United States
Environmental Protection
Agency

Office of Research and Development

Industrial Environmental Research Laboratory Research Triangle Park, North Carolina 27711 EPA-600/7-77-023

March 1977

FRACTIONAL EFFICIENCY OF AN ELECTRIC ARC FURNACE BAGHOUSE

Interagency
Energy-Environment
Research and Development
Program Report

RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into seven series. These seven broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The seven series are:

- 1. Environmental Health Effects Research
- 2. Environmental Protection Technology
- 3. Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies
- 6. Scientific and Technical Assessment Reports (STAR)
- 7. Interagency Energy-Environment Research and Development

This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT RESEARCH AND DEVELOPMENT series. Reports in this series result from the effort funded under the 17-agency Federal Energy/Environment Research and Development Program. These studies relate to EPA's mission to protect the public health and welfare from adverse effects of pollutants associated with energy systems. The goal of the Program is to assure the rapid development of domestic energy supplies in an environmentally-compatible manner by providing the necessary environmental data and control technology. Investigations include analyses of the transport of energy-related pollutants and their health and ecological effects; assessments of, and development of, control technologies for energy systems; and integrated assessments of a wide range of energy-related environmental issues.

REVIEW NOTICE

This report has been reviewed by the participating Federal Agencies, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

EPA-600/7-77-023 March 1977

FRACTIONAL EFFICIENCY OF AN ELECTRIC ARC FURNACE BAGHOUSE

bу

Reed W. Cass and John E. Langley

GCA/Technology Division
Burlington Road
Bedford, Massachusetts 01730

Contract No. 68-02-1438, Task 4 Program Element No. EHE 624

EPA Task Officer: James H. Turner

Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
Research Triangle Park, NC 27711

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460

TABLE OF CONTENTS

Section	ons	Page
I	Conclusions	1
11	Recommendations	3
III	Introduction	4
IV	Marathon LeTourneau Steel Mill	6
v	Equipment and Methods	11
VI	Results	29
VII	References	. 56
Appen	<u>dix</u>	
Α	Particle Size Distribution Curves	57
В	Differential Size Distribution Curves	69
С	Andersen In-Stack Impactor Substrate Anomalous Weight Gains	81
D	Calculator Inputs/Outputs for Total Mass Measurements	89
E	Calculator Inputs/Outputs for Inertial Impactor Measurements	110
F	Fine Particle Measurements	151

LIST OF FIGURES

No.		Page
1	Photograph of Side of Fabric Filter	7
2	Photograph of End of Fabric Filter	8
3	Location of Baghouse Inlet Test Ports and Sampling Points	12
4	Location of Baghouse Outlet Test Ports and Sampling Points in North Stack	13
5	Photograph of Inlet Sampling Location	14
6	Photograph of Outlet Sampling Location	15
7	Andersen Impactor Manufacturer's Curves and Measured Stage Size Cutoff Points as a Function of Flow Rate	19
8	Correlation Between the Outlet Mass Concentrations Determined by the RAC Stack Sampler and the Inertial Impactor and Prefilter	24
9	Fine Particle Dilution System Components	27
10	Inlet Concentration as a Function of Events in the Process Cycle	33
11	Time in Process Cycle at Which Inlet Samples Were Collected	35
12	Inlet MMD as a Function of Process Cycle and Testing Day	36
13a	Differential Size Distribution Curves of Baghouse Inlet Aerosol During First Melt Phase of Process Cycle When One Electric Arc Furnace is Operating	37
13b	Differential Size Distribution Curves of Baghouse Inlet Aerosol During Back Charge Phase of Process Cycle When One Electric Arc Furnace is Operating	38

LIST OF FIGURES (continued)

No.		Page
13c	Differential Size Distribution Curves of Baghouse Inlet Aerosol During Second Melt Phase of Process Cycle When One Electric Arc Furnace is Operating	39
13d	Differential Size Distribution Curves of Baghouse Inlet Aerosol During Tap Phase of Process Cycle When One Electric Arc Furnace is Operating	40
14	Composited Differential Size Distribution Curves of Baghouse Inlet Aerosol For a Process Cycle With One and Two Furnaces Operating (190 Minute Furnace Cycle)	42
15a	Concentration Versus Process Cycle for 1 µm Particles	43
15b	Concentration Versus Process Cycle For 2 µm Particles	44
15c	Concentration Versus Process Cycle For 4 µm Particles	45
15d	Concentration Versus Process Cycle For 6 µm Particles	46
15e	Concentration Versus Process Cycle For 8 µm Particles	47
15f	Concentration Versus Process Cycle For 10 µm Particles	48
16	Average Outlet Differential Size Distribution Curves For Tests With One and Two Furnaces Operating	49
17	Fabric Filter Fractional Penetration Curves	50
18	Condensation Nuclei Counter Measured Concentrations as a Function of the Process Cycle and Compartment Cleaning	54
19	Dust Counter Measured Concentrations as a Function of the	55

LIST OF TABLES

No.		Page
1	Results of Physical Characterization Tests On Fabric Filter Bags	10
2	Velocities in Fabric Filter Inlet Duct	16
3	Impactor Calibration Parameters	18
4	Probe Losses of Impactors Sampling the Fabric Filter Influent and Effluent	21
5	Results of Particulate Sampling at Marathon LeTourneau	30
6	Flue Gas Properties	32
7	Outlet Concentration and Penetration Statistics	31
8	Results of Fluoride Analyses	51
9	Results of Fine Particle Measurements on the Baghouse Influent and Effluent at Marathon LeTourneau	53

۷ii

CONVERSION FACTORS FOR BRITISH AND METRIC UNITS

To convert from	То	Multiply by	То	Multiply by
° _F	°c	$\frac{5}{9}$ (°F-32)		
ft.	meters	0.305	centimeters	30.5
ft. ²	meters ²	0.0929	centimeters ²	929.0
ft. ³	meters ³	0.0283	centimeters ³	28,300.0
ft./min. (fpm)	centimeters/sec.	0.508	meters/sec.	5.08×10^{-3}
ft. ³ /min.	centimeters 3/sec.	471.9	meters ³ /hr.	1.70
in.	centimeters	2.54	meters	2.54×10^{-2}
in. ²	centimeters ²	6.45	meters	6.45×10^{-4}
oz.	grams	28.34	grains	438.0
oz./yd. ²	grams/meter ²	33.89	grams/centimeter ²	3.39×10^{-3}
grains	grams	0.0647		
grains/ft.2	grams/meter ²	0.698	•	
grains/ft.3	grams/meter ³	2.288		
lb. force	dynes	4.44 x 10 ⁵	Newtons	0.44
lb. mass	kilograms	0.454	grams	454.0
1b./ft. ²	grams/centimeter ²	0.488	grams/meter ²	4,880.0
in. H ₂ 0/ft./min.	cm. H ₂ 0/cm/sec.	5.00	Newtons/meter ² /cm/sec.	490.0
Btu	calories	252		

ACKNOWLEDGMENTS

The many contributions of Dr. James H. Turner, Environmental Protection Agency Project Officer, are gratefully appreciated. The outstanding cooperation of Mr. David H. Thomas and the staff of the Marathon LeTourneau Steel Mill, especially Mr. William McClelland and Mr. James Hodges made this program possible and is sincerely appreciated.

Several members of the GCA/Technology Division staff made significant contributions to the field program. They include Messrs. Stephen Brenan, Mark Daniels, Robert Engelman and Manuel Rei.

The GCA/Technology Division Administrator was Mr. Norman F. Surprenant and the project manager was Mr. Robert M. Bradway.

SECTION I

CONCLUSIONS

The test results show that a fabric filter utilizing two year old Dacron bags is an effective means of controlling particulate emissions from the electric arc furnace tested which produces a high strength, low alloy specially steel. The results of the tests with one and two furnaces operating determined the baghouse mean mass removal efficiencies to be 97.9 percent and 98.7 percent, respectively, corresponding to mean effluent concentrations of 0.0014 and 0.0019 grains/dscf. The maximum effluent concentrations for the total mass samples for the tests with one and two furnaces in operation were 0.0016 and 0.0021 gr/dscf, respectively. These effluent concentrations are well within the Environmental Protection Agency's Standard of Performance for Steel Plants: Electric Arc Furnaces Standard for Particulate Matter of 0.0052 gr/dscf.

The findings of the baghouse influent and effluent inertial sizing measurements were contrary to what would be predicted by fabric filtration theory based on interception and inertial and differential capture mechanisms. The fact that the particles with aerodynamic diameters of 6 μm exhibited the highest penetration and particles of 1 μm the least penetration through the baghouse suggests agglomeration of the smaller particles. These results support the contention that a large percentage of particles in the fabric filter effluent have not passed directly through the filter media but instead are dislodged agglomerated particles which were previously collected.

^{*}Although it is EPA's policy to use the metric system for quantitative descriptions, the British system is used in this report because not to do so would tend to confuse the reader. Readers who are more accustomed to metric units may use the table of conversions on the preceding page.

The time of maximum condensation nuclei emissions from the baghouse was determined to be immediately after compartment cleaning. This time was pinpointed by monitoring the stack aerosol with real time particle counters. The period immediately following compartment cleaning is a time of maximum emissions for a properly functioning filtration system because the filter cake is removed or damaged during cleaning and the fabric is least efficient until the cake has been repaired or replaced.

SECTION II

RECOMMENDATIONS

It is recommended that the experience of personnel operating and maintaining fabric filters be compiled emphasizing the methods of detecting and locating defective bags. This problem was pointed out during the subject program when an inspection of each compartment made it apparent that the presence of a leaking bag would be nearly impossible to detect. The thimble plates had considerable buildup of dust and a loose bag would likely go unnoticed. A leaking bag was in fact discovered several weeks after the test program was completed, but it is impossible to determine if the bag was leaking at the time of the tests. It would also be useful to find out when an operator feels it is necessary to replace a leaking bag and what levels of emissions occur shortly before the bag replacement.

More research needs to be conducted on the problems associated with instack cascade impactors and the problems and experiences of people using the impactors needs to be compiled and compared. Principle areas of further study should include: particle depositions in the impactor probe and body, weight losses of greased collection plates and anomalous weight gains of glass substrates. Also, the practicality of using impactors with stainless steel collection plates at low flow rates to reduce anomalous weight gains and losses without appreciable bounce problems should be studied. There is also a need for a combination of impactors to be used when performing a fractional efficiency/penetration type of evaluation on a control device which would allow simultaneous baghouse influent and effluent sampling thereby reducing the effect of temporal variations. Simultaneous sampling is especially desirable when sampling a cyclic process such as an electric arc furnace.

SECTION III

INTRODUCTION

BACKGROUND

The work reported in this publication represents one phase of a program whose purpose is to characterize the performance of several industrial size fabric filter systems. The fabric filter tested at the Marathon LeTourneau Company in Longview, Texas cleaned the emissions of either one or two 30-ton electric arc furnaces which produce a high strength, low-alloy specialty steel. Each furnace is fitted with a side draft hood and a canopy hood which is only used during charging and pouring. The hoods are ducted through a spark arrester to a 10-compartment American Air Filter baghouse which utilizes Dacron bags.

APPROACH

The performance of the fabric filter was characterized by determination of the particulate removal efficiency as a function of total mass and particle size. In addition, the influent and effluent total fluoride concentrations were measured simultaneously with the particulate concentrations during three tests to qualitate the fluoride levels to which the filter bags are exposed during normal service. The apparent fractional efficiency, defined as the measured change in the particulate concentrations as a function of particle size that results from the filtration process, was determined by upstream and downstream sampling using inertial cascade impactors. The baghouse influent and effluent streams were also monitored with a condensation nuclei counter and an

optical dust counter to determine variations in submicron particle concentrations as a function of the process and the cleaning cycle.

A pretest survey was performed primarily to determine the following: the sample time necessary for the outlet impactors to collect weighable samples. the presence and magnitude of impactor substrate anomalous weight gains, the mass removal efficiency of the filter papers used in the fluoride tests, the best diluter configurations for the baghouse inlet and outlet fine particle monitors, the variations in inlet mass concentration as a function of the process cycle, and the variability of baghouse operation and process cycle parameters. The tests in the major program were performed when there were either one or both furnaces in operation. Originally, it was planned to sample for 4 days with two furnaces in operation and 6 days with one furnace in operation. This plan was modified because of a change in the production schedule at the steel mill. The resulting testing program had only 2 test days with two furnaces but 8 test days with one furnace in operation. The greatest effect of having two furnaces in operation instead of one appears to have been than the inlet loading to the baghouse and hence the cloth loading rate was doubled. The change in the outlet concentration through the baghouse resulting from the increased inlet loading is an indication of whether the fabric filter's particle removal efficiency is dependent upon inlet loading.

SECTION IV

MARATHON LETOURNEAU STEEL MILL

The steel mill at Marathon LeTourneau produces high strength, low alloy, specialty steel in two electric arc furnaces of 30 tons each, nominal capacity. The furnaces are 10,000 kVA swing roof top charged units with individual combination side-draft and canopy hooding. The side-draft hoods operate while the furnace roof is in place and the canopy hoods operate when the roof is removed for charging and tapping. The furnaces use the basic steel making process with cold number one oil-free scrap. The furnaces must be back charged once to reach holding capacity, and the double slag method of refining is used. Additions of fluorspar are commonly made for slag conditioning and oxygen lancing is used to lower the carbon content of the melt.

The furnace hoods are ducted to a 10-compartment American Air Filter baghouse installed in 1973. Photographs of the baghouse are presented in Figures 1 and 2. The baghouse has a cloth area of 52,778 ft² which results in an air-to-cloth ratio of 3.22:1 at the design flow of 170,000 acfm at 150°F. The net air-to-cloth ratio increases to 3.58:1 with one compartment off-line for cleaning. The cleaning cycle is actuated by timer such that there is no delay time between cycles. The normal cleaning cycle schedule for each compartment is as follows:

Time, min.	Operation
0:00	Gas outlet damper closes
0:30	Bags begin shaking
1:00	Bags end shaking
1:40	Gas outlet damper opens
12:40	Next gas outlet damper closes

Figure 1. Photograph of side of fabric filter

Figure 2. Photograph of end of fabric filter

Each baghouse compartment contains 288 DacronTM filter tubes which are 5 inches in diameter by 14 feet long. The filter tubes were fabricated by the Carborundum Company. The manufacturer's specifications for the filter material are as follows:

• Weight = 6.1 oz/yd^2 • Thread count = 79×89 • Weave = $3 \times 1 \text{ twill}$ • Permeability at 0.5 in. $H_2O = 15 \text{ to } 25 \text{ cfm/ft}^2$

The results of the physical characterization tests performed on a new and used bag are presented in Table 1. The used bag tested was randomly selected from the bags removed from a compartment after about two years service. All the bags were replaced in the compartment because of difficulty locating a leaking bag. The physical characterization tests show that the air permeability of the used bag (~2 years service) is much less, 40 percent, than that for a new bag. The reduced air permeability or blinding of the fabric is most likely due to dust particles lodged in the fabric interstices. The tests also show that the breaking strenght and elongation has been reduced 15 to 20 percent indicating wear, however, bags which were not replaced are still in service after 3 years without breakage problems. It was also found that the used fabrics flexural rigidity was 43 percent higher than that of the new medium and is presumably due to particles in the intersticies of the fabric.

Table 1. RESULTS OF PHYSICAL CHARACTERIZATION TESTS ON FABRIC FILTER BAGS

	Test description	New bag	Used bag
ASTM D 1910,	Sample weight, b oz/sq yd	6.23, 6.59	7.13, 7.37
ASTM D 1777,	Sample thickness, c mils		
	Range:	13.4 - 14.0	12.4 - 13.8
	Average:	13.7	13.2
ASTM D 737,	Air permeability, cfm/sq ft at ½" H20 AP		
	Range:	19.7 - 27.2	9.2 - 10.2
	Average:	24.2	9.8
ASTM D 1682,	Breaking strength and elongation		
Breakin	ng strength, lb		
Warp:	Range -	225 - 234	189.1 - 193.5
	Average:	229	191.6
Fill:	Range:	149.1 - 172.4	117.8 - 148.1
	Average:	160.6	127.3
Elongat	ion at break, percent		}
Warp:	Range:	31.5 - 34.1	26.6 - 28.5
	Average:	32. 7	27.7
F111:	Range:	37.9 - 42.7	31.7 - 36.4
	Average:	40.1	34 0
Flexural rig	idity - beam method, d (10 ⁻⁴) inch 1b		
Warp:		3.32, 3.51	3.14, 3 75
F£11.		0.77, 0.85	1.58, 1.71
Average	:	1.66	2 38
Adjusted for	difference in mass	1	
Warp:		}	2.78, 3.31
Fill:			1.40, 1 51
Average	•		2.10

Bag in service for approximately 2 years, vacuumed prior to testing.

Single measurements, sample area 6" x 6".

cFive tests each.

d Average of four tests, each reading (four up, four down)

SECTION V

EQUIPMENT AND METHODS

The baghouse filtering the effluent of the electric arc furnaces at the Marathon LeTourneau Company was evaluated for the total particulate penetration and the particulate penetration as a function of size. Total mass samples and size-classified samples for gravimetric analysis were collected before and after the fabric filter. The total mass samples from the first 3 test days were also analyzed for total fluorides. The influent and effluent of the baghouse were alternatively monitored for fine particulate with a condensation nuclei counter and an optical dust counter. Since most of the sampling methods were straightforward, they do not require extensive descriptions. Only the novel or unusual techniques will be described in detail.

MASS MEASUREMENTS

The baghouse influent and effluent mass concentrations were determined by sampling isokinetically utilizing a Research Appliance Company (RAC) Staksamplr. The location of the baghouse inlet and outlet sampling ports and the points sampled are shown in Figures 3 and 4. Photographs of the inlet and outlet sampling locations are presented in Figures 5 and 6. The baghouse effluent is exhausted through two identical stacks and the north stack was arbitrarily chosen for testing purposes. Table 2 is a tabulation of the velocities measured in the inlet duct during the pretest survey. These velocities are fairly uniformly distributed in the duct. During the actual test series it was not possible to sample the bottom port (F) because of the height of the inlet platform and so to maintain symmetry, the top port (A) was also omitted. The inlet and

Figure 3. Location of baghouse inlet test ports and sampling points

Figure 4. Location of baghouse outlet test ports and sampling points in north stack

Figure 5. Photograph of inlet sampling location

Figure 6. Photograph of outlet sampling location

outlet ducts were sampled simultaneous for 4 hours during test No. 1 and for 6 hours for tests Nos. 2 through 10. The 6-hour sampling period was selected because it encompassed approximately two complete arc furnace cycles. The filter media used for the total mass determinations was Whatman No. 1 filter, as required for the fluoride analysis. The penetration of particulate through the Whatman No. 1 cellulose filter was measured during the pretest survey to be less than 1 percent at face velocities comparable to those at the RAC filter and, therefore, suitable for total mass measurements.

Table 2. VELOCITIES IN FABRIC FILTER INLET DUCT

	Velocity, fpm							
Port	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6		
A	3281	3380	3800	4438	4287	4363		
В	3341	4724	4928	4724	4654	4793		
С	4287	4511	4438	4287	4511	4928		
D	4363	4210	3969	3886	4131	4654		
E	4131	4210	3969	4051	3969	4287		
F	3713	4210	4051	4051	3713	4210		

Note: Average velocity = 4207.

TOTAL FLUORIDES MEASUREMENTS

The baghouse influent and effluent samples collected in the total mass samplers during the first three tests were analyzed for total fluorides. Particulate samples from the probe wash, glass wash and filter and an aqueous sample from the impingers that capture gaseous fluorides were composited for analysis. The samples were analyzed in accordance with EPA Method 13A² which utilizes the SPADNS Zirconium Lake colorimetric method.

IMPACTOR MEASUREMENTS

The penetration of particles through the bag filter as a function of size and the inlet and outlet particle size distributions over the range of approximately 0.5 μm to 20 μm were determined using inertial impactors. The two types of impactors used were the Andersen Mark III Stack Sampler and the University of Washington (U of W) Mark III Source Test Cascade Impactor.

The lower four stages of each impactor used at Marathon LeTourneau were calibrated in the lab to determine the inertial impaction parameter at 50 percent efficiency in accordance with the procedure described by Calvert et al. 3 The calibration procedure consists of measuring the concentration of monodispersed polystyrene latex spheres with a Bausch and Lomb Dust Counter to determine the flow rate corresponding to 50 percent penetration of the particles. The flow rate for 50 percent penetration of the particles of known size is then used to calculate the inertial impaction parameter at 50 percent efficiency which is used to calculate the 50 percent particle size cutoff of a stage during sampling. inertial impaction parameter for each impactor stage plus the pertinent impactor and particle parameters are presented in Table 3. Figure 7 presents the measured flow rates through the Andersen impactors for 50 percent penetration as a function of known size spheres. Figure 7 also has the manufacturer's curves for the Andersen impactor 50 percent cutpoints. The figure shows that equivalent impactor stages have similar size cutoffs, but these size cutoffs are smaller than indicated by the manufacturer for comparable flow rates.

