EPA-650/2-73-005-a June 1975 **Environmental Protection Technology Series** # PROGRAM FOR REDUCTION OF NOX FROM TANGENTIAL COAL-FIRED BOILERS PHASE II U.S. Environmental Protection Agency Office of Research and Development Washington, D. C. 20460 # PROGRAM FOR REDUCTION OF NOX FROM TANGENTIAL COAL-FIRED BOILERS PHASE II by Ambrose P. Selker Combustion Engineering, Inc. 1000 Prospect Hill Road Windsor, Connecticut 06095 Contract No. 68-02-1367 ROAP No. 21ADG-080 Program Element No. 1AB014 EPA Project Officer: David G. Lachapelle Control Systems Laboratory National Environmental Research Center Research Triangle Park, North Carolina 27711 #### Prepared for U. S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT WASHINGTON, D. C. 20460 June 1975 #### **EPA REVIEW NOTICE** This report has been reviewed by the National Environmental Research Center - Research Triangle Park, Office of Research and Development, EPA, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. #### RESEARCH REPORTING SERIES Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into series. These broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and maximum interface in related fields. These series are: - 1. ENVIRONMENTAL HEALTH EFFECTS RESEARCH - 2. ENVIRONMENTAL PROTECTION TECHNOLOGY - 3. ECOLOGICAL RESEARCH - 4. ENVIRONMENTAL MONITORING - 5. SOCIOECONOMIC ENVIRONMENTAL STUDIES - 6. SCIENTIFIC AND TECHNICAL ASSESSMENT REPORTS - 9. MISCELLANEOUS This report has been assigned to the ENVIRONMENTAL PROTECTION TECHNOLOGY series. This series describes research performed to develop and demonstrate instrumentation, equipment and methodology to repair or prevent environmental degradation from point and non-point sources of pollution. This work provides the new or improved technology required for the control and treatment of pollution sources to meet environmental quality standards. This document is available to the public for sale through the National Technical Information Service, Springfield, Virginia 22161. Publication No. EPA-650/2-73-005-a #### **ABSTRACT** This report presents the findings of the Phase II "Program For Reduction of NO_X From Tangentially Coal Fired Boilers" performed under the sponsorship of the Office of Research and Development of the Environmental Protection Agency (Contract 68-02-1367). Phase I of the program consisted of selecting the Alabama Power Company, Barry Station #2 steam generator which was modified for the studies performed under Phase II. The Phase I results were presented in final report EPA-650/2-73-005, dated August, 1973. The work accomplished under Phase II included the design, fabrication, and delivery of an overfire air system for the test unit, the installation of test equipment, planning, and the conducting of baseline, biased firing and overfire air studies for NO_{χ} emission control while burning a Kentucky bituminous coal type. These test programs included an evaluation of the effect of variations in excess air, unit slagging, load and overfire air on unit performance and emission levels. Additionally, the effect of biasing combustion air through various out of service fuel nozzle elevations was also evaluated. The effect of biased firing and overfire air operation on waterwall corrosion potential was evaluated during three thirty (30) day baseline, biased firing and overfire air corrosion coupon tests. Unit loading and waterwall slag conditions exhibited minimal effects on NO_X emission levels while reductions in excess air levels and overfire air operation were found to be effective in reducing NO_X emission levels. #### DISCLAIMER "This report was prepared by Combustion Engineering, Inc. as an account of work sponsored by the Office of Research and Development, U.S. Environmental Protection Agency (EPA). Combustion Engineering, Inc. nor any person acting on behalf of Combustion Engineering, Inc.: - "a. Makes any warranty or representation, expressed or implied including the warranties of fitness for a particular purpose or merchantability, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or - b. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report." # CONTENTS | | Page No. | |---|----------| | Abstract | iii | | Disclaimer | iv | | List of Figures | vii | | List of Data Sheets | ix | | Acknowledgements | хi | | Conclusions | 1 | | Recommendations | 3 | | Introduction | 4 | | Purpose and Scope | 4 | | Objectives | | | Task I | 7 | | Task II | 7 | | Task III | 7 | | Task IV | 8 | | Task V | 8 | | Task VI | 8 | | Task VII | 8 | | Task VIII | 10 | | Task IX | 10 | | Discussion | | | Task I - Prepare the Design, Detail Fabrication | | | and Erection Drawings | 11 | | Task II - Purchase and Fabricate Equipment | 11 | | Task III - Test Instrument Installation | 13 | | Tasks IV & V - Baseline and Biased Firing Test Programs | 15 | | Test Data Acquisition and Analysis | 15 | | Load and Excess Air Variation | 17 | | Furnace Wall Deposit Variation | 21 | | Biased Firing - Fuel Elevations Out of Service | | | Variation | 26 | | Task VIII - Unit Optimization Study | 34 | # CONTENTS (Cont'd) | | Page No. | |--|----------| | Load and Excess Air Variation | 34 | | Furnace Wall Deposit Variation | 40 | | OFA Location & Rate Variation | 44 | | OFA Tilt Variation | 49 | | Load Variation at Optimum Conditions | 51 | | Furnace Performance | 55 | | Waterwall Corrosion Coupon Evaluation | 57 | | Overfire Air Evaluation - Alternate Coals - | | | Barry 4 Tests | 70 | | Task IX - Prepare Application Guidelines | 81 | | References | 122 | | Appendix I | 123 | | Compflow:Windbox - Compartment Air Flow Distribution | | | Computer Program | | ### FIGURES | No. | | Page No. | |-----|---|----------| | 1 | Unit Side Elevation | 6 | | 1A | Schematic - Overfire Air System | 9 | | 2 | Program Schedule | 12 | | 3 | Emission Test System | 14 | | 4 | Corrosion Probe | 18 | | 5 | Corrosion Probe Locations | 19 | | 6 | Corrosion Probe Temperatures | 20 | | 7 | NO ₂ Vs. Theoretical Air to Fuel Firing Zone - | | | | Baseline Study | 22 | | 8 | CO Vs. Theoretical Air to Fuel Firing Zone - | | | | Baseline Study | 23 | | 9 | Percent Carbon Loss Vs. Theoretical Air to | | | | Fuel Firing Zone - Baseline Study | 24 | | 10 | Unit Efficiency Vs. Unit Excess Air - Before Modification | 25 | | 11 | Furnace Slag Pattern - Clean Furnace | 27 | | 12 | Furnace Slag Pattern - Moderate Slag Furnace | 28 | | 13 | Furnace Slag Pattern - Heavy Slag Furnace | 29 | | 14 | NO ₂ Vs. Theoretical Air to Fuel Firing Zone - | | | | Biased Firing Study | 31 | | 15 | CO Vs. Theoretical Air to Fuel Firing Zone - | | | | Biased Firing Study | 32 | | 16 | Percent Carbon Loss Vs. Theoretical Air to Fuel | | | | Firing Zone - Biased Firing Study | 33 | | 17 | NO ₂ Vs. Theoretical Air to Fuel Firing Zone - | | | | Overfire Air Study | 36 | | 18 | CO Vs. Theoretical Air to Fuel Firing Zone - | | | | Overfire Air - Baseline Study | 37 | | 19 | Percent Carbon Loss Vs. Theoretical Air to Fuel | | | | Firing Zone - Overfire Air & Baseline Study | 38 | | 20 | Unit Efficiency Vs. Unit Excess Air - All Tests | 39 | | 21 | Furnace Slag Pattern - Clean Furnace | 41 | # FIGURES (Cont'd) | No. | | Page No. | |---------------------------------|--------------------------------------|----------| | | tern - Moderate Slag Furnace | 42 | | 23 Furnace Slag Pat | tern - Heavy Slag Furnace | 43 | | 24 NO ₂ Vs. Theoreti | cal Air to Fuel Firing Zone - | | | Overfire Ai | | 45 | | 25 CO Vs. Theoretic | al Air to Fuel Firing Zone - | | | Overfire Ai | r Study | 47 | | 26 Percent Carbon L | oss Vs. Theoretical Air to Fuel | | | Firing Zone | e - Overfire Air Study | 48 | | 27 NO ₂ Vs. OFA Tilt | : & Fuel Nozzle Tilt | 50 | | - | oss Vs. OFA Tilt & Fuel Nozzle Tilt | 52 | | 29 CO Vs. OFA Tilt | & Fuel Nozzle Tilt | 53 | | 30 NO ₂ Vs. Main Ste | am Flow: Normal & Optimum Operation | 54 | | 31 Chordal Thermoco | | 56 | | 32 Waterwall Absorp | tion - Baseline Operation | 58 | | 33 Waterwall Absorp | tion - OFA Operation | 59 | | 34 Waterwall Absorp | tion - OFA Operation | 60 | | 35 Waterwall Absorp | tion - Baseline & OFA Operation | 61 | | 36 Gross MW Loading | Vs. Time - Baseline Corrosion | | | Probe Study | • | 63 | | 37 Gross MW Loading | Vs. Time - Biased Firing | | | Corrosion P | robe Study | 64 | | 38 Gross MW Loading | Vs. Time - Overfire Air | | | Corrosion P | robe Study | 65 | | 39 Ash Analysis - C | orrosion Probe Studies | 69 | | 40 NO ₂ Vs. Theoreti | cal Air to the Firing Zone - Barry 4 | 74 | | 41 NO ₂ Vs. Excess A | | 75 | | 42 CO Vs. Excess Ai | r - Barry 4 | 76 | | 43 NO ₂ Vs. Primary/ | Secondary Damper Positions - Barry 4 | 78 | | • | ion Probe Locations - Barry 4 | 80 | ### DATA SHEETS | Sheet | <u> </u> | Page No. | |---------------|--|---------------| | 1 | NO _x Test Data Summary - Baseline | | | | Study | 82 | | 2 | NO _v Test Data Summary - Biased | | | | Firing Study | 83 | | 3 | NO _x Test Data Summary - Baseline Study | | | | After Modification | 84 | | 4A | NO _x Test Data Summary - Overfire Air |
 | | Location, Rate & Velocity Variation | 85 | | 4B | NO _x Test Data Summary - OFA Tilt | | | | Variation | 86 | | 4C | NO _x Test Data Summary - Load Variation | | | | at Optimum Conditions | 86 | | 5A, 5B | Test Data - Baseline Study | 87, 88 | | 6A, 6B | Test Data - Biased Firing Study | 89, 90 | | 7A, 7B | Test Data - Baseline Study After | | | | Modification | 91, 92 | | 8A, 8B | Test Data - Overfire Air Location, Rate | | | | & Velocity Variation | 93, 94 | | 8C, 8D | Test Data - Ovefire Air Tilt Variation | | | | and Load Variation at Optimum | | | | Conditions | 95, 96 | | 9A, 9B, 9C | Board Data - Baseline Study | 97, 98, 99 | | 10A, 10B, 10C | Board Data - Biased Firing Study | 100, 101, 102 | | 11A, 11B, 11C | Board Data - Baseline Study After | | | | Modification | 103, 104, 105 | | 12A, 12B | Board Data - Overfire Air Location, | | | | Rate & Velocity Variation | 106, 107 | | 12C, 12D, 12E | Board Data - Overfire Air Tilt Variation | | | | and Load Variation at Optimum | | | | Conditions | 108, 109, 110 | # DATA SHEETS (Cont'd) | Sheet | <u>.</u> | | | _ | Page | No. | |-------|----------|-----|--|----------------|------|-----| | | | 13A | Waterwall Absorption Rates - kg-cal/hr-cm2 | <u> </u> | | | | | | | Right Wall Centerline Tube Rates | _ | | 111 | | | | 13B | Waterwall Absorption Rates - kg-cal/hr-cm² | ² - | | | | | | | Front Wall Centerline Tube Rates | _ | | 112 | | | | 13C | Waterwall Absorption Rates - kg-cal/hr-cm² | <u> -</u> | | | | | | | Right Wall, Rear Wall, Left Wall, | | | | | | | | Front Wall | | | 113 | | 14A, | 14B, | 14C | Waterwall Corrosion Coupon Data | | | | | | | | Summary | 114, | 115, | 116 | | | 15A, | 15B | Test Data Summary, Barry No. 4 | | 117, | 118 | | | | 16 | Accelerated Corrosion Rate Data - | | | | | | | | Barry No. 4 | | | 119 | | | 17A, | 17B | Typical Coal Analysis | | 120, | 121 | #### ACKNOWLEDGMENTS The author wishes to acknowledge the constructive participation of Mr. D. G. Lachapelle, EPA Project Officer, in providing the program direction necessary for its successful completion. The cooperation and active participation of Alabama Power Company and, in particular, the personnel of the Barry Steam Plant were essential to successfully modifying the test unit and conducting the various test program phases. The results presented in this report represent the effort of many Combustion Engineering, Inc. personnel whose participation was required for its successful completion and in particular the technical contributions made by Messrs. W. A. Stevens, R. F. Swope, M. S. Hargrove, R. W. Robinson, R. W. Borio, R. M. Kantorak and E. R. LePage. #### CONCLUSIONS #### Normal Operation - 1. Under normal unit operation without overfire air, excess air variation was found to have the greatest single effect on NO_X emission levels, increasing NO_X with increasing excess air. An average increase of 0.014 g $NO_2/10^6$ cal for each 1% change in excess air was observed over the normal operating range. - 2. Unit loading and variation in furnace slag conditions were found to have the least effect on NO_X and CO emission levels and the percent carbon in the flyash. - 3. Under normal unit operation, the percent carbon loss in the fly ash and CO emission levels increased with decreasing excess air with the increases becoming greater below a level of approximately 20 to 25 percent excess air. CO levels in excess of 0.1 g/10⁶ cal were considered unacceptable for the purposes of this program. #### Overfire Air Operation - 1. NO_X reductions of 20 to 30% were obtained with 15 to 20 percent overfire air when operating at a total unit excess air of approximately 15 percent as measured at the economizer outlet. This condition would provide an average fuel firing zone stoichiometry of 95 to 100 percent of theoretical air. Stoichiometries below this level did not result in large enough decreases in NO_X levels to justify their use. Biased firing, while potentially as effective, necessitates a reduction in unit loading and is therefore less desirable as a method of NO_X control. - 2. When using overfire air as a means of decreasing the theoretical air (TA)* to the fuel firing zone the percent carbon in the fly ash and CO emission levels were less affected than when operating with ^{*} See Appendix I. - low excess air. This is due to the ability to maintain acceptable total excess air levels during overfire air operation. - Furnace performance as indicated by waterwall slag accumulations, visual observations and absorption rates were not significantly affected by overfire air operation. - 4. On the test unit, where the overfire air port could not be installed as a windbox extension, test results indicated that the centerline of the overfire air port should be kept within 3 meters of the centerline of the top fuel elevation. Distances greater than 3 meters did not result in decreased NO_{X} levels. Changes in distance less than 3 meters did affect NO_{X} levels to a limited extent with the NO_{X} level increasing with decreasing distance. - 5. Optimum overfire air operation was obtained with the test unit when the overfire air nozzles were tilted with the fuel nozzles. From a standpoint of NO_X control, emission levels increased when the nozzles were directed toward each other, and flame stability decreased when they were directed away from each other by more than $20-25^\circ$. With the overfire air tilts fixed in a horizontal position, acceptable unit operation was obtained, however, NO_X levels varied with fuel nozzle position. - 6. The results of the 30 day baseline, biased firing and overfire air corrosion coupon runs indicate that the overfire air operation for low NO_X optimization did not result in significant increases in corrosion coupon degradation. Additional studies will be required to verify these observations over long-term operation. - 7. Variables normally used to control normal boiler operation should not be considered as NO_X controls with coal firing. These variables include unit load, nozzle tilt, pulverizer fineness, windbox dampers and total excess air. - 8. Overall unit efficiency was not significantly affected by overfire air operation. #### RECOMMENDATIONS This program investigated the effects of employing biased firing and overfire air, as incorporated on a specially modified unit, as methods for controlling NO_x emission levels in existing steam generating units. These control methods were studied using an Eastern United States bituminous coal type. Due to the location of the test site it was not, however, within the scope of this program to investigate coal types located in the western areas of the United States. - 1. As these western coal types are becoming a more predominate source of fuel for electric generating stations, it was recommended in the Task V interim report that studies be undertaken to include their evaluation. EPA Contract 68-02-1486 was subsequently awarded to Combustion Engineering, Inc. to study western coal fuels. In this program new units being designed with overfire air systems as an extension to the windbox will be utilized eliminating the need for unit modifications while expanding the experimental studies to include test data for larger current design steam generating units. - 2. Additionally, the results of the corrosion probe evaluations indicate that the coupon weight losses encountered during a 30 day evaluation are small and consideration should be given to studies of up to one year duration to verify short term test results. These studies should include evaluation of actual fireside waterwall tube wastage rates as well as corrosion probe wastage rates. #### INTRODUCTION #### Purpose and Scope This program encompassed the work to be performed under the second phase of a two phase program to identify, develop and recommend the most promising combustion modification techniques for the reduction of NO_X emissions from tangentially coal-fired utility boilers with a minimum impact on unit performance. Phase I (performed under EPA Contract 68-02-0264) consisted of selecting a suitable utility field boiler to be modified for experimental studies to evaluate NO_X emission control. Phase I also included the preparation of preliminary drawings, a detailed preliminary test program, a cost estimate and detailed schedule of the program phases and a preliminary application economic study indicating the cost range of a variety of combustion modification techniques applicable to existing and new boilers. (1) Phase II consisted of modifying and testing the utility boiler selected in Phase I to evaluate overfire air and biased firing as methods for NO_X control. This phase also included the completion of detailed fabrication and erection drawings, installation of analytical test equipment, updating of the preliminary test program, analysis and reporting of test results and the development of control technology application guidelines for existing and new tangentially coal-fired utility boilers. This program was conducted at the Barry Steam Station, Unit No. 2 of the Alabama Power Company. This unit is a natural circulation, balanced draft design, firing coal through four elevations of tilting tangential fuel nozzles. Unit capacity at maximum continuous rating (MCR) is 408,000 kg/hr main steam flow with a superheat outlet temperature and pressure of 538°C and 131.8 kg/cm². Superheat and reheat temperatures are controlled by fuel nozzle tilt and spray desuperheating. A side elevation of the unit prior to modification is shown on Figure 1. Throughout this report ${\rm NO_X}$ emission levels are expressed as ${\rm g/10}^6{\rm cal~NO_2}$. Figure 1. Unit Side Elevation, Alabama Power Company, Barry No. 2 #### **OBJECTIVES** The objective of program Phase II was to complete the design of the overfire air system, modify the
Barry 2 unit accordingly, perform baseline, biased firing and optimization tests and based on the results of this program, prepare an application guideline for the NO_{χ} control technology generated. Specifically these objectives are defined as follows: - Task I Prepare the design, detailed fabrication and erection drawings necessary for modification of Barry No. 2 to incorporate an overfire air system. The system design provides for: - a. Introducing a maximum of 20% of the total combustion air above the fuel admission nozzles. - b. Overfire air introduction through the top two existing windbox compartments (thereby prohibiting the use of one elevation of fuel nozzles). - c. Introduction of hot overfire air only with consideration for air preheat control. An updated schedule for Tasks II and IV were also prepared under Task I. - Task II Complete the purchasing and fabrication of all equipment necessary for modification of the Barry No. 2 unit. - Task III Install all necessary instrumentation required to measure flue gas constituents and characterize the effects of combustion modifications on unit performance. Specifically the following determinations were made: - a. Flue gas constituents: NO_y , SO_y , CO, HC, O_2 - b. Unit Performance Effects: Fireside corrosion Furnace heat absorption Sensible heat leaving furnace Superheater, reheater and air heater performance - Task IV Conduct a baseline test program to establish the effect of unit load, wall slagging and excess air variation on baseline emission levels, thermal performance and operating ranges. A baseline corrosion coupon test of 30 day duration was also conducted. - Task V Conduct a biased firing baseline test program to establish the effect on unit emission levels while operating with various fuel elevations out of service. These tests were performed specifically to evaluate the maximum emission control at full load and throughout the normal load range. In addition, the degree of control required to meet and maintain emission standards throughout the normal control range was also evaluated. A biased firing corrosion coupon test of 30 days duration was also conducted. - Task VI Install all equipment required for modification of the test unit and functionally check equipment to determine that proper operation is obtained. (See Figure 1A) - Task VII Complete final preparations for conducting the overfire air test program to be conducted in Task VIII including the following: - a. Finish installation of the furnace waterwall thermocouples. - b. Check out all necessary test instrumentation for proper installation and operation. - c. Review test program with EPA project officer and util- Figure 1A: Schematic Overfire Air System, Barry No. 2 ity company.* - d. Perform a final inspection of the test unit to assure proper operation. - Task VIII- Conduct the overfire air test program, analyze the data generated and compare this data with that obtained during Task V. The program investigated the effect of overfire air location and rate at various unit loadings and evaluated operating conditions considered as optimum from the standpoint of NO_X control and unit operation. The final report was also generated under this Task. - Task IX Prepare a program outlining the application of the technology developed under this study to existing and new design tangentially coal-fired utility boilers. These application guidelines will be submitted as a separate final report. ^{*} The test program for this study was originated during the Phase I study, Contract 68-02-0264 and was included as part of the Phase I report. #### DISCUSSION # Task I - Prepare the Design, Detailed Fabrication and Erection Drawings Engineering Drawings The drawings necessary for the design and installation of the overfire air system were completed by the end of the eighth program month and were submitted to the EPA for review and approval as they were completed. The design provides for the introduction of 20% of the total combustion air as overfire air above the existing fuel admission zone. These compartments are located approximately 2.4 meters above the existing windbox. In addition overfire air can be introduced through the top two compartments of the existing windbox. The current design provides for the introduction of hot overfire air only. #### Updated Time Schedule The Phase II program schedule was reviewed and updated relative to the coordination of Tasks II, IV and V with the test unit outage. The scheduling of the unit outage was coordinated with Alabama Power Company and reviewed periodically to assure that the unit modification would occur as scheduled. The final program schedule presenting the actual periods of performance for Phase II is shown on Figure 2. #### <u>Task II - Purchase and Fabricate Equipment</u> The equipment for modification of the Barry No. 2 unit to incorporate overfire air as an NO_{χ} control was assembled and ready to be shipped to the test site by the end of the eighth program month. Completion of equipment fabrication by this date permitted necessary time for delivery of the equipment to the job site and performing any possible pre-outage erection which would be accomplished prior to the unit outage. In addition, instrumentation required for the baseline and optimization test phases of the program was calibrated, fabricated and prepared for shipment to the job site. This effort included fabrication of corrosion | | | | | | 197 | 3 - | 4 | - | - 19 | 74 | Pr | rogr | ram | Mor
Mo | nth | h | 197 | 4 - | 4 | - | - | 197 | 5 | | | | |------|--|---|-----|---|-------|-----|---|---|------|------|----|------|-----|-----------|--------------------|---|------|-----|----|---|------|--------|------|-------|-----|------| | TASK | TASK DESCRIPTION | 7 | 8 | 9 | | 11 | | 1 | 2 | 6 3 | | | 912 | | 8 4 | | 10 | 11 | 12 | 5 | 20 | 22 | 422 | 535 | 924 | 65 | | 1 | Prepare Design Drawings for Fabrication & Erection of NO Control Systems | | | | | | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | II | Purchase Equipment & Fabricate Equipment | C | 12. | | er en | | .Æ | 2 | | | | | | | | | | | | - | | | | | | | | III | Install Test Instrumentation | 1 | | IV | Perform Baseline Tests | | | | | 1 | 3 | | L | | | | | | | | | | | | | | | | | | | ٧ | Perform Bias Firing Tests | | | | | | | | | E | C. | | | | | | | | | | | | | | | | | VI | Deliver Equipment & Modify Unit | | | | | | | | | Boot | | | | | | | | | | | | | | | | | | VII | Final Test Preparation | VIII | Conduct Tests | * | Evaluate Results & Prepare Final Results | | | | | | | | | | | | | | THE REAL PROPERTY. | | 1.00 | | | | din. | 'A. A. | 1000 | 2.64 | *** | | | IX | Prepare Application Guidelines for Minimizing NO | 494 | 10.4 | 7.00 | 2: WA | 100 | \$36 | probes, probe control systems, and gas sampling probes, and calibration of thermocouples, analyzers and transducers. The emissions monitoring system is shown in Figure 3. #### Task III - Test Instrumentation Installation The analytical test instrumentation necessary for the measurement of flue gas constituents and unit performance were installed by the fifth program month with the exception of the waterwall absorption thermocouples which were installed during the unit outage for installation of the overfire air modification. The instrumentation and analytical methods used were as follows: | Measurement | Instrument/Analytical Procedure | |-----------------------|---------------------------------| | Flue Gas Constituents | · | ${ m NO}_{ m X}$ Chemiluminescence Analyzer ${ m SO}_2$ Wet Chemistry CO & Hydrocarbons Infrared Analy. and Flame Ionization Analyzer Carbon Loss Dust Collector Oxygen Paramagnetic Analyzer Fuel Analysis ASTM Procedures Ash Analysis ASTM Procedures Flow Rates Steam & Water Feedwater Flow Flow Orifice Reheat and Superheat Heat Balance (°F & PSIG) Desuperheat Spray Around Desuperheater Reheat Flow Heat Balance Around Superheat Extractions and Estimated Turbine Gland Seal Losses Figure 3. Gaseous Emissions Test System Measurement Air & Gas Total Air & Gas Weight Overfire Air* Air Heater Leakage <u>Temperatures</u> Steam & Water °F Unit Absorption Rates Waterwall Absorption* Air & Gas °F Pressures Steam and Water PSIG Unit Absorption Rates Unit Draft Loss Temperature and Pressure Logging, °F & PSI Instrument/Analytical Procedure Calculated Pitot Traverse Paramagnetic 0_2 Analyzer Calibrated Stainless Steel Sheathed CR-C Well & Button TC's Calibrated Stainless Steel Sheathed Cr-C Chordal WW TC's Cr-C TC's Water Cooled Probes Pt/Pt-10% Rh TC's Pressure Gauges and/or Transducers Water Manometers C-E Data Logger Capacity: 400 temperatures, 50 pressures ## Tasks IV & V Baseline & Biased Firing Test Programs ## Test Data Acquisition and Analysis The flue gas samples for determination of NO_x , O_2 , CO, SO_2 and HC emission levels were obtained at each of the two economizer outlet ducts. ^{*} Installed during Task VI The flue gas samples were drawn from a twenty-four (24) point grid arranged on centroids of equal area in each duct with the exception of the SO₂ sample which was drawn from a single average point using a heated sample line. Fly ash samples for carbon loss analysis and dust loading were obtained at a single point in each duct. The percent 0_2 leaving the air preheaters was also determined using a twenty-four (24) point grid arranged in centroids of equal area for the determination of air preheater leakage and unit efficiency. The following instrumentation was used in determining the emission concentrations: - 1. NO,: Chemiluminescence Analyzer - 2. 0₂: Paramagnetic Analyzer - 3. CO:
Nondispersive Infrared Analyzer - 4. HC: Flame Ionization Analyzer - 5. SO₂: Wet Chemistry - 6. Carbon Loss & Dust Loading: ASME Particulate Sampling Train A summary of the NO_X emission test data is tabulated on Data Sheets 1, 2, 3 and 4. Unit steam and gas side performance was monitored using calibrated thermocouples, pressure gauges, transducers and manometers as required. Coal samples were obtained during each test for later analysis. The samples were obtained from each feeder and blended to form a composite sample. Fuel analyses, unit steam flow rates, absorption rates, gas and air weights and efficiencies were calculated for each test run. Unit efficiency was determined using the heat losses method (based on ASME power test code 4.1-1964). The measured and calculated unit performance test data is presented on Data Sheets 5, 6, 7 and 8. A complete set of unit board data was obtained for each test run and is presented on Data Sheets 9, 10, 11 and 12. While Data Sheets 1 through 8 are reported in metric units, the board data (Sheets 9 through 12) are reported in the engineering units as taken. The 30 day waterwall corrosion coupon evaluation was conducted using a specially designed probe consisting of four individual coupons shown in Figure 4. Individual probes were exposed at five locations on the front furnace wall as shown on Figure 5. A typical trace of the control temperature range for each of the twenty coupons is shown on Figure 6. The control temperature ranges were the same for the baseline, biased firing and overfire air studies. # Task IV Baseline Test Study Load and Excess Air Variation Tests 1 through 7 were conducted to determine the effect of varying excess air at three unit loads on unit emission levels and performance. These tests were conducted with clean furnace conditions. As shown in the following table, NO_X emission levels increased with increased excess air but did not change significantly with changes in unit loading. An average increase of 0.014 g $NO_2/10^6$ cal was noted for each 1% change in excess air over the normal unit operating range. Load & Excess Air Variation | Test
No. | Main
Steam
Flow
10 ³ kg/hr | NO ₂
g/10 ⁶ cal | CO
g/10 ⁶ cal | EA
% | Theo. Air to Firing Zone | Unit
Eff.
% | WW
Slag | |-------------|--|--|-----------------------------|-----------|--------------------------|-------------------|------------| | 1 | 219 | 1.337 | 0.032 | 35.5 | 130.6 | 88.3 | Clean | | 2 | 224 | 1.030 | 0.182 | 17.5 | 117.1 | 88.2 | Clean | | 3 | 214 | 1.519 | 0.010 | 58.9 | 151.3 | 87.6 | Clean | | 4 | 316 | 0.90 | 0.050 | 12.6 | 109.2 | 89.3 | Clean | | 5 | 404 | 1.041 | 0.040 | 22.7 | 117.9 | 89.0 | Clean | | 6 | 407 | 0.761 | 0.198 | 11.7 | 107.2 | 89.1 | Clean | | 7 | 405 | 1.403 | 0.042 | 30.8 | 125.3 | 89.5 | Clean | Figure 4: Corrosion Probe Assembly Drawing Figure 5. Waterwall Corrosion Probe Locations, Alabama Power Company Barry No. 2 Figure 6: Typical Corrosion Probe Temperature Range A maximum excess air limit of 30.8 and 58.9 percent was obtained at full and half load conditions respectively due to ID fan capacities. Minimum excess air limits of 20 to 25 percent were determined as those at which acceptable CO emission levels could be maintained. Reduction of NO_2 emission levels using excess air reduction was therefore limited to approximately 1.04 g/ 10^6 cal as obtained during Test 5. The changes in NO₂, CO, percent carbon loss in the fly ash and unit efficiency versus theoretical air to the fuel firing zone are shown on Figures 7, 8, 9 and 10, respectively. The theoretical air (TA) to the firing zone is used in this case as it accounts for variations in position and leakage in the compartment dampers above the top active fuel compartment and thereby presents a more accurate determination of the actual air available for combustion in the fuel firing zone than does the total excess air. As seen on Figure 7 for clean furnace conditions the NO₂ correlates well with TA with little variation due to unit load. As shown on Figures 8 and 9 carbon loss in the fly ash and CO emission levels increased with decreased TA levels. Unit load does not appear to have a discernable effect. Figure 10 is a plot of Unit Efficiency versus Unit Excess Air measured at the economizer outlet. During this portion of the test program total hydrocarbon levels (HC) were monitored and were found to be present in only trace quantities as shown on Data Sheets 1 and 2. The SO_2 levels measured are also shown on Data Sheets 1 and 2. #### Furnace Wall Deposit Variation Tests 8 through 14 were conducted to determine the effect on unit performance and emission levels of varying furnace waterwall deposits from a clean condition to the maximum possible slagging condition obtainable. The maximum slagging condition was obtained after operation in excess of twenty-four hours without operating any wall blowers. During this Figure 7: NO₂ Vs. Theoretical Air to Fuel Firing Zone, Baseline Study, Tests 1-14 Figure 8: CO Vs. Theoretical Air to Fuel Firing Zone, Baseline Study, Tests 1-14 Figure 9: Percent Carbon Loss Vs. Theoretical Air to Fuel Firing Zone, Baseline Study, Tests 1-14 THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT UNIT EXCESS AIR - ECONOMIZER OUTLET, PERCENT Figure 10: Unit Efficiency Vs. Unit Excess Air ## LEGEND BASELINE TESTS | Unit Load | Furnace Slag | |-----------|----------------------| | | Light Moderate Heavy | # BIASED FIRING TESTS | Unit Load | Fuel Elev. Out of Service | |------------|---------------------------| | A May Poss | ∧ Ton | | Max Poss | . <u></u> Top | |-----------|-------------------| | 3/4 MCR | 面 Top Ctr. | |) 1/2 MCR | 🛆 Bot. Ctr. | | | ₩ Bot. | time period slag deposits of up to 4 inches in thickness could be obtained in and above the fuel firing zone. Furnace Wall Deposit Variation | c Dep | |-------| | (Dep | | k Dep | | x Dep | | k Dep | | k Dep | | k Dep | | さいいい | As can be seen from Figure 7 furnace slagging did not exhibit a discernable effect on NO_{X} emission levels. As shown in Figures 8 and 9 this condition was also found to be true for carbon loss in the fly ash and CO emission levels with the exception of the half load Tests 11 and 12 where CO levels higher than those obtained with clean furnace conditions were observed. The high CO levels may have been due to slag build-up at or near the fuel and air nozzles which could have contributed to poor combustion. The higher CO levels were not observed under full load with heavy slag operation. Figure 10 indicates that furnace cleanliness did not exhibit any discernable effect on unit efficiency. Slag patterns taken during clean, moderate and heavy slagging conditions at full load operation are shown on Figures 11, 12 and 13. Task V - Biased Firing Study - Fuel Elevations Out of Service Variation Tests 15 through 24 were conducted to determine the effect on NO_X emission levels of taking various fuel elevations out of service (biased firing) at various unit loadings. As shown on the following table the Figure 11: Furnace Slag Pattern, Clean Furnace Figure 12: Furnace Slag Pattern, Moderate Slag Furnace Figure 13: Furnace Slag Pattern, Heavy Slag Furnace maximum NO $_{\rm X}$ emissions control was obtained with the top elevation of fuel nozzles out of service at maximum and 75 percent maximum loading (Tests 20 and 21). At 50 percent maximum loading (Test 23) the high excess air levels required to maintain unit steam temperatures appeared to negate any NO $_{\rm X}$ reductions obtained by biasing the top fuel nozzle elevation, however, the emissions level obtained was below the current EPA limit for coal fired units of 1.26 g/10 6 cal. Biased Firing - Fuel Elevations Variation | Test
No. | Main
Steam
Flow
10 ³ kg/hr | NO ₂
g/10 ⁶ ca1 | CO
g/10 ⁶ ca1 | EA
% | Theo. Air to Firing Zone | Unit
Eff
<u>%</u> | Fuel Nozzle
Elevation
Out Of
Service | |-------------|--|--|-----------------------------|---------|--------------------------|-------------------------|---| | 15 | 199 | 1.206 | 0.041 | 50.1 | 105,8 | 87.9 | Bottom | | 16 | 297 | 1.142 | 0.037 | 26.7 | 121.7 | 89.3 | Bottom | | 17 | 315 | 0.840 | 0.059 | 21.1 | 116.5 | 89.1 | Bottom | | 18 | 321 | 0.792 | 0.050 | 22.2 | 117.5 | 89.3 | Bot. Ctr. | | 19 | 321 | 0.795 | 0.044 | 21.8 | 117.2 | 88.9 | Top Ctr. | | 20 | 314 | 0.599 | 0.034 | 24.2 | 94.7 | 88.8 | Тор | | 21 | 308 | 0.696 | 0.040 | 29.0 | 97.3 | 89.6 | Top | | 22 | 208 | 1.124 | 0.038 | 48.0 | 112.5 | 87.8 | Тор | | 23 | 211 | 1.043 | 0.029 | 47.0 | 141.4 | 87.9 | Top Ctr. | | 24 | 202 | 1.282 | 0.035 | 47.0 | 141.3 | 87.7 | Bot. Ctr. | As can be seen from Figure 14 biasing the center two and bottom fuel elevations did not have a discernable effect on NO_X emission levels although the emission level tended to be higher at reduced unit loadings for given TA levels. Figures 15 and 16 indicate that with biased firing, low TA levels to the fuel firing zone were obtained without increasing either CO emission levels or the carbon loss in the fly ash. Figure 10 shows that biased firing operation did not significantly affect unit efficiency. This condition is due to the ability to maintain acceptable total unit excess air levels during biased firing operation. Figure 14: NO_2 Vs. Theoretical Air to Fuel Firing Zone, Biased Firing Study, Tests 15-24 Figure 15: CO vs. Theoretical Air to Fuel Firing Zone, Biased Firing Study, Tests 15-24 Figure 16: Percent Carbon Loss Vs. Theoretical Air to Fuel Firing Zone, Biased Firing Study Tests 15-24 Task VIII - Unit Optimization Study Load and Excess Air Variation (After Modification) Load & Excess Air Variation | Test
No. | Main
Steam
₃ Flow
10
³ kg/hr | NO ₂
g/10 ⁶ ca1 | CO
g/10 ⁶ ca1 | EA % | Theo.
Air
Firing
Zone | Unit
Eff. | WW
Slag | |-------------|---|--|-----------------------------|------|--------------------------------|--------------|------------| | 1 | 219 | 0.929 | 0.035 | 33.5 | 127.1 | 88.4 | Clean | | 2 | 213 | 0.701 | 0.479 | 16.0 | 113.4 | 88.8 | Clean | | 3 | 217 | 1.339 | 0.044 | 64.7 | 155.4 | 87.4 | Clean | | 4 | 315 | 0.684 | 0.140 | 15.5 | 111.0 | 89.8 | Clean | | 5 | 450 | 0.846 | 0.037 | 21.0 | 115.3 | 89.4 | Clean | | 6 | 441 | 0.692 | 0,162 | 12.4 | 107.1 | 89.2 | Clean | | 7 | 423 | 1.000 | 0.028 | 25.4 | 119.5 | 89.5 | Clean | Tests 1 through 7 were performed with unit conditions closely approximating those of Baseline Tests 1 - 7 under Program Task IV. A clean furnace was maintained as the excess air was varied at three unit loads. The effect of these operating conditions on emission levels and performance can be seen in the Table above. As witnessed in the previous baseline tests, NO_X emissions levels increased with increased excess air.* ^{*} In general, NO₂ values were slightly lower <u>after modification</u> for the same test conditions. This resulted from an updated firing system installed between the sets of tests along with an average percent nitrogen in fuel decrease of 0.15 percent (1.21 to 1.06 percent). Also, fuel higher heating values and furnace outlet temperatures tended to be lower for Tests 1 - 7 after modification. ID fan capacities limited excess air to a maximum of 64.7 and 33.5 percent at half and full load conditions respectively. Acceptable minimum excess air limits were established at 20-25 percent to control CO emission levels. Thus, NO_x emission levels could only be reduced to approximately 0.90 g/10 cal through excess air reduction. The effect of theoretical air to the firing zone on NO_x , CO, and percent carbon loss in the fly ash (% CL) can be seen in Figures 17, 18 and 19. In agreement with the original baseline tests, theoretical air to the firing zone (TA) was used for comparison in place of total excess air (EA). TA is determined by location and means of admission as well as quantity, and consequently better defines that air actually available for initial combustion. Figure 17 indicates a definite increase in NO_{χ} emission levels with increasing TA for clean furnace conditions. CO emission levels and percent carbon loss in the fly ash can be seen to increase with decreased TA without overfire air. Reasonable control of CO and % CL can only be maintained at TA levels above 120%. No definite relationship can be observed between unit load and CO emission levels. Percent CL can be seen to be greater at higher unit loads for given TA levels. Changes in unit efficiency versus excess air at the economizer outlet are presented in Figure 20. Overall, unit efficiency decreases as the excess air increases. Hydrocarbon emission levels appeared only in trace quantities for this portion of the test program. HC and SO_2 levels are presented on Data Sheets 3 and 4. Figure 17: NO₂ Vs. Theoretical Air to Firing Zone, Overfire Air Study, Load and Excess Air Variation, Tests 1-14 Figure 18: CO Vs. Theoretical Air to Firing Zone, Overfire Air Study, Load and Excess Air Variation, Tests 1-14 THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT Figure 19: Percent Carbon Loss Vs. Theoretical Air to Firing Zone, Overfire Air Study Load and Excess Air Variation, Tests 1-14 Figure 20: Unit Efficiency Vs. Excess Air - Economizer Outlet, All Tests (Before & After Modification) Furnace Wall Deposit Variation (After Modification) | | Main
Steam | NO ₂ | CO | | Theo.
Air
Firing | Unit | | |------|-----------------------|-----------------------|--------------|------|------------------------|----------|-------------| | Test | "Flow | £ | - | | Zone | Eff. | WW | | No. | 10 ³ kg/hr | g/10 ⁶ ca1 | $g/10^6$ cal | EA % | | <u>%</u> | <u>Slag</u> | | 8 | 440 | 0.985 | 0.0310 | 17.8 | 112.3 | 89.0 | 1/2 Max | | 9 | 446 | 0.699 | 0.1239 | 12.1 | 106.9 | 88.9 | 1/2 Max | | 10 | 428 | 0.902 | 0.0300 | 26.6 | 120.5 | 89.5 | 1/2 Max | | 11 | 246 | 0.782 | 0.0335 | 30.9 | 124.6 | 89.3 | Max | | 12 | 218 | 1.310 | 0.0304 | 63.1 | 154.0 | 88.0 | Max | | 13 | 432 | 0.819 | 0.0298 | 22.0 | 116.2 | 89.0 | Max | | 14 | 425 | 0.902 | 0.0292 | 25.9 | 119.9 | 89.4 | Max | The effect of furnace waterwall deposits on unit performance and emission levels was studied in Tests 8 through 14 (Clean Condition - Maximum Slagging Conditions). Dirty conditions were established after a minimum of 24 hours of no operation of wall blowers. Deposits of up to four inches in thickness could subsequently be found in and above the fuel firing zone. Figures 17, 18 and 19 reveal no observable effect of furnace cleanliness on NO_X or CO emission levels along with percent carbon loss in the fly ash.* Slag patterns taken during full load operation for clean, moderate and heavy slagging furnace conditions can be viewed in Figures 21, 22 and 23. ^{*} Again, NO_X values were generally slightly lower after modification. Nitrogen in fuel decreased an average of 0.19 percent from 1.23 percent. Furnace outlet temperatures were somewhat lower for Tests 8 through 14 after modification although fuel higher heating values showed no definite change. Figure 21: Furnace Slag Pattern, Clean Furnace This set of tests also confirms the results found in Tests 1 through 7. NO_X emission levels increase with increased excess air. NO_X cannot be decreased through excess air reductions below 20 percent excess air while maintaining an acceptable CO emission level without overfire air. OFA Location, Rate, and Velocity Variation | | Main | | | Theo.
Air | | | | | |------|-------------------------------|-----------------------|-----------------------|--------------|-----------|-------------|---------|--------------| | T4 | Steam | NO ₂ | CO | Firing | Unit | Mills | Adm. | A.dm | | Test | Flow
10 ³ kg/hr | g/10 ⁶ ca1 | g/10 ⁶ ca1 | Zone
% | Eff.
% | In
Serv. | Pts.* | Adm.
