**Ecological Research Series** # An Analysis of the Dynamics of DDT in Marine Sediments National Environmental Research Center Office of Research and Development U.S. Environmental Protection Agency Corvallis, Oregon 97330 ### RESEARCH REPORTING SERIES Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into five series. These five broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The five series are: - 1. Environmental Health Effects Research - 2. Environmental Protection Technology - 3. Ecological Research - 4. Environmental Monitoring - 5. Socioeconomic Environmental Studies This report has been assigned to the ECOLOGICAL RESEARCH STUDIES series. This series describes research on the effects of pollution on humans, plant and animal species, and materials. Problems are assessed for their long- and short-term influences. Investigations include formation, transport, and pathway studies to determine the fate of pollutants and their effects. This work provides the technical basis for setting standards to minimize undesirable changes in living organisms in the aquatic, terrestrial and atmospheric environments. ### EPA REVIEW NOTICE This report has been reviewed by the Office of Research and Development, EPA, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. ### AN ANALYSIS OF THE DYNAMICS OF DDT IN MARINE SEDIMENTS By John H. Phillips Hopkins Marine Station Pacific Grove, California 93950 Eugene E. Haderlie Naval Postgraduate School Monterey, California 93940 Welton L. Lee California Academy of Sciences San Francisco, California 94118 > Grant No. R800365 Program Element IBA025 21AIS, Task No. 08 > > **Project Officer** Dr. Milton H. Feldman Coastal Pollution Branch Pacific Northwest Environmental Research Laborator National Environmental Research Center Corvallis, Oregon 97330 NATIONAL ENVIRONMENTAL RESEARCH CENTER OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CORVALLIS, OREGON 97330 ### **ABSTRACT** The concentration of the three chlorinated hydrocarbons, DDT, DDD, and DDE, were measured in sediments at 57 stations in Monterey Bay on the Central California coast during 1970 and 1971. Mean concentration in parts per billion was DDT 3.1, DDD 2.3, and DDE 5.4. Maximum concentrations were DDT 19.3, DDD 8.7, DDE, 20.5 parts per billion. The distribution of the three compounds within South Monterey Bay was charted. During 1973 nineteen of the original stations, representing locations that were low, intermediate, and high concentrations in the original survey, were resampled. The mean concentration approximately three years later were DDT 15.5, DDD 2.3, and DDE 5.4 parts per billion with maximum levels of DDT 83.1, DDD 11.4, and DDE 17.5 parts per billion. A chart of the concentrations in South Monterey Bay revealed essentially the same distribution of chlorinated hydrocarbons. Two approaches to the estimation of annual system rates for input, I, output, O, decay, D, and internal translocation, $T_I$ and $T_O$ , expressed as decimal fractions of the existing concentration were developed, and Fortran programs that permit rapid estimations were written. The mean annual system rates obtained were for DDT, I+1.30, O-.059, D-.036, $T_I$ and $T_O \pm$ .80 with a residence time of 11 years and life time of 29 years. An I of 1.30 means the amount of input is 130% of the existing concentration per year. The mean annual rates obtained for DDD were, I + 0.25, O - 0.11, D - 0.025, $T_I$ and $T_O \pm$ 0.20 with residence time of 7 years and life time of 44 years. The rates for DDE were I + 0.28, O - 0.10, D - 0.027, $T_O$ and $T_I \pm$ 0.22 with residence time of 8 years and life time of 39 years. The approaches to these estimates are dependent upon variability in net rates of change at the various stations and an approach to evaluation of the standard deviation of the estimated rates relative to distributions of net rates with minimal variance is presented. Laboratory assays were developed to determine the relative rate of decomposition in sediment placed under conditions selective for various physiologically different kinds of microorganisms. <sup>14</sup>C ring labelled substrates were used in all assays. Decay of the three chlorinated hydrocarbons under aerobic conditions without additional nutrients was greater than decay under anaerobic conditions. The addition of accessory energy and carbon sources such as sodium acetate did not increase the rate of decay under anaerobic conditions. There was some decay under anaerobic conditions suggesting mechanisms of ring cleavage not involving incorporation or oxygen prior to ring split. Nitrate as an accessory electron acceptor increased the rate of decomposition under anaerobic conditions. Degradation products formed from the parent compounds included water soluble intermediates as well as carbon dioxide. The $Q_{10}$ for the decay process as determined by laboratory assays incubated at $10^{\circ}$ and $20^{\circ}$ C. is 2.5. This report was submitted in fulfillment of Grant No. R 800365 by Hopkins Marine Station. Work was completed under sponsorship of the Environmental Protection Agency as of 1974. # (9+54)--11 6.0 # **CONTENTS** | | | rage | |--------------|------------------------|------| | Abst | tract | ii | | List | of Figures | iv | | List | of Tables | v | | Ackr | nowledgements | vii | | <u>Secti</u> | ion <u>s</u> | | | I | Conclusions | 1 | | II | Recommendations | 2 | | III | Introduction | 3 | | IV | Methods | 9 | | V | Results and Discussion | 13 | | VI | References | 58 | | VII | Appendices | 59 | # **FIGURES** | No. | | Page | |-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | 1 | The study area, Monterey Bay. Sampling stations are indicated by number. | 5 | | 2 | DDT as a percent of the total concentration of DDT, DDD, and DDE plotted for data obtained in 1970 and 1971. Circled numbers indicate actual percents in excess of 50%. | 19 | | 3 | DDD as a percent of the total concentration of DDT, DDD, and DDE plotted for data obtained in 1970 and 1971. Circled numbers indicate actual percents in excess of 50%. | 20 | | 4 | DDE as a percent of the total concentration of DDT, DDD, and DDE plotted for data obtained in 1970 and 1971. Circled numbers indicate actual percents in excess of 50%. | 21 | | 5 | Total concentration in parts per billion of DDT, DDD, and DDE from data obtained in 1970 and 1971. Circled numbers indicate actual concentrations in excess of 50 ppb. | 22 | | 6 | Total concentration in parts per billion of DDT, DDD, and DDE from data obtained in 1973. The blank portions of the area were not sampled. Circled numbers indicate actual concentrations in excess of 50 ppb. | 23 | | 7 | Model of the system of sediment compartments and this system's relation to other systems. | 29 | | 8 | Composite chart of the translocation of DDT compounds based upon the rates of change, K, at individual stations in the southern portion of Monterey Bay. | 49 | ## **TABLES** | No. | | Page | |-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | 1 | Concentration of DDT, DDD, and DDE in sediments of the Monterey area land drainage system in 1972 (State of Calif., 1974). | 6 | | 2 | Typical decay assay protocol. | 11 | | 3 | Concentrations of DDT, DDD, and DDE in marine sediment samples from Monterey Bay. | 14 | | 4 | Levels of DDT, DDD, and DDE as percent of total residues in marine sediment samples from Monterey Bay. | 16 | | 5 | Variance of sampling measured at Station 38. | 18 | | 6 | First page of computer output showing concentration of pollutant compounds in sediment from sample stations at first sampling time. $C_1$ identifies as concentrations at time one. | 25 | | 7 | Second page of computer output showing concentration of pollutant compounds in sediment from sample stations at the second sampling time. C <sub>2</sub> identifies as concentrations at time two. | 26 | | 8 | Third page of computer output showing percent of total of each of the three compounds in sediments from sample stations at the first sampling time. $C_1$ identifies as data for time one. | 27 | | 9 | Fourth page of computer output showing percent of total of each of the three compounds in sediments from sample stations at the second sampling time. C <sub>2</sub> identifies as data for time two. | 28 | | 10 | Fifth page of computer output showing the rate of change, K, for DDT in each sediment compartment. | 31 | | 11 | Sixth page of computer output showing the rate of change, K, for DDD in each sediment compartment. | 32 | | 12 | Seventh page of computer output showing the rate of change, K, for DDE in each sediment compartment. | 33 | | 13 | Eighth page of computer output showing a summary of the annual system rates expressed as decimal fractions of the mean concentration of DDT present in the system. | 35 | | <u>No.</u> | | Page | |------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | 14 | Ninth page of computer output showing a summary of the annual system rates expressed as decimal fractions of the mean concentration of DDD present in the system. | 36 | | 15 | Tenth page of computer output showing a summary of the annual system rates expressed as decimal fractions of the mean concentration of DDE present in the system. | 37 | | 16 | Comparison of estimates obtained from the 16 and 19 station data sets and using actual paired sample analyses. Standard deviations and coefficients of variation are included. | 38 | | 17 | Comparison of estimates obtained from 49 and 57 station data sets and using sample analyses paired with mean concentration levels. Standard deviations and coefficients of variation are included. | 40 | | 18 | Standard deviations and standard errors of distributions of K with minimal variance for given values of I, $T_I$ and $T_O$ , (O+D), and n. | 43 | | 19 | Comparison of uncorrected and corrected standard deviations of system estimates. | 44 | | 20 | Mean of the estimates for the South Monterey Bay system and associated descriptive statistics. | 47 | | 21 | Total amounts of DDT, DDD, and DDE in the South Monterey<br>Bay study area based on the mean concentrations at the two<br>sample times, and expected amounts affected by the mean of the<br>estimates of system rates. | 48 | | 22 | Results of a laboratory assay of annual rate of decay of DDT to $CO_2$ , $D_{CO_2}$ , expressed as a decimal fraction of the initial concentration of DDT maintained at $10^{\circ}$ C under aerobic conditions. | 51 | | 23 | Results of laboratory assays of the annual rates of decay to $CO_2$ , $D_{CO_2}$ , and the effect of environmental variables on the process. | 52 | | 24 | Rates of decay to water soluble compounds and CO <sub>2</sub> determined by laboratory assays. | 55 | ### **ACKNOWLEDGEMENTS** The financial support of the U.S. Environmental Protection Agency and interest of Dr. Milton H. Feldman are gratefully acknowledged. A gift from the Forest Park Foundation permitted the acquisition of equipment essential to this project and other studies on chlorinated hydrocarbons in our laboratories. This support and interest in environmental problems has been greatly appreciated. Finally, the authors would like to acknowledge Philip Murphy, Will McCarthy, Barbara Cunningham, Anne Edwards, and Charles Bates for their technical assistance in this project. ### **SECTION I** ### **CONCLUSIONS** Chlorinated hydrocarbons associated with sediment particles tend to concentrate in sedimentation basins which may be at some distance from the input source. Although the use of chlorinated hydrocarbon pesticides has declined sharply the levels of three materials has continued to increase in marine sediments. The principal source of this additional pollutant load in this instance appears to be more related to translocation of these materials absorbed to sediments of adjacent land drainage systems. The dynamics of chlorinated hydrocarbons in the coastal marine environment, although complex, are susceptible to study. Approaches to the estimation of rates of input, decay, and translocation can be developed and assessed by continued analysis of environmental samples. The measurement of decay rate by laboratory assay appears to have its greatest utility in the determination of the effect of environmental conditions on the process of decay. Duplication of conditions existing *in situ* in the laboratory can only be approximated and then only for a limited time. The laboratory work, short term in its execution, serves only as a guide to what is happening in the environment. ### **SECTION II** ### RECOMMENDATIONS The complexities of the dynamics of coastal pollution by chlorinated hydrocarbons necessitates an initial survey of the concentration of these environmental contaminants at a large number of stations. Once basins of accumulation are established and principal translocation paths established a much smaller number of stations require surveillance at later points in time. It doesn't appear to be essential to monitor exactly the same stations in any surveillance program as long as the set of surveillance stations includes established basins and positions along translocation pathways. It is recommended that initial intensive surveys be carried out in the coastal marine environment adjacent to major agricultural and industrial areas which are known to produce or utilize poorly degraded environmental contaminants such as the chlorinated hydrocarbons. Monterey Bay is a very useful model coastal marine environment for the establishment and testing of approaches to system rate estimation. Continued surveillance of this area is recommended. It is also recommended that work be done on extending the approach to estimation of system rates explored with respect to sediments to other environmental systems including populations of organisms. It would appear desirable to concentrate initially upon abundant and useful indicator organisms rather than commercially desirable or affected species. Finally, it is recommended that additional effort be expended on the study of laboratory assays of decay not only as approximations of the environment but as useful preparations for elucidating the conditions inhibitory and stimulatory to the decay process. ### SECTION III ### INTRODUCTION Although the accumulation of chlorinated hydrocarbons in the marine ecosystem has been a matter of concern for some time, methods for assessing the rates of accumulation, decay, and translocation have been lacking. The problem is not unique to the marine environment, and methods for assessment of the dynamics of chemical pollutants in general are needed for meaningful analysis of the residue measurements tabulated in most investigations. Without an assessment of rates such tabulations generally permit only the detection of some general trend of increase or decrease in concentration during the period of study. In many cases, however, the amount of variability is so great that the number of samples required to show such general trends is prohibitive. Yet we have both the data available and a need to use these data for meaningful assessment. In addition, before any feasible monitoring activity geared to control and regulatory strategies are designed and implemented, a means of assessing any new tabulations is required as a determinant in the design of such activities. Whatever systems of assessment may be developed in the future it cannot be expected that they will overcome the variability that plagues environmental sampling. Rather, such systems should be expected to provide an estimate of this variability and a confidence interval for any derived parameter of environmental change. Several models stressing one or another aspect of the dynamics of pesticides in the environment have been presented (Hamaker 1966, Robinson 1967, Woodwell 1967, Harrison et al. 1970, and Eberhardt et al. 1971), but there still appears to be a need for a general approach that provides a means of estimating rates of input, decay, and translocation from some minimal number of analyses. The study presented here is an attempt to fill this need. The data used here for these estimations consists of analyses of marine sediment samples for 1,1,2-trichloro-2,2-bis (p-chlorophenyl) ethane, DDT; 1,1-dichloro-2,2-bis (p-chlorophenyl) ethane, DDD; and 1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene, DDE. The rates of decay at a sampling site and translocation away from a sampling site are difficult to separate through the approach to estimation presented. Laboratory measurements of the rate of <sup>14</sup>C ring labelled DDT in marine sediments held under a variety of conditions are also presented. These measurements reflect decay to the point of <sup>14</sup>CO<sub>2</sub> release rather than conversion to any one of a variety of other metabolites including DDD and DDE, but are useful in assessing the method of estimation based upon environmental samples alone. The analysis of DDT residue levels in marine sediments reported herein is only a part of a larger study correlating the levels of pollutants with density and composition of benthic populations. Other results of this study will be reported elsewhere. ### THE STUDY AREA This study was carried out in Monterey Bay located in the central coastal region of California. Figure 1 shows the study area and the location of the forty-nine Stations from which sediment samples were obtained. The figure also shows several geographical features pertinent to this investigation. The bottom of Monterey Bay is divided by a major submarine canyon over 3800 meters in depth at its deepest point. The sampling effort was concentrated in the southern portion of the bay with no sampling beyond the 200 fathom, 365 meter, line. Residue levels of DDT, DDD, and DDE were first measured in samples from this southern portion of the bay during 1970 and nineteen of these stations were resampled in 1973. A small number of stations were sampled in the northern part of the bay during 1971. Monterey Bay is the recipient of drainage from a major agricultural area, the Salinas Valley, where DDT was used in large amounts for a period of twenty years. Usage of this pesticide and DDD has decreased sharply since 1969. A tabulation of use was started in 1970 when 33,931 pounds was applied to 19,387 acres in Monterey County. This input level was further reduced in 1971 to 4,697 pounds, and in 1972 to 10 pounds on 20 acres (Calif. Dept. of Agriculture 1970, 1971, 1972). Final tabulations for 1973 will probably show levels of input similar to those of 1972. Although the use of DDT in the area adjacent to Monterey Bay has declined sharply since 1970, the level of DDT in marine sediments appears to be increasing as more of this pesticide finds its way to the sea via the drainage system of the neighboring agricultural area. The decrease in usage on adjacent land and apparent increase in concentration in the marine sediments of the area suggests that continued study of the Monterey area is of particular interest in determining the time lag between terrestrial input and marine accumulation of persistent chemical pollutants. Although in the past, when DDT was being regularly applied on the adjacent lands, the atmosphere was an important source of input to the bay; at the present time the major source of input appears to be the Salinas River which drains the inland agricultural areas. This river flows directly into the bay only intermittently. Most of the time the mouth of the river is blocked by a bar of sand that is removed only at times of heavy rainfall to prevent flooding. During this investigation this event occurred Jan. 13, 1970, Nov. 30, 1970, Dec. 29, 1971, Nov. 16, 1972, Nov. 17, 1972, and Nov. 20, 1973. Input directly by the river has, therefore, not been continuous. Analyses of the sediment samples from the river bed along its course in 1972 (State of California, 1974) showed considerable variation in the relative abundance and concentration of the three compounds. Table 1 gives the results of these analyses and the approximate location of the samples relative to the mouth of the river. During the periods when the mouth of the river is blocked, there is a sluggish flow north to Elkhorn Slough which served as the mouth of the river until 1908. This flow is joined by drainage from Trembladero Slough which receives water and sediments from the Reclamation Canal that flows through the City of Salinas to the east and beyond the right-hand margin of the figures. The Reclamation Canal receives effluents from food processing plants and other industries, and analyses of its sediment in 1972 (State of Calif., 1974) revealed the levels also listed in Table 1. Figure 1. The study area, Monterey Bay. Sampling stations are indicated by number. Table 1. CONCENTRATION OF DDT, DDD, AND DDE IN SEDIMENTS OF THE MONTEREY AREA LAND DRAINAGE SYSTEM IN 1972 (STATE OF CALIF., 1974) | Salinas River | | (ppb) | | |-------------------------------------------------------------------------------|---------|----------|---------| | distance from mouth (kilometers) | DDT | DDD | DDE | | 42 | 1.0 | 1.3 | | | 25 | 120. | | · 20. | | 8 | 150. | 1000. | 360. | | | 16. | 620. | | | 3 | 0.12 | 30. | | | Reclamation Canal<br>distance from mouth<br>of Elkhorn Slough<br>(kilometers) | | | | | 20 | 7,000. | 45,000. | 10,000. | | | 21,000. | 150,000. | | | | | | | ### RATIONALE OF DESCRIBED WORK Selection of Study Site and Source of Marine Sediments for Decay Assays-For the estimation of rates governing the dynamics of a chlorinated hydrocarbon pollutant in marine sediments an area with the following characteristics appeared most desirable. (1) The marine area should be adjacent to a land area for which there exists an accounting of input to the environment through normal use. The use of DDT and DDD within the State of California has been subject to such accounting on a square mile section basis since 1970 (Calif. Dept. of Agriculture 1970). Such accounting is available only for normal agricultural and related uses. Therefore, areas which receive or have received less well determined inputs from chlorinated hydrocarbon manufacture, such as the ocean adjacent to Los Angeles, are less desirable for this type of study. (2) In order to assess translocation within the study area it would appear desirable to select a marine area with a limited number of point sources of input rather than one subject to diffuse input by way of the atmosphere. (3) The area should be one open to general oceanic influence rather than a closed system so that translocation of the pollutant out of the system by dilution or dissemination can be assessed. (4) As a source of materials for laboratory assays of decay the area should be one which has had a long exposure to the pollutant, thus insuring the establishment of microbial systems with the capacity for decomposition of the pollutant. (5) The area should be known to be contaminated with the pollutant. (6) The area should be accessible to sampling and close to the required analytical capability. Monterey Bay, and in particular the southern portion of Monterey Bay, has these characteristics and was selected as the study site and source of materials