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INTRODUCTION

The growth of population and industry in the coastal regions
of the country, along with increased use of coastal waters for
disposal of wastes produced inland, presents the potential of new
or increased pollution in a valuable national resource. In order
to assure that marine water quality is maintained and enhanced for
present and future water uses, each source of waste input must be
evaluated for its impact on the environment. Treated wastes must
be discharged in such a manner and location that the resulting con-
centrations and contact times do not violate the water quality
requirements specified for the desired water uses. The disposal
process can be designed within these constraints through a mix of
at least four techniques:

« degree and type of waste treatment;

« site selection;

. outfall or barge distribution of wastes;
. barrier construction.

This report presents a review of the literature pertinent to
the theoretical deveTopment of present ocean outfall design tech-
nology as it applies to waste discharges in general. Part II,
entitled "Recommended Procedures for Design and Siting," is in
preparation and will incorporate references and data collection
methods for specific pollutants.

Barge discharge of wastes is becoming more important because
of the increasing production of concentrated wastes, and the
increased concern for continued incineration and ground disposal
of wastes presently practiced inland. This technology will be
explored in a future report.



POLLUTANTS

Material pollutants are those commonly associated with munici-
pal and industrial wastes: biological species, chemicals, sludge,
etc. Another material pollutant, which has caused no problem in
the past but which promises some cause for concern in the future,

- i{s the highly saline reject water from desalinization plants.

A non-material pollutant new to coastal waters is appearing on

the scene, threatening to present problems in the near future
which might surpass those of municipal and industrial wastes. This
pollutant is heat - reject heat from very large thermal power sta-
tions using coastal water for condenser coolant. In either case
we need to be able to predict pollutant concentrations in the local

sea, as a function of both location and time.

Modeling Pollution Fields Through Mathematics

The problem of mathematically modeling pollutant dispersion in
coastal waters involves solving the basic equations of marine hydro-
dynamics, and heat (or mass) transfer. Although the fundamental
equations which describe the differential motion and diffusion are
reasonably well understood, solution of these equations is analyti-
cally intractable without gross simplification of the oceanic motion,
pollutant flow, and boundary conditions. In addition, the terms
associated with pollutant decay and interaction are frequently not

well described.



Analytical research, then, has been a process of fashioning
simplifications in order to derive tractable mathematical models.
Along with the analytical research, laboratory and field experi-
ments have yielded additional information which developed reliable
semi-empirical models.

An approach to the problem of mathematical modeling which has
apparently not yet been fully utilized is the use of numerical tech-
niques in conjunction with high-speed digital computation. The
numerical approach involves approximating the governing differential
equation with finite quantities and carrying out the required numeri-
cal computations on a digital computer. The advantage of this
procedure is that many complications that must be ignored in the semi-
analytic models can be incorporated in the numerical model. Regardless
of which approach is taken, certain data must be obtained in the field.
Generally, mean currents, some estimation of turbulent transport
coefficients, density stratification, and pollutant interaction data
are needed.

Subsequent discussion in this report will be restricted to only
those characteristics of a pollutant which influence the general
description of its fate, such as density. The considerations of
decay, interaction, sedimentation, and air-sea exchange, etc.,

which might be unique for any specific pollutant, are not included.



THE NATURE OF POLLUTION PLUMES IN OCEANIC ENVIRONMENTS

Before investigating theoretical aspects and the various methods
of analyzing the dispersion of pollutants emitted from ocean outfall
systems, the gross behavior of the pollution flow field will be
reviewed to give a general idea of the nature of the flow.

Fluid which issues continuously from an outfall pipe on the
ocean floor passes through several flow regimes as it disperses
into the surrounding ocean. It may contain pollutants in the form
of either heat or matter; and, when ejected into the surrounding
environment, it may be buoyant or not. However, unless specifically
stated otherwise, discussion will be concerned with a positively
buoyant fluid. It is common to refer to free convection flow in
the environment as a plume, for in this case the general pattern
of motion is caused by virtue of a density disparity between the
fluid and the surroundings. A jet is characterized by initial momen-
tum of the fluid. If the injected flow has a density disparity and
momentum, thén the flow assumes some character of both types of
flow. This mixed flow could be called either a buoyant jet or a
forced plume. Since the overall pollution dispersion in the sea

resembles a plume more than a jet, the term forced plume or plume

will be used here.

The Regimes of Flow

Experimental investigations of forced plumes have revealed the

existence of three distinct flow regimes, as follows (see Figure 1):
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Figure 1. Regiomsof flow for fluid issuing into a density-stratified
medium with current.



+ zone of flow establishment,

« zone of established flow, and

e zone of drift flow.

The zone of flow establishment is associated with the transi-
tion from pipe flow to an established forced plume flow. The flow
from an outfall orifice or pipe enters the ocean with essentially
a uniform velocity profile, which begins to deteriorate at the flow
boundary as a result of turbulent shear. The region of mixing
spreads both inward toward the center of the jet and outward into
the medium. Within a short distance from the orifice the inter-
change of momentum will have spread to the center of the jet. At
this point, it is generally assumed that the velocity profile is
fully established.

In the zone of established flow, the driving force for the plume
may be either momentum or buoyancy, or both. As distance is increased
from the orifice, the width of the plume increases as a result of
lateral mixing or turbulent diffusion (commonly called entrainment).

Eventually the pollutant will reach a position where momentum
no longer affects the flow and buoyancy may play only a minor
role. In this region, called 'the zone of drift flow' here, the
spread of the pollutant is dominated by the environmental turbulence,
although a lateral density flow may also be present if the pollu-

tion field is situated atthe surface with residual buoyancy.



Environmental Effects

The environment into which the fluid is discharged can influence
the nature of the plume flow, due to

+ density stratification,

- environmental velocity (oceanic currents),

« environmental turbulence,

+ air-sea interactions.

Density Stratification

Both theory and experiment have shown that a buoyant plume
will reach the surface if the ambient fluid is homogeneous with
respect to density.

However, the ocean is rarely homogeneous in this respect, except
perhaps in shallow coastal waters where wave action causes good
vertical mixing to occur. Where the ocean is density stratified, it
is possible that the plume will not penetrate to the surface, at
least in the zone of established flow. The reason for this
phenomena'is as follows.

The plume entrains the heaviest environmental fluid near the
orifice, Qecreasing the density disparity between the plume
and surroundings. As the plume ascends the decrease continues
as the density of the surroundings decreases. The plume will
eventually reach a point of neutral buoyancy, which may be below
the surface. At this point the flow continues upward only because

of the vertical momentum it possesses. As the flow continues upward,



it continues to entrain liquid, but the plume is heavier than the
surroundings; hence, the flow is negatively buoyant. Eventually,
all upward vertical momentum is lost and, since the plume liquid is
heavier than the surroundings, the pollutant will cascade downward
around the upward flow until it reaches equilibrium with the sur-
roundings.

The general shapes of plumes in non-stratified and stratified

stagnant 1iquids are shown below.
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Figure 2. Vertical plume in a non-stratified stagnant medium.
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Figure 3. Vertical plume in a stratified stagnant medium.
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Figure 4. Inclined plume in a stratified stagnant medium.
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Figure 5. Vertical jet issuing into homogeneous cross flow.

Environmental Turbulence

The origin of oceanic turbulence is not fully understood, although
it is probably caused mostly from wind-generated wave action. As
such, the turbulence is neither homogeneous nor isotropic, and
only the gross behavior can be described.

