Research and Development ENVIRONMENTAL ASSESSMENT OF A WOOD-WASTE-FIRED INDUSTRIAL WATERTUBE BOILER Volume II. Data Supplement ### Prepared for Office of Air Quality Planning and Standards ### Prepared by Air and Energy Engineering Research Laboratory Research Triangle Park NC 27711 #### RESEARCH REPORTING SERIES Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are: - 1. Environmental Health Effects Research - 2. Environmental Protection Technology - 3. Ecological Research - 4. Environmental Monitoring - 5. Socioeconomic Environmental Studies - 6. Scientific and Technical Assessment Reports (STAR) - 7. Interagency Energy-Environment Research and Development - 8. "Special" Reports - 9. Miscellaneous Reports This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT RESEARCH AND DEVELOPMENT series. Reports in this series result from the effort funded under the 17-agency Federal Energy/Environment Research and Development Program. These studies relate to EPA's mission to protect the public health and welfare from adverse effects of pollutants associated with energy systems. The goal of the Program is to assure the rapid development of domestic energy supplies in an environmentally-compatible manner by providing the necessary environmental data and control technology. Investigations include analyses of the transport of energy-related pollutants and their health and ecological effects; assessments of, and development of, control technologies for energy systems; and integrated assessments of a wide range of energy-related environmental issues. #### **EPA REVIEW NOTICE** This report has been reviewed by the participating Federal Agencies, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161. ## ENVIRONMENTAL ASSESSMENT OF A WOOD-WASTE-FIRED INDUSTRIAL WATERTUBE BOILER Volume II: Data Supplement by C. Castaldini and L. R. Waterland Acurex Corporation Environmental Systems Division 485 Clyde Avenue Mountain View, California 94039 EPA Contract No. 68-02-3188 Project Officer: R. E. Hall Air and Energy Engineering Research Laboratory Research Triangle Park, North Carolina 27711 #### Prepared for: OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, DC 20460 #### **ACKNOWLEDGMENTS** The authors wish to extend their gratitude to P. B. Wainwright of the North Carolina Department of Natural Resources and Community Development and to R. Weeks of the Ethan Allen Corporation. Their interest and cooperation in working with Acurex are gratefully acknowledged. The cooperation of D. B. Harris and J. Montgomery of EPA/AEERL and R. Encke of GCA was also instrumental to the success of the test program. Special recognition is also extended to the Acurex field test team under the supervision of B. C. DaRos, assisted by M. Chips, R. Best, and J. Holm. #### CONTENTS | Section | | Page | |---------|---|--------------------| | 1 | INTRODUCTION | 1-1 | | 2 | PRELIMINARY TESTS | 2-1 | | 3 | BOILER OPERATING DATA | 3-1 | | 4 | SAMPLING DATA SHEETS | 4-1 | | | 4.1 CONTINUOUS MONITORING EMISSION DATA | 4-3 | | | (BY GCA AND EPA) | | | | CONTROLLED CONDENSATION | 4-7 | | 5 | ANALYTICAL LABORATORY RESULTS | 5-1 | | | | 5-3
5-7
5-15 | | | 5.4 SULFUR OXIDE EMISSIONS FROM CONTROLLED | 5-25 | | | 5.5 TRACE ELEMENT AND LEACHABLE ANION ANALYSES 5.6 GASEOUS (C₁ to C₆) HYDROCARBONS 5.7 TOTAL CHROMATOGRAPHABLE (TCO) AND GRAVIMETRIC ORGANICS, INFRARED SPECTRA (IR), AND GAS | 5-29
5-49 | | | CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS) OF TOTAL SAMPLE EXTRACTS | 5-77 | | | 5.8 LIQUID CHROMATOGRAPHY (LC) SEPARATION AND INFRARED | 5 00 | | | SPECTRA OF LC FRACTIONS | 5-99 | | | 5.10 RADIOMETRIC ANALYSIS RESULTS | 5-127
5-14 | | | 5.11 BIOLOGICAL ASSAY RESULTS | 5-149 | #### SECTION 1 #### INTRODUCTION The purpose of this data supplement is to provide sufficient detail for researchers to perform their own analysis of the data obtained. Readers are referred to Volume I (Technical Results) for objectives, description of the source tested, results, interpretations, and conclusions. This data supplement contains the following information: - Section 2: <u>Preliminary Tests</u> -- Stack velocity traverse and gas composition tests. - Section 3: <u>Boiler Operating Data</u> -- Field data sheets of boiler operating conditions from available test meters; boiler efficiency calculation using ASME abbreviated test forms. - Section 4: Sampling Data Sheets -- Emission data obtained with continuous monitoring instrumentation operated by EPA and GCA. Operating data tables for EPA Method 5 (for particulate mass emissions), Source Assessment Sampling Systems (SASS) (for particulate mass and size fractionation, trace elements, and organic emissions), and controlled condensation (for SO₂ and SO₃ sampling). Section 5: Analytical Laboratory Results -- Fuel analyses; laboratory analysis reports on particulate emissions by gravimetric analysis; sulfur emissions by turbidimetric analysis; trace element emissions by spark source mass spectrometry (SSMS) and atomic absorption spectroscopy (AAS), and leachable anion analyses by specific ion electrode; C_1 to C_6 hydrocarbons by gas chromatography; total chromatographable organic (TCO) and gravimetric (GRAV) results; determination of organic compounds by gas chromatography/mass spectrometry (GC/MS) in total sample extracts; liquid chromatography (LC) separation; low resolution mass spectrometry (LRMS) of selected total extracts and LC fractions; radiological assay reports for flue gas particulate and flyash samples; biological assay reports for flue gas and solid flyash samples for both test 1 (dry wood) and test 2 (green wood). ## SECTION 2 PRELIMINARY TESTS : #### TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS | PLANT ETHAN ALLEN OUR FORT, NC. | |---| | DATE _ 4-13-81 | | SAMPLING LOCATION STACK | | INSIDE OF FAR WALL TO | | OUTSIDE OF NIPPLE, (DISTANCE A) | | INSIDE OF NEAR WALL TO | | OUTSIDE OF NIPPLE, (DISTANCE B) 3 火ャ" | | STACK I.D., (DISTANCE A - DISTANCE B) 47" | | NEAREST UPSTREAM DISTURBANCE | | NEAREST DOWNSTREAM DISTURBANCE | | CALCULATOR DAGOS DEST CHIPS | SCHEMATIC OF SAMPLING LOCATION | TRAVERSE
POINT
NUMBER | FRACTION
OF STACK I.D. | STACK I.D. | PRODUCT OF
COLUMNS 2 AND 3
(TO NEAREST 1/8 INCH) | DISTANCE B | TRAVERSE POINT LOCATION FROM OUTSIDE OF NIPPLE (SUM OF COLUMNS 4 & 5) | |-----------------------------|---------------------------|------------|--|------------|---| | 1 | From EDA | 47° | ,82 (1.0) | +3.25 | 7.25 | |) | TABLES | | 1.50 | , | 4.75 | | | |) | 2.57 | \ | 5.84 | | 7 | | (| 3.71 |) | 6.96 | | | | | 4.94 | (| 8.19 | | 7 | |) | 6.20 | | 7.4.9 | | | | | 7.57 | | 10.22 | | | | | 9.12 | / | 12.37 | | | |) | 10.81 | | 14.06 | | | | | 12.78 |) | 16.03 | | | | | 15.18 | / | 18.43 | | | | | 18.71 | | 21.96 | | | | | 28.27 | | 31.54 | | | | | 31.82 | | 35.07 | | 7 | | _ | 34.22 | (| 37.47 | | 1 | | | 36.17 | | 39,44 | | | | | 37.88 | 1 | 41.13 | | | |) | 39.43 | \ | 42,68 | | | | | 40.80 |) | 44.05 | | | | | 42.07 | (| 45.52 | | | | | 43.29 | / | 46.54 | |) | |) | 44.42 | Ì | 47.67 | | Ÿ | | 7 | 45.50 | ¥ | 48.75 | | 48 | | 47 " | 46.48 (46.0 | +3.25" | 49.25 | ### PRELIMINARY VELOCITY TRAVERSE PLANT ETHAN ALED, OLD FERT, MC. DATE 4-13-81 LOCATION STACK - ROD F STACK I.D. 47" BAROMETRIC PRESSURE, in. Hg 28,60 STACK GAUGE PRESSURE, in. H₂0 - 3"H; OPERATORS BEST / CHIPS (MARCE) | ZOAUEDOE | VE: 00:77 | 27.04 | |----------------|--|-----------------------| | TRAVERSE POINT | VELOCITY
HEAD | STACK
TEMPERATURE | | NUMBER | (Δp _s), in. H ₂ 0 | (T _s), •F | | Nomber | Δμ _S /, III. 1120 | ('s', ' | | , | .55 | 320 | | | .55 | 322 | | | 160 | 323 | | | .70 | 323 | | | .60 | 323 | | | -اعماء | 323 | | | 145 | 323 | | | .55 | 353 | | | .45 | 327 | | | 145 | 323 | | | ,40 | 322 | | | .30 | 322 | | | 130 | 322 | | | 115 | 320 | | , i | ,10 | 318 | | | .10 | 318 | | | ,05 | 318 | | | .05 | 317 | | / | .05 | 315 | | | .05 | 315 | | | .03 | 314 | | | .03 | 305 | | 4 | 102 | 305
N/R | | 48 | ,०२ | N/R | | AVERAGE | | | #### SCHEMATIC OF TRAVERSE POINT LAYOUT | TRAVERSE
POINT
NUMBER | VELOCITY
HEAD
(Δp _S), in.H ₂ O | STACK
TEMPERATURE
(T _S), °F | |-----------------------------|---|---| | , | , 30 | 317 | | \ | .30 | 319 | | | .30 | 320 | | | .30 | 321 | | / | .35 | 322 | | | .30 | 322 | | | .30 | 323 | | | .30 | 323 | | | , 3 0 | 524 | | | , 20 | 324 | | | , 2ი | 324 | | | .20 | 324 | | | .20 | 323 | | | - 20 | 323 | | | •20 | 323 | | | .20 | 322 | | | 120 | 322 | | | .20 | 321 | | | 20 | 320 | | | .20 | 319 | | | .20 | 316 | | | .20 | 312 | | 4 | • 15 | N/R | | 78 | .10 | 312
N/R
N/R | | AVERAGE | | | EPA (Dur) 233 4/72 #### ISOKINECTIC SAMPLING WORKSHEET | Plant From ALCN |
Peformed by BEST. | |-------------------|-------------------| | Date 4-15-81 | | | Sample Location | | | Test No./Type M-5 | | $$K = \frac{782.687 (Cp)^2 (1-B_{wo})^2 P_s M_d}{K_o^2 M_s P_m}$$ where: K = Contant of fixed and assumed parameters (dimensionless) | Pitot coefficient (dimensionless) | <u>~ "</u> C _p | ,15 | ferson | |---|---------------------------|---------------|--------| | Water vapor in the gas stream (proportion by volume) | B _{wo} | ন্ত | armen | | Absolute stack gas pressure (in. Hg) | .3" H20
Ps | 28.90 | | | Molecular weight, stack gas dry (lb/lb-mole) | M _d | 29.19 | | | Orifice coefficient (dimensionless) | Кo | .7126 | (03x) | | Molecular weight, stack gas wet (lb/lb-mole) M _d (l-B _{wo}) + 18(B _{wo}) | M _S | 28,03 | | | Abolute meter pressure (in. Hg) | P _m | 2 ኅ.୦ፘ | | | 782.687 () ² (1) ² () () | К | 806.682 | | A= .5928 $$Co_2 = 4.0\%$$ $O_2 = 12.5\%$ $P_2 = 83.5\%$ ## ISOKINECTIC NOZZLE CALCULATION AND SAMPLING RATE CALCULATION | Plant FTHAN ALLEN DED FRET NC. | Performed by Rest | |--|-------------------| | Date 4-15-81 | | | Sample LocationSTACK Test No./Type | | | $N_d = \left(\frac{\Delta H T_S}{K T_A \Delta P}\right)$ |).25 | where: N_d = Nozzel diameter (inches) | Average pressure differential across the orifice meter (in. H ₂ 0) | ΔН | | | |---|----------------|----|-------| | Temperature stack gas, average (^O F) | Тs | | | | Temperature of gas meter, average (OF) | τ _m | | | | Stack gas velocity pressure (in H ₂ 0) | ΔΡ | ی. | assum | | (| Nd | | | $\Delta H = K (N_d)^4 \frac{T_m}{T_s} (\Delta P)$ where: ΔH = Pressure differential across the orifice meter (in H_2O) | Nozzel diameter, actual (inches) | Nd | .3086 | |---|---------------------------------|-------| | Temperature of gas meter (OF) | Tm | | | Temperature of stack gas (^O F) | T _S | | | Stack gas velocity pressure (in H ₂ 0) | ΔΡ | | | (() () ⁴ (+ 460) () | ΔН | | | Magic number() ⁴ | K(N _d) ⁴ | 7.316 | #### ISOKINECTIC SAMPLING WORKSHEET | Plant FTHAN ALLEN, OLD FORT, N.C. Peformed by R BEST | | |--|--| | Date 4-16-81 | | | Sample Location STACK | | | Test No./Type 2/m-5 | | $$K = \frac{782.687 (Cp)^2 (1-B_{WO})^2 P_S M_d}{K_o^2 M_S P_m}$$ where: K = Contant of fixed and assumed parameters (dimensionless) | | | | _ | |--|---------------------------------------|--------|----------| | Pitot coefficient (dimensionless) | C _p | .79 | | | Water vapor in the gas stream (proportion by volume) | B _{wo} | ,52 | | | アムニ スタルロ
Absolute stack gas pressure (in. Hg) | 5" H ₂ O
P _S | 27.57 | | | Molecular weight, stack gas dry (1b/1b-mole) | Мd | 30.0 | cessenan | | Orifice coefficient (dimensionless) | Кo | . 47 | | | Molecular weight, stack gas wet
(1b/1b-mole) M _d (1-B _{wo}) + 18(B _{wo}) | M _S | 29.00 | asund | | Abolute meter pressure (in. Hg) | Pm | 29.70 | | | 782.687 () ² (1) ² () () | К | 894.41 | | ## ISOKINECTIC NOZZLE CALCULATION AND SAMPLING RATE CALCULATION | Plant FTHAN ALLEN, OLD FTRT, NC | Performed by R. Bes | |---------------------------------|---------------------| | Date #-16-81 | • | | Sample Location STACK | | | Test No./Type 2/M-S | | | ,
/ AU T | \.25 | $N_d = \left(\frac{\Delta H T_s}{K T_m \Delta P}\right)^2$ where: $N_d = Nozzel diameter (inches)$ | Average pressure differential across the orifice meter (in. H ₂ 0) | ΔН | 1.8 | |--|----------------|------| | Temperature stack gas, average (^O F) | T _S | 783 | | Temperature of gas meter, average (OF) | T _m | 555 | | Stack gas velocity pressure (in H ₂ 0) | ΔΡ | .45 | | \(\left(\left(\left(\left(\left) \) \(\left(\left(\left(\left) \) \\ \(\left(\left(\left) \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | N _d | .282 | $$\Delta H = K (N_d)^4 \frac{T_m}{T_s} (\Delta P)$$ where: ΔH = Pressure differential across the orifice meter (in H_2O) | Nozzel diameter, actual (inches) | Nd | | |---|---------------------------------|--| | Temperature of gas meter (OF) | T _m | | | Temperature of stack gas (^O F) | T _S | | | Stack gas velocity pressure (in H ₂ O) | ΔΡ | | | (() () ⁴ (+ 460) () | ΔН | | | Magic number() ⁴ | K(N _d) ⁴ | | ## SECTION 3 BOILER OPERATING DATA • ## BOILER OPERATING DATA: TEST (Preliainery) Date: 4-13-81 | Parameter Time | /3:00 | 15:00 | | |--------------------------------|--------------|-----------------|--| | Steam load (103 lb/hr) | 11.0 | 14.0 | | | Underfire din (in. H20) | + 0.6 | + 0.6 | | | Overfire sir (in 1420) | +21 | 1 21 | | | Press before soll. (in H20) | 1 2.0 | 1 2.0 | | | Press ofter coll. (in H20) | 1 3.8 | ₹ 3.5 | | | Furnace draft (in Hz O) | _ 0.3 ± 0.1 | - 0.25 ± 0.05 | | | Silo A feed (dry und) (rpm/%) | 500/30 | 500/30 | | | Silo B feed (wet word) (rpm/%) | 0 | 0 | | | Bridgewill temps (F) | 660 | 650 | | | Economizer inlet, HzO (°F) | 150 | 148 | | | Fromomizer outlet, Heo (F) | 290 | 270 | | | Superheater steam outlet (OF) | 500 | 5/5 | | | Superhoster steam prem (prig) | 195 | 185 | | | Stack temp, oft. coll (of) | 450 | 435 | | | Comments: | Steek trever | ve messurements | | | | | | | BOILER OPERATING DATA: TEST No.1 (Dry Wood) Date : 4-15-81 | Time
Parameter | 9:40 | 10:10 | 12:30 | |----------------------------------|--------------|--------------|----------------------------| | Steam load (103 lb/hr) | 17 · | ~ 16 | ~ /5 | | - Underfire din (in. H20) | 1 0.5 | + 0.6 | 0.5 | | Overfire sir (in 1420) | + 23.5 | , 22.5 | + 22.0 | | Press before coll. (in H20) | + 2.0 | + 2.0 | . 2.0 | | Press ofter coll. (in H20) | 3.5 ب | <i>≠</i> 3.5 | + 3.5 | | Furnace draft (in HzO) | - 0.25 | - 0.25 | - 0.25 | | Silo A feed (dry und) (rpm/93) | 480 | 700 | 600 | | S. 10 B. feed (wet wood) (rpm/%) | 0 | 0 | 0 | | Bridgewell temp (F) | 900 | 870 | 850 | | Economizer inlet Hoo (F) | 155 | 155 | 155 | | Economizer outlet, HO (F) | 255 | 250 | 258 | | Superheater steam outlet (0F) | 520 | 440 | 520 | | Superhoster steam press (prig) | 155 | 145 | 155 | | Stack temp, oft. coll (of) | 460 | 450 | 460 | | Comments: | | | , | | - Comments | | | 16 = ~ 65 pp | | | | | Q= ~ 15 %
(0= > 1000ppm | | | | | COS - MORPH | | | | | | ## BOILER OPERATING DATA: TEST No. 1 (Dry Nood) Date: 4-15-81 | Time | | | | |--------------------------------|--|--------------|--------| | Parameter | /3:00 | /3.30 | 14:00 | | Steam load (103 lb/hr) | ~ /5 | ~ 15 | ~ 14 | | Underfire din (in. H20) | + 0.5 | + as | + 0.6 | | Overfire sir (in 140) | + 22 | + 22.5 | ÷ 22.5 | | Press before coll. (in H20) | + 2.0 | + 2.0 | 1 2.0 | | Press ofter coll. (in H20) | <i>3.6</i> | 1 2.0-4.0 | ≠ 3.5° | | Furnace draft (in HzO) | - 01-04 | - 0.1 - 0.35 | - 0.25 | | Silo A feed (dry und) (rpm/%) | 520 | 520 | - 440 | | 5.10 B ford (wat wood) (rpm/%) | 0 | 0 | 0 | | Bridgewall town (F) | 850 | 825 | 803 | | Economizer inlet Heo (F) | 155 | /50 | 150 | | Economizer outlet, HO (F) | 250 | . 255 | 260 | | Superheater steam outlet (OF) | 525 | 520 | 510 | | Superhoster steam preu (prije) | 160 | 160 | 145 | | Stack temp, oft. coll (of) | 460 | 440 | 440 | | Comments: | Bular blowdown test stopped at I par and resumed at 1:05 per | | | ## BOILER OPERATING DATA: TEST No. 1 (Dry Wood) Date: 4-15-81 | Parameter Parameter | 14:30 | 15:00 | /5:35 | |--------------------------------|-------------|-------------|---| | Stem load (103 lb/hr) | 15 | /7 | 17. | | Underfice din (in. H20) | + 0.6 | + 0.6 | + 0.5 | | Overfire sir (in. H20) | + 32 | + 22 | + 22 | | Press before soll. (in H20) | 1 2.0 | + 1.3 | + 2 | | Press ofter coll. (in H2O) | ≠ 3.2 | ¥ 3.5 | £ 3.0 | | Furnace draft (in Hz 0) | - 0.1 - 0.4 | - 0.1 - 0.4 | - 0.1 - 0.4 | | Silo A feed (dry und) (rpm/%) | 480 | 500 | 450 | | 5.10 8 feed (wet wood) (rp=/%) | 0 | 0 | 0 | | Briggiuill trup (F) | 800 | 800 | 800 | | Economizer inlet Hoo (°F) | 150 | 150 | 150 | | Fromomizer outlet, Hoo (F) | 260 | 165 | 265 | | Superheater steam outlet (OF) | 510 | 500 | 510 | | Superheater steam press (page) | 165 | /65 | /65 | | Stock temp, oft. coll (°F) | 435 | 430 | 430 | | Comments: | | | CM check
Oz = 13-17
CO = 500-2500 | BOILER OPERATING DATA: TEST No. 1 (Dry Good) Date: 4-15-81 | | Jule : 7-13 01 | | | | | | | |--------------------------------------|----------------|-------------|--------------|--|--|--|--| | Parameter Parameter | 16:00 | /6:30 | 17:00 | | | | | | Steam load (103 lb/hr) | . 17 | 15.5 | 17 | | | | | | - Underfire dir (in. H20) | 1 0.4-0.8 | + 0.3 - 0.8 | + Q5 | | | | | | Overfire sir (in. 1420) | + 22.5 | + 22 | + 22 | | | | | | Press before coll. (in H20) | 1 2.0 | . 2.0 | <i>‡ 2.5</i> | | | | | | Press ofter coll. (in H20) | + 2-4 | 4 3 | . 3 | | | | | | Furnace draft (in HzO) | - 0 - 0.35 | - 0-0.4 | - 0.25 | | | | | | Silo A feed (dry und) (rpm/95) | <i>50</i> 0 | 390 | 500 | | | | | | · S. 10 B feed (wet word) (rp. / 7.) | 0 | 0 | 0 | | | | | | Bridgewell temp (F) | 805 | 785 | 785 | | | | | | Economizer inlet Hoo (F) | 148 | 150 | ر50 | | | | | | Franchizer outlet Heo (F) | 240 | 260 | 265 | | | | | | Superheater steam outlet (OF) | 510 | 520 | 495 | | | | | | Superhoster steam press (peip) | 162 | -170 | 165 | | | | | | Stack temp, oft. coll (of) | 430 | 430 | 430 | | | | | | Comments: | | • | BOILER OPERATING DATA: TEST No. 1 (Dry
Wood) Dote: 4-15-81 | Parameter Parameter | 17:30 | 18:00 | 18:30 | |--------------------------------|----------|--|------------| | Steam load (103 lb/hr) | 17 | 165 | 16 | | - Underfire din (in. H20) | + 0.6 | + 0.6 | 1 0.6 | | Overfire sir (in. H20) | + 22.5 | + 22.5 | 2 21.5 | | Press before coll. (in H20) | + 1.8 | 1 2.5 | 1 2.3 | | Press ofter coll. (in H20) | / 3 | <i>→</i> 3 | <i>y</i> 3 | | Furnace draft (in Hz O) | - 0.1-04 | - 0.25 | - 0.25 | | Silo A feed (dry und) (rpm/%) | 495 | 5/5 | 500 | | S.10 B feed (wet wood) (rpm/%) | 0 | 0. | 0 | | Bridgewall temp (F) | 773 | 760 | 750 | | Economizer inlet Hap (°F) | 148 | 146 | 145 | | Frommiser outset, HO(F) | 270 | 265 | 265 | | Superheater steem outlet (OF) | 500 | 485 | 490 | | Superheater steam prem (prig) | 165 | 162 | 162 | | Stack temp, oft. coll (°F) | 435 | 425 | 420 | | Comments: | | | | | • | | | | | | | | | ### TEST No. 1 (Dry Wood) Date: 4-15-81 BOILER OPERATING DATA: | 19:30 | 20:00 | | |-----------|--|---| | 16 | 17 | | | + 0.6 | + 0.6 | | | + 22.5 | <i>J</i> 22.5 | | | <u>+2</u> | 1 1.8 - 2.4 | | | <u> </u> | 4 3-4 | | | - 0.25 | - 0.1- 0.3 | | | _ 510 | 520 | _ | | 0 | | | | 750 | 740 | | | 145 | 145 | | | | 265 | | | | | | | | 756 | | | | 420 | | | | | | | | /6 + 0.6 + 22.5 + 2 + 3 - 0.25 510 0 752 /45 265 500 /65 420 Wood full flowestal roughly colonistal colon | 16 17 + 06 + 06 + 22.5 + 22.5 + 2 + 1.8-2.4 + 3 + 3.4 - 0.25 - 0.1-0.3 510 520 0 0 752 740 145 145 265 265 500 490 165 156 420 420 Wood full flowested roughly colonisted | ## ASME TEST FORM FOR ABBREVIATED EFFICIENCY TEST PTC 4.1-a (1964) | ł | | | | | TEST NO. 1 (4 r) | , c:(/b i | DILE | R NO. | L DATE 4 | -15-81 | |--|--|--|----------|--|--------------------------|---|----------|-----------|---------------------------------------|--| | OWNER OF PLANT ETHON ALLEN LOCATION CLO FORT, NC | | | | | | | | | | | | - | | | | | BJECTIVE OF TEST | | | | | H 640 | | | T CONDUCTED BY ACCEPTED CAST | | | | | | | | | | | 801 | LER, MAKE & TYPE WICKS 55,0=0 16. | : /mr = | oul shok | | conserted to wood | - F17 - RA | TED | CAPACI | 17 4 agis | 14/4- | | STO | KER, TYPE & SIZE FIRED GARG | 607 | V COLOR | EF. | OF 8 CFA POR | <u>ri </u> | | | | | | PUL | VERIZER, TYPE & SIZE NONTE | | | | | 84 | RNE | R, TYPE | & SIZE S'PO | ma | | | EL USED Dry wood chips MINE | | | COU | MTY | STATE | | | SIZE AS PI | ED | | | PRESSURES & TEMPERATURES | | | | | FUEL | _ | A | | | | | | | | 1500 | CONE AS FIRED | | | | | | | ' ' | STEAM PRESSURE IN BOILER DRUM | pois | MA | 4 | PROX. ANALYSIS | 24 | | | OIL. | | | 7 | STEAM PRESSURE AT S. H. OUTLET | psie | 130 | 37 | MOISTURE | 11.02 | 51 | FLASH | POINT F" | | | 1 | STEAM PRESSURE AT R. H. INLET | ptio | NA | 38 | VOL MATTER | | 52 | So. Grav | ity Dee. API* | | | ا | THE PRESENT AT A. T. T. T. T. | - | ~// | - | | | | | TY AT SSU" | | | L4 | STEAM PRESSURE AT R. H. OUTLET | Baig | 'JA | 39 | FIXED CARBON | | 53 | BURNE | | | | | | , | £03 | 40 | ASH | 0.37 | 44 | TOTAL | HYDROGEN | 1 1 | | | STEAM TEMPERATURE AT S. H. OUTLET | - | | - | TOTAL | 0.57 | 41 | Bty per | 16 | | | <u> </u> | STEAM TEMPERATURE AT R.H. HILET | | NA | - | Bry per Ib AS FIRED | 7714 | - | 1 019 507 | !! | | | | STEAM TEMPERATURE AT R.H. OUTLET | F | NA. | 41 | ASH SOFT TEMP. | ///3 | \vdash | | | | | L | WATER TEMP. ENTERING (ECON.) (BOILER) | | /5 Z | 42 | ASTM METHOD | | | | GAS | % YOL | | | | | | - 4 | GAL OR OH. AS FIRED | روسم | | | | 1 | | • | STEAM QUALITY'S MOISTURE OR P. P. M. | | <u>e</u> | | ULTIMATE ANALYSIS | 1/2 2 | 34 | CO | | - | | 10 | AIR TEMP. AROUND BOILER (AMBIENT) | | | 43 | CARBON | 45.27 | 55 | CH. | ETHANE | └ | | 11 | TEMP. AIR FOR COMBUSTION (This is Reference Temperature) ! | | 60 | 44 | HYDROGEN | 5.44 | 54 | C,H, | CETYLENE | ! I | | 12 | TEMPERATURE OF FUEL | • | Posts | 45 | OXYGEN | 37.73 | 57 | C, H, E | THYLENE | | | 13 | GAS TEMP. LEAVING (Boiler) (Econ.) (Air Hr.) | • | 436 | 44 | NITROGEN | 0.12 | 50 | CH, | THANE | | | 14 | GAS TEMP. ENTERING AM (If conditions to be | <u> </u> | 25 | | | Cic36 | | H, 5 | | | | | corrected to augrantee) | <u> </u> | 1 24 | 47 | SULPHUR | | 50 | _ | · · · · · · · · · · · · · · · · · · · | | | | UNIT QUANTITIES | | | 49 | ASH | 0. 55 | 40 | CO | | | | 15 | ENTHALPY OF SAT. LIQUID (TOTAL HEAT) | Bry/lb | | 37 | MOISTURE | 11.02 | 61 | н, | HYDROGEN | | | 16 | ENTHALPY OF (SATURATED) (SUPERHEATED) | Sn/16 | 1271 | | 747.1 | | | | 507.1 | 1 1 | | | STM. | 576715 | ,~,, | _ | TOTAL | | _ | | TOTAL | | | 17 | ENTHALPY OF SAT. FEED TO (BOILER) (ECON.) | 21 | 120 | | COAL PULYERIZATIO | ЭМ | | 2 A | HYDROGEN | 1 | | ' | 10,50% | | | 4 | GRINDABILITY | | 42 | DENSIT | Y 48 F | | | 18 | ENTHALPY OF REHEATED STEAM R.H. INLET | Bn/16 | - | INDEX. 62 DENSITY 64 P. ATM. PRESS. | | | s | | | | | 19 | ENTHALPY OF REHEATED STEAM R. H. | L | l — | 49 FINENESS THRU 50 M° 43 Bm PER CU FT | | | 1 1 | | | | | 70 | MEAT ABS/LB OF STEAM (ITEM 14-ITEM 17) | Bou/Ib | | 30 | FINENESS & THRU | | 41 | | | | | | HEAT ABSCOOF TIEAR (TER TO-TIER TV) | | 1151 | | 300 W. | | ï | Bn PE | # LB | | | 21 | HEAT ABS/LB R.H. STEAM(ITEM 19-ITEM 18) | B=-/1b | _ | 4 | INPUT-OUTPUT | | ļ | TEM 31 | 100 = 1 | Kil | | | | | | <u> </u> | EFFICIENCY OF UN | TS | | ITEM 2 | | | | 22 | DRY REFUSE (ASM PIT + PLY ASM) PER LB AS FIRED FUEL | ILA | | l | HEAT LOSS EFFN | CIENCY | | | A. F. FUEL | PUEL T | | 73 | Sm PER LB IN REFUSE (WEIGHTED AVERAGE) | | | 45 | HEAT LOSS DUE TO | | | | 3:64 | 757 | | 24
| CARBON BURNED PER LB AS FIRED FUEL | Ib/Ib | | 66 | HEAT LOSS DUE TO | | E IN I | FUEL | /35 | 1.74 | | 25 | DRY GAS PER LB AS FIRED FUEL BURNED | 16/16 | 2254 | 67 | HEAT LOSS DUE TO | | | | | 7.75 | | | HOURLY QUANTITIES | | | 44 | HEAT LOSS DUE TO | | | | 279 | -" (31 | | 3 | ACTUAL WATER EVAPORATED | III/M | 16,000 | 47 | HEAT LOSS DUE TO | | | | | 1.5 | | 27 | REHEAT STEAM FLOW | Ib Air | _ | 70 UNMEASURED LOSSES | | | | | / - | | | * | RATE OF FUEL FIRING (AS FIRED +1) | Ibh. | 22270 | 71 | TOTAL | | | | - | 44.7 | | 77 | TOTAL HEAT INPUT (Item 28 x Item 41) | | | | | 4 311 | | | | | | | 1000 | FEV | 1750 | L | EFFICIENCY = (100 | | | | | 22.3 | | 30 | HEAT OUTPUT IN BLOW-DOWN WATER | 18/hr | | 4 | 8.675 Bt. | 114 5 | ~ | 521. | | | | | TOTAL (Issa 24e)ten 20)e(Issa 27e)ten 21) | 18/4 | | C, | 0.673 1.110 | ,,, | 7 | | | | | 31 | TOTAL (Item 26=Item 20)+(Item 27=Item 21)+(Item 30 OUTPUT 1000 | /" | 18,416 | (2) | 2017 15/h | · dr | y Ł | 541 | | | | | FLUE GAS AMAL. (BOILER) (ECOM) (AIR HTR) | OUTLE | 7 | (3 | 11.1.1.1 | , | • | | | | | 322 | CO ₃ | S VOL | | 14 | و معدد معد المحدد | - | | | | | | 33 | a, | 2 VOL | 16.4 | l `' | Dut (Jet | - | | | | | | 34 | co | % VOL | 17.14 | 1 | • Nos Booule 44- mm | | | | | | | 35 | M (BY DIFFERENCE) | % VOL | 79.0 | 1 | * Not Required for Effic | HONCY TOS | 11 TO | | | | | | | | | | | | | | | | 1 For Point of Measurement See Par. 7.2.8.1-PTC 4.1-1964 ## ASME TEST FORM FOR ABBREVIATED EFFICIENCY TEST Revised September, 1965 | | | | | 3 | |----|---|------------------------------------|--------------------------|-----------| | | OWNER OF PLANT ETHAN ALLEN TEST NO. 1 BOILER NO. | | ATE4-15-81 | 1 | | 30 | HEAT GUTPUT IN BOILER BLOW-DOWN WATER "LB OF WATER BLOW-DOWN PER HR X | ITEM 17 | | | | | If improctical to weigh refuse, this item can be estimated as follows DRY REFUSE PER LB OF AS FIRED FUEL = RASH IM AS FIRED COAL NOTE: 1F 1 | LUE DUST | & ASH | | | 24 | 100 = 5 COMB. IN REFUSE SAMPLE, PIT REFUSE | FIBLE CON
ESTIMATE
Y. SEE SE | | | | 25 | DRY GAS PER LB 31CO ₃ + 8O ₅ + 7 (N ₅ + CO) x (LB CARBON BURNED PER LB AS FIRED FUE BURNED 11 EM 32 17 EM 33 17 EM 34 | 17EM | <u>انبرر [</u> | | | 36 | EXCESS $O_2 - \frac{CO}{2}$ = 100 x $\frac{O_2 - \frac{CO}{2}}{.2462N_2 - (O_2 - \frac{CO}{2})}$ = 100 x $\frac{17\text{EM 33} - \frac{17\text{EM 34}}{2}}{.2462 (17\text{EM 35}) - (17\text{EM 33} - \frac{17\text{EM 34}}{2})}$ | .387 | • | | | | HEAT LOSS EPPICIENCY | Bnu/Ib
AS FIRED
FUEL | LOSS x
NHV x
100 + | LOSS
R | | 65 | HEAT LOSS DUE LB DRY GAS PER LB AS AC A (Trg - Toir) - 1725 40.24 (TEM 13) - (TEM 11) FIRED FUEL Unit - 1725 40.24 (TEM 13) - (TEM 11) | 3445 | 45 x 100 x | لد .نوز | | ** | MEAT LOSS DUE TO LE M.O PER LB x [(ENTHALPY OF VAPOR AT 1 PSIA & T GAS LVG) MOISTURE IN FUEL AS FIRED FUEL x [(ENTHALPY OF VAPOR AT 1 PSIA & T GAS LVG) - (ENTHALPY OF LIQUIDAT T AIR)] = \frac{172M 37}{100} x \frac{1}{2} \incredefta - 26\text{3}} AT 1 PSIA & T 1 TEM 13) - (ENTHALPY OF LIQUID AT T ITEM 11)] = | 135 | 44 x 100 + | 1.74 | | 67 | MEAT LOSS DUE TO H ₁ 0 FROM COMB. OF M ₂ = 9M ₃ x [(ENTHALPY OF VAPOR AT 1 PSIA & T GAS LYG) = (ENTHALPY OF LIQUID AT T AIR)] e 9 x TTEM 44 x [(ENTHALPY OF VAPOR AT 1 PSIA & T ITEM 13) = (ENTHALPY OF LIQUID AT T ITEM 11)] =9(5:35)/100 (1250 = 28) | 598 | 67 x 100 = | 7.75 | | 44 | HEAT LOSS DUE TO STEM 22 STEM 23 COMBUSTIBLE IN REFUSE # N . | 0.43 | 48 x 100 = | 0 | | 40 | RADIATION* TOTAL BTU RADIATION LOSS PER HR LB AS FIRED PUEL — ITEM 26 | •••• | 47 x 100 = | 1.5 | | 70 | UNMEASURED LOSSES ** | | 70 x 100 = | .1.5. | | 71 | TOTAL | | | 744. | | 72 | EFFICIENCY . (100 - ITEM 71) | | | 55.3 | BOILER OPERATING DATA: TEST 2 (Wet Wood) Day: 4-16-81 | | | ay. | | |----------------------------------|---|---|-------------| | Time
Parameter | /2:30 | /3:05 | /3:30 | | Steam load (103 lb/hr) | 11. | 10 | 10 | | Underfire dir (in. H20) | 1 0.7 | + 0.7 | + 0.7 | | Overfire sir (in 1420) | + 22 | + 22.5 | 1 22 | | Press before coll. (in H20) | + 13 | 1 1.8-2 0.5 | 1.5 | | Free ofter coll. (in H20) | + 2.5 | + 2.2 | 1 2.2 | | Furnace draft (in H20) | - 0.10 | - 0.15 | - 0.15 | | Silo A feed (dry und) (rpm/%) | 0 _ | 0 | _ 0 | | Silo & feed (wet wood) (rpm/1/2) | 550 | 500 | <i>55</i> 0 | | Bridgewell trup (F) | 1100 | 1050 | 1400 | | Economizer inlet Heo (F) | 155 | 150 | 150 | | Franchizer outlet, Hes (F) | 235 | 235 | 240 | | Superheater steam outlet (F) | <i>5</i> 50 | 565 | 550 | | Supreheater steam pren (prip) | 175 | 175 | 170 | | Stack temp, oft. coll (of) | 450 | 445 | 430 | | Comments: | Primary 2 DFA Bin
value settings men
incremed to 75 h
100 % apro from 50 %
Open of Test 1.
Rate Hed to 50 %
CTALT OF TEST | Stran demand
storting to drop
again | | BOILER OPERATING DATA: TEST No.2 (Net Now) Date: 4-16-81 Time 14:30 14:00 15:00 Parameter 8:3 712 10 ± ż Steam load (103 lb/hr) Underfire dir (in. H20) 1 0.7 + 0.6 + 0.65 Overfire sir (in. 1/20) + 22 1 22.5 1 22.5 Press before coll. (in H20) 1 18 1.8 Press ofter coll. (in H20) 4 3.⊅ 4 3.0 Furnace draft (in Ha O) - 0.15 - 0,20 - 0.15 Silo A feed (dry und) (rpm/%) 0 Silo B feed (wet word) (rpm/%) 620 540 ううつ Bridgewell temp (F) 1100 1050 1023 Economizer inlet Hoo (F) 150 150 150 Franchizer outset, HO (F) 240 235 245 Superheater steam outlet (F) 550 560 550 Superhoater steam preu (prip) 170 165 175 Stack temp, oft. coll (F) 430 435 440 Comments: CH Check: Stean demand Co ~ 1500 max chopping the property # BOILER OPERATING DATA: TEST No. 2 (Uct Wood) Date: 4-16-81 | | Jake : 1 to C. | | | | | | | | |--------------------------------|---|---|--------|--|--|--|--|--| | Porometer | 15:30 | 16:30 | 17:00 | | | | | | | Stem load (103 lb/hr) | 813 | 7±3 | 7 #3 | | | | | | | Underfire din (in. H20) | + 0.6 | 0.6 | 0.5 | | | | | | | Overfire sir (in. 1420) | , 22.5 | 4 22.5 | 4 22.5 | | | | | | | Press before coll. (in H20) | + 2.0 | 1 1.8 | + 1.9 | | | | | | | Press efter coll. (in H2O) | <i>+</i> 3.0 | <i>4</i> 3 | 4 3.0 | | | | | | | Furnace draft (in HzO) | - 0.25 | - 0.z | - 0.z | | | | | | | Silo A feed (dry und) (rpm/%) | 0 | 0 | 0 | | | | | | | Silo B fred (wit word) (Mm-1%) | 540 | 550 | 550 | | | | | | | Bridgewell temp: (F) | 1000 | 1000 | 1000 | | | | | | | Economizer inlet, H20 (°F) | 150. | 155 | 152 | | | | | | | Fromomizer outlet, Hzo (F) | 250 | 242 | 256 | | | | | | | Superheater steam outlet (OF) | 545 | 550 | 520 | | | | | | | Superhoster ateam press (prig) | 175 | 185 | 187 | | | | | | | Stack temp, oft. coll (of) | 440 | 445 | 420 | | | | | | | Comments: | At about 16:00 hur briles fire went out Test stopped - Added dry chips for a 15 minutes | At 16:38 lost fire again. Went on dry chips for a 4 minutes Test stopped during that time | | | | | | | BOILER OPERATING DATA: TEST No. 2 (Not Nood) Date 4-16-81 | Time
Parameter | /7:30 | 18:22 | | |---------------------------------|----------|-------------|--| | Steam load (103 lb/hr) | 8 + 3.5 | 7.5 ± 3.5 | | | Underfire din (in. H20) | + 0.5 | + 0.6 | | | Overfire sir (in. He0) | + 22.5 | + 22.5 | | | Press before coll. (in H20) | ± 1.9 | 4 2.3 | | | Press ofter coll. (in H20) | + 3: 0.3 | 4 2.9 | | | Furnace draft (in H20) | - 0.2 | - 0.18 | | | Silo A fred (dry und) (rpm/%) | 0 | 0 | | | 5.10 2 feed (wet word) (rp=/4.) | 600 | 500 | | | Bridgewell temps (F) | 1000 | /000 | | | Economizer inlet, Hzo (F) | 150 | 155 | | | Frommizer outlet, Hoo(F) | 257 | 255 | | | Superheater steam outlet (OF) | 520 | 550 | | | Superhooter steam press (paig) | 185 | 190 | | | Stack temp, oft. call (of)
 440 | 445 | | | Comments: | | End of test | | | | | | | | | | | | ## ASME TEST FORM FOR ABBREVIATED EFFICIENCY TEST PTC 4.1-a (1964) | | | | | | E31 | | | F 10 4. 14 | | | |--|--|---------|-----------------|---|------------|--------|----------|-------------------|--------------------|--| | | | | | TEST NO. 2 (Let | | JILE | R NO. | L DATEY- | <u> التي - نا/</u> | | | OWNER OF PLANT ETHAN ALLEN | | | | LOCATION OLD | | | .V.C. | | | | | TEST CONDUCTED BY Hares / CAUTA | 1 | ۷. | | BJECTIVE OF TEST | Forester | عد | Herry | C. DURATIO | M6hri | | | BOILER, MAKE & TYPE Wicks 55,000 16/4/ | 1602 | st ken | يزويو | crited to work for | re RA | TED | CAPACI | TY ~ 45: 2 | مرم/نخار | | | STOKER, TYPE & SIZE Fixed GRATA WIL | 74. | ANCEL | F, 14 | 2 DEA Puni | -, | | | | | | | PULVERIZER, TYPE & SIZE NOWS | | | | | au | RNE | R, TYPE | & SIZE PAR | SOFA | | | FUEL USED MINE | | | COU | NTY | STATE | | | SIZE AS FIR | | | | PRESSURES & TEMPERATURES | | | | | FUEL | DA: | A | | | | | 1 STEAM PRESSURE IN BOILER DRUM | 8 | | | OIL | | | | | | | | | paie | NA | | PROX. ANALYSIS | | | | | | | | 2 STEAM PRESSURE AT S. H. OUTLET | Paia | 173 | 37 | MOISTURE | 39.85 | | | POINT F* | | | | 3 STEAM PRESSURE AT R. H. INLET | paid | NA | * | VOL MATTER | | 52 | | ity Dog. API | <u> </u> | | | 4 STEAM PRESSURE AT R. H. OUTLET | psie | N.3 | 39 | FIXED CARBON | | 53 | BURNE | R SSF | | | | | $\Gamma^{}$ | 55c | | | | | | HYDROGEN | | | | S STEAM TEMPERATURE AT S. H. OUTLET | <u> </u> | NA | 40 | ASH | | 41 | 7, 101 | 14 | | | | 6 STEAM TEMPERATURE AT R.H. INLET | - | NA | 4 | Bru per Ib AS FIRED | 5128 | •1 | 814 per | 18 | | | | 7 STEAM TEMPERATURE AT R.H. OUTLET | | | -" - | ASH SOFT TEMP. | 7.730 | | | | | | | 8 WATER TEMP. ENTERING (ECON.) (BOILER) | P | 152 | 42 | ASTM METHOD | L | | , | GAS | % YOL | | | STEAM QUALITY'S MOISTURE OF P. P.M. | 1 | 0 | | OAL OR OH AS PIRED
ULTIMATE AMALYSIS | W200 | 34 | CD | | | | | 10 AIR TEMP, AROUND BOILER (AMBIENT) | F | | 43 | CARBON | 35.07 | 55 | CH. | ETHANE | | | | TEMP. AIR FOR COMBUSTION | | <u></u> | | | 3.60 | | CH, | CETYLENE | | | | (This is Reference Temperature) 1 | | 80 | 44 | HYDROGEN
OXYGEN | | 57 | | THYLENE | | | | | | AH13 | 45 | | 26.00 | 58 | Cotto I | | | | | 13 GAS TEMP. LEAVING (Boiler) (Econ.) (Air Htr.) 14 GAS TEMP. ENTERING AM (If conditions to be | | | 44 | NITROGEN | 0.10 | | | <u> </u> | | | | corrected to augrantee) | 1.5 | NA | 47 | SULPHUR | 0.02 | 59 | H, S | | | | | UNIT QUANTITIES | , | | 40 | ASH | 1.24 | 40 | CO, | | | | | 15 ENTHALPY OF SAT, LIQUID (TOTAL HEAT) | Bru/Ib | | 37 | MOISTURE | 33 85 | 61 | 143 | HYDROGEN | | | | 16 ENTHALPY OF (SATURATED) (SUPERHEATED) STM. | 3-4/16 | 1297 | l | TOTAL | | | | l | | | | ENTHALPY OF SAT. FEED TO (BOILER) | | 10 | | | | | TOTAL | TOTAL
HYDROGEN | | | | 17 (ECOM.) | Bnu/lb | 120 | <u> </u> | COAL PULYERIZATE | ON . | | 2 40 | <u> </u> | | | | 18 ENTHALPY OF REHEATED STEAM R.H. INLET | Bn.75 | - | - | GRINDABILITY | | 62 | DENSIT | ATM. PRES | is. | | | 19 ENTHALPY OF REHEATED STEAM R. H. | | | 49 | FINENESS % THRU | | | | | | | | OUTLET | Boy/1b | | - | 50 M* | - | 63 | | R CU FT | <u> </u> | | | 20 HEAT ABS/LB OF STEAM (ITEM 16-ITEM 17) | Bru/Ib | 1177 | | FINENESS % THRU
200 M* | | 41 | Bn PE | | | | | 21 HEAT ABS/LO R.M. STEAM(ITEM 19-ITEM 18) | Bm/16 | | 44 | INPUT-OUTPUT | | į | TEM 31 | .4 | | | | 22 DRY REPUSE (ASH PIT + FLY ASH) PER LB | | | - | EFFICIENCY OF UN | IT S | | ITEM 2 | Bra/lb | S of A. F | | | AS FIRED FUEL | IN/IN | | | HEAT LOSS EFFH | CIENCY | | | A.F. FUEL | FUEL | | | 23 Dw PER LB IN REFUSE (WEIGHTED AVERAGE) | | | 45 | | | | | 1173 | 12.5.00 | | | 24 CARBON BURNED PER LB AS FIRED FUEL | 16/16 | 13.7 | 66 | HEAT LOSS DUE TO | | | | 407 | 7.0-1 | | | 25 DRY GAS PER LB AS FIRED FUEL BURNED HOURLY QUANTITIES | IP\IP | K3.62 | | HEAT LOSS DUE TO | | | | | 6.79 | | | 26 ACTUAL WATER EVAPORATED | llb/br | # 50 JA | 68 | HEAT LOSS DUE TO | | | SEPUSE | 51 | 2.2.4 | | | 27 REHEAT STEAM FLOW | Ib/Ar | NA | 70 | UNMEASURED LOSS | | | | | 1.5 | | | 28 RATE OF FUEL FIRING (AS FIRED wi) | lb/hr | 43140 | _ | TOTAL | | | | | 38.7 | | | 29 TOTAL HEAT IMPUT (Item 28 × Item 41) | LB/hr | i / · | | | | | | | | | | 1000 | _ | 24 150 | <u> </u> | | | | | | 1:1:3 | | | 30 HEAT OUTPUT IN BLOW-DOWN WATER | 18/hr | WA_ | 14 | Average of water | reading | | u tu | . durch m | i ru | | | 31 HEAT (Item 26s from 20)+(Item 27=Item 21)+(Item 30 | 18/ | 10004 | 1 | Rest - Steady 10e | عط علام | - | e foo | UK 16/4, | 4 7KK | | | PLUS CAS AMAL (BOULEW/FCOM) (ALB MTD) | OUT'S TO | | l. 1 | demay tet | | | - | | | | | PLUE GAS AMAL. (BOILER) (ECON) (AIR HTR) | OUTLE. | - 4 | (3) | 8,675 BM/15 6 | بهنهستك س | • | | | | | | n 0 | S VOL | 12.8 | (U) | 8,675 BM/4 6 | dry bas | 40 | | | | | | 34 CO | S VOL | 12.7 | 1 | _ | * | | | | | | | 35 N, (BY DIFFERENCE) | S VOL | 179 2 | 1. | * Not Required for Effic | tioney Tob | Hed | | | | | | 34 EXCESS AIR | 1 | T : 3 | V | 1 For Point of Massura | mant San P | or. 7. | 2.8.1-PT | C 4.3-1944 | | | (4) Canton to the 1665) Dec to the 1660 ## ASME TEST FORM CALCULATION SHEET FOR ABBREVIATED EFFICIENCY TEST Revised September, 1965 | | | | | • | |----|---|----------------------------|-----------------------------------|-----------| | | OWNER OF PLANT ETHINN ALLEN TEST NO. 2 BOILER NO. | | ate 4-16-81 | | | 30 | MEAT OUTPUT IN BOILER BLOW-DOWN WATER #LB OF WATER BLOW-DOWN PER HR X | 17EM 17 | h 8/hr | | | | If impractical to weigh refuse, this item can be estimated as follows | | | | | 24 | | DIFFER | & ASH
MATERIALLY
TENT, THEY | | | | CARBON BURNED 35.05 [TEM 22 ITEM 22] SHOULD BE SEPARATEL COMPUTAT | ESTIMATE
Y. SEE SE | D | • | | 25 | DRY GAS PER LB AS FIRED FUE AS FIRED FUE WITH 32 ITEM 32 (LB CARBON BURNED PER LB AS FIRED FUE ITEM 32 ITEM 33 (TEM 35 ITEM 34) | L + 3 S | 7 | | | 25 | 11 = 16.2 · 8 = 13.4 · 7(79.3 · 10.1) = 16.35
1 = (17.2 · 17.1) = 17.1 A.35 | + <u>Q.</u> ç. | 4 13:45 | | | , | EXCESS 0, - CO 1TEM 33 - 1TEM 34 2 100 X | 21. | 3 | | | | $.2682N_2 - (O_3 - \frac{CO}{2})$ | | | | | | HEAT LOSS EFFICIENCY | Stu/Ib
AS FIRED
FUEL | LOSS X
100 ± | LOSS
R | | 45 | MEAT LOSS DUE TO DRY GAS PER LB AS XC, X (Trug - Tole) = 13.47 437 80. | 1173 | 45 × 100 = | .30.4 | | * | MEAT LOSS DUE TO LEMO PER LE X (ENTHALPY OF VAPOR AT 1 PSIA & T GAS LVG) MOISTURE IN PUEL AS FIRED FUEL X (ENTHALPY OF VAPOR AT 1 PSIA & T GAS LVG) - (ENTHALPY OF LIQUIDAT T AIR) - TEM 37 X (ENTHALPY OF VAPOR AT 1 PSIA & T LITEM 13) - ENTHALPY OF LIQUID AT T LITEM 11)] * | 407 | 44 x 100 + | 7.09 | | 47 | HEAT LOSS DUE TO H ₁ O FROM COMB. OF M ₂ = TH ₂ = [(ENTHALPY OF VAPOR AT 1 PSIA & T GAS
LVG) = (ENTHALPY OF LIQUID AT T AIR)] | 389 | 47 x 190 = | 6.79 | | | = 9 x TTEM 44 x [(ENTHALPY OF VAPOR AT 1 PMA & T ITEM 13) = (ENTHALPY OF LIQUID AT T ITEM 11)] = | 207 | 41 | | | ** | HEAT LOSS DUE TO 1TEM 22 1TEM 23 COMBUSTIBLE IN REFUSE # # # | 51 | 48 × 100 = | 0.39 | | * | RADIATION* TOTAL BTU RADIATION LOSS PER HR LB AS FIRED FUEL — 17EM 28 | 14 | 47 x 100 + | 2.0 | | 70 | UMMEASURED LOSSES ** |);
3.6 | 70 = 100 = | 1.5 | | 71 | TOTAL | | | 30 | | 72 | EFFICIENCY = (100 - ITEM 71) | | | U.S. | #### SECTION 4 #### SAMPLING DATA SHEETS - 4.1 CONTINUOUS MONITORING EMISSION DATA (BY GCA AND EPA) - 4.2 FIELD DATA SHEETS FOR EPA METHOD 5, SASS, AND CONTROLLED CONDENSATION 4.1 CONTINUOUS MONITORING EMISSION DATA (BY GCA AND EPA) Emission results were compiled by GCA into summary tables. FEST 1 (Day Wood) FIFTEEN-MINUTE AVERAGE DATA FOR APRIL 15, 1981 | Time | Elapsed
time
(min) | 0 ₂ (MV) | NO _x (MV) | CO (MV) | 02 (%) | NO _x (ppm) | CO (ppm) | |------|--------------------------|---------------------|----------------------|---------|--------|-----------------------|--------------| | 1304 | 274 | 6.267 | 2.592 | 3.340 | 15.93 | 59.8 | 1366 | | 1319 | 299 | 6.243 | 2.665 | 2.444 | 15.87 | 61.5 | 996 | | 1334 | 314 | 6.258 | 2.443 | 3.431 | 15.91 | 56.3 | 1403 | | 1349 | 329 | 6.273 | 2.207 | 4.520 | 15.95 | 50.7 | 1852 | | 1401 | 341 | 6.589 | 1.899 | 5.707 | 16.75 | 43.5 | 2342 | | 1413 | 353 | 6.281 | 2.211 | 4.073 | 15.97 | 50.8 | 1668 | | 1425 | 365 | 6.442 | 2.196 | 4.681 | 16.38 | 50.5 | 1919 | | 1440 | 380 | 6.440 | 2.237 | 4.785 | 16.37 | 51.4 | 1962 | | 1455 | 395 | 6.613 | 1.595 | 6.828 | 16.81 | 36.3 | 2804 | | 1510 | 410 | 6.481 | 1.926 | 6.036 | 16.48 | 44.1 | 2478 | | 1525 | 425 | 6.400 | 2.043 | 5.188 | 16.27 | 46.9 | 2128 | | 1540 | 440 | 6.519 | 1.925 | 5.712 | 16.57 | 44.1 | 2344 | | 1555 | 455 | 6.334 | 2.042 | 5.387 | 16.10 | 46.8 | 2210 | | 1610 | 470 | 6.444 | 1.777 | 6.407 | 16.38 | 40.6 | 2631 | | 1625 | 485 | 6.232 | 2.237 | 4.773 | 15.85 | 51.4 | 1957 | | 1640 | 500 | 6.488 | 2.463 | 5.103 | 16.50 | 56.7 | 2093 | | 1655 | 515 | 6.682 | 1.548 | 7.593 | 16.99 | 35.2 | 3120 | | 1710 | 530 | 6.397 | 1.962 | 6.581 | 16.26 | 45.0 | 2703 | | 1725 | 545 | 6.688 | 1.433 | 7.195 | 17.00 | 32.5 | 2956 | | 1740 | 560 | 6.406 | 2.072 | 7.085 | 16.29 | 47.5 | 2 910 | | 1755 | 575 | 6.382 | 2.101 | 6.336 | 16.23 | 48.2 | 2602 | | 1816 | 590 | 6.555 | 1.734 | 7.288 | 16.70 | 39.6 | 2994 | | 1825 | 605 | 6.564 | 1.720 | 7.778 | 16.72 | 39.3 | 3196 | | 1840 | 620 | 6.476 | 1.888 | 7.053 | 16.50 | 43.2 | 2897 | | 1855 | 635 | 6.563 | 1.777 | 7.684 | 16.72 | 40.5 | 3158 | | 1910 | 650 - | 6.464 | 2.196 | 6.764 | 16.31 | . 50.5 | 2778 | | 1925 | 665 | 6.315 | 2.048 | 6.759 | 16.09 | 47.0 | 2776 | | 1940 | 680 | 6.682 | 1.103 |
7.580 | 17.02 | 24.7 | 3115 | | 1955 | 695 | 6.861 | 0.846 | 8.375 | 17.48 | 18.7 | 3443 | ## TEST 3 (NET WOOD) FIFTEEN-MINUTE AVERAGE DATA FOR APRIL 16, 1981 | Time | Elapsed
time
(min) | 0 ₂ (MV) | NO _x (MV) | CO (MV) | 02 (%) | NO _x (ppm) | CO (ppm) | | |------|--------------------------|---------------------|----------------------|-------------|----------|-----------------------|----------|--| | 1112 | 1502 | 5.392 | 3.693 | 1.806 | 13.53 | 85.8 | 731 | | | 1127 | 1517 | 4.956 | 3.891 | 1.116 | 12.43 | 90.4 | 447 | | | 1142 | 1532 | 4.774 | 5.596 | 0.811 | 12.00 | 130.6 | 322 | | | 1157 | 1547 | 4.671 | 4.245 | 0.716 | 11.71 | 98.8 | 283 | | | 1212 | 1562 | 5.111 | 3.884 | 1.108 | 12.82 | 90.3 | 444 | | | 1227 | 1577 | 4.742 | 3.983 | 0.991 | 11.89 | 92.6 | 396 | | | 1242 | 1592 | 5.231 | 3.759 | 2.909 | 13.13 | 87.2 | 1185 | | | 1257 | 1607 | 5.141 | 3.584 | 1.254 | 13.00 | 83.2 | 504 | | | 1312 | 1622 | 6.286 | 2.385 | 5.438 | 15.77 | 54.9 | 2227 | | | 1327 | 1637 | 6.313 | 2.420 | 5.512 | 15.84 | 55.7 | 2257 | | | 1342 | 1652 | 5.365 | 3.230 | 2.657 | 13.46 | 78.4 | 1082 | | | 1357 | 1667 | 5.141 | 3.747 | 1.065 | 12.90 | 87.0 | 426 | | | 1412 | 1682 | 5.244 | 3.677 | 1.201 | 13.16 | 85.4 | 482 | | | 1427 | 1697 | 5.794 | 2.998 | 2.913 | 14.54 | 69.4 | 1187 | | | 1442 | 1712 | 5.794 | 2.814 | 2.441 | 14.54 | 65.0 | 993 | | | 1457 | 1727 | 5.565 | 3.327 | 1.312 13.96 | | 77.1 | 528 | | | | | - Calibra | tions perf | ormed 150 | 0-1600 h | rs' | | | | 1612 | 1802 | 5.549 | 3.534 | 1.555 | 13.92 | 82.0 | 628 | | | 1627 | 1817 | 5.749 | 2.906 | 2.120 | 14.42 | 67.2 | 861 | | | 1642 | 1832 | 6.220 | 1.630 | 4.255 | 15.61 | 37.1 | 1740 | | | 1657 | - 1847 | 5.762 | 3.073 | 2.991 | 14.46 | 71.1 | 1219 | | | 1712 | 1862 | 5.970 | 3.275 | 2.597 | 14.98 | 75.9 | 1057 | | | 1727 | 1877 | 6.050 | 2.724 | 4.183 | 15.18 | 62.9 | 1710 | | | 1742 | 1892 | 6.011 | 2.861 | 4.479 | 15.08 | 66.1 | 1832 | | | 1757 | 1907 | 5.744 | 2.828 | 2.866 | 14.41 | 65.4 | 1168 | | 4.2 FIELD DATA SHEETS FOR EPA METHOD 5, SASS, AND CONTROLLED CONDENSATION | | Plant Date Test Locate Run Numbe Stack Diam | W-15 DIN | 48" | SM S | tometric Pressure | 30"/
5' 9 l
0.79
11
035 | 14.0 | Molecular II BWO | Number Neight FILTER ER TAI | <i>P-90.</i> 3 | | IMPIN VOLUMENT CONTROL | GER TWG | DAT | 813668 | |------|---|----------|--------------------------------|--|---------------------------|-------------------------------------|-------|------------------|-----------------------------|----------------|-------|--|--------------------------|-------------|--------------| | Heug | SAMPLE
POINT | CLOCK | VELOCITY
HEAD
AP in. wg. | ORIFICE
METER
4H in. wg. | GAS
METER
VOLUME FT | STACK | PROBE | | AATURES 'ORGANIC MODULE | OVEN | GAS (| | PUMP
VACUUM
in. Hg | √∆P | | | w | 1 | 0.0 | .25 | 1.28 | 292,384 | 3// | 342 | | | 3,50 | 78 | 28 | 5 | .506 | initialla | | | 2 | 2.5 | .27 | 1.37 | 294.0 | 3/2 | 222 | _ | | 340 | 25 | 78 | 5 | 1820 | | | | 3 | 5.0 | .30 | 1.62 | 295.6 | 3/2 | 3/0 | | | 309 | 75 | 78 | 5 | 548 | .010 at 13 H | | | 4 | 7.5 | .30 | 1.52 | 297.3 | 3/1 | 299 | | | 285 | 74 | 78 | 5 | 548 | Pilot OH | | | 5. | 10.0 | . 7.8 | 1.42 | 299.0 | 3/279 | 279 | | | 55 / | 74 | 78 | 5 | .529 | أمر | | | 6 | 12.5 | 28 | 1.42 | 300.7 | 3/0 | 269 | | | 244 | 73 | 77 | 5 | ,529 | 7 | | | 7 | 15.0 | .24 | 1,22 | 302.4 | 309 | 25/4 | | | 26/ | 73 | 77 | 5 | .490 | • | | ì | 8, | 17.5 | .24 | 1.22 | 304.0 | 3/2 | 232 | | | 294 | 73 | 77 | 5 | .490 | | | ! | 9 | 20.0 | 79 | 1.01 | 305.6 | 312 | 258 | | | 303 | 73 | 77 | 4 | .447 | | | | 10 | 22.5 | .17 | .86 | 307.1 | 311 | 284 | | | 286 | 73 | 77 | 4 | 412 | | |] | // | 25.D | .17 | 186 | 308.4 | 3/0 | 273 | | | 269 | 72 | 74 | 4 | 412 | | | | 12 | 275 | ./3 | .66 | 309.7 | 309 | 239 | | | 249 | 73 | 76 | 3 | .36/ | | | 1 | _15 | 30.0 | .13 | .66 | 3/0.9 | 309 | 221 | | | 232 | 73 | 76 | 3 | ,361 | • | | - | 14 | 33.5 | 115 | 176 | 312. | 309 | 263 | | | 242 | 73 | 76 | 3 | .387 | | | | 15 | 35.0 | .15 | ,76 | 313.3 | 309 | 254 | | | 245 | 72 | 76 | 3 | ·387 | | | | 16 | 37.5 | 15 | .76 | 314.5 | 308 | 226 | · | :4 | 253 | 73. | 75 | 3 | ,387 | | | - | 17 | 40.0 | ./8 | .91 | 315,8 | 308 | 246 | | | 273 | 72 | 79 | 4 | .424 | | | | 18 | 42.5 | .15 | .76 | 317.1 | 308 | 268 | | | 268 | 72 | 75 | 8 | 387 | | | | АУВЛОТАL | | | | | | | | | | | | | | ٠ | | 4 | | |---|--| | T | | | - | | | | | | 0 | | | | 1 | | t l | VELOCITY | ا ممادات | GAS | | | EMPE | RATURES * | F | | | ا مسم ا |) 1 | ~ 1 | |------|----------|-----------------|---------------|-----------|-----------|--------------------|-------|-------|--------------|-----------|------|-------|----------|---------|--------|-----| | | • | SAMPLE
POINT | CL/JK
TIME | HEAD | METER | METER
VOLUME FT | STACK | PROBE | IMPINGER | ORGANIC | OVEN | GAS I | METER | VACUUM | √AP | | | | l | | | ΔP in. wg | ΔH in. wg | | J.HOR | | IIII) II/GEN | MODULE | | IN | OUT | IA. HQ | | | | | į | 19 | 45.D | 1/7 | .86 | 3/8.5 | 308 | 241 | | | 275 | 72 | 25 | 4 | 4/3 | | | | | 20 | 47.5 | .15 | 76 | 319.8 | 306 | 244 | | | 269 | 72 | 25 | 4 | 387 | | | | Ĺ | 21 | 50.0 | 15 | 76 | 32/1/ | 306 | 26/ | | | 267 | 72 | 74 | 4 | 357 | | | | | 22 | 52.5 | .10 | ·s/ | 322,3 | 306 | 240 | | | 244 | 71 | 74 | 3 | 3/6 | | | | · | 23 | 55.0 | ./0 | 51 | 323,3 | 306 | 243 | | | 237 | 72 | 74 | 3 | 13/6 | | | | | 24 | 57.5 | ./0 | 51 | 324.4 | 306 | 262 | | | 239 | 72 | 74 | 3 | .316 | | | | Joesh | υ
 | 600 sty | | | 326.463 | | | | | | | | | | | | | المهد | 1 | 60.0 | .38 | 1.93 | 326.403 | 308 | 251 | | | 268 | 74 | 75 | 6 | .616 | | | | | 2 | 62.5 | .38 | 1.93 | 327.3 | 308 | 26.5 | | | 273 | 74 | 75 | 6 | ·6/C | | | | L | 3 | 65.0 | .45 | 2,28 | 329.2 | 309 | 271 | | | 273 | 7.2 | 74 | 8 | 67/ | | | | L | 4 | 67.5 | .50 | 254 | 331.4 | 369 | 272 | | | 264 | 71 | 24 | 8 | .707 | | | _ | Ĺ | _5_ | 70.0 | .50 | 2.54 | 333,5 | 308 | 270 | | | 249 | 7/ | 74 | 8 | .707 | | | 4-10 | | 6 | 72.5 | 150 | 2.94 | 335.6 | 309 | 265 | | | 236 | ウ/ | 74 | 8 | 1707 | | | 0 | | 7 | 75.0 | .50 | 2,54 | 337.8 | 306 | 259 | | | 227 | 2/ | 74 | 8 | 207 | | | | | 8 | 77.5 | 150 | 2.54 | 340,0 | 309 | 249 | | | 226 | 71 | 74 | 8 | 707 | | | | | _5 | 80.0 | 145 | 2.18 | 342.2 | 311 | 250 | | | 241 | 7/: | 74 | 8 | .67/ | | | | // | 10 | 82.5 | .45 | 5.78 | 244.0 | 309 | 249 | | | 279 | 7/ | 74 | 8 | 671 | | | | <i>"</i> | 11 | 85.0 | ,35 | 1.78 | 346.4 | 310 | 244 | | | 30 / | 7/ | 74 | 7_ | .592 | | | | L | 12 | 87.5 | 18 | .91 | 318.4 | 301 | 249 | | · | 273 | 71 | 74 | 4 | .424 | | | | L | 13 | 90.0 | ./0 | 5/ | 349.8 | 306 | 248 | | | 277 | 7/ | 74 | 3 | 216 | | | | | 14 | 92.5 | .08 | .41 | 350.9 | 309 | 196 | | | 262 | 70 | 73 | 3 | 1283 | | | | | 15 | 95.0 | .05 | ,25 | 351.8 | 307 | 249 | | | 243 | 69 | 73 | 3 | ,234 | | | | | | 97.5 | .05 | .25 | 352.6 | 304 | 248 | | | 232 | 68 | 72 | 3 | · 24 | | | | Ĺ | 17 | 100.0 | 05 | ,25 | 353,3 | 306 | 247 | 1 | | 200 | 68 | 72 | _3 | الالد. | | | | . [| 18 . | 102.5 | 05 | ,25 | 354.1 | 307 | 245 | | | 222 | 67 | 7/ | 3 | 13# | | | | Γ | 19 | 105.0 | .05 | 25 | 354.8 | 305 | 245 | | | 738 | 67 | 71 | .3 | 122/ | | | | | 20 | 1075 | .05 | ,25 | 3 <i>5</i> \$.5 | 301 | 245 | | | 253 | 67 | 71 | 3 | 224 | | | | ſ |] | | | | | | | | | | | | _ | VG/TOTAL | | | | | | • | | | | | <u> </u> | L | | | • | Date Test Eucatio Run Numbe Stack Diame Duct Danen | Static Pressure Lucation Slock Oatlet Stack Pressure Number Method 5 1 Probe Number It Diameter inches 48 Prior Coefficient 2.79 It Diameter inches Prior Number I Time 17.35 Meter Box Number rator Ordice Coefficient | | | | | | Nozzie Sizi | r & Number
Neight
FILTER | DATA | | IMPIN YOLU | GER Y | DAT | | CO | |--
---|-------------------------------|--------------------------------|----------------------------|-------------|-------------|-------------|--------------------------------|-------------|-------|------------|--------------------------|----------|------------|------| | Operator - | | | Ord | | | | TEMP | RATURES ' | | | <u> </u> | | | | | | SAMPLE | CLOCK | VELOCITY
HEAD
AP in. wg | ORIFICE
METER
AH IN. Wg. | GAS
METER
VOLUME FT' | STACK | PROBE | IMPINGER | ORGANIC
MODULE | OVEN | GAS I | OUT | PUMP
VACUUM
In. Hg | √∆F | | | | .21 | 110.0 | .05 | ,25 | 356.2 | 304 | 246 | | | 283 | 67 | 7/ | 3 | ,234 | | | | 23 | 112.5 | .05 | ,25 | 357, D | 304 | 246 | | | 273 | 65 | 69 | 3 | .234 | | | | 23 | 115 D | .05 | ,25 | 357.7 | 304 | 246 | | | 268 | 65 | 69 | 3 | ,334 | | | | 24 | 117.5 | .85 | .25 | 358.4 | 304 | 246 | | | 263 | 65 | 69 | 3 | 1224 | | | | | 120.0 | End | | 359209 | | | | | · | | | | | | | | | | | | | | | | | | ļ | <u> </u> | | | Final | lock | | | | | | | | | | | | ļ —— | | <u> </u> | | sst | | |
 | | | | | | | | | · | | | | | .008 | No. | | | | | | | | | | | | | - | <u> </u> | <u> </u> | <u> /2</u> | 149 | · . | | | | | | | | | | | | | | | | · | | | | | | · · | ······ | | | | | | | | | | | | • | | | | | | | | | | | | | | | • | • | | | | | | · | | | | | | | | • | · · | | | | | | | | | | | | | | | | | | ļi | | | (22.8 | <u> </u> | | ļ | | | | AVG/TOTAL | 110 | 0.215 | 100 | 16.825 | 2087 | | | | | 21.2 | 79.4 | | .185 | | | 4-11 | | Ç |) | 81 | 13714 | Ê | | 01 nm | 10 | , | 8137 | 12 | | | f | <u>`</u>]••∠• | 12 | |------|--------------|------------------------------|--------------------------------|--------------------------------|---|--------|------------|--|---------------------------|---------|-------|----------------|--|------|----------------|----------------| | 1 | ACL COF | 4-16 | allon
-81 | 10 l | iometric Pressure | | 40 | PA
Nozzie Size
Molecular V | & Number/
Weight | R90 ,30 | | MPINION INCOME | SER I. | DAT | A SHE | ET
co | | : | Duct Dimen | pler inches
sions in. x i | | Pro
Pric | ble Number
ol Coefficient
ol Number | glan | | NUMB | O. 0:
FILTER
ER TAR | DATA | L WT. | SILIC | <u>, </u> | 20.5 | | | | | Start Time | Best | Z S | Mel | er Box Number_C | 7128 0 | 2.7928 | <u> </u> | | | | 176.5 G | | | | | | 314 | MAMPLE POINT | CLOCK
TIME | VELOCITY
HEAD
AP in. wg. | ORIFICE
METER
&H in. wg. | GAS
METER
VOLUME FT | STACK | PROBE | TEMPE | ORGANIC
MODULE | OVEN | GAS I | METER | PUMP
VACUUM
in Hg | √∆P | | | | Ist | maril / | 0.0 | 10 | .54 | 359.455 | 268 | 225 | | | 267 | 82 | 28 | उ | .3/6 | introf | 120 | | | 7_ | 2.5 | .10 | .54 | 360.5 | 268 | 230 | | | 258 | 8/ | 83 | 3 | | rocks | 7 | | - } | 3_ | 5.0 | 10 | .54 | 361.5 | 276 | 1 | | | 236 | 8/ | 83 | 3 | .3/6 | 0/22 | "当为 | | - } | | 7.5 | 1/3 | 168 | 362.6 | 298 | 236 | | | 226 | 80 | 82 | 3 | .36/ | 62stit | Y Cors | | ŀ | 5 | 10.0 | .15 | ,78 | 363.8 | 304 | 235 | | | 237 | 80 | 82 | 3 | 281 | July | | | | <u>_6</u> _ | 125 | 120 | 1,06 | 365,1 | 384 | 236 | | | 266 | 80 | 82 | 4 | .447 | | _ , | | Ļ | | 15.0 | .20 | 1.06 | 366.5 | 295 | 237 | | | 284 | 8/ | 82 | 4 | 847 | Flear | stof | | _ 'c | <u> </u> | 17.5 | +20 | 1.06 | 368.0 | 295 | 241 | | | 273 | 81 | 8/ | 4 | | Lean | y of oci | | ŕ | 9_ | 20.0 | 20 | 1.06 | 369.5 | 297 | 244 | | | 255 | 8/ | 8/ | 4 | 447 | | ∸⊣ . | | ŀ | _/0 | 22.5 | ,20 | 1.06 | 371.0 | 300 | 246 | <u>. </u> | | 233 | 81 | 8/ | | 947 | <u> </u> | | | - | | 25.0 | .15 | .78 | 372.4 | 299 | 245 | | | 223 | 8/ | 8/ | 3 | 387 | ļ | | | - | 12 | 27.5 | 15 | .78 | 373.7 | 305 | 245 | | | 260 | 8/ | 81 | 3 | 387 | | | | - F | 13 | 30.0 | ,13 | .78 | 375.0 | 309 | 245
246 | | | | 81 | | 3 | 36/ | | \dashv | | ŀ | 14 | 32,5
35:N | 17 | 188 | 376.1 | 310 | 247 | | | 276 | 80 | 8/ | 4 | 387 | | \dashv | | ŀ | | | | 1.05 | 375.6 | 3// | 249 | | | 247 | | | | 4/2 | | | | - | 16 | 37.5
40.0 | .20 | 1.19 | 380.2 | 301 | 291 | | | 227 | 80. | 81 | 4 | 497 | | | | - | | 42.5 | 125 | 1.29 | 361.7 | 311 | 244 | | | 770 | 89 | 81 | 3 | .500 | | | | į | VG/TOTAL | | 0167 | 0.877 | 22.265 | 398 | 249 | | | 250 | 31. | 81 | 4 | 0.40 | | | | 1 | ۱_ | 1 | 1 | l gas | L | | TEMPE | RATURES ' | 'F | | | PUMP | 1 | | |-----------------|-------------|------------------|----------|--------------------|-------|-------|----------|-----------|-------------|-----|-------|------------------|--------------|-----| | SAMPLE
POINT | CK
. Æ | VELOCITY
HEAD | METER | METER
VOLUME FT | STACK | PROBE | IMPINGER | ORGANIC | OVEN | GAS | METER | VACUUM
In. Hg | √AP | , . | | | | ΔP in. wg | AH in wg | | | | | MODULE | | IN | OUT | | | | | 19 | 450 | .25 | 1,29 | 383,3 | 3/1 | 275 | | | 234 | 79 | 8/ | 5 | a\$00 | | | 26 | 475 | .25 | 1.29 | 385.0 | 309 | 275 | | | 262 | 79 | 8/ | 5 | 500 | | | 21 | 50.0 | ,29 | 1,29 | 386.6 | 311 | 279 | | | 271 | 79 | 81 | 3 | <i>,5</i> \d | | | 22 | 525 | .25 | 1.45 | 388.2 | 3/0 | 28/ | | | 261 | 77 | 81 | C | 529 | | | 23 | 55,0 | .28 | 1.45 | 390.0 | 3/0 | 284 | | | 245 | 79 | 8/ | 6 | 529 | | | 24 | 57.5 | .28 | 1.45 | 391.6 | 310 | 287 | | | 227 | 78 | 80 | 6 | J29 | | | a dig | 60.0 S | | | 393.399 | | | | | | | | | | | | 11/ | 60.0 | 104 | 12/ | 393,399 | 278 | 27/ | | | <i>29</i> 0 | 78 | 79 | ત | 28 | | | | 62.5 | .04 | .21 | 394.0 | 278 | 289 | | | 268 | 78 | 79 | 2 | المحرد. | | | 3 | 65.0 | .04 | ,21 | 374.7 | 284 | 264 | | | 275 | 78 | 79 | 2 | مهد. | | | .4 | 67.5 | .04 | 121 | 395.4 | 290 | 26/ | | | 254 | 70 | 79 | Z | ,200 | | | 5 | 78.0 | .04 | 12/ | 396.1 | 302 | 253 | | | 235 | 78 | 79 | 2 | ,00 | | | 6 | 725 | .04 | 121 | 394.8 | 302 | 249 | | | 228 | 78 | 79 | N | ~20 | | | 7 | 75.0 | 104 | ,2/ | 397,6 | 303 | 244 | | • | 239 | 72 | 79 | ત્ર | مد. | | | 8 | 77.5 | .04 | ,21 | 398.3 | 307 | 242 | | | 26/ | 77 | 79 | 2 | , 20 | | | 9 | 80,0 | 104 | .21 | 399,0 | 2007 | 3971 | | | 27/ | 77: | 78 | 2 | مد, | | | 10 | 42.5 | .64 | ,2/ | 399.7 | 304 | 241 | | | 260 | 27 | 78 | 2 | .20 | | | 11 | 85.0 | .06 | .3/ | 400.4 | 309 | 242 | | | 244 | 76 | 78 | 2 | ,249 | | | 12 | 87.5 | ,06 | .3/ | 401.2 | 309 | 243 | | | 227 | 70 | 78 |) | .365 | | | 13 | 90,0 | ./3 | .67 | 402.1 | 309 | 244 | | | 226 | 76 | 78 | 2 | 36/ | | | 14 | 92.5 | ,20 | 1.04 | 403.2 | 3/6 | 244 | | | 240 | 76 | 77 | 5 | .447 | | | 15 | 75.0 | 25 | 1.30 | 404.7 | 3/2 | 246 | | | 272 | 75 | フフ | 5 | .500 | | | 16 | 97.5 | .30 | 1.56 | 406.4 | 312 | 250 | | | 284 | 75 | 77 | 6 | 548 | | | 17 | 100.D | ,35 | 1.82 | 408.1 | 312 | 257 | | | 272 | 75 | 77 | フ | .572 | *** | | 18 | 102.5 | .40 | 2.01 | 410.0 | 3/2 | 266 | | | 257 | 75 | 77 | フ | ,632 | ··· | | 19 | 105:0 | 145 | 2.33 | 412.1 | 311 | 276 | | | 243 | 75 | 76 | 8 | .67/ | | | 30 | 107.5 | .50 | 259 | 414.2 | 31/ | 267 | | | 240 | | 76 | 9 | 707 | | | | | 0.18 | 0.93 | 547.650 | 30 F | | | | | | | | | | | | | | | THIS PACE | | | | |] | 77 | 78 | 5 | 0.386 | | | AVQ/TOTAL | 107,5 | | | | | | | | | | - | | _ 1 | | | Plans Date | JREX
poration
6 XXa
4-10 | n allen
6-81
ach Da | Bar
Sta | omatric Pressure | | | Nozzle Size | & Number | | | T FI | | DAT | | EET
co | |-----------------|-----------------------------------|---------------------------|------------------|------------------|-------|-------------|--|------------------|--------------|--|--|--|--|--------------|-----------| | Tost Lucali | un | ach Os | thet SIA | ck Pressure | | | | - | | | | | - 1 | - { | | | Aun Numbe | , ≁ ∫ | - m/s | | | | | BWO | | | | - | | | | 1 | | | | URT |) - · Pia | be Number | | | NUMB | FILTER
ER TAI | | . WT. | | | - 1 | l | | | | eles inches . | 7 0 | Pitt
 | ol Coefficient | | ·· | 110000 | | T IT IT IT | | | | 1 | | | | | | | | A Number | | | } | | | | SILIC | <u>, </u> | ł | ł | | | Start Time | 17.2 | Σ, | Mel | er Box Number | · | | ļ | | | | GE | | | 1 | | | Operator . | Bet | ¥ | Onl | lice Coethcient | | | | _ | | |
$ldsymbol{ld}}}}}}}}}$ | | !_ | | | | <u> </u> | <u> </u> | T | | GAS | | | TEMPE | RATURES | F | | | | | | | | SAMPLE
POINT | CLOCK | VELOCITY | ORIFICE
METER | METER | | | | ORGANIC | | GAS | METER | PUMP
VACUUM | √AP | | | | | | ΔP in. wg | AH in. wg | VOLUME FT | STACK | PROBE | IMPINGER | MODULE | OVEN | IN | OUT | ın. Hg | | | | | 21 | 1100 | .50 | 2.59 | 416.4 | 3/2 | 265 | | | 255 | 75 | 76_ | 9 | , דטר | | | | 22 | 1/2.5 | .50 | 259 | 415.6 | 310. | 269 | | | 273 | 75 | 76 | 9 | 707 | | | | 23 | 115.0 | 50 | 2.59 | 420.9 | 3/0 | 271 | | | 268 | 7.5 | 76 | 9 | 707 | | | | 24 | 117.5 | 50 | | 423.1 | 310 | 275 | | | 263 | 75 | 70 | 9 | .707 | | | | | 120.06 | | 1 | 415,407 | 210 | | | | | | 1 | _ | ,,,, | 7 inst. | 12/ | | | 700.00 | <u> </u> | | 7 40 1701 | | | | | | | | | | rate | 344 | | | | | | | | | l | | | | | | | .007 | , | | | l | | | | | | | | - | | ├ | | | | | | | | | | | | | | | | | ├ | - | - | at 11" | 1tg | | | | | | | | ļ | | | | | | | <u> </u> | | | | | | | | | | | | | | | | <u> </u> | | } | | | E1 8 4 5 | 7 | | | | | | | | | | | | | | | | FINAL | Total | A 051 | 1111 | 65.972 | 304 | ļ | | | | 77 | 72 | | 2.40 | 10.470 | | | | 120 | 0.50 | | 65.972 | | 2 22: | | | 11/ | 75 | 26 | 9 | | | | | AVG/MIPH | 100 | 0.50 | 2.27 | W. 1/a | 310 | 372. | | | 21,5 | L 12 | 1,0 | 1 1 | 107 | | | | 4 | | |---|--| | 5 | | **АУ**Б/ТОТАL 1.3 | | ACU
Corr | REX
poration | | | | | | P# | RTIC | II ATE | TF! | RT F | IFI D | DAT | TA SH | EE | |-----|--------------|---------------------------|-------------|------------|-------------------|-------|-------------|--------------|-----------------|---------|-----------------|-------|---------------|----------|--------------|----------| | | | | ALLEN | Bac | ometric Pressure_ | 28.9 | 0 | | | | | | | יאכו | , OI | | | | | 9can 15 | | | lic Pressure | -0.3 | | Nozzle Siz | e & Number | | <i>></i> 74/ | MPIN | | IME C | 02 02 | CC | | | | • | - QUTLE | _ | | 28.90 | | Molecular | Weight | 29.14 | 1 | Sec | 630 | | | T | | | | | 22A2 - | | ck Pressure | | | BWO | | | م
ھ | | 345 | 350 0 | 120 | Cas | | | Run Numbe | - | | | be Number | | | NUMB | FILTER
ER TA | | L WT. | 300 | "" | | 1- | 1 | | | Stack Diame | Her inches_ | ···· | Pit | ol Coefficient | | | MI IN | 2- | HE PINA | L WI. | | | ŀ | | | | | Duct Dimen | HONS IN. II (| n | PH | ol Number | Poz | | My 443 | | | | SILI | CA | - 1 | - 1 | 1 | | | Start Tume . | · | | Me | ler Box Number | .067 | | 22 | | | | GE | L | | ĺ | | | | Operator | | b <u>rm</u> | Ori | fice Coefficient | 1.007 | | A) 14 | | | | 900 | 479.7 | | | <u> </u> | | | | | VELOCITY | ORIFICE | GAS | | | TEMP | ERATURES ' | F | | | PLANE | | | | | | SAMPLE | CLOCK | HEAD | METER | METER | STACK | PROBE | IMPINGER | ORGANIC | OVEN | GAS | METER | VACUUM | VAP | i . | | | | <u> </u> | <u> </u> | ΔP in. wg. | AH in. wg. | VOLUME FT' | | MODE | IMPINGEN | MODULE | OVEN | IN | OUT | in. Hg | <u> </u> | | | | | 0 | 1460 | | | 847.366 | | | | | | | | | | l | | | w)I | 1 15 | | 0.20 | 1.3 | 897,385 | 3/6 | 397 | | 62 | 345 | 92 | 89 | 10 | 447 | | | | | 30 | | 0.23 | 1:3 | 947.76 | 3/4 | 345 | | 63 | 398 | 98 | 90 | 12 | .480 | | | | | . 45 | | 0.21 | 1.3 | 998.0 | 3// | 395 | | 52 | 398 | 99 | 90 | 12 | .458 | | | | | 60 | | 0.19 | 1.3 | 047-16 | 306 | 395 | | 52 | 397 | 95 | 86 | 17 | .436 | | | | | 78 | 16:10 | 0.20 | 1.3 | 100.4 | 3,2 | 393 | | 55 | 390 | 8/ | 79 | /3 | .447 | A for | rs R | | | 90 | 16.20- | 0.20 | 1.3 | /52 | 3/2 | 395 | | 57 | 890 | 81 | 78 | 14 | .447 | | | | ·i | 105 | 16.33 \$700
15.15 \$70 | 0.18 | /3 | 206.46 | 3/3 | 395 | | 57 | 390 | 85 | 80 | 14 | 424 | | | | - 1 | 120 | | 0.18 | 1.3 | 260.05 | 3/3 | 395 | | 56 | 390 | 90 | 80 | 16 | .424 | | | | | 135 | 15.45 | 0.22 | 1.3 | 317:65 | 316 | 402 | | 53 | 390 | 87 | 79 | 17 | .469 | | | | | 150 | | 0:20 | 1.3 | 348.58 | 310 | 401 | | 50 | 388 | 88 | 80 | 19 | 447 | CONTRACTOR | | | | 165 | | 0.16 | 1.3 | 4/9.3 | 311 | NOI | 1 | 52 | 390 | 86 | 75 | 20 | 1400 | 1.80 9 | 10 P TOP | | - 1 | 180 | | 0.20 | /·a | 468276 | 3/0 | HOI | | 56 | 392 | 80 | 75 | /3 | .447 | Ase 3 | 11110 | | İ | | | | 1.3 | 52064 | 315 | 400 | 1 | 57 | 396 | 81 | 74 | 14 | | | | | ŀ | 195 | | 0.20 | 1.3 | | 3/0 | HOO | 1 | 60 | 399 | 77 | 70 | 15 | -447 | R.50- | 18.5 | | ł | 210 | | 0.15 | | 572.43 | 3/0 | 399 | | 59 | 399 | 80 . | | 1 | .387 | NEW FIR | TER | | ŀ | 225 | | 0.19 | 1.3 | 623.40 | 310 | | | | | † | 68 | 12 | .436 | OC -84 | -219 | | 1 | 23 8 | 20.00 | 0.20 | 1.3 | 1612004 | 3/0 | 400 | ļ | 59 | 349 | 80 | 68 | 20 | ·447 | Down 4 | <u></u> | 819.645 311.6 2000 NE .44 83 | 4 | | |---|--| | _ | | | S | | | Plant | CUREX
Corporation | | An | rometric Pressure | 48.97 | € 0900 | | RTIC | | | | | DA | NTA | SHI | EET | |----------|----------------------|------------|-----------|-------------------|--|--------|-------------|------------|---------------|-------|-------|----------|--|--------------|----------------------|--------| | Date | | 14,1981 | | | -0.3" | | Nozzle Size | s & Number | 0.741 | Aud 4 | VOLU | GER | TIME | CO2 | Oz | CO | | | _ | • | _ | | | | Molecular (| Weight | 09.17 | # | | 1325 | | | | | | | cation <i>Smc</i> | | / Sia | ck Pressure | | | BWO | | | | 500 | | lmp. | enše | =/60 | me | | Run Nu | mber2_ | - 22 RZ - | Pro | obe Number | | | | FILTER | | | 500 | 390 | n() | re Cl | استارسنا
ا | atel | | Stack D | ismeler inches. | | Pile | ot Coefficient | | | NUMB | 36 | RE FINA | L WT. | | <u> </u> | appro | در : با | m4) | | | Ougl Di | nensions In. X | m | Pilo | ol Number | <u>. </u> | | MUTAN | | | | SILI | | i | | | | | Start Tu | ne/ | 0:68 | Me | ler Box Number_ | 067 | • *** | MUM. | | | | GE | | | | | | | Operator | J. N. | <u>×~</u> | Ori | lice Coefficient | | | 111/12 | | | | 900 | 1125 | | | | L | | | <u> </u> | T | | Y | 1 | | | ERATURES ' | ·F | | | T | T | 7 | WEST A | DAT | | SAMP | | VELOCITY | ORIFICE | GAS
METER | | T | | ORGANIC | | GAS | METER | VACUU | | , : | 3"NIPP~ | at . | | POIN | ' I IME | ΔP in. wg. | OH in. wg | VOLUME FT' | STACK | PROBE | IMPINGER | MODULE | OVEN | IN | OUT | in. Hg | • | - 14 | TLEIDO W | | | | 10:58 | 1 | | 64.103 | | | | | | | | | | 1 | Nussuk | | | 4" 15 | 12:33 | 0.20 | | 742.55 | 308 | 400 | | 60 | 400 | 83 | 81 | 14 | | | huren | o N | | 30 | 12:47 | 0.20 | 1.85 | 797.156 | 3/) | 400 | | 65 | 400 | 85 | 8/ | 20 14 | 4 | - 1 - | B.00 | | | us. | 13:15 | 0.20 | 1.85 | R55.35 | 299 | 400 | | 63 | A. 00 | 86 | 82 | | | 1/4 | y se minu
St Stop | Ruster | | 60 | /3.30 | | 1.8 | 9/3.000 | 299 | 400 | | 62 | 400 | 88 | 64 | مد
اه | - | 7 | 13.3 | . ~ | | 75 | 13:50 | 0:0 | 1.82 | 970146 | 290 | 395 | | 45 | 400 | 95 | 86 | 18 | | | | | | 190 | 14:07 | 0.22 | 1.7 | 10%-278 | 3// | 407 | | 58 | 400 | 94 | 85 | 20 /4 | | | 3:60 D | | | 105 | 14.27 | 0.22 | 1.78 | 1084,56 | 3/3 | Noo | | 62 | 400 | 91 | 84 | 18. | Ţ | | MINEMO
A PO 4 | - | | 120 | 14.43 | 0.25 | 16 | 1/40.894 | 3/2 | HOO | | 62 | 400 | 86 | 84 | 20 14 | | _ | LYEK | | | 135 | 15.07 | 0.26 | 1.75 | 1198.55 | 3// | HOO | | 62 | 400 | 93 | 86 | 17 | | | fiere | R | | 150 | 15:23 | 0:23 | 1.7 | 1355.952 | 310 | 400 | | 60 | .# <u>0</u> 0 | 89 | 85 | 20 14 | _ | | 14:43 | | | 165 | 15.45 | در و | 1.82 | 13111.005 | 308 | 400 | | 58 | 400 | 92 | 814 | 17 | | 1 | BTART 4 | P | | 180 | 16:00 | 0.18 | 1.6 | 1370:472 | 310 | HOO | | 59 | 400 | 90 | 86 | 20 14 | | 1 | 15 14:5 | Ò | | A5 | 16.15 | 25.0 | 1.8 | 1429.0 | 3// | 400 | | 60 | 400 | 92 | 83 | 18 | | | | | | 210 | | 0.20 | 1.85 | 1485.374 | an | 400 | | 60 | 400 | 86 | 63 | عد بد | | | tuo Ba | | | 217 | 1700 | 0.24 | 18 | 1543-23 | 3/5 | 400 | | 60 | 1100 | 86. | 80 | 18 | | | 1.05 R | | | 240 | 17.15 | 0.25 | 155 | 1599-140 | 3/3 | 399 | | 59 | 401 | 84 | 79 | مم ا | ــــــــــــــــــــــــــــــــــــــ | /: | 3.52 A | heron | 185 255 AVG/LOTAL 17:38 016 1657:08 309 400 59 84 401 79 00Q1355 12278rad 12:36 NAW NUMBER PROVIDE | ~ | | |---|--| | - | | | • | | | A | ACUREX
Corporation | |---|-----------------------| | • | Copoulon | #### PARTICULATE TEST FIELD DATA SHEET | Plans Barometric Pressure | | | | | | | |---|-----------------------|---------------------|------|-----|----|----| | Data State Beauty | Mottle 215e & Mnwbet
 IMPINGER
VOLUMES | TIME | CO2 | Os | co | | Test LocationStack Pressure | | | | | | | | Run Number Probe Number | FILTER DATA | | | | | | | Stack Diameter inches Pilot Coefficient | NUMBER TARE FINAL WT. | | | ĺ | | | | Duct Dimensions in. x in Priot Number | | | . | ſ | | | | Start Time Meter Box Number | | SILICA
GEL | | - 1 | | | | Operator Orifice Coefficient | | | | | | | | | · | | | GAS | | | TEMPE | RATURES * | 'F | - | | | | B. DARES | |----------|---------------|------------------|------------|------------|----------------|----------|-----------------|-----------|-------|----------------|----------|--------|------|------------------------| | SAMPLE | CLOCK
TIME | VELOCITY
HEAD | METER | METEA | STACK | PROBE | | ORGANIC | 0,454 | GAS METER | | PUMP | √∆P | to organis AT | | | | ΔP in. wg. | OH in. wg. | VOLUME FT | STACK PROBE IS | | IMPINGER MODULE | MODULE | OVEN | IN | OUT | In. Hg | | | | 270 | 11.52 | 0.15 | 1.55 | 1712.388 | 310 | 400 | | 59 | 401 | 84 | 79 | 20 | | A FIRST | | | 77.23 | | 733 | 7,7,2 33 3 | | 1 | | | | | | | | BROON TEST
AT 15:30 | | | | | | | | | | | | | | | | A. h. Nel | | | | | | | | | | | | | | | | Began Comin | | | | | | | | | | | | | | | | @ 14:07 . | | | | | | | | | | | | | | | | MY142-212 | | | | | | | | | | | | <u> </u> | | | | CONSONE ATE
DRAINED | | | | | | | | | ļ | | - | | <u> </u> | | | RESTRAT
16:45 | | | | | | | | | | | | | | | | A fILSER
MY 142-209 | | | | | | | | | ļ | | | | | | | 17:23 | | | | | | | | | | | | | ļ | | | 16: 85 heavy | | | | | | | | | | | | | | | | Smoke Mona | | | | | | | | | | | | | | | | 1637 Stop | | | | | | | · | | | | | <u> </u> | | | MIOTOPAL | | | | 1028.285 | 308 | | | | • | g ₂ | .6 | | .458 | | ## CONTROLLED CONDENSATION SYSTEM (CCS) FIELD DATA SHEET | | Plant <u>F74400</u> Date <u>4-15-9</u> | | | | | - | ature
ssure | | | <u>: ೧</u> | |--------------|--|---|-------|-------|----------|--------|-----------------|--------------|-----------|-------------| | | Sample Location | STACIS | N-7 | _ Met | er Box | . Numb | er <u> </u> | 88 | | | | | Run No/ | | | | | | Coeffici | | | | | | Operator <u>S.C.</u> | Dra Pos | | _ Met | erα F | actor | 1.0 | ۵7 | | cal. | | | Clock Time (24-hr) | | | • | Ten | peraț | ure (°F) | | | | | | Sam-
pling | Gas
Meter
Reading
(V _m), ft ³ | | | Fil | lter | oc. | | Dry
Me | Gas
eter | | | Time, | Init.