for the development of laboratory assays for the rate of decay of DDT, DDD, and DDE. Survey of Residue Levels in Monterey Bay Sediments—In order to assess the variability in concentration and distribution of the three compounds in the sediments of Monterey Bay thirty-seven sample sites were selected for analysis in the southern portion of the bay which receives water and sediments from the agricultural area of Monterey County by way of the Salinas River. An additional eleven sample sites in the northern portion of the bay were selected in order to assess any augmenting effect of additional river input sources such as the San Lorenzo and Pajaro Rivers that drain areas of Santa Cruz and San Benitio Counties lying adjacent to Monterey County and Monterey Bay. Determination of the Amount of Change in Residue Levels with Time—In order to assess the magnitude of change in the concentration of DDT and related compounds a subset of the original survey sampling stations was resampled and analyzed after approximately three years. Nineteen of the original sample stations were selected as this subset. The selection was made on a basis of accessibility and representations of stations showing a broad range of residue concentrations as determined in the original survey. Determination of the Variance of Sampling—One additional sample station, number 38, which had never before been sampled was added to the resampled subset and sampled three times on the same day. Three aliquots from each of these samples were analyzed for the three compounds to provide an estimate of the variability of sampling. Approaches to the estimation of rates and Dynamics of the compounds in Sediments—Using the tabulated data obtained from the sampling programs various approaches to the estimation of the rates of input, translocation, and decay were developed for the system of sample sites. Considerable attention was directed to estimation of variance of these derived rates. Development of Laboratory Assay Methods for the Determination of Decay Rate—Measurement of decay rate based on changes in residue level observed by repeated sampling from the environment are subject to error due to translocation to or away from the sample site. Therefore, a means of estimating decay rate in a closed system not susceptible to such error would be desirable. A variety of preparations using <sup>14</sup>C ring labelled compounds were established for such estimations. Effect of Environmental Variables on Decay Rate—Any closed system preparation is by its very nature selective for one or another metabolic type of microorganism. The initial conditions and conditions which subsequently develop may have a marked effect upon the observed rate of decomposition through the election of particular microbial populations. Therefore, it was necessary to study the process of decay as influenced by a number of environmental variables chosen to encourage one or another of the major metabolic types of microorganisms. ### SECTION IV ### **METHODS** ### ANALYSIS OF SEDIMENT SAMPLES Samples of sediment were collected by Shipek grab or shallow dredge. Between 50 and 70 grams of wet sediment were placed in a 250 ml bottle and mixed with 30-50 grams of granular anhydrous sodium sulfate. The sediment was extracted with 50 ml of acetone:hexane, 1:1, by shaking for four hours. The acetone, hexane was decanted and filtered through a fritted glass filter or silicon-treated phase separation paper into a separatory funnel. Three additional 50 ml portions of hexane were used to wash the sediment and added to the original extractant. The extract was washed with three 200 ml portions of water followed by dehydration of the extract by passage through a 2x5 cm column of anhydrous sodium sulfate and concentration in a Kuderna-Danish concentrator to less than 10 ml. The extract was then cleaned by shaking first with 1 ml of concentrated sulfuric acid and finally with approximately 0.1 ml of mercury. The analysis was performed in a Beckman GC-4 Gas Chromatograph with electron capture detector, using a mixed bed column of Chromosorb W, 80-100 mesh, DMCS treated, and acid washed, containing 5% DC-200 and 5% QF1. Although the efficiency of extraction is difficult to assess, the effect of concentration and clean-up procedures can be measured by the use of <sup>14</sup>C labelled materials added just prior to extraction with acetone, hexane. Recovery was 73.9% for DDT, 94.4% for DDD, and 84.8% for DDE, and these figures were used to correct the results of analyses. ### LABORATORY DECAY ASSAYS A variety of preparations have been investigated for their applicability to decay assay preparations. These preparations have included sealed stationary aliquots of sediment and <sup>14</sup>C labelled substrate as well as ones in which the sediment with labelled substrate was subjected to continuous percolation or periodic gas flow. Maintenance of percolating systems for the length of time required to measure the very slow rates of decay is not feasible, and it is difficult to maintain a large number of preparations under conditions whereby they may be subjected to periodic gas flow and trapping of metabolic CO<sub>2</sub>. Therefore, sealed stationary preparations have proved to be the only feasible type of preparation so far developed. The most convenient container for such preparations has been 125 ml Hypovials, Pierce, Rockford, Illinois, No. 12995, fitted with Teflon liners. The preparation of decay assays is as follows. Sediment is collected as for samples for residue analysis, packed in ice, and brought to the laboratory within a few hours. The sediment is rinsed through screen with 16 mesh to the inch to remove macroscopic infauna and refrigerated. Aliquots of the slurried sediment are removed for dry weight determination. A volume of the slurried sediment equivalent to 24 grams dry weight is delivered to a sterile Hypovial and seawater, with or without additional nutrients, is added to give a volume of 98 ml total. One ml each of <sup>12</sup>C and <sup>14</sup>C substrate adsorbed to sterile sediment is added giving a final volume of 100 ml. The preparation may be gassed with nitrogen to produce an anaerobic environment prior to sealing. All incubators are in the dark for periods of generally twelve weeks. All preparations are set up in quintuplicate. A typical protocol is presented in Table 2. $^{12}$ C Substrate Preparation—2.4 grams of either, 1,1-bis-(p-chlorophenyl)-2,2,2-trichloro ethane, p-p'DDT 99+% No. 10, 002-1; 2,2-bis-(p-chlorophenyl)-1,1-dichloro ethylene, No. 12, 289-7 (B 3964); or 2,2-bis-(p-chlorophenyl)-1,1-dichloroethane, puriss B 3959 Aldrich Chemical Co. Inc., Milwaukee, Wisconsin, were dissolved in 10 ml of acetone. To 10 grams of dried sterile sediment 1 ml of acetone solution was added and the sediment wet with an additional 3 ml of acetone. The acetone was evaporated off at room temperature and 96 ml of distilled water added to slurry the sediment and its adsorbed substrate. One ml contains $2.4 \times 10^3$ ug of substrate on 0.1 gram of sediment per ml. Similar preparations were made giving $2.4 \times 10^2$ ug and 21.6 ug of substrate on 0.1 gram of sediment per ml. <sup>14</sup>C-DDT Substrate Preparation—Uniformly ring labelled DDT, Amersham/Searle Corp., 63.9 u Ci/mg in benzene was used for preparation of the substrate. The original 250 u Ci preparation was diluted with acetone and 240 ug in 4 ml was added to 10 grams of dried sterile sediment. The acetone was removed by evaporation at room temperature and 96 ml of distilled water added to give 2.4 ug <sup>14</sup>C-DDT and 0.1 gram of sediment per ml. A similar preparation was made giving 0.24 ug <sup>14</sup>C-DDT and 0.1 gram of sediment per ml. <sup>14</sup>C-DDD Substrate Preparation—<sup>14</sup>C-DDT was converted to <sup>14</sup>C-DDD by the method of Murphy (1970) and purity of the product confirmed by gas chromatography. The resulting material was used to prepare substrate as described above for <sup>14</sup>C-DDT. <sup>14</sup>C-DDE Substrate Preparation—<sup>14</sup>C-DDT was converted to <sup>14</sup>C-DDE by the method of Gunther and Blinn (1950) and purity of the product confirmed by gas chromatography. The resulting material was used to prepare substrate as described above for <sup>14</sup>C-DDT. Analysis of Decay Assays—After incubation for generally 12 weeks $^{14}\text{CO}_2$ was trapped by the addition of 1.5 ml of 5 N NaOH to the Hypovial. The base was introduced by syringe and the ampoule resealed with tape. Syringe delivered 5 ml aliquots of the basic slurried sediment were transfered to 25 ml Erlenmeyer flasks containing magnetic stirring bars. The flasks were stoppered with Top stoppers, K-882310, fitted with plastic center wells, K-882320, both from Kontes Glass Co., Vineland, N.J. The center wells contained an accordian pleated Whatman No. 1 filter paper wick, 2.5x5 cm. $\beta$ -phenylethylamine, 0.15 ml, was delivered to the well and wick by syringe through the stopper. While the sediment in the flask was gently stirred on a magnetic stirrer 0.25 ml of 5 N H<sub>2</sub>SO<sub>4</sub> was added to the sediment. The flasks were then held for 24 hours at room temperature after which time the wicks were removed to scintillation vials to which was added 15 ml of Toluene-omnifluror. Appropriate preparations for background Table 2. TYPICAL DECAY ASSAY PROTOCOL. | Hypovial<br>No. | Slurried<br>(grams) | Sediment<br>(ml) | Seawater<br>plus<br>nutrients<br>(ml) | 12 | trate | 14C<br>Substra<br>(ug) | te<br>(ml) | Total<br>Substrate<br>(ppm) | Total<br>volume<br>(ml) | |-----------------|---------------------|------------------|---------------------------------------|------|-------|------------------------|------------|-----------------------------|-------------------------| | 1-5 | 24 | 59 | 39 | 2400 | 1 | 2.4 | 1 | 100 | 100 | | 6-10 | 24 | 59 | 39 | 240 | 1 | 2.4 | 1 | 10 | 100 | | 11-15 | 24 | 59 | <b>39</b> · | 21.6 | 1 | 2.4 | 1 | 1 | 100 | | 16-20 | 24 | 59 | 39 | 0 | 0 | 2.4 | 1 | 0.1 | 100 | | 21-25 | 24 | 59 | 39 | 0 | 0 | 0.24 | 1 | 0.01 | 100 | | | | | | | | | | | | measurement were also made. The amount of $^{14}\text{CO}_2$ was determined in a Nuclear Chicago Corp. Unilux II. Diffusion time and trapping volume of $\beta$ -phenylethylamine were established through tests using a standard preparation of Na $^{14}\text{CO}_3$ . ### DECAY AS AFFECTED BY ENVIRONMENTAL VARIABLES The effect of temperature was determined by comparing the amount of decomposition at 10° and 20°C, and the effect of oxygen, nitrate, and sulfate as terminal electron acceptors in the presence and absence of cometabolizable sodium acetate and ethanol was determined by appropriate additions to the Hypovials. ### **SECTION V** ### RESULTS AND DISCUSSION ### SURVEYS OF RESIDUE LEVELS IN MONTEREY BAY SEDIMENTS The concentration in parts per billion of the three compounds, DDT, DDD, and DDE in sediment samples collected during the three sampling periods are presented in Table 3. Table 4 presents the same set of analyses in terms of the percent of total residues for each of the three compounds. The variance of sampling at Station 38 can be assessed from the data presented in Table 5. The greatest variation in results can be observed with respect to DDT, the compound also showing the greatest loss during the extraction, concentration, and cleanup procedures as mentioned in the section on methods. The data obtained in the 1970 and 1971 samplings is presented in Figures 2, 3, and 4, where the distribution of DDT and its two derivatives is displayed in terms of percent of the concentration of total DDT derivatives. Figures 5 and 6 show the distribution in terms of the total concentration of DDT and its two derivatives in parts per billion. Figure 5 shows the distribution in 1970 and 1971, and Figure 6 shows the distribution as indicated by the analyses of the smaller number of samples obtained in 1973. The small number of sample stations in the northern portion of the bay did not reveal any unusual augmentation in concentrations of the three compounds due to input from the San Lorenzo and Pajaro Rivers although the percent composition of DDT derivatives does indicate differences between the northern and southern portions of the bay. If particular attention is paid to the southern portion of the bay for which there is the greatest information, the distributions suggest a number of characteristics of the system. After input with sediments from the Salinas River, and perhaps also through Elkhorn Slough, these materials are subjected to considerable translocation due to the currents operating within the south bay. The highest concentration of DDT derivatives is to be found at a considerable distance from the mouth of the river. Close to the mouth of the river, however, the sediments show a high percentage of DDT which is characteristic of some of the sediments within the drainage system. These high DDT percentages are also found at the more distant points where the highest concentrations of derivatives are found as well. Over much of the area in terms of percent, however, DDE represents the major compound. These plots of distribution reflect input over a considerable period of time. During this time the major routes of input may have changed considerably as has the relative concentrations of the three derivatives in these input sources. Nevertheless, the apparent constancy of location of major basins of deposition is remarkable. Areas with high concentrations in 1970 have become even more heavily contaminated in 1973. Table 3. CONCENTRATIONS OF DDT, DDD, AND DDE IN MARINE SEDIMENT SAMPLES FROM MONTEREY BAY. | Station | <del></del> | · | | | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|-----------|-----------------------|-------|------|-------|-------| | Station | | LOCAT | ION | | דמם | חחח | DDE | | | 2 36 46.85 121 53.50 11.15.70 1.63 6.76 14.70 23.09 3 36 46.35 121 49.00 2.20.70 5.71 0.71 1.02 7.44 4 36 46.05 121 51.00 11.15.70 4.28 6.61 10.70 21.59 5 36 46.00 121 57.00 5.29.70 2.14 0.93 4.00 7.07 6 36 45.45 121 50.00 5.29.70 0.0 2.50 4.51 7.01 8 36 45.20 121 54.00 5.29.70 0.0 2.50 4.51 7.01 9 36 45.10 121 52.00 5.29.70 2.65 4.26 6.51 13.42 10 36 45.00 121 50.00 5.29.70 6.42 8.67 7.01 22.10 11 36 45.00 121 49.00 2.20.70 3.67 0.40 0.45 4.52 12 36 44.60 121 50.50 2.20.70 0.52 0.18 0.28 0.98 13 36 44.20 121 52.25 8.23.70 5.20 7.50 15.50 | Station | | | Date | | | - 1 | TOTAL | | 2 36 46.85 121 53.50 11.15.70 1.63 6.76 14.70 23.09 3 36 46.35 121 49.00 2.20.70 5.71 0.71 1.02 7.44 4 36 46.05 121 51.00 11.15.70 4.28 6.61 10.70 21.59 5 36 46.00 121 57.00 5.29.70 2.14 0.93 4.00 7.07 6 36 45.45 121 50.00 5.29.70 0.0 2.50 4.51 7.01 8 36 45.20 121 54.00 5.29.70 0.0 2.50 4.51 7.01 9 36 45.10 121 50.00 5.29.70 4.48 5.14 4.51 14.13 10 36 45.00 121 50.00 5.29.70 6.42 8.67 7.01 22.10 11 36 45.00 121 50.50 2.20.70 3.67 0.40 0.45 4.52 12 36 44.60 121 50.50 2.20.70 0.52 0.18 0.28 0.98 13 36 44.20 121 50.35 11.15.70 0.26 0.19 0.45 | <u> </u> | | | | | | | | | 2 36 46.85 121 53.50 11.15.70 1.63 6.76 14.70 23.09 3 36 46.35 121 49.00 2.20.70 5.71 0.71 1.02 7.44 4 36 46.05 121 51.00 11.15.70 4.28 6.61 10.70 21.59 5 36 46.00 121 57.00 5.29.70 2.14 0.93 4.00 7.07 6 36 45.45 121 50.00 5.29.70 0.0 2.50 4.51 7.01 8 36 45.20 121 54.00 5.29.70 0.0 2.50 4.51 7.01 9 36 45.10 121 50.00 5.29.70 4.48 5.14 4.51 14.13 10 36 45.00 121 50.00 5.29.70 6.42 8.67 7.01 22.10 11 36 45.00 121 50.50 2.20.70 3.67 0.40 0.45 4.52 12 36 44.60 121 50.50 2.20.70 0.52 0.18 0.28 0.98 13 36 44.20 121 50.35 11.15.70 0.26 0.19 0.45 | | | 101 10 00 | 0.00.70 | | | | | | 5 36 46.00 121 57.00 5-29-70 2.14 0.93 4.00 7.07 6 36 45.45 121 50.00 11-15-70 2.04 1.17 1.80 5.01 7 36 45.30 121 54.00 5-29-70 0.0 2.50 4.51 7.01 8 36 45.20 121 54.00 5-29-70 2.65 4.26 6.51 13.42 9 36 45.10 121 50.00 5-29-70 4.48 5.14 4.51 14.13 10 36 45.00 121 49.00 2-20-70 3.67 0.40 0.45 4.52 12 36 44.60 121 50.50 2-20-70 0.52 0.18 0.28 0.98 13 36 44.25 121 50.35 11-15-70 0.26 0.19 0.45 0.90 14 36 44.20 121 52.25 8-23-70 5.20 7.50 15.50 28.20 15 36 44.00 121 50.00 5-29-70 0.0 0.19 0.35 0.54 16 36 43.75 121 54.45 11-15-70 1.02 0.38 0.70 | | | | | | | | | | 5 36 46.00 121 57.00 5-29-70 2.14 0.93 4.00 7.07 6 36 45.45 121 50.00 11-15-70 2.04 1.17 1.80 5.01 7 36 45.30 121 54.00 5-29-70 0.0 2.50 4.51 7.01 8 36 45.20 121 54.00 5-29-70 2.65 4.26 6.51 13.42 9 36 45.10 121 50.00 5-29-70 4.48 5.14 4.51 14.13 10 36 45.00 121 49.00 2-20-70 3.67 0.40 0.45 4.52 12 36 44.60 121 50.50 2-20-70 0.52 0.18 0.28 0.98 13 36 44.25 121 50.35 11-15-70 0.26 0.19 0.45 0.90 14 36 44.20 121 52.25 8-23-70 5.20 7.50 15.50 28.20 15 36 44.00 121 50.00 5-29-70 0.0 0.19 0.35 0.54 16 36 43.75 121 54.45 11-15-70 1.02 0.38 0.70 | 2 | | | | | | I I | | | 5 36 46.00 121 57.00 5-29-70 2.14 0.93 4.00 7.07 6 36 45.45 121 50.00 11-15-70 2.04 1.17 1.80 5.01 7 36 45.30 121 54.00 5-29-70 0.0 2.50 4.51 7.01 8 36 45.20 121 54.00 5-29-70 2.65 4.26 6.51 13.42 9 36 45.10 121 50.00 5-29-70 4.48 5.14 4.51 14.13 10 36 45.00 121 49.00 2-20-70 3.67 0.40 0.45 4.52 12 36 44.60 121 50.50 2-20-70 0.52 0.18 0.28 0.98 13 36 44.25 121 50.35 11-15-70 0.26 0.19 0.45 0.90 14 36 44.20 121 52.25 8-23-70 5.20 7.50 15.50 28.20 15 36 44.00 121 50.00 5-29-70 0.0 0.19 0.35 0.54 16 36 43.75 121 54.45 11-15-70 1.02 0.38 0.70 | 3 | | | | | | | | | 9 36 45.10 121 52.00 5-29-70 4.48 5.14 4.51 14.13 10 36 45.10 121 50.00 5-29-70 6.42 8.67 7.01 22.10 11 36 45.00 121 49.00 2-20-70 3.67 0.40 0.45 4.52 12 36 44.60 121 50.50 2-20-70 0.52 0.18 0.28 0.98 13 36 44.25 121 50.35 11-15-70 0.26 0.19 0.45 0.90 14 36 44.20 121 52.25 8-23-70 5.20 7.50 15.50 28.20 15 36 44.00 121 50.00 5-29-70 0.0 0.19 0.35 0.54 16 36 44.00 121 49.50 2-20-70 0.69 0.14 2.75 3.58 17 36 43.50 121 51.80 2-20-70 1.73 2.64 2.40 6.77 19 36 43.35 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.81 121 57.00 2-8-70 0.0 5.00 20.50 | | | | | | | | | | 9 36 45.10 121 52.00 5-29-70 4.48 5.14 4.51 14.13 10 36 45.10 121 50.00 5-29-70 6.42 8.67 7.01 22.10 11 36 45.00 121 49.00 2-20-70 3.67 0.40 0.45 4.52 12 36 44.60 121 50.50 2-20-70 0.52 0.18 0.28 0.98 13 36 44.25 121 50.35 11-15-70 0.26 0.19 0.45 0.90 14 36 44.20 121 52.25 8-23-70 5.20 7.50 15.50 28.20 15 36 44.00 121 50.00 5-29-70 0.0 0.19 0.35 0.54 16 36 44.00 121 49.50 2-20-70 0.69 0.14 2.75 3.58 17 36 43.50 121 51.80 2-20-70 1.73 2.64 2.40 6.77 19 36 43.35 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.81 121 57.00 2-8-70 0.0 5.00 20.50 | 5 | | | | | | | | | 9 36 45.10 121 52.00 5-29-70 4.48 5.14 4.51 14.13 10 36 45.10 121 50.00 5-29-70 6.42 8.67 7.01 22.10 11 36 45.00 121 49.00 2-20-70 3.67 0.40 0.45 4.52 12 36 44.60 121 50.50 2-20-70 0.52 0.18 0.28 0.98 13 36 44.25 121 50.35 11-15-70 0.26 0.19 0.45 0.90 14 36 44.20 121 52.25 8-23-70 5.20 7.50 15.50 28.20 15 36 44.00 121 50.00 5-29-70 0.0 0.19 0.35 0.54 16 36 44.00 121 49.50 2-20-70 0.69 0.14 2.75 3.58 17 36 43.50 121 51.80 2-20-70 1.73 2.64 2.40 6.77 19 36 43.35 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.81 121 57.00 2-8-70 0.0 5.00 20.50 | 6 | | | | | | | | | 9 36 45.10 121 52.00 5-29-70 4.48 5.14 4.51 14.13 10 36 45.10 121 50.00 5-29-70 6.42 8.67 7.01 22.10 11 36 45.00 121 49.00 2-20-70 3.67 0.40 0.45 4.52 12 36 44.60 121 50.50 2-20-70 0.52 0.18 0.28 0.98 13 36 44.25 121 50.35 11-15-70 0.26 0.19 0.45 0.90 14 36 44.20 121 52.25 8-23-70 5.20 7.50 15.50 28.20 15 36 44.00 121 50.00 5-29-70 0.0 0.19 0.35 0.54 16 36 44.00 121 49.50 2-20-70 0.69 0.14 2.75 3.58 17 36 43.50 121 51.80 2-20-70 1.73 2.64 2.40 6.77 19 36 43.35 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.81 121 57.00 2-8-70 0.0 5.00 20.50 | 7 | | | | | | | | | 10 36 45.10 121 50.00 5-29-70 6.42 8.67 7.01 22.10 11 36 45.00 121 49.00 2-20-70 3.67 0.40 0.45 4.52 12 36 44.60 121 50.50 2-20-70 0.52 0.18 0.28 0.98 13 36 44.25 121 50.35 11-15-70 0.26 0.19 0.45 0.90 14 36 44.20 121 52.25 8-23-70 5.20 7.50 15.50 28.20 15 36 44.00 121 49.50 2-20-70 0.69 0.14 2.75 3.58 17 36 43.75 121 54.45 11-15-70 1.02 0.38 0.70 2.10 18 36 43.50 121 51.80 2-20-70 1.73 2.64 2.40 6.77 19 36 43.35 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.18 121 57.00 2-8-70 0.0 5.00 20.50 25.50 21 36 42.90 121 58.00 2-20-70 0.0 5.03 13.43 | 8 | | | | | 4.26 | 6.51 | 13.42 | | 11 36 45.00 121 49.00 2-20-70 3.67 0.40 0.45 4.52 12 36 44.60 121 50.50 2-20-70 0.52 0.18 0.28 0.98 13 36 44.25 121 50.35 11-15-70 0.26 0.19 0.45 0.90 14 36 44.20 121 52.25 8-23-70 5.20 7.50 15.50 28.20 15 36 44.00 121 49.50 5-29-70 0.0 0.19 0.35 0.54 16 36 44.00 121 49.50 2-20-70 0.69 0.14 2.75 3.58 17 36 43.75 121 54.45 11-15-70 1.02 0.38 0.70 2.10 18 36 43.50 121 51.80 2-20-70 1.73 2.64 2.40 6.77 19 36 43.35 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.81 21 57.00 2-8-70 0.0 5.00 20.50 25.50 21 36 42.50 121 58.00 2-20-70 0.0 0.35 1.92 | | | | | | | | | | 12 36 44.60 121 50.50 2-20-70 0.52 0.18 0.28 0.98 13 36 44.25 121 50.35 11-15-70 0.26 0.19 0.45 0.90 14 36 44.20 121 52.25 8-23-70 5.20 7.50 15.50 28.20 15 36 44.00 121 50.00 5-29-70 0.0 0.19 0.35 0.54 16 36 44.00 121 49.50 2-20-70 0.69 0.14 2.75 3.58 17 36 43.75 121 54.45 11-15-70 1.02 0.38 0.70 2.10 18 36 43.50 121 51.80 2-20-70 1.73 2.64 2.40 6.77 19 36 43.35 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.18 121 57.00 2-8-70 0.0 5.00 20.50 25.50 21 36 42.90 121 58.00 2-20-70 0.0 0.35 1.92 2.27 23 36 42.55 121 53.30 8-23-70 13.20 5.73 13.00 | | | | | | 8.67 | 7.01 | 22.10 | | 13 36 44.25 121 50.35 11-15-70 0.26 0.19 0.45 0.90 14 36 44.20 121 52.25 8-23-70 5.20 7.50 15.50 28.20 15 36 44.00 121 50.00 5-29-70 0.0 0.19 0.35 0.54 16 36 44.00 121 49.50 2-20-70 0.69 0.14 2.75 3.58 17 36 43.75 121 54.45 11.15-70 1.02 0.38 0.70 2.10 18 36 43.50 121 51.80 2-20-70 1.73 2.64 2.40 6.77 19 36 43.51 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.18 121 57.00 2-8-70 0.0 5.00 20.50 25.50 21 36 42.90 121 58.00 2-20-70 0.0 0.35 1.92 2.27 23 36 42.55 121 53.30 8-23-70 13.20 5.73 13.00 31.93 24 36 42.50 121 50.30 8-23-70 19.30 0.65 2.75 | | | | 2-20-70 | | 0.40 | 0.45 | | | 14 36 44.20 121 52.25 8-23-70 5.20 7.50 15.50 28.20 15 36 44.00 121 50.00 5-29-70 0.0 0.19 0.35 0.54 16 36 44.00 121 49.50 2-20-70 0.69 0.14 2.75 3.58 17 36 43.75 121 54.45 11-15-70 1.02 0.38 0.70 2.10 18 36 43.50 121 51.80 2-20-70 1.73 2.64 2.40 6.77 19 36 43.35 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.18 121 57.00 2-8-70 0.0 5.00 20.50 25.50 21 36 42.90 121 58.00 2-20-70 0.0 0.35 1.92 2.27 23 36 42.55 121 53.30 8-23-70 13.20 5.73 13.00 31.93 24 36 42.50 121 50.30 8-23-70 19.30 0.65 2.75 22.70 25 36 41.70 121 55.00 2-20-70 1.22 0.53 2.40 4.15 26 36 41.55 121 55.50 2-8-70 0.0 2. | | | | | | 0.18 | | | | 15 36 44.00 121 50.00 5-29-70 0.0 0.19 0.35 0.54 16 36 44.00 121 49.50 2-20-70 0.69 0.14 2.75 3.58 17 36 43.75 121 54.45 11.15-70 1.02 0.38 0.70 2.10 18 36 43.50 121 51.80 2-20-70 1.73 2.64 2.40 6.77 19 36 43.35 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.18 121 57.00 2-8-70 0.0 5.00 20.50 25.50 21 36 43.00 121 51.00 5-29-70 6.12 1.30 6.01 13.43 22 36 42.90 121 58.00 2-20-70 0.0 0.35 1.92 2.27 23 36 42.55 121 53.30 8-23-70 13.20 5.73 13.00 31.93 24 36 42.50 121 50.30 8-23-70 19.30 0.65 2.75 22.70 25 36 41.70 121 55.00 2-20-70 1.22 0.53 