# HUMAN POPULATION EXPOSURES TO COKE-OVENS ATMOSPHERIC EMISSIONS

U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT WASHINGTON, D.C. 20460

Project Officer: ALAN P. CARLIN
Technical Monitor: JUSTICE A. MANNING

CONTRACT 68-01-4314

SRI Project EGU-5794:

CENTER FOR RESOURCE AND ENVIRONMENTAL SYSTEMS STUDIES Report No. 27

# HUMAN POPULATION EXPOSURES TO COKE-OVENS ATMOSPHERIC EMISSIONS

By: BENJAMIN E. SUTA
SRI INTERNATIONAL
MENLO PARK, CA 94025

#### Prepared for:

U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT WASHINGTON, D.C. 20460

Project Officer: ALAN P. CARLIN
Technical Monitor: JUSTICE A. MANNING

CONTRACT 68-01-4314

SRI Project EGU-5794

CENTER FOR RESOURCE AND ENVIRONMENTAL SYSTEMS STUDIES Report No. 27

#### NOTICE

This is a preliminary draft. It has been released by the U. S. Environmental Protection Agency (EPA) for public review and comment and does not necessarily reflect Agency policy. This report was provided to EPA by SRI International, Menlo Park, California, in partial fulfillment of contract No. 68-01-4314. The contents of this report are reproduced herein as received by SRI after comments by EPA. The opinions, findings, and conclusions expressed are those of the authors and not necessarily those of EPA. Mention of company or product names is not to be considered as an endorsement by the EPA.

#### ACKNOWLEDGMENT

It is a pleasure to acknowledge the cooperation and guidance given by Alan Carlin and Justice Manning of the U.S. Environmental Protection Agency in the preparation of this report. In addition, a number of other people generously supplied input data. They include:

Mark Antell, U.S. Environmental Protection Agency
Robert Armbrust, New York State Department of Environmental
Conservation

Thomas Au, Pennsylvania Department of Environmental Resources
Bernard Bloom, U.S. Environmental Protection Agency
Walter Cooney, Maryland State Environmental Health Administration
Ron Dubin, Pennsylvania Department of Environmental Resources
Arvid Ek, Allegheny County Health Department
Clemens Lazenka, Philadelphia Air Quality Division
Jim Payne, Texas Air Control Board

C. B. Robison, Jefferson County, Alabama Board of Health Terry Sweitzer, Illinois Environmental Protection Agency Peter Warner, Wayne County, Michigan Health Department Robert Yuhnke, Pennsylvania Department of Environmental Resources.

#### PREFACE

There is a substantial body of evidence, both direct and indirect, that the mixture that coke oven emissions represent is carcinogenic and toxic. Current U. S. Environmental Protection Agency (EPA) policy states that there is no zero risk level for carcinogens. To determine what regulatory action should be taken by EPA on atmospheric emissions of coke ovens, three reports have been prepared: (1) a health effects assessment, (2) a population exposure assessment, and (3) a risk assessment document based on the data in the first two assessments. This document is the human population exposure assessment and presents estimates of the numbers of people in the general population of the United States exposed to atmospheric concentrations of coke oven emissions. Estimates are provided of population exposures to ambient concentrations of benzo(a)pyrene Bap and benzene soluble organics (BSO) material caused by coke oven emissions.

# CONTENTS

| ACKN | OWLED | GMENT                                                                                           |
|------|-------|-------------------------------------------------------------------------------------------------|
| LIST | OF I  | LLUSTRATIONS                                                                                    |
| LIST | OF T  | ABLES                                                                                           |
| I    | INTR  | ODUCTION                                                                                        |
| II   | SUMM  | ARY AND CONCLUSIONS                                                                             |
|      | A.    | Overview                                                                                        |
|      | В.    | At-Risk-Populations                                                                             |
|      | c.    | Population Estimation                                                                           |
|      | D.    | Population Exposures to BaP Emitted by Coke-Ovens                                               |
|      | E.    | Population Exposures to BSO Emitted by Coke-Ovens                                               |
|      | F.    | Considerations in the Use of the Annual Average as a Measure of Exposure to Coke-Oven Emissions |
|      | G.    | Accuracy of Estimated Exposures                                                                 |
|      | н.    | Other Potential Human Exposure Routes 16                                                        |
| III  | SOUR  | CES OF COKE OVEN EMISSIONS                                                                      |
|      | A.    | The Coking Process                                                                              |
|      | В.    | Environmental Emissions During Coking                                                           |
|      | c.    | Coke Processing Plants                                                                          |
| IV   |       | THOD OF ASSESSING BAP AND BSO CONCENTRATIONS IN THE NITY OF COKE-OVENS                          |
|      | A.    | General                                                                                         |
|      | В.    | Categorization of Coke Plants by Emission Control 31                                            |
|      | c.    | Background Concentrations                                                                       |
|      | D.    | Evaluation of Ambient Concentration Data for Coke Plant Locations                               |
|      | E.    | Relationship Between BaP and BSO Atmospheric Concentrations                                     |
|      | F.    | Population Exposure Estimates                                                                   |

# **Appendices**

| A     | AMBI  | ENT ATMOSPHERIC BaP AND BSO CONCENTRATIONS                                                   | 45  |
|-------|-------|----------------------------------------------------------------------------------------------|-----|
|       | Α.    | General                                                                                      | 45  |
|       | В.    | Atmospheric BaP and BSO Concentration Data Recorded Near Coke Manufacturers                  | 45  |
|       | c.    | Ambient Background BaP and BSO Concentration Data                                            | 62  |
| В     |       | STICAL EVALUATION OF BAP ATMOSPHERIC CONCENTRATION RECORDED IN THE VICINITY OF COKE PLANTS   | 80  |
|       | A.    | General                                                                                      | 80  |
|       | В.    | Statistical Distribution of 24-Hour BaP Atmospheric Concentrations                           | 80  |
|       | c.    | Precision of Estimates Based Upon Small Sample Sizes                                         | 82  |
|       | D.    | Evaluation of Ambient Concentration Data as a Function of Distance from Coke Plant Locations | 85  |
| С     |       | LED ESTIMATES OF POPULATIONS AND BAP CONCENTRATIONS INDIVIDUAL COKE FACILITIES               | 101 |
| BIBLI | OGRAF | тч                                                                                           | 105 |

## ILLUSTRATIONS

| 11-1          | Estimated Population Exposures to BaP                                               | 10 |
|---------------|-------------------------------------------------------------------------------------|----|
| 11-2          | Estimated Population Exposures to BSO                                               | 13 |
| IV-1          | Relationship Between BSO and BaP Atmospheric Concentrations for all Locations       | 41 |
| I <b>V-</b> 2 | Relationship Between BSO and BaP Atmospheric Concentrations for Coke Oven Locations | 42 |
| B-1           | Statistical Distribution for Atmospheric BaP Concentrations                         | 81 |
| B-2           | Atmospheric Concentrations of BaP for Johnstown, Pennsylvania                       | 86 |
| B-3           | Atmospheric Concentrations of BaP for Geneva, Utah                                  | 87 |
| B-4           | Atmospheric Concentrations of BaP for Wayne County, Michigan                        | 88 |
| B-5           | Atmospheric Concentrations for BaP for Alleghany County, Pennsylvania               | 89 |
| B-6           | Atmospheric Concentrations of BaP for Buffalo, New York                             | 90 |
| B-7           | Atmospheric Concentrations of BaP for Birmingham, Alabama                           | 91 |
| B-8           | Atmospheric Concentrations of BaP for Granite City, Illinois                        | 92 |
| B-9           | Atmospheric Concentrations of BaP for Sparrows Point, Maryland                      | 93 |
| B-10          | Atmospheric Concentrations of BaP for Cleveland, Ohio                               | 94 |
| B-11          | Atmospheric Concentrations of BaP for Monessen, Penn-sylvania                       | 95 |
| B-12          | Atmospheric Concentrations of BaP for Gadsden, Alabama                              | 96 |
| B-13          | Atmospheric Concentrations of BaP for Duluth, Minnesota                             | 97 |
| B-14          | Atmospheric Concentrations of BaP for Philadelphia, Pennsylvania                    | 98 |

# TABLES

| II-1  | Estimated BaP Emissions in the United States (1972)                                                        | 4  |
|-------|------------------------------------------------------------------------------------------------------------|----|
| II-2  | Summarization of Ambient BaP and BSO DATA                                                                  | 6  |
| 11-3  | Annual Average Exposure Concentrations for BaP Emitted by Coke Ovens                                       | 9  |
| II-4  | Summarization of Population Exposures to BaP from Coke Oven Emissions                                      | 11 |
| 11-5  | Annual Average Daily BSO Inhalation for Persons Residing Near Coke Plants                                  | 14 |
| 11-6  | Benzo(a)pyrene Concentrations in Foods                                                                     | 17 |
| III-1 | Correlations Among PAH Compounds in the Air over Greater Birmingham, Alabama, 1964 and 1965                | 22 |
| III-2 | Correlation Coefficients Among Log Concentrations of 13 PNA and BSO Samples Taken Within Five Coke Plants  | 23 |
| III-3 | By-Product Coke Plant Locations and Capacities                                                             | 25 |
| III-4 | Estimated Size and Productive Capacity of By-Product Coke Plants in the United States on December 31, 1975 | 29 |
| III-5 | Directory of U.S. Beehive-Coke Plants                                                                      | 24 |
| IV-1  | Assumed Emission Weighting Factors for Plant Compliance Status                                             | 33 |
| IV-2  | Classification of Coke Plants into Emission Categories (1974-1975)                                         | 34 |
| IV-3  | Estimated Annual Background Concentrations of BaP for Coke Plant Locations                                 | 36 |
| A-1   | Monessen Air Study, 24-Hour Sample Characteristics                                                         | 47 |
| A-2   | Ambient BaP Concentrations for Allegheny County, Pennsylvania                                              | 48 |
| A-3   | BaP Data Obtained During First Stage Alerts at Liberty BoroughSite 8790                                    | 49 |
| A-4   | Atmospheric BaP Concentrations Near the Geneva Works in Utah                                               | 49 |
| A-5   | Ambient BaP Concentrations for Wayne County, Michigan                                                      | 51 |
| A-6   | Ambient BaP Concentrations for Buffalo, New York                                                           | 52 |
| A-7   | Ambient BaP Concentrations for Duluth Minnesota                                                            | 52 |

| A-8  | Ambient BaP Concentrations for Gadsden, Alabama                                 | 53  |
|------|---------------------------------------------------------------------------------|-----|
| A-9  | Ambient BaP Concentrations for Birmingham, Alabama                              | 55  |
| A-10 | CHAMP Site Ambient Atmospheric BaP Data for the Birmingham Area (1975 Data)     | 55  |
| A-11 | Ambient BaP, BSO, and TSP Concentrations for Johnstown, Pennsylvania            | 56  |
| A-12 | Ambient BaP, BSO, and TSP Concentrations for Philadel-phia, Pennsylvania        | 57  |
| A-13 | Ambient BaP Concentrations for Granite City, Illinois                           | 59  |
| A-14 | Additional Atmospheric Ambient Data for Granite City, Illinois                  | 59  |
| A-15 | Ambient BaP Concentrations for Houston, Texas                                   | 60  |
| A-16 | Ambient BaP Concentrations for Cleveland, Ohio                                  | 61  |
| A-17 | Ambient Atmospheric BaP and BSO Concentrations for Sparrows Point, Maryland     | 63  |
| A-18 | Ambient BaP and BSO Concentrations for Chattanooga, Tennessee                   | 63  |
| A-19 | Annual Average Ambient BaP Concentrations at NASN Urban Stations $(ng/m^3)$     | 64  |
| A-20 | Seasonal Variations of Benzene Soluble Organic Substances                       | 66  |
| A-21 | Summarization of Ambient BaP and BSO Data                                       | 68  |
| A-22 | Annual BaP Averages for Selected Cities                                         | 68  |
| A-23 | Ambient BaP Concentrations for Pennsylvania, 1976                               | 70  |
| A-24 | Distribution of BaP Concentrations in Ambient Air at Charleston, South Carolina | 75  |
| A-25 | Ambient Atmospheric BaP and BSO Concentrations for Maryland Locations           | 76  |
| A-26 | Atmospheric BaP and BSO Concentrations for CHESS and CHAMP Sites (1975 Data)    | 79  |
| B-1  | Statistical Summary for Sampling Data Taken from a Number of Locations          | 83  |
| B-2  | Estimated Parameter Values for Regression Approximations to Ambient Data        | 100 |
| C-1  | Detailed BaP Population Exposures $(ng/m^3)$                                    | 102 |
| C-2  | BaP Exposures for Persons in Locations Having More                              | 104 |

## LIST OF CHEMICAL ABBREVIATIONS

A anthracene

Ant anthanthrene or anthanthrene

BaA benz(a)anthracene

BaP benzo(a)pyrene

BbF benzo(b)fluoranthene

BcA benzo(c)acridene

BeP benzo(e)pyrene

BghiP benzo(g,h,i)perylene
BjF benzo(j)fluoranthene
BkF benzo(k)fluoranthene

BSO benzene soluble organics

Chr chrysene
Cor coronene

DBahA dibenz(a,h)anthracene

Flu fluoranthene

Per perylene Pyr pyrene

TSP total suspended particulates

#### I INTRODUCTION

The primary objective of this study has been to quantify the environmental atmospheric exposure of the general human population to coke-oven emissions of benzo(a)pyrene (BaP) and benzene soluble organics (BSO). To do so, we have located and characterized coke production plants, estimated atmospheric environmental concentrations of pollutants resulting from coke production, and estimated human populations exposed to various levels of these pollutant concentrations.

In this report, we indicate human exposure to coke-oven emissions in terms of the average amount inhaled per day for each population subgroup. Note that this study reports exposures that took place before biological sorption occurred and that the degree of sorption is not considered. In addition, because the results of this study are intended to serve as input to another study in which health effects are to be assessed, health effects are not addressed. Another study is also being conducted to describe the chemical and physical properties of coke-oven emissions; therefore, these results are not included in this study.

The main findings of this report are provided in tables and figures. The text describes the methodologies, assumptions, and data sources used. All estimates given in this report depend in large part on data reliability and availability, both of which varied widely. Some discussion of this variability is provided in Appendices A and B.

#### II SUMMARY AND CONCLUSIONS

#### A. Overview

There are 65 by-product coke plants in the United States. (Some authors list 62, omitting separate operations for three of the locations.) These plants consist of an estimated 231 coke oven batteries, containing 13,324 ovens that have a theoretical maximum annual productive capacity of 74.3 million tons of coke. The industry generally operates at about 80% of the theoretical capacity.

Environmental emissions occur in the coking operation during charging, from leaks in the oven doors and the tops of ovens, from the waste gas stack, during pushing and quenching, and from by-product processing. The various batteries are characterized by different types of control and operational procedures which affect the amount of their emissions. general, the measurement of environmental emissions from coke-ovens has been limited to some atmospheric sampling of BaP for about one-third of the locations. Atmospheric concentrations of TSP have also been measured for many of the locations, and the BSO fraction of the TSP has been measured for a few locations. Atmospheric concentrations of other substances that may be emitted by coke-ovens have generally not been recorded. In addition, very little work has been done to characterize detailed emission factors for coke-ovens. Because of these limitations, this report's estimates of nonoccupational exposures to coke-oven emissions are based on the two substances for which some atmospheric concentration data are available -- BaP and BSO. These two substances might be considered as substitute or surrogate measures of total exposure. However, much more monitoring data will be required before we can conclude that concentrations of these two substances always correlate well with other emitted substances that are important from a health viewpoint.

Atmospheric concentration data recorded during 1964 and 1965 for Birmingham, Alabama, with several coke plants located in the vicinity, showed that the correlation coefficient for BaP with 11 other polynuclear aromatic compounds ranged from 0.65 to more than 0.99. For BSO with 11 other substances, it ranged from 0.58 to 0.88 (U.S. EPA, 1975). In addition, occupational exposure data recorded by NIOSH (1974) show correlation coefficients between BSO and 13 other polynuclear aromatic compounds to range from 0.71 to 0.94. The same study also showed correlation coefficients for BaP with 12 other polynuclear aromatic compounds ranging from 0.57 to 0.95. The substances used in these correlation studies are given in Section III of this report.

It is difficult to use ambient data to assess exposures to coke-oven emissions; most communities have other sources of the same substances, generally associated with coal and other fossil fuel combustion. Hence, any evaluation of population exposures to coke-oven emissions must separate the background concentration from the coke-oven contribution. Of course, for health risk assessment, the summation of the two is important. II-1 reports a BaP emission inventory made by the Environmental Protection Agency (EPA) for 1972. Stationary sources account for 98% of the nationwide estimate. Estimates of BaP emissions from coke ovens range from about 0.06 ton per year to approximately 170 tons per year, depending on assumptions used. EPA (1974) used the higher value because it is based on data from the United States (using a crude emission factor of 2.5 g of BaP per ton of coal processed). The coke production is estimated to account for approximately 19% of the nationwide BaP emissions. EPA is currently working on better factors to characterize coke-oven emissions (Manning, August 1977).

BaP may also have natural sources, including bituminous coal which also contains benzo(a)anthracene and other polycyclic organic matter. Two of three types of asbestos used industrially were found to contain oils with BaP. Mold may constitute another source (U.S. EPA, 1974).

The National Air Surveillance Network (NASN) routinely monitors suspended particulate levels in urban and nonurban areas. This program is described in more detail in Appendix A. BaP and BSO are monitored for

Table II-1
ESTIMATED BaP EMISSIONS IN
THE UNITED STATES (1972)

| Source Type                               | Emissions<br>tonne/yr |
|-------------------------------------------|-----------------------|
| Stationary Sources                        |                       |
| Coal, hand-stoked residential furnaces    | 300                   |
| Coal, intermediate-size units             | 7                     |
| Coal, steam power plants                  | <1                    |
| Oil, residential through steam power type | e 2                   |
| Gas, residential through steam power type | . 2                   |
| Wood, home fireplace                      | 25                    |
| Enclosed incineration-apartment through   |                       |
| municipal                                 | 3                     |
| Vehicle disposal                          | 25                    |
| Forest and agriculture                    | 11                    |
| Other open burning                        | 10                    |
| Open burning, coal refuse                 | 310                   |
| Petroleum, catalytic cracking             | 7                     |
| Asphalt air blowing                       | <1                    |
| Coke production                           | (0.06)-170            |
| Mobile Sources                            |                       |
| Gasoline-powered automobiles and trucks   | 11                    |
| Diesel-powered trucks and buses           | <1                    |
| Tire degradation                          | 11                    |
|                                           |                       |

Source: US EPA (1974).

40 locations that include cities with and without coke-ovens and rural areas.\* The BaP and BSO concentrations recorded for this program are summarized in Table II-2. The BaP concentrations are generally  $0.1 \text{ ng/m}^3$  for rural locations. Most urban locations without coke-ovens have average concentrations of less than  $1 \text{ ng/m}^3$  (the average is  $0.38 \text{ ng/m}^3$ ); however, areas with coke-ovens generally have average concentrations in excess of  $1 \text{ ng/m}^3$  (the average is  $1.21 \text{ ng/m}^3$ ).

## B. At-Risk-Populations

The at-risk populations to coke-oven emissions are defined as the resident populations exposed to coke-oven atmospheric emissions. Exposure is based on the estimated average annual concentrations occurring at the place of residence of at-risk population subgroups. Average daily human exposure is calculated as the product of the average annual concentration and human daily ventilation rate.

### C. Population Estimation

An evaluation of the concentration data shown in Appendix A indicates that coking operations may possibly affect atmospheric concentrations out to a radius of 15 km from the operations. For most cases, the affected radius is considerably less than 15 km; however, for conservative analysis, population residing within a 15-km radius from each coke plant is considered as the maximum potential exposure population. For the estimation of populations at-risk to selected concentrations resulting from coke ovens, the resident populations were calculated in a series of five concentric rings about each coke plant. The spacing of the rings was based on the shape of the concentration versus distance functions illustrated in Appendix B. The distances are 0-0.5, 0.5-1.0, 1.0-3.0, 3.0-7.0, and 7.0-15 km.

Geographic coordinates of most of the coke plants were obtained from the U.S. EPA NEDS data system. The remainder were obtained from consulting maps or by telephone conversations. The population residing in each concentric ring about each coke plant was obtained from the Urban Decision Systems, Inc., Area Scan Report, a computer data system that contains the

<sup>\*</sup>BSO monitoring was discontinued in 1972.

Table II-2
SUMMARIZATION OF AMBIENT BAF AND BSO DATA

| Pollutant                                | Statistic              | Cities<br>with<br>Coke<br>Ovens | Cities<br>without<br>Coke<br>Ovens | Rural Areas |
|------------------------------------------|------------------------|---------------------------------|------------------------------------|-------------|
| BaP (ng/m <sup>3</sup> )                 | Average                | 1.21                            | 0.38                               | <0.1        |
| 1975 Data                                | Sample size            | 21                              | 13                                 | 3           |
|                                          | Range                  | 0.3-4.7                         | 0.03-0.9                           | <0.1        |
| BSO (µg/m <sup>3</sup> )<br>1971-72 data | Average<br>Sample size | 4.21<br>25                      | 3.75<br>12                         | 0.95<br>2   |
|                                          | Range                  | 2.1-7.3                         | 1.9-5.6                            | 0.8-1.1     |

1970 census data in the smallest geographic area available (city blocks and census enumeration districts). The total population residing in each of these rings for all the coke plants is as follows:

| Distance from Coke Plant (km) | Resident<br>Population |
|-------------------------------|------------------------|
| 0-0.5                         | 32,700                 |
| 0.5-1                         | 116,000                |
| 1-3                           | 1,644,000              |
| 3–7                           | 7,226,000              |
| 7-15                          | 22,200,000             |

The total population residing within 15 km of the coke plants is approximately 31,220,000 people. In the exposure calculations it was found that only about 17,100,000 of these people were affected by coke oven emissions.

#### D. Population Exposures to BaP Emitted by Coke-Ovens

The annual average BaP atmospheric concentrations were estimated for each of the five concentric rings around each of the coke plants. Recorded ambient data were used for those locations having a sufficient number of samples and monitoring sites; otherwise, the extrapolative modeling technique described in Section IV was used. For locations with several coke plants, a procedure was devised to assess the combined atmospheric concentrations by summing the contribution for individual plants for areas in overlapping geographic rings. The population within the rings was assigned to the overlapping sections by using uniform distribution assumptions.

Two calculations were made for the atmospheric concentration of each ring: the concentration resulting from only coke oven emissions and the total concentration, which includes background plus coke oven emissions. The background concentrations used are given in Section IV and range

<sup>\*</sup> Coke oven emissions resulted in an increase in the average annual atmospheric BaP concentrations of 0.1 ng/m<sup>3</sup> or more.

from 0.04 to 1.6  $\text{ng/m}^3$ . The wide range in background concentrations indicates the variations of other BaP-emitting activities in the cities. Table II-3 summarizes the number of people exposed to various BaP concentration levels. Detailed exposure estimates are given in Appendix C. The cumulative distribution for these exposure concentrations is given on Figure II-1. Total average BaP concentrations range from a high of  $100 \text{ ng/m}^3$  to a low of below  $1 \text{ ng/m}^3$ . The median population exposure concentration is around  $7 \text{ ng/m}^3$ .

Potential human exposures from inhalation are given in Table II-4. For these exposures a human ventilation rate of 15 m<sup>3</sup>/day was assumed. This is the amount of air inhaled per 24-hr day by a standard man as defined in the Radiological Health Handbook (1960). The approximately 17,100,000 exposed people inhale between 3 to 1,500 ng BaP per day on an annual average basis. About one-half of these people inhale more than 100 ng BaP per day.

## E. Population Exposures to BSO Emitted by Coke-Ovens

Sufficient data have not been collected near coke plants nor have emission factors been developed for adequately assessing the atmospheric BSO concentrations resulting from the plants' emissions. The approach taken here is to estimate the BSO concentrations, based on the estimated BaP concentrations. A number of problems are associated with this approach, however, and the results can, at best, be described as "ballpark estimates." Further work on assessing plant emission factors or measuring environmental concentrations should help to improve the quality of future estimates.

The approach taken has been described in Section IV of this report. Three methods of estimation were tried. All three methods estimate BSO contributions attributable to coke-ovens and add this to estimated background concentrations. One method involved using empirical formulas derived from data taken from coke oven areas where both BaP and BSO

 $<sup>^*</sup>$ In a kepone assessment report, U.S. EPA (1976b) used a rate of 8.6 m $^3$ /day for an average adult. The exposures given here can be converted to the 8.6 m $^3$ /day rate by multiplying by 0.57.

Table II-3

ANNUAL AVERAGE EXPOSURE CONCENTRATIONS FOR BAP EMITTED BY COKE OVENS

| Cumulative Number of | People Exposed                                                                                                                                                                       |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Background, plus     | Coke Oven *                                                                                                                                                                          |
| Coke Oven Emissions  | Emissions Only                                                                                                                                                                       |
| 1,800                | 1,800                                                                                                                                                                                |
| 2,670                | 2,670                                                                                                                                                                                |
| 2,720                | 2,720                                                                                                                                                                                |
| 4,220                | 4,220                                                                                                                                                                                |
| 5,920                | 5,920                                                                                                                                                                                |
| 9,320                | 8,320                                                                                                                                                                                |
| 14,120               | 9,920                                                                                                                                                                                |
| 19,120               | 18,920                                                                                                                                                                               |
| 82,820               | 82,620                                                                                                                                                                               |
| 630,220              | 219,920                                                                                                                                                                              |
| 705,320              | 662,620                                                                                                                                                                              |
| 981,020              | 798,920                                                                                                                                                                              |
| 1,097,720            | 995,220                                                                                                                                                                              |
| 1,345,920            | 1,182,320                                                                                                                                                                            |
| 3,069,020            | 1,971,620                                                                                                                                                                            |
| 7,335,620            | 3,216,820                                                                                                                                                                            |
| 15,148,620           | 8,243,520                                                                                                                                                                            |
| 16,754,020           | 12,923,120                                                                                                                                                                           |
| 17,106,620           | 17,106,620                                                                                                                                                                           |
|                      | Background, plus Coke Oven Emissions  1,800 2,670 2,720 4,220 5,920 9,320 14,120 19,120 82,820 630,220 705,320 981,020 1,097,720 1,345,920 3,069,020 7,335,620 15,148,620 16,754,020 |

 $<sup>^{\</sup>star}$ Number exposed to indicated concentration or more.