Rate | | No. | 10 Kg/111 | g/10 car | 9/10 Ca1 | | | Jeiv. | 103. | <u>na ce</u> | | 15 | 336 | 0.723 | 0.0358 | 114.5 | 90.0 | BCD | 0-1 | 0 | | 16 | 340 | 0.533 | 0.0382 | 96.7 | 89.8 | BCD | 0-1 | Max | | 17 | 338 | 0.533 | 0.0413 | 95.8 | 89.7 | BCD | 0-2 | Max | | 18 | 344 | 0.479 | 0.0613 | 84.8 | 89.6 | BCD | 0-1,0-2 | Max | | 19 | 338 | 0.486 | 0.0500 | 89.3 | 89.3 | BCD | 0-1,0-2 | 1/2 Max | | 20 | 344 | 0.677 | 0.0367 | 100.5 | 90.2 | BCD | 0-3 | Max | | 21 | 342 | 1.012 | 0.0321 | 117.4 | 90.1 | ABC | 0-1 | 0 | | 22 | 341 | 0.689 | 0.0329 | 90.4 | 89.0 | ABC | 0-1,0-2 | Max | | 23 | 346 | 0.704 | 0.0322 | 96.9 | 89.1 | ABC | 0-1,0-2 | 1/2 Max | Tests 15 through 23 were performed to establish the effect of overfire air admission on NO_X emission levels. The unit load and excess air remained constant for moderately dirty furnace conditions. Location of air admission to the furnace was varied. As shown in Figure 24, this set of tests shows a tendency of NO_X emission levels to decrease with decreased theoretical air to the firing ^{*} OFA Admission Points: ^{0-1:} Top overfire air compartment. ^{0-2:} Bottom overfire air compartment. ^{0-3:} Top fuel elevation out of service. Figure 24: NO₂ Vs. Theoretical Air to Firing Zone, Overfire Air Location, Rate & Velocity Variation, Tests 15-23 zone. NO_{X} levels are generally higher with ABC mills (top 3 elevations) in service than with BCD mills (bottom 3 elevations). Both operating conditions support the premise of reducing NO_{X} emission levels by reducing the air input to the fuel firing zone and admitting downstream of that point. The fire is thereby spread out over more of the furnace reducing its intensity. The above factors are limited by flame stability which became very lazy in Test 18. By using the bottom 3 elevations in place of the top 3 elevations, the distance between the overfire air and the firing zone was increased. (The mean firing elevation is also slightly decreased.) Comparison of Tests 18 and 19 with Tests 22 and 23 reveals lower NO_{X} levels obtained with increased distance between the overfire air and the firing zone. Operation at TA levels below 95% did not result in significant reductions in NO_{X} emission levels. CO emission levels remained acceptable for the entire set of tests where the total excess air was approximately 27 percent as shown on Figure 25. OFA admission location or rate variation exhibited no significant change in percent carbon loss in the fly ash as shown on Figure 26. Unit efficiencies were not significantly affected by fuel elevations in service, or by overfire air location and rate variation. This is explained by the fact that essentially constant total excess air levels were maintained during this study. Figure 25: CO Vs. Theoretical Air to Firing Zone, Overfire Air Location, Rate & Velocity Variation, Tests 15-23 Figure 26: Percent Carbon Loss Vs. Theoretical Air to Firing Zone, Overfire Air Location Rate & Velocity Variation, Tests 15-23 OFA Tilt Variation | Test | Main
Steam
aFlow | NO ₂ | CO | | Theo. Air Firing | Unit
Eff. | Fuel
Nozz
Tilt | OFA | |------|------------------------|-----------------------|----------------|------|------------------|--------------|----------------------|-------| | No. | 10 ³ kg/hr | g/10 ⁶ ca1 | $g/10^{6}$ ca1 | EA % | Zone
% | %_ | 0 | Tilts | | | | 37 | 31 | | | | | | | 24 | 407 | 0.710 | 0.0324 | 25.9 | 94.2 | 89.6 | -5 | 0 | | 25 | 418 | 0.609 | 0.0346 | 23.7 | 92.4 | 89.3 | -23 | 0 | | 26 | 412 | 0.770 | 0.0406 | 25.1 | 93.2 | 88.9 | +19 | . 0 | | 27 | 407 | 0.721 | 0.0282 | 22.3 | 91.5 | 89.3 | -5 | -30 | | 28 | 414 | 0.846 | 0.0360 | 20.2 | 89.6 | 88.6 | +22 | -30 | | 29 | 418 | 0.596 | 0.0630 | 23.7 |
92.6 | 89.4 | -21 | +30 | | 30 | 416 | 0.710 | 0.0333 | 21.6 | 90.7 | 89.0 | -4 | 0 | | 33 | 409 | 0.697 | 0.0316 | 27.4 | 94.6 | 89.0 | -22 | -22 | Tests 24 through 30, and 33, were conducted at full unit load with excess air and theoretical air levels to the firing zone of approximately 24 percent and 92 percent, respectively. With moderate slagging conditions on the waterwalls the fuel nozzle tilts and OFA tilts were varied. This essentially moves the firing zone both in the furnace and in its relative position to the overfire air. Fuel nozzle tilts that are maximum minus combined with OFA tilts of maximum plus increase the distance between the overfire air and the firing zone. As with previous methods of increasing this distance, the NO_X emission levels are decreased. Figure 27 shows that as the tilts are moved toward one another (fuel nozzle tilts up; OFA tilts down), the OFA - firing zone separation is decreased and the NO_X levels are increased. When the OFA tilts are maximum minus and the fuel nozzle tilts maximum plus, the term overfire air becomes ambiguous. The <u>actual</u> overfire air is less than the <u>reported</u> value, because the air is being forced down into the raised firing zone. At this point where the combined fuel nozzle and OFA tilt differential is 52 degrees toward each other, the NO $_{\rm X}$ emission level reaches a maximum of 0.846 g/10 6 cal. Figure 27: NC₂ Vs. OFA Tilt and Fuel Nozzle Tilt Differential, OFA Tilt Variation Tests 24-33 Percent carbon loss in the flyash exhibits a definite increase as the fuel nozzle tilts and OFA tilts move away from each other. This can be witnessed in Figure 28. CO emission levels also show an increase as the tilt differential increases, yet there is enough total excess air to maintain an acceptable emission level as shown in Figure 29. Flame stability arises as a limiting factor in variation of the tilts. As the tilts move substantially away from each other, the fire becomes unstable and pulsing may result. Test 29 was performed with a fuel nozzle and OFA tilt differential of 51 degrees away from each other. NO $_{\rm X}$ emission levels decreased to 0.596 g/10 cal, yet the CO emission levels began to increase and the fire appeared less stable. Maintaining the fuel nozzle tilts and OFA tilts at approximately equal tilt angles resulted in acceptable flame stability as well as reduced NO $_{\rm X}$ emission levels. For all OFA tilt variation tests the NO_X emissions level obtained was below the EPA limit of 1.26 g/ 10^6 cal. ### Load Variation at Optimum Conditions Tests 30 through 35 were conducted to evaluate unit performance and emission levels at optimum operating conditions as determined during Tests 15 through 29. Tests were conducted over the unit load range at varying furnace waterwall slagging conditions. The NO_X emission level results of this series of tests versus unit loading, expressed as main steam flow, are shown on Figure 30. OFA TILT AND FUEL NOZZLE TILT Δ , DEGREES Figure 28: Percent Carbon Loss Vs. OFA Tilt and Fuel Nozzle Tilt Differential, OFA Tilt Variation, Tests 24-33 OFA TILT AND FUEL NOZZLE TILT Δ , DEGREES Figure 29: CO Vs. OFA tilt and Fuel Nozzle Tilt Differential, OFA Tilt Variation Tests 24-33 PERCENT OF FULL LOAD RATING Figure 30: NO₂ Vs. Main Steam Flow, Ranges for Normal & Optimum Operation Load Variation at Optimum Conditions | Test
No. | Main
Steam
3Flow
10 ³ kg/hr | NO ₂
g/10 ⁶ cal | CO
g/10 ⁶ ca1 | EA % | Theo. Air Firing Zone | Unit
Eff. | WW
Slag | |-------------|---|--|-----------------------------|------|-----------------------|--------------|------------| | 30 | 416 | 0.710 | 0.033 | 21.6 | 90.7 | 89.0 | Clean | | 31 | 314 | 0.708 | 0.033 | 25.2 | 89.4 | 89.1 | Clean | | 32 | 204 | 0.828 | 0.031 | 46.9 | 88.5 | 89.2 | Clean | | 33 | 409 | 0.697 | 0.032 | 27.4 | 94.6 | 89.0 | Max. | | 34 | 310 | 0.608 | 0.034 | 27.4 | 90.6 | 88.2 | Max. | | 35 | 204 | 0.655 | 0.032 | 45.9 | 88.5 | 89.0 | Max. | This figure illustrates the range of NO_2 levels obtained both during baseline (after modification) and optimum unit operations. Not all the baseline tests are included as in some cases unit operation was felt to depart excessively from normal operations. Low excess air operation can be cited as an example. The wide range of NO₂ levels obtained, particularly during the baseline tests are due to variations in unit operating parameters such as excess air level. During the optimization tests total excess air at the unit economizer outlet was maintained between 20 and 28% at full and 3/4 load and 45 to 47% at 1/2 load and fuel nozzle tilts raised or lowered as required to maintain acceptable reheat and superheat outlet temperatures. Also minimum excess air levels were established on the basis of maintaining acceptable CO emission levels and flame stability. Tests 30, 31 and 32 were conducted as a series and no problems were encountered while changing load with optimum operation. #### Furnace Performance During the test program furnace performance was monitored by use of chordal thermocouples installed in the furnace waterwalls. A schematic of the thermocouple locations is shown in Figure 31 and a tabulation of the absorption rates obtained is presented on Sheets 13A, 13B and 13C. The temperatures and corresponding absorption rates were found to vary significantly with wall slag conditions making data interpretation difficult. The method finally arrived at as representing an accurate indication of furnace performance is as follows: The front and right side wall centertube profiles were plotted as shown in Figure 32 and the average of these profiles determined. It should be noted that the maximum and minimum profiles shown do not represent individual walls in every case, i.e., at given furnace elevations the maximum rate shown may switch from wall to wall. For comparison of optimum and normal unit operation with respect to furnace performance, three full load tests with similar furnace slagging conditions, etc., were selected for comparison. The average centerline profiles for these tests (14, 24, 33) were determined, as shown on Figures 32, 33 and 34, and then plotted together as shown on Figure 35. As shown, furnace performance remained essentially unchanged when furnace slagging effects are taken into account. It should be noted here that obtaining desired slag conditions proved to be difficult and somewhat unpredictable during overfire air operation. This situation was most pronounced in the firing zone where slag accumulations would normally shed themselves before appreciable accumulations could be built up. ### Waterwall Corrosion Coupon Evaluation Following completion of the steady state phases of the baseline, biased firing and overfire air test programs, thirty (30) day waterwall corrosion coupon evaluations were performed. The purpose of these evaluations was to determine whether any measurable changes in coupon weight losses could be obtained for the various firing modes studied. The corrosion probes used in the evaluations were previously shown on Figure 32: Average Centerline Absorption Profile, Test 14 Figure 33: Average Centerline Absorption Profile, Test 24 Figure 34: Average Centerline Absorption Profile, Test 33 Figure 35: Average Centerline Absorption Profile, All Tests Figure 4. The individual probes were exposed at five locations on the furnace front wall as shown on Figure 5. The coupon temperatures were maintained at the same levels for each 30 day run and a typical trace of the control temperature range for each of the twenty coupons is shown on Figure 6. The individual coupon weights were determined before and after each thirty day test and the individual coupon and average probe weight losses are shown on Sheets 14A, 14B, and 14C. The weight losses are calculated as mg/cm² of coupon surface area. Of the sixty coupons exposed, three were damaged during disassembly and were therefore not included in the weight loss determinations. The affected coupons were as follows: Coupon K-1, baseline study, and coupons 2-1 and 2-4 overfire air study. In addition, five coupons from probes T and N of the overfire air study resisted disassembly and were therefore weighed as single units and average weight losses were determined. Figures 36, 37 and 38 show the unit load schedules for each of the 30 day test periods. The biased firing study was conducted with the top fuel firing elevation out of service as this operating condition was shown during steady state biased firing tests to produce the lowest NO_X emission level of the biasing modes studied. The overfire air study was conducted using an "optimized" operating mode as determined during the overfire air steady state tests. Throughout each study the following damper positions were maintained over the load ranges indicated. At unit loadings below 204,000 kg/hr steam flow, with two elevations of mills in service, damper positions were maintained as follows: COMMOSTOR PROBLE EXPOSURE TIME - DATS Figure 36: Gross MW Loading Vs. Time - Baseline Corrosion Probe Study Figure 37: Gross MW Loading Vs. Time - Biased Firing Corrosion Probe Study Figure 38: Gross MW Loading Vs. Time - Overfire Air Corrosion Probe Study #### Biased Firing Operation Overfire Air Operation OFA Dampers Auxiliary Auxiliary Coa 1 Coa 1 100 Combustion 100 Air Only From 204,000 to 272,000 kg/hr steam flow, with three elevations of mills in service, the damper positions were as follows: | Biased Firing Operation | | Overfire Air Operation | | | | |-------------------------|---------------------------|------------------------|-----------------------|--|--| | | | OFA Dampers | 100
100 | | | | Coal | Auxiliary | Coal | Auxiliary | | | | 100
20
20 | Combustion Air Only 50 50 | 100
30
30 | 100
50
50
50 | | | | 20 | 50 | 0 | 50 | | | | | 50
 • | 0 | | | At unit loadings above 272,000 kg/hr to the maximum steam flow with the maximum elevations of mills in service, the following damper positions were maintained.* | Biased | Firing Operation | Overfire Air | Operation 0 | |--------|----------------------------|--------------|-------------| | | | OFA Dampers | 100
100 | | Coa1 | Auxiliary | Coal | Auxiliary | | 100 | 100 Combustion Air Only 50 | 100 | 100 | | 30 | | 30 | 50 | | | 50 | | 50 | | 30 | 50 | 30 | 50 | | | 50 | | 50 | | 30 | | 30 | | | | 50 | | 50 | The percent oxygen was monitored daily during each thirty day study at each probe location and was found to be essentially the same for the various test conditions ranging between 16 and 19 percent 0_2 . The weight losses calculated for the biased and overfire air portion of the test program were found to be greater than those for the baseline tests. The average weight losses for all five probes were as follows: ^{*} At no time during the biased firing study was the top elevation coal pulverizer placed in service. Maximum unit loading was therefore limited to the maximum with the lower three mills in service. | Baseline | Biased Firing | Overfire Air | |---------------------------|---------------------------|--------------------------| | 2.6381 mg/cm ² | 4.6429 mg/cm ² | 4.4419 mg/cm^2 | These values are within the range of losses which would be expected for oxidation of carbon steel for a 30 day period. To verify this premise control studies were conducted in C-E's Kreisinger Development Laboratory using probes exposed during the biased firing study. These probes were cleaned and prepared in an identical manner to those used for furnace exposure and placed in a muffle furnace for 30 and 60 day exposures at 750 F with a fresh air exchange. The test results were as follows: | Probe | Wt. Loss mg/cm ² - 30 Days | |------------|---------------------------------------| | M (30 day) | 4.7999 | | Q (30 day) | 4.7741 | | R (60 day) | 5.1571/2 = 2.5785 | | B (60 day) | 8.3493/2 = 4.1746 | These results indicate that the test coupons oxidized more rapidly during the first 30 days exposure with average weight losses decreasing in the second thirty days. Based on these results, it appears that the differences in weight losses observed during the test program are within the ranges to be expected from oxidation alone. Chemical analysis of deposits taken during the test program does not, in itself, show that molten phase attack has occurred. The composition of the deposits does show some differences, primarily in the iron content as noted on Figure 39. The deposit collected during the biased firing and overfire air tests show 50 and 35 percent iron, respectively, versus 30 percent in the baseline test. Higher iron is normally indicative of lower melting temperatures. However a certain quantity of CaO is necessary to flux the iron if it is to result in a low melting mixture. The CaO content is considerably less in the biased firing and overfire air tests as compared to that of the baseline test. According- | | Waterwall
Slag
Sample
Baseline
Test | Coal Ash
(As-Fired) | Waterwall
Slag
Sample
Biased
Firing
Test | Waterwall
Slag
Sample
Overfire
Air
Test | |--------------------------------|---|------------------------|---|--| | | | | | | | Ash Fusibility | | | | | | İT | 1930 | 2150 | 2060 | 1930 | | ST | 2090 | 2410 | 2170 | 2090 | | нт | 2200 | 2500 | +2700 | 2250 | | FT | 2500 | 2620 | +2700 | | | Ash Composition | | | | | | SiO ₂ | 46.2 | 45.8 | 38.4 | 38.5 | | A1203 | 18.4 | 30.7 | 10.3 | 18.1 | | Fe ₂ 0 ₃ | 29.9 | 13.9 | 50.0 | 35.4 | | Ca0 | 3.9 | 1.8 | 1.0 | 1.8 | | Mg0 | 8.0 | 1.3 | 0.3 | 0.9 | | Na ₂ 0 | 0.32 | 0.4 | 0.1 | 0.4 | | K ₂ Ō | 0.61 | 1.4 | 0.7 | 1.9 | | TiO ₂ | N.R. | 0.8 | N.R. | 1.0 | | P ₂ 0 ₅ | N.R. | 0.5 | N.R. | N.R. | | so ₃ | 0.34 | 1.2 | 0.8 | 0.4 | | | 100.4 | 97.8 | 101.5 | 98.4 | Figure 39. Ash Analysis ly the fusibility temperatures are higher for the biased firing test and slightly higher for the overfire air tests. This agrees with observations made during the tests, i.e., deposits during biased firing were more friable and easily removed than in the baseline tests with the overfire air tests falling closer to baseline operation. For comparison fusibilities and compositions have been given in Figure 39 for the coal ash as fired. This points out the selective deposition of certain constituents in the coal ash, like iron, and also shows that resultant fusibility temperatures of deposits can be significantly different than the coal ash as fired. ### Overfire Air Evaluation - Alternate Coal Types The evaluation of alternate coal types with respect to their effect on unit performance and NO $_{\rm X}$ emissions optimization was originally proposed as part of this study. However, due to coal supply problems encountered after the start of work, these evaluations proved to be not feasible and were therefore not performed. Tests of a similar nature evaluating Alabama and Midwestern coals were performed during 1973 by Esso Research and Engineering Co. under EPA Contract 68-02-0227 at the Alabama Power Co., Barry No. 4 unit. A discussion of those test results has therefore been included in this report. (2) ### Unit Description Barry No. 4 is a controlled circulation, radiant, reheat, single cell pressurized design firing coal through five elevations of tilting tangential fuel nozzles. Maximum continuous rating is 1,164,969 kg/hr superheat steam flow at $538^{\circ}\text{C}/176 \text{ kg/cm}^2$ and 1,024,566 kg/hr reheat steam flow at $538^{\circ}\text{C}/44 \text{ kg/cm}^2$. Control load rating is 582,485 kg/hr main steam flow. Alabama and Midwest coals plus petroleum coke were fuels being burned at the time of the test program. The petroleum coke was fired exclu- sively through the center fuel nozzle (Elevation C) and normally represented one-quarter to one-fifth of the heat input. ### Test Objectives The objectives of the Esso test program were as follows: - 1. A series of short (thirty minutes) tests for optimizing NO_{χ} reduction by varying the following: - A. Excess Air - B. Nozzle Tilt - C. Overfire Air - D. Primary/Auxiliary Air Damper Settings - E. Unit Load - F. Pulverizer Coal Fineness - G. Firing Alabama Coal, Alabama + Coke and Midwest + Coke - 2. A two or three day sustained operation at optimum NO_X reduction operating conditions for checking possible short term unit operating problems. - 3. A three hundred hour operating period at optimum NO_X reduction conditions for determining possible long term operating problems. ### Discussion #### Test Data Acquisition Esso Research measured all gas emission levels with instrumentation located in a specially designed mobile van. The van was located at ground level and had the following instrumentation: - NO Thermo Electric Chemiluminescence - NO₂ Beckman Ultraviolet, Thermo Electric Chemiluminescence ### 0, Beckman Paramagnetic Esso also employed a remote recorder readout of CO, NO_2 and O_2 in the control room for convenience in observing emission levels during testing. There were no conveniently located test inserts available for gas sampling at the gas duct entering the air heater. Esso, therefore, had to set up a twelve point sampling grid after the air heater. The flue gas sampling rate from each point was proportioned to a gas flow previously determined by velocity traverse. All gas sample lines were heated until the particulate filters, then all condensables are removed by a 32°F ice bath. The gas sample is then blended to one sample per probe location and pumped under 5 pounds pressure to the sample analytical van. C-E instrumented Corners #1 and 2 windbox compartments to determine the amount of overfire air and the air flow to each compartment. A static pressure tap was installed in each compartment and the pressure differential to the furnace measured. Petroleum coke, Alabama coal and Midwest coal are normally available at this plant. Normally the coals are fired as mixed in the coal pile. For the test series Alabama and Midwest coals were supplied directly to the bunker. The petroleum coke is burned in a separate Nozzle "C" with coal firing in surrounding Coal Nozzle B and D to insure stable ignition. Normal coal fineness as taken before the tests was 72 percent thru the 200 mesh screen. Coal fineness was changed to approximately 60 percent thru the 200 mesh screen on several tests to investigate the possible effect on NO_{x} emission levels. Esso Research obtained pulverizer coal and coke samples from the feeder belts of each mill on every test. Typical analysis for the coals and coke is presented on Sheet 17. #### Unit Performance Boiler operation as reported on Sheet 15 and 15A was based on board instrumentation. The NO_{χ} , CO, CO_{2} and SO_{2} PPM values represent data as averaged from Esso data sheets using the appropriate instrument calibration tables. ### Test Emission Data ### Overfire Air The greatest effect on NO_X emission levels was obtained by use of overfire air which decreases the amount of air to the firing zone. Figure 40 presents the NO_X emission levels versus percent excess air to the firing zone for all tests. Emission levels are reduced from 525 PPM to approximately 327 PPM in reducing theoretical air from 134 to approximately 95 percent at 0° tilt. ### Excess Air Unit operating excess air as determined at the air heater inlet had no significant effect on NO_X emission levels (corrected to 0 percent excess air when maintaining a constant theoretical air to the firing zone. Figure 41 shows that with this type of operation the unit operating excess air level could be varied from 6 percent to 26 percent with essentially constant
NO_X emission; unit excess air was important, however, in keeping CO emissions at low values (Figure 42). #### CO Emissions Figure 42 indicates that CO emissions are a function of percent excess air at the air heater inlet and also the amount of overfire operation. The test data indicates that at 15 percent excess air unit operation and no overfire air the CO emission was 33 PPM which increased to 93 PPM Figure 40: NO₂ Vs. Percent Theoretical Air to Firing Zone, All Tests at Unit Loads of 290 to 360 MN Figure 41: NO₂ Vs. Percent Excess Air at Air Heater Inlet All Tests at Horizontal Tilt, Unit Load 290 to 360 MW ### LEGEND | Symbol | Coa 1 | <u>Mills</u> | <u>Tilt</u> | <u>Operation</u> | |--------|----------|--------------|-------------|------------------| | Δ | Ala. | All 5 | 0 | Normal | | | Ala. + C | Lwr. 4 | 0 | OFA | | 只 | MW + C | Lwr. 4 | 0 | OFA | | | Ala. + C | All 5 | 0 | Normal | | Χ | MW + C | A1 1 5 | Ö | Norma 1 | Figure 42: CO Vs. Excess Air, Normal and Overfire Air Operation with overfire air (90 to 100 percent theoretical air to burner zone). In coal firing 15 percent excess air would seem to be the lowest practicable limit of operation. ### Nozzle Tilt Operating at -30° fuel nozzle tilt increased the NO $_{\rm X}$ emission approximately 87 PPM over that obtained at 0° tilt. The limited testing with plus tilts of +15° and +20° produced no effect on the measured NO $_{\rm X}$ emission levels. ### Effects of Other Operating Variables The variation of primary/secondary air dampers (Figure 43) unit load and the pulverized coal fineness had minor effects on NO_X emission levels. This substantiates previous test results and indicates that these operating variables should continue to be used to control normal boiler operation and should not be considered as NO_X controls with coal firing. ### Type of Coal During the test series the following combinations of fuel were fired: | | <u>Fuel</u> | No. of Tests | |----|---------------------|--------------| | 1. | Alabama Coal | 4 | | 2 | Alabama Coal + Coke | 15 | | 3. | Midwest Coal + Coke | 5 | Figure 40 plots all tests and identifies the firing combinations and indicates no change in emission levels with fuel change. ### **Unit Operation** Superheat-reheat outlet temperature of $538/538^{\circ}$ C could be maintained at 90 percent MCR horizontal tilt and 95 percent theoretical air to the burner zone which was the optimum NO $_{_{Y}}$ reduction conditions. The overfire Figure 43: Auxiliary/Primary Damper Positions Vs. NO₂ operation maintains the gas weight thru the unit which results in unchanged superheat-reheat performance. No adverse furnace slagging was noted during the short term tests with low theoretical air to the firing zone. The three hundred hour, long term test with approximately 95 percent theoretical air to the firing zone and 15 percent excess air at air heater inlet was also completed without excessive furnace slag buildup. #### 300 Hour Corrosion Probe Test Results Corrosion probes were installed in the furnace of the test boiler by inserting them through available viewpoints in the furnace firing zone as shown on Figure 44. Prior to installing the probes in the test furnace, the probes were prepared by mild acid pickling, preweighing the coupons, and screwing them onto the probes along with the necessary thermocouples. Each probe was then exposed to the furnace atmosphere prevailing for the particular type of operation desired for approximately 300 hours at coupon temperatures of about 468°C in order to accelerate corrosion. After exposure, furnace slag was cleaned off and saved for future analyses, and the coupons were carefully removed from the probes. In the laboratory the coupons were cleaned ultrasonically with fine glass beads to the base metal, and reweighed to determine the weight loss. Total weight loss data was converted to corrosion rates on a mils per year basis, using the combined inner and outer coupon rates, coupon material density, and exposure time. Corrosion rates have been determined for 8 coupons installed on 4 probes (2 coupons/probe), in four different locations on the furnace wall. The corrosion data obtained is tabulated on Sheet 16. Although there is some scatter in the data obtained, Esso concluded "that Figure 44: Waterwall Corrosion Probe Locations, Barry No. 4 no major differences in corrosion rates have been observed for coupons exposed to 'low ${\rm NO}_{\rm X}$ ' conditions compared to those subjected to normal operation." Esso further concluded that "since corrosion rates were deliberately accelerated in this study in order to develop 'measurable' corrosion rates in a short time period, measured rates, as expected, are much higher than the normal wastage of actual furnace wall tubes." ### Task IX - Application Guidelines The program outlining the application of the technology developed under this study to existing and new tangentially coal fired utility boilers will be presented in the Task IX report and is therefore not discussed as part of this report. # BASELINE STUDY NO_X TEST DATA SUMMARY | TEST NO. | | 1 | <u>2</u> | <u>3</u> | <u>4</u> | <u>5</u> | <u>6</u> | <u>7</u> | |--|--|--|--|---|--|--|--|--| | PURPOSE OF TEST | | | | XCESS AIR VA | R CLEAN | FURN. COND. | • | | | | | | 1/2 LOAD | | 3/4 LOAD | | FULL LOAD | | | DATE | | 11-30-73 | 11-30-73 | 11-30-73 | 1-18-74 | 11-14-73 | 11-28-73 | 11-28-73 | | LOAD
Main Steam Flow | MW3
10 ³ Kg/HR | 66
219 | 65
224 | 67
214 | 93
316 | 124
404 | 123
407 | 123
405 | | Excess AIR ECON. OUTLET | \$ | 35.5 | 17.5 | 58.9 | 12.6 | 22.7 | 11.7 | 30.8 | | THEO, AIR TO FUEL FIRING ZONE | % | 130.6
ABC | 117.1
ABC | 151.3
ABC | 109.2
ABC | 117.9 | 107.2
ALL | 125.3 | | FUEL ELEV. IN SERV.
FUEL NOZZLE TILT | DEG. | +3 | +7 | +3 | +8 | ALL
+3 | 0 | ALL
O | | Aux. | | 50 | 0 | 50 | 30 | 60 | 100 | 100 | | . ' "A" FUEL | | 30
20 | 30
0 | 30
50 | 60
20 | 20
100 | 30
100 | 30
100 | | ÖÖ "B" FUEL | | 30 | _30 | 30 | 20 | 20 | 30 | _ 30 | | AUX./AUX. | | 20/20
30 | 20/10
30 | 50/50
30 | 80/80
20 | 100/100
20 | 100/100 | 100/100 | | AUX./AUX. BLANK TO FUEL AUX. AUX. AUX. AUX. AUX. | | 50 | 10 | 50
50 | 50
50 | 100 | 30
100 | 30
100 | | () | | 0 | 0 | 0 | 0 | 20 | 30 | 30 | | AUX. SHO TEMPERATURE | *c | 0
529 | 0
498 | 0
548 | 0
500 | 100
539 | 100
539 | 100
538 | | RHO TEMPERATURE | °C | 488 | 446 | 517 | 499 | 514 | 524 | 524 | | UNIT EFFICIENCY | %
10 ³ Kg/HR | 88.3 | 88.2 | 87.6 | 89.3 | 89.0 | 89.1 | 89.5 | | GAS WEIGHT ENT. A.H.
NO | 10 KG/HR
PPM0% O_ | 352
631 | 360
489 | 412
718 | 386
429 | 554
494 | 578
357 | 592
664 | | NU _X | PPM -60% 02
GR/10 CAL | 1.337 | 1.030 | 1.519 | .900 | 1.041 | .761 | 1.403 | | 50 ²
50 ² | PPM -60% 02
GR/106CAL | 2298
6.770 | 2318
6.794 | 1644
4.841 | 1635
4.769 | 1641
4.815 | 1434
4.254 | 1455
4,278 | | CO ² | PPM - 0% 02
GR/10 CAL | 24.51 | 142.26 | 8.05 | 39.09 | 31.16 | 152.88 | 32.91 | | CO | GR/10 CAL | .0316 | .182 | .0104 | .0499 | .0400 | .198 | .0423 | | HC
O_ | PPM - 0% 0 | .144
5.59 | .160
3.20 | 0.0
7.89 | 0.0
2.40 | .509
3.96 | 0.0
2.26 | 0.0
5.02 | | O
O
Carbon Loss in Flyash | ≸ A.H. Out | 7.28 | 5.61 | 9.09 | 5.14 | 6.24 | 4.63 | 6.87 | | CARBON LOSS IN FLYASH
Dust Loading | %
GR/SCM | .29 | . 97 | 17 | . 96 | .48
4.19 | .57 | .20 | | DUST COMPING | GRY SCI | | | | | | | | | TEST No. | | | | | | | | | | | | <u>8</u> | <u>9</u> | <u>10</u> | <u>11</u> | <u>12</u> | <u>13</u> | 14 | | PURPOSE OF TEST | | | R. MOD. DIR | _ | | E.A. VAR. | DIRTY FURN. | _ | | | | | | _ | | _ | _ | _ | | PURPOSE OF TEST |
MA. | E.A. VA | R. MOD. DIR
FULL LOAD
11-19-73 | TY FURN. | 1/2
12-5-73 | E.A. VAR.
LOAD | DIRTY FURN.
FULL | LOAD
11-16-73 | | PURPOSE OF TEST | MW3
10 ³ Kg/HR | E.A. VA | R. MOD. DIR
FULL LOAD | TY FURN. | 1/2 | E.A. VAR.
LOAD | DIRTY FURN.
FULL | LOAD | | PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW Excess Air Econ. Outlet | ^{Mw} 3
10 ³ кс/нг
ಶ್ರ | E.A. VA
11-15-73
126
411
21 5 | R. MOD. DIR
FULL LOAD
11-19-73
122
403
13.0 | 11-19-73
124
405
26.0 | 1/2
12-5-73
66
211
32 7 | E.A. VAR.
LOAD
12-4-73
74
206
51.2 | DIRTY FURN.
FULL
11-16-73
125
412
20 7 | 11-16-73
125
406
24.3 | | PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE | ^{MW3} Kg/HR
រ០ ³ Kg/HR
និ | E.A. VA 11-15-73 126 411 21 5 116.9 | R. Mod. DIR
FULL LOAD
11-19-73
122
403
13.0
108.5 | 11-19-73
124
405
26.0
120.8 | 1/2
12-5-73
66
211
32 7
128.0 | E.A. VAR.
LOAD
12-4-73
74
206
51.2
144.1 | DIRTY FURN.
FULL
11-16-73
125
412
20 7
115.7 | 11-16-73
125
406
24.3
119.2 | | PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW Excess Air Econ. Outlet | % | E.A. VA
11-15-73
126
411
21 5
116.9
ALL
+8 | 11-19-73
122
403
13.0
108.5
ALL
-22 | 11-19-73
124
405
26.0
120.8
ALL
-22 | 1/2
12-5-73
66
211
32 7
128.0
ABC
0 | E.A. VAR.
LOAD 12-4-73 74 206 51.2 144.1 ABC 0 | DIRTY FURN.
FULL
11-16-73
125
412
20 7
115.7
ALL
-22 | 11-16-73
125
406
24.3
119.2
ALL
-22 | | PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. | r
r | E.A. VA
11-15-73
126
411
21 5
116.9
ALL
+8
60 | FULL LOAD 11-19-73 122 403 13.0 108.5 ALL -22 100 | 11-19-73
124
405
26.0
120.8
ALL
-22
100 | 1/2
12-5-73
66
211
32 7
128.0
ABC
0
20 | E.A. VAR.
LOAD
12-4-73
74
206
51.2
144.1
ABC
0
50 | DIRTY FURN.
FULL
11-16-73
125
412
20 7
115.7
ALL
-22
100 | 11-16-73
125
406
24.3
119.2
ALL
-22
100 | | PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. "A" FUEL | r
r | E.A. VA
11-15-73
126
411
21 5
116.9
ALL
+8 | 11-19-73
122
403
13.0
108.5
ALL
-22 | 11-19-73
124
405
26.0
120.8
ALL
-22 | 1/2
12-5-73
66
211
32 7
128.0
ABC
0 | E.A. VAR.
LOAD 12-4-73 74 206 51.2 144.1 ABC 0 | DIRTY FURN.
FULL
11-16-73
125
412
20 7
115.7
ALL
-22 | 11-16-73
125
406
24.3
119.2
ALL
-22 | | PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. O O | r
r | E.A. VA 11~15-73 126 411 21 5 116.9 ALL +8 60 30 100 30 | 11-19-73
122
403
13.0
108.5
ALL
-22
100
30
100
30 | 11-19-73
124
405
26.0
120.8
ALL
-22
100
30
100
30 | 1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20 30 | E.A. VAR.
LOAD 12-4-73 | DIRTY FURN.
FULL
11-16-73
125
412
20 7
115.7
ALL
-22
100
30
100
30 | 11-16-73
125
406
24.3
119.2
ALL
-22
100
30 | | PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. FUEL AUX. FUEL AUX. FUEL FUEL AUX. FUEL AUX. FUEL AUX. FUEL | r
r | E.A. VA 11-15-73 126 411 21 5 116.9 ALL +8 60 30 100 30 100/100 | 11-19-73
122
403
13.0
108.5
ALL
-22
100
30
100/100 | 11-19-73
124
405
26.0
120.8
ALL
-22
100
30
100
100/100 | 1/2 12-5-73 66 211 32 7 128.0 ABC 20 30 20 30 20/20 | E.A. VAR.
LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50 30 50/50 | DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 | 11-16-73
125
406
24.3
119.2
ALL
-22
100
30
100/100 | | PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. FUEL AUX. FUEL AUX. FUEL FUEL AUX. FUEL AUX. FUEL AUX. FUEL | r
r | E.A. VA 11-15-73 126 411 21 5 116.9 ALL +8 60 30 100 30 100/100 30 100/100 | 11-19-73
122
403
13.0
108.5
ALL
-22
100
30
100/100
30
100/100 | 11-19-73
124
405
26.0
120.8
ALL
-22
100
30
100
30 | 1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 | E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50 30 50/50 30 50/50 | DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100/100 30 100/100 | LOAD 11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 | | PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. AUX. AUX. AUX. AUX. AUX. AUX. | r
r | E.A. VA 11-15-73 126 411 21 5 116.9 ALL +8 60 30 100 30 100/100 30 100 30 | 11-19-73
122
403
13.0
108.5
ALL
-22
100
30
100/100
30
100/30 | 11-19-73
124
405
26.0
120.8
ALL
-22
100
30
100/100
30
100/100
30 | 1/2 12-5-73 66 211 32 7 128.0 0 20 30 20/20 30 20/20 0 | E.A. VAR. LOAD 12-4-73 | DIRTY FURN. FULL 11-16-73 | 11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/30 30 30 | | PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEY. IN SERV. FUEL NOZZLE TILT AUX. AUX. AUX. FUEL AUX. AUX. AUX. FUEL AUX. AUX. AUX. AUX. FUEL AUX. | នឹង
Deg. | E.A. VA 11-15-73 126 411 21 5 116.9 ALL +8 60 30 100 30 100/100 30 100 30 100 | 11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100 30 100 30 100 | 11-19-73
124
405
26.0
120.8
ALL
-22
100
30
100/100
30
100/100
30
100/100 | 1/2 12-5-73 66 211 32 7 128.0 ABC 20 30 20 30 20/20 30 20/20 0 0 | E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50 30 50/50 30 50 0 0 | DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100/100 30 100 30 | 11-16-73
125
406
24.3
119.2
ALL
-22
100
30
100
30
100/100
30
100/100
30 | | PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE | DEG. C C C | E.A. VA 11-15-73 | 11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100 30 100 533 510 | 11-19-73
124
405
26.0
120.8
ALL
-22
100
30
100
100
30
100/100
30
100
30
100
544
531 | 1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 0 518 476 | E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50/50 30 50/50 0 0 548 508 | DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100 30 100 539 539 522 | LOAD 11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 30 100 543 529 | | PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. AUX. FUEL AUX. AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY | DEG. | E.A. VA 11-15-73 | 11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100/30 100 533 510 89.6 | 11-19-73
124
405
26.0
120.8
ALL
-22
100
30
100/100
30
100/100
30
100
544
531
89.6 | 1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20 30 20/20 30 20/20 518 476 88.3 | E.A. VAR. LOAD 12-4-73 | DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100 539 522 89.2 | 11-16-73
125
406
24.3
119.2
ALL
-22
100
30
100/100
30
100/100
30
100/543
529
89.3 | | DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO | DEG. *C *C *C *C *IO ³ KG/HR | E.A. VA 11-15-73 | 11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100 30 100 533 510 | 11-19-73
124
405
26.0
120.8
ALL
-22
100
30
100
100
30
100/100
30
100
30
100
544
531 | 1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 0 518 476 | E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50/50 30 50/50 0 0 548 508 | DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100 30 100 539 539 522 | 11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 30 100 543 529 89.3 567 586 | | DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO | *C *C *C *C *C *C *G *10 ³ Kg/HR PPM -6 ^{0%} O ₂ GR/10 ⁶ CAL | E.A. VA 11-15-73 | R. Mob. DIR FULL LOAD 11-19-73 122 403 13.0 108.5 ALL -22 100 30 100 30 100 30 100 30 100 533 510 89.6 500 361 .748 | 11-19-73 124 405 26.0 120.8 ALL -22 100 30 100 30 100/100 30 100 30 100 544 531 89.6 565 581 1.198 | 1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 0 518 476 88.3 323 536 1.118 | E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 0 50 30 50 0 50/50 0 0 548 508 87.9 369 658 1.370 | DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30
100 30 30 100 30 30 100 30 30 100 30 30 100 30 30 30 30 30 30 30 30 30 30 30 30 3 | 11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 30 100 543 529 89.3 567 586 1.225 | | DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO | PPM - 50% O ₂ GR/10 CAL | E.A. VA 11-15-73 | 11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100/30 100 533 510 89.6 502 361 .748 2052 | 11-19-73 124 405 26.0 120.8 ALL -22 100 30 100/100 30 100/544 531 89.6 565 581 1.198 2179 | 1/2 12-5-73 66 211 32 7 128.0 0 20 30 20/20 30 20/20 0 518 476 88.3 723 536 1.118 2348 | E.A. VAR. LOAD 12-4-73 | DIRTY FURN. FULL 11-16-73 | 11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 543 529 89.3 567 586 1.225 | | DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO | PPM - 50% O ₂ GR/10 CAL | E.A. VA 11-15-73 | 11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100/100 30 100 533 510 89.6 502 361 .748 2052 5,922 431.8 | 11-19-73 124 405 26.0 120.8 ALL -22 100 30 100 30 100 30 100 544 531 89.6 565 581 1.198 2179 6.251 5.48 | 1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 0 518 476 88.3 723 536 1.118 2348 6.821 297.59 | E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50 30 50/50 0 0 548 508 87.9 369 658 1.370 2164 6.267 220.56 | DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100 539 522 89.2 556 499 1.037 1917 5.538 40.85 | 11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 30 100 543 529 89.3 567 586 1.225 1370 3.985 33.61 | | DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO | *C *C *C *S *103Kg/HR PPM -60% 02 GR/10 CAL | E.A. VA 11-15-73 | R. Mob. DIR FULL Load 11-19-73 122 403 13.0 108.5 ALL -22 100 30 100 30 100 100 30 100 533 510 89.6 500 361 .748 2052 5.922 431.8 | 11-19-73 124 405 26.0 120.8 ALL -22 100 30 100 30 100/100 30 100 30 100 544 531 89.6 565 581 1.198 2179 6.251 5.48 | 1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 0 518 476 88.3 32.3 536 1.118 2348 6.821 297.59 | E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50/50 30 50/50 0 548 508 87.9 369 658 1.370 2164 6.267 220.56 .280 | DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 30 100 30 30 100 30 30 30 30 30 30 30 30 30 30 30 30 3 | 11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 30 100 543 529 89.3 567 586 1.225 1370 3.985 33.61 | | DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. "A" FUEL AUX. AUX. AUX. AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO NO2 SO2 CO2 CO | PM - 60% 0 2
PPM 2 | E.A. VA 11-15-73 | 11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100/100 30 100 533 510 89.6 502 361 .748 2052 5,922 431.8 | 11-19-73 124 405 26.0 120.8 ALL -22 100 30 100 30 100 30 100 544 531 89.6 565 581 1.198 2179 6.251 5.48 | 1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 0 518 476 88.3 723 536 1.118 2348 6.821 297.59 | E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50 30 50/50 0 0 548 508 87.9 369 658 1.370 2164 6.267 220.56 | DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100 539 522 89.2 556 499 1.037 1917 5.538 40.85 | 11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 30 100 543 529 89.3 567 586 1.225 1370 3.985 33.61 | | DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO | *C *C *C *S *103Kg/HR PPM -60% 02 GR/10 CAL | E.A. VA 11-15-73 | 11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100/30 100 533 510 89.6 502 361 .748 2052 5,922 431.8 .545 .128 | 11-19-73 124 405 26.0 120.8 ALL -22 100 30 100/100 30 100/544 531 89.6 565 581 1.198 2179 6.251 5.48 .0069 | 1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 518 476 88.3 323 536 1.118 2348 6.821 297.59 .378 | E.A. VAR. LOAD 12-4-73 | DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100/100 30 100/100 30 100 539 502 89.2 556 499 1.037 1917 5.538 40.85 .052 .5513 | 11-16-73 125 406 24.3 119.2 ALL 100 30 100/100 30 100/100 30 100 543 529 89.3 567 586 1.225 1370 3.985 33.61 .043 | <u> 19</u> 18 Test No. ### BIASED FIRING STUDY ### NO_x TEST DATA SUMMARY 16 <u>15</u> | 1430 1101 | | | | | | | | |---|--|--|--|--
---|--|------| | | Bı | ased Firing - | 1 Fuel Elev | . Out of | Service - Ai | r Dampers | Open | | Purpose of Test | | 1/2 Load | 3/4 Load | | Max Load | | • | | · | | • | | • | | | | | Date | | 1-19-74 | 1-18-74 | 12-3-73 | 12-4-73 | 12-5-73 | | | Load | MW ₃
10 ³ Kg/HR | _66 | 96 | 100 | 103 | 99 | | | Main Steam Flow | 10°Kg/HR | _199 | 297 | 315 | 321 | 321 | | | Excess Air Econ. Outlet | % | 50.1 | 26.7 | 21.1 | 22.2 | 21.8 | | | Theo. Air to Fuel Firing Zone | x | 105.8 | 121.7 | 116.5 | 117.5 | 117.2 | | | Fuel Elev. In Serv. | 0 | ABC | ABC | ABC | ABD | ACD | | | Fuel Nozzle Tilt | Deg. | -9
50 | 0
50 | -15
50 | -15
50 | -10
50 | | | Aux. Aux | | 50
20 | 20 | 30
30 | 30 | 30 | | | | | 50
50 | 50
50 | 50
50 | 50 | 100 | | | Aux. | | 20 | 20 | 30 | 30 | 100 | | | Aux./Aux. | | 50/50 | 50/50 | 50/50 | 50/100 | 50/50 | | | AUX. /AUX.