7.01 | 13 | 36 44.25 | 121 50.35 | 11-15-70 | | 0.19 | 0.45 | 0.90 | | 16 36 44.00 121 49.50 2-20-70 0.69 0.14 2.75 3.58 17 36 43.75 121 54.45 11-15-70 1.02 0.38 0.70 2.10 18 36 43.50 121 51.80 2-20-70 1.73 2.64 2.40 6.77 19 36 43.35 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.00 121 51.00 5-29-70 6.12 1.30 6.01 13.43 22 36 42.90 121 58.00 2-20-70 0.0 0.35 1.92 2.27 23 36 42.55 121 53.30 8-23-70 13.20 5.73 13.00 31.93 24 36 42.50 121 50.30 8-23-70 19.30 0.65 2.75 22.70 25 36 41.70 121 55.00 2-20-70 1.22 0.53 2.40 4.15 26 36 41.50 121 52.00 5-29-70 2.85 2.50 8.01 13.36 27 36 41.50 121 55.00 5-29-70 2.85 2.50 8.01 | 14 | 36 44.20 | 121 52.25 | 8-23-70 | 5.20 | 7.50 | 15.50 | 28.20 | | 17 36 43.75 121 54.45 11:15.70 1.02 0.38 0.70 2.10 18 36 43.50 121 51.80 2-20-70 1.73 2.64 2.40 6.77 19 36 43.35 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.18 121 57.00 2- 8-70 0.0 5.00 20.50 25.50 21 36 43.00 121 51.00 5-29-70 6.12 1.30 6.01 13.43 22 36 42.90 121 58.00 2-20-70 0.0 0.35 1.92 2.27 23 36 42.55 121 53.30 8-23-70 13.20 5.73 13.00 31.93 24 36 42.50 121 50.30 8-23-70 19.30 0.65 2.75 22.70 25 36 41.70 121 55.00 2-20-70 1.22 0.53 2.40 4.15 26 36 41.55 121 55.50 2- 8-70 0.0 2.35 7.01 9.36 27 36 41.50 121 52.00 5-29-70 2.85 2.50 8.01 13.36 28 36 40.90 121 56.40 2-20-70 1.32 <td< td=""><td>15</td><td>36 44.00</td><td>121 50.00</td><td>5-29-70</td><td>0.0</td><td>0.19</td><td>0.35</td><td>0.54</td></td<> | 15 | 36 44.00 | 121 50.00 | 5-29-70 | 0.0 | 0.19 | 0.35 | 0.54 | | 18 36 43.50 121 51.80 2-20-70 1.73 2.64 2.40 6.77 19 36 43.35 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.18 121 57.00 2-8-70 0.0 5.00 20.50 25.50 21 36 43.00 121 51.00 5-29-70 6.12 1.30 6.01 13.43 22 36 42.90 121 58.00 2-20-70 0.0 0.35 1.92 2.27 23 36 42.55 121 53.30 8-23-70 13.20 5.73 13.00 31.93 24 36 42.50 121 50.30 8-23-70 19.30 0.65 2.75 22.70 25 36 41.70 121 55.00 2-20-70 1.22 0.53 2.40 4.15 26 36 41.55 121 55.50 2-8-70 0.0 2.35 7.01 9.36 27 36 41.50 121 52.00 5-29-70 2.85 2.50 8.01 13.36 28 36 40.90 121 56.40 2-20-70 1.32 1.61 9.02 11.95 30 36 40.50 121 53.50 5-29-70 2.55 1 | 16 | 36 44.00 | 121 49.50 | 2-20-70 | 0.69 | 0.14 | 2.75 | 3.58 | | 19 36 43.35 121 56.25 8-23-70 1.12 0.25 0.65 2.02 20 36 43.18 121 57.00 2- 8-70 0.0 5.00 20.50 25.50 21 36 43.00 121 51.00 5-29-70 6.12 1.30 6.01 13.43 22 36 42.90 121 58.00 2-20-70 0.0 0.35 1.92 2.27 23 36 42.55 121 53.30 8-23-70 13.20 5.73 13.00 31.93 24 36 42.50 121 50.30 8-23-70 19.30 0.65 2.75 22.70 25 36 41.70 121 55.00 2-20-70 1.22 0.53 2.40 4.15 26 36 41.55 121 55.50 2- 8-70 0.0 2.35 7.01 9.36 27 36 41.50 121 52.00 5-29-70 2.85 2.50 8.01 13.36 28 36 41.00 121 51.00 11-15-70 0.0 1.61 4.26 5.87 29 36 40.90 121 56.40 2-20-70 1.32 1.61 9.02 11.95 30 36 40.08 121 54.05 2- 8-70 0.0 | 17 | 36 43.75 | 121 54.45 | 11 <del>:</del> 15-70 | 1.02 | 0.38 | 0.70 | 2.10 | | 20 36 43.18 121 57.00 2- 8-70 0.0 5.00 20.50 25.50 21 36 43.00 121 51.00 5-29-70 6.12 1.30 6.01 13.43 22 36 42.90 121 58.00 2-20-70 0.0 0.35 1.92 2.27 23 36 42.55 121 53.30 8-23-70 13.20 5.73 13.00 31.93 24 36 42.50 121 50.30 8-23-70 19.30 0.65 2.75 22.70 25 36 41.70 121 55.00 2-20-70 1.22 0.53 2.40 4.15 26 36 41.55 121 55.50 2-8-70 0.0 2.35 7.01 9.36 27 36 41.50 121 52.00 5-29-70 2.85 2.50 8.01 13.36 28 36 41.00 121 51.00 11-15-70 0.0 1.61 4.26 5.87 29 36 40.90 121 56.40 2-20-70 1.32 1.61 9.02 11.95 30 36 40.50 121 53.50 5-29-70 2.55 1.76 6.76 | 18 | 36 43.50 | 121 51.80 | 2-20-70 | | 2.64 | 2.40 | 6.77 | | 21 36 43.00 121 51.00 5-29-70 6.12 1.30 6.01 13.43 22 36 42.90 121 58.00 2-20-70 0.0 0.35 1.92 2.27 23 36 42.55 121 53.30 8-23-70 13.20 5.73 13.00 31.93 24 36 42.50 121 50.30 8-23-70 19.30 0.65 2.75 22.70 25 36 41.70 121 55.00 2-20-70 1.22 0.53 2.40 4.15 26 36 41.55 121 55.50 2-8-70 0.0 2.35 7.01 9.36 27 36 41.50 121 52.00 5-29-70 2.85 2.50 8.01 13.36 28 36 41.00 121 51.00 11-15-70 0.0 1.61 4.26 5.87 29 36 40.90 121 56.40 2-20-70 1.32 1.61 9.02 11.95 30 36 40.08 121 54.05 2-8-70 2.55 1.76 6.76 11.07 31 36 39.80 121 54.50 5-29-70 2.04 1.91 5.26 9.21 33 36 39.80 121 54.50 2-9-70 0.0 1.4 | 19 | 36 43.35 | 121 56.25 | 8-23-70 | 1.12 | 0.25 | | 2.02 | | 22 36 42.90 121 58.00 2-20-70 0.0 0.35 1.92 2.27 23 36 42.55 121 53.30 8-23-70 13.20 5.73 13.00 31.93 24 36 42.50 121 50.30 8-23-70 19.30 0.65 2.75 22.70 25 36 41.70 121 55.00 2-20-70 1.22 0.53 2.40 4.15 26 36 41.55 121 55.50 2-8-70 0.0 2.35 7.01 9.36 27 36 41.50 121 52.00 5-29-70 2.85 2.50 8.01 13.36 28 36 41.00 121 51.00 11-15-70 0.0 1.61 4.26 5.87 29 36 40.90 121 56.40 2-20-70 1.32 1.61 9.02 11.95 30 36 40.50 121 53.50 5-29-70 2.55 1.76 6.76 11.07 31 36 40.08 121 54.05 2-8-70 0.0 0.82 3.25 4.07 32 36 39.80 121 54.50 5-29-70 2.04 1.91 5.26 9.21 33 36 39.80 121 54.50 2-9-70 0.0 1.42< | 20 | 36 43.18 | 121 57.00 | 2- 8-70 | 0.0 | 5.00 | 20.50 | 25.50 | | 23 36 42.55 121 53.30 8-23-70 13.20 5.73 13.00 31.93 24 36 42.50 121 50.30 8-23-70 19.30 0.65 2.75 22.70 25 36 41.70 121 55.00 2-20-70 1.22 0.53 2.40 4.15 26 36 41.55 121 55.50 2- 8-70 0.0 2.35 7.01 9.36 27 36 41.50 121 52.00 5-29-70 2.85 2.50 8.01 13.36 28 36 41.00 121 51.00 11-15-70 0.0 1.61 4.26 5.87 29 36 40.90 121 56.40 2-20-70 1.32 1.61 9.02 11.95 30 36 40.50 121 53.50 5-29-70 2.55 1.76 6.76 11.07 31 36 40.08 121 54.05 2- 8-70 0.0 0.82 3.25 4.07 32 36 39.80 121 54.50 5-29-70 2.04 1.91 5.26 9.21 33 36 39.80 121 51.50 2- 9-70 0.0 1.42 8.52 9.94 34 36 39.10 121 53.08 2- 8-70 8.67 0 | | 36 43.00 | 121 51.00 | 5-29-70 | 6.12 | 1.30 | 6.01 | 13.43 | | 24 36 42.50 121 50.30 8-23-70 19.30 0.65 2.75 22.70 25 36 41.70 121 55.00 2-20-70 1.22 0.53 2.40 4.15 26 36 41.55 121 55.50 2- 8-70 0.0 2.35 7.01 9.36 27 36 41.50 121 52.00 5-29-70 2.85 2.50 8.01 13.36 28 36 41.00 121 51.00 11-15-70 0.0 1.61 4.26 5.87 29 36 40.90 121 56.40 2-20-70 1.32 1.61 9.02 11.95 30 36 40.50 121 53.50 5-29-70 2.55 1.76 6.76 11.07 31 36 40.08 121 54.05 2- 8-70 0.0 0.82 3.25 4.07 32 36 39.80 121 54.50 5-29-70 2.04 1.91 5.26 9.21 33 36 39.80 121 51.50 2- 9-70 0.0 1.42 8.52 9.94 34 36 39.10 121 53.08 2- 8-70 2.44 0.66 2.40 5.50 35 36 39.10 121 53.08 2- 8-70 8.67 0.66 | 22 | 36 42.90 | 121 58.00 | 2-20-70 | 0.0 | 0.35 | 1.92 | 2.27 | | 25 36 41.70 121 55.00 2-20-70 1.22 0.53 2.40 4.15 26 36 41.55 121 55.50 2- 8-70 0.0 2.35 7.01 9.36 27 36 41.50 121 52.00 5-29-70 2.85 2.50 8.01 13.36 28 36 41.00 121 51.00 11-15-70 0.0 1.61 4.26 5.87 29 36 40.90 121 56.40 2-20-70 1.32 1.61 9.02 11.95 30 36 40.50 121 53.50 5-29-70 2.55 1.76 6.76 11.07 31 36 40.08 121 54.05 2- 8-70 0.0 0.82 3.25 4.07 32 36 39.80 121 54.50 5-29-70 2.04 1.91 5.26 9.21 33 36 39.80 121 57.50 2- 9-70 0.0 1.42 8.52 9.94 34 36 39.10 121 53.08 2- 8-70 2.44 0.66 2.40 5.50 35 36 39.10 121 53.08 2- 8-70 8.67 0.66 3.00 | 23 | 36 42.55 | 121 53.30 | 8-23-70 | 13.20 | 5.73 | 13.00 | 31.93 | | 26 36 41.55 121 55.50 2- 8-70 0.0 2.35 7.01 9.36 27 36 41.50 121 52.00 5-29-70 2.85 2.50 8.01 13.36 28 36 41.00 121 51.00 11-15-70 0.0 1.61 4.26 5.87 29 36 40.90 121 56.40 2-20-70 1.32 1.61 9.02 11.95 30 36 40.50 121 53.50 5-29-70 2.55 1.76 6.76 11.07 31 36 40.08 121 54.05 2- 8-70 0.0 0.82 3.25 4.07 32 36 39.80 121 54.50 5-29-70 2.04 1.91 5.26 9.21 33 36 39.80 121 51.50 2- 9-70 0.0 1.42 8.52 9.94 34 36 39.10 121 53.08 2- 8-70 2.44 0.66 2.40 5.50 35 36 39.10 121 53.08 2- 8-70 8.67 0.66 3.00 12.33 36 36 37.95 121 52.50 2-20-70 2.65 2.79 10.00 15.44 | | 36 42.50 | 121 50.30 | 8-23-70 | 19.30 | 0.65 | 2.75 | 22.70 | | 27 36 41.50 121 52.00 5-29-70 2.85 2.50 8.01 13.36 28 36 41.00 121 51.00 11-15-70 0.0 1.61 4.26 5.87 29 36 40.90 121 56.40 2-20-70 1.32 1.61 9.02 11.95 30 36 40.50 121 53.50 5-29-70 2.55 1.76 6.76 11.07 31 36 40.08 121 54.05 2- 8-70 0.0 0.82 3.25 4.07 32 36 39.80 121 54.50 5-29-70 2.04 1.91 5.26 9.21 33 36 39.80 121 51.50 2- 9-70 0.0 1.42 8.52 9.94 34 36 39.10 121 53.08 2- 8-70 2.44 0.66 2.40 5.50 35 36 39.10 121 53.08 2- 8-70 8.67 0.66 3.00 12.33 36 36 37.95 121 52.50 2-20-70 2.65 2.79 10.00 15.44 | | | | | | | | | | 28 36 41.00 121 51.00 11-15-70 0.0 1.61 4.26 5.87 29 36 40.90 121 56.40 2-20-70 1.32 1.61 9.02 11.95 30 36 40.50 121 53.50 5-29-70 2.55 1.76 6.76 11.07 31 36 40.08 121 54.05 2- 8-70 0.0 0.82 3.25 4.07 32 36 39.80 121 54.50 5-29-70 2.04 1.91 5.26 9.21 33 36 39.80 121 51.50 2- 9-70 0.0 1.42 8.52 9.94 34 36 39.10 121 53.08 2- 8-70 2.44 0.66 2.40 5.50 35 36 39.10 121 53.08 2- 8-70 8.67 0.66 3.00 12.33 36 36 37.95 121 52.50 2-20-70 2.65 2.79 10.00 15.44 | | | | | | | | | | 29 36 40.90 121 56.40 2-20-70 1.32 1.61 9.02 11.95 30 36 40.50 121 53.50 5-29-70 2.55 1.76 6.76 11.07 31 36 40.08 121 54.05 2- 8-70 0.0 0.82 3.25 4.07 32 36 39.80 121 54.50 5-29-70 2.04 1.91 5.26 9.21 33 36 39.80 121 51.50 2- 9-70 0.0 1.42 8.52 9.94 34 36 39.10 121 53.08 2- 8-70 2.44 0.66 2.40 5.50 35 36 39.10 121 53.08 2- 8-70 8.67 0.66 3.00 12.33 36 36 37.95 121 52.50 2-20-70 2.65 2.79 10.00 15.44 | | | | | | | | | | 30 36 40.50 121 53.50 5-29-70 2.55 1.76 6.76 11.07 31 36 40.08 121 54.05 2- 8-70 0.0 0.82 3.25 4.07 32 36 39.80 121 54.50 5-29-70 2.04 1.91 5.26 9.21 33 36 39.80 121 51.50 2- 9-70 0.0 1.42 8.52 9.94 34 36 39.10 121 53.08 2- 8-70 2.44 0.66 2.40 5.50 35 36 39.10 121 53.08 2- 8-70 8.67 0.66 3.00 12.33 36 36 37.95 121 52.50 2-20-70 2.65 2.79 10.00 15.44 | | | | | | | | | | 31 36 40.08 121 54.05 2- 8-70 0.0 0.82 3.25 4.07 32 36 39.80 121 54.50 5-29-70 2.04 1.91 5.26 9.21 33 36 39.80 121 51.50 2- 9-70 0.0 1.42 8.52 9.94 34 36 39.10 121 53.08 2- 8-70 2.44 0.66 2.40 5.50 35 36 39.10 121 53.08 2- 8-70 8.67 0.66 3.00 12.33 36 36 37.95 121 52.50 2-20-70 2.65 2.79 10.00 15.44 | 29 | 36 40.90 | 121 56.40 | 2-20-70 | 1.32 | 1.61 | 9.02 | 11.95 | | 32 36 39.80 121 54.50 5-29-70 2.04 1.91 5.26 9.21 33 36 39.80 121 51.50 2- 9-70 0.0 1.42 8.52 9.94 34 36 39.10 121 53.08 2- 8-70 2.44 0.66 2.40 5.50 35 36 39.10 121 53.08 2- 8-70 8.67 0.66 3.00 12.33 36 36 37.95 121 52.50 2-20-70 2.65 2.79 10.00 15.44 | | | | | | | | | | 33 36 39.80 121 51.50 2- 9-70 0.0 1.42 8.52 9.94 34 36 39.10 121 53.08 2- 8-70 2.44 0.66 2.40 5.50 35 36 39.10 121 53.08 2- 8-70 8.67 0.66 3.00 12.33 36 36 37.95 121 52.50 2-20-70 2.65 2.79 10.00 15.44 | | | | | | | | | | 34 36 39.10 121 53.08 2- 8-70 2.44 0.66 2.40 5.50 35 36 39.10 121 53.08 2- 8-70 8.67 0.66 3.00 12.33 36 36 37.95 121 52.50 2-20-70 2.65 2.79 10.00 15.44 | | | . — . – | | | | | | | 35 36 39.10 121 53.08 2- 8-70 8.67 0.66 3.00 12.33 36 36 37.95 121 52.50 2-20-70 2.65 2.79 10.00 15.44 | 1 | | | | 1 | | | | | 36 37.95 121 52.50 2-20-70 2.65 2.79 10.00 15.44 | | | | | | | | | | | | | | | | | | | | 36 37.77 121 51.83 2- 8-70 0.49 0.21 0.50 1.20 | | | | | | | | | | , , , , , , , , , , , , , , , , , , , , | 37 | 36 37.77 | 121 51.83 | 2- 8-70 | 0.49 | 0.21 | 0.50 | 1.20 | | . ' | | | | | | | | | Table 3. (continued) CONCENTRATIONS OF DDT, DDD, AND DDE IN MARINE SEDIMENT SAMPLES FROM MONTEREY BAY. | | | <del></del> | | <del></del> | | | |---------|--------------------------------|-------------|--------------|--------------|--------------|----------| | Station | LOCATION<br>Latitude Longitude | Date | DDT<br>(ppb) | DDD<br>(ppb) | DDE<br>(ppb) | TOTAL | | 39 | 36 54.80 122 01.00 | 11-24-71 | 0.60 | 1.90 | 2.00 | 4.50 | | 40 | 36 57.10 121 56.20 | 11-10-71 | 1.62 | 8.15 | 5.54 | 15.31 | | 41 | 36 56.70 121 59.20 | 11-24-71 | 0.93 | 2.75 | 4.48 | 8.16 | | 42 | 36 55.50 121 52.60 | 11-10-71 | 0.85 | 1.58 | 0.66 | 3.09 | | 43 | 36 55.10 121 56.70 | 11-10-71 | 0.81 | 3.07 | 2.59 | 6.47 | | 44 | 36 53.60 121 57.50 | 11-24-71 | 1.13 | 2.54 | 2.47 | 6.14 | | 45 | 36 53.00 121 55.00 | 11-10-71 | 1.21 | 2.01 | 1.88 | 5.10 | | 46 | 36 52.30 121 59.80 | 11-24-71 | 1.27 | 3.81 | 5.06 | 10.14 | | 47 | 36 51.00 121 49.80 | 11-10-71 | 1.16 | 1.27 | 1.13 | 3.56 | | 48 | 36 50.80 121 53.60 | 11-24-71 | 1.62 | 5.61 | 6.72 | 13.95 | | 49 | 36 50.20 121 50.20 | 11-10-71 | 0.78 | 1.48 | 1.29 | 3.55 | | 1 | 36 47.25 121 48.90 | 7- 9-73 | 1.06 | 0.53 | 0.56 | 2.15 | | 2 | 36 46.85 121 53.50 | 7- 9-73 | 9.50 | 11.40 | 17.50 | 38.40 | | 3 | 36 46.35 121 49.00 | 7- 9-73 | 1.10 | 0.53 | 0.63 | 2.26 | | 4 | 36 46.05 121 51.00 | 7- 9-73 | 3.63 | 5.43 | 6.91 | 15.97 | | 10 | 36 45.10 121 50.00 | 7- 2-73 | 0.92 | 0.39 | 0.52 | 1.83 | | 11 | 36 45.00 121 49.00 | 7- 2-73 | 2.18 | 0.72 | 0.83 | 3.73 | | 14 | 36 44.20 121 52.25 | 6-21-73 | 30.60 | 6.07 | 11.20 | 47.87 | | 16 | 36 44.00 121 49.50 | 7- 2-73 | 0.96 | 0.06 | 0.23 | 1.25 | | 17 | 36 43.75 121 54.45 | 8- 9-73 | 5.41 | 4.54 | 17.30 | 27.25 | | 19 | 36 43.35 121 56.25 | 8- 9-73 | 72.70 | 3.19 | 12.00 | 87.89 | | 20 | 36 43.18 121 57.00 | 6-21-73 | 63.10 | 0.79 | 3.48 | 67.37 | | 22 | 36 42.90 121 58.00 | 8- 9-73 | 0.93 | 0.90 | 6.06 | 7.89 | | 23 | 36 42.55 121 53.30 | 6-21-73 | 29.90 | 4.32 | 12.20 | 46.42 | | 25 | 36 41.70 121 55.00 | 7-16-73 | 1.14 | 2.74 | 10.49 | 14.37 | | 26 | 36 41.55 121 55.50 | 7-16-73 | 0.68 | 2.20 | 8.67 | 11.55 | | 29 | 36 40.90 121 56.40 | 7-16-73 | 0.70 | 1.11 | 5.67 | 7.48 | | 34 | 36 39.10 121 53.08 | 8- 9-73 | 1.18 | 0.42 | 2.44 | 4.04 | | 36 | 36 37.95 121 52.50 | 6-21-73 | 83.10 | 0.95 | 3.34 | 87.39 | | 37 | 36 37.77 121 51.83 | 7-16-73 | 0.54 | 0.20 | 0.40 | 1.14 | | 38 | 36 38.47 121 51.68 | 9-21-73 | 0.62 | 0.38 | 2.72 | 3.72 | | | | 1 | | | | | | Ì | | | | | | | | Ļ | <u> </u> | | ↓ | | <del></del> | <u> </u> | Table 4. LEVELS OF DDT, DDD, AND DDE AS PERCENT OF TOTAL RESIDUES IN MARINE SEDIMENT SAMPLES FROM MONTEREY BAY. | Station | LOCATION<br>Latitude Longitude | Date | DDT<br>(%) | DDD<br>(%) | DDE<br>(%) | |------------------|------------------------------------------|----------------------|---------------|----------------|----------------| | 4 | 20 47 25 121 48 00 | 0.22.70 | 46.00 | 20.62 | 22.20 | | 1 | 36 47.25 121 48.90<br>36 46.85 121 53.50 | 8-23-70<br>11-15-70 | 46.99<br>7.06 | 20.63<br>29.28 | 32.38<br>63.66 | | 2<br>3 | 36 46.35 121 49.00 | 2-20-70 | 7.00<br>76.75 | 9.54 | 13.71 | | 4 | 36 46.05 121 51.00 | 11-15-70 | 19.82 | 30.62 | 49.56 | | 5 | 36 46.00 121 57.00 | 5-29-70 | 30.27 | 13.15 | 56.58 | | 5<br>6<br>7<br>8 | 36 45.45 121 50.00 | 11-15-70 | 40.72 | 23.35 | 35.93 | | 7 | 36 45.30 121 54.00 | 5-29-70 | 0.0 | 35.66 | 64.34 | | 8 | 36 45.20 121 54.00 | 5-29-70 | 19.75 | 31.74 | 48.51 | | 9 | 36 45.10 121 52.00 | 5-29-70 | 31.71 | 36.38 | 31.92 | | 10 | 36 45.20 121 50.00 | 5-29-70 | 29.05 | 39.23 | 31.72 | | 11 | 36 45.00 121 49.00 | 2-20-70 | 81.19 | 8.85 | 9.96 | | 12 | 36 44.60 121 50.50 | 2-20-70 | 53.06 | 18.37 | 28.57 | | 13 | 36 44.25 121 50.35 | 11-15-70 | 28.89 | 21.11 | 50.00 | | 14 | 36 44.20 121 52.25 | 8-23-70 | 18.44 | 26.60 | 54.96 | | 15 | 36 44.00 121 50.00 | 5-29-70 | 0.0 | 35.19 | 64.81 | | 16 | 36 44.00 121 49.50 | 2-20-70 | 19.27 | 3.91 | 76.82 | | 17 | 36 43.75 121 54.45 | 11-15-70 | 48.57 | 18.10 | 33.33 | | 18 | 36 43.50 121 51.80 | 2-20-70 | 25.55 | 39.00 | 35.45 | | 19 | 36 43.35 121 56.25 | 8-23-70 | 55.45 | 12.38 | 32.18 | | 20 | 36 43.18 121 57.00 | 2- 8-70 | 0.0 | 19.61 | 80.39 | | 21 | 36 43.00 121 51.00 | 5-29-70 | 45.57 | 9.68 | 44.75 | | 22<br>23 | 36 42.90 121 58.00<br>36 42.55 121 53.30 | 2-20-70<br>8-23-70 | 0.0<br>41.34 | 15.42<br>17.95 | 84.58<br>40.71 | | 23<br>24 | 36 42.50 121 50.30 | 8-23-70 | 85.02 | 2.86 | 12.11 | | 25 | 36 41.70 121 55.00 | 2-20-70 | 29.40 | 12.77 | 57.83 | | 26 | 36 41.55 121 55.50 | 2- 8-70 | 0.0 | 25.11 | · 74.89 | | 27 | 36 41.50 121 52.00 | 5-2 <del>9</del> -70 | 21.33 | 18.71 | 59.96 | | 28 | 36 41.00 121 51.00 | 11-15-70 | 0.0 | 27.43 | 72.57 | | 29 | 36 40.90 121 56.40 | 2-20-70 | 11.05 | 13.47 | 75.48 | | 30 | 36 40.50 121 53.50 | 5-29-70 | 23.04 | 15.90 | 61.07 | | 31 | 36 40.08 121 54.05 | 2- 8-70 | 0.0 | 20.15 | 79.85 | | 32 | 36 39.80 121 54.50 | 5-29-70 | 22.15 | 20.74 | 57.11 | | 33 | 36 39.80 121 51.50 | 2- 9-70 | 0.0 | 14.29 | 85.71 | | 34 | 36 39.10 121 53.08 | 2- 8-70 | 44.36 | 12.00 | 43.64 | | 35 | 36 39.10 121 53.08 | 2- 8-70 | 70.32 | 5.35 | 24.33 | | 36 | 36 37.95 121 52.50 | 2-20-70 | 17.16 | 18.07 | 64.77 | | 37 | 36 37.77 121 51.83 | 2- 8-70 | 40.83 | 17.50 | 41.67 | Table 4. (continued) LEVELS OF DDT, DDD, AND DDE AS PERCENT OF TOTAL RESIDUES IN MARINE SEDIMENT SAMPLES FROM MONTEREY BAY. | Station | LOCATION<br>Latitude Longitude | Date | DDT<br>(%) | DDD<br>(%) | DDE<br>(%) | |----------|------------------------------------------|--------------------|--------------|----------------|----------------| | 39 | 36 54.80 122 01.00 | 11-24-71 | 13.33 | 42.22 | 44.44 | | 40 | 36 57.10 121 56.20 | 11-10-71 | 10.58 | 53.23 | 36.19 | | 41 | 36 56.70 121 59.20 | 11-24-71 | 11.40 | 33.70 | 54.90 | | 42 | 36 55.50 121 52.60 | 11-10-71 | 27.51 | 51.13 | 21.36 | | 43 | 36 55.10 121 56.70 | 11-10-71 | 12.52 | 47.45 | 40.03 | | 44 | 36 53.60 121 57.50 | 11-24-71 | 18.40 | 41.37 | 40.23 | | 45 | 36 53.00 121 55.00 | 11-10-71 ' | 23.73 | 39.41 | 36.86 | | 46 | 36 52.30 121 59.80 | 11-24-71 | 12.52 | 37.57 | 49.90 | | 47 | 36 51.00 121 49.80 | 11-10-71 | 32.58 | 35.67 | 31.74 | | 48 | 36 50.80 121 53.60 | 11-24-71 | 11.61 | 40.22 | 48.17 | | 49 | 36 50.20 121 50.20 | 11-10-71 | 21.97 | 41.69 | 36.34 | | 1 | 36 47.25 121 48.90 | 7- 9-73 | 49.30 | 24.65 | 26.05 | | 2 3 | 36 46.85 121 53.50 | 7- 9-73 | 24.74 | 29.69 | 45.57 | | 3 | 36 46.35 121 49.00 | 7- 9-73 | 48.67 | 23.45 | 27.88 | | 4 | 36 46.05 121 51.00 | 7- 9-73 | 22.73 | 34.00 | 43.27 | | 10 | 36 45.10 121 50.00 | 7- 2-73 | 50.27 | 21.31 | 28.42 | | 11 | 36 45.00 121 49.00 | 7- 2-73 | 58.45 | 19.30 | 22.25 | | 14 | 36 44.20 121 52.25 | 6-21-73 | 63.92 | 12.68 | 23.40 | | 16 | 36 44.00 121 49.50 | 7- 2-73 | 76.80 | 4.80 | 18.40 | | 17 | 36 43.75 121 54.45 | 8- 9-73 | 19.85 | 16.66 | 63.49 | | 19 | 36 43.35 121 56.25 | 8- 9-73 | 82.72 | 3.63 | 13.65 | | 20 | 36 43.18 121 57.00 | 6-21-73 | 93.66 | 1.17 | 5.17 | | 22 | 36 42.90 121 58.00 | 8- 9-73 | 11.79 | 11.41 | 76.81 | | 23 | 36 42.55 121 53.30 | 6-21-73 | 64.41 | 9.31 | 26.28 | | 25 | 36 41.70 121 55.00 | 7-16-73<br>7-16-73 | 7.93<br>5.89 | 19.07<br>19.05 | 73.00<br>75.06 | | 26<br>29 | 36 41.55 121 55.50<br>36 40.90 121 56.40 | 7-16-73 | 9.36 | 14.84 | 75.06<br>75.80 | | 29<br>34 | 36 39.10 121 53.08 | 8- 9-73 | 29.21 | 10.40 | 75.80<br>60.40 | | 36 | 36 37.95 121 52.50 | 6-21-73 | 95.09 | 1.09 | 3.82 | | 37 | 36 37.77 121 51.83 | 7-16-73 | 47.37 | 17.54 | 35.09 | | 38 | 36 38.47 121 51.68 | 9-21-73 | 16.67 | 10.22 | 73.12 | Table 5. VARIANCE OF SAMPLING MEASURED AT STATION 38. | Sample | Subsample | DDT<br>(ppb) | DDD<br>(ppb) | DDE<br>(ppb) | TOTAL (ppb) | |-----------------------|-----------|--------------------|--------------------|--------------|--------------------| | 1 | 1 | .687 | .430 | 3.01 | 4.13 | | | 2 | .772 | .470 | 2.90 | 4.14 | | | 3 | .550 | .370 | 2.85 | 3.77 | | 2 | 1 | .561 | .345 | 2.89 | 3.80 | | | 2 | .706 | .333 | 2.38 | 3.42 | | | 3 | .801 | .280 | 2.57 | 3.65 | | 3 | 1 | .663 | .439 | 2.63 | 3.73 | | | 2 | .398 | .315 | 2.96 | 3.67 | | | 3 | .405 | .418 | 2.32 | 3.14 | | Mean | | .6159 | .3778 | 2.7233 | 3.7167 | | Variance | | .02167 | .00416 | .06574 | .09841 | | Standard Deviation | | ± .1472 | ± .0645 | ± .2564 | ÷ .3137 | | Standard ( | Error | ÷ .0491 | ± .0215 | ± .0855 | <sup>±</sup> .1046 | | 95% Confidence Limits | | <sup>‡</sup> .1131 | <sup>±</sup> .0495 | ± .1971 | <sup>+</sup> .2411 | Figure 2. DDT as a percent of the total concentration of DDT, DDD, and DDE plotted for data obtained in 1970 and 1971. Circled numbers indicate actual percents in excess of 50%. Figure 3. DDD as a percent of the total concentration of DDT, DDD, and DDE plotted for data obtained in 1970 and 1971. Circled numbers indicate actual percents in excess of 50%. Figure 4. DDE as a percent of the total concentration of DDT, DDD, and DDE plotted for data obtained in 1970 and 1971. Circled numbers indicate actual percents in excess of 50% Figure 5. Total concentration in parts per billion of DDT, DDD, and DDE from data obtained in 1970 and 1971. Circled numbers indicate actual concentrations in excess of 50 ppb. Figure 6. Total concentration in parts per billion of DDT, DDD, and DDE from data obtained in 1973. The blank portions of the area were not sampled. Circled numbers indicate actual concentrations in excess of 50 ppb. ### ANALYSIS OF DYNAMICS An approach to the analysis of the dynamics of sediment systems has been developed and has led to the development of Fortran programs permitting the rapid evaluation of data. The discussion of the approach to analysis will refer to output from these programs. The programs themselves with explanatory documentation are to be found in an appendix at the end of this report. The first program requires sampling at the same set of stations at two points in time. The residue levels measured in sediments from the 19 stations sampled in both 1970 and 1973 constitute the data set used by this program. These data are presented as the first two pages of output, see Tables 6 and 7, followed by two pages showing the percent composition of total derivatives, see Tables 8 and 9. From the sums and means in Tables 6 and 7 it would appear that while DDT has shown an increase of several-fold the concentrations of DDD and DDE have changed very little. With respect to these latter two compounds input must be rather closely balanced with respect to output and decay. The changes in levels detected at individual stations must be a reflection of the rates of input of new material, output or removal both geographically and into other parts of the ecosystem, decay or decomposition within the sediment, and finally a shifting about of the material from sampling station to sampling station due primarily to the action of currents. The obvious complexity of the effect of these various rates has made the analysis of such a system extremely difficult. The approach presented here has necessitated the making of several simplifying assumptions. The utility of the method and the validity of the assumptions must await further evaluation, and the approach is intended more as a beginning than a final answer to the needs for methods of data analysis. Figure 7 presents a diagram of the essential features of the system as it is envisaged. The individual stations where sediment samples were obtained are considered as compartments within the system of sediments in the southern portion of Monterey Bay. The diagram indicates that this system has a relationship to all other systems both geographical and of other kinds where the three compounds occur. Systems of different kinds would include the water above the sediment, the atmosphere above the water, organisms, etc. The effect of the rate of input, I, the rate of output, O, the rate of decay, D, and the rates of internal translocation, $T_I$ and $T_O$ , on the concentration within the system and within compartments is indicated. A comparison of Figures 5 and 6 suggests that with continued input areas with the higher concentrations tend to increase in concentration due to the movement of the compounds within the system to these sinks or basins. Therefore, the amount of increase within any sediment compartment would appear to be related to the concentration already existing in that compartment. A similar relationship between the amount of decrease and concentration is less easily deduced from these Figures. However, the results of laboratory assays to be discussed in a later section have not revealed either a saturation of the decay process nor a stimulation by induction