72.335 | Stack | Probe | Skin | Out | Recirc
Water | Exit
Coil | In | Out | | | 5 1245 | 74.00 | 310 | 547 | 1847 | 538 | 60 | 103 | 94 | 91 | | | 10 1250 | 75.80 | / | 561 | 1120 | 531 | 60 | 105 | 94 | 91 | | ` | 1255 | 77.7 | | 582 | 1230 | 520 | 60 | 105 | 93 | 91 | |) | 25 1315 | 80,5 | | 540 | 1440 | 132 | 60 | .102 | 95 | 92 | | | 30 1320 | 81.63 | | 541 | 1447 | 636 | 40 | 105 | 95 | 92 | | | 40 1330 | 85.01 | 5 | 550 | (461 | 666 | 60 | 105 | 75 | 93 | | | 10 1350 | 90.1 | 7 | 547 | 1495 | 688 | 60 | 105 | 98 | 95 | | | 15 1355 | 91,87 | 310 | 560 | 1498 | 689 | 40 | 105 | 48 | 8.5 | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | | + | Average 65 | 19.585 | 210 | | | | 1.0°C | 105 | | | D Stop for mot blow € (13010 to 1305) 4-18 #### ISOKINETIC PERFORMANCE WORKSHEET & PARTICULATE CALCULATIONS | Plant From A so | Performed by Duile | |---------------------|--------------------| | Date 4-15-8; | | | Sample Location | | | Test No./Type / ccs | | | Barometric Pressure (in. Hg) | Pb | 28.90 | | |--|--------------------|--------------------|--------| | Meter volume (std), $17.64 \left(\frac{V_{m}}{\alpha}\right) \left(\frac{P_{b} + \frac{\Delta H}{13.6}}{T_{m} + 460}\right)$ $17.64 \left(\frac{(\underline{})}{(\underline{})}\right) \left(\frac{(2\%.90)}{(\underline{})} + \frac{(\underline{})}{13.6}\right)$ | V _{m std} | 17.26 | | | Volume of liquid collected (grams) | ۷٦ _c | _ | | | Volume of liquid at standard condition (scf) V1 _C x 0.04707 | V _w std | _ | | | Stack gas proportion of water vapor $\frac{V_{\text{W}} \text{ std}}{V_{\text{W}} \text{ std}}$, $\frac{(\underline{})}{(\underline{}) + (\underline{})}$ | B _{wo} | .0781
From 1/m- | 5 Tack | | Molecular weight, stack gas dry (lb/lb-mole) (% CO ₂ x 0.44) + (% O ₂ x 0.32) + (% N ₂ + % CO x 0.28) (<u>y.o</u> x 0.44) + (<u>le.o</u> x 0.32) + (<u>80,0</u> + x 0.28) | | 25.28 | | | Molecular weight, stack gas wet (1b/1b-mole) Md(1-B _{wo}) + 18(B _{wo}), ()(1) + 18() | M _S | 28.74 | | | Absolute stack pressure (in. Hg) $P_b + \frac{P_{stack}(in. H_20)}{13.6}, (\underline{}) + \frac{(\underline{-\cdot 2})}{13.6}$ | Ps | | | 7602/5/81/Rev 1 | Temperature stack gas, average (^O F) | T _S | 310 | |---|----------------------|---| | Stack velocity (fps) 85.49 (C_p) ($\sqrt{\Delta}P_s$ avg) $\sqrt{\frac{T_s avg + 460}{P_s M_s}}$ 85.49 ($\underline{\hspace{1cm}}$) ($\sqrt{\hspace{1cm}}$) $\sqrt{(\underline{\hspace{1cm}}) + 460}$ | V
s(avg) | Alpproved as 2 derage of Method 5 result: | | Total sample time (minutes) | θ | 65 | | Nozzle diameter, actual (inches) | N _d | | | Percent isokinetic (%) 17.33 ($T_s + 460$)(V_w std + V_m std) θ V_s P_s N_d^2 17.33 (+ 460)(() + ()) ()()()(_2) | % I | Not
Applicable | | Area of stack (ft ²) $\pi = 3.1416$
$\pi r^2 \div 144$, $\pi (\underline{})^2 \div 144$ | A _S | | | Stack gas volume at standard conditions (dscfm) 60 (1 - B_{wo}) V_{savg} A_{s} $\left(\frac{528}{T_{s} \text{ avg} + 460}\right)$ $\left(\frac{P_{s}}{29.92}\right)$ 60 (1)()() $\left(\frac{528}{29.92}\right)$ | Q _s | | | Particulate matter concentration, dry (gr/dscf) 15.432 $\frac{M_p(grams)}{Vm_{std}}$, 15.432 $(_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$ | C _s (std) | | | Emission rate of particulate matter (1b/hr) 0.00857 (Q _s) C _s , 0.00857 ()() | Ep | | ## CONTROLLED CONDENSATION SYSTEM (CCS) FIELD CHECKPOINT SHEET | | Init | ials | | |---|------------|-----------------|-------------------------| | Checkpoint | Supervisor | QA
Inspector | Remarks | | LABORATORY PREPARATION | | | | | Inspect and clean CCC. Both filter holder and CCC
are cleaned with hot chromic acid solution and
D.I. H₂O. | | <u></u> | | | • Rinse with acetone and air dry CCC. | | V | | | • Place Tissuequartz filter in filter housing. | | ~ | | | • Check seal between end of joint and filter. | | ~ | | | Do not use grease on joints. | | ~ | | | • Inspect and clean all glass joints. | | - | • | | SITE SETUP | | v | | | Rinse the inside of probe prior to run. | <u> </u> | | | | Rinse probe with acetone until rinse solution is
clear. | | | <u></u> | | • Perform leak test. | | - | | | • Leak rate must be less than 80 ml/min (0.003 cfm). | | <u></u> | · - · · · · | | • Thermocouple leads attched to probe and filter. | | レ | | | • CCC water bath held at 60°C (140°F) ±1°C. | | V | | | • Leak test train. | | <u></u> | | | Probe temperature maintained at 316°C (600°F)
+17°C. | | レ | | | Gas temperature out of filter holder held at
228°C (550°F). | | V | | | • Fresh solutions placed in impingers. | | V | | | Fresh absorbent replaced in final impinger. | | ~ | | | • Adjust flowrate in system to 8 lpm. | | | | PA 4-15-21 1200P ## CONTROLLED CONDENSATION SYSTEM (CCS) FIELD CHECKPOINT SHEET -- Continued | | Init | | | |---|------------|-----------------|---------| | Checkpoint | Supervisor | QA
Inspector | Remarks | | SAMPLING RUN • Turn vacuum pump on just before inserting probe | | | | | in stack. Check seal between probe and port to prevent any outside air from entering stack. | | | | | • Run test for 1 hour or until coils are frosted to 1/2 or 2/3 their length. | | | | | After run, cap both ends of probe and lay in
horizontal position. | | | | | Rinse the CCC coils into the modified Erlenmeyer
flask with a maximum of 40 ml D.I. H₂O. | | | | | • Was any of the solution lost (ml estimated)? | | | | | • After probe has cooled, it is rinsed with a maximum of 40 ml D.I. H ₂ O into a 25-ml Erlenmeyer flask. | | | | | - Was any solution lost (// ml estimated)? | | | | | - Clean support equipment priot to next run. | | | | | - Save filter for titration. | | | | Comments: ## CONTROLLED CONDENSATION SYSTEM (CCS) FIELD DATA SHEET | F | Plant <u>FTHYW</u> | ALLEN | | _ Amb | ient T | emper | ature _~ | 80°F | | | | | |---------------|--------------------|---|-------|------------------|--------|--------|-----------------|--------------|------------------|------------------|--|--| | | Date <u>4-1L-</u> | | | Bar | ometri | ic Pre | essure | 8,80"F | 4c @ | 1410 | | | | | Sample Location | | (N-S) | | | | er <u> </u> | | | | | | | F | Run No | در | | | er Ori | fice | Coeffici | ent | 704 | | | | | (| Operator | n-Pos | | Met | er a F | actor | 1.0 | ר כ | 12-2 | | | | | • | | | | | |
 | | ea | Q | | | | | Clock Time (24-hr) | | | Temperature (°F) | | | | | | | | | | | Sam-
pling | Gas
Meter
Reading
(V _m), ft ³ | | | Filter | | | | Dry
Me | Gas
ter | | | | | Time, min | Init.
99.19 | Stack | Probe | Skin | Out | Recirc
Water | Exit
Coil | In | Oūt | | | | <i>O</i> →> | 7.0 1252 | 101.20 | 308 | 450 | 955 | 387 | 60 | 101 | 87 | 87 | | | | START
1380 | 15.0 1308 | 113.70 | 308 | 431 | 981 | 40) | 60 | 101 | 87 | 86 | | | | | 20.0512 | 106.00 | 299 | 450 | 1155 | 720 | 60 | 104 | <mark>%</mark> 7 | 84 | | | | | 30.0 1322 | 109.10 | 299 | 445 | 1269 | 503 | 40 | 104 | 87 | 86 | | | | | 40.0 1332 | 111.10 | 297 | 9-51 | 1322 | 520 | 40 | 105 | 87 | 86 | | | | | 50 1342 | 113.70 | 294 | 501 | 1348 | 528 | 60 | 102 | 87 | 86 | | | | | 70 1402 | 118.51 | 295 | 576 | 13 39 | 5)8 | 60 | 104 | 8% | ४७ | ! | alanda Samu V. Pikamana ana ana ana an | Average Min | 19.320 | 301 | | | | 60°C | | 8 | \triangleright | | | D Stop for nort More a Sain 4-23 ### ISOKINETIC PERFORMANCE WORKSHEET & PARTICULATE CALCULATIONS | erformed by Donales | |---------------------| | ŕ | | | | | | | | Barometric Pressure (in. Hg) | P _b | 28.80 | | |---|--------------------|----------------------------|----------| | Meter volume (std), $17.64 \left(\frac{V_{m}}{\alpha}\right) \left(\frac{P_{b} + \frac{\Delta H}{13.6}}{T_{m} + 460}\right)$ $17.64 \left(\frac{(9.32)}{(1.62)}\right) \left(\frac{(28.86) + \frac{(.15)}{13.6}}{(.27) + 460}\right)$ | V _{m std} | 17.826 | | | Volume of liquid collected (grams) | ۷٦ _c | - | | | Volume of liquid at standard condition (scf) Vl _c x 0.04707 | V _{w std} | _ | | | Stack gas proportion of water vapor $ \frac{V_{\text{W std}}}{V_{\text{w std}} + V_{\text{m std}}}, \frac{(\underline{\hspace{1cm}})}{(\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})} $ | B _{wo} | .08
assurf {
m-5 Tal | <u> </u> | | Molecular weight, stack gas dry (1b/1b-mole) (% $CO_2 \times 0.44$) + (% $O_2 \times 0.32$) + (% N_2 + % $CO \times 0.28$) (5.5 x 0.44) + (5.0 x 0.32) + (BAL+ x 0.28) | | 8ד.ל2 | | | Molecular weight, stack gas wet (1b/1b-mole) Md(1-B _{wo}) + 18(B _{wo}), ()(1) + 18(.o♀) | M _S | 28.56 | | | Absolute stack pressure (in. Hg) $P_b + \frac{P_{stack}(in. H_20)}{13.6}, () + \frac{(-2.5)}{13.6}$ | P _s | | | | Temperature stack gas, average (^O F) | T _S | 308 | |--|----------------------|-----| | Stack velocity (fps) 85.49 (C_p) ($\sqrt{\Delta}P_s$ avg) $\sqrt{\frac{T_s \text{avg} + 460}{P_s}}$ 85.49 ()($\sqrt{P_s}$) $\frac{(_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$ | V
s(avg) | , | | Total sample time (minutes) | θ | 70 | | Nozzle diameter, actual (inches) | Nd | | | Percent isokinetic (%) 17.33 (T_s + 460)(V_w std + V_m std) θ V_s P_s N_d^2 17.33 (+ 460)(() + ()) ()()()(_2) | %I | | | Area of stack (ft ²) π = 3.1416
π r ² \div 144, π () ² \div 144 | A _S | | | Stack gas volume at standard conditions (dscfm) $60 (1 - B_{wo})^{VS} \text{avg} A_{S} \left(\frac{528}{T_{S} \text{ avg} + 460}\right) \left(\frac{P_{S}}{29.92}\right)$ | Q _s | | | $60 (1)()()(_{_{\underline{}}})(_{\underline{}})(_{\underline{}})$ | | | | Particulate matter concentration, dry (gr/dscf) 15.432 $\frac{M_p(grams)}{Vm_{std}}$, 15.432 $\frac{()}{()}$ | C _s (std) | | | Emission rate of particulate matter (lb/hr) 0.00857 (Q_s) C_s , 0.00857 ()() | Ε _p | | ## CONTROLLED CONDENSATION SYSTEM (CCS) FIELD CHECKPOINT SHEET | | Init | iạls | | |---|------------|-----------------|---------| | Checkpoint | Supervisor | QA
Inspector | Remarks | | LABORATORY PREPARATION | | | | | • Inspect and clean CCC. Both filter holder and CCC are cleaned with hot chromic acid solution and D.I. H ₂ O. | | V | | | Rinse with acetone and air dry CCC. | | レ | • | | • Place Tissuequartz filter in filter housing. | | ~ | ·
 | | • Check seal between end of joint and filter. | | ٦ ^ | | | • Do not use grease on joints. | | | | | • Inspect and clean all glass joints. | | <u></u> | | | SITE SETUP | | ~ | | | Rinse the inside of probe prior to run. | ļ | | | | Rinse probe with acetone until rinse solution is clear. | | | | | e Perform leak test. | | | | | • Leak rate must be less than 80 ml/min (0.003 cfm). | • | .002ct | 15"He | | Thermocouple leads attched to probe and filter. | | | | | • CCC water bath held at 60°C (140°F) +1°C. | | | | | • Leak test train. | | <u></u> | | | • Probe temperature maintained at 316°C (600°F)
+17°C. | | U | | | • Gas temperature out of filter holder held at 228°C (550°F). | | L | | | • Fresh solutions placed in impingers. | | e · | | | • Fresh absorbent replaced in final impinger. | | `` | | | • Adjust flowrate in system to 8 lpm. | | | | ## CONTROLLED CONDENSATION SYSTEM (CCS) FIELD CHECKPOINT SHEET -- Continued | | Init | Initials | | | |---|------------|-----------------|---------|--| | Checkpoint | Supervisor | QA
Inspector | Remarks | | | SAMPLING RUN | | , | | | | Turn vacuum pump on just before inserting probe
in stack. | | | | | | Check seal between probe and port to prevent any
outside air from entering stack. | | | | | | e Run test for 1 hour or until coils are frosted to 1/2 or 2/3 their length. | | <u></u> | | | | After run, cap both ends of probe and lay in horizontal position. | ļ
 | سر | | | | Rinse the CCC coils into the modified Erlenmeyer
flask with a maximum of 40 ml D.I. H₂O. | | レ | | | | • Was any of the solution lost (// ml estimated)? | | | | | | • After probe has cooled, it is rinsed with a maximum of 40 ml D.1. H ₂ O into a 25-ml Erlenmeyer flask. | | <u></u> | | | | - Was any solution lost (of ml estimated)? | | | | | | - Clean support equipment priot to next run. | | L | | | | - Save filter for titration. | | <u></u> | | | Comments: #### SECTION 5 #### ANALYTICAL LABORATORY RESULTS | | ~ ~ . | | | |-----|--------------|------|------| | 5.1 | FUEL | ANAL | YSIS | - 5.2 PARTICULATE EMISSIONS FROM SASS SAMPLES - 5.3 PARTICULATE EMISSIONS FROM EPA METHOD 5 SAMPLES - 5.4 SULFUR OXIDE EMISSIONS FROM CONTROLLED CONDENSATION SAMPLES - 5.5 TRACE ELEMENT AND LEACHABLE ANION ANALYSES - 5.6 GASEOUS (C₁ to C₆) HYDROCARBONS - 5.7 TOTAL CHROMATOGRAPHABLE (TCO) AND GRAVIMETRIC ORGANICS, INFRARED SPECTRA (IR), AND GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS) OF TOTAL SAMPLE EXTRACTS - 5.8 LIQUID CHROMATOGRAPHY (LC) SEPARATION AND INFRARED SPECTRA OF LC FRACTIONS - 5.9 LOW RESOLUTION MASS SPECTROMETRY (LRMS) OF SELECTED TOTAL SAMPLE EXTRACTS AND LC FRACTIONS - 5.10 RADIOMETRIC ANALYSIS RESULTS - 5.11 BIOLOGICAL ASSAY RESULTS #### 5.1 FUEL ANALYSIS #### LABORATORY CERTIFICATE #### CURTIS & TOMPKINS, LTD. ## ANALYTICAL • CHEMISTS - CONSULTING SAMPLERS — INSPECTORS **---**6 290 DIVISION STREET SAN FRANCISCO, CALIF, 94103 U.S.A. Telephone (415) 861-1863 Laboratory No. 81h100 Preliminary No. 6487 • AFFEREE ANALYSES RESEARCH — MOVESTIGATIONS WITAMIN ASSAYS — DOCKNISTRY SPECIALISTS IN DULK COMMODITIES Reported 8/13/81 Sampled -----Received 7/07/81 For ACUREX CORPORATION Report on 5 samples of Fuel Product Mark Project No. 7734.12, 7/06/81, Blanket Subcontract RB59186A, Release No. 2. | | DRY BASIS EXCEPT AS NOTED | | | | | | |------------------------------------|---------------------------|---------|-------------|-------|-------------|------| | | | 81 3661 | | Wetu | ر
813743 | et 2 | | | lst
Test | | 3rd
Test | lst | 2nd
Test | 3rd | | Carbon (C), % | 50.88 | | | 53.02 | | | | Hydrogen (H), % | 6.11 | | | 5.44 | | | | Oxygen (0), (by difference), % | 42.46 | | | 39.40 | | | | Nitrogen (N), % | 0.14 | 0.08 | 0.16 | 0.16 | 0.09 | 0.20 | | Sulfur (S),\$ | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.03 | | Heating Value:
BTU/Pound | 8,675 | | | 8,675 | | | | Bulk density lbs/cu ft. (as rec'd) | 14.52 | | | 11.95 | | | | Ash, \$ | 0.37 | | | 1.95 | | | | Moisture (as rec'd) | 11.05 | | **** | 33.85 | | | SAMPLES DISCARDED 30DAYS AFTER RECEIPT UNLESS OTHERWISE REQUESTED Curtiso tom ins dit ### 5.2 PARTICULATE EMISSIONS FROM SASS SAMPLES | ACUREX
Corporation | |------------------------------| | ANALYSIS LABORATORIES | #### **DATA REPORTING FORM** | CUSTOMER CHEA | DATE July 13, 1981 | |--------------------------------|--------------------------------| | CUSTOMER CONTRACT NO307736.12 | ACUREX CONTRACT NO. A81-05-030 | | RESULTS REPORT TO L. Waterland | | | ADDRESS | | | _Ethan Allen - 1 SASS | | | SAMPLE ID (CLISTOMER) SAMPLE ID (LAB) | Probe
648 | 1u
644 | 3u
645 | 10u
646 | Filter
660 | XAD
650 | | | | |---------------------------------------|--------------|-----------|-----------|------------|---------------|------------|----------|------|-------| | PARAMETER | | | | | | | | | UNITS | | Weight | 0.2308 | 0.4975 | 0.8018 | 0.7865 | 1.1061 | 130 | | | gram | | | : | | | | | | | | | | | | | | | | | |
 | | | | <u> </u> | | | | <u> </u> | | |
 | | | • | | | | | | | | | | | : | | | | | | | | | | | | | | | | | | · | | | | <u> </u> | | | | | | | |
 | | | | : | | | • | | | | | | | | | | | • | | | |
 | | | | | | | • | | |
<u>.</u> | | | | 1 | | <u>-</u> | ANALYST . | J. | Labash | | | |-----------|----|--------|--|--| | AFVIEWER | | N1col1 | | | 5-9 Form EED-057 4/80 ## ISOKINETIC PERFORMANCE WORKSHEET & PARTICULATE CALCULATIONS | Plant ETHON ALEN | Performed by Dalos | |------------------------|--------------------| | Date 4-15-81 | | | Sample Location STARK | | | Test No./Type / - SAss | | | Barometric Pressure (in. Hg) | Pb | 28.90 | |---|--------------------|-----------------------| | Meter volume (std), $17.64 \left(\frac{V_{m}}{\alpha}\right) \left(\frac{P_{b} + \frac{\Delta H}{13.6}}{I_{m} + 460}\right)$ $17.64 \left(\frac{(22.90) + \frac{(3)}{13.6}}{(22.91) + 460}\right)$ | V _m std | 763.5 ⁵)_ | | Volume of liquid collected (grams) | ۷1 _c | 669.7 | | Volume of liquid at standard condition (scf) Vl _C × 0.04707 | V _w std | 3/.52 | | Stack gas proportion of water vapor Vw std + Vm std (3/.572) + (2/.572) + (2/.572) + (2/.572) | B _{wo} | 0.04
use
4.81 % | | Molecular weight, stack gas dry (lb/lb-mole) (\times CO ₂ × 0.44) + (\times O ₂ × 0.32) + (\times N ₂ + \times CO × 0.28) ($\xrightarrow{/}$ × 0.44) + (\times 0.32) + ($\xrightarrow{/}$ + \times 0.28) | | 25.36 | | Molecular weight, stack gas wet (lb/lb-mole) Md(l-B _{wo}) + 18(B _{wo}), $(25.36)(l6481)$ + 18(.0481) | Ms | 98.81 | | Absolute stack pressure (in. Hg) $P_b + \frac{P_{\text{stack}} \left(\text{in. H}_20\right)}{13.6} \cdot \left(\frac{26.20}{13.6}\right) + \frac{(3)}{13.6}$ | Ps | 28.85 | | Temperature stack gas, average (OF) | Ts | 311.6 | |---|----------------------|---------| | Stack velocity (fps) 85.49 (C _p) ($\sqrt{\Delta}P_s$ avg) $\sqrt{\frac{T_s avg + 460}{P_s}}$ 85.49 (0.29)(0.44), $\sqrt{\frac{(3/1-6) + 460}{(244)}}$ | y
s(avg) | 28.63 | | Total sample time (minutes) | · 6 | 238 | | Nozzle diameter, actual (inches) | Nd | 0.741 | | Percent isokinetic (%) 17.33 (T _s + 460)(V _w std + V _m std) ### V _s P _s N _d ² 17.33 (3/1.6 + 460)((3/2) + (20.5)) (_23\2)(28.63)(28.86)(2.54) | XI | 98.5 | | Area of stack (ft ²) $\pi = 3.1416$
$\pi r^2 \div 144$, $\pi (\underline{})^2 \div 144$ | A _s | 12.57 | | Stack gas volume at standard conditions (dscfm) $60 (1 - B_{WO}) V s_{avg} A_{s} \left(\frac{528}{I_{s} avg + 460} \right) \left(\frac{Ps}{29.92} \right)$ $60 (1 - \frac{MY}{29.92}) \left(\frac{32.63}{29.92} \right) \left(\frac{528}{37.44} + 460 \right) \left(\frac{28.44}{29.92} \right)$ | Q _s | 13,567 | | Particulate matter concentration, dry (gr/dscf) 15.432 Mp(grams) 15.432 (3.4237) Vm std | C _s (std) | 0.0692. | | Emission rate of particulate matter (lb/hr) 0.00857 (Qs) C_s 0.00857 (\underline{F} , \underline{C} , \underline{C}) (0.069) | Ep | .8.046 | 7602/5/81/Rev 1 | ACUREX
Corporation | |------------------------------| | ANALYSIS LABORATORIES | #### **DATA REPORTING FORM** | CUSTOMERCMEA | | DATEJuly 13, 1981 | |---------------------|----------------------|------------------------------| | CUSTOMER CONTRACT N | o. <u>_307736.12</u> | ACUREX CONTRACT NOA81-05-030 | | | • | TELEPHONE | | ADDRESS | | | | _Ethan Allen - 2 | | | | SAMPLE ID (CUSTOMER) | Probe | lu | 3u | 10u | Filter | XAD | | ŧ | | |----------------------|--------|--------|--------|--------|--------|----------|--|---|-------| | SAMPLE ID (LAB) | 671 | 674 | 673 | 672 . | 681 | 676 | | 1 | | | PARAMETER | | | | | | | | | UNITS | | Weight | 0.3089 | 0.7075 | 2.7042 | 4.1327 | 120 | | | | gram | | | | | | | 1.4901 | 130 | | , | <u> </u> | | | | | | | | • | · | | | | | | | | | | | | | | | | | | ANALYST _ | J. | Labash | | | |-----------|----|--------|--|--| | | | Nicoll | | | | REVIEWER | | | | | Form EED-067 4/40 5-12 #### ISOKINETIC PERFORMANCE WORKSHEET & PARTICULATE CALCULATIONS | Plant ETHON ALLEN | Performed by Alos | |------------------------|-------------------| | Date 4-16-81 | | | Sample Location STACK | · | | Test No./Type) - 5ASS | | | Barometric Pressure (in. Hg) | Pb | 28.775 | |---|--------------------|---------| | Meter volume (std), $17.64 \left(\frac{V_{m}}{\alpha}\right) \left(\frac{P_{b} + \frac{\Delta H}{13.6}}{T_{m} + 460}\right)$ $17.64 \left(\frac{(\sqrt{2})}{(\sqrt{2})}\right) \left(\frac{(\sqrt{2})}{(\sqrt{2})}\right) \left(\frac{(\sqrt{2})}{(\sqrt{2})}\right) \left(\frac{(\sqrt{2})}{(\sqrt{2})}\right)$ | V m std | 957.777 | | Volume of liquid collected (grams) | ۷۱ _c | 1)81 | | Volume of liquid at standard condition (scf) Vl _c × 0.04707 | V _w std | 83.83 | | Stack gas proportion of water vapor Vw std (83x3) Vw std + Vm std (83x3) + (555) | B _{wo} | / ۲۵.6 | | Molecular weight, stack gas dry (1b/1b-mole) ($x co_2 x 0.44$) + ($x o_2 x 0.32$) + ($x co_2 x 0.44$) + ($x co_2 x 0.32$) + ($x co_2 x 0.44$) + ($x co_2 x 0.32$) + ($x co_2 x 0.44$) + ($x co_2 x 0.32$) + ($x co_2 x 0.44$) + ($x co_2 x 0.32$) + ($x co_2 x 0.44$) + ($x co_2 x 0.32$) + ($x co_2 x 0.44$) + ($x co_2 x 0.32$) + ($x co_2 x 0.32$) | ^M d | 29.48 | | Molecular weight, stack gas wet (lb/lb-mole) Md(l-B _{w0}) + $18(B_{w0})$, $(\cancel{7.42})(l-0.02)$ + $18(0.02)$ | Ms | 78.2¢ | | Absolute stack pressure (in. Hg) $P_b + \frac{P_{\text{stack}} \left(\text{in. H}_20\right)}{13.6} \cdot \frac{(3)}{13.6}$ | Ps | 28.75 | 7602/5/81/Rev 1 | Temperature stack gas, average (OF) | Ts | 304 | |--|----------------------|-----------| | Stack velocity (fps) 85.49 (C _p) (\sqrt{AP}_s avg) $\sqrt{\frac{T_s avg + 460}{p_s}}$ 85.49 ($\sqrt{O.79}$) ($\sqrt{O.458}$) $\sqrt{\frac{(304) + 460}{(34.55)(34.54)}}$ | v
s(avg) | 29.81 | | Total sample time (minutes) | · 0 | 270 | | Nozzle diameter, actual (inches) | N _d | 0.741 | | Percent isokinetic (%) 17.33 (T_s + 460)(V_w std + V_m std) θ V_s P_s N_d^2 17.33 (3×1 + 460)((82×3) + (735×3)) (270)(28×1)(28×1)(28×1) | XI | /08./ | | Area of stack (ft ²) $\pi = 3.1416$
$\pi r^2 \div 144$, $\pi (\underline{})^2 \div 144$ | As | 17.57 | | Stack gas volume at standard conditions (dscfm) 60 (1 - B_{w0}) Vs _{avg} A_{s} $\left(\frac{528}{I_{s}}\frac{528}{avg} + 460\right)$ $\left(\frac{Ps}{29.92}\right)$ 60 (1 - OON) $\left(\frac{2894}{302} + 460\right)$ $\left(\frac{2894}{(29.92)}\right)$ | Q _s | 13, 744 | | Particulate matter concentration, dry (gr/dscf) 15.432 Mp (grams) 15.432 (9.3434) Vm std (555.>>) | C _s (std) | 0.1508 | | Emission rate of particulate matter (lb/hr) 0.00857 (Q_s) C_s , 0.00857 ($\underline{\sqrt{3.744/}}$)($\underline{0.1529}$) | Ε _p | . 17.7691 | 7602/5/81/Rev 1 5.3 PARTICULATE EMISSIONS FROM EPA METHOD 5 SAMPLES # ACUREX ANALYTICAL REPORT | Sample of: Ethan aller | <u> </u> | | | |--|--------------|----------------------|------------------------| | Sample Date: April 15, 19 | 8/ | | | | Requested By: Bruce Dan | | | | | I.D. Number: 7735./2/CM2 | | | | | Analytical Method: EPA Method Date of Analysis: September | d 5 Protocol | - Ether / Chloroform | Exterction | | Date of Analysis: Sestemble | 3 1981 | of Impiraer & | liquid | | | | | | | Lab I.D. Number | Component | Analytical Result | Unit | | 813668 - Jest 1 | 526 mls | • | | | - Aqueous Phase
-Organic Phase | | 5.97
17.96 | | | 0 | | | Net Dair
milligrams | | 813714 - Jest 2 | 511 mbs | | many and a | | - Aqueous Phase
- Organic Phase | | 1.07 | 5-17 Analysis By Sauce S. Whitne Date September 15, 1981 # ACUREX ANALYTICAL REPORT | Sample of: Ethan Aller Sample Date: Japil 15, 18 Requested By: Buce Dare I.D. Number: 7735.12 / C.M. Analytical Method: Date of Analysis: July 3 | es)
1EA | sis of Filters | | |--|-------------|------------------------------|---------------------------------------| | Date of Analysis: Guly 3 | 0,/78/ | | | | Lab I.D. Number | Component | Analytical Result | Unit | | 813667-TEST 1 | MV-142-210 | 1.25237-1,01180 | FINAL | | 813713 - TEST 2 | MV-142-222 | 1.37173 -1.02060
= 351.13 | Filter
Weight* | | | الم الم الم | C. Coverlin Volum0 | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | Note: Due to unavailability of thre weights for these filters the Net GAIN is NOT REPORTED BUT RATHER THE FILTER'S Actual final Weight. 5-18 Analysis By Analysis By Alexander 082 5/81 # ACUREX ANALYTICAL REPORT | Sample of: Elhan allan |
---| | Sample Date: April 15, 1981 | | Requested By: Bruce Parox | | I.D. Number: | | Analytical Method: Dravinstric Analysis of Probe Wash (Acetone) | | Analytical Method: Dravinetic Analysis of Probe Wash (Actione) Date of Analysis: September 1 and 2, 1981 | | Lab I.D. Number | Component | Analytical Result | Unit | |---------------------------------------|-------------|-------------------|--------------------------| | 313669-Test / Pula | wal 120 mls | 58.30 | 90. | | 313669-Test / Pula
3137/2-Jest 2 " | 120 mls | 229.03 | Met
Dain
milligran | | | | | milligram | | • | enalysis By Sayer S. Whiteen B.C. Du Ros 1735.12 CMEA: ETHAN ALLEN FRONT HALF BACK HALF IMPIULER CONTENTS OLD FORT, N.C. IMPINGER M-5 FILTER PROBE & RINSE NOBTEL m (600) (autous) PHASE (Ma) TESF ANEOUS (Mg) (87) CAS) (m) I.D. 11 3 24057 5.77 TEST NO 1 64.627 17.96 58.30 M-5 TEST. NO 2 3 63.470 224.03 351.15 1.07 6.99 : #### ISOKINETIC PERFORMANCE WORKSHEET & PARTICULATE CALCULATIONS | Plant Etona hear | Performed by | |-----------------------|--------------| | Date 4-15-81 | | | Sample Location SDEIC | · | | Test No./Type /-M5 | | | Barometric Pressure (in. Hg) | Pb | 28.92 | |---|--------------------|--------| | Meter volume (std). 17.64 $\left(\frac{V_{m}}{\alpha}\right)\left(\frac{P_{b} + \frac{\Delta H}{13.6}}{T_{m} + 460}\right)$ 17.64 $\left(\frac{(24.9)}{(2.72)}\right)\left(\frac{(24.9)}{13.6}\right)$ $\left(\frac{(24.9)}{(27.2)} + \frac{(24.9)}{13.6}\right)$ | V m std | 64.627 | | Volume of liquid collected (grams) | ۷۱c | 69.4 | | Volume of liquid at standard condition (scf) V1 _C × 0.04707 | V _{w std} | 3.267 | | Stack gas proportion of water vapor Vw std Vw std + Vm std (3.267) (3.267) | B _{wo} | 0.048/ | | Molecular weight, stack gas dry (lb/lb-mole) (\times CO ₂ × 0.44) + (\times O ₂ × 0.32) + (\times N ₂ + \times CO × 0.28) (\times 0.44) + (\times 0.32) + (\times 0.44) + (\times 0.32) | | 29.28 | | Molecular weight, stack gas wet (1b/1b-mole) Md(1-B _{wo}) + 18(B _{wo}), (25.24) (1-0.044) + 18(0.044) | Ms | 28.74 | | Absolute stack pressure (in. Hg) $P_b + \frac{P_{\text{stack}} \left(\text{in. H}_2 0 \right)}{13.6} \cdot \left(\frac{\cancel{28.9}}{\cancel{13.6}} \right) + \frac{\left(3 \right)}{13.6}$ | Ps | 28.90 | | Temperature stack gas, average (OF) | Ts | उ०४ | | |---|----------------------|-------------------------------------|----------------| | Stack velocity (fps) 85.49 (C _p) ($\sqrt{AP_s}$ avg) $\sqrt{\frac{r_s avg + 460}{P_s M_s}}$ 85.49 (.) (0.434) $\sqrt{\frac{(3 \cup 8) + 460}{(3 \times 7)(3 \times 7)}}$ | V
s(avg) | 24.7/- | | | Total sample time (minutes) | · O | 120 | | | Nozzle diameter, actual (inches) | Nd | 0.3086 | | | Percent isokinetic (%) 17.33 (T _s + 460)(V _w std + V _m std) | XI | 96.85 | | | Area of stack (ft ²) $\pi = 3.1416$
$\pi r^2 \div 144$, $\pi (\underline{})^2 \div 144$ | A _S | 12.57 | | | Stack gas volume at standard conditions (dscfm) $60 (1 - B_{wo}) Vs_{avg} A_s \left(\frac{528}{I_s avg + 460} \right) \left(\frac{Ps}{29.92} \right)$ $60 (1 - 272) (29.12) \left(\frac{528}{302 + 460} \right) \left(\frac{(24.2)}{(29.92)} \right)$ | Q _s | 13,468 | | | Particulate matter concentration, dry (gr/dscf) 15.432 Mp(grams) Vm std (6762) | C _s (std) | 0.0714 Sula
0.0057 Ea | il
Leasable | | Emission rate of particulate matter (lb/hr) 0.00857 (Q_s) C_s , 0.00857 (13.468)(.07/4) | Ep | 8.2410 si
0.6579 co
8.6589 to | denia 6/2 | 7602/5/81/Rev 1 ### ISOKINETIC PERFORMANCE WORKSHEET & PARTICULATE CALCULATIONS | Plant ETHIN ALLEN | Performed by Jakos | |-----------------------|--------------------| | Date <u>4-16-81</u> | | | Sample Location STACK | | | Test No./Type 2 - M5 | | | Barometric Pressure (in. Hg) | Pb | 24.97 | |---|--------------------|-------| | Meter volume (std), $17.64 \left(\frac{V_{m}}{\alpha}\right) \left(\frac{P_{b} + \frac{\Delta H}{13.6}}{T_{m} + 460}\right)$ $17.64 \left(\frac{(25.5)1}{(55.27)}\right) \left(\frac{(26.5)}{(52.7)} + \frac{(26.6)}{13.6}\right)$ | V _m std | 63.47 | | Volume of liquid collected (grams) | ۷1 _c | 124.5 | | Volume of liquid at standard condition (scf) Vl _c × 0.04707 | V _w std | 5.86 | | Stack gas proportion of water vapor Vw std Vw std Vw std Vm std Vm std Vm std Vm std | B _{wo} | 0.00 | | Molecular weight, stack gas dry (1b/1b-mole) (% $CO_2 \times 0.44$) + (% $O_2 \times 0.32$) + (% N_2 + % $CO \times 0.28$) ($C \times \times 0.44$) + ($C \times \times 0.32$) + ($C \times \times 0.44$) + ($C \times \times 0.32$) + ($C \times \times 0.44$) + ($C \times \times 0.32$) + ($C \times \times 0.44$) + ($C \times \times 0.32$) + ($C \times \times 0.44$) + ($C \times \times 0.32$) + ($C \times \times 0.44$) + ($C \times \times 0.32$) + ($C \times \times 0.44$) + ($C \times \times 0.32$) + ($C \times \times 0.44$) + ($C \times \times 0.32$) + ($C \times \times 0.44$) + ($C \times \times 0.32$) + ($C \times \times 0.44$) + ($C \times \times 0.32$) + ($C \times \times 0.44$) + ($C \times \times 0.32$) | | 29.48 | | Molecular weight, stack gas wet (lb/lb-mole) $Md(1-B_{wo}) + 18(B_{wo}), (23.44)(1-24) + 18(204)$ | M _s | 28.54 | | Absolute stack pressure (in. Hg) $P_b + \frac{P_{\text{stack}} \left(\text{in. H}_2 0 \right)}{13.6} \cdot \left(\frac{25.5}{13.5} \right) + \frac{\left(\frac{3}{3.5} \right)}{13.5}$ | Ps | 28.77 | 7602/5/81/Rev 1 | Temperature stack gas, average (^O F) | Ts | 304 | | |--|----------------------|---|------------| | Stack velocity (fps) 85.49 (C _p) ($\sqrt{\Delta}P_{s}$ avg) $\sqrt{\frac{T_{s}avg + 460}{P_{s}M_{s}}}$ 85.49 ($\frac{5}{5}$)(0.40) $\sqrt{\frac{(304) + 460}{(24.7)(24.76)}}$ | v
s(avg) | 27.26 | | | Total sample time (minutes) | · 0 | 120 | | | Nozzle diameter, actual (inches) | Nd | 0.3084 | | | Percent isokinetic (%) 17.33 (T_s + 460)(V_w std + V_m std) θ V_s P_s N_d^2 17.33 ($3y'$ + 460)($(5YC)$ + (63.7)) ($23.2C$)(28.7) ($2.308C$) | XI | 101.7 | | | Area of stack (ft ²) $\pi = 3.1416$
$\pi r^2 \div 144$, $\pi ()^2 \div 144$ | A _S | /2.57 | | | Stack gas volume at standard conditions (dscfm) $60 (1 - B_{wo}) Vs_{avg} A_{s} \left(\frac{528}{I_{s} avg + 460} \right) \left(\frac{Ps}{29.92} \right)$ $60 (1 - \underline{ov}) (\underline{232}) (\underline{232}) \left(\frac{528}{304} + 460 \right) \left(\frac{28.5}{29.92} \right)$ | Q _s | 12656 | | | Particulate matter concentration, dry (gr/dscf) 15.432 Mp(grams) 15.432 (_5\cdot\cdot\cdot\cdot) Vm std | C _s (std) | 0.1411 Sexted
0.00) es dense | 64 | | Emission rate of particulate matter (1b/hr) 0.00857 (0s) Cs (0.00857 (12656)(1411) (std) | Ep | 15.505 solid 0.217 condens 15.502 Total | ر
درهند | 7602/5/81/Rev 1 5.4 SULFUR OXIDE EMISSIONS FROM CONTROLLED CONDENSATION SAMPLES #### CONTROLLED CONDENSATION SYSTEM (CCS) LABORATORY DATA SHEET | Plant ETHAN ALLEN OLD FURT, N.C. | Analyst | B.C. Dal | Ros | | |-------------------------------------|----------|----------|-----------|----------| | Date 4-14-81 | Date Lab | Analysis | Completed | 10-20-81 | | Sample Location STACK Run No. /-CCC | | | | | | kun No/-cc | | | | | Method Barion Titrant Race Normality .0166 Indicator Thorin | Sample
Description | Probe,
Nozzle
and
Filter
Rinse | G/R
Coil
Rinse | Impinger
Contents
and
Rinse | H ₂ O
Blank | 3 %
H ₂ O ₂
B lank | |---------------------------------|--|----------------------|--------------------------------------|---------------------------|---| | Sample No. | 813639 | 813458 | 813637 | 813638 | 813635 | | Vol. of Sample | 120.0 | 81.0 | 452.0 | צדומט | לדו מט | | Vol. of Aliquot | 10.0 | 10.0 | 10,0 | 10.0 | ,0.0 | | Vol. of Titrant
Used | .95 .95 . | .05 .05 _ | .05.05 | .05 .05 | 05 05 _ | | Average Vol. of
Titrant Used | .05 | .05 | .05 | .05 | .05 | Calculations Vol. of Gas Sampled (V_M) $\frac{18.535}{\text{ft}^3}$, Avg. Meter Temp (T_M) $\frac{94}{9}$ °F, Meter
Pressure (P_M) $\frac{28.91}{9}$ "Hg, Meter α Factor $\frac{1000}{1000}$ dimensionless $$\begin{array}{c} \text{PPM} \\ \text{SO}_4 = \frac{48.15 \; (__, \; \text{MgSO}_4)(__, \; T_\text{M} + 460)}{96 \; (___, \; V_\text{M})(___, \; P_\text{M})} \; (__, \alpha) \\ \\ \text{PPM} \\ \text{SO}_2 = \frac{48.15 \; (__, \; \text{MgSO}_2)(__, \; T_\text{M} + 460)}{64 \; (___, \; V_\text{M})(___, \; P_\text{M})} \; (__, \alpha) \\ \\ \text{Ppm } \text{SO}_2 = \emptyset \end{array}$$ # CONTROLLED CONDENSATION SYSTEM (CCS) LABORATORY DATA SHEET | Plant Erman Ar. Car | DIN FORT NU | _Analyst | RC. And |)
25 | | |--|--|------------------------|--------------------------------------|---------------------------|---| | Plant Erman Act En ,
Date <u>4-16-81</u>
Sample Location <u>spac</u> | | Date Lab | Analysis Co | mpleted | 1-20-87 | | Run No. 2-cce | | | | | | | Method THERIN Titr | ant ReCla | itration Da
Normali | ita
ity <u>.0166</u> | _ Indicato | THIRIN | | Sample
Description | Probe,
Nozzle
and
Filter
Rinse | G/R
Coil
Rinse | Impinger
Contents
and
Rinse | H ₂ O
Blank | 3%
H ₂ O ₂
B Tank | | Sample No. | 813750 | 813749 | 813748 | 813638 | 813663 | | Vol. of Sample | 84.0 | 70.0 | 345.0 | צדומט | UNITY | | Vol. of Aliquot | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Vol. of Titrant
Used | .05 | .05.05 | .05 .05 _ | .05 - | ,05 _ | | Average Vol. of
Titrant Used | .05 | .05 | .05 | .05 | .05 | Calculations Vol. of Gas Sampled (V_M) 17.520 ft³, Avg. Meter Temp (T_M) 87 OF, Meter Pressure (P_M) 28.91 "Hg, Meter α Factor 1.007 dimensionless $$PPM = \frac{48.15 \; (_, MgSO_4)(_, T_M+460)}{96 \; (_, V_M)(_, P_M)} \; (_, \alpha)$$ $$PPM = \frac{48.15 \; (_, MgSO_2)(_, T_M+460)}{64 \; (_, V_M)(_, P_M)} \; (_, \alpha)$$ $$PPM = \frac{48.15 \; (_, MgSO_2)(_, T_M+460)}{64 \; (_, V_M)(_, P_M)} \; (_, \alpha)$$ $$PPM = \frac{48.15 \; (_, MgSO_2)(_, T_M+460)}{64 \; (_, V_M)(_, P_M)} \; (_, \alpha)$$ 5.5 TRACE ELEMENTS AND LEACHABLE ANION ANALYSES Reply to GENERAL OFFICES: 238 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 80401 - AREA CODE 312 726-8434 INSTRUMENTAL ANALYSIS DIVISION, 14335 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE. 303-278-9321 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94042 Date August 21, 1981 Analyst: J. 01dham Release No. 5 P. O. No.: Subcontract SW59159A Sample No.: A81-05-030-642spark Source MASS SPECTROGRAPHIC ANALYSIS EA Filter Blank CONCENTRATION IN µg/cm² IAD No.:97-G852-116-25 ELEMENT CONC. ELEMENT CONC. ELEMENT CONC. ELEMENT CONC. Uranium 0.006 Terbium Ruthenium Vanadium Thorium Gadolinium Molybdenum <0.001 Titanium 0.8 Bismuth Europium Niobium 0.002 Scandium 0.002 Lead *0.04 Samarium MC Zirconium 0.02 Calcium Thallium Neodymi um 0.06 <0.001 Yttrium 0.003 Potassium Mercury Praseodymium <0.001 Strontium 0.07 NR 0.02 Chlorine 6014 Cerium 0.007 Rubidium <0.001 Sulfur 0.03 Platinum Lanthanum 0.008 Bromine 0.07 **Phosphorus** 0.1 Iridium Barium 0.1 Selenium Silicon MC Osmi um Cesium Arsenic NR Aluminum >0.3 Rhenium Iodine 0.001 *MC Germanium Magnesium Tungsten Tellurium Gallium 0.003 * >0.8 Sodium Tantalum Antimony NR Zinc 80.0 Fluorine =1 Hafnium Tin <0.001 Copper 0.009 0xygen Lutetium Indium STD Nicke1 0.005 Ni trogen NR Ytterbium Cadmium Cobalt 0.002 Carbon NR Thulium Silver 2 Iron 0.3 Boron Erbium **Palladium** 0.007 Manganese Beryllium Ho 1 mium Rhodi um Chromium 0.009 0.002 Lithium Dysprosium *Heterogeneous NR Hydrogen STD - Internal Standard NR - Not Reported All elements not detected < 0.001 ug/cm² MC - Major Component > 10 ug/cm² INT - Interference Approved: M.L. Jacobs by Blogs Reply to BENERAL OFFICES: 328 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 80801 - AREA CODE 312 728-8434 INSTRUMENTAL ANALYSIS DIVISION. 14335 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-276-9521 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View,CA 94942 Date. August 20, 1981 Release No. 5 Analyst: J. 01 dham P. O. No.: Subcontract SW59159A Semple No.481-05-030-651 SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.:97-G852-116-25 EA XAD Blank CONCENTRATION IN PPM WEIGHT | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT. | CONC. | |---|-------|-------------|-------|--------------|------------|------------|--------| | Uranium <u><</u> | 0.3 | Terbium | | Ruthenium | | Vanadium | <0.1 | | Thorium | | Gadolinium | | Molybdenum | 0.4 | Titanium | 6 | | Bismuth | | Europium | | Niobium | | Scandium | | | Lead | 0.4 | Samarium | | Zirconium | 0.2 | Calcium | 37 | | Thallium | | Neodymi um | | Yttrium | | Potassium | 24 | | Mercury | NR | Praseodymiu | m | Strontium | <0.1 | Chlorine | 7 | | Go1d | | Cerium | | Rubidium | <0.1 | Sulfur | 6 | | Platinum * | 4 | Lanthanum | | Bromine | 0.3 | Phosphorus | 4 | | Iridium | | Barium | 0.5 | Selenium | | Silicon | 17 | | Osmi um | | Cesium | <0.1 | Arsenic | NR | Aluminum | 1 | | Rhenium | | Iodine | <0.1 | Germanium | | Magnesium | 2 | | Tungsten | | Tellurium | | Gallium | 0.1 | Sodium | 4 | | Tantalum | | Antimony | NR | Zinc | 3 | Fluorine | =0.4 | | Hafnium | | Tin | | Copper | 3 | 0xygen | NR | | Lutetium | | Indium | STD | Nickel | 8 | Ni trogen | NR | | Ytterbium | | Cadmium | | Cobalt | <0.1 | Carbon | NR | | Thulium | | Silver | <0.1 | Iron | 12 | Boron | <0.1 | | Erbium | | Palladium | | Manganese | 0.6 | Beryllium | | | Holmium | | Rhodium | | Chromium | * 2 | Lithium | <0.1 | | Dysprosium | | *Heterogene | JUS | | | Hydrogen | NR. | | STD — Internel S
NR — Not Report
All elements not | ted | O lnom | | Approved: M. | , Ta | | Plesa. | MC - Major Component INT - Interference 24 Aug 81. Reply to GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 80801 - AREA CODE 312 728-8434 INSTRUMENTAL ANALYSIS DIVISION, 1433 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9321 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94942 Date August 20, 1981 IAD No.: 97-G852-116-25 Analyst: J. 01dham Release No 5 P. O. No.:Subcontract SW59159A Semple No.: A81-05-030-654SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS EA Imp 1 Blank CONCENTRATION IN µg/m1 ELEMENT CONC. ELEMENT CONC. ELEMENT CONC. ELEMENT CONC Uranium Terbium Ruthenium **Vanadium** 0.003 Thorium Gadolinium 0.008 Mol ybdenum Titanium 0.04 Bismuth Europium Niobium <0.001 Scandium Lead 0.003 Samarium Zirconium 0.001 Calcium. 0.5 Thallium Neodymi um Yttrium Potassium 0.1 Mercury NR 0.04 Praseodymium Strontium <0.001 Chlorine 601d Cerium Rubidium Sulfur 0.1 Platinum Lanthanum Bromine *0.05 0.1 **Phosphorus** Iridium 0.008 Barium 0.6 Selenium Silicon Osmi um Cesium Arsenic NR 0.04 **Aluminum** 0.002 Rhenium Iodine 0.03 Germanium Magnesium **Tungsten** Tellurium Gallium Sodium 0.6 NR Tantalum Antimony Zinc 0.02 **Fluorine** =0.7 0.02 Hafnium Tin Copper 0.005 Oxygen NR Lutetium STD Indium Nickel 0.05 Ni trogen NR Ytterbium Cadmium 0.003 NR Cobalt Carbon Thul 1 um Silver Iron 0.01 <0.001 Boron Erbium Palladium <0.001 Manganese Beryllium Ho 1mi um Rhodium Chromium 0.004 0.01 Lithium *Heterogeneous Dysprosium NR Hydrogen STD - Internal Standard NR - Not Reported All elements not detected < 0 001µg/m1 MC — Major Component > 10µg/m1 INT — Interference Approved: M.L. Jacobs by Bhaylon 24 Aug 8). Reply to GENERAL OFFICES: 328 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60801 - AREA CODE 312 724-8434 INSTRUMENTAL ANALYSIS DIVISION, 1435 WEST 44TH AVENUE, GOLDEN, COLORADO 60401, PHONE, 303-278-9521 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94942 Date: August 25, 1981 Analyst: J. 01dham Release No. 5 P. O. No.: Subcontract SW59159A Sample No.: A81-05-030-661 SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.: 97-6852-116-25 EA-1 fuel CONCENTRATION IN PPM WEIGHT | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | |--|----------------------------------|-------------------------------|------------------|----------------|---------------|------------|---------------| | Uranium | <0.03 | Terbium | | Ruthenium | | Vanadium | 0.08 | | Thorium | <0.04 | Gadolinium | | Molybdenum | <0.01 | Titanium | 0.05 | | Bismuth | | Europium | | Niobium | <0.01 | Scandium | | | Lead | 0.4 | Samarium | <u><</u> 0.02 | Zirconium | 0.07 | Calcium | MC | | Thallium | 0.03 | Neodymi um | <u><</u> 0.01 | Yttrium | 0.04 | Potassium | >54 | | Mercury | NR | Praseodymium | 0.02 | Strontium | 7 | Chlorine | 10 | | Gold | | Cerium | 0.1 | Rubidium | 0.4 | Sulfur | >27 | | Platinum | | Lanthanum | 0.2 | Bromine | 0.4 | Phosphorus | 19 | | Iridium | | Barium | 21 | Selenium | 0.01 | Silicon | MC | | Osmium | | Cesium - | 0.06 | Arsenic | NR | Aluminum | >4 | | Rhenium | | Iodine | 0.09 | Germanium | | Magnesium | MC | | Tungsten | | Tellurium | 0.03 | Gallium . | 0.01 | Sodium | >11 | | Tantalum | | Antimony | NR | Zinc | 29 | Fluorine | =0.6 | | Hafnium | | Tin | <0.01 | Copper | 6 | 0xygen | NR | | Lutetium | | Indium | STD | Nickel | 0.08 | Ni trogen | NR | | Ytterbium | | Cadmium | 0.03 | Cobalt | 0.1 | Carbon | NR | | Thui RECE | | Silver | 0.2 | Iron | 11 | Boron | * 0.04 | | Erbium SEP 0 | 8 RECID | Palladium | | Manganese | >45 | Beryllium | | | Holmium ACU | | Rhodium | | Chromium | 0.1 | Lithium | 0.03 | | Dysprosium | 1 | Meterogeneous
Note: Sample | | erature oxygen | plasma | Hydrogen | NR | | STD — Internal :
NR — Not Repor
All elements not
MC — Major Coi
INT — Interferen | ted
detected < !
