SIMULATION OF NUTRIENT LOADINGS IN SURFACE RUNOFF WITH THE NPS MODEL

Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Athens, Georgia 30601

RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are:

- 1. Environmental Health Effects Research
- 2. Environmental Protection Technology
- 3. Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies
- 6. Scientific and Technical Assessment Reports (STAR)
- 7. Interagency Energy-Environment Research and Development
- 8. "Special" Reports
- 9. Miscellaneous Reports

This report has been assigned to the ECOLOGICAL RESEARCH series. This series describes research on the effects of pollution on humans, plant and animal species, and materials. Problems are assessed for their long- and short-term influences. Investigations include formation, transport, and pathway studies to determine the fate of pollutants and their effects. This work provides the technical basis for setting standards to minimize undesirable changes in living organisms in the aquatic, terrestrial, and atmospheric environments.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

SIMULATION OF NUTRIENT LOADINGS IN SURFACE RUNOFF WITH THE NPS MODEL

by

Anthony S. Donigian, Jr.
Norman H. Crawford
Hydrocomp, Inc.
Palo Alto, California 94304

Research Grant No. R803315-01-2

Project Officer

Lee A. Mulkey
Technology Development and Applications Branch
Environmental Research Laboratory
Athens, Georgia 30605

ENVIRONMENTAL RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY ATHENS, GEORGIA 30605

DISCLAIMER

This report has been reviewed by the Athens Environmental Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

FOREWORD

As environmental controls become more costly to implement and the penalties of judgment errors become more severe, environmental quality management requires more efficient analytical tools based on greater knowledge of the environmental phenomena to be managed. As part of this Laboratory's research on the occurrence, movement, transformation, impact, and control of environmental contaminants, the Technology Development and Applications Branch develops management or engineering tools to help pollution control officials achieve water quality goals through watershed management.

Techniques for estimating the contribution of various land use activities to nonpoint source pollution are essential to the development of water quality management plans for specific areas. The Nonpoint Source Model, which was developed to simulate pollutant contributions to stream channels for nonpoint sources, was expanded to include nutrients. This report documents the expanded effort and illustrates the additional testing given the model.

David W. Duttweiler Director Environmental Research Laboratory, Athens, Georgia

ABSTRACT

The Nonpoint Source Pollutant Loading (NPS) Model was applied to one urban and two small agricultural watersheds to simulate nutrient loadings in surface runoff. Since the NPS Model simulates all nonpoint pollutants as a function of sediment loss, the key question was whether sediment is a reliable indicator of nutrients in surface runoff. Both the literature surveyed and the results of this work indicate Total nitrogen (N) and Total phosphorus (P) can be reasonably simulated in this manner. Also, organic components of N and P can be simulated since they are generally associated with sediment and comprise a major portion of the total nutrients in surface runoff.

Nitrate N (NO_3-N) and phosphate P (PO_4-P) are almost entirely contained in the soluble fraction of surface runoff and are not adequately simulated with the NPS Model. Ammonia N (NH_3-N) appears to be transported in significant amounts both in solution and attached to sediment; thus, the simulation results were inconclusive. Total Kjeldahl N (TKN) was simulated on the urban watershed which was large enough to provide a continuous baseflow. The simulated TKN values agreed reasonably well with recorded values except when baseflow TKN concentrations were high. Over 50% of the annual TKN loading was estimated to originate from the baseflow. Therefore, the NPS Model can simulate total nutrient loadings only in areas where subsurface contributions are minimal. This report was submitted in fulfillment of Grant No. R803315-01-2 by Hydrocomp Inc. under the sponsorship of the Environmental Protection Agency. The work was completed as of October 1976.

CONTENTS

Forewo	ord		iji
Table	es .		vı iii
		nd Abbreviations	
		gments	
	1.0	Conclusions and Recommendations	1
;	2.0	Introduction	3
;	3.0	Test Watersheds	6
4	4.0	Nutrient Simulation Results	11
!	5.0	Estimation of Nutrient Potency Factors	49
Refere	ence	5	53
Append	dices	S	
	۹.	Modifications to the NPS Model	56
i	В.	Corrections and Adjustments to the NPS Model Input Description	58
(C.	NPS Model Source Listing	62

FIGURES

Nun	<u>nber</u>	Page
1	Third Fork Creek, Durham, North Carolina	7
2	P2 Watershed, Watkinsville, Georgia	8
3	P6 Watershed, East Lansing, Michigan	9
4	Simulated monthly sediment and nutrient loss from Third Fork Creek	
5	Runoff and sediment loss for Third Fork Creek for the storm of January 10, 1972	15
6	TKN, Total P, and Fe concentrations from Third Fork Creek for the storm of January 10, 1972	16
7	Runoff and sediment loss for Third Fork Creek for the storm of February 1, 1972	17
8	TKN, Total P, and Fe concentrations for Third Fork Creek for the storm of February 1, 1972	18
9	Runoff and sediment loss for Third Fork Creek for the storm of February 12, 1972	19
10	TKN, Total P, and Fe concentrations for Third Fork Creek for the storm of February 12, 1972	20
11	Runoff and sediment loss for Third Fork Creek for the storm of June 20, 1972	21
12	TKN, Total P, and Fe concentrations for Third Fork Creek for the storm of June 20, 1972	22
13	Runoff and sediment loss for Third Fork Creek for the storm of October 5, 1972	23
14	TKN and Total P concentrations for Third Fork Creek for the storm of October 5, 1972	24
15	Monthly runoff, sediment, and Total P loss from the P2 watershed (May - September 1974)	26
16	Monthly Total N, NH ₃ -N, NO ₃ -N, and PO ₄ -P loss from the P2 watershed (May - September 1974)	27
17	Runoff, sediment loss, and Total P concentration for the P2 watershed for the storm of May 23, 1974	30
18	Total N, NH ₃ -N, NO ₃ -N, and PO ₄ -P concentrations for the P2 watershed for the storm of May 23, 1974	31

Nun	<u>nder</u>	Page
19	Runoff, sediment loss, and Total P concentration for the P2 watershed for the storm of June 27, 1974	32
20	Total N, NH_3 -N, NO_3 -N, and PO_4 -P concentrations for the P2 watershed for the storm of June 27, 1974	33
21	Runoff, sediment loss, and Total P concentration for the P2 watershed for the storm of July 27, 1974	34
22	Total N, NH ₃ -N, NO ₃ -N, and PO ₄ -P concentrations for the P2 watershed for the storm of July 27, 1974	35
23	Runoff, sediment loss, and Total P concentrations for the P2 watershed for the storm of August 16, 1974	36
24	Total N, NH_3-N , NO_3-N , and PO_4-P concentrations for the P2 watershed for the storm of August 16, 1974	37
25	Monthly runoff, sediment, and Total P loss from the P6 watershed (May - September 1974)	39
26.	Monthly Total N, NH ₃ -N, NO ₃ -N, and PO ₄ -P loss from the P6 watershed (May - September 1974)	40
27	Runoff, sediment loss, and Total P concentration for the P6 watershed for the storm of August 13, 1974	42
28	Total N, NH ₃ -N, NO ₃ -N, and PO ₄ -P concentrations for the P6 watershed for the storm of August 13, 1974	43
29	Runoff, sediment loss, and Total P concentration for the P6 watershed for the storm of August 27, 1974	44
30	Total N, NH ₃ -N, NO ₃ -N, and PO ₄ -P concentrations for the P6 watershed for the storm of August 27, 1974	45

TABLES

<u>Numbe</u>	<u>r</u>	Page
1	Fertilizer Applications on the P2 and P6 Watersheds in 1974	10
2	Simulated Monthly Sediment and Nutrient Loss from Third Fork Creek	13
3	1972 Pollutant Loadings in Urban Runoff from Third Fork Creek	14
4	Monthly Simulation Results and Recorded Data for the P2 Watershed (May - September 1974)	28
5	Monthly Simulation Results and Recorded Data for the P6 Watershed (May - September 1974)	41
6	Nutrient Potency Factors for the Test Watersheds	50
7	Nutrient Potency Factors for Urban and Agricultural Watersheds Derived from the Literature	51
8	Adjustments to Table 36 of the NPS Model Report: NPS Model Parameter Input Sequence and Attributes	59

LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOLS

Fe -- iron

N -- nitrogen

NH₃ -- ammonia

 NH_3-N -- nitrogen in the ammonia form

NO₃ -- nitrate

 NO_3-N -- nitrogen in the nitrate form

P -- phosphorus

PO₄ -- phosphate or orthophosphorus

 $PO_{\mu}-P$ -- phosphorus in the phosphate form

TKN -- total Kjeldahl nitrogen, i.e. organic nitrogen

and ammonia nitrogen

ABBREVIATIONS

cm -- centimeters

cms -- cubic meters per second

qm/ha -- grams per hectare

ha -- hectare

kg/ha -- kilograms per hectare

m -- meters

mg/l -- milligrams per liter

mm -- millimeters

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance and coordination provided by Mr. Lee A. Mulkey, Project Officer, of the EPA Environmental Research Laboratory in Athens, Georgia. Mr. David M. Cline and Mr. Charlie Smith of the Athens Laboratory were instrumental in supplying the needed data for testing purposes. Their assistance is sincerely appreciated.

At Hydrocomp, Dr. Norman H. Crawford was the principal investigator and Mr. Anthony S. Donigian, Jr. was the project manager. Mr. Harley H. Davis assisted in the literature search and analysis, nutrient data analysis, and model application. Drafting duties were ably performed by Mr. Guy Funabiki and the report was edited and typed by Ms. Donna D'Onofrio.

SECTION 1.0

CONCLUSIONS AND RECOMMENDATIONS

The Nonpoint Source Pollutant Loading (NPS) Model can be used to estimate total nutrient loadings from the land surface of urban and agricultural areas. Test results on a 433-hectare (ha) urban watershed (Third Fork Creek) in Durham N.C. show that simulated Total phosphorus (P) and iron (Fe) concentrations during a storm compare well with recorded values. Total annual loadings for 1972 were within 20% of the values estimated from regression analysis of the data. Simulated Total Kjeldahl nitrogen (TKN) concentrations and loadings were less accurate due to TKN concentrations in baseflow. Since in-stream processes and subsurface pollutant contributions occur in Third Fork Creek and are not simulated in the NPS Model, the size of the watershed approaches the upper limit of applicability of the model.

Where subsurface contributions are significant, the NPS Model should be modified to allow specification of average monthly pollutant concentrations in subsurface flow. If in-stream processes are major, the NPS Model should be interfaced with a stream water quality model. Both of these procedures would be required to simulate nonpoint pollution in large watersheds.

Nutrient concentrations and loadings were also simulated from two small agricultural watersheds (1.3 and 0.8 ha) in Watkinsville, Georgia and East Lansing, Michigan for the 1974 growing season. Total P and Total nitrogen (N) concentrations and loadings were adequately simulated because these nutrient forms are largely associated with the sediment fraction of surface runoff. Ammonia nitrogen (NH₃-N) values were not simulated as well as Total P and Total N since NH₃-N transport in solution was found to be significant. Nitrate nitrogen (NO₃-N) and phosphate phosphorus (PO₄-P) values were not adequately represented because they are transported almost entirely in solution form. Accordingly, the NPS Model should not be used to estimate loadings for these nutrient forms.

Just as Third Fork Creek approaches the upper size limit for the NPS Model, the agricultural watersheds were too small for accurate representation of the hydrologic and sediment characteristics. The NPS Model should only be applied to watersheds for which the 15-minute simulation interval is reasonable. The range of watershed sizes simulated in this study (0.8 to 433 hectares) provides estimates of the upper and lower bounds of applicability.

The nutrient simulation results were obtained by estimating the nutrient potency factors (i.e. nutrient loss/sediment loss x 100%) from observed

data and then calibrating the values by comparing simulated and recorded concentrations. The goal was to evaluate the use of sediment loss, as simulated in the NPS Model, as an indicator of nutrient loadings in surface runoff. Further testing and verification should be conducted to see if the potency factors can be estimated, without calibration, as a function of fertilizer applications, management practices, soil characteristics, crop behavior, etc. Only in this way can the NPS Model be effectively applied in areas where little data is available.

The conclusions presented in this report do not mean that soluble nutrient forms are unimportant. In areas where subsurface flow is a major portion of total runoff, soluble nutrient forms may comprise much of the nutrient loading. The literature and results of this work indicate that total nutrient loads in surface runoff are associated largely with sediment. Until research can accurately represent the complex reactions and transformations of nutrient forms in all flow components, the NPS Model can be used to estimate total nutrient loads in surface runoff as a function of sediment loss.

SECTION 2.0

INTRODUCTION

This report presents the results of further testing of the NPS Model to specifically evaluate its applicability for simulating nutrient loadings from urban and agricultural watersheds. The NPS Model has been described in a previous EPA report (1). The reader is referred to the original report on the development and testing of the model which also provides guidelines for its use and application.

The NPS Model was developed to provide a tool to regional, state, and local planning agencies for the evaluation and analysis of nonpoint pollution problems. The model continuously simulates hydrologic processes, including snow accumulation and melt, pollutant accumulation, generation, and washoff from the land surface. Sediment and sediment-like material is used as the basic indicator of nonpoint pollutants. These erosion processes are simulated on both pervious and impervious areas. Pollutant loadings are determined by multiplying the resulting sediment discharge by "potency factors" i.e. pollutant mass/sediment mass x 100 percent, representing the pollutant strength of the sediment. The potency factors are specified for each pollutant by the user as single average values or 12 monthly values; the same potency factors are used throughout the simulation period.

The NPS Model is called a "pollutant loading" model because it simulates the total input or pollutant loading from the land surface to a stream channel or waterbody. Although the hydrologic algorithms simulate all runoff components (surface runoff, interflow, groundwater flow), the present version of the model evaluates only surface pollutant contributions. Subsurface, groundwater pollutants, and channel processes are not considered. For water quality simulation in watersheds where in-stream processes are significant, the NPS Model must be interfaced with a stream water quality model.

Since the NPS Model simulates all pollutants as a function of sediment washoff, the goal of this work was to evaluate how well this assumption works for various compounds of nitrogen (N) and phosphorus (P). A review of the literature has shown the majority of the Total N and Total P in surface runoff from agricultural lands is associated with the sediment fraction. Burwell, et al (2) estimate more than 96% of Total N and 95% of Total P losses in surface runoff from experimental plots [4.05 meters (m) x 22.13 m] in Minnesota were transported by sediment. These values pertain to plots managed as continuous fallow, continuous corn, and rotation corn. Plots managed as rotation hay produced little sediment loss with all of the

runoff nutrients occurring in soluble form. However, the absolute value of soluble nutrient losses were low for all the experimental plots. Organic N on sediment was the predominant nitrogen form, except during snowmelt periods when nitrate nitrogen (NO $_3$ -N) was prevalent. Ammonia nitrogen (NH $_3$ -N) losses occurred both on sediment and in solution in almost equal proportions. Phosphorus losses were measured largely as Total P on sediment except for some Ortho-P (PO $_4$ -P) and Total P in solution during snowmelt. In general, soluble nutrient losses occurred during the snowmelt period which produces most of the annual runoff.

Kissel, et al (3) noted similar results for nitrogen losses from duplicate 4-hectare (ha) watersheds in Texas. Runoff samples collected over a 4-year period indicate 85% and 77% of Total N was transported by sediment from the two watersheds planted on a rotation of grain sorghum, cotton, and oats. Johnson, et al (4) found that 80% of the Total P losses from a 330 km rural watershed in central New York were attached to the suspended solids measured in the stream. Most of the solid phase P was insoluble phosphate compounds and organic P. Using simulated rainfall on plots in Indiana, Romkens, et al (5) found high percentages of total nutrients in surface runoff were components of sediment under five different tillage systems. However, tillage practices that reduced sediment loss would also reduce sediment associated nutrient losses, but would increase the soluble nutrients in the surface runoff. An almost linear relationship (referred as "curvilinear") was established between sediment loss and sediment-associated N and P losses. On four watersheds (30 to 60.8 ha) in Southwestern Iowa, Schuman, et al (6) observed the percent of Total N losses associated with sediment was 92% for contour-planted corn watersheds and 51% for pasture watersheds. However, Total N losses from the pasture watershed was only 7.6% of the contour-planted watershed. Annual soluble N losses were low from all four watersheds during the 3-year study.

Urban watersheds have not been as extensively monitored for the transport mechanisms of nutrient losses as have agricultural areas. In a study on nutrient loadings to a lake from urban residential land, Kluesener (7) and Kluesener and Lee (8) noted a striking similarity between the measured Total Solids concentrations and the Organic N and Total P concentrations during storm events. Sediment appeared to be the major transport mode for these constituents. Organic N was responsible for 77% of the Total N loading. Data presented by Cowen et al (9) for the same area showed Organic N was commonly associated with particulate matter. In a major study in Durham, N.C., Colston (10) extensively sampled solids, nutrients, organics, and metals from a mixed land-use urban watershed for an 18-month period. Colston's data showed a close correlation between Total Kjeldahl N (TKN), Total P, and the solids concentration. The more soluble nutrient forms (e.g. NO₃, PO₄, NH₃) were not analyzed so no indication of their relative importance was possible.

In summary, the literature appears to indicate sediment can be used as a reasonable indicator of nutrient loadings by surface runoff from agricultural and urban lands. However, soluble nutrient losses can be significant in watersheds where subsurface discharge is a major component of the runoff. Burwell, et al (11) found subsurface transport of soluble N

accounted for 80% of the Total N loss from level-terraced and pasture watersheds. But looking only at the surface runoff from those same watersheds, 75-80% of the surface N losses occurred on the sediment. The intent of this investigation was to evaluate the use of sediment as an indicator of nutrient loadings in surface runoff as formulated in the NPS Model. Section 3.0 describes the three test watersheds and Section 4.0 presents the simulation results. Estimating nutrient potency factors is discussed in Section 6.0 and general value ranges are included. The appendices provide a description of the minor modifications to the NPS Model performed during this study, correction of errors noted in the NPS Model report, and a new listing of the NPS Model.

SECTION 3.0

TEST WATERSHEDS

Simulation of nutrient loadings with the NPS Model was performed on one urban watershed and two small agricultural watersheds. The urban watershed is the Third Fork Creek in Durham, N.C. and the agricultural watersheds are the P2 watershed in Watkinsville, Georgia and the P6 watershed in East Lansing, Michigan. These watersheds were chosen because of data availability and previous simulation work. Third Fork Creek was one of the test areas for the NPS Model development work and the P2 and P6 watersheds are test sites for continuing research work on the simulation of pesticides and nutrients on agricultural lands (12).

Third Fork Creek represents a typical urbanized area in the Piedmont region of the Southeastern United States. The basin encompasses a variety of land uses in the general categories of residential (60%), commercial (17%), industrial (13%), and open land (10%). Upper Third Fork Creek, simulated in this study, drains an area of 433 ha located within the city limits of Durham, North Carolina (Figure 1). The watershed contains approximately 30% impervious land and has been the subject of urban runoff studies by Colston (10) and Bryan (13). The NPS Model report (1) provides a complete description of Third Fork Creek and the data used in simulation.

P2 and P6 are small experimental agricultural watersheds on which recent data collection and analysis programs have been sponsored by the U.S. Environmental Protection Agency. In cooperative agreements with the USDA Southern Piedmont Conservation Research Center (Watkinsville, Georgia) and Michigan State University's Department of Crop and Soil Science and Department of Entomology, the Environmental Research Laboratory in Athens, Georgia directed these programs. Instrumentation was established for continuous monitoring of meteorologic conditions and continuous sampling of runoff and sediment from the experimental watersheds. The collected samples and periodic soil cores were analyzed for both pesticide and nutrient content. Field operations, chemical applications, and crop growth were monitored on four watersheds in Georgia and two watersheds in The general goal is to provide extensive data for the development of simulation models for evaluating nonpoint pollution from agricultural lands and the impact of land management practices. programs and model development are described in a report by Donigian and Crawford (12).

P2 (Figure 2) and P6 (Figure 3) are small natural watersheds draining 1.3 and 0.8 ha respectively. Both watersheds were planted to corn in 1974 with

Figure 1. Third Fork Creek, Durham, North Carolina

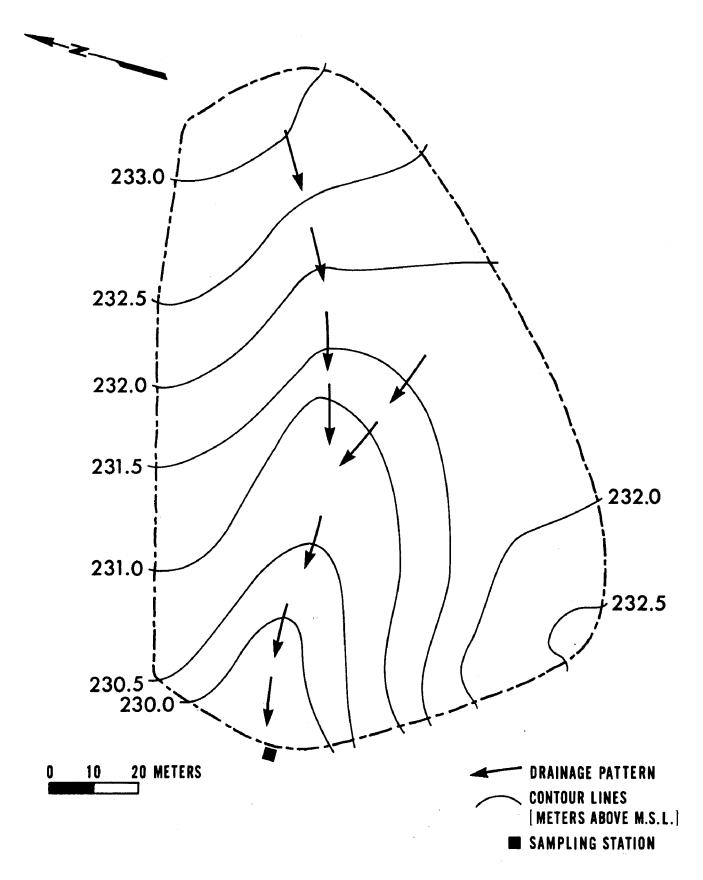


Figure 2. P2 Watershed, Watkinsville, Georgia (1.3 ha)

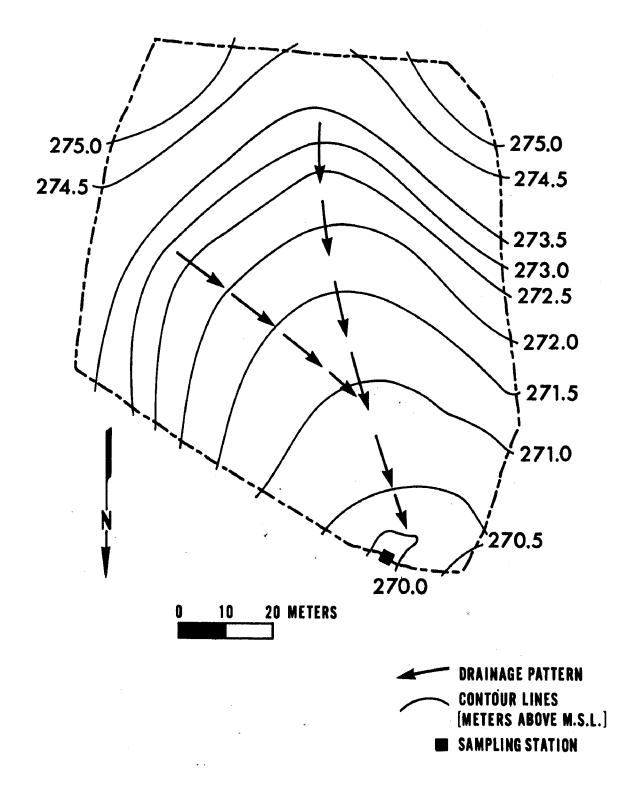


Figure 3. P6 Watershed, East Lansing, Michigan (0.8 ha)

fertilizer applications prior to planting and six weeks following. Table 1 lists the fertilizer application dates and amounts. The P2 watershed has an average slope of 2.5% and is comprised of Cecil sandy loam. The P6 watershed has a 6% slope with a variety of soil types including Spinks sandy loam and Travers, Hillsday, and Tuscola loam. Minimum tillage practices were followed on both watersheds with tillage operations performed only prior to planting.

TABLE 1. FERTILIZER APPLICATIONS ON THE P2 AND P6 WATERSHEDS IN 1974

Watershed	Date	N (kg/ha)	P (kg/ha)
P2 Watershed	4/29/74 (planting) 6/11/74	38 112	33
P6 Watershed	5/20/74 (planting) 7/8/74	68 130	93

SECTION 4.0

NUTRIENT SIMULATION RESULTS

The NPS Model was applied to each of the watersheds described in Section 3.0 for the period of available nutrient data. Monthly potency factors for various nutrient forms were calculated from the observed data. These initial values for the potency factors were adjusted slightly to improve agreement between simulated and observed nutrient washoff. The simulation results are discussed below for each watershed.

THIRD FORK CREEK, DURHAM, N.C.

Runoff, sediment, and nutrient loadings for Third Fork Creek were simulated for an 18-month period from October 1971 through March 1973. Simulated loadings of sediment (measured as Total Solids), TKN, Total P, and Fe are shown in Figure 4 and listed in Table 2. The hydrologic and sediment calibration was discussed in the NPS Model report and will not be repeated here. The variation in sediment and nutrient loadings shown in Figure 4 reflects the use of sediment as a pollutant indicator in the NPS Model. Since only selected storms were sampled on Third Fork Creek during the 18-month period, observed monthly loading values were not available for comparison with the simulation results. However, Colston (10) did estimate the 1972 pollutant loadings from regression equations developed from data on the 36 sampled storm events and extended to all 66 events that occurred on Third Fork Creek in 1972. The predicted loadings were then adjusted to correct a bias in the automatic sampling technique due to location of the equipment at the streambed. Because Third Fork Creek experiences a groundwater contribution, the pollutant loadings of the baseflow were estimated from analysis of periodic grab samples. Table 3 compares the NPS Model simulated pollutant loadings for 1972 with Colston's estimates. Since the NPS Model simulates only surface pollutant contributions, the simulated values should be compared with the storm runoff estimates. Except for TKN the simulated loadings are within 20% of Colston's estimates. This agreement is reasonably good considering the bias in the sampling technique, the regression method of estimation used by Colston, and the effects of in-stream processes and groundwater contributions neglected in the NPS Model. The over-simulated TKN loading is partially a result of calibrating the NPS Model potency factors with the storm-event data (discussed below). Over 50% of the total annual TKN loading originates from baseflow, according to Colston's estimates. Consequently, potency factors calibrated on storm events which include both surface runoff and groundwater would over-estimate the surface runoff contribution. Subsurface and groundwater flow paths appear to be significant for TKN

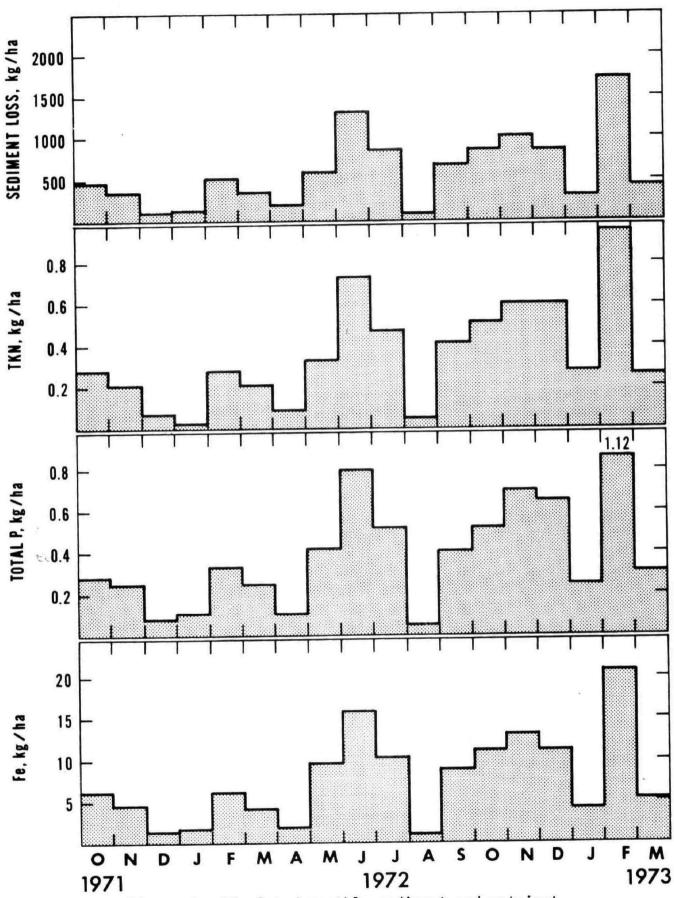


Figure 4. Simulated monthly sediment and nutrient loss from Third Fork Creek.

TABLE 2. SIMULATED MONTHLY SEDIMENT AND NUTRIENT LOSS FROM THIRD FORK CREEK

Month	Sediment kg/ha	TKN kg/ha	Total P kg/ha	Fe kg/ha
1971				
October	473	0.28	0.28	6.15
November	352	0.21	0.25	4.58
December	105	0.07	0.08	1.36
1972			·	
January	133	0.12	0.11	1.73
February	513	0.28	0.33	6.15
March	353	0.21	0.25	4.23
April	154	0.09	0.11	1.85
May	597	0.33	0.42	7.16
June	1326	0.73	0.80	15.91
July	861	0.47	0.52	10.33
August	90	0.05	0.05	1.09
September	686	0.41	0.41	8.91
October	858	0.51	0.52	11.15
November	1002	0.60	0.70	13.02
December	860	0.60	0.65	11.18
1973				
January	314	0.28	0.25	4.08
February	1730	0.95	1.12	20.76
March	439	0.26	0.31	5.26
Total	10846	6.45	7.16	134.90
Total for 1972	7433	4.40	4.87	92.71

loadings in Third Fork Creek; these contributions are not evaluated in the NPS Model.

TABLE 3.	1972 ANNUAL	POLLUTANT	LOADINGS	IN	URBAN	RUNOFF
	FROM THIRD	FORK CREEK	(kg/ha)			

	Estimated Total	by Cols Base Flow	ton (10) Storm Runoff	NPS Model Simulation Surface Runoff	% Difference ^a
Sediment	8624	672	7952	7433	-6.5
TKN	6.8	3.7	3.1	4.4	+41.9
Total P	5.3	1.0	4.3	4.9	+14.0
Fe	114.5	2.5	112	92.7	-17.2

a % Difference = NPS Model Simulation - Storm Runoff from Colston x 100%

Figures 5 through 14 present simulated and recorded data for five of the storms used in calibrating the nutrient potency factors on Third Fork Creek. Runoff and sediment loss for each storm are included in Figures 5, 7, 9, 11, and 13 to provide a basis for evaluating the nutrient simulation results. TKN, Total P, and Fe simulation results are shown in Figures 6, 8, 10, 12, and 14, except Fe was not measured in the storm of October 5, 1972 (Figure 14). Although the NPS Model simulates all streamflow components (surface runoff, interflow, groundwater), only surface pollutant loadings are evaluated. Also, in-stream processes are not considered in the model although such processes do occur in the Third Fork Creek watershed. (The possible impact of in-stream processes was discussed in the NPS Model report). These factors should be kept in mind when reviewing the simulation results.

Analysis of the results for Third Fork Creek indicate the following points:

- (1) Total P and Fe concentrations are relatively close to recorded values for the majority of the storms. Also, the shape of the Total P and Fe curves is similar to the sediment curve indicating sediment as the significant transport medium.
- (2) TKN concentrations show considerable variation from storm to storm. For the January 10 storm (Figure 6), the shape of the TKN curve is similar to the sediment curve (Figure 5) but the recorded values are twice the simulated TKN values. Since the same potency factor is used for all storms that occur in the same month, the remaining data for January did not warrant increasing the potency factor. Baseflow samples on January 5, January 19, and January 26 contained TKN concentrations of 1.2, 2.9, and 2.9 mg/l respectively. Also similar measurements during November and December 1971 produced TKN concentrations of up to 9.0 mg/l. These values are generally much higher than ones observed during storm events. Colston noted that the high TKN concentrations in two December 1971 storms were believed to

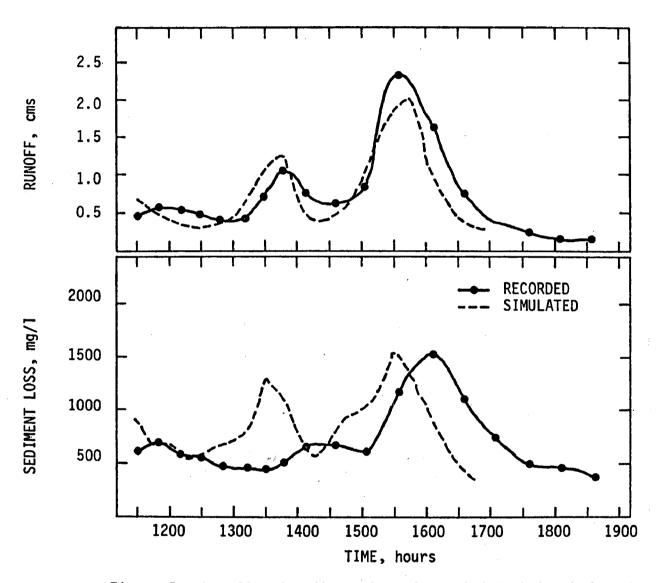


Figure 5. Runoff and sediment loss for Third Fork Creek for the storm of January 10, 1972.

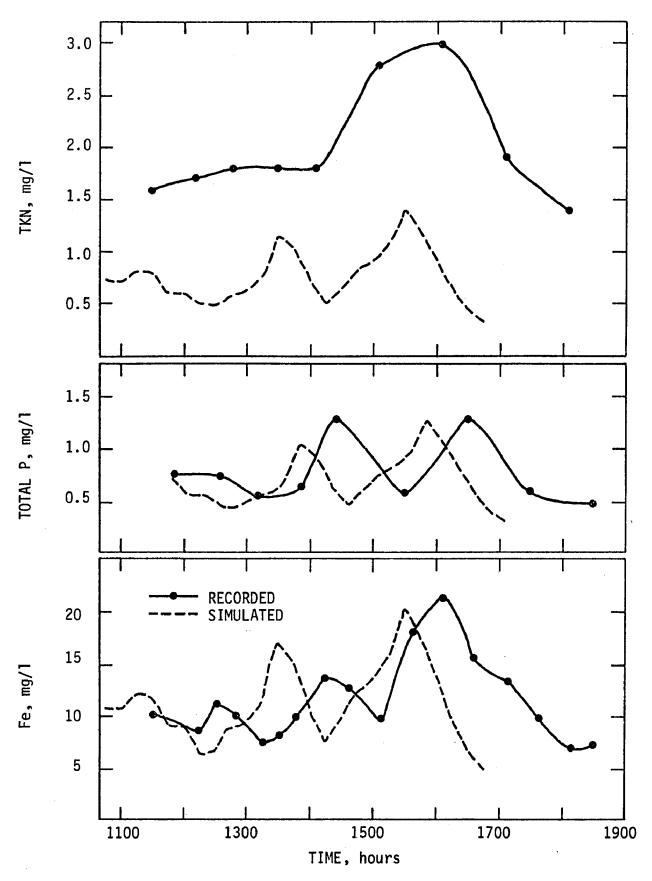


Figure 6. TKN, Total P, and Fe concentrations for Third Fork Creek for the storm of January 10, 1972.

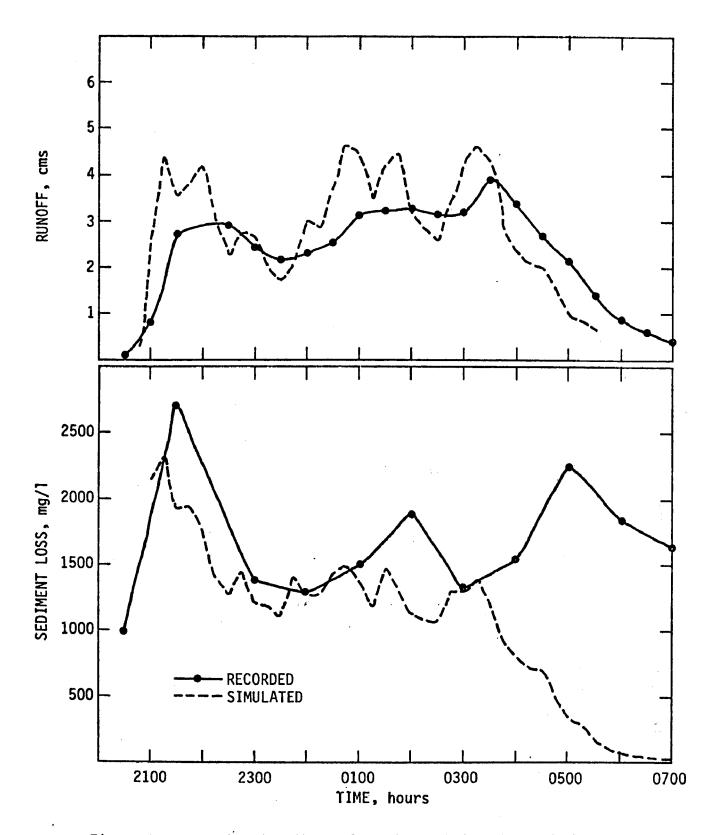


Figure 7. Runoff and sediment loss for Third Fork Creek for the storm of February 1, 1972.

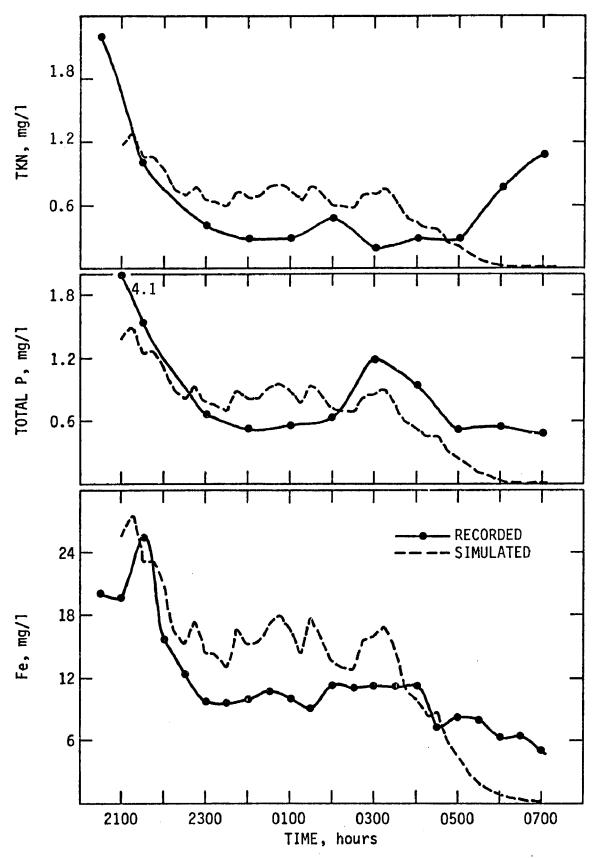


Figure 8. TKN, Total P, and Fe concentrations for Third Fork Creek for the storm of February 1, 1972.

