preliminary application economic study indicating the cost range of a variety of combustion modification techniques applicable to existing and new boilers $[1]^*$.

Phase II (performed under EPA Contract 68-02-1367) consisted of modifying and testing the utility boiler selected in Phase I to evaluate overfire air and biased firing as methods for NO_X control. This phase also included:

- 1. The completion of detailed fabrication and erection drawings,
- 2. Installation of analytical test equipment,
- 3. Updating of the preliminary test program,
- 4. A baseline operation study,
- 5. Analysis and reporting of test results and,

^{*} Numbers in brackets refer to references at end of report.

6. The development of control technology application guidelines for existing and new tangentially coal fired utility boilers.

This program was conducted at the Barry Steam Station, Unit #2 of the Alabama Power Company [2].

The majority of this previous work has been conducted on units firing Eastern or Midwestern bituminous coals.

In recent years, the utilization of Western U.S. coals as an energy source has increased significantly. The incentives for their use are the low sulfur content conductive to low SO_X emission levels and the large available reserves that may be used in lieu of oil and natural gas which are in short supply.

Based on Phase II recommendations to investigate Western coal types which were becoming a predominate source of fuel for electric generating stations, this study, EPA Contract 68-02-1486, was contracted by Combustion Engineering, Inc.'s, Field Testing and Performance Results Department.

The objective of this program was to investigate the effectiveness of employing overfire air as a method of reducing NO_X emission levels from tangentially fired botlers burning Western U.S. coals. The effect of reducing NO_X emission levels was evaluated with respect to unit performance, unit efficiency, waterwall corrosion rates and related gaseous emission levels.

Specifically, the factors considered in realizing this objective were as follows:

- 1. The program was conducted on two units designed with overfire air registers, the first unit firing a Western U.S. subbituminous coal and the second unit firing a Western U.S. bituminous coal.
- The test program evaluated baseline, biased firing and overfire air operation and consisted of approximately 60 steady state tests per unit and two months of waterwall corrosion rate studies per unit.
- 3. The effect of NO_x control methods on all gaseous constituents was evaluated during all tests. The following constituents were measured: NO_x , SO_x , CO, THC, O_2 and particulate samples for unburned combustible analysis.
- 4. The effects of NO_X control methods on steam generator performance were evaluated during all tests by obtaining necessary temperatures, pressures, flows, etc., with calibrated equipment.
- 5. Based on the results of this program, conclusions and recommendations were made pertaining to the acceptable application of staged firing with respect to NO_X emission levels, corrosion rates and unit operation for each type of coal tested.
- 6. The results of this program were compared with the results obtained under Contract 68-02-1367 for a unit equipped with an overfire air system not included in the original design.

CONCLUSIONS

NORMAL OPERATION

- I. Under normal unit operation without overfire air, excess air variation was found to have the greatest single effect on NO_X emission levels, increasing NO_X with increasing excess air. An average increase of 6.4 ng/J for each one percent change in excess air (EA) was observed over a normal operating range of 15 to 25 percent EA for the three units.
- 2. Unit loading was found to have a limited effect on NO_X and CO emission levels and carbon heat loss.
- 3. Variations in furnace waterwall deposits had wide and inconsistent effects on NO_X and CO emission levels and carbon heat loss.
- 4. Under normal unit operation, the percent carbon loss in the fly ash and CO emission levels increased with decreasing excess air with the increases becoming greater below a level of approximately 20 to 25 percent excess air. CO levels in excess of 24 ng/J were considered unacceptable for the purposes of this program.

BIASED FIRING OPERATION

Biased firing was found to be most effective when the top fuel firing elevation was removed from service. This mode of operation simulates overfire air operation. However, while biased firing is a potentially effective method of NO_X control, it may necessitate a reduction in unit loading. Therefore, biased firing is not considered to be the most desirable method of NO_X control.

OVERFIRE AIR OPERATION

- 1. NO_x reductions of 20 to 30 percent were obtained with 15 to 20 percent overfire air when operating at a total unit excess air of approximately 15 to 25 percent as measured at the economizer outlet.
 - This condition would provide an <u>average</u> fuel firing zone stoichiometry of 95 to 105 percent of theoretical air. Stoichiometries below this range did not result in large enough decreases in NO_x levels to justify their use.
- 2. When using overfire air as a means of decreasing the theoretical air to the fuel firing zone, the combustible loss and CO emission levels were less affected than when operating with low excess air since during overfire air operation, acceptable overall excess air levels are maintained. Reduction in operating excess air levels for NO_X control is often precluded because of the ash properties of the coal being fired. Further, as coal is an extremely complex fuel characterized by wide variations in properties, even

between different seams in the same mine area, excess air is the only means available to the operator to compensate for departures from the design coal. For the above reasons, the application of overfire air rather than low excess air firing is recommended on coal fired steam generators.

- Furnace performance as indicated by waterwall slag accumulations, visual observations and absorption rates were not affected by overfire air operation.
- 4. At Alabama Power Company's Barry Station Unit #2 where the overfire air port could not be installed as a windbox extension, test results indicated that the centerline of the overfire air port should be kept within 3 meters of the centerline of the top fuel elevation. Distances greater than 3 meters did not result in significantly decreased NO_X levels. On new designs, and whenever possible on field modified units, it is preferable to introduce the overfire air through a vertical extension of the windbox rather than through isolated ports displaced above the windbox. The effectiveness of introducing overfire air through an extended windbox is demonstrated via the tests conducted on Wisconsin Power & Light, Columbia #1 and Utah Power & Light, Huntington Canyon #2. The overfire air compartments on an extended windbox tilt independently of the remainder of the windbox to permit adjustments in the "point" of overfire air introduction.
- 5. Optimum overfire air operation was obtained when the overfire air registers were tilted away from the fuel nozzles. NO_X control was nearly as effective when the overfire air registers were tilted with the fuel nozzles. NO_X emission levels increased when the overfire air registers and fuel nozzles were directed toward each other. At Alabama Power Company's Barry Station Unit #2, flame stability decreased when the overfire air registers and fuel nozzles were directed away from each other by more than 20 to 25 degrees. This phenomena was not observed at either Wisconsin Power and Light Company's Columbia Energy Center Unit #1 or at Utah Power and Light Company's Huntington Station Unit #2. With the overfire air tilts fixed in a horizontal position, acceptable unit operation was obtained, however, NO_X levels varied with fuel nozzle position.
- 6. The results of the thirty day baseline and overfire air corrosion coupon runs indicate that the overfire air operation for low NO_X optimization did not result in significant increases in corrosion coupon degradation. Additional long-term operation studies will be required to verify these observations.
- 7. The average NO_X levels experienced during the thirty day overfire air studies were as follows: Barry #2-172 ng/J, Huntington Canyon #2-231 ng/J and Columbia #1-294 ng/J. The emission levels for Columbia #1 reflect operating conditions beyond the control of the test program.
- 8. Variables normally used to control normal boiler operation should not be considered as NO_X controls with coal firing. These variables include unit load, nozzle tilt, pulverizer fineness, windbox dampers and total excess air.
- 9. Overall unit efficiency was not affected by overfire air operation.

RECOMMENDATIONS

This program was designed to investigate the effects of the following process variables and combustion modifications on NO_X emission levels in existing steam generating units:

Process Variables

Excess Air Level
Unit Load
Furnace Waterwall Deposits

Combustion Modifications

Biased Firing Overfire Air Firing

The effects of furnace waterwall deposits could not be adequately documented. Several investigations have indicated that furnace waterwall deposits can effect NO_X emission levels. Therefore, this process variable should be investigated further.

The effect of fuel nitrogen on NO_X formation was not investigated per se in this program. However, as the effect of fuel nitrogen is becoming of increasing concern, its contribution to NO_X emission levels in coal fired boilers should be quantified.

Additionally, the results of the corrosion probe evaluations indicate that the coupon weight losses encountered during a thirty day evaluation are small and consideration should be given to studies of up to one year duration to verify short term test results. These studies should include evaluation of actual fireside waterwall tube wastage rates as well as corrosion probe wastage rates.

SUMMARY

Percent excess air, bulk flame temperature and residence time of the combustion gases all directly affect the formation of oxides of nitrogen (NO $_{\rm X}$). The two oxides of nitrogen which are of significance are nitric oxide (NO) and nitrogen dioxide (NO $_{\rm 2}$). NO is the more predominant form and accounts for 90 to 95 percent of the total NO $_{\rm X}$ generated in a utility boiler. Once it enters the atmosphere NO is converted to NO $_{\rm 2}$, which is more hazardous to human health. Most references in this report to NO $_{\rm 2}$ are actually refering to total nitrogen oxides. This method of expressing NO $_{\rm X}$ as NO $_{\rm 2}$ is in agreement with EPA practice.

While it is not the subject of this report, it should be noted that NO_X generated by the combustion of coal can occur by two mechanisms. One mechanism is by the oxidation of atmospheric nitrogen (thermal NO_X) while the other mechanism involves the conversion of fuel bound nitrogen (fuel NO_X). The formation of thermal NO_X is known to be dependent on flame temperature, oxygen concentration in the combustion zone and residence time at temperature.

Several investigators have observed that the formation of fuel NO_X is responsible for a significant portion of the total NO_X emitted from the combustion process [3,4,5,6]. The reaction can take place at a much lower flame temperature and has also been shown to be dependent on the oxygen concentration in the combustion zone. The coals being fired at Alabama Power Company's Barry #2 and Utah Power and Light Company's Huntington Canyon #2 had nitrogen analysis ranging from 1.1 to 1.3 percent nitrogen by weight. Wisconsin Power and Light Company's Columbia #1 had an analysis ranging from 0.6 to 0.8 percent nitrogen by weight. Preliminary plots of NO_2 versus the coal nitrogen content did not show any correlation between NO_2 and coal nitrogen content. Any correlation would probably have been masked by the limited range of the nitrogen content of the coals being fired and by the variation in excess air levels.

BASELINE OPERATION STUDY

It has been well documented that the formation of NO_X is dependent upon excess air and the oxygen concentration in the combustion zone. The oxygen concentration in the combustion zone is directly related to excess air and also to the theoretical air to the fuel firing zone (TA). TA is a computational tool used by Combustion Engineering, Inc. which accounts for variations in position and leakage in all windbox compartment dampers.* This method allows for the accounting of leakage in the compartments above the top active fuel compartment and, therefore, is a better approximation of the actual air (i.e., oxygen) available for combustion in the fuel firing zone than total excess air (EA). Therefore, all parameters are plotted versus theoretical air to the fuel firing

^{*} See Appendix D.

zone rather than the total excess air. For the baseline operation study the TA is essentially the same as the total air since no air was diverted through the overfire air registers.

Figure 1 is a plot of NO2* versus TA for the full load baseline tests at Alabama Power Company's Barry Station Unit #2, Utah Power and Light Company's Huntington Canyon Station Unit #2 and Wisconsin Power and Light Company's Columbia Energy Center Unit #1. As shown by this figure, NO2 is proportional to TA and, therefore, to oxygen concentration in the fuel firing zone and excess air.

Figure 2 is a plot of NO2 versus TA for the half (1/2) load tests for all three units. As with the full load tests, the half (1/2) load tests also show increasing NO2 emission levels with increasing TA. Comparison of the full and half (1/2) load tests show that at similar theoretical air levels, the NO2 emission levels for the half (1/2) load tests are lower than or equal to the NO2 levels for the full load tests. The effect of load is better shown in Figure 3, where emission levels are plotted versus theoretical air level for full, three quarter and one half load baseline tests. This plot shows that in some, but not all cases, NO2 levels tend to increase with unit loading. It can be shown that occasionally the opposite trend was observed.

While NO₂ levels correlated well with TA, attempts to find what effect fuel nozzle tilt and furnace condition had on NO_{χ} formation were not as successful. Changes in fuel nozzle tilt were found to produce wide and inconsistent variations in NO₂ emission levels.

Other investigators have found that increased slagging of the furnace walls tends to increase NO_X by increasing the furnace outlet temperature and, therefore, the bulk flame temperature [3,5]. Bulk flame temperature increases due to the reduced heat transfer from the hot combustion gases to the water-cooled furnace walls. The amount of reduction in heat transfer may depend greatly upon the type of slag on the furnace walls. The furnace conditions for the full and half (1/2) load tests are indicated on Figures 1 and 2. Furnace condition was found to have wide and inconsistent effects on NO2 emission levels for the tests run on the subject boilers. The results obtained showed that for some tests an increase in furnace slag resulted in an increase in NO2 emission levels while no effect was observed for other tests. Furnace condition was measured by visual observation of the furnace waterwalls. Since waterwall absorption is closely related to furnace condition, an attempt was made to correlate NO2 emission levels with furnace waterwall absorption and therefore with furnace condition. This attempt produced no meaningful results. The lack of correlation between NO2 emission levels and furnace condition might be partially attributed to the fact that the visual observation of furnace waterwall deposits is very subjective. Also, the contribution of fuel nitrogen may be dominant in the formation of NO..

^{*} In this report, oxides of nitrogen (NO_X) are expressed as nitrogen dioxide (NO_2) to be consistent with the requirements of the New Source Performance Standards, Federal Register Vol. 35, No. 247, Part II, Dated December 31, 1971.

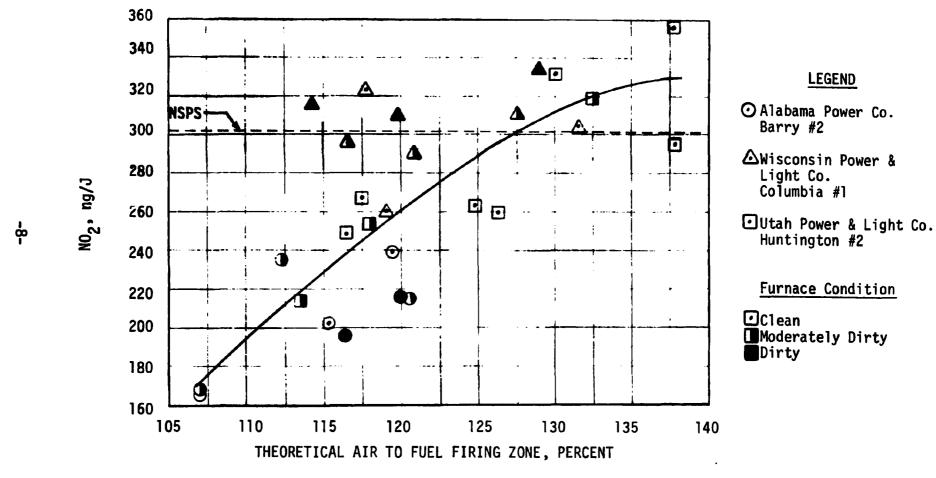
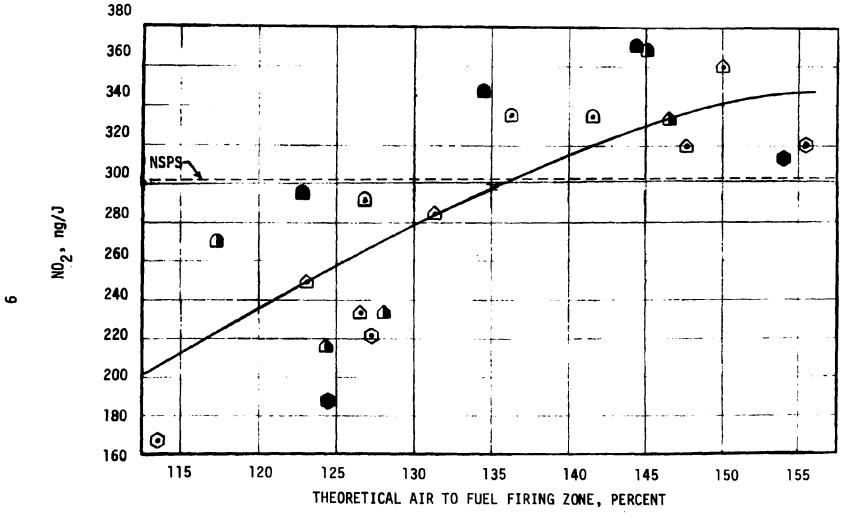
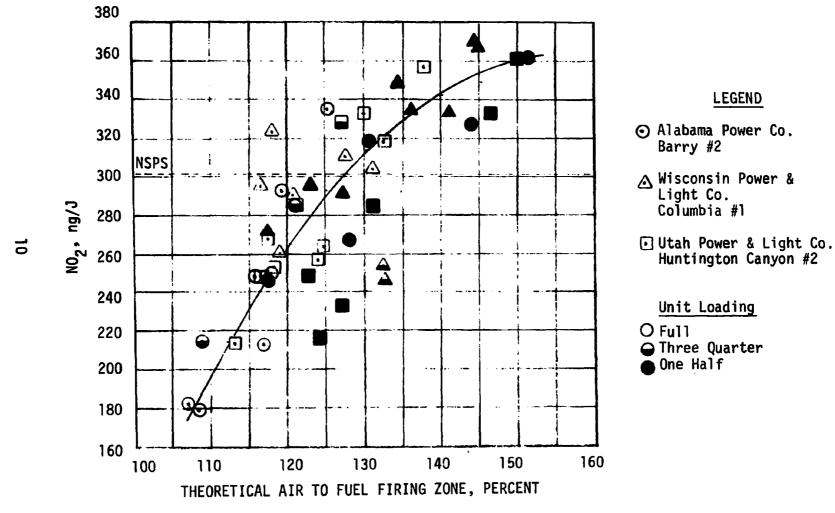



Figure 1: NO_2 vs. theoretical air, baseline study, maximum load


LEGEND

○ Alabama Power Co., Barry #2 ○ Wisconsin Power & Light Co., Columbia #1 ○ Utah Power & Light Co., Huntington #2

△ Clean

 Moderately Dirty
 Dirty

Figure 2: NO_2 vs. theoretical air, baseline study, 1/2 load

LEGEND

Figure 3: $N0_2$ vs. unit loading, baseline study

The effect of reducing TA on CO emission levels and carbon heat loss is shown on Figures 4 and 5 for the full load tests. Both CO emission levels and carbon heat loss increase with decreasing TA. This trend is a result of the reduced oxygen available for complete combustion. CO emission levels show no effect due to furnace condition. However, carbon heat loss appears to decrease with increasing furnace waterwall deposits. This may be related to the higher bulk flame temperatures encountered in a heavily slagged furnace.

BIASED FIRING OPERATION STUDY

Biased firing involves the removal of a full firing elevation from service with the dampers being opened so as to admit air through the idle fuel nozzle elevations. The effect on NO_2 emission levels when taking various fuel elevations out of service is shown in Figure 6. The lowest NO_2 levels for each unit were obtained when the top fuel firing elevations were removed from service and the respective compartment air dampers were 100 percent open. Overfire air operation is simulated by this method of unit operation. The trend is for increasing NO_2 levels as the elevation being removed is lower in the windbox. The increase in NO_2 levels can be attributed to the increased oxygen available in the fuel firing zone.

Examination of the units on an individual basis showed a slight reduction in NO₂ levels when the bottom fuel firing elevation was removed from service. This reduction in NO₂ might be caused by a cooling of the hot combustion gases by the cooler combustion air, which is being admitted through the bottom fuel firing elevation.

 NO_2 is plotted versus TA for the full load biased firing tests in Figure 7. The correlation found for the baseline tests is also evident for the biased firing tests, NO_2 being directly proportional to TA.

CO emission level and carbon heat loss plots for the biased firing tests have not been included. Preliminary plots of these variables against TA revealed wide and inconsistent variations. This inconsistency is most probably due to firing with different fuel elevations out of service.

OVERFIRE AIR OPERATION STUDY

The overfire air operation studies were divided into three separate test series, each designed to determine an optimum operating condition. The three test series were:

- 1. Excess Air and Overfire Air Rate Variation,
- 2. Overfire Air Register Tilt Variation, and
- 3. Load and Furnace Waterwall Deposit Variation at Optimum Conditions

The first of these test series involved the variation of the overfire air rate at various excess air levels. Variation of the overfire air rate is accomplished by changing the overfire air register damper opening. The maximum overfire air rate corresponds to the overfire air register dampers being 100 percent open. With the exception of Alabama Power Co., Barry #2, the overfire air

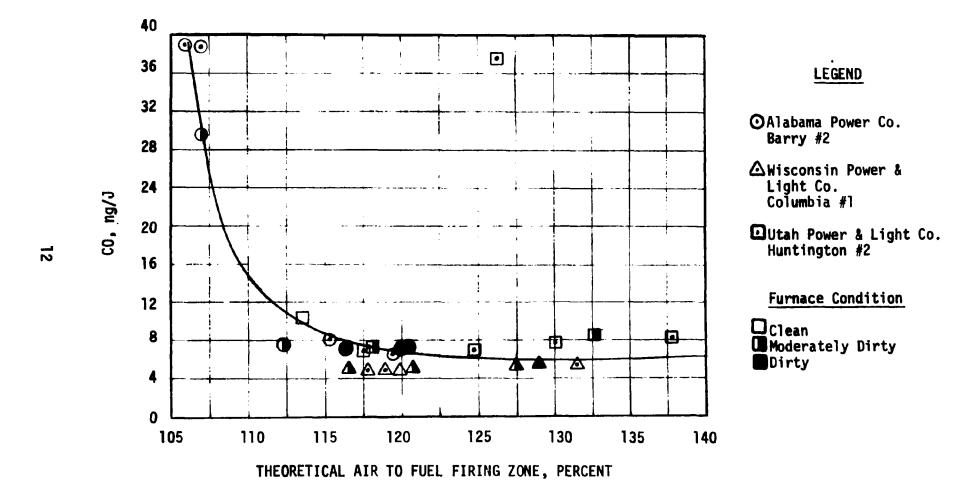


Figure 4: CO vs. theoretical air, baseline study, maximum load

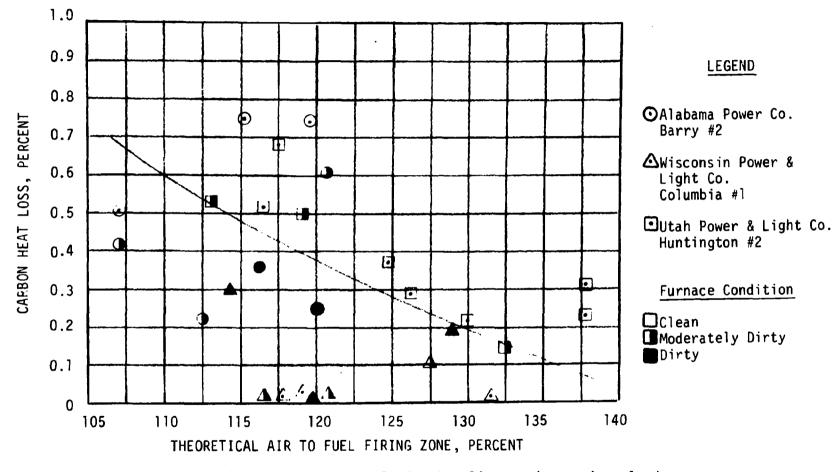


Figure 5: Carbon heat loss vs. theoretical air, baseline study, maximum load

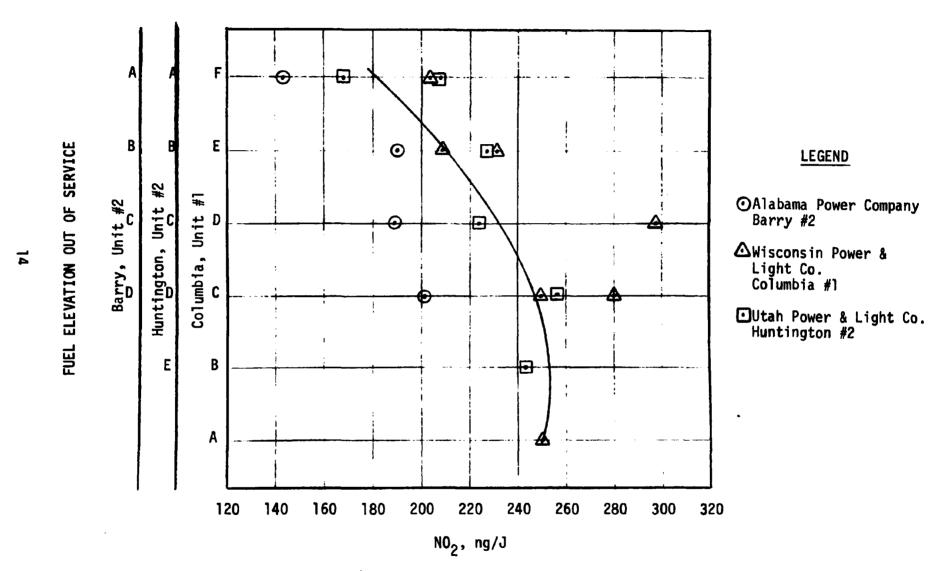


Figure 6: Fuel elevation out of service vs. NO₂, biased firing study

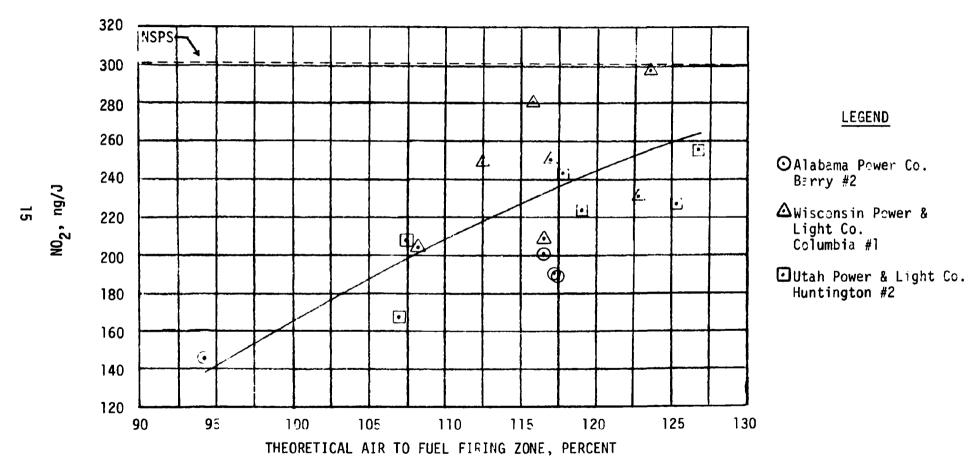


Figure 7: NO_2 vs. theoretical air, biased firing study, maximum load

systems were designed to introduce up to 15 percent of the total combustion air above the top level of fuel nozzles at MCR. Barry #2 was designed to introduce 20 percent of the total air as overfire air. During normal boiler operation the overfire air dampers are opened just enough to cool the overfire air registers.

As the overfire air dampers are opened the NO₂ emission levels are found to drop for a constant excess air level. This trend is shown in Figure 8. Six excess air levels have been shown, with the trend being similar for all excess air levels.

Theoretical air to the fuel firing zone and overfire air damper opening are closely related, with TA decreasing as the damper opening increases. Figure 9 is a plot of NO_2 versus TA for the damper variation tests for all three units. For these tests, as in the baseline and biased firing studies, the NO_2 emission levels are found to increase with increasing TA. The evidence shown in Figures 8 and 9 indicates that NO_X is more dependent upon TA rather than EA.

Once the optimum excess air level and overfire air rate had been determined for each unit, the second test series were run. This test series involved a variation in tilt of the overfire air registers and fuel nozzles. The variation in tilt refers to how many degrees toward or away from each other the fuel nozzles and overfire air registers are moved. This variation is calculated by taking the difference in degrees that the overfire air registers are angled toward or away from the fuel nozzles, i.e., overfire air register tilt minus fuel nozzle tilt.

Tilt variation of the fuel nozzles and overfire air registers is designed to move the fuel firing zone both in the furnace and in its position relative to the overfire air registers. Movement of the fuel nozzles and overfire air registers away from each other accentuates the effect of staged combustion. Movement of the fuel nozzles and overfire air registers toward each other minimizes the effect of staged combustion because the air is being forced down into the firing zone.

Figure 10 is a plot of NO_2 versus the difference in tilt of the fuel nozzles and overfire air registers. NO_2 emission levels are found to be highest when the overfire air registers and fuel nozzles are angled toward each other and lowest when they are angled away from each other. From the standpoint of NO_X reduction, the optimum tilt variation would be with the overfire air registers and fuel nozzles angled away from each other. However for ease of boiler operation, parallel operation of the overfire air registers and fuel nozzles would be best.

Figure 11 shows NO_2 plotted versus TA for the second series of tests in the overfire air study. Again, NO_2 emission levels are found to be directly proportional to TA.

In the final series of tests for each unit, the effects of load and furnace waterwall deposits on NO_X formation are examined. Boiler operation was at the optimum conditions determined in the previous test series for each unit. Half, three-quarter and full load tests were conducted on each unit at clean and dirty furnace conditions. Figure 12 is a plot of the NO_2 emission levels

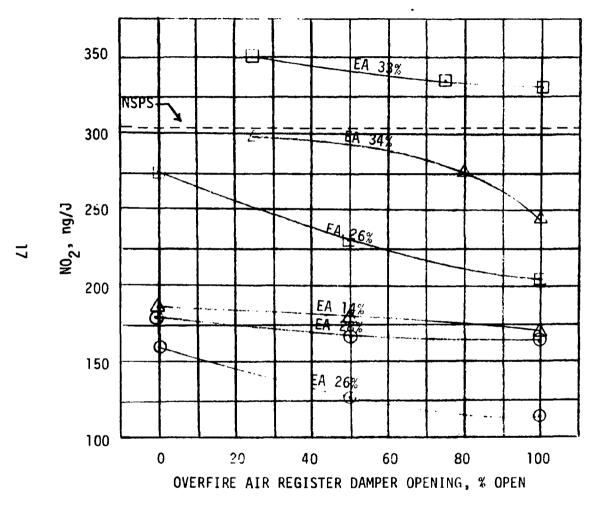


Figure 8: NO₂ vs. OFA damper opening, overfire study

LEGEND

- ◆ Alabama Power Co. Barry #2
- ∆ Wisconsin Power & Light Co.
 Columbia #1
- ■Utah Power & Light Co. Huntington #2

EA-Excess Air at Economizer Outlet

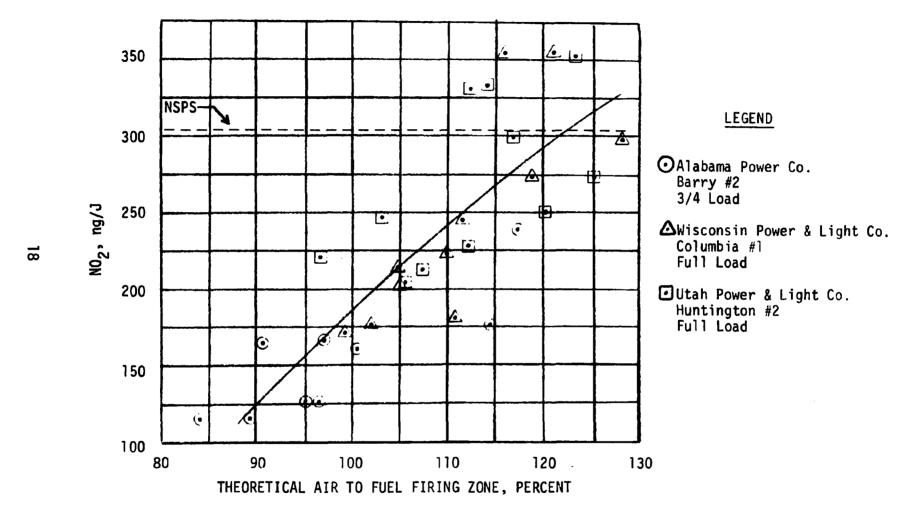


Figure 9: NO₂ vs. theoretical air, overfire air study, Test series 1

OFA REGISTER AND FUEL NOZZLE TILT DIFFERENTIAL, DEGREES

Figure 10: NO₂ Vs. tilt differential, overfire air study

LEGEND

- OAlabama Power Co.
 Barry #2
- ▲Wisconsin Power & Light Co.
 Columbia #1
- ■Utah Power & Light Co. Huntington #2

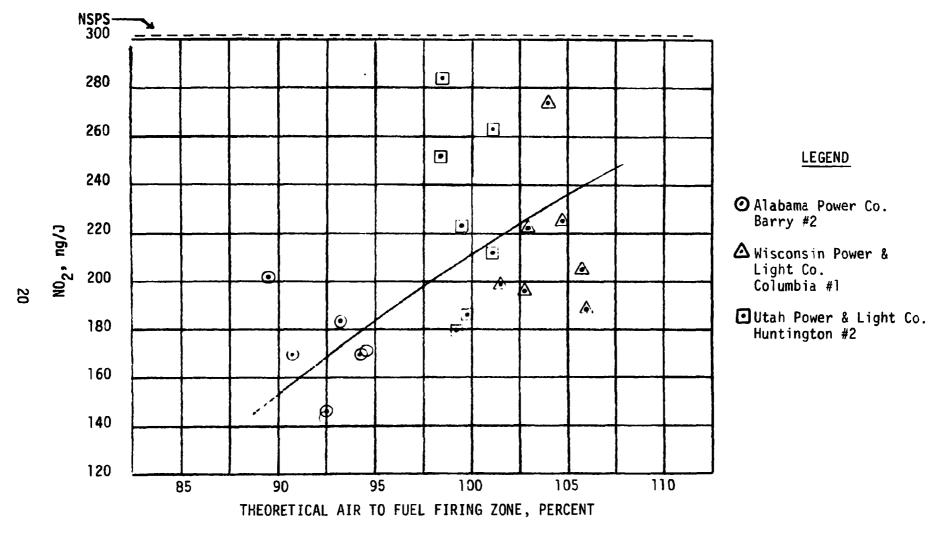


Figure 11: NO₂ vs. theoretical air, overfire air study, Test series 2

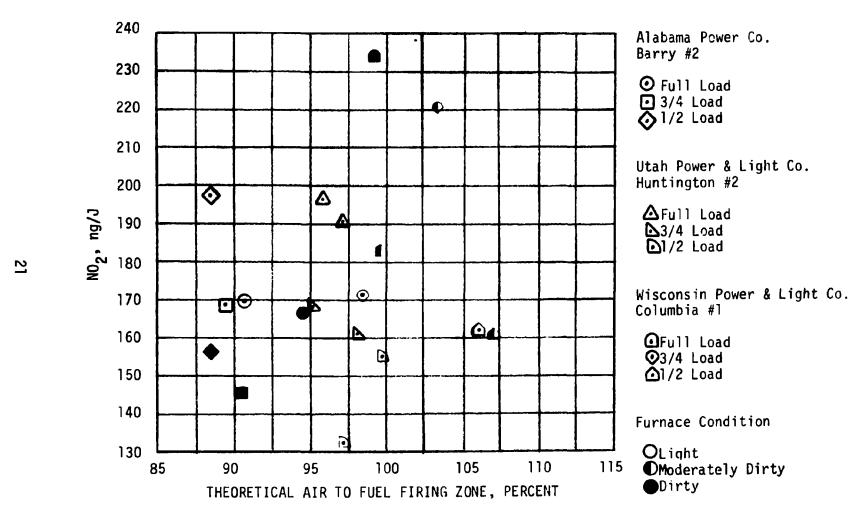


Figure 12: NO₂ vs. theoretical air, overfire air study, Test series 3

versus TA for each test in this series. This figure attempts to minimize the effect of TA and show the effect of load and furnace condition on NO_2 emission levels. Both Huntington #2 and Columbia #1 show an increase in NO_2 levels as unit load rises from half (1/2) load to full load. The effect of furnace condition on these units shows inconsistent variation in the results. Except for one half (1/2) load test, Barry #2 results also indicate an increase in NO_2 levels with increasing unit load.

For the overfire air studies, plots of CO emission levels and carbon heat loss versus TA produced the same trend that was established in the baseline operation studies. The CO levels and carbon heat losses were found to increase with decreasing theoretical air levels.

BOILER PERFORMANCE

Figure 13 is a plot of unit efficiency versus excess air for the full load tests performed on the subject units. As can be seen in Figure 13, biased firing and overfire air boiler operation did not affect unit efficiency. In a previous section it was shown that NO_2 emission levels can be reduced through the use of overfire air. Therefore, these results indicate that it may be possible to reduce NO_2 emission levels without adversely affecting boiler performance or operation.

In general, unit efficiency is found to decrease with increasing excess air. The decrease in unit efficiency with increasing excess air levels can be attributed to the increasing economizer outlet gas flows and temperatures and therefore to increased dry gas losses.

The 2 to 3 percent difference in unit efficiency between Columbia Energy Center, Unit #1 and Barry Station, Unit #2 or Huntington Station, Unit #2 can be attributed to higher dry gas losses and moisture in the fuel losses for the Columbia Energy Center's Unit #1. These higher losses are due to the type of coal being fired at Columbia Energy Center, Unit #1.

WATERWALL CORROSION COUPON EVALUATION

Thirty (30) day waterwall corrosion coupon evaluations were performed at the baseline and optimum overfire air conditions for each unit. The purpose of these evaluations was to determine what effect low excess air or staged combustion would have on waterwall tube wastage.

The method used to evaluate corrosive potential, waterwall tube wastage, in a boiler is by exposing samples of tube material to furnace conditions for finite periods of time and then measuring the weight losses. This is accomplished by inserting test probes consisting of five (5) coupons each into the furnace fuel firing zone and maintaining them at typical waterwall metal temperatures. Figure 14 depicts the type of probe and coupons used to obtain such information. This particular probe utilized air to keep the coupon at the desired temperature.

Typical instrumentation to automatically maintain the desired temperature consists of an electronic controller, and a pneumatic controller. The pneumatic controller operates as a switching device, using solenoid valves, to regulate the amount of cooling air going to the probe. The amount of air is based on a

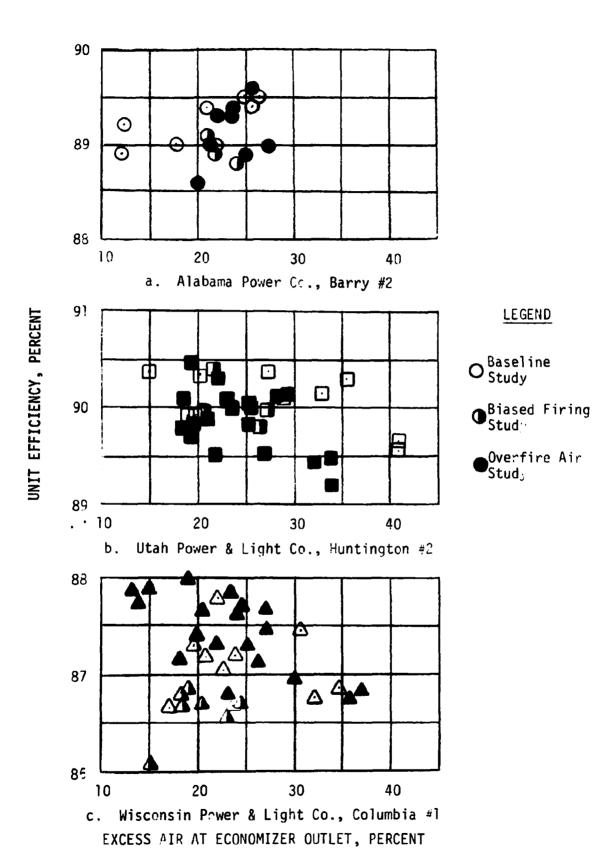


Figure 13: Unit efficiency vs. excess air

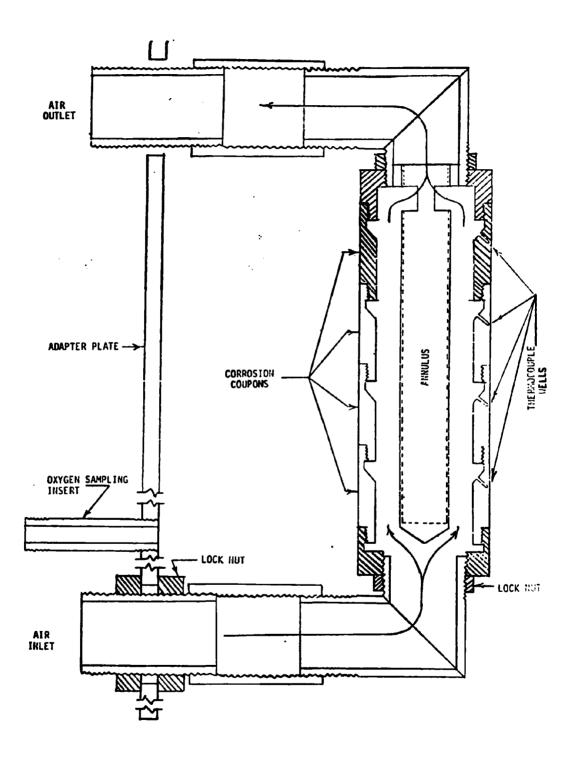


Figure 14: Corrosion Probe Assembly Drawing

signal from the electronic controller which is tied into the sensing thermo-couple at the probe coupon.

At the end of the exposure period the coupons are evaluated for weight loss and visual evidence of attack. The average weight losses for the baseline and overfire air modes of boiler operation are shown in the following tables. The results indicate that waterwall tube wastage is unaffected by mode of boiler operation.

AVERAGE CORROSION COUPON WEIGHT LOSSES

<u>Unit</u>	Baseline Operation	Overfire Air Operation
Alabama Power Company Barry Station, Unit #2	2.6381 mg/cm ²	4.4419 mg/cm ²
Wisconsin Power & Light Co. Columbia Energy Center, Unit #1	8.0770 mg/cm ²	8.0933 mg/cm ²
Utah Power & Light Co. Huntington Station, Unit #2	3.4266 mg/cm ²	2.6357 mg/cm ²

The weight losses for the Barry Station Unit #2 and the Huntington Station Unit #2 are within the range of losses which would be expected for the oxidation of carbon steel for a thirty (30) day period. This premise was verified by control studies conducted in C-E's Kreisinger Development Laboratory.

The weight losses measured at the Columbia Energy Center Unit #1 are slightly higher than expected. One possible reason for the higher losses is that some of the probes overheated during the thirty (30) day tests. Another possible reason for the higher weight losses is that the coal being burned at Columbia Energy Center's Unit #1 is a subbituminous type coal while Barry Station Unit #2 and Huntington Station Unit #2 both burn bituminous type coals. However, the results for the Columbia Energy Center tests show the weight losses are equivalent regardless of the mode of boiler operation.

SECTION II - EPA CONTRACT 68-02-1486 OBJECTIVES

The objective of this program was to investigate the effectiveness of employing staged combustion as a method of reducing NO_X emission levels from tangentially fired boilers burning Western U.S. coals. Specifically this objective is broken down by task as follows:

TASK I - UNIT SELECTION

The basis for selection of suitable test units follows:

- One unit (Unit "A") firing a Western U.S. subbituminous coal and a second unit (Unit "B") firing a Western U.S. bituminous coal.
- Both units were representative of current Combustion Engineering, Inc. design employing overfire air registers in an extended windbox as a means of NO_x emission control. Neither unit required modifications with regard to those features necessary to permit evaluation of biased firing and staged combustion.
- 3. The size of the boilers allowed a diverse experimental program and permitted scale-up correlation of performance and emissions data to that developed under EPA Contract No. 68-02-1367 [2].
- 4. Two utilities willing to participate in the program which included absorbing generating losses incurred during the test program.
- A utility which agreed to an outage of approximately one month for the installation of waterwall thermocouples on the unit that would be firing the Western U.S. subbituminous coal.

TASK II - TEST PLANNING & FABRICATION OF TEST EQUIPMENT

This task included the preparation of a detailed test program for each unit designed to investigate the effects of the following process variables and combustion modifications on NO_x , SO_x , THC, CO and unburned combustibles.

PROCESS VARIABLES

Excess Air Level Load Furnace Wall Deposits

COMBUSTION MODIFICATIONS

Biased Firing Overfire Air Firing

The test program provided for documentation of the effects of the test variables on the thermal and operational performance of the boilers. It also provided for the evaluation of long term and transient operation, thermal-efficiency, slagging, fireside corrosion, flame stability and other process responses considered essential to the commercially acceptable operation of the boilers.

The following were considered in the test program planning:

- 1. Analytical measurements and sampling techniques.
- 2. Emission measurements which included NO_x , SO_x , CO, THC and O_2 . CO_2 was determined by calculation.
- 3. Necessary analysis of fuel properties relevant to furnace operation and emissions.
- 4. Measurement of process variables.

The test program utilized statistical test design methods and prior experience where possible to maximize the information output from each test.

TASK III - INSTALLATION OF INSTRUMENTATION

Task III involved the installation, on each unit, of the analytical instrumentation required for calculation of CO_2 and for measurement of flue gas constituents (NO_X , SO_X , CO, THC, O_2 and unburned carbon). Also installed was the necessary instrumentation required to characterize the effects that combustion modifications have on unit performance; i.e., fireside corrosion and heat absorption. Instrumentation to determine waterwall absorption rates was installed only on Unit A. Instrumentation to determine unit absorption rates and thermal performance of the reheater, superheater, economizer and air heater sections were installed on both Units A and B.

TASK IV - BASELINE OPERATION - UNITS A & B

Similar but separate test programs were conducted on Units A & B to determine the effect of unit load, furnace wall deposits and excess air variation on baseline gaseous emission levels and unit performance. During this portion of the test program only a minimum amount of air necessary for cooling was admitted through the overfire air registers.

There were nineteen (19) tests performed for the combination of conditions indicated in Test Matrix 1.

TEST MATRIX 1

		E-1	E-2	E-3
	L-1	1	2	3
D-1	L-2		4	
	L-3	5	6	7
	L-1	8	9	10
D-2	L-2			
	L-3	11		12
	L-1	13	14	15
D-3	L-2		16	
	L-3	17	18	19

TEST CONDITIONS

Percent Excess Air

Minimum	E-1
Normal	E-2
Maximum	E-3

Furnace Wall Deposits

D-1
D-2
D-3

Unit Load

Maxi	imum	L-1
3/4	Maximum	L-2
1/2	Maximum	L-3

A baseline operation waterwall corrosion rate test of a four (4) week duration was conducted after the completion of the baseline emissions test program. This study was performed at normal operating conditions with maximum load being carried whenever possible. The baseline operation corrosion rate test was conducted on both Units A & B.

TASK V - BIASED FIRING OPERATION - UNITS A & B

A program was conducted to establish the effect of operating with various fuel elevations out of service and of varying the excess air levels on gaseous emission levels and unit performance. Specifically, this portion of the program established maximum emissions control at full load and throughout the normal load range without utilizing the overfire registers; however, air was admitted through the dampers of the idle fuel nozzle elevations.

Eighteen (18) tests were conducted on Unit A at the conditions specified in Test Matrix 2.

TEST MATRIX 2

i		E-1			E-2	
	L-1	L-2	L-3	L-1	L-2	L-3
B-1	1	5		11	14	
B-2	2					
B-1 B-2			8			17
B-3		6		12		
B-4	3				15	
B-3 B-4			9			
B-5				13		
B-6	4	7			16	
B-5 B-6	•		10			18

TEST CONDITIONS

Firing Elev. Out of	Serv.
Top Top Middle Top Center Bottom Center Bottom Middle Bottom	B-1 B-2 B-3 B-4 B-5 B-6
Unit Load	
Maximum 3/4 Maximum 1/2 Maximum	L-1 L-2 L-3
Percent Excess Air	
Minimum Normal	E-1 E-2

For Unit B, there were sixteen (16) tests conducted at the conditions specified in Test Matrix 3.

TEST MATRIX 3

		E-1			E-2	
	L-1	L-2	L-3	L-1	L-2	L-3
B-1	1	4		9	12	
B-2		5		10		
B-1 B-2			7			
B-3	2		-		13	
B-2 B-3						15
B-4		6		11		
B-3 B-4			8			
B-5	3				14	
B-4 B-5						16

TEST CONDITIONS

Firing Elev. Out of	Serv.
Top Top Center Center Bottom Center Bottom	B-1 B-2 B-3 B-4 B-5
Unit Load	
Maximum 3/4 Maximum 1/2 Maximum	L-1 L-2 L-3
Percent Excess Air	
Minimum Normal	E-1 E-2

TASK VI - OVERFIRE AIR OPERATION - UNITS A & B

The overfire air operation test program was the same for both Units A & B. The test program, utilizing the overfire air system, investigated the effect of overfire air admission rates on gaseous emission levels at various unit loads and operating conditions. Those conditions which were found to be optimum from the standpoint of both effectiveness in reducing NO_X emission levels and maintaining safe unit operation were evaluated to determine their acceptability for long term operation.

The first series of tests in this portion of the program were to determine the effect on the NO_χ emission levels and unit performance, when varying the overfire air rate with respect to excess air.

There were eleven (11) tests conducted at maximum load under the conditions identified in Test Matrix 4.

TEST MATRIX 4

	E-1	E-2	E-3
A-1	6	1	
A-2		2	9
A-3	7	3	
A-4		4	10
A-5	8	5	11

TEST CONDITIONS

Overfire Air Ra	<u>ate</u>
None	A-1
1/4 Maximum	A-2
1/2 Maximum	A-3
3/4 Maximum	A-4
Maximum	A-5
Percent Excess	Air
Minimum	E-1
Normal	E-2
Maximum	E-3

Having established the optimum overfire air rate and excess air level, this condition was used in conducting a series of fuel nozzle and overfire air register tilt variation tests.

The objective of this evaluation was to determine the effect of overfire air register tilt on the NO_X emission levels, steam temperatures and furnace wall deposits.

There were seven (7) tests performed at maximum unit load under the conditions listed in Test Matrix 5.

TEST MATRIX .5

•	F-1	F-2	F-3
R-1	12	13	
R-2	14	15	16
R-3		17	18

TEST CONDITIONS

Fuel Nozzle Tilt	
Maximum Minus	F-1
Horizontal	F-2
Maximum Plus	F-3
Overfire Air Regis	ter Tilt
Maximum Minus	R-1
Horizontal	R-2
Maximum Plus	R-3

The objective of the final series of tests for this test program was to determine the effect on NO_X emission levels and unit performance when operating at the previously established optimum conditions, while varying unit load and furnace wall deposits.

There were six (6) tests conducted at the conditions identified in Test Matrix 6.

TEST MATRIX 6

ļ	0C-1				
	D-1 D-3				
L-1	19	20			
L-2	21	22			
L-3	23	24			

TEST CONDITIONS

Unit Load

Max	imum	L-1
3/4	Maximum	L-2
1/2	Maximum	L-3

Furnace Wall Deposits

Clean	D-1
Heavy	D-3

Unit Operating Conditions

Optimum Conditions OC-1

To determine the effect of long term and transient overfire air operation on the furnace waterwall wastage rate, a waterwall corrosion study was conducted for a four (4) week period. This study was conducted at optimum conditions for NO_X reduction, as determined in the previously outlined test program, with maximum load being maintained whenever possible.

TASK VII - PREPARATION OF TEST REPORT AND ANALYSIS OF DATA

The test report includes all data obtained during the test program and the analysis of that data.

Specific areas of analysis and reporting are:

- 1. The reporting of emissions data with respect to modes of operation and coal type.
- 2. The analysis of emission data with respect to Contract 68-02-1367, for a unit that is equipped with a modified overfire air system.
- 3. The reporting of emission data with respect to unit performance.
- 4. The reporting of the corrosion probe study with respect to overfire air operation and coal type.
- 5. The analysis of corrosion probe wastage data with respect to Contract 68-02-1367.
- 6. The scale-up considerations for design of new overfire air systems resulting from this study and Contract 68-02-1367.
- 7. The possible changes to cost estimates for overfire air systems in new and existing boilers if this study indicates previously developed cost estimates based on Contract 68-02-1367 should be revised.

DISCUSSION

TASK I - UNIT SELECTION

The two units selected for participation in this test program were:

UNIT A - Wisconsin Power & Light Co.
Columbia Energy Center, Unit #1

UNIT B - Utah Power & Light Co. Huntington Canyon, Unit #2

These units are representative of current Combustion Engineering, Inc. boiler design. Both units incorporate overfire air registers in an extended windbox as a means of NO_X emission control. A typical windbox arrangement for one corner of a unit is shown in Figure 15. The primary air, which conveys the coal, is introduced through the center portion of the tilting coal nozzles. Secondary air is introduced selectively through openings at the periphery of the coal nozzles and/or through the air nozzles. Windbox air dampers located in the fuel and air compartments regulate the distribution of the secondary air. The quantity of air flow is controlled by the induced draft and forced draft fan system [7].

Unit A, Columbia Energy Center, Unit #1, is a controlled circulation, balanced draft, radiant, reheat boiler firing pulverized coal through six elevations of tilting tangential fuel nozzles. Unit capacity at maximum continuous rating (MCR) is 479 kg/s (3,800,000 LBS/HR) main steam flow at a superheat outlet temperature and pressure of 541°C (1005°F) and 18.1 MPa (2620 PSIG), respectively. The Columbia Energy Center, Unit #1 fires a Montana Rosebud seam subbituminous 'C' coal. A side elevation of Columbia Energy Center, Unit #1 is shown in Figure 16.

Unit B, Huntington Canyon, Unit #2, is also a controlled circulation, balanced draft, radiant, reheat boiler firing pulverized coal through five elevations of tilting tangential fuel nozzles. The unit capacity at the maximum continuous rating (MCR) is 382 kg/s (3,036,000 LBS/HR) main steam flow with a superheat outlet temperature and pressure of 541°C (1005°F) and 18.2 MPa (2645 PSIG), respectively. This unit fires a high Volatile 'B' bituminous coal supplied from the nearby Peabody Coal Company's Deer Creek Mine. A side elevation of Huntington Canyon, Unit #2 is shown in Figure 17.

In both units, superheat outlet temperatures are controlled by spray desuperheating. Reheat outlet temperatures are controlled by fuel nozzle tilt and spray desuperheating.

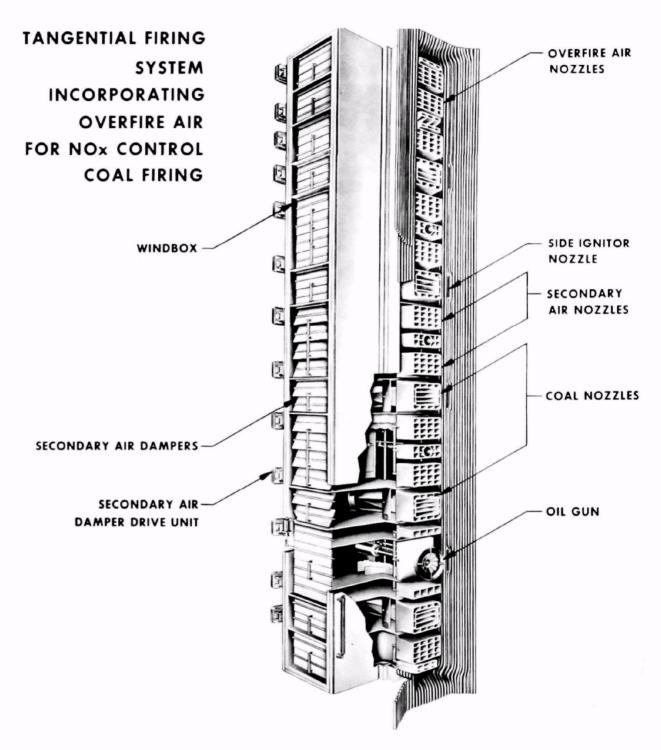


Figure 15: Typical windbox of tangential firing system

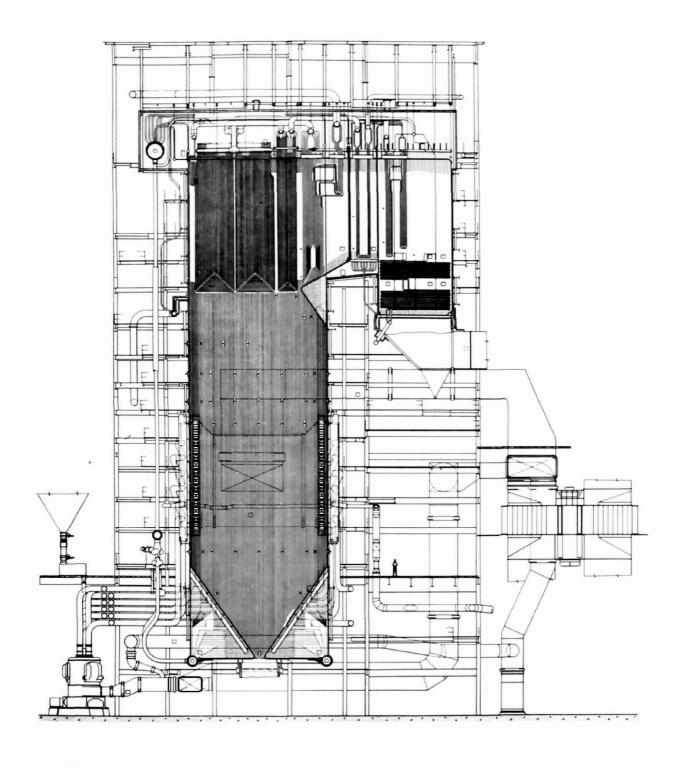


Figure 16. Unit side elevation, Wisconsin Power and Light Company, Columbia Energy Center No. 1

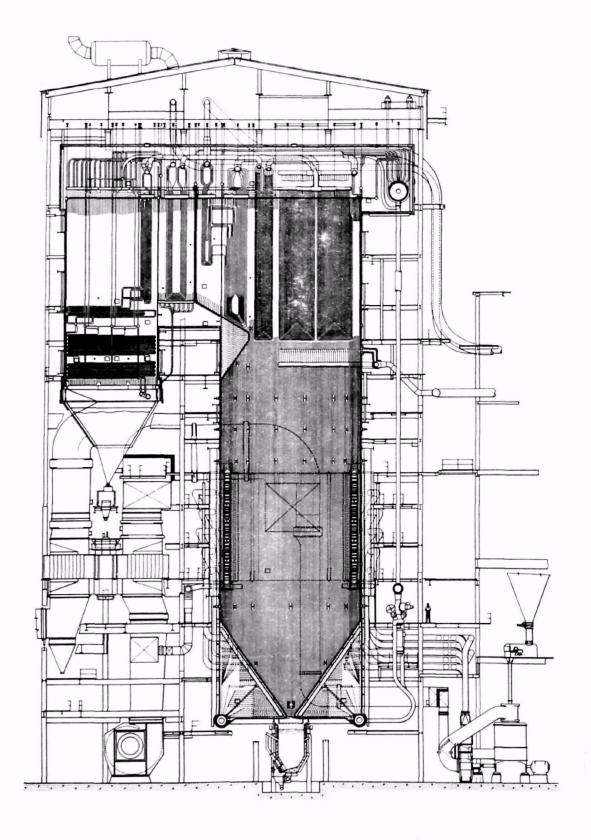


Figure 17. Unit side elevation, Utah Power and Light Company Huntington Station No. 2

TASK II - TEST PLANNING & FABRICATION OF TEST EQUIPMENT

The test program was designed to investigate the effect of excess air level, unit load, furnace wall deposits, biased firing, and overfire air operation with respect to NO_X and related gaseous emission levels, furnace waterwall corrosion and unit performance. The instrumentation required to achieve the above mentioned goals included such items as fabrication of corrosion probes, probe control systems, gas temperature and sampling probes, calibration of thermocouples, analyzers and pressure gauges and the packaging of equipment for shipping to the test sites.

At the test sites, flue gas samples for the determination of NO_X , SO_X , THC and CO were obtained from the boiler economizer outlet ducts. The percent oxygen in the flue gas entering and leaving the air preheaters was also obtained for the determination of air preheater leakage and unit efficiency.

The type of instrumentation used in determining the emission concentrations and the general locations of these instruments are described in the discussion of Task III - Installation of Instrumentation. Unit steam and gas-side performance was monitored using calibrated thermocouples, pressure gauges and manometers as required. The general locations of these instruments are also described in the discussion of Task III - Installation of Instrumentation. Type E chordal thermocouples were installed in the furnace waterwalls at Wisconsin Power and Light Co.'s, Columbia Energy Center, Unit #1.

Coal samples were obtained during each test for later analysis. Fuel analysis, unit emission levels, steam flow rates, absorption rates, gas and air weights and efficiencies were calculated for each test. The calculating methods and procedures used are listed in the discussion of Task III - Installation of Instrumentation.

The test program documented and discussed in detail all tools and techniques regarding analytical measurements and sampling techniques and calculating procedures used.

TASK III - INSTALLATION OF INSTRUMENTATION

Instrumentation necessary to conduct the baseline, biased firing and overfire air test programs on the selected units was installed and calibrated. This instrumentation consisted of the following:

MEASUREMENT	INSTRUMENT OR METHOD	LOCATION OF MEASUREMENT OR CALCULATION PROCEDURE
Flue Gas Constituents		
Nitrogen Oxides - NO _X	Chemiluminescence Analyzer	Economizer Gas Outlet
Carbon Monoxide - CO	Infrared Analyzer	Economizer Gas Outlet
Total Hydrocarbons - THC	Flame Ionization Analyzer	Economizer Gas Outlet

		LOCATION OF MEASUREMENT
MEASUREMENT	INSTRUMENT OR METHOD	OR CALCULATION PROCEDURE
Flue Gas Constituents (Cont.)		
Oxygen - 0 ₂	Paramagnetic Analyzer	Economizer Gas Outlet and Aîr Heater Gas In- let and Outlet
Sulfur Dioxide - SO ₂	Wet Chemistry	Economizer Gas Outlet
Carbon Dioxide - CO ₂	Calculated	Combustion Calculations
Unburned Combustibles	Cyclone Dust Collector ASME Dust Collector	Economizer Gas Outlet - Unit A Air Heater Gas Outlet - Unit B
Steam and Water Flows		
Feedwater	Mercury Manometer	Feedwater Orifice
SH Desuperheat Spray	Calculated	Heat and Mass Balance
RH Desuperheat Spray	Calculated	Heat and Mass Balance
Reheat	Calculated	Heat and Mass Balance
Superheat	Calculated	Heat and Mass Balance
Air and Gas Flows		
Total Flue Gas	Calculated	Heat and Combustion Calculations
Total Air	Calculated	Heat and Combustion Calculations
Overfire Air	Calculated	Mass Balance
Air Heater Leakage	Calculated	Mass Balance
Miscellaneous Flows		
Coal	Coal Scales	Coal Feeders - Plant Instrumentation
Pressures		
Steam and Water	Calibrated Gauges	Economizer Inlet Drum Superheat Outlet Reheat Inlet

MEASUREMENT Pressures (Cont.)	INSTRUMENT OR METHOD	LOCATION OF MEASUREMENT OR CALCULATION PROCEDURE
		Reheat Outlet Superheat Spray Water Reheat Spray Water High Pressure Heater Shell Side
Air and Gas	Plant Instrumenta- tion	FD Fan Outlet AH Air Inlet AH Air Outlet Windbox Furnace Economizer Outlet AH Gas Inlet AH Gas Outlet ID Fan Inlet
Temperatures		
Steam and Water	Calibrated Stainless Steel Type E Well and Type E Button Thermo- couples	Economizer Inlet Economizer Outlet SH Desuperheat Inlet SH Desuperheat Outlet Superheat Outlet RH Desuperheat Inlet RH Desuperheat Outlet Reheat Outlet SH DESH Spray Water RH DESH Spray Water HP Heater Inlet Steam HP Heater FW Inlet HP Heater FW Outlet
	Calibrated Stainless Steel Sheathed Type E Chordal Thermocouples	Furnace Waterwall Tubes
Air and Gas	Type E Thermocouples	Air Heater Gas Inlet Air Heater Gas Outlet Air Heater Air Inlet Air Heater Air Outlet
Miscellaneous		
Coal Samples	ASTM Procedures	Coal Feeders
Wall Deposit Patterns	Visual Observation	Furnace Waterwalls
Waterwall Corrosion	Corrosion Probes	Front Furnace Waterwall

The same instrumentation and measurements as required in support of the base-line, biased firing and overfire air test programs on Unit A were utilized on Unit B, with the exception of the chordal thermocouples installed in the furnace waterwall tubes.

All test measurements were supplemented by monitoring and recording the normally available plant operating instrumentation.

COLUMBIA ENERGY CENTER, UNIT #1

TASKS IV, V & VI - TEST DATA ACQUISITION AND ANALYSIS

Wisconsin Power and Light Company's, Columbia Energy Center, Unit No. 1 has two "hot precipitators", i.e. the electrostatic precipitators are located between the boiler economizer outlets and the air preheater gas inlets. The use of the hot precipitators necessitated the sampling of the flue gas at three locations; economizer outlet, air preheater gas inlet, and air preheater gas outlet.

Flue gas samples for determination of NO_2 , CO, O_2 and THC emission levels were obtained from each of the two economizer outlet ducts. The flue gas samples were drawn using a twelve (12) point grid in each duct. The SO_2 sample was drawn from a single point in the left economizer outlet duct using a heated sample line. The fly ash sample for carbon loss analysis was also obtained from a single point in the left economizer outlet duct.

The percent oxygen in the flue gas entering and leaving the two air preheaters was drawn from an eighteen (18) point grid in each air preheater gas inlet and outlet duct. The grids were arranged so as to allow sampling on centroids of equal area. The percent oxygen in the flue gas entering and leaving the air preheaters is required for the determination of the air preheater leakage. The percent oxygen at these two points plus the percent oxygen in the flue gas leaving the economizer is used in the calculation of unit efficiency.

Visual observations of the furnace waterwalls were recorded for each test. However, visual observations of the furnace waterwalls were hampered due to the insufficient number and location of the observation doors. Typical wall deposit patterns taken during clean, moderate and heavy furnace slagging conditions at full load operation are shown on Figures 18, 19 and 20. These slag patterns are typical for all modes of boiler operation.

Chordal thermocouples were installed in the furnace waterwalls of Columbia Energy Center, Unit No. 1. The chordal thermocouples are utilized to determine the waterwall absorption rates and are therefore useful in monitoring furnace performance. The use of the chordal thermocouples is further explained in a separate subsection, Furnace Performance.

The Coal Feeders at Columbia #1 are pressurized. As a result, coal samples were initially obtained from the conveyor belts feeding the coal bunkers, with one sample being obtained for each test for later analysis. The samples could only be obtained when the bunkers were being filled, which was two to three times per day. This sampling method was not considered desirable, as it was impossible to know if the coal being fed to the coal bunkers was representative of the coal being burned during any one test. Gate valves were installed in the pipes feeding the coal from the bunkers to the feeders. With the installation of the gate valves, samples were obtained from each coal feeder during

FURNACE WATERWALL DEPOSIT PATTERN

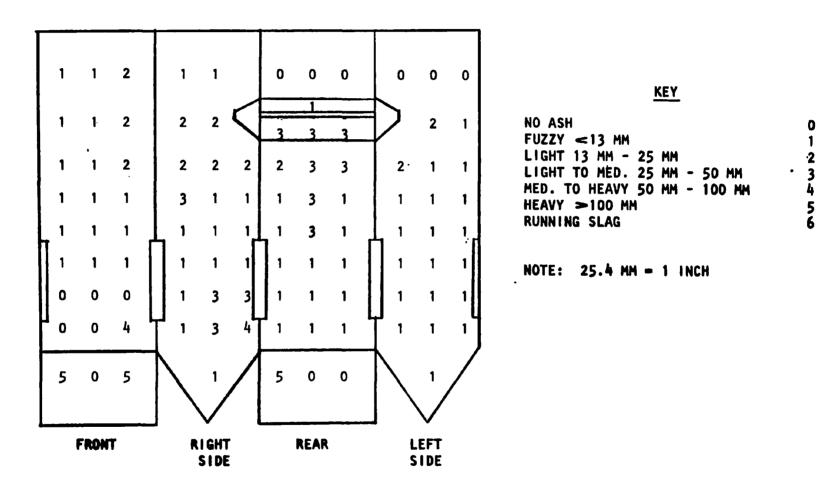


Figure 18: Furnace waterwall deposit pattern, clean furnace

FURNACE WATERWALL DEPOSIT PATTERN

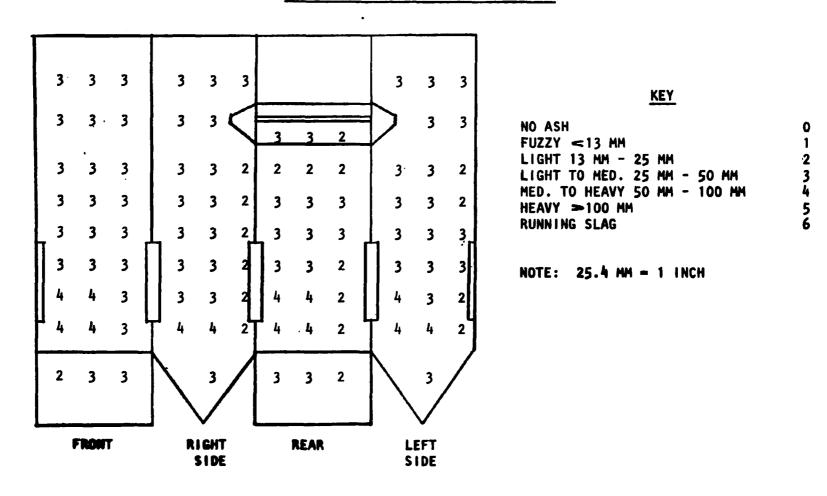


Figure 19: Furnace waterwall deposit pattern, moderate slag furnace

FURNACE WATERWALL DEPOSIT PATTERN

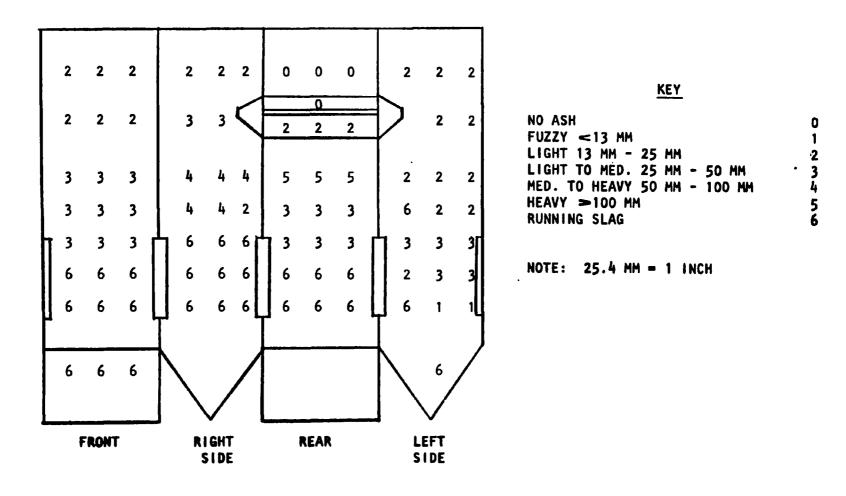


Figure 20: Furnace waterwall deposit pattern, heavy slag furnace

each test and were blended to form a composite sample for each test.

The test data and results for the tests conducted at Wisconsin Power and Light Company's, Columbia #1 are tabulated in Appendix A. Summaries of the emissions test data for the baseline, biased firing and overfire air operation studies are tabulated on Sheets A-1 through A-6. During some of the testing in March and May of 1976, CO emission levels were not monitored due to malfunctioning of the CO analyzer. These tests are reported as not available, (NA), on the emissions test data summary sheets. Unit Performance test data for the three studies are tabulated on Sheets A-7 through A-13. The calculated unit performance test results are tabulated on Sheets A-14 through A-21. Unit efficiency is determined using the Heat Losses Method (ASME Power Test Code, PTC 4.1-1964, reaffirmed 1973). Sheets A-22 through A-35 are a tabulation of the average waterwall absorption rates, as measured at each chordal thermocouple for each test. A set of unit board and computer data was obtained for each test and is tabulated on Sheets A-36 through A-56.

All test data and results are reported in SI Metric units, with the exception of the board and computer data. The board and computer data is reported in the engineering units provided by plant instrumentation.

The thirty (30) day waterwall corrosion coupon evaluations were conducted using a specially designed probe consisting of four individual coupons. The water-wall corrosion coupon evaluations are described and discussed under a separate subsection in this report.

TASK IV - BASELINE OPERATION STUDY

<u>Load and Excess Air Variation - Clean Furnace</u>

Tests 1 through 7 were performed to determine the effect of varying excess air on unit emission levels and performance. These tests were conducted at three unit loads with clean furnace conditions. The slag observed on the furnace waterwalls ranges from 0 to 25.4 mm (1 in.) in thickness.

Initially, maximum and minimum excess oxygen levels of six (6) percent and three and one-half (3.5) percent at the economizer outlet were set by Wisconsin Power and Light Co. as acceptable modes of unit operation at full load. Wisconsin Power and Light later requested that the minimum excess oxygen limit be raised to four (4) percent. At reduced loads these limits were slightly higher. On a few occasions, excess oxygen values as low as two and one-half (2.5) percent were experienced, when measured using test instrumentation. The limits set by Wisconsin Power and Light were exceeded on those occasions due to a discrepancy between plant and test instrumentation. The Plant oxygen alalyzer was being used to monitor and control unit operations. At times the Plant analyzer was reading approximately one percent (1%) higher than test instrumentation.

During initial testing of Columbia, Unit No. 1, mechanical stops on the induced draft fans prevented the unit from reaching full load during high excess air operation tests. The mechanical stops were changed during a unit outage in June, 1976 enabling the unit to achieve full load during subsequent high excess air operation tests.

Comparison of NO_2 emission levels with unit load shows NO_2 levels were generally higher at half load than at full load. This might be attributed to the fact that the excess air levels are higher at half load than at full load.

CO emission levels are found to be higher at full load unit operation than at half load operation. This can be attributed to the fact that at lower loads the unit operates at higher excess air levels.

The effect of excess air level and unit loading on unit efficiency, carbon heat loss, unburned hydrocarbons and sulfur dioxide emission levels is discussed in conjunction with the other baseline tests.

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	Furnace Condition
1	441	322.9	4.8	20.7	117.8	86.95	Clean
2	442	260.2	4.8	21.8	118. 9	87.49	Clean
3	400	303.7	5.4	34.7	131.4	86.28	Clean
4	334	246.3	NA	35.6	132.5	87.35	Clean
5	267	291.2	1.5	27.7	126.7	87.94	Clean
6	269	335.2	1.7	37.5	136.2	87.05	Clean
7	268	333.8	2.2	43.5	141.4	87.23	Clean

Load and Excess Air Variation - Moderately Dirty Furnace

Tests 8 through 12 were conducted with a moderately dirty furnace. The slag observed on the furnace waterwalls ranged from 25.4 mm (1 in.) to 76.2 mm (3 in.) in thickness and was in a plastic state in the thicker areas. The excess air levels and unit loads were allowed to vary per the test program.

The NO₂ emission levels for tests 8 through 12 are shown in the following table. Examination of this table shows only small changes in emission levels for the full load tests. This could be due to small changes in excess air levels. For the half load tests there is a distinct change in NO₂ level with a change in excess air level. At similar excess air levels, the full load tests have higher NO₂ levels than the half load tests.

At similar unit loads, CO emission levels do not show any appreciable change with changes in excess air levels. Comparison of full and half load tests show CO emission levels to be higher at full load. As with tests I through 7, this difference can be partially attributed to the fact that the boiler operates at higher excess air levels at half load.

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	Furnace Condition
8	427	295.7	5.1	19.4	116.5	87.04	Moderate
9	432	290.2	4.9	23.7	120.7	86.85	Moderate
10	394	310.6	5.1	30.6	127.5	86.93	Moderate
11	263	270.5	1.5	20.4	117.2	87.26	Moderate
12	265	368.3	1.9	52.5	145.0	86.41	Moderate

Load and Excess Air Variation - Dirty Furnace

Tests 13 through 19 were conducted with heavy furnace wall deposits. Furnace wall deposits ranged from 50.8 mm (2 in.) to 101.6 mm (4 in.) thick. The slag was usually in a plastic state and at times built up to 305 mm (12 in.) to 610 mm (24 in.) thick on the lower furnace walls. This buildup was caused by the slag slowly flowing down the furnace walls. The excess air levels and unit loads were varied per the test program.

As shown in the following table, there is a correlation between NO₂ emission levels and excess air level at half load. At full load this correlation is not evident, as the NO₂ at the low excess air level is higher than expected.

As with the earlier baseline tests, the CO levels for the half load tests are lower than for the full load tests.

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	Furnace Condition
13	432	315.7	NA	17.1	114.3	86.57	Heavy
14	426	309.5	4.9	22.6	119.7	76.75	Heavy
15	397	334.3	5.6	32.2	129.0	76.20	Heavy
16	329	252.9	NA	35.7	132.5	85.56	Heavy
17	264	294.6	1.2	26.1	122.8	87.65	Heavy
18	267	347.7	1.3	39.5	134.3	87.15	Heavy
19	263	369.2	1.4	54. 8	144.6	86.23	Heavy

Analysis of Results

The changes in NO₂, CO and carbon heat loss versus theoretical air to the fuel firing zone are shown on Figures 21, 22 and 23. These parameters are plotted versus theoretical air to the fuel firing zone rather than the total excess air. For the baseline operation study the TA is essentially the same as the total air.

Figure 21 shows that NO₂ correlates reasonably well with TA. Increasing TA results in increasing NO₂ emission levels. This correlation is in agreement with other research, which has shown that NO₂ emission levels are proportional to the concentration of oxygen available for combustion. Comparison of full load and half (1/2) load test at similar TA shows that the half (1/2) load tests have lower NO₂ levels. The two three-quarter (3/4) load tests shown on Figure 21 do not correlate with the full or half (1/2) load tests with respect to TA or unit load.

With the exception of one supposedly clean test, furnace waterwall deposits appear to have some effect on NO_2 emission levels. As Figure 21 indicates, those tests performed with heavier furnace waterwall deposits generally have higher NO_2 levels.

While the data plotted is not sufficient proof to the above statement, it does support the argument that NO_2 emission levels are affected by furnace waterwall deposit conditions.

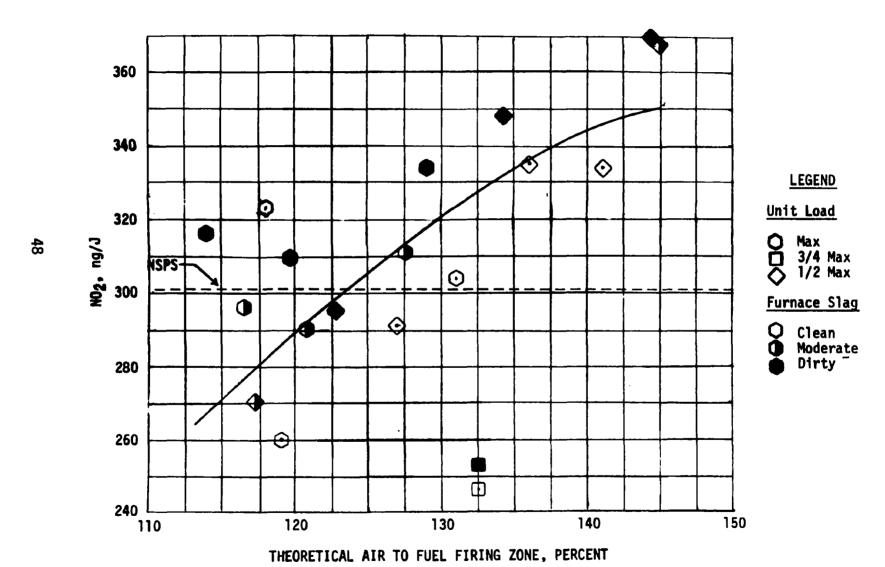


Figure 21: $N0_2$ vs. theoretical air to fuel firing zone, baseline study

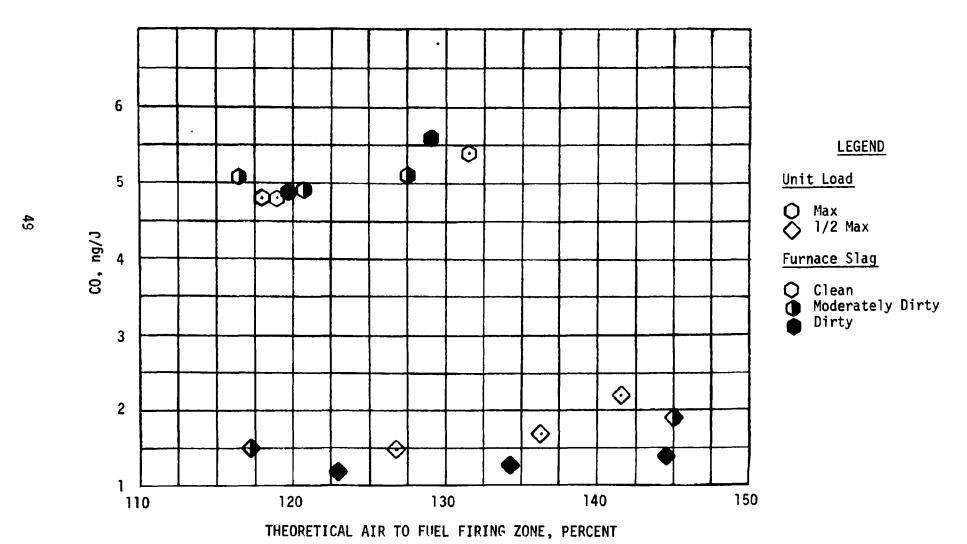


Figure 22: CO vs. theoretical air to fuel firing zone, baseline study

Wisconsin Power & Light Co. Columbia Energy Center Unit #1

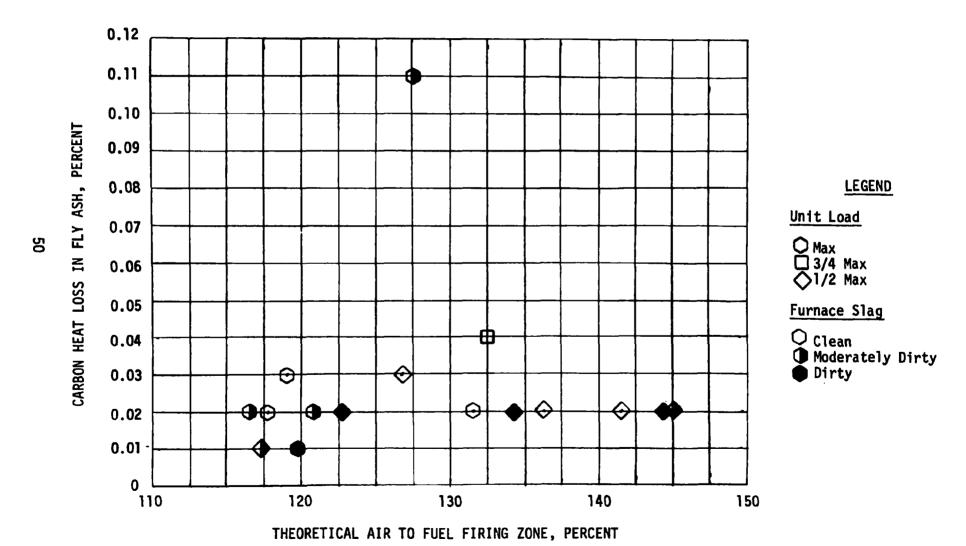


Figure 23: Carbon heat loss vs. theoretical air, baseline study

Figure 22 does not show any variation in CO emission levels with changes in TA. However, it does show that unit loading has a significant effect on CO emission levels. The CO levels at full load are approximately five (5) times the CO levels at half (1/2) load. It should be noted that the half (1/2) load tests were performed in May, 1976, while the full load tests were performed in March, 1976. Besides changes in tilt, the only other significant change other than load was that the fuel and auxiliary nozzle compartment damper settings were changed. The fuel nozzle compartment dampers were opened from an average 50% open to 100% open, while the auxiliary nozzle compartment dampers were closed from approximately 100% open to approximately 50% open. Whether this would have any effect on CO emission levels is unknown.

The percent carbon heat loss in the fly ash versus theoretical air to the fuel firing zone is shown in Figure 23. The carbon heat loss values for tests 13 and 15 have not been plotted on Figure 23, as they were too high to be shown on this figure. With the exception of these two tests and the one high test shown, carbon heat loss appears to be unaffected by variations in TA, unit load and furnace waterwall deposits.

Figure 24 is a plot of unit efficiency versus excess air at the economizer outlet. This figure indicates that unit efficiency is inversely proportional to excess air at the economizer outlet. By examining the full load and half (1/2) load test separately, the decrease in unit efficiency with increasing excess air at the economizer outlet is more apparent.

The SO_2 emission levels were monitored for each test and are reported on Sheets Al and A2. No correlation was evident between SO_2 emission levels and excess air, unit loading or furnace waterwall deposits. It was not possible to control the SO_2 emission levels as they are more a function of the sulfur content of the fuel rather than the mode of boiler operation.

Unburned hydrocarbon emission levels were monitored and were found to be at such low levels as to be unmeasurable.

A thirty (30) day baseline waterwall corrosion coupon test was conducted in April and May of 1975. Boiler operation was normal with full load being maintained as much as possible. The waterwall corrosion coupon test is discussed in the section, Waterwall Corrosion Coupon Evaluation.

TASK V - BIASED FIRING STUDY

Fuel Elevations Out of Service Variation

Eighteen (18) tests were conducted at Columbia Energy Centers', Unit #1 to determine the effect on NO₂ emission levels when taking various fuel elevations out of service (biased firing). These tests were performed at three unit loadings and two excess air levels.

As shown by the data in the following table, the NO_2 emission levels are lowest with the top and/or top middle elevation of fuel nozzles out of service (Tests 1, 2, 5, 8, 14 and 17). When comparing tests with similar operating conditions (Tests 5 vs. 14 or 8 vs. 17), it can be seen that increasing excess air level results in increasing NO_2 emission levels.

Wisconsin Power & Light Co. Columbia Energy Center Unit #1

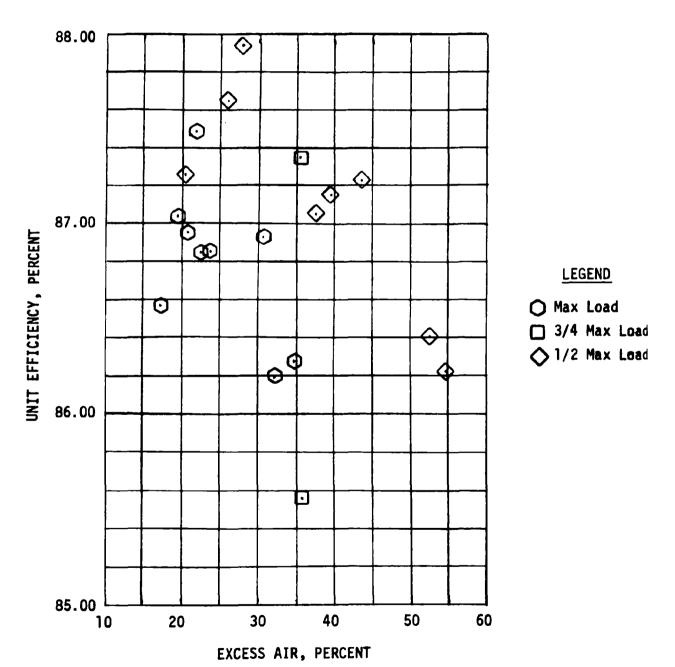
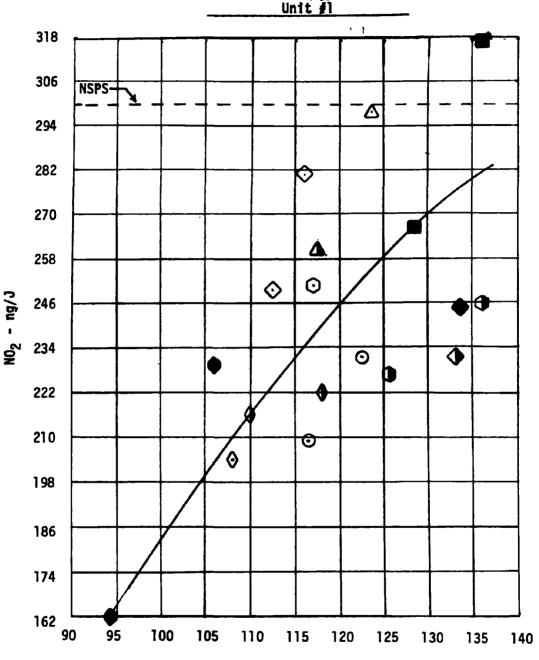


Figure 24: Unit efficiency vs. excess air, baseline study

CO emission levels appear to be affected only by unit load with the levels being higher for full and three-quarter load than for half load. The CO analyzer was inoperative during much of the biased firing testing due to problems with the analyzer source assembly and excessive electrical noise.

No thirty (30) day waterwall corrosion coupon evaluation was performed following the biased firing operation study.

Test No.	Main Steam Flow kg/s	NO2 ng/J	CO ng/J	X-S Air	Theo. Air to Firing Zone-%	Unit Effic. %	Fuel Nozzle Elevation Out of Service
1	426	203.9	NA	20.4	108.2	86.19	Ton
,	428	209.1	NA	18.4	116.6	86.54	Top Middle
2	433	249.2	NA	15.2	112.6	85.56	Top Middle
Д	431	250.3	NA	19.0			Bottom Center
4 5 6 7 8 9					116.9	86.52	Bottom
5	352	215.9	8.0	26.1	110.0	86.76	Top
6	352	260.2	4.2	21.7	117.5	87.71	Top Center
7	344	227.3	44.8	30.7	125.6	86.30	Bottom
8	263	162.2	1.4	19.7	94.4	87.17	Top & Top Middle
9	258	245.1	1.2	34.2	133.5	87.93	Top Cen. & Bottom Cen.
10	268	266.8	1.6	29.2	128.4	87.37	Bottom & Bottom Mid.
11	417	231.2	NA	23.1	122.7	85.73	Top Middle
12	417	297.2	5.4	24.6	123.4	86.49	Top Center
13	438	280.4	NA	18.4	115.8	86.69	Bottom Center
14	353	222.5	22.6	34.1	117.9	86.92	
14							Top
15	325	231.7	NA	35.8	132.9	86.37	Bottom Center
16	350	246.4	NA	41.3	135.8	86.11	Bottom
17	261	228.7	1.2	35.9	105.8	86.62	Top & Top Middle
18	264	316.9	2.1	36.6	135.8	86.67	Bottom & Bottom Mid.


Analysis of Results

 NO_2 emission levels versus theoretical air to the fuel firing zone are plotted on Figure 25. This figure indicates a trend similar to the baseline study tests, with increasing NO_2 levels for increasing TA. No effect due to a variation in unit load is evident in Figure 25. The furnace waterwalls were moderately dirty for most of the biased firing tests and therefore no effect on NO_2 levels due to furnace waterwall deposits was observed.

Figure 26 is a plot of fuel firing elevation out of service versus NO_2 emissions level. The lowest NO_2 emissions levels were obtained with the upper fuel firing elevations removed from service and with the respective compartment dampers 100% open. Overfire air operation is simulated with this method of unit operation. The highest NO_2 levels were obtained when the center fuel firing elevations were removed from service. Removal of the bottom fuel firing elevation from service gives a slight reduction from the higher NO_2 levels obtained with the center levels removed from service.

CO emission level or carbon heat loss versus TA are not plotted. Preliminary plots gave no indication that TA, unit load or furnace wall deposits had any effect on CO emission levels or carbon heat losses.

Wisconsin Power & Light Co. Columbia Energy Center

THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT

LEGEND Fuel Elevation Not in Service Unit Load ○ - A △ - D ○ Max □ - B ○ - E ① 3/4 Max ◇ - C ◇ - F-(Top) 1/2 Max

A&B - Both Elevations Out During Same Test

Figure 25: NO₂ vs. TA, biased firing study

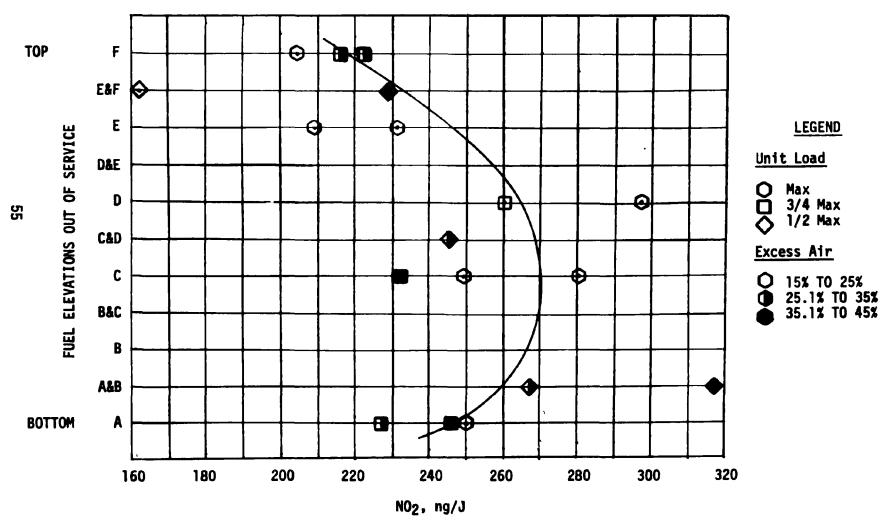


Figure 26: Fuel elevation out of service vs. NO_2 , biased firing study

Figure 27 shows steam generator efficiency versus percent excess air at the economizer outlet. Although there is more scatter than in the baseline tests, the trend of decreasing unit efficiency with increasing excess air is still evident. The variation in the fuel elevations firing may have contributed to the scatter in the data.

 SO_2 emission levels were monitored for each test and are reported on data sheets A-3 and A-4.

Unburned hydrocarbon emission levels were monitored and were at such low levels as to be unmeasurable.

TASK VI - OVERFIRE AIR OPERATION STUDY

Excess Air and Overfire Air Rate Variation

Tests 1 through 11 were conducted to determine the effect on the NO_2 emission levels and unit performance when varying the overfire air rate with respect to excess air level. For tests 1 through 11, the overfire air registers were held at horizontal tilt while the fuel nozzle tilts were allowed to vary from a -8 degrees to a +8 degrees. The fuel nozzles were allowed to vary to maintain acceptable superheat and reheat temperatures.

The following table shows that NO_2 emission levels increase with increasing theoretical air to the fuel firing zone. Except for tests 1 and 2, NO_2 emission levels are found to correlate well with excess air level. The NO_2 levels for tests 1 and 2 are much higher than expected. No obvious reason for the high NO_2 levels can be found. However one possible explanation is that the furnace wall deposits were considerably different for test 1 and 2. Examination of the waterwall slag patterns for tests 1 and 2 shows that during these tests the slag was 50.8 mm (2 in.) to 101.6 mm (4 in.) thick, glassy and running down the furnace walls. For the remaining tests the slag was about 25.4 mm (1 in.) to 101.6 mm (4 in.) thick and mostly plastic; however, it was not glassy or running down the walls as fast. The problem with the glassy slag is that it reradiates back to the fire increasing the bulk flame temperatures.

Due to the problems encountered with the CO analyzer the CO levels were only monitored for tests 1 and 2. Based on the results of test 1 through 11, the optimum excess air operating level was found to be the minimum, approximately 15 percent at the economizer outlet. The optimum overfire air rate is with the overfire air dampers 100 percent open. This mode of operation will allow 15 to 20 percent of the total combustion air to be introduced above the top level of fuel nozzles depending upon unit load.

Test <u>No.</u>	Main Steam Flow kg/s	NO2 ng/J	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	OFA Dampers % Open
1	425	356.1	4.9	23.9	120.9	86.19	0
2	426	354.9	4.9	23.2	115.7	86.54	25
3	439	222.8	NA	21.8	109.7	85.5 6	50
4	445	203.4	NA	19.7	105.2	86.52	70
5	444	215.4	NA	20.4	104.6	86.76	95

Wisconsin Power & Light Co. Columbia Energy Center Unit #1

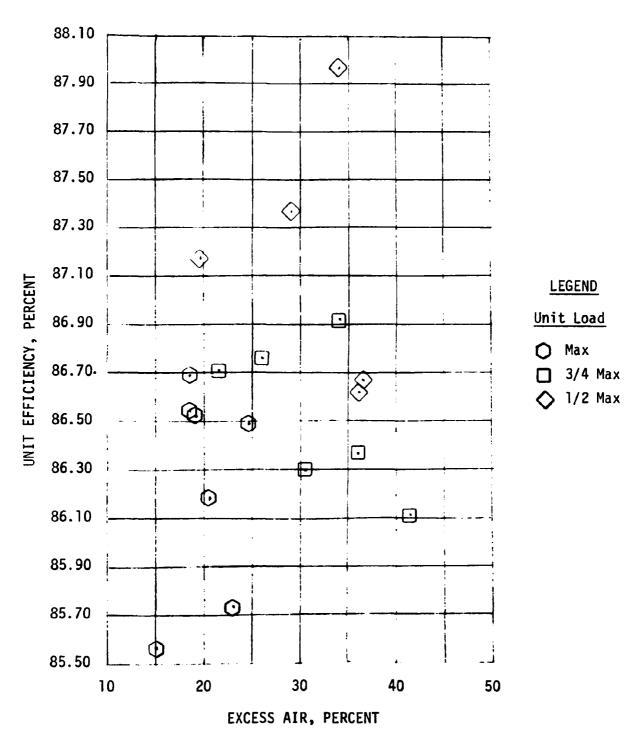


Figure 27: Unit efficiency vs. excess air, biased firing study

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	OFA Dampers % Open
6	446	182.7	NA	13.3	110.7	86.71	0
7	441	177.9	NA	13.9	101.8	86.30	50
8	439	171.4	NA	15.1	99.0	87.17	100
9	398	299.2	NA	36.8	128.2	87.97	25
10	390	274.7	NA	35.8	118.8	87.37	80
11	389	246.5	NA	30.0	111.5	85.73	100

Overfire Air Register Tilt Variation

Seven (7) tests were conducted to determine the effect of fuel nozzle and over-fire air register tilt variation on NO₂ emission levels and unit performance. These tests, 12 through 18, were conducted at the optimum overfire air rate (dampers 100 percent open) established in tests 1 through 11. Although tests 1 through 11 indicated an excess air level of approximately 15 percent to be optimum for low NO_X formation, an average excess air level of 24 percent was maintained for tests 12 through 18. The higher excess air level was easier to maintain from the standpoint of boiler operation and did not result in significantly higher NO₂ levels.

The overfire air registers were varied from a -5 degrees to a +30 degrees, while the fuel nozzles were varied from a -5 degrees to a +26 degrees. During a unit outage in early June, 1976 the fuel nozzle tilt mechanism was modified. The bottom two fuel firing elevations were prevented from going below a horizontal tilt, but could travel upward to a maximum +26 degrees. The upper four fuel firing elevations were allowed to travel from a -10 degrees to a +26 degrees. When the bottom two fuel firing elevations were at horizontal, the upper four elevations were at a -10 degrees. As the tilts moved upward, the upper fuel firing elevations rose farther and faster, so that at the maximum upward tilt all the fuel firing elevations were at a +26 degrees.

For these tests the furnace waterwall slagging conditions ranged from light to moderate waterwall deposits. The slag was in a plastic state in those areas of the waterwalls where the slag was 25.4 mm (1 in.) or thicker and could be seen slowly flowing down the lower waterwalls.

The following table shows that NO2 emission levels were reduced by movement of the fuel nozzles and overfire air registers away from each other. While tests 16 through 18 have higher NO2 levels than test 12 through 15 the trends are similar. The differences in the NO2 levels can be attributed to small variations in boiler operation on a daily basis and to the location of the fuel firing zone in the furnace. For tests 16, 17 and 18 the fuel firing zone was higher in the furnace than tests 12 through 15. With the fuel firing zone higher in the furnace, the waterwall surface area available for cooling of the flame is greatly reduced. The loss of cooling of the flame can result in an increase in flame temperature, which can result in an increase in thermal NO2 formation.

Parallel operation of the fuel nozzles and overfire air registers is as effective as when they are moved away from each other. Therefore, for ease of testing

and boiler operation, parallel tilt conditions were chosen for the mode of boiler operation in tests 19 through 24.

CO emission levels are not found to be greatly affected by tilt variation. The one test with high CO levels could be the result of the maximum upward fuel nozzle and overfire air register tilts. At these high tilts, the residence time of the hot combustion gases in the furnace would be reduced. This reduction in residence time could affect the oxidation of CO to $\rm CO_2$.

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	Fuel Nozzle Tilt Degrees	OFA Register Tilt Degrees
12	446	195.5	4.9	23.9	102.8	87.20	-5	-5
13	444	205.4	1.5	26.9	105.7	86.90	0	-5
14	443	188.5	3.0	26.9	106.0	87.28	-5	0
15	425	198 .9	NA	18.3	101.5	86.43	+1	0
16	438	273.7	2.2	24.6	103.9	87.45	+26	0
17	440	224.6	4.5	26.2	104.7	86.88	+2	+30
18	447	223.4	17.0	23.2	103.1	87.13	+26	+30

Load and Furnace Waterwall Deposit Variation at Optimum Conditions

Tests 19 through 24 were conducted at the optimum excess air level, overfire air rate and fuel nozzle and overfire air register tilts determined in tests 1 through 18. These tests were performed to determine the effect on NO_X emission levels and unit performance at the optimized conditions, while varying unit load and furnace wall deposits. The excess air level ranged from a low of 19 percent at full load to a high of 34 percent at half load. The overfire air register dampers were 100 percent open. The fuel nozzles and overfire air registers were essentially parallel for tests 19 through 24. The tilts ranged from horizontal tilt to a +10 degree tilt for the overfire air registers and a +1 to +12 degree tilt for the fuel nozzles.

The following table shows that NO_2 formation is affected by furnace waterwall condition for the three-quarter (3/4) and full load tests. Except for tests 23 and 24, NO_2 emission levels increase with increasing furnace waterwall deposits. NO_2 emission levels are also affected by unit load, with higher NO_2 levels at higher loads.

Except for test 19, CO emission levels are unaffected by unit load or furnace waterwall deposits. The CO levels for test 19 are considerably higher than tests 20 through 24. The higher CO level may be due to the lower excess air level.

Test No.	Main Steam Flow kg/s	NO2 ng/J	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	Furnace Condition
19	441	182.8	22.1	19.1	99.7	87.66	Moderate
20	438	234.8	1.1	25.4	99.3	86.63	Heavy
21	350	171.8	1.2	30.0	98.6	87.53	Clean

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	Furnace Condition
22	342	220.6	.1.1	28.5	103.4	87.39	Moderate
23	263	161.9	1.2	32.5	106.1	88.47	Clean
24	259	161.0	1.6	34.2	107.0	87.78	Moderate

Analysis of Results

NO₂, CO and carbon heat loss values versus theoretical air to the fuel firing zone are shown on Figures 28, 29 and 30, respectively. Although only tests I through II were conducted to determine the effect of TA variation all 24 tests are shown on Figures 28, 29 and 30.

Figure 28 shows that NO_2 emission levels increase with increasing theoretical air to the fuel firing zone. Furnace waterwall deposits and unit load are also indicated on Figure 28. On this boiler, comparison of tests with similar TA's, but different waterwall deposits give no indication that furnace waterwall slagging has any effect on NO_2 emission levels. Two half (1/2) load and two three-quarter (3/4) load tests were performed for the overfire air operation study. The two half (1/2) load tests have the lowest NO_2 emission levels, while the NO_2 emission levels for the three-quarter (3/4) load tests are of the same magnitude as the full load tests.

CO versus theoretical air to the fuel firing zone is plotted in Figure 29. This figure indicates a possible increase in CO levels at theoretical air levels of approximately 100% to 105%. While this is the expected trend, the data plotted in Figure 29 is insufficient to support such a trend. However, carbon heat loss follows a similar trend when plotted versus TA. Figure 30 is a plot of carbon heat loss for the overfire air study. For theoretical air levels in the range from 100% to 110% carbon heat losses are found to rise rapidly. This is also an expected trend and is what previous studies have shown to be true for both carbon heat loss and CO.

The second task in the overfire air study involved the effect of overfire air register tilt variation on NO_2 , CO and carbon heat loss. The NO_2 emission levels for these tests are plotted versus the tilt differential between the fuel nozzles and overfire air registers as shown on Figure 31. Preliminary plots of CO and carbon heat loss versus the difference in tilts yeilded no useful information and therefore no plots have been included. The difference in tilts refers to how many degrees toward or away from each other the fuel nozzles and overfire air registers are moved. This difference is calculated by taking the difference in degrees that the overfire air registers are angled toward or away from the fuel nozzles.

Figure 31 indicates that the maximum NO_2 levels are obtained when the fuel nozzles and overfire air registers are angled toward each other. With the exception of one test (#17), minimum NO_2 levels are obtained when the fuel nozzles and overfire air registers are angled away from each other. Most of these tests were performed with clean furnace waterwalls, while test 17 had moderately dirty waterwalls. The NO_2 levels for test 17 were higher than expected. This might be attributed to the heavier waterwall deposits observed for this test.

WISCONSIN POWER & LIGHT CO. COLUMBIA ENERGY CENTER UNIT #1

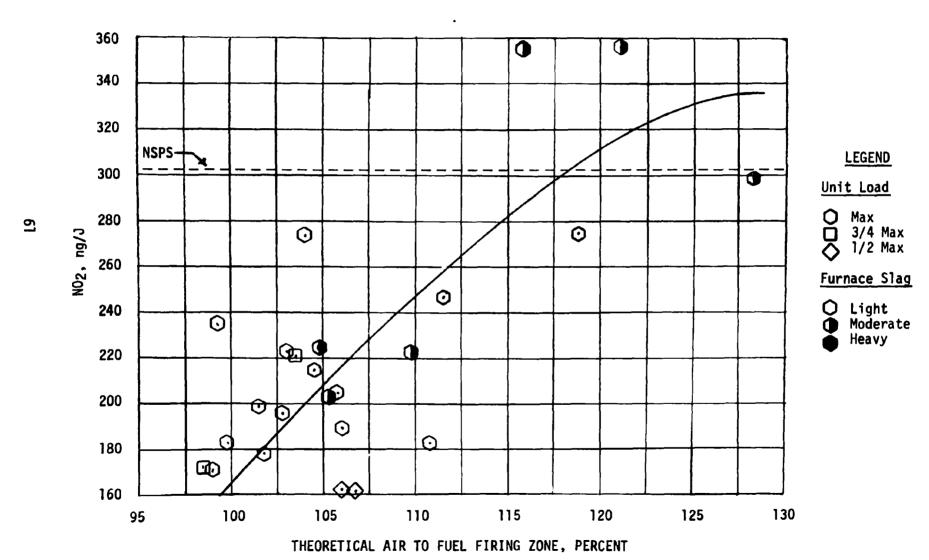


Figure 28: $N0_2$ vs. theoretical air to fuel firing zone, overfire air study

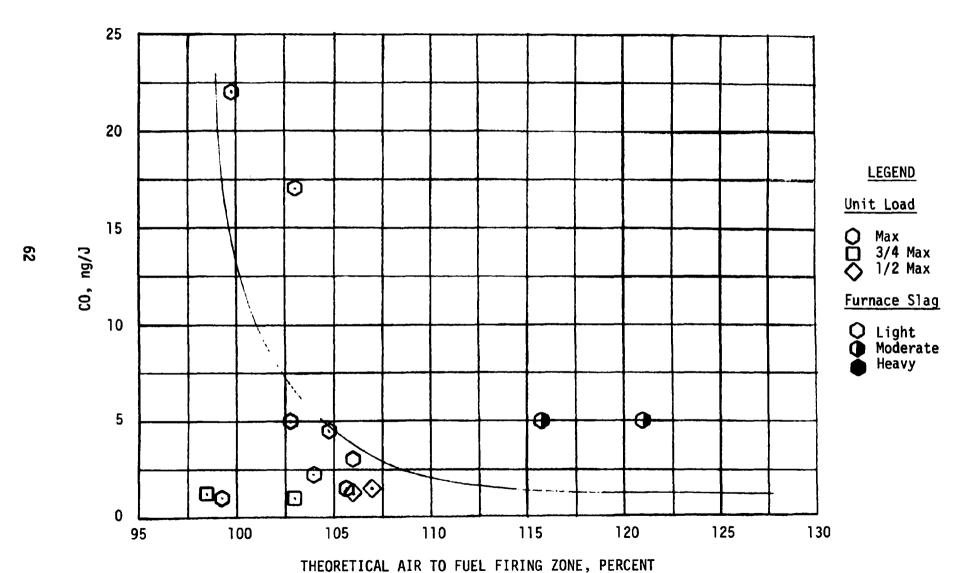


Figure 29: CO vs. theoretical air to fuel firing zone, overfire air study

WISCONSIN POWER & LIGHT CO. COLUMBIA ENERGY CENTER UNIT #1

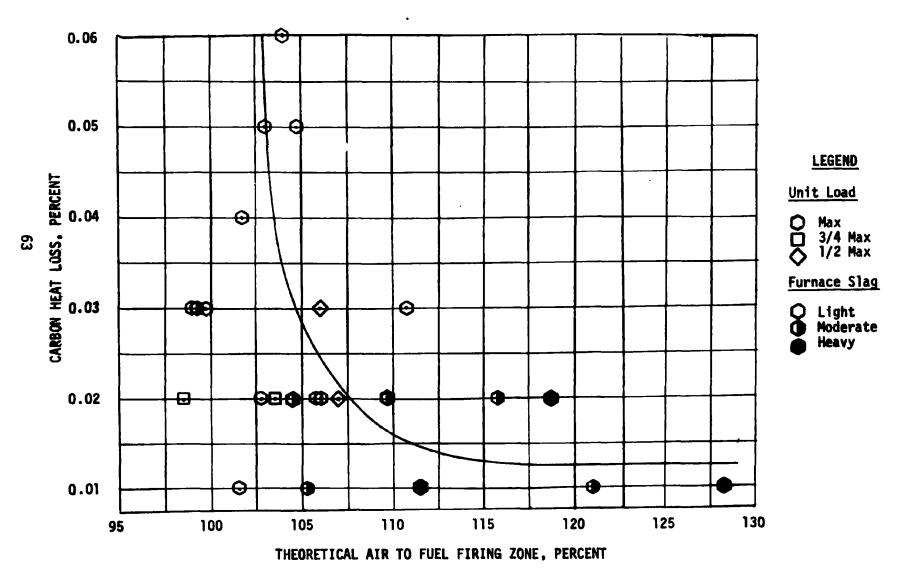


Figure 30: Carbon heat loss vs. theoretical air, overfire air study

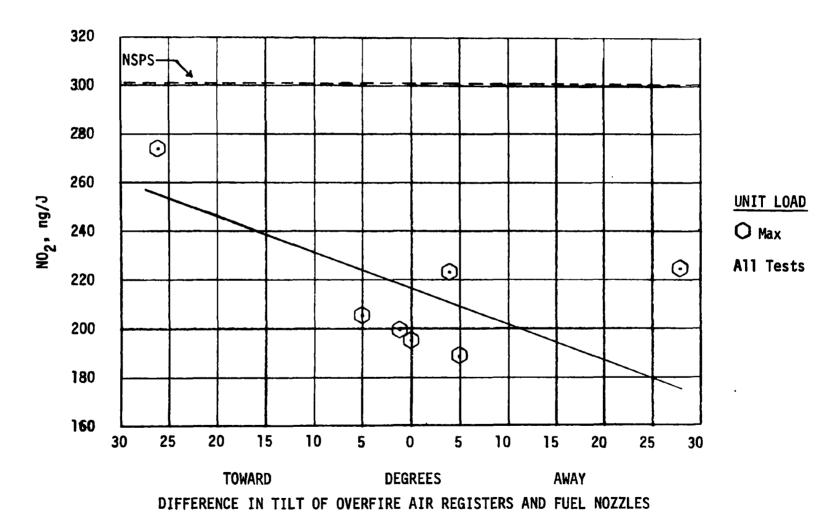


Figure 31: NO_2 vs. difference in tilt, overfire air study

Figure 32 shows unit efficiency versus excess air at the economizer outlet. Examination of only the full load tests shows that a decrease in unit efficiency is evident with increasing excess air at the economizer outlet. Such a trend is in agreement with the baseline tests and with previous studies at Alabama Power Company's, Barry Station, Unit #2 [2].

