United States Environmental Protection Agency Municipal Environmental Research aboratory EPA-600/2-79-014 March 1979

Research and Development

Performance
Evaluation of
Existing Aerated
Lagoon System at
Bixby, Oklahoma

RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are:

- 1. Environmental Health Effects Research
- 2. Environmental Protection Technology
- 3 Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies
- 6. Scientific and Technical Assessment Reports (STAR)
- 7. Interagency Energy-Environment Research and Development
- 8. "Special" Reports
- 9. Miscellaneous Reports

This report has been assigned to the ENVIRONMENTAL PROTECTION TECHNOLOGY series. This series describes research performed to develop and demonstrate instrumentation, equipment, and methodology to repair or prevent environmental degradation from point and non-point sources of pollution. This work provides the new or improved technology required for the control and treatment of pollution sources to meet environmental quality standards.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

PERFORMANCE EVALUATION OF EXISTING AERATED LAGOON SYSTEM AT BIXBY, OKLAHOMA

by

George W. Reid
Bureau of Water and Environmental Resources Research
and
Leale Streebin
School of Civil Engineering and Environmental Science
University of Oklahoma
Norman, Oklahoma 73019

Grant No. R803916

Project Officer

Ronald F. Lewis
Wastewater Research Division
Municipal Environmental Research Laboratory
Cincinnati, Ohio 45268

MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268

DISCLAIMER

This report has been reviewed by the Municipal Environmental Research Laboratory, U. S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U. S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

FOREWORD

The Environmental Protection Agency was created because of increasing public and government concern about the dangers of pollution to the health and welfare of the American people. The complexity of the environment and the interplay between its components require a concentrated and integrated attack on the problem.

Research and development is that necessary first step in problem solution and it involves defining the problem, measuring its impact, and searching for solutions. The Municipal Environmental Research Laboratory develops new and improved technology and systems for the prevention, treatment, and management of wastewater and solid and hazardous waste pollutant discharges from municipal and community sources, for the preservation and treatment of public drinking water supplies, and to minimize the adverse economic, social, health, and aesthetic effects of pollution. This publication is one of the products of that research; a most vital communications link between the researcher and the user community.

As part of these activities, this case history report was prepared to make available to the sanitary engineering community a full year of operating and measured performance data for a two-celled, aerated wastewater treatment lagoon system.

Francis T. Mayo, Director Municipal Environmental Research Laboratory

ABSTRACT

The University of Oklahoma School of Civil Engineering and Environmental Science research group in collaboration with INCOG & BIXBY, have studied a well designed, well operated two cell aerated wastewater treatment lagoon system. The study involved four seasons and nineteen study parameters. The data was treated to statistical analysis, using a SPSS multiple regression, and to normative analytical expression.

The lagoon exhibited an overall BOD5 removal efficiency of 92%, but was only totally in compliance for 7 months of the year. The use of several kinetic models and regression models were not very satisfactory though the temperature coefficient (Θ) were in substantial agreement with Adams and Eckenfelder and other reputed values.

This report was submitted in fulfillment of Grant No. R803-916 by the University of Oklahoma under the partial sponsorship of the U.S. Environmental Protection Agency. This report covers the Bixby lagoon operating period of January 1976 through December 1976.

CONTENTS

Disclai	mer.																							ii
Forewor												•											i	ii
Abstrac																								iv
Figures		•																						vi
Tables		•																					vi	ii
Acknow																								хi
1.	Intro											•										•	•	1
		Bac																					•	1
		Sig	gni	fi	car	106	€ (o f	p	ro	jε	ect	ı	•	•	•	•	•	•	•	•	•	•	1
2.	Concl																						•	5
3.	Recon	mer	ıda	ti	ons	3 .		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		6
4.	Appro	ach	1	•			• .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
		Pri	Lma	ry	ok	oj e	ect	ti	ve		•	•	•	•	•	•	•	•	•	•	•	•	•	7
		Sec	con	da:	ry	Ol	οje	ec	ti	ve	!	•		•	•	•	•	•	•	•	•	•	•	7
		Scc	pe					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
5.	Proje	ect	De	SC	rip	pt:	Loi	n		•	•	•	•	•	•	•		•	•	•	•	•	•	10
		Des	scr	ip	tic	nc	0:	£	th	е	Ci	Lty	C	f	B	ixk	У	ar	ıd					
			it	s	laç	300	on	S	ys	te	m	•	•	•	•	•	•	•		•	•		•	10
		Des	scr	ip	tic	on	0:	f	th	е	ez	κpe	ri	.me	nt	:a]	_							
			in	ve	sti	Lga	at:	io	n	•		•		•		•		•		•	•	•	•	12
		Des	scr	ip	tic	on	0:	£	st	at	iis	sti	ca	1	ar	ıa]	.ys	iis	3					
			te	ch	nic	ąu e	28		•	•	•			•		•	•	•						15
6.	Proje	ect	Ge	ne	rat	tec	1	Da	ta		•			•		•		•	•	•	•	•		17
		Dat	ta	ge:	nei	rat	tec	đ	on	a	. 3	_z ea	r-	-ro	uı	nd	ba	si	s					17
		Dat	ta.	ge	nei	rat	tec	đ	on	a		sea	sc	na	1	ba	si	s			•	•		17
		Dat	ta	ge:	nei	rat	te	đ.	on	a	ı	non	th	ly	· k	oas	sis	3	•		•	•	•	17
7.	Proje	ect	Da	ta	E٦	va.	lua	at	io	n	ar	nd	An	al	y	sis	5							44
		Res													_									
									_															
Referen	_	•	•	•	•	•	•	•	•	•	•	٠,	•	•	•	•	•	•	•	•	•	•	•	56
Append:	ices																							
A.	Summa	_				_	_						_						ete	ers	į	Jse	eđ	
		or N				-	W	as	te	1	re	eat	me	nt	:]	ag	100	n						
		erfo					•	•	•			•					•	•	•	•	•	•		58
B.	Resul				_														•	•	•			
c.	Opera																		•	•	•			92
D.	Daily	, Da	ata	ì	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	93

FIGURES

Number	<u>-</u>	<u>P</u>	age
1	Flow schematic of Bixby lagoon system	•	13
2	Seasonal mid-point water temperature change at Bixby lagoon, 1976	•	21
3	Seasonal influent flow rate change at Bixby lagoon, 1976	•	22
4	Seasonal influent BOD_5 change at Bixby lagoon, 1976	•	23
5	Seasonal mid-point BOD ₅ change at Bixby lagoon, 1976	•	24
6	Seasonal effluent BOD_5 change at Bixby lagoon, 1976	•	25
7	Seasonal change of mid-point volatile suspended solids at Bixby lagoon, 1976	•	26
8	Seasonal change of effluent volatile suspended solids at Bixby lagoon, 1976	•	27
9	Monthly average pH value at Bixby lagoon, 1976	•	31
10	Monthly average water temperature at Bixby lagoon, 1976	•	32
11	Monthly average alkalinity at Bixby lagoon, 1976 .	•	33
12	Monthly average dissolved oxygen at Bixby lagoon, 1976		34
13	Monthly average total BOD ₅ at Bixby lagoon, 1976 .	•	35
14	Monthly average soluble BOD- at Bixby lagoon, 1976		36

15	Monthly average total suspended solids at Bixby lagoon, 1976
16	Monthly average volatile suspended solids at Bixby lagoon, 1976
17	Monthly average total COD at Bixby lagoon, 1976 39
18	Monthly average soluble COD at Bixby lagoon, 1976 40
19	Monthly average total Kjeldahl nitrogen at Bixby lagoon, 1976
20	Monthly average ammonia nitrogen at Bixby lagoon, 1976

TABLES

Numbe	<u>r</u>	<u>Page</u>
1	Sampling and Analytical Guide	9
2	Process Data	11
3	Statistical Description of Influent Water Quality at Bixby Lagoon, 1976	18
4	Statistical Description of Mid-Point Water Quality at Bixby Lagoon, 1976	18
. 5	Statistical Description of Effluent Water Quality at Bixby Lagoon, 1976	19
6	Summary of Bixby Lagoon Efficiencies, 1976	19
7	Seasonal Average Influent, Mid-Point, and Effluent Water Quality at Bixby Lagoon, 1976	20
8	Monthly Average Influent Water Quality at Bixby Lagoon, 1976	28
9	Monthly Average Mid-Point Water Quality at Bixby Lagoon, 1976	29
10	Monthly Average Effluent Water Quality at Bixby Lagoon, 1976	30
11	Algal Genus Identified at Bixby Lagoon	43
12	Evaluation of Temperature Coefficient	53
13	Summary of Model Testing, Bixby Cell 1	55
14	Summary of model Testing, Bixby Cell 2	55

A-1	_	of Parameters Measured at Five Lagoon	59
A-2	-	Identification of Tests Necessary for rmance Evaluation of Each Type of Lagoon	60
B-1	_	Preliminary Regression Data, 1976	61
B-2		Regression of Variables Selected after Regression, JanDec. 1976	6.2
B-3		Regression of Variables Selected after Regression, Jan., Feb., Dec. 1976	63
B-4		Regression of Variables Selected after Regression, March-May 1976	64
B - 5		Regression of Variables Selected after Regression, June-Aug. 1976	65
B-6		Regression of Variables Selected after Regression, SeptNov. 1976	66
B-7	Summary of	Stepwise Regression Data, JanDec. 1976	67
B-8		Regression of Variables Selected after Regression, JanDec. 1976	69
B - 9		Regression of Variables Selected after Regression, Jan., Feb., Dec. 1976	71
B-10		Regression of Variables Selected after Regression, March-May 1976	73
B-11		Regression of Variables Selected after Regression, June-Aug. 1976	75
в-12		Regression of Variables Selected after Regression, SeptNov. 1976	77
B-13	Summary of	Stepwise Regression Data, JanDec. 1976	79
B-14		Regression of Variables Selected after Regression, JanDec. 1976	80

B-13		Regression, Jan., Feb., Dec. 1976	81
в-16		Regression of Variables Selected after Regression, March-May 1976	82
B-17		Regression of Variables Selected after Regression, June-Aug. 1976	83
B-18		Regression of Variables Selected after Regression, SeptNov. 1976	84
B-19	Summary of	Stepwise Regression Data, JanDec. 1976	85
B-20		Regression of Variables Selected after Regression, JanDec. 1976	87
B-21		Regression of Variables Selected after Regression, Jan., Feb., Dec. 1976	88
B-22		Regression of Variables Selected after Regression, March-May 1976	89
B-23		Regression of Variables Selected after Regression, June-Aug. 1976	90
B-24		Regression of Variables Selected after Regression, SeptNov. 1976	91
D-1	Influent Te	est Data of Bixby Lagoon, 1976	93
D-2	Mid-Point T	est Data of Bixby Lagoon, 1976	97
D-3	Effluent Te	est Data of Bixby Lagoon, 1976	101

ACKNOWLEDGEMENTS

The authors acknowledge with gratitude the following individuals for their contribution to this report.

Anil Mathur for his diligent and conscientious pursuit of the data required to perform the analysis of the aerated lagoon system.

Joseph L. Norton, Chief of Laboratory Services, Division of the Tulsa City County Health Department, for his assistance in reviewing the project plans and laboratory analysis performed in his laboratory.

Jerry G. Cleveland, Chief of Planning & Research, Division of the Tulsa City County Health Department, for his assistance in reviewing the project plans.

Fred Keas, City of Bixby, Oklahoma, for his assistance in sampling and analysis during his tenure as Superintendent of the Water Pollution Control Facilities.

Bobby J. Tollette, Superintendent of Water Pollution Control Facilities, for his assistance in sampling and analysis.

Gene-Pai, Chou, for his assistance in graphical work.

Andy Law, Research Assistant, the Bureau of Water & Environmental Resources Research, for his assistance in writing the final report.

INTRODUCTION

BACKGROUND

Biological waste treatment by means of waste stabilization lagoon system can be considered as a major wastewater treatment alternative for small communities (especially those with less than 50,000 population) and rural areas and some industries. Waste stabilization lagoon system are chosen not only for the reason of low initial capital cost, but also because of their relative stability and simplicity, as well as minimum cost of operation and maintenance. The low initial capital cost is particularly true in the rural areas where more openland is available and at lower costs. For these reasons, today there are thousands of wastewater treatment lagoons in use for domestic wastewater treatment in the United States.

The use of lagoon systems to treat wastewater is wide-spread and there are great variations in the design of these systems: from simple anaerobic, facultative, aerobic and maturation lagoons to modified lagoons of various designs (for example - the use of aeration systems or devices to maintain aerobic conditions), from single to multiple cell systems, and so forth. Although a large number of these different systems of lagoons have been studied, there is a common lack of carefully collected data in sufficient depth -- in terms of realistic, long-term performance data which would be indispensible for producing sound design criteria for future use. Partly this is due to very little on-site capability and facility to determine operational test results.

SIGNIFICANCE OF PROJECT

In the October of 1972, Congress passed the Federal Water Pollution Control Act Amendments. The Act has three major targets:

(a) All municipal treatment facilities must achieve secondary treatment effluent limitations, and all industries must implement the Best Practicable Treatment technology (BPT) for treatment of the wastewater discharged into all surface waters. The Act requires that these effluent criteria be met by 1977. The Environmental Protection Agency (EPA) has defined municipal secondary treatment standards and also Best Practicable Treatment technology effluent standards for each category of industry and type of manufacturing process used.

- (b) By 1983, municipalities must achieve BPT in their treatment facilities. (BPT has been defined by EPA as secondary treatment for municipalities). Industries will have to implement Best Available Technology (BAT), as defined by EPA by 1983, for each kind of industry class.
- (c) By 1985, all pollutional discharges must be eliminated from the nation's waters.

The Congress mandated that these steps be taken to enable the water quality goals of fishable and swimmable waters to be achieved by 1983. The spirit and overall purpose of the Act is to restore and maintain the chemical, physical and biological integrity of the nation's waters.

The law also established the National Pollution Discharge Elimination System (NPDES). Under NPDES, all point source (municipal and industrial) are issued permits specifyin the nature and quality of pollution they may discharge. These permits, at a minimum, reflect the appropriate technology based BPT or BAT standards.

The secondary treatment effluent limitations or the minimum performance requirements for publicly owned treatment works as established in the Act of 1972 specify that the BOD₅ and suspended solids arithmetic mean values of the effluent samples for 30 days consecutive sampling shall not exceed 30 milligrams per liter or 45 milligrams per liter for samples collected in seven consecutive days. They further specify that the arithmetic mean values for the 30 day consecutive sampling shall not exceed 15% of arithmetic mean of the influent samples collected at approximately the same time during the same period. Finally, they specify that the geometric mean of the fecal coliform bacteria and the effluents shall not exceed 200 for the 30 day period or 400 for the seven consecutive day period.*

These regulations and EPA's definition of secondary treatment seems to emphasize the installation of activated sludge units.

^{*}This has been deleted. See new standards at end of this section.

On the other hand, it is precisely because small communities cannot afford the high costs involved in the construction, operation and maintenance of activated sludge or other sophisticated units that they had to resort to treatment by means of lagoons. There also exists a strong possibility that many of the present operating lagoon will not meet EPA secondary treatment effluent standards without modifications. (2,3,4) Thus, in order to meet treatment standards, many of the presently operating lagoons would have to be modified or upgraded.

Among the numerous alternatives for upgrading lagoon treatment, functionally serialized lagoons (anaerobic, facultative and maturation) present a possible solution. Other possible solutions for upgrading the treatment are addition of air, recycling, controlled discharge, possibility of final sedimentation, filtration, and even the possibility of harvesting algae through natural methods such as culturing carp or milk-fish, or passing through a natural aquatic habitat. However, before a decision can be made on what methods of upgrading are sufficient in improving effluent quality to meet the standards, it becomes necessary to gather additional pertinent data on existing lagoon systems. present, there are very limited published data on performance of lagoons on a seasonal basis for the most important water quality parameters (including nutrients). It is most important to have such data in order to do a rigorous performance evaluation. Therefore, it is important to determine how an existing welldesigned aerated lagoon treats wastewater. Well designed, well operated lagoon must have been operated sufficiently long and at different climatic conditions to be able to ascertain their performance in order to determine whether there are existing continuous discharge aerated lagoons that can meet the 1977 secondary treatment standards. This project will document and evaluate carefully collected operating performance data from one such lagoon system.

* Since the beginning of this project, the federal Secondary Treatment Effluent Standards have been amended. As published in the July 26, 1976 Federal Register, the limitations on fecal coliform bacteria were deleted in the 1976 revision of the standard. It is now felt that it is environmentally sound to establish disinfection requirements for domestic wastewater discharges in accordance with water quality standards promulgated pursuant to Section 302 and 303 of the Act and associated public health needs. On October 7, 1977, suspended solids limitations were amended to permit less stringent limitations for publicly owned wastewater treatment ponds with a design capacity of two million gallons per

day or less. Either the Regional EPA Adminstrator or the State Director for Environmental Control, subjected to EPA approval, may establish less stringent limitations based on the actual performance of waste stabilization ponds in the geographic area which are meeting effluent quality limitations for biochemical oxygen demand.

CONCLUSIONS

Although the Bixby lagoon system exhibits an overall BOD_5 removal efficiency of 92%, it is only in compliance with EPA's BOD_5 standard for about 7 months out of the year. Winter and early Spring months are the non-complying months.

Total suspended solid levels in the effluent remained fairly high for 11 months of the year. The average TSS level for those months was 52 mg/l, which may be attributed to algal growth.

Fecal coliform density in the wastewater entering the Bixby lagoon system was high, in the order of $10^5/100$ ml. Even if the lagoon system had coliform removal efficiency as high as 98%, it still would not be able to reduce the coliform bacteria to less than 200/100 ml. Additional treatment would be necessary if there were a bacterial limitation for the receiving stream.

The use of linear regressions to characterize the influent, mid-point and effluent parameter and correlate lagoon efficiencies all fall short of being satisfactory. Additional parameters not clear at the present will have to be included in the regression analysis for it to be meaninful.

The attempt to depict the performance of Bixby lagoon system in terms of kinetic models was unsuccessful. The wide variations in experimental data which were being fitted to the models could not be satisfactorily explained. One possible explanation was that it may be due to algal growths which affected the fraction of the biologically active volatile suspended solids.

RECOMMENDATIONS

For the numerous small communities and rural areas, waste-water treatment by means of lagoons is a significant and economically feasible alternative. However, few existing lagoons were able to perform to more desirable treatment levels as that obtained from conventional secondary treatment systems. It is obvious that lagoons as a viable means of wastewater treatment need to be further studied and monitored so that from such actions meaningful knowledge may be acquired and better design criteria may be formulated.

At the present, lagoon effluent standards are less strigent as a result of subsequent revisions of the 1972 Act. However, should a need arise in the future for the improvement of the Bixby lagoon system the addition of one or a combination of the followings is recommended: anaerobic lagoon for pretreatment, maturation lagoon for polishing and/or chlorination prior to discharge. However, feasibility study should be conducted prior to any such action.

The effect of the relative abundance of algae on the biologically active portion of the volatile suspended solids should be investigated.

The retention time in each lagoon at Bixby based on plug flow is 40 days. A method of accounting for this time lag in the correlation and regression analysis should be developed.

APPROACH

PRIMARY OBJECTIVE

The primary objective of this project was to generate reliable year round performance data for a typical multi-cell aerated lagoon waste disposal system. Bixby, Oklahoma is a case in point. This lagoon system, which consists of two cells in series using an Air Aqua* system, is located in the town of Bixby, Oklahoma, which is part of the INCOG Multi-County Planning System. This aerated lagoon was selected for study by EPA with the concurrence of others.

SECONDARY OBJECTIVE

The secondary objective was to utilize these data to evaluate the effectiveness of the multi-cell lagoon system to perform in accordance with its design criteria and its ability to meet the secondary treatment standards as established by the Federal Water Pollution Control Act Amendments of 1972.

Data generated and evaluated in this lagoon system were to be similar to data from other types and locations of well-designed well-operated multi-cell aerated or a combined aerated and facultative lagoon system. These data could be used not only to assist design engineers and regulatory officials, but also assist EPA in its stated objective of defining lagoon capabilities and lagoon grading needs. A great number of parameters were studied in considerable depth. Out of the parameter study two significantly useful things were sought: 1) the more meaningful parameters conceivably could be used as routine operational tests, and 2) the parameters could be interrelated to provide predictive equations for future design.

^{*}Tradename of Hinde Engineering aeration system.

SCOPE

From the existing Bixby lagoon system at Bixby, Oklahoma, one full year of lagoon performance data were collected. Within this period, data collection was divided into four temporal phases coinciding with the four seasons: Spring, Summer, Fall and Winter. In each period, data were collected daily for one month while samples of one week (7 consecutive days) per month were taken during the remaining two months.

Sampling was done with a flow proportional type compositing device, and sampling points were the influent (before entering the lagoon system), the mid-point (exit of first cell) and the effluent (exit from the lagoon system). Nineteen parameters were attempted: flow data, pH, temperature, dissolved oxygen, alkalinity, total BOD5, soluble BOD5, total suspended solids, volatile suspended solids, total COD, soluble COD, phosphorus (dissolved orthophosphate), total Kjeldahl nitrogen, ammonia nitrogen, nitrate and nitrite nitrogen, fecal and total coliform. Nitrate and nitrite nitrogen tests were subsequently discarded after tests performed at the start of project consistently showed near zero values. The remaining parameters were measured in depth with the exception of algal determination which was performed qualitatively only. Table 1 is a sampling and analytical guide.

Four tests were performed at the site, namely: pH, temperature, alkalinity and dissolved oxygen. Total suspended solids, volatile suspended solids, total and soluble COD, total and soluble BOD₅ tests were performed at the University of Oklahoma's mobile laboratory parked by the lagoon. Remaining tests were conducted by Laboratory Services, Division of the Tulsa City County Health Department.

This report in addition to containing the tabulation of the performance data, detailed information concerning the lagoon design, operational parameters, inlet and outlet configurations and flow pattern, also included an interpretation of the data as to its significance in relation to the objectives of the project. Statistically, data were analysed in the form of correlation matrices to assist in the identification of appropriate and redundent tests, and hopefully to develop through regression analysis technique and equations representing the performance of this type of lagoon. These equations, if developed, would be useful in design and evaluation of performance, including both efficiency and cost of treatment.

TABLE 1. SAMPLING AND ANALYTICAL GUIDE

PARAMETER	INFLUENT	SAMPLING POINTS MID-POINT	EFFLUENT
WW Flow	X		
рH	x	x	x
WW Temperature		X	X
Dissolved Oxygen		X	X
Alkalinity	X	X	X
Total BOD ₅	X	X	X
Soluble BOD ₅	X	X	X
Total Suspended Solids	X	X	Х
Volatile Suspended Solids	X	X	x
Total COD	X	X	X
Soluble COD	X	X	х
Phosphorus*	X	X	X
Total Kjeldahl Nitrogen	X		x
Ammonia Nitrogen_	X		Х
Nitrate Nitrogen T	X		X
Nitrite Nitrogen [†]	X		X
Fecal Coliform	X	X	X
Total Coliform		X	x
Algal Determination		X	X

^{*}Actual test performed was dissolved ortho-phosphate. For convenience, dissolved ortho-phosphate was identified by phosphorus.

*Nitrate and nitrite tests were discontinued after numerous tests performed at the start of the project yield zero or near zero values consistently.

PROJECT DESCRIPTION

DESCRIPTION OF THE CITY OF BIXBY AND ITS LAGOON SYSTEM

The site selected for this segment of the oxygen-supplied multiple lagoon system was that of the city of Bixby, Oklahoma. The city of Bixby is situated in the Indian Nation Council of governments (INCOG) and is adjacent to south Tulsa City. current population of Bixby is 3,000 and is projected to grow to 6,000 in the year 2,000. The present population prodces an effluent BOD₅ averaging 350 milligram per liter. Currently, Bixby has no manufacturing or process industries discharging industrial This greatly increased the desiwaste into the sanitary sewers. rability of the Bixby lagoon system as a site for intensive study because the wastewater concentration entering the lagoon system will be relatively stable and practically free of toxic substances which may disrupt treatment continuity. All variabilities in the wastewater which enters the Bixby lagoon system can thus be attributed to normal small town domestic and commercial sources.