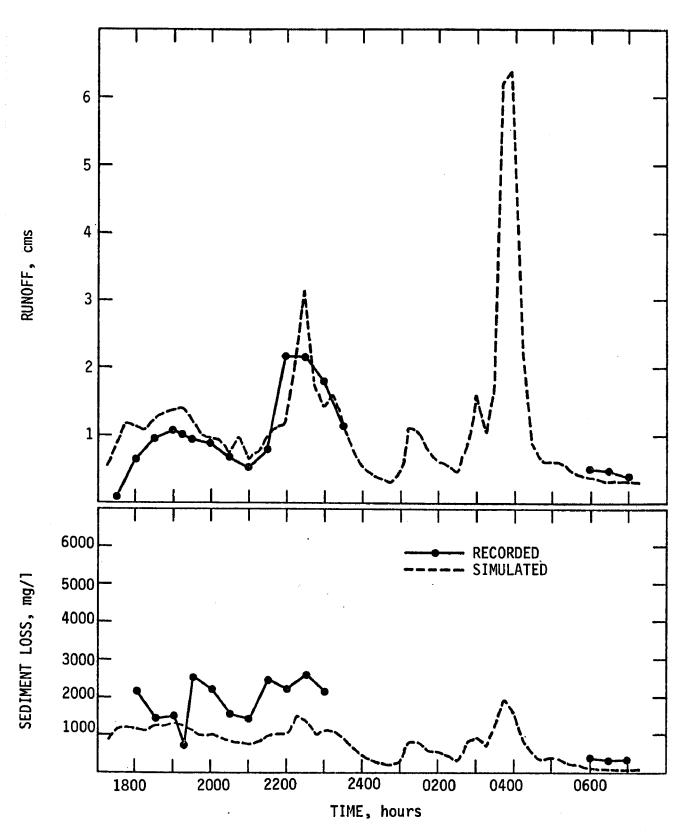


Figure 9. Runoff and sediment loss for Third Fork Creek for the storm of February 12, 1972.

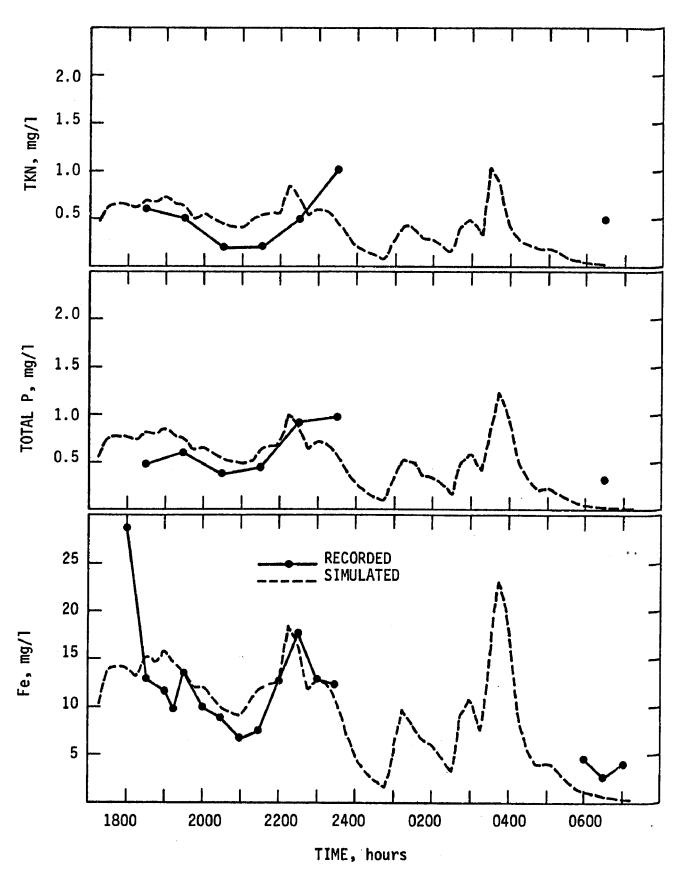


Figure 10. TKN, Total P, and Fe concentrations for Third Fork Creek for the storm of February 12, 1972.

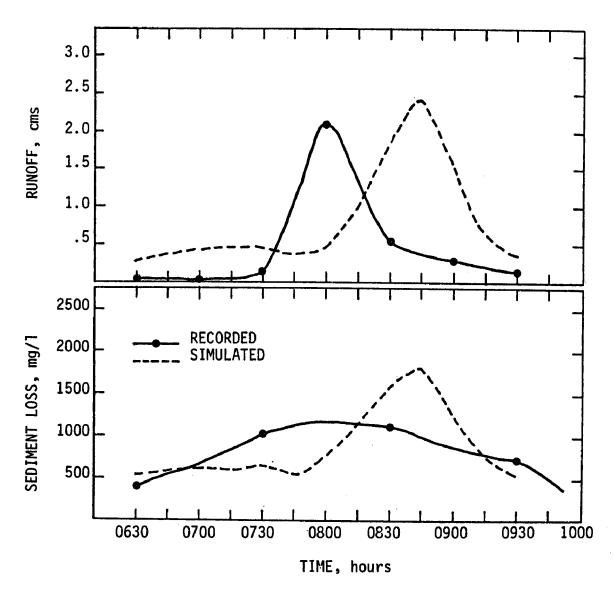
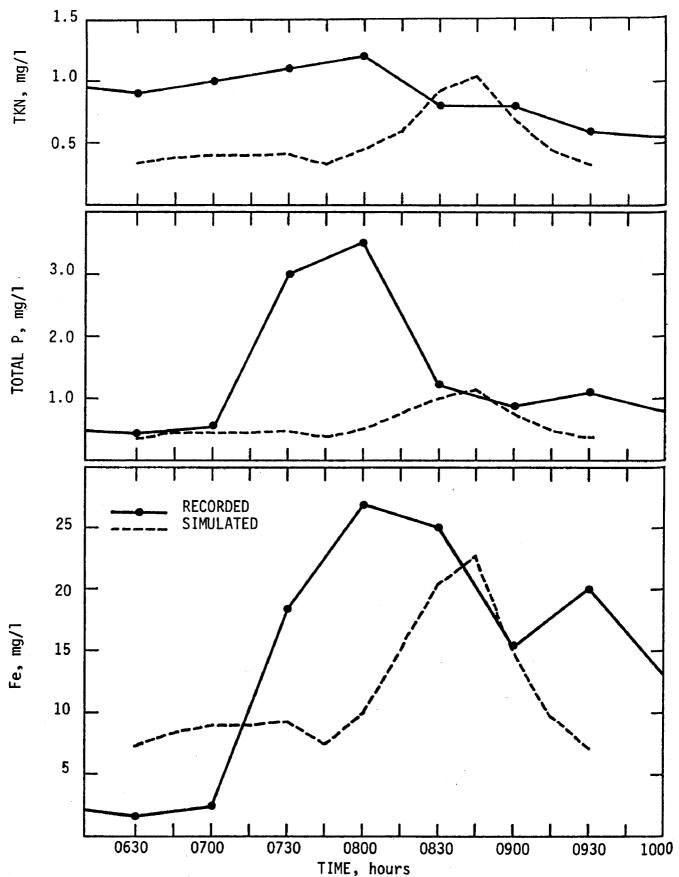



Figure 11. Runoff and sediment loss from Third Fork Creek for the storm of June 20, 1972.

TIME, hours
Figure 12. TKN, Total P, and Fe concentrations for Third Fork Creek for the storm of June 20, 1972.

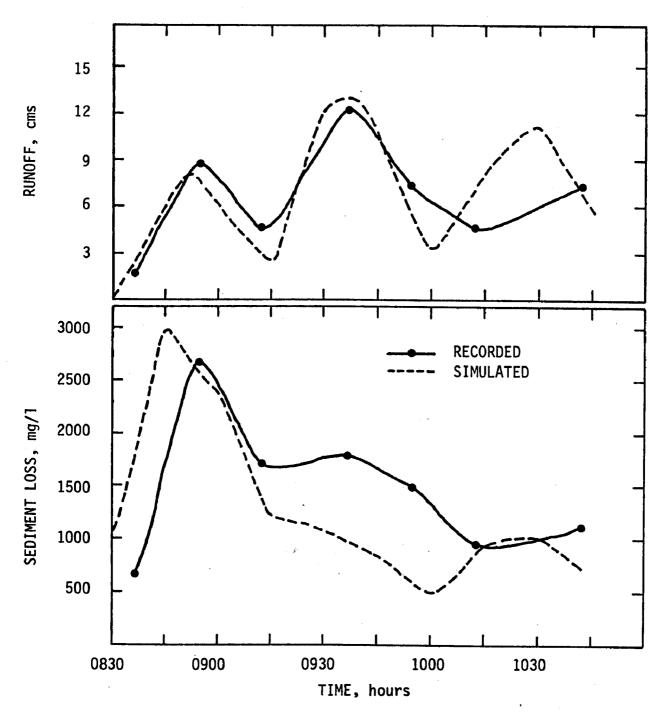


Figure 13. Runoff and sediment loss for Third Fork Creek for the storm of October 5, 1972.

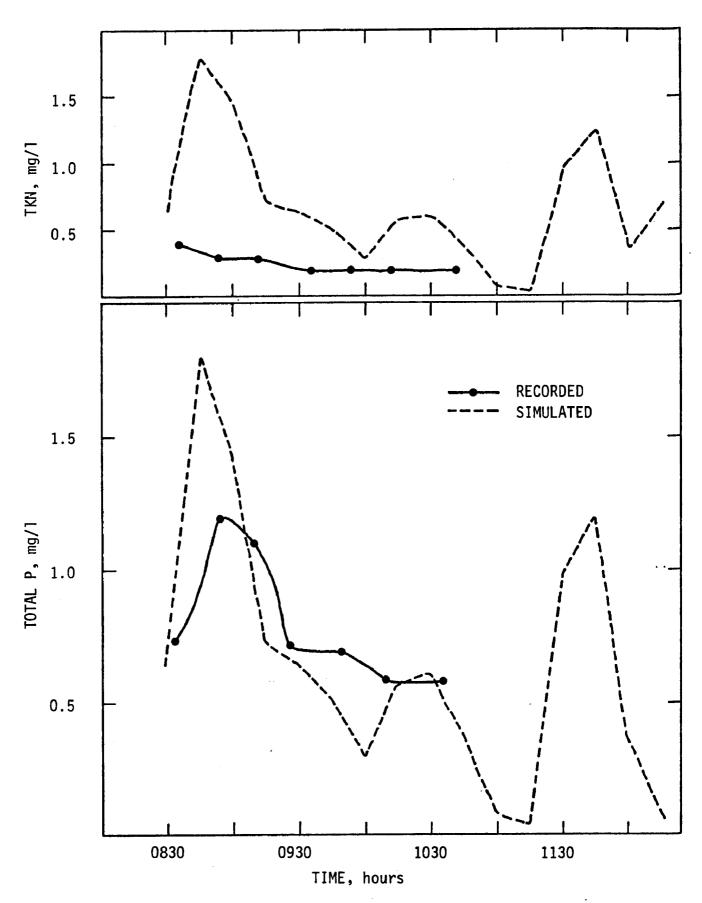


Figure 14. TKN and Total P concentrations for Third Fork Creek for the storm of October 5, 1972.

be erroneous. Thus, the high recorded values for January 10 could be due to unusual conditions and/or sampling/analysis errors.

(3) The TKN concentrations during February storms (Figures 8 and 10) are well represented by the simulation. Since the storms occur in the same month, the same potency factor for TKN was used. On the other hand, the October 5 storm (Figure 14) produced TKN concentrations reminiscent of baseflow; very little variation was recorded throughout the storm. Consequently, the simulated and recorded TKN concentrations for the October storm differ considerably with no apparent explanation.

(4) The February 1 storm (Figure 8) shows the impact of baseflow pollutant contributions. High TKN concentrations occurred at the beginning and end of the storm when flow was minimal and likely originating from subsurface and groundwater sources. Since baseflow TKN concentrations were high during this period (1.0 to 3.0 mg/l), the effect of the storm runoff was to dilute the baseflow contribution.

The simulation results for the June 20 storm (Figures 11 and 12) (5) demonstrate a number of problems that should be noted when comparing simulated and observed values. The runoff volume and peak flow are reasonably close except for a 1½ hour discrepancy in the timing of the Unless such differences occur consistently throughout the simulation period, they can usually be assigned to errors in the recorded time of either the input precipitation or the observed streamflow. Although the recorded sediment data does not closely correspond to the simulated values, the major reason for this is the lack of observed data points between 7:30 and 8:30 when the peak flow occurred. Total P, Fe, and suspended solids (not shown) had peak concentrations at 8:00; therefore, one would expect the sediment to behave in a similar fashion. A peak sediment concentration at 8:00 would have improved agreement between simulated and recorded values, although the timing error remains.

The nutrient simulation results for June 20 are similar to the results for the other storms except for greater differences between simulated and recorded values. Total P and Fe closely correspond to the "expected" sediment curves. The unusually high Total P concentrations are not substantiated in other summer storms; thus, the simulated values are low. The TKN concentrations show little variation with flow or sediment resulting in differences between the simulated and recorded values.

The simulation results for Third Fork Creek indicate the NPS Model, using sediment as a pollutant indicator, can reasonably represent Total P and Fe loadings from the land surface. Other constituents (e.g. micronutrients, heavy metals) behaving in a similar fashion would likely show similar accuracy. The TKN concentrations were not represented as well as Total P and Fe due in part to TKN concentrations in baseflow. Since pollutant concentrations in baseflow are less variable than in surface runoff, the NPS Model could be modified to allow input of monthly values for pollutant concentrations occurring in the baseflow. Such a modification would likely improve simulation results in watersheds where a groundwater flow component is present.

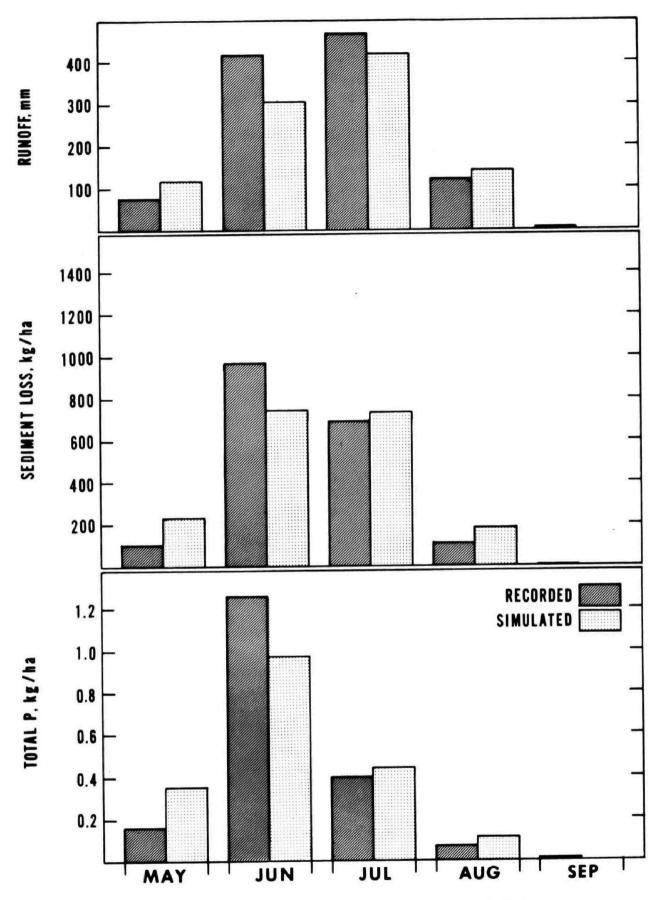


Figure 15. Monthly runoff, sediment and Total P loss from the P2 watershed (May-September 1974).

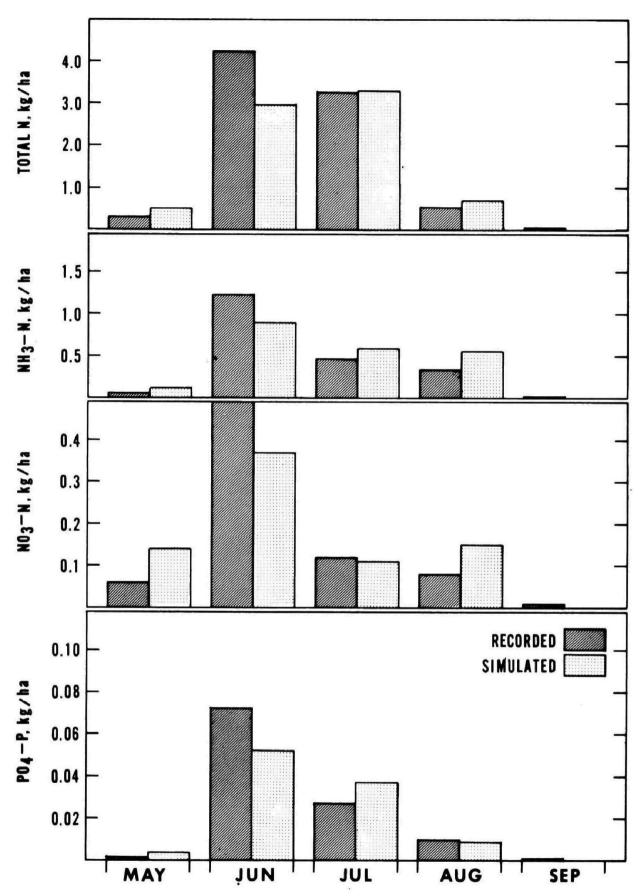


Figure 16. Monthly Total N, NH_3-N , NO_3-N and PO_4-P loss from the P2 watershed (May-September 1974).

P2 WATERSHED, WATKINSVILLE, GEORGIA

Nutrient loadings from the P2 watershed were simulated with the NPS Model for the 1974 growing season (May through September). Simulated and recorded monthly runoff, sediment, and nutrient loadings are shown in Figures 15 and 16, and listed in Table 4. The initial runoff and sediment parameters were obtained from modeling work on nearby watersheds (12) and slightly adjusted to better represent the recorded runoff and sediment

TABLE 4. SIMULATION RESULTS AND RECORDED DATA FOR THE P2 WATERSHED (May - September 1974)

Month		Runoff mm	Sediment kg/ha	Total P kg/ha	Total N kg/ha	NH ₃ +N kg/ha	NO ₃ -N kg/ha	PO4-P kg/ha
May	Rec.	77.	103.	0.16	0.31	0.06	0.06	.002
	Sim.	118.	235.	0.35	0.52	0.12	0.14	.004
June	Rec.	418.	972.	1.26	4.24	1.23	0.49	.072
	Sim.	307.	742.	0.97	2.97	0.89	0.37	.052
July	Rec.	470.	687.	0.40	3.27	0.46	0.12	.027
	Sim.	420.	734.	0.44	3.30	0.59	0.11	.037
August	Rec.	122.	105.	0.07	0.53	0.34	0.08	.010
	Sim.	142.	186.	0.11	0.71	0.56	0.15	.009
September	Rec.	6.	1.	0.01	0.02	0.01	0.01	.001
	Sim.	0.	0.	0.	0.	0.	0.	0.
Total	Rec.	1093.	1867.	1.90	8.36	2.09	0.76	0.112
10001	Sim.	987.	1898.	1.87	7.50	2.15	0.77	0.101

during the summer period. The simulated nutrient values result from monthly potency factors derived from the recorded data. The potency factors were also modified slightly in calibration by comparing simulated and observed nutrient concentrations. The results indicate Total P and Total N loadings are more closely associated with the sediment fraction of surface runoff than the other nutrient forms. Improving the sediment simulation would improve both the Total P and Total N results. The simulated NH₃-N loadings would also improve with a more accurate sediment simulation, but the discrepancies between simulated and recorded loadings are somewhat greater than for Total P and Total N. These results are

verified by the recorded data which indicates 79% of Total P, 64% of Total N, and 32% of NH₃-N in surface runoff during the 1974 growing season was associated with sediment.

The recorded NO $_3$ -N and PO $_4$ -P values were measured only in the water portion of surface runoff because the fraction of these nutrient forms attached to sediment is usually small. Thus one would not expect accurate simulation of NO $_3$ -N and PO $_4$ -P loadings using sediment as an indicator. Any agreement in Figure 16 reflects the dependence of sediment loss on runoff which is the transporting mechanism for these nutrient forms. However, the recorded values indicate NO $_3$ -N and PO $_4$ -P loadings are a small portion of the Total N and Total P losses from the P2 watershed.

Analysis of the simulation results for individual storm events was the basis for calibration of the nutrient potency factors. Unfortunately the short period of available nutrient data provided few storms with detailed data for calibration. However, sufficient results were obtained to provide another evaluation of the NPS Model and the use of sediment as a nutrient runoff indicator. Figures 17 through 24 present the simulated and recorded values for four storm events on the P2 watershed during the 1974 growing season. The runoff, sediment loss, and Total P concentrations are included in Figures 17, 19, 21, and 23, while the Total N, NH_3-N , NO_3-N , and PO_4-P concentrations are shown in Figures 18, 20, 22, and 24. Analysis of these results yields the following points:

- (1) One problem in simulating the P2 watershed was the small size of the watershed in relation to the 15-minute simulation interval of the NPS Model. The steep rising limb of the recorded hydrographs could not be accurately represented in many cases where the short summer thunderstorms occurred in less than three or four simulation time intervals. However, except for some timing problems, the runoff volumes and peak flows are simulated reasonably well for the four storms.
- (2) The sediment parameters were calibrated to improve agreement between simulated and recorded sediment concentrations. The results indicate the NPS Model can be calibrated to approximate sediment loss from agricultural watersheds. Although research is needed to more accurately represent the erosion process, sediment simulation with the NPS Model, as indicated by the results on the P2 watershed, is adequate for planning purposes.
- (3) As noted above for the monthly loading values, Total P concentrations closely follow the sediment values. Better simulation of sediment would improve the Total P simulation. Thus the use of monthly potency factors in the NPS Model is a good assumption for simulating Total P loadings.
- (4) Total N concentrations demonstrate some correlation to sediment but deviations do exist. The sediment and Total N curves for the storm of July 27 (Figures 21 and 22), are considerably different while the values for remaining storms show greater correspondence. For the latter events, an improved sediment simulation would improve the Total N simulation. Consequently, sediment is also a reasonable indicator for Total N loadings from the P2 watershed.

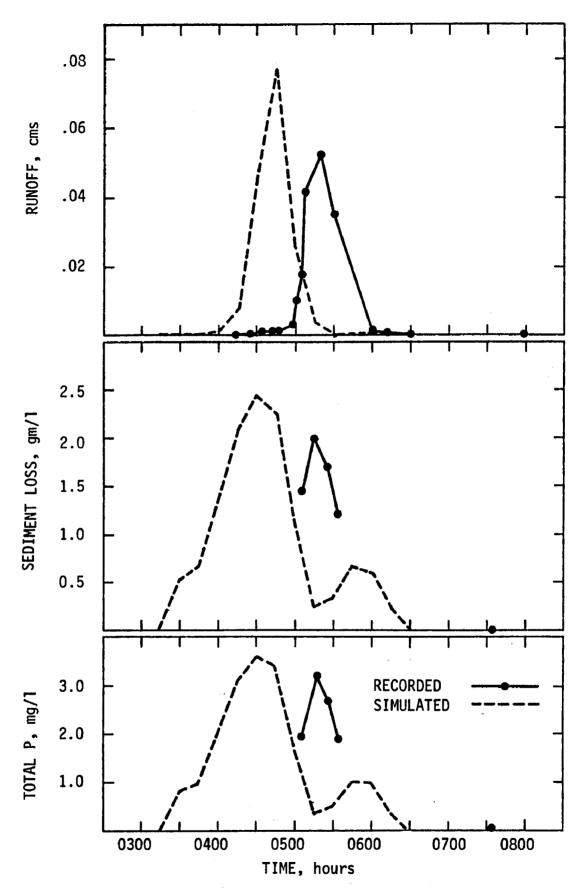


Figure 17. Runoff, sediment loss and Total P concentrations for the P2 watershed for the storm of May 23, 1974.

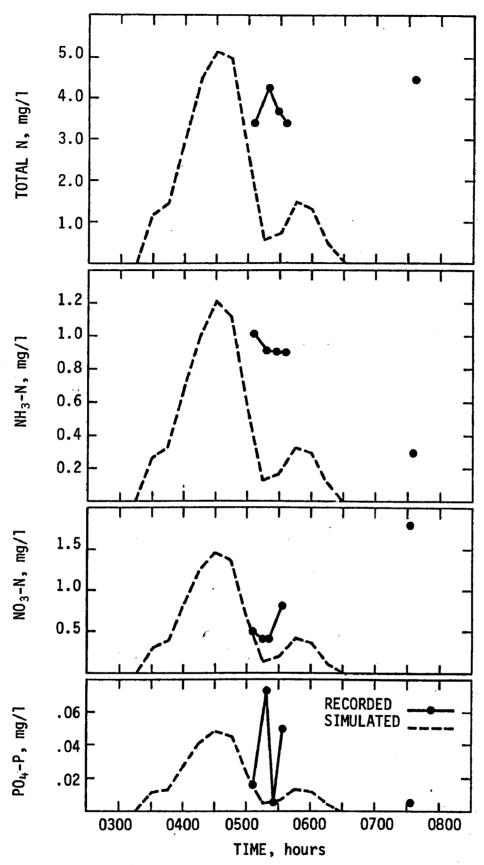


Figure 18. Total N, NH_3-N , NO_3-N and PO_4-P concentrations for the P2 watershed for the storm of May 23, 1974.

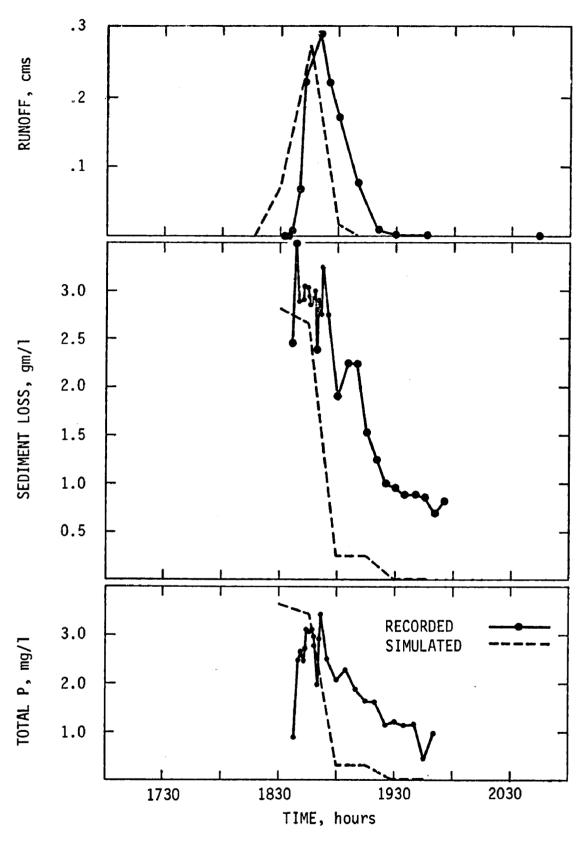


Figure 19. Runoff, sediment loss and Total P concentrations for the P2 watershed for the storm of June 27, 1974.

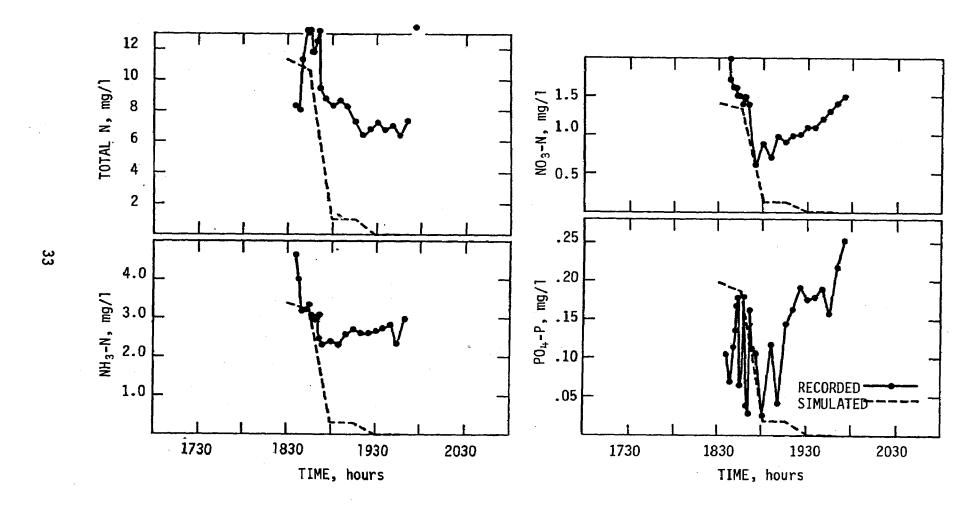


Figure 20. Total N, NH_3-N , NO_3-N and PO_4-P concentrations for the P2 watershed for the storm of June 27, 1974.

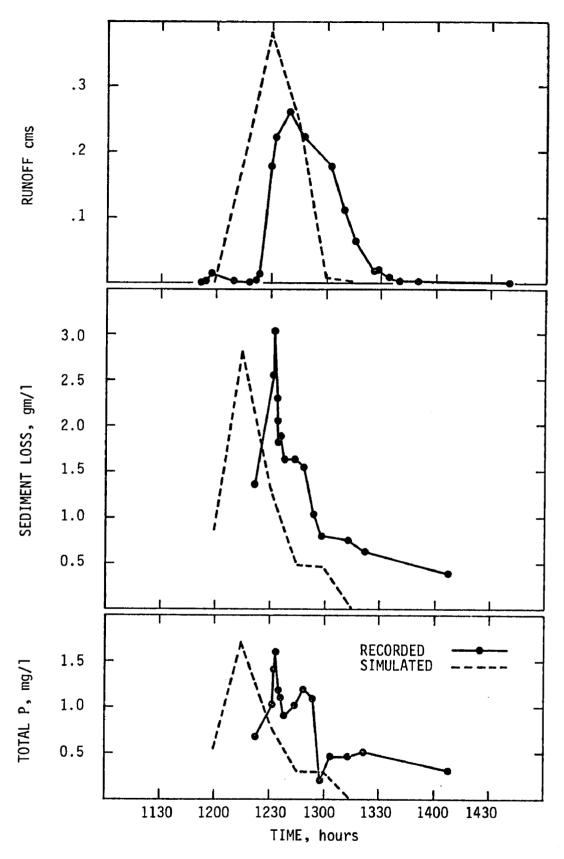


Figure 21. Runoff, sediment loss and Total P concentrations for the P2 watershed for the storm of July 27, 1974.

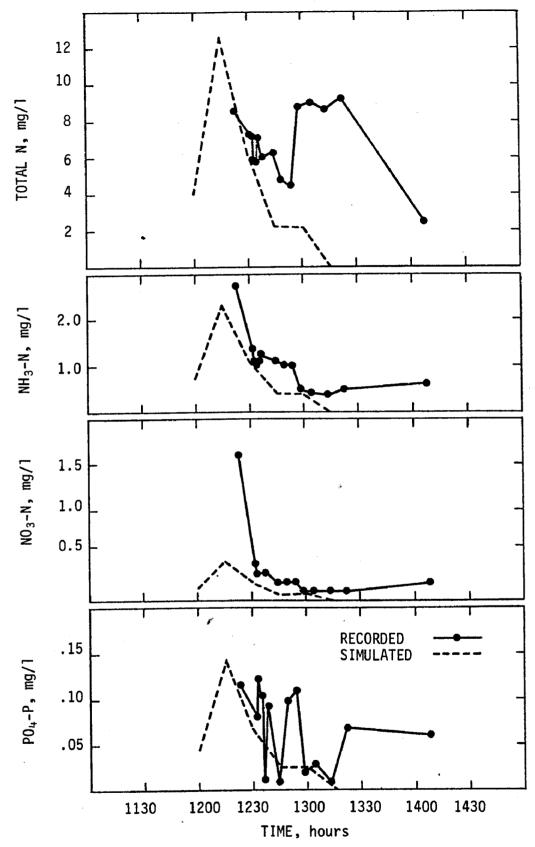


Figure 22. Total N, NH_3-N , NO_3-N and PO_4-P concentrations for the P2 watershed for the storm of July 27, 1974.



Figure 23. Runoff, sediment loss and Total P concentrations for the P2 watershed for the storm of August 16, 1974.

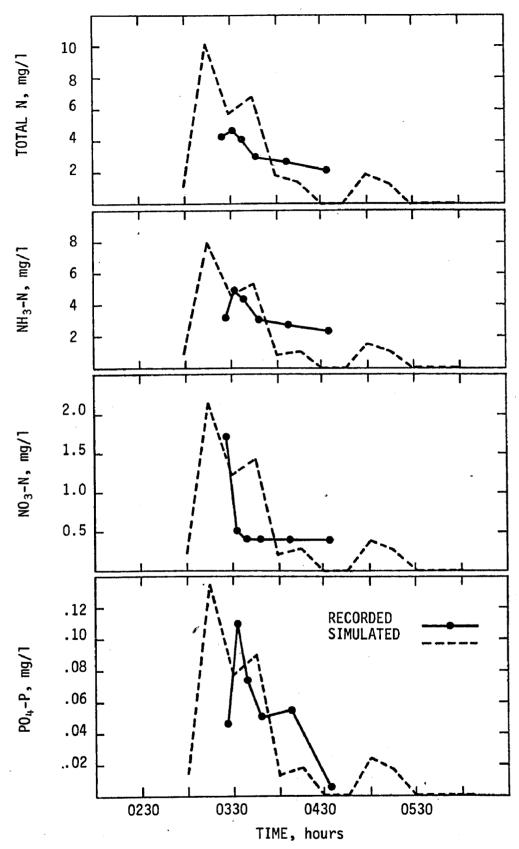


Figure 24. Total N, NH $_3$ -N, NO $_3$ -N and PO $_4$ -P concentrations for the P2 watershed for the storm of August 16, 1974.

- (5) For NH₃-N, the results are inconclusive. For some storm events, the NH₃-N concentrations are obviously influenced by the sediment values (Figures 21, 22, 23, and 24). In other cases, the NH₃-N concentrations are almost constant showing little variation with either flow or sediment loss. The recorded data on P2 demonstrates NH₃ is transported both on sediment and in solution.
- The variations in NO₃-N and PO₄-P concentrations during storm events demonstrate little or no relationship to sediment concentration. some cases, there appears to be an inverse relation to the flow rate. The extreme variations, especially for PO₄-P, are basically unexplained. They are likely due to instantaneous variations in sediment characteristics, areal variations in soil P concentrations, and relative amounts of surface and subsurface flow. In any case, high concentrations at low flow rates have little impact on the total storm nutrient load. Burwell, et al (14) found that neglecting such high concentrations had no significant impact on the calculated storm nutrient load when compared to an integrated method over the entire event. Thus, high concentrations occurring at low flow rates can be effectively neglected in the calibration process. This is demonstrated in Figure 18 where a concentration value is recorded two hours after the major portion of the storm event. Such concentrations are highly suspect because the value is an average concentration since the previous sample. With zero flow occurring between the samples. the last recorded value is not meaningful. Ideally, nonpoint pollutants from the land surface should be analyzed in terms of mass loading rates in order to mask irrelevant concentration variations (1. 12). The simulation results are presented in concentrations because few NPS Model users will have sufficient data to calculate mass loading rates during storm events; hence, comparing simulated and recorded concentrations will be the most common method of calibration.

Although the P2 watershed was simulated for only one summer growing season, the nutrient runoff data appears to corroborate other studies on agricultural runoff discussed in Section 3.0. The NPS Model simulation results indicate sediment is a reasonable indicator for total nutrient loads (e.g. Total P, Total N) from the P2 watershed, but not for individual constituents such as NO_3 -N and PO_4 -P found in the solution phase of surface runoff.

P6 WATERSHED, EAST LANSING, MICHIGAN

The P6 watershed was also simulated for nutrient loadings during the 1974 growing season. The monthly values shown in Figures 25 and 26, and listed in Table 5, indicate substantial differences between the monthly simulated and recorded runoff, sediment loss, and nutrient values. The discrepancies in the nutrient loadings are a direct result of problems with the hydrologic simulation. The large over-estimate of runoff in May is due to the inability to represent the hydrologic impact of tillage operations. On May 13 and 14, the P6 watershed was plowed to a depth of 25 cm. During the following three days, up to 60 mm of rainfall soaked into the fallow ground with negligible runoff produced. The NPS Model simulated the period as if plowing had not occurred, resulting in high simulated runoff and

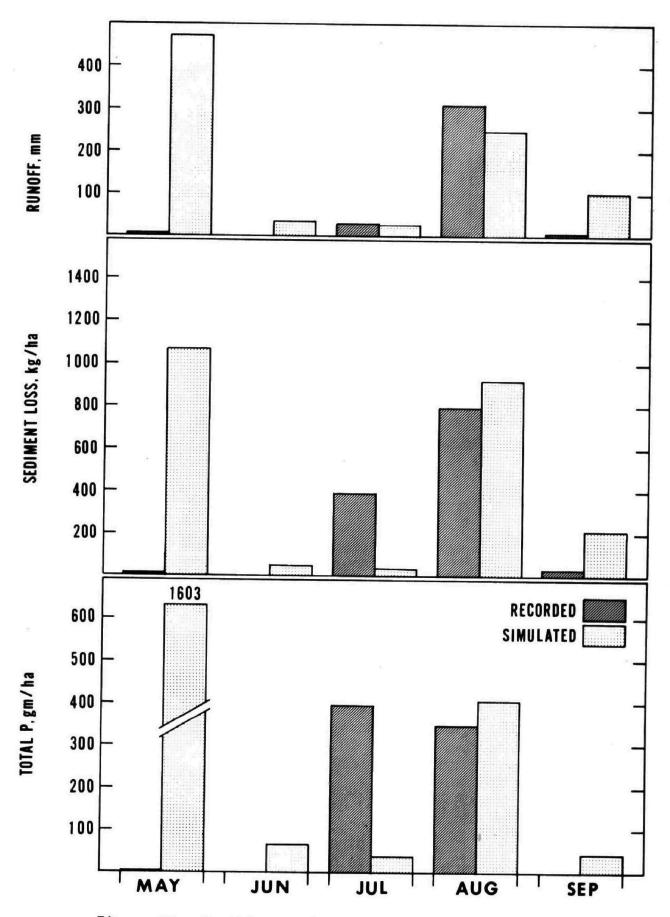


Figure 25. Monthly runoff, sediment and Total P loss from the P6 watershed (May-September 1974).