SO₂ emission levels were monitored for each test and are reported on Sheets A-5 and A-6. No correlation between SO₂ emission levels and excess air level, unit load, or furnace waterwall deposits was apparent.

Unburned hydrocarbons were monitored for all overfire air tests and were at such low levels as to be unmeasurable.

A thirty (30) day waterwall corrosion coupon evaluation was conducted in January and February of 1977. The overfire air register dampers were allowed to modulate between 5% open at half load and 75% to 100% open at full load. Unit loading was varied per Wisconsin Power and Light Company's System demands with full load being maintained as much as possible. The waterwall corrosion study is discussed in the section, "Waterwall Corrosion Coupon Evaluation."

FURNACE PERFORMANCE

Furnace performance at Columbia Energy Center, Unit #1 was monitored by the use of Type "E", chordal thermocouples installed in the furnace waterwalls. A schematic of the thermocouple locations is shown in Figure 33. Furnace performance is measured by furnace waterwall absorption rates. Tabulations of the average waterwall absorption rates, as measured at each chordal thermocouple, are presented in Appendix A on Sheets A22 through A35.

Waterwall temperatures and corresponding absorption rates were found to vary significantly with furnace waterwall deposit conditions. For comparison of the waterwall absorption rates, the full load (MCR) tests for the three different modes of boiler operation are shown on Figures 34, 35 and 36. The average horizontal strip absorption rate profiles of the front and right side walls for these tests are plotted versus the distance above or below the firing zone center.

The baseline test profiles show very little heat absorption variation from the hopper slopes to the furnace outlet. The baseline profiles indicate uniform heavy slagging in the combustion zone which results in slightly depressed rates in that area. The biased firing test profiles also show very little variation over the entire furnace height. The absorption rate profiles for the overfire air tests show little variation from the firing zone center down to the hopper slopes. There is a peaking effect just above the firing zone center and a distinct split in the absorption rate profiles between the upper fuel nozzles and the furnace outlet. This split can be traced to a change in the fuel and auxiliary air damper openings of approximately 30 to 50 percent open and auxiliary air damper openings of approximately 100 percent open. The fuel and auxiliary air damper openings were changed following the testing in March, 1976. Those tests performed in May and June of 1976 had fuel air damper openings of approximately 100 percent open and auxiliary air damper openings of approximately 100 percent open and auxiliary air damper openings from 30 to 50 percent open.

WISCONSIN POWER & LIGHT CO. COLUMBIA ENERGY CENTER UNIT #1

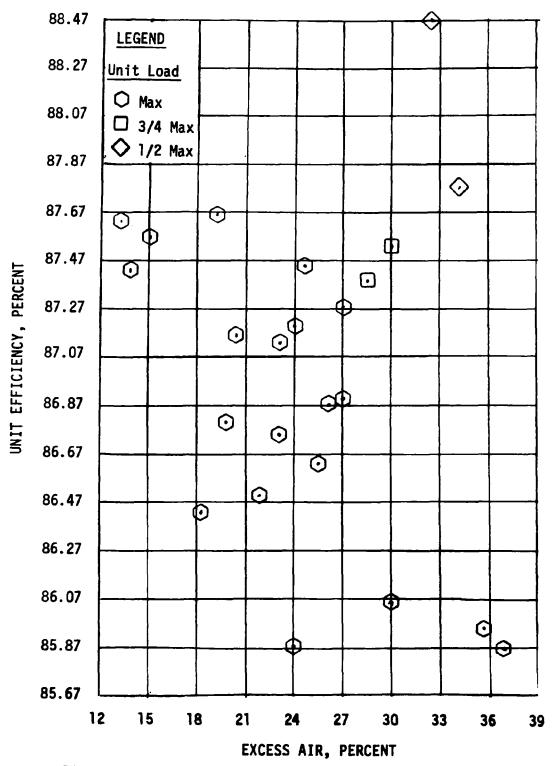


Figure 32: Unit efficiency vs. excess air, overfire air study

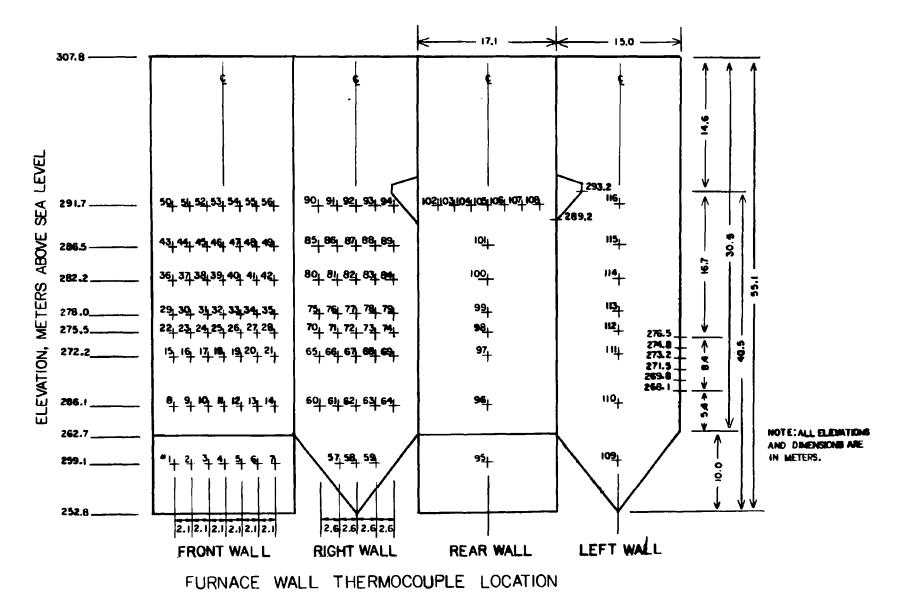
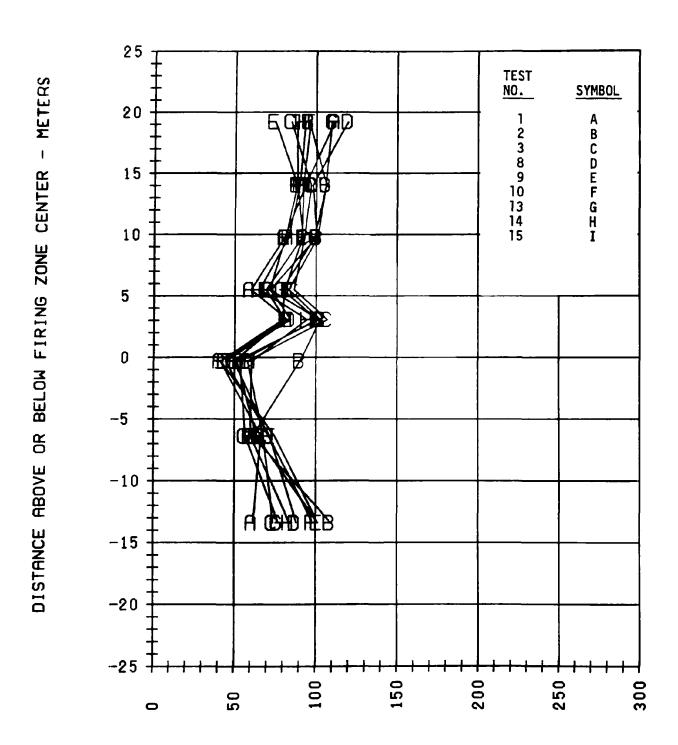
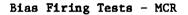
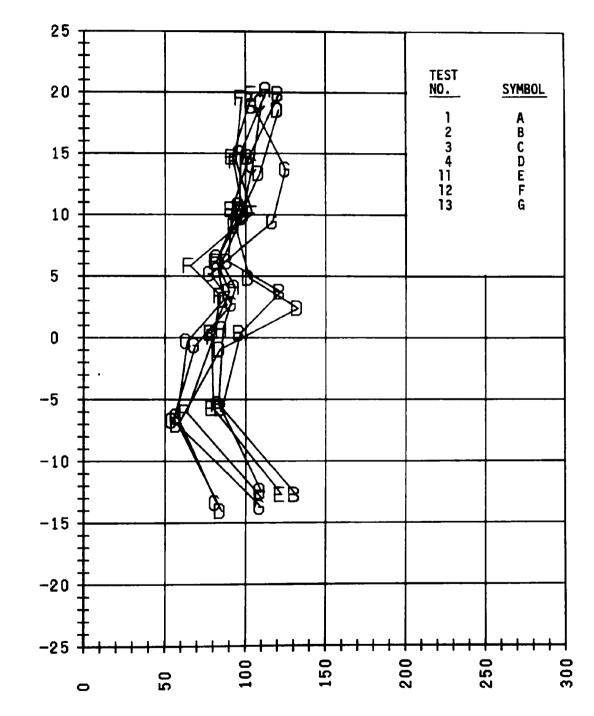



FIGURE 33: CHORDAL THERMOCOUPLE LOCATIONS

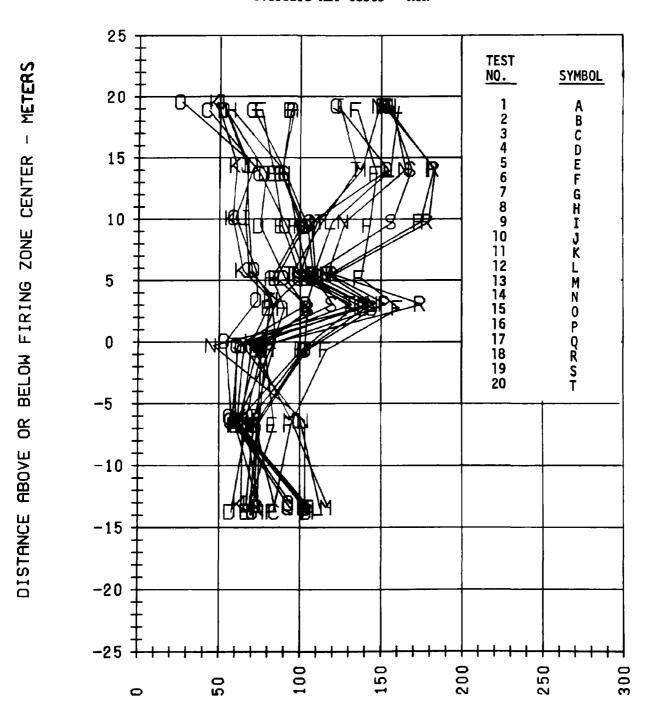
FURNACE HEAT ABSORPTION RATE PROFILES HORIZONTAL STRIP RATES


WISCONSIN POWER & LIGHT CO.


Baseline Tests - MCR

(Q/A)CROWN - KW/M2

Figure 34: Elevation vs. furnace heat absorption



DISTANCE ABOVE OR BELOW FIRING ZONE CENTER - METERS

(Q/A)CROWN - KW/M2

Figure 35: Elevation vs. furnace heat absorption

Overfire Air Tests - MCR

(Q/A)CROWN - KW/M2

Figure 36: Elevation vs. furnace heat absorption

As mentioned previously, furnace waterwall deposits had a significant effect on waterwall temperatures and corresponding absorption rates. Obtaining the desired slagging conditions proved very difficult and somewhat unpredictable during the testing at Columbia Energy Center, Unit #1. One of the biggest difficulties was in observing the furnace waterwalls to obtain an accurate visual determination of the furnace waterwall deposits.

WATERWALL CORROSION COUPON EVALUATION

Following completion of the steady state phases of the baseline and overfire air test programs, thirty (30) day waterwall corrosion coupon evaluations were performed. The purpose of these evaluations was to determine whether any measurable changes in coupon weight losses could be obtained for the two modes of firing under study.

The individual probes were exposed at five locations on the furnace front wall as shown on Figure 37. The coupon temperatures were maintained at the same levels for each 30 day run and a typical tract of the control temperature range for each of the twenty coupons is shown on Figure 38.

The individual coupon weights were determined before and after each thirty day test and the individual coupon and average probe weight losses are shown on Sheets A57 and A58. The weight losses are calculated as mg/cm² of coupon surface area.

Figures 39 and 40 show the unit load schedules for each of the 30 day test periods.

The overfire air portion of the study was conducted as close as possible to the "optimum" operating conditions determined during the overfire air steady state tests.

Throughout the overfire air study the overfire air dampers were maintained at the full open configuration over the range of unit loading shown on Figure 40 with the following exceptions. From January 22 through January 24, January 27 through January 29 and February 8 through February 17 the OFA dampers were opened 75%. Also during a unit start-up on February 25 the dampers were opened from 0 to 20% and then maintained at 40% open during February 26 and February 27.

The percent oxygen was monitored daily during each thirty day study at each probe location and was found to range between 3 and 19 percent 02 during both the baseline and overfire air studies.

The weight losses calculated for the baseline and overfire air runs were found to be the same with the average weight losses for all five probes as follows:

<u>Baseline</u>	Overfire Air
8.0770 mg/cm ²	8.0933 mg/cm ²

These values are greater than the range of losses experienced at Barry #2, Huntington Canyon #2 and during a control study conducted at C-E's Kreisinger Laboratory by a factor of approximately 2 to 1.

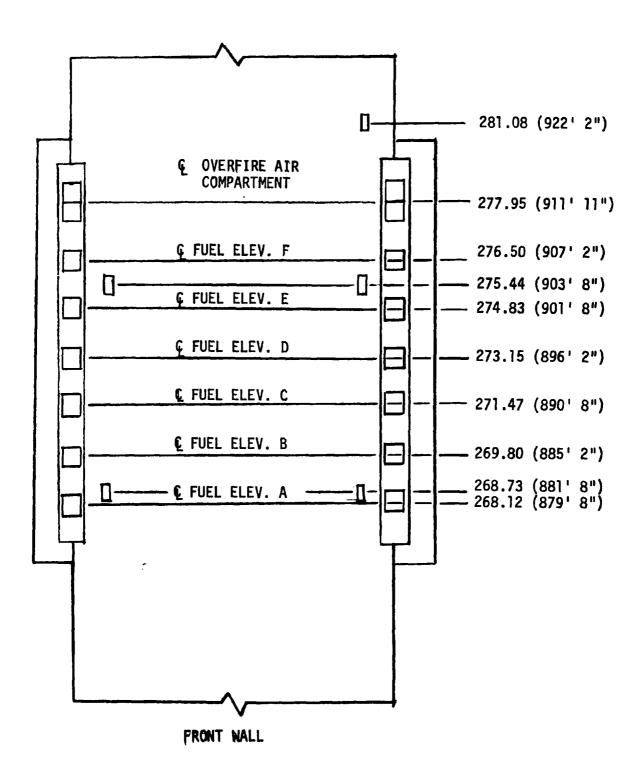
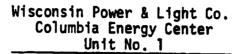



Figure 37. Waterwall corrosion probe locations, Columbia No. 1

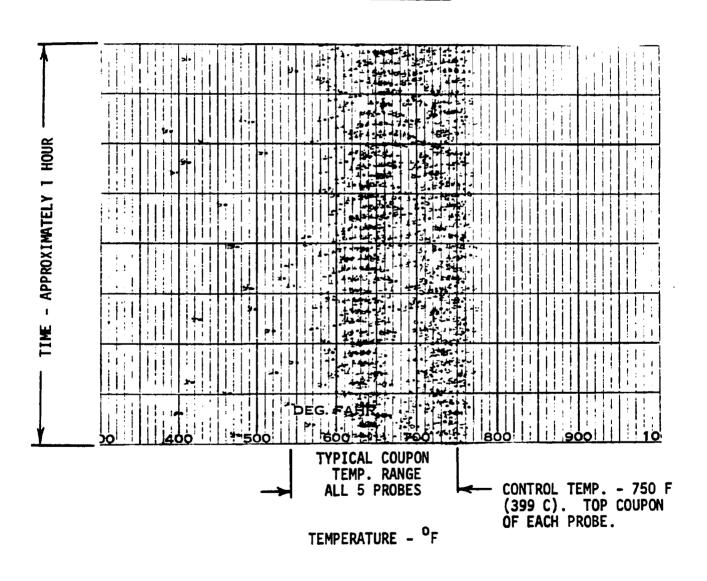
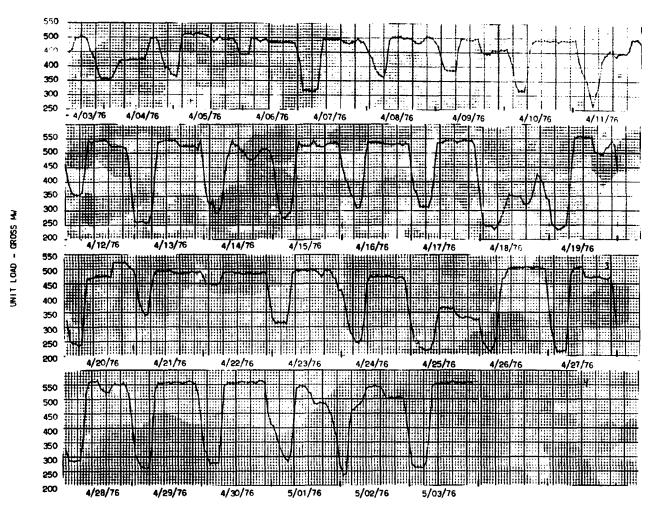
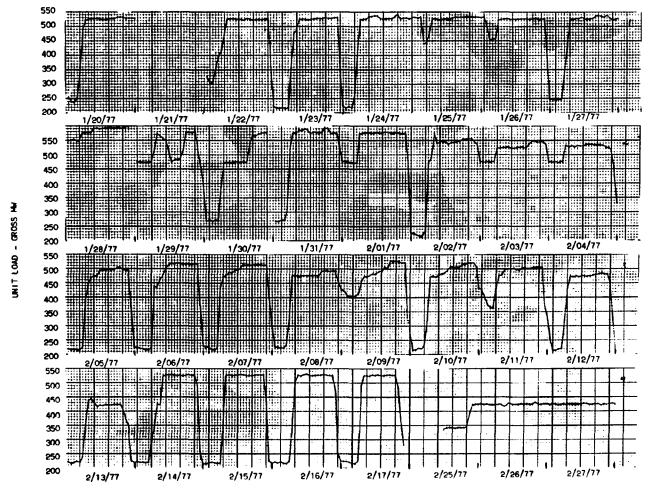



Figure 38. Typical corrosion probe temperature range

WISCONSIN POWER & LIGHT CO. COLUMBIA ENERGY CENTER UNIT #1



AVG. GROSS MW/HR = 30 DAY PERIOD 421.3 MW/HR

CORROSION PROBE EXPOSURE TIME - DAYS

FIGURE 39: GROSS MW LOADING VS. TIME - BASELINE CORROSION PROBE STUDY

WISCONSIN POWER & LIGHT CO. COLUMBIA ENERGY CENTER _____UNIT #1

AVG. GROSS MM/HR -30 DAY PERIOD 442.8 MM/HR

CORROSION PROBE EXPOSURE TIME - DAYS

FIGURE 40: GROSS MW LOADING VS. TIME - OVERFIRE AIR CORROSION PROBE STUDY

The results indicate that while there was no change in weight loss between the baseline and overfire air runs something resulted in the losses being consistently higher than expected based on previously obtained data.

Review of test logs reveals a possible explanation. During both runs periodic overheating (up to approximately 540°C) of individual probes occurred due to partial slagging of the probe coupons. This occasionally created a situation where the coupon containing the control thermocouple would be covered with slag while the other coupons of a given probe were still clean. The control thermocouple would then reduce air flow to the entire probe causing the clean coupons to overheat. This situation was corrected when encountered by switching the temperature control to a hotter coupon. The frequency of occurrance was approximately the same for both runs.

Chemical analysis of the coupon deposits also tends to support this observation as the fusibility temperatures of the inner deposits on some of the affected probes were very high. This coupled with the fused state of the initial deposits indicates possible overheating. Coal ash and deposit analysis are shown on Figures 41 and 42.

WATERWALL CORROSION COUPON DATA SUMMARY

AS FIRED ASH AND COUPON DEPOSIT ANALYSIS

BASELINE STUDY

Sample Location	Pulverized Coal	Probe A Outer	Probe B ¹ <u>Initial</u>	Probe C Outer	Probe D Outer	Probe E Outer
Ash Fusibility-OF	01.00	0000	1.s. ²	0010	0010	1050
Initial Deformation Temp.		2000	1.5.	2010	2010	1960
Softening Temp.	2170	2080		2080	2080	2010
Fluid Temp.	2290	2270		2270	2310	2140
Ash Composition-%by Weight						
S102	38.6	33.9	9.4	37.7	41.4	28.8
A1203	17.5	14.4	4.3	14.7	16.4	10.0
Fe203	6.7	34.8	74.8	29.4	21.5	45.3
CaŌ Č	13.5	11.6	3.0	12.4	14.4	9.2
Mg0	3.7	3.1	0.7	3.4	3.4	2.1
Na ₂ 0	0.4	0.1	0.1	0.2	0.4	0.3
К ₂ б Т10 ₂	0.5	0.3	<0.1	0.3	0.3	0.4
TŦ02	0.9	0.7	0.3	0.8	0.9	0.5
S03 ²	15.2	1.0	4.3	0.9	1.1	1.7
S03 ^E P205			0.4			0.1
- -						
Total	97.0	99.9	97.4	99.8	99.8	98.4

- Outer Sample Not Available
 I.S. Insufficient Sample

Figure 41: As-fired ash and coupon deposit analysis, baseline study

77

WATERWALL CORROSION COUPON DATA SUMMARY

AS FIRED ASH AND COUPON DEPOSIT ANALYSIS

OVERFIRE AIR STUDY

Sample Location	Pulverized Coal	Probe G ^l <u>Initial</u>	Probe H Outer	Probe I Outer	Probe J Outer	Probe K Outer
Ash Fusibility- ^O F Initial Deformation Temp.	2110	1.s. ²	1920	1930	I.S. ²	1930
Softening Temp.	2170		1940	1940		1950
Fluid Temp.	2260		2060	2060		2060
Ash Composition-%by Weight						
Si0 ₂	41.3	6.9	20.7	20.5	12.8	21.5
A1203	17.2	3.6	8.3	8.1	5.3	7.9
Fe ₂ 0 ₃	7.6	76.4	56.8	55.8	69.9	57.7
Cao	13.4	3.5	6.9	6.8	4.9	6.8
Mg0	4.0	1.0	2.0	1.8	1.3	1.8
Na ₂ 0	0.6	0.5	0.5	0.5	0.4	0.4
K20	0.5	0.5	0.5	0.5	0.3	0.4
Ti02	0.8	0.3	0.5	0.5	0.3	0.4
S03 ⁻	14.0	6.5	3.4	3.7	2.5	2.8
P ₂ Ŏ ₅						
						
Total	99.4	99.2	99.6	98.2	97.7	99.7

Outer Sample Not Available
 I.S. - Insufficient Sample

Figure 42: As-fired ash and coupon deposit analysis, overfire air study

78

HUNTINGTON STATION, UNIT #2

TASKS IV, V & VI - TEST DATA ACQUISITION AND ANALYSIS

Flue gas samples for determination of NO_2 , CO, O_2 and THC emission levels were obtained at each of the two economizer outlet ducts. The flue gas samples were drawn from twelve (12) point grids arranged on centroids of equal area in each duct. The SO_2 sample was drawn from a single point in the left economizer outlet duct using a heated sample line. The fly ash sample for carbon loss analysis was obtained from a single point in the left air preheater flue gas outlet duct.

Coal samples were obtained from each feeder and blended to form a composite sample. Each sample was analyzed by the fuels lab at Combustion Engineering Inc.'s Kreisinger Development Laboratory. During some of the testing the Deer Creek Mine Coal was mixed with coal from Peabody Coal Company's Wilberg Mine and from Amercian Coal Company's Church Mine. The Wilberg and Deer Creek Mines were mining the same coal seam but from opposite sides of the mountain. The Church coal was trucked in from a mine 10 to 15 miles south of the plant. Analysis of the Church, Wilberg and Deer Creek coals showed that the coals had very similar characteristics. Although analysis showed the coals to be very similar, visual observations of the furnace waterwalls showed a definite increase in furnace waterwall deposits when firing a blended coal. A blended coal may display properties more unsatisfactory to unit performance than any of the component coals fired separately [8]. Typical slag patterns taken during clean, moderate and heavy slagging conditions at full load operation are shown on Figures 43, 44 and 45. These slag patterns are typical for all modes of boiler operation.

These coals were not blended for those tests conducted in April, May or July of 1975. For those tests conducted in September, October or December of 1975, the coals were usually blended. However, it was impossible to tell on any one day what percent of each coal was being used. The Wilberg and Church Mine coals were always blended with the Deer Creek Mine coal and were never used exclusively.

Summaries of the emissions test data for the baseline, biased firing and over-fire air operation studies are tabulated in Appendix B on Sheets B-1 through B-6. Unit performance test data for the three studies are tabulated on Sheets B-7 through B-13. The calculated unit performance test results are tabulated on Sheets B-14 through B-23. Unit efficiency is determined using the Heat Losses Method (ASME Power Test Code, PTC 4.1-1964, Reaffirmed 1973). A set of unit board and computer data was obtained for each test and is tabulated on Sheets B-24 through B-44.

All test data and results are reported in SI Metric Units with the exception of the board and computer data, which are reported in the engineering units provided by plant instrumentation.

FURNACE WATERWALL DEPOSIT PATTERN

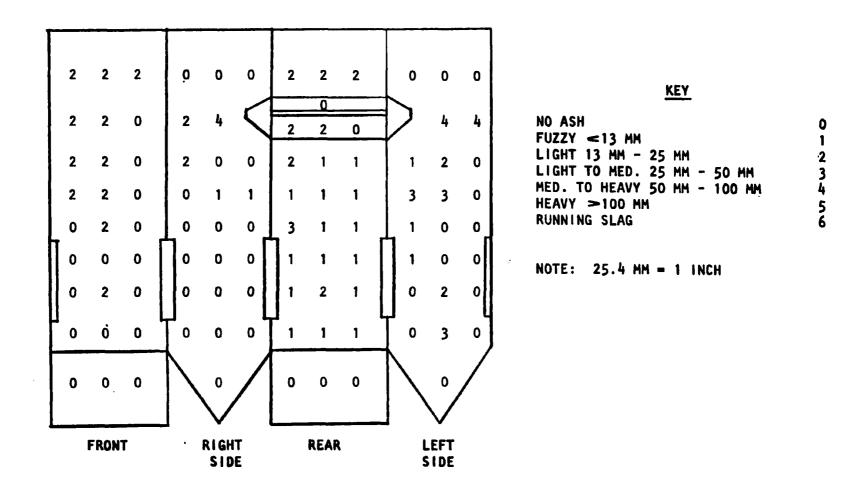


Figure 43: Furnace waterwall deposit pattern, clean furnace

FURNACE WATERWALL DEPOSIT PATTERN

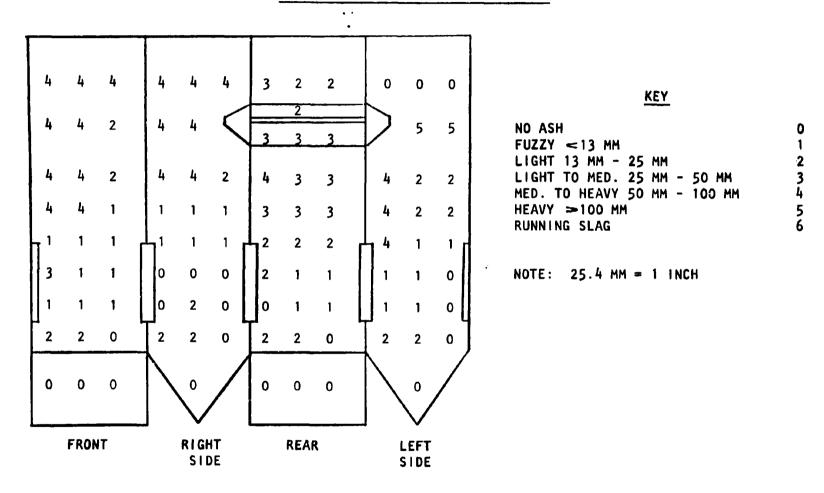


Figure 44: Furnace waterwall deposit pattern, moderate slag furnace

FURNACE WATERWALL DEPOSIT PATTERN

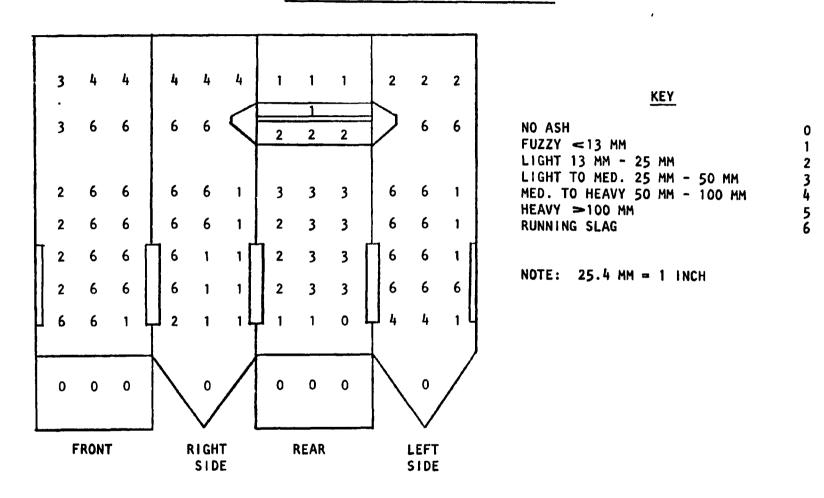


Figure 45: Furnace waterwall deposit pattern, heavy slag furnace

The thirty (30) day waterwall corrosion coupon evaluations were conducted using a specially designed probe consisting of four individual coupons. The waterwall corrosion coupon evaluations are described and discussed under a separate subsection in this report.

TASK IV - BASELINE OPERATION STUDY

Load and Excess Air Variation - Clean Furnace

Tests 1 through 7 were conducted to determine the effect of varying excess air on unit emission levels and performance. These tests were conducted at three unit loads with clean furnace conditions. Maximum and minimum excess air levels of 40 percent and 15 percent respectively were considered by Utah Power and Light Co. as acceptable modes of unit operation at full load. These limits were exceeded on a few occasions.

As shown in the following table, NO₂ emission levels increased with increased excess air. At equivalent levels of theoretical air to the fuel firing zone (TA), NO₂ emission levels were higher at full load than at half load.

CO emission levels did not change appreciably with changes in excess air level or unit loading. The effect of excess air level and unit loading on unit efficiency, carbon heat loss and unburned hydrocarbon and sulfur dioxide emission levels is discussed in conjunction with the other baseline tests.

Test No.	Main Steam Flow kg/s	NO2 ng/J	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	Furnace Condition
1	376	. 248.0	NA*	18.9	116.4	98.92	Clean
2	380	262.8	6.9	27.4	124.8	90.37	Clean
2A	377	332.4	7.7	32.9	130.1	90.16	Clean
3	380	357.0	8.2	40.9	137.8	89.56	Clean
4	298	328.0	NA	28.9	126.9	90.05	Clean
5	204	249.2	4.8	23.7	122.9	91.05	Clean
6	203	284.3	4.8	32.1	131.1	91.05	Clean
7	202	360.3	5.0	50.0	150.0	90.51	Clean

Load and Excess Air Variation - Moderately Dirty Furnace

Tests 8 through 12 were to have been conducted with a moderately slagged furnace. However, when operating with the Deer Creek Mine Coal, it was difficult to obtain any appreciable amounts of slag on the furnace waterwalls. As a result of this, tests 8 through 12 were actually conducted with clean furnace waterwalls. Excess air levels and unit load were allowed to vary per the test program.

The NO₂ levels for Tests 8 through 12, as shown in the following table, are also found to be proportional to the excess air levels. Although tests 8 through 12 were conducted with excess air levels, unit loads and furnace wall deposits similar to tests 1 through 7, the NO₂ emission levels are generally lower. One

^{*} NA - CO values not available due to operational difficulties with CO analyzer.

possible explanation for this difference in NO₂ emission levels for similar tests is the effect of fuel nozzle tilt. The fuel nozzles had a higher upward tilt for tests I through 7. While the higher tilts reduce the residence time of the hot gases in the furnace, they also decrease the furnace waterwall surface available for cooling. The decrease in surface cooling area results in a higher flame temperature, which can cause higher NO₂ emission levels. The only exception to this is Test #8 which correlates well with Test #1. As in Tests I through 7, at similar theoretical air levels to the fuel firing zone, NO₂ emission levels are again higher for full load tests than half load tests.

CO emission levels again did not show any appreciable change with changes in excess air level or unit loading. The only exception to this is Test #9 which when compared to a similar test (#2 or 2A) has an unusually high CO level for the excess air level at which the unit was operating.

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	Furnace Condition
8	378	267.1	6.9	19.5	117.5	89.93	Clean
9	377	258.6	37.5	29.0	126.3	90.10	Clean
10	375	295.3	NA	40.9	137.8	89.64	Clean
11	203	232.6	4.6	27.4	126.4	91.07	Clean
12	208	318.8	5.0	48.8	147.6	90.75	Clean

Load and Excess Air Variation - Dirty Furnace

The test program called for Tests 13 through 19 to be conducted with heavy furnace wall deposits. As in Tests 8 through 12 it was difficult to obtain any appreciable amount of slag on the furnace waterwalls. However, moderately thick furnace wall deposits of 12.7 mm (1/2") to 50.8 mm (2") were obtained. Excess air and unit load were again varied per the test program.

As shown in the following table increasing NO_2 emission levels are again found with increasing excess air levels. Again, for similar TA's, NO_2 emission levels for full load are higher than NO_2 levels at half load. There is no other obvious correlation between NO_2 emission level and unit loading.

Excess air variation and unit load again showed no obvious effect on CO emission levels.

Test No.	Main Steam Flow kg/s	NO2 ng/J	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	Furnace Condition
13	377	213.8	10.4	15.0	113.1	90.38	Moderate
14	375	253.7	7.2	20.2	118.1	90.34	Moderate
15	375	319.1	8.3	35.5	132.6	90.30	Moderate
16	298	285.2	4.1	23.0	121.3	90.78	Moderate
17	204	215.7	4.5	25.2	124.3	90.74	Moderate
18	206	233.0	NA	28.9	127.9	90.43	Moderate
19	205	333.1	5.0	47.8	146.6	90.34	Moderate

Analysis of Results

The changes in NO_2 , CO and carbon heat loss versus TA are shown on Figures 46, 47 and 48, respectively. For the baseline operation study the TA is essentially the same as the total air.

Figure 46 shows that NO₂ emission levels correlate reasonably well with theoretical air to the fuel firing zone. Increasing TA results in increased NO₂ emission levels. This correlation is in agreement with previous studies which have shown that NO₂ emission levels are proportional to the concentration of oxygen available for combustion.

Based on the data as plotted in Figure 46, it can be concluded that there is some variation of NO₂ emission levels with unit load. As discussed previously for similar theoretical air levels to the fuel firing zone, NO₂ emission levels for full load unit operation are higher than NO₂ levels at half load unit operation. NO₂ emission levels for three-quarter (3/4) load operation are of the same order of magnitude as full load NO₂ levels.

There is no distinct variation of NO₂ emission levels with furnace waterwall deposits. The results of those tests performed with moderately dirty furnace wall deposits have too much scatter to show any correlation between NO₂ levels and furnace wall deposits. This lack of correlation may be partially attributed to the fact that visual observations of furnace waterwall deposits is very subjective. While furnace wall deposits for Tests 13 through 19 were considered to be moderately dirty, they may have in fact been very similar to furnace waterwall conditions for Tests 1 through 12.

With the exception of Test #9, Figure 47 shows that CO emission levels did not show any appreciable variation with changes in TA. As mentioned previously Test #9 had an unusually high CO level when considering the furnace slag conditions and the excess air level at which the unit was operating. Below 120 percent TA, Figure 47 shows a slight rise in CO emission levels. This rise in CO levels below 120 percent TA is in agreement with baseline studies at Alabama Power Company's, Barry Station, Unit #2. However, the data as presented in Figure 47 is insufficient to be considered a trend for this study.

Unit loading had no significant effect on CO emission levels. CO emission levels for the half load and three-quarter load tests are lower than the CO levels for full load tests. However, as the CO levels for all the unit loads are of the same order of magnitude, it is difficult to distinguish what effects changes in unit loading have on CO levels. Any distinction is further hampered by the fact that the half load tests are performed at higher excess air levels than full or three-quarter load tests. The higher excess air level operation at lower loads would promote more complete combustion resulting in lower CO levels. Boilers are operated at higher excess air levels at half load for temperature control purposes, i.e., to maintain superheat and reheat outlet temperatures and therefore the maximum and minimum excess air limits were shifted upward for half load operation. Furnace waterwall slag conditions are found to have no effect on CO emission levels.

Figure 48 shows percent carbon loss in the fly ash versus percent theoretical air to the fuel firing zone. The carbon heat loss results are very similar to the CO results. There is a general trend of increasing carbon heat loss with

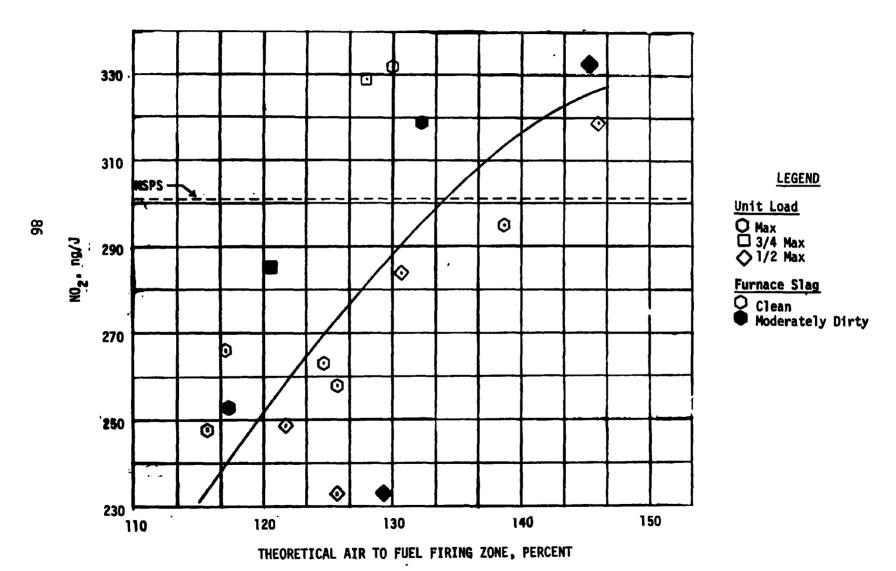


Figure 46: NO_2 vs. theoretical air to fuel firing zone, baseline study

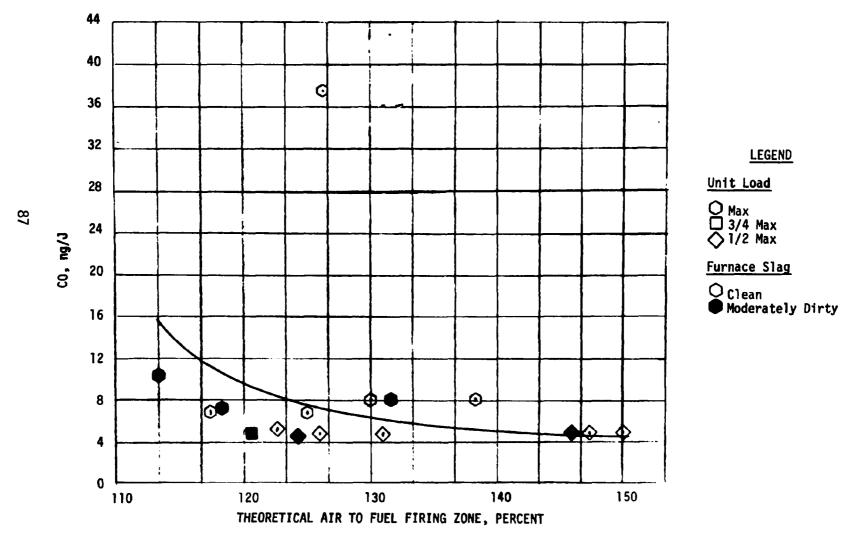


Figure 47: CO vs. theoretical air to fuel firing zone, baseline study

UTAH POWER & LIGHT CO. HUNTINGTON STATION UNIT #2

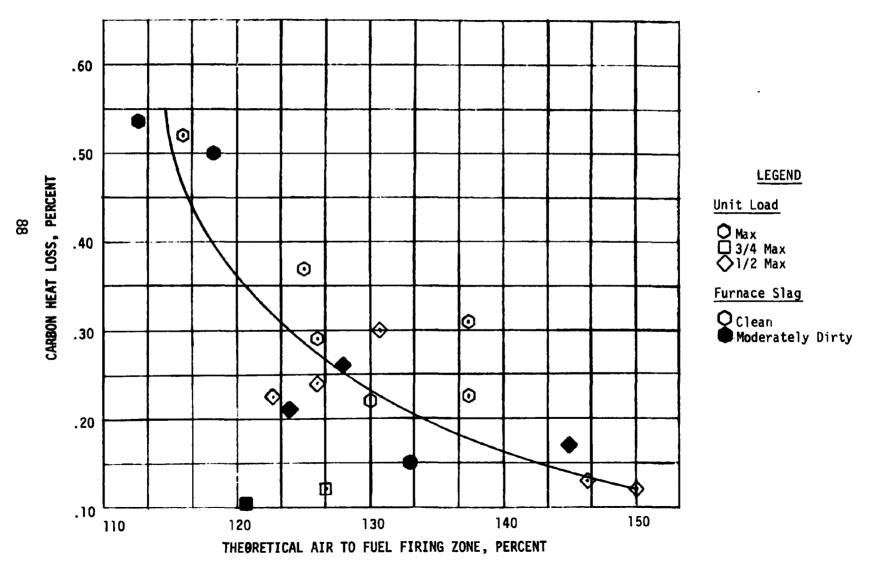


Figure 48: Carbon heat loss vs. theoretical air, baseline study

decreasing TA. No distinct variation of carbon heat loss with unit loading is evident with the exception that carbon heat losses for the half load tests are lower than the carbon heat losses for full load tests. As with the CO results, this variation may be related to the fact that the half load tests were run with higher excess air levels than full load tests. The higher excess air levels would promote better carbon burnout. Based on the data as plotted in Figure 48, carbon heat losses appear to be unaffected by variations in furnace waterwall deposits.

Figure 49 shows unit efficiency versus percent excess air at the economizer outlet. When viewed without regard to unit load, the scatter in the data as plotted in Figure 49 overshadows any obvious trend. However, when full load and half load tests are examined separately a decrease in unit efficiency is found with increasing excess air at the economizer outlet.

No effect on unit efficiency was obvious for changes in furnace waterwall deposits for the baseline operation tests.

SO₂ emission levels were monitored for each test and are reported on Sheets B-I and B-2. No correlation was evident between SO₂ emission levels and excess air, unit loading or furnace waterwall deposits. It was not possible to control the SO₂ emission level as it is more a function of the sulfur content of the fuel rather than the mode of boiler operation.

Unburned hydrocarbon emission levels were monitored and were found to be at such low levels as to be unmeasurable.

A thirty (30) day waterwall corrosion coupon test was conducted in April and May of 1975. The boiler was operated normally with full load being maintained as much as possible. The waterwall corrosion coupon test is discussed in the section "Waterwall Corrosion Coupon Evaluation."

TASK V - BIASED FIRING OPERATION STUDY

Fuel Elevations Out of Service Variation

Tests 1 through 16 were conducted to determine the effect on NO₂ emission levels, when taking various fuel elevations out of service (biased firing) at three different unit loadings and two excess air levels. The test program called for half load tests being performed with two adjacent fuel firing elevations out of service. However, Utah Power and Light Co. would not permit this mode of operation. As a result, the half load tests were performed with only the top fuel firing elevation of the two adjacent elevations out of service.

As can be seen in the following table, maximum NO_2 emissions control was obtained with the top elevation of fuel nozzles out of service (Tests 1, 4, 7, 9 and 12).

No thirty (30) day waterwall corrosion coupon evaluation was performed following the biased firing operation study.

UTAH POWER & LIGHT CO. HUNTINGTON STATION UNIT #2

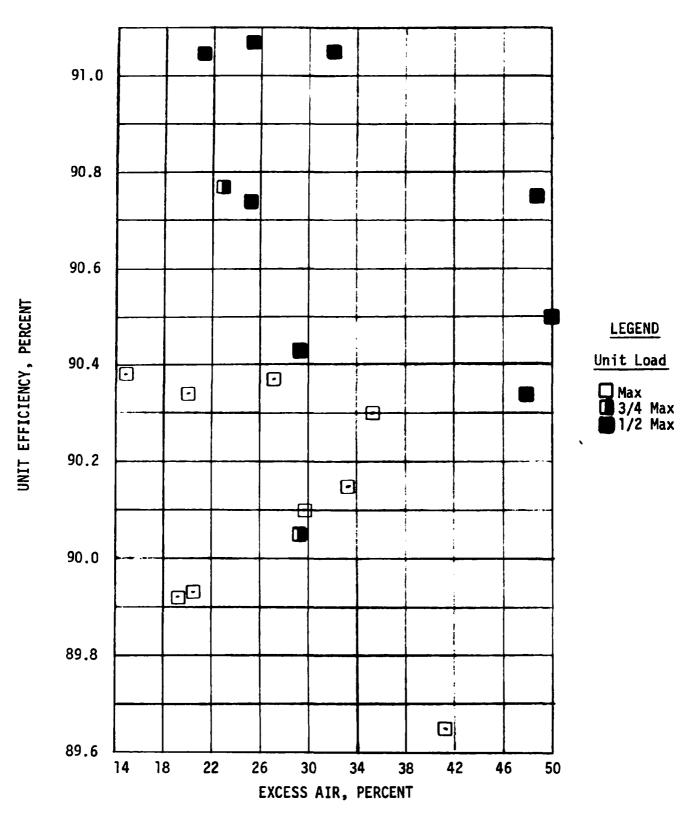


Figure 49: Unit efficiency vs. excess air, baseline study

Test No.	Main Steam Flow kg/s	NO ₂ ng/J	CO ng/J	X-S Air	Theo. Air to Firing Zone-%	Unit Effic.	Fuel Nozzle Elevation Out of Service
1	37 5	168.4	16.7	19.8	107.1	89.91	Тор
2	371	223.7	4.8	21.5	118.9	90.40	Center
3	36 8	243.1	9.2	20.9	117.8	89.97	Bottom
4	297	191.5	6.3	16.8	98.5	90.14	Тор
5	29 5	203.6	4.4	19.9	119.3	90.23	Top Center
6	2 9 9	263.4	4.8	20.8	119.8	90.97	Bottom Center
7	218	178.4	4.8	22.6	106.5	90.99	Top
8 9	214	263.3	4.1	24.4	122.8	90.84	Center
	375	208.1	5.0	26.3	107.6	89.80	Тор
10	370	227.3	5.0	27.4	125.3	89.97	Top Center
11	369	255.9	5.2	29.3	126.8	90.13	Bottom Center
12	295	214.2	5.2	29.3	109.1	90.21	Top
13	299	283.8	5.7	28.0	127.0	89.97	Center
14	299	248.4	6.4	31.7	131.0	90.04	Bottom
15	203	187.2	4.5	25.1	124.4	90.77	Top Center
16	210	224.3	4.6	24.7	124.0	90.58	Bottom Center

Analysis of Results

Figure 50 is a plot of NO₂ emission levels versus theoretical air to the fuel firing zone. As with the baseline study tests, this figure shows that increasing TA results in increasing NO₂ emission levels. As evidenced by the scatter in the data, unit loading does not appear to have any distinct effect on NO_2 emission levels.

Most of the biased firing tests were performed during the time period when the coal being fired was a blend of two or three coals. Furnace waterwall slagging conditions for the biased firing tests ranged from light to moderately dirty furnace waterwalls. As a result of the small variation in furnace waterwall deposits, no effect on NO₂ emission levels was evident. Therefore, furnace slagging conditions have not been indicated on the biased firing graphs.

Figure 51 is a plot of fuel firing elevation out of service versus NO_2 emissions level. As this figure shows, the lowest NO_2 levels were obtained when the top fuel firing elevation was removed from service. This method of unit operation most closely simulates overfire air operation. The highest NO_2 emission levels were obtained when the center fuel firing elevation was removed from service. Removal of the bottom fuel firing elevation from service showed a reduction in NO_2 levels from the highest levels obtained when the center fuel elevation was removed from service. These lower NO_2 levels may possibly be attributed to the flow of air under the fuel firing zone causing a lowering in bulk flame temperature.

CO emission levels versus theoretical air to the fuel firing zone are plotted in Figure 52. No variation in CO emission levels with unit loading or furnace waterwall deposits is evident. The variation in CO emission levels with TA is not as expected. Test #1 has an unusually high CO emission level. This can be partially attributed to the fact that the dampers for the top fuel firing elevation were only 10 percent open as opposed to the 100 percent open desired.

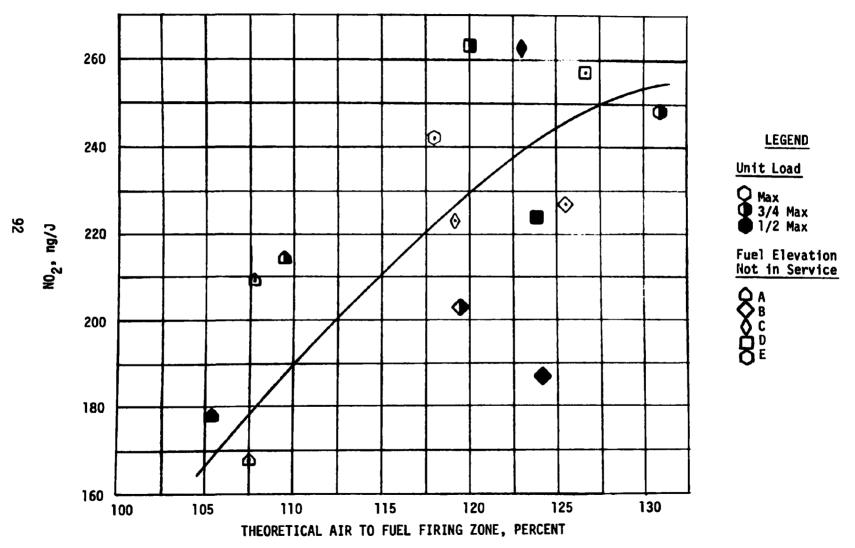


Figure 50: NO_2 vs. theoretical air to fuel firing zone, biased firing study

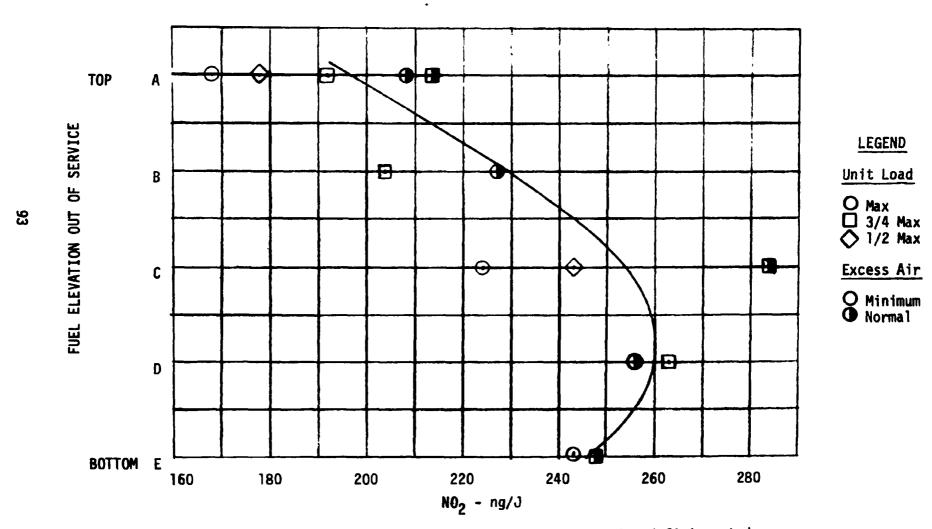


Figure 51: Fuel elevation out of service vs. NO_2 , biased firing study

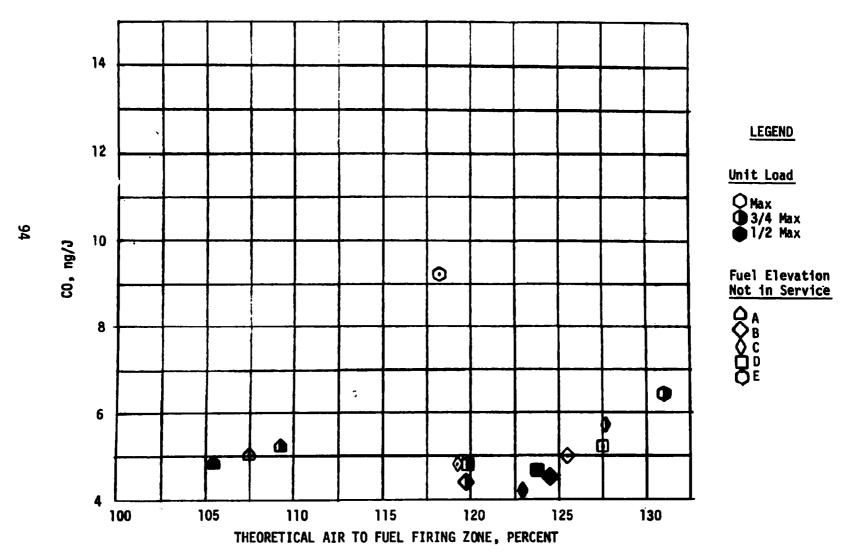


Figure 52: CO vs. theoretical air, biased firing study

This fact coupled with the low excess air operation may have contributed to the high CO level. While there is a rise in CO level for TA's below 120 percent, the variation is not pronounced. Also, Tests #13 and #14 have slightly higher CO emission levels while operating at the highest TA.

Figure 53 shows that some of those tests (Nos. 3, 4 and 14) with high CO emission levels also have some of the highest carbon heat loss values regardless of unit load or TA. Figure 53 indicates that increasing carbon heat loss is possible with decreasing TA. This trend is not completely supported by the data as plotted. Tests 3, 13 and 14 have higher carbon heat loss values than expected for the excess air levels at which the unit was operating. It should be noted that these tests were run with the center and bottom fuel elevations out of service. Plotting of the fuel elevation out of service versus the CO emission levels did not provide any useful information; therefore, it is not included in this report.

Figure 54 shows unit efficiency versus percent excess air at the economizer outlet. This plot reveals no useful information regarding the effect of excess air level on unit efficiency.

SO₂ emission levels were again monitored for each test and are reported on Data Sheets B-3 and B-4.

Unburned hydrocarbon emission levels monitored were at such low levels as to be unmeasurable.

TASK VI - OVERFIRE AIR OPERATION STUDY

Excess Air and Overfire Air Rate Variation

Tests I through II were conducted to determine the effect of varying the over-fire air rate and excess air level on the NO2 emission levels and Unit Performance. For these tests the overfire air registers were held at horizontal while the fuel nozzle tilts were allowed to vary from a -14 degrees to a +17 degrees. For each group of tests in this series, the variation in tilt was held to the minimum allowed while maintaining acceptable superheat and reheat outlet temperatures. Furnace waterwall deposits were not controlled for these tests and ranged from light to heavy slagging conditions on the waterwalls. The overfire air tests were performed during that time period when the coal being fired was a blend of two to three coals. There was also some problems at this time with soot blowers being out of operation.

As shown by the following table, NO₂ emission levels are found to increase with increasing theoretical air to the fuel firing zone. This correlation is evident regardless of the total excess air level the unit is operating at. Although Tests 1 through 5 were conducted at normal excess air levels, averaging 26.5 percent at the economizer outlet, the NO₂ emission levels were lower than for Tests 6 through 8 at minimum excess air levels, averaging 19 percent at the economizer outlet. This variation was not as expected.

One possible explanation to this unexpected variation is that the tilts for tests 6 through 8 were at a plus ten (+10) degrees while those tilts for tests 1 through 5 ranged from a plus six (+6) to a minus fourteen (-14) degrees. While the plus tilts in tests 6 through 8 reduced the residence time of the hot

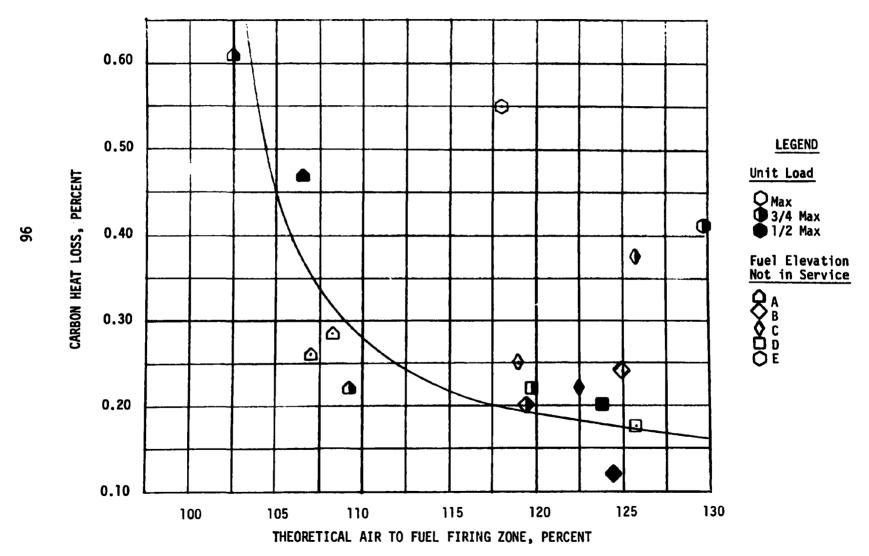


Figure 53: Carbon heat loss vs. theoretical air, biased firing study

UTAH POWER & LIGHT CO. HUNTINGTON STATION UNIT #2 91.1 **4** 90.9 90.7 UNIT EFFICIENCY, PERCENT LEGEND 90.5 Unit Load Max 3/4 Max 1/2 Max \Diamond 90.3 \odot 90.1 \otimes $\overline{\Diamond}$ 89.9 89.7

Figure 54: Unit efficiency vs. excess air, biased firing study

PERCENT EXCESS AIR

24

20

16

28

32

gases in the furnace they also exposed the fire to less furnace waterwall surface. The decrease in furnace waterwall surface cooling area seen by the fire can result in increased flame temperatures with a corresponding increase in thermal $NO_{\rm X}$ formation. Previous experience has shown minimum total excess air gives the minimum $NO_{\rm 2}$ emission levels for any given coal. One possible explanation to this difference in $NO_{\rm 2}$ emission levels is that the coal being burned at this time was a blend of American-Church Mine, Peabody-Wilberg Mine and Peabody-Deer Creek Mine coals. The percentages of each coal burned on a daily basis was an unknown factor. The Church Mine or Wilberg Mine coals were never used exclusively. Although these coals are of similar individual analysis, increased slagging conditions were experienced when firing a blend of these coals. The testing at this time was further aggravated by the necessity from that which had been required when burning design coal. Wall deposits were greater at this time, with running slag being experienced where previously only dry slag had existed.

Although those tests conducted at the normal excess air operating level resulted in the lowest NO_X values, normal excess air operation was not considered optimum for NO_X control. Based on the above facts, the optimum excess air operating level was considered to be the minimum, approximately 20 percent at the economizer outlet. The optimum overfire air rate based on the NO_2 emission level results for Tests 1 through 11 is with the overfire air dampers 100 percent open. This allows approximately 15 to 20 percent of the total combustion air to be introduced above the top level of fuel nozzles.

With the exception of Tests 7 and 8, CO emission levels are not found to vary significantly with changes in TA. Tests 7 and 8 have the lowest TA of Tests 1 through 11. This could contribute to the high CO levels monitored.

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	OFA Dampers % Open
1	369	273.7	4.7	27.0	125.2	89.51	0
2	372	251.1	4.6	28.2	120.2	90.13	25
3	372	229.4	4.6	26.2	111.6	89.92	50
4	370	213.0	4.6	25.5	107.1	89.99	75
5	370	205.3	4.5	25.2	105.4	90.05	100
6	372	300.1	4.7	18.5	116.7	90.09	0
7	372	247.3	36.3	19.2	102.9	89.70	50
8	370	221.6	49.0	19.2	96.6	90.46	100
9	369	353.2	4.8	32.1	123.2	89.44	25
10	368	334.0	4.4	33.8	113.8	89.18	75
11	370	332.3	4.8	33.8	112.5	89.48	100

Overfire Air Tilt Variation

Tests 12 through 18 were conducted to determine the effect of fuel nozzle and overfire air register tilt on NO_2 emission levels and unit performance. These tests were conducted at the optimum overfire air rate (dampers 100 percent open) and excess air level (approximately 20 percent excess air at the economizer outlet) established in Tests 1 through 11. The fuel nozzles were varied from a -20 degrees to a +25 degrees, while the overfire air registers were varied from a

-30 to a +30 degrees. This variation of the fuel nozzle and overfire air register tilt angles moves the fuel firing zone both in the furnace and in its effective position relative to the overfire air registers. Movement of the fuel nozzles and overfire air registers away from each other accentuates the effect of staged combustion. Movement of the fuel nozzles and overfire air registers toward each other minimizes the effect of staged combustion because the air is being forced down into the firing zone. For these tests the furnace slagging conditions were allowed to vary, and ranged from light to moderate waterwall deposits.

As shown in the following table, minimum NO₂ levels were obtained when the fuel nozzles and overfire air registers were separated by 20 to 30 degrees (Tests 14 and 17). Parallel operation of the fuel nozzles and overfire air registers was nearly as effective, when both the fuel nozzle and overfire air registers were in a horizontal position (Test 15) or when both were tilted downward to their respective limits (Test 12). NO₂ emission levels were highest when the nozzles were moved toward each other. Therefore, the optimum condition was at a tilt differential of 20 to 30 degrees away from each other (Tests 14 and 17). For ease of boiler operation the tilt conditions for Test 17 were utilized in Tests 19 through 24.

With the exception of Tests 12 and 18, CO emission levels appear to be relatively unaffected by variations in fuel nozzle and overfire air register tilts. It should be noted that for Tests 12 and 18 the TA was less than 100 percent and that the fuel nozzles and overfire air registers were essentially operating in parallel. Test 12 was conducted with the fuel and overfire air nozzles at maximum minus tilt, while test 18 was conducted with the fuel and overfire air nozzles at maximum plus tilt. Operation of the boiler with the tilts at the maximum plus will reduce the residence time of the gases in the furnace and may result in higher CO levels due to insufficient burnout of the CO.

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	Fuel Nozzle Tilt-°	OFA Register Tilt-°
12	370	223.3	10.4	23.1	99.6	90.11	-20	-30
13	364	263.4	4.5	25.1	101. 1	89.83	0	-30
14	370	179.8	4.8	22.0	99.2	90.32	-20	0
15	370	212.1	4.6	25.1	101.1	89.82	0	0
16	372	283.5	4.4	21.3	98.4	89.90	+25	0
17	377	186.1	4.9	23.5	99.8	90.01	0	+30
18	367	252.1	15.8	21.7	98.6	89.51	+25	+30

Load and Furnace Waterwall Deposit Variation at Optimum Conditions

Tests 19 through 24 were conducted at the optimized conditions of excess air level, overfire air rate and fuel nozzle and overfire air register tilt as determined in Tests 1 through 18. These tests were run to determine the effect on NO_X emission levels and unit performance at optimum conditions, while varying unit load and furnace wall deposits. These tests were conducted at an average excess air level of 21 percent, overfire air register dampers 75 to 100 percent open and with the overfire air registers tilted to +30 degrees while the fuel nozzles were held at horizontal.

As shown in the following table, NO_2 emission levels are affected by unit load, with higher NO_2 levels for higher loads. Furnace waterwall deposits have a greater effect on NO_2 levels at lower loads. A distinct effect on NO_2 emission level is evident at half (1/2) load (Test Nos. 23 and 24), while this distinction is considerably less for three-quarter (3/4) load (Tests 21 and 22) and is reversed for full load (Tests 19 and 20). This suggests a possible relationship between furnace waterwall deposits, unit load and NO_2 levels.

Except for Test 23, CO emission levels are unaffected by unit load or furnace waterwall deposits. The CO level and the carbon heat loss for Test 23 are high when considering the conditions at which the boiler was operating.

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	Furnace Condition
19	374	196.5	5.8	18.5	95.8	89.79	Clean
20	377	190.2	5.8	19.6	97.1	89.85	Moderate
21	299	161.3	5.7	19.3	98.1	90.41	Clean
22	299	167.8	6.3	21.5	95.0	90.65	Moderate
23	218	132.0	19.0	22.8	97.3	90.79	Clean
24	217	155.3	4.5	23.9	99.7	90.76	Moderate

Analysis of Results

The changes in NO₂, CO and carbon heat loss versus changes in theoretical air to the fuel firing zone are shown in Figures 55, 56 and 57, respectively.

Figure 55 shows that there is a definite trend in NO₂ emission levels with changes in TA. Increasing TA results in increasing NO₂ emission levels. Furnace waterwall deposits and unit load are also indicated on Figure 55. No correlation between furnace waterwall deposit variation and NO₂ emission level is evident from the data as plotted. The effect of unit load on NO₂ levels shows lower NO₂ levels for lower loads. As these low load tests (Tests 21, 22, 23 and 24) also have some of the lowest TA's, these should be compared with full load tests at similar TA's to find the effect of unit load. A comparison of Tests 21 and 24 with Tests 14 and 17 or of Tests 22 and 23 with Tests 19 and 20 shows that lower loads resulted in lower NO₂ levels.

CO emission level versus theoretical air to the fuel firing zone is plotted in Figure 56. Figure 56 indicates rise in CO emission levels below TA levels of 104 percent. Previous studies at Alabama Power Company's, Barry #2 [2] have shown that CO levels tend to rise rapidly in those TA regions where NO2 levels are falling rapidly.

As is evident in Figure 57, decreasing theoretical air to the fuel firing zone results in increasing carbon heat loss levels. This trend, while being similar, is much more apparent than with the CO emission levels, with carbon heat losses rising rapidly below 104 percent TA. This trend was also observed at Alabama Power Company, Barry Station, Unit #2 [2].

Figure 58 shows the effect that variation of fuel nozzle and overfire air register tilts has on NO_2 emission levels.

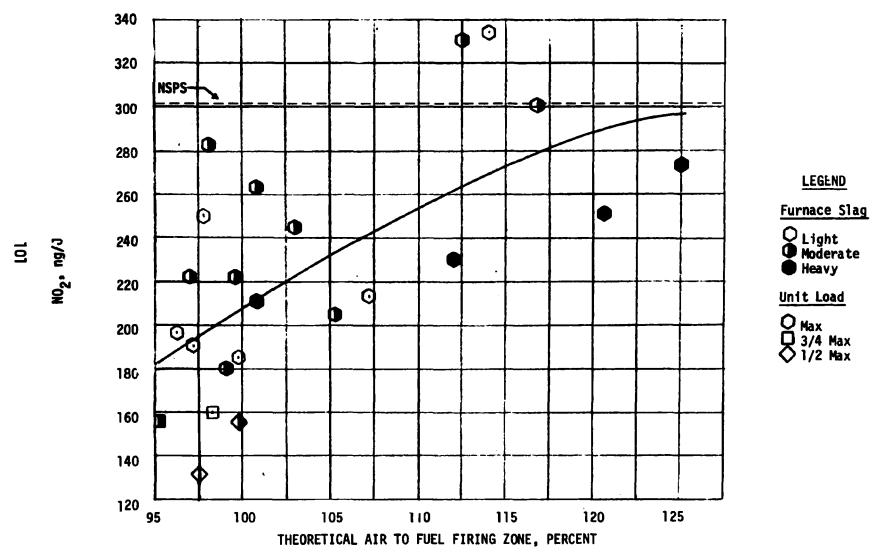


Figure 55: NO_2 vs. theoretical air to fuel firing zone, overfire air study

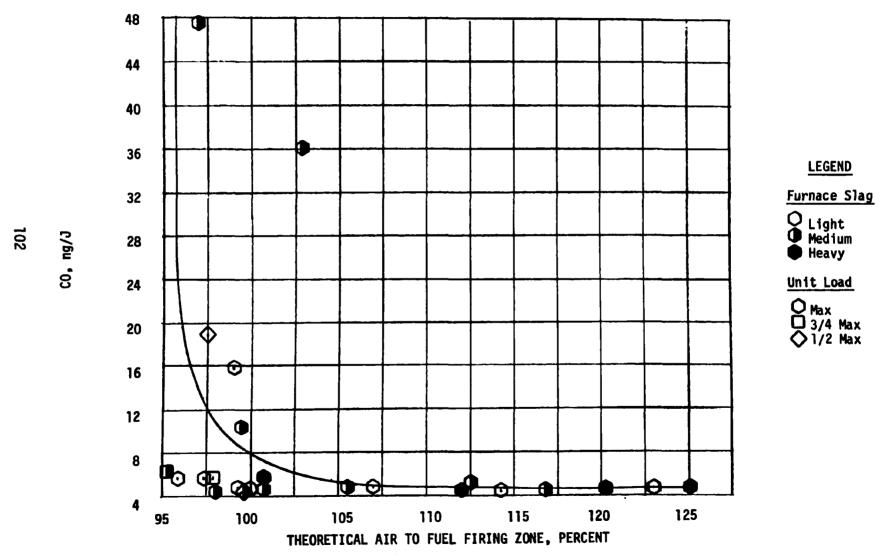


Figure 56: CO vs. theoretical air to fuel firing zone, overfire air study

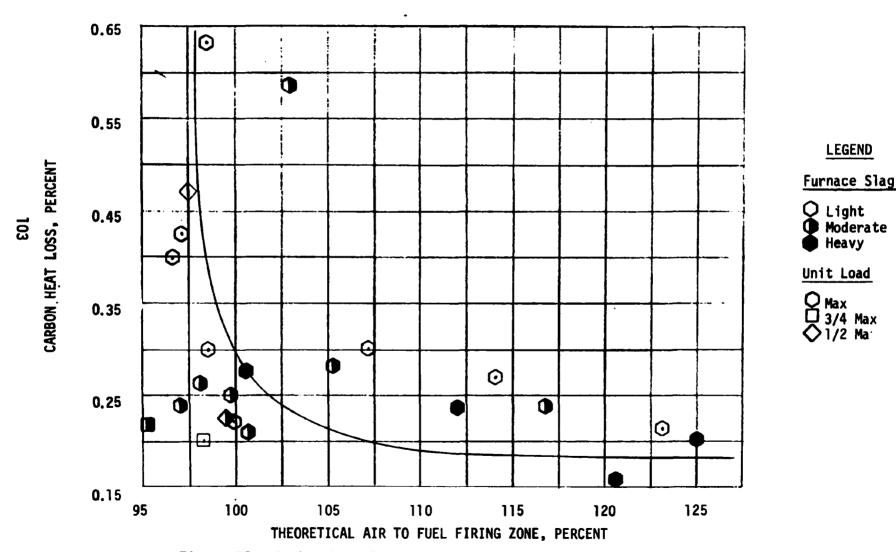


Figure 57: Carbon heat loss vs. theoretical air, overfire air study

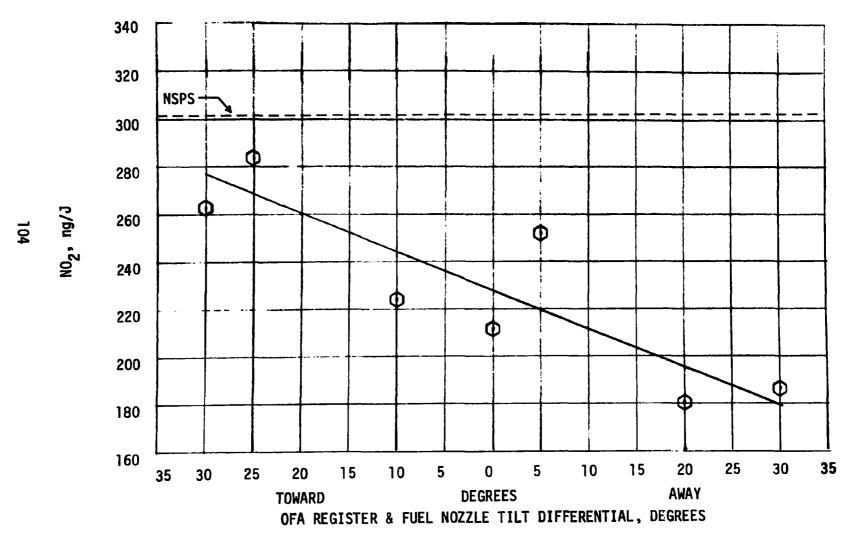


Figure 58: NO_2 vs. tilt differential, overfire air study

Figure 58 shows that as the fuel nozzles and overfire air registers are angled toward each other, NO₂ emission levels rise. Conversely as the nozzles are moved away from each other, the effect of staged combustion becomes more pronounced, until at 30 degrees away from each other the NO₂ emission level is 186 ng/J for full load unit operation.

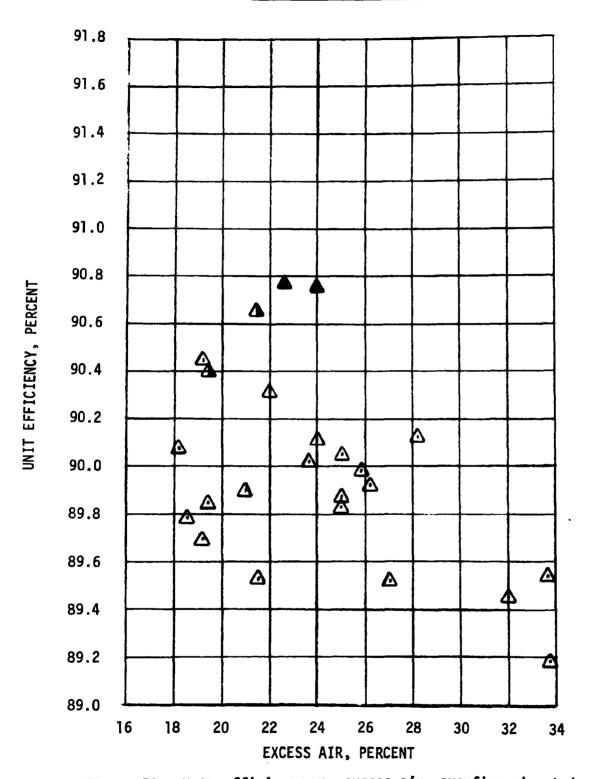
Prior experience at Alabama Power Company's, Barry Station, Unit #2 has shown that flame stability can be a limiting factor as the fuel nozzles and overfire air registers move substantially away from each other. Tests, similar to Tests 12 through 18, at the Barry Station, Unit #2 indicated a probable maximum differential of 50 degrees between the fuel nozzles and overfire air registers [2]. Flame instability was not apparent during tilt variation tests at Utah Power and Light Company's Huntington Canyon Station, Unit #2. The maximum differential of the fuel nozzles and overfire air registers away from each other for these tests was only 30 degrees compared to 50 degrees for the Barry tests.

Figure 59 shows unit efficiency versus excess air at the economizer outlet. A decrease in unit efficiency is evident with increasing excess air at the economizer outlet. This trend is in agreement with the baseline and biased firing tests at Huntington Canyon Station, Unit #2 and previous tests at Barry Station, Unit #2.

SO₂ emission levels were monitored and are reported on Sheets B-5 and B-6. As with the other tests there is no apparent correlation between SO₂ emission levels and excess air, unit load or furnace waterwall deposits.

Unburned hydrocarbons were monitored for all overfire air tests and were at such low levels as to be unmeasurable.

A thirty (30) day waterwall corrosion coupon test was conducted in November, 1975. The boiler operated with the overfire dampers 100% open and with full load being maintained as much as possible. The overfire air corrosion coupon test is discussed in the following section, <u>Waterwall Corrosion Coupon Evaluation</u>.


WATERWALL CORROSION COUPON EVALUATION

Following completion of the steady state phases of the baseline and overfire air test programs, thirty (30) day waterwall corrosion coupon evaluations were performed. The purpose of these evaluations was to determine whether any measurable changes in coupon weight losses could be obtained for the modes of firing under study.

The individual probes were exposed at five locations on the furnace front wall as shown on Figure 60. The coupon temperatures were maintained at the same levels for each 30 day run and a typical tract of the control temperature range for each of the twenty coupons is shown on Figure 61.

The individual coupon weights were determined before and after each thirty day test and the individual coupon and average probe weight losses are shown on Sheets B45 and B46. The weight losses are calculated as mg/cm² of coupon surface area.

Figures 62 and 63 show the unit load schedules for each of the 30 day test

LEGEND

Unit Load

3/4 Max 1/2 Max

△ Max

Figure 59: Unit efficiency vs. excess air, overfire air study

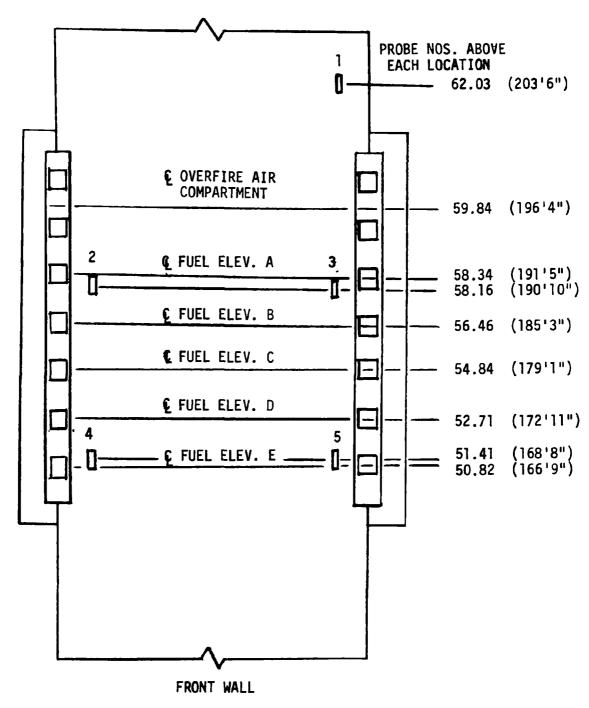


Figure 60. Waterwall corrosion probe locations, Huntington Station No. 2

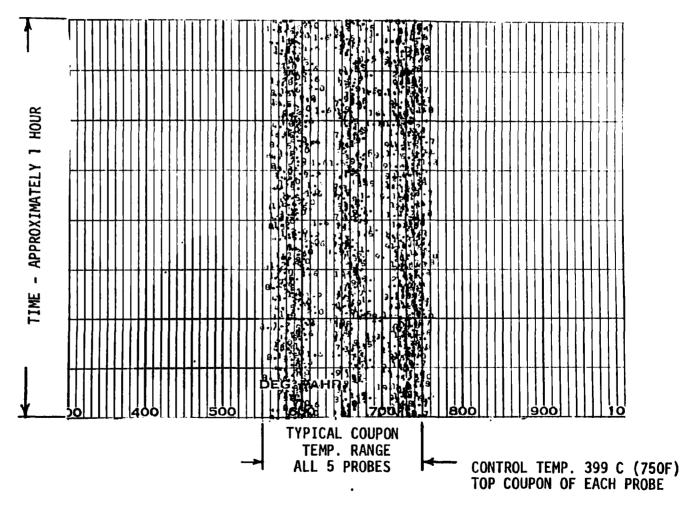
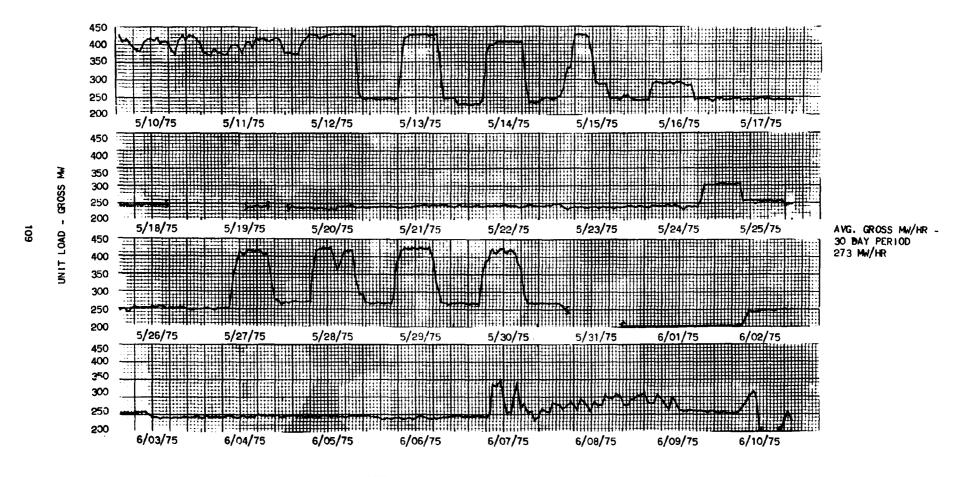
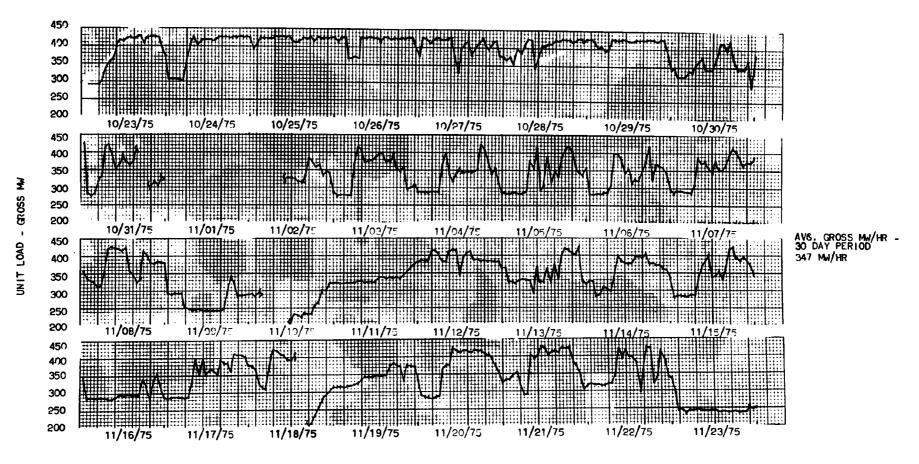




Figure 61. Typical corrosion probe temperature ranges, Huntington Station No. 2

CORROSION PROBE EXPOSURE TIME - DAYS

FIGURE 62: GROSS MW LOADING VS. TIME - BASELINE CORROSION PROBE STUDY

CORROSION PROBE EXPOSURE TIME - DAYS

FIGURE 63: GROSS MW LOADING VS. TIME - OVERFIRE AIR CORROSION PROBE STUDY

periods.

The overfire air portion of the study was conducted using the "optimum" operating conditions determined during the overfire air steady state tests.

Throughout the overfire air study the overfire air dampers were maintained at the full open configuration over the range of unit loading shown on Figure 63 with the following exceptions. On November 2, 1975 the overfire air were closed during unit start-up. Between November 5 and November 7, 1975 one compartment was closed when required to maintain proper windbox pressure. November 15 to November 16, 1975 one compartment was closed at reduced unit loading and on November 22 and November 23, 1975 one or both dampers were closed during low load operation.

The percent oxygen was monitored daily during each thirty day study at each probe location and was found to range between 7 and 19 percent 0_2 during both the baseline and overfire air studies.

The weight losses calculated for the baseline portion of the test program were found to be greater than those for the overfire air tests. The average weight losses for all five probes were as follows:

<u>Baseline</u>	Overfire Air				
3.4266 mg/cm ²	2.6357 mg/cm ²				

These values are within the range of losses which would be expected for oxidation of carbon steel for a 30 day period. This premise is verified by control studies conducted in C-E's Kreisinger Development Laboratory using probes exposed during the biased firing study conducted at Alabama Power Co., Barry #2. These probes were cleaned and prepared in an identical manner to those used for furnace exposure and placed in a muffle furnace for 30 and 60 day exposures at 399°C with a fresh air exchange. The test results were as follows:

<u>Probe</u>	Wt. Loss mg/cm ² - 30 Days
M (30 day)	4.7999
Q (30 day)	4.7741
R (60 day)	5.1571/2 = 2.5785
B (60 day)	8.3493/2 = 4.1746

These results indicate that the test coupons oxidized more rapidly during the first 30 days exposure with average weight losses decreasing in the second thirty days. Based on these results, it appears that the differences in weight losses observed during the test program are within the ranges to be expected from oxidation alone.

Chemical analysis of coupon deposits taken during the test program indicate an enrichment in iron as compared with the "as fired" coal ash analysis with the greater enrichment occurring during the baseline study. Also the degree of iron enrichment during the overfire air study was not as consistent as was noted in the baseline study. There is some question as to whether the ash deposits accurately represent inner and outer layers of deposit in some probes. Despite the uncertainty there was nothing about the compositions or fusibility

temperatures which would indicate a change in slagging condition between the baseline and overfire air studies. The as-fired ash and coupon deposit analyses are given on Figures 64 and 65.

WATERWALL CORROSION COUPON DATA SUMMARY

AS FIRED ASH AND COUPON DEPOSIT ANALYSIS

BASELINE STUDY

Sample Location	Mill Exhauster	Probe #1	Probe #2	Probe #3	Probe #4	Probe #5
Ash Fusibility- ^O F						
Initial Deformation Temp.	2050	1980	I.S.	1980	I.S.	1910
Softening Temp.	2160	2040		2160		I.S.
Fluid Temp.	2440	2210		2270		2050
Ash Composition-%by Weight						
Si02	49.0	21.0	18.4	21.0	18.5	I.S.
A1203	15.5	4.5	6.0	4.8	7.9	
Fe ₂ 0 ₃	7.2	54.6	47.9	54.8	45.6	
CaŌ ¯	9.0	9.0	6.5	8.0	8.3	
Mg0	2.0	2.1	1.1	1.7	1.3	
Na 20	4.8	2.0	3.2	1.9	3.3	
K20	1.0	0.5	0.9	0.6	0,6	
Tī02	1.0	0.3	0.6	0.4	0.3	
S03 ⁻	7.6	6.0	15.4	6.8	14.1	
•						
Total	97.1	100.0	100.0	100.0	99.9	

I.S. - Insufficient Sample

Figure 64: As-fired ash & coupon deposit analysis, baseline study

WATERWALL CORROSION COUPON DATA SUMMARY

AS FIRED ASH AND COUPON DEPOSIT ANALYSIS

OVERFIRE AIR STUDY

Sample Location	Mill Exhauster	Probe #1	Probe #2	Probe #3	Probe #4	Probe #5
Ash Fusibility-OF						
Initial Deformation Temp.	2130	2200	1890	2120	1940	I.S.
Softening Temp.	2200	2250	1920	2210	1970	
Fluid Temp.	2450	2530	2020	2440	2140	
Ash Composition-%by Weight						
SiO ₂	51.5	56.9	28.7	55.6	29.3	23.9
A1203	17.0	19.2	11.3	18.3	26.8	9.2
Fe ₂ 0 ₃	4.7	4.4	32.8	5.4	25.5	39.9
Fe ₂ 03 Ca0	8.9	9.6	13.9	9.1	9.3	11.9
MgO	1.1	1.1	2.6	1.0	1.6	2.3
Na ₂ 0	5.2	4.6	2.5	4.4	2.2	2.0
K20	0.6	0.6	0.4	0.6	0.3	0.3
TiO ₂	1.0	0.6	0.4	0.6	0.9	0.5
\$0 ₃	6.6	< 0.1	4.7	0.3	3.8	5.5
3						
Total	96.6	97.0	97.1	95.3	99.9	95.5

I.S. - Insufficient Sample

Figure 65: As-fired ash & coupon deposit analysis, overfire air study

1

SECTION III - EPA CONTRACT 68-02-1367 ALABAMA POWER COMPANY, BARRY STATION, UNIT #2 INTRODUCTION

This program encompassed the work to be performed under the second phase of a two phase program to identify, develop and recommend the most promising combustion modification techniques for the reduction of NO_X emissions from tangentially coal fired utility boilers with a minimum impact on unit performance.

Phase I (performed under EPA Contract 68-02-0264) consisted of selecting a suitable utility field boiler to be modified for experimental studies to evaluate NO_X emission control. Phase I also included the preparation of preliminary drawings, a detailed preliminary test program, a cost estimate and detailed schedule of the program phases and a preliminary application economic study indicating the cost range of a variety of combustion modification techniques applicable to existing and new boilers [1].

Phase II consisted of modifying and testing the utility boiler selected in Phase I to evaluate overfire air and biased firing as methods for NO_X control. This phase also included the completion of detailed fabrication and erection drawings, installation of analytical test equipment, updating of the preliminary test program, analysis and reporting of test results and the development of control technology application guidelines for existing and new tangentially coal fired utility boilers.

This program was conducted at the Barry Steam Station, Unit No. 2 of the Alabama Power Company. This unit is a natural circulation, balanced draft design, firing coal through four elevations of tilting tangential fuel nozzles. Unit capacity at maximum continuous rating (MCR) is 113 kg/s main steam flow with a superheat outlet temperature and pressure of 538°C and 12.9 MPa. Superheat and reheat temperatures are controlled by fuel nozzle tilt and spray desuperheating A side elevation of the unit prior to modification is shown on Figure 66.

Throughout this report ${\rm NO_X}$ emission levels are expressed as ${\rm ng/J~NO_2}$.

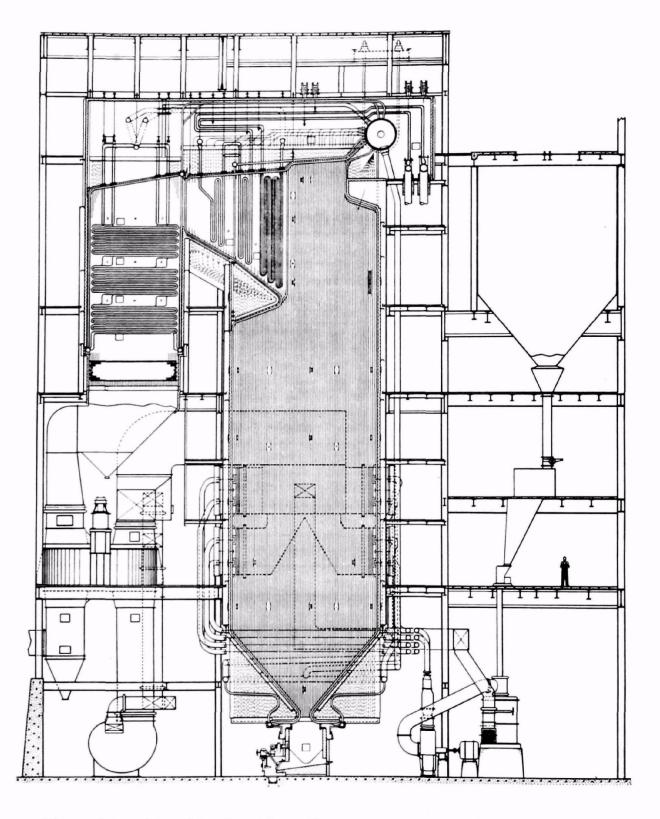


Figure 66. Unit side elevation, Alabama Power Company, Barry Station No. 2

CONCLUSIONS

NORMAL OPERATION

- 1. Under normal unit operation, without overfire air, excess air variation was found to have the greatest single effect on NO_X emission levels, increasing NO_X with increasing excess air. An average increase of 3.34 ng/J for each 1% change in excess air was observed over the normal operating range.
- 2. Unit loading and variation in furnace slag conditions were found to have the least effect on NO_X and CO emission levels and the percent carbon in the fly ash.
- 3. Under normal unit operation, the percent carbon loss in the fly ash and CO emission levels increased with decreasing excess air with the increases becoming greater below a level of approximately 20 to 25 percent excess air. CO levels in excess of 23.9 ng/J were considered unacceptable for the purposes of this program.

OVERFIRE AIR OPERATION

- 1. NO reductions of 20 to 30% were obtained with 15 to 20 percent overfire air when operating at a total unit excess air of approximately 15 percent as measured at the economizer outlet. This condition would provide an average fuel firing zone stoichiometry of 95 to 100 percent of theoretical air. Stoichiometries below this level did not result in large enough decreases in NO_X levels to justify their use. Biased firing, while potentially as effective, necessitates a reduction in unit loading and is therefore less desirable as a method of NO_Y control.
- 2. When using overfire air as a means of decreasing the theoretical air (TA)* to the fuel firing zone the percent carbon in the fly ash and CO emission levels were less affected than when operating with low excess air. This is due to the ability to maintain acceptable total excess air levels during overfire air operation.
- 3. Furnace performance as indicated by waterwall slag accumulations, visual observations and absorption rates were not significantly affected by overfire air operation.
- 4. On the test unit, where the overfire air port could not be installed as a windbox extension, test results indicated that the centerline of the overfire air port should be kept within 3 meters of the centerline of the top fuel elevation. Distances greater than 3 meters did not result in decreased NO $_{\rm X}$ levels. Changes in distance less than 3 meters did affect NO $_{\rm X}$ levels to

^{*} See Appendix D.

- a limited extent with the NO_X level increasing with decreasing distance.
- 5. Optimum overfire air operation was obtained with the test unit when the overfire air nozzles were tilted with the fuel nozzles. From a standpoint of NO_X control, emission levels increased when the nozzles were directed toward each other, and flame stability decreased when they were directed away from each other by more than 20-250. With the overfire air tilts fixed in a horizontal position, acceptable unit operation was obtained, however, NO_X levels varied with fuel nozzle position.
- 6. The results of the 30 day baseline, biased firing and overfire air corrosion coupon runs indicate that the overfire air operation for low NO_X optimization did not result in significant increases in corrosion coupon degradation. Additional studies will be required to verify these observations over long-term operation.
- 7. Variables normally used to control normal boiler operation should not be considered as NO_X controls with coal firing. These variables include unit load, nozzle tilt, pulverizer fineness, windbox dampers and total excess air.
- 8. Overall unit efficiency was not significantly affected by overfire air operation.

OBJECTIVES

The objective of program Phase II was to complete the design of the overfire air system, modify the Barry #2 unit accordingly, perform baseline, biased firing and optimization tests and based on the results of this program, prepare an application guideline for the NO_X control technology generated.

Specifically these objectives are defined as follows:

TASK I

Prepare the design, detailed fabrication and erection drawings necessary for modification of Barry No. 2 to incorporate an overfire air system. The system design provides for:

- a. Introducing a maximum of 20% of the total combustion air above the fuel admission nozzles.
- Overfire air introduction through the top two existing windbox compartments (thereby prohibiting the use of one elevation of fuel nozzles).
- Introduction of hot overfire air only with consideration for air preheat control.

An updated schedule for Tasks II and IV were also prepared under Task I.

TASK II

Complete the purchasing and fabrication of all equipment necessary for modification of the Barry No. 2 unit.

TASK III

Install all necessary instrumentation required to measure flue gas constituents and characterize the effects of combustion modifications on unit performance. Specifically the following determinations were made:

- a. Flue gas constituents: NO_x , SO_x , CO, HC, O_2
- b. Unit Performance Effects:

Fireside Corrosion
Furnace Heat Absorption
Sensible Heat Leaving Furnace
Superheater, Reheater and Air Heater Performance

TASK IV

Conduct a baseline test program to establish the effect of unit load, wall slagging and excess air variation on baseline emission levels, thermal performance and operating ranges. A baseline corrosion coupon test of 30 day duration was also conducted.

TASK V

Conduct a biased firing baseline test program to establish the effect on unit emission levels while operating with various fuel elevations out of service. These tests were performed specifically to evaluate the maximum emission control at full load and throughout the normal load range. In addition, the degree of control required to meet and maintain emission standards throughout the normal control range was also evaluated. A biased firing corrosion coupon test of 30 days duration was also conducted.

TASK VI

Install all equipment required for modification of the test unit and functionally check equipment to determine that proper operation is obtained. (See Figure 67).

TASK VII

Complete final preparations for conducting the overfire air test program to be conducted in Task VIII including the following:

- a. Finish installation of the furnace waterwall thermocouples.
- b. Check out all necessary test instrumentation for proper installation and operation.
- c. Review test program with EPA project officer and utility company.*
- d. Perform a final inspection of the test unit to assure proper operation.

TASK VIII

Conduct the overfire air test program, analyze the data generated and compare this data with that obtained during Task V. The program investigated the effect of overfire air location and rate at various unit loadings and evaluated operating conditions considered as optimum from the standpoint of NO_X control and unit operation. The final report was also generated under this Task.

TASK IX

Prepare a program outlining the application of the technology developed under this study to existing and new design tangentially coal fired utility boilers. These application guidelines will be submitted as a separate final report.

^{*} The test program for this study was originated during the Phase I study, Contract 68-02-0264 and was included as part of the Phase I report.

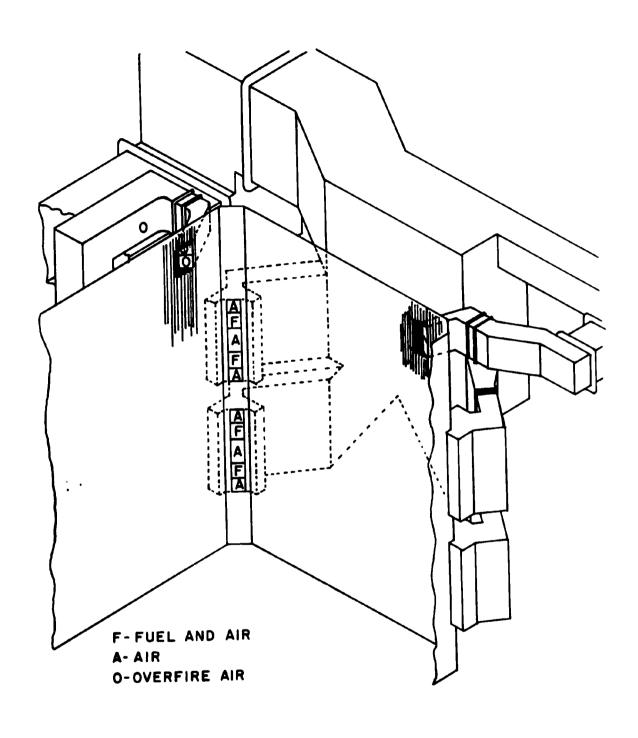


Figure 67. Schematic overfire air system, Barry Station No. 2

DISCUSSION

Tasks 1, 2 and 3 were completed essentially as stated in the program Phase II Objectives.

TASK IV & V - BASELINE AND BIASED FIRING TEST PROGRAMS

Test Data Acquisition and Analysis

The flue gas samples for determination of NO_X , O_2 , CO, SO_2 and HC emission levels were obtained at each of the two economizer outlet ducts. The emissions monitoring system is shown in Figure 68.

The flue gas samples were drawn from a twenty-four (24) point grid arranged on centroids of equal area in each duct with the exception of the SO₂ sample which was drawn from a single average point using a heated sample line. Fly ash samples for carbon loss analysis and dust loading were obtained at a single point in each duct.

The percent O₂ leaving the air preheaters was also determined using a twenty-four (24) point grid arranged in centroids of equal area for the determination of air preheater leakage and unit efficiency.

The following instrumentation was used in determining the emission concentrations:

- NO_x: Chemiluminescence Analyzer
- 2. 0₂: Paramagnetic Analyzer
- 3. CO: Nondispersive Infrared Analyzer
- 4. HC: Flame Ionization Analyzer
- 5. SO₂: Wet Chemistry
- 6. Carbon Loss & Dust Loading: ASME Particulate Sampling Train

A summary of the NO_X emission test data is tabulated on Data Sheets C1, C2, C3, C4 and C5.

Unit steam and gas side performance was monitored using calibrated thermocouples, pressure gauges, transducers and manometers as required.

Coal samples were obtained during each test for later analysis. The samples were obtained from each feeder and blended to form a composite sample. Fuel analyses, unit steam flow rates, absorption rates, gas and air weights and

Figure 68. Gaseous emissions test system

efficiencies were calculated for each test run. Unit efficiency was determined using the heat losses method (based on ASME Power Test Code 4.1-1964). The 30 day waterwall corrosion coupon evaluation was conducted using a specially designed probe consisting of four individual coupons. Individual probes were exposed at five locations on the front furnace wall as shown on Figure 69. A typical trace of the control temperature range for each of the twenty coupons is shown on Figure 70. The control temperature ranges were the same for the baseline, biased firing and overfire air studies.

TASK IV - BASELINE TEST STUDY

Load and Excess Air Variation

Tests 1 through 7 were conducted to determine the effect of varying excess air at three unit loads on unit emission levels and performance. These tests were conducted with clean furnace conditions.

As shown in the following table, NO_X emission levels increased with increased excess air but did not change significantly with changes in unit loading. An average increase of 3.34 ng/J was noted for each 1% change in excess air over the normal unit operating range.

Test <u>No.</u>	Main Steam Flow kg/s	NO ₂ ng/J	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Eff.	WW Slag
1	61	319.3	7.5	35.5	130.6	88.3	C1ean
2	62	246.0	43.5	17.5	117.1	88.2	C1 ean
3	59	362.8	2.5	58.9	151.3	87.6	Clean
4	88	215.0	11.9	12.6	109.2	89.3	Clean
5	112	248.6	9.5	22.7	117.9	89.0	C1ean
6	113	181.8	47.3	11.7	107.2	89.1	Clean
7	112	335.1	10.1	30.8	125.3	89.5	Clean

A maximum excess air limit of 30.8 and 58.9 percent was obtained at full and half load conditions respectively due to ID fan capacities.

Minimum excess air limits of 20 to 25 percent were determined as those at which acceptable CO emission levels could be maintained. Reduction of NO2 emission levels using excess air reduction was therefore limited to approximately 248.6 ng/J as obtained during Test 5.

The changes in NO2, CO, percent carbon loss in the fly ash and unit efficiency versus theoretical air to the fuel firing zone are shown on Figures 71, 72, 73 and 74, respectively. The theoretical air (TA) to the firing zone is used in this case as it accounts for variations in position and leakage in the compartment dampers above the top active fuel compartment and thereby presents a more accurate determination of the actual air available for combustion in the fuel firing zone than does the total excess air. As seen on Figure 71 for clean furnace conditions the NO2 correlates well with TA with little variation due to unit load. As shown on Figures 72 and 73 carbon loss in the fly ash and CO emission levels increased with decreased TA levels. Unit load does not appear to have a discernable effect. Figure 74 is a plot of unit efficiency versus

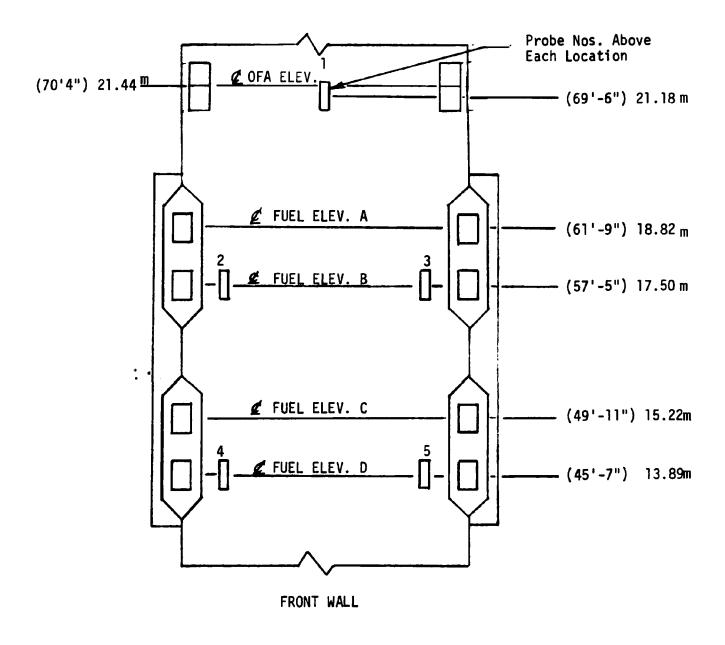


Figure 69. Waterwall corrosion probe locations, Alabama Power Company Barry Station No. 2

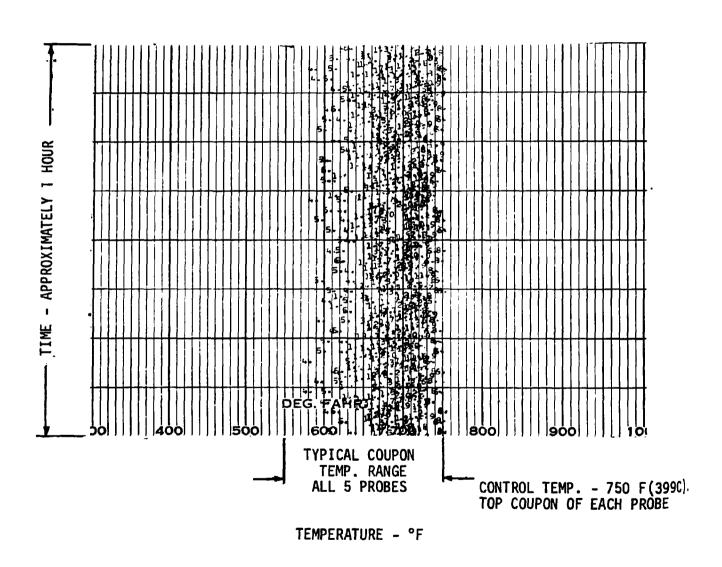


Figure 70: Typical corrosion probe temperature range, Barry Station No. 2

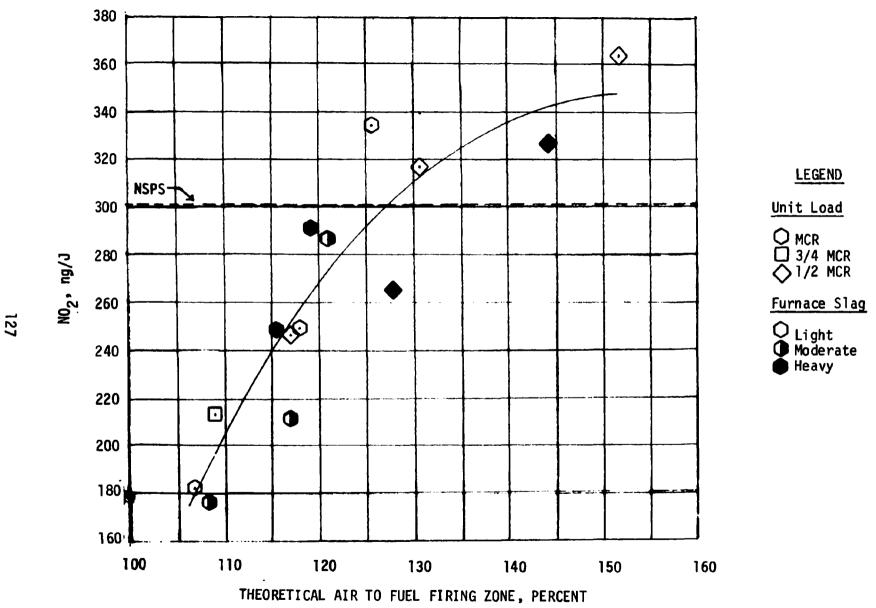


Figure 71: $N0_2$ vs. theoretical air to fuel firing zone, baseline study, Tests 1-14

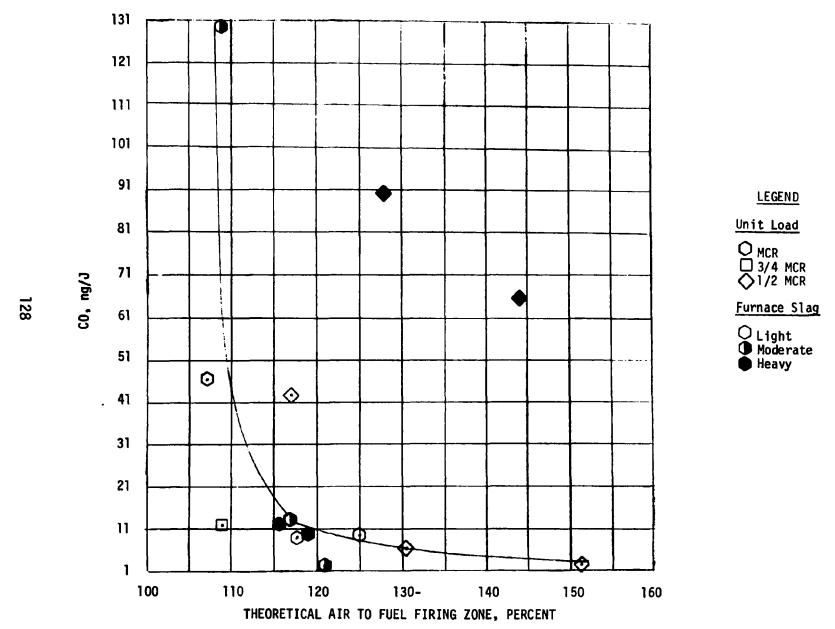


Figure 72: CO vs. theoretical air to fuel firing zone, baseline study, Tests 1-14

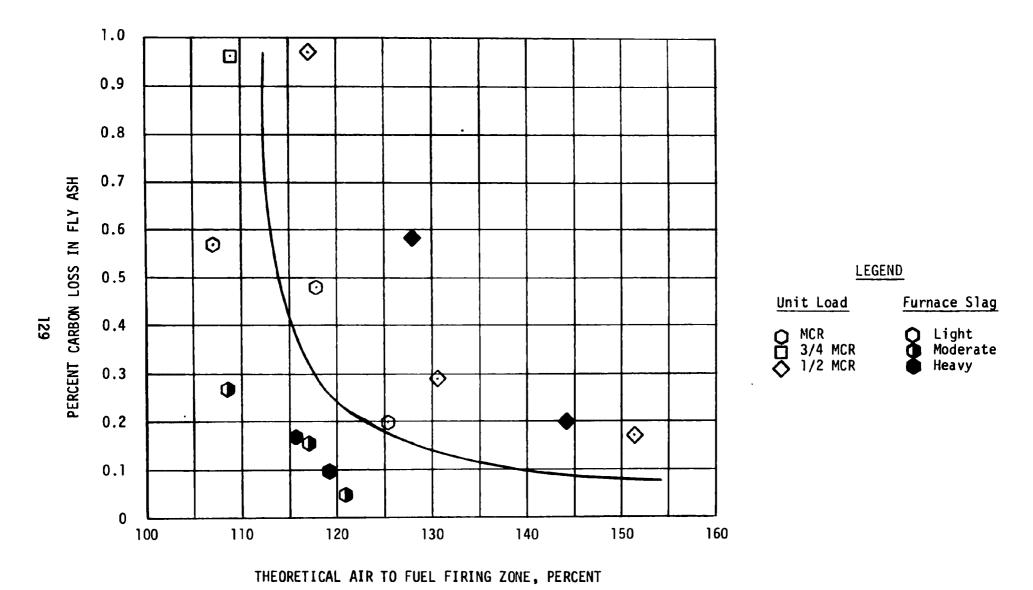


Figure 73: Percent carbon loss vs. theoretical air to fuel firing zone, baseline study, Tests 1-14

UNIT EXCESS AIR - ECONOMIZER OUTLET, PERCENT

Figure 74: Unit efficiency vs. unit excess air

LEGEND BASELINE TESTS

Unit Load	Furnace Slag
○ MCR	○ Light
□ 3/4 MCR	● Moderate
○ 1/2 MCR	■ Heavy

BIASED FIRING TESTS

<u>Unit Load</u>	Fuel Elev. Out of Service				
△ Max Poss. △ 3/4 MCR △ 1/2 MCR	△ Top △ Top Ctr. △ Bot. Ctr. ※ Bot.				

unit excess air measured at the economizer outlet.

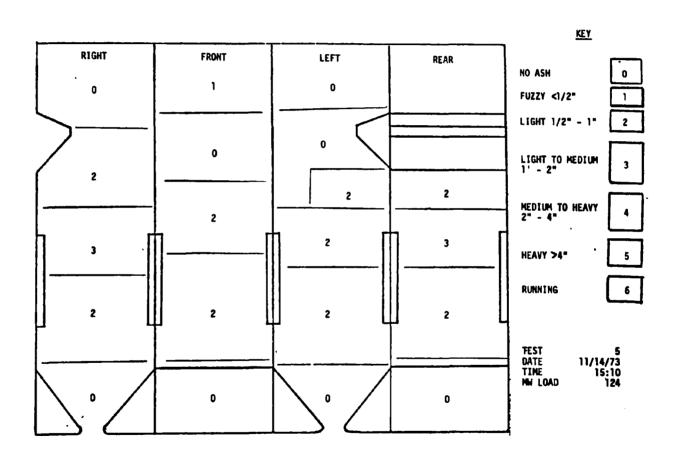
During this portion of the test program total hydrocarbon levels (HC) were monitored and were found to be present in only trace quantities as shown on Data Sheets C1 and C2. The SO₂ levels measured are also shown on Data Sheets C1 and C2.

Furnace Wall Deposit Variation

Tests 8 through 14 were conducted to determine the effect on unit performance and emission levels of varying furnace waterwall deposits from a clean condition to the maximum possible slagging condition obtainable. The maximum slagging condition was obtained after operation in excess of twenty-four hours without operating any wall blowers. During this time period slag deposits of up to 102 mm in thickness could be obtained in and above the fuel firing zone.

Test No.	Main Steam Flow kg/s	NO ₂ ng/J	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Eff. %	WW Slag
8	114	213.5	14.1	21.5	116.9	89.6	1/2 Max Dep
9	112	178.7	130.2	13.0	108.5	89.6	1/2 Max Dep
10	112	286.1	1.6	26.0	120.8	89.6	1/2 Max Dep
11	59	267.0	90.3	32.7	128.0	88.3	Max Dep
12	57	327.2	66.9	51.2	144.1	87.9	Max Dep
13	114	247.7	12.4	20.7	115.7	89.2	Max Dep
14	113	292.6	10.3	24.3	119.2	89.3	Max Dep

As can be seen from Figure 71, furnace slagging did not exhibit a discernable effect on NO_X emission levels. As shown in Figures 72 and 73, this condition was also found to be true for carbon loss in the fly ash and CO emission levels with the exception of the half load Tests 11 and 12 where CO levels higher than those obtained with clean furnace conditions were observed. The high CO levels may have been due to slag buildup at or near the fuel and air nozzles which could have contributed to poor combustion. The higher CO levels were not observed under full load with heavy slag operation. Figure 74 indicates that furnace cleanliness did not exhibit any discernable effect on unit efficiency.


Slag patterns taken during clean, moderate and heavy slagging conditions at full load operation are shown on Figures 75, 76 and 77.

TASK V - BIASED FIRING STUDY

Fuel Elevations Out of Service Variation

Tests 15 through 24 were conducted to determine the effect on NO_X emission levels of taking various fuel elevations out of service (biased firing) at various unit loadings. As shown on the following table the maximum NO_X emissions control was obtained with the top elevation of fuel nozzles out of service at maximum and 75 percent maximum loading (Tests 20 and 21). At 50 percent maximum loading (Test 23) the high excess air levels required to maintain unit steam temperatures appeared to negate any NO_X reductions obtained by biasing the top

Figure 75: Furnace slag pattern, clean furnace

KEY RIGHT FRONT LEFT REAR NO ASH 0 FUZZY <1/2" LIGHT 1/2" - 1" LIGHT TO MEDIUM 3 3 0 3 MEDIUM TO HEAVY 2" - 4" 3 WET 4 3 2 HEAVY >4" 2 HET 4 RUNNING TEST / DATE TIME HW LOAD 8 11/15/73 11:10 126 0

Figure 76: Furnace slag pattern, moderate slag furnace

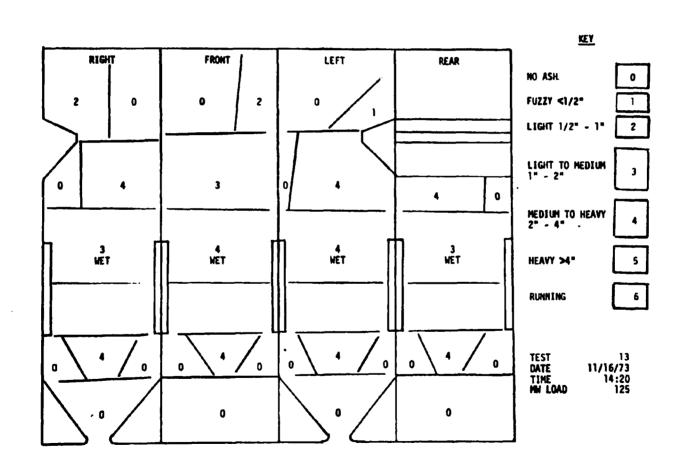


Figure 77: Furnace slag pattern, heavy slag furnace

fuel nozzle elevation, however, the emissions level obtained was below the current EPA limit for coal fired units of 301 ng/J.

Test No.	Main Steam Flow kg/s	NO ₂ ng/J	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Eff.	Fuel Nozzle Elevation Out of Service
15	55	288.0	9.8	50.1	105.8	87.9	Bottom
16	82	272.8	8.9	26.7	121.7	89.3	Bottom
17	87	200.6	14.0	21.1	116.5	89.1	Bottom
18	89	189.2	11.9	22.2	117.5	89.3	Bottom Center
19	89	189.9	10.6	21.8	117.2	88.9	Top Center ·
20	87	143.1	8.1	24.2	94.7	88.8	Top
21	86	166.2	9.5	29.0	97.3	89 .6	Top
22	58	268.5	9.1	48.0	112.5	87.8	Top
23	59	249.1	7.0	47.0	141.4	87.9	Top Center
24	56	306.2	8.4	47.0	141.3	87.7	Bottom Center

As can be seen from Figure 78, biasing the center two and bottom fuel elevations did not have a discernable effect on NO_X emission levels although the emission level tended to be higher at reduced unit loadings for given TA levels.

Figures 79 and 80 indicate that with biased firing, low TA levels to the fuel firing zone were obtained without increasing either CO emission levels or the carbon loss in the fly ash. Figure 74 shows that biased firing operation did not significantly affect unit efficiency. This condition is due to the ability to maintain acceptable total unit excess air levels during biased firing operation.

TASK VIII - UNIT OPTIMIZATION STUDY

Load and Excess Air Variation (After Modification)

Tests 1 through 7 were performed with unit conditions closely approximating those of Baseline Tests 1-7 under Program Task IV. A clean furnace was maintained as the excess air was varied at three unit loads.

The effect of these operating conditions emission levels and performance can be seen in the Table below.

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	WW Slag
1	61	221.9	8.4	33.5	127.1	88.4	Clean
2	59	167.4	114.4	16.0	113 .4	88.8	Clean
3	60	319.8	10.6	64.7	155.4	87.4	Clean
4	87	162.4	33.4	15.5	111.0	89.8	Clean
5	125	202.1	8.0	21.0	115.3	89.4	Clean
6	122	165.3	38.8	12.4	107.1	89.2	Clean
7	117	238.8	6.6	25.4	119.5	89.5	Clean

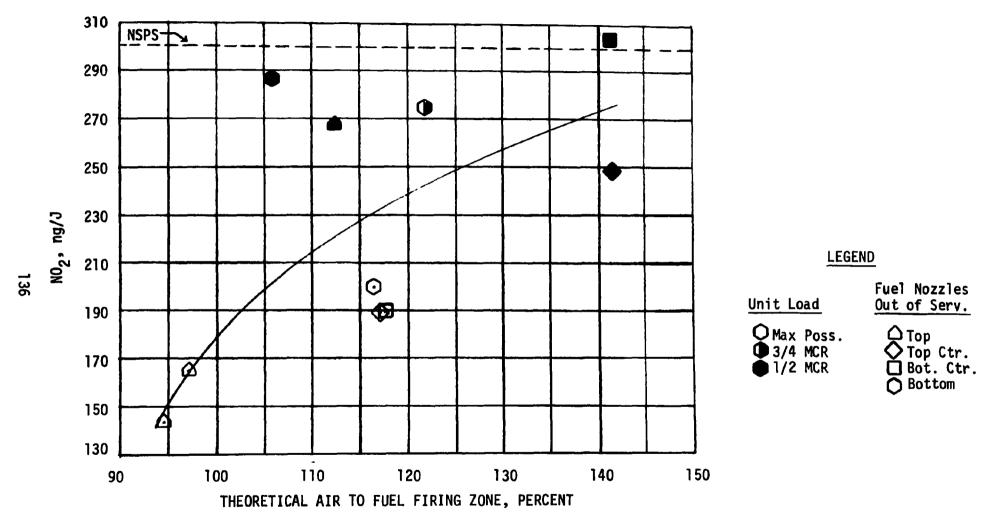


Figure 78: NO_2 vs. theoretical air to fuel firing zone, biased firing study, Tests 15-24

Figure 79: CO vs. theoretical air to fuel firing zone, biased firing study, Tests 15-24

THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT

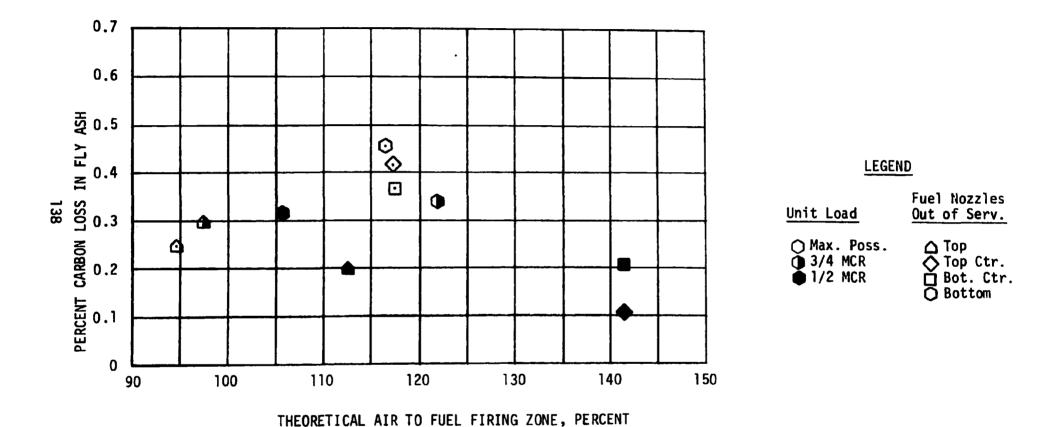


Figure 80: Percent carbon loss vs. theoretical air to fuel firing zone, biased firing study, Tests 15-24

As witnessed in the previous baseline tests, NO_X emission levels increased with increased excess air.*

ID fan capacities limited excess air to a maximum of 64.7 and 33.5 percent at half and full load conditions respectively. Acceptable minimum excess air limits were established at 20-25 percent to control CO emission levels. Thus, NO_X emission levels could only be reduced to approximately 215 ng/J through excess air reduction. The effect of theoretical air to the firing zone on NO_X , CO, and percent carbon loss in the fly ash (% CL) can be seen in Figures 81, 82 and 83. Consistent with the original baseline tests, theoretical air to the firing zone (TA) was used for comparison in place of total excess air (EA). TA is determined by location and means of admission as well as quantity, and consequently better defines that air actually available for initial combustion.

Figure 81 indicates a definite increase in NO_X emission levels with increasing TA for clean furnace conditions. CO emission levels and percent carbon loss in the fly ash can be seen to increase with decreased TA without overfire air. Reasonable control of CO and % CL can only be maintained at TA levels above 120%. No definite relationship can be observed between unit load and CO emission levels. Percent CL can be seen to be greater at higher unit loads for given TA levels.

Changes in steam generator efficiency versus excess air at the economizer outlet are presented in Figure 84. Overall, unit efficiency decreases as the excess air increases.

Hydrocarbon emission levels appeared only in trace quantities for this portion of the test program. HC and SO₂ levels are presented on Data Sheet C3.

Furnace Wall Deposit Variation (After Modification)

The effect of furnace waterwall deposits on unit performance and emission levels was studied in Tests 8 through 14 (Clean Condition - Maximum Slagging Conditions). The results are shown in the table below. Dirty conditions were established after a minimum of 24 hours of not operating the wall blowers. Deposits of up to 102 millimeters in thickness could subsequently be found in and above the fuel firing zone.

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	WW Slag
8	122	235.3	7.4	17.8	112.3	89.0	1/2 Max
9 10	124 119	166.9 215.4	9.6 9.2	12.1 26.6	106.9 120.5	88.9 89.5	1/2 Max 1/2 Max

^{*} In general, NO₂ values were slightly lower <u>after modification</u> for the same test conditions. This resulted from an upgraded firing system installed between the sets of tests along with an average percent nitrogen in fuel decrease of 0.15 percent (1.21 to 1.06 percent). Also, fuel higher heating values and furnace outlet temperatures tended to be lower for Tests 1-7 after modification.

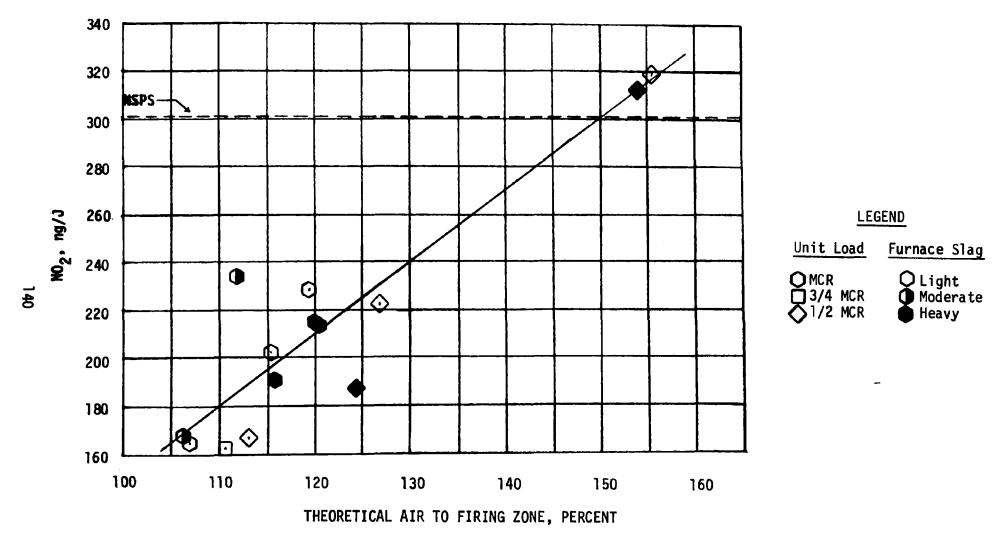
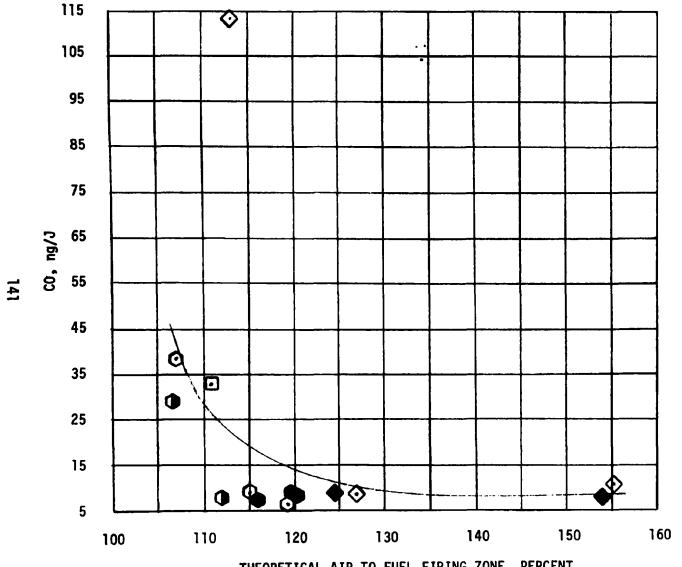



Figure 81: NO₂ vs. theoretical air to firing zone, overfire air study, load and excess air variation, Tests 1-14

Unit Load Furnace Slag

LEGEND

OMCR □ 3/4 MCR ○ 1/2 MCR

Light Moderate Heavy

THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT

Figure 82: CO vs. theoretical air to firing zone, overfire air study, load and excess air variation, Tests 1-14

Figure 83: Percent carbon loss vs. theoretical air to firing zone, overfire air study load and excess air variation, Tests 1-14

THEORETICAL AIR TO FIRING ZONE, PERCENT

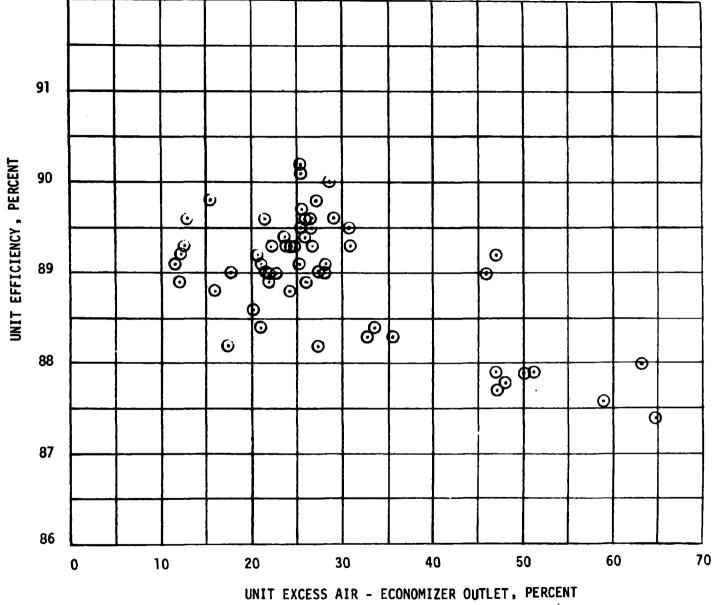


Figure 84: Unit efficiency vs. excess air - economizer outlet, all tests (before & after modification)

Test No.	Main Steam Flow kg/s	NO ₂ ng/J	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	WW Slag
11	68	186.8	8.0	30.9	124.6	89.3	Max
12	61	312.9	7.3	63.1	154.0	88.0	Max
13	120	195.6	7.1	22.0	116.2	89.0	Max
14	118	215.4	7.0	25.9	119.9	89.4	Max

Figures 81, 82 and 83 reveal no observable effect of furnace cleanliness on NO_χ or CO emission levels along with percent carbon loss in the fly ash. Again, NO_χ values were generally slightly lower after modification. Nitrogen in fuel decreased an average of 0.19 percent from 1.23 percent. Furnace outlet temperatures were somewhat lower for Tests 8 through 14 after modification although fuel higher heating values showed no definite change.

Slag patterns taken during full load operation for clean, moderate and heavy slagging furnace conditions are shown in Figures 85, 86 and 87.

This set of tests also confirms the results found in Tests 1 through 7, i.e., NO_X emission levels increase with increased excess air. NO_X cannot be decreased through excess air reductions below 20 percent excess air while maintaining an acceptable CO emission level without overfire air.

OFA Location, Rate and Velocity Variation

Tests 15 through 23 were performed to establish the effect of overfire air admission on NO_X emission levels. The unit load and excess air remained constant for moderately dirty furnace conditions. Location of air admission to the furnace was varied.

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	Theo. Air To Firing Zone - %	Unit Eff.	Mills In Serv.	Adm. Pts.*	Adm. Rate
15	93	178.7	8.6	114.5	90.0	BCD	0-1	0
16	94	127.3	9.1	96.7	89.8	BCD	0–1	Max
17	94	127.3	9.9	95.8	89.7	BCD	0-2	Max
18	96	114.4	14.6	84.8	89.6	BCD	0-1,0-2	Max
19	94	116.1	11.9	89.3	89.3	BCD	0-1,0-2	1/2 Max
20	96	161.7	8.8	100.5	90.2	BCD	0-3	Max
21	95	241.7	7.7	117.4	90.1	ABC	0-1	0
22	95	164.6	7.8	90.4	89.0	ABC	0-1,0-2	Max
23	96	168.1	7.7	96.9	89.1	ABC	0-1,0-2	1/2 Max

* OFA Admission Points:

0-1: Top overfire air compartment

0-2: Bottom overfire air compartment.

0-3: Top fuel elevation out of service.

KEY RIGHT FRONT LEFT REAR NO ASH 1 FUZZY <1/2" LIGHT 1/2" - 1" LIGHT TO MEDIUM 1 1 2 1 3 3 2 MEDIUM TO HEAVY 2" - 4" 3 3 3 HEAVY >4" 2 2 2 2 RUNNING 1 1 TEST #5 DATE 6/19/74 TIME 2:00 PM MM LOAD130 MM

Figure 85: Furnace slag pattern, clean furnace

KEY RIGHT FRONT LEFT REAR NO ASH 3 3 FUZZY <1/2" LIGHT 1/2" - 1" 2 2 2 LIGHT TO MEDIUM 3 2 3 MEDIUM TO HEAVY 2" - 4" 3 3 3 3 3 3 3 HEAVY >4" RUNNING 2 2 2 2 1 .1 1 1 1 TEST #8 & #9
DATE 6/20/74
TIME 1030AM
NO LOAD 130 1

Figure 86: Furnace slag pattern, moderate slag furnace

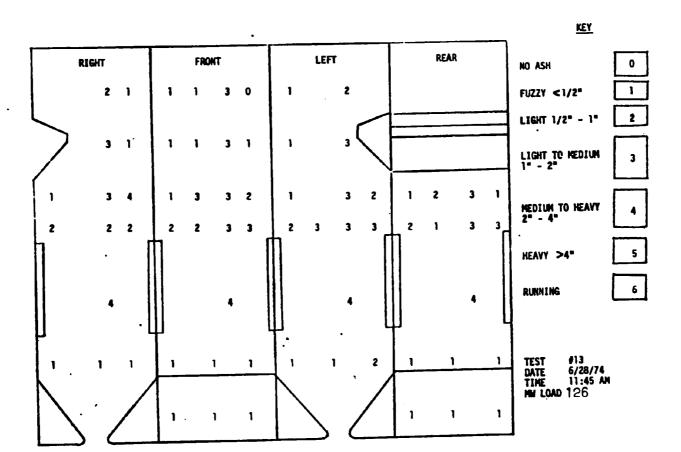


Figure 87: Furnace slag pattern, heavy slag furnace

As shown in Figure 88, this set of tests shows a tendency of NO_X emission levels to decrease with decreased theoretical air to the firing zone. NO_X levels are generally higher with ABC mills (top 3 elevations) in service than with BCD mills (bottom 3 elevations). Both operating conditions support the premise of reducing NO_X emission levels by reducing the air input to the fuel firing zone and admitting the balance of combustion air downstream of that point. The fire is thereby spread out over more of the furnace reducing its intensity. The above factors are limited by flame stability which became very lazy in Test 18. By using the bottom 3 elevations in place of the top 3 elevations, the distance between the overfire air and the firing zone was increased. (The mean firing elevation is also slightly decreased.) Comparison of Tests 18 and 19 with Tests 22 and 23 reveals lower NO_X levels obtained with increased distance between the overfire air and the firing zone. Operation at TA levels below 95% did not result in significant reductions in NO_X emission levels.

CO emission levels remained acceptable for the entire set of tests where the total excess air was approximately 27 percent as shown on Figure 89.

OFA admission location or rate variation exhibited no significant change in percent carbon loss in the fly ash as shown on Figure 90.

Unit efficiencies were not significantly affected by fuel elevations in service, or by overfire air location and rate variation. This is explained by the fact that essentially constant total excess air levels were maintained during this study.

OFA Tilt Variation

Tests 24 through 30, and 33, were conducted at full unit load with excess air and theoretical air levels to the firing zone of approximately 24 percent and 92 percent, respectively. With moderate slagging conditions on the waterwalls the fuel nozzle tilts and OFA tilts were varied. This essentially moves the firing zone both in the furnace and in its relative position to the overfire air. Fuel nozzle tilts that are maximum minus combined with OFA tilts of maximum plus increase the distance between the overfire air and the firing zone. As with previous methods of increasing this distance, the NO_X emission levels are decreased. Figure 91 shows that as the tilts are moved toward one another (fuel nozzle tilts up; OFA tilts down), the OFA-firing zone separation is decreased and the NO_X levels are increased.

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	Fuel Nozzle <u>Tilt-°</u>	OFA Tilts-°
24	113	169.6	7.7	25.9	94.2	89.6	- 5	0
25	116	145.4	8.3	23.7	92.4	89.3	-23	Ō
26	114	183.9	9.7	25.1	93.2	88.9	+19	Ō
27	113	172.2	6.7	22.3	91.5	89.3	-5	-30
28	115	202.1	8.6	20.2	89.6	88.6	+22	-30
29	116	142.3	15.0	23.7	92.6	89.4	-21	+30
30	116	169.6	7.9	21.6	90.7	89.0	-4	Õ
33	114	166.5	7.5	27.4	94.6	89.0	-22	-22

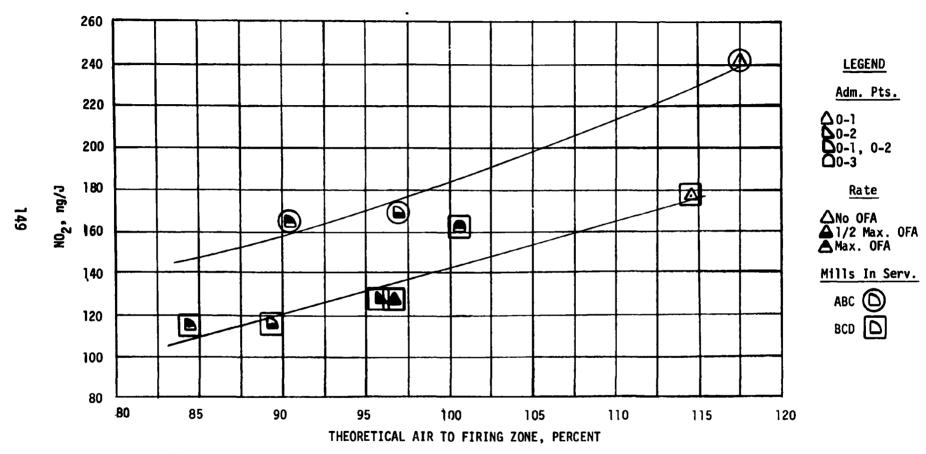


Figure 88: NO₂ vs. theoretical air to firing zone, overfire air location, rate & velocity variation, Tests 15-23

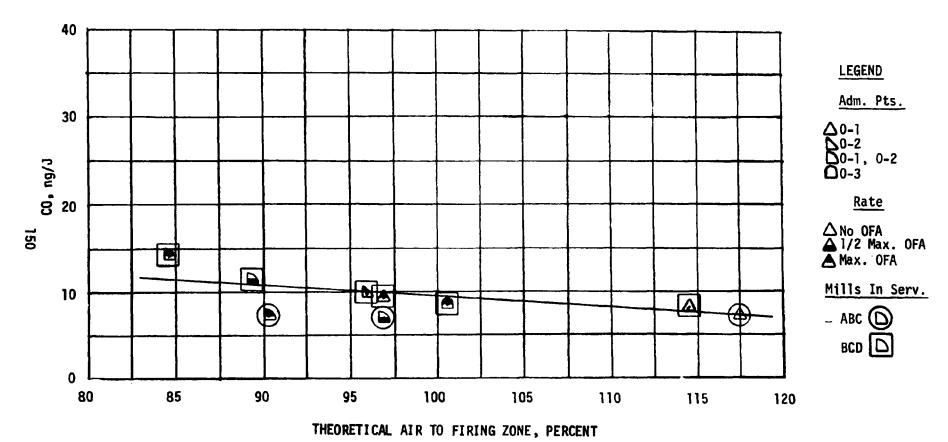


Figure 89: CO vs. theoretical air to firing zone, overfire air location, rate & velocity variation, Tests 15-23

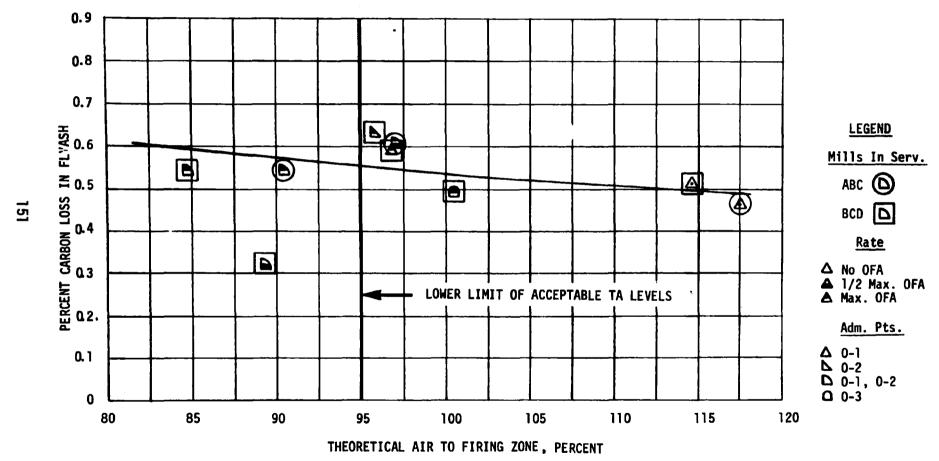
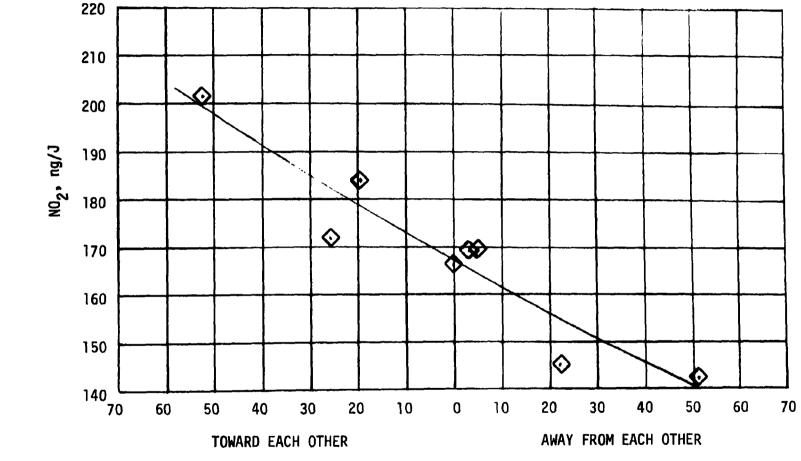



Figure 90: Percent carbon loss vs. theoretical air to firing zone, overfire air location rate & velocity variation, Tests 15-23

OFA TILT AND FUEL NOZZLE TILT . DEGREES

Figure 91: NO2 vs. OFA tilt and fuel nozzle tilt differential, OFA tilt variation Tests 24-33

When the OFA tilts are maximum minus and the fuel nozzle tilts maximum plus, the term overfire air becomes ambiguous. The actual overfire air is less than the reported value, because the air is being forced down into the raised firing zone. At this point where the combined fuel nozzle and OFA tilt differential is 52 degrees toward each other, the NO_X emission level reaches a maximum of 202.1 ng/J.

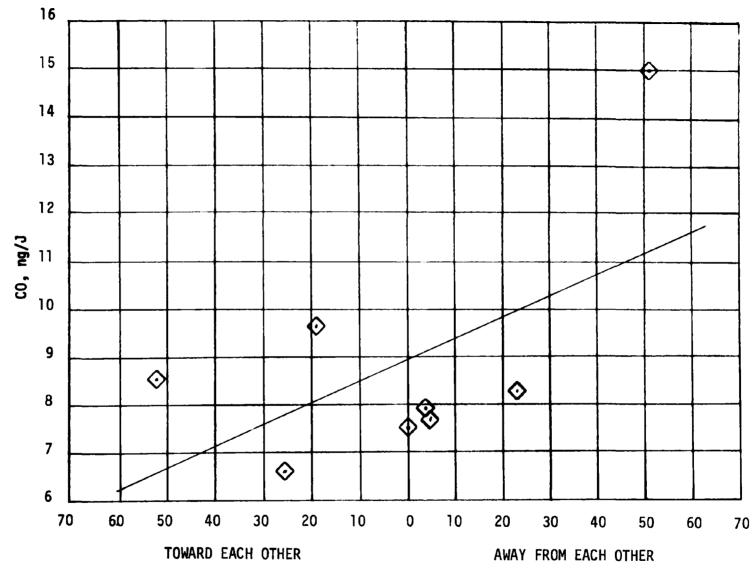
Percent carbon loss in the fly ash exhibits a definite increase as the fuel nozzle tilts and OFA tilts move away from each other. This can be seen in Figure 92.

CO emission levels also show an increase as the tilt differential increases, yet there is enough total excess air to maintain an acceptable emission level as shown in Figure 93.

Flame stability arises as a limiting factor in variation of the tilts. As the tilts move substantially away from each other, the fire becomes unstable and pulsing may result. Test 29 was performed with a fuel nozzle and OFA tilt differential of 51 degrees away from each other. NO $_{\rm X}$ emission levels decreased to 142.3 ng/J, yet the CO emission levels began to increase and the fire appeared less stable. Maintaining the fuel nozzle tilts and OFA tilts at approximately equal tilt angles resulted in acceptable flame stability as well as reduced NO $_{\rm X}$ emission levels.

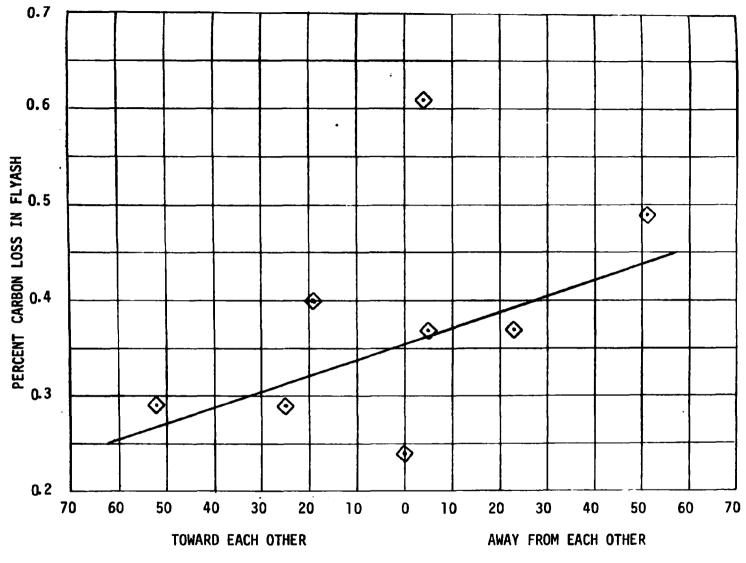
For all OFA tilt variation tests the $NO_{\rm X}$ emissions level obtained was below the EPA limit of 301 ng/J.

Load Variation at Optimum Conditions


Tests 30 through 35 were conducted to evaluate unit performance and emission levels at optimum operating conditions as determined during Tests 15 through 29. Tests were conducted over the unit load range at varying furnace waterwall slagging conditions. The NO_X emission level results of this series of tests versus unit loading, expressed as main steam flow, are shown on Figure 94.

Test No.	Main Steam Flow kg/s	NO ₂	CO ng/J	X-S Air	Theo. Air To Firing Zone - %	Unit Effic.	WW Slag
30	116	169.6	7.9	21.6	90.7	89.0	Clean
31	87	169.1	7.9	25.2	89.4	89.1	Clean
32	57	197.8	7.4	46.9	88.5	89.2	Clean
33	114	166.5	7.5	27.4	94.6	89.0	Max
34	86	145.2	8.0	27.4	90.6	88.2	Max
35	57	156.4	7.6	45.9	88.5	89.0	Max

This figure illustrates the range of NO₂ levels obtained both during baseline (after modification) and optimum unit operations. Not all the baseline tests are included as in some cases unit operation was felt to depart excessively from normal operations. Low excess air operation can be cited as an example.


The wide range of NO2 levels obtained, particularly during the baseline tests

OFA TILT AND FUEL NOZZLE TILT 🛆, DEGREES

Figure 92: CO vs. OFA tilt and fuel nozzle tilt differential, OFA variation Tests 24-33

OFA TILT AND FUEL NOZZLE TILT Δ , DEGREES

Figure 93: Percent carbon loss vs. OFA tilt and fuel nozzle tilt differential, OFA tilt variation, Tests 24-33

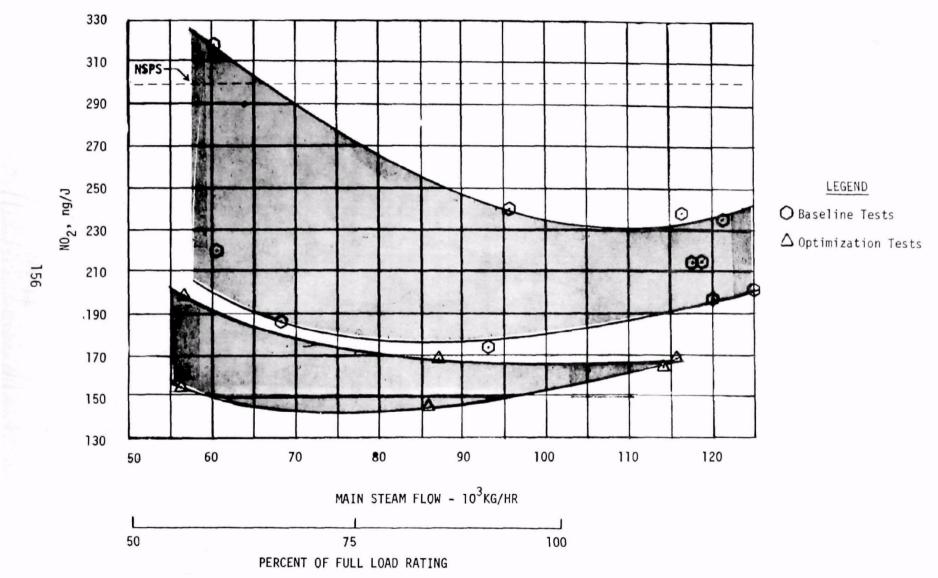


Figure 94: NO_2 vs. main steam flow, ranges for normal & optimum operation

are due to variations in unit operating parameters such as excess air level. During the optimization tests, total excess air at the unit economizer outlet was maintained between 20 and 28% at full and 3/4 load and 45 to 47% at 1/2 load and fuel nozzle tilts raised or lowered as required to maintain acceptable reheat and superheat outlet temperatures. Also minimum excess air levels were established on the basis of maintaining acceptable CO emission levels and flame stability.

Tests 30, 31 and 32 were conducted as a series and no problems were encountered while changing load with optimum operation.

FURNACE PERFORMANCE

During the test program, furnace performance was monitored by use of chrodal thermocouples installed in the furnace waterwalls. A schematic of the thermocouple locations is shown in Figure 95 and a tabulation of the absorption rates obtained is presented on Sheets C6, C7 and C8. The temperatures and corresponding absorption rates were found to vary significantly with wall slag conditions making data interpretation difficult. The method finally arrived at as representing an accurate indication of furnace performance is as follows:

The front and right side wall centertube profiles were plotted as shown in Figure 96 and the average of these profiles determined. It should be noted that the maximum and minimum profiles shown do not represent individual walls in every case, i.e., at given furnace elevations the maximum rate shown may switch from wall to wall.

For comparison of optimum and normal unit operation with respect to furnace performance, three full load tests with similar furnace slagging conditions, etc., were selected for comparison. The average centerline profiles for these tests (14, 24, 33) were determined, as shown on Figures 96, 97 and 98, and then plotted together as shown on Figure 99. As shown, furnace performance remained essentially unchanged when furnace slagging effects are taken into account.

It should be noted here that obtaining desired slag conditions proved to be difficult and somewhat unpredictable during overfire air operation. This situation was most pronounced in the firing zone where slag accumulations would normally shed themselves before appreciable accumulations could be built up.

WATERWALL CORROSION COUPON EVALUATION

Following completion of the steady state phases of the baseline, biased firing and overfire air test programs, thirty (30) day waterwall corrosion coupon evaluations were performed. The purpose of these evaluations was to determine whether any measurable changes in coupon weight losses could be obtained for the various firing modes studied.

The individual probes were exposed at five locations on the furnace front wall as shown on Figure 69. The coupon temperatures were maintained at the same levels for each 30 day run and a typical trace of the control temperature range for each of the twenty coupons is shown on Figure 70.

The individual coupon weights were determined before and after each thirty day test and the individual coupon and average probe weight losses are shown on

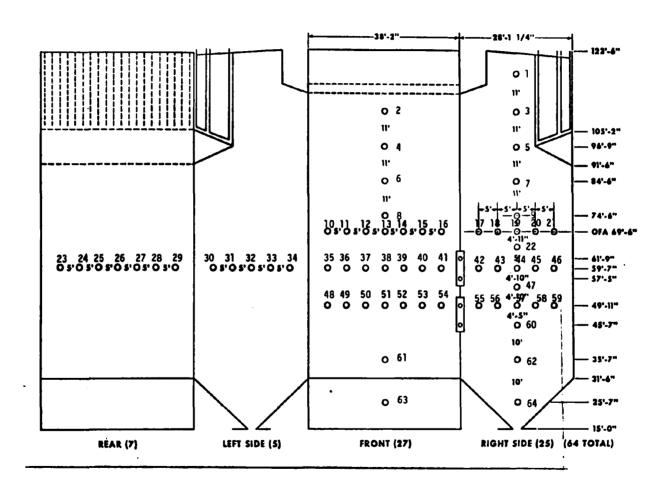


Figure 95: Chordal thermocouple locations on the furnace waterwalls

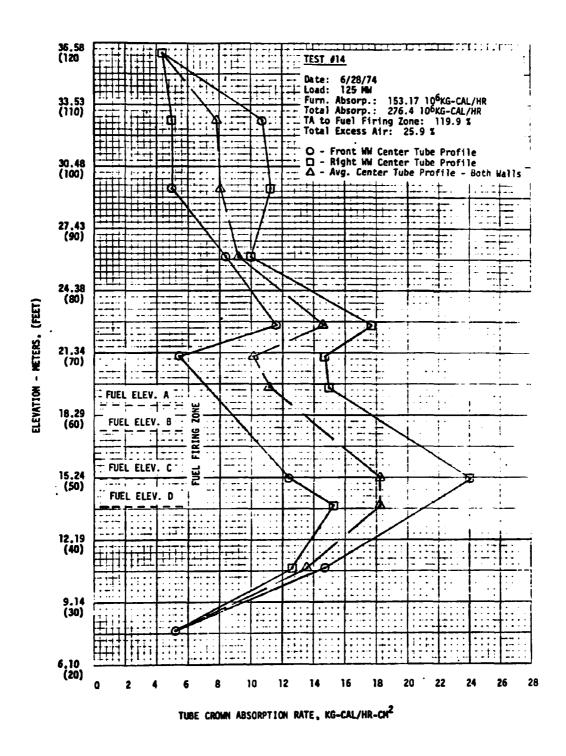


Figure 96: Average centerline absorption profile, Test 14

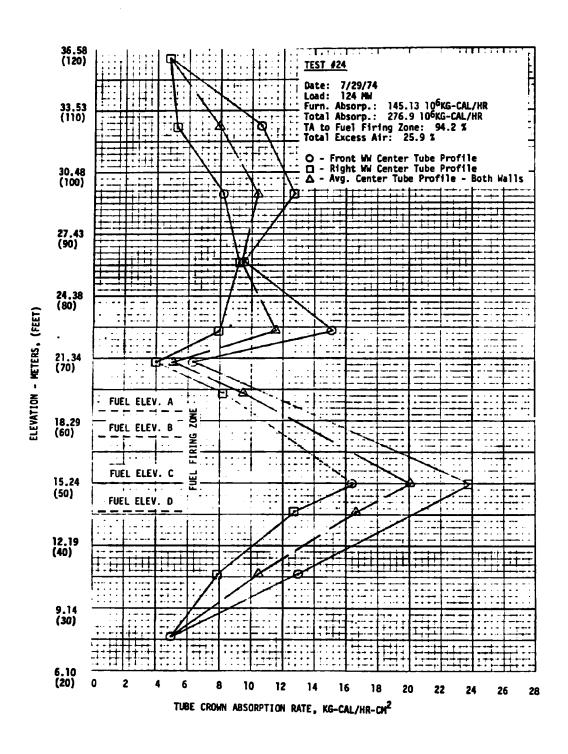


Figure 97: Average centerline absorption profile, Test 24

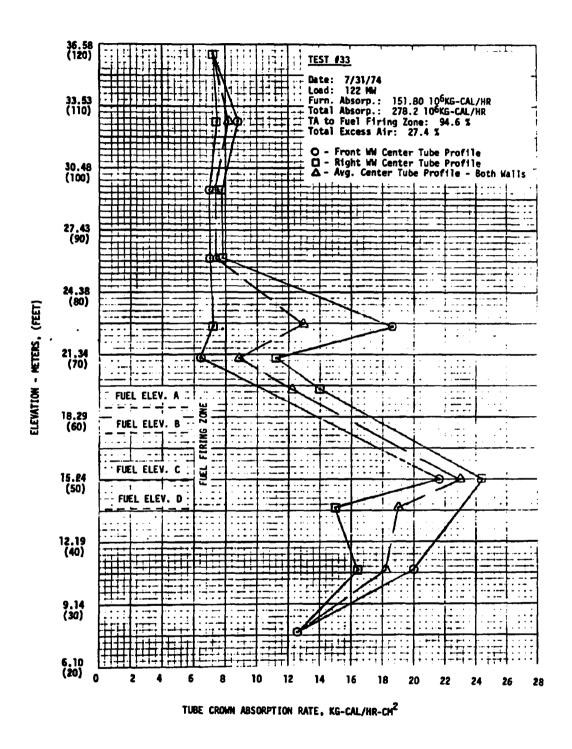


Figure 98: Average centerline absorption profile, Test 33

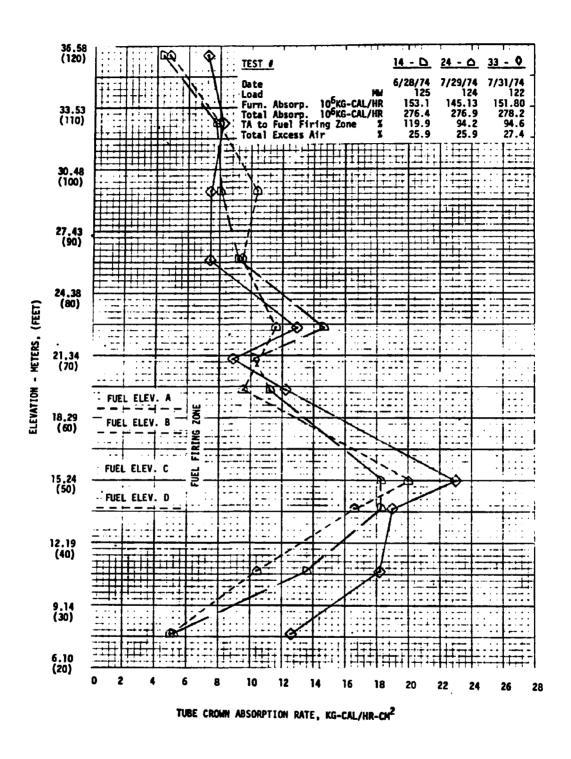
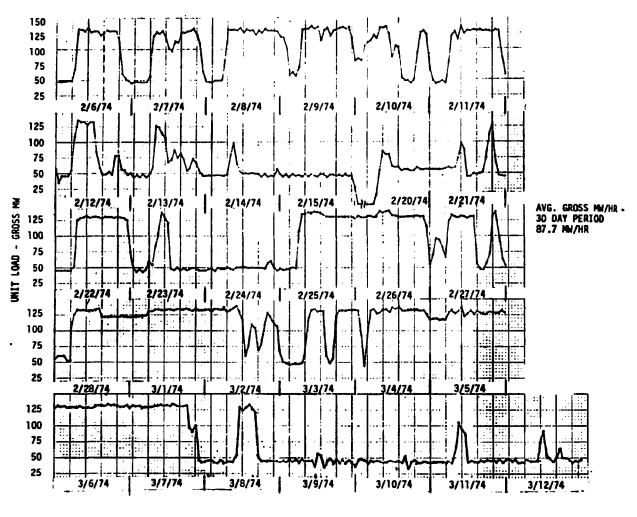


Figure 99: Average centerline absorption profile, All Tests

Sheets C9, C10 and C11. The weight losses are calculated as mg/cm^2 of coupon surface area. Of the sixty coupons exposed, three were damaged during disassembly and were therefore not included in the weight loss determinations. The affected coupons were as follows: Coupon K-1, baseline study, and coupons 2-1 and 2-4, overfire air study. In addition, five coupons from probes T and N of the overfire air study resisted disassembly and were therefore weighed as single units and average weight losses were determined.

Figures 100, 101 and 102 show the unit load schedules for each of the 30 day test periods.

The biased firing study was conducted with the top fuel firing elevation out of service as this operating condition was shown during steady state biased firing tests to produce the lowest NO_X emission level of the biasing modes studied. The overfire air study was conducted using an "optimized" operating mode as determined during the overfire air steady state tests.


Throughout each study the following damper positions were maintained over the load ranges indicated.

At unit loadings below 56.7 kg/s steam flow, with two elevations of mills in service, damper positions were maintained as follows:

Biased Firing Operation		Overfire Air Operation				
		OFA Dampers	100 100			
<u>Coal</u>	<u>Auxiliary</u>	<u>Coal</u>	<u>Auxiliary</u>			
.0 0 30	0 0 100 - Combustion 100 - Air Only 50	100 30 0 0	100 50 50 0 0			
		-	0			

From 56.7 to 75.5 kg/s steam flow, with three elevations of mills in service, the damper positions were as follows:

Biase	d Firing Operation	Overfire Air Operation					
		OFA Dampers	100 100				
<u>Coal</u>	Auxiliary	Coal	<u>Auxiliary</u>				
100	100 _ Combustion Air Only	100	100				
100	50	100	50				

CORROSION PROBE EXPOSURE TIME - DAYS

Figure 100: Gross MW loading vs. time - baseline corrosion probe study

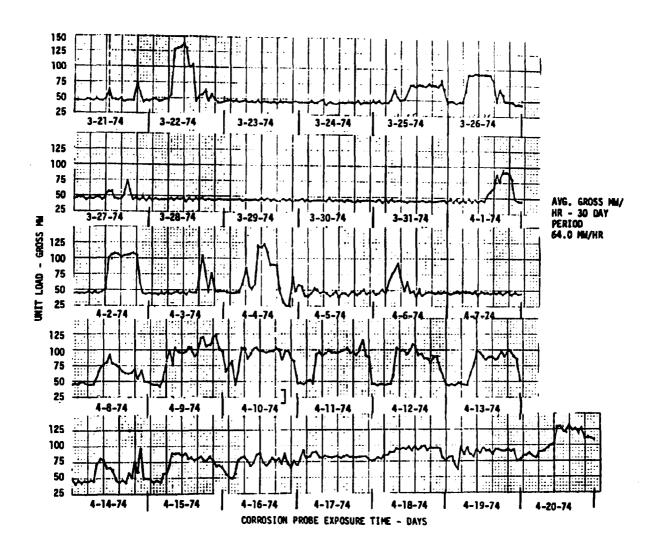


Figure 101: Gross MW loading vs. time - biased firing corrosion probe study

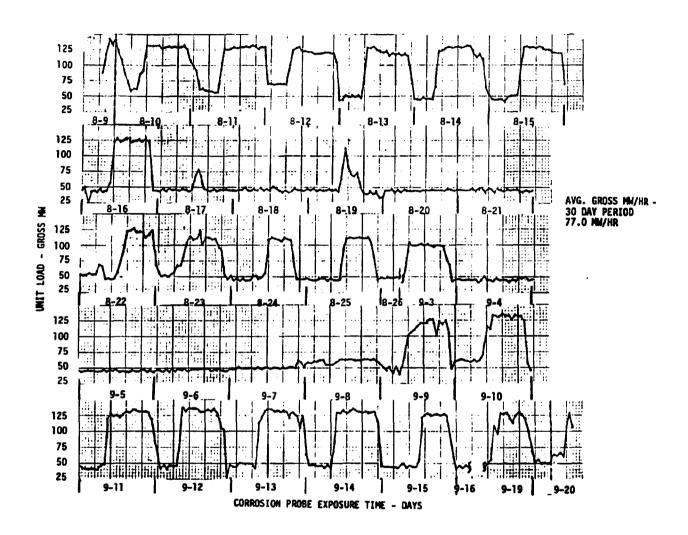


Figure 102: Gross MW loading vs. time - overfire air corrosion probe study

Biased (Cont.	Firing Operation	Overfire (Cont.)	Air Operation
Coa 1	Auxiliary	<u>Coal</u>	Auxiliary
20		30	
	50		50
	50		50
20		30	
	50		50
20		0	
	50		0

At unit loadings above 75.5 kg/s to the maximum steam flow with the maximum elevations of mills in service, the following damper positions were maintained.*

Biased	Firing Operation	Overfire Air	Operation
		OFA Dampers	100 100
<u>Coal</u>	Auxiliary	<u>Coal</u>	Auxiliary
100 30 30 30	Combustion Air Only 50 50 50 50	100 30 30 30	100 50 50 50 50
	50		

The percent oxygen was monitored daily during each thirty day study at each probe location and was found to be essentially the same for the various test conditions ranging between 16 and 19 percent 0_2 .

The weight losses calculated for the biased and overfire air portion of the test program were found to be greater than those for the baseline tests. The average weight losses for all five probes were as follows:

<u>Baseline</u>	Biased Firing	<u>Overfire Air</u>		
2.6381 mg/cm ²	4.6429 mg/cm ²	4.4419 mg/cm ²		

These values are within the range of losses which would be expected for oxidation of carbon steel for a 30 day period. To verify this premise control

^{*} At no time during the biased firing study was the top elevation coal pulverizer placed in service. Maximum unit loading was therefore limited to the maximum with the lower three mills in service.

studies were conducted in C-E's Kreisinger Development Laboratory using probes exposed during the biased firing study. These probes were cleaned and prepared in an identical manner to those used for furnace exposure and placed in a muffle furnace for 30 and 60 day exposures at 399°C with a fresh air exchange. The test results were as follows:

<u>Probe</u>	Wt. Loss mg/cm ² - 30 Days
M (30 day)	4.7999
Q (30 day)	4.7741
R (60 day)	5.1571/2 = 2.5785
B (60 day)	8.3493/2 = 4.1746

These results indicate that the test coupons oxidized more rapidly during the first 30 days exposure with average weight losses decreasing in the second thirty days. Based on these results, it appears that the differences in weight losses observed during the test program are within the ranges to be expected from oxidation alone.

Chemical analysis of deposits taken during the test program does not, in itself, show that molten phase attack has occurred. The composition of the deposits does show some differences, primarily in the iron content as noted on Figure 103. The deposit collected during the biased firing and overfire air tests show 50 and 35 percent iron, respectively, versus 30 percent in the baseline test. Higher iron is normally indicative of lower melting temperatures. However a certain quantity of CaO is necessary to flux the iron if it is to result in a low melting mixture. The CaO content is considerably less in the biased firing and overfire air tests as compared to that of the baseline test. Accordingly the fusibility temperatures are higher for the biased firing test and slightly higher for the overfire air tests. This agrees with observations made during the tests, i.e., deposits during biased firing were more friable and easily removed than in the baseline tests with the overfire air tests falling closer to baseline operation.

For comparison fusibilities and compositions have been given in Figure 39 for the coal ash as fired. This points out the selective deposition of certain constituents in the coal ash, like iron, and also shows that resultant fusibility temperatures of deposits can be significantly different than the coal ash as fired.

·	Waterwall Slag Sample Baseline Test	Coal Ash (As-Fired)	Waterwall Slag Sample Biased Firing Test	Waterwall Slag Sample Overfire Air Test
Ash Fusibility				
IT	1930	2150	2060	1930
ST	2090	2410	2170	2090
нт	2200	2500	+2700	2250
FT	2500	2620	+2700	
Ash Composition	<u>.</u>			
SiO ₂	46.2	45.8	38.4	38.5
A1203	18.4	30.7	10.3	18.1
Fe ₂ 0 ₃	29.9	13.9	50.0	35.4
Ca0	3.9	1.8	1.0	1.8
Mg0	0.8	1.3	0.3 .	0.9
Na ₂ 0	0.32	0.4	0.1	0.4
K ₂ 0	0.61	1.4	0.7	1.9
TiO ₂	N.R.	0.8	N.R.	1.0
P ₂ 0 ₅	N.R.	0.5	N.R.	N.R.
so ₃	0.34	1.2	0.8	0.4
-	100.4	97.8	101.5	98.4

Figure 103: Ash Analysis

SECTION IV - APPLICATION GUIDELINES

INTRODUCTION

This section presents the results of Task IX of the Phase II - "Program for Reduction of NO_x from Tangential Coal Fired Boilers" performed under the sponsorship of the Office of Research and Development of the Environmental Protection Agency (Contract 68-02-1367). These results were subsequently updated under Task VII d of Contract 68-02-1486, "Staged Combustion Technology for Tangentially Fired Utility Boilers Burning Western U.S. Coal Types." The results presented are based on field performance tests performed at Alabama Power Company, Barry #2; Utah Power & Light Company, Huntington Canyon #2; Wisconsin Power & Light Company, Columbia #1 and current contractor experience.

The utilization of overfire air as an NO_X control technique is discussed relative to the following areas of interest:

- 1. Necessary equipment modifications and costs (as of January, 1977) associated with applying this technology to existing steam generators.
- 2. Specific limitations to the general applications of the technology developed.
- Emission control and cost effectiveness of applying the developed technology to new steam generator designs.

CONCLUSIONS

- 1. Prior to incorporating overfire air as an NO_X control system on existing unit designs, an exploratory test program must be performed to determine the acceptability of the unit for modification.
- 2. The costs of installing an overfire air system on an existing unit could range between 2 to 4 times the cost as included on a new unit design.

 Based on January, 1977 estimates, existing unit modification costs could range from 0.24 to 1.8 \$/kw, depending on unit size.
- Approximately 40% of the existing coal fired units in the United States are
 of tangential design and could conceivably be modified to incorporate overfire air systems.
- 4. Unit size, heat rate and expected life must be considered in deciding whether modifications are justified.
- 5. Incorporation of an overfire air system will not significantly affect unit performance.
- 6. A large percentage of the existing tangentially coal fired units in the United States can meet current EPA standards for NO_X emission levels. The necessity of applying the overfire air technique for NO_X control should therefore be established prior to committing a unit for modification.

RECOMMENDATIONS

EXISTING STEAM GENERATING UNITS

The applicability of the technology developed in the course of this project should be qualified by the following conditions:

- 1. Any unit under consideration should be subjected to an exploratory test program to determine the necessity of modification with respect to applicable NO_X compliance limits. The minimum test requirements recommended for such a study would consist of studying the effect of available process variables such as excess air level. The minimum test data would consist of NO_X , CO for combustion efficiency and sufficient board or test data to identify changes in unit operating characteristics.
- 2. A review should be made of the unit and turbine useful life expectancy, unit size versus modification costs, and unit heat rate.

NEW STEAM GENERATING UNITS

All tangentially coal fired units since approximately 1970 have included Overfire Air (OFA) systems in the original unit design. The OFA system is therefore not considered by Combustion Engineering, Inc. as an additional NO_X control device.

DISCUSSION

The effectiveness of overfire air operation in reducing NO_X emissions from existing utility steam generators was evaluated by selecting, modifying, testing one unit and selecting and testing two additional units designed with OFA systems. The effects of OFA system operation on unit performance and emission control was studied in each of these units. The modified test unit, Alabama Power Company's Barry #2, is a natural circulation, balanced draft design, firing coal through four elevations of tilting tangential fuel nozzles. Unit capacity at maximum continuous rating (MCR) is 113 kg/s main steam flow with a superheat outlet temperature and pressure of 538°C and 12.9 MPa.

The units designed with overfire air systems and burning Western coal types are described as follows:

Utah Power & Light Company, Huntington Canyon #2 is a controlled circulation, balanced draft design firing a Western bituminous coal type through five elevations of tilting tangential fuel nozzles. Unit capacity at maximum continuous rating (MCR) is 382 kg/s main steam flow with a superheat outlet temperature and pressure of 541°C and 18.2 MPa.

Wisconsin Power & Light Company, Columbia #1 is a controlled circulation, balanced draft design firing a Western subbituminous coal type through six elevations of tilting tangential fuel nozzles. Unit capacity at maximum continuous rating (MCR) is 478 kg/s main steam flow with a superheat outlet temperature and pressure of 541°C and 18.1 MPa.

Superheat and reheat temperatures for the three units are controlled by fuel nozzle tilt and spray desuperheating.

In order to evaluate unit performance during these studies, necessary steam, water, air and gas temperature and pressure measurements were performed as well as NO_X , CO, O_2 , THC, SO_2 and carbon loss determinations to assess emission perfor-The test program for the modified unit was conducted in three phases consisting of baseline and biased firing portions conducted prior to modification and baseline and overfire air portions conducted after unit modification. The effect of the modification on unit performance was found to be insignificant and the test data summaries for each phase are shown in Appendices A, B and C. Similar three phase programs were conducted on the two test units burning Western coal types evaluating baseline, biased firing and overfire air op-Short term comparative corrosion tests were conducted on each unit over thirty day periods using corrosion coupons, which are made of the same material as the waterwalls. During this evaluation, both normal and OFA operation was evaluated. The unit load schedules for the baseline and biased firing and overfire air evaluations are shown on Figures 39, 40, 62, 63, 100, 101 and 102. The respective data summaries are shown on Sheets Al through A6; Bl through B6 and C1 through C5. Corrosion coupon locations are shown on Figures 37, 60 and 69.

DESIGN AND DESCRIPTION OF OFA SYSTEMS

The overfire air system as incorporated in tangential coal fired furnaces consists of air compartments and registers, ductwork, flow control dampers and nozzle tilting mechanisms. A typical arrangement of this system is shown on Figure 15. The overfire air compartments and registers are designed as vertical extensions of the corner windboxes unless, as in the case of some existing units, modification at that location is not possible due to structural considerations.

In the latter case, as was the situation with the modified test unit, the separate compartments and registers were installed within three meters of the top of the existing windbox. As shown on Figure 67, this arrangement requires additional ductwork for supplying air to the OFA system.

Control dampers for regulating the OFA flow rate should be coordinated with the windbox fuel and auxiliary air compartment dampers to correctly proportion air flow as required for various operating modes.

An independent OFA register tilt mechanism should also be provided on retrofits of existing units to permit coordinating these registers with the fuel and air nozzle tilts.

The overfire air registers and ducts should be sized for 15% of the full load secondary* air flow using the same register and duct velocities as the windbox. Each overfire air port consists of two registers above each windbox, usually as an extension of the windbox.

FIELD TEST PROGRAM

The field performance tests conducted at Barry No. 2 firing Eastern bituminous coal and at Huntington Canyon No. 2 and Columbia No. 1 firing Western bituminous coals respectively showed that an overfire air system on a tangential coal fired furnace can reduce NO_X emissions with no detriment to unit operation or maintenance. NO_X emission reductions of 20 to 30% were obtained with 15 to 20 percent overfire air when operating at a total unit excess air of approximately 15 to 25 percent as measured at the economizer outlet. This condition provided an average fuel firing zone stoichiometry of 95 to 105 percent of theoretical air. The firing zone stoichiometries attainable at given overall excess air levels did vary somewhat from unit to unit. Stoichiometries below the 95 percent level did not result in large enough decreases in NO_X levels to justify their use. Biased firing (removing the top burner elevation from service), while potentially as effective, necessitated a reduction in unit loading and is therefore less desirable a method of NO_X control. In essence, this method uses the uppermost fuel and air compartment as a windbox extension.

When using overfire air as a means of decreasing the theoretical air to the fuel firing zone the percent carbon in the fly ash and CO emission levels were less

^{*} Secondary air does not include coal pulverizer transport air.

affected than when operating with low excess air.* This is due to the ability to maintain acceptable total excess air levels, as measured at the economizer outlet, during overfire air operation while the theoretical air to the fuel firing zone is reduced.

Furnace performance as indicated by waterwall slag accumulations, visual observations and absorption rates, was not significantly affected by overfire air operation.

On existing units where, for structural reasons, an overfire air port might not be installed as a windbox extension, test results indicate that the centerline of the overfire air port be kept within three meters of the centerline of the top fuel elevation. Distances greater than three meters did not result in decreased NO_{χ} levels. Changes within the three meters limit did affect NO_{χ} levels slightly with the NO_{χ} levels increasing as the distance decreased.

The overfire air nozzles should tilt in unison with the fuel nozzles where possible. Tilting the overfire air and fuel nozzles towards each other directs the overfire air into the fuel admission zone thereby negating the original intent, while tilting the nozzles away from each other may result in decreased flame stability. If the overfire air nozzle tilt is fixed in a horizontal position NO_X levels would probably then vary to a limited extent with fuel nozzle position. In other words, the NO_X levels may increase or decrease as the total included angle between the fuel and OFA nozzles is decreased or increased respectively.

The results of the 30 day baseline, biased firing and overfire air corrosion coupon runs indicate that the overfire air operation for low NO_X optimization did not result in significant increases in corrosion coupon degradation. The results of this study are shown on Sheets A57 and A58, B45 and B46 and C9 through Cll. Potential long term corrosion effects were not evaluated as part of this program.

EXPLORATORY FIELD TEST PROGRAM - EXISTING UNITS

To determine both the necessity and acceptability of applying the OFA technique for NO_X emissions control on existing tangentially fired units, an evaluation should be performed prior to committing the unit to modification.

This evaluation should include the study of existing process variables, such as excess air, as an NO_X control method. If these techniques should prove unsatisfactory, the program should then be expanded to evaluate the effect of biased firing on NO_X emissions. This technique consists of removing the top fuel elevations from service and using the upper air and fuel compartments for the introduction of overfire air. This evaluation should be conducted at the maximum possible unit loading with one pulverizer out of service and otherwise normal operation.

During biased firing operation, changes in total excess air required to maintain acceptable CO levels, the amount of carryover from the furnace outlet, and

^{*} A minimum of 20 to 25 percent excess air was generally established for the test units.

furnace slagging tendencies should be observed. Carryover could be visually observed, while increased slagging might be evaluated both visually and in terms of bottom ash handling system performance. Outlet steam temperatures and air heater exit gas temperatures should also be observed for comparison of normal operation.

The minimum instrumentation necessary for a comprehensive evaluation is as follows:

Unit Performance

Superheat (S.H.) Outlet Temp.

Calibrated Board Data*

Reheat (R.H.) Outlet Temp.

Calibrated Board Data*

R.H. & S.H. Spray Flows

Calibrated Board Data*

Gas Temp. Lvg. Air Heater (A.H.)

Thermocouple Grid in A.H. Outlet Duct

Excess Air Lvg. A.H.

Gas Sampling Grid in A.H. Outlet Duct

Furnace Carryover

Visual Observation

Furnace Slagging

Visual Observation & Ash System Performance, Nozzle Tilt Changes & Desuper-

heating Sprays

Unit Gas Side Pressure Drop

Calibrated Board Readings*

Emissions Performance

 NO_x , $CO & O_2$

Gas Sampling Grid in A.H. Inlet Duct

EFFECT ON UNIT PERFORMANCE

The application of OFA as an NO_{X} control device spreads out the furnace fire, which reduces flame intensity and temperature and the initial oxygen concentration. These effects combine to limit the formation of oxides of nitrogen compounds with the reduced oxygen apparently affecting the formation of NO by the fuel bound nitrogen.

In the case of coal firing, the NO_x emissions originate from two sources, fuel bound and atmospheric nitrogen, and thus (NO) Total = $(NO)_{Fuel\ N}$ + $(NO)_{NO}_{NO}$ in air.

Test results from all three units indicated that as long as the total excess oxygen (fuel compartment 0₂ + 0FA 0₂), as measured at the economizer, remains changed from the baseline condition, unit performance would remain unaffected. In some cases, however, a slightly increased total oxygen may be required to prevent an increase in CO and unburned carbon emission levels. This situation

^{*} If not available, test instrumentation should be considered.

could be simulated with a biased firing test (top fuel elevation out of service) conducted during the exploratory program to determine the necessity of unit modification. While this approach will necessitate a reduction in unit loading, testing should be conducted at the highest possible loading obtainable for comparison to normal unit operation.

Otherwise, overall steam generator performance, including fan power, final steam temperatures, furnace wall tube temperatures and corrosion, and unit efficiency remain essentially unchanged.

The effect on furnace slagging has been found to vary somewhat with coal types and in particular with blends of various coals. Therefore, since coal types vary widely, the effect of changing firing zone stoichiometries on slagging tendencies should be evaluated during the exploratory program, again by using the biased firing technique. Where evaluating units with spare coal pulverizer capacity, this check should, if at all possible, be made at, or close, to full unit rating, particularly from the standpoint of evaluating unit slagging tendencies. A minimum evaluation period of one week is recommended for studying slagging tendencies.

On some units, the spreading out of the furnace fire might result in some combustible carryover from the unit furnace to the superheat sections. The tendency toward this condition can also be evaluated during the exploratory program by visual observation and watching for changes in unit performance.

ECONOMIC EVALUATION

The cost of incorporating overfire air systems on existing and new unit designs was evaluated for steam generating units from 125 to 1000 MW capacity. The results of this study are shown on Figure 104.

The cost estimates for the revision of existing units are based on studies performed on units within this size range including the actual costs for modification of the Barry 2 unit. The cost estimates presented for including the overfire air system in new unit designs are based on current experience with these systems.

The accuracy of the January, 1977 cost estimates is plus or minus ten percent. Because the overfire air system is included as an integral part of new unit design, it is not therefore, considered as an optional or additional emissions control device. The costs of existing units could be from 0.24 to 1.8 \$/kw, due to variations in existing unit design and construction which might make modifications more complicated. These costs may also vary and escalate with the prevailing economic climate.

The largest four-windbox (single cell) furnaces manufactured to date have been in the 625 MW size range at which point eight-windbox furnaces (generally divided into two cells) have been selected. Since an eight windbox tangentially fired furnace has double the firing corners of a four-windbox furnace, the costs of windboxes and ducts increase significantly.

The resulting increase in the cost of electricity generated is approximately

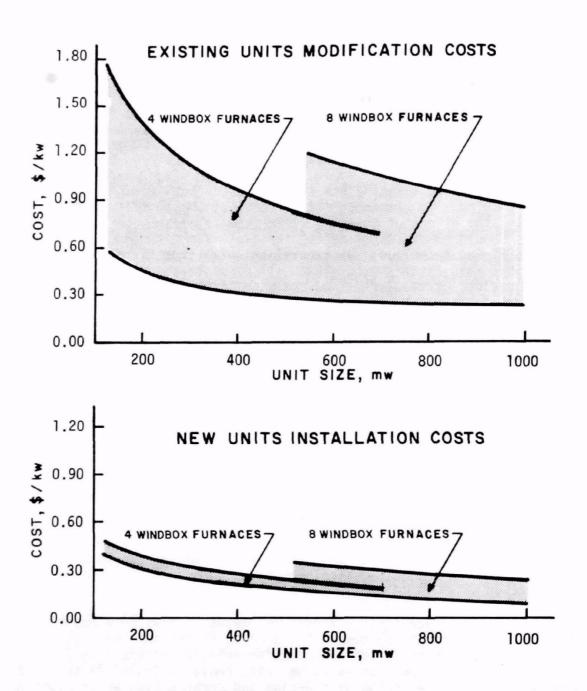


Figure 104: Overfire Air System Costs - Tangential coal fired steam generators - January, 1977 equipment costs

0.02% for a typical new 500 MW plant* costing 600 \$/kw using coal costing 1.00 \$/106BTU, as illustrated in Table 1. The overfire air system increases capital costs by 0.2 \$/kw, and all other costs are unchanged. The mills/kwhr increase is 0.006.

An existing 500 MW plant has overfire air system costs up to 0.8 \$/kw. Generation costs for a 600 \$/kw plant increase by up to 0.10% or 0.026 mills/kwhr. An existing 500 MW plant which was installed for 300 \$/kw and receives coal costing 0.50 \$/106BTU has much lower operating costs than the previous example. The cost increase percentage is 0.14%, but the increase in mills/kwhr remains unchanged at 0.026, as shown in the last column of Table 1.

\cdot		<u>\$/KW</u>
Coal Handling, Storage, Pulverizing, Ash Handling SO ₂ Scrubber System Boiler, Air Heaters, Fans, Stack Steam Turbine-Generator, Piping, Heaters, Water Treatment,		53 90 74
Condenser, Cooling Towers Structures, Sitework Foundations, Offices, Land, Workshops,		110
Controls, Switchgear, Transformers		76 —
	Subtotal	403
Engineering, Construction Contingency Interest During Construction	Total	53 44 100 ———

The increases in generating costs (mills/kwhr) for typical 100 MW plants are approximately double the increases for 500 MW plants. The increases for 600 MW plants with divided furnaces are 25% to 35% higher; and the increases for 1000 MW plants are the same as for 500 MW plants.

Transmission and distribution costs are not included in these comparisons. These examples are only typical; a specific plant has to be evaluated on its particular economic criteria.

^{*} January, 1977 equipment costs for 500 MW Coal Fired Power Plant with Limestone SO₂ Scrubbing System.

TABLE 1. COST OF ELECTRICITY GENERATED - 500 MW PLANTS Net Heat Rate 9500 Btu/Kwhr January, 1977 Equipment Costs

	New Plant Without Overfire Air	New Plant With Overfire Air	Recent Existing With Added Overfire Air	Older Existing Without Overfire Air	Older Existing With Added Overfire Air
Capital Costs, \$/kw	600.00	600.20	600.80	300.00	300.80
Annual Cap. Cost, \$	54,000,000 (a)	54,018,000	54,072,000	27,000,000 (b)	27,072,000
Annual Fuel Cost, \$	26,000,000 (c)	26,000,000	26,000,000	13,000,000 (d)	13,000,000
Labor & Maint. (e), \$	10,800,000	10,800,000	10,800,000	10,800,000	10,800,000
Total Annual Cost (f), \$	90,800,000	90,818,000	90,872,000	50,800,000	50,872,000
Electricity Cost (g), Mills/kwhr	33.630	33.636	33.656	18.815	18.841
Increase, %		0.018	0.077		0.140
Increase, Mills/kwhr		0.006	0.026		0.026

Based on:

- Annual Fixed Charge Rate of 18% X 600 \$/kw X 500,000 kw.

- 18% X 300₆\$/kw X 500,000 kw.
 1.00 \$/10⁶ BTU coal cost X 5400 hr/yr X 500,000 kw X 9500 BTU/kwhr.
 0.50 \$/10⁶ BTU coal cost X 5400 hr/yr X 500,000 kw X 9500 BTU/kwhr.
- Labor and maintenance cost of 4.0 mills/kwhr.
- 5400 hr/yr at 500 MW = 2700 gwhr/yr.
- Cost at plant bus bar; transmission and distribution not included.

APPLICABILITY

EXISTING STEAM GENERATING UNITS

In a specific existing plant, the exploratory field test program will provide the data to determine whether an overfire air system is needed to meet NO_{X} limits. If so, the biased firing tests will show operating effects such as combustible loss, corrosion, or furnace slagging. Favorable results from the field tests should be followed by an evaluation, as shown in Table 1, to determine whether modification costs are economically justified.

Economic considerations include plant age and efficiency. Will the plant continue to operate long enough to pay off the investment? The annual capital cost is inversely proportional to the number of years. Steam generator size also has an effect on the relative economics of overfire air system modifications. For example, the minimum modification cost is about \$120,000, which is 4.8 \$/kw for a 25 MW unit. With complications, 12 \$/kw is possible for a 25 MW unit.

Approximately 40% of the existing coal fired units in the United States are of tangential design and could conceivably be modified to incorporate overfire air systems, if the field test and economic evaluation results are favorable. Since 1949, approximately 320 tangential units have been put into service without overfire air systems.

NEW STEAM GENERATING UNITS

At the current levels of NO_X limits, an overfire air system should be included as a standard design feature of a new unit. The technology is proven, and the cost is minimal when included in the original design.

REFERENCES

- 1. Blakeslee, C. E., and A. P. Selker. Program For Reduction of NO_X from Tangential Coal Fired Boilers Phase I. EPA-650/2-73-005. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 1973. 190 pp.
- 2. Selker, A. P. Program For Reduction of NO_X From Tangential Coal Fired Boilers Phase II. EPA-650/2-73-005-a. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 1977. 133 pp.
- 3. Winship, R. D., and P. W. Brodeur. Controlling NO_X Emissions in Pulverized Coal Fired Units. Engineering Digest, September, 1973. pp. 31-34.
- 4. Haynes, B. S., and N. Y. Kirov. Nitric Oxide Formation During the Combustion of Coal, Combustion and Flame, Volume 23, 1974. pp. 277-278.
- 5. Vatsky, J., and R. P. Welden. NO_x A Progress Report, Heat Engineering, July/September, 1976. pp. 125-129.
- 6. Graham, J. Combustion Optimization Electrical World, June 15, 1976. pp. 43-58.
- 7. Thimot, G. W., and E. L. Kochey, Sr. Coal Firing is Different. Presented at Instrument Society of America Power Division Symposium, Houston, Texas, May 19-21, 1975.
- 8. Bogot, A., and R. P. Hensel. Considerations in Blending Coals to Meet SO₂ Emission Requirements. Presented at National Coal Association/Bituminous Coal Research, Louisville, Kentucky, October 19-21, 1976.

APPENDIX A

TEST DATA & RESULTS
FOR
WISCONSIN POWER & LIGHT COMPANY
COLUMBIA ENERGY CENTER
UNIT #1

BASELINE OPERATION STUDY

TEST NO.		<u>1</u>	2	3	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	9	<u>10</u>
PURPOSE OF TEST		-				EXCESS AIR	VARIATION -				
UNIT LOAD CONDITION		Max	Max	Max	3/4 MAX	1/2 MAX	1/2 Max	1/2 MAX	Max	Max	Max
FURNACE CONDITION		CLEAN	CLEAN	CLEAN	CLEAN	CLEAN	CLEAN	CLEAN		MAX DERATELY DIR	
Excess AIR CONDITION		MIN	Norm	Max	Norm	MIN	Norm	MAX	Min	Norm	MAX
DATE	1976	3/10	3/8	3/15	3/13	5/23	5/23	5/23	3/10	3/9	3/10
UNIT LOAD	MW	524	524	485	399	324	323	322	514	515	482
MAIN STEAM FLOW	KG/S	441	442	400	334	267	269	268	427	432	394
SHO TEMPERATURE	°C	536	540	543	542	546	543	548	540	540	540
RHO TEMPERATURE	°C	541	542	541	539	522	521	522	541	541	544
FUEL ELEVATIONS IN SERVICE	_	ABDEF	ABDEF	ABDEF	ABDEF	CDEF	CDEF	CDEF	ABDEF	ABDEF	abdef
OFA NOZZLE TILT	DEG	0	0	Ú	.0	Ō	0	0	0	0	0
FUEL NOZZLE TILT	DEG	-4	+1	-5	+17	+10	+10	+9	-4	+3	-4
OFA	% OPEN	0	0	0	0	0	0	0	0	0	0
Z OFA	% OPEN	0	0	0	0	0	0	0	0	0	0
₩ MIX	% OPEN	100	100	100	5 5	0	5	10	55	100	100
NOZZLE COMPARTIMENT NOZZLE	% OPEN	50	50	50	40	85	75	BO	40	50	50
₩ ► AUX	% OPEN	1^0	100	100	50	0	5	15	60	100	100
E'TE FUEL	% OPEN	50	50	50	45	90	85	80	40	50	50
₹8	% OPEN	100	100	100	50	0	5	10	55	100	100
중류 T-DT FUEL	% OPEN	50	50	50	40	85	80	85	35	50	50
S AUX	% OPEN	100	100	100	5 0	5	10	50	50	_ 100	100
발문 T-CT FUEL	% OPEN	O	0	0	0	90	70	85		- 0	0
N W AUX	% OPEN	100	100	100	50	0	10	15	50	100	100
Ş₩ 1-B FUEL	% OPEN	50	50	50	40	0	0	0	35	50	50
₹ FTT AUX	% OPEN	100	100	100	50	0	0	0	50	100	100
-A OCC	% OPEN	50	50	50	40	0	0	0	35	50	50
AUX	% OPEN	100	100	100	50	0	0	0	55	100	100
Excess Air at Economizer Outi		20.7	21.8	34.7	35.6	27.7	37.5	43.5	19.4	23.7	30.6
THEO. AIR TO THE FUEL FIRING	ZONE %	117.8	118.9	131.4	132.5	126.7	136.2	141.4	116.5	120.7	127.5
NO _x (Apj. to 0% O2)	PPM	650	520	599	498	593	653	662	596	578	626
NOX AS NO2	NG/J	322.9	260.2	303.7	246.3	291.2	335.2	333.8	295.7	290.2	310.6
SO ₂ (ADJ. TO 0% O ₂)	PPM	1156	1138	1003	1119	1362	1379	1230	1184	1230	1171
502	NG/J	799.7	792.6	708.4	770.4	931.8	985. 0	864.0	817.9	859.4	809.1
CO (ADJ. TO 0% 02)	PPM	16	16	18	NA	5	6	7	17	16	17
co	NG/J	4.8	4.8	5.4	NA	1.5	1.7	2.2	5.1	4.9	5.1
HC (ADJ. TO 0% 02)	PPM	Ö	Ö	O	0	0	0	0	0	0	0
OP AT ECONOMIZER OUTLET	%	3.6	3.8	5 .5	5.6	4.6	5.8	6.4	3.5	4.1	5.0
OP AT A.H. INLET	₫,	4.3	4.4	5.7	5. 7	4.9	6.0	6.5	4.0	4.5	5.2
O2 AT A.H. OUTLET	\$	4.5	5.3	6.8	7.6	7.2	7.6	8.1	4.2	5.6	5.6
COD AT ECONOMIZER OUTLET	∢ ,	15.6	15.6	14.1	14.0	14.9	13.5	13.1	15.9	15.2	14.5
CO AT A.H. INLET	∢	15.0	15. 1	13.9	13.9	14.6	13.3	13.0	15.4	14.8	14.2
COZ AT A.H. OUTLET	*	14.8	14.2	12.9 0.02	12.2	12.5 1.03	11.9	11.6	15.2 2.00	13.8 2.02	13.9 0.11
CARBON LOSS IN FLY ASH	«Т	വ. വള	7.03	77.182	11,134	1.11.3		••	• •		

TEST NO.		11	<u>12</u>	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	18	<u>19</u>		
OUTDOOR OF TEST					FXCF5	- EXCESS AIR VARIATION						
PURPOSE OF TEST		1/2 MAX	1/2 MAX	Max	Max	Max	3/4 Max	1/2 Max	1/2 MAX	1/2 MAX		
UNIT LOAD CONDITION FURNACE CONDITION		Moder		DIRTY	DIRTY	DIRTY	DIRTY	DIRTY	DIRTY	DIRTY Max		
EXCESS AIR CONDITION		MIN	Max	Min	Norm	MAX	Norm	MIN	Norm 5/25	5/25		
DATE	1976	5/21	5/25	3/12	3/9	3/10	3/13	5/25	3/25 325	322		
UNIT LOAD	MW	321	321	524	513	484	401	322	323	JEE		
	1.	263	26 5	432	426	397	329	264	267	263		
MAIN STEAM FLOW	KG∕S °C	546	54 6	543	539	540	542	545	545	546		
SHO TEMPERATURE	°C	541	536	543	540	544	540	5 29	534	536		
RHO TEMPERATURE		ABCD	ABCD	ABDEF	ABDEF	ABDEF	ABDEF	ABCD	ABCD	ABCD		
FUEL ELEVATIONS IN SERVICE	Dan	ABCU O	ADCD O	0	0	0	0	0	0	0		
OFA NOZZLE TILT	DEG	+10	+6	-4	+3	-4	+18	+7	+6	+7		
FUEL NOZZLE TILT	DEG	+10	70						•	0		
I OFA	& OPEN	0	0	0	0	Q	0	0	0	ŏ		
—	% OPEN	0	0	0	0	0	0	0	Ö	ő		
₽ → XUX	% OPEN	0	0	100	100	100	55	0	ő	ŏ		
NOZZIE COMPARTNENT NOZZIE COMPARTNENT NAZZIE COMPAR	% OPEN	0	0	45	50	50	40	0	ő	ŏ		
W AUX	% OPEN	0	0	100	1 0 0	100	50	0	ŏ	ŏ.		
	% OPEN	0	0	50	50	50	45	0	10	55 '		
& S LEE AUX	% OPEN	0	30	100	100	100	50	80	80	70		
ξ - h-D FUEL	% OPEN	50	90	50	50	50	40	0	15	45		
S G AUX	% OPEN	0	35	100	100	100	50	85	80	90		
HE FUEL	% OPEN	65	90	0	0	0	0	0	15	50		
N W AUX	% OPEN	0	30	100	100	100	50	75	80	70		
S TIB FUEL	% OPEN	50	80	50	50	50	40	,3	15	40		
AUX	% OPEN	0	35	100	100	100	50 40	80	80	85		
T-A FUEL	% OPEN	55	80	50	50	50	50	100	100	100		
AUX	S OPEN	100	100	100	100	100	50	100	,,,,			
	96	20.4	52.5	17.1	22.6	32.2	35.7	26.1	39.5	54.8		
Excess Air at Economizer Outlet Theo. Air to the Fuel Firing Zoi		117.2	145.0	114.3	119.7	129.0	132.5	122.8	134.3	144.6		
INEO: AIR TO THE TOLE THING ES							470	586	690	733		
NO _X (ADJ. TO 0% 02)	PPM	536	733	626	617	674	478 2 52.9	294.6	347.7	369.2		
NOx AS NO	NG/J	270.5	368.3	315.7	309.5	334.3 1293	975	1250	1460	1140		
SO ₂ (ADJ. ັτο 0%/ 0 ₂)	PPM	1318	1131	1197	1070 747.0	891.1	718.5	875.4	1024.4	800.1		
SO ₂	NG/J	926.4	791.8	839.B	16	19	NA.	4	4	5		
CO (ADJ. TO 0% 02)	PPM	5	6	NA	4.9	5.6	NA.	1.2	1.3	1.4		
CO	NG/J	1.5	1.9	NA O	4.9	0	0	0	0	0		
HC (AoJ. TO 0% 02)	PPM	0	0		3.9	5.2	5.6	4.4	6.0	7.5		
O2 AT ECONOMIZER OUTLET	8	3.6	7.3	3.1 3.5	4.6	5.5	6.0	4.8	6.3	7.7		
O AT A.H. INLET	95	3.7	7.6 9.5	3.5 4.9	5.5	6.1	7.4	6.6	7.7	9.6		
OS AT A.H. OUTLET	*	5.8	12.3	16.2	15.5	14.3	14.0	15.1	13.6	12.2		
COA AT ECONOMIZER OUTLET	ď	15.6	12.1	15.8	14.9	14.0	13.6	14.7	13.3	12.0		
CO AT A.H. INLET	%	15.5	10.3	14.5	14.0	13.5	12.3	13.0	12.0	10.3		
COZ AT A.H. OUTLET	%	13.6 0.01	0.02	0,30	0,01	0.19	0.04	0.02	0.02	0.02		
CARBON LOSS IN FLY ASH	%	11,111	7.02			•						

BIASED FIRING OPERATION STUDY

TEST NO.		1	5	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>
PURPOSE OF TEST UNIT LOAD CONDITION EXCESS AIR CONDITION FURNACE CONDITION		MAX IMUM MIN IMUM	MAX IMUM MIN IMUM	MAXIMUM MINIMUM	VARIATION OF Maximum Minimum — Moderately	FUEL ELEVATION 3/4 MAX MINIMUM	ONS IN SERVICE 3/4 Max MINIMUM	3/4 Max Minimum	1/2 Max Minimum	1/2 MAX MINIMUM CLEAN
DATE Unit Load	1976 M w	5/19 505	5/19 506	3/14 525	5/19 506	5/12 422	5/12 422	5/16 421	5/21 320	6/27 314
MAIN STEAM FLOW SHO TEMPERATURE RHO TEMPERATURE FUEL ELEVATIONS IN SERVICE	kg/s °C °C	426 546 550 ABCDE	428 546 547 ABCDF	433 543 542 ABDEF	431 545 548 BCDEF	352 545 544 ABCE	352 543 545 ABCE	344 5 46 5 4 7 BCDE	263 545 545 ABCD	258 544 504 ABEF
OFA NOZZLE TILT Fuel Nozzle Tilt	Deg Deg	0 +4	0 -4	0 -4	0 -8	-5 0	0	0 +13	0 +10	0
NOZZE COMPARTIMENT NOZZE COMPART	SOPEN SOPEN SOPEN SOPEN SOPEN SOPEN SOPEN SOPEN SOPEN	0 0 100 45 100 45 100 45 100 45	30 100 35 100 30 100 30 100 25	0 90 50 90 50 90 50 90 90	0 0 0 35 100 35 100 30 100 30	0 0 100 20 100 20 0 15 100	0 0 0 20 100 10 15 100	0 0 0 25 100 20 100 15 100	0 0 100 0 100 0 85 0 90	0 0 90 0 90 0 100 0
SE T-B FUEL AUX 1-A FUEL AUX	8 OPEN 8 OPEN 8 OPEN 8 OPEN	100 45 100 50	100 35 100 45	40 80 50 95	100 30 100 0	100 10 100 100	100 15 100 100	90 10 100 100	90 0 90 100	80 0 80 80
EXCESS AIR AT ECONOMIZER OUTLE THEO. AIR TO THE FUEL FIRING Z	T %	20.4 108.2	18.4 116.6	15.2 112.6	19.0 116.9	26.1 110.0	21.7 117.5	30.7 1 25 .6	19.7 94.4	34.2 133.5
NO _X (ADJ. TO O% O ₂) NO _X AS NO ₂ SO ₂ (ADJ. TO O% O ₂) SO ₂ CO (ADJ. TO O% O ₂) CO HC (ADJ. TO O% O ₂) O ₂ AT ECONOMIZER OUTLET O ₂ AT A.H. INLET CO ₂ AT ECONOMIZER OUTLET CO ₂ AT A.H. INLET CO ₂ AT A.H. INLET CO ₂ AT A.H. INLET	PMJ NGPMJ NGPPJ NGPPM NGPPM % % % % % % % % % % % % % % % % % %	408 203.9 1152 802.4 NA NA 0 3.6 4.0 6.3 15.8 15.4	413 209.1 1101 776.6 NA NA 0 3.3 4.0 6.2 16.1 15.4	492 249.2 1170 826.1 NA 0 2.8 3.3 4.7 16.5 16.0	504 250.3 NA NA NA 0 3.4 4.0 6.1 15.0 15.4 13.5	417 215.9 1088 783.6 25 8.0 0 4.4 4.7 6.8 14.9 14.6 12.7	507 260.2 1088 778.1 13 4.2 0 3.8 4.2 5.9 15.3 14.9	442 227.3 1088 778.6 143 44.8 0 5.0 5.2 6.6 14.3 14.1 12.8	326 162.2 1252 865.9 5 1.4 0 3.5 3.7 6.0 15.9 15.7	513 245.1 995 662.2 4 1.2 0 5.4 5.6 7.6 14.3 14.1 12.2 0.00

BIASED FIRING OPERATION STUDY

TEST NO.		<u>10</u>	11	12	<u>13</u>	14	<u>15</u>	<u>16</u>	17	18
PURPOSE OF TEST				v	ARIATION OF I	FUEL ELEVATIO	NS IN SERVI	CE		
UNIT LOAD CONDITION		1/2 MAX	MAX (MUM	MAX IMUM	MAX IMUM	3/4 Max	3/4 Max	3/4 Max	1/2 Max	1/2 MAX
Excess Air Condition		MINIMUM	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
FURNACE CONDITION	4074	CLEAN		-7		RATELY DIRTY		4	>	CLEAN
DATE	1976	5/23	5/19	5/10	3/16	5/12	3/13	5/16	5/21	5/23
UNIT LOAD	MW	324	491	497	523	423	400	422	320	323
MAIN STEAM FLOW	KG/S	268	417	417	438	353	325	350	261	264
SHO TEMPERATURE	°c	547	546	547	542	545	543	546	545	545
RHO TEMPERATURE	°C	529	550	546	542	544	540	547	543	530
FUEL ELEVATIONS IN SERVICE		CDEF	ABCDF	ABCEF	ABDEF	ABCE	ABDEF	BCDE	ABCD	CDEF
OFA NOZZLE TILT	DEG	0	0	0	0	0	0	0	0	0
FUEL NOZZLE TILT	DEG	+5	+5	-2	-4	0	0	+10	+12	+9
OFA	% OPEN	0	0	0	0	0	0	0	0	0
Z OFA	% OPEN	ñ	ñ	ŏ	ŏ	ő	ŏ	ŏ	ŏ	ō
NOZZE COMPARTIMENT AND	% OPEN	0	0	15	95	ō	55	Ö	Ö	Ō
FUEL FUEL	% OPEN	55	100	100	50	100	40	0	100	85
AUX	% OPEN	0	50	35	95	30	50	35	0	0
FUEL FUEL	% OPEN	6 5	100	100	50	100	45	100	100	90
Q □ L AUX	% OPEN	0	45	30	90	35	50	3 5	0	0
SE I-D FUEL	% OPEN	55	100	100	50	0	35	100	90	80
₩S	% OPEN	0	40	35	95	30	50	40	0	0
NO I-C FUEL	% OPEN	60	100	100	50	100	100	100	90	90
SE LAUX	% OPEN	0	45	30	9 5	25	50	35	0	0
Z I-B FUEL	% OPEN	90	100	95	100	100	40	100	90	100
AUX	% OPEN	0	50	30	8 5	50	50	50	_0	0
1-A FUEL AUX	% OPEN	100	100	100	50	100	40	100	70	100
I AUX	% OPEN	ი	50	100	95	100	50	100	100	0
Excess Air at Economizer Outl	ЕТ ≸	29.2	23.1	24.6	18.4	34.1	35.8	41.3	35.9	36.6
THEO. AIR TO THE FUEL FIRING	ZONE \$	128.4	122.7	123.4	115.8	117.9	132.9	135.8	105.8	135.8
NO _X (ADJ. TO O% O ₂)	РРМ	52 5	454	590	556	443	462	494	462	629
NOX AS NO2	NG/J	266.8	231.2	297.2	280.4	222.5	231.7	246.4	228.7	316.9
SO2 (ADJ. TO 0% 02)	PPM	1313	1174	870	1029	1139	859	1166	1256	1278
s0 ₂	L\DN	929.3	831.0	610.3	721.9	796.9	599.6	810.7	865.4	897.1
CO (ADJ. TO 0% 0 ₂)	PPM	5	NA	18	NA	74	NA	NA	4	7
co	NG/J	1.6	NA	5.4	NA	22.6	NA	NA	1.2	2.1
HC (ADJ. TO 0% 0 ₂) O ₂ AT ECONOMIZER OUTLET	PPM	0	0	0	0	0	0	n	0	0
	%	4.8	4.0	4.2	3.3	5.4	5.6	6.2	5.6	5.7
O _o At A.H. INLET	%	5.2	4.1	4.8	4.3	5.7	5.7	6.4	5.8	5.9
	8	6.9	6.7	6.2	5.6	7.1	7.4	8.4	7.6	7.8
CO2 AT ECONOMIZER OUTLET	8	14.5	15.3	15.2	16.1	14.1	13.8	13.4	13.9	13.6
CO2 AT A.H. INLET	95	14.2	15.2	14.7	15.2	13.8	13.8	13.2	13.7	13.4
CO2 AT A.H. OUTLET CARBON LOSS IN FLY ASH	95	12.6	12.8	13.4	13.9	12.5	12.1	11.4	12.1	11.7
CARBON LOSS IN FLY ASH	18	0 .94	റ .∩2	0.03	0.03	∩.02	0.02	ი.02	0.02	0.04

TEST NO.		1	<u>\$</u>	3	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9	<u>10</u>	11	12 TILT VAR.
PURPOSE OF TEST UNIT LOAD CONDITION EXCESS AIR CONDITION FURNACE CONDITION		MAX I MUM Normal	MAXIMUM Normal — Moderatei	MAXIMUM Normal	MAX IMUM NORMAL	OVERFIRE MAXIMUM NORMAL	AIR DAMPER MAXIMUM MINIMUM CL	VARIATION - MAXIMUM MINIMUM EAN	MAX IMUM MIN IMUM	MAXIMUM MAXIMUM MODERATE	MAXIMUM MAXIMUM	MAX IMUM MAX IMUM — CLEAN —	WITH OFA MAXIMUM MINIMUM
DATE Unit Load	1976 Mw	3/17 517	3/17 512	3/20 524	3/20 525	3/22 526	3/20 521	3/20 522	3/20 522	3/24 476	3/24 473	3/24 472	6/24 524
Main Steam Flow SHO Temperature RHO Temperature Fuel Elevations in Service	KG/S °C °C	425 542 542 ACDEF	426 541 541 ACDEF	439 533 534 ACDEF	445 534 533 ACDEF	444 534 538 ACDEF	446 543 547 ACDEF	441 532 534 ACDEF	439 532 532 ACDEF	398 538 540 ABCEF	390 539 540 ABCEF	389 534 539 ABCEF	446 540 547 ABDEF
OFA NOZZLE TILT Fuel Nozzle Tilt	DEG DEG	0 -4	0 -4	0 -8	0 +1	0 +1	0 +6	0 +8	0 +1	0 +2	0 +1	0 +3	-5 -5
NOZZIE COMPARTMENT DAMPER POSITION - # OPEN XND - 1-E XN	SOPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN	0 0 100 50 100 50 100 50 100 100 50 100	25 95 50 100 50 95 50 100 50 95 0 95 50	50 85 85 85 85 85 80 50 80 50 85 85	70 75 50 75 50 75 50 70 50 70 50	95 65 50 65 50 50 50 60 50 70 65 50	0 65 50 65 50 65 50 60 50 65 75	50 55 57 50 50 50 50 50 50 50 50 70	100 100 50 50 50 50 50 50 50 50 50 50	25 25 100 57 90 50 95 50 95 50 90 50	80 80 50 75 50 80 0 80 50 75 50 80	100 100 55 50 50 50 0 50 45 50 50 50 50	100 100 25 100 20 100 20 100 20 0 15 100 20 100
Excess Air at Economizer Outlet Theo. Air to the Fuel Firing Zon	% NE %	23.9 1 2 0.9	23.2 115.7	21.8 109.7	19,7 1 05.2	20.4 104.6	13.3 110.7	13.9 101.8	15.1 99.0	36.8 128.2	35.8 118.8	39.0 111.5	23.9 102.8
NO _x (ADJ. TO 0% O ₂) NO _x AS NO ₂ SO ₂ (ADJ. TO 0% O ₂) SO CO (ADJ. TO 0% O ₂) CO HC (ADJ. TO 0% O ₂) O ₂ AT ECONOMIZER OUTLET O ₂ AT A.H. INLET CO ₂ AT ECONOMIZER OUTLET CO ₂ AT A.H. NUET CO ₂ AT A.H. NUET CO ₃ AT A.H. OUTLET CARBON LOSS IN FLY ASH	PG/M PG/M PG/PM PGPM PGPM PGPM PGPM PGPM	718 756.1 1199 821.9 16 4.9 0 4.1 4.3 5.3 15.3 15.1 14.2	710 354.9 1207 839.8 16 4.9 0 4.0 5.0 5.4 15.4 14.5 14.2	442 222.8 1266 888.8 NA 0 3.8 4.0 5.3 15.3 14.1	409 203.4 1404 971.9 NA 0 3.5 3.9 5.1 15.8 15.4	434 215.4 1320 911.8 NA NA 0 3.6 4.1 5.0 15.7 15.2 14.4	354 182.7 1203 840.2 NA NA 0 2.5 3.3 4.5 16.7 16.0	356 177.9 1245 866.5 NA 0 2.6 3.4 5.0 16.6 15.9	344 171.4 1240 861.0 NA 0 2.8 3.5 4.5 16.4 15.8 14.9	594 299.2 1267 888.3 NA NA 0 5.7 5.8 7.0 13.9 13.8 12.7	551 274.7 1342 931.8 NA 0 5.6 5.8 7.0 13.8 13.7 12.6	485 246.5 1329 940.3 NA 0 4.9 5.0 6.1 13.5 14.5	395 195.5 1023 704.7 16 4.9 0 4.1 4.4 5.6 13.9 15.0 13.9 0.02

TEST NO.	<u>13</u>	14	15	16	<u>17</u>	18	<u>19</u>	<u>so</u>	21	55	<u>23</u>	24
PURPOSE OF TEST	4	FUE	L NOZZLE -	OFA NOZZLE	TILT VARIA	TION	 →		OPT (MUM OFA OPER	ATION	
UNIT LOAD CONDITION	MAXIMUM	MAXIMUM	MAXIMUM	MAXIMUM	MAXIMUM	MAXIMUM	MAXIMUM	MAXIMUM	3/4 Max	3/4 Max	1/2 Max	1/2 Max
Excess Air Condition	MINIMUM	MINIMUM	MINIMUM	MINIMUM	MINIMUM	MINIMUM	MINIMUM	MINIMUM	MINIMUM	MINIMUM	MINIMUM	MINIMUM
FURNACE CONDITION	MODERATE	←	CLEAN -		MODERATE	CLEAN	MODERATE	HEAVY	CLEAN	MODERATE	CLEAN	MODERATE
DATE 197		6/24	3/25	6/30	6/25	6/30	6/29	6/25	6/26	6/25	6/27	5/29
UNIT LOAD M		523	51 1	526	524	526	524	521	419	422	316	322
1.1.1.1	. 525	JEJ	311	320	384	520	324	321	419	422	310	322
MAIN STEAM FLOW KG/	5 444	443	425	400		4.4						
SHO TEMPERATURE		544	533	438 548	440 547	441 548	441 546	438 548	350 546	342 548	263 538	259 546
RHO TEMPERATURE		546	536	545	547	542	547	542	542	545	500	543
FUEL ELEVATIONS IN SERVICE	ABDEF	ABDEF	ABCEF	ABDEF	ABDEF	ABDEF	ABDEF	ABDEF	ABDE	ABOEF	ABEF	ABEF
OFA NOZZLE TILT DE		0	2000,	70000	+30	+30	+10	0	0	0	+10	+10
FUEL NOZZLE TILT DE		-5	+1	26	+2	+26	+1	0	ŏ	0	+7	+12
_	-	-3	• • • • • • • • • • • • • • • • • • • •	2.0	76	720	71	ŭ	J	v	**	*,2
OFA % OPE	CO1 N	100	100	100	100	100	100	100	100	100	100	100
Z □ OFA \$ OPE	N 100	100	100	100	100	100	100	100	100	100	100	100
⊢ਲੁ⊑ AUX ≸ OPE		25	50	20	25	20	10	20	0	0	0	0
E FUEL 56 OPE	N 100	95	50	100	100	100	100	90	ō	100	80	0
AUX \$ OPE	N 20	30	50	20	50	20	10	5	10	0	0	0
OPE AUX SOPE		100	50	100	100	100	100	90	100	100	85	85
9 □ AUX \$ OP ε	N 20	20	50	20	50	20	10	5	5	0	0	0
SE I-D FUEL \$ OPE	и 100	100	0	100	100	100	100	70	100	100	0	80
ມຽ		25	50	20	20	20	10	5	10	0	0	5
Ha I-C FUEL SOPE		0	50	0	0	0	0	0	0	0	0	0
NE AUX SOPE		20	50	20	15	20	5	5	0	0	85	80
¥ 1-B FUEL ≸ OPE		100	50	100	100	100	100	100	100	100	0	0
AUX # OPE		15	50	20	50	50	10	5	0	0	0	0
1-A FUEL \$ OPE		100	50	100	100	100	100	100	100	100	85	80
AUX % OPE	n 100	100	50	100	100	100	100	100	100	100	90	80
5 A 5 0												
	26.9	26.9	18.3	24.6	26,2	23.2	19.1	25.4	30.0	28.5	32.5	34.2
THEO. AIR TO THE FUEL FIRING ZONE	105.7	106.0	101.5	103.9	104.7	103.1	99.7	99.3	98.6	103.4	106.1	107.0
NO, (ADJ. TO 0% 00) PP	M 428	389	392	558	460	470	205	400		.=.		204
NOX AS NO2 NG/		188.5	198,9	273.7	224.6	473 223.4	385 18 2.8	483	340	456	341	334
SO ₂ (ADJ. TO 0% 0 ₂) PP		937	1010	958	964	981	941	234.8 958	171.8 905	220.6 989	161.9 959	161.0 1069
SO ₂ Ng/		631.4	714.2	654.7	654.8	645.0	621.9	648.9	636.3	666.4	634.0	717.8
SO ₂ NG/ CO ² (ADJ. TO 0% O ₂) PP		10	NA NA	8	15	59	76	40.9	4	4	4	
CO NG/	J 1.5	3.0	NA	2.2	4.5	17.0	22.1	1.1	1.2	1.1	1,2	5 1 .6
		n	0	ő	Ö	ŏ	0	··ò	Ö		1,5	
HC (ADJ. TO 0% 02) PP	₹ 4.5	4.5	3.3	4.2	4,4	4.0	3.4	4.3	4.9	4.7	5.3	5.4
0 AT A.H. INLET	6 4.7	4.6	3.6	4.4	4.7	4.2	3.5	4.6	5.2	4.9	5.5	5.4
OF AT A.H. OUTLET	6.2	5.9	5.0	5.7	6.1	5.8	5.0	6.0	6.9	6.3	7.2	7,1
CO AT ECONOMIZER OUTLET	§ 19.5	13.8	14.4	13.9	13.6	13.9	14.7	13.7	14.6	14.9	14.5	14.2
COO AT A.H. INLET	14.9	15.0	15.6	15.0	14.9	15.4	16.1	15.0	14.3	14.7	14.2	14.2
COS AT A.H. OUTLET	13.5	13.8	14.4	13.9	13.6	13.9	14.7	13.7	12.7	13.4	12.6	12.6
CARBON LOSS IN FLY ASH	\$ 0.02	0.02	0.01	0.06	0.05	1.05	0.03	0.03	0.02	0.02	0.03	0.02

BASELINE OPERATION STUDY

				TEST I	DATA						
TEST NO.		1	5	3	<u>4</u>	<u>5</u>	<u>5</u>	7	<u>8</u>	9	10
DATE Unit Load	1976 MW	3/10 524	3/08 524	3/15 485	3/13 399	5/23 324	5/23 323	5/23 322	3/10 514	3/09 515	3/10 482
FLOWS FEEDWATER	KG/S	411.51	430.91	380.51	324.19	262.45	264.72	262.45	397.02	405.84	371.19
PRESSURES (GAUGE) ECONOMIZER INLET DRUM SH OUTLET TURBINE 1ST STAGE RH INLET RH OUTLET SH SPRAY WATER RH SPRAY WATER HP HTR'S G1&G2 STM IN	MPA	18.664 18.271 16.892 11.232 3.654 3.447 18.457 10.052 3.606	18.781 18.326 16.878 11.321 3.634 3.413 19.809 10.122 3.606	18.409 18.078 16.872 10.163 3.330 3.151 19.009 9.908 3.323	17.878 17.582 16.706 8.246 2.641 2.489 18.850 9.542 2.627	17.492 17.278 16.699 6.433 2.068 1.896 18.843 9.329 2.068	17.499 17.251 16.685 6.440 2.068 1.896 18.871 9.336 2.068	17.492 17.264 16.796 6.440 2.068 1.889 9.329 2.062	18.574 18.202 16.865 10.901 3.571 3.372 18.395 9.991 3.558	18.630 18.230 16.885 10.956 3.578 3.385 19.684 10.011 3.572	18.333 18.009 16.802 10.080 3.302 3.110 18.312 9.853 3.303
TEMPERATURES	°c										
WATER AND STEAM ECONOMIZER OUTLET SH PEND DIV INLET LINK SH PEND DIV INLET LINK SH DESH OUTLET LINK SH DESH OUTLET LINK SH PEND SPCD FRONT IN LINK SH OUTLET LEADS SH OUTLET LEADS RH DESH INLET COMB. LINE RH RADIANT WALL FRONT IN HOR RH RADIANT WALL FRONT IN HOR RH PEND SPCD FRONT IN LINKS RH OUTLET LEADS SH OUTLET LEADS SH OUTLET LEADS SH SPRAY WATER RH SPRAY WATER RH SPRAY WATER RH SPRAY WATER FW IN TO HP HTR G1 FW OUT OF HP HTR G2 STH DRAIN FRON HP HTR G1	LCC R L R L R L R L C C R L R L R L R L	247 344 343 NA 350 384 390 414 496 482 539 533 319 275 267 309 308 312 303 531 553 183 328 207 206 247 247 212	247 337 333 NA 345 378 386 421 498 490 538 321 292 283 320 317 308 531 5531 5531 5531 5531 5531 5531 5531	243 344 342 NA 348 388 392 417 497 490 542 544 316 268 272 306 307 312 301 536 547 171 179 323 202 242 242 242 242	230 333 328 NA 382 383 418 417 499 543 298 298 298 297 331 329 NA 319 545 545 151 305 191 228 191 229 191	219 317 318 381 382 435 518 507 546 283 283 283 218 317 318 307 523 522 156 288 184 219 218	219 321 317 320 326 382 383 434 428 513 501 545 541 280 280 280 312 312 312 312 312 312 312 312 312 313 517 526 154 287 184 218	219 323 317 321 327 382 383 437 529 550 547 283 283 283 283 283 285 314 316 516 529 1555 87 291 184 218 218	247 344 343 NA 352 387 393 414 408 496 482 543 538 321 261 263 304 303 308 300 531 552 173 193 206 247 246 246 247 246	246 344 341 NA 350 384 391 413 417 484 538 322 269 267 308 304 329 531 551 172 204 246 246 246 241	243 347 343 NA 351 389 395 413 496 484 543 538 314 279 268 313 312 309 301 541 547 168 179 322 203 242 242 242 242
STH DRAIN FROM HP HTR G2		208	208	205	193	187	186	186	208	208	204
AIR & GAS PRI AIR AH AIR INLET PRI AIR AH AIR INLET SEC AIR AH AIR INLET SEC AIR AH AIR INLET PRI AIR AH AIR OUTLET PRI AIR AH AIR OUTLET SEC AIR AH AIR OUTLET SEC AIR AH AIR OUTLET ECONOMIZER GAS OUTLET ECONOMIZER GAS OUTLET AH GAS INLET AH GAS OUTLET AH GAS OUTLET AH GAS OUTLET	LR LR LR LR LR LR	9 5 16 15 369 374 361 362 418 431 398 409 122 119	4 3 22 23 354 361 346 349 402 413 383 392 111	4 20 21 364 369 353 409 422 395 401 118	2 34 33 329 328 323 371 379 355 110 106	27 23 37 36 311 303 303 298 339 341 322 324 117	27 23 38 37 302 305 301 346 349 327 331 118	26 23 36 36 309 302 346 351 328 333 118	10 7 16 14 371 378 363 366 416 432 398 411 123 121	7 18 366 371 357 357 359 411 427 396 403	9 7 17 16 369 374 350 363 413 427 396 406 122

BASELINE OPERATION STUDY

			1	TEST DATA						
TEST NO.		11	12	<u>13</u>	14	<u>15</u>	16	<u>17</u>	18	19
DATE Unit Load	1976 MW	5/21 321	5/25 321	3/12 524	3/09 513	3/10 484	3/13 401	5/25 322	5/25 325	5/25 322
FLOWS FEEDWATER	KG/S	236.7 5	248.84	402.94	408.74	371.19	322.43	246.45	246.45	244.06
PRESSURES (GAUGE) ECONOMIZER INLET DRUM SH OUTLET TURBINE 1ST STAGE RH INLET RH OUTLET SH SPRAY WATER RH SPRAY WATER HP HTR'S G1&G2 STM IN	MPA	17.347 17.154 16.685 6.295 2.075 1.903 18.354 9.198 2.082	17.423 17.196 16.678 6.336 2.068 1.889 18.312 9.341 2.075	18.623 18.230 16.878 11.114 3.661 3.461 19.595 10.011 3.654	18.643 18.244 16.899 10.928 3.564 3.365 19.354 10.025 3.551	18.312 17.968 16.816 10.087 3.309 3.137 19.264 9.846 3.310	17.906 17,623 16.741 8.267 2.654 2.503 19.030 9.563 2.641	17.430 17.223 16.727 6.274 2.075 1.903 18.278 9.218 2.075	17.423 17.237 16.720 6.343 2.096 1.931 18.085 9.239 2.103	17.409 17.196 16.692 6.357 2.082 1.910 18.182 9.378 2.089
TEMPERATURES	*c					V,				
WATER AND STEAM ECONOMIZER INLET ECONOMIZER OUTLET ECONOMIZER OUTLET ECONOMIZER OUTLET. SCHOOMIZER OUTLET. SH PEND DIV INLET LINK SH PEND DIV INLET LINK SH PEND DESH OUTLET LINK SH PEND SPCD FRONT IN LINK SH OUTLET LEADS RH DESH INLET COMB. LINE RH RADIANT WALL FRONT IN HDR RH RADIANT WALL FRONT IN HDR RH PEND SPCD FRONT IN LINKS RH OUTLET LEADS SH SPRAY WATER RH SPRAY WATER COLD RH EXT STM TO GI&G2 HTR FW IN TO HP HTR G2 FW OUT OF HP HTR G2 STM DRAIN FROM HP HTR G1 STM DRAIN FROM HP HTR G2	LCORLELELELE LELCORLE	220 331 328 332 391 392 413 410 594 551 541 283 257 244 306 301 299 285 536 156 152 291 186 185 219 219 219 219 219 219	219 338 331 334 344 392 396 427 423 548 547 282 274 266 309 304 301 293 545 152 289 184 186 186 186	248 348 346 NA 349 391 393 415 413 489 544 542 256 268 301 304 316 308 544 176 184 333 207 206 248 248 248 248 249 209	246 344 344 NA 349 386 393 417 482 539 269 266 308 304 307 300 533 548 173 205 204 245 246 245 246 207	243 346 342 NA 352 389 393 411 408 487 547 547 261 308 304 295 541 169 179 169 179 202 202 242 242 242 242 204	231 331 327 NA 330 381 421 418 507 501 543 297 296 297 330 328 327 319 545 536 158 159 190 191 229 229 191 196 193	220 327 328 330 387 423 548 542 283 265 249 306 302 295 283 531 156 163 290 185 184 218 218 188 188	221 337 336 341 392 395 425 421 548 548 548 266 249 304 298 292 281 530 538 156 290 186 185 129 220 188 187	219 343 343 339 348 398 427 423 507 496 547 5283 270 256 302 296 287 528 543 156 163 289 186 184 218 219
AIR & GAS PRI AIR AH AIR INLET PRI AIR AH AIR INLET SEC AIR AH AIR INLET SEC AIR AH AIR INLET PRI AIR AH AIR OUTLET PRI AIR AH AIR OUTLET SEC AIR AH AIR OUTLET SEC AIR AH AIR OUTLET ECONOMIZER GAS OUTLET ECONOMIZER GAS OUTLET AH GAS INLET AH GAS OUTLET AH GAS OUTLET AH GAS OUTLET	1. R L R L R L R L R L R	22 21 33 33 315 320 313 315 351 357 340 120	28 24 35 34 323 330 317 321 363 370 347 355 119	11 9 14 13 377 383 369 372 422 417 406 413 126 119	8 6 14 13 376 382 357 357 425 437 405 416 120 123	6 4 17 17 366 373 357 361 412 427 393 405 120	6 2 29 30 332 331 326 323 372 425 357 359 109 107	29 27 34 34 313 322 311 316 350 357 336 343 118	29 27 34 33 321 327 317 361 358 344 352 119	29 26 35 35 324 331 318 322 368 376 378 121

BIASED FIRING OPERATION STUDY

				TEST DATA	!					
TEST NO.		1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	9
DATE Unit Load	1976 MW	5/19 505	5/19 506	3/14 525	5/19 506	5/12 422	5/12 422	5/16 421	5/21 320	6/27 314
FLOWS FEEDWATER	KG/S	405.84	411.51	404.33	404.33	348.51	345.11	341.71	236.75	255.78
PRESSURES (GAUGE) ECONOMIZER INLET DRUM SH OUTLET TURBING 1ST STAGE RH INLET RH OUTLET SH SPRAY WATER RH SPRAY WATER HP HTR'S GIAG2 STM IN	MPA	18.636 18.237 16.968 10.942 3.516 3.254 19.891 10.115 3.482	18.643 18.223 16.913 10.908 3.537 3.268 20.016 10.108 3.509	18.636 18.244 16.865 11.101 3.661 3.454 19.650 10.018 3.647	18.588 18.175 16.920 10.894 3.509 3.261 19.774 10.073 3.482	18.043 17.713 16.761 8.791 2.806 2.579 19.429 9.722 2.779	18.023 17.713 16.789 8.756 2.792 2.692 19.292 9.715 2.786	18.037 17.713 16.782 8.818 2.799 2.586 19.250 9.742 2.792	17.306 17.134 16.665 6.295 2.068 1.903 18.306 9.191 2.075	17.471 17.306 16.720 6.460 2.027 1.855 18.974 9.329 NA
TEMPERATURES	°C									
WATER AND STEAM ECONOMIZER INLET ECONOMIZER OUTLET ECONOMIZER OUTLET ECONOMIZER OUTLET ECONOMIZER OUTLET ECONOMIZER OUTLET ECONOMIZER OUTLET SH PEND DIV INLET LINK SH PEND DIV INLET LINK SH PEND SPCD FRONT IN LINK SH OUTLET LEADS RH DESH INLET COMB. LINC RH RADIANT WALL FRONT IN HO RH RADIANT WALL FRONT IN HO RH PEND SPCD FRONT IN LINKS RH OUTLET LEADS SH SPRAY WATER RH SPRAY WATER COLD RH EXT STN TO G1&G2 HT FW INTO HP HTR G1 FW OUT OF HP HTR G2 STM DRAIN FROM HP HTR G1 STM DRAIN FROM HP HTR G2	R L LC RC R	247 345 340 347 353 384 392 423 420 504 499 543 326 292 284 327 324 323 315 566 178 184 329 208 207 248 210	247 349 339 347 346 386 388 424 422 504 492 549 543 327 277 277 277 213 318 310 552 178 185 185 207 247 247 247 247 247	248 348 347 NA 351 390 397 418 414 492 544 326 257 268 302 316 310 542 174 183 333 207 206 248 248 248 248	248 351 340 347 349 386 389 418 416 496 502 539 552 287 318 319 322 316 553 179 185 330 208 207 247 247 247 213 211	235 332 335 336 382 426 507 499 546 545 306 305 304 332 332 325 540 548 171 118 308 197 197 234 234 202	234 331 324 329 333 381 383 427 423 510 501 544 543 302 303 304 335 332 326 542 548 169 120 308 197 127 234 235 201 199	234 331 324 333 340 382 432 427 506 508 539 553 304 305 305 305 340 333 329 528 566 167 99 198 197 234 235 202	220 330 326 331 332 389 392 410 408 509 497 548 266 253 304 299 287 543 156 163 1290 184 185 219 219	216 308 312 312 378 380 436 434 519 514 546 542 278 306 309 299 500 508 40 41 41 41 41 41 41 41 41 41 41
AIR & GAS PRI AIR AH AIR INLET PRI AIR AH AIR INLET SEC AIR AH AIR INLET SEC AIR AH AIR INLET SEC AIR AH AIR OUTLET PRI AIR AH AIR OUTLET PRI AIR AH AIR OUTLET SEC AIR AH AIR OUTLET ECONOMIZER GAS OUTLET ECONOMIZER GAS OUTLET AH GAS INLET AH GAS OUTLET AH GAS OUTLET AH GAS OUTLET		32 34 34 369 383 361 371 418 433 396 412 143	31 33 33 369 373 363 363 418 422 397 403 145	11 10 15 14 382 391 375 379 436 446 411 421 137	27 26 30 29 368 368 361 359 417 421 395 398 142 138	24 23 33 340 346 333 336 391 367 372 122 123	21 20 33 34 334 329 331 381 383 360 364 120	24 22 31 30 334 342 327 332 387 359 368 119 121	24 22 31 29 318 323 316 317 354 338 342 123	36 31 36 34 293 100 232 292 292 294 328 314 320 111

BIASED FIRING OPERATION STUDY

				TEST DATA	:					
TEST NO.		<u>10</u>	11	<u>12</u>	<u>13</u>	14	<u>15</u>	<u>16</u>	<u>17</u>	18
DATE Unit Load	1976 M W	5/23 324	5/19 491	5/10 497	3/16 523	5/12 423	3/13 400	5/16 422	5/21 320	5/23 323
FLOWS FEEDWATER	kg/s	260.31	391.10	383.66	407.22	348.51	320.54	345.11	234.23	253.51
PRESSURES (GAUGE) ECONOMIZER INLET	MPA	17.458	18.506	18.464	18.671	18.078	17 000	10.004	17.004	
DRUM SH OUTLET		17.223 16,678	18.154 16.947	18.244 16.872	18.257 16.892	17.768 16.858	17.892 17.616 16.741	18.064 17.733	17.361 17.161	17.478 16.858
TURBINE 1ST STAGE		6.433	10.480	10.597	11.232	8.805	8.225	16.789 8.811	16.692 6.316	16.672 6.419
RH INLET RH OUTLET		2.068 1.896	3.413 3.165	3.475 3.199	3,661 3,468	2.813 2.606	2.634 2.489	2.806 2.599	2.061 1.896	2.068 1.896
SH SPRAY WATER		18.761 9.308	18.816	19.347	19.629	19.422	19.036	19.236	18.361	18.657
RH SPRAY WATER HP HTR'S G1&G2 STM IN		2.068	10.025 3.385	9,991 3,440	10.039 3.647	9.763 2.799	9.556 2.627	9.756 2.799	9.218 2.068	9.301 2.068
TEMPERATURES	°c									
WATER AND STEAM ECONOMIZER INLET		220	245	247	248	234	229	235	219	220
ECONOMIZER OUTLET	L	318	348	352	346	337	328	336	334	323
ECONOMIZER OUTLET ECONOMIZER OUTLET	LC RC	313 316	342 348	346 349	343 NA	334 338	324 NA	332 340	331 3 3 6	318 322
ECONOMIZER OUTLET	R	323	357	357	351	341	331	349	341	327
SH PEND DIV INLET LINK SH PEND DIV INLET LINK	L R	381 385	387 393	392 397	386 393	385 389	379 384	383 394	391 395	383 387
SH DESH OUTLET LINK	Ĺ	435	420	413	413	432	423	433	409	431
SH DESH OUTLET LINK	R	427	416	409	411	424	419	425	407	427
SH PEND SPCD FRONT IN LINK SH PEND SPCD FRONT IN LINK	L R	517 507	500 501	505 491	494 493	504 497	504 504	502 504	508 501	510 507
SH OUTLET LEADS	ï	548	538	548	537	546	540	536	544	543
SH OUTLET LEADS	R	547 283	554 324	546 328	548 326	545 304	547 29 5	556 303	546 283	548 283
RH DESH INLET COMB. LINE RH RADIANT WALL FRONT IN HDR	L	284	287	265	264	303	298	304	271	283
RH RADIANT WALL FRONT IN HDR	R	284	278	269	272	304	298	304	262	283
RH PEND SPCD FRONT IN LINKS RH PEND SPCD FRONT IN LINKS	L LC	320 318	324 320	308 308	307 308	331 328	329 325	339 332	315 306	318 317
RH PEND SPCD FRONT IN LINKS	RC	316	319	316	319	328	326	333	300	314
RH PEND SPCD FRONT IN LINKS	R	308	309	307 531	308 529	321 542	324 535	328 524	289 542	307 524
RH OUTLET LEADS RH OUTLET LEADS	L R	521 537	533 567	561	556	547	544	571	544	536
SH SPRAY WATER		157	176	179	174	169	160	168	155	155
RH SPRAY WATER COLD RH EXT STM TO G1&G2 HTR		101 290	182 327	183 332	184 331	173 309	119 306	93 310	163 289	107 289
FW INTO HP HTR G1		185	207	508	508	198	192	198	185	184
FW INTO HP HTR G2		184 219	206 245	207 246	207 248	197 235	191 229	197 234	184 218	184 218
FW OUT OF HP HTR G1 FW OUT OF HP HTR G2		219	245	247	248	235	229	235	218	219
STM DRAIN FROM HP HTR G1		187	211	212	212	202	195	201	187	187
STM DRAIN FROM HP HTR G2		186	208	210	209	200	193	200	187	186
AIR & GAS PRI AIR AH AIR INLET	L	26	31	27	3	27	5	24	25	22
PRI AIR AH AIR INLET	R	22	32	58	-1 18	26 29	4 29	22 30	24 30	19 41
SEC AIR AH AIR INLET	L R	38 37	34 33	29 29	18	30	59	29	29	41
SEC AIR AH AIR INLET PRI AIR AH AIR OUTLET	Ĺ	300	371	376	370	347	331	340	327	295
PRI AIR AH AIR OUTLET	R	305 298	381 362	389 367	377 361	353 339	334 325	351 332	334 322	296 291
SEC AIR AH AIR OUTLET SEC AIR AH AIR OUTLET	L R	299	369	376	364	342	325	339	327	289
ECONOMIZER GAS OUTLET	L	342	419	426	427 434	397 399	378 380	389 403	361 362	348 349
ECONOMIZER GAS OUTLET AH GAS INLET	R	344 321	431 398	437 404	434 399	376	367	367	347	319
AH GAS INLET	R	326	410	418	409	381	361	381	354	322
AH GAS OUTLET	L R	116 118	144 142	137 134	129 112	122 123	118 114	124 123	126 127	112 109
AH GAS OUTLET	ĸ	110	176	,,,,			,			

			<u>TE.</u>	ST DATA					
TEST NO.		1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>
DATE Unit Load	1976 ₩	3/17 517	3/17 512	3/20 524	3/20 525	3/22 526	3/ 2 0 521	3/20 522	3/20 522
<u>FLOWS</u>	KG/S						07		
FEEDWATER		398.53	400.04	432.30	432.30	419.95	444.27	437.72	434.94
PRESSURES ECONOMIZER INLET DRUM	MPA	18.581 18,216	18.588 18.188	18.802 18.354	18.788 18.319	18.733 18.299	18.892 18.409	18.850 18.409	18.830 18.361
SH OUTLET TURBINE 1ST STAGE		16.920 10.908	16.892 10.845	16.920 11.356	16.913 11.300	16.927 11.356	16.913 11.356	16.940 11.300	16.920 9.915
RH INLET RH OUTLET		3.585 3.392	3.572 3.378	3.640 3.426	3.654 3.440	3.675 3.461	3.627 3.385	3.634 3.413	3.640 3.420
SH SPRAY WATER		19.588	19.671	20.022	19.760	18.823	20.319	20.105	20.016
RH SPRAY WATER HP HTR'S G1&G2 STM IN		9.963 3.523	9.950 3.509	10.163 3.572	10.129 3.592	10.136 3.606	10.239 3.530	10.177 3.558	10.163 3.572
TEMPERATURES	•c								
WATER & STEAM ECONOMIZER INLET		247	247	241	241	242	246	239	241
ECONOMIZER OUTLET	L	349	349	313	316	314	331	306	308
Economizer Outlet Economizer Outlet	LC RC	345 351	346 351	309 316	313 321	313 315	326 332	304 308	306 309
ECONOMIZER OUTLET	R	352	352	319	322	324	339	314	318
SH PEND DIV INLET LINK SH PEND DIV INLET LINK	L R	387 3 9 2	388 3 9 3	356 363	358 366	358 366	377 382	352 359	353 361
SH DESH OUTLET LINK	Ĺ	410	414	402	400	393	433	404	402
SH DESH OUTLET LINK	R	408	412	397	399	388	422	401	397
SH PEND SPCD FRONT IN LINK SH PEND SPCD FRONT IN LINK	L R	494 491	494 486	4 84 475	485 472	483 477	510 4 9 7	488 481	484 478
SH OUTLET LEADS	Ĺ	538	541	532	534	530	544	528	528
SH OUTLET LEADS	R	546	542	534	534	537	543	536	536
RH DESH INLET COMB. LINE RH RADIANT WALL FRONT IN HDR	Ł	324 254	323 307	295 258	298 454	294 247	323 312	294 264	293 259
RH RADIANT WALL FRONT IN HDR	R	264	261	249	248	246	304	252	247
RH PEND SPCD FRONT IN LINKS RH PEND SPCD FRONT IN LINKS	L	299	296 298	295 294	287 287	288	339 337	299 296	296 291
RH PEND SPCD FRONT IN LINKS	LC RC	301 310	308	291	287	289 286	337 332	291	289
RH PEND SPCD FRONT IN LINKS	R	300	299	285	283	279	326	288	281
RH OUTLET LEADS RH OUTLET LEADS	L R	532 553	531 552	524 544	521 545	5 2 3 552	5 32 562	518 550	519 545
SH SPRAY WATER	.,	173	173	144	142	142	172	139	141
RH SPRAY WATER		183	182	174	173	177	181	173	172
COLD RH EXT STM TO G1&G2 HTR FW INTO HP HTR G1		329 207	329 206	326 197	327 197	328 198	327 206	327 195	328 195
FW INTO HP HTR G2		206	206	197	196	197	205	194	194
FW Out of HP HTR G1		247	246	239	238	240	246	237	238
FW OUT OF HP HTR G2 STM DRAIN FROM HP HTR G1		247 211	246 211	202 238	238 202	202 202	246 212	238 202	237 201
STM DRAIN FROM HP HTR G2		208	508	198	197	196	209	197	196
AIR & GAS PRI AIR AH AIR INLET	L	3	8	9	16	11	23	14	16
PRI AIR AH AIR INLET	R	1	2	17	17	14	23	17	18
SEC AIR AH AIR INLET	Ļ	18	15	13	11	11	26	15	18
SEC AIR AH AIR INLET PRI AIR AH AIR OUTLET	R L	17 3 76	14 381	16 368	16 373	15 366	26 346	17 354	21 359
PRI AIR AH AIR OUTLET	R	383	389	378	388	377	346 357	363	369
SEC AIR AH AIR OUTLET	L	367	372	359	365	357	369	347	352
SEC AIR AH AIR OUTLET ECONOMIZER GAS OUTLET	R L	371 431	377 437	367 421	377 426	367 422	346 399	353 408	359 412
ECONOMIZER GAS OUTLET	Ŕ	438	444	433	443	433	408	418	423
AH GAS INLET	L	406	406	396	402	397	373	382	387
AH GAS INLET AH GAS OUTLET	R L	415 122	421 122	419 118	419 119	409 113	387 123	394 115	401 118
AH GAS OUTLET	R	119	120	112	116	113	118	109	112

			TES	ST DATA					
TEST NO.		9	<u>10</u>	11	<u>12</u>	<u>13</u>	14	<u>15</u>	16
DATE Unit Load	1976 MW	3/24 476	3/24 473	3/24 472	6/24 524	6/24 5 25	6/24 523	3/24 511	6/30 526
FLOWS FEEDWATER	KG/S	380.51	372.83	366.53	426.88	421.34	424.11	401.43	415.79
PRESSURES ECONOMIZER INLET	MPA	18.354	18.264	18.237	18.788	18.747	18.712	18.547	18.726
DRUM SH OUTLET		18.030 16.864	17.938 16.816	17.892 16.796	18,347 16,892	18.374 16.947	18.381 16.947	18.181 16.877	1 8.33 3 16.891
TURBINE 1ST STAGE		9.977	9,777	9.728	11.383	11.362	11.369	10.825	11.411
RH INLET RH OUTLET		3.282 3.103	3.227 3.048	3.234 3.048	3.661 3.427	3.661 3.440	3.627 3.406	3.558 3.372	3.661 3.440
SH SPRAY WATER		18.864	18.699	18.374	20.133	19.960	20.091	19.616	19.754
RH SPRAY WATER HP HTR's G1&G2 STM IN		9.825 3.220	9.832 3.165	9.805 3.172	10.336 3.716	10.329 3.716	10.349 3.709	10.018 3 .496	10.315 NA
TEMPERATURES	° C								
WATER & STEAM ECONOMIZER INLET		236	237	235	243	244	244	239	244
ECONOMIZER OUTLET	L	327	326	323	340	345	341	315	342
ECONOMIZER OUTLET	LÇ	324	324	319	342	345	342	315	346
Economizer Outlet Economizer Outlet	RC R	327 332	328 331	327 326	346	349	343	319	346
SH PEND DIV INLET LINK	Ĺ	368	368	369	352 385	354 388	351 387	323 363	345 388
SH PEND DIV INLET LINK	Ř	376	377	373	391	394	389	368	389
SH DESH OUTLET LINK	L	397	399	402	429	435	429	394	422
SH DESH OUTLET LINK SH PEND SPCD FRONT IN LINK	R L	398 489	399 488	392 483	420 507	427 514	419 507	391 482	419 510
SH PEND SPCD FRONT IN LINK	Ř	479	478	471	490	498	499	475	498
SH OUTLET LEADS	L	539	539	535	542	548	544	531	552
SH OUTLET LEADS	R	537	539	532	539	548	545	534 292	545
RH DESH INLET COMB. LINE RH RADIANT WALL FRONT IN HDR	L	292 246	287 240	285 226	325 281	334 287	329 301	229	333 298
RH RADIANT WALL FRONT IN HOR	ī	242	237	224	290	282	291	233	237
RH PEND SPCD FRONT IN LINKS	L	283	284	272	331	322	331	273	326
RH PEND SPCD FRONT IN LINKS	LC RC	287 282	284 281	271 278	327 326	321 324	326 326	277 283	329 331
RH PEND SPCD FRONT IN LINKS RH PEND SPCD FRONT IN LINKS	R	275	269	262	319	316	323	274	320
RH OUTLET LEADS	L	535	536	526	532	529	538	520	543
RH OUTLET LEADS	R	544	544 142	551 139	562 71	563 69	554 74	551 143	547 79
SH SPRAY WATER RH SPRAY WATER		142 171	171	169	186	186	185	172	186
COLO RH EXT STH TO GI&G2 HTR		318	317	316	328	336	331	327	335
FW INTO HP HTR G1		193	193	192	57	57	59 204	196 195	39 205
FW INTO HP HTR G2 FW Out of HP HTR G1		193 233	193 234	192 233	205 95	204 95	204 95	238	203 85
FW OUT OF HP HTR G2		233	233	233	244	244	243	237	244
STH DRAIN FROM HP HTR GI		198	197	197	98	98	97	201	43
STH DRAIN FROM HP HTR G2		194	193	192	209	509	208	195	210
AIR & GAS PRI AIR AH AIR INLET	Ł	12	10	10	29	31	27	15	28
PRI AIR AH AIR INLET	R	14	14	15	26 31	29 32	26 29	14 11	25 29
SEC AIR AH AIR INLET	L R	16 14	11 14	10 14	31 30	32 32	28	16	28
SEC AIR AH AIR INLET PRI AIR AH AIR OUTLET	Ĺ	367	371	371	357	362	341	367	353
PRI AIR AH AIR OUTLET	R	375	378	382	369	376	364	360	362
SEC AIR AH AIR OUTLET	L	358 364	362 367	364 371	339 341	322 332	346 341	361 369	314 349
SEC AIR AH AIR OUTLET Economizer Gas Outlet	R L	364 423	367 427	426	398	403	402	424	397
ECONOMIZER GAS OUTLET	Ř	431	432	435	421	428	399	435	407
AH GAS INLET	L	399	403	402 412	386 3 9 7	390 404	384 393	399 411	387 393
AH GAS INLET	R L	408 120	411 121	121	133	137	131	120	128
AH GAS OUTLET AH GAS OUTLET	R	112	114	115	131	137	132	120	125

			TE	ST DATA					
TEST NO.		<u>17</u>	<u>18</u>	19	<u>20</u>	21	22	23	24
DATE Unit Load	1976 MW	6/25 524	6/30 526	6/29 524	6/25 521	6/26 419	6/25 422	6/27 31 6	6/29 322
FLOWS FEEDWATER	KG/S	410.12	418.56	418.56	412.90	341.71	322.43	262.45	244.06
PRESSURES ECONOMIZER INLET	MPA	18.678	18.740	18.726	18.795	18.037	17.982	17.526	17.437
DRUM SH OUTLET		18.333 16.940	18.388 16.906	18.340 16.906	18.374 16.954	17.809 16.816	17.706 16.802	17.306 16.685	17.258 16.678
TURBINE 1ST STAGE		11.328 3.627	11.473 3.661	11.411 3.661	11.287 3.627	8.825 2.792	8.749 3.565	6.578 2.055	6.502 2.075
RH OUTLET		3.420 19.112	3.399 19.822	3.427 19.884	3.413 19.767	2.614 19.671	2.648 18.864	1.917 19.133	1.938
SH SPRAY WATER RH SPRAY WATER HP HTR'S G1&G2 STM IN		10.315	10.370 NA	10.343 NA	10.308 NA	9.881 NA	9.791 NA	9.343 NA	9.377 NA
TEMPERATURES	°c	3.710	114	70	110	""	110	NA.	NA.
WATER & STEAM									
ECONOMIZER INLET ECONOMIZER OUTLET	L	243 346	244 343	245 343	243 345	231 326	232 337	216 306	218 323
ECONOMIZER OUTLET	LC	345	347	343	344 349	327 329	338 342	306 303	320 323
ECONOMIZER OUTLET ECONOMIZER OUTLET	RC R	347 354	348 343	343 348	349 351	332	342 346	303	323 328
SH PEND DIV INLET LINK	L	388	388	388	391	383	391 204	380	384
SH PEND DIV INLET LINK SH Desh Outlet Link	R L	393 422	389 422	391 424	394 425	386 431	394 426	379 427	387 423
SH DESH OUTLET LINK	R	415	418	421	422	428	422	443	418
SH PEND SPCD FRONT IN LINK	L	502 503	509 498	506 497	504	508 506	506 496	509 511	512 508
SH PEND SPCD FRONT IN LINK SH OUTLET LEADS	R L	542	551	548	494 551	545	550	537	546
SH OUTLET LEADS	Ř	553	545	545	546	548	546	538	547
RH DESH INLET COMB. LINE RH RADIANT WALL FRONT IN HDR	L	339 291	331 304	331 294	331 283	304 304	308 289	274 289	284 282
RH RADIANT WALL FRONT IN HDR	R	283	300	294 294	203 274	305	276	272	284
RH PEND SPCD FRONT IN LINKS	L	322	329	323	314	329	329	301	312
RH PEND SPCD FRONT IN LINKS RH PEND SPCD FRONT IN LINKS	LC RC	322 326	333 334	324 330	314 319	328 332	316 313	296 292	309 313
RH PEND SPCD FRONT IN LINKS	R	315	322	321	309	325	306	294	304
RH OUTLET LEADS	L	531	546	538	532	530	538	503	526
RH OUTLET LEADS SH SPRAY WATER	R	563 72	538 80	557 79	552 63	554 55	553 51	496 32	541 43
RH SPRAY WATER		185	186	186	184	132	174	78	159
COLD RH EXT STM TO G1&G2 HTR		333	334	334	333	309	312	278	289 48
FW INTO HP HTR G1 FW INTO HP HTR G2		43 204	39 20 5	46 205	42 204	43 192	42 194	64 180	182
FW OUT OF HP HTR G1		94	86	86	94	94	94	88	86
FW OUT OF HP HTR G2 STM DRAIN FROM HP HTR G1		244 92	244 43	244 51	243 96	230 47	232 96	216 44	217 72
STH DRAIN FROM HP HTR G2		503	209	209	208	197	197	183	184
AIR & GAS PRI AIR AH AIR INLET	L	33	27	26	35	36	36	36	31
PRI AIR AH AIR INLET	R	28	24	23	32	35 37	34	32	28
SEC AIR AH AIR INLET SEC AIR AH AIR INLET	L R	33 31	28 27	28 27	36 34	37 36	37 36	36 36	33 32
PRI AIR AH AIR QUTLET	Ü	351	348	358	358	352	323	287	296
PRI AIR AH AIR OUTLET SEC AIR AH AIR OUTLET	R L	372 319	353 308	368 318	379 316	334 271	356 281	292 221	312 247
SEC AIR AH AIR OUTLET	R	304	340	318 354	361	323	346	230	304
ECONOMIZER GAS OUTLET	L	398	401	398	418	376	393	337	354
ECONOMIZER GAS OUTLET AH GAS INLET	R L	424 393	406 376	411 389	430 395	373 351	387 368	324 309	341 327
AH GAS INLET	Ŕ	402	385	398	407	358	379	313	332
AH GAS OUTLET	L R	133	126 124	128	136	118	127 137	100 106	103 114
AH GAS OUTLET	ĸ	133	124	128	142	123	131	100	114

196 SHEET A13

TEST NO.	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9	10	11	12	<u>13</u>	14	<u>15</u>	<u>16</u>	17	18	<u>19</u>
		_			_	_		_	-		-			_					
DATE 1976	3/10	3/08	3/15	3/13	5/23	5/23	5/23	3/10	3/09	3/10	5/21	5/25	3/12	3/09	3/10	3/13	5/25	5/25	5/25
UNIT LOAD MW	524	524	485	399	324	353	355	514	515	482	321	321	524	513	484	401	355	325	322
FLOWS KG/s																			
FEEDWATER (MEASURED)	412	431	381	324	262	265	262	397	406	371	237	249	403	409	371	322	246	246	244
SH SPRAY (PLANT FLOW NOZZLE)	30	11	19	9	4	4	6	30	26	23	26	16	29	18	26	7	17	20	19
MAIN STEAM (CALCULATED)	441	442	400	334	267	269	268	427	432	394	263	265	432	426	397	329	264	267	263
TURB. LEAK. (TURB. HT. BAL.)	777	7	6	5	4	4	4	6		6	4	4	7	6	6	5	4	4	4
HP HTR. EXT. (HEAT BAL.)	36	38	32	25	18	18	18	35	36	31	17	17	35	36	31	25	17	17	17
RH SPRAY (PLANT FLOW NOZZLE)	17	12	14	1	ō	ő	ő	19	17	12	6	2	21	17	14	1	5	4	3
RH STEAM (CALCULATED)	416	410	375	304	244	246	246	404	407	369	248	246	411	401	374	300	247	250	245
UNIT ABSORPTION MJ/s																			
ECONOMIZER	224	212	212	170	125	135	135	219	221	215	134	153	224	225	213	164	133	148	157
FURNACE	362	401	341	327	293	286	282	349	359	325	243	244	348	360	327	328	259	243	232 160
DRUM - SH DESH	261	253	230	189	146	145	147	254	252	238	162	159	260	249	235	192	158	163	
SH DESH - SH OUTLET	184	165	164	122	98	97	101	181	181	154	117	104	183	165	164	111 167	106 153	109 157	107 151
REHEATER Total	274	253	244	167	132	134	131	277	271	239	164	147	285	266 1266	249 1189	962	809	820	BO7
TOTAL	1304	1284	1191	975	793	797	797	1279	1284	1171	820	806	1301	1500	1189	902	603	020	507
UNIT EFFICIENCY \$																			
DRY GAS LOSS	4.55	4.29	4.99	4.16	3.72	3.93	4.10	4.48	4.69	4.75	4.16	5.07	4.80	4.97	4.84	4.55	4.09	4,42	5.00
MOISTURE IN FUEL LOSS	7.55	7.21	7.42	7.03	7.13	7.57	7.15	7.48	7.41	7.49	7.24	7.28	7.55	7.29	7.49	7.57	7.19	7,16	7.23
MOISTURE IN AIR LOSS	0.11	0.10	0.12	0.10	0.09	0.09	0.10	0.10	0.11	0.11	0.10	0.12	0.11	0.12	0.11	0.11	0.10	0.10	0.12
RADIATION LOSS	0.17	0.18	0.19	0.23	0.28	0.28	0.28	0.18	0.18	0.19	0.27	0.28	0.17	0.18	0.19	0.23	0.28	0.27	0.28
ASH PIT LOSS	0.37	0.36	0.36	0.37	0.32	0.32	0.31	0.36	0.36	0.37	0.39	0.39	0.37	0.35	0.37	0.37	0.39	0.40	0.39
HEAT IN FLY ASH LOSS	0.04	0.03	0.03	0.03	0.02	0.02	0.02	0.03	0.03	0.03	0.02	0.02	0.03	0.03	0.03	0.03	0.02	0.02	0.02
PYRITE REJECTION LOSS	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0,01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
CARBON LOSS	0.02	0.03	0.02	0.04	0.03	0.02	0.02	0.02	0.02	0.11	0.01	0.02	0.30	0.01	0.19	0.04	0.02	0.02	0.02
ELECTROSTATIC PRECIP. LOSS	0.23	0.30	0.58	0.69	0.45	0.69	0.78	0.27	0.35	0.54	0.54	0,39	0.08	0.19	0.56	1.55	0.25	0.45	0.71
TOTAL LOSSES	13.05	12.51	13.72	12.65	12.06	12.95	12.77	12.96	13.15	13.61	12.74	13.59	13.43	13.15	13.80	14.44	12.35	12.85	13.77
EFFICIENCY	86.95	87.49	86.28	87.35	87.94	87.05	87.23	87.04	86.85	86.93	87.26	86.41	86.57	86.85	86.20	85.56	87.65	87.1 5	86.23
HEAT INPUT MJ/s																			
HEAT INPUT FROM FUEL	1500	1468	1380	1116	902	916	914	1469	1478	1347	940	933	1503	1458	1379	1124	923	941	936
HERT INFO FROM FUEL	, ,000	1400	1309	, 110	30 <i>E</i>	310	314	1403	1470	1341	240	333	1301	1430	1313		323	54,	
EXCESS AIR \$																			
ELECTROSTATIC PRECIP. INLET	20.7	21.8	34.7	35.6	27.7	37.5	43.2	19.4	23.7	30.6	20.4	52. 5	17.1	22.6	32.2	35.7	26.1	39.5	54.8
AIR HEATER INLET	25.1	25.8	36.5	36.8	30.0	39.3	44.2	23.2	26.9	32.7	21.0	5 5.9	19.5	27.5	35.0	39.1	29.2	42.3	57.1
AIR HEATER OUTLET	26.7	33.3	47.0	55.8	51.6	55.8	61.9	24.9	35.9	35.7	37.6	81.5	30.2	35.4	40.1	54.0	45.3	52.7	83.2

TES	ΤR	ESI	JL.	TS

								_		_										
TEST NO.		1	3	3	4	5	<u>6</u>	7	8	9	10	<u>11</u>	12	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	18	<u>19</u>
D	1976	3/10	3/08	3/15	3/13	5/23	5/23	5/23	3/10	3/09	3/10	-/	r for	_						
DATE Unit Load	MW MW	524	524	485	399	324	323	322	514	3/09 515	482	5/21 321	5/25 321	3/12 524	3/09 513	3/10 484	3/13 401	5/25 322	5/25 325	5/25 322
UNII LOAD	17 M	JEH	754	403	353	JEH	JEJ	JEE	314	313	402	321	321	524	313	464	401	322	<i>5</i> 25	322
PRODUCTS OF COMBUST	ION ME/J																			
ELECTROSTATIC PRECIS	TATOR IN																			
DRY PRODUCTS		403	409	457	449	421	472	482	398	417	434	408	510	396	413	439	480	426	469	519
WET PRODUCTS		436	442	491	481	454	507	516	432	450	467	441	545	430	446	472	515	459	503	554
AIR HEATER INLET																				
DRY AIR		391	415	473	491	470	509	522	386	428	425	445	576	413	420	437	511	459	499	586
WET AIR		396	421	479	497	476	516	529	391	434	431	450	584	418	425	443	518	465	506	594
DRY PRODUCTS		417	422	463	452	428	478	485	410	427	440	411	522	404	429	448	492	436	479	527
WET PRODUCTS		451	455	497	485	461	513	51 9	444	460	474	444	556	438	461	481	527	469	512	561
AIR HEATER OUTLET																				
DRY ALR		386	391	439	430	402	455	465	380	400	416	391	493	378	394	421	461	407	451	501
WET AIR		391	396	444	436	407	461	471	385	405	421	396	500	383	400	426	467	412	457	508
DRY PRODUCTS		422	446	497	513	496	532	543	416	456	450	464	604	439	454	464	542	487	527	611
WET PRODUCTS		456	479	531	546	530	568	578	449	490	484	498	640	473	487	498	578	~ 521 ~	561	647
GAS AND AIR FLOWS	KG/S																			
GAS ENTERING PRECIPI	TATOR	655	649	677	537	409	465	472	634	655	6 2 9	415	509	646	650	651	579	424	473	518
GAS ENTERING AIR HE	TER	676	668	685	541	416	470	475	652	681	639	417	519	658	673	664	592	433	482	526
GAS LEAVING AIR HEAT	TER	684	704	733	610	478	521	528	660	724	652	468	597	711	710	686	650	481	528	606
AIR ENTERING AIR HEA	TER	594	618	661	555	429	472	484	574	642	580	423	544	629	620	611	582	429	476	556
AIR LEAVING AIR HEAT	TER .	586	582	613	486	368	422	430	566	598	568	372	466	576	583	588	525	381	430	475
AIR HEATER LEAKAGE		8	36	48	68	62	51	53	В	43	13	51	78	53	38	53	57	48	46	80
AIR HEATER PERFORMAN	NCE																			
AIR HEATER LEAKAGE	- %	1.1	5.4	7.0	12.6	14.9	10.8	11.2	1.2	6.4	2.0	12.3	15.1	8.0	5.6	3.4	9.7	11.2	9.5	15.2
GAS SIDE EFFICIENCY	≰	72.1	72.7	71.9	72.6	70.6	72.4	72.0	72.1	71.8	72.2	67.8	70.1	70.4	71.1	72.0	72.6	69.8	71.1	70.9
GAS DROP	С	264	250	256	551	187	195	196	264	258	261	191	205	261	266	258	224	196	206	209
AIR RISE	С	254	238	244	209	185	184	187	256	250	253	199	201	262	261	251	214	196	200	201
TEMPERATURE HEAD	С	373	351	363	312	272	276	279	373	367	368	291	301	378	381	366	316	288	297	305
FUEL ANALYSIS																				
CARBON	%	48.5	50.3	49.8	49.4	48.9	49.7	51.3	49.0	50.0	48.8	51.1	50.6	49.2	50.6	48.8	49.9	50.5	50.6	50.6
HYDROGEN	*	3.4	3.4	3.4	3.3	3.3	3.7	3.6	3.4	3.5	3.4	3.6	3.6	3.4	3.4	3.4	3.4	3.4	3.4	3.5
NITROGEN	K	.6	.6	.7	.7	.7	.7	. В	.8	.4	.7	. 8	.9	.7	.9	.7	7	. 8	8	- 8
Oxygen	4	11.6	12.3	12.3	12.2	12.6	11.7	11.9	12.7	11.8	12.2	11.9	11.7	12.3	12.7	12.2	12.5	12.3	11.9	12.0
SULFUR	K	1.0	.8	.7	. 8	. 8	.9	.6	.7	1.0	.8	7	.7	.8	.7	.8	.7	.6	.6	.6
MOISTURE	4	25.1	24.4	24.4	24.4	25.5	25.1	24.7	24.7	24.5	24.9	24.5	25.0	24.6	24.2	24.9 9.2	24.2	25 .2 7.2	25.1 7.6	25.1 7.4
Азн	1	9.7	8.2	8.7	9.2	8.2	8.2	7.1 20492	8.7 19748	8.8 20097	9.2 19736	7.4 20422	7.5 20353	9. <i>0</i> 19562	7.5 20120	19736	8.6 18841	20050	20097	20166
HHV	KJ/KG	19724	20108	19648	19934	19841	19724	2114.77	19/48	20001	13130	20422	20333	1 2202	20,20					

TEST NO. 1 2 3 4 5 6, 7 8 9 10 11 12 13 14 15 16 17	<u>18</u> 5/23
	-/00
DATE 1976 5/19 . 5/19 3/14 5/19 5/12 5/12 5/16 5/21 6/27 5/23 5/19 5/10 3/16 5/12 3/13 5/16 5/21 5	2123
UNIT LOAD MW 505 506 525 506 422 422 421 320 314 324 491 497 523 423 400 422 320	323
FLOWS Kg/s	
	254
	11
	264
Turb. Leak. (Turb. Heat Bal.) 6 6 7 7 5 5 5 4 4 4 6 6 7 5 5 5 4	4
HP HTR. EXT. (HEAT BALANCE) 35 35 35 34 28 27 27 16 18 18 32 30 35 27 25 26 16	18
RH SPRAY (PLANT FLOW NOZZLE) 13 16 21 12 2 1 1 4 0 0 13 18 18 2 1 1 3	0
RH Steam (Calculated) 398 404 412 402 321 321 314 247 236 245 392 399 415 323 296 320 244 5	242
UNIT ABSORPTION MJ/s	
	130
	273
	147
	104
	134
TOTAL 1252 1272 1304 1262 1021 1022 1001 817 763 799 1239 1256 1308 1027 949 1020 806 7	788
UNIT EFFICIENCY \$ DRY Gas Loss 5.33 5.31 5.31 5.20 4.63 4.25 4.54 4.38 3.84 4.16 5.45 5.22 4.86 4.73 4.76 5.23 5.03 3.	3.89
	7. 5 3
1100 11	0.09
	2.28
	0.33
	0.02
	0.01
CARBON LOSS 0.02 0.03 0.35 0.02 0.03 0.02 0.02 0.01 0.02 0.04 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02	0.04
ELECTROSTATIC PRECIP. LOSS 0.50 0.15 0.53 0.34 0.60 0.48 0.70 0.42 0.30 0.52 0.82 0.21 0.10 0.57 0.81 0.78 0.32 1.	1.14
	3.33
EFFICIENCY 86.19 86.54 85.56 86.52 86.76 86.71 85.30 87.17 87.97 87.37 85.73 86.49 86.69 86.92 86.37 86.11 86.62 86.	5.67
HEAT INPUT MJ/3	
HEAT INPUT FROM FUEL 1453 1470 1524 1459 1177 1179 1160 937 867 915 1445 1452 1509 1182 1099 1185 929	909
EXCESS AIR \$	
ELECTROBIATIC PRECIP. INLET 20.4 18.4 15.2 19.0 26.1 21.7 30.7 19.7 34.2 29.2 23.1 24.6 18.4 34.1 35.8 41.3 35.9 36	36.6
	38.4
	38.2

								TEST	RESUL TS										
TEST NO.		1	<u> </u>	3	<u>4</u>	<u>5</u>	<u>6</u>	7	<u>8</u>	9	<u>10</u>	11	12	<u>13</u>	14	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>
DATE Unit LOAD	1976 MW	5/19 505	5/19 5/6	3/14 525	5/19 506	5/12 422	5/12 42 2	5/16 421	5/21 320	6/27 314	5/23 324	5/19 491	5/10 497	3/16 523	5/12 423	3/13 400	5/16 422	5/21 3 20	5/23 323
PRODUCTS OF COMBUSTION	ر/عس إ																		
ELECTROSTATIC PRECIPIT DRY PRODUCTS WET PRODUCTS	ATOR INLI	405 437	404 436	393 425	398 431	437 471	420 455	451 485	400 433	429 462	440 473	421 454	422 455	402 435	451 484	455 489	471 504	450 483	461 496
AIR HEATER INLET DRY AIR WET AIR DRY PRODUCTS WET PRODUCTS		448 453 414 446	444 450 419 452	407 412 403 436	435 440 411 444	482 489 445 478	449 455 429 465	475 481 455 491	441 446 404 437	473 479 435 468	474 480 451 484	476 482 423 456	442 448 436 470	420 425 424 458	477 483 460 492	496 503 458 492	526 533 477 510	490 497 455 488	508 515 467 502
AIR HEATER OUTLET DRY AIR WET AIR DRY PRODUCTS WET PRODUCTS		386 391 475 509	385 390 478 512	374 379 436 469	380 385 466 500	42 0 42 5 508 542	403 409 475 511	431 439 497 533	382 387 463 497	411 416 497 531	422 428 502 536	403 408 496 530	403 408 476 509	383 388 461 495	433 439 504 537	438 443 516 551	453 459 550 584	432 438 514 548	444 450 534 567
GAS AND AIR FLOWS GAS ENTERING PRECIPITA GAS ENTERING AIR HEATER AIR ENTERING AIR HEATER AIR LEAVING AIR HEATER AIR HEATER AIR HEATER	R ! :R	635 648 740 658 568 92	641 664 753 662 573 89	648 664 715 628 578 51	629 648 730 642 562 82	554 563 638 576 500 75	536 548 602 536 482 54	563 570 618 558 509 48	406 409 466 418 363 57	401 406 460 415 361 54	433 443 490 439 392 47	656 659 766 697 590 107	661 682 739 650 592	656 691 747 641 585 56	572 582 635 571 519 53	537 541 606 553 487 65	597 604 692 632 544 88	449 453 509 462 407 56	451 456 515 468 409 59
AIR HEATER PERFORMANCE AIR HEATER LEAKAGE GAS SIDE EFFICIENCY GAS DROP AIR RISE TEMPERATURE HEAD		13.9 66.0 227 319 352	13.2 66.3 226 314 349	7.6 67.6 254 347 384	12.5 66.4 226 315 350	13.2 69.9 219 287 321	10.0 70.6 216 282 313	8.7 70.6 218 284 317	13.6 65.9 187 271 293	13.4 69.4 178 239 265	10.8 68.6 180 247 271	16.2 66.2 227 317 353	8.5 69.4 249 329 367	8.1 71.0 259 333 372	9.1 70.9 230 296 331	12.0 69.4 214 284 317	14.4 68.9 220 292 328	12.1 66.2 195 279 303	13.0 71.0 183 236 265
FUEL ANALYSIS CARBON HYDROGEN NITROGEN OXYGEN SULFUR MOISTURE ASH HHY	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	57.4 3.4 .7 12.5 .5 24.7 7.7	51.0 3.4 .7 12.2 .6 25.0 7.1	47.8 3.4 .7 12.3 .7 24.4 8.7	50.2 3.4 .8 12.5 .7 24.7 7.7 20166	52.4 3.7 .8 11.6 .6 23.9 7.0	50.3 3.8 .7 11.7 .6 25.9 7.0	50.1 3.7 .7 11.8 .5 25.3 7.9	50.4 3.4 .7 12.5 .6 25.4 7.0 20036	48.5 3.3 .6 13.6 .5 25.9 7.6 20273	50.1 3.5 .7 11.6 1.0 23.9 9.2	51.5 3.6 .7 11.0 .6 24.2 7.5 20399	50.5 3.4 .7 12.2 .6 25.1 7.5 20027	48.8 3.3 .7 12.2 .7 25.6 8.7	51.2 3.5 .7 12.1 .9 23.5 8.1 20469	50.2 3.5 .8 11.8 .7 24.7 8.3	51.0 3.5 .7 12.1 .6 24.4 7.7 20492	49.7 3.4 .8 11.8 .8 24.6 6.9 \$7166	48.9 3.6 .6 11.5 1.0 25.8 8.6

					TEST R	ESUL TS							
TEST NO.		1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9	<u>10</u>	11	12
DATE Unit Load	1976 Mw	3/17 517	3/17 512	3/20 524	3/20 525	3/22 526	3/20 521	3/20 522	3/20 522	3/24 476	3/24 473	3/24 472	6/24 524
FLOWS FEEDWATER (MEASURED) SH SPRAY (PLANT FLOW NOZZLE) MAIN STEAM (CALCULATED) TURBINE LEAKAGE (TURBINE HEAT BA HP HTR. EXTRACTION (HEAT BALANCE RH SPRAY (PLANT FLOW NOZZLE) RH STEAM (CALCULATED)		399 26 425 6 34 20 404	400 26 426 6 34 20 405	432 7 439 7 38 14 409	432 12 445 7 37 15 416	420 24 444 7 36 15 416	444 2 446 7 38 3 404	438 3 441 7 39 12 407	435 4 439 7 38 13 407	381 17 398 6 31 13 374	373 17 390 6 31 14 367	367 22 389 6 30 16 368	427 19 446 6 35 11 415
UNIT ABSORPTION ECONOMIZER FURNACE DRUM - SH DESH SH DESH - SH OUTLET REMEATER TOTAL	MJ/s	227 341 246 185 281 1280	230 340 247 183 285 1286	160 467 246 156 287 1315	167 459 255 163 294 1338	159 449 257 180 298 1342	200 432 236 175 227 1269	151 485 245 150 278 1310	151 479 241 153 284 1309	178 387 225 159 272 1221	174 380 223 155 264 1196	165 383 225 154 264 1191	237 376 258 187 261 1319
UNIT EFFICIENCY DRY GAS LOSS MOISTURE IN FUEL LOSS MOISTURE IN FUEL LOSS RADIATION LOSS ASH PIT LOSS HEAT IN FLY ASH LOSS PYRITE REJECTION LOSS CARBON LOSS ELECTROSTATIC PRECIPITATOR LOSS TOTAL LOSSES EFFICIENCY	*	4.69 7.94 0.11 0.18 0.36 0.03 0.01 0.01 0.79 14.12	4.86 7.61 0.11 0.18 0.36 0.03 0.01 0.02 0.07 13.25 86.75	4.54 7.46 0.11 0.17 0.36 0.03 0.01 0.02 0.80 13.50 86.50	4.55 7.36 0.11 0.17 0.36 0.03 0.01 0.01 0.60 13.20 86.80	4.36 7.28 0.10 0.17 0.36 0.03 0.01 0.02 0.51 12.84 87.16	4.05 7.39 0.09 0.18 0.35 0.02 0.01 0.03 0.25 12.37 87.63	4.20 7.34 0.10 0.17 0.36 0.03 0.01 0.04 0.32 12.57 87.43	4.08 7.32 0.10 0.17 0.36 0.03 0.01 0.03 0.33 12.43	5.09 7.37 0.12 0.19 0.35 0.03 0.01 0.01 0.96 14.13	5.23 7.29 0.12 0.19 0.36 0.03 0.01 0.02 0.80 14.05	5.02 7.34 0.12 0.19 0.33 0.02 0.01 0.01 0.90 13.94 86.06	4.61 7.07 0.11 0.17 0.35 0.02 0.01 0.02 0.44 12.80 87.20
HEAT INPUT FROM FUEL	MJ/s	1490	1482	1520	1541	1540	1448	1498	1495	1422	1392	1384	1513
EXCESS AIR ELECTROSTATIC PRECIPITATOR INLET AIR HEATER INLET AIR HEATER OUTLET	*	23.9 25.4 33.3	23.2 30.8 34.2	21.8 23.2 33.3	19.7 22.5 31.6	20.4 23.9 30.8	13.3 18.4 26.9	13.9 19.0 30.8	15.1 19.7 26.9	36.8 37.7 49.4	35.8 37.6 49.3	- 30.0 30.8 40.4	23.9 26.1 35.8

١	ì	b	
è	١	i	
	2	è	8

					TEST R	ESULTS							
TEST NO.		<u>13</u>	14	<u>15</u>	<u>16</u>	17	18	<u>19</u>	20	. <u>21</u>	<u>52</u>	23	24
DATE Unit Load	1976 MW	6/24 525	6/24 523	3/25 511	6/30 526	6/25 524	6/30 526	6/29 524	6/25 521	6/26 419	6/25 422	6/27 316	5/29 322
FLOWS FEEDWATER (MEASURED)	KG/S	421 22	424 19	401 23	416 23	410 30	419	419	413	342	322	262	244
SH SPRAY (PLANT FLOW NOZZLE) MAIN STEAM (CALCULATED) TURBINE LEAKAGE (TURBINE HEAT BA HP HTR. EXTRACTION (HEAT BALANCE		444 7 35	443 7 35	425 6 34	438 7 34	440 7 34	23 441 7	22 441 7	25 438 7	9 350 5	20 342 5	1 263 4	15 259 4
RH SPRAY (PLANT FLOW NOZZLE) RH STEAM (CALCULATED)	:)	16 41B	8 408	18 402	12 409	14 413	35 10 409	35 12 412	34 17 414	27 0 318	25 5 316	19 0 240	17 0 238
UNIT ABSORPTION ECONOMIZER	MJ/s	243	233	159	227	237	233	228	240	173	186	115	129
FURNACE Drum - SH DESH SH DESH - SH OUTLET		360 265 195	375 253 196	428 245 171	368 253 203	353 260 213	366 254 204	371 256 199	354 261 202	346 194 141	302 202 152	306 144 82 - 123	261 148 114
REHEATER Total		263 1326	243 1300	284 1286	243 1295	257 1320	233 1289	249 1302	263 1320	173 1027	202 1044	_ 123 770	133 785
UNIT EFFICIENCY DRY GAS LOSS MOISTURE IN FUEL LOSS	*	4.80 7.05	4.62 7.03	4.74 7.38	4.42 7.12	4.66 7.48	4.26 7.18	4.21 7.12	4.75 7.27	4.22 6.92	4.43 6.97	3.25 6.91	3.73 6.94
MOISTURE IN AIR LOSS Radiation Loss Ash Pit Loss		0.11 0.17 0.35	0.11 0.17 0.35	0.11 0.18 0.37	0.10 0.18 0.35	0.11 0.17 0.36	0.10 0.18 0.35	0.10 0.17 0.34	0.11 0.17 0.35	0.10 0.22 0.37	0.10 0.22 0.34	0.08 0.29 0.35	0.09 0.28 0.36
HEAT IN FLY ASH LOSS Pyrite Rejection Loss Carbon Loss		0.03 0.01 0.02	0.02 0.01 0.02	0.03 0.01 0.01	0.02 0.01 0.06	0.03 0.01 0.05	0.02 0.01 0.05	0.02 0.01 0.03	0.02 0.01 0.03	0.02 0.01 0.02	0.02 0.01 0.02	0.02 0.01 0.03	0.02 0.01 0.02
ELECTROSTATIC PRECIPITATOR LOSS TOTAL LOSSES EFFICIENCY		0.56 13.10 86.90	0.39 12.72 87.28	0.74 13.57 86.43	0.29 12.55 87.45	0.25 13.12 86.88	0.72 12.87 87.13	0.34 12.34 87.66	0.66 13.37 86.63	9.59 12.47 87.53	0.50 12.61 87.39	0.59 11.53 88.47	0.77 12.22 87.78
HEAT INPUT HEAT INPUT FROM FUEL	MJ/s	1526	1489	1488	1481	1519	1479	1485	1524	1173	1195	870	894
EXCESS AIR ELECTROSTATIC PRECIPITATOR INLET AIR HEATER INLET	. %	26.9 28.5	26.9 27.7	18.3 20.4	24.6 26.1	26.2 28.5	23.2 24.7	19.1 19.8	25.4 27.7	30.0 32.4	28.5 30.1	32.5 35.1	34.2 34.2
AIR HEATER OUTLET		41.4	38.6	30.8	36.8	40.5	37.7	30.9	39.5	48.3	42.4	51.6	50.5

					TEST F	RESULTS							
TEST NO.		<u>1</u>	2	<u>3</u>	4	5	<u>5</u>	7	<u>.8</u>	9	10	11	12
DATE Unit Load	1976	3/17 517	3/17	3/20	3/20	3/22	3/20	3/20	3/20	3/24	3/24	3/24	6/24
	MW	317	512	524	525	526	521	522	522	476	473	472	524
PRODUCTS OF COMBUSTION	re/J												
ELECTROSTATIC PRECIPITATOR INLE	<u> </u>	413	414	412	400	401	383	384	387	461	453	443	412
WET PRODUCTS		448	447	446	433	434	416	416	419	494	486	476	444
AIR HEATER INLET		400	***										
WET AIR		420 425	406 411	427 433	412 417	406 411	393 398	403 409	392 397	480 486	473 479	455 461	425 430
DRY PRODUCTS		417	438	417	409	412	399	400	401	463	459	445	419
WET PRODUCTS		452	472	450	442	445	432	433	434	497	492	478	451
AIR HEATER OUTLET													
WET AIR		394 400	3 95 40 0	39 <i>4</i> 400	382 387	384 389	3 65 370	366 370	369 374	442 448	436 441	424 429	394 399
DRY PRODUCTS		443	449	450	438	434	427	438	424	501	496	429	450
WET PRODUCTS		478	483	483	471	467	460	471	457	535	530	510	482
GAS AND AIR FLOWS	KG/S												
GAS ENTERING PRECIPITATOR		668	662	678	667	668	602	623	626	702	676	659	672
GAS ENTERING AIR HEATER GAS LEAVING AIR HEATER		673 712	700 716	684 734	681	685	626	649	649	707	665	662 7 06	682 729
AIR ENTERING AIR HEATER		633	609	658	726 642	719 633	666 576	706 613	683 594	761 691	738 667	638	650
AIR LEAVING AIR HEATER		596	593	608	596	5 9 9	536	554	5 59	637	614	594	604
AIR HEATER LEAKAGE		39	16	50	45	34	40	57	34	54	53	44	47
AIR HEATER PERFORMANCE													
AIR HEATER LEAKAGE GAS SIDE EFFICIENCY	×	5.6	2.3	7.4	6.7	5.0	6.4	8.8	5.4	7.7	7.7	_6 .6	7.0
GAS DROP	∜ C	71.9 267	72.4 272	72.3 264	72.2 268	73.1 268	71.7 237	72.1 25 0	73.1 256	72.0 262	71.4 264	71.7 265	70.0 235
AIR RISE	č	339	346	333	341	333	313	318	236 321	331	337	339	297
TEMPERATURE HEAD	c	379	385	372	378	373	337	354	357	371	377	377	344
FUEL ANALYSIS													
CARBON	8	47.30	48.80	50.30	49.80	50.00	50.20	49.80	49.70	50.40	50.20	52.30	51.50
HYDROGEN Nitrogen	% % %	3.20 0.70	3,30 0,70	3.50 0.80	4.40 0.80	3 .50 0.80	3.50 0.80	3.40 0.70	3.40 0.60	3.50 0.80	3.50 0.80	3.60 0.80	3.60 0.80
Oxygen		11.80	12.10	12.00	11.80	11.80	12.00	12.00	12.00	13,10	11.90	13.60	12.70
SULFUR	*	0.70	0.60	0.60	0.70	0.70	0.60	0.80	0.90	0.70	0.90	0.50	0.50
MOISTURE ASH	% \$	27.90 8.40	25.80 8.70	24.80 8.00	24,90 8,60	24,10 9,10	25.20 7.70	24,90 8,40	24.90 8.50	24.00 7.50	23.90 8.80	24.00 5.20	23.80 7.10
HHV	kJ/kg	19050	19492	20050	20097	20306	20120	19980	20004	20004	20283	20515	20864
							-				· - · -		

					TEST RI	ESULTS							
TEST NO.		<u>13</u>	<u>14</u>	<u>15</u>	16	17	18	<u>19</u>	20	21	22	23	24
DATE Unit Load	1976 M₩	6/24 525	6/ 24 523	3/25 511	6/30 526	6/25 524	6/30 526	6/29 524	6/25 521	6/26 419	6/25 422	6/27 316	5/29 322
PRODUCTS OF COMBUSTION	μς/J												
ELECTROSTATIC PRECIPITATOR INL DRY PRODUCTS WET PRODUCTS	ET	409 441	412 444	404 437	411 443	413 442	391 423	380 412	409 442	440 472	417 449	421 454	433 466
AIR HEATER INLET DRY AIR WET AIR DRY PRODUCTS WET PRODUCTS		431 436 414 446	428 433 415 446	421 426 411 444	426 432 415 448	432 437 420 454	412 418 395 428	396 401 382 414	428 434 416 449	473 479 448 480	436 442 422 454	454 459 429 462	465 471 433 466
AIR HEATER OUTLET DRY AIR WET AIR DRY PRODUCTS WET PRODUCTS		391 396 454 486	394 399 448 481	387 392 445 478	393 398 449 482	394 400 458 492	373 378 435 468	362 366 416 448	391 396 453 487	422 427 499 5 32	398 403 460 492	403 408 479 513	415 420 484 517
GAS AND AIR FLOWS GAS ENTERING PRECIPITATOR GAS ENTERING AIR HEATER GAS LEAVING AIR HEATER AIR ENTERING AIR HEATER AIR LEAVING AIR HEATER AIR HEATER LEAKAGE	KG/S	673 680 742 665 604 62	661 664 716 645 594 52	650 661 711 634 583 50	656 663 714 640 589 51	671 690 747 664 608 57	626 633 692 618 559 59	612 615 665 595 544 50	674 684 742 661 604 58	554 563 624 562 501 61	536 542 588 528 482 46	395 402 446 399 355 44	417 417 462 421 375 45
AIR HEATER PERFORMANCE AIR HEATER LEAKAGE GAS SIDE EFFICIENCY GAS DROP AIR RISE TEMPERATURE HEAD	\$ \$ 0 0	9.0 68.8 234 286 348	7.7 69.5 233 299 343	7.8 70.9 260 336 374	7.6 71.0 239 291 344	8.4 70.1 239 272 348	9.3 70.0 230 284 336	8.3 70.4 240 297 349	8.3 69.4 237 292 349	10.8 70.9 208 249 301	8.5 69.3 216 266 319	11.1 73.0 183 207 258	11.0 71.5 195 232 280
FUEL ANALYSIS CARBON HYDROGEN NITROGEN OXYGEN SULFUR MOISTURE ASH HHV	KJ/KG	49.90 3.40 0.60 13.80 0.40 24.60 7.30 20562	50.10 3.40 0.60 13.80 0.50 24.20 7.40 20492	50.20 3.50 0.70 11.90 0.90 23.50 9.30	50.80 3.50 0.80 12.70 0.50 24.70 7.10 20678	47.80 3.30 0.70 13.70 0.50 25.70 8.60 19399	48.90 3.40 0.80 14.10 0.50 25.60 6.70 20515	49.40 3.40 0.70 14.40 0.40 25.10 6.60 20562	49.40 3.40 0.60 13.80 0.40 25.30 7.10 20120	51.90 3.60 0.60 12.90 0.60 22.90 7.50 20585	50.40 3.50 0.70 14.60 0.70 23.90 6.20 20655	49.30 3.40 0.60 14.30 0.40 25.10 6.90 20515	49.20 3.40 0.70 13.60 0.70 24.10 8.30 20283

WATERWALL ABSORPTION RATES, KW/m2

TFST		1	2	٤	•	5	6	7	8	y	10	11	12	13	14	15
T/C #	1	0.0	رد.45	23.36	د () . (او	32.32	23.26	32.03	2.90	120.87	0.0	2.81	23.25	2.28	29.37	0.0
,,	2	U.Ú	0.0	J.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	<u> </u>	0.0	100.11	0.0	0.0	0.0	0.0	0.0	0.0	52.43	0.0	0.0	0.0	0.0	0.0	0.0
	4	18.75	ەد.191	6.33	120.47	53.78	59.41	73.78	22.42	166.53	28.88	28.03	195.36	29.76	79.38	31.64
	5	3.10	80.24	J5.98	22.70	29.62	31.33	27.53	13.87	8.40	102.61	12.05	17.02	40.62	0.0	32.84
	á	0.0	0.0	J.J	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7	15.17	110.4)	+. 13	32.02	3.39	3.58	0.0	150.68	140.97	83.43	0.0	73.05	18.99	35.70	127.62
	ė	18.02	19.37	24.47	3.20	75.31	85.24	94.16	28.01	62.63	31.81	70.96	61.54	51.71	50.41	31.26
	9	16.24	3.71	32.28	ر8.94	65.29	80.68	75.01	33.06	8.59	31.81	47.32	51.54	40.81	7.36	33.67
	10	110.75	120.53	12.51	125.10	75.31	80.68	82.30	107.40	100.05	101.91	60.95	63.36	54.43	94.18	93.13
			12000				30133	02.50	1040	200103	1011/1	ģs	,	31113	,,,,,	,,,,,
	11	91.57	45.36	J7.10	74.88	63.47	70.65	57.71	97.90	90.91	96.43	76.43	66.09	53.53	67.71	102.87
	12	22.49	78.Lu	J3.45	53.04	56-19	55.19	53.16	41.70	69.01	43.57	62.77	50.63	96.39	55.87	43.33
	13	56.00	51.14	22.26	26.67	50.74	56.09	45.90	60.67	58.08	59,03	44.60	48.82	73.57	56.77	65.15
	14	95.22	دد ـ 80	100.35	⊅8.4 ₹	0.0	0.0	0.0	83.29	53.53	109.21	0.0	0.0	47.16	44.05	90.70
	15	15.29	دل 47٠	29.82	115.05	87.20	86.20	97.86	106.24	33.49	5.23	38.33	20.07	7 0. 76	88.62	10.43
	1 0	8.28	82.01	10.10	109.57	34.49	33.50	27.90	16-14	96.32	20.09	71.93	58.87	18.22	90.45	17.48
	17	61.39	30.14	10.10	161.03	157.51	154.67	161.77	66.80	41.64	63.54	108.42	92.58	88.10	110.54	62.08
	18	44.10	92.32	111.77	77.63	124.46	119.06	116-12	58.06	85.36	61.71	92.90	106.27	48.91	79.49	57.22
	19	73.24	93.78	102.38	20.32	110.94	101.71	103.33	64-62	89.02	72.65	0.0	97.14	54.37	84.06	74.23
	20	50.46	74.00	ú≯.78	42.19	109.11	97.15	93.29	56.60	48.91	60.81	53.73	56.14	68.94	53.06	63.29
	21	5.71	56. o s	47.93	24.15	64.42	56.14	59.57	11.90	8.53	14.76	83.78	64.32	23.58	12.52	15.12
	22	131.73	113.74	143.80	102.36	0.0	0.0	0.0	132.05	124.69	130.24	0.0	0.0	153.91	123.38	136-09
	23	118.94	121.73	37.11	144.37	161.28	155.71	162.80	58.29	146.61	45.41	103.06	77.20	38.07	97.81	36.42
	24	76.03	79.+0	174.84	62.23	257.88	261.42	263.95	94.05	100.03	94.62	137.76	200.41	134.74	97.81	95.90
	25	60.53	108.02	3 3	47.69	141.19	135.62	138.15	72.15	106.42	75.45	74.78	112.79	71.73	101.46	76.43
	26	53.24	26.33	107.27	0.0	104.93	152.97	155.50	89.67	116.47	0.0	100.33	122.83	78.72	0.0	74.61
	27	40.53	70.34	132.70	33.21	159.45	126.48	140.89	80.91	75.07	83.67	103.97	100.31	100.94	64.96	47.29
	28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	29	97.72	33.3+	Ju.92	98.53	122.76	114.45	106.94	77.96	100.73	75.26	59.15	80.68	41.79	32.05	69-85
	30	36.69	51.07	47.00	165.19	150.16	147.32	138.90	52.45	64.23	58.85	84.65	108.06	86.12	65.66	48.01
							-									
	31	91.33	93.93	102.00	70.25	192.14	200.25	198.22	118.14	97.99	128.21	109.29	131.80	103.47	91.20	119.75
	32	65.78	126.30	ರು. 🕫	09.34	150.16	155.54	123.37	94.03	50.57	83.47	91.04	137.28	119.00	51.09	85.66
	33	64.87	111.2	102.50	ع 9 ، 2 د	140.11	146.41	137.07	93,30	73.34	84.38	91.95	106.23	89.77	70.22	82-01
	34	64.87	116.03	74.23	51.15	130.07	127.23	116.98	74.31	62.40	68.87	57.33	100.75	72.43	62.92	71.06
	35	28.56	86.u <i>1</i>	73.76	19.59	101.76	98.01	95.07	40.10	30.63	36.16	128.47	83.42	56.94	26.64	37.13
	36	44.20	70.41	J4.21	206.61	185.24	166.89	159.39	78.47	44.53	58.28	102.40	66.51	71.84	52.32	55.32
	37	87.09	26.24	32.75	157.35	158.77	145.89	130.17	107.69	58 • 1 7	89.28	86.89	90.21	86.44	57.78	84.48
	38	89.82	148.2+	110.48	20.06	198.00	185.14	156.05	80.50	68.19	84.72	108.79	79.27	115.67	60.51	85.70
	39	44.26	29. ++	♪ラ・+り	40.04	137.77	128.55	124.69	74.09	81.88	46.46	74.12	103.90	91.00	61.42	71.11
	40	71.57	91	11,00	21.07	143.90	145.89	132.91	109.15	85.53	106.63	72.30	99.34	100.14	84.22	93.00
	41	84.35	113.47		01.71	144.10	141.33	135.64	89.42	99.22	85.63	85.06	108.47	83.70	98.83	91.78
	42	71.07	100.32	111.05	22.43	0.0	0.0	0.0	135,91	70.93	116.68	0.0	0.0	102.88	71.45	107.61
	43	158.64	130.17	1.17	152.25	179.25	150.34	147.92	114.15	8L.29	107.89	92.77	100.66	66.69	54.46	78.44
	44	69.23	135.33	11.01	172.33	132.02	172.77	104.35	76.79	122.38	75.93	100.07	111.61	71.25	121.99	68.71
	45		105.33		1.1.21				97.43	115.99	89.62	126.55		156.17		94.26
															· · · · · · · · · · · · · · · · · · ·	

MATERWALL ABSORPTION RATES, kW/m2

1551		1	2	ۏ	•	5	6	7	ង	9	10 ,	11	12	13	14	15
1/C #	46	68.24	46.21	34.17	31.93	47.00	38.77	25.97	67.31	72.16	76.24	60.88	83.32	79.46	74.51	
	47	76.45	89.12	11.31	27.17	131.78	134.43	123.26	81.90	80.37	65.91	83.65	93.36	99.55	79.98	0 .0 78 .4 4
	48	87.41)	101. 22	71.07	63.12	139.08	137.17	128.74	92.85	96.81	93.27	69.98	98.83	107.77	94.59	83.31
	49	66.12	119.32	113.11	12.52	37.05	48.42	43.99	81.90	100.16	67.73	54.52	88.80	93.15	91.84	82.09
	50	146.44	108.1+	1+1.42	12.41	158.03	148.81	134.91	143.31	135.76	115.80	134.56	122.35	98.31	142.67	77.54
										202010	117000	134130	122.55	70.31	172.01	(1.34
	51	119.96	126.+3	12.01	110.34	49.50	90.38	117.56	112.63	56.36	96.63	84.35	96.79	76.40	81.48	93.36
	52	113.50	137. 21	100.01	23.67	165.33	149.73	147.70	119.20	131.19	101.19	109.90	92.23	124.80	104.31	103.10
	53	54.20	79.51	47.47	23.40	93.20	84.91	87.44	62.25	65.46	54.69	57.04	46.72	107.44	69.62	50.83
	54	90.73	دد . 27	うりょしも	48.97	45.38	83.08	118.47	87.79	24.66	73.81	61.58	83.11	83.70	96.09	73.89
	55	103.52	43.24	41.33	23.1+	110.55	104.98	100.21	108.97	19.30	101.19	128.16	92.23	129.36	100.65	97.01
	56	0.0	0.0	J.0	() =()	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	57	0.0	0.5	a • 0	0.0	36.84	50.33	48.31	0.0	0.0	0.0	151.87	121.42	0.0	0.0	0.0
	58	125.23	158.99	120.02	70.05	39.55	47.60	47.40	165.29	137.31	161.97	116.26	128.73	169.26	127.79	179.96
	59	86.82	84.92	34.23	33.72	30.52	35.84	32.03	92.23	72.47	87.99	104.38	83.08	93.47	112.26	97.17
	60	31.49	46.0)	33.48	3.23	78.96	81.59	81.39	38.13	17.39	46.30	60.95	41.57	53.53	20.58	50.59
	61	27.88	9.40	30.20	0.0	57.10	58.82	55.89	77.45	14.73	66.31	56.40	49.73	29.95	47.68	59.08
	62	190.17	31.29	90.5ر	17.37	108.16	98.02	92.34	138.09	69.01	128.39	95.59	77.03	71.75	79.57	133.32
	63	44.17	101.53	131.92	80.00	90.81	76.12	63.17	57.03	115.57	53.57	61.86	52.45	64.45	79.57	60.29
	64	77.87	140.23	117.51	36.71	7.84	8.61	7.57	82.56	101.87	77.26	76.43	135.45	48.98	103.31	82.16
	65	70.50	98.49	20.32	131.49	94.50	86.20	86 . 90	21.13	37.11	88.16	41.04	35.30	50.73	48.52	34.23
	66	25.11	92.32	31.00	102.27	107.29	99.88	89.64	34.09	38.92	31.77	85.60	58.87	38.02	42.16	31.82
	67	41.38	142.01	75.25	115.05	128.29	118.15	105.16	47.14	59.83	49.89	72.84	65.23	73.50	52.15	54.79
	68	0.0	0.U	U.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	69	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	70	150.91	103.41	172.10	102.30	0.0	0.0	0.0	133.51	92.72	132.07	0.0	0.0	160.30	150.78	161.65
	71	97.93	110.08	28.8د	19. 33	135.71	123.74	113.49	65.58	50.78	51.77	82.08	44.47	58.06	66.78	54.56
	72	96.11	123.24	100.62	138.89	184.09	179.44	169.19	107.20	129.26	105.58	228.98	62.62	113.73	115.16	100.77
	73	86.00	142.90	131.02	123.37	171.31	159.36	145.40	99.17	127.43	98.27	104.89	107.31	134.74	93.24	97.12
	74	28.77	58.78	23.89	108.76	118.36	110.05	98.88	32.88	32.64	31.83	151.46	56.26	100.94	38.59	29.19
	75	0.0	0.U	0.0	J .n	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	76	60.32	30.42	dl.>0	31.23	140.11	135.45	130.68	69.21	86.12	66.14	91.95	140.02	78-82	108.56	69.85
	77	0.0	0. v	U.0	0.0	152.89	149.15	142.55	0.0	0.0	0.0	186.90	60. 65	0.0	0.0	0.0
	79	71.25	64.73	110.72	37.55	125.50	117.19	107.85	83.07	87.03	79.82	85.57	96.19	85.21	.60.19	156.28
	79	35.79	132./1	71.54	47.62	94.45	116.27	106.02	45.18	51.48	42.50	66.43	109.88	67.87	51 •09	41.96
	80	56.08	69. 35	110.14	21.52	207.12	197.00	173.08	73.36	39.09	80.16	111.53	89.30	80.05	45.96	74.75
	81	120.88	109.72	43.63	37.71	228.99	224.81	166.69	120.11	126.63	114.85	111.53	130.38	. 113.84	140.85	122.23
	82	113.57	145.52	49.95	57.33	152.38	147.72	144.78	137.11	103.79	122.16	82.33	104.82	125.71	119.84	112.48
	83	95.30	120.00	131.15	133.01		123.98	121.95	107.69	105.62	111.20	95.10	70.16	117.49	102.48	118.57
	84	76.13	83.22	102.83	113.03	0.0	0.0	0.0	82.12	78.23	73.77	0.0	0.0	94.66	79.66	77.18
	85	70.98	54.07	74.43	71.92		156.34	148.83	104.54	41.23	97.84	96.42	103.40	102.29	89.11	96.70
	86	82.44	105-20	100.32	137.04	120.82	129.80	121.44	104.54	78.55	105.15	77.27	109.79	109.59	65.39	88.17
	87	99.28	139.34	121.05	65.5+	130.34	144.47	150.60	103.19	108.68	106.97	81.83	102.49	111.42	96-41	102.79
	88	87.411	112.51	102.23	111.15	120.82	122.50	126.00	91.39	105.02	89.62	69.98	62.37	101.37	110.11	85.74
	6.9	142.211		11-2"	21.23	115.25	107.95	112.30	133.04	74.90 23.76	115.19 89.32	100.07 81.61	112.53 90.40	157.08 150.37	83.63 101.56	108.87 79.97
	90	00-10	٠٠٠ ۽ ١١٦	ى 1 . د د	133.31	131.55	134-211	1 30.50		23.70			-			

WATERWALL ABSORPTION RATES, KW/m2

TF ST		1	2	3	4	5	ú	7	8	9	10	11	12	13	14	15
T/C #	91	115.39	105.33	74.00	115.47	121.51	123.24	135.82	115.55	92.83	99.37	108.99	84.93	102.88	96 .09	95.79
	92	120.87	108.15	11.90	114.55	109.64	114.11	123.95	122.86	92.83	110.33	113,55	53.98	106.53	97.91	97.01
	93	148.27	138.11	122.04	120.94	131.55	133.29	140.39	174.71	79.14	146.86	152.82	106.83	162.24	61.42	139.63
	94	144.62	a7.70	35.47	138.30	95.94	104.07	141.30	139.66	98.31	70.17	119.95	73.08	60.91	83.30	59.31
	95	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	96	202.02	75.24	27.UB	84.92	101.77	95.28	90.51	152.70	116.49	141-18	111.11	77.94	138.41	201.89	111.40
	97	82.23	دد. 102	43.33	144.28	116.42	120.89	119.77	92.35	112.76	90.90	86.51	94.41	96.32	114.20	93.70
	98	104.33	106.43	0.0	67.70	0.0	0.0	0.0	113.05	144.78	111.97	0.0	0.0	100.94	120.64	112.95
	99	73.08	131.7/	110.20	71.17	154.72	144.58	134.33	78.69	86.12	77.99	90.13	88.89	91.60	86.64	77.15
	100	81.61	118.57	102.33	46.07	187.06	182.41	156.65	93.80	107.44	87.46	102.40	66.51	117.49	100.66	84.48
	101	141.29	ره 108.	31.64	120.08	171.04	159.08	144.27	142.54	107.77	123.41	122.90	110.70	108.68	98.24	118.61
	102	135.13	91.33	4.00	20.70	31.73	29.19	37.76	123.11	103.40	104-14	92.62	34.81	114-05	98.74	98.55
	103	0.0	0.0	U.Q	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	104	109.47	30.95	29.53	08.34	14.41	18.65	16.05	90.54	84.60	89.10	80.08	21.77	99.64	78.06	67.64
	105	157.00	110.22	10.01	105.18	36.09	33.54	43.38	161.61	124.69	142.31	98.26	42.30	146.57	101.25	146.95
	106	0.0	0.0	U. U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	107	170.11	130.0	10+.65	113.35	36.71	32.29	43.38	181.08	95.88	157.31	103.90	78.60	110.92	91.22	184.40
	108	0.0	n. u	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	109	46.72	55.74	04.16	31.92	20.93	30.43	32.03	19.56	59.71	60.63	96.17	74.88	84.34	58.41	31.64
	110	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	111	45.01	67.+9	60.0د	116.71	101.80	107.19	115.20	52.96	51 - 64	48.98	101.11	62.50	48.00	27.69	47.52
	112	71.47	126.16	100.18	177.24	0.0	0.0	0.0	89.67	79.94	88.23	0.0	0.0	82.68	64.96	94.68
	113	85.65	138.27	++ -17	43.93	57.09	52.46	47.72	77.96	40.59	73.43	94.69	101.67	59.67	49.27	67.42
	114	55.17	121.11	+9.04	131.78	166.49	147.72	135.64	86.50	59.08	81.98	70.48	102.99	96.48	51.41	78.40
	115	111.15	56.30	Jul - 29	122.12	125.39	112.51	105.00	125.73	54.85	118.85	56.34	81.50	91.33	107.37	110.09
	lló	99.80	100.12	90, 08	45.30	109.64	104.98	98.39		88.27	92.97	60.67	81.29	110.18	90.61	101.88

36 159.44

37 155.79

52.14

47.78

45.00

59.41

43 149.04 133.41

45 151.25 130.3/

26.10

38

39

40

42

68.22

90.07

84. 02

() . U

44 165.11 146.20 105.dl 100.84

100.35 100.34

109.25 102.57

109.20

BASELINE OPERATION STUDY

WATERWALL ABSORPTION RATES, kW/m2

							*** *** =				•						
		• -				Teet		•.									
TEST		16	17	1 3	19	TEST		16	17	13	1 #	TFST		16	17	18	19
T/C #	1	58.31	4. 32	0.0	11.55	T/C #	46	31.69	109.37	33.91	J9.45	T/C +	91	122.11	79.3+	J2.78	84.72
	Ž	0.0	0.0	١١ . ل	0.0		47	54.48	135.24	03.47	34.94		92	111.88	58.40	50.38	58.32
	3	0.0	0.0	U . U	0.0		48	04.34	116.00	137.33	100.45		93	121.38	127.71	124.77	112.10
	4	124.74	110.33	100.04	213.39		49	25.94	89.53	12.71	ä5.85		94	124.30		79.13	80.17
	5	45.95	81.12	41.09	15.94		50	19.04	153.20		117.54		95	0.0	0.0	0.0	0.0
	6	0.0	0.0	0.0	0.0								96	134.14	75.07	7+.89	76.82
	7	79.45	دل.79	13.72	71.03		51	114.80	121.53	12.81	90.2 0		97	143.27	97.9+	100.48	92.37
	8	0.0	52.34	د ا. ا د	os •79		52	17.49	دد.87	00.92	71.96		98	60.31	0.0	0.0	0.0
	9	116.61	46. 90	44.38	+3.62		53	61.53	55.41	47.11	46.52		99	69.00	105.20	101.35	86.86
	10	117.33	59.ul	2 t • Uc	J4.98		54	97.27	112.13	21.60	79.25		100	66.70	77.33	74.39	63.58
	_						55	20.33	د1.23	50.0E	85.64						
	11	72.79	02.34	03.16	69.02		50	0.0	0.0	0.0	0.0		101	96.44	0.0	0.0	108.67
	12	54.58	52.3+	23.42	54. 0 4		57	0.0	121.32	120.20	123.05		102	11.22	43.40	37.08	32.80
	13	56.03	دذ ₃50	51.23	50.43		58	65.60	128.02	133.25	130.35		103	0.0	0.0	0.0	0.0
	14	58.22	0.0	J.0	0.0		59	30.03	88.43	lc.ćb	dl.06		104	58.99	34.10	28.36	23.48
	15	133.77	21./3	24.21	19.87		60	8.66	36.0+	+0.35	41.37		105	109.11	53.46	46.44	40.90
	16	82.64	5 9. 00	03.09	00.48								106	0.0	0.0	0.0	0.0
	17	130.12	97.14	د د ه. ن د	93.29		61	73.52	47. dJ	49.41	49.52		107	112.62	91.05	74.62	69.69
	18	91.40	119.80	114.17	106.07		62	106.37	76.11	00. د /	75 .91		108	0.0	0.0	0.0	0.0
	19	30.80	109.01	100.48	93.29		63	67.69	54.1v	26.0¢	50.43		109	34.36	79.33	80.42	81.06
	20	78.99	69.01	23.73	54.12		64	38.61	152.03	120.14	125.20		110	0.0	0.0	0.0	0.0
							65	123.54	26.20	27.78	30.40						
	21	42.60	06.74	>u.73	61.39		66	111.85	67.02	u7.65	56 . 84		111	76.80	66.03	65.83	62.30
	22	117.97	0.0	0.0	O .O		67	108.20	70.53	73.38	62 - 30		112	127.47	0.0	0.0	0.00
	23	153.77	87.11	37.65	U.O		68	0.0	0.0	0.0	0.0		113	78.54	107.03	97.70	94 . 9 6
	24	47.95	187.33	190.98	192.91		69	0.0	0.0	0.0	0.0		114	111.95	131.18	86.24	83.62
	25	33.47	ر4،40	102.16	108.93		70	101.90	D. O	0.0	0.0		115	105.93	96.89	83.00	74.92
	26	18.59	131.85	120.69	115.23								116	92.16	108.54	104.68	78.34
	27	29.86	109.02	J.O	υ . Φ		71	81.45	52.51	49.28	46.98						
	28	0.0	0.0	0.0	U.O		72	147.93	74.35	12.32	56. 06						
	29	105.55	51.44	22.15	63.17		73	109,.21	122.72	117.03	101.62						
	30	170.57	86.10	45.55	93.72		74	109.94	73.44	61.77	55.15						
							75	0.0	0.0	0.0	0.0						
	3 L	01.04	133.52		134.34		76	112.86	161.62	132.40	12.د10						
	32	64.68	132.60	130.05	132.51		77	0.0	65. 99	20.09	26 • 8 L						
	33	45.05	109.77	107.57			78	61.04	123.47	101.35	91.42						
	34	47.96	107.03	30.40	91.42		79	108.47	145.37	103.65	89 -60						
	35	20.55	96. 44	72.80	77.74		80	213.44	85.55	d 0.7 7	79.47						

81 217.81 145.79 125.41 124.70

82 144.83 120.22 101.75 100.04

72.57

₹7.60

0.0

119.71 112.20 108.67

3+.78

50.51 114.24 103.07 102.28

67.22

0.0

95.89

57.62

86.45

0.0

71.30

89 98.63 135.2+ 11+.03 105.93 90 134.53 05.72 >>.10 77.43

44.71 111.00

83 119.99

84 124.37

86 119.08

88 111.78

85

87

66.31

87.27

82.71

100.04

99.13

49.13

0.0

95.80

...01

85.24

d5.33

37.19

J.1)

+3.>l

33.95 101.37

WATERWALL ABSORPTION RATES, kW/m2

TEST		1	2	3	4	5	٠.6	7	8	9	10	11	12	13	14	15
T/C *	1	74.10	126.22	7.17	30.71	97.13	121.79	46.10	0.0	0.0	20.46	104.12	121.39	79.91	13.98	71.66
	2	0.0	0.0	J.0	9.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3	0.9	52./1	7.41	29.43	43.82	54.21	0.0	0.0	0.0	0.0	85.85	0.0	152.97	143.05	0.0
	4	95.10	رد. 233	35.70	1.47.07	47.00	193.90	77.05	27.54	0.0	51.11	67.60	83.95	195.84	154.92	152.01
	5	30.47	121.07	112.26	36.72	50.09	99.87	34.32	14.20	64.16	26.71	137.00	89.43	79.91	110.17	58.91
	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7	0.0	125.35	20.07	ز+ .90	18.17	104.43	15.51	0.0	80.56	8 - 19	135-78	125.96	105.48	130.27	93.56
	8	96.20	139.52	23.14	129.00	31.87	39.10	114.74	65.00	0.0	41.43	85.44	34.08	6.13	31.21	0.0
	9	77.94	81.97	43.14	62.35	32.77	23.08	80.95	43.20	122.87	50.53	76.92	54.04	17.52	36.63	115.74
	10	111.73	138.30	20.00	33.14	44.54	38.20	93.73	53.18	23.76	56.89	106.14	58.60	22.87	49.33	111.17
	11	75.20	70.12	20.00	24.27	47.26	49.08	65.45	68 . 64	25.55	45.99	75.71	117.01	26.47	66.61	75.57
	12	45.15	44.+0	91.43	53.20	61.81	38.20	58.17	64.09	39.96	39.65	40.51	60.42	37.31	71.17	71.01
	13	82.50	45.6+	12.27	34.19	55.35	47.20	53.62	36.87	90.00	37.85	87.87	73.18	28.27	64.79	62.81
	14	49.69	57.37	4+.95	39.02	0.0	0.0	0.0	0.0	0.0	0.0	52.62	75.01	83.74	0.0	0.0
	15	107.08	91.34	30.39	12.39	31.87	40.00	95.54	47.79	15.81	98.86	111.56	65.81	117.46	47.49	60.08
	16	104.34	101.11	14.28	141.72	59.07	61.80	130.25	72.34	0.0	34.28	59.23	43.07	76.37	125.01	59.17
	17	65.10	70.uj	30.80	54.0)	111.07	112.90	156.73	111.57	0.0	137.21	66.52	58.53	56.31	113.14	141.30
	18	111.05	57.23	+2.79	30.46	61.80	64.53	123.86	86.01	48.15	107.07	113.99	43.07	74.54	63.86	81.04
	19	76.04	41.34	1.24	41.73	92.61	92.81	110.16	71.43	81.83	89.73	78.68	66.72	89.14	89.40	26.57
	20	72.39	51.23	ات.زد	41.37	60.89	51.79	101.94	45.07	86.39	87.91	72.60	61.24	39.96	64.77	80.12
	21	50.90	85.25	19.02	65.02	21.99	22.89	59.07	99.70	65.42	53.30	39.85	22.30	10.39	24.01	50.04
	22	0.0	0.0	157.08	0.0	0.0	0.0	191.49	0.0	25.41	0.0	0.0	0.0	145-82	0.0	113.08
	23	111.70	149.2+	35.87	147.25	97.15	129.42	188.75	101.95	106.58	177.50	105.22	65.87	22.86	98.00	150.52
	24	148.24	251.01	114.73	110.72	219.74	247.96	217.01	136.35	0.0	279.49	127.14	95.07	125.73	209.96	42.00
	25	08.80	50.97	10.42	45.97	116.63	117.55	144.03	72.46	0.0	146.46	69.92	62.22	69-12	110.48	22.19
	26	100.74	111.79	47.06	139.03	50.97	29.25	148.60	104.39	120.28	167.46	104.00	71.34	115.68	63.95	19.52
	27	91.61	91.09	34.67	139.95	160.47	206.08	143.12	93.43	115.71	150.11	90.61	116.99	78.24	116.87	32.96
	28	44.23	130.00	103.77	111.93	0.0	0.0	0.0	0.0	0.0	0.0	46.86	86.85	44.55	0.0	0.0
	29	64.03	101.54	106.73	127.37	44.44	39.91	109.14	49.57	148.42	118.90	59.09	38.38	68.00	86.55	86.11
	30	93.23	90.00	101.25	99.03	101.84	140.20	156.63	79.60	182.19	167.30	101.06	81.16	152.92	91.12	160.38
	31	90.49	01 71												124.91	61.80
	32	96.88	91.74	192.10	33.50	142.94	181.27	115.54	107.88	0.0	222.01	87.66	104,90	97.20		67.27
	33	84.10	36.72	113.00	14.01	61.70	58.00	157.54	91.45	150.25	169.12	97.40	80.25	88.07	59.21 55.57	46.35
	34	95.97	80.3+ 103.37	74.33	103.94	57.15	54.43	38.10	94 - 19	49.01	157.25	86.45	51.09	89.90		50.89
	35	133.42	111.20	70.22	126.04	153.89	142.02	132.89	56.84	52.64	139.91	87.66	55.64	86.25	121.25 29.30	20.23
	36	93.55	119.32	22.11	127.87	29.07	31.78	100.92	144.41	40.86	103.38	136.37	98.51	47.06		96.82
	37	83.50	85.72	72.30 80.05	127.2d 20.1b	107.68 78.47	124.12	102.20	93.69	163.43	178.65	90.12	69.62	84.74 88.39	94.21 69.58	127.87
	38	127.34	136.37	114.72	137.45	89.42	86.68 94.89	165.21 201.70	80.01	145.17	164.96	87.69	62.33	116.70	84.17	60.35
	37	59.80	74.11	11.77					100.47	52.13	214.22	124.22	95.18		104.26	35.26
	40	84.42	56.22	1)22	υ7•υ3 䀕ευ	98.55 78.47	85.77	133.25	65.43	148.82	153.09	64.58	69.62	134.97 105.74	74.14	53.08
	7''	07.72	20.23	111066	03.50	10441	73.111	145.13	71.80	142.43	165.87	79.17	61.42	103017	17017	JJ. 90
	41	120.03	60.1)	37.37	J') • 0 }	166.12	156.08	149.69	81.85	132.38	158.57	127,87	78.74	120.36	151.75	64.90
	42	70.73	زد و څو	101.31	11.38	J.U	0.0	0.0	0.0	0.0	0.0	71.87	49.59	112.14	0.0	0.0
	43	94.75	153.93	12.08	11.61	208.44	173.86	161.92	88.62	152.87	171.76	91.36	60.83	86.89	183.14	132.81
	44	110.31	1400.	13,07	13.09	233.04	196.59	176.53	15.92	174.78	185.45	104.75	84.54	168.16	194.99	128.24
	45	118.53	1.5.41		143.52					176.60	200.95	108.41	84.54	170.90		120.93
	.,				- · · · · · ·		-		/						- · ·	

WATERWALL ABSORPTION RATES, kW/m2

TEST		1	2	3	4	5	6	7	d	9	10	11	12	13	14	15
T/C #	46	71.06	02.0+	12.+2	39.12	37.02	44.64	102.56	54.93	111.78	53.17	59.74	141.17	0.0	41.76	31.71
	47	88.39	16.51	111.02	1 10.00	177.44	159.18	169.23	84.98	130.04	150.76	81.62	62.65	76.85	155.76	48.60
	48	93.d7	59. J f	102.00	113.47	153.71	150.05	156.45	70.40	137.35	145.28	87.71	74.51	88.71	142.97	67.09
	49	105.74	66.23	31.23	104.77	139.10	123.57	124.40	54.93	103.56	45.91	95.01	70.86	128.90	126.54	33.52
	50	162.04	143.20	113.37	143./2	177.17	177.17	153.44	136.63	108.81	158.76	156-19	41.42	113.96	167.35	13.63
	51	144.09	202.37	33.175	36.66	152.52	142.48	29.54	82.03	112-46	49.32	137.93	123.49	113.96	141.79	107.88
	52	179.36	170.0+	124.40	151.97	130.17	150.70	43.09	103.01	123.42	162.41	158.62	150.89	113.04	111.65	20.71
	53	57.06	79.33	113.22	80.72	40.37	48.53	19.70	54.54	86.91	88.46	50.33	86.96	79.26	27.95	40.49
	54	65.20	77.01	02.31	40.72	75.83	75.83	135.17	50.54	53.22	36.65	63.68	99.74	78.35	46.93	89-62
	55	105.42	89.03	しとましりち	115.71	131.52	127.87	137.91	121.27	93.29	107.62	90.44	82.39	124.92	123.52	24.28
	56	0.0	0.0	JJ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	57	169.98	128.33	9.0.	39.40	135.49	111.74	53.37	142.24	89.69	35.71	134.57	117.74	0.0	120.22	0.0
	58	194.61	143.50	1+9.70	105.38	148.27	129.09	53.37	129.45	96.08	42.04	177.16	143.31	129.22	141.23	88.08
	59	94.19	192.17	30.09	33.14	105.35	88.00	34.32	103.88	63.25	29.41	104.12	84.86	63.49	103.78	38.94
	60	90.72	04.0+	0 <i>0</i> • 6 ¢	20.07	10.01	67.27	86.43	54.08	35.44	63.25	84.23	29.56	66.41	68.43	6.32
	61	83.41	93.2+	31.30	32.42	45.45	31.87	59.08	54.99	37.25	45.08	81.79	35.89	61.85	48.42	99.30
	62	108.07	دد .99	74.09	მა. 07	139.59	215.11	92.82	90.52	0.0	75.09	96.40	72.27	111.14	164.30	151.35
	63	74.29	53.11	33.15	25.17	80.04	80.95	78.21	54.99	131.09	55.97	72.06	67.71	57.30	79.38	89.26
	64	91.63	95.00	+3.59	91.55	163.13	141.22	66.37	60.82	111.00	10.23	87.87	92.35	95.61	126.86	47.36
	65	48.71	88.71	to.ici	124.36	40.00	35.48	97.37	40.55	51.78	76.96	44.69	145.25	128.42	37.52	130.34
	66	67.83	97.+3	-3.10	98.79	136.64	103.76	127.51	84.19	102.82	83.35	62.88	46.70	14.79	123.18	114.81
	67	140.36	155.83	J1.04	73.23	141.21	132.99	126.60	67.78	0.0	98.86	133.48	136.12	72.72	121.36	112.99
	68	0.0	0.0	11.20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	69	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	70	73.36	127.02	111.51	152.47	0.0	0.0	0.0	0.0	0.0	0.0	69.92	135.26	154.04	0.0	0.0
	71	87.04	94.7+	ol.30	48.66	204.26	154.99	149.51	76.11	45.55	134.59	82.09	88.68	45.45	183.52	91.16
	72	149.15	170.23	ز8 . ۱۵۲	162.77	90.15	93.80	210.64	105.30	69.18	180.24	133.23	108.77	128.47	83.09	181.55
	73	106.22	120.32	113.32	130.14	122.12	127.60	180.55	97.09	93.80	178-41	110.09	80-46	119.34	111.40	148.70
	74	52.40	24.JL	15.94	1+2.42	108.41	64.62	127.60	153.70	69.18	119.98	52.92	18.78	42.73	89.48	107.60
	75	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	76	93.23	114.13	70.00	10+.12	188.57	170.32	150.24	91.45	164.86	158.17	84.01	76 - 60	60.71	168.73	131.16
	7 7	32.27	94.23	0.0	105.03	211.36	150.24	168.50	84.16	58.10	160.00	81.58	0.0	0.0	193.37	0.0
	78	68.59	93.1.	34.62	123.30	43.98	53.52	141-11	81.42	57.18	125.29	69.42	67.48	80.77	40.14	111.98
	79	44.02	29. 21	33.60	10.03	75.28	75.37	116.45	62 . 29	32.73	43.29	45.15	32.05	58.89	57.39	93.72
	80	78.03	72.3+	30.27	67.93	155.17	187.11	152.43	116.51	220.88	226.06	84.04	55.05	70-14	72.32	230.95
	81	128.26	106.42	110.70	173.84	287.22		206.20	11+.68	233.64	257.01	130.31	225.66	166.93	262.92	
	82	96.29	94.2+	123.37	12.31	222.65	190.76	154.26	82.74	136.95	153.09	101.08	69.62	134.97	198.28	154.36
	83	104.51	103.))	120.75	70 - 14	177.98	158.82	151.52	92.78	162.52	125.70	104.73	184.65	166.93	164.53	127.87
	84	102.03	119.32	40.04	73 -40	0.0	0.0	0.0	0.0	0.0	0.0	101.08	167.32	90.22	0.0	0.0
	85	129.49	142. //	14.5)	154.71	169.23	170.14	129.05	B9.54	154.70	159.89	118.15	71.77	133.47	149.37	47.09
	36	103.91	175.22	113.13	1+.72	199.33	173.79	104.60	77.68	156.52	129.76	103.54	71.77	158.12	182.23 194.08	115.45 51.63
	87	104.83	91.63	113.70	31 • 4 •	213.91	197.50	168.31 141.84	73.13 74.04	168.39	141.63 127.02	1 09.63 75.54	99.15 136.60	126.16 113.37	147.54	115.45
	6 3 6 3	78.35 38.32	72.3.	143.29	19.42 19.04	143.23	124.05	120.63	47.75	102.45	121.54	65.82	149-38	122-51	129.28	103.58
	30	122-02	120-21	1 + 1 - 15	1 -2 - 31	151-01	100187	167-13	45.00	106.99	145.04	136.71	60-89	66.49	157.31	130.71

210

SHEET AZ

WATERWALL ABSORPTION RATES, KW/m2

T =51		ı	2	3	4	5	6	7	Ŋ	9	10	11	12	13	14	15
T/C #	91	115.46	+د،121	107.79	123.37	14ó. 13	152.52	132.43	112.14	120.68	135.93	108.70	108.87	82.00	146.35	109.71
	92	93.54	105.21	107.05	140.99	134.26	147.05	140.65	133.14	123.42	124.97	84.35	87.87	122.18	137.22	103.32
	93	99.94	114.03	172.71	140.41	139.74	138.83	134.26	77.47	127.08	145.98	91.65	149.06	155.97	133.57	124.32
	94	78.94	د2.87	02.33	122.72	111.43	129.69	130-61	54.72	103.33	103.06	74.62	79.66	101.17	124.43	145.32
	95	0.0	n.u	0.0	J.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	96	129.08	ااد 138.	127.06	127.17	162.22	174.09	100.12	105.12	128.35	78.74	114.67	143.50	133.06	137.82	169.61
	97	211.12	64.28	13.14	21.13	148.52	167.68	174.99	80.92	71.80	101.60	140.78	66.72	103.76	124.10	132.17
	98	118.10	125.19	15.76	121.68	0.0	0.0	0.0	0.0	0.0	0.0	118.62	76.81	170.47	0.0	0.0
	99	100.53	103.97	80.40	123.69	96.36	101.84	194.96	86.89	41.73	153.60	101.06	72.04	75.29	96.59	67.27
	100	126.43	رن.135	113.44	154.67	145.13	159.73	150.60	95.51	178.94	178.65	118.13	108.88	88.39	107.00	55.80
	101	0.0	141.75	111.94	78.29	130.88	145.49	87.04	0.0	143.74	151-68	121.80	133.86	95.10	104.62	47.09
	102	103.89	111.39	دَ0.ز11	128.90	103.66	123.70	121.19	92.28	0.0	36.59	98.21	91.22	126.65	81.24	10.74
	103	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	104	88.80	193. 24	31.97	102.61	86.11	99.90	83.60	77 .86	65.54	21.68	82.34	114.40	99.72	59.94	51.73
	105	97.00	107./1	120.67	143.71	113.05	128.08	95.51	97.29	0.0	35.97	92.36	124.41	147.28	86.88	74.28
	106	0.0	0.0	0.0	J.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	107	85.09	d9.33	14.36	119.51	90.14	116.81	82.35	100.42	0.0	34.72	82.34	123.16	170.38	83. 12	71.78
	1 08	0.0	0.0	U . U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	109	112.45	111.95	30.30	79.57	á9.7á	84.35	36.13	92.93	55.07	23.14	88.29	84.86	61.67	93.73	44-37
	110	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	84.52	0.0	0.0	0.0	0.0	0.0	0.0
	111	87.91	90.12	44.00	51.42	123.86	123.86	57.25	108.83	60.87	104.33	115.21	107.80	36.33	116.79	49.17
	112	84.31	77.70	19.55	10. اذ	0.0	0.0	0.0	0.0	0.0	0.0	89.39	106.94	78.24	0.0	0.0
	113	103.27	105.19	29.28	148.87	62.62	56.24	158.46	88.72	0.0	59.62	96.18	170.65	38.90	67.40	66.36
	114	63.44	61.49	11.02	28.82	143.30	149.69	162.47	67.25	L57.04	179.56	64.58	101.57	146.84	128.00	106.87
	115	59.2L	52.43	67.28	52.73	151.48	108.05	116.26	51.30	126.39	124.28	56.10	56.28	127.07	120.14	85.33
	116	08.91	90.23	110.70	116.32	91.13	106.86	104.12	58.36	92.38	120.41	63.68	106.13	107.56	104.34	82.32