Turbulence scales that are on the same size or larger than the
plume cross-section will have an effect similar to a cross-current,
and all scales should have some influence on the plume entrainment
rate (although it is thought that the influence in the zone of estab-
lished flow is small (Cederwall, 11)). Turbulence has a more
dominating effect in the zone of drift flow. Scales of motion larger
than the pollutant field result in transport action similar to
oceanic currents, while smaller scales of motion add to the eddy
diffusion of the pollutant; thus, as the pollutant field spreads,

larger and larger scales of eddy mixing come into play.
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Since most oceanic waters are density stratified (except
perhaps near the surf zone), vertical turbulence is suppressed to
a great extent. Thus, a pollution field may disperse much more

rapidly in the lateral direction than in the vertical direction.

Air-sea Interactions

Although wind stress can indirectly affect the motion and
dilution of a submerged pollution field through perturbing the mean
oceanic motion and by causing turbulence, the most dramatic inter-
actions with the atmosphere occur when the pollution field develops
on the surface. The two major interactions are wind stress and
transfer of heat and mass.

Wind-driven surface currents may cause the sdrface drifting
pollutant to stagnate along the coast or cause it to be carried out
to sea. Transfer at the sea surface is of primary importance in the
case of thermal pollution. Thermal energy interchange at the sea
surface will occur through the mechanisms of convection, evapora-
tion, and radiation. Volatilization and oxidation of oil and other

pollutants are also important considerations.

Qutfall Geometry

Outfall geometry also affects the nature of the plume. Greater
dilution can be achieved with outfall structures employing a series
of horizontal rather than vertical ports or orifices. In this case,
each plume will follow a curved path until it reaches either the

maximum height of rise or the sea surface. Port spacing is important
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because of the possibility of plume interaction and the resulting
decrease in dilution efficiency. Figure 6 illustrates a possible
flow configuration from a ported outfall with a slight downstream
drift of the density-stratified receiving water. Unless otherwise

indicated, discussions here will be confined to round orifices.
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THE FUNDAMENTAL EQUATIONS GOVERNING THE MOTION AND DILUTION
OF A FORCED PLUME

Prior to assessment of various analytical approaches for
evaluating plume dynamic behavior, the fundamental laws and equa-
tions which govern the flow will be introduced. The reason for
this introduction is to clarify the physical grounds upon which
plume mathematical models are based.

There are two basic approaches one may follow in deriving plume
models - one is based on a differential analysis, and the other on
an integral analysis. The differential approach involves solving
the general partial differential equations of motion and heat (or
mass) diffusion to arrive at velocity and temperature (or concentra-
tion) distributions. In the case of an integral analysis, specific
shape of the profiles must be assumed, based on intuition or experi-
ment. Since the integral analysis involves several simplifications
and assumptions about the flow field, analytic discussions of them

will be deferred until special cases are considered.

The Differential Equations for a Forced Thermal Plume

To be specific, the discussion here will be based on the con-
sideration of a thermal plume where heat is the pollutant. Where

desirable, analogous equations will be written and discussions

presented for the case where matter is the pollutant.
The differential equations for a thermal plume are derived

from consideration of the following physical laws:
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« Continuity (conservation of mass,

- Newton's Second Law (conservation of momentum),

« First Law of Thermodynamics (conservation of energy), and

» An Equation of Volumetric Expansion.

Detailed derivation of the equations of motion and energy will
not be given here, since these equations can be found in nearly
usable form in texts dealing with fluid mechanics or convective heat
transfer (e.g. Ref. 7). A few modifications must be made for appli-
cation to a plume in an oceanic environment. The coordinate system

for the following discussion is shown in Figure 7.

c:f:;g Q@ (Earth rotation)

Vertical: x3, z

¢(Latitude)
EARTH

Figure 7. Rectangular coordinate system.



The differential equations for incompressible, density strati-
fied laminar flow wfftten in Cartesian tensoral form are as
follows:

Continuity:

% , u. ‘o BU.

ot 1'5—_ E'_
In the ocean, density varies with both time and space as indicated
by the above equation. However, changes caused by temperature or
mass concentration variations are usually quite small and may be
neglected in consideration of mass conservation. Thus, the continuity

equation may be approximated with acceptable accuracy by

oU;

ﬁ—‘--o (1)

It will be shown later, however, that these variations cannot be
neglected in the momentum equation and are the point of concern in

the energy equation.

Momentum:
aU, oU, 32 U
i i oP .
plag * Us 5| = - 59 - 90853 + Mgyt (2)
[at J ij] axi i3 axJaxJ
Energy:
or T | T g Lk
Cp 3t Cp UJBx K X .9X. tet+aq. (3)
J 373
Volumetric Expansion:
_loav_ 19p (4)

=vVar T oarc

* The molecular fluid properties u and k are assumed isotropic
in this work.



In the above equations the Einsteinian notation is used (a
repeated index in a term implies summation over all three indexes--
1, 2, and 3}.

The symbol i3 is the Kronecker delta and is equal to 1 when
1 = 3, and otherwise zero. The term & which appears in the energy

equation is a viscous dissipation term and may be neglected. For
simplicity, changes in p are assumed a function of T alone in
equation (4).

Consider the fluid density expressed as p = p (X ) + Ap,
®" 3

where , (xs) is the reference density.*
Equation 2 may be written as:
3U. oV, 32U,
i B | IS 1
D(at * Uy axj} o - (PotBP)g845 +u K
Let Po be a constant reference density, specifically o = e (0).

Division by p,, noting that (p0 = p) yields

U, aU, 0 =p 32U,

i i 1 2P 0 i
Lpy, — = o 2 [ 2 1) g6, tve—e— . (5)
ot J ox. fo axi { o } i3 axj axj

This manipulation was done to separate out the buoyancy effect

PP
oy | S

The important idea to note here is that Ap has significance in

establishing the above buoyancy term in the momentum equation;

* Hereafter, the reference density pm(xs) will be written simply as
o, with dependence on coordinate x_ always implied.

17
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however, ignoring small variations of p will not otherwise affect
the outcome significantly (the so-called "Boussinesq approxima-
tion"). The symbol v indicates kinematic viscosity and is defined
as v = p/p.

Equations (3) and (5) must now be modified for application to
the oceanic environment. First of all, the equations of motion
must be modified to account for the earth's rotation (the Coriolis

effect). If q is the earth's rotation vector, equation (5) becomes

U, 3, o _-p ] 32U,
i i 1 9P oo
=t U, — + 2., 0:U, = - —5—+ |— -1{g8., + V
at oX . . OX. °
J xJ ijk"i’k Py 94 [ 3 axJa j

where eijk is the permutation tensor which takes values of zero if
any two of the three subscripts i, j and k are identical, +1 for
even permutations, and -1 for odd permutations of the subscripts.
Next the equations of motion and the energy equation must be
modified to account for oceanic turbulence. To do this the depen-
dent variables are considered as composed of a mean or average

part and a superimposed random fluctuating part; for instance,

where Gi is the mean velocity and Uy is the fluctuation part. These
definitions are substituted into the equations of motiqn, and the
result is time averaged term by term over a sufficiently long
period of time.

The resulting equations of motion for turbulent flow are

then



aﬁ}. I I )
5t ¢ UJ X 5;7'(uiu3) 2e1JkQJ Yy =
J J
- = 2
1 9P, (PP Y
- = o -] gG V Y (6)
Po Z)X,I [ Po } i3 BXJ.BX

which is seen to be identical in the mean motion with equation
(5) except for the appearance of the term

o= (Wu,).