mponent > | ashed | prior to a | Approved: | (L) | becol | ls | Reply to BENERAL OFFICES: 228 NORTH LA BALLE STREET, CHICAGO, ILLINOIS 40601 - AREA CODE 312 726-6434
INSTRUMENTAL ANALYSIS DIVISION, 14335 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9521 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94942 Date August 19, 1981 Analyst: J.01 dham Release No. 5 P. O. No.: Subcontract No. SW59159A Sample No.: A81-05-030-646 SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.: 97-6852-116-25 EA-1 10µ + 3µ SPECTROGRAPHIC ANALYSIS CONCENTRATION IN PPM WEIGHT | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | |---|--------------------------|---------------|-------|---------------|-------|------------|--------| | Uranium | 1 | Terbium | 1 | Ruthenium | | Vanadium | 17 | | Thorium | 4 | Gadolinium | 1 | Molybdenum | 10 | Titanium | MC | | Bismuth | | Europium | 0.5 | Niobium | 5 | Scandium | 0.5 | | Lead | 41 | Samarium | 5 | Zirconium | 6 | Calcium | MC | | Thallium | | Neodymi um | 4 | Yttrium | 7 | Potassium | MC | | Mercury | NR | Praseodymium | 2 | Strontium | MC | Chlorine | 680 | | G 01d | | Cerium | 13 | Rubidium | 79 | Sulfur | MC | | Platinum | | Lanthanum | 42 | Bromine | 8 | Phosphorus | MC | | Iridium | | Barium | MC | Selenium | 0.5 | Silicon | MC | | Osmi um | | Cesium | 0.6 | Arsenic | NR | Aluminum | MC | | Rhen i um | | Iodine | 1 | Germanium | 0.5 | Magnesium | MC | | Tungsten | 5 | Tellurium | 0.3 | Gallium | 7 | Sodium | MC | | Tantalum | | Antimony | NR | Zinc | MC | Fluorine | *MC | | Hafnium | | Tin | 0.4 | Copper | 98 | Oxygen | NR | | Lutetium | 0.1 | Indium | STD | Nickel | 17 | Ni trogen | NR | | Ytterbium | 0.9 | Cadmium | 0.7 | Cobalt | 2 | Carbon | NR | | Thulium | 0.1 | Silver | 4 | Iron | MC | Boron | 190 | | Erbium | 0.4 | Palladium | | Manganese | MC | Beryllium | <0.1 | | Holmium | 0.5 | Rhodium | | Chromium | 26 | Lithium | 3 | | Dysprosium | 2 | *Heterogeneou | IS | | | Hydrogen | NR | | STD — Internet NR — Not Rec All elements (MC — Mejor (| narred
not detected < | 0.1ppm | | Approved: M . | L. J | ausbs h | , Plan | INT - Interference 24 Aug 81 BENERAL OFFICES: 328 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 80801 - AREA CODE 312 728-8434 INSTRUMENTAL ANALYSIS DIVISION, 14335 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9521 Reply to To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94942 Date August 20, 1981 Analyst: J. Oldham Release No. 5. P. O. No.: Subcontract No. SW59159A Sample No.: A81-05-030-644SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.: 97-6852-116-25 EA-1 lu + filter CONCENTRATION IN µg/cm² | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | |---|--------|--------------|-------|------------|------------|------------|--------| | Uranium | <0.001 | Terbium | 0.001 | Ruthenium | | Vanadium | 0.008 | | Thorium | 0.002 | Gadolinium | 0.003 | Molybdenum | 0.005 | Titanium | 0.5 | | Bismuth | <0.001 | Europium | 0.001 | Niobium | 0.001 | Scandium | 0.001 | | Lead | 0.2 | Samarium | 0.009 | Zirconium | 0.02 | Calcium | MC | | Thallium | | Neodymium | 0.01 | Yttrium | 0.03 | Potassium | MC | | Mercury | NR | Praseodymium | 0.01 | Strontium | 2 . | Chlorine | 1 | | Gold | | Cerium | 0.06 | Rubidium | 0.6 | Sulfur | MC | | Platinum | | Lanthanum | 0.1 | Bromine | 0.02 | Phosphorus | MC | | Iridium | | Barium | MC | Selenium | 0.03 | Silicon | MC | | Osmi um | | Cesium | 0.002 | Arsenic | NR | A1 uminum | MC | | Rhenium | | Iodine | 0.002 | Germanium | 0.002 | Magnesium | MC | | Tungsten | 0.006 | Tellurium | | Gallium | 0.01 | Sodium | MC | | Tantalum | 0.002 | Antimony | NR | Zinc | 4 | Fluorine | =0.4 | | Hafnium | | Tin | 0.002 | Copper | 0.3 | 0xygen | NR | | Lutetium | <0.001 | Indium | STD | Nickel | 0.04 | Ni trogen | NR | | Ytterbium | 0.001 | Cadmium | 0.002 | Cobalt | 0.003 | Carbon | NR | | Thulium | <0.001 | Silver | 0.04 | Iron | MC | Boron | 0.04 | | Erbium | <0.001 | Palladium | | Manganese | MC | Beryllium | <0.001 | | Ho 1 m i um | 0.001 | Rhodium | | Chromium | 0.05 | Lithium | <0.001 | | Dysprosium
STD — Interr
NR — Not Re | | | | | | Hydrogen - | NR | All elements not detected < 0.001 ug/cm² MC - Major Component > 10 ug/cm² INT - Interference Approved: M. L. Jacobs by Photon ly 24 Arey 31. Reply to SENERAL OFFICES: 228 HORTH LA SALLE STREET, CHICAGO, ILLINOIS 80801 - AREA CODE 312 726-8434 INSTRUMENTAL ANALYSIS DIVISION, 14335 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9321 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94942 Date August 20, 1981 Analyst: J. 01dham Release No. 5 P. O. No.: Subcontract No. SW59159A Semple No.A-81-05-030-650spark Source MASS SPECTROGRAPHIC ANALYSIS IAD No.:97-G852-116-25 EA-1 XAD CONCENTRATION IN PPM WEIGHT | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | |-------------|--------------|-------------|------------|------------|-------|------------|-------------| | Uranium | | Terbium | | Ruthenium | | Vanadium | <0.1 | | Thorium | • | Gadolinium | | Molybdenum | 0.4 | Titanium | 2 | | Bismuth | | Europium | | Niobium | | Scandium | <0.1 | | Lead | 0.5 | Samarium | | Zirconium | 2 | Calcium | 25 | | Thallium | | Neodymi um | | Yttrium | | Potassium | 46 | | Mercury | NR | Praseodymiu | ım | Strontium | <0.1 | Chlorine | 34 | | Gold | | Cerium | | Rubidium | | Sulfur | 160 | | Platinum | ± 2 | Lanthanum | <u>s</u> 2 | Bromine | 2 | Phosphorus | 3 | | Iridium | | Barium | 0.4 | Selenium | | Silicon | 11 | | Osmium | | Cesium | 0.3 | Arsenic | NR | Aluminum | 2 | | Rhenium | | Iodine | *0.2 | Germanium | | Magnesium | *8 | | Tungsten | | Tellurium | | Gallium | <0.1 | Sodium | 64 | | Tantalum | | Antimony | NR | Zinc | 5 | Fluorine | ≃0.3 | | Hafnium | | Tin | | Copper | 1 | Oxygen | NR | | Lutetium | | Indium | STD | Nickel | 27 | Nitrogen | NR | | Ytterbium | | Cadmium | | Cobalt | 1 | Carbon | NR | | Thulium | | Silver | 130 | Iron | 18 | Boron | <0.1 | | Erbium | | Palladium | | Manganese | 0.4 | Beryllium | | | Ho1m1um | | Rhodium | | Chromium | 0.9 | Lithium | 0.1 | | Dysprosium | ant Canadaed | *Heterogene | ous | | | Hydrogen | NR | | NR - Not Re | | O loom | | A A1 | , – | 11/2 | سار مر | All elements not detected < 0.1 ppm MC - Major Component INT - Interference Approved: M.L. Jacobs by Photogram 2 4 Aug 81. Reply to GENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINDIS 60601 - AREA CODE 312 728-6484 INSTRUMENTAL AMALYSIS DIVISION, 14335 WEST 44TH AVENUE, GOLDEN, COLORADO 60401, PHONE: 303-278-9521 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94042 Date September 2, 1981 Analyst: J. 01dham Release No. 5 P. O. No.: Subcontract SW 59159A Sample No. 481-05-030-652 SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.: 97-6852-116-25 EA-1 Imp 1 CONCENTRATION IN DOM WEIGHT | LEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | |---|---|--------------|-----------|------------|------------------|-------------------|-------------------| | Uranium | | Terbium | | Ruthenium | | Vanadium | 0.007 | | Thorium | | Gadolinium | | Molybdenum | 0.2 | Titanium | 0.1 | | Bismuth | | Europium | | Niobium | 0.005 | Scandium | <u><</u> 0.002 | | Lead | | Samarium | | Zirconium | 0.03 | Calcium | 0.4 | | Thallium | | Neodymi um | • | Yttrium | | Potassium | *0.6 | | Mercury | NR | Praseodymiu | m | Strontium | 0.004 | Chlorine | 0.4 | | Gold | | Cerium | | Rubidium | 0.08 | Sulfur | MC | | Platinum | | Lanthanum | | Bromine | 0.08 | Phosphorus | 0.09 | | Iridium | | Barium | 0.05 | Selenium. | | Silicon . | MC | | Osmi um | | Cesium | | Arsenic | NR | Aluminum | 0.08 | | Rhenium | | Iodine | | Germanium | | Magnesium | 0.7 | | lungs ten | | Tellurium | | Gallium | <0.001 | Sodium | MC | | lantalum | | Antimony | NR | Zinc | *1 | Fluorine | = 3 | | lafnium | | Tin | | Copper | 0.01 | 0xygen | NR | | .utetium | | Indium | STD | Nickel | 0.08 | Ni trogen | NR | | /tterbium | | Cadmium | | Cobalt | | Carbon | NR | | Chulium | | Silver | 0.2 | Iron | 0.1 | Boron | 0.01 | | rbium | | Palladium | | Manganese | 0.005 | Beryllium | | | muim fol
V | RECE | Miliod Pum | | Chromium | 0.2 | Lithium | <0.001 | | ySprosium STD — Interna NR — Not Rep All elements to MC — Major (INT — Interfer | al Standard ported ACU not detected < Component | (0.002 ug/ml | SEP 01 19 | Approved: | 1 (₃ | Hydrogen
Lecon | NR | GENERAL OFFICES: 328 NORTH LA BALLE STREET, CHICAGO. ILLINOIS 60601 . AREA COCE 312 724-8434 INSTRUMENTAL AMALYSIS DIVISION. 1435 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9521 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94942 Date August 20, 1981 Release No. 5 Reply to Analyst: J. 01dham P. O. No.: Subcontract SW59159A Sample No.: A81-05-030-662SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.:97-G852-116-25 EA-1 flyash CONCENTRATION IN PPM WEIGHT | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | |-----------------------------|------------------|--------------|-------|------------|-------|------------|-------| | Uranium | 1 | Terbium | 0.9 | Ruthenium | | Vanadium | 29 | | Thorium | 7 | Gadolinium | 2 | Molybdenum | 2 | Titanium | MC | | Bismuth | | Europium. | 0.4 | Niobium | 4 | Scandium | 0.9 | | Lead | 28 | Samarium | 3 | Zirconium | 10 | Calcium | MC | | Thallium | • | Neodymi um | 4 | Yttrium | 11 | Potassium | MC | | Mercury | NR | Praseodymium | 4 | Strontium | 620 | Chlorine | 870 | | 601d | | Cerium | 20 | Rubidium | 130 | Sulfur | MC | | Platinum | | Lanthanum | 16 | Bromine | 6 | Phosphorus | MC | | Iridium | | Barium | MC | Selenium | 5 | Silicon | MC | | Osmi um | | Cesium | 0.6 | Arsenic | NR | Aluminum | MC | | Rhenium | | Iodine | 0.7 | Germanium | 0.3 | Magnesium | MC | | Tungsten | 0.9 | Tellurium | 0.5
| Gallium | 5 | Sodium | MC | | Tantalum | | Antimony | NR | Zinc | 410 | Fluorine | 24 | | Hafnium | 0.9 | Tin | 0.5 | Copper | 52 | Oxygen | NR | | Lutetium | | Indium | STD | Nickel | 6 | Nitrogen | NR | | Ytterbium | | Cadmium | 1 | Cobalt | 3 | Carbon | NR | | Thulium | | Silver | | Iron | MC | Boron | 140 | | Erbium | 0.6 | Palladium | | Manganese | MC | Beryllium | 0.3 | | Holmium | 8.0 | Rhodium | | Chromium | 4 | Lithium | 5 | | Dysprosium
STD — interna |]
al Standard | | | | | Hydrogen | . NR | NR - Not Reported All elements not detected < 0.1ppm MC — Major Component INT — Interference Approved: M. L. Jacobs by Photoglas 24 Aug 81 Reply to BENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 80801 - AREA CODE 312 728-8434 INSTRUMENTAL ANALYSIS DIVISION, 1433S WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9521 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94042 Date. October 12, 1981 Analyst: J. 01dham Release No. 6 Exhibit A P. O. No.: Subcontract No. SW59159A Sample No.: A81-07-033-1 SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.97-H437-116-13 EA Flyack Leachate CONCENTRATION IN Mg/mL | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | |--|---|-------------------------|-------------------|------------|-------------------|------------|-----------| | Uranium | | Terbium | | Ruthenium | | Vanadium | 0.08 | | Thorium | | Gadolinium | | Molybdenum | 0.003 | Titanium | 2 | | Bismuth | | Europium | | Niobium | | Scandium | <0.001 | | Lead | 0.08 | Samarium | | Zirconium | 0.002 | Calcium | MC | | Thallium | | Neodymium | | Yttrium | <0.001 | Potassium | MC | | Mercury | NR | Praseodymiu | n | Strontium | MC | Chlorine | MC | | Gold | | Cerium | 0.002 | Rubidium | MC | Sulfur | MC | | Platinum | <0.005 | Lanthanum | 0.003 | Bromine | 0.4 | Phosphorus | 0.2 | | Iridium | | Barium | MC | Selenium | | Silicon | MC | | Osmi um | | Cesium | | Arsenic | NR | Aluminum | 0.1 | | Rhenium | | Iodine | 0.05 | Germanium | <0.001 | Magnesium | 0.05 | | Tungsten | 0.09 | Tellurium | <u><</u> 0.008 | Gallium | 0.003 | Sodium | MC | | Tantalum | 0.009 | Antimony | NR | Zinc | 0.02 | Fluorine | =4 | | Hafnium | | Tin | <0.009 | Copper | 0.03 | Oxygen | NR | | Lutetium | | Indium | STD | Nickel | 0.02 | Nitrogen | NR | | Ytterbium | | Cadmium | 0.002 | Cobalt . | <u><</u> 0.002 | Carbon | NR | | Thulium | | Silver | | Iron | 6 | Boron | 0.01 | | Erbium | | Palladium | | Manganese | 0.005 | Beryllium | | | Ho1mium | - | Rhodium | | Chromium | 0.1 | Lithium | 0.01 | | Dysprosium | | | | | | Hydrogen | NR | | STD — Intern
NR — Not Re
All elements
MC — Major
INT — Interfe | ported
not detected <
Component > | 0.001 µg/mL
10 µg/mL | | Approved: | \mathcal{M} | Ykee | , K | | ACUREX
Corporation | | |-----------------------|--| | ANALYSIS LABORATORIES | | #### **DATA REPORTING FORM** | CUSTOMER CMEA | | |---------------------------------|--------------------------------| | CUSTOMER CONTRACT NO. 307736.12 | ACUREX CONTRACT NO. A81-07-033 | | RESULTS REPORT TO L. Waterland | TELEPHONE | | ADDRESS | | | Ethan Allen fly ash | • | | SAMPLE ID (CUSTOMER) | 662 | | 662 | | | | ! | | | |-----------------------|-------|-------|-------|-----------------|------|---|---|---|-------| | SAMPLE ID (LAB) | 033-1 | Blank | 033-1 | | | | | | | | PARAMETER | | | | r |
 | | | | UNITS | | F- | 0.2 | <0.1 | 0.8 | | | | | | | | CL- | 140 | <5 | 560 | | | | | | | | Br~ | 10 | <1 | 40 | | | | | | | | NO3 | 25 | <0.1 | 100 | | | | - | | | | NO ₂ - | 59 | <0⊹1 | 240 | | | | | | | | so ₃ = | <2 | <2 | <8 | | | | | | | | so ₄ * | 200 | <5 | 800 | | | | | | | | PO4" as P | 0.04 | <0.02 | 0.2 | | | | | · | | | NH4 [†] as N | 1.2 | <0.5 | 5 | | | | | | | | | | | | | | | | | | | Units | mg/1 | mg/1 | mg/kg | | | - | - - | | | | | | | ANALYST | | |---------|--| |---------|--| REVIEWER ___ ... Reply to BENERAL OFFICES: 328 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 88801 . AREA CODE 312 728-8434 INSTRUMENTAL AMALYSIS DIVISION. 14335 WEST 44TM AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9321 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94942 Date: August 25, 1981 IAD No.: 97-G852-116-25 Analyst: J. 01dham Release No. 5 P. O. No.: Subcontract SW59159A Sample No.: A81-05-031-743 SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS EA-2 fuel CONCENTRATION IN PPM WEIGHT ELEMENT CONC. ELEMENT CONC. ELEMENT CONC. ELEMENT CONC. Uranium Terbium Ruthenium Vanadium 0.6 0.07 Thorium Gadolinium Molybdenum Titanium 9 Bismuth Europium Niobium 0.1 Scandium 0.01 Lead 0.3 Samarium Zirconium 0.5 Calcium MC Thallium 0.04 0.02 **Neodymium** Yttrium 0.06 >92 Potassium Mercury NR 4 Praseodymium 0.04 Strontium 12 **Chlorine** Gold Cerium 0.2 Rubidium 3 >47 Sulfur Platinum Lanthanum 0.2 Bromine 0.07 MC **Phosphorus** Iridium Barium 36 <0.02 Selenium Silicon MC Osmium Cesium 0.03 NR >7 Arsenic Aluminum Rhenium Iodine 0.04 <0.01 German i um MC Magnesium Tungsten Tellurium 0.05 Gallium. 0.1 >19 Sodium Tantalum Antimony NR 22 Zinc ≃7 Fluorine Hafnium 0.08 Tin 0.03 3 NR Copper 0xygen Lutetium Indium STD 0.3 Nickel NR Ni trogen Ytterbium Cadmium 0.1 0.5 Cobalt NR Carbon Thultum Silver 0.08 MC 0.03 Iron Boron ErbiumRECEIVEDalladium >76 <0.01 Manganese **Beryllium** Holmium SEP 08 RECT Rhodium 0.04 Chromium 0.05 Lithium DysprosiumACUREX Note: Sample low temperature oxygen Hydrogen STD - Internal Standard plasma ashed prior to analysis NR — Not Reported All elements not detected < 0.01ppm Maior Component >100ppm NR - Not Reported Speods Approved. INT - Interference Reply to BENERAL OFFICES: 228 NORTH LA BALLE STREET, CHICAGO, ILLINOIS 80801 - AREA CODE 312 726-8434 INSTRUMENTAL ANALYSIS DIVISION, 14335 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE. 303-278-9531 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94942 ## RECEIVED Date August 21, 1981 Release No. 5 P. O. No.: Subcontract SW59159A AUG 28 REC'D Analyst: J. 01dham ACUREX Sample No.A-81-05-030-672 SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.:97-G852-116-25 EA-2 10u+ 3u CONCENTRATION IN PPM WEIGHT | ELEMEN | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | |---------|---|---------------|---------------|-------------|-------|------------|------------| | Uraniu | m 2 | Terbium | 0.7 | Ruthenium | • | Vanadium | 29 | | Thoriu | m 3 | Gadolinium | 2 | Mo1 ybdenum | 4 | Titanium | MC | | Bismut | h 0.3 | Europium | 0.7 | Niobium | 6 | Scandi um | 0.9 | | Lead | 63 | Samarium | 3 | Zirconium | *22 | Calcium | MC | | Thallf | um | Neodymi um | 4 | Yttrium | 13 | Potassium | MC | | Mercur | y NR | Praseodymium | 8 | Strontium | MC | Chlorine | 880 | | Gold | | Cerium | 41 | Rubidium | 300 | Sulfur | MC | | Platin | um | Lanthanum | 72 | Bromine | 14 | Phosphorus | MC | | Iridiu | m | Barium | MC | Selenium | 2 | Silicon | MC . | | Qsmi um | l | Cesium | 1 | Arsenic | NR | Aluminum | MC . | | Rheniu | m | Iodine | 1 | Germanium | 0.4 | Magnesium | MC | | Tungst | en | Tellurium | | Gallium | 5 | Sodium | MC | | Tantal | um | Antimony | NR | Zinc | 460 | Fluorine | =55 | | Hafniu | m + 2 | Tin | 1 | Copper | 84 | 0xygen | NR | | Luteti | um 0.2 | Indium | STD | Nickel | 6 | Ni trogen | NR | | Ytterb | ium 2 | Cadmium | 3 | Cobalt | 3 | Carbon | NR | | Thuliu | m 0.2 | Silver | <u><</u> 1 | Iron | MC | Boron | 150 | | Erbium | 0.6 | Palladium | | Manganese | MC | Beryllium | 0.3 | | Holmiu | m 0.8 | Rhodium | | Chromium | 8 | Lithium | 22 | | | Sīum 3
Internei Standard
Not Reported | *Heterogeneou | ıs | A • | | Hydrogen | NR | All elements not detected < 0.1ppm MC - Major Component INT - Interference Approved: M. L. Jacobs by Phaylon 24 Aug 81 Reply to BENERAL OFFICES: 228 NORTH LA BALLE STREET, CHICAGO, ILLINOIS 40401 - AREA CODE 312 728-8434 INSTRUMENTAL ANALYSIS DIVISION, 14335 WEST 41TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9521 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94942 Date August 20, 1981 Analyst: J. 01dham Release No. 5 P. O. No.: Subcontract SW 59159A Semple No.: A81-05-030-674 SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.: 97-G852-116-25 EA-2 1µ+ filter CONCENTRATION IN µg/cm2 | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | |---|--------|--------------|--------|--------------|-------|------------|-------------| | Uranium | 0.002 | Terbium | <0.001 | Ruthenium | | Vanadium | 0.009 | | Thorium | 0.002 | - Gadolinium | <0.001 | Molybdenum | 0.005 | Titanium | 0.6 | | Bismuth | 0.004 | Europium | <0.001 | Niobium | 0.001 | Scandium | <0.001 | | Lead | 0.2 | Samarium | 0.004 | Zirconium | 0.03 | Calcium | MC | | Thallium | <0.001 | Neodymium | 0.005 | Yttrium | 0.004 | Potassium | >0.6 | | Mercury | NR | Praseodymium | 0.002 | Strontium | 8.0 | Chlorine | 0.3 | | Go1d | | Cerium | 0.01 | Rubidium | 0.3 | Sulfur | >0.3 | | Platinum | | Lanthanum | 0.02 | Bromine | 0.02 | Phosphorus | >2 | | İridium | | 8arium | MC | Selenium | 0.01 | Silicon | >3 | | Osmium | | Cesium | <0.001 | Arsenic | NR | Aluminum | >0.05 | | Rhenium | | Iodine | 0.002 | Germanium | 0.001 | Magnesium | >4 | | Tungsten | 0.005 | Tellurium | | Gallium | 0.01 | Sodium | >0.1 | | Tantalum | <0.001 | Antimony | NR | Zinc | 6 | Fluorine | =0.2 | | Hafnium | <0.001 | Tin | 0.004 | Copper | 0.2 | 0xygen | NR | | Lutetium | <0.001 | Indium | STD | Nickel | 0.04 | Ni trogen | NR | | Ytterbium | <0.001 | Cadmium | 0.002 | Cobalt | 0.002 | Carbon | NR | | Thul tum | <0.001 | Silver | 0.02 | Iron | MC | Boron | >0.9 | | Erbium | <0.001 | Palladium | | Manganese | >0.5 | Beryllium | <0.001 | | Ho1mium | <0.001 | Rhodium | |
Chromium | 0.02 | Lithium | 0.007 | | Dysprosium | <0.001 | | | | | Hydrogen | NR | | STD — Intern. NR — Not Re All elements MC — Meior | ported | 0.001ug/cm2 | | Approved: M. | L. Ja | eobs by | PA | C - Meior Component > 10µg/cm2 INT - Interference M.L. Jacobs by Olday In Reply to BENERAL OFFICES: 328 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 80801 - AREA CODE 312 724-8-34 INSTRUMENTAL ANALYSIS DIVISION, 1435 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9521 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94942 Date: August 20, 1981 Release No. 5 Analyst: J. 01dham P. O. No.: Subcontract SW59159A Sample No.: A81-05-030-676SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.:97-G852-116-25 EA-2 XAD CONCENTRATION IN PPM WEIGHT | ELEMENT CO | ONC. ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | |----------------------------------|------------------|------------|---------------|-----------------|------------|-----------| | Uranium | Terbium | | Ruthenium | | Vanadium | <0.1 | | Thorium | Gadolini | um | Molybdenum | 1 | Titanium | 3 | | Bismuth | Europium |) . | Niobium | | Scandium | | | Lead 0. | 4 Samarium | 1 | Zirconium | 0.5 | Calcium | 180 | | Thallium | Neodymiu | m | Yttrium | | Potassium | 130 | | Mercury NR | Praseody | mi um | Strontium | 0.2 | Chlorine | 5 | | Gold | Cerium | | Rubidium | | Sulfur | 7 | | Platinum 2 | Lanthanu | m | Bromine | 2 | Phosphorus | 4 | | Iridium | Barium | 0.8 | Selenium | | Silicon | 15 | | Osmi um | Cesium | | Arsenic | NR | Aluminum , | 12 | | Rhenium | Iodine | 0.1 | Germanium | | Magnesium | 4 | | Tungsten | Telluriu | m | Gallium | | Sodium | 12 | | Tantalum | Antimony | NR | Zinc | 25 | Fluorine | ±3 | | Hafnium | Tin | | Copper | 10 | 0xygen | NR | | Lutetium | Indium | STD | Nickel | 67 | Ni trogen | NR | | Ytterbium | Cadmium | | Cobalt | <u><</u> 0.1 | Carbon | NR | | Thulium | Silver | *2 | Iron | 23 | Boron | <0.1 | | Erbium | Palladiu | វា | Manganese | 1 | Beryllium | | | Holmium | Rhodi um | | Chromium | 5 | Lithium | 0.1 | | Dysprosium
STD — Internal Sta | | eneous | | | Hydrogen | NR | | NR - Not Reported | distance of 1000 | | Americani, AA | , | 1 6 | 201 | All elements not detected < 0.1 ppm MC - Major Component INT - Interference Approved: M. L. Jacobs by (If Lay ly 24 Dezy 2). BENERAL OFFICES: 228 NORTH LA SALLE STREET, CHICAGO, ILLINOIS 60601 - AREA CODE 312 726-8434 INSTRUMENTAL ANALYSIS DIVISION, 14335 WEST 44TH AVENUE, GOLDEN, COLORADO 80401, PHONE: 303-278-9521 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountain View, CA 94942 Date: August 21, 1981 Release No. 5 Reply to P. O. No.: Subcontract SW59159A Analyst: J. 01 dham Semple No.: A81-05-030-678SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.:97-G852-116-25 EA- 2 IMP 1 CONCENTRATION IN µg/m1 | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | |--|------------------------------------|-----------------------|-------------------|--------------|------------------|------------|------------| | Uranium | | Terbium | _ | Ruthenium | | Vanadium: | 0.006 | | Thorium | | Gadolinium | | Molybdenum | 0.009 | Titanium | 0.4 | | Bismuth | | Europium | | Niobium | 0.009 | Scandium | | | Lead | 0.01 | Samarium | | Zirconium | 0.01 | Calcium | 4 | | Thallium | | Neodymium | 0.009 | Yttrium | 0.001 | Potassium | MC | | Mercury | NR | Praseodymium | 0.002 | Strontium | 0.03 | Chlorine | 0.04 | | Gold | | Cerium | 0.005 | Rubidium | 0.02 | Sulfur | > 5 | | Platinum | | Lanthanum | 0.006 | Bromine | <u><</u> 0.01 | Phosphorus | 0.1 | | Iridium | | Barium | 0.2 | Selenium | 0.01 | Silicon | MC | | Osmium | | Cesium | <u><</u> 0.001 | Arsenic | NR ' | Aluminum | >0.8 | | Rhenium | | Iodine | 0.002 | Germanium | | Magnesium | 0.9 | | Tungsten | | Tellurium | | Gallium | 0.006 | Sodium | >2 | | Tantalum | | Antimony | NR | Zinc | 0.2 | Fluorine | = 3 | | Hafnium | | Tin | 0.07 | Copper | 0.05 | 0xygen | NR | | Lutetium | | Indium | STD | Nickel | 0.1 | Ni trogen | NR | | Ytterbium | | Cadmium | 0.001 | Cobalt | ≤0.001 | Carbon | NR | | Thulium | | Silver | 0.1 | Iron | 2 | Boron | 0.002 | | Erbium | | Palladium | | Manganese | 0.03 | Beryllium | | | Ho1mium | | Rhodium | | Chromium | 0.02 | Lithium | 0.001 | | Dysprosium | | | | | | Hydrogen | NR | | STD — Internel
NR — Not Repo
All elements no
MC — Mejor Co
INT — Interfere | rted
t detected <
emponent > | 0.001µg/ml
10µg/ml | | Approved: M. | LJa | | Shay | 24 Aug 81 . Reply to GENERAL OFFICES: 228 NORTH LA BALLE STREET, CHICAGO, ILLINOIS 60601 - AREA CODE 312 728-8434 INSTRUMENTAL ANALYSIS DIVISION, 1435 WEST 44TH AVENUE, GOLDEN, COLORADO 60401, PHONE 303-278-9521 To: Mr. Roy A. Belletto Acurex Corporation 485 Clyde Avenue Mountian View, CA 94942 Date. August 20, 1981 Analyst: J. 01dham Release No. 5 P. O. No.: Subcontract SW59159A Semple No.A8T-05-030-744 SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.:97-G852-116-25 EA-2 flyash CONCENTRATION IN PPM WEIGHT | LEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | ELEMENT | CONC. | |---|-------|--------------|-----------------|----------------|--------------|------------|-----------| | Uranium | 1 | Terbium | 1 | Ruthenium | | Vanadium | 25 | | Thorium | 6 | Gadolinium | 4 | Molybdenum | 0.7 | Titanium | MC | | Bismuth | | Europium | 8.0 | Niobium | 7 | Scandium | 0.8 | | Lead | 61 | Samarium | 6 | Zirconium | 39 | Calcium | MC | | Thallium | | Neodymium | 4 | Yttrium | 20 | Potassium | MC | | Mercury | NR | Praseodymium | 6 | Strontium | 860 | Chlorine | 190 | | Go1d | | Cerium | 35 | Rubidium | 290 | Sulfur | 280 | | Platinum | | Lanthanum | 35 | Bromine | 29 | Phosphorus | MC | | Iridium | | Barium | MC | Selenium | 4 | Silicon | MC | | Osmium | | Cesium | 0.9 | Arsenic | NR | Aluminum | MC | | Rhenium | | Iodine | 3 | Germanium | 0.8 | Magnesium | MC | | Tungsten | 0.7 | Tellurium | 0.4 | Gallium | 11 | Sodium | MC | | Tantalum | | Antimony | NR | Zinc | 390 | Fluorine | =100 | | Hafnium | 0.7 | Tin | 0.2 | Copper | 45 | 0xygen | NR | | Lutetium | | Indium | STD | Nickel | 14 | Ni trogen | NR | | Ytterbium | 0.8 | Cadmium | 1 | Cobalt | 3 | Carbon | NR | | Thulium | 0.1 | Silver | <u><</u> 0.2 | Iron | MC | Boron | 13 | | Erbium | 0.6 | Palladium | | Manganese | MC | Beryllium | <0.1 | | Holmium | 2 | Rhodium | | Chromium | 38 | Lithium | 2 | | Dysprosium | 3 | | | | | Hydrogen | NR | | STD — Interne NR — Not Rep All elements t | orted | . (I. l nom | | Approved: Al I | - | 0 (8 | $p\Delta$ | All elements not detected < 0.1 ppm MC - Major Component INT - Interference Approved: M.L. Jacobs by Hotay la ## 5.6 GASEOUS (C₁ to C₆) HYDROCARBONS ## Onsite Gas Chromatography Results $^{\rm a}$ Dry Wood Fuel, 4-15-81 | Time | Run No. | c ₁ | C ₂ | c3 | C ₄ | C ₅ | c ₆ | |-------|---------|-----------------------|----------------|-----|----------------|----------------|----------------| | 18:53 | 16 | 39.5 | 43.2 | 2.8 | 5.7 | 4.9 | 1.3 | | 18:56 | 17 | 16.9 | 18.0 | 2.9 | 1.3 | 0.8 | 1.9 | Wet Wood Fuel, 4-16-81 | Time | Run No. | c ₁ | C2 | C3 | C4 | C ₅ | c ₆ | |--------------------|---------|----------------|-----|---------|-----|----------------|-------------------| | 12:45 | 1 | 5.2 | 5.9 | 1.8 | 7.1 | <3.8b | <8.5 ^b | | 13:01 | 2 | 4.6 | 2.0 | 2.6 | c | 0.1 | <4.6 ^b | | 16:35 | 3 | 1.3 | 4.0 | | 0.4 | | <1.5 ^b | | 16:40 ^d | 4 | 6.1 | 3.0 | 2.0 | 0.4 | 0.6 | <7.7 ^b | aAll ppm values ±10 percent bValue is higher than actual due to excessive noise cNot detected dBurnout in furnace #### GAS CHROMATO, APH OPERATING CONDITIONS AND FIELD LOG | Client CMEA, Location ETHAN ALLEN Job No. 307602.71 | | | | | | | | | | |---|---------------|-------------|------------------------------------|---------------------------------------|--|--|--|--|--| | Recorder/F | Printout Refe | erence No | SS , Instrument , Recorder ID | 3390 A | | | | | | | | | | = 10% (TO No | | | | | | | | | | GC CONDIT | IONS | | | | | | | | Amount In | instad = = = | | | d a | | | | | | | | | | or Sample Loop Use | | | | | | | | | | | , TCD (Curr | | | | | | | | | | | mplifier or Range _ | | | | | | | | Column: | Liquia Phase | 1/// | _, Solid Phase Por | PAPAK Q, | | | | | | | | | TSOTHE PMAL | 0, Mate
n <u>130 °</u> C, Detec | tor <u>130 °C</u> | | | | | | | | | SAMPLE I | RUN | · · · · · · · · · · · · · · · · · · · | | | | | | | Sampling | Method P | RGE COP | | · · · · · · · · · · · · · · · · · · · | | | | | | | RT Area Peak Height Amount (PPM) Component | | | | | | | | | | | ,50 78457 15.1 C, | | | | | | | | | | | .96 156370 14.6 52 | | | | | | | | | | | 2.25 217810 15.6 | | | | | | | | | | | 6.34 327760 15.2 | | | | | | | | | | | 14.11 +5+320 154 25 | | | | | | | | | | | 16.7 | | | | | | | | | | | | 1 | ŀ | i | | | | | | | Name of Operator M. N. C. Hips , Date 7-8 1981 #### GAS CHROMATOL .APH OPERATING CONDITIONS AND FIELD LOG | | | 6m 40 | RT, N.C. | | |---|--|---|---|-------------------| | Recorder | Printout Refe | erence No. <u>15</u> | :/y , Instrument
, Recorder II
CDROCARE | 3340 A | | | | • | 9- 1-2 11 | | | | | GC CONDIT | IONS | | | | | | mplifier or Range _ | | | Length | ري, 0.0
ure: Injecto | D. <u>//e"</u> , I.I | , Solid Phase Pol
D. , Mate
n <u>130 °C</u> , Detec | erial <u>S.s.</u> | | Length | ري, 0.0
ure: Injecto | 0. <u>/s"</u> , I.I
r <u>130 °C</u> , Over | D, Mate | erial <u>Ss.</u> | | Length _
Temperate | <u>(,'</u> , 0.0
ure: Injector
ure Program _ | 0. <u>1/2"</u> , I.l
r <u>130 °C</u> ,
Over
ISDTHE PMAL | D, Mate | erial <u>Ss.</u> | | Length _
Temperate | <u>(,'</u> , 0.0
ure: Injector
ure Program _ | I. 1/2", I. Over 130°C, Over 150THE PMAL | D, Mate | erial <u>S.s.</u> | | Length
Temperate
Temperate
Sampling | Method Pres | Je, Je, I.I. T. 130 C. Over TSOTHERMAL SAMPLE | D, Mate | Component | | Length Temperate Temperate Sampling RT | Method Prea | Je, Je, I.I. T. 130 C. Over TSOTHERMAL SAMPLE | RUN Amount (PPM) | Component | | Length
Temperate
Temperate
Sampling
RT | Method Pred | Je, Je, I.I. T. 130 C. Over TSOTHERMAL SAMPLE | RUN Amount (PPM) /5.1 /5.6 /5.6 | Component | | Length
Temperate
Temperate
Sampling
RT
.%\$ | Method Piza | Je, Je, I.I. T. 130 C. Over TSOTHERMAL SAMPLE | RUN Amount (PPM) /5.1 .7.6 /5.2 | Component | | Length _
Temperate
Temperate
Sampling
RT
.95 | Method Piza Area 100560 157470 248840 | Je, Je, I.I. T. 130 C. Over TSOTHERMAL SAMPLE | RUN Amount (PPM) /5.1 /5.6 /5.6 | Component | Name of Operator M. N. C.HiPC . Date 7-8 1981 | Operator M. D. CHIPS De | ate. 4:-15:-8:1 | |----------------------------|-------------------------------| | Column NoLength | | | | | | CoatingSupport.ParkAPAIS.Q | Mesh.6.9/22 | | TEMP: Col: Init | °C Final <i>I.</i> 30°C | | Rate°C/mln. Det/3. | <u>Q°C Inj132°C</u> | | CARRIER GAS. 148Rate | e. 60 %; ml:/ml n. | | Pressures: Inlet: | | | Hydrogen. LQ. Asi | | | DETECTOR E.CT.C | | | ScavengerRate | | | SensRec.Rai | ngemv. | | SensRec.Rai | INL Size 20 ML | | SolventCor | | ### GAS CHROMATOL .APH OPERATING CONDITIONS AND FIELD LOG | | | OLD FO | RT, N.C. | | |-----------------------------------|-------------------|---|---|---------------------| | Recorder/ | Printout Ref | erence No. 16 | :49 , Instrument Recorder I | D 3390A | | Sample De | escription _/ | ess Ybour | | | | | | GC CONDIT | IONS | | | Amount In | jected <u>2.0</u> | me, Inj. Port | or Sample Loop Us | ed 2.0ml Loop | | | | - · · · · · · · · · · · · · · · · · · · | , TCD (Cur | | | | | | mplifier or Range | | | | | | _, Solid Phase P | | | Length _ | <u>6'</u> , 0. | D. <u>1/2"</u> , I. | D, Mat
n <u>130 </u> | erial <u>s.s.</u> | | T | | | | | | lemperati | ıre: Injecto | r 130°C, Over | n <u>130 °c</u> , Dete | ctor <u>130 °C</u> | | | | TSOTHERMAL | | ector <u>(30 °C</u> | | | | | | ector <u>130 °C</u> | | | | ISOTHERMAL | | ector 130 °C | | Temperatu | ure Program _ | ISOTHE RMAL | RUN | ector <u>(30 °C</u> | | Temperatu | ure Program _ | ISOTHERMAL | RUN | ector <u>(30 °C</u> | | Temperatu | Method | ISOTHE RMAL | RUN | Component | | Sampling | Method | SAMPLE | RUN | | | Sampling RT | Method | SAMPLE | RUN Amount (PPM) | Component | | Sampling RT | Method | SAMPLE | Amount (PPM) | Component | | Sampling RT .+7 .75 | Method | SAMPLE | Amount (PPM) | Component | | Sampling RT .+7 .75 | Method | SAMPLE | Amount (PPM) 39.5 43.2 2.8 | Component | | Sampling RT -+7 -75 -78 7.70 | Method | SAMPLE | Amount (PPM) 39.57 43.2 | Component | Name of Operator M. N. C.HiPS , Date 7-8 1981 | RT | Area | Peak Height | Amount (ppn) | Component | |-------|-------|-------------|--------------|------------| | 6.76 | 96820 | | | \ | | 7.55 | 4:926 | | 4.9 |) -> | | 74.70 | 66775 | | i • 3 | <u>ر</u> ح | - | | | | | | | | | | | | | | | | | | Operator. M.D., GHiP.5 Dat | | |-------------------------------------|----------------| | Column NoLength | - | | CoatingSupportP&BAPAKQ | Mesh.60/.80 | | TEMP: Col: Init | °C Final/.32°C | | Rate°C/min. Det./12@
CARRIER GAS | | | Pressures: inlet: | | | DETECTOR E.CT.C | | | ScavengerRate | | | SAMPLE IDFS Y-BYLB | Size 2.DM | | SolventConc | n | ## GAS CHROMATO. APH OPERATING CONDITIONS AND FIELD LOG | | | ow fo | NO. 100 NO. 1 | | |---------------------------------------|-------------------|--|--|-------------------| | Recorder/ | Printout Ref | erence No | Instrument Recorder ID | 3390 A | | Sample De | escription _ | 1451. + R) | ιß | | | | | GC CONDIT | IONS | | | Amount In | jected <u>2.C</u> | m_, Inj. Port | or Sample Loop Use | d 2.0ml Loop | | | | | , TCD (Curr | | | | | | mplifier or Range _ | | | Column: | Liquid Phase | | _, Solid Phase Por | PAPAK Q | | | | | | | | Length _ | <u>la'</u> , 0. | .D. <u>//s"</u> , I. | D, Mate | erial <u>S.S.</u> | | Length
Temperatu | re: Injecto | .D. <u>1/2"</u> , I.
or <u>130 °C</u> , Ove | D, Mate
n <u>130 ⁰と</u> , Detec | tor (30 °c | | | | | D, Mate
n <u>130 </u> | | | | | | | | | | | ISOTHE PMAL | | | | Tempēratu | ire Program _ | ISOTHE PMAL | RUN | | | Tempēratu | ire Program _ | ISOTHE PMAL | RUN | | | Tempēratu | ire Program _ | ISOTHE PMAL | RUN | | | Temperatu
Sampling | Method | SAMPLE | RUN | | | Sampling RT +49 | Method | SAMPLE | RUN Amount (PPM) | Component | | Sampling RT | MethodArea | SAMPLE | Amount (PPM) | Component | | Sampling RT +9 -75 -77 1.65 | Method | SAMPLE PAG 300 mc Peak Height | Amount (PPM) | Component | | Sampling RT +49 -75 -77 -7.65 -7.29 | Method | SAMPLE | Amount (PPM) | Component | | Sampling RT +9 -75 -77 1.65 | Method | SAMPLE PAG 300 mc Peak Height | Amount (PPM) | Component | Name of Operator M. N. C. Hips | RT | Area | Peak Height | Amount (ppr) | Component | |-------------|--------------|--------------|--------------|-----------| | 17.67 | Ø | | | \ | | 21.37 | 96477 |) | 1.9 | / | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | Operator. M.D., CHill | Da | ste. 4=15=81 | | |-----------------------|-----------------------|----------------------|-------------------| | Column No | Length | 6′Dla. ⅓8″ . | ••••• | | Coating | | .Concn | | | Support P52APA | <u>د م</u> | Mesh LD/A | ļo. | | TEMP: Col: Init | 1.3 | Q.°C Final\Sq | °C | | RateOC/mln. | Det 13 | 0°C Inj130 | °C | | CARRIER GAS | | | | | Pressures: Inlet | | | | | Hydrogen Y.O.P.S.1 | . ml./min: | Air. 6 D. P.S. 1 and | /mi n. | | DETECTOR E.C | T.C | F.I.D. X | | | Scavenger | | | | | Sens | Rec.Ran | ge | mv. | | SAMPLE ILS. | <u> </u> | Size.2,Q.f | 3. l m. | | Solvent | | | | #### GAS CHROMATO, APH OPERATING CONDITIONS AND FIELD LOG | | | ow For | RT, N.C. | • | |--|-----------------------------|---|---|-------------------| | Recorder/ | Printout Refe | erence No. 21 | ৭৬ , Instrument
, Recorder ID | 3390 A | | | | | LITIC TO PENENT | | | · · · · · · · · · · · · · · · · · · · | | GC CONDIT | ONS
or Sample Loop Use | | | Detector | Attenuation . | , Ar | , TCD (Curr | 10-1 | | Length <u> </u> | re: Injecto | D. <u>1/8"</u> , I.I
r <u>130 °C</u> , Over
ISOTHE RMAL | _, Solid Phase <u>Por</u>
), Mate
n <u>130 </u> | tor 130 °C | | Length
Temperatu
Temperatu | re: Injecto | D. <u>1/8"</u> , I.I
r <u>130 °C</u> , Over
ISOTHERMAL |), Mate
n <u>130 °</u> C, Detec | tor 130 °C | | Length
Temperatu
Temperatu | re: Injecto | D. <u>1/8"</u> , I.I
r <u>130 °C</u> , Over
ISOTHE RMAL |), Mate
n <u>130 °</u> C, Detec | component | | Length
Temperatu
Temperatu
Sampling | Method Pos | D. 1/8", I.I r 130 °C, Over TSOTHERMAL SAMPLE I | RUN Amount (PPM) | tor <u>130 °C</u> | | Length
Temperatu
Temperatu
Sampling
RT | Method Pos | D. 1/8", I.I r 130 °C, Over TSOTHERMAL SAMPLE I | RUN Amount (PPM) | Component | | Length
Temperatu
Temperatu
Sampling
RT | Method Pyses Area 95557 | D. 1/8", I.I r 130 °C, Over TSOTHERMAL SAMPLE I | Amount (PPM) | Component | | Length
Temperatu
Temperatu
Sampling
RT | Method Pos | D. 1/8", I.I r 130 °C, Over TSOTHERMAL SAMPLE I | Amount (PPM) 15.(17.6 15.6 | Component | | Length
Temperatu
Temperatu
Sampling
RT | Method Possor 155030 238150 | D. 1/8", I.I r 130 °C, Over TSOTHERMAL SAMPLE I | Amount (PPM) | Component | Name of Operator M.N. CHIPS, Date 7-8 1981 # GAS CHROMATO, APH OPERATING CONDITIONS AND FIELD LOG | njection | Date <u>4-16</u> | -%1 , Time 15:0 | 9:47, Instrument | ID CARLE |
---|------------------------------------|--|---|---| | ecorder/ | Printout Re | ference Noi | , Recorder I | D 3310A | | urpose o | f Run <u>C</u> | C 77027648 | ON ANALYSIC | | | ample De | o anintis- | | | | | ampie ne | scription <u>,</u> | 145 YRILR | | | | | | | | | | | | GC CONDIT | IONS | | | mount In | jected <u>2.0</u> | OmL, Inj. Port | or Sample Loop Us | ed 2.0ml Look | | etector | Used: FID | x, ECD, FPD | , TCD (Cur | rent | | | | , Ar | | | | : nmu [o | Liquid Phase | e | _, Solid Phase_Pa | RAPAK Q | | | | | | | | ength | <u>6'</u> , 0 | .D. <u>1/8"</u> , I.I | D, Mat | erial <u>S.S.</u> | | ength
emperatu | la', 0
ire: Injecti | .D. <u>1/2"</u> , I.I
or <u>130 °C</u> , Over | D, Mat
n <u>130 ^OC</u> , Dete | ctor (30 °C | | ength
emperatu | re: Inject | .D. <u>1/8"</u> , I.I
or <u>130 °C</u> , Over
ISOTHERMAL | D, Mat
n <u>130 </u> | ctor (30 °C | | ength
emperatu | re: Inject | .D. <u>1/2"</u> , I.I
or <u>130 °C</u> , Over | D, Mat
n <u>130 </u> | ctor (30 °C | | ength
emperatu | re: Inject | .D. <u>1/2"</u> , I.I
or <u>130 °C</u> , Over
TSOTHERMAL | D, Mat
n <u>130 °</u> C., Dete | ctor (30 °C | | ength
emperatu | le' , 0
ire: Injectoure Program | .D. <u>1/2"</u> , I.I
or <u>130°C</u> , Over
ISOTHERMAL | D, Mat
n <u>130 °</u> C., Dete | ctor (30 °C | | ength
emperatu | le' , 0
ire: Injectoure Program | .D. <u>1/2"</u> , I.I
or <u>130 °C</u> , Over
TSOTHERMAL | D, Mat
n <u>130 °</u> C., Dete | ctor (30 °C | | ength
emperatu | le' , 0
ire: Injectoure Program | .D. <u>1/2"</u> , I.I
or <u>130°C</u> , Over
ISOTHERMAL | D, Mat
n <u>130 °</u> C., Dete | ctor (30 °C | | ength emperature emperature ampling | Method 327 | SAMPLE | D, Mat
n <u>130 °</u> C, Dete | erial <u>S.S.</u>
ector <u>(30</u> ° | | ength | Method 307 | SAMPLE | RUN Amount (ppM) | Component | | emperature | Method 307 | SAMPLE | RUN Amount (PPM) | Component | | engthemperatus peratus peratu | Method 307 Area 24770 6326 | SAMPLE I Peak Height | RUN Amount (PPM) | Component | | engthemperature emperature emp | Method 307 Area 24770 6326 731 | SAMPLE I Peak Height | Amount (PPM) 5.2 5.9 | Component | | engthemperature emperature | Method 317 Area 24770 6326 731 | SAMPLE I Peak Height | Amount (PPM) 5.2 5.9 | Component | | RT | Area | Peak Height | Amount (PPM) | Component | |--|---------|-------------|--------------|------------| | 3.01 | 6350 | | | <u>ر</u> ب | | 7.78 | 7 -27 | i | 7-1 | | | 9.03 | Ø | \ | | | | ع. بــــــــــــــــــــــــــــــــــــ | 3.0 | Ì | L 3.E | CS | | 3.37 | 98507 | / | | | | 5.93 | .23780 | \ | | (| | 8.72 | 17757 | , | | \ | | 8.85 | 2038 | | | | | 24.36 | 76745 | | | : | | 2 00 27 | ک ۲، پک | | < €.5 | G G | | 28.10 | 4. +33 | | | | | 31.77 | 34 Feb | | | | | 33.10 | 18620 | / | | î
: | 34.54 ET+6 35.91 5.773. | ١ | Operator M.D. Cutiffs Date 1-16-21 | |---|---| | | Column NoLengthDia | | | | | ŀ | Coeting Conce. Support PARALAK Q Mesh 9% TEMP: Col: Init 120 °C Final 130 °C | | l | TEMP: Col: Init | | ľ | Rate°C/min. Det.』コロ°C Injはスタ°C | | l | CARRIER GAS | | l | Pressures: InletOutlet | | | Pressures: Inlet | | i | DETECTOR E.CT.CF.I.D. X | | | ScavengerRateml./min. | | | SonsRec.Range | | | | | | SolventConcnConcn | # GAS CHROMATO. APH OPERATING CONDITIONS AND FIELD LOG | Recorder/ | Printout Ref | erence No. 2 | :cs_, Instrument
, Recorder ID | 3370 A | | | | | | | |--|---|--|-----------------------------------|----------------------------|--|--|--|--|--|--| | Sample Description 1301 AROLE | | | | | | | | | | | | | | CC CONDITI | TOUS . | | | | | | | | | America In | inched on | GC CONDIT | | d 0 0 / 8 | | | | | | | | | | | or Sample Loop Use, TCD (Curr | | | | | | | | | | | | mplifier or Range _ | | | | | | | | | | | | _, Solid Phase Pog | | | | | | | | | Length | /_' . 0. | D. 1/6" . I.I | | rial S.S. | | | | | | | | Temperatu | re: Injecto | Length 6, 0.D. 1/2", I.D. , Material S.S. Temperature: Injector 130°C, Oven 130°C, Detector 130°C | | | | | | | | | | Temperature: Injector 130°C, Oven 130°C, Detector 130°C Temperature Program ISOTHERMAL | | | | | | | | | | | | | | | | tor <u>130 °C</u> | | | | | | | | | | | | tor <u>(30 °C</u> | | | | | | | | | | | | tor <u>(30°C</u> | | | | | | | | Temperatu | re Program _ | ISOTHE PMAL | | tor <u>(30°C</u> | | | | | | | | Temperatu | re Program _ | ISOTHE RMAL | | tor <u>(30 °C</u> | | | | | | | | Temperatu | method 300 | ISOTHE PMAL | RUN | Component | | | | | | | | Temperatu
Sampling | method 300 | SAMPLE I | RUN | Component | | | | | | | | Sampling RT -+9 | Method 300 | SAMPLE I | RUN Amount (PPM) | Component | | | | | | | | Sampling RT | Method 300 | SAMPLE I | Amount (PPM) | Component | | | | | | | | Sampling RT -+9 | Method _300 Area 27063 21097 32713 2576 | SAMPLE I | Amount (PPM) | Component | | | | | | | | Sampling RT -49 -75 | Method _300 Area 2+063 21699 32+13 25+6 | SAMPLE I | Amount (PPM) T.6 2.0 2.1 | Component | | | | | | | | Sampling RT -+9 15 17 | Method _300 Area 27063 21097 32713 2576 | SAMPLE I | Amount (PPM) T.6 2.0 2.1 | Component C C C C C C C P | | | | | | | | RT | Area | Peak Height | Amount (PAr) | Component | |-------|--|-------------|---------------------------------------|-----------| | 31.37 | 34590 | | | | | 34-13 | 43132 | | C4.6. | ق
ر | | 37.50 | 107 490 | | | Ĺ | 1 | | · · · · · · · · · · · · · · · · · · · | | | | | | | | # GAS CHROMATO, APH OPERATING CONDITIONS AND FIELD LOG | CHEIL CME | EA | | <u>) A (LEA</u> , JOD NO. <u>.</u>
RT, N.C. | 301602. 11 |
---------------|------------------|-----------------------|--|-------------------| | | | | | | | | | | :35 , Instrument | | | | | | , Recorder ID | | | Purpose of I | Run <u>こ</u> , | -C, 1-4708504 | rrad analysis | · | | Sample Descri | ription _ | 1635 4301B | | | | | | GC CONDIT | IONS | | | Amount Inje | cted 2.0 | | or Sample Loop Use | d 2.0ml Loop | | | | | , TCD (Curr | | | | | | nplifier or Range _ | | | | | | _, Solid Phase Por | | | Length | <u>′</u> , 0. | .D. <u>1/2"</u> , I.I |), Mate | rial <u>S.S.</u> | | Temperature | : Injecto | or 130 °C, Over |), Mate
n <u>130 ⁰C</u> , Detec | tor <u>130 °c</u> | | | | | | • | | | | | | | | | | | | | | | | SAMPLE I | RUN | | | Sampling Me | thod | DOME GRAB | | | | RT | Area | Peak Height | Amount (PPM) | Component | | .50 | 6904 | | 1.3 | ۵, | | .73 | 5550 | | | | | .75 | 37705 | / | 4.0 | _2 | | 2.47 | 7949 | | c | C+ | | 10.75 | 26228 | ţ | 1 | | | 2212 | 27077 | | | | | 16.61 | Ø | | | | | | 2;357
rator M | N. C.Hies | , Date | 7 - S 19 8 1 | ## GAS CHROMATOL APH OPERATING CONDITIONS AND FIELD LOG | | | , Location ETHERS | RT, N.C. | | |---------------------------------|--------------|--|-----------------------------------|---| | Recorder/ | Printout Ref | - <u>火</u> , Time <u>7:26</u>
erence No. <u> </u> | , Recorder | 10 3340 A | | Sample De | scription | HOTO FRIE | | | | | | GC CONDITI | IONS | | | Column: | Liquid Phase | , Ar | _, Solid Phase_P | PAPAK D. | | Temperatu | re: Injecto | TSOTHERMAL | | terial <u>S.S.</u>
ector <u>(30 °C</u> | | Temperatu
Temperatu | re: Injecto | or <u>130 °C</u> , Over | n <u>130 °</u> €, Deta | terial <u>S.S.</u>
ector <u>(30 °C</u> | | Temperatu
Temperatu | re: Injecto | TSOTHE PMAL SAMPLE 1 | n <u>130 °</u> €, Deta | Component | | Temperatu Temperatu Sampling RT | Method | SAMPLE I | RUN Amount (PPM) | Component | | Sampling RT | Method 3/ | SAMPLE I | RUN Amount (PPM) | Component | | Temperatu Temperatu Sampling RT | Method | SAMPLE I | RUN Amount (PPM) | Component | | Sampling RT .50 | Method | SAMPLE I | RUN Amount (PPM) | Component | | Sampling RT .50 .77 | Method | SAMPLE I | Amount (PPM) | Component | | Sampling RT .50 .77 .99 2.30 | Method | SAMPLE I | Amount (PPM) - 6.1 - 3.0 - 2.0 | Component | Name of Operator M. N. C. Hips , Date 7-8 1981 | RT | Area | Peak Height | Amount (ppm) | Component | |-------|----------|-------------|--------------|-----------| | 15.01 | 13011 | (| | \ | | 16.72 | 16601 | | | V | | 21.31 | Sc 532 | V | ر ۲۰۰۲ | 1 0 | | 23.77 | 36779 | | | | | 25.07 | 109150 | | | | | 31.04 | 132770 | | | | | | <u> </u> | | | <u> </u> | | | | | | <u> </u> | Column No | | ate.,\t\\\. | | |-----------------|----------------------------|---------------|-------------------------| | | | .Concn. | | | Support.P.D.R. | APAK O | Mesh. | ************ | | TEMP: Col: Inli | | | | | Rate °C | /min. Det. 13 | o°C Inj\ | 70 °C | | CARRIER GAS + | 1.5Rat | ol.KP.S | . :ml./mln . | | Pressures: Ini | et | Outlet | | | Hydrogen\D! | P.S.' ml./ml n. | Air 60. P.S.I | ml./m ln. | | DETECTOR E.C | | | | | Scavenger | Rate | | ml./min. | | - | | 1ge | • | | SAMPLEI.L. Y.O | | | | | • | | | | 5.7 TOTAL CHROMATOGRAPHABLE (TCO) AND GRAVIMETRIC ORGANICS, INFRARED SPECTRA (IR), AND GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS) OF TOTAL SAMPLE EXTRACTS Energy & Environmental Division Acurex M.S. 2-2260 August 3, 1981 Acurex ID #A81-05-030 A81-05-031 Client P.O. #307736.12 Attention: L. Waterland Sample: 2 SASS Train, received 5/11/81 1 SASS Train, received 5/29/81 The above referenced samples were analyzed per Level 1 protocol. Arsenic and antimony were determined by furnace AAS. Polynuclears were determined by a modified EPA method 625. 1 ul of sample was injected onto a SE-54, J and W 30 meter capillary column using Grob injection. The column was held at 30° C. No polynuclears were detected in the GC/MS blanks above 1 ng. The XAD-2 resin samples and XAD-2 resin blank contained about 120 mg TCO of material that appears to be a product of acetone reacting with XAD-2 resin. Through the use of the TCO and GC/MS chromatograms, the blank TCO runs were subtracted to give the data in the report. Benzo (c) phenanthrene, dibenzo (c,g) carbozole, 7, 12-dimethylbenz (a) anthracene, 3-methyl chloranthene, and perylene were not detected (<40 ng/ul injection) in any sample analyzed by GC/MS. Prepared by: Greg Nicoll Program Director Authorized by Linda K. Bohannon Sample Control Manager | ACUREX
Corporation | |------------------------------| | ANALYSIS LABORATORIES | Acurex E/S (CHEA) A81-05-030 Page 2 of 5 | CUSTOMER | DATEOctober 25, 1982 | |--|--------------------------------| | CUSTOMER CONTRACT NO. 307736,12 RESULTS REPORT TO L. Naterland | ACUREX CONTRACT NO. A81-05-030 | | ADDRESS | | | Ethan Allen-1 21.62 dscm | | | SAMPLE ID (CUSTOMER) | 10ս + 3ր | lµ+Filter | XAD | OMC | Imp 1 | Imp 2+3 | Fly Ash | Fuel | | |----------------------|----------|-----------|-----------|------------|-------------------------------|----------|------------|------------|---------| | SAMPLE ID (LAB) | 646 | 644 . | 650 | 652 | 653 | 655 | 662 | 661 | | | PARAMETER | | | | 以 。 | $(x^{\prime},\cdot)^{\prime}$ | | | | UNITS | | GRAV Allquot | <4 | <4 | 181 | 8 | | | 14 | •• | mg | | GRAY (Blank) | <4 | <4 | <4 | <4 | | | <4 | | mg | | GRAV | <0.2 | <0.3 | 9.1 | 0.4 | | | 700mg/kg | | mg/dscm | | TCO Al Iquot | | | (250)130* | 4.9 | | •• | 0.4 | | mg | | TCO (Blank) | | •• | (120)0.64 | <0.1 | | | <0.1 | | mg | | 100 | | | 6.0* | 0.23 | | | 20mg/kg | | mg/dscm | | Mercury Aliquot | <1 | <1 | 2 | *- | 7 | <1 | <1 | <1 | µg/L | | Mercury (Blank) | <1 | <1 | <1 | *- | <1 | <1 | <1 | <1 | μg/L | | Mercury | <0.00007 | <0.00007 | 0.0006 | | 0.0005 | <0.00006 | <0.05mg/kg | <0.05mg/kg | mg/dscm | | Antimony Aliquot | | | | | | <10 | | | μg/L | | Ant Imony | •• | | ' | ** | | <0.0006 | | | mg/dscm | | Arsenic Aliquot | | | | •• | | <10 | | | µg/L | | Arsenic | | | | ~~ | | <0.0006 | | | mg/dscm | ^{*}Corrected for resin contamination -- uncorrected number in parentheses | ANALYST | | |---------|--| | REVIEWE | | SAMPLE: 642 EA I Filter Blank | Wen Number
- (em ⁻¹) | Intersity | Assignment | Comments | |-------------------------------------|-----------|---------------------------------------|---------------------------------------| | | | No Peaks | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | : | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | | | | •• · | | | | | | | | | | | | | | | | | | · | ٠ | | · | | | | | | • | SAMPLE:_ 651 EA I XAD Blank | Wan Hamber
(cm ⁻¹) | Intersity | Assignment | Comments | |-----------------------------------|-----------|------------|----------| | | | No Peaks | | | | | NO PEAKS | | | | | • | | | | | | | | | • | | | | | | | | | • | • | • | | | | • : | · | • | | | | | | | | | • | | | • | | | • | | | | | •• • | | | | | | | | · | | **SAMPLE:** 646 EA I 10u & 3u | Wan Number
(em ⁻¹) | Intersity | Assignment | Comments | |-----------------------------------|-----------|------------|-------------| | | | No Peaks | | | | | | | | | | | | | | · | | | | • | · | • | | | | | | | | ļ | | | | | | | | •• • | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | *** | | | | | | | | | | • | | | | | | | | | • | SAMPLE: 644 EA I lu & Filter | Wern Rumber
(em ⁻¹) | Intensity | Assignment | Comments | |------------------------------------|--------------|---|--| | | | No Peaks | • | | | | | | | | | | | | | | | | | • | | | | · | • | | | | | | | | | | | ************************************** | | | | | s. · | : | | | | · · · · · · | | | | | | | | | | | | ······································ | | | | | | | | | | | | | | | ···· | | | | | | | | | | | | | | <u> </u> | | SAMPLE: 650 EA I XAD | Ware Rember | Internity | Assignment | Comments | |-------------|-----------|---------------------------------------|---------------------------------------| | 3600-3000 | S | о-н соон | | | 2900 | s_ | C-H Alkane | | | 2820 | S | C-H Alkane | | | 1790 | . s | C=O COOH | | | 1600 | W | C-H Alkane | | | 1440 . | M | C-H Alkane | | | 1180 | М | Not assigned | · · · · · · · · · · · · · · · · · · · | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | · | • | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | · | | | | | • | | | | | | | | | | | | SAMPLE: 652 EA I OMC | Worn Rumber
(cm ⁻¹) | Intensity | Assignment | Comments | |---|-----------|------------|---------------------------------------| | | | No Peaks | | | • | | | | | | | | | | | | | | | | |
 | | | | | | | <u> </u> | | • | • | | | | | | | | | | | | · | | • | •• | | | | | | | | | • | | | | | | | | | | | | | | · | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | | أبيب والمساورين والمساورين والمساورين والمساورين والمساور والمساور والمساور والمساور والمساور والمساور والمساور | <u> </u> | | | SAMPLE:____662 EA I Flyash | Wan Number
- (am ⁻¹) | Intersity | Assignment | Comments . | |-------------------------------------|-----------|------------|------------| | 2900 | s | C-H Alkane | | | 2820 | s | C-H Alkane | | | • | | | | | | | | | | | | | | | · | • | · | | | • | • | | | | · | | | | | | • | <u> </u> | | | | | •• • | • | CUSTOMER CHEA | | | |--------------------------------|-----------|--| | CUSTOMER CONTRACT NO307736.12 | | | | RESULTS REPORT TO L. Waterland | TELEPHONE | | | ADDRESS | | | | Ethan Allen - 1 21.62 | | | | SAMPLE ID (CUSTOMER) | 10u+3u | lu+Filter | XAD | OMC | Fly Ash | | | | |-----------------------|--------|-----------|-----|-----|---------|------|------|-------| | SAMPLE ID (LAB) | 646 | 644 | 650 | 652 | 662 | | | | | PARAMETER | | | | | | | | UNITS | | Phenol Aliquot | < 1 | < 1 | 94 | < 1 | < 1 | | | ng | | Naphthalene Aliquot | <1 | < 1 | 90 | < 1 | < 1 | |
 | ng | | Acenaphthalene Aliquo | t < 1 | < 1 | 10 | <1 | < 1 | | | ng | | Phenanthrene Aliquot | <1 | < 1 | 140 | < 1 | < 1 | |
 | ng | | Pyrene Aliquot | < 1 | < 1 | 5 | < 1 | < 1 | | | ng | | Fluorene Aliquot | < 1 | < 1 | 13 | < 1 | < 1 | | | ng | | Benzo/J+K/Fluoranthen | es < 1 | < 1 | 2 | < 1 | < 1 |
 | | ng | | Aliquot | , | | | | | | | | | | | | | ANALYST | | |----------|--| | REVIEWER | | -89 furm £ED-067 4 80 | CUSTOMERCMEA | DATE July 31, 1981 | |---------------------------------|--------------------| | CUSTOMER CONTRACT NO. 307736.12 | | | RESULTS REPORT TO L. Waterland | | | ADDRESS | | | Ethan Allen - 1 21.62 dscm | | | SAMPLE ID (CUSTOMER) | 10u+3u | lu+Filter | XAD | OMC | Fly Ash | | |--------------------------------|--------|-----------|------|------|------------|---------| | SAMPLE ID (LAB) | 646 | 644 | 650 | 652 | 662 | | | PARAMETER | | | | | | UNITS | | Pheno1 | < 90 | < 80 | 4700 | < 50 | <0.05mg/kg | ng/dscm | | Naphth alene | < 90 | < 80 | 4500 | < 50 | <0.05mg/kg | ng/dscm | | Acenapthal ene | < 90 | < 80 | 500 | < 50 | <0.05mg/kg | ng/dscm | | Phenanthr ene | < 90 | < 80 | 7000 | < 50 | <0.05mg/kg | ng/dscm | | Pyrene | < 90 | < 80 | 300 | < 50 | <0.05mg/kg | ng/dscm | | Fluoren e | < 90 | < 80 | 650 | < 50 | <0.05mg/kg | ng/dscm | | Benxo/J+K/Fluor anthene | s < 90 | < 80 | 100 | < 50 | <0.05mg/kg | ng/dscm | | Others with a detection | 1 < 90 | < 80 | < 50 | < 50 | <0.05mg/kg | ng/dscm | | | | | | | | | | | | | | | | | | ANALYST | | |----------|--| | REVIEWER | | | ACUREX
Corporation | |------------------------------| | ANALYSIS LABORATORIES | Acurex E/S (CMEA) AB1-05-030 Page 3 of 5 •• •• | CUSTOMERCHEA | DATEOctober 25, 1982 | |---------------------------------|------------------------------| | CUSTOMER CONTRACT NO. 307736,12 | ACUREX CONTRACT NOA81-05-030 | | RESULTS REPORT TO L. Waterland | TELEPHONE | | ADDRESS | | | Ethan Allen-2 27.06 dscm | | | SAMPLE ID (CUSTOMER) | 10µ+3µ | lµ+ Filter | XAD | ОМС | Imp 1 | Imp 2+3 | Fly Ash | Fuel | | |----------------------|---------|------------|-------------------------------------|-------|--|----------|-----------------|------------|----------| | SAMPLE ID (LAB) | 672 | 674 | 676 | 677 | 678 | 679 | 744 | 743 | | | PARAMETER | | | $\{\hat{q}_i,\hat{r}_i\}_{i=1}^{n}$ | | 1. * 1. *. *.