BLAND AUX.
Puel Fuel | | 20 | 20 | 30 | 100 | 30 | | | Z St S | | 50 | 50 | 50 | 50 | 50 | | | දිරිල [DT] Fuel | | 100 | 100 | 100 | 30 | 30 | | | Aux. | | 100 | 100 | 100 | 50 | 50 | | | SHO Temperature | °C | 546 | 539 | 529 | 543 | 523 | | | RHO Temperature | °C | 496 | 506 | 501 | 520 | 486 | | | Unit Efficiency | 10 ³ Kg/HR | 87.9 | 89.3 | 89.1 | 89.3 | 88.9 | | | Gas Weight Ent. A.H. | 10°Kg/HR | 341 | 430 | 439 | 455 | 428 | | | NO | PPM - % 02
GR/10 CAL | 594 | 543 | 397 | 373 | 387 | | | NO X
NO 2
SO 2 | GR/ IU CAL | 1.206 | 1.142 | .840 | .792 | .795 | | | \$02
\$03 | PPM -6% 02
GR/10 CAL | 1721 | 1682
4.922 | 2422
7.137 | 2553
7.536 | 2292
6.543 | | | 30 ₂ | DDM # 0 | 4.861 | 29.10 | 45.63 | 7.536
38.51 | 35.48 | | | co ²
co | PPM -6% 02
GR/106CAL | 33.38
.0412 | .0372 | .0588 | .0497 | .0443 | | | HC | PPM - % O ₂ | 0.0 | 0.0 | 0.0 | .012 | .0143 | | | | % A.H. In | 7.10 | 4.55 | 3.72 | 3.885 | 3.825 | | | 0 ₂
0 ₂ | % A.H. Out | | 7.19 | 6.08 | 5.80 | 6.30 | | | Carbon Loss in Flyash | % A.II. Out | .32 | .34 | .46 | .37 | .42 | | | Carbon Loss III riyasii | | . 32 | .54 | .40 | .57 | • • • • | | | | | | | | | | | | Test No | | 20 | 21 | 22 | 23 | 24 | | | Test No. | | 20 | <u>21</u> | 22 | 23 | <u>24</u> | | | Test No. | Bi | _ | | | | _ | Open | | Test No. Purpose of Test | Bi | <u>20</u>
ased Firing -
Max Load | | . Out of | Service - Ai | r Dampers | Open | | | Bi | ased Firing - | Tuel Elev
3/4 Load | . Out of | | r Dampers | Open | | Purpose of Test Date | | ased Firing -
Max Load
12-6-73 | Truel Elev
3/4 Load | . Out of | Service - Ai
 | r Dampers | Open | | Purpose of Test Date Load | | ased Firing -
Max Load
12-6-73
102 | 1 Fuel Elev
3/4 Load
1-18-74
94 | . Out of | Service - Ai
 | r Dampers | 0pen | | Purpose of Test Date Load Main Steam Flow | MW ₃
10 ³ Kg/HR | ased Firing -
Max Load
12-6-73
102
314 | 1 Fuel Elev
3/4 Load
1-18-74
94
308 | . Out of | Service - Ai
1/2 Load -
1-19-74
64
211 | r Dampers
1-19-74
66
202 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet | MW3
10 ³ Kg/HR | ased Firing -
Max Load
12-6-73
102
314
24.2 | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0 | . Out of
K
1-19-74
64
208
48.0 | Service - Ai
 | r Dampers 1-19-74 66 202 47.0 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone | MW ₃
10 ³ Kg/HR | ased Firing -
Max Load
12-6-73
102
314
24.2
94.7 | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3 | 1-19-74
64
208
48.0
112.5 | Service - Ai
1/2 Load -
1-19-74
64
211
47.0
141.4 | r Dampers 1-19-74 66 202 47.0 141.3 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. | MW3
10 ³ Kg/HR
% | ased Firing -
Max Load
12-6-73
102
314
24.2
94.7
BCD | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3
BCD | 0ut of
1-19-74
64
208
48.0
112.5
BCD | Service - Ai
1/2 Load -
1-19-74
64
211
47.0
141.4
ACD | 1-19-74
66
202
47.0
141.3
ABD | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt | MW3
10 ³ Kg/HR | ased Firing -
Max Load
12-6-73
102
314
24.2
94.7
BCD
-5 | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3
BCD
+10 | 1-19-74
64
208
48.0
112.5
BCD | Service - Ai
1/2 Load
1-19-74
64
211
47.0
141.4
ACD
0 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Til | MW3
10 ³ Kg/HR
% | ased Firing -
Max Load
12-6-73
102
314
24.2
94.7
BCD
-5
100 | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3
BCD
+10
100 | 1-19-74
64
208
48.0
112.5
BCD
0 | Service - Ai
1/2 Load -
1-19-74
64
211
47.0
141.4
ACD
0
50 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. | MW3
10 ³ Kg/HR
% | | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3
BCD
+10
100 | 1-19-74
64
208
48.0
112.5
BCD
100 | Service - Ai
1/2 Load -
1-19-74
64
211
47.0
141.4
ACD
0
50
20 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. | MW3
10 ³ Kg/HR
% | | 1 Fuel Elev
3/4
Load
1-18-74
94
308
29.0
97.3
BCD
+10
100
100
50 | 1-19-74
64
208
48.0
112.5
BCD
0
100
100 | Service - Ai
1/2 Load -
1-19-74
64
211
47.0
141.4
ACD
0
50
20
100 | 1-19-74
66
202
47.0
141.3
ABD
-15
50
20 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Guerral Fuel Aux. Fuel Fuel Fuel | MW3
10 ³ Kg/HR
% | ased Firing -
Max Load
12-6-73
102
314
24.2
94.7
8CD
-5
100
50
30 | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3
BCD
+10
100
50
20 | 1-19-74
64
208
48.0
0
112.5
BCD
0
100
100
50
20 | Service - Ai
1/2 Load
1-19-74
64
211
47.0
141.4
ACD
0
50
20
100
100 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50 20 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Guerral Fuel Aux. Fuel Fuel Fuel | MW3
10 ³ Kg/HR
% | | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3
BCD
+10
100
100
50 | 1-19-74
64
208
48.0
112.5
BCD
0
100
100 | Service - Ai
1/2 Load -
1-19-74
64
211
47.0
141.4
ACD
0
50
20
100 | 1-19-74
66
202
47.0
141.3
ABD
-15
50
20 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel | MW3
10 ³ Kg/HR
% | | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3
BCD
+10
100
50
20
50/50 | 1-19-74
64
208
48.0
112.5
BCD
0
100
100
50/50 | Service - Ai
1/2 Load -
1-19-74
64
211
47.0
141.4
ACD
50
20
100
100
50/50 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel | MW3
10 ³ Kg/HR
% | | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3
BCD
+10
100
50
20
50/50
20 | . Out of 64 208 48.0 112.5 BCD 100 100 50 50/50/20 20 | Service - Ai
1/2 Load -
1-19-74
64
211
47.0
141.4
ACD
0
50
20
100
100
50/50
20 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 50/100 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel | MW 10 ³ Kg/HR 2
%
Deg. | | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3
BCD
+10
100
100
50
20
50/50
20 | . Out of 1-19-74 208 48.0 112.5 BCD 0 100 50 50 50 50 50 | Service - Ai
1/2 Load -
1-19-74
64
211
47.0
141.4
ACD
50
20
100
100
50/50
20
50/50
20
50/50 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Aux. Fuel Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel | MW3
10 ³ Kg/HR
%
Deg. | | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3
8CD
+10
100
50
20
50/50
20
50/50
20
50
50 | . Out of 64 208 48.0 112.5 BCD 0 100 50/50 20 50/50 501 | Service - Ai
1/2 Load -
1-19-74
64
211
47.0
141.4
ACD
0
50
20
100
100
50/50
20
50/50
20
50/50
20
50/50 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 50 50 50 50 50 50 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Aux. SHO Temperature RHO Temperature | MW3
10 ³ Kg/HR
%
Deg. | Max Load 12-6-73 102 314 24.2 94.7 BCD -5 100 100 50 30 50/50 30 50/50 30 50/50 30 50/50 | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3
BCD
+10
100
50
20
50/50
20
50/50
20
50
50
50
50 | 1-19-74
64
2088
48.0
112.5
BCD
0
100
50
50
50
20
50
50
50
50
50
448 | Service - Ai 1/2 Load 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20 20 50 50 50 50 50 50 454 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 100 50 20 50/100 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Aux. Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./ShO Temperature Unit Efficiency | MW3
10 ³ Kg/HR
%
Deg. | | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3
BCD
+10
100
100
50
20
50/50
20
50
50
50
50
50
89.6 | . Out of 64 208 48.0 112.5 BCD 0 1000 50 50 50 50 50 448 87.8 | Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20 50 50 50 50 454 87.9 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 544 513 87.7 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Till Aux. Fuel Aux SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H. | MW 103 kg/HR % Deg. *C *C *C *C *I03 kg/HR | ased Firing - Max Load 12-6-73 102 314 24.2 94.7 BCD -5 100 100 50 30 50/50 30 50 50 544 515 88.8 | 1 Fuel Elev
3/4 Load
1-18-74
94
308
29.0
97.3
BCD
+10
100
50
20
50/50
20
50
50
50
50
50
469
89.6
435 | . Out of 1-19-74 208 48.0 112.5 BCD 0 100 500 500 500 501 448 87.8 360 | Service - Ai 1/2 Load 1-19-74 47.0 141.4 ACD 50 20 100 100 50/50 20 50 50 50 44 87.9 361 | T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 5044 513 87.7 356 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Till Aux. Fuel Aux SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H. | MW 103 kg/HR % Deg. *C *C *C *C *I03 kg/HR | | 1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 8CD +10 100 50 20 50/50 20 50/50 20 50 512 469 89.6 435 331 | . Out of 64 208 48.0 112.5 BCD 0 100 50/50 20 50/50 501 448 87.8 3600 520 | Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20 50 50 50 454 87.9 361 485 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/44 513 87.7 356 609 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Till Aux. Fuel Aux SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H. | *C *C *C *C *GR/10 ³ Kg/HR *Deg. | | 1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 50/50 20 50 512 469 89.6 435 331 .696 | . Out of 64 2088 48.0 112.5 BCD 0 1000 500 50/50 20 50/50 501 448 87.8 3600 1.124 | Service - Ai
1/2 Load -
1-19-74
64
211
47.0
141.4
ACD
0
50
50
20
100
100
50/50
20
50
50
20
50
50
20
45.4
87.9
361
485
1.043 | T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 100 100 100 100 100 100 100 10 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Till Aux. Fuel Aux SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H. | *C *C *C *C *GR/10 ³ Kg/HR *Deg. | | 1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 50/50 20 50/50 20 512 469 89.6 435 331 .696 1566 | 1-19-74 2008 48.0 112.5 BCD 0 100 50 20 50/50 20 50 448 87.8 360 1.124 1861 | Service - Ai 1/2 Load 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20 50 50 50 454 87.9 361 485 1.043 2245 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 100 50 20 51282 87.7 356 609 1.282 1807 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Till Aux. Fuel Aux SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H. | *C * | Max Load 12-6-73 102 314 24.2 94.7 8CD 100 100 50 30 50/50 30 50 50/50 88.8 451 285 .599 2277 6.661 | 1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 100 50 20 50/50 20 50 50 512 469 89.6 435 331 .696 1566 4.578 | . Out of 1-19-74 208 48.0 112.5 BCD 0 100 500 500 500 501 448 87.8 360 520 1.124 1861 5.593 | Service - Ai 1/2 Load 1-19-74 47.0 141.4 ACD 100 100 50/50 20 50/50 20 50/50 487.9 361 485 1.043 2245 6.710 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/44 513 87.7 356 609 1.282 1807 5.288 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tit Aux. Fuel SHO Temperature RHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H. NO NO NO SO2 SO2 SO2 CO2 | *C * | | T Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 50/50 20 50/50 20 50 512 469 89.6 435 331 .696 1566 4.578 31.28 | . Out of 64 208 48.0 112.5 BCD 0 100 50/50 20 50/50 501 448 87.8 3600 520 1.124 1861 5.593 29.10 | Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20 50 50 20 50 454 87.9 361 485 1.043 2245 6.710 22.41 | T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 100 50 20 100
50 20 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 50 20 50/100 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H. NO. NO. SO. SO. SO. SO. SO. CO. CO. | *C °C *C | ased Firing - Max Load 12-6-73 102 314 24.2 94.7 BCD -5 100 100 50 30 50/50 30 50/50 30 50 50 50 50 50 50 50 6661 26.61 | Truel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 50/50 20 50 469 89.6 435 331 .696 1566 4.578 31.28 .0400 | . Out of 64 208 48.0 112.5 BCD 0 100 50 20 50/50 448 87.8 360 50/50 1.124 1861 5.593 29.10 .0382 | Service - Ai 1/2 Load - | T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 100 50 20 100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 30/ | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel SHO Temperature RHO Temperature RHO Temperature RHO Temperature Gas Weight Ent. A.H. NO. NO. SO. SO. SO. CO. CO. CO. | **C | ased Firing - Max Load 12-6-73 102 314 24.2 94.7 8CD -5 100 100 50 30 50/50 30 50 504 515 88.8 451 285 .599 2277 6.661 26.61 .0341 0.0 | Truel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 | . Out of 1-19-74 48.0 112.5 BCD 100 100 50/50 20 50/50 20 50/50 448 87.8 360 520 1.124 1861 5.593 29.10 | Service - Ai 1/2 Load 1-19-74 64 211 47.0 141.4 ACD 0 100 100 50/50 20 50/50 20 50 50 20 20 50 20 50 20 50 20 20 50 20 20 20 50 20 20 20 20 20 20 20 20 20 20 20 20 20 | T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 100 50 20 100 50 20 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 50 20 50/100
50/100 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel SHO Temperature RHO Temperature RHO Temperature RHO Temperature Gas Weight Ent. A.H. NO. NO. SO. SO. SO. CO. CO. CO. | **Deg.** **C | ased Firing - Max Load 12-6-73 102 314 24.2 94.7 BCD -5 100 100 50 30 50/50 30 50 50/50 30 50 50 544 515 88.8 451 285 .599 2277 6.661 26.61 .0341 0.0 | 1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 100 50 20 50/50 20 50/50 20 50 512 469 89.6 435 331 .696 1566 4.578 31.28 .0400 0.0 4.76 | . Out of 1-19-74 208 48.0 112.5 BCD 100 100 50 50 50 50 448 87.8 360 520 1.1261 5.593 29.10 .0382 0.06.93 | Service - Ai 1/2 Load 1-19-74 47.0 141.4 ACD 100 100 50/50 20 50/50 20 50/50 487.9 361 485 1.043 2245 6.710 22.41 .0293 0.0 6.85 | T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 50 544 513 87.7 356 609 1.282 1807 5.288 27.54 0.353 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tut. | **C | ased Firing - Max Load 12-6-73 102 314 24.2 94.7 8CD -5 100 100 50 30 50/50 30 50/50 30 50 544 515 88.8 451 285 .599 2277 6.661 26.61 .0341 0.00 4.165 7.31 | T Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 50/50 20 50 512 469 89.6 435 331 .696 1566 4.578 31.28 .0400 0.0 4.76 8.37 | . Out of 208 48.0 208 48.0 112.5 BCD 0 100 50/50 50 50 501 448 87.8 3660 520 1.124 1861 5.593 29.10 .0382 0.06.93 8.40 | Service - Ai 1/2 Load 1/2 Load 1-19-74 44 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20 50 50 20 50 454 87.9 361 485 1.043 2245 6.710 22.41 .0293 0.00 6.85 | T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/107 356 609 1.282 1807 5.288 27.54 .0353 0.0 6.79 6.87 | Open | | Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel SHO Temperature RHO Temperature RHO Temperature RHO Temperature Gas Weight Ent. A.H. NO. NO. SO. SO. SO. CO. CO. CO. | **Deg.** **C | ased Firing - Max Load 12-6-73 102 314 24.2 94.7 BCD -5 100 100 50 30 50/50 30 50 50/50 30 50 50 544 515 88.8 451 285 .599 2277 6.661 26.61 .0341 0.0 | 1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 100 50 20 50/50 20 50/50 20 50 512 469 89.6 435 331 .696 1566 4.578 31.28 .0400 0.0 4.76 | . Out of 1-19-74 208 48.0 112.5 BCD 100 100 50 50 50 50 448 87.8 360 520 1.1261 5.593 29.10 .0382 0.06.93 | Service - Ai 1/2 Load 1-19-74 47.0 141.4 ACD 100 100 50/50 20 50/50 20 50/50 487.9 361 485 1.043 2245 6.710 22.41 .0293 0.0 6.85 | T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 50 20 50/100 60 | Open | # NO_X TEST DATA SUMMARY BASELINE STUDY AFTER MODIFICATION | TEST NO | 1 | <u>2</u> | <u>3</u> | <u>4</u> | <u>5</u> | <u>6</u> | <u>7</u> | |---|--|---|---|---|---|---|---| | Purpose of Test | | | Excess Air 1 | Var Clean F | urnace Cond. | | | | | | 1/2 Load | | — 3/4 Load — | ** | - Maximum Load - | → | | Date
Load MW
Main Steam Flow 10 ³ KG/HR
Excess Air Econ Outlet %
Theo. Air to Fuel Firing Zone % | 6/25/74
62
219
33.5
127 1 | 6/25/74
62
213
16 0
113.4 | 6/25/74
64
217
64 7
155.4 | 6/27/74
92
315
15 5
111.0 | 6/19/74
131
450
21.0
115.3 | 6/27/74
127
441
12.4
107 1 | 6/27/74
125
423
25.4
119.5 | | Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. OFA OFA Aux OFA Fuel | ABC
0
3
0
0
20
30 | ABC
0
6
0
0
0
30 | ABC
0
-14
0
0
50
30 | ABC
0
2
0
0
30
20 | ALL
0
-13
0
0
80
30 | ALL
0
-3
0
0
100
30 | ALL
0
-22
0
0
100
35 | | Aux | 20
30
20/20
30
20
0 | 0
30
10/10
30
10
0 | 50
30
30
50/50
30
50
0 | 60
20
80/80
20
50
0 | 100
30
100/100
30
100
30 | 100
30
100/100
30
100
30 | 100
35
100/100
35
100
35 | | Aux. SHO Temperature °C RHO Temperature °C Unit Efficiency % Gas Weight Ent. A.H NO _x PPM - 0% 02 NO2 GR/106CAL | 0
492
435
88.4
335
444
.929 | 0
468
402
88.8
270
335
.701 | 0
536
499
87.4
413
640
1 339 | 0
504
466
89.8
398
327
.684 | 100
528
488
88.4
593
404
.846 | 100
524
487
89.2
546
330
.692 | 100
518
480
89.5
559
477
1.000 | | SO2 PPM - 0% O2
SO2 GR/10 ⁶ CAL
CO PPM - 0% O2
CO GR/10 ⁶ CAL
HC PPM - 0% O2
O2 % A.H. In | 3678
10.718
27.54
.0351
0
5.36 | 3621
10.551
375 77
4790
0
2.95 | 2611
7 606
34.66
.0442
0
8.36 | 2634
7.674
109.70
1398
0
2.87 | 2251
6.559
26.37
0336
0 | 2677
7.800
127 2
.1622
0
2 36 | 2707
7.889
21.74
.0277
0 | | 02 % A.H Out
Carbon Loss In Flyash % | 7.35
.29 | 5.52
.23 | 9.70
1 06 | 5 5
.11 | 7.36
.75 | 5 75
.51 | 7.02
.74 | | | | | | | | | | | TEST NO. | <u>8</u> | <u>9</u> | <u>10</u> | <u>11</u> | 12 | <u>13</u> | 14 | | TEST NO. Purpose of Test | _ | <u>9</u>
Mod. Dirt | _ | _ | | <u>13</u>
Dirty Furnace | 14 | | | E.A. Var | _ | y Furnace | _ | E A Var | _ | _ | | Purpose of Test Date Load Main Steam Flow Excess Air Econ Outlet Theo Air to fuel Firing Zone % Fuel Elev. In Serv OFA Nozzle Tilt DEG OFA OFA OFA OFA | 6/20/74
130
440
17.8
112.3
ALL
0
-21
0 | Mod. Dirt Maximum Load 6/20/74 129 446 12 1 106 9 ALL 0 -17 0 | 9 Furnace 6/28/74 125 428 26.6 120 5 ALL 0 -6 0 | 1/2
6/26/74
65
246
30.9
124.6
ABC
0
-16 | E A Var
Load
6/26/74
68
218
63.1
154 0
ABC
0
-16 | Dirty Furnace Maximum 6/28/74 126 432 22.0 116 2 ALL 0 -6 0 | 6/28/74
125
425
25.9
119 9
ALL
0
-6 | | Purpose of Test Date Load Main Steam Flow 103KG/HR Excess Air Econ Outlet % Theo Air to Fuel Firing Zone % Fuel Elev. In Serv OFA Nozzle Tilt DEG Fuel Nozzle Tilt DEG OFA | 6/20/74 130 440 17.8 112.3 ALL 0 -21 0 80 30 100/100 30 100/30 | Mod. Dirt Maximum Load 6/20/74 129 446 12 1 106 9 ALL 0 -17 0 0 80 30 100 100/100 30 100 30 | 6/28/74
125
428
26.6
120.5
ALL
0
-6
0
100
30
100
30
100/100
30
100/100
30 | 1/2
6/26/74
65
246
30.9
124.6
ABC
0
-16 | E A Var Load 6/26/74 68 218 63.1 154 0 ABC 0 -16 0 50 30 50/50 30 50/50 | Dirty Furnace Maximum 6/28/74 126 432 22.0 116 2 ALL 0 -6 0 100 30 100 30 100/100 30 100/30 | 6/28/74
125
425
25.9
119 9
ALL
0
0
100
30
100
30
100/100
30
100/30 | | Date Load Main Steam Flow Excess Air Econ Outlet Theo Air to Fuel Firing Zone Fuel Elev. In Serv OFA Nozzle Tilt OFA OFA Aux. Fuel Aux. Fuel Aux /Aux. Fuel
Fuel Aux /Aux. Fuel Fuel Fuel Fuel Aux /Aux. Fuel Fuel Fuel Aux /Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel | 6/20/74 130 440 17.8 112.3 ALL 0 -21 0 80 30 100 30 100/100 30 100/100 | Mod. Dirt Maximum Load 6/20/74 129 446 12 1 106 9 ALL 0 -17 0 80 30 100/100 30 100/100 30 | 6/28/74 125 428 26.6 120 5 ALL 0 -6 0 100 30 100/100 30 100/100 | 1/2 6/26/74 65 246 30.9 124.6 ABC 0 20 30 20 30 20/20 30 20/20 | E A Var Load 6/26/74 68 218 63.1 154 0 ABC 0 -16 0 50 30 50/50 30 50/50 | Dirty Furnace Maximum 6/28/74 126 432 22.0 116 2 ALL 0 -6 0 100 30 100/100 30 100/100 | 6/28/74
125
425
25.9
119 9
ALL
0
-6
0
100
30
100
100
30
100/100
30 | 84 SHEET 3 # NOX TEST DATA SUMMARY OVERFIRE AIR LOCATION, RATE & VELOCITY VARIATION | TEST NO. | <u>15</u> | <u>16</u> | <u>17</u> | 18A | 19 | |---|--|--|---|--|---------------| | Purpose of Test | | OFA Damp | er Position V | ariation | | | | K | • | — 3/4 Load — | | ~ | | Date | 7/10/74 | 7/10/74 | 7/10/74 | 7/12/74 | 7/11/74 | | Load MW | 97 | 98 | 100 | 100 | 100 | | Main Steam Flow 10 ³ KG/HR
Excess Air Econ. Outlet % | 336
28.5 | 340
27.1 | 338
25.6 | 344
26.6 | 338
24.8 | | Theo. Air to Fuel firing Zone % | 114.5 | 96.7 | 95.8 | 84.8 | 89.3 | | Fuel Elev. In Serv. | BCD | BCD | BCD | BCD | BCD | | OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. | 0
-5 | 0
-5 | 0
-5 | 0
-4 | 0
-4 | | OFA | Ō | 100 | Ö | 100 | 50 | | . DOFA | 0 | 0 | 100
0 | 100
0 | 50
0 | | Aux. | ŏ | ŏ | ŏ | ŏ | ŏ | | SE Aux. | 50 | 50 | 50 | 50 | 50 | | Aux./Aux. | 30
50/50 | 30
50/50 | 30
50/50 | 30
50/50 | 30
50/50 | | Aux./Aux. | 30/30 | 30, 30 | 30, 30 | 30 | 30 | | | 50 | 50 | 50 | 50 | 50 | | Fuel Aux. | 30
50 | 30
50 | 30
50 | 30
50 | 30
50 | | SHO Temperature °C | ราัยั | 510 | 514 | 524 | 521 | | RHO Temperature °C | 457 | 452 | 457 | 476 | 486 | | Unit Efficiency %
Gas Weight Ent. A.H. 10 ³ KG/HR | 90.0
458 | 89.8
447 | 89.7
442 | 89.6
466 | 89.3
468 | | NO. PPM - 0% O2 | 345 | 254 | 254 | 229 | 232 | | NO2 GR/10°CAL | .723 | . 533 | . 533 | .479 | .486 | | SO2 PPM - 0% 02
SO2 GR/10 ⁶ CAL | 1892
5 512 | 1973
5.750 | 2092
6.097 | 2397
6.984 | 2684
7.821 | | CO PPM - 0% 02 | 28.10 | 29.96 | 32.4 | 48.08 | 39.20 | | CO GR/10 ⁶ CAL | .0358 | .0382 | .0413 | .0613 | 0500 | | HC PPM - 0% 02.
02 % A.H. In. | ۰
4.74 | 0
4.55 | 0
4.36 | 4.5 | 0
4.25 | | 02 % A.H. Out. | 6.51 | 6.49 | 6.08 | 6.32 | 6.05 | | Carbon Loss In Flyash 🕱 | .51 | . 59 | . 63 | . 54 | .32 | | TEST NO. Purpose of Test | <u>20</u> | <u>21</u>
FA Damper Pos | <u>22</u>
ition Variati | <u>23</u>
on | | | • | | | | | | | | ₩ | 3/4 | Load | | | | Date | • | • | | 7/12/74 | | | Date
Load _ MW | /<
7/11/74
100 | 7/12/74
102 | 7/12/74
102 | 7/12/74
102 | | | Load MW
Main Steam Flow 10 ³ KG/HR | 7/11/74
100
344 | 7/12/74
102
342 | 7/12/74
102
341 | 102
346 | | | Load MW
Main Steam Flow 10 ³ KG/HR
Excess Air Econ. Outlet % | 7/11/74
100
344
25.4 | 7/12/74
102
342
25 4 | 7/12/74
102
341
27.9 | 102
346
28.1 | | | Load MW
Main Steam Flow 10 ³ KG/HR | 7/11/74
100
344 | 7/12/74
102
342 | 7/12/74
102
341 | 102
346 | | | Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet % Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. | 7/11/74
100
344
25.4
100 5
BCD
0 | 7/12/74
102
342
25 4
117.4
ABC | 7/12/74
102
341
27.9
90.4
ABC
0 | 102
346
28.1
96.9
ABC
0 | | | Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet \$ Theo. Air to Fuel Firing Zone \$ Fuel Elev. In Serv. 0FA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG | 7/11/74
100
344
25.4
100 5
BCD
0 | 7/12/74
102
342
25 4
117.4
ABC
0 | 7/12/74
102
341
27.9
90.4
ABC
0 | 102
346
28.1
96.9
ABC
0 | | | MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet % Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG ☐ OFA OFA | 7/11/74
100
344
25.4
100 5
BCD
0
-4 | 7/12/74
102
342
25 4
117.4
ABC
0
-4 | 7/12/74
102
341
27.9
90 4
ABC
0
-4
100
100 | 102
346
28.1
96.9
ABC
0
-4
50 | | | Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet % Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. OFA OFA Aux. | 7/11/74
100
344
25.4
100 5
BCD
0
-4
0 | 7/12/74
102
342
25 4
117.4
ABC
0
-4
0 | 7/12/74
102
341
27.9
90 4
ABC
0
-4
100
100 | 102
346
28.1
96.9
ABC
0
-4
50
50 | | | Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet % Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. OFA OFA Aux. | 7/11/74
100
344
25.4
100 5
BCD
0
-4 | 7/12/74
102
342
25 4
117.4
ABC
0
-4 | 7/12/74
102
341
27.9
90 4
ABC
0
-4
100
100 | 102
346
28.1
96.9
ABC
0
-4
50 | | | Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA OFA OFA Aux. PRI Fuel Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fue | 7/11/74
100
344
25.4
100 5
8CD
0
-4
0
100
0 | 7/12/74
102
342
25 4
117.4
ABC
0
-4
0
100
100 | 7/12/74
102
341
27.9
90 4
ABC
0
-4
100
100
100
100
50 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
50
50 | | | MW Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. OFA OFA Aux. Fuel Aux. Fuel Aux./Aux. | 7/11/74
100
344
25.4
100 5
BCD
0
-4
0
100
50 | 7/12/74
102
342
25 4
117.4
ABC
0
-4
0
100
100
50
30
50/50 | 7/12/74
102
341
27.9
90.4
ABC
0
-4
100
100
100
50
30 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
50 | | | Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA OFA OFA Aux. PRI Fuel Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fue | 7/11/74
100
344
25.4
100 5
8CD
0
-4
0
100
0 | 7/12/74
102
342
25 4
117.4
ABC
0
-4
0
100
100 | 7/12/74
102
341
27.9
90 4
ABC
0
-4
100
100
100
100
50 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
50
50 | | | Load MW Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG Fuel Nozzle Tilt DEG OFA Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Fuel Aux. Fuel Aux. Fuel Fuel Aux. Fuel Fuel Fuel Fuel Fuel Fuel
Fuel Fuel | 7/11/74
100
344
25.4
100 5
BCD
0
-4
0
100
50
50/50
30
50/50 | 7/12/74
102
342
25 4
117.4
ABC
0
-4
0
100
100
50
30
50/50 | 7/12/74
102
341
27.9
90 4
ABC
0
-4
100
100
100
50
30
50/50 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
50
50
50
50 | | | Load MM Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA Aux. TAT Fuel Aux. | 7/11/74
100
344
25.4
100 5
8CD
0
-4
0
0
100
0
50/50
30
50/50 | 7/12/74
102
342
25 4
117.4
ABC
0
-4
0
100
100
50
30
50/50
30
50/50 | 7/12/74
102
341
27.9
90 4
ABC
0
-4
100
100
100
100
30
50/50
30
50/0 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
50
50
30
50/50
30 | | | Load MW Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG Fuel Nozzle Tilt DEG OFA Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Fuel Aux. Fuel Aux. Fuel Fuel Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel | 7/11/74
100
344
25.4
100 5
BCD
0
-4
0
100
50
50/50
30
50/50 | 7/12/74
102
342
25 4
117.4
ABC
0
-4
0
100
100
50
30
50/50 | 7/12/74
102
341
27.9
90 4
ABC
0
-4
100
100
100
50
30
50/50 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
50
50
50
50 | | | Load MM Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone X Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA OFA OFA OFA OFA OFA OFA OF | 7/11/74
100
344
25.4
100 5
8CD
0
-4
0
100
0
50/50
30
50/50
30
50/50
479
90 2 | 7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 500 30 50/50 30 50/50 498 90.1 | 7/12/74
102
341
27.9
90 4
ABC
0
-4
100
100
100
50
30
50/50
30
50/50
0
0 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
50
50
30
50/50
30
50/50
21
485
89.1 | | | Load MW Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA OFA OFA Aux. Fuel Aux. Fuel Aux. SHO Temperature RHO Temperature Ges Weight Ent. A.H. 103KG/HR | 7/11/74
100
344
25.4
100 5
BCD
-4
0
100
0
50
30
50/50
30
50/50
30
50/50
479
90 2 | 7/12/74
102
342
25 4
117.4
ABC
0
-4
0
100
100
50
30
50/50
30
50/50
0
0
498
90.1 | 7/12/74
102
341
27.9
90 4
ABC
0
-4
100
100
100
50
30
50/50
0
0
524
491
89.0 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
30
50/50
30
50/50
485
89.1
492 | | | Load MM Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone X Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA OFA Aux. Aux. Fuel Aux. Fuel Aux. SHO Temperature Gas Weight Ent. A.H. NOx PPM - 0 ³ C9 GR/10 ⁵ CAL | 7/11/74
100
344
25.4
100 5
8CD
0
-4
0
100
0
50/50
30
50/50
30
50/50
479
90 2 | 7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 500 30 50/50 30 50/50 498 90.1 | 7/12/74
102
341
27.9
90 4
ABC
0
-4
100
100
100
50
30
50/50
30
50/50
0
0 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
50
50
30
50/50
30
50/50
21
485
89.1 | | | Load MM Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Theo. Air to Fuel DEG. Fuel Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. Fuel Aux. Aux. Fuel Aux. Fuel Aux. SHO Temperature CRHO Temperature CUnit Efficiency Gas Weight Ent. A.H. NOx NOz GR/10 ⁵ CAL PPM - 0% Oz GR/10 ⁵ CAL FUEL COMMITTED COMMI | 7/11/74
100
344
25.4
100 5
BCD
0
-4
0
100
0
50
30
50/50
30
50/50
30
50/50
479
90 2
468
323
.677
1821 | 7/12/74 102 342 25 4 117.4 ABC 0 100 100 100 50 30 50/50 30 50/50 0 476 483 1.012 1814 | 7/12/74
102
341
27.9
90.4
ABC
0
-4
100
100
100
50
30
50/50
0
0
524
491
89.0
494
329
.689
2259 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
30
50/50
30
50/50
485
89.1
492
336
.704
2417 | | | Load MM Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone X Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA Aux. Aux. Fuel Aux. Fuel Aux. Fuel Aux. SHO Temperature Unit Efficiency Gas Weight Ent. A.H. NOx NO2 GR/106CAL SO2 GR/106CAL | 7/11/74
100
344
25.4
100 5
BCD
0
-4
0
100
50
50/50
30
50/50
30
50/50
479
90 2
468
323
.677
.821
5.308 | 7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 500 30 50/50 30 50/50 498 90.1 476 483 1.012 1814 5.284 | 7/12/74
102
341
27.9
90 4
ABC
0-4
100
100
100
50/50
30
50/50
0
0
524
491
89.0
494
329
.689
2259
6.583 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
50
30
50/50
30
50/50
485
89.1
492
336
.704
2417
7.042 | | | Load MM Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA OFA Aux. Fuel Aux. Fuel Aux. SHO Temperature Unit Efficiency Gas Weight Ent. A.H. NOx NOz SO2 GR/106CAL PPM - 0% Oz GR/106CAL CO GR/106CAL PPM - 0% Oz GR/106CAL | 7/11/74
100
344
25.4
100 5
BCD
0
-4
0
100
0
50
30
50/50
30
50/50
30
50/50
479
90 2
468
323
.677
1821 | 7/12/74 102 342 25 4 117.4 ABC 0 100 100 100 50 30 50/50 30 50/50 0 476 483 1.012 1814 | 7/12/74
102
341
27.9
90.4
ABC
0
-4
100
100
100
50
30
50/50
0
0
524
491
89.0
494
329
.689
2259 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
30
50/50
30
50/50
485
89.1
492
336
.704
2417
7.042
25.28
.0322 | | | Load MM Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone X Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. OFA Aux. Aux. Fuel Aux. Fuel Aux. Fuel Aux. Fuel Aux. SHO Temperature Unit Efficiency Gas Weight Ent. A.H. NOx NO2 SO2 GR/106CAL SO2 GG/106CAL CO GG/106CAL PPM - 0% O2 GG/106CAL PPM - 0% O2 CC CO | 7/11/74
100
344
25.4
100 5
BCD
0
100
0
100
50
50/50
30
50/50
30
50/50
479
90 2
468
323
.677
1821
5.308
28.79
.0367 | 7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 500 30 50/50 30 50/50 498 90.1 476 483 1.012 1814 5.284 25.16 .0321 0 | 7/12/74
102
341
27.9
90 4
ABC
0-4
100
100
100
50/50
30
50/50
0
0
524
491
89.0
494
329
.689
2259
6.583
25.79
.0329 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
50
30
50/50
30
50/50
485
492
485
492
492
2417
7.042
25.28
.0322 | | | Load MM Main Steam Flow 103Kg/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Fu | 7/11/74
100
344
25.4
100 5
8CD
0
-4
0
100
50
30
50/50
30
50/50
30
50/50
32
468
479
90 2
468
3.677
1821
5.308
28.79
.0367
4 33 | 7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 50 30 50/50 30 50/50 498 90.1 476 483 1.012 1814 5.284 25.16 .0321 0 4.33 | 7/12/74
102
341
27.9
90.4
ABC
0
-4
100
100
100
50
30
50/50
0
0
524
491
89.0
494
329
.689
2259
6.583
25.79
.0329 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
30
50/50
30
50/50
485
89.1
492
336
.704
2417
7.042
25.28
.0322 | | | Load MM Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone X Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. OFA Aux. Aux. Fuel Aux. Fuel Aux. Fuel Aux. Fuel Aux. SHO Temperature Unit Efficiency Gas Weight Ent. A.H. NOx NO2 SO2 GR/106CAL SO2 GG/106CAL CO GG/106CAL PPM - 0% O2 GG/106CAL PPM - 0% O2 CC CO | 7/11/74
100
344
25.4
100 5
BCD
0
100
0
100
50
50/50
30
50/50
30
50/50
479
90 2
468
323
.677
1821
5.308
28.79
.0367 | 7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 500 30 50/50 30 50/50 498 90.1 476 483 1.012 1814 5.284 25.16 .0321 0 | 7/12/74
102
341
27.9
90 4
ABC
0
-4
100
100
100
50/50
30
50/50
0
0
524
491
89.0
494
329
.689
2259
6.583
25.79
.0329 | 102
346
28.1
96.9
ABC
0
-4
50
50
50
50
50
50
50
50
50
50
485
89.1
492
336
.704
2417
7.042
25.28
.0322
4.69 | | 85 # NO_X TEST DATA SUMMARY OFA TILT VARIATION | TEST NO. | <u>24</u> | <u>25</u> | <u>26</u> | <u>27</u> | <u>28</u> | 29 | |--
--|--|--|---|---|--| | Purpose of Test | | 0 | FA & Fuel Nozzl | e Tilt Variatio | on | | | | K | | Full | Load- | | | | Date Load Main Steam Flow Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. In Serv. OFA Nozzle Tilt OFA OFA OFA Aux. Fuel Fuel Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel | 7/29/74
124
407
25.9
94.2
ALL
0
-5
100
100
100
50
50
50
50 | 7/29/74
124
418
23.7
92.4
ALL
0
100
100
100
100
50/50
30
50/50 | 7/29/74
124
412
25.1
93.2
ALL
0
+19
100
100
100
50
30
50/50
30 | 7/29/74
125
407
22.3
91.5
ALL
-30
-5
100
100
100
50
50/50
30 | 7/29/74
125
414
20.2
89.6
ALL
-30
100
100
100
100
50/50
30
50/50 | 7/29/74
124
418
23.7
92.6
ALL
+30
-21
100
100
100
50
30
50/50
30 | | Aux. SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H. NO _x NO ₂ SO ₂ SO ₂ SO ₂ SO ₂ GR/10 ⁶ CAL CO PPM - 0% O ₂ GR/10 ⁶ CAL CO PPM - 0% O ₂ GR/10 ⁶ CAL RC PPM - 0% O ₂ GR/10 ⁶ CAL RC PPM - 0% O ₂ SA.H. In. O ₂ SA.H. Out. Carbon Loss In Flyash | 50
538
532
89.6
548
339
.710
2450
7.140
25.4
.0324
0
4.4
5.9 | 50
521
508
89.3
556
290
.609
2920
8.511
27.1
.0346
0
4.1
6.0
.37 | 50
524
527
88.9
585
368
.770
3310
9.647
31.8
.0406
0
4.3
6.2 | 50
527
533
89.3
557
344
.721
3160
9.208
22.1
.0282
0
3.9
6.0 | 50
524
535
88.6
586
404
.846
3370
9.820
28.2
.0360
0
3.6
5.8 | 50
521
505
89.4
544
285
.596
3240
9.443
49.4
.0630
0
4.1
6.4 | ### LOAD VARIATION AT OPTIMUM CONDITIONS | TEST NO. | <u>30</u> | <u>31</u> | <u>32</u> | <u>33</u> | 34 | <u>35</u> | | | | | | | |---|--------------------------------------|--------------|-------------|-------------|-------------|-------------|--|--|--|--|--|--| | Purpose of Test | Load Variation at Optimum Conditions | | | | | | | | | | | | | | Max. Load | 3/4 Load | 1/2 Load | Max. Load | 3/4 Load | 1/2 Load | | | | | | | | Date
Load MW | 7/30/74 | 7/31/74 | 7/31/74 | 7/31/74 | 7/31/74 | 8/1/74 | | | | | | | | Load MW
Main Steam Flow 10 ³ KG/HR | 125
416 | 97
314 | 65
204 | 122
409 | 95
310 | 64
204 | | | | | | | | Excess Air Econ. Outlet % | 21.6 | 25.2 | 46.9 | 27.4 | 27.4 | 45.9 | | | | | | | | Theo. Air to Fuel Firing Zone % | 90.7 | 89.4 | 88.5 | 94 6 | 90.6 | 88.5 | | | | | | | | Fuel Elev In Serv. | ALL | ABC | AB | ALL | ABC | AB | | | | | | | | OFA Nozzle Tilt DEG
Fuel Nozzle Tilt DEG. | 0 | -12 | ō | -22 | -22 | -10 | | | | | | | | OFA OEG. | -4
100 | -16
100 | -5
100 | -22
100 | -22
100 | -15
100 | | | | | | | | ├── ŎFÃ | 100 | 100 | 100 | 100 | 100 | 100 | | | | | | | | √ XAux. | 100 | 100 | 100 | 100 | 100 | 100 | | | | | | | | e : "A" Fuel | 100 | 100 | 100 | 100 | 100 | 100 | | | | | | | | So Aux. | 50 | 50 | 50 | 50 | 50 | 50 | | | | | | | | | 30 | 30 | 30 | 30 | 30 | 30 | | | | | | | | Aux./Aux. | 50/50 | 50/50 | 50/0 | 50/50 | 50/50 | 50/0 | | | | | | | | Aux./Aux. | 30
50 | 30
50 | 0 | 30
50 | 30
50 | 0 | | | | | | | | PD4 Fuei | 30 | 90 | ŏ | 30 | 0 | ŏ | | | | | | | | Aux. | 50 | ŏ | ŏ | 50 | ŏ | ŏ | | | | | | | | SHO Temperature °C | 538 | 525 | 535 | 521 | 506 | 512 | | | | | | | | RHO Temperature °C | 536 | 514 | 514 | 521 | 493 | 493 | | | | | | | | Unit Efficiency % | 89.0 | 89.1 | 89.2 | 89 0 | 88.2 | 89.0 | | | | | | | | Gas Weight Ent. A.H. 103KG/HR | 574 | 456 | 341 | 584 | 472 | 329 | | | | | | | | NO _x PPM - 0% O ₂
NO ₂ GR/10 ⁶ CAL | 3 39
.710 | 338
. 708 | 396
.828 | 333
.697 | 291
.608 | 313
.655 | | | | | | | | SO2 PPH - 0% O2 | 1680 | 1730 | 1740 | 2430 | 2490 | 2420 | | | | | | | | SO2 GR/106CAL | 4.896 | 5.043 | 5.070 | 7.083 | 7.256 | 6.960 | | | | | | | | CO PPM - 0% 02 | 26.1 | 26.1 | 24.4 | 24.8 | 26.4 | 25.0 | | | | | | | | CO GR/106CAE | .0333 | . 0333 | .0311 | 0316 | .0337 | .0319 | | | | | | | | HC PPM - 0% 02 | Q | . 0 | 0 | . 0 | 0 | 0 | | | | | | | | 02 % A.H. In. | 3.8 | 4.3 | 6.8 | 4.6 | 4.6 | 6.7 | | | | | | | | 02 % A.H. Out. | 5.3 | 5.7 | 8.2 | 6.3 | 6.8
.33 | 8.4 | | | | | | | | Carbon Loss In Flyash Dust Loading GR/SCM | .61
8.64 | .39 | .32 | . 24 | .33 | .15 | | | | | | | ## BASELINE STUDY TEST DATA | TEST NO. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |--|------------------|-----------------|------------------|-----------------|-----------------|------------------|----------------|----------------|------------------|-----------------|----------------|------------------|-----------------|--------------------| | DATE | 11-30-73 | 11-30-73 | 11-30-73 | 1-18-74 | 11-14-73 | 11-28-73 | 11-28-73 | 11-15-73 | 11-19-73 | 11-19-73 | 12-5-73 | 12-4-73 | 11-16-73 | 11-16-73 | | TIME | 01 55 | 00 00 | 02 · 45 | 16 00 | 15-10 | 13.51 | 10:37 | 11-10 | 13.04 | 10:00 | 01:40 | 53-30 | 14:20 | 9:50 | | UNIT LOAD - MW | 66 | 65 | 67 | 93 | 124 | 123 | 123 | 126 | 122 | 124 | 66 | 74 | 125 | 125 | | FLOWS - 10 ³ Kg/HR | | | | | | | | | | | | | | | | FEEDWATER | 217 | 222 | 206 | 309 | 400 | 401 | 393 | 399 | 391 | 384 | 010 | ~~4 | 390 | | | SH SPRAY (HEAT BALANCE) | 2.31 | 1.67 | 8.3 | 2.5 | 4.13 | 5.90 | 11.8 | 11.5 | 12.11 | 20.14 | 210
1.09 | 204
1.81 | 21.86 | 385
20.77 | | MAIN STEAM | 219 | 224 | 214 | 316 | 404 | 407 | 405 | 411 | 403 | 405 | 211 | 206 | 412 | 406 | | TURBINE LEAKAGE | 9.98 | 10.2 | 9.52 | 14 | 17.83 | 17.92 | 17.6 | 17.83 | 17.55 | 17.24 | 9.66 | 9.39 | 17.46 | 17.24 | | RH EXTRACTION | 13.79 | 14.56 | 12 70 | 23 | 31.62 | 31 .62 | 31.0 | 31.39 | 31.07 | 29.89 | 13.52 | 12.79 | 30.84 | 30.3 | | RH SPRAY (HEAT BALANCE)
RH Flow (Calc.) | 18
195 | .09
199 | 18
192 | 0.0
279 | . 907
355 | . 907
358 | 1.32
357 | 1.13 | . 907
355 | . 907
358 | .09
188 | . 18 | .73 | . 907 | | | 130 | 133 | 132 | 219 | 300 | 358 | 351 | 363 | 300 | 358 | 188 | 184 | 364 | 359 | | AIR & GAS FLOWS - 10 KG/HR | | | | | | | | | | | | | | | | GAS ENT. A.H. | 352 | 300 | 412 | 386 | 554 | 518 | 592 | 567 | 502 | 565 | 323 | 369 | 55 6 | 567 | | GAS LVG A.H.