A new quantity is now defined:

R_ij = -p Uiuj,

which is called the Reynolds stress. Finally the complete equations

of motion in the rotating earth reference frame are written as

oU. oU,
i i 1 9P
— 4+ U, =—+ 2e..,0.U = - —+—
ot j ij ijkjk Po axi
P -0 32U, aR. .
+ [ 5 _]]96i3 + %;—5%—~+ %—'5§1l-, (7)
0 i o

for the mean flow. Here the overbars denoting average quantities

have been omitted. Another way in which the turbulent stress terms

are handled is through the Prandtl mixing length theory (e.g. Ref. 36).

In this case

19



so that the equations of motion become:

oU. SU.

i _ 1. 3P
ot ¥ UJ 3xJ 2e1Jk JUk p_ OX,
P P 3 BU *
S N )
where again variations in p are considered small and €.. is the

1]
eddy diffusion coefficient for momentum, a second order tensor.

The turbulent form of the energy equation may be derived in
a similar fashion. For constant p and Cp the energy equation for

laminar flow is written as

oT aT 3 3T )

— U . = a +

3 ax.  ax. 1% 3x. ’
tooJ ey 9%y [ 5] PG

where a is the molecular thermal diffusivity, x/ pCp. Accounting

for turbulent heat transport yields

aT 9T _ 3 T a9
TR T x; T X [(a’“em) e ] + oC; (9)

where EHj is defined as the coefficient of eddy heat diffusion, a
first order tensor, and may be directionally biased, whereas the
fluid is assumed to be isotropic with respect to a. The analogous
form of equation (9) for the case of diffusion of matter is:

aC 3¢ _ 9 a ), .
P T [“’*em_-) axj]*"" | (10)

* The summation convention for repeated tensoral indices does not
apply to underscored indices in this text.



where C is.the pollutant concentration, e is the eddy diffusivity
of mass, D is the molecular diffusion coefficient, and m is the
production or loss of the species mass per unit volume. Equation
(10) is based on the diffusion of a single species whose concentra-
tion is C(X1’ xz, xa, t). These equations, (1), (4), (8), and (9)
(or (10)), then form a complete set of equations from which a plume
may be analyzed for dynamic behavior. Unfortunately, the equations
are extremely complex and evidently cannot be solved analytically

for the general case.

Rectangular Coordinates

For analysis of the local sea, the geopotential surface may be
assumed flat. Rectangular coordinates are defined in Figure 7.

The Coriolis term in equation (8) may be expanded, as:

¢ @ é
X y z
2e1.ijjUk =210 QCos¢p QNSing|, (11)
U v W
so that:
. > . >
zeiijjUk = 20(W Cos¢ - V S1n¢)eX + U Sing ey
- U Cos¢ 'éz , (12)

where Ex, Ey, and 32 are unit vectors for the east, north, and
vertical directions, respectively. Then in component form the

governing equations become:

21
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Continuity:

BU oW _
X W"*-a—— 0. (13)
x-Momentum:

Dv
Dt

"5 [(wex") %%] 3y [(" €xy! %] + 5 [("*Exz) :3%] ) (18)

+ 20(W Cosg - V Sing) =

y-Momentum:

gz + 2QU Sing = ‘1’0 % + g—; [(v+syx) %‘,'z]

% [("J'Eyy) %] "= [(Wyz) g_‘zl] ' ()
Zz-Momentum:

—g% - 29U Cos¢ = %;g—z+ {p‘:—;p -1} g+ gx l(v €,y) g—h’]
3 (o) W+ 2 (ke 3 (16)

* The operator, Uf'= 3—-+ 1] ——-+ vl s Wi a ,» is known as the sub-

stantial derivative.
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Energy
DT . 3 | 4 2 a7
Dt~ ox [( ey ax] * 3y [(a+€Hy) ay]
3_ T} 4 4
+ 37 {(u+€Hz Bz] + o (17)

Cylindrical Coordinates

Figure 8 below illustrates the cylindrical coordinate

system.

CLa Q (Earth rotation)

z (vertical)

East

¢ (Latitude)

EARTH

Figure 8. Cylindrical coordinate system.
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In this system, the z-direction is perpendicular to the geo-
potential surface, ¢ is the 1at1tude,_r is a rotating vector which
lies in the flat geopotential plane at an angle 6 measured from
east, and @ is again the earth's rotational velocity.

The coriolis components in cylindrical coordinates are given

by:
-p
& 39 Ez
ZeUijUk = 2 | QCos¢Sind QCos¢Cos® QSing (18)
U, Ug W

_ +> -+
The notations e ee

z directions, respectively.

and Ez designate unit vectors in the r, 6 and

Thus, the governing equatfons for an incompressible flow may
be written in cylindrical coordinates as follows:

Continuity:

' ou
2 1-8, M,
w7 U trm tat O | (19)

<j—

Motion (in terms of fluid stress T)*

r-direction:
Dur Ue2
pE- -~ * OH Cos¢Cose - U, S1ne

ek
pop 1 (1% e, 1% Teo, ¥z (20)

g i G TR R R

* The equations of motion in terms of stress r are more appropriate
for development to be considered later. U '

** In cylindrical coordinates, g%= a4l 48 2

9
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8-direction:

DU uu
D?Q'+ -E-Qr+ W, Sing-QHCos¢Sing
2
_oo e 1 f1 e 1 PTes |, ez (21)
poT 38 g rZ 3 r 28 8z |°
z-direction:
%%.+ Quecos¢Sine - QUrCos¢Cose
1o, [P 1 113 1 98 . 9Tz
= p, Z i [ Po —1}9--5; {FigF (r ) * v 36 " 75z |-
(22)
Energy
D13 12 =
=T or {(a+eHr)Y‘ o } AT {(a“He) ae]
3 LR
5z [(a+€Hz az] ¥ OCp ) =

Integration of the Governing Differential Equations

The differential equations governing the motion and dilution

of a thermal plume were set down in equations (1), (8), and (9).

The problem of predicting pollutant dispersion, therefore, lies in

gaining the solution to these equations, once having established

such requirements as boundary conditions, eddy transport coefficients,

etc. However, these equations are evidently

impossible to solve

analytically while maintaining all terms of the equations required

to describe the motion and dilution of the pollution plume from its

source to its ultimate fate.
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Simplified Hydrodynamic Equation

Only a very few analytical solutions to the equations of
motion (8) are known and these have come by accepting gross simpli-
fications of the physical phenomena. For instance, gross motion
in the deep oceans as influenced by Coriolis effects (earth rota-
tion), sea surface slope, density anomalies, etc., fall into a
class of motion called "frictionless flow," Tmpiying the frictional
terms in the equations of motion have been neglected. In other
simplified flows, frictional terms are included under specific‘
conditions. Also, vertical momentum is usually ignored. Examples
of frictionless flow are as noted:

Inertial Currents -

du

i 28¥S1in¢ (24)
g% = -2USino. (25)

The term 2QWCos¢ has been neglected in equation (24), since it
is small compared to 2VRSing. Equations (24) and (25) are used to
approximate the motion of a water mass during an acceleration where
horizontal pressure forces are comparatively small.

* Geostrophic Currents -

For a water mass in steady motion, Coriolis forces are balanced

by lateral pressure forces, so that:

ing = 1 2P
2VQSing = S 5 (26)
o < _ 1P -
2USing = > 5y (27)



Gradient Currents:
If inertial terms are important for a water mass in steady

motion, such as a gyre, then

U . _ 1P -
Uss+ - 2WSin = - > X (28)
v v _13p
U StV 5y + 2UQSing = > 5y (29)

Some examples of frictional flow are:
Non-accelerated Drift Currents:
Where Cortolis forces are balanced by frictional forces in a

homogeneous ocean,

2 .
2unsing =¢, 2 2 V (30)
22U
- 2Vasing =g 23 (31)

Solution of these equations gives the so-called "Ekman Spiral"
(see Ref. 36) for the motion of the water mass. This type of flow
has notable implication for wind-driven drift flow.
Density Flow:
For the case where frictional forces are balanced essent1a1]y
by a horizontal pressure gradient,

N

X Y LY (32)

N3 (. )
(E ]+ay y %) (33)
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The above examples of frictional and frictionless fiows are
examples where analytic solutions are possible, but may be diffi-
cult to obtain because of complicated boundary conditions.