and selection of microbial populations that can be related to the concentration of these compounds. Instead the amount of decomposition appears to be a function of concentration. That the amount of translocation would be similarly related to concentration seems apparent. Table 6. FIRST PAGE OF COMPUTER OUTPUT SHOWING CONCENTRATION OF POLLUTANT COMPOUNDS IN SEDIMENT FROM SAMPLE STATIONS AT FIRST SAMPLING TIME. $C_1$ IDENTIFIES AS CONCENTRATIONS AT TIME ONE. $C_1$ | Station | LOCATION<br>Latitude Longitude | Date | DDT (ppb) | DDD<br>(ppb) | DDE<br>(ppb) | TOTAL | |---------|--------------------------------|-------------|---------------------|---------------------|--------------|-------------| | | | | | | | | | 1 | 36 47.25 121 48.90 | 8-23-70 | 8.36 | 3.67 | 5.76 | 17.79 | | 2 | 36 46.85 121 53.50 | 11-15-70 | 1.63 | 6.76 | 14.70 | 23.09 | | 3 | 36 46.35 121 49.00 | 2-20-70 | 5.71 | 0.71 | 1.02 | 7.44 | | 4 | 36 46.05 121 51.00 | 11-15-70 | 4.28 | 6.61 | 10.70 | 21.59 | | 10 | 36 45.10 121 50.00 | 5-29-70 | 6.42 | 8.67 | 7.01 | 22.10 | | 11 | 36 45.00 121 49.00 | 2-20-70 | 3.67 | 0.40 | 0.45 | 4.52 | | 14 | 36 44.20 121 52.25 | 8-23-70 | 5.20 | 7.50 | 15.50 | 28.20 | | 16 | 36 44.00 121 49.50 | 2-20-70 | 0.69 | 0.14 | 2.75 | 3.58 | | 17 | 36 43.75 121 54.45 | 11-15-70 | 1.02 | 0.38 | 0.70 | 2.10 | | 19 | 36 43.35 121 56.25 | 8-23-70 | 1.12 | 0.25 | 0.65 | 2.02 | | 20 | 36 43.18 121 57.00 | 2- 8-70 | 0.0 | 5.00 | 20.50 | 25.50 | | 22 | 36 42.90 121 58.00 | 2-20-70 | 0.0 | 0.35 | 1.92 | 2.27 | | 23 | 36 42.55 121 53.30 | 8-23-70 | 13.20 | 5.73 | 13.00 | 31.93 | | 25 | 36 41.70 121 55.00 | 2-20-70 | 1.22 | 0.53 | 2.40 | 4.15 | | 26 | 36 41.55 121 55.50 | 2- 8-70 | 0.0 | 2.35 | 7.01 | 9.36 | | 29 | 36 40.90 121 56.40 | 2-20-70 | 1.32 | 1.61 | 9.02 | 11.95 | | 34 | 36 39.10 121 53.08 | 2- 8-70 | 2.44 | 0.66 | 2.40 | 5.50 | | 36 | 36 37.95 121 52.50 | 2-20-70 | 2.65 | 2.79 | 10.00 | 15.44 | | 37 | 36 37.77 121 51.83 | 2- 8-70 | 0.49 | 0.21 | 0.50 | 1.20 | | | TOTALS | | 59.4199 | 54.3199 | 125.9899 | 239.7298 | | | Mean | | 3.1274 | 2.8589 | 6.6310 | 12.6174 | | | Standard Deviation | | <sup>+</sup> 3.4385 | <sup>±</sup> 2.9296 | ± 6.0673 | ± 10.1773 | | | Standard Error | | ± 0.7889 | ± 0.6721 | ± 1.3919 | ± 2.3348 | | | 95% Confidence Limits | | ± 1.6574 | ± 1.4121 | ± 2.9245 | ± 4.9055 | | | | <del></del> | | | | <del></del> | Table 7. SECOND PAGE OF COMPUTER OUTPUT SHOWING CONCENTRATION OF POLLUTANT COMPOUNDS IN SEDIMENT FROM SAMPLE STATIONS AT THE SECOND SAMPLING TIME. ${\rm C_2}$ IDENTIFIES AS CONCENTRATIONS AT TIME TWO. $C_2$ | Station | LOCATION<br>Latitude Longitude | Date | DDT<br>(ppb) | DDD<br>(ppb) | DDE<br>(ppb) | TOTAL | |---------|--------------------------------|---------|--------------|-----------------|-----------------|------------------| | | | | | | | | | 1 | 36 47.25 121 48.90 | 7- 9-73 | 1.06 | 0.53 | 0.56 | 2.15 | | | 36 46.85 121 53.50 | 7- 9-73 | 9.50 | 11.40 | 17.50 | 38.40 | | 2 3 | 36 46.35 121 49.00 | 7- 9-73 | 1.10 | 0.53 | 0.63 | 2.26 | | 4 | 36 46.05 121 51.00 | 7- 9-73 | 3.63 | 5.43 | 6.91 | 15.97 | | 10 | 36 45.10 121 50.00 | 7- 2-73 | 0.92 | 0.39 | 0.52 | 1.83 | | 11 | 36 45.00 121 49.00 | 7- 2-73 | 2.18 | 0.72 | 0.83 | 3.73 | | 14 | 36 44.20 121 52.25 | 6-21-73 | 30.60 | 6.07 | 11.20 | 47.87 | | 16 | 36 44.00 121 49.50 | 7- 2-73 | 0.96 | 0.06 | 0.23 | 1.25 | | 17 | 36 43.75 121 54.45 | 8- 9-73 | 5.41 | 4.54 | 17.30 | 27.25 | | 19 | 36 43.35 121 56.25 | 8- 9-73 | 72.70 | 3.19 | 12.00 | 87.89 | | 20 | 36 43.18 121 57.00 | 6-21-73 | 63.10 | 0.79 | 3.48 | 67.37 | | 22 | 36 42.90 121 58.00 | 8- 9-73 | 0.93 | 0.90 | 6.06 | 7.89 | | 23 | 36 42.55 121 53.30 | 6-21-73 | 29.90 | 4.32 | 12.20 | 46.42 | | 25 | 36 41.70 121 55.00 | 7-16-73 | 1.14 | 2.74 | 10.49 | 14.37 | | 26 | 36 41.55 121 55.50 | 7-16-73 | 0.68 | 2.20 | 8.67 | 11.55 | | 29 | 36 40.90 121 56.40 | 7-16-73 | 0.70 | 1.11 | 5.67 | 7.48 | | 34 | 36 39.10 121 53.08 | 8- 9-73 | 1.18 | 0.42 | 2.44 | 4.04 | | 36 | 36 37.95 121 52.50 | 6-21-73 | 83.10 | 0.95 | 3.34 | 87.39 | | 37 | 36 37.77 121 51.83 | 7-16-73 | 0.54 | 0.20 | 0.40 | 1.14 | | | TOTALO | | 200 2200 | 40,4000 | 120 4200 | 470 0400 | | | TOTALS | | 309.3296 | 46.4899 | 120.4299 | 476.2488 | | | Mean | | 16.2805 | 2.4468 | 6.3384 | 25.0657 | | | Standard Deviation | ÷ | 26.9909 | ± 2.8805 | ± 5.7417 | ± 29.2362 | | | Standard Error | Ť | 6.1921 | ± 0.6608 | ± 1.3172 | <u>+</u> 6.7072 | | | 95% Confidence Limits | ÷ | 13.0097 | <u>†</u> 1.3884 | <u>+</u> 2.7675 | <u>+</u> 14.0919 | | | | | | | | | Table 8. THIRD PAGE OF COMPUTER OUTPUT SHOWING PERCENT OF TOTAL OF EACH OF THE THREE COMPOUNDS IN SEDIMENTS FROM SAMPLE STATIONS AT THE FIRST SAMPLING TIME. $C_1$ IDENTIFIES AS DATA FOR TIME ONE. $C_1$ | | | | | | <del></del> | |---------|--------------------------------|----------|------------|-----------------|------------------| | Station | LOCATION<br>Latitude Longitude | Date | DDT<br>(%) | DDD<br>(%) | DDE<br>(%) | | | | 1 | - | | | | 1 1 | 36 47.25 121 48.90 | 8-23-70 | 46.99 | 20.63 | 32.38 | | 2 | 36 46.85 121 53.50 | 11-15-70 | 7.06 | 29.28 | 63.66 | | 3 | 36 46.35 121 49.00 | 2-20-70 | 76.75 | 9.54 | 13.71 | | 4 | 36 46.05 121 51.00 | 11-15-70 | 19.82 | 30.62 | 49.56 | | 10 | 36 45.10 121 50.00 | 5-29-70 | 29.05 | 39.23 | 31.72 | | 11 | 36 45.00 121 49.00 | 2-20-70 | 81.19 | 8.85 | 9.96 | | 14 | 36 44.20 121 52.25 | 8-23-70 | 18.44 | 26.60 | 54.96 | | 16 | 36 44.00 121 49.50 | 2-20-70 | 19.27 | 3.91 | 76.82 | | 17 | 36 43.75 121 54.45 | 11-15-70 | 48.57 | 18.10 | 33.33 | | 19 | 36 43.35 121 56.25 | 8-23-70 | 55.45 | 12.38 | 32.18 | | 20 | 36 43.18 121 57.00 | 2- 8-70 | 0.0 | 19.61 | 80.39 | | 22 | 36 42.90 121 58.00 | 2-20-70 | 0.0 | 15.42 | 84.58 | | 23 | 36 42.55 121 53.30 | 8-23-70 | 41.34 | 17.95 | 40.71 | | 25 | 36 41.70 121 55.00 | 2-20-70 | 29.40 | 12.77 | 57.83 | | 26 | 36 41.55 121 55.50 | 2- 8-70 | 0.0 | 25.11 | 74.89 | | 29 | 36 40.90 121 56.40 | 2-20-70 | 11.05 | 13.47 | 75.48 | | 34 | 36 39.10 121 53.08 | 2- 8-70 | 44.36 | 12.00 | 43.64 | | 36 | 36 37.95 121 52.50 | 2-20-70 | 17.16 | 18.07 | 64.77 | | 37 | 36 37.77 121 51.83 | 2- 8-70 | 40.83 | 17.50 | 41.67 | | | TOTALC | | F0C 7410 | 251 0140 | 000 0007 | | | TOTALS | | 586.7412 | 351.0149 | 962.2397 | | | Mean | | 30.8811 | 18.4745 | 50.6442 | | | Standard Deviation | | ± 24.2998 | ± 8.6373 | ± 22.2953 | | | Standard Error | | ± 5.5748 | ± 1.9815 | ± 5.1149 | | | 95% Confidence Limits | | ± 11.7126 | <u>†</u> 4.1632 | <u>†</u> 10.7464 | | | | | | | | Table 9. FOURTH PAGE OF COMPUTER OUTPUT SHOWING PERCENT OF TOTAL OF EACH OF THE THREE COMPOUNDS IN SEDIMENT FROM SAMPLE STATIONS AT THE SECOND SAMPLING TIME. C<sub>2</sub> IDENTIFIES AS DATA FOR TIME TWO. $C_2$ | Station | LOCATION<br>Latitude Longitude | Date | DDT<br>(%) | DDD<br>(%) | DDE<br>(%) | |---------|--------------------------------|-----------------|-----------------|-----------------|-----------------| | | | | <del></del> - | | | | ] | | | ] | ] | | | 1 | 36 47.25 121 48.90 | 7- 9-73 | 49.30 | 24.65 | 26.05 | | 2 | 36 46.85 121 53.50 | 7- 9-73 | 24.74 | 29.69 | 45.57 | | 3 | 36 46.35 121 49.00 | 7- <b>9</b> -73 | 48.67 | 23.45 | 27.88 | | 4 | 36 46.05 121 51.00 | 7- 9-73 | 22.73 | 34.00 | 43.27 | | 10 | 36 45.10 121 50.00 | 7- 2-73 | 50.27 | 21.31 | 28.42 | | 11 | 36 45.00 121 49.00 | 7- 2-73 | 58.45 | 19.30 | 22.25 | | 14 | 36 44.20 121 52.25 | 6-21-73 | 63.92 | 12.68 | 23.40 | | 16 | 36 44.00 121 49.50 | 7- 2-73 | 76.80 | 4.80 | 18.40 | | 17 | 36 43.75 121 54.45 | 8- 9-73 | 19.85 | 16.66 | 63.49 | | 19 | 36 43.35 121 56.25 | 8- 9-73 | 82.72 | 3.63 | 13.65 | | 20 | 36 43.18 121 57.00 | 6-21-73 | 93.66 | 1.17 | 5.17 | | 22 | 36 42.90 121 58.00 | 8- 9-73 | 11.79 | 11.41 | 76.81 | | 23 | 36 42.55 121 53.30 | 6-21-73 | 64.41 | 9.31 | 26.28 | | 25 | 36 41.70 121 55.00 | 7-16-73 | 7.93 | 19.07 | 73.00 | | 26 | 36 41.55 121 55.50 | 7-16-73 | 5.89 | 19.05 | 75.06 | | 29 | 36 40.90 121 56.40 | 7-16-73 | 9.36 | 14.84 | 75.80 | | 34 | 36 39.10 121 53.08 | 8- 9-73 | 29.21 | 10.40 | 60.40 | | 36 | 36 37.95 121 52.50 | 6-21-73 | 95.09 | 1.09 | 3.82 | | 37 | 36 37.77 121 51.83 | 7-16-73 | 47.37 | 17.54 | 35.09 | | | | | | | | | | TOTALS | | 862.1616 | 294.0427 | 743.7920 | | | Mean | | 45.3769 | 15.4759 | 39.1469 | | | Standard Deviation | | ± 29.2068 | <u>†</u> 9.2122 | ÷ 24.6220 | | | Standard Error | | <u>†</u> 6.7005 | <u>†</u> 2.1134 | <u>†</u> 5.6487 | | | 95% Confidence Limit | s | ± 14.0777 | ± 4.4403 | ± 11.8679 | | | | | | | | D=RATE OF DECAY T<sub>O</sub>=RATE OF TRANSLOCATION OUT OF A COMPARTMENT T<sub>I</sub>=RATE OF TRANSLOCATION INTO A COMPARTMENT Figure 7. Model of the system of sediment compartments and this system's relation to other systems. I = RATE OF INPUT OF RESIDUE O = RATE OF OUTPUT OF RESIDUE Therefore, for the estimation of the overall rate of change in a compartment, i.e., the resultant of the various rates affecting concentration, the following expression was solved for K, $$C_2 = C_1 e^{KN} \tag{1}$$ C<sub>1</sub> and C<sub>2</sub> are the concentrations within the compartment at time one and time two, N is the length of the time interval in years, and e is the natural logarithm base. K is a nominal percentage rate in the form of a decimal fraction resulting in continuous compounding, and is converted to an annual rate for the expression, $$C_2 = C_1 (1+K)^N (2)$$ The results of these calculations for the three compounds are presented as the fifth, sixth, and seventh pages of computer output in Tables 10, 11, and 12. In these tables the values of K are sorted into positive and negative values for purposes discussed below. Compartments which showed a zero concentration at time one were adjusted by substitution of 0.004 ppb, a value generally just below the level of detection in the analyses. The standard deviation of these estimates was approximated through the use of the expression for the standard deviation of a function of two random variables (Papoulis, 1965), $$\sigma_{K(C_1,C_2)}^2 \stackrel{\sim}{\sim} \left(\frac{\partial K}{\partial C_1}\right)^2 \sigma_{C_1}^2 + \left(\frac{\partial K}{\partial C_2}\right)^2 \sigma_{C_2}^2 + 2\frac{\partial K}{\partial C_1} \frac{\partial K}{\partial C_2} \sigma_{C_1C_2}^2$$ (3) For ease in computation only two variables at a time were used in developing this approximation to the standard deviation. If we assume that the rate of change within the system can be approximated by the mean rate of change of its separate compartments, the mean of the K values becomes an estimate of the rate of net change of the system. Net rate of change = $$I - (O+D)$$ (4) This net rate of change is unaffected by the rates of internal translocation, T<sub>I</sub> and T<sub>O</sub>, which are equal in magnitude and opposite in sign. The net rate of change is the sum of two other mean rates. One is the rate of input, I, which can be estimated by the mean of the positive K's, and the other is obtained as the mean of the negative K's and may be taken as an estimate of (O+D) in equation 4. The mean of the differences between each K and the net rate of change, that is the mean deviation from the mean of K, becomes an estimate of T<sub>O</sub> and T<sub>I</sub>. The results of these calculations are included in Tables 10, 11, and 12. The separation of the rate O and D is more difficult and several approaches have been attempted. The decimal fraction of the input rate that is translocated within the system, T<sub>I</sub>/I, differs from compound to compound: DDT, 0.665; DDD, 0.882; and DDE, 0.860. One explanation for this difference is that they reflect differences in the rates of decomposition within the sediments. Based upon this assumption the rate O and D have been estimated by the following equations, Table 10. FIFTH PAGE OF COMPUTER OUTPUT SHOWING THE RATE OF CHANGE, K, FOR DDT IN EACH SEDIMENT COMPARTMENT. | | | | | | <del></del> - | , | <u> </u> | | |---------|--------------------|--------------------|----------|----------|-----------------|-----------------|-----------------|---------------| | Station | C <sub>2</sub> DDT | C <sub>1</sub> DDT | N | +K | -K | +K + -K | +K - Net<br>R | -K - Net<br>R | | 1 | 1.06 | 8.36 | 2.8795 | 0.0 | -0.5119 | -0.5119 | 0.0 | -2.0906 | | 2 | 9.50 | 1.63 | 2.6493 | 0.9452 | 0.0 | 0.9452 | 0.0 | -0.6336 | | 3 | 1.10 | 5.71 | 3.3836 | 0.0 | -0.3854 | -0.3854 | 0.0 | -1.9641 | | 4 | 3.63 | 4.28 | 2.6493 | 0.0 | -0.0603 | -0.0603 | 0.0 | -1.6390 | | 10 | 0.92 | 6.42 | 3.0959 | 0.0 | -0.4661 | -0.4661 | 0.0 | -2.0449 | | 11 | 2.18 | 3.67 | 3.3644 | 0.0 | -0.1434 | -0.1434 | 0.0 | -1.7222 | | 14 | 30.60 | 5.20 | 2.8301 | 0.8706 | 0.0 | 0.8706 | 0.0 | -0.7082 | | 16 | 0.96 | 0.69 | 3.3644 | 0.1031 | 0.0 | 0.1031 | 0.0 | -1.4756 | | 17 | 5.41 | 1.02 | 2.7342 | 0.8408 | 0.0 | 0.8408 | 0.0 | -0.7380 | | 19 | 72.70 | 1.12 | 2.9644 | 3.0866 | 0.0 | 3.0866 | 1.5079 | 0.0 | | 20 | 63.10 | 0.0 | 3.3671 | 16.6503 | 0.0 | 16.6503 | 15.0715 | 0.0 | | 22 | 0.93 | 0.0 | 3.4685 | 3.8113 | 0.0 | 3.8113 | 2.2325 | 0.0 | | 23 | 29.90 | 13.20 | 2.8301 | 0.3350 | 0.0 | 0.3350 | 0.0 | -1.2438 | | 25 | 1.14 | 1.22 | 3.4027 | 0.0 | -0.0197 | -0.0197 | 0.0 | -1.5985 | | 26 | 0.68 | 0.0 | 3.4356 | 3.4588 | 0.0 | 3.4588 | 1.8800 | 0.0 | | 29 | 0.70 | 1.32 | 3.4027 | 0.0 | -0.1701 | -0.1701 | 0.0 | -1.7488 | | 34 | 1.18 | 2.44 | 3.5014 | 0.0 | -0.1874 | -0.1874 | 0.0 | -1.7661 | | 36 | 83.10 | 2.65 | 3.3342 | 1.8105 | 0.0 | 1.8105 | 0.2317 | 0.0 | | 37 | 0.54 | 0.49 | 3.4356 | 0.0287 | 0.0 | 0.0287 | 0.0 | -1.5501 | | Totals | 309.3296 | 59.4199 | 60.0930 | 31.9407 | -1.9442 | 29.9964 | 20.9236 | -20.9235 | | | | | | | | | | | | Mean | 16.2805 | 3.1274 | 3.1628 | 1.6811 | -0.1023 | 1.5788 | 1.1012 | -1.1012 | | S.D. | ± 26.9909 | ± 3.4385 | ± 0.3100 | ± 0.9016 | ± 0.0984 | <u>†</u> 1.0000 | <u>+</u> 0.8738 | ± 0.1262 | | S.E. | ± 6.1921 | ± 0.7889 | + 0.0711 | ± 0.2068 | ± 0.0226 | ± 0.2294 | ÷ 0.2005 | ± 0.0289 | | 95% C.L | . ± 13.0097 | <u>†</u> 1.6574 | ± 0.1494 | ± 0.4346 | <u>+</u> 0.0474 | <u>†</u> 0.4820 | ± 0.4212 | ± 0.0608 | | | | | | | | | | | Table 11. SIXTH PAGE OF COMPUTER OUTPUT SHOWING THE RATE OF CHANGE, K, FOR DDD IN EACH SEDIMENT COMPARTMENT. | | | <u> </u> | T | | <del></del> | <del></del> | <del></del> | <u> </u> | |----------|--------------------|--------------------|----------|----------|-----------------|-----------------|-----------------|-----------------| | Station | C <sub>2</sub> DDD | C <sub>1</sub> DDD | N | +K | -K | +K + -K | +K - Net<br>R | -K - Net<br>R | | 1 | 0.53 | 3.67 | 2.8795 | 0.0 | -0.4893 | -0.4893 | 0.0 | -0.5714 | | 2 | 11.40 | 6.76 | 2.6493 | 0.2181 | 0.0 | 0.2181 | 0.1360 | 0.0 | | 3 | 0.53 | 0.71 | 3.3836 | 0.0 | -0.0828 | -0.0828 | 0.0 | -0.1648 | | 4 | 5.43 | 6.61 | 2.6493 | 0.0 | -0.0715 | -0.0715 | 0.0 | -0.1536 | | 10 | 0.39 | 8.67 | 3.0959 | 0.0 | -0.6328 | -0.6328 | 0.0 | -0.7148 | | 11 | 0.72 | 0.40 | 3.3644 | 0.1909 | 0.0 | 0.1909 | 0.1089 | 0.0 | | 14 | 6.07 | 7.50 | 2.8301 | 0.0 | -0.0720 | -0.0720 | 0.0 | -0.1541 | | 16 | 0.06 | 0.14 | 3.3644 | 0.0 | -0.2226 | -0.2226 | 0.0 | -0.3047 | | 17 | 4.54 | 0.38 | 2.7342 | 1.4774 | 0.0 | 1.4774 | 1.3953 | 0.0 | | 19 | 3.19 | 0.25 | 2.9644 | 1.3607 | 0.0 | 1.3607 | 1.2787 | 0.0 | | 20 | 0.79 | 5.00 | 3.3671 | 0.0 | -0.4219 | -0.4219 | 0.0 | -0.5039 | | 22 | 0.90 | 0.35 | 3.4685 | 0.3130 | 0.0 | 0.3130 | 0.2309 | 0.0 | | 23 | 4.32 | 5.73 | 2.8301 | 0.0 | -0.0950 | -0.0950 | 0.0 | -0.1770 | | 25 | 2.74 | 0.53 | 3.4027 | 0.6206 | 0.0 | 0.6206 | 0.5386 | 0.0 | | 26 | 2.20 | 2.35 | 3.4356 | 0.0 | -0.0190 | -0.0190 | 0.0 | -0.1011 | | 29 | 1.11 | 1.61 | 3.4027 | 0.0 | -0.1035 | -0.1035 | 0.0 | -0.1856 | | 34 | 0.42 | 0.66 | 3.5014 | 0.0 | -0.1211 | -0.1211 | 0.0 | -0.2031 | | 36 | 0.95 | 2.79 | 3.3342 | 0.0 | -0.2761 | -0.2761 | 0.0 | -0.3582 | | 37 | 0.20 | 0.21 | 3.4356 | 0.0 | -0.0141 | -0.0141 | 0.0 | -0.0961 | | Totals | 46.4899 | 54.3199 | 60.0930 | 4.1806 | -2.6218 | 1.5588 | 3.6884 | -3.6884 | | lotais | 40.4699 | 54.5199 | 00.0330 | 4.1000 | -2.0210 | 1.5566 | 3.0004 | -3.0004 | | Mean | 2.4468 | 2.8589 | 3.1628 | 0.2200 | -0.1380 | 0.0820 | 0.1941 | -0.1941 | | S.D. | ± 2.8805 | ± 2.9296 | ± 0.3100 | ± 0.7233 | ± 0.2767 | ± 1.0000 | ± 0.7233 | ÷ 0.2767 | | S.E. | ± 0.6608 | ± 0.6721 | ± 0.0711 | ± 0.1659 | ± 0.0635 | ± 0.2294 | ± 0.1659 | ± 0.0635 | | 95% C.L. | . <u>†</u> 1.3884 | <u>†</u> 1.4121 | ± 0.1494 | ± 0.3486 | <u>+</u> 0.1334 | <u>+</u> 0.4820 | <u>+</u> 0.3486 | <u>+</u> 0.1334 | Table 12. SEVENTH PAGE OF COMPUTER OUTPUT SHOWING THE RATE OF CHANGE, K, FOR DDE IN EACH SEDIMENT COMPARTMENT. | Station | C <sub>2</sub> DDE | C <sub>1</sub> DDE | N | +K | ·K | +K + -K | +K - Net<br>R | -K - Net<br>R | |----------|--------------------|--------------------|----------|----------|----------|-----------------|-----------------|-----------------| | 1 | 0.56 | 5.76 | 2.8795 | 0.0 | -0.5549 | -0.5549 | 0.0 | -0.6726 | | 2 | 17.50 | 14.70 | 2.6493 | 0.0680 | 0.0 | 0.0680 | 0.0 | -0.0497 | | 3 | 0.63 | 1.02 | 3.3836 | 0.0 | -0.1327 | -0.1327 | 0.0 | -0.2505 | | 4 | 6.91 | 10.70 | 2.6493 | 0.0 | -0.1522 | -0.1522 | 0.0 | -0.2699 | | 10 | 0.52 | 7.01 | 3.0959 | 0.0 | -0.5684 | -0.5684 | 0.0 | -0.6861 | | 11 | 0.83 | 0.45 | 3.3644 | 0.1996 | 0.0 | 0.1996 | 0.0818 | 0.0 | | 14 | 11.20 | 15.50 | 2.8301 | 0.0 | -0.1085 | -0.1085 | 0.0 | -0.2262 | | 16 | 0.23 | 2.75 | 3.3644 | 0.0 | -0.5217 | -0.5217 | 0.0 | -0.6394 | | 17 | 17.30 | 0.70 | 2.7342 | 2.2318 | 0.0 | 2.2318 | 2.1141 | 0.0 | | 19 | 12.00 | 0.65 | 2.9644 | 1.6740 | 0.0 | 1.6740 | 1.5563 | 0.0 | | 20 | 3.48 | 20.50 | 3.3671 | 0.0 | -0.4094 | -0.4094 | 0.0 | -0.5272 | | 22 | 6.06 | 1.92 | 3.4685 | 0.3929 | 0.0 | 0.3929 | 0.2752 | 0.0 | | 23 | 12.20 | 13.00 | 2.8301 | 0.0 | -0.0222 | -0.0222 | 0.0 | -0.1399 | | 25 | 10.49 | 2.40 | 3.4027 | 0.5426 | 0.0 | 0.5426 | 0.4249 | 0.0 | | 26 | 8.67 | 7.01 | 3.4356 | 0.0638 | 0.0 | 0.0638 | 0.0 | -0.0539 | | 29 | 5.67 | 9.02 | 3.4027 | 0.0 | -0.1275 | -0.1275 | 0.0 | -0.2453 | | 34 | 2.44 | 2.40 | 3.5014 | 0.0047 | 0.0 | 0.0047 | 0.0 | -0.1130 | | 36 | 3.34 | 10.00 | 3.3342 | 0.0 | -0.2803 | -0.2803 | 0.0 | -0.3980 | | 37 | 0.40 | 0.50 | 3.4356 | 0.0 | -0.0629 | -0.0629 | 0.0 | -0.1806 | | Totals | 120.4299 | 125.9899 | 60.0930 | 5.1774 | -2.9407 | 2.2367 | 4.4522 | -4.4522 | | Mean | 6.3384 | 6.6310 | 3.1628 | 0.2725 | -0.1548 | 0.1177 | 0.2343 | -0.2343 | | S.D. | ± 5.7417 | ± 6.0673 | ± 0.3100 | ± 0.7781 | ± 0.2243 | <u>+</u> 1.0024 | <u>+</u> 0.7761 | <u>+</u> 0.2262 | | S.E. | ± 1.3172 | ± 1.3919 | ± 0.0711 | ± 0.1785 | ÷ 0.0515 | <u>+</u> 0.2300 | ± 0.1781 | ÷ 0.0519 | | 95% C.L. | ± 2.7675 | ± 2.9245 | ± 0.1494 | ± 0.3750 | ± 0.1081 | ± 0.4831 | ± 0.3741 | ± 0.1091 | | | | | | | | | | | $$O = \frac{T}{I} (O+D)$$ (5) D = $$(1.0 - T_I)$$ (O+D) or D = (O+D) - O (6) The residence time, $T_R$ , and lifetime, $T_L$ , in years, are calculated as the corresponding reciprocals. $$T_R = 1.0/(O+D)$$ (7) $$T_{L} = 1.0/D \tag{8}$$ The last three pages of computer output present a summary of these estimations and are presented in Tables 13, 14, and 15. The effect of substitution of a minimal value for zero concentrations was investigated by reducing the set of sample stations to sixteen and elimination of all stations showing a zero concentration of DDT at time one. While there was some effect upon the estimates of rates as the system was reduced in size, only the estimates of TO for DDT were significantly different when tested by the "test of equality of the means of two samples whose variances are assumed to be unequal" (Sokol and Rohlf, 1969). The difference between the other estimates was very small compared to the standard deviation of these estimates. Table 16 presents for comparison the set of rates for the nineteen and sixteen station data sets. The approach to analysis of the data which provided these estimates of system rates requires sampling at the same stations at two different times. However, as presented in Table 3, there is additional data available with respect to the south bay system at time one. This additional data can not be used by the approach to analysis presented so far. More stations were sampled in the first sampling period than were sampled in the second, and the approach requires pairs of samples identical except for time of sampling. An additional program was written to permit analysis of a system where sampling does not meet the requirements of the first approach. This second program treats all samples as unpaired and evaluates the rate of change, K, at the different sample locations by comparison of the actual measurement at that station at time one or time two with the mean concentrations of the system at either time one or time two. That is, a measurement at time one is paired with the mean concentration at time two and vice versa for the evaluation of K. Further the time interval, N, is evaluated as the interval between the time of actual sample of one sampling time and the mean time of the other sampling period. Equation 1 becomes, $$\overline{C}_2 = C_1 e^{KN}$$ with $N = \overline{T}_2 - T_1$ Table 13. EIGHTH PAGE OF COMPUTER OUTPUT SHOWING A SUMMARY OF THE ANNUAL SYSTEM RATES EXPRESSED AS DECIMAL FRACTIONS OF THE MEAN CONCENTRATION OF DDT PRESENT IN THE SYSTEM. | System of Rates for DDT | | | | | S.D. | | S.E. | | 95%<br>Limit | |----------------------------------------------------------------------------------|------------------|-------|---------|---|---------|---|--------|-----------|--------------| | Net rate of change | = Net | = + | 1.5788 | ÷ | 1.0000 | ÷ | 0.2294 | ÷ | 0.4820 | | Translocation into compartments | = T <sub>1</sub> | = + | 1.1012 | Ť | 0.8738 | ÷ | 0.2005 | ÷ | 0.4212 | | Translocation out of compart-<br>ments | = T <sub>O</sub> | = . | 1.1012 | ÷ | 0.1262 | ÷ | 0.0289 | ÷ | 0.0608 | | Input | = | = + | 1.6811 | Ť | 0.9016 | ţ | 0.2068 | Ť | 0.4346 | | Output and Decay | = O+( | ) = - | 0.1023 | ÷ | 0.0984 | Ť | 0.0226 | ÷ | 0.0474 | | Output from System | = 0 | = . | 0.0670 | Ť | 0.0644 | ÷ | 0.0148 | ÷ | 0.0311 | | Decay | = D | = . | 0.0353 | ţ | 0.0339 | ÷ | 0.0078 | Ť | 0.0164 | | Lifetime in years | = T <sub>L</sub> | = | 28.3322 | ţ | 27.2386 | ÷ | 6.2490 | Ŧ | 13.1291 | | Residence time in years | = T <sub>R</sub> | = | 9.7724 | ÷ | 9.3952 | ÷ | 2.1554 | ÷ | 4.5285 | | Summary Equation for the System DDT Mean C <sub>2</sub> Mean 6 16.2805 = 3.127 | C <sub>1</sub> | | | | | | | N<br>.162 | P8 | Table 14. NINTH PAGE OF COMPUTER OUTPUT SHOWING A SUMMARY OF THE ANNUAL SYSTEM RATES EXPRESSED AS DECIMAL FRACTIONS OF THE MEAN CONCENTRATION OF DDD PRESENT IN THE SYSTEM. | System of Rates for DDD | | | | | S.D. | | S.E. | | 95%<br>Limit<br> | |-----------------------------------|------------------|------------|---------|---|----------|---|---------|---|------------------| | Net rate of change | = Net | = + | 0.0820 | Ť | 1.0000 | Ť | 0.2294 | ÷ | 0.4820 | | Translocation into compartments | = T <sub>1</sub> | = + | 0.1941 | ÷ | 0.7233 | ţ | 0.1659 | Ť | 0.3486 | | Translocation out of compartments | = T <sub>O</sub> | = . | 0.1941 | ţ | 0.2767 | ÷ | 0.0635 | ÷ | 0.1334 | | Input | <b>=</b> | = + | 0.2200 | ÷ | 0.7233 | ÷ | 0.1659 | ţ | 0.3486 | | Output and Decay | = O+D | ) = - | 0.1380 | ţ | 0.2767 | ÷ | 0.0635 | ÷ | 0.1334 | | Output from System | = O | <b>=</b> - | 0.1217 | ÷ | 0.2441 | ÷ | 0.0560 | ÷ | 0.1177 | | Decay | = D | = . | 0.0162 | ţ | 0.0326 | Ŧ | 0.0075 | ÷ | 0.0157 | | Lifetime in years | = T <sub>L</sub> | = | 61.5459 | Ť | 123.4241 | ÷ | 28.3154 | ţ | 59.4907 | | Residence time in years | = T <sub>R</sub> | = | 7.2469 | + | 14.5330 | ÷ | 3.3341 | ÷ | 7.0049 | Table 15. TENTH PAGE OF COMPUTER OUTPUT SHOWING A SUMMARY OF THE ANNUAL SYSTEM RATES EXPRESSED AS DECIMAL FRACTIONS OF THE MEAN CONCENTRATION OF DDE PRESENT IN THE SYSTEM. | System of Rates for DDE | | | | _ | S.D. | | S.E. | | 95%<br>Limit | |----------------------------------------------------------------------------|------------------|-----|---------|---|---------|---|----------------|---|--------------| | Net rate of change | = Net | = + | 0.1177 | ţ | 1.0024 | Ť | 0.2300 | Ť | 0.4831 | | Translocation into compartments | = T <sub>i</sub> | = + | 0.2343 | ÷ | 0.7761 | ÷ | 0.1781 | ţ | 0.3741 | | Translocation out of compartments | = T <sub>O</sub> | = - | 0.2343 | ÷ | 0.2262 | ÷ | 0.0519 | ÷ | 0.1091 | | Input | = | = + | 0.2725 | ÷ | 0.7781 | ÷ | 0.1785 | Ť | 0.3750 | | Output and Decay | = O+D | = - | 0.1548 | ţ | 0.2243 | ÷ | 0.0515 | ÷ | 0.1081 | | Output from System | = O | = - | 0.1331 | ÷ | 0.1929 | ÷ | 0.0442 | ÷ | 0.0930 | | Decay | = D | = - | 0.0217 | ÷ | 0.0314 | ÷ | 0.0072 | ŧ | 0.0151 | | Lifetime in years | = T <sub>L</sub> | = | 46.1286 | + | 66.8453 | ŧ | 15.3354 | ţ | 32.2196 | | Residence time in years | = TR | = | 6.4611 | ţ | 9.3629 | ÷ | 2.1480 | ţ | 4.5129 | | Summary Equation for the System DDE Mean C <sub>2</sub> Mean 6.3384 = 6.63 | stem- | ı | т, | т | . o | | o <sub>D</sub> | N | 4.5128 | Table 16. COMPARISON OF ESTIMATES OBTAINED FROM THE 16 AND 19 STATION DATA SETS AND USING ACTUAL PAIRED SAMPLE ANALYSES STANDARD DEVIATIONS [S.D.] AND COEFFICIENTS OF VARIATION [C.V.] ARE INCLUDED. | | 11 | STATION DATA SI | ET | 19 5,7 | TATION DATA SE | T | |-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------| | | Estimate | S.D. | C.V.