157.06 97.32 132.41 133.93 114.20 1.7.71

FIRING OPERATION BIASED STUDY

WATERWALL ABSORPTION RATES, kW/m2

TEST		16	17	18		TEST		16	17	18	TEST		16	17	18
															••
T/C #	1	44.29	ده.4	23.53		T/C W	46	110.79	22.01	20.15	T/C #	91	118.43	109.48	127.42
	2	0.0	ກ∙ບ	0.0			47	127.84	15.43	179.00		92	125.74	116.78	124.08
	3	0.0	0.0	0.0			48	129.05	دل 66۰	123.99		93	136.70	43. 12	141.12
	4	83.14	29.33	41.30			49	115.00	47.72	51.06		94	146.44	49.35	6.30
	5	45.50	11.04	21.06			50	144.00	د 134.13	lvl.lo		95	0.0	0.0	0.0
	6	0.0	0.0	0.0								96	104.70	99.71	79.35
	7	25.03	0.0	u .u			51	28.64	69.35	46.31		97	171.04	87.91	101.30
	8	97.39	55. Ua	21.49			52	35.85	93.90	0.25داد1		98	0.0	0.0	0.0
	9	91.31	45.99	22.04			53	27.44	51-17	38.17		99	178.85	90.61	162.44
	10	93.74	57.13	>2.04			54	119.65	54.80	43.60		100	109.51	95.59	182.01
							55	123.30	0د .40	100.03					
	11	75.49	65.47	40.60			56	0.0	0.0	0.0		101	70.63	117.91	157.77
	12	71.84	65.41	35.04			57	63.69	128.01	39.03		102	129.12	86.05	35.77
	13	64.55	38.74	34.84			58	61.26	125.80	43.55		103	0.0	0.0	0.0
	14	0.0	0.0	0.0			59	40.67	88.43	32.71		104	53.95	64.15	17.78
	15	79.73	45. L+	87.01			60	96.17	49. 01	52.95		105	75.67	86.69	38.89
	16	115.03	71.00	29.49								106	0.0	0.0	0.0
	17	158.87	110.73	129.61			61	69.41	52.33	44.79		107	49.78	87.31	35.15
	18	127.21	72.40	¥7.65			62	113.22	91.50	75.70		108	0.0	0.0	0.0
	19	117.47	74.23	43.05			63	93.74	59.60	53.86		109	38.25	89.34	22.85
	20	112.60	48.70	40.31			64	73.06	55.47	12.55		110	0.0	0.0	0.0
			10110	30.77			65	111.38	46.04	66.64		110	0.0	0.0	0.0
	21	67.58	89.73	+3.73			66	132.08	79.70	76.67		111	53.01	113.46	89.43
	22	0.0	0.0	33.17			67	135.74	61.40	94.00		112	0.0	0.0	0.0
	23	169.60	0.0	157.16			68	0.0	0.0	0.0		113	131.37	87.87	59.33
	24	208.51	134.59	2>5.56			69	0.0	0.0	0.0		114	141.17	68.23	157.37
	25	135.52	72.53	134.29			70	0.0	0.0	0.0		115	82.79	54.10	125.81
	26	147.69	98.07	148.90					•••	•••			96.51		113.72
	27	136.74	0.0	139.77			71	148.91	76.18	141.51		110	, 70.71	33.11	113415
	28	0.0	0.0	0.0			72	206.08	100.81	160.25					
	29	57.16	51.40	126.82			73	173.25	89.83	173.29					
	30	97.28	79.00	150.96			74	122.12	36.22	123.33					
	50	71120	77.00	130.70			75	0.0	0.0	0.0					
	31	145.99	102 44	212.34			76	150.86	90.61						
	32	165.46	90.61				77	155.73	76.93	152.39					
								135.03	76.93	124.09					
	33	121.63	92.43	152.39			78	109.45	58.74	34.86					
	34	132.59	58.72				79		108.30						
	35	99.71	124.39	104.00	•		06	142.39	100.30	202.07					
	36	63.28	84.3+	1/1.06				102 60	100	140 15					
	37	124.12	78.20	160.10				193.50	108.30	149.15					
	38	152.13	104.71	201.10			82	142.39	80.03	152.54					
	-	119.25		134.54			83	143.61	83.72	91.62					
	40	120.47	66.41	154.62			84	0.0	0.0	0.0					
							85	120.53	82.31	159.60					
	41	136.30	79.17	1+4.26			80	130.27	98.02	59.24 144.39					
	42	0.0	Ŭ.Ų 85.J⊃	9.9 102.34			87 88	163.15 129.05	62.27 63.19	119.42					
	43	146.10		102.34			84	120.53	80.47	114.35					

120.53

80.87

114.35

			•
WATERWALL	ABSORPTION	DATES	LU /_4
A- 14 00 1 1000 1000	LIGHT I I OIL	WILD.	KW/M

							MAI E DWA	EL ADSUKFI	TON KATES	, KW/m						
TEST		1	2	3	•	5	6	7	8	9	10	11	12	13	14	15
T/C #	1	12.87	70.28	0.0	1.14	6.58	14.77	28.41	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3	114.87	129.93	13.11	11.22	0.0	41.08	0.0	0.0	0.0	0.0	0.0	129.64	127.80	103.85	84.77
	4	141.30	41.10	100.75	11.21	124.43	163.35	133.22	114.46	4.58	6.01	0.0	0.0	0.0	0.0	0.0
	5	82.90	92.13	+3.05	ر11، در	44.15	74.77	46.53	33.34	0.0	0.0	0.0	87.99	91.26	93.80	62.87
	6	0.0	9.9	0.0	13.0	0.0	C .O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7	115.78	115.32	0.0	11.22	8.30	100.33	0.0	0.0	0.0	0.0	0.0	123.80	119.57	120.29	29.29
	8	94.96	42.45	U . 11	2.37	0.0	53.06	51.24	25.40	34.64	38.27	28.59	0.0	0.0	0.0	20.50
	4	29.43	29.37	0.14	0.0	84.41	75.85	43.97	21.81	31.92	18.48	15.48	61.52	58.58	80.27	6.44
	10	24.93	29.09	37.33	29.26	88.07	132.47	105.07	51.67	84-68	82.86	55.17	155.02	127.96	123.20	34.00
	11	81.26	33.2+	2.83	n.a	28.03	93.19	65.81	18.23	72.82	67.36	60.02	54.96	47.66	43.83	85-87
	12	20.46	19.12	37.32	01.03	47.96	89.54	56 . 70	60.77	80.12	91.08	74.60	100.22	99.64	107.67	26.78
	13	87.65	91./0	68.26	52.83	74.38	79.49	53.97	55.31	74.64	71.92	72.17	86.34	66.78	110.41	109.62
	14	77.01	45.+1	24.29	23.74	65.26	78.58	58.52	47.12	72.82	78.30	58.81	117.02	115.17	107.67	40.34
	15	130.51	142.24	122.04	102.01	107.17	131.46	112.28	120.02	70.95	63,68	42.42	28.41	24.05	26.56	14.22
	16	6.33	10.22	105.50	102.92	0.0	132.38	95-84	63.42	56.37	52.75	55.75	0.0	0.0	0.0	36.65
	17	39.31	64.32	79.12	10.97	26.16	134.20	115.02	96.27	71.86	67.32	56.96	136.30	175.34	50.11	52.99
	18	43.05	52.19	27.31	03.6d	40.62	94.93	62 .0 8	37.06	30.08	36.42	29.16	132.45	105.95	111.23	44. 81
	19	89.41	932	70.71	49.23	56.07	82.14		67.98	68.21	62.77	58.17	95.38	105.03	91.14	76.68
	20	69.33	ذن ،74	73.21	77.30	108.99	107.71	94.01	92.62	83.72	92.87	73.96	101.96	105.03	85.66	91.28
	21	28.47	38. 47	51./8	44.57	50.61	72.11	50.24	37.06	61.83	37.33	27.96	36 .36	31.26	30.16	30.32
	22	148.83	156.00	122.09	116.67	128.22	150.68	122.37	114.59	128.54	138.60	134.61	0.0	184.20	0.0	93.17
	23	19.55	26. 33	179.01	111.19	7.03	127.85	145.20	156.60	4.58	7.71	0.0	197.85	168.16	172.45	33.09
	24	138.78	146.80	157.62	81.00	76.17	211.79		146.55	74.66	79.25	68.87	0.0	0.0	0.0	113.26
	25	50.26	56.7)	65.49	53.71	52.48	125.11	97.71	70.76	38.28	43.75	37.37	0.0	0.0	0.0	17.63
	20	0.0	88.4L	0.0	0.0	0.0	112.63	0.0	0.0	73.45	70.13	0.0	137.99	139.79	133.20	0.0
	27	59 . 30	52.10	0.0	0.0	0.0	128.46	0.0	58.00	0.0	64.66	44.01	138.73	1 37. 96	134.11	350.71
	28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	29	19.35	23.04	246.19	109.70	104.26	105.71	132.20	80.06	22.17	9.54	21.28	112.39	96.64	136.64	0.0
	30	55.51	59.43	102.69	1+3.65	128.92	115.76	92.92	82.41	47.45	56.27	55.63	186.15	114.91	227-83	78.36
	31	108.43	103.72	197.26	14.5+	82.35	180.58	160.51	110.72	79.02	73.58	75.67	195.64	173.35	216.91	86.57
	32	111.17	115.93	134.00	129.25	62.28	153.20	130.37	138.12	52.60	57.18	56.24	56.90	60.15	59.95	73.80
	33	91.08	97.03	109.09	113.29	73.22	117.59	97.49	111.63	67.17	68.11	63.52	53.26	96.64	59.04	44.66
	34	142.23	139.04	113.22	110.98	111.57	117.59	104.80	120.77	73.55	77.23	76.89	78.05	76.56	94.62	90.22
	3.5	101.12	95. 20	77.13	51.03	62.28	104.80	98.40	10j.24	34.46	35.40	32.06	62.73	49.22	74.54	74.71
	36	03.12	04.30	3 ذ . ر ن	45.63	48.04	121.55	98.71	65.39	47.49	46.62	46.59	135.53	58.63	220.86	44.99
	37	77.71	30. ol	32.00	11.0د	93.18	117.89	112.41	89.11	56.58	58.44	57.49	82 . 20	56.81	122.33	66.83
	38	95.05	96.4+	1+3.07	142.35	175.80	189.10	183.62	150.30	135.06	119.57	87.88	205.61	181.86	229.96	98.76
	39	110.58	114.70	00.02	72.03	0.0	114.24	0.0	0.0	29.39	56.62	62.35	83.66	83.25	73.93	48.62
	40	73.15	72.10	124.49	133.21	14.53	139.81	134.33	91.85	100.36	89.44	95.18	93.15	97.86	89.45	51.65
	41	91.40	95.22	110.10	150.93	110.30	1.4.33	121.85	135.69	62.95	64.81	68-42	120.92	118.87 97.86	106.80 110.46	48.62 93.29
	42	107.04	1)8.01	44.19	100.33		118.81		131-13	66.60	69.36	67.21 74.55	189.33	102.18	175.59	34.45
	43	57.93	56.33	1+3 - 1	143.37	0.0	120.94	63.43	131.74	81.53	88.87	98.28	213.39	167.58	233.91	54.40
	44	81.66	37.13	101.19	100.22	108.81	184.84	114-55	133.26	108.00	107.13 99.82			161.19		72.62
	45	110.29	101.77	33.23	102.47	197.94	141.53	151.08	140.40	94.30	44.05	100.10	101.31	-01-17	. 71 - 10	12.02

WATERWALL ABSORPTION RATES, kW/m2

THET		ı	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T/C 4	46	01.02	23.11	11.40	11.5+	04.13	104.50	93.11	0.0	46.31	40.62	59.97	138.95	115.53	125 42	72 52
,,,,	47	70.94	33.07	10.73	17++91	112.20	126.73	141.03	117.56	67.84	86.74	85.49	179.85	162.10	135.43 178.33	73.53
	48	110.33	119.00	117.73	117.09	135.95	128.25	140.51	121.39	93.39	87.96	83.06	184.95	176.70	182.89	112.79 107.31
	47	67.09	01.13	12.24	17.70	57.45	109.07	U. 0	0.0	25.23	0.0	0.0	158.68	142.02	159.17	
	50	39.49	40.67	71.11	122.24	134.71	165.34	145.20	157.59	39.37	30.39	0.0	184.26	190.96		85.40
	24.	37.47	7.70.51	,			-07.51	143420	23.137	27.21	30,39	V• U	104.20	170.70	172.52	18.87
	51	81.30	85.73	12.11	وديزن	0.0	155.31	63.09	46.26	46.62	43.96	31.28	163.09	159.03	152.44	0.0
	52	90.49	11.03	-3.77	9.0	0.11	1/5.38	74.03	53.55	73.01	53.03	38.50	138.98	101.49	111.34	15.90
	53	58.57	62.03	0. 0	15.50	0.0	57.63	0.0	0.0	0.0	0.0	0.0	102.45	91.44	93.99	0.0
	54	61.34	دلدهن	bi.ci	20.37	ง • ก	129.73	41.27	20.98	24.04	22.32	19.92	127.29	106.06	136.92	18.87
	55	93.23	84. J	22.06	13.25	15.00	128.82	34.02	28.16	14.26	18.75	2.68	158.71	158-11	144.22	12.67
	56	0. 0	1.3	J. 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	57	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	109.91	115.92	0.0	0.0
	58	141.30	161	131-09	L Lo. > 4	118.95	101.25	101.25	108.06	164.83	160.26	161.42	136.95	154.28	123.95	174.26
	59	7 3. 78	78./3	61.70	39.15	30 . 52	52.90	47.44	46.95	94.51	106.38	94.45	87.26	96.74	77.37	84.77
	60	13.34	16./+	20.41	43.13	57.06	67-64	61.25	58.95	36.45	61.89	60.02	57.15	52.21	65.68	45.78
	ól	78.53	14.15	77.30	71.4+	92.03	75.85	71.28	63.50	18.46	14.93	11.96	76.11	72.25	105.84	22.29
	62	31.20	454	132.38	120.30	147.43	166.25	128.81	112.80	119.38	120.30	109.90	0.0	0.0	0.0	158.93
	63	32.14	31.0+	120.30	109.40	117.29	106.89	92.28	91.79	143.13	144.96	126.95	133.83	117.00	145.12	64.89
	64	104.09	42.13	11.29	110.71	104.51	99.58	76.76	74.45	81.94	84.69	79.47	152.82	173.61	127.77	53.05
	65	145.12	65·J+	133.01	129.42	101.05	136.03	127.81	139.20	145.82	102.91	111.69	26.96	30.36	19.39	72.12
	66	112.24	114.22	122.04	117.54	72.47	122.33	116.85	116.37	61.83	61.86	56.96	53.79	69.43	34.68	46.63
	67	52.03	59.47	135.74	134.89	41.53	117.76	123.24	132.81	112.94	119.35	109.26	0.0	0.0	0.0	58.45
	68	0.0	0.0	0.0	0.0	υ.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
	69	0.0	0.0	0.0	0.0	- 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	70	175.29	155.50	143.58	145.40	165.66	149.77	136.99	117.33	175.10	176.03	167.48	124.84	80.42	127.72	117.83
	71	52.08	50.70	11ءوء	63.75	75.26	178.97	156.16	115.50	44.62	45.56	47.04	81.74	64.00	155.11	63.06
	71 72	129.65	132.25	180.90	145.90	69.78	214.52	169.85	217.69	118.49	115.77	99.29	212.43	196.36	226.23	75.82
	73	97.68	104.23	1/4.59	155.03	78.91	201.77	178.97	181.23	96.57	102.98	91.99	109.50	116.04	89.36	56.69
	74	32.13	146.33	134.53	83.80	91.69	154.33	131.50	146.55	71.01	79.25	64.02	129.96	134.31	126.80	105.04
	75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	76	80.13	81.81	14.59	10.80	118.88	160.51	75.58	82.41	103.67	91.83	89.05	113.12	102.12	118.37	56.48
	77	0.0	0.0	v.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	102.89	100.29	111.97	0.0
	78	90.17	95.29	19.67	98.07	99.69	139.51	111.19	92.45	48.97	50.82	44.12	115.31	105.78	113.80	51.93
	79	57.33	63.57	144.71	33.53	117.05	143.16	113.93	134.47	107.33	105.53	91.49	112.39	110.34	95.53	104-83
	80	90.49	69.13	120.89	70.21	117.30	213.70	136.16	98 • 24	67.51	62.99	47.80	94.61	109.74	93.10	52.26
	81	154.42	159.70	190.00	71.12	94.53	153.51	141.64	124.73	93.96	91.26	108.58	149.42	158.14	137.86	54.08
	82	85.01	84.20	23.00	36.20	18.20	116.98	37.67	62.65	22.21	17.79	11.89	180.81		185.32	13.52
	83	135.24	137.04	70.22	68.39	100.92	140.21	67.68	95.50	81.19	76.66	41.75	100.46	102.43	103.15	84.16
	84	103.27	104. 7.	32.29	20.00	12.62	134.33	45.23	43.55	58.40	52.98	27.30	80.01	79.60	78.49	74.12
	85	68.00	79.33	J.(1	79.65	0.0	157.47	43.42	7.20	102.52	62.42	45.43	110.46	108.22	140.91	0.0
	86	112.73	111.37	+4+19	35.97	0.0	162.03	67.99	63.88	64.20	52.42	51.48	148.45	109.13	188.36	69.89
	87	111.81	112.27	03.10	13.20	22.90	169.33	83.50	73.00	63.29	69.71	57.54	187.14	163.93	191.10	0.0
	86	101.77	112.21	22.24	+(1.20)	04.73	142.80	53.41	71.17	34.24	29.78	21.39	109.73	110.05	109.85	59.87
	89	30.77	31.37	23.23	13.53	02.91	153.82	67.07	48 - 41	38.76	41.53	16.64	117.03	103.65	127.21	68.98
	911	55.34	20.02	11.+2	u3.u2	0.0	177-21	50.72	0.0	0.0	0.0	0.0	177-69	167-24	168.87	0.0

WATERWALL ABSORPTION RATES, kW/m2

				1													
TI ST		1	2	3	4	5	6	7	ಶ	y	10	11	12	13	14	15	
T/C #	91	129.70	ری. 129	33.77	on.16	0.0	144.35	47.62	37.19	7.30	0.0	51.80	174.77	160.85	180.73	27.82	
	92	120.11	122.32	+1.01	+3.02	57.12	133.39	55.81	31.77	52.07	41.24	50.59	162.36	145.33	181.64	14.43	
	93	155.33	145.40	0.1	0.0	93.60	43.99	0.0	0.0	83.05	79.45	94.34	198.12	175.45	206.26	0.0	
	94	142.55	129.63	33.55	37.23	01.73	178.12	123.34	94.57	112.27	89.49	97.99	168.20	169.98	157.00	66.84	
	95	0.0	1). 0	17.17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	96	117.79	116.12	120.30	101.18	112.73	149.82	127.90 -	99.10	90.16	91.99	101.38	163.05	146.23	151.51	51.23	
	97	76.63	67. 37	30.99	د 1.25	46.06	153.38	144.25	112.71	135.77	136.70	133.62	113.65	122.39	97.53	113.20	
	98	319.88	104.4+	9.11 ور	207.05	0.0	70.02	93.14	58.00	141.32	145.00	151.65	223.36	222.78	111.28	538.57	
	99	82.80	80.43	33. 08	33.00	63.19	113.93	99.32	86.97	109.15	119.23	142.63	196.36	194.32	202.33	66.50	
	190	98.70	100.13	131.32	129.50	149.33	158.07	144.38	143.91	155.15	117.74	106-14	236.20	253.81	226.32	76.85	
	101	91.72	90.37	109.71	116.17	109.46	127.33	122.77	117.74	81.53	84.31	86.71	171.09	179.44	173.77	83.57	
	102	153.72	148.42	o2.09	37.13	76.98	139.32	76.08	70.75	27.23	25.41	0.0	0.0	0.0	0.0	19.90	٠
	103	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	104	106.80	93.35	7.81	14.14	60.69	119.30	36.63	23.85	11.78	16 174	0.0	100.10	159.98	109.20	66.12	
	105	134.34	165.91	23.34	109.10	105.80	138.69	81.71	57.59	91.68	71.04	44.94	0.0	0.0	0.0	23.00	
	106	0.0	n.u	9.0	0.0	0.0	0.0	0.0	0.0	17.31	0.0	0.0	0.0	0.0	0.0	119.37	
	107	141.85	171.73	04.02	128.35	113.32	144.94	99.89	58.22	97.95	61.64	29.13	0.0	0.0	0.0	54.85	
	108	0.0	0.0	J. ()	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	109	59.19	رد.0ن	49.67	لز و د ن	58.70	58.36	48.34	43.31	47.11	50.74	54.33	74.12	68.44	70.07	104.86	
	110	0.0	n. u	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	126.52	121.57	91.23	0.0	
	111	54.76	50.43	+0.32	23.23	33.37	103.14	78.49	56.13	27.37	26.50	33.98	66.18	72.17	54.66	94.02	
	112	62.10	62. su	73.17	91.10	107.21	106.84	90.40	77.15	68.28	69.22	59.16	107.30	103-25	99.40	104.13	
	113	04.62	34.13	11.45	61.47	128.92	135.85	109.30	94.28	145.69	132.01	124.37	0.0	0.0	0.0	79.27	
	114	54.02	52.57	137.24	124.03	75.36	149.86	143.47	144.82	83.49	80.31	67.21	159.64	147.18	190.79	86.90	
	115	62.53	04.03	110.85	118.00	114.03	156.56	122.17	140.57	79. 7U	77.01	75.76	95.84	92.69	89.76	75.36	
	116	111.49	دك. د 11	112.12	110.50	113.69	116.03	110.55	121.06	35.75	60.31	55.44	122.18	122.50	114.99	106-08	

WATERMALL ABSORPTION PATES, MV/m2.

TEST		ló	17	, 19	19	20	21	22	23	24
T/C #	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Ž	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3	0.0	01.17	Ü.0	60.27	72.09	0.0	0.0	0.0	10.69
	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	U. 0	0.0
	5	64.11	77.15	J. J. Z	109.56	97.65	41.54	65.40	55.97	78.34
	6	0.0	0.0	0.0	u.0	0.0	0.0	0.0	0.0	0.0
	7	/8.70	107.38	30.30	138.79	124.14	58.80	83.64	73.27	96.59
	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9	19.89	د 22 و 22	17.49	30.48	25.93	98.26	15.08	112.82	27.85
		20.79	42.20	23.75	10.47	43.12	71.80	32.97	86.35	45.90
	10	20.19	42.20	23.13	10.41	43.12	11.00	32.71	00.33	43.70
	11	88.92	45.90	41.82	43.16	44.94	11.32	40.21	25.55	53.16
	12	92.57	65.33	87.21	63.24	65.87	38.16	62.92	52.65	75.92
	13	77.05	63.J?	30.08	5l.34	60.40	75.45	29.37	90.00	42.28
	14	77.05	67.02	79.17	36.90	55.85	0.0	0.0	0.0	0.0
	15	43.27	14.43	49.00	13.40	17.79	3.66	3.91	17.58	14.55
	16	0.0	n.u	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	17	0.0	151.31	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	18	46.00		+4.46	159.88	99.55			53.60	114.29
	19	79.71	100.10	42.73	134.40			108.53	105.55	121.59
	20	85.18	100.15	132.02	21.20	107.77		84.79	121.08	97.86
	21	97.97	53.40	90.14	71.30	54.85	70.87	79.32	85.47	92.38
	22	0.0	154. 40	0.0	0.0		16.68	224.50		237.56
	23	145.51	142.0.	179.50	179.01	105.99	122.06	151.54	130.72	164-63
	24	0.0	0.0	0.0	U.0	0.0	0.0	0.0	U .O	0.0
	25	0.0	n u	0. 0	0.0	0.0	0.0	0. 0	0.0	0.0
	26	129.93	34.32	119.30	190.94	129.74	130.29	85.79	144.94	98.88
	27	105.59	45.20	130.59	177.20	173.56	160.42	0.0	172.06	0.0
	28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	24	152.40	150.77	159.27	53.37	87.51	115.48	116.65	130.16	129.77
	30	151.69	176.33	1/1.13		115.82		151.35	160.29	164.40
	31		222 1.	2.0	٥.٥					
		0.0	222.25	0.0		9.0	0.0	0.0	9.0	0.0
	32	62.21	84.27			71.08		67.37	158.47	
	33	72.24	0(). ++	94 - 20	120.97	70.17		116.65	173.07	129.77
	34	72.24	152.23	27.115	153.32	12>.87	39.85	129.44	54.46	142.55
	35	72.24	2() • 3 →	60.66	148.75	114.00	33.52	98.39	43.10	111.50
	نان	132.82	47.60		163.67		143.24	67.73	157.95	80.87
	37	172.08	دل. 122	17-17	54.13	96.95	79.32	29.64	94.03	42.68
	38	165.59	135.20	114.63	146.32	79.60	26.67	41.38	41.25	54.47
	39	140.13	143. 10	122.72	45.86	125.27	124.06	27.84	134.78	40.87
	41!	43.55	122.00	94.0A	100.41	120.70	129.54	118.84	144.25	131.99
	41	90.81	191.03	91.08	169.15	105.08	130.45	116.10	142.17	129.25
	42	179.38	1,4,32	172.35	104.57	135.31		0.0	0.0	0.0
	43	194.28	215.2-		175.83	149.32	129.90	115.55	144.66	128.74
	44					132.88	128.98	73.57		
		225.26	186.05	221.38	135.88				143.74	80.75
	45	193.37	91.15	201.34	152-12	JO.23	125.33	94.55	140.09	107.74

WATERMALL ABSORPTION RATES, kW/m2

TFST		16	17	18	19	20	21	22	23	.24
T/C *	46	108.74	ادة،147	161.71	141.16.	111.87	79.68	78.13	94.43	51.31
	47	186.08	179.51	170.31	156.68	131.06	97.02	95.46	111.78	108.65
	48	197.02	184.62	193.64	158.51	169.40	120.76	111.90	135.52	125.09
	49	176.96	175.13	167.19	138.42	158.45	110.71	101.86	125.48	115.04
	50	168.41	181.73	155.89	140.83	181.84	54.91	53.27	109.72	66.48
	51	161.11	67. 07	106.85	140.83	96.92	91.26	45.10	100.07	58.29
	52	188.48	د162.7	142.36	109.77	177.27	97.65	46.01	112.40	59.20
	53	120.02	35.08	113.88	110.69	45.88	60.26	54.18	75.05	67.39
	54	133.72	47.41	129.41	152.70	46.78	74.84	95.19	87.64	108.43
	55	146.50	154.72	118.45	137.17	1 38 . 03	73.93	44.20	88.73	57.38
	50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
,	57	78.70	98.61	74.44	107.73	105.87	75.20	73.60	89.69	80.55
	58	38.74	118.34	du.30	124.17	138.75	68.82	84.55	83.30	97.50
	59	63.20	دد.80	60.76	83.07	97.65	43.35	52.60	57.79	65.58
	60	102.62	37.19	30.51	34.10	36.77	22.85	20.41	37.25	33.24
	61	30.67	40.09	30.06	43.16	37.68	15.72	30.27	30.03	43.18
	62	0.0	56.31	0.0	0.0	54.94	0.0	108.54	0.0	121.56
	63	120.89	29.7 3	10+.73	Ju. 03	59.49	113.79	71.12	120.35	84.12
	£4	98.05	د9.434	41.90	75.94	165.39	90.96	62.01	105.52	75.01
	5ه	50.54	29.51	28.0ر	27.70	27.65	22.83	13.32	37.29	26.11
	66	128.11	45.40	111.95	16.60	53.03	23.73	40.20	30.19	53.21
	67	0.0	0. U	0.0	0.0	0.0	0.0	0.0	0.0	ს.ი
	68	u.o	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	69	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	70 -	162.80	119.39	147.44	03.14	117.87	0.0	0.0	0.0	9.0
	71	98.93	48.27	147.02	40.75	157.13	36.41	30.35	20.9 9	43.35
	72	172.61	120. 35	236.77	ძე. + 7	141.61	66.39	63.91	81.03	76.99
	73	194.78	104.04	242.41	86.80	114.21	106.81	75.70	181.45	86.85
	74	166.50	55.87	179.20	42.30	144.35	127.55	66.70	142.20	99.80
	' 75	0.0	ດ. ບ	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	76	190.01	ده.3ن	138.46	146.93	96.64	137.40	144.96	152.00	158.07
	77	74.07	112./3	74.54	a2.93	102.12	>1.64	44.04	66.28	57.71
	7ช	199.13	128.13	199.40	64.72	113.08	46.19	47.36	60.82	60.44
	79	95.24	52. #3	45.34	79.34	27.41	20.05	77.40	34.53	90.51
	80	264.96	57.00	278.86	260.23	64-10	197.99	130.71	212.68	143.86
	ВĻ	293.11	97. 13	242.47	242.04	191.90	214.40	54.99	229.08	60.12
	82	129.17	75.01	131.27	209.27	134.40	144.15	145.33	158.80	158.47
	43	220.39	102.31	220.12	30.93	103.34	127.71	78.07	142.45	91.82
	84	182.11	127.10		130.80	130.75	0.0	0.0	0.0	0.0
	85	191.55	63.31	212.77	163.07	59.85	150.90	133.82	165.65	147.01
	86	177.67	154.09	140.50	191.35	110.90	134.46	142.95	149.22	156.14
	8.7	112.13	167.33	110.57	207.75	138.56	150.90	146.60	105.05	159.79 115.96
	86	196.11	163.45	130.40	179.00	153.01	118.94	102.77	133.70	
	47	191.55	155.42	100.34	153.51	177. ol	88.80	77.21	103.50	90.40
	90	42.50	53.42	42.70	155.44	57.70	94.00	71.47	100.81	64.70

217 SHEET A34

MATERMALL ABSORPTION RATES, kW/m2

TEST		16	17	18	19	20	21	22	23	24
T/C #	91	196.69	182. +0	197.06	136.40	157.20	115.00	128.07	129.81	141,30
	92	102.02	160.40	173.23	180.40	144.42	113.17	118.02	127.99	131.26
	93	198.51	213.09	190.03	191.93	162.68	125.05	144,51	139.86	157.74
	94	170,24	77.28	185.09	171,87	153.55	98.57	112,54	113.38	125.78
	45	0.0	n_ u	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	46	46.99	71.40	40.36	60.82	38.68	166.75	100.32	181.30	113.34
	97	107.57	81. JU	101.21	139.7	43,12	148.47	106.70	163.08	119.77
	98	170-16	155. 14	211.40	141.00	157.13	0.0	0.0	0.0	u.n
	99	158.99	204.78	140.07	109.48	180.64	61.65	73.75	70.30	86.86
	100	242.24	ده ۱26۰	207.00	190.13	117.04	152.37	81.41	167.08	94.56
	ini	184.25	161.20	194.55	103.14	179.44	115.28	58.08	130.04	71.25
	102	n. i)	u* n	0.0	U.0	0.0	0.0	0.0	0.0	0.0
	103	0.0	0.0	0.0	0.0	U. 0	0.0	0.0	0.0	0.0
	104	147.05	103.37	130.40	170.63	189.29	53.47	59.93	03.00	69.04
	105	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	105	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	107	0.0	0.0	U. 0	0.0	0.0	0.0	0.0	0.0	0.6
	វែបទ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	109	52.27	84.13	40.012	aU . 34	79.39	35.20	51.75	49.62	64.67
	110	112.07	18.01	101.99	125.20	65.01	100.09	68.39	114.65	81.39
	111	44.13	100.15	+5.21	120.01	109.60	44.48	95.75	59.05	108.81
	112	149.14	109.07	17+.34	116.07	116.04	0.0	0.0	0.0	0.0
	113	ม.ก	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	114	192.12	186.31	211.55	74.53	194.03	135.02	57.72	149.73	70.85
	115	177.07	100.02	1/4.05	125.63	89.04	109.80	39.93	124.56	53.06
	116	141.74	116.73	134.15	131.69	117.93	84.67	89.72	97.68	102.95

	BOARD & COMPUTER DATA TEST NO. 1 2 3 4 5 6 7 8 9 10													
	TEST NO.		1	2	3	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9	10		
	DATE TIME	1976 MW	3/10 09:45	3/08 14:00	3/15 15:35	3/13 10:00	5/23 12:35	5/23 14:30	5/23 16:20	3/10 14:00	3/09 10:00	3/10 16:30		
#C	LOAD FLOWS - 10 ³ LB/HR	MW	524	524	483	399	324	323	322	514	£15	482		
	FEEDWATER SUPERHEAT SPRAY L SUPERHEAT SPRAY R RCHEAT SPRAY R RCHEAT SPRAY R BFP TURB. EXTR. STM. FLOW 1-A BFP TURB. EXTR. STM. FLOW 1-B BFP TURB. MN. STM. FLOW COMBINED HOT AIR TO BURNERS L WINDBOX HOT AIR TO BURNERS R WINDBOX		3170 107 130 57 75 0 0 7.4 1626 1585	3338 24 64 39 60 0 0 7.8 1606 1560	2996 74 80 50 59 0 7.0 1612 1593	2412 6 68 10 0 0 7.4 1298 1284	1974 0 35 0 0 44 34 15.0 864 919	1987 0 34 0 0 44 34 15.1 950	1967 3 42 0 0 44 34 14.9 1017 1088	3085 124 131 69 81 0 7.5 1548 1506	3134 94 110 60 77 0 7.3 1630	2866 76 107 39 59 . 0 0 6.3 1555 1516		
	PRESSURES													
C C C C	STEAM & WATER - PSIG FEEDWATER TO ECON. BEOLLER DRUM TURBINE THROTTLE TURBINE 1ST STAGE HP HTR. 1-G1 & 1-G2 STEAM IN.		2735 2682 2399 1666 539	2751 2691 2400 1682 536	2698 2654 2406 1520 492	2620 2586 2399 1242 391	2566 2538 2406 987 310	2568 2541 2405 987 310	2573 2544 2403 985 309	2722 2668 2400 1618 527	2734 2679 2403 1634 529	2636 2637 1446 1501 488		
	AIR & GAS - IN H2O FD FAN 1-A DISCHARGE FD FAN 1-B DISCHARGE AIR HTR. 1-B AIR IN. AIR HTR. 1-B AIR OUT. AIR HTR. 1-B AIR OUT. FURN. RIGHT WINDBOX FURN. LEFT WINDBOX RT. WOBX TO FURN. DIFF. P FURNACE PRI. SH GAS OUT. REHEATER GAS OUT. ECON. GAS IN. ECON. GAS IN. AIR HTR. 1-B GAS IN. AIR HTR. 1-B GAS OUT. DIF 1-B DISCH. DAF 1-B DISCH. PAF 1-B DISCH.		5.67 9.13 7.72 7.24 3.68 3.50 2.22 2.25 3.22 4.03 51 83 66 -2.58 -6.46 2-8.56 -15.5 -14.2 46 32.92 32.92	5.63 8.68 7.50 2.12 2.20 3.18 3.90 73 61 -2.34 -6.34 -6.34 -15.3 -15.3 -15.3 -2.34 -32.87 -32.87	5.87 9.61 8.21 7.61 3.93 3.93 2.49 2.47 3.65 4.13 60 56 -2.49 -6.49 -8.87 -8.65 -15.6 -148 47 32.64 32.52	4.35 6.79 5.84 5.46 3.04 2.95 2.28 3.16 3.82 39 -1.79 -1.79 -6.36 -6.24 -110.2 -1.07 -2.15 32.47 32.49	8.70 7.76 7.29 6.74 5.66 5.56 4.97 6.19 6.68 61 78 -1.20 -2.70 -2.70 -3.99 -4.13 -6.64 77 88 31.56 32.28	9.35 8.23 7.73 7.08 5.67 5.51 5.07 6.21 6.79 50 77 -1.29 -3.00 -4.12 -4.25 -7.30 8.66 76 31.54 32.23	9.77 8.59 7.98 7.98 7.385 5.71 5.04 6.20 6.72 57 84 -1.35 -4.54 -4.63 -7.94 -7.94 -60 -69 31.64 32.30	5.43 8.59 7.18 6.74 3.49 3.34 2.16 2.20 3.17 3.93 47 60 -2.50 -8.15 -8.12 -14.7 -13.1 51 50 32.76 32.56 30	5.82 9.41 8.01 7.43 3.74 3.83 2.41 2.38 3.40 3.98 72 56 -2.45 -6.39 -8.89 -8.37 -15.41 52 45 32.74 32.74 32.74	5.47 8.66 7.30 6.80 3.54 3.38 2.22 3.14 3.89 44 62 -2.54 62 -2.54 13.3 54 49 32.89 32.55 30		
	TEMPERATURES													
000000000	AIR & GAS - °F 1-A FD FAN DISCH. 1-B FD FAN DISCH. 1-A AH AIR IN. 1-B AH AIR OUT. 1-B AH AIR OUT. 1-A AH GAS IN. 1-B AH GAS OUT. 1-B AH GAS OUT. 1-B AH GAS OUT.		51 60 77 78 696 712 760 759 272	41 52 83 88 668 686 730 732 258 265	46 57 82 87 684 702 750 751 265 267	41 50 107 112 527 630 682 676 253 246	77 83 102 105 565 576 612 608 241 242	77 84 104 107 573 584 622 616 243 240	76 85 103 105 576 589 624 620 243 239	55 65 75 78 698 718 763 763 274 275	46 58 76 80 689 703 753 753 265 274	52 61 77 80 693 712 757 759 270		

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

			<u> </u>	OARD & CO	MPUTER DA	<u>TA</u>					
	TEST NO.		11	<u>12</u>	13	14	<u>15</u>	16	<u>17</u>	<u>18</u>	19
	DATE Time	1976	5/21	5/25	3/12	3/9	3/10	3/13	5/25	5/25	5/25
+C	LOAD	MW	05:00 321	13:00 321	06:00 525	14:00 512	18:50 484	13:30 400	18:20 322	16:30 325	14:35 322
	FLOWS - 103LB/HR										
c	FEEDWATER		1734	1824	31 15	3179	2859	2444	1820	1818	1810
C C	SUPERHEAT SPRAY L SUPERHEAT SPRAY R		91 117	55 74	113 120	61 79	102 106	0 54	56 82	65 96	66 84
č	REHEAT SPRAY L		14	ō	81	58	44	10	10	8	4
С	REHEAT SPRAY R		30	15	83	76	67	0	29	27	23
c	BFP TURB. EXTR. STM. FLOW 1-A		39	39	0	0	0	0	44	42	39
c c	BFP TURB. EXTR. STM. FLOW 1-B BFP TURB. MN. STM. FLOW COMBINED		70 7.6	71 8.3	0 7.6	0 7.6	0 6.8	0 7.6	34 14.1	52 11.2	71 8.3
Č	HOT AIR TO BURNERS L WINDBOX		790	1190	1567	1622	1602	1302	896	1046	1210
č	HOT AIR TO BURNERS R WINDBOX		810	1241	1504	1575	1558	1283	900	1099	1259
	PRESSURES										
	STEAM & WATER - PSIG										
c	FEEDWATER TO ECON.		2547	2556	2726	2683	2686	2625	2559	2558	2558
C	BOILER DRUM TURBINE THROTTLE		2521 2403	2529 2405	2675 2397	2676 2402	2639 2397	2589 2404	253 2 2408	2531 2407	2532 2403
č	TURBINE 1ST STAGE		966	969	1649	1623	1503	1245	958	969	968
Č	HP HTR. 1-G1 & 1-G2 STEAM IN.		313	311	539	526	490	393	312	316	313
	AIR & GAS - IN HOO										
С	FD FAN 1-A DISCHARGE		6.45	11.58	5.29	5 .79	5.60	4.25	8.64	10.46	11.89
C	FD FAN 1-B DISCHARGE		5.71	10.01	8.69	9.24	9.00	6.71	7.85	9.32	10.21
C	AIR HTR. 1-A AIR IN.		5.36	9.08	7.28	7.96	7.47	5.84	7.30	8.54	9.17
C	AIR HTR. 1-B AIR IN. AIR HTR. 1-A AIR OUT.		4.88 4.04	8.25 6.43	6.71 3.38	7.41 3.82	6.96 3.57	5.33 2.93	6.64 5.57	7.85 6.31	8.41 6.47
č	AIR HTR. 1-B AIR OUT.		3.65	6.31	3.43	3.80	3.45	2.87	5.51	6.22	6.42
C	FURN. RIGHT WINDBOX		3.62	5.40	2.10	2.32	2.20	2,30	5.00	5.47	5.37
C	FURN. LEFT WINDBOX		3,57	6.12	2.11	2.35	2.21	2.37	4.94	5.49	5.45
C	RT. WDBX TO FURN. DIFF. P		4.21	6.54	3.13	3.23	3.17	3.16	5.79	6.56	6.58
C C	LEFT WDBX TO FURN. DIFF. P		5.17 42	6.96 61	3.92 41	3.94 68	3.93 53	3.88 40	6.46 55	7.03 61	7.00 61
č	PRI. SH GAS OUT.		55	58	82	77	61	54	62	63	69
C	REHEATER GAS OUT.		73	94	84	70	47	29	90	93	-1.02
C	ECON. GAS IN.		-1.29	-1.52	-2.43	-2.42	-2.58	-1.75	-1.23	-1.36	-1.54
C C	Econ. Gas Out. Air Htr. 1-A Gas In.		-2.48	-3.72	-6.39	-6.49	-6.12	-4.39	-2.65	-3.23	-3.83
Ċ	AIR HTR. 1-A GAS IN.		-3.52 -3.74	-5.11 - 5.20	-8.74 -8.09	-8.75 -8.34	-8.24 -8.18	-6.41 -6.18	-3.84 -3.90	-4.69 -4.75	-5.30 -5.50
č	AIR HTR. 1-A GAS OUT.		-5.74 -6.29	-9.15	-8.09 -15.0	-0.34 -15.4	-14.9	-11.3	-6.74	-8.13	-9.50
C	AIR HTR. 1-B GAS OUT.		-5.90	-8.52	-13.5	-14.3	-13.6	-10.3	-6.23	-7.35	-B.72
C	IDF 1-A DISCH.		94	39	49	43	49	94	62	45	32
C C	IDF 1-B Disch.		91	45	41	69	43	93	62	44	38
Č	PAF 1-A DISCH. HDR. PAF 1-B DISCH. HDR.		31.66 32.72	31.66 32.52	32.85 32.77	32.64 32.44	32.81 32.63	32.69 32.29	31.63 32.53	31.74 32.77	31.76 32.64
#B	PRI. HOT AIR DUCT		30	32.32	30	30	30	30	30	30	32.04
	TEMPERATURES										
	AIR & GAS - "F										
c	1-A FD FAN DISCH.		72	77	56	50	49	46	81	80	79
Ç	1-B FD FAN DISCH.		83	82	68	58	58	55	92	89	85
C	1-A AH AIR IN. 1-B AH AIR IN.		96 100	99 102	71 74	70 73	78 82	102 107	100 102	98 100	101 105
č	1-A AH AIR OUT.		100 590	604	710	705	688	631	591	603	607
Č	1-B AH AIR OUT.		608	627	724	725	710	634	612	620	629
C	1-A AH GAS IN.		641	655	774	771	753	685	637	652	600
Ç	1-B AH GAS IN.		637	657	776	775	757	680	540	6 53	661
с с	1-A AH GAS OUT. 1-B AH GAS OUT.		247 259	244	276 276	270 278	267 268	253 249	244 252	245 245	245 243
٠	I-D ALL GAS OUT.		239	241	276	210	200	243	حدد	E43	243

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

BOARD	£	COMPUTER	DATA

BOARD & COMPUTER DATA												
	TEST NO.		1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	<u>9</u>	<u>10</u>
	DATE TIME	1976	3/10 09:45	3/08 14:00	3/15 15:35	3/13 10:00	5/23 12:35	5/23 14:30	5/23 16:20	3/10 14:00	3/09 10:00	3/10 16:30
• C	LOAD	MW	524	524	483	399	324	323	322	514	515	482
	TEMPERATURES											
	AIR & GAS - F											
c	ECON. N GAS OUT. ECON. S GAS OUT.		788 802	750 758	780 7 92	710 728	538 548	651 557	655 656	794 ยาก	775	782
C	1-A PA FAN DISCH. HDR.		60	52	55	53	86	85	556 84	66	791 56	796 62
C	1-B PA FAN DISCH. HDR.		95	95	69	64	*NA	NA	NA	104	106	101 ·
C	1_A AH PRI. AIR OUT. 1_B AH PRI. AIR OUT.		708 689	681 669	697 686	639 620	579 574	586 577	588 579	712 694	701 686	707
C			065	005	000	020	3/4	5/1	219	694	986	690
С	STEAM & WATER - "F" BOILER ECON. IN		480	477	471	448	424	424	424	477	477	460
Č	DOWNCOMER 1		677	675	675	673	666	666	666	676	477 674	46 8 674
Ç	DOWNCOMER 2		678	676	677	674	668	668	668	678	676	676
C	DOWNCOMER 3 DOWNCOMER 4		679 682	677 681	677 676	674 676	669 673	669 673	669	678	676	676
Ċ	DOWNCOMER 5		680	679	676	676	670	670	673 670	682 679	680 678	680 677
C	BLR. SH ATMP 1-A STM. IN.		851	830	838	850	844	837	839	860	848	865
C	BLR. SH ATMP 1-B STM. IN. BLR. S SH HOR. Out.		856 1008	829 1002	846 1006	827	813	813	822	855	848	858
C	BLR. N SH HOR. OUT.		1008	1002	1011	1014 1012	1008 1001	1003 996	1009 1008	1009 999	1006 1003	1009 1003
č	TURBINE THROTTLE		1002	1000	1006	1009	1001	999	1006	1003	1002	1004
C	BLR. S RH ATMP STM. OUT. A		478 479	480	471	589	550	547	554	478	476	472
С С	BLR. N RH ATMP STM. OUT. B BLR. S RH HDR. OUT. A		479 991	480 989	471 1000	588 1019	550 966	546 957	553 952	479 990	477 989	471 1008
č	BLR. N RH HOR. OUT. B		1015	1015	1012	992	963	964	966	1014	1020	1006
Ċ	HP HTR. 1-G1 & 1-G2 EXTR. STM.		618	620	610	581	543	538	547	620	619	607
C	HP HTR. 1-F1 FW OUT. HP HTR. 1-F2 FW OUT.		411 410	407 407	404 403	387 386	366 366	366 365	3 66 365	410 410	408 407	404 403
č	HP HTR. 1-G1 FW OUT.		479	476	470	449	424	423	423	477	475	469
C	HP HTR. 1-G2 FW OUT.		479	476	469	449	424	423	423	477	475	469
C	HP HTR. 1-G1 DRAIN HP HTR. 1-G2 DRAIN		415 382	412 377	406 374	387 357	366 335	366 335	366 335	415 381	411 376	406 376
•	PULVERIZER DATA		502	3,,	314	JJ ,	233	333	333	501	2.0	3.0
_												
C	PLV 1-A BOWL LOWER P PLV 1-B BOWL LOWER P	IN. H ₂ 0	21.36 22.68	21.52 22.37	20.23 21.29	18.51 19.49	27 -1.18	28 -1.17	15 -1.10	20.90 22.38	21.39	20.25 21.69
č	PLV 1-C BOWL LOWER P	IN. H ² 0	.23	.13	.21	.19	19.31	19.16	19.21	.25	.23	.25
C	PLV 1-D BOWL LOWER P	1N. H20	22.89	23.09	22.04	19.64	19.36	19.34	19.38	22.54	22.87	21.78
C	PLV 1-E BOWL LOWER P PLV 1-F BOWL LOWER P	IN. H20 IN. H20 IN. H20	22.16 22.81	22.19 21.51	21.44 19.83	19.84 17.78	19.74 18.15	19.39 18.06	19.58 18.52	21.89 20.28	22.25 21.10	21.24 19.39
č	PLV 1-A BOWL DIFF. P	IN. H20	7.61	7.67	7.14	6.66	.45	. 45	.45	7.53	7.67	7.12
C	PLV 1-B BOWL DIFF. P	IN, HO	7.80	7.74	7.41	6.79	.20	.20	.20	7.74	7.77	7.47
C	PLV 1-C Bowl DIFF. P	IN. H20	.06 7.95	.00 8.00	.03 7.72	.02 6.82	6.39 6.46	6.41 6.44	6.38 6.45	.06 7.66	.05 7.98	.07 7 .58
C	PLV 1-D BOWL DIFF. P PLV 1-E BOWL DIFF. P	IN H20	7.12	7.10	6.99	6.46	6.18	6.20	6.14	7.02	7.13	6.88
С	PLV 1-F BOWL DIFF. P	IN. H20 IN. H20 IN. H20	7.17	7.32	6.93	6.21	6.05	6.13	6.21	7.08	7.21	6.83
Č	PLV 1-A COAL AIR OUT. P	IN. HOO	9.84	10.17	9.41 10.71	8.43 9.74	-1.11 -1.23	96 -1.15	95 -1.16	9.6 8 11.24	10.06 11.3 7	9,32 10,89
C C	PLV 1-B COAL AIR OUT. P PLV 1-C COAL AIR OUT. P	IN. HEO	11.35 13	11.15 35	-,19	22	9.32	9.35	9.25	13	23	14
č	PLV 1-D COAL AIR OUT. P	IN. H20	10.80	10.99	10.45	9.34	9.23	9.33	9.19	10.61	10.85	10.78
C	PLV 1-E COAL AIR OUT. P	IN. H20 IN. H20 IN. H20 IN. H20	11.58	11.56	11.17 9.55	10.26 8.58	9.64 8.83	9.89 9.03	9.63 8.93	11.29 9.88	11.65 10.41	10.03 9.44
C C	PLV 1-F COAL AIR OUT. P PLV 1-A PRI. AIR IN. FLOW	IN. H20 0-125%	10.26 126.1	10.67 125.1	125.8	125.7	0.0	0.0	0.0	125.9	125.6	125.3
C	PLV 1-8 PRI. AIR IN. FLOW	0-125%	127.8	128.3	128.6	128.4	30.8	30.2	29.7	128.4	128.6	128.4
C	PLV 1-C PRI. AIR IN. FLOW	0-125%	37.2	0.0	0.0 126.0	0.0 125.6	131.2 126.2	131.4 125.9	131.4 126.3	45.9 124.9	46.9 125.3	47.3 124.8
C	PLV 1-D PRI. AIR IN. FLOW PLV 1-E PRI. AIR IN. FLOW	0-125% 0-125%	125.2 127.8	125.4 127.7	126.0	128.5	126.2	129.2	129.4	127.9	127.9	127.9
č	PLV 1-E PRI. AIR IN. FLOW	0-125%	125.2	125.1	125.0	125.3	126.2	125.3	124.0	124.5	124.7	125.4
С	PLV 1-A COAL AIR DISCH. TEMP.	°F	144	139	142	144	87	88	88	142	141	143

221

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

	BOARD & COMPUTER DATA										
	TEST NO.		11	12	13	14	<u>15</u>	<u> 16</u>	<u>17</u>	18	19
• c	DATE TIME LOAD	1976 MW	5/21 05:00 321	5 /25 13:00 321	3/12 06:00 525	3/9 14:00 512	3/10 18:50 484	3/13 13:30 400	5/25 18:20 322	5/25 16:30 325	5/25 14:35 322
	TEMPERATURES										
0 0 0 0	AIR & GAS - °F ECON. N GAS OUT. ECON. S GAS OUT. 1-A PA FAN DISCH. HDR. 1-B PA FAN DISCH. HDR. 1-A AH PRI. AIR OUT. 1-B AH PRI. AIR OUT.		662 648 78 *NA 605 604	693 479 88 NA 616 610	817 817 66 104 723 710	794 806 59 106 718 706	780 788 58 93 702 688	707 726 58 75 645 624	663 416 90 NA 602 604	687 448 90 NA 614 610	702 461 90 NA 619 612
	STEAM & WATER - *F BOILER ÉCON. IN. DOWNCOMER 1 DOWNCOMER 2 DOWNCOMER 3 DOWNCOMER 4 DOWNCOMER 5 BLR. SH ATMP 1-A STM. IN. BLR. SH ATMP 1-B STM. IN. BLR. S SH HDR. OUT. BLR. N SH HDR. OUT. TURBINE THROTTLE BLR. S RH ATMP STM. OUT. A BLR. N RH ATMP STM. OUT. B BLR. N RH ATMP STM. OUT. B BLR. N RH HDR. OUT. A BLR. N RH HDR. OUT. A BLR. N RH HDR. OUT. A BLR. N RH HDR. OUT. B HP HTR. 1-G1 & 1-G2 EXTR. STM. HP HTR. 1-F1 FW OUT. HP HTR. 1-F2 FW OUT. HP HTR. 1-G2 FW OUT. HP HTR. 1-G1 DRAIN		425 666 667 668 667 917 878 1011 997 1003 427 425 1005 994 548 368 369 424 424 367	424 666 668 668 672 670 882 862 1005 1005 1003 454 429 970 986 544 366 366 424 424 366	478 676 678 682 680 860 862 1013 1010 1007 479 482 1019 1012 628 412 412 479 479	476 674 676 679 680 678 841 842 1007 1005 1004 476 477 990 1015 619 409 408 476 477 413	469 674 676 676 680 678 864 853 1011 1002 1005 472 470 1006 1007 608 404 403 469 469	448 673 674 674 679 676 842 847 1010 1008 588 587 1015 994 580 387 386 449 387	424 666 668 668 673 670 892 857 1010 998 1003 427 425 974 975 546 367 366 424 424 366	426 666 668 668 673 669 904 865 1010 1000 1002 427 426 976 982 546 368 367 424 425 367	425 664 668 668 673 670 891 871 1006 1003 1003 428 427 972 984 545 367 356 424 424 366
С	HP HTR. 1-G2 DRAIN PULVERIZER DATA		338	337	379	380	373	357	337	338	337
	PLV 1-A BOWL LOWER P PLV 1-B GOWL LOWER P PLV 1-C BOWL LOWER P PLV 1-E BOWL LOWER P PLV 1-E BOWL LOWER P PLV 1-B BOWL LOWER P PLV 1-A BOWL DIFF. P PLV 1-B BOWL DIFF. P PLV 1-D BOWL DIFF. P PLV 1-D BOWL DIFF. P PLV 1-E BOWL DIFF. P PLV 1-E BOWL DIFF. P PLV 1-E BOWL DIFF. P PLV 1-B COAL AIR OUT. P PLV 1-B COAL AIR OUT. P PLV 1-C COAL AIR OUT. P PLV 1-E COAL AIR OUT. P PLV 1-E COAL AIR OUT. P PLV 1-B PI. AIR IN. FLOW PLV 1-B PRI. AIR IN. FLOW PLV 1-C PRI. AIR IN. FLOW PLV 1-C PRI. AIR IN. FLOW PLV 1-F PRI. AIR IN. FLOW	H H H H H H H H H H H H H H H H H H H	18.56 21.00 19.96 19.53 89 -1.16 6.37 6.53 6.68 6.69 .12 .06 8.21 10.04 9.66 9.14 1.13 1.37 126.8 128.8 126.0 0.0	18.42 20.41 19.60 19.45 0.0 -1.10 6.36 6.57 6.46 6.54 .01 .06 8.23 10.28 9.42 9.18 .05 -1.26 126.8 129.3 131.2 125.6 0.0 0.0	21.65 23.23 .24 23.44 21.88 18.87 7.75 8.12 .06 8.21 7.15 6.65 9.80 11.55 13 10.96 11.15 9.04 125.6 128.5 33.1 125.2 127.5 125.6	20.97 22.35 .24 22.50 21.89 20.47 7.60 7.77 7.04 7.07 9.90 11.16 17 10.64 11.24 10.15 125.4 128.0 124.8	20.25 21.56 .23 21.84 21.30 19.48 7.25 7.44 .07 7.56 6.91 6.82 9.21 10.73 14 10.22 10.94 9.34 126.2 128.4 42.4 127.8 127.8	18.64 19.17 .19 19.78 19.91 17.68 6.65 6.72 .25 6.82 6.42 6.12 8.45 9.56 23 9.42 10.28 8.54 125.8 125.6 127.8	18.21 20.33 19.18 19.44 01 -1.22 6.32 6.58 6.32 6.48 .02 .06 8.07 10.37 9.12 9.17 .05 -1.47 127.1 128.9 130.0 125.4 0.0 0.0	18.43 20.93 12.62 19.56 0.0 -1.24 6.34 6.79 6.56 6.55 .02 .06 7.95 10.49 9.37 9.11 .06 -1.26 127.3 129.3 131.7	18.39 20.78 19.52 19.44 0.0 -1.23 6.39 6.73 6.47 6.55 .03 .06 8.15 10.43 9.41 9.26 .05 -1.19 126.1 129.6 131.0 0.0 0.0

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

			BOAR	D & COMPI	UTER DÁTA	<u> </u>					
	TEST NO.	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9	<u>10</u>
+ C	TIME	76 3/10 09:45 Mw 524	3/08 14:00 524	3/15 15:35 483	3/13 10:00 399	5/23 12:35 324	5/23 14:30 323	5/23 16:20 322	3/10 14:00 514	3/09 10:00 515	3/10 16:30 482
	PUL VERI ZER DATA										
00000000000000000	PLV 1-B MILL AN PLV 1-C MILL AN PLV 1-D MILL AN PLV 1-E MILL AN	HR 117 HR 0 HR 114 HR 116	142 79 144 138 141 116 112 0 0 113 115 116 74 71 0 73 76	145 89 146 141 105 106 0 105 106 104 70 0 71 72 71	146 43 146 143 145 87 88 0 87 88 86 64 65 65 65	121 144 141 138 141 0 0 87 88 88 86 0 0 65 65 67	114 144 144 138 142 0 0 87 88 88 86 0 0 67 65 67	110 144 142 138 142 0 0 87 89 88 87 0 0 66 65 65	145 57 147 141 144 115 0 112 114 113 71 0 73 75 75	143 69 146 139 144 111 0 112 114 77 70 0 75 75	146 55 146 142 144 106 107 0 104 106 105 70 0 70 77 73
*6 8 8	FAN DAMPER POSITION - % OPEN 1-A FD FAN INLET VANE 1-B FD FAN INLET VANE 1-A PA FAN INLET VANE 1-B PA FAN INLET VANE	72 71 30 25	70 70 29 24	73 71 28 24	63 62 28 23	58 57 32 26	62 60 32 26	64 62 32 26	70 69 30 25	73 71 30 25	70 70 30 25
B B B	SPRAY VALVE POSITION - \$ OPEN 1-A SH SPRAY VALVE 1-B SH SPRAY VALVE 1-A RH SPRAY VALVE 1-B RH SPRAY VALVE	100 92 47 65	25 13 32 43	36 24 41 41	23 17 0 0	11 6 0	8 5 0	10 20 0 0	100 100 84 61	45 32 50 70	85 68 31 41
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1-A FUEL/AIR DAMPERS 1-B FUEL/AIR DAMPERS 1-C FUEL/AIR DAMPERS 1-D FUEL/AIR DAMPERS 1-E FUEL/AIR DAMPERS 1-F FUEL/AIR DAMPERS 1-F FUEL/AIR DAMPERS 1-A PRI. AIR FAN 1-B PRI. AIR FAN 1-B ID FAN 1-B FD FAN 1-B ID FAN 1-B FD	EN 100 EN 51 EN 52 EN 51 EN 51 EN 51 EN 51 EN 51 PS 170 PS 430 PS 201 PS 430 PPS 76 PPS 76 PPS 76 PPS 76 PPS 70 PP	0° 98 50 49 2 52 52 175 184 500 420 208 193 480 490 73 76 72 7370 -2.87 .064 3.9 30.08	-3° 100 45 45 45 45 45 171 181 500 430 210 197 480 75 79 73 7557 -2.01 .067 4.8 30.07	+15° 56 31 34 0 35 34, 33 173 185 380 320 187 177 430 79 81 78 8067 -1.58 .064 5.3 30.08	+6° 13 0 0 87 84 80 76 165 175 280 300 167 157 320 315 83 9579 -2.063 5.1 30.05	+6° 21 0 0 88 85 82 78 168 178 300 175 162 340 345 83 836363 -2.26 .065 5.7	+6° 25 0 90 83 84 178 310 320 179 166 354 81 84 8335 -1.76 063 6.0	-3° 79 50 00 50 50 171 181 480 410 198 188 480 488 74 77 72 7468 3.9 29.81	0° 100 50 49 0 50 50 50 173 180 500 210 198 480 500 72 75 71 7278 -2.92 .060 4.0 29.66	-3° 84 45 46 46 46 170 180 470 200 190 480 480 73 76 71 73 64 -2.95 5.0 29.87

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

				BOARD &	COMPUTER	DATA	•*				
	TEST NO.		11	12	13	14	<u>15</u>	<u>16</u>	<u>17</u>	18	19
- c	DATE TIME LOAD	1976 Mw	5/21 05:00 321	5/25 13:00 321	3/12 06:00 525	3/9 14:00 512	3/10 18:50 484	3/13 13:30 400	5/25 18:20 322	5/25 16:30 325	5/25 14:35 322
	PULVERIZER DATA										
	PLV 1-B COAL AIR DISCH. T PLV 1-C COAL AIR DISCH. T PLV 1-D COAL AIR DISCH. T PLV 1-E COAL AIR DISCH. T PLV 1-F COAL AIR DISCH. T PLV 1-A FEEDER COAL FLOW PLV 1-B FEEDER COAL FLOW PLV 1-D FEEDER COAL FLOW PLV 1-D FEEDER COAL FLOW PLV 1-F FEEDER COAL FLOW PLV 1-F MILL PLV 1-B MILL PLV 1-B MILL PLV 1-D MILL PLV 1-E MILL PLV 1-E MILL PLV 1-E MILL PLV 1-E MILL PLV 1-F MILL	EMP. °F EMP. °F	145 145 143 94 104 86 88 88 0 0 64 65 66 66	151 144 142 79 134 88 90 0 0 64 65 67 66 0	145 50 147 141 144 119 120 0 117 112 112 77 74 0 76 76	144 68 146 140 143 112 109 0 110 112 112 75 71 0 75 75	145 53 147 141 144 107 109 0 105 107 106 69 70 0 73 71	146 44 145 142 146 86 88 0 87 87 86 65 65 66 66 65	151 143 142 82 110 86 88 89 0 65 65 67 66 0	154 144 142 80 114 88 90 91 0 65 67 66 0	153 144 142 80 122 88 90 91 0 65 66 68 67 0
*8 8	FAN DAMPER POSITION - \$ 0 1-A FD FAN INLET VANE 1-B FD FAN INLET VANE	<u>Pen</u>	52 51	69 67	71 70	72 71	70 70	64 63 29	59 58 31	65 64 31	69 68 31
8 B	1-A PA FAN INLET VANE 1-B PA FAN INLET VANE SPRAY VALVE POSITION - \$	OPEN	31 26	31 25	30 25	30 25	29 24	24	26	26	26
B B B	1-A SH SPRAY VALVE 1-B SH SPRAY VALVE 1-A RH SPRAY VALVE 1-B RH SPRAY VALVE		41 45 19 15	26 25 8 5	52 30 100 100	30 23 49 68	53 41 36 50	22 12 0 0	26 28 17 12	32 41 18 12	32 27 14 9
888888888888888888	MISCELLANEOUS BURNER TILT AUX. AIR DAMPERS 1-A FUEL/AIR DAMPERS 1-B FUEL/AIR DAMPERS 1-C FUEL/AIR DAMPERS 1-C FUEL/AIR DAMPERS 1-E FUEL/AIR DAMPERS 1-E FUEL/AIR DAMPERS 1-A PRI. AIR FAN 1-A ID FAN 1-A ID FAN 1-A ID FAN 1-B ID FAN 1-B FD FAN 1-B FD FAN 1-B FD FAN 1-C FIC. WTR. PUMP 1-B BLR. CIRC. WTR. PUMP 1-B BLR. CIRC. WTR. PUMP 1-B BLR. CIRC. WTR. PUMP 1-D		+6° 0 79 82 87 82 0 170 178 270 300 158 149 300 300 80 83 -64 -2.56 .063 4.2 30.08	+3° 29 83 86 92 88 0 165 175 340 350 189 175 393 393 79 83 77 7956 -2.13 .067 7.0 29.98	-3° 95 54 50 54 50 180 480 480 480 480 480 73 76 72 7464 -1.60 .065 3.5	0° 100 49 47 0 50 50 170 180 500 430 205 190 480 490 70 75 70 7269 -2.54 .064 4.1 29.56	-3° 90 45 46 0 46 46 170 180 480 410 200 190 480 73 76 71 7365 -3.066 5.0 29.94	+17° 57 31 33 0 35 32 171 185 380 320 187 171 430 79 81 76 8055 -1.15 .065 5.3	+4° 0 81 84 89 85 0 165 175 290 310 165 155 316 326 82 83 78 8277 -1.40 .066 4.6	+3° 18 85 87 83 87 0 0 165 175 310 320 180 165 360 80 83 78 8067 -1.79 .068 5.9	+4° 31 85 87 93 89 0 165 175 350 340 189 178 400 79 80 76 7854 -2.25 .066 7.0

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

	BOARD & COMPUTER DATA TEST NO. 1 2 3 4 5 5 7 0 0											
	TEST NO.	1	2	3	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9		
	DATE 1976 TIME	5/19 16:15	5/19 13:50	3/12 07:15	5/19 11:00	5/12 1J:00	5/12 09:20	5/16 09:30	5/21 03:10	5/27 09:40		
+ C	LOAD MW FLOWS 10 ³ LB/HR	505	506	524	506	422	422	421	320	314		
c c	FEEDWATER Superheat Spray L	3176 80	3200 66	3111 122	3111 113	2666 0	2634 0	2624 0	1727 90	1979 O		
C	SUPERHEAT SPRAY R REHEAT SPRAY L	83 38	68 54	108 81	95 36	29 10	57 9	22 10	121 9	.0 50		
C	REHEAT SPRAY R	62	74	83	59	6	Ó	o	24	2		
C	BFP TURB. EXTR. STM. FLOW 1-A BFP TURB. EXTR. STM. FLOW 1-8	43 68	43 69	0 0	42 69	0	0	42 72	39 68	34 89		
c	BFP TURB. MN. STM. FLOW COMBINED	8.47	8.49	7.69	8.13	8.80	8.87	8.70	7.12	0.00		
C	HOT AIR TO BURNERS L WINDBOX HOT AIR TO BURNERS R WINDBOX	1 481 1 55 5	1382 1472	1516 1466	1384 1473	1247 1300	1169 1226	1285 1342	819 826	1006 951		
	PRESSURES											
	STEAN & WATER - PSIG											
C	FEEDWATER TO ECON. BOILER DRUM	27 32 2674	2731 2678	2728 2676	2720 2670	2649 2607	2643 2604	2645 2605	2546 2519	2564 2531		
C	TURBINE THROTTLE	2403	2403	2396	2402	2400	2400	2399	2400	2407		
c	TURBINE 1ST STAGE HP HTR. 1-G1 & 1-G2 STEAM IN.	1618 519	1620 520	1649 539	1623 518	1319 416	1322 414	1321 415	951 312	966 3 01		
	AIR & GAS - IN HOO											
c	FD FAN 1-A DISCHARGE	14.07	13.28	5.36	13.11	11.67	10.86	11.98	5.00	6.96		
C	FD FAN 1-B DISCHARGE AIR HTR. 1-A AIR IN.	13.15 11.14	11.98 10.45	8.67 7.32	11.61 10.40	10.05 9.30	9.49 8.71	10.04 9.33	4.39 3.82	5.75 5.30		
C	AIR HTR. 1-B AIR IN.	10.26	9.51	6.75	9.43	8.45	7.93	8.56	3.26	4.55		
C	AIR HTR. 1-A AIR OUT. AIR HTR. 1-B AIR OUT.	7.02 7.02	6.65 6.64	3.44 3.46	6.61 6.74	6.24 6.28	6.02 6.17	6.35 6.22	2.35 2.27	3.43 3.36		
C	FURN. RIGHT WINDBOX	5.33	5.20	2.39	5.30	5.21	5.23	5.17	1.95	2.94		
C	FURN. LEFT WINDBOX RT. WD9X TO FURN. DIFF. P	5.46 6.50	5.31 6.53	2.42 3.20	5.41 6.53	5.24 6.54	5.29 6.55	5.21 6.54	1.93 2.02	2.80 2.12		
Č	LEFT WDBX TO FURN. DIFF. P	7.01	6.94	4.00	6.90	7.00	7.01	6.99	3.52	3.58		
C	FURNACE.	-0.26	-0.64	-0.43 -0.73	-0.70 -0.47	-0.49 -0.50	-0.42 -0.53	-0.52 -0.56	-0.20 -0.59	-0.54 -0.73		
C	PRI. SH GAS OUT. REHEATER GAS OUT.	-0.43 -0.98	-0.57 -1.13	-0.73	-1.05	-0.87	-0.86	-0.91	-0.81	-0.86		
C	ECON. GAS IN.	-2.13	-2.16	-2.45	-2.15	-1.71	-1.62	-1.82 -4.31	-1.32 -2.58	-1.23 -2.68		
C	ECON. GAS OUT. AIR HTR. 1-A GAS IN.	-5.73 -7.96	-5.61 -7.74	-6.18 -8.49	-5.67 -7.97	-4.19 -6.14	-3.84 -5.81	-5.91	-3.52	-3.83		
C	AIR HTR. 1-8 GAS IN.	-7.73	-7.54	-8.10	-7.44	-5.67	-5.42	-6.04	-3.76 -6.3	-3.96 -6.4		
C	Air HTR. 1-A GAS OUT. Air HTR. 1-B GAS OUT.	-14.1 -12.9	-13.6 -12.4	-14.9 -13.6	-13.5 -12.2	-10.3 -9.3	-9.7 -9.0	-10.5 -9.7	-6.0	-6.3		
С	IDF 1-A DISCH.	-0.09	-0.16	-0.56	-0.21	-0.56	-0.79	-0.35	-0.86	-0.41		
Ċ	IDF 1-8 Disch. PAF 1-A Disch. HDR.	-0. 02 32.26	-0.12 32.44	-0.47 32.91	-0.19 32.31	-0.52 31.89	-0.74 31.93	-0.34 31.90	-0.84 31.59	-0.40 31.54		
č	PAF 1-B Disch. Hor.	33.43	33.44	32.68	33.23	32.75	32.75	32.87	32.77	32.79		
*8	PRI. HOT AIR DUCT	30	30	30	30	30	30	30	30	30		
	TEMPERATURES											
С	AIR & GAS - °F T-A FD FAN DISCH.	84	81	58	75	70	64	73	75	87		
C	1-B FD FAN DISCH.	91	88	68	80	79 96	76 96	80 91	87 92	93 99		
C	1-A AH AIR IN. 1-B AH AIR IN.	98 102	97 101	73 76	89 92	96 67	102	95	95	101		
С	1-A AH AIR OUT.	688	688	720	681	639	629	627 648	594 612	549 566		
C	1-B AH AIR OUT.	722 744	702 744	738 784	692 737	651 695	641 680	648 679	612 6 42	566 591		
Č	1-A AH GAS IN. 1-B AH GAS IN.	758	744	789	733	688	371	682	641	599		
С	1-A AH GAS OUT.	291	2 9 3	2 8 0 2 8 3	280 282	249 256	246 254	250 251	252 261	226 238		
С	1-B AH GAS OUT.	293	200	203	200	230	-5-					

225 SHEET A42

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

+c

#p00000000000000000000000000000

BOARD & COMPUTER DATA												
TEST NO.		<u>10</u>	11	<u>12</u>	<u>13</u>	14	<u>15</u>	<u>16</u>	<u>17</u>	18		
DATE Time Load	1976 MW	5/23 11:05 324	5/19 18:35 491	5/10 09:50 497	3/16 10:00 522	5/12 13:45 422	3/13 15:30 400	5/16 11:45 422	5/21 01:15 320	5/23 09:10 323		
FLOWS - 103LB/HR												
FEEDWATER SUPERHEAT SPRAY L SUPERHEAT SPRAY R REHEAT SPRAY L		1940 12 46 0	3005 107 101 40	2972 125 140 66	3139 135 111 70	2660 0 39 11	2458 0 34 10	2634 9 32 10	1720 92 122 5	1909 36 48 0		
REHEAT SPRAY R		Ō	64	80	75	8	0	0	55	ō		

L	† EEDWATER	1940	3005	2312	3133	2000	2430	2034	1720	1909
С	SUPERHEAT SPRAY L	12	107	125	135	0	0	9	92	36
С	SUPERHEAT SPRAY R	46	101	140	111	39	34	32	122	48
С	REHEAT SPRAY L	0	40	6 6	70	11	10	10	5	0
С	REHEAT SPRAY R	0	64	80	75	8	0	0	22	0
С	BFP TURB. EXTR. STM. FLOW 1-A	44	42	0	0	0	0	42	39	44
С	BFP TURB. EXTR. STM. FLOW 1-B	34	67	0	0	0	0	73	70	34
C	BFP TURB. MN. STM. FLOW COMBINED	14.70	8.08	7.65	7.51	8.93	7.61	8.95	7.53	14.99
С	HOT AIR TO BURNERS L WINDBOX	902	1502	1514	1576	1411	1290	1472	967	993
С	HOT AIR TO BURNERS R WINDBOX	913	1583	1554	1552	1869	1287	1533	979	1027
	PRESSURES									
	STEAM & WATER - PSIG									
С	FEEDWATER TO ECON.	2565	2711	2701	2734	2648	2623	2647	2544	25 63
С	BOILER DRUM	2539	2660	2652	2687	2608	2587	2608	2520	2540
C	TURBINE THROTTLE	2402	2400	2400	2395	2408	2402	2406	2405	2405
C	TURBINE 15T STAGE	984	1559	1574	1672	1323	1238	1326	953	983
C	HP HTR. 1-G1 & 1-G2 STEAM IN.	310	505	513	537	261	391	416	311	308

	AIR & GAS - IN HOD									
:	FD FAN 1-A DISCHARGE	7.35	14.17	13.78	5.47	12.75	4.26	13.09	7.95	9.52
:	FD FAN 1-B DISCHARGE	6.46	13.30	12.75	8.78	11.24	6.66	11.96	6.67	8.33
:	AIR HTR. 1-A AIR IN.	5.99	11.27	11.12	7.58	10.11	5.78	10.29	6.21	7.62
:	AIR HTR. 1-B AIR IN.	5.57	10.49	10.26	7.04	9.11	5.36	9.60	5.50	7.04
:	AIR HTR. 1-A AIR OUT.	4.41	7.18	7.13	3.52	6.47	2.90	6.63	4.20	5.58
:	AIR HTR. 1-B AIR OUT.	4.32	7.19	7.20	3.38	6.50	2.88	6.49	4.12	5.51
:	FURN. RIGHT WINDOOX	3.82	5.53	5.64	2.35	5.22	2.17	4.98	3.56	4.98
:	FURN. LEFT WINDBOX	3.72	5.59	5.70	2.14	5.27	2.23	5.12	3.51	4.96
:	RT. WDBX TO FURN. DIFF. P	4.55	6.56	6.54	3.08	6.54	3.16	6.54	4.15	6.15
:	LEFT WD9X TO FURN. DIFF. P	5.38	7.01	6.97	3.73	7.01	3.86	7.01	5.17	6.63
:	FURNACE	-0.63	-0.23	-0.03	-0.44	-0.60	-0.51	-0.57	-0.52	-0.35
	Pri. SH GAS Out.	-0.48	-0.25	-0.18	-0.62	-0.56	-0.64	-0.54	-0.59	-0.49
:	REHEATER GAS OUT.	-0.74	-0.82	-0.68	-0.48	-1.03	-0.36	-0.96	-0.84	-0.74
:	ECON. GAS IN.	-1.22	-2.03	-2.10	-2.56	-1.88	-1.81	-2.05	-1.49	-1.29
:	Econ, Gas Out.	-2.78	-5.68	-5.78	-6.22	-4.82	-4.47	-5.13	-3.00	-2.90
:	Air HTR. 1-A GAS IN.	-3.97	-7.98	-8.36	-8.91	-6.89	-6.49	-7.12	-4.13	-4.22
:	AIR HTR. 1-8 GAS IN.	-4.12	-7.77	-7.99	-8.89	-6.50	-6.24	-7.20	-4.37	-4.37

AIR HTR. 1-A GAS IN.	-3.97	-7.98	-8.36	-8.91	-6.89	-6.49	-7.12	-4.13	-4.22
AIR HTR. 1-B GAS IN.	-4.12	-7.77	-7.99	-8.89	-6.50	-6.24	-7.20	-4.37	-4.37
AIR HTR. 1-A GAS OUT.	-6.9	-14.3	-14.5	-15.5	-11.6	-11.3	-12.6	-7.5	-7.6
AIR HTR. 1-B GAS OUT.	-6.4	-13.0	-13.1	-14.0	-10.6	-10.1	-11.6	-6.9	-7.1
IDF 1-A DISCH.	-0.85	-0.00	-0.13	-0.78	-0.26	-1.01	-0.12	-0.73	-0.78
IDF 1-B Disch.	-0.90	-0.06	-0.03	-0.92	-0.22	-0.97	-0.09	-0.69	-0.85
PAF 1-A DISCH. HDR.	31.50	32.32	33.17	32.87	31.94	32.47	31.89	31.76	31.37
PAF 1-B DISCH. HDR.	32.3 3	33.37	34.33	32.78	32.84	32.29	32.86	32.73	32.25
PRI. HOT AIR DUCT	30	30	30	30	30	30	30	30	30
TEMPERATURES									
TEP CRATORES									

	AIR & GAS - °F									
С	1-A FD FAN DISCH.	74	84	76	40	76	47	73	77	68
С	1-B FD FAN DISCH.	80	91	81	47	84	56	80	87	78
С	1-A AH AIR IN.	104	98	88	82	91	99	90	91	112
С	1-8 AH AIR IN.	108	102	91	85	94	105	93	94	116
С	1-A AH AIR OUT.	564	690	702	698	651	631	637	606	552
С	1-B AH AIR OUT.	580	718	731	715	665	639	663	630	561
С	1-A AH GAS IN.	611	748	762	763	710	684	694	656	605
c	1-B AH GAS IN.	608	753	453	767	703	684	702	658	596
С	1-A AH GAS OUT.	240	292	276	272	253	251	254	253	236
C	1-B AH GAS OUT.	242	291	281	270	257	252	254	261	233

^{&#}x27; C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

				BOARD & C	OMPUTER D	ATA					
	TEST NO.		1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	9
*C	DATE TIME LOAD	1976 Mw	5/19 16:15 505	5/19 13:50 506	3/12 07:15 524	5/19 11:00 506	5/12 11:00 422	5/12 09:20 422	5/16 09:30 421	5/21 03:10 320	6/27 09:40 314
	TEMPERATURES								7	320	314
000000	AIR & GAS - °F ECON. N GAS OUT. ECON. S GAS OUT. 1-A PA FAN DISCH. HDR. 1-B PA FAN DISCH. HDR. 1-A AH PRI. AIR OUT. 1-B AH PRI. AIR OUT.		797 770 95 NA 698 702	777 768 93 NA 700 694	836 823 68 104 732 724	770 758 85 NA 693 683	716 685 80 NA 650 643	706 674 74 NA 639 634	722 596 82 NA 637 636	661 655 80 NA 608 608	610 *NA 101 NA 561 563
	STEAM & WATER - °F BOILER ECON. IN. DOWNCOMER 1 DOWNCOMER 2 DOWNCOMER 3 DOWNCOMER 5 BLR. SH ATMP 1-A STM. IN. BLR. SH ATMP 1-B STM. IN. BLR. S SH HDR. OUT. TURBINE THROTTLE BLR. S RH ATMP STM. OUT. A BLR. N RH ATMP STM. OUT. B BLR. S RH HDR. OUT. A BLR. N RH ATMP STM. OUT. B HP HTR. 1-G1 & 1-G2 EXTR. S HP HTR. 1-F1 FW OUT. HP HTR. 1-G1 FW OUT. HP HTR. 1-G2 FW OUT. HP HTR. 1-G2 FW OUT. HP HTR. 1-G1 DRAIN HP HTR. 1-G2 DRAIN	тм.	474 674 676 676 680 678 836 840 998 1012 1002 476 473 982 1026 616 408 405 472 473 411 378	474 674 676 677 680 678 832 1012 997 1000 475 474 1002 1011 618 408 406 472 473 412 379	478 676 678 678 682 680 856 873 1008 1014 1008 479 482 1014 1015 628 412 479 479 479 479	474 676 676 676 680 678 835 849 996 1016 1001 476 473 1000 1017 408 406 472 473 412 376	451 671 672 673 677 674 821 808 1005 1003 1003 574 527 997 1002 580 369 369 369 369 369 369 369 369 369 369	452 670 672 672 677 674 834 813 1005 1001 1001 1001 586 585 1003 1004 579 389 388 450 451 391 356	451 670 672 673 677 674 829 836 995 1017 1002 588 587 974 1023 589 389 388 450 451 390 358	425 666 667 667 672 669 917 873 1006 999 1002 427 426 998 992 547 368 367 424 424 367 338	417 566 667 668 418 668 833 823 999 NA 540 539 924 932 533 NA 356 NA 416 NA 332
	PUL VERIZER DATA PLV 1-A BOWL LOWER P PLV 1-B BOWL LOWER P PLV 1-C BOWL LOWER P PLV 1-D BOWL LOWER P PLV 1-E BOWL LOWER P PLV 1-A BOWL DIFF. P PLV 1-A BOWL DIFF. P PLV 1-B BOWL DIFF. P PLV 1-F BOWL DIFF. P PLV 1-F BOWL DIFF. P PLV 1-E COAL AIR OUT. P PLV 1-B COAL AIR OUT. P PLV 1-C COAL AIR OUT. P PLV 1-B PRI. AIR OUT. P PLV 1-C PRI. AIR IN. FLOW PLV 1-D PRI. AIR IN. FLOW PLV 1-D PRI. AIR IN. FLOW PLV 1-D PRI. AIR IN. FLOW PLV 1-E PRI. AIR IN. FLOW PLV 1-F PRI. AIR IN. FLOW	0.000000000000000000000000000000000000	20.6 24.0 21.6 23.0 22.2 -1.5 6.90 7.88 7.15 7.66 6.92 0.06 9.30 11.97 10.51 10.98 10.83 -1.64 127 129 129 129 129	20.7 23.8 21.9 23.0 -1.1 19.5 6.94 7.29 7.80 0.12 6.73 9.45 11.86 10.66 11.02 -1.25 9.31 127 128 130 125 0 124 143	21.7 23.4 0.2 23.6 21.9 18.9 7.79 8.11 0.04 8.09 7.04 10.13 11.15 11.32 9.08 125 128 128 126 128 125 143	-0.4 23.6 22.3 23.0 22.2 20.1 0.44 7.68 7.73 6.93 -1.24 11.74 10.86 11.05 10.88 9.70 0 129 129 126 130 125 88	21.0 24.2 23.4 -0.2 22.3 -0.1 7.23 8.25 7.74 -0.00 7.17 -0.02 6.05 11.79 11.22 0.06 10.77 0.11 127 129 131 0 143	21.0 23.7 23.7 -0.2 22.3 -0.1 7.22 8.00 7.85 -0.02 7.10 -0.03 6.05 11.51 11.32 0.06 10.80 0.11 127 128 130 0 126 0	-0.4 23.8 23.0 23.4 21.8 0.1 0.44 7.86 7.65 7.72 6.93 0.00 -1.37 11.89 11.19 11.28 10.71 0.09 0 129 126 126 0 87	18.5 20.0 19.7 19.6 -1.0 -1.4 6.34 6.62 6.68 0.19 0.06 8.20 10.04 9.58 9.15 -1.17 -1.38 131 126 0 0	17.0 20.7 0.1 30.3 18.1 16.8 5.89 6.64 0.02 0.05 5.97 7.41 10.38 72 8.38 123 127 51 126 130 146

^{*} C - COMPUTER DATA; B - BOARD DATA; NA NOT AVAILABLE.

	BOARD & COMPUTER DATA									
	TEST NO.	<u>10</u>	11	12	<u>13</u>	14	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>
	DATE 1976 Time	5/23 11:05	5/19 18:35	5/10 09:50	3/16 10:00	5/12 13:45	3/13 15:30	5/1 6 11:45	5/21 01:15	5/23 09: 10
* C	LOAD MW	324	491	497	522	422	400	422	320	323
	TEMPERATURES									
С	AIR & GAS - °F ECON. N GAS OUT.	642	791	803	803	737	715	748	676	653
С	Econ. S Gas Out.	557	701	788	810	631	722	612	673	538
C	1-A PA FAN DISCH. HDR.	83 An*	94 NA	86 NA	53 61	86 Na	58 80	82 NA	82 NA	78 Na
C	1-8 PA FAN DISCH. HDR. 1-A AH PRI. AIR OUT.	578	702	713	710	661	641	649	619	567
č	1-B AH PRI. AIR OUT.	574	697	713	699	653	627	648	650	556
_	STEAM & WATER - "F		471	470	400	450	447	451	40.4	40.4
C	BOILER ECON. IN.	424 665	471 673	473 673	480 678	452 671	447 672	451 670	424 665	424 665
c	Downcomer 1 Downcomer 2	668	675	674	680	672	674	672	667	667
č	DOWNCOMER 2	669	676	675	680	673	674	673	668	668
č	Downcomer 4	673	679	679	684	677	678	677	672	673
С	DOWNCOMER 5	670	677	676	681	675	676	674	669	670
C	BLR. SH ATMP 1-A STM. IN.	850	844	865	846	828	827	828	915	85 5
C	BLR. SH ATMP 1-B STM. IN.	821	851	863	868	819	837	845	870	827
C	BLR. 5 SH HDR. OUT. BLR. N SH HDR. OUT.	1006 1005	9 9 2 1018	1011 1005	999 1019	1004 1005	1003 1021	990 1022	1004 10 0 6	1003 1008
Č	TURBINE THROTTLE	1005	1001	1005	1004	1000	1009	999	1003	1003
č	BLR. S RH ATMP STM. OUT. A	552	472	472	481	578	588	588	427	552
C	BLR. N RH ATMP STM. OUT. B	5 51	470	471	482	500	587	587	427	551
C	BLR. S RH HDR. OUT. A	963	983	982	989	999	998	969	995	973
C	BLR. N RH HDR. OUT. B HP HTR. 1-G1 & 1-G2 EXTR. STM.	978 546	102 7 612	1021 618	1030 624	1004 580	1012 580	1037 577	995 545	980 545
č	HP HTR. 1-51 & 1-62 CXIR. SIM.	366	405	407	413	389	386	389	367	367
č	HP HTR. 1-F2 FW Out.	366	404	406	412	388	386	388	366	365
C	HP HTR. 1-G1 FW OUT.	424	469	472	480	451	448	450	424	423
C	HP HTR. 1-G2 FW OUT.	424	470	472	480	451	448	451	423	424
C	HP HTR. 1-G1 DRAIN HP HTR. 1-G2 DRAIN	366 335	409 376	410 376	416 384	391 360	387 359	391 358	366 337	366 334
	PUL VER I ZER DATA									
c	PLV 1-A BOWL LOWER P IN. HaD	-0.3	20.6	21.5	21.4	20.7	18.3	-0.5	18.3	-0.3
Č	PLV 1 B Bout Louge P IN NO	-1.3	24.0	25.3	-0.0	24.0	18.9	24.0	20.5	-1.5
Ċ	PLV 1-C BOWL LOWER P IN. HOO	19.4	21.5	23.9	24.4	23.2	0.2	23.0	19.5	19.8
Ç	PLV 1-D BOWL LOWER P IN. HEO	19.3	22.7	-0.3	23.6	-0.2	19.8	23.6	19.7	19.3
Ċ	PLV 1-C Bowl Lower P IN. H20 PLV 1-D Bowl Lower P IN. H20 PLV 1-E Bowl Lower P IN. H20 PLV 1-F Bowl Lower P IN. H20	19.7	22.0	23.5	22.7	22.0	19.8	21.9	-1.1	19.9
c c	PLV 1-F BOWL LOWER P IN. H50 PLV 1-A BOWL DIFF. P IN. H20	18.1 0.44	-1.4 6.83	22.4 7.28	21.2 7.54	-0.1 7.11	17.6 6.58	0.1 0.44	-1.3 6.31	18.2 0.44
Ċ	PLV 1-B Bon. Diff. P IN. H20	0.20	7.74	8.30	0.01	8.18	6.67	7.97	6.61	0.21
č	PLV 1-C Bowl DIFF. P IN. H20	6.34	7.12	7.82	8,43	7.72	0.02	7.73	6.53	6.47
C	PLV 1-D BOWL DIFF. P IN. H-0	6.47	7.60	0.29	8.06	0.02	6.84	7.82	6.72	6.48
C	PLV 1-E BOWL DIFF. P IN. H-D	6.16	6.84	7.34	7.25	7.16	6.44	6.94	0.17	6.21
C	PLV 1-F BOWL DIFF. P IN. H.O	6.14	0.06	7.38	7.30	-0.01	6.18	0.00	0.06	6.12
C	PLV 1-A COAL AIR OUT. P IN. H50 PLV 1-B COAL AIR OUT. P IN. H50	-1.15 -1.28	9.36 12.00	8.99 12.55	9.86 0.43	6.12 11.68	8.37 9.55	-1.41 11.85	8.17 10.13	-1.16 -1.35
č	PLV 1-C COAL AIR OUT. P IN. HO	9.46	10.50	11.70	11.27	11.09	-0.23	11.14	9.48	9.78
Č	PLV 1-D COAL AIR OUT. P IN. HaD	9.34	10.91	-0.70	11.43	0.06	9.45	11.34	9.23	9.36
Ç	PLV 1-E COAL AIR OUT. P IN. HO	9.75	10.93	11.51	11.80	10.57	10.29	10.66	-1.35	9.85
C	PLV 1-F COAL AIR OUT. P IN, HEO	9.07	-1.40	10.90	10.60	0.11	8.52	0.09	-1.54	8.98
C	PLV 1-A PRI. AIR IN. FLOW 9-125%	0	127	127	126	127	125 128	0 129	127 129	0 32
C	PLV 1-B PRI. AIR IN. FLOW 0-125% PLV 1-C PRI. AIR IN. FLOW 0-125%	31 131	129 130	129 130	42 131	128 139	0	131	132	131
č	PLV 1-D PRI. AIR IN. FLOW 0-125%	126	125	49	125	133	125	125	126	126
č	PLV 1-E PRI. AIR IN. FLOW 0-125%	129	129	126	128	126	128	126	0	130
С	PLV 1-F PRI. AIR IN. FLOW 0-125%	124	0	126	126	0	125	0	0	124
С	PLV 1-A COAL AIR DISCH. TEMP. °F	84	143	146	145	144	144	88	143	79

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

	BOARD & COMPUTER DATA									
	TEST NO.	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	5	<u>6</u>	<u>7</u>	<u>8</u>	9
* C	DATE 1976 TIME LOAD MW	5/19 16:15 505	5/19 13:50 506	3/12 07:15 524	5/19 11:00 506	5/12 11:00 422	5/12 09:20 422	5/16 09:30 421	5/21 03:10 320	6/27 09:40 314
	PUL VER I ZER DATA									0.,
	PLV 1-B COAL AIR DISCH. TEMP. °F PLV 1-C COAL AIR DISCH. TEMP. °F PLV 1-E COAL AIR DISCH. TEMP. °F PLV 1-E COAL AIR DISCH. TEMP. °F PLV 1-F COAL AIR DISCH. TEMP. °F PLV 1-A FEEDER COAL FLOW 103LB/HR PLV 1-B FEEDER COAL FLOW 103LB/HR PLV 1-C FEEDER COAL FLOW 103LB/HR PLV 1-D FEEDER COAL FLOW 103LB/HR PLV 1-E FEEDER COAL FLOW 103LB/HR PLV 1-F FEEDER COAL FLOW 103LB/HR PLV 1-F FEEDER COAL FLOW 103LB/HR PLV 1-B MILL AMPS PLV 1-B MILL AMPS PLV 1-E MILL AMPS PLV 1-E MILL AMPS PLV 1-E MILL AMPS PLV 1-E MILL AMPS	144 145 142 138 159 115 116 116 116 70 74 73 75 0	144 145 143 128 142 115 116 166 116 0 116 71 74 73 75 0	145 49 146 142 145 120 120 0 178 112 113 76 75 0 78 76 73	143 144 142 138 142 0 116 116 116 116 72 72 75 75	144 146 107 139 118 116 119 117 0 117 0 72 75 71 0 78	143 146 106 147 117 113 115 10 114 0 70 74 72 0 76 0	144 146 142 139 78 0 117 117 117 0 0 74 73 75 78	141 145 143 100 110 85 87 87 88 0 0 63 65 66 65	153 * NA 117 142 145 83 85 NA 84 82 64 66 NA NA
*B B B	FAN DAMPER POSITION - \$ OPEN 1-A FD FAN INLET VANE 1-B FD FAN INLET VANE 1-A PA FAN INLET VANE 1-B PA FAN INLET VANE	78 77 36 31	75 74 36 31	71 70 30 25	74 72 35 30	70 68 30 24	67 65 29 23	71 70 31 25	53 51 32 26	59 62 28 28
8 8 8	SPRAY VALVE POSITION - \$ OPEN 1-A SH SPRAY VALVE 1-B SH SPRAY VALVE 1-B RH SPRAY VALVE	29 21 46 34	24 13 55 50	55 27 100 100	40 24 43 32	11 8 2 1	17 12 1 0	22 0 0 0	40 46 13 10	8 12 0 0
8888888888888888888	BURNER TILT + DEGREES AUX. AIR DAMPERS \$ OPEN 1-A FUEL/AIR DAMPERS \$ OPEN 1-B FUEL/AIR DAMPERS \$ OPEN 1-C FUEL/AIR DAMPERS \$ OPEN 1-C FUEL/AIR DAMPERS \$ OPEN 1-E FUEL/AIR DAMPERS \$ OPEN 1-F FUEL/AIR DAMPERS \$ OPEN 1-F FUEL/AIR DAMPERS \$ OPEN 1-A FUEL/AIR DAMPERS \$ OPEN 1-A FUEL/AIR DAMPERS \$ OPEN 1-A ID FAN AMPS 1-B ID FAN AMPS 1-B ID FAN AMPS 1-B FD FAN AMPS 1-B FD FAN AMPS 1-B FD FAN AMPS 1-B FD FAN AMPS 1-B BLR. CIRC. WTR. PUMP 1-B BLR. CIRC. WTR. PUMP 1-B BLR. CIRC. WTR. PUMP 1-D BL	0° 39 100 100 100 100 100 100 173 183 460 410 218 198 485 495 74 78 73 74 -0.73 -3.26 0.063 3.3 29.76	-4° 29 100 100 100 100 173 184 460 390 205 180 480 488 488 488 482 -0.27 0.067 2.6	-3° 66 54 55 100 55 50 44 170 180 480 400 197 183 480 480 480 73 76 71 74 -0.64 -2.38 0.062 3.5 28.95	-9° 31 100 100 100 100 100 100 175 185 460 390 205 183 477 488 75 79 75 78 -0.80 -1.40 0.066 3.4 29.97	-4° 21 100 100 100 100 100 100 166 173 370 330 193 180 418 423 80 81 76 80 -0.48 -1.45 0.062 3.9 30.04	17 100 100 37 100 100 100 0 165 173 350 300 161 390 397 80 82 78 81 -0.82 -2.23 0.065 3.6	+11° 25 100 100 100 100 100 0 165 175 390 320 320 320 435 438 80 83 78 80 -0.76 -2.43 0.062 4.1 29.54	+6° 0 78 81 86 81 100 100 100 168 175 260 300 305 83 80 83 81 -0.79 -2.56 0.060 4.0 30.01	16° 0 77 77 100 100 75 75 160 195 300 280 169 150 330 NA 83 87 NA 84 -0.69 -2.57 0.055 5.1 30.10

^{*} C - COMPUTER DATA; 8 - BOARD DATA; NA - NOT AVAILABLE.

BOARD &	COMPUTER	DATA
---------	----------	------

				DOM:D & C	<u> </u>						
	TEST NO.		<u>10</u>	<u>11</u>	12	<u>13</u>	14	<u>15</u>	16	<u>17</u>	<u>18</u>
*c	DATE Time Load	1976 Mw	5/23 11:05 324	5/19 18:35 491	5/10 09:50 497	3/16 10:00 522	5/12 13:45 422	3/13 15:30 400	5/16 11:45 422	5/21 01:15 320	5/23 09:10 323
	PUL VER I ZER DATA										
	PLV 1-B COAL AIR DISCH. PLV 1-C COAL AIR DISCH. PLV 1-D COAL AIR DISCH. PLV 1-F COAL AIR DISCH. PLV 1-F COAL AIR DISCH. PLV 1-F FEEDER COAL FLOW PLV 1-B FEEDER COAL FLOW PLV 1-C FEEDER COAL FLOW PLV 1-F FEEDER COAL FLOW PLV 1-F FEEDER COAL FLOW PLV 1-F FEEDER COAL FLOW PLV 1-B MILL PLV 1-B MILL PLV 1-C MILL PLV 1-E MILL PLV 1-F MILL	Темр. °F Темр. °F Темр. °F	130 144 141 138 142 * NA 87 88 88 86 0 0 67 65 67	143 145 143 138 141 106 108 107 108 107 0 58 72 72 74 75	152 150 91 152 162 114 116 114 112 73 73 73 75 70	83 149 147 143 146 116 0 114 116 115 72 0 74 75 75	144 147 110 139 121 117 118 118 0 117 0 71 75 73 0 78	146 45 147 142 145 86 87 0 86 87 85 65 65 67 67	144 145 143 139 78 0 117 117 118 118 0 0 75 74 75	144 145 143 111 118 85 87 86 87 0 0 63 67 66 66	152 143 138 138 141 0 0 88 89 70 0 66 66 66
	FAN DAMPER POSITION - \$ 0		00	Ū	,0	,,	v	O,	·	Ū	03
* B B B	1-A FD FAN INLET VANE 1-B FD FAN INLET VANE 1-A PA FAN INLET VANE 1-B PA FAN INLET VANE	_	57 56 31 25	79 77 36 31	77 76 37 32	70 70 28 24	74 73 30 25	64 63 29 24	75 74 31 26	60 59 32 26	61 60 31 25
	SPRAY VALVE POSITION - \$	OPEN									
8 8 8	1-A SH SPRAY VALVE 1-B SH SPRAY VALVE 1-A RH SPRAY VALVE 1-B RH SPRAY VALVE		14 8 0	50 33 48 34	68 57 81 58	65 28 61 62	15 3 4 3	23 6 0	23 4 0 0	39 47 15 10	15 12 0 0
	MISCELLANEOUS										
8 8 8 8 8 8 8 8	BURNER TILT AUX. AIR DAMPERS 1-A FUEL/AIR DAMPERS 1-B FUEL/AIR DAMPERS 1-C FUEL/AIR DAMPERS 1-D FUEL/AIR DAMPERS 1-E FUEL/AIR DAMPERS 1-F FUEL/AIR DAMPERS 1-A PRI. AIR FAN 1-B PRI. AIR FAN 1-A ID FAN	+ DEGREES \$ OPEN \$ OPEN \$ OPEN \$ OPEN \$ OPEN \$ OPEN \$ OPEN AMPS AMPS	+5° 0 0 87 83 81 78 169 179 280	+2° 40 100 100 100 100 100 100 173 183 500	-4° 34 100 100 100 100 100 100 107 175 185 490	-3° 81 51 100 51 54 52 51 171 185 500	-3° 30 100 100 100 100 100 100 100 165 170 410	+1° 50 32 33 100 34 33 33 175 182 390	+6° 39 100 100 100 100 100 101 100 156 175 443	+9° 76 81 84 80 0 165 175	+6° 0 0 89 84 82 79 168 178
8 8 8 8 8	1-B ID FAN 1-A FD FAN 1-B FD FAN 1-B ID FAN 1-B ID FAN 1-A BLR. CIRC. WTR. PUMP 1-B BLR. CIRC. WTR. PUMP	AMPS AMPS AMPS RPM RPM AMPS AMPS	310 166 155 320 323 83 84	420 225 198 488 496 73	420 213 196 482 500 73 77	430 204 197 480 490 75 76	340 203 187 445 457 79 80	320 187 175 430 430 80 82	367 210 195 463 478 79 81	310 171 158 345 340 79 82	310 175 165 338 345 81 84
B C C C C	1-C BLR. CIRC. WTR. PUMP 1-D BLR. CIRC. WTR. PUMP N DRUM LEVEL + NORM. H ₂ O S DRUM LEVEL + NORM. H ₂ O FLUE GAS COMBUSTIBLES FLUE GAS OXYGEN BARONMETRIC PRESS.	AMPS AMPS LEVEL IN. LEVEL IN. # IN. HGA	79 84 -0.51 -2.36 0.064 4.4 30.10	73 74 -0.76 -3.22 0,064 3.5 29.73	72 73 -0.75 -3.12 0.061 3.8 29.66	71 75 -0.68 -2.88 0.062 4.3 29.82	75 79 -0.54 -1.33 0.062 4.9 29.91	78 79 -0.61 -1.48 0.065 5.5 29.99	75 77 -0.47 -3.26 0.062 5.1 29.55	77 80 -0.53 -2.51 0.059 5.8 29.92	78 83 -0.62 -2.22 0.065 6.0 30.14

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

	BOARD & COMPUTER DATA									
	TEST NO.		1	<u>2</u>	3	4	<u>5</u>	<u>6</u>	<u>7</u>	8
*C	DATE 1 TIME LOAD	976 M⊌	3/17 09:30 517	3/17 10: 45 512	3/20 16:50 524	3/20 19:45 525	3/22 17:00 526	3/20 10:05 521	3/20 12:00 522	3/20 14:30 522
	FLOWS - 103LB/HR								522	302
0000000000	FEEDWATER SUPERHEAT SPRAY L SUPERHEAT SPRAY R REHEAT SPRAY L REHEAT SPRAY R BFP TURB. EXTR. STM. FLOW 1-A BFP TURB. EXTR. STM. FLOW 1-B BFP TURB. MN. STM. FLOW COMBINED HOT AIR TO BURNERS L WINDBOX HOT AIR TO BURNERS R WINDBOX		3083 101 109 78 82 0 0 7.6 1608 1557	3084 102 105 78 82 0 0 7.5 1604 1556	3367 14 43 42 66 0 0 8.2 1609 1576	3331 56 42 48 70 0 8.2 1564 1535	3233 95 94 50 72 0 0 8.0 1582 1539	3480 0 12 10 15 0 0 8.5 1486 1474	3372 0 25 35 59 0 0 8.4 1480 1472	3388 0 31 39 63 0 0 8.2 1486 1470
	PRESSURES									
00000	STEAM & WATER - PSIG FEEDWATER TO ECON. BOILER DRUM TURBINE THROTTLE TURBINE 1ST STAGE HP HTR. 1-G1 & 1-G2 STEAM IN.		2723 2673 2400 1624 529	2722 2672 2402 1616 527	2750 2689 2397 1677 537	2750 2689 2399 1682 540	2741 2687 2398 1680 541	2766 2699 2401 1689 528	2754 2692 2403 1680 536	2756 2692 2399 1682 536
	AIR & GAS - IN H2O FD FAN 1-A DISCHARGE FD FAN 1-B DISCHARGE AIR HTR. 1-A AIR IN. AIR HTR. 1-B AIR IN. AIR HTR. 1-B AIR OUT. AIR HTR. 1-B AIR OUT. FURN. RIGHT WINDBOX FURN. LEFT WINDBOX RT. WDEX TO FURN. DIFF. P LEFT-WDEX TO FURN. DIFF. P FURNACE PRI. SH GAS OUT. REMEATER GAS OUT. ECON. GAS IN. ECON. GAS IN. AIR HTR. 1-B GAS IN. AIR HTR. 1-B GAS OUT. AIR HTR. 1-B GAS OUT. IDF 1-A DISCHARGE IDF 1-B DISCHARGE IDF 1-B DISCHARGE HDR. PAF 1-B DISCHARGE HDR.		5.56 9.16 7.75 7.19 3.60 3.38 2.22 2.20 3.39 3.96 -0.53 -0.56 -2.48 -6.45 -8.93 -8.60 -15.5 -0.58 -0.52 32.95 32.74	5.54 9.13 7.77 7.18 3.64 3.46 2.25 3.43 4.02 -0.49 -0.70 -0.63 -2.49 -6.46 -8.92 -8.60 -15.6 -14.0 -0.58 -0.63 32.93 32.80 30	6.04 10.20 8.41 7.82 4.00 3.92 2.42 2.52 3.16 3.92 -0.18 -0.50 -0.31 -2.04 -7.96 -7.74 -14.6 -13.1 -0.04 -0.04 33.42 33.40	5.77 9.63 8.10 7.62 3.80 3.73 2.47 2.50 3.18 3.99 -0.27 -0.57 -0.47 -2.32 -5.94 -8.13 -7.94 -14.6 -13.3 -0.20 -0.20	5.38 8.91 7.50 6.93 3.39 3.40 2.27 2.25 3.23 3.87 -0.64 -2.45 -6.11 -8.72 -8.19 -15.4 -0.39 33.00 32.87	5.20 8.54 7.07 6.56 3.36 3.37 2.10 2.14 3.18 4.01 -0.39 -0.70 -0.42 -2.02 -5.38 -7.67 -7.08 -13.0 -11.9 -0.09 0.11 33.48 33.32 30	5.42 8.84 7.23 6.63 3.43 3.34 2.12 2.12 3.13 3.90 -0.56 -0.65 -0.65 -7.38 -7.38 -13.6 -12.2 -0.10 -0.08 33.53 33.42	5.32 8.69 7.21 6.57 3.38 3.36 2.16 2.21 3.18 3.96 -0.60 -0.81 -0.61 -2.24 -5.58 -7.64 -7.42 -13.6 -12.4 -0.11 -0.07 33.44 33.44
0000000000	TEMPERATURES AIR & GAS - "F 1-A FD FAN DISCHARGE 1-B FD FAN DISCHARGE 1-A AH AIR IN. 1-B AH AIR IN. 1-A AH AIR OUT. 1-B AH AIR OUT. 1-A AH GAS IN. 1-B AH GAS UT. 1-B AH GAS OUT. 1-B AH GAS OUT.		44 52 75 78 712 734 778 783 274 275	45 53 75 78 714 736 780 785 274 275	72 81 86 88 696 721 758 768 281 280	67 76 82 84 707 739 769 785 282	59 67 79 82 691 720 757 762 272 275	77 83 93 96 553 673 709 714 266 269	75 82 90 93 673 696 730 738 274 272	77 85 93 94 681 705 738 746 279 278

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

	BOARD & COMPUTER DATA								
	TEST NO.	9	<u>10</u>	11	<u>12</u>	13	14	<u>15</u>	<u>16</u>
*c	DATE 197 Time Load M	00:45	3/24 02:20 473	3/24 04:00 472	6/24 12:00 524	6/24 13:20 525	6/24 09:45 523	3/25 10:15 510	6/30 09:50 526
	FLOWS - 10 ³ LB/HR								-
000000000	FEEDWATER SUPERHEAT SPRAY L SUPERHEAT SPRAY R REHEAT SPRAY L REHEAT SPRAY R BFP TURB. EXTR. STM. FLOW 1-A BFP TURB. EXTR. STM. FLOW 1-B BFP TURB. MN. STM. FLOW COMBINED HOT AIR TO BURNERS L WINDBOX	2912 56 79 45 61 0 6.8 1668	2834 59 78 46 62 0 0 6.4 1658	2800 84 91 57 70 0 0 6.1 1543	3297 70 79 28 63 43 77 8.1 1767	3289 82 94 50 77 43 76 8.0	3327 70 78 10 50 43 76 8.1 1785	3079 97 98 67 76 0 0 7.6	3255 85 95 33 60 43 89 8.0
С	HOT AIR TO BURNERS R WINDBOX PRESSURES	1614	1613	1510	1663	1668	1683	1454	1637
c c c c	STEAM & WATER - PSIG FEEDWATER TO ECON. BOILER DRUM TURBINE THROTTLE TURBINE 15T STAGE HP HTR. 1-G1 & 1-G2 STEAM IN.	2691 2644 2405 1496 485	2684 2637 2401 1465 478	2675 2631 2400 1456 480	2746 2691 2401 1680 538	2745 2691 2402 1679 538	2744 2686 2402 1679 531	2720 2670 2394 1614 522	2751 2698 2405 1687 535
	AIR & GAS - IN HOO FD FAN 1-A DISCHARGE FD FAN 1-B DISCHARGE AIR HTR. 1-B AIR IN. AIR HTR. 1-B AIR OUT. AIR HTR. 1-B AIR OUT. FURN. RIGHT WINDBOX FURN. LEFT WINDBOX RT, WDBX TO FURN. DIFF. P LEFT WDBX TO FURN. DIFF. P FURNACE PRI. SH GAS OUT. ECON. GAS OUT. AIR HTR. 1-B GAS IN. AIR HTR. 1-B GAS IN. AIR HTR. 1-B GAS OUT. IDF 1-A DISCHARGE IDF 1-B DISCHARGE PAF 1-B DISCH. HDR. PAF 1-B DISCH. HDR.	6.24 11.72 8.94 8.41 4.44 4.53 3.14 3.06 3.67 4.24 -0.14 -0.38 -0.25 -1.99 -6.00 -8.30 -7.70 -14.8 -13.2 -0.16 0.05 32.92	6.08 10.30 8.54 7.93 4.11 4.13 2.68 2.57 3.16 3.92 -0.27 -0.16 -2.00 -5.90 -8.39 -7.82 -114.8 -0.28 -0.12 33.00 32.86	5.58 9.30 7.70 7.11 3.57 3.61 2.39 2.39 3.20 4.00 -0.44 -0.76 -0.59 -2.36 -7.26 -14.0 -12.6 -0.36 -0.21 32.86 32.77	14.98 13.58 11.51 10.42 7.05 7.05 5.41 5.40 5.47 6.13 -0.68 -1.18 -2.23 -6.52 -8.55 -8.39 -15.2 -14.2 0.29 0.36 32.61 33.95	15.15 13.55 11.59 10.54 7.01 7.00 5.33 5.29 5.43 6.13 -0.61 -0.71 -1.25 -2.36 -6.64 -8.82 -8.68 -15.5 -14.7 0.21 0.28 32.60 33.88	15.12 13.71 11.63 10.56 7.03 6.98 5.37 5.31 5.45 6.09 -0.43 -0.65 -1.11 -2.31 -6.51 -8.86 -8.71 -15.5 -14.6 0.26 0.32 32.50	5.37 8.52 7.53 6.72 3.59 3.58 2.43 3.14 3.94 -0.67 -0.54 -2.27 -5.76 -7.72 -7.39 -14.0 -12.7 -0.35 -0.29 33.22	14.75 13.35 10.34 7.13 7.01 5.38 5.46 6.13 -0.64 -1.08 -2.23 -6.21 -8.48 -8.47 -14.6 -13.9 0.07 0.04 32.82
*8	PRI. HOT AIR DUCT TEMPERATURES AIR & GAS - °F 1-A FD FAN DISCH. 1-B FD FAN DISCH. 1-A AH AIR IN. 1-B AH AIR IN. 1-B AH AIR OUT. 1-B AH GAS IN. 1-B AH GAS OUT. 1-B AH GAS OUT. 1-B AH GAS OUT.	66 75 80 83 693 716 758 760 272 272	62 71 77 80 698 720 764 767 273 270	50 70 76 79 701 725 764 268 273 274	78 87 91 92 665 692 720 736 265 271	80 90 92 94 670 702 725 744 270 275	75 83 87 88 658 681 714 723 260 265	59 70 79 82 695 722 758 764 272 283	75 79 86 87 663 677 722 725 260 264

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

	BOARD & COMPUTER DATA									
	TEST NO.	<u>17</u>	18	<u>19</u>	<u>20</u>	<u>21</u>	22	<u>23</u>	24	
* C	DATE 1976 TIME LOAD MW	6/25 11:15 524	6/30 08:35 526	6/29 08:50 523	6/25 14:45 517	6/26 10:30 419	6/25 16:25 422	6/27 11:35 316	6/29 01:30 322	
	FLOWS - 103LB/HR							0.0	JEE	
000000000	FEEDWATER SUPERHEAT. SPRAY L SUPERHEAT SPRAY R REHEAT SPRAY R REHEAT SPRAY R BFP TURB. EXTR. STM. FLOW 1-A BFP TURB. EXTR. STM. FLOW 1-B BFP TURB. MN. STM. FLOW COMBINED HOT AIR TO BURNERS L WINDBOX HOT AIR TO BURNERS R WINDBOX	3262 138 103 40 68 43 76 8.3 1793 1674	3284 80 100 23 53 43 89 8.1 1777 1649	3262 88 89 40 58 43 89 8.3 1611 1529	3203 101 100 53 78 42 74 7.8 1704	2651 35 34 0 2 43 81 8.6 1453 1365	2517 77 80 0 37 39 72 6.3 1346 1241	2062 0 2 0 3 34 89 0.0 1006 944	1891 56 61 · 0 3 39 89 7.1 1022 952	
	PRESSURES									
00000	STEAM & WATER - PSIG FEEDWATER TO ECON. BOILER DRUM TURBINE THROTTLE TURBINE 19T STAGE HP HTR. 1-G1 & 1-G2 STEAM IN.	2739 2688 2411 1671 534	2751 2699 2406 1697 535	2751 2696 2403 1685 535	2745 2694 2416 1644 499	2652 2607 2405 1305 411	2638 2598 2404 1291 416	2571 2533 2408 984 306	2559 2527 2405 975 309	
##0000000000000000000000000000000000000	AIR & GAS - IN HOO FD FAN 1-A DISCHARGE FD FAN 1-B DISCHARGE AIR HTR. 1-A AIR IN. AIR HTR. 1-B AIR IN. AIR HTR. 1-B AIR OUT. AIR HTR. 1-B AIR OUT. FURN. RIGHT WINDBOX FURN. LEFT WINDBOX RT. WDBX TO FURN. DIFF. P LEFT WDBX TO FURN. DIFF. P FURNACE PRI. SH GAS OUT. REMEATER GAS OUT. ECON. GAS IN. ECON. GAS IN. AIR HTR. 1-B GAS IN. AIR HTR. 1-B GAS OUT. AIR HTR. 1-B GAS OUT. IDF 1-A DISCHARGE IDF 1-B DISCHARGE IDF 1-B DISCHARGE PAF 1-B DISCH. HDR.	15.24 13.82 11.76 10.71 7.09 6.95 5.41 5.46 6.44 -0.52 -0.74 -1.24 -2.43 -6.68 -8.79 -8.83 -15.6 0.11 32.63 33.78	14.86 13.27 11.26 10.39 7.12 6.91 5.33 5.35 5.41 6.02 -0.47 -0.60 -1.03 -2.21 -6.18 -8.50 -8.51 -14.7 -14.2 0.11 0.06 32.79 33.77	14.19 12.57 11.02 9.89 6.91 6.76 5.30 5.43 6.07 -0.54 -0.67 -1.12 -2.24 -5.83 -7.78 -7.83 -13.8 -13.2 -0.01 0.06 32.77 34.16	14.69 13.36 11.30 10.09 6.90 6.82 5.36 5.29 5.45 6.17 -0.54 -0.92 -1.38 -2.33 -6.32 -8.52 -8.50 -14.8 -14.2 0.09 0.13 32.74 33.89	12.78 11.02 9.78 8.71 6.34 6.42 5.41 5.39 5.44 6.15 -0.52 -0.70 -1.03 -1.70 -4.43 -6.14 -10.6 -9.9 -0.26 0.04 31.73 32.61 30	10.97 9.26 8.35 7.23 5.28 5.32 4.28 4.00 4.03 5.12 -0.53 -0.77 -1.13 -1.80 -4.44 -6.09 -6.26 -10.7 -10.2 -0.23 -0.16 32.50 33.76 30	6.36 4.99 4.66 3.95 2.86 2.76 2.33 2.26 1.35 3.00 -0.51 -0.71 -0.90 -1.26 -2.71 -3.81 -3.99 -6.29 -6.19 -0.32 -0.32 -0.32 -0.32	6.51 5.26 4.80 4.09 2.27 2.87 2.42 1.56 3.10 -0.54 -0.85 -1.32 -2.77 -3.87 -4.02 -6.53 -6.53 -6.50 -0.49 31.84 32.98	
000000000	TEMPERATURES AIR & GAS - °F 1-A FD FAN DISCH. 1-B FD FAN DISCH. 1-A AH AIR IN. 1-A AH AIR IN. 1-A AH AIR OUT. 1-B AH AIR OUT. 1-A AH GAS IN. 1-B AH GAS OUT. 1-B AH GAS OUT.	81 86 93 93 667 695 724 737 270 273	74 78 84 85 651 657 711 712 255 255	73 81 85 87 665 690 725 732 259 270	87 91 99 101 680 708 734 750 277 282	88 93 100 103 606 627 654 663 244 262	89 95 102 104 634 661 687 702 259 275	89 94 102 104 535 555 580 584 222 233	83 90 96 97 568 592 614 629 226 241	

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

	BOARD & COMPUTER DATA									
	TEST NO.		<u>1</u>	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>
+c	DATE Time Load	1976 MW	3/17 09:30 517	3/17 10:45 512	3/20 16:50 524	3/20 19:45 525	3/22 17:00 526	3/20 10:05 521	3/20 12:00 522	3/20 14:30 522
	TEMPERATURES							-		
C C C C C	AIR & GAS - °F ECON. N GAS OUT. ECON. S GAS OUT. 1-A PA FAN DISCH. HDR. 1-B PA FAR DISCH. HDR. 1-A AH PRI. AIR OUT. 1-B AH PRI. AIR OUT.		810 813 56 72 725 717	812 815 57 72 727 718	800 790 84 95 707 702	817 790 79 90 717 720	796 796 70 85 704 696	748 749 88 108 661 656	774 766 88 98 682 677	777 770 90 102 690 686
	STEAM & WATER - °F BOILER ECON. IN. DOWNCOMER 1 DOWNCOMER 2 DOWNCOMER 3 DOWNCOMER 5 BUR. SH ATMP 1-A STM. IN. BUR. SH ATMP 1-B STM. IN. BUR. SH ATMP 1-B STM. IN. BUR. SH HDR. OUT. TURBINE THROTTLE BUR. S RH ATMP STM. OUT. A BUR. N RH ATMP STM. OUT. A BUR. N RH ATMP STM. OUT. B BUR. S RH ATMP STM. OUT. B BUR. S RH HDR. OUT. A BUR. N RH HDR. OUT. B HP HTR. 1-G1 & 1-G2 EXTR. STM. HP HTR. 1-F1 FW OUT. HP HTR. 1-G2 FW OUT. HP HTR. 1-G1 FW OUT. HP HTR. 1-G1 DRAIN HP HTR. 1-G2 DRAIN		477 676 679 682 680 845 847 *NA 1003 478 480 991 1019 623 411 411 478 478 478 478 478 478	477 676 678 679 682 680 845 849 NA 1004 478 480 992 1022 622 411 410 477 477 477 413 380	478 678 680 680 684 681 811 830 NA NA 1005 482 482 991 1017 624 412 412 480 479 416 384	480 678 680 680 681 819 843 NA 1006 482 481 991 1020 625 412 480 480 480 480 416 382	480 678 679 680 684 681 838 846 NA 1005 482 482 997 1025 626 413 413 481 481 481 481 481	476 679 681 681 683 796 808 NA 996 602 521 989 1026 613 410 410 477 477 477 414 380	478 679 680 681 684 682 810 823 NA 1006 483 482 988 1022 623 411 479 479 416 384	478 679 680 683 682 809 1009 1018 1008 482 482 993 1023 626 411 479 479 416 384
	PLV 1-B BOWL LOWER P PLV 1-C BOWL LOWER P PLV 1-D BOWL LOWER P PLV 1-B BOWL LOWER P PLV 1-F BOWL LOWER P PLV 1-F BOWL LOWER P PLV 1-B BOWL DIFF. P PLV 1-B BOWL DIFF. P PLV 1-C BOWL DIFF. P PLV 1-E BOWL DIFF. P PLV 1-E BOWL DIFF. P PLV 1-F BOWL DIFF. P PLV 1-F BOWL DIFF. P PLV 1-F BOWL DIFF. P PLV 1-C COAL AIR OUT. P PLV 1-B COAL AIR OUT. P PLV 1-B COAL AIR OUT. P PLV 1-C COAL AIR OUT. P PLV 1-C COAL AIR OUT. P PLV 1-F COAL AIR OUT. P PLV 1-B PRI. AIR IN. FLOW O-PLV 1-B PRI. AIR IN. FLOW O-PLV 1-D PRI. AIR	፟፟፟ፚ፟ዸ፟ዸ፟ዸ፟ዸ፟ዸ፟ቔ፟ቔቔዀዀዀዀዀዀዀዀፙፙፙፙፙዀዀዀ ዹዿዿዿዿዿዿዿዿዿ ዹ ዹዿዿዿዿዿዿዿዿዿቜቜቔፙፙዀዀዀዀዀዀዀዀዀዀዀዀዀ ዹ	21.4 -0.03 24.4 23.3 22.5 21.0 7.50 0.01 8.40 7.99 7.24 7.19 9.71 0.40 11.24 11.34 11.66 10.33 126 42 131 125 128 124	21.2 -0.03 24.1 23.5 22.5 20.8 7.37 0.01 8.35 8.03 7.22 7.14 9.83 0.40 10.97 11.26 11.59 10.28 42 130 125 127 124 144	21.6 0.03 23.0 23.9 22.4 21.2 7.29 0.02 7.89 8.05 6.98 10.40 0.43 10.94 11.55 11.90 10.44 126 41 131 126 128 125 145	21.6 0.02 23.1 23.0 22.7 21.2 7.44 0.02 8.06 8.19 7.11 7.07 10.19 0.45 11.49 12.08 10.59 126 42 130 126 128 125 145	21.0 0.02 24.6 23.2 22.0 22.2 7.35 0.02 8.59 8.06 7.07 6.94 10.43 0.40 11.45 9.86 126 43 131 125 128 125 145	21.1 0.04 22.1 23.1 21.8 20.9 7.74 7.79 6.84 6.91 9.97 0.43 10.08 125 11.42 10.08 125 131 126 129 125 145	21.2 0.04 22.2 23.1 22.0 20.7 7.24 0.02 7.86 7.90 6.96 6.92 10.32 0.43 10.37 11.14 11.60 10.24 126 42 131 125 128 125 145	21.2 0.04 22.1 23.1 21.9 20.4 7.75 7.93 6.98 6.88 10.34 0.42 11.06 11.54 10.23 125 42 131 126 145

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

BOARD & COMPUTER DATA											
	TEST NO.	9	<u>10</u>	11	<u>12</u>	<u>13</u>	14	<u>15</u>	<u>16</u>		
	DATE 1976	3/24	3/24	3/24	6/24	6/24	6/24	3/25	6/30		
≠ C	TIME LOAD MW	00:45 473	02:20 473	04:00 472	12:00 524	13:20 525	09:45 523	10:15 510	09:50 526		
	TEMPERATURES	•		,,_	JE4	JES	JEJ	310	526		
	AIR & GAS - "F										
C	ECON. N GAS OUT.	788	787	785	750	756	740	795	738		
C	ECON. S GAS OUT. 1-A PA FAN DISCH. HOR.	800 77	807 72	800 72	744 90	748 91	744 85	743 70	745		
č	1-B PA FAN DISCH. Hor.	102	92	92	*NA	NA NA	NA NA	70 95	86 NA		
C	1-A AH PRI. AIR OUT.	705	712	713	678	684	671	707	676		
С	1-B AH PRI. AIR OUT.	693	698	705	680	688	668	705	665		
_	STEAM & WATER - °F										
C	BÖILER ECON. IN. Downcomer 1	470 675	467 673	468 672	467 575	467	465	478	467		
Č	DOWNCOMER 2	677	675	674	675 677	675 677	676 677	674 676	676 677		
č	Downcomer 3	677	676	676	677	677	677	678	677		
C	DOWNCOMER 4	681	680	680	682	681	681	681	681		
C	DOWNCOMER 5	678	678	677	679	678	678	683	679		
C	BLR. SH ATMP 1-A STM. IN.	838	841	849	830	849	824	840	845		
C	BLR. SH ATMP 1-B STM. IN. BLR. S SH HDR. OUT.	834 1006	839 1004	851 1003	847 996	850 1013	843 1004	846 1002	836 1010		
č	BLR. N SH HDR. OUT.	1010	1007	1009	993	1010	1003	1013	998		
Č	TURBINE THROTTLE	1003	1004	1004	991	1006	1000	1004	NA		
C	BLR. S RH ATMP STH. OUT. A	471	467	466	481	479	486	476	481		
C	BLR. N RH ATMP STM. OUT. B	470 1006	466	467	478	478 969	481	477	479		
C	BLR. S RH HDR. OUT. A BLR. N RH HDR. OUT. B	1008	1004 1010	993 1017	973 1022	1021	992 1014	989 1032	1003 1000		
č	HP HTR. 1-G1 & 1-G2 EXTR. STM.	606	605	604	615	629	616	621	623		
č	HP HTR. 1-F1 FW OUT.	404	402	402	129	132	125	409	428		
C	HP HTR. 1-F2 FW OUT.	403	401	402	400	400	399	408	400		
Ç	HP HTR. 1-G1 FW OUT.	468	467 467	467	208	208	208	476 476	191 467		
C	HP HTR. 1-G2 FW OUT. HP HTR. 1-G1 DRAIN	469 406	467 404	467 404	466 120	467 120	466 119	412	100		
č	HP HTR. 11-G2 DRAIN	374	372	372	374	376	373	376	407		
	PUL VERIZER DATA										
C	PLV 1-A BOWL LOWER P IN. H20	20.1	20.0	19.7	20.7	20.7	20.6	20.6	20.4		
C	PLV 1-B BOWL LOWER P IN. H20	24.0	23.3	22.7	23.9 0.09	23.8 0.09	23.6 0.09	23.1 22.9	24.6 0.09		
C	PLV 1-C BOWL LOWER P IN. H20	22.0 0.30	22.3 0.30	22.2 0.30	22.3	22.2	22.1	0.20	21.7		
C	PLV 1-D BOWL LOWER P IN. H ₂ O PLV 1-E BOWL LOWER P IN. H ₂ O	21.0	21.0	20.8	21.8	21.9	21.9	21.5	22.8		
č	PLV 1-F BOWL LOWER P IN. HOO	18.7	18.8	18.5	21.4	21.4	21.3	20.1	21.2		
C	PLV 1-A BOWL DIFF. P IN. H ₂ 0 PLV 1-B BOWL DIFF. P IN. H ₂ 0 PLV 1-C BOWL DIFF. P IN. H ₂ 0	6.85	6.85	6.87	6.93	6.91	6.84	7 .17 7 .9 0	6. 79 7.91		
C	PLV 1-B BowL DIFF. P IN. H20	7.73	7.59	7.45 7.74	7 .84 0.0	7.77 0. 0 2	7.72 0.01	7.90	0.0		
C	PLV 1-C Bowl DIFF. P IN. H20	7.5 9 0.05	7.67 0.05	0.05	7.33	7.34	7.23	0.05	7.16		
C	PLV 1-D BOWL DIFF. P IN. H20 PLV 1-E BOWL DIFF. P IN. H20	6.75	6.73	6.76	7.16	7.10	7,10	6.96	7.43		
č	PLV 1-F BOWL DIFF. P IN. H20	6.39	6.36	6.40	7.13	7.14	7.09	6.87	6.93		
Č	PLV 1-A COAL AIR OUT. P IN. H20	9,92	9.78	9.43	9.40	9.46	9.50	10.12	9.36 12.4 9		
C	PLV 1-B COAL AIR OUT. P IN. H20	12.64	12.18	11.70	11.93 0.05	11.86 0.04	11.82 0.06	11.67 4.90	0.0		
c	PLV 1-C COAL AIR OUT. P IN. H20	10.48 0.22	10.50 0.21	10.16 0.21	10.97	10.81	10.74	0.21	10.51		
C	PLV 1-D COAL AIR OUT. P IN. H20 PLV 1-E COAL AIR OUT. P IN. H20	11.10	11.06	10.72	10.71	10.62	10.58	11.20	11.10		
č	PLV 1-F COAL AIR OUT. P IN. H20	9.20	9.24	8.92	10.52	10.36	10.41	9.80	10.47		
č	PLV 1-A PRI. AIR IN. FLOW 0-125%	126	126	126	124	123	124 124	126 130	123 128		
C	PLV 1-8 PRI. AIR IN. FLOW 0-125%	130	130	130 131	125 131	124 38	0	130	0		
Č	PLV 1-C PRI. AIR IN. FLOW 0-125%	132 0	131 0	0	123	123	123	0	123		
C	PLV 1-D PRI. AIR IN. FLOW 0-125% PLV 1-E PRI. AIR IN. FLOW 0-125%	127	128	128	127	127	127	128	126		
č	PLV 1-F PRI. AIR IN. FLOW 0-125%	125	125	125	128	128	127 147	125 143	128 147		
č	PLV 1-A COAL AIR DISCH. TEMP. F	144	144	143	148	149	147	143	147		

^{*} C ~ COMPUTER DATA; B ~ BOARD DATA; NA ~ NOT AVAILABLE.

11

	BOARD & COMPUTER DATA											
	TEST NO.	17	18	<u>19</u>	<u> 50</u>	<u>21</u>	22	23	24			
	DATE 1976	6/25	6/30	6/29	6/25	6/26	6/25	6/27	6/29			
*c	TIME LOAD MW	11:15 524	08:35 526	08:50 523	14:45 517	10:30 419	16:25 422	11:35 316	01:30 322			
	TEMPERATURES											
	AIR & GAS - "F											
C	ECON. N GAS OUT.	750	733	747	756	684	704	601	625			
C	ECON. S GAS OUT. 1-A PA FAN DISCH. HDR.	* NA 96	743 84	7 48 83	NA 101	NA 102	NA 102	NA 102	631 93			
č	1-B PA FAN DISCH. HDR.	NA	NA	NA	NA	NA	NA.	NA	NA NA			
C	1-A AH Pri. Air Out.	682	664	678	694	617	651	549	581			
С	1-B AH PRI. AIR OUT.	678	651	672	694	620	660	548	582			
	STEAM & WATER - "F											
C	BOILER ECON. IN. Downcomer 1	467 675	467 675	468 676	466 675	444 670	446 671	417 665	421 668			
č	DOWNCOMER 2	676	677	678	677	672	672	666	669			
Č	DOWNCOMER 3	676	677	678	676	672	672	667	669			
C	DOWNCOMER 4	680	681	683	680	676	676	667	673			
C	DOWNCOMER 5	678	678	680	67B	674	673	675	670			
C	BLR. SH ATMP 1-A STM. IN. BLR. SH ATMP 1-B STM. IN.	840 866	842 833	840 842	849 854	825 831	858 859	667 824	855 855			
Č	BLR. S SH HDR. OUT.	992	1011	1007	1005	999	1005	790	1005			
č	BLR. N SH HDR. OUT.	1012	1001	1006	1007	1010	1006	982	1009			
C	TURBINE THROTTLE	1000	NA.	NA	969	681	913	NA	NA			
Ç	BLR. S RH ATMP STM. OUT. A	479	482	481	477	585	457	484	549 540			
C	BLR. N RH ATMP STM. OUT. B BLR. S RH Hor. OUT. A	478 976	481 1004	480 993	4 77 977	585 974	455 986	527 924	548 969			
č	BLR. N RH HDR. OUT. B	1021	996	1013	100B	1011	1012	894	988			
С	HP HTR. 1-G1 & 1-G2 EXTR. STM.	620	621	623	609	579	583	527	543			
C	HP HTR. 1-F1 FW Out.	177	138	NA	199	271	206	189	83			
c	HP HTR. 1-F2 FW OUT.	400 208	400	400	395	379	381	356	359 192			
C	HP HTR. 1-G1 FW Out. HP HTR. 1-G2 FW Out.	466	191 467	191 467	208 460	207 443	208 444	195 417	420			
č	HP HTR. 1-G1 DRAIN	122	102	198	142	104	137	113	189			
č	HP HTR. 1-G2 DRAIN	374	433	347	370	355	357	332	299			
	PULVERIZER DATA											
С	PLV 1-A BOWL LOWER P IN. HO	20.3	20.4	20.2	19.B	19.7	18.0	16.8	17.5			
C	PLV 1-A Bowl Lower P IN. H.O PLV 1-B Bowl Lower P IN. H.O PLV 1-C Bowl Lower P IN. H.O IN. H.O	24.1	24.4	24.9	24.9	23.9	22.1	20.8	21.6			
č	PLV 1-C BOWL LOWER P IN. H50	0.09	0.09	0.09	0.10	0.11	0.10	0.11	0.09 17.9			
C	PLV 1-D BOWL LOWER P IN. H-0 PLV 1-E BOWL LOWER P IN. H-0	22.0 21.4	21.7 22.8	21.6 22.5	21.5 20.7	21.6 21.3	19.4 18.9	30.3 18. 5	18.8			
č	PLV 1-F BOWL LOWER P IN. HO	20.7	21.1	20.5	19.4	-1.3	17.5	16.6	-1.3			
С	PLV 1-A BOWL DIFF. P IN. H50	6.83	6.76	6.80	6.75	6.35	6.26	5.80	6.06			
C	PLV 1-B BOWL DIFF. P IN. H20	7.84	7.84	8.05	8.13	7.71	7.09	6.68	6.87			
C	PLV 1-C Bowl DIFF. P IN. HO PLV 1-D Bowl DIFF. P IN. HO	0.02	0.01	0.03	0.02	0.01	0.02	0.03	0.04			
C	PLV 1-D BOWL DIFF. P IN. H20 PLV 1-E BOWL DIFF. P IN. H20	7.30 7.04	7.09 7.40	7.12 7.41	7.28 6.90	7.14 7.00	6.63 6.35	0.05 6.27	6.02 6.29			
č	PLV 1-F BOWL DIFF. P IN. H20	7.03	6.91	6.87	6.63	0.06	6.08	5.65	0.06			
Č	PLV 1-A COAL AIR OUT. P IN. HEO	9.23	9.37	9.12	8.85	8.96	7.84	7.49	7.82			
C	PLV 1-B COAL AIR OUT. P IN. H20	12.06	12.28	12.51	12.33	11.88	10.98	10.39	10.90			
Č	PLV 1-C COAL AIR OUT. P IN. H2O	0.03	0.05	0.09	0.07	0.11	0.09	0.16	0.18 8.51			
C	PLV 1-D COAL AIR OUT. P IN. H ₂ O PLV 1-E COAL AIR OUT. P IN. H ₂ O	10.72 10.34	10.53 10.98	10.54 10.93	10.15 9.82	10.41 10.36	9.12 8.96	30.17 8.99	9.10			
č	PLV 1-E COAL AIR OUT. P IN. H-O PLV 1-F COAL AIR OUT. P IN. H-O	9.89	10.38	9.99	9.11	-1.33	8.12	7,99	-1.22			
C	PLV 1-A PRI. AIR IN. FLOW 0-125%	124	124	124	124	124	127	123	124			
C	PLV 1-B PRI. AIR IN. FLOW 0-125%	126	128	128	128	127	127	127	128			
C	PLV 1-C PRI. AIR IN. FLOW 0-125%	45 103	103	104	73	74 103	81 193	64 31	36 123			
C C	PLV 1-D PRI. AIR IN. FLOW 0-125% PLV 1-E PRI. AIR IN. FLOW 0.125%	123 126	123 126	124 126	123 126	123 126	123 126	126	126			
č		127	128	128	128	0	127	127	0			
č	PLV 1-F PRI. AIR IN. FLOW 0-125% PLV 1-A COAL AIR DISCH. TEMP.	146	146	152	150	140	150	143	152			

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

	BOARD & COMPUTER DATA											
	TEST NO.	1	<u>2</u>	<u>3</u>	4	5	<u>6</u>	7	<u>8</u>			
*C	DATE 1976 TIME LOAD MW	3/17 09:30 517	3/17 10:45 512	3/20 16:50 524	3/20 19:45 525	3/22 17:00 526	3/20 10:05 521	3/20 12:00 522	3/20 14:30 522			
	PUL VER I ZER DATA											
000000000000000000	PLV 1-B COAL AIR DISCH. TENP. °F PLV 1-C COAL AIR DISCH. TEMP. °F PLV 1-E COAL AIR DISCH. TEMP. °F PLV 1-E COAL AIR DISCH. TEMP. °F PLV 1-F COAL AIR DISCH. TEMP. °F PLV 1-A FEEDER COAL FLOW 103LB/HR PLV 1-B FEEDER COAL FLOW 103LB/HR PLV 1-D FEEDER COAL FLOW 103LB/HR PLV 1-E FEEDER COAL FLOW 103LB/HR PLV 1-E FEEDER COAL FLOW 103LB/HR PLV 1-B FEEDER COAL FLOW 103LB/HR PLV 1-B FEEDER COAL FLOW 103LB/HR PLV 1-B HILL AMPS PLV 1-B MILL AMPS PLV 1-B MILL AMPS PLV 1-B MILL AMPS PLV 1-B MILL AMPS PLV 1-E MILL AMPS	82 150 148 143 146 114 0 107 115 116 116 71 0 74 73 75	87 148 148 149 146 114 0 106 116 116 116 71 0 74 73 75	93 149 148 146 116 0 108 117 116 116 73 0 74 76	93 149 149 142 146 117 0 109 118 117 73 0 73 75 77	88 142 147 146 114 0 113 115 114 115 72 0 78 75 75	91 150 145 142 146 115 0 107 116 116 115 72 0 74 76 77	92. 149 145 142 146 115 0 107 115 116 115 72 0 75 76 77	93 149 146 142 147 114 0 107 116 116 115 72 0 74 75 75			
	FAN DAMPER POSITION - % OPEN											
*8 8 8 8	1-A FD FAN INLET VANE 1-B FD FAN INLET VANE 1-A PA FAN INLET VANE 1-B PA FAN INLET VANE	71 70 28 24	71 70 28 24	75 74 33 29	74 73 32 28	72 71 30 26	73 72 34 30	72 72 34 30	73 72 34 30			
	SPRAY VALVE POSITION - \$ OPEN											
8 8 8 8	1-A SH SPRAY VALVE 1-B SH SPRAY VALVE 1-A RH SPRAY VALVE 1-B RH SPRAY VALVE	45 27 80 90	37 25 84 96	22 0 49 35	21 5 56 40	62 30 60 43	0 0 6 9	17 0 28 41	12 0 33 46			
658688888888888888888	MISCELLANEOUS	-3° 100 50 0 47 53 51 172 183 500 490 208 195 485 495 74 77 72 74 -0.69 -2.25 0.065 4.0	-3° 100 50 0 46 53 51 172 183 500 430 207 195 485 495 74 77 72 74 -0.62 -2.27 0,066 3.9 29.99	+1° 81 51 0 47 54 52 51 170 182 500 430 203 193 490 500 76 78 74 -0.69 -2.22 0.061 4.0 28.80	+3° 69 53 0 48 55 53 52 170 181 500 420 200 190 490 500 76 78 72 74 -0.53 -2.75 0.061 3.9 28.89	0° 68 50 0 51 53 51 51 171 182 490 420 202 190 480 495 75 78 73 74 -0.68 -2.97 0.063 4.0 30.29	+5° 77 77 50 0 45 52 50 180 470 400 195 183 480 490 80 80 76 78 -0.48 -2.28 0.063 3.6 28.64	+5° 666 50 0 46 53 51 50 170 182 480 400 194 184 483 490 77 79 75 76 -0.58 -2.61 0.064 3.4 28.72	-1° 58 50 0 46 53 51 50 169 181 470 400 192 182 480 490 77 79 74 76 -0.44 -2.64 0.064 3.6			

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

	BOARD & COMPUTER DATA											
	TEST NO.	9	10	11	12	<u>13</u>	14	<u>15</u>	16			
*c	DATE 1976 Time Load Mw	3/24 00:45 473	3/24 02:20 473	3/24 04: 0 0 472	6/24 12:00 524	6/24 13:20 525	6/24 09 : 4 5 523	3/25 10:15 510	6/30 09:50 526			
	PUL VER I ZER DATA											
	PLV 1-B COAL AIR DISCH. TEMP. FPLV 1-C COAL AIR DISCH. TEMP. FPLV 1-D COAL AIR DISCH. TEMP. FPLV 1-F COAL AIR DISCH. TEMP. FPLV 1-F COAL AIR DISCH. TEMP. FPLV 1-A FEEDER COAL FLOW 103_LB/HRPLV 1-B FEEDER COAL FLOW 103_LB/HRPLV 1-D FEEDER COAL FLOW 103_LB/HRPLV 1-D FEEDER COAL FLOW 103_LB/HRPLV 1-F FEEDER COAL FLOW 103_LB/HRPLV 1-F AMPS PLV 1-F MILL AMPS PLV 1-B MILL AMPS PLV 1-B MILL AMPS PLV 1-E MILL AMPS PLV 1-F MILL AMPS PLV 1-F MILL AMPS PLV 1-F MILL AMPS	146 149 155 142 146 102 105 102 104 103 66 72 72 0	144 148 152 141 146 101 105 0 104 102 67 72 71 0	143 148 149 140 144 102 105 103 0 104 102 66 72 71 0	154 0 147 142 149 118 119 0 118 117 72 74 0 75 74	155 0 148 149 118 120 0 118 118 118 73 74 0 75 75	153 0 146 143 148 118 119 0 118 117 116 71 74 0 72 74	142 148 86 140 144 110 114 111 0 112 112 73 73 73 75 76	156 0 145 156 148 117 118 0 117 115 117 71 73 0 72 73 73			
	FAN DAMPER POSITION - % OPEN											
*B B B	1-A FD FAN INLET VANE 1-B FD FAN INLET VANE 1-A PA FAN INLET VANE 1-B PA FAN INLET VANE	76 76 30 26	75 75 30 25	73 73 30 25	80 83 31 30	81 83 31 30	80 83 30 30	72 70 29 25	77 80 30 30			
8 8 8	SPRAY VALVE POSITION - \$ OPEN 1-A SH SPRAY VALVE 1-B SH SPRAY VALVE 1-A RH SPRAY VALVE 1-B RH SPRAY VALVE	44 32 39 41	46 31 37 44	70 39 46 54	25 61 47 34	29 62 65 4 7	25 62 36 25	34 26 63 74	28 35 41 39			
888888888888888888	MISCELLANEOUS	0° 41 42 44 43 0 44 43 167 180 500 430 211 198 493 499 76 78 73 75 -0.72 -2.24 0.060 4.7 29.53	0° 90 42 43 42 0 43 170 180 500 430 210 195 494 498 76 78 72 74 -0.49 -1.96 0.060 5.1 29.49	0° 66 42 44 43 0 45 44 170 180 410 203 188 490 495 75 78 73 74 -0.66 -2.50 0.057 4.6 29,43	+1° 100 100 100 100 100 100 100 165 200 510 470 226 202 • NA NA 74 80 73 -0.35 -2.60 0.056 3.2 29.52	+7° 26 100 100 100 100 100 165 200 520 480 228 205 NA NA 73 80 73 74 -0.54 -2.45 0.055 3.9 29.45	+3° 25 100 100 0 100 100 165 202 520 480 229 205 NA NA 75 81 75 -0.74 -1.83 0.054 3.7	0° 60 47 49 49 0 162 182 460 400 200 185 487 492 76 78 72 74 -0.48 -2.64 0.063 3.6	+3° 25 100 100 0 100 100 100 165 205 490 450 224 204 204 204 205 77 82 75 78 -0.35 -0.70 0.056 4.3 29.85			

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

	BOARD & COMPUTER DATA											
	TEST NO.	17	18	<u>19</u>	20	21	22	23	24			
∗ c	DATE 1976 TIME LOAD MW	6/25 11:15 524	6/30 08:35 526	6/29 08:50 523	6/25 14:45 517	6/26 10:39 419	6/25 16:25 422	6/27 11:35 316	6/29 01:30 322			
	PUL VER I ZER DATA											
	PLV 1-B COAL AIR DISCH. TEMP. °F PLV 1-C CDAL AIR DISCH. TEMP. °F PLV 1-D COAL AIR DISCH. TEMP. °F PLV 1-E COAL AIR DISCH. TEMP. °F PLV 1-F COAL AIR DISCH. TEMP. °F PLV 1-A FEEDER COAL FLOW 103LB/HR PLV 1-B FEEDER COAL FLOW 103LB/HR PLV 1-D FEEDER COAL FLOW 103LB/HR PLV 1-D FEEDER COAL FLOW 103LB/HR PLV 1-E FEEDER COAL FLOW 103LB/HR PLV 1-A MILL AMPS PLV 1-B MILL AMPS PLV 1-B MILL AMPS PLV 1-D MILL AMPS PLV 1-B MILL AMPS PLV 1-F MILL AMPS	153 0 146 142 147 117 118 0 117 117 116 73 75 0 73 75	154 0 144 154 143 118 119 0 118 115 117 71 73 0 74 71	158 0 150 159 150 113 116 0 114 114 113 70 74 0 73	156 0 150 142 150 115 116 0 115 114 114 72 76 0 72 76	147 0 · 141 143 114 116 117 0 · 115 115 0 · 74 75 0 · 74	161 9 151 142 152 90 92 0 191 92 90 63 69 0 68 68	150 0 111 147 142 84 86 0 86 84 67 0 0 66 67	156 -0 148 158 111 83 86 0 84 9 63 67 0 64 65			
	FAN DAMPER POSITION - % OPEN											
*B B B	1-A FD FAN INLET VANE 1-B FD FAN INLET VANE 1-A PA FAN INLET VANE 1-B PA FAN INLET VANE	80 83 31 30	78 81 30 29	76 79 30 29	81 83 31 31	73 76 28 28	70 73 33 33	59 62 28 28	58 61 28 27			
	SPRAY VALVE POSITION - \$ OPEN											
8 8 8	1-A SH SPRAY VALVE 1-B SH SPRAY VALVE 1-A RH SPRAY VALVE 1-B RH SPRAY VALVE	89 59 53 41	28 35 36 30	28 33 48 40	49 50 69 50	19 15 0 0	29 33 25 17	0000	26 0 0			
	MI SCELL ANEOUS											
B B B B B B B B B B B B B B B C C C C C	BURNER TILT AUX. AIR DAMPERS 1-A FUEL/AIR DAMPERS 1-B FUEL/AIR DAMPERS 1-C FUEL/AIR DAMPERS 1-C FUEL/AIR DAMPERS 1-E FUEL/AIR DAMPERS 1-E FUEL/AIR DAMPERS 1-E FUEL/AIR DAMPERS 1-A FUEL/AIR DAMPERS 1-A ID FAN 1-B	+8° 26 100 100 0 100 100 100 165 200 470 165 200 • NA NA 74 79 73 74 -0.77 -2.99 0.056 3.4 29.65	+3° 25 100 100 0 100 100 100 165 203 500 450 225 205 490 NA 77 82 74 80 -0.87 -0.89 0.056 4.4 29.86	+6° 19 100 100 100 100 100 100 165 200 470 420 214 193 480 NA 75 80 73 75 -0.44 -2.19 0.055 3.5	+6° 23 100 100 100 100 100 100 165 200 510 470 222 200 500 NA 75 80 73 76 4.3 29.65	+6° 14 100 100 100 100 100 100 155 190 390 340 200 180 450 NA 78 84 78 81 -0.52 -1.39 0.055 4.6 29.89	+3° 3 94 92 2 89 90 165 200 380 340 185 170 450 NA 75 82 75 -0.53 -1.30 0.055 4.3 29.63	+11° 0 80 80 0 0 77 77 160 195 300 280 165 150 330 NA 83 87 0 85 -0.59 -2.03 0.053 5.8 30.12	+8° 0 77 77 77 0 74 75 0 155 195 290 260 165 147 325 NA 80 85 77 84 -0.56 -1.42 0.048 4.7			

^{*} C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.

WATERWALL CORROSION COUPON DATA SUMMARY

WEIGHT LOSS EVALUATION

BASELINE TEST

Probe Loc.	Probe No.	Coupon No.	Initial Wt.	Final Wt.	Wt. Loss	Wt. Loss/ Coupon mg/cm ²	Avg. Wt. Loss/ Probe mg/cm ²
1	A	11	192.4714	191.6956	.7758	15.3814	
		12	189.2624	188.5251	.7373	14.6180	11.2471
		13	187.7834	187.3753	.4081	8.0912	11.24/1
		14	189.5986	189.1607	.3479	6.8976	
2	В	11	191.8667	191.3217	.5450	10.8054	
		12	193.0534	192.5138	.5396	10.6983	7.9955
		13	192.4719	192.1794	.2925	5.7992	7.9900
		14	187.2771	187.0411	.2360	4.6790	
3	С	11	189.6148	189.1926	.4222	8.3707	
		12	192.3205	191.8693	.4512	8.9457	7.7150
		13	194.2087	193.8685	.3402	6.7450	7.7150
		14	195.2487	194.9058	.3429	6.7985	
4	D	11	181.0037	180.7035	.3002	5.9519	
		12	196.4728	196.1221	.3407	6.7549	5.5544
		13	192.6319	192.3687	.2632	5.2183	5.5544
		14	189.7795	189.5630	.2165	4.2924	
5	E	11	191.8554	191.4543	.4011	7.9524	
		12	194.4597	193.9813	.4784	9.4850	7 0731
		13	191.4211	191.0273	.3938	7.8077	7.8731
		14	196.5282	196.2131	.3151	6.2473	

Avg. Wt. Loss/Test 8.0770 mg/cm²

WATERWALL CORROSION COUPON DATA SUMMARY

WEIGHT LOSS EVALUATION

OVERFIRE AIR TEST

Probe Loc.	Probe No.	Coupon No.	Initial Wt.	Final Wt.	Wt. Loss	Wt. Loss/ Coupon mg/cm ²	Avg. Wt. Loss/ Probe mg/cm ²
1	G	11	194.9117	194,5574	.3543	7.0245	
		12	190.1947	189.8822	.3125	6.1957	0.4445
		13	196.6078	196.2830	.3248	6.4396	8.4445
		14	196.0734	195.3612	.7121	14.1182	
2	н	11	186.5016	186.0373	.4643	9.2053	
		12	190.5570	190.0113	.5457	10.8191	0.0423
		13	195.0431	194.5049	.5382	10.6704	9.9423
		14	191.5820	191,1243	.4577	9.0744	
3	Į	11	192.8761	192.2601	.6160	12.2129	
	•	12	197.6064	197.1149	.4915	9.7445	9.2479
		13	194.6839	194.3220	.36 19	7.1751	9.24/9
		14	194.3763	193.9799	.3964	7.8591	
4	J	11	189.5101	189,1223	.3878	7.6886	
		12	191.3316	190.9150	.4166	8.2596	7.2544
		13	189.2178	188.8155	.4023	7.9760	7.2344
		14	188.7732	188.5163	.2569	5.0933	
5	K	11	193.0880	192.7809	.3071	6.0886	
		12	187.8881	187.5455	.3426	6.7924	5 .5776
		13	186.7728	186.5222	.2506	4.9684	3.3//0
		14	189.5299	189.3049	.2250	4.4609	

Avg. Wt. Loss/Test 8.0933 mg/cm²

APPENDIX B

TEST DATA & RESULTS
FOR
UTAH POWER & LIGHT COMPANY
HUNTINGTON CANYON STATION
UNIT #2

			E	MISSIONS T	EST DATA						
TEST NO.		1	2	<u>2A</u>	3	<u>4</u>	<u>5</u>	<u>6</u>	7	<u>8</u>	9
PURPOSE OF TEST UNIT LOAD CONDITION FURNACE CONDITION		MAX Clean	Max Clean	MAX CLEAN	MAX CLEAN	EXCESS AIR 3/4 Max Clean	VARIATION : 1/2 Max CLEAN	1/2 MAX CLEAN	1/2 MAX CLEAN	MAX CLEAN	MAX CLEAN
DATE Unit Load	1975 MW	5/7 42 9	5/5 427	5/7 428	5/7 428	10/10 360	7/16 259	7/15 260	7/16 258	5/5 430	4/30 428
MAIN STEAM FLOW SHO TEMPERATURE RHO TEMPERATURE FUEL ELEVATIONS IN SERVICE OFA NOZZLE TILT FUEL NOZZLE TILT	KG/S C C DEG	376 531 538 ALL 5 0 +14	380 541 547 All 5 0 +11	377 534 537 ALL 5 0 +13	380 536 537 ALL 5 0 +15	298 547 548 All 5 0	274 546 529 ABCD 0 +18	203 543 538 ABCD 0 +11	202 544 537 ABCD 0 +6	378 541 543 ALL 5 0 +8	377 534 537 ALL 5 0 -3
OFA OFA AUX OFA OFA AUX OFA AUX OFA OFA OFA OFA OFA OFA OFA OFA		0 0 45 100 50 100 45 100 50 100 100	0 0 45 100 50 100 45 100 50 100 100	0 0 45 100 45 100 45 100 50 100 100	0 45 100 45 100 45 100 45 100 50 100	0 0 15 100 10 100 5 100 0 100	0 0 0 100 0 100 0 100 0 100 0	0 0 0 100 0 100 0 100 0 100	0 0 0 100 0 100 0 100 0 100	0 0 30 100 40 100 20 100 35 100 40 100	0 0 40 100 45 100 35 100 35 100 40 100
Excess Air at Economizer Outlet Theo. Air to the Fuel Firing Zone	% %	18.9 116.4	27.4 124.8	32.9 130.1	40.9 137.8	28.9 126.9	23.7 122. ⁹	32.1 131.1	50,0 150,0	19.5 117.5	29.0 126.3
NO (ADJ. TO 0% 0 ₂) NO ^X AS NO SO ^X (ADJ. TO 0% 0 ₂) SO ² (ADJ. TO 0% 0 ₂) CO HC (ADJ. TO 0% 0 ₃) O ₂ AT ECONOMIZER OUTLET CO ² AT A.H. OUTLET CO ² AT A.H. OUTLET CARBON LOSS IN FLYASH	PPM NGPM NGPM NGPM NGP NGP NGP NGP NGP NGP NGP NGP NGP NGP	476 248.0 NA O NA O O 3.4 4.5 15.4 14.4 0.52	533 262,8 388 266,3 23 6,1 0 4,6 5,8 14,1 13,1 0,37	670 390,4 396 274,2 25 7.7 0 5.3 6.4 13.5 12.6 0.22	718 357.0 374 259.1 27 8.2 0 6.2 7.3 12.8 11.9 0.31	662 328,0 436 300.1 NA 0 0 4.8 7.3 14.0 11.8 0.12	509 249.2 376 256.2 16 4.8 0 4.1 6.1 14.7 13.0	573 284.3 363 250.5 16 4.8 0 5.2 6.2 13.6 12.8	734 360.3 326 222.8 17 5.0 0 7.1 8.6 12.1 10.8 0.12	535 267.1 364 252.5 23 6.9 0 3.5 5.4 15.1 13.4 0.68	522 256.6 237 163.4 124 37.5 0 4.8 6.1 14.2 13.0 0.29

EMISSIONS TEST DATA

TEST NO.		10	<u>11</u>	12	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>
PURPOSE OF TEST UNIT LOAD CONDITION FURNACE CONDITION		Max	1/2 MAX —— CLEAN	1/2 Max	Max E	XCESS AIR Max	VARIATION MAX	3/4 Max DERATELY D	1/2 Max	1/2 Max	1/2 Max
DATE Unit Load	1975 M⊮	5/1 428	7/17 256	7/18 259	5/9 433	5/9 433	5/9 4 3 3	10/9 361	7/22 258	7 /21 260	7/21 258
MAIN STEAM FLOW SHO TEMPERATURE RHO TEMPERATURE FUEL ELEVATIONS IN SERVICE OFA NOZZLE TILT FUEL NOZZLE TILT	KG/S C C DEG	375 545 546 All 5 0 +7	203 543 536 ABCD 0 +6	208 543 534 ABCD 0 +3	377 532 538 ALL 5 0 +3	375 536 538 ALL 5 0 +8	375 539 540 All 5 0 +1	298 548 545 All 5 0	204 541 528 ACDE 0 +12	206 541 536 ACDE 0 +13	205 542 536 ACDE 0 +13
MOZZLE COMPARTINENT OLA		0 45 100 45 100 40 100 40 100 50 100	0 0 100 0 100 0 100 0 100	0 0 100 0 100 0 100 0 100	0 0 30 100 45 100 25 100 35 100 40 100	0 0 35 100 45 100 30 100 45 100 45 100	0 0 45 100 50 100 35 100 50 100 50 100	0 0 15 100 15 100 5 100 10 20 100	0 0 100 0 0 0 100 0 100 0	0 0 100 0 0 0 100 0 100 0	0 0 100 0 0 0 100 0 100 0
Excess Air at Economizer Outlet Theo. Air to the Fuel Firing Zone	%	40.9 137.8	27.4 126.4	48.8 147.6	15.0 113.1	20.2 118.1	35.5 132.6	23.0 121.3	25.2 124.3	28.9 127.9	47.8 146.6
NO (ADJ. TO 0% 02) NO AS NO 2 SO (ADJ. TO 0% 02) CO (ADJ. TO 0% 02) CO (ADJ. TO 0% 02) CO (ADJ. TO 0% 02) O2 AT ECONOMIZER OUTLET CO AT ECONOMIZER OUTLET CO AT A.H. OUTLET CO AT A.H. OUTLET CO AT A.H. OUTLET CO AT A.H. OUTLET	PPM NGPM NGPM NGPM NGPM NGPM NGPM NGPM	594 295.3 271 187.3 NA 0 6.2 7.6 12.8 11.6	474 2°2.6 236 16°.9 15 4.6 7.7 14.3	645 318.8 332 228.0 16 5.0 7.0 8.1 12.1 11.1	433 213.8 258 177.7 35 10.4 0 2.8 4.4 15.8 14.4	514 253.7 372 255.2 24 7.2 0 3.6 5.0 15.1 13.9	644 319.1 355 245.2 27 8.3 0 5.6 6.6 13.4 12.5	592 285.2 405 281.1 14 4.1 0 4.0 5.9 14.7 13.1	438 215.7 446 306.1 15 4.5 0 4.3 6.0 14.5 13.1	470 233.0 448 309.0 NA 0 4.8 6.9 14.0 12.1	669 333.1 474 328.2 16 5.0 6.9 8.1 12.2

BIASED FIRING OPERATION STUDY

			EMISSIONS	TEST DATA					
TEST NO.		1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>
PURPOSE OF TEST UNIT LOAD CONDITION EXCESS AIR CONDITION			—— MAX I MUM —		N OF FUEL EL ← MINI	EVATIONS IN 3/4 MAXIMUM		1/2 M	AX I MUM
FURNACE CONDITION		CLEAN	MODERATE	CLEAN	CLEAN	MODERATE	CLEAN	CLEAN	MODERATE
DATE	1975	9/17	9/18	9/20	12/13	10/11	10/12	10/12	10/5
UNIT LOAD	MW	430	426	434	356	351	360	257	270
MAIN STEAM FLOW	KG/S	375	371	368	297	295	299	218	214
SHO TEMPERATURE	C C	518	525	534	544	536	543	542	543
RHO TEMPERATURE	č	536	541	541	539	537	546	534	544
FUEL ELEVATIONS IN SERVICE		BCDE	ABDE	ABCD	BCDE	ACDE	ABCE	BCDE	ABDE
OFA Nozzle Tilt	Deg	0	0	0	0	0	0	0	0
FUEL NOZZLE TILT	DEG	+6	-6	-13	+18	-10	-9	+6	-9
z OFA		ņ	0	0	0	D	0	0	0
OFA OFA		0	0	0	0	0	0	0	0
E. L. 1000		20	30	50	10	0	5	5	10
FUEL A FUEL		10	100	100	100	100	100	100	100
E ' AUX		30	40	50	0	25	0	0	5
₹ 8 B FUEL		100	100	100	100	100	100	100	100
SE AUX		10	10	45	0	5	0	5	5
S S S FUEL		100	0	100	100	100	100	100	100
D FUEL		25	25	50	0	0	0	0	0
S E AUX		100	100	100	100	100	100	100 0	100 0
Z E FUEL		20	25	50	0	0	0	100	100
AUX AUX		100 100	100 100	20	100	100	100 100	100	100
⊢ 100°		1130	100	20	100	100	100	11.0	100
Excess Air at Economizer Outlet	7.	19.8	21.5	20.9	16.8	19.9	20.8	22.6	24.4
THEO. AIR TO THE FUEL FIRING ZONE	%	107.1	118.9	117.8	98.5	119.3	119.8	106.5	122.8
NO (ADJ. TO 0% O ₂)	PPM	340	449	490	367	404	530	363	534
NOX AS NO	NG/J	168.4	ეეი .7	247.1	191,5	203.6	263.4	178.4	263.3
SO ₂ (ApJ. ² το ος ο ₂)	PPM	418	358	387	257	375	359	359	360
5U.	NG/J	287.5	247.8	267.1	186.4	262.9	248.2	245.7	247.1
CO ² (ADJ. то ОЯ О ₂)	PPM	56	16	3∕\	50	14	16	16	14
CO E	NG/J	16.7	4.8	9.2	6.3	4.4	4.8	4.8	4.1
HC (ADJ. TO 0% 0 ₀)	PPM	7	n	0	0	O	0	1	ņ
O AT ECONOMIZER OUTLET OF AT A.H. OUTLET	%	3.6	ુ.8	3.7	3.1	3.6	٦.7	4-0	4.2
OF AT A.H. OUTLET	%	5.7	4.4	5.7	5.6	5.8	5.5	5.8	5.9
CO AT ECONOMIZER OUTLET	%	15.1	14.9	15.0	15.3	15.2	14.9	14.8	14.5
COE AT A.H. OUTLET	95	13.2	14.3	13.2	13.1	13.2	17.4	13.2	13.1
CARBON LOSS IN FLYASH	%	n.26	^.25	0.55	0.61	0.20	0.22	0.46	0.22

BIASED FIRING OPERATION STUDY

			EMISS ION	TEST DATA					
TEST NO.		<u>9</u>	<u>10</u>	<u>11</u>	12	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>
PURPOSE OF TEST UNIT LOAD CONDITION EXCESS AIR CONDITION		—	— MAXIMUM -	VARIATIO		VATIONS IN S 3/4 MAXIMUM	ERVICE	1/2 MAX	IMUM >
FURNACE CONDITION DATE UNIT LOAD	1 975 MW	CLEAN 9/17 429	CLEAN 9/18 428	Moderate 9/18 429	MODERATE 10/11 351	CLEAN 12/13 356	CLEAN 12/13 357	CLEAN 7/23 256	CLEAN 7/24 259
MAIN STEAM FLOW SHO TEMPERATURE RHO TEMPERATURE FUEL ELEVATIONS IN SERVICE OFA NOZZLE TILT FUEL NOZZLE TILT	KG/S C C Deg Deg	375 516 525 BCDE 0 +20	370 536 537 ACDE 0 +8	369 533 541 ABCE 0 +2	295 537 538 BCDE 0 +7	299 543 541 ABDE O +9	299 544 541 ABCD O -8	203 543 533 ACDE 0 +12	210 542 535 ABCE 0 +11
MOZZLE COMPARTIMENT DAMPER POSITION - \$ OPEN ANY ANY ANY ANY ANY ANY ANY ANY ANY AN		0 0 35 20 50 100 15 100 20 100 35 100	0 0 25 100 35 25 15 100 40 100 40 100	0 30 100 40 100 20 100 40 5 40 100	0 10 100 5 100 5 100 5 100 5	0 0 5 100 10 100 0 100 0 100 100	0 0 0 100 5 100 0 100 5 100 100	0 0 0 100 0 100 0 100 0 100 0	0 0 0 100 0 100 0 100 0 100
Excess Air at Economizer Outlet Theo. Air to the Fuel Firing Zone	% %	26.3 107.6	27.4 125.3	29.3 126.8	29.3 109.1	28.0 127.0	31.7 131.0	25.1 124.4	24.7 124.0
NO (ADJ. TO 0% 02) NOX AS NO SO2 (ADJ. TO 0% 02) SO2 CO (ADJ. TO 0% 02) CO HC (ADJ. TO 0% 02) O2 AT ECONOMIZER OUTLET CO AT ECONOMIZER OUTLET CO2 AT A.H. OUTLET CO2 AT A.H. OUTLET CO2 AT A.H. OUTLET CO3 AT A.H. OUTLET CO3 AT A.H. OUTLET CO3 AT A.H. OUTLET	PPM NG/PM NG/PM NGPP NGPP NGPP	421 208.1 408 280.8 17 5.0 0 4.5 6.1 14.4 13.0 0.28	462 227.3 382 261.1 17 5.0 4.6 6.9 14.4 12.4	513 255.9 389 269.9 17 5.2 0 4.9 5.2 14.0 13.7	421 214.2 406 286.9 17 5.2 0 4.9 6.3 14.0 12.7	549 283.8 291 209.5 18 5.7 0 4.7 7.0 13.9 11.9	502 248.4 252 173.7 21 6.4 0 5.2 7.1 13.7 12.0	382 187.2 429 292.2 15 4.5 0 4.3 6.1 14.4 12.9	453 224.3 443 305.1 15 4.6 0 4.3 5.9 14.4 13.0

EMI:	SSIC	ONS .	TEST	DATA

TEST NO.		1	<u>s</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	<u>8</u>	9	10	11	12
PURPOSE OF TEST						OVERF	IRE AIR VA - MAXIMUM	RIATION-			<u></u>	→	TILT VAR WITH OFA
Excess Air Condition		~		- NORMAL-		→		MUMERIN	→		- MAXIMUM		MIN
FURNACE CONDITION Date Unit Load	1975 MW	HEAVY 9/17 428	HEAVY 9/26 430	HEAVY 9/26 430	9/26 430	9/26 431	0DERATE — 10/1 430	10/1 429	10/1 428	CLEAN 9/27 428	CLEAN 10/1 429	MODERATE 10/1 430	Moderate 10/5 427
MAIN STEAM FLOW SHO TEMPERATURE RHO TEMPERATURE FUEL ELEVATIONS IN SERVICE OFA NOZZLE TILT FUEL NOZZLE TILT	KG/S C C DEG DEG	369 532 539 All 5 0	372 529 539 ALL 5 0 -10	372 530 538 ALL 5 0 -10	370 533 537 ALL 5 0 -14	370 532 536 ALL 5 0 -12	372 534 547 ALL 5 0 +10	372 528 541 ALL 5 0 +10	370 531 543 ALL 5 0 +10	369 528 540 ALL 5 O +8	368 535 540 ALL 5 0 +17	370 535 540 ALL 5 0 +13	370 526 540 ALL 5 -30 -20
NOZZLE COMPARTHENT DAMPER POSITION - \$ OPEN AND LINE OLA		0 0 20 100 35 100 15 100 35 100 20	25 25 25 100 40 100 20 100 30 100 40 100	50 50 20 100 30 100 100 100 20 100 30 100	75 75 15 100 20 100 15 100 20 100 20 100	100 100 15 100 20 100 5 100 20 100 20 100	0 20 100 20 100 100 100 20 100 20 100	50 50 15 100 10 100 5 100 100 100 100 10	100 100 15 100 0 100 5 100 0 100	25 25 45 100 45 100 35 100 35 100 100	75 75 15 100 25 100 10 100 15 100 25 100 100	100 100 15 100 20 100 5 100 20 100 25 100	100 100 15 100 0 100 5 100 0 100 0
Excess Air at Economizer Outlet Theo. Air to the Fuel Firing Zone	5	27.0 125.2	28.2 120.2	26.2 111.6	25.5 107.1	25.2 105.4	18.5 116.7	19.2 102.9	19.2 96. 6	30 .1 1 23.2	33.8 113.8	33.8 1 12. 5	23.1 99.6
NO (ADJ. TO 0% 02) NOX AS NO2 SOX (ADJ. TO 0% 02) SOC CO2 (ADJ. TO 0% 02) CO HC (ADJ. TO 0% 02) O2 AT ECONOMIZER OUTLET CO2 AT A.H. OUTLET CO2 AT A.H. OUTLET CO3 AT A.H. OUTLET CARBON LOSS IN FLYASH	PPM NGPM NGPM NGPM NGPM NGPM XXXX	543 273.7 370 259.6 15 4.7 0 4.6 6.8 14.2 12.3	513 251.1 452 308.2 15 4.6 0 4.7 5.1 14.2 13.8 0.14	462 229.4 370 255.8 15 4.6 0 4.5 5.3 14.3 13.5 0.24	439 213.0 402 277.2 15 4.6 0 4.4 5.6 14.5 13.4 0.30	417 205.3 416 284.8 15 4.5 0 4.3 5.3 14.5 13.7 0.28	604 300.1 373 258.2 16 4.7 0 3.4 4.8 15.2 13.9 0.24	492 247.3 385 269.4 119 36.3 0 3.5 4.9 15.1 13.8 0.59	446 221.6 538 371.4 162 49.0 0 3.5 4.7 15.2 14.1	711 353.2 476 328.9 16 4.8 0 5.2 7.0 13.7 12.1 0.22	677 334.0 361 247.6 15 4.4 0 5.4 7.8 13.5 11.4 0.27	673 332.3 421 289.4 16 4.8 0 5.4 7.1 13.5 12.0 0.16	452 223.3 427 293.7 34 10.4 0 4.0 4.8 14.8 14.1 0.25

PIM	SIONS	S TES	T DZ	ATA

TEST NO.		<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	18	<u>19</u>	20	<u>21</u>	<u>55</u>	23	24
PURPOSE OF TEST Unit Load Condition			TIL	T VARIAT	ION WITH O	FA	>			OPTIMUM OF 3/4 MAX	A OPERATION 3/4 MAX	1/2 MAX	1/2 MAX
Excess AIR CONDITION		MODERATE	MODERATE	HEAVY	MODERATE	MODERATE	MODERATE	CLEAN	MODERATE	CLEAN	MODERATE	CLEAN	MODERATE
FURNACE CONDITION DATE	1975	10/4	10/5	10/4	10/3	10/3	10/3	10/6	10/8	10/9	10/9	10/12	10/5
Unit Load	MW	434	422	429	427	424	429	417	426	356	358	253	265
ONTI CORD	• •••		,			,							-
MAIN STEAM FLOW	KG/S	364	370	370	372	377	367	374	377	299	299	218	217
SHO TEMPERATURE	С	543	520	531	529	519	535	522	521	531	53B	525	542
RHO TEMPERATURE	С	547	525	543	533	515	539	538	527	527	537	510	526
FUEL ELEVATIONS IN SERVICE	~	ALL 5	ALL 5	ALL 5	ALL 5	ALL 5	ALL 5	ALL 5 +30	ALL 5 +30	ALL 5	ABCE	BCDE	ACDE
OFA NOTTLE TILT	DEG DEG	-30 0	.20	0	+25	+30 0	+30 +25	+30	+30	+30	+30 0	+30	+30 0
FUEL NOZZLE TILT	DEG	U	-20	v	725	Ū	TES	•	v	J	Ü	v	U
_ OFA		100	100	100	100	100	100	100	100	100	100	80	75
چ ا ofa		100	100	100	100	100	100	100	100	100	100	80	75
⊨® H AUX		15	0	20	15	15	15	15	15	15	15	10	10
₩ A FUEL		100	100	100	100	100	100	100	100	100	100	0	100
AUX		0	0	0	5	0	5	0	0	0	0	0	0
FUEL		100	100	100	100	100	100	100	100	100	100	100	0
著芒 □ AUX		0	0	5	5	5	5	0 100	5 100	5 100	5 100	5 100	0 100
SE C FUEL		100	100	100	100 0	100 0	100 0	100	5	0	100	0	,00
u g □ Aux		5 100	100	5 1 0 0	100	100	100	100	100	100	õ	100	100
Z D FUEL		100	100 0	0	100	100	100	0	100	0	ŏ		ő
AUX E FUEL		100	100	100	100	100	100	100	100	100	100	100	100
NOZZLE COMPARTIMENT DAMPER POS I TI ON - 84 OPEN ATTA THE		100	100	100	100	100	100	100	100	100	100	100	100
- L		,,,,		• • •							_		
EXCESS AIR AT ECONOMIZER OUTLET	%	25.1	22.0	25.1	21.3	23. 5	21.7	18.5	19.6	19.3	21.5	82.8	23.9
THEO. AIR TO THE FUEL FIRING ZONE	%	101.1	99.2	101.1	98.4	99.8	98.6	95.8	97.1	98.1	95.0	97.3	99.7
				400	550	375	498	392	382	329	337	266	310
NO (ADJ. TO 0% 0 ₂) NOX AS NO ₂	PPM	533	366	422	569 283.5	186.1	252.1	196.5	190.2	161.3	167.8	132.0	155.3
NOX AS NO	NG/J	263.4 450	179.8 397	212.1 404	386	432	349	347	364	403	358	403	447
SO ₂ (ADJ. ² το 0% 0 ₂) SO ₂	PPM	309.4	271.1	281.9	267.5	298.3	245.9	241.8	252.1	275.2	247.8	278.4	311.1
50- C0 ² (ADJ. TD 0% 0 ₂)	NG/J PPM	309.4	16	15	15	16	51	19	19	19	21	63	15
	NG/J	4.5	4.8	4.6	4.4	4.9	15.8	5.8	5.8	5.7	6.3	19.0	4.5
CO HC (ADJ. TO 0% 0;)	PPM	7.5		0	0	0	0	0	o	0	0	. 0	. 0
O AT ECONOMIZER OUTLET	95	4.3	3.9	4.3		4.1	3.8	3.4	3.5	3.5	3.8	4.0 5.5	4.1 5.7
02 AT A.H. OUTLET	%	5.7	4.9	5.2	5.1	5.4	5.1	5.3	5.6	6.1 15.3	5.8 14.8	14.7	14.6
CO AT ECONOMIZER OUTLET	*	14.4	14.9	14.5			14.9 13.8	15.2 13.5	15.1 13.3	13.0	13.1	13.3	13.2
CO2 AT A.H. OUTLET	*5	13.1	14.0	13.8	13.7 0.26	13.5	0.63	0.40	0.43	0.20	0.22	0.47	0.22
CARBON LOSS IN FLYASH	%	0,21	194 313	20	.,,20								

			TEST	DATA						
TEST NO.	<u>1</u>	2	2A	<u>3</u>	4	<u>5</u>	<u>6</u>	7	Ω	a
0.75									8	9
DATE 1975 Unit Load MW	5/7 429	5/5 427	5/7 428	5/7	10/10	7/16	7/15	7/16	5/5	4/30
ON I LOND	423	467	420	428	360	259	260	258	430	428
FLOWS KG/SEC										
FEEDWATER	375	375	377	377	295	201	198	195	375	377
1st Stage Steam	372	372	374	373	282	186	186	185	373	369
									3,3	505
PRESSURES MPA										
ECONOMIZER INLET	19.305	19.160	19.319	19,305	18.285	17.216	17.099	17.161	19.222	19.167
DRUM SH OUTLET	18.857 17.168	18.802	18.871	18.857	18.037	17.023	16.913	17.016	18.809	18.788
TURBINE 1ST STAGE	12.838	17.058 12.810	17.154 12.866	17.175 12.845	16.961 9.735	16.458 6.426	16.361	16.465	17.106	17,078
RH INLET	3.820	3.799	3.806	3.799	3.034	2.041	6.419 2.048	6.384 2.034	12.831	12.742
RH OUTLET	3.585	3.564	3.564	3.564	2.889	1.972	1.972	1.972	3. 82 0 3.599	3.785 3.571
SH SPRAY WATER	18.657	18.512	18.692	18.506	17.940	17.547	17.444	17.540	18.512	18.499
HP HTR FW INLET	19.519	19.471	19.588	19.546	18.623	17.478	17.395	17.430	19.478	19.505
HP HTR STM INLET	3.792	3.788	3.785	3.758	3.061	2.041	2.048	2.034	3.799	3.771
TEMPERATURES °C										
WATER AND STEAM										
ECONOMIZER INLET	247	248	246	246	238	218	218	217	248	250
ECONOMIZER OUTLET L	325	333	333	339	329	301	308	321	329	330
ECONOMIZER OUTLET : LC	328	336	337	342	331	303	309	322	332	332
ECONOMIZER OUTLET RC	325	332	333	337	328	301	305	319	331	327
ECONOMIZER OUTLET R SH DESH INLET LINK R	326 396	334 402	335 400	339 403	331	299	307	318	331	334
SH DESH INLET LINK R SH DESH INLET LINK L	396	397	402	403	408 407	394 397	399 404	408 413	401 399	400 399
SH DESH OUTLET LINK	395	390	401	403	403	391	391	393	393	399
SH DESH OUTLET LINK R	394	396	398	400	400	388	388	391	399	398
SH DIV PANEL OUTLET LINK L	426	439	436	437	440	438	436	443	438	436
SH DIV PANEL OUTLET LINK R	435	438	441	441	435	434	433	434	434	435
SH PEND SPCD FRONT INLET LINK L	482	493	493	493	502	514	509	513	492	490
SH PEND SPCD FRONT INLET LINK C	489	493	494	493	501	518	506	508	492	489
SH PEND SPCD FRONT INLET LINK R	494	486	490	491	499	502	498	493	488	491
SH OUTLET L	526	540	533	536	547	549	548	552	541 540	532 536
SH OUTLET R	536	541	535	535	546	541 288	537 287	537 288	327	323
RH DESH INLET L RH DESH INLET R	322 323	324 324	324 325	326 326	317 318	293	292	292	327	324
RH DESH INLET . R RH RADIANT WALL INLET L	321	321	324	324	309	287	286	287	317	323
RH RADIANT WALL INLET R	322	321	324	326	312	293	292	292	313	323
RH RADIANT WALL OUTLET LINK L	360	365	359	359	347	340	339	341	358	357
RH RADIANT WALL OUTLET LINK LC	368	374	366	366	360	350	347	358	366	367
RH RADIANT WALL OUTLET LINK RC	353	355	349	351	349	336	337	336	349	357
RH RADIANT WALL OUTLET LINK R	35 5	363	357	357	345	339	345	339	353 54 5	364 536
RH OUTLET L	542	550	547	546	547	534 525	544 532	546 528	NA NA	NA NA
RH OUTLET R	NA EOD	NA E40	NA E 20	NA 538	550 550	533	538	539	545	538
RH OUTLET COMB.	539 321	548 324	538 324	326	317	291	290	291	326	324
HP HEATER STM INLET HP HEATER DRAIN	216	216	216	216	206	188	189	188	216	216
HP HEATER FW IN	209	209	209	209	202	186	186	186	209	209
HP HEATER FW OUT	248	248	247	248	238	218	219	218	251	251
SH DESH SPRAY WATER L	125	126	127	128	144	144	146	145	128	136
SH DESH SPRAY WATER R	127	125	128	131	145	144	146	145	130	135 - 112
RH DESH SPRAY WATER	127	121	113	112	147	103	104	101	162	112
AIR AND GAS							~^	20	30	24
AH AIR INLET	37	39	35	36	42	42	39	39 41	38 43	34 38
AH AIR INLET	42	42	39	39	41	41	39 248	248	275	271
AH AIR OUTLET L	273	274	273	275	267 271	243 245	248	246	271	266
AH AIR OUTLET R	268	268	26 5	268 347	326	282	291	298	334	336
AH GAS INLET	328	336	341	347	332	289	294	302	337	340
AH GAS INLET R		337 126	341 122	122	122	109	111	109	127	123
AH GAS OUTLET L	122 118	119	122	123	125	107	104	106	120	119
AH GAS OUTLET R	110			*						

249

			TEST	DATA						
TEST NO.	<u>10</u>	11	12	13	14	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>
DATE 1975 UNIT LOAD MW	5/1 428	7/17 256	7/18 259	5/9 433	5/9 433	5/9 433	10/9 361	7/22 258	7/21 260	7/21 258
FLOWS KG/SEC FEEDWATER 1ST STAGE STEAM	344 370	198 186	198 190	377 373	375 374	373 374	297 2 8 0	204 189	204 190	198 188
PRESSURES MPA ECONOMIZER INLET DRUM SH OUTLET TURBINE 1ST STAGE RH INLET RH OUTLET SH SPRAY WATER HP HTR FW INLET HP HTR STM INLET TEMPERATURES CC	19.181 18.768 17.044 12.776 3.778 3.551 18.478 19.498 3.771	17.106 16.940 16.382 6.371 2.034 1.965 17.437 17.382 2.034	14.582 14.417 13.720 6.550 2.041 1.979 14.934 14.844 2.055	19.271 18.850 17.175 12.852 3.840 3.627 18.692 19.560 3.847	19.285 18.871 17.237 12.866 3.847 3.627 18.657 19.588 3.820	19.298 18.878 17.175 12.866 3.826 3.606 18.712 19.616 3.854	18.368 18.078 16.961 9.694 3.047 2.923 17.830 18.692 3.075	17.299 17.078 16.527 6.488 2.027 1.965 17.526 17.575 2.034	17.050 16.844 16.265 6.536 2.027 1.965 17.375 17.313 2.034	17.030 16.844 16.272 6.467 2.027 1.958 17.375 17.285 2.034
WATER AND STEAM ECONOMIZER INLET ECONOMIZER OUTLET ECONOMIZER OUTLET CECONOMIZER COUTLET COMBINED COUTLET COMBINED COUTLET COMBINED COUTLET COMBINED COMBINED COUTLET COMBINED COUTLET COMBINED	252 342 343 347 403 402 399 401 449 441 501 498 490 546 544 326 363 376 363 376 362 370 548 363 376 363 376 363 376 363	217 304 303 303 398 401 391 388 436 508 509 503 545 541 286 292 286 292 340 352 341 346 537 535 538 291	218 317 319 317 316 409 412 386 435 433 504 505 498 544 541 303 312 302 312 346 353 353 353 534 534 536 308	248 331 339 329 398 399 396 400 433 488 489 486 532 326 311 313 344 351 342 350 544 NA 539 325 217	247 340 345 341 399 401 399 401 436 493 494 487 537 536 327 328 311 313 344 349 341 347 542 NA 539	247 348 356 351 357 408 409 408 409 441 494 493 491 541 538 330 331 309 314 351 351 348 545 NA 542 329 217	238 327 329 325 328 408 407 407 404 508 501 446 551 544 317 322 299 304 347 342 339 546 543 546 543 546 546 546 546 546 546	217 302 304 303 299 396 397 398 440 438 506 508 NA 545 537 284 289 283 289 337 344 332 333 542 525 538 188	217 304 306 304 399 399 396 393 440 435 507 NA 545 536 286 291 284 291 336 343 333 339 542 528 538 542	217 317 319 317 316 409 412 396 393 434 505 503 NA 547 537 286 292 285 292 336 343 333 338 540 531 537 188
HP HEATER FW IN HP HEATER FW OUT SH DESH SPRAY WATER RH DESH SPRAY WATER RH DESH SPRAY WATER	209 253 138 138 118	186 219 145 145 108	186 219 144 144 108	210 249 128 125 165	210 248 125 123 163	210 248 129 127 170	202 238 144 139 157	185 218 141 137 107	185 218 143 143 102	186 218 144 144 104
AIR AND GAS AH AIR INLET L AH AIR INLET R AH AIR OUTLET L AH AIR OUTLET R AH GAS INLET L AH GAS INLET R AH GAS OUTLET L AH GAS OUTLET R	39 43 277 273 349 351 127 126	42 41 246 248 288 292 111 108	46 44 248 246 298 302 117 106	37 43 263 258 331 337 128 122	38 44 274 271 339 341 129	38 41 271 263 346 351 129 125	47 42 263 270 327 331 122 121	39 40 247 247 288 292 117	39 38 247 249 290 296 115	39 42 250 248 298 302 116 109

BIASED FIRING OPERATION STUDY

			TEST	DATA					
TEST NO.		1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>
DATE	1975	9/17	9/18	9/20	12/13	10/11	10/12	10/12	10/5
Unit LOAD	MW	430	426	434	356	351	360	257	270
	KG/SEC	A75							
FEEDWATER 15T STAGE STEAM		375 359	370 259	369 359	297 288	295 280	299 288	218 180	207 200
PRESCURE.	MD.			-		200	200	100	200
PRESSURES ECONOMIZER INLET	MPA	19.154	19.133	19.098	18.381	18.381	18.278	17.588	17.588
DRUM		18.712	18.636	18.616	18.071	18.085	17.975	17.451	17.430
SH OUTLET Turbine 1st Stage		17.044 12.438	16.940 12.3 9 7	16.913 12.417	16.961 9.935	16.940 9.611	16.961 9.956	16.892 6.743	16.844 .
RH INLET		3.771	3.764	3.778	3.047	2.985	3.068	2.137	6.922 2.227
RH OUTLET SH SPRAY WATER		3.613 18,512	3.592 18.450	3.613	2.882 17.975	2.903 17.975	2.937	2.068	2.151
HP HTR FW INLET		19.554	19.512	NA 19.305	18.630	18.643	17.893 18.636	17.561 17.926	NA 17.933
HP HTR STM INLET		3.806	3.792	3.820	3.040	3.034	3.116	2.144	2.248
TEMPERATURES	°c								
WATER AND STEAM		0.40	040	0.40	0.00				
ECONOMIZER INLET ECONOMIZER OUTLET	L	249 329	248 330	249 332	238 314	237 319	238 319	219 302	221 312
ECONOMIZER OUTLET	LC	333	333	336	315	322	321	304	313
ECONOMIZER OUTLET ECONOMIZER OUTLET	RC R	331 333	331 333	333 333	313 318	319 323	318 321	301 306	312 313
SH DESH INLET LINK	R	402	401	402	393	403	398	398	405
SH DESH INLET LINK	L	398 402	399 400	403	397 393	399	3 9 6	3 95	404
SH DESH OUTLET LINK SH DESH OUTLET LINK	L R	397	399	401 403	393	403 399	398 3 9 6	398 395	390 387
SH DIV PANEL OUTLET LINK	L	432	432	442	438	438	438	438	435
SH DIV PANEL OUTLET LINK SH PEND SPCD FRONT INLET LIN	R K L	422 479	423 488	427 502	444 508	433 495	433 508	434 506	424 509
SH PEND SPCD FRONT INLET LIN		476	484	493	515	496	501	507	505
SH PEND SPCD FRONT INLET LIN		468	473	477	507	489	502	505	492
SH OUTLET SH OUTLET	L R	521 517	529 521	543 525	546 543	536 536	544 540	540 543	547 539
RH DESH INLET	Ĺ	315	319	327	315	306	314	286	288
RH DESH INNET	R L	314 313	318 317	326 314	317 314	309 301	316 3 0 9	291 284	NA 287
RH RADIANT WALL INLET RH RADIANT WALL INLET	R	314	318	316	317	306	312	292	294
RH RADIANT WALL OUTLET LINK	L	351	356	359	353 368	337 350	349 364	329 348	336 350
RH RADIANT WALL OUTLET LINK RH RADIANT WALL OUTLET LINK	LC RC	363 348	366 348	374 344	356	342	354	337	335
RH RADIANT WALL OUTLET LINK	R	349	344	341	354	336	346	333	329
RH OUTLET	L R	530 542	543 538	551 531	552 527	531 543	544 547	526 542	546 543
RH OUTLET	COMB.	538	542	543	541	539	546	536	548
HP HEATER STM INLET		314	318	327 217	316 205	308 206	316 207	289 189	292 192
HP HEATER DRAIN HP HEATER FW IN		217 211	217 212	211	202	201	202	187	188
HP HEATER FW OUT		250	249	251	238	237	239 1 24	2 2 0 117	222 147
SH DESH SPRAY WATER	L R	133 134	139 140	131 132	126 126	123 124	125	117	147
SH DESH SPRAY WATER RH DESH SPRAY WATER	n	134	141	166	142	157	156	116	117
AIR AND GAS		37	37	37	43	42	46	49	48
AH AIR INLET	L R	37	39	41	43	37	43	47	46
AH AIR OUTLET	L	279	277	280 277	261 268	265 271	261 26 5	244 249	248 253
AH AIR OUTLET	R L	278 348	275 347	349	314	311	319	291	299
AH GAS INLET AH GAS INLET	R	351	349	349	322	326	322 121	293 117	301 121
AH GAS OUTLET	L	132	132 122	133 116	120 120	125 127	121 115	111	119
AH GAS OUTLET	R	124	155	,,,	,				

251 SHEET 89

BIASED FIRING OPERATION STUDY

			TEST	DATA					
TEST NO.		<u>9</u>	<u>10</u>	<u>11</u>	12	<u>13</u>	14	<u>15</u>	<u>16</u>
DATE Unit Load	1975 MW	9/17 429	9/18 428	9/18 429	10 /1 1 351	12/13 356	12/13 356	7/23 256	7/24 259
FLOWS FEEDWATER	KG/SEC	375	370	369	295	299	299	201	204
1ST STAGE STEAM		357	360	359	277	288	285	186	190
PRESSURES ECONOMIZER INLET DRUM	MPA	19.174 18.657	19.154 18.671	19.098 18.657	18.381 18.050	18.368 18.064	18.416 18.037	17.264 17.058	17.299 17.113
SH OUTLET TURBINE 1ST STAGE RH INLET		16.989 12.397	17.023 12.486 3.778	16.961 12.438 3.778	16.927 9.577 2.978	16.858 9.942 3.040	16.906 9.908	16.534 6.467	16.575 6.640
RH OUTLET SH Spray Water		3.771 3.592 18.457	3.613 18.416	3.613 18.485	2.896 17.699	2.896 18.023	3.040 2.875 17.975	2.006 1.944 17.588	2.048 1.986 17.637
HP HTR FW INLET HP HTR STM INLET		19 .581 3.799	19,609 3,806	19.526 3.806	18.726 3.013	18.761 3.040	18.685 3.040	17.520 2.013	17.602 2.041
TEMPERATURES	°C								
WATER AND STEAM ECONOMIZER INLET ECONOMIZER OUTLET	L	248 331	248 334	249 336	236 322	237 318	238 319	217 304	217 304
ECONOMIZER OUTLET ECONOMIZER OUTLET	LC RC	336 334	337 334	339 336	326 322	318 316	319 320	307 305	306 303
ECONOMIZER OUTLET SH DESH INLET LINK SH DESH INLET LINK	R R L	335 403 399	337 405 402	339 407 405	325 404 402	323 397 399	324 398 399	303 400 401	304 399 402
SH DESH OUTLET LINK SH DESH OUTLET LINK SH DIV PANEL OUTLET LINK	L R L	403 399 431	404 402 437	406 404 438	404 402 438	396 399 436	397 398 442	398 396 441	393 390 437
SH DIV PAREL OUTLET LINK SH PEND SPCD FRONT INLET LIN	R ık L	423 427	429 494	431 494	435 435 494	445 503	442 442 512	438 504	437 501
SH PEND SPCD FRONT INLET LIN SH PEND SPCD FRONT INLET LIN SH OUTLET		474 466 518	494 488 5 3 7	488 479 537	496 491 537	505 511 542	506 505 547	510 499 545	504 502 543
SH OUTLET RH DESH INLET	R L	513 311	535 327	529 327	536 307	544 312	542 313	542 287	541 286
RH DESH INLET RH RADIANT WALL INLET RH RADIANT WALL INLET	R L R	311 309 311	NA 312 314	NA 310 314	309 306 309	314 311 314	316 310 314	291 286 291	291 284 291
RH RADIANT WALL OUTLET LINK RH RADIANT WALL OUTLET LINK	L L	343 357	346 3 6 0	348 358	342 354	350 359	358 364	329 346	334 351
RH RADIANT WALL OUTLET LINK RH RADIANT WALL OUTLET LINK RH OUTLET	RC R L	341 339 518	346 342 533	343 340 542	346 340 534	352 355 547	350 352 549	338 3 37 532	339 345 536
RH OUTLET RH OUTLET HP HEATER STM INLET	R Comb.	532 530	541 539	539 542	541 539	534 540	532 540	533 538	NA 537
HP HEATER DRAIN HP HEATER FW IN		311 217 211	327 217 211	326 217 211	308 206 201	313 205 201	314 205 201	289 187 185	289 188 185
HP HEATER FW OUT SH DESH SPRAY WATER SH DESH SPRAY WATER	L R	249 134	251 133	250 152	237 127	238 131	238 140	218 143	218 143
SH DESH SPRAY WATER RH DESH SPRAY WATER	ĸ	134 152	134 165	152 166	127 145	131 147	138 156	143 104	143 104
AIR AND GAS AH AIR INLET AH AIR INLET	L R	36 37	37 39	37 38	43 41	43 42	43 42	40 39	40 40
AH AIR OUTLET AH AIR OUTLET	L R	279 278	277 276	280 278	263 268	262 271	262 269	247 249	248 248
AH GAS INLET AH GAS INLET AH GAS OUTLET	L R L	350 353 132	344 351 132	351 355 132	322 328 123	320 326 124	315 329 122	286 292 119	290 294 122
AH GAS OUTLET	Ř	125	124	124	119	121	121	113	112

			TEST	DATA					
TEST NO.		1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>
DATE	1975	9/17	9/26	9/26	9/26	9/26	10/1	10/1	
UNIT LOAD	MW	428	430	430	430	431	430	429	10/1 428
FLOWS	KG/SEC								
FEEDWATER 1ST STAGE STEAM		369 358	372 364	372 364	370	370	372	372	370
		330	304	304	362	364	362	352	360
PRESSURES ECONOMIZER INLET	MPA	19.126	19.167	19.195	19.188	10.006	.0 000		
Drum		18.657	18.685	18.726	18.692	19.236 18.726	19.209 18.678	19,147 18,685	19.133 18.643
SH OUTLET ' TURBINE 1ST STAGE		16.975 12.452	17.009 12.569	17.023 12.569	17.009	17.037	16.961	17.009	16.989
RH INLET		3.765	3.771	3.785	12.528 3.792	12.590 3.806	12.535 3.771	12.535 3.771	12.500 3.765
RH OUTLET		3.606	3.613	3.613	3.627	3.627	3.592	3.613	3.599
SH SPRAY WATER HP HTR FW INLET		18.471 19.478	18.388 19.809	18.388 19.733	18.388 19.588	18.388 19.657	18.388 19.540	18.388 19.650	18.388 19.560
HP HTR STM INLET		3.799	3.799	3.806	3.827	3.827	3.785	3.799	3.799
TEMPERATURES	° c								
WATER AND STEAM		242		210					
ECONOMIZER INLET ECONOMIZER OUTLET	L	249 336	248 334	248 334	249 333	249 335	248 330	248 330	248 331
ECONOMIZER OUTLET	LC	339	337	337	337	339	334	334	335
Economizer Outlet Economizer Outlet	RC R	336 339	334 338	334 337	334 336	337 336	332 334	3 31 333	333 334
SH DESH INLET LINK	R	406	407	406	404	404	404	403	405
SH DESH INLET LINK	L	404	402	403	402	403	400	401	402
SH DESH OUTLET LINK SH DESH OUTLET LINK	L R	406 403	406 401	405 402	403 402	404 403	404 400	403 400	404 402
SH DIV PANEL OUTLET LINK	L	437	438	438	440	439	440	436	438
SH DIV PANEL OUTLET LINK SH PEND SPCD FRONT INLET LI	R INK L	429 492	429 490	429 491	430 496	432 493	430 496	429 491	431 491
SH PEND SPCD FRONT INLET L		489	482	485	490	488	489	483	486
SH PEND SPCD FRONT INLET LE		480	479	476	481	477	480 537	475 533	476
SH OUTLET SH OUTLET	L R	534 529	531 527	534 526	538 529	537 527	537 530	533 523	534 526
RH DESH INLET	L	324	322	322	326	324	326	321	322
RH DESH INLET	R L	323 316	NA 314	NA 314	326 311	323 311	NA 324	NA 319	323 321
RH RADIANT WALL INLET RH RADIANT WALL INLET	Ŕ	316	315	314	312	312	324	319	322
RH RADIANT WALL OUTLET LINE		351	350	348	346 361	347 360	359 368	354 362	358 364
RH RADIANT WALL OUTLET LINE RH RADIANT WALL OUTLET LINE		363 346	357 347	359 348	347	345	359	354	356
RH RADIANT WALL OUTLET LINE	c R	344	352	349	347	342	357 543	352 543	351 546
RH OUTLET RH OUTLET	L R	539 539	533 544	536 539	534 539	538 534	550	5 39	541
RH OUTLET	COMB.	540	538	538	539	539	548	542	545
HP HEATER STM INLET		323	321 216	322 216	325 217	324 217	325 216	321 216	322 216
HP HEATER DRAIN HP HEATER FW IN		217 211	211	211	211	211	211	211	211
HP HEATER FW OUT		250	249	249	250	250 132	249 132	249 132	249 132
SH DESH SPRAY WATER	L R	136 137	130 131	131 132	132 132	132	133	133	133
SH DESH SPRAY WATER RH DESH SPRAY WATER	К	166	166	166	166	166	132	132	132
AIR AND GAS	L	37	33	32	32	32	43	43	43
AH AIR INLET AH AIR INLET	R	38	44	43	43	43	30 272	31 272	30 274
AH AIR OUTLET	L	281	282 276	283 276	281 273	282 274	285	284	284
AH AIR OUTLET AH GAS INLET	R L	279 351	337	338	338	340	339	339	341
AH GAS INLET	R	356	348	348	346 137	346 138	349 126	348 126	347 125
AH GAS OUTLET	L R	133 125	138 122	138 1 22	120	121	129	129	131
AH GAS OUTLET	ĸ	163							

			TEST	DATA					
TEST NO.		9	10	<u>11</u>	12	13	14	<u>15</u>	<u>16</u>
DATE	1975	9/27	10/1	10/1	10/5	10/4	10/5	10/4	10/3
UNIT LOAD	MW	428	429	430	427	434	422	429	427
FLOWS	KG/SEC								
FEEDWATER		369	369	370	370	364	370	370	372
1ST STAGE STEAM		365	362	362	360	360	359	362	360
PRESSURES ECONOMIZER INLET	MPA	10.105	19, 147	19.147	10.070	19,119	10 110	10.000	19.119
DRUM		19.195 18,726	18.685	18.678	19.078 18.685	18.650	19.119 18.678	19.092 18.657	18.630
SH OUTLET		16.975	16.989	17.003	16.989	16.996	16.947	16.996	16.989
TURBINE 1ST STAGE RH INLET		12.604 3.771	12.535 3.751	12.521 3.758	12.500 3.751	12.500 3.778	12.466 3.751	12.535 3.771	12.486 3.771
RH OUTLET		3.599	3.627	3.585	3.599	3.606	3.585	3.606	3.599
SH SPRAY WATER HP HTR FW INLET		18.388 19.664	18.388 19.595	18.388 19.560	18.388 19.588	18.388 19.595	18.388 .19.595	18.388 19.526	18.388 19.547
HP HTR STM INLET		3.799	3.758	3.765	3.806	3.827	3.792	3.799	3.799
TEMPERATURES	°c								
Water and Steam									
ECONOMIZER INLET		248	248	248	248	249	248	248	248
ECONOMIZER OUTLET ECONOMIZER OUTLET	L LC	341 342	341 344	341 344	332 334	333 337	328 332	331 333	329 335
ECONOMIZER OUTLET	RC	338	342	342	330	335	329	331	333
ECONOMIZER OUTLET SH DESH INLET LINK	R R	343 406	342 409	342 409	332 400	338 408	329 398	333 401	332 402
SH DESH INLET LINK	Ë	404	407	408	400	402	398	399	398
SH DESH OUTLET LINK	L	406	409	409	399	407	398	401	402
SH DESH CUTLET LINK SH DIV PANEL CUTLET LINK	R L	403 436	407 438	408 441	401 432	402 446	398 432	398 438	398 435
SH DIV PANEL OUTLET LINK	R	428	436	437	428	436	425	429	430
SH PEND SPCD FRONT INLET LIN SH PEND SPCD FRONT INLET LIN		489 484	489 492	489 493	487 482	503 500	485 500	494 491	484 492
SH PEND SPED FRONT INLET LIN		479	483	482	479	489	489	480	481
SH OUTLET SH OUTLET	L R	531	537	537	529	546	526	534	528
RH DESH INLET	Ł	525 321	533 32 6	533 326	523 319	539 333	514 315	527 323	530 322
RH DESH INLET	R	NA	NA	NA	NA	NA	NA	NA	NA
RH RADIANT WALL INLET RH RADIANT WALL INLET	L R	319 319	324 325	324 325	317 318	320 321	313 314	322 322	314 315
RH RADIANT WALL OUTLET LINK	Ĺ	351	354	354	365	352	350	354	348
RH RADIANT WALL OUTLET LINK	LC	359	364	365	362	365	362	367	355
RH RADIANT WALL OUTLET LINK RH RADIANT WALL OUTLET LINK	RC R	347 346	352 349	354 348	349 345	357 352	343 3 37	355 353	348 341
RH OUTLET	L	539	541	541	548	541	534	541	528
RH OUTLET RH OUTLET	R Comb.	540 539	539 543	539 543	532 540	554 550	516 529	545 544	538 538
HP HEATER STM INLET	•••••	320	325	325	318	332	314	323	322
HP HEATER DRAIN HP HEATER FW IN		216	216	216	216	217	216	216	216
HP HEATER FW IN HP HEATER FW OUT		210 249	210 249	210 249	211 249	211 250	209 248	211 249	211 249
SH DESH SPRAY WATER	L	131	131	132	138	137	143	141	151
SH DESH SPRAY WATER RH DESH SPRAY WATER	R	132 124	132 130	132 131	138 136	138 166	143 147	141 164	147 166
AIR AND GAS									
AH AIR INLET AH AIR INLET	L R	34	41	41	39	39	41 25	40 34	35 34
AH AIR OUTLET	L	58 0 39	31 277	31 278	34 27 7	33 277	35 274	34 275	274
AH AIR OUTLET	R	276	284	285	281	284	279	281	281
AH GAS INLET AH GAS INLET	L R	342 352	351 354	350 355	343 348	343 352	341 346	342 348	343 346
AH GAS OUTLET	L	135	334 128	305 129	131	130	129	131	129
AH GAS OUTLET	R	124	131	132	131	130	122	131	128

			TEST DATA						
TEST NO.		<u>17</u>	18	<u>19</u>	<u>20</u>	21	22	23	24
DATE	1975	10/3	10/3	10/6	10/8	10/9	10/9	10/12	10/5
UNIT LOAD	MW	424	429	417	426	356	358	253	265
	KG/SEC								
FEEDWATER 18T STAGE STEAM		377	367	374	377	299	299	218	216
151 STAGE STEAM		362	362	359	360	282	282	193	199
PRESSURES ECONOMIZER INLET	MPA	***							
DRUM		19.092 18.650	19.099 18.643	19.105 18.733	19.188 18.761	18.381 18.099	18.450 18.092	17.623 17.416	17.561
SH OUTLET .		16.968	16.996	16.996	16.996	16.996	16.927	16.927	17.389 16.727
TURBINE 1ST STAGE RH INLET		12.521 3.778	12.500 3.778	12.486	12.500	9.770	9.756	6.640	6.847
RH OUTLET		3.613	3.599	3.751 3.599	3.765 3.599	3.034 2.896	3.054 2.965	2.213 2.096	2.199 2.082
SH SPRAY WATER		18.388	18.388	18.388	18.388	18.009	18.044	17.568	17.533
HP HTR FW INLET HP HTR STM INLET		19.526 3.799	19.547 3.820	19.547 3.799	19.560 3.799	18.712 3.075	18.747 3.075	17.933 2.213	17.899
T514050 1 T 1750		01.00	0.020	0.133	3.733	3.075	3.073	2.213	2.213
TEMPERATURES	°C								
WATER AND STEAM ECONOMIZER INLET		248	249	247	040	007	007	010	000
ECONOMIZER OUTLET	L	328	332	327	248 326	237 316	237 32 2	218 299	220 305
ECONOMIZER OUTLET	LC	332	336	328	329	318	326	300	307
ECONOMIZER OUTLET	RC R	329 331	333 334	326 328	326 329	314 317	321	297	305
SH DESH INLET LINK	R	399	403	326	397	396	323 402	301 392	306 396
SH DESH INLET LINK	L	397	401	396	396	396	403	391	397
SH DESH OUTLET LINK SH DESH OUTLET LINK	Ł R	399 397	403 401	396 395	397 394	395 395	402 403	391	396 392
SH DIV PANEL OUTLET LINK	Ĺ	434	438	429	432	436	444	391 429	441
SH DIV PANEL OUTLET LINK	R	424	432	423	423	428	436	423	426
SH PEND SPCD FRONT INLET LIN		482	493	486	487	496	499 499	497 493	513 515
SH PEND SPCD FRONT INLET LIN		481 468	491 486	484 473	484 471	498 486	486	484	490
SH OUTLET	L	522	536	5 26	525	534	542	528	549
SH OUTLET	R	516	534	518	517	528	533 308	522 271	536 286
RH DESH INLET RH DESH INLET	L R	313 NA	327 NA	316 316	315 314	303 306	313	277	292
RH RADIANT WALL INLET	Ë	301	312	314	313	302	301	270	284
RH RADIANT WALL INLET	R	302	314	316	314	305	304 342	277 313	358 585
RH RADIANT WALL OUTLET LINK RH RADIANT WALL OUTLET LINK	L LC	334 346	351 358	352 362	348 361	339 359	357	327	342
RH RADIANT WALL OUTLET LINK	RC	332	347	346	344	341	339	31.3	326
RH RADIANT WALL OUTLET LINK	R	331	343	343	344	336	337 542	311 511	324 529
RH OUTLET RH OUTLET	Ł R	514 516	539 538	541 536	527 526	529 526	5 31	509	522
RH OUTLET	Сомв.	518	541	536	528	529	539	511	530
HP HEATER STM INLET		312	327	316	314	304	310 20 6	274 189	289 191
HP HEATER DRAIN		216 210	217 211	215 209	216 210	505 506	505	186	187
HP HEATER FW IN HP HEATER FW OUT		249	250	248	249	238	238	219	221
SH DESH SPRAY WATER	L	137	143	133	135	126 127	134 134	119 121	144 145
SH DESH SPRAY WATER	R	137 164	141 165	133 144	136 131	135	157	118	122
RH DESH SPRAY WATER		104	.05		-				
AIR AND GAS AH AIR INLET	L	40	39	39	41	42	47	49	48
AH AIR INLET	R	34	34	34	36 272	42 262	43 261	49 242	44 244
AH AIR OUTLET	£	274	275 281	273 278	273 278	262	268	247	251
AH AIR OUTLET AH GAS INLET	R L	280 340	346	337	337	317	325	288	296
AH GAS INLET AH GAS INLET	Ř	345	348	346	346	322	328	290 117	298 121
AH GAS OUTLET	L	129	129	129 128	129 127	123 123	121 121	116	116
AH GAS OUTLET	R	128	128	120	,_,				

TEST NO. 1 2 2A 3 4 5 6 7 8 9 DATE 1975 5/7 5/5 5/7 5/7 10/10 7/16 7/15 7/16 5/5 4/30 UNIT LOAD MW 429 427 428 428 360 259 260 258 430 428 FLOWS KG/S FEEDMATER (MEASURED) 375 375 377 377 295 201 198 195 375 377 AUXILIARY STEAM - SH (PLANT INSTRUMENTATION) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4					EST RESULTS							
DATE 1975 5/7 5/5 5/7 10/10 7/16 7/15 7/16 5/5 4/30 UNIT LOAD MW 429 427 428 428 360 259 260 258 430 428 FLOWS KG/S FLOWS KG/S FEEDMATER (Measured) 375 377 377 295 201 198 195 375 377 AUXILIARY STEAM - SH (PLANT INSTRUMENTATION) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 SH SPRAY (HEAT BALANCE) 1 5 0 3 4 3 5 8 3 0	TEST NO.		1	2	<u>2A</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	<u>8</u>	<u>9</u>
FEEDWATER (Measured) 375 375 377 377 295 201 198 195 375 377 Auxiliary Steam - SH (Plant Instrumentation) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 1.1 0.4 0.4 SH Spray (Heat Balance) 1 5 0 3 4 3 5 8 3 0				5/5 427		5/7 428		7/16 259			5/5 430	4/30
AUXILIARY STEAM - SH (PLANT INSTRUMENTATION) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4		kg/s										
SH SPRAY (HEAT BALANCE) 1 5 0 3 4 3 5 8 3 0									198	195	375	377
											0.4	0.4
MAIN STEAM (CALCIDATED) 3/6 380 3/7 380 999 904 905 905 970 975				-								
						380	298	204	203	202	378	377
tauptup petitions fraging they building.												
												35
								-		-		
RH STEAM (CALCULATED) 337 343 339 342 272 186 186 185 342 335	KH STEAM (CALCULATED)		331	343	339	342	212	100	100	180	342	335
UNIT ABSORPTION MU/s	UNIT ARSORPTION	MJ/s										
ECONOMIZER 153 171 177 189 141 82 87 100 162 160		, •	153	171	177	189	141	82	87	100	162	160
FURNACE 371 353 352 340 294 241 232 214 361 363												
DRUN - SH DESH 142 149 153 163 126 71 76 83 150 150	DRUM - SH DESH		142	149	153	163	126	71	76	83		
SH DESH - SH OUTLET 198 212 190 190 153 112 109 108 205 191	SH DESH - SH OUTLET								109	108	205	191
REHEATER 172 182 170 170 149 99 103 102 184 168	REHEATER											168
TOTAL 1036 1068 1041 1051 862 605 608 607 1063 1032	TOTAL		1036	1068	1041	1051	862	605	608	607	1063	1032
UNIT EFFICIENCY \$	UNIT FFFICIENCY	\$										
DRY GAS LOSS 3.55 3.71 3.96 4.27 4.12 3.07 3.18 3.70 3.70 3.90		,-	3.55	3.71	3.96	4.27	4.12	3.07	3.18	3.70	3.70	3.90
MOISTURE IN FUEL LOSS 5.35 4.89 4.99 5.13 4.99 4.94 4.78 4.92 5.04 5.06					4.99		4.99		4.78	4.92	5.04	
Moisture in Air Loss 0.11 0.11 0.12 0.13 0.09 0.10 0.11 0.11 0.12	MOISTURE IN AIR LOSS											
RADIATION LOSS 0.19 0.18 0.18 0.18 0.22 0.31 0.31 0.31 0.18 0.19	RADIATION LOSS											
ASH PIT LOSS 0.34 0.34 0.32 0.36 0.33 0.29 0.30 0.30 0.33 0.32												
HEAT IN FLY ASH LOSS 0.02 0.02 0.02 0.03 0.02 0.01 0.01 0.01 0.02 0.02												
Pyrite Rejection Loss 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.												
CARBON LOSS 0.52 0.37 0.22 0.31 0.12 0.23 0.30 0.12 0.68 0.29 TOTAL LOSSES 10.08 9.63 9.84 10.44 9.95 8.95 8.99 9.49 10.07 9.90												
	· · · · · · · · · · · · · · · · · · ·											
EFFICIENCY 89.92 90.37 90.16 89.56 90.05 91.05 90.51 89.93 90.10	EFFICIENCY		69.32	90.37	50.10	63.30	30.05	91.03	91.05	90.51	69.93	90.10
HEAT INPUT MJ/s	HEAT INPUT	MJ/s										
HEAT INPUT FROM FUEL 1152 1182 1155 1173 958 665 668 671 1182 1146		•	1152	1182	1155	1173	958	665	668	671	1182	1146
EXCESS AIR	EXCESS AIR	%										
AIR HEATER INLET 18.9 27.4 32.9 40.9 28.9 23.7 32.1 50.0 19.5 29.0					32.9							
AIR HEATER OUTLET 26.7 37.2 42.8 52.1 52.1 40.0 40.9 67.9 33.7 40.1	AIR HEATER OUTLET		26.7	37.2	42.8	52.1	52.1	40.0	40.9	67.9	33.7	40.1

ø
5

ų
商
_
ſĦ

			<u> 11</u>	EST RESULTS							
TEST NO.		<u>10</u>	<u>11</u>	12	<u>13</u>	14	15	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>
DATE UNIT LOAD	1975 M ₩	5/1 428	7/17 256	7/18 259	5/9 433	5/9 43 3	5/9 433	10/9 361	7/22 258	7/21 260	7/21 258
FLOWS FEEDWATER (MEASURED) AUXILIARY STEAM - SH (PLANT INSTRUMENTATION) SH SPRAY (HEAT BALANCE) MAIN STEAM (CALCULATED) TURBINE LEAKAGE (TURBINE HEAT BALANCE) HP HTR. EXTRACTION (HEAT BALANCE) RH SPRAY (HEAT BALANCE) RH STEAM (CALCULATED)	kg/s	374 0.4 2 375 7 36 0	198 0.4 5 203 4 13 0	198 0.4 9 208 4 13 0	377 0.4 0 377 7 32 5 343	375 0.4 0 375 7 31 6	374 0.4 2 375 7 31 7 345	297 0.4 1 298 6 23 0 269	204 0.4 0 204 4 14 0	204 0.4 2 206 4 14 0	198 0.4 6 205 4 13 0
UNIT ABSORPTION ECONOMIZER FURNACE DRUM - SH DESH SH DESH - SH OUTLET REMEATER TOTAL	MJ/s	188 328 156 199 172	84 236 74 110 102 606	99 236 81 106 96 619	174 351 149 191 184 1049	193 331 150 191 183 1049	225 297 167 184 187 1059	137 301 127 148 151 864	86 243 74 102 101 606	87 243 76 104 104 613	100 221 84 105 103
UNIT EFFICIENCY DRY GAS LOSS MOISTURE IN FUEL LOSS MOISTURE IN AIR LOSS RADIATION LOSS ASH PIT LOSS HEAT IN FLY ASH LOSS PYRITE REJECTION LOSS CARBON LOSS TOTAL LOSSES EFFICIENCY	*	4.37 5.09 0.13 0.18 0.33 0.02 0.01 0.23 10.36 89.64	3.05 4.93 0.09 0.31 0.29 0.01 0.01 0.24 8.93 91.07	3.50 4.88 0.11 0.31 0.30 0.01 0.01 0.13 9.25 90.75	3.53 4.90 0.11 0.18 0.34 0.02 0.01 0.53 9.62 90.38	3.63 4.87 0.11 0.18 0.34 0.02 0.01 0.50 9.66 90.34	3.94 4.93 0.12 0.18 0.34 0.02 0.01 0.15 9.70 90.30	3.53 4.93 0.11 0.22 0.32 0.01 0.01 0.09 9.22 90.78	3.35 4.95 0.10 0.31 0.01 0.01 0.21 9.26 90.74	3.60 4.96 0.11 0.31 0.32 0.01 0.01 0.26 9.57 90.43	3.85 4.85 0.12 0.31 0.33 0.02 0.01 0.17 9.66 90.34
HEAT INPUT FROM FUEL	MJ/s	1163	666	682	1161	1161	1172	951	668	678	678
EXCESS AIR AIR HEATER INLET AIR HEATER OUTLET	4,	40.9 55.4	27.4 36.4	48.8 61.3	15.0 25.9	20.2 30.5	35.5 44.8	23.0 38.2	25.2 39.1	28.9 47.8	47.8 61.4

			_1	EST RESULTS	<u> </u>						
TEST NO.		1	<u>2</u>	<u>2A</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>B</u>	9
DATE Unit Load	1975 MW	5/7 42 9	5/5 427	5/7 428	5/7 428	10/10 360	7/16 259	7/15 26 0	7/16 258	5/5 430	4/30 428
PRODUCTS OF COMBUSTION	40/J										
AIR HEATER INLET DRY AIR WET AIR DRY PRODUCTS WET PRODUCTS		425 432 405 414	438 445 413 419	458 466 434 439	489 497 460 466	487 496 420 426	442 450 397 404	452 460 431 437	533 542 484 489	430 438 391 397	447 454 418 426
AIR HEATER OUTLET DRY AIR WET AIR DRY PRODUCTS WET PRODUCTS		335 399 440 468	319 406 450 477	321 427 471 498	321 453 502 530	321 413 500 528	316 391 456 483	321 424 465 491	317 476 546 574	322 385 443 470	319 412 461 488
GAS AND AIR FLOWS GAS ENTERING AIR HEATER GAS LEAVING AIR HEATER AIR ENTERING AIR HEATER AIR LEAVING AIR HEATER AIR HEATER LEAKAGE	kg/s	508 539 498 467 31	526 564 526 488 38	538 575 538 501 37	579 622 583 540 43	434 506 475 402 72	286 321 299 264 35	309 328 307 288 19	346 385 363 324 39	500 555 517 462 55	518 560 521 480 41
AIR HEATER PERFORMANCE AIR HEATER LEAKAGE GAS SIDE EFFICIENCY GAS DROP AIR RISE TEMPERATURE HEAD	ላ °C °C	6.0 70.8 206 231 291	7.2 70.4 208 231 296	6.9 70.6 214 231 303	7.4 70.7 219 234 309	16.7 67.1 193 228 288	12.2 69.5 170 203 244	6.2 71.5 181 208 253	11.2 71.3 185 207 260	11.0 69.0 204 233 296	8.0 69.9 211 232 301
FUEL ANALYSIS CARBON HYDROGEN NITROGEN OXYGEN SULFUR MOISTURE ASH	KJ/KG	63.30 4.90 0.90 12.10 0.50 8.40 9.90 25144	65.50 5.10 1.20 9.30 0.70 7.30 10.90 27889	67.30 5.30 0.80 9.50 0.50 7.70 8.90 28517	61.20 4.80 0.80 9.90 0.50 8.10 14.70 25726	65.30 5.10 1.30 9.40 0.50 8.10 10.30 27679	66.80 5.20 1.10 11.60 0.50 8.70 6.10	68.30 5.30 1.30 9.70 0.50 6.70 8.20 28866	66.30 5.10 1.20 10.60 0.50 8.80 7.50 28168	66.30 5.30 0.90 10.10 0.50 7.10 9.80 27912	64.80 5.00 0.90 12.40 0.50 8.20 8.20 27075