The baghouse inlet stream was sampled several times during each test with the U of W impactor which collected the sample from the midpoint of port C as shown in Figure 3. The pipe supporting the impactor had a long radius bend allowing the impactor to be pointed directly into the stream, thereby eliminating the need for sampling through a gooseneck nozzle. The straight nozzle approach was employed to minimize probe losses. The influent

Table 3. IMPACTOR CALIBRATION PARAMETERS

		Impactor parameters			Particle parameters			
Impactor type	Impactor stage number	Number holes impactor stage	Stage jet diameter, cm	Impactor flow rate, cc/sec	Particle diameter, um	Particle density, g/cc	Inertial impaction parameter	
Andersen 2000 INC	7A	156	0.0259	186 44	0.481	1.05	0 1739	
Andersen 2000 INC	6A	264	0.0259	94.40	1 10	1.05	0.2325	
Andersen 2000 INC	5A	2 64	0.0376	193.52	1 10	1.05	0.1558	
Andersen 2000 INC	4A	264	0.0579	306 80	2.02	1.05	0.2143	
Andersen 2000 INC	7B	156	0.0254	174.64	0.481	1.05	0. 1727	
Andersen 2000 INC	6B	264	0.0259	97.70	1.10	1.05	0.2406	
Andersen 2000 INC	5B	264	0.0368	200.60	1.10	1.05	0.1722	
Andersen 2000 INC	4B	264	0.0556	311.52	2.02	1.05	0.2458	
University of Washington	7 A	40	0.0356	101.48	0.600	1.05	0.2104	
University of Washington	6A	110	0.0361	103.84	1.10	1.05	0.2267	
University of Washington	5A	110	0.0528	125.08	2.02	1.05	0.2765	
University of Washington	4 A	90	0.0792	264 32	2.02	1.05	0.2116	
University of Washington	7B	40	0.0333	96.76	0.600	1.05	0.2451	
University of Washington	6в	110	0.0325	92.04	1.10	1.05	0.2754	
University of Washington	5B	110	0.0498	106.20	2.02	1.05	0.2798	
University of Washington	4B	90	0.0772	254.88	2.02	1.05	0.2204	

impactor probe losses, which at times were considerable (20.00 to 51.04 percent) are presented in Table 4. These losses are believed to be larger particles which should have been collected on the upper impactor stages. Microscopic examination of resuspended dust removed from the baghouse hopper showed a population of large particles which could have accounted for the losses. The shape of the influent cumulative size distribution curves in Appendix A indicates that the larger particles were selectively removed in the probe. The affect of the probe losses is that the cumulative and differential size distribution curves in Appendix B are probably lower than actual for the larger particles. However, the actual size distribution of the particulate caught in the probe was not measured and this should be remembered when interpreting the impactor results.

During the first 4 testing days, the stainless steel inserts of the inlet impactor were coated with polyethylene glycol and dried for 2 to 3 hours at 300°F. It is not fully understood why some of the impactor inserts lost weight even though there were particles visible on the inserts. The weight loss problem was not anticipated because of the low temperature at the inlet of 130°F, the low flow rate of 0.3 acfm through the impactor and the short sampling time of 15 to 30 minutes. In tests 5 through 10, the inserts were not coated and weight loss was not a problem. While realizing the disadvantage of using uncoated inserts and the resulting increase in problems with particle bounce, it was believed that bounce would not be a serious problem at the low flow rate through the impactor. Inspection of the impactors after each sample was collected showed some evidence of bounce but the amount of particulate that was deposited on the bottom of the preceding jet stage was very small compared to the amount on the corresponding impaction surface. Therefore, sampling with uncoated inserts was considered to be better than with coated inserts when the problems associated with each were weighed.

The duration of inlet impactor sampling to collect a weighable sample on each stage without overloading was quite variable due to differences in the mass concentration as a function of the process cycle. After the

Table 4. PROBE LOSSES OF IMPACTORS SAMPLING THE FABRIC FILTER INFLUENT AND EFFLUENT

	Baghouse influent				
Test number	Impactor run A, percent	Impactor run B, percent	Impactor run C, percent	Impactor run D, percent	Impactor, percent
1	24.13				18.67
2	35.04	32.92			11.15
3	$\mathtt{ND}^{\mathbf{a}}$	ND			17.65
4	ND	ND			10.43
5	ND	ND	34.85		28.78
6	31.54	27.45		:	25.00
7	24.75	20.00	28.68		17.12
8	49.06	44.74	25.35	51.04	23.78
9	25.28	24.91	22.19	20.63	12.73
10	48.41	50.69	41.67	36.80	18.62
inr ^b					9.88
2NR					14.95
3NR					12.56

and means no data due to impactor substrate weight loss problems.

 $^{^{\}rm b}{\rm NR}$ refers to an impactor run overnight.

first few tests, it was noticed that an increase of 0.2 to 0.4 in. Hg of meter static pressure caused by loading the impactor back up filter coincided with sufficient sample collection and was used in the remaining tests to determine the sampling duration.

The influent to the baghouse was sampled isokinetically by measuring the velocity, pressure and temperature at the impactor sampling point prior to sampling. The influent velocity, pressure and temperature were used with the other necessary parameters to calculate the pressure drop across the calibrated orifice necessary for isokinetic sampling. During sampling the flow through the impactor was kept constant.

The baghouse effluent was sampled for 9 hours during each test day with two instack Andersen cascade impactors in the locations shown in Figure 4. The outlet impactors sampled through straight nozzles so they could be pointed into the direction of flow to minimize probe losses. The resulting probe losses were from 9.88 percent to 28.78 percent and are included in Table 4. These probe losses were much less than the influent impactor probe losses and are considered to have only a minimal effect on the cumulative and differential size distribution curves. Reeve Angel 934 AH type glass filter substrates were used in the impactors because they have been found to be less reactive with stack gases than the Gelman Type A glass fiber filters. 4 Two impactors were run simultaneously during each testing day with one of the impactors sampling filtered flue gas to indicate any anomalous weight gains. The figures in Appendix C show the suspected anomalous weight gains for each stage of the impactor sampling flue gas and the corresponding stage of the impactor sampling filtered flue gas during the 10 test days. Examination of the figures in Appendix C indicates considerable weight gain in a number of cases and in a few cases the weight gain of the impactor stage sampling filtered flue gas was greater than that of the impactor sampling unfiltered flue gas. In only one case was there no apparent anomalous weight gain. It is most difficult to quantify the apparent anomalous weight gain because it did not follow a pattern with respect to amount of weight gained by any particular stage.

Since a systematic error was not apparent and since the outlet differential distributions in Appendix B do not appear to be dependent upon the apparent anomalous weight gain, no corrections were made to the weight gained by the substrates of the impactor sampling unfiltered effluent.

In addition to the impactors run during each normal test day, there were three sets of outlet impactors run from 13 to 15 hours overnight. These impactors were run as an experiment to see if cascade impactors could be run unattended. Running the impactors unattended seemed to be a success with the flow in the morning being the same as that set the preceding evening. The overnight impactors were also run in pairs with one sampling prefiltered flue gas. These impactors, however, utilized Gelman Type A glass filter substrates. The apparent anomalous weight gain for the night runs, also shown in Appendix C, appears to be higher than during most of the day runs in which the Reeve Angel substrates were used.

A comparison was made among the outlet mass concentrations measured by the RAC Staksamplr TM, which is considered to be the true concentration in the duct, the mass concentration measured by the impactor and the mass concentration measured by the prefilter on the blank impactor. This comparison is presented graphically in Figure 8 and includes the line that would result from perfect correlation and the actual line of best fit. It can be seen that the impactor measurements consistently indicate a lower concentration than the RAC train. This may be caused by the fact that the impactors sampled at single points in the duct while the RAC train traversed many points, or it may indicate an inherent inconsistency between the measurement methods. The lower mass concentration measured by the impactors would appear to be contraindicative of serious anomalous weight gain problems as observed in another similar comparison. 5

Figure 8. Correlation between the outlet mass concentrations determined by the RAC stack sampler and the inertial impactor and prefilter

FINE PARTICULATE MEASUREMENTS

The penetration of fine particles through the fabric filter was determined by sampling the baghouse influent and effluent streams with a Dust Counter (DC) and a Condensation Nuclei Counter (CNC) with a Diffusion Denuder (DD). The particle concentrations were measured by a Bausch and Lomb 40-1 DC and by a Rich Model 100 CNC. Particle sizing was accomplished directly with the DC and the CNC utilizing the DD. The DC has seven size ranges with the following smallest detectable particle sizes: 0.3 μ m, 0.5 μ m, 1.0 μ m, 2.0 μ m, 3.0 μ m, 5.0 μ m and 10 μ m. The CNC measures particles of 0.0025 μ m and larger diameter in the concentration range of 1,000 to 300,000 particles/cc. The theoretical upper size limit measurable by the CNC has been estimated to be 0.3 to 0.5 μ m.

Sizing with the CNC and DD is accomplished by drawing the sample through the DD where particles less than a particular size, dependent upon the flow rates, are removed. The CNC then measures the concentration of the particles remaining. The five DD flow rates utilized at Marathon LeToruneau resulted in the removal of all particles over the range of less than 0.014 μm at the highest flow rate and less than 0.078 μm at the lowest flow rate.

The temperature and moisture content of the influent and effluent of the baghouse were in a range to allow sampling without dilution. Dilution was not necessary at the outlet and the sample was extracted through a stainless steel probe, and tygon tubing to a "Y" where part of the sample went to the CNC and part to the DC. When the DD was used, it was inserted between the "Y" and the CNC.

Dilution of the sample was required at the inlet because of the high static pressure in the duct and the high concentration of fine particles. A two-stage dilution was effected utilizing two basic diluter designs. A sample of the flue gas was extracted through a stainless steel probe and through the air ejector diluter shown in Figure 9(a). A portion of the diluted sample from the air ejectro diluter was then drawn through a capillary tube diluter, Figure 9(b), to a "Y" where the sample flow split with part going to the CNC and part to the DC. When the DD was used, it was inserted between the "Y" and the CNC as on the outlet.

The air ejector diluter is limited to a maximum dilution of approximately 90 to 1. Its main value is its ability to extract a sample from a low pressure location and to discharge the diluted sample at about atmospheric pressure. The CNC and DC will not operate properly when the pressure of the sample entering the CNC or DC is too far below atmospheric, 2 in. 2 In the air ejector diluter, the sample is drawn through an orifice by an air ejector in which the sample stream and a filtered compressed air stream are mixed before being discharged through an orifice which meters the combined flow.

The capillary tube diluter is capable of providing a 12 to 1 dilution. A capillary tube meters the sample flow which is combined with regulated filtered dilution air in a tee. The combined sample and dilution flow is equal to the flows through the CNC and DC. The capillary tube diluter was also used to vary the sample flow rates through the DD to provide sizing data. In this case, the combined sample and dilution flow is equal to the flow through the CNC.

The DD is made of three closely spaced (0.097 cm) concentric cylinders on which diffused particles are collected. The ${\rm d}_{50}$, which is the particle diameter removed in the DD with 50 percent efficiency, is dependent upon the flow rate through the DD. The DD is most applicable for particle sizes ranging from 0.01 to 1 μm diameter.

Particle sizing was accomplished by first sampling with the CNC alone which corresponded to particles $\geq 0.0025~\mu m$. Next, flows varying from approximately 2 cc/sec to 50 cc/sec were passed through the DD. The

(A) AIR EJECTOR DILUTER

(a) CAPILLARY TUBE DILUTER

Figure 9. Fine particle dilution system components

approximate flows and resulting DD size cutoffs were 2 cc/sec and 0.078 µm, 5 cc/sec and 0.048 µm, 10 cc/sec and 0.034 µm, 25 cc/sec and 0.021 µm, and 50 cc/sec and 0.014 µm.

SECTION VI

RESULTS

The primary purpose of the sampling program at Marathon LeTourneau was to define the total and fractional particulate penetration through a fabric filter cleaning the emissions from an electric arc furnace. The secondary reasons for testing were to determine the effect of approximately doubling the particulate loading to the baghouse on the total and fractional penetration and to measure the influent and effluent total fluoride concentrations to estimate the levels to which the Dacron filter bags are exposed during normal service. In addition, the baghouse inlet and outlet submicrometer particle concentrations were measured as a function of the process cycle and the baghouse cleaning cycle to determine if periods of high penetration are a function of the process cycle, the cleaning cycle or both. Finally, the inlet particle size distributions were measured as a function of the process cycle.

TOTAL MASS MEASUREMENTS

The baghouse inlet and outlet particulate mass concentrations for the 3 pretest survey testing days and for the 10 regular testing days are presented in Table 5. These concentrations were measured with total mass samplers, impactors (without prefilters) and an impactor prefilter.

The data summary sheets with measured parameters and the calculated results for the total mass and impactor samples are presented in Appendixes D and E, respectively. The properties of the baghouse influent and effluent flue

Table 5. RESULTS OF PARTICULATE SAMPLING AT MARATHON LETOURNEAU

	No. furnaces in operation	Pressure drop across compartment No. 6, in. H ₂ 0	Face velocity, ft/min	Baghouse inlet; concentration, grains/dscf					Baghouse outlet, north stack, concentration, grains/dscf				
Test day				Total mass sampler	Impactor run A	Impactor run B	Impactor run C	Impactor run D	Total mass sampler	Impactor prefilter	Impactor A	Fabric filter mass penetration, a percent	
1 ^b	1	-	3.32	0.0627 ^C	0.0579 ^d	-	-	-	-	0.0018 ^d	0.0022 ^d	-	
2 ^b	1	-	3 48	0.0804	0.0414 ^d	0.0903 ^d	-		0.0019	0.00036 ^d	0.00025 ^d	2.3632	
3 ^b	-	-	-	-	-	-	-	-	-	0.0007 ^d	-	_	
1	2	_	3.39	0 1506	1.9185 ^e	0.0594 ^e	_	-	0.0017	0.0011 ^d	0.0010 ^d	1.1288	
2	2	_	3.58	0.1438	0 0765 ^e	0.0911 ^e	-	 -	0.0021	0.0011 ^d	0.0011 ^d	1.4604	
3	1	3.50	3.37	0.0603	-	-	-	_	0.0012	0.0010 ^d	0.0009 ^d	1.9900	
4	1	_	3.34	0.0729	-	-	-	-	0.0016	0.0010 ^d	0.0009 ^d	2.1948	
5	1	3.40	3.35	0.0650	-	-	0.0500 ^e	-	0.0015	0.0007 ^d	0.0008 ^d	2.3077	
6	1	3.40	3.41	0.0672	0.0369 ^e	0.0287 ^e	-	-	0.0013	0.0009 ^d	0.0006 ^d	1.9345	
7	1	3.24	3.36	0.0675	0.0664 ^e	0.1022 ^e	0.0947 ^e	-	0.0011	0.0008 ^d	0.0006ª	1.6296	
8	1	3.12	3.56	0 0736	0.0594 ^e	0.0538 ^e	0.0485 ^e	0.0368 ^e	0.0016	0.0013 ^d	0.0009 ^d	2.1739	
9	1	3 35	3.43	0.0615	0 0682 ^e	0 0533 ^e	0.1286 ^e	0.1443 ^e	0.0014	0.0011 ^d	0.0009 ^d	2.2764	
10	1	3.34	3.42	0.0617 ^f	0.0571 ^e	0 0497 ^e	0.0856 ^e	0.0868 ^e	0.0012	0.0009 ^d	0.0008 ^d	1.9449	
6 ⁸	-	-	-	_	_	-	-	-	-	0.0007 ^d	0.0007 ^d	-	
8 ^g	-	-	-	-	-	-	-	-	-	0.0008 ^d	0.0005 ^d	-	
98	-	-	-	_	-	_	-	-	-	0.0009 ^d	0.0008 ^d	-	

aCalculated from the inlet and outlet total mass concentrations.

Pretest survey.

^CEvidence of particulate leakage around the filter indicating that the reported mass concentration may be lower than the actual mass concentration.

d Andersen impactor.

eUniversity of Washington impactor.

 $f_{\mbox{Sample}}$ was inadvertently extracted nonisokinetic ally

⁸Impactors run overnight.

gas are presented in Table 6. The penetrations which are included in in Table 5 were calculated from the inlet and outlet total mass concentrations.

Examination of Table 5 shows that the inlet concentrations for the test days during which there were two furnaces in operation were approximately twice that of the runs in which there was only one furnace in operation. The table also shows wide variations in inlet concentration measured by the inlet impactors as a result of these samples being collected at various points in the process cycle. The variation in concentration over a process cycle was measured during the pretest survey by taking a series of total mass samples in succession over the cycle. It was found that the inlet concentration varied by a factor of 2.5 with the alloy addition phase being the period of maximum concentration and the tap being the period of minimum concentration as shown in Figure 10.

The mass penetration and the total mass sample outlet concentration statistics for the entire series of tests, for the subseries of tests with two furnaces in operation and for the subseries of tests with one furnace in operation are presented in Table 7. These statistics show that the penetration is lower even though the outlet concentration is higher (40 percent) with the two furnaces in operation indicating the baghouse particulate removal efficiency varies with inlet grain loading. Thus the baghouse dampens changes in the outlet concentration or emission rate caused by variations in the inlet concentration.

Table 7. OUTLET CONCENTRATION AND PENETRATION STATISTICS

	Penet	ration, %	Outlet concentration, grains, dscf			
Tests	Mean	Standard deviation	Mean	Standard deviation		
All With 2 furnaces on With 1 furnace on	1.904 1.295 2.056	0.3862 0.2345 0.2263	0.0015 0.0019 0.0014	0.0003 0.0003 0.0002		

Table 6. FLUE GAS PROPERTIES

			Influent		Effluent (North Stack)				
Test No.	No. Furnaces in operation	Volumetric flow rate, dscfm	Avg. gas temp, F	Moisture, percent	Volumetric flow rate, dscfm	Avg. gas temp, F	Moisture. percent	Particulate emission rate, lb./hr	
1	2	164,406	107	1.31	67,046	120	2.22	0.994	
2	2	166,623	131	1.42	66,208	130	1.47	1.220	
3	1	154,056	140	1.51	66,558	132	1.55	0.664	
4	1	153,606	128	2.51	65,942	126	1.53	0.930	
5	1 .	152,550	132	2.65	67,684	131	1.99	0.848	
6	1	154,066	134	3.19	66,523	129	1.85	0.737	
7	1	154,311	130	2.28	66,692	125	2.15	0.642	
8	1	166,142	127	1.89	72,089	128	2.43	0.995	
9	1	151,374	155	2.32	67,658	133	2.46	0.830	
10	1	157,354	134	1.56	66,659	130	2.10	0.676	

Figure 10. Inlet concentration as a function of events in the process cycle

IMPACTOR MEASUREMENTS

The task of determining the average or representative inlet particulate cumulative and differential size distributions is difficult because it cannot be measured directly. A direct measurement of size distribution is impossible because a process cycle lasts approximately 3 hours and the in-stack impactors which measure the size distributions were limited to about 15 minutes sampling duration due to the high inlet mass concentration causing overloading of impactor stages. The problem was attacked by making individual measurements at various points in the process with samples taken during the major events of the process cycle. Figure 11 shows the time in the process cycle over which each of the inlet impactor samples was collected during each test day and also indicates the frequency of sample collection during the entire testing program. It shows that the inlet was sampled for nearly every minute of the process cycle over the testing sequence. Since it was impossible to collect an ideal inlet sample, it was necessary to composite several typical or average differential size distributions to enable calculation of the fractional penetration. The construction of a representative inlet size distribution would be further supported if day-to-day variations were not observed. Although this is not the case, the compositing of several runs appears to be the best approach. Figure 12 presents the measured mass median diameter (MMD's) as a function of the process cycle and testing day. From Figure 12 it is clear that variations in MMD's did occur on a daily basis and were most pronounced immediately before the slag-off part of the cycle. Figure 13 (a through d) shows the differential size distribution curves for different test days for the sample collected during the first melt. back charge, second melt, and tap. These curves show that there was considerable variation in the differential size distribution on a daily basis. The next step in constructing a composite inlet curve was to average the curves for each part of the process. These curves are also presented in Figure 13 (a through d). These average curves were then weighted with respect to the time portion represented by their individual

Figure 11. Time in process cycle at which inlet samples were collected

Figure 12. Inlet MMD as a function of process cycle and testing day

Figure 13a. Differential size distribution curves of baghouse inlet aerosol during first melt phase of process cycle when one electric arc furnace is operating

Figure 13b. Differential size distribution curves of baghouse inlet aerosol during back charge phase of process cycle when one electric arc furnace is operating

Figure 13c. Differential size distribution curves of baghouse inlet aerosol during second melt phase of process cycle when one electric arc furnace is operating

Figure 13d. Differential size distribution curves of baghouse inlet aerosol during tap phase of process cycle when one electric arc furnace is operating

part of the cycle to the complete cycle. The composite inlet curves for one and two furnaces in operation are presented in Figure 14. The composite inlet differential distribution curve for two furnaces in operation was calculated by multiplying the composite inlet curve for one furnace operation by the ratio of the average inlet concentration measured by the inlet total mass sampler during two furnace operation to that average concentration measured during one furnace operation. The average differential distribution curves in Figure 13 (a through d) were also used to determine the differential concentrations for 1, 2, 4, 6, 8, and 10 µm particles as a function of the process cycle. These curves are presented in Figure 15 (a through f). These curves show the first melt to have the highest concentration for all particle sizes and the back charge and the tap phases to have the lowest concentrations for most sizes.

The composited inlet differential size distribution curves were then used with the averaged outlet differential distribution curves for one and two furnace operation (Figure 16) to calculate their respective fractional penetration curves presented in Figure 17. A comparison of the inlet and outlet differential size distributions (Figures 14 and 16) shows the curves to have somewhat similar shapes with a slightly larger outlet particle size (4 µm outlet and 2 µm inlet) having the maximum concentration. The similarity in curve shape indicates that some of the influent aerosol is passing through the baghouse without capture and would suggest bag leakage during sampling. The shapes of the fractional penetration curves are unusual in that they show the 1.0 µm particles to have the least penetration while the 6.0 µm particles have the greatest penetration. These shapes would not be predicted by fabric filtration theory. The lower penetration of smaller particles as well as the higher penetration of the larger ones indicates agglomeration of the smaller particles. The agglomerates in the effluent are believed to result mainly from fabric rear face dislodgment of collected particles.