Bixby Lagoon System

Bixby lagoon system is a dual-cell system, with total surface area of 23.5×10^{-3} km², an average depth of 3.2 m, and an overall volume of 5.6×10^4 m³. Each cell is 167 m long and 38 m wide. The cells are not cemented and are supported on the sides by a dike of slope 3:1. It has 20 h.p., 9.8 m³/min., Hinde/Air-Aqua system with 84 laterals in the primary and 48 laterals in the secondary, designed to supply all the oxygen requirements for loading of 276 kg of BODs per day, a population of 4,500 people and 0.4 MGD (1 GPD = $0.003785 \text{ m}^3/\text{d}$). The present plant is operating at about 90% efficiency, and a retention time of about 67.5 The flow is continuous, the inlet and outlet system is designed against short-circuiting. The plant is well operated, and is always acessible. It does not have final clarification nor does it have chlorination, nor are there available long-term re-These data are summarized in Table 2 and a sketch of the cords.

TABLE 2. PROCESS DATA

Two Lagoons - 5.6x10⁴ m³ volume
23.5x10⁻³ km² surface area
3.2 m depth
designed for either serial or parallel operation.
(See sketch, Figure 1)

- Aeration 20 h.p.- Air Aqua System/Hinde Engineering 84 laterals in primary 48 laterals in secondary % oxygen demand supplied - 100%
- Design Q = 0.45 MGD (1 GPD = 0.003785 m 3 /d) Population = 4,500 BOD₅/DAY = 335 kg Retention Time = 31.6 days BOD₅/100 m 3 = 0.6 kg BOD₅/HPH = 0.7 kg BOD₅/m 2 /DAY = 0.015 kg
- Actual $Q = 0.21 \pm 0.04 \text{ MGD} (1 \text{ GPD} = 0.003785 \text{ m}^3/\text{d})$ Population = 3,000 Influent $BOD_5 = 240 (200 - 350) \text{ mg/l}$ Effluent $BOD_5 = 11 \text{ mg/l}$ Efficiency = 90.5% $BOD_5/\text{m}^2/\text{DAY} = 0.008 \text{ kg}$ Retention Time = 67.5 days
- Operation Continuous flow
 Off set inlet, air lift, over under baffle
 No Cl₂
 Effluent V notch weir
 No cover, cell depth constant
 Maintenance good, always acessible
- Other Built in 1970 Engineering - HTD (Tulsa/Okla. City) Operator - Fred Keas

facility in Figure 1.

DESCRIPTION OF THE EXPERIMENTAL INVESTIGATION

Sampling was simplified with the use of automatic-samplers which were setup at the lagoon influent, the mid-point and the lagoon effluent. The sampler set at the mid-point allowed analysis of each cell's performance individually.

Each sampler collected 50 ml of sample every fifteen minutes and approximately 4 liters of sample was collected in a 24 hour period.

The samples were stored in ice boxes at 4 degrees Celsius. This inhibited biological activity in the composite samples. All the experimental parameters used in the correlation were measured within 1 day of sample collection. pH, temperature, dissolved oxygen and alkalinity tests were conducted on-site immediately after samples were collected.

In the experimental analysis, 462 samples were collected and analyzed between January and December 1976. January, April, July and November were months of intensive testing and approximately 75 samples were analyzed in each of these months. This close study of the behavior of the lagoons was essential to get data to predict the seasonal variation of the performance of the lagoons. During each of the remaining months, testing was not equally rigorous and about 21 daily samples were analyzed in each month.

DESCRIPTION OF EXPERIMENTAL ANALYSIS AND PROCEDURES

All analysis were performed in accord to either the 13th Edition of Standard Methods for the Examination of Water and Wastewater (7) or EPA's Manual of Methods for Chemical Analysis of Water and Wastes (17). In the following, they will be abbreviated as Standard Method and EPA Manual respectively. The analytical procedures chosen for the parameters included in this project are briefly outlined as follows:

Tests conducted on-site:

pH - direct measurement by pH meter.

Temperature - measured by thermometer in Celsius.

Dissolved Oxygen - measured by D.O. probe.

Aklalinity - titrimetrically determined by mixed bromcresol green - methyl red double indicator method.

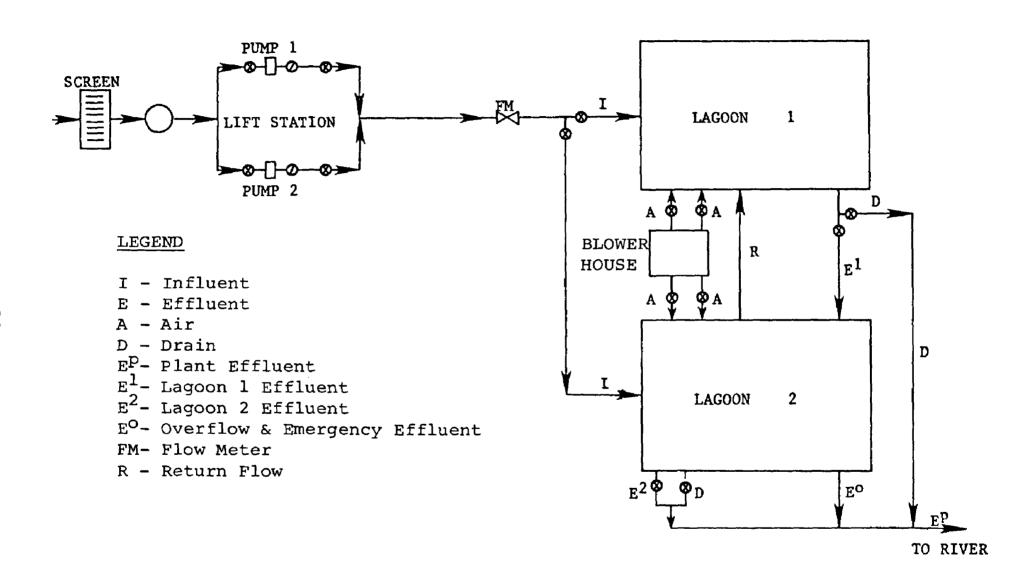


Figure 1. Flow schematic of Bixby lagoon system.

(Standard Method)

Tests conducted in laboratories*:

- Phosphorus determined in terms of dissolved ortho-phosphate by direct colorimetric analysis procedure. (EPA Manual, storet no. 00671)
- Ammonia Nitrogen determined by Automated Colorimetric Phenate Method using Technicon Autoanalyser Unit AAII. (EPA Manual, storet no. 00610)
- Total Kjeldahl Nitrogen determined by titration of ammonia after distillation. (EPA Manual, storet no. 00625)
- Nitrate Nitrogen measured by spectrophotometer. (EPA Manual, storet no. 00630)
- Nitrite Nitrogen measured by spectrophotometer. (<u>EPA Manual</u>, sotret no. 00615)
- Total BOD₅ determined by Azide Modification of the Winkler Method. (Standard Method)
- Soluble BOD₅ samples were first filtered through 0.45 μ filter with subsequent determination by the Azide Modification of the Winkler Method. (Standard Method)
- Total COD determined by titrimetric method after reflux. (EPA Manual, storet no. 00335, Low Level)
- Soluble COD samples were first filtered through 0.45 μ filter with subsequent determination by titrimetric method after reflux. (EPA Manual, storet no. 00335, Low Level)
- Total Suspended Solids complete evaporation of the water portion with residue dried at oven temperature of 103 °C. Determined by weight difference. (Standard Method)
- Volatile Suspended Solids complete evaporation and ashed at 550 °C. Determined by weight difference. (Standard Method)
- Total Coliform determined by membrane filter technique.
 (Standard Method)
- Fecal Coliform determined by membrane filter technique.
 (Standard Method)
- Flow Rate determined by measurement of water level over weir with a portable water level recorder.

 'Algal determination qualitatively determined.

^{*}Six tests were performed in O.U. Mobile Laboratory. See page 8.

DESCRIPTION OF STATISTICAL ANALYSIS TECHNIQUES

Because of the extremely large amount of performance data collected over the project period, statistical analysis would be impractical as well as not feasible without the use of high-speed computers. All the analysis conducted in this project were done with the use of a "canned" statistical analysis package -SPSS. (6) SPSS is a highly flexible, user oriented tool with output data printed out in very neat and readable manner.

Analysis of experimental data to obtain continuous variable descriptive statistics such as maximum, minimum, mean values, and standard deviation, etc. was executed with the use of a sub-program in the SPSS.

For studies related to characterization of wastewater entering the facility, efficiency correlations and design method verification, the principal tool used was multiple regression analysis.

In all correlation work, where all the variable interdependencies are not immediately obvious, stepwise regression analysis is probably the most useful and versatile tool (6).

Stepwise regression enables the identification of the most significant variables, which "explain" a given dependent variable, in the relative order of their importance. The initial task, therefore, is to identify all possible independent variables which may be related to a given dependent variable. The stepwise regression procedure introduces each variable, in order of its importance, into the regression equation and shows the effect of this introduction on the overall correlation coefficient (r^2) , the F ratio, the standard error, and the beta weights for each variable in the equation. No variables would be added to the regression equation if the addition of a variable does not increase the r^2 value.

Once the pertinent variables are identified by the stepwise regression, a very close examination of all the possible underlying theoretical explanations is necessary. This is simply to avoid the problems caused by an exclusive reliance on statistical analysis. There are, sometimes, unexpected indications of variable interdependencies. These need very careful substantiation. Alternatively, variables thought to be extremely significant may not appear in the final equation resulting from the stepwise procedure. This can happen easily especially when there is considerable scatter in the original data for that variable because

of low experimental reproducibility (7). This problem occurs often in biochemical tests.

One common decision whenever this problem arises is to force the excluded variable(s) into the regression equation by abandoning the stepwise procedure. This also enables dropping of nonsignificant variables from the equation with a corresponding increase in the total number of valid cases. The final regression then, shows the best relationship between the independent variables and the dependent variables.

The output from such a final regression includes a tabulation of all regression parameters, a case by case listing of observed versus predicted values for the dependent variable, and a plot of the standardized error in predicted variable values. An analysis of such a plot can reveal whether or not there is reason to suspect systematic violations of the assumption that the regression is linear. In such cases, non-linear transformations of the independent variables may be indicated and the entire regression exercise repeated. However, the regression statistics produced after such variable transformations cannot be compared against the original statistics except in a very general, qualitative way. This is especially true if logarithmic transformations are used.

The fitting of observed lagoon data to a general design equation can be done by rearrangement of the design equation, identification of "synthetic" new variables and regression of these variables using least squares methods. Should it be necessary to force such regressions through a fixed point (for theoretical reasons), the usual unconstrained regression procedure is no longer useful. A similar situation would arise, for example, if a particular regression coefficient were to be held fixed. Such problems are best handled by a basic reformulation of the least squares technique which forces such constraints to be met at the beginning. Examples of such modifications are discussed later in the report.

PROJECT GENERATED DATA

The primary objective of this report on Bixby lagoon system was to generate the much needed performance data for a typical multi-cell aerated lagoon waste disposal system on a year-round basis. For this reason, Section 6 is entirely devoted to the tabulation and presentation of data generated during the course of this project. For clarity purpose, data are organized into three levels: year-round, seasonal, and monthly.

DATA GENERATED ON A YEAR-ROUND BASIS

Data generated in this group is an attempt to create an overall view of the parameter characteristics measured at the Bixby lagoon system. Tables 3 to 5 are statistical descriptions of the water quality parameters at the influent, mid-point and effluent of the Bixby lagoon system. Table 6 summarizes lagoon efficiency of individual cells and the lagoon system as a whole.

DATA GENERATED ON A SEASONAL BASIS

Seasonal average water quality of wastewater at various treatment stages of the Bixby lagoon are computed and tabulated in Table 7. Data generated in this manner allow observation and comparison of wastewater treatment efficiency on a seasonal basis. Figure 2 to 8 are computer interpretations of parameter level vs time (these parameters are the ones involved in the kinetic modelling.)

DATA GENERATED ON A MONTHLY BASIS

Tables 8 to 10 contain data computed to monthly averages. Their significance lie in the fact that they revealed the trend of parameter level variation throughout the year when data were collected. Figure 9 to 20 are graphical presentations of data so computed. These graphs besides visually showing trends of parameter variation, also permit comparison of treatment efficiencies

TABLE 3. STATISTICAL DESCRIPTION OF INFLUENT WATER QUALITY AT BIXBY LAGOON, 1976

TEST	AVE. VALUE+	MIN.	MAX.	STD. DEV.
Н		4.3	7.6	
Alkalinity*	154.0	94.0	198.0	18.9
Total BOD ₅	368	210	740	90
Soluble BOD ₅	154	53	350	56
Total S.S.	268	92	772	138
Volatile S.S.	201	40	631	116
Total COD	641	233	1,148	147
Soluble COD	262	115	545	69
TKN	45.7	21.0	115.0	11.8
Ammonia-N	29.3	9.0	48.9	6.7
Flow, GPD**	1.4×10^{5}	617	17.6x10 ⁵	1.8×10^{5}

⁺All values were computed from one year period data. Unless indicated, all units are mg/l except for pH.

*As CaCO₃
**1 GPD = 0.003785 m³/d

TABLE 4. STATISTICAL DESCRIPTION OF MID-POINT WATER QUALITY AT BIXBY LAGOON, 1976

TEST	AVE. VALUE ⁺	MIN.	MAX.	STD. DEV.
рн		5.5	8.0	
Alkalinity*	85.7	26.0	194.0	41.7
Temperature, OC	17.8	1.0	30.0	8.6
DO	7.6	2.2	13.6	2.6
Total BOD ₅	84	26	183	37
Soluble BOD ₅	25	3	132	28
Total S.S.	90	19	232	46
Volatile S.S.	70	12	196	39
Total COD	195	88	498	67
Soluble COD	71	17	246	35

⁺All values were computed from one year period data. indicated, all units are mg/l except for pH. *As CaCO3

TABLE 5. STATISTICAL DESCRIPTION OF EFFLUENT WATER QUALITY AT BIXBY LAGOON, 1976

TEST	AVE. VALUE+	MIN.	MAX.	STD. DEV.
рн		6.3	9.8	
Alkalinity*	74.4	24.0	180.0	24.1
Temperature, OC	17.3	1.0	31.0	9.1
DO	8.8	2.0	19.0	4.0
Total BOD ₅	30	7	131	21
Soluble BOD5	16	1	128	19
Total S.S.	56	11	186	33
Volatile S.S.	35	4	146	23
Total COD	103	20	330	45
Soluble COD	55	6	250	32
TKN	7.8	1.0	23.0	4.7
Ammonia-N	3.3	0.1	23.8	4.6

^{*}All values were computed from one year period data. Unless indicated, all units are mg/l except for pH. *As CaCO₃

TABLE 6. SUMMARY OF BIXBY LAGOON EFFICIENCIES, 1976

TEST	AVE. VALUE+	MIN.	MAX.	STD. DEV.
BOD ₅ Cell 1	77	48	94	9
BOD ₅ Cell 2	61	-17*	92	24
BOD ₅ Overall	92	68	97	5
Total S.S. Cell 1	61	-22	93	24
Total S.S. Cell 2	16	- 392	94	76
Total S.S. Overal:	1 76	29	96	14
COD Cell 1	69	18	89	. 12
COD Cell 2	45	-15	95	21
COD Overall	84	55	97	7
TKN Overall	83	34	98	10

⁺All values were computed from one year period data. Values are removal efficiencies in percentages.

^{*}Negative sign indicates increase in waste concentration.

TABLE 7. SEASONAL AVERAGE INFLUENT, MID-POINT, AND EFFLUENT WATER QUALITY AT BIXBY LAGOON, 1976

•		SPRING	<u> </u>		SUMMER	<u>.</u>		AUTUMN	·		WINTER	
TESTS	INF.	MID.	EFF.	INF.	MID.	EFF.	INF.	MID.	EFF.	INF.	MID.	EFF.
рН	6.5	6.8	7.2	6.2	6.7	6.8	6.2	6.2	7.6	6.7	6.9	7.9
Alkalinity*	160	109	85	151	78	72	149	71	60	157	113	79
Temperature, OC	-	19.3	19.1	-	28.0	28.4	-	12.7	11.8	_	6.6	5.7
DO	-	6. 6′	7.1	_	6.4	5.2	-	8.2	11.6	_	9.8	13.2
Total BOD ₅	394	88	35	355	64	20	366	111	25	35 7	80	40
Soluble BOD5	148	24	16	129	13	9	144	7	10	199	52	28
Total S.S.	301	79	58	258	72	66	258	133	52	253	78	46
Volatile S.S.	221	61	41	214	58	33	192	108	35	178	52	28
Total COD	606	206	131	594	156	84	757	263	102	630	165	94
Soluble COD	240	77	74	248	62	49	257	67	47	302	78	46
Phosphorus**	37.7	44.0	48.2	_	_	38.0	-		_	36.9	40.7	32.0
TKN	49.1	-	10.4	43.5	-	4.7	46.9		5.3	43.6	~	10.1
Ammonia-N	24.1	_	5.0	31.1	-	0.8	33.9	_	0.1	29.8	_	6.1
Fecal Coli.+	199	147	73	-	_	_	_	_	_	_	_	_
Total Coli.+	-	303	166	-	_	_	_		-		_	_
Flow, x10 ³ gpd#	150	-	-	151	-	-	132	-	-	118	-	-

Unless otherwise indicated, all units are mg/l except for pH.

^{*}Alkalinity as CaCO3.

^{**}Actual tests performed were dissolved ortho-phosphate. For convenience, dissolved ortho-phosphate was identified as phosphorus.

^{*}Values are x100/100ml.

 $^{#1 \}text{ gpd} = 0.003785 \text{ m}^3/\text{d}.$

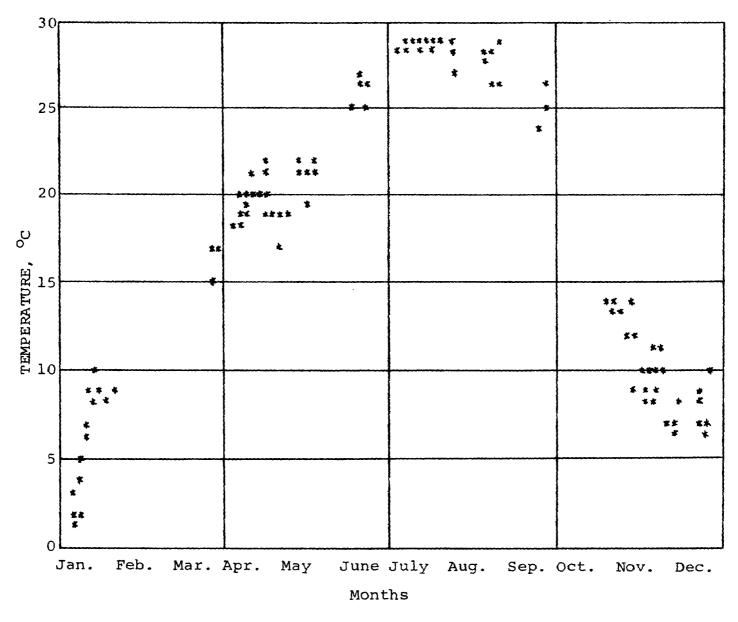


Figure 2. Seasonal mid-point water temperature change at Bixby lagoon, 1976

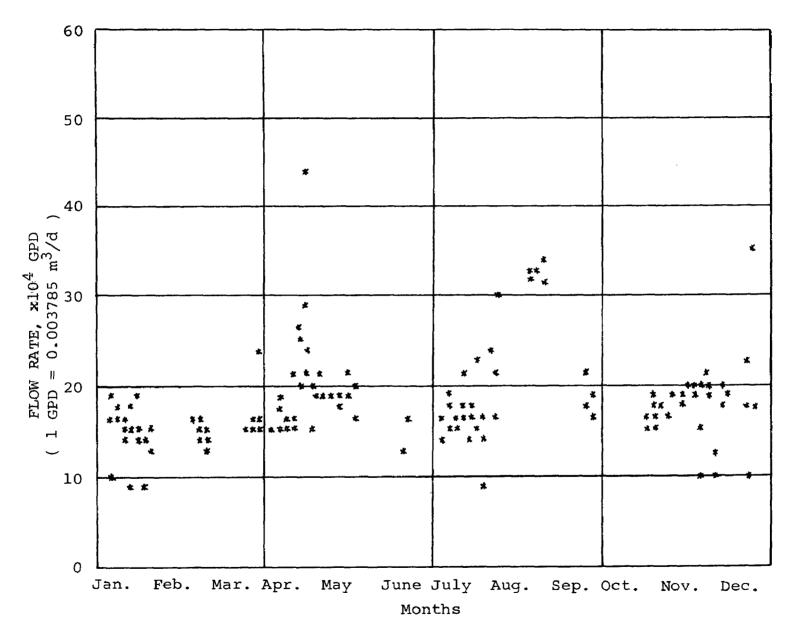


Figure 3. Seasonal influent flow rate change at Bixby lagoon, 1976

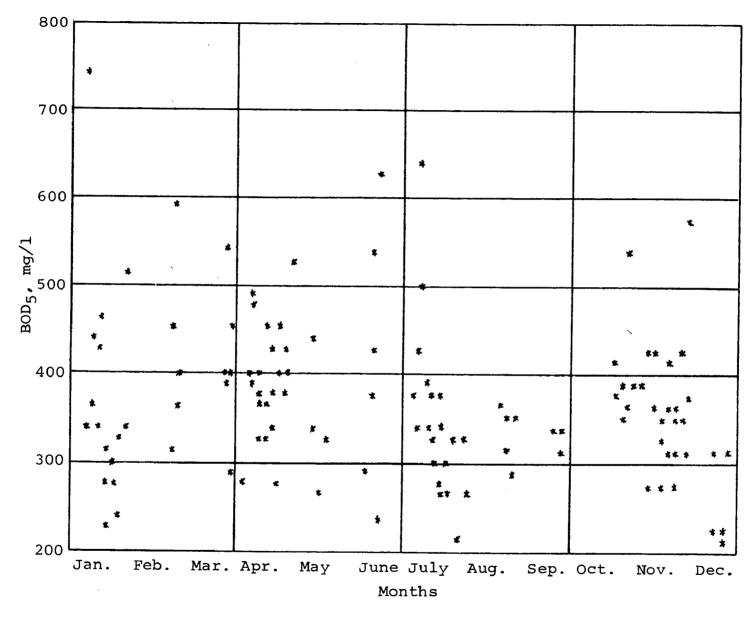


Figure 4. Seasonal influent BOD_5 change at Bixby lagoon, 1976

Figure 5. Seasonal mid-point BOD_5 change at Bixby lagoon, 1976

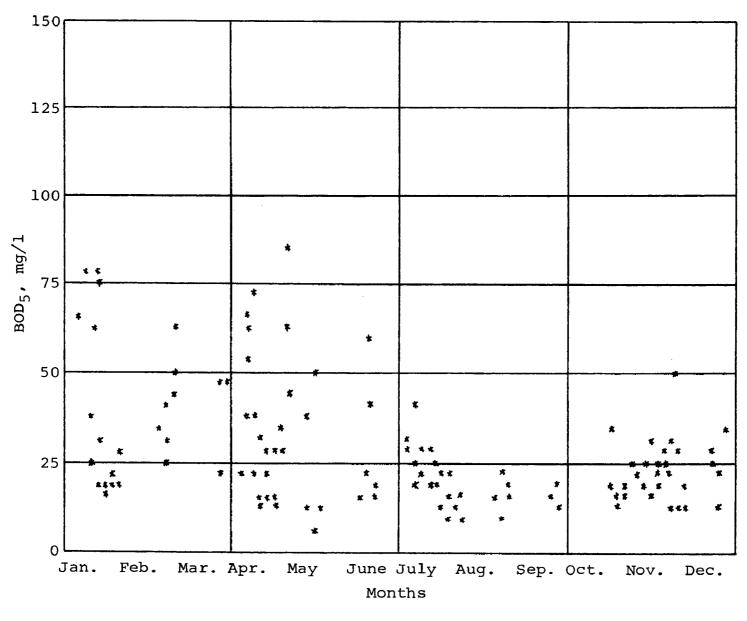


Figure 6. Seasonal effluent BOD_5 change at Bixby lagoon, 1976

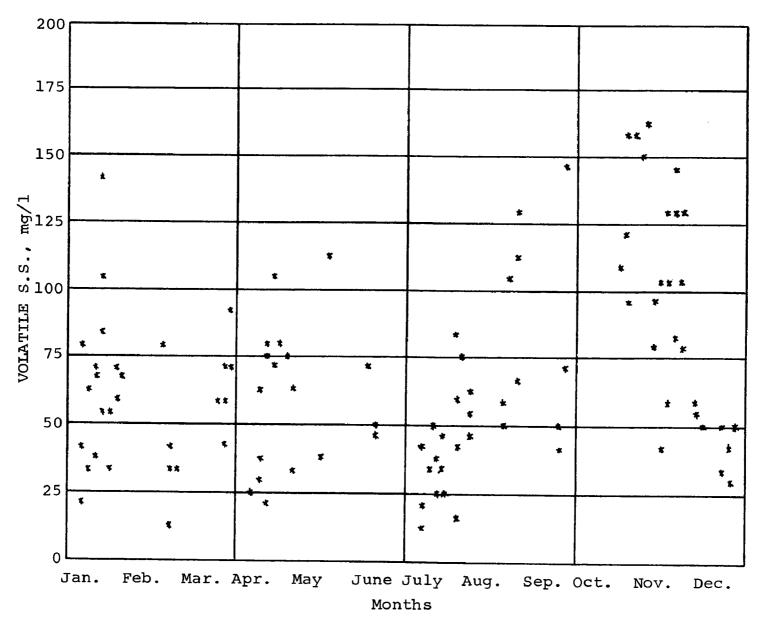


Figure 7. Seasonal change of mid-point volatile suspended solids at Bixby lagoon, 1976