Figure 26. Monthly Total N, NH₃-N, NO₃-N and PO₄-P loss from the P6 watershed (May-September 1974).

TABLE 5. MONTHLY SIMULATION RESULTS AND RECORDED DATA FOR THE P6 WATERSHED

(May - September 1974)

Month		Runoff mm	Sediment kg/ha	Total P gm/ha	Total N gm/ha	NH ₃ -N gm/ha	NO ₃ -N gm/ha	PO ₄ -P gm/ha
May	Rec. Sim.	3 472	15. 1069.	2. 1603.	59. 5343.	0 534.	3. 2137.	0 855.
June	Rec. Sim.	0 35	0 55.	0 66.	0 220.	0 6.	0 27.	0 38.
July	Rec.	30 27	390. 38.	395. 38.	1401. 231.	34. 19.	112. 77.	256. 26.
August	Rec.	310 249	796. 921.	347. 405.	3215. 3683.	187. 212.	196. 277.	117. 138.
September	Rec.	8 102	35. 211.	0 43.	0 737.	0 21.	0 21.	0 17.

sediment loss. Since monthly potency factors were used in this simulation, the over-simulated sediment loss also caused high estimates of nutrient loss in May although fertilizer applications occurred after the major events.

The other discrepancies in Figures 25 and 26 exist because the P6 watershed is too small (0.8 ha) for an accurate simulation with the 15-minute simulation time step used in the NPS Model. This is also true for the P2 watershed although the impact was not as dramatic as on P6. The entire sediment and nutrient losses for P6 in July occurred in one summer thunderstorm (7/02/76) that lasted less than 15 minutes. Although the storm was only moderate (peak flow of 0.04 cms), it was the first significant summer event and occurred with little crop canopy, resulting in high sediment and nutrient losses. Because of its short duration, the storm could not be accurately represented by the NPS Model. Except for this July storm, the only other significant storm events during the 1974 growing season occurred in August. Fortunately, these events were of sufficient duration for a reasonable simulation. Figures 27 and 29 show the runoff, sediment, and Total P concentration, and Figures 28 and 30 provide the Total N, NH_3-N , NO_3-N , and PO_4-P concentrations for each event. The problems with the hydrologic simulation are evident. For the August 13 storm (Figure 27), the two recorded flow peaks are simulated as a single peak; the first flow peak, which occurs within seven minutes from

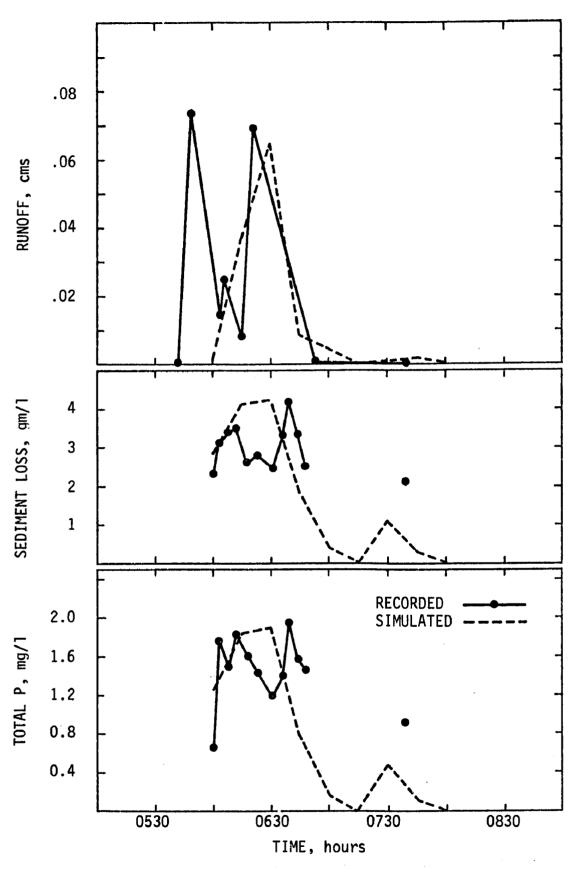


Figure 27. Runoff, sediment loss and Total P concentration for the P6 watershed for the storm of August 13, 1974.

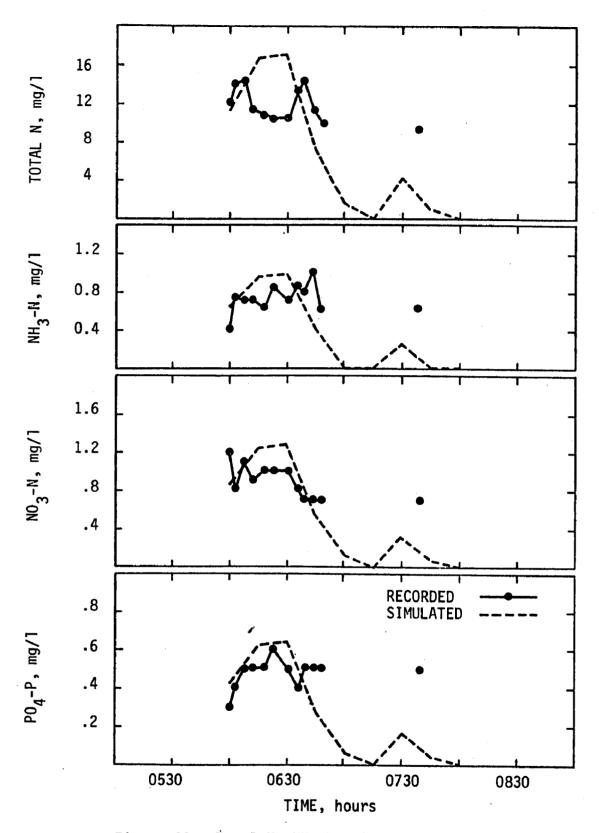


Figure 28. Total N, NH $_3$ -N, NO $_3$ -N and PO $_4$ -P concentrations for the P6 watershed for the storm of August 13, 1974.

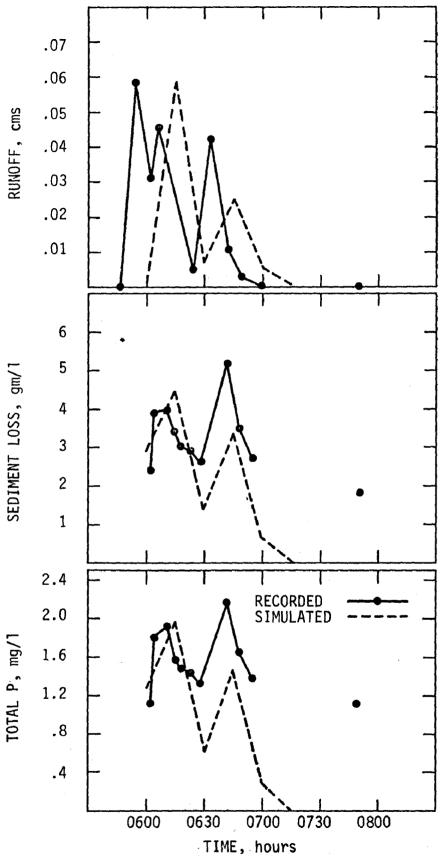


Figure 29. Runoff, sediment loss and Total P concentrations for the P6 watershed for the storm of August 27, 1974.

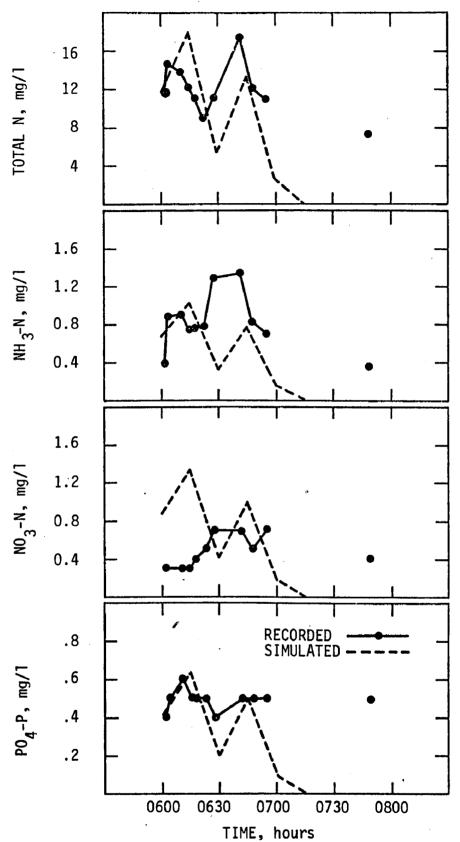


Figure 30. Total N, NH₃-N, NO₃-N and PO₄-P concentrations for the P6 watershed for the storm of August 27, 1974.

the beginning of the storm, is not represented. For the August 27 storm, the three recorded flow peaks are simulated as two. Since only one precipitation gage recorded rainfall for P6, the discrepancies between the simulated and recorded runoff are likely due to both the gross simulation interval and the areal variability in rainfall prevalent for thunderstorms in the region.

Despite these discrepancies, the runoff simulation for the August storm events is adequate for evaluating the sediment and nutrient simulation results. The conclusions stated for the P2 watershed apply also to the P6 watershed. The double-peak behavior of the recorded sediment for both storm events is reflected by the Total P and Total N concentrations. The NH_3-N , NO_3-N , and PO_4-P concentrations do not follow this pattern, except for the NH_3-N values on August 27 (Figure 32). The concentration variation in that storm would appear to indicate sediment is a significant transport medium for NH_3-N . As on the P2 watershed, high concentrations occurring at minor runoff rates at the end of the storm event are considered unreliable and are not connected to the other data points.

The simulated sediment and nutrient concentrations were adjusted by calibration of the potency factors. Since both storms occurred in August, the same potency factor was utilized verifying the use of average monthly values. Considering the discrepancies in the runoff simulation, the agreement between the simulated and recorded sediment, Total P, and Total N values is reasonable. Improving the runoff and sediment simulation would obviously improve the Total P and Total N simulation results. The same is true for NH₃-N for the August 27 storm, but the results are inconclusive for the August 13 storm. As for the P2 watershed, the NO₃-N and PO₄-P were measured only in solution; thus sediment is not a reliable indicator for these constituents. The agreement between the simulated and recorded PO₄-P concentrations is likely coincidental, especially for the August 13 storm where the sediment variations are not well represented.

In general, simulation of the P6 watershed has dramatized considerations important in calibrating the NPS Model to agricultural watersheds. The watershed should be large enough to allow a 15-minute simulation interval. Intense thunderstorms that begin and end in less than two or three intervals may not be adequately simulated. The hydrologic impact of tillage operations is not represented in the NPS Model; this topic is an area of continuing research. The monthly potency factors apply to all events in the same month; thus, events that precede and follow fertilizer applications may need to be calibrated separately. Because the day of planting and fertilizing will vary from year to year, the use of monthly potency factors should be sufficient for estimating average monthly nutrient loadings. The user needs to be aware of these considerations when calibrating the NPS Model.

Although differences exist between the simulated and recorded monthly values for P6, the storm simulation results indicate total nutrient loads can be reasonably simulated with the NPS Model using sediment as an indicator. These results confirm the findings from the P2 simulation.

SUMMARY

The NPS Model can be used to estimate total nutrient loadings from the land surface of urban and agricultural areas. Test results on a 433-ha urban watershed (Third Fork Creek) in Durham N.C. show that simulated Total P and Fe concentrations during a storm compare well with recorded values. Total annual loadings for 1972 were within 20% of the values estimated from regression analysis of the data. Simulated TKN concentrations and loadings were less accurate due to TKN concentrations in baseflow. Since in-stream processes and subsurface pollutant contributions occur in Third Fork Creek and are not simulated in the NPS Model, the size of the watershed approaches the upper limit of applicability of the model.

Where subsurface contributions are significant, the NPS Model should be modified to allow specification of average monthly pollutant concentrations in subsurface flow. If in-stream processes are major, the NPS Model should be interfaced with a stream water quality model. Both of these procedures would be required to simulate nonpoint pollution in large watersheds.

Nutrient concentrations and loadings were also simulated from two small agricultural watersheds (1.3 and 0.8 hectares) in Watkinsville, Georgia and East Lansing, Michigan for the 1974 growing season. Total P and Total N concentrations and loading were adequately simulated because these nutrient forms are largely associated with the sediment fraction of surface runoff NH_3-N values were not simulated as well as Total P and Total N since NH_3-N transport in solution was found to be significant. NO_3-N and PO_4-P values were not adequately represented because they are transported almost entirely in solution form. Accordingly, the NPS Model should not be used to estimate loadings for these nutrient forms.

Just as Third Fork Creek approaches the upper size limit for the NPS Model, the agricultural watersheds were too small for accurate representation of the hydrologic and sediment characteristics. The NPS Model should only be applied to watersheds for which the 15-minute simulation interval is reasonable. The range of watershed sizes simulated in this study (0.8 to 433 hectares) provides estimates of the upper and lower bounds of applicability.

The nutrient simulation results were obtained by estimating the nutrient potency factors (i.e. nutrient loss/sediment loss x 100%) from observed data and then calibrating the values by comparing simulated and recorded concentrations. The goal was to evaluate the use of sediment loss, as simulated in the NPS Model, as an indicator of nutrient loadings in surface runoff. Further testing and verification should be conducted to see if the potency factors can be estimated, without calibration, as a function of fertilizer applications, management practices, soil characteristics, crop behavior, etc. Only in this way can the NPS Model be effectively applied in areas where little data is available.

The conclusions presented in this report do not mean that soluble nutrient forms are unimportant. In areas where subsurface flow is a major portion of total runoff, soluble nutrient forms may comprise much of the nutrient loading. The literature and results of this work indicate that total nutrient loads in surface runoff are associated largely with sediment. Until research can accurately represent the complex reactions and transformations of nutrient forms in all flow components, the NPS Model can be used to estimate total nutrient loads in surface runoff as a function of sediment loss.

SECTION 5.0

ESTIMATION OF NUTRIENT POTENCY FACTORS

Section 4.0 noted the nutrient potency factors for the test watersheds were initially derived from the observed data and adjusted by calibration. This is the most reliable means of determining potency factors for use with the NPS Model. The factors for the three test watersheds are presented in Table 6; except for the Third Fork Creek values, they compare well with factors developed from the literature (Table 7). Third Fork Creek had unusually high sediment loss for an urban watershed, resulting in low potency factors.

Considerable variation exists in the values shown in Table 7. Nutrient potency factors are dependent upon soil characteristics, land use, climate, hydrologic behavior, etc. Obviously fertilizer applications on agricultural watersheds, lawns, and golf courses have a significant impact. It is difficult to accurately predict nutrient potency factors without calibration or observed data for the specific watershed. When applying the NPS Model, data on the watershed or on nearby watersheds with similar soils, land use, topography, etc. should be used to evaluate the potency factors and the resulting simulated nutrient loadings. If no such data is available. Tables 6 and 7 can provide a range of possible values from which the potency factors can be estimated. However, simulated nutrient loadings derived from such potency factors should be considered only as gross estimates until data for calibration is available. In Table 7, the greatest confidence can be assigned to the Total P, Total N, and TKN potency factors obtained from continuous data collection programs. The remaining constituents are not as closely associated with the sediment fraction of surface runoff; they are included for general information only. Grab sample data collection programs cannot accurately represent the variability of nonpoint pollutants in surface runoff. Table 7 is only a sample of the data available on nutrient runoff. The user should consult the references in Table 7 for a detailed description of the data collected, and should investigate the general literature for additional sources.

TABLE 6. NUTRIENT POTENCY FACTORS FOR THE TEST WATERSHEDS

Watershed	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	0ct	Nov	Dec
Third Fork Creek, Durham, N.C.												
TKN	.090	.055	.060	.060	.055	.055	.055	.055	.060	.060	.060	.070
Total P	.080	.065	.070	.070	.070	.060	.060	.060	.060	.060	.070	.075
Fe	1.3	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.3	1.3	1.3	1.3
P2 Watershed Watkinsville, Ga.			• • • • • • • • • • • • • • • • • • •									· · · · · · · · · · · · · · · · · · ·
Total N					0.22	0.40	0.45	0.38				
Total P					0.15	0.13	0.06	0.06				
NH ₃ -N	i i				0.05	0.12	0.08	0.30				
и0 <mark>3</mark> -и					0.06	0.05	0.015	0.08				
PO ₄ -N					.002	.007	.005	.005				
P6 Watershed East Lansing, Mi.	·											
Total N					.500	.400	.600	.400	.350			
Total P					.150	.120	.100	.044	.020			
NH3-N	,				.050	.010	.050	.023	.010			
NO ₃ -N					.200	.050	.200	.030	.010			
P0 <mark>4</mark> -P					.080	.070	.066	.015	.008			

^a Third Fork Creek had unusually high sediment loss for an urban watershed, resulting in low potency factors.

TABLE 7. NUTRIENT POTENCY FACTORS FOR URBAN AND AGRICULTURAL WATERSHEDS DERIVED FROM THE LITERATURE a

				1	1 1	Potency Factors							
Location	Name	Size (ha)	Land Use	Soils	Sampling Program	Total N	TKN	Total P	NH ₃ -N	NO ₃ -N	PO ₄ -P	Ref.	
Urban													
Lubbock, TX	26th St. Storm Sewer	607	Residential & commercial		Continuous					. 321	.106	15	
Lubbock, TX	KN Clapp Basin	90	Residential		Continuous					.064	.031	16	
Lawrence, KS	Naismith Ditch	164	Residential	Silty loam, silty clay	Grab					.37 rain .52 snow		17	
Tulsa, OK	Crow Basin	777	Residential, some commercial	Sandstone & shale geology	Grab		.260 ^b	j			.300	18	
Tulsa, OK	New Block Basin	558	Residential	Sandstone & shale geology	Grab	į	.501 ^b				.909	18	
Tulsa, OK	Indian Basin	₹3	Streets, com- mercial & residential	Sandstone & shale geology	Grab		.470 ^b				.425	18	
12 U.S. Cities			Residential Industrial Commercial		Continuous, street sur- face runoff		.218 .163 .157			.006 .007 .060	.113 .142 .103	19	
Madison, WI	Manitou Way Storm Drain	60	Residential		Continuous	2.39	2.12	.474	.196	279	.171 ^C	7	
Seattle, WA	Viewridge One & Two	297	Single & mul- tiple family residential		Grab	3.14	2.51	.381 ^d	.281	.479	.089	20	
Seattle, WA	Lake Hills	60	Single family residential		Grab	2.33	1.75	.371 ^d .	.202	.562	.123	20	
Seattle, WA	Highlands	34	Low density single family residential		Grab	1.10	.72	. 280 ^d	.040	.370	.048	20	
Seattle, WA	Southcenter	10	Commercial, new shopping area		Grab	2.54	1.83	. 205 ^d	.339	.666	.044	20	
Seattle, WA.	Central Business Dist.	11	Commercial downtown		Grab	1.02	.74	. 303 ^d	.281	.214	.039	20	
Seattle, WA	South Seattle	11	Industrial	·	Grab	2.30	1.63	. 227 ^d	.252	.635	.059	20	
Agricultural													
Chickama, OK	C-1, C-3, C-4	7 to 20	Cotton ^e	Silt & silt clay	Continuous	.18	.14	. 140	.005	.043	.022 ^f	21	
Chickama, OK	C-5, C-6, C-8	5 to 11	Wheat ^e	Silt & silt clay	Continuous	.32	. 25	.130	.024	.067	.023 ^f	21	
Chickama, OK	R-7, R-8	8 to 11	Pasture	Silt	Continuous	.05	.04	.022	.002	.009	.007 ^f	21	
Treynor, IA		. 32	Corn ^e	Fine silty loess	Continuous	.10	. 10	. 003	.001	.001	.0002	14	

TABLE 7. (continued)

			Land Use	Soils	Sampling Program	Potency Factors						
Location	Name	Size (ha)				Total N	TKN	Total P	NH ₃ -N	NO ₃ -N	PO4-F	Ref.
Macedonia, IA		158	Row crops, hay, pasture	Silt loam loess	Continuous	.56	.45	.041	.090	. 119	.022	22
Nampa, ID		11	Sugar beets		Grab	1.70	1,.27	.080	.655	.431	.053	23
Nampa, ID		14	Onions		Grab	.76	.67	.120	.260	.088	.043	23
Nampa, ID		14	Lima beans		Grab	.31	.17	.110	.043	. 140	.057	23
Eastern, SD		44	Oats & corn	Sandy clay loam	Continuous	1.66	1.13	.240		.53 (sno₩)		24
Eastern, SD		44	Oats & corn	Sandy clay loam	Continuous	.33	.21	.085		.12 (rain)	l	24
Eastern, SD		15	Pasture	Sandy clay loam	Continuous	2.80	2.20	.450		.60 (snow)		24
Eastern, SD		15	Pasture	Sandy clay loam	Continuous	.95	.77	.220		.18 (rain)]	24
Eastern, SD		19	Alfalfa & brome grass	Loam & sandy clay loam	Continuous	2.69	2.09	.320		.60 (snow)		24
Eastern, SD		19	Alfalfa & brome grass	Loam & sandy clay loam	Continuous	.74	.46	.320		.28 (rain)		24

Notes:

- a. These values are annual averages for all storm events and were obtained from storm-event data or annual loadings. These values are provided as general information; the user should refer to the cited reference for greater detail.
- b. Organic Nitrogen only
- c. Dissolved Reactive Phosphorus
- d. Ortho and hydroloyzable Phosphorus
- e. Fertilizer was applied
- f. Total Soluble Phosphorus

REFERENCES

- 1. Donigian, A.S., Jr., and N.H. Crawford. Modeling Nonpoint Pollution from the Land Surface. EPA-600/3-76-083. U.S. Environmental Protection Agency, Athens, Georgia. July 1976. 292p.
- 2. Burwell, R.E., D.R. Timmons, and R.F. Holt. Nutrient Transport in Surface Runoff as Influenced by Soil Cover and Seasonal Periods. Soil Sci. Soc. Amer. Proc. 39(3):523-528, May-June 1975.
- 3. Kissel, D.E., C.W. Richardson, and E. Burnett. Losses of Nitrogen in Surface Runoff in the Blackland Prairie of Texas. J. Environ. Qual., 5(3):288-292, July-September 1976.
- 4. Johnson, A.H., D.R. Bouldin, E.A. Gayette, and A.M. Hedges. Phosphorus Loss by Stream Transport from a Rural Watershed: Quantities, Processes, and Sources. J. Environ. Qual., 5(2):148-157, April-June 1976.
- 5. Romkens, M.J.M., D.W. Nelson, and J.V. Mannering. Nitrogen and Phosphorus Composition of Surface Runoff as Affected by Tillage Method. J. Environ. Qual., 2(2):292-295, April-June 1973.
- 6. Schumann, G.E., R.E. Burwell, R.F. Piest, and R.G. Spomer. Nitrogen Losses in Surface Runoff from Agricultural Watersheds on Missouri Valley Loess. J. Environ. Qual., 2(2):299-302, April-June 1973.
- 7. Kluesener, J.W. Nutrient Transport and Transformations in Lake Wingra, Wisconsin. Dept. of Civil and Environmental Engineering, University of Wisconsin. Ph.D. Thesis. Madison, Wisconsin. 1972. 242p.
- Kluesener, J.W., and G.F. Lee. Nutrient Loading from a Separate Storm Sewer in Madison, Wisconsin. J. Water Poll. Cont. Fed., 46(5):920-936, May 1974.
- 9. Cowen, W.F., K. Sirisinha, and G.F. Lee. Nitrogen Availability in Urban Runoff. J. Water Poll. Cont. Fed., 48(2):339-345, February 1976.
- Colston, N.V., Jr. Characterization and Treatment of Urban Land Runoff. EPA-670/2-74-096. U.S. Environmental Protection Agency, Cincinnati, Ohio. December 1974. 170p.
- 11. Burwell, R.E., G.E. Schuman, K.E. Saxton, and H.G. Heinemen. Nitrogen in Subsurface Discharge from Agricultural Watersheds. J. Environ. Qual., 5(3):325-329, July-September 1976.

- 12. Donigian, A.S., Jr., and N.H. Crawford. Modeling Pesticides and Nutrients on Agricultural Lands. EPA 600/2-76-043. U.S. Environmental Protection Agency, Athens, Georgia. February 1976. 317p.
- 13. Bryan, E.H. Quality of Stormwater Drainage from Urban Land Areas in North Carolina. Water Resources Research Institute, University of North Carolina. Raleigh, North Carolina. Report No. 37. June 1970. 63p.
- 14. Burwell, R.E., G.E. Schuman, R.F. Piest, W.E. Larson, and E.E. Alberts. Sampling Procedures for Nitrogen and Phosphorus in Runoff. Trans. Amer. Soc. Agric. Eng., 18(5):912-917, 1975.
- 15. Thompson, G.B., D.M. Wells, R.M. Sweazy, and B.J. Claborn. Variation of Urban Runoff Quality and Quantity with Duration and Intensity of Storms -- Phase III. Water Resources Center, Texas Tech University. Lubbock, Texas. WRC-74-2. August 1974. 56p.
- 16. Wells, D.M., J.F. Anderson, R.M. Sweazy, and B.J. Claborn. Variation of Urban Runoff Quality with Duration and Intensity of Storms -- Phase II. Water Resources Center, Texas Tech University. Lubbock, Texas. WRC-73-2. August 1973. 87p.
- 17. Angino, E.E., L.M. Magnuson, and G.F. Stewart. Effects of Urbanization on Storm Water Runoff Quality: A Limited Experiment, Naismith Ditch, Lawrence, Kansas. Water Resour. Res., 8(1):135-140, February 1972.
- 18. Cleveland, J.G., G.W. Reid, and J.F. Harp. Evaluation of Dispersed Pollutional Loads from Urban Areas. University of Oklahoma. Norman, Ok. April 1970. 213p.
- 19. Sartor, J.D., and G.B. Boyd. Water Pollution Aspects of Street Surface Contaminants. Office of Research and Monitoring, Environmental Protection Agency. Washington D.C. EPA-R2-72-081. November 1972. 236p.
- 20. Municipality of Metropolitan Seattle. Environmental Management for the Metropolitan Area, Part II. Urban Drainage. Appendix C. Storm Water Monitoring Program. Seattle, Washington. October 1974. 97p.
- 21. Olness, A., S.J. Smith, E.D. Rhoades, and R.G. Menzel. Nutrient and Sediment Discharge for Watersheds in Oklahoma. J. Environ. Qual., 4(3):331-336, July-September 1975.
- 22. Burwell, R.E., et al. Quality of Water Discharged from Two Agricultural Watersheds in Southwestern Iowa. Water Resour. Res., 10(2):359-365, April 1974.
- 23. Fitzsimmons, D.W., J.R. Busch, G.C. Lewis, and D.V. Naylor. Establishing Water, Nutrient and Total Solids Mass Budgets for a Gravity-Irrigated Farm University of Idaho. (Presented at the Winter Meeting, American Society of Agricultural Engineers. Chicago, Illinois. December 15-18, 1975. Paper No. 75-2544.) 15p.

24. Harms, L.L., J.N. Dornbush, and J.R. Andersen. Physical and Chemical Quality of Agricultural Land Runoff. J. Water Poll. Control Fed., 46(11):2460-2470, November 1969.

APPENDIX A

MODIFICATIONS TO THE NPS MODEL

Modifications to the NPS Model performed during this study were kept to a minimum so as not to require major changes in the input sequence described in the original report. Only changes required to better represent physical processes and maintain consistency of units were included. The modifications are as follows:

- (1) The units of SRERI and TSI, the initial sediment desposits on pervious and impervious areas, were changed from kg/ha (lb./ac) to tonne/ha (tons/ac) in order to coincide with the units of "accumulated sediments" output before each storm event and in the monthly summary.
- (2) EPXM, the interception storage parameter, was changed from a single average annual value to 12 monthly values corresponding to the first day of each month. The interception storage on any day is calculated from linear interpolation between the monthly values. This modification was included to better represent changes in rainfall interception with crop growth on agricultural watersheds. Although EPXM is not usually a critical parameter, it can be important on extremely small watersheds highly responsive to rainfall. To accommodate this change, the input namelist, LND3, has been modified to accept 12 values for EPXM. So, LND3 may appear as

&LND3 K1=1.0, PETMUL=1.0, K3=0.30, EPXM=5*0.0,.01,.03,.06, .10,.1,2*0.0, K24L=1.0, KK24=0.0 &END

If less than 12 values are input for EPXM, the remaining ones are defaulted to 0.0 mm (in).

(3) A major impact of tillage operations is to increase the amount of fine sediment material available for transport. In an attempt to accommodate this effect, the NPS Model was modified to accept the dates of tillage operations and a new value of the sediment fines storage resulting from the operation.

Two new input parameters, TIMTIL and SRERTL have been added to the WSCH namelist. TIMTIL specifies the Julian day of the operation while SRERTL indicates the corresponding new value of the sediment fines storage. Up to 12 values can be specified for each parameter; i.e. up to 12 separate tillage operations can be specified. Whenever the day of simulation corresponds to a value in TIMTIL, the fines storage is

reset to the corresponding SRERTL value. Thus, the 1st value of TIMTIL is the day when the fines storage is reset to the 1st value of SRERTL, the 2nd TIMTIL value corresponds to the 2nd value of SRERTL, etc.

The input namelist, WSCH, would appear as follows for only one tillage operation.

&WSCH ARFRAC=1.00, IMPKQ=0.0, COVVEC=5*0.0,.05,.2,.75,.85, .80,2*0.0, TIMTIL=142, SRERTL=0.5 &END

When day number 142 is simulated the following message is printed on the first simulation interval of day number 142:

*** May 22 - LAND SURFACE DISTURBANCE OCCURS ON CROPLAND SEDIMENT DEPOSITS ON PERVIOUS AREAS RESET TO 0.500 TONS/ACRE

Therefore, the operation is assumed to occur at the beginning of the day. TIMTIL and SRERTL do not have to be specified if tillage is not considered in a particular land use.

This procedure was developed and initially tested on small agricultural watersheds in Georgia (12). Although this does not account for all the complex impacts resulting from tillage operations, it appears to be the only method available for continuous simulation of erosion processes. Calibrated values of SRERTL range from 1.0 to 4.5 tonnes/hectare (0.5 to 2.0 tons/ac) on the limited number of watersheds tested. SRERTL is a function of soil properties, depth, and type of tillage operations, but at the present time must be determined by calibration. The effect of construction activity could also be approximated with this method although no testing on construction areas has been performed.

The user should refer to the NPS Model report for a full description of the parameters, the input formats, and the calibration process of applying the NPS Model.

APPENDIX B

CORRECTION AND ADJUSTMENTS TO THE NPS MODEL INPUT DESCRIPTION

Table 8 is an updated version of Table 36 from the NPS Model Report (1) which described the input sequences and attributes of the model parameters. Errors in the original Table 36 are noted by slashes (/) in Table 8 with the corrections inserted. Modifications performed during this study are included in the NPS Model version dated 11/15/76 and are noted by asterisks (*) in Table 8.

Also, Table 24 of the NPS Model Report incorrectly indicates that daily potential evapotranspiration (PET) is input in English units of "inches x 100"; this should be corrected to "inches x 1000".

TABLE 8. ADJUSTMENTS TO TABLE 36 OF THE NPS MODEL REPORT: NPS MODEL PARAMETER INPUT SEQUENCE AND ATTRIBUTES

Namelist Name	Parameter Name	Туре	English Units	Metric Units	Comment 24
	Natershed Name Computer Run Information	character character			up to 18/characters 24 up to 18/characters
ROPT	HYCAL HYMIN NLAND HQUAL SNOW	integer real integer integer integer	ft /sec	m /sec	1 2 3 OR 4 ///////////////////////////////////
DTYP	UNIT PINT MNVAR	integer integer integer			% or 1 0 or 1 0 or 1
STRT	BGNDAY BGNMON BGNYR	integer integer integer			
ENDD	ENDDAY ENDMON ENDYR	integer integer integer			•
LND1	UZSN LZSN INFIL INTER IRC	real real real real real	inches inches in/hr	millimeters millimeters mm/hr	
LND2	AREA NN L SS	real real real real	acres ,	hectares meters	
	HNI LI SSI	real real real	feet	meters	
LND3	K1 PETMUL K3 EXPM K24L KK24	real real real real real real	inches	millimeters	(12 MONTHLY VALUES)

^{*} Added to NPS Model version dated 11/15/76

TABLE 8. (continued)

Namelist Name	Parameter Name	Туре	English Units	Metric Units	Comment
LND4 SNO1	UZS LZS SGW RADCON CCFAC EVAPSN	real real real real real real	inches inches inches	millimeters millimeters millimeters	
\$1102	MELEV ELDIF TSNOW	real real real	feet 1000 feet degrees F	meters kilometers degrees C	
SN03	HPACK DGM WC IDNS	real real real real	inches in/day	millimeters mm/day	
SNO4	SCF WNUL RMUL F KUGI	real real real real integer			
SNO5	PACK DEPTH	real real	inches inches	millimeters millimeters	
WASH	JRER KRER JSER KSER JEIM KEIM TCF	real real real real real real character			12 values 12 up to // characters repeat for each pollutant
REPEAT THE	FOLLOWING INFORMA	TION FOR EAC	H LAND USE		
	l.and Use Type	character			up to 12 characters
WSCII	ARFRAC IMPKO COVVEC TIMTIL SRERTL	real real real real real	ton/ac	tonne/ha	12 values (12 VALUES, OPTIONAL)* (12 VALUES, OPTIONAL)*

^a Each pollutant name is followed by the concentration units to be used, either 'MG/L' or 'GM/L', beginning in column no. 15 (see Appendix D). 'GM/L' is the default value.

