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INTRODUCTION

This volume of the final report for EPA Contract No. 68-02-0216
contains all of the raw data and data plots collected during the program.
This volume also fuliy describes the eéxperimental facilities., This in-
cludes dimensional descriptions of the hot-modeling furnace, the cold-
modeling furnace simulator, sampling probes, instrumentation, and the

tést burners,

A companion publication (Volume I) presents a comparison of burner
performance under varying operating éonditions based on an analysis of
the raw data. Volume I also contains specific recommendations for
.minimizing NOx emissions from the burner types tested as well as for

areas where further study will be required.



COLD-MODELING FURNACE SIMULATOR

A. Description of the Cold Test Chamber

A cold flow chamber was constructed which provided an aerodynamic
simulation of flow in the hot test furnace. This facility provided a capa-
bility for examining the flow characteristics of each test burner under
ambient temperature conditions. This information was necessary for
determining the most effective sampling locations for the hot furnace test

WOrkK.,

The geometry and dimensions of the cold-modeling test facility were
fixed by the dimensions of the available IGT hot-model furnace. This
simplifies the similarity criteria necessary to apply cold-model results
to the hot model. The cold-model facility has a cross-sectional area of
25 square feet (5 feet high and 5 feet wide). General aerodynamic con-
~siderations indicate that most of the pertinent flow phenomena should
occur in the first 2-3 feet of the test chamber. However, the facility
is specified as 10 feet long to allow studies to be made of potential down-
stream effects and to ensure that the gas exit stack will not influence

the primary test area.

Figure II-1 shows the overall dimensions of the cold-model test
facility, the type of construction used, and the location of the access
ports for insertion of sampling probes. A lightweight steel framework
was constructed to serve as support for the wall panels and various bur-
ners being tested. The framework is rigid and strong enough to ensure
that the relative positions of the burner, confining walls, and sample
probes remain constant to within 0.1 inch during testing. The floor of
the cold-model facility was built of 0.250-inch-thick aluminum, supported
every 24 inches by a steel channel superstructure. This construction
enables the operator to work inside the test chamber without damage to

the facility.

The sidewalls and roof panels of the first 6 feet of the facility were
clear plastic (Plexiglas). The plastic walls provided good visibility where
most of the test work was done. The plastic walls also provide the in-
terior view of the chamber necessary for a photographic study of flow

using tracers (smoke). The last 4 feet of the chamber sidewalls and
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roof were constructed of 0.250-inch-thick aluminum sheets. Also, the
position of the aluminum and plastic panels are interchangeable. This

feature provides flexibility in the location of visual studies in the chamber.

An access door placed in one sidewall of the chamber provides,
when closed, a smooth, continuous interior wall surface. The interior
of the cold-model facility does have projections inward from or dis-
tortion of the walls as they would upset the flow patterns and make

analysis more difficult.

The burner end of the chamber is designed so that a variety of bur-
‘ner types can be installed using a standard-size adapter plate, as shown

in Figure II-2

24 in.
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Figure 1I-2, COLD-MODEL BURNER ADAPTER PLATE

The adapter plate fits and bolts into a 24 by 24 inch hole framed in the

end of the chamber.



The major criterion for design of the sampling probe access holes
was maximum flexibility of probe position. The design selected (Figure
II-1) uses two slots, one in the sidewall and one in the roof, running
parallel to the center line of the test chamber. The sidewall slot enabled
us to position the probe anywhere in a horizontal plane passing through
the burner axis. The roof slot provides the same positional capabilities,
but rotated 90 degrees about the burner axis. Figure II-3 shows the
probe positions obtainable using the slot design. The panels in the model
can be easily changed so that other slot configurations can readily be

developed.

PLANE OF SAMPLE
POINTS

PROBE AXIS

A-81851

Figure II-3. PLANE OF SAMPLE POINTS ABOUT BURNER AXIS

The sampling slots are fitted with a sliding spring steel seal designed
to maintain the chamber essentially ''air tight' while allowing freedom of
probe movement. Figure II-4 shows a cross-sectional view of the sliding

seal. Grooves 0. 025 inch deep and 0.5 inch wide are cut in the plastic
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Figure II-4. SLIDING PROBE SEAL

edges of the chamber wall adjacent to the sampling slots. They act as
guides to maintain the relative positions of the seal and the probe slot.
A 0, 015-inch-thick strip of stainless steel is stretched across the length
of the test chamber covering the wall slot. The stainless steel strip
seats are flush in the groove, machined into the plastic walls. At either
end of the chamber the metal strip winds around a take-up cylinder
(Figure II-5). These cylinders are constructed so that they apply an
equal and oppositely directed force on the metal strip. The opposite
forces applied to the strip put tension on the metal, which holds it back

against the chamber walls. The tension supplied by each of the cylinders
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Figure II-5, PULLEY ARRANGEMENT
FOR SLIDING PROBE HOLE SEAL
is achieved with weights. In this way, as the probe is moved down the
length of the chamber, one cylinder ''plays out'" a portion of the metal
strip while the other cylinder takes it up, maintaining a constant tension.
The amount of weight necessary to provide the proper tension will be ex-

perimentally determined on the finished unit.

The blower selected to deliver the primary air flow in the test
facility is a North American Model 2344-28-3-20 turbovane blower, which
is capable of delivering 62, 000 CF/hr at a pressure of 44 oz/sq in.

This flow capacity was selected to match the amount of combustion air
used by the hot-model furnace operating at its maximum gas input of

4000 CF/hr and 40% excess air. The high-pressure capability of this
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fan is necessary to overcome the estimated pressure drop of our vane-
induced swirl generator. The air is cleaned with a North American
Model 14-MGV filter attached to the blower inlet. This filter used oil-
impregnated paper which is capable of removing particles as small as
several microns. The air flow is controlled by a butterfly valve located
between the air filter and the blower inlet. Air flow measurement was
made with calibrated orifices and controlled with "butterfly' valves on
the fan inlets. The air ducts were fitted with a single position probe

access (Figure II-6).