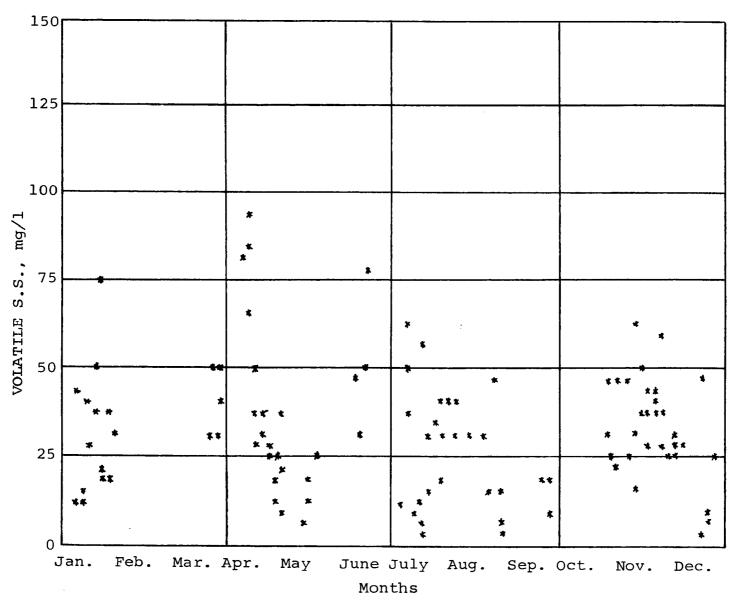


Figure 8. Seasonal change of effluent volatile suspended solids at Bixby lagoon, 1976

TABLE 8. MONTHLY AVERAGE INFLUENT WATER QUALITY AT BIXBY LAGOON, 1976

TESTS	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
рн	6.9	-	7.1	6.7	6.5	6.5	6.1	6.4	6.2	6.3	6.5	6.3
Alkalinity*	165	-	162	169	159	157	152	144	142	163	154	143
Total BOD ₅	368	422	414	430	379	413	355	213	330	388	383	283
Soluble BOD ₅	222	244	227	132	136	122	140	105	142	136	156	119
Total S.S.	323	228	236	347	271	230	253	282	213	230	289	134
Volatile S.S.	230	177	107	288	207	187	200	255	82	180	229	96
Total COD	664	523	671	619	552	606	594	589	646	773	815	619
Soluble COD	312	368	319	225	240	267	254	223	259	278	262	224
Phosphorus**	36.5	-	37.3			_	-	***		-		-
TKN	42.9	44.4	63.6	42.3	40.2	40.8	47.5	36.3	44.2	47.1	50.2	44.3
Ammonia-N	31.0	27.9	25.1	24.7	24.4	26.5	36.3	22.3	33.5	40.4	32.6	28.5
Fecal Coli.,												
x100/100 m1		-	133	225	-		-	_		_	_	-
Flow,												
x10 ³ gpd#	111	109	123	168	141	111	124	222	140	124	148	148

Unless otherwise indicated, all units are mg/l except for pH.

^{*}Alkalinity as CaCO3.

^{**}Actual tests performed were dissolved ortho-phosphate. For convenience, dissolved ortho-phosphate was identified as phosphorus.
#1 gpd = 0.003785 m³/d.

TABLE 9. MONTHLY AVERAGE MID-POINT WATER QUALITY AT BIXBY LAGOON, 1976

TESTS	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
рн	7.3	_	7.7	6.8	6.6	6.5	6.6	6.8	6.7	6.4	6.6	6.4
Alkalinity*	142	=	157	111	72	71	81	74	52	45	38	74
Temperature, OC	5.7	-	16.6	19.3	21.0	25.9	28.7	27.4	25.0	14.0	9.5	7.4
DO y	10.6	-	6.7	7.3	4.4	3.5	6.9	7.7	7.1	8.4	8.4	7.9
Total BOD ₅	68	150	60	99	71	87	56	79	87	105	110	52
Soluble BOD ₅	55	87	40	37	9	13	14	8	5	8	9	12
Total S.S.	93	63	101	73	80	61	66	102	109	166	120	51
Volatile S.S.	64	40	63	59	74	53	50	87	78	140	98	40
Total COD	1.47	186	191	216	183	175	139	204	185	268	248	173
Soluble COD	65	133	111	84	64	104	53	69	68	5 7	68	66
Phosphorus**	38.6		43.6	-		-		-	-	_	_	_ '
Fecal Coli.,												
x100/100 ml	_		113	162	-	-		-	-		-	_
Total Coli.,												
x100/100 ml	-	_	213	328	-	-	_	-	_	_	_	_

Unless otherwise indicated, all units are mg/l except for pH.

^{*}Alkalinity as CaCO3.

**Actual tests performed were dissolved ortho-phosphate. For convenience, dissolved ortho-phosphate was identified as phosphorus.

TABLE 10. MONTHLY AVERAGE EFFLUENT WATER QUALITY AT BIXBY LAGOON, 1976

TESTS	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
рН	7.6	_	9.2	6.9	6.9	6.7	6.7	7.1	8.1	7.7	7.1	6.7
Alkalinity*	91	-	149	80	59	69	75	69	63	62	59	49
Temperature, OC	5.2	_	16.0	19.2	20.3	26.1	29.3	28.2	24.3	12.8	8.6	6.6
DO	13.5	_	9.0	5.7	8.3	3.9	4.3	6.4	9.5	10.6	11.7	11.5
Total BOD ₅	48	41	39	36	27	26	20	14	40	19	24	21
Soluble BOD ₅	36	32	36	13	6	9	10	5	4	6	7	5
Total S.S.	51	_	59	67	44	97	71	38	28	51	56	36
Volatile S.S.	31	_	43	41	39	52	33	25	16	34	39	21
Total COD	85	-	154	128	119	146	7 5	60	61	85	116	110
Soluble COD	41	-	107	70	59	60	48	44	30	39	52	55
Phosphorus**	32.9	-	39.9	-	104	_	38	-	_	-	_	_
TKN	7.7	19.2	22.2	7.5	5.6	6.3	5.0	2.7	3.9	4.3	5.9	8.4
Ammonia-N	4.6	13.9	14.8	3.0	1.2	1.3	0.6	0.5	0.1	0.2	0.1	1.0
Fecal Coli.,												
x100/100 m1	_	_	53	80	_	-	_	-	_	_		
Total Coli.,												
x100/100 m1	-		129	178	-	_	_	-	-	-	-	-

Unless otherwise indicated, all units are mg/l except for pH.

^{*}Alkalinity as CaCO3.

^{**}Actual tests performed were dissolved ortho-phosphate. For convenience, dissolved ortho-phosphate was identified as phosphorus.

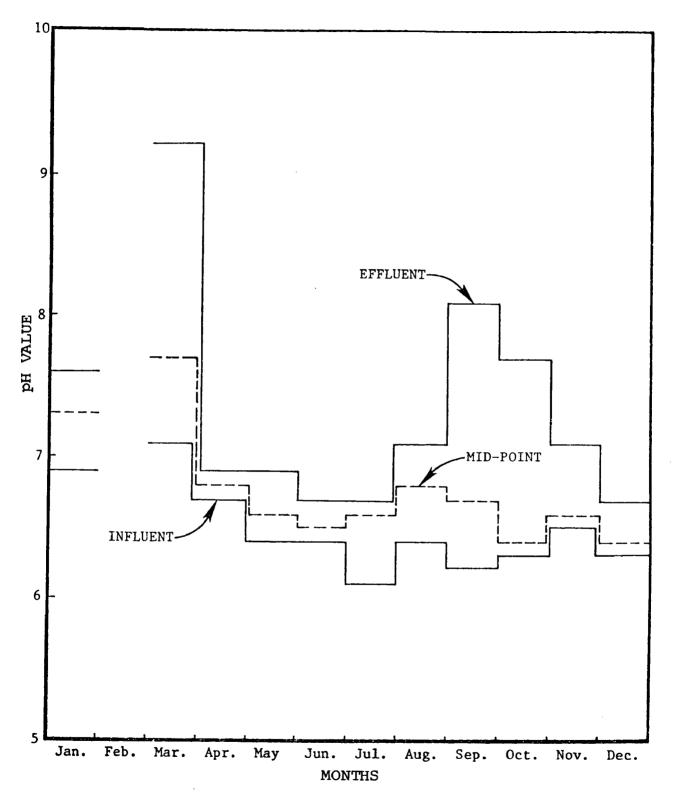


Figure 9. Monthly average pH value at Bixby lagoon, 1976.

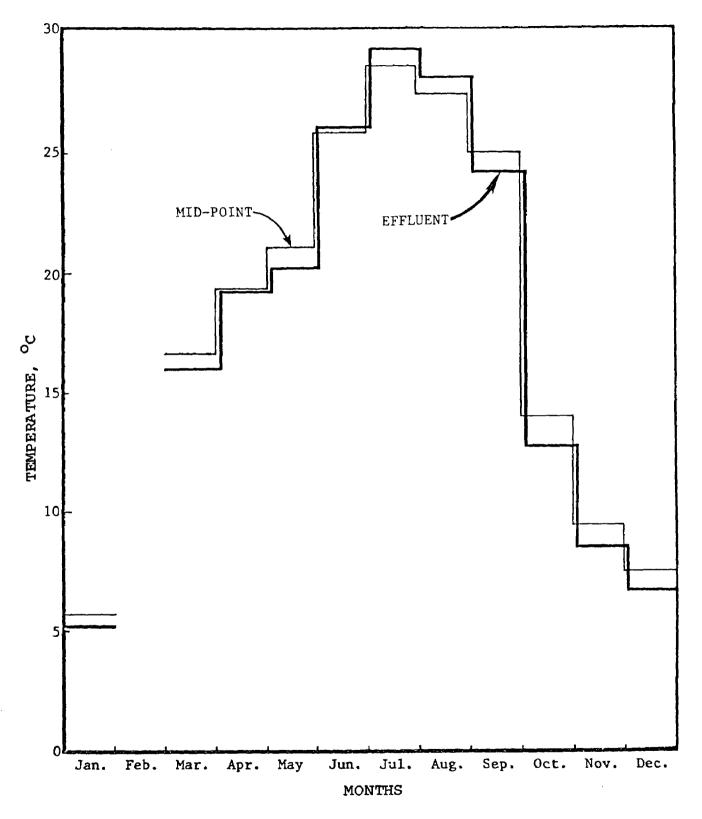


Figure 10. Monthly average water temperature at Bixby lagoon, 1976.

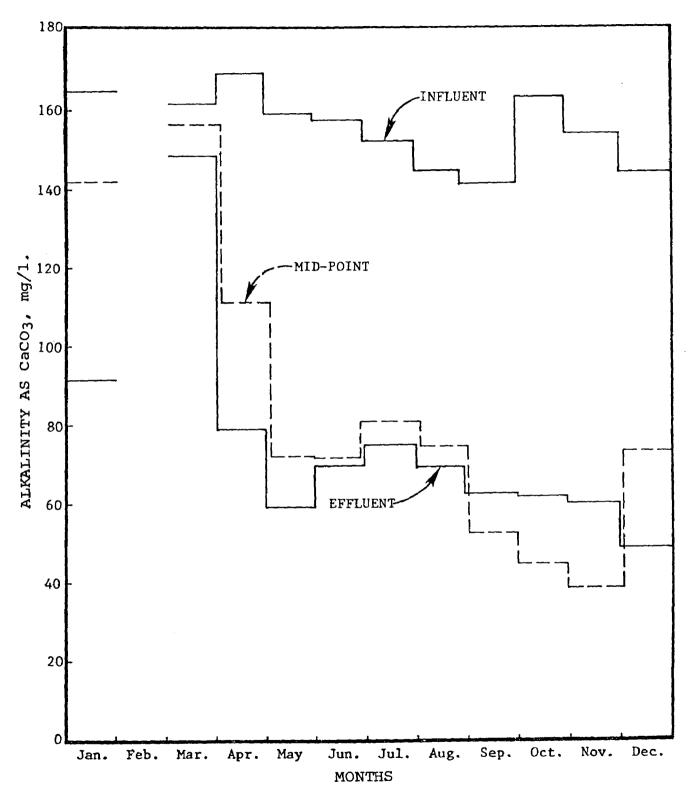


Figure 11. Monthly average alkalinity at Bixby lagoon, 1976.

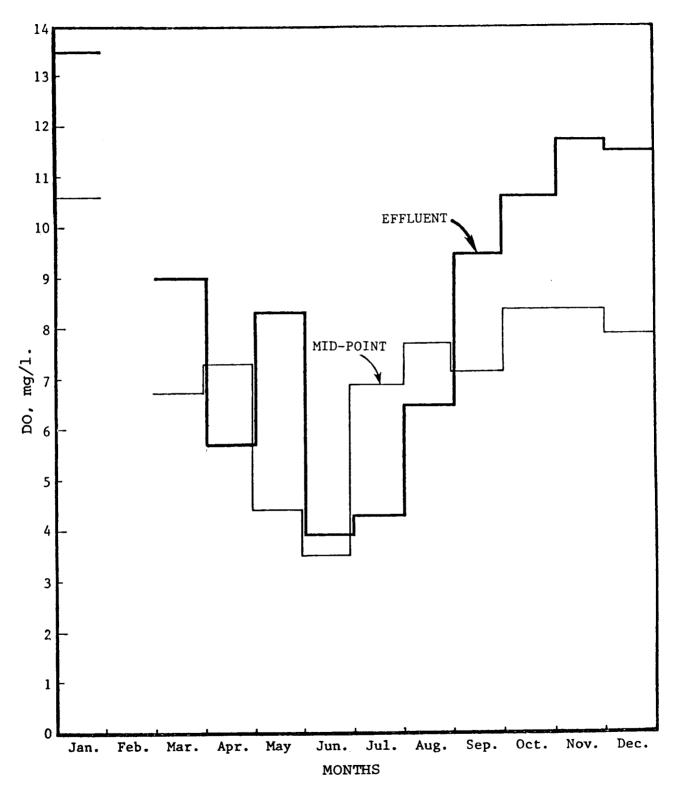


Figure 12. Monthly average dissolved oxygen at Bixby lagoon, 1976.

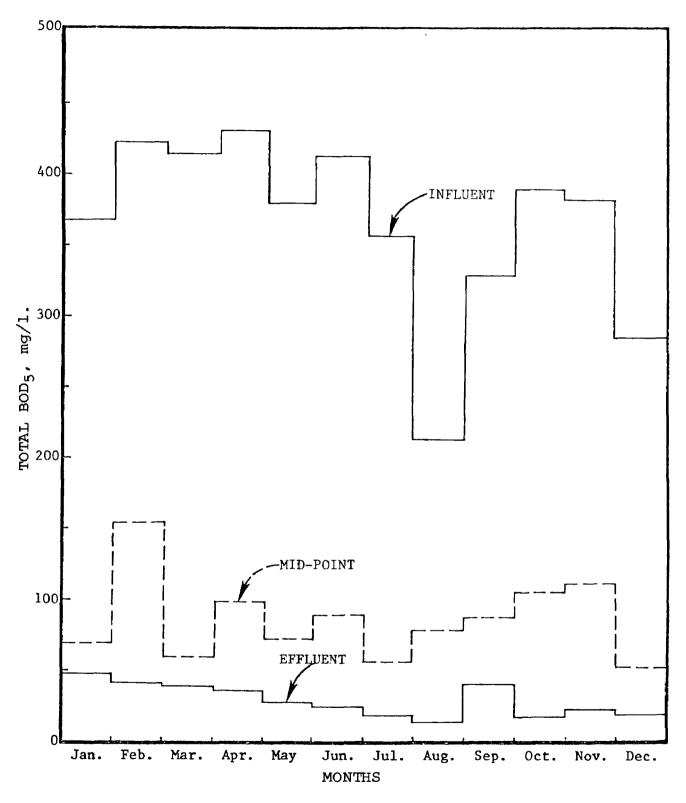


Figure 13. Monthly average total BOD_5 at Bixby lagoon, 1976.

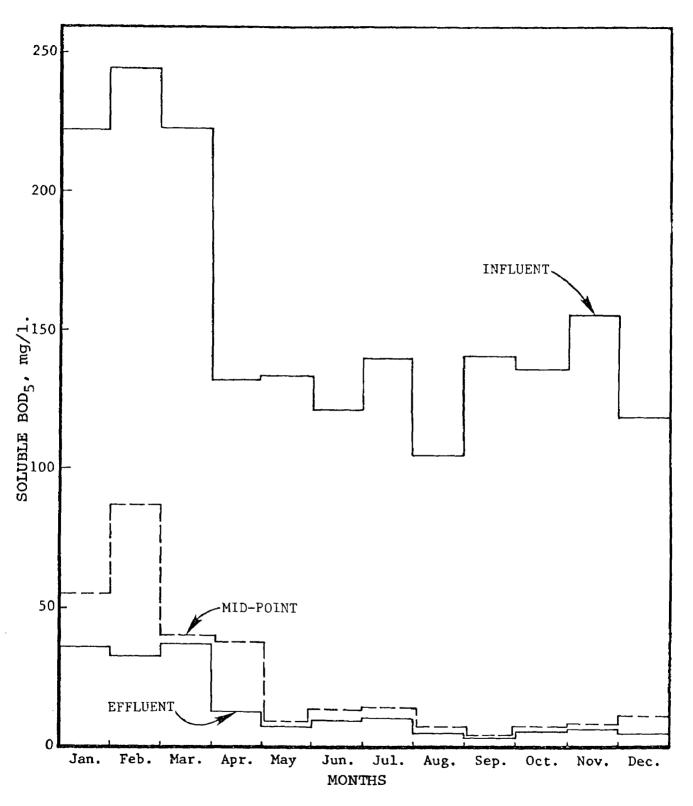


Figure 14. Monthly average soluble BOD_5 at Bixby lagoon, 1976.

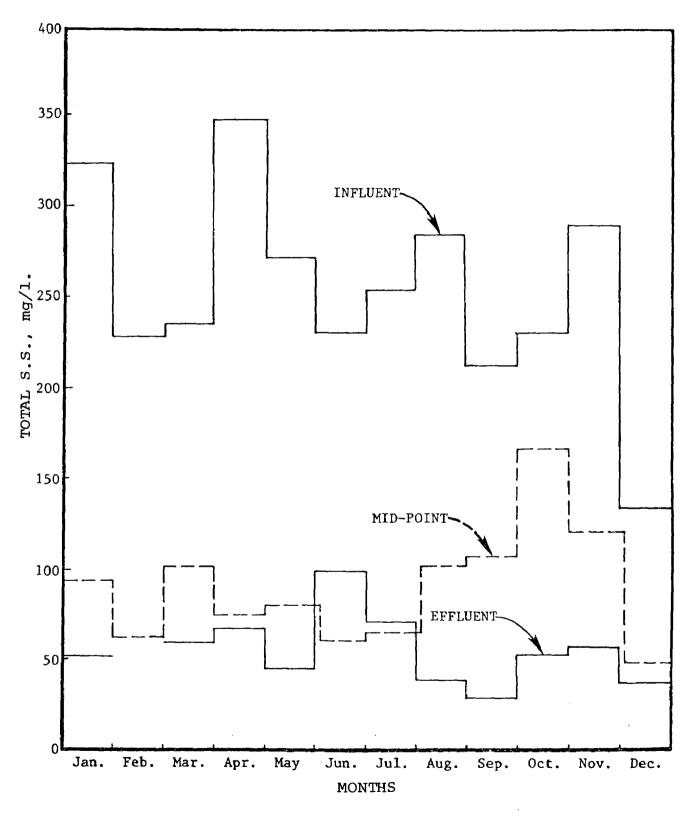


Figure 15. Monthly average total suspended solids at Bixby lagoon, 1976.

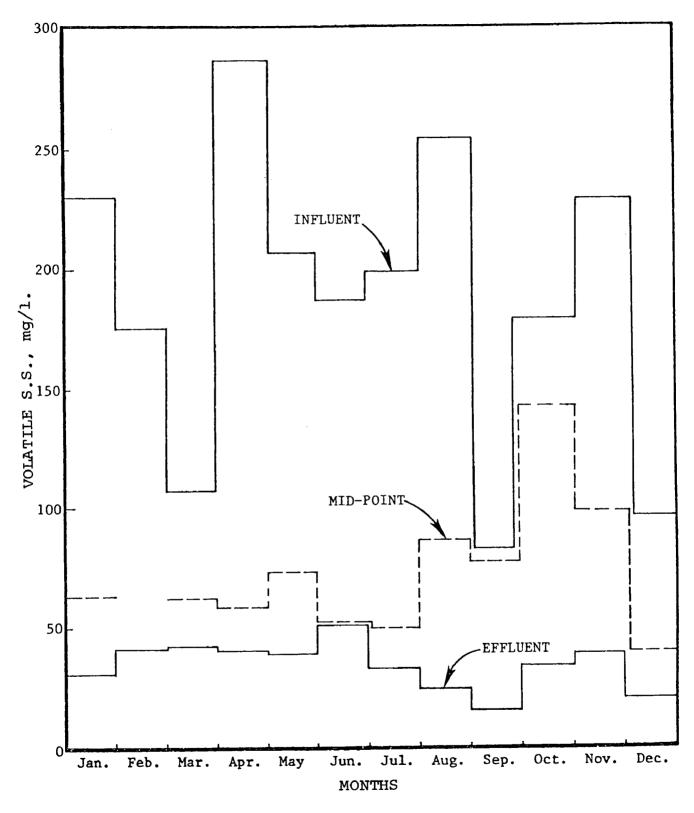


Figure 16. Monthly average volatile suspended solids at Bixby lagoon, 1976.