Figure 14. Composited differential size distribution curves of baghouse inlet aerosol for a process cycle with one and two furnaces operating (190-minute furnace cycle)

Figure 15a. Concentration versus process cycle for 1 μm particles

Figure 15b. Concentration versus process cycle for 2 μm particles

Figure 15c. Concentration versus process cycle for 4 μm particles

Figure 15d. Concentration versus process cycle for 6 μm particles

Figure 15e. Concentration versus process cycle for 8 μm particles

Figure 15f. Concentration versus process cycle for 10 μm particles

Figure 16. Average outlet differential size distribution curves for tests with one and two furnaces operating

Figure 17. Fabric filter fractional penetration curves

FLUORIDE MEASUREMENTS

The inlet and outlet total mass samples collected during the first three tests were analyzed for fluorides. The results of the fluoride analyses are presented in Table 8. The total fluoride levels to which the bags were subjected are indicated by the inlet concentrations. The calculated penetrations (19 to 37 percent) were much higher than the total mass penetrations and are probably attributable to that portion of the fluorides in the gaseous form which passes through the baghouse without significant collection. Despite the fluoride levels measured, which are believed to be representative of normal operation, the Dacron the Dacron bags are still in service after 3 years without breakage problems. However, the physical characterization tests summarized in Table 1 show that the breaking strength and elongation of a 2-year old bag compared to a new bag had been reduced 15 to 20 percent. It is impossible to ascertain whether the reduction in breaking strength and elongation was the result of fabric deterioration due to fluorides or wear due to bag shaking during cleaning.

Number of Inlet fluoride Outlet fluoride furnaces in concentration, concentration, Penetration, Test No. operation gr/dscf gr/dscf percent 1 2 0.001062 0.0002013 18.95 2 2 0.0005651 0.0002087 36.93 3 1 0.0001768 0.0005218 33.88

Table 8. RESULTS OF FLUORIDE ANALYSES

CONDENSATION NUCLEI COUNTER AND DUST COUNTER MEASUREMENTS

A condensation nuclei counter (CNC) and an optical dust counter (DC) were used to monitor the fine particulate concentration in the baghouse influent and effluent to determine the total and fractional penetration of the fine particulate. The fine particle measurements have been tabulated in Appendix F. The measurements on each test day have been averaged and

are listed in Table 9. The average daily mean inlet and outlet CNC measurements, which include particles over the range of 0.0025 µm to 0.5 µm, indicate penetrations of 0.14 percent and 0.17 percent by number for one and two furnace operation, respectively. When the DC inlet (except Test 9, which was suspiciously high) and outlet test day means were averaged, the penetrations for the DC which counts particles > 0.3 µm were 4.9 percent and 1.0 percent by number for one and two furnace operations, respectively. Sizing with the CNC and diffusion denuder (DD) was inconclusive due to the variability of the fine particle concentration of the influent and effluent. Most of the inlet sizing with the DC was done during Test 9 which was inordinately high and therefore not presented. The inlet and outlet CNC measurements for tests 9 and 10 and the DC measurements for tests 5 and 10 are presented in Figures 18 and 19, respectively. The CNC inlet curve in Figure 18 shows a fluctuation of the inlet concentration which does not seem to correlate with events in the process or cleaning cycles. inlet measurements with the DD indicate that the majority of particles are > 0.015 µm. The CNC outlet curve shows a strong dependence of concentration on compartment cleaning with every compartment cleaning corresponding to a peak outlet concentration. The CNC outlet sizing measurements indicate particles in the range of \geq 0.0025 and \leq 0.015 μm , few particles in the range of > 0.015 and < 0.078 μm with the remaining particles > 0.078 μm . The DC inlet measurements in Figure 19 show that the particles > 0.3 μm seem to follow the process with their maximum concentration occurring at "power on" and the beginning of the "second melt." The outlet measurements show little fluctuation for particles \geq 0.3 μ m; however, the \geq 0.5 and > 1.0 μm outlet particles show some relationship between concentration and compartment cleaning, but the relationship is not always evident.

Table 9. RESULTS OF FINE PARTICLE MEASUREMENTS ON THE BAGHOUSE INFLUENT AND EFFLUENT AT MARATHON LETOURNEAU

			Influe	nt	Effluent				
		Pa	part./m ³	entration k 10 ⁻⁶	Particle concentration, part./m ³ x 10 ⁻⁶				
Run No.	No. furnaces in operation	CNC ^a mean	CNC std. dev.	DC ^b mean	DC std. dev.	CNC mean	CNC std. dev.	DC mean	DC std. dev.
1	2	1.9 x 10 ⁷	1.8 x 10 ⁷	1,900	550				
2	2					31,000	42,000	20	19
3	1		No da	ta 🚚					
4	1			1		20,000	17,000	20	18
5	1	5.3×10^6	3.8×10^6	850	1,100				
6	1			ļ		25,000	27,000	56	380
7	1	1.1×10^{7}	5.5×10^6	750	910				ļ
8	1			}		32,000	35,000	11	13
9	1	7.0×10^6	3.0×10^6	22,000 ^c	9,100				1
10	1					29,000	29,000	70	5

^aCondensation nuclei counter, counts particles \geq 0.0025 μm .

^bDust counter, counts particles \geq 0.3 μ m.

 $^{^{\}mathbf{c}}$ Concentration seems inordinately high compared with the other inlet DC concentrations.

Figure 18. Condensation nuclei counter measured concentrations as a function of the process cycle and compartment cleaning

Figure 19. Dust counter measured concentrations as a function of the process cycle and compartment cleaning

SECTION VII

REFERENCES

- 1. Federal Register. Vol. 40, No. 185, September 23, 1975.
- 2. Federal Register. Vol. 39, No. 206, October 23, 1974.
- 3. Calvert, S., C. Lake, and R. Parker. Cascade Impactor Calibration Guidelines. U.S. Environmental Protection Agency. Publication Number EPA-600/2-76-118.
- 4. Personal communication with Joe McCain, Southern Research Institute.
- 5. Cass, R. W. and R. M. Bradway. Fractional Efficiency of a Utility Boiler Baghouse: Sunbury Steam-Electric Station. EPA-600/2-76-077a.
- 6. Instrument Instruction Manual for Condensation Nuclei Monitor Model Rich 100, Environmental/One Corporation, Schenectady, New York.
- 7. Personal communication with Mr. Ernie Demetrie, Environment/One Corporation, Schenectady, New York.

56

APPENDIX A PARTICLE SIZE DISTRIBUTION CURVES

Figure A-1. Cumulative particle size distributions of fabric filter influent and effluent during test 1, two furnaces in operation

Figure A-2. Cumulative particle size distribution of fabric filter influent and effluent during test 2, two furnaces in operation

Figure A-3. Cumulative particle size distribution of fabric filter effluent during test 3, one furnace in operation

Figure A-4. Cumulative particle size distribution of fabric filter effluent during test 4, one furnace in operation

Figure A-5. Cumulative particle size distribution of fabric filter influent and effluent during test 5, one furnace in operation

Figure A-6. Cumulative particle size distributions of fabric filter influent and effluent during test 6, one furnace in operation

Figure A-7. Cumulative particle size distributions of fabric filter influent and effluent during test 7, one furnace in operation

Figure A-8. Cumulative particle size distributions of fabric filter influent and effluent during test 8, one furnace in operation

Figure A-9. Cumulative particle size distributions of fabric filter influent and effluent during test 9, one furnace in operation

Figure A-10. Cumulative particle size distributions of fabric filter influent and effluent during test 10, one furnace in operation

Figure A-11. Cumulative particle size distributions of fabric filter effluent during three special tests during which the impactors were run unattended overnight with one furnace in operation

APPENDIX B DIFFERENTIAL SIZE DISTRIBUTION CURVES

Figure B-1. Differential particle size distribution of baghouse influent and effluent during test 1, two furnaces in operation

Figure B-2. Differential particle size distribution of baghouse influent and effluent during test 2, two furnaces in operation

Figure B-3. Differential particle size distribution of baghouse effluent during test 3, one furnace in operation

Figure B-4. Differential particle size distribution of baghouse effluent during test 4, one furnace in operation

Figure B-5. Differential particle size distribution of baghouse influent and effluent during test 5, one furnace in operation

Figure B-6. Differential particle size distribution of baghouse influent and effluent during test 6, one furnace in operation

Figure B-7. Differential particle size distribution of baghouse influent and effluent during test 7, one furnace in operation

Figure B-8. Differential particle size distribution of baghouse influent and effluent during test 8, one furnace in operation

Figure B-9. Differential particle size distribution of baghouse influent and effluent during test 9, one furnace in operation

Figure B-10. Differential particle size distribution of baghouse influent and effluent during test 10, (one furnace in operation)

Figure B-11. Differential particle size distributions of baghouse effluent during three special tests during which the impactors were run unattended overnight with one furnace in operation

APPENDIX C ANDERSEN IN-STACK IMPACTOR SUBSTRATE ANOMALOUS WEIGHT GAINS

Figure C-1. Mass collected on stages of impactors sampling flue gas and filtered flue gas, outlet test 1

Figure C-2. Mass collected on stages of impactors sampling flue gas and filtered flue gas, outlet test 2

Figure C-3. Mass collected on stages of impactors sampling flue gas and filtered flue gas, outlet test 3

Figure C-4. Mass collected on stages of impactors sampling flue gas and filtered flue gas, outlet test 4

Figure C-5. Mass collected on stages of impactors sampling flue gas and filtered flue gas, outlet test 5

Figure C-6. Mass collected on stages of impactors sampling flue gas and filtered flue gas, outlet test 6

Figure C-7. Mass collected on stages of impactors sampling flue gas and filtered flue gas, outlet test 7

Figure C-8. Mass collected on stages of impactors sampling flue gas and filtered flue gas, outlet test 8

Figure C-9. Mass collected on stages of impactors sampling flue gas and filtered flue gas, outlet test 9

Figure C-10. Mass collected on stages of impactors sampling flue gas and filtered flue gas, outlet test 10

Figure C-11. Mass collected on stages of impactors sampling flue gas and filtered flue gas, outlet night run 1 (6/24 - 25/76)

Figure C-12. Mass collected on stages of impactors sampling flue gas and filtered flue gas, outlet night run 3 (6/29 - 30/76)

Figure C-13. Mass collected on stages of impactors sampling flue gas and filtered flue gas, outlet night run 3 (6/29 - 30/76)

APPENDIX D

CALCULATOR INPUTS/OUTPUTS FOR TOTAL MASS MEASUREMENTS

	INIET 🔀		
DATE 6/19/76	OUTLET	Run #	•
INPUT		OUTPUT	
_ Δh" H ₂ 0 0.364 ·		Vu ^{STD} (NL)	1.09
Vcl (ML) 44.9		vm ^{STD} (Ft ³)	91.73
Vin (Ft ³) 84.322		Cs ^{Grn} /Ft ³)	3.15.6
7m (°R) 550	•	% 11 ₂ 0	1.31
Pb ("IIG) 30.09		% Dry Gas	98.69
Mn (mg) >99./		M.W. (wet)	18.77
. % co ₂ /50 \		D. (1bs/ft ³)	0.0673
%°2 /7.3 \$	per 3 "2	% C.A.	479.5-
% co 0.80)		V (FPM)	45: =
TSTK (°R) 567		Q STD (Ft ³)	164,406
Ps ("H ₂ 0) 4.5		Wp Part/hr	١١٤.١١ (.
PV 1.174	•	I,	10.2.40
K 0,87%2		•	
O(min) 440			
An (Ft ²) . o. ccro 8.	5		
Area Duct (FL2) 43.64	THE RESERVE THE PERSON NAMED IN COLUMN 2 I		

INIET

DATE 6/19/76	OUTLET X	Run #
INPUT		OUTPUT
_ Δh" H ₂ O		V11 ^{5TD} (ML) 4,6/
Vc1 (ML) 97.4		vm ^{STD} (Ft ³) Loa.99
Vm (Ft ³) &13.044	. •	Cs ^{grn} /Ft ³) 0.00/7
7m (°R) 56&	•	% 11 ₂ 0 2.42
Pb ("HG) 30.09		% Dry Gas 97,78
Mn (mg) 44.8		M.V. (wet) 28.67
% co ₂ /.50		p. (1bs/ft ³) 0.0683
% ° ₂ /7.3 ₹	from Ram "d	% E.A. 479,4
% co 0.80)	V	V (FPM) 2640
TSIK (°R) 580		Q STD (Ft ³) 67,046
Ps ("H ₂ 0) O		Wp Part/hr.) 0.994
PV ^½ 0.740	•	I 105.2
K 0.85		
Θ(min) 340		
An (Ft ²) 0.00034/		
Area Duct (Ft ²) 48.	46	
		1
ut. eff, % = (C.N -	Cour 10 2 = (1-	Cont 102
it as trate a		
it. Denetration, 90 =	100 - 246, 30	•
	^-	

iniet <u>X</u>

DATE 6/30/76	OUTLET	Run #
INPUT		OUTPUT
_ Δh" H ₂ 0	•	. Vij ^{STD} (ML) //78
		Vm ^{STD} (Ft ³) /43.62
Vm (Ft ³) /48,533	·	. Cs ^{grn} /Ft ³) 0./438
Tm (°R) 555	•	% 11 ₂ 0 /.42
Pb ("IIG) 30./3		% Dry Gas 98.58
Mn (mg) 154.5		M.W. (wet) 38.78
% co ₂ /,5		D. (1bs/Ft ³) 0.0666
% 0 ₂ /7.3		% E.A. 479.35
% co 0.8		v (FPM) 4438
TSTK (°R) 59/		Q STD (Ft ³) 166,623
Ps ("H ₂ 0) 4.5		Wp (Pert/hr.) 205,41
PV 1.415		I 102.44
K 0.8592		
Θ(min) <i>360</i>		
An (Ft ²) 0.0000 &S		
Area Duct (Ft ²) 43.64	/	Printer and the second
		l '

:

DATE 6/20/76 OUTLET	Run # 12
INPUT	OUTPUT
	. V ₁₇ 5TD (ML) 4.50
Vc1 (IIL) 95	Vm ^{5TD} (Ft ³) 3~. ~x
Vm (Ft ³) 310.445	Cs ^{grn} /Ft ³) C.cc =/
Im ([°] R) 553	% 11 ₂ 0 /,47
РЬ ("HG) .3 с . 13	% Dry Gas タヤ. つき
Mn (mg) 41.9	M.V. (vet)
. % co ₂ /,5	D. (165/Ft3) 6.0674
%02 17.3 & i inlit	% E.A. 479.35
% co : &)	v (FPH) 56 < ')
TSTK (°R) 59c	Q STD (Ft 3) EE, 3C
Ps ("H ₂ 0) C	Wp Part/hr.) /. 4.1.
PV ² 0.732	I Note to
K 0.85	
Θ(min) .3ές	
An (Ft ²) 0.0034/	
Area Duct (Ft ²) 18.16	
Companies and the second property of the companies of the	

INLET X

DATE 6/41/76	OUTLET	Run # 3	
INPUT		OUTPUT	
_ Δh" H ₂ O 0.367 ·		. Vu ^{STD} (ML)	1.90
Vel (ML) 40		Vm ^{STD} (Ft ³)	183.72
Vm (Ft ³) /30.473	•	Cs ^{grn} /Ft ³)	0.0663
Tm (°R) 562		% 11 ₂ 0	1.51
Pb ("HG) 30.08	_	% Dry Gas	98.49
Mn (mg) 484.4		M.W. (wet)	28.73
% co ₂ /.0		D. (^{1bs} /Ft ³	0.0654
% ° ₂ /8.4		% Г.А.	707.40
% co 0.4		V (FPM)	4177
TSTK (°R) 600		Q STD (Ft ³)	154,056
Ps ("H ₂ 0) 4.5	•	Wp Part/hr	.) 79.59
PV 1.133		I //	0.88
K 0.8592	•		
0(min) 360			······································
An (Ft ²) 0.000 85			
Area Duct (Ft ²) 44.64			
		برخوسيمو وميروبي ويستم شنا استجماعه	
		·	·

DATE 6/31/76	OUTLET X	Run #
INPUT		OUTPUT
_ Δh" H ₂ O α.447 ·		V11 ^{STD} (NL) 4.74
Vel (IIL) 100		· Vm STD (Ft3) 3とハギ3
Vm (Ft ³) 3/6,연6이	•	Cs ^{grn} /Ft ³) O.cc/&
Tm (°R) 562	•	% 11 ₂ 0 /,55
Pb ("HG) 30.05		% Dry Gas 98.45
Mn (mg) 44,8		M.V. (vet) 84.67
. % co ₂ /.o		D. (165/FE3) 0.(667
% ⁰ 2 /7.0		% E.A. 374.6
% CO 0.5		V (FPM) 165° P
TSTK (°R) 59.1		Q STD (Ft 3) 66,558
Ps. ("H ₂ 0) O		Wp Par(/hr.) 0.664
PV 0.737		I 105./
· K C. 9.5		
O(min) 360		
Area Duct (Ft ²) &		***************************************

INIET X

T Run #
OUTPUT
Vu ^{STD} (ML) 3.18
Vm ^{STD} (Ft ³) /33,36
cs ^{grn} /Ft ³) 0.C7&
" 11 ₂ 0 2.51
% Dry Gas 97.49
M.V. (wet) 48.54
D. (1bs/Ft ³) 0.0666
% E.A. 441.38
v (fPM) 4130
Q STD (Ft ³) 153,60
Wp (Pert/hr.) 96.0
· I //0.88

OUTLET X	Run #
	OUTPUT
	V_{tr} STD (NL) $\frac{\zeta'}{\zeta} \leftarrow \frac{\zeta'}{\zeta'}$
	νm ^{57D} (Ft ³) 197.69
•	Cs ^{grn} /Ft ³) O.c./
	% 11 ₂ 0 / .5
	% Dry Gas > ♥.47
	M.W. (wet) 18 67
	D. (1bs/ft ³)
	% E.A. 541,57
	V (FPM) 2510
	Q STD (Ft 3) STANC
	Wp Part/hr.)
	1 124.6
•	
6	
	. The state of the

iniet <u>X</u>

DATE 6/33/76 OUTLET	Run #
INPUT	OUTPUT
Δh" H ₂ 0 0.365 ·	Vu ^{STD} (ML) 3.37
Vcl (ML) 7/	Vm ^{STD} (Ft ³) /33,84
Vm (Ft ³) /30.9/3	cs ^{grn} /Ft ³) 0.0650
Tm (°R) 56/	% 11 ₂ 0 d.65
Pb ("HG) & 9.95	% Dry Gas 97.35
Mn (mg) SLL.5	M.W. (wet) 18.63
% co ₂ /,4	D. (165/Ft3) 0.0657
% °2 /7.5	% E.A. 5-49.04
% co 0.90	V (FPM) 4146
TSTK (°R) 592	Q STD (Ft 3) 152,550
Ps ("H ₂ 0) 4.5	Wp (lbs /hr.) 84.98
br ₄ 1.158	· I 112.05
к 0.8592	
O(min) 360	
An (Ft ²) 0.000085	
Area Duct (Ft ²) 44.64	

OUTLET X	Run #
	OUTPUT
	vo ^{STD} (ML) 6.33
	vm ^{STD} (Ft ³) Zoćie?
•	Cs ^{grn} /Ft ³) 0.0016
	" "20 /.99
	% Dry Gas 98.0/
	M.V. (wet) 38.60
	D. (1bs/ft ³) 51.2 667
	% F.A. 5-35,06
	V (FPM) 、メフェニ
	Q STD (Ft3) 67674
	Wp Part/hr.) c. 8479
	I 105.0
:6	
١	

INIET ×

DATE 6/34/76	OUTLET	Run #6	-
INPUT		OUTPUT	
Δh" H ₂ 0 0,377		. Vo ^{STD} (NL)	4,14
Vcl (ML) 87		Vm ^{STD} (Ft ³)	125.01
Vm (Ft ³) 133.08	•	· Cs ^{grn} /Ft ³)	0.067&
Tm (°R) 56/	•	% 11 ₂ 0	5.19
Pb ("IIG) 49.97		% Dry Gas	96.81
Fin (mg) 545.8		M.W. (wet)	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
% co ₂ /.4	\	D. (16s/ft ³)	0.0654
% ° ₂ 17.5	& from outlet	% E.A.	508.06
% co 0.70 -) 0	V (FPM)	4443
TSTK (°R) 594		Q STD (Ft ³)	
Ps ("H ₂ O) 4.5		Wp (lbg Pert/hr.) 87.79
PV 7.146		I //	4.04
K 0.8592	•		
O(min) 360		•	
An (Ft ²) 0.0000	85		
Area Duct (Ft ²) 44.6			

INIET ____

Ory Gas
STD (Ft ³) \$94,47 SS ^{8rn} /Ft ³) \$2.00/3 CH ₂ O //35 Chry Gas
Cs ^{Strn} /Ft ³) c.cc/? (II ₂ 0 // 35
C Dry Gas
Dry Gas
1.V. (wet) 322 7 5
o. (16s/Ft ³) Octor/
E.A. Socre
(FPM) 1661
STD (Ft 3) 66, (25)
p (hst/hr.)
104,83
_