^{*} Added to NPS Model version dated 11/15/76

TABLE 8. (continued)

Namelist Hame	Parameter Name	Туре	English Units	Metric Units	Comment
YPTM	PMPVEC	real	percent	percent	1 value per pollutant
	PMIVEC	real	percent	percent	include if MNVAR=0
MPTM	PMPMAT	real	percent	percent	12 values per pollutant
	PMIMAT	real	percent	percent	include if MNVAR=1
YACR	ACUP ACUI	real real	lb/ac/day lb/ac/day	km/ha/day km/ha/day	1 value /b///////////////////////////////////
HACR	ACUPV	real	lb/ac/day	km/ha/day	12 values/ <i>MAY/MAY/MAY/</i>
	/A/2007//, ACUIV	real	lb/ac/day	km/ha/day	include is INVAR=1
YRHR	REPER	real	day	day	1 value/ <i>hk////k////////k/k///</i>
	REIMP	real	day	day	include if MNVAR=0
MRMR	REPERV REIMPV	real real	day day	day day	12 values ////////////////////////////////////
IHAC	SRERI	real	lb/ac	kg/ha	(UNITS CHANGED TO *
	TSI	real	lb/ac	kg/ha	ton/ac, tonne/ha)

^{*} Added to NPS Model version dated 11/15/76

APPENDIX C

NPS MODEL SOURCE LISTING

```
1.
          //A20NPS JOB (A20$K2,510,0.5,25), 'TONY, T7508.NPS', REGICK=330K
 2.
          /*JOUPARM COPIES=1
          //STEP1 EXEC FORTCL, PARM. FORT= 'OPT= 1, MAP, XREF'
 3.
 4.
          //FORT.SYSIN DD *
 5.
 6.
 7.
         Č
 8.
          C
 9.
          C
         C
10.
11.
         C
                                NONPOINT SOURCE POLLUTANT LOADING (NPS) MODED
         C
12.
         Č
                        **************
13.
         C
13.1
         C
13.2
                                            VERSION DATED: NOV. 15, 1976
14.
         CCC
15.
                                                 DEVELOPED BY:
                                                                   HYDROCOMP, INCORPORATED
                                                                    1502 PAGE MILL ROAD
16.
         C
C
                                                                                      94304
17.
                                                                   PALO ALTO, CA.
18.
                                                                      415-493-5522
         C
19.
         C
20.
                                                            FOR:
                                                                   U.S. ENVIRONMENTAL
21.
                                                                    PROTECTION AGENCY
         C
                                                                   OFFICE OF RESEARCH
22.
23.
         CCC
                                                                    AND DEVELOPMENT
24.
                                                                   ENVIRONMENTAL
25.
                                                                    RESEARCH LABORATORY
                                                                   ATHENS, GA. 31
404-546-3581
26.
         CCC
                                                                                  30601
27.
28.
         C
C
29.
39.
                                                 NPS - MAIN PROGRAM
         C
31.
32.
                 IMPLICIT REAL(L)
         C
33.
                 DIHENSION MNAM(24), RAD(24), TEMPX(24), WINDX(24), RAIN(96),
34.
35.
                             IRAIN (96), IRAD (12, 31), IEVAP (12, 31), IWIND (12, 31),
                1
                             ITEMP (12, 31, 2), GRAD (24), RALDIS (24), WINDIS (24),
35.
                2
                3
                             AR10UT(28), AR20UT(29), COVVEC(12), REPERM (5, 12), TCF (12),
37.
               4
                             TOTAL (24), VMIN (24), VMAX (24), SE (24), RANGE (24), AVER (24),
38.
                5
                             REIMPH (5, 12), ACU IN (5, 12), PMPTAB (5, 5, 12), PMITAB (5, 5, 12),
39.
                             ACUPH (5, 12)
40.
41.
         C
                 COMMON /ALL/ RU, HY MIN, HY CAL, DPST, UNIT, TIM FAC, LZS, AREA, RESB, SFLAG,
42.
                1
                                RESB1, ROSB, SRGX, INTF, RGX, RUZE, UZSB, PERCB, RIB, P3, TP,
43.
44.
               2
                                KGPLB, LAST, FREV, TEMPX, IHR, IHRR, PB, RUI, A, PA, GWP, NCSY,
                                SRER (5), TS (5), LNDUSE (3, 5), AR (5), QUALIN (3, 5), NOSI, NOS, NOSIM, UFL, UTMP, UNT1 (2, 2), UNT2 (2, 2), UNT3 (2, 2), WHGT;
45.
                3
46.
               4
47.
               5
                                WHT, DEPW, ROSBI, RESBI, PESBI1, ARUN, LATS (5), IMPK (5)
                                NLAND, NQUAL, STMCH (200, 24), RECOUT (5), FLOUT, SCALEF (5),
48.
               6
49.
                7
                                SNOW, PACK, IPACK
50.
         C
51.
                COMMON /LAND/DAY, PRTM, IMIN, IX, TW BAL, SGW, GWS, KV, LIRC4, LKK4, ALTR (9),
52.
                1
                                uzs, iz, uzsn, lzsn, inpil, inter, sgr1, dec, deci, tit (13),
53.
               2
                                K24L, KK24, K24EL, EP, IFS, K3, EPXMI, RESS 1, RESS, SCEP, IRC,
                3
                                SRGXT1, MMPIN, KGPHA, METOPT, CCFAC, SCEP1, SRGXT, RAIN, SBC,
54.
55.
               4
                                SCF, IDNS, F, DGM, WC, MPACK, EVAPSN, MELEV, TSNOW, PETHIN,
56.
               5
                                DEWX, DEPTH, MONTH, TMIN, PETM AX, FLDIF, SDEN, WIND X, INFTON,
57.
                                TSNBAL, ROBTOM, ROBTOT, RXB, ROITOM, ROITOT, YEAR, CUNIT (7),
                7
58.
                                INPTOT, MNAM, RAD, SRCI, FORM (42)
```

```
59.
           C
                  COMMON /OLS/ WSNAME(6), KHER, JRER, KSER, JSER, TEMPCF, COVHAT (5, 12);
 60.
                                  KEIM, JEIM, NDSR, ARP(5), ARI(5), ACCP(5), ACCI(5), RPER(5),
 61.
                                  PMP(5,5), PMI(5,5), QSNOW, SNOWY, SEDTM, SEDTY, SEDTCA,
 62.
                 2
                                  ACPOLP (5,5), ACERSN (5), APOLP (5,5), AERSN (5), COVER (5),
 63.
                 3
                                  APOLI(5,5), ACEIM(5), AEIM(5), POLTM(5), POLTY(5), TEMPA, DOA, POLTCA(5), AERSNY(5), AEIMY(5), APOLPY(5,5),
 64.
                 4
                 5
 65.
                                  APOLIY (5,5), POLTC (5), PLTCAY (5), ACPOLI (5,5), RIMP (5)
 66.
 67.
           Ç
                  COMMON /LNDOUT/ ROSTOM, RINTOM, RITOM, RUTOM, BASTOM, RCHTOM, PBTOM,
 68.
                                      SUMSNM, PXSNM, MELRAM, RADMEM, CONMEM, CORMEM,
 69.
                                      CRAINM, SGMM, SNEGMM, PACKOT, SEVAPM, EPTOM, NE ETCM.
 70.
                 2
                                      UZSOT, LZSOT, SGWOT, SCEPOT, RESSOT, SRGXTO, TWBA 10.
 71.
                 3
                                      TS NBOL, ROSTOT, RINTOT, RITOT, RUTOT, BASTOT, RCHTOT,
 72.
                 4
                                      PRTOT, SUMSNY, PXSNY, MELHAY, RADMEY, CONMEY, CDRMEY,
                 5
 73.
                                      CRAINY, SGMY, SNEGMY, PACK 1, SEVAPY, EPTOT, NEPTOT,
 74.
                 6
                                      UZSMT, LZSMT, SGWMT, SCEPT, RESST, SRGXTT, TWBLMT
 75.
                 7
 76.
           C
                  COMMON /INTM/ RTYPE(4,4), UTYPE(2), GRAD, RADDIS, WINDIS, ICS, OFS.
 77.
                                   TEMPAY, DOAY, NOSIY, INTRVL, WMUL, NN, L, SS, NNI, LI, SSI,
 78.
                                   RMUL, KUGI, SECTCY, REPERV (12), REIMPV (12), ACUP V (12),
 79.
                 2
                                   ACUIV (12), PM PMAT (12, 5), PM IMAT (12, 5), PMPVEC (5),
 80.
                 3
                                    PMIVEC (5) , ACUI, ACUP, REIMP, REPER, PRINTR,
 81.
                 4
                                   EPX M (12), TIMTIL (12), SRERTL (12), TILDAY (5, 12),
 81.1
                 5
                                   TILSED(5, 12), DPM(12), TCP
 81.2
 82.
           Ç
                  EQUIVALENCE (ROSTOM, AR1OUT(1)), (TSNBOL, AR2OUT(1))
 83.
 24.
           C
                  LOGICAL LAST, PREV
 85.
 86.
           C
                             BGNDAY, BGNMCN, BGNYR, ENDDAY, ENDMON, ENDYR, DYSTRT, DYEND, YEAR, DAY, H, HYCAL, TIME, PINT, FRINTE,
 87.
                  INTEGER
 88.
                 1
                             YR, CN, TF, DA, DY, UNIT, SNOW, LMTS, RECOUT, SPLAG, TIMTIL, TILDAY, DPM
 89.
                 2
                 3
 89.1
 90.
          C
                         IRC, NN, NNI, KV, K24L, KK24, INFIL, INTER, IFS, ICS, K24EL, K3, NEPTOM, NEPTOT, IDNS, MPACK,
 91.
 92.
                 1
                         JRER, KRER, JSER, KSEP, KEIH, JEIM, MELEV, KUGI,
 93.
                 2
                          K1, KK4, IRC4, MELRAM, MELRAY, IPACK, IMPKO,
 94.
                 3
                          INFTOM, INFTOT, IMPK, MMPIN, METOPT,
 95.
                 li.
 96.
                          KGPLB, KGPHA
                 5
 97.
           C
 98.
                            WSNAME, RTYPE, UTYPE
                  REAL*8
 99.
          C
                                    NAMELIST INPUT VARIABLES
10C.
          C
101.
                                       HYCAL, HYMIN, NLAND, NCUAL, SNOW
102.
                  NAMELIST /ROPT/
                                       UNIT, PINT, MNVAR
103.
                  NAMELIST /DTYP/
                                       BGNDAY, BGNMON, BGNYR
                  NAMELIST /STRT/
104.
                                       ENDDAY, ENDMON, ENDYR
105.
                  NAMELIST / ENDD/
                                       UZSN, LZSN, INFIL, INTER ,IRC, AREA
                  NAMELIST /LND1/
NAMELIST /LND2/
106.
                                       NN, L, SS, NNI, LI, SSI
107.
                                       K1, PETMUL, K3 , EPXN, K24L, KK24
108.
                  NAMELIST /LND3/
                                       UZS, LZS, SGW
                  NAMELIST /LND4/
109.
                                       RADCON, CCPAC, EVAPSN
110.
                  NAMELIST /SNO1/
                                       MELEV, ELDIF, TSNOW
111.
                  NAMELIST /SNO2/
                                       MPACK, DGM, WC, IDNS
SCF, WHUL, RHUL, P, KUGI
                  NAMELIST /SNO3/
NAMELIST /SNO4/
112.
113.
                                       PACK, DEPTH
                  NAMELIST /SNO5/
114.
                                       ARPRAC , IMPKO, COVVEC, TIMTIL, SREETL
                  NAMELIST /WSCH/
115.
                                       PMPVEC, PMIVEC
                  NAMELIST /YPTM/
116.
```

```
NAMELIST /MPTM/
NAMELIST /WASH/
NAMELIST /YACR/
                                   PMPMAT, FHIMAT
118.
                                   JRER, KRER, JSER , KSER, JEIM, KEIM, TCP
119.
                                   ACUP, ACUI
120.
                 NAMELIST /MACR/
                                   ACUPY, ACU IV
121.
                 NAMELIST /YRMR/
                                   REPER, BEIMP
122.
                 NAMELIST /MRMR/
                                   REPERV, PEIMPV
123.
                                   SRERI, TSI
                 NAMELIST /INAC/
124.
          C
125.
          C
                    NAMELIST INPUT PARAMETER DESCRIPTION
126.
             HYCAL: INDICATES TYPE OF SIMULATION RUN
127.
          C
                    =
                          HYDROLOGIC CALIERATION
128.
          C
                          SEDIMENTS AND QUALITY CALIBRATION
129.
                          PRODUCTION RUN (PRINTER OUTPUT)
                          PPODUCTION RUN (PRINTER & W/O HEADINGS OUTPUT ON UNIT 4)
139.
          C
                       ш
131.
          C
             HYMIN : MINIMUM FLOW FOR OUTPUT DURING A TIME INTERVAL (CPS. CMS)
132.
          C
                   : ENGLISH (-1), METRIC(1)
133.
             NLAND: NUMBER OF LAND TYPE USES IN THE WATERSHED
134.
          С
             NQUAL: NUMBER OF QUALITY CONSTITUENTS SIMULATED
135.
          C
             SNOW : (0) SNOWMELT NOT PERFORMED, (1) SNOWMELT CALC'S PERFORMED
             MKVAR : MONTHLY VARIATION IN ACCUMULATION RATES, REMOVAL RATES,
136.
137.
          C
                      AND POTENCY FACTORS USED (1), OR NOT USED (0)
138.
                   : INPUT PRECIPITATION IN INTERVALS OF 15 MIN. (C), OR HOURLY (1)
          C
139.
             BGNDAY, BGNMON, BGNYR: DATE SIMULATION BEGINS
             ENDDAY, ENDMON, ENDYR: DATE SIMULATION ENDS UZSN: NOMIMAL UPPER ZONE STORAGE (IN, MM)
140.
          C
141.
          C
142.
                   : NOMINAL LORER ZONE STORAGE (IN, MM)-
             LZSN
143.
          C
             INFIL: INFILTRATION RATE (IN/HR, MM/HR)
144.
             INTER: INTERFLOW PARAMETER, ALTERS RUNOFF TIMING
145.
                    : INTERFLOW RECESSION RATE
             IRC
146.
          C
                   : WATERSHED AREA IN ACRES
             AREA
147.
          C
             NN
                    : MANNING'S N FOR CVEFLAND PERVIOUS FLOW
148.
             NNI
                    : MANNING'S N FOR OVERLAND IMPERVIOUS FLOW
149.
          C
             T.
                    : LENGTH OF OVERLAND FEEVIOUS PLOW TO CEANNEL (FT, M)
150.
                   : LENGTH OF OVERLAND IMPERVIOUS FLOW TO CHANNEL (FT, M)
          C
             LI
151.
          C
             SS
                   : AVERAGE OVERLAND PERVIOUS PLOW SLOPE
152.
          C
             SSI
                   : AVERAGE OVERLAND IMPERVIOUS FLOW SLOPE
                   : RATIO OF SPATIAL AVERAGE RAINFALL TO GAGE RAINFALL : INDEX TO ACTUAL EVAPORATION
153.
         C
             K 1
154.
         C
             к3
155.
         C
             PETMUL: POTENTIAL EVAPOTRANSPIRATION MULTIPLICATION FACTOR
155.1
         C
             E PX M
                   : INTERCEPTION STORAGE, 12 MONTHLY VALUES (IN, MM)
156.
          C
             K24L
                   : PRACTION OF GROUNDWATER RECHARGE PERCOLATING TO DEEP
157.
         C
                     GFOUNDWATER
158.
         C
             KK24
                   : GROUNDWATER RECESSION RATE
159.
         C
             UZS
                   : INITIAL UPPER ZONE STORAGE (IN, MM)
160.
         C
                   : INITIAL LOWER ZONE STORAGE (IN, MM)
             LZS
                   : INITIAL GROUNDWATER STORAGE (IN, MM)
161.
         C
             SGW
162.
             RADCON: CORRECTION FACTOR FOR RADIATION
163.
         C
             CCFAC: CCRRECTION FACTOR FOR CONDENSATION AND CONVECTION
         C
                   : SNOW CORRECTION FACTOR FOR RAINGAGE CATCH DEFICIENCY
164.
             SCF
165.
             ELDIF : ELEVATION DIFFERENCE FROM TEMP. STATION TO MEAN SEGMENT ELEVA
         C
                      (1000 FT, KM)
166.
         C
167.
         C
                   : DENSITY OF NEW SNOW AT O DEGREES F.
             IDNS
168.
                   : PRACTION OF SEGMENT WITH COMPLETE FOREST COVER
169.
         C
                   : DAILY GROUNDMELT (IN/DAY, MM/DAY)
            DGM
                   : MAXIMUM WATER CONTENT OF SNOWPACK BY WEIGHT
170.
         C
             WC
171.
         C
             MPACK : ESTIMATED WATER EQUIVALENT OF SNOWPACK FOR COMPLETE COVERAGE
172.
         C
            EVAPSN: CORRECTION FACTOF FOR SNOW EVAPORATION
            MELEV : MEAN ELEVATION OF WATERSHED (PT, M)
173.
            TSNOW: TEMPERATURE BELOW WHICH SNOW PALLS (F, C)
174.
175.
             PACK : INITIAL WATER EQUIVALENT OF SNOWPACK (IN, MM)
176.
            DEPTH : INITIAL DEPTH OF SNOWPACK (IN, MM)
```