1/8-in. RIGID TUBING
~

I/74-in. NPT
AIR DUCT WALL

A-81846

Figure II-6., SUPPLY AIR PRESSURE PROBE

This hole was used to insert a pressure probe attached to an electronic
manometer capable of measuring high-frequency pressure pulsation. The
air stream was spot-checked after each air flow setting for pulsation.
Any pulsation of the air in the supply system potentially will result in a

pulsation in the test chamber.



B. Cold-Model Probe Positioner

Each of the sampling probes inserted into the burner flow regions,
through the sliding seal, were positioned and held in place by an accurate

positioning device.

Figure II-7 shows the basic design of the device in three views. A
level, supporting bed is formed by three fiber glass H-beams attached to
the frame of the chamber, The H-beams are cross-connected by aluminum
bars 1 inch thick and 3 inches wide (parts A1-Al10). The bed was de-
signed to have a deflection less than 0. 001 inch under the weight of the
probe-positioning device. Aluminum and fiber glass are used throughout

the system wherever possible to reduce the weight.

The probe and other equipment are moved (axially) down the furnace
length on two 3-square-inch ''box rails' (parts Bl and B2). The box
rails are securely mounted to the supporting bed by setscrews and were
adjusted so that they were both parallel to the chamber axis to within
0.01 inch. Precision-machined vee-blocks (parts Bl and B2) ride on
the outer edge of each box rail and provide lateral guidance as well as
vertical support to the moving mechanism. A forced lubrication system
is built into each vee-biock to provide a constant oil film over all metal-
to-metal contact areas. Mineral oil will be used to ensure a coefficient

of friction, f,, less than 0.3. The probe is positioned by an Acme

o’
threaded lead screw (not shown) sized to move the probe 0.1 inch per
rotation. The position is read on a linear scale attached to the outer
‘box rail; the vernier adjustment is provided by a circular scale on the
lead screw. Using the linear scale for rough-positioning and the vernier
scale for fine-positioning, the probe tip can be placed with an accuracy
of 0.0l inch., The lead screw is equipped with an electric motor for
rapid, rough probe placement and with a hand crank for final positioning.
About 15,0 inch-pounds of motor torque is required to move the probe
as calculated from the standard static friction equations for parallel

surfaces and for screws with square threads.

The probe's radial movement is accomplished with the same box
rail and vee-block arrangement used for its axial movement (parts Cl,
C2, El, and E2). The probe tip has a full 5-foot movement, allowingl
it to completely traverse the chamber's width., Again, the probe is moved
using an Acme threaded lead screw; its position is determined by com-

bining readings from a linear and a circular scale.
9
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A planetary turntable (part F, Figure II-7) provides the rotational

motion of the probe tip shown in Figure II-8.

ACCURACY OF ROTATIONAL
- PROBE MOVEMENT 0.25°

ROTATING PROBE
SUPPORT TABLE

4-911009

Figure 1I-8, ROTATIONAL MOTION ACCURACY OF
COLD-MODEL PROBE POSITIONER
The rotational motion is required to null the five-hold, spherical, pitot
tube used for velocity measurements. A circular scale attached around
the periphery of the table is divided into 720 divisions (0.5 degree per
division); therefore, the probe tip can be positioned with an accuracy of

0. 312 inch.

The bracket that actually holds the probe is attached to the top of
the turntable. (The top view is shown in Figure II-9.) This bracket
consists of two 2-inch split-bushing pillow blocks (parts Gl and G2) and
a steel adapter (part H). The steel adapter is based to match the out-
side diameter of the probe being used. A separate steel adapter is pro-
vided for each probe and securely clamped around the probe base. Each
adapter has a 2-inch outside diameter which matches the base size of
the split-bushing pillow blocks. To lock a probe in position, the pillow
blocks are opened by removing four bolts and the adapter is snapped into

place. Should it be necessary, the probe can be removed and reinstalled

11
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easily, while ensuring that the tip will be positioned each time to within
£0. 001 inch of its original position. The adapter/pillow block arrange-
ments also allow probe rotation about its axis. Again, this particular
motion is necessary to null the reading of a five-hole spherical pitot tube.
The rotational position of the probe is read on a circular scale (part I)
attached to each steel adapter. The probe is rotated manually and held
in position by a blunt-nose setscrew (part J) in the rear pillow block.

A forced lubrication system is built into each bearing to eliminate binding.

C. Cold-Model Instrumentation, Probes,
and Calibration Methods

Three types of information were obtained from the cold-modeling
facility: flow direction and magnitude as well as mixing rate. Flow
direction and magnitude are measured with a five-hole, spherical head,
pitot tube. Mixing rates were measured by monitoring the rate of tracer-

gas dilution at some sampling point,

When using the five-hole pitot tube, normally, the probe is operated
by rotating the tip until the pressure in two of the five holes is nulled.
The stream velocity and direction is then determined by an established
relationship between the pressure differences in the other holes and the
probe's ''yaw'' and 'pitch'' angles. Mr. Wright of BCURA Industrial
Laboratories recently developed a method of determining stream velocity
and direction without the time-consuming job of nulling two probe holes.

(See the 1970 Journal of Physics, Volume 3.) This method only requires

positioning the probe at the point of interest and measuring the pressure
difference between each combination of two holes, This requires four

pressure readings, which can be made with switching valves in about 10
minutes. A computer is then used to solve for five simultaneous equa-

tions, We calibrated our probe using this method.