11. * * * * * * * * * * * * * * * * * * | | | | UNITS | | GRAV Aliquot | <4 | <4 | 35 | <4 | · | | 13 | | mg | | GRAV (Blank) | <4 | <4 | <4 | <4 | | | <4 | | mg | | GRAV | <0.3 | <0.3 | 1.4 | <0.1 | | | 650mg/kg | | mg/dscm | | TCO Aliquot | | | (140) 20* | 0.2 | | | 0.3 | | mg | | TCO (Blank) | | | (120)0.64* | <0.1 | | | <0.1 | | mg | | tco · | •• | | 0.72* | 0.007 | | | 20mg/kg | | mg/dscm | | Mercury Aliquot | <1 | <1 | <1 | | <1 | <1 | < 1 | k1 | μg/L | | Mercury (Blank) | <1 | <1 | <1 | | <1 | <1 | <1 ⁻ | <1 | µg/L | | Mercury | <0.0003 | <0.00006 | <0.0002 | •• | <0.00007 | <0.00005 | <0.05mg/kg | <0.05mg/kg | ⊲mg/dscm | | Antimony Aliquot | | | | | | <10 | | | μg/L | | Ant imony | | | | | | <0.0005 | | | mg/dscm | | Arsenic Aliquot | | | | | | <10 | •• | | μg/L | | Arsenic | | | | | | <0.0005 | | | mg/dscm | ^{*}Corrected for resin contamination -- uncorrected number in parentheses | ANALYST . | | |-----------|--| | | | | REVIEWER | | **SAMPLE:** 672 EA II 10u & 3u | Wars Namber
- (em ⁻¹) | Intensity | Assignment | Comments | |--------------------------------------|-----------|------------|----------| | | | No Peaks | | | • | · | • | | | | | • · | **SAMPLE:** 674 EA II lu & Filter | Won Runber
- (am ⁻¹) | Intensity | Assignment | Comments | |-------------------------------------|-----------|---------------------------------------|----------| | 2900 | S | C-H Alkane | | | | | | | | · | · | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | 7 | | | | | | | | · | • | | | - | | | | | | | • | | | | | | ••• | _ | • | | | | | | | | | | | | | | | | | · | | | | | | · . | | | | | | SAMPLE: 676 EA II XAD | Wan Number
(cm ⁻¹) | Intensity | Assignment | Comments | |-----------------------------------|---------------------------------------|------------|----------| | 2900 | s | C-H Alkane | | | 2820 | s | C-H Alkane | | | 1710 | М | C=0 | -,, | | | | | • | | | | | | | | | | | | | | | · | | -· · | | | · · · · · · · · · · · · · · · · · · · | · | • | | | | | | | | | | | | | | <u> </u> | 14.4 | | | | | | | SAMPLE:___ 677 OMC EA II | Wan Rumber
- (cm ⁻¹) | Intersity | Assignment | Comments | |-------------------------------------|-----------|---------------------------------------|---------------------------------------| | 3680-3200 | S | 0-н | | | 3100-2700 | W | C-H Alkane | | | | | | 1 | | · | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | • | | | | | | • | • | | | | | e. · | · · · · · · · · · · · · · · · · · · · | ·. | | | | | | | SAMPLE: 744 EA II Flyash | Warn Ramber
(em ⁻¹) | Immunity | Assignment | Comments | |------------------------------------|-------------|------------|--| | 2900 | S | C-H Alkane | | | 2820 | S | C-H Alkane | | | | | | | | | | | | | | | | | | • | • | | | | | | | | | | | <u>*************************************</u> | | | | | | | | *** *** ****************************** | | | | <u> </u> | | | | | | | | | • | | | | | | | | | | | | | | | | | | | S | | |---|--| | 4 | | | Φ | | | | | | CUSTOMERCMEA | DATE July 31, 1981 | |---------------------------------|------------------------------| | CUSTOMER CONTRACT NO. 307736.12 | ACUREX CONTRACT NOA81-05-030 | | RESULTS REPORT TO L. Waterland | TELEPHONE | | ADDRESS | | | Ethan Allen - 2 27.06 dscm | | | SAMPLE ID (CUSTOMER) | 10u+3u | lu+Filter | XAD | OMC | Fly Ash | | | | |-----------------------|--------|-----------|-----|-------|---------|--|--|-------| | SAMPLE ID (LAB) | 672 | 674 | 676 | 677 | 744 | | | | | PARAMETER | | | | | | | | UNITS | | Acenaphthylene Aliquo | : < 1 | < 1 | 130 | < 1 | < 1 | | | ng | | Acenaphthene Aliquot | < 1 | < 1 | 3 | < 1 | < 1 | | | ng | | Phenanthrene Aliquot | < 1 | < 1 | 49 | < 1 | < 1 | | | ng | | Anthracene Aliquot | < 1 | < 1 | 5 | < 1 | < 1 | | | ng | | Fluoranthene Aliquot | ۲) | < 1 | 7 | < 1 | < 1 | | | ng | | Pyrene Allquot | < 1 | < 1 | 5 | < 1 | < 1 | | | ng | | Chrysene Aliquot | < 1 | < 1 | 1 | < 1 · | < 1 | | | ng | | Phenol Aliquot | < 1 | < 1 | < 1 | 26 | < 1 | | | ng | | | | | | | | | | - | ANALYST | | |----------|--| | REVIEWER | | | ACUREX
Corporation | |------------------------------| | ANALYSIS LABORATORIES | | CUSTOMERCMEA | DATEJuly 31. 1981 | |---------------------------------|--------------------------------| | CUSTOMER CONTRACT NO. 307736.12 | ACUREX CONTRACT NO. A81-05-030 | | RESULTS REPORT TO L. WAterland | _ TELEPHONE | | ADDRESS | | | Ethan Allen - 2 27.06 d | SCIN | | SAMPLE ID (CUSTOMER) | 10u+3u | lu+Filter | XAD | OMC | Fly Ash | | | | | |-------------------------|--------|-----------|------|-------|-----------|----|----------|----------|---------| | SAMPLE ID (LAB) | 672 | 674 | 676 | 677 | 744 | | | | | | PARAMETER | | | | | | | | | UNITS | | Acenaphthylene | < 50 | < 50 | 5200 | < 40 | < 0.05mg/ | kg | | | ng/dscm | | Acenaphthene | < 50 | < 50 | 100 | < 40 | < 0.05mg/ | kg | | | ng/dscm | | Phenanthrene | < 50 | < 50 | 2000 | < 40 | < 0.05mg/ | kg | | | ng/dscm | | Anthracene | < 50 |
< 50 | 200 | < 40 | < 0.05mg/ | kg | | | ng/dscm | | Fluoranthene | < 50 | < 50 | 300 | < .40 | < 0.05mg/ | kg | | · | ng/dscm | | Pyrene | < 50 | < 50 | 200 | < 40 | < 0.05mg/ | kg | <u> </u> | | ng/dscm | | Chrysene | < 50 | < 50 | 40 | < 40 | < 0.05mg/ | kg | | | ng/dscm | | Pheno1 | < 50 | < 50 | < 40 | :960 | < 0.05mg/ | kg | | <u> </u> | ng/dscm | | Others with a detection | n < 50 | < 50 | < 40 | < 40 | < 0.05mg/ | kg | | | ng/dscm | | limit of 1 ng | | | | | | | | | | | | | | ···· | ANALYȘT | |
 | | |----------|---|------|--| | REVIEWER | 1 | | | 5.8 LIQUID CHROMATOGRAPHY (LC) SEPARATION AND INFRARED SPECTRA OF LC FRACTIONS CMEA/Acurex October 5, 1981 Lab ID Number: A81-08-023 Customer P.O. Number: 307736.12 ATTENTION: L. Waterland Samples: Ethan Allen XAD extracts (3) The above referenced samples from earlier work were analyzed by Level 1 procedures. The TCO, GRAV and IR results from the LC fractions are included. Viorica Lopez-Avila, Ph.D. Approved by: GC/MS Group Leader VLA/GN:es | | TC0 | BRAV
ms | TCO + BRAY
Total mg | Consentation
mg/dscm | |---------------------------|-----|------------|------------------------|-------------------------| | Total Sample ¹ | 130 | 196 | 326 | 15 | | Tohan for LC ² | 47 | 71 . | 118 | 5.5 | | Resource ³ | 16 | 50 | 66 | 3.1 | | | | TCO in mg ORAV in mg | ORAY in mg | | | TCB+ | Consideration | | | | |----------|----------------------|----------------------|------------|--------------------|----------------------|-------|----------------|-------|------------------|---------| | Fraction | Found in
Fraction | Disah | Corrected | Total ⁴ | Found in
Fraction | Stock | Cor-
rocted | Total | RRAV
Total mg | mg/dscm | | 1 | 0.45 | <0.05 | 0.45 | 1.2 | 1.2 | <1 | 1.2 | 3.3 | 4.5 | 0.21 | | 2 | 2.1 | <0.02 | 2.1 | 5.8 | <0.8 | <0.8 | <0.8 | <2 | 5,8 | 0.27 | | 3 | 2.1 | <0.02 | 2.1 | 5.8 | 1.8 | <0.8 | 1.8 | 5 | 11 | 0.51 | | 4 | 1.3 | <0.02 | 1.3 | 3.6 | 1.8 | <0.8 | 1.8 | 5 | 8.6 | 0.40 | | 5 | 4.2 | <0.02 | 4.2 | 12 | 4.0 | <0.8 | 4 | 11 | 23 | 1.1 | | • | 1.3 | <0.02 | 1.3 | 3.6 | 1.4 | <0.8 | 1.4 | 3.9 | 7,5 | 0,35 | | 7 | 4.6 | 0.1 | 4.5 | 12 | 41.2 | 1 | 40.2 | 112 | 124 | 5.74 | | See | 16 | 0.1 | 16 | 44 | 51 | <6 | 50_ | 140 | 180 | 8.58 | - 1. Quantity is entire sample, determined before LC - 2. Portion of whole sample used for LC, actual mg - 3. Quantity recovered from LC column, octual mg - 4. Yotal mg computed back to total sample SAMPLE: 651 Blank XAD Fl | Wave Number (cm ⁻¹) | Intensity | Assignment | Comments | |---------------------------------|-----------|------------|---------------------------------------| | | | No Peaks | | | | | | | | • | | | | | | | | • | | | | | | | • | | | | | | | - | | | | | | | | | | | | | | | • | | | | • | | • | | | | | | | | | | • | | | | | •• • | | | | | | | | | · | | | | | | <u> </u> | <u> </u> | · | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | <u> </u> | | | | | ļ | | | | | | | | SAMPLE: 651 Blank XAD F2 | Wave Number | Intensity | Assignment | Comments | |-------------|-----------|---------------------------------------|---------------------------------------| | | | No Peaks | · · · · · · · · · · · · · · · · · · · | | | | | | | • | | | | | | | | | | | • | | | | | 7 | | | | | | | | | | | | | | | | • | | | | | • | | | | • | | · · · · · · · · · · · · · · · · · · · | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | · | | | · | | | | | •• | | | | | | | | | | | | | | | | | | · | <u> </u> | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | | | l | | SAMPLE: 651 Blank XAD F3 | Wave Number
(cm ⁻¹) | Intensity | Assignment | Comments | |------------------------------------|--------------|------------|---------------------------------------| | | | No Peaks | | | | | | | | • | | | | | | | | • | | | | | | | | | · | | | <u> </u> | • | | | | | | | | | | | • | | | | | •• | | | | | | | | | | | | | | | | | | | | · <u> </u> | | | · | • | | | | | <i>^</i> | | | | | | | | · · · · · · · · · · · · · · · · · · · | SAMPLE: 651 Blank XAD F4 | Wave Number (cm ⁻¹) | Intensity | Assignment | Comments | |---------------------------------|-----------|------------|-------------| | | | No Peaks | | | | | | | | | · | | | | | | | | | | | | | | • | | | | | | | | | •• • | | | | | | | | | | | | | · | .: | | | | | | | | | · | · | SAMPLE:____651 Blank XAD F5 | Wave Number (cm ⁻¹) | Intensity | Assignment | Comments . | |---------------------------------|-----------|------------|------------| | | | No Peaks | | | | | | | | • | | | | | | | | • | • | | | | | | | | | | | | | | | •• • | • | | | | | | | | | · | · | SAMPLE: 651 Blank XAD F6 | Wave Number (cm ⁻¹) | Intensity | Assignment | Comments | |---------------------------------|--------------|------------|-------------| | | | No Peaks | | | | | | | | • | | | | | | | | • | | | | | | | | | | | | • | | • | · | | | | • | | | | | | | | | | | | | | | | | <u>*</u> | | | | | ••• | | | | | | ··· | 1 | •- | | | | 1 | - | · | | | | | | | | | | | | | | | | | | . | | | | SAMPLE: 651 Blank XAD F7 | Worn Humber
(cm ⁻¹) | Intensity | Assignment | Comments | |------------------------------------|-----------|---|--| | 3600-3300 | s | ОН | | | | <u> </u> | | | | | | | | | | | | | | | | | • | | | | | | | | <u> </u> | | | | | | <u> </u> | | | | | | | | | | | - | | | | • | | | | | • | | | | | | الأميري والمناورة المراوات المروات الأمواد المراوات المراوات | | | | | • | | | | | •• • | | | | | ···· | | | | | | | · | | *************************************** | • | | | | | | | | | | | | | Wan Rumber
(cm ⁻¹) | Intensity | Assignment | Comments | |---------------------------------------|-------------|------------|---------------------------------------| | | | No Peaks | | | | | | | | | | | | | | | | | | | • | | | | · · · · · · · · · · · · · · · · · · · | | | | | <u> </u> | <u> </u> | • | | • | | | | | | | | | • | | | · | | | •• • | | | | | | | | , | | | | | | | | | | | | | | | · | | | · | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | · | L | 1 <u></u> _ | <u> </u> | | | Wave Number
(cm ⁻¹) | Intensity | Assignment | Comments | |------------------------------------|-----------|------------|--| | | | No Peaks | | | | | | | | • | | | | | | | | • | <u></u> | | | | | | | | | | | • | | • • | | | | | | | | | | | | | | | • | | | | | •. • | | | | | · - · · · · · · · · · · · · · · · · · · | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | · | | | | | | | | | | | | | | | | | | | • | | | | | | · | Wave Number (cm ⁻¹) | Intensity | · | Assignment | Comments | |---------------------------------------|---|--------------|---------------------------------------|--------------| | 3450 | S | ОН | Aliphatic | | | | | | | | | • | | | | | | | | | • | • | | | • | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | · · · · · · · · · · · · · · · · · · · | ···· | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | | • | | | | | · · | | | | | *************************************** | | | | | | · , | | | | | · | | | | • | | | | | | <u> </u> | | | , | | | | | | | | | | | | | | | - | • | • | · · · · · · · · · · · · · · · · · · · | | | Wave Number (cm ⁻¹) | Intensity | Assignment | Comments | |---------------------------------|---------------------------------------|------------
--| | | | No Peaks | | | | | | | | • | | | | | | | | | | | | | | | ٠ | | | | | | | | | | | | | | | | | • | | | | | | | | | | <u> </u> | • | | | | | | | · | | | •• • | | | | | | | | | | | | | | | ··· | | | <u> </u> | • | | | | | | | | | | · | The second secon | | | · · · · · · · · · · · · · · · · · · · | | | SAMPLE:____650 EAI XAD F5 | Wave Number | Intensity | Assignment | Comments . | |---------------------------------------|-----------|---------------------------------------|--| | | | No Peaks | | | · · · · · · · · · · · · · · · · · · · | | | | | • | | | | | | | | • | | | | | | | | | | | | • | | | | | | | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | • | | | • | <u> </u> | | | | | | | | | | | • | | | | | •• ' | | | | | | | | | | | | | | | | | | <u></u> | -: | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | | | | | | <u> </u> | | | Wave Number (cm ⁻¹) | Intensity | Assignment | Comments | |---------------------------------|-----------|------------|--------------| | | | No Peaks | | | | | | | | | | | | | | | | • | • | | | | | | | | | | | | • | | , | | | •• • | | - | | | | <u> </u> | | | Worn Number | Internity | · | Assignment | Comments | |-------------|--|--|---------------------------------------|-------------| | 3230 | М | OH | Carboxylic acid | | | 2880 | М | . СН | Carboxylic acid | | | 2810 | М | СН | Carboxylic acid | | | 1650 | . S | C=0 | Carboxylic acid | | | 1190 | S . | со | Carboxylic acid | | | · | • | | | | | • | | | | | | | • | | | | | | | •• | | | , and the second se | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | · | | | | | | | - 50 | | | | | | | SAMPLE: EAII XAD #676 | TCO mg | | BRAV
Me | TCO + GRAV
Total eng | Commutation
mg/dscm | | |---------------------------|-----|------------|-------------------------|------------------------|--| | Total Sample ¹ | 20 | 38 | 58 | 2,1 | | | Taken for LC ² | 11 | . 22 | 33 | 1.2 | | | Reserved ³ | 1.4 | 12 | 13 | 0.48 | | | | | TCO in mg | | | GRAY is mg | | | | TCB+ | Consecutation | |----------|----------------------|--------------|----------------|--------------------|----------------------|-------|----------------|-------|------------------|---------------| | Fraction | Found to
Fraction | Bisak | Cor-
rected | Total ⁴ | Found in
Fraction | Block | tor-
rocted | Total | GRAV
Total mp | mg/dscm | | 1 | 0.30 | <0.05 | 0.30 | 0.53 | 2.8 | <1 | 2.8 | 4.9 | 5.4 | 0.20 | | 2 | <0.02 | <0.02 | <0.02 | <0.04 | 1 | <0.8 | 1 | 1.8 | 1.8 | 0.07 | | 3 | <0.02 | <0,02 | <0.02 | <0.04 | <0.8 | <0.8 | <0.8 | <1 | <1 | <0.04 | | 4 | <0.02 | <0.02 | <0.02 | <0.04 | 1.4 | <0.8 | 1.4 | 2.5 | 2.5 | 0.09 | | 6 | <0.02 | <0.02 | <0.02 | <0.04 | <0.8 | <0.8 | <0.8 | <1 | <] | <0.04 | | • | 0.96*
(9.1) | 0.02 | 0.96 | 1.7 | 2.4 | <0.8 | 2.4 | 4.2 | 5.9 | 0.22 | | , | 0.12*
(4.6) | 0.1 | <0.1 | <0.2 | 5 | 1 | 4.0 | 7.0 | 7.0 | 0.26 | | Sem | 1.4 | 0.1 | 1.3 | 2.2 | 13 | <6 | 12 | 21 | 23 | 0.84 | - 1. Questity in entire sample, determined hefers LC - 2. Portion of whole sample used for LC, actual mg - 1. Quantity recovered from LC column, actual mg - 4. You all my computed back to total sample ^{*}Corrected for resin contamination -- uncorrected number in parentheses | Wan Komber
(cm ⁻¹) | Interestry | Assignment | Comments | |-----------------------------------|------------|------------|----------| | | | No Peaks | | | | | | | | • | | | | | | | | | | | | | | | • | •• • | • | • . | · | | | | | | | | | | | | | | | | | | Wave Number (cm ⁻¹) | Internity | Assignment | Comments | |---------------------------------|-----------|------------|-------------| | | | No Peaks | | | | | | | | | | | | | | | | • | | | | | | | | | | | | • | | | | • | <u></u> | | | | | | | | | | | | | | | | • ' | _: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | Wave Number (cm ⁻¹) | Intensity | · | Assignment | Comments | |---------------------------------------|-----------|--------------|---------------------------------------|-------------| | 3450 | S | ОН | Aliphatic | | | | | | | | | • | | | | | | | • | | | • | | | | | | | | • | | | · · · · · · · · · · · · · · · · · · · | , | | | | | <u>.</u> | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | <u> </u> | <u> </u> | | | | | | | | | | | | | | | | - | | | | | <u></u> | 1 | | | | | · | | | | | •• | | | | | | | y- | T.W. 202 | Wave Number | Intensity | Assignment | Comments | |---------------------------------------|-----------|------------|---------------------------------------| | | | No Peaks | | | | | | | | • | | | | | | · | | | | | | | | | • | • | | | | | | | | · · · · · · · · · · · · · · · · · · · | <u> </u> | - | | · · · · · · · · · · · · · · · · · · · | | | | <u>.</u> * | ļ | | | | | <u> </u> | <u> </u> | | | Wave Number (cm ⁻¹) | Intensity | Assignment | Comments | |---------------------------------------|-----------|------------|-------------| | | | No Peaks | | | | | | | | | | | | | | | | • | | | | | | | | | | | | - | | | <u> </u> | | | | | | | | | | | | | | • | | | | • | | • • | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | •• • | | | | | | | | | | · . | <u>.</u> : | | | | | ~ | | | | · | · | • | | | | | | | | | | • | SAMPLE: | 676 | EAII | XAD | F6 | |---------|-----|------|-------------------|----| | | 0/0 | | $\Delta \Delta D$ | | | Wave Number | Intensity | Assignment | Comments | |-------------|-----------|---------------------------------------|----------| | _ | | No Peaks | | | | | | | | | | | • | | *** | · | • | | | | | | | | | | | | | | | •• ' | | | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | .: | | | | | ^ | | | | · | | • | | | | | | | | | | • | | | | | | | | | | | | | | | | SAMPLE:_____676 EAII XAD F7 | Wave Number (cm ⁻¹) | Intensity |
Assignment | Comments | |---------------------------------|-----------|------------|---------------------------------------| | | | No Peaks | | | | | | | | | · | | | | | | | • | | | · | | | | • | | | | | | | | | | | | | | | | | | | | | · | | | | | • | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | • | | | | | ••• | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | <u> </u> | <u> </u> | | | | | .: | | | • | 5.9 LOW RESOLUTION MASS SPECTROMETRY (LRMS) OF SELECTED TOTAL SAMPLE EXTRACTS AND LC FRACTIONS Energy & Environmental Division CMEA/ACUREX December 4, 1981 Acurex ID#: A81-10-011, A81-10-022 Client P.O.#: 307605 ATTENTION: L. Waterland Samples: 9 extracts from Tosco and Ethan Allen The above referenced samples were analyzed by direct probe mass spectrometry. Searches have been made for classes of compounds most likely to be found in the various LC fractions, according to procedures described in the "IERL-RTP Procedures Manual: Level 1 Environmental Assessment". The following fragment ions used for search are given below: | Compound Class Polycyclic aromatic hydrocarbons Aliphatic hydrocarbons | Fragment ions (m/e-)
178,202,216,228,252,276
57,71 | |--|--| | Halogenated aliphatics | 79,81,93,95,107,109;49,63 | | Aromatic hydrocarbons | 50,51,77,78,79,91 | | Ethers | 45,59,73 | | Alcohols | 45,59,61,73,75 | | Phenols | 51,77,94 | | Nitriles | 54,68,82 | | Phthalate esters | 61,59,71,87 | | Amines | 44,58 | | Ketones | 51,71 | | N-heterocyclics | 117,167;129,179 | | Mercaptans, sulfides | 47,61,75 | | Benzothiophenes | 57,58,59,69,70,85,97,111,125 | | Carboxylic acids | 60,73,149 | | Amides | 58,72,86,100 | To test the analysis procedure, a standard mixture containing ethers, amines, polycyclic aromatic hydrocarbons, nitrosamines, phenols, etc., was analyzed under identical conditions as the samples. Losses of the very volatile compounds such as naphthalene, bis(2-chloroethyl)ether, low molecular weight nitrosamines were observed, however the higher molecular weight compounds in a particular class were recovered. Prepared by: Greg Mcoll Program Director Approved by: ________ Viorica Lopez-Aviva, Pl Technical Director GN/VLA:es | SAMPLE: | Ethan | Allen | IXAD | 650 | F2& F | 3 | |---------|-------|----------|------|-----|-------|---| | | | <u> </u> | | | | | | | | | | | | | Major Categories | Intensity | Category | MW Range | |-----------|-----------------|----------| | 10 ; | Carboxylic acid | | | 1 | PAH | .<216 | | | • | | | | | | | | | | | | | | | Intensity | Category | m/e | Composition | |---------------------------------------|----------|-----|--------------| • • • | | | | | | | | | * | | | | · · · · · · · · · · · · · · · · · · · | | | | | Other | | | |-------|-------|--| | | | | | | | | | | | | | | 5-131 | | | SAMPLE: | Ethan | Allen | Ī | XAD | 650 | F4 | & | F! | |---------|-------|-------|---|-----|-----|----|---|----| | | | | | | | | | | | Intensity | Category | MW Range | |-----------|---------------|----------| | · | None detected | | | | | | | | • | | | | | | | | • | | | | | | | Intensity | Category | m/e | Composition | |-----------|----------|-----|-------------| • | | | i | · | | | | | | | | | | • | | | | | • | | | | | | | | | Other | | | |-------|---|--| | | | | | | • | | | | | | | SAMPLE: Ethan Allen I XAD 650 F6 8 | : Ethan Allen I XAD 650 F | 5 & F | |---|---------------------------|-------| |---|---------------------------|-------| #### Major Categories | Intensity | Catagory | MW Range | |-----------|---------------|----------| | • | None detected | | | | | | | | · | | | | | | | | • | | | | · | | | Intensity | Category | m/e | Composition | |-----------|-------------|-----|--| | | | | | | | | | | | | | | | | | | | • • • | | · · | | | | | | | | | | | | | The state of s | | | | • | <u> </u> | | | ······································ | Other | | | |-------|-------|--| | | | | | | • | | | | | | | | 5-133 | | | SAMPLE: | Ethan | Allen | T | OMC | 65 | |---------|--------|--------|---|------|-----| | ZAMPLE: | Lulian | VIIEII | | UITO | Ų J | # Major Categories | Intensity | Catagory | MW Range | |-----------|-------------------------------|----------| | 100 , | Ethers | | | 100 | Nitriles | | | 100 | Amines | | | 100 | Heterocyclic sulfur compounds | | | 100 | Carboxylic acids | | | 10 | Halogenated aliphatics | | | Intensity | Category | m/e | Composition | |-----------|----------|-----|-------------| | | | | | | | | | | | | | · | | | | | | • • • | 1 | • | | | | | | | | | Other | | ŧ · | |-------|---|-----| | | | | | | • | | | | | | | SAMPLE: | Ethan | Allen | T | OMC | 652 | (cont) | |---------|----------|-----------|---|-------|-----|--------| | AAMPLE: | - UI WII | 711 1 611 | - | V: 10 | 000 | (~~ | # Major Categories | Intensity | Catagory | MW Range | |-----------|---------------------------------|----------| | 10 , | Aromatic hydrocarbons | | | 10 | Phenols | | | 10 | Ketones . | | | 10 | Heterocyclic nitrogen compounds | | | 1 | PAH . | <216 | | | | | | Intensity | Category | m/e | Composition | |-----------|----------|----------|-------------| | | | | | | | | | | | | • | | | | | | | • | • | <u> </u> | | | | | | | | | | | | | | | | · · | | | | | | | | | | | | Other | | | |-------|-------|--| | | | | | | • | | | | | | | | 5-135 | | | SAMPLE: | Ethan Allen I | Fly Ash 662 | | |---------|---------------|-------------|--| |---------|---------------|-------------|--| | Intensity | Category | MW Range | |-----------|----------|----------| | 1 , | PAH | <216 | | | | • | | | | | | | | | | | • | | | | | | | Intensity | Category | m/e | Composition | |-----------|---------------------------------------|-----|-------------| • | · · · · · · · · · · · · · · · · · · · | | | | | • | | | | | | | | | | | | | | Other | |-------| | | | • | | · | | ZAMPLE: Editor Article 11 AAD O | SAMPLE: | Ethan | Allen | II | XAD | 6 | |---------------------------------|---------|-------|-------|----|-----|---| |---------------------------------|---------|-------|-------|----|-----|---| | Intensity | Category | MW Range | |-----------|---------------|----------| | : | None detected | Intensity | Category | m/e | Composition | |---------------------------------------|--------------|-----|-------------| | | | | | | | | | | | | | | | | | | | • • • | | | | | | | | | | | | | · | | | | | | | | | · | | | | | · · · · · · · · · · · · · · · · · · · | • | | | | | | | | | Other | | • | |-------|---|---| | | | | | | • | | | | | | | SAMPI F. | Ethan | Allen | II | F1y | Ash | 74 | |----------|-------|-------|----|-----|-----|----| |----------|-------|-------|----|-----|-----|----| | Intensity | Category | MW Range |
-----------|------------------|------------| | 100 | Carboxylic acids | | | 10 | PAH |
. <216 | | | | | | | | | | | • | | | | | | | Intensity | Category | m/e | Composition | |-----------|----------|-----|-------------| • •. • | · | | 1 | · | | | | | | | | | Other | - | | |-------|------|--| | | ***; | | | | • | | | | | | | | | | # Arthur D. Little, Inc. July 8, 1982 Dr. Larry Waterland M2S-2260 Accurex Corporation 485 Clyde Avenue Mountain View, CA 94042 Dear Larry: 1-7641 We have completed the batch inlet LRMS analysis of your ten Level 1 samples. The data obtained in the analysis of these samples is reported on the enclosed, standard EPA Level 1 LRMS report forms. The intensity levels are reported for this (batch) analysis only, as though it were the complete LRMS analysis. Presumably you will integrate the data from these analyses with your own direct probe LRMS analysis of the same samples. We have reported the "sample" content of the samples as though the solvent(s) were not present; a component reported as intensity 100 is a major component of the non-solvent portion of the spectrum; one as intensity 10 when it is present and identifiable in the nonsolvent portion of the spectrum, and so on. Intensity level 1 components appeared to be present in some of the samples, but were not specifically identifiable. When they occur they are included in the unclassified category. All samples were analyzed by direct injection of 4 μ L of sample into the three liter glass inlet of the mass spectrometer. The mass spectrometer was operated in the electron impact ionization mode, at 70 eV. Low energy ionization was not used due to the low level of sample material as compared to the solvent content of the sample. Instrument blanks were obtained by direct injection of 4 μ L of spectra grade methylene chloride. One sample (ACO09) was # Arthur D. Little, Inc. July 8, 1982 -2- Dr. Larry Waterland Accurex Corporation concentrated 3X and given an additional direct injection analysis. This was done only to clarify some spectral ambiguities. The reported data is from the unconcentrated initial analysis. If you have any questions about any of this work, please feel free to call me. Yours Truly James L. Stauffer /laf enclosures SAMPLE: Ethan Allen 1 XAD 650 LC2 + LC3 (ACOO3) # **Major Categories** | Intensity | Category | MW Range | |-----------|--|----------| | 100 | Fused atternate Inonacternate hydrocarbons | (216 | | | | | | | | | | | | | | | _ | | | | | | | Intensity | Category | m/e | Composition | |-------------|-------------|-----|-------------| | 100 | Naphthalene | 158 | CoHe | | | | | | | | | | | | | | | ····· | | | | | | | | | | | | | Other | | | |-------|--|--| | | | | | | | | | | | | SAMPLE: Ethan Allen 1 XAD 650 LC4 + LC5 (ACOOB) #### **Major Categories** | Intensity | Category | MW Range | |-----------|-------------------------------|----------| | 100 | Aldehydes | 106-120 | | 10 | Aromanic Hydrocarbons | | | 10 | Phenois | 94 | | 10 | Heterocyclic Oxygen Compounds | 118-146 | | 10 | unclassified! | 130 | | | | | | Intensity | Category | m/e | Composition | |-----------|---|--------|----------------| | 100 | Benzaldehude + alkul | 106- | C7460-C8480 | | 10 | Phenal | 94 | C6 H60 | | 10 | Benzaldehyde + alkyl
Phenal
Benzofuran + alkyls | 118/46 | CPH60 - COH100 | | | 0 | possibly | Heterocyclic | Ditrogen | Commune | d Caurio | okalinis 1 | |----------|--------------|----------|---------|----------|------------| | <u>'</u> | y | J | | - 0 | 7 | | | | | | | | SAMPLE: Ethan Allen 1 XAD 650 LC6 & LC7 (ACDO9) #### **Major Categories** | Intensity | Category | MW Range | |-----------|-------------------------------|-----------| | 100 | Phenois | 94 - 192 | | | Heterocyclic Oxygen Compounds | 180 - 146 | | 5 | Aldehydes | 82 - 194 | | 10 | Aromatic Hydrocarbons | | | | | <u>:</u> | | | | | | Intensity | Category | m/e | Composition | |-----------|--|-------|--------------| | 100 | | 94,72 | C6H6O-C8H10O | | 5/5 | Dimethy/ Furan / Furaldehyde | 96 | C6H8O/C5H4O2 | | 10 | Dimethylfuran / Furaldehyde
Benzofuran + alkyks | 118- | CoH60-G0H100 | | | | | | | | | • | • | | | | | | | | | | • | | | • | | | | | | | Other | | |-------|--| | | | | | | | | | | | D | MS | Ð | er | _ | ^- | | |---|---|----|---|----|-----|-----|--| | L | м | MS | H | - | נדי | H I | | SAMPLE: Ethan Allen 1 OMC 652 (ACOID) #### **Major Categories** | Intensity | Category | MW Range | | |-----------|-------------------------------|----------|--| | 100 | Phenois | | | | 10 | Heterocyclic Oxygen Compounds | 68 - 146 | | | Ю | Aldehydes | 46 - 120 | | | 10 | Unclassified | | | | | | | | | | | | | | Intensity | Category | m/e | Composition | |-----------|--|------------|---------------------------------------| | 100 | Phenol +alkyls | 94-
136 | C6 460 - C9+120 | | 10 | Benzofuran + alkyb | 118- | CRHLO - CIOHIDC | | 10 | Furan + alky/s | 68- | C4H40-C8H12C | | 10 | Benzofuran + alkyb
Furan + alkyb
Furaldehyde + alkyls
Benzaldehyde + alkybs | 96 - | Cy H40 - C8 H12 C
C5 H402 C7 H 8 O | | a | Benzaldehyde & alkyts. | 106- | C1460-C+480 | • | | Other | | | | | |-------|---|--|--|--| | | | | | | | | _ | | | | | | | | | | # 5.10 RADIOMETRIC ANALYSIS RESULTS # SAFETY SPECIALISTS, Inc. 3284 F Edward Avenue, Santa Clara, California 95050 • Telephone (408) 988-1111 ## ASSAY REPORT Acurex Corporation Attn: Mr. Larry Waterland 485 Clyde Avenue Mountain View, California 94042 Date: August 13, 1981 Date Samples Received: 6/29/81 Customer Order No.: RB59185A, Rel. 15 | | | Activ | vity* | |---------|--|----------------------|---------------------| | SSI No. | Client Description | Gross Alpha
pCi/g | Gross Beta
pCi/g | | 81228D | A81-05-030-646 (Composite particulate) | 20.2 ± 12.1 | 218.8 ± 18.5 | | Ε | A81-05-030-662(Test 1 = 1yesh) | 17.6 ± 4.2 | 119.0 ± 38.0 | | F | A81-05-030-674(Test 2 compasite) | 22.2 ± 9.6 | 164.3 ± 30.5 | | G | A81-05-030-744(Test 2 flyesh) | 15.6 ± 3.9 | 93.3 ± 35.0 | Analyst: Pamela S. Shreve Approved: T. C. Noble, Director Safety and Health Services Division *The \pm values are the two sigma Poisson standard deviation of the counting error. The \leq values are equal to or less than three sigma of the counting error. # SAFETY SPECIALISTS, Inc. 3284 F Edward Avenue, Santa Clara, California 95050 - Telephone (408) 988-1111 ## ASSAY REPORT Acurex Corporation Attn: Mr. Larry Waterland 485 Clyde Avenue Mountain View, California 94042 Date: August 13, 1981 Date Samples Received: 6/29/81 Customer Order No.: RB59185A, Rel. 15 | | | Activity* | | | | | | | |------------------|--------------------|----------------------|-----------------------------|--|--|--|--|--| | SSI No.
81228 | Client Description | Gross Gamma
pCi/L | Gross Gamma
<u>pCi/g</u> | | | | | | | 01220 | | | | | | | | | | D | A81-05-030-646 | | -415 ± 734 | | | | | | | Ε | A81-05-030-662 | | 4 ± 419 | | | | | | | F | A81-05-030-674 | | 161 ± 679 | | | | | | | G | A81-05-030-774 | | 163 ± 476 | | | | | | Analyst: Pamela S. Shreve Approved: T. C. T. C. Noble, Director Safety and Health Services Division *The \pm values are the two sigma Poisson standard deviation of the counting error. The \leq values are equal to or less than three sigma of the counting error. # 5.11 BIOLOGICAL ASSAY RESULTS GENETICS ASSAY NO.: 5882 LBI SAFETY NO.: 7166 MUTAGENICITY EVALUATION OF A81-05-030-646 (EA-1 10+3+1+FILTER) IN THE EPA LEVEL 1 AMES SALMONELLA/MICROSOME PLATE TEST FINAL REPORT # SUBMITTED TO: ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 # SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20895 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 ## **PREFACE** This assay conforms to the standard EPA Level 1 procedure for the Ames Salmonella/microsome mutagenesis assay as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests". The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting". The Ames <u>Salmonella</u>/microsome mutagenesis assay has been shown to be a sensitive method for detecting mutagenic activity for a variety of chemicals representing various chemical classes³. This assay is one of several recommended by EPA to identify, categorize and rank the pollutant potential of influent and effluent streams from industrial and energy-producing processes. This assay has been well validated with a wide range of positive and negative control chemicals and complex environmental samples. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics,
Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw data will be supplied to the sponsor upon request. # TABLE OF CONTENTS | | | | | | Page No | |-----------|----------------------|--------------------------|---|-----|--| | | PREFA | CE | | | i | | I. | ASSAY | SUMMARY | | | 1 | | II. | OBJEC | TIVE | | | 2 | | III. | TEST | MATERIAL | | | 3 | | | A.
B. | Description | | | 3
3 | | IV. | MATER | RIALS | | | 4 | | | A.
B.
C. | Indicator Microorganisms | | | 4
4
5
5
5 | | ٧. | EXPER | RIMENTAL DESIGN | | | 6 | | | A.
B.
C.
D. | Dose Selection | | • • | 6
6
6
7
7 | | VI. | RESUL | .TS | | | 9 | | | A.
B. | Interpretation | | | 9
9 | | VII. EVAL | NOITAU | CRITERIA | | | 11 | | | A.
B.
C.
D. | Surviving Populations | | | 11
11
12
12
12
12
12
12
13
13 | | VIII. | | REFERENCES | • | | 14 | | | | | | | _ | #### I. **ASSAY SUMMARY** - Sponsor: Acurex Corporation Α. - Material (Test Compound): Genetics Assay Number: 5882 В. - Identification: A81-05-030-646 (EA-1 10+3+1+Filter) 1. - Date Received: August 26, 1981 2. - Physical Description: Fine, brown powder and fiberglass 3. filter with embedded particles. - Type of Assay: EPA Level 1 Ames Salmonella/Microsome Plate Test C. - D. Assay Design Number: 401 (EPA Level 1) - Ε. Study Dates: - 1. Initiation: October 1, 1981 - 2. Completion: October 26, 1981 - F. Supervisory Personnel: - Study Director: D.R. Jagannath, Ph.D. - G. Evaluation: The test material, A81-05-030-646 (EA-1 10+3+1+Filter), was tested for activity in the Ames Salmonella mutagenicity assay over a concentration range of 0.05 mg/plate to 5.0 mg/plate. The test was performed in duplicate under nonactivation and activation test conditions with strains TA-1535, TA-1537, TA-98, and TA-100. The sample was not mutagenic under the test conditions employed and was ranked as having nondetectable (ND) mutagenic activity as defined by the IERL-EPA Level 1 criteria for the Ames bioassay¹. Submitted by: Study Director D.R. Jagannath, Ph.D. Section Chief. Submammalian Genetics. Department of Molecular Toxicology Reviewed by: Director, Department of Molecular Toxicology # II. OBJECTIVE The objective of this study was to determine the genetic activity of A81-05-030-646 (EA-1 10+3+1+filter) in the <u>Salmonella/ microsome assay</u> with and without the addition of mammalian metabolic activation preparations. The genetic activity of a sample is measured in these assays by its ability to revert the <u>Salmonella</u> indicator strains from histidine dependence to histidine independence. The degree of genetic activity of a sample is reflected in the number of revertants that are observed on the histidine-free medium. # III. TEST MATERIAL ## A. Description The test material, as received, was comprised of two separate components. The first component, a fine, brown powder, was the 1 μm , 3 μm and 10 μm SASS train particulate catch. The second component was a fiberglass filter with embedded particulate material. This brown particulate material represented particulates less than 1 μm collected in the SASS train sample. Both components were supplied together in a Nalgene screw-top bottle. # B. <u>Handling and Preparation</u> The test material was received at LBI on August 26, 1981. The sample was assigned LBI safety number 7166 and LBI assay number 5882. The sample was stored at $+4^{\circ}$ C in the dark. The filter portion of the sample required removal of the embedded particulates before testing could begin. The uncut filter was sonicated in cyclohexane as recommended by current IERL-EPA pretest sample preparation procedures 1 . The decanted particulate suspension from three successive sonication treatments were combined and evaporated to dryness. The particulate material was weighed and combined with the 1 μ m particulate catch portion of the sample. A total of 215.14 mg of combined test material available for testing was comprised of 37.78 mg (17.6%) of <1 μ m particulates removed from the filter and 177.36 mg (82.4%) of 1 μ m, 3 μ m and 10 μ m particulates. Appproximately 181 mg of test material were used for the trial in the Ames <u>Salmonella</u> Assay. The test material was suspended at 100 mg/ml in dimethylsulfoxide (DMSO) and incubated overnight at 37°C on a rotary shaker. This stock suspension was used to make dilutions in DMSO to be used for dosing in the EPA Level 1 Ames Salmonella Assay. # IV. MATERIALS # A. <u>Indicator Microorganisms</u> The <u>Salmonella</u> typhimurium strains used in this assay were obtained from Dr. Bruce Ames, University of California at Berkeley. 4-8 The following four strains were used. | Strain | Gene | Addit | ional M | lutations | Mutation Type | | | | |-------------|--------------|----------------|------------|-----------|---------------------------|--|--|--| | Designation | Affected | Repair | LPS | R Factor | Detected | | | | | TA-1535 | <u>his</u> G | Δ <u>uvr</u> B | rfa | - | Base-pair
substitution | | | | | TA-1537 | <u>his</u> C | Δ <u>uvr</u> B | <u>rfa</u> | - | Frameshift | | | | | TA-98 | <u>his</u> D | Δ <u>uvr</u> B | <u>rfa</u> | pKM101 | Frameshift | | | | | TA-100 | <u>his</u> G | Δ <u>uvr</u> B | <u>rfa</u> | pKM101 | Base-pair
substitution | | | | All the above strains have, in addition to the mutation in the histidine operon, mutation (<u>rfa</u>-) that leads to defective lipopolysaccharide coat, a deletion that covers genes involved in the synthesis of vitamin biotin (<u>bio</u>-) and in the repair of ultraviolet (uv) - induced DNA damage (<u>uvr</u>B-). The <u>rfa</u>- mutation makes the strains more permeable to many large molecules. The <u>uvr</u>B- mutation decreases repair of some types of chemically or physically damaged DNA and thereby enhances the strain's sensitivity to some mutagenic agents. The resistant transfer factor plasmid (R factor) pKM101 in TA-98 and TA-100 is believed to cause an increase in error-prone DNA repair that leads to many more mutations for a given dose of most mutagens. In addition, plasmid pKM101 confers resistance to the antibiotic ampicillin, which is a convenient marker to detect the presence of plasmid in the cells. All indicator strains are kept at 4°C on minimal medium plates supplemented with a trace of biotin and an excess of histidine. In addition, the plates with plasmid-carrying strains contain ampicillin (25 μ g/ml) to ensure stable maintenance of plasmid pKM101. New stock culture plates are made as often as necessary from the frozen master cultures or from single colony reisolates that were checked for their genotypic characteristics (his, rfa uvrB, bio) and for the presence of plasmid. For each experiment, an inoculum from the stock culture plates is grown overnight at 37°C in nutrient broth (Oxoid CM67) and used. ## B. Media The bacterial strains were cultured in Oxoid Media #2 (Nutrient Broth). The selective medium was Vogen Bonner Medium E with 2% glucose. 10 The overlay agar consisted of 0.6% purified agar with 0.05 mM histidine, 0.05 mM biotin and 0.1M NaCl according to the methods of Ames $\underline{\text{et}}$ $\underline{\text{al}}$. # C. <u>Activation System</u> ## 1. S9 Homogenate A 9,000 x g supernatant prepared from Sprague-Dawley adult male rat liver induced by Aroclor 1254 (Ames et al. 9) was purchased commercially and used in these assays. ## 2. \$9 Mix S9 mix used in these assays consisted of the following components: | Components | | per Milliliter
Mix | |---|-----|-----------------------| | NADP (sodium salt) | 4 | µmoles | | D-glucose-6-phosphate | | µmoles | | MgČ1 ₂ | | µmoles | | KČ1 | | µmoles | | Sodium phosphate buffer pH 7.4 | | μmoles | | Organ homogenate from rat liver (S9 fraction) | 100 | μliters | ## V. EXPERIMENTAL DESIGN # A. Dosage Selection Test strategy and dose selection depend upon sample type and sample availability. The Level 1 manual 1 recommends solids to be initially tested at the maximum applicable dose (MAD) of 5 mg per plate and at lower concentrations of 2.5, 1, 0.5, 0.1 and 0.05 mg per plate. Liquids are tested initially at the MAD of 200 μ l per plate, and at lower concentrations of 100, 50 and 10 μ l per plate. Samples are retested over a narrower range of concentrations with strains showing positive results initially. Alternate dose are employed if sample size is limiting or at the direction of the sponsor. Doses selected to test this sample covered the recommended dose range for solids. The highest dose was at the MAD level of 5 mg per plate and included five lower dose levels of 2.5, 1, 0.5, 0.1 and 0.05 mg per plate. # B. Mutagenicity Testing The procedure used was based on the paper published by Ames et. al. 9 and was performed as follows: ## 1. Nonactivation Assay To a sterile 13×100 mm test tube placed in a 43°C water bath the following was added in order: - 2.00 ml of 0.6% agar containing 0.05 mM histidine and 0.05 mM biotin. - 0.05 ml of a suspension of the test chemical to give the appropriate dose. - 0.1 ml to 0.2 ml of indicator organism(s). - 0.50 ml of 0.2M phosphate buffer, pH 7.4. This mixture was swirled gently and then poured onto minimal agar plates (see IV B, Media). After the top agar had set, the plates were incubated at 37°C for approximately 2 days. The number of his+ revertant colonies growing on the plates were counted with an automatic colony counter and recorded. ### 2. Activation Assay The activation assay was run concurrently with the nonactivation assay. The only difference was the addition of 0.5 ml of S9 mix (see IV C, Activation System) to the tubes in place of 0.5 ml of phosphate buffer which was added in nonactivation assays. All other details were similar to the procedure for nonactivation assays. A detailed flow diagram for
the plate incorporation assay is provided in Figure 1. # C. Control Compounds A negative control consisting of the solvent used for the test material was also assayed concurrently with the test material. For negative controls, step 'b' of Nonactivation Assays was replaced by 0.05 ml of the solvent. The negative controls were employed for each indicator strain and were performed in the absence and presence of S9 mix. The solvent used to prepare the stock solution of the test material is given in the Results section of this report. All dilutions of the test material were made using this solvent. The amount of solvent used was equal to the maximum volume used to give the appropriate test dose. Specific positive control compounds known to revert each strain were also used and assayed concurrently with the test material. The concentrations and specificities of these compounds to specific strains are given in the following table: | Assay | Chemical | Solvent | Concentration per plate (µg) | <u>Salmonella</u>
Strains | | | |---------------|----------------------------------|------------------------|------------------------------|------------------------------|--|--| | Nonactivation | Sodium azide
2-Nitrofluorene | Water
Dimethyl- | 10.0
10.0 | TA-1535, TA-100
TA-98 | | | | | (NF)
9-aminoacridine
(9AA) | sulfoxide
Ethanol | | TA-1537 | | | | Activation | 2-anthramine
(ANTH) | Dimethyl-
sulfoxide | 2.5 | For all strains | | | # D. Recording and Presenting Data The number of colonies on each plate were counted and recorded on printed forms. These raw data were analyzed in a computer program and reported on a printout. The results are presented as revertants per plate for each indicator strain employed in the assay. The positive and solvent controls are provided as reference points. ## AMES ASSAY [PLATE INCORPORATION METHOD] Figure 1 AMES SALMONELLA/MICROSOME MUTAGENESIS ASSAY ## VI. RESULTS ## A. Interpretations The test material, A81-05-030-646 (EA-1 10+3+1+filter), was dissolved in DMSO at a stock concentration of 100 mg/ml and leached overnight on a shaker at 37°C. Additional dilutions were prepared in DMSO for testing. The maximum test level was 5.0 mg/plate except for the activation portion of the assay with strain TA-1535 which used a maximum dose of 1 mg/plate because of limited test material. There was no evidence of toxicity at this level. Reverse mutation was measured in strains TA-1535, TA-1537, TA-98 and TA-100. The test was conducted in duplicate both with and without rat liver S9 mix for metabolic activation. There was no mutagenic activity associated with the test material treatment and the sample was considered nonmutagenic and non toxic. The sample was ranked as having nondetectable (ND) mutagenic activity using the IERL-EPA Level 1 evaluation criteria for the Ames Assay¹. Solvent control and positive control values were within acceptable ranges. These results achieved assay acceptance criteria and provided confidence in the assumptions that the recorded data represented typical responses to the test material. ## B. Tables This report is based on the data provided in Table 1. A. NAME OR CODE DESIGNATION OF THE TEST COMPOUND: A-81-05-030-646 (EA-1 10+3+1+FILTER) B. SOLVENT: DMSO . TEST INITIATION DATES: 10/22/81 D. TEST COMPLETION DATE: 10/26/81 . S-9 LOT#: REF050 NOTE: CONCENTRATIONS ARE GIVEN IN MILLIGRAMS FER PLATE | TEST | SPECIE | S TISSUE | | | | TA- | 1537 | T | | | - | -100 | | |------------------|--------|----------|------|------|---|-----|------|----|-------|----|------|------|---| | | | | | 2 | 3 | 1 | 2 | 3 | | | 3 1 | | 3 | | NONACTIVATION | | | | | | | | | | | | | | | SOLVENT CONTROL | *** | | | 10 | | 7 | | 2 | | | 119 | | | | POSITIVE CONTROL | | | 1021 | 1034 | | 117 | 190 | 55 | 2 845 | L. | 1543 | 1515 | | | TEST COMPOUND | | | | | | | | | | | | | | | | IG | | 15 | 14 | | 7 | 7 | 2 | 1 35 | i | 124 | 132 | | | 0.100 | 16 | | 18 | 15 | | 4 | 6 | 1 | 3 25 | i | 117 | 141 | | | 0.500 M | IG | | 19 | 15 | | 10 | 5 | 2 | 8 30 | | 112 | 132 | | | | 16 | | 19 | | | 8 | 5 | | 0 32 | | | 128 | | | - | 16 | | 20 | | | 9 | 4 | | 2 25 | | | 121 | | | 5.C00 P | IG | | 29 | 20 | | 7 | 7 | 2 | 2 25 |) | 102 | 126 | | | ACTIVATION | | | | | | | | | | | | | | | SOLVENT CONTROL | RAT | LIVER | 11 | 10 | | 13 | 16 | 3 | 7 24 | | 94 | 101 | | | POSITIVE CONTROL | | LIVER | | | | | 187 | | 0 950 | | | 1833 | | | TEST COMPOUND | | | | | | | | | | | | | | | | G RAT | LIVER | 6 | 10 | | 10 | 13 | 3 | 5 35 | i | 95 | 129 | | | 0.100 M | G RAT | LIVER | 12 | 9 | | 6 | 5 | | 3 49 | | | 116 | | | 0.500 M | G RAT | LIVER | 17 | 7 | | 11 | 12 | | 7 38 | | 126 | 121 | | | = = | G RAT | LIVER | C | 14 | | 14 | 4 | | 7 34 | | 100 | | | | | G RAT | LIVER | - | - | | 17 | 7 | | 8 28 | | | 122 | | | 5.000 H | G RAT | LIVER | - | • | | 10 | 10 | 2 | 9 37 | , | 93 | 103 | | TA-1535 SODIUM AZIDE TA-1537 9-AMINOACRIDINE TA-98 2-NITROFLUORENE TA-100 SODIUM AZIDE 10 SOLVENT 50 UL/PLATE - INDICATES TEST WAS NOT DONE C INDICATES CONTAMINATION # VII. ASSAY ACCEPTANCE AND EVALUATION CRITERIA Statistical methods are not currently used, and evaluation is based on the criteria included in this protocol. Plate test data consists of direct revertant colony counts obtained from a set of selective agar plates seeded with populations of mutant cells suspended in a semisolid overlay. Because the test material and the cells are incubated in the overlay for approximately 2 days and a few cell divisions occur during the incubation period, the test is semiquantitative in nature. Although these features of the assay reduce the quantitation of results, they provide certain advantages not contained in a quantitative suspension test: - The small number of cell divisions permits potential mutagens to act on replication DNA, which is often more sensitive than nonreplicating DNA. - The combined incubation of the test article and the cells in the overlay permits constant exposure of the indicator cells for approximately 2 days. ## A. Surviving Populations Plate test procedures do not permit exact quantitation of the number of cells surviving chemical treatment. At low concentrations of the test material, the surviving population on the treatment plates is essentially the same as that on the negative control plate. At high concentrations, the surviving population is usually reduced by some fraction. Our protocol will normally employ several doses ranging over two or three log concentrations, the highest of these doses being selected to show slight toxicity as determined by subjective criteria. ## B. Dose-Response Phenomena The demonstration of dose-related increased in mutant counts is an important criterion in establishing metagenicity. A factor that might modify dose-response results for a mutagen would be the selection of doses that are too low (usually mutagenicity and toxicity are related). If the highest dose is far lower than a toxic concentration, no increases may be observed over the dose range selected. Conversely, if the lowest dose employed is highly cytotoxic, the test material may kill any mutants that are induced, and the test material will not appear to be mutagenic. ## C. Control Tests Positive and negative control assays were conducted with each experiment and consisted of direct-acting mutagens for nonactivation assays and mutagens that require metabolic biotransformation in activation assays. Negative controls consisted of the test material solvent in the overlay agar together with the other essential components. The negative control plate for each strain gave a reference point to which the test data was compared. The positive control assay was conducted to demonstrate that the test systems were functional with known mutagens. The following normal range of revertants for solvent controls are generally considered acceptable. TA-1535: 8-30 TA-1537: 4-30 TA-98: 20-75 TA-100: 80-250 # D. <u>Evaluation Criteria for Ames Assay</u> Because the procedures to be used to evaluate the mutagenicity of the test material are semiquantitative, the criteria to be used to determine positive effects are inherently subjective and are based primarily on a historical data base. Most data sets will be evaluated using the following criteria. ### 1. Strains TA-1535 and TA-1537 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to three times the solvent control value will be considered to be mutagenic. ## 2. Strains TA-98 and TA-100 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to twice the solvent control value for TA-98 and TA-100 will be considered to be mutagenic. ### Pattern Because TA-1535 and TA-100 are both derived from the same parental strain (G-46), to some extent there is a built-in redundancy in the microbial assay. In general, the two strains of a set respond to the same mutagen and such a pattern is sought. Generally, if a strain responds to a mutagen in nonactivation tests, it will do so in activation tests. ### 4. Reproducibility If a test material produces a response in a single test that cannot be reproduced in additional runs, the initial positive test data lose significance. The preceding criteria are not absolute, and other extenuating factors may enter into a final evaluation decision. However, these criteria will be applied to the majority of situations and are presented to aid those individuals not familar with this procedure. As the data base is increased, the criteria for evaluation can be more firmly established. 5-165 # E. Relation Between Mutagenicity and Carcinogenicity It must be emphasized that the Ames <u>Salmonella/Microsome Plate Assay</u> is not a definitive test for chemical carcinogens. It is recognized, however, that correlative and
functional relations have been demonstrated between these two endpoints. The results of comparative tests on 300 chemicals by McCann et al. 4 show an extremely good correlation between results of microbial mutagenesis tests and <u>in vivo</u> rodent carcinogenesis assays. All evaluations and interpretation of the data to be presented in the final report will be based only on the demonstration, or lack, of mutagenic activity. # F. Criteria for Ranking Samples in the Ames Assay The goal of EPA Level 1 Ames testing is to rank source streams by relative degree of genetic toxicity (mutagenicity). Samples are first identified as mutagenic or nonmutagenic by the criteria in Section D above and then ranked using the mutagenicity categories presented in the table below. The lowest concentration giving a positive response in any strain, with or without metabolic activation, is identified as the minimum effective concentration (MEC) for that sample. The mutagenicity of the sample is evaluated as high (H), moderate (M), low (L), or nondetectable (ND) according to the evaluation criteria developed in the Level 1 manual and summarized below. Samples with no detectable activity at the maximum applicable dose (MAD) are ranked nondetectable (ND). Ames Assay Mutagenicity Ranking Criteria¹ | Mutagenic
Activity | Solids
(MEC in µg/plate) | Liquids ^a
(MEC in µl/plate) | |-----------------------|-----------------------------|---| | High (H) | <50 | <2 | | Moderate (M) | 50-500 | 2-20 | | Low (L) | 500-5000 | 20-200 | | Not Detectable (ND) | >5000 | . >200 | ^aConcentration of organic extracts is based upon organic content (µg organics per plate) and not volume (µl extract per plate) of sample tested. # VIII. REFERENCES - 1. Brusick, D.J., et al.: <u>IERL-RTP Procedures Manual</u>: <u>Level 1 Environmental Assessment Biological Tests</u>. EPA Contract No. 68-02-2681, Technical Directive No. 501, Litton Bionetics, Inc., Kensington, MD, September 1980, 177 pp. In press. - 2. Brusick, D.J.: Level 1 Bioassay Assessment and Data Formatting. EPA-600/7-80-079, Litton Bionetics Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135, Litton Bionetics, Inc., Kensington, MD, August 1981, 52 pp. - 4. McCann, J., Choi, E., Yamasaki, E. and Ames, B.N.: Detection of carcinogens as mutagens in the <u>Salmonella/microsome</u> test: Assay of 300 chemicals. Proc. Nat. Acad. Sci., USA 72:5135-5139, 1975. - 5. Ames, B.N., Gurney, E.G., Miller, J.A. and Bartsch, H.: Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylamino-fluorene and other aromatic amine carcinogens. Proc. Nat. Acad. Sci., USA 69:3128-3132, 1972. - 6. Ames, B.N., Lee, F.D., and Durston, W.E.: An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Nat. Acad. Sci., USA 70:782-786, 1973. - 7. Ames, B.N., Durston, W.E., Yamasaki, E. and Lee, F.D.: Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Nat. Acad. Sci., USA 70:2281-2285, 1973. - 8. McCann, J., Springarn, N.E., Kobori, J. and Ames, B.N.: Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA 72:979-983, 1975. - 9. Ames, B.N., McCann, J. and Yamasaki, E.: Methods for detecting carcinogens and mutagens with the <u>Salmonella/mammalian-microsome</u> mutagenicity test. Mutation Res., <u>31</u>:347-364, 1975. - 10. Vogel, H.J. and Bonner, D.M.: Acetylornithinase of E. coli partial purification and some properties. J. Biol. Chem., 218:97-106, 1966. GENETICS ASSAY NO.: 5879 LBI SAFETY NO.: 7163 MUTAGENICITY EVALUATION OF A81-05-030-650 (EA-1 XAD EXTRACT) IN THE EPA LEVEL 1 AMES SALMONELLA/MICROSOME PLATE TEST FINAL REPORT # SUBMITTED TO: ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 # SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20895 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 ## **PREFACE** This assay conforms to the standard EPA Level 1 procedure for the Ames <u>Salmonella</u>/microsome mutagenesis assay as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests". The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting". The Ames <u>Salmonella</u>/microsome mutagenesis assay has been shown to be a sensitive method for detecting mutagenic activity for a variety of chemicals representing various chemical classes³. This assay is one of several recommended by EPA to identify, categorize and rank the pollutant potential of influent and effluent streams from industrial and energy-producing processes. This assay has been well validated with a wide range of positive and negative control chemicals and complex environmental samples. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw data will be supplied to the sponsor upon request. # TABLE OF CONTENTS | Page No. | |-----------|----------|-------------------------------------|---|--|--|-----------------------------|------------------------------|------------------------|-----|-----------------|-----------|------|---------------------------------------|---|-------|---|---|---|---|---|----------------------------------| | | PREFA | CE | | | | • | | | | • | • | | | • | • | • | | • | | • | i | | I. | ASSAY | SUMMA | ARY | | | • | | | • | • | | | | • | • | • | • | • | • | | 1 | | II. | OBJEC | TIVE . | | | | • | | | • | • | • | | • | • | • | • | • | • | • | • | 2 | | III. | TEST | MATER! | IAL | | | • | • | | | • | • | | • | • | • | • | • | • | | • | 3 | | | A.
B. | Descr
Handl | ipti
ing | on
and |
Pre | epa | rat |
ion | • | • | • | | | • | • | • | • | | • | | 3
3 | | IV. | MATER | IALS | | | | • | | | | | • | | • | • | • | • | • | • | • | • | 4 | | | B.
C. | | | n Sylomog |
yste
gena | em
ate | | | • | • | • | | • | • | • | : | • | : | • | • | 4
4
5
5
5 | | ٧. | EXPER | RIMENT | AL D | ESI | GN . | . . | • | | • | • | • | | • | | | | • | | | | 6 | | | B.
C. | Dose Mutage 1. 2. Contro | enic
Nona
Acti
ol C | ity
ctiv
vat | Testation | st
ion
As:
is | As
say | say | • | | | | • | • | · . · | | • | | | | 6
6
7
7
7 | | VI. | RESUL | .TS . | | | | | | | | • | | | | | | | | | | • | 9 | | | A.
B. | Inter
Table | pret
s . | ati | on . | • • | • | | • | | | | • | • | | | : | | | • | 9
9 | | VII. EVAL | UATION | CRIT | ERIA | ٠. | | • | • | | • | | | | • | • | • | • | • | • | | • | 12 | | | D.
E. | Dose-
Contro
Evaluation
1. | Resp
ol T
atio
Stra
Stra
Patt
Repr
ion | est
in C
ins
ins
ern
odu
Bet | e Pl
s
rite
TA-
TA-
cib | nenderia
-15:
-98
 | ome
a f
35
an
ty | na
or
and
d T | Amo | :
A-:
100 | As
153 | ssay | · · · · · · · · · · · · · · · · · · · | • | | | • | • | • | | 12
12
13
13
13
13 | | VIII. | | REFER | #### I. **ASSAY SUMMARY** - Sponsor: Acurex Corporation - Material (Test Compound): Genetics Assay Number: B. 5879 - Identification: A81-05-030-650 (EA-1 XAD Extract) - 2. Date Received: August 26, 1981 - Physical Description: Clear, amber/brown liquid. - Type of Assay: EPA Level 1 Ames Salmonella/Microsome Plate Test C. - Assay Design Number: 401 (EPA Level 1) D. - Ε. Study Dates: - Initiation: September 23, 1981 1. - Completion: October 16, 1981 - F. Supervisory Personnel: - Study Director: D.R. Jagannath, Ph.D. - G. Evaluation: The test material, A81-05-030-650 (EA-1 XAD extract), contained 18.3 mg organics per ml after solvent exchange into dimethylsulfoxide (DMSO). The solvent exchanged sample was evaluated for its genetic activity in the EPA Level 1 Ames assay, directly, and in the presence of S9 metabolic activation mix. The test sample was mutagenic to TA-1537, TA-98 and TA-100 in the activation and nonactivation assays. The tests indicate that the test material contains both base-pair and frameshift type mutagens. The dose-related mutagenic response was observed at a minimum concentration of 2.5 μ l (or 45.75 μ g organics) per plate with TA-1537 and TA-98 in the activation assays. The MEC of 45.75 μg/plate, while in the high mutagenicity category, closely approached the high/moderate boundary. The test material, therefore, was ranked as having high/moderate (H/M) borderline mutagenicity using the IERL-EPA Level 1 evaluation criteria for the Ames Assay¹. Submitted by: Study_Director D.R. Jagannath, Ph.D. Section Chief, Submammalian Genetics, Department of Molecular 5-171 Reviewed by: Director, Department of Molecular Toxicology # II. OBJECTIVE The objective of this study was to determine the genetic activity of A81-05-030-650 (EA-1 XAD Extract) in the Salmonella/microsome assay with and without the addition of mammalian metabolic activation preparations. The genetic activity of a sample is measured in these assays by its ability to revert the Salmonella indicator strains from histidine dependence to
histidine independence. The degree of genetic activity of a sample is reflected in the number of revertants that are observed on the histidine-free medium. # III. TEST MATERIAL # A. <u>Description</u> The test material was received as a clear, amber-brown solution in methylene chloride. The sample contained 75.0 milligrams of organic material in 0.7 ml of methylene chloride. No information on the sampling parameters (such as the equivalent volume of stack gas represented by the sample) was provided. # B. <u>Handling and Preparation</u> The test material was received at LBI on August 26, 1981. The sample was assigned LBI safety number 7163 and LBI assay number 5879. The sample was stored at $+4^{\circ}$ C in the dark. Pretest sample preparation consisted of solvent exchanging the sample into dimethylsulfoxide (DMSO). The sample was transferred with methylene chloride rinses into a graduated conical tube. The methylene cholride was gradually evaporated (50°C under a stream of nitrogen) and DMSO was sequentially added. The sample was brought to volume in 4.1 ml of DMSO, giving a sample concentration of 18.3 mg organics per ml DMSO. The sample was transferred to a glass vial and sealed with a teflon-coated rubber septum. Approximately 3.0 ml of test material was used for testing in two trials. Varying aliquots of the test material were added directly to the test mixtures to give the desired concentration. The amount of sample used in Trial 1 was 2.9 ml and 75 μ l was used in Trial 2. ## IV. MATERIALS # A. <u>Indicator Microorganisms</u> The <u>Salmonella typhimurium</u> strains used in this assay were obtained from Dr. Bruce Ames, University of California at Berkeley. 4-8 The following four strains were used. | Strain | Gene | Addit | ional M | Mutation Type | | | |-------------|--------------|----------------|------------|---------------|---------------------------|--| | Designation | Affected | Repair | LPS | R Factor | Detected | | | TA-1535 | <u>his</u> G | Δ <u>uvr</u> B | <u>rfa</u> | <u>-</u> | Base-pair
substitution | | | TA-1537 | <u>his</u> C | Δ <u>uvr</u> B | <u>rfa</u> | - | Frameshift | | | TA-98 | <u>his</u> D | Δ <u>uvr</u> B | <u>rfa</u> | pKM101 | Frameshift | | | TA-100 | <u>his</u> G | Δ <u>uvr</u> B | <u>rfa</u> | pKM101 | Base-pair
substitution | | All the above strains have, in addition to the mutation in the histidine operon, mutation (<u>rfa</u>) that leads to defective lipopolysaccharide coat, a deletion that covers genes involved in the synthesis of vitamin biotin (<u>bio</u>-) and in the repair of ultraviolet (uv) - induced DNA damage (<u>uvrB</u>-). The <u>rfa</u>- mutation makes the strains more permeable to many large molecules. The <u>uvrB</u>- mutation decreases repair of some types of chemically or physically damaged DNA and thereby enhances the strain's sensitivity to some mutagenic agents. The resistant transfer factor plasmid (R factor) pKM101 in TA-98 and TA-100 is believed to cause an increase in error-prone DNA repair that leads to many more mutations for a given dose of most mutagens. In addition, plasmid pKM101 confers resistance to the antibiotic ampicillin, which is a convenient marker to detect the presence of plasmid in the cells. All indicator strains are kept at 4°C on minimal medium plates supplemented with a trace of biotin and an excess of histidine. In addition, the plates with plasmid-carrying strains contain ampicillin (25 μ g/ml) to ensure stable maintenance of plasmid pKM101. New stock culture plates are made as often as necessary from the frozen master cultures or from single colony reisolates that were checked for their genotypic characteristics (his, rfa uvrB, bio) and for the presence of plasmid. For each experiment, an inoculum from the stock culture plates is grown overnight at 37°C in nutrient broth (Oxoid CM67) and used. # B. Media The bacterial strains were cultured in Oxoid Media #2 (Nutrient Broth). The selective medium was Vogen Bonner Medium E with 2% glucose. 10 The overlay agar consisted of 0.6% purified agar with 0.05 mM histidine, 0.05 mM biotin and 0.1M NaCl according to the methods of Ames \underline{et} \underline{al} .9 # C. Activation System # 1. S9 Homogenate A 9,000 x g supernatant prepared from Sprague-Dawley adult male rat liver induced by Aroclor 1254 (Ames et al. 9) was purchased commercially and used in these assays. ## 2. S9 Mix S9 mix used in these assays consisted of the following components: | Components | | per Milliliter
Mix | |-------------------------------------|-----|-----------------------| | NADP (sodium salt) | 4 | µmoles | | D-glucose-6-phosphate | | µmoles | | MgČ1 ₂ | | µmoles | | KČ1 ~
Sodium phosphate buffer | | µmoles | | pH 7.4
Organ homogenate from rat | 100 | μmoles | | liver (S9 fraction) | 100 | µliters | ## V. EXPERIMENTAL DESIGN # A. <u>Dosage Selection</u> Test strategy and dose selection depend upon sample type and sample availability. The Level 1 manual recommends solids to be initially tested at the maximum applicable dose (MAD) of 5 mg per plate and at lower concentrations of 2.5, 1, 0.5, 0.1 and 0.05 mg per plate. Liquids are tested initially at the MAD of 200 μl per plate, and at lower concentrations of 100, 50 and 10 μl per plate. Samples are retested over a narrower range of concentrations with strains showing positive results initially. Alternate dose are employed if sample size is limiting or at the direction of the sponsor. Doses selected for the initial test of sample covered the recommended dose range for liquid samples. The highest dose was at the MAD level of 200 μ l/ml per plate and included three lower dose levels of 100, 50 and 10 μ l per plate. These dose levels corresponded to 3660, 1830, 915, and 183 μg organics per plate. The second trial, using a lower range of doses, was conducted using dose levels of 5, 2.5 and 1.0 μ l per plate. These doses corresponded to 91.5, 45.75 and 18.3 μg organics per plate. # B. Mutagenicity Testing The procedure used was based on the paper published by Ames et. al. 9 and was performed as follows: # 1. Nonactivation Assay To a sterile 13 \times 100 mm test tube placed in a 43°C water bath the following was added in order: - 2.00 ml of 0.6% agar containing 0.05 mM histidine and 0.05 mM biotin. - 0.01 ml to 0.2 ml of a solution of the test chemical to give the appropriate dose. - 0.1 ml to 0.2 ml of indicator organism(s). - 0.50 ml of 0.2M phosphate buffer, pH 7.4. This mixture was swirled gently and then poured onto minimal agar plates (see IV B, Media). After the top agar had set, the plates were incubated at 37°C for approximately 2 days. The number of his+ revertant colonies growing on the plates were counted with an automatic colony counter and recorded. # 2. Activation Assay The activation assay was run concurrently with the nonactivation assay. The only difference was the addition of 0.5 ml of S9 mix (see IV C, Activation System) to the tubes in place of 0.5 ml of phosphate buffer which was added in nonactivation assays. All other details were similar to the procedure for nonactivation assays. A detailed flow diagram for the plate incorporation assay is provided in Figure 1. # C. Control Compounds A negative control consisting of the solvent used for the test material was also assayed concurrently with the test material. For negative controls, step 'b' of Nonactivation Assays was replaced by 0.05 ml of the solvent. The negative controls were employed for each indicator strain and were performed in the absence and presence of S9 mix. The solvent used to prepare the stock solution of the test material is given in the Results section of this report. All dilutions of the test material were made using this solvent. The amount of solvent used was equal to the maximum volume used to give the appropriate test dose. Specific positive control compounds known to revert each strain were also used and assayed concurrently with the test material. The concentrations and specificities of these compounds to specific strains are given in the following table: | Assay | Chemical | Solvent | Concentration per plate (µg) | Salmonella
Strains | |---------------|--------------------------|------------------------|------------------------------|-----------------------| | Nonactivation | Sodium azide | Water | 10.0 | TA-1535, TA-100 | | | 2-Nitrofluorene
(NF) | Dimethyl-
sulfoxide | 10.0 | TA-98 | | | 9-aminoacridine
(9AA) | Ethanol | 50.0 | TA-1537 | | Activation | 2-anthramine
(ANTH) | Dimethyl-
sulfoxide | 2.5 | For all strains | # D. Recording and Presenting Data The number of colonies on each plate were counted and recorded on printed forms. These raw data were analyzed in a computer program and reported on a printout. The results are presented as revertants per plate for each indicator strain employed in the assay. The positive and solvent controls are provided as reference points. ## AMES ASSAY [PLATE INCORPORATION METHOD] Figure 1 AMES SALMONELLA/MICROSOME MUTAGENESIS ASSAY # VI. RESULTS # A. <u>Interpretations</u> The test material, A81-05-030-650 (EA-1 XAD extract), in methylene chloride was solvent exchanged to DMSO and this solvent exchanged material was tested for its genetic activity in the EPA Level 1 Ames assays. The organic content, after solvent exchange, was 18.3 mg per ml. Initially, the test was performed only with TA-98 and TA-100 at four dose levels from 10.0 μ l per plate to 200.0 μ l per plate doses due to the limited quantity of the test sample. The initial results with TA-98 and TA-100 exhibited positive response at the lowest dose of 10.0 μ l per plate with both strains. The test sample was toxic to both strains at doses of 50.0 μ l and above in the nonactivation assays. As such, repeat tests were conducted using all the four Salmonella strains at 1, 2.5 and 5.0 μ l/plate in the activation and nonactivation assays. The repeat tests conducted on
the test sample were positive with TA-1537 and TA-98 in the activation and nonactivation assays and with TA-100 in the activation assays. The minimum effective concentration that exhibited the mutagenic response was at 2.5 μl per plate (45.75 μl organics/plate) in the activation assays with TA-1537 and TA-98. This response, while in the high mutagenicity category, closely approached the high/moderate borderline. The test material, therefore, was ranked as having high/moderate (H/M) mutagenicity using the IERL-EPA Level 1 evaluation criteria for the Ames Assay¹. These tests indicate that the XAD extract of the test material, A81-05-030-650 (EA-1 XAD extract), contains both base-pair and frameshift type mutagens. Solvent control and positive control values were within acceptable ranges. These results achieved assay acceptance criteria and provided confidence in the assumptions that the recorded data represented typical responses to the test material. ## B. Tables This report is based on the data provided in Tables 1 and 2. RESULTS TABLE 1 A. NAME OR CODE DESIGNATION OF THE TEST COMPOUNC: A81-05-030-650 (EA-1 XAD EXTRACT) B. SOLVENT: NONE C. TEST INITIATION DATES: 10/01/81 O. TEST COMPLETION DATE: 10/05/81 E. S-9 LOTM: REF050 NOTE: CONCENTRATIONS ARE GIVEN IN MICROLITERS FER FLATE | | | | | RE | YE | RTA | N T | \$ F | ER | FLATE | |--------------|----------|---------|--------|------|-------|-----|------|------|----------|-------| | TEST | | SPECIES | TISSUE | TA- | -98 | ~ | AF | -100 | | | | | | | | 1 |
2 | 3 | | 2 | 3 | • | | NONACTIVATIO | ON
 | | | • | • | J | • | 4. | | | | SOLVENT CON | TROL | | | 30 | 30 | | 124 | 128 | ı | | | POSITIVE CO | NTROL . | | | 760 | 814 | | 1192 | 1363 | ! | | | TEST COMPOU | NU. | | | | | | | | | | | 10.00 | UL | | | 93 | 119 | | 303 | 249 | ı | | | 50.00 | UL | | | 0 | 0 | | | | | | | 100.00 | UL | | | 0 | 0 | | 0 | | | | | 200.00 | UL | | | G | 0 | | 0 | 0 | l | | | ACTI VATION | ~ | 4 | | | | | | | | | SOLVENT CONT | | | LIVER | | 45 | | | 132 | | | | POSITIVE CON | WIRDE ** | * HAI | LIVER | 2036 | | | 2074 | 2145 | 1 | | | TEST COMPOUN | ND | | | | | | | | | | | 10.00 | UL | RAT | LIVER | 466 | 301 | | 397 | 345 | i | | | 50.00 | UL | RAT | LIVER | 315 | 218 | | 351 | 348 |) | | | 100.00 | UL | RAT | LIVER | 185 | 110 | | 0 | 0 | 1 | | | 200.00 | UL | RAT | LIVER | 0 | 0 | | 0 | 0 | i | | TA-98 2-NITROFLUGRENE TA-100 SODIUM AZIDE SOLVENT 50 UL/PLATE - INDICATES TEST WAS NOT DONE 10 UG/PLATE TA-98 2-ANTHRAMINE 2.5 UG/PLATE TA-100 2-ANTHRAMINE 2.5 UG/PLATE RESULTS TABLE 2 A. NAME OR CODE DESIGNATION OF THE TEST COMPOUNC: A81-05-03(-650 (EA-1XAD EXTRACT) B. SCLVENT: DMSC C. TEST INITIATION DATES: 10/13/81 D. TEST COMPLETION DATE: 10/16/81 E. S-9 LOTH: REF050 NCTE: CONCENTRATIONS ARE GIVEN IN MICROLITERS PER PLATE | R | F | v | F | Ω | T | | M | T | 2 | F | R | F | ŧ | | Ť | F | |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | • | • | • | - | n | • | ~ | | • | • | | n | | _ | _ | | - | | TEST | SPECIES | TISSUE | TA- | 1535 | | TA-1537 | | | TA-98 | | | TA-100 | | | | |--------------------|---------|--------|------|------|---|---------|---|---|-------|---|---|--------|---|---|--| 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | | | NONACTIVATION | SOLVENT CONTROL | | | 12 | | | 9 | | | 27 | | | 123 | | | | | SOLVENT CONTROL | | | 16 | | | ģ | | | 22 | | | 109 | | | | | PGSITIVE CONTROL | | | 758 | | | 256 | | | 958 | | | 1404 | | | | | | | | | | | | | | | | | - | | | | | POSITIVE CONTROL+ | | | 1007 | | | 220 | | | 933 | | | 1370 | | | | | TEST COMPOUND | | | | | | | | | | | | | | | | | 1.00 UL | | | 14 | | | 7 | | | 38 | | | 112 | | | | | 2.50 UL | | | 19 | | | 12 | | | 35 | | | 139 | | | | | 5.00 UL | | | 8 | | | 28 | | | 50 | | | 191 | | | | | ACTIVATION | SOLVENT CONTROL | RAT | LIVER | 8 | | | 6 | | | 38 | | | 97 | | | | | SOLVENT CONTROL | RAT | LIVER | 11 | | | ī | | | 37 | | | 105 | | | | | POSITIVE CONTROL++ | | LIVER | 391 | | | 131 | | | 1680 | | | 2113 | , | | | | | | | _ | | | | | | | | | | • | | | | POSITIVE CONTROL+ | - KAI | LIVER | 351 | | | 116 | | | 1758 | | | 1997 | | | | | TEST COMPCUND | | | | | | | | | | | | | | | | | 1.00 UL | RAT | LIVER | 10 | | | 15 | | | 62 | | | 134 | | | | | 2.50 UL | RAT | LIVER | 11 | | | 27 | | | 111 | | | 173 | | | | | 5.00 UL | RAT | LIVER | 13 | | | 46 | | | 170 | | | 249 | TA-1535 SODIUM AZIDE 10 UG/PLATE TA-1535 2-ANTHRAMINE 2.5 UG/PLATE TA-1537 2-ANTHRAMINE 2.5 UG/PLATE TA-1537 2-ANTHRAMINE 2.5 UG/PLATE TA-98 2-ANTHRAMINE 2.5 UG/PLATE TA-98 2-ANTHRAMINE 2.5 UG/PLATE 10 UG/PLATE TA-100 2-ANTHRAMINE 2.5 UG/PLATE SOLVENT 50 UL/PLATE - INDICATES TEST WAS NOT DONE SODIUM AZIDE TA-100 __ # VII. ASSAY ACCEPTANCE AND EVALUATION CRITERIA Statistical methods are not currently used, and evaluation is based on the criteria included in this protocol. Plate test data consists of direct revertant colony counts obtained from a set of selective agar plates seeded with populations of mutant cells suspended in a semisolid overlay. Because the test material and the cells are incubated in the overlay for approximately 2 days and a few cell divisions occur during the incubation period, the test is semiquantitative in nature. Although these features of the assay reduce the quantitation of results, they provide certain advantages not contained in a quantitative suspension test: - The small number of cell divisions permits potential mutagens to act on replication DNA, which is often more sensitive than nonreplicating DNA. - The combined incubation of the test article and the cells in the overlay permits constant exposure of the indicator cells for approximately 2 days. # A. Surviving Populations Plate test procedures do not permit exact quantitation of the number of cells surviving chemical treatment. At low concentrations of the test material, the surviving population on the treatment plates is essentially the same as that on the negative control plate. At high concentrations, the surviving population is usually reduced by some fraction. Our protocol will normally employ several doses ranging over two or three log concentrations, the highest of these doses being selected to show slight toxicity as determined by subjective criteria. # B. <u>Dose-Response Phenomena</u> The demonstration of dose-related increased in mutant counts is an important criterion in establishing metagenicity. A factor that might modify dose-response results for a mutagen would be the selection of doses that are too low (usually mutagenicity and toxicity are related). If the highest dose is far lower than a toxic concentration, no increases may be observed over the dose range selected. Conversely, if the lowest dose employed is highly cytotoxic, the test material may kill any mutants that are induced, and the test material will not appear to be mutagenic. # C. Control Tests Positive and negative control assays were conducted with each experiment and consisted of direct-acting mutagens for nonactivation assays and mutagens that require metabolic biotransformation in activation assays. Negative controls consisted of the test material solvent in the overlay agar together with the other essential components. The negative control plate for each strain gave a reference point to which the test data was compared. The positive control assay was conducted to demonstrate that the test systems were functional with known mutagens. The following normal range of revertants for solvent controls are generally considered acceptable. TA-1535: 8-30 TA-1537: 4-30 TA-98: 20-75 TA-100: 80-250 #### D. Evaluation Criteria for Ames Assay Because the procedures to be used to evaluate the mutagenicity of the test material are semiquantitative, the criteria to be used to determine positive effects are inherently subjective and are based primarily on a historical data base. Most data sets will be evaluated using the following criteria. #### 1. Strains TA-1535 and TA-1537 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to three times the solvent control value will be considered to be mutagenic. #### 2. Strains TA-98 and TA-100 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to twice the solvent control value for TA-98 and TA-100 will be considered to be mutagenic. #### Pattern Because TA-1535 and TA-100 are both derived from the same parental strain (G-46), to some extent there is a built-in redundancy in the microbial assay. In general, the two strains of a set respond to the same mutagen and such a pattern is sought. Generally, if a strain responds to a mutagen in nonactivation tests, it will do so in activation tests. #### 4. Reproducibility If a test material produces a response in a single test that cannot be reproduced in additional runs, the initial positive test data lose significance. The preceding criteria are not absolute, and other extenuating factors may enter into a final evaluation decision. However, these criteria will be applied to the majority of situations and are presented to aid those individuals not familar with this procedure. As the data base is increased, the criteria for evaluation can be more firmly established. 5-183 # E. Relation Between Mutagenicity and Carcinogenicity It must be emphasized that the Ames <u>Salmonella/Microsome Plate Assay is not a definitive test for chemical carcinogens</u>. It is recognized, however, that correlative and functional relations have been demonstrated between these two endpoints. The results of
comparative tests on 300 chemicals by McCann <u>et al.</u> 4 show an extremely good correlation between results of microbial mutagenesis tests and <u>in vivo</u> rodent carcinogenesis assays. All evaluations and interpretation of the data to be presented in the final report will be based only on the demonstration, or lack, of mutagenic activity. # F. Criteria for Ranking Samples in the Ames Assay The goal of EPA Level 1 Ames testing is to rank source streams by relative degree of genetic toxicity (mutagenicity). Samples are first identified as mutagenic or nonmutagenic by the criteria in Section D above and then ranked using the mutagenicity categories presented in the table below. The lowest concentration giving a positive response in any strain, with or without metabolic activation, is identified as the minimum effective concentration (MEC) for that sample. The mutagenicity of the sample is evaluated as high (H), moderate (M), low (L), or nondetectable (ND) according to the evaluation criteria developed in the Level 1 manual and summarized below. Samples with no detectable activity at the maximum applicable dose (MAD) are ranked nondetectable (ND). # Ames Assay Mutagenicity Ranking Criteria¹ | Mutagenic
Activity | Solids
(MEC in µg/plate) | Liquids ^a
(MEC in µl/plate) | |-----------------------|-----------------------------|---| | High (H) | <50 | <2 | | Moderate (M) | 50-500 | 2-20 | | Low (L) | 500-5000 | 20-200 | | Not Detectable (ND) | >5000 | >200 | ^aConcentration of organic extracts is based upon organic content (μg organics per plate) and not volume (μl extract per plate) of sample tested. # VIII. REFERENCES - 1. Brusick, D.J., et al.: <u>IERL-RTP Procedures Manual</u>: <u>Level 1 Environmental Assessment Biological Tests</u>. <u>EPA Contract No. 68-02-2681</u>, <u>Technical Directive No. 501</u>, <u>Litton Bionetics</u>, <u>Inc.</u>, <u>Kensington</u>, <u>MD</u>, <u>September 1980</u>, 177 pp. In press. - 2. Brusick, D.J.: <u>Level 1 Bioassay Assessment and Data Formatting</u>. EPA-600/7-80-079, Litton Bionetics Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135, Litton Bionetics, Inc., Kensington, MD, August 1981, 52 pp. - 4. McCann, J., Choi, E., Yamasaki, E. and Ames, B.N.: Detection of carcinogens as mutagens in the <u>Salmonella/microsome</u> test: Assay of 300 chemicals. Proc. Nat. Acad. Sci., USA 72:5135-5139, 1975. - 5. Ames, B.N., Gurney, E.G., Miller, J.A. and Bartsch, H.: Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylamino-fluorene and other aromatic amine carcinogens. Proc. Nat. Acad. Sci., USA 69:3128-3132, 1972. - 6. Ames, B.N., Lee, F.D., and Durston, W.E.: An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Nat. Acad. Sci., USA 70:782-786, 1973. - 7. Ames, B.N., Durston, W.E., Yamasaki, E. and Lee, F.D.: Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Nat. Acad. Sci., USA 70:2281-2285, 1973. - 8. McCann, J., Springarn, N.E., Kobori, J. and Ames, B.N.: Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA 72:979-983, 1975. - 9. Ames, B.N., McCann, J. and Yamasaki, E.: Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutation Res., 31:347-364, 1975. - 10. Vogel, H.J. and Bonner, D.M.: Acetylornithinase of E. coli partial purification and some properties. J. Biol. Chem., 218:97-106, 1966. GENETICS ASSAY NO.: 5880 LBI SAFETY NO.: 7164 CYTOTOXIC EVALUATION OF A81-05-030-650 (EA-1 XAD EXTRACT) IN THE RODENT CELL (CHO) CLONAL TOXICITY ASSAY FINAL REPORT # SUBMITTED TO: ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 # SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20895 LBI PROJECT NO. 22064 REPORT DATE: NOVEMBER 1981 #### PREFACE This assay conforms to the standard EPA Level 1 procedure for the Chinese hamster ovary cell (CHO) clonal toxicity assay as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests" (1). The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting" (2). The CHO clonal toxicity assay has been shown to be a sensitive method for detecting cytotoxic activity for a variety of chemicals representing various chemical classes (3). This assay is one of several recommended by EPA to identify, categorize and rank the pollutant potential of influent and effluent streams from industrial and energy-producing processes. This assay has been well validated with a wide range of positive and negative control chemicals and complex environmental samples. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw data will be supplied to the sponsor upon request. | | | | TAE | 3LE | OF | CO | N I I | <u>EN</u> | 15 | | | | | | | | | Page No. | |-----------|----------------|-----------------------------------|------|------|----|----|-------|-----------|----|---|---|---|---|---|---|---|---|-------------| | PREFACE . | | | | | | | • | | | • | • | • | • | • | | • | • | i | | I. | ASSAY | SUMMARY | | | | | • | | | | | | • | • | | • | • | 1 | | II. | OBJEC | CTIVE | | | | | • | | | | | • | | | | • | | 2 | | III. | TEST | MATERIAL | | | | | | | | • | • | | | | • | • | | 3 | | | A.
B. | Description
Handling and | | | | | | | | | | | | | | | | 3 | | IV. | MATER | RIALS | | | | | | | | | • | • | | | | | | 4 | | | A.
B.
C. | Indicator Co
Media
Controls | | | | | • | | | | | | | | ٠ | | | 4
4
4 | | ٧. | EXPER | RIMENTAL DESI | GN . | | | | • | | | | | | | | | | | 5 | | | A.
B. | Dose Selecti
Clonal Toxic | | | | | | | | | | | | | | | | 5
5 | | VI. | ASSAY | ACCEPTANCE | CRIT | ΓER | Α | | | | | | | • | | | • | | | .7 | | VII. | RESUL | _TS | | • | | | | | | • | | | • | | | | | . 8 | | | A.
B. | Interpretati
Tables and F | | | | | | | | | | | | | | | | 8
8 | | VIII. | ASSAY | Y EVALUATION | CRIT | ΓER: | [A | | | | | | | • | | • | • | | • | 12 | | IX. | REFER | RENCES | | | | | | | | | | | | | | | | 13 | - Ī. ASSAY SUMMARY - Α. SPONSOR: Acurex Corporation - MATERIAL (TEST COMPOUND): GENETICS ASSAY NUMBER: B. - 1. Identification: A81-05-030-650 (EA-1 XAD Extract) - Date Received: August 26, 1981 2. - Physical Description: Clear, amber-brown liquid 3. - C. TYPE OF ASSAY: Rodent Cell (CHO) Clonal Toxicity Assay - D. ASSAY DESIGN NUMBER: 442 - E. STUDY DATES: - 1. Initiation: September 23, 1981 - 2. Completion: November 24, 1981 - F. SUPERVISORY PERSONNEL: - 1. Study Director: Brian C. Myhr, Ph.D. - 2. Laboratory Supervisor: Robert Young, M.S. - G. **EVALUATION:** The test material was assayed, as a DMSO extract, over the concentration range of 0.01 \mulml to 20 \mulml. A very sharp increase in toxicity occurred in the vicinity of 0.1 μ l/ml in the course of two trials. The EC₅₀ was estimated to be 0.1 μ l/ml, which was equivalent to 1.8 μ g of organics/ml. Although the exact position of the EC₅₀ appeared to vary between the two trials, the values remained in the high (H) toxicity category defined by the evaluation criteria for the IERL-EPA Level 1 CHO Clonal Toxicity Assay1. Submitted by: Study Director Brian Myhr, Pb/D. Associate Director. Department of Molecular Toxicology Reviewed by: Director, Department of Molecular Toxicology #### II. OBJECTIVE The objective of this study was to determine and rank the cytotoxicity of A81-05-030-650 (EA-1 XAD extract) to cultured Chinese hamster cells (CHO-K1 cell line). The measure of cytotoxicity was the reduction in colony-forming ability after a 24-hour exposure to the test material. After a period of recovery and growth, the number of colonies that developed in the treated cultures was compared to the colony number in unexposed vehicle control cultures. The concentration of test material that reduced the colony number by 50% was estimated graphically and referred to as the EC50 value. Standard EPA Level 1 toxicity evaluation criteria for the CHO clonal toxicity assay were used to rank the toxicity potential of the test material. # III. TEST MATERIAL # A. <u>Description</u> The test material was received as a clear, amber-brown solution in methylene chloride. The sample contained 75.0 milligrams of organic material in 0.7 ml of methylene chloride. No information on the sampling parameters (such as the equivalent volume of stack gas represented by the sample) was provided. #### B. Handling and Preparation The test material was received at LBI on August 26, 1981. The sample was assigned LBI safety number 7163 and LBI assay number 5879. The sample was stored at $+4^{\circ}$ C in the dark. Pretest sample preparation consisted of solvent-exchanging the sample into dimethylsulfoxide (DMSO). The sample was transferred with methylene chloride rinses into a graduated conical tube. The methylene chloride was gradually evaporated (50°C under a stream of nitrogen) and DMSO was sequentially added. The sample was brought to volume in 4.1 ml of DMSO, giving a sample concentration of 18.3 mg organics per ml DMSO. The sample was then transferred to a glass vial and sealed with a teflon-coated rubber septum. A total volume of 0.45 ml of
test sample was used in the CHO assay. The maximum concentration of 20 μ l/ml was obtained by adding 0.12 ml of sample to 5.88 ml of F12 medium; this resulted in 2% (v/v) DMSO in the medium and effectively limited the concentration of test material that could be assayed. Only two plates were exposed to the high dose in order to conserve sample. Another 0.12 ml aliquot of sample was used to prepare the 10 μ l/ml test concentration. An additional 0.21 ml of test sample was used to prepare a series of dilutions in DMSO from which 1:100 dilutions into growth medium were performed to obtain the lower assayed concentrations. Thus, except for the 20 μ l/ml test concentration, the final DMSO concentration was constant at 1% (v/v). #### IV. MATERIALS #### A. <u>Indicator Cells</u> The indicator cells for this study were Chinese hamster CHO-K1 cells (ATCC No. CCL 61) obtained from Flow Laboratories, Inc., Rockville, MD. This cell type was derived from ovarian tissue and has spontaneously transformed to a stable, hypodiploid line of rounded, fibroblastic cells with unlimited growth potential. Monolayer cultures have a fast doubling time of 11 to 14 hours, and untreated cells can normally be cloned with an efficiency of 80% or greater. Laboratory stock are maintained by routine serial subpassage. Cells are cultivated in Ham's F-12 nutrient medium at 37°C in 5 percent CO₂ with saturated humidity. Stocks are continually observed macroscopically and microscopically for possible microbial contamination. Laboratory cultures are periodically checked by culturing and staining methods for the absence of mycoplasma contamination. Laboratory cultures are discarded every three months and new cultures started from mycoplasma-free, long-term frozen cultures. #### B. Media The CHO-K1 cell line has an absolute requirement for proline and therefore must be maintained in culture medium containing sufficient amounts of this amino acid. Ham's F12 medium, which contains 3 x 10-4 M L-proline was used, supplemented with 10% fetal bovine serum, 2mM L-glutamine, 100 units/ml of penicillin, 100 $\mu g/ml$ of streptomycin, and 0.9 $\mu l/ml$ of amphotericin B. A 10X formulation of Ham's F10 is available commercially and was used for the testing of aqueous test samples in order to avoid the dilution of medium components. This medium contains 1 x 10-4 L-proline and was supplemented in the same manner as F12, except that kanamycin at 40 $\mu g/ml$ is included for additional protection against bacterial contamination. Both media formulations support the growth and cloning of CHO cells equally well. #### C. Controls The negative control consisted of three untreated cultures carried through the same experimental time period as the treated cells. Since the test material was tested as a solution in an organic vehicle (DMSO) and was diluted into the medium to provide each test concentration, two sets of vehicle control cultures containing the organic solvent at 1% and 2% by volume were prepared in triplicate. The average number of colonies in the negative control established the cloning efficiency of the CHO cells used in the assay, and the appropriate vehicle controls provided the reference points for determining the effects of different concentrations of the test material on cell survival. #### V. EXPERIMENTAL DESIGN #### A. Dose Selection Unless the approximate toxicity is already known or the sample size is limiting, the following dose ranges are usually tested for different sample forms. Aqueous samples, suspensions, or slurries are tested from 600 μ l/ml to 3 μ l/ml, usually in six dose steps. Eight doses are often used when the amount of test sample is limited to provide a more precise description of toxicity in the event of sharp dose-response curves. Dry, particulate material is dissolved or suspended in DMSO, diluted into growth medium, and tested at six dose levels from 1000 μ g/ml to 3 μ g/ml. Samples that are solvent-exchanged into DMSO are tested from 20 μ l/ml (2% DMSO in growth medium) to 0.2 μ l/ml, also in six dose steps. A second dose study is performed with an adjusted dose range if the EC50 was not located properly in the initial test. However, EC50 values greater than 1000 μ g/ml for particulate material, 600 μ l/ml for aqueous samples, or 20 μ l/ml for organic solutions will not be determined. This sample, A81-05-030-650 (EA-1 XAD extract), was tested at eight dose levels. The concentrations started with the maximum applicable dose (MAD) of 20 μ l/ml and included 10, 6, 3, 1, 0.6, 0.3, and 0.1 μ l/ml. The corresponding concentration of organics at the MAD level was 366 μ g/ml; the lower doses were equivalent to 183, 109.8, 54.9, 18.3, 11.0, 5.5, and 1.8 μ g of organics/ml. #### B. Clonal Toxicity Assay Cells from monolayer stock cultures in logarithmic growth phase were trypsinized with 0.1% trypsin plus 0.01% versene for 4 minutes and the density of the resulting cell suspension determined by hemocytometer. A number of 60-mm culture dishes were then seeded with 200 cells and 4 ml of culture medium per dish. The cultures were incubated for approximately 6 hours at 37°C in a humidified atmosphere containing 5% $\rm CO_2$ to allow attachment of the cells. The 6-hour attachment period was used in order to avoid cell division and the subsequent formation of two-cell colonies prior to treatment. The medium was aspirated from the cultures and 4 ml medium containing the test material applied. Three cultures were exposed to each test concentration. After an exposure time of 24 hours at 37°C, the medium was removed by aspiration and each culture washed three times with approximately 4 ml aliquots of Dulbecco's phosphate buffered saline (pre-warmed to 37°C). Fresh culture medium (5 ml) was placed in each dish and incubation at 37°C is continued for an additional 6 days to allow colony development. The test material caused a color change in the culture medium, the pH of the medium containing the high dose would be determined at the time of treatment. The pH at the lowest dose that results in a slight color change would also recorded. At the end of the treatment period, the pH values of the discarded media from the two described treatments would be recorded again. No sample related pH effects were noted. After the incubation period, the medium was drained from the cultures and the surviving colonies fixed with 100% ethanol and stained with Giemsa. Colonies were counted by eye; tiny colonies of approximately 50 cells or less were arbitrarily excluded from the counts. # VI. ASSAY ACCEPTANCE CRITERIA The assay is considered acceptable for evaluation of the test results if the following criteria are met: - The average cloning efficiency of the CHO-K1 cells in the negative controls is 70% or greater, but not exceeding 115%. - The distribution of colonies in the treated cultures is generally uniform over the surface of the culture dish. - The data points for each test concentration critical to the location of the EC50 are the averages of at least two treated cultures. - A sufficient number of test concentrations are available to clearly locate the EC50 within a toxicity region as defined under Assay Evaluation Criteria. - If the EC50 value is greater than 1000 μ g/ml, 600 μ liters of aqueous sample/ml, or 20 μ liters of nonaqueous sample/ml, the plotted curve does not exceed 110% of the negative control. #### VII. RESULTS #### A. Interpretation The test material, A81-05-030-650 (EA-1 XAD extract), was highly toxic to the CHO cells in the first trial. As shown in Table 1, only the low dose of 0.1 μ l/ml resulted in any surviving colonies (15.6% survival). These results indicated that the EC₅₀ was less than 0.1 μ l/ml or 1.8 μ g of organics/ml. Since EC₅₀ values below 10 μ g/ml are in the high toxicity region defined for the IERL-EPA CHO clonal toxicity bioassay¹, the test material was clearly categorized as having high (H) toxicity to CHO cells. A very small amount of the test material was available for a second trial, so an attempt was made to locate the EC₅₀. Concentrations from 0.01 μ l/ml to 0.3 μ l/ml were tested, and the results are presented in Table 2. Also, the relative survivals were plotted along with the results from the first trial in Figure 1. A comparison of the two trials indicated that the EC₅₀ had shifted to a value greater than 0.1 μ l/ml in the second trial. The survival curve was very sharp. It is not unusual for sharp curves to shift between trials, so the results were analyzed by considering a curve that appeared to be intermediate between the two tirals (dashed line in Figure 1). Thus, a sharp break in survival was estimated to be centered, on the average, at an EC₅₀ of 0.1 μ l/ml (1.8 μ g organics/ml). Individual trials might yield values ranging from 0.06 to 0.16 μ l/ml (1.1 to 2.9 μ g organics/ml). The cells used for the assay were in logarithmic growth phase and were greater than 98 percent viable for both trials. About 73 percent of the seeded cells in trial 1 and 77 percent of the seeded cells in trial 2 were able to form colonies as shown by the negative control results. Colony growth was normal and well distributed on the culture dishes. The combined results were considered to achieve assay acceptance criteria and provided confidence in the assumption that the recorded data represented typical responses to the test material. #### B. <u>Tables and Figures</u> This report is based on the data provided in Tables 1 and 2 and Figure 1. ## TABLE 1 RODENT CELL (CHO) CLONAL TOXICITY ASSAY Sample Identity: A81-05-030-650 EC50 Value: <1.8 μg/ml (EA-1 XAD Extract) Toxicity .Classification: High Description of Sample: Clear, pH Alterations: None amber-brown liquid Comments on LBI Assay No.: 5879 Treatment: Sample prepared in DMSO Date Received: August 26, 1981 at a concentration of 18.3 µg Test Date: September
28, 1981 (Trial 1) organics/µl Vehicle: DMSO Cell Type: CHO-K1 Cells Seeded per Dish: 200 #### **COLONY COUNTS** | Sample | Applied
Concentration
µl/ml | Dish
#1 | Dish
#2 | Dish
#3 | Average
Count | Relative
Survival ^a
% | Cloning
Efficiency
% | |--|-----------------------------------|------------|------------|------------|------------------|--|----------------------------| | NC ^b
VC, 1% ^C | ••• | 146 | 152 | 140 | 146.0 | | 73.0 | | VC, 1% ^C | 10 | 143 | 125 | 155 | 141.0 | 100.0 | 70.5 | | VC, 2% | 20 | 112 | 110 | 121 | 114.3 | 100.0 | 57.2 | | TEŚT | 0.1 | 21 | 26 | 19 | 22.0 | 15.6 | | | TEST | 0.3 | 0 | 0 | 0 | 0 | 0 | | | TEST | 0.6 | 0 | 0 | 0 | 0 | 0 | | | TEST | 1.0 | 0 | 0 | 0 | 0 | 0 | | | TEST | 3.0 | 0 | 0 | 0 | 0 | 0 | | | TEST | 6.0 | 0 | 0 | 0 | 0 | 0 | | | TEST | 10.0 | 0 | 0 | 0
Sd | 0 | 0 | | | TEST | 20.0 | 0 | 0 | Sa | 0 | 0 | | Relative to 2% VC for 20 μ l/ml treatment and to 1% VC for other treatments. NC = Negative Control, F_{12} medium. CVC = Vehicle Control, percent DMSO given. donly two plates dosed to conserve limited test material. ### TABLE 2 RODENT CELL (CHO) CLONAL TOXICITY ASSAY Sample Identity: A81-05-030-650 (EA-1 XAD Extract) Description of Sample: Clear, amber brown liquid LBI Assay No.: 5879 Date Received: August 26, 1981 Test Date: November 17, 1981 (Trial 2) Vehicle: F12 Medium Cell Type: CHO-K1 Cells Seeded per Dish: 200 Estimated EC50 Value: 0.1 μ1/m1 (1.8 μg organics /ml) _ Toxicity Classification: High pH Alterations: None Comments on Treatment: Sample prepared in DMSO in DMSO at a concentration of 18.3 μg organics/μl #### CLONAL TOXICITY DATA | Sample | Applied
Concentration
µl/ml | Dish
#1 | Dish
#2 | Dish
#3 | Average
Count | Relative
Survival ^a
% | Cloning
Efficiency
% | |--------|-----------------------------------|------------|------------|------------|------------------|--|----------------------------| | NCb | A = 4 | 141 | 155 | 167 | 154.3 | 100.0 | 77.2 | | TEST | 0.01 | 154 | 155 | 144 | 151.0 | 97.9 | | | TEST | 0.02 | 130 | 137 | 138 | 135.0 | 87.5 | | | TEST | 0.04 | 140 | 135 | 139 | 138.0 | 89.4 | | | TEST | 0.06 | 137 | 136 | 133 | 135.3 | 87.7 | | | TEST | 0.08 | 141 | 130 | 131 | 134.0 | 86.8 | | | TEST | 0.1 | 134 | 125 | 127 | 128.7 | 83.4 | | | TEST | 0.3 | 10 | 6 | 8 | 8.0 | 5.2 | | $^{{}^{}a}_{b}$ Relative to F12 negative control for all treatments. ${}^{b}_{NC} = Negative \ Control, \ F12 \ medium.$ FIGURE] # A81-05-030-650 (EA-1 XAD EXTRACT) CONCENTRATION, µ 1/m1 TRIAL 1 TRIAL 2 5-199 #### VIII. ASSAY EVALUATION CRITERIA The EC50 value represents the concentrations of test material that reduces the colony-forming ability of CHO cells to 50% of the vehicle or negative control value. EC50 values are determined graphically by fitting a curve by eye through relative survival data plotted as a function of the logarithm of the applied concentration. Each data point normally represents the average of three culture dishes. In order to indicate the variability of the data, the high and low colony counts for each concentration are used to calculate the relative survivals, and the range is shown by a bar at the position of the plotted average. If no bar is shown, the variability was within the size of the symbol. Statistical analysis is unnecessary in most cases for evaluation. The toxicity of the test material is evaluated as high, moderate, low, or nondetectable according to the range of EC50 values defined in the following table. | Toxicity ^a | Solids
(EC _{so} in µg/ml) | Aqueous Liquids
(EC ₅₀ in µ1/m1) | Nonaqueous Liquids ⁹
(EC ₅₀ in µl/ml) | |-----------------------|---------------------------------------|--|--| | High | <10 | <6 | <0.2 | | Moderate | 10 to 100 | 6 to 60 | 0.2-2 | | Low | 100 to 1000 | 60 to 600 | 2-20 | | Not Detectable | >1000 | >600 | >20 | ^aEvaluation criteria formulated by Litton Bionetics, Inc. for <u>IERL-RTP</u> <u>Procedures Manual: Level I Environmental Assessment Biological Tests.</u> Another evaluation scheme is proposed for extracts obtained from SASS train gas volumes. The proportion of the total gas volume corresponding to the volume of extract used in the bioassay is calculated and expressed as L/ml of culture medium (or DSCF/ml of culture medium). A criterion of 1000 L/ml is set as the limit for nondetectable toxicity. This gas volume corresponds to the average volume breathed by humans over a 2-hour period. The subsequent toxicity ranges are defined by 10-fold dilution steps to conform to standard procedure. The toxicity ranges are defined in the following table for liter and dry standard cubic feet units: | Toxicity | EC ₅₀ In
Liters/ml (L/ml) | EC ₅₀ In Dry Standard Cubic Feet/ml (DSCF/ml) | |---------------|---|--| | High | <10 | <0.35 DSCF | | Moderate | 10-100 | 0.35-3.5 | | Low | 100-1000 | 3.5-35 | | Nondetectable | >1000 | >35 | ^bCriteria for nonaqueous liquids are tentative and under evaluation. If the organic or solids content is known, the sample is evaluated under the solids criteria. # IX. REFERENCES - 1. Brusick, D.J., et al.: IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests. EPA Contract No. 68-02-2681, Technical Directive No. 501, Litton Bionetics, Inc., Kensington, MD, September 1980, 177 pp. In press. - 2. Brusick, D.J.: <u>Level 1 Bioassay Assessment and Data Formatting</u>. EPA-600/7-80-079, Litton Bionetics, Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135, Litton Bionetics, Inc., Kensington, MD, August 1981, pp 52. GENETICS ASSAY NO.: 5886 LBI SAFETY NO.: 7170 MUTAGENICITY EVALUATION OF A81-05-030-662 (EA-1 FLYASH) IN THE EPA LEVEL 1 SALMONELLA/MICROSOME PLATE TEST FINAL REPORT # SUBMITTED TO: ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 # SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20895 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 5-202 #### **PREFACE** This assay conforms to the standard EPA Level 1 procedure for the Ames <u>Salmonella</u>/microsome mutagenesis assay as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests". The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting". The Ames <u>Salmonella/microsome</u> mutagenesis assay has been shown to be a sensitive method for detecting mutagenic activity for a variety of chemicals representing various chemical classes³. This assay is one of several recommended by EPA to identify, categorize and rank the pollutant potential of influent and effluent streams from industrial and energy-producing processes. This assay has been well validated with a wide range of positive and negative control chemicals and complex environmental samples. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw data will be supplied to the sponsor upon request. # TABLE OF CONTENTS | | | | | | _ | | | | - | | | | | | | | | | | | | | | | |-----------|----------------------|---------------------------------------|--------------------|--|---|--------------------------------|------------------|-----------------------------|------------------------|------------------|-----------------|-----------|-----------|-----|-----|----|----|---|-----|----|---|----------|-----|--| <u>P</u> | age | No. | | | PREF | ACE . | | | • | | • | | • | • | • | | | | | | | • | • | • | | • | | i | | I. | ASSAY | Y SUM | IMARY | · . | • | | • | | | • | | | | | | | | | • | • | | • | | 1 | | II. | OBJE | CTIVE | | | • | | | | | | • | | | • , | | • | | | • | | | • | | 2 | | III. | TEST | MATE | RIA | - • | • | | | | • | | • | | | | • | • | | • | • | • | | ٠ | | 3 | | | A.
B. | Desc
Hand | ripi
Ning | tior
g ar | n
nd |
Pre | par | ati | ion | • | | | | | | • | | • | • | • | | | | 3 | | IV. | MATE | RIALS | ; | | | | • | | | • | • | • | | • | • | • | | • | | • | • | • | | 4 | | | A.
B.
C. | Indi
Medi
Acti
1.
2. | a
vat
S9 | | Sy:
nog: |
ste
ena | m
te | | • | • | • | • | • | • | • | • | • | : | • | • | • | ·
· | | 4
5
5
5 | | ٧. | EXPE | RIMEN | ITAL | DES | SIG | Ν. | | | • | • | | • | | | | | | • | • | • | | | | 6 | | | A.
B. | Dose
Muta
1.
2. | agen
No:
Ac: | icit
nact
tiva | ty
tiv
ati | Tes
ati | t
on
Ass | . Ass | ay | • | • | | • | • | • | | • | | | • | • | | | 6
6
6
7 | | | C.
D. | Cont
Rec | roi | ng a | npo
and | und
Pr | s
ese | ent | ing | Ď | ata | | • | • | • | • | • | • | : | • | • | • | | 7 | | VI. | RESU | LTS . | | | | | • | | • | | • | • | • | • | • | • | • | • | • | • | • | | | 9 | | | A.
B. | | erpro | 9
9 | | VII. EVAL | UATIO | N CR | TER | IA | | | • | • | | • | | • | | | | | | • | | | | | | 11 | | |
A.
B.
C.
D. | Dose
Cont
Eva
1.
2.
3. | St:
Pa | spoi
Tes
ion
rais
rais
ttes
prod | nse
Sts
Cr
ns
ns
ns
duc | Ph
ite
TA-
TA-
ibi | ria
153
98 | omer
1 fo
35 a
and | na
or
and
d T | Ame
T/
A-: | es
A-:
10 | As
153 | 558
37 | ay | • | • | • | • | • | | • | • | | 11
11
11
12
12
12
12 | | | F. | Ca | arci
teri | noge | eni | cit | У | | | | | | | | e , | Am | es | A | SS: | av | | | | 13
13 | | VIII. | | | EREN | | | | | | | | | | | | | | | | | • | | | | 14 | #### I. ASSAY SUMMARY - Acurex Corporation Α. Sponsor: - Material (Test Compound): Genetics Assay Number: В. - Identification: A81-05-030-662 (EA-1 Flyash) 1. - 2. Date Received: August 26, 1981 - Physical Description: Black and gray particles 3. - Type of Assay: EPA Level 1 Ames Salmonella/Microsome Plate Test C. - Assay Design Number: 401 (EPA Level 1) D. - E. Study Dates: - 1. Initiation: September 23, 1981 - 2. Completion: September 28, 1981 - F. Supervisory Personnel: - Study Director: D.R. Jagannath, Ph.D. - G. Evaluation: The test material, A81-05-030-662 (EA-1 flyash), was evaluated for its genetic activity in the EPA Level 1 Ames Salmonella assay directly and in the presence of a metabolic activation system. The test material was preincubated in dimethylsulfoxide at 37°C overnight in a rotary shaker before testing. Testing was conducted over a concentration range of 0.05 mg/plate to 5.0 mg/plate. The test was performed in duplicate under nonactivation and activation test conditions with strains TA-1535, TA-1537, TA-98, and TA-100. The results of the nonactivation and activation assays were negative. Based on the mutagenicity results, the mutagenic activity of the test material was ranked as nondetectable (ND) according to the EPA Level 1 evaluation criteria for the Ames Assay¹. Submitted by: Study Director D.R. Jagannath, Ph.D. Section Chief, Submammalian Genetics, Department of Molecular Toxicology Director, Reviewed by: Department of Molecular Toxicology 5-205 ### II. OBJECTIVE The objective of this study was to determine the genetic activity of A81-05-030-662 (EA-1 flyash) in the <u>Salmonella</u>/ microsome assay with and without the addition of mammalian metabolic activation preparations. The genetic activity of a sample is measured in these assays by its ability to revert the <u>Salmonella</u> indicator strains from histidine dependence to histidine independence. The degree of genetic activity of a sample is reflected in the number of revertants that are observed on the histidine-free medium. ## III. TEST MATERIAL # A. <u>Description</u> The test material was received as black and gray particles (15 gm) and was used without further preparation. No information on actual particle size distribution or on sampling parameters was received. #### B. <u>Handling and Preparation</u> The test material was received at LBI on August 26, 1981. The sample was assigned LBI safety number 7170 and LBI assay number 5886. The sample was stored at $+4^{\circ}$ C in the dark. A total of 313.08 mg of test material was weighed and suspended in 3.13 ml of dimethylsulfoxide. The sample formed an opaque suspension that settled upon standing. The suspension was incubated at 37°C on a shaker overnight to help leach material out of the particulates. Serial dilutions were made in DMSO such that 50 μl aliquots of each dilution give the desired concentration. The suspension was well mixed when aliquots were removed for dosing. #### IV. MATERIALS #### A. Indicator Microorganisms The <u>Salmonella</u> typhimurium strains used in this assay were obtained from Dr. Bruce Ames, University of California at Berkeley. 4-8 The following four strains were used. | Strain | Gene | Addit | ional M | lutations | Mutation Type | |-------------|--------------|----------------|------------|-----------|---------------------------| | Designation | Affected | Repair | LPS | R Factor | Detected | | TA-1535 | <u>his</u> G | Δ <u>uvr</u> B | rfa | - | Base-pair
substitution | | TA-1537 | <u>his</u> C | Δ <u>uvr</u> B | <u>rfa</u> | - | Frameshift | | TA-98 | <u>his</u> D | Δ <u>uvr</u> B | <u>rfa</u> | pKM101 | Frameshift | | TA-100 | <u>his</u> G | Δ <u>uvr</u> B | rfa | pKM101 | Base-pair
substitution | All the above strains have, in addition to the mutation in the histidine operon, mutation (\underline{rfa}) that leads to defective lipopolysaccharide coat, a deletion that covers genes involved in the synthesis of vitamin biotin (\underline{bio} -) and in the repair of ultraviolet (\underline{uv}) - induced DNA damage (\underline{uvrB} -). The \underline{rfa} - mutation makes the strains more permeable to many large molecules. The \underline{uvrB} - mutation decreases repair of some types of chemically or physically damaged DNA and thereby enhances the strain's sensitivity to some mutagenic agents. The resistant transfer factor plasmid (R factor) pKM101 in TA-98 and TA-100 is believed to cause an increase in error-prone DNA repair that leads to many more mutations for a given dose of most mutagens. In addition, plasmid pKM101 confers resistance to the antibiotic ampicillin, which is a convenient marker to detect the presence of plasmid in the cells. All indicator strains are kept at 4°C on minimal medium plates supplemented with a trace of biotin and an excess of histidine. In addition, the plates with plasmid-carrying strains contain ampicillin (25 μ g/ml) to ensure stable maintenance of plasmid pKM101. New stock culture plates are made as often as necessary from the frozen master cultures or from single colony reisolates that were checked for their genotypic characteristics (his, rfa uvrB, bio) and for the presence of plasmid. For each experiment, an inoculum from the stock culture plates is grown overnight at 37°C in nutrient broth (0xoid CM67) and used. #### B. Media The bacterial strains were cultured in Oxoid Media #2 (Nutrient Broth). The selective medium was Vogen Bonner Medium E with 2% glucose. 10 The overlay agar consisted of 0.6% purified agar with 0.05 mM histidine, 0.05 mM biotin and 0.1M NaCl according to the methods of Ames et al. 9 # C. Activation System ### 1. S9 Homogenate A 9,000 x g supernatant prepared from Sprague-Dawley adult male rat liver induced by Aroclor 1254 (Ames et al. 9) was purchased commercially and used in these assays. #### 2. S9 Mix S9 mix used in these assays consisted of the following components: | Components | | per Milliliter
Mix | |-------------------------------------|-----|-----------------------| | NADP (sodium salt) | 4 | µmoles | | D-glucose-6-phosphate | | umoles | | MgČ1 ₂ | 8 | µmoles | | KČ1 Sodium phosphate buffer | | µmoles | | pH 7.4
Organ homogenate from rat | 100 | µmoles | | liver (S9 fraction) | 100 | µliters / | #### V. EXPERIMENTAL DESIGN #### A. Dosage Selection Test strategy and dose selection depend upon sample type and sample availability. The Level 1 manual recommends solids to be initially tested at the maximum applicable dose (MAD) of 5 mg per plate and at lower concentrations of 2.5, 1, 0.5, 0.1 and 0.05 mg per plate. Liquids are tested initially at the MAD of 200 μl per plate, and at lower concentrations of 100, 50 and 10 μl per plate. Samples are retested over a narrower range of concentrations with strains showing positive results initially. Alternate dose are employed if sample size is limiting or at the direction of the sponsor. Doses selected to test this sample covered the recommended dose range for solids. The highest dose was at the MAD level of 5.0 mg per plate and included five lower dose levels of 2.5, 1, 0.5, 0.1 and 0.05 mg per plate. ### B. <u>Mutagenicity Testing</u> The procedure used was based on the paper published by Ames \underline{et} . \underline{al} . 9 and was performed as follows: #### 1. Nonactivation Assay To a sterile 13 \times 100 mm test tube placed in a 43°C water bath the following was added in order: - 2.00 ml of 0.6% agar containing 0.05 mM histidine and 0.05 mM biotin. - 0.05 ml of a suspension of the test chemical to give the appropriate dose. - 0.1 ml to 0.2 ml of indicator organism(s). - 0.50 ml of 0.2M phosphate buffer, pH 7.4. This mixture was swirled gently and then poured onto minimal agar plates (see IV B, Media). After the top agar had set, the plates were incubated at 37°C for approximately 2 days. The number of his+ revertant colonies growing on the plates were counted with an automatic colony counter and recorded. # Activation Assay The activation assay was run concurrently with the nonactivation assay. The only difference was the addition of 0.5 ml of S9 mix (see IV C, Activation System) to the tubes in place of 0.5 ml of phosphate buffer which was added in nonactivation assays. All other details were similar to the procedure for nonactivation assays. A detailed flow diagram for the plate incorporation assay is provided in Figure 1. #### C. Control Compounds A negative control consisting of the solvent used for the test material was also assayed concurrently with the test material. For negative controls, step 'b' of Nonactivation Assays was replaced by 0.05 ml of the solvent. The negative controls were employed for each indicator strain and were performed in the absence and presence of S9 mix. The solvent used to prepare the stock solution of the test material is given in the Results section of this report. All dilutions of the test material were made using this solvent. The amount of solvent used was equal to the maximum volume used to give the appropriate test dose. Specific positive control compounds known to revert each strain were also used and assayed concurrently with the test material. The concentrations and specificities of these compounds to specific strains are given in the following table: | Assay | Chemical | Solvent | Concentration per plate (µg) | Salmonella
Strains |
---------------|--------------------------|------------------------|------------------------------|-----------------------| | Nonactivation | Sodium azide | Water | 10.0 | TA-1535, TA-100 | | | 2-Nitrofluorene
(NF) | Dimethyl-
sulfoxide | 10.0 | TA-98 | | | 9-aminoacridine
(9AA) | Ethanol | 50.0 | TA-1537 | | Activation | 2-anthramine
(ANTH) | Dimethyl-
sulfoxide | 2.5 | For all strains | #### D. Recording and Presenting Data The number of colonies on each plate were counted and recorded on printed forms. These raw data were analyzed in a computer program and reported on a printout. The results are presented as revertants per plate for each indicator strain employed in the assay. The positive and solvent controls are provided as reference points. ### AMES ASSAY [PLATE INCORPORATION METHOD] Figure 1 AMES SALMONELLA/MICROSOME MUTAGENESIS ASSAY ## VI. RESULTS # A. <u>Interpretations</u> The test material, A81-05-030-662 (EA-1 flyash), was dissolved in DMS0 at a stock concentration of 100 mg/ml and leached overnight on a shaker at 37°C. Additional dilutions were prepared in DMSO for testing. The maximum test level was 5.0 mg/plate. Reverse mutation was measured in strains TA-1535, TA-1537, TA-98 and TA-100. The test was conducted in duplicate both with and without rat liver S9 mix for metabolic activation. There was no mutagenic activity associated with the test material treatment and the sample was considered nonmutagenic and non toxic. The sample was ranked as having nondetectable (ND) mutagenic activity using the IERL-EPA Level 1 evaluation criteria for the Ames Assay¹. Solvent control and positive control values were within acceptable ranges. These results achieved assay acceptance criteria and provided confidence in the assumptions that the recorded data represented typical responses to the test material. #### B. <u>Tables</u> This report is based on the data provided in Table 1. RESULTS TABLE 1 A. NAME OR CODE DESIGNATION OF THE TEST COMPOUND: A81-05-030-662 (EA-1 FLYASH) B. SOLVENT: DMSO TA-100 SODIUM AZIDE SOLVENT 50 UL/PLATE C. TEST INITIATION DATES: 09/24/81 D. TEST COMPLETION DATE: 09/28/81 E. S-9 LOTH: S-9-11 NOTE: CONCENTRATIONS ARE GIVEN IN MILLIGRAMS PER PLATE | | | | | R (| EVE | RIA | N T S | 5 P (| E R | PL | | | | | |-----|---|----------|--------|--------|-------|-----|--------|---------|-----|--------|---------|--------|--------|--------------| | | TEST | SPFCIES | TISSUE | TA- | -1535 | | TA- | 1537 | | TA- | | TA- | -100 | | | | NONACTI VATION | | | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 1 | 2 | 3 | | | | | | | | | | | | | | | | | | | SOLVENT CONTROL | | | 12 | 17 | | 9 | 12 | | 46 | 38 | 132 | 106 | | | | POSITIVE CONTROL | | | 1076 | 961 | | 621 | 628 | | 745 | 811 | 1308 | 1359 | | | ח | FEST COMPOUND | | | | | | | | | | | | | | | ļ, | 0.050 M | | | 18 | 12 | | 7 | 12 | | 47 | 27 | 145 | 130 | | | 214 | 0.100 M | | | 13 | 14 | | 9 | | | 32 | | 126 | | | | | 0.500 M | | | 14 | 15 | | 8 | 11 | | 44 | | 156 | | | | | 1.000 M | | | 15 | 15 | | A | 12 | | 46 | 33 | 133 | 165 | | | | 2.500 M | ; | | 14 | 12 | | 12 | 14 | | 47 | | | 168 | | | | 5.000 M | , | | 14 | 15 | | 14 | 6 | | 41 | 53 | 143 | 157 | | | | ACTIVATION | | | | | | | | | | | | | | | | SOLVENT CONTROL | RAT | LIVER | | 11 | | | 8 | | | 34 | | 123 | | | | POSITIVE CONTROL | RAT | LIVER | 308 | 254 | | 3 39 | 372 | | 1562 | 1600 | 2065 | 1832 | | | | TEST COMPOUND | | | | | | | | | | | | | | | | 0.050 MG | | LIVER | | 11 | | 11 | | | 51 | | | 115 | | | | 0.100 M | | LIVER | 7 | 3 | | . 12 | | | 44 | | 118 | | | | | 0.500 MG | | LIVER | | 9 | | 13 | 14 | | 38 | | 109 | | | | | 1.000 M | | LIVER | | 7 | | 10 | 12 | | 43 | | 121 | | | | | 2.500 MG | | LIVER | 14 | 7 | | 13 | 11 | | 48 | | 128 | | | | | 5.000 M | RAT | LIVER | 10
 | | | 15 | 20 | | 53
 | 55
 | 143 | | | | | | | | | | | | | | *** | • | | | | | | TA-1535 SODI | M AZIDE | | | | | 10 110 | S/PLATI | F | | | 2-ANTH | DAMTHE | 2.5 UG/PLATE | | | • | NOACRIDI | NF | | | | _ | S/PLATI | | | TA-1537 | | | 2.5 UG/PLATE | | | | ROFLUORE | | | | | | S/PLAT | | | TA-98 | | RAMINE | 2.5 UG/PLATE | | | 1A-70 2-N1 | | | | | | 10 00 | | | | TA-100 | | | 2.5 US/FLAIR | 10 UG/PLATE TA-100 2-ANTHRAMINE 2.5 UG/PLATE 70 #### VII. ASSAY ACCEPTANCE AND EVALUATION CRITERIA Statistical methods are not currently used, and evaluation is based on the criteria included in this protocol. Plate test data consists of direct revertant colony counts obtained from a set of selective agar plates seeded with populations of mutant cells suspended in a semisolid overlay. Because the test material and the cells are incubated in the overlay for approximately 2 days and a few cell divisions occur during the incubation period, the test is semiquantitative in nature. Although these features of the assay reduce the quantitation of results, they provide certain advantages not contained in a quantitative suspension test: - The small number of cell divisions permits potential mutagens to act on replication DNA, which is often more sensitive than nonreplicating DNA. - The combined incubation of the test article and the cells in the overlay permits constant exposure of the indicator cells for approximately 2 days. #### A. <u>Surviving Populations</u> Plate test procedures do not permit exact quantitation of the number of cells surviving chemical treatment. At low concentrations of the test material, the surviving population on the treatment plates is essentially the same as that on the negative control plate. At high concentrations, the surviving population is usually reduced by some fraction. Our protocol will normally employ several doses ranging over two or three log concentrations, the highest of these doses being selected to show slight toxicity as determined by subjective criteria. #### B. Dose-Response Phenomena The demonstration of dose-related increased in mutant counts is an important criterion in establishing metagenicity. A factor that might modify dose-response results for a mutagen would be the selection of doses that are too low (usually mutagenicity and toxicity are related). If the highest dose is far lower than a toxic concentration, no increases may be observed over the dose range selected. Conversely, if the lowest dose employed is highly cytotoxic, the test material may kill any mutants that are induced, and the test material will not appear to be mutagenic. #### C. Control Tests Positive and negative control assays were conducted with each experiment and consisted of direct-acting mutagens for nonactivation assays and mutagens that require metabolic biotransformation in activation assays. Negative controls consisted of the test material solvent in the overlay agar together with the other essential components. The negative control plate for each strain gave a reference point to which the test data was compared. The positive control assay was conducted to demonstrate that the test systems were functional with known mutagens. The following normal range of revertants for solvent controls are generally considered acceptable. TA-1535: 8-30 TA-1537: 4-30 TA-98: 20-75 TA-100: 80-250 #### D. Evaluation Criteria for Ames Assay Because the procedures to be used to evaluate the mutagenicity of the test material are semiquantitative, the criteria to be used to determine positive effects are inherently subjective and are based primarily on a historical data base. Most data sets will be evaluated using the following criteria. #### 1. Strains TA-1535 and TA-1537 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to three times the solvent control value will be considered to be mutagenic. #### Strains TA-98 and TA-100 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to twice the solvent control value for TA-98 and TA-100 will be considered to be mutagenic. #### Pattern Because TA-1535 and TA-100 are both derived from the same parental strain (G-46), to some extent there is a built-in redundancy in the microbial assay. In general, the two strains of a set respond to the same mutagen and such a pattern is sought. Generally, if a strain responds to a mutagen in nonactivation tests, it will do so in activation tests. # 4. Reproducibility If a test material produces a response in a single test that cannot be reproduced in additional runs, the initial positive test data lose significance. The preceding criteria are not absolute, and other extenuating factors may enter into a final evaluation decision. However, these criteria will be applied to the majority of situations and are presented to aid those individuals not familar with this procedure. As the data base is increased, the criteria for evaluation can be more firmly established. 5-216 # E. Relation Between Mutagenicity and Carcinogenicity It must be emphasized that the Ames <u>Salmonella</u>/Microsome Plate Assay is not a definitive test for chemical carcinogens. It is recognized, however, that correlative and functional relations have been demonstrated between these two endpoints. The results of comparative tests on 300 chemicals by McCann et al.⁴ show an extremely good correlation between results of microbial mutagenesis tests and in vivo rodent carcinogenesis assays. All evaluations and interpretation of the data to be presented in the final report will be based only on the demonstration, or lack, of mutagenic activity. # F. Criteria for Ranking Samples in the Ames Assay The goal of EPA Level 1 Ames testing is to rank source streams by relative degree of genetic toxicity (mutagenicity). Samples are first identified as mutagenic or nonmutagenic by the criteria in Section D above and then ranked using the mutagenicity categories
presented in the table below. The lowest concentration giving a positive response in any strain, with or without metabolic activation, is identified as the minimum effective concentration (MEC) for that sample. The mutagenicity of the sample is evaluated as high (H), moderate (M), low (L), or nondetectable (ND) according to the evaluation criteria developed in the Level 1 manual and summarized below. Samples with no detectable activity at the maximum applicable dose (MAD) are ranked nondetectable (ND). Ames Assay Mutagenicity Ranking Criteria¹ | Mutagenic
Activity | Solids
(MEC in µg/plate) | Liquids ^a
(MEC in µl/plate) | |-----------------------|-----------------------------|---| | High (H) | <50 | <2 | | Moderate (M) | 50-500 | 2-20 | | Low (L) | 500-5000 | 20-200 | | Not Detectable (ND) | >5000 | >200 | ^aConcentration of organic extracts is based upon organic content (μg organics per plate) and not volume (μl extract per plate) of sample tested. #### VIII. REFERENCES - 1. Brusick, D.J., et al.: <u>IERL-RTP Procedures Manual</u>: <u>Level 1 Environmental Assessment Biological Tests</u>. <u>EPA Contract No. 68-02-2681</u>, Technical Directive No. 501, Litton Bionetics, Inc., Kensington, MD, September 1980, 177 pp. In press. - 2. Brusick, D.J.: Level 1 Bioassay Assessment and Data Formatting. EPA-600/7-80-079, Litton Bionetics Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135, Litton Bionetics, Inc., Kensington, MD, August 1981, 52 pp. - 4. McCann, J., Choi, E., Yamasaki, E. and Ames, B.N.: Detection of carcinogens as mutagens in the <u>Salmonella/microsome</u> test: Assay of 300 chemicals. Proc. Nat. Acad. Sci., USA 72:5135-5139, 1975. - 5. Ames, B.N., Gurney, E.G., Miller, J.A. and Bartsch, H.: Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylamino-fluorene and other aromatic amine carcinogens. Proc. Nat. Acad. Sci., USA 69:3128-3132, 1972. - 6. Ames, B.N., Lee, F.D., and Durston, W.E.: An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Nat. Acad. Sci., USA 70:782-786, 1973. - 7. Ames, B.N., Durston, W.E., Yamasaki, E. and Lee, F.D.: Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Nat. Acad. Sci., USA 70:2281-2285, 1973. - 8. McCann, J., Springarn, N.E., Kobori, J. and Ames, B.N.: Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA <u>72</u>:979-983, 1975. - 9. Ames, B.N., McCann, J. and Yamasaki, E.: Methods for detecting carcinogens and mutagens with the <u>Salmonella/mammalian-microsome</u> mutagenicity test. Mutation Res., <u>31</u>:347-364, 1975. - Vogel, H.J. and Bonner, D.M.: Acetylornithinase of <u>E. coli</u> partial purification and some properties. J. Biol. Chem., <u>218</u>: 97-106, 1966. GENETICS ASSAY NO.: 5886 LBI SAFETY NO.: 7170 CYTOTOXIC EVALUATION OF A81-05-030-662 (EA-1 FLYASH) IN THE RABBIT ALVEOLAR MACROPHAGE (RAM) CYTOTOXICITY ASSAY FINAL REPORT ### SUBMITTED TO: ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 ### SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20895 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 #### PREFACE This assay conforms to the standard EPA Level 1 procedure for the rabbit alveolar macrophage (RAM) cytotoxicity assay as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests" (1). The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting" (2). The RAM cytotoxicity assay has been shown to be a sensitive method for detecting cytotoxic activity for a variety of chemicals representing various chemical classes (3). This assay is one of several recommended by EPA to identify, categorize and rank the pollutant potential of influent and effluent streams from industrial and energy-producing processes. This assay has been well validated with a wide range of positive and negative control chemicals and complex environmental samples. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw data will be supplied to the sponsor upon request. # TABLE OF CONTENTS | | | Page No. | |-------|---------------------------|------------------| | | PREFACE | i | | I. | ASSAY SUMMARY | 1 | | II. | OBJECTIVE | 2 | | III. | TEST MATERIAL | 3 | | | A. Description | 3
3 | | IV. | MATERIALS | 4 | | | A. Indicator Cells | 4
4
4 | | ٧. | EXPERIMENTAL DESIGN | 5 | | | A. Procurement of Cells | 5
6
6
7 | | VI. | ASSAY ACCEPTANCE CRITERIA | 8 | | VII. | RESULTS | 9 | | | A. Interpretation | | | VIII. | ASSAY EVALUATION CRITERIA | 16 | | TX. | REFERENCES | 17 | - I. ASSAY SUMMARY - A. SPONSOR: Acurex Corporation - B. MATERIAL (TEST COMPOUND): GENETICS ASSAY NUMBER: 5886 - 1. Identification: A81-05-030-662 (EA-1 Flyash) - 2. Date Received: August 26, 1981 - 3. Physical Description: Gray, black powder with small chunks - C. TYPE OF ASSAY: Rabbit Alveolar Macrophage (RAM) Cytotoxicity Assay - D. ASSAY DESIGN NUMBER: 443 - E. STUDY DATES: - 1. Initiation: September 23, 1981 - 2. Completion: October 23, 1981 - F. SUPERVISORY PERSONNEL: - 1. Study Director: Brian Myhr, Ph.D. - 2. Laboratory Supervisor: Robert Young, M.S. - G. EVALUATION: The test material, after being ground to a fine powder, caused a dose-related increase in toxicity for applied concentrations greater than 300 $\mu g/ml$. The viability index and ATP content were the most sensitive assay parameters and both indicated an ECso near 1000 $\mu g/ml$. This result was evaluated as showing low/nondetectable (L/ND) borderline toxicity for the test material in the RAM Cytotoxicity Assay, according to the IERL-EPA Level 1 toxicity categories. Submitted by: Study Director Brian Myhr, Ph.D. Associate Director, Department of Molecular Toxicology David J. Brusick, Ph.D. Director, Department of Molecular Toxicology ### II. OBJECTIVE The objective of this study was to determine and rank the cytotoxicity of A81-05-030-662 (EA-1 Flyash) to cultured rabbit alveolar macrophage (RAM) cells. The measure of cytotoxicity was the reduction in cell viability and adenosine triphosphate (ATP) content of the cultures after a 20 hour exposure to the test material. At the conclusion of the exposure period, the number of viable cells and total ATP content in the treated cultures were compared to the corresponding values in unexposed control cultures. The concentration of test material that reduced each experimental parameter by 50% was estimated graphically and referred to as the EC50 value. Standard EPA Level 1 toxicity evaluation criteria for the RAM cytotoxicity assay were used to rank the toxicity potential of the test material based upon the most sensitive parameter. ### III. TEST MATERIAL ### A. <u>Description</u> The test material was received as a gray powder containing small, black particles. The total amount of sample supplied was 15 grams. No information on the sampling parameters was provided. ### B. Handling and Preparation The test material was received on August 26, 1981, and was assigned LBI assay number 5886 and LBI safety number 7170. The sample was stored at $+4^{\circ}$ C in the dark. Approximately 28 mg of the test material was tested as supplied. Then, on October 1, 1981, the remaining sample was ground in a mortar and pestle to fine gray powder. Approximately 3.0 grams of the ground sample was further pulverized on October 8, 1981, to a very fine, gray powder of which 36 mg was used in the second trial of the assay. For both trials, the test material was suspended in serum-free EMEM culture medium at a concentration of 2000 $\mu g/ml$ and incubated at 37°C on a roller drum for 8 hours. The original material settled quickly on standing, but the suspension formed from the pulverized powder remained well-dispersed for dilutions. No pH changes were observed. The suspensions were serially diluted with EMEM (serum-free) and applied to the cultures at a maximum concentration of 1000 $\mu g/ml$ in the presence of 10% serum. ### IV. MATERIALS ### A. Indicator Cells Both assay trials employed short-term primary cultures of alveolar macrophage cells obtained by lung lavage of male New Zealand white rabbits (2.0-2.5 kg). The rabbits were maintained on Purina Lab Rabbit Chow 5321 and water ad libitum and were examined for the absence of respiratory illnesses prior to use. ### B. Media The cells were maintained and treated in Eagle's Minimum Essential Medium (EMEM) with Earle's salts and supplemented with 10% fetal bovine serum (heat-inactivated), 100 units/ml penicillin, 100 μ g/ml streptomycin, 17.6 μ g/ml kanamycin, and 0.4 μ g/ml amphotericin B. ### C. <u>Negative Controls</u> The negative control for the first trial consisted of six untreated cultures carried through the same experimental time period as the treated cells. Six cultures were used because a large number of cells was obtained by pooling the yield from two rabbits in order to run two concurrent assays. Only one animal was used for the second trial, and the usual three untreated cultures were prepared. The average viability and ATP content of the negative controls provided the reference points for determining the
effects of different concentrations of the test material on the assay parameters. ### V. EXPERIMENTAL DESIGN ### A. Procurement of Cells The rabbits were sacrificed by injection of Nembutal $^{(8)}$ (60 mg/ml) into the marginal ear vein, and sterile operating techniques were used to perform a tracheostomy. Prewarmed normal saline (30 ml) was then introduced into the lungs via a catheter and allowed to stand for 15 minutes. This lavage fluid was removed and placed into a 50-ml sterile centrifuge tube on ice. Nine additional lavages were similarly performed and collected, except the saline was removed shortly after its introduction into the lungs. Any lavage fluid containing blood or mucous was discarded. The lavages were centrifuged at 365 x g for 15 minutes and the cells resuspended in cold 0.85% saline. After two washes in saline by centrifugation, the cell pellets were resuspended in cold EMEM containing 20% serum and then combined. A cell count was obtained by hemocytometer and the suspension diluted to between 5 x 10^5 and 10^6 cells/ml. Viability was determined by trypan blue staining and the cells were not used if less than 95% viable. Also, a differential cell count from Wright-stained smears was performed to verify that the macrophage content was above 90%. #### B. Sample Forms The usual sample form for application to the cells is a suspension of particulate material. Solid samples are ground to fine particles and a weighed portion is suspended in a known volume of EMEM (0% FBS) for about eight hours to help leach any water-soluble material. Finely-divided test material may be suspended directly in culture medium without further grinding. Aqueous liquids, suspensions, or slurries containing less than 0.5% organic solvent are added by volume to culture medium. Samples supplied as solutions in organic solvents are usually solvent-exchanged into DMSO before testing. Original sample volumes may first be reduced a maximum of 10-fold in a Kuderna-Danish concentrator, and the concentrative factor is used to convert assayed volumes into equivalent original sample volumes in the absence of information about solute concentration. An aliquot of the reduced volume is exchanged into DMSO by repeated, partial evaporation under a stream of nitrogen in a warm water bath (50°C) ; the evaporated volumes are replaced with equal volumes of DMSO. Samples adsorbed on XAD-2 resin are extracted with methylene chloride or acetone in a Soxhlet apparatus for 24 hours. The extract is then concentrated and solvent-exchanged into DMSO. Alternatively, acetone extracts can be assayed directly at concentrations up to 2% by volume in the culture medium. Samples impregnated on fiber glass or teflon filters are repeatedly sonicated in cyclohexane to remove particulates. The resulting cyclohexane particulate suspension is then evaporated to dryness and the particulates resuspended in EMEM culture medium at the desired concentration. Sponsor-specified handling of sample materials will be followed if the above procedures are not applicable or a specific procedure is desired. ### C. Dose Selection Unless the approximate toxicity is already known or the sample size is limiting, the following usual dose ranges are tested for different sample forms. Dry, particulate material is tested at six dose levels from 1000 μ g/ml to 3 μ g/ml. Aqueous samples, suspensions, or slurries are tested from 600 μ l to 3 μ l/ml in six dose steps. Samples that are solvent-exchanged into DMSO are tested from 20 μ l/ml (2% DMSO in growth medium) to 0.2 μ l/ml, also in six dose steps. A second dose study is performed with an adjusted dose range if the EC50 was not located properly in the initial test. However, EC50 values greater than 1000 μ l/ml for particulate material, 600 μ l/ml for aqueous samples, or 20 μ l/ml for organic solutions will not be determined. This test material, A81-05-030-662 (EA-1 flyash), was tested as supplied at 6 dose levels, starting at the maximum applicable dose (MAD) of 1000 μ g/ml and including 600, 300, 100, 60 and 30 μ g/ml. The second trial was performed with only three doses of the finely ground test material: 1000, 600 and 300 μ g/ml. #### D. Treatment A series of 25 cm² culture flasks were prepared, each containing 2.0 ml of serum-free medium at 37°C and the test material at twice the desired final concentration. Three flasks were prepared for each test concentration. Aliquots of cell suspension (2 ml) were then added; each flask, therefore, contained from 1 to 2 x 10^6 viable cells in a 4-ml volume of media containing 10% serum. The flasks were placed on a rocker platform in a 37°C incubator with a humidified atmosphere containing 5% CO_2 . After sitting for about 30 minutes, the flasks were slowly rocked for the remainder of a 20-hour exposure period. If the test substance causes a color change in the growth medium, the pH is determined in additional treated flasks. After the exposure period, the pH of the medium in the experimental flasks is again recorded. #### E. Cell Viability Assay At the end of the treatment period, the medium containing unattached cells was decanted into a centrifuge tube on ice. The attached cells were rinsed with 1 ml of 0.1% trypsin/0.01% versene and then incubated with 2 ml of the trypsin/versene solution for about 5 minutes at 37° C. The trypsinates and decanted media were combined for each culture to yield a 7-ml cell suspension for subsequent analysis. A 0.5 ml aliquot of the cell suspension was removed for cell count and viability determination. The aliquot was combined with 1.0 ml of 0.4% trypan blue and counted by hemocytometer about 5 to 15 minutes later. The total number of cells counted per culture was the sum of the numbers found in five squares for each chamber of the hemocytometer (1 μ l total volume). The numbers of live (colorless) and dead (blue) cells were recorded. ### F. ATP Assay ATP was immediately analyzed by extraction of a 0.1-ml sample of cell suspension with 0.9 ml of 90% DMSO. After 2 minutes at room temperature 5.0 ml cold MOPS buffer (0.01 M morpholinopropane sulfonic acid) at pH 7.4 was added and the extract mixed well and placed on ice. Aliquots of 10 μ l were injected into a cuvette containing a luciferin-luciferase reaction mixture in a DuPont Model 760 Luminescence Biometer. The Biometer was calibrated daily with standard ATP solutions to provide a direct read-out of the ATP content. Each test sample was assayed at least twice to obtain repeatable readings. ### VI. ASSAY ACCEPTANCE CRITERIA The assay will be considered acceptable for evaluation of the test results if the following criteria are met: - 1. The macrophage population is 90% or greater of the total nucleated cells collected by lung lavage. - 2. The percent viability of the macrophages used to initiate the assay is 95% or greater. - 3. The survival of viable macrophages in the negative control cultures over the 20 hour treatment priod is 70% or greater. - 4. A sufficient number of data points (for five test concentrations or less) are available to clearly locate the EC50 of the most sensitive test parameter within a toxicity region as defined under Assay Evaluation Criteria. - 5. The data points critical to the location of the EC50 for the most sensitive parameter are the averages of at least two treated cultures. - 6. If all the test parameters yield EC50 values greater than 1000 μ g/ml, 600 μ l/ml for aqueous solutions, or 20 μ l/ml for organic solutions, the plotted curves for ATP content and viability index parameters do not exceed 120% of the negative control. ### VII. RESULTS ### A. <u>Interpretation</u> The original test material, which consisted of many coarse particles, did not interact appreciably with the macrophages. As shown in Table 1 and Figures 1 and 2, the assay parameters remained near the negative control values for all tested doses up to 1000 μ g/ml. However, when the test material was pulverized to a fine powder, a toxic response was observed at concentrations above 300 μ g/ml. The results for the fine powder are presented in Table 2 and Figures 3 and 4. Absolute and relative assay parameters are provided in the tables, whereas the relative values are plotted in the Figures to determine EC₅₀ positions. The viability index (which measures cell survival) and the culture ATP content usually tend to parallel each other, and an inspection of the curves in Figures 3 and 4 show this to be the case for the current assay. Both parameters were essentially equally sensitive and indicated an EC_{50} near 1000 μ g/ml. This value is on the borderline between the low (L) and nondetectable (ND) toxicity categories defined for the IERL-EPA Level 1 RAM assay¹. Since the EC_{50} position will shift slightly in either direction with repeated trials, the toxicity was evaluated as low/nondetectable (L/ND) borderline. The results from the second trial were considered more relevant than those from the first trial because the small particle size allowed ingestion by the macrophages. The percent viability assay parameter was unaffected in both trials. This behavior indicated the cells disrupted soon after ingesting the particles. The decline in cell count was shown by the decreased viability index and was probably responsible for the lack of response for the ATP/ 10^6 cells assay parameter. The macrophages collected for the assays had normal morphology and appeared to be in a healthy state. The initial viability was approximately 99% and the survival of viable cells in the negative controls was also about 99% in both trials. The average cellular ATP content (ATP/106 total cells) for the negative controls was within the historical range for acceptable cultures. These results achieved the assay acceptance criteria and provided confidence in the assumption that the collected data represented typical
responses to the test material. ## B. <u>Tables and Figures</u> This report is based on the data provided in Tables 1 and 2 and Figures 1 to 4. # TABLE 1 RABBIT ALVEOLAR MACROPHAGE (RAM) CYTOTOXICITY ASSAY DATA LBI Assay No.: 5886 (Trial I, Unground sample) Test Material Identity: A81-05-030-662 (EA-1 Flyash) Test Date: September 23, 1981 Vehicle: EMEM Initial Cell Viability: 98.8% Viable Macrophage Seeded/Flask: 2.0 x 10⁶ cells/flask >1000 >1000 >1000 >1000 Macrophage Population Percentage: >90.0% Survival of Negative Control Macrophage Over Treatment Time: 99.1% | | a | | es per Culture F | lask | ATP Per | | Expressed a | | | ative Control | |-----------------|-------------------------------------|---------------------------------------|--------------------------------------|----------------|---|----------------|-------------|-------------------|----------|----------------------------------| | Sample | Concentration ^a
μg/ml | Viable Cells
10 ⁶ Units | Total Cells
10 ⁶ Units | ATP
108 fgb | 10 ⁶ Cells
10 ⁸ fg | Viability
% | Viability | Viabilit
Index | Y
ATP | ATP Per
10 ⁶ Cells | | NC ^C | | 2.14 | 2. 16 | 66.4 | 30.7 | 99.1 | 100.0 | 100.0 | 100.0 | 100.0 | | TEST | 30 | 2.06 | 2.08 | 65.1 | 31.3 | 99.0 | 99.9 | 96.3 | 98.0 | 102.0 | | TEST | 60 | 2.21 | 2.25 | 67.2 | 29.9 | 98.2 | 99.1 | 103.3 | 101.2 | 97.4 | | TEST | 100 | 2.16 | 2.20 | 66.8 | 30.4 | 98.2 | 99.1 | 100.9 | 100.6 | 99.0 | | TEST | 300 | 1.82 | 1.84 | 64.3 | 34.9 | 98.9 | 99.8 | 85.0 | 96.8 | 113.7 | | TEST | 600 | 2.02 | 2.03 | 62.6 | 30.8 | 99.5 | 100.4 | 94.4 | 94.3 | 100.3 | | TEST | 1000 | 1.95 | 2.02 | 60.5 | 30.0 | 96.5 | 97.4 | 91.1 | 91.1 | 97.7 | ^apH change in culture medium: None observed Toxicity μg/ml: Classification: Nondetectable $^{^{}b}$ fq = Femtogram (10-15 gram). ^CNC = Negative Control, EMEM culture medium. ^dDetermined from data plots in Figures 1 and 2. TABLE 2 RABBIT ALVEOLAR MACROPHAGE (RAM) CYTOTOXICITY ASSAY DATA LBI Assay No.: 5886 (Trial II, Ground sample) Initial Cell Viability: 94.4% Test Material Identity: A81-05-030-662 (EA-1 Flyash) Viable Macrophage Seeded/Flask: 1.03 x 106 cells/flask Test Date: October 22, 1981 Macrophage Population Percentage: >90% Survival of Negative Control Macrophage Over Treatment Time: 98.9% Vehicle: EMEM | Sample | Concentration ^a | Viable Cells | es per Culture F
Total Cells | ATP. | ATP Per
10 ⁶ Cells | Viability | Expressed a | <u>Viabilit</u> | | ATP Per | |-----------------|----------------------------|-----------------------|---------------------------------|---------------------------------|----------------------------------|-----------|-------------|-----------------|-------|-----------------------| | | µg/ml | 10 ⁶ Units | 10 ⁶ Units | 10 ⁸ fg ^b | 10 ⁸ fg | * | Viability | Index | ATP | 10 ⁶ Cells | | NC ^C | | 0.89 | 0.90 | 26.1 | 29.0 | 98.9 | 100.0 | 100.0 | 100.0 | 100.0 | | TEST | 300 | 0.83 | 0.86 | 23.1 | 26.9 | 96.5 | 97.6 | 93.3 | 88.5 | 92.8 | | TEST | 600 | 0.72 | 0.74 | 19.9 | 26.9 | 97.3 | 98.4 | 80.9 | 76.2 | 92.8 | | TEST | 1000 | 0.42 | 0.44 | 14.2 | 32.3 | 95.5 | 96.6 | 47.2 | 54.4 | 111.4 | ^apH change in culture medium: None observed Toxicity Classification: Low/Nondetectable Borderline >1000 ~1000 ~1000 >1000 5-232 dEC50 VALUES: μg/ml: $^{^{}b}$ fg = Femtogram (10-15 gram). ^CNC = Negative Control, EMEM culture medium. $^{^{\}mathbf{d}}$ Determined from data plots in Figures 1 and 2. FIGURE 1 ### EC50 DETERMINATION FOR # PERCENT VIABILITY (0) AND VIABILITY INDEX (0) A81-05-030-662 (EA-1 FLYASH) ### FIGURE 2 ## EC50 DETERMINATION FOR ATP/FLASK (0) AND ATP/10⁶ CELLS (0) A81-05-030-662 (EA-1 FLYASH) FIGURE 3 ## EC50 DETERMINATION FOR # PERCENT VIABILITY (0) AND VIABILITY INDEX (0) A81-05-030-662 (EA-1 FLYASH) FIGURE 4 ### EC50 DETERMINATION FOR # ATP/FLASK (0) AND ATP/106 CELLS (0) A81-05-030-662 (EA-1 FLYASH) ### VIII. ASSAY EVALUATION CRITERIA The EC50 value represents the concentration of test material that reduces the most sensitive parameter of the RAM assay to 50% of the vehicle or negative control value. EC50 values are determined graphically by fitting a curve by eye through relative toxicity data plotted as a function of the logarithm of the applied concentration. Each data point normally represents the average of three culture dishes. Statistical analysis is unnecessary in most cases for evaluation. The toxicity of the test material is evaluated as high, moderate, low, or nondetectable according to the range of EC50 values defined in the following table. | Toxicity ^a | Solids | Aqueous Liquids | Nonaqueous Liquids ^b | |-----------------------|-----------------------------|-----------------------------|---------------------------------| | | (EC _{so} in µg/ml) | (EC _{so} in µ1/m1) | (EC ₅₀ in µl/ml) | | High | <10 | <6 | <0.2 | | Moderate | 10 to 100 | 6 to 60 | 0.2-2 | | Low | 100 to 1000 >1000 | 60 to 600 | 2-20 | | Not Detectable | | >600 | >20 | ^aEvaluation criteria formulated by Litton Bionetics, Inc. for <u>IERL-RTP</u> <u>Procedures Manual:</u> Level 1 Environmental Assessment Biological Tests¹. Another evaluation scheme is proposed for extracts obtained from SASS train gas volumes. The proportion of the total gas volume corresponding to the volume of extract used in the bioassay is calculated and expressed as L/ml of culture medium (or DSCF/ml of culture medium). A criterion of 1000 L/ml is set as the limit for nondetectable toxicity. This gas volume corresponds to the average volume breathed by humans over a 2-hour period. The subsequent toxicity ranges are defined by 10-fold dilution steps to conform to standard procedure. The toxicity ranges are defined in the following table for liter and dry standard cubic feet units: | Toxicity | EC _{so} In
Liters/ml (L/ml) | EC _{SO} In
Dry Standard Cubic Feet/ml (DSCF/ml) | |---------------|---|---| | High | <10 | <0.35 DSCF | | Moderate | 10-100 | 0.35-3.5 | | Low | 100-1000 | 3.5-35 | | Nondetectable | >1000 | >35 | ^bCriteria for nonaqueous liquids are tentative and under evaluation. If the organic or solid content is known, the solid evaluation criteria are applied. ### IX. REFERENCES - 1. Brusick, D.J., et al.: IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests. EPA Contract No. 68-02-2681, Technical Directive No. 501, Litton Bionetics, Inc., Kensington, MD, September 1980, 177 pp. In press. - 2. Brusick, D.J.: Level 1 Bioassay Assessment and Data Formatting. EPA-600/7-80-079, Litton Bionetics, Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135, Litton Bionetics, Inc., Kensington, MD, August 1981, pp. 52. GENETICS ASSAY NO.: 5886 LBI SAFETY NO.: 7170 TOXIC EVALUATION OF A81-05-030-662 (EA-1 FLYASH) IN THE EPA LEVEL 1 ACUTE IN VIVO RODENT TOXICITY ASSAY FINAL REPORT ### SUBMITTED TO: ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 ## SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MD 20795 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 5-239 #### **PREFACE** This assay conforms to the standard EPA Level 1 procedure for the acute in vivo toxicity test in rodents as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests". The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting". The organisms used in this assay were male and female weanling mice as recommended by the Level 1 Manual. The advantages of in vivo toxicity assays are embodied mainly in the fact that the toxicological assessment is performed in whole animals. There is a significant background of test data on a wide range of toxicants for the rodent systems, thus supplying needed information for the reliable interpretation of results with complex effluents³. The main disadvantage of an acute rodent toxicity study is a possibly unsatisfactory prediction of toxicity induced by long-term/low-level exposures. An additional consideration is the need for multi-gram quantities of test material which may prohibit testing where small amounts of sample are available, such as from source streams containing gaseous and particulate material. Since the major objective of the Level 1 biological testing procedures is to identify toxicological problems at minimal cost, a two-step approach was developed for the initial acute in vivo toxicological evaluation of unknown compounds. The first step is based on the quantal (all-or-none) response of dosing animals only at the maximum applicable dose. If no animals die in the quantal test, further in vivo testing is not initiated and the sample toxicity is categorized as not detectable. If any animals die in the quantal screening, a multiple dose quantitative test is initiated to determine the dose that kills 50 percent of the animals (LD₅₀). The toxicity potential of the test material is then ranked using standard EPA Level 1 toxicity evaluation criteria for the acute in vivo rodent toxicity assay¹. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20795. Copies of raw data will be supplied to the sponsor upon request. # TABLE OF CONTENTS | | | Page No. | |---------|---------------------|----------| | PREFACE | | i | | LIST OF | ABLES |
iii | | I. | ASSAY SUMMARY | 1 | | II. | OBJECTIVES | 2 | | III. | TEST MATERIAL | 3 | | | A. Description | 3
3 | | IV. | MATERIALS | 4 | | | A. Test Organisms | 4 | | ٧. | EXPERIMENTAL DESIGN | 5 | | | A. Quantal Test | 5
5 | | VI. | RESULTS | 7 | | | A. Interpretation | 7
7 | | VII. | EVALUATION CRITERIA | 10 | | VIII. | REFERENCES | 11 | # LIST OF TABLES | <u>Table</u> | Title | Page No. | |--------------|--|----------| | 1 | Definition of Pharmacological Toxic Signs | 6 | | 2 | Quantal Toxicity Data with Weanling Mice | 8 | | 3 | Acute <u>In Vivo</u> Rodent Toxicity Assay Evaluation Criteria | 10 | - I. ASSAY SUMMARY - A. SPONSOR: Acurex Corporation - B. MATERIAL (TEST COMPOUND): GENETICS ASSAY NO.: 5886 - 1. Identification: A81-05-030-662 (EA-1 Flyash) - 2. Date Received: August 26, 1981 - 3. Physical Description: Gray and white powder with small black particles. - C. TYPE OF ASSAY: EPA Level 1 Rodent Quantal Toxicity Assay - D. STUDY DATES: - A. Initiation: October 5, 1981 - B. Completion: October 23, 1981 - E. SUPERVISORY PERSONNEL: - A. Study Director: David J. Brusick, Ph.D. - B. Senior Technician: Joan McGowan - F. EVALUATION: The test substance, A81-05-030-662 (EA-1 Flyash), was not lethal or toxic to weanling mice following an oral gavage dose of 5 gm/kg body weight. There were no unusual findings upon necropsy that would suggest test substance related toxicity. The test sample response was evaluated as being in the nondetectable (ND) range as defined for the IERL-EPA Level 1 Rodent Quantal Toxicity Assay¹. Submitted by: David J. Brusick, Ph.D. Director Department of Molecular Toxicology ### II. OBJECTIVES The objective of this assay was to evaluate the acute toxicity of A81-05-030-662 (EA-1 flyash) when administered by oral gavage to male and female weanling mice. Test strategy involved initial testing of the sample at the maximum applicable dose in the quantal assay. If lethality was observed in the quantal assay, additional testing would be initiated at lower doses to identify the LD_{50} . The assay consisted of recording any lethality and toxic signs that occurred initially and over a 14-day period following a single treatment. Additional information was collected from necropsy observations on animals that died during the course of the experiment or were killed at the end of the 14-day observation period. ### III. TEST MATERIAL ### A. Description The test material, A81-05-030-662 (EA-1 flyash), was received as a gray and white powder containing small, black particles. The amount of sample supplied was 15.0063 grams. No information on the sampling parameters was provided. ### B. <u>Handling and Preparation</u> The test material was received at LBI on August 26, 1981. The sample was assigned LBI safety number 7170 and LBI assay number 5886. The sample was stored at $+4^{\circ}$ C in the dark. On October 1, 1981, the test material was ground in a mortar and pestle to a fine, gray powder. The primary dosing suspension was prepared 24 hours in advance to permit water soluble materials in the flyash to leach into the water at room temperature. A total of 1716.83 mg of test material was suspended in 17.07 ml of sterile distilled water giving a stock concentration of 101 mg/ml. This suspension would not pass freely through a 24G gavage needle so it was discarded. On October 8, 1981, approximately 3.0 gm of the previously ground sample was pulverized a second time in a mortar and pestle. The suspension prepared 24 hours in advance of dosing, passed through the gavage needle without difficulty. A total of 1815.5 mg of test material was suspended in 12.0 ml of sterile water giving a stock concentration of 151 mg/ml. ### IV. MATERIALS ### A. <u>Test Organisms</u> The test organisms for this study were weanling Charles River CD-1 mice. Weanlings were used because they are likely to be more sensitive to toxic effects of test materials than adult mice. In addition, significantly less test material is required for dosing. Eight nursing female Charles River CD-1 mice with ten pups each (5 male and 5 female) were obtained from Charles River Breeding Laboratories, Inc., Wilmington, MA on September 30, 1981. The birth date of the pups was September 13, 1981. The animals were quarantined for 5 days upon receipt. The litters were individually housed on Ab-sorb-dri bedding in polycarbonate cages and were cared for according to Litton Bionetics, Inc., Department of Molecular Toxicology and LAMS Standard Operating Procedures. Purina certified laboratory chow and water (pH 2.5) were provided ad libitum. The pups were maintained with mothers until weaned. The animals were identified by eartags and cage cards and were released for study on October 9, 1981. ### V. EXPERIMENTAL DESIGN ### A. Quantal Test Ten male and ten female weanling CD-1 mice were used in the initial quantal screening test. The pups appeared to be in good health with no physical or behavioral problems noted. Pups that were selected were of similar size. The pups were 26 days old at the time of dosing. Prior to dosing, each animal was individually weighed and the mean weight calculated for each sex. The volume of test material to be administered was based on the mean weight if all animals were within plus or minus 15 percent of the average for the sex. If any animals were outside that range, they were then excluded from the average, a new mean calculated for the remaining animals and individual dosing volumes calculated for each outlying animals. The test material was administered by gavage to the pups at the rate of 5 gm/kg. The average weight of the males was 15.1 gm and that of the females was 13.3 gm. All animals were within ± 15 percent of the average for the sex. The test material, suspended at the concentration of 151 mg per ml, was applied to the animals in two equal doses that totaled 0.50 ml for the males and 0.44 ml for the females. Immediately following administration of the test substance and during the first day, observations of the frequency and severity of all toxic signs or pharmacological effects (Table 1) were recorded. Particular attention was paid to time of onset and disappearance of signs. Observations were made and recorded on all animals through a 14-day period. At termination of the observation period, all surviving animals were weighed, killed, and then gross necropsies performed. Necropsies were also performed on all animals that died during the course of this study. #### B. Quantitative Test Since no animals died during the preliminary quantal screening test, the quantitative test to determine the LD_{50} was unnecessary. TABLE 1. DEFINITION OF PHARMACOLOGICAL TOXIC SIGNS | | Observation and | | |---------------------|---|--| | Organ System | Examination | Common Signs of Toxicity | | CNS and somatomotor | Behavior | Change in attitude to observer, unusual vocalization, restless-ness, sedation | | | Movements | Twitch, tremor, ataxia, cata-
tonia, paralysis, convulsion,
forced movements | | | Reactivity to various | Irritability, passivity, | | | stimuli | anaesthesis, hyperaesthesis | | | Cerebral and spinal reflexes | Sluggishness, absence | | | Muscle tone | Rigidity, flaccidity | | Autonomic | Pupil size | Myosis, mydriasis | | nervous system | Secretion | Salivation, lacrimation | | Respiratory | Nostrils | Discharge | | | Character and rate | Bradypnoea, dyspnoea, Cheyne- | | | of breathing | Stokes breathing, Kussmaul breathing | | Cardiovascular | Palpation of cardiac | Thrill, bradycardia, arrhy- | | | region | thmia, stronger or weaker
beat | | Gastrointestinal | Events | Diarrhea, constipation, | | | Abdominal shape | Flatulence, contraction | | | Feces consistency and color | Unformed, black or clay colored | | | Vulva, mammary
glands | Swelling | | | Penis | Prolapse | | | Perianal region | Soiled | | Skin and fur | Color, turgor, | Reddening, flaccid skinfold, | | | integrity | eruptions, piloerection | | Mucous membranes | Conjunctiva, mouth | Discharge, congestion, hemorrhage cyanosis, jaundice | | Eye | Eyeball | Exophthalmus, nystagmus | | -, - | Transparency | Opacities | | Others | Rectal or paw skin
General Condition | Subnormal, increased temperature Abnormal posture, emaciation | ### VI. RESULTS ### A. <u>Interpretation</u> The test material, A81-05-030-662 (EA-1 flyash), was tested and evaluated in the EPA Level 1 Acute In Vivo Rodent Toxicity Assay. The first phase of testing was the quantal toxicity test in which 10 male and 10 female weanling CD-1 mice were exposed to an oral dose of the test material. This dose was at the maximum applicable dose (MAD) of 5 gm/kg as recommended by the EPA Level 1 procedures manual. All twenty animals survived the exposure with no evidence of any compound-related behavioral or toxic signs (see Table 1 for definitions). The only visable sign related to test material dosing was staining of the muzzle noted in some animals immediately after dosing. Both male and female mice showed good weight gains during the 14-day observation period. At the end of the observation period, the mice were sacrificed and necropsied. Gross necropsy showed no evidence of compound-related lesions. The results of the study are summarized in Table 2. The test material was evaluated as having nondetectable (ND) toxicity at the MAD of 5 gm/kg in the acute \underline{in} \underline{vivo} rodent toxicity assay. No deaths, toxic signs or gross lesions at necropsy were noted. Because no toxic effects were observed at the MAD, the quantitative study (LD₅₀ determination) was unnecessary. ### B. Tables This report is based on the data provided in Table 2. ### TABLE 2 QUANTAL TOXICITY DATA WTH WEANLING MICE Weanling CD-1 mice Quantal Toxicity: Sponsor: Acurex Corporation Test
Article: A81-05-030-662 (EA-1 flyash) Gray and white powder with black particles. The test Description: material was ground to a fine, gray powder that was used to prepare the dosing suspension. Vehicle: Sterile, deionized water Study Dates: October 8, 1981 to October 23, 1981 Animals: Charles River CD-1 mice, P.O. 106949 Dose: 5 qm/kg administered by oral gavage | Animal No. | Initial
Weight
gm | Final
Weight
gm | Visible
Toxic
Signs ^a | Gross Necropsy Findings | |--------------|-------------------------|-----------------------|--|--| | Males | | | | | | 9022 | 14.8 | 23.4 | NTS ^b | NSL ^C | | 9023 | 16.0 | 23.9 | NTS | Large intestine filled with yellow fluid | | 9024 | 15.6 | 24.4 | NTS | NSL | | 9025 | 14.7 | 24.5 | NTS | NSL | | 9026 | 14.0 | 20.4 | Scruffy
after dosing | White mucous plug in urinary bladder | | 9027 | 13.9 | 24.6 | NTS | NSL | | 9028 | 15.0 | 27.1 | NTS | White mucous plug in urinary bladder | | 9029 | 15.4 | 23.1 | NTS | Hard lymph node in mammary tissue in lower right intestinal area | | 9030 | 15.7 | 25.1 | NTS | NSL | | 9031 | 15.4 | 25.4 | NTS | NSL | | Mean Body We | | 1 = 15.1 : | ± 0.7 gm (Stand | dard Deviation) | Final = 24.2 ± 1.7 gm (Standard Deviation) cNSL = No Significant Lesions Note: Staining of the muzzle from the test material was noted in some animals immediately after dosing. Animals observed over 14 days. NTS = No Toxic Signs. TABLE 2 (Continued) QUANTAL TOXICITY DATA WTH WEANLING MICE | Animal No. | Initial
Weight
gm | Final
Weight
gm | Visible
Toxic
Signs ^a | Gross Necropsy Findings | |--------------|-------------------------|------------------------------|--|---| | Females | | | | | | 9032 | 14.7 | 19.3 | NTS ^b | NSL ^C | | 9033 | 13.8 | 20.4 | NTS | NSL | | 9034 | 14.2 | 23.3 | NTS | NSL | | 9035 | 13.7 | 19.8 | NTS | NSL | | 9036 | 13.4 | 19.6 | NTS | NSL | | 9037 | 12.1 | 18.5 | NTS | NSL | | 9038 | 12.7 | 19.5 | NTS | One mesenteric lymph node slightly enlarged | | 9039 | 12.0 | 17.4 | NTS | NSL | | 9040 | 12.6 | 18.2 | NTS | NSL | | 9041 | 13.3 | 21.4 | NTS | Mesenteric lymph nodes | | Mean Body We | ight: | | | slightly enlarged. | | | Initial :
Final : | = 13.3 ± 0.9
= 19.7 ± 1.7 | gm (Standard
7 gm (Standard | Deviation) Deviation) | a bAnimals observed over 14 days. NTS = No Toxic Signs. NSL = No Significant Lesions Note: Staining of the muzzle from the test material was noted in some animals immediately after dosing. ### VII. EVALUATION CRITERIA If no mortality occurs in the quantal study, no further studies will be performed with the test substance and the LD_{50} should be reported as greater than 5 ml/kg or 5 g/kg. The test material is then ranked as having nondectable toxicity (ND) at the maximum applicable dose (MAD). Effluent samples which produce harmful effects in vivo and do not result in deaths will be noted in the results summary. Such observations are difficult to quantitate but provide insight into the sublethal effects of a sample on rodents. Further investigations may be recommended from observations of nonlethal toxic effects. If a single animal in the quantal study dies in the 14-day observation period, a quantitative study will be performed. An LD $_{50}$ will be calculated by the method of Litchfield and Wilcoxin 4 . If the data are not suitable for calculation of a precise LD $_{50}$, i.e., total mortality occurs for the lowest dose, an estimate of the LD $_{50}$ could be made or the LD $_{50}$ could be expressed as 0.05 ml/kg or 0.05 g/kg or less. Occasionally, it may be necessary to use a different series of dosages in a repeat study to accurately locate the LD $_{50}$. The calculated LD $_{50}$ value is used to rank the toxicity of the test material according to the dose ranges presented in Table 3. Frequent observations are also made and recorded on all animals through the 14-day period. As in the quantal phase, no attempt is made to quantitate or rank observations. The average animal body weight of each group is determined initially and at the termination of the experiment. The average weights and the weights as fractions of the control are reported for each dose level. Necropsy observations are recorded and reported. TABLE 3 ACUTE IN VIVO RODENT TOXICITY ASSAY EVALUATION CRITERIA | Toxicity ^a | Solids
(LD ₅₀ in g/kg) | Liquids
(LD ₅₀ in m1/kg) | |-----------------------|--------------------------------------|--| | iigh | <0.05 | <0.05 | | derate | 0.05 to 0.5 | 0.05 to 0.5 | | ow . | 0.5 to 5 | 0.5 to 5 | | ot Detectable | >5 | >5 | ### VIII. REFERENCES - 1. Brusick, D.J., et al.: <u>IERL-RTP Procedures Manual</u>: <u>Level 1 Environmental Assessment Biological Tests</u>. <u>EPA Contract No. 68-02-2681</u>, Technical Directive No. 501, Litton Bionetics, Inc., Kensington, MD, September 1980, 177 pp., in press. - 2. Brusick, D.J.: Level 1 Bioassay Assessment and Data Formatting. EPA-600/7-80-079, Litton Bionetics, Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA 600/7-81-135 Litton Bionetics, Inc., Kensington, MD, August 1981, 52 pp. - 4. Litchfield, J.T. and Wilcoxin, F.: "A Simplified Method of Evaluation Dose-Effect Experiments." J. Pharmac. Exp. Ther., Vol. 96, 1949, pp. 99-113. GENETICS ASSAY NO.: 5883 LBI SAFETY NO.: 7167 MUTAGENICITY EVALUATION OF A81-05-030-672 (EA-2 10+3) IN THE EPA LEVEL 1 AMES SALMONELLA/MICROSOME PLATE TEST FINAL REPORT ### SUBMITTED TO: ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 ### SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20895 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 #### **PREFACE** This assay conforms to the standard EPA Level 1 procedure for the Ames <u>Salmonella</u>/microsome mutagenesis assay as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests". The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting". The Ames <u>Salmonella</u>/microsome mutagenesis assay has been shown to be a sensitive method for detecting mutagenic activity for a variety of chemicals representing various chemical classes³. This assay is one of several recommended by EPA to identify, categorize and rank the pollutant potential of influent and effluent streams from industrial and energy-producing processes. This assay has been well validated with a wide range of positive and negative control chemicals and complex environmental samples. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw data will be supplied to the sponsor upon request. # TABLE OF CONTENTS | | | | | Page No | |-----------|----------------------|--|---|----------------------------| | | PREFA | ACE | | i | | I. | ASSAY | Y SUMMARY | • | 1 | | II. | OBJE | CTIVE | • | 2 | | III. | TEST | MATERIAL | • | 3 | | | A.