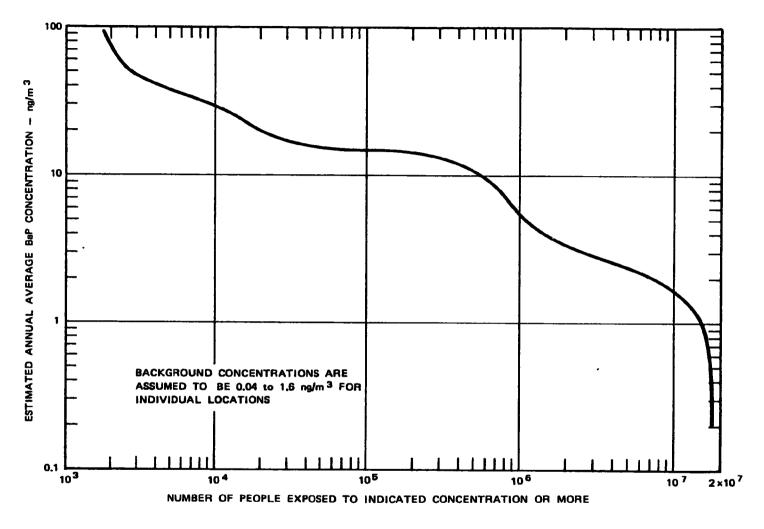



FIGURE II-1. ESTIMATED POPULATION EXPOSURES TO BaP (Background, plus Emissions)

Table II-4
SUMMARIZATION OF POPULATION EXPOSURES TO
Bap FROM COKE OVEN EMISSIONS

(Background Plus Coke Oven Emissions)

|                    | (2001810min 1100 00K | . Oven himisaio | Cumulative |
|--------------------|----------------------|-----------------|------------|
| Subgroup           | Subgroup             | Number          | Number     |
| Concentration      | Population           | of People       | of Exposed |
| Range $(ng/m^3)^*$ | Exposure (ng/day)*   | in Subgroup     | People**   |
| 95-100             | 1,425-1,500          | 1,800           | 1,800      |
| 50-55              | 750-825              | 870             | 2,670      |
| 45-50              | 675-750              | 50              | 2,720      |
| 40-45              | 600-675              | 1,500           | 4,220      |
| 35-40              | 525-600              | 1,700           | 5,920      |
| 30-35              | 450-525              | 3,400           | 9,320      |
| 25-30              | 375-450              | 4,800           | 14,120     |
| 20-25              | 300-375              | 5,000           | 19,120     |
| 15-20              | 225-300              | 63,700          | 82,820     |
| 10-15              | 150-225              | 547,400         | 630,220    |
| 8–10               | 120-150              | 75,100          | 705,320    |
| 6-8                | 90–120               | 275,700         | 981,020    |
| 5-6                | 75–90                | 116,700         | 1,097,720  |
| 4–5                | 60-75                | 248,200         | 1,345,920  |
| 3–4                | 45-60                | 1,723,100       | 3,069,020  |
| 2-3                | 30-45                | 4,266,600       | 7,335,620  |
| 1-2                | 15-30                | 7,813,000       | 15,148,620 |
| 0.5-1              | 7.5-15               | 1,605,400       | 16,754,020 |
| 0.2-0.5            | 3.0-7.5              | 352,600         | 17,106,620 |

<sup>\*</sup> Based on the annual average.

Number exposed to indicated concentration or more.

atmospheric concentrations have been measured. The other two methods involved multiplying the BaP concentration attributable to coke ovens by a constant that relates BSO to BaP and adding this to an assumed background BSO concentration. The two factors used were 1 ng BaP = 0.1  $\mu$ g BSO and 1 ng BaP = 0.5  $\mu$ g BSO. The 0.1 factor appears to be reasonable, based on occupational exposure data whereas the 0.5 factor should give an upper limit. An average background BSO concentration of 3.75  $\mu$ g/m³ was assumed for all locations.

The exposures estimated by these methods are given on Figure II-2. The results for the empirical formula and the 0.1 factor were very similar, only one of which is plotted on Figure II-2. The estimated human population exposures based on a standard human inhalation of 15 m $^3$  of air per day are given in Table II-5.

Average annual BSO concentrations are estimated to range from 3.75  $\mu g/m^3$  (assumed background) to 11  $\mu g/m^3$ . The median population exposure concentration is 5.4  $\mu g/m^3$ . Based on these exposure concentrations, the exposed population would inhale an average of between 45 to 165  $\mu g/day$ . If we use the upper limit estimates for BSO concentrations, the human inhalation exposure could rise to almost five times these values.

# F. Considerations in the use of the Annual Average as a Measure of Exposure to Coke-Oven Emissions

Exposure estimates in this report are given in terms of the daily exposure averaged over a year. Statistically, this measure represents the expected daily exposure; multiplied by 365, it gives the total expected annual exposure. However, the statistical distribution of concentrations for a specific location is not symmetrical; rather, it takes the form of many relatively small observations and a few relatively larger observations. Examples of these distributions are given in Appendix B. The averages for these types of distributions are much larger than the median and, generally, only 20 to,40% of the observations might be expected to exceed the mean in value. The geometric average rather than the arithmetic average is a better measure to characterize the central location of these distributions; however, exposure estimates based on the geometric average are difficult to interpret. The overall arithmetic average was found to be 1.8 times as large as the geometric average (Appendix B).

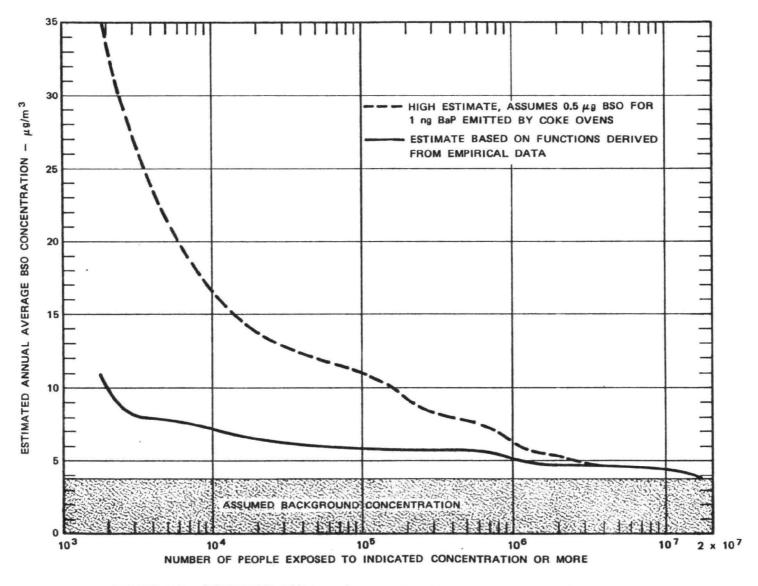



FIGURE II-2. ESTIMATED POPULATION EXPOSURES TO BSO (Background, plus Emissions)

Table II-5

ANNUAL AVERAGE DAILY BSO INHALATION FOR PERSONS RESIDING NEAR COKE PLANTS

| Subgroup 1<br>Concentration<br>Kange (µg/m <sup>3</sup> ) | Subgroup Exposure<br>Range (µg/day)* | Number<br>of People<br>Exposed | Cumulative<br>Number<br>of People<br>Exposed |
|-----------------------------------------------------------|--------------------------------------|--------------------------------|----------------------------------------------|
| 10.8-11                                                   | 162-165                              | 1,800                          | 1,800                                        |
| 8-9                                                       | 120-134                              | 2,420                          | 4,220                                        |
| 7–8                                                       | 105-134                              | 8,400                          | 12,620                                       |
| 6–7                                                       | 90-105                               | 54,000                         | 66,620                                       |
| 5–6                                                       | 75-90                                | 1,034,000                      | 1,100,620                                    |
| 4–5                                                       | 60-75                                | 13,900,000                     | 15,000,620                                   |
| 3–4                                                       | 45-60                                | 2,106,000                      | 17,106,620                                   |

<sup>\*</sup>Estimated values are based on functions derived from empirical data and include background and emissions. Exposures are based on the annual averages.

Calculations of averages and standard deviations are given in Appendix B for BaP concentration data recorded over a number of different days at a specific location. For most of these locations, the average was found to equal the standard deviation. Thus, concentrations for an individual worst case day could easily be three times the annual average. Conversion methods given by Thuillier (1977) show that the 24-hour worst case can be expected to be four times the average. This large difference between the annual average and the worst case is quite logically explained by the variations in meteorological conditions over a year.

#### G. Accuracy of Estimated Exposures

The accuracy of the exposure estimates are difficult to assess because many relevant factors associated with the various monitoring programs are unknown (e.g., the accuracy of the monitoring data and if the monitoring days were selected at random). Another important source of error arises from using a general model based on a sampling of coke plants to represent all coke plants. The general model is not expected to give highly accurate estimates for the concentrations at any location because only limited plant-specific data went into the model. The model is, however, expected to give fairly accurate estimates of overall national exposures because it was formulated by using averages of parameters that represent a range of meteorological, geographical, and emission control conditions.

The potential errors in estimated exposure concentrations were addressed by using the model to predict average annual concentrations for 1- and 3-km distances for a number of coke plants for which environmental BaP monitoring data are available. The differences between the observed and predicted concentrations then provide an estimate of the accuracy of the procedure. The one-standard deviation value for these differences was about 100%. This indicates that the predicted annual average concentration for any location for a specific coke plant could differ from the actual average by 100% or more. The standard deviation for the overall national estimated exposures should be considerably less than for individual locations because many sources of error are, in effect, being averaged. The one-standard deviation value of the overall national

estimated exposure concentrations is on the order of 10 to 100% of the actual concentration. The size of the error depends primarily on the number of coke plants having exposed populations in an exposure concentration subgrouping. These accuracy estimates exclude potential errors associated with the monitoring data. Note that these percent errors are given relative to the actual exposure concentrations. Thus, a 100% error indicates that the actual concentration may range from one-half to twice the estimated value.

# H. Other Potential Human Exposure Routes

There are potential human exposure routes for coke-oven emissions other than inhalation. These include ingestion of contaminated food and water and dermal contact. In addition, family members of occupational workers might be exposed through particulates brought home on clothing and other equipment such as lunch pails and automobiles. An assessment of potential human exposures via these routes was excluded from the scope of this study because they either appear to be much less significant than the inhalation route or because of the lack of available data.

The dermal exposure would result from contamination of clothing or the skin directly from atmospheric concentrations. Hence, the atmospheric concentration estimates given in the summary tables of this report can be used to provide estimates of dermal exposures.

Foods can become contaminated because of atmospheric fallout of particulates or by way of contaminated water released by the coke plant. The contamination may be on the surface of plants from fallout or included by root-uptake. Animals can become contaminated by drinking contaminated water, eating contaminated foods, or breathing contaminated air. Contamination may also result from other man-made or natural sources. Processed foods may contain additional contaminations from the combustion of fuels used in smoking, roasting, or broiling. Foods in general have been found to contain concentrations of polynuclear aromatic hydrocarbons such as benz(a)anthracene, chrysene, and benzo(a)pyrene (Radding et al., 1976). Table II-6 lists concentration levels of BaP in some foods. As

Table II-6
BENZO(A)PYRENE CONCENTRATIONS IN FOODS

| Food                  | Concentration<br>(µg/kg) | Reference |  |
|-----------------------|--------------------------|-----------|--|
| Cereals               | 0.3-0.8                  | A         |  |
| Potato peelings       | 0.36                     | A         |  |
| Potato tubers         | 0.09                     | A         |  |
| Barley, wheat, rye    | 0.2-4.1                  | В         |  |
| Cabbage               | 24.5                     | В         |  |
| Spinach               | 7.4                      | С         |  |
| Lettuce               | 2.8-12.8                 | В         |  |
| Tomatoes              | 0.22                     | В         |  |
| Fruits                | 2.0-8.0                  | С         |  |
| Refined fats and oils | 0.9-15                   | С         |  |
| Fresh fish            | <0.1                     | D         |  |
| Broiled meat and fish | 0.2-0.6                  | С         |  |
| Smoked fish           | 1.0-78.0                 | E         |  |
| Smoked meat/sausage   | 0.02-107.0               | С         |  |
| Roasted coffee        | 0.3-0.5                  | В         |  |
| Roasted coffee        | 0.1-4.0*                 | С         |  |
| Teas                  | 3.7-3.9*                 | В         |  |
| Whiskey               | 0.04*                    | В         |  |

<sup>\*</sup> μg/l

A - Shabad (1972)

B - Grummer (1968)

C - IRAC (1973)

D - Gorelova (1971)

E - Andelman (1970)

expected, the BaP concentration of certain prepared foods is higher than for other foods. At present, insufficient information is available to assess the potential contamination of foods by coke-oven emissions.

Polynuclear aromatic hydrocarbons find their way into waterways already absorbed onto aerosols or bacteria. Although their solubility in pure water is essentially zero, they may exist in water in association with organic matter or colloids (Radding et al., 1975). The IRAC (1973) report lists BaP concentrations in drinking water of 0.0001 to 0.023  $\mu$ g/1.

#### III SOURCES OF COKE OVEN EMISSIONS

# A. The Coking Process

Coke is a porous cellular residue from the destructive distillation or carbonization of coal. It is used as a fuel and reducing agent in blast furnace operations, and in foundries as a cupola fuel. Of the approximately 60 million tons of coke produced annually in the United States, 92% is used in blast furnaces, 5% in foundry operations, and 3% in other types of industrial plants. Of the total coke production, approximately 90% is produced by steel industry plants, 8% by foundry plants, and 1% by beehive ovens.

Two basic processes are used in the production of coke: One recovers vapors and other by-products from the coking process (by-product ovens), and one does not (beehive ovens). The beehive oven, an older design, that has been steadily replaced by the newer by-product design is excluded from this analysis.

A by-product coke battery consists of 10 to 100 ovens made up of chambers for heating, coking, and regeneration. Heating and coking flues alternate with each other so that there is a heating flue on either side of a coking flue; the regenerative flues are located underneath.

The coking cycle begins with the introduction of coal into the coke oven. This operation, called "charging," is carried out with a mechanical "larry car" on rails on the top of the battery. The larry car receives a load of coal from the coal bunker at the end of the battery. The car moves down the battery to the oven to be charged. The lids on the oven charging holes are removed, the larry car is positioned over the holes, and the hoppers are emptied. During the charge, the oven is aspirated

The material contained in this section is summarized from the Federal Register (October 22, 1976).

by steam jets in the standpipes connecting the by-product gas collector main with the oven. This operation, called "charging the main" is designed to limit the escape of gas from the oven during the charging process.

After charging is completed, the lids are replaced and the aspiration system is shut off.

The "coking time," the time required to produce coke from coal, is governed by numerous factors, including the condition and design of the oven heating system, width of the coking chamber, coal moisture, and the nature of the coals being coked. The coking time for blast furnace coke varies from 16 to 20 hours. Coking times for foundry coke are longer than for blast furnace coke because coke of different physical characteristics is required for foundry operations.

When the coal is coked, the doors on each side of the oven are removed and the coke is pushed out. A large mechanically operated ram attached to a pusher machine moves the coke out the opposite side of the oven called the "coke side," through the "coke-guide" attached to the door machine and into a railroad car called the "hot car" or "quench car." The quench car moves down the battery to a "quench tower" where the hot coke is cooled with water. The quenched coke is then dumped onto the coke wharf, from which it is conveyed to the screening station for sizing, then to the blast furnace, or removed for other purposes. When the doors on the oven are replaced, the oven is ready to be charged again.

## B. Environmental Emissions During Coking

Environmental emissions can occur during charging; during coking from leaks in the doors and on the top of the oven; from the waste gas stack; and during pushing and quenching, and from by-product processing. Coke-oven emissions are described as a complex mixture of particulates, vapors, and gases (Federal Register, October 22, 1976). (A detailed assessment of the chemical and physical properties of these emissions is being prepared as a separate document and, therefore, is not included here.)

Because of the effort and complexity that would be required in characterizing all of the constituents of coke-oven emissions, various surrogate measures have been used in the past. These usually are of three types: TSP, BSO, and BaP. TSP is generally considered not to be a specific enough measure for assessing total occupational health effects (Federal Register, October 22, 1976). The concept of a surrogate measure would be valid if it could be shown that that measure correlates well with the presence of other emitted substances known to have adverse health effects. Atmospheric concentration data recorded during 1964 and 1965 for Birmingham, which has several coke plants in the surrounding area, showed that the correlation coefficient for BaP with 11 other substances ranged form 0.65 to more than 0.99. For BSO with 11 other substances the coefficient ranged from 0.58 to 0.88 (U.S. EPA, 1975), indicating a fairly good association. These are given in Table III-1. In an occupational exposure study, the atmospheric concentrations of 13 polynuclear aromatics (PNAs) and the total benzene soluble organics were recorded. A correlation study was made of these data using logarithmic transformations because the data followed a log-normal distribution (NIOSH, 1974). The correlation of the PNAs with BaP and BSO are given in Table III-2. Except for one case, all the correlation coefficients exceeded 0.7, thus indicating a fairly good correlation. The correlation of BSO with the 13 PNAs was generally better than the similar correlations for BaP.

The occupational and the Birmingham correlation studies provide some justification for using a surrogate measure rather than trying to identify and control each of the PNA compounds emitted by coke-ovens.

#### C. Coke Processing Plants

In 1975, 57.2 million tons of coke were produced in the United States. By-product ovens produced 98.7% of the total production, with beehive ovens accounting for the remaining 1.3%. Approximately 90% of the coke is used in blast furnace plants, whereas 2% is exported. The remainder is primarily used in foundries. The yield of coke from coal, which averaged 68.4% in 1975, has remained fairly constant during the past decade (Sheridan, 1976).

<sup>\*</sup>TSP - total suspended particulates.

Table III-1

CORRELATIONS AMONG PAH COMPOUNDS
IN THE AIR OVER GREATER BIRMINGHAM,
ALABAMA, 1964 AND 1965

|          |       | Compound |       |  |  |
|----------|-------|----------|-------|--|--|
| Compound | BaP   | BSO      | TSP   |  |  |
| Flu      | 0.916 | 0.582    | 0.668 |  |  |
| Pyr      | 0.935 | 0.684    | 0.730 |  |  |
| BaA      | 0.988 | 0.597    | 0.742 |  |  |
| Chr      | 0.980 | 0.746    | 0.842 |  |  |
| BeP      | 0.998 | 0.677    | 0.823 |  |  |
| BaP      | 1.000 | 0.651    | 0.789 |  |  |
| Per      | 0.985 | 0.689    | 0.830 |  |  |
| BghiP    | 0.966 | 0.804    | 0.839 |  |  |
| A        | 0.971 | 0.672    | 0.716 |  |  |
| Cor      | 0.815 | 0.867    | 0.856 |  |  |
| TSP      | 0.789 | 0.880    | 1.000 |  |  |
| BSO      | 0.651 | 1.000    | 0.880 |  |  |
|          |       |          |       |  |  |

Source: U.S. EPA (1975).

Table III-2

CORRELATION COEFFICIENTS AMONG LOG CONCENTRATIONS

OF 13 PNA AND BSO SAMPLES TAKEN WITHIN

FIVE COKE PLANTS

| BaP   | BSO                                                                                                               |  |
|-------|-------------------------------------------------------------------------------------------------------------------|--|
| 0.797 | 0.914                                                                                                             |  |
| 0.740 | 0.862                                                                                                             |  |
| 0.569 | 0.713                                                                                                             |  |
| 0.857 | 0.936                                                                                                             |  |
| 0.824 | 0.909                                                                                                             |  |
| 0.776 | 0.884                                                                                                             |  |
| 0.768 | 0.894                                                                                                             |  |
| 0.813 | 0.915                                                                                                             |  |
| 0.950 | 0.922                                                                                                             |  |
| 1.000 | 0.914                                                                                                             |  |
| 0.694 | 0.725                                                                                                             |  |
| 0.855 | 0.875                                                                                                             |  |
| 0.892 | 0.905                                                                                                             |  |
| 0.914 | 1.000                                                                                                             |  |
|       | 0.797<br>0.740<br>0.569<br>0.857<br>0.824<br>0.776<br>0.768<br>0.813<br>0.950<br>1.000<br>0.694<br>0.855<br>0.892 |  |

Source: NIOSH (1974).

In the United States, 65 plants produce coke. (Some authors list only 62 by combining three pairs of closely co-located plants, where each pair of plants are owned by the same corporation.) The 65 plants are listed in Table III-3 which also lists the coal capacity and the 1974 coal consumption on a plant-by-plant basis. The plants consist of an estimated 231 coke-oven batteries containing 13,324 ovens that have a theoretical maximum annual productive capacity of 74.3 million tons of coke. Because of depressed economic activity in 1975, the industry operated at only 76% of this capacity. Coke production on a state-by-state basis is given in Table III-4.

The <u>Keystone Coal Industries Manual</u> (1975) lists six beehive-coke plants. These operate in two states (Pennsylvania and Virginia). Although excluded from this analysis, they are listed in Table III-5.

Table III-5
DIRECTORY OF U.S. BEEHIVE-COKE PLANTS

| Name or Location<br>of Plant | County    | Company                     |  |  |  |
|------------------------------|-----------|-----------------------------|--|--|--|
| Pennsylvania                 |           |                             |  |  |  |
| l. Mahoning                  | Armstrong | Caipentown Coal & Coke Co.  |  |  |  |
| 2. Daugherty                 | Fayette   | Bortz Coal Company          |  |  |  |
| 3. Laughead                  | Fayette   | Ruane Coal & Coke Company   |  |  |  |
| Virginia                     |           |                             |  |  |  |
| 5. Vansant                   | Buchanan  | Jewell Smokeless Coal Corp. |  |  |  |
| 6. Esserville                | Wise      | Christie Coal & Coke        |  |  |  |
|                              |           |                             |  |  |  |

Source: Keystone Coal Industries Manual (1975).

Table III-3
BY-PRODUCT COKE PLANT LOCATIONS AND CAPACITIES

|      | State, City    | Plant Name              | Company                        | Annual Coal<br>Capacity<br>(tons) | 1974<br>Coal Consumption<br>(tons) |
|------|----------------|-------------------------|--------------------------------|-----------------------------------|------------------------------------|
| Ala  | ibama          |                         |                                |                                   |                                    |
| 1.   | Tarrant        | Tarrant Plant           | Alabama By-Products Co.        | 1,200,000                         |                                    |
| 2.   | Holt           | Holt Plant              | Empire Coke Co.                | 150,000                           |                                    |
| 3.   | Woodward       | Woodward Plant          | Koppers Company, Inc.          | 800,000                           |                                    |
| 4.   | Gadsden        | Gadsden Plant.          | Republic Steel Corp.           | 820,000                           |                                    |
| 5.   | Thomas         | Thomas Plant            | Republic Steel Corp.           | 185,000                           |                                    |
| 6.   | Birmingham     | Birmingham Plant        | U.S. Pipe and Foundry Co.      | 1,175,000                         |                                    |
| 7.   | Fairfield      | Fairfield Plant         | U.S. Steel Corp.               | 2,500,000                         |                                    |
| Ca l | ifornia        |                         |                                |                                   |                                    |
| 8.   | Fontana        | Fontana Plant           | Kaiser Steel Corp.             | 2,336,000                         | 1,760,000                          |
| Co1  | orado          |                         |                                |                                   |                                    |
| 9.   | Pueblo         | Pueblo Plant            | CF&I Steel Corp.               | 1,332,000                         |                                    |
| 111  | inois          |                         |                                |                                   |                                    |
| 10.  | Granite City   | Granite City Steel Div. | National Steel Corp.           | 1,132,000                         | 900,000                            |
| 11.  | Chicago        | Chicago Plant           | Interlake, Inc.                | 949,000                           | 750,000                            |
| 12.  | Chicago        | Wisconsin Steel Works   | International Harvester Co.,   | ·                                 | ć ( B. 000                         |
| 13.  | South Chicago  | South Chiuses Blant     | Wisconsin Steel Div.           | 991,000                           | 643,000                            |
| 13.  | South Chicago  | South Chicago Plant     | Republic Steel Corp.           | 590,000                           |                                    |
| Indi | ana            |                         |                                |                                   |                                    |
| 14.  | Chesterton     | Burns Harbor Plant      | Bethlehem Steel Corp.          | 2,630,000                         | 2,525,000                          |
| 15.  | Indianapolis   | Prospect Street Plant   | Citizens Gas & Coke Utility    | 675,000                           | 584.838                            |
| 16.  | Terre Haute    | Terre Haute Plant       | Indiana Gas and Chemical Corp. | 204,000                           | 193,000                            |
| 17.  | East Chicago   | Plant No. 2             | Inland Steel Co.               | 3,102,000                         | 3,096,000                          |
| 18.  | East Chicago   | Plant No. 3             | Inland Steel Co.               | 1,642,000                         | 1,258,000                          |
| 19.  | Gary           | Gary Plant              | U.S. Steel Corp.               | 3,700,000                         | - ·                                |
| 20.  | Indiana Harbor | Indiana Harbor Plant    | Youngstown Sheet and Tube Co.  | 2,100,000                         | 1,750,000                          |
|      |                |                         |                                |                                   |                                    |

Sources: Keystone Coal Industries Manual (1975) and Varga (1974).