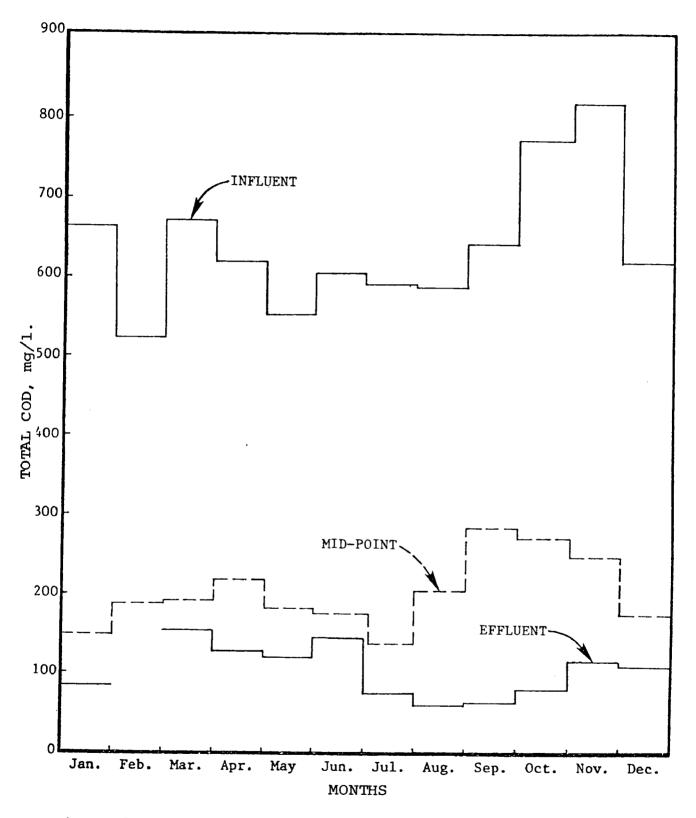


Figure 17. Monthly average total COD at Bixby lagoon, 1976.

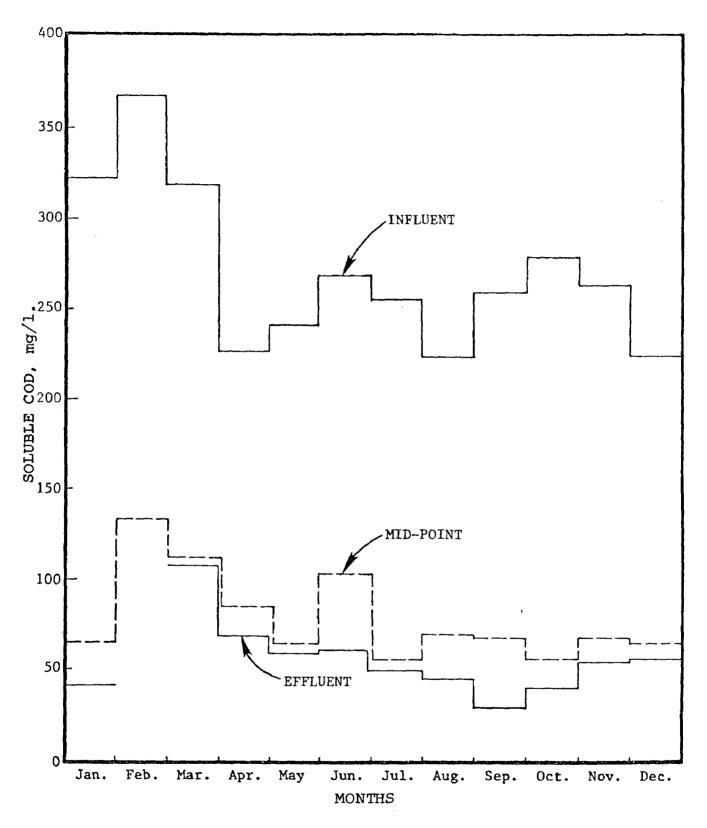


Figure 18. Monthly average soluble COD at Bixby Lagoon, 1976.

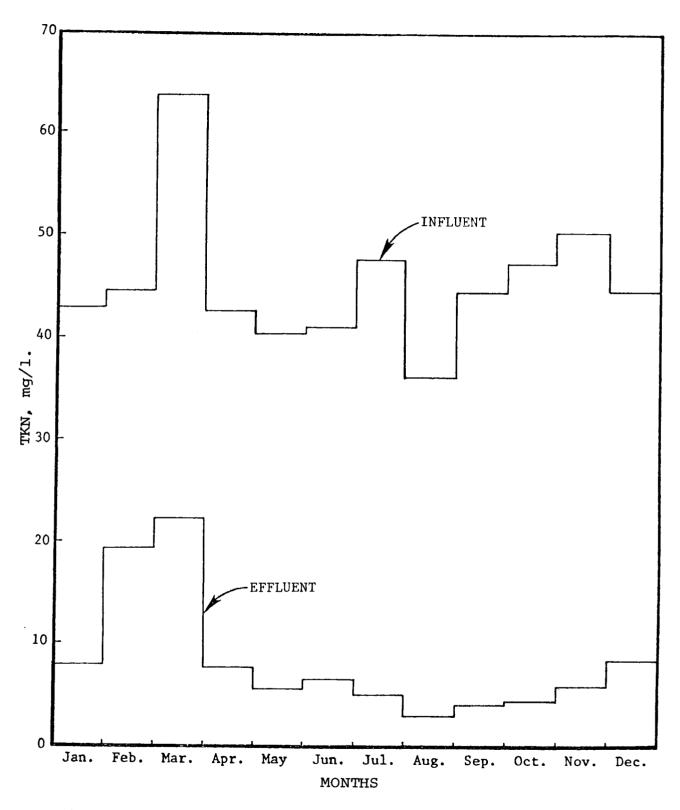


Figure 19. Monthly average total Kjeldahl nitrogen at Bixby lagoon, 1976

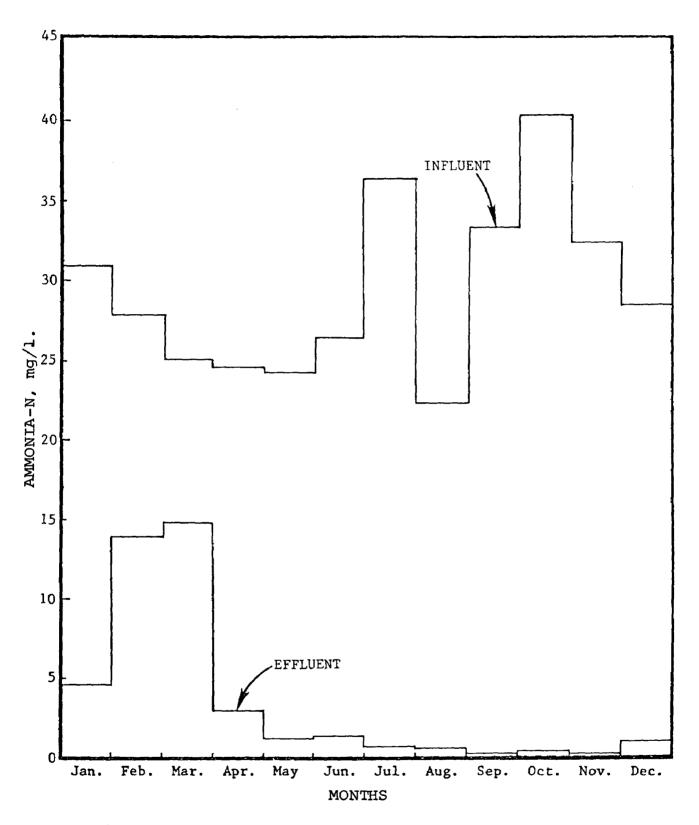


Figure 20. Monthly average ammonia nitrogen at Bixby lagoon, 1976.

at any month of the year.

The analysis of algae was performed qualitatively only and analysis was made to the genus level. Based on comparative observation, the population density of the different algae are referred to as very abundant (VA) or rare (R). Algal analysis performed at the Bixby lagoon are tabulated in Table 11.

TABLE 11. ALGAL GENUS IDENTIFIED* AT BIXBY LAGOON

ALGAL GENUS	POPULATION DENSITY
(From mid-point of lagoon system)	
Ankistrodesmus	VA
Euglena	R.
Golenkinia	R
Oocystis	R
Scenedesmas	R
(From effluent of lagoon system)	
Ankistrodesmus	VA
Chlorella	R
Euglena	R
Golenkinia	R
Pediastrum	R

^{*}Identification was performed by Bill Cox, Pollution Control Section, Tulsa City-County Health Dept., Tulsa, Oklahoma; on single sample.

SECTION 7

PROJECT DATA EVALUATION AND ANALYSIS

The stated secondary objective in the proposal is to utilize the generated data to evaluate the effectiveness of the multi-system lagoon to perform in accordance with its design criteria and the ability to meet the secondary treatment standards as established by the Federal Water Pollution Control Act Amendments of 1972.

This section of the report will discuss, in relation to the stated secondary objectives, the results of analysis of data collected. However, before the discussion of the results, a brief literature review will perhaps be helpful to readers who are unfamiliar with the modelling aspects of biological waste treatment.

BRIEF LITERATURE REVIEW IN BIOLOGICAL WASTE TREATMENT MODELLING

Literatures reviewed indicated that there exists a proliferation of design methods for biological treatment facilities. There are, however, precious few articles on the analysis of existing biological treatment facilities. A study of operational parameters in facultative lagoons is essential if one is to compare the performance efficiencies against design values.

Horsfall (8) points out that little is understood of the biochemical reactions that take place in facultative lagoons. Enzymatic processes do not necessarily occur in the same environment as the bulk of water. Also, if cells encounter food sources at low concentration, they develop a mechanism for concentrating food around the cell in a separate layer. These cells are thus able to consume food that cannot be transported directly through the cell walls. The cells excrete enzymes that break up the food, thereby enabling transport across the cell wall.

A variety of life forms degrade organic wastes. It is impossible to predict which of the several steps these organisms use to consume the waste is rate-controlling. The problem is compli-

cated by the fact that domestic and industrial wastes are practically impossible to classify at a level of detail essential for theoretical biochemical degradation studies. Horsfall suggests that lagoon design procedures are simplistic and that the fact that biochemical facilities operate efficiently is surprising in view of the uncertainties in design methods.

Shastri, Fan and Erickson (9) have developed a non-linear least squares method for estimating the parameters in a nine parameter stream water quality model. However, as Brown and Berthouex (10) have pointed out, the model is not convincing because the fundamental premises on which the model is built are themselves questionable. They argue that using highly non-linear kinetic models for BOD removal studies is questionable if numerous parameters are arbitrarily hypothesized as being revelant. fact, practically any data set could be forced to fit a nineparameter, non-linear model. Therefore, a mere parameter estimation exercise does not validate the model per se. simply because innumerable "counter-models" could be proposed and shown to fit the same data equally well, regardless of the theoretical validity of the models themselves. This issue lies at the heart of the question of model calibration versus model testing and validation against observed data which was not included in model calibration originally. As a result, complex models require very extensive field data collection. A corollary of this statement would be that, in the absence of extensive field data, models should be constructed to be as simple as possible. real problem therefore, is not the lack of theoretical models but rather the shortage of consistent and reliable experimental data drawn from long term water quality monitoring studies of operating facilities. In fact, an even more fundamental problem often is the lack of good waste characterization studies.

Viraraghavan (11) attempted such a waste characterization study between BOD₅, COD and TOC for a raw sewage, septic tank effluent and polluted groundwater. Viraraghavan made the following conclusions:

- (a) For raw sewage the correlation coefficients between BOD₅, COD and soluble organic carbon were not significant at the 5 percent level.
- (b) For polluted groundwater the correlation coefficient between COD and soluble organic carbon was significant at the 1 percent level.

However, these conclusions may be entirely premature since

Viraraghavan used only ten raw sewage, 20 septic tank effluent and 28 polluted groundwater samples in the statistical analysis. Besides, other essential parameters such as suspended, dissolved, settleable, and total solids as well as nutrients and their degradation by-products were completely ignored in the characterization. A final point in such an exercise is simply that there is no logical necessity for different waste waters and surface or groundwaters to have similar statistical profiles for various pollutants. It is obvious that each kind of wastewater has unique characteristics and that any extrapolation to other kinds of wastewater is not logical.

Thus, studies which report field data for the major water quality constituents on a seasonal basis are useful. They make it possible to confirm or deny the reliability of the design procedure which was used to build the facility in the first place. In a stream water quality modeling effort, field data would be similarly essential to enable model calibration. Additional data, not used in the model calibration, would be necessary for model validation exercises.

This study shows in the succeeding sections that influent characterization, treatment process efficiency correlations, and effluent characterization and correlation against influent data are all possible using simple multi-parameter linear models.

A final effort in the study addresses the important problem of attempting to derive characteristic design parameters from operational information. The complications caused by seasonal temperature variations are, specifically, addressed in an attempt to see how well the standard lagoon design method formulas fit observed performance data.

RESULTS AND ANALYSES

The discussion on results and analyses, will be divided into seven sections as follows: (results from regression analysis are summarized in Appendix B).

- (i) Computing statistical averages and standard deviations.
- (ii) Characterization of the wastewater entering the lagoon system (influent).
- (iii) Calculation of removal efficiencies for pollutants listed on the NPDES permit and also for other parameters. (These removal efficiencies were computed for each cell as well as for the total system). Correlation of pollutant removal efficiencies against influent

- properties and parameters for each cell and for the total system.
- (iv) Correlation of lagoon mid-point properties (between cell 1 and cell 2) with influent properties.
 - (v) Correlation of effluent parameters with influent parameters.
- (vi) Fitting the standard aerated lagoon design equations to actual performance data for biochemical oxygen demand (BOD), with temperature dependency of the reaction rate constant included.
- (vii) Fitting the CSTR and Plug Flow Models for different rate mechanism to a set of data which has a constant temperature.
- (i) Computing statistical averages and standard deviations:
 Descriptive statistics of the experimentally determined parameters are summarized in Tables 3-5. The statistics of the parameters at the influent are presented in Table 3, the midpoint and effluent statistics are presented in Tables 4 and 5, respectively.

Examination of these tables indicate the wide variation of the experimentally determined water quality data.

As shown in Table 3, the average value of the influent BOD5 is 368 mg/l and has a standard deviation of 90. The volatile suspended solids have an average value of 201 mg/l and a standard deviation of 116. At the outset, a close study of these standard deviations indicates that a waste characterization attempt would have dubious success. This hypothesis is confirmed in subsequent sections.

Tables 4 and 5 indicate similar wide variations. For instance, the effluent BOD₅ has an average value of 30 mg/l and a standard deviation of 21. An attempt to predict the mid-point and effluent parameters was ambiguous at best. In the linear regression equations the constant term was always high, indicating that the correlating parameters only partially "explain" the dependent variable.

(ii) <u>Characterization of wastewater entering the</u> lagoon system:

Raw wastewater properties dictate the lagoon performance. Influent wastewater properties at a lagoon system can vary on an hourly, daily, monthly and seasonal basis. Hourly fluctuations can be very different because total flow and pollutant

loadings are particularly high after morning and evening hours. Mid-afternoon and night-time conditions are usually less severe. In the Bixby study, it was decided to take samples composited throughout the day so that the effect of hourly fluctuations could be smoothened out.

Despite such daily averaging, there remains a high degree of variation in raw wastewater properties by season. This, along with climatic considerations, causes the performance to vary considerably between the seasons.

The federal NPDES permit does not specifically require raw wastewater analysis. The apparent emphasis in the permit system is on the quality of the treated wastewater. Due to this, some communities do not feel that influent monitoring is necessary on a routine basis. However, for design calculations, or for performance grading studies, influent characteristics data are equally important as those of the effluent.

An examination of Tables B-l to B-6 (in Appendix B) shows the several significant correlations attempted between various influent parameters for different seasons. Table B-l shows the stepwise regression which led to the identification of significant variables for explaining selected dependent variables. The low correlation coefficients indicate that the regression equations are a poor substitute for experimental data, and most likely are excluding significant parameters from variables considered in the regression analysis.

(iii) Correlation of pollutant removal efficiencies:

As may be expected, the lagoon efficiencies for BOD removal are consistently high except possibly during winter. From the one year data period of this project, the overall BOD removal efficiency averaged about 92%. This, in conjunction with the annual average effluent BOD₅ concentration of 29 mg/l, shows the Bixby lagoon to be substantially in compliance with the federal requirements of secondary treatment for BOD₅.

The overall removal efficiency for BOD was found to correlate primarily only with the temperature of the wastewater. on a monthly basis, effluent BOD₅ concentration was below 30 mg/l in seven months out of the year. Low BOD values seemed to coincide with the warm temperature of summer months while lagging into the late autumn months. Further explanation is difficult because of the uncertainties involved in the experimental determination of influent BOD caused by flocular dispersion of organic material.

BOD removal efficiency correlation for cell 2 is quite good with BOD at the end of cell 1. This reinforces the suspicion that raw influent BOD fluctuations are quite large; the high standard deviation of 89 mg/l again pointe in the same direction.

Total suspended solids (TSS) removal efficiency averaged at 76%, while the average effluent TSS was 54 mg/l on an annual basis. This shows that the lagoon fails to meet federal secondary treatment limitations for suspended solids. Examination of the monthly average effluent water quality (see Table 10) revealed that for TSS only one month out of the year did the effluent TSS level meet the standard.

The fecal coliform density data of raw wastewater at the Bixby lagoon system are in the range of 105/100 ml. With this concentration of coliform bacteria in the wastewater, even a reduction efficiency as high as 98% may still result in an effluent with fecal coliform exceeding the 200/100 ml secondary effluent standard. Data of effluent total and fecal coliform collected at Bixby are in the range of 104 and 103/100 ml respectively, indicating non-compliance with the federal secondary treatment requirement. In view of this inadequacy in bacteriological treatment, it is suggested here that perhaps a maturation pond added will greatly improve the bacterial removal efficiency of the Bixby lagoon system or disinfection should be used if the water quality standards required meeting effluent numbers less than 200/100 ml.

(iv) Correlation of lagoon mid-point properties:

At the mid-point of the lagoon (between cell 1 and cell 2) system, the annual average BOD₅ and TSS were found to be 84 mg/l and 89 mg/l respectively. This shows that the bulk of the BOD and TSS removal occurred in cell 1. This is in keeping with theoretical considerations which predict a BOD removal rate proportional to the average concentration of BOD in the cell. Similarly, the bulk of the TSS in the influent settle down rather quickly in cell 1. Cell 1 is also more vigorously aerated than cell 2 and this surely complicated the analysis. Above all, the growth of algae in cell 2 also contributed significantly to TSS.

(v) Correlation of effluent properties with influent properties:

As discussed under (ii) above, the Bixby lagoon meets the EPA criteria for BOD₅ but not for TSS, or fecal coliform density.

Correlations were attempted for total and soluble BOD5 and COD, total and volatile suspended solids and total Kjeldahl nitrogen in the lagoon effluent. In general, it was not found feasible to correlate effluent properties with influent data with any high degree of reliability, for in cases where correlation did exist, they were found to be erratic in nature. This is perhaps partly because of the inscrutable random scattering in the influent and effluent peoperties and the fact that the effect of algae has not been considered.

A further complication is the fact that the lagoons' average residence time (based on plug flow) is nearly eighty-two days. This time lag is very significant and an attempt to correlate influent and effluent properties has proved this to be true. On the other hand, an attempt to correlate influent and effluent data taken eighty-two days apart would ignore the effect of intervening parameters like climatic and other cumulative factors during those eighty-two days. It can be said, therefore, that at this time there is no satisfactory method for correlating effluent parameters with influent values for a high retention time aerated lagoon unless during the entire retention period all intervening factors could be controlled. This fact also casts some doubt on ones ability to accurately compare the design calculations against actual operating data. Ignoring the time lag or considering the average values seems to be the only viable alternatives at the moment.

(vi) <u>Curve-fitting of design equation to operating data:</u>
The standard design equation for aerated lagoons (11) is:

$$(S_0-S_e)/(X_vt) = k S_e$$
 ----(1)

 $S_0 = influent BOD_5 concentration, mg/1.$

 $S_e = effluent BOD_5 concentration, mg/l.$

 X_V = average or equilibrium concentration of volatile solids (active bio-mass) in lagoon, mg/1.

t = detention time = V/Q, days.

k = specific organic removal rate coefficient l/mg-day.

In the above design equation it is a normal practice to plot $(S_0-S_e)/t$ versus S_e . A linear regression is then carried out to obtain the slope (kX_v) . The reason why k and X_v are lumped together in most studies is that prediction of X_v in an aerated

lagoon which has zero recycle is often impossible. The intercept from this plot (which theoretically should be zero) is labeled as a "residual term". The alternative to having a residual is forcing the line through the origin and decreasing the degrees of freedom of the regression equation for y by 1.

The real problem with the above mentioned plot is that the term, S, appears in the numerator of both the x and the y-axis term. This, as discussed by Sherwood and Reed (12), is a cardinal error since highly erroneous values of S would be disguised under such a plot.

The correct procedure for plotting the design equation is really:

$$(S_o - S_e)/S_e = k X_v t$$
(2)

and to do a least squares fit which forces the line to pass through the origin. Such a plot of (S/S - 1) versus t would show two independent variables on either axis and would not suffer from the above mentioned deficiencies.

Before such a plot is made the temperature effect on the specific organic removal rate constant must be considered. The standard approach (9) is:

$$k = k_0 \Theta(T-20)$$
(3)

where

k = specific organic removal rate at 20°C; 1/mg-day. Θ° = temperature coefficient (dimensionless)

T = temperature of the waste °C

Substituting (3) in (1) and taking logarithms yields ln

$$(S_{O} - S_{O})/S_{O} = 1n (k_{O} \times V) - 20(1n \Theta) + (T In \Theta - In Q)(4)$$

a plot of these synthesized variables ln ((S -S)/S) versus (Tln Θ - ln Q) should be forced through a slope of 0.0. The intercept is then ln(k,X,V).

There is no really definitive recommendation in the literature as to whether or not one should treat X, as an independent design parameter in aerated lagoon design. For this reason, an

attempt was made in this study to determine whether extensive operating data gathered over a period of one year could be used to elucidate the problem.

The methodology used to segregate the effect of $X_{\mathbf{V}}$, assuming it to be statistically significant, was to rewrite equation (4) as:

$$\ln((S_O - S_e)/S_O) = \ln(k_O V) - 20 (\ln \theta) + (T \ln \theta - \ln Q + \ln X_V) -----(5)$$

where X_V has been combined with the synthetic independent variable term.

It should be recognized that X_V reduced very rapidly from the entrance to the first cell to the exit of the first cell. The variation in the second cell is not so marked because of the rapid growth of algae which interfere with the measurement of the volatile suspended solids (VSS). In other words, the fraction of the VSS which is biologically active, x, varies inversely with the relative abundance of algae. There was no attempt to isolate the value of x from the measured VSS value in this study. Such a determination would have to be based on extensive pilot plant experiments in which all other operating conditions could be carefully controlled. Such control was not possible in the Bixby lagoon system.

The X_V term, as used in the above equations, therefore should be thought to include the multiplier x. The net effect of using X_V without x in the regression exercise would be to bias the value of the intercept term (ln k_OV - 20 ln θ) in equation (5).

If the basic data variables in equation (5) were "noisy", this could easily conceal the true significance of x in the regression. The Bixby study has shown that these data items do in fact contain a great deal of random spread and hence the error involved in ignoring x is probably not significant.

Equation (5) was regressed for two alternatives:

- (a) Cell 1, with S_{O} measured at raw influent, S_{e} , T, X_{V} measured at cell 1 exit.
- (b) Cell 2, with S_O measured at cell 1 exit, S_e , T, X_V measured at cell 2 exit (i.e. at lagoon system exit).

Eckenfelder reported the temperature coefficient, Θ for a pulp and paper mill waste and for a board-mill waste to be

varying from 1.07 to 1.09 for filtered and settled samples. (13) Herman and Gloyna using municipal wastewater for a temperature range of 25° C to 35° C found the optimum rate constant K_{35} to be 0.60, with θ value equal to 1.085. (14) Mancini and Barnhart reported that for aerated lagoons, θ varies from 1.06 to 1.18. (15)

Because the value of the temperature coefficient θ is not known with certainty, it would have to be varied until the best least squares lines could be obtained. Seventeen values of θ between 1.0 and 1.2 were attempted in each of the two alternatives. The value of θ which gave the best fit in terms of the lowest residual sum of squares of the errors and/or the best correlation coefficient (r) was chosen.