.B. | Description | | 3
3 | | IV. | MATER | RIALS | | 4 | | | A.
B.
C. | Indicator Microorganisms | • | 4
4
5
5
5 | | ٧. | EXPE | RIMENTAL DESIGN | • | 6 | | | A.
B.
C.
D. | Dose Selection | • | 6
6
6
7
7 | | VI. | RESU | LTS | • | 9 | | | A.
B. | Interpretation | | 9
9 | | VII. EVAL | UATIO | N CRITERIA | | 12 | | | A.
B.
C.
D. | Surviving Populations Dose-Response Phenomena Control Tests Evaluation Criteria for Ames Assay 1. Strains TA-1535 and TA-1537 2. Strains TA-98 and TA-100 3. Pattern 4. Reproducibility Relation Between Mutagenicity and Carcinogenicity Criteria for Ranking Samples in the Ames Assay | • | 13
13
13
13
13 | | VIII. | | REFERENCES | | | | | | | | | ### I. <u>ASSAY SUMMARY</u> - A. <u>Sponsor</u>: Acurex Corporation - B. Material (Test Compound): Genetics Assay Number: 5883 - 1. Identification: A81-05-030-672 (EA-2 10+3) - 2. Date Received: August 26, 1981 - 3. Physical Description: Fine, gray powder... - C. Type of Assay: EPA Level 1 Ames Salmonella/Microsome Plate Test - D. Assay Design Number: 401 (EPA Level 1) - E. Study Dates: - 1. Initiation: October 26, 1981 - 2. Completion: November 9, 1981 - F. <u>Supervisory Personnel</u>: - A. Study Director: D.R. Jagannath, Ph.D. - G. <u>Evaluation</u>: The test material, A81-05-030-672 (EA-2 10+3), was tested for activity in the Ames $\underline{Salmonella}$ mutagenicity assay over a concentration range of 0.05 $\underline{mg/plate}$ to 5.0 $\underline{mg/plate}$. The test was performed in duplicate under nonactivation and activation test conditions with strains TA-1535, TA-1537, TA-98, and TA-100. The sample was not mutagenic under the test conditions employed and was ranked as having nondetectable (ND) mutagenic activity as defined by the IERL-EPA Level 1 criteria for the Ames bioassay¹. Submitted by: Study Director D.R. Jagannath, Ph.D. Date Section Chief. Submammalian Genetics, Department of Molecular Toxicology Reviewed by: David J. Brusick, Ph.D. Director,
Department of Molecular Toxicology ### II. OBJECTIVE The objective of this study was to determine the genetic activity of A81-05-030-672 (EA-2 10+3) in the <u>Salmonella</u>/microsome assay with and without the addition of mammalian metabolic activation preparations. The genetic activity of a sample is measured in these assays by its ability to revert the <u>Salmonella</u> indicator strains from histidine dependence to histidine independence. The degree of genetic activity of a sample is reflected in the number of revertants that are observed on the histidine-free medium. ### III. TEST MATERIAL ### A. Description The test material was received as a fine gray powder (1.5 gm) and was used without further preparation. The sample consisted of the 3 μm and 10 μm SASS train particulate catch. ### B. Handling and Preparation The test material was received at LBI on August 26, 1981. The sample was assigned LBI safety number 7167 and LBI assay number 5883. The sample was stored at $+4^{\circ}\text{C}$ in the dark. A total of 476.58 mg of test material were used for two trials of the Ames Salmonella Assay. The test material was suspended at 100 mg/ml in dimethylsulfoxide (DMSO). The sample formed an opaque suspendion that settled upon standing. The suspension was incubated at 37°C on a shaker overnight to help leach material out of the particulates. Serial dilutions were made in DMSO such that 50 μ l aliquots of each dilution give the desired concentration. The suspension was well mixed when aliquots were removed for dosing. #### IV. MATERIALS ### A. <u>Indicator Microorganisms</u> The <u>Salmonella typhimurium</u> strains used in this assay were obtained from Dr. Bruce Ames, University of California at Berkeley.⁴⁻⁸ The following four strains were used. | Strain | Gene | Addit | ional M | lutations | Mutation Type | |-------------|--------------|----------------|------------|-----------|---------------------------| | Designation | Affected | Repair | LPS | R Factor | Detected | | TA-1535 | <u>his</u> G | Δ <u>uvr</u> B | rfa | | Base-pair
substitution | | TA-1537 | <u>his</u> C | Δ <u>uvr</u> B | <u>rfa</u> | - | Frameshift | | TA-98 | his D | Δ <u>uvr</u> B | <u>rfa</u> | pKM101 | Frameshift | | TA-100 | <u>his</u> G | Δ <u>uvr</u> B | <u>rfa</u> | pKM101 | Base-pair
substitution | All the above strains have, in addition to the mutation in the histidine operon, mutation (<u>rfa</u>-) that leads to defective lipopolysaccharide coat, a deletion that covers genes involved in the synthesis of vitamin biotin (<u>bio</u>-) and in the repair of ultraviolet (uv) - induced DNA damage (<u>uvrB</u>-). The <u>rfa</u>- mutation makes the strains more permeable to many large molecules. The <u>uvrB</u>- mutation decreases repair of some types of chemically or physically damaged DNA and thereby enhances the strain's sensitivity to some mutagenic agents. The resistant transfer factor plasmid (R factor) pKM101 in TA-98 and TA-100 is believed to cause an increase in error-prone DNA repair that leads to many more mutations for a given dose of most mutagens. In addition, plasmid pKM101 confers resistance to the antibiotic ampicillin, which is a convenient marker to detect the presence of plasmid in the cells. All indicator strains are kept at 4°C on minimal medium plates supplemented with a trace of biotin and an excess of histidine. In addition, the plates with plasmid-carrying strains contain ampicillin (25 μ g/ml) to ensure stable maintenance of plasmid pKM101. New stock culture plates are made as often as necessary from the frozen master cultures or from single colony reisolates that were checked for their genotypic characteristics (his, rfa uvrB, bio) and for the presence of plasmid. For each experiment, an inoculum from the stock culture plates is grown overnight at 37°C in nutrient broth (Oxoid CM67) and used. ### B. Media The bacterial strains were cultured in Oxoid Media #2 (Nutrient Broth). The selective medium was Vogen Bonner Medium E with 2% glucose. 10 The overlay agar consisted of 0.6% purified agar with 0.05 mM histidine, 0.05 mM biotin and 0.1M NaCl according to the methods of Ames \underline{et} \underline{al} . # C. Activation System ### 1. S9 Homogenate A 9,000 x g supernatant prepared from Sprague-Dawley adult male rat liver induced by Aroclor 1254 (Ames et al. 9) was purchased commercially and used in these assays. # 2. S9 Mix S9 mix used in these assays consisted of the following components: | Components | | per Milliliter
Mix | |--------------------------------|-----|-----------------------| | MADP (sodium salt) | 4 | μmoles | | D-glucose-6-phosphate | | µmoles | | MgČ1 ₂ | | µmoles | | KČ1 | | µmoles | | Sodium phosphate buffer pH 7.4 | 100 | µmoles | | Organ homogenate from rat | 100 | pillo 103 | | liver (S9 fraction) | 100 | µliters . | #### V. EXPERIMENTAL DESIGN ### A. <u>Dosage Selection</u> Test strategy and dose selection depend upon sample type and sample availability. The Level 1 manual recommends solids to be initially tested at the maximum applicable dose (MAD) of 5 mg per plate and at lower concentrations of 2.5, 1, 0.5, 0.1 and 0.05 mg per plate. Liquids are tested initially at the MAD of 200 μl per plate, and at lower concentrations of 100, 50 and 10 μl per plate. Samples are retested over a narrower range of concentrations with strains showing positive results initially. Alternate dose are employed if sample size is limiting or at the direction of the sponsor. Doses selected to test this sample covered the recommended dose range for solids. The highest dose was at the MAD level of 5 mg per plate and included five lower dose levels of 2.5, 1, 0.5, 0.1, and 0.05 mg per plate. A repeat trial with strain TA-98 without activation used the same dose levels. ### B. <u>Mutagenicity Testing</u> The procedure used was based on the paper published by Ames et. al. 9 and was performed as follows: #### Nonactivation Assay To a sterile 13×100 mm test tube placed in a 43°C water bath the following was added in order: - 2.00 ml of 0.6% agar containing 0.05 mM histidine and 0.05 mM biotin. - 0.05 ml of a suspension of the test chemical to give the appropriate dose. - 0.1 ml to 0.2 ml of indicator (rganism(s). - 0.50 ml of 0.2M phosphate buffer, pH 7.4. This mixture was swirled gently and then poured onto minimal agar plates (see IV B, Media). After the top agar had set, the plates were incubated at 37°C for approximately 2 days. The number of his+ revertant colonies growing on the plates were counted with an automatic colony counter and recorded. #### 2. Activation Assav The activation assay was run concurrently with the nonactivation assay. The only difference was the addition of 0.5 ml of S9 mix (see IV C, Activation System) to the tubes in place of 0.5 ml of phosphate buffer which was added in nonactivation assays. All other details were similar to the procedure for nonactivation assays. A detailed flow diagram for the plate incorporation assay is provided in Figure 1. ### C. Control Compounds A negative control consisting of the solvent used for the test material was also assayed concurrently with the test material. For negative controls, step 'b' of Nonactivation Assays was replaced by 0.05 ml of the solvent. The negative controls were employed for each indicator strain and were performed in the absence and presence of S9 mix. The solvent used to prepare the stock solution of the test material is given in the Results section of this report. All dilutions of the test material were made using this solvent. The amount of solvent used was equal to the maximum volume used to give the appropriate test dose. Specific positive control compounds known to revert each strain were also used and assayed concurrently with the test material. The concentrations and specificities of these compounds to specific strains are given in the following table: | Assay | Chemical | Solvent | Concentration per plate (µg) | Salmonella
Strains | |---------------|---|---------------------------------|------------------------------|--------------------------| | Nonactivation | Sodium azide
2-Nitrofluorene
(NF) | Water
Dimethyl-
sulfoxide | 10.0
10.0 | TA-1535, TA-100
TA-98 | | | 9-aminoacridine
(9AA) | Ethano1 | 50.0 | TA-1537 | | Activation | 2-anthramine
(ANTH) | Dimethyl-
sulfoxide | 2.5 | For all strains | # D. <u>Recording and Presenting Data</u> The number of colonies on each plate were counted and recorded on printed forms. These raw data were analyzed in a computer program and reported on a printout. The results are presented as revertants per plate for each indicator strain employed in the assay. The positive and solvent controls are provided as reference points. #### AMES ASSAY [PLATE INCORPORATION METHOD] Figure 1 AMES SALMONELLA/MICROSOME MUTAGENESIS ASSAY ### VI. RESULTS # A. <u>Interpretations</u> The test material, A81-05-030-672 (EA-2 10+3), was dissolved in DMSO at a stock concentration of 100 mg/ml and leached overnight on a shaker at 37°C. Additional dilutions were prepared in DMSO for testing. The maximum test level was 5.0 mg/plate. There was no evidence of toxicity at this level. Reverse mutation was measured in strains TA-1535, TA-1537, TA-98 and TA-100. The test was conducted in duplicate both with and without rat liver S9 mix for metabolic activation. The trial with strain TA-98 without activation was repeated using the same test conditions, because in the first trial, one of the positive control plates was lost due to contamination. There was no mutagenic activity associated with the test material treatment and the sample was considered nonmutagenic and non toxic. The sample was ranked as having nondetectable (ND) mutagenic activity using the IERL-EPA Level 1 evaluation criteria for the Ames Assay¹. Solvent control and positive control values were within acceptable ranges.
These results achieved assay acceptance criteria and provided confidence in the assumptions that the recorded data represented typical responses to the test material. #### B. Tables This report is based on the data provided in Tables 1 and 2. A. NAME OR CODE DESIGNATION OF THE TEST COMPOUND: AB1-05-030-672 EA-2 10+3 B. SOLVENT: DMSO • TEST INITIATION DATES: 10/26/81 D. TEST COMPLETION DATE: 10/29/81 E. S-9 LOTH: REF050 NOTE: CONCENTRATIONS ARE GIVEN IN MILLIGRAMS PER PLATE | | | | R E | E V E | RTA | N T S | FE | R | PL | TE | | | | |----------------------------------|---------|--------|-----|------------|------|--------|---|---|-----------|--------------------|------------------|-------------|--------------------------| | TEST | SPECIES | TISSUE | TA- | -1535 | **** | TA- | 1537 | | TA- | 98 | T A | -100 | ***** | | NONACTIVATION | | | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 1 | 2 | 3 | | SOLVENT CONTROL POSITIVE CONTROL | | | | 19
1052 | | | 4
650 | | 24
860 | 26
C | | 118
1080 | | | TEST COMPOUND | | | | | | | | | | | | | | | 0.050 MG | | | 10 | 16 | | 9 | В | | 24 | 30 | 144 | 104 | | | 0.100 MG | | | 12 | 14 | | 12 | 10 | | 27 | 21 | 128 | 129 | | | 0.500 MG | | | 15 | 20 | | 14 | 5 | | 28 | 33 | 131 | | | | 1.000 MG | | | 10 | 12 | | 6 | 12 | | 34 | 23 | 117 | | | | 2.50J MG | | | 13 | 8 | | 10 | 6 | | 28 | 25 | 105 | | | | 5.000 MG | | | 11 | 14 | | 12 | 14 | | 22 | 30 | 78 | 86 | | | ACTIVATION | | | | | | | | | | | | | | | SOLVENT CONTROL | RAT | LIVER | 15 | 11 | | 6. | 7 | | 41 | 37 | 92 | 101 | | | POSITIVE CONTROL++ | - | LIVER | | | | | 445 | | | 1991 | | 1861 | | | TEST COMPOUND | | | | | | | | | | | | | | | 0.050 MG | RAT | LIVER | ló | 12 | | 11 | · 11 | | 34 | 34 | 120 | 100 | | | 0.100 MG | RAT | LIVER | 8 | 9 | | R | 12 | | 27 | 26 | 103 | - | | | 0.500 MG | RAT | LIVER | 14 | 13 | | 13 | 9 | | 29 | 41 | 100 | 98 | | | 1.000 MG | RAT | LIVER | 8 | 10 | | 8 | A | | 33 | 43 | 101 | 112 | | | 2.500 MG | RAT | LIVER | 12 | 14 | | 7 | 8 | | 41 | 29 | 95 | 98 | | | 5.000 MG | RAT | LIVER | 12 | 9 | | 9 | 13 | | 30 | 33 , | 93 | 103 | | | | | | | | | | | | | | | | | | # # 1636 (ADTH | 47705 | | | | | 10 115 | 404 A TE | | • • • | T4 . 1 6 7 6 | 0 ANT. | | 0 5 40 404 | | TA-1535 SODTUM | | M.C. | | | | | /PLATE | | | TA-1535
TA-1537 | | | | | TA-153/ 9-AMIN
TA-98 2-NITR | OFLUORE | | | | | | /PLATE | | | TA-98 | 2-ANTH
2-ANTH | | 2.5 UG/PL | | | AZIDE | TL. | | | | | /PLATE | | | TA-100 | 2-ANTH | | 2.5 UG/PL/
2.5 UG/PL/ | | SOLVENT SOULA | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | . ~ | E-MILLI | WHITE | 200 UU/PL/ | 70 ``` RESULTS TABLE 2 ``` A. NAME OR CODE DESIGNATION OF THE TEST COMPOUND: A81-05-330-672 EA-2 10+3 B. SOLVENT: DMSO C. TEST INITIATION DATES: 11/03/81 D. TEST COMPLETION DATE: 11/09/81 E. S-9 LOTH: REF050 NOTE: CONCENTRATIONS ARE GIVEN IN MILLIGRAMS PER PLATE | _ | |
- | _ | - | _ | •• | _ | • | _ | _ | • | - | | - | - | - | |-----|-----|-------|---|---|---|----|---|---|---|----|---|---|---|---|---|---| | H : | F 1 | F | ĸ | • | A | N | ı | 5 | P | t. | ĸ | P | L | A | | Ł | | ST | | : | SPECIES | TISSUE | TA | -98 | | | | |-------|---------|------|---------|--------|------|------|-----|---|--| | - | | | | | | | | | | | | | | | | 1 | 2 | 2 3 | š | | | IACTI | MOTIAN | CONTRO | | | | 22 | | | | | | VITIE | E CONTR | OL . | | | 1128 | 1143 | 3 | | | | et co | MPOUND | | | | | | | | | | | .050 | MG | | | 25 | 3.3 | | , | | | | | | | | | | | | | | | .100 | MG | | | 23 | _ | | | | | 0 | .500 | MG | | | 19 | 22 | 5 | | | | 1 | .000 | MG | | | 14 | 20 |) | | | | | - | | | | 23 | | | | | | | •500 | MG | | | | | | | | | 5. | .000 | MG | | | 18 | 21 | l | | | • • TA-98 2-NITROFLUORENE SOLVENT 50 UL/PLATE 10 UG/PLATE ### VII. ASSAY ACCEPTANCE AND EVALUATION CRITERIA Statistical methods are not currently used, and evaluation is based on the criteria included in this protocol. Plate test data consists of direct revertant colony counts obtained from a set of selective agar plates seeded with populations of mutant cells suspended in a semisolid overlay. Because the test material and the cells are incubated in the overlay for approximately 2 days and a few cell divisions occur during the incubation period, the test is semiquantitative in nature. Although these features of the assay reduce the quantitation of results, they provide certain advantages not contained in a quantitative suspension test: - The small number of cell divisions permits potential mutagens to act on replication DNA, which is often more sensitive than nonreplicating DNA. - The combined incubation of the test article and the cells in the overlay permits constant exposure of the indicator cells for approximately 2 days. ### A. Surviving Populations Plate test procedures do not permit exact quantitation of the number of cells surviving chemical treatment. At low concentrations of the test material, the surviving population on the treatment plates is essentially the same as that on the negative control plate. At high concentrations, the surviving population is usually reduced by some fraction. Our protocol will normally employ several doses ranging over two or three log concentrations, the highest of these doses being selected to show slight toxicity as determined by subjective criteria. ### B. Dose-Response Phenomena The demonstration of dose-related increased in mutant counts is an important criterion in establishing metagenicity. A factor that might modify dose-response results for a mutagen would be the selection of doses that are too low (usually mutagenicity and toxicity are related). If the highest dose is far lower than a toxic concentration, no increases may be observed over the dose range selected. Conversely, if the lowest dose employed is highly cytotoxic, the test material may kill any mutants that are induced, and the test material will not appear to be mutagenic. ### C. <u>Control Tests</u> Positive and negative control assays were conducted with each experiment and consisted of direct-acting mutagens for nonactivation assays and mutagens that require metabolic biotransformation in activation assays. Negative controls consisted of the test material solvent in the overlay agar together with the other essential components. The negative control plate for each strain gave a reference point to which the test data was compared. The positive control assay was conducted to demonstrate that the test systems were functional with known mutagens. The following normal range of revertants for solvent controls are generally considered acceptable. TA-1535: 8-30 TA-1537: 4-30 TA-98: 20-75 TA-100: 80-250 ### D. <u>Evaluation Criteria for Ames Assay</u> Because the procedures to be used to evaluate the mutagenicity of the test material are semiquantitative, the criteria to be used to determine positive effects are inherently subjective and are based primarily on a historical data base. Most data sets will be evaluated using the following criteria. #### 1. Strains TA-1535 and TA-1537 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to three times the solvent control value will be considered to be mutagenic. #### Strains TA-98 and TA-100 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to twice the solvent control value for TA-98 and TA-100 will be considered to be mutagenic. #### Pattern Because TA-1535 and TA-100 are both derived from the same parental strain (G-46), to some extent there is a built-in redundancy in the microbial assay. In general, the two strains of a set respond to the same mutagen and such a pattern is sought. Generally, if a strain responds to a mutagen in nonactivation tests, it will do so in activation tests. #### 4. Reproducibility If a test material produces a response in a single test that cannot be reproduced in additional runs, the initial positive test data lose significance. The preceding criteria are not absolute, and other extenuating factors may enter into a final evaluation decision. However, these criteria will be applied to the majority of situations and are presented to aid those individuals not familar with this procedure. As the data base is increased, the criteria for evaluation can be more firmly established. 13 # E. Relation Between Mutagenicity and Carcinogenicity It must be emphasized that the Ames <u>Salmonella/Microsome Plate Assay</u> is not a definitive test for chemical carcinogens. It is recognized, however, that correlative and functional relations have been demonstrated between these two endpoints. The results of comparative tests on 300 chemicals by McCann et al. 4 show an extremely good correlation between results of microbial mutagenesis tests and <u>in vivo</u> rodent carcinogenesis assays. All evaluations and interpretation of the data to be presented in the final report will be based only on the demonstration, or lack, of mutagenic activity. ### F. Criteria for Ranking Samples in the Ames Assay The goal of EPA Level 1 Ames testing is to rank source streams by relative degree of genetic toxicity (mutagenicity). Samples are first identified as mutagenic or nonmutagenic by the criteria in Section D above and then ranked using the mutagenicity categories presented in the table below. The lowest concentration giving a positive response in any strain, with or without metabolic activation, is identified as the minimum effective concentration (MEC) for that sample. The mutagenicity of the sample is evaluated as high (H), moderate (M), low (L), or nondetectable (ND) according to the evaluation criteria developed in the Level 1 manual and summarized below. Samples with no
detectable activity at the maximum applicable dose (MAD) are ranked nondetectable (ND). Ames Assay Mutagenicity Ranking Criteria¹ | Mutagenic
Activity | Solids
(MEC in µg/plate) | Liquids ^a
(MEC in µl/plate) | |-----------------------|-----------------------------|---| | High (H) | <50 | <2 | | Moderate (M) | 50-500 | 2-20 | | Low (L) | 500-5000 | 20-200 | | Not Detectable (ND) | >5000 | >200 | ^aConcentration of organic extracts is based upon organic content (µg organics per plate) and not volume (µl extract per plate) of sample tested. ### VIII. REFERENCES - 1. Brusick, D.J., et al.: IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests. EPA Contract No. 68-02-2681, Technical Directive No. 501, Litton Bionetics, Inc., Kensington, MD, September 1980, 177 pp. In press. - 2. Brusick, D.J.: <u>Level 1 Bioassay Assessment and Data Formatting</u>. EPA-600/7-80-079, Litton Bionetics Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135, Litton Bionetics, Inc., Kensington, MD, August 1981, 52 pp. - 4. McCann, J., Choi, E., Yamasaki, E. and Ames, B.N.: Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc. Nat. Acad. Sci., USA 72:5135-5139, 1975. - 5. Ames, B.N., Gurney, E.G., Miller, J.A. and Bartsch, H.: Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylamino-fluorene and other aromatic amine carcinogens. Proc. Nat. Acad. Sci., USA 69:3128-3132, 1972. - 6. Ames, B.N., Lee, F.D., and Durston, W.E.: An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Nat. Acad. Sci., USA 70:782-786, 1973. - 7. Ames, B.N., Durston, W.E., Yamasaki, E. and Lee, F.D.: Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Nat. Acad. Sci., USA 70:2281-2285, 1973. - 8. McCann, J., Springarn, N.E., Kobori, J. and Ames, B.N.: Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA 72:979-983, 1975. - 9. Ames, B.N., McCann, J. and Yamasaki, E.: Methods for detecting carcinogens and mutagens with the <u>Salmonella/mammalian-microsome</u> mutagenicity test. Mutation Res., <u>31</u>:347-364, 1975. - Vogel, H.J. and Bonner, D.M.: Acetylornithinase of E. coli partial purification and some properties. J. Biol. Chem., 218:97-106, 1966. GENETICS ASSAY NO.: 5883 LBI SAFETY NO.: 7167 CYTOTOXIC EVALUATION OF A81-05-030-672 (EA-2 10+3) IN THE RABBIT ALVEOLAR MACROPHAGE (RAM) CYTOTOXICITY ASSAY FINAL REPORT #### SUBMITTED TO: ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 ### SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20895 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 1 ### PREFACE This assay conforms to the standard EPA Level 1 procedure for the rabbit alveolar macrophage (RAM) cytotoxicity assay as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests" (1). The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting" (2). The RAM cytotoxicity assay has been shown to be a sensitive method for detecting cytotoxic activity for a variety of chemicals representing various chemical classes (3). This assay is one of several recommended by EPA to identify, categorize and rank the pollutant potential of influent and effluent streams from industrial and energy-producing processes. This assay has been well validated with a wide range of positive and negative control chemicals and complex environmental samples. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw data will be supplied to the sponsor upon request. # TABLE OF CONTENTS | | | Page No. | |-------|---------------------------|-------------| | | PREFACE | i | | I. | ASSAY SUMMARY | 1 | | II. | OBJECTIVE | 2 | | III. | TEST MATERIAL | 3 | | | A. Description | 3
3 | | IV. | MATERIALS | 4 | | | A. Indicator Cells | 4
4
4 | | ٧. | EXPERIMENTAL DESIGN | 5 | | | A. Procurement of Cells | 5
6
6 | | VI. | ASSAY ACCEPTANCE CRITERIA | 8 | | VII. | RESULTS | 9 | | | A. Interpretation | 9
9 | | VIII. | ASSAY EVALUATION CRITERIA | 13 | | IX. | REFERENCES | 14 | - ASSAY SUMMARY - A. SPONSOR: Acurex Corporation - B. MATERIAL (TEST COMPOUND): GENETICS ASSAY NUMBER: 5883 - 1. Identification: A81-05-030-672 (EA-2 10+3) - 2. Date Received: August 26, 1981 - 3. Physical Description: Fine, gray powder - C. TYPE OF ASSAY: Rabbit Alveolar Macrophage (RAM) Cytotoxicity Assay - D. ASSAY DESIGN NUMBER: 443 - E. STUDY DATES: - 1. Initiation: October 22, 1981 - 2. Completion: October 23, 1981 - F. SUPERVISORY PERSONNEL: - 1. Study Director: Brian Myhr, Ph.D. - 2. Laboratory Supervisor: Robert Young, M.S. - G. EVALUATION: The test material, which was tested as supplied, caused a dose-related increase in toxicity for concentrations above approximately 200 $\mu g/ml$. The viability index and ATP content assay parameters were about equally sensitive and indicated an EC50 would be achieved at approximately the maximum applicable dose (MAD) of 1000 $\mu g/ml$. Since toxicity was clearly observed in the low toxicity region of 100-1000 $\mu g/ml$, as defined by the IERL-EPA evaluation criteria, and the projected EC50 values were essentially on the borderline between the low and nondetectable toxicity regions, the test material was best evaluated as having low/nondetectable (L/ND) toxicity to cultured RAM cells. Submitted by: Study Director Brian Myhr, PhyD. Associate Director, Department of Molecular Toxicology 5-275 David J. Brusick, Ph.D. Director, Department of Molecular Toxicology ### II. OBJECTIVE The objective of this study was to determine and rank the cytotoxicity of A81-05-030-672 (EA-2 10+3) to cultured rabbit alveolar macrophage (RAM) cells. The measure of cytotoxicity was the reduction in cell viability and adenosine triphosphate (ATP) content of the cultures after a 20 hour exposure to the test material. At the conclusion of the exposure period, the number of viable cells and total ATP content in the treated cultures were compared to the corresponding values in unexposed control cultures. The concentration of test material that reduced each experimental parameter by 50% was estimated graphically and referred to as the EC50 value. Standard EPA Level 1 toxicity evaluation criteria for the RAM cytotoxicity assay were used to rank the toxicity potential of the test material based upon the most sensitive parameter. ### III. TEST MATERIAL # A. <u>Description</u> The test material was received as a fine, gray powder (1.5 gm). No information on particle size distribution or sampling parameters was provided. # B. Handling and Preparation The test material was received on August 26, 1981, and was assigned LBI assay number 5883 and LBI safety number 7167. The sample was stored at $+4^{\circ}\text{C}$ in the dark. Approximately 33 mg of test material was used as supplied, without grinding, for the assay. The test material was suspended in serum-free EMEM culture medium at a concentration of 2000 μ g/ml and incubated at 37°C on a roller drum for 8 hours. A fine, gray suspension was formed that settled upon standing. No pH changes were noted. The suspension was serially diluted with EMEM (serum-free) and applied to the cultures at a maximum concentration of 1000 μ g/ml in the presence of 10% serum. #### IV. MATERIALS ### A. Indicator Cells The assay employed short-term primary cultures of alveolar macrophage cells obtained by lung lavage of a male New Zealand white rabbit (2.4 kg). The rabbit was maintained on Purina Lab Rabbit Chow 5321 and water ad libitum and was examined for the absence of respiratory illnesses prior to use. ### B. Media The cells were maintained and treated in Eagle's Minimum Essential Medium (EMEM) with Earle's salts and supplemented with 10% fetal bovine serum (heat-inactivated), 100 units/ml penicillin, 100 μ g/ml streptomycin, 17.6 μ g/ml kanamycin, and 0.4 μ g/ml amphotericin B. ### C. Negative Controls The negative control consisted of three untreated cultures carried through the same experimental time period as the treated cells. The average viability and ATP content of the negative control provided the reference points for determining the effects of different concentrations of the test material on the assay parameters. ### V. EXPERIMENTAL DESIGN ### A. Procurement of Cells A rabbit was sacrificed by injection of Nembutal® (60 mg/ml) into the marginal ear vein, and sterile operating techniques were used to perform a tracheostomy. Prewarmed normal saline (30 ml) was then introduced into the lungs via a catheter and allowed to stand for 15 minutes. This lavage fluid was removed and placed into a 50-ml sterile centrifuge tube on ice. Nine additional lavages were similarly performed and collected, except the saline was removed shortly after its introduction into the lungs. Any lavage fluid containing blood or mucous was discarded. The lavages were centrifuged at 365 x g for 15 minutes and the cells resuspended in cold 0.85% saline. After two washes in saline by centrifugation, the cell pellets were resuspended in cold EMEM containing 20% serum and then combined. A cell count
was obtained by hemocytometer and the suspension diluted to between 5.13×10^5 and 10^6 cells/ml. Viability was determined by trypan blue staining and the cells were not used if less than 95% viable. Also, a differential cell count from Wright-stained smears was performed to verify that the macrophage content was above 90%. ### B. <u>Sample Forms</u> The usual sample form for application to the cells is a suspension of particulate material. Solid samples are ground to fine particles and a weighed portion is suspended in a known volume of EMEM (0% FBS) for about eight hours to help leach any water-soluble material. Finely-divided test material may be suspended directly in culture medium without further grinding. Aqueous liquids, suspensions, or slurries containing less than 0.5% organic solvent are added by volume to culture medium. Samples supplied as solutions in organic solvents are usually solvent-exchanged into DMSO before testing. Original sample volumes may first be reduced a maximum of 10-fold in a Kuderna-Danish concentrator, and the concentrative factor is used to convert assayed volumes into equivalent original sample volumes in the absence of information about solute concentration. An aliquot of the reduced volume is exchanged into DMSO by repeated, partial evaporation under a stream of nitrogen in a warm water bath (50°C); the evaporated volumes are replaced with equal volumes of DMSO. Samples adsorbed on XAD-2 resin are extracted with methylene chloride or acetone in a Soxhlet apparatus for 24 hours. The extract is then concentrated and solvent-exchanged into DMSO. Alternatively, acetone extracts can be assayed directly at concentrations up to 2% by volume in the culture medium. Samples impregnated on fiber glass or teflon filters are repeatedly sonicated in cyclohexane to remove particulates. The resulting cyclohexane particulate suspension is then evaporated to dryness and the particulates resuspended in EMEM culture medium at the desired concentration. Sponsor-specified handling of sample materials will be followed if the above procedures are not applicable or a specific procedure is desired. #### C. Dose Selection Unless the approximate toxicity is already known or the sample size is limiting, the following usual dose ranges are tested for different sample forms. Dry, particulate material is tested at six dose levels from 1000 $\mu g/ml$ to 3 $\mu g/ml$. Aqueous samples, suspensions, or slurries are tested from 600 μl to 3 $\mu l/ml$ in six dose steps. Samples that are solvent-exchanged into DMSO are tested from 20 $\mu l/ml$ (2% DMSO in growth medium) to 0.2 $\mu l/ml$, also in six dose steps. A second dose study is performed with an adjusted dose range if the EC50 was not located properly in the initial test. However, EC50 values greater than 1000 $\mu l/ml$ for particulate material, 600 $\mu l/ml$ for aqueous samples, or 20 $\mu l/ml$ for organic solutions will not be determined. This test material, A81-05-030-672 (EA-2 10+3), was tested at 6 dose levels, starting at the maximum applicable dose (MAD) of 1000 μ g/ml and including 600, 300, 100, 60 and 30 μ g/ml. #### D. Treatment A series of 25 cm² culture flasks were prepared, each containing 2.0 ml of serum-free medium at 37°C and the test material at twice the desired final concentration. Three flasks were prepared for each test concentration. Aliquots of cell suspension (2 ml) were then added; each flask, therefore, contained from 1.03 to 2 x 10^6 viable cells in a 4-ml volume of media containing 10% serum. The flasks were placed on a rocker platform in a 37°C incubator with a humidified atmosphere containing 5% CO_2 . After sitting for about 30 minutes, the flasks were slowly rocked for the remainder of a 20-hour exposure period. If the test substance causes a color change in the growth medium, the pH is determined in additional treated flasks. After the exposure period, the pH of the medium in the experimental flasks is again recorded. ### E. Cell Viability Assay At the end of the treatment period, the medium containing unattached cells was decanted into a centrifuge tube on ice. The attached cells were rinsed with 1 ml of 0.1% trypsin/0.01% versene and then incubated with 2 ml of the trypsin/versene solution for about 5 minutes at 37°C. The trypsinates and decanted media were combined for each culture to yield a 7-ml cell suspension for subsequent analysis. A 1.0 ml aliquot of the cell suspension was removed for cell count and viability determination. The aliquot was combined with 1.0 ml of 0.4% trypan blue and counted by hemocytometer about 5 to 15 minutes later. The total number of cells counted per culture was the sum of the numbers found in five squares for each chamber of the hemocytometer (1 μ l total volume). The numbers of live (colorless) and dead (blue) cells were recorded. # F. ATP Assay ATP was immediately analyzed by extraction of a 0.1-ml sample of cell suspension with 0.9 ml of 90% DMSO. After 2 minutes at room temperature 5.0 ml cold MOPS buffer (0.01 M morpholinopropane sulfonic acid) at pH 7.4 was added and the extract mixed well and placed on ice. Aliquots of 10 μ l were injected into a cuvette containing a luciferin-luciferase reaction mixture in a DuPont Model 760 Luminescence Biometer. The Biometer was calibrated daily with standard ATP solutions to provide a direct read-out of the ATP content. Each test sample was assayed at least twice to obtain repeatable readings. ### VI. ASSAY ACCEPTANCE CRITERIA The assay will be considered acceptable for evaluation of the test results if the following criteria are met: - 1. The macrophage population is 90% or greater of the total nucleated cells collected by lung lavage. - 2. The percent viability of the macrophages used to initiate the assay is 95% or greater. - 3. The survival of viable macrophages in the negative control cultures over the 20 hour treatment priod is 70% or greater. - 4. A sufficient number of data points (for five test concentrations or less) are available to clearly locate the EC50 of the most sensitive test parameter within a toxicity region as defined under Assay Evaluation Criteria. - 5. The data points critical to the location of the EC50 for the most sensitive parameter are the averages of at least two treated cultures. - 6. If all the test parameters yield EC50 values greater than 1000 μ g/ml, 600 μ l/ml for aqueous solutions, or 20 μ l/ml for organic solutions, the plotted curves for ATP content and viability index parameters do not exceed 120% of the negative control. ### VII. RESULTS ### A. <u>Interpretation</u> The test material was ingested by the macrophages and caused a general decline in their viability when the applied concentration was increased above approximately 200 μ g/ml. Absolute values for the assay parameters are given in Table 1, as well as the parameters relative to the negative control average value, and the relative values are plotted in Figures 1 and 2. The viability index (which measures cell survival) and the culture ATP content usually tend to parallel each other, and an inspection of the results in Figures 1 and 2 show this to be the case for the current assay. Both parameters were about equally sensitive and showed declines in ATP and the numbers of viable cells in the 100-1000 µg/ml concentration range. Both parameters also indicated the EC_{50} values would be achieved for concentrations at or just above the MAD level of 1000 µg/ml. Therefore, strict application of the IERL-EPA evaluation criteria would result in a nondetectable toxicity classification. However, toxicity was clearly evident in the low toxicity region (100-1000 µg/ml), and repeat assays could be expected to result in variations in the EC50 positions such that borderline responses could fall within either the low or nondetectable categories. The percent viability and ATP/106 cells parameters were essentially nonresponsive and did not contribute to an evaluation of the test material. On the basis of the responsive parameters, the test material was evaluated as having low/nondetectable (L/ND) borderline toxicity to the RAM cells. The macrophages collected for this assay had normal morphology and appeared to be in a healthy state. The initial viability was excellent (99.4%) and the survival of viable cells in the negative control was 98.9%. The average cellular ATP content of the negative controls 29.0 x 10^8 fg ATP per 10^6 total cells, which wash within the historical range for acceptable cultures. These results achieved the assay acceptance criteria and provided confidence in the assumption that the collected data represented typical responses to the test material. #### B. Tables and Figures This report is based on the data provided in Table 1 and Figures 1 and 2. TABLE 1 RABBIT ALVEOLAR MACROPHAGE (RAM) CYTOTOXICITY ASSAY DATA LBI Assay No.: 5883 Initial Cell Viability: 99.4% Test Material Identity: A81-05-030-672 (EA-2 10+3) Viable Macrophage Seeded/Flask: 1.03 x 106 Test Date: October 22, 1981 Macrophage Population Percentage: >90% Survival of Negative Control Macrophage Over Treatment Time: 98.9% Vehicle: EMEM | Comple | Concentration ^a | | es per Culture F | | ATP Per | 44 - L 3 3 4 | Expressed as Percent of Negative Control Viability ATP Per | | | | | |--------|----------------------------|---------------------------------------|--------------------------------------|---------------------------|---|----------------|--|--------------------|-------|-----------------------|--| | Sample | concentration
μg/ml | Viable Cells
10 ⁶ Units | Total Cells
10 ⁶ Units | ATP
108fg ^b | 10 ⁶ Cells
10 ⁸ fg | Viability
% | Viability | Viability
Index | ATP | 10 ⁶ Cells | | | NCC | | 0.89 | 0.90 | 26.1 | 29.0 | 98.9 | 100.0 | 100.0 | 100.0 | 100.0 | | | TEST | 30 | 0.90 | 0.91 | 26.1 |
28.7 | 98.9 | 100.0 | 101.1 | 100.0 | 99.0 | | | TEST | 60 | 0.97 | 0.98 | 25.7 | 26.2 | 99.0 | 100.1 | 109.0 | 98.5 | 90.3 | | | TEST | 100 | 0.86 | 0.90 | 24.5 | 27.2 | 95.6 | 96.7 | 96.6 | 93.9 | 93.8 | | | TEST | 300 | 0.63 | 0.67 | 22.5 | 33.6 | 94.0 | 95.0 | 70.8 | 86.2 | 115.9 | | | TEST | 600 | 0.49 | 0.54 | 17.4 | 32.2 | 90.7 | 91.7 | 55.1 | 66.7 | 111.0 | | | TEST | 1000 | 0.54 | 0.61 | 14.4 | 23.6 | 88.5 | 89.5 | 60.7 | 55.2 | 81.4 | | | | | ···· | | | | | | | | | | ^apH change in culture medium: None observed >1000 1000 >1000 >1000 Toxicity Classification: Low/Nondetectable Borderline dec50 VALUES: μg/m1: $^{^{}b}$ fg = Femtogram (10-15 gram). ^CNC = Negative Control, EMEM culture medium. ^dDetermined from data plots in Figures 1 and 2. FIGURE 1 ### EC50 DETERMINATION FOR # PERCENT VIABILITY (0) AND VIABILITY INDEX (0) A81-05-030-672 (EA-2 10+3) FIGURE 2 ### EC50 DETERMINATION FOR ATP/FLASK (0) AND ATP/10⁶ CELLS (●) A81-05-030-672 (EA-2 10+3) #### VIII. ASSAY EVALUATION CRITERIA The EC50 value represents the concentration of test material that reduces the most sensitive parameter of the RAM assay to 50% of the vehicle or negative control value. EC50 values are determined graphically by fitting a curve by eye through relative toxicity data plotted as a function of the logarithm of the applied concentration. Each data point normally represents the average of three culture dishes. Statistical analysis is unnecessary in most cases for evaluation. The toxicity of the test material is evaluated as high, moderate, low, or nondetectable according to the range of EC50 values defined in the following table. | Toxicity ^a | Solids | Aqueous Liquids | Nonaqueous Liquids ^D | |-----------------------|-----------------------------|-----------------------------|---------------------------------| | | (EC ₅₀ in µg/ml) | (EC ₅₀ in µ1/m1) | (EC ₅₀ in µl/ml) | | High | <10 | <6 | <0.2 | | Moderate | 10 to 100 | 6 to 60 | 0.2-2 | | Low | 100 to 1000 | 60 to 600 | 2-20 | | Not Detectable | >1000 | >600 | >20 | ^aEvaluation criteria formulated by Litton Bionetics, Inc. for <u>IERL-RTP</u> Procedures Manual: Level 1 Environmental Assessment Biological Tests¹. Another evaluation scheme is proposed for extracts obtained from SASS train gas volumes. The proportion of the total gas volume corresponding to the volume of extract used in the bioassay is calculated and expressed as L/ml of culture medium (or DSCF/ml of culture medium). A criterion of 1000 L/ml is set as the limit for nondetectable toxicity. This gas volume corresponds to the average volume breathed by humans over a 2-hour period. The subsequent toxicity ranges are defined by 10-fold dilution steps to conform to standard procedure. The toxicity ranges are defined in the following table for liter and dry standard cubic feet units: | Toxicity | EC ₅₀ In
Liters/ml (L/ml) | EC ₅₀ In Dry Standard Cubic Feet/ml (DSCF/ml) | |------------------|---|--| | High
Moderate | <10
10-100 | <0.35 DSCF
0.35-3.5 | | Low | 100-1000 | 3.5-35 | | Nondetectable | >1000 | >35 | ^bCriteria for nonaqueous liquids are tentative and under evaluation. If the organic or solid content is known, the solid evaluation criteria are applied. ### IX. REFERENCES - 1. Brusick, D.J., et al.: <u>IERL-RTP Procedures Manual</u>: <u>Level 1 Environmental Assessment Biological Tests</u>. <u>EPA Contract No. 68-02-2681</u>, Technical Directive No. 501, Litton Bionetics, Inc., Kensington, MD, September 1980, 177 pp. In press. - 2. Brusick, D.J.: <u>Level 1 Bioassay Assessment and Data Formatting</u>. EPA-600/7-80-079, Litton Bionetics, Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135, Litton Bionetics, Inc., Kensington, MD, August 1981, pp. 52. GENETICS ASSAY NO.: 5884 LBI SAFETY NO.: 7168 MUTAGENICITY EVALUATION OF A81-05-030-674 (EA-2 1+FILTER) IN THE EPA LEVEL 1 SALMONELLA/MICROSOME PLATE TEST FINAL REPORT ### **SUBMITTED TO:** ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 # SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20895 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 5-289 #### **PREFACE** This assay conforms to the standard EPA Level 1 procedure for the Ames <u>Salmonella</u>/microsome mutagenesis assay as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests". The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting". The Ames <u>Salmonella</u>/microsome mutagenesis assay has been shown to be a sensitive method for detecting mutagenic activity for a variety of chemicals representing various chemical classes³. This assay is one of several recommended by EPA to identify, categorize and rank the pollutant potential of influent and effluent streams from industrial and energy-producing processes. This assay has been well validated with a wide range of positive and negative control chemicals and complex environmental samples. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw data will be supplied to the sponsor upon request. ## TABLE OF CONTENTS | | <u>Page</u> | NO | |-----------|--------------------------|---| | | PREFACE | i | | I. | ASSAY SUMMARY | 1 | | II. | OBJECTIVE | 2 | | III. | TEST MATERIAL | 3 | | | A. Description | 3
3 | | IV. | MATERIALS | 4 | | | B. Media | 4
4
5
5
5 | | ٧. | EXPERIMENTAL DESIGN | 6 | | | B. Mutagenicity Test | 6
6
6
7 | | VI. | RESULTS | 9 | | | | 9
9 | | VII. EVAL | JATION CRITERIA | 1 | | | A. Surviving Populations | 1
1
2
2
2
2
2
2
3 | | VIII. | | 4 | | | - | - | ## I. ASSAY SUMMARY - A. Sponsor: Acurex Corporation - B. <u>Material (Test Compound)</u>: Genetics Assay Number: 5884 - 1. Identification: A81-05-030-674 (EA-2 1+Filter) - 2. Date Received: August 26, 1981 - 3. Physical Description: Fine, gray/black powder and fiberglass filter with embedded particles. - C. <u>Type of Assay</u>: EPA Level 1 <u>Ames</u> Salmonella/Microsome Plate Test - D. Assay Design Number: 401 (EPA Level 1) - E. Study Dates: - 1. Initiation: October 1, 1981 - 2. Completion: October 29, 1981 - F. <u>Supervisory Personnel</u>: - A. Study Director: D.R. Jagannath, Ph.D. - G. <u>Evaluation</u>: The test material, A81-05-030-674 (EA-2 1+filter), was tested for activity in the Ames <u>Salmonella</u> mutagenicity assay over a concentration range of $0.\overline{05}$ mg/plate to 5.0 mg/plate. The test was performed in duplicate under nonactivation and activation test conditions with strains TA-1535, TA-1537, TA-98, and TA-100. The sample was not mutagenic under the test conditions employed and was ranked as having nondetectable (ND) mutagenic activity as defined by the IERL-EPA Level 1 criteria for the Ames bioassay 1 . Submitted by: Study Director D.R. Jagannath, Ph.D. Date D.K. Jagannath, Ph.D. Section Chief, Submammalian Genetics, Department of Molecular Toxicology cology 5-292 Reviewed by: David J. Brusick, Ph.D. Director, Department of Molecular Toxicology ## II. OBJECTIVE The objective of this study was to determine the genetic activity of A81-05-030-674 (EA-2 1+Filter) in the Salmonella/ microsome assay with and without the addition of mammalian metabolic activation preparations. The genetic activity of a sample is measured in these assays by its ability to revert the Salmonella indicator strains from histidine dependence to histidine independence. The degree of genetic activity of a sample is reflected in the number of revertants that are observed on the histidine-free medium. #### III. TEST MATERIAL #### A. <u>Description</u> The test material, as received, was comprised to two separate components. The first component, a fine, gray/black powder, was the 1 μm SASS train particulate catch. The second component was a fiberglass filter with embedded particulate material. This gray/black particulate material represented particulates less than 1 μm collected in the SASS train sample. Both components were supplied together in a Nalgene screw-top bottle. ## B. <u>Handling and Preparation</u> The test material was received at LBI on August 26, 1981. The sample was assigned LBI safety number 7168 and LBI assay number 5884. The sample was stored at $+4^{\circ}\text{C}$ in the dark. The filter portion of the sample required removal of the embedded particulates before testing could begin. The uncut filter was sonicated in cyclohexane as recommended by current IERL-EPA pretest sample preparation procedures. The decanted particulate suspension from three successive sonication treatments were combined and evaporated to dryness. The particulate material was weighed and combined with the 1 μ m particulate catch portion of the sample. A total of 264.42 mg of the combined test material available for testing was comprised of 70.28 mg (26.6%) of <1 μ m particulates removed from the filter and 194.14 mg (73.4%) of 1 μ m particulates. Approximately 220 mg of the test material were used for the trial in the Ames <u>Salmonella</u> Assay. The test material was suspended at 100 mg/ml in dimethylsulfoxide (DMSO) and incubated overnight at 37°C on a rotary shaker. This stock suspension was used to make dilutions
in DMSO to be used for dosing in the EPA Level 1 Ames Salmonella Assay. ## IV. MATERIALS ### A. Indicator Microorganisms The <u>Salmonella typhimurium</u> strains used in this assay were obtained from Dr. Bruce Ames, University of California at Berkeley. 4-8 The following four strains were used. | Strain | Gene | Addit | ional M | Mutation Type | | | |-------------|--------------|----------------|------------|---------------|---------------------------|--| | Designation | Affected | Repair | LPS | R Factor | Detected | | | TA-1535 | <u>his</u> G | Δ <u>uvr</u> B | <u>rfa</u> | • | Base-pair
substitution | | | TA-1537 | <u>his</u> C | Δ <u>uvr</u> B | <u>rfa</u> | - | Frameshift | | | TA-98 | his D | Δ <u>uvr</u> B | rfa | pKM101 | Frameshift | | | TA-100 | <u>his</u> G | Δ <u>uvr</u> B | <u>rfa</u> | pKM101 | Base-pair
substitution | | All the above strains have, in addition to the mutation in the histidine operon, mutation (<u>rfa</u>-) that leads to defective lipopolysaccharide coat, a deletion that covers genes involved in the synthesis of vitamin biotin (<u>bio</u>-) and in the repair of ultraviolet (uv) - induced DNA damage (<u>uvrB</u>-). The <u>rfa</u>- mutation makes the strains more permeable to many large molecules. The <u>uvrB</u>- mutation decreases repair of some types of chemically or physically damaged DNA and thereby enhances the strain's sensitivity to some mutagenic agents. The resistant transfer factor plasmid (R factor) pKM101 in TA-98 and TA-100 is believed to cause an increase in error-prone DNA repair that leads to many more mutations for a given dose of most mutagens. In addition, plasmid pKM101 confers resistance to the antibiotic ampicillin, which is a convenient marker to detect the presence of plasmid in the cells. All indicator strains are kept at 4°C on minimal medium plates supplemented with a trace of biotin and an excess of histidine. In addition, the plates with plasmid-carrying strains contain ampicillin (25 µg/ml) to ensure stable maintenance of plasmid pKM101. New stock culture plates are made as often as necessary from the frozen master cultures or from single colony reisolates that were checked for their genotypic characteristics (his, rfa uvrB, bio) and for the presence of plasmid. For each experiment, an inoculum from the stock culture plates is grown overnight at 37°C in nutrient broth (Oxoid CM67) and used. #### B. Media The bacterial strains were cultured in Oxoid Media #2 (Nutrient Broth). The selective medium was Vogen Bonner Medium E with 2% glucose. 10 The overlay agar consisted of 0.6% purified agar with 0.05 mM histidine, 0.05 mM biotin and 0.1M NaCl according to the methods of Ames \underline{et} \underline{al} .9 ## C. Activation System ### 1. S9 Homogenate A 9,000 x g supernatant prepared from Sprague-Dawley adult male rat liver induced by Aroclor 1254 (Ames <u>et al.</u>9) was purchased commercially and used in these assays. #### 2. S9 Mix S9 mix used in these assays consisted of the following components: | Components | | per Milliliter
Mix | |-------------------------------------|-----|-----------------------| | NADP (sodium salt) | 4 | µmoles | | D-glucose-6-phosphate | | µmoles | | MgCl ₂ | | µmoles | | KČ1
Sodium phosphate buffer | 33 | µmoles | | pH 7.4
Organ homogenate from rat | 100 | µmoles | | liver (S9 fraction) | 100 | μliters | ## V. EXPERIMENTAL DESIGN ## A. <u>Dosage Selection</u> Test strategy and dose selection depend upon sample type and sample availability. The Level 1 manual 1 recommends solids to be initially tested at the maximum applicable dose (MAD) of 5 mg per plate and at lower concentrations of 2.5, 1, 0.5, 0.1 and 0.05 mg per plate. Liquids are tested initially at the MAD of 200 μ l per plate, and at lower concentrations of 100, 50 and 10 μ l per plate. Samples are retested over a narrower range of concentrations with strains showing positive results initially. Alternate dose are employed if sample size is limiting or at the direction of the sponsor. Doses selected to test this sample covered the recommended dose range for solids. The highest dose was at the MAD level of 5 mg per plate and included five lower dose levels of 2.5, 1, 0.5, 0.1 and 0.05 mg per plate. #### B. <u>Mutagenicity Testing</u> The procedure used was based on the paper published by Ames et. $\underline{a1.9}$ and was performed as follows: #### 1. Nonactivation Assay To a sterile 13 \times 100 mm test tube placed in a 43°C water bath the following was added in order: - 2.00 ml of 0.6% agar containing 0.05 mM histidine and 0.05 mM biotin. - 0.05 ml of a suspension of the test chemical to give the appropriate dose. - 0.1 ml to 0.2 ml of indicator organism(s). - 0.50 ml of 0.2M phosphate buffer, pH 7.4. This mixture was swirled gently and then poured onto minimal agar plates (see IV B, Media). After the top agar had set, the plates were incubated at 37°C for approximately 2 days. The number of his+ revertant colonies growing on the plates were counted with an automatic colony counter and recorded. #### 2. Activation Assay The activation assay was run concurrently with the nonactivation assay. The only difference was the addition of 0.5 ml of S9 mix (see IV C, Activation System) to the tubes in place of 0.5 ml of phosphate buffer which was added in nonactivation assays. All other details were similar to the procedure for nonactivation assays. A detailed flow diagram for the plate incorporation assay is provided in Figure 1. #### C. Control Compounds A negative control consisting of the solvent used for the test material was also assayed concurrently with the test material. For negative controls, step 'b' of Nonactivation Assays was replaced by 0.05 ml of the solvent. The negative controls were employed for each indicator strain and were performed in the absence and presence of S9 mix. The solvent used to prepare the stock solution of the test material is given in the Results section of this report. All dilutions of the test material were made using this solvent. The amount of solvent used was equal to the maximum volume used to give the appropriate test dose. Specific positive control compounds known to revert each strain were also used and assayed concurrently with the test material. The concentrations and specificities of these compounds to specific strains are given in the following table: | Assay | Chemical | Solvent | Concentration per plate (µg) | Salmonella
Strains | |---------------|---|---------------------------------|------------------------------|--------------------------| | Nonactivation | Sodium azide
2-Nitrofluorene
(NF) | Water
Dimethyl-
sulfoxide | 10.0 °
10.0 | TA-1535, TA-100
TA-98 | | | 9-aminoacridine
(9AA) | Ethano1 | 50.0 | TA-1537 | | Activation | 2-anthramine
(ANTH) | Dimethyl-
sulfoxide | 2.5 | For all strains | ## D. Recording and Presenting Data The number of colonies on each plate were counted and recorded on printed forms. These raw data were analyzed in a computer program and reported on a printout. The results are presented as revertants per plate for each indicator strain employed in the assay. The positive and solvent controls are provided as reference points. #### AMES ASSAY [PLATE INCORPORATION METHOD] Figure 1 AMES SALMONELLA/MICROSOME MUTAGENESIS ASSAY ### VI. RESULTS #### A. Interpretations The test material, A81-05-030-674 (EA-2 1+Filter), was dissolved in DMS0 at a stock concentration of 100 mg/ml and leached overnight on a shaker at 37°C . Additional dilutions were prepared in DMSO for testing. The maximum test level was 5.0 mg/plate. There was no evidence of toxicity at this level. Reverse mutation was measured in strains TA-1535, TA-1537, TA-98 and TA-100. The test was conducted in duplicate both with and without rat liver S9 mix for metabolic activation. There was no mutagenic activity associated with the test material treatment and the sample was considered nonmutagenic and non toxic. The sample was ranked as having nondetectable (ND) mutagenic activity using the IERL-EPA Level 1 evaluation criteria for the Ames Assay¹. Solvent control and positive control values were within acceptable ranges. These results achieved assay acceptance criteria and provided confidence in the assumptions that the recorded data represented typical responses to the test material. ## B. <u>Tables</u> This report is based on the data provided in Table 1. RESULTS TABLE 1 NAME OR CODE DESIGNATION OF THE TEST COMPOUND: A-81-05-030-674(EA-2 1+FILTER) SOLVENT: DASO C . TEST INITIATION DATES: 10/26/81 D. TEST COMPLETION DATE: 10/29/81 E. S-9 LOTH: REF050 NOTE: CONCENTRATIONS ARE GIVEN IN MILLIGRAMS PER PLATE | R | E | ٧ | Ē | R | T | A | N | Ţ | 5 | P | E | R | P | L | A | Ţ | E | | |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--| TEST | SPECIES | TISSUE | | -1535 | | | | | | -100 | | |-------------------|---------|--------|------|-------|-----|-----|-----|------|------|------|---| | | | | | 2 | | 2 | | | | | 3 | | NGITAVIT DANGE | | | | | | | | | | | | | SOLVENT CONTROL | , | | | 19 | 7 | 4 | 24 | 26 | 116 | 118 | | | POSITIVE CONTROLA | | | 1239 | 1052 | 735 | 650 | 860 | C | 1196 | 1080 | | | TEST COMPOUND | | | | | | | | | | | | | 0.050000 MG | | | 11 | 10 | 14 | 7 | 34 | 24 | 100 | 105 | | | 0.100000 MG | | | 10 | Я | Ä | 11 | 20 | 21 | | 113 | | | 0.500000 MG | | | 22 | 15 | '7 | 10 | 32 | 42 | | 138 | | | 1.000000 MG | | | 17 | 15 | 10 | 6 | 35 | 29 | 131 | 119 | | | 2.5000C0 MG | | | 21 | 23 | 13 | 16 | 48 | 46 | 136 | 135 | | | 5.0000J0 MG | | | 23 | 23 | 18 | 21 | 0 | 34 | 142 | 132 | | | ACTIVATION | SOLVENT CONTROL | RAT | LIVER | 16 | 11 | | 7 | A 1 | 37 | 9.3 | 101 | | | POSITIVE CONTROL* | | LIVER | | | | 445 | | 1991 | | 1861 | | | OJIIIVE CONTROL | - (4) | C14C" | *** |
307 | 43. | 113 | 013 | • | 2311 | 1001 | | | TEST COMPOUND | | | | | | | | | | | | | 0.9500C0 MG | RAT | LIVER | 10 | Ą | 17 | 5 | 36 | 20 | 89 | 108 | | | 0.100000 MG | RAT | LIVER | 11 | 17 | 9 | 11 | 39 | 4 C | 103 | 100 | | | 0.500000 MG | RAT | LIVER | 11 | Ą | ρ | 14 | 39 | 30 | 124 | 114 | | | 1.000000 MG | RAT | LIVER | 14 | | 13 | 14 | 44 | 30 | 119 | 113 | | | 2.500000 MG | RAT | LIVER | 11 | 17 | 16 | 10 | 46 | 34 | 148 | 116 | | | | RAT | LIVER | 16 | 17 | 15 | 21 | 40 | 45 | 124 | 114 | | | T4-1535 | SODIUM AZIDE | 10 | UG/PLATE | T4-1535 | 2-ANTHRAMINE | 2.5 UG/PLATE | |---------|-----------------|----|----------|---------|--------------|--------------| | TA-1537 | 9-AMINOACRIDINE | 50 | UG/PLATE | TA-1537 | 2-ANTHRAMINE | 2.5 UG/PLATE | | TA-98 | 2-NITROFLUORENE | 10 | UU/PLATE | TA-98 | 2-ANTHRAMINE | 2.5 UG/PLATE | | T4-107 | SODIUM AZIDE | 10 | UG/PLATE | TA-100 | 2-ANTHRAMINE | 2.5 UG/PLATS | | SOLVENT | SO UL/PLATE | | | | | | 10 ## VII. ASSAY ACCEPTANCE AND EVALUATION CRITERIA Statistical methods are not currently used, and evaluation is based on the criteria included in this protocol. Plate test data consists of direct revertant colony counts obtained from a set of selective agar plates seeded with populations of mutant cells suspended in a semisolid overlay. Because the test material and the cells are incubated in the overlay for approximately 2 days and a few cell divisions occur during the incubation period, the test is semiquantitative in nature. Although these features of the assay reduce the quantitation of results, they provide certain advantages not contained in a quantitative suspension test: - The small number of cell divisions permits potential mutagens to act on replication DNA, which is often more sensitive than nonreplicating DNA. - The combined incubation of the test article and the cells in the overlay permits constant exposure of the indicator cells for approximately 2 days. ## A. Surviving Populations Plate test procedures do not permit exact quantitation of the number of cells surviving chemical treatment. At low concentrations of the test material, the surviving population on the treatment plates is essentially the same as that on the negative control plate. At high concentrations, the surviving population is usually reduced by some fraction. Our protocol will normally employ several doses ranging over two or three log concentrations, the highest of these doses being selected to show slight toxicity as determined by subjective criteria. ## B. <u>Dose-Response Phenomena</u> The demonstration of dose-related increased in mutant counts is an important criterion in establishing metagenicity. A factor that might modify dose-response results for a mutagen would be the selection of doses that are too low (usually mutagenicity and toxicity are related). If the highest dose is far lower than a toxic concentration, no increases may be observed over the dose range selected. Conversely, if the lowest dose employed is highly cytotoxic, the test material may kill any mutants that are induced, and the test material will not appear to be mutagenic. ### C. Control Tests Positive and negative control assays were conducted with each experiment and consisted of direct-acting mutagens for nonactivation assays and mutagens that require metabolic biotransformation in activation assays. Negative controls consisted of the test material solvent in the overlay agar together with the other essential components. The negative control plate for each strain gave a reference point to which the test data was compared. The positive control assay was conducted to demonstrate that the test systems were functional with known mutagens. The following normal range of revertants for solvent controls are generally considered acceptable. TA-1535: 8-30 TA-1537: 4-30 TA-98: 20-75 TA-100: 80-250 #### D. Evaluation Criteria for Ames Assay Because the procedures to be used to evaluate the mutagenicity of the test material are semiquantitative, the criteria to be used to determine positive effects are inherently subjective and are based primarily on a historical data base. Most data sets will be evaluated using the following criteria. #### 1. Strains TA-1535 and TA-1537 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to three times the solvent control value will be considered to be mutagenic. #### 2. Strains TA-98 and TA-100 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to twice the solvent control value for TA-98 and TA-100 will be considered to be mutagenic. #### Pattern Because TA-1535 and TA-100 are both derived from the same parental strain (G-46), to some extent there is a built-in redundancy in the microbial assay. In general, the two strains of a set respond to the same mutagen and such a pattern is sought. Generally, if a strain responds to a mutagen in nonactivation tests, it will do so in activation tests. #### 4. Reproducibility If a test material produces a response in a single test that cannot be reproduced in additional runs, the initial positive test data lose significance. The preceding criteria are not absolute, and other extenuating factors may enter into a final evaluation decision. However, these criteria will be applied to the majority of situations and are presented to aid those individuals not familar with this procedure. As the data base is increased, the criteria for evaluation can be more firmly established. 5-303 ## E. Relation Between Mutagenicity and Carcinogenicity It must be emphasized that the Ames <u>Salmonella</u>/Microsome Plate Assay is not a definitive test for chemical carcinogens. It is recognized, however, that correlative and functional relations have been demonstrated between these two endpoints. The results of comparative tests on 300 chemicals by McCann et al. 4 show an extremely good correlation between results of microbial mutagenesis tests and <u>in vivo</u> rodent carcinogenesis assays. All evaluations and interpretation of the data to be presented in the final report will be based only on the demonstration, or lack, of mutagenic activity. ## F. Criteria for Ranking Samples in the Ames Assay The goal of EPA Level 1 Ames testing is to rank source streams by relative degree of genetic toxicity (mutagenicity). Samples are first identified as mutagenic or nonmutagenic by the criteria in Section D above and then ranked using the mutagenicity categories presented in the table below. The lowest concentration giving a positive response in any strain, with or without metabolic activation, is identified as the minimum effective concentration (MEC) for that sample. The mutagenicity of the sample is evaluated as high (H), moderate (M), low (L), or nondetectable (ND) according to the evaluation criteria developed in the Level 1 manual and summarized below. Samples with no detectable activity at the maximum applicable dose (MAD) are ranked nondetectable (ND). Ames Assay Mutagenicity Ranking Criteria¹ | Mutagenic
Activity | Solids
(MEC in µg/plate) | Liquids ^a
(MEC in µl/plate) | |-----------------------|-----------------------------|---| | High (H) | <50 | <2 | | Moderate (M) | 50-500 | 2-20 | | Low (L) | 500-5000 | 20-200 | | Not Detectable (ND) | >5000 | >200 | ^aConcentration of organic extracts is based upon organic content (μg organics per plate) and not volume (μl extract per plate) of sample tested. ## VIII. REFERENCES - 1. Brusick, D.J., et al.: <u>IERL-RTP Procedures Manual</u>: <u>Level 1 Environmental Assessment Biological Tests</u>. <u>EPA Contract No. 68-02-2681</u>, <u>Technical Directive No. 501</u>, <u>Litton Bionetics</u>, <u>Inc.</u>, <u>Kensington</u>, MD, <u>September 1980</u>, 177 pp. In press. - 2. Brusick, D.J.: <u>Level 1 Bioassay Assessment and Data Formatting</u>. EPA-600/7-80-079, Litton Bionetics Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135, Litton Bionetics, Inc., Kensington, MD, August 1981, 52 pp. - 4. McCann, J., Choi, E., Yamasaki, E. and Ames, B.N.: Detection of carcinogens as mutagens in the <u>Salmonella/microsome</u> test: Assay of 300 chemicals. Proc. Nat. Acad. Sci., USA 72:5135-5139, 1975. - 5. Ames, B.N., Gurney, E.G., Miller, J.A. and Bartsch, H.: Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylamino-fluorene and other aromatic amine carcinogens. Proc. Nat. Acad. Sci., USA 69:3128-3132, 1972. - 6. Ames, B.N., Lee, F.D., and Durston, W.E.: An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Nat. Acad. Sci., USA 70:782-786, 1973. - 7. Ames, B.N., Durston, W.E., Yamasaki, E. and Lee, F.D.: Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Nat. Acad. Sci., USA 70:2281-2285, 1973. - 8. McCann, J., Springarn, N.E., Kobori, J. and Ames, B.N.: Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA 72:979-983, 1975. - 9. Ames, B.N., McCann, J. and Yamasaki, E.: Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutation Res., 31:347-364, 1975. - 10. Vogel, H.J. and Bonner, D.M.: Acetylornithinase of E. coli partial purification and some properties. J. Biol. Chem., 218:97-106, 1966. GENETICS ASSAY NO.: 5884 LBI SAFETY NO.: 7168 CYTOTOXIC EVALUATION OF A81-05-030-674 (EA-2 1+FILTER) IN THE RABBIT ALVEOLAR MACROPHAGE (RAM) CYTOTOXICITY ASSAY FINAL REPORT #### SUBMITTED TO: ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 ## SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE
KENSINGTON, MARYLAND 20895 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 #### PREFACE This assay conforms to the standard EPA Level 1 procedure for the rabbit alveolar macrophage (RAM) cytotoxicity assay as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests" (1). The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting" (2). The RAM cytotoxicity assay has been shown to be a sensitive method for detecting cytotoxic activity for a variety of chemicals representing various chemical classes (3). This assay is one of several recommended by EPA to identify, categorize and rank the pollutant potential of influent and effluent streams from industrial and energy-producing processes. This assay has been well validated with a wide range of positive and negative control chemicals and complex environmental samples. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw data will be supplied to the sponsor upon request. # TABLE OF CONTENTS | | | Page No. | |-------|---------------------------|------------------| | | PREFACE | i | | I. | ASSAY SUMMARY | 1 | | II. | OBJECTIVE | 2 | | III. | TEST MATERIAL | 3 | | | A. Description | 3
3 | | IV. | MATERIALS | 4 | | | A. Indicator Cells | 4
4
4 | | ٧. | EXPERIMENTAL DESIGN | 5 | | | A. Procurement of Cells | 5
6
6
7 | | VI. | ASSAY ACCEPTANCE CRITERIA | 8 | | VII. | RESULTS | 9 | | | A. Interpretation | 9
9 | | VIII. | ASSAY EVALUATION CRITERIA | 13 | | IX. | REFERENCES | 14 | - I. **ASSAY SUMMARY** - Α. SPONSOR: Acurex Corporation - MATERIAL (TEST COMPOUND): GENETICS ASSAY NUMBER: 5884 В. - 1. Identification: A81-05-030-674 (EA-2 1+Filter) - Date Received: August 26, 1981 2. - Fine, gray/black powder and fiberglass Physical Description: 3. filter with embedded particulate material. - C. TYPE OF ASSAY: Rabbit Alveolar Macrophage (RAM) Cytotoxicity Assay - D. ASSAY DESIGN NUMBER: 443 - Ε. STUDY DATES: - 1. Initiation: October 1, 1981 - 2. Completion: October 14, 1981 - SUPERVISORY PERSONNEL: F. - Study Director: Brian Myhr, Ph.D. 1. - 2. Laboratory Supervisor: Robert Young, M.S. - G. **EVALUATION:** The combined particulate material from the filter and 1 micron catch caused a dose-related increase in toxicity for applied concentrations greater than approximately 20 $\mu g/ml$. All four assay parameters were responsive, but the primary effect was the reduction in cellular ATP content. The EC₅₀ for the ATP content was 77 µg/ml, which resulted in an evaluation of moderate (M) toxicity for the combined particulate catch, using the toxicity categories defined for the IERL-EPA Level 1 RAM Cytotoxicity Assay. Submitted by: Study Director Associate Director, Department of Molecular Toxicology Director, Department of Molecular Toxicology ## II. OBJECTIVE The objective of this study was to determine and rank the cytotoxicity of A81-05-030-674 (EA-2 1+filter) to cultured rabbit alveolar macrophage (RAM) cells. The measure of cytotoxicity was the reduction in cell viability and adenosine triphosphate (ATP) content of the cultures after a 20 hour exposure to the test material. At the conclusion of the exposure period, the number of viable cells and total ATP content in the treated cultures were compared to the corresponding values in unexposed control cultures. The concentration of test material that reduced each experimental parameter by 50% was estimated graphically and referred to as the EC50 value. Standard EPA Level 1 toxicity evaluation criteria for the RAM cytotoxicity assay were used to rank the toxicity potential of the test material based upon the most sensitive parameter. ## III. TEST MATERIAL ## A. <u>Description</u> The test material, as received, was comprised of two separate components. The first component, a fine black/gray powder, was the 1 μm SASS train particulate catch. The second component was a fiberglass filter with embedded particulate material. This dark material represented particulates less than 1 μm collected in the SASS train sample. Both components were supplied together in a Nalgene screw-top bottle. ## B. Handling and Preparation The test material was received on August 26, 1981, and was assigned LBI assay number 5884 and LBI safety number 7168. The sample was stored at +4°C in the dark. The filter portion of the sample required removal of the embedded particulates before testing could begin. The uncut filter was sonicated in cyclohexane as recommended by current IERL-EPA pretest sample preparation procedures 1 . The decanted particulate suspensions from three successive sonication treatments were combined and evaporated to dryness. The particulate residue was weighed and combined with the 1 μm particulate catch portion of the sample. A total of 264.42 mg of combined test material was available for testing and was comprised of 70.28 mg (26.6%) of <1 μm particulates removed from the filter and 194.14 mg (73.4%) of the 1 μm catch. Approximately 34.4 mg of test material was used for the assay. The test material was suspended in serum-free EMEM culture medium at a concentration of 2000 μ g/ml and incubated at 37°C on a roller drum for 8 hours. A fine suspension was formed that settled on standing. No pH changes were noted. The suspension was serially diluted with EMEM (serum-free) and applied to the cultures at a maximum concentration of 1000 μ g/ml in the presence of 10% serum. ### IV. MATERIALS #### A. Indicator Cells The assay employed short-term primary cultures of alveolar macrophage cells obtained by lung lavage of a male New Zealand white rabbit (2.25 kg). The rabbit was maintained on Purina Lab Rabbit Chow 5321 and water ad libitum and was examined for the absence of respiratory illnesses prior to use. #### B. Media The cells were maintained and treated in Eagle's Minimum Essential Medium (EMEM) with Earle's salts and supplemented with 10% fetal bovine serum (heat-inactivated), 100 units/ml penicillin, 100 μ g/ml streptomycin, 17.6 μ g/ml kanamycin, and 0.4 μ g/ml amphotericin B. ## C. Negative Controls The negative control consisted of three untreated cultures carried through the same experimental time period as the treated cells. The average viability and ATP content of the negative control provided the reference points for determining the effects of different concentrations of the test material on the assay parameters. ### V. EXPERIMENTAL DESIGN #### A. <u>Procurement of Cells</u> A rabbit was sacrificed by injection of Nembutal $^{(0)}$ (60 mg/ml) into the marginal ear vein, and sterile operating techniques were used to perform a tracheostomy. Prewarmed normal saline (30 ml) was then introduced into the lungs via a catheter and allowed to stand for 15 minutes. This lavage fluid was removed and placed into a 50-ml sterile centrifuge tube on ice. Nine additional lavages were similarly performed and collected, except the saline was removed shortly after its introduction into the lungs. Any lavage fluid containing blood or mucous was discarded. The lavages were centrifuged at 365 x g for 15 minutes and the cells resuspended in cold 0.85% saline. After two washes in saline by centrifugation, the cell pellets were resuspended in cold EMEM containing 20% serum and then combined. A cell count was obtained by hemocytometer and the suspension diluted to 5.02×10^5 cells/ml. Viability was determined by trypan blue staining and the cells were not used if less than 95% viable. Also. a differential cell count from Wright-stained smears was performed to verify that the macrophage content was above 90%. #### B. <u>Sample Forms</u> The usual sample form for application to the cells is a suspension of particulate material. Solid samples are ground to fine particles and a weighed portion is suspended in a known volume of EMEM (0% FBS) for about eight hours to help leach any water-soluble material. Finely-divided test material may be suspended directly in culture medium without further grinding. Aqueous liquids, suspensions, or slurries containing less than 0.5% organic solvent are added by volume to culture medium. Samples supplied as solutions in organic solvents are usually solvent-exchanged into DMSO before testing. Original sample volumes may first be reduced a maximum of 10-fold in a Kuderna-Danish concentrator, and the concentrative factor is used to convert assayed volumes into equivalent original sample volumes in the absence of information about solute concentration. An aliquot of the reduced volume is exchanged into DMSO by repeated, partial evaporation under a stream of nitrogen in a warm water bath (50°C); the evaporated volumes are replaced with equal volumes of DMSO. Samples adsorbed on XAD-2 resin are extracted with methylene chloride or acetone in a Soxhlet apparatus for 24 hours. The extract is then concentrated and solvent-exchanged into DMSO. Alternatively, acetone extracts can be assayed directly at concentrations up to 2% by volume in the culture medium. Samples impregnated on fiber glass or teflon filters are repeatedly sonicated in cyclohexane to remove particulates. The resulting cyclohexane particulate suspension is then evaporated to dryness and the particulates resuspended in EMEM culture medium at the desired concentration. Sponsor-specified handling of sample materials will be followed if the above procedures are not