#### 8

# Table III-3 (Continued)

|                   | State, City        | Plant Name                               | Company                                                | Annual Coal<br>Capacity<br>(tons) | 1974 Coal Consumption (tons) |
|-------------------|--------------------|------------------------------------------|--------------------------------------------------------|-----------------------------------|------------------------------|
| Ker               | itucky             |                                          |                                                        |                                   |                              |
| 21.               | Ashland            | Semet                                    | Solvay Div., Allied Chemical Corp.                     | 1,600,000                         |                              |
| Mary              | land               |                                          |                                                        |                                   |                              |
| 22.               | Sparrows Point     | Sparrows Point Plant                     | Bethlehem Steel Corp.                                  | 4,820,000                         | 4,100,000                    |
| Mich              | nigan              |                                          |                                                        | •                                 |                              |
| 23.<br>24.<br>25. |                    | Semet<br>Steel Plant<br>Zug Island Plant | Solvay Div., Allied Chemical Corp. Ford Motor Co.      | 900,000<br>1,800,000              |                              |
| -51               | (Detroit)          | sag island riant                         | Great Lakes Steel Div., National<br>Steel Corp.        | 2,850,000                         |                              |
| Minr              | iesota             |                                          |                                                        |                                   |                              |
|                   | St. Paul<br>Duluth | St. Paul Plant<br>Duluth Plant           | Koppers Company, Inc.<br>U.S. Steel Corp.              | 250,000<br>850,000                |                              |
| Miss              | souri              |                                          |                                                        |                                   |                              |
| 28.               | St. Louis          | St. Louis Plant                          | Great Lakes Carbon Corp., Missouri<br>Coke & Chem Div. | 450,000                           |                              |
| New               | York               |                                          |                                                        |                                   |                              |
| 29.               | Buffalo            | Harriet Plant                            | Semet-Solvay Div., Allied Chemical Corp.               | 400,000                           |                              |
| 30.               | Lackawana          | Lackawana Plant                          | Bethlehem Steel Corp.                                  | 4,250,000                         | 3,385,000                    |
| 31.               | Buffalo            | Donner-Hanna Plant                       | Donner-Hanna Coke Corp.                                | 1,387,000                         |                              |
| Ohio              | <u> </u>           |                                          |                                                        |                                   |                              |
| 32.               | Ironton            | Ironton Plant                            | Semet-Solvay Div., Allied Chemical Corp.               | 1,230,000                         |                              |
| 33.               | New Miami          | Hamilton Plant                           | Armco Steel Corp.                                      | 934,000                           |                              |
| 34.               | Middletown         | Middletown Plant                         | Armco Steel Corp.                                      | 748,000                           |                              |
| 35.               | Painesville        | Painesville Plant                        | Diamond Shamrock Corp.                                 | 215,000                           | 210,000                      |

# Table III-3 (Continued)

|             | State, City    | Plant Name                      | Company                                | Annual Coal<br>Capacity<br>(tons) | 1974 Coal Consumption (tons) |
|-------------|----------------|---------------------------------|----------------------------------------|-----------------------------------|------------------------------|
| 36.         | Portsmouth     | Empire                          | Detroit Steel Div. of Cyclops<br>Corp. | (00,000                           |                              |
| 37.         | Toledo         | Toledo Plant                    | Interlake Inc.                         | 600,000                           |                              |
| 38.         | Cleveland      | Cleveland Plant                 | Republic Steel Corp.                   | 438,000                           |                              |
| 39.         | Massilon       | Massilon Plant                  | Republic Steel Corp.                   | 2,220,000                         |                              |
| 40.         | Warren         | Warren Plant                    | Republic Steel Corp.                   | 250,000                           |                              |
| 41.         | Youngstown     | Youngstown Plant                | Republic Steel Corp.                   | 650,000                           |                              |
| 42.         | Lorain         | Lorain Cuyahoga Works           |                                        | 1,500,000                         |                              |
|             | Campbell       | Campbell Plant                  | U.S. Steel Corp.                       | 2,700,000                         |                              |
|             | •              | · ·                             | Youngstown Sheet and Tube Co.          | 2,300,000                         | 1,895,116                    |
|             | sylvania       |                                 |                                        |                                   |                              |
|             | Swedeland      | Alan Wood Plant                 | Alan Wood Steel Co.                    | 803,000                           |                              |
|             | Bethlehem      | Bethlehem Plant                 | Bethlehem Steel Corp.                  | 2,210,000                         | 2,105,000                    |
| 46.         |                | Rosedale Div.                   | Bethlehem Steel Corp.                  | 550,000                           | 545,000                      |
| 47.         | 00             | Franklin Div.                   | Bethlehem Steel Corp.                  | 1,680,000                         | 1,645,000                    |
| 48.         | Midland        | Alloy & Stainless Steel<br>Div. | Crucible Inc., Div. Colt<br>Industries |                                   | •                            |
| 49.         | Aliquippa      | Aliquippa Plant                 | Jones and Laughlin Steel Corp.         | 657,000                           | 630,000                      |
| 50.         | Pittsburgh     | Pittsburgh Plant                | Jones and Laughlin Steel Corp.         | 2,250,633                         |                              |
| 51.         | Erie           | Erie Plant                      | Koppers Company, Inc.                  | 2,587,404                         |                              |
| 52.         | Philadelphia   | Philadelphia Plant              | Philadelphia Coke Division             | 290,000                           | 205 000                      |
| 53.         | Pittsburgh     | Neville Island Plant            | Shenango Inc.                          | 715,400                           | 385,000                      |
| 54.         |                | Clairton Plant                  | U.S. Steel Corp.                       | 1,022,000                         | 823,900                      |
| 55.         | Fairless Hills | Fairless Hills Plant            | •                                      | 9,670,000*                        |                              |
|             | Monessen       | Wheeling                        | U.S. Steel Corp.                       | 1,800,000                         |                              |
|             |                | MICCILING                       | Pittsburgh Steel Corp.                 | 750,000                           |                              |
| Tenn        | essee          | ;                               |                                        |                                   |                              |
| 57.         | Chattanooga    | Chattanooga Plant               | Chattanooga Coke and Chemicals Co.     | 204,400                           |                              |
| Texa        | <u>s</u>       |                                 |                                        |                                   |                              |
|             | Houston        | Houston Plant                   | Armco Steel Corp.                      | 584,000                           |                              |
| 59.         | Lone Star      | E. B. Germany Plant             | Lone Star Steel Co.                    | 498,000                           | 492,000                      |
| <u>Utah</u> |                |                                 |                                        |                                   |                              |
| 60          | Provo          | Geneva Works                    | U.S. Steel Corp.                       | 2,000,000                         |                              |

<sup>\*</sup>Based on a 1973 emission inventory.

Table III-3 (Concluded)

|      | State, City | Plant Name                        | Company                                  | Annual Coal<br>Capacity<br>(tons) | 1974<br>Coal Consumption<br>(tons) |
|------|-------------|-----------------------------------|------------------------------------------|-----------------------------------|------------------------------------|
| West | Virginia    |                                   |                                          |                                   |                                    |
| 61.  | Weirton     | Weirton Mainland Plant            | Weirton Steel Div., National Steel Corp. | 2,500,000                         |                                    |
| 62.  | Weirton     | Weirton's Brown's Island<br>Plant | Weirton Steel Div., National Steel Corp. | 1,825,000                         |                                    |
| 63.  | Fairmont    | Fairmont Plant                    | Sharon Steel Corp.                       | 300,000                           | 284,000                            |
| 64.  | Follonsbee  | East Steubenville Plant           | Wheeling-Pittsburgh Steel Corp.          | 2,500,000                         | -<br>-                             |
| Wisc | onsin       |                                   |                                          |                                   |                                    |
| 65.  | Milwaukee   | Milwaukee Solvay Coke Co.         | A Division of Picklands Mather and Co.   | 347,000                           |                                    |

Table III-4

ESTIMATED SIZE AND PRODUCTIVE CAPACITY OF BY-PRODUCT COKE PLANTS
IN THE UNITED STATES ON DECEMBER 31, 1975

| State         | Number of<br>Plants | Number of<br>Batteries | Number of<br>Ovens | Maximum Annual Theoretical Productive Capacity (tons) | Coke<br>Production<br>in 1974<br>(tons) |
|---------------|---------------------|------------------------|--------------------|-------------------------------------------------------|-----------------------------------------|
| Alabama       | 7                   | 28                     | 1,401              | 6,961,000                                             | 5,122,000                               |
| California    | 1                   | 7                      | 315                | 1,547,000                                             | (1)                                     |
| Colorado      | 1                   | 4                      | 206                | 1,261,000                                             | (1)                                     |
| Illinois      | 4                   | 9                      | 424                | 2,523,000                                             | 1,912,000                               |
| Indiana       | 6 (7)               | 31                     | 2,108              | 11,925,000                                            | 9,073,000                               |
| Kentucky      | 1                   | 2                      | 146                | 1,050,000                                             | ( <sup>1</sup> )                        |
| Maryland      | 1                   | 12                     | 758                | 3,857,000                                             | (1)                                     |
| Michigan      | 3                   | 10                     | 561                | 3,774,000                                             | 3,259,000                               |
| Minnesota     | 2                   | 5                      | 200                | 784,000                                               | $\binom{1}{2}$                          |
| Missouri      | 1                   | 3                      | 93                 | 257,000                                               | (1)                                     |
| New York      | 3                   | 10                     | 648                | 4,053,000                                             | (1)                                     |
| Ohio          | 12                  | 35                     | 1,795              | 9,960,000                                             | 8,842,000                               |
| Pennsylvania  | 12 (13)             | 51                     | 3,391              | 18,836,000                                            | 16,318,000                              |
| Tennessee     | 1                   | 2                      | 44                 | 216,000                                               | (¹)                                     |
| Texas         | 2                   | 3                      | 140                | 839,000                                               | ( <sup>1</sup> )                        |
| Utah          | 1                   | 4                      | 252                | 1,300,000                                             | $\binom{1}{1}$                          |
| West Virginia | 3 (4)               | 13                     | 742                | 4,878,000                                             | 3,555,000                               |
| Wisconsin     | 1                   | 2                      | 100                | 245,000                                               | $\binom{1}{1}$                          |
| Undistributed | <u>-</u>            |                        |                    |                                                       | 12,656,000                              |
| Total         | 62 (65)             | 231                    | 13,324             | 74,266,000                                            | 60,737,000                              |

lncluded in Undistributed.

Source: Sheridan (1976).

# IV A METHOD OF ASSESSING BaP AND BSO CONCENTRATIONS IN THE VICINITY OF COKE-OVENS

# A. General

All available ambient concentration data recorded for BaP and BSO in the vicinity of coke-ovens are presented in Appendix A and analyzed in Appendix B. These data (mostly for BaP) have been recorded in 15 locations, some of which contain several coke plants; as a result, approximately one-third of the coke plants are represented. However, in many cases, the data were recorded for only a few days and for only a few sampling stations, thus making exposure estimates based solely upon them unreliable. Moreover, it was necessary to devise some method of predicting ambient concentrations for coke plant areas in which no atmospheric data have been recorded. A procedure for doing this is given here. One approach considered was to model the concentrations mathematically, basing it in part on emission factors, amount of coal processed, and local meteorology. When this approach was tried by the EPA (Youngblood, 1977), it was concluded that, because of the uncertainties in characterizing the sources themselves, definitive estimation of air quality impact of coke-ovens by means of dispersion calculations is impossible at this time. The EPA is currently working on developing better emission factors for coke-ovens. Because these will not be available for some time, however, it was decided to develop a procedure to extrapolate the available ambient data that have been recorded in the vicinity of coke plants to other locations for which no data has been recorded. When possible and when they seem reliable, the actual recorded ambient concentration data have been used to estimate population exposures.

The procedure that was devised required the following steps, which are described in more detail in subsequent sections of this report:

- (1) Information on the type of environmental controls at coke plants is evaluated to determine if facilities can be grouped by their degree of control.
- (2) The background concentrations estimated for each coke plant location are those that would exist if the batteries were not in operation.
- (3) Existing ambient concentration data are evaluated to determine if atmospheric concentrations can be expressed as a function of distance from the coke plants.
- (4) These concentration functions are evaluated to determine if relationships can be derived from them, based on the amount of coal processed and the degree of environmental controls.
- (5) The functions are then used to estimate atmospheric concentrations in the vicinity of coke plants, with subsequent estimation of human population exposures.

#### B. Categorization of Coke Plants by Emission Control

Emission factors are not well-developed for coking operations. Among other factors, they are thought to be a function of process equipment, environmental controls, and operating procedures. In theory, a different set of emission factors exists for each battery. These battery emission factors would be composed of emission factors for such sources as charging, door leaks, pushing, topside leaks, by-product processing, quenching, and the waste gas combustion stack.

The most detailed source of information on coke battery pollution control compliance is based on a survey conducted by PEDCo during September 1974 to April 1975 (Kuliyian, 1976). Among other items reported in this survey was the compliance status of each plant or battery with regard to charging, doors, waste gas combustion stacks, pushing, and quenching. Compliance or noncompliance provide only a general indication of environmental emissions. In addition, some of the batteries have reduced their emissions since 1975. However, this time frame is consistent with the dates when much of the environmental concentration data were recorded.

Weighting factors were assigned to each compliance status listed in the PEDCo survey (in, out, at least one battery out, under a legal plan, undetermined). These weighting factors are based on work performed by EPA personnel, who were familiar with coke operations, to roughly estimate BaP emission factors (Manning, March 18, 1977). This assignment of weights assumes that an in-compliance status indicates low emissions and that an out-compliance status indicates high emissions. Because the EPA work gives emission factors for clean and dirty operations, the clean factor was assigned to the in-compliance status and the dirty factor was assigned to the out-compliance status. Plants having at least one battery out of compliance and at least one battery in compliance were assigned a weighting factor half-way between the out and in factors. These weighting factors are given in Table IV-1. Note that the quenching weighting factors dominate those for all other sources. Individual weights were assigned to each compliance status within plants and summed to give a total for each plant. These sums formed the basis for classifying plants into two groupings. Plants for which no compliance data are available are assigned to a separate group. Plant assignments are shown in Table IV-2. This method of assignment can, and obviously has, led to some misclassifications. At best, it should be regarded as a technique to be used to form strata for statistical sampling. In theory, stratified samples usually have increased precision over simple samples. As will be later shown, atmospheric concentration versus distance from the coke plant relationships for the two strata, when scaled for plant production, were different. This indicates that the stratification method did, in this case, provide increased precision.

#### C. Background Concentrations

Because substances emitted to the atmosphere by coke ovens can also be emitted by other sources, it is necessary to consider atmospheric concentrations as a sum of background plus coke-oven emissions. The coke plants should only be assigned responsibility for their contribution to the total.

Table IV-1
ASSUMED EMISSION WEIGHTING FACTORS FOR PLANT COMPLIANCE STATUS

Compliance Status At Least One Under a Emission Source In Out Undetermined Battery Out Legal Plan 1.5 80 40 Charging 80 40 Doors 16 130 130 73 73 Pushing 3 3 1.5 1.5 Topside<sup>†</sup> 1.6 65 65 33 33 Quenching 175 350 350 260 260 Waste gas stacks 0.7 0.7 0.4 0.4

<sup>\*</sup>N - Negligible.

 $<sup>^{\</sup>dagger}$  Topside compliance was assumed to be the same as door compliance.

Table IV-2
CLASSIFICATION OF COKE PLANTS INTO EMISSION
CATEGORIES (1974-1975)

| Plant<br>Number | Classification | Plant<br>Number | Classification | Plant<br>Number | Classification |
|-----------------|----------------|-----------------|----------------|-----------------|----------------|
| 1*              | **<br>K        | 23              | F              | 45              | F              |
| 2               | F              | 24              | F              | 46              | F              |
| 3               | K              | 25              | F              | 47              | F              |
| 4               | K              | 26              | F              | 48              | F              |
| 5               | F              | 27              | K              | 49              | F              |
| 6               | F              | 28              | F              | 50              | F              |
| 7               | F              | 29              | K              | 51              | F              |
| 8               | F              | 30              | K              | 52              | X              |
| 9               | F              | 31              | F              | 53              | F              |
| 10              | F              | 32              | K              | 54              | K              |
| 11              | F              | 33              | K              | 55              | x              |
| 12              | K              | 34              | K              | 56              | К              |
| 13              | F              | 35              | F              | 57              | F              |
| 14              | F              | 36              | K              | 58              | К              |
| 15              | F              | 37              | K              | 59              | F              |
| 16              | F              | 38              | K              | 60              | F              |
| 17              | K              | 39              | F              | 61              | Х              |
| 18              | X              | 40              | x              | 62              | Х              |
| 19              | K              | 41              | F              | 63              | Х              |
| 20              | K              | 42              | F              | 64              | F              |
| 21              | K              | 43              | F              | 65              | F              |
| 22              | F              | 44 .            | F              |                 |                |

<sup>\*</sup>Plant numbers correspond to plant names given in Table III-3.

<sup>\*\*</sup>F indicates clean and K indicates dirty. The X indicates that insufficient data were available to classify the plant.

Background concentrations are difficult to assess because ambient concentrations are seldom measured in an area when the coke-ovens are not in operation. Moreover, upwind ambient concentrations, recorded near coke plants, appear to have been influenced by the coking operations. In fact, ambient atmospheric concentrations of BaP or BSO have not been measured at all for many of the coke-oven locations. It is therefore necessary to estimate background concentration by using data recorded at a sufficient distance from the coke plant or by using data recorded at "similar" locations. Either of these methods has inherent error. In addition, background concentrations have been shown to vary with location within a city and with season.

The available BaP atmospheric concentration data for cities without coke plants are given in Appendix A. They were reviewed to identify a "similar" noncoke plant location for each coke plant location. For example, the average BaP concentration over Montgomery, Jacksonville, and Charleston was used to represent Birmingham. The assumed annual average BaP backgrounds are given in Table IV-3. They vary from 0.04 ng/m³ for Houston to 1.6 ng/m³ for Pittsburgh.

#### D. Evaluation of Ambient Concentration Data for Coke Plant Locations

Available ambient data that were recorded in the vicinity of coke plants have been evaluated to determine if it is possible to represent the relationship of concentration mathematically as a function of distance from a coke plant. An analysis of the results of the dispersion calculations performed by EPA (Youngblood, 1977) indicate that such a procedure should be possible. An analysis of data given in Appendix B shows that the BaP atmospheric concentration versus distance relationship about coke plants can be represented by a double logarithmic function (power curve). The procedure taken here is to modify the power curve formulation to include allowances for background concentrations and for coke plant capacities. The function selected is as follows:

Table IV-3
ESTIMATED ANNUAL BACKGROUND CONCENTRATIONS
OF BaP FOR COKE PLANT LOCATIONS

| Plant * Number | BaP<br>(ng/m <sup>3</sup> ) | **<br>Remarks                              |
|----------------|-----------------------------|--------------------------------------------|
| 1              | 0.4                         | Montgomery, Jacksonville, Charleston       |
| 2              | 0.4                         | Montgomery, Jacksonville, Charleston       |
| 3              | 0.4                         | Montgomery, Jacksonville, Charleston       |
| 4              | 0.4                         | Montgomery, Jacksonville, Charleston       |
| 5              | 0.4                         | Montgomery, Jacksonville, Charleston       |
| 6              | 0.4                         | Montgomery, Jacksonville, Charleston       |
| 7              | 0.4                         | Montgomery, Jacksonville, Charleston       |
| 8              | 1.2                         | Average of 5 sites in the Los Angeles area |
| 9              | 0.6                         | Spokane                                    |
| 10             | 0.7                         | Hammond                                    |
| 11             | 0.7                         | Hammond                                    |
| 12             | 0.7                         | Hammond                                    |
| 13             | 0.7                         | Hammond                                    |
| 14             | 0.7                         | Hammond                                    |
| 15             | 0.7                         | Hammond                                    |
| 16             | 0.7                         | Hammond                                    |
| 17             | 0.7                         | Hammond                                    |
| 18             | 0.7                         | Hammond                                    |
| 19             | 0.7                         | Hammond                                    |
| 20             | 0.7                         | Hammond                                    |
| 21             | 0.4                         | Norfolk, Charleston                        |
| 22             | 0.8                         | Riviera Beach, MD                          |
| 23             | 1.1                         | Site 30 km away                            |
| 24             | 1.1                         | Site about 30 km away                      |
| 25             | 1.1                         | Site about 30 km away                      |
| 26             | 0.4                         | NASN site                                  |
| 27             | 0.3                         | NASN site                                  |

<sup>\*</sup>Plant numbers correspond to plant names given in Table III-3. Cities on locations used for reference concentrations.

Table IV+3 (continued)

| Plant * | BaP<br>(ng/m³) | ** Remarks                             |
|---------|----------------|----------------------------------------|
| 28      | 0.3            | NASN site                              |
| 29      | 0.8            | Site about 30 km away                  |
| 30      | 0.8            | Site about 30 km away                  |
| 31      | 0.8            | Site about 30 km away                  |
| 32      | 0.6            | Average of Pennsylvania and Ohio sites |
| 33      | 0.6            | Average of Pennsylvania and Ohio sites |
| 34      | 0.6            | Average of Pennsylvania and Ohio sites |
| 35      | 0.6            | Average of Pennsylvania and Ohio sites |
| 36      | 0.6            | Average of Pennsylvania and Ohio sites |
| 37      | 0.4            | NASN site                              |
| 38      | 0.5            | Site about 12 km away                  |
| 39      | 0.6            | Average of Pennsylvania and Ohio sites |
| 40      | 0.6            | Average of Pennsylvania and Ohio sites |
| 41      | 0.8            | Average of several Pennsylvania basins |
| 42      | 0.6            | Average of Pennsylvania and Ohio sites |
| 43      | 0.6            | Average of Pennsylvania and Ohio sites |
| 44      | 0.8            | Average of several Pennsylvania basins |
| 45      | 0.8            | Average of several Pennsylvania basins |
| 46      | 0.8            | Average of several Pennsylvania basins |
| 47      | 8.0            | Average of several Pennsylvania basins |
| 48      | 0.8            | Average of several Pennsylvania basins |
| 49      | 0.8            | Average of several Pennsylvania basins |
| 50      | 1.6            | Sites about 10 km away                 |
| 51      | 0.8            | Average of several Pennsylvania basins |
| 52      | 0.8            | Average of several Pennsylvania basins |
| 53      | 1.6            | Sites about 10 km away                 |
| 54      | 1.6            | Sites about 10 km away                 |
| 55      | 0.8            | Average of several Pennsylvania basins |
| 56      | 0.8            | Average of several Pennsylvania basins |
| 57      | 0.4            | Montgomery, Jacksonville, Charleston   |

Table IV-3 (concluded)

| Plant * Number | BaP<br>(ng/m <sup>3</sup> ) | **<br>Remarks          |
|----------------|-----------------------------|------------------------|
| 58             | 0.04                        | Austin and Brownwood   |
| 59             | 0.04                        | Austin and Brownwood   |
| 60             | 0.5                         | Sites 20 to 30 km away |
| 61             | 0.5                         | Charleston             |
| 62             | 0.5                         | Charleston             |
| 63             | 0.5                         | Charleston             |
| 64             | 0.5                         | Charleston             |
| 65             | 0.7                         | Hammond                |

$$C_{d} = B + V \cdot A \cdot D^{K}$$
 (1)

where,  $C_{\mathbf{d}}$  is the atmospheric BaP at some distance (D) from the coke plant.

- B is the location's nominal background concentration.
- V is the amount of coal processed annually by the coke plant.
- A and x are constants determined by regression.
- D is the distance from the plant.

Least squares techniques were used to fit the available data to this function to estimate values for A and x.

To extrapolate these functional representations from areas where data are available to areas where data are not available, it is first necessary to determine if the functional parameters (A and x) are consistent within the emission control grouping given in Table IV-2. If they are found to be consistent within groupings, average values can be used to represent a group. The parameter designated as A in Equation (1) relates to the atmospheric concentration resulting from coke-oven emissions at a distance of 1 km from the plant. It could be estimated for more plants than the slope parameter (x) because of the type of available data. For five plants representing the better control classification group, the A parameter had an average value of 2.8 x 10<sup>-6</sup>, whereas for eight plants representing the poorer control group, the average was  $7.3 \times 10^{-6}$ . There were not enough data to show a difference in the slope parameter (x) for the two control groupings. The average value for five locations was found to be approximately -1.0. This is consistent with the dispersion modeling data, which gave values of about -0.9 to -1.0. The average based on the data will be used. Hence, this analysis suggests that Equation (1) be used with a value of -1.0 for the parameter x. The value of the parameter A will depend upon the grouping in which the plant is placed. For the F grouping a value of  $2.8 \times 10^{-6}$  will be used, and for the K grouping a value of  $7.3 \times 10^{-6}$  will be used.

# E. Relationship Between BaP and BSO Atmospheric Concentrations

Because so few data are available for BSO atmospheric concentrations taken in the vicinity of coke production plants, an analysis has been made to determine if the BaP data can be used to predict BSO atmospheric concentrations, that is, to determine if some mathematical relationship exists between BaP and BSO concentrations. Some of the potential hindrances to establishing this type of relationship are that BaP and BSO are emitted from other sources besides coke ovens and that the precise relationship of BSO to BaP for coke battery emissions is unknown.

The available BSO concentration data (Appendix A) have been plotted against the BaP data on Figure IV-1 for sampling sites that collected both types of data. Average values were used. Data sources included the 1972 NASN urban data, data recorded at sampling sites near coke plants, and Maryland data. The data from the various sources appear to form an increasing function with the cities without coke-ovens representing the lower end of the scale and the data recorded near coke plants representing the upper scale. Figure IV-2 is a plot of only data found near the coke plants.

Statistical regression techniques were used to fit mathematical functions to various selected combinations of data given in Figures IV-1 and 2. The functional equation used was of the type:

$$BSO = A \cdot Bap^{X}$$
 (2)

where, BSO is the atmospheric BSO concentration  $(\mu g/m^3)$  BaP is the atmospheric BaP concentration  $(ng/m^3)$  A, x are constants.