INIET X

DATE 6/25-176	OUTLET	Run #
INPUT		OUTPUT
Δh" H ₂ O 0.3>5 ·		. Vu ^{STD} (NL) 3.94
Vcl (ML) 62		Vm ^{STD} (Ft ³) /45,94
Vm (Ft ³) /3/.433	•	Cs ^{grn} /Ft ³) 0.0675
Tm (°R) 554	•	% 11 ₂ 0
Pb ("HG) 30.0/		% Dry Gas 97.72
Mn (mg) 552.2		M.W. (wet) 48.60
^{7, CO} 2 0.60		D. (1bs/Ft ³) 0.0660
%° ₂ /8.8		% E.A. 985,43
% co 0.80		V (FPM) 4156
TSTK (°R) 590		Q STD (Ft ³) 154,311
Ps ("H ₂ 0) 4.5		Wp (1hst/hr.) 89.3/
PV ² 1.133		I // \$.68
K 0.8592		
0(min) 360		
An (Ft ²) 0.0000 83		
Area Duct (Ft ²) 44.64		

INIET

DATE 6/55/76	OUTLET X	Run #
INPUT		OUTPUT
Λh" H ₂ O &.&/C '		Vu ^{5TD} (NL) 6.57
Vc1 (ML) /37		Vm STD (Ft ³) 3oc.//
Vm (Ft ³) 308,510		Cs ^{grn} /Ft ³) O.CC//
Im (°R) 549	•	% 11 ₂ 0 \$,15
Pb ("HG) 3c.c/		% Dry Gas
Mn (mg) 21.9		M.W. (wet) 18.63
% CO ₂		D. (1bs/Ft3) 0.0674
% 0 ₂ .'8.'/		% E.A. 1036,14
% co C.70		V (FPM)
TSTK (OR)		Q STD (Ft 3) SC, C'S
Ps ("H ₂ O)		Wp Part/hr.)
יעינ טיי ² טיי		· I 104,55
K 0.85		
0(min) 360		
An (1't2) 0,00034/		
Area Duct (Ft ²) = E, S	£	
		ه کام ماهمانسیده و در استان در استان میکند. در استان میکند کرد استان استان کرد در استان اس

IN	LET	X				
DATE 6/48/76 OU	TLET			Run #	8	
INPUT			OUTF	UT		
Δh" H ₂ 0 0.42 ·				V17 ^{57'D} (M	L)	2.53
Vel (ML) 53.4				vm ^{STD} (F	t ³)	131.42
vm (Ft ³) /39.196		• •		Cs ^{grn} /Ft	³)	0.0736
1m (°R) 566		`		% 11 ₂ 0		1.89
Pb ("HG) 30.16				% Dry Ga	5	98.//
Mn (mg) 648.3				M.W. (we	t)	18.70
% co ₂ 0.70				D. (16s/	Ft ³)	0.066
% ° ₂ /9.9				% E.A.		3249.33
% co 0,60				V (FPM)		4412
TSTK (°R) 587				Q STD (F	(t ³)	166,142
Ps ("H ₂ 0) 4.5	•			Wp Pert	/hr.	104.85
PV ² /. &//			•		109	
к 0.8592	•	•				
Θ(min) 360	**		•			
An (Ft ²) 0,000085						
Area Duct (Ft ²) 42.64						
						

INLET

OUTLET	<u>×</u>	Run #8	>
		OUTPUT	
		. Vu ^{STD} (NL)	7.08
	•	Cs ^{grn} /Ft ³)	0.0016
	•	% 11 ₂ 0	4.43
		% Dry Gas	ソス・ケス
		M.V. (wet)	& 5. F.A
		D. (¹⁶³ /Ft ³)	C1,0674
		% Г.А.	1349
		V (FPH)	1877_
,		Wp Part/hr.) 0.994
		I 10	۱, ۲۵
		•	· · · · · · · · · · · · · · · · · · ·
			
6			
-			
			··
			OUTPUT Vo STD (ML) Vm STD (Ft 3) Cs 9rn/Ft 3) % U20 % Dry Gas M.V. (wet) D. (1bs/Ft 3) % E.A. V (FPH) Q STD (Ft 3) Wp (Part/hr. I / O

X INLET DATE 6/29/76 Run # OUTLET OUTPUT INPUT Vu^{STD} (ML) 2.94 0.370 Δh" H₂0 va^{STD} (Ft³) 143.74 62 Vcl (ML) Cs^{grn}/Ft³) 0.06/5 <u>vm</u> (Ft³) 131,282 Tm (OR) 565 % 11₂0 4.30 97.68 % Dry Gas Pb ("HG) 30.06 M.W. (wet) 28.59 494.5 Mn (mg) % CO, 0.0634 0,40 % Г.А. % ⁰2 19.4 1873.51 V (FPM) % CO 4244 1.00 Q STD (Ft³) TSIK (OR) 151,374 615 Wp (Pert/hr.) 79.85 Ps ("H₂O) 4.5 PV₹ I 115.86 1.134 0.8592 O(min) 360 An (Ft²) 0,0000 85 Area Duct (Ft²) 44.64

INIET DATE 6/34/76 OUTLET X INPUT OUTPUT Vu^{SID} (ML) 7.63 2.319 Δh^{II} H₂O Vm^{5TD} (Ft³) 303.36 161 Vcl (ML) Cs^{grn}/Ft³) vm (Ft³) 362.091 0.0014 Tm (OR) % 1120 570 .4.1/4. % Dry Gas 97.54 Pb ("HG) 30.06 M.W. (wet) J. G. Caly Mn (mg) 18.1 D. (1bs/Ft³) % CO₂ 0.0665 0,50 % E.A. % O₂ 19.4 1485.9 V (FPM) % CO 0,60 1734 Q STD (Ft³) TSTK (OR) 67664 593 Wp (Part/hr.) 0.83.76. Ps ("H₂0) 0 PV 0.756 103.56 0.85 G(min) 360 An (I't2) 0.000341 Area Duct (Ft²) 48.16

INIET X DATE 6/30/76 Run # /0 OUTLET INPUT OUTPUT Vu^{STD} (ML) 3.794 5.56 Δh" H,0 Vm^{STD} (Ft³) 351.34 Vcl (ML) 117.2 Cs^{grn}/Ft³) Vm (Ft³) 0.0617 375.263 Tm (OR) % 1120 573 11.56 % Dry Gas 98.44 Pb ("HG) 30.03 M.W. (wet) 48,68 Mn (mg) 1407.1 D. (1bs/Ft³) % CO₂ 0.0658 0.50 % E.A. % 02 1816.16 19.3 V (FPM) % co ' 4033 1.10 Q STD (Ft³) TSTK (OR) 157354 594 Wp (Part/hr.) Ps ("H₂0) 83.19 4.5 PV I 310.88 1.152 0.8592 ĸ G(min) 360 An (Ft²) 0.000085 Area Duct (Ft²) 48.64

INIET

- DATE 6/30/76	OUTLET	×	Run #	<u> </u>
INPUT		OUT	PUT	
Дh" н ₂ 0 Д.Д40 .			Vu ^{STD} (ML)	6.34
Vc1 (ML) /33.8			vm ^{STD} (Ft ³)	£9.56
Vm (Ft ³) 313,594	•	•	Cs ^{grn} /Ft ³)	0,0012
'Im (°R) 567		`	% 11 ₂ 0	1.10
Pb ("HG) 30.03			% Dry Gas	97.90
Mn (mg) 33.7			M.V. (wet)	88.70
% co ₂ 0.80			D. (165/Ft3)	0.0670
% ⁰ 2 20.0			% E.A.	1632
% co 0.40			v (FPM)	2672
TSTK (°R) 590			Q STD (Ft ³)	66,6 7
Ps ("H ₂ 0) O			Wp Part/hr.	0,67.57
pv ² 0.742		•	I /0.4	74
к 0.85				
0(min) 360				
An (Ft ²) 0.20034/				
Area Duct (Ft ²) &\$.a.	5			

APPENDIX E

CALCULATOR INPUTS/OUTPUTS FOR INERTIAL IMPACTOR MEASUREMENTS

Date 6/19/76 Run # 14	}	Location 11/er Time 1917-1933 F	D-1st malt.
Sample volume at STP (ft ³)	= 5.1393	Orifice	= 30,07
Moisture (%)	= ,	bar. press. ("Hg)	£ 18.79
Concentration (grains/ft ³)	= 1. 9/85	avg. Pm (-"Hg) avg. Tm (F)	= 4.045 = 79.5 = 1.31%
Impactor flow rate (acfm)	= 0.4039	H ₂ O (grams or %) meter volume (ft ³) ave. Ps (+"H O)	= 6.04/ = 4,50
		avg. Ps $(\pm^{11}H_2O)$ avg. Ts $(\overline{O}F)^2$ time (minutes)	= 107
		correction factor	=

· Velin

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ∙size	dm/d log D	Geo. Mean (µm)
TC*10	Probe & expander	6,0167	24.1329		75,8670		
	0						
30	1	O.cec &	0.2890	40.8275	75.5180		
31	2	0.0004	0.5780	/7.2063	75.0000	0.0629	26.5046
3~	3	0.0031	4.4797	8,2812	70.5202	0.0270	11.9369
'33	4	0.0065	9.3930	2.7847	61.1271	0.0380	4.8022
34	5	0.0134	19.3641	1. 7547	41.7630	0.1852	2.2105
35	6	0.0127	19.7976	0.8657	21.9652	0.1237	1.2325
36	7	0.0104	15.0289	0.4636	6.9364	0.1063	0.6335
R-4	/ F	0.0048	6. 9364				
	Total	0.0692					

Date 6/19/76 Run # 1		Location outlet	East
Sample volume at STP (ft ³)	= 259 0443	Orifice E	- · · · · ·
Moisture (%)	= 1.8576 .	bar. press. ("Hg) Mw	= 30.09 = 18.69
Concentration (grains/ft ³)	= 0.0010	avg. Pm (-"Hg) avg. Tm (°F)	= 1.6s.1 = 80
Impactor flow rate (acfm)	= 0.5a33	H ₂ O (grams or %) ₃ meter volume (ft ³) avg. Ps (4"H ₂ O)	= 98.4 = 261.83/ = 0
		avg. Ps (4"H ₂ 0) avg. Ts (^O F) ²	= /80
		time (minutes) correction factor	= 540

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated •size	dm/d log D	Geo. Mean
# P	robe & expander	0.0031	18.6746		81, 3253		
62 <u> </u>	0	0,4.05	3.0120	13, 6604	78.3132		
۶/ _	1	0.000	4.8/92	8.5496	73. 4939	0.0002	10. 8070
4_	2	0.0017	10,2409	5.8/20	63,2530	O. 0006	7.0492
3_	3	0.0r 15	15,0602	3.9571	48.1927	0.5009	4.7957
6_	4	0.00.57	16.2650	2.4440	31. 9277	D. 9008	3.1098
5_	5	3,0024	20.4819	1.0515	11.4457	0,0005	1.6031
s8_	6	c. 1513	7. 83/3	B.7065	3.6/44	0,0004	0.8619
د -	7	c.reck	3.6144	0.4140	0.0000		
-/	F	0.000	0.0000				
	Total	0.0166					

Date 6/40/76	Run # JA	}	location mulit	re und melt.
Sample volume at	STP (ft ³)	- Z.8º26	Orifice D	_
Moisture	(%)	=	bar. press. ("Hg) Mw	= 30.13 = 48.78
Concentration (gr	rains/ft ³)	= 0.0765	avg. Pm (-"Hg) avg. Tm (°F)	= 83 = 1.03
Impactor flow ra	te (acfm)	= 0.3134	H ₂ O (grams or %) ₃ meter volume (ft ³) avg. Ps (+"H O)	= 1,45 % = 3.911 = 4.50
			avg. Ps (+"H ₂ 0) avg. Ts (°F) ²	- /3/
			time (minutes) correction factor	• 10 • —

UofW

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated size	dm/d log D	Geo. Mean
TC*14	Probe & expander	0.0048	35,036y		69.9635		
	0						
51	1	0.0004	2.9/97	46.8768	62.0437		
52	2	0.0003	2.1897	19.7659	59.8510	0.0044	30,4395
53	3	0.008	5.6394	9.520997	54.0145	0.0140	13.7182
54	4	0,000	6.5693	3,2/02	47.4452	0,0106	5.5285
55	5	0.013-	182481	2.0275	29.1970	0.0699	2.5513
56	6	6,0013	9.48 90	1.0066	19.7080	0.0238	1.4286
ر ک	7	c.٥٥٤٦	19.7080	0.5460	0,0000	0.0567	0.7413
2	P	~ 0∧'€	0.0.90				
	Total	0.0127					

Date 6/20/76 Run # 28		Location IN let Time 1711-1721 Furn	n. tep
Sample volume at STP (ft ³)	= 2.7647	Orifice U	_
Moisture (%)	= , .	bar. press. ("Hg) Mw	= 30113 = 48.78
Concentration (grains/ft ³)	= 0.0911	avg. Pm (-"Hg) avg. Tm (°F)	= 1.60 = 83 = 1.44%
Impactor flow rate (acfm)	= 013097	H ₂ O (grams or %) ₃ meter volume (ft ³) avg. Ps (±"H ₂ O) avg. Ts ($\overline{^{\circ}}$ F) ²	= 1.947 = 4.50
		avg. Ts (^O F) ² time (minutes) correction factor	= /3/ = /0

· Uof W

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean (µm)
TC 16	Probe & expander	0.0053	32.9/92		67,0807		
	0						
44	1	0.0004	2.4844	47.1979	645962		
45	2	0.0004	2.4844	19.9019	62.1118	0.0060	30,6485
46	3	0.0014	8.6956	9,5869	53.4161	0.0249	13.8130
47	4	0.0020	/2.4223	3. 2336	40.9937	0. 0239	5.5673
48	5	0.0018	11.1801	2.0423	29.886	0.0510	2.5696
49	6	0.0015	9.3/67	1-0143	20.4968	0.0219	1.4393
50	7	0.0027	16.7701	0.5506	3.7267	0.0576	0.7473
34	F	0.0006	3.7367				
	Total	0.0161					

Date 6/30/76 Run #	£	Location outlet	North
Sample volume at STP (f	³) - 243.5957	Orifice F	
Moisture (%)	- 1.4/74	bar. press. ("Hg) Mw	= 30.13 = 48.77
Concentration (grains/ft	3) = 0.0017	avg. Pm (-"Hg) avg. Tm (°F)	= 1.634 = 80.3
Impactor flow rate (aci	m) - 6.49 6 2	H ₂ O (grams or %) ₃ meter volume (ft ³)	= 73.0
		avg. Ps (+"H ₂ 0) avg. Ts (OF)	= 0
		time (minutes) correction factor	- 540

	Stage	Net weight (gm)	% on stage	Size cutoff (μm)	% ≤ stated ·size	dm/d log D	Geo. Mean
ノフ	Probe & expander	0.0030	11.1524		88.8475		
C	0	0.0007	2,6012	13.8194	86.2453		
/	1	0.2033	8.5501	B. 6490	716951	040007	10.9327
•	2	0,0000	7.4349	5.8795	70.2602	0.0007	7./3/8
,	3	0.0049	18.256	4.002B	52.0446	0. 8018	4.8512
	4	0.0034	8.92/9	2.4720	43.1226	0.6007	3.1456
,	5	0.0087	32.3420	1.003	10.78%	0.005	1.62/1
•	6	0.0018	6.69/4	0,7141	4.0892	0,0006	0.8713
-	7	0.0010	3,7174	5.4184	0,3717	0.0002	0.5466
	P	0.000/	0.3717				
	Total	0.02.69					

Date 6/41/76 Run # 3A			Location sulet		
Sample volume at	STP (ft ³)	•	Location sulet Time 1802-1812 (1st Orifice D	mult)	
Moisture	(%)	-	bar. press. ("Hg)	= 30.08 = 48.73	
Concentration (g	_	=	avg. Pm (-"Hg) avg. Tm (°F)	= d.467 = 86.5	
Impactor flow r	•	=	H ₂ O (grams or %) ₃ meter volume (ft)	= 1.51%	
	,		avg. Ps (+"H ₂ 0) avg. Ts (°F)	= 4.50	
•			time (minutes)	- 140	
			correction factor		

UofW

_	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean (µm)
rc#201	Probe & expander	0.0082					
_	0						
115.	1	0.0007			7		
<i>'11</i>	2	0.0015					
13	3	0.0006					
/3	4	0.0006					
. 14	5	0.0042					
15	6	0.0035					
78 <u> </u>	7	0.0006					
R 14	P	0,0020					
_	Total					-	

Date 6/41/76 Run # 3	В	Location in let		
Sample volume at STP (ft) -	Orifice D		
Moisture (%)	, =	bar. press. ("Hg)	= 30.08 = 48.73	
Concentration (grains/ft ³)) -	avg. Pm (-"Hg) avg. Tm (°F)	= 4.033 = 84	
Impactor flow rate (acfm)) -	H ₂ 0 (grams or %) meter volume (ft) avg. Ps (+"H ₂ 0) avg. Ts (GF)	= 1.51 = 3.987 = 4.50	
		avg. Ts (°F) ² time (minutes) correction factor	- 140	

UofW

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean
TC#41	Probe & expander	0,0045					
	0				_		
37	1	-0,000.4		\sim			
38	2	-0,0012			/)		
39	3	-0.0010					
40	4	-0,0004		1/1			
41	5	0.0019					
42	6	-0.0004					
43		-0.0040					
R 13	P	0.0009					
	Total				'		

Date 6/3/76 Run #	3	Location outlet	North
Sample volume at STP (ft) - 243,2492	Orifice F	
Moisture (%)	- 1.400	bar. press. ("Hg)	= 30.08 = 38.67
Concentration (grains/ft3	- 0.0009	avg. Pm (-"Hg) avg. Tm (°F)	= 1.73 = 94./
Impactor flow rate (acfin) - 0.5000	H_2O (grams or %) ₃ meter volume (ft) avg. Ps ($\frac{4}{1}$ H ₂ O) avg. Ts ($\frac{6}{1}$ F)	= 74,0 = 463,739 = 0 = 733
		time (minutes) correction factor	= 540

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated •size	dm/d log D	Geo. Mean
	Probe & expander	0.0027	17.6470		B2 . 3529		
950	0	0.0004	26143	13,8113	79. 13 <i>95</i>		
249	1	0.0006	3.92 <i>15</i>	86437	75.8169	0.000/	10.9262
R 54	2	0.0018	11.7647	5. 8757	64.0522	0.0066	7-1266
251	3	0.0015	16.339B	4,0001	47.7/24	0.0007	4.8480
R54	4	0.0026	16. 9934	2.4700	3 0,7/89	0.000}	3.1433
R ()	5	0.0032	20.950	1.0620	9.8039	0.000	1.6196
R56	6	0.0012	7.8431	0.7132	1.9607	0.0004	0,8703
RSS	7	0.0003	1.9607	0.4176	0.0000	0. 5600	0.5457
RII	P	0.0000	0.0000				
·	Total	0.0153					

Date 6/31/76	Run # 4A		Location inlet	
Sample volume at	STP (ft ³)	•	Orifice D	= 30.03
Moisture	(%)	•	bar. press. ("Hg)	- 28.54
Concentration (gr	rains/ft ³)	•	avg. Pm (-"Hg) avg. Tm (°F)	= 7.435
Impactor flow ra	te (acfm)	-	H ₂ O (grams or %) meter volume (ft ³) avg. Ps (+"H ₂ O)	= 4.51 = 4.599 = 4.50
			avg. Ps (+"H ₂ O) avg. Ts (^O F) ² time (minutes)	= 188 = 15
			correction factor	-

UofW

_	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean (µm)
P	Probe & expander	0.0063					
	0						
	1	0.0003					
	2	-0,0006			$\overline{}$		
	3	-0.0018					
	4	70.0009		1 1			
_	5	0.0000					_
,	6	0.0014					
_	7	0.0002					
- Y	P	0,0000					
	Total				1		

Date 6/44/76	Run # 48	Location , let	
Sample volume as Moisture Concentration (g	(%) = grains/ft ³) =	Orifice D bar. press. ("Hg) Mw avg. Pm (-"Hg) avg. Tm ("F) H ₂ O (grams or %) meter volume (ft) avg. Ps (+"H ₂ O) avg. Ts ("F) time (minutes) correction factor	= 30.03 = 48.54 = 1.488 = 8.51 = 4.661 = 4.50 = 138 = 15
			JoxW

	Stage	Net weight (gm)	% on stage	Size cutoff (μm)	% ≤ stated ·size	dm/d log D	Geo. Mean
P	robe & xpander	0.0030					
_	0						
_	1	-0,0005		(
	2	0.0003					
_	3	0.0003					
_	4	0.0004					
_	5	0.0016					
	6	0.0024					
_	7	0.0026					
_	P	0,0031					
	Total						

Date 6/34/76 Run # 4		Location outlet	North
Sample volume at STP (ft ³)	- 193.1705	Orifice F	<u>.</u> 3ο.ο3
Moisture (%)	- 1.4446	bar. press. ("Hg)	- 38.67
Concentration (grains/ft ³)	- 0,0007	avg. Pm (-"Hg) avg. Tm ("F)	- 91.9
Impactor flow rate (acfm)	- 0.3937	H ₂ O (grams or %) ₃ meter volume (ft ³) avg. Ps (+"H ₂ O) avg. Ts (^O F) time (minutes) correction factor	= 59.0 = 305.880 = 0 = 156 = 540 = 1