<br>(%) | Estimate | S.D. | C.V.<br>(%) | | DDT | | | ì | | | | | _<br>C <sub>1</sub> (ppb) | 3.7137 | ± 3.4446 | 92.8 | 3.1274 | <u>+</u> 3.4385 | 109.9 | | C <sub>2</sub> (ppb) Net I O+D T <sub>O</sub> T <sub>I</sub> O D T <sub>L</sub> (years) T <sub>R</sub> (years) | 15.2887<br>+ 0.3798<br>+ 0.5013<br>- 0.1215<br>- 0.3534<br>+ 0.3534<br>- 0.0857<br>- 0.0358<br>27.9014<br>8.2294 | ± 26.3645<br>± 1.0000<br>± 0.7556<br>± 0.2444<br>± 0.2591<br>± 0.7409<br>± 0.1723<br>± 0.0721<br>± 56.1105<br>± 16.5496 | 172.4<br>263.3<br>150.7<br>138.2<br>73.3<br>209.6<br>201.1<br>201.4<br>201.1 | 16.2805<br>+ 1.5788<br>+ 1.6811<br>- 0.1023<br>- 1.1012<br>+ 1.1012<br>- 0.0670<br>- 0.0353<br>28.3322<br>9.7724 | ± 26.9909<br>± 1.0000<br>± 0.9016<br>± 0.0984<br>± 0.1262<br>± 0.8738<br>± 0.0644<br>± 0.0339<br>± 24.2386<br>± 9.3952 | 165.8<br>63.3<br>53.6<br>96.2<br>11.5<br>79.3<br>96.1<br>96.0<br>96.1 | | - C <sub>1</sub> (ppb) - C <sub>2</sub> (ppb) Net I O + D T <sub>O</sub> T <sub>I</sub> O T <sub>L</sub> (years) T <sub>R</sub> (years) | 2.9137 2.6625 + 0.1054 + 0.2417 - 0.1363 - 0.2088 + 0.2088 - 0.1177 - 0.0186 53.8306 7.3364 | ± 3.0908<br>± 3.0921<br>± 1.0000<br>± 0.7279<br>± 0.2721<br>± 0.2721<br>± 0.7279<br>± 0.2350<br>± 0.0371<br>± 107.4660<br>± 14.6462 | 106.1<br>116.1<br>948.8<br>301.2<br>199.6<br>130.3<br>348.6<br>199.7<br>199.5<br>199.6 | 2.8589 2.4468 + 0.0820 + 0.2200 - 0.1380 - 0.1941 + 0.1941 + 0.1217 - 0.0162 61.5459 7.2469 | ± 2.9296 ± 2.8805 ± 1.0000 ± 0.7233 ± 0.2767 ± 0.2767 ± 0.7233 ± 0.2441 ± 0.0326 ± 123.4241 ± 14.5330 | 102.5<br>117.7<br>1219.5<br>328.8<br>200.5<br>142.6<br>5009.4<br>200.6<br>201.2<br>200.5<br>200.5 | | DDE | | | | | | | | C <sub>1</sub> (ppb) C <sub>2</sub> (ppb) Net I O + D T <sub>O</sub> T <sub>I</sub> O D T <sub>L</sub> (years) T <sub>R</sub> (years) | 6.0350<br>6.3887<br>+ 0.1368<br>+ 0.2950<br>- 0.1582<br>- 0.2563<br>+ 0.2563<br>- 0.1374<br>- 0.0208<br>48.1189<br>6.3211 | ± 5.4299 ± 6.2166 ± 1.0030 ± 0.7843 ± 0.2186 ± 0.2211 ± 0.7818 ± 0.1899 ± 0.0287 ± 66.4924 ± 8.7347 | 90.0<br>97.3<br>733.2<br>265.9<br>138.2<br>86.3<br>305.0<br>138.2<br>138.0<br>138.2<br>138.2 | 6.6310<br>6.3384<br>+ 0.1177<br>+ 0.2725<br>- 0.1548<br>- 0.2343<br>+ 0.2343<br>- 0.1331<br>- 0.0217<br>46.1286<br>6.4611 | ± 6.0673<br>± 5.7417<br>± 1.0024<br>± 0.7781<br>± 0.2243<br>± 0.2262<br>± 0.7761<br>± 0.1929<br>± 0.0314<br>± 66.8543<br>± 9.3629 | 91.5<br>90.6<br>851.7<br>285.5<br>144.9<br>96.5<br>332.1<br>144.9<br>144.7<br>144.9 | $T_2$ = mean time of second sampling period $T_1$ = time of actual sampling in first sampling period and $$C_2 = \overline{C_1} e^{KN}$$ (10) with $N = T_2 - \overline{T}_1$ T<sub>2</sub> = time of actual sampling in second sampling period $\overline{T}_1$ = mean time of first sampling period. Table 17 presents the estimates of the system obtained using this pairing with means approach. Once again the effect of substitution of a minimal value for zero concentrations was explored by eliminating stations with zero concentration thus providing the subset of 49 samples from the complete set of 57. Except for the estimates of To for DDT, there was no significant difference between the two sets of estimates once again, nor are these estimates significantly different from either of the sets of estimates based on the 16 and 19 station data sets. The principal effect of inclusion or exclusion of the zero level values with substitution of a minimal value is upon the estimates of the rates of input, I, translocation, T<sub>I</sub> and T<sub>O</sub>, and the net rate. The stations showing a zero concentration of DDT at time one show high positive rates of change, and therefore, have a particularly marked effect on the positive rate estimates as well as those based to at least some extent upon these positive rate estimates. The second approach which uses sample values paired to mean values should find use in the analysis of systems where real paired values are impossible to obtain. Animals which are sacrificed at the time of sampling obviously can not be resampled at another point in time. The use of sample values at one sample time paired to the mean value of another permits estimation of system rates for the population. The comparison between the two approaches to these estimates that is presented here indicates that the use of mean values in pairing gives a close approximation of rate estimates obtained with real paired values. Both of these approaches to the estimation of system rates are dependent upon variability in concentration level and rate of change within compartments. It is essential to these methods of analysis that individual compartments show the effect of the various processes to different degrees. If all the concentration levels and rates of change within compartments were the same, it would be possible to gain an estimate of net rate of change only. Therefore, these approaches to estimation of system rates are dependent upon variability in environmental samples of the system and make use of this variability for estimating the rates of the various processes. Table 17. COMPARISON OF ESTIMATES OBTAINED FROM THE 49 AND 57 STATION DATA SETS AND USING SAMPLE ANALYSES PAIRED WITH MEAN CONCENTRATION LEVELS. STANDARD DEVIATIONS [S.D.] AND COEFFICIENTS OF VARIATION [C.V.] ARE INCLUDED. | | 4 | 9 SAMPLE DATA SE | Т | 57 SA | MPLE DATA SET | | |--------------------------------|----------|------------------|-------------|----------|-----------------|-------------| | | Estimate | S.D. | C.V.<br>(%) | Estimate | S.D. | C.V.<br>(%) | | DDT | | | | | | | | _<br>C <sub>1</sub> (ppb) | 3.9576 | ± 4.1746 | 105.4 | 3.1019 | ± 4.0336 | 130.0 | | -<br>C <sub>2</sub> (ppb) | 15.4975 | ± 26.5034 | 171.0 | 15.4975 | ± 26.5034 | 171.0 | | .Net | + 0.5905 | ± 1.0000 | 169.3 | + 2.2567 | ± 1.0000 | 44.3 | | 1 | + 0.6819 | ± 0.6374 | 93.5 | + 2.3233 | <u>+</u> 0.9204 | 39.6 | | O + D | - 0.0913 | <u>±</u> 0.3626 | 397.2 | - 0.0667 | ± 0.0796 | 119.3 | | $T_O$ | - 0.3234 | ± 0.3966 | 122.6 | - 1.4256 | ± 0.1513 | 10.6 | | Τ <mark>ι</mark> | + 0.3234 | ± 0.6034 | 186.6 | + 1.4256 | ± 0.8487 | 59.5 | | o o | - 0.0433 | ± 0.1720 | 397.2 | - 0.0409 | ± 0.0488 | 119.3 | | D | - 0.0480 | ± 0.1906 | 397.1 | - 0.0258 | <u>+</u> 0.0307 | 119.0 | | T <sub>I</sub> (years) | 20.8292 | ± 82.7111 | 397.1 | 38.8090 | ± 46.2947 | 119.3 | | T <sub>R</sub> (years) | 10.9502 | <u>+</u> 43.4823 | 397.1 | 14.9951 | ± 17.8875 | 119.3 | | DDD | | | | | | | | _<br>С <sub>1</sub> (ppb) | 2.4107 | ± 2.5354 | 105.2 | 2.2743 | ± 2.3532 | 103.5 | | -<br>C <sub>2</sub> (ppb) | 2.3435 | ± 2.8415 | 121.3 | 2.3435 | ± 2.8415 | 121.3 | | Net | + 0.1283 | ± 1.0000 | 779.4 | + 0.1587 | ± 1.0000 | 630.1 | | ı | + 0.2703 | ± 0.6357 | 235.2 | + 0.2813 | ± 0.6329 | 225.0 | | O + D | - 0.1420 | ± 0.3643 | 256.5 | - 0.1226 | ± 0.3671 | 299.4 | | $T_O$ | - 0.2095 | ± 0.3653 | 174.4 | - 0.2039 | ± 0.3698 | 180.9 | | Τ <mark>Ι</mark> | + 0.2095 | ± 0.6347 | 303.0 | + 0.2039 | ± 0.6311 | 309.5 | | o' | - 0.1101 | ± 0.2823 | 256.4 | - 0.0889 | ± 0.2662 | 299.4 | | D | - 0.0319 | ± 0.0820 | 257.1 | - 0.0337 | ± 0.1010 | 299.7 | | T <sub>I</sub> (years) | 31.3031 | ± 80.3119 | 256.6 | 29.6518 | ± 88.7883 | 299.4 | | T <sub>R</sub> (years) | 7.0424 | ± 18.0682 | 256.6 | 8.1558 | ± 24.4216 | 299.4 | | DDE | | | | | | | | _<br>C <sub>1</sub> (ppb)<br>_ | 5.1138 | ± 4.4111 | 86.3 | 5.3681 | ± 4.8069 | 89.5 | | C <sub>2</sub> (ppb) | 6.1575 | ± 5.6469 | 91.7 | 6.1575 | ± 5.6469 | 91.7 | | Net | + 0.1748 | ± 1.0010 | 572.7 | + 0.1793 | ± 1.0009 | 558.2 | | 1 | + 0.2802 | ± 0.6628 | 236.5 | + 0.2785 | ± 0.6787 | 243.7 | | O + D | - 0.1054 | ± 0.3382 | 320.9 | - 0.0993 | ± 0.3222 | 324.5 | | ТО | - 0.1946 | ± 0.3466 | 178.1 | - 0.1906 | ± 0.3311 | 173.7 | | T <sub>I</sub> | + 0.1946 | ± 0.6544 | 336.3 | + 0.1906 | ± 0.6697 | 351.4 | | 0 | - 0.0732 | ± 0.2348 | 320.8 | - 0.0679 | ± 0.2204 | 324.6 | | D . | . 0.0322 | ± 0.1033 | 320.8 | - 0.0314 | ± 0.1018 | 324.2 | | T <sub>L</sub> (years) | 31.0400 | ± 99.5728 | 320.8 | 31.8905 | ± 103.4957 | 324.5 | | T <sub>R</sub> (years) | 9.4853 | ± 30.4277 | 320.8 | 10.0735 | ± 32.6922 | 324.5 | | | | | | | | | For any set of estimates of I, (O+D), T<sub>I</sub> and T<sub>O</sub>, based on a number of samples, n, there is a distribution of K's with a minimal variance. The members of the distribution can be determined through one of the following sets of equations: Where the net rate of change, I + (O+D), is positive, $$j = nI - nT_I$$ and j is an integer obtained without rounding. (11) $$I + (O+D) + \frac{nT_{J}}{j} = K_{1}, K_{2} \dots K_{j}$$ $$If \sum_{1}^{j} K \angle nI$$ (12) $$nI - jK_1 = K_j + 1 (13)$$ $$\frac{n(O+D)}{n-j-1} = K_j + 2, K_j + 3 \dots K_n$$ (14) If $$\sum_{1}^{j} K = nI$$ $$\frac{n(O+D)}{n-j} = K_j + 1, K_j + 2 \dots K_n$$ (15) Where the net rate of change, I + (O+D), is zero, $$j = \frac{n}{2}$$ and j is an integer obtained without rounding. (16) $$\frac{nT_{I}}{j} = K_{1}, K_{2} \dots K_{j}$$ (17) $$\frac{nT_{O}}{j} = K_{j} + 1, K_{j} + 2 \dots K_{2j}$$ (18) $$K_n = 0.0 \tag{19}$$ Where the net rate of change, I + (O+D), is negative, $$j = \frac{n(O+D) - nT_O}{I + (O+D)}$$ (20) $$I + (O+D) + \frac{nT_O}{j} = K_1, K_2, \dots K_j$$ (21) If $$\sum_{1}^{j}$$ $K \angle n (O+D)$ $$n(O+D) - jK_1 = K_j + 1$$ (22) $$\frac{nI}{n \cdot j \cdot 1} = K_{j+2}, K_{j+3} \dots K_{n}$$ If $$\sum_{1}^{j} K = n(O+D)$$ $$\frac{n(1)}{n-i} = K_{j+1}, K_{j+2}, \dots K_n$$ (24) The variances of such distributions are the minimal variances that will permit the estimations of I, $T_I$ and $T_O$ , and (O+D) with a given number of samples. This variance is less affected by the number of samples than it is by the difference between the values of I, $T_I$ and $T_O$ , and (O+D) as can be seen in Table 18. The lowest standard deviations are observed where $T_I$ is low. Where I is increased relative to $T_I$ , the standard deviation is reduced as well but not to the same extent. For example, I=2.0, $T_I=1.2$ has a ratio of 0.6 as does I=1.5, $T_I=0.9$ , however, the latter has the lower standard deviation. The unavoidable variance related to any series of values of I, $T_I$ and $T_O$ , O+D, and n has significance to survey design. The greater the amount of internal translocation due to $T_I$ and $T_O$ the greater the unavoidable variance of the estimation of K. Increasing the number of sampling points has only a minor effect upon the variance although it has a marked effect upon the standard error and 95% confidence limits of the estimates. The corrected standard deviations with associated standard errors and 95% confidence limits can be calculated using Subroutine FACTOR which will be found in the Appendix. The correction is imposed following the calculation of the standard deviation of K using equation 3, but only with respect to first moment as is true for the other estimations of standard deviations. The variance is corrected as follows, $$\left(\frac{s_{\text{K calc.}}^2 \cdot s_{\text{Min.}}^2}{\frac{2}{s_{\text{K calc.}}^2}}\right)^2 s_{\text{K}}^2 = s_{\text{K corr.}}^2$$ (25) Where $s_K^2$ is the variance calculated by equation 3, $s_{min.}^2$ is the variance of the distribution of K's with minimal variance, $s_{K\,calc.}^2$ is the variance of the distribution of K's calculated by equation 3, and $s_{K\,corr.}^2$ is the corrected variance of K. This correction appears to be justifified because the variance of interest is that which is related to the variance of a system with particular characteristics as compared to a similar system with minimal unavoidable variance. Table 19 presents a comparison of uncorrected standard deviations from Tables 16 and 17 and the corresponding corrected values. The system estimates for Table 18. STANDARD DEVIATIONS AND STANDARD ERRORS OF DISTRIBUTIONS OF K WITH MINIMAL VARIANCE FOR GIVEN VALUES OF I, $T_{\rm I}$ AND $T_{\rm O}$ , (O+D) AND n. | | | | <del>:</del> | <del></del> | <del></del> | <del></del> | <del></del> | <del></del> | <del></del> | |----------|----------------|-------|--------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | <u> </u> | Τ <sub>Ι</sub> | O+D | Net | n :<br>S.D. | = 5<br>S.E. | <u>n = </u><br>S.D. | = 10<br>S.E. | n :<br>S.D. | = <u>20</u><br>S.E. | | 2.00 | 1.20 | -0.15 | 1.85 | <sup>+</sup> 2.7524 | | ÷ 2.5965 | | ± 2.5338 | | | | | | | | ± 1.2309 | | <sup>‡</sup> 0.8211 | | <sup>+</sup> 0.5666 | | 1.75 | 1.20 | -0.15 | 1.60 | <sup>†</sup> 3.4084 | | ÷ 2.7758 | | <sup>‡</sup> 2.7107 | | | | | | | | ± 1.5243 | | <sup>‡</sup> 0.8778 | | <sup>‡</sup> 0.6061 | | 1.50 | 1.20 | -0.15 | 1.35 | ÷ 3.3586 | | <sup>†</sup> 3.1663 | | ± 3.0831 | | | | | | | | <sup>†</sup> 1.5020 | | <sup>‡</sup> 1.0013 | | <sup>±</sup> 0.6894 | | 1.50 | 1.20 | -0.30 | 1.20 | <sup>‡</sup> 3.3719 | † 1.5080 | <sup>±</sup> 3.1785 | † 1.00F1 | ± 2.8433 | + 0.0050 | | | | | , | + | - 1.5080 | + | <sup>‡</sup> 1.0051 | + | <sup>‡</sup> 0.6358 | | 1.50 | 1.20 | -0.60 | 0.90 | <sup>+</sup> 3.4249 | † 1.5317 | <sup>+</sup> 3.2267 | † 1.0204 | ± 2.7077 | † 0.6055 | | 1.50 | 0.90 | -0.15 | 1.35 | ÷ 2.0724 | 1.5517 | <sup>+</sup> 1.9558 | 1.0204 | † 1.9124 | 0.0033 | | 1.50 | 0.90 | -0.15 | 1.33 | - 2.0724 | † 0.9268 | - 1.9556 | <sup>†</sup> 0.6185 | - 1.9124 | † 0.4276 | | 1.50 | 0.60 | -0.15 | 1.35 | <sup>†</sup> 1.4335 | | <sup>+</sup> 1.3528 | | † 1.3063 | | | | | | | | ± 0.6411 | | ÷ 0.4278 | | ÷ 0.2921 | | | ; | | | | | | | | | | | į | | | | | | | | | Table 19. COMPARISON OF UNCORRECTED AND CORRECTED STANDARD DEVIATIONS OF SYSTEM ESTIMATES | | | Ţ | <del> === ====</del> | T | |----------------|---------------------------------|---------------------------|-----------------------|---------------------------| | | 16 Sample Set | 19 Sample Set | 49 Sample Set | 57 Sample Set | | | Uncorrected Corrected | Uncorrected Corrected | Uncorrected Corrected | Uncorrected Corrected | | DDT | | | | | | Net | ± 1.0000 ± 0.2751 | ± 1.0000 ± 0.5986 | ± 1.0000 ± 0.3366 | ± 1.0000 ± 0.5379 | | 1 | <u>+</u> 0.7556 <u>+</u> 0.2806 | ± 0.9016 ± 0.5397 | ± 0.6374 ± 0.2145 | ± 0.9204 ± 0.4951 | | O+D | ± 0.2444 ± 0.0907 | ± 0.0984 ± 0.0589 | ± 0.3626 ± 0.1221 | ± 0.0796 ± 0.0428 | | To | ± 0.2591 ± 0.0962 | ± 0.1262 ± 0.0755 | ± 0.3966 ± 0.1335 | ± 0.1513 ± 0.0814 | | T <sub>I</sub> | ± 0.7409 ± 0.2751 | ± 0.8738 ± 0.5231 | ± 0.6034 ± 0.2031 | ± 0.8487 ± 0.4565 | | o | ± 0.1723 ± 0.0640 | ± 0.0644 ± 0.0386 | ± 0.1720 ± 0.0579 | ± 0.0488 ± 0.0263 | | D | ± 0.0721 ± 0.0268 | ± 0.0339 ± 0.0203 | ± 0.1906 ± 0.0642 | ± 0.0307 ± 0.0165 | | TL | ± 56.1105 ±20.8365 | ± 27.2386 ±16.3047 | ±82.7111 ±27.8380 | ± 46.2947 ±24.9713 | | TR | ± 16.5496 ± 6.1457 | $\pm$ 9.3952 $\pm$ 5.6239 | ±43.4823 ±14.6348 | ± 17.8875 ± 9.6215 | | DDD | | | | ! | | Net | ± 1.0000 ± 0.3604 | ± 1.0000 ± 0.3860 | ± 1.0000 ± 0.3419 | ± 1.0000 ± 0.3521 | | 1 | ± 0.7279 ± 0.2623 | ± 0.7233 ± 0.2792 | ± 0.6357 ± 0.2174 | ± 0.6329 ± 0.2228 | | 0+D | ± 0.2721 ± 0.0981 | ± 0.2767 ± 0.1068 | ± 0.3643 ± 0.1246 | ± 0.3671 ± 0.1293 | | ТО | ± 0.2721 ± 0.0981 | ± 0.2767 ± 0.1068 | ± 0.3653 ± 0.1249 | ± 0.3689 ± 0.1299 | | T <sub>I</sub> | $\pm$ 0.7279 $\pm$ 0.2623 | ± 0.7233 ± 0.2792 | ± 0.6347 ± 0.2170 | ± 0.6311 ± 0.2222 | | o | ± 0.2350 ± 0.0847 | ± 0.2441 ± 0.0942 | ± 0.2823 ± 0.0965 | ± 0.2662 ± 0.0937 | | D | ± 0.0371 ± 0.0134 | ± 0.0326 ± 0.0126 | ± 0.0820 ± 0.0280 | $\pm$ 0.1010 $\pm$ 0.0356 | | T <sub>L</sub> | ±107.4660 ±38.7279 | ±123.4241 ±47.6463 | ±80.3119 ±27.4603 | ± 88.7883 ±31.2619 | | TR | ± 14.6462 ± 5.2781 | ± 14.5330 ± 5.6103 | ±18.0682 ± 6.1779 | ± 24.4216 ± 8.5987 | | DDE | | | | | | Net | ± 1.0030 ± 0.3602 | ± 1.0024 ± 0.4716 | ± 1.0010 ± 0.4379 | ± 1.0009 ± 0.4545 | | ] [ | $\pm$ 0.7843 $\pm$ 0.2817 | ± 0.7781 ± 0.3661 | ± 0.6628 ± 0.2900 | ± 0.6787 ± 0.3082 | | O+D | ± 0.2186 ± 0.0785 | ± 0.2243 ± 0.1055 | ± 0.3382 ± 0.1479 | ± 0.3222 ± 0.1463 | | TO | <u>+</u> 0.2211 <u>+</u> 0.0794 | ± 0.2262 ± 0.1064 | ± 0.3466 ± 0.1516 | ± 0.3311 ± 0.1504 | | T <sub>I</sub> | $\pm$ 0.7818 $\pm$ 0.2808 | ± 0.7761 ± 0.3651 | ± 0.6544 ± 0.2863 | ± 0.6697 ± 0.3041 | | o o | ± 0.1899 ± 0.0682 | ± 0.1929 ± 0.0907 | ± 0.2348 ± 0.1027 | ± 0.2204 ± 0.1001 | | D | ± 0.0287 ± 0.0103 | ± 0.0314 ± 0.0148 | ± 0.1033 ± 0.0452 | $\pm 0.1018 \pm 0.0462$ | | T <sub>L</sub> | ± 66.4924 ±23.8815 | ± 66.8543 ±31.4484 | ±99.5728 ±43.5593 | ±103.4957 ±46.9942 | | TR | ± 8.7347 ± 3.1372 | ± 9.3629 ± 4.4049 | ±30.4277 ±13.3109 | ± 32.6922 ±14.8445 | | | | | | | | | | | <del></del> | <del></del> | DDT obtained from the four data sets did show some significant differences when compared using these corrected estimates of the standard deviation. The estimates obtained with the 49 and 57 sample sets were significantly different at the .05 level for Net, I, T<sub>O</sub>, and T<sub>I</sub>. The estimates obtained with the 16 and 57 sample sets were significantly different for Net, I, and T<sub>O</sub>, and the estimates of T<sub>O</sub> for the 19 and 57 data sets were also significantly different. These differences would appear to be primarily the result of inclusion or exclusion from the system of sites where there are major increases in the concentration of DDT rather than the effect of substitution of a minimal value for the concentration at time one. The estimation of T<sub>O</sub> in systems showing a positive Net rate of change are particularly sensitive to significance testing due to their relatively low standard deviations that result from the distribution of variance between T<sub>I</sub> and T<sub>O</sub>. If we keep in mind the limitations imposed by the variability of the data, the estimates can be used to gain a picture of the flux of these pollutants in the study area. The area of south Monterey Bay is approximately 280 square kilometers, or 69,190 acres in size. The density of the sediments on a dry weight basis averages 1.32 grams per cm<sup>3</sup>. Table 20 gives the mean of the estimates for system concentrations and rates that were obtained by the two approaches to analysis and the four data sets. Standard deviations, standard errors, 95% confidence limits, and coefficients of variation for these means are included. These latter descriptive statistics refer only to the variation of the estimates and do not include the effect of compartment variability discussed above. Table 21 uses the mean of the estimates and gives the total amounts of these chlorinated hydrocarbons in the area and the concentration in pounds per acre based upon the mean concentrations at the two times of sampling. These total amounts are estimated as being present in the top 10 cm of sediment, a depth generally sampled with the collecting gear used. Considering that the usual level of application on land is 2 pounds to the acre the total level of these compounds per acre has reached somewhat more than 1/100 of the land applications level. The estimated annual rates of input, I, as seen in Table 20, average 130% for DDT, 25% for DDD, and 28% for DDE. The corresponding amounts of these materials expected in the next year are indicated in Table 21. Expected loss due to translocation, output, and decay based on the estimated annual rates, O+D, 10% for DDT, 13% for DDD, and 13% for DDE, are also shown. The resulting net effect for the year period following the last sample time in 1973 gives the expected values shown, Table 21. The expected change in the amount of the total chlorinated hydrocarbons derived from DDT amounts to an increase of 182%. The amounts translocated within the system are presented in Table 21 along with a separation of the expected loss into that expected from output and decay. All of the projections, of course, assume that the estimated rates reflecting flux of these materials in the past three years will persist for the next year period. The K values for the individual compartments can also be used to present a composite view of the translocation of the three compounds within the system and principal points of geographical exit. The stations at their geographical location are connected with arrows pointing from more negative to less negative K values and ending in basins with positive K values. The result is a kinematic graph representing the movement of these materials within the system. It is composite with respect to the time interval under consideration and would appear to represent the result of several events of translocation. Figure 8 presents such a graph developed for the 19 station data set. The large double arrows indicate the main offshore forces that drive the inshore circulation and correlated with the kinematic expression of circulation within the system. • Table 20. MEAN OF THE ESTIMATES FOR THE SOUTH MONTEREY BAY SYSTEM AND ASSOCIATED DESCRIPTIVE STATISTICS. | <del></del> | | | | | T | | <del></del> | |---------------------------------|--------------------|-------------------------------|----------------------------------|-----------------------------------|----------------------------------|-------------------------------------|----------------------| | | | | Mean | S.D. | S.E. | 95% C.L. | C.V.