The values of the constants were found to be as follows:

| •                                                                 | Para | neter |
|-------------------------------------------------------------------|------|-------|
| Data Set                                                          | A    | _ x   |
| All data                                                          | 3.80 | 0.19  |
| Data for noncoke locations                                        | 3.82 | 0.15  |
| Data for coke locations                                           | 3.93 | 0.15  |
| Data for coke locations with BaP greater than 5 ng/m <sup>3</sup> | 2.20 | 0.35  |

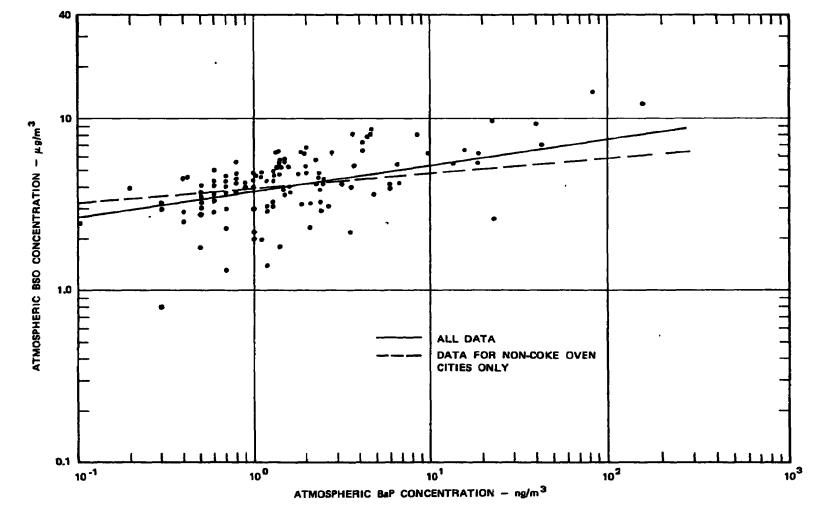



FIGURE IV-1. RELATIONSHIP BETWEEN BSO AND BaP ATMOSPHERIC CONCENTRATIONS FOR ALL LOCATIONS

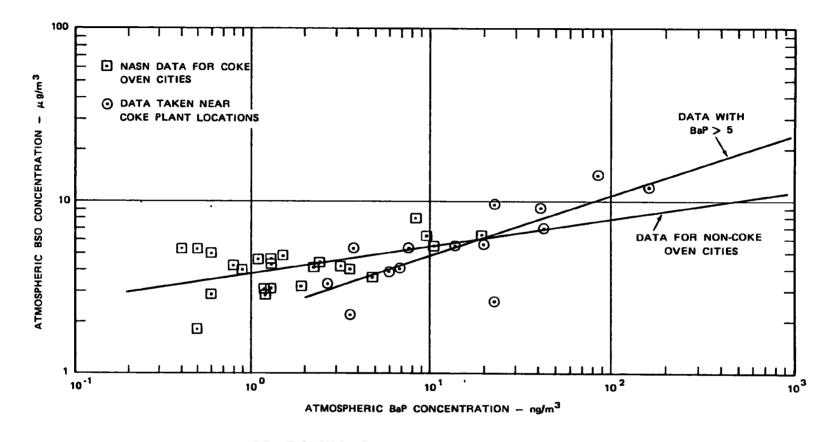



FIGURE IV-2. RELATIONSHIP BETWEEN BSO AND BaP ATMOSPHERIC CONCENTRATIONS FOR COKE OVEN LOCATIONS

The regression coefficients ( $R^2$ ) were found to be around 0.4, indicating a less than good fit to the data. The equation fit to all of the data appears to underestimate the BSO concentrations for the higher BaP concentrations. Consequently, an equation was fit to the data for coke oven locations having BaP concentrations in excess of 5 ng/m³; this equation had a higher slope. Based on occupational exposure data taken within coke plants, there is evidence that the slope would continue to increase as the BaP concentration increases (Antell, 1977). The occupational data indicate that 1 ng of BaP might correspond to 0.1  $\mu$ g of BSO with an upper bound of around 0.5  $\mu$ g of BSO. However, due to a number of possible chemical and physical processes and to dilution due to background, the relationship in the outside environment may not be the same as in the occupational environment.

Three procedures are suggested for estimating atmospheric BSO concentrations based on BaP concentrations. The first, which should give an upper limit, follows: The estimated background BSO concentration is added to 500 the BaP concentration that is due solely to cokeoven emissions. The second procedure is similar to the first, except the BaP concentrations due solely to cokeovens are multiplied by 100 and added to background concentrations. The third procedure is based on the empirical functions fit to the data. All three of these procedures were tried. The empirical procedure and the procedure in which 1 ng of BaP corresponds to 0.1 µg of BSO were found to give almost identical results. The results of the empirical procedure were used in the exposure estimates.

#### F. Population Exposure Estimates

The estimated population exposures to coke-oven emissions are given in the summary section of this report and are not repeated here. However, a general discussion of the approach is included.

Resident populations were estimated for five concentric geographic rings about each plant. The radii of the rings were taken as 0 to 0.5, 0.5 to 1, 1 to 3, 3 to 7, and 7 to 15 km. These spacings were selected to correspond to the shape of the concentration versus distance curves

shown in Appendix B. Resident population for each of the geographic rings was obtained from the Urban Decision Systems, Inc., Area Scan Report, a computer data system that contains the 1970 census data in the smallest geographic area available (city blocks and census enumeration districts).

Average annual BaP concentrations for each geographic ring were estimated by using the empirical model for those coke plants for which questionable or no monitoring data were available. This model was used for 45 of the 65 coke plants. The plant specific best fit equations given in Appendix B were used for locations for which sufficient monitoring data were available. On a few locations, the monitoring data were used to fix the concentration at a distance of 1 km from the plant and the empirical model slope of -1.0 was used to estimate concentrations at other distances. In all, some monitoring data were used in making exposure estimates for 20 of the coke plants. For locations with more than one coke plant, the population residing in overlaps of the geographic rings was estimated by assuming a uniform population distribution. BaP concentrations for the overlapping rings were estimated as the sum of the applicable concentrations for individual coke plants.

Concentration subgroups were then developed, based on the range of concentrations for the estimated exposures, and the total number of residents for each exposure subgroup were calculated. The population residing within a subgroup was excluded if its average annual BaP concentration due only to coke-oven emissions was less than  $0.1~\text{ng/m}^3$ . These subgroupings were made for exposures to coke-oven emissions only and to coke-oven emissions plus background concentrations.

Population exposures to BSO were calculated using the procedures given in Section IV-E. These procedures estimate BSO exposures based on estimated BaP exposures.

#### Appendix A

#### AMBIENT ATMOSPHERIC BaP AND BSO CONCENTRATIONS

#### A. General

This appendix presents BaP and BSO atmospheric concentration data recorded in the vicinities of coke manufacturing plants. Data are also presented that give background concentrations for locations that contain and do not contain coke ovens. All data used in this report are based on high-volume filter samples. In addition, many of the sampling programs were conducted over a relatively few days within 1 or 2 consecutive months; thus, they may not be entirely representative of an area's average annual concentration. The implications of this sampling approach in estimating population exposures is described in further detail in Appendix B.

# B. <u>Atmospheric BaP and BSO Concentration Data Recorded Near Coke</u> Manufacturers

Atmospheric data that have been recorded near coke manufacturers are described in the following paragraphs.

#### 1. Monessen Area Air Quality Study, Pennsylvania

The Pennsylvania Department of Environmental Resources conducted an air quality study to determine the distribution and magnitude of total suspended particulates (TSP), benzene soluble organics (BSO), and benzo (a)pyrene (BaP) concentrations in the Monessen area. The impact and extent of air pollution due to sources at the Wheeling-Pittsburgh Steel Corporation, Monessen, were evaluated, with sampling conducted from April 6 to June 21, 1976, at three sites near the steel plant. Meteorological and selective sector actuator techniques were included in the sampling program (DER, 1977A).

A statistical summary of the data for the three sites is given in Table A-1. The average TSP concentrations ranged from 79 to  $166 \, \mu g/m^3$ , average BaP concentrations from 2.7 to  $40.8 \, ng/m^3$ , and the average BSO from 2.6 to  $9.2 \, \mu g/m^3$ . Selective sector actuator sampling and a concentration-wind direction frequency weighting technique all confirmed that the steel plant is the major source of TSP and BaP. The average concentrations found in areas in the direction of winds coming from the plant are between  $1.5 \, \text{and} \, 3 \, \text{times}$  the average concentrations for winds from all other directions (DER, 1977A).

#### 2. Allegheny County, Pennsylvania

Three coke batteries are located in Allegheny County: U.S. Steel Corporation in Clairton, Jones and Laughlin in Hazelwood, and Shenango, Inc. on Nevell: Island. From April to September 1976, high-volume particulate samples taken from 11 sites were analyzed for BaP. The sampling schedule included two 10-week periods of four and two samples per week, respectively (Ek, 1977).

Table A-2 shows the results obtained during the sampling. The average BaP concentrations for the 11 locations varied between 1.64 and 51.95 ng/m<sup>3</sup>. Eight additional samples were collected during first-stage alerts at Liberty Borough in April and June 1976. Four were collected over 24 hours and four over 8 to 12 hours. These data which are given in Table A-3, show average BaP concentrations about six times higher than for the regular sampling given in Table A-2.

#### 3. Geneva Works, Utah

The data collected for BaP concentrations near the U.S. Steel Geneva Works located near Provo, Utah, are summarized in Table A-4. Eight stations within 4 km of the coke batteries showed average BaP concentrations of 1.47 to 3.81  $\text{ng/m}^3$ . Two background stations 20 to 30 km away showed average BaP concentrations of 0.12 and 0.83  $\text{ng/m}^3$ .

Table A-1

MONESSEN AIR STUDY, 24-HOUR SAMPLE CHARACTERISTICS

|                          |        |         |            | Geo   | metric    |
|--------------------------|--------|---------|------------|-------|-----------|
|                          | Sample |         |            |       | Standard  |
|                          | Size   | Average | Range      | Mean  | Deviation |
| TSP (μg/m <sup>3</sup> ) |        |         |            |       |           |
| Station 2                | 29     | 166.0   | 27.0-360.0 | 145.0 | 1.76      |
| Station 6                | 28     | 79.0    | 22.0-165.0 | 71.0  | 1.64      |
| Station 7                | 31     | 113.0   | 26.0-300.0 | 93.0  | 1.91      |
| BaP (ng/m <sup>3</sup> ) |        |         |            |       |           |
| Station 2                | 29     | 40.8    | 0.3-206.4  | 10.0  | 7.60      |
| Station 6                | 28     | 2.7     | 0.2- 10.8  | 1.6   | 2.78      |
| Station 7                | 31     | 22.8    | 0.4-100.3  | 10.1  | 4.57      |
| BSO (μg/m <sup>3</sup> ) |        |         |            |       |           |
| Station 2                | 29     | 9.2     | 1.5- 25.4  | 6.5   | 2.34      |
| Station 6                | 28     | 3.3     | 0.6- 9.1   | 2.6   | 2.01      |
| Station 7                | 31     | 2.6     | 0.9- 19.3  | 3.8   | 2.36      |

Source: DER (1977A).

Station 2 is 1 km ESE of the coke ovens.

Station 6 is 2.1 km NW of the coke ovens.

Station 7 is 1.8 km ENE of the coke ovens.

Table A-2  $\label{eq:Ambient} \mbox{AMBIENT BaP CONCENTRATIONS FOR ALLEGHENY COUNTY, PENNSYLVANIA } \mbox{$(ng/m^3)$}$ 

| Site<br><u>Number</u> | Site Location*                                      | Sample<br>Size | Average | Range     |
|-----------------------|-----------------------------------------------------|----------------|---------|-----------|
| 7102                  | 10.5 km N of USS, 8 km E of J&L, 21.5 km SE of S    | 2              | 1.64    | 0.2- 3.1  |
| 5702                  | 18 km NW of USS, 4.5 km N of J&L, 12 km ESE of S    | 2              | 2.62    | 0.3- 4.9  |
| 8601                  | 0.5 km SE of USS, 14 km SE of J&L, 28 km SE of S    | 6 ,            | 13.63   | 0.9- 67.7 |
| 8704                  | 2.0 km NE of USS, 12 km SE of J&L, 27 km SE of S    | 5              | 15.00   | 0.3- 40.4 |
| 5802                  | 18 km NW of USS, 6 km NW of J&L, 10 km SW of S      | 2              | 2.29    | 1.8- 2.8  |
| 7570                  | 8.5 km NNE of USS, 9.5 km ESE of J&L, 24 km SE of S | 5              | 6.12    | 0.9- 20.1 |
| 8602                  | 1.5 km NNW of USS, 12 km SE of J&L, 26 km SE of S   | 4              | 28.17   | 2.8- 83.5 |
| 6903                  | 12 km NW of USS, 1 km SSE of J&L, 16 km SE of S     | 10             | 3.95    | 0.5- 19.0 |
| 8790                  | 2 km NE of USS, 13 km SE of J&L, 27.5 km SE of S    | 20             | 51.95   | 0.4-310.0 |
| 5602                  | 16 km NNW of USS, 5 km NNE of J&L, 15 km ESE of S   | 2              | 3.78    | 3.1- 4.5  |
| 7004                  | 12.5 km N of USS, 6 km E of J&L, 18.5 km SE of S    | 2              | 1.66    | 1.4- 1.9  |

<sup>\*</sup>USS is U.S. Steel, J&L is Jones and Laughlin, and S is Shenango.

Source: Ek (1977).

Table A-3

BaP DATA OBTAINED DURING FIRST STAGE ALERTS AT LIBERTY BOROUGH--SITE 8790 (ng/m<sup>3</sup>)

| Sample<br><u>Number</u> | 24-Hour Data | 8-12 Hour Data |
|-------------------------|--------------|----------------|
| 1                       | 427.9        | 405.8          |
| 2                       | 277.8        | 458.8          |
| 3                       | 320.4        | 189.8          |
| 4                       | 171.0        | 155.6          |
| Average                 | 299.3        | 302.3          |

Table A-4

ATMOSPHERIC Bap CONCENTRATIONS NEAR THE GENEVA WORKS IN UTAH (ng/m<sup>3</sup>)

| Station<br>Number | Location in Relation to Battery | Sample<br>Size | Average | Range     |
|-------------------|---------------------------------|----------------|---------|-----------|
| 1                 | 2.0 km NW                       | 9              | 2.08    | 0.40-4.42 |
| 2                 | 2.7 km NW                       | 6              | 3.81    | 2.52-5.27 |
| 3                 | 2.4 km NW                       | 9              | 3.15    | 0.97-6.30 |
| 4                 | 1.8 km N                        | 11             | 2.41    | 0.44-5.85 |
| 5                 | 1.3 km NE                       | 11             | 3.13    | 0.54-6.29 |
| 6                 | 2.4 km SE                       | 11             | 1.63    | 0.46-3.44 |
| 7                 | 4.0 km NW                       | 3              | 2.10    | 0.87-3.53 |
| 8                 | 2.6 km S                        | 11             | 1.47    | 0.38-3.35 |
| 9                 | 30.0 km S                       | 11             | 0.12    | 0.01-0.32 |
| 10                | 20.0 km N                       | 9              | 0.83    | 0.05-2.77 |

# 4. Wayne County, Michigan

Three companies operating coke batteries are located in Wayne County, Michigan: Solvay, Ford, and Great Lakes Steel. Ambient atmospheric BaP concentration data were reported annually for seven sites in the general area for 1971 to 1975 and are given in Table A-5. Annual BaP concentrations for the various sites varied between 0.34 to 14.72  $ng/m^3$ .

#### 5. Buffalo, New York

Three companies operate coke batteries near Buffalo, New York: Semet-Solvay, Bethlehem Steel, and Donner-Hanna. Atmospheric BaP concentration data were recorded from 1973 to 1974 on 13 sites, in addition to data recorded at the National Air Surveillance Network (NASN) site. These data, which are given in Table A-6, indicate the average BaP concentrations ranged from 0.45 to 27.10 ng/m<sup>3</sup>.

#### 6. Duluth, Minnesota

Thirty-eight samples for ambient BaP concentrations were obtained from two sites within 3 km of the U.S. Steel coke batteries in Duluth, Minnesota. These data are summarized in Table A-7. Average BaP concentrations of 0.22 and 1.45 ng/m<sup>3</sup> were found for the two sites. When most of the samples were collected, the wind was blowing in the general direction of the collection sites from the plant.

# 7. Gadsden, Alabama

The Republic Steel Corporation operates coke ovens in Gadsden, Alabama. Atmospheric BaP concentrations were sampled at two sites within 1.6 km of the coke ovens during 1974, 1975, and 1976. The data from this sampling which are summarized in Table A-8, indicate the annual atmospheric BaP concentrations varied from 0.44 to 5.06 ng/m<sup>3</sup>.

| Site<br>Number | 1971 | 1972 | 1973  | 1974  | 1975  | Average |
|----------------|------|------|-------|-------|-------|---------|
| 02             | 3.00 | 2.44 | 3.02  | 1.46  | 3.43  | 2.67    |
| 04             | 2.97 | 3.14 | 4.16  | 1.70  | 4.85  | 3.36    |
| 05             | 9.32 | 5.95 | 11.78 | 10.83 | 14.72 | 10.52   |
| 06             | 3.62 | 2.62 | 3.12  | 0.52  | 1.47  | 2.27    |
| 08             | 2.39 | 2.56 | 2.70  | 0.44  | 2.54  | 2.13    |
| 11             | 1.30 | 1.32 | 2.00  | 0.34  | 0.73  | 1.14    |
| NASN           | 1.40 | 1.90 | 1.00  |       | 1.00  | 1.33    |

No. 2 is 14 km NE of Solvay, 14.5 km NE of G.L.\*, and 18 km ENE of Ford.

No. 4 is 7.2 km NNE of Solvay, 9.3 km NE of G.L., and 9 km NE of Ford.

No. 5 is 1.6 km N of Solvay, 4 km NNE of G.L., and 4.4 km E of Ford.

No. 6 is 15.3 km NNW of Solvay, 16.5 km NNW of G.L., and 11.7 km NNW of Ford.

No. 8 is 10.5 km SW of Solvay, 8.5 km SW of G.L., and 9.3 km SSW of Ford.

No. 11 is 30 km SW of Solvay, 29 km SW of G.L., and 30 km SW of Ford.

<sup>\*</sup>G.L. - Great Lakes Steel.

Table A-6

AMBIENT Bap CONCENTRATIONS FOR BUFFALO, NEW YORK

| Site<br><u>Number</u> | Site Location                            | Sample<br>Size | Average | Range       |
|-----------------------|------------------------------------------|----------------|---------|-------------|
| 1                     | 3.1 km E of Beth. and 3.4 km SE of D-H*  | 37             | 5.99    | 0.27-30.5   |
| 2                     | 1.9 km ESE of Beth. and 3.8 km S of D-H  | 81             | 8.99    | 0.26-48.7   |
| 3                     | 3.8 km NE of Beth. and 1.5 km SE of D-H  | 48             | 11.38   | 0.06-68.4   |
| 4                     | 1 km ENE of Beth. and 2.8 km S of D-H    | 7              | 27.10   | 2.76-48.8   |
| 5                     | 3 km N of Beth. and 1.4 km WNW of D-H    | 78             | 2.78    | 0.05-23.8   |
| 6                     | 4.3 km NE of Beth. and 1.1 km ENE of D-H | 65             | 9.10    | 0.20-65.6   |
| 7                     | 5.6 km NE of Beth. and 2.1 km NNE of D-H | 41             | 7.29    | 0.07-46.2   |
| 8                     | 0.6 km W of Allied                       | 73             | 1.29    | 0.05-21.2   |
| 9                     | 1.2 km ESE of Allied                     | 76             | 3.80    | 0.13-81.4   |
| 10                    | 2.4 km NE of Allied                      | 44             | 3.74    | 0.01- 9.3   |
| 11                    | 30 km SW of Beth. and 34 km SW of D-H    | 44             | 0.82    | 0.04-24.5   |
| 12                    | 3.2 km NW of Allied                      | 28             | 0.45    | 0.06- 3.1   |
| 13                    | 4 km SW of Beth. and 6.2 km S of D-H     | 7              | 1.29    | 0.40- 3.7   |
| NASN                  | 8.8 km NNW of Beth. and 5.6 km N of D-H  |                | 0.70**  | <del></del> |

<sup>\*</sup>Beth. is Bethlehem Steel; D-H is Donner-Hanna.

<sup>\*\*</sup>Two-year composite.

Table A-7

AMBIENT BaP CONCENTRATIONS FOR DULUTH, MINNESOTA (ng/m<sup>3</sup>)

| Site<br>Number | Distance from Coke Ovens | Sample<br>Size | Average | Range     |
|----------------|--------------------------|----------------|---------|-----------|
| 1              | 2.1 km SW .              | 18             | 1.45    | BDM-7.02* |
| 2              | 2.7 km N                 | 20             | 0.22    | BDM-1.25  |

<sup>\*</sup>BDM - below detectable minimum.

Source: Jungers (1977A).

Table A-8

AMBIENT BaP CONCENTRATIONS FOR GADSDEN, ALABAMA (ng/m3)

| Site   |                          | Average Concentrations* |              |      |              |
|--------|--------------------------|-------------------------|--------------|------|--------------|
| Number | Distance from Coke Ovens | 1974                    | <u> 1975</u> | 1976 | 3-Year       |
| 1      | 1.6 km E                 | 5.06(0.44)**            | 0.75         | 0.58 | 2.13(0.60)** |
| 2      | 1.1 km SW                | 0.97                    | 0.44         | 1.89 | 1.10         |
| NASN   | Same as Station 1        | 0.50                    | 0.60         |      | 0.55         |

 $<sup>\</sup>star$  Sample size for each year for Sites 1 and 2 was 5.

Source: Jungers (1977B).

<sup>\*\*</sup> Excludes one high observation of 23.55  $ng/m^3$ .

### 8. Birmingham, Alabama, Area

Five coke battery facilities, which are within about 20 km of Birmingham, are located at Tarrant, Woodward, Thomas, Birmingham, and Fairfield. Atmospheric BaP concentrations were sampled at Tarrant and Fairfield during 1976, and NASN data are available for Birmingham. These data are given in Table A-9. The average BaP concentrations ranged from 2.5 to 4.5 ng/m<sup>3</sup>. BaP data were also recorded for five CHAMP sites in the Birmingham area. These data are given in Table A-10.

# 9. Johnstown Air Basin, Pennsylvania

Two coke plants are located near Johnstown, Pennsylvania (Bethlehem Steel's Franklin and Rosedale Divisions). An air quality study was conducted from August through November 1975 to determine the distribution and magnitude of TSP, BSO, and BaP concentrations in the Johnstown area. Concentration data were obtained for eight sampling sites 0.6 to 7.8 km from the Franklin Works (Table A-11). BaP concentrations ranged from 85.3  $\text{ng/m}^3$  for the site nearest the Franklin plant to 3.6  $\text{ng/m}^3$  for the site farthest from the plant.

Wind-actuated sampling was also conducted for TSP, BSO, and BaP. For all three, in-sector sample concentrations were almost double the out-sector concentrations.

#### 10. Philadelphia, Pennsylvania

One coke facility is situated in Philadelphia (Philadelphia Coke Divison), and another two coke facilities are within 12 km of the city at Alan Wood and Fairless Hills. Air quality data were collected at four different times from November 1976 to January 1977 to determine the distribution and magnitude of TSP, BSO, and BaP in Philadelphia. Concentration data were obtained for 13 sampling stations about 2 to 14 km from Philadelphia Coke Division. These data are summarized in Table A-12. The average BaP concentrations for the 13 sampling sites ranged from 0.97 to 4.70 ng/m $^3$ . BSO average concentrations ranged from 3.05 to 8.56  $\mu$ g/m $^3$ .

| Site<br>Number | Distance from Coke Plants | Sample<br>Size | Average | Range     |
|----------------|---------------------------|----------------|---------|-----------|
| 1              | Tarrant (0.5 km NW)       | 2              | 4.46    | 0.06-8.86 |
| 2              | Fairfield (0.5 km ESE)    | 3              | 2.79    | 1.10-5.31 |
| nasn*          |                           | -              | 2.50    |           |

<sup>\*1974</sup> sample composite.

Source: Jungers (1977B).

Table A-10

CHAMP SITE AMBIENT ATMOSPHERIC Bap DATA FOR THE BIRMINGHAM AREA (1975 Data)

| Site<br>Number | Distance<br>Fairfield | from Batteries<br>Birmingham | (km)<br>Tarrant | Sample<br>Size* | BaP (n<br>Average |         |
|----------------|-----------------------|------------------------------|-----------------|-----------------|-------------------|---------|
| 304            | 11.4                  | 3.8                          | 2.4             | 6               | 4.2               | 0.7-9.2 |
| 305            | 25.8                  | 5.0                          | 13.0            | 12              | 1.8               | 0.6-3.7 |
| 306            | 10.3                  | 10.8                         | 13.4            | 12              | 1.5               | 0.4-4.0 |
| 307            | 4.9                   | 18.4                         | 21.4            | 6               | 2.4               | 0.9-4.3 |
| 323            | 16.4                  | .2.4                         | 1.9             | 12              | 2.9               | 1.2-6.6 |
| 331            | 13.4                  | 3.2                          | 5.4             | 12              | 3.5               | 1.4-5.5 |

<sup>\*</sup>Number of months for which data are available; for individual months data were generally collected for 25 to 31 days.

Table A-11

AMBIENT BaP, BSO, AND TSP CONCENTRATIONS FOR JOHNSTOWN, PENNSYLVANIA

| Site   | Site Distance from Franklin Number of |         | BaP (   | $(ng/m^3)$ | Average | $(\mu g/m^3)$ |
|--------|---------------------------------------|---------|---------|------------|---------|---------------|
| Number | Coke Ovens                            | Samples | Average | Range      | TSP*    | BSO           |
| 1      | 7.8 km WSW                            | 30      | 3.6     | 0.5- 15.4  | 32      | 2.2           |
| 2      | 3.8 km W                              | 32      | 13.8    | 2.0-110.9  | 70      | 5.5           |
| 3      | 2.9 km SW                             | 33      | 7.7     | 0.9- 41.8  | 71      | 5.4           |
| 4      | 1.0 km NNE                            | 32      | 23.4    | 3.6-246.6  | 142     | 9.7           |
| 5      | 4.6 km SSW                            | 28      | 6.0     | 1.5- 11.0  | 55      | 3.9           |
| 6      | 3.4 km SSW                            | 31      | 6.8     | 1.4- 24.5  | 58      | 4.1           |
| 7      | O.6 km ESE                            | 34      | 85.3    | 1.5-575.9  | 179     | 14.1          |
| 8      | 1.9 km SE                             | 31      | 19.9    | 1.2-102.9  | 70      | 5.6           |

<sup>\*</sup>Geometric mean.

Source: DER (1977B).

Table A-12

AMBIENT BaP, BSO, AND TSP CONCENTRATIONS FOR PHILADELPHIA, PENNSYLVANIA

| Site   | Location from Philadelphia | Number of | BaP (n  | $g/m^3$ ) | Average $(\mu g/m^3)$ |      |
|--------|----------------------------|-----------|---------|-----------|-----------------------|------|
| Number | Coke Ovens                 | Samples   | Average | Range     | TSP                   | BSO  |
| 1      | 14.1 km SW                 | 4         | 3.82    | 2.09-8.81 | 76.5                  | 5.44 |
| 2      | 3.5 km SW                  | 3         | 1.61    | 0.82-2.26 | 130.5                 | 4.00 |
| 3      | 19 km SW                   | 4         | 2.27    | 1.09-5.35 | 102.5                 | 5.75 |
| 4      | 12.5 km WSW                | 4         | 0.97    | 0.21-1.81 | 44.8                  | 3.05 |
| 5      | 13.7 km WNW                | 4         | 1.34    | 0.35-2.31 | 36.3                  | 3.11 |
| 6      | 9.3 km NNE                 | .4        | 2.54    | 1.38-4.53 | 48.0                  | 4.15 |
| 7      | 5.8 km W                   | 4         | 4.24    | 1.90-6.29 | 85.5                  | 7.22 |
| 8      | 10 km SW                   | 4         | 1.96    | 1.38-2.31 | 60.3                  | 4.77 |
| 9      | 2 km WNW                   | 4         | 2.78    | 1.26-4.46 | 60.0                  | 6.42 |
| 10     | 8.8 km SW                  | 4         | 4.42    | 2.28-7.15 | 109.7                 | 7.76 |
| 11     | 13 km SSW                  | 3         | 3.68    | 1.55-6.70 | 133.3                 | 8.05 |
| 12     | 10 km SW                   | 3         | 4.70    | 2.44-8.06 | 95.0                  | 8.56 |
| 13     | 5.2 km SW                  | 4         | 4.10    | 1.57-9.90 | 102.3                 | 6.59 |
| NASN   |                            | _         | 2.10    | _         | _                     | 4.66 |
|        |                            |           | L       |           |                       |      |

Source: Lazenka (1977).

#### 11. Granite City, Illinois

BaP was measured at eight sampling sites between 0.5 to 3.5 km from the National Steel coke ovens in Granite City, Illinois. The data obtained during this sampling, which are summarized in Table A-13, indicate that average atmospheric BaP concentrations for the stations ranged from 2.6 to  $12.2 \, \text{ng/m}^3$ .

More recently TSP, BSO, and BaP data have been obtained for 3 days on two sites within 0.8 km of the coke batteries (Table A-14). BaP measurements from individual observations ranged from 1.6 to 278  $ng/m^3$ .

#### 12. Houston, Texas

Atmospheric BaP samples were obtained from seven sites located up to 5.5 km from the Armco Steel coke ovens situated in Houston, Texas. Samples were recorded at various times from 1973 to 1976. The data summarized in Table A-15 show that average concentrations by site varied from 0.03 to 0.28 ng/m<sup>3</sup>. These concentrations are much lower than those recorded at similar distances from other coke-oven locations, perhaps indicating any of the following factors:

- · Good emission control.
- · Faulty measurement techniques.
- · All samples recorded upwind.
- Ovens not in operation when measurements were recorded.

#### 13. Cleveland, Ohio

King et al. (1976) have reported on atmospheric BaP concentrations for a number of sites in Cleveland, Ohio. These data are summarized in Table A-16. The geometric means are given rather than the arithmetic means.

#### 14. Sparrows Point, Maryland

The Maryland State Division of Air Quality Control measures ambient BaP and BSO concentrations for many sites within the state,

Table A-13

AMBIENT BaP CONCENTRATIONS FOR GRANITE CITY, ILLINOIS (ng/m<sup>3</sup>)

| Site<br>Number | Distance from Coke Ovens | Sample<br>Size | Average | Range    |
|----------------|--------------------------|----------------|---------|----------|
| LN1            | 0.7 km N                 | 3              | 8.60    | 1.1-16.5 |
| NW2            | 0.6 km SSW               | 3              | 4.83    | 0.6- 9.5 |
| 008            | 1.1 km NE                | 2              | 2.65    | 1.8- 3.5 |
| 006            | 2.4 km WNW               | 2              | 8.15    | 8.0- 8.3 |
| 007            | 1.8 km NW                | 2              | 5.20    | 3.9- 6.5 |
| 009            | 1.5 km W                 | 1              | 3.50    | -        |
| 010            | 3.5 km WNW               | 2              | 12.15   | 1.8-22.5 |
| 011            | 2.9 km WSW               | 2              | 7.15    | 3.9-10.4 |

Table A-14

ADDITIONAL ATMOSPHERIC AMBIENT DATA FOR GRANITE CITY, ILLINOIS

|          | Distance from |                                |     | Day |     |         |
|----------|---------------|--------------------------------|-----|-----|-----|---------|
| Station_ | Coke Ovens    | Pollutant                      | 1   | 2   | 3   | Average |
| 1        | 0.8 km N      | TSP (μg/m <sup>3</sup> )       | 113 | 344 | 268 | 238     |
|          |               | BSO ( $\mu$ g/ $m^3$ )         | 4.9 | 18  | 14  | 12      |
|          |               | BaP $(ng/m^3)$                 | 2.1 | 278 | 202 | 161     |
| 2        | 0.5 km S      | TSP $(\mu g/m^3)$              |     |     |     | 130     |
|          |               | BSO ( $\mu$ g/m <sup>3</sup> ) | 17  | 4.2 | 0.5 | 7       |
|          |               | BaP (ng/m <sup>3</sup> )       | 124 | 2.6 | 1.6 | 43      |

Table A-15

AMBIENT BaP CONCENTRATIONS FOR HOUSTON, TEXAS (ng/m³)

| Site<br>Number | Distance from<br>Coke Ovens | Sample<br>Size | Average | Range     |
|----------------|-----------------------------|----------------|---------|-----------|
| 256034         | 1.0 km NW                   | 6              | 0.17    | 0.05-0.62 |
| 256015         | 0.9 km NNW                  | 5              | 0.15    | 0.07-0.35 |
| 233006         | 2.2 km NE                   | 4              | 0.05    | 0.02-0.11 |
| 256017         | 0.8 km W                    | 6              | 0.03    | 0.02-0.05 |
| 256019         | 2.2 km WSW                  | 4              | 0.33    | 0.04-1.00 |
| 256028         | 0.8 km SSE                  | 7              | 0.28    | 0.05-0.34 |
| 256005         | 5.4 km SW                   | 1              | 0.16    | _         |

Table A-16

AMBIENT BAP CONCENTRATIONS FOR CLEVELAND, OHIO

|                |                             |                | BaP                 | $(ng/m^3)$ |
|----------------|-----------------------------|----------------|---------------------|------------|
| Site<br>Number | Location from Coke Battery* | Sample<br>Size | Geometric<br>Mean** | Maximum    |
| 11011101       | done baccery                |                |                     |            |
| 1              | 0.8 km N                    | 21             | 1.40                | 41.0       |
| 3              | 4.8 km SW                   | 37             | 0.62                | 3.1        |
| 4              | 4.4 km NE                   | 23             | 0.64                | 15.0       |
| 5              | 4.4 km SE                   | 28             | 0.58                | 3.3        |
| 6              | 12.0 km NE                  | 22             | 0.71                | 3.0        |
| 7              | 7.2 km W                    | 38             | 0.46                | 2.1        |
| 8              | 6.8 km SW                   | 28             | 0.44                | 2.3        |
| 9              | 1.0 km SE                   | 30             | 3.60                | 130.0      |
| 10             | 6.0 km NNE                  | 33             | 0.74                | 7.2        |
| 12             | 13.2 km ESE                 | 32             | 0.43                | 2.0        |
| 13             | 4.4 km S                    | 23             | 0.85                | 14.0       |
| 14             | 9.6 km SE                   | 22             | 0.47                | 3.7        |
| 15             | 3.2 km W                    | 21             | 0.51                | 3.5        |
| 17             | 6.4 km NE                   | 32             | 0.91                | 49.0       |
| 20             | 16.8 km NE                  | 19             | 0.50                | 6.9        |
| 21             | 4.0 km NNW                  | 22             | 1.10                | 17.0       |

Source: King et al. (1976).

<sup>\*</sup> Locations are only approximate.

<sup>\*\*</sup> Arithmetic mean not reported.

four of which are located within approximately 12 km of the coke batteries. Data are given in Table A-17.

### 15. Chattanooga, Tennessee

As part of the CRESS and CHAMP programs, BaP samples were collected for nine sites in the Chattanooga area. These data are summarized in Table A-18.

## C. Ambient Background BaP and BSO Concentration Data

Because coke ovens are not the only sources of BaP and BSO concentrations in the atmosphere, the coke oven contributions must be placed in perspective with each area's nominal background concentrations. Data are presented here for ambient background concentrations measured in cities in which coke ovens are located, cities without coke ovens, and remote rural areas.

## 1. NASN Air Quality System Data

NASN routinely monitors suspended particulate concentration levels in urban and nonurban areas, generally reporting them as quarterly composites for stations in the network. The composite, which pools all samples collected during the quarter, assists in generating sufficient material for laboratory analysis.

Before 1971, BaP analysis was made for more than 120 sites per year. For 1971 and subsequent years, the sites were limited to 40 because of time and resource restrictions. These 40 sites were selected to update BaP concentrations in cities with and without coke ovens. Three sites were selected in National Parks to provide nunurban background readings (U.S. EPA, 1974).

Annual average BaP concentrations for 1967 to 1975 are given in Table A-19 for the 40 NASN sites. Table A-20 gives BSO data recorded at these sites for 1971 and 1972. The BaP and BSO concentrations are summarized in Table A-21. The BaP concentrations are generally less than  $0.1~\text{ng/m}^3$  for rural locations. Most urban locations without coke ovens have average concentrations of less than  $1~\text{ng/m}^3$  (the average

Table A-17

AMBIENT ATMOSPHERIC BaP AND BSO CONCENTRATIONS FOR SPARROWS POINT, MARYLAND

| Distance from _ | Sample | BaP (ng/m <sup>3</sup> ) |         | BSO (μg/m <sup>3</sup> ) |         |
|-----------------|--------|--------------------------|---------|--------------------------|---------|
| Coke Batteries* | Size** | Average                  | Range   | Average                  | Range   |
| 12 km N         | 2      | 1.4                      | 1.1-1.7 | 6.5                      | 6.3-6.8 |
| 7 km NNW        | 12     | 1.4                      | 0.2-4.4 | 5.4                      | 3.0-8.0 |
| 3 km W          | 10     | 1.9                      | 0.1-2.6 | -                        | -       |
| 4 km SSW        | 10     | 2.4                      | 0.4-5.4 | 4.8                      | 2.6-8.7 |

 $<sup>\</sup>star$  Locations are only approximate.

Table A-18

AMBIENT BAP AND BSO CONCENTRATIONS FOR CHATTANOOGA, TENNESSEE

| Site          | Distance from | Number of |      | (ng/m <sup>3</sup> ) | BSO  | (µg/m <sup>3</sup> ) |
|---------------|---------------|-----------|------|----------------------|------|----------------------|
| <u>Number</u> | Coke Ovens    | Samples^  | Mean | Range                | Mean | Range                |
|               |               |           |      |                      |      |                      |
| 621           | 7.6 km        | 12        | 3.83 | 1.0-8.4              | 3.69 | 2.2-6.5              |
| 622           | 8.9 km        | 12        | 3.49 | 0.4-8.5              | 4.51 | 2.6-9.1              |
| 631           | 20.2 km       | 12        | 1.63 | 0.2-3.6              | 3.04 | 1.4-5.2              |
| 632           | 15.2 km       | 12        | 1.85 | 0.2-5.9              | 2.93 | 1.1-6.4              |
| 633           | 16.4 km       | 12        | 1.55 | 0.1-4.2              | 2.33 | 0.6-4.6              |
| 634           | 23.8 km       | 12        | 0.82 | 0.0-2.7              | 1.73 | 0.3-2.7              |
| 635           | 14.3 km       | 12        | 1.23 | 0.1-3.0              | 2.66 | 1.5-4.1              |
| 641           | 13.0 km       | 10        | 2.35 | 0.2-8.6              | 3.26 | 1.8-5.3              |
| 642           | 15.1 km       | 12        | 2.66 | 0.2-5.6              | 3.60 | 1.5-7.0              |

<sup>\*</sup>Number of months for which data are available; for individual months data were generally collected for 20 to 31 days.

<sup>\*\*</sup> Number of months for which data are available.

Table A-19  $\mbox{Annual average ambient Bap concentrations at Nash Urban Stations } (\mbox{ng/m}^3)$ 

| Location            | <u> 1967</u> | <u>1968</u> | <u>1969</u> | <u>1970</u> | <u>1971</u> | <u>1972</u> | <u>1973</u> | <u>1974</u> | <u>1975</u> |
|---------------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Montgomery AL       | 2.3          | 2.9         | 2.0         | 1.3         | 0.5         | 0.5         | 0.3         | 0.4         | 0.3         |
| Chicago, IL         | 3.0          | 3.1         | 3.9         | 2.0         | 2.5         | 1.3         | 0.4         | _           | 1.0         |
| Detroit, MN         | 5.4          | 5.1         | 3.9         | 2.6         | 1.4         | 1.9         | 1.0         | -           | 1.0         |
| New York, NY        | 3.9          | -           | 3.6         | 3.0         | 2.3         | 1.8         | 0.7         | 0.9         | 0.9         |
| Toledo, OH          | 1.9          | 1.8         | 1.5         | 1.4         | 0.8         | 0.4         | 0.4         | 0.2         | 0.4         |
| Philadelphia, PA    | 5.9          | 2.9         | 4.0         | 2.4         | 2.3         | 0.9         | 0.6         | 0.8         | 0.6         |
| Pittsburgh, PA      | 7.0          | 6.3         | 13.8        | 5.9         | 6.1         | 10.6        | -           | 1.3         | 2.1         |
| Shenandoah Park, VA | 0.3          | 0.3         | 0.3         | 0.2         | _           | 0.1         | 0.1         | -           | -           |
| Charleston, WV      | -            | 4.6         | 2.6         | 2.1         | 0.9         | 0.7         | 0.2         | 0.5         | 0.5         |
| Grand Canyon, AZ    | 0.2          | 0.2         | 0.2         | 0.1         | _           | -           | >0.1        | >0.1        | -           |
| Gadsden, NM         | -            | 2.4         | 1.8         | 2.5         | 1.2         | 1.2         | 0.8         | 0.5         | 0.6         |
| Gary, IN            | _            | -           | _           | -           | 1.6         | 1.2         | 0.3         | 0.5         | 2.2         |
| Indianapolis, IN    | 5.7          | 4.1         | 5.2         | 2.3         | 0.9         | 4.9         | 0.4         | -           | -           |
| Baltimore, MD       | 3.8          | 2.3         | 2.8         | 2.1         | 2.8         | 1.3         | 0.4         | 0.5         | 0.6         |
| Trenton, NJ         | -            | 1.4         | 1.6         | 0.8         | 0.7         | 0.5         | 0.1         | -           | -           |
| St. Louis, MO       | 2.3          | -           | 3.3         | -           | 0.8         | 0.6         | 0.2         | 0.3         | 0.3         |
| Youngstown, OH      | 8.2          | 5.6         | 9.9         | 7.1         | 3.7         | 3.2         | 1.1         | 1.9         | 2.1         |
| Chattanooga, TN     | 22.9         | 7.4         | 4.2         | 5.5         | -           | 9.9         | _           | _           | 0.8         |
| Spokane, WA         | -            | -           | -           | -           | 1.7         | 1.5         | 0.4         | -           | 0.6         |

Table A-19 (Concluded)

| Location                | <u>1967</u> | 1968 | <u>1969</u> | <u>1970</u> | <u>1971</u> | 1972 | <u>1973</u> | <u> 1974</u> | <u> 1975</u> |
|-------------------------|-------------|------|-------------|-------------|-------------|------|-------------|--------------|--------------|
| Milwaukee, WI           | _           | 4.7  | 4.0         | 2.5         | 1.8         | 3.6  | 0.6         | -            | 1.1          |
| Birmingham, AL          | _           | -    | -           | _           | 4.0         | 2.3  | 1.5         | 2.5          | _            |
| Jacksonville, FL        | -           | 2.9  | 2.3         | 1.4         | 2.2         | 0.4  | 0.2         | -            | 0.4          |
| Honolulu, HI            | 0.5         | 0.6  | 0.6         | 0.2         | 0.2         | 0.1  | 0.2         | 0.4          | 0.03         |
| Terre Haute, IN         | 3.7         | -    | 4.0         | 2.8         | -           | 1.1  | _           | 0.3          | 0.6          |
| Ashland, KY             | -           | 9.3  | 10.9        | 6.7         | 9.0         | 8.5  | 2.9         | _            | 4.7          |
| Baton Rouge, LA         | -           | -    | -           | -           | 0.4         | 0.2  | 0.1         | 0.1          | 0.1          |
| New Orleans, LA         | 1.8         | 1.6  | 1.5         | 1.1         | 0.9         | 0.4  | 0.3         | 0.3          | 0.2          |
| Dearborn, MI            | -           | -    | -           | _           | _           | 0.6  | 1.0         | 1.7          | 3.1          |
| Duluth, MN              | -           | 2.7  | 2.1         | 1.1         | 4.8         | 19.1 | 0.3         | 0.2          | 0.3          |
| Buffalo, NY             | -           | -    | -           | -           | -           | 1.5  | 0.6         | 0.8          | 0.5          |
| Cleveland, OH           | 2.9         | 3.0  | 3.8         | 2.8         | -           | 1.3  | -           | _            | _            |
| Bethlehem, PA           | 2.9         | 2.1  | 2.0         | 2.7         | 0.9         | 0.8  | 0.5         | 0.1          | _            |
| Erie, PA                | -           | -    | -           | -           | 1.5         | 2.4  | 0.7         | 0.6          | 0.4          |
| Houston, TX             | -           | -    | -           | 1.2         | 0.5         | 0.4  | 0.4         | 0.2          | 0.2          |
| Newport News, RI        | -           | -    | -           | -           | 0.4         | 0.3  | 0.2         | _            | _            |
| Norfolk, VA             | 3.5         | 4.9  | 3.9         | 1.8         | 1.2         | 0.6  | 0.4         | 0.2          | 0.2          |
| Seattle, WA             | 1.8         | 2.0  | 1.6         | 1.5         | 0.5         | 0.5  | 0.3         | _            | 0.4          |
| St. Paul, MN            | 2.3         | 1.8  | 1.8         | 1.0         | 0.5         | 0.5  | 0.1         | 0.5          | 0.4          |
| Arcadia National PK, ME | _           | 0.3  | 0.1         | 0.2         | -           | 0.3  | -           | 0.1          | 0.1          |
| Hammond, IN             | 2.5         | 2.1  | 3.3         | 1.7         | 3.8         | 1.4  | 0.2         | 0.4          | 0.7          |

Table A-20 SEASONAL VARIATIONS OF BENZENE SOLUBLE ORGANIC SUBSTANCES ( $\mu\,g/m^3$ )

|                  |     | 1971 |     |     | 1972 |     |     |      | •       |
|------------------|-----|------|-----|-----|------|-----|-----|------|---------|
|                  | 1   | _2_  | _3_ | 4   | 1_1  | _2_ | 3   | 4    | Average |
| Birmingham, AL   | 3.1 | 6.7  | -   | 4.8 | 3.6  | 7.5 | 4.0 | 5.2  | 4.99    |
| Gadsden, AL      | 2.9 | 3.6  | 2.1 | 4.5 | 2.7  | 4.2 | 2.4 | 2.3  | 3.09    |
| Montgomery, AL   | 3.4 | 4.2  | 2.4 | 3.4 | 3.3  | 2.9 | 2.2 | 2.6  | 3.05    |
| Grand Canyon, AZ | 1.2 | 0.9  | -   | -   | -    | -   | -   | -    | 1.05    |
| Jacksonville, FL | 4.3 | 3.0  | 2.1 | 2.2 | 2.3  | 5.4 | 4.4 | 6.0  | 3.71    |
| Honolulu, HI     | 2.3 | 0.1  | 1.2 | 1.4 | 1.4  | 2.3 | 3.3 | 3.0  | 1.88    |
| Chicago, IL      | 4.3 | 5.7  | -   | 4.5 | 3.4  | 2.5 | 2.7 | 3.9  | 3.86    |
| Gary, IN         | 4.7 | 2.7  | -   | 5.7 | 2.7  | 4.1 | 3.0 | 2.5  | 3.63    |
| Hammond, IN      | 3.8 | 4.7  | 6.0 | 7.0 | 2.1  | 9.4 | 6.3 | 5.0  | 5.54    |
| Indianopolis, IN | 2.6 | 3.1  | 3.2 | 3.7 | 2.9  | 4.9 | 3.0 | -    | 3.34    |
| Terre Haute, IN  | 4.1 |      | 3.6 |     | 2.5  | 5.7 | 4.0 | 6.3  | 4.37    |
| Ashland, KY      | 6.8 | 7.4  | 4.0 | 8.3 | 7.8  | 7.2 | 7.9 | 9.2  | 7.33    |
| Batan Rouge, LA  | 2.6 | 1.9  | _   | 3.4 | 3.2  | 4.1 | 3.5 | 5.3  | 3.43    |
| New Orleans, LA  | 4.0 | 3.5  | 3.1 | 3.5 | 3.7  | 4.9 | 5.5 | 4.2  | 4.05    |
| Baltimore, MD    | 7.3 | 4.5  | -   | 4.3 | 5.0  | 3.6 | -   | 4.5  | 4.87    |
| Dearborn, MI     | -   | 3.2  | 3.1 | -   | 3.6  | 7.3 | 4.6 | 4.5  | 4.38    |
| Detroit, MI      | 2.6 | 3.0  | 2.4 | 3.9 | 3.2  | 3.3 | 3.4 | 3.0  | 3.10    |
| Trenton, NJ      | 1.7 | 3.0  | 2.6 | 2.8 | 1.8  | 1.7 | 2.0 | 1.5  | 2.14    |
| Duluth, MN       | 1.8 | 2.5  | 2.1 | 3.6 | 2.0  | 5.9 | 4.5 | 12.5 | 4.36    |

Table A-20 (Concluded)

|                  |     | 1971 |     |     | 1972 |      |     |     |         |
|------------------|-----|------|-----|-----|------|------|-----|-----|---------|
|                  | 1   | 2    | 3_  | 4   | 1    |      | _3_ | _4_ | Average |
| St. Paul, MN     | -   | 2.8  | 2.2 | 3.0 | 2.9  | 7.9  | 5.6 | 4.6 | 4.14    |
| St. Louis, MO    | 5.5 | 3.1  | 2.0 | -   | 2.9  | 3.7  | 2.3 | 2.6 | 3.16    |
| Buffalo, NY      | -   | -    | 2.9 | 3.6 | 3.0  | 9.3  | 3.4 | 7.8 | 5.00    |
| New York, NY     | 5.5 | 6.2  | -   | 4.5 | 4.5  | 5.3  | 4.7 | 3.9 | 4.94    |
| Cleveland, OH    | 3.6 | 3.6  | -   | -   | 3.1  | 6.5  | -   | 4.6 | 4.28    |
| Toledo, OH       | 2.1 | 2.4  | -   | 3.1 | 1.8  | -    | 2.9 | 2.7 | 2.50    |
| Youngstown, OH   | 2.9 | 4.9  | 3.5 | 6.4 | 4.1  | 3.9  | 4.2 | 4.6 | 4.31    |
| Bethlehem, PA    | 3.8 | 3.8  | 3.6 | 3.8 | 2.9  | 5.2  | 4.2 | 4.6 | 3.99    |
| Erie, PA         | 2.6 | 2.5  | -   | 4.2 | 1.3  | 6.8  | 5.8 | -   | 3.87    |
| Philadelphia, PA | 6.0 | 4.0  | 3.8 | 7.4 | 4.7  | 3.8  | 4.3 | 3.3 | 4.66    |
| Chattanooga, TN  | 4.8 | 5.1  | -   | -   | 4.1  | 11.0 | 3.7 | -   | 5.74    |
| Houston, TX      | 3.5 | 3.2  | 3.8 | 5.7 | 4.5  | 5.9  | 5.9 | 4.9 | 4.68    |
| Newport News, VA | 2.7 | 2.9  | 3.1 | 4.5 | 1.3  | 3.3  | 4.4 | 3.7 | 3.24    |
| Norfolk, VA      | 4.9 | 4.0  | 3.5 | 4.2 | 2.5  | 3.8  | 3.8 | 3.2 | 3.74    |
| Shennandoah, VA  | -   | 0.7  | 0.9 | -   | 1.0  | 0.9  | 0.8 | 0.6 | 0.81    |
| Pittsburgh, PA   | 3.8 | 4.4  | -   | 6.9 | 6.1  | 4.9  | 4.7 | 6.6 | 5.34    |
| Seattle, WA      | 5.6 | 4.1  | 5.3 | 5.4 | 1.6  | 4.2  | 3.9 | 5.4 | 4.44    |
| Spokane, WA      | 3.5 | 4.4  | 3.5 | 3.6 | 3.8  | 3.1  | 4.6 | 4.0 | 3.81    |
| Charleston, WV   | -   | 5.0  | 2.0 | 3.6 | 2.8  | 2.7  | 3.6 | 2.8 | 3.21    |
| Milwaukee, WI    | -   | 3.8  | 3.8 | 4.8 | 3.0  | 6.5  | 3.2 | 3.4 | 4.07    |

Table A-21
SUMMARIZATION OF AMBIENT BAP AND BSO DATA

| Cities With Coke Ovens | Cities<br>Without<br>Coke Ovens                                                                                               | Rural<br>Areas                                                                                                    |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| ge 1.21                | 0.38                                                                                                                          | <0.10<br>3.00                                                                                                     |
| 0.3-4.7                | 0.03-0.9                                                                                                                      | <0.10                                                                                                             |
| ge 4.21                | 3.75                                                                                                                          | 0.95                                                                                                              |
| e size 25.00           | 12.00                                                                                                                         | 2.00<br>0.8-1.1                                                                                                   |
|                        | istic         Coke Ovens           ge         1.21           e size         21.00           0.3-4.7           ge         4.21 | Cities With Without Coke Ovens  ge 1.21 0.38 e size 21.00 13.00 0.3-4.7 0.03-0.9  ge 4.21 3.75 e size 25.00 12.00 |

Table A-22

ANNUAL BaP AVERAGES FOR SELECTED CITIES (ng/m³)

| Year | Cities With Coke Ovens | Cities Without  Coke Ovens |
|------|------------------------|----------------------------|
| 1966 | 4.74 (15)*             | 2.76 ( 7)                  |
| 1967 | 5.34 (15)              | 2.29 (8)                   |
| 1968 | 3.75 (18)              | 2.64 (8)                   |
| 1969 | 4.41 (23)              | 2.14 (11)                  |
| 1970 | 3.02 (21)              | 1.41 (11)                  |
| 1971 | 2.18 (11)              | 1.22 (8)                   |
| 1972 | 2.14 (19)              | 0.64 (11)                  |
| 1975 | 1.21 (21)              | 0.38 (13)                  |

<sup>\*</sup>Number of cities included in average.

Source of 1966-1972 data: U.S. EPA (1974).

is  $0.38 \text{ ng/m}^3$ ); however, areas with coke ovens generally have average concentrations in excess of  $1 \text{ ng/m}^3$  with Ashland's  $4.7 \text{ ng/m}^3$  the highest and Dearborn's  $3.1 \text{ ng/m}^3$  the next highest. Coke ovens are located in both Ashland and Dearborn. The overall average for cities with coke ovens is  $1.21 \text{ ng/m}^3$ .

The BSO concentrations were generally less than  $5~\mu g/m^3$ . The average concentrations of most urban locations range from 1 to  $4~\mu g/m^3$ . Ashland, Chattanooga, Pittsburgh, Buffalo, and Hammond have concentrations exceeding  $5~\mu g/m^3$ .

Table A-22 shows the change from 1966 to 1975 in BaP concentrations in the atmospheres for cities with and without coke ovens. Both classes of cities have shown a reduction; however, the atmospheric difference between the two types of cities has been fairly constant since 1968.

## 2. Pennsylvania Air Quality System

The Pennsylvania Division of Technical Services and Monitoring, Bureau of Air Quality and Noise Control has systematically surveyed air quality since 1970. As part of this program, the division monitors suspended and settleable particulates at 91 locations. Suspended particulates are collected on a glass fiber filter with a high-volume air sampler. Each sample represents the particulate matter filtered from approximately 2000 m<sup>3</sup> of air over 24 hours. Samples are taken from midnight to midnight every 6 days (DER, 1977).

During 1976, samples taken by this surveillance system were also analyzed for BaP concentrations. The yearly average for these data, based on one day sampled per month, are given in Table A-23 by sampling location within the air basin. The highest average annual concentration was  $56.38~\text{ng/m}^3$  for Montessen and the next highest was  $17.10~\text{ng/m}^3$  for Johnstown. Both locations have coking operations. The lowest average concentration was  $0.40~\text{ng/m}^3$  for Hanover Green.

|                             | Yearly<br>Average* | Monthly<br>Range |
|-----------------------------|--------------------|------------------|
| Allentown-Eastern Air Basin |                    |                  |
| Allentown                   | 0.71               | 0.09- 2.30       |
| Tatamy                      | 0.80               | 0.11- 2.74       |
| Bethlehem                   | 1.11               | 0.22- 4.15       |
| Easton                      | 1.86               | 0.39- 9.28       |
| Bethlehem East              | 1.46               | 0.24- 6.34       |
| Emmaus                      | 1.29               | 0.10- 7.62       |
| Allen Twp.                  | 0.55               | 0.06- 2.24       |
| Northampton                 | 0.76               | 0.10- 3.43       |
| (Basin average)             | 1.08               |                  |
| Beaver Valley Air Basin     |                    |                  |
| New Castle                  | 3.06               | 0.13-11.36       |
| Bessemer                    | 1.41               | 0.46- 2.21       |
| Koppel                      | 9.43               | 0.30-78.08       |
| Beaver Falls                | 5.03               | 0.42-12.65       |
| Vanport                     | 2.27               | 0.16- 5.44       |
| Rochester                   | 4.19               | 0.35-13.96       |
| Ambridge                    | 6.18               | 0.75-31.96       |
| Baden                       | 9.00               | 0.40-43.48       |
| Midland                     | 3.13               | 0.31- 8.60       |
| Brighton                    | 2.42               | 0.34- 9.74       |
| (Basin average)             | 4.73               |                  |
| Erie Air Basin              |                    |                  |
| Millcreek Twp.              | 0.45               | 0.12- 0.87       |
| Erie Central                | 2.04               | 0.26- 7.13       |
| Erie South                  | 1.16               | 0.21- 3.77       |
| Erie East                   | 1.62               | 0.23- 6.33       |

<sup>\*</sup>Based on one sample per month for 12 months.

Source: Dubin (1977).

Table A-23 (Continued)

|                      | Yearly<br>Average | Monthly<br>Range |
|----------------------|-------------------|------------------|
| Harborcreek Twp.     | 0.60              | 0.13- 3.40       |
| (Basin average)      | 1.20              |                  |
| Harrisburg Air Basin |                   |                  |
| Middletown           | 0.83              | 0.12- 2.10       |
| Swatara Twp.         | 0.65              | 0.18- 1.42       |
| Steelton             | 1.03              | 0.32- 2.98       |
| Lemoyne              | 0.92              | 0.28- 2.38       |
| Susquehanna Twp.     | 0.90              | 0.13- 2.55       |
| Harrisburg           | 0.81              | 0.15- 2.00       |
| Summerdale           | 0.61              | 0.14- 1.60       |
| (Basin average)      | 0.82              |                  |
| Johnstown Air Basin  |                   |                  |
| Westmont             | 1.00              | 0.15- 5.05       |
| Johnstown North      | 17.14             | 0.31-75.54       |
| Johnstown Central    | 4.41              | 0.24-10.69       |
| E. Conemaugh         | 16.30             | 1.21-50.74       |
| Johnstown South      | 4.78              | 0.32-23.01       |
| Hornerstown          | 3.17              | 0.13- 8.16       |
| (Basin average)      | 7.51              |                  |
| Lancaster Air Basin  |                   |                  |
| Lancaster Twp.       | 0.54              | 0.15- 1.77       |
| Lancaster General    | 1.01              | 0.21- 2.74       |
| Lancaster East       | 10.82             | 0.19-122.7       |
| Lancaster North      | 0.72              | 0.27- 2.53       |
| Lancaster West       | 0.91              | 0.25- 3.10       |
| Neffsville           | 0.68              | 0.11- 1.81       |
| Manheim Twp.         | 0.73              | 0.12- 2.75       |
| (Basin average)      | 2.28              |                  |

Table A-23 (Continued)

| ·                               | V 1               |                  |
|---------------------------------|-------------------|------------------|
|                                 | Yearly<br>Average | Monthly<br>Range |
| Managan Waller Adv Bards        | <del></del>       |                  |
| Monessen Valley Air Basin       |                   |                  |
| New Eagle                       | 2.78              | 0.31- 7.51       |
| Monessen                        | 56.38             | 1.05-206.3       |
| Lover                           | 2.61              | 0.61- 9.66       |
| Elco                            | 0.96              | 0.12- 3.94       |
| Brownsville                     | 9.05              | 0.59-57.00       |
| Charleroi                       | 2.47              | 0.13- 6.99       |
| (Basin average)                 | 12.69             | 40 EG            |
| Reading Air Basin               |                   |                  |
| Leesport                        | 0.56              | 0.07- 1.60       |
| Reading South                   | 0.94              | 0.18- 3.20       |
| Shillington                     | 1.02              | 0.10- 4.09       |
| Sinking Spring                  | 0.73              | 0.05- 2.26       |
| Reading Central                 | 0.83              | 0.17- 2.67       |
| Temple                          | 0.90              | 0.15- 3.73       |
| Laureldale                      | 0.94              | 0.20- 3.32       |
| (Basin average)                 | 0.85              |                  |
| Scranton-Wilkes-Barre Air Basin |                   |                  |
| Hanover Green                   | 0.40              | 0.09- 1.04       |
| Dickson City                    | 1.35              | 0.18- 3.32       |
| Jessup                          | 2.00              | 0.15-13.70       |
| Pittston                        | 1.49              | 0.14- 3.60       |
| Swoyersville                    | 1.67              | 0.42- 3.67       |
| Nanficoke                       | 0.94              | 0.11- 3.26       |
| Wilkes-Barre                    | 1.82              | 0.19- 9.00       |
| Scranton                        | 2.06              | 0.28- 4.25       |
| Dupont                          | 1.30              | 0.27- 2.41       |
| Avoca                           | 0.44              | 0.11- 0.97       |
| West Nanticoke                  | 0.79              | 0.14- 2.05       |
| (Basin average)                 | 1.32              |                  |

Table A-23 (Continued)

|                                  | Yearly<br>Average | Monthly<br>Range |
|----------------------------------|-------------------|------------------|
| Southeast Pennsylvania Air Basin |                   |                  |
| Pottstown                        | 1.06              | 0.36- 3.09       |
| Bristol                          | 0.91              | 0.20- 3.03       |
| Willow Grove                     | 1.05              | 0.32- 3.93       |
| Dowingtown                       | 0.69              | 0.19- 2.48       |
| Doylestown                       | 0.76              | 0.12- 3.21       |
| Media                            | 1.00              | 0.24- 3.11       |
| Chester                          | 0.56              | 0.14- 1.78       |
| Perkasie                         | 0.73              | 0.16- 2.53       |
| Quakertown                       | 0.48              | 0.08- 1.84       |
| West Chester                     | 0.81              | 0.11- 2.62       |
| Lansdale                         | 1.36              | 0.18- 4.57       |
| Conshohocken                     | 2.06              | 0.40- 3.24       |
| Phoenixville                     | 0.80              | 0.12- 2.47       |
| Morrisville                      | 0.79              | 0.07- 2.55       |
| Coatsville                       | 0.64              | 0.07- 1.42       |
| (Basin average)                  | 0.92              |                  |
| York Air Basin                   |                   |                  |
| York East                        | 0.98              | 0.17- 2.59       |
| York Central                     | 0.96              | 0.17- 3.13       |
| West Manchester Twp.             | 0.78              | 0.12- 3.38       |
| Manchester Twp.                  | 0.41              | 0.07- 1.12       |
| West York                        | 0.77              | 0.19- 2.16       |
| Springettsbury                   | 1.15              | 0.11- 7.49       |
| (Basin average)                  | 0.84              |                  |
| Altoona Area                     |                   |                  |
| Altoona Central                  | 3.49              | 0.29-17.10       |
| Altoona East                     | 5.80              | 0.31-22.20       |
| (Area average)                   | 4.64              |                  |

Table A-23 (Concluded)

|                      | Yearly<br>Average | Monthly<br>Range |
|----------------------|-------------------|------------------|
| Farrell-Sharon Area  |                   |                  |
| Farrell              | 2.46              | 0.44- 8.54       |
| Sharon               | 2.45              | 0.24- 9.22       |
| (Area average)       | 2.46              |                  |
| Williamsport Area    |                   |                  |
| Williamsport Central | 1.02              | 0.23- 4.14       |
| Williamsport East    | 1.28              | 0.15- 8.56       |
| (Area average)       | 1.15              |                  |

## 3. Charleston, South Carolina

BaP was analyzed for three collection sites in Charleston, South Carolina, which has no coke ovens. The data are summarized in Table A-24. The average concentration for the city was  $0.69~\rm ng/m^3$ .

Table A-24

DISTRIBUTION OF BAP CONCENTRATIONS IN AMBIENT AIR

AT CHARLESTON, SOUTH CAROLINA\*

(ng/m3)

| Site<br><u>Number</u> | Location                  | Sample<br>Size | Average | Range         |
|-----------------------|---------------------------|----------------|---------|---------------|
| 1                     | Radio Station WTMA        | 22             | 0.5711  | 0.0028-1.2409 |
| 2                     | Queen St. Fire Station    | 22             | 0.7441  | 0.1693-1.6787 |
| 3                     | Mt. Pleasant, Post Office | 22             | 0.7448  | 0.1995-1.9767 |
|                       | Total                     | 66             | 0.6866  | 0.0028-1.9767 |

<sup>\*</sup>There are no coke ovens in Charleston.

Source: Spangler and de Nevers (1975).

#### 4. Maryland Atmospheric Data

The Maryland State Division of Air Quality Control reports monthly composite BaP and BSO concentrations for many sites throughout the state. Data, primarily for 1976, are summarized in Table A-25. The Average annual BaP concentrations ranged from  $0.43~\mathrm{ng/m}^3$  for Harwood to  $6~\mathrm{ng/m}^3$  for Catonsville.

### 5. CHESS and CHAMP Site Data

Atmospheric BaP and BSO data have been recorded for a number of CHESS and CHAMP sites through out the country. These data are summarized in Table A-26. Average annual concentrations ranged from 0.63  $\,\mathrm{ng/m}^3$  for Thousand Oaks, California to 4.2  $\,\mathrm{ng/m}^3$  for one site in Birmingham, Alabama.

Table A-25

AMBIENT ATMOSPHERIC BaP AND BSO CONCENTRATIONS
FOR MARYLAND LOCATIONS

|    |                   | Sample | BaP (ng/m <sup>3</sup> ) |            | Sample | BSO (μg/m <sup>3</sup> ) |            |  |
|----|-------------------|--------|--------------------------|------------|--------|--------------------------|------------|--|
|    | Location          | Size*  | Average                  | Range      | Size*  | Average                  | Range      |  |
|    | Cumberland        | 12     | 4.48                     | 0.40-20.22 | 12     | 8.44                     | 6.03-18.14 |  |
|    | Hagerstown        | 12     | 1.40                     | 0.20- 3.87 | 12     | 4.74                     | 3.34- 7.40 |  |
|    | Adamstown         | 7      | 0.83                     | 0.31- 2.12 | -      | -                        | -          |  |
|    | Frederick         | 12     | 1.29                     | 0.18- 3.55 | 12     | 4.80                     | 3.48- 6.77 |  |
|    | Myersville        | 7      | 0.17                     | 0.05- 0.55 | _      | -                        | -          |  |
|    | Buckeystown       | 8      | 0.80                     | 0.16- 2.52 | -      | -                        | -          |  |
| 76 | Glen Burnie       | 11     | 1.03                     | 0.15- 2.82 | 12     | 4.84                     | 2.67- 7.76 |  |
|    | Harmons           | 12     | 0.54                     | 0.09- 2.10 | -      | -                        | -          |  |
|    | Harwood           | 12     | 0.43                     | 0.04- 1.13 | 12     | 2.93                     | 1.52- 4.51 |  |
|    | Linthicum         | 12     | 0.96                     | 0.15- 2.18 | 12     | 3.99                     | 2.21- 7.49 |  |
|    | Odenton           | 12     | 0.71                     | 0.08- 1.75 | 12     | 3.69                     | 1.93- 5.74 |  |
|    | Riviera Beach     | 12     | 0.80                     | 0.10- 2.79 | 12     | 4.25                     | 2.50- 6.14 |  |
|    | Annapolis         | 11     | 0.75                     | 0.10- 1.83 | 12     | 3.76                     | 2.29- 4.93 |  |
|    | Baltimore         |        |                          |            |        |                          |            |  |
|    | Lexington and Gay | 12     | 1.95                     | 0.41- 4.46 | 12     | 6.27                     | 4.34- 8.64 |  |
|    | Sun Avenue        | 12     | 2.03                     | 0.50- 4.43 | 12     | 6.88                     | 3.35- 9.50 |  |
|    | 1900 Argonne      | 12     | 1.21                     | 0.27- 3.51 | 12     | 4.21                     | 2.51- 7.24 |  |
|    | 5700 Reisterstown | 12     | 1.37                     | 0.42- 4.76 | 12     | 5.26                     | 3.25- 8.11 |  |
|    | 5700 Eastern      | 12     | 1.92                     | 0.38- 5.36 | 12     | 6.38                     | 4.25-10.06 |  |
|    |                   |        |                          |            |        |                          |            |  |

76

Table A-25 (Continued)

|                                  | Sample BaP (ng/m <sup>3</sup> ) |         | Sample     | BSO (μg/m <sup>3</sup> ) |         |            |
|----------------------------------|---------------------------------|---------|------------|--------------------------|---------|------------|
| Location                         | Size*                           | Average | Range      | Size*                    | Average | Range      |
| Baltimore (Continued)            |                                 |         |            |                          |         |            |
| Fonthill St                      | 12                              | 1.66    | 0.37- 4.80 | 12                       | 5.24    | 3.01- 8.68 |
| Cockeysville Ind Pk              | 11                              | 0.80    | 0.09- 4.83 | -                        | -       | -          |
| Cockeysville Police<br>Station   | 8                               | 0.50    | 0.12- 1.76 | 8                        | 4.11    | 2.15- 9.99 |
| Police Barracks                  | 12                              | 0.78    | 0.10- 2.06 | 12                       | 4.79    | 2.35- 7.40 |
| 3001 Eastern Blvd                | 11                              | 1.29    | 0.18- 3.97 | 11                       | 4.89    | 3.27- 6.60 |
| Catonsville                      | 12                              | 5.98    | 0.09- 2.08 | 12                       | 4.02    | 2.53- 6.22 |
| Dundalk (8801 Wise Ave)          | 10                              | 1.10    | 0.56- 2.42 | -                        | -       | -          |
| Edgemere                         | 10                              | 1.85    | 0.07- 2.60 | -                        | -       | -          |
| Essex                            | 12                              | 1.37    | 0.19- 4.36 | 12                       | 5.35    | 3.00- 7.98 |
| Fort Howard                      | 10                              | 2.39    | 0.38- 5.41 | 1.0                      | 4.79    | 2.64- 8.66 |
| Towson                           | 10                              | 0.75    | 0.09- 2.95 | 3                        | 5.48    | 4.16- 6.41 |
| Middle River                     | 2                               | 1.43    | 1.14- 1.71 | 2                        | 6.52    | 6.25- 6.79 |
| Dundalk (Kavanaugh Rd)           | 11                              | 1.61    | 0.53- 4.60 | _                        | -       | -          |
| Dundalk (Reg. Voc. Training)     | 10                              | 3.30    | 0.31-10.35 | -                        | -       | -          |
| Westminster                      | 12                              | 0.49    | 0.09- 1.49 | 12                       | 3.07    | 1.95- 4.78 |
| Gaithersburg                     | 10                              | 0.62    | 0.09- 2.13 | 10                       | 3.60    | 2.00- 5.17 |
| Silver Spring<br>(1901 Randolph) | 10                              | 1.14    | 0.09- 5.80 | 11                       | 4.83    | 2.51-11.69 |
| Kensington                       | 11                              | 0.59    | 0.09- 2.07 | 11                       | 4.26    | 3.05- 7.56 |

Table A-25 (Concluded)

|                                      | Sample                                                                                                                                  | BaP                                                                                                                                                                                                                                                                                                                                                     | $(ng/m^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BSO (μg/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Location                             | _Size*                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                 | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _Size*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Poolesville                          | 11                                                                                                                                      | 0.46                                                                                                                                                                                                                                                                                                                                                    | 0.06- 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.89- 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Silver Spring (Rock<br>Creek Forest) | 4                                                                                                                                       | 1.83                                                                                                                                                                                                                                                                                                                                                    | 0.58- 3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Rockville                            | 12                                                                                                                                      | 0.96                                                                                                                                                                                                                                                                                                                                                    | 0.07- 4.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.56- 8.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Bethesda                             | 4                                                                                                                                       | 1.25                                                                                                                                                                                                                                                                                                                                                    | 0.71- 1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Accokeek                             | 2                                                                                                                                       | 1.06                                                                                                                                                                                                                                                                                                                                                    | 0.73- 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Cheverly                             | 11                                                                                                                                      | 0.65                                                                                                                                                                                                                                                                                                                                                    | 0.17- 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.45- 6.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Largo                                | 1                                                                                                                                       | 1.30                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Laure1                               | 10                                                                                                                                      | 0.52                                                                                                                                                                                                                                                                                                                                                    | 0.09- 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.90- 5.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Orme                                 | 10                                                                                                                                      | 0.49                                                                                                                                                                                                                                                                                                                                                    | 0.08- 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.51- 5.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Oxon Hill                            | 8                                                                                                                                       | 0.70                                                                                                                                                                                                                                                                                                                                                    | 0.17- 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.08- 5.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Laplata                              | 10                                                                                                                                      | 0.34                                                                                                                                                                                                                                                                                                                                                    | 0.17- 1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.38- 4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Elkton                               | 12                                                                                                                                      | 1.02                                                                                                                                                                                                                                                                                                                                                    | 0.18- 2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.55- 6.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Cambridge                            | 11                                                                                                                                      | 0.62                                                                                                                                                                                                                                                                                                                                                    | 0.18- 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.55- 5.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Salisbury                            | 9                                                                                                                                       | 0.58                                                                                                                                                                                                                                                                                                                                                    | 0.10- 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.03- 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                      | Poolesville Silver Spring (Rock Creek Forest) Rockville Bethesda Accokeek Cheverly Largo Laurel Orme Oxon Hill Laplata Elkton Cambridge | Poolesville       11         Silver Spring (Rock Creek Forest)       4         Rockville       12         Bethesda       4         Accokeek       2         Cheverly       11         Largo       1         Laurel       10         Orme       10         Oxon Hill       8         Laplata       10         Elkton       12         Cambridge       11 | Location         Size*         Average           Poolesville         11         0.46           Silver Spring (Rock Creek Forest)         4         1.83           Rockville         12         0.96           Bethesda         4         1.25           Accokeek         2         1.06           Cheverly         11         0.65           Largo         1         1.30           Laurel         10         0.52           Orme         10         0.49           Oxon Hill         8         0.70           Laplata         10         0.34           Elkton         12         1.02           Cambridge         11         0.62 | Location         Size*         Average         Range           Poolesville         11         0.46         0.06- 1.40           Silver Spring (Rock Creek Forest)         4         1.83         0.58- 3.93           Rockville         12         0.96         0.07- 4.57           Bethesda         4         1.25         0.71- 1.68           Accokeek         2         1.06         0.73- 1.38           Cheverly         11         0.65         0.17- 1.50           Largo         1         1.30         -           Laurel         10         0.52         0.09- 1.37           Orme         10         0.49         0.08- 1.90           Oxon Hill         8         0.70         0.17- 1.50           Laplata         10         0.34         0.17- 1.68           Elkton         12         1.02         0.18- 2.73           Cambridge         11         0.62         0.18- 1.58 | Location         Size*         Average         Range         Size*           Poolesville         11         0.46         0.06- 1.40         12           Silver Spring (Rock Creek Forest)         4         1.83         0.58- 3.93         -           Rockville         12         0.96         0.07- 4.57         12           Bethesda         4         1.25         0.71- 1.68         -           Accokeek         2         1.06         0.73- 1.38         -           Cheverly         11         0.65         0.17- 1.50         11           Largo         1         1.30         -         -           Laurel         10         0.52         0.09- 1.37         10           Orme         10         0.49         0.08- 1.90         10           Oxon Hill         8         0.70         0.17- 1.50         8           Laplata         10         0.34         0.17- 1.68         10           Elkton         12         1.02         0.18- 2.73         12           Cambridge         11         0.62         0.18- 1.58         11 | Location         Size*         Average         Range         Size*         Average           Poolesville         11         0.46         0.06- 1.40         12         3.36           Silver Spring (Rock Creek Forest)         4         1.83         0.58- 3.93         -         -           Rockville         12         0.96         0.07- 4.57         12         4.51           Bethesda         4         1.25         0.71- 1.68         -         -           Accokeek         2         1.06         0.73- 1.38         -         -           Cheverly         11         0.65         0.17- 1.50         11         4.57           Largo         1         1.30         -         -         -           Laurel         10         0.52         0.09- 1.37         10         3.56           Orme         10         0.49         0.08- 1.90         10         3.56           Oxon Hill         8         0.70         0.17- 1.50         8         4.03           Laplata         10         0.34         0.17- 1.68         10         3.27           Elkton         12         1.02         0.18- 2.73         12         4.60 |  |

<sup>\*</sup> Number of months of data used in calculating the average and range.

Table A-26

ATMOSPHERIC BaP AND BSO CONCENTRATIONS FOR CHESS AND CHAMP SITES (1975 DATA)

|                    | Sample         | BaP (ng/m <sup>3</sup> ) |         | BSO (μg/m <sup>3</sup> ) |          |  |
|--------------------|----------------|--------------------------|---------|--------------------------|----------|--|
| Location *         | <u> Size**</u> | Mean                     | Range   | Mean                     | Range    |  |
| Charlotte, NC (1)  | 6              | 1.44                     | 0.3-2.7 | 1.79                     | 1.1-2.3  |  |
| Charlotte, NC (2)  | 6              | 2.36                     | 0.5-4.4 | 2.91                     | 2.2-3.8  |  |
| Riverhead, NY      | 12             | 0.66                     | 0.0-3.6 | 1.29                     | 0.6-2.0  |  |
| Queens, NY         | 12             | 1.07                     | 0.1-3.1 | 1.99                     | 0.9-2.8  |  |
| Brooklyn, NY       | 12             | 1.57                     | 0.3-4.0 | 3.70                     | 1.1-7.6  |  |
| Bronx, NY          | 12             | 2.11                     | 0.2-4.3 | 3.24                     | 2.0-3.6  |  |
| Ogden, Ut          | 12             | 2.05                     | 0.0-7.2 | 2.41                     | 0.7-8.8  |  |
| Salt Lake City, Ut | 12             | 2.37                     | 0.2-5.0 | 3.26                     | 1.6-7.7  |  |
| Kearns, Ut         | 12             | 1.20                     | 0.1-3.6 | 1.43                     | 0.7-3.2  |  |
| Magna, Ut          | 12             | 1.09                     | 0.1-2.9 | 1.48                     | 0.5-3.4  |  |
| Vista, CA          | 12             | 1.03                     | 0.1-4.9 | 2.07                     | 0.8-6.7  |  |
| Santa Monica, CA   | 6              | 1.46                     | 0.2-3.5 | 3.91                     | 1.1-6.1  |  |
| Thousand Oaks, CA  | 12             | 0.63                     | 0.1-1.4 | 2.31                     | 1.1-4.8  |  |
| Garden Grove, CA   | 12             | 2.42                     | 0.3-7.5 | 3.86                     | 0.8-11.9 |  |
| Glendora, CA       | 12             | 0.91                     | 0.1-2.2 | 4.13                     | 0.5-6.5  |  |
| West Covina, CA    | 12             | 1.98                     | 0.2-5.0 | 5.85                     | 2.6-9.5  |  |
| Anaheim, CA        | 12             | 2.36                     | 0.4-7.1 | 4.77                     | 1.6-11.2 |  |

<sup>\*</sup>Data for Birmingham and Chattanooga are given with the city coke oven data in Tables A-8 and A-15, respectively.

<sup>\*\*</sup>Number of months for which data are available; sample size for individual months generally ranged from 20 to 31 days.

#### Appendix B

## STATISTICAL EVALUATION OF BaP ATMOSPHERIC CONCENTRATION DATA RECORDED IN THE VICINITY OF COKE PLANTS

## A. General

This appendix presents a statistical evaluation of the BaP atmospheric concentration data recorded in the vicinity of coke plants. Factors addressed here include the following:

- What is the statistical distribution for atmospheric BaP concentrations over time at a given location?
- What errors are introduced by using estimated annual atmospheric concentrations, based on a small sample size?
- Can the average BaP concentrations around a coke plant be described as a mathematical function relating average concentration to distance from the plant?

## B. Statistical Distribution of 24-Hour BaP Atmospheric Concentrations

Because of changes in meteorological conditions and other factors, the atmospheric BaP concentration at a specified location in the vicinity of a coke plant will vary from day to day. The day-to-day variations in the recorded 24-hour concentrations form a statistical distribution. The long-term concentration for a specified location is generally characterized by some central parameter for the distribution like the arithmetic or geometric mean or the median. Obviously, the atmospheric concentration data have been found to follow a distribution having relatively many small values, with a few observations ranging to fairly high values. These are called skewed distributions, as contrasted with symmetrical distributions. They are sometimes found to follow what is known as two-or three-parameter lognormal distributions.

Figure B-l illustrates the cumulative statistical distribution for BaP atmospheric concentrations from some sampling locations. Because the

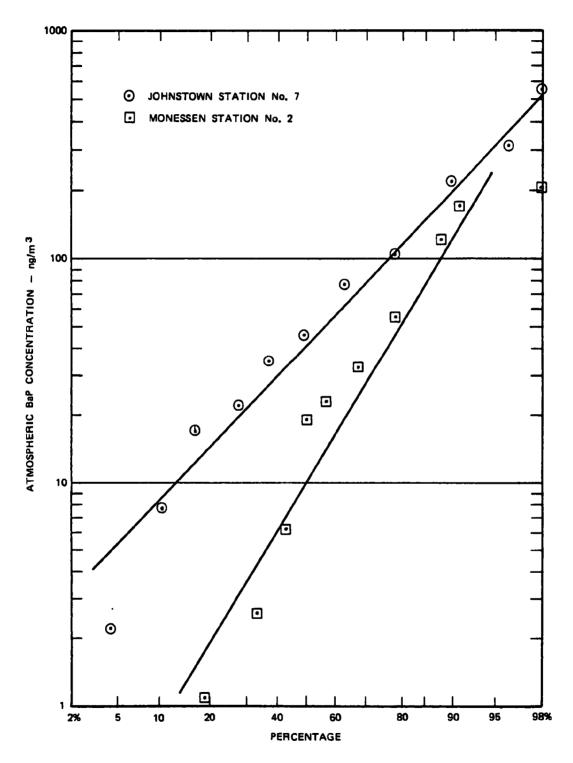



FIGURE B-1. STATISTICAL DISTRIBUTION FOR ATMOSPHERIC Bap CONCENTRATIONS

plotted points approximate a straight line, the statistical distributions might be approximated by a lognormal distribution. The central measure that best characterizes this type of distribution is the geometric rather than the arithmetic average. The geometric average for these types of distributions is smaller than the arithmetic average.

The properties of the lognormal distribution should be used when describing the probability that a particular BaP atmospheric concentration will occur at a specified location. However, the arithmetic average should be used when estimating expected population exposures. That is, the arithmetic average concentration when used with daily human ventilation rates gives the expected daily inhalation exposure. This expected daily inhalation exposure multiplied by 365 gives the estimated total annual exposure. The point here is that the arithmetic average should be used in estimating expected population exposures, and the properties of the lognormal distribution should be used in estimating the probability of a specified exposure.

Table B-1 summarizes the arithmetic and geometric average and standard deviations for samples recorded at a number of stations. It is of interest and potentially useful that the coefficient of variation (standard deviation divided by the average) has a value near 1 (i.e., the standard deviation generally equals the average).

## C. Precision of Estimates Based Upon Small Sample Sizes

Most of the ambient sampling data available for this study are based on 24-hour samples collected during limited sampling days. The ambient concentrations recorded for these dates, for a given location, are averaged and used as an estimate of the annual average concentration for that location. It is, therefore, desirable to know how well an estimated average annual concentration approximates the actual annual concentration.

From a statistical viewpoint, it is first necessary to know if the sampling dates or period of dates were selected at random. In fact, sampling was probably conducted when people get around to it or are forced to do it and not because of any particular meteorological or

Table B-1
STATISTICAL SUMMARY FOR SAMPLING DATA TAKEN FROM A NUMBER OF LOCATIONS

|                        |                |         | Arithmetic            |                                 | Coo     | matud a               |
|------------------------|----------------|---------|-----------------------|---------------------------------|---------|-----------------------|
| Sampling Location      | Sample<br>Size | Average | Standard<br>Deviation | Coefficient<br>of<br>Variation* | Average | Standard<br>Deviation |
| Monessen, 2            | 29             | 40.8    | 58.9                  | 1.4                             | 10.0    | 7.6                   |
| Monessen, 6            | 28             | 2.7     | 2.8                   | 1.0                             | 1.0     | 2.8                   |
| Monessen, 7            | 31             | 22.8    | 26.3                  | 1.2                             | 10.1    | 4.6                   |
| Johnstown, 1           | 30             | 3.6     | 3.3                   | 0.9                             | 2.6     | 2.3                   |
| Johnstown, 2           | 32             | 13.8    | 19.8                  | 1.4                             | 8.6     | 2.5                   |
| Johnstown, 3           | 33             | 7.7     | 7.5                   | 1.0                             | 5.7     | 2.2                   |
| Johnstown, 4           | 32             | 23.4    | 43.2                  | 1.8                             | 13.2    | 2.5                   |
| Johnstown, 5           | 28             | 6.0     | 3.0                   | 0.5                             | 5.2     | 1.8                   |
| Johnstown, 6           | 31             | 6.8     | 5.0                   | 0.7                             | 5.6     | 1.9                   |
| Johnstown, 7           | 34             | 85.3    | 112.0                 | 1.3                             | 44.5    | 3.6                   |
| Johnstown, 8           | 31             | 19.7    | 28.0                  | 1.4                             | 8.3     | 3.9                   |
| Utah, 1                | 9              | 2.1     | 1.3                   | 0.6                             | 1.7     | 2.2                   |
| Utah, 2                | 6              | 3.8     | 0.9                   | 0.2                             | 3.7     | 1.3                   |
| Utah, 3                | ğ              | 3.2     | 2.0                   | 0.6                             | 2.6     | 1.9                   |
| Utah, 4                | 11             | 2.4     | 1.6                   | 0.7                             | 2.0     | 2.0                   |
|                        | 11             | 3.1     | 1.9                   | 0.6                             | 2.5     | 2.2                   |
| Utah, 5                | 11             | 1.6     | 1.0                   | 0.6                             | 1.4     | 1.9                   |
| Utah, 6                | 3              | 2.1     | 1.3                   | 0.6                             | 1.8     | 2.0                   |
| Utah, 7                | 11             | 1.5     | 1.0                   | 0.7                             | 1.2     | 2.2                   |
| Utah, 8                | 11             | 0.1     | 0.1                   | 1.0                             | 0.1     | 2.9                   |
| Utah, 9                | 9              | 0.8     | 0.8                   | 1.0                             | 0.5     | 3.4                   |
| Utah, 10               | 5              | 0.6     | 0.6                   | 1.0                             | 0.3     | 1.8                   |
| Gadsden, 1             | 5              | 1.9     | 1.4                   | 0.7                             | 1.6     | 1.9                   |
| Gadsden, 2             | 18             | 1.5     | 2.0                   | 1.3                             | 0.3     | 13.2                  |
| Duluth, 1<br>Duluth, 2 | 20             | 0.2     | 0.3                   | 1.5                             | 0.1     | 17.7                  |

<sup>\*</sup>The standard deviation divided by the average.

seasonal reasons. If this is the case, it might be assumed that the sampling period was selected in a quasirandom manner.

The next point has to do with weighting the samples for individual dates by the fraction of time the meteorological condition on that date occurs during the year. This generally is not done because in some cases the meteorological conditions at the time of sampling are not reported or because representative sampling is not available for a range of probable meteorological conditions. If it can be assumed that the sampling period is taken at random and that no weighting of the samples is to be made, the estimation reduces to a simple statistical random sampling problem. In this case, the average of the available data becomes an unbiased estimate of the average concentration over the year. However, the number of dates for which data are available greatly affects the precision of the estimated annual average.

The precision of an estimated value is measured by its standard deviation. For a simple random sampling problem, the standard deviation for an estimated annual average is given by:

$$P = Sf$$

where

P = the standard deviation of the estimated annual average.

S = the calculated standard deviation for the sampling data.

$$f = \sqrt{\frac{365-n}{365n}}$$

n = the sample size.

The factor labeled as f is called the finite sample correction factor, some values of which follow:

|             | Finite Sample     |
|-------------|-------------------|
| Sample Size | Correction Factor |
| 1           | 0.999             |
| 5           | 0.444             |
| 10          | 0.319             |
| 20          | 0.217             |
| 30          | 0.175             |
| 50          | 0.131             |
| 100         | 0.085             |
| 200         | 0.048             |
| 365         | 0.000             |
|             |                   |

Note that the finite sample correction factor reduces in size rapidly with additional sampling when the sample size is small. Depending on the standard deviation for the sampling data, one might reasonably want sample sizes in excess of 30. Estimates based on sample sizes of less than 10 might be suspected of being quite imprecise.

# D. Evaluation of Ambient Concentration Data as a Function of Distance from Coke Plant Locations

Available ambiend data that have been recorded in the vicinity of coke plants (Appendix A) are evaluated to determine if it is mathematically possible to represent the relationship of BaP concentration as a function of distance from the coke plant. To investigate the feasibility of an approach using recorded ambient concentrations, the average atmospheric concentrations have been plotted as a function of distance from the coke plants (Figures B-2 through B-14). As might be expected, the atmospheric concentrations decrease with increasing distance from the coke plants, thus indicating that the coke plants are a possible source of BaP. The moderate amount of scatter in these relationships is probably due to such factors as the location of the sampling site with respect to the coke plant, local meteorological conditions, and local geography. In addition, because many of the areas have several coke plants, it is difficult to characterize the contribution to the environment for an individual plant. If ambient data are to be used to characterize human exposure, it would be desirable to have data from many monitoring sites located at different directions from the coke plant and to have data recorded for each monitoring site over a large number of days. Much of the recorded data do not meet these requirements; the number of sampling stations by plant ranged from 1 to 16.

The relationship of average atmospheric concentration to distance does appear to follow a mathematical function of the type:

$$C = AD^B$$
,

where

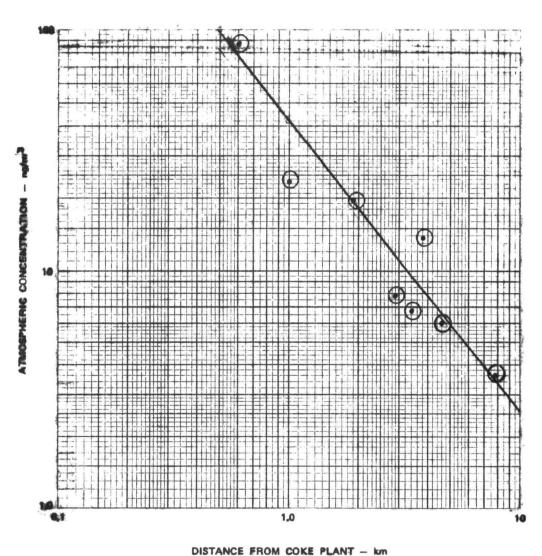



FIGURE B-2. ATMOSPHERIC CONCENTRATIONS OF BaP FOR JOHNSTOWN, PENNSYLVANIA

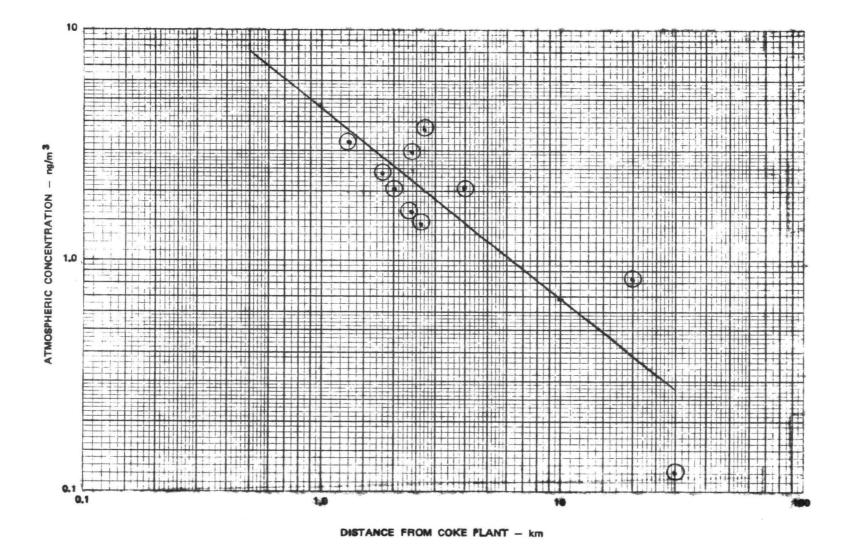



FIGURE 8-3. ATMOSPHERIC CONCENTRATIONS OF BaP FOR GENEVA, UTAH

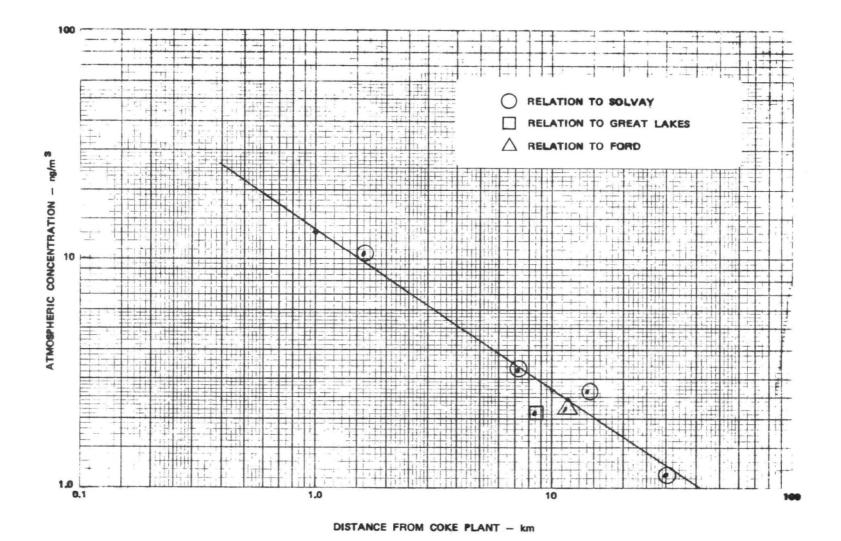



FIGURE B-4. ATMOSPHERIC CONCENTRATIONS OF BaP FOR WAYNE COUNTY, MICHIGAN

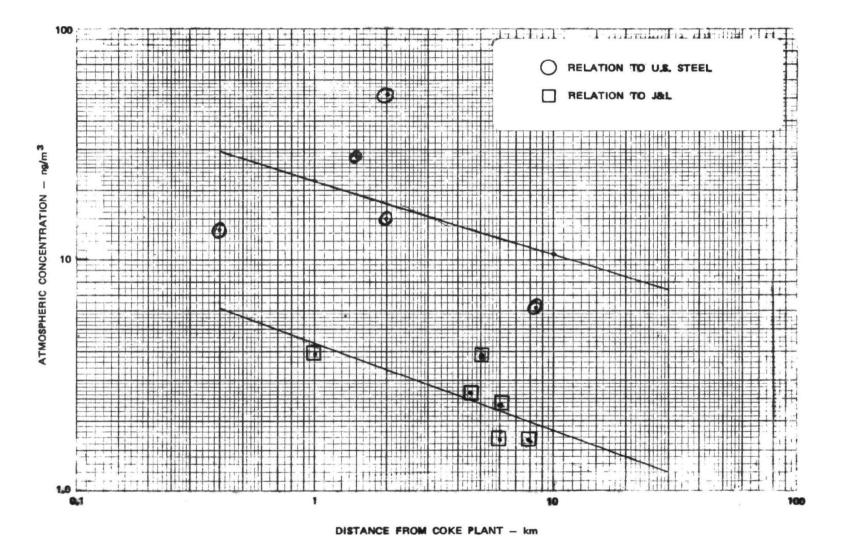



FIGURE B-5. ATMOSPHERIC CONCENTRATIONS FOR BaP FOR ALLEGHANY COUNTY, PENNSYLVANIA

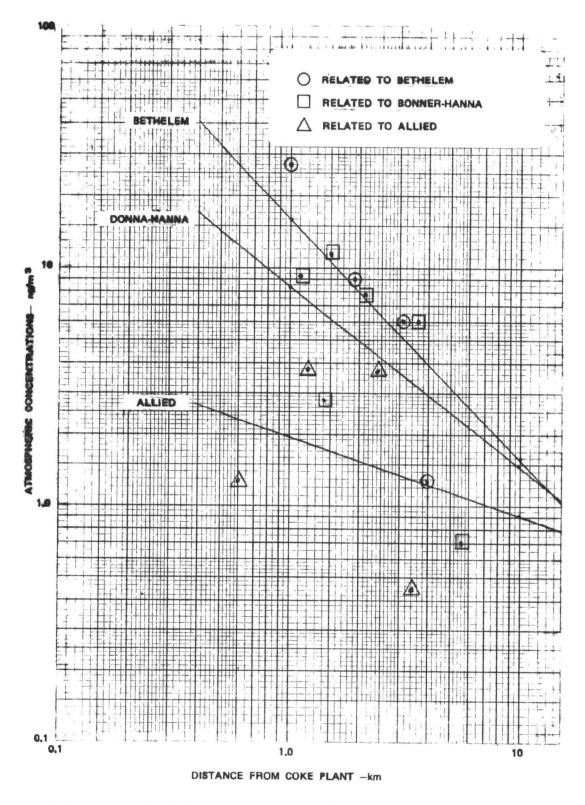



FIGURE B-6. ATMOSPHERIC CONCENTRATIONS OF BaP FOR BUFFALO, NEW YORK

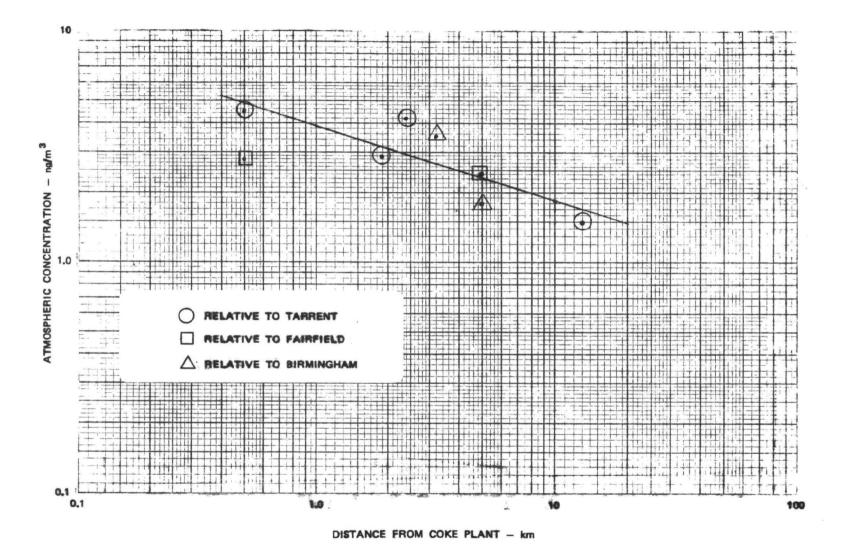



FIGURE B-7. ATMOSPHERIC CONCENTRATIONS OF BaP FOR BIRMINGHAM, ALABAMA

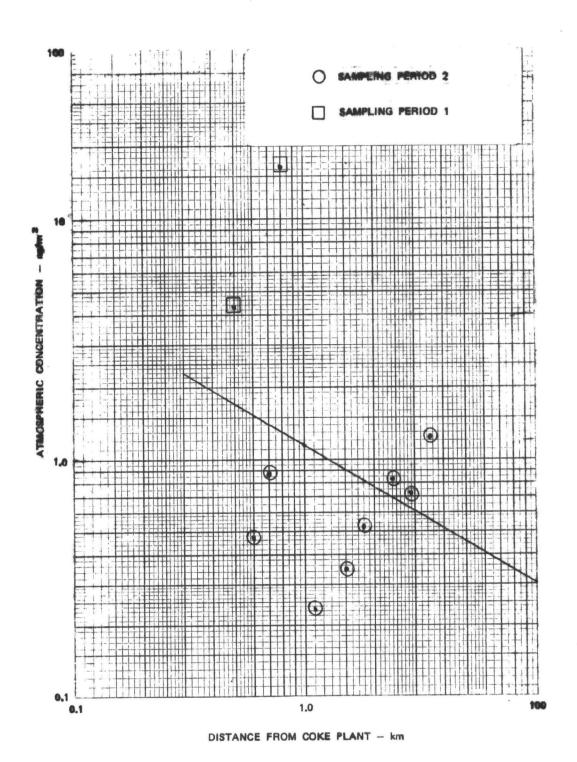



FIGURE B-8. ATMOSPHERIC CONCENTRATIONS OF BaP FOR GRANITE CITY, ILLINOIS

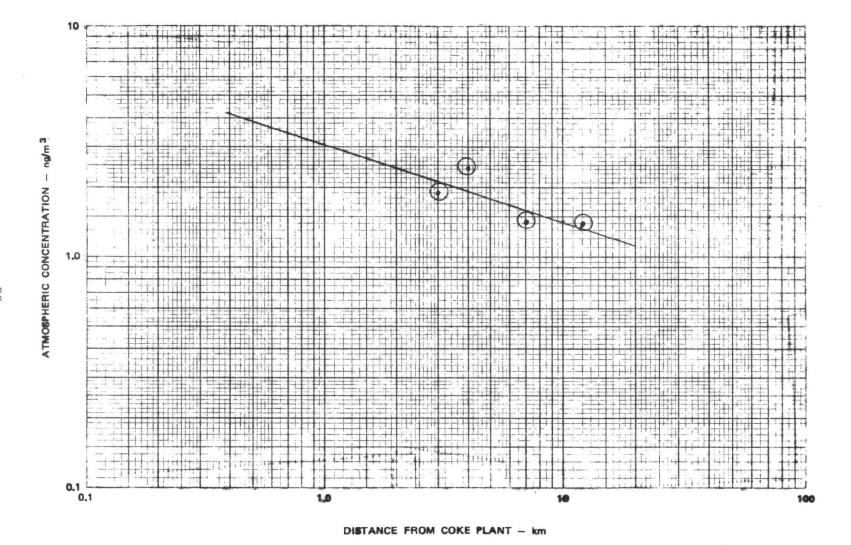
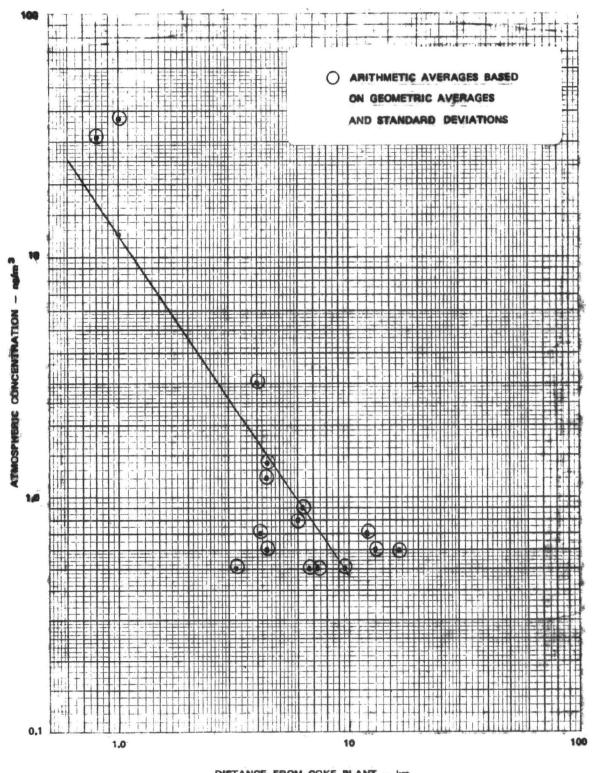




FIGURE B-9. ATMOSPHERIC CONCENTRATIONS OF BaP FOR SPARROWS POINT, MARYLAND



DISTANCE FROM COKE PLANT - km

FIGURE B-10. ATMOSPHERIC CONCENTRATIONS OF BaP FOR CLEVELEND, OHIO

94

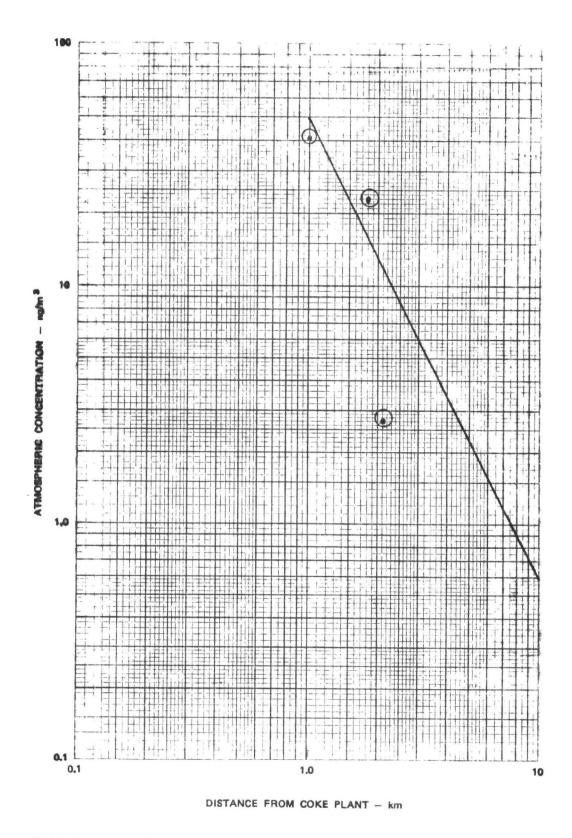



FIGURE B-11. ATMOSPHERIC CONCENTRATIONS OF BaP FOR MONESSEN, PENNSYLVANIA

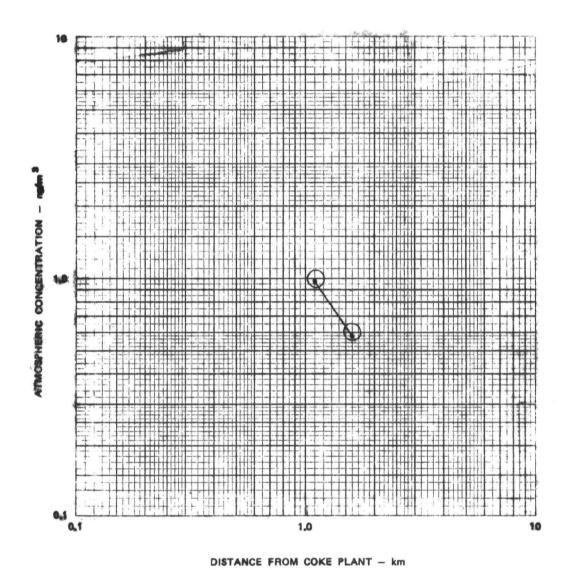



FIGURE 8-12. ATMOSPHERIC CONCENTRATIONS OF BaP FOR GADSDEN, ALABAMA

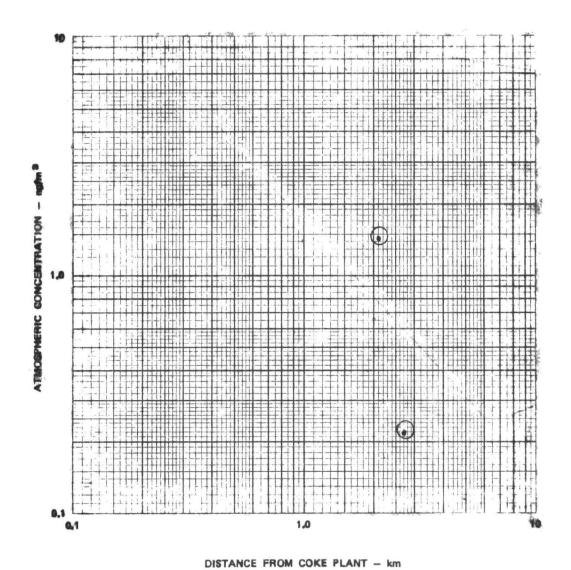



FIGURE B-13. ATMOSPHERIC CONCENTRATIONS OF BaP FOR DULUTH, MINNESOTA.

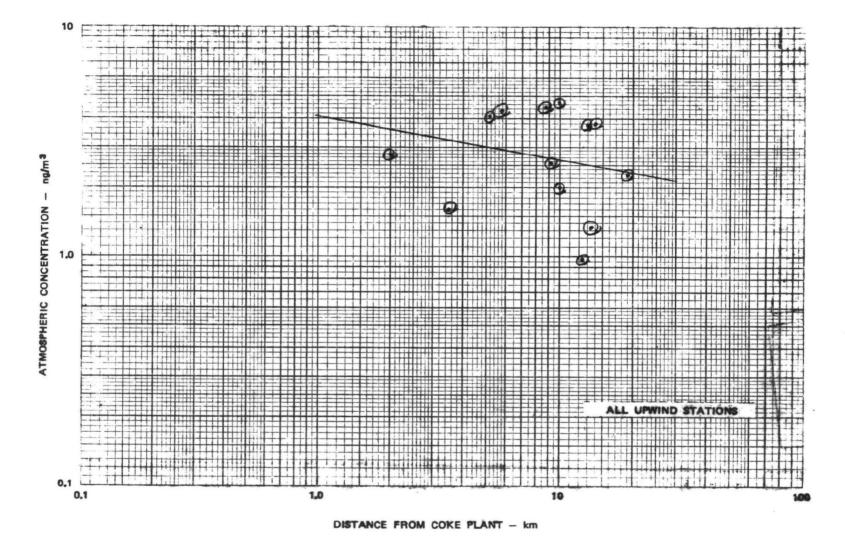



FIGURE B-14. ATMOSPHERIC CONCENTRATIONS OF BaP FOR PHILADELPHIA, PENNSYLVANIA

- C = the average concentration at some distance from the coke plant.
- A,B = model parameters fit by regression techniques.
- D = the distance from the plant.

Least squares regression techniques have been used to fit the data to this mathematical function for each coke plant for which data are available. The results of this evaluation are given in Table B-2. The regression coefficients given in Table B-2 indicate how well the data fit the function. For most cases, the regression coefficients ranged from 0.5 to 1.0, suggesting fairly good approximations. The coke plants with only two monitoring stations showed, as expected, regression coefficients with a value of 1. The model parameters based on actual ambient data can be compared to similar fits to the atmospheric modeling data conducted by Youngblood (1977). Two conditions are given in Table B-2 for comparison (one for a dirty plant and one for a clean plant).

The magnitude of the model parameter A relates to the amount of BaP emitted from the source, and the model parameter B relates to decay in the concentration versus distance function. Note that for all coke locations with more than sampling stations on Table B-2 the B parameter varies between -0.32 to -1.42 with an average of -0.9. When locations that have more than one coke plant are also excluded, the parameter has an average value of -1.0. This compares favorably with the modeling data, which give a value of B of about -0.95.

Table B-2
ESTIMATED PARAMETER VALUES FOR REGRESSION
APPROXIMATIONS TO AMBIENT DATA

|                    | Number of | Model F  | arameters | Regression                  |
|--------------------|-----------|----------|-----------|-----------------------------|
| Location           | Stations  | <u>A</u> | В         | Coefficient(R) <sup>2</sup> |
| Johnstown          | 8         | 42.86    | ~1.22     | 0.96                        |
| Gadsden            | 2         | 1.28     | -1.62     | 1.00                        |
| Duluth             | 2         | 379.39   | -7.50     | 1.00                        |
| Monessen           | 3         | 49.99    | -2.92     | 0.64                        |
| Utah               | 10        | 4.70     | -0.84     | 0.76                        |
| Wayne County       | 6         | 13.09    | -0.69     | 0.92                        |
| Buffalo - Beth.    | 5         | 15.96    | -0.99     | 0.79                        |
| Buffalo - D.H.     | 7         | 8.40     | -0.75     | 0.60                        |
| Buffalo - Allied   | 4         | 1.96     | -0.33     | 0.06                        |
| Cleveland          | 16        | 12.42    | -1.42     | 0.72                        |
| Pittsburgh - USS   | 5         | 22.00    | -0.32     | 0.16                        |
| Pittsburgh - J&L   | 6         | 4.32     | -0.37     | 0.52                        |
| Tarrant            | 4         | 3.98     | -0.33     | 0.75                        |
| Granite City       | 10        | 11.50    | -0.57     | 0.10                        |
| Sparrows Point     | 4         | 3.07     | -0.33     | 0.61                        |
| Fairfield          | 2         | 2.67     | -0.07     | 1.00                        |
| Dirty Plant Model  | 5         | 135.84   | -0.96     | 0.99                        |
| Clean Plant Model* | 4         | 60.66    | -0.95     | 0.98                        |

 $<sup>{}^{\</sup>star}$ Uses only data for distances of 1 km and greater.

## Appendix C

## DETAILED ESTIMATES OF POPULATIONS AND Bap CONCENTRATIONS FOR INDIVIDUAL COKE FACILITIES

This appendix includes the detailed population and BaP concentration estimates for each defined geographic population ring (i.e., 0 to 0.5, 0.5 to 1, 1 to 3, 3 to 7, and 7 to 15 km) about each coke facility. These estimates are given in Tables C-1 and C-2. The concentrations include the summation of atmospheric concentrations from both the cokeovens and background. The population within a geographic ring was considered not to be excessivly exposed to coke-oven emissions if its estimated average annual BaP concentration was less than 0.1 ng/m<sup>3</sup>. For some locations, several separate coke facilities are located within 15 km of each other. In these cases, it was necessary to estimate geographic population ring overlaps and total ring BaP concentrations.

Table C-1

DETAILED BaP POPULATION EXPOSURES (ng/m<sup>3</sup>)

Coke Emissions Plus Background

|           | Distance from Coke Facility (km) |               |            |               |            |               |            |               |            |               |
|-----------|----------------------------------|---------------|------------|---------------|------------|---------------|------------|---------------|------------|---------------|
|           | 0 -                              | 0.5           | 0.5        | - 1           |            | - 3 '         |            | - 7           | 7 -        | 15            |
| Site No.* | Population                       | Concentration | Population | Concentration | Population | Concentration | Population | Concentration | Population | Concentration |
|           |                                  |               |            | _             |            | _             |            | _             | 070 054    | _             |
| 1         | 388                              | F             | 1,756      | F             | 13,880     | F             | 114,873    | F             | 278,354    | F             |
| 2         | 0                                | 1.5           | 0          | 0.9           | 0          | 0.6           | 5,843      |               | 7,802      |               |
| 3         | 0                                | 15.0          | 0          | 8.2           | 21,495     | 3.3           | 80,440     | 1.6           | 196,316    | 0.9           |
| 4         | 478                              | 6.0           | 916        | 2.0           | 19,693     | <del></del>   | 36,345     |               | 21,099     |               |
| 5         | 1,656                            | 1.7           | 532        | 1.1           | 36,497     | 0.7           | 158,506    |               | 283,180    |               |
| 6         | 975                              | F             | 5,279      | F             | 28,195     | F             | 120,414    | P             | 297,002    | F             |
| 7         | 0                                | 5.0           | 0          | 4.2           | 22,105     | 3.1           | 120,356    | 2.4           | 256,857    | F             |
| 8         | 0                                | 19.0          | 1,416      | 10.0          | 9,493      | 4.5           | 51,629     | 2.5           | 161,178    | 1.8           |
| 9         | 0                                | 10.0          | 0          | 5.6           | 0          | 2.5           | 0          | 1.4           | 52         | 0.9           |
| 10        | 0                                | 2.0           | 2,244      | 1.4           | 30,475     |               | 46,890     |               | 704,796    |               |
| 11        | 827                              | 7.3           | 7,307      | 4.2           | 58,244     | 2.0           | 248,247    | 1,2           | 1,153,057  |               |
| 12        | 0                                | 19.0          | 0          | 10.0          | 0          | 4.3           | 2,828      | 2.2           | 14,649     |               |
| 13        | 2,618                            | 4.8           | 2,494      | 2.9           | 27,666     | 1.4           | 187,310    |               | 1,223,577  |               |
| 14        | Ō                                | 19.0          | 0          | 11.0          | 0          | 4.4           | 16,253     | 2.2           | 73,329     | 1.4           |
| 15        | 57                               | 5.4           | 8,176      | 3.2           | 71,661     | 1.7           | 207,269    | 1.1           | 444,465    | 0.9           |
| 16        | 512                              | 2.1           | 3,059      | 1.5           | 36,083     | 1.0           | 42,851     |               | 24,392     |               |
| 17-18**   | 0                                | 87.0          | 53         | 47.0          | 21,279     | 18.0          | 51,533     | 7.6           | 520,919    | 3.9           |
| 19        | 0                                | 68.0          | 33         | 37.0          | 26,829     | 14.0          | 122,882    | 6.1           | 265,439    | 3.2           |
| 20        | 99                               | 39.0          | 482        | 21.0          | 25,740     | 8.4           | 70,004     | 3.8           | 637,625    | 2.1           |
| 21        | 552                              | 30.0          | 0          | 16.0          | 15,511     | 6.2           | 35,072     | 2.7           | 90,904     | 1.5           |
| 22        | 11                               | 4.3           | 3,416      | 3.5           | 15,948     | 2.5           | 97,933     | 1.9           | 481,929    |               |
| 23        | 0                                | F             | 3,008      | , F           | 37,283     | F             | 289,066    | F             | 1,190,455  | F             |
| 24        | Õ                                | F             | 2,197      | ` F           | 46,224     | F             | 322,403    | F             | 1,274,124  | F             |
| 25        | ŏ                                | F             | 51         | F             | 33,878     | F             | 172,788    | F             | 892,126    | F             |
| 26        | 991                              | 2.2           | 3,901      | 1.3           | 61,720     | 0.8           | 255,071    |               | 727,327    |               |
| 27        | 0                                | 4.2           | 0          | 2.0           | 4,219      | 0.8           | 7,036      |               | 76,894     |               |
| 28        | 3,368                            | 3.9           | 2,450      | 2.0           | 30,734     | 0.9           | 224,719    | 0.6           | 714,782    |               |
| 29        | 3,500                            | 2.7           | 202        | 2.1           | 7,874      | 1.6           | 111,218    | 1.2           | 601,056    |               |
| 30        | ň                                | F             | 3,113      | F             | 17,140     | F             | 138,521    | F             | 531,748    | F             |
| 31        | 1,184                            | P             | 2,537      | F             | 58,527     | F             | 257,202    | F             | 533,320    | F             |
| 32        | 1,104                            | 23.0          | 2,373      | 13.0          | 11,701     | 5.1           | 55,346     | 2.4           | 37,066     | 1.4           |
|           | 6                                | 18.0          | 2,608      | 9.7           | 8,567      | 3,7           | 57.955     | 2.0           | 83,131     | 1.2           |
| 33        | 0                                | 14.0          | 2,608      | 7.9           | 455        | 3.3           | 749        | 1.7           | 17,189     | 1.1           |
| 34        | U                                | 14.0          | U          | 1.7           | 433        | 3.3           | , , ,      |               | 2.,107     |               |

65

1,300

Table C-1 (Concluded)

Distance from Coke Facility (km) 7 - 15 0 - 0.50.5 - 11 - 3 3 - 7 Site No. Population Population Concentration Population Concentration Population Concentration Population Concentration Concentration 35 0 2.1 0 1.4 10,963 0.9 30,503 50,851 36 0 12.0 0 6.4 5,352 2.8 34,067 1.5 24,213 1.0 37 663 8.4 1,597 4.7 22,961 2.0 155,445 1.0 258,780 0.7 38 1,530 42.0 4,228 25.0 73,580 4.5 399,565 2.3 859,264 \_\_ 1.5 17,663 1.0 40.897 152,877 --39 2.4 71 1.0 40 0 13.0 0 6.9 20,260 3.0 82,028 1.6 96,129 41 0 11.0 1,986 6.4 45,234 2.9 147,771 1.6 133,429 1.2 42 13 20.0 2.858 72,578 4.4 378,615 2.1 860,216 1.3 11.0 43 18.0 33,723 3.8 115,698 1.9 164,425 1.2 0 4.074 9.2 1.3 734,938 1.0 44 6.4 3.8 26,142 1,9 110,829 0 45-46\*\* 1.4 3.9 64,472 2.0 229,293 3,960 16.0 1,593 9.1 42,961 2.2 47 1.804 100.0 870 50.0 35,460 17.0 51,502 5.2 38,180 573 1.7 12,276 1.2 91,115 1.0 48 3.3 0 5.4 0 1.4 19,922 4.0 61,371 2.1 116,901 49 0 16.0 9.2 115,372 F 396,226 F 748,696 P 50 F 10,170 F 1.0 40,701 51 2,628 2.8 10,041 1.9 56,243 1.2 87,797 --1.3 54,405 3.4 486,896 1.8 1,685,267 52 2,433 14.0 4,526 7.8 53 F 75 F 31,991 F 122,412 F 632,088 F 83,779 F F 1,365 F 16,819 F F 407,475 54 1,024 2.0 18.0 30,671 7.4 117,606 3.4 354,575 55 2,374 34.0 1,757 50.0 1,559 38.0 22,763 10.0 42,498 2.0 80,359 56 0.7 81,104 117,888 57 1.2 16,595 1,185 1.8 5,483 2.1 99,968 0.9 350,402 0.4 58 6 11.0 n 5.7 4,866 59 0 1.9 1,046 1.0 2,219 0.3 8,902 --0 3.5 60 10.0 0 5.8 3,044 2.6 28,887 1.2 72,123 19 61-62\*\* 16.0 3,570 6.9 8,598 3.4 0 79.0 0 43.0 0 0.9 1,410 0.7 0 3.4 0 1.6 63 0 6.0 0 9.8 20,971 4.0 39,901 1.9 65,031 1.1 64 3 18.0

43,000

1.2

219,000

0.9

NE

3.1

4.100

2.0

Site numbers correspond to coke facilities listed in Table III-3.

<sup>\*\*</sup>Indicates that the two facilities were treated as though they were colocated.

F - Indicates that one or more coke facilities are located within 15 km of that facility. Estimated concentrations are given in Table C-2.

<sup>--</sup> Indicates that the atmospheric BaP concentration due to the coke facility was less than 0.1 ng/m<sup>3</sup>.

Table C-2

BaP EXPOSURES FOR PERSONS IN LOCATIONS HAVING
MORE THAN ONE COKE FACILITY

| Location               | Exposed<br>Population | Exposure<br>Concentration<br>(ng/m <sup>3</sup> ) |
|------------------------|-----------------------|---------------------------------------------------|
| Birmingham, Alabama    |                       |                                                   |
| 9                      | 975                   | 8.2                                               |
|                        | 388                   | 5.8                                               |
|                        | 14,025                | 5.6                                               |
|                        | 7,035                 | 4.5                                               |
|                        | 28,054                | 3.0                                               |
|                        | 110,000               | 2.6                                               |
|                        | 135,893               | 1.6                                               |
| Detroit, Michigan      |                       |                                                   |
|                        | 51                    | 12.0                                              |
|                        | 5,000                 | 8.1                                               |
|                        | 2,197                 | 7.8                                               |
|                        | 41,000                | 6.7                                               |
|                        | 3,008                 | 4.5                                               |
|                        | 19,900                | 4.0                                               |
|                        | 330,000               | 3.6                                               |
|                        | 14,913                | 3.4                                               |
|                        | 1,274,124             | 2.1                                               |
| Buffalo, New York      |                       |                                                   |
|                        | 3,113                 | 22.0                                              |
|                        | 1,184                 | 17.0                                              |
|                        | 19,000                | 12.0                                              |
|                        | 2,537                 | 10.0                                              |
|                        | 11,300                | 8.0                                               |
|                        | 39,000                | 5.0<br>1.6                                        |
|                        | 533,000               | 1.0                                               |
| Pittsburg, Pennsylvani | a                     | 20. 0                                             |
|                        | 1,024                 | 30.0                                              |
|                        | 1,365                 | 24.0<br>13.0                                      |
|                        | 83,800                | 10.0                                              |
|                        | 407,500<br>10,170     | 4.8                                               |
|                        | 147,363               | 3.0                                               |
|                        | 396,226               | 2.0                                               |
|                        | 16,819                | 1.8                                               |
|                        | 10,017                | 1.0                                               |

#### **BIBLIOGRAPHY**

- Andelman, J. B. and M. J. Suess, "Polynuclear Aromatic Hydrocarbons in the Water Environment," World Health Organization, 43:479-508 (1970).
- Antel, M., personal communication (May 1977).
- Department of Environmental Resources, "Monessen Area Air Quality Study, Monessen, Pennsylvania," Commonwealth of Pennsylvania (1977A).
- Department of Environmental Resources, "Johnstown Air Basin Air Quality Study, Johnstown, Pennsylvania," Commonwealth of Pennsylvania (1977B).
- Department of Environmental Resources, "1976 Pennsylvania Air Quality Surveillance System Air Quality Report," Commonwealth of Pennsylvania (April 1977C).
- Dubin, R., personal communication, Pennsylvania Department of Environmental Resources (May 1977).
- Ek, A., private correspondence with B. E. Suta, Allegheny County Health Department (May 2, 1977).
- Federal Register, "Exposure to Coke Oven Emissions," Occupational Safety and Health Administration, 41(206):46742-46790 (October 22, 1976).
- Gorelova, N. D., P. P. Dikun, L. D. Kostenko, O. P. Gretskaya, and A. V. Emshanova, "Detection of the Possible Presence of 3,4-Benzopyrene in Fresh Fish," Novosti Onkol, 8-12 (1971).
- Grimmer, G., "Carcinogenic Hydrocarbons in the Human Environment," Deut. Apoth.-Ztg, 108(16):529-533 (1968).
- Jungers, R. H., "BaP Analysis of Duluth Samples," memorandum to J. Manning, U.S. Environmental Protection Agency (February 2, 1977A).
- Jungers, R. H., "BaP Analysis, Alabama," memorandum to J. Manning, U.S. Environmental Protection Agency (February 4, 1977B).
- King, R. B., J. S. Fordyce, A. C. Antoine, H. F. Leibecki, H. E. Neustadter, and S. M. Sidik, "Extensive One-Year Survey of Trace Elements and Compounds in the Airborne Suspended Particulate Matter in Cleveland, Ohio," Lewis Research Center (1976).
- Keystone Coal Industry Manual (McGraw-Hill Publications, New York, New York, 1975).

- Kulujian, N. J., "By-Product Coke Battery Compliance Evaluation," PEDCo-Environmental Specialists, Inc. (1975).
- Lazenka, C., private communications to Ben Suta, City of Philadelphia, Department of Public Health (May 9, 1977).
- Manning, J., "Coke Oven Dispersion Analysis for BaP and BSO," memorandum, U.S. Environmental Protection Agency (March 18, 1977).
- Manning, J., personal communication (August 1977).
- National Academy of Sciences, "Particulate Polycyclic Organic Matter--Report on Biological Effects of Atmospheric Pollutants," Report No. PB-212 940/1 (1972).
- NIOSH, "Correlations Among Log Concentrations of 13 Polynuclear Aromatic Compounds (PNAs) and the Log Concentrations of the Benzene Soluble Fraction," memorandum (December 6, 1974).
- Radding, S B., T. Mill, C. W. Gould, D. H. Liu, H. L. Johnson, D. C. Bomberger, and C. V. Fojo, "The Environmental Fate of Selected Polynuclear Aromatic Hydrocarbons," prepared by Stanford Research Institute for the Environmental Protection Agency, Report No. EPA 560/2-75-009 (1976).
- Shabad, L. M. and Y. L. Cohan, "Contents of Benzo(a)pyrene in Some Crops,"

  Arch. Geschwulstforsch, 40(3):237-243 (1972).
- Sheridan, E. T., "Supply and Demand for United States Coking Coals and Metallurgical Coke," U.S. Department of the Interior (1976).
- Spangler, C. and N. deNevers, "Benzo(a)pyrene and Trace Metals in Charleston, South Carolina," U.S. Environmental Protection Agency, Report No. EPA-450/2-75-004 (1975).
- Thuillier, R. H., "Estimating Air Quality Background," Stanford Research Institute, Menlo Park, California (1977).
- U.S. Environmental Protection Agency, "Preferred Standards Path Report for Polycyclic Organic Matter" (1974).
- U.S. Environmental Protection Agency, "Scientific and Technical Assessment Report on Particulate Polycyclic Organic Matter (PPOM)," Report No. EPA-600/6-75-001 (1975).
- U.S. Environmental Protection Agency, "Compilation of Air Pollutant Emission Factors," Report No. AP-42 (1976A).
- U.S. Environmental Protection Agency, "The Carcinogen Assessment Group Analysis of Kepone," Draft Report (1976B).

- U.S. Public Health Service, "Radiological Health Handbook," U.S. Department of Health, Education, and Welfare (1960).
- Varga, J., Jr., "Screening Study on By-Product Coke Oven Plants," Draft Report, Battelle Research Institute (1974).
- Youngblood, P. L., "Rough Estimation of Ambient Impact of Organic Emissions from Coke Ovens," Draft Memorandum, U.S. Environmental Protection Agency (May 27, 1977).