Very simply stated, BCURA calculated the relationship between the
flow parameters and the pressure distribution over the pitot probe from

potential flow theory. This results in the following equations:

Pp= Pg * 1/2 Knpvz | (11-1)

- 2 —_ -
= 1/2 pv¥(K, — K, ) (I1-2)

p771 pnz
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where pn is the pressure at some point 7 on the probe tip surface
(Figure II-10); P is the free-stream static pressure; P, the fluid density;

v, the free-stream velocity; and K_, the pressure recovery factor.

n

They found experimentally that, for sufficiently high velocities
(NRe > 4000), KTI is practically independent of Reynolds number and is
then only a function of the angle Bn. By selecting appropriate reference
axes the angle, 977' can be expressed in terms of measured angles using

spherical trigonometric relations; BCURA uses the conical, q’, and

dihedral, 6, angles shown in Figure II-11,

By properly choosing certain combinations of recovery factors, ex-
pressions were derived for the angles ® and & and, hence, the velocity
direction, the magnitude of the velocity, and the static pressure of the

system. The relationships are expressed in the following equations:

® Angle or Direction

4 4
K, = {1- T (po—py) |2l T (po— p)2lt/2}1/2 (1-3)
¢ n=1 =~ 7 ne1 . 7
L] Velocity
x BYRY,
K, = {p vz[ni‘: 1(po— p,n)z:l 1iepla (I1-4)
L Pressure
Kp = 2(po — ps)/ﬁv2 (II-5)
Also
tan 6 = —(p1 — p3)/(pz — p4) (II-6)

The probe to be used is calibrated by inserting it in a circular free-
stream jet containing a potential core representing an adequate cross-
sectional area with a uniform velocity profile. The various pressures
are measured over an appropriate range of chosen reference angles and -
flow velocities. The curves for Kq), Kv, and Kp versus ® are obtained

from these data.
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Once the calibration curves are obtained, the probe is ready for use
in the experimental flow system. The pitot probe is placed at the re-
quired measuring point, and its position and inclination in the flow cham-
ber are recorded. A set of pressure differentials are measured, and the

calibration curves used to obtain the conical, @, and dihedral, §, angles.

Once the conical and dihedral angles have been determined, values
for KV and Kp can be obtained from the calibration curves. (The com-
plete process can be carried out on a computer if the equations for the
calibration curves are determined.) Figure II-12 shows an example of

calibration curves for a spherical probe.

The values of K, and Kp are substituted into Equations II-4 and II-5
to calculate the velocity, v, and static pressure, P, In calculating the

static pressure, Equation II-5 yields a value for (py — ps) whereby —

P, = Par = (Po— Pyq) — (Po— p,) (II-7)

and (po — pAT) is one of the measured pressure differentials. Therefore,
Py = (Pg = Pop) * Par (II-8)

The authors of this method found that the maximum error in @ is less
than 0.33 degree. Comparing the theoretical and actual values, the error
in Kv is less than 1%. However, practical calibrations are advisable
because large deviations may arise from the influence of the probe stem,
from the size of the holes in the sensing head, and from the constructional

errors of slight misalignment of the holes,

A calibration assembly for the five-hole pitot probe consists of a
source of constant velocity air, a differential pressure range selector
panel, a differential pressure sensor, an electronic manometer, and the
pitot tube to be calibrated. The general assembly is shown in Figure
I1-13,

The constant-velocity air stream is generated by a North American
blower with a 740 CF/min capacity at a pressure of 24 oz/sq in. Flex-
ible tubing connects the blower to a 12 x 12 x 16 inch plywood box
(Figure II-14). A 6-inch-diameter aluminum disk is mounted inside the
box directly in line with the blower inlet. This disk is used to break

up the main air stream entering from the blower. A perforated aluminum
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Figure II-14, PITOT TUBE FLOW CALIBRATION NOZZLE

18



plate, which uniformly distributes the air in a plane perpendicular to the
direction of flow, follows the disk. The air is then passed through three
layers of 5/8-inch honeycomb to break up any large turbulences. Two
screens are used to break up any remaining turbulences. Mounted at
the outlet of the box is a converging brass flow nozzle with a 3-inch-
‘diameter outlet. The nozzle is used to produce the desired steady-state

circular air stream.

The five-hole hemispherical pitot tube is mounted with the sensing

" head centered in the nozzle. The five holes in the pitot's head are con-’
nected to the differential pressure selector, which can be set to monitor
the pressure difference between any two pressure holes or between any
pressure hole and the atmosphere. The differential pressure being mon-
itored is fed to a Barocel pressure transducer. The output from the
transducer is amplified by a CGS electronic manometer and appears as
a permanently recorded voltage on a fast-response Brush hot-wire strip

recorder,

- To calibrate the pitot for the factors Kyg, Kv, and Kp discussed
earlier, it must be rotated about the geometrical center of the sensing
head. Since it would have been very cumbersome to rotate the 6-1/2-
foot probes used in this project about their measuring points, we are
holding the probes stationary and rotating the direction of the air stream.
This is accomplished by mounting the air stream nozzle in a stand, which
is simultaneously pivoted about the axes, which are perpendicular and
parallel to the direction of flow. The maximum amount of rotation is
70 degrees in the conical and dihedral angles of the system. A diagram

of the pivotal stand is shown in Figure II-15.

The values of the conical and dihedral angles are determined by using
the trigonometric relationships for right triangles. Having a fixed coordi-
nate system relative to the rotating air stream nozzle allows us to measure
an angle of rotation relative to each coordinate (fixed) axis. The cosine
of the angle relative to the direction of flow yields the conical angle.

The angle of rotation in the plane perpendicular to the flow yields the
cosine of the dihedral angle. The cosine of the angle of rotation is eval-
uated by taking the ratio of the length of the box along a fixed axis at a

0 degree rotation to its length at an arbitrary rotation.
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Figure II-15. PIVOTING NOZZLE MOUNT

Calibration of our probe was carried out for flow velocities of 25
ft/s and 50 ft/s, and conical angles between 0 and 65 degrees. To check
consistency, two sets of data were collected for each velocity. The mean
calibration curves for qu KV, and K_ are shown in Figures II-16,

II-17, and II-18, respectively, by the solid line. The theoretical values
of these three factors were obtained from potential flow theory for a
sphere having the outer ring of holes situated at a conical angle of 40

degrees, are shown by the dashed lines in Figures II-16, II-17, and II-18.
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Figure II-16. K(I> AS A FUNCTION OF CONICAL

ANGLE FOR A FIVE-HOLE PITOT PROBE
The agreement between measured data and theory was reasonably good
considering the substantial differences in tip configuration. Part of the
deviation between curves arose because of the small influence of the stem
of the probe and because of the size of the holes in the sensing head.