The regression exercise was repeated for equation (4) which, as explained earlier, helped produce an average value for the product $k_{\rm O}X_{\rm V}$ rather than $k_{\rm O}$ alone.

Results of these regression exercises for both equation (4) and (5) are tabulated in Table 12. All regressions were found to have F values which were statistically insignificant at the confidence level of 95%. Correlation coefficients were also found to be rather low, probably due to noisy data and ignoring of the effect of algae.

The most impressive result obtained from these regressions was that the temperature coefficient values θ were 1.01 and 1.035 for equation (4) and 1.05 and 1.035 for equation (5) for cell 1 and cell 2 reapectively. This is in strong agreement with Adams and Eckenfelder's (16) reported general value of 1.035.

TABLE 12. EVALUATION OF TEMPERATURE COEFFICIENT

CELL	REACTOR MODEL	X _V VARIABLE?	SSr	ssy	r ²	VALID CASES	Θ
1	CSTR	Yes	49.42	22.4	0.062	72	1.050
1	CSTR	No	16.74	22.4	0.269	72	1.035
1	Plug Flow	No	6.02	5.9	0.239	72	1.020
2	CSTR	Yes	130.70	62.2	0.068	75	1.035
2	CSTR	No	76.20	62.2	0.072	75	1.010
2	CSTR	No	38.20	27.6	0.062	75	1.000

(vii) Fitting the CSTR and Plug Flow Models for different rate mechanisms to a set of data which has a constant temperature:

As can be observed from data tabulated previously, the temperature of the wastewater remained fairly constant for the months June through September. Average temperature was 28 °C, with a standard deviation of 1.2. Since the average retention time in each of the two cells is 40 days (based on plug flow), it is necessary to choose data for model fitting which has the same temperature over an extended period of time. Accordingly, the data for July to September were used in the following models.

The basic design equations for a plug flow reactor and a CSTR under steady state conditions are respectively:

$$\int_{0}^{v} dv/Q = \int_{S_{0}}^{S_{e}} ds/(-r) \quad \text{and} \quad Q(S_{0} - S_{e})/v = -r$$

In the above equations: $V = volume \ of \ reactor \ (m^3)$

 $Q = flow rate (m^3/day)$

 $S = concentration of BOD_5 mg/l.$

r = rate of reaction mg/1/day.

Both these design equations represent ideal extremes between which the lagoons perform. Different kinetic models for the rate of reaction were substituted in these design equations. These equations were simplifies and linearized by taking logarithms. The possibility of treating the volatile suspended solids as a variable was also considered.

Table 13 summarizes the results for cell 1 and Table 14 for cell 2. In these tables the first column represents the reactor model, the second column the rate equation that was used. The third column, SS_r , is the residual sum of the squares - a measure of the deviation of the observed values from the values predicted by the regression equation. Column 4, SS_y , is a measure of the deviation of the observed value from the average value of the dependent variable.

An examination of Tables 13 & 14 show that none of the models are "better" than just predicting an average value for the lagoon performance, that is, none of the models explain the data sufficiently. This can be explained partly because the kinetic models do not account for algae growth. Actually, the poor results in this modeling exercise are in keeping with Horsfall's (8)

contention that existing design equations are simplistic and do not reflect the complexity of the biochemical reactions.

TABLE 13. SUMMARY OF MODEL TESTING, BIXBY CELL 1

REACTOR MODEL	RATE EQUATION	ssr	ssy	r ²
Plug Flow	r = K	2.14	0.75	0.159
Plug Flow	r = K S	2.18	0.89	0.159
Plug Flow	$r = (K S)/S_0$	3.30	1.39	0.023
CSTR	$r = \kappa$	2.14	0.75	0.159
CSTR	r = K S	3.95	3.86	0.150
CSTR	$r = (K S)/S_0$	4.08	4.61	0.198
CSTR	$r = k X_v$	6.41	0.75	0.019
CSTR	$r = k x_v S$	12.55	3.86	0.163
CSTR	$r = (k \dot{X}_{v} S)/S_{o}$	13.20	4.62	0.128

 $K = k X_v$

25 DATA POINTS, AVE. TEMP. = 28 °C, STD. DEV. = 1.8

TABLE 14. SUMMARY OF MODEL TESTING, BIXBY CELL 2

REACTOR MODEL	RATE EQUATION	ss _r	ss _y	r ²
Plug Flow	r = K	12.11	7.36	0.068
Plug Flow	r = K S	10.05	5.59	0.067
Plug Flow	$r = (K S)/S_{O}$	7.23	5.94	0.015
CSTR	r = K	12.11	7.36	0.068
CSTR	r = K S	20.32	14.53	0.073
CSTR	$r = (K S)/S_0$	31.74	24.78	0.080
CSTR	$r = k X_v$	26.72	7.36	0.052
CSTR	$r = k X_v S$	31.95	14.53	0.092
CSTR	$r = (k X_v S)/S_o$	46.39	24.78	0.034

 $K = k X_v$

25 DATA POINTS, AVE. TEMP. = 28 °C, STD. DEV. = 1.5

REFERENCES

- 1. Marais, G. V. R. New Factors in the Design, Operation and Performance of Waste Stabilization Ponds. Bull. Wld. Hlth. Org., 34:737-763, 1966.
- Barsom, G. M., and Rychman, D. W. Evaluation of Lagoon Performance in Light of 1965 Water Quality Act. In: Second International Symposium for Waste Treatment Lagoons, Kansas City, Missouri, June 1970.
- 3. Barsom, George. Lagoon Performance and the State of Lagoon Technology. U.S.E.P.A., Wash. D.C., June 1973.
- 4. Coleman, M. S., Henderson, J. P., Chichester, H. G., and Carpenter, R. L. Agriculture as a Means to Achieve Effluent Standards. Env. Prot. Tech. Series EPA-660/2-74-041.
- 5. Eckley, L. E., Canter, L., and Reid, G. Operation of Stabilization Ponds in Tropical Area. U.S. Army Medical Research and Development Command, Office of the Surgeon General, Wash. D.C., 1974.
- 6. Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K., and Bent, D. H. Statistical Packet for the Social Sciences. 2nd. Edition, McGraw-Hill, Inc., 1975.
- 7. Standard Methods for the Examination of Water and Wastewater. 13th. Edition. American Public Health Association, American Water Works Association and Water Pollution Control Federation. 1971.
- 8. Horsfall, F. L., III. Biochemical Augmentation of Wastewater Treatment. Water Pollution Control Federation Highlights, 14 (2), February 1977.
- Shastry, J. S., Fan, L. T., and Erickson, L. E. Nonlinear Parameter Estimation in Water Quality Modeling. Journal of the Environmental Engineering Division, ASCE, 99(EE3):315-331, June 1973.

- 10. Brown, L. C., and Berthouex, P. M. Discussion on Nonlinear Parameter Estimation in Water Quality Modeling. Journal of the Environmental Engineering Division, ASCE, 100(##1):226-227, February 1974.
- 11. Viraraghavan, T. Correlation of BOD, COD, and Soluble Organic Carbons. Jour. Water Poll. Con. Fed., 48:2213-2214, Sept. 1976.
 - 12. Sherwood, T. K., and Reed, C. E. Applied Mathematics in Chemical Engineering. 1st. Edition. McGraw-Hill Book Co., Inc., 1939. pp. 295-299.
 - 13. Eckenfelder, W. W., Jr. Industrial Water Pollution Control. McGraw-Hill, New York.
 - 14. Herman, E. R., and Gloyna, E. F. Waste Stabilization Ponds. I. Experimental investigations. II. Field practices. III. Formulation of design equations. Sewage Ind. Wastes. pp. 30, 511, 646, 963.
 - 15. Mancini, J. L., and Barnhart, E. L. Industrial Waste Treatment in Aerated Lagoons. Advances in Water Quality Improvement, (Ed. by Gloyna, E. F., and Eckenfelder, W. W., Jr.) University of Texas Press, Austin, Texas, 1968.
 - 16. Adams, C. E., Jr., and Eckenfelder, W. W., Jr. Process Design Techniques for Industrial Waste Treatment. 1974. pp.181.
 - 17. Methods for Chemical Analysis of Water and Wastes. Methods
 Development and Quality Assurance Research Laboratory, U.S.
 E.P.A., Wash. D.C., EPA-625/6-74-003.
 - 18. Aguire, J., and Gloyna, E. F. Design Guides for Biological Wastewater Treatment Process: Waste Stabilization Pond Performance. University of Texas, Austin, Texas, 1970.
 - 19. Neel, J. D., McDermott, J. H., and Monday, C. A. Experimental Lagooning of Raw Sewage at Fayette, Missouri. Jour. of Water Poll. Cont. Fed., 33(6):603-641, 1961.
 - 20. Sewage Stabilization Ponds in the Dakota: An evaluation of the use of stabilization ponds as a method of sewage disposal in cold climates. Vol. 1&2, Joint Report: N & S Dakotas Dept. of Health, Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio, 1975.

APPENDIX A

SUMMARY OF A COMPARATIVE STUDY OF PARAMETERS
USED FOR MEASURING WASTE TREATMENT LAGOON PERFORMANCE

Appendix A is a summary of the determination of meaningful parameters that the author proposed to be used as routine operational tests. Table A-1 is a tabulation of the parameters that were measured at five lagoon systems. Panama Lagoons are U.S. Army lagoons in the Canal Zone. (5) Austin Lagoons are experimental lagoons. (18) Fayette and South Dakota lagoons are both municipal lagoons. (19, 20)

Table A-2 is the result of determination of tests necessary for the evaluation of performance of the various type of lagoons. This table is developed as a result of information gathered from other lagoon studies and this project. In Table A-2, the most important test as indicated are also the tests proposed to be used as routine operational tests. These tests are important to both design evaluation and routine operational control. The second group of tests, rated as important are pertinent to design evaluation considerations. The third group or the less important tests are the ones that are not apparent in their effect on design evaluation, but their overall important should not be entirely neglected.

In Table A-2, the noticeable absence of the nutrient tests among the important tests is due to the fact that in waste treatment lagoons treating primarily domestic waste, nutrients are not limiting factors in regard to lagoon performance. The exclusion of the dissolved oxygen test from the most important test group is that dissolved oxygen is usually at a reasonably high level and therefore it is not necessary to test it routinely.

TABLE A-1. COMPARISON OF PARAMETERS MEASURED AT FIVE LAGOON SYSTEMS

PARAMETERS	BIXBY LAGOON	PANAMA LAGOON	AUSTIN LAGOON	FAYETTE LAGOON	SO. DAKOTA LAGOON
рН	x	x	x	x	x
Acidity		X*			
Alkalinity	x	x		x	X
Temperature	x	x	X	x	X
DO	x	X	X	x	X
Total BOD ₅	x	x	X	X	X
Soluble BŎD ₅	x				
Total S.S.	X	X*	X		X
Volatile S.S.	x	X*			
Settleable S.		X*			
Total COD	X	X	X		
Soluble COD	X				
Phosphorus	X	X		X	X
TKN	x				
Ammonia-N	X	X		X	X
Nitrate-N	X*	X		X	
Nitrite-N	X*	X*		X	X
Organic-N		X		X	
Algal Count		X			
Fecal Coli.	X	X	X		
Total Coli.	X	x	x	x	X
Flow, Influen					X
Flow, Effluen	t				
Other	a		TOC	b	C

^{*}Tests were discontinued later.

a - Algal determination.

b - Chloride, detergent.

c - Turbidity, chloride, sulfide.

TABLE A-2. PRELIMINARY IDENTIFICATION OF TESTS NECESSARY FOR THE PERFORMANCE EVALUATION OF EACH TYPE OF LAGOON.

TESTS		NON-AE	RATED LAGOON	S		AERATED LAG	OONS
	ANAEROBIC	AEROBIC	FACULTATIVE	MATURATION	AEROBIC		EXT-AERATION
рН	X	X	X	X	X	X	×
Acidity	*	*	*		*	*	*
Alkalinity		*	*		*	*	*
Temperature	X	×	¥	X	×	X	×
DO, Effluent	-	X	X	*	*	*	*
Total BOD ₅	X	×	¥	X	×	X	X
Soluble BOD ₅	X	×	X	×	X	X	X
Total S.S.	*	×	¥	¥	×	X	X
Volatile S.S	*	x	X		X	X	X
Total COD		x	X		X	X	X
Soluble COD		x	X		X	X	X
Phosphorus			X				
Ammonia-N							
TKN							
Nitrate-N							
Nitrite-N							
TOC							
Sulfide	X		*				
Turbidity			*	*			
Algal Count		x	X		x	x	X
Fecal Coli.		*	*	*	*	*	*
Total Coli.		X	X	X	X	X	X
Flow		x	X	X	x	X	X
Odor	X						

Unless indicated, tests should be performed at both influent and effluent points.
X - Most important tests. X - Important tests. * - Less important tests.

APPENDIX B

RESULTS OF REGRESSION ANALYSIS

TABLE B-1. SUMMARY OF PRELIMINARY REGRESSION DATA, JAN.-DEC. 1976.

Dependent Variable	Variables Attempted In Regrossion	Variables Selected In Regression	1	2	F.value	Confidence Level	Standard Error
VO11, COD IN	VOO7 TKN IN VOO9 TOTAL BOD IN VO10 SOL BOD IN VO13 TSS IN VO15 FLOW; GPD	VO13 TSS IN VO09 TOTAL BOD IN VOO7 TKN IN	3	74	6.75979	99.95	121.88
VO13 TSS IN	VOO7 TKN IN VOO9 TOTAL BOD IN VO15 FLOW; GPD	VOO7 TKN IN	1	76	2.80299	90.18	139.3
VO14 VSS IN	VO13 TSS IN	VO13 TSS IN	1	76	213.6694	99.99	54.67
VOO7 TKN IN	VOO6 AMMONIA IN	VOO6 AMMONIA IN	1	76	4.73048	96.72	10.77
VOO7 TKN IN	VCO9 TOTAL BOD IN VO13 TSS IN VO15 FLOW; GPD	VO15 FLOW; GPD	1	76	4.46520	96.21	10.79

TABLE B-2. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, JAN.-DEC. 1976.

Dependent	Independent	Coefficient In		_	
Variables	Variables	Regression Equation	Confidence Level	2 r	Standard Error
VO11 TOTAL COD IN	VOO7 TKN IN VCO9 TOTAL BOD IN VO13 TSS IN	2.371184 0.2984597 0.3044201 356.9879	99.99	0.204	125.70
VO13 TSS IN	VOO7 TKN IN	2.750073 143.9223	98.18	0.046	139.34
VOLL TOTAL COD IN	VOO9 TOTAL BOD IN	0.2992710 545.3842	95.65	0.033	140.23
V007 TKN	VO15 FLOW GPD	-7.6671401E-05 56.58597	99.98	0.102	11.5
V014 VSS IN	VO13 TSS IN	0.7334903 -2.488477	99.99	0.777	55.45
VOOT TEN IN	VOO6 AMMONIA IN	0.4309353 33.3799	99.37	0.061	11.97
VOIO SOL BOD IN	VOO9 TOTAL BOD IN	0.2463666 63.27534	99.99	0.153	52.04
VO12 SOL COD IN	VO11 TOTAL COD IN	0.1438168 166.5253	99.97	0.094	67.02

TABLE B-3. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, JAN., FEB., DEC. 1976

Dependent	Independent	Coefficient In Regression	Confidence	2	Standard
Varicbles	Variables	Equation	Level	<u>x</u>	Error
VO11 TOTAL COD IN	VOO7 TKN IN VOO9 TOTAL BOD IN VO13 TSS IN	2.493559 3.613323E-02 0.5352311 388.1805	64.02	0.145	144.99
VO13 TSS IN	VOO7 TKN IN	1.719844 178.1662	32.51	0.006	131.1
VO11 TOTAL COD IN	VOO9 TOTAL BOD IN	NO	CORRELATION		
VCO7 TKN IN	VO15 FLOW; GPD		CORRELATION-	n To Co ago lan da Chi asa dah ca	رد ويه 440 جي وي الله وي وي الله وي وي
VO14 VSS IN	VO13 TSS IN	0.7976157 -21.15965	99.99	0.888	37.88
VCO7 TKN IN	VOOG AMMONIA IN	0.3753874 32.51137	85.24	0.061	5.97
VOIO SOL BOD IN	VOO9 TOTAL BOD IN	0.2987844 91.34779	99.74	0.280	55.67
VO12 SOL COD IN	VO11 TOTAL COD IN	7.9981E-02 253.0131	68.78	0.03	71.74

TABLE B-4. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, MARCH-MAY 1976.

Dependent Variables	Independent Variables	Coefficient In Regression Equation	Confidence Level	2 r	Standard Error
VO11 TOTAL COD IN	VOO7 TKN IN VOO9 TOTAL BOD IN VO13 TSS IN	0.3534145 -1.9700766E-02 0.4801225 469.8646	97.8	0.361	100.21
VO13 TSS IN	VOO7 TKN IN	2.106279 210.7788	86.7	0.076	136.1
VO11 TOTAL COD IN	VOO9 TOTAL BOD IN	-0.5635178 852.4	92.83	0.104	119.5
VOO7 TKN IN	VO15 FLOW; GPD	-1.1796518E-04 67.06766	98.6	0.162	18.1
VO14 VSS IN	VO13 TSS IN	0.6834089 0.8095333	99.99	0.666	68.9
VOO7 TKN IN	VOO6 AMMONIA IN	0.9821723 25.34194	90.2	0.083	19.66
VOIO SOL BOD IN	VOO9 TOTAL BOD IN	0.2342563 59.14523	91.32	0.098	50.09
VO12 SOL COD IN	VO11 TOTAL COD IN	0.2247983 102.9625	98.78	0.162	72.63

TABLE B-5. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, JUNE-AUG. 1976.

Characterization Dependent	Independent	Coefficient In			
-		Regression	Confidence	2	Standard
Variables	Variables	Equation	Level	<u> </u>	Error
VO11 TOTAL COD IN	VOO7 TKN IN VOO9 TOTAL BOD IN VO13 TSS IN	-0.2361691 0.6596316 0.1671231 334.56	99.29	0.377	80.53
VO13 TSS IN	VOO7 TKN IN	-1.534388 323.6429	34.9	0.007	149.37
VO11 TOTAL COD IN	VOO9 TOTAL BOD IN	0.7103718 349.699	99.97	.0.351	85.23
VCO7 IKN IN	VO15 FLOW; GPD	-8.72784E-05 57.06159	99.96	0.352	6.63
VO14 VSS IN	VO13 TSS IN	0.8745831 -30.27953	99.99	0.884	46.43
VOO7 TKN IN	VOO6 AMMONIA IN	0.8588041 17.36009	99.98	0.465	6.37
VOIO SOL BOD IN	VOO9 TOTAL BOD IN	0.2835594 28.11254	99.97	0.327	39.76
VO12 SOL COD IN	VO11 TOTAL COD IN	0.3404716 45.43303	99.92	0.284	55.62

TABLE B-6. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, SEPT.-NOV. 1976.

Dependent	Independent	Coefficient In Regression	Confidence	2	·Standard	
<u>Variables</u>	Variables	Equation	Level	<u> </u>	Error	
VOLL TOTAL COD IN	VOO7 TKN IN VOO9 TOTAL BOD IN VO13 TSS IN	10.23053 0.5929619 0.2321051 10.07128	99.99	0.778	72.21	
VO13 TSS IN	VOO7 TKN IN	13.85392 -398.6944	99.91	0.376	119.2	
VO11 TOTAL COD IN	VOO9 TOTAL BOD IN	1.698052 147.4821	99.99	0.573	92.1	
VOO7 TKN IN	VO15 FLOW; GPD	-9.51804E-05 59.70244	91.53	0.114	6.45	
VO14 VSS IN	VO13 TSS IN	0.5878145 40.49858	99.99	0.674	57.96	
VOO7 TKN IN	VOO6 AMMONIA IN	0.6176733 26.20884	99.87	0.355	5.59	
VOIO SOL BOD IN	VOO9 TOTAL BOD IN	9.628862E-02 109.1254	77.85	0.055	28.07	
VO12 SOL COD IN	VO11 TOTAL COD IN	9.641165E-02 184.2956	95.31	0.144	30.22	

Lagoon Effi							
Dependent Variable	Variables Attempted In Regression	Variables Sclected In Regression	1	2	F.value	Confidenca Lavel	Standard Error
V046 BOD EFFIECIENCY CELL 1	VO19 TEMP MP VOO9 TOTAL BOD IN	VO19 TEMP MP VO09 TOTAL BOD IN	3	64	3.61696	98.2	8.1
	VOI3 TSS IN	VO11 TOTAL COD IN					
VO47 BOD EFFICIENCY CELL 2	VO25 TSS MP VO31 TEMP EFF	VO25 TSS MP VO31 TEMP EFF	4	63	9.81592	99.99	20.45
	VO23 TOTAL COD MP VO21 TOTAL BOD MP	VO23 TOTAL COD MP VO21 TOTAL BOD MP					
VO48 BOD EFFICIENCY TOTAL	VOO9 TOTAL BOD IN VO19 TEMP MP VO11 TOTAL COD VO31 TEMP EFF	VO31 TEMP EFF VO11 TOTAL COD IN VOO9 TOTAL BOD IN	3	64	3.05528	96.53	5.05
VO49 COD EFFICIENCY CELL 1	VO11 TOTAL COD IN VO09 TOTAL BOD IN VO19 TEMP MP VO13 TSS IN	VO11 TOTAL COD IN	1	66	2.54154	88.43	10.35
VO50 COD EFFICIENCY CELL 2	VO25 TSS MP VO23 TOTAL COD MP VO31 TEMP EFF VO21 TOTAL BOD MP	VO25 TSS MP VO23 TOTAL COD MP	2	65	7.23842	99.85	20.11

Dependent Variable	Variables Attempted In Regression	Variables Selected In Regression	1	2	F.value	Confidence Level	Standard Error
VO51 COD EFFICIENCY TOTAL	VO13 TSS IN VO11 TOTAL COD IN VO19 TEMP MP VO31 TEMP EFF VO09 TOTAL BOD IN	VO13 TSS IN	1	66	1.19143	72.09	7.04
VO52 TSS EFFICIENCY CELL 1	VO13 TSS IN VO11 TOTAL COD IN VO09 TOTAL BOD IN VO19 TEMP MP	VOO9 TOTAL BOD IN VO11 TOTAL COD IN VO13 TSS IN	3	64	15.01452	99.99	18.66
VO53 TSS EFFICIENCY CELL 2	VO25 TSS MP VO31 TEMP EFF VO23 TOTAL COD MP VO21 TOTAL BOD MP	VO23 TOTAL COD MP VO31 TEMP EFF VO25 TSS MP	3	64	13.09213	99.99	69.67
VC54 TSS EFFICIENCY TOTAL	VO13 TSS IN VO31 TEMP EFF VO11 TOTAL COD IN VO19 TEMP MP VO09 TOTAL BOD IN	VO13 TSS IN VO31 TEMP EFF VO11 TOTAL COD IN	3	64	9.39776	99.99	11.76
VO55 TKN EFFICIENCY TOTAL	VO19 TEMP MP VO11 TOTAL COD IN VO09 TOTAL BOD IN VO13 TSS IN VO07 TKN IN	VOO9 TOTAL BOD IN VO11 TOTAL COD IN VO13 TSS IN VO19 TEMP MP	4	63	4.97705	99.85	5.81

TABLE B-8. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, JAN.-DEC. 1976.

Dependen Variable		Independent Variables	Coefficient In Regression Equation	Confidence Level	2 r	Standard Error
	FICIENCY LL 1	VO19 TEMP MP VO57 AMT. BO	0.3096749 -6.367396E-08 75.04213	98.94	0.085	9.04
) FICIENCY L 2	VO31 TEMP EF VO63 AMT BOD VO67 AMT TSS	MP 4.723639E-07	99.96	0.192	21.77
VO48 BOD EFF TOT	ICIENCY	VO31 TEMP EF	0.1714976 89.1727	99.79	0.089	4.93
VO50 COD EFF CEL	CIENCY	VO65 AMT COD VO67 AMT TSS VO31 TEMP EFI	MP 2.380387E-07	99.99	0.198	19.40
VO52 TSS EFF CELI	ICIENCY	VO57 AMT BOD VO61 AMT TSS VO19 TEMP MP		99.99	0.235	21.90
VO53 TSS EFF: CEL!	ICIENCY	VO65 AMT COD VO67 AMT TSS VO31 TEMP EFF	· ·	99.99	0.366	64.41

TABLE B-8. Cont'd.