117.

```
177.
             ARPRAC: PERCENT OF A GIVEN LAND TYPE USE
             IMPKO : PERCENTAGE OF IMPERVIOUS AREA FOR A GIVEN LAND TYPE USE
178.
          C
             COVVEC: MONTHLY COVER COEFF. FOR A GIVEN LANG TYPE USE
179.
             PMPVEC: POTENCY PACTORS FOR A GIVEN LAND TYPE - PERVIOUS AREAS
180.
180.1
          C
             PMPMAT: MATRIX OF POTENCY FACTORS FOR MONTHLY VARIATIONS
                      - PERVIOUUS AREAS, 12 VALUES PER CONSTITUENT
180.2
          C
             PMIVEC: POTENCY PACTORS FOR A GIVEN LAND TYPE - IMPERVIOUS AREAS
181.
          C
             PMIMAT: MATRIX OF POTENCY FACTORS FOR MONTHLY VARIATIONS
181.1
         C
181.2
         C
                      - IMPERVIOUS AREAS, 12 VALUES PER CONSTITUENT
                    : TEMPERATURE CORRECTION FACTOR RELATING RUNOFF AND
182.
         C
             TCF
183.
         C
                      AIR TEMPERATURES
                   : EXPONENT IN RAINDROP SOIL SPLASH EQUATION
184.
         C
             JRER
                   : COEP. IN RAINCROP SOIL SPLASH EQUATION
185.
         C
             KRER
                   : EXPONENT IN WASH OFF FUNCTION FOR PERVIOUS AREAS
186.
         C
             JSER
                   : COEF. IN WASH OFF FUNCTION FOR PERVIOUS AREAS
187.
         C
             KSER
                   : EXPONENT IN WASH OFF FUNCTION FOR IMPERVIOUS AREAS
188.
         C
             JEIM
                   : COEF. IN WASH OFF FUNCTION FOR IMPERVIOUS AREAS
189.
         C
             KEIM
                   : ACCUMULATION RATES - INPERVIOUS AREAS
190.
         C
             ACUI
             ACUIV : MONTHLY ACCUMULATION RATES - IMPERVIOUS AREAS, 12 VARUES
190.1
         C
191.
                   : ACCUMULATION RATES - PERVIOUS AREAS
         C
             ACUP
             ACUPY : MONTHLY ACCULUMATION RATES - PERVIOUS AREAS, 12 VALUES
191.1
         C
             REIMP : REMOVAL COEF. - IMPERVIOUS AREAS
192.
         C
             REIMPV: MONTHLY REMOVAL COEF .- IMPERVIOUS AREAS, 12 VALUES
192.1
         C
             REPER : REMOVAL COEF. - FERVIOUS AREAS
193.
         C
             REPERV: MONTHLY REMOVAL COEF .- PERVIOUS AREAS, 12 VALUES
193.1
         C
194.
             SRERI : INITIAL AMOUNT OF FINES AVAILABLE FOR TRANSPORT
         C
1.95.
                   : INITIAL AMOUNT OF SOLIDS AVAILABLE FOR TRANSPORT
         C
             TSI
196.
         C
197.
                READ (5,4520) (WSNAME(I),I=1,6)
                     (5,ROPT)
198.
                READ
                     (5,DTYP)
199.
                READ
200.
                READ (5,STRT)
201.
                     (5, ENDD)
                READ
                READ
                     (5, LND1)
202.
                      (5, LND2)
203.
                READ
                READ (5,LND3)
204.
                READ (5, LND4)
205.
                IF (SNOW . LT. 1) GC TO 20
206.
                QS NOW = SNOWY
207.
                READ (5,5NO1)
208.
                READ (5.SNO2)
209.
                READ (5, SNO3)
210.
                READ (5, SNO4)
211.
212.
                PEAD (5,SNO5)
            20 READ (5, WASH)
213.
                DO 30 J=1,NQUAL
214.
            30 READ (5,4060) (QUALIN (I,J), I=1,3), CUNIT (J)
215.
                DO 100 II=1,NLAND
216.
                READ (5,4060) (LNDUSE(K,II),K=1,3)
217.
218.
                READ (5, WSCH)
                AR (II) = ARPRAC
219.
                IMPK(II) = IMPKO
220.
                DO 40 IJ=1,12
221.
            40 COVMAT(II, IJ) = COVV EC(IJ)
222.
         C
222.1
                DO 42 JJ=1,12
222.2
                TILDAY(II,JJ) = TIMTIL(JJ)
222.3
            42 TILSED (II, JJ) = SPERTL(JJ)
222.4
222.5
         C
                IF (MNVAR.EQ. 1) GO TO 60
223.
         C
224.
```

```
225.
                       READ INPUT DATA OF ACCUMULATION RATES, REMOVAL RATES, AND
          C
                       POTENCY MATRICES WITHOUT MONTHLY VARIATION
226.
227.
          C
228.
                 READ (5, YPTM)
229.
                 READ (5, YACR)
                 READ (5, YRMR)
DO 50 IJ=1, NQUAL
230.
231.
                 PMPTAB (IJ, II, BGNMON) = PMPVEC(IJ)
232.
233.
             50 PMITAB(IJ, II, BGNMON) = PMIVEC(IJ)
234.
                 ACUPM (II, BGNMON) = ACUP
235.
                 ACUIM (II, BGNMON) = ACUI
236.
                 REPERM (II, BGNMON) = REPER
237.
                 REIMPM (II, BGN MON) = REIMP
                 GO TO 90
238.
239.
          C
          C
                       READ INPUT DATA OF ACCUMULATION RATES, REMOVAL RATES, AND
240.
241.
                       POTENCY MATRICES WITH MONTHLY VARIATION
242.
          С
243.
             60 READ (5,MPTM)
244.
                 READ (5, MACR)
Ž45.
                 READ (5, MRMR)
246.
                 DO 70 IJ=1.NOUAL
                 DO 70 MN=1,12
247.
248.
                 PMPTAB (IJ, II, MN) = PMPMAT (MN, IJ)
249.
             70 PMITAB(IJ, II, MN) = PMIMAT(MN, IJ)
250.
                 DO 80 MN=1,12
251.
                 ACUPM (II, MN) = ACUPV (MN)
252.
                 ACUIM(II,MN) = ACUIV(MN)
253.
                 REPERM (II, MN) = REPERV (MN)
254.
              80 REIMPH (II, MN) = REIMPV (MN)
255.
              90 CONTINUE
256.
                 READ (5, INAC)
257.
                 SRER(II) = SRERI
258.
                 TS (II) = TSI
259.
            100 CONTINUE
260.
                 IF (UNIT .EQ. -1) GO TO 120
261.
                 DEPW=UNT1(2,1)
                 WHGT=UNT1 (1,1)
262.
                 WH T=UNT2 (1,1)
263.
                 UF L=UNT2 (2,1)
264.
                 UTMP=UNT3(1,1)
265.
266.
                 ARUN=UNT3(2,1)
267.
                 KUNT=1
                 GO TO 130
268.
            120 DEPN=UNT1(2,2)
269.
270.
                 WHGT=UNT1(1,2)
271.
                 WH I=UN I 2 (1,2)
                 UF L=UNT2 (2,2)
272.
                 UTMP=UNT3 (1,2)
273.
                 ARUN=UNT3 (2,2)
274.
275.
                 KUNT=2
276.
          C
                                 PRINTING OF TITLE PAGE AND INPUT PARAMETERS
277.
          С
          C
278.
            130 WRITE (6,4070)
279.
                                  (WSNAME(I), I=1,6), ARUN, AREA
280.
                 WRITE
                        (6,4080)
                 WRITE (6,4090) ARUN, ARUN, ARUN
281.
                 ARPT=0.0
282.
283.
                 ARIT=0.0
                 DO 140 I=1, NLAND
284.
285.
                 TEM=AREA*AR(I)
```

```
286.
                 ARP(I) = TEM * (1.-IMPK(I))
287.
                 ARPT=ARPT+ARP(I)
288.
                 ARI (I) = TEM * IMPK (I)
289.
                 ARIT=ARIT+ARI(I)
290.
                 AR(I) = AR(I) * 100.
291.
                 PER=IMPK(I) *100.
292.
                 WRITE (6,4100) (LNDUSE(KK, I), KK= 1, 3), AR(I), TEM, ARP(I), ARI(I), PER
293.
                 AR (I) = TEM
294.
             140 CONTINUE
295.
                 A= ARIT/AREA
296.
                 WRITE (6,4110) A
297.
                 IF (ABS((ARIT+ARPT-AREA)/AREA) .LE.O.OO1) GO TO 150
298.
                 WRITE (6,4120)
299.
                 GO TO 1600
300.
          C
30.1.
                                 PRINTING OF SIMULATION CHARACTERISTICS
          C
302.
          C
303.
            150 IZ=BGNMON*2-1
304.
                 IX = IZ + 1
305.
                 IP=ENDMON*2-1
306.
                 IQ=IP+1
307.
                 NOI=NOUAL+3
308.
                 IF (PINT.EQ.1) PRINTR=60
                                 (RTYPE (HYCAL, I), I=1,4), MNAM (IZ), MNAM (IX), BGNDAY,
309.
                 WRITE (6,4130)
                                  EGNYR, MNAM (IP), MNAM (IQ), ENCDAY, ENDYR, PRINTE, INTRVL,
310.
                                  QSNCW, UTY PE (KUNT), UTYPE (KUNT), UFL,
311.
                                  HYMIN, NQI, ((QUALIN(I, J), I=1, 3), J=1, NQUAL)
312.
                 WRITE (6,4140) INTER, IRC, INFIL, NN, L, SS, NN I, LI, SSI, K1,
313.
314.
                                  PETMUL, K3, K24L, KK24, UZSN, LZSN
                 IF (SNOW.EQ.1) WRITE (6,4150) RADCON, CCFAC, EVAPSN, MELEV,
315.
                                                   ELDIF, TSNOW, MPACK, DGM, WC, IDNS, SCF,
316.
317.
                                                   WMUL, RHUL, F, KUGI
                 WRITE (6,4160) JRER, KRER, JSER, KSER, JEIM, KEIM
318.
318.1
                 WRITE (6,4162)
                 DO 158 I=1, NLAND
318.2
                                 (LNDUSE(K,I), K=1,3), (TILEAY(I,J), J=1,12),
318.3
            158 WRITE (6,4165)
                                  (TILSED(I,J),J=1,12)
318.4
                 IF (MNVAR.EQ. 1) GO TO 200
319.
320.
          C
                        PRINTING OF ACCUMULATION RATES, REMOVAL RATES.
321.
          C
                        AND POTENCY FACTORS WITHOUT MONTHLY VARIATION
322.
          C
323.
          C
323.5
                 WRITE (6,4010)
                 DO 160 I=1, NLAND
324.
            160 WRITE (6,4230) (LNDUSE(K,I), K=1,3), ACUPM (I, BGNMON), ACUIM (I, BGNMON)
325.
326.
                 WRITE (6,4010)
                 DO 170 I=1, NLAND
327.
            170 WRITE (6,4240) (LNDUSE(KK, I), KK=1, 3), REPERM (I, BGN MON),
328.
                                   REIMPM(I, BGNMON)
329.
                 WRITE (6,4250)
                                  ((LNDUSE(KK,I),KK=1,3),I=1,NLAND)
330.
                 DO 180 I=1, NOUAL
331.
            190 WRITE (6,4260) (QUALIN(J,I), J=1,3), (PMPTAB(I,K,BGNMON), K=1,NLAND)
332.
                 WRITE (6,4270)
                                 \{(LNDUSE(KK,I),KK=1,3),I=1,NLAND\}
333.
                 DO 190 I=1, NQUAL
334.
            190 WRITE (6,4260) (QUALIN(J,I), J=1,3), (PMITAB(I,K,BGNMON),K=1,NLAND)
335.
          C
336.
             PRINTING OF MONTHLY COVER FUNCTION, EPXM AND TEMP CORRECTION FACTORS
337.
          C
338.
            20C WRITE (6,4170) (MNAM(I), I=1,24,2), (TCF(I), I=1,12),
339.
                           (EPXM(II), II=1, 12),
339.1
                           (LNDUSE(KK, 1), KK= 1, 3), (COVMAT(1, KK), KK=1, 12)
340.
```

```
341.
                 IF (NLAND, EQ. 1) GO TO 220
342.
                 DO 210 I=2, NLAHD
343.
            210 WRITE (6,418C) (LNDUSE(KK,I), KK=1,3), (COVMAT(I,KK), KK=1,12)
344.
            220 IF (MNVAR. EQ.0) GO TO 290
345.
          C
346.
          C
                        PRINTING OF ACCUMULATION RATES, REMOVAL RATES,
347.
          C
                        AND POTENCY FACTORS WITH MONTHLY VARIATION
348.
          C
349.
                 WRITE (6,4190)
350.
                 DO 230 I=1, NLAND
351.
            230 WRITE (6,4189) (LNDUSE(KK,I), KK=1,3), (ACUPM(I,J),J=1,12)
352.
                 WRITE (6,4200)
353.
                 DO 240 I=1.NLAND
354.
            240 WRITE (6,4180) (LNDUSE(KK, I), KK=1, 3), (REPERM (I,J), J=1,12)
355.
                 DO 250 J= 1, NQUAL
356.
                 WRITE (6,4210) (QUALIN(KK, J), KK=1, 3)
357.
                 DO 250 I=4, NLAND
358.
            250 WRITE (6,4180) (LNDUSE(KK,I), KK=1,3), (PMPTAB(J,I,K),K=1,12)
359.
                 WRITE (6,4220)
360.
                 WPITE
                       (6,4199)
361.
                 DO 260 I=1,NLAND
362.
            260 WRITE (6,4180) (LNDUSE(KK,I), KK=1,3), (ACUIN(I,J), J=1,12)
363.
                 WRITE (6,4200)
364.
                 DO 270 I=1, NLAND
            270 WRITE (6,4180) (LNDUSE(KK,I), KK=1,3), (REINPM(I,J),J=1,12)
DO 280 J=1,NQUAL
365.
366.
367.
                 WRITE (6,4210) (QUALIN(KK, J), KK=1, 3)
                DO 280 I=1, NLAND
368.
369.
            280 WRITE (6,418C) (LNDUSE(KK,I), KK=1,3), (PMITAB(J,I,K),K=1,12)
370.
          C
371.
          C
                      PRINTING OF INITIAL CONDITIONS
372.
          C
373.
            290 WPITE (6,4280) UZS, LZS, SGW
374.
                 TF (SNOW.EQ.1) WRITE (6.4290) PACK.DEPTH
375.
                 WRITE (6,4300) (LNDUSE(KK, 1), KK=1, 3), TS(1), SRER(1)
376.
                 IF (NLAND. EQ. 1) GO TO 310
377.
                 DO 300 I=2, NLAND
378.
            300 WPITE (6,4310) (LNDUSE(KK, I), XK=1, 3), TS (I), SRER (I)
379.
            310 IF (UNIT.EQ.-1) GO TO 350
380.
381.
          C
             CONVERSION OF METRIC INPUT DATA TO ENGLISH UNITS
          C
382.
383.
                HYMIN= HYMIN*35.3
384.
                UZSN = UZSN/MMPIN
385.
                LZSN = LZSN/MMPIN
386.
                INFIL= INFIL/MMPIN
387.
                L
                      = L*3.281
388.
                      = LI*3.281
                LI
                      =
389.
                UZS
                        UZS/MMPIN
390.
                LZS
                      = LZS/MMPIN
391.
                      = SGW/MMPIN
                SGW
392.
                ICS
                      = ICS/MMPIN
393.
                      = OFS/MMPIN
                OFS
394.
                IFS
                     = IFS/MMPIN
395.1
                DO 315 I=1,12
395.2
            315 \text{ EPXM(I)} = \text{EPXM(I)/MMPIN}
396.
                AREA = AREA*2.471
397.
                DO 340 I=1, NLAND
398.
                AR(I) = AR(I) *2.471
399.
                ARP(I) = ARP(I) *2.471
400.
                ARI(I) = ARI(I) *2.471
```

```
401.
                   SRER(I) = SRER(I) / 2.24
 402.
                   TS(I) = TS(I)/2.24
 402.1
                   DO 318 JJ=1,12
 402.2
              318 TILSED(I,JJ) = TILSED(I,JJ)/2.24
IF (MNVAR.GT.0) GO TO 320
 403.
 404.
                   ACUPM (I, BGNMON) = ACUPM (I, BGNMON) *KGPHA
 405.
                   ACUIM (I, BGNMON) = ACUIM (I, BGNMON) *KGPHA
 4 C 6.
                  GO TO 340
 407.
              320 DO 330 J=1,12
 408.
                   ACUPM (I, J) = ACUPM(I, J) *KGPHA
 409.
              330 ACUIM(I,J) = ACUIM(I,J) * KGPHA
 410.
              340 CONTINUE
 411.
                  DO 345 I=7,37,6
 412.
              345 FORM (I) = ALTR (2)
 413.
                  IF (SNOW.LT.1) GO TO 350
 414.
                  FLDIF = ELDIF/0.3048
 415.
                  DGM = DGM/MMPIN
 416.
                  MELEV = MELEV/0.3048
 417.
                  TSNOW = 1.9*TSNOW + 32.0
 418.
                  PACK = PACK/MMPIN
 419.
                  DEPTH = DEPTH/MMPIN
 420.
           C
 421.
                                  ADJUSTMENT OF CONSTANTS
           C
           Č
 422.
 423.
             350 H = 60/INTEVL
 424.
                  TIMPAC = INTRVL
 425.
                  INTRVL = 24*H
 426.
                  ARIT=0.0
 427.
                  KRER=KRER*H** (JRER-1.0)
 428.
                  KSER=KSER*H** (JSER-1.0)
                  KEIM=KEIM*H** (JEIM-1.0)
 429.
430.
                  DO 355 I=1, NQUAL
                     (CUNIT(I) . EQ.TIT(1)) CUNIT(I) = CUNIT(7)
431.
                  ΙF
432.
             355 IP
                     (CUNIT(I).EQ.CUNIT(6)) SCALEF(I) = 1000.
                  IF (NQUAL. EQ.5) GO TO 357
433:
434.
                  TI=11+MQUAL*6
435.
                 DO 356 I=II,40
             356 FORM (I) = ALTR(1)
436.
437.
             357 I=NCUAL+4
438.
                 TIT(1) = \lambda LTR(I)
439.
                 J = 0
44 C.
                 DO 358 I=15,39,6
441.
                 J=J+1
442.
                 IF (SCALEF (J). IE.2.) GC TO 358
443.
                 FORM(I) = ALTR(3)
444.
            358 CONTINUE
445.
          C
                       CONVERT ACCUMULATION FATES INTO TONS/ACRE/DAY
446.
          С
447.
          Ċ
448.
                 DO 380 I=1, NLAND
451.
                 IF (MNVAR.GT.O) GO TO 360
452.
                 ACUPM (I, BGNMON) = ACUPM (I, BGNMON) /2000.
                 ACUIM (I, BGNMON) = ACUIM (I, BGNMON)/2000.
453.
454.
                 GO TO 380
455.
            360 DO 370 J=1,12
                 ACUIM (I,J) = ACUIM(I,J)/2000.
456.
457.
                 ACUPM (I,J) = ACUPM(I,J)/2000.
458.
            370 CONTINUE
459.
            380 CONTINUE
460.
                 --- PA=1.0-A
461.
                   IRC4=IRC**(1.0/96.0)
```

```
IF (SNOW .LT. 1) GO TO 450
DO 430 DA = 1,31
514.
515.
                    READ (5,4050) (IWIND (MN,DA), MN=1,12)
516.
            430
517.
          ¢
518.
                   DO 440 DA =1,31
519.
            440
                   READ (5,4050) (IRAD (MN,DA), MN=1,12)
          Ç
520.
521.
            450
                   IF (UNIT .EQ. -1) GC TC 490
                   DO 480 DA=1,31
522.
523.
                       DO 470 MN=1,12
524.
                          IEVAP(MN,DA) = IEVAP(MN,DA) *3.937
525.
                         IF (SNOW.EQ.1) IWIND(NN,DA) = IWINC(NN,DA) + 0.6214
526.
                            DO 460 IT=1,2
527.
            460
                            ITEMP(MN,DA,IT) = 1.8*ITEMP(MN,CA,IT) + 32.5
528.
            47C
                          CONTINUE
529.
            480
                       CONTINUE
530.
          C
                                                 SAV THIN OF JAN 1 ON 11/31
531.
            490 ITEMP(11.31,2) = ITEMF(1,1,2)
532.
          C
          C
533.
534.
          C
535.
          C
                                                                  BEGIN MONTHLY LCOP
536.
            500
                    DO 1240 MONTH=MNSTRT.MNEND
537.
          C
538.
          C
                          ASSIGN CURRENT MONTHLY VALUES OF ACCUMULATION RATES,
          C
539.
                          REMOVAL RATES, AND POTENCY PACTORS
540.
          C
541.
                 IP (HYCAL. EQ. 1) GO TO 530
542.
                 IF (MNVAR.EQ.O.AND.MONTH.NE.BGNHON) GO TO 530
543.
                 DO 520 I=1, NLAND
                 DO 510 J=1, NQUAL
544.
                 PMP(J,I) = PMPTAB(J,I,MCNTH)
545.
546.
            510 PMI(J,I) = PMITAB (J,I, MONTH)
                 ACCP(I) = ACUPM(I, MONTH)
547.
548.
                 ACCI(I) = ACUIM(I, MONTH)
549.
                 BPEP(I) = REPERM(I, MCNTH)
            520 RIMP(I) = PEIMPM(I, MONTH)
550.
            530 CONTINUE
551.
                 TEMPCF=TCF (MONTH)
552.
553.
          C
554.
          C
                                  ZEROING OF VARIABLES
          C
555.
556.
                 DO 540 I=1,28
                      ZEROING OF THE PIRST 28 VARIABLES CONTAINED IN COMMON/LNDOUT/
557.
          C
558.
            540 AR1OUT (I) =0.0
559.
                 PRIM=C.
560.
                 ROBTOM=0.
561.
                 INFTON=C.
562.
                 DO 560 J=1, NOUAL
                 DO 550 I=1, NLAND
563.
564.
                 APCLP(I,J)=0.0
565.
                 0.0=(L,I)IJOqA
566.
            550 CONTINUE
567.
                 POLTCA (J) = 0.0
568.
            560 POLTC (J) =0.0
569.
                 DO 570 I=1, NLAND
                 AEFSN (I) =0.0
570.
571.
                 ARIM(I)=0.0
            570 CONTINUE
572.
573.
                 NOSIM=0
574.
                 NOS=0
```

```
575.
                 TEMPA=0.0
 576.
                 DOA=0.0
 577.
                  SELTCA=0.0
 578.
                 IX=2*MONTH
 579.
                 12=1X-1
 580.
                 RECOUT (1) = YEAR
 581.
                        DYSTRT = 1
                        IF (MOD (YEAR,4)) 590, 580, 590
 582.
                           GO TO (630,610,630,620,630,620,630,630,620,630,620,630),
 583.
             580
 584.
                *MONTH
                           GO TO (630,600,630,620,630,620,630,620,630,620,630),
 585.
             590
 586.
                *MONTH
                               DYEND = 28
 587.
             600
588.
                               GO TO 640
589.
                               DYEND = 29
            610
 590.
                               GO TO 640
                               DYEND = 30
591.
            620
592.
                               GO TO 640
593.
            630
                               DYEND = 31
594.
          C
595.
            640
                        IMPEND= DY END
596.
                        IF (YEAR .NE. BGNYR)
                                              GO TO 650
597.
                        IF (MONTH . NE. BGNMON)
                                                  GO TO 650
598.
                        DYSTRT = BGNDAY
599.
600.
            650
                        IF (YEAR .NE. ENDYR)
                                                GO TO 660
                        IF (MONTH . NE. ENDMON)
                                                  GO TO 660
601.
602.
                        DYEND = ENDDAY
603.
          C
                                                                  BEGIN DAILY LOOP
604.
                        DO 990 DAY=DYSTRT, DYEND
            660
604.1
                           IF (MONTH.EQ.1 .AND. DAY.EQ.1) JCOUNT = 0 JCOUNT = JCOUNT + 1
604.2
604.3
604.4
          C
                           TIME = 0
605.
                           RAINT = 0.0
606.
                           EP = PETMUL*IEVAP (MONTH, DAY) / 1000.
607.
                           DO 670 I=1, INTEVL
608.
609.
                              IRAIN(I) = 0
                              RAIN(I) = 0.0
610.
            670
                              CONTINUE
611.
611.01
          C
611.02
                 MTX=MONTH
611.03
                 NTX=MONTH+1
                 IF (NTX.GT.12) NTX=1
611.04
611.05
          C
                   CALCULATE EPX MI FOR EACH DAY AS LINEAR INTERPOLATION
611.06
          C
                   BETWEEN MONTHLY VALUES
611.07
611.08
          C
                EPXMI = EPXM (HTX) + (EPXM (NTX) - EPXM (MTX) ) * (FLOAT (DAY-1)/
611.09
                       FLOAT (DYEND) )
611.1
612.
          C
612.1
          C
                     CHECK FOR TILLAGE DATES AND RESET SEER
612.2
          C
          C
612.3
612.32
                J=1
                DO 676 I=1, NLAND
612.35
                DO 674 II=1,12
612.4
612.5
              .. IF (JCOUNT. NE. TILDAY (I, II))
612.6
                SRER(I) =TILSED(I, II)
                IP (J.GT.0) WRITE (6,4610)
612.61
```

```
612.62
                J=0
612.63
                ADEP= SREP (I)
612.64
                IF (UNIT.GT.O) ADEP=ADEP*2.24
                WRITE (6,4600) MNAM(IZ), DAY, (LNDUSE(IK, I), IK=1,3),
612.7
612.8
                                ADEP, WHT, ARUN
612.85
           674 CONTINUE
612.9
           676 CONTINUE
         C
613.
614.
         C
                      CHECK TO SEE IF SNOWMELT CALC'S WILL BE DONE - IF YES THEM
615.
         C
                      CALCULATE CONTINUOUS TEMP, WINC, RAC AND APPLY CORRES HOLT
616.
         C
                      FACTORS
617.
         C
618.
                IF (SNOW.LT.1) GO TO 790
619.
                WINF = (1.0 - F) + F*(.35 - .03 * KUGI)
                                                WINF REDUCES WIND FOR PORESTED AREAS
620.
         C
         C
621.
         C
                     /* KUGI IS INDEX TO UNDERGROWTH AND FOREST DENSITY. */
622.
                     /* WITH VALUES 0 TO 10 - WIND IN FOREST IS 35% OF */
623.
         C
                     /* WIND IN OPEN WHEN KUGI=0, AND 5% WHEN KUGI=10 - */
624.
         C
         C
                     /* WIND IS ASSUMED MEASURED AT 1-5 FT ABOVE GROUND */
625.
         C
                     /* OR SNOW SURFACE */
626.
627.
         C
                          WIND = IWIND (MONTH, DAY)
628.
                TMIN = ITEMP(MONTH, DAY, 2)
629.
630.
                DEWX = TMIN - 1.0 * ELDIF
                RR = IRAD (MONTH, DAY)
631.
                                           DEWPT ASSUMED TO BE MIN TEMP AND USES
632.
         C
                                           LAPSE RATE OF 1 CEGREE/1000 PT
633.
         C
         C
634.
635.
                CALCULATE CONTINUOUS TEMP, WIND, AND RAC
           680 CONTINUE
636.
                TGRAD = 0.0
637.
                DO 780 I=1,24
638.
639.
                  IF (I-7) 740, 690, 700
           690
                  CHANGE = ITEMP(MONTH, DAY, 1) - TEMPI
640.
641.
           700
                  IF (I-17) 740, 710, 740
                                      IMDEND IS LAST DAY OF PRESENT MONTH
         C
642.
                  IF (DAY .NE. IMDEND) CHANGE = IT EMP (MONTH, DAY+1, 2) - TEMPI
           710
643.
                     (MONTH-12) 730, 720, 730
                  IF
644.
                  IF (DAY .EC. IMDEND) CHANGE = ITEMP(11,31,2) - TEMPI
645.
           720
646.
                  GO TO 740
                                          CHANGE = ITEMP (MONTH+1, 1, 2) - TEMPI
                  IF (DAY .EQ. IMDEND)
647.
           730
648.
         C
                                            750, 750, 760
                  IF (ABS(CHANGE) -0.001)
           740
64 9.
650.
            750
                  TGRAD = 0.0
                  GO TO 770
651.
652.
           760
                  TGPAD = GRAD(I) * CHANGE
                  TEMPX(I) = TEMPI + TGRAD
653.
           770
                  TEMPI = TEMPI + TGRAD
654.
                 IF (SNOW.LT.1) GO TC 780
655.
                  WINDX(I) = WMUL*WIND*WINF*WINDIS(I)
656.
                            = RMUL*RR*BADCON*RADDIS (I)
                  RAD(I)
657.
658.
           780 CONTINUE
                IF (SNOW.LT.1) GO TO 950
65 %
                                                         15-MIN PRECIP INPUT
660.
         C
                          IF (PINT.EC. 1) GO TO 850
           790
661.
662.
                             J=0
                             J = J + 1
           800
663.
                             JK = J*12
664.
665.
                             JJ = JK - 11
                             READ (5,4020) YR, MO, DY, CN, (IRAIN (I), I=JJ,JK)
666.
```

```
667.
                              IF (UNIT .EQ. -1) GO TO 820
 668.
                              DO 810 I=JJ,JK
669.
                                  IRAIN(I) = IRAIN(I) *3.937 + 0.5
670.
             810
                                  CONTINUE
 671.
                              IF (CN .EC. 9)
             820
                                               J=9
672.
                              YR = YR + 1900
                              IT = (YEXR-YH) + (MONTH-MO) + (DAY-DY) + (J-CH)
 673.
674.
                              IF (IT .EQ. 0)
                                               GO TO 830
 675.
                              WRITE (6,400C)
                                               J, MONTH, DAY, YEAR, CN, MO, DY, YR
676.
                              GO TO 1600
677.
                              IF (J.LT.8) GO TO 800
            830
678.
                           DO 840
                                  I=1, INTRVL
679.
                              RAIN(I) = IRAIN(I) *K1/100.
680.
                              RAINT = RAINT + RAIN(I)
681.
            940
                              CONTINUE
682.
                           GO TO 920
683.
          C
684.
          C
                                                          HOURLY PRECIP INPUT
685.
            850
                              J=0
686.
            860
                              J=J+1
687.
                              JK .= J*48
                              JJ = JK - 47
688.
                              READ (5,4020)
689.
                                            YR, MO, DY, CN, (IRAIN(I), I=JJ,JK,4)
                              IF (UNIT .EQ. -1) GO TO 880
690.
691.
                              DO 870 I=JJ, JK, 4
692.
                                 IRAIN(I) = IRAIN(I) *3.937 + 0.5
693.
            870
                                 CONTINUE
                              IF (CN .EQ. 9)
694.
            88 C
                                               J=9
695.
                              YR = YR + 1900
696.
                              IT = (YEAR-YR) + (MONTH-MO) + (DAY-DY) + (J-CM)
                                               GO TO 890
697.
                              IF (IT .EC. 0)
698.
                              WRITE (6,4000)
                                               J, MONTH, DAY, YEAR, CN, MO, DY, YR
699.
                              GO TO 1600
700.
            890
                              IF(J.LT.2) GO TO 860
701.
          C
702.
                          DO 910 I=1, INTRVL, 4
703.
                              TEM = IRAIN(I) * (K1/100.)/4.
704.
                              DO 900 K=1,4
                              PAIN(I+4-K) =TEM
705.
            900
706.
                              RAINT = RAINT + RAIN(I)
707.
                              CONTINUE
            910
708.
          C
709.
            920
                          IP (RAINT) 930, 930, 940
710.
             USE RAIN LOOP IF MOISTURE STORAGES ARE NOT EMPTY
711.
          C
712.
          C
713.
                IF ((RESS .LT. 0.001).OR. (SRGXT .LT. 0.001)) GO TO 980
            932
714.
          C
715.
          C
                               RAIN LOCF
716.
         C
          C
                 CONDITIONAL BRANCHING TO CALCULATE HOURLY TEMPERATURES
717.
718.
                 IF (SNOW.LT. 1) GO TC 680
719.
            940
720.
                 CONTINUE
            950
721.
722.
         C
                  CALCULATE COVER FUNCTION FOR THE PERVIOUS
         C
C
723.
                         AREAS WITHIN EACH LAND TYPE USE
724.
             HTMOM=KTK ...
725.
726.
                NTX=HONTH+1
                IF (NTX.GT. 12) NTX=1
727,
```

```
728.
                 DO 960 I=1, NLAND
729.
                 COVER(I) = COVMAT(I, MTX) + (PLOAT(DAY-1) / FLOAT(DYEND)) *
730.
                          (COVMAT (I, NTX) - COVMAT (I, MTX))
731.
            960 CONTINUE
732.
                           DO 970 I=1, INTRVL
733.
                              TIME = TIME + 1
734.
                              TP = 1
735.
                              PR = RAIN(I)
736.
          C
737.
                              IMIN = MCD(TIME, H)
738.
                              IHR = (TIME - IMIN)/H
739.
                              IMIN = TIMFAC*IMIN
749.
                              IX = 2*MONTH
741.
                              IZ = IX - 1
742.
                             CALL LANDS
743.
                     IF (HYCAL.EQ. 1) GC TO 970
744.
                             CALL QUAL
745.
            970 CONTINUE
746.
                             NDSR=0
747.
          C
748.
                           GO TO 990
749.
          C
          Ċ
750.
                                 NO RAIN LOOP
751.
          C
            980
752.
                           TP = INTRVL
753.
                           PR = 0.0
                           P3 = 0.0
754.
755.
                              RESB1 = 0.0
756.
                           IMIN = 00
757.
                           IHR = 24
758.
                           IX = 2*MONTH
759.
                           IZ = IX - 1
760.
                            NDS R= NDSR+1
761.
                            CALL LANDS
762.
                     IP (HYCAL.EQ.1) GO TO 990
763.
                            CALL QUAL
764.
          C
                                                            ENC DAILY LOOP
765.
            990
                           CONTINUE
          C
766.
          C
767,
                                        MONTHLY SUMMARY
768.
         C
769.
                 WRITE (6,4320) MNAM(IZ), MNAM(IX), YEAR
770.
                UZSOT=UZS
771.
                LZSOT=LZS
772.
                 SG WOT=SGW
773,
                 SCEPOT=SCEP
774.
                PESSOT=RESS
775.
                 SRGXTO = SRGXT
776.
                 TWBALO=TWBAL
777.
                TSN BOL = TSNBAL
778.
                PACKOT=PACK
                IF (UNIT.EQ.-1) GO TO 1010
779.
780.
                DO 1000 I=1,28
781.
         C
                      CONVERSION TO METRIC UNITS OF THE FIRST 28 VARIABLES
782.
         C
                       CONTAINED IN COMMON/LNDOUT/
783.
                ARIOUT(I) = ARIOUT(I) * HMPIN
784.
           1000 CONTINUE
785.
           1010 WRITE (6,4330) DEPW, ROSTOM, RINTOM, RITOM, BASTOM, RUTOM, RCHTCM, PRTOM
786.
                IF (SNOW.LT.1) GO TO 1030
787.
                COVR=100.
                IF (PACK.LT.IPACK) COVR=(PACK/IPACK) *100.
788.
```

```
IF (PACK.GT.0.01) GO TO 1020
789.
790.
                COVR=0.0
791.
                SDEN=0.0
           1020 WRITE (6,4340) SUMSHM, PXSNM, MELRAM, RADMEM, CONNEM, CORMEM, CRAINM;
792.
                                  SGMM, SNEGMM, PACKOT, SDEN, COVR, SEVAPM
793.
                                 EPTOM, NEPTOM, UZSOT, LZSOT, SGWOT, SCEPOT, RESSOT,
794.
           1030 WRITE (6,4350)
                                  SRGX TO, TWBALO
795.
                IF (SNOW.GT.O) WRITE (6,4360) TSNBOL
796.
                   IF (HYCAL.EQ. 1) GO TO 1230
797.
798.
          C
                      OUTPUT OF SEDIMENTS DEPOSIT ON GROUND AT MONTH'S END
799.
          C
800.
         C
                 WRITE (6,4370) WHT, ARUN
801.
802.
                 TEM1=0.0
                  TEM2=0.0
803.
80.4.
                  TEM3=0.0
805.
                 TEM4=0.0
                DO 1050 I=1, NLAND
806.
                TEM=SREP(I)*(1-IMPK(I))+TS(I)*IMPK(I)
807.
                 WHFUN1 = (AR (I) / AREA) * (1- IMPK(I))
808.
                 WHPUN2= (AR (I) /AREA) *IMPK (I)
8C9.
                TEM1=TEM1+SRER (I) *WHEUN1
810.
811.
                TEM2=TEM2+TS(I) *WHFUN2
                 TEM3=TEM3+WHFUN1
812.
                TEM4=TEM4+WHPUN2
813.
                IF (UNIT.GT.-1) GO TO 1040

WRITE (6,4390) (LNDUSE(IK,I),IK=1,3),TEM,SRER(I),TS(I)
814.
815.
                 GO TO 1050
816.
           1040 TEM5=SRER(I)*2.24
817.
                 TEM6=TS(I)*2.24
818.
                 TEM=TEM *2.24
819.
                 WRITE (6,4390) (LNDUSE(IK, I), IK= 1, 3), TEM, TEM5, TEM6
820.
           1050 CONTINUE
821.
                 IF (NLAND. EO. 1) GO TO 1070
822.
                   (TEM3.GT.O.O) TEM1=TEM1/TEM3
823.
                 TF
                 TF (TEM3.LE.O.O) TEM1=0.0
824.
                 IF (TEM4.GT.O.)) TEM2=TEM2/TEM4
825.
                 IF (TEM4.LE.3.0) TEM2=0.0
826.
                 TEM=TEM 1* (1-A) +TEM2*A
827.
                 IF (UNIT.LT.1) GO TO 1060
828.
829.
                 TEM=TEM*2.24
                 TEM1=TEM1*2.24
830.
831.
                 TEM2=TEM2*2.24
           1060 WRITE (6,438C) TEM, TEM1, TEM2
832.
833.
          C
                      OUTPUT MONTHLY SEDIMENTS LOSS FOR EACH LAND TYPE USE
          C
834.
835.
          C
           1070 WRITE (6,4400) WHT, WHGT, ARUN
836.
                 AERSNT=0.0
837.
                 AEIMT=0.0
838.
                 DO 1100 I=1,NLAND
839.
                 TEM=AEIM (I) + AERSN (I)
840.
                 IF (TEM.GT.0.0) GO TO 1080
841.
                 TEM1=0.0
842.
                 TEM2=0.0
843.
844.
                 TEM3=0.0
845.
                 GO TO 1090
           1080 TEM1=TEM+2000 ./AR(I)
846.
                 TEM2=100. *AERSN(I)/TEM
847.
848.
                 TEM3=100. * AEIM(I)/TEM
                 IF (UNIT.LT.1) GO TO 1090
849.
```

```
850.
                 TEM=TEM*.9072
851.
                 TEM 1= TEM 1* 1.12
852.
           1090 WRITE (6,4410) (LNDUSE(IK, I), IK= 1, 3), TEM, TEM 1, TEM 2, TEM 3
853.
                 AERSNT= AERSNT+AERSN(I)
854.
                 AEINT=AEIMT+AEIM(I)
855.
           1100 CONTINUE
856.
          С
857.
          C
                      OUTPUT MONTHLY SEDIMENTS LOSS FOR THE ENTIRE WATERSHED
858.
          C
859.
                 TEM=AERSNT+AEIMT
860.
                IF (TEM.GT.0.0) GO TO 1110
861.
                 TEM 1=0.0
862.
                 TEM2=0.0
863.
                TEM3=0.0
864.
                GO TO 1120
           1110 TEM1=TEM * 2000 . / AREA
865.
866.
                TEM2=100. * AERSNT/TEM
667.
                 TEM3=100.*AEINT/TEM
                IF (UNIT.LT.1) GO TO 1120
868.
869.
                 TEM=TEM*.9072
87C.
                 TEM1=TEM1*1.12
871.
           1120 WRITE (6,4470) TEM, TEM1, TEM2, TEM3
872.
                 WRITE (6,4420) WHGT, WHGT, ARUN
873.
         С
                      OUTPUT MONTHLY WASHOFF FOR EACH OF THE ANALYZED POLLUTANTS
         Ċ
874.
875.
         C
876.
                DO 1180 J=1, NQUAL
                 WRITE (6,4430) (QUALIN(I,J),I=1,3)
877.
878.
                APCLPT=0.0
                APOLIT=0.0
879.
880.
                DO 1150 I=1, NLAND
981.
         C
         С
                      MONTHLY WASHOFF OF A GIVEN POLLUTANT FROM EACH LAND TYPE USE
882.
883.
         C
884.
                TEM=APCLP(I,J) + APOLI(I,J)
885.
                IF (TEM.GT.0.0) GO TO 1130
886.
                TEM1=0.0
887.
                TEM2=C.C
                TEM3=0.0
988.
889.
                GO TO 1140
890.
           1130 TEXT=TEM/AR(I)
                TEM2=100. *APOIP(I, J)/TEM
891.
892.
                TEH3=100.* APOLI(I, J)/TEM
893.
                IF (UNIT.LT.1) GO TO 1140
                TEM=TEM*.454
894.
895.
                TEN 1= TFM 1/KGPHA
           1140 WRITE (6,4410) (LNDUSE(KK, I), KK= 1, 3), TEM, TEM 1, TEM 2, TEM 3
896.
897.
                 APOLPT = APOLPT + A POLF (I,J)
898.
                APCLIT=APOLIT+APOLI(I,J)
899.
           1150 CONTINUE
         C
900.
                     TOTAL MONTHLY WASHOFF OF A GIVEN POLLUTANT
901.
         C
902.
         C
903.
                TEM=APOLPT+APOLIT
904.
                IF (TEH.GT.0.0) GO TO 1160
905.
                TEM1=0.0
906.
                TEM2=0.0
907.
                TEM3=0.0
908.
                GO TO 1170
909.
           1160 TEM1=TEM/AREA
                TEM2=100. *A FOLPT/TEM
910.
```

```
TEM3=100. *APOLIT/TEM
911.
                 IF (UNIT.LT.1) GO TO 1170
912.
                 TEM=TEM*.454
913.
914.
                 TEM1=TEM1/KGPHA
           1170 WRITE (6,4440) TEM, TEM1, TEM2, TEM3
915.
916.
           1180 CONTINUE
                 TEMPAY= TEMPAY+TEMPA
917.
                 DOAY=DOAY+DOA
918.
                 SECTOY= SECTOY + SECTOA
919.
          C
920.
                      CALCULATE AND PRINT MONTHLY AVERAGES OF TEMPERATURE,
          С
921.
                      DISSOLVED OXYGEN, AND EACH OF THE ANALYSED POLLUTANT
          С
922.
923.
          C
                 IP (NOSIM.LE.C) GO TO 1190
924.
                 TEMPA=TEMPA/NOSIM
925.
926.
                 DOA=DOA/NOSIM
927.
                 SECTCA=SECTCA/NOSIN
           1190 TEMPO=TEMPA
928.
                IF (UNIT.EQ.1) TEMPO= (TEMPO-32.)*5/9
929.
                 WRITE (6,4450) UTMP, TEMPO, DOA, SEDTCA
930.
                 DO 1210 J= 1, NQUAL
931.
                 PLTCAY (J) = PLTCAY (J) + POLTCA (J)
932.
                 IF (NOSIM.LE.O) GO TO 1200
933.
                 POLTCA (J) = POLTCA (J) /NOSIM
934.
935.
           1200 WRITE (6,446)) (QUALIN(I,J), I=1,3), CUNIT(J), POLTCA(J)
936.
           1210 CONTINUE
937.
          С
                           ACCUMULATION FOR YEARLY SUMMARIES
938.
          C
939.
          С
                DO 1220 I=1, NLAND
940.
                 AERSNY(I) = AERSNY(I) + AERSN(I)
941.
942.
                AEIMY(I) = AEIMY(I) + AEIM(I)
                DO 1220 J= 1, NQUAL
943.
                APOLPY(I,J) = APOLPY(I,J) + APOLP(I,J)
944.
                 APOLIY(I, J) = APOLIY(I, J) + APOLI(I, J)
945.
946.
           1220 CONTINUE
           1230 CONTINUE
947.
948.
                WRITE (6,4490) NOS
949.
                NOSIY=NOSIY+NOSIM
                NOSY=NOSY+NOS
950.
           1240 CONTINUE
951.
                                              END MONTHLY L'OOP
952.
          C
                                        YEARLY SUMMARIES
953.
954.
         C
955.
                WRITE (6,4480) YEAR
956.
                UZSMT=UZS
                LZSMT=LZS
957.
958.
                SG WMT=SGW
959.
                SCEPT= SCEP
960.
                RESST=RESS
                SRGXTT= SRGX
961.
962.
                TWBLMT=TWBAL
963.
                TSNBOL=TSNBAL
                IF (UNIT.EQ.-1) GO TO 1260
964.
                DO 1250 I=1,28
965.
                      CONVERSION TO METRIC UNITS OF THE LAST 28 VARIABLES
966.
                       CONTAINED IN COMMON/LNDOUT/
967.
           1250 AR2OUT (I) = AR2OUT (I) *MMPIN
968.
969.
           1260 WRITE (6,4330) DEPW, RCSTCT, RINTOT, RITOT, BASTOT, RUTOT, RCHTOT, PBTOT
                IF (SNOW.LT.1) GO TO 1280
970.
971.
                COVR=100.
```

```
972.
                 IF (PACK.LT.IPACK) COVR=(PACK/IPACK) *100.
 973.
                 IF (PACK.GT.0.01) GO TO 1270
 974.
                 COVR=0.0
 975.
                 SDEN=0.0
 976.
            1270 WRITE (6,4340) SUMSNY, PXSNY, MELRAY, RADMEY, CONHEY, CORMEY, CRAINY,
 977.
                                  SGMY, SNEGMY, PACKOT, SDEN, COVR, SEVAPY
 978.
            1280 WRITE (6,4350) EPTOT, NEPTOT, UZSMT, LZSMT, SCWMT, SCEPT, RESST,
 979.
                                  SRGXTT, TWBLMT
 980.
                 IF (SNOW.GT.O) WRITE (6,4360) TSNBOL
 981.
                 IF (HYCAL.EQ. 1) GO TO 1425
                 WRITE (6,4400) WHT, WHT, ARUN
 982.
 983.
          C
 984.
          C
                       OUTPUT YEARLY SEDIMENTS LOSS FOR EACH LAND TYPE USE
 985.
          C
 986.
                 AERSNT=0.0
                 AEIMT=C.O
 987.
 988.
                 DO 1310 I=1, NLAND
 989.
                 TEM=AEIMY(I)+AERSNY(I)
 990.
                 IF (TEM.GT.0.0) GO TO 1290
 991.
                 TEM 1=0.0
 992.
                 TEM2=0.0
 993.
                 TEM3=0.0
 994.
                 GO TO 1300
 995.
            1290 TEM1=TEM/AR(I)
 996.
                 TEM3=100. * AEIMY(I)/TEM
 997.
                 TEM 2= 100 . * AERSNY(I)/TEM
 998.
                 IF (UNIT.LT.1) GO TO 1300
 999.
                 TEM=TEM*.9072
1000.
                 TEM1=TEM1/KGPHA
            1300 WRITE (6,4410) (LNDUSE(KK, I), KK=1, 3), TEM, TEM1, TEM2, TEM3
1001.
1002.
                 APRSNT = APRSNT + APRSNY (I)
1003.
                 AEIMT= AEIMT+AEIMY (I)
1004.
            1310 CONTINUE
1005.
          C
                       OUTPUT YEARLY SEDIMENTS LOSS FOR THE ENTIRE WATERSHED
1006.
          C
1007.
          C
1008.
                 TEM=AERSNT+ABIMT
                 IF (TEM.GT.0.0) GO TO 1320
1009.
1010.
                 TEM1=0.0
1011.
                 TEM2=0.0
1012.
                 TEM3=0.0
                 GO TO 1330
1013.
            1320 TEM1=TEM/AREA
1014.
                 TFM2=100. *AERSNT/TEM
1015.
                 TE 83=100. * AEIMT/TEM
1016.
                 IF (UNIT.LT.1) GO TO 1330
1017.
1018.
                 TEF=TEM*.9072
                 TEN 1=TEM 1*2.24
1019.
            1330 WRITE (6,4470) TEM, TEM1, TEM2, TEM3
1020.
                 WRITE (6,4420) WHGT, WHGT, ARUN
1021.
1022.
          C
                       OUTPUT YEARLY WASHOFF FOR EACH OF THE ANALYZED POLLUTANTS
          C
1023.
          C
1024.
                 DO 1390 J=1,NQUAL
1025.
                 WRITE (6,4430) (QUALIN(I,J), I=1,3)
1026.
                 APOLPT=0.0
1027.
                 APCLIT=0.0
1028.
                 DO 1360 I=1, NLA ND
1029.
1030.
          C
                       YEARLY WASHOFF OF A GIVEN POLLUTANT IRON EACH LAND TYPE USE
1031.
          C.
          C
1032.
```

```
1033.
                  TEM=APOLPY(I, J) +APCLIY(I, J)
 1034.
                   IF (TEM.GT.O.O) GO TO 1340
 1035.
                  TEM1=0.0
 1036.
                  TEM2=0.0
 1037.
                   TEM3=0.0
 1038.
                  GO TO 1350
 1039.
             1340 TEM1=TEM/AR(I)
                   TEM2=100. * APOLPY(I,J)/TEM
 1040.
 1041.
                  TEM3=10G. *APOLIY(I, J)/TEM
 1042.
                  IF (UNIT.LT.1) GO TO 1350
 1043.
                   TEM=TEM+.454
 1044.
                   TEM1=TEM1/KGPHA
 1045.
             1350 WRITE (6,4410) (LNDUSE(KK, I), KK=1, 3), TEM, TEM 1, TEM 2, TEM 3
                   APOLPT = APOLPT + APOLPY (I, J)
 1046.
 1047.
                   APOLIT = APOLIT + A POLIY (I, J)
 1048.
             1360 CONTINUE
 1049.
            C
 1050.
            C
                       TOTAL YEARLY WASHOFF OF A GIVEN POLLUTANT
            C
 1051.
 1052.
                   TE M=APOLPT+ APOLIT
 1053.
                  IF (TEM.GT.0.0) GO TO 1370
 1054.
                  TEM1=0.0
 1055.
                   TEM2=0.0
 1056.
                   TE #3=0.0
                  GO TO 1380
 1057.
             137C TEM1=TEM/AREA
 1058.
                   TEM2=100. *APOLPT/TEM
 1059.
                   TEM3=100.*APOLIT/TEM
 1060.
                   IF (UNIT.LT.1) GO TO 1380
 1061.
                   TEM=TEM*.454
 1062.
 1063.
                   TEM 1= TEM 1/KGPHA
             1380 WRITE (6,4440) TEM, TEM1, TEM2, TEM3
 1064.
             1390 CONTINUE
 1065.
 1066.
            C
                        CALCULATE AND PRINT YEARLY AVERAGES OF TEMPERATURE,
 1067.
            C
                        DISSOLVED OXYGEN, AND EACH OF THE ANALYZED POLLUTANT
 1068.
            C
            C
 1069.
                   IP (NOSIY.LE.O) GO TO 1400
 1070.
                   TEMPAY= TEMPAY/NOSIY
 1071.
                   DOAY=DOAY/NOSIY
 1072.
 1073.
                   SECTCY= SEDTCY/NOSIY
 1074.
             1400 TEMPO=TEMPAY
                   IF (UNIT.EQ.1) TEMEO= (TEMPO-32.) *5/9
 1075.
                   WRITE (6,445C) UTMF, TFMPO, DOAY, SEDTCY
 1076.
                   DO 1420 J= 1, NQUAL
 1077.
                   IF (NOSIY.LE.O) GO TO 1410
 1078.
                   PLTCAY(J) = PLTCAY(J)/NOSIY
 1079.
             1410 WRITE (6,4460) (QUALIN(I,J), I=1,3), CUNIT(J), PLTCAY(J)
 1080.
 1081.
             1420 CONTINUE
             1425 WRITE (6,4490) NOSY
 1082.
 1083.
            C
                                       ZEROING OF VARIABLES
. 1084.
            C
            C
 1085.
                   DO 1430 I=1,28
 1086.
                        ZEROING OF THE LAST 28 VARIABLES CONTAINED IN COMMON/LNDOUT/
1087.
             1430 AR2OUT (I) =0.0
1088.
                   DO 1450 J= 1, NQUAL
 1089.
                   DO 1440 I=1,5
 1090.
 1091.
                   APOLPY(I,J)=0.0
             1440 APCLIY (I, J) =0.0
 1092.
             1450 PLTCAY(J)=0.0
 1093.
```

```
DO 1460 T=1,5
1094.
1095.
                  AERSNY(I)=0.0
1096.
             1460 AEIMY(I) = 0.0
1097.
                  NOSIY=0
1098.
                  TEMPAY=0.0
1099.
                  DO A Y=0.0
1400.
           C
1101.
           C
                      SUMMARY OF STORMS CHARACTERISTICS
           C
1102.
1103.
                  NV = (NQUAL + 1) + 4
1104.
                  IF \{HYCAL.EQ.1\} NV=2
                  IF (NOSY.LT.2.OR.NCSY.GT.200) GO TO 1560
1105.
1106.
           C
1107.
           C
                      CLEAR OUTPUT VECTORS AND INITIALIZE VMIN AND VHAX
1108.
           C
                  DO 1470 K= 1, NV
TOTAL (K) =0.0
1109.
1110.
1111.
                  SD(K) = 0.0
                  VMIN(K) = 1.0E75
1112.
1113.
            1470 VMAX(K)=-1.0E75
1114.
1115.
           C
                     CALCULATE MEANS, ST.DEV'S, MAXINA, AND MINIMA
           C
1116.
                  DO 1520 I=1,NOSY
DO 1520 K=1,NY
1117.
1119.
                  TOTAL (K) = TOTAL(K) +STMCH(I,K)
1119.
                  IF (STMCH(I,K)-VMIN(K)) 1480,1490,1490
1120.
1121.
             1480 VMIN(K) = STMCH(I,K)
             1490 IF (STMCH(I,K)-VMAX(K)) 1510,1510,1500
1122.
             1500 VMAX(K) = STMCH(I,K)
1123.
             1510 SD (K) = SD(K) + STMCH(I, K) * STMCH(I, K)
1124.
             1520 CONTINUE
1125.
1126.
                  DO 1539 K=1,NV
                  RANGE(K) = V MAX (K) - V MIN(K)
1127.
                  AVER(K) = TOTAL(K) / NOSY
1128.
                  SD (K) = SQRT (ABS ( (SD (K) -TOTAL (K) *TOTAL (K) /NOSY) / (NOSY-1) ))
1129.
1130.
             1530 CONTINUE
           C
1131.
1132.
           C
                      PRINT STORM CHARACTERISTICS
           C
1133.
                  IF (HYCAL.NE.1) GO TO 1540
1134.
                  WRITE (6,4500)
1135.
                          (6,4580) DEPW, AVER (1), SD (1), VMAX (1), VMIN (1), RANGE (1)
1136.
                  WRITE
                  WRITE
                          (6,4590) UFL, AVER (2), SD (2), VMAX (2), VMIN (2), RANGE (2)
1137.
                  GO TO 1570
1138.
             1540 WRITE (6,4500)
1139.
                  WRITE (6,4510)
1140.
                          (6,4530)
                  WRITE
                                    WHT, AVER (1), SD(1), VMAX (1), VM IN (1), BANGE (1)
1141.
                          (6.4540)
                                    WHGT, AVER (2), SD(2), VM AX (2), VM IN (2), BANGE (2)
1142.
                  WRITE
                          (6,4545) AVER(3), SD(3), VMAX(3), VMIN(3), RANGE(3)
1143.
                  WRITE
                          (6,4555) AVER (4), SD(4), VMAX (4), VMIN (4), RANGE (4)
1144.
                  WRITE
                  no 1550 J=1,NQUAL
1145.
                  WRITE (6,4430) (QUALIN(I,J), I= 1, 3)
1146.
                  K=J*4+1
1147.
                  WRITE (6,4530) WHT, AVER (K), SD(K), VMAX (K), WMIN (K), BANGE (K)
1148.
                  K = K + 1
1149.
                  WRITE (6,4540) WHGT, AVER (K), SD(K), VMAX (N), VMIN (K), RANGE (K)
1150.
                  K = K + 1
1151.
                  WRITE (6,4550) CUNIT(J), AVER(K), SD(K), VMAX(K), VMIN(K), RANGE(K)
1152.
1153.
                  K = K + 1
                  WRITE (6,4560) CUNIT (J), AVER (K), SD (K), VMAX (K), VMIN (K), RANGE (K)
1154.
```

```
1155.
              1550 CONTINUE
1156.
                     GO TO 1570
1157.
              1560 WRITE (6,4570)
1158.
                     IF (NOSY.EQ.0) GO TO 1590
              1570 DO 1580 I=1,NOSY
1159.
1160.
                     DO 1580 K=1,NV
1161.
              1580 STMCH(I,K)=0.0
1162.
                     NOSY=0
1163.
             C
                                                       END OF YEARLY LOOP
              1590
1164.
                         CONTINUE
1165.
             C
              1600 CONTINUE
1166.
1167.
             C
             C
                                        FORMAT STATEMENTS
1168.
             C
1169.
1170.
              4000 FORMAT (11, ***** ERROR**** INCORRECT INPUT DATA!
                                                                                             DESIRBD .
                         'CARD ', I1,' FOR ', I2, '/', I2, '/', I4, '; READ CARD ', I1, ' EOR ',
1171.
                         12, 1/1, 12, 1/1, 14)
1172.
              4010 FORMAT ('0')
4020 FORMAT (1X,312,11,1216)
1173.
1174.