applicable or a specific procedure is desired. #### C. Dose Selection Unless the approximate toxicity is already known or the sample size is limiting, the following usual dose ranges are tested for different sample forms. Dry, particulate material is tested at six dose levels from 1000 μ g/ml to 3 μ g/ml. Aqueous samples, suspensions, or slurries are tested from 600 μ l to 3 μ l/ml in six dose steps. Samples that are solvent-exchanged into DMSO are tested from 20 μ l/ml (2% DMSO in growth medium) to 0.2 μ l/ml, also in six dose steps. A second dose study is performed with an adjusted dose range if the EC50 was not located properly in the initial test. However, EC50 values greater than 1000 μ l/ml for particulate material, 600 μ l/ml for aqueous samples, or 20 μ l/ml for organic solutions will not be determined. This test material, A81-05-030-674 (EA-2 1+filter), was tested at 6 dose levels, starting at the maximum applicable dose (MAD) of 1000 μ g/ml and including 600, 300, 100, 60 and 30 μ g/ml. ## D. Treatment A series of 25 cm² culture flasks were prepared, each containing 2.0 ml of serum-free medium at 37°C and the test material at twice the desired final concentration. Three flasks were prepared for each test concentration. Aliquots of cell suspension (2 ml) were then added; each flask, therefore, contained 1 x 10^6 viable cells in a 4-ml volume of media containing 10% serum. The flasks were placed on a rocker platform in a 37°C incubator with a humidified atmosphere containing 5% CO_2 . After sitting for about 30 minutes, the flasks were slowly rocked for the remainder of a 20-hour exposure period. If the test substance causes a color change in the growth medium, the phis determined in additional treated flasks. After the exposure period, the ph of the medium in the experimental flasks is again recorded. ## E. <u>Cell Viability Assay</u> At the end of the treatment period, the medium containing unattached cells was decanted into a centrifuge tube on ice. The attached cells were rinsed with 1 ml of 0.1% trypsin/0.01% versene and then incubated with 2 ml of the trypsin/versene solution for about 5 minutes at 37°C. The trypsinates and decanted media were combined for each culture to yield a 7-ml cell suspension for subsequent analysis. A 1.0 ml aliquot of the cell suspension was removed for cell count and viability determination. The aliquot was combined with 1.0 ml of 0.4% trypan blue and counted by hemocytometer about 5 to 15 minutes later. The total number of cells counted per culture was the sum of the numbers found in five squares for each chamber of the hemocytometer (1 μ l total volume). The numbers of live (colorless) and dead (blue) cells were recorded. ## F. ATP Assay ATP was immediately analyzed by extraction of a 0.1-ml sample of cell suspension with 0.9 ml of 90% DMSO. After 2 minutes at room temperature 5.0 ml cold MOPS buffer (0.01 M morpholinopropane sulfonic acid) at pH 7.4 was added and the extract mixed well and placed on ice. Aliquots of 10 μ l were injected into a cuvette containing a luciferin-luciferase reaction mixture in a DuPont Model 760 Luminescence Biometer. The Biometer was calibrated daily with standard ATP solutions to provide a direct read-out of the ATP content. Each test sample was assayed at least twice to obtain repeatable readings. ### VI. ASSAY ACCEPTANCE CRITERIA The assay will be considered acceptable for evaluation of the test results if the following criteria are met: - 1. The macrophage population is 90% or greater of the total nucleated cells collected by lung lavage. - 2. The percent viability of the macrophages used to initiate the assay is 95% or greater. - 3. The survival of viable macrophages in the negative control cultures over the 20 hour treatment priod is 70% or greater. - 4. A sufficient number of data points (for five test concentrations or less) are available to clearly locate the EC50 of the most sensitive test parameter within a toxicity region as defined under Assay Evaluation Criteria. - 5. The data points critical to the location of the EC50 for the most sensitive parameter are the averages of at least two treated cultures. - 6. If all the test parameters yield EC50 values greater than 1000 μ g/ml, 600 μ l/ml for aqueous solutions, or 20 μ l/ml for organic solutions, the plotted curves for ATP content and viability index parameters do not exceed 120% of the negative control. #### VII. RESULTS #### A. Interpretation The test material was ingested by the macrophages and caused a decline in their viability when the applied concentration exceeded approximately $20~\mu g/ml$. Absolute values for the assay parameters are given in Table 1, as well as the parameter values relative to the negative control cultures, and the relative values are plotted in Figures 1 and 2. The most sensitive assay parameter was the culture ATP content, which yielded an EC₅₀ of 77 μ g/ml. This reduction in ATP was also reflected in the ATP/106 total cells parameter, which paralled the culture ATP curve but was somewhat less sensitive (EC₅₀ = 140 μ g/ml). The ATP/10⁶ cells measurement normally lags the ATP measurement because cellular disruption reduces the denominator of this parameter. In order for ATP/106 cells to be very responsive, the percent viability must decrease and the viability index (which measures the total number of viable cells) must not decrease as rapidly as the total ATP. As shown in Figure 1, the percent viability did decrease (EC₅₀ just above the MAD of 1000 μ g/ml) and the viability index declined with a more shallow slope than the ATP and leveled off near 40% of the negative control. Therefore, the primary effect of the combined particulate sample was to cause a drop in cellular ATP content and secondarily, a disruption of the macrophages. This toxicity was clearly evident in the low toxicity range of 100-1000 µg/ml, as defined for the IERL-EPA Level 1 RAM assay 1 . However, the inhibition began in the moderate region of 10-100 μ g/ml for these parameters, and the ATP EC₅₀ of 77 μ g/ml resulted in an evaluation of moderate (M) toxicity for the test material. Although this response by the RAM cells closely approached the moderate/low toxicity borderline, the ATP EC₅₀ would be expected to usually remain in the moderate region for repeated trials. The macrophages collected for this assay had normal morphology and appeared to be in a healthy state. The initial viability was excellent (99.3%) and the survival of viable cells in the negative control was 96.0%. The average cellular ATP content of the negative controls was 25.1 x 10^8 fg ATP per 10^6 total cells which was within the historical range for acceptable cultures. These results achieved the assay acceptance criteria and provided confidence in the assumption that the collected data represented typical responses to the test material. ## B. <u>Tables and Figures</u> This report is based on the data provided in Table 1 and Figures 1 and 2. TABLE 1 RABBIT ALVEOLAR MACROPHAGE (RAM) CYTOTOXICITY ASSAY DATA LBI Assay No.: 5884 Test Material Identity: A81-05-030-674 (EA-2 1+Filter) Test Date: October 13, 1981 Initial Cell Viability: 99.3% Viable Macrophage Seeded/Flask: 1.0 x 106 cells/flask Macrophage Population Percentage: >90.0% Survival of Negative Control Macrophage Over Treatment Time: 96.0% Vehicle: EMEM | | | Average Valu | es per Culture F | lask | ATP Per | | Expressed as Percent of Negative Control | | | | | | |-----------|-------------------------------------|---------------------------------------|--------------------------------------|---------------------------|---|----------------|--|-------------------|-------|----------------------------------|--|--| | Sample | Concentration ^a
µg/ml | Viable Cells
10 ⁶ Units | Total Cells
10 ⁶ Units | ATP
108fg ^b | 10 ⁶ Cells
10 ⁸ fg | Viability
% | Viability | Viabilit
Index | ATP | ATP Per
10 ⁶ Cells | | | | NCC | | 0.97 | 1.01 | 25.4 | 25.1 | 96.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | | TEST | 30 | 0.85 | 0.91 | 18.7 | 20.5 | 93.4 | 97.3 | 87.6 | 73.6 | 81.7 | | | | TEST | 60 | 0.67 | 0.72 | 14.7 | 20.4 | 93.1 | 97.0 | 69.1 | 57.9 | 81.3 | | | | TEST | 100 | 0.60 | 0.68 | 10.7 | 15.7 | 88.2 | 91.9 | 61.9 | 42.1 | 62.5 | | | | TEST | 300 | 0.44 | 0.58 | 3.7 | 6.4 | 75.9 | 79.1 | 45.4 | 14.6 | 25.5 | | | | TEST | 600 | 0.44 | 0.70 | 2.7 | 3.9 | 62.9 | 65.5 | 45.4 | 10.6 | 15.5 | | | | TEST | 1000 | 0.35 | 0.61 | 2.1 | 3.4 | 57.4 | 59.8 | 36.1 | 8.3 | 13.5 | | | | apH chang | ge in culture medium: | None observed | | • | ^d EC50 VALUES:
μg/ml: | | >1000 | 210 | 77 | 140 | | | | Pii | change | ••• | Cuitare | MEG FUIL. | HOHE | 00361 | | |-----|--------|-----|---------|-----------|------|-------|--| | | | | | | | | | $^{^{\}rm b}$ fg = Femtogram (10-15 gram). Toxicity Classification: Moderate CNC = Negative Control, EMEM culture medium. dDetermined from data plots in Figures 1 and 2. FIGURE 1 #### EC50 DETERMINATION FOR ## PERCENT VIABILITY (0) AND VIABILITY INDEX (0) A81-05-030-674 (EA-2 1+FILTER) FIGURE 2 #### EC50 DETERMINATION FOR ATP/FLASK (0) AND ATP/10⁶ CELLS (•) A81-05-030-674 (EA-2 1+FILTER) ## VIII. ASSAY EVALUATION CRITERIA The EC50 value represents the concentration of test material that reduces the most sensitive parameter of the RAM assay to 50% of the vehicle or negative control value. EC50 values are determined graphically by fitting a curve by eye through relative toxicity data plotted as a function of the logarithm of the applied concentration. Each data point normally represents the average of three culture dishes. Statistical analysis is unnecessary in most cases for evaluation. The toxicity of the test material is evaluated as high, moderate, low, or nondetectable according to the range of EC50 values defined in the following table. |
Toxicity ^a | Solids | Aqueous Liquids | Nonaqueous Liquids ^b | |-----------------------|-----------------------------|-----------------------------|---------------------------------| | | (EC ₅₀ in µg/ml) | (EC ₅₀ in µl/ml) | (EC ₅₀ in µl/ml) | | High | <10 | <6 | <0.2 | | Moderate | 10 to 100 | 6 to 60 | 0.2-2 | | Low | 100 to 1000 | 60 to 600 | 2-20 | | Not Detectable | >1000 | >600 | >20 | ^aEvaluation criteria formulated by Litton Bionetics, Inc. for <u>IERL-RTP</u> Procedures Manual: Level 1 Environmental Assessment Biological Tests¹. Another evaluation scheme is proposed for extracts obtained from SASS train gas volumes. The proportion of the total gas volume corresponding to the volume of extract used in the bioassay is calculated and expressed as L/ml of culture medium (or DSCF/ml of culture medium). A criterion of 1000 L/ml is set as the limit for nondetectable toxicity. This gas volume corresponds to the average volume breathed by humans over a 2-hour period. The subsequent toxicity ranges are defined by 10-fold dilution steps to conform to standard procedure. The toxicity ranges are defined in the following table for liter and dry standard cubic feet units: | Toxicity | EC _{so} In
Liters/ml (L/ml) | EC ₅₀ In Dry Standard Cubic Feet/ml (DSCF/ml) | |---------------|---|--| | High | <10 | <0.35 DSCF | | Moderate | 10-100 | 0.35-3.5 | | Low | 100-1000 | 3.5-35 | | Nondetectable | >1000 | >35 | ^bCriteria for nonaqueous liquids are tentative and under evaluation. If the organic or solid content is known, the solid evaluation criteria are applied. ## IX. REFERENCES - 1. Brusick, D.J., et al.: IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests. EPA Contract No. 68-02-2681, Technical Directive No. 501, Litton Bionetics, Inc., Kensington, MD, September 1980, 177 pp. In press. - 2. Brusick, D.J.: <u>Level 1 Bioassay Assessment and Data Formatting</u>. EPA-600/7-80-079, Litton Bionetics, Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135, Litton Bionetics, Inc., Kensington, MD, August 1981, pp. 52. GENETICS ASSAY NO.: 5880 LBI SAFETY NO.: 7164 MUTAGENICITY EVALUATION OF A81-05-030-676 (EA-2 XAD EXTRACT) IN THE EPA LEVEL 1 AMES SALMONELLA/MICROSOME PLATE TEST FINAL REPORT ## SUBMITTED TO: ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 ## SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20895 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 #### **PREFACE** This assay conforms to the standard EPA Level 1 procedure for the Ames Salmonella/microsome mutagenesis assay as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests". The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting". The Ames <u>Salmonella</u>/microsome mutagenesis assay has been shown to be a sensitive method for detecting mutagenic activity for a variety of chemicals representing various chemical classes³. This assay is one of several recommended by EPA to identify, categorize and rank the pollutant potential of influent and effluent streams from industrial and energy-producing processes. This assay has been well validated with a wide range of positive and negative control chemicals and complex environmental samples. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw data will be supplied to the sponsor upon request. # TABLE OF CONTENTS | | Page | <u>≥ No</u> | |-----------|---|--| | | PREFACE | i | | I. | ASSAY SUMMARY | 1 | | II. | OBJECTIVE | 2 | | III. | TEST MATERIAL | 3 | | | A. Description | 3 | | IV. | MATERIALS | 4 | | | | 4
5
5
5 | | ٧. | EXPERIMENTAL DESIGN | 6 | | | A. Dose Selection | 6
6
6
7
7 | | VI. | RESULTS | 9 | | | | 9
9 | | VII. EVAL | UATION CRITERIA | 11 | | | B. Dose-Response Phenomena | 11
11
12
12
12
12
12 | | | r. Criteria for Kanking Samples in the Ames Assay | 13 | | VIII. | REFERENCES | 14 | #### Ī. ASSAY SUMMARY - Acurex Corporation Α. Sponsor: - Material (Test Compound): Genetics Assay Number: 5880 В. - Identification: A81-05-030-676 (EA-2 XAD Extract) 1. - 2. Date Received: August 26, 1981 - Physical Description: Clear, gold liquid. 3. - Type of Assay: EPA Level 1 Ames Salmonella/Microsome Plate Test C. - D. Assay Design Number: 401 (EPA Level 1) - E. Study Dates: - 1. Initiation: September 23, 1981 - 2. Completion: October 5, 1981 - F. Supervisory Personnel: - Study Director: D.R. Jagannath, Ph.D. - G. Evaluation: The test material, A81-05-030-676 (EA-2 XAD extract), contained 2.5 mg organics per ml after solvent exchange into dimethylsulfoxide (DMSO). The solvent exchanged sample was evaluated for its genetic activity in the EPA Level 1 Ames assay, directly and in the presence of a metabolic activation system. The test sample exhibited mutagenic activity with TA-98 and TA-100 in the presence and absence of S9 mix. The minimum effective concentration at which the mutagenic activity was observed was at 10 µl per plate (or 25 µg organics per plate) with TA-98 in the nonactivation assay. These tests indicate that the test material contains both frame shift and base-pair type mutagens. The mutagenic activity of the sample was classified as high (H) according to the IERL-EPA Level 1 evaluation criteria. Submitted by: Study Director D.R. Jagannath, Ph.D. Section Chief. Submammalian Genetics. Department of Molecular Toxicology Reviewed by: David J. Brusick. Director, Department of Molecular Toxicology ### II. OBJECTIVE The objective of this study was to determine the genetic activity of A81-05-030-676 (EA-2 XAD extract) in the <u>Salmonella/microsome</u> assay with and without the addition of mammalian metabolic activation preparations. The genetic activity of a sample is measured in these assays by its ability to revert the <u>Salmonella</u> indicator strains from histidine dependence to histidine independence. The degree of genetic activity of a sample is reflected in the number of revertants that are observed on the histidine-free medium. #### III. TEST MATERIAL #### A. <u>Description</u> The test material was received as a clear, gold solution in methylene chloride. The sample contained 9.0 milligrams of organic material in an undetermined volume of methylene chloride. No information on the sampling parameters (such as the equivalent volume of stack gas represented by the sample) was provided. #### B. Handling and Preparation The test material was received at LBI on August 26, 1981. The sample was assigned LBI safety number 7164 and LBI assay number 5880. The sample was stored at $+4^{\circ}$ C in the dark. Pretest sample preparation consisted of solvent exchanging the sample into dimethylsulfoxide (DMSO). The sample was transferred with methylene chloride rinses into a graduated conical tube. The methylene chloride was gradually evaporated (50°C under a stream of nitrogen) and DMSO was sequentially added. The sample was brought to volume in 3.6 ml of DMSO, giving a sample concentration of 2.5 mg organics per ml DMSO. The sample was transferred to a glass vial and sealed with a teflon-coated rubber septum. Approximately 2.6 ml of test material was used for testing. Varying aliquots of the test material were added directly to the test mixtures to give the desired concentration. ### IV. MATERIALS ### A. <u>Indicator Microorganisms</u> The <u>Salmonella typhimurium</u> strains used in this assay were obtained from Dr. Bruce Ames, University of California at Berkeley. 4-8 The following four strains were used. | Strain | Gene | Addit | ional M | lutations | Mutation Type | |-------------|--------------|----------------|------------|-----------|---------------------------| | Designation | Affected | Repair | LPS | R Factor | Detected | | TA-1535 | <u>his</u> G | Δ <u>uvr</u> B | <u>rfa</u> | - | Base-pair
substitution | | TA-1537 | <u>his</u> C | Δ <u>uvr</u> B | <u>rfa</u> | - | Frameshift | | TA-98 | <u>his</u> D | Δ <u>uvr</u> B | <u>rfa</u> | pKM101 | Frameshift | | TA-100 | <u>his</u> G | Δ <u>uvr</u> B | <u>rfa</u> | pKM101 | Base-pair
substitution | All the above strains have, in addition to the mutation in the histidine operon, mutation (<u>rfa</u>-) that leads to defective lipopolysaccharide coat, a deletion that covers genes involved in the synthesis of vitamin biotin (<u>bio</u>-) and in the repair of ultraviolet (uv) - induced DNA damage (<u>uvrB</u>-). The <u>rfa</u>- mutation makes the strains more permeable to many large molecules. The <u>uvrB</u>- mutation decreases repair of some types of chemically or physically damaged DNA and thereby enhances the strain's sensitivity to some mutagenic agents. The resistant transfer factor plasmid (R factor) pKM101 in TA-98 and TA-100 is believed to cause an increase in error-prone DNA repair that leads to many more mutations for a given dose of most mutagens. In addition, plasmid pKM101 confers resistance to the antibiotic ampicillin, which is a convenient marker to detect the presence of plasmid in the cells. All indicator strains are kept at 4°C on minimal medium plates supplemented with a trace of biotin and an
excess of histidine. In addition, the plates with plasmid-carrying strains contain ampicillin (25 µg/ml) to ensure stable maintenance of plasmid pKM101. New stock culture plates are made as often as necessary from the frozen master cultures or from single colony reisolates that were checked for their genotypic characteristics (his, rfa uvrB, bio) and for the presence of plasmid. For each experiment, an inoculum from the stock culture plates is grown overnight at 37°C in nutrient broth (Oxoid CM67) and used. #### B. Media The bacterial strains were cultured in Oxoid Media #2 (Nutrient Broth). The selective medium was Vogen Bonner Medium E with 2% glucose. 10 The overlay agar consisted of 0.6% purified agar with 0.05 mM histidine, 0.05 mM biotin and 0.1M NaCl according to the methods of Ames et al. 9 ### C. Activation System ### 1. S9 Homogenate A 9,000 x g supernatant prepared from Sprague-Dawley adult male rat liver induced by Aroclor 1254 (Ames et al. 9) was purchased commercially and used in these assays. #### 2. S9 Mix S9 mix used in these assays consisted of the following components: | Components | | per Milliliter
Mix | |-------------------------------------|-----|-----------------------| | NADP (sodium salt) | 4 | µmoles | | D-glucose-6-phosphate | 5 | µmoles | | MgČ1 ₂ | | µmoles | | KČ1
Sodium phosphate buffer | | µmoles | | pH 7.4
Organ homogenate from rat | 100 | μmioles | | liver (59 fraction) | 100 | µliters | #### V. EXPERIMENTAL DESIGN ### A. <u>Dosage Selection</u> Test strategy and dose selection depend upon sample type and sample availability. The Level 1 manual recommends solids to be initially tested at the maximum applicable dose (MAD) of 5 mg per plate and at lower concentrations of 2.5, 1, 0.5, 0.1 and 0.05 mg per plate. Liquids are tested initially at the MAD of 200 μ l per plate, and at lower concentrations of 100, 50 and 10 μ l per plate. Samples are retested over a narrower range of concentrations with strains showing positive results initially. Alternate dose are employed if sample size is limiting or at the direction of the sponsor. Doses selected to test this sample covered the recommended dose range for liquids. The highest dose was at the MAD level of 200 μ l per plate and included three lower dose levels of 100, 50 and 10 μ l per plate. These dose levels corresponded to 500, 250, 125, and 25 μ g organics per plate. #### B. Mutagenicity Testing The procedure used was based on the paper published by Ames et. al. 9 and was performed as follows: ### 1. Nonactivation Assay To a sterile 13 \times 100 mm test tube placed in a 43°C water bath the following was added in order: - 2.00 ml of 0.6% agar containing 0.05 mM histidine and 0.05 mM biotin. - 0.01 ml to 0.2 ml of a solution of the test chemical to give the appropriate dose. - 0.1 ml to 0.2 ml of indicator organism(s). - 0.50 ml of 0.2M phosphate buffer, pH 7.4. This mixture was swirled gently and then poured onto minimal agar plates (see IV B, Media). After the top agar had set, the plates were incubated at 37°C for approximately 2 days. The number of his+ revertant colonies growing on the plates were counted with an automatic colony counter and recorded. #### 2. Activation Assay The activation assay was run concurrently with the nonactivation assay. The only difference was the addition of 0.5 ml of S9 mix (see IV C, Activation System) to the tubes in place of 0.5 ml of phosphate buffer which was added in nonactivation assays. All other details were similar to the procedure for nonactivation assays. A detailed flow diagram for the plate incorporation assay is provided in Figure 1. #### C. Control Compounds A negative control consisting of the solvent used for the test material was also assayed concurrently with the test material. For negative controls, step 'b' of Nonactivation Assays was replaced by 0.05 ml of the solvent. The negative controls were employed for each indicator strain and were performed in the absence and presence of S9 mix. The solvent used to prepare the stock solution of the test material is given in the Results section of this report. All dilutions of the test material were made using this solvent. The amount of solvent used was equal to the maximum volume used to give the appropriate test dose. Specific positive control compounds known to revert each strain were also used and assayed concurrently with the test material. The concentrations and specificities of these compounds to specific strains are given in the following table: | Assay | Chemical | Solvent | Concentration per plate (µg) | <u>Salmonella</u>
Strains | |---------------|----------------------------------|------------------------|------------------------------|------------------------------| | Nonactivation | Sodium azide
2-Nitrofluorene | Water
Dimethyl- | 10.0
10.0 | TA-1535, TA-100
TA-98 | | • | (NF)
9-aminoacridine
(9AA) | sulfoxide
Ethanol | 50.0 | TA-1537 | | Activation | 2-anthramine
(ANTH) | Dimethyl-
sulfoxide | 2.5 | For all strains | ### D. Recording and Presenting Data The number of colonies on each plate were counted and recorded on printed forms. These raw data were analyzed in a computer program and reported on a printout. The results are presented as revertants per plate for each indicator strain employed in the assay. The positive and solvent controls are provided as reference points. #### AMES ASSAY [PLATE INCORPORATION METHOD] Figure 1 AMES SALMONELLA/MICROSOME MUTAGENESIS ASSAY #### VI. RESULTS #### A. Interpretations The test material, A81-05-030-676 (EA-2 XAD extract), in methylene chloride was solvent exchanged to DMSO before conducting the EPA Level 1 Ames assays. The solvent exchanged material was tested directly and in the presence of liver microsomal enzymes from Aroclor induced rats. Due to the limited amount of the test sample, only TA-98 and TA-100 were used in the assays. Tests were conducted in duplicate except for TA-100 with activation, where only one plate per dose was used. The results of the tests conducted on the sample in the absence of a metabolic activation were positive with both TA-98 and TA-100. The results of the tests conducted on the sample in the presence of a rat liver activation system were positive with TA-98 and TA-100. These results indicate that the test sample contains direct acting frame shift and base-pair type of mutagens. The minimum effective concentration (MEC) that exhibited mutagenic activity was at 10 μ l per plate (or 25 μ g organics per plate) with TA-98 in the nonactivation assays. This response was categorized as high (H) mutagenic activity using the IERL-EPA Level 1 evaluation critiera for the Ames Assay¹. Solvent control and positive control values were within acceptable ranges. These results achieved assay acceptance criteria and provided confidence in the assumptions that the recorded data represented typical responses to the test material. #### B. Tables This report is based on the data provided in Table 1. RESULTS TABLE 1 A. NAME OR CODE DESIGNATION OF THE TEST COMPGUNC: A81-05-030-676 (EA-2 MAD EXTRACT) B. SCLVENT: DMSO TEST INITIATION DATES: 10/01/81 D. TEST COMPLETION DATE: 10/05/81 E. S-9 LOTH: REF050 NOTE: CONCENTRATIONS ARE GIVEN IN MICROLITERS FER PLATE | j | | | | RE | VER | TA | N T | S F | E R | FLATE | |---------------|-------|---------|--------|-----|-----|----|------|------|-----|-------| | TEST | | SPECIES | TISSUE | TA- | 98 | | TA | -100 | | | | NONACTIVATION | | | | 1 | 2 | : | 1 | 2 | 3 | • | | | | | | | | | | | | | | SOLVENT CONTR | 0L | | | 30 | 30 | | 134 | 128 | | | | POSITIVE CONT | ROL++ | | | 760 | 814 | | 1192 | 1363 | | | | TEST COMPOUND | | | | | | | | | | | | 10.00 | UL | | | 84 | 58 | | 214 | 220 | | | | 50.00 | UL | | | 174 | 148 | | 464 | | | | | 100.00 | ÜL | | | 217 | 186 | | 666 | | | · | | 200.00 | UL | | | 301 | 260 | | 303 | | | | | ACTI VATION | | | | | | | | | | | | | | | | | | | • | | | | | SOLVENT CONTR | Ot. | RAT | LIVER | 38 | 45 | | 127 | 132 | | | | POSITIVE CONT | | | LIVER | _ | | | | 2145 | | | | TEST COMPOUND | | | | | | | | | | | | 10.00 | UL | RAT | LIVER | 71 | 66 | | 210 | - | | | | 50.00 | ÜL | RAT | LIVER | 228 | 172 | | 332 | | | | | 100.00 | UL | RAT | LIVER | 269 | 217 | | 432 | | | | | 200.00 | ÜL | RAT | LIVER | 366 | 274 | | 444 | | | | TA-98 2-NITROFLUORENE TA-100 SODIUM AZIDE SOLVENT 50 UL/PLATE ⁻ INDICATES TEST WAS NOT DONE ## VII. ASSAY ACCEPTANCE AND EVALUATION CRITERIA Statistical methods are not currently used, and evaluation is based on the criteria included in this protocol. Plate test data consists of direct revertant colony counts obtained from a set of selective agar plates seeded with populations of mutant cells suspended in a semisolid overlay. Because the test material and the cells are incubated in the overlay for approximately 2 days and a few cell divisions occur during the incubation period, the test is semiquantitative in nature. Although these features of the assay reduce the quantitation of results, they provide certain advantages not contained in a quantitative suspension test: - The small number of cell divisions permits potential mutagens to act on replication DNA, which is often more sensitive than nonreplicating DNA. - The combined incubation of the test article and the cells in the overlay permits constant exposure of the indicator cells for approximately 2 days. #### A. Surviving Populations Plate test procedures do not permit exact quantitation of the number of cells surviving chemical treatment. At low concentrations of the test material, the surviving population on the treatment plates is essentially the same as that on the negative control plate. At high concentrations, the surviving population is usually reduced by some fraction. Our protocol will normally employ several doses ranging over two or three log concentrations, the highest of these doses being selected to show slight toxicity as determined by
subjective criteria. ### B. Dose-Response Phenomena The demonstration of dose-related increased in mutant counts is an important criterion in establishing metagenicity. A factor that might modify dose-response results for a mutagen would be the selection of doses that are too low (usually mutagenicity and toxicity are related). If the highest dose is far lower than a toxic concentration, no increases may be observed over the dose range selected. Conversely, if the lowest dose employed is highly cytotoxic, the test material may kill any mutants that are induced, and the test material will not appear to be mutagenic. ### C. Control Tests Positive and negative control assays were conducted with each experiment and consisted of direct-acting mutagens for nonactivation assays and mutagens that require metabolic biotransformation in activation assays. Negative controls consisted of the test material solvent in the overlay agar together with the other essential components. The negative control plate for each strain gave a reference point to which the test data was compared. The positive control assay was conducted to demonstrate that the test systems were functional with known mutagens. The following normal range of revertants for solvent controls are generally considered acceptable. TA-1535: 8-30 TA-1537: 4-30 TA-98: 20-75 TA-100: 80-250 #### D. <u>Evaluation Criteria for Ames Assay</u> Because the procedures to be used to evaluate the mutagenicity of the test material are semiquantitative, the criteria to be used to determine positive effects are inherently subjective and are based primarily on a historical data base. Most data sets will be evaluated using the following criteria. #### 1. Strains TA-1535 and TA-1537 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to three times the solvent control value will be considered to be mutagenic. #### 2. Strains TA-98 and TA-100 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to twice the solvent control value for TA-98 and TA-100 will be considered to be mutagenic. #### Pattern Because TA-1535 and TA-100 are both derived from the same parental strain (G-46), to some extent there is a built-in redundancy in the microbial assay. In general, the two strains of a set respond to the same mutagen and such a pattern is sought. Generally, if a strain responds to a mutagen in nonactivation tests, it will do so in activation tests. #### 4. Reproducibility If a test material produces a response in a single test that cannot be reproduced in additional runs, the initial positive test data lose significance. The preceding criteria are not absolute, and other extenuating factors may enter into a final evaluation decision. However, these criteria will be applied to the majority of situations and are presented to aid those individuals not familar with this procedure. As the data base is increased, the criteria for evaluation can be more firmly established. ## E. Relation Between Mutagenicity and Carcinogenicity It must be emphasized that the Ames <u>Salmonella/Microsome Plate Assay is</u> not a definitive test for chemical carcinogens. It is recognized, however, that correlative and functional relations have been demonstrated between these two endpoints. The results of comparative tests on 300 chemicals by McCann et al. 4 show an extremely good correlation between results of microbial <u>mutagenesis</u> tests and <u>in vivo</u> rodent carcinogenesis assays. All evaluations and interpretation of the data to be presented in the final report will be based only on the demonstration, or lack, of mutagenic activity. ### F. Criteria for Ranking Samples in the Ames Assay The goal of EPA Level 1 Ames testing is to rank source streams by relative degree of genetic toxicity (mutagenicity). Samples are first identified as mutagenic or nonmutagenic by the criteria in Section D above and then ranked using the mutagenicity categories presented in the table below. The lowest concentration giving a positive response in any strain, with or without metabolic activation, is identified as the minimum effective concentration (MEC) for that sample. The mutagenicity of the sample is evaluated as high (H), moderate (M), low (L), or nondetectable (ND) according to the evaluation criteria developed in the Level 1 manual and summarized below. Samples with no detectable activity at the maximum applicable dose (MAD) are ranked nondetectable (ND). Ames Assay Mutagenicity Ranking Criteria¹ | Mutagenic
Activity | Solids
(MEC in µg/plate) | Liquids ^a
(MEC in µl/plate) | |-----------------------|-----------------------------|---| | High (H) | <50 | <2 | | Moderate (M) | 50-500 | 2-20 | | Low (L) | 500-5000 | 20-200 | | Not Detectable (ND) | >5000 | >200 | ^aConcentration of organic extracts is based upon organic content (µg organics per plate) and not volume (µl extract per plate) of sample tested. #### VIII. REFERENCES - 1. Brusick, D.J., et al.: IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests. EPA Contract No. 68-02-2681, Technical Directive No. 501, Litton Bionetics, Inc., Kensington, MD, September 1980, 177 pp. In press. - 2. Brusick, D.J.: <u>Level 1 Bioassay Assessment and Data Formatting</u>. EPA-600/7-80-079, Litton Bionetics Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135, Litton Bionetics, Inc., Kensington, MD, August 1981, 52 pp. - 4. McCann, J., Choi, E., Yamasaki, E. and Ames, B.N.: Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc. Nat. Acad. Sci., USA 72:5135-5139, 1975. - 5. Ames, B.N., Gurney, E.G., Miller, J.A. and Bartsch, H.: Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylamino-fluorene and other aromatic amine carcinogens. Proc. Nat. Acad. Sci., USA 69:3128-3132, 1972. - 6. Ames, B.N., Lee, F.D., and Durston, W.E.: An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Nat. Acad. Sci., USA 70:782-786, 1973. - 7. Ames, B.N., Durston, W.E., Yamasaki, E. and Lee, F.D.: Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Nat. Acad. Sci., USA 70:2281-2285, 1973. - 8. McCann, J., Springarn, N.E., Kobori, J. and Ames, B.N.: Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA 72:979-983, 1975. - 9. Ames, B.N., McCann, J. and Yamasaki, E.: Methods for detecting carcinogens and mutagens with the <u>Salmonella/mammalian-microsome</u> mutagenicity test. Mutation Res., <u>31</u>:347-364, 1975. - 10. Vogel, H.J. and Bonner, D.M.: Acetylornithinase of E. coli partial purification and some properties. J. Biol. Chem., 218:97-106, 1966. GENETICS ASSAY NO.: 5880 LBI SAFETY NO.: 7164 CYTOTOXIC EVALUATION OF A81-05-030-676 (EA-2 XAD EXTRACT) IN THE RODENT CELL (CHO) CLONAL TOXICITY ASSAY FINAL REPORT ### **SUBMITTED TO:** ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 ### SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20895 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 #### PREFACE This assay conforms to the standard EPA Level 1 procedure for the Chinese hamster ovary cell (CHO) clonal toxicity assay as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests" (1). The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting" (2). The CHO clonal toxicity assay has been shown to be a sensitive method for detecting cytotoxic activity for a variety of chemicals representing various chemical classes (3). This assay is one of several recommended by EPA to identify, categorize and rank the pollutant potential of influent and effluent streams from industrial and energy-producing processes. This assay has been well validated with a wide range of positive and negative control chemicals and complex environmental samples. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw data will be supplied to the sponsor upon request. ## TABLE OF CONTENTS | | | | | | | | | | | | | | | | | | | Page No. | |-----------|----------------|---------------------------------|----------------|-------------|----------|------|----|---|-----|---|---|---|---|---|---|---|---|-------------| | PREFACE . | • • | | | | | | • | | | • | | | • | • | | | • | i | | 1. | ASSA | Y SUMMARY | | | | • | | | | | • | | | • | | | • | 1 | | II. | OBJE | CTIVE | | | | • | • | | | • | | • | | | | | | 2 | | III. | TEST | MATERIAL | | | | | | | | • | | • | | | | | • | 3 | | | A.
B. | Descript
Handling | ion
and |
Pre |
Dara | itic | on | | | • | • | | | | | | | 3
3 | | IV. | MATE | RIALS | | | | | | | | | | • | • | | | | | 4 | | | A.
B.
C. | Indicato
Media .
Controls | | | | | | | | | | • | | | | | • | 4
4
4 | | ٧. | EXPE | RIMENTAL | DESIG | iN . | | • | | • | | • | • | • | | | | | | 5 | | | A.
B. | Dose Sel
Clonal Te | ectio
oxici | n .
ty / |
Assa | Iy | | | • • | • | • |
• | • | | | | • | 5
5 | | VI. | ASSA | Y ACCEPTA | NCE C | RIT | ERIA | ١. | • | • | | • | | • | | | • | | | 7 | | VII. | RESU | LTS | | | | • | | | | | • | • | | | | • | | 8 | | | A.
B. | Interpre
Tables a | tatio | n .
gure |
es . | | | | | | • | | | | • | | | 8
8 | | VIII. | ASSA | Y EVALUAT | ON C | RIT | ERIA | ١. | • | • | | • | • | | • | | | | | 11 | | TX. | RFFFI | RENCES | | | | | | | | | | | | | | | | 12 | - I. ASSAY SUMMARY - A. SPONSOR: Acurex Corporation - B. MATERIAL (TEST COMPOUND): GENETICS ASSAY NUMBER: 5880 - 1. Identification: A81-05-030-676 (EA-2 XAD Extract) - 2. Date Received: August 26, 1981 - 3. Physical Description: Clear, gold liquid - C. TYPE OF ASSAY: Rodent Cell (CHO) Clonal Toxicity Assay - D. ASSAY DESIGN NUMBER: 442 - E. STUDY DATES: - 1. Initiation: September 23, 1981 - 2. Completion: October 6, 1981 - F. SUPERVISORY PERSONNEL: - 1. Study Director: Brian C. Myhr, Ph.D. - 2. Laboratory Supervisor: Robert Young, M.S. - G. EVALUATION: The test material caused a slight increase in toxicity with increasing concentrations up to 1.0 μ l/ml. The relative survival dropped to nearly zero at 3 μ l/ml and was zero for doses of 6 μ l/ml and above. The ECso was estimated graphically to be 1.72 μ l/ml which was equivalent to 4.3 μ g of organics per ml. This sample was therefore evaluated to be in the high (H) toxicity category defined for the IERL-EPA Level 1 CHO clonal toxicity bioassay. 1 Submitted by: Study Director Reviewed by: Brian Myhr (Ah D Brian Mynr, (Jn. U. Associate Director, Department of Molecular Toxicology David J. Brusick, Ph.D. Director. Department of Molecular Toxicology ### II. OBJECTIVE The objective of this study was to determine and rank the cytotoxicity of A81-05-030-676 (EA-2 XAD extract) to cultured Chinese hamster cells (CHO-K1 cell line). The measure of cytotoxicity was the reduction in colony-forming ability after a 24-hour exposure to the test material. After a period of recovery and growth, the number of colonies that developed in the treated cultures was compared to the colony number in unexposed vehicle control cultures. The concentration of test material that reduced the colony number by 50% was estimated graphically and referred to as the EC50 value. Standard EPA Level 1 toxicity evaluation criteria for the CHO clonal toxicity assay were used to rank the toxicity potential of the test material. ### III. TEST MATERIAL ### A. <u>Description</u> The test material was received as a clear, gold solution in methylene chloride. The sample contained 9.0 milligrams of organic material in 1.0 ml of methylene chloride. No information on the sampling parameters (such as the equivalent volume of stack gas represented by the sample) was provided. ### B. Handling and Preparation The test material was received at LBI on August 26, 1981. The sample was assigned LBI safety number 7164 and LBI assay number 5880. The sample was stored at +4°C in the dark. Pretest sample preparation consisted of solvent-exchanging the sample into dimethylsulfoxide (DMSO). The sample was transferred with methylene chloride rinses into a graduated conical tube. The methylene chloride was gradually evaporated (50°C under a stream of nitrogen) and DMSO was sequentially added. The sample was brought to volume in 3.6 ml of DMSO, giving a sample concentration of 2.5 mg organics per ml DMSO. The sample was then transferred to a glass vial and sealed with a teflon-coated rubber septum. A total volume of 0.45 ml of test sample was used in the CHO assay. The maximum concentration of 20 μ l/ml was obtained by adding 0.12 ml of sample to 5.88 ml of F12 medium; this resulted in 2% (v/v) DMSO in the medium and effectively limited the concentration of test material that could be assayed. Only two plates were dosed at the top dose in order to conserve sample. Another 0.12 ml aliquot of sample was used to prepare the 10 μ l/ml test concentration. An additional 0.21 ml of test sample was used to prepare a series of dilutions in DMSO from which 1:100 dilutions into growth medium were performed to obtain the lower assayed concentrations. Thus, except for the 20 μ l/ml test concentration, the final DMSO concentration was constant at 1% (v/v). #### IV. MATERIALS ### A. <u>Indicator Cells</u> The indicator cells for this study were Chinese hamster CHO-K1 cells (ATCC No. CCL 61) obtained from Flow Laboratories, Inc., Rockville, MD. This cell type was derived from ovarian tissue and has spontaneously transformed to a stable, hypodiploid line of rounded, fibroblastic cells with unlimited growth potential. Monolayer cultures have a fast doubling time of 11 to 14 hours, and untreated cells can normally be cloned with an efficiency of 80% or greater. Laboratory stock are maintained by routine serial subpassage. Cells are cultivated in Ham's F-12 nutrient medium at 37°C in 5 percent $\rm CO_2$ with saturated humidity. Stocks are continually observed macroscopically and microscopically for possible microbial contamination. Laboratory cultures are periodically checked by culturing and staining methods for the absence of mycoplasma contamination. Laboratory cultures are discarded every three months and new cultures started from mycoplasma-free, long-term frozen cultures. #### B. Media The CHO-K1 cell line has an absolute requirement for proline and therefore must be maintained in culture medium containing sufficient amounts of this amino acid. Ham's F12 medium, which contains 3 x 10-4 M L-proline was used, supplemented with 10% fetal bovine serum, 2mM L-glutamine, 100 units/ml of penicillin, 100 $\mu g/ml$ of streptomycin, and 0.9 $\mu l/ml$ of amphotericin B. A 10X formulation of Ham's F10 is available commercially and was used for the testing of aqueous test samples in order to avoid the dilution of medium components. This medium contains 1 x 10-4 L-proline and was supplemented in the same manner as F12, except that kanamycin at 40 $\mu g/ml$ is included for additional protection against bacterial contamination. Both media formulations support the growth and cloning of CHO cells equally well. #### C. Controls The negative control consisted of three untreated cultures carried through the same experimental time period as the treated cells. Since the test material was tested as a solution in an organic vehicle (DMSO) and was diluted into the medium to provide each test concentration, two sets of vehicle control cultures containing the organic solvent at 1% and 2% by volume were prepared in triplicate. The average number of colonies in the negative control established the cloning efficiency of the CHO cells used in the assay, and the appropriate vehicle control provided the reference points for determining the effects of different concentrations of the test material on cell survival. #### V. EXPERIMENTAL DESIGN ### A. <u>Dose Selection</u> Unless the approximate toxicity is already known or the sample size is limiting, the following dose ranges are usually tested for different sample forms. Aqueous samples, suspensions, or slurries are tested from 600 μ l/ml to 3 μ l/ml, usually in six dose steps. Eight doses are often used when the amount of test sample is limited to provide a more precise description of toxicity in the event of sharp dose-response curves. Dry, particulate material is dissolved or suspended in DMSO, diluted into growth medium, and tested at six dose levels from 1000 μ g/ml to 3 μ g/ml. Samples that are solvent-exchanged into DMSO are tested from 20 μ l/ml (2% DMSO in growth medium) to 0.2 μ l/ml, also in six dose steps. A second dose study is performed with an adjusted dose range if the EC50 was not located properly in the initial test. However, EC50 values greater than 1000 μ g/ml for particulate material, 600 μ l/ml for aqueous samples, or 20 μ l/ml for organic solutions will not be determined. This sample, A81-05-030-676 (EA-2 XAD extract), was tested at eight dose levels. The concentrations started with the maximum applicable dose (MAD) of 20 μ l/ml and included 10, 6, 3, 1, 0.6, 0.3, and 0.1 μ l/ml. The corresponding concentration of organics at the MAD level was 50 μ g/ml; the lower doses were equivalent to 25, 15, 7.5, 2.5, 1.5, 0.75, and 0.25 μ g organics/ml. ### B. Clonal Toxicity Assay Cells from monolayer stock cultures in logarithmic growth phase were trypsinized with 0.1% trypsin plus 0.01% versene for 4 minutes and the density of the resulting cell suspension determined by hemocytometer. A number of 60-mm culture dishes were then seeded with 200 cells and 4 ml of culture medium per dish. The cultures were incubated for approximately 6 hours at 37°C in a humidified atmosphere containing 5% $\rm CO_2$ to allow attachment of the cells. The 6-hour attachment period was used in order to avoid cell division and the subsequent formation of two-cell colonies prior to treatment. The medium was aspirated from the cultures and 4 ml medium containing the test material applied. Three cultures were exposed to each test concentration. After an exposure time of 24 hours at 37°C, the medium was removed by aspiration and each culture washed three times with approximately 4 ml aliquots of Dulbecco's phosphate buffered saline (pre-warmed to 37°C). Fresh culture medium (5 ml) was placed in each dish and incubation at 37°C is continued for an additional 6 days to allow colony development. The test material caused a color change in the culture medium, the pH of the medium containing the high dose would be determined at the time of treatment. The pH at the lowest dose that results in a slight color change would also recorded. At the end of the treatment period, the pH values of the discarded media from the two described treatments would be recorded again. No sample related pH effects were noted. After the incubation period, the medium was drained from the cultures and the surviving colonies fixed with 100% ethanol and
stained with Giemsa. Colonies were counted by eye; tiny colonies of approximately 50 cells or less were arbitrarily excluded from the counts. ### VI. ASSAY ACCEPTANCE CRITERIA The assay is considered acceptable for evaluation of the test results if the following criteria are met: - The average cloning efficiency of the CHO-K1 cells in the negative controls is 70% or greater, but not exceeding 115%. - The distribution of colonies in the treated cultures is generally uniform over the surface of the culture dish. - The data points for each test concentration critical to the location of the EC50 are the averages of at least two treated cultures. - A sufficient number of test concentrations are available to clearly locate the EC50 within a toxicity region as defined under Assay Evaluation Criteria. - If the EC50 value is greater than 1000 µg/ml, 600 µliters of aqueous sample/ml, or 20 µliters of nonaqueous sample/ml, the plotted curve does not exceed 110% of the negative control. #### VII. RESULTS #### A. Interpretation The application of sample A81-05-030-676 (EA-2 XAD extract) to the CHO cell cultures caused a rapid lowering of the number of cells able to form colonies as the concentration increased above 1.0 μ l/ml. Relative survival values were calculated as the ratio of colonies formed in treated cultures to the colonies formed in the appropriate vehicle control, and these relative survival values were plotted against the concentration of test material. As shown in Figure 1, the relative survival decreased gradually in the 0.1 to 1.0 μ l/ml range and dropped to nearly zero at the 3.0 μ l/ml dose level. The concentration expected to kill 50 percent of the cells (EC_{50}) was found to be 1.72 μ l of test material per ml of culture medium. This concentration was equivalent to 4.3 μ g of organic material per ml of culture medium. This value placed the test material in high (H) toxicity range defined for the IERL-EPA CHO clonal toxicity bioassay. The cells used for the assay were in logarithmic growth phase and were 98.9 percent viable. About 89 percent of the seeded cells formed colonies in the negative control. Colony growth was normal and well distributed on the culture dishes. The combined results were considered to achieve assay acceptance criteria and provided confidence in the assumption that the recorded data represented typical responses to the test material. #### B. Tables and Figures This report is based on the data provided in Table 1 and Figure 1. #### TABLE 1 RODENT CELL (CHO) CLONAL TOXICITY ASSAY Sample Identity: A81-05-030-676 EC50 Value: $1.72 \, \mu$ l/ml (4.3 μ g (EA-2 XAD Extract) Description of Sample: Clear, Toxicity Classification: organics/ml) High (H) gold liquid 5880 pH Alterations: None LBI Assay No.: Date Received: August 26, 1981 Comments on Treatment: Sample prepared in Test Date: September 29, 1981 DMSO at a concentration of 2.5 µg organics/µl Vehicle: DMSO Cell Type: CHO-K1 Cells Seeded per Dish: 200 #### **COLONY COUNTS** | Sample | Applied
Concentration
µl/ml | Dish
#1 | Dish
#2 | Dish
#3 | Average
Count | Relative
Survival ^a
% | Cloning
Efficiency
% | |--|-----------------------------------|------------|------------|------------|------------------|--|----------------------------| | NC ^b
VC, 1% ^c | ** | 170 | 183 | 178 | 177.0 | | 88.5 | | VC, 1% ^C | 10 | 157 | 158 | 164 | 159.7 | 100.0 | 79.9 | | VC. 2% | 20 | 146 | 153 | 137 | 145.3 | 100.0 | 72.7 | | VC, 2%
TEST | 0.1 | 145 | 168 | 158 | 157.0 | 98.3 | | | TEST | 0.3 | 136 | 153 | 157 | 148.7 | 93.1 | | | TEST | 0.6 | 125 | 134 | 140 | 133.0 | 83.3 | | | TEST | 1.0 | 133 | 132 | 132 | 132.3 | 82.8 | | | TEST | 3.0 | 0 | 0 | 3 | 1.0 | 0.6 | | | TEST | 6.0 | 0 | 0 | 0 | 0 | Ó | | | TEST | 10.0 | 0 | 0 | | 0 | 0 | | | TEST | 20.0 | Ô | Q. | 0
Sd | 0 | 0 | • | $[^]a_b$ Relative to 2% VC for 20 μ l/ml treatment and to 1% VC for other treatments. NC = Negative Control, F_{12} medium c_b VC = Vehicle Control, percent DMSO given d_S = Plate not set up to conserve limited test sample. FIGURE 1 RODENT CELL (CHO) CLONAL TOXICITY ASSAY EC₅₀ DETERMINATION A81-05-030-676 (EA-2 XAD EXTRACT) ### VIII. ASSAY EVALUATION CRITERIA The EC50 value represents the concentrations of test material that reduces the colony-forming ability of CHO cells to 50% of the vehicle or negative control value. EC50 values are determined graphically by fitting a curve by eye through relative survival data plotted as a function of the logarithm of the applied concentration. Each data point normally represents the average of three culture dishes. In order to indicate the variability of the data, the high and low colony counts for each concentration are used to calculate the relative survivals, and the range is shown by a bar at the position of the plotted average. If no bar is shown, the variability was within the size of the symbol. Statistical analysis is unnecessary in most cases for evaluation. The toxicity of the test material is evaluated as high, moderate, low, or nondetectable according to the range of EC50 values defined in the following table. | Toxicity ^a | Solids
(EC ₅₀ in µg/ml) | Aqueous Liquids
(EC ₅₀ in µl/ml) | Nonaqueous Liquids ⁸
(EC ₅₀ in µl/ml) | |-----------------------|---------------------------------------|--|--| | High | <10 | <6 | <0.2 | | Moderate | 10 to 100 | 6 to 60 | 0.2-2 | | Low | 100 to 1000 | 60 to 600 | 2-20 | | Not Detectable | >1000 | >600 | >20 | ^aEvaluation criteria formulated by Litton Bionetics, Inc. for <u>IERL-RTP</u> Procedures Manual: Level 1 Environmental Assessment Biological Tests. Another evaluation scheme is proposed for extracts obtained from SASS train gas volumes. The proportion of the total gas volume corresponding to the volume of extract used in the bioassay is calculated and expressed as L/ml of culture medium (or DSCF/ml of culture medium). A criterion of 1000 L/ml is set as the limit for nondetectable toxicity. This gas volume corresponds to the average volume breathed by humans over a 2-hour period. The subsequent toxicity ranges are defined by 10-fold dilution steps to conform to standard procedure. The toxicity ranges are defined in the following table for liter and dry standard cubic feet units: | Toxicity | EC ₅₀ In
Liters/ml (L/ml) | EC ₅₀ In
Dry Standard Cubic Feet/ml (DSCF/ml) | |---------------|---|---| | High | <10 | <0.35 DSCF | | Moderate | 10-100 | 0.35-3.5 | | Low | 100-1000 | 3.5-35 | | Nondetectable | >1000 | >35-3 | ^bCriteria for nonaqueous liquids are tentative and under evaluation. If the organic or solids content is known, the sample is evaluated under the solids criteria. ### IX. REFERENCES - 1. Brusick, D.J., et al.: IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests. EPA Contract No. 68-02-2681, Technical Directive No. 501, Litton Bionetics, Inc., Kensington, MD, September 1980, 177 pp. In press. - 2. Brusick, D.J.: Level 1 Bioassay Assessment and Data Formatting. EPA-600/7-80-079, Litton Bionetics, Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135, Litton Bionetics, Inc., Kensington, MD, August 1981, pp 52. GENETICS ASSAY NO.: 5887 LBI SAFETY NO.: 7171 MUTAGENICITY EVALUATION OF A81-05-030-744 (EA-2 FLYASH) IN THE EPA LEVEL 1 AMES SALMONELLA/MICROSOME PLATE TEST FINAL REPORT #### SUBMITTED TO: ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 ### SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20895 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 #### **PREFACE** This assay conforms to the standard EPA Level 1 procedure for the Ames Salmonella/microsome mutagenesis assay as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests". The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting". The Ames <u>Salmonella</u>/microsome mutagenesis assay has been shown to be a sensitive method for detecting mutagenic activity for a variety of chemicals representing various chemical classes³. This assay is one of several recommended by EPA to identify, categorize and rank the pollutant potential of influent and effluent streams from industrial and energy-producing processes. This assay has been well validated with a wide range of positive and negative control chemicals and complex environmental samples. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw data will be supplied to the sponsor upon request. # TABLE OF CONTENTS | | | <u>Pa</u> | age No | |-----------|------------------------|--|--| | | PREFACI | E | i | | I. | ASSAY S | SUMMARY | 1 | | II. | OBJECT: | TIVE | 2 | | III. | TEST M |
MATERIAL | 3 | | | A. De | Description | 3
3 | | IV. | MATERI | IALS | 4 | | | B. M
C. A | Indicator Microorganisms | 4
4
5
5
5 | | ٧. | EXPERI | IMENTAL DESIGN | 6 | | | B. M
1
2
C. C | Dose Selection | 6
6
6
7
7 | | VI. | RESULT | TS | 9 | | | | Interpretation | 9
9 | | VII. EVAL | JATION | CRITERIA | 11 | | | B. D. C. C. D. E. 3 | Surviving Populations Dose-Response Phenomena Control Tests Evaluation Criteria for Ames Assay Strains TA-1535 and TA-1537 Strains TA-98 and TA-100 Pattern Reproducibility Relation Between Mutagenicity and Carcinogenicity Criteria for Ranking Samples in the Ames Assay | 11
11
11
12
12
12
12
12
12
13
13 | | VIII. | | REFERENCES | 14 | | | | • | | #### Ĩ. ASSAY SUMMARY - Sponsor: Acurex Corporation Α. - Material (Test Compound): Genetics Assay Number: 5887 В. - Identification: A81-05-030-744 (EA-2 Flyash) 1. - 2. Date Received: August 26, 1981 - Physical Description: Gray and white particles with larger 3. (long and thin) black chunks. - Type of Assay: EPA Level 1 Ames Salmonella/Microsome Plate Test C. - Assay Design Number: 401 (EPA Level 1) D. - Ε. Study Dates: - Initiation: September 23, 1981 1. - 2. Completion: September 28, 1981 - F. Supervisory Personnel: - Study Director: D.R. Jagannath, Ph.D. - G. Evaluation: The test material, A81-05-030-744 (EA-2 flyash), was tested for activity in the Ames <u>Salmonella</u> mutagenicity assay over a concentration range of 0.05~mg/plate to 5.0~mg/plate. The test was performed in duplicate under nonactivation and activation test conditions with strains TA-1535, TA-1537, TA-98, and TA-100. The sample was not mutagenic under the test conditions employed and was ranked as having nondetectable (ND) mutagenic activity as defined by the IERL-EPA Level 1 criteria for the Ames bioassav1. Submitted by: Study Director D.R. Jagannath, Section Chief, Submammalian Genetics, Department of Molecular Toxicology Reviewed by: Director. Department of Molecular Toxicology ### II. OBJECTIVE The objective of this study was to determine the genetic activity of A81-05-030-744 (EA-2 flyash) in the Salmonella/ microsome assay with and without the addition of mammalian metabolic activation preparations. The genetic activity of a sample is measured in these assays by its ability to revert the Salmonella indicator strains from histidine dependence to histidine independence. The degree of genetic activity of a sample is reflected in the number of revertants that are observed on the histidine-free medium. ### III. TEST MATERIAL ### A. Description The test material was received as gray and white particles with larger black chunks (15 gm) and was used without further preparation. No information on actual particle size distribution or on sampling parameters was received. ### B. Handling and Preparation The test material was received at LBI on August 26, 1981. The sample was assigned LBI safety number 7171 and LBI assay number 5887. The sample was stored at $+4^{\circ}\text{C}$ in the dark. A total of 242.89 mg of test material was weighed and suspended in 24.3 ml of dimethylsulfoxide. The sample formed an opaque suspension after vortexing that settled upon standing. The suspension was incubated at 37°C on a shaker overnight to help leach material out of the particulates. Serial dilutions were made in DMSO such that 50 μ l aliquots of each dilution give the desired concentration. The suspension was well mixed when aliquots were removed for dosing. ### IV. MATERIALS ### A. <u>Indicator Microorganisms</u> The <u>Salmonella</u> <u>typhimurium</u> strains used in this assay were obtained from Dr. Bruce Ames, University of California at Berkeley. 4-8 The following four strains were used. | Strain | Gene | Addit | ional M | lutations | Mutation Type | |-------------|--------------|----------------|------------|-----------|---------------------------| | Designation | Affected | Repair | LPS | R Factor | Detected | | TA-1535 | <u>his</u> G | Δ <u>uvr</u> B | rfa | - | Base-pair
substitution | | TA-1537 | <u>his</u> C | Δ <u>uvr</u> B | <u>rfa</u> | - | Frameshift | | TA-98 | <u>his</u> D | Δ <u>uvr</u> B | <u>rfa</u> | pKM101 | Frameshift | | TA-100 | <u>his</u> G | Δ <u>uvr</u> B | <u>rfa</u> | pKM101 | Base-pair
substitution | All the above strains have, in addition to the mutation in the histidine operon, mutation (<u>rfa</u>-) that leads to defective lipopolysaccharide coat, a deletion that covers genes involved in the synthesis of vitamin biotin (<u>bio</u>-) and in the repair of ultraviolet (uv) - induced DNA damage (<u>uvrB</u>-). The <u>rfa</u>- mutation makes the strains more permeable to many large molecules. The <u>uvrB</u>- mutation decreases repair of some types of chemically or physically damaged DNA and thereby enhances the strain's sensitivity to some mutagenic agents. The resistant transfer factor plasmid (R factor) pKM101 in TA-98 and TA-100 is believed to cause an increase in error-prone DNA repair that leads to many more mutations for a given dose of most mutagens. In addition, plasmid pKM101 confers resistance to the antibiotic ampicillin, which is a convenient marker to detect the presence of plasmid in the cells. All indicator strains are kept at 4°C on minimal medium plates supplemented with a trace of biotin and an excess of histidine. In addition, the plates with plasmid-carrying strains contain ampicillin (25 µg/ml) to ensure stable maintenance of plasmid pKM101. New stock culture plates are made as often as necessary from the frozen master cultures or from single colony reisolates that were checked for their genotypic characteristics (his, rfa uvrB, bio) and for the presence of plasmid. For each experiment, an inoculum from the stock culture plates is grown overnight at 37°C in nutrient broth (Oxoid CM67) and used. #### B. Media The bacterial strains were cultured in Oxoid Media #2 (Nutrient Broth). The selective medium was Vogen Bonner Medium E with 2% glucose. 10 The overlay agar consisted of 0.6% purified agar with 0.05 mM histidine, 0.05 mM biotin and 0.1M NaCl according to the methods of Ames et al. 9 ### C. Activation System #### 1. S9 Homogenate A 9,000 x g supernatant prepared from Sprague-Dawley adult male rat liver induced by Aroclor 1254 (Ames <u>et al.</u>9) was purchased commercially and used in these assays. #### 2. S9 Mix S9 mix used in these assays consisted of the following components: | Components | | per Milliliter
Mix | |-------------------------------------|-----|-----------------------| | NADP (sodium salt) | 4 | µmoles | | D-glucose-6-phosphate | | µmoles | | MgČl ₂ | | µmoles | | KČ1 -
Sodium phosphate buffer | 33 | µmoles | | pH 7.4
Organ homogenate from rat | 100 | μmoles | | liver (S9 fraction) | 100 | μliters | #### V. EXPERIMENTAL DESIGN #### A. <u>Dosage Selection</u> Test strategy and dose selection depend upon sample type and sample availability. The Level 1 manual recommends solids to be initially tested at the maximum applicable dose (MAD) of 5 mg per plate and at lower concentrations of 2.5, 1, 0.5, 0.1 and 0.05 mg per plate. Liquids are tested initially at the MAD of 200 μl per plate, and at lower concentrations of 100, 50 and 10 μl per plate. Samples are retested over a narrower range of concentrations with strains showing positive results initially. Alternate dose are employed if sample size is limiting or at the direction of the sponsor. Doses selected to test this sample covered the recommended dose range for solids. The highest dose was at the MAD level of 5 mg per plate and included five lower dose levels of 2.5, 1, 0.5, 0.1, and 0.05 mg per plate. #### B. <u>Mutagenicity Testing</u> The procedure used was based on the paper published by Ames et. al. 9 and was performed as follows: #### 1. Nonactivation Assay To a sterile 13×100 mm test tube placed in a 43° C water bath the following was added in order: - 2.00 ml of 0.6% agar containing 0.05 mM histidine and 0.05 mM biotin. - 0.05 ml of a suspension of the test chemical to give the appropriate dose. - 0.1 ml to 0.2 ml of indicator organism(s). - 0.50 ml of 0.2M phosphate buffer, pH 7.4. This mixture was swirled gently and then poured onto minimal agar plates (see IV B, Media). After the top agar had set, the plates were incubated at 37°C for approximately 2 days. The number of his+ revertant colonies growing on the plates were counted with an automatic colony counter and recorded. #### Activation Assay The activation assay was run concurrently with the nonactivation assay. The only difference was the addition of 0.5 ml of S9 mix (see IV C, Activation System) to the tubes in place of 0.5 ml of phosphate buffer which was added in nonactivation assays. All other details were similar to the procedure for nonactivation assays. A detailed flow diagram for the plate incorporation assay is provided in Figure 1. #### C. <u>Control Compounds</u> A negative control consisting of the solvent used for the test material was also assayed concurrently with the test material. For negative controls, step 'b' of Nonactivation Assays was replaced by 0.05 ml of the solvent. The negative controls were employed for each indicator strain and were performed in the absence and presence of S9 mix. The solvent used to prepare the stock solution of the test material is given in the Results section of this report. All dilutions of the test material were made using this solvent. The amount of solvent used was equal to the maximum volume used to give the appropriate test dose. Specific positive control compounds known to revert each strain were also used and assayed concurrently with the test material. The concentrations and specificities of these compounds to specific strains are given in the following table: | Assay | Chemical | Solvent | Concentration per plate (µg) | Salmonella
Strains | |-----------------
---|---------------------------------|------------------------------|--------------------------| | Nonactivation . | Sodium azide
2-Nitrofluorene
(NF) | Water
Dimethyl-
sulfoxide | 10.0
10.0 | TA-1535, TA-100
TA-98 | | | 9-aminoacridine
(9AA) | Ethanol | 50.0 | TA-1537 | | Activation | 2-anthramine
(ANTH) | Dimethyl-
sulfoxide | 2.5 | For all strains | ### D. Recording and Presenting Data The number of colonies on each plate were counted and recorded on printed forms. These raw data were analyzed in a computer program and reported on a printout. The results are presented as revertants per plate for each indicator strain employed in the assay. The positive and solvent controls are provided as reference points. #### AMES ASSAY [PLATE INCORPORATION METHOD] Figure 1 AMES SALMONELLA/MICROSOME MUTAGENESIS ASSAY #### VI. RESULTS #### A. Interpretations The test material, A81-05-030-744 (EA-2 flyash), was dissolved in DMSO at a stock concentration of 100 mg/ml and leached overnight on a shaker at 37°C. Additional dilutions were prepared in DMSO for testing. The maximum test level was 5.0 mg/plate. There was no evidence of toxicity at this level. Reverse mutation was measured in strains TA-1535, TA-1537, TA-98 and TA-100. The test was conducted in duplicate both with and without rat liver S9 mix for metabolic activation. There was no mutagenic activity associated with the test material treatment and the sample was considered nonmutagenic and non toxic. The sample was ranked as having nondetectable (ND) mutagenic activity using the IERL-EPA Level 1 evaluation criteria for the Ames assay¹. Solvent control and positive control values were within acceptable ranges. These results achieved assay acceptance criteria and provided confidence in the assumptions that the recorded data represented typical responses to the test material. #### B. <u>Tables</u> This report is based on the data provided in Table 1. RESULTS TABLE 1 A. NAME OR CODE DESIGNATION OF THE TEST COMPOUND: A81-05-030-744 (EA-2 FYLASH) R. SOLVENT: DMSO TEST INITIATION DATES: 09/24/R1 D. TEST COMPLETION DATE: 09/28/81 E. S-9 LOT#: S-9 11 NOTE: CONCENTRATIONS ARE GIVEN IN MILLIGRAMS PER PLATE | | | | | | | | | P E | | P L / | | | | | |----------------|----------|------------|---------|--------|--------|---|---------|---------|---|----------|----------|------------|------------|-------------| | TEST | | SPECIES | TISSUE | TA- | 1535 | | TA- | 1537 | | TA- | -98 | TA | -100 | | | | | | | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 1 | 2 | 3 | | NONACTI VATIO | N
 | | | | | | • | SOLVENT CONT | | | | 12 | 17 | | | 12 | | 46 | 38 | | 106 | | | POSITIVE CON | TROL. | | | 1076 | 961 | | 621 | 628 | | 745 | 811 | 1308 | 1359 | | | TEST COMPOUN | D | | | | | | | | | | | | | | | 0.050 | MG | | | 10 | 17 | | 11 | 11 | | 49 | 39 | 162 | _ | | | 0.100 | MG | | | 10 | 15 | | 9 | 8 | | 47 | 40 | 153 | 139 | | | 0.500 | MG | | | 11 | 12 | | 11 | 5 | | 53 | 45 | 130 | 124 | | | 1.000 | MG | | | 12 | 10 | | 11 | 14 | | 29 | 44 | 151 | 135 | | | 2.500 | MG | | | 11 | 9 | | 12 | 16 | | 34 | 31 | 140 | | | | 5.000 | MG | | | 9 | 21 | | 17 | 13 | | 26 | 31 | 141 | 131 | | | ACTIVATION | _ | | | | | | | | SOLVENT CONT | | RAT | LIVER | 17 | 11 | | 13 | 8 | | | 34 | | 123 | | | POSITIVE CON | I HUL . | - RAI | LIVER | 308 | 254 | | 3 39 | 372 | | 1562 | 1600 | 2065 | 1832 | | | TEST COMPOUN | | | | | | | | | | | | | | | | 0.050 | MG | RAT . | | 15 | 1.5 | | 11 | 10 | | 54 | 46 | 128 | | | | 0.100 | MG | RAT | LIVER | 7 | 12 | | 12 | 20 | | 46 | 34 | 137 | | | | 0.500 | MG | RAT | LIVER | 14 | 11 | | 11 | 10 | | 62 | 54 | 149 | 111 | | | 1.000 | MG | RAT
RAT | LIVER | 13 | 9
8 | | 13
9 | 12
7 | | 49
37 | 44
45 | 134 | 127 | | | 2.500
5.000 | MG
MG | RAT | L I VER | 2
8 | 7 | | 13 | 10 | | 47 | 48 | 140
125 | 136
142 | | | 3,000 | | | | | | | | | | | 70 | 153 | 172 | | | •• | | | | | | | | | | ••• | | | | | | - | SODTUM | AZIDE | | | | | 10 UG | /PLATE | | | TA-1535 | 2-ANTH | RAMINE | 2.5 UG/PLAT | | | | OACRIDI | | | | | | PLATE | | | TA-1537 | | | 2.5 UG/PLAT | 10 TA-1535 SODIUM AZIDE 10 UG/PLATE TA-1535 2-ANTHRAMINE 2.5 UG/PLATE TA-1537 9-AMINOACRIDINE 50 UG/PLATE TA-1537 2-ANTHRAMINE 2.5 UG/PLATE TA-98 2-ANTHRAMINE 2.5 UG/PLATE TA-100 SODIUM AZIDE 10 UG/PLATE TA-100 2-ANTHRAMINE 2.5 UG/PLATE SOLVENT 50 UL/PLATE #### VII. ASSAY ACCEPTANCE AND EVALUATION CRITERIA Statistical methods are not currently used, and evaluation is based on the criteria included in this protocol. Plate test data consists of direct revertant colony counts obtained from a set of selective agar plates seeded with populations of mutant cells suspended in a semisolid overlay. Because the test material and the cells are incubated in the overlay for approximately 2 days and a few cell divisions occur during the incubation period, the test is semiquantitative in nature. Although these features of the assay reduce the quantitation of results, they provide certain advantages not contained in a quantitative suspension test: - The small number of cell divisions permits potential mutagens to act on replication DNA, which is often more sensitive than nonreplicating DNA. - The combined incubation of the test article and the cells in the overlay permits constant exposure of the indicator cells for approximately 2 days. #### A. <u>Surviving Populations</u> Plate test procedures do not permit exact quantitation of the number of cells surviving chemical treatment. At low concentrations of the test material, the surviving population on the treatment plates is essentially the same as that on the negative control plate. At high concentrations, the surviving population is usually reduced by some fraction. Our protocol will normally employ several doses ranging over two or three log concentrations, the highest of these doses being selected to show slight toxicity as determined by subjective criteria. #### B. Dose-Response Phenomena The demonstration of dose-related increased in mutant counts is an important criterion in establishing metagenicity. A factor that might modify dose-response results for a mutagen would be the selection of doses that are too low (usually mutagenicity and toxicity are related). If the highest dose is far lower than a toxic concentration, no increases may be observed over the dose range selected. Conversely, if the lowest dose employed is highly cytotoxic, the test material may kill any mutants that are induced, and the test material will not appear to be mutagenic. ## C. <u>Control Tests</u> Positive and negative control assays were conducted with each experiment and consisted of direct-acting mutagens for nonactivation assays and mutagens that require metabolic biotransformation in activation assays. Negative controls consisted of the test material solvent in the overlay agar together with the other essential components. The negative control plate for each strain gave a reference point to which the test data was compared. The positive control assay was conducted to demonstrate that the test systems were functional with known mutagens. The following normal range of revertants for solvent controls are generally considered acceptable. TA-1535: 8-30 TA-1537: 4-30 TA-98: 20-75 TA-100: 80-250 ## D. <u>Evaluation Criteria for Ames Assay</u> Because the procedures to be used to evaluate the mutagenicity of the test material are semiquantitative, the criteria to be used to determine positive effects are inherently subjective and are based primarily on a historical data base. Most data sets will be evaluated using the following criteria. #### 1. Strains TA-1535 and TA-1537 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to three times the solvent control value will be considered to be mutagenic. #### 2. Strains TA-98 and TA-100 If the solvent control value is within the normal range, a test material that produces a positive dose response over three concentrations with the highest increase equal to twice the solvent control value for TA-98 and TA-100 will be considered to be mutagenic. #### Pattern Because TA-1535 and TA-100 are both derived from the same parental strain (G-46), to some extent there is a built-in redundancy in the microbial assay. In general, the two strains of a set respond to the same mutagen and such a pattern is sought. Generally, if a strain responds to a mutagen in nonactivation tests, it will do so in activation tests. #### 4. Reproducibility If a test material produces a response in a single test that cannot be reproduced in additional runs, the initial positive test data lose significance. The preceding criteria are not absolute, and other extenuating factors may enter into a final evaluation decision. However, these criteria will be applied to the majority of situations and are presented to aid those individuals not familar with this procedure. As the data base is increased, the criteria for evaluation can be more firmly established. 5-369 ## E. Relation Between Mutagenicity and Carcinogenicity It must be emphasized that the Ames <u>Salmonella/Microsome Plate Assay</u> is not a definitive test for chemical carcinogens. It is recognized, however, that correlative and functional relations have been demonstrated between these two endpoints. The results of comparative tests on 300 chemicals by McCann et al. 4 show an extremely good correlation between results of microbial mutagenesis tests and <u>in vivo</u> rodent carcinogenesis assays. All evaluations and interpretation of the data to be presented in the final report will be based only on the demonstration, or lack, of mutagenic activity. #### F. Criteria for Ranking Samples in the Ames Assay The goal of EPA Level 1 Ames testing is to rank
source streams by relative degree of genetic toxicity (mutagenicity). Samples are first identified as mutagenic or nonmutagenic by the criteria in Section D above and then ranked using the mutagenicity categories presented in the table below. The lowest concentration giving a positive response in any strain, with or without metabolic activation, is identified as the minimum effective concentration (MEC) for that sample. The mutagenicity of the sample is evaluated as high (H), moderate (M), low (L), or nondetectable (ND) according to the evaluation criteria developed in the Level 1 manual and summarized below. Samples with no detectable activity at the maximum applicable dose (MAD) are ranked nondetectable (ND). Ames Assay Mutagenicity Ranking Criteria¹ | Mutagenic
Activity | Solids
(MEC in µg/plate) | Liquids ^a
(MEC in µl/plat | | | | |-----------------------|-----------------------------|---|--|--|--| | High (H) | <50 | <2 | | | | | Moderate (M) | 50-500 | 2-20 | | | | | Low (L) | 500-5000 | 20-200 | | | | | Not Detectable (ND) | >5000 | >200 | | | | ^aConcentration of organic extracts is based upon organic content (µg organics per plate) and not volume (µl extract per plate) of sample tested. ## VIII. REFERENCES - 1. Brusick, D.J., et al.: <u>IERL-RTP Procedures Manual</u>: <u>Level 1 Environmental Assessment Biological Tests</u>. <u>EPA Contract No. 68-02-2681</u>, Technical Directive No. 501, Litton Bionetics, Inc., Kensington, MD, September 1980, 177 pp. In press. - 2. Brusick, D.J.: <u>Level 1 Bioassay Assessment and Data Formatting</u>. EPA-600/7-80-079, Litton Bionetics Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135, Litton Bionetics, Inc., Kensington, MD, August 1981, 52 pp. - 4. McCann, J., Choi, E., Yamasaki, E. and Ames, B.N.: Detection of carcinogens as mutagens in the <u>Salmonella/microsome</u> test: Assay of 300 chemicals. Proc. Nat. Acad. Sci., USA 72:5135-5139, 1975. - 5. Ames, B.N., Gurney, E.G., Miller, J.A. and Bartsch, H.: Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylamino-fluorene and other aromatic amine carcinogens. Proc. Nat. Acad. Sci., USA 69:3128-3132, 1972. - 6. Ames, B.N., Lee, F.D., and Durston, W.E.: An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Nat. Acad. Sci., USA 70:782-786, 1973. - 7. Ames, B.N., Durston, W.E., Yamasaki, E. and Lee, F.D.: Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Nat. Acad. Sci., USA 70:2281-2285, 1973. - 8. McCann, J., Springarn, N.E., Kobori, J. and Ames, B.N.: Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA 72:979-983, 1975. - 9. Ames, B.N., McCann, J. and Yamasaki, E.: Methods for detecting carcinogens and mutagens with the <u>Salmonella/mammalian-microsome</u> mutagenicity test. Mutation Res., <u>31</u>:347-364, 1975. - 10. Vogel, H.J. and Bonner, D.M.: Acetylornithinase of <u>E. coli</u> partial purification and some properties. J. Biol. Chem., 218:97-106, 1966. GENETICS ASSAY NO.: 5887 LBI SAFETY NO.: 7171 CYTOTOXIC EVALUATION OF A81-05-030-744 (EA-2 FLYASH) IN THE RABBIT ALVEOLAR MACROPHAGE (RAM) CYTOTOXICITY ASSAY FINAL REPORT #### SUBMITTED TO: ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 ## SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND 20895 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 #### PREFACE This assay conforms to the standard EPA Level 1 procedure for the rabbit alveolar macrophage (RAM) cytotoxicity assay as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests" (1). The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting" (2). The RAM cytotoxicity assay has been shown to be a sensitive method for detecting cytotoxic activity for a variety of chemicals representing various chemical classes (3). This assay is one of several recommended by EPA to identify, categorize and rank the pollutant potential of influent and effluent streams from industrial and energy-producing processes. This assay has been well validated with a wide range of positive and negative control chemicals and complex environmental samples. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw data will be supplied to the sponsor upon request. # TABLE OF CONTENTS | | | Page No. | |-------|---------------------------|------------------| | | PREFACE | i | | I. | ASSAY SUMMARY | 1 | | II. | OBJECTIVE | 2 | | III. | TEST MATERIAL | 3 | | | A. Description | 3
3 | | IV. | MATERIALS | 4 | | | A. Indicator Cells | 4
4
4 | | ٧. | EXPERIMENTAL DESIGN | 5 | | | A. Procurement of Cells | 5
6
6
7 | | VI. | ASSAY ACCEPTANCE CRITERIA | 8 | | VII. | RESULTS | 9 | | | A. Interpretation | 9
9 | | VIII. | ASSAY EVALUATION CRITERIA | 16 | | TX | REFERENCES | 17 | - I. ASSAY SUMMARY - A. SPONSOR: Acurex Corporation - B. MATERIAL (TEST COMPOUND): GENETICS ASSAY NUMBER: 5887 - 1. Identification: A81-05-030-744 (EA-2 Flyash) - 2. Date Received: August 26, 1981 - 3. Physical Description: Fine, gray and white particles with shreds of black material. - C. TYPE OF ASSAY: Rabbit Alveolar Macrophage (RAM) Cytotoxicity Assay - D. ASSAY DESIGN NUMBER: 443 - E. STUDY DATES: - 1. Initiation: September 23, 1981 - 2. Completion: October 14, 1981 - F. SUPERVISORY PERSONNEL: - 1. Study Director: Brian Myhr, Ph.D. - 2. Laboratory Supervisor: Robert Young, M.S. - G. EVALUATION: The test material was tested as supplied and after puliverization to a very fine powder. Both forms of the material caused only slight toxicity at concentrations above 500 μ g/ml. The most sensitive parameters, ATP content and viability index, indicated EC₅₀ values above the MAD level of 1000 μ g/ml. Therefore, the results were evaluated as showing nondetectable (ND) toxicity for this test material, according to the IERL-EPA Level 1 toxicity categories in the RAM Cytotoxicity Assay. Submitted by: Study Director Associate Director, Department of Molecular Toxicology David J. Brusick, Ph.D. Director, Department of Molecular Toxicology #### II. OBJECTIVE The objective of this study was to determine and rank the cytotoxicity of A81-05-030-744 (EA-2 Flyash) to cultured rabbit alveolar macrophage (RAM) cells. The measure of cytotoxicity was the reduction in cell viability and adenosine triphosphate (ATP) content of the cultures after a 20 hour exposure to the test material. At the conclusion of the exposure period, the number of viable cells and total ATP content in the treated cultures were compared to the corresponding values in unexposed control cultures. The concentration of test material that reduced each experimental parameter by 50% was estimated graphically and referred to as the EC50 value. Standard EPA Level 1 toxicity evaluation criteria for the RAM cytotoxicity assay were used to rank the toxicity potential of the test material based upon the most sensitive parameter. ## III. TEST MATERIAL ## A. <u>Description</u> The test material was received as a gray and white particulate containing thin shreds of black material. The amount of sample supplied was 15 grams. No information on the sampling parameters was provided. #### B. <u>Handling and Preparation</u> The test material was received on August 26, 1981, and was assigned LBI assay number 5887 and LBI safety number 7171. The sample was stored at $\pm 4^{\circ}$ C in the dark. Approximately 34 mg of the test material was tested as supplied. Then on October 1, 1981, the remaining sample was ground in a mortar and pestle to fine black powder. Approximately 2.5 grams of the ground sample was further pulverized on October 8, 1981, to a very fine, black powder of which 30 mg was used in the second trial of the assay. For both trials, the test material was suspended in serum-free EMEM culture medium at a concentration of 2000 $\mu g/ml$ and incubated at 37°C on a roller drum for 8 hours. The original material settled quickly on standing, but the suspension formed from the pulverized powder remained well-dispersed for dilutions. No pH changes were observed. The suspensions were serially diluted with EMEM (serum-free) and applied to the cultures at a maximum concentration of 1000 $\mu g/ml$ in the presence of 10% serum. #### IV. MATERIALS #### A. Indicator Cells The two trials employed short-term primary cultures of alveolar macrophage cells obtained by lung lavages of male New Zealand white rabbits (2.0-2.5 kg). The rabbits were maintained on Purina Lab Rabbit Chow 5321 and water ad libitum and were examined for the absence of respiratory illnesses prior to use. #### B. Media The cells were maintained and treated in Eagle's Minimum Essential Medium (EMEM) with Earle's salts and supplemented with 10% fetal bovine serum (heat-inactivated), 100 units/ml penicillin, 100 μ g/ml streptomycin, 17.6 μ g/ml kanamycin, and 0.4 μ g/ml amphotericin B. #### C. <u>Negative Controls</u> The negative control for the first trial consisted of six untreated cultures carried through the same experimental time period as the treated cells. Six cultures were used because a large number of cells was
obtained by pooling the yield from two rabbits in order to run two concurrent assays. Only one animal was used for the second trial, and the usual three untreated cultures were prepared. The average viability and ATP content of the negative controls provided the reference points for determining the effects of different concentrations of the test material on the assay parameters. #### V. EXPERIMENTAL DESIGN #### A. Procurement of Cells The rabbits were sacrificed by injection of Nembutal $^{(8)}$ (60 mg/ml) into the marginal ear vein, and sterile operating techniques were used to perform a tracheostomy. Prewarmed normal saline (30 ml) was then introduced into the lungs via a catheter and allowed to stand for 15 minutes. This lavage fluid was removed and placed into a 50-ml sterile centrifuge tube on ice. Nine additional lavages were similarly performed and collected, except the saline was removed shortly after its introduction into the lungs. Any lavage fluid containing blood or mucous was discarded. The lavages were centrifuged at 365 \times \bar{g} for 15 minutes and the cells resuspended in cold 0.85% saline. After two washes in saline by centrifugation, the cell pellets were resuspended in cold EMEM containing 20% serum and then combined. A cell count was obtained by hemocytometer and the suspension diluted to between 5 \times 10⁵ and 10⁶ cells/ml. Viability was determined by trypan blue staining and the cells were not used if less than 95% viable. Also, a differential cell count from Wright-stained smears was performed to verify that the macrophage content was above 90%. ## B. <u>Sample Forms</u> The usual sample form for application to the cells is a suspension of particulate material. Solid samples are ground to fine particles and a weighed portion is suspended in a known volume of EMEM (0% FBS) for about eight hours to help leach any water-soluble material. Finely-divided test material may be suspended directly in culture medium without further grinding. Aqueous liquids, suspensions, or slurries containing less than 0.5% organic solvent are added by volume to culture medium. Samples supplied as solutions in organic solvents are usually solvent-exchanged into DMSO before testing. Original sample volumes may first be reduced a maximum of 10-fold in a Kuderna-Danish concentrator, and the concentrative factor is used to convert assayed volumes into equivalent original sample volumes in the absence of information about solute concentration. An aliquot of the reduced volume is exchanged into DMSO by repeated, partial evaporation under a stream of nitrogen in a warm water bath (50°C); the evaporated volumes are replaced with equal volumes of DMSO. Samples adsorbed on XAD-2 resin are extracted with methylene chloride or acetone in a Soxhlet apparatus for 24 hours. The extract is then concentrated and solvent-exchanged into DMSO. Alternatively, acetone extracts can be assayed directly at concentrations up to 2% by volume in the culture medium. Samples impregnated on fiber glass or teflon filters are repeatedly sonicated in cyclohexane to remove particulates. The resulting cyclohexane particulate suspension is then evaporated to dryness and the particulates resuspended in EMEM culture medium at the desired concentration. Sponsor-specified handling of sample materials will be followed if the above procedures are not applicable or a specific procedure is desired. #### C. Dose Selection Unless the approximate toxicity is already known or the sample size is limiting, the following usual dose ranges are tested for different sample forms. Dry, particulate material is tested at six dose levels from 1000 μ g/ml to 3 μ g/ml. Aqueous samples, suspensions, or slurries are tested from 600 μ l to 3 μ l/ml in six dose steps. Samples that are solvent-exchanged into DMSO are tested from 20 μ l/ml (2% DMSO in growth medium) to 0.2 μ l/ml, also in six dose steps. A second dose study is performed with an adjusted dose range if the EC50 was not located properly in the initial test. However, EC50 values greater than 1000 μ l/ml for particulate material, 600 μ l/ml for aqueous samples, or 20 μ l/ml for organic solutions will not be determined. This test material, A81-05-030-744 (EA-2 flyash), was tested as supplied at 6 dose levels in the first trial, starting at the maximum applicable dose (MAD) of 1000 μ g/ml and including 600, 300, 100, 60 and 30 μ g/ml. The second trial was performed with only three doses of the finely ground test material: 1000, 600 and 300 μ g/ml. #### D. Treatment A series of 25 cm² culture flasks were prepared, each containing 2.0 ml of serum-free medium at 37°C and the test material at twice the desired final concentration. Three flasks were prepared for each test concentration. Aliquots of cell suspension (2 ml) were then added; each flask, therefore, contained from 1 to 2 x 10^6 viable cells in a 4-ml volume of media containing 10% serum. The flasks were placed on a rocker platform in a 37° C incubator with a humidified atmosphere containing 5% CO_2 . After sitting for about 30 minutes, the flasks were slowly rocked for the remainder of a 20-hour exposure period. If the test substance causes a color change in the growth medium, the pH is determined in additional treated flasks. After the exposure period, the pH of the medium in the experimental flasks is again recorded. ## E. <u>Cell Viability Assay</u> At the end of the treatment period, the medium containing unattached cells was decanted into a centrifuge tube on ice. The attached cells were rinsed with 1 ml of 0.1% trypsin/0.01% versene and then incubated with 2 ml of the trypsin/versene solution for about 5 minutes at 37°C. The trypsinates and decanted media were combined for each culture to yield a 7-ml cell suspension for subsequent analysis. A 0.5 ml or 1.0 ml aliquot of the cell suspension was removed for cell count and viability determination. The aliquot was combined with 1.0 ml of 0.4% trypan blue and counted by hemocytometer about 5 to 15 minutes later. The total number of cells counted per culture was the sum of the numbers found in five squares for each chamber of the hemocytometer (1 μ 1 total volume). The numbers of live (colorless) and dead (blue) cells were recorded. #### F. ATP Assay ATP was immediately analyzed by extraction of a 0.1-ml sample of cell suspension with 0.9 ml of 90% DMSO. After 2 minutes at room temperature 5.0 ml cold MOPS buffer (0.01 M morpholinopropane sulfonic acid) at pH 7.4 was added and the extract mixed well and placed on ice. Aliquots of 10 μ l were injected into a cuvette containing a luciferin-luciferase reaction mixture in a DuPont Model 760 Luminescence Biometer. The Biometer was calibrated daily with standard ATP solutions to provide a direct read-out of the ATP content. Each test sample was assayed at least twice to obtain repeatable readings. #### VI. ASSAY ACCEPTANCE CRITERIA The assay will be considered acceptable for evaluation of the test results if the following criteria are met: - 1. The macrophage population is 90% or greater of the total nucleated cells collected by lung lavage. - 2. The percent viability of the macrophages used to initiate the assay is 95% or greater. - 3. The survival of viable macrophages in the negative control cultures over the 20 hour treatment priod is 70% or greater. - 4. A sufficient number of data points (for five test concentrations or less) are available to clearly locate the EC50 of the most sensitive test parameter within a toxicity region as defined under Assay Evaluation Criteria. - 5. The data points critical to the location of the EC50 for the most sensitive parameter are the averages of at least two treated cultures. - 6. If all the test parameters yield EC50 values greater than 1000 μ g/ml, 600 μ l/ml for aqueous solutions, or 20 μ l/ml for organic solutions, the plotted curves for ATP content and viability index parameters do not exceed 120% of the negative control. ## VII. RESULTS ## A. <u>Interpretation</u> Two trials were performed to test the effect of puliverization on the toxicity of the test material to the RAM cells. The original test material consisted of a fine powder and long, thin shreds of black material, and the test results for this material are presented in Table 1 and Figures 1 and 2. When the test material was puliverized to a very fine powder, the results shown in Table 2 and Figures 3 and 4 were obtained. Absolute and relative assay parameters are provided in the tables, whereas the relative values are plotted in the figures to determine EC_{50} positions. In both assays, the test parameters remained above 70% of the negative control values for all applied dosed up to the MAD level of 1000 μ g/ml. Some toxicity was indicated in the 100-1000 μ g/ml concentration range by the viability index and the ATP content, but the decreased in these parameters were insufficient to ascribe toxic properties to the test material. Pulverization of the test material appeared to slightly reduce the toxicity, if it did anything, perhaps by eliminating the long thin strands of material that could pierce the cells after being englufed. Since the most sensitive assay parameters (ATP content and viability index) indicated EC₅₀ values above 1000 μ g/ml, the test material was evaluated as having nondetectable (ND) toxicity, according to the toxicity categories defined for the IERL-EPA Level 1 RAM assay¹. The macrophages collected for both assays had normal morphology and appeared to be in a healthy state. The initial viability was approximately 99% and the survival of viable cells in the negative controls for both trials was at least 96 percent. The average cellular ATP content of the negative control (ATP/ 10^6 total cells) of the negative controls was within the historical range for acceptable cultures in both assays. These results achieved the assay acceptance
criteria and provided confidence in the assumption that the collected data represented typical responses to the test material. ## B. Tables and Figures This report is based on the data provided in Tables 1 and 2 and Figures 1 to 4. Test Material Identity: A81-05-030-744 (EA-2 Flyash) Viable Macrophage Seeded/Flask: 2.0 x 106 cells/flask >1000 >1000 >1000 >1000 Test Date: September 23, 1981 Macrophage Population Percentage: >90.0% Survival of Negative Control Macrophage Over Treatment Time: 99.1% Vehicle: EMEM | | a | Average Values per Culture Flask | | lask | ATP Per | | Expressed as Percent of Negative Control | | | | | |--------|-------------------------------------|---------------------------------------|--------------------------------------|---------------------------|---|----------------|--|-------------------|-------|----------------------------------|--| | Sample | Concentration ^a
µg/ml | Viable Cells
10 ⁶ Units | Total Cells
10 ⁶ Units | ATP
108fg ^b | 10 ⁶ Cells
10 ⁸ fg | Viability
% | Viability | Viabilit
Index | ATP | ATP Per
10 ⁶ Cells | | | NCC | | 2.14 | 2.16 | 66.4 | 30.7 | 99.1 | 100.0 | 100.0 | 100.0 | 100.0 | | | TEST | 30 | 1.91 | 1.92 | 67.6 | 35.2 | 99.5 | 100.4 | 89.3 | 101.8 | 114.7 | | | TEST | 60 | 1.96 | 2.00 | 65.5 | 32.8 | 98.0 | 98.9 | 91.6 | 98.6 | 106.8 | | | TEST | 100 | 1.83 | 1.86 | 65.9 | 35.4 | 98.4 | 99.3 | 85.5 | 99.2 | 115.3 | | | TEST | 300 | 1. 91 | 2.04 | 64.7 | 31.7 | 93.6 | 94.5 | 89.3 | 97.4 | 103.3 | | | TEST | 600 | 1.53 | 1.63 | 56.7 | 34.8 | 93.9 | 94.8 | 71.5 | 85.4 | 113.4 | | | TEST | 1000 | 1.62 | 1.89 | 47.0 | 24.9 | 85.7 | 86.5 | 75.7 | 70.8 | 81.1 | | | | | | | | | | | | | | | TABLE 1 RABBIT ALVEOLAR MACROPHAGE (RAM) CYTOTOXICITY ASSAY DATA ^apH change in culture medium: None observed Toxicity μg/ml: dec50 VALUES: Classification: Nondetectable $b_{fq} = Femtogram (10-15 gram).$ ^CNC = Negative Control, EMEM culture medium. ^dDetermined from data plots in Figures 1 and 2. TABLE 2 RABBIT ALVEOLAR MACROPHAGE (RAM) CYTOTOXICITY ASSAY DATA LBI Assay No.: 5887 (Trial II Ground sample) Initial Cell Viability: 99.3% Test Material Identity: A81-05-030-744 (EA-2 Flyash) Viable Macrophage Seeded/Flask: 1 x 106 cells/flask Test Date: October 13, 1981 Macrophage Population Percentage: >90.0% Survival of Negative Control Macrophage Over Treatment Time: 96.0% Vehicle: EMEM | | Average_V | | ues per Culture Flask ATP Per | | | | Expressed as Percent of Negative Control | | | | | |--------|-------------------------------------|---------------------------------------|--------------------------------------|---------------|---|----------------|--|----------------------|-------|----------------------------------|--| | Sample | Concentration ^a
µg/ml | Viable Cells
10 ⁶ Units | Total Cells
10 ⁶ Units | ATP
108fgb | 10 ⁶ Cells
10 ⁸ fg | Viability
% | Viability | Viability
* Index | | ATP Per
10 ⁶ Cells | | | NCC | | 0. 97 | 1.01 | 25.4 | 25.1 | 96.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | TEST | 300 | 0.90 | 0.95 | 22.4 | 23.6 | 94.7 | 98.6 | 92.8 | 88.2 | 94.0 | | | TEST | 600 | 0.83 | 0.86 | 22.7 | 26.4 | 96.5 | 100.5 | 85.6 | 89.4 | 105.2 | | | TEST | 1000 | 0.75 | 0.80 | 21.1 | 26.4 | 93.8 | 97.7 | 77.3 | 83.1 | 105.2 | | | | ge in culture medium: | | | | ^d EC50 VALUES:
μg/m1: | | >1000 | >1000 | >1000 | >1000 | | $b_{fq} = Femtogram (10-15 gram).$ Toxicity Classification: Nondetectable CNC = Negative Control, EMEM culture medium. $[\]overset{\mbox{\scriptsize id}}{\mbox{\scriptsize Determined from data plots in Figures 3 and 4.}}$ FIGURE 1º # EC50 DETERMINATION FOR PERCENT VIABILITY (0) AND VIABILITY INDEX (0) FIGURE 2 ## EC50 DETERMINATION FOR ATP/FLASK (0) AND ATP/106 CELLS (0) FIGURE 3 ## EC50 DETERMINATION FOR # PERCENT VIABILITY (0) AND VIABILITY INDEX (0) FIGURE 4 #### EC50 DETERMINATION FOR ## ATP/FLASK (0) AND ATP/10⁶ CELLS (*) #### VIII. ASSAY EVALUATION CRITERIA The EC50 value represents the concentration of test material that reduces the most sensitive parameter of the RAM assay to 50% of the vehicle or negative control value. EC50 values are determined graphically by fitting a curve by eye through relative toxicity data plotted as a function of the logarithm of the applied concentration. Each data point normally represents the average of three culture dishes. Statistical analysis is unnecessary in most cases for evaluation. The toxicity of the test material is evaluated as high, moderate, low, or nondetectable according to the range of EC50 values defined in the following table. | Toxicity ^a | Solids | Aqueous Liquids | Nonaqueous Liquids ^b | |-----------------------|-----------------------------|-----------------------------|---------------------------------| | | (EC ₅₀ in µg/ml) | (EC ₅₀ in μ1/m1) | (EC ₅₀ in µl/ml) | | High | <10 | <6 | <0.2 | | Moderate | 10 to 100 | 6 to 60 | 0.2-2 | | Low | 100 to 1000 | 60 to 600 | 2-20 | | Not Detectable | >1000 | >600 | >20 | ^aEvaluation criteria formulated by Litton Bionetics, Inc. for <u>IERL-RTP</u> <u>Procedures Manual: Level 1 Environmental Assessment Biological Tests</u>¹. Another evaluation scheme is proposed for extracts obtained from SASS train gas volumes. The proportion of the total gas volume corresponding to the volume of extract used in the bioassay is calculated and expressed as L/ml of culture medium (or DSCF/ml of culture medium). A criterion of 1000 L/ml is set as the limit for nondetectable toxicity. This gas volume corresponds to the average volume breathed by humans over a 2-hour period. The subsequent toxicity ranges are defined by 10-fold dilution steps to conform to standard procedure. The toxicity ranges are defined in the following table for liter and dry standard cubic feet units: | Toxicity | EC ₅₀ In
Liters/ml (L/ml) | EC ₅₀ In
Dry Standard Cubic Feet/ml (DSCF/ml) | |---------------|---|---| | High | <10 | <0.35 DSCF | | Moderate | 10-100 | 0.35-3.5 | | Low | 100-1000 | 3.5-35 | | Nondetectable | >1000 | >35 | ^bCriteria for nonaqueous liquids are tentative and under evaluation. If the organic or solid content is known, the solid evaluation criteria are applied. ## IX. REFERENCES - 1. Brusick, D.J., et al.: IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests. EPA Contract No. 68-02-2681, Technical Directive No. 501, Litton Bionetics, Inc., Kensington, MD, September 1980, 177 pp. In press. - 2. Brusick, D.J.: Level 1 Bioassay Assessment and Data Formatting. EPA-600/7-80-079, Litton Bionetics, Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135, Litton Bionetics, Inc., Kensington, MD, August 1981, pp. 52. GENETICS ASSAY NO.: 5887 LBI SAFETY NO.: 7171 TOXIC EVALUATION OF A81-05-030-744 (EA-2 FLYASH) IN THE EPA LEVEL 1 ACUTE IN VIVO RODENT TOXICITY ASSAY #### FINAL REPORT #### SUBMITTED TO: ACUREX CORPORATION 485 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94042 ## SUBMITTED BY: LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MD 20795 LBI PROJECT NO.: 22064 REPORT DATE: NOVEMBER 1981 #### **PREFACE** This assay conforms to the standard EPA Level 1 procedure for the acute in vivo toxicity test in rodents as described in "IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests". The data were evaluated and formatted as recommended in "Level 1 Biological Testing Assessment and Data Formatting". The organisms used in this assay were male and female weanling mice as recommended by the Level 1 Manual. The advantages of in vivo toxicity assays are embodied mainly in the fact that the toxicological assessment is performed in whole animals. There is a significant background of test data on a wide range of toxicants for the rodent systems, thus supplying needed information for the reliable interpretation of results with complex effluents³. The main disadvantage of an acute rodent toxicity study is a possibly unsatisfactory prediction of toxicity induced by long-term/low-level exposures. An additional consideration is the need for multi-gram quantities of test material which may prohibit testing where small amounts of sample are available, such as from source streams containing gaseous and particulate material. Since the major objective of the Level 1 biological testing procedures is to identify toxicological problems at minimal cost, a two-step approach was developed for the initial acute in vivo toxicological evaluation of unknown compounds. The first step is based on the quantal (all-or-none) response of dosing animals only at the maximum applicable dose. If no animals die in the quantal test, further in vivo testing is not initiated and the sample toxicity is categorized as not detectable. If any animals die in the quantal screening, a multiple dose quantitative test is initiated to determine the dose that kills 50 percent of the animals (LD $_{50}$). The toxicity potential of the test material is then ranked using standard EPA Level 1 toxicity evaluation criteria for the acute in vivo rodent toxicity assay¹. All procedures and documents pertaining to the receipt, storage, preparation, testing and evaluation of the test material shall conform to Litton Bionetics, Inc. standard operating procedures and the Good Laboratory Practices Regulations of 1979. Deviations from standard procedure shall be fully documented and noted in the report. All test and control results in this report are supported by fully documented raw data which are permanently maintained in the files of the Department of Molecular Toxicology or in the archives of Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20795. Copies of raw data will be supplied to the sponsor upon
request. # TABLE OF CONTENTS | | | Page No. | |---------|---------------------|----------| | PREFACE | | i | | LIST OF | TABLES | iii | | I. | ASSAY SUMMARY | 1 | | II. | OBJECTIVES | 2 | | III. | TEST MATERIAL | 3 | | | A. Description | 3
3 | | IV. | MATERIALS | 4 | | | A. Test Organisms | 4 | | ٧. | EXPERIMENTAL DESIGN | 5 | | | A. Quantal Test | 5
5 | | VI. | RESULTS | 7 | | | A. Interpretation | 7
7 | | VII. | EVALUATION CRITERIA | 10 | | VIII. | REFERENCES | 11 | ## LIST OF TABLES | <u>Table</u> | Title | | Page No. | |--------------|---|---|----------| | 1 | Definition of Pharmacological Toxic Signs | | 6 | | 2 | Quantal Toxicity Data with Weanling Mice | • | 8 | | 3 | Acute In Vivo Rodent Toxicity Assay Evaluation Criteria | | 10 | - I. ASSAY SUMMARY - A. SPONSOR: Acurex Corporation - B. MATERIAL (TEST COMPOUND): GENETICS ASSAY NO.: 5887 - 1. Identification: A81-05-030-744 (EA-2 Flyash) - 2. Date Received: August 26, 1981 - 3. Physical Description: Gray and white particles with much larger, long and thin black chunks. - C. TYPE OF ASSAY: EPA Level 1 Rodent Quantal Toxicity Assay - D. STUDY DATES: - A. Initiation: October 5, 1981 - B. Completion: October 23, 1981 - E. SUPERVISORY PERSONNEL: - A. Study Director: David J. Brusick, Ph.D. - B. Senior Technician: Joan McGowan - F. EVALUATION: The test substance, A81-05-030-744 (EA-2 Flyash), was not lethal or toxic for weanling mice following an oral gavage dose of 5 gm/kg body weight. Although one female animal was found dead, the death did not appear compound-related because of the absence of toxic signs. Otherwise there were no unusual findings upon necropsy that would suggest test substance related toxicity. The LD₅₀ of the test material was found to be higher than the maximum applicable dose (MAD) of 5 gm/kg. The test sample response was evaluated as being in the nondetectable range as defined for the IERL-EPA Level 1 Rodent Quantal Toxicity Assay¹. Submitted by: David J. Brusick, Ph.D. Director Department of Molecular Toxicology ## II. OBJECTIVES The objective of this assay was to evaluate the acute toxicity of sample A81-05-030-744 (EA-2 flyash) when administered by oral gavage to male and female weanling mice. Test strategy involved initial testing of the sample at the maximum applicable dose in the quantal assay. If lethality was observed in the quantal assay, additional testing would be initiated at lower doses to identify the LD $_{50}$. The assay consisted of recording any lethality and toxic signs that occurred initially and over a 14-day period following a single treatment. Additional information was collected from necropsy observations on animals that died during the course of the experiment or were killed at the end of the 14-day observation period. #### III. TEST MATERIAL #### A. <u>Description</u> The test material, A81-05-030-744 (EA-2 flyash), was received as gray and white particles with larger (long and thin) black chunks. The amount of sample supplied was 15.0040 grams. No information on the sampling parameter was provided. #### B. Handling and Preparation The test material was received at LBI on August 26, 1981. The sample was assigned LBI safety number 7171 and LBI assay number 5887. The sample was stored at $+4^{\circ}\text{C}$ in the dark. On October 1, 1981, the test material was ground in a mortar and pestle to a fine, black powder. The primary dosing suspension was prepared 24 hours in advance to permit water soluble materials in the flyash to leach into the water at room temperature. A total of 1628.31 mg of test material was suspended in 17.43 ml of sterile distilled water giving a stock concentration of 93.6 mg/ml. This suspension would not pass freely through a 24G gavage needle so it was discarded. On October 8, 1981, approximately 2.5 gm of the previously ground sample was puliverized a second time in a mortar and pestle. The suspension, prepared 24 hours in advance of dosing, passed through the gavage needle without difficulty. A total of 1411.04 mg of test material was suspended in 10.1 ml of sterile water giving a stock concentration of 140 mg/ml. # IV. MATERIALS # A. <u>Test Organisms</u> The test organisms for this study were weanling Charles River CD-1 mice. Weanlings were used because they are likely to be more sensitive to toxic effects of test materials than adult mice. In addition, significantly less test material is required for dosing. Eight nursing female Charles River CD-1 mice with ten pups each (5 male and 5 female) were obtained from Charles River Breeding Laboratories, Inc., Wilmington, MA on September 30, 1981. The birth date of the pups was September 13, 1981. The animals were quarantined for 5 days upon receipt. The litters were individually housed on Ab-sorb-dri bedding in polycarbonate cages and were cared for according to Litton Bionetics, Inc., Department of Molecular Toxicology and LAMS Standard Operating Procedures. Purina certified laboratory chow and water (pH 2.5) were provided ad libitum. The pups were maintained with mothers until weaned. The animals were identified by eartags and cage cards and were released for study on October 9, 1981. #### V. EXPERIMENTAL DESIGN #### A. Quantal Test Ten male and ten female weanling CD-1 mice were used in the initial quantal screening test. The pups appeared to be in good health with no physical or behavioral problems noted. Pups that were selected were of similar size. The pups were 26 days old at the time of dosing. Prior to dosing, each animal was individually weighed and the mean weight calculated for each sex. The volume of test material to be administered was based on the mean weight if all animals were within plus or minus 15 percent of the average for the sex. If any animals were outside that range, they were then excluded from the average, a new mean calculated for the remaining animals and individual dosing volumes calculated for each outlying animals. The test material was administered by gavage to the pups at the rate of 5 gm/kg. The average weight of the males was 11.5 grams and that of the females was 12.0 grams. The weight of one female, animal number 9058, exceeded ±15 percent of the average of the females. This animal was excluded, and the new average of 11.8 grams calculated for the females. The test material, suspended at a concentration of 140 mg/ml, was applied to the animals in two equal doses that totaled 0.41 ml for the males, 0.51 for the females, except animal number 9058 that received 0.42 ml. Immediately following administration of the test substance and during the first day, observations of the frequency and severity of all toxic signs or pharmacological effects (Table 1) were recorded. Particular attention was paid to time of onset and disappearance of signs. Observations were made and recorded on all animals through a 14-day period. At termination of the observation period, all surviving animals were weighed, killed, and then gross necropsies performed. Necropsies were also performed on all animals that died during the course of this study. # B. Quantitative Test Since no animals died during the preliminary quantal screening test, the quantitative test to determine the LD_{50} was unnecessary. TABLE 1. DEFINITION OF PHARMACOLOGICAL TOXIC SIGNS | Observation and | | |------------------------------|---| | Examination | Common Signs of Toxicity | | Behavior | Change in attitude to observer, unusual vocalization, restless- | | Movements | <pre>ness, sedation Twitch, tremor, ataxia, cata- tonia, paralysis, convulsion, forced movements</pre> | | Reactivity to various | Irritability, passivity, | | stimuli | anaesthesis, hyperaesthesis | | Cerebral and spinal reflexes | Sluggishness, absence | | Muscle tone | Rigidity, flaccidity | | Pupil size | Myosis, mydriasis | | Secretion | Salivation, lacrimation | | Nostrils | Discharge | | Character and rate | Bradypnoea, dyspnoea, Cheyne- | | of breathing | Stokes breathing, Kussmaul breathing | | Palpation of cardiac region | Thrill, bradycardia, arrhy-
thmia, stronger or weaker
beat | | Events | Diarrhea, constipation, | | | Flatulence, contraction | | Feces consistency | Unformed, black or clay colored | | Vulva, mammary | Swelling | | | Prolapse | | Perianal region | Soiled | | Color, turgor, | Reddening, flaccid skinfold, | | integrity | eruptions, piloerection | | Conjunctiva, mouth | Discharge, congestion, hemorrhage cyanosis, jaundice | | Eveball | Exophthalmus, nystagmus | | Transparency | Opacities | | Rectal or paw skin | Subnormal, increased temperatur Abnormal posture, emaciation | | | Movements Reactivity to various stimuli Cerebral and spinal reflexes Muscle tone Pupil size Secretion Nostrils Character and rate of breathing Palpation of cardiac region Events Abdominal shape Feces consistency and color Vulva, mammary glands Penis Perianal region Color, turgor, integrity Conjunctiva, mouth Eyeball Transparency | #### VI. RESULTS #### A. Interpretation The test material, A81-05-030-744 (EA-2 flyash), was tested and evaluated in the EPA Level 1 Acute In Vivo Rodent Toxicity Assay. The first phase of testing was the quantal toxicity test in which 10 male and 10 female weanling CD-1 mice were exposed to an oral dose of the test material. This dose was at the maximum applicable dose (MAD) of 5 gm/kg as recommended by the EPA Level 1 procedures manual 1 . Nineteen animals survived the exposure with no evidence of any significant compound-related behavioral or toxic signs (see Table 1 for definitions). The animals seemed uncomfortable after dosing (slow moving, wiping mouth and
eyes half-shut) but animals appeared normal after 2 hours. There was a small amount of test material on the muzzle of some animals after dosing. One animal, female number 9053, was found dead on day 3 of the study. The animal had been dead a number of hours; rigor mortis had set in and the intestines were filled with gas. Necropsy of animal 9053 indicated necrosis of the liver but no other gross lesions. The death of this animal did not appear directly attributable to the test material. The test material was found to have an LD_{50} greater than the maximum applicable dose of 5 gm/kg. Because of the lack of significant toxic effects and because the death of animal number 9053 did not appear to be compound-related, the quantitative study (LD_{50} determination) was unnecessary. The test material was evaluated as having nondetectable (ND) toxicity based on EPA Level 1 evaluation criteria¹. #### B. <u>Tables</u> This report is based on the data provided in Table 2. # TABLE 2 QUANTAL TOXICITY DATA WTH WEANLING MICE Quantal Toxicity: Weanling CD-1 mice Sponsor: Acurex Corporation Test Article: A81-05-030-744 (EA-2 flyash) Description: Gray and white particles with larger (long and thin) black chunks. Sample pulverized to a fine, black powder. Vehicle: Sterile, deionized water Study Dates: October 8, 1981 to October 23, 1981 Animals: Charles River CD-1 mice, P.O. 106949 Dose: 5 gm/kg administered by oral gavage | Animal No. | Initial
Weight
gm | Final
Weight
gm | Visible
Toxic
Signs ^a | Gross Necropsy Findings | |------------|-------------------------|-----------------------|--|--| | Males | | | | | | 9042 | 10.8 | 19.1 | NTSb | NSL ^C | | 9043 | 11.5 | 21.2 | NTS | NSL | | 9044 | 11.0 | 20.8 | NTS | NSL | | 9045 | 11.1 | 23.9 | NTS | NSL | | 9046 | 11.6 | 22.4 | NTS | NSL | | 9047 | 11.6 | 22.3 | NTS | Intestines yellow and flaccid | | 9048 | 10.8 | 20.7 | NTS | NSL | | 9049 | 11.5 | 21.0 | NTS | NSL | | 9050 | 12.1 | 23.0 | NTS | NSL | | 9051 | 13.1 | 25.8 | NTS | Large white mucous plug in bladder and uretha. | Mean Body Weight: Initial = 11.5 ± 0.7 gm (Standard Deviation) Final = 22.0 ± 1.9 gm (Standard Deviation) ^aAnimals observed over 14 days. Note: Staining of the muzzle from the test material was noted in some animals after dosing. Animals seemed uncomfortable after dosing. bNTS = No Toxic Signs. cNSL = No Significant Lesions # TABLE 2 (Continued) QUANTAL TOXICITY DATA WTH WEANLING MICE | Animal No. | Initial
Weight
gm | Final
Weight
gm | Visible
Toxic
Signs | Gross Necropsy Findings | |--------------|-------------------------|------------------------------|------------------------------|--| | Females | | | | | | 9052 | 11.3 | 18.4 | nts ^b | nsl ^c | | 9053 | 11.3 | 9.5 | Death ^d | Animal had been dead several hours, abdomen bloated; intestines light red and filled with gas. Liver dark green colored with apparent necrosis. Lungs pale but normal. No other gross abnormalities noted. | | 9054 | 11.1 | 19.6 | NTS | NSL | | 9055 | 13.1 | 20.3 | NTS | NSL | | 9056 | 11.3 | 18.4 | NTS | NSL | | 9057 | 11.6 | 19.4 | NTS | NSL | | 9058 | 14.3 | 19.4 | NTS | NSL | | 9059 | 11.9 | 19.3 | NTS | NSL | | 9060 | 12.4 | 18.9 | NTS | NSL | | 9061 | 12.0 | 20.3 | NTS | NSL | | Mean Body We | | = 12.0 ± 1.0
= 19.3 ± 0.0 | O gm (Standa
7 gm (Standa | rd Deviation)
rd Deviation) ^e | ^aAnimals observed over 14 days. ealive 9:00 a.m. 10-11-81. Animal 9053 excluded from average. Staining of the muzzle from the test material was noted in some animals after dosing. Animals seemed uncomfortable after dosing. bNTS = No Toxic Signs. cNSL = No Significant Lesions dAnimal found dead 8:00 a.m. 10-12-81 (day 3 of the study), last seen # VII. EVALUATION CRITERIA If no mortality occurs in the quantal study, no further studies will be performed with the test substance and the LD $_{50}$ should be reported as greater than 5 ml/kg or 5 g/kg. The test material is then ranked as having nondectable toxicity (ND) at the maximum applicable dose (MAD). Effluent samples which produce harmful effects in vivo and do not result in deaths will be noted in the results summary. Such observations are difficult to quantitate but provide insight into the sublethal effects of a sample on rodents. Further investigations may be recommended from observations of nonlethal toxic effects. If a single animal in the quantal study dies in the 14-day observation period, a quantitative study will be performed. An LD $_{50}$ will be calculated by the method of Litchfield and Wilcoxin 4 . If the data are not suitable for calculation of a precise LD $_{50}$, i.e., total mortality occurs for the lowest dose, an estimate of the LD $_{50}$ could be made or the LD $_{50}$ could be expressed as 0.05 ml/kg or 0.05 g/kg or less. Occasionally, it may be necessary to use a different series of dosages in a repeat study to accurately locate the LD $_{50}$. The calculated LD $_{50}$ value is used to rank the toxicity of the test material according to the dose ranges presented in Table 3. Frequent observations are also made and recorded on all animals through the 14-day period. As in the quantal phase, no attempt is made to quantitate or rank observations. The average animal body weight of each group is determined initially and at the termination of the experiment. The average weights and the weights as fractions of the control are reported for each dose level. Necropsy observations are recorded and reported. TABLE 3 ACUTE IN VIVO RODENT TOXICITY ASSAY EVALUATION CRITERIA | Toxicity ^a | Solids
(LD ₅₀ in g/kg) | Liquids
(LD ₅₀ in m1/kg) | | | | |-----------------------|--------------------------------------|--|--|--|--| | gh | <0.05 | <0.05 | | | | | erate | 0.05 to 0.5 | 0.05 to 0.5 | | | | | , | 0.5 to 5 | 0.5 to 5 | | | | | t Detectable | >5 | >5 | | | | ^aEvaluation criteria formulated by Litton Bionetics, Inc. for <u>IERL-RTP</u> <u>Procedures Manual: Level 1 Environmental Assessment Biological Tests.</u>¹ # VIII. REFERENCES - 1. Brusick, D.J., et al.: IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological Tests. EPA Contract No. 68-02-2681, Technical Directive No. 501, Litton Bionetics, Inc., Kensington, MD, September 1980, 177 pp., in press. - 2. Brusick, D.J.: Level 1 Bioassay Assessment and Data Formatting. EPA-600/7-80-079, Litton Bionetics, Inc., Kensington, MD, April 1980, 100 pp. - 3. Brusick, D.J. and Young, R.R.: <u>Level 1 Bioassay Sensitivity</u>. EPA-600/7-81-135 Litton Bionetics, Inc., Kensington, MD, August 1981, 52 pp. - Litchfield, J.T. and Wilcoxin, F.: "A Simplified Method of Evaluation Dose-Effect Experiments." J. Pharmac. Exp. Ther., Vol. 96, 1949, pp. 99-113. # THE ACUTE TOXICITY OF FIVE SAMPLES TO FRESHWATER ORGANISMS. #### SUBMITTED TO ACUREX CORPORATION MOUNTAIN VIEW, CALIFORNIA REPORT #BW-81-7-966 EG&G, Bionomics Aquatic Toxicology Laboratory 790 Main Street Wareham, Massachusetts July, 1981 # TABLE OF CONTENTS | | PAGE | |-----------------------|---------| | INTRODUCTION | . 1 | | MATERIALS AND METHODS | . 2 | | Test Organisms | . 2 | | Test Conditions | . 4 | | Water flea | . 4 | | Fathead minnow | . 6 | | Freshwater algae | . 7 | | Statistical Analysis | . 8 | | RESULTS | . 10 | | LITERATURE CITED | . 11 | | TABLES | . 12-30 | | APPENDIX A | . 31 | #### INTRODUCTION The purpose of this study was to estimate the acute toxicity of five samples received from the Acurex Corporation to freshwater organisms. All five materials were tested with the water flea (Daphnia magna) and the freshwater algae (Selenastrum capricornutum). Three of the samples were also tested with the fathead minnow (Pimephales promelas). Results of tests performed with water fleas and fathead minnows are reported as median lethal concentrations (LC50's) and corresponding 95% confidence intervals. Results of the tests performed with the freshwater alga are reported as the median effect concentration (EC50) and corresponding 95% confidence interval. Toxicity tests performed with water fleas and fathead minnows were conducted at the Aquatic Toxicology Laboratory of EG&G, Bionomics, Wareham, Massachusetts and the tests performed with the alga were conducted at EG&G, Bionomics Marine Research Laboratory (BMRL), Pensacola, Florida. All raw data related to these tests are stored at the respective laboratory at which they were performed. #### MATERIALS AND METHODS Methods used in performing the acute toxicity tests followed those described in "IERL-RTP Procedures Manual: Level I Environmental Assessment Biological Tests" (1980) unless specified otherwise. The five samples were received at EG&G, Bionomics, Wareham, Massachusetts on 24 June 1981. The samples were received at ambient temperature (20-25°C) and were refrigerated (4°C) upon receipt. On 25 June, a portion of each sample was shipped to BMRL. Samples were received at BMRL on 26 June. At BMRL, the four solid samples were stored at ambient room temperature, while the liquid sample was stored at 4°C. The five samples are described in Appendix A. Tests performed with D. magna and P. promelas were limited to a high test concentration of 1000 mg/L. If insufficient mortality was observed at this treatment level, the LC50 was estimated to be >1000 mg/L. #### Test Organisms The water flea used in this toxicity test were obtained from laboratory stocks cultured at EG&G, Bionomics. The culture water was prepared by reconstituting deionized water (U.S. EPA, 1975) and filtering it through an Amberlite XAD-7 resin column to remove any potential organic contaminants. This water had a total hardness and akalinity as calcium carbonate (CaCO₃) of 170
\pm 15 mg/l and 120 \pm 10 mg/l, respectively, a pH range of 7.9-8.3, a temperature of 22 \pm 1°C, a specific conductance of 400-600 micromhos per centimeter (μ mhos/cm), and a dissolved oxygen (DO) concentration of greater than 5.3 mg/l (60% of saturation). The fathead minnows (Bionomics lot #81A6) were obtained from cultures spawned and raised at EG&G, Bionomics, Wareham, Massachusetts. The fish were held in a 500-£ fiberglass tank under a photoperiod of 16 hours light and 8 hours darkness. All fish were fed a dry, pelleted food, ad libitum, daily except during the 48 hours prior to testing. There was no mortality in the test fish population during this 2 day period (Daily Record of Fish Holding Conditions). The well water which flowed into this tank was characterized as having total hardness and alkalinity ranges as calcium carbonate (CaCO₃) of 20-25 mg/l and 20-28 mg/l, respectively, and a specific conductance range of 90-110 micromhos per centimeter (umhos/cm) (Weekly Gravity Feed Tank Water Quality Analysis Logbook). Other parameters monitored in the holding tank were a pH range of 6.2-6.9, a dissolved oxygen (DO) range of 80-92% of saturation and a flow rate range of 6-7 tank volume replacements/day (Weekly Record of Fish Holding Water Characteristics). Test fish were maintained under these conditions for a . minimum of 14 days. The temperature in the holding tank ranged from 20-22°C during this 14 day period (Daily Record of Fish Holding Conditions). The specific conductance was measured with a YSI Model #33 conductivity meter, the pH was measured with an Instru-5-411 mentation Laboratory Model #175 pH meter and combination electrode, the DO was measured with a YSI Model #57 dissolved oxygen meter and probe and the temperature was measured with a Brooklyn alcohol thermometer. Total hardness and alkalinity were measured according to APHA et al. (1975). The freshwater alga were obtained from the U.S. Environmental Protection Agency's Environmental Research Laboratory, Corvallis, Oregon and maintained in stock culture at BMRL. Culture procedures used for the alga followed those described in "IERL-RTP Procedures Manual: Level I Environmental Assessment Biological Tests" dated September 1980. ### Test Conditions #### Water flea The toxicity tests exposing <u>D</u>. <u>magna</u> to the samples were conducted in 250 milliliter (ml) glass beakers. The dilution water used during this study was prepared in the same manner as the culture water except that the quantity of salts were reduced to yield a total hardness and alkalinity of 107 mg/l as CaCO₃ and 69 mg/l as CaCO₃, a pH of 8.0 and a specific conductance of 400 µmhos/cm. For each test concentration, the appropriate amount of test material was added to dilution water to total 1000 ml, then vigorously mixed on a magnetic stirrer. Eight hundred milli- liters of this test mixture were divided into four beakers to provide replicate exposure treatments each containing 200 ml. The remaining 200 ml of the control and the high, middle and low test concentrations were used for 0-hour dissolved oxygen (DO), pH and specific conductance determinations. Four control beakers containing the same dilution water and maintained under the same conditions as the exposure concentrations, but containing no sample, were established. The ambient air temperature in the laboratory was controlled in order to maintain test solution temperatures at 21-22°C. Test solutions were not aerated. The test area was illuminated with Durotest (Optima) fluorescent lights at an intensity of 50-70 footcandles. Twenty water flea, <24 hours old, were impartially distributed to each concentration (5 water flea per replicate) within 30 minutes after the test solutions had been prepared. Mortalities in replicate test solutions were recorded at 24 and 48 hour exposures. Biological observations and observations of the physical characteristics of each replicate test solution were also made and recorded at 0, 24 and 48 hours. The pH, DO and specific conductance were measured at 0 and 48 hours of exposure in the control and the high, middle and low test solutions. The temperature of the control and all test concentrations were measured at 0, 24, and 48 hours exposure. #### Fathead minnow Toxicity tests performed with the fathead minnow were performed in 19.6- ℓ glass jars which contained 15- ℓ of test solution. The dilution water used was hard water reconstituted from deionized water according to recommended procedures (U.S. EPA, 1975). This water had a total hardness and alkalinity as CaCO₃ of 94 mg/ ℓ and 68 mg/ ℓ , respectively, a pH of 7.9 and a specific conductance of 345 μ mhos/cm (Reconstituted Water, Quality Analysis). Test solutions were prepared by adding appropriate amounts of test material directly to test vessels containing a sufficient quantity of dilution water to total 15 l. Solutions were mixed by stirring with a glass rod. Each test concentration and controls were replicated. Two control jars containing the same dilution water as used in the exposure jars, but containing no test material, were established. All test solution temperatures were controlled by a system which maintained temperatures at 21-22°C. Test solutions were not aerated during the exposure period. The photoperiod during testing was the same as that provided during acclimation. Ten fathead minnows with a mean (range, N=30) wet weight and total length of 0.29(0.13-0.47) grams and 33(25-38) millimeters, respectively (Fish Weights and Lengths Log) were randomly distibuted to each test jar within 10 minutes after the test solutions had been prepared. Mortalities were recorded and removed from each test jar at 0, 24, 48, 72 and 96 hours exposure. Biological observations of the fish and observations of the physical characteristics of the test solutions were also made at each 24 hour interval. The pH and DO concentrations of the control, high, middle and low test concentrations were measured at 0, 24, 48 and 96 hours of the exposure period. Specific conductance of the control, high, middle and low test concentrations were measured at 0 hour. The temperature was measured in the control jar every 24 hours during exposure. #### Freshwater algae The toxicity tests exposing the freshwater alga to the test sample was conducted in 125 ml flasks each of which contained 50 ml of test medium. Beginning cell numbers in the test flasks were approximately 1.0 x 10⁴ cells/ml. Triplicate cultures were employed for each of the test concentrations and control. Cultures were incubated at 24°C under approximately 2,400 lux illumination. Cell counts were made at 0- and 120-hour exposures using a hemacytometer and a Zeiss Standard 14 compound microscope. The pH of all test solutions were measured at 0 and 120 hours of exposure. #### Statistical Analysis The concentrations tested and corresponding mortality data derived from the toxicity tests exposing water flea and fathead minnows to the test materials were used to estimate median lethal concentrations (LC50) and 95% confidence intervals. The LC50 is defined as the concentration (nominal or measured) of the test compound in dilution water which caused mortality of 50% of the test animal population at the stated exposure interval. The computer program utilized (Stephan, 1978, personal communication) estimated LC50 values using one of three statistical methods in the following order of preference: moving average angle analysis, probit analysis, binomial probability. The method selected was determined by the characteristics of the data base (i.e. presence or absence of test concentrations causing 100% mortality of the test animal population, number of concentrations causing mortality of a partial number of the test animal population). The computer program scanned the data base, identified the most preferred statistical method and performed the analysis. The no discernible effect concentration was also determined for each effluent sample. The no discernible effect concentration is defined as the highest concentration tested at which there were no mortalities or observed behavioral and physical abnormalities (i.e. erratic swimming, . flared carapace). The concentrations tested and corresponding percentage decrease in cell numbers from the toxicity tests exposing the freshwater alga to the test materials were used to estimate concentrations of each sample that caused a 50% and 95% decrease in cell numbers of the exposed cultures, EC50 and EC95, respectively. Each test concentration was converted to a logarithm and the corresponding percentage decrease of cell numbers was converted to a probit (Finney, 1971). The 120-hour EC50's and EC95's and their respective 95% confidence intervals were calculated by linear regression. #### RESULTS The estimated LC50 values, 95% confidence intervals and no discernible effect concentrations for <u>D</u>. <u>magna</u> and <u>P</u>. <u>promelas</u> exposed to the test samples are presented in Table 1. Table 2 presents the estimated 120-hour EC50 and EC95 values and corresponding 95% confidence intervals for <u>S</u>. <u>capricornutum</u> exposed to the test samples. <u>P</u>. <u>promelas</u> was the least sensitive species to the effects of the test materials. None of the three samples (A80-09-023-5, A81-05-030-662, A81-05-031-765) tested with <u>P</u>. <u>promelas</u> exhibited toxicity with this organism. <u>S</u>. <u>capricornutum</u> was the most sensitive species to the toxic effects of the test materials. All of the ash samples had 120-hour EC50 values less than 400 mg/l. The 48-hour LC50 values for the 5 materials tested with <u>D</u>. magna ranged from 680 mg/l to >1000 mg/l. The nominal concentrations of the test materials and corresponding effects for the three species tested are presented in Tables 3-15. The water quality parameters measured during the toxicity tests with <u>D. magna</u> and <u>P. promelas</u> are presented in
Tables 16 and 17, respectively. The pH of the test solutions measured during the tests performed with <u>S. capricornutum</u> are presented in Table 18. #### LITERATURE CITED - APHA, AWWA, WPCF. 1975. Standard methods for the examination of water and wastewater. 14th Edition, Washington, D.C. 1193 pp. - Finney, D.J. 1971. Probit Analysis. Cambridge University Press, London. 333 pp. - IERL-RTP Procedures Manual: Level 1 Environmental Asssessment Biological Tests. 1980. 149 pp. - Stephan, Charles. 1978. U.S. EPA, Environmental Research Laboratory, Duluty, Minnesota. Personal communication. - U.S. EPA. 1975. Methods for acute toxicity tests with fish, macroinvertebrates, and amphibians. Ecological Research Series (EPA-660/3-75-009), 61 pp. ^{*}Results of samples other than those pertinent to this study (A81-05-030-662 and A81-05-030-744) have been purposely deleted from the original report. | | | I | C50 (95% confide | nce interval) | 1 | No discernible effect concentration | |----------------|-------------|-----------------|--------------------------------|---------------|---------|-------------------------------------| | Sample | Species | 24 hour | 48 hour | 72 hour | 96 hour | (mg/L) | | | | | | | | | | | | | | • | | | | A81-05-030-662 | D. magna | >1000 | .680 ^b
(570–830) | - | - | 220 | | | P. promelas | >1000 | >1000 , | >1000 | >1000 | 1000 | | A81-05-030-744 | D. magna | >1000 | 960 ^b
(830–1200) | - | | 360 | mg/l. Estimated by the moving average angle method. Table 2. Calculated 5-day EC50's and EC95's for <u>Selenastrum capricornutum</u> exposed to the five samples provided by the Acurex Corporation. The EC values were based on decrease of cell numbers on exposed cultures as compared to the control. (The 95% confidence limits are in parentheses). Concentrations were based on milligrams of the samples per liter of algal growth medium. | Sample | EC50 | EC95 | | | |----------------|---------------|----------------|--|--| | A81-05-030-662 | 290 (204-412) | 853(534-1,362) | | | | 81-05-030-744 | 347 (328–367) | 894 (830-963) | | | Table 6. Concentrations tested, corresponding percentage mortalities and observations made during the 48-hour exposure of the water flea (Daphnia magna) to the sample coded A81-05-030-662. | con | Nominal
centration | | | 24 hour | | | | | 48 hour | | | |-----|-----------------------|---|----|---------|----|-----------------|-----|----|------------|----|-----------------| | | (mg/l) | A | В | С | D | Я | A | В | С | D | 7 | | | 1000 | 0 | 20 | 20 | 20 | 15 ^b | 80 | 60 | 80 | 80 | 75 ¹ | | n | 600 | 0 | 0 | 0 | 0 | o | 80 | 60 | 20 | 20 | · 45 | | 3 | 360 | 0 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 5 | | | 220 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o : | 0 | 0 | | | 130 | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | 0 | 0 | | CO | ntrol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | A dark gray colored particulate matter was present on the bottom of all mixtures of A81-05-030-662. b Several daphnids were lethargic. Table 7. Concentrations tested and corresponding percentage mortalities of fathead minnows (Pimephales promelas) exposed to the sample coded A81-05-030-662 for 24, 48, 72 and 96 hours. | Nominal concentration a | 2 | 4 hou | ur 48 hour | | | 72 hour | | | 9 | 96 hour_ | | | |-------------------------|---|-------|------------|---|---|---------|----|---|---|----------|---|---| | (mg/l) | A | В | ž
· | A | В | x | A | В | Ž | A | В | ž | | 1000 ^b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 600p | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 360 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 220 | 0 | 0 | 0 | 0 | 0 | 0 | .0 | 0 | 0 | 0 | 0 | 0 | | 130 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | A dark gray particulate matter was present in all mixtures of A81-05-030-662. Mixtures were cloudy at 0 hour of exposure. Table 8. Results of a 5-day exposure of the freshwater algae Selenastrum capricornutum to A81-05-030-662. Percentage change is decrease of cell numbers in exposed cultures as compared to the control at day 5. | Nominal concentration (mg/l) | Percentage change | |------------------------------|-------------------| | control | - | | 125 | -7 | | 250 | -56 | | 500 | -84 | | 1,000 | -94 | Table 9. Concentrations tested, corresponding percentage mortalities and observations made during the 48-hour exposure of the water flea (Daphnia magna) to the sample coded A81-05-030-744. | Nominal concentration | | | 24 hour | | | | | 48 hour | | | |-----------------------|---|---|---------|-----|------------------|----|----|---------|-----|-------------------| | (mg/L) | A | В | С | D | ž | A | В | С | D | × | | 1000 | 0 | o | o | o , | o _p | 20 | 40 | 80 | 80 | 55 ^b , | | 600 | 0 | 0 | 0 | o | $o^{\mathbf{b}}$ | 0 | 20 | 0 | 0 | 5 ^b | | 360 | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 . | 0 | | 220 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 130 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o | 0 | | ontrol | 0 | 0 | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | A gray-black colored particulate matter was present in all test mixtures of A81-05-030-744. Particulate matter was adhering to many daphnids. Several daphnids were lethargic. Table 10. Results of a 5-day exposure of the freshwater alga <u>Selenastrum</u> capricornutum to A81-05-030-744. Percentage change is decrease of cell numbers in exposed cultures as compared to the control at day 5. | ominal concentration (mg/g) | Percentage change | | | |-----------------------------|-------------------|--|--| | control | - | | | | 125. | -4 | | | | 250 | -29 | | | | 500 | -71 | | | | 1,000 | - 97 | | | Table 16. Water quality characterization of the test solutions measured during the acute toxicity tests exposing the water flea (Daphnia magna) to the Acurex test samples. | Sample | Nominal concentration (mg/l) | Dissolved ^a
oxygen
(mg/l) | pH | Specific ^a
conductance
(µmhos/cm) | |----------------|------------------------------|--|----------|--| A81-05-030-662 | 1000 | 8.1-8.2 | 10.1-9.2 | 430-420 | | | 360 | 8.1-8.3 | 9.2-8.8 | 370-400 | | | 130 | 8.0-7.9 | 8.9-8.5 | 360-370 | | | control | 7.5-7.6 | 8.1-8.1 | 350-360 | | A81-05-030-744 | 1000 | 8.2-8.1 | 10.2-9.0 | 380-380 | | | 360 | 8.2-8.0 | 9.5-8.7 | 370-380 | | | 130 | 8.3-8.0 | 8.9-8.3 | 350-360 | | | control | 7.5-7.6 | 8.1-8.1 | 350-360 | ⁰⁻⁴⁸ hour measurements. Table 17. Water quality parameters measured during 96-hour toxicity tests with Acurex test samples and fathead minnow (Pimephales promelas). | | | | | | | | | |--------|-----------|------------------------------|-------------|---------|---------|---------|---------| | Sample | Parameter | Nominal concentration (mg/L) | 0 hour | 24 hour | 48 hour | 72 hour | 96 hour | | | | | | | | | | | A81-05-030-662 | рH | 1000 | 9.9 | 10.0 | 9.8 | 9.6 | 9.4 | |----------------|-------------|---------|------|----------|-----|-----|-----| | | | 360 | 9.4 | 9.2 | 9.1 | 8.9 | 8.8 | | | | 130 | 8.5 | 8.6 | 8.4 | 8.3 | 8.2 | | | | control | 8.0 | 7.5 | 7.3 | 7.3 | 7.3 | | | DO (mg/l) | 1000 | 8.7 | 6.9 | 5.8 | 5.8 | 5.6 | | | | 360 | 8.6 | 7.6 | 6.8 | 6.8 | 6.2 | | | | 130 | 8.6 | 7.5 | 6.1 | 6.7 | 6.6 | | | | control | 8.5 | 7.7 | 7.4 | 5.5 | 4.6 | | | specific | 1000 | 380 | - | - | - | _ | | | conductance | 600 | 370 | - | - | - | - | | | (µmhos/cm) | 360 | 360 | - | - | - | - | | | | 220 | 350 | - | - | • | - | | | | 130 | 345 | - | - | - | _ | | | | control | 340 | - | - | _ | - | | | | 5 | -429 | | | | | Table 18. pH's of test solutions during the acute toxicity tests exposing the freshwater alga (Selenastrum capricornutum) to Acurex test samples. | • | Nominal concentration | la | он | |----------------|-----------------------|--------|----------| | Sample | (ppm) | 0 hour | 120 hour | | | | | | | | | • | | | | | | | | | | | | | A81-05-030-662 | 1000 | 10.5 | 8.9 | | | 500 | 10.2 | 8.6 | | | 250 | 9.9 | 9.7 | | | 125 | 9.4 | 8.9 | | | control | 7.2 | 8.2 | | 81-05-030-744 | 1000 | 10.4 | 8.8 | | | 500 | 10.1 | 8.6 | | | 250 | 9.5 | 9.2 | | | 125 | 9.3 | 8.5 | 7.2 8.2 control # Appendix A | Sample code | Sample name | Species
tested | Amount of sample received | Sample description | |----------------|-------------|-------------------|---------------------------|--------------------------| | | | | | | | | | | | | | A81-05-030-662 | EA-1 | D. magna | 100 g | dark gray ash with white | | | flyash | P. promelas | | flakes | | | | S. capricornutum | | | | A81-05-030-744 | EA-2 | D. magna | 20 g | dark gray ash | | | flyash | S. capricornutum | | | # D. magna and P. promelas tests SUBMITTED BY: EG&G, Bionomics Aquatic Toxicology Laboratory 790 Main Street Wareham, Massachusetts August, 1981 PRINCIPAL INVESTIGATORS: Donald C. Surprenant Aquatic Biologist Joseph V. Sousa Aquatic Biologist STUDY DIRECTOR: Gerald A. LeBlanc Aquatic Toxicologist DATA AUDITED BY: Robert E. Bentley Director, Quality Assurance Unit ## S. capricornutum tests | P | R | ۳ | D | Δ | D | E | П | P | v | _ | |---|--------------|------|---|---|---|----|---|-----|---|---| | _ | \mathbf{r} | . =. | _ | ~ | - | ₽. | | - 1 | | ۰ | Terry A. Hollister AUDITED BY: Alan G. Miller Raw data audit: 16 July 1981 Preliminary report audit: 16 July 1981 REVIEWED AND APPROVED BY: Peter J. Shuba, Ph.D. | TECHNICAL REPORT DATA (Please read Instructions on the reverse before co | ompleting) | |--|--| | 1. REPORT NO.
EPA-600/7-87-012b | 3. RECIPIENT'S ACCESSION NO. | | 4. TITLE AND SUBTITLE Environmental Assessment of a Wood-Waste-Fired | 5. REPORT DATE March 1987 6. PERFORMING ORGANIZATION CODE | | Industrial Watertube Boiler, Volume II. Data Supplement | | | 7. AUTHOR(S) | B. PERFORMING ORGANIZATION REPORT NO. | | C. Castaldini and L.R. Waterland | TR-82-98/EE | | 9.
Performing organization name and address Acurex Corporation | 10. PROGRAM ELEMENT NO. | | P.O. Box 7555 | 11. CONTRACT/GRANT NO. | | Mountain View, California 94039 | 68-02-3188 | | 12. SPONSORING AGENCY NAME AND ADDRESS | 13. TYPE OF REPORT AND PERIOD COVERED | | EPA, Office of Research and Development | Final: 3/81 - 3/84 | | Air and Energy Engineering Research Laboratory | 14. SPUNSOHING AGENCY CODE | | Research Triangle Park, NC 27711 | EPA/600/13 | 15. SUPPLEMENTARY NOTES AEERL project officer is Robert E. Hall, Mail Drop 65, 919/541-2477. 16. ABSTRACT The two-volume report gives results from field tests of a wood-waste-fired industrial watertube boiler. Two series of tests were performed: one firing dry (11%) moisture) wood waste, and the other firing green (34% moisture) wood waste. Emission measurements included: continuous monitoring of flue gas emissions; source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of samples to give total flue gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue gas concentrations of 73 trace elements: Method 5 sampling for particulate; controlled condensation system sampling for SO2 and SO3; and grab sampling of boiler mechanical collector hopper ash for inorganic and organic composition determinations. Flue gas CO emissions from the boiler were quite high, attributed to the high excess air levels at which the unit operated. NOx emissions were comparable with both fuels (175-200 ppm). SO2 and SO3 levels were less than 10 ppm, in keeping with the low sulfur content of sboth fuels. Total organic emissions decreased from 60-135 mg/dscm firing dry wood to 2-65 mg/ dscm firing green wood, in parallel with corresponding boiler CO emissions. | 7. KEY WORDS AND DOCUMENT ANALYSIS | | | | | | | |------------------------------------|--|---|-----------------------|--|--|--| | a. DESCRIPTORS | | b.IDENTIFIERS/OPEN ENDED TERMS | c. COSATI Field/Group | | | | | Pollution | Sulfur Oxides | Pollution Control | 13B 07B | | | | | Wood Wastes | Nitrogen Oxides | Stationary Sources | IIL | | | | | Water Tube Boil | ers | Particulate | 13 A | | | | | Flue Gases Trace Elements | | Environmental Asses- | 21B 06A | | | | | Assessments | Carbon Monoxide | sment | 14B | | | | | Particles | Organic Compounds Polycyclic Compounds | | 14G 07C | | | | | 19. DISTRIBUTION STATE | MENT | 19. SECURITY CLASS (This Report) Unclassified | 21. NO. OF PAGES 469 | | | | | Release to Public | | 20. SECURITY CLASS (This page) Unclassified | 22. PRICE | | | |