Dependent	Independent	Coefficient In Regression	Confidence	2	Standard
<u>Variables</u>	Variables	Equation	Level	r	Error
VO54 TSS EFFICIENCY TOTAL	VO31 TEMP EFF VO61 AMT TSS IN VO59 AMT COD IN	-0.2610138 2.30723E-07 -4.5160SE-09 72.50847	99.99	0.217	11.914
VOSS TKN EFFICIENCY TOTAL	VO19 TEMP MP VO57 AMT BOD IN VO56 AMT TKN IN	0.2649953 -6.801801E-08 2.844735E-07 81.26784	97.36	0.094	7.719

TABLE B-9. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, JAN., FEB., DEC. 1976

Dependent Variables	Independent Variables	Coefficient In Regression Equation	Confidence Level	2 r	Standard Error
VO46 BOD EFFICIENCY CELL 1	VO19 TEMP MP VO57 AMT BOD IN	1.804974 1.1025123E-07 63.10404	87.93	0.232	8.05
VO47 BCD EFFICIENCY CELL 2	VO31 TEMP EFF VO63 AMT BOD MP VO67 AMT TSS MP	14.01739 3.0296144E-06 9.103946E-07 -66.25088	96.44	0.560	18.83
VO48 BOD EFFICIENCY TOTAL	VO31 TEMP EFF	0.5952108 85.31143	69.36	0.055	7.40
VO50 COD EFFICIENCY CELL 2	VO65 AMT COD MP VO67 AMT TSS MP VO31 TEMP EFF	8.2201986E-07 1.1222128E-06 -1.238537 19.16636	97.57	0.456	9.91
VO52 TSS EFFICIENCY CELL 1	VO57 AMT BOD IN VO61 AMT TSS IN VO19 TEMP MP	-2.28154E-07 5.0686795E-07 -3.336686 81.92313	70.41	0.324	14.76
VO53 TSS EFFICIENCY CELL 2	VO65 AMT COD MP		NO CORRELATI	ON	
VO54 TSS EFFICIENCY TOTAL	VO31 TEMP EFF VO61 AMT TSS IN VO59 AMT COD IN	6839095 3.565298E-07 -5.358666E-08 75.07638	97.7	0.483	7.88

TABLE B-9. Cont'd.

Lagoon Efficiencies					
Dependent Variables	Independent Variables	Coefficient In Regression Equation	Confidence Level	2 	Standard Error
VO55 TKN EFFICIENCY TOTAL	VO19 TEMP MP VO57 AMT BOD IN VO56 AMT TKN IN	-0.721412 4.394689E-08 -1.449E-06 91.88497	93.6	0.395	5.44

TABLE B-10. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, MARCH-MAY 1976.

Dependent	Independent	Coefficient In Regression	Confidence	2	Standard
Variables	Variables	Equation	Level	r	Error
VO46 BOD EFFICIENCY CELL 1	VO19 TEMP MP VO57 AMT BOD IN	-1.521782 -1.42388E-07 115.2151	99.16	0.289	6.08
VO47 BOD EFFICIENCY CELL 2	V031 TEMP EFF V063 AMT BOD MP V067 AMT TSS MP	4.286493 3.7664E-07 2.14875E-06 -52.31941	99.10	0.377	21.95
VO48 BOD EFFICIENCY TOTAL	VO31 TEMP EFF	1.388996 65.21324	98.99	0.221	3.87
VO50 COD EFFICIENCY CELL 2	V065 AMT COD MP V067 AMT TSS MP V031 TEMP EFF	7.691299E-07 -5.05891E-07 -0.239462 25.29951	51.28	0.098	22.22
VO52 TSS EFFICIENCY CELL 1	VO57 AMT BOD IN VO61 AMT TSS IN VO19 TEMP MP	-3.86296E-07 4.993186E-07 2.306771 26.59588	99.62	0.450	13.66
VO53 TSS EFFICIENCY CELL 2	VO65 AMT COD MP VO67 AMT TSS MP VO31 TEMP EFF	-2.403267E-07 1.53379E-06 2.756489 -11.84721	76.68	0.267	14.49

TABLE B-10. Cont'd.

<u>Lagoon Efficiencie</u>	<u>s</u>	0			
Dependent Variables	Independent Variables	Coefficient In Regression Equation	Confidence Level	2 r_	Standard Error
VO54 TSS EFFICIENCY TOTAL	VO31 TEMP EFF VO61 AMT TSS IN VO59 AMT COD IN	0.931586 2.738169E-07 -5.508731E-09 48.461	88.01	0.205	13.97
VOSS TKN EFFICIENCY TOTAL	VO19 TEMP MP VO57 AMT BOD IN VO56 AMT TKN IN	3.829024 -1.2462157E-07 1.154889E-06 / 3.188585	99.99	0.553	6.59

TABLE B-11. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, JUNE-AUG. 1976.

Dependent	Independent	Coefficient In Regression	Confidence	2	·Standard
Variable	Variables	Equation	Level	<u> </u>	Error
VO46 BOD EFFICIENO CELL 1	Y VO19 TEMP MP VO57 AMT BOD IN	3.088944 -5.1052676E-08 -3.332165	98.21	0.250	6.83
VO47 BOD EFFICIENC CELL 2	Y VO31 TEMP EFF VO63 AMT BOD MP VO67 AMT TSS MP	2.961521 1.561813E-06 -30.45803	94.7	0.301	11.86
VO48 BOD EFFICIENC TOTAL	Y VO31 TEMP EFF	0.2634126 86.67577	69.51	0.038	1.99
VO50 COD EFFICIENC CZLL 2	Y V065 AMT COD MP V067 AMT TSS MP V031 TEMP EFF	8.776925E-07 -1.046776E-07 3.98633 -85.51623	98.17	0.348	17.5
VO52 TSS EFFICIENC CELL 1	V V057 AMT BOD IN V061 AMT TSS IN V019 TEMP MP	-4.82136E-08 1.803818E-07 -3.558946 165.5479	62.11	0.128	20.47
VO53 TSS EFFICIENT CELL 2	VO65 AMT COD MP VO67 AMT TSS MP VO31 TEMP EFF	-3.37821E-07 2.252324E-06 -18.84411 549.2112	99.47	0.741	17.61

TABLE B-11. Cont'd.

Lagoon Efficiencie	<u>es</u>				
Dependent Variable	Independent Variables	Coefficient In Regression Equation	Confidence Level	2 r	Standard Error
VO54 TSS EFFICIENCY TOTAL	VO31 TEMP EFF VO61 AMT TSS IN VO59 AMT COD IN	-2.323927 7.79934E-08 1.476833E-07 123.4936	96.80	0.336	13.54
VO55 TKN EFFICIENCY TOTAL	VO19 TEMP MP VO57 AMT BOD IN VO56 AMT TKN IN	0.3588631 7.952106E-09 6.066973E-07 75.50454	96.21	0.232	1.88

TABLE B-12. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, SEPT.-NOV. 1976.

Dependent	Independent	Coefficient In Regression	G 61 1	•	a. • •
Variables	Variables	Equation	Confidence Level	2 	Standard Error
VO46 BOD EFFICIENC CELL 1	VO19 TEMP MP VO57 AMT BOD IN	0.2872387 2.56492E-07 52.57227	84.0	0.160	8.85
VO47 BOD EFFICIENC CELL 2	VO31 TEMP EFF VO63 AMT BOD MP BO67 AMT TSS MP	************	NO CORRELATI	ON	
VO48 BOD EFFICIENC TOTAL	VO31 TEMP EFF	-0.3122703 96.53475	88.93	0.107	4.85
VO50 COD EFFICIENC CELL 2	V065 AMT COD MP V067 AMT TSS MP V031 TEMP EFF	5.844505E-07 -4.5638265E-07 1.262185 31.74012	99.99	0.709	7.54
VO52 TSS EFFICIENCY CELL 1	V051 AMT BOD IN V061 AMT TSS IN V019 TEMP MP	-1.007704E-06 9.188986E-07 -0.4569783 63.36416	99.62	0.517	16.39
O53 TSS EFFICIENCY CELL 2	V065 AMT COD MP V067 AMT TSS MP V031 TEMP EFF	8.667412E-08 6.226111E-07 0.7175017 37.84197	82.81	0.226	15.60

//

TABLE B-12. Cont'd.

Lagoon Efficiencies

Depen	dent	Independent	Coefficient In Regression	Confidence	2	Ch 1 1
Varia	bles	Variables	Equation	Level	r	Standard Error
	TSS EFFICIENCY TOTAL	V031 TEMP EFF V061 AMT TSS IN V059 AMT COD IN	9.849385E-03 5.643188E-07 -4.011315E-07 98.28307	99.96	0.623	6.84
	TKN EFFICIENCY TOTAL	VO19 TEMP MP VO57 AMT BOD IN VO56 AMT TKN IN	0.1740435 -1.292232E-08 3.34404E-07 84.82043	68.45	0.183	2.40

Predicting Mid-Point Properties

Dependent Variable	Variables Attempted In Regression	Variables Selected In Regression	1_	2	F.value	Confidence Level	Standard Error
VO21 TOTAL BOD MP	VOO9 TOTAL BOD IN VO11 TOTAL COD IN VO13 TSS IN VO19 TEMP MP	VOO9 TOTAL EOD IN VO11 TOTAL COD IN VO13 TSS IN	3	56	8.18624	99.98	30.35
VO23 TOTAL COD	VOO9 TOTAL BOD IN VO11 TOTAL COD IN VO13 TSS IN VO19 TEMP MP	VO11 TOTAL COD IN	1	58	4.56314	96.31	73.07
VO25 TSS MP	VCO9 TOTAL BOD IN VO11 TOTAL COD IN VO13 TSS IN VO19 TEMP MP	VO11 TOTAL COD IN VO19 TEMP MP	2	57	6.60485	99.73	43.74
VO22 SOL BOD	VOO9 TOTAL BOD IN VO11 TOTAL COD IN VO13 TSS IN VO14 VSS IN VO19 TEMP MP	VOO9 TOTAL BOD IN VO11 TOTAL COD IN VO19 TEMP MP VO13 TSS IN	4	55	12.84829	99.99	18.89
VO24 SOL COD MP	VOO9 TOTAL BOD IN VO11 TOTAL COD IN VO13 TSS IN VO14 VSS IN VO19 TEMP MP	VOO9 TOTAL BOD IN	1	58	1.11408	70.44	41.3

TABLE B-14. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, JAN.-DEC. 1976.

Dependent Variables	Independent Variables	Coefficient In Regression Equation	Confidence Level	2 r	Standard Error
VO21 TOTAL BOD MP	VO61 AMT TSS IN VO57 AMT BOD IN VO19 TEMP MP	-2.431649E-07 9.5585035E-07 -1.479171 69.74489	99.99	0.305	29.67
VO23 TOTAL COD MP	V061 AMT TSS IN V059 AMT COD IN	-4.88751E-07 7.7177165E-07 149.7909	98.70	0.073	67.46
VO25 TSS MP	VO19 TEMP MP VO59 AMT COD IN VO58 AMT SOL BOD IN VO61 AMT TSS IN	-2.177494 4.681205E-07 -9.369269E-07 6.6979104E-08 101.0664	99.96	0.220	41.47
VO22 SOL BOD MP	VO19 TEMP MP VO58 AMT SOL BOD IN	-0.7011226 1.55455E-06 2.16999	99.99	0.308	20.67
VO24 SOL COD MP	V060 AMT SOL COD IN	4.882489E-07 51.99619	90.89	0.024	33.61

TABLE B-15. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, JAN., FEB., DEC. 1976.

Dependent Variables	Independent Variables	Coefficient In Regression Equation	Confidence Level	2 r	Standard Error
VO21 TOTAL BOD MP	VO61 AMT TSS IN VO57 AMT BOD IN VO19 TEMP MP	-9.40834E-07 6.278336E-07 -11.27744 149.7123	99.5	0.707	24.8
VO23 TOTAL COD MP	VO61 AMT TSS IN VO59 AMT COD IN	~~~~~	NO CORRELATI	ON	
VO25 TSS MP	VO19 TEMP MP VO59 AMT COD IN VO58 AMT SOL BOD IN VO61 AMT TSS IN	5.253647 -2.828018E-07 -1.082674E-06 1.8908713E-06 38.67576	92.0	0.610	24.23
VO22 SCL BOD MP	VO19 TEMP MP VO58 AMT SOL BOD IN	-7.858441 2.230613E-06 45.75013	99.99	0.717	21.71
VO24 SOL COD MP	VC60 AMT SOL COD IN	9.633473E-07 42.25974	94.15	0.107	27.65

TABLE B-16. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, MARCH-MAY 1976.

Dependent Variables	Independent Variables	Coefficient In Regression Equation	Confidence Level	2 r	Standard Error
VO21 TOTAL BOD MP	V061 AMT TSS IN V057 AMT BOD IN V019 TEMP MP	-2.679179E-07 9.8079974E-07 7.244122 -96.22798	99.54	0.426	25.23
VO23 TOTAL COD MP	V061 AMT TSS IN V059 AMT COD IN	-4.1396E-07 4.450183E-07 189.0472	23.3	0.025	59.60
VO25 TSS MP	V019 TEMP MP V059 AMT COD IN V058 AMT SOL BOD IN V061 AMT TSS IN		-NO CORRELATIO)N	
VO22 SOL BOD MP	V019 TEMP MP V058 ANT SOL BOD IN	-3.470565 8.7329E-07 73.15219	97.74	0.253	16.01
VO24 SOL COD MP	V060 AMT SOL COD IN		NO CORRELATION	/	

TABLE B-17. RESULTS OF REGRESSION VARIABLES SELECTED AFTER STEPWISE REGRESSION, JUNE-AUG. 1976.

Dependent Variable	Independent Variables	Coefficient In Regression Equation	Confidence Level	2 T	Standard. Error
VO21 TOTAL BOD MP	VO61 AMT TSS IN VO57 AMT BOD IN VO19 TEMP MP	-8.867321E-08 4.688706E-07 -10.35434 333.7117	99.68	0.419	20.06
VO23 TOTAL COD MP	V061 AMT TSS IN V059 AMT COD IN	-6.804419E-08 6.89286E-07 96.34911	99.04	0.291	38.7
7025 TSS MP	V019 TEMP MP V059 AMT COD IN V058 AMT SOL BOD IN V061 AMT TSS IN	2.851196 5.24489E-08 9.819212E-07 2.515837E-07 -48.87567	77.87	0.229	31.39
FO22 SOL BOD MP	V019 TEMP MP V058 AMT SOL BOD IN	0.3077798 5.2027359E-07 -5.515419	73.74	0.105	11.69
024 SOL COD MP	V060 AMT SOL COD IN	4.8975877E-07 38.53497	99.26	0.229	12.87

ထယ

TABLE B-18. RESULTS OF REGRESSION VARIABLES SELECTED AFTER STEPWISE REGRESSION, SEPT.-NOV. 1976.

Dependent	Independent'	Coefficient In Regression	Confidence	2	Standard	
Variables	Variables	Equation	Level	r	Error	
VO21 TOTAL BOD MP	VO61 AMT TSS IN					
	VO57 AMT BOD IN		NO CORRELATION-			
	VO19 TEMP MP					
VO23 TOTAL COD MP	V061 AMT TSS IN					
	V059 AMT COD IN	N(CORRELATION			
VO25 TSS MP	VO19 TEMP MP	1.121863	99.21	0.592	33.28	
	VO59 AMT COD IN	1.386452E-06				
	VO58 AMT SOL BOD 1	N -4.707157E-06				
	VO61 AMT TSS IN	9.352955E-07				
		45.16838				
VO22 SOL BOD MP	VO19 TEMP MP	4.5705377E-02	67.33	0.130	3.31	
	V058 AMT SOL BOD I	N 2.30846E-07	- · •			
		0.8368860				
VO24 SOL COD MP	V060 AMT SOL COD I	NNO	CORRELATION		~~~~~~	

Dependent Variable	Variables Attempted In Regression	Variables Selected In Regression	1	2	F. value	Confidence Level	Standard Error
VO37 TOTAL BOD EFF	V009 TOTAL BOD IN V011 TOTAL COD IN V013 TSS IN V019 TEMP MP V031 TEMP EFF	VOO9 TOTAL BOD IN VO19 TEMP MP	2	48	8.96151	99.95	21.49
V038 SOL BOD EFF	VO10 SOL BOD IN VO12 SOL COD IN VO14 VSS IN VO19 TEMP MP VO31 TEMP EFF	VOIO SOL BOD IN	1	49	27.85733	99.99	19.83
VO39 TOTAL COD EFF	V009 TOTAL BOD IN V011 TOTAL COD IN V013 TSS IN V019 TEMP MP V031 TEMP EFF	VO11 TOTAL COD IN	1	49	2.75074	89.64	48.62
VO40 SOL COD	VOIO SOL BOD IN	VOIC SOL BOD IN	4	46	4.39372	99.15	28.57

VO12 SOL COD IN

VO19 TEMP MP

VO31 TEMP EFF

VO12 SOL COD IN

VO14 VSS IN

VO19 TEMP MP VO31 TEMP EFF

EFF

Dependent Variable	Variables Attempted In Regression	Variables Selected In Regression	1	2	F. velue	Confidence Level	Standard Error
VO41 TSS EFF	VOO9 TOTAL BOD IN VO11 TOTAL COD IN VO13 TSS IN VO19 TEMP MP VO31 TEMP EFF	VO13 TSS IN	1	49	5.69229	97.91	29.55
V042 VSS EFF	VCO9 TOTAL BOD IN VO11 TOTAL COD IN VO13 TSS IN VO14 VSS IN	VOIL TOTAL COD IN VOI4 VSS IN	2	48	6.57962	99.7	15.93
V035 TKN EFF	VOO7 TKN IN VOO9 TOTAL BOD IN VO11 TOTAL COD IN VO13 TSS IN VO19 TEMP MP VO31 TEMP EFF	V007 TKN IN V009 TOTAL BOD IN V011 TOTAL COD IN V019 TEMP MP	4	46	8.34508	99.99	2.58

87

TABLE B-20. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, JAN.-DEC. 1976.

Dependent	Independent	Coefficient In Regression	Confidence	2	Standard	
Variables	Variables	Equation	Level	r	Error	
VO37 TOTAL BOD EFFLUENT	VO19 TEMP MP VO57 AMT BOD IN VO61 AMT TSS IN	-0.6373126 3.0022921E-07 -1.0223558E-08 27.60717	98.36	0.113	20.3	
7038 SOL. BOD EFFLUENT	V019 TEMP MP V058 AMT SOL BOD IN V062 AMT VSS IN	-0.1601284 1.4907674E-06 -1.58528E-07 -8.426982	99.99	0.274	18.03	
7041 TSS EFFLUENT	VO19 TEMP MP VO57 AMT BOD IN VO61 AMT TSS IN	0.2934921 -6.75198E-07 3.69532E-07 69.96406	99.35	0.137	29.97	

NO CONFIDENCE IN PREDICTING EFFLUENT COD'S AND VSS.

TABLE B-21. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, JAN., FEB., DEC. 1976.

Dependent Variables	Independent Variables	Coefficient In Regression Equation	Confidence Level	2 r	Standard Error
VC37 TOTAL BOD EFFLUENT	VO19 TEMP MP VO57 AMT BOD IN VO61 AMT TSS IN	-15.19848 -3.177845E-08 6.432184E-08 147.6917	99.85	0.772	20.89
VO38 SOL BOD EFFLUENT	V019 TEMP MP V058 AMT SOL BOD IN V062 AMT VSS IN	-9.064955 2.341592E-06 -2.0301668E-07 44.96168	99.99	0.869	16.44
VO40 SOL COD EFFLUENT	V031 TEMP EFF V060 AMT SOL COD IN V062 AMT VSS IN		NO CORRELATIO	ON	
VO41 TSS EFFLUENT	V019 TEMP MP V057 AMT BOD IN V061 AMT TSS IN	-1.733782 -7.007306E-07 5.268625E-07 74.12917	49.98	0.221	21.37
VO42 VSS EFFLUENT	V062 AMT VSS IN V059 AMT COD IN	2.4052816E-07 1.098939E-07 14.66022	60.38	0.098	15.53
VO35 TKN EFFLUENT	V019 TEMP MP V056 AMT TKN IN V061 AMT TSS IN	0.4897082 9.46846E-07 3.23372E-08 -1.645129	99.95	0.685	1.83

TABLE B-22. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, MARCH-MAY 1976.

Dependent Variables	Independent Variables	Coefficient In Regression Equation	Cofindence Level	2	Standard Error	
VO37 TOTAL BOD EFFLUENT	V019 TEMP MP V057 AMT EOD IN V061 AMT TSS IN	-5.0066 -1.4400566E-07 8.4209674E-08 134.0367	71.1	0.160	17.67	
VO38 SOL BOD EFFLUENT	VO19 TEMP MP VO58 AMT SOL BOD IN VO62 AMT VSS IN	-5.571941 1.045895E-08 -6.901865E-08 125.1794	99.62	0.515	8.78	
VO40 SOL COD EFFLUENT	V031 TEMP EFF V060 AMT SOL COD IN V062 ANT VSS IN	-3.680056 1.41637E-06 -6.485565E-07 126.06	75.48	Ö.223	41.74	
7041 TSS EFFLUE	NT V019 TEMP MP V057 AMT BOD IN V061 AMT TSS IN	-4.181593 -1.08493E-06 5.7175E-07 176.1793	90.06	0.234	34.8	
7042 VSS EFFLUE	NT V062 AMT VSS IN V059 AMT COD IN	6.708066E-07 -4.754626E-07 68.38951	70.86	0.135	30.62	
7035 TKN EFFLUE	V019 TEMP MP V056 AMT TKN IN V061 AMT TSS IN	-2.640331 7.37957E-07 -3.9730322E-08 58.63446	99.99	0.734	2.80	

TABLE B-23. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, JUNE-AUG. 1976.

Deper Varia	ndent 251e	Independent Variables	Coefficient In Regression Equation	Condifence Level	2 T	Standard Error	
V037	TOTAL BOD EFFLUENT	VO19 TEMP MP VO57 AMT BOD IN VO61 AMT TSS IN	-1.129164 7.621986E-08 -8.121767E-08 51.02819	53.55	0.103	9.86	
V038	SOL BOD EFFLUENT	VO19 TEMP MP VO58 AMT SOL BOD IN VO62 AMT VSS IN	-0.9311389 5.251931E-07 -1.1085798E-07 29.93009	88.43	0.251	8.82	
V040	SOL COD EFFLUENT	V031 TEMP EFF V060 AMT SOL COD IN V062 AMT VSS IN	-4.839794 2.76011E-07 -2.149446E-07 188.377	57.06	0.146	24.43	
V041	TSS EFFLUENT	V019 TEMP MP V057 AMT BOD IN V061 AMT TSS IN	3.524894 -9.85267E-07 2.857604E-07 -2.68606	86.99	0.222	34.65	
V042	VSS EFFLUENT	V062 AMI VSS IN V059 AMT COD IN	-2.1265245E-07 3.6231892E-07 6.616256	70.4	0.120	26.38	
₹035	TKN EFFLUENT	V019 TEMP MP V056 AMT TKN IN V061 AMT TSS IN	0.150057 -1.2929168E-07 -1.168428E-08 1.25442	95.79	0.275	1.031	

ဖ

TABLE B-24. RESULTS OF REGRESSION OF VARIABLES SELECTED AFTER STEPWISE REGRESSION, SEPT.-NOV. 1976.