To completely describe the pollution plume, however, neither
inertial terms or eddy diffusion terms can be neglected over the
entire range of flow, but certainly some kind of simplification
must be made if the prob]em is to be solved at all. For this
reason it has been the course of both theoretical and experimental
investigations to consider each ffow regime as a separate problem,

within which separate simplifications may be warranted.

Simplified Equations for a Forced Vertical Plume

The zone of established flow has received much analytical and
experimental attention. In this regime both inertial and viscous
forces play an important role in determining the nature of the
flow. The simplest case is the axisymmetric vertical plume. Since
most of the plume theories center around assumptions fundamental
to the solution of the vertical flow problem, the equations for
this particular case will be derived from the general equations
of motion.

The general assumptions associated with the vertical plume are
as follows:

- Steady flow: an/at =0

« Flow is axisymmetric: Ue =0

- Coriolis effect is neglected: zeiijJUk =0



- Flow field is assumed hydrostatic throughout: %;-= -p. 9

. Density difference between the plume and surroundings is
assumed small compared to the density at any point 1in the flow
field: |p_-p|<<p

« Plume is fully turbulent

- Eddy transport of momentum and heat is only effective in
the lateral direction (normal to jet axis)

. Molecular heat conduction and viscosity ignored.

With the above assumptions and simplifications it is possible
to disregard a number of terms in the governing differential equa-
tions. Also, for the axisymmetric round jet it is more convenient

to consider the general equations in cylindrical coordinates. In

simplified form the governing equations become:

Continuity:

1 3Upr) o

F ar + '5—2- = 0. (34)
Momentum:

Schlicting (1960, ref. 45a) employed an "order of magnitude”
analysis incorporating the previous assumptions, which can be used

to show that equation (22) reduces to:

0,.~P
%ﬂ“uﬂ=[ g -
z r or l fo oo"

W 2 (rg,) (35)

Energy:

In order to deal with specific quantities, a thermal plume

will be considered. However, the end result of this derivation will
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be valid for pollutant plumes in general.

The energy equation (23) reduces to

T
7 -

[+

3T} _ ., ol
—]-u,r + W

ar (36)

QL

It is sometimes more convenient to consider the energy equation in

terms of a temperature disparity,

6= T-To,

where T0 is a reference temperature, specifically the temperature
of the surrounding medium at the jet orifice. The energy equation

is then written

o 0 -y 04y (37)

Equations (35), (36), and (37) may be written in slightly simpler

terms by considering the continuity relationship (34). Since

9_ (y2) =y M4 3
(w ) =M 0z t W 9z °’

3z
ory
and 3 - oW r
e (rUrw) - rUr T W it

then equation (35) is written as

Pr=P
- [—I g - —r 2 (r1,). (38)



By multiplying equation (34) by W and substituting the result

into equation (38), equation (35) is simplified to

2y + L2 17 PR ’
2 )+ 5 (o) = (e - o () (9

The same procedure may be applied to the energy equation (36) when
the continuity equation is multiplied by T. In this case, equation
(36) is simplified to:

= L2 (ruT) + 57 (W), (40)

or in terms of a temperature disparity o,

1?‘_ [e r —} = ];%; (ru @) + g_z (WO). (81)

By using the definition of volumetric expansivity (equation 4) a
relationship between p and T (or ©) may be developed. By defini-

tion

- .13
B"st (4)

and to a first order approximation

A poB o] ( )
so that
1
-T = = — - . 43
T 0= © 3 (p0 o) (43)

Then equation (43) may be written as
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w|w
gl

3(p,-p) : .
1 i T R I I - 3 -
r {EHrr ar ¥ or [rur(po p)] MFY: [w(po p)] (44)
with pOB = constant.
Thus, equations (34), (39), and (44) are one form of the set
of differential equations which must be solved to establish the

flow behavior of a vertical plume.



INITIAL DILUTION OF THE POLLUTION FIELD --
DEVELOPMENT OF WORKING MODELS

In the previous section the fundamental equations governing
the motion and dilution of a marine pollution field were developed.
It is the purpose of this section to illustrate how analytical and
experimental research has proceeded, using these equations, in the
development of working mathematical models which describe the fate
of a plume from its formation at the orifice to its equilibrium
level in the ambient field. But it is not the purpose here to
provide a detailed literature review of this subject. Excellent
reviews of this material may be found in Hinze (21) for momentum
jets and in Baumgartner (6) or Cederwall (11) for buoyant jets.

Research on jet flow has shown that the zone of initial dilu-
tion consists of three flow regimes, which are:

. a potential core region, followed by

. a transitional flow, leading to

. - the zone of established flow.

In the first two zones, it has been illustrated analytically
that similarity solutions* are not possible. On the other hand,

once the flow becomes fully established, similarity approximations

* The premise on which similarity solutions for jet flow are based
is that velocity profiles are geometrically similar at all axial
locations, differing only by a magnification factor; that is,

Ulr,z) = flz'F(r)].

For a plume, U(r,z) = U(z)f(r/b(z)).
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are valid. The transitional zone is usually very short and is
generally ignored in model analysis (reference 21) - as will be
done here. In the literature, the flow regime between the orifice
and the point where the flow becomes established is called "the zone
of flow establishment," and the distance required for flow estab-
lishment is denoted by Ze‘

Only the mainstream of resear;h on this subject will be presented
here - with major emphasis on the zone of established flow, since
it is much more important. The discussion on established flow is

presented in some detail so that a clear understanding of underlying

principles and assumptions is at hand.

Zone of Flow Establishment

As far as the overall plume dispersion is concerned, the zone
of flow establishment is of less interest (because it is a compara-
tively short distance) except as it enters into established flow
solutions for integration limits or boundary conditions. Thus, in
this light, it is important to know the length for flow establish-
ment, Ze'

It is usual to assume that the polluted fluid enters the local
environment from an orifice as a plug flow (velocity is uniform

over the diameter). As the flow penetrates the surrounding fluid,

-there is a zone of intense shear where eddy mixing causes the flow

of pollutant at the edge of the plume to decelerate and the adjacent

surrounding fluid to be accelerated. This zone of turbulent mixing
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(Figure 9) spreads inward toward the center of the plume and outward

into the surrounds as distance from the orifice is increased.

patential
core
0 ¢ Y )D Fully
Q Established
D Uo(profi1e) Flow
mixing\
zone ~

Figure 9. Flow establishment.

The region where the plume flow is undisturbed by the lateral
eddy diffusion is usually called the "potential core.” Once the
lateral spread of eddy diffusion has penetrated to the centerline,
the flow is considered to be fully established. Distinction must
be made between the development of the velocity profile and the
temperature or concentration profile. It has been established
experimentally that heat and mass diffuse more rapidly than momen-
tum, in free turbulence. That is to say, that the eddy Prandtl and
Schmidt numbers are smaller than 1.0 in free turbulence. The net
result of this difference is that temperature and concentration

profiles develop more rapidly than do velocity profiles.
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velocity profile

concentration profile

Figure 10. Relative velocity and concentration profiles.