<br>(%) | | c <sub>1</sub> | DDT<br>DDD<br>DDE | (ppb)<br>(ppb)<br>(ppb) | 3.4752<br>2.6144<br>5.7870 | † 0.4281<br>† 0.3196<br>† 0.6837 | † 0.2141<br>† 0.1598<br>† 0.3419 | † 0.6812<br>† 0.5086<br>† 1.0878 | 12.3<br>12.2<br>11.8 | | c <sub>2</sub> | DDT<br>DDD<br>DDE | (ppb)<br>(ppb)<br>(ppb) | 15.6411<br>2.4491<br>6.2605 | † 0.4375<br>† 0.1504<br>† 0.1207 | † 0.2188<br>† 0.0752<br>† 0.0604 | † 0.6961<br>† 0.2393<br>† 0.1921 | 2.8<br>6.1<br>1.9 | | Net | DDT<br>DDD<br>DDE | • | + 1.2015<br>+ 0.1186<br>+ 0.1522 | † 0.8764<br>† 0.0327<br>† 0.0298 | † 0.4382<br>† 0.0164<br>† 0.0149 | † 1.3944<br>† 0.0521<br>† 0.0475 | 72.9<br>27.6<br>19.6 | | | DDT,<br>DDD<br>DDE | | + 1.2969<br>+ 0.2533<br>+ 0.2816 | † 0.8587<br>† 0.0278<br>† 0.0096 | † 0.4294<br>† 0.0139<br>† 0.0048 | † 1.3663<br>† 0.0442<br>† 0.0152 | 66.2<br>11.0<br>3.4 | | O + D | DDT<br>DDD<br>DDE | | - 0.0955<br>- 0.1347<br>- 0.1294 | † 0.0096<br>† 0.0229<br>† 0.0084 | † 0.0114<br>† 0.0042<br>† 0.0157 | † 0.0364<br>† 0.0134<br>† 0.0499 | 24.0<br>6.2<br>27.3 | | т <sub>О</sub> & т <sub>І</sub> | DDT<br>DDD<br>DDE | | † 0.8009<br>† 0.2041<br>† 0.2190 | † 0.5504<br>† 0.0071<br>† 0.0318 | † 0.2752<br>† 0.0036<br>† 0.0159 | † 0.8756<br>† 0.0113<br>† 0.0505 | 68.7<br>3.5<br>14.5 | | 0 | DDT<br>DDD<br>DDE | | - 0.0592<br>- 0.1096<br>- 0.1029 | † 0.0212<br>† 0.0146<br>† 0.0375 | † 0.0106<br>† 0.0073<br>† 0.0187 | † 0.0338<br>† 0.0233<br>† 0.0596 | 35.8<br>13.3<br>36.4 | | D | DDT<br>DDD<br>DDE | | - 0.0362<br>- 0.0251<br>- 0.0265 | † 0.0091<br>† 0.0090<br>† 0.0061 | † 0.0045<br>† 0.0143<br>† 0.0031 | † 0.0145<br>† 0.0143<br>† 0.0097 | 25.1<br>35.9<br>23.0 | | TL | DDT<br>DDD<br>DDE | (years)<br>(years)<br>(years) | 28.9680<br>44.0829<br>39.2945 | † 7.4078<br>† 16.0370<br>† 9.0835 | † 3.7039<br>† 8.0185<br>† 4.5418 | † 11.7858<br>† 25.5148<br>† 14.4519 | 25.6<br>36.4<br>23.1 | | TR | DDT<br>DDD<br>DDE | (years)<br>(years)<br>(years) | 10.9868<br>7.4454<br>8.0853 | † 2.8952<br>† 0.4893<br>† 1.9717 | † 1.4476<br>† 0.2447<br>† 0.9859 | † 4.6062<br>† 0.7785<br>† 3.1371 | 26.4<br>6.6<br>24.4 | | | | | | | | | | Table 21. TOTAL AMOUNTS OF DDT, DDD, AND DDE IN THE SOUTH MONTEREY BAY STUDY AREA BASED ON THE MEAN CONCENTRATIONS AT THE TWO SAMPLE TIMES, AND EXPECTED AMOUNTS AFFECTED BY THE MEAN OF THE ESTIMATES OF SYSTEM RATES | | i | | • | | |-------------------------------|--------------|-----------|--------|-------------| | | | Kilograms | Pounds | Pounds/Acre | | Amount at Sample Time 1 | DDT | 128 | 284 | 0.004 | | | DDD | 97 | 213 | 0.003 | | | DDE | 214 | 472 | 0.007 | | | TOTAL | 439 | 969 | 0.014 | | Amount at Sample Time 2, | DDT | 579 | 1276 | 0.018 | | 3 years later | DDD | 91 | 200 | 0.003 | | , | DDE | 232 | 511 | 0.007 | | | TOTAL | 932 | 1987 | 0.028 | | | | | | | | Expected input for next | DDT | 753 | 1659 | 0.024 | | year interval | DDD | 23 | 50 | 0.001 | | | DDE | 65 | 143 | 0.002 | | | TOTAL | 841 | 1852 | 0.027 | | Expected loss for next | DDT | 58 | 128 | 0.0018 | | year interval | DDD | 12 | 26 | 0.0004 | | , | DDE | 30 | 66 | 0.0010 | | | TOTAL | 100 | 220 | 0.0032 | | Furnand amounts due to Net | DDT | 1274 | 2807 | 0.041 | | Expected amounts due to Net | DDD | 102 | 224 | 0.003 | | change for next year interval | DDE | 267 | 588 | 0.003 | | | TOTAL | 1643 | 3619 | 0.052 | | | | | | | | Expected amount translocated | DDT | 463 | 1020 | 0.015 | | within the system in next | DDD | 18 | 40 | 0.001 | | year interval | DDE | 51 | 112 | 0.002 | | | <u>TOTAL</u> | 532 | 1172 | 0.018 | | Expected amount Output to | DDT | 35 | 77 | 0.0011 | | other systems in next year | DDD | 7 | 22 | 0.0003 | | interval | DDE | 23 | 51 | 0.0007 | | | TOTAL | 65 | 150 | 0.0021 | | Expected amount Decayed | DDT | 21 | 46 | 0.0007 | | in next time interval | DDD | 2 | 5 | 0.0001 | | | DDE | 6 | 14 | 0.0002 | | | TOTAL | 29 | 65 | 0.0010 | CIRCULATION OF DDT DERIVATIVES Figure 8. Composite chart of the translocation of DDT compounds based upon the rates of change, K, at individual stations in the southern portion of Monterey Bay. # DEVELOPMENT OF LABORATORY ASSAY METHODS FOR DETERMINATION OF DECAY RATE Of the various preparations tested for the assay of decay rate, the sealed hypovial preparations described in the Methods section have best met the following desired criteria. (1) Preparations must be capable of being sealed to prevent loss of the chlorinated hydrocarbon and its degradation products including CO<sub>2</sub>. (2) The containers must be readily sterilized and of materials that prevent contamination by other chlorinated hydrocarbons. (3) The preparations must be easily manipulated with respect to the establishment of aerobic and anaerobic conditions. (4) The preparation must be susceptible to replication both in terms of individual preparations and aliquots from the same preparation. The most convenient estimate of decay can be obtained by measurement of the amount of <sup>14</sup>CO<sub>2</sub> produced from ring labelled substrate after an interval of time. Knowing the initial concentrations of substrate the decay to carbon dioxide can be expressed as a decimal fraction of this initial concentration. The decimal fraction is the D<sub>CO<sub>2</sub></sub>. Table 22 presents the results of an assay of DDT to CO<sub>2</sub> under aerobic conditions at 10°C. Two aliquots from each of five preparations at four concentrations of DDT were analysed for their <sup>14</sup>CO<sub>2</sub> content. There is no significant difference between the D<sub>CO<sub>2</sub></sub> measurements at the four concentrations of DDT. Therefore, over the range from 100 parts per billion to 100 parts per million there was neither a stimulation of the decay process nor a saturation of the decay process by substrate. Table 23 presents the results of assays for D<sub>CO<sub>2</sub></sub> of DDT, DDD, and DDE. This Table also includes the results of assays in which the effect of environmental variables on the D<sub>CO<sub>2</sub></sub> was determined. The $Q_{10}$ for $D_{CO_2}$ of DDT calculated from the aerobic 10° and 20° assays is 2.50. The remaining assays where DDT is the substrate were designed to determine the participation of various physiologically different microbiol populations in the decay process. Aerobic conditions without additional nutrients gave the maximum $D_{CO_2}$ . The decay process was inhibited by anaerobiosis, but a rate 27% of the aerobic rate remained. The addition of nitrate as an additional electron acceptor under anaerobic conditions permitted an increase in the anaerobic rate. The three highest concentrations of nitrate, 5 X $10^{-1}$ % to 5 X $10^{-3}$ % were inhibitory but below these concentrations the anaerobic rate becomes 68% of the aerobic rate at 5 X $10^{-5}$ % sodium nitrate. The addition of a possible cometabolite, sodium acetate, somewhat removes the inhibitory effect of 5 X $10^{-1}$ % sodium nitrate probably by its lowering of the nitrate level through denitrification. However, at none of the levels of sodium acetate tested did the anaerobic rate reach the level with 5 X $10^{-5}$ % sodium nitrate alone. The effect of the addition of cometabolites on decay in the presence of nitrate reducing systems must be tested at lower concentrations of nitrate. Sulfate, present in the seawater, was available as an electron acceptor under anaerobic conditions. Attempts to stimulate sulfate reduction systems by the addition of ethanol under anaerobic conditions were successful. However, the anaerobic decay of DDT was not increased over the rate observed with optimum nitrate concentrations and in the absence of added electron donors such as sodium acetate. Table 22. RESULTS OF A LABORATORY ASSAY OF ANNUAL RATE OF DECAY OF DDT TO CO $_2$ , D $_{\rm CO}_2$ , EXPRESSED AS A DECIMAL FRACTION OF THE INITIAL CONCENTRATION OF DDT MAINTAINED AT 10 $^{\rm o}$ C. UNDER AEROBIC CONDITIONS. | DDT | Prepar. | D <sub>CO2</sub> | Means | S.D. | Means | S.D. | Mean | S.D. | |----------|---------|------------------|----------|------------------|--------|-----------|--------|-----------| | | | | | | | | | | | 100 ppm | 1 | .0046 | : | | 1 | | ļ | | | | 1 | .0045 | .00455 | <u>†</u> .000071 | | | | | | <u> </u> | 2 | .0048 | | | | | ļ | | | [ | 2 | .0042 | .00450 | ± .000424 | ļ | | 1 | | | l i | 3 | .0059 | | | i | | | | | | 3 | .0056 | .00575 | ± .000212 | | | Ì | | | 1 | 4 | .0050 | | | 1 | | 1 | | | | 4 | .0045 | .00475 | ± .000354 | 1 | 1 | } | | | | 5 | .0046 | | | | ļ | İ | | | | 5 | .0053 | .00495 | ± .000495 | .00490 | ± .000544 | | | | 10 ppm | 1 | .0050 | | | | | | | | | 1 | .0052 | .00510 | ± .000141 | | | | | | | 2 | .0058 | | | | İ | ĺ | | | } | 2 | .0048 | .00530 | ± .000707 | } | | 1 | | | | 3 | .0045 | | | | 1 | | | | | 3 | .0056 | .00505 | ± .000778 | | | 1 | | | ] | 4 | .0056 | | | ì | ) | 1 | | | | 4 | .0057 | .00565 | ± .000071 | | | | | | Į į | 5 | .0051 | ļ | | 1 | | ļ | | | | 5 | .0056 | .00535 | ± .000354 | .00529 | ± .000436 | | | | 1 ppm | 1 | .0050 | | | | | | | | | 1 | .0059 | .00545 | ± .000636 | | | İ | | | | 2 | .0045 | | | | | | | | | 2 | .0046 | .00455 | ± .000071 | } | | | | | | 3 | .0062 | i | | | | | | | | 3 | .0057 | .00595 | ± .000354 | | | | | | | 4 | .0058 | | | | | | | | | 4 | .0052 | .00550 | ± .000424 | | | | | | | 5 | .0063 | <b>\</b> | | | | | • | | | 5 | .0058 | .00605 | ± .000354 | .00550 | ± .000638 | | | | 100 ppb | 1 | .0057 | | | | | | | | | 1 | .0057 | .00570 | ± .0000 | | | | | | | 2 | .0045 | | | | | | | | | 2 | .0047 | .00460 | ± .000141 | | | | | | | 3 | .0051 | | | | | | | | | 3 | .0051 | .00510 | 0000. ± | | | | | | | 4 | .0055 | | | | | | | | | 4 | .0058 | .00565 | ± .000212 | | | | | | ŀ | 5 | .0063 | } | | | 1 | | | | | 5 | .0053 | .00580 | ± .000707 | .00537 | ± .000542 | .00527 | ± .000570 | Table 23. RESULTS OF LABORATORY ASSAYS OF THE ANNUAL RATES OF DECAY TO CO2, $D_{CO_2}$ , AND THE EFFECT OF ENVIRONMENTAL VARIABLES ON THE PROCESS. | Conditions | Substrate | D <sub>CO2</sub> | Mean | S.D. | |-------------------------------------------------------------|--------------------------------|-------------------------|----------------------|----------| | Aerobic, 10°C | DDT 100 ppm<br>10 ppm | .0050<br>.0053 | 00520 | + 00022 | | | 1 ppm<br>100 ppb | .0055<br>.0054 | .00529 | ± .00023 | | Aerobic, 20°C | DDT 100 ppm<br>10 ppm | .0100<br>.0111 | | | | | 1 ppm<br>100 ppb | .0167<br>.0154 | .01320 | ± .00335 | | | | ] | Q <sub>10</sub> 2.50 | | | Anaerobic, 10°C | DDT 100 ppm<br>10 ppm | .0012<br>.0013 | .00145 | ÷ .00027 | | | 1 ppm<br>100 ppb | .0015<br>.0018 | | • | | Anaerobic, 10°C<br>5 x 10 <sup>-1</sup> % NaNO <sub>3</sub> | DDT 10 ppm<br>1 ppm<br>100 ppb | .0013<br>.0016<br>.0016 | .00150 | ± .00017 | | 5 x 10 <sup>-2</sup> % NaNO <sub>3</sub> | DDT 10 ppm<br>1 ppm | .0017<br>.0018 | .00183 | ± .00015 | | 2 | 100 ppb | .0020 | | | | 5 x 10 <sup>-3</sup> % NaNO <sub>3</sub> | DDT 10 ppm<br>1 ppm<br>100 ppb | .0024<br>.0024<br>.0027 | .00250 | ± .00017 | | 5 x 10 <sup>-4</sup> % NaNO <sub>3</sub> | DDT 10 ppm<br>1 ppm<br>100 ppb | .0030<br>.0036<br>.0036 | .00340 | ± .00035 | | 5 x 10 <sup>-5</sup> % NaNO <sub>3</sub> | DDT 10 ppm<br>1 ppm | .0037<br>.0034<br>.0037 | .00360 | ± .00017 | | 5 x 10 <sup>-6</sup> % NaNO <sub>3</sub> | 100 ppb DDT 10 ppm 1 ppm | .0037<br>.0036<br>.0025 | .00310 | ± .00056 | | | 100 ppb | .0032 | | | | 5 x 10 <sup>-7</sup> % NaNO <sub>3</sub> | DDT 10 ppm<br>1 ppm<br>100 ppb | .0031<br>.0032<br>.0031 | .00313 | ± .00006 | Table 23 CONTINUED. RESULTS OF LABORATORY ASSAYS OF THE ANNUAL RATES OF DECAY TO CO2, $D_{CO2}$ , AND THE EFFECT OF ENVIRONMENTAL VARIABLES ON THE PROCESS. | Conditions | Concentration | D <sub>CO2</sub> | Mean | S.D. | |---------------------------------------------------------------|----------------------------------|-------------------------|--------|-----------------| | Anaerobic, 10°C,<br>5 x 10 <sup>-1</sup> % Na NO <sub>3</sub> | | | | | | 5 x 10 <sup>-1</sup> % Na Acetate | DDT 10 ppm<br>1 ppm<br>100 ppb | .0011<br>.0008<br>.0008 | .00090 | <u>†</u> .00017 | | 5 x 10 <sup>-2</sup> % Na Acetate | DDT 10 ppm<br>1 ppm<br>100 ppb | .0008<br>.0008<br>.0010 | .00087 | <u>†</u> .00012 | | 5 x 10 <sup>-3</sup> % Na Acetate | . DDT 10 ppm<br>1 ppm<br>100 ppb | .0022<br>.0022<br>.0023 | .00223 | ± .00006 | | 5 x 10 <sup>-4</sup> % Na Acetate | DDT 10 ppm<br>1 ppm<br>100 ppb | .0022<br>.0025<br>.0024 | .00237 | ± .00015 | | 5 x 10 <sup>-5</sup> % Na Acetate | DDT 10 ppm<br>1 ppm<br>100 ppb | .0022<br>.0023<br>.0023 | .00227 | ± .00006 | | 5 x 10 <sup>-6</sup> % Na Acetate | DDT 10 ppm<br>1 ppm<br>100 ppb | .0019<br>.0022<br>.0023 | .00213 | <u>†</u> .00021 | | 5 x 10 <sup>-7</sup> % Na Acetate | DDT 10 ppm<br>1 ppm<br>100 ppb | .0024<br>.0024<br>.0024 | .00240 | ÷ .00000 | | Aerobic, 10°C | | | | | | 5 x 10 <sup>-1</sup> % Na Acetate | DDT 10 ppm<br>1 ppm<br>100 ppb | .0031<br>.0033<br>.0031 | .00317 | ± .00012 | | 5 x 10 <sup>-2</sup> % Na Acetate | DDT 10 ppm<br>1 ppm<br>100 ppb | .0034<br>.0031<br>.0027 | .00307 | ÷ .00035 | | 5 x 10 <sup>-3</sup> % Na Acetate | DDT 10 ppm<br>1 ppm<br>100 ppb | .0025<br>.0023<br>.0023 | .00237 | <u>†</u> .00012 | Table 23 CONTINUED. RESULTS OF LABORATORY ASSAYS OF THE ANNUAL RATES OF DECAY TO ${\rm CO_2}$ , ${\rm D_{CO_2}}$ , AND THE EFFECT OF ENVIRONMENTAL VARIABLES ON THE PROCESS. | Conditions | Concentration | D <sub>CO2</sub> | Mean | S.D. | |-----------------------------------|-------------------------------------------|----------------------------------|--------|-----------------| | 5 x 10 <sup>-4</sup> % Na Acetate | DDT 10 ppm<br>1 ppm<br>100 ppb | .0028<br>.0030<br>.0031 | .00297 | ± .00015 | | 5 x 10 <sup>-5</sup> % Na Acetate | DDT 10 ppm<br>1 ppm<br>100 ppb | .0027<br>.0030<br>.0029 | .00287 | ± .00015 | | 5 x 10 <sup>-6</sup> % Na Acetate | DDT 10 ppm<br>1 ppm<br>100 ppb | .0025<br>.0027<br>.0029 | .00270 | <u>†</u> .00020 | | 5 x 10 <sup>-7</sup> % Na Acetate | DDT 10 ppm<br>1 ppm<br>100 ppb | .0028<br>.0030<br>.0025 | .00277 | ± .00025 | | Anaerobic, 10°C | | | | | | 5 x 10 <sup>-1</sup> % Ethanol | DDT 10 ppm<br>1 ppm<br>100 ppb | .0007<br>.0005<br>.0001 | .00043 | ± .00031 | | 5 x 10 <sup>-2</sup> % Ethanol | DDT 10 ppm<br>1 ppm<br>100 ppb | .0027<br>.0028<br>.0027 | .00273 | ± .00006 | | 5 x 10 <sup>-3</sup> % Ethanol | DDT 10 ppm<br>1 ppm<br>100 ppb | .0034<br>.0031<br>.0027 | .00307 | ± .00035 | | 5 x 10 <sup>-4</sup> % Ethanol | DDT 10 ppm<br>1 ppm<br>100 ppb | .0029<br>.0030<br>.0030 | .00297 | ± .00006 | | 5 x 10 <sup>-5</sup> % Ethanol | DDT 10 ppm<br>1 ppm<br>100 ppb | .0034<br>.0032<br>.0030 | .00320 | <u>†</u> .00020 | | 5 x 10 <sup>-6</sup> % Ethanol | DDT 10 ppm<br>1 ppm<br>100 ppb | .0022<br>.0023<br>.0024 | .00230 | ± .00010 | | 5 x 10 <sup>-7</sup> % Ethanol | DDT 10 ppm<br>1 ppm<br>100 ppb | .0023<br>0022<br>.0025 | .00233 | ± .00015 | | Aerobic, 10 <sup>o</sup> C | DDD 100 ppm<br>10 ppm<br>1 ppm<br>100 ppb | .0016<br>.0015<br>.0015<br>.0023 | .00173 | ÷ .00000 | | Aerobic, 10°C | DDE 100 ppm<br>10 ppm<br>1 ppm<br>100 ppb | .0030<br>.0028<br>.0031<br>.0041 | .00325 | ± .00058 | Table 24. RATES OF DECAY TO WATER SOLUBLE COMPOUNDS AND ${\rm CO_2}$ DETERMINED BY LABORATORY ASSAYS. | Laboratoru Assaus | DDT | | DDD | | DDE | | |---------------------------------------------------|--------|-----------|--------|----------|--------|----------| | Laboratory Assays | | S.D. | | S.D. | | S.D. | | | | | | | | | | D <sub>CO2</sub> | .00529 | ± .00023 | .00173 | ± .00036 | .00325 | ± .00058 | | D <sub>WS</sub> | .01539 | ± .000817 | .00309 | ± .00052 | .00459 | ± .00074 | | Laboratory Assays<br>Corrected by Q <sub>10</sub> | | | | | | | | D <sub>CO2</sub> | .00600 | ± .00026 | .00196 | ± .00041 | .00369 | ± .00066 | | D <sub>WS</sub> | .01746 | ± .00093 | .00351 | ± .00059 | .00521 | ± .00084 | | Estimations from<br>Field Data | | | | | | | | D | .0362 | | .0251 | | .0265 | | The addition of sodium acetate as an extra electron donor under aerobic conditions was inhibitory to the aerobic decay process. However, since there was hydrogen sulfate produced in these preparations the inhibition may have been due to the competition for the available oxygen and the production of anaerobic conditions. In summary, decay to $CO_2$ appears to be primarily due to the activity of aerobic microorganisms. The process attains the greatest rate where there is no unusual competition for oxygen. Since the known mechanisms for splitting aromatic rings involve the addition of oxygen to the aromatic nucleus prior to splitting, these observations are not unexpected. However, some considerable activity remains under anaerobic conditions even where an additional oxidizable substrate such as sodium acetate or ethanol is present to remove any traces of residual oxygen. The results also indicate that nitrate and sulfate may be acceptable electron acceptors in the oxidation of aromatic compounds under anaerobic conditions. The mechanisms for anaerobic ring split have not been elucidated. Finally, The $Q_{10}$ for the decay process under aerobic conditions presents no surprise as to its magnitude. A comparison of the $D_{CO_2}$ for DDT, DDD, and DDE reveals a similar relationship to the total decay rates, D, estimated for South Monterey Bay in that $D_{DDT,CO_2} > D_{DDE,CO_2} > D_{DDD,CO_2}$ just as $D_{DDT} > D_{DDE} > D_{DDD}$ . See Table 24. For purposes of analysis the process of decay can be divided into a series of steps as follows, DDT $$\xrightarrow{D_{LS}}$$ LS $\xrightarrow{D_{WS}}$ WS $\xrightarrow{D_{CO_2}}$ CO<sub>2</sub> DDD $\xrightarrow{D_{LS}}$ LS $\xrightarrow{D_{WS}}$ WS $\xrightarrow{D_{CO_2}}$ CO<sub>2</sub> DDE $\xrightarrow{D_{LS}}$ LS $\xrightarrow{D_{WS}}$ WS $\xrightarrow{D_{CO_2}}$ CO<sub>2</sub> where LS represents lipid soluble degradation products of the starting compound and WS represents water soluble degradation products of the starting compound. Water soluble degradation products were measured as water soluble <sup>14</sup>C after high speed centrifugation of samples from the initial preparations followed by acidification to remove <sup>14</sup>CO<sub>2</sub>. DWS values presented in Table 24 are based on the sum of the <sup>14</sup>C present in water soluble form plus that present as <sup>14</sup>CO<sub>2</sub>. Attempts at determining the amount of lipid soluble degradation products were unsuccessful. The high levels of the starting compound still present in the preparations made quantification by gas chromatography difficult. Thin layer chromatography was more successful but revealed that the sodium hydroxide added to stop further biological breakdown and to absorb <sup>14</sup>CO<sub>2</sub> from the gas phase caused conversion of a considerable amount of the DDT to DDD. While laboratory assays of decay rate have revealed rates compatible with the field estimation, it has not been possible to use this approach for full appraisal of the method of estimation of field rates. If we take the difference between the values of D<sub>WS</sub> obtained from laboratory assays and D obtained from field estimations the rates of decay of the parent compounds to lipid soluble breakdown products, D<sub>LS</sub>, are .0187 for DDT, .0216 for DDD, and .0213 for DDE under aerobic conditions at 11°C, the mean temperature of the sediments. It should be noted that although every precaution was taken to ensure purity of starting materials in laboratory assays, the amounts of decomposition in three month periods is extremely small and trace contaminants containing labell could have a large effect upon the results. In addition it must be emphasized that conditions in laboratory preparations poorly approximate conditions in the field. Therefore, their value is more in terms of results obtained by comparisons between preparations rather than comparisons between laboratory preparation and field observation. ## **SECTION VI** ## **REFERENCES** Calif. Dept. of Agriculture, 1970, 1971, 1972, 1973. Pesticide Use Report. Data Processing Center, Calif. Dept. of Agri., Sacramento. Eberhardt, L. L., R. L. Meeks, and T. J. Peterle. Food chain model for DDT kinetics in a freshwater marsh. Nature. 230:60-62. 1971. Gunther, A., and R. C. Blinn. The DDT-type compound as source material in organic synthesis. J. Chem. Educ. 27:654-658. 1950. Hamaker, J. W. Mathematical prediction of cumulative levels of pesticides in soil. Adv. in Chem. Sci. 60. Amer. Chem. Soc., Wash., D.C. 1966. Harrison, H. L., O. L. Louchs, J. W. Mitchell, D. F. Parkhurst, C. R. Tracy, D. G. Watts, and V. J. Yannacone, Jr. System studies on DDT transport. Sci. 170:503-508. 1970. Murphy, P. G. Effects of salinity on uptake of DDT, DDE and DDD by fish. Bull. Envir. Cont. and Tox. 5:404-407. 1970. Papoulis, A. Probability, random variables, and stochastic processes. McGraw-Hill Book Co., N. Y. 1965. Robinson, J. Dynamics of organochlorine insecticides in vertebrates and ecosystems. Nature. 215:33-35. 1967. Sokal, R. R. and F. J. Rolf. Biometry. W. H. Freeman and Co., San Francisco. 1969. State of California. Monterey basin pilot monitoring project. To be released in 1974. Woodwell, G. M. Toxic substances and ecological cycles. Sci. Amer. 216:24-31. 1967. ## APPENDIX A #### PROGRAM FOR ESTIMATING SYSTEM RATES BASED ON REAL PAIRED SAMPLE VALUES. This program for calculation of estimates of rates of input, output, translocation, and decay was written in Fortran IV level G, and was run on an IBM 360/67. In our experience 112k was used and the program required approximately 40 seconds per run. A maximum of 60 stations, 7 chemical compounds, and 2 sample times is permitted with the program as written. The time interval is calculated in the subroutine, LEAPYR, through use of a calendar table described below. K values are calculated using double precision, and confidence intervals are estimated through use of a table of "t values." There are eight cards which precede the data deck. Their formats and content are as follows: First three cards, FORMAT (1X,13F6.3/13F6.3/4F6.3), contain the table of t values. The following numbers are punched using the indicated format: First card, 12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160 Second card, 2.145 2.131 2.120 2.110 2.101 2.093 2.086 2.080 2.074 2.069 2.064 2.060 2.056 Third card, 2.052 2.048 2.045 2.042. Fourth card, FORMAT (1214), contains numbers for calculation of time intervals. The following numbers are punched using the indicated format: 0 31 59 90 120 151 181 212 243 273 304 334. Fifth card, FORMAT (215), contains the number of stations followed by the number of chemical compounds in the data set. Sixth through eighth cards, FORMAT (10A8), contain the names of the chemical compounds entered, left justified, followed by the word TOTAL, followed by the concentration level repeated once for each chemical compound. Any remaining portion of the three cards is left blank. The set of name cards used with the data analyzed in the present case was as follows: First Card DDT DDD DDE TOTAL PPB PPB PPB PPB PERCENT PERCENT Second Card **PERCENT** The third card was left blank. The data is organized using FORMAT (1X,I2,2(A4,A2),I2,2(1X,I2),7F7.2). The first variable is the station number. The next six fields store the location in terms of latitude and longitude. The next three variables store the month, day, and year, and the remaining fields store the measured concentrations of each chemical compound. An optional subroutine FACTOR may be called by placing a card before the END card with CALL FACTOR. ``` C PROGRAM FOR ESTIMATING SYSTEM RATES BASED ON C REAL PAIRED SAMPLE VALUES. C 0001 DIMENSION TABLE(30),MONTH(12),ALOC(2,60,6),TOT(10,8),STD(23,8) 1, STE(23,8),CL95(23,8),VAR1(7),VAR2(7),VAR3(7),SUM1(7),SUM2( 27),SUM3(7),SUM4(7),COV1(7),COV2(7) 0002 REAL *4MEAN,MR(7),M(17,8) 0003 REAL *8X(10,60,7),V2(60,7),NAME(23),V1(7) 0004 INTEGER CST(2,60),CDATE(2,60,3) 0005 COMMON X, TABLE, IA, I, K, KD, ID 0006 COMMON/BLK1/NAME,TOT,M,STD,STE,CL95,ALOC,YR,CST,CDATE,MONTH,L1,L 0006 COMMON/BLK2/MR 0007 READ (5,45) TABLE 8000 READ (5,46) MONTH 0009 READ (5,47) IA,ID \mathbf{C} C CALCULATE INDEXES. C NUMBER OF STATIONS CONVERTED TO A REAL NUMBER ΑI C IP1 ID + 1 C IP2 ID + 2 I2TP2 C 2 * ID + 2 C 2 * ID + 3 I2TP3 C I3TP2 3 * ID + 2 0010 AI=IA 0011 IP1=ID+1 IP2=ID+2 0012 I2TP2=2*ID+2 0013 I2TP3=2*ID+3 0014 I3TP2=3*ID+2 0015 C C CLEAR X ARRAY. C 0016 DO 1 I=1,10 C 0017 DO 1 J=1,IA C DO 1 K=1,IP1 0018 0019 1 X(I,J,K)=0.0 C 0020 WRITE (6,50) C READ IN DERIVATIVE NAMES AND CONCENTRATION LEVEL ON UP TO 3 CAR C READ (5,48) NAME 0021 \mathbf{C} C READ IN DATA. ``` C ``` 0022 DO 2 I=1,2 C 0023 DO 2 J=1, IA 0024 2 READ (5,49) CST(I,J),(ALOC(I,J,L),L=1,6),(CDATE(I,J,L),L=1,3),(X(I 1,J,K),K=1,ID C C C COMPUTE TOTAL OF EACH STATION. C 0025 DO 3 I=1,2 C 0026 DO 3 J=1,IA C 0027 DO 3 L=1,ID 0028 3 X(I,J,IP1)=X(I,J,L)+X(I,J,IP1) C C C WRITE HEADING OF FIRST TWO PAGES. C 0029 DO 5 I=1,2 0030 L=I 0031 WRITE (6,51) I 0032 WRITE (6,53) (NAME(N),N=1,IP1) 0033 WRITE (6,52) (NAME(N),N=IP2,I2TP2) 0034 WRITE (6,54) \mathbf{C} 0035 DO 4 K=1,IP1 0036 CALL STDEV (TOTAL, MEAN, SD, SE, CL) 0037 TOT(I,K)=TOTAL 0038 M(I,K)=MEAN 0039 STD(I,K)=SD 0040 STE(I,K)=SE 0041 4 CL95(I,K)=CL C \mathbf{C} L1=NUMBER OF SETS COMPUTED. C C WRITE FIRST TWO PAGES. 