              4040 FORMAT (8X,2413)
1175.
1176.
              4050 FORMAT
                               (8X, 12I6)
              4060 FORMAT (3A4,2X,A4)
1177.
              4070 FORMAT ('1',9(/),45x, 'NONPOINT SOURCE POLLUTANT LOADING MODEL',
1178.
                              /,44X,42('='),5(/))
                   1
1179.
              4080 FORMAT (' ',1X, WATERSHEE CHARACTERISTICS : ',//, 6X, NAME', 8X,
1180.
              1 3A8,/,18X,3A8,//,6X,'TOTAL AREA (',A4,')', EX,P9.2,/)
4090 FORMAT (9X,'LAND USE',5X,'% OF TOTAL',6X,'AREA (',A4,'S)',6X,
1181.
1182.
                               'PERVIOUS (',A4,'S)',3x,'IMPERVIOUS (',A4,'S)',3x,
1183.
                   1
                              'IMPERVIOUS (%)',/)
1184.
              4100 FORMAT (' ',7X,3A4,5X,F5.1,4(10X,F9.2))
1185.
              4110 FORMAT
                               (/,6x, FRACTION OF IMPERVIOUS AREA ,2x, F5.2)
1186.
                               ('0',8X, ***WARNING***, 3X, CHECK IF THE LAND TYPES AREAS .
1187.
              4120 FORMAT
                                'ARE CORRECT')
1188.
              4130 FORMAT (5(/), 1, 1%, 18 SIMULATION CHARACTERISTICS: 1,///,6X,
1189.
                              TYPE OF RUN', 1CX, 4A8, /, 6X, DATE SIMULATION BEGINS', 13X, 2A4, 2X, 12, ', ', 14, /, 6X, 'DATE SIMULATION ENDS', 15X, 2A4, 2X, 12, ', ', 14, /, 6X, 'INPUT PRECIPITATION TIME INTERVAL',
                    1
1190.
1191.
1192.
                    3
                              9 X, 13, 1X, MINUTES, /, 6X, SIMULATION TIME INTERVAL, 19X, 12, 1X, MINUTES, /, 6X, SNOWMELT CONSIDERED ?, 26 X, A 4, /,
                   4
1193.
                    5
1194.
                              6x, 'INPUT UNITS', 34x, 1 A8, /, 6x, 'OUTPUT UNITS', 33x, 1 A8, /, 6x,
1195.
                    6
                              MINIMUM PLOW FOR OUTPUT PER INTERVAL (", A4,") ", 1x, F9.4,
                   7
1196.
                              /,6x, number of quality indicators analyzed, 14x,12,
1197.
                              /,6x, THE ANALYZED QUALITY INDICATORS ,4X,
                    9
1198.
                               'SEDIMENTS, DC, TEMF, ',/, 5 (46X, 3A4, ', ',/))
1199.
                    X
              414C PORMAT (5 (/), 2X, SUMMARY OF INPUT PARAMETERS : 1,///.6X,
1200.
                                                                                =1,F7.3,4X,
                                'LANDS', 13X, 'INTER =', F7.3, 4X, 'IRC
1201.
                   1
                                                                    =', F7.3,4X,'L
                                'INFIL = ', F7.3, /, 24X, 'NN
1202.
                   2
                                                   =', F7.3,/,24X,'NNI =',F7.3,4X,
                                P7.3,4X, 'SS
1203.
                   3
                               LI = ',F7.3,4X, 'SSI = ',F7.3,/,24X, 'K1

4X, 'PETMU L= ',F7.3,4X, 'K3 = ',F7.3,/,24X,14X,

4X, 'K24L = ',F7.3,4X, 'KK24 = ',F7.3,/,24X,

'U2SN = ',F7.3,4X, 'LZSN = ',F7.3)
                                                                                             =1, 27.3,
                   u
1204.
1205.
                   5
1206.
                    6
1207.
                              (/,6x, *SNON*,14x, *RADCON=*, F7.3, 4x, *CCFAC =*, F7.3, 4x,
1208.
              4150 FORMAT
                                'EVAPSN=', F7.3,/24X, 'MELEV =', F7.3,4X, 'ELDIF =', F7.3,4X,
1209.
                               *TSNOW = ', F7.3, /, 24X, 'MPACK = ', F7.3, 4X, 'DGM = '4X, 'WC = ', F7.3, /, 24X, 'IDNS = ', F7.3, 4X, 'SCF 4X, 'WMUL = ', F7.3, /, 24X, 'RMUL = ', F7.3, 4X, 'F
                                                                                           =1, 27.3,
1210.
                   2
                                                                                                 =',F7.3,
1211.
                    3
1212.
                    4
                                F7.3,4X,'KUGI =', F7.3,/)
                   5
1213.
              4160 PORMAT (/,6X, OUAL 1,12X, JRER = 1, F7. 3, 4X, KRER = 1, F7. 3, /, 24X; JSER = 1, F7. 3, 4X, KSER = 1, F7. 3, /,
1214.
1215.
```

```
1216.
                   2
                              24X, 'JEIM =', F7.3, 4X, 'KEIM =', F7.3,/)
              4162 FORMAT (/,24x,'TIMTIL AND SRERTL-')
1216.1
1216.2
              4165 FORMAT (/,24X,3A4,12(5X,I3),/,36X,12(3X,P5.2))
              4170 FORMAT (//,6X, MONTHLY DISTRIBUTION ,7X,11(A4,4K),A4,//,6X,
1217.
1218.
                  1
                          *TEMP CORRECTION FACTOR', 1X, 12(2X, 86.2),
1218.1
                   2
                          /,6 X, 1 EPXM1, 19X, 12 (2X, P6.2),///,7X,
                          '- PERVIOUS LANDS -',///,6X,'LAND COVER-',3A4,1X,12(1X,F7.3))
1219.
             4180 FORMAT (17x,3A4,1x,12(1x,F7.3))
122 %.
1221.
              4190 FORMAT (/,6X, ACCUMULATION RATES*)
             4200 FORMAT (/,6X, REMOVAL RATES')
1222.
             4210 FORMAT (/,6x, POTENCY FACTORS FOR , 1x, 3x4)
1223.
                             (//,6x,'-IMPERVIOUS LANDS-',/)
1224.
              4220 FORMAT
                             (24 X, 3 A4, 6X, 'ACUP = ', F7. 3, 4X, 'ACUI
             4230 FORMAT
1225.
                                                                          =', F7.3)
1226.
             4240 PORMAT
                             (24X,3A4,6X,'RFER =',F7.3,4X,'RIMP =',F7.3)
1227.
             4250 FORMAT
                             (//.6x, POTENCY FACTORS FOR PERVIOUS AREAS ,5x,5 (3A4,31),/)
1228.
             4260 FORMAT
                             (24X,3\lambda4,8X,5(F8.3,7X))
             427C FORMAT
                             (//,6x, POTENCY FACTORS FOR IMPERVIOUS AREAS',5(3x,3A4),/)
1229.
1230.
              4280 FORMAT
                             (5(/),2x,'INITIAL CONDITIONS: :',3(/),6x,'LANDS',13x,
                            'UZS =', F7.3,4X, 'LZS =', F7.3,4X, 'SGW =', F7.3,/)
(5X, 'SNOW', 14X, 'PACK =', F7.3,4X, 'EEPTH =', F7.3,/)
1231.
              4290 FORMAT
1232.
                             (6x, QUAL', 14x, 3A4, 6x, 'TSI =', F9.3, 4x, 'SRERI =', F9.3)
              4300 FORMAT
1233.
                             (24X,3A4,6X, 'TSI = ', F9.3, 4X, 'SRERI = ', F9.3)
1234.
              4310 PORMAT
              4320 FORMAT ('1',25X,'SUMMARY FOR MONTH OF ',2A4,1X,14,/,
1235.
                            25X,35('='),//,35X, 'TOTAL')
('0',8X,'WATER, ',A4,//,11X,'RUNOFF',/,14X,
'OVERLAND FLOW',5X,F9.3,/,14X,'INTERPLOW',9X,F9:3,
1236.
                   1
1237.
              4330 PORMAT
                   1
1238.
                            /,14X,'IMPERVIOUS',8X,F9.3,/,14X,'FASE FLOW',9X,
1239.
                   2
1240.
                   3
                             F9.3,/,14X,'TCTAL',13X,F9.3,//,11X,
                             'GRDWATER RECHARGE', 4x, F9. 3, //, 11x, 'PRECIPITATION',
1241.
                   4
1242.
                             8x, F9.3)
             4340 FORMAT (' ',13x, 'SNOW', 14x, F9.3, /, 14x, 'RAIN ON SNOW', 6x, 1 F9.3, /, 14x, 'MELT & BAIN', 7x, F9.3, //, 11x, 'MELT',
1243.
1244.
                           /,14X, RADIATION', 9X, F9. 3,/, 14X, CONVECTION', 8X,
1245.
                   2
                            F9.3,/,14x, CONDENSATION, 6x, F9.3,/,14x, RAIN - MELT,
1246.
                   3
                             7x, F9.3,/,14x, 'GROUND-MELT',7x, F9.3,/,14x,
1247.
                   4
                             'CUM-NEG-HEAT', 6x, F9.3, //, 11x, 'SNOW-PACK', 12x, F9.3,
                  5
1248.
                            /,11x,'snow density',9x,F9.3,/,11x,'% snow cover', 9x,F9.3,//,11x,'snow evap',12x,F9.3)
1249.
                   6
1250.
                  7
              4350 FORMAT ('0', 11X, 'EVAPCTRANSPIRATION', /, 14X, 'POTENIAL', 10X,
1251.
1252.
                            F9.3,/,14x, 'NET', 15x, F9.3,//, 11x, 'STORAGES',/,
                            14X, 'UPPER ZONE', 8X, F9. 3, /, 14X, 'LONER ZONE', 8X, F9. 3, /, 14X, 'GROUNDWATER', 7X, F9. 3, /, 14X, 'INTERCEPTION', 6X,
1253.
1254.
                   3
                            F9.3./,14X, 'OVERLAND PLOW', 5X, F9.3./,14X, 'INTERPLOW', 9X,F9.3,//,11X, 'WATER BALANCE', 8X, F9.3)
1255.
                  4
1256.
              4360 PORMAT: (* ',10X, 'SNOW BALANCE', 9X, F9.3)
1257.
             1258.
1259.
             4380 FORMAT (11X, WEIGHTED MEAN', 27X, F10.3, 3 (10X, F10.3))
1260.
             4390 FORMAT (' ',8X,3A4,29X,F11.3,3(9X,F11.3))
1261.
             4400 FORMAT ('0',8X, 'SEDIMENTS LOSS, ',11X, 'TOTAL (',A4,')',3X,

1 'TOTAL (',A4,'/',A4,')',3X, 'PERVIOUS (%)',7X, 'INPERVIOUS (%)')

4410 FORMAT ('',8X,3A4,9X,P11.3,3(5X,P15.3))
1262.
1263.
1264.
              4420 FORMAT ('0',8X, POLLUTANT WASHOPP, ',8X, TOTAL (',A4,')',3X,
1265.
             1 'TOTAL (', A4, '/', A4, ') ', 3X, 'PERVIOUS (%)', 7X, 'IMPERVIOUS (%)')
4430 FORMAT ('0', 9X, WASHOFF OF ', 3A4)
1266.
1267.
             4440 FORMAT (' ',10X, 'TCTAL WASHOFF', 6X, F11.3, 3 (9X, F11.3))
1268.
             4450 PORMAT ('0',8x,'STORM WATER QUALITY - AVERAGES',//,
1 11x,'TEMPERATURE ', A4,6x, P7.2,//, 11x,
1269.
1270.
                   2
                            'DISSOLVED OXYGEN (PPM)', 1x, F7.3,//, 12x,
1271.
                                             (GM/L) ', P11.3)
1272.
                             * SEDIMENTS
              4460 FORMAT (' ',11X,3A4,'(',A4,')',P11.3)
1273.
```

```
1274.
            4470 FORMAT (' ',10X,'TCTAL LCSS',10X,F10.3,3(10X,F10.3))
            4480 PORMAT ('1',25x,'SUMMARY FOR ',14,/,25x,16('_'),//,35x,'TOTAL')
1275.
1276.
            4490 FORMAT ('0',8x,'NO. CF STORMS',14x,13)
1277.
             4500 FORMAT ('0',8X,'SUMMARY OF STORMS'' CHARACTERISTICS',4X,
1278.
                 1
                          'AVERAGE', 8X, 'ST.DEV.', 9X, 'MAXIMA', 9X, 'MINIMA',
1279.
                         9X,'RANGE',//)
1280.
            4510 FORMAT (11X, SEDIMENTS LCSS')
1281.
            4520 FORMAT
                          (3A8/3A8)
                          (/,14x,'TOTAL WASHOFF (',A4,')',4x,5(5x,F1C.3))
1282.
            4530 FORMAT
1283.
            4540 FORMAT (14X, MAX WASHOPP (*, A4, */15MIN) *, SX, P10.3,
1284.
                 1
                           4(5x, P10.3)
                          (14x, MEAN CONCENTRATION (GM/L) , 4x, F10.3, 4 (5x, F10.3)):
1285.
            4545 FORMAT
                          (14X, MEAN CONCENTRATION (', A4, ')', 4X, F10. 3, 4 (5X, F10.3))
1286.
            4550 FORMAT
            4555 FORMAT
1287.
                          (14x, MAX CONCENTRATION (GM/L)', 5x, F10.3, 4 (5x, P10.3))
                          (14X, 'MAX CONCENTRATION (', A4, ')', 5X, F10.3, 4(5X, F10.3'))
1288.
            4560 FORMAT
            4570 PORMAT ("0",8X,"**WARNING***,3X,
1289.
1290.
                           *SUMMARY OF STORM CHARACTERISTICS NOT PRINTED .
                 1
1291.
                           /,22x, NUMBER OF STORMS LESS THAN 2 OR HORE THAN 2001;
                 2
1292.
                                 CHECK YOUR HYMIN PARAMETER!)
1293.
            4580 FORMAT (/,14X,'TOTAL RUNOFF (',A4,')',5X,5(5X,F10.3))
1294.
            4590 FORMAT (14x, MAX RUNOFF (*, A4, 1) *, 12x, F10.3,
1295.
                           4 (5X, P10.3))
1295.1
            4600 FORMAT (/, *** ', A4, 1X, 12, ' - LAND SURFACE DISTURBANCE OCCURS
                 * ON ',3A4,/,17X,'SEDIMENT DEPOSITS ON PERVIOUS AREAS RESET TO:,
* F9.3,1X,A4,'/',A4)
1295.2
1295.3
1295.4
            4610 FOFMAT ('1')
1296.
1297.
                  STOP
1298.
                  ENC
2000.
                  BLCCK DATA
2001.
           C
2002.
           C
2003.
                                  BIOCK DATA TO INITIALIZE VARIABLES
           C
2004.
           C
2005.
           C
2006.
           C
20C7.
                  IMPLICIT REAL(I)
2008.
           C
                  DIMENSION MNAM(24), RAD(24), TEMPX(24), WINCX(24), RAIN(96),
2009.
2010.
                             GRAD(24), RADDIS(24), WINDIS(24)
2011.
           C
                  COMMON /ALL/ RU, HYMIN, HYCAL, DPST, UNIT, TIM FAC, LZS, AREA, RESB, SFLAG,
2012.
2013.
                                 RESB1, ROSB, SRGX, INTF, RGX, RUZE, UZSB, PERCB, RIB, P3, TF,
                 1
2014.
                                 KGPLB, LAST, PREV, TEMPX, IHR, IHFP, PR, RUI, A, PA, GWP, NOSY,
                 2
                                 SRER(5), TS(5), LNDUSE(3,5), AR(5), QUALIN(3,5), NOSI, NOS,
2015.
                 3
2016.
                                 NOSIM, UFL, UTNP, UNT 1 (2, 2), UNT 2 (2, 2), UNT 3 (2, 2), WHG %,
                 4
2017.
                                 WHT, DEPW, ROSBI, RESBI, RESBI 1, ARUN, LHTS (5), IMPK (5),
                 5
2018.
                                 NLAND, NQUAL, STMCH (200, 24), RECOUT (5), FLOUT, SCALEF (5),
                 6
2019.
                                 SNOW, FACK, I FACK
                 7
2020.
           C
                  COMMON /LAND/DAY, PRTM, IMIN, IX, TWBAL, SGW, GWS, KV, LIRC4, LKK4, ALTB (9),
2021.
                                 UZS, IZ, UZSN, LZSN, INFIL, INTER, SGW 1, DEC, DECI, TIT (13),
2022.
                 1
2023.
                                 K24L, KK24, K24EL, EP, IPS, K3, EPXMI, RESS1, RESS, SCEP, IRC,
                 2
                                 SRGXT1, MMPIN, KGPHA, METOPT, CCFAC, SCEP1, SRGXT, RAIN, SRC,
2024.
                 3
2025.
                                 SCF, IDNS, P, DGM, WC, MPACK, EVAPSN, MELEV, TSNOW, PETHIN,
                 4
2026.
                 5
                                 DEWX, DEPTH, MONTH, TMIN, PETM AX, ELDIF, SDEN, WIND X, INPTOM.
                                 TSNBAL, RCBTCM, ROBTOT, RXB, ROITOM, ROITCT, YEAR, CUNIT (7)
2027.
                 6
2028.
                                 INFTOT, MNAM, RAD, SRCI, FORM (42)
2029.
                 COMMON /QLS/ WSNAMF(6), KRER, JRER, KSER, JSEB, TEMPCF, COVMAT (5, 12),
2030.
                                KEIN, JEIN, NOSR, ARP (5), ARI (5), ACCP (5), ACCI (5), BPBR (5),
2031.
```

```
PMP(5,5), PMI(5,5), QSNOW, SNOWY, SEDTM, SEDTY, SECTCA,
2032.
                                 ACPOLP (5,5), ACERSN (5), APOLP (5,5), AERSN (5), COVER (5)
                 3
2033.
2034.
                 4
                                 APOLI (5,5), ACEIM (5), AEIM (5), POLTM (5), POLTY (5),
                 5
                                 TEMPA, DCA, PCLTCA(5), AFRSNY(5), AEINY(5), APOLPY(5, 5),
2035.
2036.
                                 APOLIY (5,5), POLTC (5), PLTCAY (5), ACPOLI (5,5), RIMP (5)
2037.
           C
2038.
                  COMMON /LNDOUT/ ROSTOM, RINTOM, RITOM, RUTOM, BASTOM, RCHTOM, PRTOM,
                                    SUESNM, FXS NM, MELRAM, RACHEM, CONMEM, CORMEN,
2039.
                 1
                 23
                                    CRAINM, SGMM, SNEGHM, PACKOT, SEVAPM, EPTOM, NEPTOM,
2040.
                                    UZSOT, LZSOT, SGWOT, SCEPOT, RESSOT, SRGXTO, TWBALO,
2041.
                                    TSNBOL, ROSTOT, RINTOT, RITOT, RUTOT, BASTOT, RCHTOT,
2042.
                 4
2043.
                 5
                                    PRIOT, SUMSNY, PXSNY, MELRAY, RADMEY, CONMEY, CORMEY,
                                    CRAINY, SGMY, SNEGMY, PACK 1, SEVAPY, EPTOT, NEPTOT,
                 6
2044.
                                    UZSMT, LZSMT, SGRMT, SCEPT, RESST, SRGXTT, TWBLMT
2045.
2046.
           C
                  COMMON /STS/ ACPOIT(5), PLTMX(5), POLTSC(5), PLTMXC(5),
2047.
2048.
                                 ACSEDT, SEDMX, SEDTSC, SEDMXC, TOTRUN, PEAKRU
           C
2049.
                  COMMON /INTM/ RTYPE(4,4), UTYPE(2), GRAD, RAEDIS, WINDIS, ICS, OPS,
2050.
                                  TEMPAY, DOAY, NOSIY, INTRVL, WMUL, NN, L, SS, NNI, LI, SSI,
2051.
                 2
                                  RMUL, KUGI, SECTCY, REPERV (12), REIMPV (12), ACUPV (12),
2052.
                                  ACUIV (12), FM PM AT (12, 5), PM IMAT (12, 5), PMPVEC (5),
2053.
                 3
                                  PMIVEC (5), ACUI, ACUP, REIMF, REPER, PRINTR,
                 4
2054.
2054.1
                 5
                                  EPX M(12), TIMTIL (12), SRERTL (12), TILDAY (5, 12),
                                  TILSED (5, 12) , DPM (12) , TCF (12)
2054.2
           C
2055.
                  INTEGER UNIT, LMTS, RECOUT, SPLAG, PRINTR
2056.
                  INTEGER TIMTIL, TILDAY, DPM
2056.1
2057.
           C
2058.
                  LOGICAL LAST, PREV
2059.
                           WSNAME, RTY FE, UTY FE
2060.
                  REAL*8
                        JRER, KRER, JSER, KSER, KEIM, JEIM
2061.
                  REAL
                        LZSN, IRC, NN, L, LZS, KV, K24L, KK24, INFIL, INTER
2062.
                  REAL
                        IPS, K24EL, K3, NEPTON, NEPTOT, ICS, NNI, KUGI
                  REAL
2063.
2064.
                         INPTOM, INFTCT, INTF
                  REAL
                         MMPIN, METOPT, KGPLB, KGPHA
2065.
                  REAL
                         STU, STI, IMFK
2066.
                  REAL
2067.
                  REAL
                         MELRAM, MELRAY
2068.
           C
                         LAST/.FALSE./. PREV/.FALSE./
2069.
                  DATA
                         PRTOT/3.0/
207C.
                  DATA
                         PRTOM, PRTM/2*0.0/
2071.
                  DATA
                         RUTOM, ROSTOM, FITCM, RINTOM, NEPTOM/5*0.0/
2072.
                  DATA
                         RUTOT, ROSTOT, RITCT, RINTOT, NEPTOT/5+0.C/
2073.
                  DATA
                         ROBTON, ROBTCT, INFTOM, INFTOT, ROITON, ROITOT/6+0. C/
2074.
                  DATA
                         THBAL, RESB, RESEI, ROSBI, RESBI1, SRGX, INT F/7*0.0/
2075.
                  DATA
                         RESB1, BASTOM, RCHTOM, BASTOT, RCETOT/5*0.0/
EPTOM, EPTOT/2*0.0/
                  DATA
2076.
2077.
                  DATA
                         PR, P3, RXB, RGX, FUZB, UZSB, PERCB, DPST/8*0.0/
2078.
                  DATA
                         TIMPAC, UZSN, LZSN, INFIL, INTER, IRC/6*C.O/
                  DATA
2079.
                         A, UZS, LZS, SGW, GWS, KV, K24L, K24EL, KK24/9*0.0/
2080.
                  DATA
                         IFS, K3/2*0.0/
2081.
                  DATA
                         EPXM, EPXMI/13*0.9/
                  DATA
2081.1
                         DPM/31,28,31,30,31,30,31,31,30,31,3C,31/
2081.2
                  DATA
                         TIMTIL, TILDAY/72*0/
                  DATA
2081.3
                         SRERTL, TIL
TCF/12*1.0/
                                 TILSED/72*0.0/
                  DATA
2081.4
2091.5
                  DATA
                         PETMIN, PETMAX/35.,40./
                  DATA
2082.
                         TOTRUY, PEAKRU, ACSEDT, SEDMX, SEDTSC, SEDMXC/6* 0.0/
                  DATA
2783.
                         ACPOLT, PLTMX, POLTSC, PLTMXC/20*0.0/
2084.
                  DATA
```

```
DATA MNAM/' JAN', 'UAFY', 'FEBR', 'UARY', 'MAR', 'CH ', 'APB', 'IL ', 'MAY', ', 'JUN', 'E ', 'JUL', 'Y ', 'AUG',
2085.
2086.
                           'UST ', 'SEPT', 'MBER', 'OCT', 'OBER', 'NOVE', 'MBER', 'DECE',
2087.
2088.
                           "MBER"/
2089.
                    DATA MMPIN/25.4/, METOPT/0.9072/, KGPLE/C.4536/, KGPHA/0.892/
                   DATA SUMSNM, PXSNM, MELRAM, RADMEM, CDRMEM, CRAINM, PACK, DEPTH, CONMEM, SGMM, SNEGMM, SEVAPM, SUMSNY, PXSNY, MELRAY,
2090.
2091.
2092.
                            RADMEY, CORNEY, CONNEY, CRAINY, SGMY, SNEGHY, SEVAPY,
2093.
                            TSNBAL/23*0.0/
2094.
                          INTRVL, PRINTF/15, 15/, WMUL, RMUL, KUGI, SFLAG/1.0, 1.0, 0.0, 0/
                   DATA
2095.
                   DATA ICS, OFS/2*0.0/
2096.
                  DATA GRAD/0.04,0.04,0.03,0.02,
*0.02,0.02,0.02,0.06,0.14,0.18,0.20,0.17,0.13,0.06,0.03,0.01,0.05,
2097.
2098.
                   *0.07,0.10,0.13,0.15,0.13,0.12,0.08/
2099.
                   DATA RADDIS/6*0.0,0.019,
2100.
                   *0.041,0.067,0.088,0.102,0.110,0.110,0.110,C.105,0.095,0.081,0.055,
2101.
                  *0.017,5*0.0/
2102.
                   DATA WINDIS/7*0.034,0.035,
                  *0.037,0.041,0.046,0.050,0.053,0.054,0.058,0.057,0.056,0.05C,0.043,
2103.
2104.
                   *0.040,0.038,0.036,0.036,0.035/
2105.
                   DATA NN, NNI/.2,.1/, L,LI/2*100./, SS,SSI/2*.01/
                   DATA TEMPAY, DOAY, SEDTCA, SECTCY/4*0.0/, NOSIY, NOSY/2*0/
2106.
2107.
                   DATA CUNIT/5*4HGM/I,4HMG/L,4HGM/L/
                   DATA FORM/4H(17X , 4H,A4, , 4H4X,A , 4H4,7X , 4H
2108.
                                                                                 .4 , 4HX, 1 ( ,
                                4HLB)', 4H,2X, 4H'(GM, 4H/L)', 4H, 4, 4HX,'(, 4HLB)', 4H,2X, ,4H'(GM, 4H/L)', 4H, 4, 4HX,'(,
2109.
2110.
2111.
                                4HLB) * , 4H,2X, ,4H*(GM , 4H/L) *, 4H
                                                                               ,4 , 4HX,*( ,
                                4HLB) ' , 4H.2X, ,4H'(GM , 4H/L) ', 4H
2112.
                                                                               ,4 , 48X,*( ,
                                4HLB) ' , 4H,2X, ,4H' (GM , 4H/L) ', 4H
2113.
                                                                               ,4 , 4HX, 1 ( ,
2114.
                                4HLB) ' , 4H.2X, ,4H'(GM , 4H/L) ', 4H ,2( , 4H/))
2115.
                   DATA ALTR/4H
                               2116.
2117.
                   DATA TIT/4H
                        4H O N, 4H S T, 4H I T, 4H U E, 4H N T, 4H S', 4H / )/
SEDIMENT', PRODUCTI', PRODU', HYDBOL',
2118.
2119.
                   DATA RTYPE/8H
                  ** AND OUA', ON (PRIN', CTION (O', OGIC CAL', LITY CAL', TER OUTP', ** UTPUT ON', IBPATION', IBRATION', UT ONLY)', UNIT 4)'/
2120.
2121.
2122.
                   DATA UTYPE/' METRIC', ' ENGLISH'/
2123.
                           COVMAT/60*0.0/, COVES/5*0.0/
                   DATA
2124.
                          IMPK, SCALEF/5*0.,5*1./, NDSR, IHRR/2*0/
                   DATA
                   DATA PMP/25*0.0/, PMI/25*0.0/
DATA QUALIN/ BOD ,2*4H , !
2125.
2126.
                                                     , TDS', 11*48
2127.
                   DATA OSNOW/' NO '/, SNOWY/'YES '/
                   DATA JRER/0.0/, KRER/0.0/
DATA JSER/0.0/, KSER/0.0/
2128.
2129.
                   DATA JEIM/0.0/, KEIM/0.0/
DATA UNT1/' KG ',' MM ',' LB ',' IN '/
2130.
2131.
                           STMCH/4800*0.0/
2132.
                   DATA
                   DATA UNT2/' T ','CMS ','TONS','CFS '/
DATA UNT3/' (C) ',' HA ','(F) ','ACRE'/
DATA AFRSN/5*0.0/, AFIM/5*0.0/, APOLP/25*C.0/, APOLI/25*0.C/
2133.
2134.
2135.
                   DATA AERSNY/5*C.O/, AEIMY/5*O.O/, APOLPY/25*O.O/, APOLIY/25*O.O/
2136.
                   DATA TEMPA, DOA/2*0.0/, NCSI, NOSIK, NOS/3*0/
213.7.
                   DATA POLTCA/5*0.0/,PLTCAY/5*0.0/
2138.
2139.
                   DATA ACPOLP/25*0.0/, ACPOLI/25*0.0/
                   DATA ACEIM, ACERSN/10*0.0/
2140.
                           ACCP/5*0./, ACCI/5*0./, RIMP/5*0./, RPER/5*0./
SRER/5*0./, TS/5*0./, LMTS/5*0/
2141.
                   DATA
2142.
                   DATA
                           PM PV EC, PMIV EC, PMPMAT, PMIM AT/5*0., 5*0., 60*0., 60*0./
2143.
                   DATA
                          ACUP, ACUI, ACUPV, ACUIV/0.,0., 12*0., 12*0./
REPER, REIMP, REPERV, REIMPV/0.,0., 12*0., 12*0./
2144.
                   DATA
2145.
                   DATA
```

```
2146.
           C
2147.
                   ENC
3000.
                    SUBROUTINE LANDS
3001.
           C
30C2.
           C
3003.
            C
                                               HSP LANDS
3004.
           ¢
3005.
           С
3006.
                   IMPLICIT
                              REAL(L,K)
3007.
           C
3008.
                  DIMENSION EVDIST(24), LAPSE(24), SVP(40), SNOUT(24,16), STRBGN (4),
3909.
                              MNAM(24), RAD(24), TEMPX(24), WINDX(24), RAIN(96), DUM1(5);
3010.
                 2
                              DUM 2 (5)
3011.
           C
                  COMMON /ALL/ RU, HYMIN, HYCAL, DPST, UNIT, TIMFAC, LZS, AREA, RESB, SPLAG,
3012.
3013.
                 1
                                  RESB1, ROSB, SRGX, INTF, RGX, RUZE, UZSB, PERCB, RIB, P3, TF,
3014.
                 2
                                  KGPLB, LAST, PREV, TEMPX, IHR, IHFR, PR, RUI, A, PA, GWP, NOSY,
                                  SREE (5), TS (5), LNDUSE (3, 5), AR (5), QUALIN (3, 5), NQSI, NOS,
3015.
                 3
                                  NOSIM, UFL, UTMP, UNT1(2,2), UNT2(2,2), UNT3(2,2), WHGT,
3016.
                 4
3017.
                 5
                                  WHT, DEPW, ROSBI, RESBI, RESBI 1, ARUN, LMTS (5), IMPK (5),
                                  NLAND, NQUAL, STMCH (200, 24), RECOUT (5), FLOUT, SCALEF (5),
3018.
                 6
3019.
                 7
                                  SNOW, FACK, I FACK
3020.
           C
3021.
                  COMMON /LAND/DAY, PRIM, IMIN, IX, TWBAL, SGW, GWS, KV, LIRC4, LKK4, ALTE (9),
3022.
                                  UZS, IZ, UZSN, LZSN, INFIL, INTER, SGW 1, DEC, DECI, TIT (13),
3023.
                 2
                                  K24L, KK24, K24EL, EP, IFS, K3, FPXMI, RESS1, RESS, SCEP, IRC
3024.
                 3
                                  SRGXT1, MMPIN, KGPHA, METOPT, CCFAC, SCEP1, SRGXT, RAIN, SRC,
3025.
                                  SCF, IDNS, P., DGM, WC, MPACK, EVAPSN, MELEV, TSNOW, PETHIN,
3026.
                 5
                                  DEWX, DEPTH, MONTH, TMIN, PETH AX, FLDIF, SCEN, WINDX, INFION,
3027.
                 6
                                  TSNBAL, RCBTCM, ROBTOT, RXB, ROLIOM, ROLTCT, YEAR, CUNIT (7),
                 7
3028.
                                  INFTOT, MNAM, RAC, SRCI, FORM (42)
           C
3029.
3030.
                  COMMON /LNDOUT/ ROSTOM, RINTOM, RITOM, RUTOM, BASTOM, RCHTOM, PRTCM,
3031.
                                     SUMS NM, PKS NM, MELRAM, RACMEM, CONMEM, CORMEM,
3632.
                 2
                                     CRAINM, SGMM, SNEGMM, PACKOT, SEVAPM, EPTOM, NE PTOM,
                                     UZSOT, LZSOT, SGWOT, SCEPOT, RESSOT, SEGXTO, TWBALO,
3033.
                 3
3934.
                 4
                                     TSNBOL, ROSTOT, RINTOT, RITOT, RUTOT, EASTOT, RCHIOT,
3035.
                 5
                                     PRTOT, SUMSNY, PXSNY, MELRAY, RADMEY, CONMEY, COBMEY,
3036.
                 6
                                     CRAINY, SGMY, SNEGMY, PACK 1, SEVAPY, EPTOT, NEPTOT,
3037.
                                     UZSMT, LZSMT, SGWMT, SCEPT, RISST, SRGXTT, TWBLMT
3038.
           С
3039.
                  COMMON /STS/ ACPOIT(5), PLTMX(5), POLTSC(5), PLTMXC(5),
3040.
                                  ACSEDT, SEDMX, SEDTSC, SEDMXC, TCTRUN, PEAKRU
           C
3041.
                  LCGICAL LAST, PREV
3042.
3043.
           C
3044.
                  INTEGER
                             TF, HYCAL, DAY, UNIT, SNOW, HRFLAG, H, SPLAG, LMTS, STRBGW,
                             RECOUT, YEAR
3045.
3046.
           C
3047.
                  REAL
                         INFIL, INTER, NE, INFLT, IRC, INTE, INFL
                         IRC4, ICS, IFS, NEPTON, NEPTOT
3048.
                  REAL
3049.
                  REAL
                         INFTOM, INFTCT, CMETFC , IMPK
                         MMPIN, METOPT, KGPLB
3050.
                  REAL
                         UZSMET, LZSMET, SGWMET, SCEPNT, RESSMT
TWBLMT, SRGXTM, RESBMT, SRGXMT
3051.
                  PEAL
3052.
3053.
                  REAL IDNS, MPACK, MELEV, KUGI, NEGALT, NEGAN
3054.
                  REAL MELT, INDT, KCLD, IPACK, MELRAM, MELBAY
3055.
           C
3056.
                  DATA
                         PERC, INPLT, SBAS, HBFLAGYO.O.O.O.C.C.O/
3057.
                  CATA
                         SNET1, SNET, SRCH/3*0.0/, NUMI/0/
3058.
                  DATA
                         ROSINT, REPIN, EPIN1, AETR, KP/5*0.C/
```

```
3059.
                         EVDTST/6 *0.0,0.019,0.041,0.067,0.088,0.102,3*0.11,0.105,
                  DATA
3060.
                         0.095,0.081,0.055,0.017,5+0.0/
3061.
                  DATA SVP/10*1.005, 1.01, 1.01, 1.015, 1.02,
                 *1.03,1.04,1.06,1.08,1.1,1.29,1.66,2.13,2.74,3.49,4.40,5.55,6.87,
*8.36,10.09,12.19,14.63,17.51,20.86,24.79,29.32,34.61,40.67,47.68,
3962.
3063.
3064.
                 *55.71,64.88/
DATA LAPSE/6*3.5,3.7,4.0,4.1,
3065.
3066.
                 *4.3,4.6,4.7,4.8,4.9,5.0,5.0,4.8,4.6,4.4,4.2,4.0,3.8,3.7,3.6/
3067.
                  DATA APR, AEPIN/2*0.0/
3068.
                         AROSB, AINTF, AROSIT/3*0.0/
                  DATA
3069.
                         ARU, ARUI, AROS, ARGXT, ASNET, ASBAS, ASRCH/7*0.0/
                  DATA
3070.
                         SUMSN, INDT, KCID, PXONSN, SEVAPT, RADME, CORME, LIQUI,
                  DATA
                         CONME, CRAIN, NEGHLT, SNEGH, NEGHH, LIQS, LIQH, XICE,
3071.
3072.
                         XINMLT, SGM, SPX, WEAL, SEVAP/21*0.0/
3073.
                         SNOUT/384*0.0/
3074.
                  DATA CLDF/-1.0/
3075.
           C
3076.
           C
                                  ZEROING OF VARIABLES
           Č
3077.
3078.
                  LZS1 = LZS
3079.
                  UZS1 = UZS
3080.
                  NUNI = 0
3081.
                  DPST = 0.0
3082.
                  PACK1 = PACK
3083.
                  LIQW1 = LIQW
3084.
                  PRE = PR
3085.
           C
3086.
                  LN FAT = LZS/LZSN
3087.
                  D3 FV= (2.0 * INPIL)/(LNRAT * LN BAT)
3088.
                  DUP= (TIMPAC/60.) * C3FV
3089.
           C
                                                        REDUCE INFILTRATION IF ICE EXISTS
3090.
           ¢
                                                        AT THE BOTTOM OF THE PACK -
3091.
           C
                                                       ATTEMPT TO CORRECT FOR FROZEN LAND
3092.
                  IF (SNOW .LT. 1) GO TO 20
3093.
                  D4FX = (1.0 - XICE)
3094.
                  IF (D4PX .LT. 0.1) D4PX = 0.1
3095.
                  D4F = D4F*D4FX
3096.
           C
              20 RATIO= INTER*EXP(0.693147*LNRAT)
3097.
                  IF ((RATIO) .LT. (1.0)) RATIO= 1.0
3098.
                  D4RA= D4F*RATIO
3099.
                  H = TF/24
3100.
3101.
           C
           C
3102.
                                                    TP IS 1 FOR RAIN DAYS, AND 96
3103.
                                                    OR 288 FOR NON-RAIN DAYS
3104.
           C
3105.
                  IF (TF .GT. 2)
                                    IHRR=C
3106.
           C
                  DO 1480 III= 1, TP
3107.
3108.
           C
3109.
                  LNRAT = LZS/LZSN
                                    GO TO 40
3110.
                  IP (TF .LT. 2)
                  NUMI = NUMI + 1
3111.
                  IF (NUMI .EQ. H)
GO TO 40
                                       GO TO 30
3112.
3113.
3114.
              30 \text{ NUMI = } 0
3115.
           C
3116.
              40 SBAS = 0.0
3117.
                  SRCH = 0.0
3118.
                  ROS = 0.0
3119.
                  RU = 0.0
```

```
3120.
                 GWP = 0.0
                  RGXT = 0.0
 3121.
 3122.
                  PERC = 0.0
3123.
                  INFLT = 0.0
3124.
                  RESS = 0.0
3125.
           C
3126.
           C
               TIMFAC - TIME INTERVAL IN MINUTES
           C
3127.
                       - LENGTH OF OVERLAND SLOPE
               I.
                       - MANNING'S N FOR OVERLAND SLOPE
3128.
           C
               NN
           C
3129.
                       - IMPERVIOUS AREA
               A
3130.
           C
               FA
                      - PERVIOUS AREA
           C
3131,
3132.
           С
3133.
           C
3134.
           С
3135.
           C PR IS INCOMING RAINFALL
3136.
           C P3 IS BAIN BEACHING SURFACE (.00'S INCHES)
3137.
           C P4 IS TOTAL MOISTURE AVAILABLE ( IN.)
3138.
           C RESS IS OVERLAND FLOW STORAGE( IN.)
           C D4F IS 'B' IN OP. MANUAL
3139.
           C RATIO IS *C* IN OP. MANUAL
3140.
3141.
           C EP - DAILY EVAP ( IN.)
3142.
           C EPHR - HOURLY EVAP
3143.
            EPIN - INTERVAL EVAP
           C
3144.
           C EPXX - FACTOR FOR REDUCING EVAP FOR SNOW AND TEMP
3145.
           C
3146.
           C
           Ċ
3147.
          C
3148.
3149.
          C
                 DETERMINE IF SNOWMELT IS TO BE DONE
3150.
          C
3151.
              50 HRFLAG=0
                 TEST = IMIN/TIMFAC
3152.
                 IF (NUMI . EQ. 1) HRFLAG = 1
3153.
                 IF ((TEST .LE. 1.001) .AND. (TEST .GE. 0.999)) HRFLAG = 1
3154.
3155.
          C
                 HRFLAG=1 INDICATES BEGINNING OF THE HOUR
          C
3156.
3157.
                 IF (HRPLAG) 770, 770, 60
3158.
              6C IEND = 0
3159.
                 IF (IHR-24) 70,80,70
3160.
              70 \text{ IHRR} = \text{IHR} + 1
3161.
                 GO TO 90
3162.
              80 IHRR = IHRR + 1
3163.
              90 EPHR = EVDIST(IHRR) * EP
3164.
3165.
                  IF (EPHR.LE. (0.0001)) EPHR=0.0
3166.
                  EFIN= EPHR
                  EPIN 1= EPIN
3167.
                 IF (SNOW . EQ. 0) GO TO 770
3168.
                 IF ((PACK .LE. 0.0).AND. (TMIN .GT. PETMAX)) GO TO 770
3169 ...
          C
3170.
          C
                                                        BEGIN SNOWMELT
3171.
                                            ************
3172.
3173.
                 TSNOW1 = TSNOW + 1.
                 SNIEMP = 32.
3174.
                 SEVAP = 0.0
3175.
                 SFLAG = C
3176.
3177.
                 PRHR=0.0
                 EPXX = 1.0
3178.
                 IKFND = 60./(TIFFAC)
3179.
3180.
                 IPT = (IRR-1) * IKEND
```

```
3181.
           C
                                              SUM PRECIP FOR THE HOUR
 3182.
                  PX = 0.0
                  DO 100 II = 1, IKEND
 3183.
 3184.
             100 PRHR = PRHR + RAIN(IPT+II)
 3185.
           C
                                                  CORRECT TEMP FOR ELEVATION DIFF
 3186.
           C
                                                  USING LAPSE RATE OF 3.5 DURING RAIN
3187.
           C
                                                  PERIODS, AND AN HOURLY VARIATION IN
 3188.
           C
                                                  LAPSE RATE (LAPSE(I)) FOR DRY PERIOD
3189.
           C
3190.
                  LAFS = LAPSE(IHRR)
3191.
                  IF (PRHR .GT. 0.05) LAPS = 3.5
 3192.
                  TX = TEMPX (IHRR) - LAPS* ELDIP
           C
3193.
3194.
           C
           C
3195.
                                                REDUCE REG EVAP FOR SNOWMELT
3196.
                                                CONDITIONS PASED ON PETMIN AND
3197.
           C
                                                PETMAX VALUES
3198.
           C
3199.
                  IF (PACK-IPACK) 120,120,110
             110 E1E=0.C
3200.
3201.
                 PACKRA = 1.0
3202.
                 GO TO 130
             120 PACKRA = PACK/IPACK
32C3.
                 E1E=1.0 - PACKRA
3204.
             130 \text{ FPXX} = (1.0-P)*E1E + P
3205.
3206.
                 IF (TX-PETMAX) 140,170,170
             140 IF (EPXX .GT. 0.5) EFXX=0.5
32C7.
3208.
           C
3209.
           C
                                               REDUCE EVAP BY 50% IF TX IS BETWEEN
3210.
           C
                                               PETMIN AND PETMAX
                                  160,170,170
3211.
             150 IF (TX-PETMIN)
             160 EPXX=0.0
3212.
3213.
           C
3214.
3215.
             170 EPHR = EPHR*EPXX
3216.
                 EPIN=EPIN*EPXX
                 IEND=0
3217.
                 IF ((TX .GT. TSNOW) .AND. (PRHR .GT. .02)) DEWX = TX
3218.
3219.
           C.
                 SET DEWPT TEMP EQUAL TO AIR TEMP WHEN RAINING
3220.
           C
                 ON SNOW TO INCREASE SNOWMELT
           C
3221.
3222.
           C
                 IF (DEWX .GT. TX) DEWX = TX
3223.
                 SNTEMP = TSNOW + (TX-DEWX)*(0.12 + 0.008*TX)
3224.
3225.
          C
                 RAIN/SNOW TEMP. DIVISION - SEE ANDERSON, WRR, VOL. 4, NO. 1.
3226.
          C
                 FEB. 1968, P. 27, EG. 28
          C
3227.
3228.
          C
                 IF (SNIEMP .GI. TSNOW1) SNIEMP = TSNOW1
3229.
                 IF (TX -SNTEMP) 190, 180, 180
3230.
            180 IF (PACK) 770, 770, 200
3231.
3232.
             190 \text{ SFLAG} = 1
                 IF ((PACK.LE.O.O).AND.(PFHE.LE.O.O)) GO TO 770
3233.
3234.
          C
3235.
          C
                      SKIP SNOWMELT IF BOTH PACK AND PRECIP ARE ZERO
          C
                      FOR THE HOUR
3236.
3237.
          C
3238.
            200 IEND = 1
          C
3239.
                 SNOWMELT CALCULATIONS ARE DONE IF IT IS SNOWING, OR,
3240.
          С
3241.
          C
                 IF A SNOWPACK EXISTS
```

```
3242.
          C
                 PX = PRHR
3243.
                 IF (PX) 250, 250, 210
3244.
                                                KCLD IS INDEX TO CLOUD COVER
3245.
             210 \text{ KCLD} = 35.
3246.
                 IF (SFLAG) 260, 260, 220
3247.
                                               SNOW IS FALLING
          C
3248.
3249.
             220 PX = PX*SCP
3250.
                 APR = APR+(SCF-1.0)*PRHR
3251.
                 PPHR = PRHR*SCF
3252.
                 SUMSN = SUMSN + PX
                 DNS = IDNS
3253.
                 IF (TX .GT. 0.0)
                                     DNS = DNS + ((TX/100.)**2)
3254.
3255.
          C
                 SNOW DENSITY WITH TEMP. - APPROX TO FIG. 4, PLATE B-1
3256.
                 SNOW HYDROLOGY SEE ALSO ANDERSON, TR 36, P. 21
3257.
          С
3258.
          С
                 PACK = PACK + PX
3259.
3260.
          C
                                    240,240,230
                 IF (PACK-IPACK)
3261.
             230 IPACK = PACK
3262.
                 IF (IPACK .GT. MPACK) IPACK = MPACK
3263.
3264.
          C
            240 DEPTH = DEPTH + (PX/DNS)
3265.
                 IF (DEPTH .GT. 0.0) SDEN = PACK/DEPTH
3266.
                 INDT = INDT - 1000*PX
3267.
                 IF (INDT .LT. 0.3) INDT = 0.0
3268.
                 px = 0.0
3269.
3270.
                 GO TO 260
             250 KCLD = KCLD - 1.
3271.
             260 IF (KCLD .LT. 0.0) KCLD = 0.0
3272.
                 PACKPA = PACK/IPACK
3273.
                                         PACKRA = 1.0
                 IF (PACK .GT. IPACK)
3274.
3275.
           C
             270 IF (PACK - 0.005)
                                      280, 300, 300
3276.
3277.
           С
                 IPACK IS AN INDEX TO AREAL COVERAGE OF THE SNOWPACK
3278.
           C
                 FOR INITIAL STORMS IFACK = .1*MPACK SO THAT COMPLETE
           C
3279.
                 AREAL COVERAGE RESULTS.
                                            IF EXISTING PACK > .1 *MPACK THEN
3280.
           C
                 IPACK IS SET EQUAL TO MPACK WHICH IS THE WATER EQUI. FOR COMPLETE AREAL COVERAGE PACKRA IS THE FRACTION AREAL COVERAGE
           С
3281.
3282.
           С
           C
                 AT ANY TIME.
3283.
3284.
             280 IPACK = 0.1*MPACK
3285.
                 XICE = 0.0
3286.
                  0.0 = TIMMIX
3287.
                 NEGMLT = 0.0
3288.
                 DX = DX + DYCK + TICM
3289.
                 PACK = 0.0
3290.
                 LICW = 0.0
3291.
           C
3292.
                           ZERO SNOWFELT CUTFUT ARRAY
           C
3293.
3294.
           C
                 DO 290 I=1,24
3295.
                 DO 290 MM=1,16
3296.
             290 SNOUT (I,MM) =0.0
32 97.
                 GO TO 760
3298.
             300 PXCNSN = PXONSN + EX
3299.
                 IF (DEPTH .GT. 0.0) SDEN = PACK/DEPTH
3300.
                 IF (INDT .LT. 800.) INDT = INDT + 1.
33C1.
                                                INDT IS INDEX TO ALBEDO
           C
3302.
```

```
33¢3.
                 MELT = 0.0
                  IP (SDEN .LT. 0.55) DEPTH=DEPTH*(1.0 - C.CC002*(DEPTH*(.55-SDEN)))
3304.
           C
3305.
                 EMPIRICAL RELATIONSHIP FOR SNOW COMPACTION
           C
3396.
3307.
           C
                 IF (DEPTH .GT. 0.0) SDEN = PACK/DEPTH
3308.
                  WIN = WINDX(IHRR)
3309.
           C
3310.
                 HOURLY WIND VALUE
3311.
3312.
           C
                 LREP = (TX + 100.)/5
3313.
                  LREF = IFIX(LREF)
3314.
                  SVPP = SVP (LREF)
3315.
                 ITX = IFIX(TX)
3316.
                  SATVAP = SVPP + (MOD (ITX, 5) /5) * (SVP (LREF + 1) - SVPP)
3317.
                  LREF = (DEWX + 100.)/5
3318.
                 LREF = IFIX(LREF)
3319.
                 SVFP = SVP (LREF)
3320.
                 IDEWX = IFIX(DEWX)
3321.
                  VAPP = SVPP + (MOD(IDEWX,5)/5) * (SVP(LREF + 1) - SVPP)
3322.
                                   CALCULATION OF VAPOR PRESSURE AT AIRTEMP
3323.
           С
                                    AND DEWPOINT
3324.
                 IF (VAPP - 6.108) 320, 320, 310
3325.
             310 CNM = 8.59* (VAPP - 6.108)
3326.
                 GO TO 330
3327.
             320 \text{ CNM} = 0.0
3328.
                  DUMMY= (VAPP-SATVAP) * FACK FA
3329.
                  IF (VAPP .LT. SATVAP) SEVAP = EVAPSN * O. COC2 * WIN * DUMMY
3330.
                  PACK = PACK + SEVAF
3331.
                  SEVAPT = SEVAPT - SEVAP
3332.
3333.
           C
                 CONDENSATION - CONVECTION MELT, EQ. T-29B, P.176, SNOW HYDROLOGY
           C
3334.
                 CONV - CONVECTION, CCNDS - CONDENSATION SEVAP - EVAP FROM SHOW (NEGATIVE VALUE)
           C
3335.
3336.
           C
3337.
           С
             330 \text{ CNV} = 0.0
3338.
                 IF (TX .GT. 32.) CNV = (TX-32.)*(1.0 - 0.3*(MELEV/10000.))
3339.
                 CCXC = CCFAC* .00026*WIN
3340.
3341.
           C
                  .00026 = .00629/24, I.E. .00026 IS THE CAILY COEFFICIENT
3342.
           C
                  (FROM SNOW HYDROLOGY) REDUCED TO HOURLY VALUES.
3343.
           C
3344.
           С
                  CONA = CMA*CCXC
3345.
                 CONDS = CNM*CCXC
3346.
                                       CLCUD COVER
3347.
           C
                                       CLDF IS FRACTION OPEN SKY - MINIMUM VALUE 0.15
3348.
           C
                 IF ((IHRR.EQ. 1) .OR. (CLDF.LT.C.O)) CL DF = (1.0.-0.085*(KClD/3.5))
3349.
                                       ALPEDO
3350.
                                   340, 340, 360
360, 350, 350
                 IF (MONTH - 9)
3351.
             340 IF (MONTH - 4)
3352.
             350 ALBEDO = 0.8 - 0.1*(SCRT(INDT/24.))
3353.
                  IF (ALBEDO .LT. 0.45) ALBEDO = 0.45
3354.
                 GO TO 370
3355.
             360 ALBEDO = 0.85 - 0.07* (SQRT (INDT/24.0))
3356.
                  IF (ALBEDO.IT.0.6) ALBEDC=0.6
3357.
                                       SHOET WAVE RADIATION-RA - POSITIVE INCOMING
3359.
           C
             370 PA = RAD(IHRR) * (1.0 -ALBEDO) * (1.0-F)
3359.
                                       LONG WAVE RADIATION - LW - POSITIVE INCOMING
3360.
           С
                 DEGHR = TX - 32.0
TF (DEGHR) 390, 390, 380
3361.
3362.
             380 LW = F* 0.26*DEGHR + (1.0 - F)*(0.2*DEGER - 6.6)
3363.
```

```
GO TO 400
3364.
             390 LW = F*0.2*DEGHR + (1.0 - F)*(C.17*DEGHR - 6.6)
3365.
3366.
                                          LW IS A LINEAR APPROX. TO CURVES IN
3367.
           С
                                          PIG. 6, PL 5-3, IN SNOW HYDROLOGY.
3368.
           C
                                          IS AVE BACK RACIATION LOST PROM THE SNOWPACK
           C
3369.
           Ç
                                          IN OPEN AREAS, IN LANGLEYS/ER.
3370.
           C
3371.
                                          CLOUD COVER CORRECTION
3372.
           С
3373.
             400 IF (LW .LT. 0.0)
                                     IW = LW*CLDP
3374.
           С
3375.
           C
                                          RAIN MELT
3376.
                 PAINM = 0.0
           C
3377.
                                                    RAINMELT IS OPERATIVE IF IT IS
3378.
           C
                                                    RAINING AND TEMP IS ABOVE 32 P
3379.
           C
           C
3380.
                 IF ((SPLAG .LT. 1).AND. (TX .GT. 32.)) RAINH = DEGHR*PX/144.
3381.
                                          TOTAL MELT
           C
3382.
3383.
                 RM = (LW + RA)/203.2
                                          203.2 LANGLEYS REQUIRED TO PRODUCE I INCH
           C
3384.
                                          RUNOFF FROM SNOW AT 32 DEGREES F
3385.
           C.
                                        410, 430, 430
3386.
                 IP (PACK - IPACK )
             410 RM = RM*PACKBA
3387.
                 CONV = CONV*PACKRA
3388.
                 CONDS = CONDS*PACKRA
3389.
                  RAINM = RAINM*PACKRA
3390.
             IF (IHRR - 6) 430, 420, 430
420 XLNEM = C.01*(32.0 - TX)
3391.
3392.
                  IP. (XLNEM .GT. XINELT) .XLNMLT = XLNEM
3393.
             430 RADME = RADME + RM
3394.
                  CDRME = CDRME + CONDS
3395.
                  CONME = CONME + CONV
3396.
                  CRAIN = CRAIN + RAINM
3397.
                  MELT = PM + CONV + CONDS + BAINM
3398.
                              440, 470, 470
3399.
                  I? (MELT)
             440 NEGMM = 0.0
3400.
                  IF (TX .LT. 32.) NEGHH = 0.00695*{PACK/2.0}*{32.0} - TX
34C1.
3402.
           C
                                                    HALP OF PACK IS USED TO CALCULATE
           C
3403.
                                                    MAXIMUM · NEGATIVE MELT
           C
3404.
           C
3405.
                  TP = 32.0 - (NEGHLT/(0.00695*PACK))
3406.
           C
34C7.
           C
                  TP IS TEMP OF THE SNOWPACK
3408.
3409.
           Ç
                  0.00695 IS IN. MELT/IN. SNOW/DEGREE F
3410.
             IF (TP - TX) 460, 460, 450
450 GM = 0.0007*(TP - TX)
3411.
3412.
                  NEGMLT = NEGMLT + GM
3413.
                  SNEGM = SNEGM + GM
3414.
             460 IF (NEGHLT .GT. NEGHM)
                                             NEGMLT = NEGMM
3415.
                  MELT = 0.0
3416.
3417.
           C
           Ċ
                                          MELTING PROCESS BALANCE
3418.
           C
3419.
             470 \text{ PXBY} = (1.0 - \text{PACKBA}) * \text{PX}
3420.
                  PX = PACKRA*PX
3421.
3422.
           C
                  PXBY IS FRACTION OF PRECIP FALLING ON BARE GROUND
           C
3423.
           C
3424.
```

```
3425.
                    IF (MELT + PX)
                                      650,650,480
  3426.
             C
  3427.
                    SATISFY NEGALT FROM PRECIP (RAIN) AND SNOWMELT
             C
  3428.
             C
  3429.
               480 IF (MELT - NEGMIT) 490, 500, 500
  3430.
               490 NEGMLT = NEGMLT - MELT
  3431.
                   MELT = 0.0
  3432.
                   GO TO 510
  3433.
               500 MELT = MELT - NEGMLT
  3434.
                    NEGMLT = 0.0
  3435.
             C
               510 IF (PX - NEGHLT) 520, 530, 530
  3436.
  3437.
               520 NEGALT = NEGALT - FX
  3438.
                   PACK = PACK + PX
  3439.
                   0.0 = xg
  3440.
                   GO TO 540
  3441.
               530 PX = PX - NEGMIT
                   PACK = PACK + NEGMLT
  3442.
  3443.
                   NEGMLT = 0.0
  3444.
            C
 3445.
               540 IF ((PX + MELT) .EQ. 0.0) GO TO 660
  3446.
            C
                   COMPARE SNOWHELT TO EXISTING SNOWPACK AND WATER CONTENT OR
 3447.
            C
 3448.
            C
                   THE PACK
 3449.
            C
 3450.
                   IF (MELT - PACK) 560, 560, 550
              550 MELT = PACK + LIQW
 3451.
 3452.
                   DEFTH = 0.0
 3453.
                   PACK = 0.0
                   LICW = 0.0
 3454.
                   INDT = 0.0
 3455.
 3456.
                  GO TO 590
              560 PACK = PACK - MELT
 3457.
                                       DEPTH = DEPTH - (MELT/SDEN)
 3458.
                  IF (SDEN .GT. C.O)
                  IP (PACK .GE. (D.9*DEFTH)) DEPTH = 1.11*PACK IF (PACK - 0.001) 570, 580, 580
 3459.
 3460.
              570 LICH = LIOW + PACK
 3461.
 34€2.
                  PACK = 0.0
 3463.
              580 LIOS = WC*PACK
                  IF (SDEN .GT. 0.6) LIQS = WC*(3.0 - (3.33)*SDEN)*PACK
 3464.
                  IF (LIQS .LT. 0.0) LIGS = 0.0
 3465.
 3466.
            Ç
                  COMPARE AVAILABLE ECISTUFE WITH AVAILABLE STORAGE IN SNOWFACK
 3457.
            C
 3468.
            C
                  -LIQS
3469.
            C
              590 IF ((LION + MELT + PX) - LIQS)
                                                     610, 61C, 600
 3470.
              600 PX = MELT + PX + LIQW - LICS
 3471.
                  LICH = LIQS
3472.
                  GO TO 620
3473.
              610 LICW = LIQW + MELT + PX
3474.
                  0.0 = Xg
3475.
3476.
              620 IF (PX - XLNMLT)
                                     640, 640, 630
             630 PX = PX - XINMIT
. 3477.
                  FACK = PACK + XINMLT
3478.
                  XICE = XICE + XINMLT
3479.
                  XLNMLT = 0.0
3480.
3481.
                  GO TO 650
             640 PACK = PACK + PX
3482.
3483.
                  XICE = XICE + PX
3484.
                  XINMLT = XLNMLT - PX