Air ent A.H. | 392
369 | 343
320 | 451
427 | 445
414 | 631
590 | 587
546 | 663 | 618 | 561
520 | 645 | 360 | 408 | 635
592 | 646
604 | | AIR LVG. A.H. | 328 | 320
278 | 389 | 355 | 590
512 | 546
478 | 623
552 | 375
524 | 520
461 | 603
523 | 351
301 | 385
346 | 513 | 524 | | A.H. LEAKAGE | 40 18 | 42 6 | 38.74 | 59 | 77.88 | 67.90 | 71 | 49.89 | 58.88 | 80.0 | 36.51 | 39.42 | 79.11 | 79 38 | | 6 | | | | | | | | | 551.25 | - | - | | | | | Unit ABSORPTION - 10 Kg-CaL/HR | | | | | | | | | | | | | | | | Econ. | 8.32 | 7.03 | 9 65 | 8.8 | 12.20 | 10 99 | 12.8 | 12.19 | 11.16 | 12.7 | 7 66 | 8.85 | 12.87 | 12.7 | | FURN. | 85 53 | 89.06 | 79 05 | 110 | 145 | 148 | _143 | 142.5 | 143.6 | 138.9 | 83.6 | 79.53 | ÷ 138 | 137.5 | | DRUM - DESUP.
Desup S.H. Out. | 24
16 9 | 18 5
18.62 | 29.2
16 08 | 31.2
22 | 54
24.5 | 52
27.32 | 57.6
24.1 | 59.0
29.18 | 52.7
28 22 | 59.4
28.68 | 20.2
16.78 | 25.45
14.97 | 61.4
31.25 | 60.9
28.53 | | RH | 19.8 | 18 85 | 20.6 | 24.8 | 33 67 | 35.56 | 35.9 | 36.29 | 33 94 | 26.66
36.16 | 18.9 | 19.05 | 35.73 | 36.04 | | TOTAL | 154.6 | 152 | 154.6 | 207 | 270 | 274 | 273 | 279 | 279 | 275.8 | 147.1 | 147.8 | 275.7 | 141 5 | | PRESSURES STEAM & WATER - KG/CM ² | | | 404 | | | 400.7 | | | 400.0 | | | .01.5 | 150.0 | 140 8 | | ECON. IN
Drum | 134.1
132.8 | 134 3
133.0 | 134
132.6 | 140.5
139 | 142 2
140.5 | 136.7
134.9 | 136.8
135 | 149.6
147.8 | 139.9
138.1 | 141.0
139.3 | 131.3
130.0 | 131.5
130 2 | 150.6
148.9 | 146.5
144.8 | | SH - DESUP. IN | 130.9 | 131 1 | 131.1 | 133.6 | 134.3 | 132.2 | 132.3 | 137.4 | 133.3 | 134.1 | 129.5 | 129.7 | 137.7 | 136.1 | | SH Out | 129.8 | 129.8 | 130.0 | 130.8 | 130.7 | 130.7 | 130.7 | 131.2 | 130.5 | 131.0 | 129.1 | 129.4 | 131.1 | 131.0 | | RH IN | 15.04 | 15 25 | 15 11 | 22.43 | 29.38 | 29.46 | 29.46 | 30.09 | 29.24 | 29.53 | 14.69 | 14.76 | 29.74 | 29.81 | | RH Out | 14.27 | 14.41 | 14.34 | 21.09 | 27.98 | 28 05 | 28 | 28.68 | 27.84 | 28. 12 | 13.92 | 13.99 | 28.33 | 28.40 | | AIR & GAS - CM WG | | | | | | | | | | | | | | | | F.D. FAN OUT | 3.56 | 3.048 | 4.064 | 5.08
1.016 | 10.67 | 7.112
1.016 | 15.24
5.588 | 10.16
3.048 | 7.62
1.905 | 13.335
6.35 | 3.048
1.27 | 3.302
.508 | 10.668
4.318 | 12.70
5.08 | | "B" A.H. AIR OUT
"B" A H. GAS OUT | 1.524
-12.192 | 1.016
-15.24 | 2.032
-16.256 | -15.24 | 3.81
-26.416 | -28.86 | -27.686 | -25 908 | -24.384 | -27.94 | -10.668 | -14.224 | -27.432 | 27.94 | | "D" ELEV. LEFT REAR FUEL AIR COMP. | -3 81 | -3 175 | -3.175 | -3.048 | 1,905 | 381 | 5.08 | 1.905 | .635 | 5.08 | -3.556 | -3.302 | 2.54 | 4.445 | | "A" ELEV. LEFT REAR FUEL AIR COMP. | -2 54 | -3.175 | -3 175 | -1.524 | .635 | 508 | 3 81 |
.254 | Ō | 3.81 | -3 048 | -1.524 | 2.54 | 4.445 | | LEFT MILL DUCT AT WINDBOX | 1.016 | 1.016 | .508 | .508 | 2.032 | -3.81 | 3.81 | 1.778 | .508 | 4.445 | .508 | 254 | 22.86 | 3.81 | | MILL AIR DUCT AT "B" ELEV. MILL | 762
-1 524 | 762
-1.778 | -1.016
-1.524 | -1.27
-2 032 | 508
-1.524 | -1.905
-1.778 | 2.032
635 | .635
-15.24 | -1.016
-2.032 | 3.175
-1.016 | 508
-1.778 | -1.524
-1 524 | .508
-1,27 | 2.54
-1.016 | | Upper Furnace | -1 324 | -1.778 | -1.324 | -2 032 | -1.524 | -1.776 | 033 | -13.24 | -2.032 | -1.070 | -1.770 | -1 324 | -1121 | -1.0.0 | | TEMPERATURES - °C | | | | | | | | | | | | | | | | STEAM & WATER SH OUT | 529 | 498 | 548 | 500 | 539 | 539 | 538 | 548 | 533 | 544 | 518 | 548 | 539 | 543 | | SH DESUP IN | 426 | 393 | 470 | 409 | 458 | 452 | 475 | 468 | 456 | 484 | 409 | 446 | 481 | 486 | | SH DESUP. OUT | 418 | 389 | 435 | 404 | 449. | 440 | 447 | 444 | 431 | 440 | 405 | 438 | 436 | 440 | | RH Out | 488 | 446 | 517 | 449 | 514 | 524 | 524 | 533 | 510 | 531
347 | 476
339 | 508
310 | 522
343 | 529
347 | | RH DESUP IN | 295
294 | 267
267 | 311
310 | 286
286 | 342 .
339 | 343.
340 | 342
339 | 351
348 | 337
335 | 347
344 | 283
339 | 309 | 343 | 34 <i>1</i>
344 | | RH DESUP OUT
Econ In | 198 | 198 | 198 | 217 | 530 | 230 | 230 | 231 | 229 | 229 | 197 | 199 | 230 | 230 | | Econ Out | 233 | 227 | 242 | 242 | 257 | 254 | 259 | 258 | 254 | 259 | 231 | 239 | 259 | 259 | | | | | | | | | | | | | | | | | 87 SHEET 5A ## BASELINE STUDY TEST DATA | TEST No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |-------------------------------------|-------|-------|------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|------------| | #5 HP HEATER IN | 167 | 166 | 168 | 183 | 194 | 193 | 193 | 195 | 193 | 194 | 167 | 168 | 194 | 194 | | #5 HP HEATER OUT | 199 | 198 | 199 | 217 | 231 | 230 | 530 | 535 | 231 | 231 | 199 | 199 | 232 | 231 | | #5 HP HEATER EXT IN | 286 | 260 | 300 | 282 | 336 | 337 | 337 | 346 | 331 | 341 | 275 | 300 | 337 | 341 | | #5 HP HEATER DRAIN | 195 | 195 | 196 | 214 | 226 | 225 | 225 | 227 | 226 | 226 | 195 | 195 | 227 | 226 | | SPRAY WATER | 134 | 134 | 134 | 148 | 157 | 156 | 157 | 157 | 156 | 156 | 134 | 134 | 157 | 226
157 | | AIR & GAS | | | | | | | | | | | | | | | | A.H GAS IN | 282 | 273 | 295 | 298 | 325 | 321 | 298 | 325 | 320 | 328 | 277 | 286 | 329 | 330 | | A.H. GAS OUT | 145 | 150 | 142 | 150 | 154 | 153 | 150 | 153 | 156 | 153 | 153 | 152 | 153 | 149 | | AH AIR IN | 29.4 | 30.6 | 24.4 | 43 3 | 41.0 | 33.3 | 43.3 | 39 | 37 8 | 41.0 | 33.3 | 30 O | 36 7 | 35 6 | | A.H AIR OUT | 263 | 261 | 269 | 269 | 280 | 282 | 269 | 281 | 283 | 276 | 262 | 268 | 282 | 278 | | FURNACE OUTLET (AVG.) | 1096 | 1127 | 1045 | 1202 | 1226 | 1295 | 1206 | 1314 | 1274 | 1278 | 1122 | 1096 | 1323 | 1302 | | AIR HEATER LEAKAGE - % | 11 41 | 14.19 | 9 41 | 15.33 | 14 07 | 13.08 | 12.03 | 8 87 | 11.72 | 14.16 | 11.29 | 10.69 | 14.22 | 14 00 | | A.H. GAS SIDE EFFICIENCY - \$ | 49 5 | 44 5 | 53 0 | 52.3 | 55 1 | 53.8 | 53.5 | 57.0 | 53.6 | 57.9 | 48.3 | 51.1 | 55 4 | 56.7 | | Unit Efficiency - \$ | 88 3 | 88.2 | 87.6 | 89.3 | 89.0 | 89 1 | 89.5 | 89.6 | 89.6 | 89.6 | 88.3 | 87 9 | 89.2 | 89.3 | | PRODUCTS OF COMBUSTION - GR/106CAL. | | | | | | | | | | | | | | | | DRY AIR | 1852 | 1589 | 2173 | 1343 | 1665 | 1554 | 1784 | 1663 | 1514 | 1678 | 1782 | 2030 | 1615 | 1678 | | WET AIR | 1877 | 1611 | 2200 | 1512 | 1944 | 1775 | 1807 | 1685 | 1534 | 1699 | 1805 | 2057 | 1636 | 1699 | | DRY PROD. | 1911 | 1649 | 2232 | 1532 | 1190 | 1595 | 1843 | 1728 | 1577 | 1741 | 1845 | 2092 | 1678 | 1739 | | WET PROD. | 2012 | 1744 | 5333 | 1575 | 1825 | 1687 | 1939 | 1822 | 1669 | 1838 | 1942 | 2192 | 1775 | 1836 | | AH OUTLET | | | | | | | | | | | | | | | | DRY AIR | 2079 | 1834 | 2389 | 1667 | 1919 | 1751 | 2014 | 1822 | 1706 | 1933 | 2000 | 2061 | 1863 | 1931 | | WET AIR | 2106 | 1858 | 2419 | 1766 | 1944 | 1775 | 2039 | 1845 | 1728 | 1958 | 2025 | 2291 | 1888 | 1957 | | Dry Prod. | 2138 | 1894 | 2448 | 1787 | 1982 | 1811 | 2074 | 1886 | 1771 | 1998 | 2061 | 2324 | 1926 | 1926 | | WET PROD. | 2241 | 1991 | 2552 | 1827 | 2081 | 1906 | 2171 | 1984 | 1865 | 2097 | 2160 | 2426 | 2027 | 2092 | | Excess AIR - \$ | | | | | | | | | | | | | | | | A.H. 1N | 35.5 | 17.5 | 58.9 | 12 6 | 22 7 | 11.8 | 30.8 | 21.5 | 13.0 | 26 0 | 32.7 | 51.2 | 20.7 | 24.3 | | A.H Out | 52.1 | 35.6 | 74.8 | 31 4 | 41.4 | 27.6 | 47.6 | 33.2 | 27.5 | 45.3 | 48.8 | 68.4 | 39.3 | 43.1 | | FUEL ANALYSIS - \$ | | | | | | | | | | | | | | | | CARBON | 65.1 | 65.2 | 65 6 | 64 9 | 65.1 | 66 | 66.3 | 66.8 | 65 4 | 64.0 | 63 5 | 64.2 | 64.6 | 64.7 | | Hydrogen | 4.4 | 4 4 | 4.4 | 4 1 | 4.3 | 4.4 | 4.4 | 4.3 | 4.3 | 4.3 | 4.2 | 4.2 | 4.3 | 4.4 | | NITROGEN | 1.2 | 1.2 | 1.2 | 1.2 | 1 3 | 1.2 | 1.2 | 1.3 | 1.3 | 1.3 | 1.1 | 1.1 | 1.3 | 1 2 | | Oxygen | 56 | 5.6 | 5.6 | 5 5 | 6.9 | 5.6 | 5.6 | 6.9 | 7.4 | 7.4 | 5.9 | 5.9 | 7.4 | 6 9 | | Sulfur | 2.1 | 5 2 | 1.8 | 2 3 | 3.1 | 1.4 | 1.7 | 2.3 | 2.3 | 3.0 | 2.9 | 2.5 | 2.7 | 2 3 | | MOISTURE | 8 8 | 8 7 | 76 | 98 | 8 8 | 70 | 7.4 | 9 1 | 8.8 | 9.9 | 9.5 | 9.6 | 10.7 | 8.3 | | Ash . | 12.8 | 12 7 | 13.8 | 12.2 | 10.5 | 14.4 | 13.4 | 9.3 | 10.1 | 10.1 | 12.9 | 12.5 | 9.6 | 12.2 | | HHV - CAL/G | 6455 | 6499 | 6499 | 6449 | 6460 | 6466 | 6560 | 6538 | 6555 | 6494 | 6382 | 6449 | 6494 | 6477 | ### BIASED FIRING STUDY TEST DATA | TEST NO. | | <u>15</u> | <u>16</u> | <u>17</u> | <u>18</u> | <u>19</u> | <u>20</u> | <u>21</u> | <u>22</u> | <u>23</u> | <u>24</u> | |---|----------|--|---|--|---|---|--|---|---|---|---| | Date
Time
Unit Load | MM | 1/19/74
09:10
66 | 1/18/74
18:24
96 | 12/3/73
11:07
100 | 12/4/73
01:30
103 | 12/5/73
23:50
99 | 12/6/73
02:30
102 | 1/18/74
20:30
94 | 1/19/74
15:45
64 | 1/19/74
13:30
64 | 1/19/74
11:30
66 | | FLOWS - 103KG/HR | | | | | | | | | | | | | Feedwater SH Spray (Heat Balance) Main Steam Turbine Leakage RH Extraction RH Spray (Heat Balance) RH Flow (Calc.) | | 199
0
199
9.06
12.1
.091 | 296
1.77
297
13.4
20.9
.272
264 | 304
10.85
315
13.7
22.0
.408
280 | 310
11.15
321
13.9
22.2
.272
284 | 314
5.54
321
14.2
23.1
.091
282 | 307
7.08
314
13.7
22.2
.408
278 | 307
1.50
308
13.8
22.2
.045
272 | 203
2.18
208
9.5
13.3
0.0
185 | 209
1.77
211
9.6
13.6
0.0
188 | 194
7.62
202
9.1
11.9
.091
181 | | AIR & GAS FLOWS - 103KG/HR | | | | | | | | | | | | | Gas Ent. AH
Gas Lvg. AH
Aır Ent. AH
Aır Lvg. AH
AH Leakage | | 341
377
356
350
35.5 | 430
505
475
398
76.8 | 439
502
467
405
62.8 | 455
499
465
421
43.1 | 428
479
446
396
50.6 | 451
511
477
418
59.8 | 435
507
476
405
72.8 | 360
400
376
337
39.6 | 361
403
380
338
42.5 | 356
404
382
334
42.8 | | UNIT ABSORPTION - 106KG-CAL/HR | | | | | | | | | | | | | Economizer
Furnace
Drum - DESH
DESH - SH Out.
RH
Total | | 8.88
76.4
27.2
11.5
17.5 | 10.05
110
36.6
21.0
26.2
204 | 10.01
115
39.8
22.4
28.1
216 | 10.045
116
43.1
22.9
29.4
222 | 9.4
120.5
35.4
23.9
26.9
216 | 9.8
116.5
39.2
24.0
28.1
218 | 9.55
105.8
34.8
19.4
25.2
205 | 8.45
80.0
23.3
12.1
17.6
141.5 | 8.65
80.8
24.2
12.7
17.8
144 | 9.13
73.9
28.2
14.5
19.4
145 | | PRESSURES | | | | | | | | | | | | | STEAM & WATER - KG/CM2 | | | | | | | | | | | | | Economizer In. Drum SH - DESH In. SH Out. RH In. RH Out. | | 138.5
137.2
132.8
130.3
14.84
14.0 | 139.9
138.4
133.1
130.2
22.26
21.0 | 132.2
130.7
129.4
128.6
22.89
21.7 | 132.9
131.3
130
129.4
23.24
22.05 | 133.6
132
130.3
129.4
21.98
21.49 | 133.9
132.4
130.8
129.7
22.75
21.56 | 139.5
138
132.8
129.9
22.4
21.14 | 138.7
137.3
133.1
130.2
14.98
14.14 | 138.4
137
132.5
130.1
14.84
14 | 138.4
137
133.1
130.2
14.77
13.93 | | AIR & GAS - CM. WG | | | | | | | | | | | | | FD Fan Out. "B" AH Air Out. "B" AH Gas Out. "D" Elev. Left Rear Fuel Air Com "A" Elev. Left Rear Fuel Air Com Left Mill Duct at Windbox Mill Air Duct at "B" Elev. Mill Upper Furnace | р.
р. | 2.03
508
-14.73
762
-1.27
762
-2.29
-2.03 | 7.87
2.03
-18.8
1.27
762
1.016
762
-1.78 | 7.37
2.03
-18.8
1.27
1.02
1.27
508 | 7.11
2.03
-19.81
-1.52
-1.02
1.016
-1.016 | 4.06
.762
-17.78
-1.52
-1.78
508
-1.27
-2.03 | 6.1
1.27
-18.8
-1.78
.254
.508
-2.03 | 7.87
2.29
-18.8
508
.76
1.27
254
-1.78 | 2.29
254
-14.22
-2.03
76
762
-2.29
-1.78 | 2.03
254
-14.22
-2.03
-2.03
-1.016
-1.52
-2.03 | 2.29
508
-14.73
-2.03
-2.03
-1 016
-2.29
-1.78 | |
TEMPERATURES - °C | | | | | | | | | | | | | STEAM & WATER | | | | | | | | | | | | | SH Out.
SH DESH In.
SH DESH Out. | | 546
459
452 | 539
456
435 | 529
454
425 | 543
466
436 | 523
429
416 | 544
449
431 | 512
427
423 | 501
427
420 | 507
431
424 | 544
472
438 | 89 SHEET 6A ### BIASED FIRING STUDY TEST DATA | TEST_NO. | | <u>15</u> | <u>16</u> | <u>17</u> | <u>18</u> | <u>19</u> | <u>20</u> | 21 | 22 | <u>23</u> | 24 | |---|-------------|--|--|---|--|--|--|---|--|---|--| | TEMPERATURES - °C | | | | | | | | _ | | | | | STEAM & WATER (Cont.) | | | | | | | | | | | | | RH Out. RH DESH In. RH DESH Out. Economizer In. Economizer Out. #5 HP Heater In. #5 HP Heater Out. #5 HP Heater Out. #5 HP Heater Ext. In. #5 HP Heater Drain Spray Water | | 496
307
307
200
241
169
200
297
197
135 | 506
320
319
218
450
185
219
313
214
149 | 501
315
313
218
248
184
219
308
215 | 520
327
326
219
450
185
220
321
216
150 | 486
308
308
217
244
182
218
302
213
147 | 515
327
326
217
247
183
218
321
213
147 | 469
297
297
217
217
245
183
217
291
214
148 | 448
268
268
199
237
169
200
261
197
136 | 454
274
274
199
237
169
201
266
197 | 513
307
307
200
243
169
201
297
196
136 | | AIR & GAS | | | | | | | | | | | | | AH Gas In.
AH Gas Out.
AH Aır In.
AH Air Out.
Furnace Outlet (Avg.) | | 298
154
28.3
273
1036 | 311
147
44.4
271
1197 | 307
145
38.4
271
1246 | 311
147
37.8
274
1253 | 301
140
23.3
268
1171 | 305
136
17.2
269
1195 | 312
143
44.0
265
1129 | 293
147
37.2
268
999 | 293
146
32.2
268
873 | 298
150
30.0
268
827 | | Air Heater Leakage
AH Gas Side Efficiency
Unit Efficiency | %
%
% | 10.4
51.1
87.9 | 17.89
55.4
89.3 | 14.32
55.3
89.1 | 9.46
56.8
89.3 | 11.8
53.4
89.0 | 13.24
53.8
88.8 | 16.73
56.3
89.6 | 11.02
52.7
87.8 | 11.77
51.8
87.9 | 13.46
49.9
87.8 | | PRODUCTS OF COMBUSTION - GR/106 | CAL. | | | | | | | | | | | | AH INLET | | | | | | | | | | | | | Dry Air
Wet Air
Dry Prod.
Wet Prod. | | 1962
2000
2010
2120 | 1720
1740
1780
1875 | 1650
1670
1715
1815 | 1670
1690
1732
1830 | 1610
1632
1670
1765 | 1685
1705
1745
1840 | 1745
1770
1810
1900 | 2060
2084
2130
2230 | 2036
2060
2100
2205 | 1990
2016
2060
2150 | | AH OUTLET | | | | | | | | | | | | | Dry Air
Net Air
Dry Prod.
Net Prod. | | 2180
2210
2240
2340 | 2050
2080
2115
2210 | 1910
1935
1970
2080 | 1841
1865
1905
2010 | 1816
1840
1880
1970 | 1925
1950
1990
2085 | 2060
2090
2125
2190 | 2300
2330
2370
2480 | 2295
2320
2355
2460 | 2280
2310
2345
2445 | | EXCESS AIR - % | | | | | | | | | | | | | AH In.
AH Out. | | 50.1
66.7 | 26.7
51.1 | 21.1
39.9 | 22.2
34.7 | 21.8
37.3 | 24.2
42.0 | 29.0
52.2 | 48.0
65.4 | 47.0
65,5 | 47.0
68.1 | | FUEL ANALYSIS - % | | | | | | | | | | | | | Carbon
Hydrogen
Nitrogen
Oxygen
Sulfur
Moisture
Ash
HHV - CAL/G | | 63.5
4.1
1.1
6.4
2.3
9.7
12.9
6510 | 64.8
4.1
1.2
5.5
2.2
10.4
11.8
6416 | 64.3
4.2
1.1
5.9
2.9
11.6
10.0
6360 | 64.7
4.2
1.1
5.9
2.8
11.4
9.9
6383 | 62.5
4.2
1.1
5.9
2.7
10.0
13.6
6399 | 64.8
4.2
1.1
5.9
2.5
9.4
12.1
6438 | 65.2
4.2
1.2
5.5
2.1
9.0
12.9
6455 | 63.1
4.1
1.1
6.4
2.4
11.9
11.0
6088 | 65.5
4.1
1.1
6.4
2.6
12.2
10.1
6332 | 65.4
4.1
1.1
6.4
2.2
9.2
11.6
6444 | 90 SHEET 6B ## TEST DATA BASELINE STUDY AFTER MODIFICATION | TEST NO. | <u>1</u> | 2 | <u>3</u> | 4 | <u>5</u> | <u>6</u> | <u>7</u> | <u>8</u> | <u>9</u> | <u>10</u> | <u>11</u> | 12 | 13 | 14 | |---|-------------------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|-----------------|----------------|-----------------|-----------------| | DATE | 6/25/74 | 6/25/74 | 6/25/74 | 6/27/74 | 6/19/74 | 6/27/74 | 6/27/74 | 6/20/74 | 6/20/74 | 6/28/74 | 6/26/74 | 6/26/74 | 6/28/74 | 6/28/74 | | TIME | 2 30 | 4.25 | 6:38 | 9.30 | 13:24 | 11-18 | 3.05 | 9.41 | 12:25 | 14:45 | 1:23 | 4:05 | 11:25 | 9-20 | | UNIT LOAD - MW | 62 | 62 | 64 | 92 | 131 | 127 | 125 | 130 | 129 | 125 | 65 | 68 | 126 | 125 | | FLOWS - 10 ³ KG/HR | | | | | | | | | | | | | | | | FEEDWATER | 219 | 212 | 216 | 315 | 450 | 441 | 412 | 435 | 446 | 421 | 244 | 200 | 423 | 421 | | SH SPRAY (HEAT BALANCE)
Main Steam | 1.05
219 | .818
213 | 1.0
217 | 0
315 | 0
450 | .546
441 | 10.64
423 | 4.95
440 | .227
446 | 6.14
428 | 1.91
246 | 18.14 | 8.46 | 4.0 | | TURBINE LEAKAGE | 10 1 | 9.82 | 10.0 | 14 18 | 20.09 | 19.82 | 19.0 | 19.68 | 19.95 | 19.18 | 12.27 | 218
10.0 | 432
19.27 | 425
19.0 | | RH EXTRACT | 13.64 | 13.77 | 13.0 | 23.27 | 37.55 | 36.05 | 35.27 | 37.09 | 36.91 | 33.23 | 18.55 | 15.55 | 33.09 | 33,55 | | RH SPRAY (HEAT BALANCE)
RH FLOW (CALC.) | 818
196 | 091
189 | 091
194 | .318
278 | .182
393 | .591
386 | . 364
369 | 1.409
385 | .591
390 | 1.227
376 | 2.364 | 1.227 | .818 | .818 | | RH FLOW (TEST) | 187 | 198 | 189 | 279 | 393 | 385 | 309
371 | 393
394 | 389 | 376 | 218
194 | 193
189 | 380
378 | 373
375 | | AIR & GAS FLOWS - 103KG/HR | | | | | | | | • | • | | | | 5.5 | 5.5 | | GAS ENT. AH | 335 | 270 | 413 | 398 | 593 | 546 | 559 | 565 | 542 | 584 | 363 | 419 | 575 | 583 | | GAS LVG. AH | 379 | 311 | 459 | 459 | 737 | 655 | 657 | 694 | 670 | 702 | 425 | 515 | 706 | 688 | | AIR ENT. AH | 355 | 289 | 436 | 427 | 691 | 611 | 616 | 650 | 624 | 661 | 399 | 491 | 665 | 645 | | AIR LVG. AH
AH Leakage | 311
44.6 | 248
40.5 | 390
45.8 | 366
60.9 | 547
144.0 | 502
109.3 | 518
97.6 | 522
128.5 | 497
127.7 | 543
117.8 | 337
61.9 | 395
96.3 | 533
131.6 | 539
105.4 | | UNIT ABSORPTION - 106kg-CAL/HR | 44.0 | 40.3 | -3.0 | 00.3 | 144.0 | 103.3 | 37.0 | 120.5 | 127.7 | | 01.5 | 30.3 | 131.0 | 103.4 | | UNIT ABSORPTION - TO-NG-CAL/HR | | | | | | | | | | | | | | | | ECONOMIZER | 7.79 | 6.78 | 9.98 | 8.59 | 18.60 | 11.49 | 12.57 | 18.24 | 14.94 | 13.71 | 5.09 | 10.16 | 12.73 | 12.63 | | FURNACE
Drum - DESH | 87 8
17.16 | 86.18
12.37 | 84.22
25.86 | 122.19
26.69 | 160.95
51.66 | 162.91
47.43 | 150.89
50.85 | 155 53
51 84 | 158.18
51.23 | 153. 17
51 . 21 | 98.36
22.5 | 74.01
29.08 | 153.42
51.03 | 153.17
51.71 | | DESH - SH Out. | 15.8 | 16.51 | 13.63 | 23.49 | 25.45 | 30.79 | 26.79 | 24.70 | 27.67 | 25.12 | 19.38 | 18.27 | 27.49 | 24.97 | | RH | 19.20 | 17.26 | 19.78 | 26.13 | 36.19 | 35.38 | 34.90 | 36.31 | 35.00 | 33.24 | 23.13 | 22.38 | 33.97 | 33.89 | | TOTAL | 147.8 | 139.1 | 153.5 | 207.1 | 292.9 | 288.0 | 276.0 | 286.6 | 287.0 | 276.4 | 168.5 | 153.9 | 278.6 | 276.4 | | PRESSURES | | | | | | | | | | | | | | | | STEAM & WATER - KG/CM2 | | | | | | | | | | | | | | | | ECONOMIZER IN. | 130.6 | 129.6 | 139.5 | 132.1 | 137 | 135.5 | 135.9 | 136.5 | 136.2 | 134.3 | 129.6 | 127.7 | 134.4 | 135 | | DRUM | 128.9 | 129.5 | 132.6 | 132.9 | 134 9 | 135.5 | 136 1 | 135.8 | 135.5 | 133.7 | 135.5 | 129.6 | 135.5 | 135.4 | | SH - DESH IN.
SH Out. | 127 7
127 | 128.4
127.7 | 131.4
130.8 | 131.1
130.1 | 132.0
130.1 | 132.7
131.0 | 133.9
132.1 | 133
131.3 | 132.5
130.8 | 131.1
129.6 | 134.2
133.4 | 128.5
127.9 | 132.8
131.2 | 133.1
131.7 | | RH IN. | 14.27 | 14.76 | 14.97 | 22.29 | 32.13 | 31.42 | 30.23 | 32.20 | 31.78 | 30.72 | 15.54 | 15.40 | 30.72 | 30.72 | | RH Out. | 13.50 | 13.99 | 14.20 | 21.02 | 30.58 | 29.95 | 28.82 | 30.72 | 30.23 | 29.24 | 14.55 | 14.62 | 29.24 | 29.24 | | AIR & GAS - CM. WG | | | | | | | | | | | | | | | | FD FAN OUT. | 6.10 | 2.79 | 7.37 | 4.83 | 13.21 | 5.33 | 13.46 | 11.68 | 8.89 | 12.70 | 3.05 | 6.86 | 9.40 | 12.7 | | "B" AH AIR OUT. | 1.78 | 1.52 | 2.03 | 1.02 | 5.08 | 1.52 | 4.57 | 4.32 | 2.54 | 5.08 | 1.52 | 2.54 | 2.03 | 4.32 | | "B" AH GAS OUT.
"D" ELEV LEFT REAR FUEL AIR COMP | -10.67
1 <i>.</i> 27 | -11.6B
1 27 | -16.26
1.27 | -15.24
-1.27 | -28.19
1.27 | -24.64
-254 | -25.4
1.27 | -28.45
1.27 | -24.13
.508 | -26.16
1.27 | -11.43
-1.27 | -16.51
.254 | -26.16
.762 | -26.16
1.27 | | "A" ELEV. LEFT REAR FUEL AIR COMP. | 1.91 | .254 | .38 | 1.52 | 2.54 | .508 | 2.54 | 2.03 | 1.016 | 2.54 | -3.05 | 1.27 | 1.016 | 2.54 | | LEFT MILL DUCT AT WINDBOX | 508 | . 254 | .508 | 0 | 2.54 | 0 |
2.54 | 2.03 | .762 | 3.05 | .508 | 0 | 1.016 | 3.05 | | MILL AIR DUCT AT "B" ELEV. MILL
Upper Furnace | .254
-1.27 | 254
-1.27 | 0
-1.27 | 762
-1.52 | .762
508 | 762
-1.52 | 2.03
508 | .762
-1.27 | 762
-1.27 | 2.03
762 | 0
-1.27 | 1.016
-1 52 | 0
-1.52 | 1.78
762 | | TEMPERATURES - °C | | | | | | | | | | | | | | | | STEAM & WATER | | | | | | | | | • | | | | | | | SH Out. | 482 | 461 | 530 | 502 | 516 | 523 | 515 | 510 | 523 | 516 | 508 | 524 | 518 | 522 | | SH DESH IN | 390 | 369 | 441 | 397 | 433 | 423 | 444 | 438 | 433 | 442 | 405 | 479 | 441 | 444 | ## TEST DATA BASELINE STUDY AFTER MODIFICATION | TF07 40 | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | | | | |--|--------------|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------------|--------------|----------------------|--------------| | TEST NO. | <u>1</u> | 2 | <u>3</u> | 4 | <u>5</u> | <u>6</u> | 7 | <u>8</u> | 9 | <u>10</u> | <u>11</u> | <u>12</u> | <u>13</u> | 14 | | TEMPERATURES - °C | | | | | | | | | | | | | | | | STEAM & WATER | | | | | | | | | | | | | | | | SH DESH Out
RH Out. | 387
436 | 368
401 | 437
487 | 399 | 433 | 422
495 | 424 | 430 | 432
495 | 431
486 | 400
466 | 404 | 425
485 | 436
494 | | RH DESH IN | 255 | 232 | 292 | 455
283 | 495
332 | 330 | 493
321 | 493
329 | 333 | 329 | 278 | 514
299 | 324 | 331 | | RH DESH Out.
Economizer in | 250
195 | 232
194 | 291
196 | 282
214 | 328
229 | 328
231 | 321
230 | 322
228 | 331
238 | 325
232 | 265
205 | 292
210 | 322
235 | 328
233 | | ECONOMIZER OUT | 229 | 224 | 239 | 240 | 265 | 254 | 257 | 265 | 268 | 261 | 224 | 257 | 261 | 259 | | #5 HP HEATER IN | 164 | 163 | 165 | 180 | 190 | 193 | 193 | 189 | 194 | 196 | 163 | 164 | 195 | 194 | | #5 HP HEATER OUT
#5 HP HEATER EXT IN | 194
246 | 194
22 7 | 195
282 | 214
277 | 229
331 | 231
324 | 229
316 | 228
323 | 232
329 | 232
321 | 200
268 | 203
289 | 232
318 | 231
323 | | #5 HP HEATER DRAIN | 193 | 193 | 193 | 211 | 221 | 226 | 225 | 226 | 227 | 228 | 194 | 201 | 229 | 228 | | SPRAY WATER | 128 | 130 | 129 | 143 | 163 | 158 | 157 | 163 | 165 | 159 | 126 | 128 | 157 | 156 | | AIR & GAS | | | | | | | | | | | | | | | | AH GAS IN | 269 | 262 | 287 | 290 | 320 | 314 | 320 | 322 | 320 | 320 | 273 | 294 | 320 | 322 | | AH GAS OUT
AH AIR IN | 136
31.7 | 142
29 4 | 132
32.8 | 144
42 2 | 143
36.1 | 149
44.4 | 145
53 3 | 144
34 4 | 151
42.2 | 148
53.3 | 138
40.5 | 135
41.1 | 153
47.2 | 147
51 1 | | AH AIR OUT | 248 | 248 | 252 | 261 | 268 | 268 | 263 | 270 | 273 | 266 | 253 | 258 | 272 | 265 | | FURNACE OUTLET (AVG.) | 1010 | 1010 | 988 | 1149 | 1238 | 1232 | 1182 | 1266 | 1271 | 1199 | 1043 | 1049 | 1238 | 1199 | | AIR HEATER LEAKAGE - \$ | 13.34 | 14.97 | 11 07 | 15 31 | 24.30 | 20.01 | 17.45 | 22.73 | 23.55 | 20.17 | 17 06 | 22 97 | 22 91 | 18 09 | | AH GAS SIDE EFFICIENCY - % UNIT EFFICIENCY - % | 50 7
88 4 | 45 0
88 8 | 56 9
87 4 | 53 3
89.8 | 54.0
88.4 | 54 3
89 2 | 60.1
89 5 | 54.0
89.0 | 52 4
88.9 | 57.8
89 5 | 51.7
89.3 | 55.2
88 0 | 53.0
89.0 | 58.7
89 4 | | , , , , , , , , , , , , , , , , , , , | 00 4 | 00 0 | 0/ 4 | 09.8 | 00.4 | 69 2 | 69 3 | 03.0 | 00.9 | 69 5 | 69.3 | 88 0 | 65.0 | 65 4 | | PRODUCTS OF COMBUSTION - GR/10 ⁵ CAL. | | | | | | | | | | | | | | | | AH HCT SIDE | | | | | | | | | | | | | | | | DRY AIR | 1834 | 1563 | 2191 | 1566 | 1630 | 1533 | 1659 | 1598 | 1519 | 1734 | 1763 | 5558 | 1680 | 1722 | | WET AIR
Dry Products | 1858
1897 | 1583
1625 | 2219
2250 | 1586
1625 | 1652
1691 | 1553
1593 | 1680
1716 | 1619
1659 | 1539
1580 | 1757
1794 | 1786
1822 | 2256
2288 | 1702
1741 | 1744
1783 | | WET PRODUCTS | 5005 | 1725 | 2354 | 1724 | 1789 | 1691 | 1814 | 1755 | 1679 | 1890 | 1923 | 2395 | 1835 | 1885 | | AH COLD SIDE | | | | | | | | | | | | | | | | DRY AIR | 2098 | 1818 | 2448 | 1826 | 2059 | 1867 | 1979 | 1992 | 1909 | 2111 | 2087 | 2771 | 2095 | 2059 | | WET AIR | 2125 | 1842 | 2480 | 1850 | 2086 | 1892 | 1997 | 2018 | 1934 | 2138 | 2114 | 2807 | 2122 | 2085 | | DRY PRODUCTS WET PRODUCTS | 2161
2269 | 1880
1983 | 2507
2615 | 1886
1988 | 2120
2223 | 1927
2030 | 2028
2131 | 2052
2154 | 1970
2075 | 2171
2271 | 2146
22 52 | 2831
2946 | 2156
225 5 | 2120
2226 | | EXCESS AIR - \$ | LEUJ | 1303 | 2013 | 1300 | LLLU | 2030 | 2131 | 2.04 | 20.5 | | | 2545 | 2233 | | | | 20.5 | 10.0 | | | | 10.4 | 25.4 | 17.8 | 12.1 | 26.6 | 30.9 | 63 1 | 22.0 | 25.9 | | AH IN.