0042 L1=IP1 0043 CALL PRINT 0044 WRITE (6,53) (NAME(N),N=1,IP1) 0045 WRITE (6.52) (NAME(N),N=IP2,I2TP2) 0046 WRITE (6,54) 0047 CALL PRINT2 0048 5 CONTINUE C \mathbf{C} \mathbf{C} COMPUTE PERCENTS. C ``` ``` 0049 DO 8 I=3,4 0050 L1=ID 0051 L=I-2 0052 WRITE (6,51) L 0053 WRITE (6,53) (NAME(N),N=1,ID) 0054 WRITE (6,52) (NAME(N),N=12TP3,I3TP2) 0055 WRITE (6,54) C 0056 DO 6 K=1,ID C 0057 DO 6 J=1,IA 0058 6 X(I,J,K)=X(L,J,K)/X(L,J,IP1)*100. C \mathbf{C} 0059 DO 7 K=1,3 0060 CALL STDEV (TOTAL, MEAN, SD, SE, CL) 0061 TOT(I,K)=TOTAL 0062 M(I,K)=MEAN 0063 STD(I,K)=SD 0064 STE(I,K)=SE 0065 7 CL95(I,K)=CL C 0066 CALL PRINT WRITE (6.53) (NAME(N),N=1,ID) 0067 WRITE (6,52) (NAME(N),N=12TP3,13TP2) 0068 0069 WRITE (6,54) 0070 CALL PRINT2 0071 8 CONTINUE \mathbf{C} C 0072 DO 10 J=1,IA C 0073 DO 10 L=1,IA 0074 IF (CST(1,J).EQ.CST(2,L)) GO TO 9 0075 GO TO 10 9 CALL LEAPYR (J) 0076 C 0077 DO 10 K=1,ID 0078 X(5,J,K)=YR 0079 10 CONTINUE C C C CALCULATE TOTAL AND MEAN OF N. \mathbf{C} ``` ``` 0Q80 DO 12 K=1,ID 0081 TOT(5,K)=0. C DO 11 J=1,IA 0082 0083 11 TOT(5,K)=TOT(5,K)+X(5,J,K) \mathbf{C} 0084 12 M(5,K) = TOT(5,K)/AI C C 0085 DO 14 K=1,ID 0086 V = 0.0 C 0087 DO 13 J=1,IA 0088 13 V=(M(5,K)-X(5,J,K))**2+V \mathbf{C} 0089 STD(5,K)=SQRT(V/(AI-1.0)) 0090 14 CALL STDEV2 (STD(5,K),STE(5,K),CL95(5,K)) C C C CALCULATE K VALUES. C 0091 DO 15 K=1,ID 0092 SUM1(K)=0.0 C 0093 DO 15 J=1, IA 0094 IF (X(1,J,K).EQ.0) X(1,J,K)=.004 0095 IF (X(2,J,K).EQ.0) X(2,J,K)=.004 0096 V = (DLOG10(X(2,J,K)) - DLOG10(X(1,J,K)))/(X(5,J,K)) 0097 V2(J,K)=10.**V-1.0 0098 15 SUM1(K)=SUM1(K)+V2(J,K) C C C SORT K VALUES. C 0099 DO 17 K=1,ID · C 0100 DO 17 J=1,IA 0101 IF (V2(J,K).GT.0) GO TO 16 0102 X(7,J,K)=V2(J,K) 0103 GO TO 17 0104 16 X(6,J,K)+V2(J,K) 0105 17 X(8,J,K)=X(7,J,K)+X(6,J,K) C C C CALCULATE K-NET. C ``` ``` 0106 DO 19 K=1,ID C 0107 DO 19 J=1,IA 0108 V=X(8,J,K)-SUM1(K)/AI 0109 IF (V.GT.0) GO TO 18 X(10,J,K)=V 0110 0111 GO TO 19 0112 18 X(9,J,K)=V 0113 19 CONTINUE C C C C COMPUTE SUM AND MEAN FOR K VALUES. C C 0114 DO 21 K=1,ID C 0115 DO 21 I=6,10 0116 V = 0.0 C C 0117 DO 20 J=1,IA 20 V=V+X(I,J,K) 0118 C 0119 TOT(I,K)=V 0120 21 M(I,K)=V/AI C C C CALCUALTE STANDARD DEVIATION, STANDARD ERROR, AND 95% CONFIDE: C LIMITS OF K VALUES. C 0121 DO 22 K=1,ID 0122 SUM 1 (K)=0.0 0123 SUM 2 (K)=0.0 0124 SUM 3 (K)=0.0 22 SUM 4 (K)=0.0 0125 DO 23 J=1,IA 0127 0128 V2(J,K)=DLOG(X(2,J,K))-DLOG(X(1,J,K)) 0129 SUM2(K)=V2(J,K)+SUM2(K) SUM 3 (K)=(DLOG(X(1,J,K))-ALOG(M(1,K)))**2+SUM3(K) 0130 ``` ``` 23 SUM 4 (K)=(DLOG(X(2,J,K))-ALOG(M(2,K)))**2+SUM4(K) 0131 \mathbf{C} C 0132 DO 24 K=1,ID 0133 VAR 1(K)=(.43429/M(1,K))^{**}2*SUM3(K)/(AI-1.0)+(-.43429/M(2,K))^{**}2 1*SUM4 (K)/(AI-1.0) 0134 24 V1(K)=SUM2(K)/AI 0135 DO 25 K=1,ID VAR2(K) = ((1.0/M(5,K))^{**}2^{*}VAR1(K)) + (-V1(K)/(M(5,K)^{**}2))^{**}2^{*}STD(5,K) 0136 1**2 VAR2(K)=10.0**VAR2(K) 0137 0138 STD(8,K)=SQRT(VAR2(K)) 0139 25 CALL STDEV2 (STD(8,K),STE(8,K),CL95(8,K)) C C C C CALCULATE THE DISTRIBUTION OF VARIANCE BETWEEN +K AND -K C 0142 DO 30 K=1,ID 0143 V = 0.0 \mathbf{C} 0144 DO 27 J=1,IA 0145 IF (X(6,J,K)) 27,27,26 0146 26 V=(X(6,J,K)-M(8,K))**2+V 0147 27 CONTINUE C C 0148 V=V/(AI-1.0) 0149 W = 0.0 C C 0150 DO 29 J=1,IA 0151 IF (X(7,J,K)) 28,29,29 0152 28 W=(X(7,J,K)-M(8,K))**2+W 29 CONTINUE 0153 C 0154 W=W/(AI-1.0) 0155 U=V+W 0156 V=STD(8,K)**2*(V/U)**2 ``` ``` 0157 STD(6,K)=SQRT(V) W=STD(8,K)**2*(W/U)**2 0158 0159 STD(7,K)=SQRT(W) 0160 CALL STDEV2(STD(6,K),STE(6,K),CL95(6,K)) 0160 30 CALL STDEV2 (STD(7,K),STE(7,K),CL95(7,K)) C C C CALCULATION OF STANDARD DEVIATION K-NET AND ITS DISTRIBUTION. C C \boldsymbol{C} 0161 DO 35 K=1,ID 0161 V=0.0 0162 W = 0.0 0163 DO 34 J=1,IA 0164 IF(X(9,J,K)) 32,32,31 0165 31 \text{ V=V+}(X(9,J,K)^{**2}) 0166 32 IF(X(10,J,K)) 33,34,34 0167 33 W=W+(X(10,J,K)**2) 0168 34 CONTINUE C C 0169 V=V/(AI-1.0) 0170 W=W/(AI-1.0) 0171 STD(9,K)=SQRT((V/(V+W))**2*(STD(8,K)**2)) 0172 CALL STDEV2(STD(9,K),STE(9,K),CL95(9,K)) 0173 STD(10,K)=SQRT((W/(V+W))^{**}2^{*}(STD(8,K)^{**}2)) 0174 35 CALL STDEV2(STD(10,K),STE(10,K),CL95(10,K)) C C C CALL PRINT3 0175 \mathbf{C} CALCULATE 0 AND ITS STANDARD DEVIATION C 0176 DO 41 K=1,ID 0177 M(11,K)=(M(9,K)/M(6,K))*M(7,K) STD(11,K)=SQRT(STD(7,K)**2*((M(9,K)/M(6,K))**2)) 0178 0179 CALL STDEV2(STD(11,K),STE(11,K),CL95(11,K)) C C C C C CALCULATION OF D \mathbf{C} ``` ``` C C 0192 M(12,K)=M(7,K)-M(11,K) C C C CALCULATION OF STANDARD DEVIATION OF D C 0193 STD(12,K)=SQRT(STD(7,K)**2*(1.-M(9,K)/M(6,K))**2) 0194 CALL STDEV2 (STD(12,K),STE(12,K),CL95(12,K)) C C C CALCULATE TL. C C 0196 M(13.K)=-1.0*(1.0/M(12.K)) 0197 STD(13,K)=SQRT(STD(12,K)**2*(1.0/M(12,K)**2)**2) 0198 41 CALL STDEV2 (STD(13,K),STE(13,K),CL95(13,K)) C C C CALCULATE TR. \mathbf{C} 0199 DO 42 K=1.ID 0200 M(14,K)=-1.0*(1.0/M(7,K)) 0201 STD(14,K)=SQRT(STD(7,K)**2*(1.0/M(7,K)**2)**2) 0202 42 CALL STDEV2 (STD(14,K),STE(14,K),CL95(14,K)) C C 0203 DO 44 K=1,ID 0204 WRITE (6,55) NAME (K) 0205 WRITE (6,56) NAME (K),M(8,K),STD(8,K),STE(8,K),CL95(8,K) WRITE (6,57) NAME (K),M(9,K),STD(9,K),STE(9,K),CL95(9,K) 0206 0207 WRITE (6,58) 0208 WRITE (6,59) NAME (K),M(10,K),STD(10,K),STE(10,K),CL95(10,K) 0209 WRITE (6,60) 0210 WRITE (6,61) NAME (K), M(6,K), STD(6,K), STE(6,K), CL95(6,K) 0211 WRITE (6,62) NAME (K),M(7,K),STD(7,K),STE(7,K),CL95(7,K) 0212 WRITE (6,63) NAME (K),M(11,K),STD(11,K),STE(11,K),CL95(11,K) 0213 WRITE (6,64) NAME (K),M(12,K),STD(12,K),STE(12,K),CL95(12,K) 0214 WRITE (6,65) NAME (K),M(13,K),STD(13,K),STE(13,K),CL95(13,K) 0215 WRITE (6,66) 0216 WRITE (6,65) NAME (K),M(14,K),STD(14,K),STE(14,K),CL95(14,K) 0217 WRITE (6,67) C ``` ``` 0218 DO 43 L=1,3 43 WRITE (6,54) 0219 C 0220 WRITE (6,68) 0221 WRITE (6,69) M(5,K) WRITE (6.70) NAME(K),M(2,K),M(1,K),M(6,K),M(9,K),M(10,K),M(11,K),M 0222 1(12.K) 44 CONTINUE 0223 C 0224 CALL FACTOR STOP 0225 C 45 FORMAT (1X,13F6.3/13F6.3/4F6.3) 0226 0227 46 FORMAT (12I4) 0228 47 FORMAT (215) 0229 48 FORMAT (10A8) 0230 49 FORMAT (1X,I2,2(2A4,A2),I2,2(1X,I2),7F7.2) 0231 50 FORMAT('1') 0232 51 FORMAT('1','C'/2X,I1,/3X,'STATION',3X,'LATITUDE',3X,'LONGITUDE', -5X, 'DATE') 0233 52 FORMAT(48X,8(3X,A8)) 53 FORMAT('+',47X,8(3X,A8)) 0234 0235 54 FORMAT(/) 55 FORMAT('1'.1X,'RATES OF CHANGE FOR ',A8,30X,'S.D.',7X,'S.E.',4X, 0236 -'95% LIMIT'//) 0237 56 FORMAT(2X, 'MEAN OF K', 13X, '= NET', 3X, A8, '=', 3X, 4F11.4/) 57 FORMAT(2X, 'MEAN OF + ( K - NET ) = T', 5X, A8, '=', 3X, 4F11.4) 0238 0239 58 FORMAT(27X,'I'/) 59 FORMAT(2X,'MEAN OF - ( K - NET ) = T'.5X,A8,'='.3X.4F11.4) 0240 0241 60 FORMAT(27X,'O'/) 61 FORMAT(2X,'MEAN OF + K',11X,'= I',5X,A8,'=',3X,4F11.4//) 0242 62 FORMAT(2X, 'MEAN OF - K', 11X, '= O + D', 1X, A8, '=', 3X, 4F11.4//) 0243 63 FORMAT(26X, 'O', 5X, A8, '=', 3X, 4F11.4/) 0244 64 FORMAT(26X, 'D', 5X, A8, '=', 3X, 4F11.4/) 0245 65 FORMAT(26X,'T',5X,A8,'=',3X,4F11.4) 0246 0247 66 FORMAT(27X,'L'/) 67 FORMAT(27X,'R') 0248 68 FORMAT(13X,'MEAN C',6X,'MEAN C',16X,'I',10X,'T',6X,'-',4X,'T',6X, 0249 --',5X,'O',5X,'-',5X,'D',9X,'N'/19X,'2',11X,'1,27X,'I',11X,'0'/) 0250 69 FORMAT(/97X,F11.4) 0251 70 FORMAT(2X,A8,F10.4.' =',F10.4.' (1.0 +',F10.4.' +',F10.4.3(F12.4) -,')') 0252 END C C ``` ``` 0001 SUBROUTINE PRINT 0002 DIMENSION TABLE(30),MONTH(12),ALOC(2,60,6),TOT(10,8),STD(23,8) 1, STE(23,8),CL95(23,8) 0003 REAL *4MEAN,M(17,8) 0004 REAL *8X(10,60,7),NAME(23) INTEGER CST(2,60),CDATE(2,60,3) 0005 0006 COMMON X,TABLE,IA,I,K,KD,ID 0007 COMMON /BLK1/ NAME, TOT, M, STD, STE, CL95, ALOC, YR, CST, CDATE, MONTH, L1, L C 8000 DO 1 J=1,IA 0009 1 WRITE (6,3) CST(L,J),(ALOC(L,J,K),K=1,6),(CDATE(L,J,K),K=1,3),(X(I 1,J,K),K=1,L1) C \mathbf{C} SKIP TO BOTTOM OF PAGE 0010 N=(68-(IA+6))/2 C 0011 DO 2 I=1,N 0012 2 WRITE (6,4) C RETURN 0013 C 0014 3 FORMAT (5X,I2,5X,2A4,A2,2X,2A4,A2,2X,I2,2('-',I2),8F11.2) 4 FORMAT (/) 0015 END 0016 C C 0001 SUBROUTINE PRINT2 0002 DIMENSION TABLE(30),MONTH(12),ALOC(2,60,6),TOT(10,8),STD(23,8) 1, STE(23,8),CL95(23,8) 0003 REAL *4MEAN,M(17,8) 0004 REAL *8X(10,60,7),NAME(23) 0005 INTEGER CST(2,60),CDATE(2,60,3) 0006 COMMON X,TABLE,IA,I,K,KD,ID COMMON /BLK1/ NAME, TOT, M, STD, STE, CL95, ALOC, YR, CST, CDATE, MONTH, L1, L 0007 0008 WRITE (6.1) (TOT(I,I), I=1,L1) 0009 WRITE (6,2) (M(I,J),J=1,L1) WRITE (6,3) (STD(I,J),J=1,L1) 0010 WRITE (6,4) (STE(I,J),J=1,L1) 0011 WRITE (6,5) (CL95(I,J),J=1,L1) 0012 0013 RETURN C 1 FORMAT (34X, 'TOTALS', 6X, 7F10.4) 0014 2 FORMAT (/34X, 'MEAN', 8X, 7F10.4) 0015 3 FORMAT (/34X, 'S.D.', 8X, 7F10.4) 0016 4 FORMAT (/34X, 'S.E.', 8X, 7F10.4) 0017 5 FORMAT (/34X, '95% CL', 6X, 7F10.4) 0018 0019 END C 69 ``` C ``` 0001 SUBROUTINE PRINT3 0002 DIMENSION TABLE(30),MONTH(12),ALOC(2,60,6),TOT(10,8),STD(23,8) 1, STE(23,8),CL95(23,8) 0003 REAL *8X(10,60,7) 0004 REAL *8NAME(23) REAL *4MEAN,M(17,8) 0005 0006 INTEGER CST(2,60),CDATE(2,60,3) 0007 COMMON X, TABLE, IA, I, K, KD, ID 8000 COMMON /BLK1/ NAME, TOT, M, STD, STE, CL95, ALOC, YR, CST, CDATE, MONTH, L1, L C 0009 DO 2 K=1,ID 0010 WRITE (6,3) 0011 WRITE (6,4) WRITE (6,5) NAME(K), NAME(K) 0012 0013 WRITE (6,6) 0014 WRITE (6,8) C 0015 DO 1 J=1,IA 0016 1 WRITE (6,7) CST(1,J), X(2,J,K), X(1,J,K), X(5,J,K), (X(IX,J,K),IX=6,10) 1) C WRITE (6,8) 0017 0018 WRITE (6,17) TOT(2,K), TOT(1,K), TOT(5,1), (TOT(L,K), L=6,10) 0019 WRITE (6,16) 0020 WRITE (6,14) NAME(K) 0021 WRITE (6,17) M(2,K),M(1,K),M(5,1),(M(L,K),L=6,10) 0022 WRITE (6,9) 0023 WRITE (6,14) NAME(K) 0024 WRITE (6,17) STD(2,K),STD(1,K),STD(5,1),(STD(L,K),L=6,10) WRITE (6,10) 0025 WRITE (6,13) NAME(K) 0026 WRITE (6,17) STE(2,K), STE(1,K), STE(5,1), (STE(L,K), L=6,10) 0027 0028 WRITE (6,11) 0029 WRITE (6,13) NAME(K) WRITE (6,17) CL95(2,K),CL95(1,K),CL95(5,1),(CL95(L,K),L=6,10) 0030 0031 WRITE (6,12) 0032 WRITE (6,15) NAME(K) 2 CONTINUE 0033 C 0034 RETURN C 0035 3 FORMAT ('1',1X,'STATION') 4 FORMAT (12X, 'C', 9X, 'C', 11X, 'N', 8X, '+ K', 7X, '- K', 6X, '+K + -K', 0036 1 4X,'+K - NET',3X,'-K - NET') 0037 5 FORMAT ('+',15X,A8,2X,A8) 0038 6 FORMAT (13X,'2',9X,'1',52X,'R',10X,'R'/) 7 FORMAT (4X,12,1X,2F10.2,2X,3F10.4,3F11.4) 0039 0040 8 FORMAT (/) ``` ``` 0041 9 FORMAT ('+',94X,'MEANS') 10 FORMAT ('+',94X,'S.D.') 0042 0043 11 FORMAT ('+',94X,'S.E.') 0044 12 FORMAT ('+',94X,'95% CONFIDENCE LIMITS') 13 FORMAT ('+', 99X,A8) 0045 0046 14 FORMAT ('+',102X,A8) 0047 15 FORMAT ('+',116X,A8) 0048 16 FORMAT ('+',94X,'TOTALS') 0049 17 FORMAT(/9X,5F10.4,3F11.4) 0050 END C \boldsymbol{C} 0001 SUBROUTINE LEAPYR (I) 0002 DIMENSION TABLE(30), MONTH(12), ALOC(2,60,6), TOT(10,8), STD(23,8) 1, STE(23,8),CL95(23,8) 0003 REAL *4MEAN,M(17,8) 0004 REAL *8X(10,60,7) 0005 REAL *8NAME(23) INTEGER TOT, YR1, YR2, DA1, DA2, DAYS 0006 0007 INTEGER CST(2,60),CDATE(2,60,3) COMMON /BLK1/ NAME, TOT, M, STD, STE, CL95, ALOC, YR, CST, CDATE, MONTH, L1, L 8000 0009 COMMON X,TABLE,IA,I,K,KD,ID 0010 DAYS=0 NT=0 0011 0012 MO1=CDATE(1,J,1) 0013 DA1=CDATE(1,J,2) 0014 YR1=CDATE(1,I,3) 0015 DA2=CDATE(2,L,2) 0016 YR2=CDATE(2,L,3) 0017 MO2=CDATE(2,L,1) 0018 AMO=MO1 C 0019 DO 4 I=YR1,YR2 0020 A=I 0021 LEAP=0 0022 IZ=A/4. 0023 Z=IZ 0024 Z=Z*4. 0025 IF (I.EQ.YR1) GO TO 1 0026 GO TO 2 0027 1 DAYS=365-(MONTH(MO1)+DA1) 0028 IF (Z.EQ.A.AND.AMO.LT.3.) LEAP=1 GO TO 3 0029 0030 2 IF (Z.EQ.A) LEAP=1 0031 3 NT=DAYS+LEAP+NT 0032 4 DAYS=365 ``` $\mathbf{C}$ ``` 0033 IF (LEAP.EQ.1) GO TO 5 0034 GO TO 6 0035 5 IF (MO2.LT.3) NT=NT-1 0036 6 YR=NT-365+MONTH(MO2)+DA2 0037 YR=YR/365. 0038 RETURN 0039 END C \mathbf{C} SUBROUTINE TDIST (T) 0001 0002 REAL *8X(10,60,7) 0003 DIMENSION TABLE(30) COMMON X, TABLE, IA, I, K, KD, ID 0004 0005 11 = IA - 1 0006 AI=I1 0007 IF (I1) 1,1,2 0008 1 WRITE (6,11) I 0009 GO TO 10 2 IF (I1.LT.31) GO TO 9 0010 0011 IF (I1.LT.41) GO TO 3 0012 GO TO 4 3 TINT=((2.042-2.021)/10.)*(AI-30.) 0013 T=TINT+2.042 0014 0015 GO TO 10 4 IF (I1.LT.61) GO TO 5 0016 0017 GO TO 6 5 TINT=((2.021-2.000)/20.)*(AI-40.) 0018 T=TINT+2.021 0019 GO TO 10 0020 0021 6 IF (I1.LT.121) GO TO 7 0022 GO TO 8 0023 7 TINT=((2.000-1.980)/40.)*(AI-60.) T=TINT+2.000 0024 GO TO 10 0025 8 T=1.960 0026 0027 GO TO 10 0028 9 T=TABLE(I1) 0029 10 RETURN C 11 FORMAT ('1','I IN T TABLE =',I3) 0030 0031 END C C ``` ``` 0001 SUBROUTINE STDEV (SUMX, XBAR, STD, STE, CL$) 0002 REAL *8X(10,60,7) 0003 DIMENSION TABLE(30) 0004 COMMON X,TABLE,IA,I,K,KD,ID 0005 DEV=0. 0006 SUMX=0. C 0007 DO 1 J=1,IA 0008 1 SUMX=SUMX+X(I,J,K) C 0009 AI=IA 0010 XBAR=SUMX/AI \mathbf{C} 0011 DO 2 J=1,IA 0012 DEV=(XBAR-X(I,J,K))**2+DEV 0013 2 CONTINUE \mathbf{C} 0014 STD=SQRT(DEV/(AI-1.)) 0015 STE=STD/SQRT(AI) CALL TDIST (T) 0016 CL$=T*STE 0017 0018 END \mathbf{C} C 0001 SUBROUTINE STDEV2 (STD,STE,CL$) 0002 REAL *8X(10,60,7) 0003 DIMENSION TABLE(30) 0004 COMMON X,TABLE,IA,I,K,KD,ID 0005 AI=IA 0006 STE=STD/SQRT(AI) 0007 CALL TDIST (T) 0008 CL$=T*STE 0009 RETURN 0010 END ``` ``` \mathbf{C} SUBROUTINE FOR PROGRAM FOR ESTIMATING SYSTEM RATES C BASED ON REAL PAIRED SAMPLE VALUES. SUBROUTINE FACTOR 0001 DIMENSION TABLE (30), MONTH(12), ALOC(2,60,6), TOT(10,8), STD(23,8) 1,STE(23,8), CL95(23,8), VAR1(7), VAR2(7), VAR3(7), SUM1(7), SUM2( 27), SUM3(7), SUM4(7), COV1(7), COV2(7) 0002 REAL *4MEAN,M(17,8),MR(7) 0003 REAL *8X(10,60,7),V2(60,7),NAME(23),V1(7) 0004 INTEGER CST(2,60),CDATE(2,60,3) 0005 COMMON X,TABLE,IA,I,K,KD,ID 0006 COMMON /BLK1/ NAME, TOT, M, STD, STE, CL95, ALOC, YR, CST, CDATE, MONTH, L1, L 0007 COMMON /BLK2/ MR \mathbf{C} C C CALCULATE CORRECTION FACTOR FOR STANDARD DEVIATION C 0008 AI=IA \boldsymbol{C} 0009 DO 14 K=1,ID C 0010 IF (M(8,K)) 1,4,5 0011 1 JX=(AI*M(7,K)-AI*M(10,K))/M(8,K) 0012 VI=IX V = (((AI * M(10,K))/VI) * * 2) * VI 0013 IF ((M(8,K)+((AI*M(10,K))/V))*VJ-(AI*M(7,K))) 3,3,2 0014 2 V=V+(AI*M(7.K)-VJ*(M(8,K)+((AI*M(10,K))/VJ))-M(8,K))**2 0015 V=V+(((AI*M(6,K))/(AI-VJ-1.0))-M(8,K))**2*(AI-VJ-1.0) 0016 0017 GO TO 8 3 V=V+(((AI*M(6,K))/(AI-VJ))-M(8,K))**2*(AI-VJ) 0018 0019 GO TO 8 0020 4 IX=AI/2.0 0021 VI=IX 0022 V = ((AI * M(6,K)/VI) * * 2) * VI 0023 V=V+((AI*M(7,K)/VJ)**2*VJ GO TO 8 0024 5 JX=(AI*M(6,K)-AI*M(9,K))/M(8,K) 0025 0026 VJ=JX ~ 0027 V = (((AI*M(9,K))/VJ)**2)*VJ IF ((M(8,K)+((AI*M(9,K))/VJ))*VJ-(AI*M(6,K))) 6,7,7 0028 6 V=V+(AI*M(6,K)-VJ*(M(8,K)+((AI*M(9,K))/VJ))-M(8,K))**2 0029 V=V+(((AI*M(7,K))/(AI-VJ-1.0))-M(8,K))**2*(AI-VJ-1.0) 0030 0031 GO TO 8 0032 7 V=V+(((AI*M(7,K))/(AI-VJ))-M(8,K))**2*(AI-VJ) 0033 8 V=V/(AI-1.0) 0034 W = 0.0 C C ``` ``` 0035 DO 9 J=1,IA 0036 9 W=W+(X(8,J,K)-M(8,K))^{**}2 \mathbf{C} C 0037 W=W/(AI-1.0) 0038 C=((W-V)/W)**2 \mathbf{C} C CALCULATE CORRECTED STD,6,7,AND 8 C STD(15,K) IS CORRECTED STD(6,K) C 0039 STD(15,K)=SQRT(C*STD(6,K)**2) 0040 CALL STDEV2 (STD(15,K),STE(15,K),CL95(15,K)) C C STD(16,K)IS CORRECTED STE(7,K) C 0041 STD(16,K)=SQRT(C*STD(7,K)**2) 0042 CALL STDEV2 (STD(16,K),STE(16,K),CL95(16,K)) C C STD(17,K)IS CORRECTED STD(8,K) C 0043 STD(17,K)=SQRT(C*STD(8,K)**2) 0044 CALL STDEV2 (STD(17,K),STE(17,K),CL95(17,K)) C C CALCULATE CORRECTED STD(9,K) AND STD(10,K) C 0045 V = 0.0 C C 0046 DO 11 J=1,IA C 0047 IF (X(9,J,K)) 11,11,10 0048 10 V=V+X(9,J,K)**2 11 CONTINUE 0049 C \mathbf{C} C 0050 V=V/(AI-1.0) 0051 W = 0.0 C C DO 13 J=1,IA 0052 C 0053 IF (X(10,J,K)) 12,13,13 12 W=W+(X(10,J,K))^{**}2 0054 13 CONTINUE 0055 \mathbf{C} C 75 C ``` ``` 0056 W=W/(AI-1.0) C C STD(18,K) IS CORRECTED STD(9,K) \mathbf{C} 0057 STD(18,K)=SQRT((V/(V+W))^{**}2*C*(STD(8,K)^{**}2)) 0058 CALL STDEV2 (STD(18,K),STE(18,K),CL95(18,K)) C C C STD(19,K) IS CORRECTED STD(10,K) C STD(19,K)=SQRT((W/(V+W))^{**}2*C*(STD(8,K)^{**}2)) 0059 0060 CALL STDEV2 (STD(19,K),STE(19,K),CL95(19,K)) C \boldsymbol{\mathsf{C}} CALCULATE CORRECTED STD(20,K) CORRECTED STD(11,K) C 0061 STD(20,K)=SQRT(STD(16,K)^{**}2^{*}(M(9,K)/M(6,K))^{**}2) C C 0062 CALL STDEV2 (STD(20,K),STE(20,K),CL95(20,K)) C CALCULATE STD(21,K) CORRECTED STD(12,K) 0063 STD(21,K)=SQRT(STD(16,K)**2*(1.0-M(9,K)/M(6,K))**2) 0064 CALL STDEV2 (STD(21,K),STE(21,K),CL95(21,K)) \mathbf{C} C CALCULATE STD(22,K) CORRECTED STD(13,K) C 0065 STD(22,K)=SQRT(STD(21,K)^{**}2^{*}(1.0/M(12,K)^{**}2)^{**}2) 0066 CALL STDEV2 (STD(22,K),STE(22,K),CL95(22,K)) C C CALCULATE STD(23,K) CORRECTED STD(14,K) C 0067 STD(23,K)=SQRT(STD(16,K)**2*(1.0/M(7,K)**2)**2) 0068 CALL STDEV2 (STD(23,K),STE(23,K),CL95(23,K)) \mathbf{C} \mathbf{C} 0069 14 CONTINUE \mathbf{C} \mathbf{C} 0070 DO 15 K=1,ID C 0071 WRITE (6,16) NAME(K) 0072 WRITE (6,17) NAME(K),M(8,K),STD(17,K),STE(17,K),CL95(17,K) WRITE (6,18) NAME(K),M(9,K),STD(18,K),STE(18,K),CL95(18,K) 0073 0074 WRITE (6,19) 0075 WRITE (6,20) NAME(K),M(10,K),STD(19,K),STE(19,K),CL95(19,K) ``` ``` 0076 WRITE (6,21) 0077 WRITE (6,22) NAME(K),M(6,K),STD(15,K),STE(15,K),CL95(15,K) 0078 WRITE (6,23) NAME(K),M(7,K),STD(16,K),STE(16,K),CL95(16,K) 0079 WRITE (6,24) NAME(K),M(11,K),STD(20,K),STE(20,K),CL95(20,K) WRITE (6.25) NAME(K),M(12,K),STD(21,K),STE(21,K),CL95(21,K) 0080 0081 WRITE (6,26) NAME(K),M(13,K),STD(22,K),STE(22,K),CL95(22,K) 0082 WRITE (6,27) 0083 WRITE (6,26) NAME(K),M(14,K),STD(23,K),STE(23,K),CL95(23,K) 0084 WRITE (6,28) 0085 15 CONTINUE C C 16 FORMAT ('1',40X,'CORRECTED STANDARD DEVIATIONS'//,2X,'RATES OF CHA 0086 1NGE FOR ',A8,30X,'S.D.',7X,'S.E.',4X,'95% LIMIT'//) 0087 17 FORMAT (2X,'MEAN OF K',13X,'= NET',3X,A8,'=',3X,4F11.4/) 18 FORMAT (2X,'MEAN OF + (K - NET) = T',5X,A8,'=',3X,4F11.4) 0088 0089 19 FORMAT (27X,'I'/) 20 FORMAT (2X, 'MEAN OF -(K - NET) = T', 5X, A8, '=', 3X, 4F11.4) 0090 21 FORMAT (27X,'O'/) 0091 22 FORMAT (2X, 'MEAN OF + K', 11X, '= I', 5X, A8, '=', 3X, 4F11.4//) 0092 23 FORMAT (2X,'MEAN OF - K',11X,'= O + D',1X,A8,'=',3X,4F11.4//) 0093 0094 24 FORMAT (26X, 'O', 5X, A8, '=', 3X, 4F11.4/) 25 FORMAT (26X,'D',5X,A8,'=',3X,4F11.4/) 0095 0096 26 FORMAT (26X, 'T', 5X, A8, '=', 3X, 4F11.4) 0097 27 FORMAT (27X,'L'/) 0098 28 FORMAT (27X,'R') C 0099 RETURN 0100 END ``` ## APPENDIX B ## PROGRAM FOR ESTIMATING SYSTEM RATES BASED ON SAMPLE VALUES PAIRED TO MEAN-VALUES This program for calculation of estimates of input, output, translocation, and decay was written in Fortran IV level G, and was run on an IBM 360/67. In our experience 112k was used and the program required approximately 40 seconds per run. A maximum of 60 stations, 7 chemical compounds, and 2 sample times is permitted with the program as written. The time interval is calculated in the subroutine, NCOMP, which calls the subroutine, LEAPYR. K values are calculated using double precision, and confidence intervals are estimated through use of a table of "t values." There are eight cards which precede the data deck. Their formats and content are as follows: First four cards, as in preceding program. Fifth card, Format (315), contains the number of stations at time one, followed by the number of stations at time two, followed by the number of chemical compounds in the data set. Sixth through eighth cards, Format (10A8), as in preceding program. The data is organized as in the preceding program but is sorted chronologically. An optional subroutine FACTOR may be called by placing a card before the END card with CALL FACTOR. | | С | PROGRAM FOR ESTIMATING SYSTEM RATES BASED ON | |------|---|-----------------------------------------------------------------| | • | C | SAMPLE VALUES PAIRED TO MEAN VALUES. | | | С | | | | С | | | 0001 | | DIMENSION TABLE(30),MONTH(12),ALOC(2,60,6),TOT(10,8),STD(23,8), | | | | 1, STE(23,8),CL95(23,8),VAR1(7),VAR2(7),VAR3(7),SUM1(7),SUM 2( | | | | 27), SUM3(7), SUM4(7), COV1(7), COV2(7), IA(2), AI(2) | | 0002 | | REAL *4MEAN,M(17,8),MR(7) | | 0003 | | REAL *8X(10,60,7),V2(60,7),NAME(23),V1(7). | | 0004 | | INTEGER CST(2,60),CDATE(2,60,3) | | 0005 | | COMMON X,TABLE,IA,IB,I,K,KD,ID | | 0006 | | COMMON /BLK2/MR | | 0006 | | 1 FORMAT (1X,13F6.3/13F6.3/4F6.3) | | 0007 | | READ (5,1) TABLE | | 0008 | | 2 FORMAT (1214) | | 0009 | | READ (5,2) MONTH | | 0010 | | READ (5,3) IA(1)'IA(2),ID | | 0011 | | 3 FORMAT (315) | | 0012 | С | | ``` C CALCULATE INDEXES. \mathbf{C} ΑI NUMBER OF STATIONS CONVERTED TO A REAL NUMBER. \mathbf{C} AI3 AI(1) + AI(2) C IA3 IA(1) + IA(2) \mathbf{C} IP1 ID + 1 C IP2 ID + 2 \mathbf{C} 2 * ID + 2 I2TP2 \boldsymbol{C} I2TP3 2 * ID + 3 \mathbf{C} 13TP2 3*ID+2 \mathbf{C} J2T IA(1) + IA(2) 0013 AI(1)=IA(1) 0014 AI(2)=IA(2) 0015 AI3=AI(1)+AI(2) 0016 IA3=IA(1)+IA(2) 0017 IP1=ID+1 0018 IP2=ID+2 I2TP2=2*ID+2 0019 I2TP3=2*ID+3 0020 0021 I3TP2=3*ID+2 0022 J2T=IA(1)+IA(2) C C CLEAR X ARRAY. C 0023 DO 4 I=1,10 C 0024 DO 4 J=1,J2T C 0025 DO 4 K=1,IP1 4 X(I,J,K)=0.0 0026 C 0027 WRITE (6,9) C \mathbf{C} READ IN DERIVATIVE NAMES AND CONCENTRATION LEVEL ON UP TO 3 CARDS. 0028 READ (5,5) NAME 0029 5 FORMAT (10A8) C C READ IN DATA. 0030 6 FORMAT (1X,I2,2(2A4,A2),I2,2(1X,I2),7F7.2) C 0031 DO 7 I=1,2 0032 IB=IA(I) C 0033 DO 7 J=1,IB 0034 7 READ (5,6) CST(I,J), (ALOC(I,J,L),L=1,6), (CDATE(I,J,L),L=1,3), (X(I,L),L=1,3) 1J,K),K=1,ID) \mathbf{C} C ``` COMPUTE TOTAL OF EACH STATION. C ``` C 0035 DO 8 I=1,2 0036 IB=IA(I) C 0037 DO 8 J=1,IB C 0038 DO 8 L=1,ID 0039 8 X(I,J,IP1)=X(I,J,L)+X(I,J,IP1) C C C WRITE HEADING OF FIRST TWO PAGES. C 0040 DO 15 I=1,2 IB=IA(I) 0041 0042 L=I 0043 9 FORMAT ('1') 0044 10 FORMAT ('1','C'/2X,I1,/3X,'STATION',3X,'LATITUDE',3X,'LONGITUDE', 1 5X, 'DATE') 0045 WRITE (6,10) I 0046 11 FORMAT (48X,8(3X,A8)) 0047 12 FORMAT ('+',47X,8(3X,A8)) WRITE (6,12) (NAME(N),N=1,IP1) 0048 0049 13 FORMAT (/) 0050 WRITE (6,11) (NAME(N),N=IP2,I2TP2) 0051 WRITE (6,13) C 0052 DO 14 K=1,IP1 0053 CALL STDEV (TOTAL, MEAN, SD, SE, CL) 0054 TOT(I,K)=TOTAL 0055 M(I,K)=MEAN 0056 STD(I,K)=SD 0057 STE(I,K)=SE 0058 14 CL95(I,K)=CL C C L1=NUMBER OF SETS COMPUTED. C C WRITE FIRST TWO PAGES. 0059 L1=IP1 0060 CALL PRINT 0061 WRITE (6,12) (NAME(N),N=1,IP1) 0062 WRITE (6,11) (NAME(N),N=IP2,I2TP2) 0063 WRITE (6,13) 0064 CALL PRINT2 0065 15 CONTINUE C C C COMPUTE PERCENTS. ``` ``` C 0066 DO 18 I=3,4 0067 IB=IA(I-2) 0068 L1=ID 0069 L=I-2 0070 WRITE (6,10) L 0071 WRITE (6,12) (NAME(N),N=1,ID) 0072 WRITE (6,11) (NAME(N),N=I2TP3,I3TP2) 0073 WRITE (6,13) C 0074 DO 16 K=1,ID C 0075 DO 16 J=1,IB 0076 16 X(I,J,K)=X(L,J,K)/X(L,J,IP1)*100. C C 0077 DO 17 K=1,3 0078 CALL STDEV (TOTAL, MEAN, SD, SE, CL) 0079 TOT(I,K)=TOTAL 0080 M(I,K)=MEAN 0081 STD(I,K)=SD 0082 STE(I.K)=SE 0083 17 CL95(I,K)=CL C 0084 CALL PRINT 0085 WRITE (6,12) (NAME(N),N=1,ID) 0086 WRITE (6,11) (NAME(N),N=I2TP3,I3TP2) 0087 WRITE (6,13) 0088 CALL PRINT2 0089 18 CONTINUE C 0090 CALL NCOMP \mathsf{C} C CALCULATE TOTAL AND MEAN OF N. C 0091 DO 20 K=1,ID 0092 TOT(5,K)=0. C 0093 DO 19 J=1,IA3 0094 19 TOT(5,K)=TOT(5,K)+X(5,J,K) C 0095 20 M(5,K)=TOT(5,K)/AI3 C C 0096 DO 22 K=1,ID 0097 V = 0.0 C ``` ``` 0098 DO 21 J=1,IA3 0099 21 V=(M(5,K)-X(5,J,K))**2+V C 0100 STD(5,K)=SQRT(V/(Al3-1.0)) 0101 22 CALL STDEV2 (STD(5,K),STE(5,K),CL95(5,K)) C C C CALCULATE K VALUES. C DATA IN TWO SETS ARRANGED CHRONOLOGICALLY C CALCULATE K VALUES \mathbf{C} 0102 DO 24 K=1,ID 0103 SUM1(K)=0.0 0104 IB=IA(2) C 0105 DO 23 J=1,IB 0106 IF (X(2,J,K).EQ.O.) X(2,J,K)=.004 0107 、 V = (DLOG10(X(2,J,K)) - ALOG10(M(1,K)))/(X(5,J,K)) V2(J,K)=10.**V-1.0 0108 0109 23 SUM1(K)=SUM1(K)+V2(J,K) C 0110 IB=IA(1) C 0111 DO 24 J=1,IB 0112 IF (X(1,J,K).EQ.0.) X(1,J,K)=.004 0113 V=ALOG10(M(2,K))-DLOG10(X(1,J,K)))/X(5,J+IA(2),K)*.43429 0114 V2(J+IA(2),K)=10.**(V*.43429)-1.0 0115 24 SUM1(K)=SUM1(K)+V2(J+IA(2),K) \mathbf{C} C C SORT VALUES C 0116 DO 26 K=1,ID \mathbf{C} DO 26 J=1,J2T 0117 0118 IF (V2(J,K).GT.0.) GO TO 25 0119 X(7,J,K)=V2(J,K) 0120 GO TO 26 0121 25 X(6,J,K)=V2(J,K) 0122 26 X(8,J,K)=X(7,J,K)+X(6,J,K) C C CALCULATE K-NET C 0123 DO 28 K=1,ID \mathbf{C} ``` ``` 0124 DO 28 J=1,J2T 0125 V=X(8,J,K)-SUM1(K)/AI3 0126 IF (V.GT.0) GO TO 27 0127 X(10,J,K)=V 0128 GO TO 28 27 X(9,J,K)=V 0129 28 CONTINUE 0130 C C COMPUTE SUM & MEAN FOR K VALUES C 0131 DO 30 K=1,ID C 0132 DO 30 I=6,10 0133 V=0.0 C 0134 DO 29 J=1,J2T 29 V=V+X(I,J,K) 0135 \mathsf{C} 0136 TOT(I,K)=V 0137 30 M(I,K)=V/AI3 C DO 31 I=6,10 0138 C 0139 DO 31 K=1,7 0140 STD(I,K)=0.0 STE(I,K)=0.0 0141 0142 31 CL95(I,K)=0.0 C C CALCULATE STANDARD DEVIATION, STANDARD ERROR, AND 95% CONFIDENCE C LIMITS OF K VALUES. DO 32 K=1,ID 0144 0145 SUM1(K)=0.0 0146 SUM2(K)=0.0 0147 SUM3(K)=0.0 0148 32 SUM4(K)=0.0 IB=IA(2) 0149 C 0150 DO 33 J=1,IB V2(J,K)=DLOG(X(2,J,K))-DLOG(X(1,J,K)) 0151 SUM2(K)=V2(J,K)+SUM2(K) 0152 SUM3(K)=(DLOG(X(1,J,K))-ALOG(M(1,K)))**2+SUM3(K) 0153 33 SUM4(K)=(DLOG(X(2,J,K))-ALOG(M(2,K)))**2+SUM4(K) 0154 C DO 34 K=1,ID 0155 ``` $\mathbf{C}$ ``` 0156 VAR1(K)=(.43429/M(1,K))**2*SUM3(K)/(AI3-1.0)+(-.43429/M(2,K))**2 1*SUM4(K)/(AI3-1.0) 0157 34 V1(K)=SUM2(K)/AI3 C 0158 DO 36 K=1,ID VAR2(K)=((1.0/M(5,K))^{**}2^{*}VAR1(K))+(-V1(K)/M(5,K)^{**}2))^{**}2^{*}STD(5,K) 0159 1**2 0160 VAR2(K)=10.0**VAR2(K) 0166 STD(8,K)=SQRT(VAR2(K)) 36 CALL STDEV2(STD(8,K),STE(8,K),CL95(8,K)) 0167 C C CALCULATE THE DISTRIBUTION OF VARIANCE BETWEEN +K AND-K. C 0168 DO 41 K=1,ID 0169 V=0.0 C 0170 DO 38 J=1, J2T 0171 IF (X(6,J,K))38,38,37 0172 37 V=(X(6,J,K)-M(8,K))**2+V 0173 38 CONTINUE C 0174 V=V/AI3-1.0 0175 W = 0.0 C 0176 DO 40 J=1,J2T 0177 IF (X(7,J,K)) 39,40,40 0178 39 W=(X(7,J,K)-M(8,K))**2+W 0179 40 CONTINUE \mathbf{C} 0180 W=W/AI3-1.0 0181 U=V+W V=STD(8,K)**2*(V/U)**2 0182 0183 STD(6,K)=SQRT(V) W=STD(8,K)**2*(W/U)**2 0184 0185 STD(7,K)=SQRT(W) 0186 CALL STDEV2(STD(6,K),STE(6,K),CL95(6,K)) 0187 41 CALL STDEV2(STD(7,K),STE(7,K),CL95(7,K)) C \mathbf{C} CALCULATION OF STANDARD DEVIATION K-NET AND ITS DISTRIBUTION. \mathbf{C} 0188 DO 46 K=1,ID 0189 V = 0.0 0190 W = 0.0 C 0191 DO 45 J=1,J2T 0192 IF(X(9,J,K))43,43,42 0193 42 V=V+(X(9,J,K))**2) 0194 43 IF(X(10,J,K))44,45,45 0195 44 W=W+(X(10,J,K)^{**}2) 0196 45 CONTINUE ``` ``` C 0197 V=V/(AI3-1.0) 0198 W=W/(AI3-1.0) 0199 STD(9,K)=SQRT(((V/(V+W))^{**}2^{*}(STD(8,K)^{**}2)) CALL STDEV2(STD(9,K),STE(9,K),CL95(9,K)) 0200 0201 STD(10,K)=SQRT(((W/(V+W))^{**}2^{*}(STD(8,K)^{**}2)) C 0202 46 CALL STDEV2(STD(10,K),STE(10,K),CL95(10,K)) 0203 CALL PRINT3 C C CALCULATE O AND ITS STANDARD DEVIATION C 0203 DO 52 K=1.ID 0204 M(11,K)=(M(9,K)/M(6,K))*M(7,K) 0205 STD(11,K)=SQRT(STD(7,K)**2*((M(9,K)/M(6,K))**2)) 0206 CALL STDEV2 (STD(11,K),STE(11,K),CL95(11,K)) C C C CALCULATION OF D 0207 M(12,K)=M(7,K),-M(11,K) C C CALCULATION OF STANDARD DEVIATION OF D C 0208 STD(12,K)=SQRT(STD(7,K)^{**}2^{*}(1.-M(9,K)/M(6,K))^{**}2) 0209 CALL STDEV2 (STD(12,K),STE(12,K),CL95(12,K)) \mathsf{C} C CALCULATE TL. C 0222 M(13,K)=-1.0*(1.0/M(12,K)) 0223 STD(13,K)=DSQRT(STD(12,K)**2*(1.0/M(12,K)**2)**2) 0224 52 CALL STDEV2(STD(13,K),STE(13,K),CL95(13,K)) C C CALCULATE TR. C 0225 DO 53 K=1.ID 0226 M(14,K)=-1.0*(1.0/M(7,K)) 0227 STD(14,K)=SQRT(STD(7,K)**2*(1.0/M(7,K)**2)**2) 53 CALL STDEV2 (STD(14,K),STE(14,K),CL95(14,K)) 0228 C DO 71 K=1,ID 0229 0230 WRITE (6,54) NAME(K) 54 FORMAT ('1',1X,'RATES OF CHANGE FOR',A8,30X,'S.D.',7X,'S.E.',4X, 0231 1 '95%LIMIT'//) 0232 WRITE (6,55) NAME (K),M(8,K),STD(8,K),STE(8,K),CL95(8,K) 55 FORMAT (2X, 'MEAN OF K', 13X, '=NET', 3X, A8, '=', 3X, 4F11.4/) 0233 WRITE (6,56) NAME(K),M(9,K)STD(9,K),STE(9,K),CL95(9,K) 0234 56 FORMAT (2X, 'MEAN OF + ( K-NET ) = T', 5X, A8, '=', 3X, 4F11.4) 0235 0236 WRITE (6,57) ``` ``` 0237 57 FORMAT (27X,'I'/) 0238 WRITE (6.58) NAME(K),M(10,K),STD(10,K),STE(10,K),CL95(10,K) 0239 58 FORMAT (2X, 'MEAN OF - ( K - NET ) = T', 5X, A8, '=', 3X, 4F11.4) 0240 WRITE (6,59) 0241 59 FORMAT (27X, 'O'/) 0242 WRITE (6,60) NAME(K),M(6,K),STD(6,K),STE(6,K),CL95(6,K) 0243 60 FORMAT (2X, 'MEAN OF + K', 11X, '= I', 5X, A8, '=', 3X, 4F11.4//) 0244 WRITE (6,61) NAME(K),M(7,K),STD(7,K),STE(7,K),CL95(7,K) 0245 61 FORMAT (2X, 'MEAN OF - K', 11X, '= O + D', 1X, A8, '=', 3X, 4F11.4//) 0246 WRITE (6.62) NAME(K),M(11,K),STD(11,K),STE(11,K),CL95(11,K) 0247 62 FORMAT (26X, 'O', 5X, A8, '=', 3X, 4F11.4/) 0248 WRITE (6,63) NAME(K),M(12,K),STD(12,K),STE(12,K),CL95(12,K) 0249 63 FORMAT (26X, 'D', 5X, A8, '=', 3X, 4F11.4/) 0250 WRITE (6,64) NAME(K),M(13,K),STD(13,K),STE(13,K),CL95(13,K) 0251 64 FORMAT (26X, 'T', 5X, A8, '=', 3X, 4F11.4) 0252 WRITE(6,65) 0253 65 FORMAT(27X,'L'/) 0254 WRITE(6,64) NAME(K),M(14,K),STD(14,K),STE(14,K),CL95(14,K) 0255 WRITE(6.66) 0256 66 FORMAT(27X,'R') 0257 DO 67 L=1,3 0258 67 WRITE(6,13) 0259 WRITE(6.68) 68 FORMAT(13X, 'MEAN C', 6X, 'MEAN C', 16X, 'I', 10X, 'T', 6X, '-', 4X, 'T', 6X, 0260 -'-',5X,'O',5X,'-',5X,'D',9X,'N'/19X,'2',11X,'1',27X,'I',11X,'0'/) 0261 69 FORMAT(/97X,F11.4) 0262 WRITE(6.69) M(5,K) WRITE(6,70) NAME(K),M(2,K),M(1,K),M(6,K),M(9,K),M(10,K),M(11,K), 0263 -M(12,K) 0264 70 FORMAT(2X,A8,F10.4, '=',F10.4, '(1.0 +',F10.4, '+',F10.4,3(F12.4) -,')') 71 CONTINUE 0265 0266 CALL FACTOR 0267 STOP 0268 END C C 0001 SUBROUTINE PRINT 0002 DIMENSION TABLE(30),MONTH(12),ALOC(2,60,6),TOT(10,8),STD(23,8). 1, STE (23,8),CL95(23,8),IA(2),AI(2) 0003 REAL *4MEAN,M(17,8) 0004 REAL *8X(10,60,7),V2(60,7),NAME(23),V1(7) 0005 INTEGER CST(2,60),CDATE(2,60,3) 0006 COMMON X,TABLE,IA,IB,I,K,KD,ID 0007 COMMON /BLK1/ NAME.TOT.M.STD.STE.CL95,ALOC.YR,CST.CDATE,MONTH,L1,I ``` C ``` 0008 DO 1 J=1,IB 0009 1 WRITE (6,3) CST(L,J),(ALOC(L,J,K),K=1,6),(CDATE(L,J,K),K=1,3),(X(I 1,J,K),K=1,L1) C C SKIP TO BOTTOM OF PAGE 0010 N=(68-(IB+6))/2 C 0011 DO 2 J=1,N 0012 2 WRITE (6,4) \mathbf{C} 0013 RETURN C 0014 3 FORMAT (5X,I2,5X,2A4,A2,2X,2A4,A2,2X,I2,2('-',I2),8F11.2) 0015 4 FORMAT (/) 0016 END C \mathbf{C} 0001 SUBROUTINE PRINT2 0002 DIMENSION TABLE(30), MONTH(12), ALOC(2,60,6), TOT(10,8), STD(23,8). 1, STE(23,8),CL95(23,8), IA(2),AI(2) 0003 REAL *MEAN,M(17,8) 0004 REAL *8X(10,60,7),V2(60,7),NAME(23),V1(7) INTEGER CST(2,60),CDATE(2,60,3) 0005 0006 COMMON X, TABLE, IA, IB, I, K, KD, ID 0007 COMMON /BLK1/ NAME, TOT, M, STD, STE, CL95, ALOC, YR, CST, CDATE, MONTH, L1, L 0008 WRITE (6,1) (TOT(I,J),J=1,L1) WRITE (6,2) (M(I,J),J=1,L1) 0009 0010 WRITE (6,3) (STD(1,J),J=1,L1) 0011 WRITE (6,4) (STE(I,J),J=1,L1) 0012 WRITE (6,5) (CL95(I,J),J=1,L1) 0013 RETURN C 1 FORMAT (34X, 'TOTALS', 6X, 7F10.4) 0014 2 FORMAT (/34X, 'MEAN', 8X, 7F10.4) 0015 0016 3 FORMAT (/34X, 'S.D.', 8X, 7F10.4) 0017 4 FORMAT (/34X, 'S.E.', 8X, 7F10.4) 0018 5 FORMAT (/34X, '95% CL', 6X, 7F10.4) 0019 END C \mathbf{C} 0001 SUBROUTINE PRINT3 DIMENSION TABLE(30), MONTH(12), ALOC(2,60,6), TOT(10,8), STD(23,8) 0002 1, STE(23,8),CL95(23,8),IA(2),AI(2) REAL *4MEAN,M(17,8) 0003 0004 REAL *8X(10,60,7),V2(60,7),NAME(23),V1(7) 0005 INTEGER CST(2,60),CDATE(2,60,3) 0006 COMMON X,TABLE,IA,IB,I,K,KD,ID ``` ``` COMMON /BLK1/ NAME, TOT, M, STD, STE, CL95, ALOC, YR, CST, CDATE, MONTH, L1, L 0007 8000 DO 19 K=1,ID 0009 WRITE (6,3) 0010 WRITE (6,4) 0011 WRITE (6,5) NAME(K),NAME(K) 0012 WRITE (6,6) WRITE (6,7) 0013 0014 IB=IA(2) C 0015 DO 1 J=1,IB 0016 1 WRITE (6,17) CST(2,J), X(2,J,K), X(5,J,K), (X(IX,J,K),IX=6,10) C 0017 JPIA=IA(2) 0018 IB=IA(1) C 0019 DO 2 J=1,IB 0020 JPIA=JPIA+1 0021 2 WRITE (6,18) CST(1,J), X(1,J,K), X(5,JPIA,K), (X(IX,JPIA,K),IX=6,10) C 0022 WRITE (6,7) 0023 WRITE (6,16) TOT(2,K), TOT(1,K), TOT(5,1), (TOT(N,K), N=6,10) 0024 WRITE (6,15) 0025 WRITE (6,13) NAME(K) 0026 WRITE (6,16) M(2,K),M(1,K),M(5,1),(M(N,K),N=6,10) 0027 WRITE (6,8) 0028 WRITE (6,13) NAME(K) 0029 WRITE (6,16) STD(2,K),STD(1,K),STD(5,1),(STD(N,K),N=6,10) 0030 WRITE (6,9) WRITE (6,12) NAME(K) 0031 0032 WRITE (6,16) STE(2,K), STE(1,K), STE(5,1), (STE(N,K), N=6,10) 0033 WRITE (6,10) 0034 WRITE (6,12) NAME(K) 0035 WRITE (6,16) CL95(2,K),CL95(1,K),CL95(5,1),(CL95(N,K),N=6,10) 0036 WRITE (6,11) 0037 19 WRITE (6,14) NAME(K) 0038 RETURN C 3 FORMAT ('1',1X,'STATION') 0039 0040 4 FORMAT (12X,'C',9X,'C',11X,'N',8X,'+ K',7X,'- K',6X,'+K + -K', 1 4X,'+K - NET',3X,'-K - NET') 5 FORMAT ('+',15X,A8,2X,A8) 0041 6 FORMAT (13X,'2',9X,'1',52X,'R',10X,'R'/) 0042 0043 7 FORMAT (/) 8 FORMAT ('+',94X,'MEANS') 0044 9 FORMAT ('+',94X,'S.D.') 0045 0046 10 FORMAT ('+',94X,'S.E.') ``` ``` 0047 11 FORMAT ('+',94X,'95% CONFIDENCE LIMITS') 12 FORMAT ('+', 99X,A8) 0048 13 FORMAT ('+',102X,A8) 0049 0050 14 FORMAT ('+',116X,A8) 0051 15 FORMAT ('+',94X,'TOTALS') 0052 16 FORMAT (/9X,5F10.4,3F11.4) 0053 17 FORMAT (4X,I2,1X,F10.2,12X,3F10.4,3F11.4) 0054 18 FORMAT(4X,I2,1X,10X,F10.2,2X,3F10.4,3F11.4) 0055 END C C 0001 SUBROUTINE TDIST (KA,T) 0002 REAL *8X(10,60,7) 0003 DIMENSION TABLE(30), IA(2), AI(2) 0004 COMMON X, TABLE, IA, IB, I, K, KD, ID 0005 I1=KA-1 0006 AK=I1 0007 IF (I1) 1,1,2 0008 1 WRITE (6,11) I 0009 GO TO 10 0010 2 IF (I1.LT.31) GO TO 9 IF (I1.LT.41) GO TO 3 0011 0012 GO TO 4 0013 3 TINT=((2.042-2.021)/10.)*(AK-30.) 0014 T=TINT+2.042 0015 GO TO 10 4 IF (I1.Lt.61) GO TO 5 0016 0017 GO TO 6 5 TINT=((2.021-2.000)/20.)*(AK-40.) 0018 0019 T=TINT+2.021 0020 GO TO 10 6 IF (I1.LT.121) GO TO 7 0021 0022 GO TO 8 0023 7 TINT=((2.000-1.980)/40.)*(AK-60.) 0024 T=TINT+2.000 0025 GO TO 10 0026 8 T=1.960 0027 GO TO 10 0028 9 T=TABLE(I1) 0029 10 RETURN C 0030 11 FORMAT ('1','I IN T TABLE =',I3) 0031 END C C ``` ``` 0001 SUBROUTINE STDEV (SUMX, XBAR, STD, STE, CL$) 0002 REAL *8X(10,60,7) DIMENSION TABLE(30), IA(2), AI(2) 0003 0004 COMMON X.TABLE.IA.IB.I.K.KD.ID 0005 DEV=0. 0006 SUMX=0. C 0007 DO 1 I=1,IB 0008 1 SUMX=SUMX+X(I,J,K) C 0009 AI(I)=IA(I) 0010 XBAR=SUMX/AI(I) \mathbf{C} 0011 DO 2 J=1,IB 0012 DEV=(XBAR-X(I,J,K))**2+DEV 0013 2 CONTINUE C 0014 STD=SQRT(DEV/(AI(I)-1.)) 0015 STE=STD/SQRT(AI(I)) 0016 KA=IB CALL TDIST (KA,T) 0017 CL$=T*STE 0018 0019 END C C 0001 SUBROUTINE STDEV2 (STD,STE,CL$) 0002 REAL *8X(10,60,7) DIMENSION TABLE(30), IA(2), AI(2). 0003 COMMON X, TABLE, IA, IB, I, K, KD, ID 0004 0005 AI3=IA(1)+IA(2) 0006 STE=STD/SQRT(AI3) 0007 KA=IA(1)+IA(2) 0008 CALL TDIST (KA,T) 0009 CL$=T*STE 0010 RETURN 0011 END C C 0001 SUBROUTINE NCOMP 0002 DIMENSION TABLE(30),MONTH(12),ALOC(2,60,6),TOT(10,8),STD(23,8) 1, STE(23,8),CL95(23,8),IA(2), AI(2) DIMENSION IYRVAL(5),ITOTDA(5) 0003 0003 REAL *4M(17,8) 0004 REAL *8X(10,60,7),NAME(23) 0005 INTEGER CST(2,60),CDATE(2,60,3) 0006 INTEGER SUMDA(2) COMMON X,TABLE,IA,IB,I,K,KD,ID 0007 COMMON /BLK1/ NAME,TOT,M,STD,STE,CL95,ALOC,YR,CST,CDATE,MONTH,L1 8000 0009 IJ=0 ``` ``` C 0010 DO 13 I=1.2 0011 K=0 0012 SUMDA(I)=0 0013 ITOTDA(I)=0 \mathbf{C} STORE INITIAL TIME 0014 MO1=CDATE(I,1,1) 0015 IDA1=CDATE(I,1,2) 0016 IYR1=CDATE(I,1,3) 0017 IYRVAL(1)=365 0018 A=IYR1 0019 IZ=A/4. IF (IZ*4.EQ.IYR1.AND.MO1.GT.2) IYRVAL(1)=366 0020 0021 INT1=MONTH(MO1)+IDA1 C FIND TIME INTERVAL OF FIRST DATE TO END OF FIRST YEAR 0022 INT2=IYRVAL(1)-INT1 0023 IB=IA(I) \mathbf{C} 0024 DO 4 J=1,IB 0025 MO2=CDATE(I,J,1) 0026 IDA2 = CDATE(I, J, 2) 0027 IYR2=CDATE(I,J,3) C COMPUTE YEAR VALUES-365 OR 366 0028 IF (IYR1.EQ.IYR2) TO TO 3 C K STORES NUMBER OF INTERVENING YEARS 0029 K=IYR2-IYR1 \mathbf{C} 0030 DO 1 L=1,K IYRVAL(L+1)=365 0031 0032 A-IYR1+L 0033 IZ=A/4. 0034 IF (IZ*4.EQ.IYR1+L) IYRVAL(L+1)=366 0035 1 CONTINUE C C COMPUTE INTERVAL OF LAST YEAR 0036 LAST1=MONTH(MO2)+IDA2 C CHECK FOR LEAPYR OF LAST YEAR 0037 IF (IYRVAL(K).EQ.366.AND.MO2.GT.2) LAST=LAST+1 0038 LAST2=IYRVAL(K)-LAST1 C COMPUTE TOTAL DAYS OF DATA SET \mathbf{C} INT=FIRST YEAR 0039 K=K+1 K= NUMBER OF YEARS C \mathbf{C} ``` ``` 0040 DO 2 L=1,K 0041 2 ITOTDA(I)=ITOTDA(I)+IYRVAL(L) C C SUM ALL DAYS OF YEARS INVOLVED 0042 ITOTDA(I)=ITOTDA(I)-INT1-LAST2 0043 SUMDA(I)=SUMDA(I)+ITOTDA(I) 0044 GO TO 4 0045 3 INT2=MONTH(MO2)+IDA2 0046 ITOTDA(I)=INT2-INT1 0047 SUMDA(I)-SUMDA(I)+ITOTDA(I) 0048 4 CONTINUE C C COMPUTE MEAN OF TIME 0049 MEANT=SUMDA(I)/IA(I) C SUBTRACT FIRST YEAR 0050 IX=MEANT+INT1 0051 IF (K.EQ.0) GO TO 7 C 0052 DO 5 L=1,K 0053 IF (IX.LT.IYRVAL(L)) GO TO 6 0054 IF (IX.EQ.IYRVAL(L)) TO TO 6 0055 IX=IX-IYRVAL(L) 0056 5 CONTINUE C C COMPUTE YEAR 0057 6 IYR=L-1+IYR1 0058 IF (IYRVAL(L).EQ.366.AND.IX.GT.59) IX=IX-1 GO TO 8 0059 0060 7 IF (IYRVAL(1).EQ.366.AND.IX.GT.59) IX=IX-1 0061 IYR=CDATE(I,1,3) C 0062 8 DO 9 N=1,12 C LOCATE MONTH 0063 IF (IX.LT.MONTH(N+1)) GO TO 10 0064 IF (IX.EQ.MONTH(N)) GO TO 10 9 CONTINUE 0065 C 0066 10 IMON=N 0067 IDAY=IX-MONTH(N) 0068 IF (I.EQ.1) IC=IA(2) IF (I.EQ.2) IC=IA(1) 0069 C 0070 DO 12 J=1,IC 0071 IJ=IJ+1 0072 CALL LEAPYR (J,IMON,IDAY,IYR) C ``` ``` 0073 DO 11 K=1,ID 0Ω74 X(5,IJ,K)=YR 0075 11 CONTINUE C 0076 12 CONTINUE C 0077 13 CONTINUE C 0078 RETURN 0079 END C C 0001 SUBROUTINE LEAPYR (J.IMON, IDAY, IYR) DIMENSION TABLE(30), MONTH(12), ALOC(2,60,6), TOT(10,8), STD(23,8) 0002 1,STE(23,8), CL95(23,8), IA(2), AI(2) 0003 REAL *4MEAN, M(17,8) REAL *8X(10,60,7),NAME(23) 0004 0005 INTEGER YR1, YR2, DA1, DA2, DAYS 0006 INTEGER CST(2,60),CDATE(2,60,3) 0007 COMMON /BLK1/ NAME, TOT, M, STD, STE, CL95, ALOC, YR, CST, CDATE, MONTH, L1, L COMMON X,TABLE,IA,IB,I,K,KD,ID 8000 0009 DAYS=0 NT=0 0010 0011 IF (I.EQ.2) GO TO 1 0012 MO1=IMON 0013 DA1=IDAY 0014 YR1=IYR 0015 MO2=CDATE(2,J,1) 0016 DA2=CDATE(2,1,2) 0017 YR2=CDATE(2,J,3) 0018 GO TO 2 0019 1 MO2=IMON DA2=IDAY 0020 0021 YR2=IYR 0022 MO1=CDATE(1,J,1) 0023 DA1=CDATE(1,J,2) 0024 YR1=CDATE(1,J,3) 2 AMO=MO1 0025 C 0026 DO 6 IY=YR1,YR2 0027 A=IY 0028 LEAP=0 0029 IZ=A/4. 0030 Z=IZ Z=Z*4. 0031 0032 IF (IY.EQ.YR1) GO TO 3 ``` GO TO 4 0033 ``` 0034 3 DAYS=365-(MONTH(MO1)+DA1) 0035 IF (Z.EQ.A.AND.AMO.LT.3.) LEAP=1 0036 GO TO 5 0037 4 IF (Z.EQ.A) LEAP=1 0038 5 NT=DAYS+LEAP+NT 6 DAYS=365 0039 C IF (LEAP.EQ.1) GO TO 7 0040 0041 GO TO 8 0042 7 IF (MO2.LT.3) NT=NT-1 0043 8 YR=NT-365+MONTH(MO2)+DA2 0044 YR=YR/365. 0045 RETURN END 0046 ``` ``` C SUBROUTINE FOR PROGRAM FOR ESTIMATING SYSTEM RATES C BASED ON SAMPLE VALUES PAIRED TO MEAN VALUES. SUBROUTINE FACTOR 0001 DIMENSION TABLE(30), MONTH(12), ALOC(2,60,6), TOT(10,8), STD(23,8) 0002 1, STE(23.8), CL95(23.8), VAR1(7), VAR2(7), VAR3(7), SUM1(7), SUM2( 0003 27), SUM3(7), SUM4(7), COV1(7), COV2(7), IA(2), AI(2) 0002 REAL *4MEAN,M(17,8),MR(7) 0003 REAL *8X(10,60,7),V2(60,7),NAME(23),V1(7) 0004 INTEGER CST(2,60),CDATE(2,60,3) 0005 COMMON X.TABLE.IA.IB.I.K.KD.ID 0006 COMMON /BLK1/ NAME.TOT.M.STD.STE.CL95,ALOC,YR.CST.CDATE,MONTH,LI,L 0007 COMMON /BLK2/ MR C C C CALCULATE CORRECTION FACTOR FOR STANDARD DEVIATION \mathbf{C} 0008 IA3=IA(1)+IA(2) 0009 AI3=IA3 C 0010 DO 14 K=1, ID \mathbf{C} 0011 IF (M(8,K)) 1,4,5 0012 1 JX=(AI3*M(7,K)-AI3*M(10,K))/M(8,K) 0013 VI=IX 0014 V=(((AI3*M(10,K))/VI)**2)*VI 0015 IF ((M(8,K)+(AI3*M(10,K))/VJ))*VJ-(AI3*M(7,K))) 3,3,2 0016 2 V=V+(AI3*M(7,K)-VI*(M(8,K)+((AI3*M(10,K))/VI))-M(8,K))**2 0017 V=V+(((AI3*M(6,K))/AI3-VJ-1.0))-M(8,K))**2*(AI3-VJ-1.0) 0018 GO TO 8 0019 3 V=V+(((AI3*M(6,K))/(AI3-VJ))-M(8,K))**2*(AI3-VJ) 0020 GO TO 8 4 JX-AI3/2.0 0021 0022 VJ=IX 0023 V=((AI3*M(6,K)/VI)**2)*VI 0024 V=V+((AI3*M(7,K)/VI)**2)*VI 0025 GO TO 8 5 JX=(AI3*M(6,K)-AI3*M(9,K))/M(8,K) 0026 0027 VI=IX V = (((AI3*M(9,K))/VI)**2)*VI 0028 IF ((M(8,K)+((AI3*M(9,K))/V))*V]-(AI3*M(6,K))) 6,7,7 0029 0030 6 V=V+(AI3*M(6,K)-VJ*(M(8,K)+((AI3*M(9,K))/VJ))-M(8,K))**2 0031 V=V+(((AI3*M(7,K))/(AI3-VJ-1.0))-M(8,K))**2*(AI3-VJ-1.0) 0032 GO TO 8 7 V=V+(((AI3*M(7,K))/(AI3-VJ))-M(8,K))**2*(AI3-VJ) 0033 0034 8 V=V/(AI3-1.0) W = 0.0 \mathbf{C} C ``` ``` 0035 DO 9 J=1,IA3 0036 9 W=W+(\dot{X}(8,J,K)-M(8,K))**2 \mathbf{C} C 0037 W=W/(A13-1.0) 0038 C=((W-V)/W)**2 C \mathbf{C} CALCULATE CORRECTED STD,6,7,AND 8 C STD(15,K) IS CORRECTED STD(6,K) \mathbf{C} 0039 STD(15,K)=SQRT(C*STD(6,K)**2) 0040 CALL STDEV2 (STD(15,K),STE(15,K),CL95(15,K)) C C STD(16,K)IS CORRECTED STE(7,K) \mathbf{C} 0041 STD(16,K)=SQRT(C*STD(7,K)**2) 0042 CALL STDEV2 (STD(16,K),STE(16,K),CL95(16,K)) С \mathbf{C} STD(17,K) IS CORRECTED STD(8,K) \mathbf{C} 0043 STD(17,K)=SQRT(C*STD(8,K)**2) 0044 CALL STDEV2 (STD(17,K),STE(17,K),CL95(17,K)) C \mathsf{C} CALCULATE CORRECTED STD(9,K) AND STD(10,K) \mathbf{C} 0045 V = 0.0 \mathbf{C} \mathbf{C} 0046 DO 11 J=1,IA3 \mathbf{C} 0047 IF (X(9,J,K)) 11,11,10 0048 10 V=V+X(9,J,K)**2 11 CONTINUE 0049 \mathbf{C} C C V=V/(AI3-1.0) 0050 0051 W = 0.0 \mathbf{C} \mathbf{C} 0052 DO 13 J=1,IA3 C 0053 IF (X(10,J,K)) 12,13,13 0054 12 W=W+(X(10,J,K))^{**}2 0055 13 CONTINUE \mathbf{C} C C ``` ``` 0056 W=W/(AI3-1.0) C C STD(18,K) IS CORRECTED STD (9,K) C 0057 STD(18,K)=SQRT((V/(V+W))**2*C*(STD(8,K)**2)) 0058 CALL STDEV2 (STD(18,K),STE(18,K),CL95(18,K)) С C C STD(19,K) IS CORRECTED STD(10,K) C 0059 STD(19,K)=SQRT((W/(V+W))**2*C*(STD(8,K)**2)) 0060 CALL STDEV2 (STD(19,K),STE(19,K),CL95(19,K)) C C CALCULATE CORRECTED STD(20,K) CORRECTED STD(11,K) C 0061 STD(20,K)=SQRT(STD(16,K)^{**}2^{*}(M(9,K)/M(6,K))^{**}2) C C 0062 CALL STDEV2 (STD(20,K),STE(20,K),CL95(20,K)) C CALCULATE STD(21,K) CORRECTED STD(12,K) 0063 STD(21,K)=SQRT(STD(16,K)**2*(1.0-M(9,K)/M(6,K))**2) 0064 CALL STDEV2 (STD(21,K),STE(21,K),CL95(21,K)) C C CALCULATE STD(22,K) CORRECTED STD(13,K) C 0065 STD(22,K)=SQRT(STD(21,K)**2*(1.0/M(12,K)**2)**2) 0066 CALL STDEV2 (STD(22,K),STE(22,K),CL95(22,K)) C C CALCULATE STD(23,K) CORRECTED STD(14,K) C STD(23,K)=SQRT(STD(16,K)**2*(1.0/M(7,K)**2)**2) 0067 CALL STDEV2 (STD(23,K),STE(23,K),CL95(23,K)) 0068 C C 0069 14 CONTINUE C C 0070 DO 15 K=1,ID C WRITE (6.16) NAME(K) 0071 WRITE (6,17) NAME(K),M(8,K),STD(17,K),STE(17,K),CL95(17,K) 0072 WRITE (6,18) NAME(K),M(9,K),STD(18,K),STE(18,K),CL95(18,K) 0073 0074 WRITE (6,19) 0075 WRITE (6,20) NAME(K),M(10,K),STD(19,K),STE(19,K),CL95(19,K) 0076 WRITE (6,21) 0077 WRITE (6,22) NAME(K),M(6,K),STD(15,K),STE(15,K),CL95(15,K) 0078 WRITE (6,23) NAME(K), M(7,K), STD(16,K), STE(16,K), CL95(16,K) ``` ``` 0079 WRITE (6,24) NAME(K),M(11,K),STD(20,K),STE(20,K),CL95(20,K) WRITE (6,25) NAME(K),M(12,K),STD(21,K),STE(21,K),CL95(21,K) 0080 0081 WRITE (6,26) NAME(K),M(13,K),STD(22,K),STE(22,K),CL95(22,K) 0082 WRITE (6,27) WRITE (6,26) NAME(K),M(14,K),STD(23,K),STE(23,K),CL95(23,K) 0083 0084 WRITE (6,28) 15 CONTINUE 0085 C \boldsymbol{C} 16 FORMAT ('1',40X,'CORRECTED STANDARD DEVIATIONS'//,2X, 'RATES OF CHA 0086 1NGE FOR, A8,30X, 'S.D.',7X, 'S.E.',4X, '95% LIMIT'//) 0087 17 FORMAT (2X, 'MEAN OF K', 13X, '=NET', 3X, A8, '=', 3X, 4F11.4/) 18 FORMAT (2X,'MEAN OF + (K - NET) = T',5X,A8,'=',3X,4F11.4) 0088 0089 19 FORMAT (27X,'I'/) 20 FORMAT (2X, MEAN, OF - (K - NET) = T', 5X, A8, '=', 3X, 4F11.4) 0090 0091 21 FORMAT (27X, 'O'/) 0092 22 FORMAT (2X, 'MEAN OF + K', 11X, '= I', 5X, A8, '=', 3X, 4F11.4//) 23 FORMAT (2X, 'MEAN OF - K', 11X, '= 0+D', 1X, A8, '=', 3X, 4F11.4//) 0093 24 FORMAT (26X, 'O', 5X, A8, '=', 3X, 4F11.4/) 0094 0095 25 FORMAT (26X, 'D', 5X, A8, '=', 3X, 4F11.4/) 26 FORMAT (26X, 'T', 5X, A8, '=', 3X, 4F11.4) 0096 0097 27 FORMAT (27X,'L'/) 0098 28 FORMAT (27X, 'R') C 0099 RETURN 0100 END ``` | TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing) | | | | | |-----------------------------------------------------------------------------------|---------------------------------------|--|--|--| | EPA-660/3-75-013 | 3. RECIPIENT'S ACCESSION NO. | | | | | 4, TITLE AND SUBTITLE | 5. REPORT DATE | | | | | "An Analysis of the Dynamics of DDT in Marine | MAY 1975 | | | | | Sediments." | 6. PERFORMING ORGANIZATION CODE | | | | | / AUTHOR(3) | 8. PERFORMING ORGANIZATION REPORT NO. | | | | | Phillips, John H., Eugene E. Haderlie, and Welton L. | Lee | | | | | 9. PLREORMING ORG ANIZATION NAME AND ADDRESS | 10. PROGRAM ELEMENT NO. | | | | | Hopkins Marine Station | | | | | | Stanford University Pacific Grove, CA 93950 | 11. CONTRACT/GRANT NO. | | | | | 12. SPUNSORING AGENCY NAME AND ADDRESS | 13. TYPE OF REPORT AND PERIOD COVERED | | | | | Environmental Protection Agency | | | | | | 200 S. W. 35th St. Corvallis, OR 97330 | 14. SPONSORING AGENCY CODE | | | | 18. BUPPLEMENTARY NOTES \*\*ABSTRACT\*\* The concentrations of DDT, DDD and DDE were measured in sediments at 57 stations in Monterey Bay on the Central California coast during 1970-1971. Mean concentrations in parts per billion were DDT 3.1, DDD 2.3, and DDE 5.4. During 1973 nineteen of the original stations were sampled. Mean concentrations were DDT 15.5, DDD 2.3, and DDE 5.4 PPB. Two approaches to the estimation of annual system rates for input, I, output, 0, decay, D, and internal translocation, $T_I$ and $T_O$ expressed as decimal fractions of existing concentrations were developed, and fraction programs that permit rapid estimations were written. The mean annual rates in South Monterey Bay obtained were for DDT, I +1.30, O -0.059, D -0.036 $T_I$ and $T_O$ +0.80 with a residence time of 11 years and life time of 29 years. An I of 1.30 means the amount of input is 130% of the existing concentration per year. Rates for DDD were, I +0.25, O -0.11, D -0.025, $T_I$ and $T_O$ +0.20 with residence time of 7 years and life time of 44 years. Rates for DDE were $T_I$ +0.28, O -0.10, D -0.027, $T_O$ and $T_I$ +0.22 with residence time of 8 years and life time of 39 years. Laboratory assays were developed to determine the relative rate of decomposition in sediment under conditions selective for various physiologically different kinds of microorganisms. Decay under aerobic conditions was greater than under anaerobic conditions. Nitrate increased the rate of decomposition under anaerobic conditions. The Q10 for decay was 2.5. | 17. KEY WORDS AND DOCUMENT ANALYSIS | | | | | | |------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--| | DESCRIPTORS | b. IDENTIFIERS/OPEN ENDED TERMS | c. COSATI Field/Group | | | | | Degradation, DDT, DDD, DDE, Coastal, Pollution | Microbial degradation, chemical degradation, rates of change, pesticide residues, chlorinated hydrocarbon pesticides organic pesticides | 12 and 33 | | | | | 9. DISTRUCTION STATEMENT | 19. SECURITY CLASS (This Report) | 21. NO. OF PAGES | | | | | | 20. SECURITY CLASS (This page) | 22. PRICE | | | |