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% \(\stated \) •size	dm/d log D	Geo. Mean
	Probe & expander	0.0012	10.4347		89.5652		
	0	0.0003	2.6086	15.5181	86.8565		
	1	0.0006	5,2/73	9.7185	81.7391	0,0002	12. 2806
_	2	0.0010	8.6956	6,6116	73,0434	0.604	8.0159
_	3	0,0017	14.7826	4,5060	58.2608	0.0008	5,4582
_	4	0.0039	25.2173	4.7878	33.0434	0.00//	3.5443
_	5	0,0039	25.2173	1.2057	7.8260	0.0006	1.8334
•	6	0.0006	5. 2173	0.8/40	2.6086	0,0002	0.9907
_	7	0.0003	2.646	0.4824	0,0000	0.000/	0.6266
-	P	0.0000	0.0000				-
_	Total	0.0115					

Date 6/43/76 Run #	54	Rocation unlet	
Sample volume at STP (f	t ³) -	Orifice D	19.05
Moisture (%)	-	bar. press. ("Hg) Mw	= 19,95 = 18,63
Concentration (grains/fi	: ³) =	avg. Pm (-"Hg) avg. Tm (°F)	= 1.367 = 85
Impactor flow rate (ac	fm) =	H ₂ O (grams or %) ₃ meter volume (ft ³) evg. Ps (+"H ₂ O)	= \$.65 = 3.067 = 4,50
		avg. Ps (+"H ₂ 0) avg. Ts (^O F) ² time (minutes)	= 134
		correction factor	- 70

UofW

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated •size	dm/d log D	Geo. Mean
c#44	Probe & expander	0.0045					
	0						
57	1	0.0002		[
54	2	-0.0002		1			
5 3	3	0,0017					
54	4	0.0003					
55	5	-0.0043					
56	6	-0,0010					
57	7	0.0001					
R19	P	-0.0002					
	Total						

VoxIV

Date 6/43/76 Run # 5	-B	Location inlet	
Sample volume at STP (ft ³) Moisture (%)	-	Orifice O bar. press. ("Hg)	= d9,95 = d8,63
Concentration (grains/ft ³)	=	avg. Pm (-"Hg) avg. Tm ("F)	= 1.475
Impactor flow rate (acfm)	-	H ₂ O (grams or %) ₃ meter volume (ft) avg. Ps (+"H ₂ O) avg. Ts (^O F) ² time (minutes) correction factor	= 3.890 = 4.50 = 134 = 15

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean (µm)
	robe & xpander	0.0065					
	0						
_	1	0,0002					
	2	-0.0012		16			
	3	-0.0002					
_	4	-0.0001					
_	5	0,000		Ì	(
	6	0.0003					
	7	0,0064					
0	P	0.0046					
	Total						

Date 6/23/76 Run # 5C Location welet Time 1555-1625 (back charge) Sample volume at STP (ft³) = 8.3555 Orifice 0 bar. press. ("Hg) = 47.95 Moisture (%) = 28.63 avg. Pm (-"Hg) avg. Tm (°F) - 11436 Concentration (grains/ft³) = 0,0500 = 93.4 H₂O (grams or %) meter volume (ft³) = 3.65 % Impactor flow rate (acfm) = 0.3/39 = 8.914 avg. Ps (+"H₂0) avg. Ts (OF) = 4.50 **-** ノ3ま time (minutes) **3**0 correction factor

Ungw

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated size	dm/d log D	Geo. Mean
C #45	Probe & expander	0.0092	34.8484		65,1515		
	0						
उ०	1	0.0013	4.9242	46.8621	60.2272		
31	2	0,0000	0,000	19.7594	60.2272	0,0000	30,4297
32	3	0.0006	2.2727	9.5175	57.9545	0.0035	13.7/35
33	4	0.0018	4.5454	3.2087	53,4090	0.0048	5,5262
34	5	0.0037	14.0151	2.0264	39,3939	0.0351	2.5499
35	6	0.0041	/5,53 ₀ 3	1.0058	23.8636	0.0255	1.4276
૩ ૪	7	0.0037	14.0151	0,5453	9.8484	0.0264	0.7406
R6	P	0.0016	9.8484				
	Total	0.0264					

Date 6/33/76Run # 5	•	Location outlet	North
Sample volume at STP (ft ³)	- 249, 6224	Orifice F	.00
Moisture (%)	- 1.7830	bar. press. ("Hg) Mw	_ 49.95 = 48.68
Concentration (grains/ft3)	- 0.0008	avg. Pm (-"Hg) avg. Tm (°F)	= 1,681 = 94.7
Impactor flow rate (acfm)	- 6.5144	H ₂ O (grams or %) ₃ meter volume (ft ³)	= 94.1 = 870.664
		avg. Ps $(\pm^{11}H_20)$ avg. Ts $(\overline{^{0}F})^2$	- 6 - 131
		time (minutes) correction factor	- 540

S	tage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean
	be & ander	0.0540	28.77,09		7/12230		
	0	0.0003	2,1582	13,6060	69.0647		
	1	0.0003	2.1582	8.5146	66.9064	0.0000	10.7 633
	2	0.0014	10.0719	5.1673	56.8345	0.0005	7.0197
	3	०,०५३	15.8273	3.9394	41.0071	0.0008	4.7748
	4	0.0019	13.6690	2,432/	27,3381	0.005	3, 0953
	5	0,0035	25.1798	1.0450	2.1582	0.0006	1.5942
	6	0,0003	1.4388	0.7014	0.7/94	0.000	0.8561
	7	0,000/	5.7/94	0.4100	0.6060	0,0000	0.5363
	P	0,0000	0,0000				
T	otal	4. 5139					

Date 6/84/76 Run # 6A Location white Time 1609-1629 (2nd Melt, buck change ~ 1530) Sample volume at STP (ft³) - 5.6 45 Orifice D = 49.97 bar. press. ("Hg) Moisture (%) = 48.58 avg. Pm (-"Hg) avg. Tm ("F) = 1,410 Concentration (grains/ft³) = 0.0367 = 95.0 H₂O (grams or %)₃
meter volume (ft³) - 3,19% Impactor flow rate (acfm) = 5.961 = 4.50 avg. Ps (+"H20) avg. Ts (OF)2 time (minutes) = 20

UofW

correction factor

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated •size	dm/d log D	Geo. Mean (µm)
	Probe & expander	0,0041	31.5384		68.4615		
	0						
115	1	0.0006	4.6153	46.6678	63,846/		
<i>"</i>	2	6000.0	2.3076	19.6768	61.5384	6,0022	36.3030
13	3	0.0006	4.6/53	9.4772	56,9230	0.0053	13.6558
13	4	0.0012	9.2307	3.1944	47.6923	0.0072	5.5022
14	5	0.0015	11.5384	2.0170	36.1538	ور دي ه	2,5383
15	6	0.0030	23,0769	1.0006	13.0769	0.0279	1.4206
18	7	0.0017	13,0769	0.5%21	0, 0000	0.0181	0.7365
R 29	P	6.0000	D.0000				
_	Total	0.0/30					

Date 6/24/76 Run # 66	3	location unlet	
Sample volume at STP (ft ³)	- 2.83/3	Location mulet Time 1724 - 1736 (ta) Orifice D	p)
Moisture (%)	•	bar. press. ("Hg) Mw	= 19.97 = 18.58
Concentration (grains/ft ³)	= 0.0287	avg. Pm (-"Hg) avg. Tm (°F)	= 1.670 = 75.0 = 3.19 %
Impactor flow rate (acfm)	- 0.3200	H ₂ O (grams or %) ₃ meter volume (ft ³) avg. Ps (4"H O)	= 3.19% = 5.993 = 4.50
		avg. Ps (+"H ₂ 0) avg. Ts (^O F) ² time (minutes) correction factor	= 134

Vox W

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated •size	dm/d log D	Geo. Mean (μm)
Pr	robe & cpander	0.0014	27.4509		72.5490		
	0						
_	1	0.0004	7,8431	46.4560	64.705B		
	2	0.0001	1.9607	19,5870	62.7950	0.0015	30.1651
	3	0.0004	7.8431	9.4336	54,9019	0.0070	13,5933
	4	0.0002	3. 9215	3.1793	50.9803	0.0023	5.4766
	5	0,0003	5.8813	2.0673	45.0980	0.0084	2.5262
	6	0.0007	13. 7254	6.9955	3/.3725	0.0/29	1.4136
	7	o.orrs	9.8039	0.5390	21.5686	0.0105	0.7325
٥	P	0.0011	21.5686				
_	Total	0.0051					

Date 6/44/76 Run # 6		Location outlet	East
Sample volume at STP (ft ³)	- 2 42.4838	Orifice E	
Moisture (%)	- 1.6248	bar. press. ("Hg)	= 49.97 = 48.74
Concentration (grains/ft ³)	= 0000f	avg. Pm (-"Hg) avg. Tm ("F)	= 30.0
Impactor flow rate (acfm)	- 0.4777	H ₂ O (grams or %) ₃ meter volume (ft ³) avg. Ps (+"H ₂ O) avg. Ts (OF) time (minutes)	= 83.3 = 468.510 = 149 = 540
		correction factor	- /

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean
g P	robe &	0.0036	25.000		75.0000		
	0	0.000/	0.9615	13.8172	74. 0384		
) _	1	0.0008	7,6923	86477	66.3461	0.0002	10.9310
	2	0.0010	96153	5.8786	56. 7307	0,0003	7. <i>1300</i>
/_	3	0.0017	16.3461	4.1023	40.3846	0,0006	4.8505
_	4	0.0016	15.3846	2.47/7	25.000	0.004	3.1452
3 _	5	0.0019	18.2692	1.0031	6.7307	0,0003	1.62/0
_	6	0.0006	5.7692	0.7/41	0.9615	0,0002	0.6713
	7	a, ca c a	C.0000	0.4184	0.9615	0. 8000	0. 5466
}	F	0.0001	0.9615				
	Total	0.0104					

6/34 to Night Run

Date 6/25 Run # NR#1 Location outlet Worth Sample volume at STP (ft³) = 350.4370 Orifice F - 49.97 bar. press. ("Hg) Moisture (%) = 2.0111 = 48.74 Concentration (grains/ft³) = 0.0007 avg. Pm (-"Hg) avg. Tm (°F)

Impactor flow rate (acfm) = 0.5054 meter volume (ft³) - 1,475 - 89 = 149.0 = 373.570 avg. Ps (+"H₂0) avg. Ts (OF) = 0 time (minutes) - 775 correction factor

_	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean
	Probe & expander	0.0017	7.2837		90.1162		
4 - -	0	0,00,10	5.8137	13.7534	84.3023		
3 -	1	0.0013	7.5581	8.6071	76.74.71	0,0002	10.8801
/	2	6,00 - 0	11.62 19	5,85%	65.1167	6.000	7.0962
<u>ر</u> ک	3	0.0026	15.1162	3.9827	Sc. eres	6.5004	4.8271
, _	4	0.0030	14418	2,4590	32,508,	0.000 €	3.1294
7_	5	0.00 LB	16.2790	1.0569	16.2745	c.000 :	1.6121
ع _	6	0.0016	9.3025	0.7095	6.716	corry	0.8660
- -	7	a.cor8	4.6511	0.4151	2.3255	e. cerl	0.5427
> _	P	0.0004	2, 3255				
_	Total	0.0172					

Date 6/25/76 Run # 3	74	Location inlet Tim 1620-1645 (alloy	. (1.4)
Sample volume at STP (ft) = 7,2027	Orifice D	ead(1102)
Moisture (7)	-	bar. press. ("Hg)	= 30.0/ = 48.60
Concentration (grains/ft ³) = 0.0664	avg. Pm (-"Hg) avg. Tm (°F)	= 1,592
Impactor flow rate (acfm) = 0.3230	H ₂ O (grams or %) ₃ meter volume (ft ³)	= 2.28 % = 7.594 = 4.50
		avg. Ps (+"H ₂ O) avg. Ts (OF) ² time (minutes) correction factor	= 130

UyW

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated •size	dm/d log D	Geo. Mean (μm)
*37	Probe & expander	0.0075	24.7524		75.2475		
	0						
51	1	0.0004	1.3201	46.1569	73.9273		
54	2	0.0002	0.6600	19.4609	73.2673	6.0011	29,9709
53	3	0.0036	11.5511	9.3729	61.7161	c.0241	13.5057
54	4	0.0027	8.9108	3.1589	52.8052	0.0125	5.4413
55	5	0.0040	13.2013	1,9944	39.6039	0.0439	2.5/00
56	6	0.0037	12.2//2	0.9891	27.3927	0,0266	1.4045
57	7	0.0047	15.5115	0.5356	11.8811	0.0386	0.7278
34	P	0.0036	11.8811				
	Total	6.0303					

Date 6/25/76	Run # 78		Location met	
Sample volume at	STP (ft ³)	- 4.3258	Orifice D	-
Moisture	(%)	-	bar. press. ("Hg) Mw	= 30,6/ = 48,60
Concentration (g	rains/ft ³)	= 0./011	avg. Pm (-"Hg) avg. Tm (°F)	= 1.563 = 85
Impactor flow r	ate (acfm)	-0.3233	H ₂ O (grams or %) ₃ meter volume (ft ³)	= 4.573
			avg. Ps $(\pm^{11}H_2^0)$ avg. Ts $(\overline{^0}F)^2$	= 4,50
			time (minutes)	- 15
			correction factor	

Ugw

_	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated -size	dm/d log D	Geo. Mean (μm)
	robe & xpander	0.0056	20.000		80.0000		
	0						
_	· 1	0.004	1.4285	46.1342	78.5714		
_	2	0.0000	1.0000	19.4513	78.5714	0,0000	29.9561
_	3	0.0043	8.2142	9.3682	70,3571	0.0264	13.4990
_	4	0.0031	11.6714	3.1573	59. 1857	0.0239	5.4386
_	5	0.0053	18.9285	1.9934	40.357/	0,6968	2.5087
_	6	0.0039	13.9285	0.9886	26.4285	0,0467	1. 4038
	7	0.0050	17.8571	0.5352	8.57/4	0.0684	0.7274
3	P	0.0024	8,5714				
	Total	6.6280					

Date 6/25/76	Run # 7C	,	Location inlet	ιΛ
Sample volume at	STP (ft ³)	- 4.3009	Location in let Tim 1806-1821 (2nd Orifice D	
Moisture	(%)	•	bar. press. ("Hg)	= 30.01 = 48.60
Concentration (gr	ains/ft ³)	- 0.0947	avg. Pm (-"Hg) avg. Tm ("F)	= 83.5 = 7.55
Impactor flow ra	te (acfm)	- 0.3214	H ₂ O (grams or %) meter volume (ft ³) avg. Ps (+"H ₂ O) avg. Ts (⁵ F) ²	= 4.28 % = 4.53& = 4.50
				- 130

Uogw

	Stage	Net weight (gm)	% on stage	Size cutoff (μm)	% ≤ stated ∙size	dm/d log D	Geo. Mean (µm)
_	robe & xpander	0,0074	28,6 5 2/		71.3178		
	0					_	
	1	0,0000	0.000	46.2684	71.3/78		
	2	0.000	0.000	19.508/	71.3/78	0.0000	30.0435
	3	6,0003	1.6127	9.3958	70.1550	0.0034	13.5386
_	4	0.0005	1.9379	3,1668	68.2170	0.0038	5.4548
	5	0.0046	17.8294	1.9995	50.3875	0.0845	2.5/64
	6	0,0097	37.5968	0.99/9	12.7906	0.1169	1.4083
	7	0.0026	10.0775	0.5371	2.7/3/	0.0358	0.7299
L	P	0.0007	2.7/3/				
	Total	0.0258					

Date 6/35/76	Run # 7		Location outlet	East
Sample volume at	STP (ft ³)	- 257.4283	Orifice E	
Moisture	(%)	- 2.1314	bar. press. ("Hg) Mw	= 30.0/ = 48.63
Concentration (gra	sins/ft ³)	= 0.0006	avg. Pm (~"Hg) avg. Tm (°F)	= 1,96 = 78
Impactor flow rat	e (acfm)	- 0.524/	H ₂ O (grams or %) ₃ meter volume (ft)	= 116.0 = 474,851
			avg. Ps $(\pm^{\prime\prime} H_2O)$ avg. Ts $(\overline{O}F)^2$	= 0
			time (minutes) correction factor	= 540

Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean
Probe & expander	0.0019	17.1171		82.8628		
0	0.0001	0,9009	/3,4284	81.9819		
1	0.0006	5,4054	8. 4031	76.5165	0.0001	10.6227
2	0.0010	9.0090	5.7114	67.5675	C. Cer.s	6.9278
3	0.0043	20.7207	3,8876	46.8468	c. orce	4.7/2/
4	0.000	R.0180	2,4000	26.5288	a.cecs	3,0545
5	0,0026	2 3,4234	1.0311	5.4054	accey	1.5731
6	0,0003	2.7027	0.6919	2.7027	a. 000/	0.8446
7	0.0003	2.7 -27	0,4043	0.0000	v. care	0.5289
P	0.0000	0.000				
Total	C.C111					

Date 6/18/76	Kun # 8	A	Location unlet	
Sample volume a	t STP (ft ³)	= 5.6092	Location in let Time 0827-0849 (6. Orifice	
Moisture	(%)	•	bar. press. ("Hg) Mw	= 30.16 = 38.70
Concentration (grains/ft ³)	= 0.0594	avg. Pm (-"Hg) avg. Tm (°F)	= 1.43 = 78 = 1.89 %
Impactor flow r	ate (acfm)	= 0.3112	H ₂ O (grams or %) ₃ meter volume (ft ³)	= 5.819
			avg. Ps (+"H ₂ 0) avg. Ts (°F) ²	= 4.50 = 117
			time (minutes) correction factor	a 40

Undw

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated •size	dm/d log D	Geo. Mean
	Probe & expander	0.0104	49.0566		50.9433		
	0						
30	1	0,0004	1.8567	46.9587	49.0566		
31	2	0.0004	1.8867	14.8010	47.1698	0.0029	30,4931
32	3	0.0010	4.7169	9,5383	42.4528	0,0088	13.7429
33	4	0.0010	4.7169	3.2/67	37.755	0.0059	5.5391
34	5	0.0018	8.4905	2.03/9	29.2452	0.0252	2.5566
35	6	0.0022	10.3773	1.0092	16.8679	c.0202	1.4320
36	7	0.0023	15.8490	0.5478	8.0188	0.0243	0.7435
R 38	r	0.0017	6.0188				
_	Total	0.0212					

Date 6/48/76 Run # 88		Location met Tim 0925-0945 (2.	
Sample volume at STP (ft ³)	= 5.5446	Tim 0925-0945 (2.) Orifice D	
Moisture (%)	-	bar. press. ("Hg) Mw	= 30.16 = 28.70
Concentration (grains/ft ³)	= 0. (516	avg. Pm (-"Hg) avg. Tm (°F)	= 83.5
Impactor flow rate (acfm)	- 0.3076	H ₂ O (grams or %) ₃ meter volume (ft ³)	= 1,89%
		avg. Ps $(+^{11}H_2O)$ avg. Ts $(^{O}F)^2$	= 4.50
		time (minutes) correction factor	= 40

UofW

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean (µm)
	Probe & expander	0,0085	44,7265		55.263/		
	0						
37 .	1	0,0002	1.0526	47,2322	54.2105		
38 :	2	0,0000	C.000C	19.9168	54.2105	80000	30.67//
39	3	0.0004	2.1052	1.5746	52 1052	0.0035	13.8236
40	4	0.0009	4.7368	3,2561	47.36.64	0.0054	5.5722
41	5	0.0017	8.4413	2.0445	38. 4. ic	0.0241	25722
42	6	0.0023	11.11002	1.0158	26157	0.0214	1.4411
43 _	7	0,0027	14.2105	0.5517	12.1052	0.0288	0.7486
R 39	P	0.0043	12.152				
	Total	0.0190					

Location in let
Time 1636-1701 (2nd m.H, oxy. lance, alley add.)
Orifice Date 6/28/76 Run # 8C Sample volume at STP (ft³) = 6.9026 bar. press. ("Hg) = 30.16 Moisture \$8,70 (%) avg. Pm (-"Hg) avg. Tm (°F) - 1.483 Concentration (grains/ft³) = 0.0485 - 86.7 H₂O (grams or %) meter volume (ft³) = 1,89% Impactor flow rate (acfm) = 0.3064 = 7.490 avg. Ps (+"H_O) avg. Ts (OF) - 4,50 - 147 time (minutes) - 45 correction factor

UofW

ند	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean
²	Probe & expander	0.0054	25,3521		74.6478		
	0						
51	1	0.0006	28/69	47.3287	71.8309		
ে ই	2	0.0001	0.9389	19.9577	70.8920	0.00/2	30,7339
23	3	0.0006	2.8169	9.6/44	68 .0751	o. 0093	13.8521
54	4		3.755B	3.2430	64.3/92	6.0038	5,5838
55	5	0.0027	12.6760	20489	51.6431	0.0308	2.5777
56	6	0,0036	16.9014	1.0181	34.7417	0.0270	1.4443
57	7	0.0035	164319	0.5530	18.3098	0.0300	0 7504
R40	P	0.0039	18.398				
	Total	0.0213	T				

Date 6/38/76	Run # 8	<i>.</i> 0	Location unlik	
Sample volume at	STP (ft ³)	= 4.1009	Time 1734 = 1749 (bd.) Orifice D de	in chief - slag off - vel
Moisture	(%)	•	bar. press. ("Hg) Mw	= 3c.16 = 38.70
Concentration (g	rains/ft ³)	- 0,0368	avg. Pm (-"Hg) avg. Tm (°F)	= 1.450
Impactor flow r	ate (acfm)	- 0.3034	H ₂ O (grams or %) ₃ meter volume (ft ³)	= 1.89 % = 4.37d
			avg. Ps (+"H ₂ 0) avg. Ts (^O F) ²	= 4.50 = 147
			time (minutes) correction factor	- 15