Many experiments have been carried out by various investigators
in an effort to establish the length and shape of the potential
core for round jets issuing into stagnant fluids. A good review
of this work with references is given by Hinze (21). According to
Hinze, there is general agreement in most results. The shape of
the potential core is evidently conical, and, according to measure-
ments of Hinze and Van der Hegge Zijnen (22), Z_ = 60 to 8D for
the velocity profile. The work of Albertson, Dai, Jensen and Rouse
(4), which seems to be the most frequently quoted, showed that
Ze ~ 6.2D for the neutrally-buoyant momentum jet.

The results above are associated with neutrally-buoyant jets.

If the issuing fluid has significant upward buoyant force which

causes changes of momentum similar in magnitude to the initial



momentum, the zone of flow establishment takes on different charac-
ter. For instance, the potential core velocity increases so that
at Ze, Um>UJ, where Um is the plume centerline velocity. Abraham
(1) presents a method for calculating the length for concentration
profile establishment in terms of the initial densimetric Froude
number FrJ, as follows:

182 ¢ s pc2 . QKo (45)

FrJ

where u is the eddy Schmidt or Prandtl number and K is an entrain-

ment constant. The densimetric Froude number is given as

Fr‘J = UJZ/[E%iEQ}Dg, (46)
where UJ is the orifice velocity, podensity of surrounding fluid at
the level of the jet, g acceleration of gravity, and P density of
the issuing fluid. According to Abraham, the constants should take

values: y = .80 and K = 77. Then, once Fr, is established, the

J
quantity C can be found which relates Ze and D as
2

€ = Ze/D'

2

For FrJ+w, C2 approaches about 5.6, which is about 10 percent less
than the 6.2 found by Albertson et al. for the velocity flow
establishment length of neutrally-buoyant jets. The difference here
arises from the difference between the rate of spread of matter (or
heat) and momentum, for if both are equal, ﬁ= 1, and for Frdem,

C »6.2.
2
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The Zone of Established Flow

This particular flow regime has evidently received the majority
of theoretical and experimental attention to this time - and, from
a practical standpoint, with good reason. This zone is extremely
important, because it establishes the initial character of the pol-
lutant dispersion. For instance, with a proper diffuser design
(possible only with a reasonably accurate forced plume model) the
pollution field can be made to spread at the surface or at a submerged
level in a density stratified field, depending on which is the most
propitious for the specified water quality situation. For a waste
heat discharge, surface spreading will accomplish a greater rate of
temperature reduction. Submerged fields of other wastes reduce un-
sightliness and also may reduce beach hazards associated with onshore
surface currents.

Theoretical analysis of neutrally buoyant jet flow dates back
to Tollmien's (51) work in 1926, but evidently Schmidt (47) in 1941
was the first to consider the mechanics of convective plumes, or
plumes with no initial momentum, such as convective currents over
fires, etc., from both the theoretical and experimental views.
Schmidt's work was reported in the German literature and, apparently
because of the war, went unnoticed until Rouse et al. (45) had carried
out similar work in the early 1950's. Since that time a number of
researchers have investigated the established flow regime of a
forced plume, both theoretically and/or experimentally. From these

studies various mathematical models have been proposed and applied



to both oceanic and atmospheric problems. Although the models
differ in some ways, the theoretical approaches are somewhat simi-

lar, and there is reasonably consistent agreement in results.

Particular Cases for Buoyant Plumes

A set of simplified governing equations for a vertical plume
jssuing from a round port were set down in Chapter III. Even though a
vertical plume is not to be expected from an outfall system issuing
to receiving waters which are in lateral motion, or for outfalls
jssuing the pollutant other than vertically, the ideas involved in
the vertical plume analysis are basic to more complicated flow
problems. For a buoyant plume, researchers have constructed
mathematical models for the particular cases which follow (in
order of increasing complexity):

1) flow issuing vertically into a stagnant, homogeneous medium;

2) flow issuing vertically into a stagnant, density-stratified
medium; .

3) flow issuing inclined to the vertical for the above two
cases; and

4) flow issuing vertically into a homogeneous medium with a
uniform cross-current.

In addition, some work has been carried out for the above cases with
a negatively buoyant pollutant, which will be discussed briefly at
the end of this section. No models have been developed specifically
for an inclined forced plume in a density-stratified medium with a

cross-current.
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Vertical Plume - Stratified and Non-stratified Media

The analysis of plume dynamics by Schmidt (47) and Rouse
et al. (45) dealt with pure buoyancy or thermal convection.
Later research has generalized the flow models to include all
three c]assificationS of flow.

Rouse, Yih and Humphreys (45). Rouse et al. reported analytical

and experimental results for the dynamic and thermodynamic behavior
of a convective plume in 1952. In this study, Rouse considered
turbulent convective flow above continuous line and point sources
of heat rising in a stagnant, homogeneous medium.

To analyze the dynamic and thermodynamic behavior of the
axisymmetric plume, Rouse considered the equations (34), (39), and
(44). (For the line source, the rectangular counterparts of these
equations were used.) A momentum integral equation was derived by

integrating equation (39) from r=0 to rse, which is given by:

n.ln.
N

{wpwzrdr = - {wAyrdr. (46)

In equation (46), the quantity Ay is the buoyant force and sym-

bolically given as:

Ay = (p'po)g-

If the energy equation (44) is integrated over the same range of

r, the result is

4 | Wayrdr = 0. (47)

Q



As a third equation, Rouse uses a statement of the conserva-
tion of mechanical energy, which is derived by multiplying the
momentum equation (39) by W and integrating with respect to r to

obtain
3
Q__J pg—-rdr = - [ WAyrdr - J oW rdr. (48)

Now equations (46), (47) and (48) present three equations with
which to solve for the three unknowns W, Ay, and t. However, these
equations cannot be completely solved unless the functional forms

of the unknowns are given beforehand. Rouse assumed functions

for these quantities in accordance with ideas of dynamic similarity.

In this way the following relationships were established:
1) 1lateral spread, onz

2) W (centerline) 213

3) Ay, (centerline) mz'5/3.

Finally, it was established through experimentation that axial
velocity and temperature were well represented Dy

1/3 -1/3

W(0,2) = W =47 () z (49)
and  aT(0,2) = aT, = ~11[o(-w)21'/%2%/3, (50)

where w represents the mass flow rate given by

W = -gH/CpT. (51)
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The subscript m relates to plume centerline condition.

In equation (51), H is the heat input and Cp is specific heat.
The experimental portion of this study also revealed two other
important findings -- first, thatrvelocity and temperature profiles
were essentially similar at all elevations; and second, that these

profiles could be closely approximated by the Gaussian distribution

curve; that is,
W(r,z) = W exp[-K,r?/z?] (52)
and AT(r,2z) = ATmexp[-Kzrzlzz] (53)

where K, and K, are experimentally determined constants found to
be 96 and 71, respectively, for the point source.

Priestley & Ball (41). In 1955 Priestley and Ball reported

results for studies on thermal plumes rising vertically in a
stratified atmosphere. Assumptions are those that give rise to
equations (34), (39), and (41). Equation (39) is multiplied through
by W, and the term (pm-p)/po is replaced by (T-Tm)/T0 (perfect gas
law, p=P/RT),‘Also, in equation (41), e=T-Tw, instead of T-TO.