AH Out | 33.5
52.7 | 16.0
34.9 | 64.7
84.1 | 15.5
34.7 | 21.0
52 8 | 12.4
36.8 | 49.1 | 46.8 | 40 9 | 54.1 | 54.9 | 102.9 | 52.1 | 50 5 | | FUEL ANALYSIS - % | | | | | | | | | | | | | | | | CARBON | 60.7 | 60 0 | 61 3 | 64 2 | 63.5 | 64.0 | 62.9 | 63.3 | 63 6 | 68.4 | 64.3 | 64.7 | 64.9 | 63.3 | | Hydrogen | 4.3 | 4.3 | 4 4 | 4.6 | 4.2 | 4.6 | 4.5
1.0 | 4.3
1.1 | 4 4
1.1 | 4.9
1.1 | 4.6
1.0 | 4.6
.9 | 4.4
1.1 | 4.5
1.0 | | Nitrogen
Oxygen | .9
7.5 | 1.0
7.4 | 1.0
7 5 | 1.3
7.1 | 1.1
5.7 | 1.1
7.0 | 6.9 | 6 2 | 6.8 | 7.9 | 7.4 | 7.4 | 6.4 | 7.3 | | SULFUR | 3.ž | 4.2 | 3.2 | 3.0 | 2.4 | 3.1 | 3.0 | 1.9 | 2.8 | 2.9 | 3.0 | 3.0 | 15 | 3 1 | | MOISTURE | 10.1 | 9.8 | 77 | 9.4 | 10.9 | 9.1 | 9.3 | 9.1 | 11.0 | 5.2 | 9.6 | 9.2 | 6.5 | 9.9 | | Ash | 13.3 | 13.3 | 14.9 | 10.4 | 12.2 | 11.1 | 12.4 | 14.1 | 10.3 | 9.6 | 10 1 | 10 2 | 15.2 | 10.9 | | HHV - CAL/G | 6011 | 6106 | 6250 | 6478 | 6350 | 6406 | 6478 | 6311 | 6367 | 6783 | 6517 | 6467 | 6350 | 6311 | SHEET 78 # TEST DATA OVERFIRE AIR LOCATION, RATE & VELOCITY VARIATION | TEST NO. | <u>1</u> 5 | <u>16</u> | <u>17</u> | <u>18</u> | <u>19</u> | 20 | 21 | 22 | 23 | |--|---|---|---|--|---|--|--|--|---| | Date
Time
Unit Load - MW | 7/10/74
0:00
97 | 7/10/74
2:15
98 | 7/10/74
4:00
100 | 7/12/74
7:25
100 | 7/11/74
4:35
100 | 7/11/74
23:10
100 | 7/12/74
1:24
102 | 7/12/74
3:30
102 | 7/12/74
4:45
102 | | FLOWS - 103KG/HR | | | | | | | | | | | Feedwater SH Spray (Heat Balance) Main Steam Turbine Leakage RH Extract RH Spray (Heat Balance) RH Flow (Calc.) RH Flow (Test) | 336
.046
336
15.18
27.18
.682
295 | 340
.682
340
15.31
27.41
2.409
300
300 | 338
.409
338
15.22
27.55
3.273
299
303 | 343
.909
344
15.5
28.09
.682
301
300 | 325
13
338
15.23
26.14
1.14
298
295 | 337
6.95
344
15.5
25.18
.136
304
298 | 330
11.5
342
15.4
24.86
0
301
297 | 326
15.55
341
15.4
24.36
0
302
299 | 330
15.45
346
15.59
25.59
0
305
299 | | AIR & GAS FLOWS - 103KG/HR | | | | | | | | | | | Gas Ent. AH
Gas Lvg. AH
Air Ent AH
Air Lvg. AH
AH Leakage | 458
509
477
426
51.2 | 447
501
470
415
54.7 | 442
489
457
410
46.5 | 466
519
486
433
52.8 | 468
519
484
433
52.8 | 468
521
488
436
52.2 | 476
526
493
443
50.1 | 494
550
515
460
55.7 | 492
556
521
457
64.0 | | UNIT ABSORPTION - 10 ⁶ KG-CAL/HR | | | | | | | | | | | Economizer
Furnace
Drum - DESH
DESH - SH Out.
RH
Total | 9.88
127.89
34.62
20.92
25.93
219.2 | 7.23
131.64
34.37
21.24
27.44
221.9 | 6.15
131.9
34.78
21.39
26.91
221.1 | 10.31
129.78
36.87
22.81
28.80
228.6 | 10.16
122.93
38.86
24.97
30.64
227.6 | 10.33
122.99
37.27
24.95
30.79
226.3 | 10.53
124.49
39.56
26.06
32.05
232.7 | 10.61
122.75
40.24
25.60
31.55
230.7 | 10.74
124.41
40.17
25.58
31.75
232.6 | | PRESSURES | | | | | | | | | | | STEAM & WATER - KG/CM2 | | | | | | | | | | | Economizer In.
Drum
SH - DESH In.
SH Out.
RH In.
RH Out. | 133.5
132.6
130.7
129.6
23.76
22.50 | 133.3
133.3
131.3
130.2
23.83
22.57 | 133.1
132.7
130.7
129.6
24.04
22.78 | 133.3
133.6
131.5
130.4
24.32
23.06 | 133.1
133.6
131.7
130.7
23.97
22.71 | 133.1
133.4
131.4
130.3
24.25
22.99 | 133.2
133.1
131.3
130.1
24.46
23.20 | 133.1
133
131.2
130.1
24.46
23.20 | 133.1
133.2
131.4
130.3
24.32
23.06 | | AIR & GAS - CM. WG | | | | | | | | | | | FD Fan Out. "B" AH Air Out. "B" AH Gas Out "D" Elev. Left Rear Fuel Air Comp. "A" Elev. Left Rear Fuel Air Comp. Left Mill Duct at Windbox Mill Air Duct at "B" Elev. Mill Upper Furnace | 7.11
4.57
-18.80
1.016
-3.05
3.81
2.29
-1.52 | 6.35
2.03
-18.80
0
-3.05
1.52
.254
-1.52 | 6.86
1.52
-18.29
254
-2.54
1.27
.254
-1.52 | 6.60
1.78
-19.30
762
-3.30
.508
-1.27
-1.52 |
5.33
1.78
-19.81
762
-2.29
.762
-1.016
-1.52 | 8.13
3.05
-19.56
254
1.78
2.03
.254
-1.52 | 9.40
3.56
-19.56
-3.56
.254
2.79
1.52
-1.52 | 6.60
2.03
-19.81
-3.05
1.27
.762
-1.52 | 6.86
2.03
-19.81
762
3.56
2.03
-1.16
-1.52 | | TEMPERATURES - °C | | | | | | | | | | | STEAM & WATER | | | | | | | | | | | SH Out.
SH DESH In. | 509
418 | 502
416 | 507
418 | 518
424 | 514
440 | 518
429 | 523
440 | 516
445 | 512
443 | 93 SHEET 8A # TEST DATA OVERFIRE AIR LOCATION. RATE & VELOCITY VARIATION | WEAT NA | 10 | 16 | 12 | 10 | 10 | 20 | 21 | 20 | 22 | |--|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------------|---------------| | TEST NO. | <u>15</u> | <u>16</u> | <u>17</u> | <u>18</u> | <u>19</u> | <u>20</u> | <u>21</u> | <u>22</u> | <u>23</u> | | TEMPERATURES - °C | | | | | | | | | | | STEAM & WATER | | | | | | | | | | | SH DESH Out.
RH Out. | 420
458 | 414
455 | 418
457 | 422
481 | 410
492 | 414
492 | 414
510 | 409
501 | 408
494 | | RH DESH In.
RH DESH Out. | 298
295 | 295
287 | 302
292 | 305
303 | 304
302 | 304
304 | 311
311 | 305
306 | 301
301 | | Economizer In.
Economizer Out. | 220
247 | 220
240 | 220
237 | 220
244 | 219
244 | 220
249 | 220
249 | 220
250 | 220
250 | | #5 HP Heater In. | 180 | 181 | 181 | 181
220 | 182
220 | 183
219 | 184
219 | 185
220 | 184
220 | | #5 HP Heater Out.
#5 HP Heater Ext. In. | 218
293 | 219
290 | 220
295 | 298 | 298 | 298 | 305 | 299 | 295 | | #5 HP Heater Drain
Spray Water | 215
143 | 213
140 | 213
140 | 217
146 | 215
145 | 216
148 | 217
148 | 216
149 | 217
149 | | AIR & GAS | | | | | | | | | | | AH Gas In.
AH Gas Out. | 300
141 | 299
140 | 301
139 | 301
141 | 302
139 | 301
142 | 303
143 | 302
142 | 304
143 | | AH Áir In.
AH Air Out. | 47.2
260 | 36.7
262 | 35.0
262 | 38.4
261 | 31.7
263 | 43.9
261 | 44.4
263 | 37.2
259 | 39.5
263 | | Furnace Outlet (Avg.) | 1121 | 1099 | 1105 | 1132 | 1188 | 1154 | 1221 | 1216 | 1199 | | Air Heater Leakage - %
AH Gas Side Efficiency - % | 11.19
59.1 | 12.24
56.3 | 10.53
57.2 | 11.32
57.0 | 10.96
56.5 | 11.15
58.1 | 10.53
58.3 | 11.25
56.6 | 13.01
56.3 | | Unit Efficiency - % | 90.0 | 89.8 | 89.7 | 89.6 | 89.3 | 90.2 | 90.1 | 89.0 | 89.1 | | PRODUCTS OF COMBUSTION - GR/10 ⁶ CAL. | | | | | | | | | | | AH HOT SIDE | | | | | | | | | | | Dry Air
Wet Air | 1725
1748 | 1657
1679 | 1644
1665 | 1675
1697 | 1677
1699 | 1679
1700 | 1694
1716 | 1751
1774 | 1729
1751 | | Dry Products
Wet Products | 1787
1880 | 1717
1806 | 1704
1794 | 1733
1828 | 1739
1837 | 1737
1826 | 1752
1843 | 1810
1908 | 1787
1884 | | AH COLD SIDE | | | | | | | | | | | Dry Air | 1933 | 1876 | 1830 | 1879 | 1876 | 1880 | 1885 | 1963 | 1971 | | Wet Air
Dry Products | 1958
1994 | 1900
1936 | 1854
1891 | 1904
1938 | 1900
1938 | 1904
1938 | 1910
1943 | 1989
2022 | 1996
2029 | | Wet Products | 2091 | 2028 | 1893 | 2034 | 2038 | 2030 | 2037 | 2123 | 2129 | | EXCESS AIR - % | | | | | | | | | | | AH In.
AH Out. | 28.5
44.0 | 27.1
43.8 | 25.6
39.9 | 26.6
42.1 | 24.8
39.6 | 25.4
40.4 | 25.4
39.5 | 27.9
43.4 | 28.1
46.0 | | FUEL ANALYSIS - % | | | | | | | | | | | Carbon
Hydrogen | 65.9
4.4 | 66.6
4.4 | 65.4
4.3 | 65.2
4.5 | 64.3
4.4 | 69.3
4.6 | 67.5
4.6 | 65.4
4.6 | 66.0
4.6 | | Nitrogen | 1.1 | 1.1 | 1.1 | 1.4 | 1.1
7.1 | .9
5.6 | 1.1
5.9 | 1.4
6.1 | 1.4
6.2 | | Oxygen
Sulfur | 6.7
2.3 | 6.8
2.1 | 6.7
2.4 | 6.1
3.0 | 3.0 | 2.1 | 2.1 | 2.5 | 2.6 | | Moisture
Ash | 7.4
12.2 | 6.7
12.3 | 7.3
12.8 | 8.0
11.8 | 9.6
10.5 | 5.8
11.7 | 5.4
13.4 | 7.8
12.2 | 7.9
11.3 | | HHV - CAL/G | 6606 | 6844 | 6706 | 6711 | 6483 | 6994 | 6772 | 6511 | 6650 | 94 SHEET 8B ### TEST DATA ### LOAD VARIATION AT OPTIMUM CONDITIONS | | 0 | VERFIRE | AIR | TILT | VARI | ATION | | LOAD | VARIATI | ION AT | OPTIMU | M CO | NDITIONS | |--|--|--|--|-------------------|--|---|--|--|---|---|--|---|---| | TEST NO. | 24 | <u>25</u> | <u>26</u> | 3 | 27 | 28 | 29 | <u>30</u> | <u>31</u> | <u>32</u> | <u>33</u> | <u>34</u> | <u>36</u> | | DATE
Time
Unit Load – MW | 7/29/74
9·40
124 | 7/29/74
11·05
124 | 7/29/74
13:30
124 | | 29/74
15·00
125 | 7/29/74
16:30
125 | 7/29/74
18·07
124 | 7/30/74
21:05
125 | 7/31/74
12·22
97 | 7/31/74
2:35
65 | 7/31/74
21·50
122 | 7/31/74
23:35
95 | | | FLOWS - 103KG/HR | | | | | | | | | | | | | | | FEEDWATER SH SPRAY (HEAT BALANCE) MAIN STREAM TURBINE LEAKAGE RH EXTRACT RH SPRAY (HEAT BALANCE) RH FLOW (CALC.) RH FLOW (TEST) | 398
9.05
407
18.23
31.07
.909
358
355 | 415
2 68
418
18.73
33.14
.364
367
363 | 397
21.09
412
18.5
30.73
.727
364
363 | | 394
13.5
407
18.23

2.05

359 | 384
30.32
414
18.55
31.59
3.41
367
357 | 416
1.82
418
18.68
36.04
3.27
366
359 | 399
17.77
416
18 64
31.5
0
366
353 | 301
12.32
314
14.18
20.91
2.59
281
273 | 200
4.05
204
10 45
10.75
1.64
185 | 400
8.59
409
18.27
39.5
9.5
960
355 | 305
5.05
310
14.0
23.82
3.41
276
275 | 202
1 27
204
9.41
13.23
1.86
183
187 | | AIR & GAS FLOWS - 103KG/HR | | | | | | | | | | | | | | | GAS ENT. AH GAS LVG. AH AIR ENT. AH AIR LVG. AH AH LEAKAGE | 548
597
559
509
49.7 | 566
631
589
524
65.2 | 585
653
610
542
68.4 | | 557
628
586
515
70.9 | 586
663
618
541
77.0 | 544
622
582
504
78.2 | 574
624
582
532
49.9 | 456
494
461
423
38 • 1 | 341
376
355
320
34.6 | 584
645
602
541
61.6 | 472
538
504
437
66.7 | 329
370
349
308
41 . 1 | | UNIT ABSORPTION - 106KG-CAL/HR | | | | | | | | | | | | | | | ECCHOMIZER FURNACE DRUM - DESH DESH - SH OUT. RH TOTAL | 12.93
145.13
55.72
27.64
35.51
276.9 | 12.22
152.59
52.09
25.20
34.27
276.4 | 12.98
142.53
55.44
29.69
37.52
278.2 | 14
5
2
3 | 12.02
14.47
55.59
28.20
37.62
277.9 | 9.78
142.08
58.14
33.24
41.23
284.5 | 10.33
154.17
53 42
24.39
36.09
278.4 | 8.62
150.04
57.86
32.10
41.83
290.4 | 9.35
1\$5.87
39.46
24.72
31.68
221.1 | 8.27
78.80
26.21
14.97
21.19
149.4 | 4.21
151.80
55.72
26.51
39.99
278.2 | 3.70
120.61
37.72
20.20
28.68
211.0 | 5.44
81.14
23.79
13.81
19.81
144.0 | | PRESSURES | | | | | | | | | | | | | | | STEAM & WATER - KG/CM ² | | | | | | | | | | | | | | | ECOMOMIZER IN.
Drum
SH - DESH IN.
SK OUT.
RH IN.
RH OUT. | 133.6
133.2
131.3
130.2
29.67
28 26 | 134.5
133.9
131.8
130.5
30.23
28.82 | 133.4
133.7
131.2
129.7
29.88
28.47 | 1
1
2 | 33.4
33.2
31.0
29.7
9.88 | 133.5
133
131.0
129.9
30.02
28.61 | 135.3
134.6
132.1
130.7
29.88
28.47 | 134.2
134.6
132.7
131.7
29.95
28.54 | 132.5
132.4
131.5
131.0
22.92
21.65 | 131.2
132.4
131.2
130.5
J5.04
14.27 | 134.7
134.6
132.2
130.8
29.24
27.84 | 132.7
132.7
131.3
130.4
22.64
21.37 | 131.7
132.2
131.2
130.5
14.97 | | AIR & GAS - CH. WG | | | | | | | | | | | | | | | FD FAN OUT. "B" AH AIR OUT "B" AH GAS OUT "D" ELEV. LEFT REAR FUEL AIR COMP "A" ELEV. LEFT REAR FUEL AIR COMP. LEFT MILL DUCT AT WINDBOX MILL AIR OUCT AT "B" ELEV. MILL UPPER FURNACE | 10.67
3.56
-26.42
0
-2.54
2.03
1.27
-1.52 | 10.67
3.05
-25.91
0
2.29
1.78
1.016
-1.52 | 10.92
4.32
-26.42
0
2.29
2.29
1.016 | -2 | 1.43
3.81
6.42
0
2.03
2.03
2.03 | 10.92
4.32
-26.67
0
2.03
2.03
1.79
-1.52 | 11.68
4.06
-26.42
.254
3.30
4.06
3.05
-1.27 | 8.89
2.03
-26.92
.508
.762
1.016
.508
-1.52 | 4.83
.762
-19.05
1.52
254
254
2.03
-1.52 | 4.32
1.016
-14.22
1.52
.254
.254
.762
-1.016 | 10.92
4.32
-26.67
0
1.78
1.78
1.52 | 4.32
.762
-18.54
3.81
0
.254
1.27 | 3.56
.508
-13.46
3.81
.254
.254
1.27 | | TEMPERATURES - °C | | | | | | | | | | | | | | | STEAM & WATER | | | | | | | | | | | | | | | SH OUT
SH DESH IR. | 547
464 | 532
448 | 535
474 | | 545
471 | 538
486 | 536
451 | 554
476
| 539
457 | 549
456 | 548
467 | 529
446 | 533
438 | SHEET BC | | TEST DATA | | | | | | | | | | | | | | |--------|--|---|---|---|------|---|---|---|---|---|---|---|---|---| | | | 0 | VERFIRE | AIR | TILT | VAR | IATION | | LOAD | VARIATI | ON AT | OPTIM | UM CO | NDITIONS | | | TEST NO. | 24 | <u> 25</u> | <u>26</u> | j | <u>27</u> | 28 | 29 | <u>30</u> | _31 | <u>32</u> | <u>33</u> | <u>34</u> | <u>35</u> | | | TEMPERATURES - °C | | | | | | | | | | | | | | | | STEAM & WATER | | | | | | | | | | | | | | | | SH DESH OUT. RH OUT. RH DESH IN. RH DESH OUT. ECONOMIZER IN ECONOMIZER OUT | 444
532
350
348
231
260 | 442
509
338
337
231
257 | 429
529
340
338
231
261 | | 441
543
356
349
230
258 | 421
548
350
340
232
255 | 448
516
343
334
232
254 | 438
554
361
346
230
249 | 423
529
327
317
214
243 | 438
528
317
307
197
235 | 448
526
349
322
237
245 | 432
497
315
302
222
233 | 432
498
301
290
203
228 | | | #5 HP HEATER IN #5 HP HEATER OUT. #5 HP HEATER EXT IN #5 HP HEATER DRAIN SPRAY WATER | 193
230
343
227
155 | 193
230
332
227
156 | 193
230
333
228
155 | | 193
230
347
227
151 | 193
232
341
226
148 | 191
231
333
227
151 | 194
232
353
225
144 | 182
216
320
210
136 | 169
196
305
192
123 | 188
234
331
227
147 | 180
217
299
211
144 | 165
198
290
194
122 | | | AIR & GAS | | | | | | | | | | | | | | | | AH GAS IN. AH GAS OUT. AH AIR IN. AH AIR OUT. FURNACE OUTLET (AVG.) | 332
149
36.1
274
1238 | 320
147
37.8
272
1221 | 323
148
37.8
274
1293 | | 323
150
36.7
275
1232 | 326
151
30.6
276
1310 | 321
143
30.0
269
1188 | 322
146
25.0
274
1288 | 302
140
22.8
265
1238 | 287
129
25.0
257
116 | 323
149
33.9
273
1232 | 302
144
33.3
267
1177 | 284
135
29.4
257
1054 | | | AIR HEATER LEAKAGE - \$ AH GAS SIDE EFFICIENCY - \$ UNIT EFFICIENCY - \$ | 9.07
57.4
89.6 | 11.54
57.4
89.3 | 11.70
57.2
88.9 | | 12 75
55.8
89 3 | 13.15
54.6
88.6 | 14.37
55.9
89.4 | 8.70
56.2
89.0 | 8.36
54.9
89.1 | 10.14
56.5
89.2 | 10.56
56.4
89.0 | 14.14
53.4
88.2 | 12.49
54.0
89.0 | | 8 | PRODUCTS OF COMBUSTION - GR/10 ⁶ CAL. AH HOT SIDE | | | | | | | | | | | | | | | | DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS | 1626
1647
1682
1774 | 1670
1692
1730
1827 | 1708
1730
1768
1867 | | 1634
1656
1695
1789 | 1664
1686
1728
1825 | 1599
1620
1659
1748 | 1610
1631
1669
1760 | 1684
1705
1744
1837 | 1885
1909
1943
2037 | 1708
1730
1769
1867 | 1804
1827
1868
1972 | 1880
1905
1939
2036 | | | AH COLD SIDE | | | | | | | | | | | | | | | | DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS | 1785
1808
1841
1934 | 1878
1902
1938
2038 | 1924
1949
1984
2086 | | 1860
1884
1920
2017 | 1901
1926
1965
2065 | 1847
1871
1907
1999 | 1761
1784
1820
1913 | 1835
1859
1895
1991 | 2089
2116
2147
2243 | 1903
1927
1964
2064 | 2079
2106
2143
2251 | 2131
2159
2191
2290 | | | EXCESS AIR - \$ | | | | | | | | | | | | | | | | AH IN.
AH Out. | 25.9
38 2 | 23.7
39 1 | 25.1
40 9 | | 22 3
39.1 | 20.2
37.3 | 23.7
42.9 | 21 6
33.0 | 25.2
36.4 | 46.9
62.8 | 27.4
41.9 | 27.4
46.9 | 45 9
65.3 | | | FUEL ANALYSIS - \$ | | | | | | | | | | | | | | | ЗЭНСЕТ | CARBON HYDROGEN NI TROGEN OXYGEN SULFUR MO ISTURE ASH | 64 4
4.5
1 0
6.2
3.1
7.5
13.3 | 63 5
4 4
1.2
6.1
3.4
8.7
12 7 | 63.1
4 4
1 0
6.1
3.2
9.0 | | 63.8
4 3
1.1
5.9
3.3
8.4
13.2 | 62.9
4.2
1.2
5.7
3.5
8.7
13 8 | 64.5
4.2
1 0
5.8
3.3
8.1 | 65.2
4.4
1.0
6.3
2.3
7.1
13.7 | 65.8
4.4
1 1
6.4
1.9
7.5
12.9 | 64 3
4.4
1.0
6.9
3.0
7.1
13 3 | 64.3
4 4
9
6.9
3.2
9.6
10.7 | 64.0
4.4
1.1
6.9
2.9
9.7 | 65 0
4.4
1.0
6.9
2.9
9.6
10.2 | | 8 | HHV - CAL/G | 6811 | 6428 | 6317 | | 6500 | 6189 | 6750 | 6644 | 6589 | 6794 | 6517 | 6133 | 6833 | # BASELINE STUDY BOARD DATA | TEST No. | 1 | <u>2</u> | <u>3</u> | 4 | <u>5</u> | <u>6</u> | 7 | <u>8</u> | 9 | <u>10</u> | <u>11</u> | <u>12</u> | <u>13</u> | 14 | |--|---|--|--|---|---|--|--|---|--|---|---|--|--|--| | DATE
Time
Load - Nw | 11- 30-73
01:55
66 | 11-30-73
00:00
65 | 11-30-73
02 45
67 | 1-18-74
16:00
93 | 11-14-73
15: 10
124 | 11-28-73
13:21
123 | 11-28-73
10:37
123 | 11-15-73
11·10
126 | 11-19-73
13:04
122 | 11-19-73
10:00
124 | 12-5-73
01:40
66 | 12-4-73
23·30
74 | 11-16-73
14:20
125 | 11-16-73
9:50
125 | | FLOWS - 10 ³ LBS/HR BFP 2A BFP 2B BFP 2C REMEAT STEAM CONDENSATE SUPERMEAT SPRAY REMEAT SPRAY FEEDWATER PRIMARY STEAM FLOW AIR FLOW - RELATIVE | 0
260
260
630
300
0
370
450 | 0
280
260
632
305
0
0
400
460 | 0
284
278
640
300
12.5
0
350
450
580 | 0
350
400
775
470
3 0
0
660
680
620 | 0
475
480
865
600
6.0
0
880
900 | 0
475
485
865
600
4.0
0
800
900
750 | 0
480
480
860
600
21.5
0
730
900 | 0
460
480
880
600
17.8
0
780
905
823 | 0
480
470
870
599
17.5
0
780
885
750 | 0
480
480
600
31
0
780
900 | 0
460
0
635
300
2.2
0
370
447
450 | 0
460
0
635
300
2.3
0
330
445
550 | 0
460
480
880
600
35
0
780
901
850 | 0
468
490
870
600
36
0
760
901
895 | | FRESSURES STEAM & WATER - PSIG 1ST STAGE EXTRACTION 8TH 12TH 15TH 19TH (-IN. Hg + PSIG) 21ST (IN. Hg) FEEDWATER REGULATOR INLET FEEDWATER DRUM TURBINE THROTTLE REMEAT INLET REMEAT BOML EXHAUST (IN. Hg) MAIN STEAM REMEAT OIL UPPER BURNERS LIGHT OIL LOWER BURNERS | 680
212
78
23
-9
-20
1950
1890
1825
200
194
-29 0
1850
200
0 | 700
218
80
24
-9
-20
1960
1900
1825
205
195
-29.0
1850
209
0 | 680
214
79
24
-9
-20
1950
1900
1900
1955
200
1955
299.0
1850
200
0 | 1000
318
123
39
0
-15 2
1990
1910
1900
1830
308
286
-28.4
1850
297
0 | 1320
418
166
54
6.0
-13.3
2020
1950
1940
1825
410
380
-28.5
1850
385
0 |
1310
415
165
54
6.0
-13.0
2010
1950
1920
1820
410
377
-27.8
1850
390
0 | 1310
415
165
54
6.0
-13.0
2005
1950
1940
408
375
-28.0
1840
388
0 | 1340
422
170
56
6.4
-13.0
2020
1950
1940
1825
418
386
-28.4
1850
398 | 1310
410
165
54
6.0
-13.0
2005
1950
1940
19820
405
375
-28.0
1850
365
0 | 1310
415
165
54
6.0
-13.0
2005
1950
1940
1820
409
376
-28.1
1850
388
0 | 665
210
77
21.5
-8.5
-20.0
1930
1890
1900
1825
197
198
-28.4
1850
200
26 | 775 211 77 23 -8.5 -20.0 1900 1900 1900 1900 -28.4 1850 200 266 26 | 1330
420
169
56
6.6
-13.0
2020
1990
1940
415
382
-28.1
1850
397 | 1330
420
169
56
6.4
-13.0
2015
1950
1940
415
382
-28.1
1850
395
0 | | PRESSURES AIR & GAS - IN. WO 2A FD FAN DISCHARGE 2B FD FAN DISCHARGE 2A PREHEATER OUTLET AIR 2B PREHEATER OUTLET AIR FURNACE PRESSURE SUPERHEATER CAVITY ECON INLET ECONOMIZER OUTLET R.H. ECONOMIZER OUTLET L.H. NO. 2A PREHEATER DIFF. GAS NO. 2A I D. FAN SUCTION NO. 2B I.D. FAN SUCTION PULVERIZER 2A INLET AIR EXHAUSTER 2B INLET AIR EXHAUSTER 2C DISCHARGE PULVERIZER 2C INLET AIR EXHAUSTER 2D DISCHARGE | 1.8
1.2
7
.8
5
1.0
-2.7
-3.7
-3.5
1.9
1.6
-6.4
-6.2
-1.5
13.2
-1.2
-1.2
-1.2
-1.2 | 1.5
1.0
.7
.8
5
-2.2
-3.2
-3.0
1.6
-5.6
-1.5
-1.5
13.4
-1.7
12.9
-2.0
12.5
-1.2 | 1.9
1.5
.5
.5
-1.0
-3.4
-4.4
2.4
2.4
-8.1
-8.2
-1.5
13.3
-1.7
12.8
-2.0
12.5 | 2.1
2.0
.8
.85
-1.0
-2.4
-4.2
2.6
-8.0
-1.3
12.0
-1.3
12.5
12.5
-1.0 | 4.5
4.0
1.5
1.5
-0.5
-1.4
-5.5
-6.80
4.0
3.5
-13.8
-13.8
-1.3
-1.4
13.0
-1.8
12.0 | 3.0
2.8
.5
.48
-1.5
-4.8
-6.2
3.5
-12.0
-12.2
-1.4
12.8
-1.7
12.2
-1.5
12.0 | 6.8
6.0
2.5
2.5
-0.5
-1.4
-5.4
4.2
-7.2
3.9
-15.0
-14.8
-1.1
13.5
-1.5
-1.0
12.0 | 4.2
4.0
1.5
1.5
45
-1.4
-5.6
-6.8
-7.0
3.9
3.5
-13.6
-13.6
-13.5
-1.2
11.5
-1.8
12.1 | 4.1
4.0
0.9
1.0
5
-1.5
-6.7
3.6
-12.5
-13.0
-1.4
12.5
-1.8
12.5
-1.8 | 6.0
5.2
2.5
2.5
2.5
-0.6
-1.4
-6.1
-7.4
-7.0
4.3
3.7
-15.0
-14.5
-1.2
13.5
-1.5
12.5
12.5
-2.0 | 1.5
1.1
.7
.8
-5.2
-1.0
-2.6
-3.5
1.9
-5.8
-1.2
12.3
-1.2
12.8
-2.4
12.0 | 1.5
1.2
.4
.5
-1.1
-3.2
-4.1
-4.0
2.3
1.8
-7.6
-7.2
-1.2
-1.2
-1.2
-1.2
-1.2 | 4.9
4.2
1.5
1.5
50
-1.7
-6.0
-7.5
-7.7
4.1
3.6
14.5
14.5
-1.3
13.5
-1.8
12.2
-2.4 | 5.8
5.2
2.2
2.2
2.35
-1.5
-5.9
-7.6
4.2
3.8
15.0
14.8
-1.2
13.7
-1.4
13.7
-1.4
13.2
-1.7
12.2
-2.0 | 97 # BASELINE STUDY BOARD DATA | Test No. | 1 | <u>2</u> | <u>3</u> | 4_ | <u>5</u> | <u>6</u> | <u>7</u> | <u>8</u> | <u>9</u> | <u>10</u> | <u>11</u> | 12 | <u>13</u> | 14 | |---|------------|------------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|------------| | TEMPERATURES AIR & GAS - °F | | | | | | | _ | _ | - | _ | _ | _ | _ | | | BOILER OUTLET GAS L.H. | 527 | 619 | 641 | 632 | 660 | 661 | 678 | 662 | 656 | 660 | | 604 | | | | BOILER OUTLET GAS R.H | 638 | 631 | 652 | 643 | 671 | 670 | 681 | 672 | 662 | 669 | 621 | 631 | 667 | 669 | | ECONOMIZER OUT GAS L H | 546 | 532 | 569 | 575 | 620 | 619 | 640 | 655
615 | 613 | 678 | 632 | 645 | 678 | 679 | | SCONOMIZER OUT GAS R.H | 547 | 529 | 570 | 570 | 625 | 618 | 632 | 622 | | 632 | 540 | 558 | 632 | 635 | | PREHEATER 2A OUTLET GAS | 300 | 328 | 292 | 320 | 312 | 311 | 298 | 311 | 611
320 | 625 | 531 | 555 | 628 | 630 | | PREHEATER 2B OUTLET GAS | 299 | 294 | 289 | 291 | 311 | 310 | 300 | 311 | 318 | 302
305 | 313 | 310 | 315 | 308 | | PREHEATER 24 INLET AIR | 80 | 75 | 71 | 108 | 102 | 92 | 120 | 100 | 94 | 102 | 291
92 | 289
87 | 315 | 308 | | PREHEATER 28 INLET AIR | 90 | 90 | 79 | 102 | 108 | 90 | 128 | 99 | 98 | 102 | 90 | | 100 | 100 | | PREHEATER 2A OUTLET AIR | 502 | 500 | 511 | 517 | 538 | 540 | 525 | 539 | 540 | 529 | 502 | 81
511 | 100
540 | 100 | | PREHEATER 2B OUTLET AIR | 505 | 495 | 511 | 505 | 530 | 540 | 528 | 535 | 537 | 529
529 | 499 | 508 | 540
539 | 532 | | PULVERIZER 2A INLET AIR | 460 | 460 | 463 | 470 | 479 | 480 | 460 | 472 | 480 | 460 | 480 | 480 | 480 | 532 | | PULVERIZER 2A INTERNAL | 140 | 140 | 143 | 155 | 150 | 142 | 160 | 145 | 142 | 159 | 158 | 141 | 142 | 465
159 | | PULVERIZER 28 INLET AIR | 462 | 460 | 462 | 475 | 482 | 480 | 465 | 480 | 483 | 462 | 465 | 495 | 495 | 472 | | PULVERIZER 28 INTERNAL | 160 | 159 | 159 | 140 | 150 | 160 | 160 | 160 | 150 | 160 | 150 | 150 | 155 | 159 | | PULVERIZER 2C INLET AIR | 455 | 441 | 458 | 460 | 470 | 483 | 470 | 479 | 480 | 475 | 440 | 445 | 485 | 422 | | Pulverizer 2C Internal | 165 | 159 | 158 | 140 | 150 | 140 | 160 | 160 | 141 | 160 | 160 | 142 | 150 | 160 | | PULVERIZER 2D INLET AIR | 80 | 70 | 80 | 110 | 480 | 490 | 480 | 485 | 490 | 485 | 90 | 90 | 495 | 490 | | PULVERIZER 20 INTERNAL | 80 | 70 | 80 | 110 | 159 | 135 | 158 | 155 | 140 | 150 | 90 | 90 | 138 | 159 | | TEMPER & TURNES | | | | | | | | | | | | | | .55 | | TEMPERATURES | | | | | | | | | | | | | | | | STEAM & WATER - "F | | | | _ | _ | | | | | | | | | | | FEEDWATER COMMENTER | 412 | 412 | 412 | 447 | 470 | 465 | 465 | 470 | 469 | 470 | 412 | 414 | 470 | 470 | | ECONOMIZER WATER OUTLET - L H | 452 | 445 | 470 | 468 | 492 | 491 | 500 | 497 | 490 | 500 | 450 | 461 | 500 | 500 | | ECONOMIZER WATER OUTLET - R H
RH DESUPH IN L H | 455 | 446 | 470 | 468 | 495 | 492 | 500 | 499 | 490 | 500 | 449 | 460 | 500 | 501 | | RH DESUPH OUT L H | 565 | 502 | 580 | 535 | 632 | 639 | 637 | 660 | 628 | 649 | 532 | 578 | 640 | 650 | | RH DESUPH. IN R.H. | 565 | 502 | 580 | 532 | 632 | 639 | 637 | 660 | 628 | 646 | 532 | 578 | 640 | 650 | | PH DESUPH OUT R H. | 565
565 | 502 | 580 | 535 | 631 | 639 | 637 | 659 | 628 | 646 | 532 | 578 | 640 | 648 | | SUPERHEAT OUT L H | 565
980 | 502
917 | 580 | 535 | 631 | 639 | 637 | 659 | 628 | 646 | 532 | 578 | 640 | 648 | | SUPERHEAT OUT.R.H. | 979 | 920 | 1020 | 950 | 992 | 999 | 989 | 1021 | 981 | 997 | 960 | 1013 | 995 | 1002 | | THROTTLE STEAM L H. | 975 | 920 | 1003 | 938 | 991 | 999 | 999 | 1000 | 979 | 1008 | 951 | 1006 | 999 | 1004 | | THROTTLE STEAM R.H | 975 | 920 | 1008
1007 | 940
938 | 986
986 | 992 | 989 | 1005 | 980 | 998 | 951 | 1003 | 990 | 999 | | REHEAT OUTLEY L.H | 902 | 821 | | | | 990 | 989 | 1005 | 980 | 998 | 951 | 1005 | 990 | 999 | | REHEAT OUTLEY R.H. | 879 | 809 | 951
930 | 862 | 932
946 | 970 | 972 | 980 | 948 | 982 | 888 | 939 | 959 | 978 | | SUPERHEATER CUTLET | 967 | 911 | 998 | 848
899 | 975 | 930
972 | 922 | 979 | 898 | 941 | 832 | 905 | 965 | 926 | | REHEATER OUTLET | 900 | 829 | 948 | 831 | 940 | 972
959 | 975
964 | 1003 | 965 | 989 | 935 | 990 | 980 | 989 | | | 300 | 023 | 340 | 931 | 940 | 202 | 904 | 985 | 938 | 976 | 874 | 932 | 960 | 975 | | UPPER VALVE CHEST | 958 | 900 | 978 | 899 | 917 | 970 | 969 | 990 | 962 | 988 | 940 | 984 | 971 | 000 | | LOWER VALVE CHEST | 89 | 85 | 90 | 101 | 101 | 95 | 99 | 100 | 100 | 98 | 99 | 100 | 100 | 980 | | H P. EXHAUST | 551 | 501 | 578 | 531 | 632 | 639 | 638 | 659 | 628 | 649 | 535 | 580 | 640 | 98
649 | | REHEAT BOWL | 901 | 835 | 938 | 845 | 941 | 949 | 950 | 980 | 931 | 970 | 879 | 927 | 960 | 972 | | INTERMEDIATE EXHAUST | 429 | 376 | 458 | 370 | 452 | 461 | 461 | 483 | 445 | 475 | 409 | 450 | 470 | 480 | | CONDENSATE TEMP. | 95 | 95 | 95 | 107 | 110 | 115 | 115 | 110 | 112 | 110 | 96 | 96 | 115 | 110 | | | | | | | | | | | | | | 50 | | 1.0 | | S.H DESUPH. IN L H | 800 | 740 | 878 | 771 | 846 | 849 | 891 | 870 | 865 | 911 | 775 | 834 | 900 | 900 | | SH DESUPH OUT LH | 782 | 730 | 811 | 762 | 838 | 833 | 852 | 821 | 822 | 836 | 765 | B19 | 822 | 832 | | SH DESUPH IN R.H | 795 | 738 | 879 | 770 | 856 | 840 | 877 | 878 | 831 | 889 | 765 | 829 | 895 | 904 | | S.H. DESUPH OUT R.H | 789 | 734 | 826 | 762 | 839 | 815 | B12 | 839 | 791 | 801 | 755 | 820 | 808 | 820 | | MISCELLANEOUS | | | | | | | | | | | | | | | | D FAN 2A RPM | 420 | 400 | 400 | 400 | 660 | 600 | CDO | cco | | | | | | | | I D FAN 28 RPM | 420 | 4 0 0
4 0 0 | 480
480 | 480 | 660 | 600 | 680 | 660 | 620 | 683 | 420 | 480 | 680 | 670 | | F D FAN 2A RPM | 420
360 | 400
340 | 480
365 | 480
440 | 660
510 | 600
440 | 680 | 660 | 640 | 680 | 420 | 480 | 680 | 680 | | F D. FAN 2B RPM | 340 | 340 | 380 | 450 | 547 | 440
450 | 660
650 | 505
540 | 450
460 | 600 | 330 | 370 | 540 | 590 | | FAN DAMPER POSITION - (0-12) | 340 | 340 | 300 | 450 | 347 | 450 | 630 | 240 | 460 | 600 | 320 | 380 | 540 | 582 | | ID FAN 2A | 8 0 | 4 8 | 8.0 | 5.6 | 12.0 | 7.4 | 11.4 | 12.0 | 12.0 | 12.0 | e ^ | c - | | | | ID FAN 2B | 8 4 | 5 3 | 8 4 | 5.6 | 12.0 | 7.4 | 11.2 | 12.0 | 12.0 | 12.0 | 5.6
5.7 | 65 | 12.0 | 12.0 | | FD FAN 2A | 3.2 | 25 | 3.8 | 40 | 11.6 | 5.6 | 10.9 | 11.6 | 5.8 | | | 6 3 | 12.0 | 12.0 | | FD FAN 2B | 3.2 | 26 | 3.8 | 4.0 | 11.6 | 6.0 | 10.9 | 11.6 | 5.8
6 0 | 11.6 | 3.2 | 3 4 | 11.6 | 11.6 | | | | | 3 0 | 7.0 | | 0.0 | 10.3 | 11.0 | 80 | 11.6 | 3.2 | 3.4 | 11.6 | 11.6 | | DRUM LEVEL IN. + NORM H ₀ 0 LEVEL | -1 0 | -1 0 | -1 0 | -2.0 | -0.8 | -1 0 | -1.0 | 0 | -O.B | -0.5 | -2.5 | -1.0 | -0.25 | -0 25 | | 2 |
 - | | | | | | _ | | -5.5 | | | -0.23 | -0 23 | B6 133HS # BASELINE STUDY BOARD DATA | TEST NO. | 1 | 2 | <u>3</u> | 4 | <u>5</u> | <u>6</u> | 7 | <u>8</u> | 9 | <u>10</u> | 11 | 12 | <u>13</u> | 14 | |--|---------------------------|---------------------------|---------------------------|------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------|------------------------|--------------------------|--------------------------| | A MILL AMPS B MILL AMPS C MILL AMPS D MILL AMPS | 40
38
32
0 | 40
39
33
0 | 38
40
34
0 | 36
37
38
0 | 44
44
38
36 | 44
42
42
43 | 40
40
42
43 | 43
45
40
41 | 38
40
42
41 | 40
41
45
42 | 40
38
30
0 | 38
34
33
0 | 40
42
39
42 | 39
44
40
42 | | EXHAUSTER DAMPER POSITION - \$ OPEN O - 12 Scale Mill 2A Mill 2B Mill 2C Mill 2D | 11 4
11.0
11.5
0 | 11 2
11.6
11.5
0 | 11.3
11.4
11.5
0 | 5 7
8.1
5.6
0 | 7.9
7.8
5.5
4.2 | 6.0
6.0
4.4
5 9 | 8.0
7.3
4.5
6.2 | 5.3
5.3
5.6
5.5 | 6.0
5.8
8.2
5.8 | 9.0
8.0
8.4
8.0 | 7 0
7.1
6.0
0 | 7.0
7.0
6.0 | 8.0
8.1
5.8
5.8 | 8 0
8.0
5.8
5.8 | | PULVERIZER FEEDER CAP - \$ OPEN O - 12 SCALE MILL 2A MILL 2B MILL 2C MILL 2C | 4.3
3.8
3.0
0 | 4.4
3.7
3.0
0 | 4.4
3.7
3.0
0 | 5.7
5.7
5.6
0 | 5.5
5.4
5.4
4.5 | 4.4
3.9
4.1
5.0 | 4.6
4.0
4.4
5.1 | 5.3
5.1
5.5
5.6 | 5.1
4.5
5.8
6.0 | 5.2
4.6
5.8
6.0 | 4.7
4.3
2 6
0 | 4.5
3.7
3.4
0 | 5.2
5.2
5.8
6.0 | 5.3
5.2
5.6
6.0 | | SPRAY VALVE POSITIONS - \$ OPEN
SH SPRAY L
SH SPRAY R
RH SPRAY L
RH SPRAY R | 16
16
0
0 | 0
0
0 | 39
39
0
0 | 0 0 | 29
0
0
0 | 30
0
0 | 48
32
0
0 | 40
40
0
0 | 44
36
0
0 | 68
52
0
0 | 0
0
0 | 16
16
0 | 66
54
0
0 | 72
56
0
0 | | BURNER TILT POSITION - DEGREES
LR
RR
LF
RF | +2
+6
+6
+6 | +2
+13
+13
+13 | +2
+6
+6
+6 | 0
+8
+10
+10 | +3.5
+2.0
+5.0
+3.0 | +4
+4
+4
+4 | +4
+4
+4
+4 | +10
+5
+10
+7 | -22
-22
-22
-22 | -22
-22
-22
-22 | -9
-9
-9
-10 | +2
+4
+4
+4 | -22
-22
-22
-22 | -22
-22
-22
-22 | | FEEDWATER VALVE - \$ OPEN (O-12 SCALE)
AIR HTR. 2A RECIRC. DAMPER - \$ OPEN
AIR HTR. 2B RECIRC. DAMPER - \$ OPEN | 8.1
37
50 | 8.1
38
51 | 8.1
39
50 | 8.0
39
52 | 12.0
31
38 | 11.4
44
43 | 11.4
40
42 | 12.0
34
36 | 12
32
36 | 12
32
27 | 12
35
36 | 12
35
36 | 9.8
34
36 | 9.8
34
36 | # BIASED FIRING STUDY # BOARD DATA | Test No. | <u>15</u> | <u>16</u> | <u>17</u> | 18 | <u>19</u> | <u>20</u> | <u>21</u> | 22 | 23 | 24 | |--|---|---|---|--|--|--|---|--|--|--| | Date
Time
Load - MW | 1-19-74
09:10
66 | 1-18-74
18:24
96 | 12-3-73
11:07
100 | 12-4-73
01:30
103 | 12-5-73
23:50
99 | 12-6-73
02:30
102 | 1-18-74
20:30
94 | 1-19-74
15:45
64 | 1-19-74
13 30
64 | 1-19-74
11:30
166 | | Flows - 10 ³ LBS/HR BFP 2A BFP 2B BFP 2C Reheat Steam Condensate Superheat Spray Reheat Spray Feedwater Primary Steam Flow Air Flow - Relative | 0
220
230
635
330
3.1
0
390
450
580 | 0
324
382
770
460
10.0
0
660
675
750 | 0
360
384
770
470
17.5
0
600
690
700 | 0
360
385
790
470
17.5
0
600
700 | 0
360
403
770
470
4.9
0

690
660 | 0
360
403
770
460
8.3
0

690
705 | 350
400
760
460
3.0
0
660
675
750 | 0
240
210
650
340
2.9
0
440
450
580 | 0
250
200
640
341
2.5
0
440
450
590 | 0
240
210
640
325
10.0
0
400
442
575 | | PRESSURES Steam & Water - PSIG Ist Stage Extraction 8th 12th 16th 19th (-In. Hg. + PSIG) 21st (In. Hg) Feedwater Regulator Inlet Feedwater Drum Turbine Throttle Reheat Inlet Reheat Bowl Exhaust (In. Hg) Main Steam Reheat Outlet Light Oil Upper Burners Light Oil Lower Burners | 1680
210
75
21
-11.5
-21.0
2045
1890
1890
1845
199
188
-29.4
1850
200
26 | 1000
315
122
39
0.0
-15.2
2000
1920
1915
1830
308
286
-28.5
1850
297
0 | 1020
322
125
40
0.0
-16.0
1960
1910
1900
1810
317
294
-28.1
1840
305
0 | 1040
328
40
0.0
-16.0
1980
1920
1920
1825
321
300
-28.2
1850
310
0 | 1020
320
125
38.5
0.0
-16.0
1975
1910
1910
1825
316
291
-28.4
1850
301
26 | 1030
320
125
39.5
0.0
-16.2
2000
1925
1925
1830
317
293
-28.4
1850
302
26 | 1000
315
120
37.0
0.0
-15.2
1980
1910
1830
308
286
-28.5
1850
297
0 | 680
213
76
20.0
-11.0
-20.5
2050
1890
1940
200
193
-29.0
1850
200
26 | 670
212
77
20.5
-10.5
-20.2
2035
1895
1900
1845
201
190
-29 0
1850
200
26
26 | 670
210
76
20.5
-11.0
-21.0
2025
1890
1900
1835
199
190
-29.2
1850
200
26 | | PRESSURES Air & Gas - In Wg ZA FD Fan Discharge 2B FD Fan Discharge 2A Preheater Outlet Air 2B Preheater Outlet Air Furnace Pressure Superheater Cavity Econ. Inlet Economizer Outlet R.H. Economizer Outlet L.H. No. 2A Preheater Diff. Gas No. 2B Preheater Diff. Gas No. 2A I.D. Fan Suction No. 2B I.D Fan Suction | 1.2
0.8
- 5
- 2
45
-1.0
-4.0
-4.0
-2.2
2.0
-7.2 | 3.0
3.0
1.0
1.0
5
-1.3
-4.2
-5.4
-5.3
2.4
-10.5 | 3.2
2.9
1.0
1.0
47
-1.3
-5.3
-5.3
2.9
2.6
-10.0 | 3 1
2.8
1.0
1.0
5
-1.4
-4.3
-5.5
-5.4
3.0
2.7
-10.2 | 2.0
1.8
4
4
48
-1.3
-4.0
-5.0
-5.0
2.8
2.3
-9.1 | 2.5
2.5
.6
.7
-1.3
-5.3
-5.3
2.9
2.4
-9.8 | 3.2
3.0
1.2
1.2
- 4.0
-5.2
-5.2
2.4
-10.1
-9.8 | 1.2
0.8
- 5
- 2
45
-1.0
-3.0
-4.0
-3.8
2 3
1 9
-7.1 | 1.2
0.8
5
-2
5
-1.0
-3.0
-4.0
-3.9
2.3
1.9
-7.1 | 1.2
0.8
5
2
4
-1.0
-3.1
-4.0
-4.0
2.3
1 9
-7.1
-7.1 | 100 SHEET 10A # BIASED FIRING STUDY # BOARD DATA | | | Du | MIL | DAIR | • | | | | | | |---|--------------|--------------|--------------|--------------|------------|--------------|--------------|--------------|------------|--------------| | Test No. | <u>15</u> | <u>16</u> | <u>17</u> | 18 | <u>19</u> | <u>20</u> | <u>21</u> | 22 | <u>23</u> | <u>24</u> | | PRESSURES (Cont'd) Air & Gas - In. Wg | | | | | | | | | | | | Pulverizer 2A Inlet Air | -1.5 | -1.2 | -1.0 | 8 | -1.4 | 7 | 7 | 7 | -1.5 | -1.4 | | Exhauster 2A Discharge | 11.5 | 12.0 | 12.0 | 13.0 | 13.0 | , 0 | , 0 | 0 | 10.5 | 11.5 | | Pulverizer 2B Inlet Air
Exhauster 2B Discharge | -1.4
11.2 | -1.0
13.2 | -1.5
13.0 | -1.4
12.8 | 75
0 | -1.4
12.9 | -1.3
13.2 | -2.0
12.0 | 7
0 | -1.5
11.5 | | Pulverizer 26 Unscharge | -2.0 | -1.0 | -1.2 | 9 | -1.5 | -1.2 | -1.0 | -1.5 | -1.5 | -0.8 | | Exhauster 2C Discharge | 10.9 | 12.0 | 12.5 | Ö | 12.9 | 12.1 | 12.3 | 12.0 | 11.5 | Ō | | Pulverizer 2D Inlet Äir | -1.2 | -1.2 | -1.2 | -1.6 | -2.5 | -1.8 | -2.0 | -2.3 | -2.0 | -2.8 | | Exhauster 2D Discharge | 0 | 0 | 0 | 12.0 | 12.8 | 11.9 | 10.5 | 10.0 | 10.0 | 8.8 | | TEMPERATURES | | | | | | | | | | | | Air & Gas - °F
Boiler Outlet Gas L.H. | 640 | 649 | 642 | 649 | 639 | 645 | 646 | 637 | 637 | 646 | | Boiler Outlet Gas R.H. | 651 | 660 | 659 | 661 | 650 | 658 | 650 | 640 | 642 | 651 | | Economizer Out Gas L.H. | 569 | 598 | 591 | 595 | 579 | 589 | 590 | 561 | 561 | 571 | | Economizer Out Gas R.H. | 573 | 591 | 590 | 594 | 578 | 585 | 580 |
561 | 561 | 572 | | Preheater 2A Outlet Gas | 301 | 312 | 297 | 300 | 290 | 288 | 310 | 298 | 298 | 302 | | Preheater 2B Outlet Gas
Preheater 2A Inlet Air | 301
81 | 285
109 | 297
99 | 300
99 | 290
71 | 278
62 | 278
108 | 302
85 | 300
86 | 302
82 | | Preheater 28 Inlet Air | 79 | 103 | 98 | 93 | 69 | 62 | 102 | 85 | 85 | 81 | | Preheater 2A Outlet Air | 511 | 520 | 517 | 520 | 512 | 519 | 515 | 502 | 505 | 515 | | Preheater 2B Outlet Air | 519 | 503 | 520 | 522 | 518 | 515 | 495 | 510 | 510 | 519 | | Pulverizer 2A Inlet Air | 465 | 478 | 480 | 484 | 480 | 480 | 110 | 110 | 460 | 478 | | Pulverizer 2A Internal | 145 | 160 | 138 | 142 | 137 | 80 | 110 | 110 | 145 | 140 | | Pulverizer 2B Inlet Air
Pulverizer 2B Internal | 465
140 | 480
160 | 480
145 | 483
144 | 100
100 | 482
162 | 478
155 | 460
150 | 110
110 | 465
140 | | Pulverizer 26 Internal
Pulverizer 2C Inlet Air | 140
445 | 462 | 480 | 100 | 475 | 479 | 460 | 460 | 480 | 95 | | Pulverizer 2C Internal | 175 | 162 | 122 | 100 | 130 | 145 | 160 | 160 | 155 | 95 | | Pulverizer 2D Inlet Air | 89 | 95 | 105 | 490 | 479 | 480 | 460 | 470 | 470 | 460 | | Pulverizer 2D Internal | 89 | 95 | 105 | 152 | 125 | 143 | 142 | 180 | 140 | 165 | | TEMPERATURES | | | | | | | | | | | | Steam & Water - °F
Feedwater | 388 | 445 | 445 | 449 | 442 | 445 | 425 | 412 | 413 | 413 | | Economizer Water Outlet - L.H. | 462 | 480 | 445 | 480 | 471 | 479 | 472 | 457 | 458 | 468 | | Economizer Water Outlet - R.H. | 466 | 480 | 480 | 481 | 473 | 479 | 472 | 456 | 451 | 468 | | RH Desuph. In L.H. | 574 | 596 | 585 | 609 | 577 | 611 | 551 | 505 | 515 | 575 | | RH Desuph. Out L.H. | 574 | 596 | 585 | 609 | 577 | 611 | 551 | 505 | 515 | 575 | | RH Desuph. In R.H. | 574 | 596 | 585 | 609 | 577 | 611 | 551 | 505 | 515 | 575 | | RH Desuph. Out R.H.
Superheat Out L.H. | 574
1000 | 596
986 | 585
978 | 609
1006 | 577
967 | 611
996 | 551
941 | 505
928 | 515
939 | 575
1000 | | Superheat Out R.H. | 1008 | 998 | 970 | 992 | 969 | 1009 | 937 | 921 | 930 | 998 | | Throttle Steam L.H. | 998 | 985 | 970 | 995 | 965 | 1000 | 938 | 927 | 930 | 998 | | Throttle Steam R.H. | 998 | 985 | 970 | 995 | 962 | 1000 | 938 | 920 | 930 | 998 | | Reheat Outlet L.H. | 886 | 901 | 920 | 955 | 900 | 955 | 849 | 819 | 829 | 922 | | Reheat Outlet R.H. | 941 | 961 | 885 | 969 | 861 | 904 | 867 | 828 | 841 | 946 | | Superheater Outlet
Reheater Outlet | 990
913 | 979
930 | 955
920 | 980
950 | 951
895 | 990
950 | 981
866 | 910
879 | 923
840 | 987
942 | | | | | | | | | _ | | | | | Upper Valve Chest | 975 | 965 | 952 | 971
101 | 939
94 | 1019
90 | 921
101 | 900
101 | 908
100 | 976
100 | | Lower Valve Chest
H.P. Exhaust | 100
568 | 101
595 | 100
589 | 609 | 578 | 632 | 555 | 500 | 509 | 568 | | Reheat Bowl | 918 | 937 | 918 | 937 | 885 | 975 | 870 | 830 | 840 | 932 | | Intermediate Exhaust | 440 | 451 | 435 | 455 | 418 | 470 | 401 | 378 | 385 | 458 | | Condensate Temp. | 95 | 105 | 107 | 106 | 104 | 103 | 106 | 97 | 97 | 95 | | | | | | | | | | | | | 101 SHEET 10B # BIASED FIRING STUDY # BOARD DATA | | | DU | MRV | וואש | 1 | | | | | | |--|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------|-------------------|-------------------|-------------------|--------------------| | Test No | <u>15</u> | <u>16</u> | <u>17</u> | 18 | <u>19</u> | 20 | 21 | 55 | <u>23</u> | <u>24</u> | | S H Desuph in L H.
S H Desuph Out L.H
S H Desuph in R.H | 845
828
864 | 811
800
855 | 848
797
840 | 870
816
858 | 809
796
799 | 850
830
331 | 800
789
974 | 805
790
795 | 805
790
800 | 876
809
872 | | S II Desuph Out R H | 851 | 820 | 792 | 809 | 770 | 788 | 786 | 790 | 791 | 821 | | MISCELLANEOUS
1 D Fan 2A RPM
1 D Fan 2B RPM | 420
470 | 540
540 | 550
560 | 560
560 | 520
520 | 540
540 | 520
530 | 430
490
370 | 420
470
370 | 420
470
360 | | F D Fan 2A RPM
F D Fan 2B RPM | 360
340 | 530
535 | 430
440 | 430
440 | 380
380 | 410
420 | 530
535 | 340 | 350 | 340 | | Fan Damper Position - (0-12) ID Fan 2A | 5.4
5.8 | 6 2
6.0 | 7.7
7.8 | 7 6
7.8 | 7 8
7.8 | 79
7.9 | 6.0
5.8 | 5.2
5.2 | 5.2
5.8 | 5.4
5.8 | | ID Fan 2B
FD Fan 2A | 3.7 | 5.0 | 5.8 | 6.8
6.8 | 4.3
4.1 | 4.5
4.4 | 4.8
4.6 | 3.8
3.5 | 3 9
3.7 | 3 7
3 7 | | FD Fan 2B | 3.8 | 4.8 | 68 | -1.0 | -2 0 | -1.0 | -0.6 | -0.5 | -0.6 | -08 | | Drum Level In + Norm. H ₂ O Level | -0 5 | -0.5 | -2.5 | | -2 U
42 | | -0.0 | | 32 | 36 | | A Mill AMPS B Hill AMPS | 35
36 | 36
35 | 46
39 | 46
42 | 0 | 0
42 | 36
38 | 0
31 | 0 | 37 | | C Mill AMPS
D Mill AMPS | 26
0 | 38
0 | 46
0 | 0
43 | 42
44 | 42
44 | 38
39 | 35
36 | 35
37 | 0
26 | | Exhauster Damper Position - 3 Open | | | | | | | | | | | | 120 Full Scale
Mill 2A | 52 | 56 | 56
78 | 80
82 | 82
0 | 0
79 | 0
78 | 0 | 58
0 | 50
52
0 | | m11 2B
m11 2C | 54
32 | 80
57 | 80 | 0
63 | 80
83 | 56
54 | 53
49 | 60
50 | 41
42 | 0
28 | | M111 20 | 0 | 0 | 0 | 63 | 0.3 | 54 | 49 | 49 | 42 | 20 | | Pulverizer Feeder Cap
120' Full Scale | 50 | | 67 | 64 | EA | 0 | • | • | 38 | £0 | | 1111 2A
M111 2B | 52
52 | 56
56 | 57
47 | 64
58 | 54
0 | 0
50
54 | 0
54
53 | 0
35 | 0
50 | 50
50
0 | | Mill 2C
Mill 2D | 20
0 | 55
0 | 56
0 | 0
64 | 52
54 | 55
55 | 50 | 49
50 | 52 | 20 | | Spray Valve Positions - % Open
SH Spray L | 0 | 40 | 47 | 47 | 37 | 40 | 0 | 0 | 0 | 34 | | SH Spray R | 0 | 40
0 | 41 | 41
0 | 17
0 | 20
0 | 0 | 0 | 0 | 34
35
0
0 | | RH Spray L
RH Spray R | 0 | 0 | 0 | Ŏ | Ö | ŏ | Ö | 0
0 | Ö | Ö | | Burner Tilt Positions - Degrees | -10 | 0 | -18 | -9 | • | • | 0 | • | 0 | -18 | | RR | -13 | +1 | -18 | -10 | -9
-9 | -2
-2
- 2 | +8 | 0 | Ó | -19 | | L F
R F | -11
-10 | 0
-1 | -18
-18 | -10
-10 | -9
-10 | -2
-2 | +10
+10 | 0
0 | 0 | -17
-16 | | Feedwater Valve - * Open (0-12 Scale) | 7.8 | 12 0 | 12 0 | 12 0
32 | 12.0 | 8.4
20 | 12.0
37 | 7.8
37 | 7 9
38 | 8.0
39 | | Air Htr 2A Recirc. Damper - ' Open
Air Htr 2B Recirc. Damper - ' Open | 39
32 | 39
41 | 32
34 | 32
31 | 44
42 | 20
20 | 40 | 37
32 | 38
32 | 32 | 102 SHEET 10C # BOARD DATA BASELINE STUDY AFTER MODIFICATION | TEST NO | 1 | 2 | <u>3</u> | 4 | <u>5</u> | <u>6</u> | <u> 7</u> | <u>8</u> | <u>9</u> | <u>10</u> | 11 | 12 | <u>13</u> | <u>14</u> | |---|--------------|--------------|----------------------|--------------|---------------|--------------|--------------|---------------|--------------|--------------|--------------|---------------|--------------|---------------| | DATE | 6/25/74 | 6/25/74 | 6/25/74 | 6/27/74 | 6/19/74 | 6/27/74 | 6/27/74 | 6/20/74 | 6/20/74 | 6/28/74 | 6/26/74 | 6/26/74 | 6/28/74 | 6/28/74 | | TIME | 2.30 | 4-25 | 6.38 | 9:30 | 13:24 | 11 18 | 3:05 | 9.41 | 12.25 | 14 - 45 | 1.23 | 4.05 | 11:25 | 9:20 | | LOAD - MW | 62 | 62 | 64 | 92 | 131 | 127 | 125 | 130 | 129 | 125 | 65 | 68 | 126 | 125 | | FLOWS - 10 ³ LBS/HR | | | | | | | | | | | | | | | | BFP 2A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | BFP 2B | 600 to 520 | 600 to 520 | 600 to 520 | 335 | 574 | 550 | 525 | 568 | 564 | 530 | ŏ | ŏ | 530 | 530 | | BFP 2C | 0 | 0 | 0 | 275 | 524 | 480 | 410 | 520 | 520 | 425 | 460 | 490 | 425 | 425 | | REHEAT STEAM | 642 | 650 | 650 | 705 | 900+ | 900+ | 900+ | 900+ | 900+ | 900+ | 680 | 680 | 900+ | 900+ | | CONDENSATE | 320 | 400 | 380 | 610 | 770 | 740 | 700 | 741 | 742 | 720 | 400 | 400 | 720 | 720 | | SUPERHEAT SPRAY
REHEAT SPRAY | 29.0
0.0 | 29.0
0.0 | 29.0
0.0 | 30.0 | 30.0 | 30.0 | 34.0 | 32.5 | 30.0 | 33.0 | 29.0 | 34.0 | 33.0 | 30.0 | | FEEDWATER | 440 | 440 | 440 | 640 | 930 | 0
910 | 0
860 | 900 | 920 | 0
880 | 0
440 | 0
400 | 0
880 | 0
890 | | PRIMARY STEAM FLOW | 440 | 450 | 440 | 665 | 965 | 945 | 910 | 950 | 960 | 920 | 440 | 460 | 925 | 930 | | AIR FLOW - RELATIVE | 460 | 390 | 622 | 600 | 980 | 820 | 930 | 960 | 870 | 900 | 480 | 660 | 820 | 930 | | PRESSURES | | | | | | | | | | | | | | | | STEAM & WATER - PSIG | | | | | | | | | | | | | | | | 1ST STAGE EXTRACTION | 650 | 660 | 660 | 990 | 1440 | 1420 | 1350 | 1440 | 1440 | 1370 | 700 | 700 | 1380 | 1380 | | Втн | 210 | 210 | 210 | 311 | 452 | 442 | 427 | 451 | 448 | 430 | 550 | 220 | 436 | 431 | | 12TH | 75 | 76 | 75 | 120 | 183 | 176 | 171 | 183 | 180 | 174 | 79 | 80 | 175 | 175 | | 16тн
19тн (-In. Hg + PSIG) | 20
-12 | 20
-12 | 20
-12 | 36
-3 | 59
6.9 | 57
5.9 | 55
5.0 | 59
6.9 | 59
6.9 | _56 | 55 | 55 | _56 | 56
5.0 | | 21st (In. Hg) | -20 0 | -20.0 | -20 0 | -16. 1 | -11.0 | -12.0 | -12.0 | -11 0 | -11.0 | 5.0
-12.1 | -11
-19.5 | -11
-20.0 | 5.2
-12.1 | -12.2 | | FEEDWATER REGULATOR INLET | 1950 | 1920 | 1950 | 1990 | 2020 | 2060 | 2050 | 2050 | 2050 | 2040 | 1950 | 1950 | 2050 | 2050 | | FEEDWATER | 1870 | 1850 | 1900 | 1940 | 1960 | 1975 | 1970 | 1960 | 1950 | 1960 | 1900 | 1900 | 1970 | 1970 | | Drum | 1870 | 1860 | 1890 | 1910 | 1950 | 1950 | 1940 | 1950 | 1950 | 1940 | 1880 | 1880 | 1940 | 1940 | | TURBINE THROTTLE | 1825 | 1850 | 1835 | 1840 | 1825 | 1825 | 1840 | 1825 | 1825 | 1825 | 1825 | 1825 | 1830 | 1835 | | REHEAT INLET | 200 | 200 | 197 | 307 | 448 | 438 | 421 | 448 | 441 | 424 | 210 | 215 | 428 | 428 | | REHEAT BOWL
Exhaust (In. Hg) | 197
-27.6 | 192
-28.2 | 187
-28. 2 | 284
-28.1 | 412
-27 | 402
-27.8 | 388
-27.8 | 412
-27 | 409
-27 | 390
-28.0
| 197
-27.9 | 198
-28.1 | 392
-28.0 | 392
-27.2 | | Main Steam | 1840 | 1825 | 1850 | 1860 | 1860 | 1865 | 1875 | 1865 | 1865 | 1850 | 1840 | 1850 | 1855 | -27.2
1855 | | REHEAT OUTLET | 195 | 500 | 197 | 295 | 425 | 415 | 402 | 425 | 420 | 404 | 205 | 210 | 402 | 406 | | LIGHT OIL UPPER BURNERS | 24.0 | 24 0 | 24.0 | 0 | 23.7 | 0 | 0 | 0 | 0 | 0 | 23.7 | 23.7 | 0 | 0 | | LIGHT OIL LOWER BURNERS | 25.2 | 25.2 | 25 2 | 0 | 24 8 | 0 | 0 | 0 | 0 | 0 | 24 9 | 24.9 | 0 | 0 | | PRESSURES | | | | | | | | | | | | | | | | AIR & GAS - IN. WG | | | | | | | | | | | | | | | | 24 FD FAN DISCHARGE | 2.0
1.5 | 1 5
1 0 | 2.7 | 2.0 | 5.6 | 3.5 | 6.0 | 5.0
4.9 | 4.0 | 5.5
5.0 | 1.9 | 3.1 | 4.2
4.0 | 5.5
5.0 | | 28 FD FAN DISCHARGE
2A Preheater Outlet Air | 1.0 | .8 | 2.2 | 1.6
.5 | 5.2
2.2 | 3.5
1.0 | 5.5
2.2 | 2.0 | 3.8
1.1 | 2.0 | 1.2 | 2.7
1.2 | 1.2 | 2.0 | | 28 PREHEATER OUTLET AIR | 1 0 | .8 | 1.2 | .6 | 2.2 | 1.0 | 2.2 | 2.0 | i.i | 2.0 | .9 | 1.2 | 1.2 | 5.0 | | FURNACE PRESSURE | 45 | 45 | 45 | 45 | 1 | 45 | 04 | 27 | 45 | 08 | - 475 | 475 | 44 | 05 | | SUPERHEATER CAVITY | - 8 | 75 | -1.0 | -1.0 | -1.0 | -1.5 | -1.1 | -1.25 | -1.4 | -1.2 | -1.0 | -1.0 | -1.5 | -1.2 | | ECON. INLET | -2.5 | -2.0 | -3 4 | -3.4 | -5.6 | -5.5 | -5.7 | -5.5 | -5.4 | -5 7 | -2.5 | -3.75 | -5.7 | -5.7 | | ECONOMIZER OUTLET R.H. | -3.4 | -3.0 | -4.5 | -4.4 | -7.0 | -6.8 | -7.2 | -7.2 | -6.7 | -7.1 | -3.5 | -4.8 | -7.4 | -7.3 | | ECONOMIZER OUTLET L.H. | -3.3
2.0 | -2 8
1 6 | -4.6
2.5 | -4.4
2.5 | -7.1
4.2 | -7.0
3.7 | -7.4
4.1 | -7.4
4.0 | -6.9
3.8 | -7.4
4.1 | -3.4
1.95 | -4.8
2.7 | -7.5
4.0 | -7.4
4.1 | | No. 2A Preheater Diff. Gas No. 2B Preheater Diff. Gas | 1.2 | 1 1 | 2.0 | 1.8 | 3.4 | 3.1 | 3.3 | 3.5 | 3.0 | 3.4 | 1.4 | 2.7 | 3.2 | 3.4 | | No 24 I.D. FAN SUCTION | 6 2 | 5.1 | 8.5 | 8 2 | 14.5 | 13.2 | 14.7 | 14.5 | 13.5 | 14.6 | 6.2 | 9.1 | 14.5 | 14.8 | | No 28 I.D. FAN SUCTION | 5.2 | 4 5 | 8.5 | 8.0 | 14 0 | 13.0 | 14.0 | 14.0 | 13.4 | 14.1 | 5.9 | 9.0 | 14.1 | 14.2 | | PULVERIZER 24 INLET AIR | -1.2 | -1.2 | -1.2 | -1.4 | -1.0 | -1.4 | -1.0 | -1.0 | -1.1 | -1.2 | -1.3 | -1.3 | -1.5 | -1.2 | | EXHAUSTER 24 DISCHARGE | 10 7 | 11.0 | 10.8 | 12.0 | 12 0 | 12.0 | 12.7 | 12.0 | 12.2 | 12.5 | 11.6 | 11.2 | 13.2 | 13.4 | | PULVERIZER 28 INLET AIR | -1.2 | -1.2 | -1.0 | -1.4 | 25 | -1.2 | -1.0 | 75 | -1.0 | -1.2 | -1.2 | -1.2 | -1.4 | -1.2 | | EXHUASTER 28 DISCHARGE | 10 2
-3 5 | 9.5
-3 4 | 10.7 | 10 7 | 14.5
-1.25 | 11.2
-3.0 | 11 5
-1.8 | 14.2
-1 75 | 14.0
-2.0 | 10.5
-2 8 | 10.0
-3.6 | 9.9
-3.25 | 10.7
-3.2 | 11.5
-2.8 | | Pulverizer 2C Inlet Air
Exhauster 2C Discharge | -3 5
10 5 | -3 4
10 5 | -3.4
10.5 | -3 0
11.5 | 12.5 | 12.0 | 12 0 | 12.0 | 12.0 | -2 8
11.5 | 10.2 | -3.25
10.4 | 11.5 | 12.0 | | PULVERIZER 2D INLET AIR | -1.2 | -1.2 | -1.2 | -1 2 | -1.75 | -1 9 | -1.5 | -1.9 | -2.0 | -1 75 | -1.2 | -1.2 | -2.0 | -1 6 | | EXHAUSTER 20 DISCHARGE | 0 | 0 | 0 | ō | 11.5 | 12 0 | 12.3 | 11.5 | 11.0 | 12.0 | ō | | 12 0 | 12.3 | | | | | | | | | | | | | | | | | # BOARD DATA # BASELINE STUDY AFTER MODIFICATION | TEST NO. | 1 | <u>2</u> | <u>3</u> | 4 | <u>5</u> | <u>6</u> | 7 | <u>8</u> | 9 | <u>10</u> | <u>11</u> | 12 | <u>13</u> | <u>14</u> | |---|------------|------------|------------|------------|------------|------------|------------|-----------------|------------|------------|------------|------------|------------|------------| | TEMPERATURES | | | | | | | | | | | | | | | | AIR & GAS - "F
Boiler Outlet GAS L H. | 614 | 607 | 631 | 628 | 660 | 647 | 652 | 662 | 658 | 652 | 619 | 640 | 651 | 652 | | BOILER OUTLET GAS R.H. | 625 | 618 | 642 | 638 | 669 | 657 | 662 | 669 | 661 | 662 | 628 | 650 | 662 | 663 | | ECONOMIZER OUT GAS L.H | 520 | 504 | 548 | 552 | 612 | 594 | 609 | 614 | 606 | 608 | 527 | 561 | 604 | 609 | | ECONOMIZER OUT GAS R H. | 515 | 504 | 552 | 558 | 615 | 600 | 611 | 617 | 610 | 612 | 527 | 569 | 610 | 612 | | PREHEATER 2A OUTLET GAS | 285 | 290 | 272 | 292 | 590 | 295 | 300 | 290 | 299 | 305 | 282 | 272 | 311 | 300 | | PREHEATER 28 OUTLET GAS | 279 | 289 | 279 | 282 | 290 | 305 | 298 | 292 | 299 | 302 | 290 | 285 | 306 | 298 | | PREHEATER 2A INLET AIR | 89 | 82 | 89 | 98 | 100 | 105 | 120 | 99 | 101 | 120 | 98 | 92 | 110 | 113 | | PREHEATER 28 INLET AIR | 89 | 88 | 90 | 98 | 101 | 109 | 122 | 99 | 101 | 122 | 101 | 101 | 108 | 115 | | PREHEATER 2A OUTLET AIR | 475 | 471 | 479 | 496 | 509 | 508 | 499 | 516 | 520 | 504 | 480 | 488 | 518 | 501 | | PREHEATER 28 OUTLET AIR | 477 | 425 | 485 | 491 | 510 | 512 | 500 | 518 | 520 | 509 | 485 | 496 | 517 | 506 | | PULVERIZER 2A INLET AIR | 418 | 420 | 420 | 430 | 460 | 430 | 420 | 455 | 460 | 410 | 420 | 410 | 440 | 430 | | PULVERIZER 24 INTERNAL | 145 | 142 | 160 | 150 | 140 | 140 | 155 | 145 | 140 | 160 | 145 | 155 | 160 | 155 | | PULVERIZER 28 INLET AIR | 435 | 423 | 435 | 440 | 480 | 450 | 440 | 465 | 470 | 440 | 425 | 425 | 455 | 440 | | PULVERIZER 28 INTERNAL | 150 | 160 | 155 | 140 | 145 | 140 | 145 | 160 | 140 | 160 | 145 | 155
420 | 150
440 | 155 | | PULVERIZER 2C INLET AIR
PULVERIZER 2C INTERNAL | 410
16Ò | 420
160 | 420
165 | 425
139 | 475
180 | 442
135 | 450
160 | 470
200 | 475
240 | 435
160 | 410
170 | 180 | 440
150 | 435
155 | | PULVERIZER 2D INTERNAL | 80 | 80 | 165
80 | 80 | 475 | 455 | 455 | 465 | 475 | 455 | 80 | 80 | 460 | 460 | | PULVERIZER 2D INTERNAL | 80 | 80 | 80 | 80 | 175 | 155 | 175 | 175 | 175 | 180 | 80 | 80 | 175 | 175 | | TOUR ED THICKNE | • | | | • | *** | .55 | | | 5 | , 30 | • | ••• | | | | TEMPERATURES | | | | | | | | | | | | | | | | STEAM & WATER - "F | | | | | | | | | | | | | | | | FEEDWATER | 408 | 408 | 408 | 440 | 472 | 470 | 470 | 472 | 472 | 457 | 411 | 411 | 460 | 460 | | ECONOMIZER WATER OUTLET - L H | 440 | 430 | 460 | 460 | 492 | 486 | 490 | 494 | 490 | 489 | 447 | 471 | 489 | 490 | | ECONOMIZER WATER OUTLET - R H | 439 | 429 | 459 | 46O | 492 | 485 | 490 | 492 | 490 | 489 | 441 | 470 | 489 | 490 | | RH DESUPH. IN L H | 495 | 461 | 562 | 547 | 638 | 629 | 610 | 630 | 630 | 621 | 520 | 562 | 621 | 630 | | RH DESUPH. OUT L H | 495 | 461 | 562 | 547 | 638 | 629 | 610 | 630 | 630 | 621 | 520 | 562 | 621 | 630 | | RH DESUPH, IN R H | 495 | 461 | 562 | 547 | 638 | 629
629 | 610 | 630 | 630 | 621
621 | 520
520 | 562
562 | 621
621 | 630
630 | | RH DESUPH. OUT R.H. | 495
907 | 461
872 | 562
992 | 547
935 | 638
982 | 979 | 610
962 | 630
972 | 630
970 | 968 | 935 | 980 | 972 | 982 | | SUPERHEAT OUT L H.
SUPERHEAT OUT, R H | 907
915 | 872
872 | 998 | 935 | 980 | 979 | 961 | 971 | 970 | 968 | 941 | 985 | 968 | 982 | | THROTTLE STEAM L H | 916 | 870 | 998 | 941 | 978 | 977 | 960 | 970 | 970 | 965 | 941 | 982 | 968 | 980 | | THROTTLE STEAM R H | 918 | 862 | 994 | 941 | 980 | 975 | 961 | 970 | 969 | 972 | 941 | 985 | 970 | 982 | | REHEAT OUTLET L H | 821 | 780 | 912 | 858 | 932 | 926 | 920 | 941 | 930 | 932 | 858 | 940 | 938 | 942 | | REHEAT OUTLET R.H. | 811 | 760 | 910 | 850 | 925 | 907 | 900 | 928 | 917 | 908 | 850 | 930 | 911 | 919 | | SUPERHEATER OUTLET | 917 | 875 | 997 | 940 | 982 | 976 | 964 | 978 | 982 | 975 | 945 | 987 | 975 | 985 | | REHEATER OUTLET | 815 | 755 | 900 | 850 | 924 | 917 | 912 | 925 | 916 | 922 | 855 | 935 | 924 | 930 | | | | | | | | | | | | | | | | | | UPPER VALVE CHEST | 860 | 820 | 929 | 870 | 909 | 908 | 897 | 906 | 901 | 896 | 885 | 929 | 891 | 902 | | LOWER VALVE CHEST | 95 | 95 | 90 | 97 | 105 | 99 | 101 | 102 | 108 | 101 | 99 | 98 | 100 | 100 | | H P. Exhaust | 470 | 439 | 532 | 820 | 600
890 | 882 | 880 | 595
897 | 595
886 | 875 | 491
832 | 530
912 | 875 | 879 | | REHEAT BOWL | 801 | 750
312 | 881
411 | | 419 | 002 | | 420 | 412 | 6/3 | 375 | 431 | | | | INTERMEDIATE EXHAUST
Condensate Temp. | 350
110 | 107 | 107 | 107 | 127 | 119 | 119 | 127 | 127 | 115 | 107 | 107 | 120 | 119 | | CONDENSATE TEMP. | 110 | 107 | 107 | 101 | 167 | 113 | 113 | | | | | | | .,, | | S H DESUPH. IN L.H | 749 | 701 | 842 | 770 | 835 | 818 | 850 | 850 | 821 | 851 | 771 | 908 | 845 | B42 | | S H. DESUPH. OUT L H. | 738 | 696 | 827 | 760 | 820 | 804 | 808 | 802 | 805 | 811 | 759 | 785 | 808 | B19 | | S.H DESUPH. IN. R H. | 749 | 709 | 842 | 765 | 821 | 810 | 842 | 83 9 | 815 | 850 | 762 | 899 | 845 | 847 | | S H. DESUPH. OUT R H | 740 | 701 | 829 | 757 | 810 | 801 | 800 | 800 | 800 | 820 | 752 | 782 | 811 | 826 | | | | | | | | | | | | | | | | | | MISCELLANEOUS | *** | | | | CDE | CEO | COE | COE | 660 | 690 | 420 | 530 | 680 | 690 | | I D FAN 2A RPM | 420 | 380 | 500 | 500 | 685
675 | 650
650 | 685
680 | 685
675 | 660
660 | 560 | 420
420 | 520
520 | 660 | 665 | | I D FAN 28 RPM | 420
250 | 380
320 | 500
450 | 500
430 | 630 | 530 | 680 | 600 | 520 | 580 | 350 | 460 | 580 | 660 | | F D. FAN 2A RPM
F D. FAN 2B RPM | 350
340 | 320
280 | 450
440 | 430 | 625 | 530 | 680 | 600 | 540 | 585 | 340 | 460 | 585 | 645 | | FAN DAMPER POSITION - (0-12) | 340 | 200 | 440 | +30 | JEJ | 330 | 300 | 500 | 3-0 | 500 | 5.15 | | 300 | | | ID Fan 2A | 6 1 | 5 8 | 8 0 | 72 | 12 | 98 | 12 0 | 12 | 12 | 12.0 | 7.2 | 8.2 | 12 | 12 | | ID FAN 2B | 6 1 | 5 8 | 8 0 | 7 1 | 12 | 10 0 | 12 0 | 12 | 12 | 12.0 | 70 | 8.0 | 12 | 12 | | FD FAN 2A | 5 9 | 4 4 | 6 2 | 4 3 | 12 | B 4 | 12 0 | 12 | 12 | 12 0 | 6 2 | 8 9 | 12 | 12 | | FD FAN 2B | 6 0 | 4 4 | 6 0 | 4 4 | 12 | 86 | 12 0 | 12 | 12 | 12 0 | 6 3 | 8.9 | 12 | 12 | | | | | _ | _ | | _ | _ | | | | | | | | | DRUM LEVEL IN. THORM HOO LEVEL | -2 5 | -4 O | -4 0 | -4.0 | -3 0 | -4 | -4 | -3 0 | -3 0 | -2.2 | -4.0 | -4.0 | -4.0 | -4.2 | 2 BOARD DATA BASELINE STUDY AFTER MODIFICATION | TEST NO. | 1 | <u> 2</u> | <u>3</u> | 4 | <u>5</u> | <u>6</u> | <u>7</u> | <u>8</u> | <u>9</u> | <u>10</u> | <u>11</u> | <u>12</u> | <u>13</u> | 14 |
--|---------------------|-----------|----------|----------------|------------|----------|----------------------|---------------|---------------|----------------|-----------|-----------|----------------------|----------------------| | 24 MILL AMPS | 0
35
35
35 | 36 | 34 | 36
36
38 | 40 | 37 | 36
36
36
38 | 42 | 42
39 | 38 | 35 | 32
33 | 36
36
38
36 | 36
35
36
36 | | 28 Mill AMPS | 35 | 35
32 | 37 | 36 | 39 | 36
37 | 36 | 40
40 | 39 | 34
37
36 | 34 | 33 | 36 | 35 | | 2C MILL AMPS | 32 | 32 | 31 | 38 | 40 | 37 | 36 | 40 | 41 | 37 | 26 | 30 | 38 | 36 | | 2D MILL AMPS | 0 | 0 | 0 | 0 | 36 | 38 | 38 | 34 | 35 | 36 | 0 | 0 | 36 | 36 | | EXHAUSTER DAMPER POSITION - \$ OPEN 0 - 12 Scale | | | | | | | | | | | | | | | | MILL 2A | 4.2 | 4.3 | 4 0 | 5 4 | 5 2 | 5.4 | 5-4 | 5.4 | 5.3 | 5.4 | 4.7 | 4.4 | 6 8 | 6.8 | | MILL 28 | 5.5 | 5 5 | 5 5 | 5.6 | 7.75 | 5 6 | 5 6 | 8 1 | 8.0 | 5 6 | 4.8 | 4.5 | 5.9 | 6.8
5.8 | | MILL 2C | 4.2 | 4 2 | 4 2 | 5.4 | 5 2 | 5.4 | 5 4 | 5.5 | 5.4 | 5 4 | 3.2 | 3.8 | 5.7 | 5.6
5.8 | | MILL 2D | | 4 2 | Ò | Ö | 5 2
5.2 | 5 4 | 5.4 | 5 6 | 5.4 | 5.5 | 0 | ō | 5.8 | 5.8 | | | | | | | | | | | | | | | | | | PULVERIZER FEEDER CAP - % OPEN 0 12 Scale | | | | | | | | | | | | | | | | MILL 2A | 4.2 | 4.3 | 4 0 | 5 4 | 5 2 | 5.4 | 5.4 | 5.4 | 5 3 | 5.5 | 4 8 | 4.4 | 5.7 | 5.6 | | MILL 2B | 4.2 | 4.3 | 4.0 | 5.4 | 7.75 | 5.4 | 5.4 | 8 1 | 8.0 | 5.5 | 4.8 | 4.4 | 5.7 | 5.6
5.6 | | MILL 2C | 3 0 | 3 2 | 2 9 | 5 B | 5.2 | 5.8 | 6.0 | 5 5 | 5.4 | 6.0 | 2.6 | 3.7 | 6.2
5.8 | 6.1
5.8 | | MILL 2D | 0 | Ö | 0 | 0 | 5.2 | 5.6 | 5.6 | 5.6 | 5.4 | 5.6 | 0 | 0 | 5.8 | 5.8 | | | | | | | | | | | | | | | | | | SPRAY VALVE POSITIONS - % OPEN | | | | | | | | | | | _ | | | | | SH SPRAY L | 0 | 0 | 0 | 0 | 0 | o | 44 | 40 | 18 | 37 | 0 | 65 | 40 | 30 | | SH SPRAY R | 0 | 0 | 0 | 0 | 0 | 0 | 40
0 | 40
40
0 | 18
18
0 | 39
O | 0 | 64
O | 40
38
0 | 30
30
0
0 | | RH SPRAY L | 0 | Ō | ō | 0 | 0 | 0 | o | Ü | 0 | ō | 0 | 0 | ö | ŏ | | RH SPRAY R | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | U | U | U | J | | BURNER TILT POSITION - DEGREES | | | | | | | | | | | | | | | | LR | 0 | 10 | -13 | +4 | -8 | -2 | -22 | -22 | -9 | -3 | -10 | -10 | -3 | -3 | | RR | 0 | 9 | -13 | +4 | -6
-5 | -2
+2 | -26
-22 | -25
-21 | -11 | -3
0 | -12 | -10 | -3
-3
0 | -3
-3
0 | | LF | 0 | 12 | -10 | +7 | - 5 | +2 | -22 | | -9 | | -9 | -8 | 0 | 0 | | RF | 0 | 10 | -12 | +6 | -7 | 0 | -24 | -23 | -10 | -1 | -10 | -9 | -1 | -1 | | FEEDWATER VALVE - \$ OPEN (0-12 SCALE) | 8.8 | 8.8 | 8.7 | 11.5 | 12+ | 11.4 | 11.4 | 12+ | 12+ | 12+ | 12+ | 8.5 | 12+
46 | 12+
46
43 | | AIR HTR. 24 RECIRC. DAMPER - \$ OPEN | 32 | 32 | 38 | 52 | 26 | 48 | 48 | 26 | 26 | 46 | 41 | 41 | 46 | 46 | | AIR HTR 28 RECIRC. DAMPER - % OPEN | 32
32 | 32 | 39 | 52 | 25 | 49 | 44 | 26 | 26 | 42 | 41 | 41 | 43 | 43 | BOARD DATA OVERFIRE AIR LOCATION, RATE & VELOCITY VARIATION | | UVERFIRE | AIK LUCA | IIUN, KAII | C OF ACT | UGITT VA | KIAIIUN | | | | |--|--|--|---|--|--|---|--|--|---| | TEST NO. | <u>15</u> | <u>16</u> | <u>17</u> | <u>18A</u> | <u>19</u> | 20 | <u>21</u> | <u>22</u> | <u>23</u> | | Date
Time
Load - MW | 7/10/74
0 00
97 | 7/10/74
2·15
98 | 7/10/74
4:00
100 | 7/12/74
7:25
100 | 7/11/74
4 35
100 | 7/11/74
23.10
100 | 7/12/74
1·24
102 | 7/12/74
3:30
102 | 7/12/74
4:45
102 | | FLOWS - 103LBS/HR | | | | | | | | | | | BFP 2A BFP 2B BFP 2C Reheat Steam Condensate Superheat Spray Reheat Spray Feedwater Primary Steam Flow Air Flow - Relative | 0
415
360
810
525
30.5
0
690
725 | 0
415
360
810
530
30.5
0
690
715
660 | 0
420
360
820
535
30.0
0
690
720
660 | 0
425
365
835
535
29.8
0
700
725
675 | 0
410
355
805
525
36.0
0
650
715
680 | 0
420
360
820
540
31.9
0
685
725
720 | 0
420
360
830
535
33.0
0
670
725
720 | 0
420
365
830
540
34.0
0
670
725
680 | 0
425
365
830
540
34.0
0
670
725
700 | | PRESSURES | | | | | | | | | | | STEAM & WATER - PSIG | | | | | | | | | | | lst Stage Extraction 8th 12th 12th 16th 19th (-In Hg. +PSIG) 21st (In. Hg) Feedwater Regulator Inlet Feedwater Drum Turbine Throttle Reheat Inlet Reheat Bowl Exhaust (In. Hg) Main Steam Reheat Outlet Light Oil Upper Burners Light Oil Lower Burners | 1050
334
131
40
0
-15.2
2000
1950
1950
329
304
-27 3
1870
315
0
0 | 1060
338
130
40
0
-15.2
2010
1950
1930
1850
330
305
-27.6
1870
315
0 | 1050
340
133
40
0
-15.1
2010
1950
1935
1850
330
-27.6
1870
320
0 | 1080
340
135
41
0
-15 2
2000
1950
1930
1845
332
339
-27 3
1865
321
23
25 | 1060
340
132
41
0
-15.6
2000
1940
1920
1835
330
-27.4
1850
319
23
25 | 1070
340
135
41
0
-15 2
2000
1940
1915
1835
330
-27.4
1850
320
23
25 | 1080
342
136
42
0
-15.2
2000
1940
1920
1835
335
335
3310
-27 3
1850
322
23
25 | 1080
348
136
42
0
-15.2
2010
1950
1950
1840
340
340
-27.3
1855
325 | 1080
347
136
42
0
-15.2
2000
1940
1925
1835
339
339
27.3
1860
325
23
25 | | PRESSURES | | | | | | | | | | | AIR & GAS - IN. WG | | | | | | | | | | | 2A FD Fan Discharge 2B FD Fan Discharge 2A Preheater Outlet Air 2B Preheater Outlet Air Furnace Pressure Superheater Cavity Economizer Inlet Economizer Outlet RH Economizer Outlet LH No 2A Preheater Diff. Gas No. 2B Preheater Diff. Gas No 2A ID Fan Suction No 2B ID Fan Suction Pulverizer 2A Inlet Air Exhaust 2A Discharge Pulverizer 2B Inlet Air Exhauster 2B Discharge Pulverizer 2C Inlet Air Exhauster 2C Discharge Pulverizer 2C Inlet Air Exhauster 2C Discharge Pulverizer 2C Inlet Air Exhauster 2D Discharge | 4 2
4.0
2.0
2.0
2.0
- 48
-1.2
-4.0
-5.3
-5 3
2 9
2.4
10 0
7
1 0
- 3.2
11 0
-1.8 | 3 1
2.7
1.0
1.0
48
-1.2
-4.0
-5.2
2.9
2.3
10.0
-7
10.0
-1.2
10.0
-3.3
11.0
-2.0 | 3 1
2.9
1.0
1.1
48
-1.2
-5.2
-5.2
2.35
10.0
-7.7
9
-1.2
10.0
-3.3
11.0
-2.0 | 3.0
2.5
.8
45
-1.2
-5.5
-5.5
3.0
2.4
10.5
-1.7
-1.0
11.5
-2.5
-1.0 | 3.0
2.7
1.0
1.0
48
-1 2
-5.5
-5.5
2.9
2.4
10 5
7
8
-1 0
10.2
-2.1
11.5
-1 1 | 3.9 3.3 1.5 1.5 1.5 - 45 -1 2 -4 1 -5.5 -5 5 3 0 2.4 10.37 1 095 11.5 -1 75 11.3 | 4 0
3 8
1 8
1 8
- 45
-1 2
-4.3
-5 6
-5 6
-5 6
3.0
2 4
10.7
-1 1
11 5
-2.4
11.5
-1 2 | 3.0
2.7
1 8
1 8
- 45
-4 4
-5.8
3 1
2 6
11.0
-1 4
12 0
9
11.5
-1 2
0 | 3.4
3.0
1 0
1 1
- 45
-1.3
-4 4
-5.7
-5 7
3 1
2 6
11 0
-1 25
12 0
-2 4
12 0
-1 2 | | TEMPERATURES | | | | | | | | | | | AIR & GAS - °F Boiler Outlet Gas LH | 639 | 638 | 639 | 640 | 641 | 640 | 645 | 645 | 645 | | Boiler Outlet Gas RH Economizer Outlet Gas LH Economizer Outlet Gas LH Preheater 2A Outlet Gas Preheater 2B Outlet Gas Preheater 2B Inlet Air Preheater 2B Outlet Air Preheater 2B Outlet Air Preheater 2B Outlet Air Pulverizer 2A Inlet Air Pulverizer 2A Inlet Air Pulverizer 2B Inlet Air Pulverizer 2B Inlet Air Pulverizer 2B Inlet Air Pulverizer 2B Inlet Air Pulverizer 2C Inlet Air Pulverizer 2C Inlet Air Pulverizer 2C Inlet Air Pulverizer 2D Inlet Air Pulverizer 2D Inlet Air | 646
571
572
292
292
122
132
489
492
100
100
435
140
440
145 | 98
495
501
90
98
495
501
90
440
140
440
140 | 649
572
578
292
291
95
498
501
80
80
440
140
420
140
445 | 549
572
579
289
290
95
99
492
500
80
440
150
440
160
450 |
550
577
582
291
287
91
500
502
80
440
130
440
155
460 | 548
573
579
289
297
105
110
489
500
100
440
160
440
455
160 | 552
578
583
290
299
103
111
492
505
410
160
440
170
100 | 552
580
589
290
298
92
98
498
509
420
140
445
140
150
100 | 552
579
586
290
298
98
101
495
507
425
140
445
155
80
80 | # BOARD DATA OVERFIRE AIR LOCATION, RATE & VELOCITY VARIATION | | OVERFIRE A | IR LUCAII | IUM, KAIL | . & VELU | JUIT YAK | IAIIUN | | | | |--|--|--|---|--|---|--|---|---|---| | TEST NO | <u>15</u> | <u>16</u> | <u>17</u> | <u>18A</u> | <u>19</u> | 20 | <u>21</u> | 22 | <u>23</u> | | <u>TEMPERATURES</u> | | | | | | | | | | | STEAM & WATER - OF | | | | | | | | | | | Feedwater Economizer Water Outlet - LH Economizer Water Outlet - RH RH DESH Inlet LH RH DESH Outlet LH RH DESH Outlet LH RH DESH Outlet RH Superheat Outlet RH Superheat Outlet RH Throttle Steam LH Throttle Steam RH Reheat Outlet LH Superheat Outlet LH Reheat Outlet RH Superheater Outlet Reheater Outlet | 445
469
572
572
572
572
960
959
955
950
890
860
965
855 | 445
469
469
567
567
567
945
942
940
938
872
848
950
845 | 445
470
470
574
574
574
952
952
950
948
889
957
854 | 450
471
470
585
585
585
585
961
966
968
897
889
975
889 | 447
472
472
582
582
582
959
962
959
968
917
907
970 | 450
472
472
585
585
585
585
961
969
969
975
905
891
975 | 450
478
477
600
600
600
981
988
985
990
940
929
990 | 450
478
478
589
589
589
968
968
965
969
930
912
975 | 450
477
477
582
582
582
960
962
961
960
921
970
905 | | Upper Valve Chest
Lower Valve Chest
HP Exhaust
Reheat Bowl
Intermediate Exhaust
Condensate Temperature | 899
101
549
840
384
119 | 890
101
539
837
375
119 | 898
100
545
845
380
119 | 920
101
560
872
410
120 | 911
102
554
892
419
120 | 905
105
555
870
405
121 | 929
105
575
909
430
121 | 920
102
565
903
422
120 | 910
101
557
890
417
120 | | SH DESH Inlet LH
SH DESH Outlet LH
SH DESH Inlet RH
SH DESH Outlet RH | 809
795
799
788 | 800
789
790
780 | 808
792
796
785 | 812
800
805
795 | 840
781
832
779 | 815
784
813
787 | 841
788
839
789 | 843
772
842
778 | 841
774
837
775 | | MISCELLANEOUS | | | | | | | | | | | ID Fan 2A RPM
ID Fan 2B RPM
FD Fan 2A RPM
FD Fan 2B RPM | 560
560
540
540 | 550
540
450
460 | 540
540
450
460 | 560
560
450
460 | 560
560
460
470 | 570
560
500
500 | 575
570
520
520 | 580
580
450
460 | 580
580
480
480 | | FAN DAMPER POSITIONS (0-12) | | | | | | | | | | | ID Fan 2A
ID Fan 2B
FD Fan 2A
FD Fan 2B | 12+
12+
9.8
9.6 | 12+
12+
8.2
8.2 | 12+
12+
8.2
8.2 | 12+
12+
12+
12+ | 12+
12+
6.2
5.9 | 12+
12+
12
12 | 12+
12+
12
12 | 12+
12+
12
12 | 12+
12+
12+
12+ | | Drum Level In. <u>+</u> Norm. H ₂ O Level | -4.5 | -4.5 | -4 5 | -4 5 | -4.5 | -4.5 | -4.5 | -4.5 | -4.5 | | 2A Mill Amps
2B Mill Amps
2C Mill Amps
2D Mill Amps | 0
37
36
41 | 0
36
36
41 | 0
36
36
42 | 0
36
36
38 | 0
37
36
41 | 0
37
36
40 | 36
38
38
0 | 36
37
38
0 | 36
37
38
0 | | EXHAUSTER DAMPER POSITION - % OPEN | | | | | | | | | | | 0-12 SCALE | | | | | | | | | | | M111 2A
M111 2B
M111 2C
M111 2D | 0
4.6
4.4
4.4 | 0
4.5
4.4
4 4 | 0
4.8
4.6
4.6 | 0
8 6
5.2
4.6 | 0
8.4
4.4
4.4 | 0
8.4
4.8
4.4 | 4.8
8 4
4.8
0 | 5.0
8 4
5.0
0 | 5.3
8 4
5.4
0 | | PULVERIZER FEEDER CAP % OPEN
0-12 SCALE | | | | | | | | | | | Mill 2A
Mill 2B
Mill 2C
Mill 2D | 0
4.4
4.9
4.5 | 0
4.4
4.8
4.6 | 0
4 6
5.2
4.8 | 0
5.2
5.8
4.8 | 0
5.2
5.7
5.4 | 0
4.3
4.8
4.4 | 4.8
4.8
5.3
0 | 5.0
5.0
5.5
0 | 5.4
5.4
5 9
0 | | SPRAY VALVE POSITION - % OPEN | | | | | | | | | | | SH Spray L
SH Spray R
RH Spray L
RH Spray R | 0
0
0 | 0
0
0 | 0
0
0 | 0
0
0 | 52
52
0
0 | 36
36
0
0 | 50
50
0 | 60
60
0 | 60
60
0
0 | | BURNER TILT POSITION - DEGREES | | | | | | | | | | | LR
RR
LF
RF | -2
0
0
-1 | -2
0
0
-1 | -2
0
0
-1 | 0
0
0 | 0
+1
0
-1 | 0
+2
+2
0 | 0
+2
+2
0 | 0
+2
+2
0 | 0
+2
+1
0 | | Feedwater Valve - % Open (0-12 Scale)
Air Htr. 2A Recirc. Damper - % Open
Air Htr. 2B Recirc Damper - % Open | 12+
40
40 | 12+
29
29 | 12+
29
26 | 12+
32
35 | 12+
0
0 | 12+
32
32 | 12+
32
34 | 12+
32
34 | 12+
32
34 | 107 # BOARD DATA #### OVERFIRE AIR ### LOAD VARIATION AT #### TILT VARIATION #### OPTIMUM CONDITIONS | TEST NO | <u>24</u> | <u>25</u> | <u>26</u> | <u>27</u> | 28 | 29 | <u>30</u> | <u>31</u> | 32 | <u>33</u> | <u>34</u> | <u>35</u> | |---|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|---------------|--------------|--------------| | DATE | 7/29/74 | 7/29/74 | 7/29/74 | 7/29/74 | 7/29/74 | 7/29/74 | 7/30/74 | 7/31/74 | 7/31/74 | 7/31/74 | 7/31/74 | 8/1/74 | | TIME | 9 40 | 11-05 | 13 30 | 15 00 | 16-30 | 18:07 | 21 05 | 12.55 | 2.35 | 21-50 | 23.35 | 1 38 | | LOAD - MH | 124 | 124 | 124 | 125 | 125 | 124 | 125 | 97 | 65 | 122 | 95 | 64 | | FLOWS - 10 ³ LBS/HR | | | | | | | | | | | | | | BFP 2A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | BFP 2B | 500 | 510 | 500 | 500 | 500 | 510 | 500 | 390 | 270 | 500 | 375 | 275 | | BFP 2C | 410 | 415 | 410 | 410 | 410 | 415 | 410 | 330 | 225 | 400 | 325 | 225 | | REHEAT STEAM | 900+ | 900+ | 900+ | 900+ | 900+ | 900+ | 900+ | 810 | 665 | 900+ | 798 | 660 | | CONDENSATE
Superheat Spray | 620
33 0 | 630
31.0 | 625
40.0 | 620
35.0 | 625
48.5 | 630
31.5 | 625
35 0 | 480
33 5 | 350
31.0 | 625
33.5 | 460
32.2 | 350
31.0 | | REHEAT SPRAY | 33 0 | 31.0 | 40.0 | 35.0 | 40.5 | 31.5 | 350 | 33 5 | 31.0 | 33.5 | 32.2 | 31.0 | | FEEDWATER | 820 | 870 | 800 | 810 | 800 | 860 | 820 | 620 | 400 | 840 | 620 | 300 | | PRIMARY STEAM FLOW | 900 | 915 | 885 | 902 | 900 | 900 | 900 | 680 | 455 | 895 | 675 | 445 | | AIR FLOW - RELATIVE | 800 | 797 | 800 | 799 | 785 | 810 | 780 | 635 | 540 | 800 | 620 | 510 | | PRESSURES
STEAM & WATER - PSIG | | | | | | | | | | | | | | 1ST STAGE EXTRACTION | 1320 | 1350 | 1300 | 1320 | 1319 | 1340 | 1335 | 1019 | 690 | 1320 | 1018 | 680 | | Втн | 420 | 425 | 420 | 420 | 422 | 421 | 422 | 324 | 219 | 419 | 321 | 215 | | 12тн | 168 | 170 | 170 | 170 | 172 | 171 | 172 | 129 | 79 | 170 | 127 | 78 | | 16тн | _55 | _56 | _55 | 56 | 56 | 55.5 | 56.0 | 39 | 22 | 55 | 38 | 21 5 | | 19тн (-IN Hg. + PSIG) | 5 9 | 6.0 | 6.0 | 6.0 | 6.2 | 6.0 | 6.0 | -1.0 | -12
-20.0 | 60 | 0.0
-16.0 | -12
-20.0 | | 21st (IN Hg)
Feedwater Regulator Inlet | -12 5
2030 | -12.2
2050 | -12.5
2020 | -12.5
2020 | -12.4
2010 | -12 2
2040 | -12.5
2040 | -16.0
2000 | 1935 | -12 5
2060 | 2010 | 1960 | | FEEDWATER REGULATOR TREET | 1950 | 1950 | 1950 | 1950 | 1940 | 1950 | 1960 | 1925 | 1925 | 1960 | 1950 | 1910 | | Drum | 1930 | 1920 | 1930 | 1925 | 1915 | 1940 | 1940 | 1910 | 1900 | 1950 | 1920 | 1900 | | TURBINE THROTTLE | 1825 | 1825 | 1825 | 1820 | 1820 | 1825 | 1835 | 1835 | 1850 | 1835 | 1850 | 1850 | | REHEAT INLET | 411 | 420 | 411 | 417 | 418 | 415 | 418 | 315 | 204 | 411 | 311 | 200 | | REHEAT BOWL | 380 | 386 | 380 | 384 | 385 | 381 | 384 | 292
-27 5 | 195
-27.8 | 380
-27.0 | 290
-27.4 | 191
-27 7 | | EXHAUST (IN HG)
Main Steam | -27.2
1850 | -27.1
1850 | -27 1
1850 | -27 1
1850 | -27 0
1850 | -27 0
1850 | -27 0
1860 | 1865 | 1865 | 1865 | 1865 | 1865 | | REHEAT OUTLET | 390 | 398 | 393 | 398 | 398 | 395 | 398 | 305 | 200 | 391 | 300 | 200 | | LIGHT OIL UPPER BURNERS | 0 | ő | ō | Ö | ō | ō | ō | Ö | 24 | 23.5 | 23.5 | 23.5 | | LIGHT OIL LOWER BURNERS | 0 | 0 | 0 | 0 | 0 | 0
| 0 | 0 | 25 | 25 0 | 25 0 | 25 0 | | PRESSURES | | | | | | | | | | | | | | AIR & GAS - IN WG | | | | | | | | | | | | | | 2A FD FAN DISCHARGE | 4 9 | 4 9 | 4 9 | 4.9 | 4.5 | 5.1 | 4 0 | 2.5 | 1 9 | 4.9 | 2.5 | 1.5 | | 28 FD FAN DISCHARGE | 4.5 | 4 8 | 4 5 | 4.4 | 4.2 | 5.0 | 3.9 | 5.0 | 1.7
5 | 4.5 | 2 0
.5 | 10 | | 2A PREHEATER OUTLET AIR | 1 5
1.5 | 1 7
1 7 | 1 9
1.9 | 19
1.9 | 1.5
1.5 | 5.0
5.0 | 1.0
1.0 | .5
.5 | 5 | 1.5
1.5 | .5 | .2
.2 | | 28 PREHEATER OUTLET AIR FURNACE PRESSURE | - 20 | - 21 | - 175 | 15 | - 18 | - 05 | 45 | - 425 | 425 | - 35 | 5 | - 45 | | SUPERHEATER CAVITY | -1 3 | -12 | -1.2 | -1.2 | -1.2 | -1.2 | -1.7 | -1.2 | -1.0 | -1.5 | -1.1 | -1.0 | | ECON. INLET | -5 6 | -5 6 | -5 7 | -5 7 | -5.7 | -5.5 | -5.6 | -3.8 | -2.9 | -5 4 | -3 7 | -2.7 | | ECONOMIZER OUTLET R.H | -7 1 | -7.1 | -7.2 | -7.1 | -7.2 | -7 1 | -7.5 | -5 4 | -4 1 | -7 2 | -5.1 | -3.9 | | ECONOMIZER OUTLET L.H | -7 4 | -7.4 | -7.4 | -7.4 | -7.4 | -7.4 | -7 8 | -5.4 | -4.0 | -7.5 | -5.1 | -3.8 | | NO 2A PREHEATER DIFF. GAS | 39
35 | 4.0 | 4.0
3 4 | 4.0
3.5 | 3.9
3.4 | 4.0
3 4 | 3.9
3.5 | 2.8
2.4 | 2.1
1.7 | 4.0
3.6 | 2 8
2.3 | 2.0
1.6 | | NO 2B PREHEATER DIFF. GAS NO. 2A I.D. FAN SUCTION | 14.4 | 3.5
14 4 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 10.0 | 7.5 | 14.7 | 10.0 | 7.1 | | No. 28 D. FAN SUCTION | 14.0 | 14 0 | 14 0 | 14.0 | 14.0 | 14.0 | 14.5 | 10.1 | 7.2 | 14.2 | 10.0 | 6.8 | | PULVERIZER 2A INLET AIR | -1 3 | -1 1 | -1.2 | -1.2 | -1.2 | -1 0 | -1.4 | -1.4 | -1.25 | -1.25 | -1.4 | -1.4 | | EXHAUSTER 2A DISCHARGE | 12 0 | 12.5 | 12.5 | 12.0 | 12.0 | 12.7 | 12 0 | 12.0 | 12.5 | 12.2 | 12.5 | 12.9 | | PULVERIZER 28 INLET AIR | -1 0 | -1 0 | -1 0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.1 | -1.0 | | EXHAUSTER 28 DISCHARGE | 10.0 | 10 0 | 9.5 | 9.0 | 9.5 | 9.4 | 9 2 | 9.5 | 10.0 | 9.2 | 10.0 | 10.2 | | PULVERIZER 2C INLET AIR | -2.6 | -2 5
12 5 | -2 5
12.0 | -2 5
12.0 | -2.7
12.0 | -2.6
12.5 | -3.4
11.5 | -3.5
11 5 | -1.2
0 | -3.0
12.0 | -3.5
12.0 | -1.0
0 | | EXHAUSTER 2C DISCHARGE
Pulveriver 2D inlet Air | 12.0
-2.0 | -19 | -1 9 | -2 0 | -1.75 | -1.6 | -2.0 | -1 2 | -1 2 | -1.5 | -1.2 | -1.2 | | EXHAUSTER 2D DISCHARGE | 10 5 | 10 5 | 10.5 | 11.0 | 11 5 | 11.5 | 10.0 | -, 5 | -, 5 | 11.0 | 2 | - 112 | | | | | | • | | | | - | | | | _ | C-E Power Systems Field Testing and Performance Results # BOARD DATA #### OVERFIRE AIR #### LOAD VARIATION AT #### TILT VARIATION #### OPTIMUM CONDITIONS | TEST NO | 24 | <u>25</u> | 26 | <u>27</u> | 28 | <u>29</u> | <u>30</u> | <u>31</u> | 32 | 33 | <u>34</u> | 35 | |---|------------|------------|------------|-------------|------------|------------|--------------|------------|-------------|-------------|------------|------------| | TEMPERATURES | | | | | | | | | | | _ | _ | | AIR & GAS - "F | | | | | | | | | | | | | | BOILER OUTLET GAS L H. | | 651 | 660 | 661 | 661 | 652 | 655 | 639 | 630 | 660 | 635 | 628 | | BOILER OUTLET GAS R.H. | | 661 | 669 | 670 | 670 | 661 | 670 | 651 | 641 | 670 | 649 | 638 | | ECONOMIZER OUT GAS L H | | 600 | 609 | 610 | 611 | 602 | 606 | 570 | 542 | 610 | 569 | 540 | | ECONOMIZER OUT GAS R H. | | 605 | 612 | 615 | | 609 | 611 | 578 | 550 | 615 | 572 | 539 | | PREHEATER 2A OUTLET GAS | | 298 | 300 | 303 | 305 | 293 | 302 | 292 | 290 | 302 | 291 | 300 | | PREHEATER 28 OUTLET GAS
Preheater 24 Inlet Air | | 295 | 300 | 302 | 302 | 298 | 298 | 287 | 261 | 298 | 288 | 256 | | PREHEATER 28 INLET AIR | | 79
80 | 95
95 | 95
98 | 92
95 | 92
95 | 85 | 82 | 88 | 89 | 80 | 80 | | PREHEATER 24 OUTLET AIR | | 502 | 508 | 512 | 516 | 500 | 80
510 | 78
499 | 80
488 | 89
511 | 86
499 | 90
490 | | PREHEATER 2B OUTLET AIR | | 511 | 519 | 521 | 522 | 514 | 519 | 505 | 480 | 519 | 499
505 | 490
475 | | PULVERIZER 2A INLET AIR | 460 | 460 | 460 | 460 | 460 | 450 | 465 | 450 | 455 | 465 | 465 | 460 | | PULVERIZER 2A INTERNAL | 170 | 150 | 160 | 160 | 160 | 165 | 160 | 155 | 155 | 170 | 155 | 145 | | PULVERIZER 28 INLET AIR | 480 | 480 | 480 | 480 | 485 | 465 | 485 | 480 | 460 | 480 | 480 | 460 | | PULVERIZER 2B INTERNAL | 135 | 160 | 155 | 160 | 160 | 160 | 155 | 150 | 140 | 150 | 140 | 140 | | PULVERIZER 2C INLET AIR | 499 | 495 | 495 | 500 | 500 | 495 | 490 | 475 | 100 | 495 | 480 | 100 | | PULVERIZER 2C INTERNAL | 170 | 175 | 175 | 165 | 170 | 175 | 140 | 140 | 100 | 160 | 140 | 100 | | PULVERIZER 2D INLET AIR | 495 | 480 | 470 | 470 | 500 | 400 | 480 | 100 | 100 | 380 | 100 | 100 | | PULVERIZER 2D INTERNAL | 175 | 160 | 175 | 175 | 175 | 180 | 170 | 100 | 100 | 165 | 100 | 100 | | TEMPERATURES | | | | | | | | | | | | | | STEAM & WATER - "F | | | | | | | | | | | | | | FEEDWATER | 467 | 467 | 467 | 470 | 470 | 470 | 470 | 449 | 415 | 465 | 447 | 412 | | ECONOMIZER WATER OUTLET - L H. | | 482 | 490 | 491 | 491 | 486 | 490 | 470 | 457 | 489 | 462 | 450 | | ECONOMIZER WATER OUTLET - R.H. | | 482 | 490 | 490 | 492 | 485 | 491 | 470 | 456 | 489 | 462 | 449 | | RH DESUPH. IN L.H. | 668 | 649 | 650 | 668 | 656 | 649 | 695 | 638 | 621 | 680 | 616 | 590 | | RH DESUPH. OUT L.H. | 668 | 649 | 650 | 668 | 656 | 649 | 695 | 638 | 621 | 680 | 616 | 590 | | RH DESUPH IN R.H. | 668 | 649 | 650 | 668 | 656 | 649 | 695 | 640 | 621 | 680 | 619 | 590 | | RH DESUPH. OUT R H. | 668 | 649 | 650
975 | 668 | 656 | 649 | 695 | 640 | 621 | 680 | 619 | 590 | | SUPERHEAT OUT L.H.
SUPERHEAT OUT R.H. | 995
992 | 965
977 | 975
988 | 999
1001 | 982
992 | 970
982 | 1009
1010 | 981 | 997
1000 | 975 | 940 | 958 | | THROTTLE STEAM L.H. | 995 | 968 | 972 | 995 | 978 | 977 | 1002 | 977
985 | 1000 | 981
979 | 950
940 | 959
960 | | THROTTLE STEAM R.H. | 990 | 968 | 972 | 992 | 972 | 972 | 1002 | 981 | 995 | 972 | 941 | 965 | | REHEAT OUTLET L.H. | 958 | 911 | 951 | 978 | 971 | 915 | 975 | 931 | 928 | 932 | 876 | 888 | | REHEAT OUTLET R.H. | 972 | 930 | 970 | 980 | 982 | 938 | 990 | 943 | 950 | 951 | 905 | 889 | | SUPERHEATER OUTLET | 1000 | 970 | 975 | 990 | 975 | 970 | 1000 | 977 | 995 | 970 | 942 | 953 | | REHEATER OUTLET | 990 | 946 | 981 | 992 | 995 | 940 | 997 | 958 | 957 | 970 | 920 | 920 | | UPPER VALVE CHEST | 978 | 959 | 959 | 985 | 970 | 961 | 988 | 960 | 967 | 949 | 922 | 927 | | LOVER VALVE CHEST | 110 | 110 | 111 | 112 | 115 | 111 | 105 | 102 | 105 | 111 | 111 | 110 | | H.P EXHAUST | 649 | 630 | 630 | 650 | 640 | 631 | 655 | 592 | 570 | 619 | 550 | 530 | | REHEAT BOWL | 970 | 939 | 969 | 995 | 995 | 945 | 990 | 949 | 935 | 940 | 902 | 890 | | INTERMEDIATE EXHAUST | 475 | 447 | 471 | 489 | 490 | 450 | 490 | 460 | 457 | 455 | 410 | 422 | | CONDENSATE TEMP. | 124 | 125 | 125 | 125 | 126 | 127 | 125 | 120 | 113 | 127 | 125 | 114 | | | | | | | | | | | | | | | | S H. DESUPH. IN L.H | 891 | 855 | 905 | 906 | 921 | 858 | 919 | 896 | 895 | 940 | 885 | 880 | | S.H. DESUPH OUT L.H. | 839 | 838 | 815 | 845 | 809 | 841 | 851 | 829 | 849 | 885 | 845 | 860 | | S.H. DESUPH. IN R.H.
S.H. DESUPH. OUT R.H. | 880
841 | 845
834 | 900
812 | 885
830 | 911
803 | 851
840 | 920
860 | 892
835 | 900
860 | 926
884 | 881
850 | 869
851 | | S.H. DESUPH. OUT R.H. | 041 | 634 | 012 | 630 | 803 | 840 | 900 | 635 | 660 | 004 | 630 | 831 | | MISCELLANEOUS | | | | | | | | | | | | | | I.D. FAN 2A RPM | 690 | 690 | 690 | 690 | 690 | 690 | 690 | 560 | 480 | 690 | 540 | 460 | | ID FAN 28 RPM | 680 | 670 | 675 | 680 | 680 | 680 | 679 | 560 | 480 | 670 | 540 | 460 | | F D. FAN 2A RPM | 560 | 570 | 590 | 565 | 570 | 600 | 540 | 440 | 400 | 570 | 410 | 370 | | F.D. FAN 2B RPM | 570 | 570 | 590 | 570 | 580 | 600 | 540 | 440 | 400 | 570 | 420 | 370 | | FAN DAMPER POSITION - (0-12) | | •• | •- | | | | | | | | | | | ID FAN 2A | 12+ | 12+ | 12+ | 12+ | 12+ | 12+ | 12+ | 7.0 | 5.8 | 12+ | 7.4 | 6.0 | | ID FAN 28
FD FAN 28 | 12+
12+ 7 0
4.3 | 5.8
3.8 | 12+
11.8 | 7.3
6.0 | 6 0
3.6 | | FD FAN 28 | 12+ | 12+ | 12+ | 12+ | 12+ | 12+ | 12+ | 4.3
5 2 | 3.8 | 11.8 | 5.B | 3.6 | | | 127 | 127 | 167 | IET | 167 | 167 | 167 | J E | 3.0 | | 5.5 | 5 5 | | DRUM LEVEL IN ⁺ NORM. H ₂ O LEVEL | -5.0 | -5.0 | -4.9 | -5 0 | -4.9 | -5.0 | -4.5 | -5.0 | -5.0 | -5.0 | -5.2 | -5.0 | C-E POWER SYSTEMS FIELD TESTING AND PERFORMANCE RESULTS # BOARD DATA #### OVERFIRE AIR #### LOAD VARIATION AT #### TILT VARIATION #### OPTIMUM CONDITIONS | TEST NO | 24 | <u>25</u> | <u>26</u> | 27 | 28 | <u>29</u> | <u>30</u> | <u>31</u> | <u>32</u> | <u>33</u> | <u>34</u> | <u>35</u> | |--|------------|------------|------------|------------|------------|--------------------------|----------------|----------------|---------------|-------------------|--------------|--------------------| | 24 MILL AMPS | 38 | 40 | 40 | 40 | 40 | 39 | 36 | 36 | 38 | 36 | 37 | 37 | | 28 MILL AMPS | 37 | 37 | 37 | 37 | 37 | 36
38 | 36
35
38 | 36
36
38 | 38
36 | 36 | 36
38 | 37
37
0
0 | | 2C MILL AMPS | 38 | 38
39 | 38 | 39 | 38 | 38 | 38 | 38 | 0 | 38 | | o | | 2D MILL AMPS | 39 | 39 | 40 | 39 | 40 | 40 | 40 | 0 | 0 | 41 | 0 | 0 | | EXHAUSTER DAMPER POSITION - \$ OPEN | | | | | | | | | | | | | | 0 - 12 SCALE | | | | | | | | | | | - 4 | 6.0 | | MILL 2A | 60 | 60 | 60 | 6 1 | 5.9 | 5.8 | 5.5
5.6 | 5 4
5 6 | 5.6
5.7 | 5 4
5.6 | 5 4
5 6 | 6.0
6 2
0 | | MILL 2B | 6 2
6 0 | 6 2
6 0 | 6.1
6 0 | 6.4
6.2 | 6 1
5 9 | 60
58 | 5.5 | 5.4 | 0 | 5.6 | 5.6 | 0 2 | | MILL 2C | 4 1 | 40 | 40 | 4.2 | 4.8 | 47 | 3.3
4 0 | 0 | 0 | 51 | 3.0 | ŏ | | WILL SD | 4 1 | 4 0 | 4 0 | 4.2 | 4.0 | 4 / | 4 0 | U | J | <i>J</i> , | · | • | | PULVERIZER FEEDER CAP - \$ OPEN | | | | | | | | | | | | | | 0 - 12 SCALE | | 6 0 | | | 6.0 | 5 8 | 5 5 | 5.5 | 5.6 | 5 4 | 5.5 | 6.0 | | MILL 2A | 6.0
6.0 | 6.0 | 6.0
6.0 | 6 2
6.2 | 6.0 | 5.8 | 5.5 | 5.5 | 5.6 | 5.4 | 5.5 | 6.0
6.0
0 | | MILL 2B | 6.6 | 6.6 | 6.5 | 6.2
6.7
 6.4 | 6.3 | 6.0 | 6.0 | 0 | 5 9 | 6.0 | 0.0 | | MILL 2C
Mile 2D | 4 2 | 4 2 | 4.2 | 4 3 | 4.9 | 4.8 | 4.0 | 0.0 | ŏ | 5.9
3.1 | 0.0 | ő | | MICC 2D | 7 2 | 7 6 | 7.5 | 4.5 | 4.5 | 4.0 | 4.0 | • | • | • | _ | • | | SPRAY VALVE POSITIONS - \$ OPEN | | | | | | | | | | | | | | SH SPRAY L | 39 | 0 | 70 | 49 | 90 | 0 | 52
50 | 48 | 36
36
0 | 37 | 34 | 20
20
0
0 | | SH SPRAY R | 40 | 0 | 70 | 48 | 88 | 0 | 50 | 48
O
O | 36 | 37 | 33
0
0 | 50 | | RH SPRAY L | 0 | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ŭ | ŭ | | RH SPRAY R | 0 | 0 | 0 | 0 | 0 | 0 | U | U | U | U | U | U | | BURNER TILT POSITIONS - DEGREES | | | | | | | | | _ | | | | | LR | 0 | -30 | +30 | ō | +30 | -30 | 0 | -12 | 0 | -22 | -22 | -10 | | RR | 0 | -30 | +30 | 0 | +30 | -30 | 0 | -12 | 0 | -52 | -22
-22 | -10
-10 | | ĻF | 0 | -30 | +30 | 0 | +30 | -30
-30
-30
-30 | 0 | -12 | 0 | -22
-22
-22 | -22 | -10 | | RF | 0 | -30 | +30 | 0 | +30 | -30 | 0 | -12 | 0 | -22 | -22 | -10 | | FEEDWATER VALVE - \$ OPEN (0-12 SCALE) | 12+ | 12+ | 12+ | 12+ | 10.4 | 12+ | 12+ | 9.4 | 9.4 | 9 3 | 9.4 | 9.4 | | AIR HTR 24 RECIRC DAMPER - % OPEN | 24 | 24 | 24 | 24 | 24 | 24 | 38
34 | 37 | 37
33 | 26
25 | 26 | 26
25 | | AIR HTR 28 RECIRC DAMPER - \$ OPEN | 20 | 50 | 50 | 20 | 20 | 50 | 34 | 33 | 33 | 25 | 25 | 25 | # WATERWALL ABSORPTION RATES, KG-CAL/HR-CM² # RIGHT WALL CENTERLINE TUBE RATES | TC # | 1 | 3 | 5 | 7 | 9 | 19 | 22 | 44 | 47 | 57 | 60 | 62 | 64 | |-----------|---------|---------|--------|--------|---------|----------------|---------|--------|---------|---------|-----------------|--------|---------| | ELEVATION | 118'-6" | 107'-6" | 96'-6" | 85'-6" | 74' -6" | 69' -6" | 64' -7" | 59'-7" | 54' -9" | 49'-11" | 45'-7" | 35'-7" | 25' -7" | | TCOT 4 | | | 7 40 | | | | | | | | | | | | TEST 1 | 2.02 | 3.56 | 7.49 | 8.81 | 10.93 | 9.07 | 1.28 | | | 8.54 | 4.08 | 3.30 | | | 2 | 2.36 | 3.64 | 8.63 | 12.07 | 13.13 | 9.95 | .86 | | | 6.51 | 5.99 | 3.12 | | | 3 | 1.33 | 2.85 | 5.18 | 7.02 | 8.08 | 7.55 | .83 | | | 9.66 | 9.93 | 4.13 | | | 4 | 3.01 | 5.36 | 12.23 | 1.25 | 2.76 | 14.88 | 5.10 | | | 13.29 | 7.73 | 4.31 | | | 5 | 3.78 | 7.19 | 10.90 | 10.90 | 22.55 | 7.46 | 6.93 | | | 18.85 | 20.96 | 12.49 | | | 6 | 4.41 | 7.30 | 13.66 | 1.83 | 3.37 | 16.04 | 7.83 | | | 20.81 | 14.45 | 10.21 | | | 7 | 3.73 | 5.04 | 10.06 | 1.19 | 2.18 | 7.67 | 8.73 | 12.18 | | 27.78 | 11.38 | 14.56 | | | 8 | 4.59 | 8.28 | 11.45 | 8.54 | 21.78 | 5.11 | 4.06 | | | 10.13 | 13.04 | 15.70 | | | 9 | 6.26 | 9.96 | 14.99 | 15.52 | 23.46 | 15.52 | 6.26 | | | 8.63 | 12.34 | 15.26 | | | 10 | 5.14 | 5.66 | 12.27 | 7.51 | 6.45 | 10.15 | 9.36 | | | 24.18 | 6.98 | 12.80 | | | 11 | 4.16 | 4.95 | 6.26 | 6.79 | 6.53 | 4.43 | 6.00 | | | 11.56 | 6.53 | 6.53 | | | 12 | 4.15 | 5.46 | 6.51 | 6.51 | 5.98 | 5.72 | 5.72 | | | 11.53 | 7.56 | 7.83 | | | 13 | 4.95 | 6.53 | 13.14 | 9.96 | 13.94 | 17.38 | 15.00 | | | 25.05 | 10.76 | 12.61 | | | 14 | 4.44 | 4.96 | 11.30 | 9.97 | 17.66 | 14.74 | 15.01 | | | 24.00 | 15.28 | 12.62 | | | 15 | 4.12 | 5.17 | 9.66 | . 37 | 3.34 | 7.80 | 13.36 | | | 3.34 | 10.71 | 10.98 | | | 16 | E 0E | 5.77 | 0 15 | 0.00 | 7.62 | 10.26 | 10 20 | | | 3.42 | 8.68 | 9.47 | | | 16 | 5.25 | | 8.15 | 2.38 | | | 12.38 | | | | | | | | 17 | 6.47 | 7.26 | 9.90 | 3.33 | 6.99 | 10.96 | 13.61 | | ~-~ | 3.84 | 10.70 | 12.55 | | | 18 | 3.61 | 4.91 | 9.92 | .16 | 13.37 | 13.37 | 10.45 | | | 18.67 | 17.34 | 8.07 | | | 19 | 4.39 | 5.44 | 10.19 | 2.32 | 4.65 | 9.40 | 5.17 | | | 14.43 | 9.92 | 10.45 | | | 20 | 3.14 | 5.23 | 10.24 | .64 | 4.18 | 2.63 | 12.1 | | | 20.58 | 18.20 | 9.72 | | | 21 | 4.00 | 5.31 | 12.45 | . 49 | 2.71 | 2.20 | 12.98 | | | 15.10 | 10.33 | 4.53 | | | 22 | 3.49 | 5.32 | 11.40 | 1.46 | 2.46 | 1.96 | 11.93 | | | 15.11 | 9.81 | 3.24 | | | 23 | 2.67 | 5.00 | 11.87 | .91 | 2.67 | 1.90 | 11.87 | | | 15.32 | 10.02 | 3.70 | | | 24 | 4.76 | 5.28 | 12.68 | 9.24 | 7.92 | 3.98 | 8.18 | | | 23.80 | 12.68 | 7.92 | | | 25 | 3.00 | 5.08 | 10.63 | 6.66 | 6.13 | 2.48 | 11.95 | | | 32.55 | 20.43 | 13.01 | | | 26 | 4.61 | 6.71 | 14.66 | 13.07 | 19.69 | 2.80 | 12.80 | | | 15.45 | 10 . 1 5 | 4.35 | | | 27 | 4.22 | 6.32 | 8.43 | 10.02 | 15.85 | 10.81 | 11.34 | | | 18.76 | 15.05 | 12.40 | | | 28 | 7.16 | 8.22 | 11.93 | 14.04 | 17.22 | 1 1. 66 | 12.72 | | | 13.25 | 11.93 | 7.43 | | | 29 | 5.42 | 7.80 | 8.32 | 9.91 | 11.24 | 9.91 | 12.03 | | | 27.63 | 17.33 | 17.86 | | | 30 | 7.55 | 9.14 | 9.93 | 8.08 | 3.87 | 6.23 | 9.14 | | | 4.65 | 7.02 | 8.34 | | | 31 | 7.07 | 7.60 | 8.65 | 6.80 | 7.07 | 11.56 | 7.07 | | | 18.98 | 16.07 | 9.98 | | | 32 | 5.21 | 6.00 | 7.05 | 6.00 | 5.47 | 8.90 | 4.42 | | | 14.73 | 12.87 | 7.05 | | | 33 | 7.27 | 7.53 | 7.80 | 7.80 | 7.27 | 11.24 | 14.15 | | | 24.47 | 14.95 | 16.54 | | | 34 | 7.52 | 7.52 | 8.84 | 8.05 | 8.05 | 9.37 | 11.22 | | | 15.47 | 13.35 | 14.14 | | | 35 | 6.60 | 5.81 | 6.60 | 6.33 | 6.33 | 8.18 | 7.92 | | | 10.56 | 17.45 | 7.92 | | | | | | | | | | | | | | | | | # WATERWALL ABSORPTION RATES, KG-CAL/HR-CM² FRONT WALL CENTERLINE TUBE RATES | TC #
Elevation | 2
107'-6" | 4
96¹-6" | 6
85 ' -6" | 8
74'-6" | 13
69'-6" | 38
59'-7" | 51
49"-11" | 61
35 ' -7" | 63
25 '- 7" | |-------------------|--------------|-------------|----------------------|-------------|---------------|--------------|---------------|-----------------------|-----------------------| | TEST 1 | 6.44 | 7.49 | 11.99 | 18.08 | 10.93 | | 10.13 | 3.04 | 2.52 | | 2 | 6.78 | 8.89 | 14.72 | 16.31 | 11.01 | | 8.89 | 2.88 | 2.36 | | 3 | 5.18 | 4.92 | 7.55 | 8.08 | 8.61 | | 13.11 | 4.66 | 1.33 | | 4 | 10.11 | 11.96 | 7.46 | 24.67 | 9.84 | | 14.62 | 4.05 | 3.01 | | 5 | 11.16 | 9.57 | 10.37 | 24.92 | 10.10 | | 19.11 | 12.75 | 7.46 | | 6 | 12.33 | 12.60 | 18.69 | 27.14 | 12.86 | | 20.28 | 13.39 | 4.67 | | 7 | 9.26 | 8.47 | 12.44 | 10.85 | 6.35 | | 23.56 | 18.55 | 9.53 | | 8 | 10.92 | 7.48 | 10.66 | 22.31 | 16.76 | | 7.22 | 15.70 | 9.60 | | 9 | 13.67 | 9.96 | 10.48 | 25.83 | 14.20 | | 7.05 | 17.38 | 7.84 | | 10 | 11.48 | 4.61 | 15.98 | 14.92 | 7.24 | | 5.40 | 15.72 | 5.66 | | 11 | 5.21 | 4.95 | 6.79 | 6.53 | 4 .9 5 | | 7.85 | 6.26 | 6.26 | | 12 | 5 .46 | 5.72 | 6.77 | 6.25 | 5.46 | | 8.88 | 8.09 | 7.56 | | 13 | 12.88 | 6.26 | 7.84 | 11.56 | 6.79 | | 7.58 | 14.47 | 5.21 | | 14 | 10.77 | 4.96 | 8.39 | 11.56 | 5.48 | | 12.36 | 14.74 | 5.22 | | 15 | 8.07 | 5.17 | 14.16 | 11.77 | 2.57 | | 2.32 | 18.13 | 6.22 | | 16 | 7.62 | 5.77 | 10.79 | 15.83 | 4.46 | | 2.92 | 15.83 | 7.62 | | 17 | 8.05 | 6.99 | 12.29 | 14.41 | 5.68 | | 4.63 | 16.26 | 9.37 | | 18 | 8.07 | 5.17 | 14.16 | 11.25 | 7.28 | | 10.19 | 9.92 | 6.49 | | 19 | 9.13 | 4.91 | 12.84 | 6.22 | 8.86 | | 9.66 | 10.98 | 5.44 | | 20 | 8.66 | 9.98 | 11.30 | 22.69 | 9.98 | | 9.19 | 16.07 | 4.97 | | 21 | 10.33 | 11.39 | 17.22 | 21.98 | 8.48 | | 3.23 | 5.58 | 3.48 | | 22 | 10.34 | 10.07 | 18.29 | 15.90 | 4.80 | | 2.21 | 4.80 | 2.45 | | 23 | 10.02 | 7.64 | 16.91 | 19.02 | 13.46 | | 2.40 | 5.00 | 2.67 | | 24 | 10.56 | 8.18 | 9.51 | 15.07 | 6.34 | | 16.40 | 12.95 | 5.02 | | 25 | 10.10 | 8.24 | 6.66 | 15.66 | 10.10 | | 19.64 | 20.43 | 9.57 | | 26 | 12.27 | 10.68 | 19.96 | 19.96 | 7.51 | | 12.80 | 5.40 | 4.35 | | 27 | 9.22 | 7.64 | 14.26 | 8.16 | 7.1 1 | | 8.69 | 14.26 | 3.44 | | 28 | 9.54 | 9.81 | 12.99 | 12.19 | 9.54 | | 6.11 | 8.75 | 6.90 | | 29 | 9.91 | 8.06 | 11.24 | 10.18 | 10.44 | | 18.92 | 20.77 | 9.38 | | 30 | 9.66 | 9.66 | 13.38 | 25.81 | 13.90 | | 8.61 | 8.87 | 7.55 | | 31 | 7.86 | 8.12 | 1 1. 56 | 8.12 | 7.60 | | 7.33 | 11.56 | 8.12 | | 32 | 6.00 | 5.21 | 8.10 | 6.26 | 5.21 | | 5.21 | 7.84 | 5.73 | | 33 | 8.85 | 7.00 | 7.00 | 18.66 | 6.48 | | 21.57 | 19.98 | 12.56 | | 34 | 8.31 | 6.99 | 6.99 | 10.96 | 5.68 | ~ | 22.08 | 14.94 | 10.43 | | 35 | 7.12 | 5.81 | 5.54 | 7.39 | 3.20 | | 7.92 | 8.18 | 7.65 | SHEET 13C # WATERWALL ABSORPTION RATES, KG-CAL/HR-CM2 | | RIGHT WALL
Horizontal Average
Tube Rates | | REAR WALL
Horizontal Average
Tube Rates | LEFT WALL
Horizontal Average
Tube Rates | Hor 1 | FRONT WALL
ZONTAL AVE
TUBE RATES | ERAGE | | |--|--|--|--|---|--|---|--|--| | TC # | 17-21 | 42-46 | 55-59 | 23 - 29 | 30-34 | 10-16 | 35-41 | 48-54 | | Elevation | 69'-8" | 59' -7" | 49'-11" | 59 ' - 7" | 59' -7" | 69"-6" | 59' <i>-</i> 7" | 49' -11" | | TEST 1 2 3 4 5 6 7 8 | 8.65 | 9.54 | 8.28 | 5.78 | 11.67 | 11.94 | 10.31 | 8.24 | | | 9.53 | 9.16 | 5.82 | 4.97 | 12.23 | 12.34 | 11.11 | 6.92 | | | 7.97 | 9.27 | 9.58 | 4.79 | 10.72 | 8.56 | 8.85 | 11.87 | | | 13.51 | 11.84 | 7.90 | 6.01 | 10.20 | 13.20 | 15.68 | 9.39 | | | 5.67 | 9.98 | 10.64 | 12.22 | 17.10 | 16.33 | 17.34 | 18.73 | | | 14.40 | 15.11 | 16.75 | 8.07 | 14.53 | 17.01 | 17.41 | 12.26 | | | 7.84 | 11.96 | 18.26 | 8.21 | 9.04 | 10.90 | 16.12 | 17.13 | | | 3.66 | 7.63 | 7.10 | 9.22 | 14.12 | 13.80 | 20.10 | 20.73 | | 9
10
11
12
13
14 | 7.38
8.20
4.84
5.62
10.18
8.34
9.70 | 10.05
16.31
5.09
5.46
14.34
15.34
11.38 | 6.53
15.28
9.18
9.16
15.70
17.92
9.41 | 14.01
12.13
9.10
8.74
13.94
14.06
10.62 | 14.83
19.48
4.79
6.19
16.06
16.81
18.29 | 16.45
14.92
6.35
5.72
12.93
13.91
10.77 | 18.43
18.98
7.59
6.38
17.64
18.09
15.70 | 17.94
13.86
7.76
8.75
13.27
13.66
8.54 | | 16 | 11.70 | 10.93 | 12.13 | 10.46 | 18.37 | 12.74 | 16.45 | 9.09 | | 17 | 13.77 | 10.44 | 11.95 | 10.44 | 16.47 | 13.17 | 16.88 | 10.35 | |
18 | 7.31 | 12.77 | 16.73 | 6.07 | 14.48 | 10.81 | 17.16 | 16.12 | | 19 | 6.96 | 4.61 | 8.72 | 7.52 | 7.50 | 9.70 | 14.43 | 9.54 | | 20 | 2.89 | 9.52 | 13.62 | 6.42 | 7.77 | 10.92 | 16.25 | 9.16 | | 21 | 2.76 | 10.14 | 13.51 | 5.51 | 13.72 | 15.85 | 18.76 | 8.42 | | 22 | 2.52 | 9.36 | 13.43 | 6.28 | 14.85 | 13.48 | 17.66 | 7.74 | | 23 | 3.19 | 10.16 | 13.64 | 6.04 | 15.54 | 19.17 | 17.12 | 12.28 | | 24 | 12.22 | 12.22 | 8.55 | 9.74 | 15.86 | 11.89 | 16.08 | 9.18 | | 25 | 9.63 | 14.00 | 22.35 | 9.61 | 14.18 | 12.04 | 16.76 | 13.81 | | 26 | 10.54 | 12.21 | 10.25 | 7.53 | 14.45 | 14.22 | 13.95 | 10.17 | | 27 | 10.81 | 12.40 | 14.70 | 8.14 | 13.52 | 9.88 | 10.03 | 8.88 | | 28 | 12.94 | 14.44 | 12.81 | 9.21 | 17.60 | 13.52 | 14.80 | 7.26 | | 29
30
31
32
33
34
35 | 11.34
9.52
7.71
6.32
10.08
8.21
7.65 | 16.07
10.66
10.38
7.98
17.06
14.67
10.76 | 20.06
4.48
17.84
14.02
18.21
13.35
10.12 | 12.18
12.01
10.85
8.53
10.44
9.11
9.05 | 17.60
12.72
11.47
8.85
9.02
10.66
9.27
9.50 | 12.30
14.00
7.33
5.21
8.33
8.10
7.75 | 16.76
16.51
16.78
14.51
16.05
13.79
9.20 | 17.63
10.51
9.14
8.11
16.05
16.57
9.42 | # WATERWALL CORROSION COUPON DATA SUMMARY ### WEIGHT LOSS EVALUATION # BASELINE TEST | Probe | Probe
No. | Coupon
No. | Initial Wt. | Final Wt.
GR. | Wt. Loss
GR. | Wt. Loss/
Coupon
MG/CM ² | Avg. Wt. Loss/
Probe
MG/CM ² | |-------|--------------|---------------|-------------|------------------|-----------------|---|---| | 1 | I | 1 | 199.2937 | 199.1341 | .1596 | 3.1643 | | | | | 2 | 201.3871 | 201.2135 | .1736 | 3.4418 | 0.0000 | | | | 2
3 | 198.3883 | 198.2384 | .1499 | 2.9719 | 2.9392 | | | | 4 | 195.8045 | 195.6946 | .1099 | 2.1789 | | | 2 | J | 1 | 199.1977 | 199.0534 | .1443 | 2.8609 | | | | | 2 | 199.6807 | 199.5009 | .1798 | 3.5647 | | | | | 2
3 | 202.8649 | 202.7226 | .1423 | 2.8213 | 2.8088 | | | | 4 | 202.3445 | 202.2442 | .1003 | 1.9885 | | | 3 | Ε | 1 | 199.0122 | 198.8632 | .1490 | 2.9541 | | | _ | _ | 2 | 202,2508 | 202.1171 | .1337 | 2.6507 | | | | | 2
3 | 201.9826 | 201.8976 | .0850 | 1.6852 | 2.13475 | | | | 4 | 199.6584 | 199.5954 | .0630 | 1.249 | | | 4 | L | 1 | 202.5778 | 202.5080 | .0698 | 1.3838 | | | • | _ | Ž | 200.8579 | 200.7484 | .1095 | 2.1769 | | | | | 2
3 | 202.7075 | 202.5924 | .1151 | 2.282 | 1.91965 | | | | 4 | 197.7676 | 197.6750 | . 0926 | 1.8359 | | | 5 | K | 1 | 199.5913 | | | | | | • | •• | ż | 197.4684 | 197.2730 | .1954 | 3.874 | | | | | 3 | 194.9513 | 194.7783 | .1730 | 3.4299 | 3.38826 | | | | 4 | 202.0694 | 201.9251 | | | | | | | 7 | 404.0094 | 201.9231 | .1443 | 2.8609 | | Avg. Wt. Loss/Test 2.6381 MG/CM² # WATERWALL CORROSION COUPON DATA SUMMARY ### WEIGHT LOSS EVALUATION ### **BIASED FIRING TEST** | Probe | Probe
No. | Coupon
No. | Initial Wt. | Final Wt. | Wt. Loss
GR. | Wt. Loss/
Coupon
MG/CM ² | Avg. Wt. Loss/
Probe
MG/CM ² | |-------|--------------|------------------|--|--|----------------------------------|---|---| | 1 | В | 1
2
3
4 | 197.9531
202.1660
198.3393
200.5603 | 197.6484
201.8659
198.0383
200.2799 | .3047
.3001
.3010
.2804 | 6.0411
5.9499
5.9678
5.5593 | 5.8795 | | 2 | Q | 1
2
3
4 | 199.3158
196.2751
202.8709
200.2327 | 199.1437
196.0480
202.5541
200.0655 | .1721
.2271
.3168
.1672 | 3.4121
4.5026
6.2810
3.3150 | 4.3777 | | 3 | R | 1
2
3
4 | 198.8940
199.8790
196.0683
199.3342 | 198.7626
199.6842
195.8721
199.1690 | .1314
.1948
.1962
.1652 | 2.6051
3.8622
3.8899
3.2753 | 3.4081 | | 4 | M | 1
2
3
4 | 199.5078
198.7039
198.3125
200.8838 | 199.3628
198.4853
198.1121
200.6771 | .1450
.2186
.2004
.2067 | 2.8748
4.3341
3.9732
4.0981 | 3.8201 | | 5 | D | 1
2
3
4 | 197.9655
202.9412
199.1306
198.2205 | 197.7001
202.5809
198.7976
198.0234 | .2654
.3603
.3330
.1971 | 5.2619
7.1435
6.6022
3.9078 | 5.7289 | Avg. Wt. Loss/Test 4.6429 MG/CM² # WATERWALL CORROSION COUPON DATA SUMMARY ### **WEIGHT LOSS EVALUATION** ### OVERFIRE AIR TEST | Probe
Loc. | Probe
No. | Coupon
No. | Initial Wt. | Final Wt. | Wt. Loss
GR. | Wt. Loss/
Coupon
MG/CM ² | Avg. Wt. Loss/
Probe
MG/CM ² | |---------------|--------------|---------------|---------------|-----------|-----------------|---|---| | 1 | S | 1 | 200.7678 | 200.5465 | .2213 | 4.3876 | | | | | 2 | 196.0684 | 195.8121 | .2563 | 5.0815 | | | | | 3 | 199.6433 | 199.3849 | .2584 | 5.1235 | 4.5244 | | | | 4 | 197.8187 | 197.6419 | .1768 | 3.5053 | | | 2 | Т | 1 | 200.7026 | 199,1437 | .2802 | 5.5554 | | | | | 2 | | | | 3.3540 | | | | | 3 | 593.7075 | 593.2000 | .5075 | 3.3540 | 3.9044 | | | | 4 | | | | 3.3540 | | | • | _ | _ | | 4 | | | | | 3 | F | 1 | 199.1897 | 198.9156 | .2741 | 5.4344 | | | | | 2
3 | 199.4476 | 199.1351 | .3125 | 6.1958 | 6 0403 | | | | | 199.3119 | 198.9858 | .3261 | 6.4654 | 6.0401 | | | | 4 | 199.0463 | 198.7404 | .3059 | 6.0649 | | | 4 | N | 1 | 202.8354 | 202.6125 | . 2234 | 4.4292 | | | | | 2 | 201.2249 | 200.9784 | .2465 | 4.8872 | | | | | 2
3 | | | | 2.8729 | 3.7656 | | | | 4 | 397.4898 | 397.2000 | .2898 | 2.8729 | | | 5 | 2 | 1 | | | | | | | - | - | ż | 191.8528 | 191.6484 | .2044 | 4.0525 | | | | | 3 | 192.7875 | 192.5909 | .1966 | | 3.9752 | | | | 4 | 1 3L , 1 O/ J | 136.3303 | . 1 300 | 3.8979 | | | | | 7 | | | | | | Avg. Wt. Loss/Test 4.4419 MG/CM^2 # TEST DATA SUMMARY BARRY NO. 4 | TEST NO | | 1 | <u> </u> | <u>3</u> | 4 | <u>5</u> | <u>6</u> | <u>7</u> | <u>8</u> | <u>9</u> | <u>10</u> | <u>11</u> | 12 | 13 | |---|---|--|---|---|---|---|--|---|--|---|---|---|---|---| | DATE (1973)
TIME | | 1/23
0830 | 1/23
0922 | 1/23
1022 | 1/23
1120 | 1/23
1238 | 1/23
1319 | 1/23
1413 | 1/23
1510 | 1/24
1245 | 1/24
1337 | 1/24
1440 | 1/24
1524 | 1/19
0930 | | TEST CONDITIONS | | | | | | | | | | | | | | | | LOAD MAIN STEAM FLOW SH DESH SPRAY MAIN STEAM OUTLET HOT RH OUTLET OXYGEN AH INLET EXCESS AIR AH INLET MILL CLASSIFIER SETTING BURNER TILT MILLS IN SERVICE * & TYPE OF FUEL BOTTO | DEG.
4A
4B
4C
4D | 348
1098
62
520
516
2.8
14.9
3.0
0
A
A | 348
1089
56
525
523
2.4
12.8
3.0
0
A | 347
1066
63
538
538
2.1
11.0
3.0
+15
A | 334
1066
43
518
510
1.2
6.0
3.0
-25
A
A | 299
925
61
521
504
3.7
20.5
3.0
0 | 298
884
538
527
3.2
17.0
3.0
-
A
C
A | 294
884
77
531
532
2.9
15.1
3.0
+15
-
A | 294
909
43
523
496
1.2
5.7
3.0
-20 | 322
952
59
532
521
2.8
15.1
3.0
0 | 237
907
36
528
504
1.6
8.2
3.0
-30
-A
C | 311
939
36
534
510
1.6
8.2
2.0
-30
- A | 302
918
67
534
523
2.8
14.7
2.0
0 | 325
975
75
529
535
3.1
16.6
3.0
0
A
A | | AIR COMPARTMENT DAMPER | | | - | • | ^ | • | ^ | • | ^ | • | ^ | - | ^ | ^ | | ALL AUXILIARY (CONTROL
ALL PRIMARY
THEORETICAL AIR TO FIRE | ROOM IND.) | 100
50
111.4 | 100
50
109.4 | 100
50
107.6 | 50
100
103.4 | 100
50
100.1 | 100
50
97.4 | 100
50
96.1 | 50
100
88.2 | 50
100
95.8 | 100
50
90.3 | 100
50
89.9 | 50
100
95.4 | 100
50
113.0 | | EMISSION LEVELS (ADJ. 7 | 10 35 0 ₂ DRY BA | sis) | | | | | | | | | | | | | | NO
SO ²
CO ²
NO
SO ² | PPM
PPM
PPM
GR/10 ⁶ CAL
GR/10 ⁶ CAL | 485
2625
37
1.04
7.74 | 465
2973
138
.994
8.82 | 407
3114
95
.869
9.23 | 425
3050
126
.909
9.05 | 366
2957
29
.781
8.77 | 330
3035
76
.716
9.00 | 343
3244
125
.734
9.63 | 302
1461
115
.644
4.34 | 344
3047
132
.734
9.04 | 338
3028
132
.722
8.98 | 349
2844
112
.743
8.44 | 346
2742
74
738
8.14 | 491
1818
23
1.05
5.74 | | MI SCELLANEOUS | | | | | | | | | | | | | | | | 0 (AT AHO)
C62 (AT AHO) | * * | 4.35
13.79 | 3 95
13.83 | 3.56
13.84 | 2.52
14.26 | 5.40
11.5 | 4.76
12.19 | 4.40
12.12 | 2.44
15.9 | 4.39
13.1 | 3.00
13.8 | 2.92
14.5 | 4.32
13.3 | 4.68
13.48 | ^{*} ALABAMA COAL - A PETROLEUM
COKE (C MILL ONLY) - C MIDWEST COAL - M COMBINATION FIRING - A + C, M + C # TEST DATA SUMMARY BARRY NO. 4 | TEST NO. | 17 | 18 | 19 | 50 | <u> 29</u> | <u>30</u> | <u>31</u> | 35 | 33 | 34 | <u>35</u> | <u>37</u> | |--|---|---|--|---|---|---|---|---|---|---|---|--| | DATE (1973)
Time | 1/2
134 | | 1/22
0905 | 1/22
1203 | 1/19
1145 | 1/19
1245 | 1/19
1400 | 1/22
1103 | 1/24
0945 | 1/24
1000 | 1/24
1055 | 1/24
1145 | | TEST CONDITIONS | | | | | | | | | | | | | | MAIN STEAM FLOW X10 | | 2 880
8 53
6 534
9 520
4 4.45
8 26.0
0 3.0
0 0
M — M
C C M | 292
875
54
538
532
3.25
17.6
3.0
0 | 281
884
34
521
496
1.73
8.7
3.0
-30
- M
C | 328
1007
72
533
543
1.45
7.2
3.0
0
A
A
A | 330
975
72
537
541
2.2
11.2
3.0
+20
A
A | 330
1020
72
513
510
1.5
7.3
3.0
-30
A
A | 286
862
54
528
521
4.0
22.4
3.0
0 | 346
1111
45
527
516
2.8
14.8
3.0
-30
A
A
C | 345
1111
48
523
516
1.75
8 8
3.0
-30
A
A
C | 360
1134
36
527
523
2.4
12 2
3.0
0
A
A
C | 348
1089
63
535
541
2.4
12.5
3 0
A
A
C | | BOTTOM 4E | | м м | М | М | A | A | A | М | A | A | A | A | | AIR COMPARTMENT DAMPER POSITI ALL AUXILIARY (CONTROL ROOM) ALL PRIMARY THEORETICAL AIR TO FIRING ZON | ND.) 10 | 0 50 | 100
50
99.0 | 50
100
91.2 | 100
50
103.9 | 100
50
107 8 | 50
100
104 3 | 50
100
103.3 | 100
50
111.4 | 100
50
105 5 | 50
100
109 5 | 100
20
109.1 | | EMISSION LEVELS (ADJ TO 3% O | 2 DRY BASIS) | | | | | | | | | | | | | NO
SO ^X
CO ²
NO GR/
SO ² GR/ | PPM 51
PPM 380
PPM 2
105CAL 1 1
106CAL 11.2 | 5 3470
2 37
6 839 | 337
3340
61
.718
9.90 | 319
3531
49
.680
10.48 | 393
1939
98
.839
5 74 | 426
2008
44
909
5.96 | 466
1715
49
.994
5 08 | 329
3866
65
704
11.3 | 580
2946
32
1.24
8.73 | 521
2994
28
1 11
8.87 | 477
2755
211
1 02
8.17 | 515
2931
69
1.10
8 69 | | MISCELLANEOUS O (AT AHO) CO (AT AHO) | ダ 5.0
ダ 11 4 | | 4.86
12.51 | 3.11
13.29 | 2.78
15.37 | 3.64
14.52 | 2.80
15 25 | 5 70
12.0 | 4.33
14 45 | 3.13
15.35 | 3 83
14.04 | 3 88
13.73 | ^{*} ALABAMA COAL - A PETROLEUM COKE (C MILL ONLY) - C MIDWEST COAL - M COMBINATION FIRING - A + C, M + C # ACCELERATED CORROSION RATE DATA # ALABAMA POWER, BARRY NO. 4 | Firing Condition | Corrosion Rate*,
Mils/Yr | |---------------------|-----------------------------| | Baseline | 34
24 | | Baseline | 17
18 | | Baseline | 11
13 | | Baseline | 16
16 | | Low NO _X | 32
26 | | Low NO _X | 41
52 | | Low NO _X | 77
87 | | Low NO _X | 13
18 | 119 SHEET 16 ^{*} Paired corrosion rate values obtained on two coupons exposed on the same probe. # TYPICAL COAL ANALYSIS # ALABAMA COAL # Obtained From Peabody Coal Company Analysis by Pittsburg Testing Laboratory # Proximate Analysis As Received | SAMPLE IDENTIFICATION Date | ABC
9/30/72 | PEABODY
WARRIOR
9/14/72 | PEABODY
TIGER
9/30/72 | |---|---------------------------------|---|-----------------------------| | Moisture - %
Ash - %
Volatile Matter - %
Fixed Carbon - % | 8.40
13.00
25.92
52.68 | 10.1
11.36
19.75
58.79 | 9.2
9.4
28.8
52.6 | | Sulfur - % | 2.02 | 2.67 | 2.55 | | HHV - BTU/LB | 11,897 | 12,131 | 12,269 | | | Ultimate As Fired | | | | Date | | 1/07/72 | | | Moisture - % Carbon - % Hydrogen - % Oxygen - % Nitrogen - % Sulfur - % Ash - % | | 9.09
70.01
3.83
3.83
1.28
2.21
9.75 | | | HHV - BTU/LB | | 12,290 | | # MIDWEST BITUMINOUS ### Analysis By Alabama Power Co. # Proximate Analysis As Received | SAMPLE IDENTIFICATION Date | EAGLE 1
11/72 | EAGLE 2
11/72 | |--|------------------|------------------| | Moisture - %
Ash - %
Volatile Matter - % | 8.63
9.75 | 10.36
8.86 | | Fixed Carbon - % Sulfur - % | 2.75 | 3.15 | | HHV - BTU/LB | 13,072 | 13,023 | # PETROLEUM COKE Analysis by Gulf Oil Company, Port Arthur, Texas # Proximate Analysis As Received | SAMPLE IDENTIFICATION Date | A2602
2/17/70 | |--|------------------------------| | Moisture - %
Ash - %
Volatile Matter - %
Fixed Carbon - % | 7.7
.10
10.80
81.40 | | Sulfur - % | 3.53 | | HHV - BTU/LB | 15,700 | 121 SHEET 17B # REFERENCES - 1. Blakeslee, C. E. and Selker, A. P., "Program For Reduction of NO_X From Tangential Coal Fired Boilers Phase I" - 2. Crawford, A. P., Manny, E. H. and Bartok, W., "Field Testing: Application of Combustion Modifications to Control NO $_{\rm X}$ Emissions From Utility Boilers" # APPENDIX I COMPFLOW - WINDBOX COMPARTMENT AIR FLOW DISTRIBUTION COMPUTER PROGRAM ### INTRODUCTION A description of COMPAIR, a computer program which calculates the wind-box assembly air flow distribution, was presented in Reference 1. The program has been subsequently found to be deficient; the approach taken in the calculation of the compartment loss coefficient resulted in operational difficulties in certain cases. The program was revised to eliminate this problem. The revised program, COMPFLOW, is described herein. The basic assumptions and limitations of the calculation method are outlined and discussed. Program runs for two tests conducted at Barry #2 are included. ### ANALYSIS Consideration will be initially focused on those cases where the air flow to each compartment is supplied solely by the windbox. ### Assumptions: - 1. Constant total pressure at compartment inlet plane, i.e., $P_{T_{\chi}} = const.$ - Constant density, i.e., R(I) = R = const. - Constant static pressure at nozzle exit plane, i.e., P_s = const. - Fully turbulent flow, i.e., Head Loss ≈ (Velocity)². Utilizing these assumptions, it follows that Where K(I) = loss coef. for Compartment "I" Q(I) = volume rate of flow for Compartment "I" A(I) = nozzle exit area of Compartment "I" Equation (1) yields $$\frac{Q(I)}{M} = \frac{A(I)/\sqrt{K(I)}}{M}$$ $$\underset{I=1}{\Sigma Q(I)} \frac{\chi_{A(I)}/\sqrt{K(I)}}{I=1}$$ -----(2) By definition $$P_{T_y}(I) = P_{S_y} + \frac{R}{2} * \left[\frac{Q(I)}{A(I)}\right]^2$$ ----(3) Using Equations (1) and (3), we have In order to arrive at a relation for K(I), the windbox compartment total pressure loss will be set equal to the sum of its component losses, i.e., $$2 * \left[\frac{P_{T_{X}} - P_{T_{Y}}(I)}{R} \right] = \left[K_{D}(I) + K_{A}(I) + K_{90}(I) + K_{f}(I) \right] * \left[\frac{Q(I)}{B(I)} \right]^{2} + K_{N}(I) * \left[\frac{Q(I)}{A(I)} \right]^{2} - \dots (5)$$ Where B(I) = inlet flow area of Compartment "I" Assumption (5): The values listed below, which allow for no interaction, adequately represent the compartment total pressure loss. | <u>LOSS</u> | VALUE | COMMENT | REFERENCE | |--------------------------------|----------|---|-----------| | Miter bend, K _B (I) | 0.3 | Typical, $\beta = 45^{\circ}$ | 2 | | 90° bend, K ₉₀ (I) | 1.2 | | 2 | | Friction, $K_f(I)$ | 0.1 | $f \approx 0.02$, $\frac{L}{D} \leq 5$; $K_f = f \frac{L}{D}$ | 2 | | Nozzle, K _N (I) | 0 | $K_N = \frac{1}{C_V} - 1$; Assume $C_V = 1$ | 3 | | Damper, K _D (I) | Figure 1 | Assumed to include inlet loss | 4 | Using the above values, Equations (4) and (5) yield $$K(I) = 1 + [1.6 + K_D(I)] * [\frac{A(I)}{B(I)}]^2$$ -----(6) For coal fired units the mill air must be taken into account. Using Equation (2) for the secondary air flow, it follows that $$\frac{W(I)}{WI + W2} = \frac{\begin{bmatrix} A(I)/\sqrt{K(I)} \\ M \\ \Xi A(I)/\sqrt{K(I)} \end{bmatrix} * W1 + X(I) * W2}{W1 + W2} = -----(7)$$ where W(I) = mass rate of flow to Compartment "I" Wl = total windbox air to corner W2 = total mill air to corner X(I) = fraction of mill air to Compartment "I" Figure 1 and Equations (6) and (7) constitute the basis of COMPFLOW. Note that if some other source of air were available to the windbox assembly, Equation (7) would yield the flow distribution with adjustments in the definitions of W2 and X(I). Note also that if there is no corner to corner biasing of compartment dampers, Equation (7) may, to a very good approximation, be regarded on a furnace/elevation basis. ### PROGRAM DESCRIPTION A description of the program input is as follows: ### Input ### Fuel and Air Compartment Geometry Number of Compartments Width of Compartments Height of Individual Compartments Number of Dampers per Compartment Nozzle Exit Area per Compartment ### Test Data Percent Excess Air Total Air Flow Compartment Damper Positions Fuel Elevations in Service
Typical program outputs for Alabama Power Co., Barry #2, tests 5 and 20, are shown on Figure 2. These runs represent both normal and overfire air operation. A definition of the output is shown on Figure 3. ### DISCUSSION ### A. Development of the Method The method presented herein, of calculating the windbox assembly flow distribution, is the result of what is obviously a greatly simplified treatment; numerous assumptions were made in the development of the method. The validity of each of these assumptions will now be examined. Assumption (1): Constant total pressure at the compartment inlet plane. Air issuing from a duct branches to each of the wind-box assemblies; the fluid is moving at a low velocity relative to that at the nozzle exit. It would be reasonable to assume that the total pressure loss between the supply duct exit and the compartment inlet plane is a negligible fraction of the velocity head at the nozzle exit. It is all the more realistic to assume, as is the case herein, that the total pressure distribution in the supply duct and the consequent losses along individual streamlines, are such that the total pressure is uniform at the compartment inlet plane. Assumption (2): Constant density fluid within the windbox assembly. The reasoning for this assumption is analogous to that set forth in (1); note that while isothermal flow is not implied between the supply duct and the compartment inlet, it is assumed within the windbox assembly. Assumption (3): Constant static pressure at the nozzle exit plane. The static pressure of the jets issuing from the windbox nozzles is equal to the local furnace pressure. The variation in furnace pressure throughout this region should be negligibly small. Assumption (4): Fully turbulent flow. This is a valid assumption for the vast majority of cases; unit Reynolds numbers(based on nozzle exit velocity) greater than 10⁵ per foot are typical even for small opening of compartment dampers. Assumption (5): The compartment loss coefficient for existing configurations are adequately represented by the formulations presented herein (i.e. Figure 1 and Equation (6)). Curves of K versus damper position, as calculated from Figure 1 and Equation (6), are shown in Figure 4 for compartment outlet/inlet area ratios (i.e. A(I)/B(I) of 0.534, 0.322 and 0.136; these values cover the range of our existing compartments. Results obtained from the cold-flow model tests of Reference 5, at area ratios of 0.322 and 0.136, are also shown in this figure; the test results are seen to be in excellent agreement with the predicted values. These test results indicate that nozzle tilt, flow rate, firing angle, the presence of turning vanes and probably compartment inlet interaction, are secondary influences on compartment pressure loss and consequently on compartment flow rate. These results justify the omission of these factors in the development of the method presented herein. ### B. Previous Calculations In the previous method of calculating the windbox assembly flow distribution (Reference 1), the compartment loss coefficient was determined from the equation $$K(I) = KO + K_D(I) * \left[\frac{A(I)}{B(I)}\right]^2$$ where $K_D(I)$ was specified as herein KO evaluated from test values of the total secondary air flow and windbox/furnace ΔP . Highly closed damper positions result in a very large value of K_D , as is seen in Figure 1, and a small error in this parameter will result in a large variation in KO. Program runs with all compartment dampers at or near the full open position yielded values of KO consistent with the value presented herein, i.e., @ 100% open, $$K_D \approx 0.1$$, $K = K/100\%$ from Equation (6), $K/100\% \approx 1 + 1.7 * \left[\frac{A}{B}\right]^2$ for existing geometries, $0 < \left[\frac{A}{B}\right]^2 < 0.29$ therefore, with $KO \approx K/100\%$, $1 < KO < 1.5$ Program runs with one or more compartment dampers highly closed would sometimes yield values of KO outside this range; in rare cases this would result in operational difficulties. ### REFERENCES - N. D. Brown, "COMPAIR, Burner-Compartment Air-Flow Distribution Computer Program," Project No. 121029, September, 1971. - 2. "Flow of Fluids Through Valves, Fittings, and Pipe," Crane Co., Technical Paper No. 409, May, 1942. - 3. R. V. Giles, "Fluid Mechanics and Hydraulics," Schaum Publishing Co., 1962. - 4. P. S. Dickey & H. L. Coplan, "A Study of Damper Characteristics," Trans. of the ASME, February, 1942. 5. N. D. Brown, "Windbox Compartment Flow Tests," Test Report 72-6, Project No. 412003, March 2, 1972. ### DAMPER LOSS COEFFICIENT VS. POSITION % Open = $(\delta/90) \times 100$ PT₁ = Total Pressure @ "l" P_{T_2} = Total Pressure @ "2" = Fluid Density = Volume Rate of Flow = Flow Area # AIR FLOW DISTRIBUTION TO WINDBOX COMPARTMENTS ALABAMA POWER AND LIGHT CO., BARRY #2 EPA '73 - '74 TESTS ### FLOW DISTRIBUTION FOR TEST NO. 5 PER CENT EXCESS AIR 22.7 | COMPART-
MENT
(NO.) | FIRING | AREA WT. FLOW (% OF TOTAL) | DAMPERS
(% OPEN) | ACTUAL FLOW (% OF TOTAL) | |---------------------------|--------|----------------------------|---------------------|--------------------------| | 1 | | 9.44 | 60 | 7.8 | | 2 | Yes | 6.55 | 20 | 8.39 | | 3 | | 18.03 | 100 | 16.37 | | 4 | Yes | 6.55 | 20 | 8.39 | | 5 | | 9.44 | 100 | 8.64 | | 6 | | 9.44 | 100 | 8.64 | | 7 | Yes | 6.55 | 20 | 8.39 | | 8 | | 18.03 | 100 | 16.37 | | 9 | Yes | 6.55 | 20 | 8.39 | | 10 | | 9.44 | 100 | 8.64 | Firing Fuel Compartment Total Air Flow (%) = 33.55 Air Flow Above Burner Zone (%) = 3.9 Air Flow to Burner Zone (% of Theor. Air) = 117.91 ### FLOW DISTRIBUTION FOR TEST NO. 20 ### PERCENT EXCESS AIR 24.2 | COMPART-
MENT
(NO.) | FIRING | AREA WT. FLOW (% OF TOTAL) | DAMPERS
(% OPEN) | ACTUAL FLOW
(% OF TOTAL) | |---------------------------|--------|----------------------------|---------------------|-----------------------------| | 1 | | 9.44 | 100 | 9.42 | | 2 | | 6.55 | 100 | 6.85 | | 3 | | 18.03 | 50 | 14.93 | | 4 | Yes | 6.55 | 30 | 10.27 | | 5 | | 9.44 | 50 | 7.68 | | 6 | | 9.44 | 50 | 7.68 | | 7 | Yes | 6.55 | 30 | 10.27 | | 8 | | 18.03 | 50 | 14.93 | | 9 | Yes | 6.55 | 30 | 10.27 | | 10 | | 9.44 | 50 | 7.68 | Firing Fuel Compartment Total Air Flow (%) = 30.82 Air Flow Above Burner Zone (%) = 23.73 Air Flow to Burner Zone (% of Theor. Air) = 94.72 ### COMPFLOW ### Definition of Output - 1. The "AREA WT. FLOW" is the ratio of the compartment free area to the total free area of the corner; as such it is a realistic approximation of the actual compartment (secondary) flow only when all compartment dampers are full open. - 2. The compartment "ACTUAL FLOW" is the ratio of the compartment mass flow rate (including mill air if applicable) to the total mass flow to the corner (see ANALYSIS, equation (7)). - 3. The "FIRING FUEL COMPARTMENT TOTAL AIR FLOW" is the ratio of the total mass flow rate to firing fuel compartments (including mill air if applicable) to the total mass flow to the corner. - 4. The "AIR FLOW ABOVE BURNER ZONE" is defined as the percentage of the total mass flow rate supplied above the uppermost firing fuel compartment, less 50% of the flow to the compartment immediately above it. - 5. % Theoretical Air = $(1 \frac{\% \text{ Air Above Burner Zone}}{100})(100 + \% \text{ Excess Air})$ to Burner Zone. # COMPARTMENT LOSS COEFFICIENT # VS. DAMPER POSITION $$K = \frac{2(P_{T_x} - P_{s_y})/R}{(Q/A)^2}$$ $P_{T_{x}}$ = Total Pressure @ "x" Ps_y = Static Pressure @ "y" = Fluid Density = Volume Rate of Flow = Nozzle Exit Area $\frac{A}{B}$ = 0.534 = $\frac{Nozzle\ Exit\ Area}{Compart.\ Inlet\ Area}$ | K = | = 1 | + | (1.6 | + | K _D) | X | $\left(\frac{A}{B}\right)^{-}$ | |-----|-----|---|------|---|------------------|---|--------------------------------| | _ | | | | | | | - | | LEGEND | | |--------|-------| | SYMBOL | A/B | | 0 | 0.322 | | | 0.136 | 10 0 K DAMPER POSITION - % OPEN | TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing) | | | | | |---|---------------------------------------|--|--|--| | 1. REPORT NO.
EPA-650/2-73-005-a | 2. | 3. RECIPIENT'S ACCESSION NO. | | | | 4. TITLE AND SUBTITLE Program for Reduction of NOx from Tangential | | 5. REPORT DATE
June 1975 | | | | Coal-Fired Boilers, Phase II | | 6. PERFORMING ORGANIZATION CODE | | | | Ambrose P. Selker | | 8. PERFORMING ORGANIZATION REPORT NO. | | | | 9. PERFORMING OR SANIZATION NA
Combustion Engineering
1000 Prospect Hill Road
Windsor, Connecticut O | , Inc. | 10. PROGRAM ELEMENT NO. 1AB014; ROAP 21ADG-080 11. CONTRACT/GRANT NO. 68-02-1367 | | | | 12. SPONSORING AGENCY NAME AND EPA, Office of Research NERC-RTP, Control Sy Research Triangle Park | h and Development
stems Laboratory | 13. TYPE OF REPORT AND PERIOD COVERED Phase II Final; 7/73 - 3/75 14. SPONSORING AGENCY CODE | | | 15. SUPPLEMENTARY NOTES 16. ABSTRACT The report gives results of Phase II of a program to reduce the emission of NOx from tangential coal-fired boilers. Results of Phase I, during which a suitable utility steam generator was selected to be modified for the Phase II studies, were presented in final report EPA-650/2-73-005, dated August 1973. The Phase II work included: the design, fabrication, and delivery of an overfire air system for the test unit; the installation of test equipment; planning; and baseline, biased firing and overfire air studies for NOx emission control while burning a Kentucky bituminous coal type. These test programs included an evaluation of the effect of variations in excess air, unit slagging, load, and overfire air on unit performance and emission levels. The effect of biasing combustion air through various out-of-service fuel nozzle elevations was also evaluated. The effect of biased firing and overfire air
operation on waterwall corrosion potential was evaluated during three 30-day baseline biased firing, and overfire air corrosion coupon tests. Unit loading and waterwall slag conditions had minimal effects on NOx emission levels. Reductions in excess air levels and overfire air operation were found to be effective in reducing NOx emission levels. | 7. KEY WORDS AND DOCUMENT ANALYSIS | | | | | |------------------------------------|---|-----------------------|--|--| | a. DESCRIPTORS | b.IDENTIFIERS/OPEN ENDED TERMS | c. COSATI Field/Group | | | | Air Pollution | Air Pollution Control | 13B | | | | Nitrogen Oxides | Stationary Sources | 07B | | | | Combustion Control | NOx Reduction | 21B | | | | Coal | Tangential Firing | 21D | | | | Boilers | Combustion Modification | 13A | | | | 18. DISTRIBUTION STATEMENT | 19. SECURITY CLASS (This Report) Unclassified | 21. NO. OF PAGES | | | | Unlimited | 20. SECURITY CLASS (This page) Unclassified | 22. PRICE | | |