Dependent Variable	Independent Variables	Coefficient In Regression Equation	Confidence	2	Standard	
VO37 TOTAL BOD	VO19 TEMP MP	1.170972	<u>Lovel</u> 91.7	0.290	14.32	
EFFLUENT	V057 AMT BOD IN	-4.832518E-08	31.7	0.290	14.32	
	VO61 AMT TSS IN	-4.97638E-07				
		26.07699				
VO38 SOL BOD	VO19 TEMP MP	2.003566	98.52	0.472	13.72	
EFFLUENT	V058 AMT SOL BOD IN	1.55971E-06		0011.2	-5172	
	V062 AMT VSS IN	-4.129796E-07				
		-37.4667				
VO40 SOL COD	V031 TEMP EFF	-1.03349	75.28	0.183	16.92	
EFFLUENT	V060 AMT SOL COD IN	-1.098727E-07				
	V062 AMT VSS IN	3.1701528E-07				
		55.64379				
VO41 TSS EFFLUENT	VO19 TEMP MP	-1.836766	99.22	0.475	15.66	
	V057 AMT BOD IN	3.67628E-07				
	V061 ANT TSS IN	2.345345E-07				
		46.46516				
042 VSS EFFLUENT	V062 AMT VSS IN					
	V059 AMT COD IN		-NO CORRELATIO	N		
7035 TKN EFFLUENT	VO19 TEMP MP	133172	98.70	0.442	1.00	
	7056 AMI TKN IN	1.035E-07				
	VO61 AMT TSS IN	-4.2646E-09				
		6.564393				

APPENDIX C

OPERATIONAL PROBLEMS

During the study, several operational problems became evident. The two major problems associated with the lagoon system itself were loss of one of the dikes due to burrowing by muskrats and plugging of the air diffuser system. In one month muskrats completely drained cell number two and one other time the cell level was dropped significantly by someone who inadvertently turned on the irrigation pump used for applying the effluent to adjacent lands. The aerators were not functioning properly for a significant portion of the time. Based on periodic site visits approximately twenty-five percent of the system was not functioning properly about fifty percent of the time. The problems were usually associated with plugging of the aeration tubes.

Other problems associated with the project include:

- a) Freezing of the samplers.
- b) Loss of power to the mobile laboratory and concomitant freezing and breaking of important glassware and loss of chemicals.

APPENDIX D

DAILY DATA

TABLE D-1. INFLUENT TEST DATA OF BIXBY LAGOON, 1976.

S+NO DATA YR MO DT	PH ALKALINITY	PHOSPHOROUS	AMMONIA NITROGEN	KJELDHAL NITROGEN	TOTAL	80D 50L	TOTAL	COD SOL•	TOTAL SUSPENDED SOLIDS	VOLATILE SUSPENDED SOLIDS	FLOW FECAL RATE COLI GPD	
A01_76_1_6_		21	27•5	48•9····	. 0	0	552	_ 348 -	694	631	120400	٨
A02 76 1 7	6.5 197	37	33.7	48.8		ü	374	305	181	157	125400	_6_
ÃÚ3 76 1 8	*ő 155	ži	32.3	48.5	7.40	282	846	439	392	278	140500	ŏ
A0+ 76 1 9	6.4 163	35	30 • Ö	44.5	337	253	586	239	Ō	- ō	76300	ŏ
-A05-76-1-1C-	10		<u> </u>	42.6	940	253 -	Š63 -	341-			123600	_ŏ_
AU6 76 1 11	6+8 14C	Ĵŝ	24 • 5	43.0	. 0	ွ	692	308	234	176	126600	Ō
AC7 /6 1 12	7·0 136	30	33 • 3	45.8	357	SHR	442	244	157	121	133800	0
A08 76 1 13	6.5 159	35	33.1	46.5	451	553	603	357	30#	240	105000	Q
- 409 - 76 - 1 14- 410 76 1 15	- 6.5 - 162		\$3:3	45:1	463 420	540	547-	265		yö	105000	- <u>8</u>
	135	47	ີ່ ສີສໍາດ	48.4	338	228	219	3 7 2	190 380	20\$	121100	ă
Ä13 76 1 1/	7•6 181	36	43.8	48.4 55.4	338 319	223	£ 1 5 5 2 8	333	0	Ü	131100	ŏ
-A1476_1_18_	<u>•</u>	34,	33•5	48.0	315	170	632	265	357	159	61700	0
A15 76 1 19	.0	24	32.5	37.9	270		955	271	404	278	110400	0
A16 76 1 25	7•1 160	35	3 <u>1</u> • 8	วลิงลี	555	175	£17	311	ÖŞë	304	133200	Ō
A17 76 1 21 A18 76 1 22	6.9185	42	32·3 29·5	42.3	277 300	173	760	302	387 185	265	115000	ŏ
A19 76 1 23	9: 2 6	<u>J</u> U		⁷⁷ :6 · -		*77	63%	338	····· *9% · ·	·- · • • • • ·	_ 103000	ყ.—
76 1 24	' 5 č	45	ŏ	: 0	ັນ	ŭ	ŏ	ŭ	ŏ	ŏ	163600	ŏ
A21 76 .1 25	• 5 5	4 č	٠ŏ	۰٥	Ö	Ū	Ŏ	Ō	Ō	Ō	106800	Ŏ
. AZZ _ 761 Z6_	<u>7.3150</u>	43	25.5	33.7	3×0	238	_ 516	244	285	230	93900	Ŏ
123 76 1 27	6 · 8 146	34	24.2	33.7	240	156	- 516 ·	413	275	190	106500	0 -
A24 76 1 28	6.9 186	46	29.0	30.7	510	189	53 <u>C</u>	313	328	.53Õ	94200	Q
425 76 1 29	6•& 15 <u>8</u>	ິວ	• 2		342		567	333	7.0	7.33	109900	Ō
B0176. 2 22_	: 0 ; 2	<u></u>	- 23:9	46.8	0	2 8 2	542	- 374 - 450	336	220	123600	X
602 76 2 23 803 76 2 24	• Ú Ú	Ŏ	34.5	42.9			645 543	357		208	109700	×
604 76 2 25	: e 3	Ž	29.5	วีร์รัย	315 315	โชร์	489	364	232 15 6	136	23800	ă
		Š	30.5	42.0	0	- อื่อ	Ϋ́ó	ó	- 5		95600	ŏ
155 - 76 - 3 - 29 -		<u>5</u>	- 26.6	54.ö	·'363	255	······ 415 ··	···· 347 ·	20å ·	š ·	165200	- g :
BO7 76 2 28	· v Č	ŏ	24.4	51 · U	397	262	500	314	٥	0	100600	0
CO1 76 3 22	•0 0	36	23 • 1	97.0	O	٥	736	339	357	80	109400 40	000
CO21b3 25	132	5 J	27•7		390	273	616 _	275	119	90		00 _
ČQ3 76 3 25	7.2 164	43	24 • 7	56. 5	405	245	638	305	273	140		ÇQ
CO4 76 3 26	7.3 192	38	• 0	58+5	540	295	617	460	292	170	120700 190	
CO5 76 3 27	6•ă 12Ř	25	23 • 1	ن.	293	224	718	197	540	160	110300 250	
CCF — In 3 58 —	• [[<u>+</u> 9	25.9	Žè•č ····	_ 455	165	<u>, , , , , , , , , , , , , , , , , </u>		1 <u>80</u>	90		200
CO7 76 3 29	•७, ०	39	24.9	56.0	400	161	700	32 8	190	120	175200 50	00

Data except for pH, Flow Rate and Fecal Coliform are in mg/l. Fecal Coliform count as /100 ml.

Alkalinity as CaCO₃. Total Phosphorus is measured in terms of Dissolved Ortho-phosphate.

For Flow Rate, 1 GPD = 0.003785 m³/d.

TABLE D-1. Cont'd.

SONO	Y	DA'	DT	PH	ALKALIMITY	PHOSPHOROUS	NITROLE N	NITRUGEN	TOTAL	800 80L.	TOTAL	COD .	SUSPENDED	VOLATILE	RATE	FECAL COLI
DO1-	_ <u>_</u> ;		55_	40			31 • 0	61.3	280 390	,_0_	757 433	, 0.	SOLIDS	SOLIDS	_ 11620	0 4000_
C03	70	Š	7	6.8	142	0	23.0	53.0	400	162 127	433 654	119. 294	288 546	262	12670	
00*	7		. 8	6.	154	Ō	23.0	48.0	480	127	763	348	308	1,2	10960	0 18000
DC 6	7		10	5:			27.0 36.0	03·0 45·0		206 <u>-</u> 154	<u>-</u>	247.	_{5e} 0	535	10790 11490	
607 608	7		12	•		Ş	28.0	56.0	330	135	ĖCŠ	279	598	378	11670	0 15035
	7	š4	i_i5-	6 • 4 6 • 4	I Ì 86	ŏ	31•0 27•0	50.0 53.6	369 370	139 136	765	400	638	530 530	11970 11890	21000
CIO	7		14	6.		Ŏ	31 • 0 41 • 0	59.6 45.6	450 360	143	815 257	252	498 .	352	11580	i Ö
FIS	2		16	6.	130	ö	24.0	15.0	330 420	113	685 617	162 201	236 340	240 240	16040	0 18000
	-3		4 - 1 Z-			<u> </u>	24.3	40 · 5 ·	420 370	112	<u>667</u>	200 173	272	192 348	- 12230	0 33000 2 21000 -
Şįş	7	Ē (13		, ,	Ş	18.0	36.0	370 340	120	į Š	161	*88	- 0	19178	3 18853
G14 G15 G17	_7	š4	. 20 . 21.	6•7	í15ĕ	<u> </u>	_ 15•0	37.6	453	113	74333	172	1 # d 3 6 8	212 212	33153	0 470C3
CIA	7		22	6.		Ŏ	20 • 0 21 • 0	40.6 48.6	283 450	105	618 457	115	140	žig "	21280	0 15000
- C557 -	7		25.	6.7	1 186	ŏ	17.0	45.3	٥	53	475	222	128	ŏ	15660	0 36000 3 21000
- [5] -	7	<u></u>		<u>6</u> :			23:3		37Ö	135.	263	131	264		11620 14150	Q O_
C23	7	ě 4	27	6.	158	Ŏ	23.0	27.0	450	165	£72	238	140	• ° ò	14630	0 30030
_ CS\$ _	_7(_7(6	28 29	6•	165	Ū.	29·0 23·0	35.€ 35.0	ร์วัด	140	572 508 452	172	0	Ö	14693 15490	3 27003
ČŠĢ.	7		, <u> </u>			Ŏ.	23.7	41.0	550	150	769	183 183	304 176	ğ	13930	0 0
EGÍ	7	֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֡֓֡	3 15	6.	124	ទ	26.5	39.5	**0	135	554	538	298	164	14340	
- <u>F</u> § § .	_ <u>Z</u>		. iż.	6':	128	<u>\$</u>	•0	31:B	34 <u>0</u>	160	585 436	- 561	30		13160	iO O_
100mmen 145	7	i i	5 14	6.	152	Š	23.6	.0	ă	0	472	227 263 236	504	64	16220	5 6
E05 .	7		14	6.	182	Ď	21•7 25•0	39·5 13·4	230 330	160	477	_ 236 _ 139	353	3 50	13690	0 0
- E07	-5	-		6	178	y	25.7	40.5	0	~0	477	216	328	35°	- 12628	8 8-
F01 F02	70	•	10	6.7		Č	24.4	44 • C 37 • Y	290 370		559 456	237 237	452 144	408		Ď Ď
F63_	ź	6 (i i ż	611	166	ŭ	26•6	43.7	535	100	674	_ 358	220	124	9780	0
FG4	7	Ç	12	6.	·	5	26.6	41.1	420		758	327	140	120		0
FOS FOS	7	6	b 15	5 • •		Ö		39. 8 38.3	240	90 90	57 5 568	232 2•2	2#8 136	232 88	12330	
—FŮ7	7	š- (. i7-	<u> </u>	7 1 8 č	5	•ŏ	J	- 620	140	Č	0	Š o	ŏ	,	Ŏ -

TABLE D-1. Cont'd.

CH+2	YR	ATA MO DT	PH	ALKALINITY	TOTAL	AMMONIA	KJELDHAL NITROGEN	TOTAL	800 SOL.	CCC	COD SOL•	TOTAL SUSPENDED SOLIDS	VOLATILE SUSPENDED SOLIDS	FLOW FECA RATE COLI GPD	
	76	7_5_	64	4 4			47+G		-150_	475 -	188_		0	103500	0_
GÖŞ	76	7 6	6 • 1		ŭ	34•5	*0.5	385		555	555	216	્ 4 કે	123000	ŏ
Ğ03 G04	76 76	4 6	5.5	140	õ	•0	39.8 32.3	<u>\$30</u>		651	508	196	120	140200	Q
305 <u>—</u>	-52	<u> </u>					41.5	500 	170 -350-	848 657-	545 314-	228	. 0	126700	Ŏ
306	76	7 15	6.0		ŏ	• 5	+0.5	340	- 90-	539	250~			109300 115900	
607	76	7 ;2	5 • 1		Ũ	• 0	43.4	340		510	270	132	ŏ	10:900	ŏ
û 8 8 G G 9 —	76 -76	7 13	6.5	i	Q	• 0	55.0 	330	140	650	267	วัยช	532 135 ·	123100 125700	Q
510 -	74	7 15	5:7	175		28 • 8	46.0	380 380	150 -	574 · 653	228 -	184 268	135	125700	<u>Q</u> -
111	76	7 16	6 · i	152	ŏ	29•0	55.0	320	60	ะเรี	134	464	Ž16 316	159200	X
112	76	7 17	6.5	152	Č	42.0	5 <u>7</u> .0	350 	1 30	486	235	358	168	127730	ŏ
13 -	- / 2	-5-19-	ģ: ģ	153		33:0		250 046	120	<u>*</u>	235	107	+ <u>0</u>	_ 125a00	♀.
115	76	7 20	6.4		, ,	35.4	91.0	280	180	617 519	264	184 215	4	107300 129500	Ŏ
16	78	7 21	6.3		ă	35.5	54•0	370	110	ĕ23	264	234	123	122400	X
	.76	_7 . 22	2 • مُ	160	ŏ	35•3	57·U		130	ŤĚ.	. 250	208	200	. 116100	ŏ
	76	7 24	6.5	150	Q	36 • 0	49.0	260	140	537	236	192	1 48	170900	Ō
50 19	76 76	7 25 7 26	6.3		Ö	44.3	50.0	330	110	Ę3Ĕ	539	280 0	22*	67100	Q
21	76				ž	• 6	ŭ	ŏ	ň	č	Š	ŏ	, v	00400 122600	ŏ
22	76	7 28	6.8	150	3	36.5	53.5	333	120	545 T	269	188	168	121900	· ŏ
23	76	7 30	6.6		ŏ	33.0	35.0	210	80	478	139	488	412	174800	ŏ
24	76	ŘŠ	يا• ب		Ü	23.0		560	. 30	5.56	188	335	188	227700	0
2 <u>5</u>	76 -	- 및 길	6•0		· Q	_ 24•0	36•0 42•3	260 360	130	435	550	. 160	116	158200	0
	76	8 55	6.3			27.0	36.3	3.60	90	655 614	188	215	215 168	12,300	ŏ
02	76	8 23	6.2	164	ŏ	27.4	35.8	365	100	727	242	364	296	238600	ŏ
.03	.76_	. A. 24.	6•2		ō	_ 24•9	33•9	310	100	686	233	772	625	246700 _	ă
	76	B 26	6.3	120	Ç	24.6	32.4	350	120	665	252	358	283	247500	Ō
05	76	8 27	0.5		Ç	23.9	30.2	560	120	466	214	224	189	250400	0
:06 :07 —	76 76	6 23 8. 29	6.3	130	ő	23.7	36.1	350	90	FCS	242	96	32	254800	Ŏ
	76	-B. 23	6.5	150		- 27•1 29•1	38•3 48•3	<u>,</u>	Ü.	485 767	226	148 156	24 48	234400 126900	g
	76	9 21	6.3		č	31.6	43.4	340	140	éčá	220	124	100	163330	×
	76	9 22	6.3	140	ŏ	35.0	45.0	340	170	ล้วนี้ เ	309	• 5 2	*60	126100	ŏ
04-	76-	-923	6·i	144		3 8 · 1 ·	4Ö•4	310	115.	7C3 -	241 -	485	12ŏ <u></u> .	- 143400	ŏ

TABLE D-1. Cont'd.

\$ • NO	YK I	A T A	DT	PH	ALKALINIII	PHGSPHGROUS	MITROGEN	KJELDHAL NITROGEN	TUTAL	BOD SOL.	TOTAL	COD SOL•	TOTAL SUSPENDED SOLIDS	VOLATILE SUSPENDED SOLIDS		FECAL
	76 76		23-		<u> </u>	 ŏ	36.4	38 · 1	410 370	-170 - 145	704- 815	268 260	280	539 	- 11610 11880	<u> </u>
03	76	ĬØ.	25	6.	4 162	ŕč	• 0	48.7	385	155	833 717	307	155	93	12350	io
.0.	76	10	25 25	6.	2 156	Ģ	37•3	44.9 50.4	350 365	140 150 -	717	307	206 178	153	13740	Ď
25 26	78	16	\$ á	6.	2	 0	3å+8 48∙9	54.9	365	- 150 -	771 797	264 - 268 -		138	11220 12220 12220 12200	<u> </u>
27	20	16	28 28	E . i	ŽISO	ŏ	• 0	• 0	360 535	135	C	225	232 327 197	2000	[3233	Ŏ
UL	76 76	;;	6	6.	2 178 3156	Š	33•2	.0	390 390	140	730 255	2/5	277	213	12240	Ď
		ii	- 8-				33.5	39.6	355	110	632	169	· - īši	171	13300	ă
64	76	11	5	6.	2 150	č	39•4	47.4	430	120	938	ŽŽS	243	219	14260	
Ų5	76	11	11 12	6 •		ģ.	41.6	\$8.8	270 430	120	664	284	246 561		13310	Ď
36	76		13			······································	<u>40.2</u>	54.1	335	160	789	284	177	138	14660	ă
			16	6.		ŏ	30.7	44.1	330	150	664	240	160	147	14870	0
		11	įŽ	••		<u>ə</u>	36 • 5	ل 45• 45	330		840	269	146	121	13683	ō
	.76: 76	11 11	18 19	6					230 310	150 140	. 553 666	236	170	117 <u>-</u>	14870	<u> </u>
		ii	Şõ	6.	ž Ó	ŏ	27.5	42.5	360		772	241	197	135	15320	0
13	76	Īl	21	6.	i 94	Č	26 • 7	45.3	Ü	0	872	242	258	506	10830	
12 -		ļĻ.	<u> </u>	6:1		<u></u>	_34:0	<u>55.6</u>	410 350	170 140	1¢38	272	327	257	_ 7570 15040	
15		11	53	6.		ŭ	31 • 1	46.0	310		758	249	272	230	14513	
17	76	ii	25	5.	8 156	ŭ	23.4	35 • 7	360	160	662	267	134	113	16333	٥
18		11	20	\$•		<u>0</u>	. 25•7	3k••	_ 280 430		1040	ู้ 2ังธุ์	0 564	0 456	14410 9270	
50 19		11	28	6.1		0	40·9 31·0	59.7		110	766	260	364	344	7200	
		ii	30	5.		ŭ	36 1	66.6	ร์มัง		1148	314	651	321	15160	
ŽŽ		iż.	ž	٠ة	1106	5	26 • 8	: 6 • 6 •	310		651	232	118	89	. 13450	
53	76	15	3	6.		5 -	28 • 1	41-2	383	1+0	867 430	207	124 119	112 88	13448	
124	76 76	12	.5 16	6.		Č	•0 27•7	38•4 43•9	310	135	542	236	130	88	13270	
	.76-		.i 7_	6•			9	55.5	ŽŠČ		- 742	233.	163	112	- 7830	0
ับวั	76	iŽ	18	6-		ō	32 • 8	40.5	O	Ū	633	207	118	88	17190	
C4		iż	19	6.		õ	25.1	50.4	. 230 - 210	90 60	584 507	194 225	206 132	161 56	25990	0
	76 76-	15	5r-	6:			27·9 26·9	44.6 				208	74	88	13450	قاط
07	76	iž.	55	6.			~ 5ÿ.; ~~	45.3	310	80	614	196	152	§§		Ŏ

TABLE D-2. MID-POINT TEST DATA OF BIXBY LAGOON, 1976. (Effluent Cell 1)

	DATE 10 DE RY		у РН	TEMP. DEG C	DISS	TOTAL	SOLUBLE	TOTAL	20176TE CCC	TOTAL SUSPENDED SOLIDS	VOLATILE SUSPENDED SOLIDS	PHOSPHORO	S COLI CO
10 ÷	76 66 6 76 66 7 76 56 8 76 66 9	132 132 132 129	7.0	2.0 1.0 1.0	10.7 13.6 12.6	0 138 25	0 132 83	150 164 190	85 36 88 75	101 63 69	79 19 42	10	0
C6	76 66 10 76 56 11 76 56 12 76 66-13	132 132 136 ———————————————————————————————————	6.8 6.3 7.5 /.0-	2.0 4.0 5.0 7.0	12.8	110 0 135	28 0 115	121 2+3 1+3	75 95 65	0 97 38	0 63 34	40 39	0
10 11 13	75 56 14 76 66 15 76 66 17 76 66 17	125 137 140	7.4 7.3 .0 -7.2	≯.õ 6.3 10.ą	10.4 11.9 	29 93 72	50 47 31 39 	112 161 117	50 80 63	50 50 96	38 68 53	41	0000
15 16 17 —	76 66 23 75 56 23 75 56 21	156 	, io 	E 00		9557 967 91	77 69 31 	103 — 1222 1423 1535 137		122	142 106	43 42 43	0
50 50 19	76 66 22 76 66 23 76 66 24 76 66 25 76 66 26		7.7	9.0 9.0 - 0	11.9 10.4 			- 280	76 0 0 0 58	-1+0	35 0 0 0 - 0 72	39 39 - 39 	0
24 25	76 66 27 76 66 23 74 66 23 76 66 22 76 66 23	158 164 15* 	7.7 7.8 7.5 -	 	9.9 9.1 	52 35 49	23 14 27 48	159 151 115	79 99 60 145	126 	58 68 0	39 38 39 0	
25 —	76 66 24 76 66 25. 76 66 26	. o				174 153 0	48 68 0 	332 172 148 132 171	141 118 	. 32 42 - 56 - 42	34 - 40 - 35		0
2 - 3	76 55 27 75 56 23 76 66 27	1 2 4 0 0	- 0 0 0 2 - 3	17:3		135 125 	109 72 	142 208 176 	150	64 0 -1 68	60 40	_ 48	0 0 16000 11000 -16000
14 7 15 7	16 66 25 16 43 26 16 66 27- 16 66 25	172 172 72 0	7•6 7•6 _7•5	15.0 17.0 -17.0 -17.0	6•0 6•4 — 5•3	61 55 71	25 17	198 171 - 231	138 0 22	146 78 55	60 70 70	47 40 44	10000 30000 19000 25000 19000
7 7	6 66 29	ō	• Ü	• 6	.0	3 <u>6</u>	47	232	อ๊อ	127 53	50 90	44	11000 14000 6000 14000

TABLE D-2. Cont'd.