The above-mentioned set of equations are then integrated from

r=0 to r+w to yield the following:

d [7 W2rdr = ” I:Ef d (54)
dz puerdar e9 TO rdar,
0 [1]
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rra i-pw rdr = pgN-ﬂT—— rdr - T5p rdr (55)
0 0 0 0

da [ - 3T,

0z | M(T-Tdrdr - | olir —= dz. (56)
4] 0

These equations are identical to those used by Rouse, except
for nomenclature and the right-hand side of equation (56). This
term represents the effect of density stratification which Rouse
does not consider.

priestley then argues that, based on the findings of Rouse,
velocity and temperature profiles are Gaussian (including the case
of density stratification) and to a first approximation these
profiles (heat and momentum) are identical; that is,

W
Nm

T
m

>

= exp[-r2/2Rc] _ (57)

>

where the subscript again designates conditions at the plume axis
and R is a characteristic lateral scale for the plume. It is
also assumed that
== f{l{—] (58)
= PW 2
2 m
Applying equations (57) and (58) to the equations (54), (55),

and (56) yields the following set of differential equations:
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d Tm-Tw\

@ (RN 2) = R 2|4—=| g (59)
0 /

d 2y 3 2 Tm-Tw 3

az (R.H,?) = 3RoW 719 - 5RcHy (60)

d_fpey (1 -1)] =282 T (61)

dz {"c 'm ‘Y'm el T ¢ "mdz -

From these equations Priestley established that the constant

c, (a profile constant or spreading constant) may be determined by

az "~ G

which results by combining equations (59) and (60).
For neutral conditions in the atmosphere (dT_/dz = Q), the

general solutions are:

1/3
- 3A
Hn = [2|°c,22 ¥ %31 (62)

-1/3
T =_A | _3Ad . B
and  T,-T, c, 2z? [2T0C|22 ¥ 23 ’ (63)

where A and B are constants of integration and may be determined
from boundary conditions.

For the case where dT_/dz # 0, apparently no analytical solu-
tion exists. However, it is a relatively simple task to carry out

numerical solutions with a digital computer.



Priestley and Ball reported experimental results for tempera-
tures measured between 5 and 70 cm above the heat source for the
neutral (non-stratified) case. These results did not compare
favorably with equation (63) (calculated results were about 75 per-
cent too high); but the measured results did have the same general
shaped curve as equation (63). In other words,

-1/3
T-T. A Mg, B
2T ¢’z z°

(64)

Measurements transverse to the axis of flow revealed that the tem-

perature profiles were indeed nearly Gaussian.

Morton, Taylor, and Turner (34). Morton, Taylor and Turner

also studied the problem of gravitational convection from a continu-
ous point source. Although they employed the same fundamental
principles as previous investigators, their development has a
slightly different approach, which has been adopted by several
other investigators. One difference between this development and
that of Priestley and Ball (36) is that here an unknown entrainment
velocity must be contended with, whereas Priestley and Ball dealt
with an unknown spreading coefficient.

At this point two assumptions are made:

1) The entrainment velocity is proportional to the vertical
plume velocity; and

2) that the plume has some defined boundary b; that is,
R=b, where b is not the actual radius of the plume, but some

characteristic radius.
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Morton considers two different velocity profiles (see Figure
11) as noted:
1) the so-called "top hat," or

W(r,z) = Nm, rb,

pw_p(r!z) pw-pm

, rib;
P Po

0

2) Gaussian, or
H(r,z) = W exp[-(F)?]

p,e(rs2) {p,-pp) 2
5 =1 J exP['(E) ]

(o] 0

Use of the "top hat" profile and the above two assumptions

yields:
4 (bW ) = 2boM_ (65)
4 (baw2 ) = brg =1 (66)
dz m Po
2
d b2W g Peo pml b wmg dp‘” (67)
dz m| e, J Po dz °®

as the set of governing equations.
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Velocity

profile: W(r,z) = W_ 4 Velocity profile
r 2
\\ W(r,z) = W e'(E)
m
1 1
Wm W
! - = —
‘ L’ r J .
o b ] '-_ b
2 z
"Top hat" profile Gaussian profile

Figure 11. Velocity profile assumed by Morton.

It is assumed that o is constant with respect to changes of
wm or z, which may not be the actual case. Also, o must be
determined from experimental or observational data.

For the case of a non-stratified medium PPy and dp_/dz=0,

so that from (67)

P,~P
b2W g[ 9 m]= constant, (68)
m po

and for this case the solutions are:

=6
b = T 0Z, (69)

1/3 -1/3
Uy = 2 olqeQ) 2 (70)



Po~P -1/3  -5/3
9{ go ml= %% (%3 Q) oz . (71)

Thus, the simple “top hat" profile yields the same general
flow behavior as found by previous investigations.

For the case of a stratified medium (dpm/dzfo), Morton uses
the Gaussian profiles to obtain the following set of governing

equations:

%z— (b2W ) = 20bM,

i ] (72)

d_ (b2 2) = 2b2g l o

- d
d poo pm (9
4 lpew g =M = 2p2y L =
dz [ m3 Po l m p, dz

Note that a factor 2 appears on the right-hand side of the last two
equations, the only difference between this set and (65), (66), and
(67). These equations were rewritten with normalized variables and
solved numerically. For a linearly-stratified medium, the dimension-
less z is found to achieve a maximum value of 2.8. This is related
to the actual maximum height of rise, through use of a scale factor
proportional to the fourth root of the initial buoyancy flux and in-

versely proportional to the 3/8 power of the uniform gradient, i.e.

1/4
: [Qog(po'pj)]

v

Znax 3/8
Ao,
Az
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Since the equations were developed for a point source, the

height z.. is measured from a virtual source (see Figure 12) which

X
Ties some distance below the real source (which has finite diameter).

The virtual source for their experiments was found to be

z =D
s .48

where z, is the distance the virtual source lies below the real
source and D is the real source diameter.
From the same experiments it was also found that

a = .093,

the proportionality constant between the vertical velocity at the

plume centerline and the lateral entrainment velocity.

Plume

Real source

1 :

z \

!
S \
j————-ge1:_V1rtua] source

Figure 12. Virtual source.



Morton (33). Morton ex@®nded this work in two papers published

in 1959. In this work he assumed that the characteristic lengths

for the velocity and temperature (or buoyancy) prefiles are different
to account for the difference between the eddy transport of heat and
momentum. He also extended the 1956 work to include a flux of mass
and momentum from the source, whereas the 1956 work considered only

a case of pure buoyancy such as a "thermal."

To include the effect of a different rate of spread between heat
and momentum, he assumes the characteristic length for the velocity
profile to be b as before, but the characteristic length of heat
(or buoyancy) to be xb. Under these assumptions, the governing

equations:

d =
a;-[bzwm] = Zabwm

d _ PP

vl [bzme] = xzbzg['po ] (74)
d PP} | ., Wnd dp,

&= E’z"‘mg[ o ﬂ‘ i

The only change from the set of equations, (65), (66), and (67), is
the appearance of A% in the second equation of set (7a).

Using the experimental results from Rouse et al. for a point
source, Morton ascertained that A=1.16, and from his previous
experimental results, o=.082, if Gaussian profiles are assumed. In

the case of "top hat" profiles, a is multiplied by vZ to obtain

«=.116 and A= J'*'é's - 1.08.




The assumptions in Morton's model that entrainment occurs
through the rise of the plume to Za0x and that the similarity of
profiles is likewise maintained implies that no fluid leaves the
plume until 2 ax at which point it is not accounted for.
Schematically, this implication is superimposed on the observed

pattern in Figure 13.

Morton's Model

;, Observed

o

Figure 13. Comparison of Morton's model to representative
observation.