3485.
                  PX = 0.0
```

```
3486.
             650 IF (XICE .GT. PACK) XICE = PACK
3487.
           С
3488.
           С
3489.
           C
                                           END MELTING PROCESS BALANCE
3490.
3491.
             660 IF (DEPTH .GT. 0.0) SDEN = PACK/DEPTH
3492.
                  IF (SDEN .LT. 0.1) SDEN = 0.1
3493.
           C
                                              GROUN DM ELT
3494.
                  IF (IHPR - 12) 700, 670, 700
3495.
             670 DGMM = DGM
3496.
                 IF (TP .LT. 5.0)
                                    TP = 5.0
3497.
                 IF (TP .LT. 32.)
                                    DGMM = DGMM - DGM*.03*(32.0 - TP)
3498.
                 IF (PACK - DGNM)
                                    690, 690, 680
3499.
             680 PX = PX + DGMM
3500.
                 PACK = PACK - DGMM
3504.
                 DEPTH = DEPTH - (DGMM/SDEN)
3502.
                 SGM = SGM + DGMM
3503.
                 GO TO 700
3504.
             690 \text{ PX} = \text{PACK} + \text{PX} + \text{LIOW}
3505.
                 SGM = SGM + PACK
3506.
                 PACK = 0.0
3507.
                 DEPTH = 0.0
3508.
                 LICW = 0.0
3509.
                 NEGNLT = 0.0
3510.
             700 CONTINUE
3511.
                 PX = PX + PXBY
3512.
                 SPX = SPX + PX
3513,
3514.
           C
                                              MONTHLY SUMS
3515.
                 SUMSNM = SUMSNM + SUMSN
3516.
                 PXSNM = PXSNM + PXONSN
3517.
                 MELRAM = MELRAM + SEX
3518.
                 RADMEM = RADMEM + RADME
3519.
                 CDRMEM = CDRMEM + CDRME
3520.
                 CONMEN = CONMEM + CONME
3521.
                 CRAINM = CRAINM + CRAIN
3522.
                 SGMM = SGMM
                 SNEGMM = SNEGMM + SNEGM
3523.
3524.
                 SEVAPM = SEVAPM + SEVAPT
3525.
          С
3526.
                                              YEARLY SUMS
3527.
                 SUMSNY = SUMSNY + SUMSN
3528.
                 PXSNY = PXSNY + PXONSN
3529.
                 MELRAY = MEIRAY + SEX
3530.
                 RADMEY = RADMEY + RADME
3531.
                 CDEMEY = CDRMEY + CDRME
3532.
                 CONMEY = CONMEY + CONME
3533.
                 CRAINY = CRAINY + CRAIN
3534.
                 SGMY = SGMY
                                  + SGM
3535.
                 SNEGMY = SNEGMY + SNEGM
3536.
                 SEVAPY = SEVAPY + SEVAPT
3537.
          C
                                                  ZERO HOURLY VALUES
                 sumsn = 0.0
3538.
3539.
                 PXONSN = 0.0
354C.
                 RADME = 0.0
3541.
                 CDRME = C.O
3542.
                 CONME = 0.0
                 CRAIN = 0.0
3543.
3544.
                 SGM = 0.0
3545.
                 SNEGM = 0.0
3546.
                 SEVAPT = 0.0
```

```
3547.
                    SPX = C.O
   3548.
              C
                                             SNOW MELT OUTPUT
   3549.
             C
   3550.
                    SNCUT(IHRR, 1) = PACK
   3551.
                    SNOUT(IHRR, 2) = DEETH
  3552.
                    SNOUT(IHRR,3) = SDEN
  3553.
                    SHCUT (IHRR, 4)
                                   = Y TBEDC
  3554.
                                   = CLDF
                    SNOUT (IHRR,5)
  3555.
                    SNOUT (IHRR, 6) = NEGMLT
  3556.
                    SNCUT(IHRR,7) = LIQH
  3557.
                    SNOUT(IHRR,8) = TX
  3558.
                    SNCUT(IHRR,9) = RA
  3559.
                    SNOUT(IHRR, 10) = LW
  3560.
                    SNCUT(IHRR, 11) = PX
  3561.
                    SNOUT(IHRR, 12) = MELT
                    SNCUT (IHRR, 13) = CONV
  3562.
  3563.
                    SNOUT(IHRR, 14) = RAINM
  3564.
                    SNCUT(IHRR, 15) = CCNDS
  3565.
                    SNOUT(IHRR, 16) = XICE
  3566.
                    IF (UNIT. LT. 1. OR. HYCAL. GT. 1) GO TO 730
  3567.
             C
  3568.
             C
                CONVERSION TO METRIC SNOW OUTPUT
  3569.
  357C.
                      SNOUT (IHRR, 1) = PACK*MMPIN
                      SNOUT(IHRR,2) = DEPTH*MMPIN
  3571.
  3572.
                      SNOUT (IHRR,6) = NEGMLT*MMPIN
  3573.
                      SNOUT (IHRR, 7) = LICW * MMPIN
                      SNOUT(IHRR,8) = 0.556*(TX-32.0)
  3574.
                      DO 720 ISNOUT=11,16
  3575.
                         SHOUT (IHRR, ISNOUT) = SHOUT (IHRR, ISNOUT) *MMPIN
  3576.
  3577.
               720
                      CONTINUE
            C
  3578.
            C
  3579.
            C
  3580.
               730 IF (HYCAL.GT. 1), GC TC 760
  3581.
                   IF (IHPR .NE. 24) GO TO 760
  3582.
                   WRITE (6,4020) MNAK(IZ), MNAM (IX), DAY
 3583.
                   WRITE (6,4000)
 3584.
 3585.
            Ç
                   DO 750 I=1,24
 3586.
                   WRITE (6,4010) I, (SNOUT (I, MM), MM=1,16)
 3587.
                   DO 740 MM=1.16
 3588.
 3589.
              740 SHOUT (I,MM)=0.0
 3590.
               750 CONTINUE
 3591.
            C
 3592.
            C
                                                     SDEN ALBEDO . CLDF NEGMEIT LIQU
             4000 FORMAT ('C', 'HOUR
                                       PACK
                                              DEPTH
 3593.
                                                        CONV
                                        PΧ
                                              MELT
                                                                         CONDS
                                                                RAINM
                            RA LW
 3594.
                  * TX
             4010 FORMAT(' ', 12, 2x, F6.1, 2x, F6.1, 5 (1x, F6.3), 1x, F6.2, 2 (1x, F4. C),
 3595.
                  *5 (1X,F7.4),2X,F5.2)
 3596.
             4020 FORMAT ('0',25x, 'SNCW FELT OUTPUT FOR',4X,A4,A4,2X,I2)
 3597.
 3598.
            C
                                            CORRECT WATER BALANCE FOR SNOWMELT
. 3599.
            C
                                            PACK AND SHOW EVAP
 3600.
            C
            Ċ
 36¢1.
                                            PRR IS INCOMING PRICIP
 3602.
            C
                                            PX IS MOISTURE TO THE LAND SURPACE
 3603.
            C
                                            SEVAP IS SNOW EVAP - NEGATIVE
 3604.
              760 SNEAL = PRHR+SEVAP-PX-PACK+PACK1-LIQH+LIQH1
 3605.
                  IF ((SNBAL.LT.0.0001) .AND. (SNBAL.GT.-C.COC1))
                                                                      SNBAL=0.0
 3606.
 3607.
                  TSNBAL = .TSNBAL + SNBAL
```

```
3608.
          C
3609.
          C
3610.
                PACK1 = PACK
3611.
                LIGW1 = LIQW
          C
3612.
                                        END SNOWMELT
3613.
          C
                            ********
          C
3614.
                                                       PX IS TOTAL MCISTURE INPUT TO
3615.
          C
                                                       THE LAND SURFACE FROM PRECIP
          C
3616.
                                                       AND SNOWMELT DURING THE HOUR
          Ç
3617.
3618.
          C
            770 IF (IEND .GT. 0) PR=PX*TIMFAC/60.
3619.
                                                    IEND>0 INCICATES SNOWMELT
          C
3620.
                                                    OCCURRED DURING THE HOUR
3621.
          C
          C
3622.
          C
3623.
          C
3624.
          C
3625.
                        INTERCEPTION FUNC.
3626.
          C
          C
3627.
3628.
          Ç
          C EPXMI - MAX. INTERCEPTION STORAGE FOR THAT DAY
3629.
            SCEP - EXISTING INTER. STORAGE
3630.
          С
          C EPX - AVAILABLE INTER. STORAGE
3631.
                 - IMPERVIOUS RUNOFF DURING INTERVAL
3632.
          C RUI
          C
3633.
          С
3634.
                   FPX=EPXMI-SCEP
3635.
                   IF (EPX.LT. (0.0001)) EPX=0.0
3636.
                                790,780,780
                   IF (PR-EPX)
3637.
3638.
            780
                   F3= PR-EPX
                   SCEP = SCEP+EPX
3639.
3640.
                   GO TO 800
3641.
            790
                   SCEP = SCEP + PR
                   P3 = 0.0
3642.
                   0.0=US
3643.
                   RUI = 0.0
3644.
3645.
                    OVERLAND IMPERVIOUS FLOW ROUTING ***
          C ***
3646.
          C
3647.
          C
3648.
          C RXBI = VOLUME OF IMPERVIOUS CVERLAND FLOW ON SURFACE
3649.
             ROSBI = VOLUME OF OVERLAND IMPERVIOUS FLOW TO STREAM
          C
3650.
3651.
          C
              RESBI = VOLUME OF OVERLAND IMPERVIOUS Q RENAINING ON SURFACE
3652.
          C
          C
3653.
             800 IF (A) 810,810,820
3654.
             0.C=IUR C18
3655.
                 GO TO 937
3656.
3657.
             820 RXBI=P3+RESBI
                 IF (RXBI-0.001) 830,830,840
3658.
3659.
             830 RUI=RXBI*A
3660.
                 PXBI=0.0
                 ROSBI=RUI
3661.
                 GO TO 930
3662.
             840 F1= RXBI-(RESBI)
3663.
                 F3= (RESBI) + RXBI
3664.
                 IF (RXBI-(RESBI)) 860,860,850
3665.
3666.
             850 DE= DECI*((F1)**0.6)
3667.
                 GO TO 870
             860 DE = (F3)/2.0
3668.
```

```
3669.
              870 IF (F3-(2.0*DE)) 890,890,880
 3670.
              880 DE=(F3)/2.0
 3671.
              890 IF ((F3)-(.005)) 900,900,910
 3672.
              900 ROSBI = 0.0
 3673.
                  GO TO 920
                      DUMV=(1.0+0.6* (F3/(2.0*DE)) **3.) **1.67
 3674.
              910
 3675.
                  ROSBI= (TIMFAC/60.) *SRCI* ((F3/2.) ** 1.67) *DUMY
 3676.
                  IF ((ROSBI).GT.(.95*RXBI)) ROSBI=.95*RXBI
 3677.
              920 RESBI= RXBI-ROSBI
                  FUI=ROSBI * A
 3678.
 3679.
              930 RU=RUI
 3680.
            C
 3681.
            C
           C
 3682.
 3683.
           C
                            INTERCEPTION EVAP
 3684.
           C
 3685.
           C
                   IF ((NUMI .EQ. 0) .AND. (IMIN .EQ. 0))
              940
 3686.
                                                             GO TO 950
                   GO TO 1000
 3687.
 3688.
              950
                      (SCEP)
                               1000,100C,960
 3689.
                   ΙF
                                     970,980,980
 3690.
                   IF (SCEP-EPIN)
              960
 3691.
                   EPIN = EPIN - SCEF
              970
                   SNET = SNET + SCEP
 3692.
                   SCEP = 0.0
 3693,
3694.
                   GC TO 1000
 3695.
             980
                   SCEP=SCEP-EPIN
 3696.
              990
                   SNET=SNET+ EPIN
 3697.
                   EPIN = 0.0
 3698.
           C
 3699.
           C
                  *** INFILTRATION FUNC.
3700.
           C
3701.
              P4 IS TOTAL MOISTURE
           C
           C SHRD = SURFACE DETENTION AND INTERFLOW
 3702.
 3703.
           C PXX = SURPACE DETENTION
           C RGXX = INTERFLOW COMPONENT
3704.
3705.
           С
              RGX = VOLUME TO INTER. DETEN STOR.
3706.
           С
3707.
           C
            1000 P4 = P3 + RESB
3708.
                 RESB1 = RESB
3709.
                 IF (P4 - D4F) 1010,1010,1020
3710.
            1010 SHRD= (P4**2)/(2.0*D4F)
3711.
3712.
                 GO TO 1030
            1020 SHRD= P4 - 0.5*D4P
3713.
                 IF (P4 - D4RA) 1030,1030,1040
3714.
            1030 PXX = (P4**2)/(2.0*D4RA)
3715.
3716.
                 GO TO 1050
            1040 PXX= P4 - 0.5*D4RA
3717.
            1050 RGXX = SHRD-RXX
3718.
3719.
           C
3720.
          C
                    UPPER ZONE FUNCTION ***
3721.
           C
3722.
          C
          C PRE - 5 SURFACE DETENTION TO OVERLAND FLOW
3723.
3724.
          C UZSB -
                     UPPER ZONE STORAGE
          C UZS - TOTAL UPPER ZONE STORAGE
3725.
          C RUZB - ADDITION TO U.Z. STORAGE DURING INTERVAL
3726.
3727.
          C
                 IF (UZSB.LT.0.0)
                                     UZSB=0.0
3728.
                 UZPA= UZSB/UZSN
3729.
```

```
IF ("ZRA.GT.6.0) GO TO 1060
3730.
                 IF (UZRA.GT.2.0) GC TC 1070
3731.
                 UZI= 2.0*ABS((UZRA/2.0)-1.0) +1.0
3732.
                 PRF= (UZRA/2.0) *((1.0/(1.0+UZI)) **UZI)
3733.
                 GO TO 1089
3734.
            1060 PRE = 1.0
3735.
                 GO TO 1080
3736.
            1070 UZI= (2.0 + ABS (HZRA-2.0))+1.0
3737.
                  PRE= 1.0-((1.0/(1.0+UZI))**UZI)
3738.
3739.
            1080 RXB= RXX* PRE
                    FGX=RGXX*PRE
3740.
                    RGXX=7.0
3741.
                    PUZB=SHRD-RGX-PXB
3742.
                    UZSB=UZSB+RUZB
3743.
3744.
           C
                    RIB = P4 - RXB
3745.
           C
3746.
           C
3747.
           C
3748.
                           HPPER ZONE EVAP
3749.
           ¢
3750.
           C
3751.
             REPIN - ACCUM DAILY EVAP POT. FOR L.Z. AND GREWATER, I.B
           C
3752.
           C
                      PORTION NOT SATISFIED FROM U.Z.
3753.
           C
3754.
           C
3755.
                    IF ((NUMI .EQ. C) .AND. (IMIN .EQ. O))
                                                             GC TO 1090
3756.
                    GO TO 1150
3757.
3758.
            1090
                                         GO TO 1150
3759.
                    IF (EPIN. LE. (0.0))
                      EFFECT=1.0
3760.
                                     1120, 1120, 1100
                      TF (UZPA-2.0)
3761.
                      IF (UZSE-EPIN)
            1100
                                       1140,1140,1110
3762.
                      UZSB=UZSB-EPIN
3763.
            1110
3764.
                      RUZB= RUZB-EPIN
                      SNET=SNET+PA*EFIN
3765.
                      GO TO 1150
3766.
            1120
                      FPFECT= 0.5*UZRA
3767.
                      IF (EFFECT.LT.(0:02))
3768.
                                               EPPECT=0.02
                      IF (UZSB-EPIN*EFFECT)
3769.
                                               1146, 1140, 1130
                      UZSB=UZSB - (EPIN*EFFECT)
            1130
3770.
                      RUZB= RUZB- (EPIN*EFFECT)
3771.
                      EDIFF= (1.0-EFFECT) *EPIN
3772.
3773.
                      REPIN=REPIN + EDIFF
                      EDIFF=0.0
3774.
                      SNET= SNET + (FA*EPIN*EFFECT)
3775.
                      GO TO 1150
3776.
            1140
                      EDIFF= EPIN - UZSB
3777.
                      REPIN= REPIN + EDIFF
3778.
                      EDIFF=0.0
3779.
                      SNET= SNET + PA*UZSB
3780.
3781.
                      UZSB=0.0
                      RUZB=0.0
3782.
3783.
           C
3784.
                             INTERPLOW FUNCTION * * *
           C
3785.
           C
3786.
           C
                  SRGX - INTERFLOW DETENTION STORAGE
3787.
           C
                  INTF - INTERPLOW LEAVING STORAGE
3788.
                  SRGXT - TOTAL INTERFLCW STORAGE
           C
3789.
                  RGXT - TOTAL INTERFLOW LEAVING STORAGE DURING INTERVAL
3790.
```

```
3791.
           C
3792.
            1150
                    INTF = LIRC4*SRGX
3793.
                    SRGX= SRGX + (RGX * PA) - INTP
3794.
                     RU=RU + INTF
                    SRGXT= SRGXT + (RGX*PA-INTP)
3795.
3796.
                    RGXT=PGXT + INTF
3797.
           C
                     OVERLAND PERVIOUS FLOW ROUTING ***
3798.
           C ***
3799.
           C
3800.
           C
           C RXE = VOLUME TO OVERLAND SURFACE DETENTION
3801.
3802.
              ROSB = VOLUME OF OVERLAND FLOW TO STREAM
           C
              RESB = VOLUME OF OVERLAND Q REMAINING ON SURFACE
3803.
           C
           C
3804.
           C
3805.
3806.
                 F1 = RXB - (RESB)
3807.
                 F3 = (RESB) + RXB
                 IF (RXE-(RESB)) 1170,1170,1160
3808.
3809.
            1160 CE= DEC*((F1)**0.6)
3810.
                 GO TO 1180
            1170 DE= (P3)/2.0
3811.
            1180 IF (F3-(2.0*DE)) 1200,1200,1190
3812.
            1190 DE=(F3)/2.0
3813.
            1200 IF ((F3)-(.005)) 1210,1210,1220
3814.
            1210 FOSB= 0.0
3815.
3816.
                 GO TO 1230
                     DUM V= (1.0+0.6*(F3/(2.0*DE)) **3.) **1.67
3817.
            1220
                 BOSB= (TIMFAC/60.) *SEC* ((F3/2.) **1.67) *DUNV
3818.
                 IF ((ROSB).GT.(.95*RXB)) ROSB=0.95*RXB
3819.
            1230 RESB= FXB-ROSB
3820.
                     ROSE = ROSB*PA
3821.
                    ECSINT = ROSB + INTE
3822.
3823.
           C
3824.
          C
           C
3825.
                             UPPER ZONE DEPLETION * * .*
          C
3826.
3627.
          C
              DEEPL - DIFFERENCE IN UPPER AND LOWER ZONE RATIOS
3828.
          C
              PERCB - UPPER ZONE DEPLETION
          C
3929.
3830.
          C
              PERC - TOTAL U.Z. DEPLETION
              INFLT - TOTAL INFILTRATION
          С
3831.
              ROS - TOTAL OVERLAND FLOW TO THE STREAM
          C
3832.
          C
3833.
                    IF ((NUMI .EQ. C).AND.(IMIN .EQ. 0))
                                                             GO TO 1240
3834.
                    PERCB = 0.0
3835.
                    GO TO 1280
3836.
3837.
          C
                    DEEPL= ((UZSB/UZSN)-(12S/LZSN))
3838.
            1240
                    IF (DEEPL-.01)
                                      1280, 1280, 1250
3839.
            1250
                     PEPCB=0.1*INFIL*UZSN*(DEEPL**3)
3840.
3841.
          C
                 IF (SNOW .GT. 0) PERCB = PERCB*D4FX
3842.
          C
3843.
                     IP (UZSB - PERCB) 1260, 1260, 1270
3844.
                     PERCB = 0.0
3845.
            1260
                     GO TO 1280
3846.
3847.
                     UZS3=UZSB-PERCE
            1270
3848.
                     PERC=PERC+PERCB
3849.
                     RUZD = RUZE - FERCB
3850.
           1280
                     INFL= P4-SHRD
3951.
```

```
3852.
                      INPLT=INFLT + INFL
3953.
                 RESS = RESS + RESB
3854.
                  UZS= UZS + RUZB
3855.
                 ROS = ROS + ROSB
                 IF (UZS .LE. 0.0001) UZS=0.0
3856.
3857.
          C END OF BLOCK LOOP
3858.
3859.
3860.
                    RU=DU + ROS
3861.
                   IF ((RESS).IT.(0.0001))
                                             GO TO 1290
                   GO TO 1300
3862.
3863.
            1290
                   LZS = LZS + RESS
                   FESS = 0.0
3864.
3865.
                   RESB = 0.0
3866.
            1300
                   IF (SRGXT.LT.(0.0001))
                                             GO TO 1310
3867.
                   GO TO 1320
                   LZS = LZS + SRGXT/PA
3869.
            1310
                   SRGXT = 0.0
3869.
                     SRGX = 0.0
3870.
3871.
          С
3872.
          C
3873.
          С
                * * * LOWER ZONE AND GEOUNDWATER
3874.
          С
3875.
                    - BASE STREAMFLOW
          C
              SEAS
                   - SUM OF GEDWATER RECHARGE
3876.
          С
             SRCH
            PREL - % OF INFILTRATION AND U.Z. DEPLETION ENTERING L.Z
3877.
          C
                   - GROUNDWATER RECHARGE - IE. PORTION OF INFIL.
3878.
          C
             F 1 A
                     AND U.Z. DEPLETION ENTERING GROWATER
3879.
          C
          C
                    - FRACTION OF FIA LOST TO DEEP GROWATER
3880.
             K24L
3881.
          С
3882.
            1320
                      LZI=1.5*ABS((LZS/LZSN)-1.0)+1.0
                      PREL= (1.0/(1.0+LZI))**LZI
3883.
                      IF (LTS.LT.LZSN)
                                         PREL= 1. O-PREL *LNRAT
3884.
                      F3= PPEL* (INPLT)
3885.
3886.
                      F1A = (1.0-PREL)*INFLT
                      IF ((BUMI .EQ. C).AND.(IMIN .EQ. 0))
                                                               GO TO 1330
3887.
                      GO TO 1340
3888.
                      F3 = F3 + PREL*PERC
3889.
           1330
3890.
                      P1A = F1A + (1.0-PRFL)*PERC
                      LZS= LZS+F3
3891.
            1340
                   F1 = F1A*(1.0 - K24L)*PA
3892.
3893.
                   GWF=SGW*LKK4*(1.C + KV*GWS)
3894.
                   SBAS= GWE
3895.
                   RU=RU+GNF
                   SRCH= Pla*K24L*PA
3896.
                    SGW=SGW - GWF + F1
3897.
                    GWS=GWS + F1
3898.
3899.
          C
                            GROUNDWATER EVAP
3900.
          C
          C
3901.
3902.
          C
          C LOS - EVAP LOST FROM GROUNDWATER
3903.
          C
3904.
                 NOTE: EVAP FROM GREWATER AND LZ IS CALCULATED ONLY DAILY
3905.
          C
3906.
                   IF ((HRFLAG.EQ.1).AND.(IHRR.EQ.24)) GO TO 1350
3907.
                   GO TO 1430
3908.
3909.
           1350
                   IF (GWS .GT. 0.0001) GWS = 0.97*GWS
3910.
                   LOS= SGW*K24EL*REPIN*PA
3911.
                   SGW=SGW - LOS
                   GWS=GWS - LOS
3912.
```

```
3913.
                   SNET= SNET + 10S
3914.
                   REPIN= REPIN - LOS
3915.
                   IP (GWS.LT. (0.0)) GWS=0.0
3916.
3917.
                           LOWER ZONE EVAP * * *
          C
3918.
          C
          C AETR - EVAP LOST FRCM L.Z.
3919.
3920.
          C
3921.
          C
                  IF (REPIN.LT. (0.0001))
                                           GO TO 1420
3922.
3923,
                  LNRAT = LZS/LZSN
3924.
                   IF (K3-1.0)
                                  1370,1360,1360
3925.
                   KF=50.0
            1360
3926.
                   GO TO 1380
                   KF=0.25/(1.0-K3)
            1370
3927.
3928.
            1390
                   IF (REPIN + (KF*LNRAT)) 1390,1400,1400
                   AETR= PEPIN*(1.0-(REPIN/(2.0*KF*LNRAT)))
3929.
            1390
                   GO TO 1410
3930.
                   AETR= 0.5*(KF*LNRAT)
3931.
            1400
                   IF (K3.LT.(0.50))
                                       AETR= AETR* (2.0*K3)
3932.
            1410
                   LZS=LZS - AETR
3933.
                    SNET= SNET + PA*AETR
3934.
                   ASNET = ASNET + LOS + FA*AETR
3935.
                   REPIN = 0.0
3936.
            1420
                   SNETI = SNET - SNET1
3937.
            1430
3938.
3939.
3940.
          C WBAL - WATER BALANCE IN THE INTERVAL
3941.
          C TWBAL - ACCUMULATED WATER BALANCE
3942.
3943.
3944.
          C
                    WDAL = (LZS-LZS1+UZS-UZS1+RESS-RESS1) *PA+ (SNET-SNET1+SGN-SGW1+
3945.
            1440
                            SCEP-SCEP1+SRCH+SRGXT-SRGXT1+RU-PR) + (RESBI-RESBI1) *A
3946.
                   IF ((WBAL .LE. 0.0001).AND.(WBAL .GE. -0.0001) WBAL = 0.0
            1450
3947.
                  TWBAL=TWBAL+WBAL
3948.
3949.
           C
                 DPS = F1A*PA
3950.
                 DPST = DPST + DPS
3951.
3952.
          C
3953.
          C
                                RESETTING VARIABLES
          C
3954.
          C
3955.
                 LZS1=LZS
3956.
                 U2S1=U2S
3957.
                 RESSI=PESS
3958.
                 SCEP1=SCEP
3959.
                 SRGXT1 = SRGXT
3960.
                 SG W1= SGW
3961.
3962.
                 SNET1=SNET
                 RESET 1=RESBI
3963.
                  ASBAS = ASBAS + SBAS
3964.
                  ASRCH = ASRCH + SRCH
3965.
3966.
                 APE = APR + PRR
                    ARU = ARU + RU
3967.
                    ARUI = ARUI + RUI
3968.
                    AROS = AROS + RCS
3969.
                    ARGXT = ARGXT + RGXT
3970.
                                                         GO TO 1460
                    IF ((NUMI.EQ.0).AND.(IMIN.EQ.0))
3971.
3972.
                    GO TO 1470
                    AEPIN = AEPIN + EPIN1
            1460
3973.
```

```
3974.
                    ASNET = ASNET + SNETI
            1470
                    AROSB = AROSB + ROSB
3975.
3976.
                    AINTF = AINTF + INTF
3977.
                    AROSIT = AROSIT + ROSINT
3978.
          C
            1480 CONTINUE
3979.
3980.
          С
3981.
          C
          c
c
3982.
                                 CUMULATIVE RECORDS
3983.
                 PRTOM = PRTOM + APR
3984.
3985.
                 EPION = EPION + AEFIN
3986.
                 RUTOM = RUTOM + ARU
3987.
                 ROSTOM = ROSTOM + AROS
3988.
                 RITOM = RITOM + ARUI
3989.
                 RINTOM = RINTOM + ARGKT
3990.
                 NE FTOM = NE PTOM + ASNET
                 BASTOM = BASTOM + ASBAS
3991.
3992.
                 RCHTOM = RCHTOM + ASRCH
3993.
          C
3994.
                       RCBTOM = ROBTOM + AROSB
                      ROBTOT = PCBTCT + AFOSB
3995.
3996.
                      INFTOM = INFTOM + AINTF
3997.
                       INFTOT = INFTCT + AINTF
                       RCITOM = ROITOM + APOSIT
3998.
3999.
                       ROITOT = PCITCT + ABOSIT
400C.
          С
                 PPTOT = PRTOT + APR
40C1.
                 EPTOT = EPTOT + AEPIN
4002.
                 RUTOT = RUTOT + ARU
4003.
                 ROSTOT = ROSTOT + AROS
4004.
                 RITOT = PITOT + ARUI
4005.
4006.
                 RINTOT = RINTOT + ARGXT
                 NEFTOT = NEPTOT + ASNET
4°CC7.
                 BASTOT = BASTOT + ASBAS
4008.
                 RCHTOT = RCHTOT + ASRCH
4009.
          Ç
401C.
          C
                      LOGICAL VARIABLES LAST AND PREV ARE USED TO DETERMINE
4011.
          C
                       BEGINNING AND END OF EACH STORM. STORM BEGINS IF RU
4012.
                       IS LESS THAN HYMIN IN ONE TIME INTERVAL, AND GREATER IN
          C
4013.
                       THE FOLLOWING ONE (PREV=.FALSE. , LAST=.TRUE.). STORM ENDS
4014.
          C
          C
                       IF THE OPPOSIT CCCUFS (PREV=.TRUE. , LAST=.FALSE.)
4015.
          C
4916.
                 RUINCH=RU
4017.
                 RU = (RU*AREA*43560.)/(TIMFAC*720.)
4018.
                 IF ((RU.GE.HYMIN).AND.(TF.LE.2)) GO TO 1490
4019.
                 LAST=.FALSE.
4020.
                 GO TO 1570
4021.
4022.
            1490 LAST=.TRUE.
                 IF (PREV) CO TO 1550
4023.
4924.
          C
                      COUNT NUMBER OF STORMS AND RECORD TIME OF STORM BEGINNING
          C
4025.
          Ç
4026.
4027.
                 NOS=EOS+1
                 IF (NOS.EQ.1) WRITE(6,4045)
4028.
                 WRITE (6,4050) NOS, MNAM (IZ), MNAM (IX), YEAR
4029.
                 STEBGN (1) = MNAM (IZ)
4030.
                 STRBGN (2) = DAY
4031.
4032.
                 STFBGN(3) = IHP
4933.
                 STREGN (4) = IMIN
4034.
          C
```

```
4035.
           C
                      THITTALIZATION OF VAFIABLES FOR STORM SUMMARY
4036.
                 NOSI=0
4037.
                 TOTEUN=0.
4038.
                 PEAKRU=0.
4039.
                 ACSEDT=0.
4040.
                 SEDMX=0.
4041.
                 SECTSC=0.
4042.
                 SEDMXC=0.
4043.
                 DO 1495 I=1,5
4044.
                 ACFOLT (I) =0.
4045.
                 PLIMX(I)=).
4046.
                  POLTSC (I) =0.
4047.
                 PLIMXC(I)=0.
4048.
            1495 LMIS(I) =0
4049.
           C
                       PRINT INITIAL CONDITION FOR A NEW STORM
4050.
           Ç
           c
4051.
                  IF (HYCAL.EQ.1) GO TO 1530
4052.
4053.
                  WRITE (6,406) WHT, ARUN
4054.
           C
4055.
                       CALCULATE AND PRINT MEAN ACCUMULATION FOR (1) EACH
           C
                       LAND TYPE USE (WEIGHTED BY % OF PERVIOUS AND IMPERVIOUS
4056.
           C
                       AREAS), (2) THE ENTIRE WATERSHED AND THE TOTAL PERVIOUS
4057.
           C
                       AND IMPERVIOUS AFEAS (WEIGHTED BY % OF VARIOUS LAND TYPE USE)
4058.
           C
4059.
                   TEM1=0.0
4060.
                   TEM2=0.0
4061.
4062.
                   TEM3=0.0
                   TEM4=0.0
4063.
                  DO 1510 I=1, NLAND
4064.
4765.
                  TEM=SPER(I)*(1-IMPK(I))+TS(I)*IMPK(I)
                  WHFUN1= (AR(I)/AREA)*(1-IMPK(I))
4066.
                  WII FUN 2= (AR (I) /AREA) *IMPK (I)
4067.
4068.
                  TRY1=TEM1+SRER(I) *WHFUN1
                  TEM2=TFM2+TS(I) *WHFUN2
4069.
                  TEM3=TEM3+WHPUN1
4070.
                  TEN4=TEM4+WHFUN2
4071.
                  IF (UNIT.GT.-1) GO TO 1500
4072.
                  WEITE (6,4070) (LNDUSE(IK, I), IK=1, 3), TEM, SRER(I), TS(I)
4073.
                  GO TO 1519
4074.
            1500 TEM5=SPER(I) *2.24
4075.
                  TEMS=TS (I) *2.24
4076.
                  TEM=TEM*2.24
4077.
                  WRITE (6,4)70) (LNDUSE(IK, I), IK= 1, 3), TEM, TEM5, TEM6
4C78.
                  IF (LMIS(I).EQ.1) WRITE (6,4040)
4079.
4080.
            1510 CONTINUE
                  IF (NLAND. 2Q. 1) GO TO 1530
4281.
                    (TEM3.GT.0.0) TEM1=TEM1/TEM3
4082.
                  TF
                  IF (TEM3.LE.0.0) TEM1=0.0
4083.
                  IF (TEM4.GT.0.0) TEM2=TEM2/TEM4
IF (TEM4.LE.0.0) TEM2=0.0
4084.
4085.
                  TEM=TEM1* (1-A) +TEM2*A
4086.
                  IF (UNIT.LT.1) GO TC 1520
4087.
4088.
                  TEM=TEM#2.24
4089.
                  TEM 1= TEM 1*2.24
                  TEM2=TEM2*2.24
4090.
            1520 WRITE (6,4080) TEM, TEM1, TEM2
4091.
            1530 CONTINUE
4092.
                  WRITE (6,4090)
4093.
                  IF (HYCAL.GT.1) GO TO 1540
4094.
                  WRITE (6,4110) UFL
4095.
```

```
4096.
                   GO TO 1550
 4097.
             1540 WRITE (6,TIT)
 4098.
                   WRITE (6,4100) ((QUALIN(I,J), I=1,3), J=1, NCUAL)
 4099.
                   IF (UNIT.EQ.-1) GO TO 1545
 4100.
             1545 WRITE (6, FORM) UFL, UTMP
 4101.
             1550 CMETRC=RU*.0283
 4102.
            C
 4103.
            C
                              PRINT DATE, TIME, AND FLOW
 4104.
            C
 4105.
                   WRITE (6,4130) MNAM(IZ), DAY, IHR, IMIN
 4106.
                   NOSI = NOSI + 1
 4107.
                   PLOUT = RU
 4108.
                   IF (UNIT.GT.0) FLOUT=CMETRC
 4109.
                   WRITE (6,4120) FLOUT
 4110.
                   IF (HYCAL. NE.4) GO TO 1560
 4111.
                   RECOUT (2) = MNAM(IZ)
 4112.
                   RECOUT (3) = DAY
 4113.
                   RECOUT (4) = IHR
 4114.
                   RECOUT (5) = IMIN
 4115.
             1560 IP (BU.GT.PEAKRU) PEAKRU=RU
 4116.
                  TOTEUN=TOTEUN+RUINCH
             1570 APR = 0.0
 4117.
4118.
                  AEFIN = 0.0
4119.
                   ARU = 0.0
4120.
                  ARUI = 0.0
4121.
                  AROS = 0.0
4122.
                  APGXT = 0.0
4123.
                  ASNET = 0.0
4124.
                  ASBAS = 0.0
4125.
                  ASRCH = 0.0
4126.
                      AROSB = 0.0
4127.
                      AINTF = 0.0
4128.
                      AROSIT = 0.0
4129.
                  IP (LAST.OR..NOT.PREV) GO TO 1640
4130.
           C
4131.
           C
                                STORM SUMMARY
4132.
4133.
                  IF (UNIT.LT.1) GO TO 1590
4134.
                  TOTFUN=TOTRUN*25.4
4135.
                  PEAKED=PEAKRU*0.0283
4136.
                  ACSEDT = ACSEDT * 0.9072
4137.
                  SEDMX=SEDMX*0.454
                  DO 1580 I=1,NQUAL
4138.
4139.
                  ACPOLT(I) = ACPOIT(I) *0.454
4140.
           - 1580 PLTMX(I) = PLTMX(I) *0,454
4141.
            1590 WRITE (6,4150)
4142.
                  IF (HYCAL. EQ. 4) WRITE (4,4150)
4143.
                  WRITE (6,4140) NOS
4144.
                  WRITE (6,416C) NOSI, (STRBGN(I), I=1,4), MNAM(IZ), DAY, IHR,
4145.
4146.
                                 IMIN, DEPW, TOTRUN, UFL, PEAK RU
4147.
                 IF (HYCAL. EQ. 1) GO TO 1610
4148.
                  WRITE (6,4170) ((QUALIN(I,J), I=1,3), J=1, NQUAL)
4149.
                  WRITE (6,418?) WHT, ACSEDT, (ACPOLT (I), I=1, NQUAL)
4150.
                  WRITE (6,4190) WHGT, SEDMX, (PLTMX(I), I=1, NCUAL)
4151.
                  SECTSC= SECTSC/NOSI
4152.
                 DO 1600 I=1,5
4153.
            1600 POLTSC(I)=POLTSC(I)/NCSI
4154.
                 DO 1605 T=1, NQUAL
4155.
                 DUM1(I) = POLTSC(I) / SCALEF(I)
4156.
            1605 DUM2(I) = PLTMXC(I) / SCALEF(I)
```

```
4157.
                   WRITE (5,4200) SEDTSC, (DUM1(I), I=1, NQUAL)
 4158.
                   WRITE (6,4210) SEDMXC, (DUM2(I), I=1, NQUAL)
 4159.
             1610 WRITE (6,4150)
 4160.
            C
 4161.
            C
                          ACCUMULATION FOR OVERALL STORM SUMMARY
 4162.
            C
4163.
                   IF (HYCAL.NE. 1) GC TC 1620
4164.
                   STECH (NOSY+NOS, 1) = TOTEUN
4165.
                   STMCH (NOSY+NOS, 2) = FEAKRU
4166.
                   GO TO 1640
4167.
             1620 IF (NOSY+NOS.GT.200) GO TO 1640
4168.
                   STMCH (NOSY+NOS, 1) = ACSEDT
4169.
                   STMCH (NOSY+NOS, 2) = SEDMX
4170.
                   STMCH (NOSY+NOS, 3) = SEDTSC
4171.
                   STMCH (NOSY+NOS, 4) = SED MX C
4172.
                   DO 1630 I=1, NCUAL
4173.
                   KI=4*I
4174.
                   ST MCH (NOSY+NOS, KI+1) = ACPOLT(I)
4175.
                   STMCH (NOSY+NOS, KI+2) = FLTMX (I)
4176.
                   STMCH (NOSY+NOS, KI+3) = FOLTSC(I)
4177.
                   STMCH (NOSY+NOS, KI+4) = ELTMXC(I)
4178.
             1630 CONTINUE
4179.
                   WRITE (6,4030)
4180.
             1640 CONTINUE
4181.
                   PREV=LAST
4182.
           C
4183.
            C
                                   PORMAT STATEMENTS
4184.
            C
4185.
             4030 FOPMAT ('0')
                           ("+",70X,"** LIMIT REACHED ***)
4186.
             4040 FORMAT
4187.
             4045 FORMAT
                          (111)
4188.
             4050 FORMAT
                           (3(/),130('*'),2(/),55x,'OUTPUT FOR STORM NO.',13,
4189.
                           * - *, A4, A4, 1X, I4)
                 1
4190.
             4060 FORMAT (//,1x, ACCUMULATION OF DEPOSITS ON GROUND AT THE .
                           'BEGINNING OF STOFM,', A4,'/', A4,
/,3x,'LAND/USE',8x,'WEIGHTED MEAN',9x,'PERVIOUS',8x,
4191.
                 1
4192.
                 2
4193.
                           'IMPERVICUS',/)
                 4
4194.
             4070 FORMAT (1X,3A4,9X,F7.3,2(12X,F7.3))
4195.
            4080 FORMAT
                          (3x, 'WEIGHTED MCAN', 6x, F7.3, 2 (12x, F7.3))
4196.
             4090 POSMAT
                           (//)
4197.
            4100 FORMAT (2X, DATE
                                         TIME
                                                  PLOW
                                                           TEMP
                                                                 CO (PPM)
                                                                              SEDIMENTS
4198.
                           5 (4X,3A4))
                 1
4199.
                              DATA
            4110 FORMAT
                                        TIME
                                                 FLOW (', A4, ') ')
4200.
                           ('+',14X,F8.3)
            412C FORMAT
4201.
                           (1x, \u03b4, 1x, 12, 1x, 12, 1:1, 12)
            4130 FORMAT
                           (/, SUMMARY FOR STORM # 1, 13)
4202.
            4140 FORMAT
4203.
                           (29 ('_'))
            4150 FORMAT
                           (/, NUMBER OF TIME INTERVALS 1, 14, /, storm begins 1, 3x, A4, 1x, 12, 1x, 12, 1: 1, 12, /,
4204.
            4160 FORMAT
4205.
4206.
                 2

    STORN ENDS',5X,A4,1X,12,1X,12,':',12,/,

                           ' TOTAL FLOW (', A4, ')', 1X, F10.3,/,
4207.
                 3
4208.
                            * PEAK FLOW (*, A4, 1) *, 2X, P10.3)
                 u
            4170 FORMAT (37X, SEDIMENTS ', 4X, 5 (4X, 3A4))
4209.
4210.
                          ( TOTAL WASHOFF (', A4, ')', 14x, F10.2, 5x, 5 (F14.5, 2x))
            4180 FORMAT
                          ( MAX WASHCFF (',A4,'/15MIN)',10x,F10.2,5x,5(F14.5,2x))
4211.
            4190 FORMAT
                          ( MEAN CONCENTRATION (GM/L) ,9x, F10.2,5x,5 (F14.5,2x))
4212.
            4200 FORMAT
4213.
            4210 FORMAT ( MAX CONCENTRATION (GM/L) , 10x, F10.2, 5x, 5(F14.5, 2x).)
4214.
           C
4215.
                   RETURN
4216.
                  END
          .,
50CO.
                  SUPROUTINE QUAL
```

```
5001.
           C
5002.
           C
5003.
                   DIMENSION POLP(5,5), POLI(5,5), EIM(5), POLTLU(5,5), POLT (5),
5004.
                               TSS (5), RER (5), ERSN (5), SER (5), TEMPX (24)
5005.
           C
5006.
                   COMMON /ALL/ PU, HY MIN, HY CAL, DPST, UNIT, TIM FAC, LZS, A REA, RESB, SFLAG,
5007.
                 1
                                  RESB1, POSE, SRGX, INTF, RGX, RUZE, UZSB, PERCB, RIB, P3, TF,
5008.
                 2
                                  KGPLB, LAST, PREV, TEMPX, IRR, IHRR, PR, RUI, A, PA, GWF, NCSY,
5009.
                                  SREP (5) , TS (5) , LNDUSE (3, 5) , AR (5) , QUALIN (3, 5) , NO SI , NOS,
                 3
5010.
                                  NOSIM, UFI, UTMP, UNT1(2,2), UNT2(2,2), UNT3(2,2), WHGT,
                 5
5011.
                                  WHT, DEPW, ROSBI, RESBI, RESBI 1, ARUN, LMTS (5), IMPK (5)
5012.
                 6
                                  NLAND, NQUAL, STMCH (200, 24), RECOUT (5), FLOUT, SCALEF (5),
                 7
5013.
                                  SNOW, PACK, IPACK
5014.
           C
5015.
                   COMMON /QLS/ WSNAME(6), KRER, JRER, KSER, JSER, TEMPCP, COVMAT (5, 12),
5016.
                                  KEIM, JEIM, NDS F, ARP (5), ARI (5), ACCP (5), ACCI (5), RFER (5),
                                  PMP(5,5), PMI(5,5), QSNOW, SNOWY, SEDTH, SEDTY, SEDTCA.
5017.
                 2
5018.
                 3
                                  ACPOLP(5,5), ACERSN(5), APOLP(5,5), AERSN(5), COVER(5),
5019.
                 4
                                  APOLI (5,5), ACEIM (5), AEIM (5), FOLTM (5), POLTY (5),
5020.
                 5
                                  TEMPA, DCA, POLTCA(5), AERSNY(5), AEIMY(5), APOLPY(5,5),
5021.
                                  APOLIY (5,5), POLTC (5), PLTCAY (5), ACPOLI (5,5), RIMP (5)
5022.
           C
5023.
                  COMMON /STS/ ACPOLT(5), PLTMX(5), POLTSC(5), PLTMXC(5),
                                  ACSEDT, SEDMX, SEDTSC, SEDMXC, TOTRUN, PEAKRU
5024.
                 1
5025.
           C
                   DIMENSION LIMP(5), LIMI(5)
5026.
                  REAL JRER, KRER, JSER, KSER, KEIM, JEIM INTEGER HYCAL, TF, UNIT, LMTS, RECOUT, SFLAG
5027.
5028.
5029.
           C
                   REAL*8 WSNAME
503C.
5031.
                   DO 10 I=1,5
5032.
                   LIMP(I) = .0
5033.
               10 LIMI(I) = .0
5034.
           C
                   IF (TF.GT.2) GO TO 250
5035.
5037.
           C
           C
                        CONVERT ROSB - VOLUME OF OVERLAND FLOW REACHING STREAM -
5038.
           C
5039.
                                          IN INCHES PER WHOLE WATERSHED TO INCHES
           C
5040.
                                          PER PERVIOUS AREAS ONLY
5041.
           C
5042.
                   IF ((1.-\lambda).GT.0.00001) GC TO 20
                   ROSBQ=0.0
5043.
5044.
                  GO TO 30
5045.
               20 ROSBO=ROSB/(1.-A)
5046.
               30 CONTINUE
                   DO 90 I=1, NIAND
5047.
5048.
           C
                                  IF RAIN ON SNOW, INCREASE COVER BY % OF SNOW COVER
5049.
           C
           C
5050.
5051.
                   IF (SNOW.EQ.O.OR. (PACK/IPACK) .LT.COVER(I)) GO TO 35
5052.
                  CR=COVER(I) + (1-COVER(I)) * (PACK/IPACK)
5053.
                   IF (CR.LT.COVER(I)) GC TO 35
5054.
                   IF (CR.LE.1.0) COVER(I) = CR
               35 CONTINUE
5055.
           C
5056.
5057.
           C
                                             WASHOFF FROM PERVIOUS AREAS
5058.
           C
5059.
                   IF (SFLAG. EQ. 1) GC TO 40
           C
5060.
                                  IF SNOWS, BRANCH OVER FINES GENERATION
           C
5061.
5062.
           C
```

```
5063.
                   RER (I) = (1+COVER(I))*KERR*PR**JRER
 5964.
                   SRER(I) = SRER(I) + RER(I)
 5065.
               40 IF (RU.LE.O.O) GO TO 270
 5066.
                   IF ((ROSBQ+RESB) .GT.O.0) GO TO 60
5067.
                   ERSN(I)=0.0
 5068.
                   DO 50 J=1,NCUAL
 5069.
               50 POLP(I,J)=0.0
 5070.
                   GO TO 90
5071.
               60 SER(I) = KSER*(ROSBQ+RESB) **JSER
5072.
                   IF (SEP (I) . LE. SRER (I) ) GO TO 70
5073.
                   SER(I) = SRER(I)
5074.
                   LIMP(I) = 1
5075.
               70 ERSN(I) = SER(I) * (ROSBC/(FOSEQ+RESD))
5076.
                   SRER(I) = SRER(I) - ERSN(I)
5077.
                   ERSN(I) = ERSN(I) *ARF(I)
5078.
                   IF (SRER(I).LT.0.0) SRER(I) =0.0
5079.
           C
5080.
                    MONTHLY ACCUMULATION OF WASHOFF FROM PERVIOUS AREAS
           С
5081.
            C
5082.
                   DO 80 J=1, NCUAL
5083.
                   POLP(I,J) = ERSN(I) * (PMF(J,I) / 100.) * 2000.
                   ACFOLP (I,J) = ACPOLP(I,J) + POLP(I,J)
5084.
50£5.
               80 APOLP(I,J) = APOLP(I,J) + POLP(I,J)
5086.
                   ACERSN(I) = ACERSN(I) + ERSN(I)
5087.
                   AEFSN(I) = AERSN(I) + ERSN(I)
               90 CONTINUE
5088.
5089.
           C
5090.
           C
                                           WASHOFF FROM IMPERVIOUS AREAS
           C
5091.
5092.
                  DO 140 I=1, NLAND
                  IF ((ROSBI+RESBI).GT.O.) GO TO 110
5093.
5094.
                  EIM(I) = 0.0
5095.
                  DO 100 J=1, NQUAL
5096.
              100 POLI(I,J)=0.0
5097.
                  GO TO 140
              110 TSS(I)=KEIM*((ROSCI+RESBI)**JEIM)
5098.
5099.
                  IF (TSS(I).LE.IS(I)) GC TO 120
5100.
                  TSS(I) = TS(I)
5101.
                  LIMI(I) = 1
              120 EIM(I) = TSS(I) * (ROSEI/(ROSBI+RESBI))
5102.
5103.
                  TS(I) = IS(I) - EIM(I)
5104.
                  EIM(I) = EIM(I) * ARI(I)
5105.
                  DO 13C J=1, NOUAL
                  FOII (T,J) = EIM(T) * (PMI(J,I) / 100.) * 2000.
5106.
                  \Lambda POLI(I,J) = \Lambda POLI(I,J) + POLI(I,J)
5107.
5108.
              130 ACFOLI (I,J) = ACPOLI(I,J) + POLI(I,J)
5109.
                  ACEIM(I) = ACEIM(I) + EIM(I)
5110.
                  AEIM(I) = AEIM(I) + EIM(I)
5111.
             140 CONTINUE
5112.
           C
                                          STORMWATER TEMPERATURE AND DISSOLVED OXYGEN
5113.
           C
5114.
                                                                   (ASCE, SE4 (86), P41)
           C
5115.
           Ç
                  TEMPC= (TEMPX (IHPR) *TEMPCF-32.) *5/9
5116.
                  IF (TEMPC.LT.0.0) TEMFC=0.00
5117.
                  DO=14.652-C.41022*TEMPC+0.007991*(TEMPC**2)-.000077774*(TEMPC**3)
5118.
           C
5119.
                                        WASHOFF SUMMARY FOR A GIVEN TIME INTERVAL
5120.
           C
5121.
           C
                  DO 160 J=1, NOUAL
5122.
5123.
                  POLT(J) = 0.000
```

```
5124.
                  DO 150 I=1, NLAND
5125.
                  POLTLU(I,J) = POLP(I,J) + PCLI(I,J)
5126.
                  POLT(J) = PCLT(J) + POLTLU(I, J)
5127.
              150 CONTINUE
5128.
                  ACFOLT (J) = ACPOLT (J) + PCLT (J) \angle 2000.
5129.
                  IF (POLT(J).GT.PLTKX(J)) PLTMX(J) = POLT(J)
                  FOITC (J) = POLT (J) *454 .* SCALEF (J) / (RU*TIMFAC*60.0*28.32)
5130.
5131.
                  POLTSC(J) = POLTSC(J) + FCLTC(J)
5132.
                  IF (POLTC(J).GT.PLTMXC(J)) PLTMXC(J) = POLTC(J)
5133.
                  POLTCA(J) = POLTCA(J) + FCLTC(J)
5134.
              160 CONTINUE
5135.
                  SECT=0.000
                  DO 173 I=1, NLAND
5136.
5137.
                  SECT=SEDT+ERSN(I) +EIM(I)
              170 CONTINUE
5138.
5139.
                  ACSEDT = ACSEDT + SEDT
5140.
                  SEDT=SEDT * 2000.
5141.
                  IF (SEDT.GT.SEDMX) SEDMX = SEDT
5142.
                  SEDTC=SEDT*454 ./(PU*TIMFAC*60.0*28.32)
5143.
                  SEDTSC= SEDTSC+SEDTC
5144.
                  IF (SEDTC.GT.SEDMXC) SEDMXC=SEDTC
5145.
           C
5146.
           C
                                        PRINTING OF OUTPUT FOR ONE TIME INTERVAL
5147.
           C
5148.
                  TEMP=TEMPX (IHRP) *TEMPCF
5149.
                  IF (TEMP.LT.32.0) TEMF=32.00
5150.
                  DOA=DOA+DO
5151.
                  TEMPA= TEMPA + TEMP
5152.
                  SEDTC A=SEDTCA+SEDTC
5152.5
                  NOSIM=NOSIM+1
                  IF (RU.LT.HYMIN) GO TO 270
5153.
5154.
                  IF (UNIT. EQ. - 1) GO TO 190
5155.
                  TEMP=TEMPC
5156.
                  SECT=SEDT*0.454
5157.
                  DO 190 J=1, NQUAL
5158.
             182 POLT(J) = POLT(J) *0.454
5159.
             193 CONTINUE
5160.
                  WRITE(6,400C) TEMP, DC, SEDT, SEDTC, (POLT(J), POLTC(J), J=1, NQUAL)
5161.
                  IF (HYCAL.LT.4) GO TO 200
                  WRITE (4,4100) (RECCUT (1), I=1,5), PLOUT,
5162.
                                  TEMP, DO, SECT, SECTC, (POLT (J), POLTC (J), J=1, NQUAL)
5163.
5164.
           C
5165.
           C
                        PRINT OF AUDITIONAL OUTPUT FOR CALIBRATION RUN
5166.
           C
5167.
             200 IF ((SEDT.LE.O.001).OR.(HYCAL.GT.2)) GO TO 270
                  RUI= (RUI*AREA*43560.) / (TIMFAC*720.)
5168.
5169.
                  TEM=RU
5170.
                  IF (UNIT.LT.1) GO TC 210
5171.
                  TEM=TEM*0.0283
5172.
                  PUI=RUI*0.0283
5173.
                  PR=PR*25.4
5174.
             210 KRITE(6,4010) RU,UFL
5175.
                  WRITE (6,4020) RUI, UFL
5176.
                  WPITE (6,4030) PR, DEPW
                  DO 240 I=1, NLAND
5177.
5178.
                  ERSN(I) = ERSN(I) *2000.
5179.
                  EIM(I) = EIM(I) * 2000.
5180.
                  TEM=ERSN(I) +EIM(I)
5181.
                  IF (TEM.LE.O.OC1) GO TO 240
51 82.
                 IF (UNIT.LT.1) GO TO 230
5183.
                  TEM=TEM*0.454
```

```
EIM(I) = EIM(I) *0.454
5184.
                   ERSN(I) = ERSN(I) *0.454
5185.
5186.
                    DO 220 J=1, NQUAI
                    FOITLU (I,J) = POLTLU(I,J) *0.454
5187.
                    POLP(I,J)=POLP(I,J)*0.454
5188.
5189.
               220 POLI(I,J) = PCLI(I,J) *0.454
               230 WRITE (6,4040) (LNDUSE (KK,I), KK=1,3), TEM, (FOLTLU (I,J), J=1, NQUAI)
5190.
5191.
                    IF (LIMP(I).EO.C)
                                     WRITE(6,4050) COVER(I), FRSN(I), (POLF(I,J), J=1, NCUAL)
5192.
5193.
                   IP (LIMP(I).EQ.1)
                                     WRITE(6,4060) COVER(I), ERSN(I), (POLP(I,J), J=1, NCUAL)
5194.
                    IF (LIMI(I) .EQ.C) WRITE(6,4070) EIM(I), (POLI(I,J), J=1,NQUAL)
5195.
                   IF (LIMI(I).EO.1) WRITE(6,4080) EIM(I), (POLI(I,J), J=1, NQUAL)
5196.
5197.
               240 CONTINUE
5198.
                    WRITE (6,4090)
5199.
                   GO TO 270
52 CC.
            Ç
                        ACCUMULATION OF DEPOSITS DURING THE NC RAIN DAYS
5201.
            С
5202.
            C
5203.
              250 DO 260 I=1, NLAND
5204.
                    TS(I) = TS(I) * (1.0 - RIMP(I)) + ACCI(I)
                   SRER(I) = SREP(I) * (1.0 - RPEP(I)) + ACCP(I)
5205.
                   IF (RIMP(I).LE.O.O) GC TO 260
5206.
5207.
                   TEM=ACCI(I)/RIMP(I)
                   IF (TS(I).LT. TEM) GO TO 260
5208.
5209.
                    TS(I)=TEM
5210.
                   LMIS(I) = +1
5211.
              260 CONTINUE
5212.
              270 CONTINUE
5213.
            C
             4000 FORMAT (*+*,22X,F6.2,2X,F5.2,F9.2,F8.3,5(F8.2,F8.3))
4010 FORMAT (*0*,3X,*TOTAL FLOW*,F8.3,*,*,*,A4)
5214.
5215.
                            ( ' ,1X , 'IMPERV. FLOW', F8.3, ' , A4)
5216.
             4020 FORMAT
                            ( PRECIPITATION ', F7. 3, ', A4)
5217.
             4030 FORMAT
                           (')',21X,3A4,1X,F10.2,8X,5(F10.3,6X))
5218.
             4040 PORMAT
             4050 FORMAT ( ' ',8X, 'COVER=',F5.2,7X, 'PERV.',3X,F10.2,8X,5 (F10.3,6X))
5219.
             4060 FORMAT (9X, COVER=', F5.2, 7X, PERV.', 2X, **', F10.2, 6X, 5 (F10.3, 6X))
4070 FORMAT (27X, IMPERV.', 1X, F10.2, 8X, 5 (F10.3, 6X))
4080 FORMAT (27X, IMPERV.', **', F10.2, 8X, 5 (F10.3, 6X))
5220.
5221.
5222.
5223.
             4090 PORMAT
                            (/)
             4100 FORMAT (14, A4, 1X, 12, 1X, 12, 1:1, 12, F8.3, F5.2, F5.2, F9.2,
5224.
                             F8.3,5(F8.2,F8.3))
5225.
5226.
            C
                   RETURN
5227.
5228.
                   ENC
6000.
            /*
            //LKED.SYSLMOD DD DSNAME=WYL.X2.A20.TONY.T7508.NPS.LM111576,
6001.
                              DISP= (NEW, KEEP), SPACE= (TRK, (15,1,1), RLSE), UNIT=DISK,
6002.
            //
                              VOL=SER=PUBOG3
6003.
            //LKED.SYSIN DD *
6004.
6005.
                 NAME NPS
6006.
```

TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing)			
1. REPORT NO. EPA-600/3-77-065	2.	3. RECIPIENT'S ACCESSION NO.	
4. TITLE AND SUBTITLE Simulation of Nutrient Loadings in Surface Runoff with the NPS Model		5. REPORT DATE June 1977 issuing date	
		6. PERFORMING ORGANIZATION CODE	
7. AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT NO.	
Anthony S. Donigian, Jr.,	and Norman H. Crawford		
9. PERFORMING ORGANIZATION NAME AND ADDRESS Hydrocomp Inc. 1502 Page Mill Rd.		10. PROGRAM ELEMENT NO.	
		1BA609	
		11. CONTRACT/GRANT NO.	
Palo Alto, Calif. 94304		R803315-01-2	
12. SPONSORING AGENCY NAME AND ADDRESS Environmental Research Laboratory - Athens, GA Office of Research and Development		13. TYPE OF REPORT AND PERIOD COVERED	
		FINAL	
		14. SPONSORING AGENCY CODE	
U.S. Environmental Protect Athens, Georgia 30605		EPA/600/01	

15. SUPPLEMENTARY NOTES

16. ABSTRACT

The Nonpoint Source Pollutant Loading (NPS) Model was applied to one urban and two small agricultural watersheds to simulate nutrient loadings in surface runoff. Since the NPS Model simulates all nonpoint pollutants as a function of sediment loss, the key question was whether sediment is a reliable indicator of nutrients in surface runoff. Both the literature surveyed and the results of this work indicate Total nitrogen (N) and Total phosphorus (P) can be reasonably simulated in this manner. Also, organic components of N and P can be simulated since they are generally associated with sediment and comprise a major portion of the total nutrients in surface runoff.

Nitrate N (NO_3 -N) and phosphate P (PO_4 -P) are almost entirely contained in the soluble fraction of surface runoff and are not adequately simulated with the NPS Model. Ammonia N (NH_3 -N) appears to be transported in significant amounts both in solution and attached to sediment; thus, the simulation results were inconclusive. Total Kjeldahl N (TKN) was simulated on the urban watershed which was large enough to provide a continuous baseflow. The simulated TKN values agreed reasonably well with recorded values except when baseflow TKN concentrations were high. Over 50% of the annual TKN loading was estimated to originate from the baseflow. Therefore, the NPS Model can simulate total nutrient loadings only in areas where subsurface contributions are minimal.

17. KEY WORDS AND DOCUMENT ANALYSIS			
a. DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group	
Simulation, Surface Nater Runoff, Planning Erosion, Nutrients, Nitrogen, Phosphorus, Hydrology, Urban Areas	NPS Model, Nonpoint pollution, Urban runoff, Agricultural runoff Agricultural watersheds, Model studies	8H	
18. DISTRIBUTION STATEMENT RELEASE UNLIMITED	19. SECURITY CLASS (This Report) UNCLASSIFIED	21, NO. OF PAGES 120	
	20. SECURITY CLASS (This page) UNCLASSIFIED	22. PRICE	