EPA-650/2-73-005-a June 1975

Environmental Protection Technology Series

PROGRAM FOR REDUCTION OF NOX FROM TANGENTIAL COAL-FIRED BOILERS PHASE II

U.S. Environmental Protection Agency Office of Research and Development Washington, D. C. 20460

PROGRAM FOR REDUCTION OF NOX FROM TANGENTIAL COAL-FIRED BOILERS PHASE II

by

Ambrose P. Selker

Combustion Engineering, Inc. 1000 Prospect Hill Road Windsor, Connecticut 06095

Contract No. 68-02-1367 ROAP No. 21ADG-080 Program Element No. 1AB014

EPA Project Officer: David G. Lachapelle

Control Systems Laboratory National Environmental Research Center Research Triangle Park, North Carolina 27711

Prepared for

U. S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT WASHINGTON, D. C. 20460

June 1975

EPA REVIEW NOTICE

This report has been reviewed by the National Environmental Research Center - Research Triangle Park, Office of Research and Development, EPA, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into series. These broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and maximum interface in related fields. These series are:

- 1. ENVIRONMENTAL HEALTH EFFECTS RESEARCH
- 2. ENVIRONMENTAL PROTECTION TECHNOLOGY
- 3. ECOLOGICAL RESEARCH
- 4. ENVIRONMENTAL MONITORING
- 5. SOCIOECONOMIC ENVIRONMENTAL STUDIES
- 6. SCIENTIFIC AND TECHNICAL ASSESSMENT REPORTS
- 9. MISCELLANEOUS

This report has been assigned to the ENVIRONMENTAL PROTECTION TECHNOLOGY series. This series describes research performed to develop and demonstrate instrumentation, equipment and methodology to repair or prevent environmental degradation from point and non-point sources of pollution. This work provides the new or improved technology required for the control and treatment of pollution sources to meet environmental quality standards.

This document is available to the public for sale through the National Technical Information Service, Springfield, Virginia 22161.

Publication No. EPA-650/2-73-005-a

ABSTRACT

This report presents the findings of the Phase II "Program For Reduction of NO_X From Tangentially Coal Fired Boilers" performed under the sponsorship of the Office of Research and Development of the Environmental Protection Agency (Contract 68-02-1367). Phase I of the program consisted of selecting the Alabama Power Company, Barry Station #2 steam generator which was modified for the studies performed under Phase II. The Phase I results were presented in final report EPA-650/2-73-005, dated August, 1973.

The work accomplished under Phase II included the design, fabrication, and delivery of an overfire air system for the test unit, the installation of test equipment, planning, and the conducting of baseline, biased firing and overfire air studies for NO_{χ} emission control while burning a Kentucky bituminous coal type.

These test programs included an evaluation of the effect of variations in excess air, unit slagging, load and overfire air on unit performance and emission levels. Additionally, the effect of biasing combustion air through various out of service fuel nozzle elevations was also evaluated. The effect of biased firing and overfire air operation on waterwall corrosion potential was evaluated during three thirty (30) day baseline, biased firing and overfire air corrosion coupon tests.

Unit loading and waterwall slag conditions exhibited minimal effects on NO_X emission levels while reductions in excess air levels and overfire air operation were found to be effective in reducing NO_X emission levels.

DISCLAIMER

"This report was prepared by Combustion Engineering, Inc. as an account of work sponsored by the Office of Research and Development, U.S. Environmental Protection Agency (EPA). Combustion Engineering, Inc. nor any person acting on behalf of Combustion Engineering, Inc.:

- "a. Makes any warranty or representation, expressed or implied including the warranties of fitness for a particular purpose or merchantability, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- b. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report."

CONTENTS

	Page No.
Abstract	iii
Disclaimer	iv
List of Figures	vii
List of Data Sheets	ix
Acknowledgements	хi
Conclusions	1
Recommendations	3
Introduction	4
Purpose and Scope	4
Objectives	
Task I	7
Task II	7
Task III	7
Task IV	8
Task V	8
Task VI	8
Task VII	8
Task VIII	10
Task IX	10
Discussion	
Task I - Prepare the Design, Detail Fabrication	
and Erection Drawings	11
Task II - Purchase and Fabricate Equipment	11
Task III - Test Instrument Installation	13
Tasks IV & V - Baseline and Biased Firing Test Programs	15
Test Data Acquisition and Analysis	15
Load and Excess Air Variation	17
Furnace Wall Deposit Variation	21
Biased Firing - Fuel Elevations Out of Service	
Variation	26
Task VIII - Unit Optimization Study	34

CONTENTS (Cont'd)

	Page No.
Load and Excess Air Variation	34
Furnace Wall Deposit Variation	40
OFA Location & Rate Variation	44
OFA Tilt Variation	49
Load Variation at Optimum Conditions	51
Furnace Performance	55
Waterwall Corrosion Coupon Evaluation	57
Overfire Air Evaluation - Alternate Coals -	
Barry 4 Tests	70
Task IX - Prepare Application Guidelines	81
References	122
Appendix I	123
Compflow:Windbox - Compartment Air Flow Distribution	
Computer Program	

FIGURES

No.		Page No.
1	Unit Side Elevation	6
1A	Schematic - Overfire Air System	9
2	Program Schedule	12
3	Emission Test System	14
4	Corrosion Probe	18
5	Corrosion Probe Locations	19
6	Corrosion Probe Temperatures	20
7	NO ₂ Vs. Theoretical Air to Fuel Firing Zone -	
	Baseline Study	22
8	CO Vs. Theoretical Air to Fuel Firing Zone -	
	Baseline Study	23
9	Percent Carbon Loss Vs. Theoretical Air to	
	Fuel Firing Zone - Baseline Study	24
10	Unit Efficiency Vs. Unit Excess Air - Before Modification	25
11	Furnace Slag Pattern - Clean Furnace	27
12	Furnace Slag Pattern - Moderate Slag Furnace	28
13	Furnace Slag Pattern - Heavy Slag Furnace	29
14	NO ₂ Vs. Theoretical Air to Fuel Firing Zone -	
	Biased Firing Study	31
15	CO Vs. Theoretical Air to Fuel Firing Zone -	
	Biased Firing Study	32
16	Percent Carbon Loss Vs. Theoretical Air to Fuel	
	Firing Zone - Biased Firing Study	33
17	NO ₂ Vs. Theoretical Air to Fuel Firing Zone -	
	Overfire Air Study	36
18	CO Vs. Theoretical Air to Fuel Firing Zone -	
	Overfire Air - Baseline Study	37
19	Percent Carbon Loss Vs. Theoretical Air to Fuel	
	Firing Zone - Overfire Air & Baseline Study	38
20	Unit Efficiency Vs. Unit Excess Air - All Tests	39
21	Furnace Slag Pattern - Clean Furnace	41

FIGURES (Cont'd)

No.		Page No.
	tern - Moderate Slag Furnace	42
23 Furnace Slag Pat	tern - Heavy Slag Furnace	43
24 NO ₂ Vs. Theoreti	cal Air to Fuel Firing Zone -	
Overfire Ai		45
25 CO Vs. Theoretic	al Air to Fuel Firing Zone -	
Overfire Ai	r Study	47
26 Percent Carbon L	oss Vs. Theoretical Air to Fuel	
Firing Zone	e - Overfire Air Study	48
27 NO ₂ Vs. OFA Tilt	: & Fuel Nozzle Tilt	50
-	oss Vs. OFA Tilt & Fuel Nozzle Tilt	52
29 CO Vs. OFA Tilt	& Fuel Nozzle Tilt	53
30 NO ₂ Vs. Main Ste	am Flow: Normal & Optimum Operation	54
31 Chordal Thermoco		56
32 Waterwall Absorp	tion - Baseline Operation	58
33 Waterwall Absorp	tion - OFA Operation	59
34 Waterwall Absorp	tion - OFA Operation	60
35 Waterwall Absorp	tion - Baseline & OFA Operation	61
36 Gross MW Loading	Vs. Time - Baseline Corrosion	
Probe Study	•	63
37 Gross MW Loading	Vs. Time - Biased Firing	
Corrosion P	robe Study	64
38 Gross MW Loading	Vs. Time - Overfire Air	
Corrosion P	robe Study	65
39 Ash Analysis - C	orrosion Probe Studies	69
40 NO ₂ Vs. Theoreti	cal Air to the Firing Zone - Barry 4	74
41 NO ₂ Vs. Excess A		75
42 CO Vs. Excess Ai	r - Barry 4	76
43 NO ₂ Vs. Primary/	Secondary Damper Positions - Barry 4	78
•	ion Probe Locations - Barry 4	80

DATA SHEETS

Sheet	<u> </u>	Page No.
1	NO _x Test Data Summary - Baseline	
	Study	82
2	NO _v Test Data Summary - Biased	
	Firing Study	83
3	NO _x Test Data Summary - Baseline Study	
	After Modification	84
4A	NO _x Test Data Summary - Overfire Air	
	Location, Rate & Velocity Variation	85
4B	NO _x Test Data Summary - OFA Tilt	
	Variation	86
4C	NO _x Test Data Summary - Load Variation	
	at Optimum Conditions	86
5A, 5B	Test Data - Baseline Study	87, 88
6A, 6B	Test Data - Biased Firing Study	89, 90
7A, 7B	Test Data - Baseline Study After	
	Modification	91, 92
8A, 8B	Test Data - Overfire Air Location, Rate	
	& Velocity Variation	93, 94
8C, 8D	Test Data - Ovefire Air Tilt Variation	
	and Load Variation at Optimum	
	Conditions	95, 96
9A, 9B, 9C	Board Data - Baseline Study	97, 98, 99
10A, 10B, 10C	Board Data - Biased Firing Study	100, 101, 102
11A, 11B, 11C	Board Data - Baseline Study After	
	Modification	103, 104, 105
12A, 12B	Board Data - Overfire Air Location,	
	Rate & Velocity Variation	106, 107
12C, 12D, 12E	Board Data - Overfire Air Tilt Variation	
	and Load Variation at Optimum	
	Conditions	108, 109, 110

DATA SHEETS (Cont'd)

Sheet	<u>.</u>			_	Page	No.
		13A	Waterwall Absorption Rates - kg-cal/hr-cm2	<u> </u>		
			Right Wall Centerline Tube Rates	_		111
		13B	Waterwall Absorption Rates - kg-cal/hr-cm²	² -		
			Front Wall Centerline Tube Rates	_		112
		13C	Waterwall Absorption Rates - kg-cal/hr-cm²	<u> -</u>		
			Right Wall, Rear Wall, Left Wall,			
			Front Wall			113
14A,	14B,	14C	Waterwall Corrosion Coupon Data			
			Summary	114,	115,	116
	15A,	15B	Test Data Summary, Barry No. 4		117,	118
		16	Accelerated Corrosion Rate Data -			
			Barry No. 4			119
	17A,	17B	Typical Coal Analysis		120,	121

ACKNOWLEDGMENTS

The author wishes to acknowledge the constructive participation of Mr. D. G. Lachapelle, EPA Project Officer, in providing the program direction necessary for its successful completion.

The cooperation and active participation of Alabama Power Company and, in particular, the personnel of the Barry Steam Plant were essential to successfully modifying the test unit and conducting the various test program phases.

The results presented in this report represent the effort of many Combustion Engineering, Inc. personnel whose participation was required for its successful completion and in particular the technical contributions made by Messrs. W. A. Stevens, R. F. Swope, M. S. Hargrove, R. W. Robinson, R. W. Borio, R. M. Kantorak and E. R. LePage.

CONCLUSIONS

Normal Operation

- 1. Under normal unit operation without overfire air, excess air variation was found to have the greatest single effect on NO_X emission levels, increasing NO_X with increasing excess air. An average increase of 0.014 g $NO_2/10^6$ cal for each 1% change in excess air was observed over the normal operating range.
- 2. Unit loading and variation in furnace slag conditions were found to have the least effect on NO_X and CO emission levels and the percent carbon in the flyash.
- 3. Under normal unit operation, the percent carbon loss in the fly ash and CO emission levels increased with decreasing excess air with the increases becoming greater below a level of approximately 20 to 25 percent excess air. CO levels in excess of 0.1 g/10⁶ cal were considered unacceptable for the purposes of this program.

Overfire Air Operation

- 1. NO_X reductions of 20 to 30% were obtained with 15 to 20 percent overfire air when operating at a total unit excess air of approximately 15 percent as measured at the economizer outlet. This condition would provide an average fuel firing zone stoichiometry of 95 to 100 percent of theoretical air. Stoichiometries below this level did not result in large enough decreases in NO_X levels to justify their use. Biased firing, while potentially as effective, necessitates a reduction in unit loading and is therefore less desirable as a method of NO_X control.
- 2. When using overfire air as a means of decreasing the theoretical air (TA)* to the fuel firing zone the percent carbon in the fly ash and CO emission levels were less affected than when operating with

^{*} See Appendix I.

- low excess air. This is due to the ability to maintain acceptable total excess air levels during overfire air operation.
- Furnace performance as indicated by waterwall slag accumulations, visual observations and absorption rates were not significantly affected by overfire air operation.
- 4. On the test unit, where the overfire air port could not be installed as a windbox extension, test results indicated that the centerline of the overfire air port should be kept within 3 meters of the centerline of the top fuel elevation. Distances greater than 3 meters did not result in decreased NO_{X} levels. Changes in distance less than 3 meters did affect NO_{X} levels to a limited extent with the NO_{X} level increasing with decreasing distance.
- 5. Optimum overfire air operation was obtained with the test unit when the overfire air nozzles were tilted with the fuel nozzles. From a standpoint of NO_X control, emission levels increased when the nozzles were directed toward each other, and flame stability decreased when they were directed away from each other by more than $20-25^\circ$. With the overfire air tilts fixed in a horizontal position, acceptable unit operation was obtained, however, NO_X levels varied with fuel nozzle position.
- 6. The results of the 30 day baseline, biased firing and overfire air corrosion coupon runs indicate that the overfire air operation for low NO_X optimization did not result in significant increases in corrosion coupon degradation. Additional studies will be required to verify these observations over long-term operation.
- 7. Variables normally used to control normal boiler operation should not be considered as NO_X controls with coal firing. These variables include unit load, nozzle tilt, pulverizer fineness, windbox dampers and total excess air.
- 8. Overall unit efficiency was not significantly affected by overfire air operation.

RECOMMENDATIONS

This program investigated the effects of employing biased firing and overfire air, as incorporated on a specially modified unit, as methods for controlling NO_x emission levels in existing steam generating units.

These control methods were studied using an Eastern United States bituminous coal type. Due to the location of the test site it was not, however, within the scope of this program to investigate coal types located in the western areas of the United States.

- 1. As these western coal types are becoming a more predominate source of fuel for electric generating stations, it was recommended in the Task V interim report that studies be undertaken to include their evaluation. EPA Contract 68-02-1486 was subsequently awarded to Combustion Engineering, Inc. to study western coal fuels. In this program new units being designed with overfire air systems as an extension to the windbox will be utilized eliminating the need for unit modifications while expanding the experimental studies to include test data for larger current design steam generating units.
- 2. Additionally, the results of the corrosion probe evaluations indicate that the coupon weight losses encountered during a 30 day evaluation are small and consideration should be given to studies of up to one year duration to verify short term test results. These studies should include evaluation of actual fireside waterwall tube wastage rates as well as corrosion probe wastage rates.

INTRODUCTION

Purpose and Scope

This program encompassed the work to be performed under the second phase of a two phase program to identify, develop and recommend the most promising combustion modification techniques for the reduction of NO_X emissions from tangentially coal-fired utility boilers with a minimum impact on unit performance.

Phase I (performed under EPA Contract 68-02-0264) consisted of selecting a suitable utility field boiler to be modified for experimental studies to evaluate NO_X emission control. Phase I also included the preparation of preliminary drawings, a detailed preliminary test program, a cost estimate and detailed schedule of the program phases and a preliminary application economic study indicating the cost range of a variety of combustion modification techniques applicable to existing and new boilers. (1)

Phase II consisted of modifying and testing the utility boiler selected in Phase I to evaluate overfire air and biased firing as methods for NO_X control. This phase also included the completion of detailed fabrication and erection drawings, installation of analytical test equipment, updating of the preliminary test program, analysis and reporting of test results and the development of control technology application guidelines for existing and new tangentially coal-fired utility boilers.

This program was conducted at the Barry Steam Station, Unit No. 2 of the Alabama Power Company. This unit is a natural circulation, balanced draft design, firing coal through four elevations of tilting tangential fuel nozzles. Unit capacity at maximum continuous rating (MCR) is 408,000 kg/hr main steam flow with a superheat outlet temperature and pressure of 538°C and 131.8 kg/cm². Superheat and reheat temperatures are controlled by fuel nozzle tilt and spray desuperheating. A side

elevation of the unit prior to modification is shown on Figure 1.

Throughout this report ${\rm NO_X}$ emission levels are expressed as ${\rm g/10}^6{\rm cal~NO_2}$.

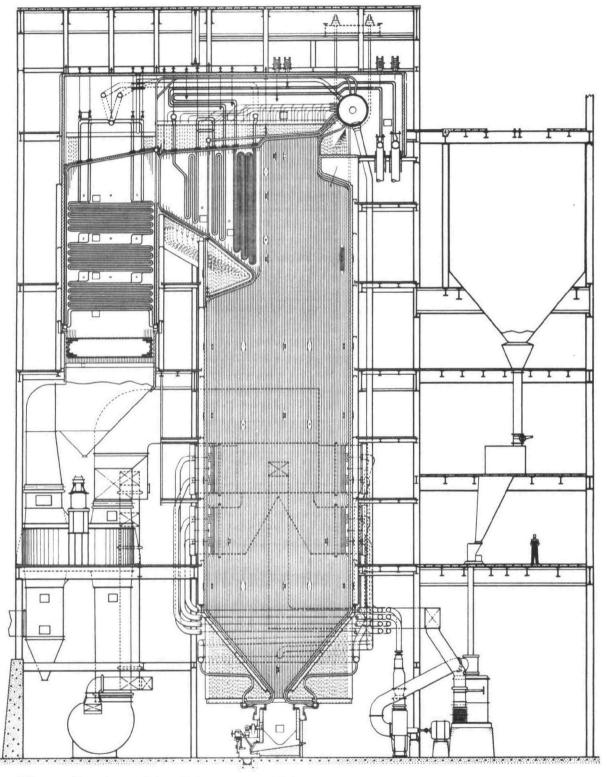


Figure 1. Unit Side Elevation, Alabama Power Company, Barry No. 2

OBJECTIVES

The objective of program Phase II was to complete the design of the overfire air system, modify the Barry 2 unit accordingly, perform baseline, biased firing and optimization tests and based on the results of this program, prepare an application guideline for the NO_{χ} control technology generated.

Specifically these objectives are defined as follows:

- Task I Prepare the design, detailed fabrication and erection drawings necessary for modification of Barry No. 2 to incorporate an overfire air system. The system design provides for:
 - a. Introducing a maximum of 20% of the total combustion air above the fuel admission nozzles.
 - b. Overfire air introduction through the top two existing windbox compartments (thereby prohibiting the use of one elevation of fuel nozzles).
 - c. Introduction of hot overfire air only with consideration for air preheat control.

An updated schedule for Tasks II and IV were also prepared under Task I.

- Task II Complete the purchasing and fabrication of all equipment necessary for modification of the Barry No. 2 unit.
- Task III Install all necessary instrumentation required to measure flue gas constituents and characterize the effects of combustion modifications on unit performance. Specifically the following determinations were made:
 - a. Flue gas constituents: NO_y , SO_y , CO, HC, O_2
 - b. Unit Performance Effects:

Fireside corrosion

Furnace heat absorption

Sensible heat leaving furnace

Superheater, reheater and air heater performance

- Task IV Conduct a baseline test program to establish the effect of unit load, wall slagging and excess air variation on baseline emission levels, thermal performance and operating ranges. A baseline corrosion coupon test of 30 day duration was also conducted.
- Task V Conduct a biased firing baseline test program to establish the effect on unit emission levels while operating with various fuel elevations out of service. These tests were performed specifically to evaluate the maximum emission control at full load and throughout the normal load range. In addition, the degree of control required to meet and maintain emission standards throughout the normal control range was also evaluated. A biased firing corrosion coupon test of 30 days duration was also conducted.
- Task VI Install all equipment required for modification of the test unit and functionally check equipment to determine that proper operation is obtained. (See Figure 1A)
- Task VII Complete final preparations for conducting the overfire air test program to be conducted in Task VIII including the following:
 - a. Finish installation of the furnace waterwall thermocouples.
 - b. Check out all necessary test instrumentation for proper installation and operation.
 - c. Review test program with EPA project officer and util-

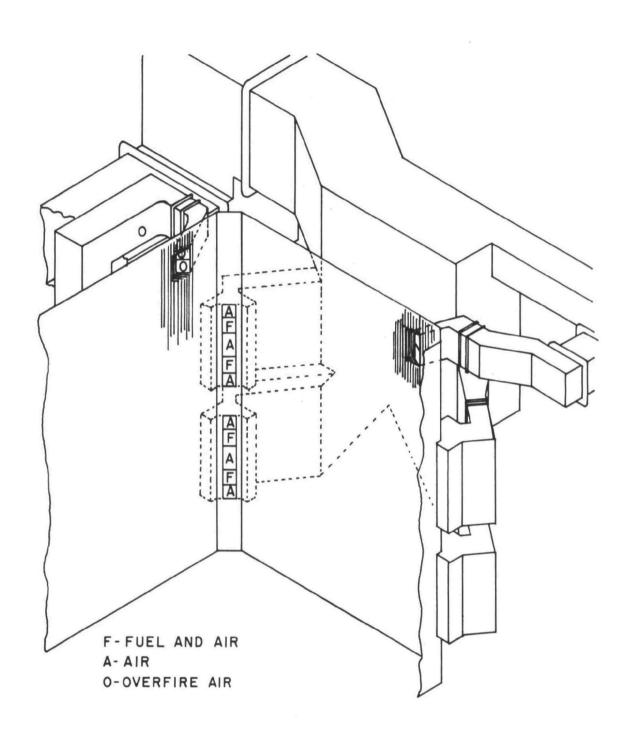


Figure 1A: Schematic Overfire Air System, Barry No. 2

ity company.*

- d. Perform a final inspection of the test unit to assure proper operation.
- Task VIII- Conduct the overfire air test program, analyze the data generated and compare this data with that obtained during Task V. The program investigated the effect of overfire air location and rate at various unit loadings and evaluated operating conditions considered as optimum from the standpoint of NO_X control and unit operation. The final report was also generated under this Task.
- Task IX Prepare a program outlining the application of the technology developed under this study to existing and new design tangentially coal-fired utility boilers. These application guidelines will be submitted as a separate final report.

^{*} The test program for this study was originated during the Phase I study, Contract 68-02-0264 and was included as part of the Phase I report.

DISCUSSION

Task I - Prepare the Design, Detailed Fabrication and Erection Drawings Engineering Drawings

The drawings necessary for the design and installation of the overfire air system were completed by the end of the eighth program month and were submitted to the EPA for review and approval as they were completed. The design provides for the introduction of 20% of the total combustion air as overfire air above the existing fuel admission zone. These compartments are located approximately 2.4 meters above the existing windbox. In addition overfire air can be introduced through the top two compartments of the existing windbox. The current design provides for the introduction of hot overfire air only.

Updated Time Schedule

The Phase II program schedule was reviewed and updated relative to the coordination of Tasks II, IV and V with the test unit outage.

The scheduling of the unit outage was coordinated with Alabama Power Company and reviewed periodically to assure that the unit modification would occur as scheduled. The final program schedule presenting the actual periods of performance for Phase II is shown on Figure 2.

<u>Task II - Purchase and Fabricate Equipment</u>

The equipment for modification of the Barry No. 2 unit to incorporate overfire air as an NO_{χ} control was assembled and ready to be shipped to the test site by the end of the eighth program month. Completion of equipment fabrication by this date permitted necessary time for delivery of the equipment to the job site and performing any possible pre-outage erection which would be accomplished prior to the unit outage.

In addition, instrumentation required for the baseline and optimization test phases of the program was calibrated, fabricated and prepared for shipment to the job site. This effort included fabrication of corrosion

					197	3 -	4	-	- 19	74	Pr	rogr	ram	Mor Mo	nth	h	197	4 -	4	-	-	197	5			
TASK	TASK DESCRIPTION	7	8	9		11		1	2	6 3			912		8 4		10	11	12	5	20	22	422	535	924	65
1	Prepare Design Drawings for Fabrication & Erection of NO Control Systems						1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																			
II	Purchase Equipment & Fabricate Equipment	C	12.		er en		.Æ	2												-						
III	Install Test Instrumentation																									1
IV	Perform Baseline Tests					1	3		L																	
٧	Perform Bias Firing Tests									E	C.															
VI	Deliver Equipment & Modify Unit									Boot																
VII	Final Test Preparation																									
VIII	Conduct Tests																									
*	Evaluate Results & Prepare Final Results														THE REAL PROPERTY.		1.00				din.	'A. A.	1000	2.64	***	
IX	Prepare Application Guidelines for Minimizing NO																				494	10.4	7.00	2: WA	100	\$36

probes, probe control systems, and gas sampling probes, and calibration of thermocouples, analyzers and transducers. The emissions monitoring system is shown in Figure 3.

Task III - Test Instrumentation Installation

The analytical test instrumentation necessary for the measurement of flue gas constituents and unit performance were installed by the fifth program month with the exception of the waterwall absorption thermocouples which were installed during the unit outage for installation of the overfire air modification.

The instrumentation and analytical methods used were as follows:

Measurement	Instrument/Analytical Procedure
Flue Gas Constituents	·

 ${
m NO}_{
m X}$ Chemiluminescence Analyzer ${
m SO}_2$ Wet Chemistry

CO & Hydrocarbons Infrared Analy. and Flame Ionization Analyzer

Carbon Loss Dust Collector

Oxygen Paramagnetic Analyzer

Fuel Analysis ASTM Procedures
Ash Analysis ASTM Procedures

Flow Rates

Steam & Water
Feedwater Flow Flow Orifice

Reheat and Superheat Heat Balance (°F & PSIG)

Desuperheat Spray Around Desuperheater

Reheat Flow Heat Balance Around Superheat Extractions and Estimated

Turbine Gland Seal Losses

Figure 3. Gaseous Emissions Test System

Measurement

Air & Gas

Total Air & Gas Weight

Overfire Air*

Air Heater Leakage

<u>Temperatures</u>

Steam & Water °F

Unit Absorption Rates

Waterwall Absorption*

Air & Gas °F

Pressures

Steam and Water PSIG Unit Absorption Rates

Unit Draft Loss Temperature and Pressure

Logging, °F & PSI

Instrument/Analytical Procedure

Calculated

Pitot Traverse

Paramagnetic 0_2 Analyzer

Calibrated Stainless Steel

Sheathed CR-C Well & Button

TC's

Calibrated Stainless Steel

Sheathed Cr-C Chordal WW TC's

Cr-C TC's

Water Cooled Probes

Pt/Pt-10% Rh TC's

Pressure Gauges and/or

Transducers

Water Manometers

C-E Data Logger

Capacity: 400 temperatures,

50 pressures

Tasks IV & V Baseline & Biased Firing Test Programs

Test Data Acquisition and Analysis

The flue gas samples for determination of NO_x , O_2 , CO, SO_2 and HC emission levels were obtained at each of the two economizer outlet ducts.

^{*} Installed during Task VI

The flue gas samples were drawn from a twenty-four (24) point grid arranged on centroids of equal area in each duct with the exception of the SO₂ sample which was drawn from a single average point using a heated sample line. Fly ash samples for carbon loss analysis and dust loading were obtained at a single point in each duct.

The percent 0_2 leaving the air preheaters was also determined using a twenty-four (24) point grid arranged in centroids of equal area for the determination of air preheater leakage and unit efficiency.

The following instrumentation was used in determining the emission concentrations:

- 1. NO,: Chemiluminescence Analyzer
- 2. 0₂: Paramagnetic Analyzer
- 3. CO: Nondispersive Infrared Analyzer
- 4. HC: Flame Ionization Analyzer
- 5. SO₂: Wet Chemistry
- 6. Carbon Loss & Dust Loading: ASME Particulate Sampling Train

A summary of the NO_X emission test data is tabulated on Data Sheets 1, 2, 3 and 4.

Unit steam and gas side performance was monitored using calibrated thermocouples, pressure gauges, transducers and manometers as required.

Coal samples were obtained during each test for later analysis. The samples were obtained from each feeder and blended to form a composite sample. Fuel analyses, unit steam flow rates, absorption rates, gas and air weights and efficiencies were calculated for each test run. Unit efficiency was determined using the heat losses method (based on ASME power test code 4.1-1964). The measured and calculated unit performance test data is presented on Data Sheets 5, 6, 7 and 8. A complete set of

unit board data was obtained for each test run and is presented on Data Sheets 9, 10, 11 and 12. While Data Sheets 1 through 8 are reported in metric units, the board data (Sheets 9 through 12) are reported in the engineering units as taken. The 30 day waterwall corrosion coupon evaluation was conducted using a specially designed probe consisting of four individual coupons shown in Figure 4. Individual probes were exposed at five locations on the front furnace wall as shown on Figure 5. A typical trace of the control temperature range for each of the twenty coupons is shown on Figure 6. The control temperature ranges were the same for the baseline, biased firing and overfire air studies.

Task IV Baseline Test Study Load and Excess Air Variation

Tests 1 through 7 were conducted to determine the effect of varying excess air at three unit loads on unit emission levels and performance.

These tests were conducted with clean furnace conditions.

As shown in the following table, NO_X emission levels increased with increased excess air but did not change significantly with changes in unit loading. An average increase of 0.014 g $NO_2/10^6$ cal was noted for each 1% change in excess air over the normal unit operating range.

Load & Excess Air Variation

Test No.	Main Steam Flow 10 ³ kg/hr	NO ₂ g/10 ⁶ cal	CO g/10 ⁶ cal	EA _%_	Theo. Air to Firing Zone	Unit Eff. %	WW Slag
1	219	1.337	0.032	35.5	130.6	88.3	Clean
2	224	1.030	0.182	17.5	117.1	88.2	Clean
3	214	1.519	0.010	58.9	151.3	87.6	Clean
4	316	0.90	0.050	12.6	109.2	89.3	Clean
5	404	1.041	0.040	22.7	117.9	89.0	Clean
6	407	0.761	0.198	11.7	107.2	89.1	Clean
7	405	1.403	0.042	30.8	125.3	89.5	Clean

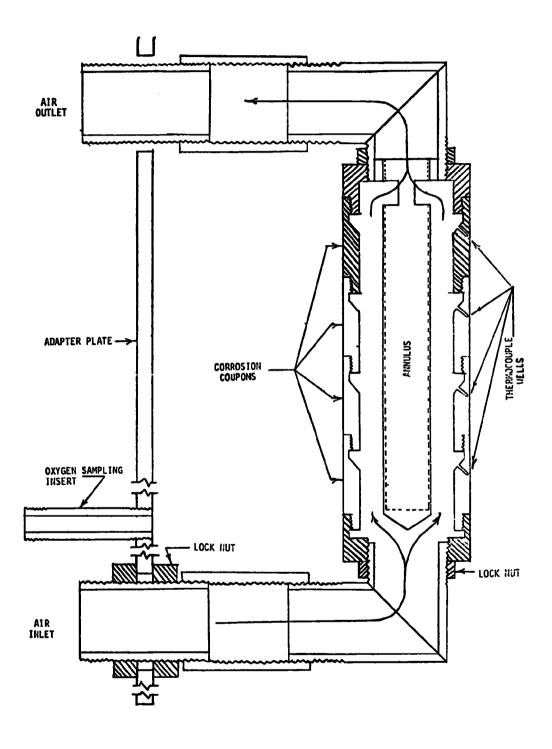


Figure 4: Corrosion Probe Assembly Drawing

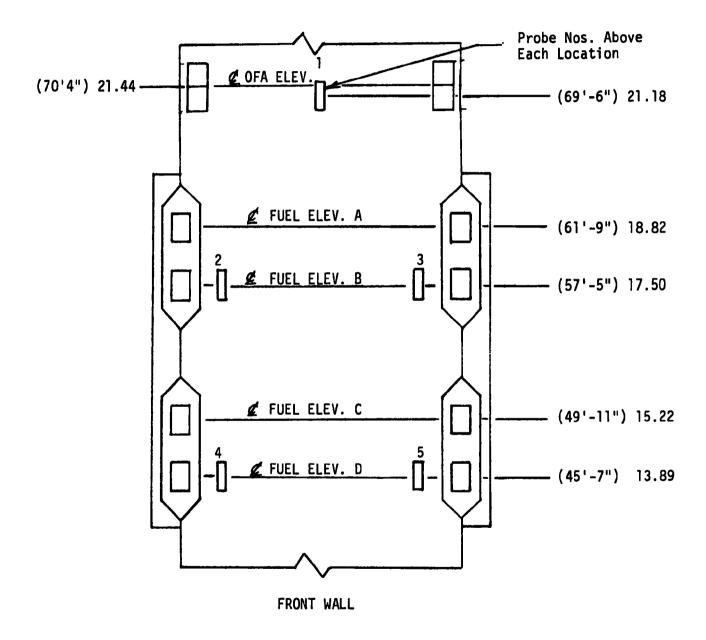


Figure 5. Waterwall Corrosion Probe Locations, Alabama Power Company Barry No. 2

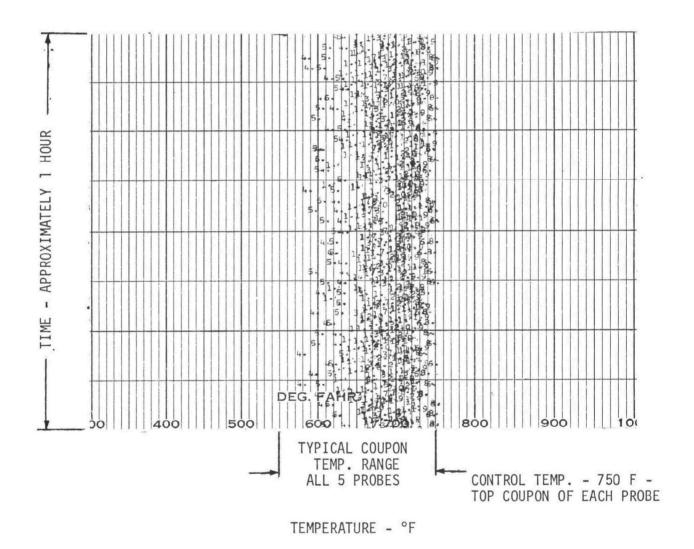


Figure 6: Typical Corrosion Probe Temperature Range

A maximum excess air limit of 30.8 and 58.9 percent was obtained at full and half load conditions respectively due to ID fan capacities.

Minimum excess air limits of 20 to 25 percent were determined as those at which acceptable CO emission levels could be maintained. Reduction of NO_2 emission levels using excess air reduction was therefore limited to approximately 1.04 g/ 10^6 cal as obtained during Test 5.

The changes in NO₂, CO, percent carbon loss in the fly ash and unit efficiency versus theoretical air to the fuel firing zone are shown on Figures 7, 8, 9 and 10, respectively. The theoretical air (TA) to the firing zone is used in this case as it accounts for variations in position and leakage in the compartment dampers above the top active fuel compartment and thereby presents a more accurate determination of the actual air available for combustion in the fuel firing zone than does the total excess air. As seen on Figure 7 for clean furnace conditions the NO₂ correlates well with TA with little variation due to unit load. As shown on Figures 8 and 9 carbon loss in the fly ash and CO emission levels increased with decreased TA levels. Unit load does not appear to have a discernable effect. Figure 10 is a plot of Unit Efficiency versus Unit Excess Air measured at the economizer outlet.

During this portion of the test program total hydrocarbon levels (HC) were monitored and were found to be present in only trace quantities as shown on Data Sheets 1 and 2. The SO_2 levels measured are also shown on Data Sheets 1 and 2.

Furnace Wall Deposit Variation

Tests 8 through 14 were conducted to determine the effect on unit performance and emission levels of varying furnace waterwall deposits from a clean condition to the maximum possible slagging condition obtainable. The maximum slagging condition was obtained after operation in excess of twenty-four hours without operating any wall blowers. During this

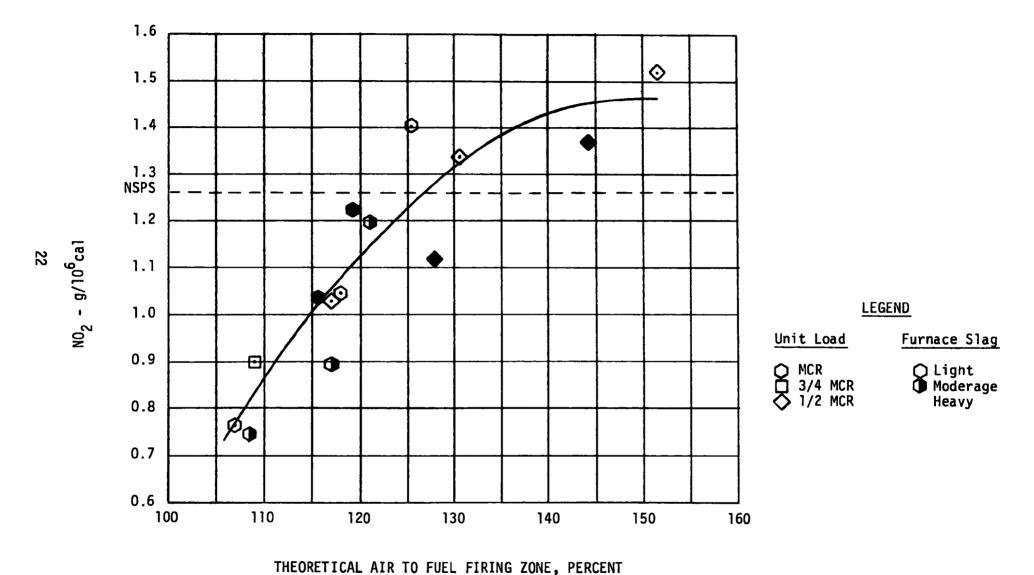


Figure 7: NO₂ Vs. Theoretical Air to Fuel Firing Zone, Baseline Study, Tests 1-14

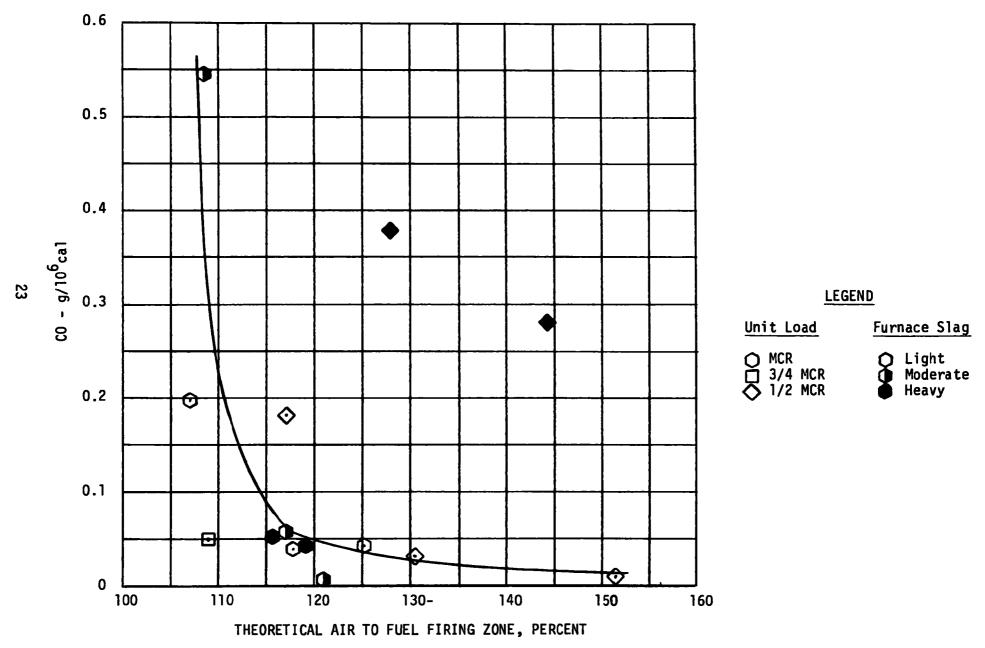
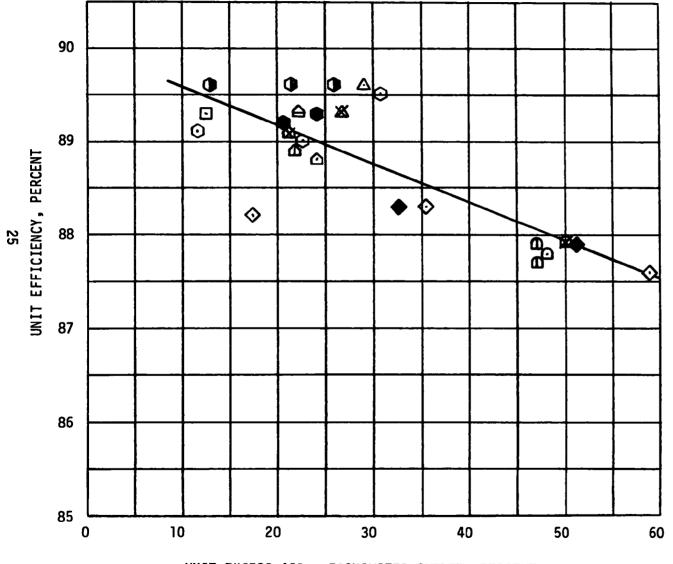



Figure 8: CO Vs. Theoretical Air to Fuel Firing Zone, Baseline Study, Tests 1-14

Figure 9: Percent Carbon Loss Vs. Theoretical Air to Fuel Firing Zone, Baseline Study, Tests 1-14

THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT

UNIT EXCESS AIR - ECONOMIZER OUTLET, PERCENT

Figure 10: Unit Efficiency Vs. Unit Excess Air

LEGEND BASELINE TESTS

Unit Load	Furnace Slag
	Light Moderate Heavy

BIASED FIRING TESTS

Unit Load	Fuel Elev. Out of Service
A May Poss	∧ Ton

Max Poss	. <u></u> Top
3/4 MCR	面 Top Ctr.
) 1/2 MCR	🛆 Bot. Ctr.
	₩ Bot.

time period slag deposits of up to 4 inches in thickness could be obtained in and above the fuel firing zone.

Furnace Wall Deposit Variation

c Dep
(Dep
k Dep
x Dep
k Dep
k Dep
k Dep
さいいい

As can be seen from Figure 7 furnace slagging did not exhibit a discernable effect on NO_{X} emission levels. As shown in Figures 8 and 9 this condition was also found to be true for carbon loss in the fly ash and CO emission levels with the exception of the half load Tests 11 and 12 where CO levels higher than those obtained with clean furnace conditions were observed. The high CO levels may have been due to slag build-up at or near the fuel and air nozzles which could have contributed to poor combustion. The higher CO levels were not observed under full load with heavy slag operation. Figure 10 indicates that furnace cleanliness did not exhibit any discernable effect on unit efficiency.

Slag patterns taken during clean, moderate and heavy slagging conditions at full load operation are shown on Figures 11, 12 and 13.

Task V - Biased Firing Study - Fuel Elevations Out of Service Variation Tests 15 through 24 were conducted to determine the effect on NO_X emission levels of taking various fuel elevations out of service (biased firing) at various unit loadings. As shown on the following table the

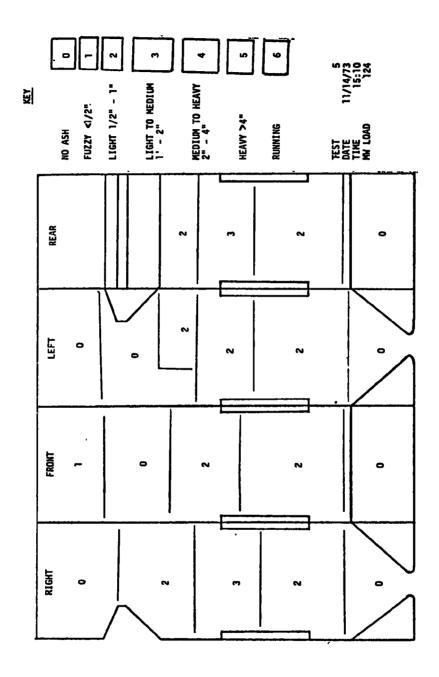


Figure 11: Furnace Slag Pattern, Clean Furnace

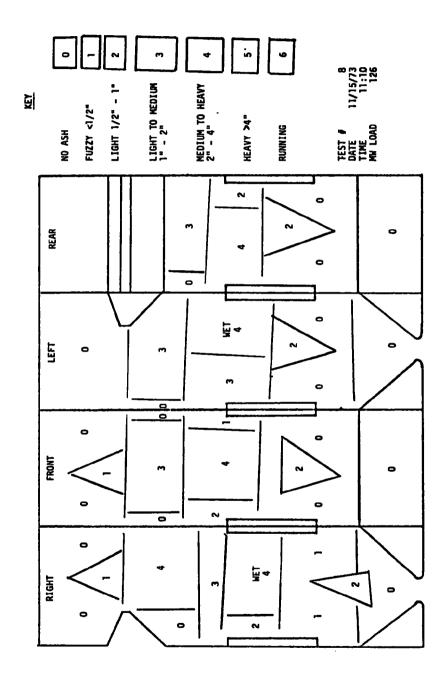


Figure 12: Furnace Slag Pattern, Moderate Slag Furnace

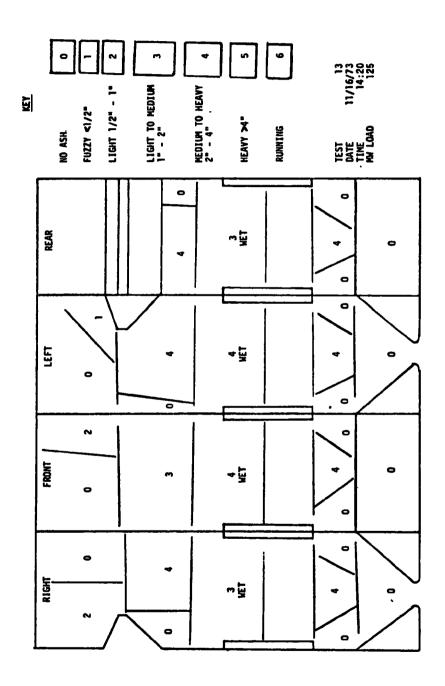


Figure 13: Furnace Slag Pattern, Heavy Slag Furnace

maximum NO $_{\rm X}$ emissions control was obtained with the top elevation of fuel nozzles out of service at maximum and 75 percent maximum loading (Tests 20 and 21). At 50 percent maximum loading (Test 23) the high excess air levels required to maintain unit steam temperatures appeared to negate any NO $_{\rm X}$ reductions obtained by biasing the top fuel nozzle elevation, however, the emissions level obtained was below the current EPA limit for coal fired units of 1.26 g/10 6 cal.

Biased Firing - Fuel Elevations Variation

Test No.	Main Steam Flow 10 ³ kg/hr	NO ₂ g/10 ⁶ ca1	CO g/10 ⁶ ca1	EA %	Theo. Air to Firing Zone	Unit Eff <u>%</u>	Fuel Nozzle Elevation Out Of Service
15	199	1.206	0.041	50.1	105,8	87.9	Bottom
16	297	1.142	0.037	26.7	121.7	89.3	Bottom
17	315	0.840	0.059	21.1	116.5	89.1	Bottom
18	321	0.792	0.050	22.2	117.5	89.3	Bot. Ctr.
19	321	0.795	0.044	21.8	117.2	88.9	Top Ctr.
20	314	0.599	0.034	24.2	94.7	88.8	Тор
21	308	0.696	0.040	29.0	97.3	89.6	Top
22	208	1.124	0.038	48.0	112.5	87.8	Тор
23	211	1.043	0.029	47.0	141.4	87.9	Top Ctr.
24	202	1.282	0.035	47.0	141.3	87.7	Bot. Ctr.

As can be seen from Figure 14 biasing the center two and bottom fuel elevations did not have a discernable effect on NO_X emission levels although the emission level tended to be higher at reduced unit loadings for given TA levels.

Figures 15 and 16 indicate that with biased firing, low TA levels to the fuel firing zone were obtained without increasing either CO emission levels or the carbon loss in the fly ash. Figure 10 shows that biased firing operation did not significantly affect unit efficiency. This condition is due to the ability to maintain acceptable total unit excess air levels during biased firing operation.

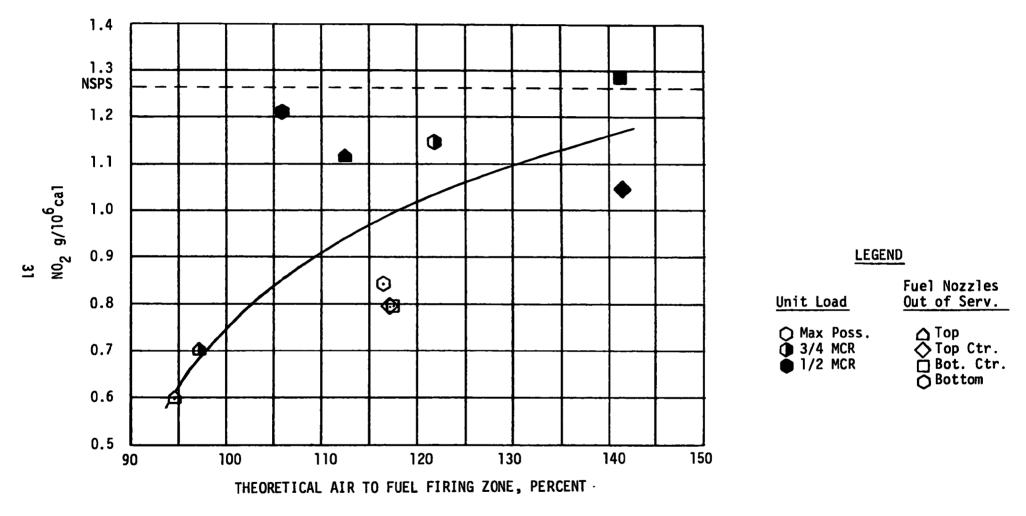


Figure 14: NO_2 Vs. Theoretical Air to Fuel Firing Zone, Biased Firing Study, Tests 15-24

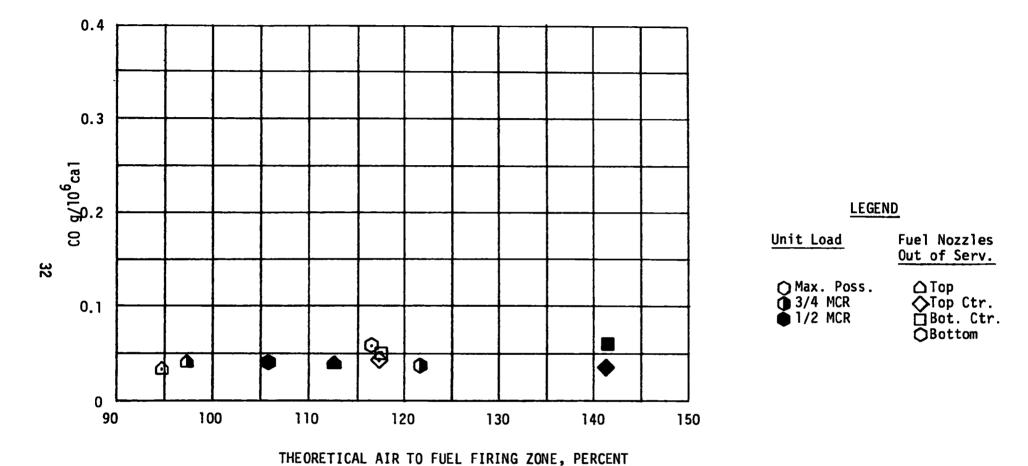


Figure 15: CO vs. Theoretical Air to Fuel Firing Zone, Biased Firing Study, Tests 15-24

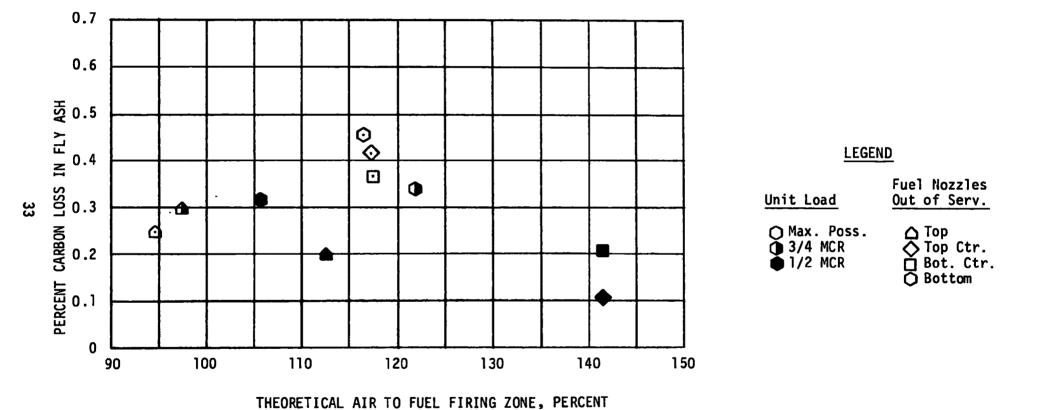


Figure 16: Percent Carbon Loss Vs. Theoretical Air to Fuel Firing Zone, Biased Firing Study Tests 15-24

Task VIII - Unit Optimization Study

Load and Excess Air Variation (After Modification)

Load & Excess Air Variation

Test No.	Main Steam ₃ Flow 10 ³ kg/hr	NO ₂ g/10 ⁶ ca1	CO g/10 ⁶ ca1	EA %	Theo. Air Firing Zone	Unit Eff.	WW Slag
1	219	0.929	0.035	33.5	127.1	88.4	Clean
2	213	0.701	0.479	16.0	113.4	88.8	Clean
3	217	1.339	0.044	64.7	155.4	87.4	Clean
4	315	0.684	0.140	15.5	111.0	89.8	Clean
5	450	0.846	0.037	21.0	115.3	89.4	Clean
6	441	0.692	0,162	12.4	107.1	89.2	Clean
7	423	1.000	0.028	25.4	119.5	89.5	Clean

Tests 1 through 7 were performed with unit conditions closely approximating those of Baseline Tests 1 - 7 under Program Task IV. A clean furnace was maintained as the excess air was varied at three unit loads.

The effect of these operating conditions on emission levels and performance can be seen in the Table above.

As witnessed in the previous baseline tests, NO_X emissions levels increased with increased excess air.*

^{*} In general, NO₂ values were slightly lower <u>after modification</u> for the same test conditions. This resulted from an updated firing system installed between the sets of tests along with an average percent nitrogen in fuel decrease of 0.15 percent (1.21 to 1.06 percent). Also, fuel higher heating values and furnace outlet temperatures tended to be lower for Tests 1 - 7 after modification.

ID fan capacities limited excess air to a maximum of 64.7 and 33.5 percent at half and full load conditions respectively. Acceptable minimum excess air limits were established at 20-25 percent to control CO emission levels. Thus, NO_x emission levels could only be reduced to approximately 0.90 g/10 cal through excess air reduction. The effect of theoretical air to the firing zone on NO_x , CO, and percent carbon loss in the fly ash (% CL) can be seen in Figures 17, 18 and 19. In agreement with the original baseline tests, theoretical air to the firing zone (TA) was used for comparison in place of total excess air (EA). TA is determined by location and means of admission as well as quantity, and consequently better defines that air actually available for initial combustion.

Figure 17 indicates a definite increase in NO_{χ} emission levels with increasing TA for clean furnace conditions. CO emission levels and percent carbon loss in the fly ash can be seen to increase with decreased TA without overfire air. Reasonable control of CO and % CL can only be maintained at TA levels above 120%. No definite relationship can be observed between unit load and CO emission levels. Percent CL can be seen to be greater at higher unit loads for given TA levels.

Changes in unit efficiency versus excess air at the economizer outlet are presented in Figure 20. Overall, unit efficiency decreases as the excess air increases.

Hydrocarbon emission levels appeared only in trace quantities for this portion of the test program. HC and SO_2 levels are presented on Data Sheets 3 and 4.

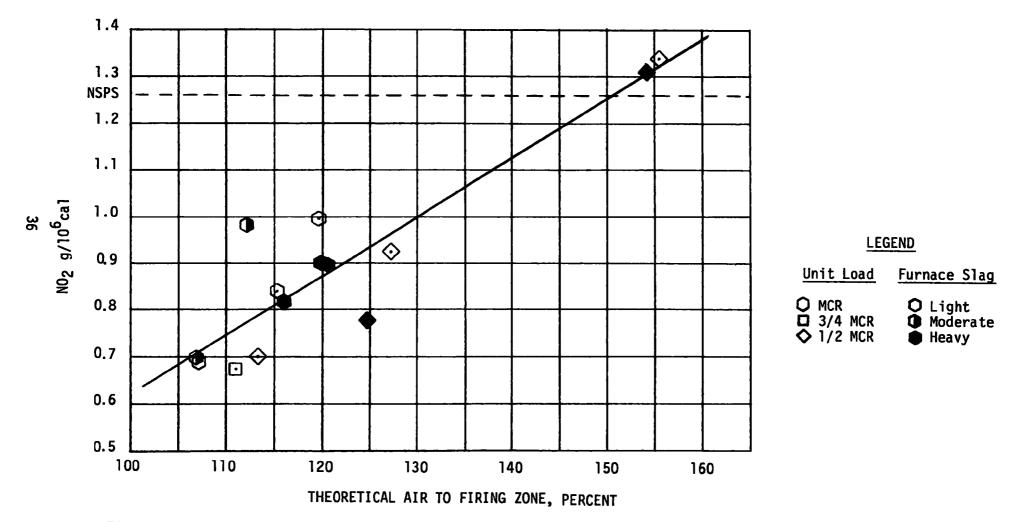


Figure 17: NO₂ Vs. Theoretical Air to Firing Zone, Overfire Air Study, Load and Excess Air Variation, Tests 1-14

Figure 18: CO Vs. Theoretical Air to Firing Zone, Overfire Air Study, Load and Excess Air Variation, Tests 1-14

THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT

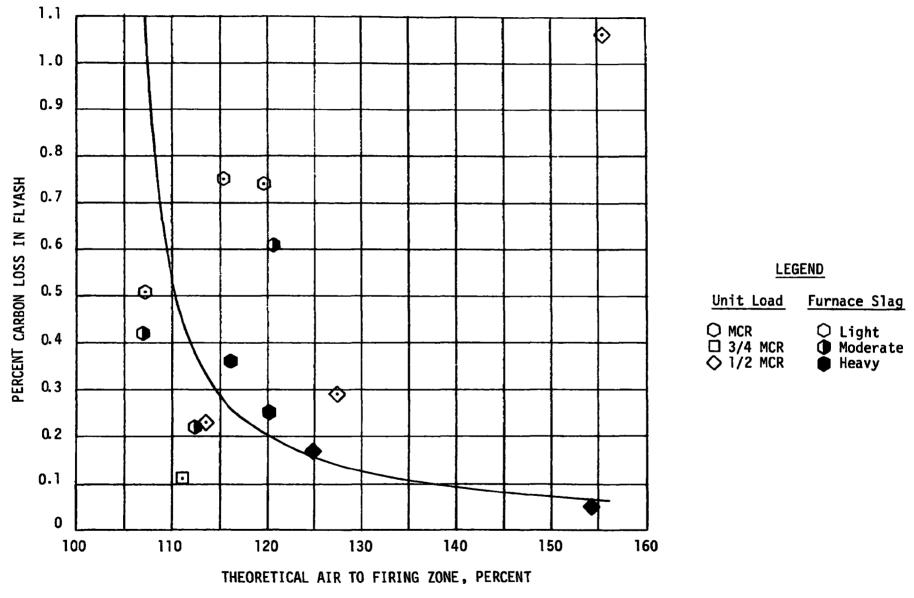


Figure 19: Percent Carbon Loss Vs. Theoretical Air to Firing Zone, Overfire Air Study Load and Excess Air Variation, Tests 1-14

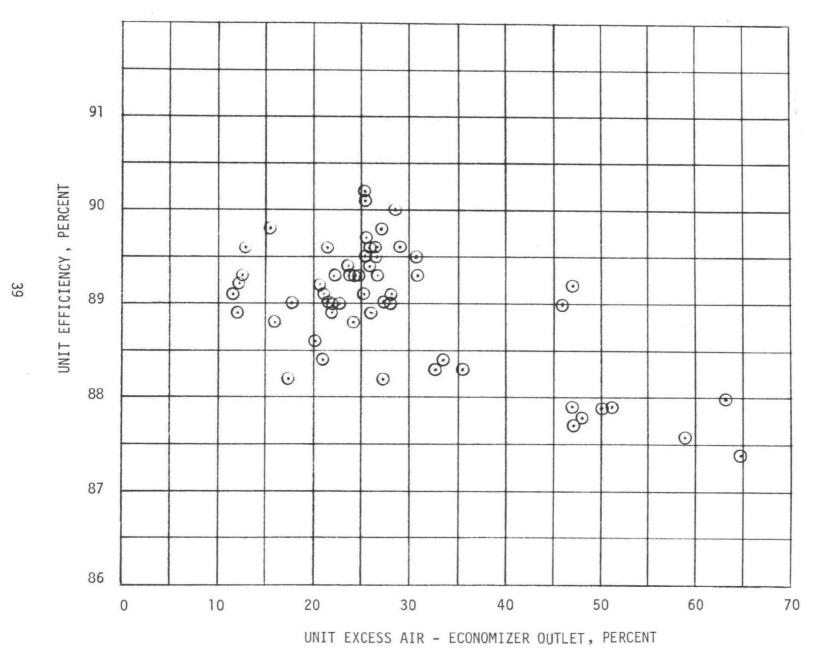
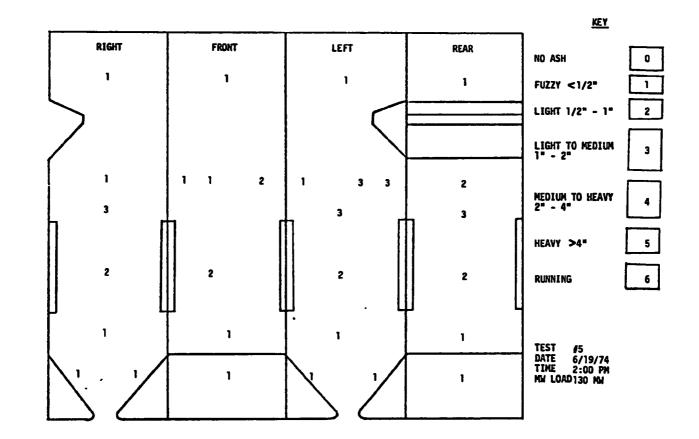
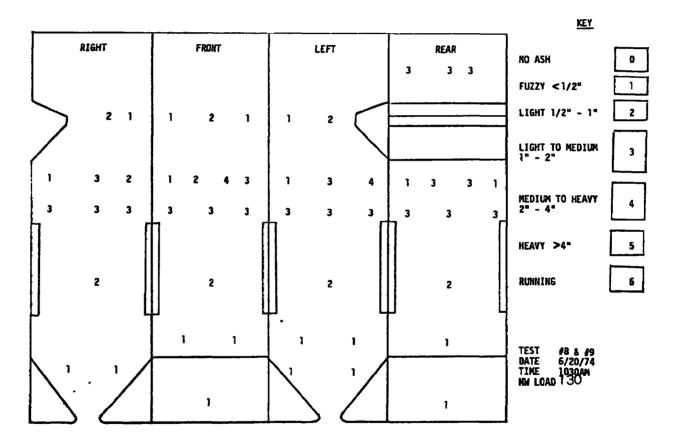


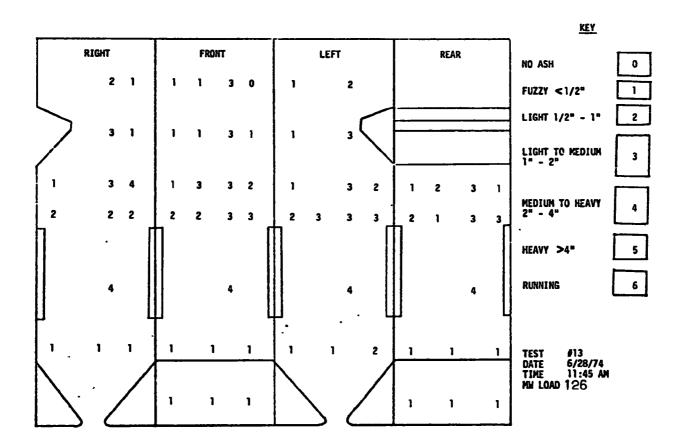
Figure 20: Unit Efficiency Vs. Excess Air - Economizer Outlet, All Tests (Before & After Modification)

Furnace Wall Deposit Variation (After Modification)

	Main Steam	NO ₂	CO		Theo. Air Firing	Unit	
Test	"Flow	£	-		Zone	Eff.	WW
No.	10 ³ kg/hr	g/10 ⁶ ca1	$g/10^6$ cal	EA %		<u>%</u>	<u>Slag</u>
8	440	0.985	0.0310	17.8	112.3	89.0	1/2 Max
9	446	0.699	0.1239	12.1	106.9	88.9	1/2 Max
10	428	0.902	0.0300	26.6	120.5	89.5	1/2 Max
11	246	0.782	0.0335	30.9	124.6	89.3	Max
12	218	1.310	0.0304	63.1	154.0	88.0	Max
13	432	0.819	0.0298	22.0	116.2	89.0	Max
14	425	0.902	0.0292	25.9	119.9	89.4	Max


The effect of furnace waterwall deposits on unit performance and emission levels was studied in Tests 8 through 14 (Clean Condition - Maximum Slagging Conditions). Dirty conditions were established after a minimum of 24 hours of no operation of wall blowers. Deposits of up to four inches in thickness could subsequently be found in and above the fuel firing zone.


Figures 17, 18 and 19 reveal no observable effect of furnace cleanliness on NO_X or CO emission levels along with percent carbon loss in the fly ash.*


Slag patterns taken during full load operation for clean, moderate and heavy slagging furnace conditions can be viewed in Figures 21, 22 and 23.

^{*} Again, NO_X values were generally slightly lower after modification. Nitrogen in fuel decreased an average of 0.19 percent from 1.23 percent. Furnace outlet temperatures were somewhat lower for Tests 8 through 14 after modification although fuel higher heating values showed no definite change.

Figure 21: Furnace Slag Pattern, Clean Furnace

This set of tests also confirms the results found in Tests 1 through 7. NO_X emission levels increase with increased excess air. NO_X cannot be decreased through excess air reductions below 20 percent excess air while maintaining an acceptable CO emission level without overfire air.

OFA Location, Rate, and Velocity Variation

	Main			Theo. Air				
T4	Steam	NO ₂	CO	Firing	Unit	Mills	Adm.	A.dm
Test	Flow 10 ³ kg/hr	g/10 ⁶ ca1	g/10 ⁶ ca1	Zone %	Eff. %	In Serv.	Pts.*	Adm. Rate
No.	10 Kg/111	g/10 car	9/10 Ca1			Jeiv.	103.	<u>na ce</u>
15	336	0.723	0.0358	114.5	90.0	BCD	0-1	0
16	340	0.533	0.0382	96.7	89.8	BCD	0-1	Max
17	338	0.533	0.0413	95.8	89.7	BCD	0-2	Max
18	344	0.479	0.0613	84.8	89.6	BCD	0-1,0-2	Max
19	338	0.486	0.0500	89.3	89.3	BCD	0-1,0-2	1/2 Max
20	344	0.677	0.0367	100.5	90.2	BCD	0-3	Max
21	342	1.012	0.0321	117.4	90.1	ABC	0-1	0
22	341	0.689	0.0329	90.4	89.0	ABC	0-1,0-2	Max
23	346	0.704	0.0322	96.9	89.1	ABC	0-1,0-2	1/2 Max

Tests 15 through 23 were performed to establish the effect of overfire air admission on NO_X emission levels. The unit load and excess air remained constant for moderately dirty furnace conditions. Location of air admission to the furnace was varied.

As shown in Figure 24, this set of tests shows a tendency of NO_X emission levels to decrease with decreased theoretical air to the firing

^{*} OFA Admission Points:

^{0-1:} Top overfire air compartment.

^{0-2:} Bottom overfire air compartment.

^{0-3:} Top fuel elevation out of service.

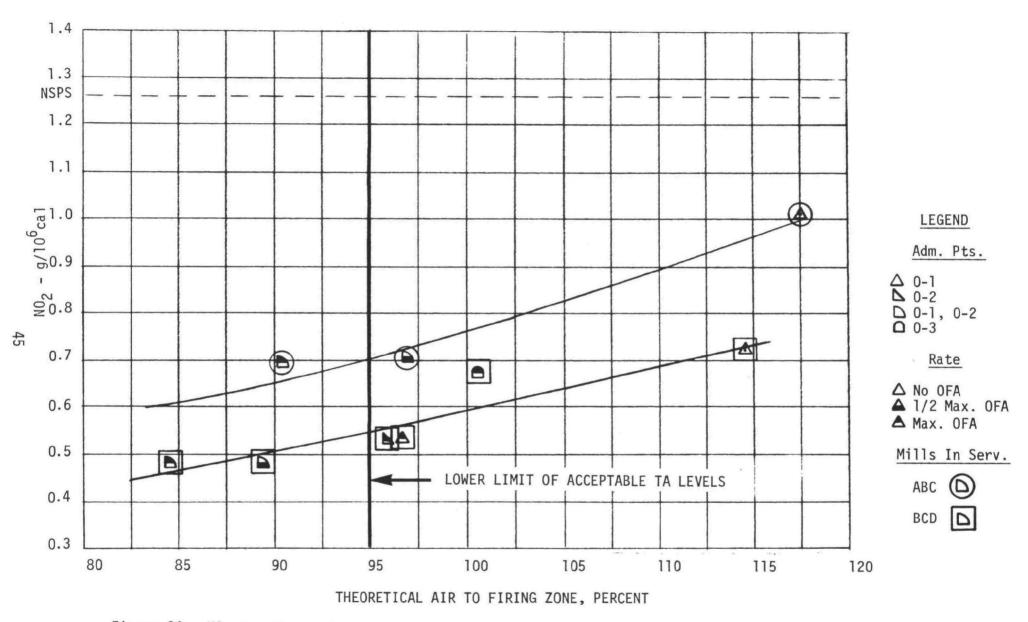


Figure 24: NO₂ Vs. Theoretical Air to Firing Zone, Overfire Air Location, Rate & Velocity Variation, Tests 15-23

zone. NO_{X} levels are generally higher with ABC mills (top 3 elevations) in service than with BCD mills (bottom 3 elevations). Both operating conditions support the premise of reducing NO_{X} emission levels by reducing the air input to the fuel firing zone and admitting downstream of that point. The fire is thereby spread out over more of the furnace reducing its intensity. The above factors are limited by flame stability which became very lazy in Test 18. By using the bottom 3 elevations in place of the top 3 elevations, the distance between the overfire air and the firing zone was increased. (The mean firing elevation is also slightly decreased.) Comparison of Tests 18 and 19 with Tests 22 and 23 reveals lower NO_{X} levels obtained with increased distance between the overfire air and the firing zone. Operation at TA levels below 95% did not result in significant reductions in NO_{X} emission levels.

CO emission levels remained acceptable for the entire set of tests where the total excess air was approximately 27 percent as shown on Figure 25.

OFA admission location or rate variation exhibited no significant change in percent carbon loss in the fly ash as shown on Figure 26.

Unit efficiencies were not significantly affected by fuel elevations in service, or by overfire air location and rate variation. This is explained by the fact that essentially constant total excess air levels were maintained during this study.

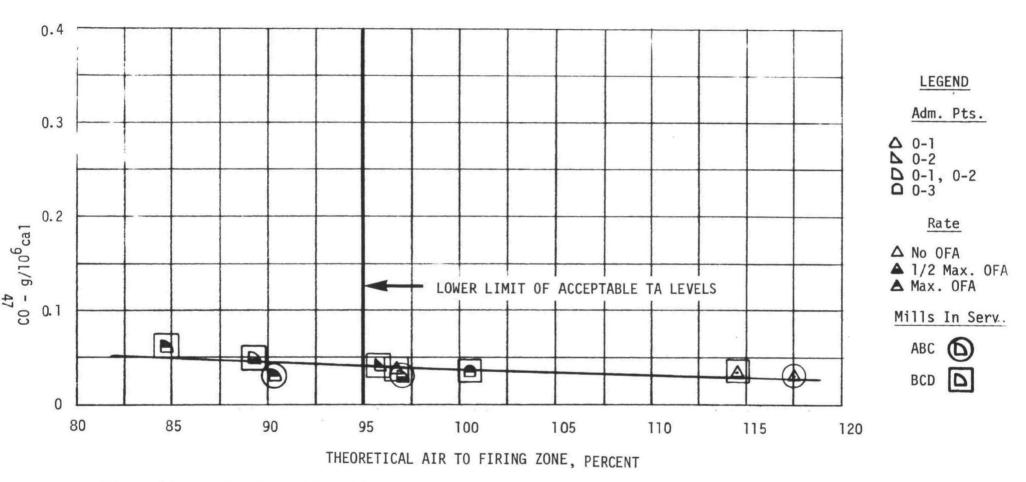


Figure 25: CO Vs. Theoretical Air to Firing Zone, Overfire Air Location, Rate & Velocity Variation, Tests 15-23

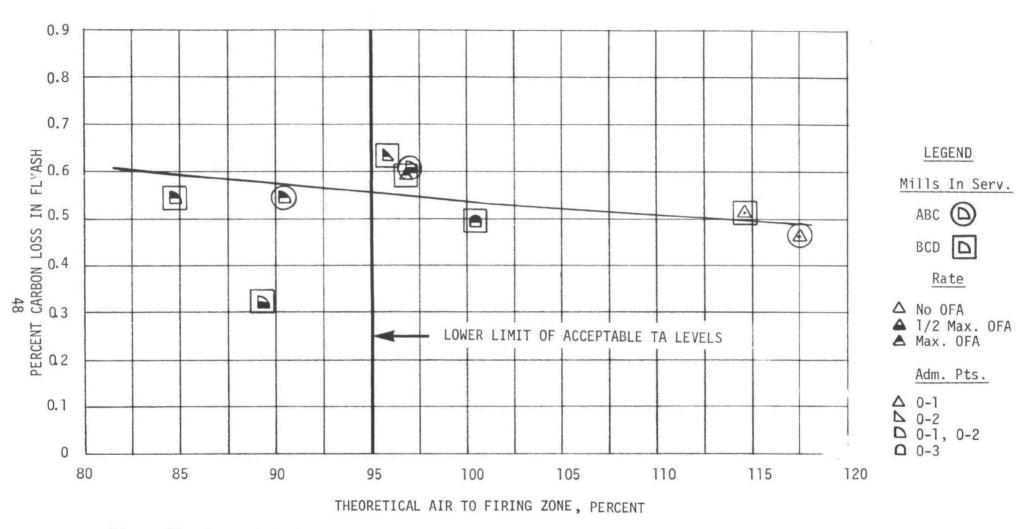


Figure 26: Percent Carbon Loss Vs. Theoretical Air to Firing Zone, Overfire Air Location Rate & Velocity Variation, Tests 15-23

OFA Tilt Variation

Test	Main Steam aFlow	NO ₂	CO		Theo. Air Firing	Unit Eff.	Fuel Nozz Tilt	OFA
No.	10 ³ kg/hr	g/10 ⁶ ca1	$g/10^{6}$ ca1	EA %	Zone %	%_	0	Tilts
		37	31					
24	407	0.710	0.0324	25.9	94.2	89.6	-5	0
25	418	0.609	0.0346	23.7	92.4	89.3	-23	0
26	412	0.770	0.0406	25.1	93.2	88.9	+19	. 0
27	407	0.721	0.0282	22.3	91.5	89.3	-5	-30
28	414	0.846	0.0360	20.2	89.6	88.6	+22	-30
29	418	0.596	0.0630	23.7	92.6	89.4	-21	+30
30	416	0.710	0.0333	21.6	90.7	89.0	-4	0
33	409	0.697	0.0316	27.4	94.6	89.0	-22	-22

Tests 24 through 30, and 33, were conducted at full unit load with excess air and theoretical air levels to the firing zone of approximately 24 percent and 92 percent, respectively. With moderate slagging conditions on the waterwalls the fuel nozzle tilts and OFA tilts were varied. This essentially moves the firing zone both in the furnace and in its relative position to the overfire air. Fuel nozzle tilts that are maximum minus combined with OFA tilts of maximum plus increase the distance between the overfire air and the firing zone. As with previous methods of increasing this distance, the NO_X emission levels are decreased. Figure 27 shows that as the tilts are moved toward one another (fuel nozzle tilts up; OFA tilts down), the OFA - firing zone separation is decreased and the NO_X levels are increased.

When the OFA tilts are maximum minus and the fuel nozzle tilts maximum plus, the term overfire air becomes ambiguous. The <u>actual</u> overfire air is less than the <u>reported</u> value, because the air is being forced down into the raised firing zone. At this point where the combined fuel nozzle and OFA tilt differential is 52 degrees toward each other, the NO $_{\rm X}$ emission level reaches a maximum of 0.846 g/10 6 cal.

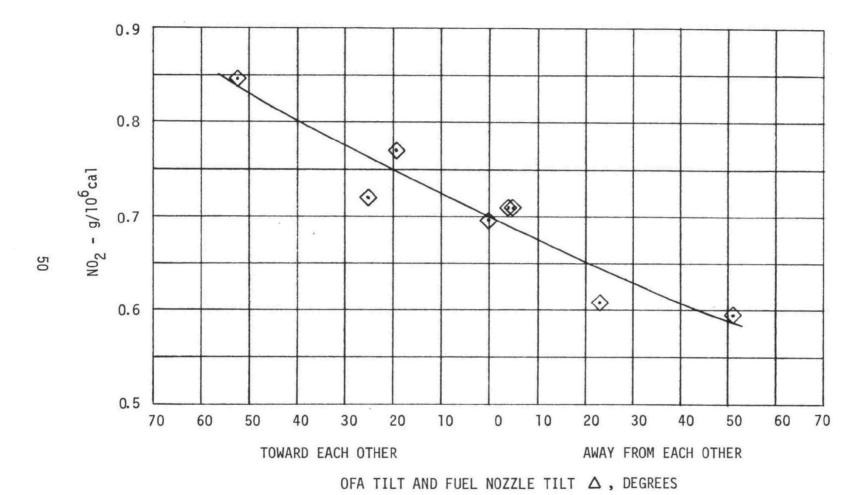
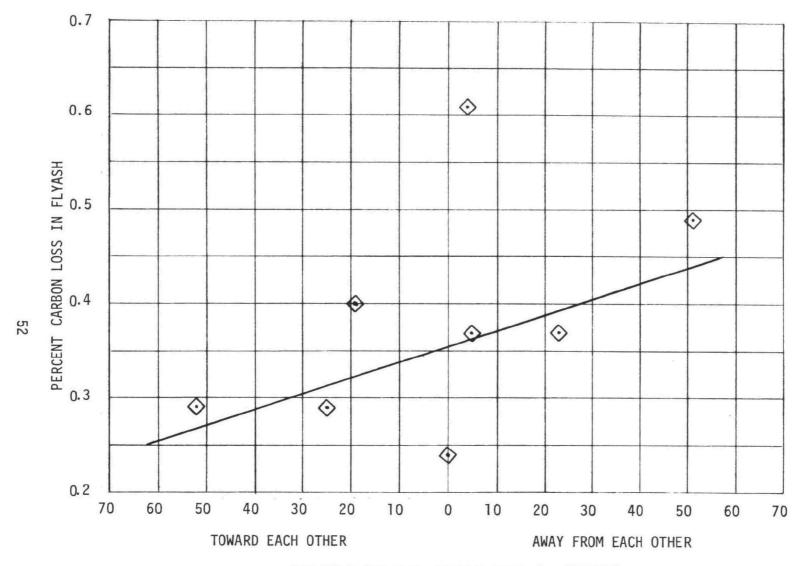


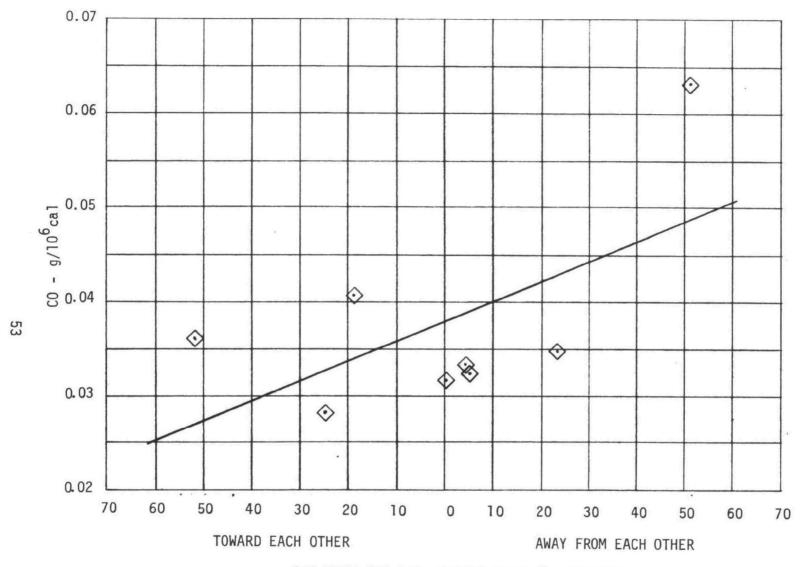
Figure 27: NC₂ Vs. OFA Tilt and Fuel Nozzle Tilt Differential, OFA Tilt Variation Tests 24-33

Percent carbon loss in the flyash exhibits a definite increase as the fuel nozzle tilts and OFA tilts move away from each other. This can be witnessed in Figure 28.


CO emission levels also show an increase as the tilt differential increases, yet there is enough total excess air to maintain an acceptable emission level as shown in Figure 29.

Flame stability arises as a limiting factor in variation of the tilts. As the tilts move substantially away from each other, the fire becomes unstable and pulsing may result. Test 29 was performed with a fuel nozzle and OFA tilt differential of 51 degrees away from each other. NO $_{\rm X}$ emission levels decreased to 0.596 g/10 cal, yet the CO emission levels began to increase and the fire appeared less stable. Maintaining the fuel nozzle tilts and OFA tilts at approximately equal tilt angles resulted in acceptable flame stability as well as reduced NO $_{\rm X}$ emission levels.

For all OFA tilt variation tests the NO_X emissions level obtained was below the EPA limit of 1.26 g/ 10^6 cal.


Load Variation at Optimum Conditions

Tests 30 through 35 were conducted to evaluate unit performance and emission levels at optimum operating conditions as determined during Tests 15 through 29. Tests were conducted over the unit load range at varying furnace waterwall slagging conditions. The NO_X emission level results of this series of tests versus unit loading, expressed as main steam flow, are shown on Figure 30.

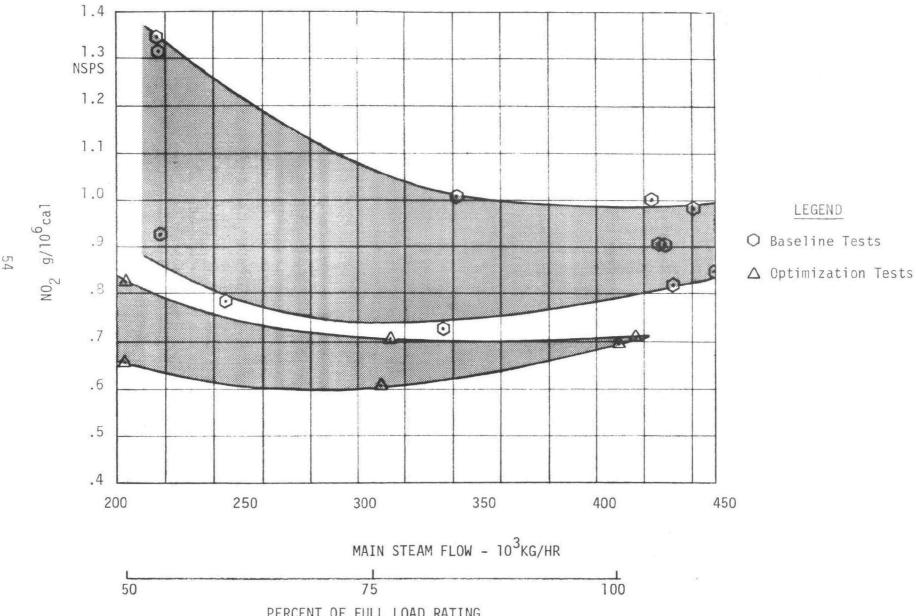

OFA TILT AND FUEL NOZZLE TILT Δ , DEGREES

Figure 28: Percent Carbon Loss Vs. OFA Tilt and Fuel Nozzle Tilt Differential, OFA Tilt Variation, Tests 24-33

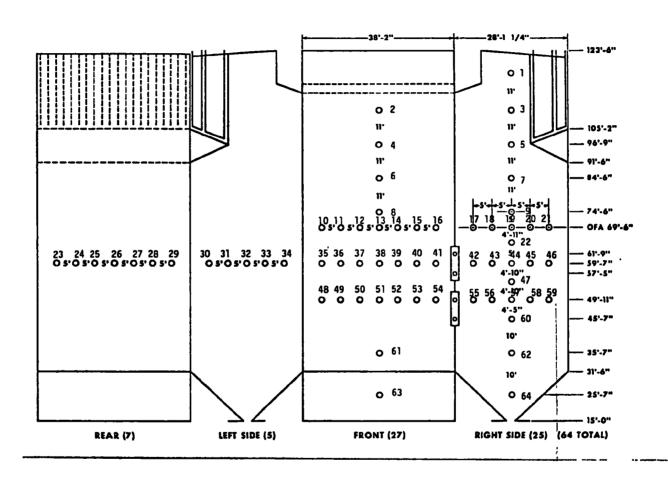
OFA TILT AND FUEL NOZZLE TILT Δ , DEGREES

Figure 29: CO Vs. OFA tilt and Fuel Nozzle Tilt Differential, OFA Tilt Variation Tests 24-33

PERCENT OF FULL LOAD RATING
Figure 30: NO₂ Vs. Main Steam Flow, Ranges for Normal & Optimum Operation

Load Variation at Optimum Conditions

Test No.	Main Steam 3Flow 10 ³ kg/hr	NO ₂ g/10 ⁶ cal	CO g/10 ⁶ ca1	EA %	Theo. Air Firing Zone	Unit Eff.	WW Slag
30	416	0.710	0.033	21.6	90.7	89.0	Clean
31	314	0.708	0.033	25.2	89.4	89.1	Clean
32	204	0.828	0.031	46.9	88.5	89.2	Clean
33	409	0.697	0.032	27.4	94.6	89.0	Max.
34	310	0.608	0.034	27.4	90.6	88.2	Max.
35	204	0.655	0.032	45.9	88.5	89.0	Max.


This figure illustrates the range of NO_2 levels obtained both during baseline (after modification) and optimum unit operations. Not all the baseline tests are included as in some cases unit operation was felt to depart excessively from normal operations. Low excess air operation can be cited as an example.

The wide range of NO₂ levels obtained, particularly during the baseline tests are due to variations in unit operating parameters such as excess air level. During the optimization tests total excess air at the unit economizer outlet was maintained between 20 and 28% at full and 3/4 load and 45 to 47% at 1/2 load and fuel nozzle tilts raised or lowered as required to maintain acceptable reheat and superheat outlet temperatures. Also minimum excess air levels were established on the basis of maintaining acceptable CO emission levels and flame stability.

Tests 30, 31 and 32 were conducted as a series and no problems were encountered while changing load with optimum operation.

Furnace Performance

During the test program furnace performance was monitored by use of chordal thermocouples installed in the furnace waterwalls. A schematic of the thermocouple locations is shown in Figure 31 and a tabulation of

the absorption rates obtained is presented on Sheets 13A, 13B and 13C. The temperatures and corresponding absorption rates were found to vary significantly with wall slag conditions making data interpretation difficult. The method finally arrived at as representing an accurate indication of furnace performance is as follows:

The front and right side wall centertube profiles were plotted as shown in Figure 32 and the average of these profiles determined. It should be noted that the maximum and minimum profiles shown do not represent individual walls in every case, i.e., at given furnace elevations the maximum rate shown may switch from wall to wall.

For comparison of optimum and normal unit operation with respect to furnace performance, three full load tests with similar furnace slagging conditions, etc., were selected for comparison. The average centerline profiles for these tests (14, 24, 33) were determined, as shown on Figures 32, 33 and 34, and then plotted together as shown on Figure 35. As shown, furnace performance remained essentially unchanged when furnace slagging effects are taken into account.

It should be noted here that obtaining desired slag conditions proved to be difficult and somewhat unpredictable during overfire air operation. This situation was most pronounced in the firing zone where slag accumulations would normally shed themselves before appreciable accumulations could be built up.

Waterwall Corrosion Coupon Evaluation

Following completion of the steady state phases of the baseline, biased firing and overfire air test programs, thirty (30) day waterwall corrosion coupon evaluations were performed. The purpose of these evaluations was to determine whether any measurable changes in coupon weight losses could be obtained for the various firing modes studied.

The corrosion probes used in the evaluations were previously shown on

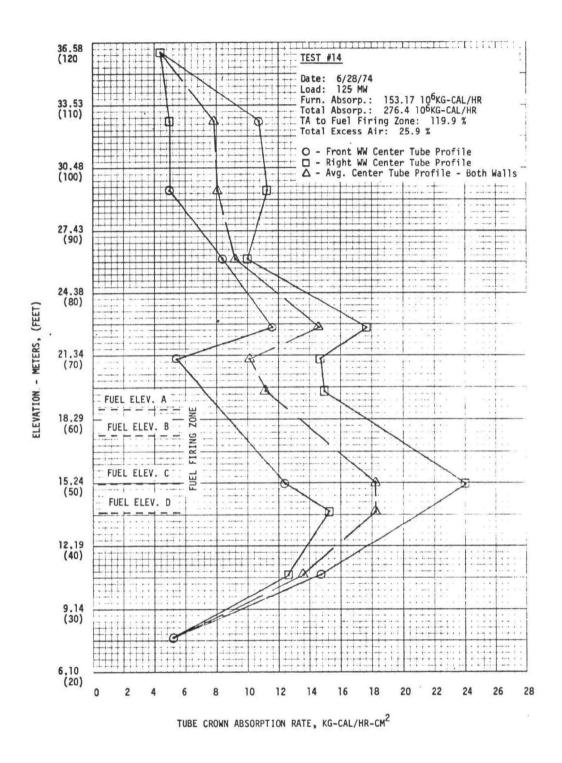


Figure 32: Average Centerline Absorption Profile, Test 14

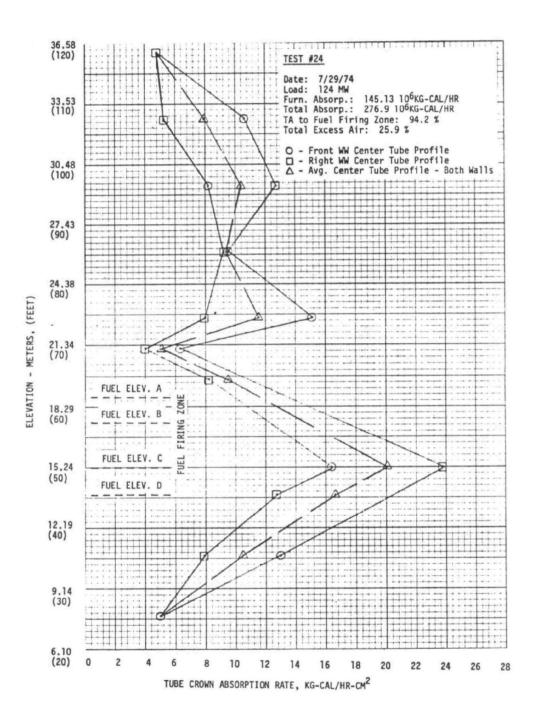


Figure 33: Average Centerline Absorption Profile, Test 24

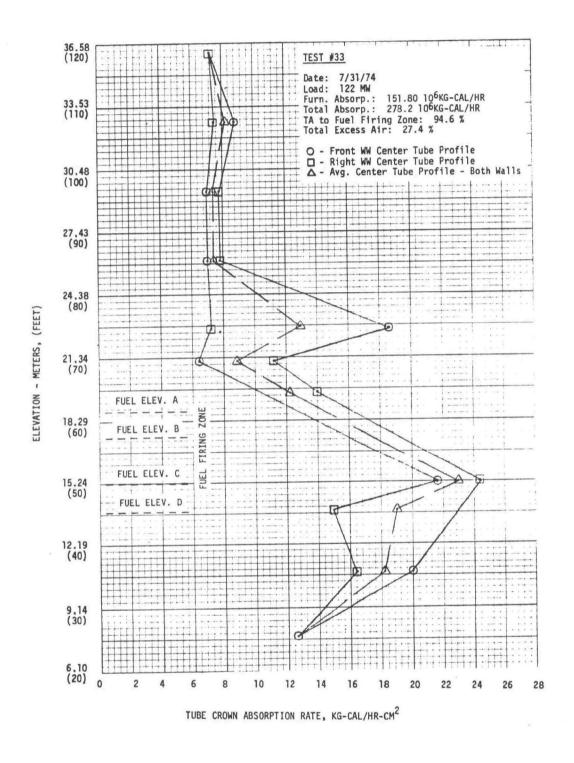


Figure 34: Average Centerline Absorption Profile, Test 33

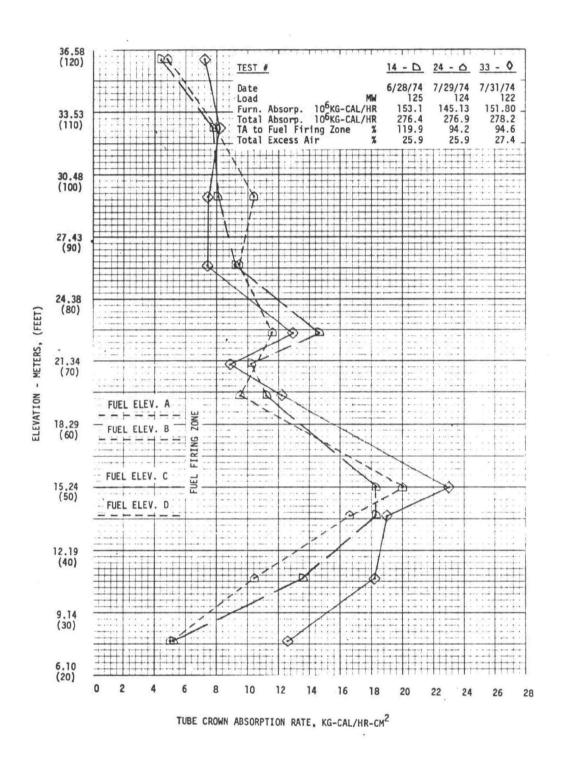
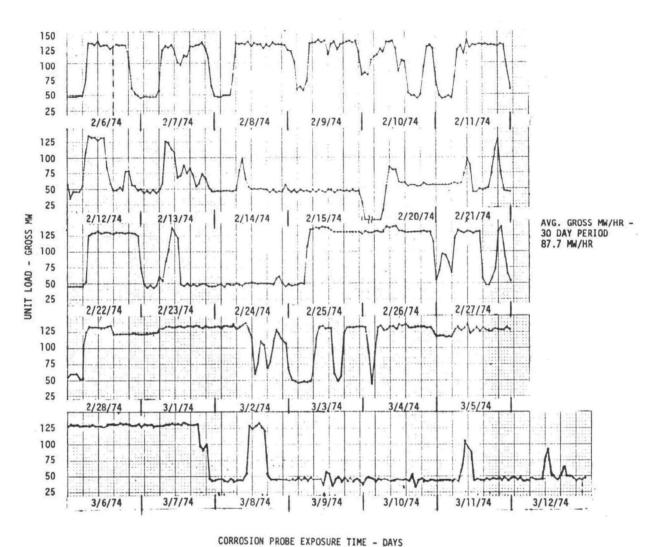


Figure 35: Average Centerline Absorption Profile, All Tests

Figure 4. The individual probes were exposed at five locations on the furnace front wall as shown on Figure 5. The coupon temperatures were maintained at the same levels for each 30 day run and a typical trace of the control temperature range for each of the twenty coupons is shown on Figure 6.


The individual coupon weights were determined before and after each thirty day test and the individual coupon and average probe weight losses are shown on Sheets 14A, 14B, and 14C. The weight losses are calculated as mg/cm² of coupon surface area. Of the sixty coupons exposed, three were damaged during disassembly and were therefore not included in the weight loss determinations. The affected coupons were as follows: Coupon K-1, baseline study, and coupons 2-1 and 2-4 overfire air study. In addition, five coupons from probes T and N of the overfire air study resisted disassembly and were therefore weighed as single units and average weight losses were determined.

Figures 36, 37 and 38 show the unit load schedules for each of the 30 day test periods.

The biased firing study was conducted with the top fuel firing elevation out of service as this operating condition was shown during steady state biased firing tests to produce the lowest NO_X emission level of the biasing modes studied. The overfire air study was conducted using an "optimized" operating mode as determined during the overfire air steady state tests.

Throughout each study the following damper positions were maintained over the load ranges indicated.

At unit loadings below 204,000 kg/hr steam flow, with two elevations of mills in service, damper positions were maintained as follows:

COMMOSTOR PROBLE EXPOSURE TIME - DATS

Figure 36: Gross MW Loading Vs. Time - Baseline Corrosion Probe Study

Figure 37: Gross MW Loading Vs. Time - Biased Firing Corrosion Probe Study

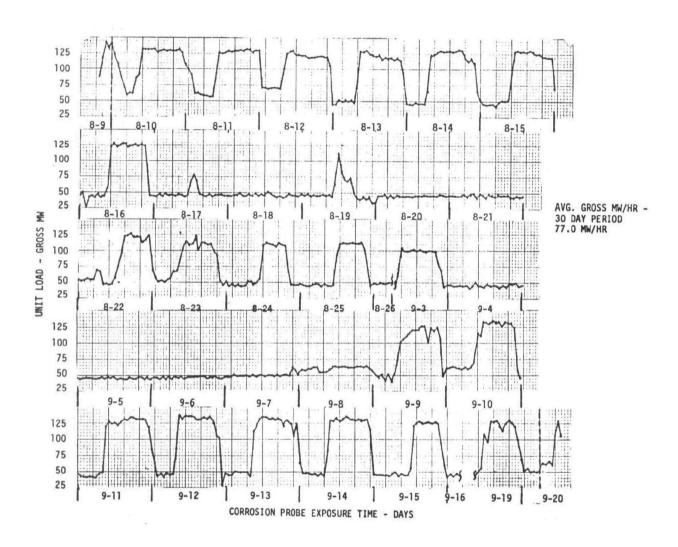


Figure 38: Gross MW Loading Vs. Time - Overfire Air Corrosion Probe Study

Biased Firing Operation Overfire Air Operation OFA Dampers Auxiliary Auxiliary Coa 1 Coa 1 100 Combustion 100 Air Only

From 204,000 to 272,000 kg/hr steam flow, with three elevations of mills in service, the damper positions were as follows:

Biased Firing Operation		Overfire Air Operation			
		OFA Dampers	100 100		
Coal	Auxiliary	Coal	Auxiliary		
100 20 20	Combustion Air Only 50 50	100 30 30	100 50 50 50		
20	50	0	50		
	50	•	0		

At unit loadings above 272,000 kg/hr to the maximum steam flow with the maximum elevations of mills in service, the following damper positions were maintained.*

Biased	Firing Operation	Overfire Air	Operation 0
		OFA Dampers	100 100
Coa1	Auxiliary	Coal	Auxiliary
100	100 Combustion Air Only 50	100	100
30		30	50
	50		50
30	50	30	50
	50		50
30		30	
	50		50

The percent oxygen was monitored daily during each thirty day study at each probe location and was found to be essentially the same for the various test conditions ranging between 16 and 19 percent 0_2 .

The weight losses calculated for the biased and overfire air portion of the test program were found to be greater than those for the baseline tests. The average weight losses for all five probes were as follows:

^{*} At no time during the biased firing study was the top elevation coal pulverizer placed in service. Maximum unit loading was therefore limited to the maximum with the lower three mills in service.

Baseline	Biased Firing	Overfire Air
2.6381 mg/cm ²	4.6429 mg/cm ²	4.4419 mg/cm^2

These values are within the range of losses which would be expected for oxidation of carbon steel for a 30 day period. To verify this premise control studies were conducted in C-E's Kreisinger Development Laboratory using probes exposed during the biased firing study. These probes were cleaned and prepared in an identical manner to those used for furnace exposure and placed in a muffle furnace for 30 and 60 day exposures at 750 F with a fresh air exchange. The test results were as follows:

Probe	Wt. Loss mg/cm ² - 30 Days
M (30 day)	4.7999
Q (30 day)	4.7741
R (60 day)	5.1571/2 = 2.5785
B (60 day)	8.3493/2 = 4.1746

These results indicate that the test coupons oxidized more rapidly during the first 30 days exposure with average weight losses decreasing in the second thirty days. Based on these results, it appears that the differences in weight losses observed during the test program are within the ranges to be expected from oxidation alone.

Chemical analysis of deposits taken during the test program does not, in itself, show that molten phase attack has occurred. The composition of the deposits does show some differences, primarily in the iron content as noted on Figure 39. The deposit collected during the biased firing and overfire air tests show 50 and 35 percent iron, respectively, versus 30 percent in the baseline test. Higher iron is normally indicative of lower melting temperatures. However a certain quantity of CaO is necessary to flux the iron if it is to result in a low melting mixture. The CaO content is considerably less in the biased firing and overfire air tests as compared to that of the baseline test. According-

	Waterwall Slag Sample Baseline Test	Coal Ash (As-Fired)	Waterwall Slag Sample Biased Firing Test	Waterwall Slag Sample Overfire Air Test
Ash Fusibility				
İT	1930	2150	2060	1930
ST	2090	2410	2170	2090
нт	2200	2500	+2700	2250
FT	2500	2620	+2700	
Ash Composition				
SiO ₂	46.2	45.8	38.4	38.5
A1203	18.4	30.7	10.3	18.1
Fe ₂ 0 ₃	29.9	13.9	50.0	35.4
Ca0	3.9	1.8	1.0	1.8
Mg0	8.0	1.3	0.3	0.9
Na ₂ 0	0.32	0.4	0.1	0.4
K ₂ Ō	0.61	1.4	0.7	1.9
TiO ₂	N.R.	0.8	N.R.	1.0
P ₂ 0 ₅	N.R.	0.5	N.R.	N.R.
so ₃	0.34	1.2	0.8	0.4
	100.4	97.8	101.5	98.4

Figure 39. Ash Analysis

ly the fusibility temperatures are higher for the biased firing test and slightly higher for the overfire air tests. This agrees with observations made during the tests, i.e., deposits during biased firing were more friable and easily removed than in the baseline tests with the overfire air tests falling closer to baseline operation.

For comparison fusibilities and compositions have been given in Figure 39 for the coal ash as fired. This points out the selective deposition of certain constituents in the coal ash, like iron, and also shows that resultant fusibility temperatures of deposits can be significantly different than the coal ash as fired.

Overfire Air Evaluation - Alternate Coal Types

The evaluation of alternate coal types with respect to their effect on unit performance and NO $_{\rm X}$ emissions optimization was originally proposed as part of this study. However, due to coal supply problems encountered after the start of work, these evaluations proved to be not feasible and were therefore not performed. Tests of a similar nature evaluating Alabama and Midwestern coals were performed during 1973 by Esso Research and Engineering Co. under EPA Contract 68-02-0227 at the Alabama Power Co., Barry No. 4 unit. A discussion of those test results has therefore been included in this report. (2)

Unit Description

Barry No. 4 is a controlled circulation, radiant, reheat, single cell pressurized design firing coal through five elevations of tilting tangential fuel nozzles. Maximum continuous rating is 1,164,969 kg/hr superheat steam flow at $538^{\circ}\text{C}/176 \text{ kg/cm}^2$ and 1,024,566 kg/hr reheat steam flow at $538^{\circ}\text{C}/44 \text{ kg/cm}^2$. Control load rating is 582,485 kg/hr main steam flow.

Alabama and Midwest coals plus petroleum coke were fuels being burned at the time of the test program. The petroleum coke was fired exclu-

sively through the center fuel nozzle (Elevation C) and normally represented one-quarter to one-fifth of the heat input.

Test Objectives

The objectives of the Esso test program were as follows:

- 1. A series of short (thirty minutes) tests for optimizing NO_{χ} reduction by varying the following:
 - A. Excess Air
 - B. Nozzle Tilt
 - C. Overfire Air
 - D. Primary/Auxiliary Air Damper Settings
 - E. Unit Load
 - F. Pulverizer Coal Fineness
 - G. Firing Alabama Coal, Alabama + Coke and Midwest + Coke
- 2. A two or three day sustained operation at optimum NO_X reduction operating conditions for checking possible short term unit operating problems.
- 3. A three hundred hour operating period at optimum NO_X reduction conditions for determining possible long term operating problems.

Discussion

Test Data Acquisition

Esso Research measured all gas emission levels with instrumentation located in a specially designed mobile van. The van was located at ground level and had the following instrumentation:

- NO Thermo Electric Chemiluminescence
- NO₂ Beckman Ultraviolet, Thermo Electric Chemiluminescence

0, Beckman Paramagnetic

Esso also employed a remote recorder readout of CO, NO_2 and O_2 in the control room for convenience in observing emission levels during testing.

There were no conveniently located test inserts available for gas sampling at the gas duct entering the air heater. Esso, therefore, had to set up a twelve point sampling grid after the air heater. The flue gas sampling rate from each point was proportioned to a gas flow previously determined by velocity traverse. All gas sample lines were heated until the particulate filters, then all condensables are removed by a 32°F ice bath. The gas sample is then blended to one sample per probe location and pumped under 5 pounds pressure to the sample analytical van.

C-E instrumented Corners #1 and 2 windbox compartments to determine the amount of overfire air and the air flow to each compartment. A static pressure tap was installed in each compartment and the pressure differential to the furnace measured.

Petroleum coke, Alabama coal and Midwest coal are normally available at this plant. Normally the coals are fired as mixed in the coal pile. For the test series Alabama and Midwest coals were supplied directly to the bunker. The petroleum coke is burned in a separate Nozzle "C" with coal firing in surrounding Coal Nozzle B and D to insure stable ignition.

Normal coal fineness as taken before the tests was 72 percent thru the 200 mesh screen. Coal fineness was changed to approximately 60 percent thru the 200 mesh screen on several tests to investigate the possible effect on NO_{x} emission levels.

Esso Research obtained pulverizer coal and coke samples from the feeder belts of each mill on every test. Typical analysis for the coals and coke is presented on Sheet 17.

Unit Performance

Boiler operation as reported on Sheet 15 and 15A was based on board instrumentation. The NO_{χ} , CO, CO_{2} and SO_{2} PPM values represent data as averaged from Esso data sheets using the appropriate instrument calibration tables.

Test Emission Data

Overfire Air

The greatest effect on NO_X emission levels was obtained by use of overfire air which decreases the amount of air to the firing zone. Figure 40 presents the NO_X emission levels versus percent excess air to the firing zone for all tests. Emission levels are reduced from 525 PPM to approximately 327 PPM in reducing theoretical air from 134 to approximately 95 percent at 0° tilt.

Excess Air

Unit operating excess air as determined at the air heater inlet had no significant effect on NO_X emission levels (corrected to 0 percent excess air when maintaining a constant theoretical air to the firing zone. Figure 41 shows that with this type of operation the unit operating excess air level could be varied from 6 percent to 26 percent with essentially constant NO_X emission; unit excess air was important, however, in keeping CO emissions at low values (Figure 42).

CO Emissions

Figure 42 indicates that CO emissions are a function of percent excess air at the air heater inlet and also the amount of overfire operation. The test data indicates that at 15 percent excess air unit operation and no overfire air the CO emission was 33 PPM which increased to 93 PPM

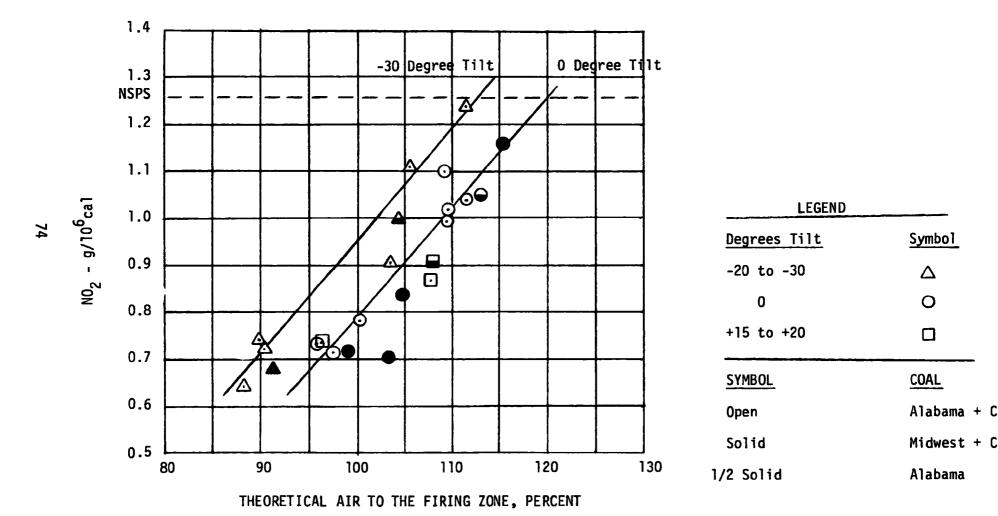


Figure 40: NO₂ Vs. Percent Theoretical Air to Firing Zone,
All Tests at Unit Loads of 290 to 360 MN

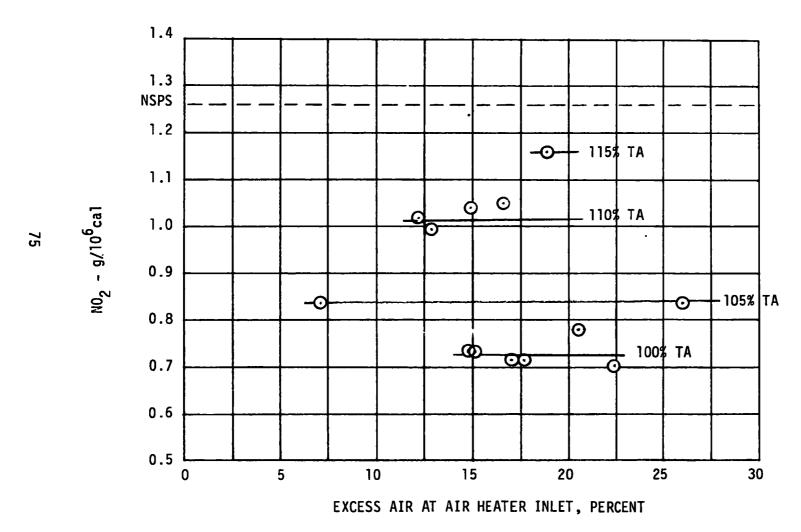
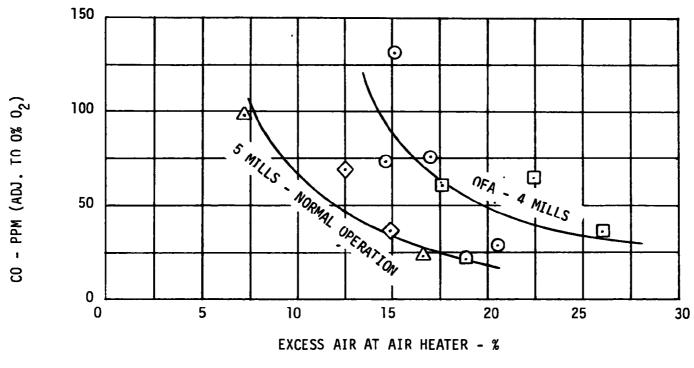



Figure 41: NO₂ Vs. Percent Excess Air at Air Heater Inlet
All Tests at Horizontal Tilt, Unit Load 290 to 360 MW

LEGEND

Symbol	Coa 1	<u>Mills</u>	<u>Tilt</u>	<u>Operation</u>
Δ	Ala.	All 5	0	Normal
	Ala. + C	Lwr. 4	0	OFA
只	MW + C	Lwr. 4	0	OFA
	Ala. + C	All 5	0	Normal
Χ	MW + C	A1 1 5	Ö	Norma 1

Figure 42: CO Vs. Excess Air, Normal and Overfire Air Operation

with overfire air (90 to 100 percent theoretical air to burner zone). In coal firing 15 percent excess air would seem to be the lowest practicable limit of operation.

Nozzle Tilt

Operating at -30° fuel nozzle tilt increased the NO $_{\rm X}$ emission approximately 87 PPM over that obtained at 0° tilt. The limited testing with plus tilts of +15° and +20° produced no effect on the measured NO $_{\rm X}$ emission levels.

Effects of Other Operating Variables

The variation of primary/secondary air dampers (Figure 43) unit load and the pulverized coal fineness had minor effects on NO_X emission levels. This substantiates previous test results and indicates that these operating variables should continue to be used to control normal boiler operation and should not be considered as NO_X controls with coal firing.

Type of Coal

During the test series the following combinations of fuel were fired:

	<u>Fuel</u>	No. of Tests
1.	Alabama Coal	4
2	Alabama Coal + Coke	15
3.	Midwest Coal + Coke	5

Figure 40 plots all tests and identifies the firing combinations and indicates no change in emission levels with fuel change.

Unit Operation

Superheat-reheat outlet temperature of $538/538^{\circ}$ C could be maintained at 90 percent MCR horizontal tilt and 95 percent theoretical air to the burner zone which was the optimum NO $_{_{Y}}$ reduction conditions. The overfire

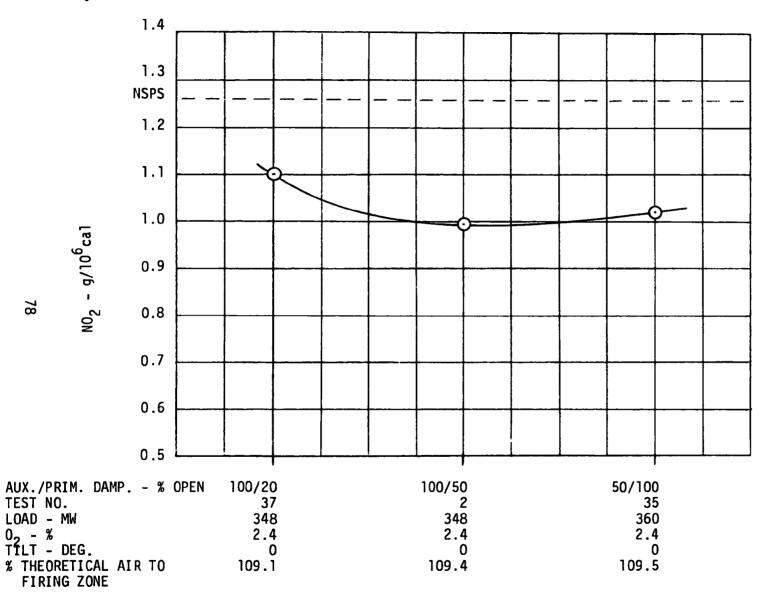


Figure 43: Auxiliary/Primary Damper Positions Vs. NO₂

operation maintains the gas weight thru the unit which results in unchanged superheat-reheat performance.

No adverse furnace slagging was noted during the short term tests with low theoretical air to the firing zone. The three hundred hour, long term test with approximately 95 percent theoretical air to the firing zone and 15 percent excess air at air heater inlet was also completed without excessive furnace slag buildup.

300 Hour Corrosion Probe Test Results

Corrosion probes were installed in the furnace of the test boiler by inserting them through available viewpoints in the furnace firing zone as shown on Figure 44. Prior to installing the probes in the test furnace, the probes were prepared by mild acid pickling, preweighing the coupons, and screwing them onto the probes along with the necessary thermocouples. Each probe was then exposed to the furnace atmosphere prevailing for the particular type of operation desired for approximately 300 hours at coupon temperatures of about 468°C in order to accelerate corrosion. After exposure, furnace slag was cleaned off and saved for future analyses, and the coupons were carefully removed from the probes. In the laboratory the coupons were cleaned ultrasonically with fine glass beads to the base metal, and reweighed to determine the weight loss.

Total weight loss data was converted to corrosion rates on a mils per year basis, using the combined inner and outer coupon rates, coupon material density, and exposure time.

Corrosion rates have been determined for 8 coupons installed on 4 probes (2 coupons/probe), in four different locations on the furnace wall. The corrosion data obtained is tabulated on Sheet 16.

Although there is some scatter in the data obtained, Esso concluded "that

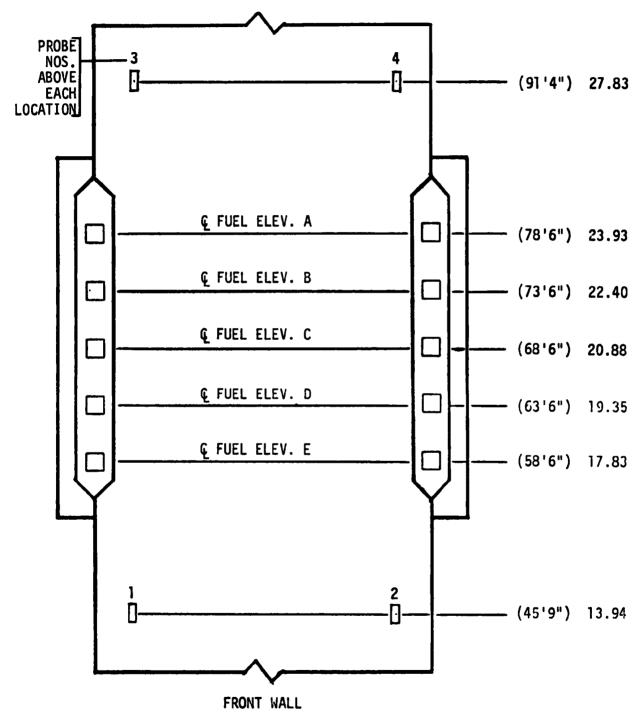


Figure 44: Waterwall Corrosion Probe Locations, Barry No. 4

no major differences in corrosion rates have been observed for coupons exposed to 'low ${\rm NO}_{\rm X}$ ' conditions compared to those subjected to normal operation."

Esso further concluded that "since corrosion rates were deliberately accelerated in this study in order to develop 'measurable' corrosion rates in a short time period, measured rates, as expected, are much higher than the normal wastage of actual furnace wall tubes."

Task IX - Application Guidelines

The program outlining the application of the technology developed under this study to existing and new tangentially coal fired utility boilers will be presented in the Task IX report and is therefore not discussed as part of this report.

BASELINE STUDY NO_X TEST DATA SUMMARY

TEST NO.		1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>
PURPOSE OF TEST				XCESS AIR VA	R CLEAN	FURN. COND.	•	
			1/2 LOAD		3/4 LOAD		FULL LOAD	
DATE		11-30-73	11-30-73	11-30-73	1-18-74	11-14-73	11-28-73	11-28-73
LOAD Main Steam Flow	MW3 10 ³ Kg/HR	66 219	65 224	67 214	93 316	124 404	123 407	123 405
Excess AIR ECON. OUTLET	\$	35.5	17.5	58.9	12.6	22.7	11.7	30.8
THEO, AIR TO FUEL FIRING ZONE	%	130.6 ABC	117.1 ABC	151.3 ABC	109.2 ABC	117.9	107.2 ALL	125.3
FUEL ELEV. IN SERV. FUEL NOZZLE TILT	DEG.	+3	+7	+3	+8	ALL +3	0	ALL O
Aux.		50	0	50	30	60	100	100
. ' "A" FUEL		30 20	30 0	30 50	60 20	20 100	30 100	30 100
ÖÖ "B" FUEL		30	_30	30	20	20	30	_ 30
AUX./AUX.		20/20 30	20/10 30	50/50 30	80/80 20	100/100 20	100/100	100/100
AUX./AUX. BLANK TO FUEL AUX. AUX. AUX. AUX. AUX.		50	10	50 50	50 50	100	30 100	30 100
()		0	0	0	0	20	30	30
AUX. SHO TEMPERATURE	*c	0 529	0 498	0 548	0 500	100 539	100 539	100 538
RHO TEMPERATURE	°C	488	446	517	499	514	524	524
UNIT EFFICIENCY	% 10 ³ Kg/HR	88.3	88.2	87.6	89.3	89.0	89.1	89.5
GAS WEIGHT ENT. A.H. NO	10 KG/HR PPM0% O_	352 631	360 489	412 718	386 429	554 494	578 357	592 664
NU _X	PPM -60% 02 GR/10 CAL	1.337	1.030	1.519	.900	1.041	.761	1.403
50 ² 50 ²	PPM -60% 02 GR/106CAL	2298 6.770	2318 6.794	1644 4.841	1635 4.769	1641 4.815	1434 4.254	1455 4,278
CO ²	PPM - 0% 02 GR/10 CAL	24.51	142.26	8.05	39.09	31.16	152.88	32.91
CO	GR/10 CAL	.0316	.182	.0104	.0499	.0400	.198	.0423
HC O_	PPM - 0% 0	.144 5.59	.160 3.20	0.0 7.89	0.0 2.40	.509 3.96	0.0 2.26	0.0 5.02
O O Carbon Loss in Flyash	≸ A.H. Out	7.28	5.61	9.09	5.14	6.24	4.63	6.87
CARBON LOSS IN FLYASH Dust Loading	% GR/SCM	.29	. 97	17	. 96	.48 4.19	.57	.20
DUST COMPING	GRY SCI							
TEST No.								
		<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>	14
PURPOSE OF TEST			R. MOD. DIR	_		E.A. VAR.	DIRTY FURN.	_
				_		_	_	_
PURPOSE OF TEST	MA.	E.A. VA	R. MOD. DIR FULL LOAD 11-19-73	TY FURN.	1/2 12-5-73	E.A. VAR. LOAD	DIRTY FURN. FULL	LOAD 11-16-73
PURPOSE OF TEST	MW3 10 ³ Kg/HR	E.A. VA	R. MOD. DIR FULL LOAD	TY FURN.	1/2	E.A. VAR. LOAD	DIRTY FURN. FULL	LOAD
PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW Excess Air Econ. Outlet	^{Mw} 3 10 ³ кс/нг ಶ್ರ	E.A. VA 11-15-73 126 411 21 5	R. MOD. DIR FULL LOAD 11-19-73 122 403 13.0	11-19-73 124 405 26.0	1/2 12-5-73 66 211 32 7	E.A. VAR. LOAD 12-4-73 74 206 51.2	DIRTY FURN. FULL 11-16-73 125 412 20 7	11-16-73 125 406 24.3
PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE	^{MW3} Kg/HR រ០ ³ Kg/HR និ	E.A. VA 11-15-73 126 411 21 5 116.9	R. Mod. DIR FULL LOAD 11-19-73 122 403 13.0 108.5	11-19-73 124 405 26.0 120.8	1/2 12-5-73 66 211 32 7 128.0	E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7	11-16-73 125 406 24.3 119.2
PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW Excess Air Econ. Outlet	%	E.A. VA 11-15-73 126 411 21 5 116.9 ALL +8	11-19-73 122 403 13.0 108.5 ALL -22	11-19-73 124 405 26.0 120.8 ALL -22	1/2 12-5-73 66 211 32 7 128.0 ABC 0	E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22	11-16-73 125 406 24.3 119.2 ALL -22
PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX.	r r	E.A. VA 11-15-73 126 411 21 5 116.9 ALL +8 60	FULL LOAD 11-19-73 122 403 13.0 108.5 ALL -22 100	11-19-73 124 405 26.0 120.8 ALL -22 100	1/2 12-5-73 66 211 32 7 128.0 ABC 0 20	E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100	11-16-73 125 406 24.3 119.2 ALL -22 100
PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. "A" FUEL	r r	E.A. VA 11-15-73 126 411 21 5 116.9 ALL +8	11-19-73 122 403 13.0 108.5 ALL -22	11-19-73 124 405 26.0 120.8 ALL -22	1/2 12-5-73 66 211 32 7 128.0 ABC 0	E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22	11-16-73 125 406 24.3 119.2 ALL -22
PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. O O	r r	E.A. VA 11~15-73 126 411 21 5 116.9 ALL +8 60 30 100 30	11-19-73 122 403 13.0 108.5 ALL -22 100 30 100 30	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100 30	1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20 30	E.A. VAR. LOAD 12-4-73	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30	11-16-73 125 406 24.3 119.2 ALL -22 100 30
PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. FUEL AUX. FUEL AUX. FUEL FUEL AUX. FUEL AUX. FUEL AUX. FUEL	r r	E.A. VA 11-15-73 126 411 21 5 116.9 ALL +8 60 30 100 30 100/100	11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100 100/100	1/2 12-5-73 66 211 32 7 128.0 ABC 20 30 20 30 20/20	E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50 30 50/50	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100	11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100
PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. FUEL AUX. FUEL AUX. FUEL FUEL AUX. FUEL AUX. FUEL AUX. FUEL	r r	E.A. VA 11-15-73 126 411 21 5 116.9 ALL +8 60 30 100 30 100/100 30 100/100	11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100/100	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100 30	1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20	E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50 30 50/50 30 50/50	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100/100 30 100/100	LOAD 11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100
PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. AUX. AUX. AUX. AUX. AUX. AUX.	r r	E.A. VA 11-15-73 126 411 21 5 116.9 ALL +8 60 30 100 30 100/100 30 100 30	11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100/30	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100/100 30 100/100 30	1/2 12-5-73 66 211 32 7 128.0 0 20 30 20/20 30 20/20 0	E.A. VAR. LOAD 12-4-73	DIRTY FURN. FULL 11-16-73	11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/30 30 30
PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEY. IN SERV. FUEL NOZZLE TILT AUX. AUX. AUX. FUEL AUX. AUX. AUX. FUEL AUX. AUX. AUX. AUX. FUEL AUX. នឹង Deg.	E.A. VA 11-15-73 126 411 21 5 116.9 ALL +8 60 30 100 30 100/100 30 100 30 100	11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100 30 100 30 100	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100/100 30 100/100 30 100/100	1/2 12-5-73 66 211 32 7 128.0 ABC 20 30 20 30 20/20 30 20/20 0 0	E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50 30 50/50 30 50 0 0	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100/100 30 100 30	11-16-73 125 406 24.3 119.2 ALL -22 100 30 100 30 100/100 30 100/100 30	
PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE	DEG. C C C	E.A. VA 11-15-73	11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100 30 100 533 510	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100 100 30 100/100 30 100 30 100 544 531	1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 0 518 476	E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50/50 30 50/50 0 0 548 508	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100 30 100 539 539 522	LOAD 11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 30 100 543 529
PURPOSE OF TEST DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. AUX. FUEL AUX. AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY	DEG.	E.A. VA 11-15-73	11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100/30 100 533 510 89.6	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100/100 30 100/100 30 100 544 531 89.6	1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20 30 20/20 30 20/20 518 476 88.3	E.A. VAR. LOAD 12-4-73	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100 539 522 89.2	11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 30 100/543 529 89.3
DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO	DEG. *C *C *C *C *IO ³ KG/HR	E.A. VA 11-15-73	11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100 30 100 533 510	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100 100 30 100/100 30 100 30 100 544 531	1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 0 518 476	E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50/50 30 50/50 0 0 548 508	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100 30 100 539 539 522	11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 30 100 543 529 89.3 567 586
DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO	*C *C *C *C *C *C *G *10 ³ Kg/HR PPM -6 ^{0%} O ₂ GR/10 ⁶ CAL	E.A. VA 11-15-73	R. Mob. DIR FULL LOAD 11-19-73 122 403 13.0 108.5 ALL -22 100 30 100 30 100 30 100 30 100 533 510 89.6 500 361 .748	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100 30 100/100 30 100 30 100 544 531 89.6 565 581 1.198	1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 0 518 476 88.3 323 536 1.118	E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 0 50 30 50 0 50/50 0 0 548 508 87.9 369 658 1.370	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 30 100 30 30 100 30 30 100 30 30 100 30 30 30 30 30 30 30 30 30 30 30 30 3	11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 30 100 543 529 89.3 567 586 1.225
DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO	PPM - 50% O ₂ GR/10 CAL	E.A. VA 11-15-73	11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100/30 100 533 510 89.6 502 361 .748 2052	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100/100 30 100/544 531 89.6 565 581 1.198 2179	1/2 12-5-73 66 211 32 7 128.0 0 20 30 20/20 30 20/20 0 518 476 88.3 723 536 1.118 2348	E.A. VAR. LOAD 12-4-73	DIRTY FURN. FULL 11-16-73	11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 543 529 89.3 567 586 1.225
DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO	PPM - 50% O ₂ GR/10 CAL	E.A. VA 11-15-73	11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100/100 30 100 533 510 89.6 502 361 .748 2052 5,922 431.8	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100 30 100 30 100 544 531 89.6 565 581 1.198 2179 6.251 5.48	1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 0 518 476 88.3 723 536 1.118 2348 6.821 297.59	E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50 30 50/50 0 0 548 508 87.9 369 658 1.370 2164 6.267 220.56	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100 539 522 89.2 556 499 1.037 1917 5.538 40.85	11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 30 100 543 529 89.3 567 586 1.225 1370 3.985 33.61
DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO	*C *C *C *S *103Kg/HR PPM -60% 02 GR/10 CAL	E.A. VA 11-15-73	R. Mob. DIR FULL Load 11-19-73 122 403 13.0 108.5 ALL -22 100 30 100 30 100 100 30 100 533 510 89.6 500 361 .748 2052 5.922 431.8	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100 30 100/100 30 100 30 100 544 531 89.6 565 581 1.198 2179 6.251 5.48	1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 0 518 476 88.3 32.3 536 1.118 2348 6.821 297.59	E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50/50 30 50/50 0 548 508 87.9 369 658 1.370 2164 6.267 220.56 .280	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 30 100 30 30 100 30 30 30 30 30 30 30 30 30 30 30 30 3	11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 30 100 543 529 89.3 567 586 1.225 1370 3.985 33.61
DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. "A" FUEL AUX. AUX. AUX. AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO NO2 SO2 CO2 CO	PM - 60% 0 2 PPM - 60% 0 2	E.A. VA 11-15-73	11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100/100 30 100 533 510 89.6 502 361 .748 2052 5,922 431.8	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100 30 100 30 100 544 531 89.6 565 581 1.198 2179 6.251 5.48	1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 0 518 476 88.3 723 536 1.118 2348 6.821 297.59	E.A. VAR. LOAD 12-4-73 74 206 51.2 144.1 ABC 0 50 30 50 30 50/50 0 0 548 508 87.9 369 658 1.370 2164 6.267 220.56	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100 30 100/100 30 100 539 522 89.2 556 499 1.037 1917 5.538 40.85	11-16-73 125 406 24.3 119.2 ALL -22 100 30 100/100 30 100/100 30 100 543 529 89.3 567 586 1.225 1370 3.985 33.61
DATE LOAD MAIN STEAM FLOW EXCESS AIR ECON. OUTLET THEO. AIR TO FUEL FIRING ZONE FUEL ELEV. IN SERV. FUEL NOZZLE TILT AUX. AUX. FUEL AUX. FUEL AUX. FUEL AUX. FUEL AUX. SHO TEMPERATURE RHO TEMPERATURE UNIT EFFICIENCY GAS WEIGHT ENT. A.H. NO	*C *C *C *S *103Kg/HR PPM -60% 02 GR/10 CAL	E.A. VA 11-15-73	11-19-73 122 403 13.0 108.5 ALL -22 100 30 100/100 30 100/30 100 533 510 89.6 502 361 .748 2052 5,922 431.8 .545 .128	11-19-73 124 405 26.0 120.8 ALL -22 100 30 100/100 30 100/544 531 89.6 565 581 1.198 2179 6.251 5.48 .0069	1/2 12-5-73 66 211 32 7 128.0 ABC 0 20 30 20/20 30 20/20 518 476 88.3 323 536 1.118 2348 6.821 297.59 .378	E.A. VAR. LOAD 12-4-73	DIRTY FURN. FULL 11-16-73 125 412 20 7 115.7 ALL -22 100 30 100/100 30 100/100 30 100 539 502 89.2 556 499 1.037 1917 5.538 40.85 .052 .5513	11-16-73 125 406 24.3 119.2 ALL 100 30 100/100 30 100/100 30 100 543 529 89.3 567 586 1.225 1370 3.985 33.61 .043

<u> 19</u>

18

Test No.

BIASED FIRING STUDY

NO_x TEST DATA SUMMARY

16

<u>15</u>

1430 1101							
	Bı	ased Firing -	1 Fuel Elev	. Out of	Service - Ai	r Dampers	Open
Purpose of Test		1/2 Load	3/4 Load		Max Load		•
·		•		•			
Date		1-19-74	1-18-74	12-3-73	12-4-73	12-5-73	
Load	MW ₃ 10 ³ Kg/HR	_66	96	100	103	99	
Main Steam Flow	10°Kg/HR	_199	297	315	321	321	
Excess Air Econ. Outlet	%	50.1	26.7	21.1	22.2	21.8	
Theo. Air to Fuel Firing Zone	x	105.8	121.7	116.5	117.5	117.2	
Fuel Elev. In Serv.	0	ABC	ABC	ABC	ABD	ACD	
Fuel Nozzle Tilt	Deg.	-9 50	0 50	-15 50	-15 50	-10 50	
Aux. Aux		50 20	20	30 30	30	30	
		50 50	50 50	50 50	50	100	
Aux.		20	20	30	30	100	
Aux./Aux.		50/50	50/50	50/50	50/100	50/50	
AUX. /AUX. BLAND AUX. Puel Fuel		20	20	30	100	30	
Z St S		50	50	50	50	50	
දිරිල [DT] Fuel		100	100	100	30	30	
Aux.		100	100	100	50	50	
SHO Temperature	°C	546	539	529	543	523	
RHO Temperature	°C	496	506	501	520	486	
Unit Efficiency	10 ³ Kg/HR	87.9	89.3	89.1	89.3	88.9	
Gas Weight Ent. A.H.	10°Kg/HR	341	430	439	455	428	
NO	PPM - % 02 GR/10 CAL	594	543	397	373	387	
NO X NO 2 SO 2	GR/ IU CAL	1.206	1.142	.840	.792	.795	
\$02 \$03	PPM -6% 02 GR/10 CAL	1721	1682 4.922	2422 7.137	2553 7.536	2292 6.543	
30 ₂	DDM # 0	4.861	29.10	45.63	7.536 38.51	35.48	
co ² co	PPM -6% 02 GR/106CAL	33.38 .0412	.0372	.0588	.0497	.0443	
HC	PPM - % O ₂	0.0	0.0	0.0	.012	.0143	
	% A.H. In	7.10	4.55	3.72	3.885	3.825	
0 ₂ 0 ₂	% A.H. Out		7.19	6.08	5.80	6.30	
Carbon Loss in Flyash	% A.II. Out	.32	.34	.46	.37	.42	
Carbon Loss III riyasii		. 32	.54	.40	.57	• • • •	
Test No		20	21	22	23	24	
Test No.		20	<u>21</u>	22	23	<u>24</u>	
Test No.	Bi	_				_	Open
Test No. Purpose of Test	Bi	<u>20</u> ased Firing - Max Load		. Out of	Service - Ai	r Dampers	Open
	Bi	ased Firing -	Tuel Elev 3/4 Load	. Out of		r Dampers	Open
Purpose of Test Date		ased Firing - Max Load 12-6-73	Truel Elev 3/4 Load	. Out of	Service - Ai 	r Dampers	Open
Purpose of Test Date Load		ased Firing - Max Load 12-6-73 102	1 Fuel Elev 3/4 Load 1-18-74 94	. Out of	Service - Ai 	r Dampers	0pen
Purpose of Test Date Load Main Steam Flow	MW ₃ 10 ³ Kg/HR	ased Firing - Max Load 12-6-73 102 314	1 Fuel Elev 3/4 Load 1-18-74 94 308	. Out of	Service - Ai 1/2 Load - 1-19-74 64 211	r Dampers 1-19-74 66 202	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet	MW3 10 ³ Kg/HR	ased Firing - Max Load 12-6-73 102 314 24.2	1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0	. Out of K 1-19-74 64 208 48.0	Service - Ai 	r Dampers 1-19-74 66 202 47.0	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone	MW ₃ 10 ³ Kg/HR	ased Firing - Max Load 12-6-73 102 314 24.2 94.7	1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3	1-19-74 64 208 48.0 112.5	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4	r Dampers 1-19-74 66 202 47.0 141.3	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service.	MW3 10 ³ Kg/HR %	ased Firing - Max Load 12-6-73 102 314 24.2 94.7 BCD	1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD	0ut of 1-19-74 64 208 48.0 112.5 BCD	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD	1-19-74 66 202 47.0 141.3 ABD	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt	MW3 10 ³ Kg/HR	ased Firing - Max Load 12-6-73 102 314 24.2 94.7 BCD -5	1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10	1-19-74 64 208 48.0 112.5 BCD	Service - Ai 1/2 Load 1-19-74 64 211 47.0 141.4 ACD 0	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Til	MW3 10 ³ Kg/HR %	ased Firing - Max Load 12-6-73 102 314 24.2 94.7 BCD -5 100	1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100	1-19-74 64 208 48.0 112.5 BCD 0	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 0 50	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux.	MW3 10 ³ Kg/HR %		1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100	1-19-74 64 208 48.0 112.5 BCD 100	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 0 50 20	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux.	MW3 10 ³ Kg/HR %		1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 100 50	1-19-74 64 208 48.0 112.5 BCD 0 100 100	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100	1-19-74 66 202 47.0 141.3 ABD -15 50 20	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Guerral Fuel Aux. Fuel Fuel Fuel	MW3 10 ³ Kg/HR %	ased Firing - Max Load 12-6-73 102 314 24.2 94.7 8CD -5 100 50 30	1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20	1-19-74 64 208 48.0 0 112.5 BCD 0 100 100 50 20	Service - Ai 1/2 Load 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100 100	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50 20	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Guerral Fuel Aux. Fuel Fuel Fuel	MW3 10 ³ Kg/HR %		1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 100 50	1-19-74 64 208 48.0 112.5 BCD 0 100 100	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100	1-19-74 66 202 47.0 141.3 ABD -15 50 20	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Aux.	MW3 10 ³ Kg/HR %		1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50	1-19-74 64 208 48.0 112.5 BCD 0 100 100 50/50	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 50 20 100 100 50/50	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel	MW3 10 ³ Kg/HR %		1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20	. Out of 64 208 48.0 112.5 BCD 100 100 50 50/50/20 20	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 50/100	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Aux.	MW 10 ³ Kg/HR 2 % Deg.		1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 100 50 20 50/50 20	. Out of 1-19-74 208 48.0 112.5 BCD 0 100 50 50 50 50 50	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 50 20 100 100 50/50 20 50/50 20 50/50	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Aux. Fuel Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel	MW3 10 ³ Kg/HR % Deg.		1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 8CD +10 100 50 20 50/50 20 50/50 20 50 50	. Out of 64 208 48.0 112.5 BCD 0 100 50/50 20 50/50 501	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20 50/50 20 50/50 20 50/50	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 50 50 50 50 50 50	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Aux. SHO Temperature RHO Temperature	MW3 10 ³ Kg/HR % Deg.	Max Load 12-6-73 102 314 24.2 94.7 BCD -5 100 100 50 30 50/50 30 50/50 30 50/50 30 50/50	1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 50/50 20 50 50 50 50	1-19-74 64 2088 48.0 112.5 BCD 0 100 50 50 50 20 50 50 50 50 50 448	Service - Ai 1/2 Load 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20 20 50 50 50 50 50 50 454	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 100 50 20 50/100	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Aux. Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./ShO Temperature Unit Efficiency	MW3 10 ³ Kg/HR % Deg.		1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 100 50 20 50/50 20 50 50 50 50 50 89.6	. Out of 64 208 48.0 112.5 BCD 0 1000 50 50 50 50 50 448 87.8	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20 50 50 50 50 454 87.9	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 544 513 87.7	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Till Aux. Fuel Aux SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H.	MW 103 kg/HR % Deg. *C *C *C *C *I03 kg/HR	ased Firing - Max Load 12-6-73 102 314 24.2 94.7 BCD -5 100 100 50 30 50/50 30 50 50 544 515 88.8	1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 50 50 50 50 50 469 89.6 435	. Out of 1-19-74 208 48.0 112.5 BCD 0 100 500 500 500 501 448 87.8 360	Service - Ai 1/2 Load 1-19-74 47.0 141.4 ACD 50 20 100 100 50/50 20 50 50 50 44 87.9 361	T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 5044 513 87.7 356	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Till Aux. Fuel Aux SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H.	MW 103 kg/HR % Deg. *C *C *C *C *I03 kg/HR		1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 8CD +10 100 50 20 50/50 20 50/50 20 50 512 469 89.6 435 331	. Out of 64 208 48.0 112.5 BCD 0 100 50/50 20 50/50 501 448 87.8 3600 520	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20 50 50 50 454 87.9 361 485	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/44 513 87.7 356 609	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Till Aux. Fuel Aux SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H.	*C *C *C *C *GR/10 ³ Kg/HR *Deg.		1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 50/50 20 50 512 469 89.6 435 331 .696	. Out of 64 2088 48.0 112.5 BCD 0 1000 500 50/50 20 50/50 501 448 87.8 3600 1.124	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 0 50 50 20 100 100 50/50 20 50 50 20 50 50 20 45.4 87.9 361 485 1.043	T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 100 100 100 100 100 100 100 10	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Till Aux. Fuel Aux SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H.	*C *C *C *C *GR/10 ³ Kg/HR *Deg.		1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 50/50 20 50/50 20 512 469 89.6 435 331 .696 1566	1-19-74 2008 48.0 112.5 BCD 0 100 50 20 50/50 20 50 448 87.8 360 1.124 1861	Service - Ai 1/2 Load 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20 50 50 50 454 87.9 361 485 1.043 2245	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 100 50 20 51282 87.7 356 609 1.282 1807	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Till Aux. Fuel Aux SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H.	*C *	Max Load 12-6-73 102 314 24.2 94.7 8CD 100 100 50 30 50/50 30 50 50/50 88.8 451 285 .599 2277 6.661	1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 100 50 20 50/50 20 50 50 512 469 89.6 435 331 .696 1566 4.578	. Out of 1-19-74 208 48.0 112.5 BCD 0 100 500 500 500 501 448 87.8 360 520 1.124 1861 5.593	Service - Ai 1/2 Load 1-19-74 47.0 141.4 ACD 100 100 50/50 20 50/50 20 50/50 487.9 361 485 1.043 2245 6.710	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/44 513 87.7 356 609 1.282 1807 5.288	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tit Aux. Fuel Aux. SHO Temperature RHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H. NO NO NO SO2 SO2 SO2 CO2	*C *		T Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 50/50 20 50/50 20 50 512 469 89.6 435 331 .696 1566 4.578 31.28	. Out of 64 208 48.0 112.5 BCD 0 100 50/50 20 50/50 501 448 87.8 3600 520 1.124 1861 5.593 29.10	Service - Ai 1/2 Load - 1-19-74 64 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20 50 50 20 50 454 87.9 361 485 1.043 2245 6.710 22.41	T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 100 50 20 100 50 20 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 50 20 50/100	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Aux. SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H. NO. NO. SO. SO. SO. SO. SO. CO. CO.	*C °C *C	ased Firing - Max Load 12-6-73 102 314 24.2 94.7 BCD -5 100 100 50 30 50/50 30 50/50 30 50 50 50 50 50 50 50 6661 26.61	Truel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 50/50 20 50 469 89.6 435 331 .696 1566 4.578 31.28 .0400	. Out of 64 208 48.0 112.5 BCD 0 100 50 20 50/50 448 87.8 360 50/50 1.124 1861 5.593 29.10 .0382	Service - Ai 1/2 Load - 1/2 Load	T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 100 50 20 100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 30/	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Aux. SHO Temperature RHO Temperature RHO Temperature RHO Temperature Gas Weight Ent. A.H. NO. NO. SO. SO. SO. CO. CO. CO.	**C	ased Firing - Max Load 12-6-73 102 314 24.2 94.7 8CD -5 100 100 50 30 50/50 30 50 504 515 88.8 451 285 .599 2277 6.661 26.61 .0341 0.0	Truel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20 50/50 20	. Out of 1-19-74 48.0 112.5 BCD 100 100 50/50 20 50/50 20 50/50 448 87.8 360 520 1.124 1861 5.593 29.10	Service - Ai 1/2 Load 1-19-74 64 211 47.0 141.4 ACD 0 100 100 50/50 20 50/50 20 50 50 20 20 50 20 50 20 50 20 20 50 20 20 20 50 20 20 20 20 20 20 20 20 20 20 20 20 20	T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 100 50 20 100 50 20 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 50 20 50/100	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Aux. SHO Temperature RHO Temperature RHO Temperature RHO Temperature Gas Weight Ent. A.H. NO. NO. SO. SO. SO. CO. CO. CO.	**Deg.** **C	ased Firing - Max Load 12-6-73 102 314 24.2 94.7 BCD -5 100 100 50 30 50/50 30 50 50/50 30 50 50 544 515 88.8 451 285 .599 2277 6.661 26.61 .0341 0.0	1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 100 50 20 50/50 20 50/50 20 50 512 469 89.6 435 331 .696 1566 4.578 31.28 .0400 0.0 4.76	. Out of 1-19-74 208 48.0 112.5 BCD 100 100 50 50 50 50 448 87.8 360 520 1.1261 5.593 29.10 .0382 0.06.93	Service - Ai 1/2 Load 1-19-74 47.0 141.4 ACD 100 100 50/50 20 50/50 20 50/50 487.9 361 485 1.043 2245 6.710 22.41 .0293 0.0 6.85	T Dampers 1-19-74 66 202 47.0 141.3 ABD -15 50 20 50/100 100 50 50 544 513 87.7 356 609 1.282 1807 5.288 27.54 0.353	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tut.	**C	ased Firing - Max Load 12-6-73 102 314 24.2 94.7 8CD -5 100 100 50 30 50/50 30 50/50 30 50 544 515 88.8 451 285 .599 2277 6.661 26.61 .0341 0.00 4.165 7.31	T Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 50 20 50/50 20 50/50 20 50 512 469 89.6 435 331 .696 1566 4.578 31.28 .0400 0.0 4.76 8.37	. Out of 208 48.0 208 48.0 112.5 BCD 0 100 50/50 50 50 501 448 87.8 3660 520 1.124 1861 5.593 29.10 .0382 0.06.93 8.40	Service - Ai 1/2 Load 1/2 Load 1-19-74 44 211 47.0 141.4 ACD 0 50 20 100 100 50/50 20 50 50 20 50 454 87.9 361 485 1.043 2245 6.710 22.41 .0293 0.00 6.85	T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/107 356 609 1.282 1807 5.288 27.54 .0353 0.0 6.79 6.87	Open
Purpose of Test Date Load Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. in Service. Fuel Nozzle Tilt Aux. Fuel Aux. SHO Temperature RHO Temperature RHO Temperature RHO Temperature Gas Weight Ent. A.H. NO. NO. SO. SO. SO. CO. CO. CO.	**Deg.** **C	ased Firing - Max Load 12-6-73 102 314 24.2 94.7 BCD -5 100 100 50 30 50/50 30 50 50/50 30 50 50 544 515 88.8 451 285 .599 2277 6.661 26.61 .0341 0.0	1 Fuel Elev 3/4 Load 1-18-74 94 308 29.0 97.3 BCD +10 100 100 50 20 50/50 20 50/50 20 50 512 469 89.6 435 331 .696 1566 4.578 31.28 .0400 0.0 4.76	. Out of 1-19-74 208 48.0 112.5 BCD 100 100 50 50 50 50 448 87.8 360 520 1.1261 5.593 29.10 .0382 0.06.93	Service - Ai 1/2 Load 1-19-74 47.0 141.4 ACD 100 100 50/50 20 50/50 20 50/50 487.9 361 485 1.043 2245 6.710 22.41 .0293 0.0 6.85	T Dampers 1-19-74 666 202 47.0 141.3 ABD -15 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 100 50 20 50/100 50 20 50/100 60	Open

NO_X TEST DATA SUMMARY BASELINE STUDY AFTER MODIFICATION

TEST NO	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>
Purpose of Test			Excess Air 1	Var Clean F	urnace Cond.		
	 	1/2 Load		— 3/4 Load —	**	- Maximum Load -	→
Date Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ Outlet % Theo. Air to Fuel Firing Zone %	6/25/74 62 219 33.5 127 1	6/25/74 62 213 16 0 113.4	6/25/74 64 217 64 7 155.4	6/27/74 92 315 15 5 111.0	6/19/74 131 450 21.0 115.3	6/27/74 127 441 12.4 107 1	6/27/74 125 423 25.4 119.5
Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. OFA OFA Aux OFA Fuel	ABC 0 3 0 0 20 30	ABC 0 6 0 0 0 30	ABC 0 -14 0 0 50 30	ABC 0 2 0 0 30 20	ALL 0 -13 0 0 80 30	ALL 0 -3 0 0 100 30	ALL 0 -22 0 0 100 35
Aux	20 30 20/20 30 20 0	0 30 10/10 30 10 0	50 30 30 50/50 30 50 0	60 20 80/80 20 50 0	100 30 100/100 30 100 30	100 30 100/100 30 100 30	100 35 100/100 35 100 35
Aux. SHO Temperature °C RHO Temperature °C Unit Efficiency % Gas Weight Ent. A.H NO _x PPM - 0% 02 NO2 GR/106CAL	0 492 435 88.4 335 444 .929	0 468 402 88.8 270 335 .701	0 536 499 87.4 413 640 1 339	0 504 466 89.8 398 327 .684	100 528 488 88.4 593 404 .846	100 524 487 89.2 546 330 .692	100 518 480 89.5 559 477 1.000
SO2 PPM - 0% O2 SO2 GR/10 ⁶ CAL CO PPM - 0% O2 CO GR/10 ⁶ CAL HC PPM - 0% O2 O2 % A.H. In	3678 10.718 27.54 .0351 0 5.36	3621 10.551 375 77 4790 0 2.95	2611 7 606 34.66 .0442 0 8.36	2634 7.674 109.70 1398 0 2.87	2251 6.559 26.37 0336 0	2677 7.800 127 2 .1622 0 2 36	2707 7.889 21.74 .0277 0
02 % A.H Out Carbon Loss In Flyash %	7.35 .29	5.52 .23	9.70 1 06	5 5 .11	7.36 .75	5 75 .51	7.02 .74
TEST NO.	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	12	<u>13</u>	14
TEST NO. Purpose of Test	_	<u>9</u> Mod. Dirt	_	_		<u>13</u> Dirty Furnace	14
	E.A. Var	_	y Furnace	_	E A Var	_	_
Purpose of Test Date Load Main Steam Flow Excess Air Econ Outlet Theo Air to fuel Firing Zone % Fuel Elev. In Serv OFA Nozzle Tilt DEG OFA OFA OFA OFA	6/20/74 130 440 17.8 112.3 ALL 0 -21 0	Mod. Dirt Maximum Load 6/20/74 129 446 12 1 106 9 ALL 0 -17 0	9 Furnace 6/28/74 125 428 26.6 120 5 ALL 0 -6 0	1/2 6/26/74 65 246 30.9 124.6 ABC 0 -16	E A Var Load 6/26/74 68 218 63.1 154 0 ABC 0 -16	Dirty Furnace Maximum 6/28/74 126 432 22.0 116 2 ALL 0 -6 0	6/28/74 125 425 25.9 119 9 ALL 0 -6
Purpose of Test Date Load Main Steam Flow 103KG/HR Excess Air Econ Outlet % Theo Air to Fuel Firing Zone % Fuel Elev. In Serv OFA Nozzle Tilt DEG Fuel Nozzle Tilt DEG OFA	6/20/74 130 440 17.8 112.3 ALL 0 -21 0 80 30 100/100 30 100/30	Mod. Dirt Maximum Load 6/20/74 129 446 12 1 106 9 ALL 0 -17 0 0 80 30 100 100/100 30 100 30	6/28/74 125 428 26.6 120.5 ALL 0 -6 0 100 30 100 30 100/100 30 100/100 30	1/2 6/26/74 65 246 30.9 124.6 ABC 0 -16	E A Var Load 6/26/74 68 218 63.1 154 0 ABC 0 -16 0 50 30 50/50 30 50/50	Dirty Furnace Maximum 6/28/74 126 432 22.0 116 2 ALL 0 -6 0 100 30 100 30 100/100 30 100/30	6/28/74 125 425 25.9 119 9 ALL 0 0 100 30 100 30 100/100 30 100/30
Date Load Main Steam Flow Excess Air Econ Outlet Theo Air to Fuel Firing Zone Fuel Elev. In Serv OFA Nozzle Tilt OFA OFA Aux. Fuel Aux. Fuel Aux /Aux. Fuel Fuel Aux /Aux. Fuel Fuel Fuel Fuel Aux /Aux. Fuel Fuel Fuel Aux /Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel	6/20/74 130 440 17.8 112.3 ALL 0 -21 0 80 30 100 30 100/100 30 100/100	Mod. Dirt Maximum Load 6/20/74 129 446 12 1 106 9 ALL 0 -17 0 80 30 100/100 30 100/100 30	6/28/74 125 428 26.6 120 5 ALL 0 -6 0 100 30 100/100 30 100/100	1/2 6/26/74 65 246 30.9 124.6 ABC 0 20 30 20 30 20/20 30 20/20	E A Var Load 6/26/74 68 218 63.1 154 0 ABC 0 -16 0 50 30 50/50 30 50/50	Dirty Furnace Maximum 6/28/74 126 432 22.0 116 2 ALL 0 -6 0 100 30 100/100 30 100/100	6/28/74 125 425 25.9 119 9 ALL 0 -6 0 100 30 100 100 30 100/100 30

84

SHEET 3

NOX TEST DATA SUMMARY OVERFIRE AIR LOCATION, RATE & VELOCITY VARIATION

TEST NO.	<u>15</u>	<u>16</u>	<u>17</u>	18A	19
Purpose of Test		OFA Damp	er Position V	ariation	
	K	•	— 3/4 Load —		~
Date	7/10/74	7/10/74	7/10/74	7/12/74	7/11/74
Load MW	97	98	100	100	100
Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet %	336 28.5	340 27.1	338 25.6	344 26.6	338 24.8
Theo. Air to Fuel firing Zone %	114.5	96.7	95.8	84.8	89.3
Fuel Elev. In Serv.	BCD	BCD	BCD	BCD	BCD
OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG.	0 -5	0 -5	0 -5	0 -4	0 -4
OFA	Ō	100	Ö	100	50
. DOFA	0	0	100 0	100 0	50 0
Aux.	ŏ	ŏ	ŏ	ŏ	ŏ
SE Aux.	50	50	50	50	50
Aux./Aux.	30 50/50	30 50/50	30 50/50	30 50/50	30 50/50
Aux./Aux.	30/30	30, 30	30, 30	30	30
	50	50	50	50	50
Fuel Aux.	30 50	30 50	30 50	30 50	30 50
SHO Temperature °C	ราัยั	510	514	524	521
RHO Temperature °C	457	452	457	476	486
Unit Efficiency % Gas Weight Ent. A.H. 10 ³ KG/HR	90.0 458	89.8 447	89.7 442	89.6 466	89.3 468
NO. PPM - 0% O2	345	254	254	229	232
NO2 GR/10°CAL	.723	. 533	. 533	.479	.486
SO2 PPM - 0% 02 SO2 GR/10 ⁶ CAL	1892 5 512	1973 5.750	2092 6.097	2397 6.984	2684 7.821
CO PPM - 0% 02	28.10	29.96	32.4	48.08	39.20
CO GR/10 ⁶ CAL	.0358	.0382	.0413	.0613	0500
HC PPM - 0% 02. 02 % A.H. In.	۰ 4.74	0 4.55	0 4.36	4.5	0 4.25
02 % A.H. Out.	6.51	6.49	6.08	6.32	6.05
Carbon Loss In Flyash 🕱	.51	. 59	. 63	. 54	.32
TEST NO. Purpose of Test	<u>20</u>	<u>21</u> FA Damper Pos	<u>22</u> ition Variati	<u>23</u> on	
•					
	₩	3/4	Load		
Date	•	•		7/12/74	
Date Load _ MW	/< 7/11/74 100	7/12/74 102	7/12/74 102	7/12/74 102	
Load MW Main Steam Flow 10 ³ KG/HR	7/11/74 100 344	7/12/74 102 342	7/12/74 102 341	102 346	
Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet %	7/11/74 100 344 25.4	7/12/74 102 342 25 4	7/12/74 102 341 27.9	102 346 28.1	
Load MW Main Steam Flow 10 ³ KG/HR	7/11/74 100 344	7/12/74 102 342	7/12/74 102 341	102 346	
Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet % Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG.	7/11/74 100 344 25.4 100 5 BCD 0	7/12/74 102 342 25 4 117.4 ABC	7/12/74 102 341 27.9 90.4 ABC 0	102 346 28.1 96.9 ABC 0	
Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet \$ Theo. Air to Fuel Firing Zone \$ Fuel Elev. In Serv. 0FA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG	7/11/74 100 344 25.4 100 5 BCD 0	7/12/74 102 342 25 4 117.4 ABC 0	7/12/74 102 341 27.9 90.4 ABC 0	102 346 28.1 96.9 ABC 0	
MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet % Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG ☐ OFA OFA	7/11/74 100 344 25.4 100 5 BCD 0 -4	7/12/74 102 342 25 4 117.4 ABC 0 -4	7/12/74 102 341 27.9 90 4 ABC 0 -4 100 100	102 346 28.1 96.9 ABC 0 -4 50	
Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet % Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. OFA OFA Aux.	7/11/74 100 344 25.4 100 5 BCD 0 -4 0	7/12/74 102 342 25 4 117.4 ABC 0 -4 0	7/12/74 102 341 27.9 90 4 ABC 0 -4 100 100	102 346 28.1 96.9 ABC 0 -4 50 50	
Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet % Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. OFA OFA Aux.	7/11/74 100 344 25.4 100 5 BCD 0 -4	7/12/74 102 342 25 4 117.4 ABC 0 -4	7/12/74 102 341 27.9 90 4 ABC 0 -4 100 100	102 346 28.1 96.9 ABC 0 -4 50	
Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA OFA OFA Aux. PRI Fuel Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fue	7/11/74 100 344 25.4 100 5 8CD 0 -4 0 100 0	7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100	7/12/74 102 341 27.9 90 4 ABC 0 -4 100 100 100 100 50	102 346 28.1 96.9 ABC 0 -4 50 50 50 50 50	
MW Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. OFA OFA Aux. Fuel Aux. Fuel Aux./Aux.	7/11/74 100 344 25.4 100 5 BCD 0 -4 0 100 50	7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 50 30 50/50	7/12/74 102 341 27.9 90.4 ABC 0 -4 100 100 100 50 30	102 346 28.1 96.9 ABC 0 -4 50 50 50 50	
Load MW Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA OFA OFA Aux. PRI Fuel Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fue	7/11/74 100 344 25.4 100 5 8CD 0 -4 0 100 0	7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100	7/12/74 102 341 27.9 90 4 ABC 0 -4 100 100 100 100 50	102 346 28.1 96.9 ABC 0 -4 50 50 50 50 50	
Load MW Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG Fuel Nozzle Tilt DEG OFA Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Fuel Aux. Fuel Aux. Fuel Fuel Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel	7/11/74 100 344 25.4 100 5 BCD 0 -4 0 100 50 50/50 30 50/50	7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 50 30 50/50	7/12/74 102 341 27.9 90 4 ABC 0 -4 100 100 100 50 30 50/50	102 346 28.1 96.9 ABC 0 -4 50 50 50 50 50 50 50	
Load MM Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA Aux. TAT Fuel Aux.	7/11/74 100 344 25.4 100 5 8CD 0 -4 0 0 100 0 50/50 30 50/50	7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 50 30 50/50 30 50/50	7/12/74 102 341 27.9 90 4 ABC 0 -4 100 100 100 100 30 50/50 30 50/0	102 346 28.1 96.9 ABC 0 -4 50 50 50 50 50 30 50/50 30	
Load MW Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG Fuel Nozzle Tilt DEG OFA Aux. Fuel Aux./Aux. Fuel Aux./Aux. Fuel Aux./Fuel Aux. Fuel Aux. Fuel Fuel Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel	7/11/74 100 344 25.4 100 5 BCD 0 -4 0 100 50 50/50 30 50/50	7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 50 30 50/50	7/12/74 102 341 27.9 90 4 ABC 0 -4 100 100 100 50 30 50/50	102 346 28.1 96.9 ABC 0 -4 50 50 50 50 50 50 50	
Load MM Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone X Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA OFA OFA OFA OFA OFA OFA OF	7/11/74 100 344 25.4 100 5 8CD 0 -4 0 100 0 50/50 30 50/50 30 50/50 479 90 2	7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 500 30 50/50 30 50/50 498 90.1	7/12/74 102 341 27.9 90 4 ABC 0 -4 100 100 100 50 30 50/50 30 50/50 0 0	102 346 28.1 96.9 ABC 0 -4 50 50 50 50 50 30 50/50 30 50/50 21 485 89.1	
Load MW Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA OFA OFA Aux. Fuel Aux. Fuel Aux. SHO Temperature RHO Temperature Ges Weight Ent. A.H. 103KG/HR	7/11/74 100 344 25.4 100 5 BCD -4 0 100 0 50 30 50/50 30 50/50 30 50/50 479 90 2	7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 50 30 50/50 30 50/50 0 0 498 90.1	7/12/74 102 341 27.9 90 4 ABC 0 -4 100 100 100 50 30 50/50 0 0 524 491 89.0	102 346 28.1 96.9 ABC 0 -4 50 50 50 30 50/50 30 50/50 485 89.1 492	
Load MM Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone X Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA OFA Aux. Aux. Fuel Aux. Fuel Aux. SHO Temperature Gas Weight Ent. A.H. NOx PPM - 0 ³ C9 GR/10 ⁵ CAL	7/11/74 100 344 25.4 100 5 8CD 0 -4 0 100 0 50/50 30 50/50 30 50/50 479 90 2	7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 500 30 50/50 30 50/50 498 90.1	7/12/74 102 341 27.9 90 4 ABC 0 -4 100 100 100 50 30 50/50 30 50/50 0 0	102 346 28.1 96.9 ABC 0 -4 50 50 50 50 50 30 50/50 30 50/50 21 485 89.1	
Load MM Main Steam Flow 10 ³ KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Theo. Air to Fuel DEG. Fuel Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. Fuel Aux. Aux. Fuel Aux. Fuel Aux. SHO Temperature CRHO Temperature CUnit Efficiency Gas Weight Ent. A.H. NOx NOz GR/10 ⁵ CAL PPM - 0% Oz GR/10 ⁵ CAL FUEL COMMITTED COMMI	7/11/74 100 344 25.4 100 5 BCD 0 -4 0 100 0 50 30 50/50 30 50/50 30 50/50 479 90 2 468 323 .677 1821	7/12/74 102 342 25 4 117.4 ABC 0 100 100 100 50 30 50/50 30 50/50 0 476 483 1.012 1814	7/12/74 102 341 27.9 90.4 ABC 0 -4 100 100 100 50 30 50/50 0 0 524 491 89.0 494 329 .689 2259	102 346 28.1 96.9 ABC 0 -4 50 50 50 30 50/50 30 50/50 485 89.1 492 336 .704 2417	
Load MM Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone X Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA Aux. Aux. Fuel Aux. Fuel Aux. Fuel Aux. SHO Temperature Unit Efficiency Gas Weight Ent. A.H. NOx NO2 GR/106CAL SO2 GR/106CAL	7/11/74 100 344 25.4 100 5 BCD 0 -4 0 100 50 50/50 30 50/50 30 50/50 479 90 2 468 323 .677 .821 5.308	7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 500 30 50/50 30 50/50 498 90.1 476 483 1.012 1814 5.284	7/12/74 102 341 27.9 90 4 ABC 0-4 100 100 100 50/50 30 50/50 0 0 524 491 89.0 494 329 .689 2259 6.583	102 346 28.1 96.9 ABC 0 -4 50 50 50 50 30 50/50 30 50/50 485 89.1 492 336 .704 2417 7.042	
Load MM Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG OFA OFA Aux. Fuel Aux. Fuel Aux. SHO Temperature Unit Efficiency Gas Weight Ent. A.H. NOx NOz SO2 GR/106CAL PPM - 0% Oz GR/106CAL CO GR/106CAL PPM - 0% Oz GR/106CAL	7/11/74 100 344 25.4 100 5 BCD 0 -4 0 100 0 50 30 50/50 30 50/50 30 50/50 479 90 2 468 323 .677 1821	7/12/74 102 342 25 4 117.4 ABC 0 100 100 100 50 30 50/50 30 50/50 0 476 483 1.012 1814	7/12/74 102 341 27.9 90.4 ABC 0 -4 100 100 100 50 30 50/50 0 0 524 491 89.0 494 329 .689 2259	102 346 28.1 96.9 ABC 0 -4 50 50 50 30 50/50 30 50/50 485 89.1 492 336 .704 2417 7.042 25.28 .0322	
Load MM Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone X Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. OFA Aux. Aux. Fuel Aux. Fuel Aux. Fuel Aux. Fuel Aux. SHO Temperature Unit Efficiency Gas Weight Ent. A.H. NOx NO2 SO2 GR/106CAL SO2 GG/106CAL CO GG/106CAL PPM - 0% O2 GG/106CAL PPM - 0% O2 CC CO	7/11/74 100 344 25.4 100 5 BCD 0 100 0 100 50 50/50 30 50/50 30 50/50 479 90 2 468 323 .677 1821 5.308 28.79 .0367	7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 500 30 50/50 30 50/50 498 90.1 476 483 1.012 1814 5.284 25.16 .0321 0	7/12/74 102 341 27.9 90 4 ABC 0-4 100 100 100 50/50 30 50/50 0 0 524 491 89.0 494 329 .689 2259 6.583 25.79 .0329	102 346 28.1 96.9 ABC 0 -4 50 50 50 50 30 50/50 30 50/50 485 492 485 492 492 2417 7.042 25.28 .0322	
Load MM Main Steam Flow 103Kg/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone % Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. Fu	7/11/74 100 344 25.4 100 5 8CD 0 -4 0 100 50 30 50/50 30 50/50 30 50/50 32 468 479 90 2 468 3.677 1821 5.308 28.79 .0367 4 33	7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 50 30 50/50 30 50/50 498 90.1 476 483 1.012 1814 5.284 25.16 .0321 0 4.33	7/12/74 102 341 27.9 90.4 ABC 0 -4 100 100 100 50 30 50/50 0 0 524 491 89.0 494 329 .689 2259 6.583 25.79 .0329	102 346 28.1 96.9 ABC 0 -4 50 50 50 30 50/50 30 50/50 485 89.1 492 336 .704 2417 7.042 25.28 .0322	
Load MM Main Steam Flow 103KG/HR Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone X Fuel Elev. In Serv. OFA Nozzle Tilt DEG. Fuel Nozzle Tilt DEG. OFA Aux. Aux. Fuel Aux. Fuel Aux. Fuel Aux. Fuel Aux. SHO Temperature Unit Efficiency Gas Weight Ent. A.H. NOx NO2 SO2 GR/106CAL SO2 GG/106CAL CO GG/106CAL PPM - 0% O2 GG/106CAL PPM - 0% O2 CC CO	7/11/74 100 344 25.4 100 5 BCD 0 100 0 100 50 50/50 30 50/50 30 50/50 479 90 2 468 323 .677 1821 5.308 28.79 .0367	7/12/74 102 342 25 4 117.4 ABC 0 -4 0 100 100 500 30 50/50 30 50/50 498 90.1 476 483 1.012 1814 5.284 25.16 .0321 0	7/12/74 102 341 27.9 90 4 ABC 0 -4 100 100 100 50/50 30 50/50 0 0 524 491 89.0 494 329 .689 2259 6.583 25.79 .0329	102 346 28.1 96.9 ABC 0 -4 50 50 50 50 50 50 50 50 50 50 485 89.1 492 336 .704 2417 7.042 25.28 .0322 4.69	

85

NO_X TEST DATA SUMMARY OFA TILT VARIATION

TEST NO.	<u>24</u>	<u>25</u>	<u>26</u>	<u>27</u>	<u>28</u>	29
Purpose of Test		0	FA & Fuel Nozzl	e Tilt Variatio	on	
	K		Full	Load-	 	
Date Load Main Steam Flow Main Steam Flow Excess Air Econ. Outlet Theo. Air to Fuel Firing Zone Fuel Elev. In Serv. OFA Nozzle Tilt OFA OFA OFA Aux. Fuel Fuel Aux. Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel	7/29/74 124 407 25.9 94.2 ALL 0 -5 100 100 100 50 50 50 50	7/29/74 124 418 23.7 92.4 ALL 0 100 100 100 100 50/50 30 50/50	7/29/74 124 412 25.1 93.2 ALL 0 +19 100 100 100 50 30 50/50 30	7/29/74 125 407 22.3 91.5 ALL -30 -5 100 100 100 50 50/50 30	7/29/74 125 414 20.2 89.6 ALL -30 100 100 100 100 50/50 30 50/50	7/29/74 124 418 23.7 92.6 ALL +30 -21 100 100 100 50 30 50/50 30
Aux. SHO Temperature RHO Temperature Unit Efficiency Gas Weight Ent. A.H. NO _x NO ₂ SO ₂ SO ₂ SO ₂ SO ₂ GR/10 ⁶ CAL CO PPM - 0% O ₂ GR/10 ⁶ CAL CO PPM - 0% O ₂ GR/10 ⁶ CAL RC PPM - 0% O ₂ GR/10 ⁶ CAL RC PPM - 0% O ₂ SA.H. In. O ₂ SA.H. Out. Carbon Loss In Flyash	50 538 532 89.6 548 339 .710 2450 7.140 25.4 .0324 0 4.4 5.9	50 521 508 89.3 556 290 .609 2920 8.511 27.1 .0346 0 4.1 6.0 .37	50 524 527 88.9 585 368 .770 3310 9.647 31.8 .0406 0 4.3 6.2	50 527 533 89.3 557 344 .721 3160 9.208 22.1 .0282 0 3.9 6.0	50 524 535 88.6 586 404 .846 3370 9.820 28.2 .0360 0 3.6 5.8	50 521 505 89.4 544 285 .596 3240 9.443 49.4 .0630 0 4.1 6.4

LOAD VARIATION AT OPTIMUM CONDITIONS

TEST NO.	<u>30</u>	<u>31</u>	<u>32</u>	<u>33</u>	34	<u>35</u>						
Purpose of Test	Load Variation at Optimum Conditions											
	Max. Load	3/4 Load	1/2 Load	Max. Load	3/4 Load	1/2 Load						
Date Load MW	7/30/74	7/31/74	7/31/74	7/31/74	7/31/74	8/1/74						
Load MW Main Steam Flow 10 ³ KG/HR	125 416	97 314	65 204	122 409	95 310	64 204						
Excess Air Econ. Outlet %	21.6	25.2	46.9	27.4	27.4	45.9						
Theo. Air to Fuel Firing Zone %	90.7	89.4	88.5	94 6	90.6	88.5						
Fuel Elev In Serv.	ALL	ABC	AB	ALL	ABC	AB						
OFA Nozzle Tilt DEG Fuel Nozzle Tilt DEG.	0	-12	ō	-22	-22	-10						
OFA OEG.	-4 100	-16 100	-5 100	-22 100	-22 100	-15 100						
├── ŎFÃ	100	100	100	100	100	100						
√ XAux.	100	100	100	100	100	100						
e : "A" Fuel	100	100	100	100	100	100						
So Aux.	50	50	50	50	50	50						
	30	30	30	30	30	30						
Aux./Aux.	50/50	50/50	50/0	50/50	50/50	50/0						
Aux./Aux.	30 50	30 50	0	30 50	30 50	0						
PD4 Fuei	30	90	ŏ	30	0	ŏ						
Aux.	50	ŏ	ŏ	50	ŏ	ŏ						
SHO Temperature °C	538	525	535	521	506	512						
RHO Temperature °C	536	514	514	521	493	493						
Unit Efficiency %	89.0	89.1	89.2	89 0	88.2	89.0						
Gas Weight Ent. A.H. 103KG/HR	574	456	341	584	472	329						
NO _x PPM - 0% O ₂ NO ₂ GR/10 ⁶ CAL	3 39 .710	338 . 708	396 .828	333 .697	291 .608	313 .655						
SO2 PPH - 0% O2	1680	1730	1740	2430	2490	2420						
SO2 GR/106CAL	4.896	5.043	5.070	7.083	7.256	6.960						
CO PPM - 0% 02	26.1	26.1	24.4	24.8	26.4	25.0						
CO GR/106CAE	.0333	. 0333	.0311	0316	.0337	.0319						
HC PPM - 0% 02	Q	. 0	0	. 0	0	0						
02 % A.H. In.	3.8	4.3	6.8	4.6	4.6	6.7						
02 % A.H. Out.	5.3	5.7	8.2	6.3	6.8 .33	8.4						
Carbon Loss In Flyash Dust Loading GR/SCM	.61 8.64	.39	.32	. 24	.33	.15						

BASELINE STUDY TEST DATA

TEST NO.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
DATE	11-30-73	11-30-73	11-30-73	1-18-74	11-14-73	11-28-73	11-28-73	11-15-73	11-19-73	11-19-73	12-5-73	12-4-73	11-16-73	11-16-73
TIME	01 55	00 00	02 · 45	16 00	15-10	13.51	10:37	11-10	13.04	10:00	01:40	53-30	14:20	9:50
UNIT LOAD - MW	66	65	67	93	124	123	123	126	122	124	66	74	125	125
FLOWS - 10 ³ Kg/HR														
FEEDWATER	217	222	206	309	400	401	393	399	391	384	010	~~4	390	
SH SPRAY (HEAT BALANCE)	2.31	1.67	8.3	2.5	4.13	5.90	11.8	11.5	12.11	20.14	210 1.09	204 1.81	21.86	385 20.77
MAIN STEAM	219	224	214	316	404	407	405	411	403	405	211	206	412	406
TURBINE LEAKAGE	9.98	10.2	9.52	14	17.83	17.92	17.6	17.83	17.55	17.24	9.66	9.39	17.46	17.24
RH EXTRACTION	13.79	14.56	12 70	23	31.62	31 .62	31.0	31.39	31.07	29.89	13.52	12.79	30.84	30.3
RH SPRAY (HEAT BALANCE) RH Flow (Calc.)	18 195	.09 199	18 192	0.0 279	. 907 355	. 907 358	1.32 357	1.13	. 907 355	. 907 358	.09 188	. 18	.73	. 907
	130	133	132	219	300	358	351	363	300	358	188	184	364	359
AIR & GAS FLOWS - 10 KG/HR														
GAS ENT. A.H.	352	300	412	386	554	518	592	567	502	565	323	369	55 6	567
GAS LVG A.H. Air ent A.H.	392 369	343 320	451 427	445 414	631 590	587 546	663	618	561 520	645	360	408	635 592	646 604
AIR LVG. A.H.	328	320 278	389	355	590 512	546 478	623 552	375 524	520 461	603 523	351 301	385 346	513	524
A.H. LEAKAGE	40 18	42 6	38.74	59	77.88	67.90	71	49.89	58.88	80.0	36.51	39.42	79.11	79 38
6									551.25	-	-			
Unit ABSORPTION - 10 Kg-CaL/HR														
Econ.	8.32	7.03	9 65	8.8	12.20	10 99	12.8	12.19	11.16	12.7	7 66	8.85	12.87	12.7
FURN.	85 53	89.06	79 05	110	145	148	_143	142.5	143.6	138.9	83.6	79.53	÷ 138	137.5
DRUM - DESUP. Desup S.H. Out.	24 16 9	18 5 18.62	29.2 16 08	31.2 22	54 24.5	52 27.32	57.6 24.1	59.0 29.18	52.7 28 22	59.4 28.68	20.2 16.78	25.45 14.97	61.4 31.25	60.9 28.53
RH	19.8	18 85	20.6	24.8	33 67	35.56	35.9	36.29	33 94	26.66 36.16	18.9	19.05	35.73	36.04
TOTAL	154.6	152	154.6	207	270	274	273	279	279	275.8	147.1	147.8	275.7	141 5
PRESSURES STEAM & WATER - KG/CM ²			404			400.7			400.0			.01.5	150.0	140 8
ECON. IN Drum	134.1 132.8	134 3 133.0	134 132.6	140.5 139	142 2 140.5	136.7 134.9	136.8 135	149.6 147.8	139.9 138.1	141.0 139.3	131.3 130.0	131.5 130 2	150.6 148.9	146.5 144.8
SH - DESUP. IN	130.9	131 1	131.1	133.6	134.3	132.2	132.3	137.4	133.3	134.1	129.5	129.7	137.7	136.1
SH Out	129.8	129.8	130.0	130.8	130.7	130.7	130.7	131.2	130.5	131.0	129.1	129.4	131.1	131.0
RH IN	15.04	15 25	15 11	22.43	29.38	29.46	29.46	30.09	29.24	29.53	14.69	14.76	29.74	29.81
RH Out	14.27	14.41	14.34	21.09	27.98	28 05	28	28.68	27.84	28. 12	13.92	13.99	28.33	28.40
AIR & GAS - CM WG														
F.D. FAN OUT	3.56	3.048	4.064	5.08 1.016	10.67	7.112 1.016	15.24 5.588	10.16 3.048	7.62 1.905	13.335 6.35	3.048 1.27	3.302 .508	10.668 4.318	12.70 5.08
"B" A.H. AIR OUT "B" A H. GAS OUT	1.524 -12.192	1.016 -15.24	2.032 -16.256	-15.24	3.81 -26.416	-28.86	-27.686	-25 908	-24.384	-27.94	-10.668	-14.224	-27.432	27.94
"D" ELEV. LEFT REAR FUEL AIR COMP.	-3 81	-3 175	-3.175	-3.048	1,905	381	5.08	1.905	.635	5.08	-3.556	-3.302	2.54	4.445
"A" ELEV. LEFT REAR FUEL AIR COMP.	-2 54	-3.175	-3 175	-1.524	.635	508	3 81	.254	Ō	3.81	-3 048	-1.524	2.54	4.445
LEFT MILL DUCT AT WINDBOX	1.016	1.016	.508	.508	2.032	-3.81	3.81	1.778	.508	4.445	.508	254	22.86	3.81
MILL AIR DUCT AT "B" ELEV. MILL	762 -1 524	762 -1.778	-1.016 -1.524	-1.27 -2 032	508 -1.524	-1.905 -1.778	2.032 635	.635 -15.24	-1.016 -2.032	3.175 -1.016	508 -1.778	-1.524 -1 524	.508 -1,27	2.54 -1.016
Upper Furnace	-1 324	-1.778	-1.324	-2 032	-1.524	-1.776	033	-13.24	-2.032	-1.070	-1.770	-1 324	-1121	-1.0.0
TEMPERATURES - °C														
STEAM & WATER SH OUT	529	498	548	500	539	539	538	548	533	544	518	548	539	543
SH DESUP IN	426	393	470	409	458	452	475	468	456	484	409	446	481	486
SH DESUP. OUT	418	389	435	404	449.	440	447	444	431	440	405	438	436	440
RH Out	488	446	517	449	514	524	524	533	510	531 347	476 339	508 310	522 343	529 347
RH DESUP IN	295 294	267 267	311 310	286 286	342 . 339	343. 340	342 339	351 348	337 335	347 344	283 339	309	343	34 <i>1</i> 344
RH DESUP OUT Econ In	198	198	198	217	530	230	230	231	229	229	197	199	230	230
Econ Out	233	227	242	242	257	254	259	258	254	259	231	239	259	259

87

SHEET 5A

BASELINE STUDY TEST DATA

TEST No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
#5 HP HEATER IN	167	166	168	183	194	193	193	195	193	194	167	168	194	194
#5 HP HEATER OUT	199	198	199	217	231	230	530	535	231	231	199	199	232	231
#5 HP HEATER EXT IN	286	260	300	282	336	337	337	346	331	341	275	300	337	341
#5 HP HEATER DRAIN	195	195	196	214	226	225	225	227	226	226	195	195	227	226
SPRAY WATER	134	134	134	148	157	156	157	157	156	156	134	134	157	226 157
AIR & GAS														
A.H GAS IN	282	273	295	298	325	321	298	325	320	328	277	286	329	330
A.H. GAS OUT	145	150	142	150	154	153	150	153	156	153	153	152	153	149
AH AIR IN	29.4	30.6	24.4	43 3	41.0	33.3	43.3	39	37 8	41.0	33.3	30 O	36 7	35 6
A.H AIR OUT	263	261	269	269	280	282	269	281	283	276	262	268	282	278
FURNACE OUTLET (AVG.)	1096	1127	1045	1202	1226	1295	1206	1314	1274	1278	1122	1096	1323	1302
AIR HEATER LEAKAGE - %	11 41	14.19	9 41	15.33	14 07	13.08	12.03	8 87	11.72	14.16	11.29	10.69	14.22	14 00
A.H. GAS SIDE EFFICIENCY - \$	49 5	44 5	53 0	52.3	55 1	53.8	53.5	57.0	53.6	57.9	48.3	51.1	55 4	56.7
Unit Efficiency - \$	88 3	88.2	87.6	89.3	89.0	89 1	89.5	89.6	89.6	89.6	88.3	87 9	89.2	89.3
PRODUCTS OF COMBUSTION - GR/106CAL.														
DRY AIR	1852	1589	2173	1343	1665	1554	1784	1663	1514	1678	1782	2030	1615	1678
WET AIR	1877	1611	2200	1512	1944	1775	1807	1685	1534	1699	1805	2057	1636	1699
DRY PROD.	1911	1649	2232	1532	1190	1595	1843	1728	1577	1741	1845	2092	1678	1739
WET PROD.	2012	1744	5333	1575	1825	1687	1939	1822	1669	1838	1942	2192	1775	1836
AH OUTLET														
DRY AIR	2079	1834	2389	1667	1919	1751	2014	1822	1706	1933	2000	2061	1863	1931
WET AIR	2106	1858	2419	1766	1944	1775	2039	1845	1728	1958	2025	2291	1888	1957
Dry Prod.	2138	1894	2448	1787	1982	1811	2074	1886	1771	1998	2061	2324	1926	1926
WET PROD.	2241	1991	2552	1827	2081	1906	2171	1984	1865	2097	2160	2426	2027	2092
Excess AIR - \$														
A.H. 1N	35.5	17.5	58.9	12 6	22 7	11.8	30.8	21.5	13.0	26 0	32.7	51.2	20.7	24.3
A.H Out	52.1	35.6	74.8	31 4	41.4	27.6	47.6	33.2	27.5	45.3	48.8	68.4	39.3	43.1
FUEL ANALYSIS - \$														
CARBON	65.1	65.2	65 6	64 9	65.1	66	66.3	66.8	65 4	64.0	63 5	64.2	64.6	64.7
Hydrogen	4.4	4 4	4.4	4 1	4.3	4.4	4.4	4.3	4.3	4.3	4.2	4.2	4.3	4.4
NITROGEN	1.2	1.2	1.2	1.2	1 3	1.2	1.2	1.3	1.3	1.3	1.1	1.1	1.3	1 2
Oxygen	56	5.6	5.6	5 5	6.9	5.6	5.6	6.9	7.4	7.4	5.9	5.9	7.4	6 9
Sulfur	2.1	5 2	1.8	2 3	3.1	1.4	1.7	2.3	2.3	3.0	2.9	2.5	2.7	2 3
MOISTURE	8 8	8 7	76	98	8 8	70	7.4	9 1	8.8	9.9	9.5	9.6	10.7	8.3
Ash .	12.8	12 7	13.8	12.2	10.5	14.4	13.4	9.3	10.1	10.1	12.9	12.5	9.6	12.2
HHV - CAL/G	6455	6499	6499	6449	6460	6466	6560	6538	6555	6494	6382	6449	6494	6477

BIASED FIRING STUDY TEST DATA

TEST NO.		<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>	<u>21</u>	<u>22</u>	<u>23</u>	<u>24</u>
Date Time Unit Load	MM	1/19/74 09:10 66	1/18/74 18:24 96	12/3/73 11:07 100	12/4/73 01:30 103	12/5/73 23:50 99	12/6/73 02:30 102	1/18/74 20:30 94	1/19/74 15:45 64	1/19/74 13:30 64	1/19/74 11:30 66
FLOWS - 103KG/HR											
Feedwater SH Spray (Heat Balance) Main Steam Turbine Leakage RH Extraction RH Spray (Heat Balance) RH Flow (Calc.)		199 0 199 9.06 12.1 .091	296 1.77 297 13.4 20.9 .272 264	304 10.85 315 13.7 22.0 .408 280	310 11.15 321 13.9 22.2 .272 284	314 5.54 321 14.2 23.1 .091 282	307 7.08 314 13.7 22.2 .408 278	307 1.50 308 13.8 22.2 .045 272	203 2.18 208 9.5 13.3 0.0 185	209 1.77 211 9.6 13.6 0.0 188	194 7.62 202 9.1 11.9 .091 181
AIR & GAS FLOWS - 103KG/HR											
Gas Ent. AH Gas Lvg. AH Aır Ent. AH Aır Lvg. AH AH Leakage		341 377 356 350 35.5	430 505 475 398 76.8	439 502 467 405 62.8	455 499 465 421 43.1	428 479 446 396 50.6	451 511 477 418 59.8	435 507 476 405 72.8	360 400 376 337 39.6	361 403 380 338 42.5	356 404 382 334 42.8
UNIT ABSORPTION - 106KG-CAL/HR											
Economizer Furnace Drum - DESH DESH - SH Out. RH Total		8.88 76.4 27.2 11.5 17.5	10.05 110 36.6 21.0 26.2 204	10.01 115 39.8 22.4 28.1 216	10.045 116 43.1 22.9 29.4 222	9.4 120.5 35.4 23.9 26.9 216	9.8 116.5 39.2 24.0 28.1 218	9.55 105.8 34.8 19.4 25.2 205	8.45 80.0 23.3 12.1 17.6 141.5	8.65 80.8 24.2 12.7 17.8 144	9.13 73.9 28.2 14.5 19.4 145
PRESSURES											
STEAM & WATER - KG/CM2											
Economizer In. Drum SH - DESH In. SH Out. RH In. RH Out.		138.5 137.2 132.8 130.3 14.84 14.0	139.9 138.4 133.1 130.2 22.26 21.0	132.2 130.7 129.4 128.6 22.89 21.7	132.9 131.3 130 129.4 23.24 22.05	133.6 132 130.3 129.4 21.98 21.49	133.9 132.4 130.8 129.7 22.75 21.56	139.5 138 132.8 129.9 22.4 21.14	138.7 137.3 133.1 130.2 14.98 14.14	138.4 137 132.5 130.1 14.84 14	138.4 137 133.1 130.2 14.77 13.93
AIR & GAS - CM. WG											
FD Fan Out. "B" AH Air Out. "B" AH Gas Out. "D" Elev. Left Rear Fuel Air Com "A" Elev. Left Rear Fuel Air Com Left Mill Duct at Windbox Mill Air Duct at "B" Elev. Mill Upper Furnace	р. р.	2.03 508 -14.73 762 -1.27 762 -2.29 -2.03	7.87 2.03 -18.8 1.27 762 1.016 762 -1.78	7.37 2.03 -18.8 1.27 1.02 1.27 508	7.11 2.03 -19.81 -1.52 -1.02 1.016 -1.016	4.06 .762 -17.78 -1.52 -1.78 508 -1.27 -2.03	6.1 1.27 -18.8 -1.78 .254 .508 -2.03	7.87 2.29 -18.8 508 .76 1.27 254 -1.78	2.29 254 -14.22 -2.03 76 762 -2.29 -1.78	2.03 254 -14.22 -2.03 -2.03 -1.016 -1.52 -2.03	2.29 508 -14.73 -2.03 -2.03 -1 016 -2.29 -1.78
TEMPERATURES - °C											
STEAM & WATER											
SH Out. SH DESH In. SH DESH Out.		546 459 452	539 456 435	529 454 425	543 466 436	523 429 416	544 449 431	512 427 423	501 427 420	507 431 424	544 472 438

89 SHEET 6A

BIASED FIRING STUDY TEST DATA

TEST_NO.		<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>	21	22	<u>23</u>	24
TEMPERATURES - °C								_			
STEAM & WATER (Cont.)											
RH Out. RH DESH In. RH DESH Out. Economizer In. Economizer Out. #5 HP Heater In. #5 HP Heater Out. #5 HP Heater Out. #5 HP Heater Ext. In. #5 HP Heater Drain Spray Water		496 307 307 200 241 169 200 297 197 135	506 320 319 218 450 185 219 313 214 149	501 315 313 218 248 184 219 308 215	520 327 326 219 450 185 220 321 216 150	486 308 308 217 244 182 218 302 213 147	515 327 326 217 247 183 218 321 213 147	469 297 297 217 217 245 183 217 291 214 148	448 268 268 199 237 169 200 261 197 136	454 274 274 199 237 169 201 266 197	513 307 307 200 243 169 201 297 196 136
AIR & GAS											
AH Gas In. AH Gas Out. AH Aır In. AH Air Out. Furnace Outlet (Avg.)		298 154 28.3 273 1036	311 147 44.4 271 1197	307 145 38.4 271 1246	311 147 37.8 274 1253	301 140 23.3 268 1171	305 136 17.2 269 1195	312 143 44.0 265 1129	293 147 37.2 268 999	293 146 32.2 268 873	298 150 30.0 268 827
Air Heater Leakage AH Gas Side Efficiency Unit Efficiency	% % %	10.4 51.1 87.9	17.89 55.4 89.3	14.32 55.3 89.1	9.46 56.8 89.3	11.8 53.4 89.0	13.24 53.8 88.8	16.73 56.3 89.6	11.02 52.7 87.8	11.77 51.8 87.9	13.46 49.9 87.8
PRODUCTS OF COMBUSTION - GR/106	CAL.										
AH INLET											
Dry Air Wet Air Dry Prod. Wet Prod.		1962 2000 2010 2120	1720 1740 1780 1875	1650 1670 1715 1815	1670 1690 1732 1830	1610 1632 1670 1765	1685 1705 1745 1840	1745 1770 1810 1900	2060 2084 2130 2230	2036 2060 2100 2205	1990 2016 2060 2150
AH OUTLET											
Dry Air Net Air Dry Prod. Net Prod.		2180 2210 2240 2340	2050 2080 2115 2210	1910 1935 1970 2080	1841 1865 1905 2010	1816 1840 1880 1970	1925 1950 1990 2085	2060 2090 2125 2190	2300 2330 2370 2480	2295 2320 2355 2460	2280 2310 2345 2445
EXCESS AIR - %											
AH In. AH Out.		50.1 66.7	26.7 51.1	21.1 39.9	22.2 34.7	21.8 37.3	24.2 42.0	29.0 52.2	48.0 65.4	47.0 65,5	47.0 68.1
FUEL ANALYSIS - %											
Carbon Hydrogen Nitrogen Oxygen Sulfur Moisture Ash HHV - CAL/G		63.5 4.1 1.1 6.4 2.3 9.7 12.9 6510	64.8 4.1 1.2 5.5 2.2 10.4 11.8 6416	64.3 4.2 1.1 5.9 2.9 11.6 10.0 6360	64.7 4.2 1.1 5.9 2.8 11.4 9.9 6383	62.5 4.2 1.1 5.9 2.7 10.0 13.6 6399	64.8 4.2 1.1 5.9 2.5 9.4 12.1 6438	65.2 4.2 1.2 5.5 2.1 9.0 12.9 6455	63.1 4.1 1.1 6.4 2.4 11.9 11.0 6088	65.5 4.1 1.1 6.4 2.6 12.2 10.1 6332	65.4 4.1 1.1 6.4 2.2 9.2 11.6 6444

90 SHEET 6B

TEST DATA BASELINE STUDY AFTER MODIFICATION

TEST NO.	<u>1</u>	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	12	13	14
DATE	6/25/74	6/25/74	6/25/74	6/27/74	6/19/74	6/27/74	6/27/74	6/20/74	6/20/74	6/28/74	6/26/74	6/26/74	6/28/74	6/28/74
TIME	2 30	4.25	6:38	9.30	13:24	11-18	3.05	9.41	12:25	14:45	1:23	4:05	11:25	9-20
UNIT LOAD - MW	62	62	64	92	131	127	125	130	129	125	65	68	126	125
FLOWS - 10 ³ KG/HR														
FEEDWATER	219	212	216	315	450	441	412	435	446	421	244	200	423	421
SH SPRAY (HEAT BALANCE) Main Steam	1.05 219	.818 213	1.0 217	0 315	0 450	.546 441	10.64 423	4.95 440	.227 446	6.14 428	1.91 246	18.14	8.46	4.0
TURBINE LEAKAGE	10 1	9.82	10.0	14 18	20.09	19.82	19.0	19.68	19.95	19.18	12.27	218 10.0	432 19.27	425 19.0
RH EXTRACT	13.64	13.77	13.0	23.27	37.55	36.05	35.27	37.09	36.91	33.23	18.55	15.55	33.09	33,55
RH SPRAY (HEAT BALANCE) RH FLOW (CALC.)	818 196	091 189	091 194	.318 278	.182 393	.591 386	. 364 369	1.409 385	.591 390	1.227 376	2.364	1.227	.818	.818
RH FLOW (TEST)	187	198	189	279	393	385	309 371	393 394	389	376	218 194	193 189	380 378	373 375
AIR & GAS FLOWS - 103KG/HR								•	•				5.5	5.5
GAS ENT. AH	335	270	413	398	593	546	559	565	542	584	363	419	575	583
GAS LVG. AH	379	311	459	459	737	655	657	694	670	702	425	515	706	688
AIR ENT. AH	355	289	436	427	691	611	616	650	624	661	399	491	665	645
AIR LVG. AH AH Leakage	311 44.6	248 40.5	390 45.8	366 60.9	547 144.0	502 109.3	518 97.6	522 128.5	497 127.7	543 117.8	337 61.9	395 96.3	533 131.6	539 105.4
UNIT ABSORPTION - 106kg-CAL/HR	44.0	40.3	-3.0	00.3	144.0	103.3	37.0	120.5	127.7		01.5	30.3	131.0	103.4
UNIT ABSORPTION - TO-NG-CAL/HR														
ECONOMIZER	7.79	6.78	9.98	8.59	18.60	11.49	12.57	18.24	14.94	13.71	5.09	10.16	12.73	12.63
FURNACE Drum - DESH	87 8 17.16	86.18 12.37	84.22 25.86	122.19 26.69	160.95 51.66	162.91 47.43	150.89 50.85	155 53 51 84	158.18 51.23	153. 17 51 . 21	98.36 22.5	74.01 29.08	153.42 51.03	153.17 51.71
DESH - SH Out.	15.8	16.51	13.63	23.49	25.45	30.79	26.79	24.70	27.67	25.12	19.38	18.27	27.49	24.97
RH	19.20	17.26	19.78	26.13	36.19	35.38	34.90	36.31	35.00	33.24	23.13	22.38	33.97	33.89
TOTAL	147.8	139.1	153.5	207.1	292.9	288.0	276.0	286.6	287.0	276.4	168.5	153.9	278.6	276.4
PRESSURES														
STEAM & WATER - KG/CM2														
ECONOMIZER IN.	130.6	129.6	139.5	132.1	137	135.5	135.9	136.5	136.2	134.3	129.6	127.7	134.4	135
DRUM	128.9	129.5	132.6	132.9	134 9	135.5	136 1	135.8	135.5	133.7	135.5	129.6	135.5	135.4
SH - DESH IN. SH Out.	127 7 127	128.4 127.7	131.4 130.8	131.1 130.1	132.0 130.1	132.7 131.0	133.9 132.1	133 131.3	132.5 130.8	131.1 129.6	134.2 133.4	128.5 127.9	132.8 131.2	133.1 131.7
RH IN.	14.27	14.76	14.97	22.29	32.13	31.42	30.23	32.20	31.78	30.72	15.54	15.40	30.72	30.72
RH Out.	13.50	13.99	14.20	21.02	30.58	29.95	28.82	30.72	30.23	29.24	14.55	14.62	29.24	29.24
AIR & GAS - CM. WG														
FD FAN OUT.	6.10	2.79	7.37	4.83	13.21	5.33	13.46	11.68	8.89	12.70	3.05	6.86	9.40	12.7
"B" AH AIR OUT.	1.78	1.52	2.03	1.02	5.08	1.52	4.57	4.32	2.54	5.08	1.52	2.54	2.03	4.32
"B" AH GAS OUT. "D" ELEV LEFT REAR FUEL AIR COMP	-10.67 1 <i>.</i> 27	-11.6B 1 27	-16.26 1.27	-15.24 -1.27	-28.19 1.27	-24.64 -254	-25.4 1.27	-28.45 1.27	-24.13 .508	-26.16 1.27	-11.43 -1.27	-16.51 .254	-26.16 .762	-26.16 1.27
"A" ELEV. LEFT REAR FUEL AIR COMP.	1.91	.254	.38	1.52	2.54	.508	2.54	2.03	1.016	2.54	-3.05	1.27	1.016	2.54
LEFT MILL DUCT AT WINDBOX	508	. 254	.508	0	2.54	0	2.54	2.03	.762	3.05	.508	0	1.016	3.05
MILL AIR DUCT AT "B" ELEV. MILL Upper Furnace	.254 -1.27	254 -1.27	0 -1.27	762 -1.52	.762 508	762 -1.52	2.03 508	.762 -1.27	762 -1.27	2.03 762	0 -1.27	1.016 -1 52	0 -1.52	1.78 762
TEMPERATURES - °C														
STEAM & WATER									•					
SH Out.	482	461	530	502	516	523	515	510	523	516	508	524	518	522
SH DESH IN	390	369	441	397	433	423	444	438	433	442	405	479	441	444

TEST DATA BASELINE STUDY AFTER MODIFICATION

TF07 40	_	_	_	_	_	_	_	_	_					
TEST NO.	<u>1</u>	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>	14
TEMPERATURES - °C														
STEAM & WATER														
SH DESH Out RH Out.	387 436	368 401	437 487	399	433	422 495	424	430	432 495	431 486	400 466	404	425 485	436 494
RH DESH IN	255	232	292	455 283	495 332	330	493 321	493 329	333	329	278	514 299	324	331
RH DESH Out. Economizer in	250 195	232 194	291 196	282 214	328 229	328 231	321 230	322 228	331 238	325 232	265 205	292 210	322 235	328 233
ECONOMIZER OUT	229	224	239	240	265	254	257	265	268	261	224	257	261	259
#5 HP HEATER IN	164	163	165	180	190	193	193	189	194	196	163	164	195	194
#5 HP HEATER OUT #5 HP HEATER EXT IN	194 246	194 22 7	195 282	214 277	229 331	231 324	229 316	228 323	232 329	232 321	200 268	203 289	232 318	231 323
#5 HP HEATER DRAIN	193	193	193	211	221	226	225	226	227	228	194	201	229	228
SPRAY WATER	128	130	129	143	163	158	157	163	165	159	126	128	157	156
AIR & GAS														
AH GAS IN	269	262	287	290	320	314	320	322	320	320	273	294	320	322
AH GAS OUT AH AIR IN	136 31.7	142 29 4	132 32.8	144 42 2	143 36.1	149 44.4	145 53 3	144 34 4	151 42.2	148 53.3	138 40.5	135 41.1	153 47.2	147 51 1
AH AIR OUT	248	248	252	261	268	268	263	270	273	266	253	258	272	265
FURNACE OUTLET (AVG.)	1010	1010	988	1149	1238	1232	1182	1266	1271	1199	1043	1049	1238	1199
AIR HEATER LEAKAGE - \$	13.34	14.97	11 07	15 31	24.30	20.01	17.45	22.73	23.55	20.17	17 06	22 97	22 91	18 09
AH GAS SIDE EFFICIENCY - % UNIT EFFICIENCY - %	50 7 88 4	45 0 88 8	56 9 87 4	53 3 89.8	54.0 88.4	54 3 89 2	60.1 89 5	54.0 89.0	52 4 88.9	57.8 89 5	51.7 89.3	55.2 88 0	53.0 89.0	58.7 89 4
, , , , , , , , , , , , , , , , , , ,	00 4	00 0	0/ 4	09.8	00.4	69 2	69 3	03.0	00.9	69 5	69.3	88 0	65.0	65 4
PRODUCTS OF COMBUSTION - GR/10 ⁵ CAL.														
AH HCT SIDE														
DRY AIR	1834	1563	2191	1566	1630	1533	1659	1598	1519	1734	1763	5558	1680	1722
WET AIR Dry Products	1858 1897	1583 1625	2219 2250	1586 1625	1652 1691	1553 1593	1680 1716	1619 1659	1539 1580	1757 1794	1786 1822	2256 2288	1702 1741	1744 1783
WET PRODUCTS	5005	1725	2354	1724	1789	1691	1814	1755	1679	1890	1923	2395	1835	1885
AH COLD SIDE														
DRY AIR	2098	1818	2448	1826	2059	1867	1979	1992	1909	2111	2087	2771	2095	2059
WET AIR	2125	1842	2480	1850	2086	1892	1997	2018	1934	2138	2114	2807	2122	2085
DRY PRODUCTS WET PRODUCTS	2161 2269	1880 1983	2507 2615	1886 1988	2120 2223	1927 2030	2028 2131	2052 2154	1970 2075	2171 2271	2146 22 52	2831 2946	2156 225 5	2120 2226
EXCESS AIR - \$	LEUJ	1303	2013	1300	LLLU	2030	2131	2.04	20.5			2545	2233	
	20.5	10.0				10.4	25.4	17.8	12.1	26.6	30.9	63 1	22.0	25.9
AH IN. AH Out	33.5 52.7	16.0 34.9	64.7 84.1	15.5 34.7	21.0 52 8	12.4 36.8	49.1	46.8	40 9	54.1	54.9	102.9	52.1	50 5
FUEL ANALYSIS - %														
CARBON	60.7	60 0	61 3	64 2	63.5	64.0	62.9	63.3	63 6	68.4	64.3	64.7	64.9	63.3
Hydrogen	4.3	4.3	4 4	4.6	4.2	4.6	4.5 1.0	4.3 1.1	4 4 1.1	4.9 1.1	4.6 1.0	4.6 .9	4.4 1.1	4.5 1.0
Nitrogen Oxygen	.9 7.5	1.0 7.4	1.0 7 5	1.3 7.1	1.1 5.7	1.1 7.0	6.9	6 2	6.8	7.9	7.4	7.4	6.4	7.3
SULFUR	3.ž	4.2	3.2	3.0	2.4	3.1	3.0	1.9	2.8	2.9	3.0	3.0	15	3 1
MOISTURE	10.1	9.8	77	9.4	10.9	9.1	9.3	9.1	11.0	5.2	9.6	9.2	6.5	9.9
Ash	13.3	13.3	14.9	10.4	12.2	11.1	12.4	14.1	10.3	9.6	10 1	10 2	15.2	10.9
HHV - CAL/G	6011	6106	6250	6478	6350	6406	6478	6311	6367	6783	6517	6467	6350	6311

SHEET 78

TEST DATA OVERFIRE AIR LOCATION, RATE & VELOCITY VARIATION

TEST NO.	<u>1</u> 5	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>	20	21	22	23
Date Time Unit Load - MW	7/10/74 0:00 97	7/10/74 2:15 98	7/10/74 4:00 100	7/12/74 7:25 100	7/11/74 4:35 100	7/11/74 23:10 100	7/12/74 1:24 102	7/12/74 3:30 102	7/12/74 4:45 102
FLOWS - 103KG/HR									
Feedwater SH Spray (Heat Balance) Main Steam Turbine Leakage RH Extract RH Spray (Heat Balance) RH Flow (Calc.) RH Flow (Test)	336 .046 336 15.18 27.18 .682 295	340 .682 340 15.31 27.41 2.409 300 300	338 .409 338 15.22 27.55 3.273 299 303	343 .909 344 15.5 28.09 .682 301 300	325 13 338 15.23 26.14 1.14 298 295	337 6.95 344 15.5 25.18 .136 304 298	330 11.5 342 15.4 24.86 0 301 297	326 15.55 341 15.4 24.36 0 302 299	330 15.45 346 15.59 25.59 0 305 299
AIR & GAS FLOWS - 103KG/HR									
Gas Ent. AH Gas Lvg. AH Air Ent AH Air Lvg. AH AH Leakage	458 509 477 426 51.2	447 501 470 415 54.7	442 489 457 410 46.5	466 519 486 433 52.8	468 519 484 433 52.8	468 521 488 436 52.2	476 526 493 443 50.1	494 550 515 460 55.7	492 556 521 457 64.0
UNIT ABSORPTION - 10 ⁶ KG-CAL/HR									
Economizer Furnace Drum - DESH DESH - SH Out. RH Total	9.88 127.89 34.62 20.92 25.93 219.2	7.23 131.64 34.37 21.24 27.44 221.9	6.15 131.9 34.78 21.39 26.91 221.1	10.31 129.78 36.87 22.81 28.80 228.6	10.16 122.93 38.86 24.97 30.64 227.6	10.33 122.99 37.27 24.95 30.79 226.3	10.53 124.49 39.56 26.06 32.05 232.7	10.61 122.75 40.24 25.60 31.55 230.7	10.74 124.41 40.17 25.58 31.75 232.6
PRESSURES									
STEAM & WATER - KG/CM2									
Economizer In. Drum SH - DESH In. SH Out. RH In. RH Out.	133.5 132.6 130.7 129.6 23.76 22.50	133.3 133.3 131.3 130.2 23.83 22.57	133.1 132.7 130.7 129.6 24.04 22.78	133.3 133.6 131.5 130.4 24.32 23.06	133.1 133.6 131.7 130.7 23.97 22.71	133.1 133.4 131.4 130.3 24.25 22.99	133.2 133.1 131.3 130.1 24.46 23.20	133.1 133 131.2 130.1 24.46 23.20	133.1 133.2 131.4 130.3 24.32 23.06
AIR & GAS - CM. WG									
FD Fan Out. "B" AH Air Out. "B" AH Gas Out "D" Elev. Left Rear Fuel Air Comp. "A" Elev. Left Rear Fuel Air Comp. Left Mill Duct at Windbox Mill Air Duct at "B" Elev. Mill Upper Furnace	7.11 4.57 -18.80 1.016 -3.05 3.81 2.29 -1.52	6.35 2.03 -18.80 0 -3.05 1.52 .254 -1.52	6.86 1.52 -18.29 254 -2.54 1.27 .254 -1.52	6.60 1.78 -19.30 762 -3.30 .508 -1.27 -1.52	5.33 1.78 -19.81 762 -2.29 .762 -1.016 -1.52	8.13 3.05 -19.56 254 1.78 2.03 .254 -1.52	9.40 3.56 -19.56 -3.56 .254 2.79 1.52 -1.52	6.60 2.03 -19.81 -3.05 1.27 .762 -1.52	6.86 2.03 -19.81 762 3.56 2.03 -1.16 -1.52
TEMPERATURES - °C									
STEAM & WATER									
SH Out. SH DESH In.	509 418	502 416	507 418	518 424	514 440	518 429	523 440	516 445	512 443

93 SHEET 8A

TEST DATA OVERFIRE AIR LOCATION. RATE & VELOCITY VARIATION

WEAT NA	10	16	12	10	10	20	21	20	22
TEST NO.	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>	<u>21</u>	<u>22</u>	<u>23</u>
TEMPERATURES - °C									
STEAM & WATER									
SH DESH Out. RH Out.	420 458	414 455	418 457	422 481	410 492	414 492	414 510	409 501	408 494
RH DESH In. RH DESH Out.	298 295	295 287	302 292	305 303	304 302	304 304	311 311	305 306	301 301
Economizer In. Economizer Out.	220 247	220 240	220 237	220 244	219 244	220 249	220 249	220 250	220 250
#5 HP Heater In.	180	181	181	181 220	182 220	183 219	184 219	185 220	184 220
#5 HP Heater Out. #5 HP Heater Ext. In.	218 293	219 290	220 295	298	298	298	305	299	295
#5 HP Heater Drain Spray Water	215 143	213 140	213 140	217 146	215 145	216 148	217 148	216 149	217 149
AIR & GAS									
AH Gas In. AH Gas Out.	300 141	299 140	301 139	301 141	302 139	301 142	303 143	302 142	304 143
AH Áir In. AH Air Out.	47.2 260	36.7 262	35.0 262	38.4 261	31.7 263	43.9 261	44.4 263	37.2 259	39.5 263
Furnace Outlet (Avg.)	1121	1099	1105	1132	1188	1154	1221	1216	1199
Air Heater Leakage - % AH Gas Side Efficiency - %	11.19 59.1	12.24 56.3	10.53 57.2	11.32 57.0	10.96 56.5	11.15 58.1	10.53 58.3	11.25 56.6	13.01 56.3
Unit Efficiency - %	90.0	89.8	89.7	89.6	89.3	90.2	90.1	89.0	89.1
PRODUCTS OF COMBUSTION - GR/10 ⁶ CAL.									
AH HOT SIDE									
Dry Air Wet Air	1725 1748	1657 1679	1644 1665	1675 1697	1677 1699	1679 1700	1694 1716	1751 1774	1729 1751
Dry Products Wet Products	1787 1880	1717 1806	1704 1794	1733 1828	1739 1837	1737 1826	1752 1843	1810 1908	1787 1884
AH COLD SIDE									
Dry Air	1933	1876	1830	1879	1876	1880	1885	1963	1971
Wet Air Dry Products	1958 1994	1900 1936	1854 1891	1904 1938	1900 1938	1904 1938	1910 1943	1989 2022	1996 2029
Wet Products	2091	2028	1893	2034	2038	2030	2037	2123	2129
EXCESS AIR - %									
AH In. AH Out.	28.5 44.0	27.1 43.8	25.6 39.9	26.6 42.1	24.8 39.6	25.4 40.4	25.4 39.5	27.9 43.4	28.1 46.0
FUEL ANALYSIS - %									
Carbon Hydrogen	65.9 4.4	66.6 4.4	65.4 4.3	65.2 4.5	64.3 4.4	69.3 4.6	67.5 4.6	65.4 4.6	66.0 4.6
Nitrogen	1.1	1.1	1.1	1.4	1.1 7.1	.9 5.6	1.1 5.9	1.4 6.1	1.4 6.2
Oxygen Sulfur	6.7 2.3	6.8 2.1	6.7 2.4	6.1 3.0	3.0	2.1	2.1	2.5	2.6
Moisture Ash	7.4 12.2	6.7 12.3	7.3 12.8	8.0 11.8	9.6 10.5	5.8 11.7	5.4 13.4	7.8 12.2	7.9 11.3
HHV - CAL/G	6606	6844	6706	6711	6483	6994	6772	6511	6650

94 SHEET 8B

TEST DATA

LOAD VARIATION AT OPTIMUM CONDITIONS

	0	VERFIRE	AIR	TILT	VARI	ATION		LOAD	VARIATI	ION AT	OPTIMU	M CO	NDITIONS
TEST NO.	24	<u>25</u>	<u>26</u>	3	27	28	29	<u>30</u>	<u>31</u>	<u>32</u>	<u>33</u>	<u>34</u>	<u>36</u>
DATE Time Unit Load – MW	7/29/74 9·40 124	7/29/74 11·05 124	7/29/74 13:30 124		29/74 15·00 125	7/29/74 16:30 125	7/29/74 18·07 124	7/30/74 21:05 125	7/31/74 12·22 97	7/31/74 2:35 65	7/31/74 21·50 122	7/31/74 23:35 95	
FLOWS - 103KG/HR													
FEEDWATER SH SPRAY (HEAT BALANCE) MAIN STREAM TURBINE LEAKAGE RH EXTRACT RH SPRAY (HEAT BALANCE) RH FLOW (CALC.) RH FLOW (TEST)	398 9.05 407 18.23 31.07 .909 358 355	415 2 68 418 18.73 33.14 .364 367 363	397 21.09 412 18.5 30.73 .727 364 363		394 13.5 407 18.23 2.05 359	384 30.32 414 18.55 31.59 3.41 367 357	416 1.82 418 18.68 36.04 3.27 366 359	399 17.77 416 18 64 31.5 0 366 353	301 12.32 314 14.18 20.91 2.59 281 273	200 4.05 204 10 45 10.75 1.64 185	400 8.59 409 18.27 39.5 9.5 960 355	305 5.05 310 14.0 23.82 3.41 276 275	202 1 27 204 9.41 13.23 1.86 183 187
AIR & GAS FLOWS - 103KG/HR													
GAS ENT. AH GAS LVG. AH AIR ENT. AH AIR LVG. AH AH LEAKAGE	548 597 559 509 49.7	566 631 589 524 65.2	585 653 610 542 68.4		557 628 586 515 70.9	586 663 618 541 77.0	544 622 582 504 78.2	574 624 582 532 49.9	456 494 461 423 38 • 1	341 376 355 320 34.6	584 645 602 541 61.6	472 538 504 437 66.7	329 370 349 308 41 . 1
UNIT ABSORPTION - 106KG-CAL/HR													
ECCHOMIZER FURNACE DRUM - DESH DESH - SH OUT. RH TOTAL	12.93 145.13 55.72 27.64 35.51 276.9	12.22 152.59 52.09 25.20 34.27 276.4	12.98 142.53 55.44 29.69 37.52 278.2	14 5 2 3	12.02 14.47 55.59 28.20 37.62 277.9	9.78 142.08 58.14 33.24 41.23 284.5	10.33 154.17 53 42 24.39 36.09 278.4	8.62 150.04 57.86 32.10 41.83 290.4	9.35 1\$5.87 39.46 24.72 31.68 221.1	8.27 78.80 26.21 14.97 21.19 149.4	4.21 151.80 55.72 26.51 39.99 278.2	3.70 120.61 37.72 20.20 28.68 211.0	5.44 81.14 23.79 13.81 19.81 144.0
PRESSURES													
STEAM & WATER - KG/CM ²													
ECOMOMIZER IN. Drum SH - DESH IN. SK OUT. RH IN. RH OUT.	133.6 133.2 131.3 130.2 29.67 28 26	134.5 133.9 131.8 130.5 30.23 28.82	133.4 133.7 131.2 129.7 29.88 28.47	1 1 2	33.4 33.2 31.0 29.7 9.88	133.5 133 131.0 129.9 30.02 28.61	135.3 134.6 132.1 130.7 29.88 28.47	134.2 134.6 132.7 131.7 29.95 28.54	132.5 132.4 131.5 131.0 22.92 21.65	131.2 132.4 131.2 130.5 J5.04 14.27	134.7 134.6 132.2 130.8 29.24 27.84	132.7 132.7 131.3 130.4 22.64 21.37	131.7 132.2 131.2 130.5 14.97
AIR & GAS - CH. WG													
FD FAN OUT. "B" AH AIR OUT "B" AH GAS OUT "D" ELEV. LEFT REAR FUEL AIR COMP "A" ELEV. LEFT REAR FUEL AIR COMP. LEFT MILL DUCT AT WINDBOX MILL AIR OUCT AT "B" ELEV. MILL UPPER FURNACE	10.67 3.56 -26.42 0 -2.54 2.03 1.27 -1.52	10.67 3.05 -25.91 0 2.29 1.78 1.016 -1.52	10.92 4.32 -26.42 0 2.29 2.29 1.016	-2	1.43 3.81 6.42 0 2.03 2.03 2.03	10.92 4.32 -26.67 0 2.03 2.03 1.79 -1.52	11.68 4.06 -26.42 .254 3.30 4.06 3.05 -1.27	8.89 2.03 -26.92 .508 .762 1.016 .508 -1.52	4.83 .762 -19.05 1.52 254 254 2.03 -1.52	4.32 1.016 -14.22 1.52 .254 .254 .762 -1.016	10.92 4.32 -26.67 0 1.78 1.78 1.52	4.32 .762 -18.54 3.81 0 .254 1.27	3.56 .508 -13.46 3.81 .254 .254 1.27
TEMPERATURES - °C													
STEAM & WATER													
SH OUT SH DESH IR.	547 464	532 448	535 474		545 471	538 486	536 451	554 476	539 457	549 456	548 467	529 446	533 438

SHEET BC

	TEST DATA													
		0	VERFIRE	AIR	TILT	VAR	IATION		LOAD	VARIATI	ON AT	OPTIM	UM CO	NDITIONS
	TEST NO.	24	<u> 25</u>	<u>26</u>	j	<u>27</u>	28	29	<u>30</u>	_31	<u>32</u>	<u>33</u>	<u>34</u>	<u>35</u>
	TEMPERATURES - °C													
	STEAM & WATER													
	SH DESH OUT. RH OUT. RH DESH IN. RH DESH OUT. ECONOMIZER IN ECONOMIZER OUT	444 532 350 348 231 260	442 509 338 337 231 257	429 529 340 338 231 261		441 543 356 349 230 258	421 548 350 340 232 255	448 516 343 334 232 254	438 554 361 346 230 249	423 529 327 317 214 243	438 528 317 307 197 235	448 526 349 322 237 245	432 497 315 302 222 233	432 498 301 290 203 228
	#5 HP HEATER IN #5 HP HEATER OUT. #5 HP HEATER EXT IN #5 HP HEATER DRAIN SPRAY WATER	193 230 343 227 155	193 230 332 227 156	193 230 333 228 155		193 230 347 227 151	193 232 341 226 148	191 231 333 227 151	194 232 353 225 144	182 216 320 210 136	169 196 305 192 123	188 234 331 227 147	180 217 299 211 144	165 198 290 194 122
	AIR & GAS													
	AH GAS IN. AH GAS OUT. AH AIR IN. AH AIR OUT. FURNACE OUTLET (AVG.)	332 149 36.1 274 1238	320 147 37.8 272 1221	323 148 37.8 274 1293		323 150 36.7 275 1232	326 151 30.6 276 1310	321 143 30.0 269 1188	322 146 25.0 274 1288	302 140 22.8 265 1238	287 129 25.0 257 116	323 149 33.9 273 1232	302 144 33.3 267 1177	284 135 29.4 257 1054
	AIR HEATER LEAKAGE - \$ AH GAS SIDE EFFICIENCY - \$ UNIT EFFICIENCY - \$	9.07 57.4 89.6	11.54 57.4 89.3	11.70 57.2 88.9		12 75 55.8 89 3	13.15 54.6 88.6	14.37 55.9 89.4	8.70 56.2 89.0	8.36 54.9 89.1	10.14 56.5 89.2	10.56 56.4 89.0	14.14 53.4 88.2	12.49 54.0 89.0
8	PRODUCTS OF COMBUSTION - GR/10 ⁶ CAL. AH HOT SIDE													
	DRY AIR WET AIR DRY PRODUCTS WET PRODUCTS	1626 1647 1682 1774	1670 1692 1730 1827	1708 1730 1768 1867		1634 1656 1695 1789	1664 1686 1728 1825	1599 1620 1659 1748	1610 1631 1669 1760	1684 1705 1744 1837	1885 1909 1943 2037	1708 1730 1769 1867	1804 1827 1868 1972	1880 1905 1939 2036
	AH COLD SIDE													
	DRY AIR WET AIR DRY PRODUCTS WET PRODUCTS	1785 1808 1841 1934	1878 1902 1938 2038	1924 1949 1984 2086		1860 1884 1920 2017	1901 1926 1965 2065	1847 1871 1907 1999	1761 1784 1820 1913	1835 1859 1895 1991	2089 2116 2147 2243	1903 1927 1964 2064	2079 2106 2143 2251	2131 2159 2191 2290
	EXCESS AIR - \$													
	AH IN. AH Out.	25.9 38 2	23.7 39 1	25.1 40 9		22 3 39.1	20.2 37.3	23.7 42.9	21 6 33.0	25.2 36.4	46.9 62.8	27.4 41.9	27.4 46.9	45 9 65.3
	FUEL ANALYSIS - \$													
ЗЭНСЕТ	CARBON HYDROGEN NI TROGEN OXYGEN SULFUR MO ISTURE ASH	64 4 4.5 1 0 6.2 3.1 7.5 13.3	63 5 4 4 1.2 6.1 3.4 8.7 12 7	63.1 4 4 1 0 6.1 3.2 9.0		63.8 4 3 1.1 5.9 3.3 8.4 13.2	62.9 4.2 1.2 5.7 3.5 8.7 13 8	64.5 4.2 1 0 5.8 3.3 8.1	65.2 4.4 1.0 6.3 2.3 7.1 13.7	65.8 4.4 1 1 6.4 1.9 7.5 12.9	64 3 4.4 1.0 6.9 3.0 7.1 13 3	64.3 4 4 9 6.9 3.2 9.6 10.7	64.0 4.4 1.1 6.9 2.9 9.7	65 0 4.4 1.0 6.9 2.9 9.6 10.2
8	HHV - CAL/G	6811	6428	6317		6500	6189	6750	6644	6589	6794	6517	6133	6833

BASELINE STUDY BOARD DATA

TEST No.	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>	14
DATE Time Load - Nw	11- 30-73 01:55 66	11-30-73 00:00 65	11-30-73 02 45 67	1-18-74 16:00 93	11-14-73 15: 10 124	11-28-73 13:21 123	11-28-73 10:37 123	11-15-73 11·10 126	11-19-73 13:04 122	11-19-73 10:00 124	12-5-73 01:40 66	12-4-73 23·30 74	11-16-73 14:20 125	11-16-73 9:50 125
FLOWS - 10 ³ LBS/HR BFP 2A BFP 2B BFP 2C REMEAT STEAM CONDENSATE SUPERMEAT SPRAY REMEAT SPRAY FEEDWATER PRIMARY STEAM FLOW AIR FLOW - RELATIVE	0 260 260 630 300 0 370 450	0 280 260 632 305 0 0 400 460	0 284 278 640 300 12.5 0 350 450 580	0 350 400 775 470 3 0 0 660 680 620	0 475 480 865 600 6.0 0 880 900	0 475 485 865 600 4.0 0 800 900 750	0 480 480 860 600 21.5 0 730 900	0 460 480 880 600 17.8 0 780 905 823	0 480 470 870 599 17.5 0 780 885 750	0 480 480 600 31 0 780 900	0 460 0 635 300 2.2 0 370 447 450	0 460 0 635 300 2.3 0 330 445 550	0 460 480 880 600 35 0 780 901 850	0 468 490 870 600 36 0 760 901 895
FRESSURES STEAM & WATER - PSIG 1ST STAGE EXTRACTION 8TH 12TH 15TH 19TH (-IN. Hg + PSIG) 21ST (IN. Hg) FEEDWATER REGULATOR INLET FEEDWATER DRUM TURBINE THROTTLE REMEAT INLET REMEAT BOML EXHAUST (IN. Hg) MAIN STEAM REMEAT OIL UPPER BURNERS LIGHT OIL LOWER BURNERS	680 212 78 23 -9 -20 1950 1890 1825 200 194 -29 0 1850 200 0	700 218 80 24 -9 -20 1960 1900 1825 205 195 -29.0 1850 209 0	680 214 79 24 -9 -20 1950 1900 1900 1955 200 1955 299.0 1850 200 0	1000 318 123 39 0 -15 2 1990 1910 1900 1830 308 286 -28.4 1850 297 0	1320 418 166 54 6.0 -13.3 2020 1950 1940 1825 410 380 -28.5 1850 385 0	1310 415 165 54 6.0 -13.0 2010 1950 1920 1820 410 377 -27.8 1850 390 0	1310 415 165 54 6.0 -13.0 2005 1950 1940 408 375 -28.0 1840 388 0	1340 422 170 56 6.4 -13.0 2020 1950 1940 1825 418 386 -28.4 1850 398	1310 410 165 54 6.0 -13.0 2005 1950 1940 19820 405 375 -28.0 1850 365 0	1310 415 165 54 6.0 -13.0 2005 1950 1940 1820 409 376 -28.1 1850 388 0	665 210 77 21.5 -8.5 -20.0 1930 1890 1900 1825 197 198 -28.4 1850 200 26	775 211 77 23 -8.5 -20.0 1900 1900 1900 1900 -28.4 1850 200 266 26	1330 420 169 56 6.6 -13.0 2020 1990 1940 415 382 -28.1 1850 397	1330 420 169 56 6.4 -13.0 2015 1950 1940 415 382 -28.1 1850 395 0
PRESSURES AIR & GAS - IN. WO 2A FD FAN DISCHARGE 2B FD FAN DISCHARGE 2A PREHEATER OUTLET AIR 2B PREHEATER OUTLET AIR FURNACE PRESSURE SUPERHEATER CAVITY ECON INLET ECONOMIZER OUTLET R.H. ECONOMIZER OUTLET L.H. NO. 2A PREHEATER DIFF. GAS NO. 2A I D. FAN SUCTION NO. 2B I.D. FAN SUCTION PULVERIZER 2A INLET AIR EXHAUSTER 2B INLET AIR EXHAUSTER 2C DISCHARGE PULVERIZER 2C INLET AIR EXHAUSTER 2D DISCHARGE	1.8 1.2 7 .8 5 1.0 -2.7 -3.7 -3.5 1.9 1.6 -6.4 -6.2 -1.5 13.2 -1.2 -1.2 -1.2 -1.2	1.5 1.0 .7 .8 5 -2.2 -3.2 -3.0 1.6 -5.6 -1.5 -1.5 13.4 -1.7 12.9 -2.0 12.5 -1.2	1.9 1.5 .5 .5 -1.0 -3.4 -4.4 2.4 2.4 -8.1 -8.2 -1.5 13.3 -1.7 12.8 -2.0 12.5	2.1 2.0 .8 .85 -1.0 -2.4 -4.2 2.6 -8.0 -1.3 12.0 -1.3 12.5 12.5 -1.0	4.5 4.0 1.5 1.5 -0.5 -1.4 -5.5 -6.80 4.0 3.5 -13.8 -13.8 -1.3 -1.4 13.0 -1.8 12.0	3.0 2.8 .5 .48 -1.5 -4.8 -6.2 3.5 -12.0 -12.2 -1.4 12.8 -1.7 12.2 -1.5 12.0	6.8 6.0 2.5 2.5 -0.5 -1.4 -5.4 4.2 -7.2 3.9 -15.0 -14.8 -1.1 13.5 -1.5 -1.0 12.0	4.2 4.0 1.5 1.5 45 -1.4 -5.6 -6.8 -7.0 3.9 3.5 -13.6 -13.6 -13.5 -1.2 11.5 -1.8 12.1	4.1 4.0 0.9 1.0 5 -1.5 -6.7 3.6 -12.5 -13.0 -1.4 12.5 -1.8 12.5 -1.8	6.0 5.2 2.5 2.5 2.5 -0.6 -1.4 -6.1 -7.4 -7.0 4.3 3.7 -15.0 -14.5 -1.2 13.5 -1.5 12.5 12.5 -2.0	1.5 1.1 .7 .8 -5.2 -1.0 -2.6 -3.5 1.9 -5.8 -1.2 12.3 -1.2 12.8 -2.4 12.0	1.5 1.2 .4 .5 -1.1 -3.2 -4.1 -4.0 2.3 1.8 -7.6 -7.2 -1.2 -1.2 -1.2 -1.2 -1.2	4.9 4.2 1.5 1.5 50 -1.7 -6.0 -7.5 -7.7 4.1 3.6 14.5 14.5 -1.3 13.5 -1.8 12.2 -2.4	5.8 5.2 2.2 2.2 2.35 -1.5 -5.9 -7.6 4.2 3.8 15.0 14.8 -1.2 13.7 -1.4 13.7 -1.4 13.2 -1.7 12.2 -2.0

97

BASELINE STUDY BOARD DATA

Test No.	1	<u>2</u>	<u>3</u>	4_	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	12	<u>13</u>	14
TEMPERATURES AIR & GAS - °F							_	_	-	_	_	_	_	
BOILER OUTLET GAS L.H.	527	619	641	632	660	661	678	662	656	660		604		
BOILER OUTLET GAS R.H	638	631	652	643	671	670	681	672	662	669	621	631	667	669
ECONOMIZER OUT GAS L H	546	532	569	575	620	619	640	655 615	613	678	632	645	678	679
SCONOMIZER OUT GAS R.H	547	529	570	570	625	618	632	622		632	540	558	632	635
PREHEATER 2A OUTLET GAS	300	328	292	320	312	311	298	311	611 320	625	531	555	628	630
PREHEATER 2B OUTLET GAS	299	294	289	291	311	310	300	311	318	302 305	313	310	315	308
PREHEATER 24 INLET AIR	80	75	71	108	102	92	120	100	94	102	291 92	289 87	315	308
PREHEATER 28 INLET AIR	90	90	79	102	108	90	128	99	98	102	90		100	100
PREHEATER 2A OUTLET AIR	502	500	511	517	538	540	525	539	540	529	502	81 511	100 540	100
PREHEATER 2B OUTLET AIR	505	495	511	505	530	540	528	535	537	529 529	499	508	540 539	532
PULVERIZER 2A INLET AIR	460	460	463	470	479	480	460	472	480	460	480	480	480	532
PULVERIZER 2A INTERNAL	140	140	143	155	150	142	160	145	142	159	158	141	142	465 159
PULVERIZER 28 INLET AIR	462	460	462	475	482	480	465	480	483	462	465	495	495	472
PULVERIZER 28 INTERNAL	160	159	159	140	150	160	160	160	150	160	150	150	155	159
PULVERIZER 2C INLET AIR	455	441	458	460	470	483	470	479	480	475	440	445	485	422
Pulverizer 2C Internal	165	159	158	140	150	140	160	160	141	160	160	142	150	160
PULVERIZER 2D INLET AIR	80	70	80	110	480	490	480	485	490	485	90	90	495	490
PULVERIZER 20 INTERNAL	80	70	80	110	159	135	158	155	140	150	90	90	138	159
TEMPER & TURNES														.55
TEMPERATURES														
STEAM & WATER - "F				_	_									
FEEDWATER COMMENTER	412	412	412	447	470	465	465	470	469	470	412	414	470	470
ECONOMIZER WATER OUTLET - L H	452	445	470	468	492	491	500	497	490	500	450	461	500	500
ECONOMIZER WATER OUTLET - R H RH DESUPH IN L H	455	446	470	468	495	492	500	499	490	500	449	460	500	501
RH DESUPH OUT L H	565	502	580	535	632	639	637	660	628	649	532	578	640	650
RH DESUPH. IN R.H.	565	502	580	532	632	639	637	660	628	646	532	578	640	650
PH DESUPH OUT R H.	565 565	502	580	535	631	639	637	659	628	646	532	578	640	648
SUPERHEAT OUT L H	565 980	502 917	580	535	631	639	637	659	628	646	532	578	640	648
SUPERHEAT OUT.R.H.	979	920	1020	950	992	999	989	1021	981	997	960	1013	995	1002
THROTTLE STEAM L H.	975	920	1003	938	991	999	999	1000	979	1008	951	1006	999	1004
THROTTLE STEAM R.H	975	920	1008 1007	940 938	986 986	992	989	1005	980	998	951	1003	990	999
REHEAT OUTLEY L.H	902	821				990	989	1005	980	998	951	1005	990	999
REHEAT OUTLEY R.H.	879	809	951 930	862	932 946	970	972	980	948	982	888	939	959	978
SUPERHEATER CUTLET	967	911	998	848 899	975	930 972	922	979	898	941	832	905	965	926
REHEATER OUTLET	900	829	948	831	940	972 959	975 964	1003	965	989	935	990	980	989
	300	023	340	931	940	202	904	985	938	976	874	932	960	975
UPPER VALVE CHEST	958	900	978	899	917	970	969	990	962	988	940	984	971	000
LOWER VALVE CHEST	89	85	90	101	101	95	99	100	100	98	99	100	100	980
H P. EXHAUST	551	501	578	531	632	639	638	659	628	649	535	580	640	98 649
REHEAT BOWL	901	835	938	845	941	949	950	980	931	970	879	927	960	972
INTERMEDIATE EXHAUST	429	376	458	370	452	461	461	483	445	475	409	450	470	480
CONDENSATE TEMP.	95	95	95	107	110	115	115	110	112	110	96	96	115	110
												50		1.0
S.H DESUPH. IN L H	800	740	878	771	846	849	891	870	865	911	775	834	900	900
SH DESUPH OUT LH	782	730	811	762	838	833	852	821	822	836	765	B19	822	832
SH DESUPH IN R.H	795	738	879	770	856	840	877	878	831	889	765	829	895	904
S.H. DESUPH OUT R.H	789	734	826	762	839	815	B12	839	791	801	755	820	808	820
MISCELLANEOUS														
D FAN 2A RPM	420	400	400	400	660	600	CDO	cco						
I D FAN 28 RPM	420	4 0 0 4 0 0	480 480	480	660	600	680	660	620	683	420	480	680	670
F D FAN 2A RPM	420 360	400 340	480 365	480 440	660 510	600 440	680	660	640	680	420	480	680	680
F D. FAN 2B RPM	340	340	380	450	547	440 450	660 650	505 540	450 460	600	330	370	540	590
FAN DAMPER POSITION - (0-12)	340	340	300	450	347	450	630	240	460	600	320	380	540	582
ID FAN 2A	8 0	4 8	8.0	5.6	12.0	7.4	11.4	12.0	12.0	12.0	e ^	c -		
ID FAN 2B	8 4	5 3	8 4	5.6	12.0	7.4	11.2	12.0	12.0	12.0	5.6 5.7	65	12.0	12.0
FD FAN 2A	3.2	25	3.8	40	11.6	5.6	10.9	11.6	5.8			6 3	12.0	12.0
FD FAN 2B	3.2	26	3.8	4.0	11.6	6.0	10.9	11.6	5.8 6 0	11.6	3.2	3 4	11.6	11.6
			3 0	7.0		0.0	10.3	11.0	80	11.6	3.2	3.4	11.6	11.6
DRUM LEVEL IN. + NORM H ₀ 0 LEVEL	-1 0	-1 0	-1 0	-2.0	-0.8	-1 0	-1.0	0	-O.B	-0.5	-2.5	-1.0	-0.25	-0 25
2		-						_		-5.5			-0.23	-0 23

B6 133HS

BASELINE STUDY BOARD DATA

TEST NO.	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9	<u>10</u>	11	12	<u>13</u>	14
A MILL AMPS B MILL AMPS C MILL AMPS D MILL AMPS	40 38 32 0	40 39 33 0	38 40 34 0	36 37 38 0	44 44 38 36	44 42 42 43	40 40 42 43	43 45 40 41	38 40 42 41	40 41 45 42	40 38 30 0	38 34 33 0	40 42 39 42	39 44 40 42
EXHAUSTER DAMPER POSITION - \$ OPEN O - 12 Scale Mill 2A Mill 2B Mill 2C Mill 2D	11 4 11.0 11.5 0	11 2 11.6 11.5 0	11.3 11.4 11.5 0	5 7 8.1 5.6 0	7.9 7.8 5.5 4.2	6.0 6.0 4.4 5 9	8.0 7.3 4.5 6.2	5.3 5.3 5.6 5.5	6.0 5.8 8.2 5.8	9.0 8.0 8.4 8.0	7 0 7.1 6.0 0	7.0 7.0 6.0	8.0 8.1 5.8 5.8	8 0 8.0 5.8 5.8
PULVERIZER FEEDER CAP - \$ OPEN O - 12 SCALE MILL 2A MILL 2B MILL 2C MILL 2C	4.3 3.8 3.0 0	4.4 3.7 3.0 0	4.4 3.7 3.0 0	5.7 5.7 5.6 0	5.5 5.4 5.4 4.5	4.4 3.9 4.1 5.0	4.6 4.0 4.4 5.1	5.3 5.1 5.5 5.6	5.1 4.5 5.8 6.0	5.2 4.6 5.8 6.0	4.7 4.3 2 6 0	4.5 3.7 3.4 0	5.2 5.2 5.8 6.0	5.3 5.2 5.6 6.0
SPRAY VALVE POSITIONS - \$ OPEN SH SPRAY L SH SPRAY R RH SPRAY L RH SPRAY R	16 16 0 0	0 0 0	39 39 0 0	0 0	29 0 0 0	30 0 0	48 32 0 0	40 40 0 0	44 36 0 0	68 52 0 0	0 0 0	16 16 0	66 54 0 0	72 56 0 0
BURNER TILT POSITION - DEGREES LR RR LF RF	+2 +6 +6 +6	+2 +13 +13 +13	+2 +6 +6 +6	0 +8 +10 +10	+3.5 +2.0 +5.0 +3.0	+4 +4 +4 +4	+4 +4 +4 +4	+10 +5 +10 +7	-22 -22 -22 -22	-22 -22 -22 -22	-9 -9 -9 -10	+2 +4 +4 +4	-22 -22 -22 -22	-22 -22 -22 -22
FEEDWATER VALVE - \$ OPEN (O-12 SCALE) AIR HTR. 2A RECIRC. DAMPER - \$ OPEN AIR HTR. 2B RECIRC. DAMPER - \$ OPEN	8.1 37 50	8.1 38 51	8.1 39 50	8.0 39 52	12.0 31 38	11.4 44 43	11.4 40 42	12.0 34 36	12 32 36	12 32 27	12 35 36	12 35 36	9.8 34 36	9.8 34 36

BIASED FIRING STUDY

BOARD DATA

Test No.	<u>15</u>	<u>16</u>	<u>17</u>	18	<u>19</u>	<u>20</u>	<u>21</u>	22	23	24
Date Time Load - MW	1-19-74 09:10 66	1-18-74 18:24 96	12-3-73 11:07 100	12-4-73 01:30 103	12-5-73 23:50 99	12-6-73 02:30 102	1-18-74 20:30 94	1-19-74 15:45 64	1-19-74 13 30 64	1-19-74 11:30 166
Flows - 10 ³ LBS/HR BFP 2A BFP 2B BFP 2C Reheat Steam Condensate Superheat Spray Reheat Spray Feedwater Primary Steam Flow Air Flow - Relative	0 220 230 635 330 3.1 0 390 450 580	0 324 382 770 460 10.0 0 660 675 750	0 360 384 770 470 17.5 0 600 690 700	0 360 385 790 470 17.5 0 600 700	0 360 403 770 470 4.9 0 690 660	0 360 403 770 460 8.3 0 690 705	350 400 760 460 3.0 0 660 675 750	0 240 210 650 340 2.9 0 440 450 580	0 250 200 640 341 2.5 0 440 450 590	0 240 210 640 325 10.0 0 400 442 575
PRESSURES Steam & Water - PSIG Ist Stage Extraction 8th 12th 16th 19th (-In. Hg. + PSIG) 21st (In. Hg) Feedwater Regulator Inlet Feedwater Drum Turbine Throttle Reheat Inlet Reheat Bowl Exhaust (In. Hg) Main Steam Reheat Outlet Light Oil Upper Burners Light Oil Lower Burners	1680 210 75 21 -11.5 -21.0 2045 1890 1890 1845 199 188 -29.4 1850 200 26	1000 315 122 39 0.0 -15.2 2000 1920 1915 1830 308 286 -28.5 1850 297 0	1020 322 125 40 0.0 -16.0 1960 1910 1900 1810 317 294 -28.1 1840 305 0	1040 328 40 0.0 -16.0 1980 1920 1920 1825 321 300 -28.2 1850 310 0	1020 320 125 38.5 0.0 -16.0 1975 1910 1910 1825 316 291 -28.4 1850 301 26	1030 320 125 39.5 0.0 -16.2 2000 1925 1925 1830 317 293 -28.4 1850 302 26	1000 315 120 37.0 0.0 -15.2 1980 1910 1830 308 286 -28.5 1850 297 0	680 213 76 20.0 -11.0 -20.5 2050 1890 1940 200 193 -29.0 1850 200 26	670 212 77 20.5 -10.5 -20.2 2035 1895 1900 1845 201 190 -29 0 1850 200 26 26	670 210 76 20.5 -11.0 -21.0 2025 1890 1900 1835 199 190 -29.2 1850 200 26
PRESSURES Air & Gas - In Wg ZA FD Fan Discharge 2B FD Fan Discharge 2A Preheater Outlet Air 2B Preheater Outlet Air Furnace Pressure Superheater Cavity Econ. Inlet Economizer Outlet R.H. Economizer Outlet L.H. No. 2A Preheater Diff. Gas No. 2B Preheater Diff. Gas No. 2A I.D. Fan Suction No. 2B I.D Fan Suction	1.2 0.8 - 5 - 2 45 -1.0 -4.0 -4.0 -2.2 2.0 -7.2	3.0 3.0 1.0 1.0 5 -1.3 -4.2 -5.4 -5.3 2.4 -10.5	3.2 2.9 1.0 1.0 47 -1.3 -5.3 -5.3 2.9 2.6 -10.0	3 1 2.8 1.0 1.0 5 -1.4 -4.3 -5.5 -5.4 3.0 2.7 -10.2	2.0 1.8 4 4 48 -1.3 -4.0 -5.0 -5.0 2.8 2.3 -9.1	2.5 2.5 .6 .7 -1.3 -5.3 -5.3 2.9 2.4 -9.8	3.2 3.0 1.2 1.2 - 4.0 -5.2 -5.2 2.4 -10.1 -9.8	1.2 0.8 - 5 - 2 45 -1.0 -3.0 -4.0 -3.8 2 3 1 9 -7.1	1.2 0.8 5 -2 5 -1.0 -3.0 -4.0 -3.9 2.3 1.9 -7.1	1.2 0.8 5 2 4 -1.0 -3.1 -4.0 -4.0 2.3 1 9 -7.1 -7.1

100 SHEET 10A

BIASED FIRING STUDY

BOARD DATA

		Du	MIL	DAIR	•					
Test No.	<u>15</u>	<u>16</u>	<u>17</u>	18	<u>19</u>	<u>20</u>	<u>21</u>	22	<u>23</u>	<u>24</u>
PRESSURES (Cont'd) Air & Gas - In. Wg										
Pulverizer 2A Inlet Air	-1.5	-1.2	-1.0	8	-1.4	7	7	7	-1.5	-1.4
Exhauster 2A Discharge	11.5	12.0	12.0	13.0	13.0	, 0	, 0	0	10.5	11.5
Pulverizer 2B Inlet Air Exhauster 2B Discharge	-1.4 11.2	-1.0 13.2	-1.5 13.0	-1.4 12.8	75 0	-1.4 12.9	-1.3 13.2	-2.0 12.0	7 0	-1.5 11.5
Pulverizer 26 Unscharge	-2.0	-1.0	-1.2	9	-1.5	-1.2	-1.0	-1.5	-1.5	-0.8
Exhauster 2C Discharge	10.9	12.0	12.5	Ö	12.9	12.1	12.3	12.0	11.5	Ō
Pulverizer 2D Inlet Äir	-1.2	-1.2	-1.2	-1.6	-2.5	-1.8	-2.0	-2.3	-2.0	-2.8
Exhauster 2D Discharge	0	0	0	12.0	12.8	11.9	10.5	10.0	10.0	8.8
TEMPERATURES										
Air & Gas - °F Boiler Outlet Gas L.H.	640	649	642	649	639	645	646	637	637	646
Boiler Outlet Gas R.H.	651	660	659	661	650	658	650	640	642	651
Economizer Out Gas L.H.	569	598	591	595	579	589	590	561	561	571
Economizer Out Gas R.H.	573	591	590	594	578	585	580	561	561	572
Preheater 2A Outlet Gas	301	312	297	300	290	288	310	298	298	302
Preheater 2B Outlet Gas Preheater 2A Inlet Air	301 81	285 109	297 99	300 99	290 71	278 62	278 108	302 85	300 86	302 82
Preheater 28 Inlet Air	79	103	98	93	69	62	102	85	85	81
Preheater 2A Outlet Air	511	520	517	520	512	519	515	502	505	515
Preheater 2B Outlet Air	519	503	520	522	518	515	495	510	510	519
Pulverizer 2A Inlet Air	465	478	480	484	480	480	110	110	460	478
Pulverizer 2A Internal	145	160	138	142	137	80	110	110	145	140
Pulverizer 2B Inlet Air Pulverizer 2B Internal	465 140	480 160	480 145	483 144	100 100	482 162	478 155	460 150	110 110	465 140
Pulverizer 26 Internal Pulverizer 2C Inlet Air	140 445	462	480	100	475	479	460	460	480	95
Pulverizer 2C Internal	175	162	122	100	130	145	160	160	155	95
Pulverizer 2D Inlet Air	89	95	105	490	479	480	460	470	470	460
Pulverizer 2D Internal	89	95	105	152	125	143	142	180	140	165
TEMPERATURES										
Steam & Water - °F Feedwater	388	445	445	449	442	445	425	412	413	413
Economizer Water Outlet - L.H.	462	480	445	480	471	479	472	457	458	468
Economizer Water Outlet - R.H.	466	480	480	481	473	479	472	456	451	468
RH Desuph. In L.H.	574	596	585	609	577	611	551	505	515	575
RH Desuph. Out L.H.	574	596	585	609	577	611	551	505	515	575
RH Desuph. In R.H.	574	596	585	609	577	611	551	505	515	575
RH Desuph. Out R.H. Superheat Out L.H.	574 1000	596 986	585 978	609 1006	577 967	611 996	551 941	505 928	515 939	575 1000
Superheat Out R.H.	1008	998	970	992	969	1009	937	921	930	998
Throttle Steam L.H.	998	985	970	995	965	1000	938	927	930	998
Throttle Steam R.H.	998	985	970	995	962	1000	938	920	930	998
Reheat Outlet L.H.	886	901	920	955	900	955	849	819	829	922
Reheat Outlet R.H.	941	961	885	969	861	904	867	828	841	946
Superheater Outlet Reheater Outlet	990 913	979 930	955 920	980 950	951 895	990 950	981 866	910 879	923 840	987 942
							_			
Upper Valve Chest	975	965	952	971 101	939 94	1019 90	921 101	900 101	908 100	976 100
Lower Valve Chest H.P. Exhaust	100 568	101 595	100 589	609	578	632	555	500	509	568
Reheat Bowl	918	937	918	937	885	975	870	830	840	932
Intermediate Exhaust	440	451	435	455	418	470	401	378	385	458
Condensate Temp.	95	105	107	106	104	103	106	97	97	95

101 SHEET 10B

BIASED FIRING STUDY

BOARD DATA

		DU	MRV	וואש	1					
Test No	<u>15</u>	<u>16</u>	<u>17</u>	18	<u>19</u>	20	21	55	<u>23</u>	<u>24</u>
S H Desuph in L H. S H Desuph Out L.H S H Desuph in R.H	845 828 864	811 800 855	848 797 840	870 816 858	809 796 799	850 830 331	800 789 974	805 790 795	805 790 800	876 809 872
S II Desuph Out R H	851	820	792	809	770	788	786	790	791	821
MISCELLANEOUS 1 D Fan 2A RPM 1 D Fan 2B RPM	420 470	540 540	550 560	560 560	520 520	540 540	520 530	430 490 370	420 470 370	420 470 360
F D Fan 2A RPM F D Fan 2B RPM	360 340	530 535	430 440	430 440	380 380	410 420	530 535	340	350	340
Fan Damper Position - (0-12) ID Fan 2A	5.4 5.8	6 2 6.0	7.7 7.8	7 6 7.8	7 8 7.8	79 7.9	6.0 5.8	5.2 5.2	5.2 5.8	5.4 5.8
ID Fan 2B FD Fan 2A	3.7	5.0	5.8	6.8 6.8	4.3 4.1	4.5 4.4	4.8 4.6	3.8 3.5	3 9 3.7	3 7 3 7
FD Fan 2B	3.8	4.8	68	-1.0	-2 0	-1.0	-0.6	-0.5	-0.6	-08
Drum Level In + Norm. H ₂ O Level	-0 5	-0.5	-2.5		-2 U 42		-0.0		32	36
A Mill AMPS B Hill AMPS	35 36	36 35	46 39	46 42	0	0 42	36 38	0 31	0	37
C Mill AMPS D Mill AMPS	26 0	38 0	46 0	0 43	42 44	42 44	38 39	35 36	35 37	0 26
Exhauster Damper Position - 3 Open										
120 Full Scale Mill 2A	52	56	56 78	80 82	82 0	0 79	0 78	0	58 0	50 52 0
m11 2B m11 2C	54 32	80 57	80	0 63	80 83	56 54	53 49	60 50	41 42	0 28
M111 20	0	0	0	63	0.3	54	49	49	42	20
Pulverizer Feeder Cap 120' Full Scale	50		67	64	EA	0	•	•	38	£0
1111 2A M111 2B	52 52	56 56	57 47	64 58	54 0	0 50 54	0 54 53	0 35	0 50	50 50 0
Mill 2C Mill 2D	20 0	55 0	56 0	0 64	52 54	55 55	50	49 50	52	20
Spray Valve Positions - % Open SH Spray L	0	40	47	47	37	40	0	0	0	34
SH Spray R	0	40 0	41	41 0	17 0	20 0	0	0	0	34 35 0 0
RH Spray L RH Spray R	0	0	0	Ŏ	Ö	ŏ	Ö	0 0	Ö	Ö
Burner Tilt Positions - Degrees	-10	0	-18	-9	•	•	0	•	0	-18
RR	-13	+1	-18	-10	-9 -9	-2 -2 - 2	+8	0	Ó	-19
L F R F	-11 -10	0 -1	-18 -18	-10 -10	-9 -10	-2 -2	+10 +10	0 0	0	-17 -16
Feedwater Valve - * Open (0-12 Scale)	7.8	12 0	12 0	12 0 32	12.0	8.4 20	12.0 37	7.8 37	7 9 38	8.0 39
Air Htr 2A Recirc. Damper - ' Open Air Htr 2B Recirc. Damper - ' Open	39 32	39 41	32 34	32 31	44 42	20 20	40	37 32	38 32	32

102 SHEET 10C

BOARD DATA BASELINE STUDY AFTER MODIFICATION

TEST NO	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u> 7</u>	<u>8</u>	<u>9</u>	<u>10</u>	11	12	<u>13</u>	<u>14</u>
DATE	6/25/74	6/25/74	6/25/74	6/27/74	6/19/74	6/27/74	6/27/74	6/20/74	6/20/74	6/28/74	6/26/74	6/26/74	6/28/74	6/28/74
TIME	2.30	4-25	6.38	9:30	13:24	11 18	3:05	9.41	12.25	14 - 45	1.23	4.05	11:25	9:20
LOAD - MW	62	62	64	92	131	127	125	130	129	125	65	68	126	125
FLOWS - 10 ³ LBS/HR														
BFP 2A	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BFP 2B	600 to 520	600 to 520	600 to 520	335	574	550	525	568	564	530	ŏ	ŏ	530	530
BFP 2C	0	0	0	275	524	480	410	520	520	425	460	490	425	425
REHEAT STEAM	642	650	650	705	900+	900+	900+	900+	900+	900+	680	680	900+	900+
CONDENSATE	320	400	380	610	770	740	700	741	742	720	400	400	720	720
SUPERHEAT SPRAY REHEAT SPRAY	29.0 0.0	29.0 0.0	29.0 0.0	30.0	30.0	30.0	34.0	32.5	30.0	33.0	29.0	34.0	33.0	30.0
FEEDWATER	440	440	440	640	930	0 910	0 860	900	920	0 880	0 440	0 400	0 880	0 890
PRIMARY STEAM FLOW	440	450	440	665	965	945	910	950	960	920	440	460	925	930
AIR FLOW - RELATIVE	460	390	622	600	980	820	930	960	870	900	480	660	820	930
PRESSURES														
STEAM & WATER - PSIG														
1ST STAGE EXTRACTION	650	660	660	990	1440	1420	1350	1440	1440	1370	700	700	1380	1380
Втн	210	210	210	311	452	442	427	451	448	430	550	220	436	431
12TH	75	76	75	120	183	176	171	183	180	174	79	80	175	175
16тн 19тн (-In. Hg + PSIG)	20 -12	20 -12	20 -12	36 -3	59 6.9	57 5.9	55 5.0	59 6.9	59 6.9	_56	55	55	_56	56 5.0
21st (In. Hg)	-20 0	-20.0	-20 0	-16. 1	-11.0	-12.0	-12.0	-11 0	-11.0	5.0 -12.1	-11 -19.5	-11 -20.0	5.2 -12.1	-12.2
FEEDWATER REGULATOR INLET	1950	1920	1950	1990	2020	2060	2050	2050	2050	2040	1950	1950	2050	2050
FEEDWATER	1870	1850	1900	1940	1960	1975	1970	1960	1950	1960	1900	1900	1970	1970
Drum	1870	1860	1890	1910	1950	1950	1940	1950	1950	1940	1880	1880	1940	1940
TURBINE THROTTLE	1825	1850	1835	1840	1825	1825	1840	1825	1825	1825	1825	1825	1830	1835
REHEAT INLET	200	200	197	307	448	438	421	448	441	424	210	215	428	428
REHEAT BOWL Exhaust (In. Hg)	197 -27.6	192 -28.2	187 -28. 2	284 -28.1	412 -27	402 -27.8	388 -27.8	412 -27	409 -27	390 -28.0	197 -27.9	198 -28.1	392 -28.0	392 -27.2
Main Steam	1840	1825	1850	1860	1860	1865	1875	1865	1865	1850	1840	1850	1855	-27.2 1855
REHEAT OUTLET	195	500	197	295	425	415	402	425	420	404	205	210	402	406
LIGHT OIL UPPER BURNERS	24.0	24 0	24.0	0	23.7	0	0	0	0	0	23.7	23.7	0	0
LIGHT OIL LOWER BURNERS	25.2	25.2	25 2	0	24 8	0	0	0	0	0	24 9	24.9	0	0
PRESSURES														
AIR & GAS - IN. WG														
24 FD FAN DISCHARGE	2.0 1.5	1 5 1 0	2.7	2.0	5.6	3.5	6.0	5.0 4.9	4.0	5.5 5.0	1.9	3.1	4.2 4.0	5.5 5.0
28 FD FAN DISCHARGE 2A Preheater Outlet Air	1.0	.8	2.2	1.6 .5	5.2 2.2	3.5 1.0	5.5 2.2	2.0	3.8 1.1	2.0	1.2	2.7 1.2	1.2	2.0
28 PREHEATER OUTLET AIR	1 0	.8	1.2	.6	2.2	1.0	2.2	2.0	i.i	2.0	.9	1.2	1.2	5.0
FURNACE PRESSURE	45	45	45	45	1	45	04	27	45	08	- 475	475	44	05
SUPERHEATER CAVITY	- 8	75	-1.0	-1.0	-1.0	-1.5	-1.1	-1.25	-1.4	-1.2	-1.0	-1.0	-1.5	-1.2
ECON. INLET	-2.5	-2.0	-3 4	-3.4	-5.6	-5.5	-5.7	-5.5	-5.4	-5 7	-2.5	-3.75	-5.7	-5.7
ECONOMIZER OUTLET R.H.	-3.4	-3.0	-4.5	-4.4	-7.0	-6.8	-7.2	-7.2	-6.7	-7.1	-3.5	-4.8	-7.4	-7.3
ECONOMIZER OUTLET L.H.	-3.3 2.0	-2 8 1 6	-4.6 2.5	-4.4 2.5	-7.1 4.2	-7.0 3.7	-7.4 4.1	-7.4 4.0	-6.9 3.8	-7.4 4.1	-3.4 1.95	-4.8 2.7	-7.5 4.0	-7.4 4.1
No. 2A Preheater Diff. Gas No. 2B Preheater Diff. Gas	1.2	1 1	2.0	1.8	3.4	3.1	3.3	3.5	3.0	3.4	1.4	2.7	3.2	3.4
No 24 I.D. FAN SUCTION	6 2	5.1	8.5	8 2	14.5	13.2	14.7	14.5	13.5	14.6	6.2	9.1	14.5	14.8
No 28 I.D. FAN SUCTION	5.2	4 5	8.5	8.0	14 0	13.0	14.0	14.0	13.4	14.1	5.9	9.0	14.1	14.2
PULVERIZER 24 INLET AIR	-1.2	-1.2	-1.2	-1.4	-1.0	-1.4	-1.0	-1.0	-1.1	-1.2	-1.3	-1.3	-1.5	-1.2
EXHAUSTER 24 DISCHARGE	10 7	11.0	10.8	12.0	12 0	12.0	12.7	12.0	12.2	12.5	11.6	11.2	13.2	13.4
PULVERIZER 28 INLET AIR	-1.2	-1.2	-1.0	-1.4	25	-1.2	-1.0	75	-1.0	-1.2	-1.2	-1.2	-1.4	-1.2
EXHUASTER 28 DISCHARGE	10 2 -3 5	9.5 -3 4	10.7	10 7	14.5 -1.25	11.2 -3.0	11 5 -1.8	14.2 -1 75	14.0 -2.0	10.5 -2 8	10.0 -3.6	9.9 -3.25	10.7 -3.2	11.5 -2.8
Pulverizer 2C Inlet Air Exhauster 2C Discharge	-3 5 10 5	-3 4 10 5	-3.4 10.5	-3 0 11.5	12.5	12.0	12 0	12.0	12.0	-2 8 11.5	10.2	-3.25 10.4	11.5	12.0
PULVERIZER 2D INLET AIR	-1.2	-1.2	-1.2	-1 2	-1.75	-1 9	-1.5	-1.9	-2.0	-1 75	-1.2	-1.2	-2.0	-1 6
EXHAUSTER 20 DISCHARGE	0	0	0	ō	11.5	12 0	12.3	11.5	11.0	12.0	ō		12 0	12.3

BOARD DATA

BASELINE STUDY AFTER MODIFICATION

TEST NO.	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9	<u>10</u>	<u>11</u>	12	<u>13</u>	<u>14</u>
TEMPERATURES														
AIR & GAS - "F Boiler Outlet GAS L H.	614	607	631	628	660	647	652	662	658	652	619	640	651	652
BOILER OUTLET GAS R.H.	625	618	642	638	669	657	662	669	661	662	628	650	662	663
ECONOMIZER OUT GAS L.H	520	504	548	552	612	594	609	614	606	608	527	561	604	609
ECONOMIZER OUT GAS R H.	515	504	552	558	615	600	611	617	610	612	527	569	610	612
PREHEATER 2A OUTLET GAS	285	290	272	292	590	295	300	290	299	305	282	272	311	300
PREHEATER 28 OUTLET GAS	279	289	279	282	290	305	298	292	299	302	290	285	306	298
PREHEATER 2A INLET AIR	89	82	89	98	100	105	120	99	101	120	98	92	110	113
PREHEATER 28 INLET AIR	89	88	90	98	101	109	122	99	101	122	101	101	108	115
PREHEATER 2A OUTLET AIR	475	471	479	496	509	508	499	516	520	504	480	488	518	501
PREHEATER 28 OUTLET AIR	477	425	485	491	510	512	500	518	520	509	485	496	517	506
PULVERIZER 2A INLET AIR	418	420	420	430	460	430	420	455	460	410	420	410	440	430
PULVERIZER 24 INTERNAL	145	142	160	150	140	140	155	145	140	160	145	155	160	155
PULVERIZER 28 INLET AIR	435	423	435	440	480	450	440	465	470	440	425	425	455	440
PULVERIZER 28 INTERNAL	150	160	155	140	145	140	145	160	140	160	145	155 420	150 440	155
PULVERIZER 2C INLET AIR PULVERIZER 2C INTERNAL	410 16Ò	420 160	420 165	425 139	475 180	442 135	450 160	470 200	475 240	435 160	410 170	180	440 150	435 155
PULVERIZER 2D INTERNAL	80	80	165 80	80	475	455	455	465	475	455	80	80	460	460
PULVERIZER 2D INTERNAL	80	80	80	80	175	155	175	175	175	180	80	80	175	175
TOUR ED THICKNE	•			•	***	.55			5	, 30	•	•••		
TEMPERATURES														
STEAM & WATER - "F														
FEEDWATER	408	408	408	440	472	470	470	472	472	457	411	411	460	460
ECONOMIZER WATER OUTLET - L H	440	430	460	460	492	486	490	494	490	489	447	471	489	490
ECONOMIZER WATER OUTLET - R H	439	429	459	46O	492	485	490	492	490	489	441	470	489	490
RH DESUPH. IN L H	495	461	562	547	638	629	610	630	630	621	520	562	621	630
RH DESUPH. OUT L H	495	461	562	547	638	629	610	630	630	621	520	562	621	630
RH DESUPH, IN R H	495	461	562	547	638	629 629	610	630	630	621 621	520 520	562 562	621 621	630 630
RH DESUPH. OUT R.H.	495 907	461 872	562 992	547 935	638 982	979	610 962	630 972	630 970	968	935	980	972	982
SUPERHEAT OUT L H. SUPERHEAT OUT, R H	907 915	872 872	998	935	980	979	961	971	970	968	941	985	968	982
THROTTLE STEAM L H	916	870	998	941	978	977	960	970	970	965	941	982	968	980
THROTTLE STEAM R H	918	862	994	941	980	975	961	970	969	972	941	985	970	982
REHEAT OUTLET L H	821	780	912	858	932	926	920	941	930	932	858	940	938	942
REHEAT OUTLET R.H.	811	760	910	850	925	907	900	928	917	908	850	930	911	919
SUPERHEATER OUTLET	917	875	997	940	982	976	964	978	982	975	945	987	975	985
REHEATER OUTLET	815	755	900	850	924	917	912	925	916	922	855	935	924	930
UPPER VALVE CHEST	860	820	929	870	909	908	897	906	901	896	885	929	891	902
LOWER VALVE CHEST	95	95	90	97	105	99	101	102	108	101	99	98	100	100
H P. Exhaust	470	439	532	820	600 890	882	880	595 897	595 886	875	491 832	530 912	875	879
REHEAT BOWL	801	750 312	881 411		419	002		420	412	6/3	375	431		
INTERMEDIATE EXHAUST Condensate Temp.	350 110	107	107	107	127	119	119	127	127	115	107	107	120	119
CONDENSATE TEMP.	110	107	107	101	167	113	113							.,,
S H DESUPH. IN L.H	749	701	842	770	835	818	850	850	821	851	771	908	845	B42
S H. DESUPH. OUT L H.	738	696	827	760	820	804	808	802	805	811	759	785	808	B19
S.H DESUPH. IN. R H.	749	709	842	765	821	810	842	83 9	815	850	762	899	845	847
S H. DESUPH. OUT R H	740	701	829	757	810	801	800	800	800	820	752	782	811	826
MISCELLANEOUS	***				CDE	CEO	COE	COE	660	690	420	530	680	690
I D FAN 2A RPM	420	380	500	500	685 675	650 650	685 680	685 675	660 660	560	420 420	520 520	660	665
I D FAN 28 RPM	420 250	380 320	500 450	500 430	630	530	680	600	520	580	350	460	580	660
F D. FAN 2A RPM F D. FAN 2B RPM	350 340	320 280	450 440	430	625	530	680	600	540	585	340	460	585	645
FAN DAMPER POSITION - (0-12)	340	200	440	+30	JEJ	330	300	500	3-0	500	5.15		300	
ID Fan 2A	6 1	5 8	8 0	72	12	98	12 0	12	12	12.0	7.2	8.2	12	12
ID FAN 2B	6 1	5 8	8 0	7 1	12	10 0	12 0	12	12	12.0	70	8.0	12	12
FD FAN 2A	5 9	4 4	6 2	4 3	12	B 4	12 0	12	12	12 0	6 2	8 9	12	12
FD FAN 2B	6 0	4 4	6 0	4 4	12	86	12 0	12	12	12 0	6 3	8.9	12	12
			_	_		_	_							
DRUM LEVEL IN. THORM HOO LEVEL	-2 5	-4 O	-4 0	-4.0	-3 0	-4	-4	-3 0	-3 0	-2.2	-4.0	-4.0	-4.0	-4.2

2

BOARD DATA
BASELINE STUDY AFTER MODIFICATION

TEST NO.	1	<u> 2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>	14
24 MILL AMPS	0 35 35 35	36	34	36 36 38	40	37	36 36 36 38	42	42 39	38	35	32 33	36 36 38 36	36 35 36 36
28 Mill AMPS	35	35 32	37	36	39	36 37	36	40 40	39	34 37 36	34	33	36	35
2C MILL AMPS	32	32	31	38	40	37	36	40	41	37	26	30	38	36
2D MILL AMPS	0	0	0	0	36	38	38	34	35	36	0	0	36	36
EXHAUSTER DAMPER POSITION - \$ OPEN 0 - 12 Scale														
MILL 2A	4.2	4.3	4 0	5 4	5 2	5.4	5-4	5.4	5.3	5.4	4.7	4.4	6 8	6.8
MILL 28	5.5	5 5	5 5	5.6	7.75	5 6	5 6	8 1	8.0	5 6	4.8	4.5	5.9	6.8 5.8
MILL 2C	4.2	4 2	4 2	5.4	5 2	5.4	5 4	5.5	5.4	5 4	3.2	3.8	5.7	5.6 5.8
MILL 2D		4 2	Ò	Ö	5 2 5.2	5 4	5.4	5 6	5.4	5.5	0	ō	5.8	5.8
PULVERIZER FEEDER CAP - % OPEN 0 12 Scale														
MILL 2A	4.2	4.3	4 0	5 4	5 2	5.4	5.4	5.4	5 3	5.5	4 8	4.4	5.7	5.6
MILL 2B	4.2	4.3	4.0	5.4	7.75	5.4	5.4	8 1	8.0	5.5	4.8	4.4	5.7	5.6 5.6
MILL 2C	3 0	3 2	2 9	5 B	5.2	5.8	6.0	5 5	5.4	6.0	2.6	3.7	6.2 5.8	6.1 5.8
MILL 2D	0	Ö	0	0	5.2	5.6	5.6	5.6	5.4	5.6	0	0	5.8	5.8
SPRAY VALVE POSITIONS - % OPEN											_			
SH SPRAY L	0	0	0	0	0	o	44	40	18	37	0	65	40	30
SH SPRAY R	0	0	0	0	0	0	40 0	40 40 0	18 18 0	39 O	0	64 O	40 38 0	30 30 0 0
RH SPRAY L	0	Ō	ō	0	0	0	o	Ü	0	ō	0	0	ö	ŏ
RH SPRAY R	0	0	0	0	0	0	0	0	0	0	U	U	U	J
BURNER TILT POSITION - DEGREES														
LR	0	10	-13	+4	-8	-2	-22	-22	-9	-3	-10	-10	-3	-3
RR	0	9	-13	+4	-6 -5	-2 +2	-26 -22	-25 -21	-11	-3 0	-12	-10	-3 -3 0	-3 -3 0
LF	0	12	-10	+7	- 5	+2	-22		-9		-9	-8	0	0
RF	0	10	-12	+6	-7	0	-24	-23	-10	-1	-10	-9	-1	-1
FEEDWATER VALVE - \$ OPEN (0-12 SCALE)	8.8	8.8	8.7	11.5	12+	11.4	11.4	12+	12+	12+	12+	8.5	12+ 46	12+ 46 43
AIR HTR. 24 RECIRC. DAMPER - \$ OPEN	32	32	38	52	26	48	48	26	26	46	41	41	46	46
AIR HTR 28 RECIRC. DAMPER - % OPEN	32 32	32	39	52	25	49	44	26	26	42	41	41	43	43

BOARD DATA
OVERFIRE AIR LOCATION, RATE & VELOCITY VARIATION

	UVERFIRE	AIK LUCA	IIUN, KAII	C OF ACT	UGITT VA	KIAIIUN			
TEST NO.	<u>15</u>	<u>16</u>	<u>17</u>	<u>18A</u>	<u>19</u>	20	<u>21</u>	<u>22</u>	<u>23</u>
Date Time Load - MW	7/10/74 0 00 97	7/10/74 2·15 98	7/10/74 4:00 100	7/12/74 7:25 100	7/11/74 4 35 100	7/11/74 23.10 100	7/12/74 1·24 102	7/12/74 3:30 102	7/12/74 4:45 102
FLOWS - 103LBS/HR									
BFP 2A BFP 2B BFP 2C Reheat Steam Condensate Superheat Spray Reheat Spray Feedwater Primary Steam Flow Air Flow - Relative	0 415 360 810 525 30.5 0 690 725	0 415 360 810 530 30.5 0 690 715 660	0 420 360 820 535 30.0 0 690 720 660	0 425 365 835 535 29.8 0 700 725 675	0 410 355 805 525 36.0 0 650 715 680	0 420 360 820 540 31.9 0 685 725 720	0 420 360 830 535 33.0 0 670 725 720	0 420 365 830 540 34.0 0 670 725 680	0 425 365 830 540 34.0 0 670 725 700
PRESSURES									
STEAM & WATER - PSIG									
lst Stage Extraction 8th 12th 12th 16th 19th (-In Hg. +PSIG) 21st (In. Hg) Feedwater Regulator Inlet Feedwater Drum Turbine Throttle Reheat Inlet Reheat Bowl Exhaust (In. Hg) Main Steam Reheat Outlet Light Oil Upper Burners Light Oil Lower Burners	1050 334 131 40 0 -15.2 2000 1950 1950 329 304 -27 3 1870 315 0 0	1060 338 130 40 0 -15.2 2010 1950 1930 1850 330 305 -27.6 1870 315 0	1050 340 133 40 0 -15.1 2010 1950 1935 1850 330 -27.6 1870 320 0	1080 340 135 41 0 -15 2 2000 1950 1930 1845 332 339 -27 3 1865 321 23 25	1060 340 132 41 0 -15.6 2000 1940 1920 1835 330 -27.4 1850 319 23 25	1070 340 135 41 0 -15 2 2000 1940 1915 1835 330 -27.4 1850 320 23 25	1080 342 136 42 0 -15.2 2000 1940 1920 1835 335 335 3310 -27 3 1850 322 23 25	1080 348 136 42 0 -15.2 2010 1950 1950 1840 340 340 -27.3 1855 325	1080 347 136 42 0 -15.2 2000 1940 1925 1835 339 339 27.3 1860 325 23 25
PRESSURES									
AIR & GAS - IN. WG									
2A FD Fan Discharge 2B FD Fan Discharge 2A Preheater Outlet Air 2B Preheater Outlet Air Furnace Pressure Superheater Cavity Economizer Inlet Economizer Outlet RH Economizer Outlet LH No 2A Preheater Diff. Gas No. 2B Preheater Diff. Gas No 2A ID Fan Suction No 2B ID Fan Suction Pulverizer 2A Inlet Air Exhaust 2A Discharge Pulverizer 2B Inlet Air Exhauster 2B Discharge Pulverizer 2C Inlet Air Exhauster 2C Discharge Pulverizer 2C Inlet Air Exhauster 2C Discharge Pulverizer 2C Inlet Air Exhauster 2D Discharge	4 2 4.0 2.0 2.0 2.0 - 48 -1.2 -4.0 -5.3 -5 3 2 9 2.4 10 0 7 1 0 - 3.2 11 0 -1.8	3 1 2.7 1.0 1.0 48 -1.2 -4.0 -5.2 2.9 2.3 10.0 -7 10.0 -1.2 10.0 -3.3 11.0 -2.0	3 1 2.9 1.0 1.1 48 -1.2 -5.2 -5.2 2.35 10.0 -7.7 9 -1.2 10.0 -3.3 11.0 -2.0	3.0 2.5 .8 45 -1.2 -5.5 -5.5 3.0 2.4 10.5 -1.7 -1.0 11.5 -2.5 -1.0	3.0 2.7 1.0 1.0 48 -1 2 -5.5 -5.5 2.9 2.4 10 5 7 8 -1 0 10.2 -2.1 11.5 -1 1	3.9 3.3 1.5 1.5 1.5 - 45 -1 2 -4 1 -5.5 -5 5 3 0 2.4 10.37 1 095 11.5 -1 75 11.3	4 0 3 8 1 8 1 8 - 45 -1 2 -4.3 -5 6 -5 6 -5 6 3.0 2 4 10.7 -1 1 11 5 -2.4 11.5 -1 2	3.0 2.7 1 8 1 8 - 45 -4 4 -5.8 3 1 2 6 11.0 -1 4 12 0 9 11.5 -1 2 0	3.4 3.0 1 0 1 1 - 45 -1.3 -4 4 -5.7 -5 7 3 1 2 6 11 0 -1 25 12 0 -2 4 12 0 -1 2
TEMPERATURES									
AIR & GAS - °F Boiler Outlet Gas LH	639	638	639	640	641	640	645	645	645
Boiler Outlet Gas RH Economizer Outlet Gas LH Economizer Outlet Gas LH Preheater 2A Outlet Gas Preheater 2B Outlet Gas Preheater 2B Inlet Air Preheater 2B Outlet Air Preheater 2B Outlet Air Preheater 2B Outlet Air Pulverizer 2A Inlet Air Pulverizer 2A Inlet Air Pulverizer 2B Inlet Air Pulverizer 2B Inlet Air Pulverizer 2B Inlet Air Pulverizer 2B Inlet Air Pulverizer 2C Inlet Air Pulverizer 2C Inlet Air Pulverizer 2C Inlet Air Pulverizer 2D Inlet Air Pulverizer 2D Inlet Air	646 571 572 292 292 122 132 489 492 100 100 435 140 440 145	98 495 501 90 98 495 501 90 440 140 440 140	649 572 578 292 291 95 498 501 80 80 440 140 420 140 445	549 572 579 289 290 95 99 492 500 80 440 150 440 160 450	550 577 582 291 287 91 500 502 80 440 130 440 155 460	548 573 579 289 297 105 110 489 500 100 440 160 440 455 160	552 578 583 290 299 103 111 492 505 410 160 440 170 100	552 580 589 290 298 92 98 498 509 420 140 445 140 150 100	552 579 586 290 298 98 101 495 507 425 140 445 155 80 80

BOARD DATA OVERFIRE AIR LOCATION, RATE & VELOCITY VARIATION

	OVERFIRE A	IR LUCAII	IUM, KAIL	. & VELU	JUIT YAK	IAIIUN			
TEST NO	<u>15</u>	<u>16</u>	<u>17</u>	<u>18A</u>	<u>19</u>	20	<u>21</u>	22	<u>23</u>
<u>TEMPERATURES</u>									
STEAM & WATER - OF									
Feedwater Economizer Water Outlet - LH Economizer Water Outlet - RH RH DESH Inlet LH RH DESH Outlet LH RH DESH Outlet LH RH DESH Outlet RH Superheat Outlet RH Superheat Outlet RH Throttle Steam LH Throttle Steam RH Reheat Outlet LH Superheat Outlet LH Reheat Outlet RH Superheater Outlet Reheater Outlet	445 469 572 572 572 572 960 959 955 950 890 860 965 855	445 469 469 567 567 567 945 942 940 938 872 848 950 845	445 470 470 574 574 574 952 952 950 948 889 957 854	450 471 470 585 585 585 585 961 966 968 897 889 975 889	447 472 472 582 582 582 959 962 959 968 917 907 970	450 472 472 585 585 585 585 961 969 969 975 905 891 975	450 478 477 600 600 600 981 988 985 990 940 929 990	450 478 478 589 589 589 968 968 965 969 930 912 975	450 477 477 582 582 582 960 962 961 960 921 970 905
Upper Valve Chest Lower Valve Chest HP Exhaust Reheat Bowl Intermediate Exhaust Condensate Temperature	899 101 549 840 384 119	890 101 539 837 375 119	898 100 545 845 380 119	920 101 560 872 410 120	911 102 554 892 419 120	905 105 555 870 405 121	929 105 575 909 430 121	920 102 565 903 422 120	910 101 557 890 417 120
SH DESH Inlet LH SH DESH Outlet LH SH DESH Inlet RH SH DESH Outlet RH	809 795 799 788	800 789 790 780	808 792 796 785	812 800 805 795	840 781 832 779	815 784 813 787	841 788 839 789	843 772 842 778	841 774 837 775
MISCELLANEOUS									
ID Fan 2A RPM ID Fan 2B RPM FD Fan 2A RPM FD Fan 2B RPM	560 560 540 540	550 540 450 460	540 540 450 460	560 560 450 460	560 560 460 470	570 560 500 500	575 570 520 520	580 580 450 460	580 580 480 480
FAN DAMPER POSITIONS (0-12)									
ID Fan 2A ID Fan 2B FD Fan 2A FD Fan 2B	12+ 12+ 9.8 9.6	12+ 12+ 8.2 8.2	12+ 12+ 8.2 8.2	12+ 12+ 12+ 12+	12+ 12+ 6.2 5.9	12+ 12+ 12 12	12+ 12+ 12 12	12+ 12+ 12 12	12+ 12+ 12+ 12+
Drum Level In. <u>+</u> Norm. H ₂ O Level	-4.5	-4.5	-4 5	-4 5	-4.5	-4.5	-4.5	-4.5	-4.5
2A Mill Amps 2B Mill Amps 2C Mill Amps 2D Mill Amps	0 37 36 41	0 36 36 41	0 36 36 42	0 36 36 38	0 37 36 41	0 37 36 40	36 38 38 0	36 37 38 0	36 37 38 0
EXHAUSTER DAMPER POSITION - % OPEN									
0-12 SCALE									
M111 2A M111 2B M111 2C M111 2D	0 4.6 4.4 4.4	0 4.5 4.4 4 4	0 4.8 4.6 4.6	0 8 6 5.2 4.6	0 8.4 4.4 4.4	0 8.4 4.8 4.4	4.8 8 4 4.8 0	5.0 8 4 5.0 0	5.3 8 4 5.4 0
PULVERIZER FEEDER CAP % OPEN 0-12 SCALE									
Mill 2A Mill 2B Mill 2C Mill 2D	0 4.4 4.9 4.5	0 4.4 4.8 4.6	0 4 6 5.2 4.8	0 5.2 5.8 4.8	0 5.2 5.7 5.4	0 4.3 4.8 4.4	4.8 4.8 5.3 0	5.0 5.0 5.5 0	5.4 5.4 5 9 0
SPRAY VALVE POSITION - % OPEN									
SH Spray L SH Spray R RH Spray L RH Spray R	0 0 0	0 0 0	0 0 0	0 0 0	52 52 0 0	36 36 0 0	50 50 0	60 60 0	60 60 0 0
BURNER TILT POSITION - DEGREES									
LR RR LF RF	-2 0 0 -1	-2 0 0 -1	-2 0 0 -1	0 0 0	0 +1 0 -1	0 +2 +2 0	0 +2 +2 0	0 +2 +2 0	0 +2 +1 0
Feedwater Valve - % Open (0-12 Scale) Air Htr. 2A Recirc. Damper - % Open Air Htr. 2B Recirc Damper - % Open	12+ 40 40	12+ 29 29	12+ 29 26	12+ 32 35	12+ 0 0	12+ 32 32	12+ 32 34	12+ 32 34	12+ 32 34

107

BOARD DATA

OVERFIRE AIR

LOAD VARIATION AT

TILT VARIATION

OPTIMUM CONDITIONS

TEST NO	<u>24</u>	<u>25</u>	<u>26</u>	<u>27</u>	28	29	<u>30</u>	<u>31</u>	32	<u>33</u>	<u>34</u>	<u>35</u>
DATE	7/29/74	7/29/74	7/29/74	7/29/74	7/29/74	7/29/74	7/30/74	7/31/74	7/31/74	7/31/74	7/31/74	8/1/74
TIME	9 40	11-05	13 30	15 00	16-30	18:07	21 05	12.55	2.35	21-50	23.35	1 38
LOAD - MH	124	124	124	125	125	124	125	97	65	122	95	64
FLOWS - 10 ³ LBS/HR												
BFP 2A	0	0	0	0	0	0	0	0	0	0	0	0
BFP 2B	500	510	500	500	500	510	500	390	270	500	375	275
BFP 2C	410	415	410	410	410	415	410	330	225	400	325	225
REHEAT STEAM	900+	900+	900+	900+	900+	900+	900+	810	665	900+	798	660
CONDENSATE Superheat Spray	620 33 0	630 31.0	625 40.0	620 35.0	625 48.5	630 31.5	625 35 0	480 33 5	350 31.0	625 33.5	460 32.2	350 31.0
REHEAT SPRAY	33 0	31.0	40.0	35.0	40.5	31.5	350	33 5	31.0	33.5	32.2	31.0
FEEDWATER	820	870	800	810	800	860	820	620	400	840	620	300
PRIMARY STEAM FLOW	900	915	885	902	900	900	900	680	455	895	675	445
AIR FLOW - RELATIVE	800	797	800	799	785	810	780	635	540	800	620	510
PRESSURES STEAM & WATER - PSIG												
1ST STAGE EXTRACTION	1320	1350	1300	1320	1319	1340	1335	1019	690	1320	1018	680
Втн	420	425	420	420	422	421	422	324	219	419	321	215
12тн	168	170	170	170	172	171	172	129	79	170	127	78
16тн	_55	_56	_55	56	56	55.5	56.0	39	22	55	38	21 5
19тн (-IN Hg. + PSIG)	5 9	6.0	6.0	6.0	6.2	6.0	6.0	-1.0	-12 -20.0	60	0.0 -16.0	-12 -20.0
21st (IN Hg) Feedwater Regulator Inlet	-12 5 2030	-12.2 2050	-12.5 2020	-12.5 2020	-12.4 2010	-12 2 2040	-12.5 2040	-16.0 2000	1935	-12 5 2060	2010	1960
FEEDWATER REGULATOR TREET	1950	1950	1950	1950	1940	1950	1960	1925	1925	1960	1950	1910
Drum	1930	1920	1930	1925	1915	1940	1940	1910	1900	1950	1920	1900
TURBINE THROTTLE	1825	1825	1825	1820	1820	1825	1835	1835	1850	1835	1850	1850
REHEAT INLET	411	420	411	417	418	415	418	315	204	411	311	200
REHEAT BOWL	380	386	380	384	385	381	384	292 -27 5	195 -27.8	380 -27.0	290 -27.4	191 -27 7
EXHAUST (IN HG) Main Steam	-27.2 1850	-27.1 1850	-27 1 1850	-27 1 1850	-27 0 1850	-27 0 1850	-27 0 1860	1865	1865	1865	1865	1865
REHEAT OUTLET	390	398	393	398	398	395	398	305	200	391	300	200
LIGHT OIL UPPER BURNERS	0	ő	ō	Ö	ō	ō	ō	Ö	24	23.5	23.5	23.5
LIGHT OIL LOWER BURNERS	0	0	0	0	0	0	0	0	25	25 0	25 0	25 0
PRESSURES												
AIR & GAS - IN WG												
2A FD FAN DISCHARGE	4 9	4 9	4 9	4.9	4.5	5.1	4 0	2.5	1 9	4.9	2.5	1.5
28 FD FAN DISCHARGE	4.5	4 8	4 5	4.4	4.2	5.0	3.9	5.0	1.7 5	4.5	2 0 .5	10
2A PREHEATER OUTLET AIR	1 5 1.5	1 7 1 7	1 9 1.9	19 1.9	1.5 1.5	5.0 5.0	1.0 1.0	.5 .5	5	1.5 1.5	.5	.2 .2
28 PREHEATER OUTLET AIR FURNACE PRESSURE	- 20	- 21	- 175	15	- 18	- 05	45	- 425	425	- 35	5	- 45
SUPERHEATER CAVITY	-1 3	-12	-1.2	-1.2	-1.2	-1.2	-1.7	-1.2	-1.0	-1.5	-1.1	-1.0
ECON. INLET	-5 6	-5 6	-5 7	-5 7	-5.7	-5.5	-5.6	-3.8	-2.9	-5 4	-3 7	-2.7
ECONOMIZER OUTLET R.H	-7 1	-7.1	-7.2	-7.1	-7.2	-7 1	-7.5	-5 4	-4 1	-7 2	-5.1	-3.9
ECONOMIZER OUTLET L.H	-7 4	-7.4	-7.4	-7.4	-7.4	-7.4	-7 8	-5.4	-4.0	-7.5	-5.1	-3.8
NO 2A PREHEATER DIFF. GAS	39 35	4.0	4.0 3 4	4.0 3.5	3.9 3.4	4.0 3 4	3.9 3.5	2.8 2.4	2.1 1.7	4.0 3.6	2 8 2.3	2.0 1.6
NO 2B PREHEATER DIFF. GAS NO. 2A I.D. FAN SUCTION	14.4	3.5 14 4	14.5	14.5	14.5	14.5	14.5	10.0	7.5	14.7	10.0	7.1
No. 28 D. FAN SUCTION	14.0	14 0	14 0	14.0	14.0	14.0	14.5	10.1	7.2	14.2	10.0	6.8
PULVERIZER 2A INLET AIR	-1 3	-1 1	-1.2	-1.2	-1.2	-1 0	-1.4	-1.4	-1.25	-1.25	-1.4	-1.4
EXHAUSTER 2A DISCHARGE	12 0	12.5	12.5	12.0	12.0	12.7	12 0	12.0	12.5	12.2	12.5	12.9
PULVERIZER 28 INLET AIR	-1 0	-1 0	-1 0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.1	-1.0
EXHAUSTER 28 DISCHARGE	10.0	10 0	9.5	9.0	9.5	9.4	9 2	9.5	10.0	9.2	10.0	10.2
PULVERIZER 2C INLET AIR	-2.6	-2 5 12 5	-2 5 12.0	-2 5 12.0	-2.7 12.0	-2.6 12.5	-3.4 11.5	-3.5 11 5	-1.2 0	-3.0 12.0	-3.5 12.0	-1.0 0
EXHAUSTER 2C DISCHARGE Pulveriver 2D inlet Air	12.0 -2.0	-19	-1 9	-2 0	-1.75	-1.6	-2.0	-1 2	-1 2	-1.5	-1.2	-1.2
EXHAUSTER 2D DISCHARGE	10 5	10 5	10.5	11.0	11 5	11.5	10.0	-, 5	-, 5	11.0	2	- 112
				•				-				_

C-E Power Systems Field Testing and Performance Results

BOARD DATA

OVERFIRE AIR

LOAD VARIATION AT

TILT VARIATION

OPTIMUM CONDITIONS

TEST NO	24	<u>25</u>	26	<u>27</u>	28	<u>29</u>	<u>30</u>	<u>31</u>	32	33	<u>34</u>	35
TEMPERATURES											_	_
AIR & GAS - "F												
BOILER OUTLET GAS L H.		651	660	661	661	652	655	639	630	660	635	628
BOILER OUTLET GAS R.H.		661	669	670	670	661	670	651	641	670	649	638
ECONOMIZER OUT GAS L H		600	609	610	611	602	606	570	542	610	569	540
ECONOMIZER OUT GAS R H.		605	612	615		609	611	578	550	615	572	539
PREHEATER 2A OUTLET GAS		298	300	303	305	293	302	292	290	302	291	300
PREHEATER 28 OUTLET GAS Preheater 24 Inlet Air		295	300	302	302	298	298	287	261	298	288	256
PREHEATER 28 INLET AIR		79 80	95 95	95 98	92 95	92 95	85	82	88	89	80	80
PREHEATER 24 OUTLET AIR		502	508	512	516	500	80 510	78 499	80 488	89 511	86 499	90 490
PREHEATER 2B OUTLET AIR		511	519	521	522	514	519	505	480	519	499 505	490 475
PULVERIZER 2A INLET AIR	460	460	460	460	460	450	465	450	455	465	465	460
PULVERIZER 2A INTERNAL	170	150	160	160	160	165	160	155	155	170	155	145
PULVERIZER 28 INLET AIR	480	480	480	480	485	465	485	480	460	480	480	460
PULVERIZER 2B INTERNAL	135	160	155	160	160	160	155	150	140	150	140	140
PULVERIZER 2C INLET AIR	499	495	495	500	500	495	490	475	100	495	480	100
PULVERIZER 2C INTERNAL	170	175	175	165	170	175	140	140	100	160	140	100
PULVERIZER 2D INLET AIR	495	480	470	470	500	400	480	100	100	380	100	100
PULVERIZER 2D INTERNAL	175	160	175	175	175	180	170	100	100	165	100	100
TEMPERATURES												
STEAM & WATER - "F												
FEEDWATER	467	467	467	470	470	470	470	449	415	465	447	412
ECONOMIZER WATER OUTLET - L H.		482	490	491	491	486	490	470	457	489	462	450
ECONOMIZER WATER OUTLET - R.H.		482	490	490	492	485	491	470	456	489	462	449
RH DESUPH. IN L.H.	668	649	650	668	656	649	695	638	621	680	616	590
RH DESUPH. OUT L.H.	668	649	650	668	656	649	695	638	621	680	616	590
RH DESUPH IN R.H.	668	649	650	668	656	649	695	640	621	680	619	590
RH DESUPH. OUT R H.	668	649	650 975	668	656	649	695	640	621	680	619	590
SUPERHEAT OUT L.H. SUPERHEAT OUT R.H.	995 992	965 977	975 988	999 1001	982 992	970 982	1009 1010	981	997 1000	975	940	958
THROTTLE STEAM L.H.	995	968	972	995	978	977	1002	977 985	1000	981 979	950 940	959 960
THROTTLE STEAM R.H.	990	968	972	992	972	972	1002	981	995	972	941	965
REHEAT OUTLET L.H.	958	911	951	978	971	915	975	931	928	932	876	888
REHEAT OUTLET R.H.	972	930	970	980	982	938	990	943	950	951	905	889
SUPERHEATER OUTLET	1000	970	975	990	975	970	1000	977	995	970	942	953
REHEATER OUTLET	990	946	981	992	995	940	997	958	957	970	920	920
UPPER VALVE CHEST	978	959	959	985	970	961	988	960	967	949	922	927
LOVER VALVE CHEST	110	110	111	112	115	111	105	102	105	111	111	110
H.P EXHAUST	649	630	630	650	640	631	655	592	570	619	550	530
REHEAT BOWL	970	939	969	995	995	945	990	949	935	940	902	890
INTERMEDIATE EXHAUST	475	447	471	489	490	450	490	460	457	455	410	422
CONDENSATE TEMP.	124	125	125	125	126	127	125	120	113	127	125	114
S H. DESUPH. IN L.H	891	855	905	906	921	858	919	896	895	940	885	880
S.H. DESUPH OUT L.H.	839	838	815	845	809	841	851	829	849	885	845	860
S.H. DESUPH. IN R.H. S.H. DESUPH. OUT R.H.	880 841	845 834	900 812	885 830	911 803	851 840	920 860	892 835	900 860	926 884	881 850	869 851
S.H. DESUPH. OUT R.H.	041	634	012	630	803	840	900	635	660	004	630	831
MISCELLANEOUS												
I.D. FAN 2A RPM	690	690	690	690	690	690	690	560	480	690	540	460
ID FAN 28 RPM	680	670	675	680	680	680	679	560	480	670	540	460
F D. FAN 2A RPM	560	570	590	565	570	600	540	440	400	570	410	370
F.D. FAN 2B RPM	570	570	590	570	580	600	540	440	400	570	420	370
FAN DAMPER POSITION - (0-12)		••	•-									
ID FAN 2A	12+	12+	12+	12+	12+	12+	12+	7.0	5.8	12+	7.4	6.0
ID FAN 28 FD FAN 28	12+ 12+	12+ 12+	12+ 12+	12+ 12+	12+ 12+	12+ 12+	12+ 12+	7 0 4.3	5.8 3.8	12+ 11.8	7.3 6.0	6 0 3.6
FD FAN 28	12+	12+	12+	12+	12+	12+	12+	4.3 5 2	3.8	11.8	5.B	3.6
	127	127	167	IET	167	167	167	J E	3.0		5.5	5 5
DRUM LEVEL IN ⁺ NORM. H ₂ O LEVEL	-5.0	-5.0	-4.9	-5 0	-4.9	-5.0	-4.5	-5.0	-5.0	-5.0	-5.2	-5.0

C-E POWER SYSTEMS FIELD TESTING AND PERFORMANCE RESULTS

BOARD DATA

OVERFIRE AIR

LOAD VARIATION AT

TILT VARIATION

OPTIMUM CONDITIONS

TEST NO	24	<u>25</u>	<u>26</u>	27	28	<u>29</u>	<u>30</u>	<u>31</u>	<u>32</u>	<u>33</u>	<u>34</u>	<u>35</u>
24 MILL AMPS	38	40	40	40	40	39	36	36	38	36	37	37
28 MILL AMPS	37	37	37	37	37	36 38	36 35 38	36 36 38	38 36	36	36 38	37 37 0 0
2C MILL AMPS	38	38 39	38	39	38	38	38	38	0	38		o
2D MILL AMPS	39	39	40	39	40	40	40	0	0	41	0	0
EXHAUSTER DAMPER POSITION - \$ OPEN												
0 - 12 SCALE											- 4	6.0
MILL 2A	60	60	60	6 1	5.9	5.8	5.5 5.6	5 4 5 6	5.6 5.7	5 4 5.6	5 4 5 6	6.0 6 2 0
MILL 2B	6 2 6 0	6 2 6 0	6.1 6 0	6.4 6.2	6 1 5 9	60 58	5.5	5.4	0	5.6	5.6	0 2
MILL 2C	4 1	40	40	4.2	4.8	47	3.3 4 0	0	0	51	3.0	ŏ
WILL SD	4 1	4 0	4 0	4.2	4.0	4 /	4 0	U	J	<i>J</i> ,	·	•
PULVERIZER FEEDER CAP - \$ OPEN												
0 - 12 SCALE		6 0			6.0	5 8	5 5	5.5	5.6	5 4	5.5	6.0
MILL 2A	6.0 6.0	6.0	6.0 6.0	6 2 6.2	6.0	5.8	5.5	5.5	5.6	5.4	5.5	6.0 6.0 0
MILL 2B	6.6	6.6	6.5	6.2 6.7	6.4	6.3	6.0	6.0	0	5 9	6.0	0.0
MILL 2C Mile 2D	4 2	4 2	4.2	4 3	4.9	4.8	4.0	0.0	ŏ	5.9 3.1	0.0	ő
MICC 2D	7 2	7 6	7.5	4.5	4.5	4.0	4.0	•	•	•	_	•
SPRAY VALVE POSITIONS - \$ OPEN												
SH SPRAY L	39	0	70	49	90	0	52 50	48	36 36 0	37	34	20 20 0 0
SH SPRAY R	40	0	70	48	88	0	50	48 O O	36	37	33 0 0	50
RH SPRAY L	0	Ō	0	0	0	0	0	0	0	0	ŭ	ŭ
RH SPRAY R	0	0	0	0	0	0	U	U	U	U	U	U
BURNER TILT POSITIONS - DEGREES									_			
LR	0	-30	+30	ō	+30	-30	0	-12	0	-22	-22	-10
RR	0	-30	+30	0	+30	-30	0	-12	0	-52	-22 -22	-10 -10
ĻF	0	-30	+30	0	+30	-30 -30 -30 -30	0	-12	0	-22 -22 -22	-22	-10
RF	0	-30	+30	0	+30	-30	0	-12	0	-22	-22	-10
FEEDWATER VALVE - \$ OPEN (0-12 SCALE)	12+	12+	12+	12+	10.4	12+	12+	9.4	9.4	9 3	9.4	9.4
AIR HTR 24 RECIRC DAMPER - % OPEN	24	24	24	24	24	24	38 34	37	37 33	26 25	26	26 25
AIR HTR 28 RECIRC DAMPER - \$ OPEN	20	50	50	20	20	50	34	33	33	25	25	25

WATERWALL ABSORPTION RATES, KG-CAL/HR-CM²

RIGHT WALL CENTERLINE TUBE RATES

TC #	1	3	5	7	9	19	22	44	47	57	60	62	64
ELEVATION	118'-6"	107'-6"	96'-6"	85'-6"	74' -6"	69' -6"	64' -7"	59'-7"	54' -9"	49'-11"	45'-7"	35'-7"	25' -7"
TCOT 4			7 40										
TEST 1	2.02	3.56	7.49	8.81	10.93	9.07	1.28			8.54	4.08	3.30	
2	2.36	3.64	8.63	12.07	13.13	9.95	.86			6.51	5.99	3.12	
3	1.33	2.85	5.18	7.02	8.08	7.55	.83			9.66	9.93	4.13	
4	3.01	5.36	12.23	1.25	2.76	14.88	5.10			13.29	7.73	4.31	
5	3.78	7.19	10.90	10.90	22.55	7.46	6.93			18.85	20.96	12.49	
6	4.41	7.30	13.66	1.83	3.37	16.04	7.83			20.81	14.45	10.21	
7	3.73	5.04	10.06	1.19	2.18	7.67	8.73	12.18		27.78	11.38	14.56	
8	4.59	8.28	11.45	8.54	21.78	5.11	4.06			10.13	13.04	15.70	
9	6.26	9.96	14.99	15.52	23.46	15.52	6.26			8.63	12.34	15.26	
10	5.14	5.66	12.27	7.51	6.45	10.15	9.36			24.18	6.98	12.80	
11	4.16	4.95	6.26	6.79	6.53	4.43	6.00			11.56	6.53	6.53	
12	4.15	5.46	6.51	6.51	5.98	5.72	5.72			11.53	7.56	7.83	
13	4.95	6.53	13.14	9.96	13.94	17.38	15.00			25.05	10.76	12.61	
14	4.44	4.96	11.30	9.97	17.66	14.74	15.01			24.00	15.28	12.62	
15	4.12	5.17	9.66	. 37	3.34	7.80	13.36			3.34	10.71	10.98	
16	E 0E	5.77	0 15	0.00	7.62	10.26	10 20			3.42	8.68	9.47	
16	5.25		8.15	2.38			12.38						
17	6.47	7.26	9.90	3.33	6.99	10.96	13.61		~-~	3.84	10.70	12.55	
18	3.61	4.91	9.92	.16	13.37	13.37	10.45			18.67	17.34	8.07	
19	4.39	5.44	10.19	2.32	4.65	9.40	5.17			14.43	9.92	10.45	
20	3.14	5.23	10.24	.64	4.18	2.63	12.1			20.58	18.20	9.72	
21	4.00	5.31	12.45	. 49	2.71	2.20	12.98			15.10	10.33	4.53	
22	3.49	5.32	11.40	1.46	2.46	1.96	11.93			15.11	9.81	3.24	
23	2.67	5.00	11.87	.91	2.67	1.90	11.87			15.32	10.02	3.70	
24	4.76	5.28	12.68	9.24	7.92	3.98	8.18			23.80	12.68	7.92	
25	3.00	5.08	10.63	6.66	6.13	2.48	11.95			32.55	20.43	13.01	
26	4.61	6.71	14.66	13.07	19.69	2.80	12.80			15.45	10 . 1 5	4.35	
27	4.22	6.32	8.43	10.02	15.85	10.81	11.34			18.76	15.05	12.40	
28	7.16	8.22	11.93	14.04	17.22	1 1. 66	12.72			13.25	11.93	7.43	
29	5.42	7.80	8.32	9.91	11.24	9.91	12.03			27.63	17.33	17.86	
30	7.55	9.14	9.93	8.08	3.87	6.23	9.14			4.65	7.02	8.34	
31	7.07	7.60	8.65	6.80	7.07	11.56	7.07			18.98	16.07	9.98	
32	5.21	6.00	7.05	6.00	5.47	8.90	4.42			14.73	12.87	7.05	
33	7.27	7.53	7.80	7.80	7.27	11.24	14.15			24.47	14.95	16.54	
34	7.52	7.52	8.84	8.05	8.05	9.37	11.22			15.47	13.35	14.14	
35	6.60	5.81	6.60	6.33	6.33	8.18	7.92			10.56	17.45	7.92	

WATERWALL ABSORPTION RATES, KG-CAL/HR-CM² FRONT WALL CENTERLINE TUBE RATES

TC # Elevation	2 107'-6"	4 96¹-6"	6 85 ' -6"	8 74'-6"	13 69'-6"	38 59'-7"	51 49"-11"	61 35 ' -7"	63 25 '- 7"
TEST 1	6.44	7.49	11.99	18.08	10.93		10.13	3.04	2.52
2	6.78	8.89	14.72	16.31	11.01		8.89	2.88	2.36
3	5.18	4.92	7.55	8.08	8.61		13.11	4.66	1.33
4	10.11	11.96	7.46	24.67	9.84		14.62	4.05	3.01
5	11.16	9.57	10.37	24.92	10.10		19.11	12.75	7.46
6	12.33	12.60	18.69	27.14	12.86		20.28	13.39	4.67
7	9.26	8.47	12.44	10.85	6.35		23.56	18.55	9.53
8	10.92	7.48	10.66	22.31	16.76		7.22	15.70	9.60
9	13.67	9.96	10.48	25.83	14.20		7.05	17.38	7.84
10	11.48	4.61	15.98	14.92	7.24		5.40	15.72	5.66
11	5.21	4.95	6.79	6.53	4 .9 5		7.85	6.26	6.26
12	5 .46	5.72	6.77	6.25	5.46		8.88	8.09	7.56
13	12.88	6.26	7.84	11.56	6.79		7.58	14.47	5.21
14	10.77	4.96	8.39	11.56	5.48		12.36	14.74	5.22
15	8.07	5.17	14.16	11.77	2.57		2.32	18.13	6.22
16	7.62	5.77	10.79	15.83	4.46		2.92	15.83	7.62
17	8.05	6.99	12.29	14.41	5.68		4.63	16.26	9.37
18	8.07	5.17	14.16	11.25	7.28		10.19	9.92	6.49
19	9.13	4.91	12.84	6.22	8.86		9.66	10.98	5.44
20	8.66	9.98	11.30	22.69	9.98		9.19	16.07	4.97
21	10.33	11.39	17.22	21.98	8.48		3.23	5.58	3.48
22	10.34	10.07	18.29	15.90	4.80		2.21	4.80	2.45
23	10.02	7.64	16.91	19.02	13.46		2.40	5.00	2.67
24	10.56	8.18	9.51	15.07	6.34		16.40	12.95	5.02
25	10.10	8.24	6.66	15.66	10.10		19.64	20.43	9.57
26	12.27	10.68	19.96	19.96	7.51		12.80	5.40	4.35
27	9.22	7.64	14.26	8.16	7.1 1		8.69	14.26	3.44
28	9.54	9.81	12.99	12.19	9.54		6.11	8.75	6.90
29	9.91	8.06	11.24	10.18	10.44		18.92	20.77	9.38
30	9.66	9.66	13.38	25.81	13.90		8.61	8.87	7.55
31	7.86	8.12	1 1. 56	8.12	7.60		7.33	11.56	8.12
32	6.00	5.21	8.10	6.26	5.21		5.21	7.84	5.73
33	8.85	7.00	7.00	18.66	6.48		21.57	19.98	12.56
34	8.31	6.99	6.99	10.96	5.68	~	22.08	14.94	10.43
35	7.12	5.81	5.54	7.39	3.20		7.92	8.18	7.65

SHEET 13C

WATERWALL ABSORPTION RATES, KG-CAL/HR-CM2

	RIGHT WALL Horizontal Average Tube Rates		REAR WALL Horizontal Average Tube Rates	LEFT WALL Horizontal Average Tube Rates	Hor 1	FRONT WALL ZONTAL AVE TUBE RATES	ERAGE	
TC #	17-21	42-46	55-59	23 - 29	30-34	10-16	35-41	48-54
Elevation	69'-8"	59' -7"	49'-11"	59 ' - 7"	59' -7"	69"-6"	59' <i>-</i> 7"	49' -11"
TEST 1 2 3 4 5 6 7 8	8.65	9.54	8.28	5.78	11.67	11.94	10.31	8.24
	9.53	9.16	5.82	4.97	12.23	12.34	11.11	6.92
	7.97	9.27	9.58	4.79	10.72	8.56	8.85	11.87
	13.51	11.84	7.90	6.01	10.20	13.20	15.68	9.39
	5.67	9.98	10.64	12.22	17.10	16.33	17.34	18.73
	14.40	15.11	16.75	8.07	14.53	17.01	17.41	12.26
	7.84	11.96	18.26	8.21	9.04	10.90	16.12	17.13
	3.66	7.63	7.10	9.22	14.12	13.80	20.10	20.73
9 10 11 12 13 14	7.38 8.20 4.84 5.62 10.18 8.34 9.70	10.05 16.31 5.09 5.46 14.34 15.34 11.38	6.53 15.28 9.18 9.16 15.70 17.92 9.41	14.01 12.13 9.10 8.74 13.94 14.06 10.62	14.83 19.48 4.79 6.19 16.06 16.81 18.29	16.45 14.92 6.35 5.72 12.93 13.91 10.77	18.43 18.98 7.59 6.38 17.64 18.09 15.70	17.94 13.86 7.76 8.75 13.27 13.66 8.54
16	11.70	10.93	12.13	10.46	18.37	12.74	16.45	9.09
17	13.77	10.44	11.95	10.44	16.47	13.17	16.88	10.35
18	7.31	12.77	16.73	6.07	14.48	10.81	17.16	16.12
19	6.96	4.61	8.72	7.52	7.50	9.70	14.43	9.54
20	2.89	9.52	13.62	6.42	7.77	10.92	16.25	9.16
21	2.76	10.14	13.51	5.51	13.72	15.85	18.76	8.42
22	2.52	9.36	13.43	6.28	14.85	13.48	17.66	7.74
23	3.19	10.16	13.64	6.04	15.54	19.17	17.12	12.28
24	12.22	12.22	8.55	9.74	15.86	11.89	16.08	9.18
25	9.63	14.00	22.35	9.61	14.18	12.04	16.76	13.81
26	10.54	12.21	10.25	7.53	14.45	14.22	13.95	10.17
27	10.81	12.40	14.70	8.14	13.52	9.88	10.03	8.88
28	12.94	14.44	12.81	9.21	17.60	13.52	14.80	7.26
29 30 31 32 33 34 35	11.34 9.52 7.71 6.32 10.08 8.21 7.65	16.07 10.66 10.38 7.98 17.06 14.67 10.76	20.06 4.48 17.84 14.02 18.21 13.35 10.12	12.18 12.01 10.85 8.53 10.44 9.11 9.05	17.60 12.72 11.47 8.85 9.02 10.66 9.27 9.50	12.30 14.00 7.33 5.21 8.33 8.10 7.75	16.76 16.51 16.78 14.51 16.05 13.79 9.20	17.63 10.51 9.14 8.11 16.05 16.57 9.42

WATERWALL CORROSION COUPON DATA SUMMARY

WEIGHT LOSS EVALUATION

BASELINE TEST

Probe	Probe No.	Coupon No.	Initial Wt.	Final Wt. GR.	Wt. Loss GR.	Wt. Loss/ Coupon MG/CM ²	Avg. Wt. Loss/ Probe MG/CM ²
1	I	1	199.2937	199.1341	.1596	3.1643	
		2	201.3871	201.2135	.1736	3.4418	0.0000
		2 3	198.3883	198.2384	.1499	2.9719	2.9392
		4	195.8045	195.6946	.1099	2.1789	
2	J	1	199.1977	199.0534	.1443	2.8609	
		2	199.6807	199.5009	.1798	3.5647	
		2 3	202.8649	202.7226	.1423	2.8213	2.8088
		4	202.3445	202.2442	.1003	1.9885	
3	Ε	1	199.0122	198.8632	.1490	2.9541	
_	_	2	202,2508	202.1171	.1337	2.6507	
		2 3	201.9826	201.8976	.0850	1.6852	2.13475
		4	199.6584	199.5954	.0630	1.249	
4	L	1	202.5778	202.5080	.0698	1.3838	
•	_	Ž	200.8579	200.7484	.1095	2.1769	
		2 3	202.7075	202.5924	.1151	2.282	1.91965
		4	197.7676	197.6750	. 0926	1.8359	
5	K	1	199.5913				
•	••	ż	197.4684	197.2730	.1954	3.874	
		3	194.9513	194.7783	.1730	3.4299	3.38826
		4	202.0694	201.9251			
		7	404.0094	201.9231	.1443	2.8609	

Avg. Wt. Loss/Test 2.6381 MG/CM²

WATERWALL CORROSION COUPON DATA SUMMARY

WEIGHT LOSS EVALUATION

BIASED FIRING TEST

Probe	Probe No.	Coupon No.	Initial Wt.	Final Wt.	Wt. Loss GR.	Wt. Loss/ Coupon MG/CM ²	Avg. Wt. Loss/ Probe MG/CM ²
1	В	1 2 3 4	197.9531 202.1660 198.3393 200.5603	197.6484 201.8659 198.0383 200.2799	.3047 .3001 .3010 .2804	6.0411 5.9499 5.9678 5.5593	5.8795
2	Q	1 2 3 4	199.3158 196.2751 202.8709 200.2327	199.1437 196.0480 202.5541 200.0655	.1721 .2271 .3168 .1672	3.4121 4.5026 6.2810 3.3150	4.3777
3	R	1 2 3 4	198.8940 199.8790 196.0683 199.3342	198.7626 199.6842 195.8721 199.1690	.1314 .1948 .1962 .1652	2.6051 3.8622 3.8899 3.2753	3.4081
4	M	1 2 3 4	199.5078 198.7039 198.3125 200.8838	199.3628 198.4853 198.1121 200.6771	.1450 .2186 .2004 .2067	2.8748 4.3341 3.9732 4.0981	3.8201
5	D	1 2 3 4	197.9655 202.9412 199.1306 198.2205	197.7001 202.5809 198.7976 198.0234	.2654 .3603 .3330 .1971	5.2619 7.1435 6.6022 3.9078	5.7289

Avg. Wt. Loss/Test 4.6429 MG/CM²

WATERWALL CORROSION COUPON DATA SUMMARY

WEIGHT LOSS EVALUATION

OVERFIRE AIR TEST

Probe Loc.	Probe No.	Coupon No.	Initial Wt.	Final Wt.	Wt. Loss GR.	Wt. Loss/ Coupon MG/CM ²	Avg. Wt. Loss/ Probe MG/CM ²
1	S	1	200.7678	200.5465	.2213	4.3876	
		2	196.0684	195.8121	.2563	5.0815	
		3	199.6433	199.3849	.2584	5.1235	4.5244
		4	197.8187	197.6419	.1768	3.5053	
2	Т	1	200.7026	199,1437	.2802	5.5554	
		2				3.3540	
		3	593.7075	593.2000	.5075	3.3540	3.9044
		4				3.3540	
•	_	_		4			
3	F	1	199.1897	198.9156	.2741	5.4344	
		2 3	199.4476	199.1351	.3125	6.1958	6 0403
			199.3119	198.9858	.3261	6.4654	6.0401
		4	199.0463	198.7404	.3059	6.0649	
4	N	1	202.8354	202.6125	. 2234	4.4292	
		2	201.2249	200.9784	.2465	4.8872	
		2 3				2.8729	3.7656
		4	397.4898	397.2000	.2898	2.8729	
5	2	1					
-	-	ż	191.8528	191.6484	.2044	4.0525	
		3	192.7875	192.5909	.1966		3.9752
		4	1 3L , 1 O/ J	136.3303	. 1 300	3.8979	
		7					

Avg. Wt. Loss/Test 4.4419 MG/CM^2

TEST DATA SUMMARY BARRY NO. 4

TEST NO		1	<u> </u>	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	12	13
DATE (1973) TIME		1/23 0830	1/23 0922	1/23 1022	1/23 1120	1/23 1238	1/23 1319	1/23 1413	1/23 1510	1/24 1245	1/24 1337	1/24 1440	1/24 1524	1/19 0930
TEST CONDITIONS														
LOAD MAIN STEAM FLOW SH DESH SPRAY MAIN STEAM OUTLET HOT RH OUTLET OXYGEN AH INLET EXCESS AIR AH INLET MILL CLASSIFIER SETTING BURNER TILT MILLS IN SERVICE * & TYPE OF FUEL BOTTO	DEG. 4A 4B 4C 4D	348 1098 62 520 516 2.8 14.9 3.0 0 A A	348 1089 56 525 523 2.4 12.8 3.0 0 A	347 1066 63 538 538 2.1 11.0 3.0 +15 A	334 1066 43 518 510 1.2 6.0 3.0 -25 A A	299 925 61 521 504 3.7 20.5 3.0 0	298 884 538 527 3.2 17.0 3.0 - A C A	294 884 77 531 532 2.9 15.1 3.0 +15 - A	294 909 43 523 496 1.2 5.7 3.0 -20	322 952 59 532 521 2.8 15.1 3.0 0	237 907 36 528 504 1.6 8.2 3.0 -30 -A C	311 939 36 534 510 1.6 8.2 2.0 -30 - A	302 918 67 534 523 2.8 14.7 2.0 0	325 975 75 529 535 3.1 16.6 3.0 0 A A
AIR COMPARTMENT DAMPER			-	•	^	•	^	•	^	•	^	-	^	^
ALL AUXILIARY (CONTROL ALL PRIMARY THEORETICAL AIR TO FIRE	ROOM IND.)	100 50 111.4	100 50 109.4	100 50 107.6	50 100 103.4	100 50 100.1	100 50 97.4	100 50 96.1	50 100 88.2	50 100 95.8	100 50 90.3	100 50 89.9	50 100 95.4	100 50 113.0
EMISSION LEVELS (ADJ. 7	10 35 0 ₂ DRY BA	sis)												
NO SO ² CO ² NO SO ²	PPM PPM PPM GR/10 ⁶ CAL GR/10 ⁶ CAL	485 2625 37 1.04 7.74	465 2973 138 .994 8.82	407 3114 95 .869 9.23	425 3050 126 .909 9.05	366 2957 29 .781 8.77	330 3035 76 .716 9.00	343 3244 125 .734 9.63	302 1461 115 .644 4.34	344 3047 132 .734 9.04	338 3028 132 .722 8.98	349 2844 112 .743 8.44	346 2742 74 738 8.14	491 1818 23 1.05 5.74
MI SCELLANEOUS														
0 (AT AHO) C62 (AT AHO)	* *	4.35 13.79	3 95 13.83	3.56 13.84	2.52 14.26	5.40 11.5	4.76 12.19	4.40 12.12	2.44 15.9	4.39 13.1	3.00 13.8	2.92 14.5	4.32 13.3	4.68 13.48

^{*} ALABAMA COAL - A
PETROLEUM COKE (C MILL ONLY) - C
MIDWEST COAL - M
COMBINATION FIRING - A + C, M + C

TEST DATA SUMMARY BARRY NO. 4

TEST NO.	17	18	19	50	<u> 29</u>	<u>30</u>	<u>31</u>	35	33	34	<u>35</u>	<u>37</u>
DATE (1973) Time	1/2 134		1/22 0905	1/22 1203	1/19 1145	1/19 1245	1/19 1400	1/22 1103	1/24 0945	1/24 1000	1/24 1055	1/24 1145
TEST CONDITIONS												
MAIN STEAM FLOW X10		2 880 8 53 6 534 9 520 4 4.45 8 26.0 0 3.0 0 0 M — M C C M	292 875 54 538 532 3.25 17.6 3.0 0	281 884 34 521 496 1.73 8.7 3.0 -30 - M C	328 1007 72 533 543 1.45 7.2 3.0 0 A A A	330 975 72 537 541 2.2 11.2 3.0 +20 A A	330 1020 72 513 510 1.5 7.3 3.0 -30 A A	286 862 54 528 521 4.0 22.4 3.0 0	346 1111 45 527 516 2.8 14.8 3.0 -30 A A C	345 1111 48 523 516 1.75 8 8 3.0 -30 A A C	360 1134 36 527 523 2.4 12 2 3.0 0 A A C	348 1089 63 535 541 2.4 12.5 3 0 A A C
BOTTOM 4E		м м	М	М	A	A	A	М	A	A	A	A
AIR COMPARTMENT DAMPER POSITI ALL AUXILIARY (CONTROL ROOM) ALL PRIMARY THEORETICAL AIR TO FIRING ZON	ND.) 10	0 50	100 50 99.0	50 100 91.2	100 50 103.9	100 50 107 8	50 100 104 3	50 100 103.3	100 50 111.4	100 50 105 5	50 100 109 5	100 20 109.1
EMISSION LEVELS (ADJ TO 3% O	2 DRY BASIS)											
NO SO ^X CO ² NO GR/ SO ² GR/	PPM 51 PPM 380 PPM 2 105CAL 1 1 106CAL 11.2	5 3470 2 37 6 839	337 3340 61 .718 9.90	319 3531 49 .680 10.48	393 1939 98 .839 5 74	426 2008 44 909 5.96	466 1715 49 .994 5 08	329 3866 65 704 11.3	580 2946 32 1.24 8.73	521 2994 28 1 11 8.87	477 2755 211 1 02 8.17	515 2931 69 1.10 8 69
MISCELLANEOUS O (AT AHO) CO (AT AHO)	ダ 5.0 ダ 11 4		4.86 12.51	3.11 13.29	2.78 15.37	3.64 14.52	2.80 15 25	5 70 12.0	4.33 14 45	3.13 15.35	3 83 14.04	3 88 13.73

^{*} ALABAMA COAL - A
PETROLEUM COKE (C MILL ONLY) - C
MIDWEST COAL - M
COMBINATION FIRING - A + C, M + C

ACCELERATED CORROSION RATE DATA

ALABAMA POWER, BARRY NO. 4

Firing Condition	Corrosion Rate*, Mils/Yr
Baseline	34 24
Baseline	17 18
Baseline	11 13
Baseline	16 16
Low NO _X	32 26
Low NO _X	41 52
Low NO _X	77 87
Low NO _X	13 18

119 SHEET 16

^{*} Paired corrosion rate values obtained on two coupons exposed on the same probe.

TYPICAL COAL ANALYSIS

ALABAMA COAL

Obtained From Peabody Coal Company Analysis by Pittsburg Testing Laboratory

Proximate Analysis As Received

SAMPLE IDENTIFICATION Date	ABC 9/30/72	PEABODY WARRIOR 9/14/72	PEABODY TIGER 9/30/72
Moisture - % Ash - % Volatile Matter - % Fixed Carbon - %	8.40 13.00 25.92 52.68	10.1 11.36 19.75 58.79	9.2 9.4 28.8 52.6
Sulfur - %	2.02	2.67	2.55
HHV - BTU/LB	11,897	12,131	12,269
	Ultimate As Fired		
Date		1/07/72	
Moisture - % Carbon - % Hydrogen - % Oxygen - % Nitrogen - % Sulfur - % Ash - %		9.09 70.01 3.83 3.83 1.28 2.21 9.75	
HHV - BTU/LB		12,290	

MIDWEST BITUMINOUS

Analysis By Alabama Power Co.

Proximate Analysis As Received

SAMPLE IDENTIFICATION Date	EAGLE 1 11/72	EAGLE 2 11/72
Moisture - % Ash - % Volatile Matter - %	8.63 9.75	10.36 8.86
Fixed Carbon - % Sulfur - %	2.75	3.15
HHV - BTU/LB	13,072	13,023

PETROLEUM COKE

Analysis by Gulf Oil Company, Port Arthur, Texas

Proximate Analysis As Received

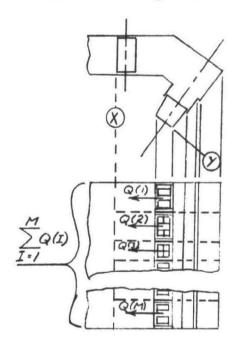
SAMPLE IDENTIFICATION Date	A2602 2/17/70
Moisture - % Ash - % Volatile Matter - % Fixed Carbon - %	7.7 .10 10.80 81.40
Sulfur - %	3.53
HHV - BTU/LB	15,700

121 SHEET 17B

REFERENCES

- 1. Blakeslee, C. E. and Selker, A. P., "Program For Reduction of NO_X From Tangential Coal Fired Boilers Phase I"
- 2. Crawford, A. P., Manny, E. H. and Bartok, W., "Field Testing: Application of Combustion Modifications to Control NO $_{\rm X}$ Emissions From Utility Boilers"

APPENDIX I COMPFLOW - WINDBOX COMPARTMENT AIR FLOW DISTRIBUTION COMPUTER PROGRAM


INTRODUCTION

A description of COMPAIR, a computer program which calculates the wind-box assembly air flow distribution, was presented in Reference 1. The program has been subsequently found to be deficient; the approach taken in the calculation of the compartment loss coefficient resulted in operational difficulties in certain cases. The program was revised to eliminate this problem.

The revised program, COMPFLOW, is described herein. The basic assumptions and limitations of the calculation method are outlined and discussed. Program runs for two tests conducted at Barry #2 are included.

ANALYSIS

Consideration will be initially focused on those cases where the air flow to each compartment is supplied solely by the windbox.

Assumptions:

- 1. Constant total pressure at compartment inlet plane, i.e., $P_{T_{\chi}} = const.$
- Constant density, i.e., R(I) = R = const.
- Constant static pressure at nozzle exit plane, i.e., P_s = const.
- Fully turbulent flow, i.e., Head Loss ≈ (Velocity)².

Utilizing these assumptions, it follows that

Where K(I) = loss coef. for Compartment "I"

Q(I) = volume rate of flow for Compartment "I"

A(I) = nozzle exit area of Compartment "I"

Equation (1) yields

$$\frac{Q(I)}{M} = \frac{A(I)/\sqrt{K(I)}}{M}$$

$$\underset{I=1}{\Sigma Q(I)} \frac{\chi_{A(I)}/\sqrt{K(I)}}{I=1}$$
-----(2)

By definition

$$P_{T_y}(I) = P_{S_y} + \frac{R}{2} * \left[\frac{Q(I)}{A(I)}\right]^2$$
 ----(3)

Using Equations (1) and (3), we have

In order to arrive at a relation for K(I), the windbox compartment total pressure loss will be set equal to the sum of its component losses, i.e.,

$$2 * \left[\frac{P_{T_{X}} - P_{T_{Y}}(I)}{R} \right] = \left[K_{D}(I) + K_{A}(I) + K_{90}(I) + K_{f}(I) \right] * \left[\frac{Q(I)}{B(I)} \right]^{2} + K_{N}(I) * \left[\frac{Q(I)}{A(I)} \right]^{2} - \dots (5)$$

Where B(I) = inlet flow area of Compartment "I"

Assumption (5): The values listed below, which allow for no interaction, adequately represent the compartment total pressure loss.

<u>LOSS</u>	VALUE	COMMENT	REFERENCE
Miter bend, K _B (I)	0.3	Typical, $\beta = 45^{\circ}$	2
90° bend, K ₉₀ (I)	1.2		2
Friction, $K_f(I)$	0.1	$f \approx 0.02$, $\frac{L}{D} \leq 5$; $K_f = f \frac{L}{D}$	2
Nozzle, K _N (I)	0	$K_N = \frac{1}{C_V} - 1$; Assume $C_V = 1$	3
Damper, K _D (I)	Figure 1	Assumed to include inlet loss	4

Using the above values, Equations (4) and (5) yield

$$K(I) = 1 + [1.6 + K_D(I)] * [\frac{A(I)}{B(I)}]^2$$
 -----(6)

For coal fired units the mill air must be taken into account. Using Equation (2) for the secondary air flow, it follows that

$$\frac{W(I)}{WI + W2} = \frac{\begin{bmatrix} A(I)/\sqrt{K(I)} \\ M \\ \Xi A(I)/\sqrt{K(I)} \end{bmatrix} * W1 + X(I) * W2}{W1 + W2} = -----(7)$$

where W(I) = mass rate of flow to Compartment "I"
 Wl = total windbox air to corner
 W2 = total mill air to corner

X(I) = fraction of mill air to Compartment "I"

Figure 1 and Equations (6) and (7) constitute the basis of COMPFLOW.

Note that if some other source of air were available to the windbox assembly, Equation (7) would yield the flow distribution with adjustments in the definitions of W2 and X(I).

Note also that if there is no corner to corner biasing of compartment dampers, Equation (7) may, to a very good approximation, be regarded on a furnace/elevation basis.

PROGRAM DESCRIPTION

A description of the program input is as follows:

Input

Fuel and Air Compartment Geometry

Number of Compartments Width of Compartments Height of Individual Compartments Number of Dampers per Compartment Nozzle Exit Area per Compartment

Test Data

Percent Excess Air Total Air Flow Compartment Damper Positions Fuel Elevations in Service

Typical program outputs for Alabama Power Co., Barry #2, tests 5 and 20, are shown on Figure 2. These runs represent both normal and overfire air operation. A definition of the output is shown on Figure 3.

DISCUSSION

A. Development of the Method

The method presented herein, of calculating the windbox assembly flow

distribution, is the result of what is obviously a greatly simplified treatment; numerous assumptions were made in the development of the method. The validity of each of these assumptions will now be examined.

Assumption (1): Constant total pressure at the compartment inlet plane.

Air issuing from a duct branches to each of the wind-box assemblies; the fluid is moving at a low velocity relative to that at the nozzle exit. It would be reasonable to assume that the total pressure loss between the supply duct exit and the compartment inlet plane is a negligible fraction of the velocity head at the nozzle exit. It is all the more realistic to assume, as is the case herein, that the total pressure distribution in the supply duct and the consequent losses along individual streamlines, are such that the total pressure is uniform at the compartment inlet plane.

Assumption (2): Constant density fluid within the windbox assembly.

The reasoning for this assumption is analogous to that set forth in (1); note that while isothermal flow is not implied between the supply duct and the compartment inlet, it is assumed within the windbox assembly.

Assumption (3): Constant static pressure at the nozzle exit plane.

The static pressure of the jets issuing from the windbox nozzles is equal to the local furnace pressure. The variation in furnace pressure throughout this region should be negligibly small.

Assumption (4): Fully turbulent flow.

This is a valid assumption for the vast majority of cases; unit Reynolds numbers(based on nozzle exit velocity) greater than 10⁵ per foot are typical even for small opening of compartment dampers.

Assumption (5): The compartment loss coefficient for existing configurations are adequately represented by the formulations presented herein (i.e. Figure 1 and Equation (6)).

Curves of K versus damper position, as calculated from Figure 1 and Equation (6), are shown in Figure 4 for compartment outlet/inlet area ratios (i.e. A(I)/B(I) of 0.534, 0.322 and 0.136; these values cover the range of our existing compartments. Results obtained from the cold-flow model tests of Reference 5, at area ratios of 0.322 and 0.136, are also shown in this figure; the

test results are seen to be in excellent agreement with the predicted values. These test results indicate that nozzle tilt, flow rate, firing angle, the presence of turning vanes and probably compartment inlet interaction, are secondary influences on compartment pressure loss and consequently on compartment flow rate. These results justify the omission of these factors in the development of the method presented herein.

B. Previous Calculations

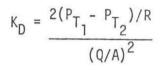
In the previous method of calculating the windbox assembly flow distribution (Reference 1), the compartment loss coefficient was determined from the equation

$$K(I) = KO + K_D(I) * \left[\frac{A(I)}{B(I)}\right]^2$$

where $K_D(I)$ was specified as herein KO evaluated from test values of the total secondary air flow and windbox/furnace ΔP . Highly closed damper positions result in a very large value of K_D , as is seen in Figure 1, and a small error in this parameter will result in a large variation in KO. Program runs with all compartment dampers at or near the full open position yielded values of KO consistent with the value presented herein, i.e.,

@ 100% open,
$$K_D \approx 0.1$$
, $K = K/100\%$ from Equation (6), $K/100\% \approx 1 + 1.7 * \left[\frac{A}{B}\right]^2$ for existing geometries, $0 < \left[\frac{A}{B}\right]^2 < 0.29$ therefore, with $KO \approx K/100\%$, $1 < KO < 1.5$

Program runs with one or more compartment dampers highly closed would sometimes yield values of KO outside this range; in rare cases this would result in operational difficulties.

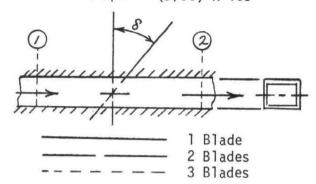

REFERENCES

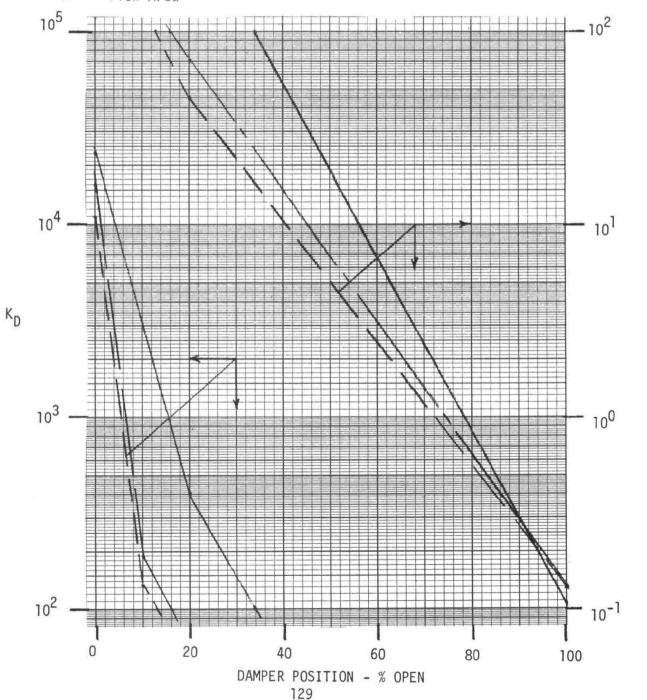
- N. D. Brown, "COMPAIR, Burner-Compartment Air-Flow Distribution Computer Program," Project No. 121029, September, 1971.
- 2. "Flow of Fluids Through Valves, Fittings, and Pipe," Crane Co., Technical Paper No. 409, May, 1942.
- 3. R. V. Giles, "Fluid Mechanics and Hydraulics," Schaum Publishing Co., 1962.
- 4. P. S. Dickey & H. L. Coplan, "A Study of Damper Characteristics," Trans. of the ASME, February, 1942.

5. N. D. Brown, "Windbox Compartment Flow Tests," Test Report 72-6, Project No. 412003, March 2, 1972.

DAMPER LOSS COEFFICIENT VS. POSITION

% Open = $(\delta/90) \times 100$




PT₁ = Total Pressure @ "l"

 P_{T_2} = Total Pressure @ "2"

= Fluid Density = Volume Rate of Flow

= Flow Area

AIR FLOW DISTRIBUTION TO WINDBOX COMPARTMENTS ALABAMA POWER AND LIGHT CO., BARRY #2 EPA '73 - '74 TESTS

FLOW DISTRIBUTION FOR TEST NO. 5

PER CENT EXCESS AIR 22.7

COMPART- MENT (NO.)	FIRING	AREA WT. FLOW (% OF TOTAL)	DAMPERS (% OPEN)	ACTUAL FLOW (% OF TOTAL)
1		9.44	60	7.8
2	Yes	6.55	20	8.39
3		18.03	100	16.37
4	Yes	6.55	20	8.39
5		9.44	100	8.64
6		9.44	100	8.64
7	Yes	6.55	20	8.39
8		18.03	100	16.37
9	Yes	6.55	20	8.39
10		9.44	100	8.64

Firing Fuel Compartment Total Air Flow (%) = 33.55 Air Flow Above Burner Zone (%) = 3.9 Air Flow to Burner Zone (% of Theor. Air) = 117.91

FLOW DISTRIBUTION FOR TEST NO. 20

PERCENT EXCESS AIR 24.2

COMPART- MENT (NO.)	FIRING	AREA WT. FLOW (% OF TOTAL)	DAMPERS (% OPEN)	ACTUAL FLOW (% OF TOTAL)
1		9.44	100	9.42
2		6.55	100	6.85
3		18.03	50	14.93
4	Yes	6.55	30	10.27
5		9.44	50	7.68
6		9.44	50	7.68
7	Yes	6.55	30	10.27
8		18.03	50	14.93
9	Yes	6.55	30	10.27
10		9.44	50	7.68

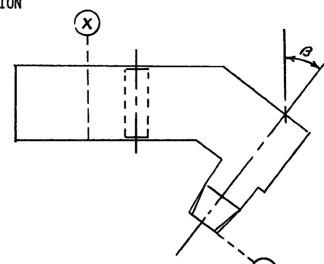
Firing Fuel Compartment Total Air Flow (%) = 30.82 Air Flow Above Burner Zone (%) = 23.73 Air Flow to Burner Zone (% of Theor. Air) = 94.72

COMPFLOW

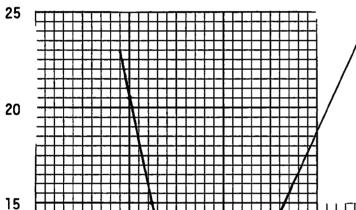
Definition of Output

- 1. The "AREA WT. FLOW" is the ratio of the compartment free area to the total free area of the corner; as such it is a realistic approximation of the actual compartment (secondary) flow only when all compartment dampers are full open.
- 2. The compartment "ACTUAL FLOW" is the ratio of the compartment mass flow rate (including mill air if applicable) to the total mass flow to the corner (see ANALYSIS, equation (7)).
- 3. The "FIRING FUEL COMPARTMENT TOTAL AIR FLOW" is the ratio of the total mass flow rate to firing fuel compartments (including mill air if applicable) to the total mass flow to the corner.
- 4. The "AIR FLOW ABOVE BURNER ZONE" is defined as the percentage of the total mass flow rate supplied above the uppermost firing fuel compartment, less 50% of the flow to the compartment immediately above it.
- 5. % Theoretical Air = $(1 \frac{\% \text{ Air Above Burner Zone}}{100})(100 + \% \text{ Excess Air})$ to Burner Zone.

COMPARTMENT LOSS COEFFICIENT


VS. DAMPER POSITION

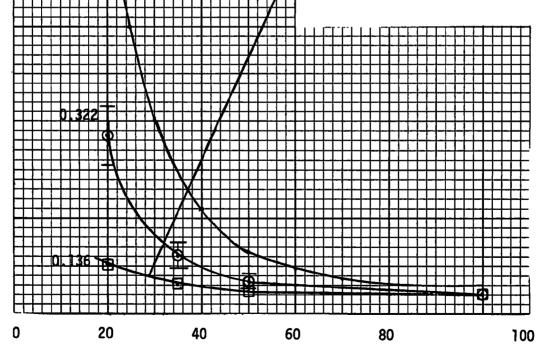
$$K = \frac{2(P_{T_x} - P_{s_y})/R}{(Q/A)^2}$$


 $P_{T_{x}}$ = Total Pressure @ "x"

Ps_y = Static Pressure @ "y"

= Fluid Density
= Volume Rate of Flow
= Nozzle Exit Area

 $\frac{A}{B}$ = 0.534 = $\frac{Nozzle\ Exit\ Area}{Compart.\ Inlet\ Area}$


K =	= 1	+	(1.6	+	K _D)	X	$\left(\frac{A}{B}\right)^{-}$
_							-

LEGEND	
SYMBOL	A/B
0	0.322
	0.136

10

0

K

DAMPER POSITION - % OPEN

TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing)				
1. REPORT NO. EPA-650/2-73-005-a	2.	3. RECIPIENT'S ACCESSION NO.		
4. TITLE AND SUBTITLE Program for Reduction of NOx from Tangential		5. REPORT DATE June 1975		
Coal-Fired Boilers, Phase II		6. PERFORMING ORGANIZATION CODE		
Ambrose P. Selker		8. PERFORMING ORGANIZATION REPORT NO.		
9. PERFORMING OR SANIZATION NA Combustion Engineering 1000 Prospect Hill Road Windsor, Connecticut O	, Inc.	10. PROGRAM ELEMENT NO. 1AB014; ROAP 21ADG-080 11. CONTRACT/GRANT NO. 68-02-1367		
12. SPONSORING AGENCY NAME AND EPA, Office of Research NERC-RTP, Control Sy Research Triangle Park	h and Development stems Laboratory	13. TYPE OF REPORT AND PERIOD COVERED Phase II Final; 7/73 - 3/75 14. SPONSORING AGENCY CODE		

15. SUPPLEMENTARY NOTES

16. ABSTRACT The report gives results of Phase II of a program to reduce the emission of NOx from tangential coal-fired boilers. Results of Phase I, during which a suitable utility steam generator was selected to be modified for the Phase II studies, were presented in final report EPA-650/2-73-005, dated August 1973. The Phase II work included: the design, fabrication, and delivery of an overfire air system for the test unit; the installation of test equipment; planning; and baseline, biased firing and overfire air studies for NOx emission control while burning a Kentucky bituminous coal type. These test programs included an evaluation of the effect of variations in excess air, unit slagging, load, and overfire air on unit performance and emission levels. The effect of biasing combustion air through various out-of-service fuel nozzle elevations was also evaluated. The effect of biased firing and overfire air operation on waterwall corrosion potential was evaluated during three 30-day baseline biased firing, and overfire air corrosion coupon tests. Unit loading and waterwall slag conditions had minimal effects on NOx emission levels. Reductions in excess air levels and overfire air operation were found to be effective in reducing NOx emission levels.

7. KEY WORDS AND DOCUMENT ANALYSIS				
a. DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group		
Air Pollution	Air Pollution Control	13B		
Nitrogen Oxides	Stationary Sources	07B		
Combustion Control	NOx Reduction	21B		
Coal	Tangential Firing	21D		
Boilers	Combustion Modification	13A		
18. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report) Unclassified	21. NO. OF PAGES		
Unlimited	20. SECURITY CLASS (This page) Unclassified	22. PRICE		