The consequence of this is that the model underestimates the
penetration of the plume (zmax) if one accepts Morton's entrain-
ment coefficient, or one must find a lower value for the entrainment
coefficient to match the heights. In any event, there is no infor-

mation provided for the thickness or location of the spreading
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field, which is felt to be more important than 2 ax Morton et al.
(34), however, do point out that the plume should begin to spread
horizontally at the level where Ap is first diminished to zero.

Abraham (1). Abraham sought to overcome part of this objection

by allowing entrainment to become negative above the equilibrium
level, thus accounting in an artificial manner for transfer of mass
to the horizontal layer. \

Abraham considers the motion and dilution of forced vertical
plumes in both stratified and homogeneous surroundings. He also
generalizes the solution to include the three types of flow men-
tioned earlier: neutrally buoyant, pure buoyancy, and mixed flow.

To derive the equations considered by Abraham for the axisym-
metric round jet, one may begin with equations (34), (39), and (44).

Following integration, one obtains the following set of integral

equations for a homogeneous environment:

;Rb
d =
= 2mWrdr = -ZﬁRbUr(Rb)
JO
Ry R
d p2nW2rdr = 2w(p_-p)grdr (75)
dz 0 0
)
R
d b
& ZTrN(po-p)r‘dr‘ = 0.

‘0



Abraham also assumes that the velocity and buoyancy profiles
are Gaussian, but differ in the dispersion scale to account for
differences of the lateral eddy transport of momentum and matter

(or heat). These assumed distributions have the form:

W(r,z) = W, exp[-K(%)z] (76)

C(r,z)

C exp[—Kp(gﬁz] | (77)

where K and u are experimentally determined entrainment coefficients

for momentum and matter, respectively, and Cm is concentration

defined as

. - pg-0(0:2)  py-pp,
m pO—pJ pO-pJ )

(78)

In the above equation, Py is the effluent density as it leaves the
orifice. Note that the above definition of Cm is not a valid
definition of concentration for pollutants in stratified ambient
media. In the general case the numerator must contain p_ instead
of Py

For the purpose of integration, Abraham permits Rb+w, and the

equation set (75) is written as:

poo

2mWrdr = Q' (79)

[=NE=N
N

J 0

pcO o

prdwzrdr = Zn(po-p)grdr (80)

Q-IQ.
N

0 0
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%E- ZnN(po—p)rdr = 0. (81)

0

In the continuity equation (79) above, Abraham does not assume a
relationship between W and Ur as did Morton et al. (34), but simply
insists that continuity is satisfied by some unknown inflow, Q',
to the plume. Also in the second equation Abraham uses p, instead
of p and in the second and third equations p_ has been replaced by
Po since Po™Pw for a nonstratified medium.

If equation (80) is multiplied by dz and the result integrated
from Z, to z (ze is the point where the flow becomes fully estab-
lished - see discussion on zone of flow establishment), the result
is:

z

anJJ W2rdr = M, + g ‘ dz [ Zn(po-p)rdr, (82)
0 e 0

Z

where Me is the jet momentum at z = z, or the left-hand side of the
equation evaluated at z = z,. The following expression for the
plume centerline momentum as a function of z is obtained when (76),

(77), and (78) are inserted into (82) and integrated:

z
2= M tgm (po'pJ) szzdz. (83)
uK
Ze

When equation (81) is divided by (po—pJ), (76) and (77) are

T 2
7K " Py

used to replace W and the quantity (po-p)/(po-pJ), and the result

integrated from Zy to z:



il =
mcmwmzz = TWJCJ (84)

is obtained, where C'J and NJ are plume conditions at the orifice
and D is the orifice diameter.
By differentiating (83) with respect to z and using (84) to

eliminate Cm’ the following differential equation is obtained.

1/2 d(W_2z%) p.=p
2,2 m = K(1+p) 0 "Jin2
(W _*z?) 5 maat’ o D2W,C ;2z. (85)
Equation (85) can then be integrated to obtain
' y 3/2 L)
"m_D|fK’e) 31 (Ttmyylzt e
Wy Tz |2 M, g Fry “w N|DZ T D2 . (86)

In equation (86),

_ 2y 2
MJ = (n/4)D NJ ey

Pn=P
- 2 o "J
and FrJ = wJ /[ 53 gD],

and the lower limit of integration established by (83) is given as

m “e Ty €’

at z=z,. Then from equation (84),

C 2 W
m _ K(+u) (By* J
c, & 2 W (87)
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Hence, the dilution of a vertical plume

S,(rsz) = C’T%:ET' (88)

m

is found from equations (86) and (87). As mentioned previously
in the discussion on the zone of flow establishment, the quantity
z, is found by the equation:
1.42 (%e) (%) (1+)%K
: [_9] +[_e}_i_*u_L_8 -0, (89)

FrJ D D

where the values of k and u are 77 and .80, respectively, for equa-
tion (89).

Abraham also presents solutions for the limiting cases where
either inertial forces dominate the flow behavior (FRJ+w) or where
buoyant forces dominate (FRJ+O). For the uniform medium the follow-
ing limiting solutions are available:

. Inertial dominated flow: FrJ+m

D

C
D= (L

N

in which case K=77 and u=.80.



Buoyancy dominated flow: FR»0

J
Mo D13 1 dtuglzz e 13
mo_ D3 1 Muyel2t o &
NJ z |8 FrJ ( U ) D? D2 ] (92)
C 2 W
C, d 'z W (87)

in which case K=92 and u=.74.

Note that the values of K and u differ depending on whether
the flow is inertial or buoyancy-dominated. Normally the flow in
the plume would be mixed_(with respect to inertial and buoyancy
domination) so that over the established flow regime 77<K<92
and .74<p<.80. Abraham discussed which values of K and p should
be used for calculations in reference (1). Abraham's solutions
(86) and (87) for the nonstratified case are identical to those
given by Priestley and Ball (41) except, as Abraham says, "The
physical parameters are more clearly defined."

Abraham also discusses flow in a stratified medium. Since
an analytical solution cannot be obtained for this case, the
approach used by Abraham is to divide the medium depth into a
number of increments, each with uniform but different density, and
then systematically apply equations (86) and (87) for the solution.
If the subscript n refers to an increment identification number,

in sequential order, the equations for numerical solution are:
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N Z ll ( 2 ) 1/3
m n- z
= K + K Zz ] (93)
Wnn-1 2 Y 2“1
o z z? ]-1/3
m_ -l vk 7
Cm,n-] z |1 271 (94)
where
_ .31
23 1
K2 2 uFn—1 ’
(wm,n-l)2
n-1 Pn"Pm,n-1
p-p
and Cm = f
Pm,n-1"Pn

Inclined and Horizontal Plumes - Stagnant Environment

In more recent outfall construction it has been the practice to
orient the diffuser ports so that the waste material is issued
horizontally into the receiving water (Figure 14). Both theory
and practice have shown that the horizontal plume is more efficient
in diluting the pollutant with respect to the final height the
pollution field achieves. The analyses offered thus far for the
horizontal plume differ 1ittle from vertical plume analysis, except

that a horizontal component of momentum is considered.



Abraham (1). Abraham also presents an analysis for horizontal

round plumes issuing into stagnant, nonstratified media.

SEA SURFACE, Pe

velocity profile

Figure 14. Horizontal plume issuing into stagnant, density

stratified medium.

For the horizontal plume, the natural coordinates are s and r

(Figure 14), where s is the distance along the plume axis and r

always 1ies in a plane normal to this direction. Although the

velocity and buoyancy profiles are certainly not Gaussian, they

are

assumed as such to simplify the analysis. These profiles are

represented by:

and

Ulr,s) = Uyexpl-K(5) ] (95)

Clr,s) = Cuexpl-ku(5) 1. (%6)
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The z-x coordinates for the flow are given by:

s/D

= Singd(3), (97)
j0
rs/D

%—= Cosed(%). (98)
‘0

Equation (80) can be modified for this coordinate system
simply by replacing z with s to obtain:
T__cusz=Tcy (99)
K(T+g) “m'm T
However, in the momentum equation both z-directional and

x-directional momentum must be considered. For the z-direction,

the equation analogous to (82) is

© S 00
SineJ anJUZrdr = MeSinee + g [ ds[ 2n(po-p)rdr, (100)
0 Se 0
and for the x-direction (horizontal):
Coseprduzrdr = MJ, (101)
0

where MJ is the momentum at the orifice.
Equations (100) and (101) are integrated using profiles
(95) and (96) and added vectorially to obtain

S

1/2 | S p -ps
m 2 2y2_ nD? 2 2 - : o " J 2
{(ZK Un2egs?)-(534y%0,) } - Mesmee+gﬂf K Cps®ds.  (102)
e



With use of equation (99), equation (102) may be reduced

to the differential form

—
T

|

V Un s]" 1 Ve 1
ms g msy L_ L = o S d(s
U, D d [u D} 2" 3 u Fry D d(5). (103)

N

Equation (103) is then used to solve for Um/UJ as a function
of s/D. Equation (99) is used to evaluate Cm/CJ, equation (101)
to find 8 and eventually (97) and (98) to find z/D and x/D. To

evaluate the entrainment coefficients, Abraham uses the following

relationships:
) 3 ) 2
K= -304(2) + 228(2) + 77 (104)
6y° 6,2
p = .96(5) - .72(;) + .80. (105)

Obviously, the solution for the horizontal plume problem must
be carried out numerically. Also, there is some question concerning

the basis of equations (104) and (105) (Fan (14)).
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Fan (14). Work carried out by Fan and reported in 1967 represents

valuable extensions to established jet and plume theory. Part of
this work is concerned with plumes issuing horizontally (and at
arbitrary angles above the horizontal) into a stagnant, Tinearly
density-stratified medium. Fan's work is based on the Morton et al.
(34) theoretical approach, along with the Albertson et al. (4)

experimental work to define the length for flow establishment.
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In Figure 15 the z',x' coordinates are referred to the actual
source, and the z,x coordinates are referred to the point where the

flow becomes fully established with respect to the velocity pro-

file, or 6.2D from the z',x' origin at an angle eo.

Figure 15. Plume issuing at an angle into a stagnant medium.

Equations are again needed for continuity, z and x momentum,
buoyancy, and geometry. These expressioné are written in terms
of‘coordinates along the jet axis, s, and a normal to this direc-
tion, r. Velocity and buoyancy profiles are assumed Gaussian in

the region of established flow:
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U(r,s) = U_(s) exp[-Fz/bZJ
PP = Lo -pn(s)]expl-r2/(1%b2)],

where b 1s a characteristic width.

The governing equations are as follows:

: . d 2 -
Continuity: HE'(b Um) = 2bUma (106)
21 2 PP
Zz-momentum: %g-(9~é?L-Sine) = gxzbz—zr—ﬂl (107)
0
d b2Up?
x-momentum: ag-(——im—-Cose) =0 (108)
do
Buoyancy: d 2 I8, e (109)
HE{Umb [pw'pm]) T e bV, T
. . dZz s
z-coordinate: Js = Sind (110)
. .odx _
x-coordinate: 5 - Cos6 (111)
F o 2 Z = 2
Concentration: CmUmb Const. UJcobo (112)

To obtain the solutions in terms of Um’ b, 6, Pe=Pps X and
z, the above six differential equations must be solved simultaneously.
The initial conditions are Um(0)=UJ, b(0)=bo(b0=D//?), pm(0)=pJ,
8(0)=60, and x=z=0 at s=0. Fan normalized these equations in much
the same fashion as did Morton et al. (34) and worked with dimen-
sionless parameters. Solutions were carried out numerically by

digital computer (see reference 14a).

Cederwall (11). Based on equations developed by Bosanquet et

al. (8) for plumes issuing into fluids of other density at various



inclined angles, Cederwall proposed the following set of equations

for horizontal plumes in homogeneous receiving waters:

¢ 1/2 71e 1/2
_ 1/ z .
Sm ol o .54 FrJ —7z s 2/D<.5 FrJ (113)
m DFrJ
C 5/3 1/2
=9 - 1/2 z .
Sm ol ol .54 Fr'J [.38 _——_T7§'+ .66] y 2/D2.5 FrJ
m DFr‘J
(114)
U'J 1/2 2 2/11
— = .40 Fr —77 .

These equations are for conditions along the jet axis, with
the zone of flow establishment being neglected. Cederwall comments
that Abraham's model can be written in similar form if the zone
of flow establishment is neglected.

For the case where the receiving water is stratified, Ceder-
wall suggests a step-by-step numerical approach using the above
set of equations. For application, Reference 11 should be con-
sulted.

Trent, Baumgartner and Byram (52). Theoretical work on inclined

jets issuing into arbitrarily stratified media is also being carried
on at Corvallis by Trent et al. This work follows more along the
work of Abraham than that of Morton et al. It is felt that the
introduction of the characteristic length, b, used by Morton (and
later by Fan) is an unneeded complication.

Refer to Figure 15 and consider the velocity and density dis-

parity profiles to be given by:



U(r,s) = U (s)exp[-K(r/s)?] (116)

pp(rss) PoePpy(8)

500y | oPg exp[-Ku(r/s)?] (117)

where K and u are possible functions of s. Let

= 3
E=U>2,
p-p.(s)
A=
m Po Py
R=UA.

The governing equations become, after simplification:

Axial velocity:

p_-p
4, 3E_E K _3g [_o_ _J] Rstng

ds °s T 2Kds u | ey (118)
Density disparity:
| ) 1/3 4
dR . 2R _ R d[K(I+u)]_ 1% o
ds TS K(T+u) ) Py=Py E & (119)
Angle:
= Cos™! 592/3§§-2 Coso
8 ° E S 0 (120)
Geometry:
¢S
X=Xt Cosedg (121)
e
P, Se
rS
+ .
z =12, Sinede (122)
‘s
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Continuity of pollutant:

Ee 1/3 S, 2
o[ o
where Cm is any convenient measure of centerline concentration. It
should be pointed out here that in the case of a hot water plume
having the same salinity as the ambient, Am is the measure of pol-
lutant concentration and equation (123) is unnecessary.
In order to evaluate equations (118) and (119), it is necessary
to evaluate
1 dK
s

2K ds

1 d[ K(1+
and KT+ _[_é_s_vll

These quantities are functions of the as-yet-undefined flow field.
And, even if the flow dynamics were known, just how K and uvary

is open to question. We do have, however, Abraham's limiting
values for small and large Fr (see page 57). In this work

we assume that K and u change slowly along s, at least over

the range of s where a similarity solution is valid. Then terms
involving derivatives of K and u are small compared to other terms

of the equations and as a first approximation may be ignored.*

* Once the approximate flow dynamics have been established, one
could, at least in principal, use this information to estimate
derivatives of K and p and thus improve the solution.



Equations (118) and (119) become:

The quantity R could be eliminated from (124) by using (125) , which
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would yield a second order equation in E. However, the equations will

eventually be solved numerically, so that two first-order equations

turn out to be the more convenient form.

The governing equation may be non-dimensionalized by defining

the following parameters:

Ex = E/EJ = Um3/UJ3
s* = gs/D, x* = x/D, z¥ = z/D
R* =

R/Ry = