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ABSTRACT

This study was undertaken to (1) develop a model describing fish
populations as a function of life process dynamics and facilities which
impose additional mortality on fish and (2) improve objective impingement
impact prediction. The mathematical model developed accounts for hatching,
growth, and mortality as functions of time and permits computer simulation
of impingement impact. It also accounts for the genetic and environmental
heterogeneity effects on the growth of a cohort of fish. Gizzard shad data
collected by TVA were used to corroborate the model.

Simulated impingement impacts for the steam-electric generating plant
and reservoir studied were much less than could be measured in field
studies. For a 10-fold increase over observed impingement losses, the
model predicted that gizzard shad stock levels would fall by less than
10 percent for any age group. Similarly, the model with a 100-fold
increase over the observed losses, predicted that age IV gizzard shad
stock levels were reduced about 65 percent from baseline values, with
younger age groups showing less response. Model simulations revealed
that current levels of intake-induced mortality reduced the total numbers
of gizzard shad in each age class by less than 1 percent. These findings
show little effect to a species having high natural mortality, but cannot
be generalized to other species having significantly different natural
mortality patterns.

This report was submitted in fulfillment of Task 4 Subagreement 21
of the interagency agreement between TVA and EPA (TV-41967A, EPA-IAG-D5-
0721) under the sponsorship of the U.S. Environmental Protection Agency.
This report covers the period October 1, 1978, to December 17, 1979, with
work completed as of March 15, 1980.
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LIST OF ABBREVIATIONS AND SYMBOLS

ABBREVIATIONS

cm -- centimeters

ha -- hectares

kg -~ kilograms

m -- meters

MWe -- megawatt electrical
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Z(s,t) -- mortality rate coefficinet as a function of size and time

Z(s) -- mortality rate, assumed dependent only on size



Z0 -~ constant mortality rate
Zf(s,t) -- fishing mortality rate coefficient

Zn(s,t) -- natural mortality rate coefficient
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SECTION 1

INTRODUCTION

Section 316(b) of the Clean Water Act has focused much attention on
the impingement of fish on water intake screens at power plants. Although
well documented, impingement is a poorly understood phenomenon. In many
instances, the species and sizes of fish affected are known to have swim-
ming speeds sufficiently greater than needed to avoid entrapment. While
it is frequently possible to relate unusually heavy impingement of some
species to cold shock, heavy losses of cold tolerant species (or cold
sensitive species during periods of warm water temperatures) continue to
puzzle investigators. '

It is interesting to note that trawls fished for commercial fish
stocks are generally towed at speeds well below either burst or sustain-
able swimming velocities of the target species. Therefore, as a first step
in attempting to understand the impingement phenomenon, it may be produc-
tive to think of water intake screens as "stationary trawls." Water is
pulled through this "stationary trawl'" rather than the trawl being pulled
through the water. Indeed, intake screen "catches" have been compared to
conventional trawl catches in order to gain some perspective of the
magnitude of impingement losses.

Assessments required by Section 316(b) of environmental impacts owing
to impingement have taken many forms. In some cases, although no attempt
was made to relate impingement mortality to the affected population, it
was the opinion of the investigator(s) that estimated impingement losses
were not an adverse impact to the fish community (Duke Power Company,
Undated). Other investigations have related impingement losses to estimated
standing stocks in the affected water body, and while noting that some
fraction of the stock was killed, similarly opined that such losses did
not constitute an adverse impact (Commonwealth Edison Company, 1977).

Another approach (Tennessee Valley Authority, 1977a) translated
impingement losses into reservoir area of lost production (i.e., for an
estimated standing stock of 10,000 fish/ha coupled with impingement of
2,000,000 fish annually, a loss of 200 ha of production is predicted.

For a 20,000-ha reservoir, this is 1 percent of the total area). A fourth
approach compared impingement losses with commercial catch for a given
species (Moseley, et al., 1975). Since numbers of impinged fish are always
much less than the commercial catch, impact is presumed to be small or
negligible. Although most of these "impact assessment" techniques put
impingement losses into at least a reasonable perspective, none truly
addresses impact; i.e., the actual or predicted modification of fish
communities by an extraneous mortality source.

In the case of new or proposed facilities which take in considerable
volumes of water, preoperational studies of the near- (and/or far-) field
fish community.can be compared to similar studies during the operational
phase of the facility. Although this approach would appear ideal for
determining the impact of such a facility to the resident fish community,



it is fought with uncertainty. Documented changes in the far-field fish
community during an extended study period may not necessarily be due to
plant operation since changes through time are frequently observed in
waters where facilities do not exist (Tennessee Valley Authority, 1978).
Additionally, sampling techniques may not be sufficiently sensitive to
reliably determine subtle far-field impacts.

While determination of impacts in the above situation seems tenuous
at best, in the case of existing facilities for which preoperational data
are unavailable, criteria for assessing operational impacts to the far-
field fish community are even more obscure. The use of documented changes
during a protracted study period is obviously subject to the earlier given
criticisms for such an approach. It is clear that the existing fish com-
munity "is what it is'" under the operating regime of the water intake
facility. What is not clear is what the far-field fish community in
question would be in absence of the plant.

If observable adverse modifications of fish communities cannot
reasonably be coupled with cause-effect relationships owing to plant
operation, or if the fish community was not studied prior to operation of
the facility, the investigator is reduced to two approaches: (1) offering
an "expert" opinion as to probable impact, or (2) modeling the fish commu-
nity (or population) and the effect of plant operation on it.

It is in this latter vein that this project was undertaken. A model
which describes fish populations in terms of both life process dynamics and
their interaction with facilities which impose additional mortality is
much needed. The purpose of this task was 2-fold: (1) to develop such a
model, and (2) to remove as much of the subjective process of impingement
impact prediction as possible.



SECTION 2

CONCLUSIONS

The parameters needed by the model were estimated from data of a
gizzard shad population in Barkley Reservoir. The model was then used
to simulate the total population and length distribution under (1) baseline
or current conditions, (2) the use of assumed zero plant mortality, (3) a
10-fold increase in plant mortality, and (4) a 100-fold increase in plant
mortality.

The model proved to be effective in simulating the observed total
population numbers, though its predictions of the length distributions
were narrower than those of the observed population. Model simulations
indicated that present plant-induced mortality lowers total numbers in
each age class by less than 1 percent. A 10-fold increase in plant mor-
tality is predicted to cause at worst a 10-percent decrease of age class
IV. A 100-fold increase in plant mortality would have significant effects
according to the model, lowering the number of fish in age class IV by
about 65 percent.

Apparently, the gizzard shad population in Barkley Reservoir is
virtually unaffected by impingement at current levels. However, these
results cannot be generalized to other species which do not possess great
compensatory powers.



SECTION 3

RECOMMENDATIONS

The unexpectedly low impingement impacts predicted for gizzard shad
in Barkley Reservoir were at least in part due to the compensatory powers
possessed by this species. Relatively short lifespan, density dependent
growth, and high natural mortality all contributed to greatly reduce the
effects of impingement losses for this species in Barkley Reservoir.
Therefore, these results probably cannot be generalized to other species
and the model should be tested with a relatively long-lived species which
does not typically possess great compensatory powers.

Model predictions for impingement impact levels approximating those
in both cooling ponds and rivers where virtually the total flow is entrained
should be compared with actual data from such situations. This would pro-
vide a valid test of the model's predictive abilities. Should relatively
great modifications be required to achieve accurate predictions, they could
well lead to new approaches in modeling the field of fish population
dynamics.

The model is more flexible and has greater capabilities than were used
in this study. It could be used to predict the total impact of intake-
related mortalities (entrainment as well as impingement) since the model
permits inclusion of all sizes and ages of fish if data are available.
Therefore, it is recommended that the model be tested using all sizes of
a particular fish species affected by intakes.



SECTION 4

MATERIALS AND METHODS

THE MODEL

All of the individuals of a particular fish species in a given body
of water collectively form a unit termed a population. These individuals
undergo three distinct processes: birth, growth, and death. Although
these processes are properties of individuals, taken collectively they form
the basis for what is known as dynamics of the population.

Birth

Virtually every current fish population model assumes that all indi-
viduals of a cohort are born (or hatch) at the same time. This obviously
simplifies the determination of age, growth, and mortality rates through
time. However, hatching typically occurs over a period of time as depicted
in Figure 1. The essential elements of this figure are the time when hatch-
ing begins, builds to a peak, declines, and finally ceases. This period
of hatching may be from a few days to several months in length, depending
upon the species in question. In the latter instance, the simplifying
assumption that all hatch on the same day is not only unwarranted, it is
in serious error.

Returning to Figure 1, note that all members of a cohort are shown
in this graph, and as such the collective property (birth or hatching)
depicted becomes a population process. This graph is actually a 3-variate
or 3-dimensional figure of numbers through time for which the third variable,
size, is fixed. In this case, the "fixed size" is length at hatching. It
could just as easily have been "fixed" for some other length of "significance';
i.e., the length(s) at which a cohort becomes vulnerable to impingement.
However, the choice of length at hatching has two particularly important
attributes. The area beneath the curve in Figure 1 is the total number
hatched. This is determined by integrating an equation describing this
curve and the slope of this integral form is the hatching rate.

The concepts of three dimensionality and fixing of one variable are
important as they will form the basis for mathematical description of
the model developed in this report.

Growth

As mentioned previously, growth is a property of individuals. When
growth is considered collectively for a cohort, it becomes a cohort or
population process.

Figure 2 is a commonly used graphic representation of cohort length-
frequency. Numbers and length are seen to vary for a "fixed" or particular
instant in time. Although the members of the cohort are all in the same
year of life, they are not of exactly the same age as noted earlier.

While the scatter of observed lengths is in part due to differences in age
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Figure 1. The hatching of a cohort of fish through time
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A cohort of fish at a given instant in time.



(thus a longer period of growth), differential growth of individuals is
also a factor. The positive skew is a typical pattern although others,
such as biomodality, occur.

If a cohort is followed through time, the pattern shown in Figure 3
will typically emerge. Here time is effectively "fixed," at several points
to study growth. A more common graphical representation of this phenomenon
is shown in Figure 4. In this instance numbers are "fixed." The scatter
of lengths in Figure 4 is the same as that for the respective groups in
Figure 3. Growth is simply determined in Figure 4 as the average length
for the various age groups.

Mortality

Although death or mortality of an organism also is clearly a property
of individuals, it too can be modeled as a population process. Determina-
tion of mortality rate is readily accomplished from the idealized data of
Figure 3. The total number of cohort members extant in time periods I
through IV is determined simply as the area under the respective curves
(length-~frequency distributions). This can be plotted as in Figure 5,
the resulting curve being a mortality rate which describes decline in
cohort numbers through time.

The Model

The length-frequency distributions of Figure 3 are erected on Figure &,
matching their common length ranges and age groups, a 3-dimensional figure
will be produced. This is shown in Figure 6. Figure 1 has also been imposed
on this graph and is the far left distribution. Note that its "plane of
reference" differs from the other distributions. The variables along the
three axes are now free to vary simultaneously.

This then is the conceptual model. Hatching, growth, and mortality
are linked through time in a framework that combines conventional concepts
and data in a model which is completely new to the field of fish population
dynamics. It is a model which, while data dependent, is extremely flexible,
readily understandable in concept, and does not depart from traditional
fish population dynamic concepts.

To be useful, the model must be quantitative as opposed to the
dimensionless values used to develop it up to this point. This will
require the mathematical description developed in subsequent sections.

MATHEMATICAL DESCRIPTION OF THE CONCEPTUAL MODEL

Formulation of a partial differential equation model

Partial differential equations were probably first applied to popula-
tion dynamics by von Foerster (1958). Such equations are useful in describ-
ing a population through time, not only in terms of numbers of individuals,
but also age or size distributions of the population. Description of
length distributions is especially important since most fisheries are con-
cerned with fish numbers and sizes. Also, the inclusion of age or size.
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The same cohort of fish in Figure 2
shown at four instances in time.
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Figure 4. Graphic representation of the cohort of fish in
Figure 3 to better show growth.
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Figure 5. Mortality in a cohort of fish.
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Figure 6. Relationship of hatching, growth, and mortality
in a cohort of fish.



structure implies a time-lag effect in the population, essential in properly
describing the dynamics. Partial differential equation models have been
used to describe the age and size structures of populations by Trucco
(1965a,b), Oldfield (1966), Weiss (1968), Sinko and Streifer (1967, 1971),
Langhaar (1972), Oster and Takahashi (1974), Rubinow (1973), Rotenberg
(1975), Griffel (1976), and Van Sickle (1977), among others.

Before developing the model, two population characteristics of
interest are described, mortality and growth of the individual fish.

The rate of growth of an organism can often be approximated by the
differential equation

458 = 6(s(e), ) )

where s(t) is some measure of organism size (e.g, length) as a function of
time, and G(s,t) is a function of both size and time. When G(s,t) takes
some simple functional form, independent of t, for example,

6(s) = gy(1 - 2)s , (2)
max

where g, and s are constants, then Eq. (1) yields the solution,
0 max
go(t - to)
50°max®
(3)

- g, (t - t,)
(smax so) + s 0 0

s(t) =

where to is some initial time and s0 is the initial size.

The mortality of fish in a single cohort is typically modeled as,

WO < zgs(0), () (4)

where N(t) is the number of organisms and Z{s(t),t} is a mortality func-
tion, in general dependent on both time and the average size ¢f organisms
in the cohort. For simple cases, Eq. (4) is easily solved. For example,
if Z{s(t),t} is merely a constant, Z,> then

-Z.(t - t.)
N(t) = Nge 0 0 (5)

where NO is the number in the cohort at time to.

Size distribution, N(s,t), means the number of organisms per unit
size class at a given time. An equation will be derived to describe the
change in N(s,t) through time. Consider, at time t, the number of organ-
isms in a size class of width As centered around the size s, and denote
this number by N(s,t) (see Fig. 7). Assume a very short interval of time,
At, passes. What is the new distribution at t + At? Conceptually, the
number of fish in size class s and time t + At can be symbolized as

13
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Figure 7. The three curves represent size distributions at three successive
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while ND(L,t) is a discrete approximation of this distribution.



N(s,t + At)

N(s,t)

{number of fish lost to mortality}

- {number of fish lost because of growth to the next
larger size class}

+

{number of fish entering because of growth from
the next smaller size class}

+

{newly reproduced fish of size s}

+ {immigration from other populations}

{emigration to other populations}. (6)

Ignoring immigration and emigration, the conceptual model will be
expressed in mathematical terms. The following assumptions and equations
form the basis for this model.

Number of Fish Lost to Mortality--
Assume this is proportional to the number of fish in size class s,
N(s,t), the mortality coefficient, Z(s,t), and the time interval, At.

Number of Fish Lost Because of Growth to the Next Larger Size Class--

Assume this is proportional to the number of fish in size Class s,
N(s,t), and the fraction of that size which grows to the next larger size
class, G(s,t) (At/As). To help understand this term, note that G(s,t) At
represents the amount of a particular size class population that moves
from one size class to the next during interval At, so G(s,t) (At/As) is
the fraction of a given size class population that moves.

Number of Fish Gained (Recruited) Because of Growth from Next Smaller
Size Class--
Analogous to the above, this is G(s - As,t)(At/As)N(s-As,t).

Number of Fish Gained in Size Class s from Reproduction--
This is a product of the number of reproductives, Nrep(t), the

fecundity, M(t), and the fraction, T(s), of the fecundity going into
size class s; i.e., B(s,t) = Nrep(t)M(t)T(s).

Combining the above terms yields
N(s,t + At) = N(s,t) - AtZ(s,t)N(s,t) - (At/As)G(s,t)N(s,t)
+ (At/As)G(s - As,t)N(s - As,t) + B(s,t)At , (N

for the numbers of size s at time t + At (Fig. 7). To obtain a govern-
ing equation from Eq. (7), rearrange (7) as

N(s,t + At) - N(s,t) + G(s,t)N(s,t) _ G(s - As,t)N(s - As,t)
At As As

= -Z(s,t)N(s,t) + B(s,t) (8)

15



and take the limits

lim N(s,t + At) - N(s,t) _ 3N(s,t) ©)

At>0 At - Ya

igo (G(s,t)N(s,t)A; G(s - As,t)N(s - As,t) _ g_s(G(s’t)N(s’t)). (10)
to obtain

aNé: £) 4 gg {G(s,t)N(s,t)} = -Z(s,t)N(s,t) + B(s,t). (11)

This equation must be supplemented with initial conditions on N(s,t)
at the initial time, to. In the remainder of this report, we shall let

t0 = 0 and assume that this instant precedes production of any of the

cohort, so that
N(s,0) = 0 (for all s) . (12)

Equation (11) is the general cohort model used in this report.
Appendix A shows how this equation can be solved analytically, at least
to the point where only certain integrals are left to be done numerically.
This appendix also presents certain limiting cases in which the solutions
are completely analytic. The remaining appendices describe the computer
programs that numerically solve the general model in which both the growth
rate, G(s,t), and the mortality rate, Z(s,t), are size and time dependent
and in which the reproduction (or recruitment) rate, B(s,t), varies over
a spawning period.

Appendix A also describes two further generalizations of the model.
First, rather than being necessary to prescribe a reproductive rate, B(s,t),
it is possible simply to prescribe an initial size distribution, No(s)
at time to. Second, rather than each fish in the cohort being given the
same growth rate, G(s,t), there is a provision for dividing the cohort
into subcohorts, each subcohort with its own growth rate, Gi(s,t).

DATA SOURCE

A large volume of computer-based fisheries data is available for
Barkley Reservoir and TVA's Cumberland Steam-Electric Plant. As a con-
sequence, this system (plant and reservoir) was chosen as a test case for
the model. The gizzard shad (Dorosoma cepedianum) was chosen as an
example species because of its common occurrence in impingement samples
and widespread distribution. Also, it is not as subject to winter kill
as the threadfin shad (D. petenense) and this, coupled with greater
longevity, results in more nearly stable populations.

The plant, reservoir, and attendant gizzard shad population are
described in greater detail below.
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BARKLEY RESERVOIR

Barkley Reservoir is a mainstream impoundment on the lower Cumberland
River. Barkley Dam, located at Cumberland River Mile (CuRM) 30.6 near
Grand Rivers, Kentucky, was closed in 1964. The reservoir extends approxi-
mately 103 km to Cheatham Dam (CuRM 148.7). At normal full pool (108 m
above MSL) Barkley Reservoir has a surface area of 23,440 ha and a shore-
line length of 1,615 km. Barkley Reservoir is connected with Kentucky
Reservoir (a Tennessee River impoundment) by Barkley Canal, allowing
integrated operation of the two reservoirs for navigation, flood control
and hydroelectric power production.

CUMBERLAND STEAM-ELECTRIC PLANT

Physical Features

Cumberland Steam-Electric Plant is located on the south bank of
Barkley Reservoir in Stewart County, Tennessee, at Cumberland River Mile
(CuRM) 103 (Figure 8). This facility is the Tennessee Valley Authority's
largest fossil fuel plant, having two units rated at 1,300 MWe each. The
first unit began commercial operation in March 1973 and the second unit
began operation in November 1973.

Condenser cooling water is provided for this plant thorugh a 200-m
long intake channel located perpendicular to the shoreline (Figure 9).
A 339-m long skimmer wall located at the mouth of the intake channel
allows selective withdrawal of cooling water from the lower reaches of
the reservoir. Maximum total condenser and auxiliary flow is 120 m%/sec.

The intake pumping station at Cumberland Steam-Electric Plant con-
sists of eight condenser cooling water pumps which draw water through
sixteen intake chambers. At the mouth of each intake chamber are trash
racks which keep out large debris. Behind the trash racks are the vertical
traveling screens. These are a series of 2.3 m by 0.6 m interlocking
screen panels attached to endless chains which rotate on sprockets
located at the top and bottom of this intake structure. The screen panels
consist of 12-gauge galvanized wire having 9.5 mm square openings.

Impingement

Impingement of fish on the screens at cooling water intakes consti-
tute a potential adverse ecological impact. In response to the passage
of Section 316(b) of the Clean Water Act, the Tennessee Valley Authority
began a weekly fish impingement monitoring program at Cumberland Steam-
Electric Plant in August 1974. Each Tuesday, all vertical traveling
screens in operation were rotated and washed clean of fish and debris.
Twenty-four hours later, the screens were again cleaned and the impinged
fish flushed into a sluice pipe leading to a catch basin. All fish were
separated by species into 25 mm length groups and total numbers and
weights were recorded by species and 25-mm group.
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Results of this monitoring program have been presented previously
(Tennessee Valley Authority, 1977a). This study estimated the total
numbers impinged yearly and, using cove rotenone population estimates,
computed plant exploitation rates for each species. Two additional
studies, McDonough and Hackney (1978) and McDonough and Hackney (1979)
related impingement rates to physical factors (temperature and water
elevation), plant intake design, and life history of the species.

GIZZARD SHAD

Estimates of gizzard shad population density and size structure in
Barkley Reservoir were made each summer from 1974 through 1978 using cove
rotenone samples (Figure 10). Field procedures for treatment and collec-
tion of data followed standard cove rotenone techniques.(Tennessee Valley
Authority 1977b). Coves were blocked with 1.3 cm bar mesh nets and 5 per-
cent emulsifiable rotenone was applied at a concentration of 1.0 mg/liter.
All fish collected during a 2-day period were identified to species and
grouped by 25 mm length classes. Numbers and weights were recorded for
each length class. Tern coves were sampled each year.

In 1974, 14,390 gizzard shad weighing 692.4 kg/hectare were collected
in cove rotenone samples in Barkley Reservoir (Figure 14). The population
was dominated by large fish with low numbers of young-of-year fish. Both
numbers and biomass decreased steadily to a low of 4,873 fish weighing
191.7 kg/hectare in 1976. Numbers then increased greatly (15,369 fish/
hectare) with only a slight increase in biomass (229.6 kg/hectare),
apparently the result of a strong year class in 1977. 1In 1978 numbers
per hectare decreased to 12,906.4 fish per hectare while biomass increased
to 365.7 kg/hectare, apparently due to growth of the abundant 1977 year
class.

Estimation of Age, Growth and Mortality

Gizzard shad collected from gill nets, hoop nets, electrofishing and
cove rotenone samples were used in age and growth studies. Scales were
taken from an area near the front of the dorsal fin above the lateral line.
Scale impressions were produced on cellulose acetate strips using a roller
press and then projected using an Ederback model 2700 microprojector (40 X).
Between September 1974 and August 1978, scale samples were taken from 679
gizzardfshad for the determination of age and growth characteristics.

Back calculations of length at annulus formation provided information on
growth rates of the 1969 through 1977 year classes.

A plot of total length to scale length (40 X) indicated that the
relationship was linear (Figure 11). The regression formula: TL = 85.86 +
0.83 SR where TL = total length and SR = scale radius was fitted using least
square procedures. The distance from the focus to each annulus was
substituted for SR in the above equation in order to calculate the length
of the fish at the time of annulus formation.

Calculated mean length of fish at annulus formation was determined

for each age group collected for the 1969 through 1977 year classes (Table 1).
Growth was most rapid during the first year and then decreased. Weighted
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upon a single fish. Lee's phenomenon of apparen
was evident.

15.7, 12.5, and 28.5. The
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TABLE 1. MEAN ESTIMATED TOTAL LENGTH (mm) AT EACH ANNULUS FOR

GIZZARD SHAD COLLECTED IN BARKLEY

RESERVOIR (1974-1978)

Number Annulus
Age Group of Fish 1 11 I11 Iv \%
I 237 149 .47
II 266 143.55 190.13
I11 122 136.97 177.44 202.20
Iv 19 133.79 169.29 192.93 212.54
v ' 1 144.08 191.48 206.46 232.24 243.05
Numbers 645 408 142 20 1
Grand mean
Length 144.19 185.32 200.99 213.53 242.05
Increments 144.19 41.13 15.67 12.54 28.52

Growth rates tended to increase from 1969 t
haps in response to decreasing stock density. B
in 1964. Since fish population density has been
impoundment, the increasing growth rates may be
density.

Scales were taken from representative indiv
group (> 100 mm) collected in 1977 and 1978 cove
determination of fish age. Using the proportion
in the subsample, age composition for each 25 mm
(Tables 2 and 3). Fish smaller than 100 mm were
year. Figure 13 shows length frequencies by age
population.
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TABLE 2. ESTIMATED AGE DISTRIBUTION OF GIZZARD SHAD (DOROSOMA CEPEDIANUM)
IN COVE ROTENONE SAMPLES FOR THE YEAR 1977

Length (mm) Age Groups in Subsample Calculated Age Representation
Minimum Maximum O I II ITI Fish/ha 0 1 I1 II1
26 50 24.8 24.8
51 75 9,506.6 9,506.6
76 100 2,377.5 2,377.5
101 125 9 866.0 866.0
126 150 3 1 28.1 21.1 7.0
151 175 18 293.3 293.3
176 200 24 3 1,329.1 1,181.4 147.7
201 225 24 11 836.9 573.9 263.0
226 250 3 20 1 103.0 12.9 85.8 4.3
251 275 . 2 3 3.9 1.6 2.3
276 300 1 .2 .2

£~

TOTAL 15,369.4 12,796  2,068.5 498.3 6.6

These age composition and length frequency distributions were used to
estimate growth and mortality rates. The length distributions and age sub-
samples from 1977 and 1978 cove rotenone samples were averaged and used to
determine growth characteristics. A pattern similar to that found from
back calculation of lengths at each annulus was evident (Figure 14). Growth
was rapid during the first year, then declined during the second and third
year. The fourth year estimated growth was unexpectedly high; however, this
estimate was based upon a single fish.

Yearly length increment was plotted against length (Figure 15). Young-
of-year gizzard shad averaged 77.91 mm and were approximately three months
old when the samples were taken. Therefore, young-of-year fish were growing
at an estimated 312 mm per year during this period. The experimental

" equation: Length Increment = 504.32 length 0.0134 was found to fit this
relationship very well (excluding growth during the fourth year for reasons
mentioned previously), having a correlation coefficient of 0.990.

Population density appeared to have an effect on growth rate. Both
length at annulus formation, and the change in young-of-year length distri-
bution through time for shad impinged at Cumberland Steam-Electric Plant
were found to decrease as population density increased. The length-weight
relationship, an indirect indicator of growth differences was also found
to decrease with population density.

Back calculated length at first annulus formation and length increment
between the first and second annulus both tended to decrease with increas-
ing population density (Figure 16). The 1974 year class showed a high
growth rate despite high population density. The estimated growth rate
for 1974, however, was based upon only five individuals while estimates
of growth of the 1979, 1976, and 1977 year classes were based on 49, 144,
and 156 individuals, respectively.
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TABLE 3. AGE DISTRIBUTION OF GIZZARD SHAD (DOROSOMA CEPEDIANUM) IN COVE ROTENONE SAMPLES
FOR THE YEAR 1978 AS DETERMINED BY SCALE READINGS OF SUBSAMPLES FROM EACH

SIZE GROUP.
Length (mm) Age Group in Subsample Calculated Age Representative
Maximum Minimum 0 I 11 111 v Fish/ha 0 1 11 111 v
26 50 474.3 474.3
51 75 2,527.5 2,527.5
76 100 2,353.5 2,353.5
101 125 1 1 684.2 342.1 342.1
126 150 13 22 3,386.1  1,257.7  2,128.4
151 175 7 39 1 1,648.9 245.6 1,368.2 35.1
176 200 42 12 1,055.2 820.7 234.5
201 225 50 32 1 711.7 428.7 274.4 8.5
226 250 8 27 3 56.8 12.0 40.4 4.5
251 275 4 6 6.7 2.7 4.0
276 300 3 1.2 1.2
301 325 1 1 0.3 .1 .1
TOTAL 12,906.4 7,200.7 5,100.1 587.1 18.3 .1
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The effect of population density on young-of-year gizzard shad growth
rate was also reflected in the length-frequency distributions of fish
impinged at Cumberland Steam-Electric Plant. Figure 17 is a 3-dimensional
graph of the length distributions of gizzard shad impinged from May 1975
through April 1976. Numbers are expressed as logarithms to permit greater
detail for all sizes. Young-of-year fish first became large enough to be
impinged in late July or early August. Growth after this period resulted
in a gradual increase in length distributions through the remainder of the
year. Although this same pattern was observed each year, the rate of
growth differed each year, apparently due to differences in stock density.
The average length of young-of-year fish was computed for each month for
the 1974, 1975, and 1976 year classes using length frequency analyses to
separate young-of-year fish from older individuals. The growth rate
increased each year (Figure 18), while population densities decreased.

In addition to its usefulness in converting length to weight, the
length-weight relationship is also useful as an indicator of population
growth differences. The relationship was computed for gizzard shad col-
lected during the first day of cove rotenone samples. Fish were grouped
into 25-mm groups, and numbers and weight of individuals in each size
group were recorded. Mean weight per individual in each size group was
computed by dividing the total weight by the number in the size class.
The relationship: Log (weight) = -4.65 + 2.828 x log (length) describes
this relationship having an R? of 0.97. The deviations from this regres-
sion for each year were plotted against population density (Figure 19).
In years when numbers were low, the weight of fish at a given size tended
to be higher than in years when densities were high. Sequential F-test
(Draper and Smith, 1966) of the relationship between mean weight and popu-
lation density (with length already in the model) indicates that this
relationship is highly significant (Table 4).

TABLE 4. ANALYSIS OF VARIANCE FOR EFFECTS OF THE LOGARITHM OF LENGTH
AND POPULATION DENSITY ON THE LOGARITHM OF WEIGHT

Source of Degrees of Sum of Mean
Variation Freedom Squares Square F Prob F
Corrected Total 471 471.0480
Regression 2 216.1010 108.0504 7,294.60 0.0001
due to loglo(length) 1 215.9516  215.9516  14,579.11 0.0001
due to density given 1 0.1494 0.1494 10.08 0.0016

log10 (length)

Residual 469 6.9470 0.0148

The average of the age distributions in the 1977 and 1978 cove rotenone
samples was used to estimate annual total mortality rates. Numbers of
gizzard shad (on log scale) for each age is plotted against age. The
slope of the descending right limb describes the instantaneous mortality
rate (Figure 20). Mortality rates were found to increase each year. Total
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Figure 17.

Three-dimensional graph of the logarithm of gizzard
shad numbers impinged through time (May 1975 to
April 1976) by 25 mm groups (N = numbers, T = time
in weeks, S = size).
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annual mortality rates were also computed by comparing the change in num-
bers of fish in each year class collected in the 1977 cove rotenone samples
to abundance of the same year class in the 1978 samples (Table 5). Percent
mortality rose as fish age increased: 60 percent for the young-of-year
fish in 1977, 72 percent for age I, 96 percent for age II, and 98 percent
for age III.

TABLE 5. PERCENT OF SURVIVAL AND MORTALITY OF EACH AGE CLASS
BETWEEN 1977 AND 1978

Year Number Number Survival Mortality Instantaneous
Class in 1977 in 1978 Rate Rate Mortality Rate
1977 12,796.0 5,100.1 0.3985 0.6015 0.920

1976 2,068.5 587.1 0.2839 0.7162 1.259

1975 498.3 18.3 0.0367 0.9633 3.304

1974 6.6 0.1 0.0152 0.9848 4.189

The percent of fish surviving from one year to the next was estimated

for each year using the formula: Nt +1 N0t+1
S = N
t
where S is percent survival, Nt is the total number of fish at some
time, N is the total number of fish one year later, and N is the
t+1 O +1

number of young-of-year fish one year later. The age O of fish were separated
from older fish using subsamples of each size group as described previously
for the 1977 and 1978 samples. Length frequency analyses were used to iden-
tify young-of-year fish in other years. The survival rate was found to
decrease with increasing population density (Figure 21). Survival from 1977
to 1978 was high with high population density; however, the population in

1977 was dominated by young-of-year fish, which have a higher survival rate
than older fish.

Mortality rates were found to increase in proportion to increasing fish
length (Figure 22). The equation: 2Z = ~1.7926 + 0.0207 length was found to
be the best linear description of this relationship, explaining 81 percent
of the variation. Second-year mortality, however, was over estimated while
third-year mortality was under estimated. The increase in mortality rate
with length (or age) is unexpected, mortality would be expected to be high-
est during the first year, due to heavy predation. As shad become larger,
the mortality rate would be expected to decrease because they are no longer
available as prey to most predatory fish (Bodola 1965).

An apparent increase in mortality with increasing age would result from
migration of older individuals to open water areas. Bodola (1964) found
that in western Lake Erie young-of-year and age I fish were close to shore
in mid-summer; usually in shallow water quite close to shore. As gizzard
shad became older, they were found to inhabit deeper water.

36



RATE OF SURVIVAL

601

50+

404

30+

20+

01976
® 1977
01975
e 1974
5,000 10,000 15,000

NUMBER PER HECTARE

Figure 21. Relationship between survival rate of gizzard
shad and population density.

37



MORTALITY RATE

f
5-
L
4
[
3—
2 -
[
14 °
T T ¥
100 200 300
TOTAL LENGTH, MM
Figure 22. Increase in mortality rate with increasing length.

38



In order to examine the question of how well cove samples represent
open water areas of a reservoir, the Reservoir committee of the Southern
Division of the American Fisheries Society sampled Crooked Creek Bay (85
hectares) in Barkley Reservoir. This embayment was divided into cove and open
water areas and treated with rotenone. The mouth of the bay was blocked with
nets and the open water was divided by nets into three areas. All coves in
the embayment were also blocked and the larger coves were subdivided into
compartments.

Length distributions of gizzard shad collected from the small coves
and ends of the large coves were compared with the open water areas (Figure
23). No evidence of migration of older fish from coves to open water was
found. Most length groups between 63.5 mm and 317.5 mm were overestimated
by the cove samples except for the 91.4 mm to 114.3 mm and the 218.4 mm to
241.3 mm groups. The open water samples tended to have more individuals
smaller than 63.5 mm and larger than 317.5 mm, probably because the large
sample area increased the likelihood of encountering individuals of these
sizes.

The convex shape of the catch curve may be due to high population
density. Michaelson (1970) and Anderson (1973) examined the dynamics of
balanced and unbalanced bluegill (Lepomis macrochirus) populations in ponds.
Balanced populations were defined as those with a satisfacotry relationship
between the fish population and its food supply (Anderson 1973). Balanced
populations were characterized by high and relatively stable recruitment of
young-of-year, while unbalanced populations were characterized by wide
variations in year class strength. They also found high mortality of young
fish in balanced populations. Unbalanced populations had low natural mor-
tality in young fish but high mortality for age II and older. Anderson (1973)
discussed the similarities between characteristics of pond bluegill popula-
tions and gizzard shad populations where wide fluctuations in year-class
strength may also be indicative of imbalance for reservoir populations of
this species.

Estimates of annual impingement were determined by integrating the area
between successive pairs of sample dates over a period from August 1 to
July 31 for each year. The beginning of this period approximates both the
first occurrence of a year class of gizzard shad on the intake screens and
the cove rotenone sample period.

Between August 1974 and July 1975, an estimated 165,050 (7.04 per
hectare) shad were impinged (Table 6). Impingement estimates decreased to
95,103 (4.06 per hectare) between August 1975 to July 1976. From August 1,
1976, to March 23, 1977, an estimated 190,267 fish were impinged. Expanding
this figure to a full year yielded an estimated 296,828 (12.66 per hectare)
gizzard shad impinged. This is probably an overestimate since fall and
winter are usually the periods of highest impingement.
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TABLE 6. COVE ROTENONE POPULATION DENSITY ESTIMATES, YEARLY
IMPINGEMENT RATES,* ESTIMATES OF TOTAL, IMPINGEMENT
AND NATURAL MORTALITY RATES, 1974-1977

Numbers Per Hectare Yearly Mortality Rate
Total Initial Age I+ at Numbers Impinged
Year Population End of Year Per Year Total Plant Natural
1974 14,390.09 3,582.92 7.04 1.3904 0.0020 1.3884
1975 10,484.93 3,380.84 4.06 1.1318 0.0012 1.1306
1976 4,872.59 2,573.40 12.66 0.6384 0.0049 0.6335
MEAN 9,915.87 3,179.05 7.92 1.1375 0.0025 1.1351

* From August to July.

Using abundance estimates obtained from cove rotenone samples, it was
estimated that in the 1974-1975 season, 0.049 percent of the gizzard shad in
Barkley Reservoir were impinged. This figure decreased to 0.039 percent in
1975-1976, and increased to 0.206 percent in 1976-1977. Using averages for
this period: Z (the total mortality rate) was 1.1375, Zn (the natural mor-

tality rate) was 1.1351, and Zf (the plant fishing mortality rate) was 0.0025.
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SECTION 5

EXPERIMENTAL PROCEDURES

As mentioned earlier, impingement impacts owing to fish mortality at
existing facilities are not readily assessed using conventional hypothesis
testing techniques. The existing fish community "is what it is' under the
operating regime of the facility. What it was or '"would be" in the absence
of the plant is not an observation normally available to the experimentalist.

The impact of impingement mortalities on fish populations can be mani-
fested in three general ways or plateaus of impact. There may be: (1) no
impact to the fish population if growth and survival mechanisms are suffi-
ciently great to compensate impingement losses, (2) depression to some lower
level of abundance where compensatory mechanisms resist further decreases,
or (3) eventual extirpation of the fish population at some time. A fourth
possibility exists at the community level. Fish species for which individuals
are not normally impinged in numbers sufficiently high to adversely affect
their own populations may interact with species which are adversely impacted
by impingement. Community structure (e.g., predator-prey interactions) could
thus be modified as large impingement losses for one species are translated
through the fish community. This is a problem which cannot be addressed with
a single species model such as developed here except in the trivial case where
no impact to the population under study is predicted (where interacting
populations are presumed also to be unaffected).

With these factors in mind, a model was constructed which utilized an
estimated fishing mortality rate (i.e., the impingement rate) for Cumberland
Steam-Electric Plant in conjunction with the natural mortality rate estimated
for the gizzard shad population of Barkley Reservoir. This procedure, as a
result of deliberately varying the fishing rate coefficient, was used to
estimate the effects of the plant on the gizzard shad population as described
below. However, it is important to note that these efforts do not represent
experiments in the classical sense of hypothesis testing. Rather, they are
hypothetical experiments which are beyond the ability of the investigators
to perform and for which a model has been developed to predict outcomes.

BASELINE CONDITIONS

The term "baseline conditions" as used here refers to the population
as it exists with operation of the plant. This was accomplished by first
running the model with the mortality coefficients applicable for the gizzard
shad population as it exists with the operating plant. This provided a
reference with which to make assessments considering other operational
regimes for the platn.

ZERO PLANT MORTALITY

In this scheme, the model was run with the plant fishing mortality
coefficient set equal to zero. Thus, the gizzard shad population predicted
by the model is that expected for Barkley Reservoir if Cumberland Steam-
Electric Plant was not present or if impingement mitigation was undertaken

42



and 100 percent effective. The difference between the zero mortality and
baseline condition estimates is the predicted impact of the plant on the
gizzard shad population.

TEN-FOLD MORTALITY INCREASE

For this experiment, the plant was assumed to impinge 10 times as
many gizzard as are presently estimated to be killed, with other baseline
parameters unchanged. This is roughly equivalent to siting a similar
facility on a lake one-tenth the size of Barkley Reservoir or, increasing
plant size by a factor of 10. This translates into about 0.9 MWe/ha, a
normal ratio for cooling ponds but considerably lower than ratios for
plants located on multipurpose reservoirs. Plant intake volume would be
about 10 percent of the reservoir per day. The prediction obtained in this
case perhaps reflects the impact of impingement alone to gizzard shad
populations in cooling ponds.

ONE-HUNDRED-FOLD MORTALITY INCREASE

This experimental run was similar to the previous test except that the
plant was assumed to impinge 100 times as many gizzard shad as are currently
estimated to be killed. Plant-to-reservoir ratios in this case were 9 MWe/ha
with a daily intake volume equivalent to 97 percent of the reservoir volume.
These ratios are not approached for plants located on reservoirs and are
rarely found in flowing streams, and then usually for only a small portion
of the year.
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SECTION 6

RESULTS AND DISCUSSION

The total numbers of fish in the cohort and cohort length distributions
were first simulated for baseline or current conditions at yearly intervals
(Table 7). The total numbers of fish simulated by the model for the first
year of life were generally very similar to cove rotenone sample estimates
(Figure 24). Simulated second- and third-year numbers were somewhat lower
than the actual measured numbers, while fourth-year model predictions were
very close to the numbers observed.

The model also predicted changes in the length distribution through
time. The predicted length distributions followed the same pattern as the
observed size distribution; that is, they become narrower through time.
This phenomenon is expected if the growth rate is decreasing as a function
of length (see DeAngelis and Mattice 1979, Bodola 1965, Ricker 1975), and is
known as compensatory growth. The model length distributions tended to be
narrower than the observed distribution (Figure 25). Despite these differences
in the variances of the length distributions between the model and observa-
tions, the mean length at the end of each year predicted by the model was
close to that observed except in the case of age IV. This is easily explained
by the fact that there was only a single individual of age IV sampled (see
Materials and Methods section).

The differences in the variances of the real and simulated size distri-
butions are probably due to the fact that there is a great deal of hetero-
geneity within the actual population (i.e., differences in growth rates
among individuals due to genetic and environmental variability) that was
not incorporated in the simulation shown in Figure 25. However, the model
is structured to permit inclusion of these differences within the cohort
in an approximate way by allowing division of the cohort into a number (up
to 20) of subcohorts, each with its own growth rate Gi(s,t). Because of

this poor fit, a simulation was made in which the cohort was divided into
nine subcohorts, distributed roughly normally about the mean growth rate,
ranging from 0.6 to 1.4 of the mean value. The results of this simula-
tion are shown in Figure 26, where the numbers are the sums over the sub-
cohorts, these sums being the discrete approximation to Eq. (A.49) in the
appendix. Note that the spread in growth rates has resulted in an increase
in variance of the simulated size distribution so that it more closely
approximates the observed distribution. Since there is little available
information on the true spread in growth rates within a cohort, these
results can only be viewed as indicative.

The model was next run with plant mortality set equal to zero.
Estimated total numbers differed by less than 1.0 percent from the baseline
case for every age class and length distributions were identical in appear-
ance for the two cases. These results indicate that the effect of the plant
on a gizzard shad cohort is negligible.
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TABLE 7. LENGTH FREQUENCY OF GIZZARD SHAD IN COVE ROTENONE SAMPLES BY AGE CLASS

COMPARED WITH THE RESULTS OF SIMULATIONS RUN UNDER FOUR TEST CASES

Length Group

25-49

50-74

75-99

100-124

125-149

150-174

COVE ROTENONE SAMPLES

Age
Age
Age
Age
Age

BASELINE

0

I
II
III
Iv

CONDITIONS

INITIAL

Age
Age
Age
Age

ZERO PLANT MORTALITY

I
IT
III
Iv

INITIAL

Age
Age
Age
Age

TEN-FOLD

I
11
111
Iv

INCREASE

INITIAL

Age
Age
Age
Age

ONE-HUNDRED-FOLD INCREASE

1
1T
I11
v

INITIAL

Age
Age
Age
Age

1
11
I1I
v

249 .550

249.550

249.550

249.55

249.550

6017.

6017.

6017.

6017.

6017.

150

150

150

15

150

2365.500

2365.500

2365.500

2365.50

2365.500

704.600

70.50

704.600

704.600

704.60

704.600

700.350

1006.750

700.350

700.350

704.35

704.350

140
851

140.
3014.

104.
3021.

104

104.
2271.

.580
.500
14.

910

580
121

580
291

.58
2953.

860

580
787



TABLE 7. (Continued)

Length Group
175-199 200-224 225-249 250-274 275-299 300-324

COVE ROTENONE SAMPLES

Age O

Age I 971.380 485.580 14.180

Age 1II 220.770 282.160 60.570 .120 0.180

Age III 6.560 5.150 .180 0.520 0.100
Age IV 0.100

w N

BASELINE CONDITIONS

INITIAL

Age I 590.572 11.300

Age II 198.835 1.538

Age III 4.203 0.010
Age IV 0.095

ZERO PLANT MORTALITY

INITIAL

Age I 591.977 11.327

Age 1I 199.782 1.546

Age III 4.233 0.010
Age IV 0.096

TEN-FOLD INCREASE

INITIAL

Age I 578.765 11.074

Age 1I 190.964 1.477
Age 111 3.956
Age IV

.010
.087

oo

ONE-HUNDRED-FOLD INCREASE

INITIAL

Age 1 445.122 8.517

Age 11 112.955 0.874
Age II1 1.800
Age IV

.004
.031

(= =)
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Figure 24. Comparison of age structure in cove rotenone samples
with results of simulations run under four test cases
(simulated populations under baseline and zero plant
mortality situations are represented by the same line).
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Figure 25. Length frequencies simulated using baseline conditions
compared with cove rotenone estimates.
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Figure 26. Length frequencies of the simulation in which the cohort

is divided into nine subcohorts with different growth
rates using baseline conditions, compared with cove
rotenone estimates.
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Next, 10- and 100-fold plant mortality rates increases were assumed
in the model. The 10-fold increase reduced total cohort numbers by less
than 10 percent in every age class. The 100-fold plant mortality increase
resulted in significant reductions in total numbers, approximately 65
percent in age class IV, which was most affected.
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1. Solution of the partial differential equation for time-invariant
growth and mortality rates

Solution of Eq. (11) is obtainable by the method of characteristics.
See, for example, Hildebrand (1962), Courant and Hilbert (1966), or Van
Sickle (1977). To apply this method, it is easiest to first make the further
assumptions that G(s,t) = G(s) and Z(s,t) = Z(s) and that all recently
hatched fish have the same size s = Sp* Then B(s,t) can be written

B(s,t) = Bo(t)G(s—so) s (A.1)
where 6(5-30) is the Dirac delta-function, defined by the properties
6(s-so) = 0 for s#s0 (A.2)
2%
6(s-s0)f(s)ds = f(so) for (sa <sp < sb) , (A.3)
s
a

where f(s) is an arbitrary function. The Dirac delta-function may be visu-
alized as a very sharp spike at S784, having unit area.

The replacement of B(s,t) by Bo(t)é(s-so) reduces Eq. (11) to

@%ﬁl+£{MﬂMaﬂ}=-ﬂ9M&ﬂ+B“ﬂay%) (A.4)

or

W) 4 gsy) W) = z(s) + BEoynis,0) + By(0)6(s-s))  (A.5)

To determine the boundary condition, integrate both sides of Eq (A.4)
over a very small region surrounding $¥803

sy * %
[an__,_g: £, -2-; {G(s)N(s,t)} + Z(s)N(s,t)

_ &

S0 " 2

- Bo(t)d(s-so)] ds =0 . (A.6)

Thus, taking each term in (A.6), the following results are obtained:
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¢ 0
AN(s.,t)
ON(s,t) - 0’ _
'—ﬁ)—'— ds & ¢ -———-—-——-——-at . O_ 0 (A7)
N
0" 2
£ £
So 32 So F 3
gg {G(s)N(s,t)} ds = G(s)N(s,t) (A.8)
£ A
So " 2 So ¥ 3
gOG(so)N(SO,t)
£
£
so ¥ 2
Z(s)N(s,t) ds = eZ(sy)N(sy,5) > 0 (A.9)
£0
L - &
0" 2
£
sot 2
Bo(t)é(s-so) ds = Bo(t) (A.10)
- &
S0 7 2

The result (A.8) follows since it is assumed that N(s,t) = 0 for all s < So
See Eq. (A.3) for the derivation of (A.10). Therefore, using these results
in Eq. (A.6), the boundary conditions on N(s,t) are found to be

N(so,t) = Bo(t)/G(so). (A.11)

The theory of partial differential equations (e.g., Hildebrand 1962)
implies that the general solution of Eq. (A.5) is of the form F(ul,uz) =0,

where F(ul,uz) is any function relating u, and u,,, and where ul(N,s,t) =C

2’ 1
and u2(N,s,t) = C, are solutions of any two differential equations that imply

dt _ ds _ -dN
T “60s) - 1Z2(s) ¥ 65 N (A.12)

ds

where C1 and C2 are constants of integration.

In the present case, in which boundary conditions are posed on the
s =5 plane, it is convenient to choose to integrate the equations formed

by terms 1 and 2 and by terms 2 and 3. Performing the integrations, there
result
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ul(N,s,t,) =t - I(so,s) =C (A.13)

1
and
u2(N,s,t) = 1n(N) + 1n {G(s)/G(so)} + J(so,s) = ln(Cz), (A.14)
where
s
I(sy,s) = G?::) (A.15)
o
and
s
I(sy,s) = Zi%%%T%EL : (A.16)
50

Equations (A.13) and (A.14) can be expressed as

t

I(so,s) + C1 (A.17)
and

G(so) -J(so,s)

N = C,{ e . (A.18)

2'G(s)
These two equations each define a family of integral surfaces in (N,s,t)-
space (Fig. A.1). The intersection of a given pair of surfaces from these
families defines a curve called the characteristic curve.

What is now necessary is to specify the particular solution in the
relation F(ul,uz) = 0, or, equivalently, F(CI’CZ) = 0. This relation must
be such that the boundary value condition, Eq. (A.11), is satisfied. Choose
as F(Cl,CZ) the equation

c, = Bo{cl}/c(so) , (A.19)
or, from Eq. (A.17),

C2 = Bo{t - I(so,s)}/G(so) . (A.20)
It can be seen from Eq. (A.18) that, using this assumption, the particular
solution is

-J(sO,s)
Byft - 1(s4,5)}e
N(s,t) = A0) , (A.21)
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Figure A.1. The integral surfaces defined by Eqs. (1-17) and (A.18).
The intersection of these surfaces is the characteristic
curve.
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Figure A.2. The surface N(s,t) as defined by Eq. (A.21). It is composed
of characteristic curves.
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(Fig. A.2). The surface defined by Eq. (A.21) is composed of characteristic
curves satisfying Eq. (A.19). It can be seen that for s = s,, N(s,t) =

0
Bo(t)/G(so).

The simplicity of the above analytic solution hinges on the time
invariance of G(s) and Z(s) and on the approximation (A.1) for B(s,t).
Cases where these assumptions need not hold will be considered later.

2. Particular solutions of the equation

Any attempt to model empirical data requires that specific forms of
G(s), Z(s), and Bo(t) be used. Fortunately, G(s) can often be approximated

by very simple functions. Two cases are given below.

Case 1
The early growth of many fish is approximately exponential. Hence,
G(s) = gys (A.22)

where is a constant. If the mortality rate, Z(s), is assumed to be
&o

constant, Z., then I(so,s) and J(so,s) become

0’

s
- ds' _ 1
I(SO,S) = _8'77 = *é; ln(s/so) (A.23)
)
'S
ds'Z0 Zo
J(so,s) = x = EE ln(s/so) (A.24)
J so
Equation (A.21) then becomes
B, {t - (1/g,)1n(s/s,)} Z
0 0 0 0
N(s,t) = 88 expf- Ea ln(s/so)}
B {t - (1/g,)1n(s/s,)} -(2,/8,)
_ 0 . 2 0 S_) Y (A.25)
0 (FO

Some discussion of the meaning of this expression may be helpful at
this point. First, to interpret Bo{t - (l/go)ln(s/so)}, recall that Bo(t)
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is reproduction as a function of time. For most fish species of interest,
spawning is confined to a relatively short period of time during the year,
perhaps a few weeks. Denote by T0 = 0 the beginning of the spawning period

and the end by TS. Over this period, B(t) will have some distribution, which
can perhaps be very crudely approximated by a truncated normal distribution
(Fig. A.3).

The expression Bo{t - (1/g0)1n(s/so)} in Eq. (A.25), however, is a
function of t - (l/go)ln(s/so), and hence of both t and s. Consider this
expression from two points of view. First, consider Bo{t - (I/go)ln(s/so)}
as a function of time for various values, . of s (si > so). Several such
curves are plotted in Fig. A.4. Note that as s; increases, the curve moves
to the right. If t, signifies the time when cohort members first reach
size S.» then note that as s; increases, the time interval between successive

values of times, ti and ti+1’ decreases since growth is accelerating.

One can also consider the expression Bo{t - (l/go)ln(s/so)} from the

standpoint of variation with respect to s at fixed times, t., t,, ..., t
1 2 > "n

(Fig. A.5). Each curve is the size distribution for the particular asso-
ciated time, ti' Note that the size distribution spreads through time

since the ratio of the upper to lower limits, sup/SIOW’ 1s
Su
_R.. = exp(g T ) . (A.26)
s 0's
low

In Fig. A.5, Bo{t - (l/go)ln(s/so)} has been divided by 8pS» as in Eq. (A.25),
so that in the absence of mortality (Z0 = 0), population number is conserved;

i.e., it can be shown by a change of variable that

s T
up s
Byft - (1/gy)1n(s/s;)}
ds = B.(x) dx (A.27)
8oS 0

Slow 0

-(Z4/8,)
for all values of t. The factor (s/so) in Eq. (A.25) is a quantity

between 0 and 1.0, representing the fraction of surviving fish.

Case 2

Growth characteristics for individual organisms of many species have
the appearance of logistic curves when examined over the total life spans;
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Figure A.3. A hypothetical recruitment rate, B(t), between the times
t=0 and t=TS.
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Figure A.4. Plots of B.{t - (1/g,)1n(s/s,} as functions of time, t, for several values of size,
s, in units of millimeters. The reproduction function, Bo(t) is a truncated normal
(Figure A.3).
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some examples are given by DeAngelis and Mattice (1979). Early growth in
the life span is approximately exponential, but later slows down and even-
tually plateaus. Growth rate in these cases can be approximated by the
function

6(s) = g,(1 - > )s (A.28)
max

where S nax is a constant representing the upper limit of size. Again, if

Z(s) = ZO’
of partial fractions. Note that

then I(so,s) and J(so,s) are easily computed using the method

1 1 1
= ~ + (A.29)
go(l - SS )s gO(Smax s) 8oS ’
max
so that
s
I(sy,s) = ( 1 + 1y ds' (A.30)
Smax -8 S g0
o
s
= { - =— 1ln(s - s') + 1 1n(s')}
0 max 0
S0
_ 1 S(Smax b S0
T ogn In 3 (s -'s)
0 0*"max
Y/ s(s -8
- 0 max 0
J(so,s) =2 In{ s (s ) } (A.31)
0 0
Then
Zo/89
s s (S - S)
N(s,t) = max 0" "max . 5 A3
go(smax s)s s(smax - 5, {t - I(sos)} (A.32)

The size distribution, N(s,t) exhibits interesting behavior. Assume
that B(t) has a truncated normal distribution,
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0 £t <o
B(t) = { boexp -(t - 0.5T)%/65  0<tcr (A.33)
0 T <t

where b0 and b1 are constants. In Fig. A.6 the size distribution of the

cohort is computed for several values of t and for a set of hypothetical
parameter values. In this example, Z0 is assumed to be zero for all values

of s, so N(s,t) is given by Eq. (A.32) with ZO = 0. Time is measured in

years from initial production of the cohort. Note that unlike the preceding
example, the initial broadening of the size distribution is followed by a
narrowing through time (Fig. A.7). The mean size follows a logistic curve,
as expected. The standard deviation increases at first, then asymptotes and
finally decreases as the sizes of individuals in the cohort approach their
upper limit.

The variations in standard deviation are somewhat unexpected but can
easily be interpreted. In the initial phase of growth, when size is

accelerating (dzs/dt2 > 0), the largest fish (those produced earliest)
always grow at faster rates than smaller individuals, leading to a broaden-

ing of the size distribution. Later, when dzs/dt2 < 0, the smallest fish

grow faster than the larger ones and tend to catch up in size, causing the
size distribution to become narrower.

A rough mathematical interpretation for the occurrence of the peak in
the standard deviation curves close to the point of the maximum growth rate
can be made. The size distribution should be broadest in the region in which
the argument of B, t - I(sO,s), changes most slowly with respect to s. For

an increment in I(so,s), AI(sO,s) = As/G(s), the argument is least sensitive

when G(s) attains its maximum value.

3. Generalization to time-varying coefficients

At best, Eqs. (A.22) and (A.28) may be reasonable approximations of the
growth rate under special conditions. They will certainly not he good
approximations when environmental parameters such as temperature and food
availability change significantly over time scales of interest. Seasonal
changes in temperature greatly influence growth rates. Hence, we can hardly
expect the assumptions that G(s,t) = G(s) and Z(s,t) = Z(s) to be valid in
real cases, so solutions developed in the preceding two sections are not
sufficient.

Despite the insufficiency of Eq. (A.21) for describing cohort dynamics
when mortality and growth rate are functions of time, it can be extended to
approximate these cases. If Z(s,t) and G(s,t) change relatively slowly with
respect to time, say on a scale of months, then Eq. (A.21) for N(s,t) may be
valid over short periods of time. Solutions for these short time periods can
then be pieced together.
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Assume that the spawning period has ended and that N(s,ti) has been
computed for time t. from Eq. (A.21). Assume that time t, represents the end

of one month and that during the next month G(s,t) and Z(s,t) are different
from their original values. The equation for N(s,t) during the next month is

W) 4 g(s) Wnat) = - H06) 4 553 w(s, v

+ No(s)é(t-ti) (A.34)
where No(s) is the size distribution at the end of the first month.
One can write down the solution for N(s,t) using the method of char-
acteristics. However, it is useful to go through an explicit, detailed

solution for N(s,t), since this will help keep better track of the
mathematical steps.

Introduce the variable 1, defined by

T=1t + I(s) (A.35)

where

s
I(s) = I G?::)

This substitution permits the left hand side of Eq. (A.34) to be written as
a total derivative with respect to T since

dN _ 9t 9N(s,t) , 9s ON(s,t) _ AN(s,t) N(s,t)
dt - 3t ot * 57 s 3t * 6(s) g5 : (A.36)

Therefore, Eq. (A.34) can now be written as

W 805) 4 0a)} NGs,0) + Ny(s)8(e-t,). (A.37)

Equation (A.36) can be solved to give

t
N(s,t) = e R(T) I eR(r')No(s)ﬁ(t - t)) dv (A.38)

where

t
R(1) = J {Z(s) + Qgéil } dt' . (A.39)
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In Eqs. (A.38) and (A.39), s and t must be expressed in terms of T using
Eq. (A.35). In general, an explicit analytic expression for s in terms of
T is not possible since I(s) will not always be integrable analytically.
Therefore, it may be necessary to obtain s in terms of T numerically from
Eq. (A.35), which we call s = F(t - t). Equations (A.38) and (A.39) can
be reexpressed as

t
N(s,t) = e RC(E) l R(TH NF(U - £)8{1' = I(s) - t.} dt' (A.40)

and
t

R(t) = {Z{F(t’ -t)} + dG{F(;; - t)}} dt' . (A.41)

Equation (A.40) integrates to

G{F(t; + I(s) - ©)} -Qft; + I(s), t + I(s)}

N(s,t) = ) e
X NO{F(ti + I(s) - t)} (A.42)
where
t + I(s)
Qft, + I(s),t + I(s)} = {Z{F(t' - t)}}dl’,' (A.43)
ti + I(s)

Special case

Consider the special case where

G(s)

s
v(1 S
max

) s and

Z(s) Zo
In this case, I(s) has an analytic form,

=1, s
I(s) = 5 ln(smax - s)

as does F{I(s) + t, - t} ,
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v {I(s) + t, - t}

s e
max

1+ ev{I(s) + t.- t}

F{i(s) + t, - t} =

- ® Smax : (A.44)
s + (smax - s)ev(t-ti)
-v(t - t.)
Rft,+ I(s), t + I(s)} = - (Zp+ v)(t - t,) +21n { 1+ s € 1
S - 8
max

S
-2 ln{l +-S—'—'T-—}

max _ °
( ) -v(t - ti)
] - 8 + s e
=- (v+Z)(-t) -2 1n {—2F . } . (A.45)
max
Finally, N(s,t) is
-(Z0 + v)(t - t.) { s 2
N(s,t) = i max }
¢ (smax -s) + s e—v(t h ti)
{ Smax S } '
XN - (A.46)
0 s + (smax - 8) ev(t ti)

From Equation (A.42), N(s,t) can be calculated for all times in month i,

up to time t = ti+1‘ Then the size dfstribution, N(s,ti+1) can be used
as the new initial value function, Ni+1(s), from which N(s,t) can be

calculated for the succeeding month by the process outlined above.

4. Size-dependent mortality

The general formula for N(s,t) given by Eq. (A.21) and its extension
to situations of time-varying mortality and growth rate in the preceding
section should enable consideration of realistic populations. Of special
interest in this report will be the influence of various types of mortality
on cohort population number and length distribution.

It is useful to distinguish among the various types of mortality
expected to occur; for example, between fishing mortality, Zf(s,t), and
natural mortality, Zn(s,t). Natural mortality can itself be divided into

different classes. Suppose the effects of a particular predator on the
species being modeled are of interest. It will be useful to separate the
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mortality, an(s,t), caused by this predator from the remaining natural

mortality, Zn,rem(s’t)‘

What makes Zf(s,t) and an(s,t) of interest is that these mortality

sources are likely to act on restricted size class ranges. In particular,
an(s,t) will depend on the size ratios of predator to prey.

Assume, for example, that~Zn1(s,t) has the form

an(s,t) = Cpred(s) (A.47)
where
s
max,p
Coreal®) = |Npreq(syt) C(s /s) ds, (A.48)
s
(o4
where Npred(sp’t) is the number of predators of size s_, S, is the maximum
size at which a predator can devour a prey of length s, Smax p the maximum
’

size of predators in the population, and C(sp/s) the likelihood of a

predator of size sp devouring a prey of size s in an encounter.

5. Distribution of parameter values

Another source of potential inaccuracy in the model is the assumption
of certain types of uniformity in the cohort populations. For example, in
the particular case for which N(s,t) is given by Eq. (A.32), the parameters
So? Smax’ and g, are treated as constants having the same values for every

member of the population. This is an approximation, for certainly these
parameters will differ for individual organisms due to both genetic and
environmental variation. This variation can be taken into account in our
model at the cost of some complication. Suppose for example that newly
produced organisms do not all have the same growth rate coefficient, 8g>

but that the sizes have some general distribution, F(go). The size
distribution, N(s,t), through time is given by
"
)
N(s,t) = [F(gyIN(s,t;gy) dg, (A.49)
1
g

8 are the lower and upper bounds, respectively, on the

distribution of g, and N(s,t;go) represents N(s,t) for a particular value

where g6 and g

of &g If Eq. (A.32) is the solution for N(s,t), and distribution functions

are available for S max and s, 3s well as for 80> then one can generalize
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Eq. (A.49) to a triple integral over the distribution functions for 802

s and 8¢y

max’
In general, one must use numerical methods to evaluate the integral
(A.49). However, in some special cases the integral can be performed
analytically, so that the effects of variation in a parameter value within
the cohort can be investigated in more detail. For example, suppose all
reproduction takes place close to a single instant, t=0, so that Bo(t) can

be approximated by Booé(t). Assuming N(s,t) is given by Eq. (A.32) and

also assuming that the parameters o> S , and &g do not (at this point)

max
vary among the members of the cohort, then from

Zo/ 8

Smax sO(Smax - s)
Booé{t - I(so,s)} , (A.50)

gO(Smax - s)s S(smax - SO)

N(s,t) =

with I(so,s) given by Eq. (A.28), the sizes of all surviving fish in the

cohort will the the same at all times and be described by a logistic function.

The total number of fish, N(t), at any time t is

SH

N(t) = |N(s,t) ds = B e ° , (A.51)

S'

where s' and s'" are the upper and lower limits on sizes in the cohort at
time t. This can be proven by substituting N(s,t) given by Eq. (A.50) into

the integral of Eq. (A.51) and integrating, after making the change of
variable from s to u, where

S(Smax B SO)
u=t - I(so,s) =t - (l/go)ln (s 1 (A.52)
0" "max
Eliminating ds in favor of du by means of
gy (u-t)
ds = gOSOSmax(Smax j SO)e du , (A.53)
gou-t) ,
{(smax B SO) * S0¢ J
and then using
go(u-t)
o = “max°0° , (A.54)
- g, (u-t)
(s so) t s4e 0

max
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- = Smax(smax j SO) R (A.
Smax - ‘ g (u-t)
(Smax B SO) + 5o¢
and
sO(Smax - s) _ ego(t-u) . (A.
s(smax B SO)
the integral (A.51) becomes
u"
Zo(u-t) -Zot
due Booé(u) = Booe (A.
u'

Now let one of the parameters, say Y have a normal distribution,

F(go), about the mean, EO;

(2m '

The size distribution, N(s,t), can be calculated from

[+ )

N(s,t) = |N(s,t;g,)F(gy) dg, - (A.

[+ ]

Substituting N(s,t) from (A.50) and F(go) from (A.58) into (A.59), and

making a change of variables from 8 to u using

u=t -~ 1 1n(D) (A.
&
dg0
du = - —3 1n(D) (A.
&)
where
s(s -8
. (a.
0" max

it follows that
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@ {1n(D) - gy(t - w}?

-Z.(t - u)/1n(D) 2 2
. B005max p © e BTt -wWT 50y 4
N(s,t) = 172
(2n) B(smax - s)s u-t
(A.63)
or, using
-Z2,t/1n(D) -Z,t
p © =e 0, (A.64)
-{1n(D) - gyt}/(28%c%) -zt
_ BOOSmaxe e . (A.65)
N(s,t) = 173
(2n) b(smax - s)st

In a similar manner, it is possible to compute the size distribution,
N(s,t), given parameter distributions in either Snax °F 5o

6. Density-dependent growth rate

It is reasonable to expect that in sufficiently crowded populations
the growth rate of individuals may be reduced because of food resource
limitations. There are very few empirical data available on which to base
models of density-dependent growth. Nonetheless, a simple relationship
between the actual growth rate, G'(s,t), the growth rate under uncrowded
conditions, G(s,t), and the total population size, No(t) can be postulated;

G'(s,t) = G(s,t)/{1.0 + pNO(t)} , (A.66)

where p is a constant coefficient.
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APPENDIX B: USE OF THE COMPUTER PROGRAM
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1. General information on the program

The purpose of the computer program is to solve the basic partial
differential equation, Eq. (11), for the size distribution, N(s,t), through
time. The growth rate, G(s,t), and the mortality rate, Z(s,t), depend on
the size (e.g., length), s, and on the time of the year, t. The reproduc-
tion rate, B(s,t) = B(t), can be allowed to vary during the spawning
period. The numerical formulas, Egs. (A.21) and (A.42), are used to compute
N(s,t). Note that GA(J), ZA(J), and BA(J) in the computer program correspond
to discrete arrays of the mathematical variables G(s,t), 2(s,t), and B(t),
respectively, in the text. To obtain G(s,t), Z(s,t), and B(t) from GA(J),
ZA(J), and BA(J), interpolation is used; e.g.,

G(s,t) = GA(J) + (GA(J+1) + GA(JI))*((s - SIZE(J))/(SIZE(J+1) - SIZE(J))),

where SIZE(J) < s < SIZE(J+1), and the array, GA(J), is assumed to represent
the growth rate at size SIZE(J) at time t. (The array GA(J) can be reset
at specified times as described below.)

Some simplifying assumptions are built into the program in its present
form to keep it from becoming too complex. One of the main simplifications
is that the temporal variations in GA(J) and ZA(J) are assumed to be dis-
continuous rather than smooth. For example, GA(J) for a particular month
(or whatever time period is chosen) will be constant in time during the
whole month (through varying with s, or the computer variable J), but will
change for the next month. Secondly, all new recruits to the cohort are
assumed to have the same length, Sg° These assumptions can be relaxed,

but at the cost of appreciable complication in the computer program.

Below, the present section outlines the general operation of the
computer program, section 2 describes the setup of the input data cards,
section 3 is an example of a specific application of the program, and
Appendix C is a printout of the program.

The computer program is divided into a MAIN PROGRAM and a subroutine,
SUBROUTINE TRAP. The purposes and operation of each of these is discussed
in some detail below.

Main Program

The first task of the MAIN PROGRAM is to read in all initial input
data and print these out. Only data on later temporal changes in the
growth and mortality rates are read in later in the program.

The principal DO-loop in the MAIN PROGRAM is DO-loop 900. In general
it is assumed that the cohort can be divided into several subcohorts, each
with a different growth rate, G(s,t). The DO-loop 900 sums over all of
the subcohorts.

The simulation of each subcohort size distribution through time is
performed by DO-loop 700 in the MAIN PROGRAM. Within this DO-~loop are
two main subloops. The first of these, DO-loop 100, uses Eq. (A.21) to
calculate the part of N(s,t) resulting from reproduction during the
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preceding time interval. Within DO-~loop 100, a call is made to SUBROUTINE
TRAP to calculate I(so,s) and J(so,s). The second loop, DO-loop 500,

calculates N(s,t) resulting from an initial size distribution at the
beginning of the preceding time period using Eq. (A.42). Within DO-loop 500
is a main subloop, DO-loop 450, which calculates R{ti + I(s), t + I(s)}

(see Eq. A.41).

Values of the size distribution, N(s,t), through time are stored in
the array SDIST(I,J), and then printed out near the end of the MAIN PROGRAM.

Subroutine Trap

SUBROUTINE TRAP is called from DO-loop 100 of the MAIN PROGRAM. It
calculates I(so,s) and J(so,s) for every value of s. The trapezoidal

method is used in evaluating the integrals. These integrals are used in
DO-loop 100 to evaluate Eq. (A-21). The values of I(so,s) from 5o to s

are stored and then later inverted numerically in DO-loop 500 to obtain s
in terms of values of I(so,s). ‘This yields the function s = F{I(so,s)}.

Later in DO-loop 500, the values ti -t + I(so,s) are used as the argument
of F, to give F{ti -t + I(so,s)} (see Eq. A.42). Then a linear interpola-

tion technique is used to compute Ni(F{ti -t + I(sos,)}), which is necessary
in evaluating Eq. (A.42).

2. Input data

Card A

Input parameters: NSIZES, NSIZEC, NBIRTH, NCHNGE, NRUNTM, NII, NIII, NGROW
Format: 8I5

NSIZES

Number of size classes into which the cohort is divided.

NSIZEC = Number of sizes at which input data on size-dependent mortality
and growth rates are given.

NBIRTH = Number of time intervals during the spawning period at which
the instantaneous numbers spawned per month are given. If there
is no reproduction, set NBIRTH = 0.

NCHNGE = Number of times during the projected course of the simulation at
which the mortality and growth rates change. Since these
quantities are usually assumed to change month-to-month, NCHNGE
is a measure of the number of months in the projected simulation.

NRUNTM = Number of time steps in the simulation.

NII, These integers control the printing out of detailed information
NIII on the computations, which may be useful for diagnostic purposes.
For example, if we set NII = 6, certain computational details
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will be printed out every time the index I in DO-loop 700 is a
multiple of six. For other values of I, the WRITE statements
are skipped. The other integer, NIII, controls other WRITE
statements. To understand and utilize these computational
printouts, the program users will have to familiarize themselves
with the details of the program.

NGROW = Number of subcohorts having different growth rates.

Card B

Input parameter: TO

Format: 2E10.0

TO = Time of the beginning of the simulation

Card C

Input parameters: DELSIZ, DELCLA, DELSZA

Format: 4E10.0

i

Length of size classes into which the cohort is divided. It
seems best to make DELSIZ as small as practical for more
accuracy.

DELSIZ

Length of size intervals between which mortality and growth
rate data as functions of size are given.

DELCLA

DELSZA = Length of desired size-class printout; obtained by summing
over groups of size classes of width DELSIZ. For example,
DELSIZ may be equal to 0.5 millimeters, but if the user wants
to print out results of N(s,t) for 5.0 millimeter, then the
user must set DELSZA = 5.0.

Card D

Input parameter: SIZE(1)

Format: E10.0

SIZE(1) = Size at time of reproduction of cohort members.

Card E

Input parameters: ZNA(I), I=1, NSIZEC

Format: 7E10.0

ZNA(I) = Size-specific natural mortality for size class I.
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Cards F

Input parameters: ZIA(I), I=1,NSIZEC

Format: 7E10.0

ZIA(I) = Size-specific impingement mortality for size class I.
Cards G

Input parameters: GA(I), I=1,NSIZEC

Format: 7E10.0

GA(1) = Size-specific growth rate for size class I.

Cards H

Input parameters: BA(I), I=1,NBIRTH

Format: 7E10.0

BA(I) = Instantaneous reproduction rate (numbers per month, for example)

through time during the spawning period. If there is no
reproduction, leave one blank card here.

Cards 1

Input parameters: TBRT(I), I=1,NBIRTH

Format: 7E10.0

TBERT(I) = Times during the spawning period at which numbers spawned
per unit time (e.g., month) are given. If there is no

reproduction, leave one blank card here.

Cards J

Input parameters: TIMEA(I), I=2,NCHNGE

Format: 7E10.0

TIMEA(I) = Times during the projected simulation run at which the
growth and mortality rates are changed. TIMEA(1) is
automatically set to 0.0.

Cards K

Input parameters: TIMEPL(I), I=1,NRUNTM

Format: 7E10.0
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TIMEPL(I) = Times at which the size distribution is computed and printed
out. It is necessary to at least have one value of TIMEPL(I)
paired to each value of TIMEA(I). Actually it is best to
set TIMEPL(I) to a value very slightly smaller (say a fraction
of a day) than the paired value of TIMEA(I).

Card L
Input parameter: DENDPA

Format: E10.0

DENDPA = Coefficient of effects of total population number on the growth
rate (p in Eq. 75).

Cards M
Input parameters: FRACA(I), I=1,NGROW
Format: 7E10.0

FRACA(I) = Constant setting growth rate of subcohort I. GA(J) = FRACA(I)*
GAA(J) is the growth rate of subcohort I at size J.

Cards N

Input parameters: FRACB(I), I=1,NGROW

Format: 7E10.0

FRACB(I) = Fraction of the total cchort in subcohort I.
Card 0

Input parameters: NINIT, NUINT

Format: 215

NINIT: If NINIT = 1, there is an initial size distribution at time t = TO;
otherwise all the size classes initially have zero population.

NUINT: The first NUINT size classes are assigned initial values greater
than or equal to zero.

Cards P
Input parameters: SNUMIN(I), I=1,NUINT
Format: 7E10.0

SNUMIN = 1Initial population (t = TO) at size class I
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Card Sets Q, R, 8

A new sequence of these three sets is read in every time the current time,
T, exceeds the next value of TIMEA(I).

Cards Q

Input parameters: ZNA(I), I=1,NSIZEC

Format: 7E10.0

ZNA(I) = Size-specific natural natural mortality for size class I.
Cards R

Input parameters: ZIA(I), I=1,NSIZEC

Format: 7E10.0

ZIA(I) = Size-dependent impingement mortality for size class I.
Cards S

Input parameters: GA(I), I=1,NSIZEC

Format: 7E10.0

GA(I) = Size-specific growth rate for size class I.

3. Example application of the program

As an example showing how to set up input data for the computer program,
let us consider measurements of larval crappie in an arm of Pickwick Reservoir
on the Tennessee River in 1976 (TVA 1976, Hackney and Webb 1977, DeAngelis
et al. 1979).

The basic information read as input data is shown in Table 1. It
includes the numbers of new recruits (per 1000 cubic meters) into the 5.0
millimeter length class as a function of time in months (Cards H and .
Data on growth rates and natural mortality rates as functions of length
are also assumed known (Cards E and G), and are assumed to be constant
through time, so NCHNGE = 2 and TIMEA(2) = a very large number. No initial
length distribution is assumed, so NININT = 0 (Card M) and no number
density-dependence of growth rate is assumed, so DENDPA = 0.0 (Card L).

The size of the length classes, DELSIZ, is set at 0.5 millimeters (Card C).
The length distribution simulation is to be printed out 20 times at the
specified values of TIMEPL(I) (Cards K). No density-dependence is assumed
in the growth rate (Card L), and only one subcohort (the whole cohort) is
assumed (Card M and Card N).

The input data are printed out by the program as shown in Table 2.

Selected results are shown in Tables 3, 4, and 5. Table 3 shows the
numbers of larvae per 1000 cubic meters in the first 10 0.5-millimeter
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length classes (out of the 200 length classes actually printed out by the
program) for all 21 times. Table 4 shows the numbers in the first 10

5.0 millimeter length classes (of the 20 actually printed out by the

program) at all times. Finally, Table 5 shows the total population at all

times.
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40. 5.0

2.1 2.1 2.1
2.1 2.1

0.0 0.0 0.0
0.0 0-0

54.0 95.0 10. 9
10.9 10.9 10.9
2.5 3.75 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.25 0.50 0.75
2.0 2.25 2.5
3.75 4.00 4.25
0.25 0.50 0.75
2.0 2.25 2.5
3.75 4.00 4.2

2.1
0.0

10.9

10.9
50.
0.0
0.0
1.0

2.75

4.50

1.0
2.75
4.50

2.1
0.0

250.
0.0
0.0
1.25
3.0
4.7

1.25
3.0
4.75

Table B.1. The input data cards relevant to the example.

of the individual cards is given in section 2.

The meaning
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NSTZES=

NRURT M=

NINIT=

DELSIZ=

DELSZA=

PARTIAL DIFFERENTIAL EQUATION NODEL OF A FISH COHORT SIZE DISTRIBUTION

200 NSIGEC= 10

20 NII=

20 RIII=

0 NOINT= 0

0.50000000E 00 DELCLA=

5.0000

TIMES POR WHICH

WRdNANLWN =

0.0

0.25000000%
0.5000000VE
0.75000000F
0.10000000GE
0.12500000F
0.15000000E
0.17500000P
0.2000000VE
0.22500000®
0.25000000F
0.27500000%
0.30000000F
0.32500000k
0.35000006L
0.3750000GE
0.4 00000008
0.4250000CE
0.4500000CE
0.47500000E

NBIRTH= 20

NCHNGE= 3

20

0.80000000E 02

SIZE DISTRIBUTION IS CALCULATED

00
00
00
01
01
01
01
01

01
01
01
01
01

01
01
01
01

Table B.2.

TIMEA=
TINEA=
TINEA=

SIZE CLASS

0.50000000E
0. 450000008
0.85000000€
0.12500000E
0.16500000E
0. 20500000E
0.24500000E
0.28500000E
0.32500000E
0.36500000E

TIHNE

0.0

0.25000000E
0.50000000E
0.75000000F
0.10000000E
0. 12500000F
0. 15000000F
0. 17500000E
0.20000000E
0.225000002
0.25000000€
0.27500000®
0.30000000E
0.32500000E
0.35000000E
0.37500000E
0.40000000F
0. 425S00000E
0.45000000F
0.47500000E

DENDPA= 0.0

The format in which the input data is
program,

01
02
02
03
03
03
03
03
03
03

HORTALITY RATE

0.20999994E
0.20999994E
0.2099999%4¢E
0.20999994E
0.20999998E
0.20999994E
0.20999994E
0.20999994E
0.20999994r
0.20999994E

01
01
01
01
01
01
01
01
01
01

GROWTH RATE

0.54499998E
0. 54000000F
0.95000000E
0.10900000R
0. 10900000
0. 10900000
0.10900000¢%
0.10900000E
0.10900000%
0. 10900000E

PARAMETER CHANGES OCCUR AT

0.0
0.10000000% 03
0.0

BIRTH RATE

0.0
0.25000000F
0.375000008
0.0
0.500000008
0.25000000E
0. 18750000%
0.0
0.0
0.0

(=]
[}

NI
[~ X -N-N-N-NoNo N~ NNl

[N -N=N-N=-NoNa o i)

01
01

02
03

printed out by the

01
02
02
02
02
02
02
02
02
02
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ESTIMATED SYIZE DISTRIBUTIONS

SIZEsS

TINE 5.0000 5.5000 6.0000 6.5000 7.0000 7.5000 8.0000 8.5000 9.0000
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2500 0. 4587 0. 2395 0.0867 0.0006 0.0 0.0 0.0 0.0 0.0
0.5000 0.6881 0.4981 0.3296 0.2225 0.1318 0.0738 0.0303 0.0022 0.0001
0.7500 0.0 0.2083 0.2993 0.3325 0. 2437 0.1855 0.1362 0.1012 0.0708
1.0000 9.1743 4.7899 1.7336 0.0120 0.0689 0.1122 0.1362 0.1468 0.1202
1.2500 45.8716 26. 7261 12.6592 §.4928 2.6369 1.4755 0.6053 0.0643 0.0228
1.5000 34. 4037 31.8458 26.4571 22.2095 14.1025 8.8742 4.8426 2.1798 1.4225
1.7500 0.0 10.4128 14.96M 16.6234 18.4785 13.0159 11.3513 9.9555 7.3607
2.0000 0.0 0.0 0.0 0.0 3.4426 5.6120 6.8112 7.3420 6.7179
2.2500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1. 0605
2.5000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.7500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.2500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.5000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.7500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.2500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.5000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.7500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table B.3. Predicted numbers of larvae per 1000 cubic meters in the first
eight 0.5 millimeter length classes for twenty time periods.
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ESTIMATED SIZE DISTRIBUTIONS

SIZES

TINE 5.0000 10. 0000 15.0000 20.0000 25.0000 30.0000 35.0000 40.0000 45.0000 50.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2500 0. 7855 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5000 1.9765 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7500 1.6248 0.0508 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0000 16.3911 0.3203 0.0014 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.2500 94.5733 0.4518 0.0867 0.0009 0.0 0.0 0.0 0.0 0.0 0.0
1.5000 147.2839 1. 1442 0.1787 0.0480 0.0037 0.0000 0.0 0.0 0.0 0.0
1.7500 103.6173 9.9611 0.1066 0.0889 0.0363 0.0106 0.0008 0.0000 0.0 0.0
2.0000 36.0678 29.9345 1.8343 0.0463 0.0891 0.0288 0.0 185 0.0059 0.0013 0.0000
2.2500 3.0048 26.87a8 9.5982 1.0238 0.0782 0.0194 0.0215 0.0141 0.0087 0.0050
2.5000 0.0 6. 4281 11.5279% S.1181 0.9855 0.2114 0.0177 0.0078 0.0102 0.0087
2.7500 0.0 0.0 3.8952 5.3876 3.4136 1.3156 0.3429 0.1186 D.0260 0.0027
3.0000 0.0 0.0 0.0037 1.4140 2.5960 2.0872 1.4176 0.6963 0.2653 0
3.2500 0.0 0.0 0.0 0.0 0.2150 0.9713 1. 1481 0.9630 0.7719 0
3.5000 0.0 0.0 0.0 0.0 0.0 0.0002 0.1131 0.3890 0.5157 0.4951
3.7500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0093 0.0931
4.0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0
4.2500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.5000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8.7500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table B.4. Predicted numbers of larvae per 1000 cubic meters in the first
eight 5.0 millimeter length classes for twenty time periods.

[~
o
o



TIME= 0.0 TOTAL POPULATION= 0.0

TIME= 0.2500 TOTAL POPULATION= 0.78%S
TINE= 0.5000 TOTAL POPULATION= 1.9765
TINE= 0.7500 TOTAL POPULATION= 1.6756
TIME= 1.0000 TOTAL POPULATION= 16.7127
TIME= 1.2500 TOTAL POPULATION= 95. 1125
TIME= 1.5000 TOTAL POPULATION= 148.6581
TIME= 1.7500 TOTAL POPULATION= 113.6211
TIME= 2.0000 TOTAL POPULATION= 67.9819
TIME= 2.2500 TOTAL POPULATION= 40.6507
TIME= 2.5000 TOTAL POPULATION= 24.3228
TIME= 2.7500 TOTAL POPULATION= 14.5276
TIME= 3.0000 TOTAL POPULATION= 8.6641
TIME= 3.2500 TOTAL POPULATION= 5.1604
TIME= 3.5000 TOTAL POPULATION= 3.0725
TIME= 3.7500 TOTAL POPULATION= 1.7931
TIME= 4.0000 TOTAL POPULATION= 0.8475
TIME= 4.2500 TOTAL POPULATION= 0.2036
TIME= 4.5000 TOTAL POPULATION= 0.0012
TIME= 4.7500 TOTAL POPULATION= 0.0

Table B.5. Predicted total population numbers per 1000 cubic meters for
twenty time periods.
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MAIN

WO LANNE WN -

e NeNeNe N NeNeNeKe Ke Ko Ne NeRe e Ne Ne N Ne Ke!

IMPLICIT REAL*Y4 (A~H,0-7)
COMMON SMAYX,G

COMMON/RATEBK/GA (100) , ZA (100), SIZECL(100), DELCLA
COMMON/SIBLOK/DELSIZ

DIMENSION TIMEPL (40)

DIMENSION SZNUMG (500), SDISTG (40,500)

DIMENSION SZNUMA (500)

DIMENSION X (500)

DIMENSION TBRT(50), BA(100)

DIMENSION TINEA (30), SZNNEW (500)

DIMENSION GAZ (100), FRACA (20), FRACB (20)

DIMENSION SDISTQ (40,500)

DIMENSION SDISTP (40,20)

COMMON/TEGIBK/TEGI(501), SA(501)
COMMON/SIZEBK/SIZE (501)

DIMENSION ZIA(100), ZNA (100), SDISTH (40,20)
DIMENSTION SNUMIN (500)

THIS PROGRAM SOLVES A PARTIAL DIFFERENTIAL EQUGATION MODEL FOR THE

SIZE DISTRIBUTION, N(S,T), OF 2 FISH COHORT FROM THE TIME IT IS

SPAWNED (OR RECRUITED INTO A GIVEN SPECIFIED SIZE CLASS). THE
MORTALITY RATE, ZA(S,T), AND THE GROWTH RATE, GA(S,T),

ARE BOTH CONSIDERED TO BE FUNZTIONS OF SIZE, S, AND TIME, T, IN GENERAL.
THE PARAMETERS ZA(S,T) AND GA{(S,T) ARE READ IN AS NUMERICAL DATA

TO THE PROGRAM.

THE BASIC TIME SCALE OF THE MODEL IS THE MONTH. T - 0.0 CORRESPONDS
TO THE START OF THE SPAWNING PERIOD, T = 1.0 TO A MONTH LATER, ETC.

READ PARAMETER VALUES

NSIZES --- NUMBER OF SIZE CLASSES
NRUNTM --- NUMBER OF TIME STEPS .
NBIRTH --- NUMBER OF TIME INTERVALS DURING SPAWNING SEASON AT WHICH

DEC.



06

TAIN

41
42
43
4u
45
46
47
48
49
50
51
52
52
54

56
57
58
59
60
61
62
63
64
65
66
67
63
69
70
71
72
73
74
75
76
77
78
79
30

NN nNanaacananaaNanaaanNnanoanaaanaaaaaaann

NUMBERS SPAWNED (OB RECRUYTED INTO A SPECIFIED SIZE
CLASS) ARE GIVEN

NSIZEC -~- NOMBER OF INPUT SIZE CLASS DATA FOR ZA(S,T) AND GRA(S,T)

NCHNGE -~- NUMBER OF TIMES AT WHICH 22 (S,T) AND GA(S,T) CHANGE OVER THE
PROJECTED SINMULATION RON

DELCLA -~-- LENGTH OF SIZE CLASSES FOR WHICH MORTALITY, ZA(S,T), AND
GROWTH RATE, GA(S,T), ARE GIVEN AS INPUT DATA

DELRUN ~-- LENGTH OF TINE STEP :

DELSIZ -~- LENGTH OF SIZE CLASSES IN SINULATION RUN

DELSZA --- LENGTH OF DESIRED SIZE CLASS PRINTOUT

T0 -==~--- INITIAL TIME

TMAX -~--- END OF REPRODUCTIVE PERIOD

TBRT (I) -- TIMES DURING SPAWNING PEPYOD AT WHICH NUMBERS SPAWNED

(OR RECRUITED INTO A GYIVEN SPECIDIED SIZE CLASS) PER
UNIT TIME (MONTH), BA(Y), ARE GIVEN

TIMEA(I) - TIMES AT WHICH ZA(S,T) AND G(S,T) VYALUES ARE CHANGED (NORMALLY
EACH MONTH

- TIMEPL(Y) - TIMES FOR WHICH SIZE DISTRIBUTION IS CALCULATED

SIZECL(I) - SIZE CLASSES FOR WHICH INPUT DATA ZA(S,T) AND GA (5,T)

ARE GIVEN
SIZE (1) ~- SYZE AT BIRTH
SIZE(I) -- AVERAGE LENGTH OF AN INDIVIDUAL IN SIZE CLASS I
ZNA(I) -~- SIZE-SPECIPYC NATORAL MORTALITY RATE IN SIZE CLASS I
ZIA(I) -~- SYZE-SPECIPIC IMPINGEMENT MORTALITY RATE IN SIZE CLASS Y
ZA(I) --~- SIZE-SPECIFIC MORTALITY RATE FOR SIZE CLASS I
GA(I) =~~- SIZE-SPECIFIC GROWTH RATES
BA(Y) -~-- REPRODUCTION RATE DURING SPAWNING PERTOD (NUMBERS/MONTH)
NIY -—-~-- THE INTEGER CONTROLS THE PRINTING OUT OF DETAILED COMPUTATIONS

AT GIVEY TIME ST®PS., FOR EXAMPLE, IT WE SET NII = 10, MANY
COMPUTATIONAL DETAILS WILL BE PRINTED OUT EVERY TIME TH®
INDEX I IN DO-LOOP 700 IS A MULTIPLE OF SIX.

NIIT ----- THE YNTEGER CONTROLS THE PRINTING OUT OF DETEILED COMPUTATIONS

NUINT ~--— NOUMBER OF INITIAL SIZE DISTRIBUTION POINTS

NINIT ---- IF NINIT = 1, THERE IS AN INITIAL SIZE DISTRIBUTION

SNUMIN(I) ~ INITIAL NUMBER OF FISH IN SYZE CLASS I

DENDPA --~ COEFFICIENT OF EFFECTS OF NUMBER DENSITY ON GROWTH RATE

NGROW ---~ NUMBER OF SUBCOHORTS HAVING DIFFERENT GROWTH RATES

FRACA(Y) ~ FPACA(LI)*GAA(J) IS THE GROWTH RATE OF SUBCOHORT LI AT SIZE J

FRACB(YI) -~ FRACB (LI)*SNUMIN(J) IS TEE IWITIAL POPULATION OF SUBCOHORT LI
IN SIZE CLASS J

DEC.
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MAIN

81
82
83
84
85
86
87
88

90
91
92
93
94
95
96
97
93
99
100
101
102
103
104
105
106
107
108
10°
110
1m
112
113
114
115
116
117
118
119
120

1000
1001

10

READ (5,1000) NSIZES, NSIZEC, NBIRTH,

1, NGROW

FORMAT (14Y5)

READ (5,1001) T0

FORMAT (7E10.0)

READ (S5,1001) DELSIZ, DELCLA, DELSZA
READ (5,1001) SIZE (1)

READ (5,1001) (ZNA(I),I=1,NSIZEC)
READ (5,1001) (ZIA(I),I=1,NSIZEC)
READ (5,1001) (GA(I),I=1,NSIZEC)
IF(NBIRTH .EQ. 0) GO TO 2

READ (5,1001) (BA(I),I=1,NBIRTH)
READ (5,1001) (TBRT(I),I=1,NBIRTH)
CONTINUE

TIMEA(1) = 0.0

READ (5,1001) (TIMEA(I),I=2,NCHNGE)
READ (5,1001) (TIMEPL(I) ,I=1,NRUNTN)
READ (5,1001) DENDPA

READ (5,1001) (FRACA (I) ,I=1,NGROW)
READ (5,1001) (FRACS (I),I=1,NGROR)
po 3 r=1,500

SNUMIN(I) = 0.0

SZNUMG (I) = 0.0

DO 3 J=1,40

SDISTQ (J,X) = 0.0

CONTINUE

READ (5,1000) NINIT, NOINT
IF(NINIT .EQ. 0) GO TO 7

READ (5,1001) (SNUMIN(I), I=1,NUINT)
CONTINUE

PO 10 I=1,NSIZEC

ZA(I) = ZNA(I) + ZIA(I)

GAA {I) = GA (1)

CONTINUE

TBRT (1) = TO

SIZECL(1) = SIZE(1)

DO 18 I=1,NSIZEC

SIZECL (I+1) = SIZECL(I) ¢ DELCLA

NCHNGE,

NRUNTM, NII,

NIII

DEC.
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YAIN

21
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
mu2
143
ALL]
145
146
17
148
1u9
150
151
152
153
154
155
156
157
158
159
160

18 CONTINUE
WRITE(6,2000)
2000 FORMAT (1H1,20X,'PARTTAL DIFFERENTYAL EQUATION MODEL OF A FISH COHO
1RT SIZE DISTRIBUTION',////)
WRITE(6,2006) NSIZES, NSIZEC, NBIRTH, NCHNGE
2006 FORMAT (18 ,5X,*NSIZBES=',I4,4X, *NSTI2ZEC=',T4,64X," " NBIRTH=',T4, UX,
1*NCHNGE=',1I4,//)
WRITE(6,2016) NRUNTM,NII, NIIT
2016 FORMAT (1H ,S5X,'NRUNTM=',T4,4X,*NIT=',I4, 4%, "NIII=",14,//)
WRITE(6,2017) NINIT, NUINT
2017 FORMAT (18 ,5X,'NINIT=',T4,4X,* NUINT=",14,//)
WRITE(6,2007) DELSIZ, DELCLA
2007 FORMAT (1 ,5X,*DELSIZ= ',E15.8,2X,'DELCLA= ',E15.8,//)
WRITE(6,2009) DELSZA
2009 FORMAT(1H ,5X,*DELSZA= ',F10.4,//)
WRITE(6,2014)
2014 FORMAT(1E ,///,10X,'TIMES FOR WHICH SIZE DISTRIBUTION IS CALCULATE
1'%, //)
DO 16 I=1,NROUNTM
WRITE(6,2099) I,TIMEPL(Y)
16 CONTINUE
WRITE(6,20004)
WRITE(6,2001)
2001 PORMAT (////,5X,*SIZE CLASS',10X, ' MORTALITY RATE',6X,"GROWTH RATE',
17/
DO 20 I=1,NSIZES
SIZE (I+1) = SIZE(I) + DELSIZ
20 CONTINUE
DO 30 I=1,NSIZEC
WRITE(6,2002) SIZECL(I), ZA(I), GA(I)
2002 FORMAT (18 ,5X,6 (E15.8,3X))
30 CONTINUE
WRITE(6,2011)
2011 FORMAT (1€ ,////,20X,' PARAMETER CHANGES OCCUR AT',//)
D0 35 I=1,NCHNGE
WRITE(6,2012) TIMEA (I)
2012 FORMAT (14 ,5X,'TIMEA= ',E15.8)
35 CONTINUE
WRITE(6,2003)
2003 FORMAT (////,5%,*TIME!,16%,* BIRTH RATE',//)

DEC.
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MAIN

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
124
185
186
187
188
189
190
191
192
193
194
195
196
197
198
190°
200

40

2008

2013

45
2022
2023
2024

C —=—
C ==

43

2045

DO 40 I=1,NRIRTH

WRITE(6,2002) TBRT(I), BA(I)

CONTINUE

WRITF(6,2008) DENDDA

FORMAT (1H ,/,5X,'DENDPA= ',E15.8,//)

MSIZE = DELSZA/DELSIZ

LSIZES = NSIZES/MSIZE

WRITE(6,2013) "SIZE, LSIZES

FORMAT (1H ,///,5%X,"¥SIZ®= ',I5,5X,'LSIZES= ',15,//)
DO 45 I=1,40

DO 45 L=1,20

SDISTP(I,L) = 0.0

SDISTH (I,L) = 0.0

CONTINUE

WRITE(6,2022) NGROW

FORMAT (1H ,5X,'NUM3ER OF SUBZOHORTS, NGROW= ',IS5,//)
WRITE(6,2023) (FRACA(I),I=1,NGROW)

WRITE(6,20204) (FRACB(I),I=1,NGROW)

FORMAT (18 ,5X,'FRACA= ',14(F7.3,1X))

FORMAT (1H ,5X,'PRACB= ',14(F7.3,1X))

CALCULATE THE ANALYTICAL SOLUTION
ITERATE MODEL OVER TIME

DO 900 LI=1,NGROW
DO 43 I=1,NSIZES
SDISTG (1,I) = 0.0
CONTINU®

JTIMNE = 0

T = T0

TLAST = TO

JLAST = 1

NRUNTP = NRUNTM + 1
TMAX = TBRT (NBIRTH)
DO 700 Y=1,NRUNTHM
T = TIMEPL(I)
STORET = 0.0

TEGI (1) = STORET
STOREJ = 0.0

FORMAT (1H ,5X,'I= ',I5)

DEC.
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MAIN

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
225
236
237
238
239
240

u6
47

49
50

51

55
56

60
61

DO 46 J=1,NCHNGE

TF(T .LE. TIMEA(J+1)) GO TO 47
CONTINUE

CONTINUE

JTINE = J

TI = TIMEA (JTIME)

DO 50 J=1,NSIZES

IF(I .®Q. 1) GO TO 49
SZNUMG (J) = 0.0

CONTINUE

SZNNEW(J) = 0.0

CONTINUE

DO 51 J=1,NSTZEC

GA(J) = FPRACA (LI) *GAA (J)
CONTINUE

IF(T .GE. TMAX) G0 TO 60
PO 55 J=1,NBIRTH

IF(TBRT(J) .LE. T) GO TO 55
GO TO 56

CONTINUE

GO TO 60

CONTINUE

BIRTH = RA(J-1) + ((T-TBRT(J-1))/DELBIR)*(BA(J) - BA(J-1))
GO TO 61

CONTINUE

BIRTH = 0.0

CONTINUE

GMIN = GA (1)

SZNNEW (1) = RIRTH/GMIN

IF(I .NE. (I/NTII)*NII) GO TO 63
WRITE(6,2004)

FORMAT (1H1)

CONTINUE

CALCULATION OF PORTION OF N(5,T) RESULTING FROM REPRODUCTION IN
THE TIME INTERVAL

po 100 J=2,NSIZES
CALL TRAP?(SYZE(J-1) ,DELSIZ,8,%1.,FACTRI,GNV)

DEC.
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MAIN

21
242
243
244
245
246
247
248
2u°
2590
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

2099
69

2005
75

80
81

90

21

2010 FORMAT (1€ ,5%X,'TB= *,E15.8,2X, *BIRTH= ',E15.8,2X,'GNV= ',F15.8,
12X, TBRT= !',E15.8,2X,'BA= *,E15.8)

95

100
105

FACTRI = FACTRY ¢ STOREI
STOREI = FACTRI

TEGY (J) = STOREY

TB = T - PACTRI

CALL TRAP(SIZE(J-1),DELSIZ,8,0.,FACTRJ,GNV)

IF(T .NE. (I/NITI)*NIII) GO IO 69

WRITE(6,2099) J,SIZE(J-1),DELSIZ,PACTRI,GNV,STOREJ,TB
FORMAT (1§ ,5X,I5,2%,6(®15.8,1%))

CONTINUF

FACTRJ = FACTRJ + STOREJ

STOREJ = PACTRJ

IP(I .NE. (I/NII)*NIY) GO TO 75

WRITE(6,2005) I,J,PACTRI,FACTRJ

FORMAT (18 ,5%X,I3,2X,¥3,2X,'I(S)= ',E15.8,3%X,'3(S)= ',E15.8)
CONTINUE

TLOWER = TLAST

IFP(T .GE. TMAX) GO TO 90

IF(TB .GT. TMAY .OR. TB .LT. TLOWER) GO TO 90

DO 80 K=1,NBIRTH

IF (TBRT(K) .LE. TB) GO TO 80

GO TO 81

CONTINUE

CONT INUE

IF(K .EQ. 1) GO TO 90

BIRTH = BA(K-1) + ((TB-TBRT(K-1))/ (TBRT(K)~-TBRT (K-1)))*

1(BA({(K) - BA(K-1))

GO TO 91

CONTINUE

BIRTH = 0.0

CONTINUE

IF(T .NE. (I/NII)#*NII) GO TO 95
WRITE(6,2010) TB,BIRTH,CGNV,TBRT(K),BA(K)

CONTINUE

IP (FACTRJ .GT. 30.) FACTRJ = 20.
SZNNEW (J) = BIRTH*GNV*EXP(-FACTRJ)
CONTINUE

CONTINUE

IF(I .NE. (I/NIII)*NIYI) GO TO 111

DEC.
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"MAIN

28 1
282
283
284
285
286
287
288
289
290
29
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
an
312
313
314
315
316
317
318
319
320

ann

C

DO 110 J=1,NSIZES
WRITE(6,2015) SIZE(J), TEGI (J)

2015 FORMAT (1R ,5X,'SIZE= ',E15.8,2X,'TEGI=

110 CONTINUE
111 CONTINUE

150 CONTINUF
DO 155 J=1,NSIZES
IF(I .EQ. 1) GO TO 153
SZNUMG (J) = SDISTG(I-1,d)

GO TO 154
153 CONTINUE
SZNUMG (J) = SNUMIN(J)
SZNUNG (J) = SNUMIY(J)*FRACR® (LI)

1S4 CONTINUE

IF(I .NE. (I/NIII)*NITY) GO r0 155

WRITE(6,2024) J, SZNUMG (J)

', B15, 8)

2034 FORMAT (1H ,5X,*J= *,I5,5X,'SZNUMG= ',E15.8)

155 CONTINUE

156 CONTINU®
WRITE (6,2018)

2018 FORMAT (///)

IP (JTIMZ .LE. JLAST) 60 TO 175
READ (5,1001) (2NA (II),II=1,NSIZFEC)
READ (5,1001) (ZIA(II),II=1,NSIZEC)
READ (5,1001) (GA (II),II=1,NSIZEC)
WRITE(6,2019) T

2019 FORMAT (/,5X,'CUANGE IN GROWTH AND MORTALITY RATES AT TIME T

1F10. 4, /)

WRITE(6,2001)

DO 180 YI=1,NSIZEC

ZA(IT) = Z¥A(II) + ZIA(II)

WRITE(6,2002) SIZECL(II), ZA(IX), GA(II)

180 CONTINUE
WRITE(6,2066) I,JTIM®,JLAST,T
2066 FORMAT (1R ,//,5X,3I5,4(E15.8,2X))
175 CONTINOE

DEC.
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MAIN

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

s ReNe!

2097
339

350
351

2032
395

400
401

407
406

412
413

CALCULATION OF THAT PORTION OF N(S,T) RESULTING FROM INDIVIDUALS

ALREADY PRESENT AT THE START OF THE INTERVAL

IF(I .NE. (I/NIII)*NIII) GO TO 339
WRITE(6,2097)

FORMAT (1H ,5X,'IN T .GT. TIMEA(I)',/)
CONTINUE

DO 500 J=1,NSIZES

ARG = TEGI(J) # TLAST - T

IF(ARG .LE. TEGI(1)) GO TO 499

DO 350 K=1,500

IF(ARG .GT. TEGI(K)) GO TO 350

GO TO 351

CONTINUE

CONTINUE

SUBS = SIZE (K-1) ¢ ((ARG-TEGI (K-~1))/(TEGI(K)-TEGI(K-1))) *(SIZE(K)

1 - STIZE(X-1))

IF(T .NE. (I/NII)*NTII) GO TO 295
WRITE(6,2032) J,K,T

FORMAT (18 ,2X,21I5,F10.5)

CONTINUE

DO 400 K=1,500

IF(SUBS .GT. SIZE(K)) GO TO 400

GO TO 401

CONTINUE

CONTINUE

FACTRA = SZNUMG (K=1) + ((SUBS-SIZE(K-1))/DELSIZ) *
1(SZNUMG (K) - SZNUMG (K-1))

IF(FACTRA .LE. 0.0) PACTRA = 0.0

DO 407 K=1,50

IP(SUBS .GT. SIZECL(K)) GO TO 407
GO TO 406

CONTINUE

CONTINUE

G = GA(K-1) + ((SUBS-SIZECL (K-1))/DELCLA)*(GA (K)~GA (K~1))
DO 412 K=1,50

IF(SIZE(J) .GT. SIZECL(K)) GO TO 412
GO TO 413

CONTINUE

CONTINUE

DEC.
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361
362
363
364
365
366
367
368
369
370
37N
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

C
Cc
C
C

2033
415

430
431

440
441

449

450

GD = GA(K-1) + ((SIZE(J) - SIZECL (K-1))/DELCLA) * (GA(K) -GA (K- 1))
IF(Y .NE. (I/NITI)*NII) GO TO 415
WRITE(6,2032) ARG,TEGI(J),TESI (K),SUBS,FACTRA,G

FORMAT (1H ,4¥X,'ARG= *,E15.8,1%X,'TEGJ= *',E15.8,1%," TEGK= *,E15.8,
11X,'SA= ',E15.8,'FACTRA= *,E15.8,1X,'G= ',E15.8)

CONTINUE

GNV = 1./6G

CALCULATIOY OF THE INTEGRAL R(TI,T)
SEE EQUATION (44) IN TEXT

TOTT = TIMEPL(I) - TIMEPL (I-1)

JTEND = 50
DJTEND = JTEND
DELTAU = TOTT/DJTEND

TAU = TLAST + TEGI(J)

TAUTEG = 0.0

DO 450 JT=1,JTEND

ARG = TAU - T

IF(ARG .LT. TEGI(1)) GO TO 449

DO 430 K=1,100

IF(ARG .GT. TEGI(K)) GO TO 430

GO TO 431

CONTINUE

CONTINUE

SUBS = SIZE (K-1) + ((ARG-TEGI (K-1))/(TEGI (K)~TEGI(K~1))) *(SIZE(K)
1 - SIZE(K-1))

DO 440 K=1,100

IF(SUBS .GT. SIZECL(K)) GO TD 440

GO TO 441

CONTINUE

CONTINUE

72 = ZA(K-1) ¢ ((SUBS-SIZECL (K-1))/DELCLA)*(ZA(K) - ZA(K-1))
DG = (GA(K) - GA(K-1))/DELCLA

DELL = 1.0

IP(JT .B0. 1 .OR. JT .EQ. NSIZES) DELL = 0.5
TAUTEG = TAUTEG + DELL*DELTAUZ

CONTINOE

TAU = TAU ¢ DELTAU

CONTINUE

DEC.
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401 c

502 o

403 FACTRJ = TAUTEG

804 IF (PACTRI .GT. 30.) FACTRJ = 30.
805 SZNNEW (J) = SZNNEW(J) ¢ FACTRA*EXP (-FACTRJ) * (G/GD)
406 IF(I .NB. (I/NII)=*NII) GO TO 455
407 WRITE(6,2030) I,J, FACTRJ,SZNNEW (J)
408 2030 FORMAT (18 ,2X,2I5,5X,'FACTRJ= !,E15.8,2X,'SZNNER(J)= *,E15.8)
409 455 CONTINUE

410 GO TO 500

411 499 CONTINUE

412 SZNNEW(J) = SZNNEW(J)

813 500 CONTINUE

414 c

415 c

416 DO 550 J=1,NSIZES

417 SZNUMG (J) = SZNNEW(J)

418 550 CONTINUE

419 650 CONTINU®

420 685 CONTINUE

421 TOTAL = 0.0

422 DO 690 J=1,NSIZES

423 SDISTG (I,J) = SZNUMG(J)

424 ' TOTAL = TOTAL + SDISTG(I,J)

425 LL = 1 ¢ ((J~1)/4SIZE)

426 SDISTH(I,LL) = SDISTH(I,LL) ¢ SDISTG (I,J)
427 IF(X .NE. (I/NIT)*NII) GO TO 688
428 WRITE(6,2020) I,J,SDISTG(I,J)

429 2020 PORMAT (1H ,5X,2I5,5X,5(E15.8,2%))
430 688 CONTINOF

431 689 CONTINUE

432 690 CONTINUE

433 TLAST = T

434 JLAST = JTIME

435 700 CONTINUE

436 c

437 C --- OUTPUT RESULTS

438 c

439 IF(LT .NE. 4=(LI/4)) GO TO 851

4uo NSIZMX = SIZE(NSIZES)
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481
u82
483
84y
485
u86
487
488
489
490
491
4392
493
49y
495
u96
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

870

8840

890
895
900

950

960

975
970

980

T = TIMEPL (K)

WRITE({6,8102) T, (SDISTH(K,I),I=NN,NV)
CONTINUE

IF(NV .LT. LSIZES) GO TO 860

DO 895 I=1, NRUNTM

DO 880 J=1,NSIZES

SDISTQ (I,J) = SDISTQ(I,J) + SDISTG (I,J)
SIZE (J+1) = SIZE(J) + DELSIZ

CONTINU®

DO 890 J=1,LSIZPS

SDISTP (I,J) = SDISTP(I,J) ¢ SDISTH(I,J)
CONTINUR

CONTINUE
CONTINUE

¥v =0

NM = NV ¢ 1
NV = NM + 9
T = 0.0

IF(NV .GT. NSIZES) NV = NSIZES
WRITE(6,4104)

WRITR(6,4103) (SIZE(I),I=NM,NV)

DO 960 X=1,NRUNTHM ,

T = TIMEPL (K)

WRITE(6,4102) T, (SDISTQ (K,I),I=NM,NV)
CONTINUE

IF(NV .LT. NSIZES) GO TO 950

DO 975 L=1,LSIZES

SIZE (L+1) = SIZE(L) + DELSZA

CONTINUE

NV =0

NM = NV & 1
NV = NM + 9
T = 0.0

IF(NV .GT. LSIZES) NV = LSIZES
WRITE(6,4104)

WRITE(6,4103) (SIZR(I),I=NM,NV)

DO 980 K=1,NRUNTN

T = TIMEPL (K)

WRITE(6,4102) T, (SDISTP(K,I),I=NM,NV)
CONTINUE

DEC.
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441
842
443
sa 4
445
446
w47
448
449
450
451
452
453
454
455
456
457
458
459
460
461
162
463
864
465
466
467
468
469
470
471
472
473
874
475
476
477
478
479
480

800

4104
4103

4102
810

840

2021
850
851

855
860

NRUNT = NRUNTM - 1

NY = 0

NM = NV & 1

NV = NM +9

T = 0.0000

IFP ( NV.GT.NSIZES) NV = NSIZES
WRITE(6,4104)

FORMAT (1H1,43X,'ESTIMATED SIZE DISTRIBUTIONS',//,57X,'SIZES',//)
WRITE(6,4103) (SIZE(I),I=NM,NV)
FORMAT (16 , 7X,'TTMR!, 10 (F11.4))
DO 810 K=1,NRUNTH
T = TIMEPL (K)
WRITE (6,4102) T, (SDISTG (K,I) ,I=NM,NV)

FORMAT (1H , 11 (F11.4))
CONTINU®
IF(NV .LT. NSIZES) GO TO 800
T = 0.0
WRITE(6,2004)
DO 850 K=1,NRUNTM

TOTAL = 0.0

DO 840 L=1,NSIZES
TOTAL = TOTAL + SDISTG (K,L)
CONTINOUE
T = TIMEPL (K)
WRITE(6,2021) T, TOTAL
FORMAT (1H ,5X,'TIME= ¢,F8.4,4X,"TOTAL POPULATION= ',F11.4)
CONTINUE
CONTINUE

DO 855 L=1,LSIZES
SIZE (L+1) = SIZE(L) + DELSZA

CONTINUE

NV = 0

NM = NV &+ 1

NV = NM + 9

T = 0.0

IF(NV .GT. LSIZES) NV = LSIZES
WRITE(6,4104)

WRITE(6,4103) (SIZE(I),I=NM,NV)
DO 870 K=1,NRUNTM

DEC.
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521
522
523

IF(NV .LT.
STOP
END

LSIZES) GO TO 970

DEC.
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50
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200

250

DEC.
SUBROUTINE TRAP(SY,DS,M,X,F,GNV)

TRAPEZOIb METHOD IS USED TO EVALUATE THE
INTEGRALS I(S) (X=1) AND J(S) (¥X=0).

SUBROUTINE TRAP --- SAMPLE CALL
CALL TRAP(S,DZLS, MORT,STEPS5,X, F,GROWTH)
WHERE S = SIZE CLASS
DELS LENGTH OF SIZE CLASS
MORT SPECIFIC MORTRLITY RATE
STEPS = NO. OF SUBDIVISIONS OVER WHICH THE INTEGRAL IS
APPROXIMATED
0. TO INTEGRATE Z/G
1. TO INTEGRATE 1/G
F = VALUE OF TRE INTEGRAL OVER SIZE CLASS I TO I#t%
GROWTH = 1/GROWTH RATE

X

COMMON/RATEBK/CGA (100) , ZA (100), SIZECL(100), DELCLA
DIMENSION GN(20),S(21)
COMMON SMAX,V

S(1) = s1T
H=DS/ M
M2 = M ¢ 1

DO 200 I=1,M42

poO 50 J=1,100

IF(SIZECL(J) .LE. SI) GO TO 50

GO TO S1

CONTINOF

CONTINUT®

Z = ZA(J-1) ¢ ((SI - SYIZECL (J~1)) /DELCLA)*(ZA(J) - ZA(J-1))
G = GA(J-1) + ((SI - SIZECL(J-1))/DELCLR)*(GA(J) = GA(J-1))
GN(I) = 1./G

S(I+1) = S(I) ¢+ H

CONTINUE

SUN = (GN(1) + GN (M2)) /2.

DO 250 I=2,4

SUN = SOM + GN(I)

CONTINOE

Y = 1.0

IF(X.EQ.0.) Y = 2



%01

PLOTT

DEC.
41 F=7Y*H * S0

42 GNV = GN(M2)

43 RETURN

44 END
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