Urg !	ن
-------	---

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean
	Probe & expander	0.0049	51.0416		48,9583		
	0						
•	1	0,0000	0,0000	47.5633	48.9583		
	2	0,1001	1.0416	20,0570	47.9166	0.0010	30.8865
	3	0.000	2.0833	9.6626	45.8333	0.0024	13. 9213
_	4	0.0003	3./250	3. 2596	42.7083	0.0014	5.6/22
_	5	0.0007	7.2916	2.0597	35.4/66	0,0134	2.5911
	6	0.0011	11.4583	1.0237	23. 1583	0.0138	1.4521
	7	0,0011	11.4583	0.5364	12.5000	0.0159	0.7547
, _	P	0.0013	12.5000				
	Total	0.0096					

Date 6/28/76 Run # 8		location outlet	Foot
Sample volume at STP (ft ³)	- 272,6080	Orifice E	
Moisture (%)	-1.4540	bar. press. ("Hg)	= 30.16
Concentration (grains/ft ³)	= 0.0009	avg. Pm (-"Hg) avg. Tm ("F)	= 3.119 = 98 = 83.8
Impactor flow rate (acfm)	= 0.5550	H ₂ O (grams or %) ₃ meter volume (ft ³) avg. Ps (+"H ₂ O) avg. Ts (OF) time (minutes)	= 301.856 = 0 = 148
		correction factor	- /

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated •size	dm/d log D	Geo. Mean (µm)
TC 43	Probe & expander	0.0039	23.7 <i>8</i> 04		76.2195		
R 104	0	0.000	1.2195	13.0703	75.0000		
R 151	1	0.0008	4.8780	8.1774	70.12/9	0.0002	10.3383
RKA	2	0.0018	10.9756	5.5566	59.1463	0.0006	6.7408
R149	3	3.0031	18.9024	3.7810	40.2439	0.00 10	4.5836
R100	4	o.ceAl	12.8048	2,3328	27.4390	0.0005	2.9.699
R 147	5	0.0029	17.6829	1.0005	9.7560	a 0004	1.5278
R 98	6	0,0014	8,5365	0.6704	1.2195	0. 0004	0.8/90
R 145	7	0.0002	1.2195	0.3902	0.0000	0.0000	0.5115
£3/	P	0,0000	0.0000				
	Total	0.0164					

6/18 to Night Rum Date 6/29/76 Run # NR # 1 Location outlet North Sample volume at STP (ft³) = Jc 4.9577 Orifice F bar. press. ("Hg) = 30.16 (%) = 1.0303 Moisture ■ ** ** ** ** ** Concentration (grains/ft³) = 0.0005 avg. Pm (-"Hg) avg. Tm (°F) = 1.710 = 89.5 E-H₂O (grams or %) meter volume (ft³) Impactor flow rate (acfm) = 0.7//8 = 544,075 avg. Ps (+"H₂0) avg. Ts (OF) - 0 - 128 time (minutes) - 780 correction factor

Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean
Probe & expander	0.0027	14.9484		85.0513		
0	e.cc12	6.7610	11.5355	76. 1505		
1	c.eccs	2.5773	7.20,0	75.7731	6.:00	9-1159
2	0.0023	11.5336	4.6918	63.9175	1 5004	5.937
3	0.00=4	17.5 357	3.3237	46.3 .7	0,0506	4.032
- 4	0.0029	14.9484	2.0456	31.4932	0.0004	2.607.
÷ 5	5.0526	13.4520	0.8710	18.0412	111 6672	1.3348
G 6	0.0020	10.3042	5,0192	7.7319	6.1663	0.7103
7	0.0007	4.6391	C. : 2/2	3.0727	0.1001	0.4380
FF	0.0006	3.0927				
Total	0.0174					

Location met Time of 57-0927 (1st welt) Orifice Date 6/29/76 Run # 9A Sample volume at STP (ft³) - \$,3350 bar. press. ("Hg) = 30,06 Moisture (%) = 48.59 avg. Pm (-"Hg) avg. Tm (°F) - 11413 Concentration (grains/ft³) -0.0682 **-** 84 H₂O (grams or %)₃ meter volume (ft³) ■ d.32 % Impactor flow rate (acfm) - 0.3241 = 8,730 avg. Ps (+"H₂0) avg. Ts (OF) = 4.50 = 155 time (minutes) = 30

Uofw

correction factor

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean (µm)
	Probe & expander	0.0091	-15.4777		74.7212		
•	0						
' \5	1	0,0010	2.7 77	46.5848	71.9444		
"	2	0,0007	1.1444	19.6390	10,500	0.0035	30.2470
/d	3	0.0024	6.6666	9.4565	63,3333	0.0143	13.6218
/3	4	0.0042	11.6566	3.1844	51.6666	0.0168	5.4876
4	5	0.0038	10.5535	2.009/	41.777	0.0360	2.5294
15	6	0.0064	17.7777	0.9946	2 2253	0.0397	1.4136
/R -	7	0.0058	16.1111	0.5369	7.2222	0.0410	0.7307
१४४	P	0.0026	7.2222				
	Total	0.0360					

Date 6/29/76 Run # 98 Location inlet Time 0158-1028 (2 md melt)
Orifice 0 Sample volume at STP (ft³) = 8./956bar. press. ("Hg) = 30.06 Moisture (%) = 28,59 avg. Pm (-"Hg) avg. Tm ("F) = 1,443 Concentration (grains/ft³) = 0.0532 - 89 H₂O (grams or %)₃ meter volume (ft³) = 4.32 % Impactor flow rate (acfm) = 6.3167 - 8.672 avg. Ps (+"H₂0) avg. Ts (OF) = 4,50 - 155 time (minutes) - 30 correction factor

Dof w

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean
TC #49	Probe & expander	0.0069	24.9547		15.0102		
	0						
30	1	0.0009	3 190	41.9809	71.6111		
31	2	0.0007	2.5170	19.8065	691:0	6.80:5	30.5049
32	3	0.0013	4.6731	9.5378	64.6209	0.0018	13.7445
33	4	0.00.1	7.5812	3.2125	57.0397	0,000	5.5354
34	5	0.0031	14.674.1	1,5012	42.1602	c.0375	2.5520
32	6	0.0049	17.6845	1.0040	25.2707	0.6369	1.4267
36	7	0.0048	17.32.65	0.5426	7.9422	0.0346	0.738/
R43	P	0.0026	7.9422				
	Total	0.6217					

Location in let Time 1557-1614 (beginning 1st mett) Orifice D Date 6/49/76 Run # 90 Sample volume at STP (ft³) = 4.1495bar. press. ("Hg) =30,06 Moisture **(%)** = a8.59 avg. Pm (-"Hg) avg. Tm ("F) = 1.40 = 95 Concentration (grains/ft³) = 0.1266 H₂O (grams or %)₃
meter volume (ft³) · 3.32% Impactor flow rate (acfm) = 0.3227 = 4.432 avg. Ps (+"H₂0) avg. Ts (OF) = 4.50 - 155 time (minutes) - 15 correction factor

UZW

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated •size	dm/d log D	Geo. Mean (μm)
	Probe & expander	0,0075	22.1893		71.8106		
·	0						
,	1	0,0009	2.6627	46.6861	75.1479		
5	2	0,0009	2.6627	19.6819	72.4852	0.0091	30.3/29
٠	3	0,0037	10.9467	9.4773	61.3384	0.0443	13.6577
' >	4	0.00 18	6.2848	3.1916	53.2544	6.0725	5.4998
8	5	0.0051	15.0887	2.0137	38.1656	0.0970	2.5352
19	6	0.0055	16.2721	0.9970	21.8934	C. c 685	1.4169
50	7	0.0052	15.3846	0.5383	6.5088	6.0739	0.7326
47	r	0,0012	6.5088				
	Total	0.0338					

Date 6/29/76 Run #	90	Location inlet	(4.4)
Sample volume at STP (ft ³) = 4.1378	Time 1652-1707 (e Orifice 0	uel 1st mest)
W 4 .		bar. press. ("Hg)	= 30.06
Moisture (7	ሬ) =	Mu	= 28.59
Concentration (grains/	Et ³) = 0.14 ₁₃	avg. Pm (-"Hg) avg. Tm ("F)	= 1.50 = 95
Impactor flow rate (ac	fm) = 0.32/8	H ₂ O (grams or %) meter volume (ft ³)	= 4.33 % = 4.435
		avg. Ps (+"H ₂ O) avg. Ts (OF) ²	= 4,50
			- 155
		time (minutes)	- 15
		correction factor	=

UZW

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated •size	dm/d log D	Geo. Mean (μm)
~C. [#] .51	Probe & expander	0,0078	~ 0.634g		79.3650		
	0						
3>	1	0.0010	2.6955	46.7522	76.7195		
38	2	0,0003	6.793F	19.7099	75.92.59	0.0030	30.3559
९६	3	0.0013	3.4391	9.4909	72.4867	0.0156	13.6771
40	4	0.00 29	7.6719	3./963	64.8148	0.0234	5.5078
41	5	0.0074	19.5767	2.0/68	45. 2380	0.1412	2.5389
42	6	01.0068	17.9624	D. 9986	27. 2486	0.0850	1.4191
43	7	0.0062	16.4:21	0.5393	10.8465	0.0884	0.7338
51	P	0,0041	10.8465				
·	Total	0.0378					

Date 6/39/76 Run #	9	Location outlet	North
Sample volume at STP (ft ³	-259.6227	Orifice F	
Moisture (%)	- 1.7198	bar. press. ("Hg)	= 38.29 = 30.06
Concentration (grains/ft ³)	= 0.0009	avg. Pm (-"Hg) avg. Tm (°F)	= 1.6% = 94.5
Impactor flow rate (acfm)	- 0.5349	H ₂ O (grams or %) ₃ meter volume (ft) avg. Ps (±"H ₂ O) avg. Ts (OF) time (minutes) correction factor	= 94.4 = 480.584 = 0 = 133 = 540

Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean (µm)
robe & xpander	0.0001	12.7272		87.2727		
0	0.0006	3.6363	13.3580	83. 43 63		
1	6,000	5.4545	8,3582	78.1818	0.0002	10.5664
2	0.0017	10.3030	5.6801	67.8787	0.0006	6.8902
3	0,0028	16.9696	3.8658	50.9090	0.0010	4.6858
4	0.0031	18.7878	2.3855	32./2/2	0.0008	3,0367
5	0.0036	11.818/	1.0238	103030	0.0895	1.5628
6	0.0011	6.6666	0.6863	3.6363	0.0003	0.8382
7	0.0004	1.2/21	04002	2.4242	0.000	0.5241
P	0.0004	2.4242				
Total	0.0165				Ī	

6/39 te Might Rm

Date 6/30/76 Run # NR #3 Location outlet North Sample volume at STP (ft³) = 390.7335 Orifice F bar. press. ("Hg) =30.06 _ 1.5386 (%) Moisture = A8.59 avg. Pm (-"Hg) avg. Tm (°F) = 1,64 Concentration (grains/ft³) = 0.0008 **93** H₂O (grams or %)₃ meter volume (ft³) = /27./ Impactor flow rate (acfm) = 0.4830 = 411.697 avg. Ps (+"H₂0) avg. Ts (^oF)² - 0 = \33 = 900 time (minutes) correction factor

Stage	Net weight (gm)	% on stage	Size cutoff (μm)	% ≤ stated •size	dm/d log D	Geo. Mean
Probe expande		12-5581		87.4418		
0	0.00/0	4.6511	14.0612	82.7906		
1	0.00/3	6.8465	8.8016	76.7441	0.0002	11.1252
2	0.0026	12.0930	5.9836	64.6511	0,0006	7.257/
3	0.0037	17.2093	4.0741	47.4418	0.0008	4.9374
4	0.0040	18.6046	2.5164	28.8372	0 0007	3.2019
5	0.0034	15-8139	1.0827	13.0232	8.0003	1.6500
6	0.0019	8.8372	0.7276	4.1860	0.0004	0.8876
7	0.0004	1.8604	0.4267	2.3255	0.0000	0.5572
P	0.0005	2.3255				
Total	0.0215					

Date 6/30/76 Run # 10 A			Time 0829-0844 (but charge-Zathnett) Orifice		
Sample volume at	STP (ft ³)	- 4.3048			
Moisture	(%)	-	bar. press. ("Hg) Mw	= 30,03 = 48.68	
Concentration (gra	ins/ft ³)	= 0.0571	avg. Pm (-"Hg) avg. Tm (F)	= //3 8 8 = 84	
Impactor flow rat	e (acfm)	- 0.3237	H ₂ O (grams or %) ₃ meter volume (ft ³)	= 1,56% = 4,548	
			avg. Ps (+"H ₂ 0) avg. Ts (^O F) ²	= 4.50 = 134	
			time (minutes)	- 15	
			time (minutes) correction factor	• <i>15</i>	

UZW

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean
7८ ⁴ 56	Probe & expander	0,0076	48.4016		51.5923		
	0						
15	1	0,0003	1.9108	46.1892	49.6815		
16	2	0,0004	2.5477	19.4741	47.1337	0.0038	29.9916
17	3	0.0006	3.8216	9.3789	43.3/21	0.0068	13.5147
18	4	0.000	3.8216	3.1606	39.4904	0.0046	5,4445
19	5	0.0014	8.9171	1.9952	30.5732	0.0255	2.5112
20	6	0.0012	7.6433	0.9893	22.9299	0.0143	1.4049
21	7	0.0018	11.4649	0.5354	11.4649	0.0245	0.7278
53	F	0,0018	11.4649				
	Total	0.0157					

Date 6/30/76 Run #	108	Location unlet	\
Sample volume at STP (f	(t ³) - 4.5332	Location mulet Tim 0915-0931 (2nd Orifice D	melt)
Moisture (7	\	bar. press. ("Hg)	= 30.03
(4	_	Mw avg. Pm (-"Hg)	= 48.68 = 1.50
Concentration (grains/f	$(t^3) = 0.0497$	avg. Pm (-"Hg) avg. Tm (F)	= 85.4
Impactor flow rate (ac	fm) = 0.3/96	H ₂ O (grams or %) ₃ meter volume (ft ³)	= 1.56% = 4.817
		avg. Ps $(+''H_2O)$ avg. Ts $(OF)^2$	= 4.50
		time (minutes)	- 16 - 16
		correction factor	

UofW

	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean
	Probe & expander	0.0073	50,6949		49.3055		
	0						
51	1	0,000/	0.6944	46.4874	42.6/11		
53	2	0,000/	0.6944	19.6005	47.9/66	0.0009	30.1857
53	3	0.0004	2.7717	9.4402	45.1388	0.0043	13.6027
54	4	0,0006	4.1666	3.18/8	40.9722	0.6043	5.4806
55	5	0.0007	4.8611	2.069	36.///	0.0/2/	2.5282
56	6	0,0013	9.0277	0.4964	27.0833	0.0147	1.4148
57	7	0.000	15.2777	0.5397	11.8055	0.0285	0.7333
R46	P	0.0017	11.8055				
	Total	0.0144					

Date 6/30/76 Run # 10	C	Loca
Sample volume at STP (ft ³)	-4.1741	Time Orif:
Moisture (%)	-	bar. Mw
Concentration (grains/ft ³)	= 0.0856	avg.
Impactor flow rate (acfm)	- 0.339	H ₂ O (meter avg.
		avg.

Location white Time 1459 - 1514 (1st Orifice D	m. (+l)
Orifice O	
bar. press. ("Hg)	= 30,03
Ma	= ⇒8,58
avg. Pm (-"Hg)	= 1.40
avg. Tm (°F)	- 33.8
H ₂ O (grams or %) ₃ meter volume (ft ³)	- 1.56 %
	= 4,488
avg. Ps (+"H ₂ 0)	= 4,50
avg. Ts (OF)	= 734
time (minutes)	- 15-
correction factor	

Ufw

	Stage	Net weight (gm)	% on stage	Size cutoff (μm)	% ≤ stated •size	dm/d log D	Geo. Mean (μm)
_	obe &	0.0095	41.6666		58,3333		
	0						
	1	0,0001	0.4385	46.9086	57.6947		
	2	0,0010	4.5859	19.7789	53.5087	0,000	30.4598
	3	0.0015	6.5789	9.3268	46.9298	0.0177	13.7270
	4	0.0020	8.7719	3.2//7	38.1578	0.0159	5.5315
	5	0.0031	13 .5964	2.0282	24.5614	0.0583	2.5523
	6	0.0019	2.7/92	1.0066	11.8421	0.0357	1.4289
	7	0.0017	7.4561	0.5457	4.3859	0.0240	0.7411
-	P	0,0010	4.3859				
•	Total	0.0218					

Location in Let

Tim 1549-1604 (2nd nelt) V

Orifice Date 6/30/76 Run # 100 Sample volume at STP (ft³) = 4.1698 bar. press. ("Hg) =30.03 Moisture (%) = 28.68 avg. Pm (-"Hg) avg. Tm ("F) = 1,475 Concentration (grains/ft³) = 0.0868 = 94.4 = 1.56% H₂O (grams or %) meter volume (ft³) Impactor flow rate (acfm) = 0.3/35 = 4,500 avg. Ps (+"H₂0) avg. Ts (°F)² = 4.50 = /34 time (minutes) - 15 correction factor

UofW

_	Stage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated •size	dm/d log D	Geo. Mean (µm)
	Probe & expander	0.0085	36.7965		63,2034		
_	0						
_	1	0,000	0.000	46.9330	63.2034		
_	2	0.0004	1.7316	19.7892	61.47/8	0.0040	30.4757
_	3	0.0009	3.8961	9.53/8	57.5757	0.0/06	13.7342
_	4	0.0061	26,4069	3.2/34	31.1688	0.0485	5.5344
_	5	0.0014	6.5606	2.0293	25./082	0.0263	2.5537
_	6	0,0016	6.9264	1.0072	18.1818	0.0197	1.4297
_	7	0,0027	11.6883	0.5460	6.4935	0.0381	0.7416
, _	P	0.0015	6.4435				
	Total	0.02:1	ļ				

Date 6/30/76 Run # 16			Location outlet North		
Sample volume at	STP (ft ³)	- 275. 4868	Orifice F		
Moisture	(%)	_ /.3220	bar. press. ("Hg) Mw	= 30.03 = 38.70	
Concentration (gr	ains/ft ³)	= 0.000 8	avg. Pm (-"Hg) avg. Tm (°F)	= 1.963 = 93.a	
Impactor flow rate (acfm)		- 0.5653	H ₂ O (grams or %) ₃ meter volume (ft ³)	= 77.0 = 30a/544	
			avg. Ps $(\pm^{11}H_20)$ avg. Ts $(\overline{^{0}F})^2$	- /30	
			time (minutes) correction factor	= 540	

S	tage	Net weight (gm)	% on stage	Size cutoff (µm)	% ≤ stated ·size	dm/d log D	Geo. Mean (µm)
	be & ander	0.0027	18.6206		8/.3793		
	0	0.0005	3.4482	12.9674	77.9310		
	1	0.0009	6.2068	8.1124	71.7241	0.0002	10.2565
	2	0.0019	13.1034	5.5/20	58.6206	0.0006	6.6870
	3	0.0024	16.5517	3.7503	42.0689	0.0018	4.5466
	4	0.0027	18.6206	2.3/34	23.4482	0.0007	2.9455
	5	0.002/	14.4827	0.9917	8. 9655	0.0003	1.5146
	6	0.0010	6.8965	0.6641	2.0689	0.0003	0.8115
	7	0.0001	1.3793	0386/	0.6896	0.0000	05063
	P	0.0001	0.6896				
To	tal	0.0145					

APPENDIX F FINE PARTICLE MEASUREMENTS

Table F-1. FINE PARTICLE DATA FOR BAGHOUSE INFLUENT, TEST 1

			,	 	, , , , , , , , , , , , , , , , , , ,	
	!		Condensation	nuclei		
			counte	r	Dust cou	nter
					<u> </u>	
			Particle		Particle	
	Phase of	Compartment	concentration,		concentration,	-
Clock	process	being	particles/	size,	particles/	size,
time	cycle	cleaned	$m^3 \times 10^{-6}$	<u>></u> μm	$m^3 \times 10^{-6}$	<u>></u> μm
			6			
1521		ļ	9.6×10^{6}	0.0025	2,400	0.3
1524			1.1 x 10;	0.0025	180	0.5
1526			9.2×10^{6}	0.0025	160	1.0
1529			5.7 x 10 ⁶	0.0025	0.41	2.0
1533			3.8×10^{6}	0.0025	2,400	0.3
1535			5.8×10^{6}	0.0025	2,300	0.3
1537			5.8×10^{6}	0.0025	2,500	0.3
1539			$1.6.2 \times 10^{\circ}$	0.0025	2,300	0.3
1541			7.0×10^6	0.0025	2,000	0.3
1543		1	_	0.0025	29	0.5
1554			7.4×10^{6}	0.0025	2,200	0.3
1600			$1.5.6 \times 10^{\circ}$	0.0025	1,600	0.3
1604			7.4 x 10	0.0025	2,300	0.3
1608			$1.4.4 \times 10^{\circ}$	0.0025	54	0.5
1612			4.1 x 10°	0.0025	19	1.0
1616			3.9×10^{6}	0.0025	0.38	2.0
1619			6.6×10^{6}	0.0025	2,300	0.3
1624			1.7 x 10'	0.0025		
1627			7.7×10^{6}	0.0025	2,700	0.3
1630			9.3×10^{6}	0.0025	2,500	0.3
1634			6.6×10^{6}	0.0025	120	0.5
1637			$8.9 \times 10_6^6$	0.0025	22	1.0
1640			$8.6 \times 10_{6}^{6}$	0.0025	0	2.0
1644			8.0×10^{6}	0.0025	1,600	0.3
1647			$8.0 \times 10^{6}_{7}$	0.0025	1,400	0.3
1650			6.0×10^{7}	0.0025	300	0.3
1654			7.8×10^6	0.0025	20	0.5
1657			8.0×10^{6}	0.0025	70	1.0
1659			8.1×10^{6}	0.0025	0.59	2.0
1702			8.2×10^{6}	0.0025	2,100	0.3
1706			3.3×10^{7}	0.0025	1,600	0.3
1709			3.0×10^{6}	0.0025	1,500	0.3
1712			5.7 x 10 ⁷	0.0025	1,200	0.3
1715			$3.8 \times 10^{\prime}_{7}$	0.0025	16	0.5
1718			$3.2 \times 10^{\prime}_{7}$	0.0025	23	1.0
1721	,		.2.0 x 10'	0.0025	0.00	2.0
1724			2.0×10^{6}	0.0025	1,600	0.3
1727			2.9×10^{6}	0.0025	2,400	0.3
1730			5.0 x 10'	0.0025	1,300	0.3
			+		<u> </u>	

Table F-1 (continued). FINE PARTICLE DATA FOR BAGHOUSE INFLUENT, TEST 1

			Condensation	nuclei		
			counte		Dust cou	nter
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm
1733 1735 1738 1741 1744 1747 1750 1753 1755 1758 1801 1804 1807 1810 1813 1816 1818 1821 1824 1827 1830 1833 1836 1838 1841 1843 1846 1848 1851 1854 1857 1859 1902 1905	Cycle	Creaned	4.3 x 107 4.7 x 107 2.0 x 107 2.1 x 107 3.4 x 107 3.4 x 107 3.1 x 107 3.2 x 107 3.2 x 107 3.2 x 107 3.7 x 107 1.6 x 107 1.6 x 107 1.9 x 107 1.9 x 107 4.4 x 107 4.4 x 107 2.1 x 107 4.1 x 107 4.1 x 107 4.2 x 106 1.2 x 106 1.2 x 106 1.1 x 106 3.1 x 106	0.0025 0.0025	530 140 0.33 2,400 2,000 2,200 1,500 340 0.11 2,500 2,400 2,400 530 550 370 0.68 2,200 2,100 1,800 120 48 1.2 970 830 1,500 320 380 0.33 2,300 2,300 2,300 2,300 2,300 340 0.00	0.5 1.0 2.0 0.3 0.3 0.3 0.5 1.0 2.0 0.3 0.3 0.5 1.0 2.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
1907 1910 1913 1916 1918			2.6 x 106 3.0 x 106 6.4 x 106 6.4 x 106 3.8 x 106	0.0025 0.0025 0.0025 0.0025 0.0025	2,200 2,200 1,900 214 170	0.3 0.3 0.3 0.5 1.0

Table F-1 (continued). FINE PARTICLE DATA FOR BAGHOUSE INFLUENT, TEST 1

			Condensation nuclei counter		Dust counter		
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm	
1921 1924 1927 1929 1932 1934 1937 1940 1943 1945 1948 1950 1953			6.3 x 106 5.1 x 106 5.7 x 107 2.5 x 107 2.8 x 107 6.1 x 106 3.8 x 107 5.8 x 107 5.8 x 106 5.8 x 107 4.9 x 107 6.1 x 107 6.1 x 107	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	1.2 2,200 2,000 1,600 92 26 0.11 420 1,500 1,700 140 19	2.0 0.3 0.3 0.5 1.0 2.0 0.3 0.3 0.5 1.0 2.0	

Table F-2. FINE PARTICLE DATA FOR BAGHOUSE EFFLUENT, TEST 2

			Condensation counte		Dust counter	
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, <u>></u> μm
1116 1118 1121 1126 1128 1130 1132 1143 1146 1148 1153 1155 1158 1200 1203 1205 1208 1210 1212 1215 1217 1219 1222 1224 1226 1228 1230 1233 1233	Cycle	CTEAMEU	5,000 6,000 12,000 160,000 80,000 13,000 36,000 10,000 16,000 50,000 14,000 20,000 14,000 14,000 22,000 150,000 12,000	0.0025 0.0025	17 11 7.4 70 47 35 22 10 6.7 38 8.4 4.5 6.5 24 3.4 3.1 2.9 43 6.1 3.8 3.4 2.4 61 8.9 5.4 3.7 3.7 42 5.4	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
1238 1240 1242 1244 1246 1249 1252			12,000 10,000 15,000 22,000 17,000 15,000 16,000	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	4.8 3.6 6.9 37 4.0 3.3	0.3 0.3 0.3 0.3 0.3 0.3

Table F-2 (continued). FINE PARTICLE DATA FOR BAGHOUSE EFFLUENT, TEST 2

			Condensation counte		Dust counter	
Clock	Phase of process	Compartment being	Particle concentration, particles/ m ³ x 10 ⁻⁶	size,	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size,
time	cycle	cleaned	ш. х то .	<u>></u> μm	m x 10 °	<u>></u> μm
1300			10,000	0.0025	17	0.3
1306			20,000	0.0025	69	0.3
1309			5,200	0.0025	16	0.3
1312			6,600	0.0025	9.2	0.3
1314			4,000	0.0025	14	0.3
1316		ł	8,000	0.0025	25	0.3
1319			170,000	0.0025	64	0.3
1321			115,000	0.0025	34	0.3
1323			100,000	0.0025	18	0.3
1325			58,000	0.0025	19	0.3
1328			44,000	0.0025	56	0.3
1330			70,000	0.0025	32	0.3
1332			38,000	0.0025	37	0.3
1345			20,000	0.0025	55	0.3
1347			18,000	0.0025	5.3	0.3
1349			20,000	0.0025	26	0.3
1353			8,000	0.0025	24	0.3
1405			7,000	0.0025	14	0.3
1408			8,000	0.0025	8.2	0.3
1410			9,500	0.0025	7.4	0.3
1413		ļ	110,000	0.0025	60	0.3
1415					2.1	0.5
1416				,	0.28	1.0
1417					0.04	2.0
1419			11,000	0.0025	9.9	0.3
1422			7,500	0.0025	6.5	0.3
1424			250,000	0.0025	33	0.3
1425					1.1	0.5
1427					0.35	1.0
1428					0.04	2.0
1430			9,000	0.0025	11	0.3
1432			9,000	0.0025	8.2	0.3
1435			12,000	0.0025	23	0.3
1436		ľ			1.1	0.5
1438					0.26	1.0
1439					0.02	2.0
1440			12,000	0.0025	4.6	0.3
1443			4,800	0.0025	7.9	0.3

Table F-2 (continued). FINE PARTICLE DATA FOR BAGHOUSE EFFLUENT, TEST 2

			Condensation counte		Dust counter	
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm	Particle concentration, particles/ m ³ x 10-6	Particle size, > µm
1445 1449 1450 1512			19,000 38,000	0.0025	17 0.88 0.35 55	0.3 0.5 1.0 0.3
1515 1517 1518 1519			33,000 28,000	0.0025 0.0025	36 20 0.88 1.1	0.3 0.3 0.5 1.0
1520 1522 1524 1528 1529			33,000 20,000 18,000	0.0025 0.0025 0.0025	0.11 39 14 6.9 0.53	2.0 0.3 0.3 0.3 0.5
1530 1531 1534 1536			29,000 20,000	0.0025 0.0025	0.64 0 14 7.6	1.0 2.0 0.3 0.3
1538 1544 1545 1546 1548			15,500	0.0025	5.5 0.35 0.18 0.02 4.6	0.3 0.5 1.0 2.0 0.3
1552 1555 1556 1557			14,000 50,000	0.0025 0.0025	2.4 49 0.60 0.21	0.3 0.3 0.5 1.0
1558 1600 1603 1606 1608			13,500 10,000 22,000	0.0025 0.0025 0.0025	0.04 3.8 4.7 23 0.60	2.0 0.3 0.3 0.3 0.5
1609 1610 1612 1616		:	6,500 200,000	0.0025 0.0025	0.28 0 6.6	1.0 2.0 0.3 0.3
1618 1620 1621			18,000	0.0025	11 0.35 0.14	0.3 0.5 1.0

Table F-2 (continued). FINE PARTICLE DATA FOR BAGHOUSE EFFLUENT, TEST 2

Clock time process cycle being cleaned particles/m³ x 10-6 particles/m³ x 10-6 1622				Condensation nuclei counter		Dust counter		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Clock	process	being	concentration, particles/	size,	concentration, particles/	Particle size, > μm°	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1624 1626 1629 1631 1631 1632 1636 1637 1640 1642 1643 1644 1650 1652 1653 1654 1656 1658 1700 1702 1704			17,000 9,000 6,600 6,400 6,800 9,200 10,000 50,000 17,000 7,000 7,000 11,000 85,000 48,000 39,000 20,000 16,000 14,000 20,000 48,000 44,000	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	3.9 39 34 0.53 0.21 0.02 3.3 35 25 0.14 0.18 0.02 1.7 57 5.6 0.42 0.18 0.04 6.0 31 78 11	2.0 0.3 0.3 0.5 1.0 2.0 0.3 0.5 1.0 2.0 0.3 0.3 0.5 1.0 2.0 0.3 0.3 0.3 0.5 1.0	

Table F-3. FINE PARTICLE DATA FOR BAGHOUSE EFFLUENT, TEST 4

			Condensation counte		Dust cou	nter
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm
1203 1205 1208 1210 1212 1216 1218	Second melt Tap		36,000 72,000 45,000 70,000 5,000 28,000 27,000	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	36 15 26 42 34 44	0.3 0.3 0.3 0.3 0.3 0.3
1219 1222 1225 1228 1230 1230	First melt	10	25,000 6,000 6,000	0.0025 0.0025 0.0025	15 24 14	0.3 0.3 0.3
1232 1234 1236 1241 1242 ¹ 2		2	11,000 4,000 9,000 27,000	0.0025 0.0025 0.0025 0.0025	32 16 17	0.3 0.3 0.3
1245 1247 1252 1252½ 1253½ 1255		3	4,000 3,000 1,000 32,000 6,000	0.0025 0.0025 0.0025 0.0025 0.0025	21 11 4.0	0.3 0.3 0.3
1257 1259 1302 1309 1311 1313			23,000 3,000 3,000 4,000 2,000 5,000	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	14 6.8 5.0 5.8 5.6 4.3	0.3 0.3 0.3 0.3 0.3 0.3
1315 1329 1331 1337	Back charge Second	7	6,000 4,000 3,000	0.0025 0.0025 0.0025 0.0025	18 15 4.1 48	0.3 0.3 0.3
1342 1344 1348 1350	melt	8	35,000 1,000 10,000	0.0025 0.0025 0.0025	24 6.1 75	0.3 0.3 0.3

Table F-3 (continued). FINE PARTICLE DATA FOR BAGHOUSE EFFLUENT, TEST 4

			Condensation nuclei counter		Dust counter	
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm
1353 1357 1359		0	12,000 4,000 8,000	0.0025 0.0025 0.0025	53 26 28	0.3 0.3 0.3
1359 1402 1405 1408 1410		9	62,000 8,000 5,000 20,000	0.0025 0.0025 0.0025 0.0025	25 8.5 5.7 3.5	0.3 0.3 0.3 0.3
1410 1412 1414 1417		10	54,000 22,000 10,000	0.0025 0.0025 0.0025	31 13 5.1	0.3 0.3 0.3
1421 1429 1431 1432		2	9,000 3,000	0.0025	3.7 3.1	0.3
1434 1437 1439 1441	l		32,000 10,000 22,000 8,000	0.0025 0.0025 0.0025 0.0025	36 5.2 3.2 2.1	0.3 0.3 0.3 0.3
1443 1444 1446 1449		3	10,000 29,000 22,000 18,000	0.0025 0.0025 0.0025 0.0025	1.8 58 0.93 4.3	0.3 0.3 0.3 0.3
1452 1454 1455 1456 1459		4	14,000 36,000 31,000	0.0025 0.0025 0.0025	3.4 29 6.2	0.3
1505 1506 1507 1510	Slag	5	8,000 57,000 12,000	0.0025 0.0025 0.0025	1.9 53 4	0.3 0.3 0.3
1415 1517 1520 1527	off Reboil	6	15,000 14,000 36,000 2,000	0.0025 0.0025 0.0025 0.0025	2.4 1.9 57 1.6	0.3 0.3 0.3 0.3
1527 1529 1531 1535	VEDOTT	7	27,000 30,000	0.0025 0.0025	39 3.0	0.3

Table F-3 (continued). FINE PARTICLE DATA FOR BAGHOUSE EFFLUENT, TEST 4

			Condensation counte		Dust counter	
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/m ³ x 10 ⁻⁶	Particle size, > µm	Particle concentration, particles/m ³ x 10-6	Particle size, > µm
1541		8				
1547		}	30,000	0.0025	36	
1551	Тар		,			,
1552		9				•
1557			50,000	0.0025	21	0.3
1600	First]	30,000	0.0025	28	0.3
1604	melt	10	-			
1607			13,000	0.0025	26	0.3
1609			23,000	0.0025	24	0.3
1611		1	20,000	0.0025	15	0.3
1614			28,000	0.0025	8.4	0.3
1615						
1628			40,000	0.0025	30	0.3
1631	(1	35,000	0.0025	1.1	0.5
1632			30,000	0.0025	0.79	1.0
1634			35,000	0.0025	0.02	2.0
1640			30,000	0.0025	35	0.3
1648			303,000	0.021	21	0.3
1655			40,000	0.021	0.12	0.5
1656			24,000	0.021	0.05	1.0
1656					0.0	2.0
1700			34,000	0.033	9.3	0.3
1702			19,000	0.033	0.28	0.5
1703			19,000	0.033	0.05	1.0
1708	-		58,000	0.047	0.97	0.3
1710			34,000	0.047	0.23	0.5
1712)		48,000	0.047	0.21	1.0
1726			40,000	0.072	0.94	0.3
1727			12,000	0.074	0.11	0.5
1729	Back		11,500	0.074	0.02	1.0
	charge					
1734	Second		25,000	0.074	58	0.3
1736	melt		50,000	0.074	38	0.3
1737	Í		50,000	0.074	2.6	0.5
1738	İ		50,000	0.074	1.1	1.0

Table F-4. FINE PARTICLE DATA FOR BAGHOUSE INFLUENT, TEST 5

			Condensation counte		Dust cou	nter
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/m ³ x 10 ⁻⁶	Particle size, 	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm
1251 1254 1257 1300 1307 1310 1312 1314 1316 1318 1321 1323 1325 1327 1330 1332 1340 1343 1345 1347 1349 1351 1358 1400 1403 1405 1407 1410 1413 1415 1419 1422 1425 1427 1429 1431 1432 1435 1437 1440	Second melt Slag off		5.6 x 105 5.4 x 106 6.3 x 106 1.9 x 106 1.6 x 106 2.6 x 105 7.8 x 106 7.4 x 106 1.1 x 106 2.0 x 106 2.1 x 106 2.1 x 106 2.2 x 106 2.4 x 106 2.7 x 106 2.7 x 106 2.4 x 106 4.4 x 106 4.4 x 106 5.0 x 106 6.9 x 107 1.1 x 106 2.1 x 106 2.2 x 106 2.4 x 106 4.5 x 106 6.9 x 107 1.1 x 106 6.9 x 106 6.9 x 107 1.1 x 106 6.5 x 106 6.5 x 106 6.5 x 106 7.9 x 106 6.5 x 106 6.5 x 106 7.9 x 106 7.0 x 106	0.0025 0.0025	2,000 2,000 750 940 320 170 140 120 180 200 80 220 160 150 100 160 70 63 77 85 84 61 1,200 850 290 240 250 230 95 250 600 2,100 120 470 470 220 220 110 72 380	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Table F-4 (continued). FINE PARTICLE DATA FOR BAGHOUSE INFLUENT, TEST 5

1		Condensation nuclei counter		Dust counter	
Phase of Control Clock process time cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm
1442 1444 1446 1448 1450 1453 1459 1501 1504 1506 1515 Tap 1517 1519 First 1521 1523 1525 1527 1529 1531 1533 1535 1538 1600 1613 1616 1619 Back charge 1624 charge 1624 Second melt 1628 1634 1636 1638 1642 1644 1646 1652 1655 1658		4.6 x 106 4.8 x 106 4.4 x 106 5.0 x 106 4.4 x 107 4.0 x 106 3.5 x 106 3.9 x 107 1.2 x 107 1.2 x 107 3.5 x 106 3.7 x 106 6.3 x 106 6.3 x 106 6.3 x 106 6.5 x 106 8.2 x 107 2.8 x 106 8.2 x 107 2.8 x 106 8.2 x 106 1.6 x 106 1.7 x 106 3.4 x 106 1.7 x 106 1.7 x 106 1.7 x 106 1.7 x 106 1.7 x 106 1.7 x 106 1.8 x 106 1.9 x 106 1.1 x 106 1.1 x 106 1.2 x 106 1.3 x 106 1.4 x 106 1.5 x 106 1.6 x 106 1.7 x 106 1.8 x 106 1.9 x 106 1.1 x 106 1.1 x 106 1.2 x 106 1.3 x 106 1.3 x 106 1.4 x 106 1.5 x 106 1.6 x 106 1.7 x 106 1.8 x 106 1.9 x 106 1.1 x 106 1.1 x 106 1.2 x 106 1.3 x 106 1.4 x 106 1.5 x 106 1.6 x 106 1.7 x 106 1.8 x 106 1.9 x 106 1.1 x 106 1.1 x 106 1.2 x 106 1.3 x 106 1.4 x 106 1.5 x 106 1.6 x 106 1.7 x 106 1.8 x 106 1.9 x 106 1.1 x 106 1.1 x 106 1.2 x 106 1.3 x 106 1.4 x 106 1.5 x 106 1.6 x 106 1.7 x 106 1.8 x 106 1.9 x 106 1.1 x 106 1.1 x 106 1.2 x 106 1.3 x 106 1.4 x 106 1.5 x 106 1.6 x 106 1.7 x 106 1.8 x 106 1.9 x 106 1.1 x 106 1.1 x 106 1.2 x 106 1.3 x 106 1.4 x 106 1.5 x 106 1.6 x 106 1.7 x 106 1.8 x 106 1.9 x 106 1.0 x 106 1.1 x 106 1.2 x 106 1.3 x 106 1.4 x 106 1.5 x 106 1.6 x 106 1.7 x 106 1.8 x 106 1.9 x 106 1.0 x 106 1.1 x 106 1.1 x 106 1.2 x 106 1.3 x 106	0.0025 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0023 0.003 0.0	1,600 1,500 290 310 570 270 300 1,500 1,300 1,400 3,500 4,700 4,900 2,900 990 2,600 4,300 2,500 2,100 2,800 2,700 1,800 440 150 250 220 190 830 4,200 1,400 190 210 470 540 150 270 580 590 260	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Table F-4 (continued). FINE PARTICLE DATA FOR BAGHOUSE INFLUENT, TEST 5

			Condensation nuclei counter		Dust counter		
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm	
1703 1705 1707 1711 1714 1721 1724 1728 1730 1733	Slag off		1.2 x 10 ⁶ 1.5 x 10 ⁶ 1.1 x 10 ⁶ 2.5 x 10 ⁶ 5.2 x 10 ⁷ 1.3 x 10 ⁷ 1.3 x 10 ⁷ 1.4 x 10 ⁷ 1.3 x 10 ⁷	0.071 0.071 0.071 0.048 0.048 0.014 0.014 0.014	600 480 690 660 120 130 87 140 750	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	

Table F-5. FINE PARTICLE DUST FOR BAGHOUSE EFFLUENT, TEST 6

			!	Condensation nuclei counter		Dust counter	
	Phase of	Compartment	Particle concentration,		Particle concentration,	Particle	
Clock time	process cycle	being cleaned	particles/ m ³ x 10 ⁻⁶	size, > μm	particles/ m ³ x 10-6	size, <u>></u> μm	
Line	Cycle	Cleaned	M X 10		111 X 10		
1050	First		2,000	0.0025	29	0.3	
1054	melt		2,000	0.0025	22	0.3	
1057	merc	#10	90,000	0.0025	15	0.3	
1059	:	"10	12,000	0.0025	16	0.3	
1105			5,000	0.0025	14	0.3	
1108		#1	43,000	0.0025	28	0.3	
1113	l	" -	14,000	0.0025	53	0.3	
1119	<u> </u>	#2	4,000	0.0025	32	0.3	
1121	İ	,	22,000	0.0025	30	0.3	
1124	ŀ		4,000	0.0025	18	0.3	
1129	[#3	12,000	0.0025	14	0.3	
1135			12,000	0.0025	12	0.3	
1140		#4	7,000	0.0025	1.8	0.3	
1144			72,000	0.0025	21	0.3	
1147	Ì	ļ	21,000	0.0025	3.4	0.3	
1150	1		12,000	0.0025	3.3	0.3	
1152	1	# 5	6,000	0.0025	1.8	0.3	
1156	Back		12,000	0.0025	19	0.3	
	charge	[
1226	Second	#8	85,000	0.0025	33	0.3	
1230	melt		54,000	0.0025	11	0.3	
1232	}		39,000	0.0025	4.0	0.3	
1235		,	33,000	0.0025	3.1	0.3	
1237		#9	90,000	0.0025	17	0.3	
1243			70,000	0.0025	6.9	0.3	
1245			35,000	0.0025	3.7	0.3	
1247			36,000	0.0025	1.6	0.3	
1249		#10	85,000	0.0025	4.8	0.3	
1253			25,000	0.0025	4.8	0.3	
1256			25,000	0.0025	2.7	0.3	
1300		#1	26,000	0.0025	3.6	0.3	
1303			11,000	0.0025	2.1	0.3	
1307			11,000	0.0025	1.0	0.3	
1309		,,,	4,000	0.0025	1.5	0.3	
1310	Slag off	#2				_	
1313			30,000	0.0025	17	0.3	
1316		1	3,000	0.0025	1.9	0.3	
1319		"-	3,000	0.0025	1.4	0.3	
1321		#3					

Table F-5 (continued). FINE PARTICLE DUST FOR BAGHOUSE EFFLUENT, TEST 6

			Condensation nuclei counter		Dust counter	
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm
1323 1325 1327 1331 1333 1334 1337 1340 1344 1349 1352 1355 1357 1400 1402 1405	Reboil Tap	#4	41,000 38,000 25,000 6,000 30,000 7,000 8,000 100,000 3,000 4,000 4,000 22,000 11,000 8,000 4,000	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	31 6.8 2.8 2.7 29 4.9 2.5 1.2 6.9 5.3 3.2 5.2 8.6 7.9	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
1406 1407 1409 1416	First melt	#4	36,000 3,000 3,000	0.0025 0.0025 0.0025	44 8 1.8	0.3 0.3 0.3
1420 1426 1430 1432 1439 1445 1452 1458 1504		#9 #1	31,000 34,000 80,000 68,000 14,000 11,000 50,000 9,000 3,000 38,000	0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015	48 3.1 32 6.2 9.7 23 5.6 2.4 1.4 31	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
1506 1510 1516 1520	Back charge	#3	19,000 7,000 17,000 8,000	0.015 0.015 0.015 0.015	2.1 1.1 5.7 1.8	0.3 0.3 0.3 0.3

Table F-5 (continued). FINE PARTICLE DUST FOR BAGHOUSE EFFLUENT, TEST 6

			Condensation nuclei counter		Dust counter		
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/m ³ x 10 ⁻⁶	Particle size, <u>></u> μm	Particle concentration, particles/ m ³ x 10-6	Particle size, > μm	
1524 1547 1550 1553 1557 1601 1603 1605 1609 1615 1618 1621 1623 1630 1630 1630 1630	Second melt		16,000 69,000 45,000 24,000 28,000 20,000 7,000 10,000 20,000 13,000 13,000 40,000	0.015 0.021 0.021 0.0025 0.033 0.033 0.033 0.048 0.048 0.048 0.078	1.3 40 1.1 0.78 0.87 3.3 2.9 2.9 1.9 7.0 6.6 18 8.5 110 14 11 3.5 3.5	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	
1630 1632 1632 1632 1634 1634 1634 1634 1634 1634		Unknown	36,000		1.8 3.5 11 2100 3500 350 35 18 11 3.5 1.8	3.0 2.0 1.0 0.5 0.3 0.5 1.0 2.0 3.0 5.0 10.0	

Table F-6. FINE PARTICLE DATA FOR BAGHOUSE INFLUENT, TEST 7

			Condensation counte		Dust cou	nter
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, <u>></u> μm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm
1258 1303 1308 1314 1316 1323 1325 1334 1336 1340 1345 1350 1355 1402 1416 1421	Tap First melt Back charge Second melt		1.7 x 10 ⁷ 1.4 x 10 ⁷ 1.3 x 10 ⁷ 1.0 x 10 ⁷ 8.8 x 10 ⁶ 8.0 x 10 ⁶ 8.1 x 10 ⁶ 8.1 x 10 ⁷ 1.7 x 10 ⁷ 1.3 x 10 ⁶ 4.4 x 10 ⁶ 3.9 x 10 ⁶ 8.4 x 10 ⁷ 1.7 x 10 ⁷ 1.7 x 10 ⁷ 1.7 x 10 ⁷ 1.8 x 10 ⁶ 4.3 x 10 ⁶ 4.3 x 10 ⁷ 9.1 x 10 ⁷ 1.0 x 10 ⁷	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	- - - - - - - - - -	- - - - - - - - - - - - -
1444 1451 1456 1502 1508 1525 1528 1530 1532 1534 1536 1538 1540 1551 1553 1555 1601 1603 1605 1608	Slag off		7.4 x 106 7.4 x 106 9.5 x 107 1.0 x 106 8.9 x 106 5.4 x 107 1.7 x 107 1.7 x 106 3.9 x 106 3.9 x 106 5.3 x 106 4.0 x 106 5.7 x 106 3.7 x 107 1.4 x 107 1.6 x 107 1.7 x 107 1.5 x 107	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	 	- - 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Table F-6 (continued). FINE PARTICLE DATA FOR BAGHOUSE INFLUENT, TEST 7

			Condensation counte		Dust counter		
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm	
1611 1617 1631 1633 1635 1638 1641 1644 1646 1648 1650 1652 1654 1656 1700 1710 1713 1715 1717 1719 1721 1723 1725	Reboil Tap First melt		1.8 x 10 ⁷ 2.8 x 10 ⁶ 5.0 x 10 ⁶ 5.0 x 10 ⁶ 4.3 x 10 ⁶ 5.6 x 10 ⁷ 1.1 x 10 ⁷ 1.1 x 10 ⁶ 3.2 x 10 ⁶ 4.0 x 10 ⁶ 3.3 x 10 ⁶ 3.8 x 10 ⁶ 2.2 x 10 ⁶ 1.9 x 10 ⁷ 1.1 x 10 ⁷ 1.7 x 10 ⁷ 2.2 x 10 ⁷ 1.5 x 10 ⁷ 1.7 x 10 ⁶ 8.2 x 10 ⁶ 8.5 x 10 ⁶ 1.6 x 10 ⁷	0.0025 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	260 400 79 130 59 54 39 150 310 320 190 170 540 2,200 1,100 610 890 960 680 1,800 1,900 3,800 4,200	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	

Table F-7. FINE PARTICLE DATA FROM BAGHOUSE EFFLUENT, TEST 8

			Condensation counte		Dust cou	nter
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm
1130 1133	First melt		29,000 50,000	0.0025 0.0025	21 6.8	0.3 0.3
1135	ļ		22,000	0.0025	7.6	0.3
1138			3,500	0.0025	4.0	0.3
1140		#10	15,000	0.0025	23	0.3
1142		İ	9,000	0.0025	7.4	0.3
1143 1153		İ	24,000	0.0025	4.2	0.3
1155			2,000 5,000	0.0025	1.8	0.3
1158			8,000	0.0025	1.8	0.3
1200	1		5,000	0.0025	4.4	0.3
1202	i .	#1	32,000	0.0025	25	0.3
1204	1	" -	4,000	0.0025	2.6	0.3
1206			4,000	0.0025	1.6	0.3
1214			95,000	0.0025	15	0.3
1216			65,000	0.0025	16	0.3
1219			14,000	0.0025	7.1	0.3
1221			7,000	0.0025	5.6	0.3
1223			10,000	0.0025	7.8	0.3
1225	Back		4,000	0.0025	3.1	0.3
1227	charge		4,500	0.0025	11	0.3
1229	Second		7,500	0.0025	7.0	0.3
1231	melt		24,000	0.0025	1.8	0.3
1235		1	25,000	0.0025	26	0.3
1236 1238		ł	55,000	0.0025 0.0025	8.1	0.3
1236			25,000 12,000	0.0025	2.4	0.3
1241	<u> </u>	1	10,000	0.0025	1.5	0.3
1245		#5	15,000	0.0025	22	0.3
1247	1	"	50,000	0.0025	27	0.3
1252	;		15,000	0.0025	2.1	0.3
1254			10,000	0.0025	0.90	0.3
1256			12,000	0.0025	1.3	0.3
1258		 	52,000	0.0025	46	0.3
1300			25,000	0.0025	2.7	0.3
1301			15,000	0.0025	2.68	0.3
1305	Ì		17,000	0.0025	1.5	0.3

Table F-7 (continued). FINE PARTICLE DATA FROM BAGHOUSE EFFLUENT, TEST 8

			Condensation nuclei counter		Dust counter		
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm	Particle concentration, particles/ m ³ x 10-6	Particle size, <u>></u> µm	
1307 1310 1312 1314 1316 1319 1324 1331 1333 1335 1337 1339 1341 1343 1345 1355 1357 1359 1400 1404 1406 1409 1600 1603 1603 1611 1615 1621 1635	Slag off Reboil First melt	Shake	8,000 115,000 130,000 70,000 65,000 35,000 185,000 100,000 13,000 8,500 15,000 34,000 40,000 17,000 12,000 9,000 50,000 50,000 4,000 4,000 4,000 4,000 14,000 6,600 11,000	0.0025 0.0025	1.3 62 26 10 4.8 4.5 6.2 24 7.5 5.0 3.8 2.9 4.7 37 2.4 7.2 2.5 1.2 1.5 47 11 3.7 19 13 0 6.8 3.9 16 16	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	

Table F-8. FINE PARTICLE DATA FOR BAGHOUSE INFLUENT, TEST 9

			Condensation	nuclei		
			counte	r	Dust cou	nter
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm	Particle concentration, particles/ m ³ x 10-6	Particle size,
1120 1124 1126 1128 1130 1132 1134 1136 1138 1144 1146 1148 1150 1152 1154 1156 1208 1210 1212 1215 1220 1227 1250 1252 1255 1258 1304 1308 1311 1314 1316 1318	Second melt Reboil Tap First melt		8.4 x 106 4.3 x 106 5.3 x 107 5.7 x 106 6.7 x 106 6.7 x 106 1.2 x 106 5.7 x 107 8 x 106 9.1 x 106 9.1 x 106 9.1 x 106 6.3 x 106 7.6 x 106 6.8 x 106 6.3 x 106 7.6 x 106 6.3 x 106 6.3 x 106 6.3 x 106 6.3 x 106 6.3 x 106 6.3 x 106 6.3 x 106 6.3 x 106 6.3 x 106 6.3 x 106 6.3 x 106 7.1 x 107 5.1 x 106 6.0 x 106 6.1 x 106 6.1 x 106 6.2 x 106 6.3 x 106 6.3 x 106 6.3 x 106 6.3 x 106 6.3 x 106 6.3 x 106 6.4 x 106 6.5 x 106 6.7 x 106 6.8 x 106 6.9 x 106 6.1 x 106 6.1 x 106 6.3 x 106 6.	0.0025 0.0025	2.3 x 10 ⁴ 3.0 x 10 ⁴ 2.8 x 10 ³ 300 4 2.7 x 10 ⁴ 2.7 x 10 ⁴ 2.5 x 10 ⁴ 3.5 x 10 410 140 3 2.5 x 10 ⁴ 2.9 x 10 ⁴ 2.8 x 10 ⁴ 3.6 x 10 ⁴ 3.6 x 10 ⁴ 3.6 x 10 ⁴ 3.1 x 10 ⁴ 3.1 x 10 ⁴ 3.2 x 10 ⁴ 3.3 x 10 3.4 x 10 ⁴ 3.5 x 10 4 3.6 x 10 ⁴ 3.730 6 2.5 x 10 ⁴ 3.0 x 10 ⁴ 3.0 x 10 ⁴ 3.1 x 10 ⁴ 3.1 x 10 ⁴ 3.1 x 10 ⁴ 3.2 x 10 ⁴ 3.3 x 10 330 22 8	0.3 0.3 0.3 0.5 1.0 2.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0
1320	Back		4.8 x 10 ⁶	0.0025	9	5.0
1322 1340 1343	charge Second melt		1.1 × 10 ⁷ 5.5 × 10 ⁶ 1.1 × 10 ⁷	0.0025 0.0025 0.0025	18 19 37	10.0 0.3 0.3

Table F-8 (continued). FINE PARTICLE DATA FOR BAGHOUSE INFLUENT, TEST 9

			Condensation	nuclei	<u></u>	
			counte		Dust cou	nter
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm
	Cycle	CICUICG				
1346			3.6×10^{6}	0.0025	2.1×10^4	0.3
1349			7.8 x 10 ⁰	0.0025	1.1×10^3	0.5
1352			5.1 x 10 ⁶ 7.7 x 10 ⁷	0.0025	550	1.0
1354			7.7 x 10 ⁰	0.0025	16	2.0
1356		<u>'</u>	1.7 × 10′	0.0025	16	3.0
1358			3.0 x 106	0.0025	17	5.0
1400			1.5 x 10 ⁹	0.0025	16	10.0
1405		}	4.5×10^{6}	0.0025	2.2×10^4	0.3
1407	ļ		5.2×10^6	0.0025	2.6×10^4	0.3
1409			3.6×10^{6}	0.0025	2.4×10^4	0.3
1411			5.7×10^{6}	0.0025	1.2×10^3	0.5
1413	1		1.3×10^{7}	0.0025	350	1.0
1416			5.1 x 10 ₂	0.0025	16	2.0
1418			3.2 x 106	0.0025	16	3.0
1421	1	1	4.2 x 106	0.0025	15	5.0
1423		,	5.1×10^{6}	0.0025	16	10.0
1459]	2.2×10^{6}	0.015	2.6 × 10 ⁴	0.3
1501	ţ	}	1.4 x 106	0.015	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3
1503			3.0 x 106	0.015	190	1.0
1505	Slag		9.0 x 10 ⁶	0.015	190	2.0
1507	off	}	2.9 x 10 ⁶ 8.0 x 10 ⁶	0.015	20	3.0
1509			8.0 x 106	0.015 0.015	18	5.0
1511		1	8.6 x 106 9.8 x 106	0.015	18	10.0
1513	Reboil		3.5 x 10 ⁶	0.013	6.0×10^{3}	0.3
1525			1.9 x 10 ₆	0.048	5.9×10^{3}	0.3
1527			1.5 x 10 ₆	0.048	1.1×10^{3}	0.5
1530 1532	ļ		3.1 x 106	0.048	7.9×10^{3}	0.5
			2.0 × 106	0.048	7.2×10^{3}	0.3
1534	•		1 3 × 106	0.068	1 6 4 v 10 ³	0.3
1536 1538			2.0 x 10 ⁶ 1.3 x 10 ⁶ 1.3 x 10 ⁶	0.068	3.6 x 10 ³ 4.4 x 10 ³ 1.6 x 10 ³	0.3
1540			9.2 x 105	0.068	4.4×10^{3}	0.5
1542	_і Гар		9.2 x 10 ⁵ 7.9 x 10 ⁶	0.068	1.6×10^3	1.0
1550	First		3.4×10^{6}	0.033	9.2×10^{3}	0.3
1552	melt		7.9 x 10 3.4 x 106 1.5 x 105 8.1 x 106 1.2 x 106 1.3 x 106	0.033	9.2 x 103 5.3 x 103 3.0 x 103	0.5
1554			8.1 x 10 ⁵	0.033	3.0×10^{3}	1.0
1556	1	1	1.2×10^{6}	0.033	1 18	2.0
1600	}		1.3×10^{6}	0.021	1.6 x 103	0.3
1602			1 A 4 Y 111	0.021	1 5.3 x 10°	0.5
1604			1.2×10^{6}	0.021	4.0×10^{3}	1.0
1606			1.2 x 10 ⁶ 1.2 x 10 ⁶	0.021	20	2.0
		<u> </u>		\	<u> </u>	L

Table F-9. FINE PARTICLE DATA FOR BAGHOUSE EFFLUENT TEST, 10

			Condensation counte		Dust cou	nter
Clock time	Phase of process cycle	Compartment being cleaned	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > μm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size,
1229 1231 1233 1235 1237 1239 1241 1243 1245 1247 1249 1251 1253 1255 1257 1259 1301 1303 1305 1307 1309 1311 1314 1316 1318 1321 1323 1325 1327 1329	Second melt Slag off		31,000 19,000 14,000 9,000 60,000 80,000 29,000 21,000 19,000 89,000 60,000 24,000 11,000 9,000 14,000 22,000 21,000 18,000 7,000 80,000 21,000 9,000 11,000 5,000 26,000 12,000 21,000 12,000 12,000 15,000	0.0025 0.0025	67 67 67 66 69 69 68 67 67 42 20 8.8 9.3 7.1 6.0 14 2.9 2.0 1.8 0.0 1.0 71 6.1 1.6 0.0 67 70 66 4.7	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
1331 1333 1335 1338 1340 1342 1344 1346 1348 1349	Reboil		13,000 10,000 80,000 49,000 50,000 47,000 30,000 170,000 55,000 32,000	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	1.27 0.06 59 61 65 29 14 0.64 70	1.0 2.0 0.3 0.3 0.5 1.0 2.0 0.3

Table F-9 (continued). FINE PARTICLE DATA FOR BAGHOUSE EFFLUENT TEST, 10

	Phase of process cycle	Compartment being cleaned	Condensation nuclei counter		Dust counter	
Clock time			Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, > µm	Particle concentration, particles/ m ³ x 10 ⁻⁶	Particle size, <u>></u> μm
1351			25,000	0.0025	73	0.3
1353			32,000	0.0025	31	0.5
1355		1	24,000	0.0025	14	1.0
1357		İ	16,000	0.0025	0.80	2.0
1359			30,000	0.0025	70	0.3
1401	Tap		20,000	0.0025	72	0.3
1403			24,000	0.0025	64	0.3
1405	First		24,000	0.0025	10	0.5
1407	melt		25,000	0.0025	38	1.0
1409			10,000	0.0025	0.74	2.0
1411			3,000	0.0025	68	0.3
1413			4,000	0.0025	67	0.3
1417			8,000	0.0025	69	0.3
1419		1	5,000	0.0025	75	0.3
1454			12,000	0.015	78	0.3
1456			8,000	0.015	72	0.3
1502		ŀ	3,000	0.013	70	0.3
1504			12,000	0.021	79	0.3
1506			25,000	0.021	65	0.3
1509	}		5,000	0.021	65	0.3
1511			8,000	0.021	5.4	0.5
1513			7,000	0.021	8.7	1.0
1515	Back charge		10,000	0.021	80	0.3
1517	Second	•	1,600	0.021	74	0.3
1535	melt		18,000	0.033	77	0.3
1537			14,000	0.033	74	0.3
1539			33,000	0.033	34	0.5
1545	Ì		11,000	0.033	106	0.5
1547			14,000	0.033	74	0.3
1555			8,000	0.078	69	0.3
1557]	5,000	0.078	72	0.3
1559	1		13,000	0.078	9.1	0.5
1601	ľ		13,000	0.078	37	1.0
1603]	İ	14,000	0.078	9.1	0.5
1605			14,000	0.078	2.7	1.0
1607			7,000	0.048	64	0.3
1609			10,000	0.048	70	0.3
1611			16,000	0.048	79	0.3
1613	1		13,000	0.048	5.4	0.5
1616			14,000	0.048	11	0.5
1618	1		8,000	0.048	2.1	1.0

TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing)					
T REPORT NO E PA-600/7-77-023	3 RECIPIENT'S ACCESSION NO.				
4 TITLE AND SUBTITLE FRACTIONAL EFFICIENCY OF AN ELECTRIC ARC	5. REPORT DATE March 1977				
FURNACE BAGHOUSE	6. PERFORMING ORGANIZATION CODE				
7 AUTHORIS)	8. PERFORMING ORGANIZATION REPORT NO				
Reed W. Cass and John E. Langley	GCA-TR-76-34-G				
9 PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT NO.				
GCA/Technology Division	EHE 624				
Burlington Road	11. CONTRACT/GRANT NO.				
Bedford, Massachusetts 01730	68-02-1438, Task 4				
12 SPONSORING AGENCY NAME AND ADDRESS	Task Final; 6/5/74-2/77				
EPA, Office of Research and Development	14. SPONSORING AGENCY CODE				
Industrial Environmental Research Laboratory					
Research Triangle Park, NC 27711	EPA/600/13				

15 SUPPLEMENTARY NOTES IERL-RTP task officer for this report is J.H. Turner, Mail Drop 61, 919/549-8411 Ext 2925.

16 ABSTRACT The report gives results of an evaluation of the performance of a fabric filter system controlling emissions from either one or two 30-ton electric arc furnaces producing a high-strength, low-alloy specialty steel. The evaluation involved measuring the system's total mass collection efficiency and apparent fractional collection efficiency. Testing involved 8 sampling days with one furnace operating, and 2 days with two furnaces. Baghouse influent and effluent streams were sampled with total mass samplers, inertial impactors, a condensation nuclei counter (CNC), and an optical dust counter. The influent and effluent total fluoride concentrations were measured for three of the tests to estimate the particulate and gaseous fluoride levels to which the Dacron filter bags are exposed during normal service. Total mass tests showed baghouse mean mass efficiency to be 97.9% with one furnace operating, and 98.7% with two furnaces. Mean mass concentrations for one- and two-furnace operation were 0.0014 and 0.0019 grains/dscf, respectively. Influent impactor tests showed considerable size distribution differences as a function of the phase of the process: the greatest concentrations for the particles sized occurred during the first melt. Effluent impactor size distribution tests suggested agglomeration.

17 KEY WORDS AND DOCUMENT ANALYSIS					
a DESCRIPTORS	b IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group			
Air Pollution	Air Pollution Control	13B			
Dust	Stationary Sources	11G			
Polyester Fibers	Fabric Filters	11E			
Fabrics	Baghouses				
Filtration	Fractional Efficiency	07D			
Electric Arc Furnaces		13A			
18 DISTRIBUTION STATEMENT	19 SECURITY CLASS (This Report)	21 NO OF PAGES			
	Unclassified	185			
Unlimited	20 SECURITY CLASS (This page) Unclassified	22. PRICE			