				EST RESULTS	2						
TEST NO.		<u>10</u>	11	<u>12</u>	<u>13</u>	14	<u>15</u>	16	<u>17</u>	18	<u>19</u>
DATE	1975	5/1	7/17	7/18	5/9	5/9	5/9	10/9	7/22	7/21	7/21
UNIT LOAD	MW	428	256	259	433	433	433	361	258	260	258
PRODUCTS OF COMBUSTION	MG/J										
AIR HEATER INLET											
DRY AIR		499	432	516	401	415	464	446	443	473	520
WET AIR		508	440	525	407	422	472	454	450	481	529
DRY PRODUCTS		460	411	484	372	389	442	404	405	420	484 489
WET PRODUCTS		466	417	489	380	396	448	410	412	426	489
AIR HEATER OUTLET											
DRY AIR		321	317	320	318	318	320	323	318	320	322
WET AIR		453	404	476	366	382	434	397	398	413	476
DRY PRODUCTS		512	446	529	414	429	478	459	456	486	533
WET PRODUCTS		540	473	557	440	454	505	486	483	513	561
GAS AND AIR FLOWS	KG/S										
GAS ENTERING AIR HEATER		573	295	352	470	489	556	415	292	306	350
GAS LEAVING AIR HEATER		628	315	380	511	528	592	462	323	348	380
AIR ENTERING AIR HEATER		590	293	358	473	490	553	431	300	326	359
AIR LEAVING AIR HEATER		535	273	330	432	451	518	384	270	285	329 30
AIR HEATER LEAKAGE		55	19	28	41	39	3 5	48	30	42	30
AIR HEATER PERFORMANCE											
AIR HEATER LEAKAGE	٠.	9.6	6.6	7.9	8.7	7.9	6.4	11.4	10.3	13.6	8.6
GAS SIDE FFEICIENCY	્ષ	70.1	70,9	72.2	68.8	69.7	71.9	70.3	67.9	67.3	70.1
GAS DROP	*c *c	216	176	184	202	208	555	200	170	171 209	182 209
AIR RISE	°C	234	506	505	221	231	228	555	207	209 254	260
TEMPERATURE HEAD	° C	309	249	255	293	299	309	284	250	234	200
FUEL ANALYSIS											67.00
CARBON	ď	65.60	66.50	67.30	64.20	64.80	63 .8 0	67.70	66.80	67.50	67.00
HYDROGEN	pro a	5.20	5.10	5.30	4.90	4.90	4.90	5.20	5.10	5.30	5.20
MITROGEN	<i>a</i>	2,90	1.30	1.20	1.10	1.20	1.00	1.20	1.30	1.30	1.20
OXYGEN	4	10.60	10.60	9.50	10.30	10.10	10.20	9.40	10.80	9.70	9.50 0.50
SULFUR		0.40	0.50	0.50	0.50	0.50	0.80	0.50	0.50	0.50	7.00
MOISTURE	- -	8.00	9.00	7.70	7.50 11.50	7. 80 10 . 70	7.60 1 1. 70	8.40 7.60	9.00 6.50	8,00 7,70	9.60
Ash		9, 30 276 33	7.00 28238	8.50 286 33	27051	27331	26865	28447	28214	28633	28214
нну	HJ/KG	21033	20238	20033	21031	£1331	20003	20441	20214	20000	20214

BIASED FIRING OPERATION STUDY

						TEST RI	SULTS	a Tanan Sean									
TEST NO.		1	5	3	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	9	10	11	12	<u>13</u>	14	<u>15</u>	<u>16</u>
DATE Unit Load	1975 MW	9/17 430	9/18 426	9/20 434	12/13 356	10/11 351	10/12 360	10/12 257	10/5 270	9/17 429	9/10 428	9/18 429	19/11 351	12/13 356	12/13 356	7/23 256	7/24 259
FLOWS FEEDWATER (MEASURED) AUXILIARY STEAM - SH (PLANT INSTRUMENTAT SH SPRAY (HEAT BALANCE) MAIN STEAM (CALCULATED) TURBINE LEAKAGE (TURBINE HEAT BALANCE) HP HTR. EXTRACTION (HEAT BALANCE) RH SPRAY (HEAT BALANCE) RH STEAM (CALCULATED)	KG/S	375 0.4 0 375 7 32 1 336	370 0.4 1 371 7 30 0	369 0.4 0 368 7 32 4	297 0.3 0 297 6 23 0 268	295 0.4 0 295 6 23 1 268	299 0.4 0 299 6 23 1 271	218 0.4 0 218 5 15 0	207 0.4 8 214 4 14 0	375 0.4 0 375 7 32 0 336	370 0.4 0 370 7 32 5 336	369 0.4 0 369 7 31 6	295 0.4 0 295 6 23 0 266	299 0.3 0 299 6 24 0 270	299 0.3 0 299 6 24 1 270	201 0.4 2 203 4 13 0 185	204 0.4 6 210 4 14 0
UNIT ABSORPTION ECONOMIZER FURNACE DRUM - SH DESH SH DESH - SH OUTLET REHEATER TOTAL	MJ/s	164 360 150 173 177 1023	163 357 149 177 175 1020	166 350 152 180 178 1025	114 323 107 161 138 843	126 310 117 144 144 841	124 318 111 157 147 857	90 256 79 112 109 646	93 233 83 120 112 641	170 355 152 165 171 1014	172 347 155 180 178 1031	175 340 159 172 182 1028	132 305 119 141 141 839	124 319 114 157 142 855	125 316 113 158 142 854	87 237 76 103 101 604	88 241 77 117 106 629
UNIT EFFICIENCY DRY GAS LOSS MOISTURE IN FUEL LOSS MOISTURE IN AIR LOSS RADIATION LOSS ASH PIT LOSS HEAT IN FLY ASH LOSS PYRITE REJECTION LOSS CARBON LOSS TOTAL LOSSES EFFICIENCY	*	4.13 5.01 0.13 0.19 0.35 0.02 0.01 0.26 10.09 89.91	3.71 4.99 0.11 0.19 0.32 0.02 0.01 0.25 9.60	3.85 5.00 0.12 0.19 0.31 0.02 0.01 0.55 10.03 89.97	3.63 4.90 0.11 0.23 0.36 0.02 0.01 0.61 9.86	3.97 4.91 0.12 0.23 0.32 0.01 0.01 0.20 9.77 90.23	3.26 4.89 0.10 0.22 0.32 0.01 0.01 0.22 9.03	2.97 4.83 0.09 0.29 0.34 0.01 0.01 0.46 9.01 90.99	3.34 4.85 0.10 0.30 0.32 0.01 0.01 0.22 9.16	4.28 4.96 0.13 0.19 0.34 0.02 0.01 0.28 10.20 89.80	4.35 4.76 0.13 0.19 0.33 0.02 0.01 0.24 10.03 89.97	3.98 5.07 0.12 0.19 0.32 0.02 0.01 0.18 9.87 90.13	3.79 5.06 0.12 0.23 0.34 0.01 0.01 0.22 9.79	4.06 4.89 0.13 0.22 0.32 0.01 0.01 0.38 10.03 89.97	3.69 - 4.99 0.12 0.22 0.31 0.02 0.01 0.41 9.96	3.47 4.86 0.11 0.31 0.33 0.02 0.01 0.12 9.23 90.77	3.52 4.93 0.11 0.30 0.32 0.02 0.01 0.20 9.42 90.58
HEAT INPUT HEAT INPUT FROM FUEL	MJ/s	1138	1128	1140	935	932	942	710	706	1129	1147	1141	930	950	948	665	694
EXCESS AIR AIR HEATER INLET AIR HEATER OUTLET	\$	19.8 36.4	21.5 26.2	20.9 36.4	16.8 35.4	19,9 37.3	20.8 34.2	22.6 37.3	24.4 38.1	26.3 40.0	27.4 47.4	29.3 31.7	29.3 41.9	28.0 48.7	31.7 49.9	25.1 39.5	24.7 38.1

BIASED FIRING OPERATION STUDY

				* *		TEST R	ESULTS										
TEST NO.		<u>1</u>	2	• <u>3</u>	<u>4</u>	<u>5</u> .	<u>6</u>	7	<u>8</u>	9	10	11	12	<u>13</u>	<u>14</u>	<u>15</u>	16
DATE	1975	9/17	9/18	9/20	12/13	10/11	10/12	10/12	10/5	9/17	9/10	9/18	10/11	12/13	12/13		7/24
UNIT LOAD	MW	430	426	434	356	351	360	257	270	429	428	429	351	356	356	256	259
PRODUCTS OF COMBUSTION	<i>µ</i> G/J																
AIR HEATER INLET																	
DRY AIR		436	406	436	457	446	431	434	441	446	467	425	466	498	479	442	443
WET AIR		444	413	443	464	454	438	442	448	454	475	432	474	506	487	450	450
DRY PRODUCTS		396	404	399	406	404	401	402	410	416	418	430	438	441	433	409	413
WET PRODUCTS		422	430	425	432	429	427	427	436	442	444	457	465	467	460	435	439
AIR HEATER OUTLET																	
DRY AIR		383	391	386	394	390	388	388	397	403	404	418	425	429	421	397	400
WET AIR		390	398	393	401	396	395	395	403	409	411	425	432	436	428	403	407
DRY PRODUCTS		449	419	449	468	460	444	448	454	460	482	438	480	510	491	455	456
WET PRODUCTS		477	445	476	495	487	470	475	480	487	508	465	507	538	519	482	482
GAS AND AIR FLOWS	KG/S																
GAS ENTERING AIR HEATER	•	480	485	485	404	400	402	304	307	499	508	522	433	444	436	290	304
GAS LEAVING AIR HEATER		542	502	542	463	454	443	337	339	549	582	531	472	511	492	320	335
AIR ENTERING AIR HEATER		505	466	505	434	423	413	314	316	512	545	494	441	481	462	299	312
AIR LEAVING AIR HEATER		444	449	448	375	369	372	280	285	462	471	484	402	414	406	268	282
AIR HEATER LEAKAGE		61	17	57	60	54	41	34	32	50	74	9	39	67	56	31	30
AIR HEATER PERFORMANCE																	•
AIR HEATER LEAKAGE	%	12.7	3.6	11.9	14.7	13.4	10.2	11.1	10.2	10.1	14.5	1.7	9.0	15.0	12.8	10.7	9.9
GAS SIDE EFFICIENCY	%	67.3	70.5	69.5	68.2	65.4	71.0	70.3	68.4	67.9	67.2	70.9	69.8	67.8	68.5	66.5	66.6
GAS DROP	°C	211	218	215	188	182	196	172	173	214	208	224	198	190	191	166	168
AIR RISE	°C	242	238	240	222	228	218	199	204	243	239	242	223	224	223	208	208
TEMPERATURE HEAD	°C	313	309	310	275	279	276	244	253	316	310	316	283	281	279	249	252
FUEL ANALYSIS																	
CARBON	\$	66.80	67.50	65.90	70.30	68.00	67.80	66.50	67.00	66.80	65.30	67.60	67.20	71.80	66.10	66.30	67.20
HYDROGEN	\$	5.20	5.30	5.10	5.40	5.20	5.30	5.10	5.20	5.10	4.80	5.30	5,20	5.50	5.20	5.20	5.30
NITROGEN	%	1.20	1.30	1,20	1.00	1.40	1.20	1,30	1.30	1.30	1.20	1.40	1.30	1.30	1.20	1.40	1.20
OXYGEN	%	9.70	9.70	10.00	5.70	10.80	9.60	10.60	9.70	10,60	10.70	9.80	10.00	5.80	9.50	9.40	9.60
SULFUR	≸	0.50	0.40	0.40	0.50	0.50	0.50	0.50	0.50	0.50	0.40	0.40	0.40	0.50	0.40	0.50	0.50
MOISTURE	₹.	8.00	7,40	8.10	6.50	6.90	7.50	8.30	7.80	8.00	7.40	8.00	8.10	7.10	8.10	7,40	7.40
Ash	., %	8.60	8.40	9.30	10.60	7.20	B.00	7,70	8.50	7.70	10.20	7.50	7.80	8.00	9.50	9.80	8.80
HHV	kJ/KG	28307	28470	27786	28656	28145	28680	28214	28470	28168	27447	28424	27656	29517	28075	28447	28517

3

HEET BI

				TEST	RESULTS								
TEST NO.		1	2	3	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	12
DATE Unit Load	1975 MW	9/17 428	9/26 430	9/26 430	9/26 43 0	9/26 431	10/1 430	10/1 429	10 /1 428	9/27 428	10/1 429	10/1 430	10/5 42 7
FLOWS	KG/S			_									
FEEDWATER (MEASURED) AUXILIARY STEAM - SH (PLANT INSTRUMENTATION)		369	372	372	370	370	372	372	370	369	369	370	370
SH SPRAY (HEAT BALANCE)		0.4 0	0.4 1	0.4 0	0.4 0	0.4 0	0.4	0.4	0.4 0	0.4	0.4 0	0.4	0.4
MAIN STEAM (CALCULATED)		369	372	372	370	370	372	372	370	369	368	0 370	0 370
TURBINE LEAKAGE (TURBINE HEAT BALANCE)		7	7	7	7	7	7	7	7	7	7	7	7
HP HTR. EXTRACTION (HEAT BALANCE)		31	32	32	32	32	31	32	31	31	32.	32	31
RH SPRAY (HEAT BALANCE)		3	3	3	5	5	0	o	1	0	0	0	Ö
RH STEAM (CALCULATED)		333	336	336	336	335	333	334	332	331	330	331	332
UNIT ABSORPTION	MJ/s												
ECONOMIZER		174	173	173	171	174	165	166	167	185	188	189	164
Furnace Drum - SH DESH		341 157	348	347	346	343 156	356 153	356 153	352 156	330	328	329	354
SH DESH - SH OUTLET		173	158 174	158 174	154 1 79	175	181	177	174	158 169	163 169	165 169	149 177
REHEATER		175	178	177	179	178	174	174	174	172	166	167	174
TOTAL		1020	1030	1029	1029	1026	1029	1025	1023	1014	1015	1019	1018
UNIT EFFICIENCY	%												
DRY GAS LOSS	•	4.52	3.96	4.07	4.06	3.97	3.91	3.94	3.63	4.58	4.86	4.64	4.03
MOISTURE IN FUEL LOSS		5.07	5.10	5.11	4.96	5.03	5.09	5.11	5.03	5.08	4.96	5.04	4.95
MOISTURE IN AIR LOSS		0.14	0.12	0.12	0.12	0.12	0.12	0.12	0.11	0.14	0.15	0.14	0.12
RADIATION LOSS		0.19	0.19	0.19	0.19	0.19 0.33	0.19 0.33	0.19 0.32	0.19 0.32	0.19 0.32	0.19 0.35	0.19 0.32	0.19 0.32
ASH PIT LOSS Heat in Fly ASH Loss		0.34 0.03	0.33 0.02	0.33 0.02	0.34 0.03	0.33	0.02	0.02	0.02	0.02	0.03	0.02	0.32
PYRITE REJECTION LOSS		0.03	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02
CARBON LOSS		0.20	0.14	0.24	0.30	0.28	0.24	0.59	0.24	0.22	0.27	0.16	0.25
TOTAL LOSSES		10.49	9.87	10.08	10.01	9.95	9.91	10.30	9.54	10.56	10.82	10.52	9.89
EFFICIENCY		89.51	90.13	89.92	89.99	90.05	90.09	89.70	90.46	B9.44	89.18	89.48	90.11
HEAT INPUT	MJ/s												
HEAT INPUT FROM FUEL	•	1140	1143	1145	1143	1139	1142	1143	1130	1133	1138	1140	1130
EXCESS AIR	ø												
AIR HEATER INLET		27.0	28.2	26.2	25.5	25.2	18.5	19.2	19.2	32.1	33.8	33.8 49.5	23.1 29.2
AIR HEATER OUTLET		46.8	31.8	32.9	35.6	32.6	29.3	30.1	27.8	48.3	57.8	49.5	29.2

				TEST	RESULTS								
TEST NO.		13	14	<u>15</u>	16	<u>17</u>	18	19	20	21	55	<u>23</u>	24
DATE Unit Load	1975 MW	10/4 434	10/5 422	10/4 429	10/3 427	10/3 424	10/3 42 9	10/6 417	10/8 426	10/9 356	10/9 358	10/12 253	10/5 265
FLOWS FEEDWATER (MEASURED) AUXILIARY STEAM - SH (PLANT INSTRUMENTATION SH SPRAY (HEAT BALANCE) MAIN STEAM (CALCULATED) TURBINE LEAKAGE (TURBINE HEAT BALANCE) HP HTR. EXTRACTION (HEAT BALANCE) RH SPRAY (HEAT BALANCE)	KG/S	364 0.4 0 364 7 30	370 0.4 0 370 7 32	370 0.4 0 370 7 31	372 0.4 0 372 7 32	377 0.4 0 377 7 32	367 0.4 0 367 7 31	374 0.4 0 374 7 31	377 0.4 0 377 7 32	299 0.4 0 299 6 23	299 0.4 0 299 6 23	218 0.4 0 218 5	216 0.4 1 217 3
RH STEAM (CALCULATED)		4 331	1 332	332 0	3 336	5 342	5 3 34	0 3 3 5	338	0 270	2 272	0 199	0 197
UNIT ABSORPTION ECONOMIZER FURNACE DRUM - SH DESH SH DESH - SH OUTLET REHEATER TOTAL	MJ/s	169 339 155 182 176 1022	158 361 145 145 166 1005	163 356 148 181 172 1019	166 356 148 180 173 1023	161 367 147 176 175 1026	166 348 151 181 178 1023	155 369 142 183 177 1025	157 370 143 184 170 1024	119 323 109 151 140 842	130 311 120 144 147 853	87 261 73 108 107 634	91 251 78 114 105 638
UNIT EFFICIENCY DRY GAS LOSS MOISTURE IN FUEL LOSS MOISTURE IN AIR LOSS RADIATION LOSS ASH PIT LOSS HEAT IN FLY ASH LOSS PYRITE REJECTION LOSS CARBON LOSS TOTAL LOSSES EFFICIENCY	*	4.21 5.10 0.13 0.19 0.32 0.02 0.01 0.21 10.17 89.83	3.74 4.97 0.11 0.19 0.33 0.02 0.01 0.30 9.68 90.32	4.18 5.05 0.13 0.19 0.33 0.02 0.01 0.28 10.18 89.82	4.13 5.05 0.13 0.19 0.32 0.02 0.01 0.26 10.10 89.90	4.06 5.05 0.12 0.19 0.32 0.02 0.01 0.22 9.99 90.01	4.09 5.12 0.13 0.19 0.32 0.02 0.01 0.63 10.49 89.51	4.09 5.05 0.13 0.19 0.32 0.02 0.01 0.40 10.21 89.79	4.02 5.04 0.12 0.19 0.32 0.01 0.43 10.15 81.85	3.71 4.98 0.11 0.23 0.33 0.02 0.01 0.20 9.59 90.41	3.50 4.95 0.11 0.22 0.32 0.02 0.01 0.22 9.36 90,65	3.02 4.95 0.09 0.30 0.34 0.01 0.47 9.21 90.79	3.32 4.95 0.10 0.30 0.32 0.01 0.01 0.22 9.24 90.76
HEAT INPUT HEAT INPUT FROM FUEL	MJ/s	1137	1113	1135	1138	1140	1143	1142	1140	931	941	698	703
EXCESS AIR AIR HEATER INLCT AIR HEATER OUTLET	\$	25.1 36.7	22.0 29.9	25.1 31.8	21.3 31.4	23.5 33.6	21.7 31.6	18.5 32.8	19.6 35.1	19.3 39.6	21.5 37.4	22.8 34.8	23.9 36.7

				TEST	RESULTS								
TEST NO.		1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	9	<u>10</u>	11	12
DATE Unit Load	1975 M₩	9/17 428	9/26 430	9/26 430	9/26 430	9/26 431	10/1 430	10/1 429	10/1 428	9/27 428	10/1 429	10/1 430	10/5 427
PRODUCTS OF COMBUSTION	.43/J												
AIR HEATER INLET ORY AIR WET AIR DRY PRODUCTS WET PRODUCTS		479 487 427 454	417 424 419 446	427 434 418 445	433 440 415 441	421 428 411 437	416 423 394 420	422 429 399 425	411 417 396 421	477 485 437 464	503 511 439 466	478 486 440 467	412 419 406 432
AIR HEATER OUTLET DRY AIR WET AIR DRY PRODUCTS WET PRODUCTS		414 421 492 519	406 412 430 457	406 412 440 466	401 408 447 473	397 404 434 461	381 387 428 455	386 393 434 461	383 389 423 450	424 432 490 517	426 434 516 543	427 434 490 518	392 399 426 452
GAS AND AIR FLOWS GAS ENTERING AIR HEATER GAS LEAVING AIR HEATER AIR ENTERING AIR HEATER AIR LEAVING AIR HEATER AIR HEATER LEAKAGE	Ka/s	517 592 555 480 75	509 522 484 471 13	509 534 497 472 25	504 541 504 466 37	498 525 488 460 27	479 520 483 442 40	486 527 490 449 41	476 508 472 440 32	526 586 549 489 60	530 618 582 494 88	532 590 553 495 58	488 510 473 451 22
AIR HEATER PERFORMANCE AIR HEATER LEAKAGE GAS SIDE EFFICIENCY GAS DROP AIR RISE TEMPERATURE HEAD	**************************************	14.5 67.2 212 243 316	2.6 69.1 210 241 304	4.9 68.5 209 241 306	7.4 68.3 208 239 304	5.5 68.7 210 241 306	8.4 68.2 210 242 309	8.5 68.2 209 241 307	6.7 70.5 216 242 307	11.4 66.9 208 241 311	16.7 65.8 208 245 316	10.9 67.2 213 246 317	4.6 68.2 210 242 309
FUEL ANALYSIS CARBON HYDROGEN NITROGEN OXYGEN SULFUR MOISTURE ASH HHV	Я Я Я Я Я Я Я Я Я Я Я Я Я Я Я Я Я Я Я	65.40 5.10 1.10 9.40 0.50 7.40 11.10 27214	63.70 4.90 1.30 10.20 0.50 9.40 10.00 27121	65.90 5.20 1.20 9.50 0.40 8.30 9.50 27889	63.90 4.80 1.20 9.70 0.40 8.30 11.70 26842	65.10 5.00 1.30 10.40 0.40 8.70 9.10 27586	66.20 5.20 1.20 9.50 0.50 8.30 9.10 27982	67.20 5.30 1.30 9.60 0.40 7.80 8.50 28098	67.50 5.30 1.20 9.70 0.40 8.00 7.90 28540	66.80 5.20 1.10 9.70 0.50 8.50 8.20 28191	63.90 4.90 1.20 9.00 0.40 7.80 12.80 27121	67.00 5.20 1.30 9.70 0.50 8.40 7.90 28447	66.60 5.10 1.30 10.60 0.50 7.70 8.20 28098

				TEST	RESULTS								
TEST NO.		<u>13</u>	14	<u>15</u>	<u>16</u>	<u>17</u>	18	<u>19</u>	<u>20</u>	21	22	<u>23</u>	24
DATE Unit Load	1975 MW	10/4 434	10/5 422	10/4 429	10/3 427	10/3 424	10/3 429	10/6 417	10/8 426	10/9 356	10/9 358	10/12 253	10/5 265
PRODUCTS OF COMBUSTION	<i>M</i> G/J												
AIR HEATER INLET DRY AIR WET AIR DRY PRODUCTS WET PRODUCTS		437 444 412 439	412 419 400 426	427 434 419 446	424 431 404 430	428 436 409 435	429 435 410 437	430 437 396 422	435 442 398 424	442 450 391 417	443 450 404 430	432 440 406 433	442 449 414 440
AIR HEATER QUILET DRY AIR WET AIR DRY PRODUCTS WET PRODUCTS		400 407 450 477	487 393 425 4 51	406 41 2 441 468	391 398 436 463	396 403 441 468	397 403 443 47 0	3 8 3 3 9 0 442 46 9	385 391 448 475	378 384 456 482	391 398 455 482	394 401 445 472	401 408 455 482
GAS AND AIR FLOWS GAS ENTERING AIR HEATER GAS LEAVING AIR HEATER AIR ENTERING AIR HEATER AIR LEAVING AIR HEATER AIR HEATER LEAKAGE	kg/s	499 542 505 462 43	474 502 466 438 28	506 531 493 468 25	489 527 490 453 38	496 534 497 459 38	499 537 499 461 38	482 536 499 445 5 4	483 541 504 446 58	388 449 419 358 61	405 454 424 375 49	302 330 307 280 27	309 339 316 287 30
AIR HEATER PERFORMANCE AIR HEATER LEARAGE GAS SIDE EFFICIENCY GAS DROP AIR RISE TEMPERATURE HEAD	% % °C °C	8.6 67.7 211 243 311	6.0 59.7 213 239 306	4.9 68.0 210 241 308	7.7 67.4 209 243 310	7.6 67.9 207 239 305	7.5 68.2 P12 242 310	11.2 66.7 204 239 305	12.0 67.3 204 237 303	15.7 66.6 185 222 277	10.1 69.9 197 220 282	9.0 69.5 167 196 240	9.5 68.5 172 202 251
FUEL ANALYSIS CARBON HYDROGEN NITROGEN OXYGEN SULFUR MOISTURE ASH HHY	r I/na	67.20 5.30 1.40 9.60 0.50 8.60 7.40	64.90 5.00 1.30 10.30 0.50 8.10 9.90 27563	65.90 5.10 1.10 10.50 0.50 7.50 9.40 27400	58.40 5.40 1.20 9.80 0.40 7.50 7.30 08840	66.90 5.20 1.20 9.70 0.50 8.40 8.10 28284	67.20 5.20 1.20 10.80 0.50 8.00 7.10 27703	67.40 5.30 1.20 9.70 0.50 7.50 8.40 28284	56.70 5.20 1.20 9.70 0.40 #.00 8.80 28052	65.00 5.00 1.30 10.40 0.50 8.90 8.90 27633	67.20 5.30 1.40 4.70 0.50 7.60 8.30 28377	67.20 5.30 1.30 9.60 0.40 8.30 7.90 28424	67.30 5.30 1.30 9.70 0.40 7.60 8.40 28284

			<u>B(</u>	DARD AND	COMPUTE	R DATA						
	TEST NO.		1	2	<u>2A</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	9
C.	DATC TIME • LOAD	1975 Mw	5/7 09:25 429	5/5 17:23 427	5/7 16:50 428	5/7 14:15 428	10/10 03:30 360	7/16 11:30 259	7/ 1 5 15:05 260	7/16 15:45 258	5/5 13:40 430	4/30 15:07 428
CBCCCCCCB	MAIN STEAM SUPERHEAT SPRAY L SUPERHEAT SPRAY R REHEAT SPRAY R REHEAT SPRAY EXT. STM. TO STM. AH 2-1 EXT. STM. TO STM. AH 2-2 AUX. STM. TO STM. AH 2-1 AUX. STM. TO STM. AH 2-1 AUX. STM. TO STM. AH 2-2 AUX. STEAM TO STAE AIR FLOW TO BOILER	10 ³ Lв/н г	2913 3050 0 0 0 58.9 58.9 0 0 3.1	2945 3000 0 0 0 58.9 58.9 0 0 3.1	2910 3050 0 0 0 58.9 58.9 0 0 3.1	2912 3000 0 0 58.9 58.9 0 0 3.1	2249 2350 14.1 12.0 7.1 58.8 58.8 1.2 1.2 3.1 2720	1535 1525 10.2 1.4 0 13.3 13.25 0 0 3.0	1520 1520 23.2 13.5 0 9.3 9.2 0 0 3.0	1503 1502 31.5 21.9 0 18.5 18.5 0 0 3.0 2200	2900 3040 0 0 16.5 58.9 58.9 0 0 3.1	2898 3000 0 0 0 58.9 58.9 0 0 3.0 3380
000000000	PRESSURES STEAM & WATER FEEDWATER TO ECON. BOILER DRUM TURBINE THROTTLE TURBINE 1ST STAGE RH INLET, LEFT RH INLET, RIGHT RH INLET, AVG. RH OUTLET HP HTR. 2-7 STEAM IN	PSIG	2825 2737 2449 1841 572 576 574 533 550	2810 2719 2441 1834 568 572 570 529 548	2825 2740 2452 1841 570 574 572 530 550	2825 2737 2450 1841 570 574 572 530 548	2689 2615 2406 1435 465 469 467 429 382	2532 2485 2385 939 311 314 313 278 412	2515 2473 2374 938 313 314 314 279 412	2523 2481 2384 935 311 312 312 278 412	2818 2724 2445 1841 574 578 576 534 553	2811 2723 2435 1832 569 573 571 528 548
88800088880088888	AIR & GAS FD FAN 2-1 DISCHARGE R FD FAN 2-2 DISCHARGE L FD FAN DISCHARGE AVG. AH 2-1 AIR DIFF. PRESS. R AH 2-2 AIR DIFF. PRESS. L AH AIR DIFF. PRESS. AVG. WINDBOX PRESSURE R WINDBOX PRESSURE L WINDBOX PRESSURE AVG. FURNACE DRAFT SH DRAFT DIFF. ECON. DRAFT DIFF. AH 2-1 GAS OUT PRESS. R AH 2-2 GAS OUT PRESS. R AH 2-2 GAS OUT PRESS. R AH GAS OUT PRESS. R ID FAN 2-1 INLET PRESS. R ID FAN 2-2 INLET PRESS. L ID FAN 1-2 INLET PRESS. L	"H ₂ O	8.4 8.6 8.5 3.6 3.2 3.3 -0.5 1.80 2.28 -11.5 -12.1 -15.6	9.6 9.6 9.6 3.7 3.8 3.5 3.6 -0.6 2.10 2.52 -12.6 -15.0 -15.8	11.6 11.6 11.6 4.1 4.2 5.5 5.5 -0.5 2.12 2.78 -13.5 -14.2 -18.4 -16.1	12.9 12.9 12.9 4.8 4.7 5.7 5.7 -0.5 2.43 3.06 -15+ -15+ -20.0 -17.7	8.2 8.2 8.2 2.7 3.1 2.9 4.1 4.1 -1.0 1.6 1.98 -10.8 -10.8 -13.1 -11.2	4.0 3.9 4.0 1.19 1.28 2.2 2.2 NA 0.32 0.65 -5.1 -5.4 -6.8	4.5 4.5 1.26 1.36 2.5 2.5 2.5 -0.6 0.46 0.67 -5.1 -5.3 -7.1	6.6 6.6 6.6 1.77 1.88 1.83 3.9 3.9 -0.4 0.64 1.05 -6.8 -6.2 -6.5 -7.2	9.6 9.6 9.5 3.6 3.6 4.5 4.5 -0.6 1.82 2.23 -12.0 -15.6 -13.5	9.9 9.9 9.9 3.8 3.9 4.3 4.3 -0.4 1.96 2.47 -12.0 -12.5 -16.3 -14.8

^{*} C = COMPUTER DATA; B = BOARD DATA

	BOARD AND COMPUTER DATA TEST NO. 10 11 12 13 14 15 16 17 18 19													
TEST NO.		10	11	12	13	14	<u>15</u>	16	17	18	<u>19</u>			
DATE Time C* Load	1975 Mw	5/1 17:50 428	7/17 11:15 256	7/18 10:00 259	5/9 15:30 433	5/9 10:15 433	5/9 18:15 433	10/9 93:99 361	7/22 11:15 258	7/21 16:30 260	7/21 14:00 258			
FLOWS C FEEDWATER B® MAIN STEAM C SUPERHEAT SPRAY L C SUPERHEAT SPRAY R C REHEAT SPRAY C EXT. STM. TO STM. AH 2-1 C EXT. STM. TO STM. AH 2-2 C AUX. STM. TO STM. AH 2-1 C AUX. STM. TO STM. AH 2-2 C AUX. STEAM TO STAE B AIR FLOW TO BOILER	10 ³ LB/н г	2895 3050 0 0 0 58.9 58.9 0 3.0	1517 1504 20.7 13.0 0 14.2 14.3 0 0 3.0 1700	1482 1503 33.0 25.6 0 19.1 19.3 0 0 3.0 2100	2930 3038 0 0 27.5 58.9 58.9 0 0 3.0 2980	2915 3012 0 0 31.0 58.9 58.9 0 0 3.0 3120	2905 3012 0 27.3 58.9 58.9 0 0	2258 2350 4.4 1.2 22.7 58.8 58.8 1.2 1.2 3.1 2720	1571 1508 0 0 0 7.2 7.3 0 0 3.0	1573 1532 9.8 2.5 0 8.4 8.5 0 0 3.0	1529 1505 26.3 19.2 0 12.0 12.1 0 3.0 2020			
PRESSURES STEAM AND WATER FEEDWATER TO ECON. C BOILER DRUM C TURBINE THROTTLE C TURBINE 1ST STAGE CRH INLET, LEFT CRH INLET, RIGHT CRH INLET, AVG. CRH OUTLET CHP HTR. 2-7 STEAM IN	PSIG	2812 2725 2438 1834 568 571 570 528 546	2513 2472 2374 931 310 311 311 278 409	2143 2108 1978 952 313 314 314 280 412	2828 2738 2453 1846 579 583 581 539 556	2826 2738 2456 1845 577 581 579 538 556	2826 2737 2454 1845 575 579 577 536 554	2699 2623 2417 1430 466 468 467 429 385	2537 2492 2363 932 310 311 311 278 412	2504 2458 2359 931 311 315 313 279 409	2501 2458 2362 926 309 311 310 277 412			
AIR AND GAS B FD FAN 2-1 DISCHARGE R B FD FAN 2-2 DISCHARGE L B FD FAN DISCHARGE AVG. C AH 2-1 AIR DIFF. PRESS. R C AH 2-2 AIR DIFF. PRESS. L C AH AIR DIFF. PRESS. L C AH AIR DIFF. PRESS. L C WINDBOX PRESSURE R WINDBOX PRESSURE L WINDBOX PRESSURE AVG. B FURNACE DRAFT C SH DRAFT DIFF. C ECON. DRAFT DIFF. C ECON. DRAFT DIFF. B AH 2-1 GAS OUT PRESS. R B AH 2-2 GAS OUT PRESS. L AH GAS OUT PRESSURE AVG. B ID FAN 2-1 INLET PRESS. R B ID FAN 2-2 INLET PRESS. L B ID FAN 1-2 INLET PRESS. L B ID FAN INLET PRESSURE AVG.	"H ₂ 0	12.0 12.0 12.0 4.4 4.6 4.5 4.8 4.8 -0.5 2.28 2.95 -15+ -15+ -15+ -18.9 -17.5	3.8 3.7 3.8 1.21 1.38 1.38 1.8 1.8 -0.7 5.2 -4.8 -5.2 -6.8 -5.4 -6.1	6.4 6.4 1.73 1.83 1.78 3.9 -0.5 1.04 -6.5 -5.8 -6.2 -6.5	8.2 8.2 3.1 3.3 3.6 3.6 -0.54 2.0 -12.0 -10.5 -14.6 -12.5 -13.6	9.0 9.0 9.0 3.4 3.5 3.7 3.7 -0.6 1.64 2.27 -13.1 -12.6 -16.1 -13.6 -14.9	11.5 11.6 4.2 4.4 4.3 5.0 5.0 -0.6 2.19 2.90 -15+ -15+ -18.8 -16.0	8.8 8.6 2.6 2.0 2.8 4.6 4.6 4.6 1.89 -10.3 -10.1 -11.0 -11.6	3.4 3.4 1.18 1.37 1.5 1.5 1.5 -0.4 0.59 -5.2 -4.5 -6.4 -5.1	3.2 3.2 1.22 1.42 1.37 1.7 1.7 0.38 0.84 -5.6 -5.3 -6.9 -5.5 -6.2	5.6 5.2 5.4 1.60 1.75 1.68 2.8 2.8 -0.6 0.67 0.94 -6.5 -5.9 -6.2 -8.1 -6.4			

^{*} C = COMPUTER DATA; B = BOARD DATA

267 SHEET B25

	BOARD AND COMPUTER DATA											
	TEST NO.		1	<u> </u>	<u>2A</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9
	DATE	1975	5/7	5/5	5/7	5/7	10/10	7/16	7/15	7/16	5/5	4/30
	TIME		09:25	17:23	16:50	14:15	03:30	11:30	15:05	15:45	13:40	15:07
С	LOAD	MW	429	427	428	428	360	259	260	258	430	428
	TEMPERATURES											
	AIR AND GAS	°F										
C	AH 2-1 AIR IN		99	96	97	94	106	104	106	102	96	96
С	AH 2-2 AIR IN		87	88	87	88	106	103	110	98	88	89
c	AH AVG. AIR IN		94	92	92	91	106	104	108	100	92	93
Č	AH 2-1 AIR OUT		499 526	504	503	504	510	466	471	466	506	505
Č	AH 2-2 AIR OUT		512	528 516	533	534	520	470	478	480	530	528
C	AH AVG. AIR OUT AH 2-1 GAS IN		693	700	518 714	519 718	515	468	475	473	518	516
Č	AH 2-2 GAS IN		700	706	722	733	680 675	589	599	614	700	704
č	AH AVG. GAS IN		697	703	718	726	678	583 586	592 596	612	708	710
č	AH 2-1 GAS OUT		253	257	257	260	265	245	244	613 240	704	707
č	AH 2-2 GAS OUT (1)		NA	NA NA	NA	NA NA	268	NA NA	NA	NA	256 NA	258 NA
č	AH AVG. GAS OUT		253	257	257	260	566	245	244	240	256	258
	STEAM AND WATER	°F										
С	FW IN TEMP. TO ECON.		484	484	484	484	465	428	428	428	485	484
č	ECON. OUT AVG.		575	579	586	592	551	493	499	508	576	581
č	BOILER DOWNCOMER		678	678	679	679	672	666	664	665	678	677
Č	SH DESH INLET L		739	741	748	759	757	738	750	767	743	743
С	SH DESH INLET R		739	751	748	753	763	736	746	759	750	748
С	SH DESH INLET AVG.		739	746	748	756	760	737	748	763	747	746
C	SH DESH OUTLET L		744	747	753	759	753	730	741	734	748	748
С	SH DESH OUTLET R		742	748	752	757	757	734	735	740	748	751
С	SH DESH OUTLET AVG.		743	748	753	758	755	732	738	737	748	750
С	SH OUTLET		982	982	988	991	1010	1008	1003	1006	991	986
C	THROTTLE STEAM		971	976	978	980	999	999	995	996	980	975
C	RH TURBINE L		613	617	618	620	601	552	550	551	623	616
С	RH TURBINE R		614	617	618	620	606	562	560	560	622	617
C	RH TURBINE AVG.		614	617	618	620	603	557	555	556 549	623 604	617 615
C	RH BOILER L		611 609	610 607	616	617	584	550	547 556		594	612
C	RH BOILER R		610	609	614 615	616 617	582	558 554	556 552	556 553	599	614
Ç	RH BOILER AVG.		1003	1000	1002	1002	583	981	992	992	1003	1002
C	RH OUTLET		611	616	616	620	1021 602	558	555	556	620	616
Č	HP HTR. 2-7 STEAM IN		413	413	413	413	400	368	369	368	413	412
Č	HP HTR. 2-7 FW IN		423	422	423	423	406	372	372	371	423	422
C	HP HTR. 2-7 DRAIN		545	549	558	562	550	567	556	578	552	556
С	Aux. Steam Temp.		373	J43	330	JUE	330	30,	330	3.0	332	550
	FAN DAMPER POSITION 9	6 OPEN										
В	FD FANS		68	70	75	80	65	46	48	56	68	72
В	ID FANS		62	63	65	72	58	38	40	46	61	62
	SPRAY VALVE POSITION	S OPEN										
В	SH SPRAY		0	0	٥	0	11	11	23	31	0	0
B	RH SPRAY		õ	ŏ	ŏ	ŏ	Ö	Ö	ō	Ö	21	0
_	**** *******		-	•	_	_	•	-	_			

C = COMPUTER DATA; B = BOARD DATA
(1) TC READING OPEN

	BOARD AND COMPUTER DATA											
	TEST NO.		<u>10</u>	<u>11</u>	12	<u>13</u>	14	<u>15</u>	16	<u>17</u>	18	19
С	DATE TIME LOAD TEMPERATURES	1975 Mw	5/1 17:50 428	7/17 11:15 256	7/18 10:00 259	5/9 15:30 433	5/9 10:15 433	5/9 18:15 433	15/9 03:00 361	7/22 11:15 258	7/21 16:30 260	7/21 14:00 258
C C C	AIR AND GAS AH 2-1 AIR IN AH 2-2 AIR IN AH AVG. AIR IN AH AVG. AIR OUT	°F	93 89 91 506	104 112 108 470	104 105 105 465	96 88 92 510	97 86 92 508	92 87 89	109 112 117 508	104 112 108 470	103 112 108 473	104 101 103 473
00000000	AH 2-2 AIR OUT AH AVG. AIR OUT AH 2-1 GAS IN AH 2-2 GAS IN AH AVG. GAS IN AH 2-1 GAS OUT AH 2-2 GAS OUT (1) AH AVG. GAS OUT		531 518 719 717 718 260 NA 260	473 472 596 586 591 246 NA 246	480 473 617 611 614 237 NA 237	532 521 699 704 702 257 NA 257	533 520 703 709 706 257 NA 257	538 526 728 722 725 262 NA 262	514 517 677 679 678 262 260 261	476 473 599 597 598 244 NA	477 475 602 596 599 246 NA 246	484 479 618 614 616 244 114
	STEAM AND WATER FW IN TEMP. TO ECON. ECON. OUT AVG. BOILER DOWNCOMER SH DESH INLET L SH DESH INLET R SH DESH OUTLET L SH DESH OUTLET L SH DESH OUTLET R SH DESH OUTLET AVG. SH OUTLET TURBINE L RH TURBINE L RH TURBINE AVG. RH BOILER L RH BOILER R RH BOILER AVG. RH OUTLET HP HTR. 2-7 STEAM IN HP HTR. 2-7 TORAIN	°F	484 591 679 749 754 752 754 756 992 982 621 622 622 618 1000 618 412 422 563	428 495 664 747 744 746 732 1006 996 551 561 556 548 556 552 1001 556 368 371 567	429 503 642 763 758 761 729 727 1005 581 600 591 583 1001 583 1001 585 369 369	485 575 578 744 745 750 750 985 974 619 619 619 576 570 573 1003 618 414 424	485 579 679 746 747 751 752 991 623 624 624 624 573 1002 573 1002 621 414 425	485 593 679 760 763 762 765 767 397 987 628 628 628 581 1004 626 414 424	465 548 673 759 767 762 761 767 764 1014 1004 1005 610 605 640 640 400 406 563	426 494 665 744 739 742 747 747 1301 993 547 552 648 1000 552 68 372 572	427 496 663 745 746 746 742 1002 993 559 554 555 1000 555 368 371	427 505 663 766 766 745 743 1004 996 550 562 557 553 1001 556 368 372 567
C B B	FAN DAMPER POSITION FD FANS ID FANS	6 OPEN	78 69	45 39	56 46	68 59	70 63	76 67	63 55	45 38	47 40	54 43
8 8	SPRAY VALVE POSITION SH SPRAY RH SPRAY	6 OPEN	0	0 55	35 0	0 30	0 35	0 30	0	0	8 0	28 0

C = COMPUTER DATA; B = BOARD DATA
(1) TC READING OPEN

	BOARD AND COMPUTER DATA											
	TEST NO.		<u>1</u>	2	<u>2A</u>	3	4	<u>5</u>	<u>6</u>	7	8	9
	DATE	1975	5/7	5/5	5/7	5/7	10/10	7/16	7/15	7/16	5/5	4/30
С	TIME LOAD	MW	09:25 429	17:23 427	16:50 428	14:15 428	03:30 360	11:30 259	15:05 260	15:45 258	13:40 430	15:07 428
	IIII DITI											
С	MILL DATA MILL 2-1	AMPS	92	91	92	92	NA	81	81	81	90	90
C	MILL 2-2 MILL 2-3	AMPS AMPS	93	96	94	- 93	NA	81	79	81	95	87
Č	MILL 2-4	AMPS	88 88	88 89	88 89	89 89	NA NA	80 80	82 82	80 82	88 88	92 91
C	MILL 2-5	AMPS	87	89	87	87	NA	ő	0	0	88	90
C	COAL AIR TEMP. MILL 2-1	°F	148	149	148	148	148	147	147	147	148	149
C	COAL AIR TEMP. MILL 2-2 COAL AIR TEMP. MILL 2-3	°F °F	148 147	146 147	147 147	147 147	148 148	147 148	147 148	147 148	147	148
č	COAL AIR TEMP. MILL 2-4	°F	147	147	147	147	146	146	146	146	147 147	147 147
C	COAL AIR TEMP. MILL 2-5	°F	149	149	150	149	149	85	90	85	150	150
B B	Mill 2-1 Exh. Discharge Mill 2-2 Exh. Discharge	"H20 "H20 "H20	8.3	8.1	8.4	8.5	7.0	7.1	6.5	6.2	8.0	8.5
В	MILL 2-3 EXH. DISCHARGE	"H20	7 .6 7 . 1	7.8 7.0	7.9 7.5	7.9 7.4	6.4 6.8	6.3 7.0	6.2 7.4	6.5 7.1	7.8 7.0	7.5 7.8
В	Mill 2-4 Exh. Discharge	"H=O	6.9	7.1	7.2	7.0	7.1	6.2	6.5	6.5	7.2	7.4
В	MILL 2-5 EXH. DISCHARGE	"H ² 0	7.3	7.2	7.3	7.3	6.6	0	0	0	7.6	7.8
B B	MILL 2-1 SUCTION MILL 2-2 SUCTION	"H ² 0	-1.76 -1.6	-1.8 -1.5	-1.6 -1.4	-1.3 -1.3	-2.0 -2.2	-2.3 -2.2	-2.5 -2.5	-2.0 -2.1	-1.8 -1.5	-1.7 -1.8
В	MILL 2-3 SUCTION	""""""""""""""""""""""""""""""""""""""	-1.86	-1.9	-1.6	-1.5	-1.95	-2.1	-2.2	-2.0	-1.8	-1.8
В	MILL 2-4 SUCTION	"H ² 0	-2.0	-1.9	-1.8	-1.8	-2.0	-2.5	-2.4	-2.2	-1.8	-1.8
B	MILL 2-5 SUCTION MILL 2-1 COAL FLOW	103LB/FIR	-2.0	-2.0	-1.8	-1.6	-2.25	0	0	0	-1.8	-1.8
В	MILL 2-2 COAL FLOW	103LB/HR	70 6 2	63 60	69 61	70 61	58 48	48 44	43 40	48 44	63 60	65 65
В	MILL 2-3 COAL FLOW	10 LB/HR	61	60	61	61	58	43	47	44	59	63
В	MILL 2-4 COAL FLOW	10 LB/HR	61	60	60	61	58	46	48	44	60	64
B 8	MILL 2-5 COAL FLOW MILL 2-1 FEEDER SPEED (1)	10°LB/HR	80 62	60 73	62 78	62 80	59 67	0 56	0 48	0 56	62 73	65 75
В	MILL 2-2 FEEDER SPEED	15	74	72	74	74	56	52	48	54	72	78
В	MILL 2-3 FEEDER SPEED	*	72	71	72	73	69	52	57	54	71	77
8 B	MILL 2-4 FEEDER SPEED	% %	74	71	74	75 75	69	53	58	54	72	78
В	MILL 2-5 FEEDER SPEED	79	74	73	74	75	70	0	0	0	74	79
_	BURNER TILT	+ DEGREES					_		••	4	10	NA
8 8	POSITION LE POSITION LE		14 14	13 12	12 13	14 15	0 1	16 16	10 10	6	8	NA
В	POSITION RF		15	13	14	15	ò	18	10	6	10	NA
В	POSITION RR		18	12	13	15	0	18	10	5	8	NA
В	DRUM LEVEL, IN NORM. H20 LEVEL		0	0	0	0	0	-1.0	-1.0	-1.0	0	0
č	FD FAN 2-1	AMPS	224	231	247	262	201	173	175	190	227	232
C	FD FAN 2-2	AMPS	212	216	227	238	216	171	173	185	213	216
C	1D FAN 2-1 1D FAN 2-2	AMPS AMPS	378	392	406	437	360	307	311	330	379	392
Č		AMPS PPM	379 NA	389 NA	406 NA	430 NA	364 NA	307 NA	311 NA	328 NA	378 NA	388 AA
C	FLUE GAS SO, IN STACK FLUE GAS CORBUSTIBLES L		ő	ő	0	Ö	.10	Ô	Ö	Ö	0	0
C	FLUE GAS COMBUSTIBLES R	*	0	0	0	0	.05	0	0	0	0	0
C	FLUE GAS COMBUSTIBLES R FLUE GAS O L FLUE GAS O R	75 4	3.01 3.08	4.24 3.96	4.37 4.88	5.65 5.96	4.26 3.83	2.75 3.62	3.46 4.33	5.31 6.44	2.69 3.20	4.45 3.36
č	FLUE GAS 02 AVG.	*****	3.05	4.10	4.63	5.81	4.04	3.19	3.90	5.88	2.95	3.91
В	AMBIENT TEMP.	°F	37	33	45	43	39	72	78	62	40 :	F.4
B B	AMBIENT REL. HUMIDITY BAROMETRIC PRESSURE	≴ "Hg	63	62	51	58 23.65	56	62 23.85	52 23.85	63 23.81	48 23.43	44 23.73
O	CANONEINIE EKESSUKE	ng	23.59	23.48	23.66	23.00	23.94	£3.00	£3.63	E3.01	EJ. 43	23.13

C = COMPUTER DATA; B = BOARD DATA (1) FEEDER SPEED IN \$ OF CONTROL SIGNAL.

BASELINE OPERATION STUDY

BOARD AND COMPUTER DATA											
TEST NO.		<u>10</u>	11	12	13	14	<u>15</u>	<u>16</u>	17	18	<u>19</u>
DATE TIME	1975	5/1 17:50	7/17 11:15	7/18 10:00	5/9 15:30	5/9 10:15	5/9 1 8: 15	10/9 03:00	7/22 11:15	7/21 16:30	7/21 14:00
(LOAD	MW	428	256	259	433	433	433	361	258	260	258
MILL DATA	AMPS	91	79	B 1	91	91	92	NA	80	80	80
(MILL 2-3	AMPS AMPS	89 91	80 81	76 84	96 90	95 89	96 89	NA NA	0 78	0 81	O 81
C MILL 2-4 C MILL 2-5	AMPS AMPS	91 91	8 2	80 0	88 89	89 90	89 90	AIS AM	80 82	81 83	82 83
C COAL AIR TEMP. MILL 2-1	°F	149	146	147	149	149	149	149	147	147	147
C COAL AIR TEMP. MILL 2-2 C COAL AIR TEMP. MILL 2-3	°F °F	147 147	146 148	147 149	148 148	148 148	147 147	148 147	86 148	85 149	86
C COAL AIR TEMP. MILL 2-4	°F	147	145	146	147	147	147	78	148	149	148 146
C COAL AIR TEMP. MILL 2-5	*F	150	86	87	149	150	150	149	149	149	148
8 Mill 2-1 Exh. Discharge 8 Mill 2-2 Exh. Discharge	"H20 "H20 "H20	8.5 7.6	5.9 6.4	5.7 9.5	8.3 8.0	8.1 8.0	8.2 8.3	7.4 6.5	5.8 O	5.6 0	5.9 0
8 MILL 2-3 Exh. DISCHARGE	"н <mark>2</mark> 0	7.8	7.8	10.1	7.0	7.2	7.4	6.9	7.3	7.4	7.5
B MILL 2-4 EXH. DISCHARGE B MILL 2-5 EXH. DISCHARGE	"H ² 0 "H ² 0	7.9 8. 0	6.5 0	7 0	7.1 7.6	7.4 7.3	7.2 7.6	7.0	6.5 6.9	6.9 6.8	6.8 7.0
B MILL 2-1 SUCTION	"HZÕ	-1.6	-2.2	-2.1	-1.9	-1.8	-1.8	-1.9	-2.2	-2.3	-2.2
B MILL 2-2 SUCTION	"H20 "H20 "H20 "H20 "H20 103LB/FR	-1.7	-2.3	-2.0	-1.6	-1.6	-1.5	-1.8	0	0	0
B MILL 2-3 SUCTION B MILL 2-4 SUCTION	"H20	-1.6 -1.8	-2.2 -2.5	-1.7 -2.1	-2.0 -2.0	-1.9 -2.0	-1.9 -1.9	-1.7 O	-2.2 -2.4	-2.2 -2.4	-2.1 -2.3
B MILL 2-5 SUCTION	_ਕ "ਮੁੱਟੂਹ	-1.6	0	0	-2.0	-2.0	-1.9	-1.9	-2.3	-2.3	-2.2
B MILL 2-1 COAL FLOW B MILL 2-2 COAL FLOW	103LB/HR	64 65	44 44	44 44	66 62	66 62	65 62	64 70	47 0	46 C	4 4 0
B MILL 2-3 COAL FLOW	103LB/HR	63	46	50	61	62	61	68	43	48	48
5 MILL 2-4 COAL FLOW	103LB/HR 103LB/HR 103LB/HR 103LB/HR	64 65	45 0	53 0	62 63	62 6 2	62 63	0 70	49 50	49 50	50 52
8 Mill 2-5 COAL FLOW 8 Mill 2-1 FEEDER SPEED (1)	10 LB/mR \$	74	50	52	75	76	76	74	54	5 3	52
8 MILL 2-2 FEEDER SPEED	**	78	54	53	75	75	75	82	0	0	ن 59
8 MILL 2-3 FEEDER SPEED 8 MILL 2-4 FEEDER SPEED	% %	78 78	57 53	61 64	74 75	74 75	74 75	80 0	53 59	58 59	60
B MILL 2-5 FEEDER SPEED	%	79	ő	Ö	75	74	75	83	60	60	62
BURNER TILT	+ DEGREES										
B POSITION LF	Dedices	NA	6 9	3 5	3 5	8 10	3	0 1	11 12	13 14	12 14
B POSITION LR		NA NA	8	5	5	10	4	ò	12	16	14
B POSITION RF B POSITION RR		NA	7	3	3	8	5	0	12	14	14
MISCELLANEOUS DRUM LEVEL, IN. + NORM. H20 LEVEL		o	-1	-1	0	0	0	Ú	-1	-1	-1
C FD FAN 2-1	AMPS	252	172	189	216	224	248	201	171	174	186
C FD FAN 2-2	AMPS AMPS	230 424	171 307	184 328	205 374	210 3 8 5	227 423	217 358	1 70 307	172 313	182 324
C ID FAN 2-1 C ID FAN 2-2	AMPS	417	306	326	372	387	417	356	307	312	324
C FLUE GAS SO IN STACK	PPM	AM	NA	NA O	501 0	255 0	328 0	NA .1○	1;4	NA O	NA O
	% \$	0	0	0	0	ő	0	.05	0	0	ő
THE CHE COMPOSITIONS	ŝ	6.32	3.14	5.74	3.80	4.88	7.36	2.55	2.77	3.17	5.21
C Frue Cas n ² P	* *	4.73 5.53	3.51 3.33	6.73 6.24	1.88 2.84	3.17 4.03	4,42 5 .89	3.39 3.28	3 .71 5.24	3.96 3.57	6.10 5.66
C FLUE GAS OF AVG. AMBIENT TERP.	%6 °F	5.53	70	78	63	61	60	35	82	79	80
8 AMBIENT REL. HUNIDITY	\$	50	67	33 23.92	43 23.91	44 23.91	42 23.0	66 23.98	41 23.95	36 23.95	41 23.98
B BAROMETRIC PRESSURE	"HG	23.77	23.88	23.72	23.31	23.41	25.0	-0.50			

C = COMPUTER DATA; B = BOARD DATA
(1) FEEDER SPEED IN % OF CONTROL SIGNAL.

	BOARD & COMPUTER DATA													
	TEST NO. 1 2 3 4 5 6 7 8													
С	DATE Time Load	1975 MW	9/18 17:00 430	9/18 17 :2 5 426	9/20 13:15 431	12/13 14:00 356	10/11 16:30 351	10/12 15:00 360	10/12 10:00 257	10/5 21:30 271				
0800000000B	FLOWS FEEDWATER MAIN STEAM SUPERHEAT SPRAY L SUPERHEAT SPRAY R REMEAT SPRAY EXT. STM. TO STM. AH 2-1 EXT. STM. TO STM. AH 2-2 AUX. STM. TO STM. AH 2-1 AUX. STM. TO STM. AH 2-2 AUX. STM. TO STM. AH 2-2 AUX. STM. TO SJAE AIR FLOW TO BOILER	10 ³ LB/нR	2945 3050 0 0 0 58.8 58.8 0 0 3.0	2889 3030 0 0 0 58.8 58.8 0 0 3.0 3210	2871 2975 0 0 21.3 58.8 58.8 0 0 3.0 3260	2291 2350 0 0 31.0 36.2 0 0 2.0 2510	2261 2350 0 0 0 14.4 14.2 0 0 2.9 2410	2336 2400 0 0 0 25.3 25.3 0 0	1648 1600 0 0 0 25.4 25.5 0 0 3.0	1603 1650 29.0 25.6 0 58.8 58.8 0 0				
00000000	PRESSURES STEAM AND WATER FEEDWATER TO ECONOMIZER BOILER DRUM TURBINE THROTTLE TURBINE 1ST STAGE RH INLET, LEFT RH INLET, RIGHT RH INLET, AVERAGE RH OUTLET HP HTR. 2-7 STM. IN	PSIG	2808 2713 2434 1820 571 575 573 535 358	2814 2708 2411 1814 568 573 571 532 361	2798 2703 2417 1816 572 576 574 532 360	2717 2625 2420 1444 462 465 464 422 382	2691 2624 2422 NA NA NA NA 420 383	2694 2615 2406 NA NA NA NA 436 374	2592 2536 2416 NA NA NA 294 406	2591 2535 2420 1009 339 340 340 306 409				
888000888800888888	AIR AND GAS FD FAN DISCHARGE R FD FAN DISCHARGE L FD FAN DISCHARGE AVG. AH 2-1 AIR DIFF. PRESS. R AH 2-2 AIR DIFF. PRESS. L AH AIR DIFF. PRESS. AVG. WINDBOX PRESS. R WINDBOX PRESS. L WINDBOX PRESS. L WINDBOX PRESS. AVG. FURNACE DRAFT SH DRAFT DIFF. ECON. DRAFT DIFF. AH 2-1 GAS OUT PRESS. R AH 2-2 GAS OUT PRESS. L AH GAS OUT PRESS. R ID FAN 2-1 INLET PRESS. R ID FAN 2-2 INLET PRESS. L 1D FAN INLET PRESS. AVG.	"H ₂ O	9.5 9.5 9.5 3.4 3.9 3.7 4.0 4.0 -0.6 1.91 -12.7 -11.3 -12.6 -15.4 -12.6 -14.0	9.6 9.6 9.6 3.4 3.9 3.7 3.9 -0.6 1.93 2.37 -12.6 -11.5 -12.6 -12.6	8.6 8.5 8.6 3.7 3.3 3.3 -1.1 1.93 2.50 -13.7 -12.5 -13.1 -16.8	7.1 7.0 7.0 2.5 2.9 2.7 3.5 3.5 -1 1.2 2.21 -9.1 -9.1 -9.1 -12.6 -10.1 -11.4	6.3 6.3 2.6 2.4 2.8 2.8 -1 1.05 -10.2 -9.4 -9.4 -11.8	8.4 8.4 2.5 3.0 2.8 4.4 4.4 -1 1.33 -10.5 -9.8 -10.5 -10.5 -11.4	2.8 2.8 2.8 1.4 1.5 0.6 0.5 -1 0.45 0.92 -6.6 -6.1 -6.6 -7.1	4.0 4.0 4.0 1.4 1.6 1.5 1.5 1.5 -1 0.54 1.05 -6.9 -6.9 -7.8 -7.1				

C = COMPUTER DATA; B = BOARD DATA

	BOARD & COMPUTER DATA											
	TEST NO.		9	10	<u>11</u>	12	13	14	<u>15</u>	<u>16</u>		
	DATE Time	1975	9/19 14:35	9/18 09:45	9/18 14:10	10/11 14:45	12/13 12:00	12/13	7/23	7/24		
С	LOAD	MW	427	429	430	351	356	10:15 357	10:40 256	09:55 259		
CBCCCCCCC	FLOWS FEEDWATER MAIN STEAM SUPERHEAT SPRAY L SUPERHEAT SPRAY R REMEAT SPRAY EXT. STM. TO STM. AH 2-1 EXT. STM. TO STM. AH 2-2 AUX. STM. TO STM. AH 2-1 AUX. STM. TO STM. AH 2-2	10 ³ LB/нR	2938 3050 0 0 0 58.8 58.8	2897 3000 0 0 26.2 58.8 58.8	2882 3000 0 0 30.5 58.8 58.8	2273 2350 0 0 0 58.8 58.8	2321 2367 0 0 0 44.6 44.2 0	2302 2350 0 0 2.7 43.9 43.8 0	1557 1500 4.7 0 0 6.3 6.2 0	1584 1500 19.2 9.1 0 9.3 9.3		
В	AIR FLOW TO BOILER PRESSURES		3.0 3400	3.0 3480	3.0 3430	2.9 2610	2.0 2730	2.0 2860	3.0 1700	3.0 1700		
000000000	STEAM AND WATER FEEDWATER TO ECONOMIZER BOILER DRUM TURBINE THROTTLE TURBINE 1ST STAGE RH INLET, LEFT RH INLET, RIGHT RH INLET, AVERAGE RH OUTLET HP HTR. 2-7 STM. IN	PSIG	2826 2718 2420 1824 571 576 574 533 359	2813 2721 2414 1829 575 579 577 535 359	2805 2722 2417 1823 574 579 577 535 360	2668 2622 2397 NA NA NA NA 420 383	2739 2612 2434 1438 460 463 462 426 381	2738 2625 2425 1441 460 463 462 425 381	2536 2489 2392 927 307 308 308 274 412	2544 2495 2397 939 312 314 313 280 406		
BBBCCCB88BCC8888BB	AIR AND GAS. FD FAN DISCHARGE R FD FAN DISCHARGE L FD FAN DISCHARGE AVG. AH 2-1 AIR DIFF. PRESS. R AH 2-2 AIR DIFF. PRESS. L AH AIR DIFF. PRESS. AVG. WINDBOX PRESS. L WINDBOX PRESS. L WINDBOX PRESS. AVG. FURNACE DRAFT SH DRAFT DIFF. ECON. DRAFT DIFF. AH 2-1 GAS OUT PRESS. R AH 2-2 GAS OUT PRESS. R AH GAS OUT PRESS. R ID FAN 2-1 INLET PRESS. R ID FAN 2-2 INLET PRESS. L ID FAN 10LET PRESS. AVG.	*H ₂ O	9.9 9.9 9.9 3.6 4.2 3.9 4.0 4.0 -0.8 2.11 2.55 -13.9 -12.6 -13.3 -16.8 -13.8	10.4 10.4 10.4 3.8 4.3 4.0 3.9 3.9 -0.8 2.72 -14.5 -13.8 -17.8 -14.3 -16.0	10.4 10.4 10.4 3.8 4.3 4.1 4.0 4.0 4.0 2.11 2.72 -13.95 -12.0 -13.3 -17.2 -13.7 -15.4	8.2 8.2 8.2 2.6 3.0 2.8 4.0 4.0 4.0 1.25 1.84 -11.1 -10.8 -12.9 -11.2	7.8 7.6 2.94 3.38 3.16 4.2 4.2 4.2 11.48 2.48 -11.6 -10.5 -11.0 -14.3 -11.5	8.0 8.0 3.02 3.51 3.26 4.2 4.2 4.2 -1.0 1.38 2.55 -12.1 -11.3 -11.7 -14.9 -12.2 -13.6	3.1 3.1 1.3 1.4 1.2 1.2 -0.5 0.40 0.77 -5.6 -5.1 -5.4 -6.7	3.1 3.0 3.1 1.2 1.4 1.3 1.1 1.1 1.1 0.48 0.61 -5.7 -5.1 -5.4 -7.1 -5.6		

C = COMPUTER DATA; B = BOARD DATA

BOARD & COMPUTER DATA

			·		_					
	TEST NO.		1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>
	DATE	1975	9/18	9/18	9/20	12/13	10/11	10/12	10/12	10/5
	TIME	1015	17:00	17:25	13:15	14:00	16:30	15:00	10:00	21:30
С	LOAD	MW	430	426	431	356	351	360	257	271
-							•••	•		
	TEMPERATURES									
	AIR AND GAS	°F								
C	AH 2-1 AIR IN		106	106	105	105	109	112	117	114
С	AH 2-2 AIR IN		99	100	98	104	108	113	118	117
C	Avg. AIR IN		103	103	102	104	108	112	118	116
c	AH 2-1 AIR OUT		520	515	516	498	511	499	472	481
ç	AH 2-2 AIR OUT		540 520	537 526	542	502	515	507	474	482
c	AVG. AIR OUT		530 715	705	529 707	500 657	513 664	503	473 598	482 614
Č	AH 2-1 GAS IN AH 2-2 GAS IN		716	706	718	626	664	660 660	596 597	616
Č	AM 2-2 GAS IN Avg. Gas In		716	706	713	642	664	660	598	615
Ċ	AVG. GAS IN AH 2-1 GAS OUT		266	264	265	255	264	258	249	254
Č	AH 2-2 GAS OUT (1)		278	277	278	258	267	261	252	253
č	Avg. Gas Out		272	271	272	256 256	266	260	251	253 254
·	AVG. GAS OUT		212	2/1	212	230	200	200	231	234
	STEAM AND WATER	°F								
С	FW IN TEMP. TO ECON.		484	484	485	463	462	466	430	436
C	Econ. Out Avg.		571	570	571	534	542	543	501	5 0 8
C	BOILER DOWNCOMER		678	678	677	673		672	667	669
С	SH DESH INLET L		744	744	750	733	749	744	738	751
C	SH DESH INLET R		756	754	753	733	753	74 5	746	759
C	SH DESH INLET AVG		750	748	752	733	751	745	742	755
С	SH DESH OUTLET L		751	749	757	737	750	744	744	729
С	SH DESH OUTLET R		759	752	755	737	758	749	750	736
C	SH DESH OUTLET AVG		755	751	756	737	754	747	747	732
C	SH OUTLET		967	976	995	1005	994	1006	1006	1006
С	THROTTLE STEAM		955	964	981	998	985	996	994	999
С	RH TURBINE L		599	607	621	598	NA	NA	NA	554
C	RH TURBINE R		599	607	622	601	NA	NA	NA	566
C	RH TURBINE AVG		599	607	622	600	NA	NA	NA	560
C	RH BOILER L		595	604	596	NA	575	592	543	551
C	RH BOILER R		595	603	585	NA	578	593	554	561
C	RH BOILER AVG		595	604	591	NA	577	593	550	556
Ç	RH OUTLET		993	1008	1014	1001	994	1017	1000	1018
C	HP HTR 2-7 STM. IN		601	606	623	599	589	602	552	561
C	HP HTR 2-7 FW IN		416	415	415	398	398	400	372	372
C	HP HTR. 2-7 DRAIN		424	423	424	403	404	407	376	380
L	AUX. STEAM TEMP.		514	508	518	571	545	546	552	533
	FAN DAMPER POSITION	% OPEN								
В	FD FANS	,, -, -,,	72	71	70	60	60	64	46	48
8	1D FANS		62	62	65	53	52	55	41	43
_	SPRAY VALVE POSITION	% OPEN	_		_	_	_	_	-	
В	SH SPRAY		0	0	0	0	0	0	0	30
В	RH SPRAY		0	1	24	0	9	8	0	0

C = COMPUTER DATA; B = BOARD DATA
(1) TC READING OPEN

		BOAF	ED & COME	PUTER DAT	<u> </u>					
	TEST NO.		9	10	<u>11</u>	12	<u>13</u>	14	15	16
	DATE TIME	1975	9/19 14:35	9/18 09:45	9/18 14:10	10/11 14:45	12/1 3 12:00	12/13 1 0: 15	7/23 10:40	7/24 09:55
С	LOAD	MW	427	429	430	351	356	357	256	259
	TEMPERATURES									
_	AIR AND GAS	°F						-		
C	AH 2-1 AIR IN AH 2-2 AIR IN		105 105	103 99	104 98	110	100	103	102	104
č	Avg. Atr In		105	101	101	110 110	103 102	104 104	108 105	104 104
C	AH 2-1 AIR OUT		520	516	520	504	498	499	474	472
C	AH 2-2 AIR OUT		542	537	542	513	504	505	477	478
C	AVG. AIR OUT AH 2-1 GAS IN		531 719	527	531	509	501	502	476	475
č	AH 2-2 GAS IN		719	710 707	717 717	661 662	671 671	673 639	602 594	599 589
č	AVG. GAS IN		719	709	717	662	671	656	598	594
C	AH 2-1 GAS OUT		268	267	267	260	254	257	248	246
C	AH 2-2 GAS OUT (1)		278	276	279	265	260	259	NA	NA
С	Avg. GAS OUT		273	272	273	263	257	258	248	246
	STEAM AND WATER	°F								
C	FW IN TEMP. TO ECON.		484	486	485	462	463	463	425	428
C	Econ. Out Avg.		574	575	576	544	539	540	494	496
C	BOILER DOWNCOMER SH DESH INLET L		678 744	679 745	678 755	671 752	674 743	674 743	665 745	665 750
č	SH DESH INLET R		754	751	765	754	740	740	745	751
č	SH DESH INLET AVG		749	751	760	753	742	742	745	751
C	SH DESH OUTLET L		751	753	761	753	746	744	742	735
Ç	SH DESH OUTLET R		759	760	765	759	744	743	747	741
ç	SH DESH OUTLET AVG		755 964	757 9 92	763 990	756 995	745 1000	744 1008	745 1006	738 1002
C	SH OUTLET THROTTLE STEAM		955	980	981	988	995	998	998	995
Č	RH TURBINE L		599	622	623	NA	596	596	552	549
č	RH TURBINE R		600	622	623	NA	601	602	560	558
С	RH TURBINE AVG		600	622	623	NA	598	599	549	554
C	RH BOILER L		596	588	572 566	584	573 582	590 581	549 556	547 555
C	RH BOILER R		596 596	575 582	569	588 586	578	586	553	551
C	RH BOILER AVG		995	998	1007	1005	1000	1005	1000	1000
č	HP HTR 2-7 STM. IN		600	619	621	591	591	598	555	554
č	HP HTR 2-7 FW IN		415	415	415	398	397	398	367	368
C	HP HTR 2-7 DRAIN		423	423	424	404	403	403	370 573	371 569
С	AUX. STEAM TEMP.		512	521	525	554	571	565	513	203
	FAN DAMPER POSITION	\$ OPEN								
В	FD FANS	•	74	75	74	66	64	65 58	46 40	46 40
В	ID FANS		6 3	65	65	57	56	56	40	40
	SPRAY VALVE POSITION	# OPEN				_	_	_	-	16
В	SH SPRAY	•	0	0	0	0	0	0	5	16 0
В	RH SPRAY		0	30	34	0	0	3	3	J

C = COMPUTER DATA; B = BOARD DATA
(1) TC READING OPEN

BOARD & COMPUTER DATA												
	TEST NO.		1	5	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>		
	DATE	1975	9/18	9/18	9/20	12/13	10/11	10/12	10/12	10/5		
	TIME		17:00	17:25	13:15	14:00	16:30	15:00	10:00	21:30		
С	LOAD	MW	430	426	431	356	351	360	257	271		
	MILL DATA											
С	MILL 2-1	AMPS	NA	NA	NA	60.3	NA	NA	NA	NA		
C	MILL 2-2	AMPS	NA	NA	NA	93.0	NA	NA	NA	NA		
Ç	MILL 2-3	AMPS	NA	NA	NA	87.4	NA.	NA	NA	NA		
C	MILL 2-4 MILL 2-5	AMPS AMPS	NA NA	NA NA	NA NA	88.0 87.6	NA NA	NA NA	NA NA	NA NA		
č	COAL AIR TEMP. MILL 2-1	APIF3 °F	154	148	148	157	149	148	75	148		
č	COAL AIR TEMP. MILL 2-2	°F	148	154	148	149	148	148	146	112		
č	COAL AIR TEMP. MILL 2-3	°F	147	146	147	149	88	148	146	147		
С	COAL AIR TEMP. MILL 2-4	°F	148	148	148	148	147	97	145	145		
С	COAL AIR TEMP. MILL 2-5	°F	149	148	147	151	150	150	149	149		
В	MILL 2-1 EXH. DISCHARGE	"H ₂ 00 "H200 "H200 "H30	5.5	8.2	7.1	4.5	7.9	7.5	NA	7.0		
В	MILL 2-2 EXH. DISCHARGE	"H=0	7.4	7.6	7.1	7.1	_NA	6.5	6.6	6.5		
B B	MILL 2-3 Exh. Discharge Mill 2-4 Exh. Discharge	"H_U	8.4	5.5	8.0	7.0	7.3	7.4	6.2	NA		
В	MILL 2-5 EXH. DISCHARGE	"H20	10.1 8.4	10.5 8.5	10.0 NA	7.5 7.4	7.5 7.5	NA 6.8	6.5 6.2	6.5 6.5		
В	MILL 2-1 SUCTION	"H2O	-3.2	-1.5	-1.5	-2.9	-1.8	-1.9	NA	-2.3		
В	MILL 2-2 SUCTION	11.20	-1.6	-1.7	-1.4	-1.8	NA	-1.8	-2.4	-2.3		
В	MILL 2-3 SUCTION	"H20	-1.5	-2.7	-1.4	-1.7	-1.8	-1.6	-2.4	NA		
В	MILL 2-4 SUCTION	"H20 "H20 "H20 103LB/FR 103LB/HR 103LB/HR 103LB/HR 103LB/HR	-1.4	-1.4	-1.4	-1.8	-2.0	NA	-2.4	-2.4		
В	MILL 2-5 SUCTION	ვ"ჩ <u>ნ</u> 0	-1.6	-1.6	NA	-1.9	-1.7	-1.6	-2.3	-2.4		
В	MILL 2-1 COAL FLOW	10 LB/FIR	0	85	86	0	71	72	0	55		
В	MILL 2-2 COAL FLOW	103LB/HR	80	81	84	68	0	70	51	50		
₿ В	MILL 2-3 COAL FLOW MILL 2-4 COAL FLOW	103LB/HR	79 79	0 79	82 82	62 61	68 66	69 O	50 50	0 48		
В	MILL 2-5 COAL FLOW	103LD/11R	80	80	0	62	67	70	51	50		
В	MILL 2-1 FEEDER SPEED (1)	10 EB/1R \$	26	95	96	24	82	83	NA	64		
В	MILL 2-2 FEEDER SPEED	Ĩ	95	96	96	82	NA	83	62	60		
В	MILL 2-3 FEEDER SPEED	\$	94	NA	94	80	80	82	60	NA		
В	MILL 2-4 FEEDER SPEED	* * *	94	95	9 5	80	80	NA	60	58		
8	MILL 2-5 FEEDER SPEED	%	94	94	NA	80	80	84	60	60		
	BURNER TILT	+ DEGREES										
В	POSITION LF	520,1525	+6	-3	-8	+17	-10	-10	+6	-8		
В	POSITION LR		+8	-1	-4	+17	_7	-6	+6	-5		
В	POSITION RF		+6	-4	-7	+13	-9	-11	+5	-8		
8	Position RR		+6	-3	-6	+18	-9	-9	+6	-8		
	MI SCELLANEOUS ,											
В	DRUM LEVEL, IN. + NORM. H20 LEVEL		-1	-1	0.0	-0.5	-1	-1	-1	0		
č	FD Fan 2-1	AMPS	209	209	208	342	NA	NA	NA	NA.		
Č	FD FAN 2-2	AMPS	230	231	228	349	NA	NA	NA	NA		
С	ID FAN 2-1	AMPS	380	380	385	342	345	350	312	171		
С	ID FAN 2-2	AMPS	388	389	393	348	348	352	312	181		
В	FLUE GAS SO IN STACK	PPM	NA	NA	NA	NA	NA	NA	NA	28		
В	FLUE GAS SO IN STACK FLUE GAS NO IN STACK	PPM	NA	NA	NA	NA	400	NA	400	380		
C	FLUE GAS COABUSTIBLES L	25	0.06	0.05	0.06	0.17	0.07	0.09	0.1	0.08		
C	FLUE GAS COMBUSTIBLES R	***************************************	0 3.33	0 2.85	0 2.16	0 2 27	0 3.11	0 2.85	0 3.97	0 3.08		
č	FLUE GAS OF R	7b et	2.49	3.41	4.00	2.27 2.70	2.58	2.85	3.97	3.85		
č	FLUE GAS O L FLUE GAS O R FLUE GAS O AVG.	Ž.	2.91	3.3	3.08	2.48	2.85	2.87	3.50	3.47		
В	AMBIENT TEMP.	°F̃	72	65	71	31	62	54	53	56		
В	AMBIENT REL. HUMIDITY	≰	24	28	21	82	20	45	47	37		
В	BAROMETRIC PRESSURE	"HG	23.76	23.81	24.20	23.30	23.65	23.58	23.66	23.96		

C = COMPUTER DATA; B = BOARD DATA
(1) FEEDER SPEED IN \$ OF CONTROL SIGNAL

BOARD	٤	COMPUTER	DATA

	BOARD & COMPOTER DATA										
	TEST NO.		9	<u>10</u>	11	12	13	14	15	16	
	DATE	1975	9/19	9/18	9/18	10/11	12/13	12/13	7/23	7/24	
_	TIME		14:35	09:45	14:10	14:45	12:00	10:15	10:40	09:55	
С	LOAD	MW	427	429	430	351	356	357	256	259	
	MILL DATA										
С	MILL 2-1	AMPS	NA	NA	NA	NA	94.8	95.6	79.6	81.0	
C	MILL 2-2	AMPS	NA NA	NA.	NA	NA NA	91.4	91.8	79.6 NA	76.4	
C	MILL 2-3	AMPS	NA	NA	NA	NA	64.7	86.5	77.6	80.0	
C	MILL 2-4	AMPS	NA	NA	NA	NA	86.7	86.8	79.8	NA	
Ċ	MILL 2-5 COAL AIR TEMP. MILL 2-1	AMPS °F	NA 117	NA	NA	NA	85.5	61.9	85.3	84.5	
č	COAL AIR TEMP. MILL 2-2	°F	117 148	148 148	149 148	156	150	150	148	147	
č	COAL AIR TEMP. MILL 2-3	•F	146	147	148	149 149	160 148	149 148	NA 148	NA 148	
С	COAL AIR TEMP. MILL 2-4	°F	147	147	147	147	147	148	146	88	
С	COAL AIR TEMP. MILL 2-5	°F	148	147	149	150	150	147	148	149	
В	MILL 2-1 EXH. DISCHARGE	000000000000	5.5	8.1	8.5	NA	8.0	8.1	5.5	5.5	
B B	MILL 2-2 EXH. DISCHARGE	"H20	7.5	5.5	7.5	5.8	7.5	7.5	NA.	6.1	
В	MILL 2-3 EXH. DISCHARGE MILL 2-4 EXH. DISCHARGE	"H20	8.2	8.4	8.2	7.3	5.0	7.1	7.2	7.6	
В	MILL 2-5 EXH. DISCHARGE	" <u>"20</u>	10.0 8.5	10.3 8.6	B.O B.5	7.4 7.3	7.2 7.3	7.5 4.1	6.5 7.0	NA 7.1	
В	MILL 2-1 SUCTION	"H ² 0	-3.1	-1.5	-1.6	NA NA	-1.7	-1.6	-2.3	-2.2	
В	MILL 2-2 SUCTION	"H20	-1.6	-3.0	-1.7	-3.2	-1.8	-1.8	NA NA	-2.6	
В	MILL 2-3 SUCTION	"H2O	-1.4	-1.4	-1.5	-1.5	-2.8	-1.7	-2 .3	-2.2	
В	MILL 2-4 SUCTION	"H <u>2</u> 0	-1.4	-1.4	-3.0	-1.7	-1.8	-1.8	-2.5	NA	
В	MILL 2-5 SUCTION	103. THEO	-1.5	-1.6	-1.6	-1.5	-1.9	-2.9	-2.3	-2.3	
B B	MILL 2-1 COAL FLOW	103LB/FR	0	79	84	0	75	75 65	43	48 ~=	
В	MILL 2-2 COAL FLOW MILL 2-3 COAL FLOW	103LB/HR	84 83	0 79	80 79	76 76	64 0	65 58	0 40	35 45	
В	MILL 2-4 COAL FLOW	103LB/HR	82	78	. 0	74	58	59	47	70	
8	MILL 2-5 COAL FLOW	10 ³ LB/HR	81	79	80	75	59	ō	56	55	
В	MILL 2-1 FEEDER SPEED (1)	15	26	90	94	NA	79	78	49	56	
В	MILL 2-2 FEEDER SPEED	*	100	NA	94	91	79	78	NA	42	
В	MILL 2-3 FEEDER SPEED	95	99	94	94	90	NA	76	49	55	
В	MILL 2-4 FEEDER SPEED	* * * * * * * * * * * * * * * * * * *	96 90	94 94	NA 94	91 89	76 7 8	76 NA	58 68	NA 67	
В	MILL 2-5 FEEDER SPEED	79	50	34	34	03	10	ITA	08	0,	
	BURNER TILT	† DEGREES									
В	POSITION LF		+16	+9	+2	+5	+7	-8	+11	+10	
В	Position LR		+17 +15	+10 +9	+4 +2	+6 +5	+10 +7	-6 -9	+12 +13	+12 +13	
8 8	POSITION RF POSITION RR		+13	+9	+2	+6	+9	-8	+13	+11	
0	FOSTITON RR							_			
	MISCELLANEOUS				_	_				0.5	
В	DRUM LEVEL, IN. + NORM. H20 LEVEL		-1	-1.1	-1	-1	-0.5	-0.5 358	-1 171	-0.5 171	
C	FD FAN 2-1	AMPS	NA NA	NA NA	NA NA	NA NA	358 364	366	171	170	
c	FD FAN 2-2	AMPS AMPS	212	216	215	348	358	357	311	312	
C	ID FAN 2-1	AMPS	236	241	239	352	364	366	310	310	
В	ID FAN 2-2	PPM	N/	NA	NA	NA	NA	NA	NA	NA	
8	FLUE GAS SO IN STACK FLUE GAS NO IN STACK	PPM	N.A	NA	NA	396	NA	NA	NA	NA	
č	FLUE GAS COMBUSTIBLES L		0.08	0.11	0.07	0.05	0.16	0.16	0.1	0.09	
С	FLUE GAS COMBUSTIBLES R	\$	0	0	4 00	2 77	0 3.52	0 3.06	3.54	3.28	
С	FLUE GAS O. L	5	4.09	4.74	4.09 4.01	3.77 3.87	4.6	5.16	4.10	3.90	
C	FLUE GAS OF R	*	3.76 3.92	3,83 4,29	4.05	3.82	4.06	4.11	3.85	3.59	
č	FLUE GAS 02 AVG.	\$ \$ \$ \$ \$ \$ \$ \$ \$	79	67	7.03	68	31	30	87	79	
В	AMBIENT TEMP.	5	27	38	27	20	81	85	28	36	
B B	AMBIENT REL. HUMIDITY BAROMETRIC PRESSURE	"HG	23.80	23.83	23.83	23.66	23.33	23.38	24.00	24.05	
O	DMOOMETRIC : HESSORE										

C = COMPUTER DATA; B = BOARD DATA
(1) FEEDER SPEED IN \$ OF CONTROL SIGNAL

BOARD AND COMPUTER DATA										
TEST NO.		1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	
DATE	1975	9/17	9/26	9/26	9/26	9/26	10/1	10/1	10/1	
TIME		10:20	09:40	11:30	15:30	17:15	18:00	19:30	21:00	
C LOAD	MW	428	430	430	430	431	430	428	428	
FLOWS	10 ³ LB/нR									
C FEEDWATER	- •	2876	2893	2900	2895	2901	2893	2910	2903	
B MAIN STEAM		3000	3040	3038	3025	3050	3038	3040	3040	
C SUPERHEAT SPRAY L		0	0	0	0	0	0	0	0	
C SUPERHEAT SPRAY R		0	0	0	0	0	0	0	0	
C REHEAT SPRAY		9.1	7.8	7.2	28.2	22.4	0	0	0	
C Ext. STM. TO STM. AH 2-1		12.2	58.9	58.8	58.8	58.8	58.8	58.8	58.8	
C Ext. STM. TO STM. AH 2-2		12.2	58.9	58.8	58.8	58.8	58.8	58.8	5B.B	
C Aux. STM. To STM. AH 2-1		0	0	0	0	0	0	0	0	
C Aux. STM. TO STM. AH 2-2		0	0	0	0	0	0	0	0	
C AUXSTM. TO SJAE		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
B AIR FLOW TO BOILER		3460	3380	3380	3380	3380	3060	3130	3150	
PRESSURES										
STEAM & WATER	PSIG									
C FEEDWATER TO ECON.		2806	2815	2820	2816	2821	2814	2815	2811	
C BOILER DRUM		2716	2720	2721	2720	2725	2717	2716	2715	
C TURBINE THROTTLE		2409	2422	2420	2420	2427	2418	2416	2413	
C TURBINE 1ST STAGE		1826	1828	1828	1828	1833	1826	1825	1824	
CRH INLET LEFT		572	573	573	575	577	572	571	571	
C RH INLET RIGHT		5 7 5	578	578	579	581	575	575	575	
C RH INLET AVG.		574	575 505	575	577	579	574	573	573	
C RH OUTLET C HP HTR. 2-7 STM. IN		531	535	534	536	538	532	533	532	
CHE HIR. 2-1 SIM. IN		360	359	360	360	359	360	359	362	
PRESSURES	ffin o									
AIR & GAS	"H ₂ 0									
B FD FAN DISCHARGE R		10.3	9.5	9.5	10.0	10.0	9.5	9.2	8.8	
B FD FAN DISCHARGE L		10.3	9.5	9.5	10.0	10.0	9.5	9.2	8.8	
B FD FAN DISCHARGE AVG.		10.3	9.5	9.5	10.0	10.0	9.5	9.8	8.8	
C AH 2-1 AIR DIFF. PRESS. R		3.80	3.73	3.70	3.70	3.70	3.25	3.28	3.30	
C AH 2-2 AIR DIFF, PRESS. L C AH AIR DIFF, PRESS, AVG.		4.34	4.21	4.19	4.21	4.22	3.65	3.70	3.72	
B WINDBOX PRESS. R		4.07 4.0	3.97 3.5	3.94	3.96	3.96 3.3	3.45	3.49 3.7	3.51 3.2	
B WINDBOX PRESS. L		4.0	3.5	3.4	3.3 3.3	3.3	4.5 4.5	3.7	3.2	
B WINDBOX PRESS. AVG.		4.0	3.5	3.4 3.4	3.3	3.3	4.5	3.7	3.2	
8 FURNACE DRAFT		-0.68	-1.0	-1 .1	-1.0	-1.1	-1.0	-1.0	-1.0	
C SH DRAFT DIFF.		1.95	2.19	2.01	1.91	2.13	1.81	1.91	1.95	
C Econ. DRAFT DIFF.		2.66	2.53	2.69	2.75	2.81	2.24	2.49	2.44	
B AH 2-1 GAS OUT. PRESS. R		-14.5	-15.0	-15.0	-15.0	-15.0	-12.5	-12.8	-12.9	
B AH 2-2 GAS OUT. PRESS. L		-12.8	-13.0	-12.9	-13.0	-12.8	-13.5	-13.8	-13.7	
B AH GAS OUT. PRESS. AVG.		-13.6	-14.0	-14.0	-14.0	-13.9	-13.0	-13.3	-13.3	
B ID FAN 2-1 INLET PRESS. R		-17.3	-18.5	-19.0	-18.5	-18.5	-15.0	-15.0	-15.0	
B ID FAN 2-2 INLET PRESS. L		-14.0	-14.0	-14.0	-14.0	-14.0	-15.0	-15.1	-15.1	
B ID FAN INLET PRESS. AVG.		-15.6	-16.2	-16.5	-16.2	-16.2	-15.0	-15.0	-15.0	

B = BOARD DATA
C = COMPUTER DATA

BOARD AND COMPUTER DATA										
TEST NO.		9	<u>10</u>	11	12	<u>13</u>	14	<u>15</u>	<u>16</u>	
DATE	1975	9/27	9/27	9/27	10/5	10/4	10/5	10/4	10/3	
TIME C LOAD	14.1	13:30	12:00	14:00	13:45	16:00	12:00	14:15	18:30	
C LOAD	MW	428	429	429	427	434	422	429	427	
FLOWS	10 ³ LB/нR									
C FEEDWATER	-	2885	2881	2891	2909	2853	2889	2882	2904	
B Main Steam C Superheat Spray L		3033	3050	3050	3000	3000	3000	3000	3050	
C SUPERHEAT SPRAY R		0	0	0	0	0	0	0	0	
C REHEAT SPRAY		0	ŏ	Ô	0	17.3	0	0	0 7.9	
C Ext. STM. TO STM. AH 2-1		58.8	58.9	58.8	58.8	58.8	58.8	58.8	58.8	
C Ext. Stm. to Stm. AH 2-2 C Aux. Stm. to Stm. AH 2-1		58.8	58.9	58.8	58.8	58.8	58.8	58.8	58.8	
C Aux. 5TM. TO STM. AH 2-2		0	0	0	0	0	0	0	0	
C AUX. STM. TO SJAE		3.0	3.1	3.0	3.0	3.0	0 3.0	0 3.0	0 3.0	
B AIR FLOW TO BOILER		3770	3710	3730	3130	3250	3140	3200	3190	
PRESSURES										
STEAM & WATER	PSIG									
C FEEDWATER TO ECON.		2810	2818	2818	2813	2814	2807	2812	2808	
C BOILER DRUM		2703	2716	2719	2719	2718	2705	2713	2713	
C TURBINE THROTTLE		2423	2417	2420	2415	2420	2411	2417	2415	
C TURBINE 1ST STAGE C RH INLET LEFT		1812 567	1827 569	1828 570	1829 573	1829 576	1806	1823	1824	
C RH INLET RIGHT		571	573	573	577	579	565 569	572 575	573 577	
C RH INLET AVG.		569	571	572	575	578	567	574	575	
C RH OUTLET		531	530	531	533	536	528	533	534	
C HP HTR. 2-7 STM. IN		366	362	35 9	360	359	362	361	360	
PRESSURES	Hu A									
AIR & GAS	"н ₂ о				_					
B FD FAN DISCHARGE R		11.0	11.8	11.8 11.8	9.3 9.3	9.8 9.8	9.2 9.2	9.1 9.1	9.5 9.5	
B FD FAN DISCHARGE L B FD FAN DISCHARGE AVG.		11.0 11.0	11.8 11.8	11.8	9.3	9.8	9.2	9.1	9.5	
C AH 2-1 AIR DIFF. PRESS. R		4.42	4.41	4.40	3.37	3.56	3.33	3.42	3.44	
C AH 2-2 AIR DIFF. PRESS. L		5.02	4.84	4.84	3.81	3.98	3.73	3.90	3.90	
C AH AIR DIFF. PRESS. AVG.		4.72	4.62	4.62	3.59	3.77	3.53	3.66 3.5	3.67 3.5	
B WINDBOX PRESS. R		3.5 3.5	4.3 4.3	4.5 4.5	3.5 3.5	3.8 3.8	3.4 3.4	3.5 3.5	3.5	
B WINDBOX PRESS. L B WINDBOX PRESS. AVG.		3.5	4.3	4.5	3.5	3.8	3.4	3.5	3.5	
B FURNACE DRAFT		-1.0	-1.0	-1.0	-1.0	-1.2	-1.0	-1.0	-1.0	
C SH DRAFT DIFF.		2.54	2.26	2.36	1.82	1.95	1.73	1.84	1.82	
C Econ. DRAFT DIFF.		3.16	3.08	3.11	2.44 -13.5	2.51 -14.3	2.31 -13.5	2.41 -13.6	2.39 -13.5	
B AH 2-1 GAS OUT. PRESS. R		-15.0 -15.0	-15.0 -15.0	-15.0 -15.0	-13.5	-14.3	-13.5	-13.6	-13.4	
B AH 2-2 GAS OUT. PRESS. L B AH GAS OUT. PRESS. AVG.		-15.0	-15.0	-15.0	-13.5	-14.3	-13.4	-13.6	-13.4	
B ID FAN 2-1 INLET PRESS. R		-21.5	-19.1	-19.0	-15.8	-16.9	-15.6	-16.0	-16.0	
B ID FAN 2-2 INLET PRESS. L		-17.5	-19.1	-19.0	-14.8	-15.4 -16.2	-14.5 -15.0	-14.8 -15.4	-14.5 -15.2	
B ID FAN INLET PRESS. AVG.		-19.5	-19.1	-19.0	-15.3	-10.2	-15.0	-13.4	-13.2	

B = BOARD DATA
C = COMPUTER DATA

BOARD AND COMPUTER DATA											
TEST NO.		<u>17</u>	18	19	20	<u>21</u>	<u>55</u>	23	24		
DATE TIME C LOAD	1975 M W	10/3 22:30 423	10/3 20:30 430	10/6 19:00 417	10/8 10:30 426	10/10 01:45 356	10/9 01:15 358	10/12 08:15 253	10/5 18:45 266		
FLOWS C FEEDWATER B MAIN STEAM C SUPERMEAT SPRAY L C SUPERMEAT SPRAY R C REMEAT SPRAY R C EXT. STM. TO STM. AH 2-1 C EXT. STM. TO STM. AH 2-2 C AUX. STM. TO STM. AH 2-1 C AUX. STM. TO STM. AH 2-2 B AIR FLOW TO BOILER	10 ³ Lв/н г	2926 3100 0 0 22.9 58.8 58.8 0 0 3.0 3180	2885 3038 0 0 18.7 58.8 58.8 0 0 3.0	2900 3050 0 0 0 58.8 58.8 0 0 3.0 3100	2908 3050 0 0 58.8 58.8 0 0 3.2 3110	2333 2400 0 0 58.8 58.8 0 0 3.0 2460	2307 2400 0 0 4.5 58.8 58.8 0 0 3.1 2640	1665 1650 0 0 0 28.2 28.5 0 0 3.0	1657 1650 0 0 0 58.8 58.8 0 0 3.0		
FRESSURES STEAM & WATER C FEEDWATER TO ECON. C BOILER DRUM C TURBINE THROTTLE C TURBINE 1ST STAGE C RH INLET LEFT C RH INLET RIGHT C RH OUTLET C HP HTR. 2-7 STM. IN	PSIG	2813 2715 2418 1826 574 578 576 535 357	2806 2711 2413 1824 574 579 576 535 360	2813 2715 2415 1824 572 576 574 524 359	2816 2720 2419 1829 571 575 573 532 363	2705 2628 2416 1442 464 468 460 428 380	2701 2631 2420 1438 465 469 467 429 384	2592 2537 2416 NA NA NA NA 293 404	2593 2532 2414 1008 334 336 335 301 408		
PRESSURES AIR & GAS B FD FAN DISCHARGE R B FD FAN DISCHARGE L B FD FAN DISCHARGE AVG. C AH 2-1 AIR DIFF. PRESS. R C AH 2-2 AIR DIFF. PRESS. L C AH AIR DIFF. PRESS. AVG. B WINDBOX PRESS. R B WINDBOX PRESS. AVG. B FURNACE DRAFT C SH DRAFT DIFF. C ECON. DRAFT DIFF. C ECON. DRAFT DIFF. B AH 2-1 GAS OUT. PRESS. R B AH 2-2 GAS OUT. PRESS. L B AH GAS OUT. PRESS. AVG. B ID FAN 2-1 INLET PRESS. R B ID FAN 10-1 INLET PRESS. L B ID FAN 10-1 INLET PRESS. AVG.	"H ₂ 0	9.0 8.9 9.0 3.35 3.79 3.57 3.1 -1.2 1.93 -13.5 -13.5 -13.5 -13.5	9.4 9.4 9.4 3.44 3.88 3.66 3.5 3.5 -1.2 2.00 -13.8 -13.8 -13.8	8.8 8.8 3.23 3.64 3.44 3.3 -1.0 1.85 -13.3 -12.8 -13.5 -14.0	8.5 8.5 8.5 3.30 3.72 3.51 3.0 -1.0 1.77 -13.8 -13.2 -13.5 -15.5	4.8 4.6 4.7 2.21 2.58 2.40 1.0 1.0 -1.0 1.17 -10.6 -9.8 -10.6	6.8 6.6 6.7 2.50 2.87 2.68 2.5 2.5 -1.0 1.33 1.80 -10.0 -10.0	2.5 2.5 2.5 1.36 1.52 1.44 0 0 0.53 0.58 -6.0 -6.8 -7.5	2.5 2.5 2.5 1.38 1.57 1.48 0 0 0.60 0.68 -6.8 -6.6 -6.7 -8.0		

B = BOARD DATA
C = COMPUTER DATA

BOARD	AND	COMPUTER	DATA
COALD	~10	COMPUTER	UKIA

BOARD AND COMPUTER DATA									
TEST NO.		9	10	<u>11</u>	12	13	14	15	<u>16</u>
DATE	1975	9/27	9/27	9/27	10/5	10/4	10/5		10/0
TIME	,,,,	13:30	12:00	14:00	13:45	16:00	10/5 12:00	10/4 14:15	10/3
C LOAD	MW	428	429	429	427	434	422	429	18:30 427
FLOWS	10 ³ Lв/нг								
C FEEDWATER		2885	2881	2891	2909	2853	2889	2882	2904
B Main Steam		3033	3050	3050	3000	3000	3000	3000	3050
C SUPERHEAT SPRAY L C SUPERHEAT SPRAY R		0	0	0	0	0	0	0	0
C REHEAT SPRAY		0	0	0	0	_ 0	0	0	0
C Ext. STM. TO STM. AH 2-1		0	- 0	0	0	17.3	0	0	7.9
C Ext. Stm. to Stm. AH 2-2		58.8 58.8	58.9 58.9	58.8	58.8	58.8	58.8	58.8	58.8
C AUX. STM. TO STM. AH 2-1		0	0.5	58.8 0	58.8 O	58.8 0	58.8 O	5 8.8 O	58.8
C Aux. STM. TO STM. AH 2-2		ŏ	ő	ŏ	Ö	Ö	0	0	0
C AUX. STM. TO SJAE		3.0	3.1	3.0	3.0	3.0	3.0	3.0	3.0
B AIR FLOW TO BOILER		3770	3710	3730	3130	3250	3140	3200	3190
PRESSURES									
STEAM & WATER	PSIG								
C FEEDWATER TO ECON.		2810	2818	2818	2813	2814	2807	2812	2808
C Boiler Drum C Turbine Throttle		2703	2716	2719	2719	2718	2705	2713	2713
C TURBINE INFOTTLE C TURBINE 1ST STAGE		2423	2417	2420	2415	2420	2411	2417	2415
C RH INLET LEFT		1812 567	1827 569	1828 570	1829 573	18 2 9 576	1806	1823 572	1824 573
C RH INLET RIGHT		571	573	573	573 577	579	565 569	572 575	577
C RH INLET AVG.		569	571	572	575	578	567	574	575
C RH OUTLET		531	530	531	533	536	528	533	534
C HP HTR. 2-7 STM. IN		366	362	359	360	359	362	361	360
PRESSURES									
AIR & GAS	"H ₂ 0					_			
B FD FAN DISCHARGE R		11.0	11.8	11.8	9.3	9.8 9.8	9.2	9.1 9.1	9.5 9.5
B FD FAN DISCHARGE L		11.0	11.8 11.8	11.8 11.8	9.3 9.3	9.8	9.2 9.2	9.1	9.5
B FD FAN DISCHARGE AVG. C AH 2-1 AIR DIFF. PRESS. R		11.0 4.42	4.41	4.40	3.37	3.56	3.33	3,42	3.44
C AH 2-2 AIR DIFF. PRESS. L		5.02	4.84	4.84	3.81	3.98	3.73	3.90	3.90
C AH AIR DIFF. PRESS. AVG.		4.72	4.62	4.62	3.59	3.77	3.53	3,66	3.67
B WINDBOX PRESS. R		3.5	4.3	4.5	3.5	3.8	3.4	3.5	3.5
B WINDBOX PRESS. L		3.5	4.3	4.5	3.5	3.8	3.4	3.5	3.5
B WINDBOX PRESS. AVG.		3.5	4.3	4.5	3.5	3.8	3.4	3.5	3.5
B FURNACE DRAFT		-1.0	-1.0	-1.0	-1.0	-1.2	-1.0	-1.0	-1.0
C SH DRAFT DIFF.		2.54	2.26	2.36	1.82	1.95	1.73	1.84	1.82
C Econ. Draft Diff.		3.16	3.08	3,11	2.44 -13.5	2.51 -14.3	2.31 -13.5	2.41 -13.6	2.39 -13.5
B AH 2-1 GAS OUT. PRESS. R		-15.0 -15.0	-15.0 -15.0	-15.0 -15.0	-13.5 -13.5	-14.3	-13.5	-13.6	-13.3
B AH 2-2 GAS OUT. PRESS. L		-15.0	-15.0	-15.0	-13.5	-14.3	-13.4	-13.6	-13.4
B AH GAS OUT. PRESS. AVG.		-21.5	-19.1	-19.0	-15.8	-16.9	-15.6	-16.0	-16.0
B ID FAN 2-1 INLET PRESS, R B ID FAN 2-2 INLET PRESS, L		-17.5	-19.1	-19.0	-14.8	-15.4	-14.5	-14.8	-14.5
B ID FAN 2-2 INLET PRESS. L B ID FAN INLET PRESS. AVG.		-19.5	-19.1	-19.0	-15.3	-16.2	-15.0	-15.4	-15.2
D ID FAM INCL! FRESS. ATO.									

B = BOARD DATA
C = COMPUTER DATA

BOARD AND COMPUTER DATA										
TEST NO.		<u>17</u>	18	<u>19</u>	<u>20</u>	<u>21</u>	22	23	24	
DATE Time C Load	1975	10/3 22:30	10/3 20:30	10/6 19:00	10/8 10:30	10/10 01:45	10/9 01:15	10/12 08:15 253	10/5 18:45 266	
CLOAD	MW 2	423	430	417	426	356	358	253	200	
FLOWS	10 ³ LB/HR							400=		
C FEEDWATER B Main Steam		2926 3100	2885 3038	2900 3050	2908 3050	2333 2400	2307 2400	1665 1650	1657 1650	
C SUPERHEAT SPRAY L		0.00	0	0	0	0	0	0	0	
C SUPERHEAT SPRAY R		0	0	0	0	0	0	0	0	
C REHEAT SPRAY C Ext. Stm. to Stm. AH 2-1		22.9 58.8	18.7 58.8	0 58.8	0 58.8	. 0	4.5 58.8	28.2 28.2	0 58.8	
C Ext. STM. TO STM. AH 2-2		58.8	58.8	58.8	58.8	58.8 58.8	58.8	28.5	58.8	
C AUX. STM. TO STM. AH 2-1		0	0	0	0	0	0	0	0	
C AUX. STM. TO STM. AH 2-2		0	O	0	0	0	0	0	0	
C AUX. STM. TO SJAE B AIR FLOW TO BOILER		3.0	3.0	3.0	3.2	3.0 2460	3.1 2640	3.0	3.0	
B MIN LEGA TO BOTTEN		3180	3240	3100	3110	2460	2640	1800	1810	
PRESSURES										
STEAM & WATER C FEEDWATER TO ECON.	PSIG	0010	0000	0010	0010	0705	0701	0500	0500	
C BOILER DRUM		2813 2715	2806 2711	2813 2715	2816 2720	2705 2628	2701 2631	2592 2537	2593 2532	
C TURBINE THROTTLE		2418	2413	2415	2419	2416	2420	2416	2414	
C TURBINE 1ST STAGE		1826	1824	1824	1829	1442	1438	NA	1008	
C RH INLET LEFT		574	574	572	571	464	465	NA	334	
C RH INLET RIGHT C RH INLET AVG.		578	579	576	575	468	469	NA	336	
C RH OUTLET		576 535	576 535	574 524	573 532	460 428	467 429	NA 293	335 301	
C HP HTR. 2-7 STM. IN		357	360	359	363	380	384	404	408	
PRESSURES										
AIR & GAS	"H ₂ 0									
B FD FAN DISCHARGE R		9.0	9.4	8.8	8.5	4.8	6.8	2.5	2.5	
B FD FAN DISCHARGE L B FD FAN DISCHARGE AVG.		8.9	9.4	8.8	8.5	4.6	6.6	2.5	2.5	
C AH 2-1 Air Diff. Press. R		9.0 3.35	9.4 3.44	8.8 3.23	8.5 3.30	4.7 2.21	6.7 2.50	2.5 1.36	2.5 1.38	
C AH 2-2 AIR DIFF. PRESS. L		3.79	3.88	3.64	3.72	2.58	2.87	1.52	1.57	
C AH AIR DIFF. PRESS. AVG.		3.57	3.66	3.44	3.51	2.40	2.68	1.44	1.48	
B WINDBOX PRESS. R		3.1	3.5	3.3	3.0	1.0	2.5	0	0	
B WINDBOX PRESS. L B WINDBOX PRESS. AVG.		3.1 3.1	3.5 3.5	3.3 3.3	3.0 3.0	1.0	2.5 2.5	0	0	
8 FURNACE DRAFT		-1.2	-1.2	-1.0	-1.0	1.0 -1.0	-1.0	-1.0	-1.0	
C SH DRAFT DIFF.		1.93	2.00	1.85	1.77	1.13	1.33	0.53	0.60	
C ECON. DRAFT DIFF.		2.45	2.61	2.43	2.45	1.71	1.80	0.98	0.88	
B AH 2-1 GAS OUT. PRESS. R		-13.5	-13.8	-13.3	-13.8	-10.6	-10.0	-6.8	-6.8	
B AH 2-2 GAS OUT. PRESS. L B AH GAS OUT. PRESS. AVG.		-13.5 -13.5	-13.8 -13.8	-12.8 -13.0	-13.2 -13.5	-9.8 -10.2	-10.0 -10.0	-6.0 -6.4	-6.6 -6.7	
B ID FAN 2-1 INLET PRESS. R		-15.8	-16.0	-15.5	-15.5	-11.6	-11.8	-7.5	-8.0	
B ID FAN 2-2 INLET PRESS. L		-14.8	-15.0	-14.0	-14.0	-10.6	-10.5	-6.8	-7.6	
B ID FAN INLET PRESS. AVG.		-15.3	-15.5	-14.8	-14.8	-11.1	-11.2	-7.2	-7.8	

B = BOARD DATA
C = COMPUTER DATA

	вол	URD AND	COMPUTER	DATA					
TEST NO.		9	10	<u>11</u>	12	13	14	15	16
DATE	1975	9/27	9/27	9/27	10/5	10/4	10/5	10/4	10/3
TIME		13:30	12:00	14:00	13:45	16:00	12:00	14:15	18:30
C LOAD	MW	428	429	429	427	434	422	429	427
FLOWS	10 ³ LB/н								
C FEEDWATER B Main Steam		2885	2881	2891	2909	2853	2889	2882	2904
C SUPERHEAT SPRAY L		3033	3050	3050	3000	3000	3000	3000	3050
C SUPERHEAT SPRAY R		0	0	0	0	0	0	0	0
C REHEAT SPRAY		0	0	0	0	. 0	0	0	0
C Ext. Stm. to Stm. AH 2-1		0 58.8	0 58.9	0	0	17.3	0	0,	7.9
C EXT. STM. TO STM. AH 2-2		58.8	58.9	58.8 58.8	58.8 58.8	58.8 58.8	58.8	58.8	50.8
C Aux. STN. TO STM. AH 2-1		20.0	30.3	30.0	38.8 0	28.8	58.8 O	58.8 O	58.8 0
C AUX. STM. TO STM. AH 2-2		ő	ő	ŏ	ŏ	0	ő	0	ő
C AUX. STM. TO SJAE		3.0	3.1	3.0	3.0	3.0	3.0	3.0	3.0
B AIR FLOW TO BOILER		3770	3710	3730	3130	3250	3140	3200	3190
PRESSURES STEAM & WATER	PSIG								
C FEEDWATER TO ECON.		2810	2818	2818	2813	2814	2807	2812	2808
C BOILER DRUM		2703	2716	2719	2719	2718	2705	2713	2713
C TURBINE THROTTLE C TURBINE 1ST STAGE		2423	2417	2420	2415	2420	2411	2417	2415
		1812	1827	1828	1829	1829	1806	1823	1824
C RH INLET LEFT C RH INLET R:GHT		567	569	570	573	576	565	572	573
C RH INLET RIGHT		571 569	573	573	577	579	569	575	577
C RH OUTLET			571	572	575	578 526	567	574	575 524
C HP HTR. 2-7 STM. IN		531 366	530 362	531 359	5 33 3 6 0	536 359	528 362	533 361	534 360
PRESSURES		300	302	339	360	359	302	301	360
AIR & GAS	"H ₂ 0								
B FD FAN DISCHARGE R		11.0	11.8	11.8	9.3	9.8	9.2	9.1	9.5
B FD FAN DISCHARGE L		11.0	11.8	11.8	9.3	9.8	9.2	9.1	9.5
B FD FAN DISCHARGE AVG.		11.0	11.8	11.8	9.3	9.8	9.2	9.1	9.5
C AH 2-1 AIR DIFF. PRESS. R		4.42	4.41	4.40	3.37	3.56	3.33	3.42	3.44
C AH 2-2 AIR DIFF. PRESS. L		5.02	4.84	4.84	3.81	3.98	3.73	3.90	3.90
C AH AIR DIFF. PRESS. AVG.		4.72	4.62	4.62	3.59	3.77	3.53	3.66	3.67 3.5
B WINDBOX PRESS. R		3.5	4.3	4.5	3.5	3.8	3.4	3.5 3.5	3.5
B WINDBOX PRESS. L		3.5	4.3	4.5 4.5	3.5 3.5	3.8 3.8	3.4 3.4	3.5	3.5
B WINDBOX PRESS. AVG.		3.5 -1.0	4.3 -1.0	-1.0	-1.0	-1.2	-1.0	-1.0	-1.0
B FURNACE DRAFT		2.54	2.26	2.36	1.82	1.95	1.73	1.84	1.82
C SH DRAFT DIFF.		3.16	3.08	3.11	2.44	2.51	2.31	2.41	2.39
C Econ. Draft Diff. B AH 2-1 Gas Out. Press. R		-15.0	-15.0	-15.0	-13.5	-14.3	-13.5	-13.6	-13.5
B AH 2-1 GAS OUT. PRESS. K B AH 2-2 GAS OUT. PRESS. L		-15.0	-15.0	-15.0	-13.5	-14.3	-13.4	-13.6	-13.4
B AH GAS OUT. PRESS. L		-15.0	-15.0	-15.0	-13.5	-14.3	-13.4	-13.6	-13.4
B ID FAN 2-1 INLET PRESS. R		-21.5	-19.1	-19.0	-15.8	-16.9	-15.6	-16.0	-16.0
B ID FAN 2-1 INCET PRESS. L		-17.5	-19.1	-19.0	-14.8	-15.4	-14.5	-14.8	-14.5
B ID FAN INLET PRESS. AVG.		-19.5	-19.1	-19.0	-15.3	-16.2	-15.0	-15.4	-15.2
D ID IAM INDEL THEOUT HITE									

B = BOARD DATA
C = COMPUTER DATA

BOARD AND COMPUTER DATA										
TEST NO.		<u>17</u>	18	19	50	<u>21</u>	<u>22</u>	<u>23</u>	24	
DATE	1975	10/3	10/3	10/6	10/8	10/10	10/9	10/12	10/5	
TIME C LOAD	MW	22:30 423	20:30 430	19:00 417	10:30 426	01:45 356	01:15 358	08:15 253	18:45 266	
•	•••	74.5	400	4	420	000	000	200		
FLOWS	10 ³ lb/hr	0000	0005	0000	2908	0000	0007	1665	1657	
C FEEDWATER B Main Steam		2926 3100	2885 3038	2900 3050	3050	2333 2400	2307 2400	1650	1650	
C SUPERHEAT SPRAY L		0,00	0	0	0	0.	0	0	0	
C SUPERHEAT SPRAY R		0	0	0	0	0	0	0	0	
C REHEAT SPRAY		22.9	18.7	- 0	-0	-0	4.5	0 0	- 0	
C Ext. Stm. to Stm. AH 2-1 C Ext. Stm. to Stm. AH 2-2		58.8 58.8	58.8 58.8	58.8 58.8	58.8 58.8	58.8 58.8	58.8 58.8	28.2 28.5	58.8 58.8	
C Aux. Stm. to Stm. AH 2-1		0	0	0	0	0	0	0	0	
C Aux. STM. TO STM. AH 2-2		0	0	0	0	0	0	0	0	
C AUX. STH. TO SJAE		3.0	3.0	3.0	3.2	3.0	3.1	3.0	3.0	
B AIR FLOW TO BOILER		3180	3240	3100	3110	2460	2640	1800	1810	
PRESSURES										
STEAM & WATER	PSIG									
C FEEDWATER TO ECON. C Boller Drum		2813	2806	2813 2715	2816 2720	2705 2628	2701	2592 2537	2593 2532	
C BOILER DRUM C TURBINE THROTTLE		2715 2418	2711 2413	2415	2419	2416	2631 2420	2416	2414	
C TURBINE 1ST STAGE		1826	1824	1824	1829	1442	1438	NA.	1008	
C RH INLET LEFT		574	574	572	571	464	465	NA	334	
C RH INLET RIGHT		578	579	576	575	468	469	NA	336	
C RH INLET AVG. C RH OUTLET		576 535	576 535	574 524	573 532	460 428	467 429	NA 293	335 301	
C HP HTR. 2-7 STM. IN		357	360	359	363	380	384	404	408	
PRESSURES										
AIR & GAS	"H ₂ o									
B FD FAN DISCHARGE R	-	9.0	9.4	8.8	8.5	4.8	6.8	2.5	2.5	
B FD FAN DISCHARGE L		8.9	9.4	8.8	8.5	4.6	6.6	2.5	2.5	
B FD FAN DISCHARGE AVG.		9.0	9.4	8.8	8.5	4.7	6.7	2.5	2.5	
C AH 2-1 AIR DIFF. PRESS. R C AH 2-2 AIR DIFF. PRESS. L		3.35 3.79	3.44 3.88	3.23 3.64	3.30 3.72	2.21 2.58	2.50 2.87	1.36 1.52	1.38 1.57	
C AH AIR DIFF. PRESS. AVG.		3.57	3.66	3.44	3.51	2.40	2.68	1.44	1.48	
B WINDBOX PRESS. R		3.1	3.5	3.3	3.0	1.0	2.5	0	0	
B WINDBOX PRESS. L		3.1	3.5	3.3	3.0	1.0	2.5	0	0	
B WINDBOX PRESS. AVG. B FURNACE DRAFT		3.1	3.5	3.3	3.0	1.0	2.5	. 0	0 -1.0	
C SH DRAFT DIFF.		-1.2 1.93	-1.2 2.00	-1.0 1.85	-1.0 1.77	-1.0 1.13	-1.0 1.33	-1.0 0.53	0.60	
C ECON. DRAFT DIFF.		2.45	2.61	2.43	2.45	1.71	1.80	0.98	0.88	
B AH 2-1 GAS OUT. PRESS. R		-13.5	-13.8	-13.3	-13. B	-10.6	-10.0	-6.8	-6.8	
B AH 2-2 GAS OUT. PRESS. L		-13.5	-13.8	-12.8	-13.2	-9.8	-10.0	-6.0	-6.6	
B AH GAS OUT. PRESS. AVG. B ID FAN 2-1 INLET PRESS. R		-13.5 -15.8	-13.8 -16.0	-13.0 -15.5	-13.5 -15.5	-10.2 -11.6	-10.0	-6.4 -7.5	-6.7 -8.0	
B ID FAN 2-1 INLET PRESS. R B ID FAN 2-2 INLET PRESS. L		-13.8	-15.0	-15.5	-14.0	-10.6	-11.8 -10.5	-6.8	-7.6	
B ID FAN INLET PRESS. AVG.		-15.3	-15.5	-14.8	-14.8	-11.1	-11.2	-7.2	-7.8	

B = BOARD DATA
C = COMPUTER DATA

				•					
	BO	ARD AND (-/MOLITED	DATA					
TEST NO.	<u> </u>		CONFUIER	DATA					
1231 110.		9	10	<u>11</u>	12	13	14	15	16
DATE	1975	9/27	9/27	9/27	10/5	10/4	10/5	10/4	10/3
TIME C LOAD	:	13:30	12:00	14:00	13:45	16:00	12:00	14:15	18:30
0 2000	· MW	428	429	429	427	434	422	429	427
<u>FLOWS</u>	10 ³ Lв/н г								
C FEEDWATER B MAIN STEAM		2885	2881	2891	2909	2853	2889	2882	2904
C SUPERHEAT SPRAY L		3033 0	3050 0	3050 0	3000 0	3000 0	3000	3000 0	3050
C SUPERHEAT SPRAY R		ŏ	ŏ	Ö	ŏ	0	0	0	0
C REHEAT SPRAY		0	0	0	0	17.3	0	Ō	7.9
C Ext. STM. TO STM. AH 2-1 C Ext. STM. TO STM. AH 2-2		58.8 58,8	58.9 58.9	58.8	58.8	58.8	58.8	58.8	58.8
C Aux. STM. TO STM. AH 2-1		0	0	58.8 0	58.8 0	58.8 O	58. 8 O	58.8 O	58.8 O
C Aux. STH. TO STH. AH 2-2		0	0	0	ŏ	ŏ	ŏ	ŏ	ŏ
C AUX. STM. TO SJAE B AIR FLOW TO BOILER		3.0	3.1	3.0	3.0	3.0	3.0	3.0	3.0
D AIR I LOW TO BUILER		3770	3710	3730	3130	3250	3140	3200	3190
PRESSURES									
STEAM & WATER C FEEDWATER TO ECON.	PSIG	0010	0040	204.5					
C Boiler Drum		2810 2703	2818 2716	2818 2719	2813 2719	2814 2718	2807 2705	2812 2713	2808 2713
C TURBINE THROTTLE		2423	2417	2420	2415	2420	2411	2417	2415
C TURBINE 1ST STAGE		1812	1827	1628	1829	1829	1806	1823	1824
C RH INLET LEFT C RH INLET RIGHT		567 571	569 573	570 573	573 577	576 579	565 569	572 575	573 577
C RH INLET AVG.		569	571	572	575	578	567	574	575
C RH OUTLET		531	530	531	533	536	528	533	534
C HP HTR. 2-7 STM. IN		366	362	359	360	359	362	361	360
PRESSURES									
AIR & GAS.	"H ₂ 0								
B FD FAN DISCHARGE R		11.0	11.8	11.8	9.3	9.8	9.2	9.1	9.5
B FD FAN DISCHARGE L		11.0 11.0	11.8 11.8	11.8 11.8	9.3 9.3	9.8 9.8	9.2 9.2	9.1 9.1	9.5 9.5
B FD FAN DISCHARGE AVG. C AH 2-1 AIR DIFF, PRESS. R		4.42	4.41	4.40	3.37	3.56	3.33	3.42	3.44
C AH 2-2 AIR DIFF, PRESS. L		5.02	4.84	4.84	3.81	3.98	3.73	3.90	3.90
C AH AIR DIFF. PRESS. AVG.		4.72	4.62	4.62	3.59	3.77	3.53	3.66	3.67
B WINDBOX PRESS, R		3.5 3.5	4.3 4.3	4.5 4.5	3.5 3.5	3.8 3.8	3.4 3.4	3.5 3.5	3.5 3.5
B WINDBOX PRESS. L B WINDBOX PRESS. AVG.		3.5	4.3	4.5	3.5	3.8	3.4	3.5	3.5
B FURNACE DRAFT		-1.0	-1.0	-1.0	-1.0	-1.2	-1.0	-1.0	-1.0
C SH DRAFT DIFF.		2.54 3.16	2.26 3.08	2.36 3.11	1.82	1.95 2.51	1.73	1.84 2.41	1.82 2.39
C Econ. Draft Diff. B AH 2-1 Gas Out. Press. R		-15.0	-15.0	-15.0	-13.5	-14.3	-13.5	-13.6	-13.5
B AH 2-2 GAS OUT. PRESS. L		-15.0	-15.0	-15.0	-13.5	-14.3	-13.4	-13.6	-13.4
B AH GAS OUT. PRESS. AVG.		-15.0	-15.0	-15.0	-13.5 -15.8	-14.3 -16.9	-13.4 -15.6	-13.6 -16.0	-13.4 -16.0
B ID FAN 2-1 INLET PRESS. R		-21.5 -17.5	-19.1 -19.1	-19.0 -19.0	-13.8	-15.4	-14.5	-14.8	-14.5
B ID FAN 2-2 INLET PRESS. L B ID FAN INLET PRESS. AVG.		-19.5	-19.1	-19.0	-15.3	-16.2	-15.0	-15.4	-15.2
D ID IAN INCEL INCODE ATTE									

B = BOARD DATA
C = COMPUTER DATA

	80	ARD AND	COMPUTER	DATA					
TEST NO.		<u>17</u>	<u>18</u>	19	20	21	<u>22</u>	23	24
DATE	1975	10/3	10/3	10/6	10/B	10/10	10/9	10/12	10/5
TIME C LOAD	MW	22:30 423	20:30 430	19:00 417	10:30 426	01:45 356	01:15 358	08:15 253	18:45 266
	10 ³ LB/HR	•		• • •					
FLOWS C FEEDWATER	10°LB/HR	2926	2885	2900	2908	2333	2307	1665	1657
B MAIN STEAM		3100	3038	3050	3050	2400	2400	1650	1650
C SUPERHEAT SPRAY L		0	0	0	0	0	0	0	0
C SUPERHEAT SPRAY R		0	0	0	0	0	0	0	0
C REHEAT SPRAY C Ext. Stm. to Stm. AH 2-1		22.9 58.8	18.7 58.8	0 58.8	0 58.8	0 58.8	4.5 58.8	0 28.2	0 58.8
C Ext. STM. TO STM. AH 2-2		58.8	58.8	58.8	58.8	58.8	58.8	28.5	58.8
C Aux. STM. TO STM. AH 2-1		0	0	0	0	0	0	0	0
C AUX. STM. TO STM. AH 2-2		0	0	0	0	0	0	0	0
C Aux. STM. TO SJAE		3.0	3.0	3.0	3.2	3.0	3.1	3.0	3.0
B AIR FLOW TO BOILER		3180	3240	3100	3110	2460	2640	1800	1810
PRESSURES	2010								
STEAM & WATER C FEEDWATER TO ECON.	PSIG	0010	2806	2813	0016	2705	2701	2592	2593
C BOILER DRUM		2813 2715	2711	2715	2816 2720	2628	2631	2537	2532
C TURBINE THROTTLE		2418	2413	2415	2419	2416	2420	2416	2414
C TURBINE 1ST STAGE		1826	1824	1824	1829	1442	143B	NA	1008
C RH INLET LEFT		574	574	572	571	464	465	NA	334
C RH INLET RIGHT C RH INLET AVG.		578 576	579 576	576 574	575 573	468 460	469 467	NA NA	336 335
C RH OUTLET		576 535	535	524	573 532	460	467 429	293	301
C HP HTR. 2-7 STM. IN		357	360	359	363	380	384	404	408
PRESSURES AIR & GAS	m o								
	"H ₂ 0								
B FD FAN DISCHARGE R		9.0	9.4	8.8	8.5	4.8	6.B	2.5	2.5
B FD FAN DISCHARGE L B FD FAN DISCHARGE AVG.		8,9 9.0	9.4 9.4	8.8 8.8	8.5 8.5	4.6 4.7	6.6 6.7	2.5 2.5	2.5 2.5
C AH 2-1 AIR DIFF. PRESS. R		3.35	3.44	3.23	3.30	2.21	2.50	1.36	1.38
C AH 2-2 AIR DIFF. PRESS. L		3.79	3.88	3.64	3.72	2.58	2.87	1.52	1.57
C AH AIR DIFF. PRESS. AVG.		3.57	3.66	3.44	3.51	2.40	2.68	1.44	1.48
B WINDBOX PRESS. R B WINDBOX PRESS. L		3.1	3.5	3.3	3.0	1.0	2.5	0	0
B WINDBOX PRESS. L B WINDBOX PRESS. AVG.		3.1 3.1	3.5 3.5	3.3 3.3	3.0 3.0	1.0 1.0	2.5 2.5	0	0
B FURNACE DRAFT		-1.2	-1.2	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
C SH DRAFT DIFF.		1.93	2.00	1.85	1.77	1.13	1.33	0.53	0.60
C Econ. Draft Diff.		2.45	2.61	2.43	2.45	1.71	1.80	0.98	0.88
B AH 2-1 GAS OUT. PRESS. R B AH 2-2 GAS OUT. PRESS. L		-13.5	-13.8	-13.3	-13.8	-10.6	-10.0	-6.8	-6.8
B AH GAS OUT. PRESS. L B AH GAS OUT. PRESS. AVG.		-13.5 -13.5	-13.8 -13.8	-12.8 -13.0	-13.2 -13.5	-9.8 -10.2	-10.0 -10.0	-6.0 -6.4	-6.6 -6.7
B ID FAN 2-1 INLET PRESS. R		-15.8	-16.0	-15.5	-15.5	-10.2	-11.8	-7.5	-8.0
B ID FAN 2-2 INLET PRESS. L		-14.8	-15.0	-14.0	-14.0	-10.6	-10.5	-6.8	-7.6
B ID FAN INLET PRESS. AVG.		-15.3	-15.5	-14.8	-14.8	-11.1	-11.2	-7.2	-7.8

B = BOARD DATA
C = COMPUTER DATA

BOARD AND COMPUTER DATA									
TEST NO.		9	10	11	12	13	14	<u>15</u>	16
DATE Time C Load	1975 Mw	9/27 13:30 428	9/27 12:00 429	9/27 14:00 429	10/5 13:45 427	10/4 16:00 434	10/5 12:00 422	10/4 14:15 429	10/3 18:30 427
FLOWS C FEEDWATER B MAIN STEAM C SUPERHEAT SPRAY L C SUPERHEAT SPRAY R C REHEAT SPRAY C EXT. STM. TO STM. AH 2-1 C EXT. STM. TO STM. AH 2-2 C AUX. STM. TO STM. AH 2-1	10 ³ Lв/н г	2885 3033 0 0 0 58.8 58,8	2881 3050 0 0 0 58.9 58.9	2891 3050 0 0 0 58.8 58.8	2909 3000 0 0 0 58.8 58.8	2853 3000 0 0 17.3 58.8 58.8	2889 3000 0 0 58.8 58.8	2882 3000 0 0 0 58.8 58.8	2904 3050 0 0 7.9 58.8 58.8
C AUX. STM. TO STM. AH 2-2 C AUX. STM. TO SJAE B AIR FLOW TO BOILER PRESSURES		3.0 3770	0 0 3.1 3710	0 0 3.0 3730	0 0 3.0 3130	0 0 3.0 3250	0 0 3.0 3140	0 0 3.0 3200	0 3.0 3190
STEAM & WATER C FEEDWATER TO ECON. C BOILER DRUM C TURBINE THROTTLE C TURBINE 1ST STAGE C RH INLET LEFT C RH INLET RIGHT C RH INLET AVG. C RH OUTLET C HP HTR. 2-7 STM. IN	PSIG	2810 2703 2423 1812 567 571 569 531 366	2818 2716 2417 1827 569 573 571 530 362	2818 2719 2420 1828 570 573 572 531 359	2813 2719 2415 1829 573 577 575 533 360	2814 2718 2420 1829 576 579 578 536 359	2807 2705 2411 1806 565 569 567 528 362	2812 2713 2417 1823 572 575 574 533 361	2808 2713 2415 1824 573 577 575 534 360
PRESSURES AIR & GAS, B FD FAN DISCHARGE R B FD FAN DISCHARGE L B FD FAN DISCHARGE AVG. C AH 2-1 AIR DIFF. PRESS. R C AH 2-2 AIR DIFF. PRESS. L C AH AIR DIFF. PRESS. AVG. B WINDBOX PRESS. R B WINDBOX PRESS. L B WINDBOX PRESS. AVG. B FURNACE DRAFT C SH DRAFT DIFF. C ECON. DRAFT DIFF. B AH 2-1 GAS OUT. PRESS. R B AH 2-2 GAS OUT. PRESS. L B AH GAS OUT. PRESS. AVG. B ID FAN 2-1 INLET PRESS. R B ID FAN 2-2 INLET PRESS. L B ID FAN 1NLET PRESS. L B ID FAN INLET PRESS. L	"H ₂ 0	11.0 11.0 11.0 4.42 5.02 4.72 3.5 3.5 3.5 -1.0 2.54 3.16 -15.0 -15.0 -15.0	11.8 11.8 4.41 4.84 4.62 4.3 4.3 -1.0 2.26 3.08 -15.0 -15.0 -19.1	11.8 11.8 4.40 4.84 4.5 4.5 -1.0 2.36 3.11 -15.0 -15.0 -19.0	9.3 9.3 9.3 3.37 3.81 3.59 3.5 3.5 -1.0 2.444 -13.5 -13.5 -13.5 -15.8 -14.8 -15.3	9.8 9.8 9.8 3.56 3.98 3.7 3.8 3.8 -1.2 1.95 2.51 -14.3 -14.3 -16.9	9.2 9.2 9.2 3.33 3.79 3.54 3.4 -1.03 2.31 -13.5 -13.4 -15.6 -14.5	9.1 9.1 9.1 3.42 3.90 3.55 3.5 -1.0 1.84 2.41 -13.6 -13.6 -14.8 -15.4	9.5 9.5 9.5 3.44 3.90 3.67 3.5 3.5 1.82 2.39 -13.4 -16.0 -14.5

B = BOARD DATA
C = COMPUTER DATA

BOARD AND COMPUTER DATA										
TEST NO.		17	18	<u>19</u>	20	21	<u>22</u>	<u>23</u>	24	
DATE	1975	10/3	10/3	10/6	10/B	10/10	10/9	10/12	10/5	
TIME	MW	22:30	20:30	19:00	10:30	01:45	01:15	08:15	18:45 266	
C LOAD	•	423	430	417	426	356	358	253	200	
FLOWS	10 ³ LB/HR									
C FEEDWATER		2926	2885	2900	2908	2333	2307	1665	1657	
B Main Steam C Superheat Spray L		3100 0	3038 0	3050 0	3050 0	2400 0	2400 0	1650 0	1650 0	
C SUPERHEAT SPRAY R		ŏ	ŏ	ő	ŏ	ŏ	Ö	ŏ	ŏ	
C REHEAT SPRAY		22.9	18.7	ō	ŏ	ŏ	4.5	ŏ	ō	
C EXT. STM. TO STM. AH 2-1		58.8	58.8	58.8	58.8	58.8	58.8	28.2	58.8	
C EXT. STN. TO STN. AH 2-2		58.8	58.8	58.8	58.8	58.8	58.8	28.5	58.8	
C Aux. Stm. to Stm. AH 2-1 C Aux. Stm. to Stm. AH 2-2		0	0	0	0	0	0	0	0	
C AUX. STM. TO SJAE		3.0	3.0	3.0	3.2	3.0	3.1	3.ŏ	з.о	
B AIR FLOW TO BOILER		3180	3240	3100	3110	2460	2640	1800	1810	
PRESSURES										
STEAM & WATER	PSIG									
C FEEDWATER TO ECON.		2813	2806	2813	2816	2705	2701	2592	2593	
C BOILER DRUM		2715	2711	2715	2720	2628	2631	2537	2532	
C TURBINE THROTTLE C Turbine 1st Stage		2418	2413	2415	2419	2416	2420	2416	2414	
C TURBINE 1ST STAGE C RH INLET LEFT		1826 574	1824 574	1824 572	1829 571	1442 464	1438 465	NA NA	1008 334	
C RH INLET RIGHT		578	579	576	575	468	469	NA NA	336	
C RH INLET AVG.		576	576	574	573	460	467	NA	335	
C RH OUTLET		535	535	524	532	428	429	293	301	
C HP HTR. 2-7 STM. IN		357	360	359	363	380	384	404	408	
PRESSURES										
AIR & GAS	"H ₂ 0									
B FD FAN DISCHARGE R		9.0	9.4	8.8	8.5	4.8	6.8	2.5	2.5	
B FD FAN DISCHARGE L B FD FAN DISCHARGE AVG.		8.9	9.4	8.8	8.5	4.6	6.6	2.5	2.5	
B FD FAN DISCHARGE AVG. C AH 2-1 AIR DIFF. PRESS. R		9.0 3.35	9.4 3.44	8.8 3.23	8.5 3.30	4.7 2.21	6.7 2.50	2.5 1.36	2.5 1.38	
C AH 2-2 AIR DIFF. PRESS. L		3.79	3.88	3.64	3.72	2.58	2.87	1.52	1.57	
C AH AIR DIFF. PRESS. AVG.		3.57	3.66	3.44	3.51	2.40	2.68	1.44	1.48	
B WINDBOX PRESS. R		3.1	3.5	3.3	3.0	1.0	2.5	0	0	
B WINDBOX PRESS. L B WINDBOX PRESS. Avg.		3.1 3.1	3.5 3.5	3.3 3.3	3.0 3.0	1.0	2.5 2.5	0	0	
A FURNACE DRAFT		-1.2	-1.2	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
C SH DRAFT DIFF.		1.93	2.00	1.85	1.77	1.13	1.33	0.53	0.60	
C ECON. DRAFT DIFF.		2.45	2.61	2.43	2.45	1.71	1.80	0.98	0.88	
B AH 2-1 GAS OUT. PRESS. R		-13.5	-13.8	-13.3	-13.8	-10.6	-10.0	-6.8	-6.8	
B AH 2-2 GAS OUT. PRESS. L B AH GAS OUT. PRESS. AVG.		-13.5 -13.5	-13.8 -13.8	-12.8 -13.0	-13.2 -13.5	-9.8 -10.2	-10.0 -10.0	-6.0 -6.4	-6.6 -6.7	
B ID FAN 2-1 INLET PRESS. R		-15.8	-16.0	-15.5	-15.5	-11.6	-11.8	-7.5	-8.0	
B ID FAN 2-2 INLET PRESS. L		-14.8	-15.0	-14.0	-14.0	-10.6	-10.5	-6.8	-7.6	
B ID FAN INLET PRESS. AVG.		-15.3	-15.5	-14.8	-14.8	-11.1	-11.2	-7.2	-7.8	

280

B = BOARD DATA
C = COMPUTER DATA

	<u>80</u>	ARD AND	COMPUTER	DATA					
TEST NO.	•	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>
DATE	1975	9/17	9/26	9/26	9/26	9/26	10/1	10/1	10/1
TIME	13/3	10:20	09:40	11:30	15:30	17:15	18:00	19:30	21:00
C LOAD	MW	428	430	430	430	431	430	428	428
							,,,,	,_0	740
TEMPERATURES									
AIR & GAS	°F								
C AH 2-1 AIR IN TEMP.		103	108	108	109	109	96	96	95
C AH 2-2 AIR IN TEMP.		98	94	94	91	91	110	109	109
C AH AIR IN TEMP. AVG.		100	101	101	100	100	103	102	102
C AH 2-1 AIR OUT TEMP. C AH 2-2 AIR OUT TEMP.		521	513	513	511	512	534	532	533
C AH AIR OUT TEMP.		544	546	548	545	547	534	535	536
C AH 2-1 GAS IN TEMP.		532	530	530	528	530	534	534	534
C AH 2-1 GAS IN TEMP.		722	714	715	710	711	716	714	713
C AH GAS IN TEMP.		722 722	701	703	703	708	707	707	709
C AH 2-1 GAS OUT TEMP.		268	708	709	706	710	712	710	711
C AH 2-2 GAS OUT TEMP.*		279	261 286	261 287	261 286	261 288	282	280	279
C AH GAS OUT TEMP. AVG.		274	274	274	274	274	264 273	265 272	265 272
o an one out tear that		214	214	214	2/4	614	213	212	212
TEMPERATURES									
STEAM & WATER	°F								
C FW IN TEMP. TO ECON.		484	485	485	486	485	485	484	485
C Econ. Out. Avg.		576	577	577	574	575	570	570	571
C BOILER DOWNCOMER		678	678	678	678	679	678	678	678
C SH DESH INLET &		752	749	751	749	750	745	747	749
C SH DESH INLET R		759	763	759	757	756	755	756	760
C SH DESH INLET AVG.		756	756	755	753	753	750	752	754
C SH DESH OUTLET L		758	754	756	755	757	751	753	755
C SH DESH OUTLET R		764	764	763	759	759	760	758	761
C SH DESH OUTLET AVG.		761	759	760	757	758	756	756	758
C SH OUTLET .		987	983	983	989	987	991	980	982
C THROTTLE STEAM		976	971	973	979	974	980	971	974
C RH TURBINE L		616	613	613	619	616	619	612	615
C RH TURBINE R		617	613	614	620	616	619	613 612	615 615
C RH TURBINE AVG.		616	613	614	619 576	616 581	619 615	608	611
C RH BOILER L		601	598	600 595	562	569	614	608	610
C RH BOILER R		595	5 9 2 595	598	569	575	614	608	610
C RH BOILER AVG.		598 9 9 5	1004	1002	994	1002	1020	1011	1014
C RH OUTLET		615	611	612	619	614	618	612	613
C HP HTR. 2-7 STM. IN		415	415	415	416	416	415	415	416
C HP HTR. 2-7 FW IN C HP HTR. 2-7 DRAIN		423	423	423	424	424	424	424	424
- –		528	528	529	530	530	531	530	531
C AUX. STEAM TEMP.		JEU	320						
FAN DAMPER POSITION	% OPEN								
B FD FANS	יים יוט עק	75	73	74	74	74	70	70	70
B ID FANS		67	66	65	66	66	60	63	62
U ID TANS									
SPRAY VALVE POSITION	S OPEN								_
B SH SPRAY	,	0	0	0	0	0	0	0	0
B RH SPRAY		15	14	13	28	25	0	0	0
J. 1151									

B = BOARD DATA
C = COMPUTER DATA
TC READING OPEN

	<u>B0</u>	ARD AND	COMPUTER	DATA					
TEST NO.		<u>9</u>	10	11	12	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>
DATE	1975	9/27	9/27	9/27	10/5	10/4	10/5	10/4	10/3
Tine		13:30	12:00	14:00	13:45	16:00	12:00	14:15	18:30
C LOAD	MW	428	429	429	427	434	422	429	427
<u>TEMPERATURES</u>	_								
AIR & GAS	° F								
C AH 2-1 AIR IN TEMP.		106	96	96	101	100	101	100	99
C AH 2-2 AIR IN TEMP.		98	104	105	103	103	104	104	104
C AH AIR IN TEMP. AVG. C AH 2-1 AIR OUT TEMP.		102 512	100 530	100 531	102 527	102 531	102 524	102 526	102 526
C AH 2-2 AIR OUT TEMP.		543	545	545	540	541	536	538	526 535
C AH AIR OUT TEMP. AVG.		5 2 8	5 38	538	534	536	530	532	530
C AH 2-1 GAS IN TEMP.		724	728	729	715	724	710	714	711
C AH 2-2 GAS IN TEMP.		713	733	731	714	716	709	709	714
C AH GAS IN TEMP. AVG.		718	730	730	714	720	710	712	712
C AH 2-1 GAS OUT TEMP.		266	281	282	276	277	274	275	275
C AH 2-2 GAS OUT TEMP.*		282	270	271	274	273	273	272	270
C AH GAS OUT TEMP. AVG.		274	276	276	275	275	274	274	272
TEMPERATURES STEAM & WATER	۰F								
C FW IN TEMP. TO ECON.	-	485	484	484	484	486	484	485	485
C Econ. Out. Avg.		584	586	587	571	574	568	571	570
C BOILER DOWNCOMER		678	678	678	678	678	677	678	678
C SH DESH INLET L		751	758	759	748	748	742	744	740
C SH DESH INLET R		758	762	762	748	761	742	751	751
C SH DESH INLET AVG.		754	760	760	748	754	742	748	746
C SH DESH OUTLET L		757	765	76 6	753	754	748	750	747
C SH DESH OUTLET R		761	769	770	753	765	749	756	757
C SH DESH OUTLET AVG.		759	767	768	753	760	748	753	752
C SH OUTLET		983	994	993	977	1006	969	988	978
C THROTTLE STEAM		973	980	982	967	997	960	977	968
C RH TURBINE L C RH TURBINE R		613	620	621	609	634	602	617	611 611
C RH TURBINE AVG.		614 614	620 620	621 621	609 609	635 634	603 602	618 618	611
C RH BOILER L		609	616	618	605	612	600	611	596
C RH Boiler R		609	616	616	604	603	599	610	588
C RH BOILER AVG.		609	616	617	604	608	600	610	5 9 2
C RH OUTLET		1012	1012	1011	1006	1026	991	1017	995
C HP HTR. 2-7 STM. IN		613	621	620	608	635	602	616	609
C HP HTR. 2-7 FW IN		413	415	415	415	416	414	415	415
C HP HTR. 2-7 DRAIN		423	423	423	424	424	423	424	423
C Aux. Steam Temp.		525	542	545	525	577	518	530	526
FAN DAMPER POSITION	€ OPEN								
B FD FANS	,	80	79	80	72	73	71	72	72
B ID FANS		74	71	71	63	65	62	64	64
SPRAY VALVE POSITION	≸ Open								
B SH SPRAY		0	0	0	0	0	0	0	0
B RH SPRAY		0	0	0	0	23	0	3	15

B = BOARD DATA
C = COMPUTER DATA
TC READING OPEN

	ВО	ARD AND	COMPUTER	DATA					
TEST NO.		<u>17</u>	18	19	20	21	22	23	24
DATE	1975	10/3	10/3	10/6	10/8	10/10	10/9	10/12	10/5
TIME		22:30	20:30	19:00	10:30	01:45	01:15	08:15	18:45
C LOAD	MW	423	430	417	426	356	358	253	266
TEMPERATURES									
AIR & GAS	°F								
C AH 2-1 AIR IN TEMP.	r	98	97	102	97	109	110	116	115
C AH 2-2 AIR IN TEMP.		104	103	104	103	108	112	118	117
C AH AIR IN TEMP. AVG.		101	100	103	100	108	111	117	116
C AH 2-1 AIR OUT TEMP.		524	527	524	522	504	505	468	476
C AH 2-2 AIR OUT TEMP. C AH AIR OUT TEMP. AVG.		534	538	534	532	511	510	470	476
C AH AIR OUT TEMP. AVG. C AH 2-1 GAS IN TEMP.		529	532	529	527	508	508	469	476
C AH 2-2 GAS IN TEMP.		708 708	715 721	710 7 0 2	710 702	659 655	672 673	592 591	608 607
C AH GAS IN TEMP. AVG.		708 708	718	706	702	657	672	592	608
C AH 2-1 GAS OUT TEMP.		274	275	273	272	262	262	248	252
C AH 2-2 GAS OUT TEMP.*		271	272	272	271	266	259	250	254
C AH GAS OUT TEMP. AVG.		272	274	272	272	264	260	249	253
TEMPERATURES STEAM & WATER	°F								
C FW IN TEMP. TO ECON.		484	486	484	484	464	464	430	434
C Econ. Out. Avg.		569	573	567	568	539	545	498	504
C BOILER DOWNCOMER		678	678	678	678	672	673	668	668
C SH DESH INLET L		739	747	744	739	738	751	730	740
C SH DESH INLET R		752	759	742	743	742	757	733	741
C SH DESH INLET AVG.		746 746	753 753	743 744	741 744	740 743	754 758	732 734	740 741
C SH DESH OUTLET L C SH DESH OUTLET R		750	758	747	744	743	756	737	746
C SH DESH OUTLET AVG.		748	756	746	746	744	757	736	744
C SH OUTLET .		961	989	961	972	983	995	973	1005
C THROTTLE STEAM		951	981	958	960	976	989	963	996
C RH TURBINE L		597	622	602	603	579	591	NA	550
C RH TURBINE R		597	623	603	603	585	596	NA	562
C RH TURBINE AVG.		597	622 5 9 5	602 599	603 601	582 577	594 576	NA 519	556 547
C RH BOILER L		555 544	581	599	599	579	573	529	557
C RH BOILER R C RH BOILER AVG.		550	588	599	600	578	574	524	552
C RH OUTLET		965	1007	987	991	983	1002	954	988
C HP HTR. 2-7 STM. IN		594	620	603	602	580	591	529	556
C HP HTR. 2-7 FW IN		415	416	415	415	399	400	371	374
C HP HTR. 2-7 DRAIN		423	424	424	423	405	405	375	377 535
C Aux. Steam Temp.		511	533	518	513	530	552	519	535
CAN BANDED DOCUTION	S OPEN								
FAN DAMPER POSITION	38 OPEN	70	70	70	68	57	61	46	46
B FD FANS B ID FANS		63	62	60	60	53	55	41	41
•	d 0==								
SPRAY VALVE POSITION	% OPEN	0	0	0	0	0	0	0	7
B SH SPRAY		25	22	ō	Ó	0	12	0	0
B RH SPRAY		_							

B = BOARD DATA
C = COMPUTER DATA
* TC READING OPEN

	COMPUTER	

	·								
TEST NO.		1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>
DATE	1975	9/17	9/26	9/26	9/26	9/26	10/1	10/1	10/1
TIME		10:20	09:40	11:30	15:30	17:15	18:00	19:30	21:00
C LOAD	MW	428	430	430	430	431	430	428	428
MILL DATA C MILL 2-1	AMPS	NA	NA	NA	NA	NA	NA	NA	NA
C MILL 2-2	AMPS	NA NA	NA NA	NA.	NA.	NA.	NA.	NA.	NA.
C MILL 2-3	AMPS	NA	NA NA	NA NA	NA	NA	NA.	NA.	NA.
C MILL 2-4	AMPS	NA NA	NA NA	NA	NA NA	NA.	NA.	NA.	NA.
C MILL 2-5	AMPS	NA	NA	NA.	NA	NA	NA	NA	NA
C COAL AIR TEMP. MILL 2-1	°F	148	149	148	149	149	150	150	149
C COAL AIR TEMP. MILL 2-2	°F	148	150	150	150	150	150	150	149
C COAL AIR TENP. MILL 2-3	• F	147	148	147	147	147	149	149	147
C COAL AIR TEMP. MILL 2+4	°F	146	148	148	148	148	146	146	146
C COAL AIR TEMP. MILL 2-5	°F	148	149	149	149	149	148	148	149
B MILL 2-1 Exh. Disch.	"H ₂ O "H2O "H2O "H2O	7.0	6.0	6.2	6.0	6.0	7.4	7.1	7.3
B MILL 2-2 Exh. Disch.	"HŽO	7.0	6.4	6.5	6.5	6.5	6.8	7.1	6.7
B MILL 2-3 Exh. Disch.	"HŽO	8.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
B MILL 2-4 Exh. Disch.	"HZO	9.0	8.7	8.8	8.8	8.5	7.0	7.0	7.0
B MILL 2-5 Exh. Disch. B Mill 2-1 Suction	"H_0	8.0	7.2	7.3	7.9	7.5	7.4	7.0	7.4
B MILL 2-1 SUCTION B MILL 2-2 SUCTION	"H_0	-1.8 -2.0	-1.7	-1.8	-1.8 -2.0	-1.8	-2.0	-2.0 -2.0	-2.0 -1.9
B MILL 2-3 SUCTION	"H20	-1.8	-1.9 -1.8	-1.9 -1.9	-1.9	-2.0 -1.9	-2,0 -1.8	-1.9	-1.9
B MILL 2-4 SUCTION	"H ₂ 0	-1.7	-1.7	-1.7	-1.8	-1.7	-2.0	-2.1	-2.1
B MILL 2-5 SUCTION	, "H20	-2.0	-2.0	-2.1	-2.0	-2.0	-1.8	-1.9	-2.0
B MILL 2-1 COAL FLOW	10 ³ LB/AR	66	67	68	69	68	69	67	69
B MILL 2-2 COAL FLOW	103 B/HR	64	65	66	66	66	66	64	66
B MILL 2-3 COAL FLOW	103LB/HR 103LB/HR	63	63	63	64	64	65	63	65
B MILL 2-4 COAL FLOW	10 LB/HR	63	64	63	64	64	64	63	64
B MILL 2-5 COAL FLOW	10 LB/HR	63	65	64	64	65	66	64	66
B MILL 2-1 FEEDER SPEED +	%	75	76	78	79	78	79	77	79
8 MILL 2-2 FEEDER SPEED	%	76	76	77	78	77	79	76	79
B Mill 2-3 FEEDER SPEED	*	75	75	75	76	76	78	76	7 7
B MILL 2-4 FEEDER SPEED	*	75	77	77	77	78	78	76	78
B MILL 2-5 FEEDER SPEED	%	75	77	76	77	77	78	77	78
BURNER TILT	DEGREES								
B POSITION LF	- DEGREES	+6	-11	-11	-14	-14	÷9	+9	+10
B POSITION LR		+7	-9	-9	-12	-10	+10	+10	+10
B POSITION RF		+5	-10	-12	-14	-15	+7	+8	+8
B POSITION RR		+6	-10	-10	-14	-13	+9	+10	+11
MISCELLANEOUS			_	_	_	_	_	_	_
B DRUM LEVEL " - NORM. HO LEVEL		-1	0	0	0	0	0	0	0
CFD FAN 2-1	AMPS	216	215	214	214	214	208	508	207
C FD FAN 2-2 C ID FAN 2-1	AMPS	240 3 9 7	235	235	235	235	229	228	226
C ID FAN 2-2	AMPS AMPS	397 405	389 424	385	385	385	400	404 376	400 374
	PPM	NA	424 NA	419 NA	419 NA	416 NA	373	5/6 60	3/4 70
B FLUE GAS SO, IN STACK B FLUE GAS NO. IN STACK	PPM	NA NA	627	NA NA	515	580	60 400	408	400
C FLUE GAS COMBUSTIBLES L	1 5	0.11	0.11	0.10	0.06	0.06	0.06	0.08	0.08
C FLUE CLA COMPUNETURE D	~ ~	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C FLUE GAS O L C FLUE GAS O R C FLUE GAS O R C FLUE GAS O R AVG.	**************************************	4.13	4.52	4.16	4.05	3.71	2.96	2.31	2.24
C FLUE GAS 02 R	Ĩ.	4.06	3.62	3.86	3.77	4.19	2.54	2.49	3.64
C FLUE GAS 02 AVG.	ĩ	4.10	4.07	4.01	3.91	3.95	2.75	2.40	2.94
B AMBIENT TERP.	°F	73	67	74	74	70	64	57	54
B AMBIENT REL. HUMIDITY	• •	43	29	25	50	24	28	33	35
B BAROMETRIC PRESS.	"Hg	23.86	23.97	23.96	23.93	23.92	24.05	24.05	24.07

284

B = BOARD DATA
C = COMPUTER DATA
* FEEDER SPEED IN \$ OF CONTROL SIGNAL

	<u>B</u> 0/	VRD AND C	OMPUTER	DATA					
TEST NO.		9	10	11	12	<u>13</u>	14	15	<u>16</u>
DATE TIME C LOAD	1975 Mw	9/27 13:30 428	9/27 12:00 429	9/27 14:00 429	10/5 13:45 427	10/4 16:00 434	10/5 12:00 422	10/4 14:15 429	10/3 18:30 427
MILL DATA C MILL 2-1		,20	,,,,	763	72,	4,54	423	423	461
C MILL 2-2	AMPS AMPS	NA NA							
C MILL 2-3 C MILL 2-4	AMPS AMPS	NÀ NA	NA NA	NA NA	NA NA	NA	NA	NA	NA
C MILL 2-5	AMP5	NA	NA NA						
C COAL AIR TEMP. MILL 2-1 C COAL AIR TEMP. MILL 2-2	°F °F	148 149	149	149	148	150	148	150	148
C COAL AIR TEMP. MILL 2-3	°F	147	149 147	150 148	148 147	149 146	148 147	150 146	150 147
C COAL AIR TEMP. MILL 2-4 C COAL AIR TEMP. MILL 2-5	°F °F	141	146	146	145	145	145	145	145
B Mill 2-1 Exh. Disch.	"ห_้อ	148 5.8	148 7.2	149 7.2	149 8.0	149 6.6	148 8.0	149 6.9	149 7.5
B MILL 2-2 Exm. Discm. B Mill 2-3 Exm. Discm.	"H_0	7.0	6.9	6.8	6.7	6.8	7.0	7.0	6.9
B MILL 2-4 Exh. Disch.	"H200""""""""""""""""""""""""""""""""""	7.0 8.5	7.0 6.9	7.0 7.0	7.3 7.3	7.3 7.0	7.0 7.1	7. 1 7.0	7.4 7.0
B MILL 2-5 EXH. DISCH. B MILL 2-1 SUCTION	"H ² 0 "H ² 0	7.5	7.2	7.5	7.0	7.1	7.3	7.4	7.1
B MILL 2-1 SUCTION B MILL 2-2 SUCTION	"H ² O	-1.9 -2.0	-1.9 -1.8	-1.9 -1.8	-1.9 -2.0	-2.1 -1.9	-2.0 -2.0	-2.1 -2.0	-2.0 -1.9
B MILL 2-3 SUCTION	"H20	-1.8	-1.7	-1.8	-1.9	-1.8	-2.1	-1.9	-1 .B
B MILL 2-4 SUCTION B MILL 2-5 SUCTION	"H ² 0 "H ² 0 "H ² 0	-1.7 -2.0	-2.0 -1.9	-2.0 -1.9	-2.2 -2.0	-2.0 -2.0	-2.2 -2.1	-2.1 -2.0	-2.1 -2.0
B MILL 2-1 COAL FLOW	103LB/AR	60	69	68	72	60	71	60	67
B MILL 2-2 COAL FLOW B MILL 2-3 COAL FLOW	103LB/HR 103LB/HR 103LB/HR	66 64	67 65	66 64	65 60	67 66	65 60	67 66	64 63
B MILL 2-4 COAL FLOW	10,TLB/HR	64	64	63	60	65	60	65	62
B Mill 2-5 COAL Flow B Mill 2-1 Feeder Speed *	10°LB/HR ⊀	66 69	66 79	65 78	61 83	67 69	61 83	67 69	64 77
B MILL 2-2 FEEDER SPEED	* *	. 79	79	78	78	79	77	80	76
B MILL 2-3 FEEDER SPEED	×	77 78	77 77	76 78	73 74	79 79	72 71	78 78	75 77
B MILL 2-4 FEEDER SPEED B MILL 2-5 FEEDER SPEED	•	78	78	78	75	79	73	79	77
BURNER TILT B POSITION LF	+ DEGREES	+10	+16	+12	-20	-1	-23	-1	+21
B Position LR		+10	+17	+12	-19	+1	-19	+1	+24
B POSITION RF B Position RR		+9 +11	+15 +18	+1 1 +13	-23 -19	0	-23 -20	o o	+23 +20
MISCELLANEOUS DRUM LEVEL " NORM. H20 LEVEL		o	o	0	0	0	0	0	0
C FD FAN 2-1	AMPS AMPS	230 255	231 258	230 256	207 228	210 233	207 228	208 230	210 2 32
C FD FAN 2-2 C ID FAN 2-1	AMPS	435	475	477	392	400	390	396	398
C ID FAN 2-2	AMPS	461	419	419 50	385 30	390 40	383 10	387 40	388 6 3
B FLUE GAS SO IN STACK B FLUE GAS NO IN STACK	PPM PPM	107 400	50 4 08	400	370	360	360	358	373
C FLUE GAS COABUSTIBLES L	\$	0.07	0.11	0.06	0.06	0.07 0.0	0.11	0.09	0.0
C FLUE GAS COMBUSTIBLES R	% \$	0.0 5.12	0.0 5.51	0.0 5.20	2.67	3.27	2.72	3.45	3.41
C FLUE GAS 0 L C FLUE GAS 02 R C FLUE GAS 02 AVG.	X X X	5.35	5.75	6.06	4.14	3.50	4.10 3.41	3.41 3.43	3.53 3.47
C FLUE GAS 02 AVG.	% °F	5.24 77	5.63 64	5.63 70	3.40 75	3.38 73	72	75	62
B AMBIENT TEMP. B Ambient Rel. Humidity	%	20	38	30	28	24 24.00	31 24.05	26 24.03	22 24.03
B BAROMETRIC PRESS.	"Hg	23.97	24.20	24.18	24.03	24.00	24.00	24.03	27.03

B = BOARD DATA
C = COMPUTER DATA
* FEEDER SPEED IN \$ OF CONTROL SIGNAL

	80	ARD AND	COMPUTER	DATA					
TEST NO.		<u>17</u>	18	<u>19</u>	<u> 20</u>	21	55	23	<u>24</u>
DATE TIME C Load	1975 Mw	10/3 22:30 423	10/3 20:30 430	10/6 19:00 417	10/8 10:30 426	10/10 01:45 356	10/9 01:15 358	10/12 08:15 253	10/5 18:45 266
MILL DATA C MILL 2-1 C MILL 2-2 C MILL 2-3 C MILL 2-3 C MILL 2-4 C MILL 2-5 C COAL AIR TEMP. MILL 2-1 C COAL AIR TEMP. MILL 2-2 C COAL AIR TEMP. MILL 2-3 C COAL AIR TEMP. MILL 2-3 C COAL AIR TEMP. MILL 2-5 B MILL 2-1 EXH. DISCH. B MILL 2-2 EXH. DISCH. B MILL 2-3 EXH. DISCH. B MILL 2-5 EXH. DISCH. B MILL 2-1 SUCTION B MILL 2-2 SUCTION B MILL 2-3 SUCTION B MILL 2-4 SUCTION B MILL 2-5 COAL FLOW B MILL 2-1 COAL FLOW B MILL 2-5 FEEDER SPEED B MILL 2-3 FEEDER SPEED B MILL 2-4 FEEDER SPEED B MILL 2-5 FEEDER SPEED	SPSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NAAA 864596A5534A3435A9904A890146A65534A3435A9906A890
BURNER TILT B POSITION LF B POSITION LR B POSITION RF B POSITION RR	+ Degrees	0 +1 -2 0	+21 +24 +20 +23	0 +1 0 0	0 +2 0 0	0 +1 -2 0	0 +1 0 0	+1 +1 0 0	0 0 0
MISCELLANEOUS B DRUM LEVEL IN. + NORM. H ₂ O LEVEL C FD FAN 2-1 C FD FAN 2-2 C ID FAN 2-1 C ID FAN 2-2 B FLUE GAS SO IN STACK B FLUE GAS NOZ IN STACK C FLUE GAS COMBUSTIBLES L C FLUE GAS COMBUSTIBLES R C FLUE GAS OZ R C FLUE GAS OZ R C FLUE GAS OZ AVG. B AMBIENT TEMP. B ANBIENT REL. HUMIDITY B BAROMETRIC PRESS.	AMPS AMPS AMPS PPM PPM \$ \$ \$ \$ "Hg	0 207 228 392 385 73 365 0.09 0.0 3.75 3.29 3.52 52 33 24.06	0 210 232 395 387 80 373 0.08 0.0 2.96 3.51 3.24 28 24.03	0 204 226 391 385 40 373 0.09 0.0 2.70 3.63 3.16 64 28 23.77	0 208 229 391 387 80 400 0.10 0.0 3.50 3.21 3.36 44 48 23.90	0 186 199 348 350 NA 400 0.10 0.0 3.11 3.14 40 55 23.96	0 195 211 354 352 183 400 0.10 0.0 2.79 3.73 3.26 67 23.98	0 NA NA 313 313 NA 400 0.10 0.0 3.07 3.50 3.28 49 54 23.66	0 168 177 322 316 40 368 0.08 0.0 3.63 4.07 3.85 64 27 23.96

B = BOARD DATA
C = COMPUTER DATA
* FEEDER SPEED IN \$ OF CONTROL SIGNAL

WATERWALL CORROSION COUPON DATA SUMMARY

WEIGHT LOSS EVALUATION

BASELINE TEST

Probe	Probe No.	Coupon No.	Initial Wt.	Final Wt.	Wt. Loss	Wt. Loss/ Coupon mg/cm ²	Avg. Wt. Loss/ Probe mg/cm ²
1	3	1	192.6190	192,2669	.3521	6.9809	
		2	193.4064	193.0755	.3309	6.5605	4 7122
		3	192.9291	192.7393	.1898	3.7630	4.7132
		4	193.5940	193.5159	.0781	1.5484	
2	I	1	198.8883	198.6551	.2332	4.6235	
		2	201.0329	200.8816	.1513	2.9997	2 (0) 0
		3	198.04 10	197.9497	.0913	1.8101	2.6810
		4	1 95.506 8	195.4417	.0651	1.2907	
3	4	1	192.7191	192.5353	.1838	3.6441	
		2	194.8814	194.6926	.1888	3.7432	0.000
		3	193.0414	192.9217	.1197	2.3732	2.8689
		4	191.3704	191.2839	.0865	1.7150	
4	X	1	191.5552	191.3449	.2103	4.1695	
		2	192.4223	192.2041	.2182	4.3261	0.4444
		3	193.2662	193.1064	.1598	3.1683	3.4444
		4	193.4873	193.3807	.1066	2.1135	
5	Z	1	193.6625	193.3771	.2854	5.6584	
		2	191.0583	190.8201	.2382	4.7226	
		3	192.9096	192.7892	.1204	2.3871	3.4062
		4	192.5761	192.5329	.0432	.8565	

Avg. Wt. Loss/Test 3.4266 mg/cm²

WATERWALL CORROSION COUPON DATA SUMMARY

WEIGHT LOSS EVALUATION

OVERFIRE AIR TEST

Probe Loc.	Probe No.	Coupon No.	Initial Wt.	Final Wt.	Wt. Loss	Wt. Loss/ Coupon mg/cm ²	Avg. Wt. Loss/ Probe mg/cm ²
1	1	1	191.9684	191.8866	.0818	1.6218	
		2	192.4812	192.3816	.0996	1.9747	3 6700
		3	192.9861	192.9142	.0719	1.4255	1.6709
		4	191.5205	191.4367	.0838	1.6614	
2	5	1	193.4934	193.3406	.1528	3.0294	
		2	193.3895	193.1540	.2355	4.6691	3.3858
		3	193.2459	193.0711	.1748	3.4656	3.3636
		4	192.2109	192.0909	.1200	2.3791	
3	٧	1	193.8941	193.7867	.1074	2.1293	
		2	192.2687	192.1525	.1162	2.3038	2 0260
		3	193.1048	193.0082	.0966	1.9152	2.0268
		4	194.6248	194.5362	.0886	1.7589	
4	U	1	192.0607	191.9105	.1502	2.9818	
		2	191.8937	191.7479	.1458	2.8945	2 0240
		3	191.6559	191.5016	.1542	3.0613	3.0340
		4	192.3558	192.1947	.1611	3.1982	
5	L	1	202.3430	202.1440	.1990	3.9506	
		2	200.5759	200.4172	.1587	3.1506	2 000
		3	202.4755	202.3190	.1565	3.1069	3.0608
		4	197.4743	197.3718	.1025	2.0349	

Avg. Wt. Loss/Test 2.6357 mg/cm²

APPENDIX C

TEST DATA & RESULTS
FOR
ALABAMA POWER COMPANY
BARRY STATION
UNIT #2

NO_X TEST DATA SUMMARY

BASELINE STUDY BEFORE MODIFICATION

TEST NO.		1	<u> 5</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	<u> 8</u>	<u>9</u>	<u>10</u>	<u>11</u>	12	<u>13</u>	14
PURPOSE OF TEST		-	1/2 LOAD-	CLE	AN FURNACE	-	E	XCESS AIR		DIRTY FUR	IN.	₹ 1/2 Li	- DIRTY FU	JRNACE	OAD →
DATE LOAD	1973 Mw	11/30 -66	11/30 65	11/30 67	1/18/74 93	11/14 124	11/28 123	11/28 123	11/15 126	11/19 122	11/19 124	12/5 66	12/4 74	11/16 125	11/16 125
MAIN STEAM FLOW EXCESS AIR ECON. DUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEVATIONS IN SERVICE FUEL NOZZLE TILT	KG/S S S DEG	61 35.5 130.6 ABC +3	62 17.5 117.1 ABC +7	59 58.9 151.3 ABC +3	88 12.6 109.2 ABC +8	112 22.7 117.9 ALL +3	113 11.7 107.2 ALL 0	112 30.8 125.3 ALL 0	114 21.5 116.9 ALL +8	112 13.0 108.5 ALL -22	112 26.0 120.8 ALL ~22	59 32.7 128.0 ABC 0	57 51.2 144.1 ABC 0	114 20.7 115.7 ALL -22	113 24.3 119.2 ALL -22
AUX FUEL OVANDER POSITION AUX/AUX TOTAL AUX/AUX TOTAL AUX/AUX FUEL AUX/AUX FUEL AUX/AUX AUX AUX AUX AUX AUX AUX		20 30 20 30 20/20 30 20 0	0 30 0 30 20/10 30 10 0	50 30 50 30 50/50 30 50 0	30 20 60 20 80/80 20 50 0	60 20 100 20 100/100 20 100 20	100 30 100 30 100/100 30 100 30 100	100 30 100 30 100/100 30 100 30	60 30 100 30 100/100 30 100 30	100 30 100 -30 100/100 30 100 30 100	100 30 100 30 100/100 30 100 30	20 30 20 30 20/20 30 20 0	50 30 50 30 50/50 30 50 0	100 30 100 30 100/100 30 100 30	100 30 100 30 100/100 30 100 30
SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WT. ENT. A.H. NO NO NO SO2 SO2 CO2 CO CO HC O2 CARBON LOSS IN FLYASH	KG/S KG/S KG/S KG/S PPM-O% O NG/S PPM-O% O NG/S PPM-O% O % AH IN % AH OUT	529 488 88.3 97.8 631 319.3 2298 1617.0 24 7.5 0.144 5.6 7.3 0.29	498 446 88.2 100.0 489 246.7 2318 1622.7 142 43.5 0.160 3.2 5.6 0.97	548 517 87.6 114.4 718 362.8 1644 1156.3 8 24.8 0.0 7.9 9.1 0.17	500 499 89.3 107.2 429 214.0 1635 1139.1 39 11.9 0.0 2.4 5.1 0.96	539 514 89.0 153.9 494 248.6 1641 1150.0 31 9.6 0.509 4.0 6.2 0.48	539 524 89.1 160.6 357 181.8 1434 1016.1 153 47.3 0.0 2.3 4.6 0.57	538 524 89.5 164.4 664 335.1 1455 1021.8 33 10.1 0.0 5.0 6.9 0.20	548 533 69.6 157.5 421 213.5 1171 825.9 46 14.1 0.61 3.8 5.3	533 510 89.6 139.4 361 178.6 2052 1414.4 432 130.2 0.128 2.5 4.6 0.27	544 531 89.6 156.9 581 286.1 2179 1493.0 5 1.6 1.54 4.4 6.6	518 476 88.3 89.7 536 267.0 2348 1629.2 298 90.3 0.0 5.3 7.0	548 508 87.9 102.5 658 327.2 2164 1496.8 220 66.9 0.0 7.2 8.6 0.20	539 522 89.2 154.4 499 247.7 1917 1322.7 41 12.4 0.513 3.7 6.0 0.17	543 529 89.3 157.5 586 292.6 1370 951.8 34 10.3 0.397 4.2 6.4 0.10

NO_x TEST DATA SUMMARY

BIASED FIRING STUDY

TEST NO.		<u>15</u>	<u>16</u>	17	18	19	50	21	22	<u>23</u>	24
PURPOSE OF TEST		1/2	3/4 B	IASED FIRI	NG - 1 FUEI MAX. I	L ELEV. OU	T OF SERVI	CE - AIR D	AMPERS OPE	1/2 LOAD -	
DATE LOAD	MW	1/19/74 66	1/18/74 96	12/3/73 100	12/4/73 103	12/5/73 99	12/6/73 102	1/18/74 94	1/19/74 64	1/19/74 64	1/19/74 66
MAIN STEAM FLOW Excess Air Econ. Out Theo. Air to Fuel Firing Zone Fuel Elevations in Service Fuel Nozzle Tilt	KG/S \$ \$ DEG	55 50.1 105.8 ABC -9	82 26.7 121.7 ABC 0	87 21.1 116.5 ABC -15	89 22.2 117.5 ABD ~15	89 21.8 117.2 ACD -10	87 24.2 94.7 BCD -5	86 29.0 97.3 BCD +10	58 48.0 112.5 BCD 0	59 47.0 141.4 ACD 0	56 47.0 141.3 ABD -15
AUX FUEL COMPARTHENT PARTHENT AUX AUX AUX FUEL AUX AUX FUEL AUX AUX FUEL AUX		50 20 50 20 50/50 20 50 100	50 20 50 20 50/50 20 50 100	50 30 50 30 50/50 30 50 100	50 30 50 30 50/100 100 50 30 50	50 30 100 100 50/50 30 50 30 50	100 100 50 30 50/50 30 50 30 50	100 100 50 20 50/50 20 -50 20	100 100 50 20 50/50 20 50 20 50	50 20 100 100 50/50 20 50 20	50 20 50 20 50/100 100 50 20
SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WT. ENTERING AH MO NOX SO2 SO2 CO2 CO CO HC O2 CARBON LOSS IN FLYASH	PPM-OX O PPM-OX O PPM-OX O UG/G PPM-OX O PPM-OX O S AH OUT	546 496 87.9 94.7 594 288.0 1721 1161.0 33 9.8 0.0 7.1 8.5	539 506 89.3 119.4 543 272.8 1682 1175.6 29 8.9 0.0 4.5 7.2 0.34	529 501 89.1 121.9 397 200.6 2422 1704.6 14.0 0.0 3.7 6.1 0.46	543 520 89.3 126.4 373 189.2 2553 1799.9 38 11.9 0.012 3.9 5.8 0.37	523 486 88.9 118.9 387 189.9 2292 1562.8 35 10.6 0.012 3.8 6.3 0.42	544 515 88.8 125.3 285 143.1 2277 1591.0 27 8.1 0.0 4.2 7.3 0.25	512 469 89.6 120.8 331 166.2 1566 1093.4 31 9.5 0.0 4.8 8.4 0.30	501 448 87.8 100.0 520 268.5 1861 1335.9 29 9.1 0.0 6.9 8.4 0.20	507 454 87.9 100.3 485 249.1 2245 1602.7 22 7.0 0.0 6.8 8.6 0.11	544 513 87.7 98.9 609 306.2 1807 1263.0 28 8.4 0.0 6.8 6.9

8

SHEET CZ

NO_xtest data summary

C-E POWER SYSTEMS FIELD TESTING AND PERFORMANCE RESULTS

BASELINE STUDY AFTER MODIFICATION

TEST NO.		1	5	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9	<u>10</u>	<u>11</u>	12	<u>13</u>	14
PURPOSE OF TEST		4	1/2 LOAD -		ARIATION - 3/4	CLEAN FURI	٧	- MAXIMUN		r MOD. I	DIRTY	4 1/2	A VAR D LOAD →	IRTY FURN → MAX I	
DATE LOAD	Mw	6 /2 5/74 62	6/25/74 62	6/25/74 64	6/27/74 92	6/19/74 131	6/27/74 127	6/27/74 125	6/20/74 130	6/20/74 129	6/28/74 125	6/26/74 65	6/26/74 68	6/28/74 126	6/28/74 125
MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERVICE OFA NOZZLE TILT FUEL NOZZLE TILT	KG/SEC \$ \$ DEG DEG	61 33.5 127.1 ABC 0 3	59 16.0 113.4 ABC 0 6	60 64.7 155.4 ABC 0 -14	87 15.5 111.0 ABC 0	125 21.0 115.3 ALL 0 -13	122 12.4 107.1 ALL 0 -3	117 25.4 119.5 ALL 0 -22	122 17.8 112.3 ALL 0 -21	124 12.1 106.9 ALL 0 -17	119 26.6 120.5 ALL 0 -16	68 30.9 124.6 ABC 0 -16	61 63.1 154.0 ABC O -16	120 22.0 116.2 ALL 0 -6	118 25.9 119.9 ALL 0 -6
OFA OFA OFA OFA OFA AUX FUEL AUX/AUX FUEL AUX/AUX FUEL AUX/AUX FUEL AUX/AUX FUEL AUX/AUX FUEL AUX/AUX FUEL AUX		0 0 20 30 20 30 20/20 30 20 0	0 0 30 30 30 10/10 30 10 0	0 0 50 30 50 30 50/50 50/50 0	0 0 30 20 60 20 80/80 20 50	0 80 30 100 30 100/100 30 100 30	0 100 30 100 30 100/100 30 100/30 100	0 100 35 100 35 100/100 35 100 35	0 80 30 100 30 100/100 30 100 30	0 0 80 30 100 30 100/100 30 100	0 100 30 100 30 100/100 30 100 30	0 0 20 30 20 30 20/20 30 20	0 50 30 50 30 50/50 30 50/50 0	0 100 30 100 30 100/100 30 100/30	0 100 30 100 30 100/100 30 100/30 100
SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WT. ENT. AIR HTR. NO. NO. SO2 SO2 CO2 CO HC O2 CARBON LOSS IN FLY ASH	KG/SEC PPM-O% 0,3 PPM-O% 0 PPM-O% 0 NG/3 PPM-O% 0 NG/3 PPM-O% 0 % AH 1N % AH-OUT	492 435 88.4 93 444 221.9 3678 256.0 28 8.4 0.0 5.4 7.4 0.29	468 402 88.8 75 335 167.4 3621 252.0 376 114.4 0.0 3.0 5.5	536 499 87.4 115 640 319.8 2611 181.7 35 10.6 0.0 8.4 9.7	504 466 89.8 111 327 163.4 2634 183.3 110 33.4 0.0 2.9 5.5	528 488 88.4 165 404 202.1 2251 156.7 26 8.0 0.0 3.7 7.4	524 487 89.2 152 330 165.3 2677 186.3 127 38.7 0.0 2.4 5.8 0.51	518 480 89.5 155 477 238.8 2707 188.4 22 6.6 0.0 4.3 7.0	526 486 89.0 157 470 235.3 1941 135.1 24 7.4 0.0 3.2 6.8 0.22	528 483 88.9 151 334 167.0 2482 172.7 97 29.6 0.0 2.3 6.2 0.42	524 480 89.5 162 431 215.4 2500 174.0 24 7.2 0.0 4.5 7.5 0.61	507 457 89.3 101 373 186.8 2558 178.0 26 8.0 0.0 7.6 0.17	531 498 88.0 116 626 312.9 2461 171.3 24 7.3 0.0 8.2 10.8 0.05	524 496 89.0 160 391 195.6 2564 178.4 23 7.1 0.0 3.9 7.3	529 499 89.4 162 431 215.4 2629 183.0 23 7.0 0.0 4.4 7.2 0.25

12

SHEET C

NO_x TEST DATA SUMMARY

OFA LOCATION, RATE AND VELOCITY VARIATION

TEST NO.		<u>15</u>	<u>16</u>	<u>17</u>	18A	19	50	21	55	23
_		4			OFA DAMPER	POSITION	VARIATION -			 ►
PURPOSE OF TEST		◄				3/4 LOAD -				
DATE		7/10/74	7/10/74	7/10/74	7/12/74	7/11/74	7/11/74	7/12/74	7/12/74	7/12/74
LOAD	MW	97	98	100	100	100	100	102	102	102
MAIN STEAN FLOW	KG/SEC	93	94	94	96	94	96	95	95	96
EXCESS AIR ECON. OUT		28.5	27.1	25.6	26.6	24.8	25.4	25.4	27.9	28.1
THEO. AIR TO FUEL FIRING ZONE	%	114.5	96.7	95.8	84.8	89.3	100.5	117.4	90.4	96.9
FUEL ELEVATIONS IN SERVICE	•	BCD	BCD	BCD	BCD	BCD	BCD	ABC	ABC	ABC
OFA Nozzle Tilt	DEa	0	O	9	0	0	0	0	0	0
FUEL NOZZLE TILT	DEa	-5	-5	-5	-4	-4	-4	-4	-4	-4
OFA OFA		0	100	0	100	50	0	0	100	50
OFA		0	0	100	100	50	0	0	100	50
AUX		0	0	0	0	0	100	100	100	50
"A" FUEL		0	0	0	0	0	0	100	100	50
AUX		50	50	50	50	50	50	50	50	50
"B" FUEL		,30	.30	.30	.30	.30	.30	,30	.30	.30
AUX/AUX		50/50	50/50	50/50	50/50	50/50	50/50	50/ 5 0	50/50	50/50
		30	30	30	30	30	30	30	30	30
AUX		50	50	50	50	50	50	50	50	50
"D" FUEL		30	30	30	30	30	30	ō	0	ō.
AUX		50	50	50	50	50	50	0	0	0
SHO TEMPERATURE	°C	518	510	514	524	521	524	532	524	521
RHO TEMPERATURE	°¢.	457	452	457	476	486	479	498	491	485
UNIT EFFICIENCY	*	90.0	· 89.8	89.7	89.6	89.3	90.2	90.1	89.0	89.1
GAS WT. ENT. AH	KG/SEC	127	124	123	129	130	130	132	137	137
NO	PPM-0% 02	345	254	254	559	232	323	483	329	336
NO.2	Na/S	178.7	127.3	127.3	114.4	116.1	161.7	241.7	164.6	168.1
50-	PPM-0% 02	1892	1973	5095	2391	2684	1821	1814	2259	2417
CO ₅ 205 205 205 205 205 205 205 205 205 205	us/5	131.6	137.3	145.6	166.8	186.8	126.8	126.2	157.2	168.2
CO	PPM-0% 0 ₂	58	30	35	. 48	39	29	25	26	25 7,7
HC	NG/9	8.6	9.1	9.9	14.6	11.9	8.8	7.7	7.8 0.0	0.0
π. Λ	PPM-0% O	0.0	0.0	0.0	0.0 4.5	0.0 4.3	0.0 4.3	0.0 4.3	4.7	4.7
O2 O2 Carbon Loss in Fly Ash	75 AH IN ≸ AH OUT	4.7 6.5	4.6 6.5	4.4 6.1	4.5 6.3	6.1	6.1	6.1	6.5	6.7
CERRON LOSS IN FLY ASH	% AH UU1 %	0.51	0.59	0.63	0.54	0.32	0.49	0.46	0.54	0.60
OMITOON LOSS IN ILI NON	79	0.51	0.39	0.0.1	0.04	0.32	0.43		4134	0.00

NO_XTEST DATA SUMMARY

OFA TILT AND LOAD VARIATION

TEST NO.		24	<u>25</u>	<u> 26</u>	27	28	29	<u>30</u>	<u>31</u>	32	<u>33</u>	<u>34</u>	<u>35</u>
		4	OFA & I	TUEL NOZZLI	TILT VAR	ATION		4	- LOAD V	ARIATION A	T OPTIMUM	COND.	
PURPOSE OF TEST		-		FULL I		-	-	MAX	3/4	1/2	MAX	3/4	1/2
DATE		7/29/74	7/29/74	7/29/74	7/29/74	7/29/74	7/29/74	7/30/74	7/31/74	7/31/74	7/31/74	7/31/74	8/1/74
LOAD	MW.	124	124	124	125	125	124	125	97	65	122	95	64
MAIN STEAM FLOW	ka/s	113	116	114	113	115	116	116	87	57	114	86	57
Excess Air Econ. Out	*	25.9	23.7	25.1	22.3	20.2	23.7	21.6	2 5.2	46.9	27.4	27.4	45.9
THEO. AIR TO FUEL FIRING ZONE	%	94.2	92.4	93.2	94.5	89.6	92.6	90.7	89.4	88.5	94.6	90.6	88.5
FUEL ELEVATIONS IN SERVICE		ALL	ALL	ALL	ALL	ALL	ALL	ALL	ABC	AB	ALL	ABC	AB
OFA Nozzle Tilt	DEG	ი	n	0	-30	-30	+30	0	-12	0	-22	-55	-10
FUEL NOZZLE TILT	DEG	- 5	-23	+19	-5	+22	-21	-4	-16	-5	-52	-55	-15
OFA		100	100	100	100	100	100	100	100	100	100	100	100
OFA AUX FUEL WALK FUEL AUX/AUX		100	100	100	100	100	100	100	100	100	100	100	100
₩̃₹ X AUX		100	100	100	100	100	100	100	100	100	100	100	100
EE ["A"] FUEL		100	100	100	100	100	100	100	100	100	100	100	100
¥Ea I AUX		50	50	50	50	50	50	50	50	50	50	50	50
FUEL		,30		,30	,30	,30	,30	,30	,30	30	, 3 0	,3 0	,3 0
AUX/AUX		50/50	50/50	50/50	50/50	50/50	5 0/5 0	50/50	50/50	50/0	50/50	50/50	50/50
AUX/AUX "C" FUEL AUX FUEL AUX		30	30	30	30	30	30	30	30	0	30	30	0
ZZ S AUX		50	50	50	50	50	50	50	50	Ō	50	50	n
S FUEL		30	30	30	30	30	30	30	O	0	30	0	ō
AUX		50	50	50	50	50	50	50	0	0	50	0	0
SHO TEMPERATURE	°c	538	521	524	527	524	521	538	525	535	521	506	512
RHO TEMPERATURE	•ç	532	508	527	533	535	505	536	514	514	521	493	493
UNIT EFFICIENCY	,91	89.6	89.3	88.9	89.3	88.6	89.4	89.0	89.1	89.2	89.0	88.2	89.0
GAS WT. ENTERING AH	KG/S	152	157	163	155	163	151	159	127	95	162	131	91
NO	PPM-0% 02	339	590	368	344	404	285	339	338	396 197.8	333 166.5	291 145.2	313 156.4
NOX SO2 CO ²	NG/S	169.6	145.5	183.9	172.2	202.1	142.4 3240	169.6 1680	169.1 1730	1740	2430	2490	2420
50-	PPM-0% 02	2450	2920	3310	3160	3370	225.5	116.9	120.5	121.1	169.2	173.3	166.2
502	uc/5	170.5	203.3	230.4	219 . 9 22	234.5 28	225.5 49	26	26	24	25	26	25
CO-	PPM-0% 0	25	27	32	6.7	8.6	15.0	8.0	8.0	7.4	7.5	8.0	7.6
co	NG/5 PPM-0% 0	7.7	8.3 0.0	9.7 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
нс		0.0	4.1	4.3	3.9	3.6	4.1	3.8	4.3	6.8	4.6	4.6	6.7
0 02 Carbon Loss in Fly Ash	S AH IFI	4.4 5.9	6.0	6.2	6.0	5.8	6.4	5.3	5.7	8.2	6.3	6.8	8.4
52	% AH OUT	0.37	0.37	0.40	0.29	0.29	0.49	0.61	0.39	0.32	0.24	0.33	0.15
CARBON LOSS IN FLY ASH	<i>)</i> *	7.37	0.31	0.40	0,43	0.23	0.43	0.01	0.00	0,02			

WATERWALL ABSORPTION RATES, KG-CAL/HR-CM²

RIGHT WALL CENTERLINE TUBE RATES

	TC #	1	3	5	7	9	19	22	44	47	57	60	62	64
	ELEVATION	118"-6"	107'-6"	96'-6"	85¹-6"	74'-6"	69 ' - 6"	64' - 7"	59' -7"	54 ' -9"	49'-11"	45¹-7"	35¹-7"	25'-7"
						0	00 -0	04 -1	33 -1	54 -5	45 -11	45 -1	35 -1	23 -1
	TEST 1	2.02	3.56	7.49	8.81	10.93	9.07	1.28	~		8.54	4.08	3.30	
	2	2.36	3.64	8.63	12.07	13.13	9.95	.86			6.51	5.99	3.12	
	3	1.33	2.85	5.18	7.02	8.08	7.55	.83			9.66	9.93	4.13	
	4	3.01	5.36	12.23	1.25	2.76	14.88	5.10			13.29	7.73	4.31	
	5	3.78	7.19	10.90	10.90	22.55	7.46	6.93			18.85	20.96	12.49	
	6	4.41	7.30	13.66	1.83	3.37	16.04	7.83			20.81	14.45	10.21	
	7	3.73	5.04	10.06	1.19	2.18	7.67	8.73	12.18		27.78	11.38	14.56	
	8	4.59	8.28	11.45	8.54	21.78	5.11	4.06			10.13	13.04	15.70	
	9	6.26	9.96	14.99	15.52	23.46	15.52	6.26			8.63	12.34	15.26	
N	10	5.14	5.66	12.27	7.51	6.45	10.15	9.36			24.18	6.98	12.80	
295	11	4.16	4.95	6.26	6.79	6.53	4.43	6.00			11.56	6.53	6.53	
•	12	4.15	5.46	6.51	6.51	5.98	5.72	5.72			11.53	7.56	7.83	
	13	4.95	6.53	13.14	9.96	13.94	17.38	15.00			25.05	10.76	12.61	
	14	4.44	4.96	11.30	9.97	17.66	14.74	15.01			24.00	15.28	12.62	
	15	4.12	5.17	9.66	. 37	3.34	7.80	13.36			3.34	10.71	10.98	
	16	5.25	5.77	8.15	2.38	7.62	10.26	12.38			3.42	8.68	9.47	
	17	6.47	7.26	9.90	3.33	6.99	10.96	13.61			3.84	10.70	12.55	
	18	3.61	4.91	9.92	.16	13.37	13.37	10.45			18.67	17.34	8.07	
	19	4.39	5.44	10.19	2.32	4.65	9.40	5.17			14.43	9.92	10.45	
	20	3.14	5.23	10.24	.64	4.18	2.63	12.1			20.58	18.20	9.72	
	21	4.00	5.31	12.45	. 49	2.71	2.20	12.98			15.10	10.33	4.53	
	22	3.49	5.32	11.40	1.46	2.46	1.96	11.93			15.11	9.81	3.24	
	23	2.67	5.00	11.87	.91	2.67	1.90	11.87			15.32	10.02	3.70	
	24	4.76	5.28	12.68	9.24	7.92	3.98	8.18			23.80	12.68	7.92	
	2 5	3.00	5.08	10.63	6.66	6.13	2.48	11.95			32.55	20.43	13.01	
	26	4.61	6.71	14.66	13.07	19.69	2.80	12.80			15.45	10.15	4.35	
	27	4.22	6.32	8.43	10.02	15.85	10.81	11.34			18.76	15.05	12.40	
	28	7.16	8.22	11.93	14.04	17.22	11.66	12.72			13.25	11.93	7.43	
	29	5.42	7.80	8.32	9.91	11.24	9.91	12.03			27.63	17.33	17.86 8.34	
	30	7.55	9.14	9.93	8.08	3.87	6.23	9.14			4.65	7.02		
SHEET	31	7.07	7.60	8.65	6.80	7.07	11.56	7.07			18.98	16.07 12.87	9.98 7.05	
Ē	32	5.21	6.00	7.05	6.00	5.47	8.90	4.42			14.73	14.95	16.54	
-	33	7.27	7.53	7.80	7.80	7.27	11.24	14.15			24.47	13.35	14.14	
C	34	7.52	7.52	8.84	8.05	8.05	9.37	11.22			15.47	17.45	7.92	
9	35	6.60	5.81	6.60	6.33	6.33	8.18	7.92			10.56	17.40	1.32	

WATERWALL ABSORPTION RATES, KG-CAL/HR-CM² FRONT WALL CENTERLINE TUBE RATES

TC # Elevation	2 107'-6"	4 96 ¹-6 "	6 85'-6"	8 74' <i>-</i> 6"	13 69'-6"	38 59'-7"	51 49' -11"	61 35' - 7"	63 25 ' -7"
LECTATION	1010	30 -0	05 -0	74 -0	05 -0	35'-1	49'-11	35.~/	251
TEST 1	6.44	7.49	11.99	18.08	10.93		10.13	3.04	2.52
2	6.78	8.89	14.72	16.31	11.01		8.89	2.88	2.36
3	5.18	4.92	7.55	8.08	8.61		13.11	4.66	1.33
4	10.11	11.96	7.46	24.67	9.84		14.62	4.05	3.01
5	11.16	9.57	10.37	24.92	10.10		19.11	12.75	7.46
6	12.33	12.60	18.69	27.14	12.86		20.28	13.39	4.67
7	9.26	8.47	12.44	10.85	6.35		23.56	18.55	9.53
8	10.92	7.48	10.66	22.31	16.76		7.22	15.70	9.60
9	13.67	9.96	10.48	25.83	14.20		7.05	17.38	7.84
10	11.48	4.61	15.98	14.92	7.24		5.40	15.72	5.66
11	5.21	4.95	6.79	6.53	4.95		7.85	6.26	6.26
12	5.46	5.72	6.77	6.25	5.46		8.88	8.09	7.56
13	12.88	6 .26	7.84	11.56	6.79		7.58	14.47	5.21
14	10.77	4.96	8.39	11.56	5.48		12.36	14.74	5.22
15	8.07	5.17	14.16	11.77	2.57		2.32	18.13	6.22
16	7.62	5.77	10.79	15.83	4.46		2.92	15.83	7.62
17	8.05	6.99	12.29	14.41	5.68		4.63	16.26	9.37
18	8.07	5.17	14.16	11.25	7.28		10.19	9.92	6.49
19	9.13	4.91	12.84	6.22	8.86		9.66	10.98	5.44
20	8.66	9.98	11.30	22.69	9.98		9.19	16.07	4.97
21	10.33	11.39	17.22	21.98	8.48		3.23	5.58	3.48
22	10.34	10.07	18.29	15.90	4.80		2.21	4.80	2.45
23	10.02	7.64	16.91	19.02	13.46		2.40	5.00	2.67
24	10.56	8.18	9.51	15.07	6.34		16.40	12.95	5.02
25	10.10	8.24	6.66	15.66	10.10		19.64	20.43	9.57
26	12.27	10.68	19.96	19.96	7.51		12.80	5.40	4.35
27	9.22	7.64	14.26	8.16	7.11		8.69	14.26	3.44
28	9.54	9.81	12.99	12.19	9.54		6.11	8.75	6.90
29	9.91	8.06	11.24	10.18	10.44		18.92	20.77	9 .38
30	9.66	9.66	13.38	25.81	13.90		8.61	8.87	7.55
. 31	7.86	8.12	11.56	8.12	7.60		7.33	11.56	8.12
32	6.00	5.21	8.10	6.26	5.21		5.21	7.84	5.73
33	8.85	7.00	7.00	18.66	6.48		21.57	19.98	12.56
34	8.31	6.99	6.99	10.96	5.68		22.08	14.94	10.43
35	7.12	5.81	5.54	7.39	3.20		7.92	8.18	7.65

296

WATERWALL ABSORPTION RATES, KG-CAL/HR-CM2

	RIGHT WALL Horizontal Average Tube Rates			REAR WALL Horizontal Average Tube Rates	LEFT WALL Horizontal Average Tube Rates	Front Wall Horizontal Average Tube Rates		
TC # Elevation	17-21 69"-8"	42-46 59'-7"	55-59 49' -11"	23 - 29 59 ' -7 "	30-34 59' -7"	10-16 69'-6"	35-41 59'-7"	48-54 49'-11"
TEST 1	8.65	9.54	8.28	5.78	11.67	11.94	10.31	8.24
2	9.53	9.16	5.82	4.97	12.23	12.34	11.11	6.92
3	7.97	9.27	9.58	4.79	10.72	8.56	8.85	1 1. 87
4	13.51	11.84	7.90	6.01	10.20	13.20	15.68	9.39
5	5.67	9.98	10.64	12.22	17.10	16.33	17.34	18.73
6	14.40	15.11	16.75	8.07	14.53	17.01	17.41	12.26
7	7.84	11.96	18.26	8.21	9.04	10.90	16.12	17.13
8	3.66	7.63	7.10	9.22	14.12	13.80	20.10	20.73
9	7.38	10.05	6.53	14.01	14.83	16.45	18.43	17.94
10	8.20	16.31	15.28	12.13	19.48	14.92	18.98	13.86
11	4.84	5.09	9.18	9.10	4.79	6.35	7.59	7.76
12	5.62	5.46	9.16	8.74	6.19	5.72	6.38	8.75
13	10.18	14.34	15.70	13.94	16.06	12.93	17.64	13.27
14	8.34	15.34	17.92	14.06	16.81	13.91	18.09	13.66
15	9.70	11.38	9.41	10.62	18.29	10.77	15.70	8.54
16	11.70	10.93	12.13	10.46	18.37	12.74	16.45	9.09
17	13.77	10.44	11.95	10.44	16.47	13.17	16.88	10.35
18	7.31	12.77	16.73	6.07	14.48	10.81	17.16	16.12
19	6.96	4.61	8 .72	7.52	7.50	9.70	14.43	9.54
20	2.89	9.52	13.62	6.42	7.77	10.92	16.25	9.16
21	2.76	10.14	13.51	5.51	13.72	1 5.8 5	18.76	8.42
22	2.52	9.36	13.43	6.28	14.85	13.48	17.66	7.74
23	3.19	10.16	13.64	6.04	15.54	19.17	17.12	12.28
24	12.22	12.22	8.55	9.74	15.86	11.89	16.08	9.18
25	9.63	14.00	22.35	9.61	14.18	12.04	16.76	13.81
26	10.54	12.21	10.25	7.53	14.45	14.22	13.95	10.17
27	10.81	12.40	14.70	8.14	13.52	9.88	10.03	8.88
28	12.94	14.44	12.81	9.21	17.60	13.52	14.80	7.26
29	11.34	16.07	20.06	12.18	12.72	12.30	16.76	17.63
30	9.52	10.66	4.48	12.01	11.47	14.00	16.51	10.51
31	7.71	10.38	17.84	10.85	8.85	7.33	16.78	9.14
32	6.32	7.98	14.02	8.53	9.02	5.21	14.51	8.11
33	10.08	17.06	18.21	10.44	10.66	8.33	16.05	16.05
34	8.21	14.67	13.35	9.11	9.27	8.10	13.79	16.57
35	7.65	10.76	10.12	9.05	9.50	7.75	9.20	9.42

297

SHEET C8

WATERWALL CORROSION COUPON DATA SUMMARY

WEIGHT LOSS EVALUATION

BASELINE TEST

Probe	Probe No.	Coupon No.	Initial Wt.	Final Wt. GR.	Wt. Loss GR.	Wt. Loss/ Coupon MG/CM ²	Avg. Wt. Loss/ Probe MG/CM ²
1	I	1	199.2937	199.1341	.1596	3.1643	
		2	201.3871	201.2135	.1736	3.441 8	2.9392
		2 3	198.3883	198.2384	.1499	2.9719	2.9392
		4	195.8045	195.6946	.1099	2.1789	
2	J	1	199.1977	199.0534	.1443	2.8609	
		2	199.6807	199.5009	.179 8	3.5647	2 2000
		2 3	202.8649	202.7226	.1423	2.8213	2.8088
		4	202.3445	202.2442	.1003	1.9885	
3	Ε	1	199.0122	198.8632	.1490	2.9541	
	_	2	202.2508	202.1171	.1337	2,6507	0.10475
		2 3	201.9826	201.8976	.0850	1.6852	2.13475
		4	199.6584	199.5954	.0630	1.249	
4	L	1	202.5778	202,5080	.0698	1.3838	
	_	2	200.8579	200.7484	.1095	2.1769	1 01055
		<u>.</u>	202.7075	202.5924	.1151	2.282	1.91965
		4	197.7676	197.6750	.0926	1.8359	
5	K	1	199.5913	~ ~ ~			
-	-	2	197.4684	197.2730	.1954	3.874	2 20026
		2	194.9513	194.7783	.1730	3.4299	3.38826
		4	202.0694	201.9251	.1443	2.8609	

Avg. Wt. Loss/Test 2.6381 MG/CM²

WATERWALL CORROSION COUPON DATA SUMMARY

WEIGHT LOSS EVALUATION

BIASED FIRING TEST

Probe	Probe No.	Coupon No.	Initial Wt.	Final Wt. GR.	Wt. Loss GR.	Wt. Loss/ Coupon MG/CM	Avg. Wt. Loss/ Probe MG/CM ²
1	В	1	197.9531	197.6484	.3047	6.0411	
		2 3	202.1660	201.8659	.3001	5.9499	5 .8795
		3	198.3393	198.0383	. 3010	5.9678	3,3,33
		4	200.5603	200.2799	.2804	5.5593	
2	Q	1	199.3158	199.1437	.1721	3.4121	
	•	2	196.2751	196.0480	.2271	4.5026	4 2277
		3	202.8709	202.5541	.3168	6.2810	4.3777
		. 4	200.2327	200.0655	.1672	3.3150	
3	R	1	198.8940	198.7626	.1314	2.6051	
•		ż	199.8790	199.6842	.1948	3.8622	
		2 3	196.0683	195.8721	.1962	3.8899	3.4081
		4	199.3342	199.1690	.1652	3.2753	
4	М	1	199.5078	199.3628	.1450	2.8748	
7	11	ż	198.7039	198.4853	.2186	4.3341	
		3	198.3125	198.1121	.2004	3.9732	3.8201
		4			.2067	4.0981	
		4	200.8838	200.6771	.2007	4.0501	
5	D	1	197.9655	197.7001	.2654	5.2619	
-	_	2	202.9412	202.5809	.3603	7.1435	F 7200
		3	199.1306	198.7976	.3330	6.6022	5.7289
		4	198.2205	198.0234	.1971	3.9078	
		7	130.EE03	.50.0E54		2,20,0	

Avg. Wt. Loss/Test 4.6429 MG/CM²

WATERWALL CORROSION COUPON DATA SUMMARY

WEIGHT LOSS EVALUATION

OVERFIRE AIR TEST

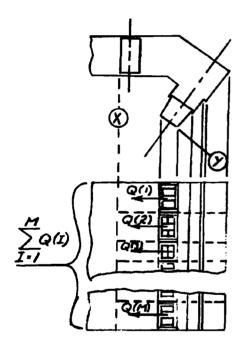
Probe Loc.	Probe No.	Coupon No.	Initial Wt.	Final Wt.	Wt. Loss GR.	Wt. Loss/ Coupop MG/CM ²	Avg. Wt. Loss/ Probe MG/CM ²
1	S	1	200.7678	200.5465	.2213	4.3876	
		2 3	196.0684	195.8121	. 2563	5.0815	A 5244
		3	199.6433	199.3849	.2584	5.1235	4.5244
		4	197.8187	197.6419	.1768	3.5053	
2	Т	1	200.7026	199.1437	.2802	5.5554	
		2 3				3.3540	2 0044
		3	593.7075	593.2000	.5075	3.3540	3.9044
		4				3.3540	
3	F	1	199.1897	198.9156	.2741	5.4344	
		2	199.4476	199.1351	.3125	6.1958	C 0401
		3	199.3119	198.9858	.3261	6.4654	6.0401
		4	199.0463	198.7404	.3059	6.0649	
4	N	1	202.8354	202.6125	.2234	4.4292	
		2	201.2249	200.9784	.2465	4.8872	
		2 3				2.8729	3.7656
		4	397.4898	397.2000	.2898	2.8729	
5	2	1					
		2	191.8528	191.6484	.2044	4.0525	0.0750
		2 3	192.7875	192.5909	.1966	3.8979	3.9752
		4				•••	

Avg. Wt. Loss/Test 4.4419 MG/CM²

APPENDIX D

COMPFLOW
WINDBOX COMPARTMENT AIR FLOW
DISTRIBUTION COMPUTER PROGRAM

APPENDIX D COMPFLOW - WINDBOX COMPARTMENT AIR FLOW DISTRIBUTION COMPUTER PROGRAM


INTRODUCTION

A description of COMPAIR, a computer program which calculates the wind-box assembly air flow distribution, was presented in Reference 1. The program has been subsequently found to be deficient; the approach taken in the calculation of the compartment loss coefficient resulted in operational difficulties in certain cases. The program was revised to eliminate this problem.

The revised program, COMPFLOW, is described herein. The basic assumptions and limitations of the calculation method are outlined and discussed. Program runs for two tests conducted at Barry #2 are included.

ANALYSIS

Consideration will be initially focused on those cases where the air flow to each compartment is supplied solely by the windbox.

Assumptions:

- 1. Constant total pressure at compartment inlet plane, i.e., $P_{T_X} = \text{const.}$
- 2. Constant density, i.e., R(I) = R =
 const.
- 3. Constant static pressure at nozzle exit plane, i.e., P_s = const.
- Fully turbulent flow, i.e., Head Loss ≈ (Velocity)².

Utilizing these assumptions, it follows that

Where K(I) = loss coef. for Compartment "I"

Q(I) = volume rate of flow for Compartment "I"

A(I) = nozzle exit area of Compartment "I"

Equation (1) yields

$$\frac{Q(I)}{M} = \frac{A(I)/\sqrt{K(I)}}{M}$$

$$\sum_{I=1}^{Q(I)} \frac{\sum_{I=1}^{A(I)/\sqrt{K(I)}}}{I=1}$$
 -----(2)

By definition

$$PT_y^{(I)} = Ps_y + \frac{R}{2} * \left[\frac{Q(I)}{A(I)}\right]^2$$
 -----(3)

Using Equations (1) and (3), we have

In order to arrive at a relation for K(I), the windbox compartment total pressure loss will be set equal to the sum of its component losses, i.e.,

$$2 * \left[\frac{{}^{P}T_{X} - {}^{P}T_{y}^{(I)}}{R} \right] = \left[K_{D}(I) + K_{A}(I) + K_{90}(I) + K_{f}(I) \right] * \left[\frac{Q(I)}{B(I)} \right]^{2} + K_{N}(I) * \left[\frac{Q(I)}{A(I)} \right]^{2} - \dots (5)$$

. Where B(I) = inlet flow area of Compartment "I"

Assumption (5): The values listed below, which allow for no interaction, adequately represent the compartment total pressure loss.

LOSS	VALUE	COMMENT	REFERENCE
Miter bend, K_{β} (I)	0.3	Typical, $\beta = 45^{\circ}$	2
90° bend, K ₉₀ (I)	1.2		2
Friction, $K_{f}(I)$	0.1	$f \approx 0.02$, $\frac{L}{D} \leq 5$; $K_f = f \frac{L}{D}$	2
Nozzle, K _N (I)	0	$K_N = \frac{1}{C_V} - 1$; Assume $C_V = 1$	3
Damper, K _D (I)	Figure 1	Assumed to include inlet loss	4

Using the above values, Equations (4) and (5) yield

$$K(I) = 1 + [1.6 + K_D(I)] * [\frac{A(I)}{B(I)}]^2$$
 ----(6)

For coal fired units the mill air must be taken into account. Using Equation (2) for the secondary air flow, it follows that

$$\frac{W(I)}{W_1 + W_2} = \frac{\begin{bmatrix} A(I)/\sqrt{K(I)} \\ M \\ I = 1 \end{bmatrix} * W_1 + X(I) * W_2}{W_1 + W_2} = -----(7)$$

where W(I) = mass rate of flow to Compartment "I"

W1 = total windbox air to corner

W2 = total mill air to corner

X(I) = fraction of mill air to Compartment "I"

Figure 1 and Equations (6) and (7) constitute the basis of COMPFLOW.

Note that if some other source of air were available to the windbox assembly, Equation (7) would yield the flow distribution with adjustments in the definitions of W2 and X(I).

Note also that if there is no corner to corner biasing of compartment dampers, Equation (7) may, to a very good approximation, be regarded on a furnace/elevation basis.

PROGRAM DESCRIPTION

A description of the program input is as follows:

Input

Fuel and Air Compartment Geometry

Number of Compartments Width of Compartments Height of Individual Compartments Number of Dampers per Compartment Nozzle Exit Area per Compartment

Test Data

Percent Excess Air Total Air Flow Compartment Damper Positions Fuel Elevations in Service

Typical program outputs for Alabama Power Co., Barry #2, tests 5 and 20, are shown on Figure 2. These runs represent both normal and overfire air operation. A definition of the output is shown on Figure 3.

DISCUSSION

A. Development of the Method

The method presented herein, of calculating the windbox assembly flow

distribution, is the result of what is obviously a greatly simplified treatment; numerous assumptions were made in the development of the method. The validity of each of these assumptions will now be examined.

Assumption (1): Constant total pressure at the compartment inlet plane.

Air issuing from a duct branches to each of the windbox assemblies; the fluid is moving at a low velocity relative to that at the nozzle exit. It would be reasonable to assume that the total pressure loss between the supply duct exit and the compartment inlet plane is a negligible fraction of the velocity head at the nozzle exit. It is all the more realistic to assume, as is the case herein, that the total pressure distribution in the supply duct and the consequent losses along individual streamlines, are such that the total pressure is uniform at the compartment inlet plane.

Assumption (2): Constant density fluid within the windbox assembly.

The reasoning for this assumption is analogous to that set forth in (1); note that while isothermal flow is not implied between the supply duct and the compartment inlet, it is assumed within the windbox assembly.

Assumption (3): Constant static pressure at the nozzle exit plane.

The static pressure of the jets issuing from the windbox nozzles is equal to the local furnace pressure. The variation in furnace pressure throughout this region should be negligibly small.

Assumption (4): Fully turbulent flow.

This is a valid assumption for the vast majority of cases; unit Reynolds numbers(based on nozzle exit velocity) greater than 10 per foot are typical even for small opening of compartment dampers.

Assumption (5): The compartment loss coefficient for existing configurations are adequately represented by the formulations presented herein (i.e. Figure 1 and Equation (6)).

Curves of K versus damper position, as calculated from Figure 1 and Equation (6), are shown in Figure 4 for compartment outlet/inlet area ratios (i.e. A(I)/B(I) of 0.534, 0.322 and 0.136; these values cover the range of our existing compartments. Results obtained from the cold-flow model tests of Reference 5, at area ratios of 0.322 and 0.136, are also shown in this figure; the

test results are seen to be in excellent agreement with the predicted values. These test results indicate that nozzle tilt, flow rate, firing angle, the presence of turning vanes and probably compartment inlet interaction, are secondary influences on compartment pressure loss and consequently on compartment flow rate. These results justify the omission of these factors in the development of the method presented herein.

B. Previous Calculations

In the previous method of calculating the windbox assembly flow distribution (Reference 1), the compartment loss coefficient was determined from the equation

$$K(I) = KO + K_D(I) * \left[\frac{A(I)}{B(I)}\right]^2$$

where $K_D(I)$ was specified as herein KO evaluated from test values of the total secondary air flow and windbox/furnace ΔP . Highly closed damper positions result in a very large value of K_D , as is seen in Figure 1, and a small error in this parameter will result in a large variation in KO. Program runs with all compartment dampers at or near the full open position yielded values of KO consistent with the value presented herein, i.e.,

@ 100% open,
$$K_D \approx 0.1$$
, $K = K/100\%$ from Equation (6), $K/100\% \approx 1 + 1.7 * \left[\frac{A}{B}\right]^2$ for existing geometries, $0 < \left[\frac{A}{B}\right]^2 < 0.29$ therefore, with $KO \approx K/100\%$, $1 < KO < 1.5$

Program runs with one or more compartment dampers highly closed would sometimes yield values of KO outside this range; in rare cases this would result in operational difficulties.

REFERENCES

- N. D. Brown, "COMPAIR, Burner-Compartment Air-Flow Distribution Computer Program," Project No. 121029, September, 1971.
- 2. "Flow of Fluids Through Valves, Fittings, and Pipe," Crane Co., Technical Paper No. 409, May, 1942.
- R. V. Giles, "Fluid Mechanics and Hydraulics," Schaum Publishing Co., 1962.
- 4. P. S. Dickey & H. L. Coplan, "A Study of Damper Characteristics," Trans. of the ASME, February, 1942.

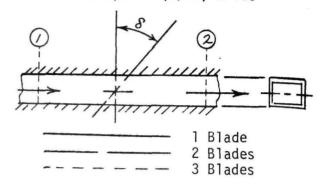
5. N. D. Brown, "Windbox Compartment Flow Tests," Test Report 72-6, Project No. 412003, March 2, 1972.

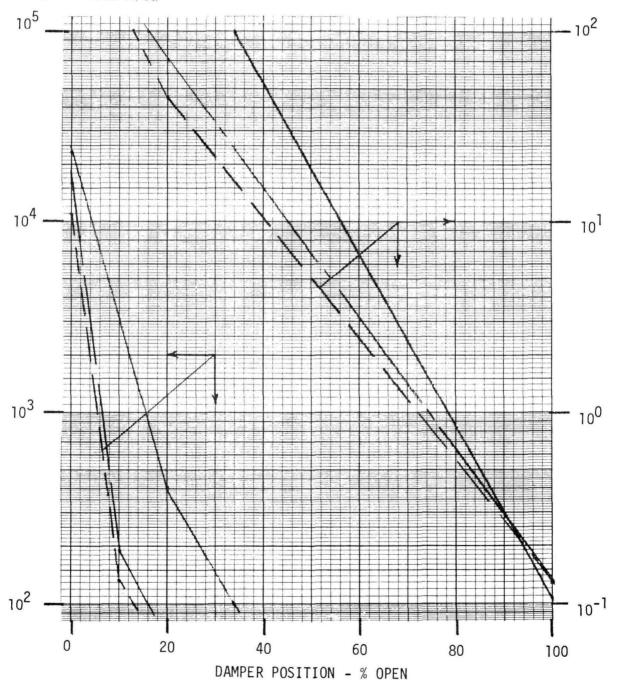
DAMPER LOSS COEFFICIENT VS. POSITION

% Open = $(\delta/90)$ x 100

$$K_{D} = \frac{2(P_{T_{1}} - P_{T_{2}})/R}{(Q/A)^{2}}$$

PT₁ = Total Pressure @ "l"


P_{T2} = Total Pressure @ "2"


R = Fluid Density

Q = Volume Rate of Flow

A = Flow Area

 K_D

AIR FLOW DISTRIBUTION TO WINDBOX COMPARTMENTS ALABAMA POWER AND LIGHT CO., BARRY #2 EPA '73 - '74 TESTS

FLOW DISTRIBUTION FOR TEST NO. 5

PER CENT EXCESS AIR 22.7

COMPART- MENT (NO.)	FIRING	AREA WT. FLOW (% OF TOTAL)	DAMPERS (% OPEN)	ACTUAL FLOW (% OF TOTAL)
1		9.44	60	7.8
2	Yes	6.55	20	8.39
3		18.03	100	16.37
4	Yes	6.55	20	8.39
5		9.44	100	8.64
6		9.44	100	8.64
7	Yes	6.55	20	8.39
8		18.03	100	16.37
9	Yes	6.55	20	8.39
10		9.44	100	3.64

Firing Fuel Compartment Total Air Flow (%) = 33.55 Air Flow Above Burner Zone (%) = 3.9 Air Flow to Burner Zone (% of Theor. Air) = 117.91

FLOW DISTRIBUTION FOR TEST NO. 20

PERCENT EXCESS AIR 24.2

COMPART - MENT (NO.)	FIRING	AREA WT. FLOW (% OF TOTAL)	DAMPERS (% OPEN)	ACTUAL FLOW (% OF TOTAL)
1		9.44	100	9.42
2		6.55	100	6.85
3		18.03	50	14.93
4	Yes	6.55	30	10.27
5		9.44	50	7.68
6		9.44	50	7.68
7	Yes	6.55	30	10.27
8		18.03	50	14.93
9	Yes	6.55	30	10.27
10		9.44	50	7.68

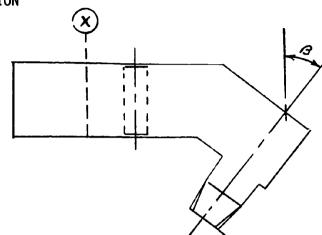
Firing Fuel Compartment Total Air Flow (%) = 30.82 Air Flow Above Burner Zone (%) = 23.73 Air Flow to Burner Zone (% of Theor. Air) = 94.72

COMPFLOW

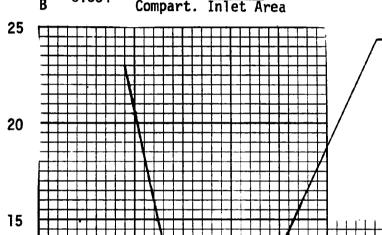
Definition of Output

- 1. The "AREA WT. FLOW" is the ratio of the compartment free area to the total free area of the corner; as such it is a realistic approximation of the actual compartment (secondary) flow only when all compartment dampers are full open.
- 2. The comparament "ACTUAL FLOW" is the ratio of the compartment mass flow rate (including mill air if applicable) to the total mass flow to the corner (see ANALYSIS, equation (7)).
- 3. The "FIRING FUEL COMPARTMENT TOTAL AIR FLOW" is the ratio of the total mass flow rate to firing fuel compartments (including mill air if applicable) to the total mass flow to the corner.
- 4. The "AIR FLOW ABOVE BURNER ZONE" is defined as the percentage of the total mass flow rate supplied above the uppermost firing fuel compartment, less 50% of the flow to the compartment immediately above it.
- 5. % Theoretical Air = (1- % Air Above Burner Zone)(100 + % Excess Air) to Burner Zone.

COMPARTMENT LOSS COEFFICIENT


VS. DAMPER POSITION

$$K = \frac{2(P_{T_x} - P_{s_y})/R}{(Q/A)^2}$$


P_X = Total Pressure @ "x"

Ps_y = Static Pressure @ "y"

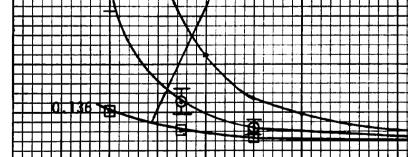
= Fluid Density = Volume Rate of Flow = Nozzle Exit Area

 $\frac{A}{B}$ = 0.534 = $\frac{\text{Nozzle Exit Area}}{\text{Compart. Inlet Area}}$

 $K = 1 + (1.6 + K_D) \times (\frac{A}{B})^2$

LEGEND		
SYMBOL	A/B	
0	0.322	
	0.136	

100


10

5

0

20

K

40

60

80

DAMPER POSITION - % OPEN

TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing)				
1. REPORT NO. 2. EPA-600/7-77-117	3. RECIPIENT'S ACCESSION NO.			
4. TITLE AND SUBTITLE Overfire Air Technology for Tangentially Fired Utility Boilers Burning Western U.S. Coal	5. REPORT DATE October 1977 6. PERFORMING ORGANIZATION CODE			
7. AUTHOR(S) Richard L. Burrington, John D. Cavers, and Ambrose P. Selker	8. PERFORMING ORGANIZATION REPORT NO.			
9. PERFORMING ORGANIZATION NAME AND ADDRESS C-E Power Systems	10. PROGRAM ELEMENT NO. EHE624A			
Combustion Engineering, Inc. 1000 Prospect Hill Road Windsor, Connecticut 06095	11. CONTRACT/GRANT NO. 68-02-1486			
EPA, Office of Research and Development Industrial Environmental Research Laboratory Research Triangle Park, NC 27711	13. TYPE OF REPORT AND PERICO COVERED Final; 6/74-3/77 14. SPONSORING AGENCY CODE EPA/600/13			

15. SUPPLEMENTARY NOTES IERL-RTP project officer for this report is David G. Lachapelle, Mail Drop 65, 919/541-2236.

16. ABSTRACT The report gives results of an investigation and evaluation of the effectiveness of overfire air in reducing NOx emissions from tangentially fired boilers burning Western U.S. coal. Results are compared with those obtained during phase II, 'Program for Reduction of NOx from Tangentially Coal Fired Boilers.' EPA contract 68-02-1367. Both programs investigated the effect that variations in excess air, unit slagging, load, and overfire air had on unit performance and emissions. The effect of biasing combustion air through various out-of-service fuel nozzle elevations was also investigated. The effect of overfire air operation on waterwall corrosion potential was evaluated during 30-day baseline and overfire air corrosion coupon tests. Overfire air operation for low NOx optimization did not significantly increase corrosion coupon degradation. Overfire air operation and reductions in excess air levels were effective in reducing NOx emissions. NOx reductions of 20-30% were obtained when operating with 15-20% overfire air. These reductions occurred with the boilers operating at a total unit excess air of about 15-25%, measured at the economizer outlet. Unit loading exhibited a minimal effect on NOx emissions. Waterwall slag conditions had wide and inconsistent effects on NOx emission levels.

17. KEY WORDS AND DOCUMENT ANALYSIS					
a. DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field, Group			
Air Pollution Nitrogen Oxides Combustion Control Coal Boilers Utilities	Air Pollution Control Stationary Sources NOx Reduction Tangential Firing Combustion Modification Overfire Air	13B 07B 21B 21D 13A			
Unlimited	19. SECURITY CLASS (This Report) Unclassified 20. SECURITY CLASS (This page) Unclassified	21. NO. OF PAGES 327 22. PRICE			