However, most of the observed differences are believed to result because

the probe. is perfectly spherical.

Anothef factor in calibrating the five-hole pitot probe is that the flow
patterns and mixing eddies .change very rapidly in the areas of interest.
Consequently, it is necessary to know the frequency response, amplitud:
shift, and maximum frequency of pressure change that can be detectcd

by the five-hole pitot probe for any interruption of this type of data.
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To determine the change in amplitude of the measured pressure
differentials as a function of frequency for the pitot probe, we built a
pulsed air flow device. The experimental apparatus used for this cali-

bration is shown in Figure II-19.

A disk with a pie-shaped section cut out of it was attached to a
variable-speed motor. A constant air source was positioned below the
disk and the five-hole pitot above the disk. When the disk was rotated
by the motor, it would interrupt the air stream at any desired frequency,
depending upon the motor speed. In this way we created a variable-
frequency pulsed, pressure signal. To achieve different turbulent conditions
and magnitudes, disks were fabricated from solid plastic, perforated plate,

and fine-mesh screen.
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Figure II-19. EXPERIMENTAL APPARATUS
FOR TRANSIENT CALIBRATION
We found that the electronic differential-pressure sensor alone could
respond to pressure fluctuations as high as 500 Hz, but that the probe

‘damped out fluctuations above 10 Hz, yielding only the mean velocity.

Graphical representatives of the difference between the actual and
maximum measured pressures as a function of frequency for the Plexiglas
and aluminum perforated plates are shown in Figures II-20 and II-21,

A decrease in the amplitude of the pressure as a function of frequency

for the different turbulent systems is observed. To determine the per-
- P_.

centage change in amplitude, the ratio ( mal;; 0
max

pressure is plotted in Figures II-22 and II-23. Here we can observe

versus the actual

that the fluctuations in the amplitude decrease rapidly with increase in
frequency and degree of turbulence. For the thin gauge screen, which
should most closely reproduce the turbulence to be expected in the cold-
model furnace, the amplitude fluctuations for pressures less than 0.02

, psia cannot be resolved with our equipment.
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We concluded that measuring flow changes having a frequency above
10 Hz is not practical with our present probe and that only mean velocity

and direction can reliably be extracted from the data.
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HOT-MODELING TEST FURNACE FACILITY

A, Furnace Test Chamber

The hot-model furnace facility used for this program has a cross-
sectional area of 25 sq ft with a height of 5 feet, width of 5 feet, and
length of 15 feet. The furnace is capable of operating at temperatures
of up to 3000°F with gas inputs up to 3.5 million Btu/hr. A portion of
this project involved designing three modifications to the basic furnace
which were required to perform the specific tests of this program. These
modifications were — |

.® Installing cast refractory water-cooled panels to simulate the thermal
loading found in industrial furnaces. '

e Installing a quick-change burﬁer-mounting bracket.

® Installing a sliding seal device for inserting the probes into the
furnace while preventing air leakage.
Figure II-24 shows general construction and dimensions of one of the

cast refractory water-cooled panels.

Figure II-25 shows the water-cooled sliding seal installed in the

south furnace wall,

The program's objectives required that the furnace operate with a
maximum wall temperature of 2800°F, with a 3.5 million Btu/hr input,
and that the wall temperature be lowered to approximately 1800°F using
water loads. In addition, the furnace was to be fired from one end,
whereas originally it was fired through the sidewall, simulating an in-
dustrial boiler system. To make these modifications, we prepared a
complete heat balance on the system and selected the new wall materials
and type of construction from the results. The finished furnace was
completely made of cast refractory, except for the hearth, which was
built of firebrick. The brick hearth gives the required flexibility to in-

stall water-cooled loads in the firing path, if necessary.
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1. Heat Losses Through Refractory Walls

The heat losses through the furnace walls are one of the most sig-
nificant losses which determine the opcrating temperature of the furnace
for a fixed gas input. The available gas and air supply to the furnace
dictated a maximum energy input of 3.5 million Btu/hr. Figure II-26 illus-

trates the thermal conditions which must exist for steady operation.
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Figure II-26, TEMPERATURE GRADIENT FOR STEADY
FILOW OF HEAT THROUGH A FURNACE WALL

The inside temperature of the wall drops steadily in the direction of its
outer surface, where it exceeds the temperature of the surrounding air.
The heat loss for a given expanse of wall and for a given furnace tem-
.perature becomes less if the wall is made thicker, if the thermal con-
ductivity of the refractory is lowered, or if the outer surface of the

, furnace is of such a character that does not readily give up its heat to
the surrounding media. These relationships are mathematically expressed

by the following equations:

- T) (II-10)



where —

= heat transmitted, Btu/hr-sq ft

w

k = thermal conductivity of wall materials, Btu-in. /hr-°F-sq ft

S = thickness of walls, in,

C = coefficient of radiant and convective heat loss, Btu/hr-sq ft-°F
TW = inside wall temperature, °F

Tow = outside wall temperature, °F

To = temperature‘of surrounding air, l°F

Equations II-9 and II-10 are fundamental to heat transfer calculations
for any furnace and were applied here for this program's furnace require-
ments., The unknown quantities in Equations II-9 and II-10 are Ay and
T . Our particular requirements for proper furnace operations fixed

ow
the values for the other variables (Table II-1).

Table II-1. REQUIRED OPERATING CONDITIONS
OF EXPERIMENTAL FURNACE
Maximum Natural Gas Input: 3.5 X 10° Btu/hr
Maximum Inside Wall Temperature, T_: 2800°F
Average Surrounding Air Temperature, ¥ T, 80°F
Thermal Conductivity‘r of Refractories, k: 7.37 Btu-in. /hr-%F-sq ft
Thickness'r of Walls, S: 9,0 in.

The inside air of the building which houses the furnace is controlled
by ventilating and heating units at a temperature of 80°F.

These values were based on the existing dimensions of the furnace
and refractories currently being used in the roof, which were not
structurally modified for the project.

Obtaining a value for Ay involves calculating the heat losses from
Equations II-9 and II-10 for various assumed outside wall temperatures,
and then comparing each to determine the outside wall temperature at
which ap equals QR Substituting the values for k and S shown in
Table II-1 into Equation II-9 yields —

_ 7.37 _ _ -
ay = —g— (T, — T ) = 0.82(2800 — T ) (11-11)
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Figure II-27 shows values of ag for assumed outside wall temperatures
that range between 0° and 1100°F. The heat loss varies from 1400 to
2300 Btu/hr-sq ft over this temperature range.
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Figure II-27. HEAT LOSSES THROUGH WALLS AS A
FUNCTION OF OUTSIDE WALL TEMPERATURES FOR
A 2800°F INSIDE WALL TEMPERATURE
Calculating AR c from Equation II-10 is somewhat more difficult be-

cause C varies with the temperature of the outside wall, with its hori-
zontal or vertical location, and with the physical condition of the surface.
Although this coefficient is not a true coefficient of heat transfer, it
accounts for the heat lost by both radiation and convection. For approxi-
mate calculations, the heat loss coefficient, C, can be determined from

Equation II-12 and then substituted into Equation II-10.
C=1.6+ 0.006 T (II-12)
ow
For a more rigorous solution, we used Equation II-13 to account for the

heat losses from radiation and convection separately from all vertical

walls in still air.

T, + 460 T  + 460
= = 0. ___——__-) - (—————_——
are =y = 0155 L—"1gg 150" (11-13)
+0.28 (T . —T )5/4
ow o]
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Figure II-28 again shows dpc s @ function of the assumed outside
wall temperatures, Tow’ over the temperature range of 0°-1000°F. A
sufficiently accurate estimate of the heat losses caused by radiation and
convection from the furnace hearth can be obtained by dividing Qrc by

2.0.
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Figure II-28. HEAT LOSSES FROM
VERTICAL WALLS IN STILL AIR AT 80°F

By comparing Figures II-27 and II-28 and knowing that drc = 9

Qy» We found that for the sidewalls and roof —
qy = 9g = 9gc - 1850 Btu/hr-sq ft

when T = 5350F

ow

For the furnace hearth —
Qw = 9 = 9r¢ °© 1750 Btu/hr-sq ft

when T = 700°F
ow
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The values of Ay obtained for the sidewalls and hearth can be compared
with the wall losses that can be tolerated for the available fixed gas input.
These are obtained from the generalized overall heat balance on the fur-
nace. Total heat losses through the walls can be calculated from Equation

I1-14, which is simply the conservation of energy.

Qu = Q — Qp — Qg — Q (I1-14)
where —
QI = total heat input, Btu/hr
Qp = heat lost with flue products, Btu/hr

QS = heat lost to any furnace load, Btu/hr

Qv = miscellaneous heat losses like radiation through openings,
etc., Btu/hr
Since Q,,, QI’ QF >> QS’ QM’ we assumed that QS = Q= 0.
Therefore —
Qur = QI - QF (II-15)

Heat input, QI’ is the heat supplied by burning a certain quantity of

natural gas, which we fixed earlier at 3.5 million Btu/hr.

Heat losses through hot flue products leaving the furnace are a
fraction of the mass flow of products and the heat capacity of each flue
component. However, we need not calculate QF because these values
are standard and are published in a wide variety of textbooks and refer-
ence tables. For reference purposes, Figure II-29 gives the heat lost
through flue products as a function of the flue gas temperature. Generally,
the temperature of the flue products is about 200 degrees higher than
the average furnace wall temperature when no load is present in the fur-
nace., For our wall temperature of 2800°F, we assumed that the flue
temperature was 3000°F. From Figure II-29, the heat losses are 75%
of the gas input or 2. 71 million Btu/hr.

Referring again to Equation II-15, the allowable total heat loss through

the walls is —

Q, = (3.5 X 10°) ~ (2. 66 X 10% = 790, 000 Btu/hr
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Figure II-29. HEAT LOSSES THROUGH FLUE AS A FUNCTION
OF FLUE GAS TEMPERATURE (Fuel/Air = Stoich.)

When the total allowable wall losses, QW' are divided by the furnace

surface area, we obtain the allowable wall losses per square foot, q'W.
The furnace-wall surface area, calculated in the following section, is
455 sq ft. Therefore —

Q
q'y = o = 29000 . 1845 Btu/hr-sq £t (II-16)

-If we choose a refractory wall with the proper thickness and a refractory
material with the proper thermal conductivity, k, then the allowable wall
losses, q'W, should approximately equal the calculated wall losses, Ay -
In our case these are reasonably close:

Qy = 1850 Btu/hr-sq ft

q.W = 1845 Btu/hr-sq ft
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END VIEW OF HOT-MODEL

REFRACTORY CONSTRUCTION

Figure II-30.

Furnace Surface Area for Heat Transfer

2.

The basic inside furnace dimensions (Figure II-30) are 5 x 5 x 15

with 9-inch-thick walls.

feet long,

is smaller than that of the cold (outside) surface; therefore, the true

heat-transmitting surface lies somewhere between the inside and outside

surface areas.

to be halfway between the inner and outer edges.




A, = (L + 9)(H + 9) (I1-17)

A = (W + 9)(H + 9) (I1-18)
A= (W + 9)(L + 9) (1L-19)
A=A = (WA 9)(L + 9) (1X-20)
Atotal = ZAS + ZAe + ZAh (Ix-21)
where —
As = area of sidewalls, sq ft
Ae = area of endwalls, sq ft

Ah’ Ar = area of hearth and roof, sq ft

Substituting the furnace's inside dimensions into Equations II-17 to II-21

_.yields —
g ° 90.5 sq ft
e ” 32.0 sq ft
Ah = A= 90.5 sq ft
Atotal = 426 sq ft

3. Internal Water Load Calculations

Two types of wall cooling systems were used in the experimental
furnace: The primary cooling control was provided by water tubes posi-
tioned in the refractory, and additional control could be obtained, when

necessary, by inserting tubes directly into the combustion chamber.

The design calculations for the buried water load tubes indicated
that 30 tubes were required in each wall with the tubes having a 1. 0-inch
outside diameter and a 12-gauge Type-304 stainless steel wall. The tubes
contained flowing air during periods when the maximum refractory face
temperature of 2800°F was necessary. When it became necessary to
lower wall temperature to a minimum of 2400°F, water was substituted
for the air. Table II-2 summarizes the flow and temperature conditions
of the cooling system. The calculations leading to these values are not
presented because the methods of calculation are widely published in most

heat-transfer texts.
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Table 1I-2. OPERATING CONDITIONS OF PRIMARY COOLING
LOAD SYSTEM FOR VARIOUS FURNACE CONDITIONS

General (Fixed) Conditions

Tube Diameter, inches 1.0
Tube Wall Thickness, inches 0.109
Number Tubes Per Wall 30

At Refractory Face Temperature of 2800°F

Cooling Media Air

Tube Wall Temperature, °F "~ 1260 (Average)

Air Flow Per Tube, SCF/hr 750

Total Air Flow, SCF/hr¥ 66, 000

Outlet Air Temperature, °F 850

Pressure Drop Per Tube, psia 0.1

Air Supply Fan - 100, 000 CF/hr at 1.5 psig

At Refractory Face Temperature of 2400°F

Cooling Media Water

Tube Wall Temperature, °F 200

Water Flow Per Tube, 1lb/hr 550

Total Water Flow, lb/hr* 50, 000
Water Outlet Temperature, °F 135

Water Pump Design 150 gpm at 60 psig

3*
Ceiling not cooled.,

Figure II-31 shows a schematic diagram of the cooling tube system
piping. Air is supplied from a conventional high-pressure blower equipped
with a butterfly valve and filter on the inlet. The air is piped to a 6-
inch-diameter manifold to which the inlet of each cooling tube is connected,
The air is metered with a standard orifice plate at the inlet to the man-
ifold. The manifold is constructed of Schedule 40 steel pipe, and the
air duct is Schedule 10 PVC plastic pipe. The heated air from each
cooling tube is piped to an outlet manifold of Schedule 40 steel pipe.

One end of the pipe terminates outside and serves as the vent for waste
air. The vent end of the outlet manifold is equipped with a 6-inch-

diameter blind plate that must be shut off when cooling with water. Water
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is supplied by a 60-psig pump capable of delivering 150 gallons per minute.
Water is continuously recirculated through a heat exchanger. The heat
exchanger is cooled by river water supplied by our pilot plant system at
125 psig. The water is piped to the cooling tubes through the same man-
ifolds used for air. Therefore, to switch between air and water requires
a somewhat complex valve arrangement. First, the air blower is isolated
from the manifold by inserting a blind plate in place of the orifice plate
and then closing the atmospheric vent. The water pump is started and
the manifolds flooded by opening both isolation valves. When changing
from water to air, the isolation valves are closed off and the water blown
out of the system through the drain valve by the 100-psig compressed

air., Whenever the water system is started up, it must be charged with
makeup city water. The makeup water inlet is upstream of the heat ex-
changer and of a higher pressure than the heat exchanger inlet line.
Therefore, the makeup water can be added while the high-pressure circu-

lating pump is operating,

The ''bayonet' type of cooling tube inserted directly into the combus-

tion chamber was designed, in addition to the ''buried" cooling tubes, for —

1. Lowering average wall temperature below 2400°F, if needed, which
cannot be accomplished by the buried tubes.

2. Providing spot cooling in very high heat-release areas where the
buried loads might not be effective enough to provide isothermal
conditions,

The ''bayonet' probes absorb heat by radiation and convection, thus cool-

ing the refractories. The probe design we selected is shown in Figure

II-32. This design is both effective and relatively inexpensive to fabricate.

The effective area for heat transfer of a single probe is —

2L7D _ L7D
24~ 12

A = (11-22)

where —

L = insertion depth into furnace, ft
D = diameter of tube, in.

A = effective area for heat transfer, sq ft
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To simplify the following calculations, we must convert the dimensions

of the double-tube probe into ''equivalent' single-tube dimensions. The

equivalent area of the single-tube probe, AE’ is —
mTD_L
A= — - (I1-23)
Since A = Ap, by design, then —
D_ = 2D = (2)(1.0 in.) = 2.0 in. (11-24)

E
and the equivalent area for heat transfer is —

7D_L
. __E"_ (3.14)(2)(5) _
Ap = —g— = L = 1.31 sq ft

where L = 5 feet for the full insertion of the probe into the furnace

enclosure,

Heat is transferred to the tube walls by radiation and convection and
then to the water in the tubes by convection. The mathematical equation
for heat transferred from the furnace walls to the tube surface (Figure
I1-33) is —

Qrpc = AF,F 0(Ti* — T2 (II-25)
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Figure II-33. NOMENCLATURE FOR RADIANT HEAT TRANSFER
FROM FURNACE WALLS TO INTERNAL COOLING TUBES

where —

QTRC = heat transmitted to tubes by radiation and convection,

Btu/hr
A = effective heat transfer area of the tube or tubes, sq ft
Fa = shape factor, dimensionless
F€ = emissivity factor, dimensionless
o = Stefan-ﬁoltzmann constant, 0.1714 X 10-8 Btu/hr-°R4—sq ft
T, = temperature of furnace walls, 'R
T2 = temperature of tube walls, °R

The heat transfer from the tube walls to the water by convection is
mathematically determined by Equation II-26.

Qpc = hA'(T: = T_

TC (II-26)

b)
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QTC = heat transmitted to water, Btu/hr
h = convective heat transfer coefficient, Btu/sq ft-°F-hr
Al = surface area of tube walls, sq ft
T2 = temperature of tube walls, °F
T = mean temperature of water, °F
mb

The convective heat transfer coefficient is determined by the empirical

equation of Sieder and Tate.

(D Embyore Bpls

- /
T mb - (“s T 13y (II-27)

1/3 (N

Pr)mb Re)mb

where the only variables are the mass flow of water in a tube and the

temperature rise tolerable in the tubes, and —

D = tube diameter, ft
k = thermal conductivity of water at Tmb' Btu/sq ft-F-hr
7 = viscosity of water, lbf/s-sq ft (s, at tube surface; mb, average)
L = length of tube, ft
U = velocity of water in tubes, ft/s
N = Prandtl number
Pr _
NRe = Re_ynolds number
where —
C H
NPr = —E-—k (11-28)
and
_ PUD
NRe = __—I-l (11-29)
and
_ : 0
Cp = heat capacity of water at Tmb’ Btu/lbm-"F
P = density, lbm/cu ft
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The solution to this problem is similar to that for finding the steady-
state wall temperature without water cooling. QTRC and QTC are solved

simultaneously in terms of the variables; the operating conditions are

found by comparing the results, where QTRC equals QTC'

To solve QTRC' let FA equal 0.5, This value was determined from

curves published in Engineering Heat Transfer by Hsu for 2-inch-diameter

tubular cooling pipes, which are spaced 0.5-4.0 feet apart along one wall

and receive the heat transferred from a surrounding enclosure.

Ft‘ the emissivity factor for a relatively small receiver area (com-

pared with the radiating surface which is positioned approximately hemis-

pherically around the receiver), is given by Equatio.n II-30.

Fe= € € (11-30)
where —
€, = emisgsivity of receiver' tubes
€ = emissivity of radiating furnace walls (assumed to equal 1. 0)

Substituting the values of F, and T: into Equation II-25 and assuming
a maximum tube wall temperature (Tz) of 200°F to prevent the water from
boiling, yields Figure II-34, which shows heat transferred by radiation
per unit area (qs) as a function of the tube emissivity and of the temper-
ature of the furnace walls or radiating surface. Multiplying these data

by the area yields Figure II-35.

QTC is solved by first solving for h from Equations II-27, II-28,
and II-29. Values for the equations' constants at the mean water tem-
pérature, Tmb’ are given in Table II-3. The mean water temperature

is given by Equation II-31:

T . = 1/2(T

b ) (11-31)

inlet * TOutlet

We chose a temperature rise of 30°F with an average inlet temperature

of 70°F; therefore —

T = 1/2(70 + 100) = 85°F

mb
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Table [I-3. VALUES FOR CONSTANTS OF EQUATIONS
I1-27, 1I-28, AND II-29 AT Tmb = 857 FOR WATER

_ -5
B op = 1.5 X 107 1bf/s-sq ft
k = 0.356 Btu/sq ft-°F-hr
Cp = 0.998 Btu/lbm-°F
P = 62.1 lbm/cu ft
- -5 -
ot 200%F = 0.55 X 107° 1bf/s-sq ft
A' = DL = 2,61 sq ft

To simplify the results we expressed the velocity of the water in

terms of the weight flow, Equation II-32.

w w
U = ﬁ = m (H-3Z)

where W = weight flow, 1lb/hr,

Using Equations II-26 to II-29 and the values in Table II-3, solved

for Q as a function of the weight flow of water yields Figure II-36.

TC’

Q¢ ,HEAT ABSORBED,Btu/hr

10 10° it
WEIGHT FLOW,Ib/hr

AHIIAG

Figure II-36. WEIGHT FLOW OF WATER AS A FUNCTION
OF HEAT TRANSFERRED FROM TUBE WALLS TO WATER
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It is now possible to determine, from Figures II-35 and II-36, the water
flow necessary to maintain a 200°F tube surface temperature as a function
of the desired furnace wall temperature and the tube's emissivity. Figure
11-37, compiled from Figures II-35 and II-36, shows the minimum amount
of water necessary for any desired furnace wall temperature assuming a

tube emissivity equal to 0. 8.

The last remaining step of these design calculations is to determine
the number of tubes necessary to remove enough heat from the furnace
to maintain any desired wall temperature. This is done by recalculating
the heat losses through the wall, QW’

2800°F. These calculations are shown in Figure II-38, The procedure

for wall temperatures other than

is now the same as that described earlier for heat losses at a 2800°F
inside wall temperature. The data in Figures II-29 and II-38 are com-
pared to determine the heat loss per square foot of wall (qw) which, when
multiplied by the area of the walls, yields their total heat loss as a
function of the wall temperature. Substitute Qw into Equation II-14, where
QS now becomes the heat absorbed by the cooling tubes.

Figure II-39 shows QS, the amount of heat which must be removed
‘by the water loads to hold a desired wall temperature, with a gas input
of 3.5 million Btu/hr. We can now use Figures II-35 and II-39 to de-
termine the number of water tubes necessary to hold a desired wall tem-
perature. The heat load is determined from Figure II-39 for the desired
temperature and divided by the heat sink capacity of a single tube as
shown in Figure II-35. This yields the required number of cooling tubes,
Figure II-40.

It is now possible to calculate from Figure II-37 the total amount
of cooling water required by the system as a function of the inside wall
temperature. Figure II-41 was plotted by multiplying the water required
per tube by the total number of tubes required at various wall temper-
atures. From this information we learned that a larger water pump was
necessary at the test site if wall temperatures lower than 1960°F are
r.equired: Our earlier system is only capable of delivering 1200 gph
(~10, 000 1b/hr) at 100 psig.
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The pressure drop through each probe was also considered in deter-
mining what pump pressure was required as a function of the desired
_inside wall temperature. The pressure drop through any tube can be

mathematically determined by Equation II-33:
AP = fLPU?/288 Dg (11-33)
where —

AP = pressure drop, psig

f = friction coefficient

= tube length, ft

= fluid density, lbm/cu ft

fluid velocity, ft/s

= tube diameter, ft .

= acceleration of gravity (32.17 ft/sq s)

® g ot
i

The velocity is expressed in terms of weight flow, assuming that the

density of the fluid is 62.1 lbm/cu ft.
U?=8.6 X107 W2 (II-34)
where W = weight flow, 1lb/hr.

The values of the parameters in Equations II-33 and II-34 for the
tube design and water that has a mean temperature of 85°F are given in

Table 1I-4 (except for the friction factor, f).

Table II-4. PARAMETERS FOR PRESSURE
DROP EQUATION FOR WATER AT 85°F

Tube Length, L = 10 ft
Tube Diameter, D = 8.34 X 1072 ft
Fluid Density, p = 62.1 lbm/cu ft
Fluid Viscosity, # = 0.56 X 1073 lbm/ft-s

Substituting Equation II-34 and the values from Table II-4 into Equation
-II-33 yields ~

AP = (6.4 X 107% w?f (I1-35)
The friction factor, f, is a function of the Reynolds number —

_ pUD
Npe = (I1-36)
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where K = absolute fluid viscosity, lbm/ft-s. Therefore, the friction
factor is a function of U or ultimately of weight flow. To solve for the
pressure drop, we converted R.J.S. Pigott's data for Reynolds number
versus friction factor to weight flow versus friction factor. This con-
version is shown in Figure II-42. Solving Equation II-35, using the num-
bers in Figure II-42, yields the pressure drop per tube as a function of
weight flow (Figure II-43).

B. High-Temperature Flame-Samp_ling Probes

One of the major tasks of this program was to map the profiles of
temperature, chemical species, and flow magnitude and direction in the
flame of each burner type. Modified designs of the International Flame
Research Foundation were used to construct probes which would enable

this type of data collection.

We constructed both a multidirectional impact tube (MDIT) and a gas
sampling probe. Assembly drawings for these probes are shown in
Figures 11-44 and I1I-45. The MDIT probe (Figure II-44) has a hemis-
pherical sensing head, which has passed the calibration standards of the
International Flame Research Foundation. The tip construction and our

calibration methods were described earlier in this report.

The 8-inch-long probe tip is 0.312 inch in diameter and constructed
of Type-316 stainless steel. Each of the five tip holes is connected to
thin-walled tubes, which pass through the probe body and are connected
to the pressure differential measuring equipment. The probe tip is also
water-cooled so that it can be used in the hot furnace environment.
Water is brought into the tip through a 1/8-inch-diameter stainless-steel
tube and returns along the walls of the outer tube and into the 1-1/2-
inch-diameter collection chamber. The water leaves the collection chamber
through a 3/8-inch-diameter tube. This type of water-cooling design
keeps the cooling tubes as large as possible and, hence, pressure drop
.as small as possible. This is consistent with the physical size require-

ments of the tip.
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Figure II-44. FIVE-HOLE PITOT TUBE PROBE HEAD

The gas-sampling probe (Figure II-45) is constructed similarly to
the five-hole pitot probe, except that the tip has only a single center
hole, and it is slightly longer. Both of the probes are designed to be

inserted into a water-cooled '

general probe holder,' which will allow the
insertion of the probe tips into the hot model up to a depth of 5 feet.
The general probe holder (Figure II-46) is a series of concentric tubes,
with a center tube large enough to hold the water-collection chamber of
both probe tips and the outer tubes carrying the water for cooling. The
2-1/2-inch-diameter holder is large in comparison to the probe tip. Its
large size is necessary to maintain a reasonable water pressure drop of

about 50 psig.

The probe positioner, described earlier in this report, supports the
probes with two pillow blocks which allow the probes to rotate. Aluminum
bushings are inserted into the blocks so that various sized probes can be
used. The original bushing was made for the cold-model probe which
had an outside diameter of 1.00 inch; therefore, a new bushing was needed
to adapt the positioner to the 1, 75-inch diameter of the probes used for

hot-model testing.
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To facilitate the accurate rotation of both probes and to be able to
return them to their original position, within 1/2 degree, we mounted an
angular vernier scale to the rear of the adapter bushing (Figure II-47).
Additional modifications included a probe support, which was added at the

front of the probe positioner (Figure II-47) because of the heavier probes

used for hot-model work.

Figure II-47. MODIFIED PROBE POSITIONER
FOR HOT-MODEL SAMPLING
The hot-probe hemispherical head, multidirectional impact tube

(MDIT) was calibrated using the techniques outlined earlier in this report
for the cold-model probe. Flow conditions of 17 ft/s and a Reynolds
number, NRe’ of 25,000 were used for calibrating the hot hemispherical
probe. The data were reduced by means of a computer program similar
to one used by the International Flame Research Foundation. The fol-

lowing series of pressure differentials were used as data input to the

calibration program:
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APM = Po — ‘pa (II-37)

APi3 = pr — Pps (II-38)
APz = pz — ps (II-39)
APo; = po — p3 (II-40)
APy = po — Pps (II-41)

Then the following pressure differentials are calculated using the input

values given above:

Apa = Apos — Apis (IT-42)

Apoz = Apou — A pz (I1-43)

To simplify the equations for the pressure recovery factors, APn, the

following identities are used:

PT = A‘Pol + Apoz + AP03 + Ap04 (11-44)

Pr = SQRT (A pa)® + (A pe)? + (A pes)® + (Apos)?] (I1-45)

The MDIT is calibrated for the three recovery coefficients, K¢I>’ Kv,

and K_. These coefficients are dependent on the conical angle, ®, and
are only slightly dependent on the magnitude of the'velocity, V, and on
the dihedral angle, 6. The angles, ® and 6§, are defined as spherical

coordinates. (See Figure II-11.)
In the free jet used for the calibration —

P —PA=O

S
where —
PS = static
PA = atmospheric

Therefore at ® = 0°

(AP, ,) at @ = 0° = P(dynamic) = 1/2 PV? (I1-46)

For each pair of values of ® and 6§, PR and PT were calculated from the

pressure differences with the aid of Equations II-44 and II-45; Kq), KV,

and Kp were calculated with t