•••0	YR ^D	TE D	T	KALINIT	Y PH	TEMP. DEG C	DISSO	TOTAL	SOLUBLE	TOTAL	SOLUBLE	TOTAL SUSPENDED SOLIDS	VOLATILE SUSPENDED SOLIDS	PHOSPHOROUS	FECAL TOT
	76 f	65 66 66	5 6 7	182 95 144 150	7.5 7.5 7.2	18.0 19.0 18.0 20.0	8.6 9.5 9.1	60 74 63	0 53 538 	236 262 246 174	38 0 76 34	44	000	0 1	7000 18000 0000 26000 0000 21000
05 06 07	76 75	56 66 1	i	160	7 • 4 7 • 0	19.0	9.2 7.7	72 76 58	3 4 2 4	157 327 250	35 35 154	24 52 48 81	24 28 63	0 1	000 21000 0000 21000 0000 19000
	76	65 <u>1</u> 55 1 50 1 55 1	4	158 172 160 160		-19.3.— 20.0 21.0		58 54 150 82	24 21 6 15	283 153 204 182		40 47 119 67	0 37 74 22		000 19000 0 17000
12 13 14	75	55 1 55 1 55 1	6 7 8 9	130		50.0	6 · 5	132 132 110 99	22 6 10	228 193 207 212	61 60 59		83 69	C	5000 23000 1000 57000 1000 36000 0 54000
16 17 18	76 76 76	2000 2000	<u> </u>		10. 6.5 6.5	19.00		128 128 123	 36	190 190 1917 138	52 0	-110	154	ŏ 0 1	0000 50000 10000 50000
20 - 21 -	76	56 2 66 2 66 2	ร์ 6	72 76 74	6 • 4 - 6 • 4 6 • 4	20.5 19.0 19.0	6.3 7.2 8.6	111 651 100	27 27 24	- 214 <u>-</u> 148 393 172	60 145 67	56 118 84 70	74	0 16	0000 520CD
24 25 26	76 76 75	2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	§——	60 54 55	5.6 E.6 E.6	17.C. 17.C. 18.5		150 - 165 132 0		- 173 173 212 327	58 115 139	 78 26 92	§4	9	000 4000 000 19000 000 32000
31 32 33	76 76 76	55 1 56 1 56 1] 	<u>\$Q</u> 72 76	6.7 6.5	. 22.0 _ 21.0	4 · C · S · S	93 69 90	ŏ 15	163 252 163 154	54	72 92	0	0	0000
05 - 06 07	75 75 76	56 1 50 1 50 1	7	7 70		21.5 15.5 21.0		\$7		- 245 162 144	45 99	39 68 128	36 112	00	0 0 0 0
	76.	66 1	ĵ 2 3	72 	- 6.5 - 6.4	25.0 - 26.0 - 26.5 - 27.6	4·8 4·2 3·5	128 128 86	12 21 21	- 161 107 274 232	118 33 200	76 70 44 52	71 50 44 46		0
35	76 I	66 1 66.1 66.1	5 6	- 65 65	6.7	. 55.0 56.0	2·4 3·1	87 90	15 12	126 151	0 0	38 36	0	Ö	0 0

TABLE D-2. Cont'd.

8 • NO	DATE YR 40 DT	ALKALINITY	PH	TEMP. DEG C	DISS. OXYGEN	TOTAL	SOLUBLE	TUTAL	SOLUBLE	TOTAL SUSPENDE SOLIDS	VOLATILE D SUSPENDED SOLIDS	TOTAL PHOSPHOROUS	FECAL TOTA
303	76 66 5 76 66 6 76 66 7 76 66 8	70 72 73	6.7 6.7 6.7	28.0 28.0 28.0	2.0 5.6 5.5	54 57 90 —138-	21 24 15 57	29 101 208 - 192	40 0 59 69	150 61	102	0	0 0
106 107	76 66 9 76 66 10 75 56 12 76 66 13	83 56 86	6.4 6.3 6.8	29.0 29.5 28.5 28.5 28.5 28.5	4 · 1 3 · 7 6 · 6	63 42 60	39 15 3	98 88 140 150	59 60 50 50	32 19 65 42	12 19 51 35	0 0 0 0	0 00
09 13 11	76 66 15	82 96 108 110	6.7 6.7	30.0	5.5	36 54 42 39	9 0 9 18	129 136 107	40 39 29	54 54 - 52	9 39 23		. 0
14 15	19567.9901.2445 56669.9566652 56669.9566652 777777777777777777777777777777777	154 100 100 82	7.0 7.6 7.4 6.9		9.0 7.0 7.9	48 27 54 		127 127 127 127 140	690 955 756 ——	*0 *0 *1 200	233		······································
13 .	76 66 24	74 60 62 59	614 614 713 712	28.0 28.5 _30.0	9 · 1 5 · 9. 5 · 7	102 51 		167 145 - 165	45 45	48 48 89 28 74	190		90000
322	76 56 28 75 56 30 75 55 2.	66 69 70 70	6.7 6.9	30.00	10.9 12.1 12.4 3.6	45 46 33	15 3 15	167 151 120	56 48 17	74 102 62 	14 57 74 62		30000
'01	76 56 3 76 56 22 76 55 23 76 66 24	, 72 70 70 72	6 · 6 6 · 6 7 · 0	27.5 27.5 28.0 28.0	5.9 7.2 10.4	33 46 0 51	9 9 9	175 175 183	63 55 68 72 62 78	46 62 50 126	56 46 60 50	ŏ	· 0 00
04 105 106	76 65 26	7 & 7 6 & 8 2	6.9	26.5 29.0 26.0	8 • 0 6 • 5 7 • 6	69 93 87 —— 96 —		- 202 202	71	138 138 96 180	112 66		. 0 0
107 101 102 03	76 56 20 76 56 21 76 -55 22	52 52 54	6.7 6.5 6.7	26.5 24.0 24.0 26.0	4.3 6.8 6.2	90 78	6	245 151 400	61 75 0 82	66 70 70	128 52 42 70	ŏ	0 0 00
104	76 65 23	50	6.6		9•1	93 							

TABLE D-2. Cont'd.

S•NO	Ya	TAC	E 51	ALKALINITY	РН	TEMP. DEG C	DISS. DXYGEN	BOD	SOLUBLE	TOTAL	SOLUBLE	TOTAL SUSPENDED SOLIDS	VOLATILE SUSPENDED SOLIDS	TOTAL PHOSPHOROUS	FECAL	COLI
703 705 107	75 76	56	24 25	2 48	.0	14.0	6.8	141 108 111	11	261 310 299	38 59 65	138 232 180	110 196 160	000	000	000
1005 1005 10007 10007 10007 10007 10007	76 76 75 75	56 56 56	25. 289 299	12 12 5)	6 • 4 6 • 3 6 • 4 6 • 3	14.0	9.6	95 95 105 186	6	250 252 257 2557 258	67 34 72 65	2000	130 · 96 160	0 0 0	- 0	0 0 0
200 000 000 000	76776	56 56 56	11.	56 42 26	6.5		11.1 9.7 8.8 8.6		1230	518 516	229 57 85	- 183 204 107 114 126	150 161 79 0	0	000	
07 03 09	76 76 76 70	56 56 55	12 13 15 17	38 38 44	6.4 5.9 6.1	10.0	7·2 7·2 8·6	75 111 117 102	 9 6 	238	48 72 63	46 144 143	43 104 130 103	0000	8	0000
	76 76 76	56 56	19	37	5.5	11.0	8 · 8 7 · 2 8 · 0	117 75 	1200	244 217 263 243 244	59 64 53 +2	113 154 127 122	58 146 84 100	0		
K14 K15 K16 K17	76 75 75 76	55555	234.5	32 *2 34 34	5.6	2.0 9.0 10.0 10.0	8 · 4 8 · 2 5 · 1	123 114 0 -147 -147		239 230 230 230 — 200	56 52 56 74 	137 113 111 109	100 130 103 104 106 100			
19 20 21	76 76 75 75	555556	29	33 32 30	5.8	7.0 7.0 6.0 7.0	6.5 11.8 16.9	69 129 117	13 13	236 163 151 180	96 57 57 65	218 89 09	56	O		
23 24 .01	76 76 76	66	3 5 16	36 40 72	5 · 5 6 · 4 - 6 · 6	7.5 5.0 8.0 9.0	9.3 8.4 2.9	126 0 89		186 204 - 145	70 70 73	64 60 51	59 51 - 48			
04 05	75 76	66 65 65	18	70 72 78	6 • 4 6 • 3 • • 4	7.5 10.0 6.0 —	7·4 6·1 ——7·9 —	63 -	မွိ မွိ	- 229 - 174 - 168	63 45 80	0	32 0 43	0	- 0	0
L06 L07	76 76	65	25 51	83 76	6.3	7.0 5.0	5 · 8 5 · 1	36 57	12	157	67 63	33 53	28 48	ŏ	ŏ	ŏ

TABLE D-3. EFFLUENT TEST DATA OF BIXBY LAGOON, 1976. (Effluent Cell 2)

	5•N (YR	TAG UM	E _{DT}	— # H	DEG	c îni	∧∟~ 1 Y	DISS+ OXYUEN	NITROGEN	-KJELDAHL- NITRUĞEN	TCTAL	- 60D- 50L•		-CCD-	SLSPENDED	-VOLATIL SUSPEND SOLID	EPHOSPI ED	OROUS	FEC	ÀL—₹O	TAL—
	A01- SUA EUA	76 76 76	1 1 1	7 12 9	6.6 6.6 7.3	1.	0 9		12 15 14	2.0 11.3 2.4 2.5	6 · 9 6 · 4 7 · 1	131 65	0 128 50	*2 98 98 85	52 65 65	39	<u>i</u>	5 3 0	- 32 33 31			 0 0
	A05	76 76 76 76	1 1	11 12 13 13	7.5 7.5 7.5 7.9		9998	1 1 5	13 14 11 15	2.5_ 2.65 5.8	7 · 8 7 · 3 7 · 0	78 0 115 25 26	58 - 110 23 15 -	79 111 73 72 67	49 79 29		1 1 2	0	32 31 31		- 0000	0- 00 00
	A10 A11 A13 -A14 A15	76 76 76				14	0 8 2 7 0 7	5 0	13	3.9 5.2 4.6 5.1	10.5 11.3 	75 77	24 34 23 23	94 76 85 54	20		2	9	32		- 00 - 00 -	
_	A16 A17 -A18 A19	76 76	_i	53 51 50	8.5	7: 8:	0 10 0 11	Ű	15 15 15	4.7 4.3 6.5	7 · 5	15	13 13 - 0	93 93	35 31 36	66	 2 2	9 2 	34 34 29 -	·	0	00
٠	05A 15A 55A- 65A 45A	76 76 -75 76		25 25 27 28	0. 0.2 9.3 9.4		0 0 <u>—1</u> 0 0 10	5		.0 .0 5.5. 5.8 5.3	9 · U 9 · U 7 · 1	2C 21 18	15 - 13 10		36 64 87		3 1 3		31 30 - 28 29		- 000	
	-E01 -E02 -E03	76 -76 76 76	5 5	29	9.8	<u>8</u>	0 11		— 13 	13.2 14.1 13.4	20.9 20.7 20.7 21.0	35 25 32	14 20 10	71 0	- 52 - 0			<u> </u>			- 00 -	
	804 805 807 C01	76-76-76	-4273	25 782 282	- 000		8			14.7- 14.8 13.4 14.7		· -649	38 34,7 4,7	0 138 138	G		3	<u> </u>	- 000	<u></u>		
	C02 C03 C04 C05 C06 C07	/6 76 76 	3 3 3	256739	7998	17: 17: 16:	0 14	•		23.8 14.7 14.0 11.6 12.5	23.U 22.3 .U 22.5 		23	134 141 151 228 129	110 91 124 126	67	55 55 55	0	45 24 40 37	80 30 80 70	000 1 000 1 000 1	5000 8000 8000 8000

TABLE D-3. Cont'd.

SONO DATE ON TEMPO	ALKAL DISS - AMMONIA KJELDAM DXYGEN WITROGGE NITROGE	L-BCD- 800 - COD	VOLATILEPHOSPHOROUSFECAL-TOTAL- SUSPENDED COLI COLI SCLIDS
D01 76 4 6 7 1 18 0 002 76 4 6 7 5 18 0 003 76 7 7 19 19 0 004 76 8 7 5 19 0 005 76 9 7 5 19 0	70 & .0 12.0 56 9 1.3 9.0 67 8 .0 11.0	23 0 0 34 70 0 54 55 150 150 150 150 150 150 150 150 150	0 2000 - 7000 0 7000 17000 17000 17000 1800 0 8000 12000
CU6 76 4 10 7.5 13.2 CU7 76 4 11 .0 20.0 CU8 76 4 12 6.8 20.0 CU8 76 4 12 6.6 20.0 CU8 76 4 13 6.6 20.0 CU8 76 4 13 6.5 20.0	6 7 3 10.0 6 5 3 11.0 6 3 1.0 15.0	37 15 250 106 90 36 12 330 217 120 	84 0 0 2000 7000 94 0 3000 7000 7000 7000 7000 7000 7000 70
511 76 4 15 6 7 21 9 513 76 4 16 6 6 2 20 9 513 76 4 17 73 20 9 515 76 4 19 9 9	- 148	16 5 81 34 40 13 121 50 63 15 6 113 60 39 21 14 107 60 29 28 4 127 85 48 0 104 52 67	28 0 1000 50 0 1000 1000 21000 1900 3000 1700 25000 1700 26000 11000 26000
517 76 4 21 6 9 13 6 018 76 4 22 6 9 29 0 019 76 4 23 6 7 21 0 020 76 4 24 6 6 20 0 021 76 4 24 6 6 7 19 0	210 5 4.7 9.6 84 5 5.0 7.5 80 5 5.0 8.0 82 6 4.0 7.6	27 3 113 69 29 13 11 115 83 29 16 4 43 0 24 0 0 128 77 33 29 18 61 0 63	31 0 11000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
222 /6 + 26 6.7 18.0 223 /6 + 27 6.7 18.0 224 /6 + 28 6.6 17.0 225 - 76 - + 28 6.6 17.0 225 - 76 - + 28 6.7 - 17.0 226 /6 5 1 6.5 18.0	76 5 6.0 10.0 82 5 4.0 10.0	35 11 0 G 47 27 13 67 67 23 63 6 58 48 21 	25 0 2000 9000 18 0 3000 19000 8 0 27000 54000 37 0 6000 27000
E27 76 5 2 6 4 19.3 E81 76 5 11 6 8 22.0 -202 - 76 - 5 12 7 1 - 21.0 E03 76 5 13 7 2 21.0 E04 76 5 14 7 1 21.0	64 19 ·0 ·0 55 9 ·0 4·3 -54 6 ·55 7·5	0 154 32 52 39 3 0 36 23 	
- 105 76 5 16 6 8 19 0 - 106 - 76 5 17 7 0 - 21 0 - 107 76 5 18 6 6 2 2 6 0 - 107 76 5 18 6 6 6 2 6 6 6	5	7 7 63 54 20 27 27 27 27 27 27 27 27 27 27 27 27 27 2	
F03 - /6	68 4 2.0 7.5	59 11 232 116 83 42 9 221 63 100 0 0 116 53 186 16 11 74 53 0	30

TABLE D-3. Cont'd.

SENO DATE PH TEMPO ALKALY	OXYGEN WITHOUT NITROGEN	TUTAL BOL - TUTAL SCL	TOTAL VOLATILE PHOSPHOR SUSPENDED SUSPENDED SUSPENDED SOLIDS	OUS FECAL TOTAL
G01 76 7 5 627 2800 100 G02 76 7 6 65 2800 65 G03 76 7 7 608 2800 65 G04 76 7 8 666 2900 70	3 1.6 5.0	37105930 0	20 14	<u> </u>
-605 - 76 7 - 9 6 · • - 29 · 0 64	5 .0 *•6 3 •0 *•6	24 10 101 C 0 35 25 58	0 0 39 64 58 50	0 0 0
GOT 76 7 12 6.5 29.0 70 U.S. 76 7 13 6.7 0 64 -GUY -76 7 15 6.8 30.0 64 -GU 76 7 15 6.7 28.0 70	1.1 4.3 5 .9 4.8 .9 3.4	21 10 100 60 27 8 100 20 27 8 - 79 - 39	20 10 28	8 8 8-
G11 76 7 16 6.7 28.0 88 G12 76 7 17 6.4 28.5 64 G13 76 7 18 6.6 29.0 70	5 1.3 6.2 4 1.0 5.0 5 5 5.5	20 8 87 39 15 9 98 49 -20 8 78 59	62 4	0
015 76 7 19 6 6 29 0 72 015 76 7 20 6 6 29 0 72 016 76 7 21 6 9 30 0 30 017 70 7 22 6 6 29 0 122	5 ·8 3·9 4 ·7 5·9 5 ·3 4·9 5 1·0 5·4	24 8 78 66 18 0 85 28 21 6 74 37	96 16 116 30 114 34	ŏ ŏ ŏ ŏ ŏ o o o o o o o o o o o o o o o
G18 76 7 24 7.5 .0 70 G19 76 7 25 6.5 30.0 72 G20 76 7 26 7.3 31.0 78	3 · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4 ·	12 6 65 45 .16 3 64 37 9 2 73 41	0 0 68 15 108 30	
-021 - 76 - 7 27 7 1 - 31 0 70 022 76 7 28 6 8 31 0 72 023 76 7 30 6 7 31 0 82	5 1.7 4.9	-21 6 57 49 9 5 73 44 12 8 72 40 15 1 60 20		
GZ4 75 8 2 .6 29.0 62 G26 -/6 8 3 6.8 -29.0 76 G26 76 8 4 6.7 23.9 68 F91 76 8 26 7.1 28.0 70	6 1.0 .0 5 .2 3.4 5 .7 4.1	- 19 8 27 C 6 71 51 0 0 51 43	54 32 32 32 32 32 32	ŏ ŏ ŏ ŏ -
HD2 /6 8 23 7 4 29 0 70			0 30 46	88-
104 76 8 26 7 0 27 0 70 70 70 70	- 0 2.7 6 .1 2.9 9 .1 3.5	18 3 51 0 0 51 51 0 57 58		ō ō ō -
102 76 9 21 7.7 24.0 64 103 76 9 22 8.0 25.0 62 104 76 9 23 8.2 24.0 63	10 2 3.8	17: 0 57 0 91 82 20 6 12 3 109 46	42 20 21 19 2110	

TABLE D-3. Cont'd.

SONO DATE PH TEMPO ALKALO	DISS. AMMONIA KJE-DAHL			PHOSPHOROUS_FECAL_TOTAL_
AS MO DE DEG C 1411A	OXYUEN WITEGENNITHOGEN	TOTAL SULF TOTAL SCL	SUSPENDED SUSPENDED SOLIDS	COLI COLI
_101 76 10 23 .0 .0 U	0	35 8 105 2		0 0 0
JUS 76 10 24 .0 .0 U JUS 76 10 25 7.5 13.0 64	5 ·5 3·9	3581052 20	2 14 0	<u> </u>
JU4 76 10 26 7.5 13.0 64	10 .2 4.3	16 4 35 5	Ž 56 46 5 38 25	
		145 98 1	1 34 31	ŏŏ
JU7 /6 10 29 7+7 12+0 60	11 +0 +0	15 9 94 4	6 35 23	
KU1 /6 11 4 7.7 12.0 64 KU2 70 13 5 7.6 11.0 70	15 .0 .0	14 5 98 1 18 0 69 4 15 3 95 2 25 4 95 2	1 50 48 3 0 25 3 0 30	Š Š Š
KQ3 75 11 8 7.5 12.0 24	12 1 5.2	19 11 113 6	ž · · · · · · · · · · · · · · · · · · ·	
KJS 75 11 11 8+2 9+0. 65	12 ·1 · · · · · · · · · · · · · · · · ·	25 8 118 5 24 2 121 7	4 63 62	
-K36 - 76 11 12 . 0 0 . 0 . 0 0 66	Ş <u>-</u> . j Ş. j	17 <u></u> 9131 .	1 60 38	· · · · · · · · · · · · · · · · · · ·
KOB 16 11 16 7.4 7.0 56	12 •1 5•5	25 11 104 4	8 40 37	
KJJ 75 11 17 7·6 8·0 6* -KIQ/6 1118_7·79·268	12 ·1 5·1	20 5 10m 5	1 56 44	ğ ğ
K11 /6 11 19 +0 +0 U	Ö •1 5•6	27 14 110 5	6 52 42	0000
K12 76 11 20 7.3 10.0 V K13 75 11 21 7.2 8.0 60	12 •0 5•2 12 •0 5•9	25 8 120 4 0 0 109 7	9 56 44	ğ ğ ğ
Ki476 11 22-7-47.064		- 24 6 - 125 4	9	···-
K15 76 11 23 7 7 10 0 56 K16 76 11 24 7 6 10 0 62	11 •1 b•9 11 •0 b•8	30 6 116 5 11 8 108 6	2 46 38 6 62 58	Š Š Š
K17 76 11 25 7:1 8:5 58 K18 76 11 26 7:3 11:0 62	10 ·0 2·6	ži 5 130 š	9 36 28	
Kin 76 11 28 7.1 5.0 65	15 0 7.3	5 130 5 17 125 4 11 0 199 3 10 199 4	6 66 58 C	
KI 76 11 28 7 1 5 0 60 K20 75 11 29 7 3 6 0 50 K21 76 11 30 7 8 5 0 66	19 .0 5.2 12 .0 5.4	11 0 99 3 0 12 102 4	4 36 24 2 104 28	Ž Š
K22 _ 16 122 .7 · 6 6 · 0 38	\$.4	_ 15 5 105 4	6 142 50	
K23 75 12 3 7.8 6.0 52 K24 76 12 5 7.5 8.0 56 L01 70 12 16 7.3 6.0 56	19 •0 5•4	12 3 106 6	7 0 24	<u> </u>
LO1 /6 12 16 7 3 6 0 50	13 .4 7.4	24 16 130 5	1 36 4	Ö Ö Ö:
103 76 12 18 7.1 6.0 40 TO		5 - 116 1	\$ · · · · · · · · · · · · · · · · · · ·	·
LU4 76 12 19 7.0 8.5 46	11 •9 19•3	14 2 89 4 21 2 108 E	5 26 0	ŏ ŏ ŏ
105 76 12 20 7.4 7.0 54 106 76 12 21 7.4 7.0 56 107 76 12 22 7.4 5.0 44	12 1.C 8.8 1.4 8.2	2 108 b 21 2 108 b 11 U 127 7 35 2 110 5	5 14 10	8 8 8
107 /5 12 22 1·4 5·5 4	15 1.5 8.1	35 2 110 5	1 40 24	§ § §

(F	TECHNICAL REPORT DATA Please read Instructions on the reverse before com	pleting)
1. REPORT NO.	2.	3. RECIPIENT'S ACCESSIONNO.
EPA-600/2-79-014		
4. TITLE AND SUBTITLE		5. REPORT DATE
PERFORMANCE EVALUATION OF B	EXISTING AERATED	March 1979 (Issuing Date)
LAGOON SYSTEM AT BIXBY, OK	LAHOMA	6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT NO.
George W. Reid, Leale St	reebin	
9. PERFORMING ORGANIZATION NAME A	ND ADDRESS	10. PROGRAM ELEMENT NO.
University of Oklahoma		1BC822 SOS #3 Task D-1/26
Bureau of Water and Envir	onmental Resources Research	11. CONTRACT/GRANT NO.
Norman, Oklahoma 73019		R-803916
		K 000510
12. SPONSORING AGENCY NAME AND AD		13. TYPE OF REPORT AND PERIOD COVERED
•	esearch LaboratoryCin.,OH	Final 1/6/76-12/22/76
Office of Research and De	•	14. SPONSORING AGENCY CODE
U.S. Environmental Protec	tion Agency	EPA/600/14
Cincinnati, Ohio 45268		

15. SUPPLEMENTARY NOTES

Project Officer: Ronald F. Lewis, (513) 684-7644

6. ABSTRACT

The University of Oklahoma School of Civil Engineering and Environmental Science research group in collaboration with INCOG & BIXBY, have studied a well designed, well operated two cell aerated wastewater treatment lagoon system. The study involved four seasons and nineteen study parameters. The data was treated to statistical analysis, using a SPSS multiple regression, and to normative analytical expression. This report covers the BIXBY lagoon system operation period of January 1976 through December 1976.

The lagoon exhibited an overall BOD_5 removal efficiency of 92%, but was only totally in compliance for 7 months of the year. The use of several kinetic models and regression models were not very satisfactory though the temperature coefficient were in substantial agreement with Adams and Eckenfelders and other reputed values.

17.	KEY WORDS AND DOCUMENT ANALYSIS										
a. DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group									
Waste treatment	•										
*Lagoons (ponds)	Aerated	13B									
*Performance evaluation											
*Design criteria											
Chemical analysis											
Physical tests											
18. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report) Unclassified	21. NO. OF PAGES									
Release to Public	Unclassified	117									
	20. SECURITY CLASS (This page) Unclassified	22. PRICE									
	I	1									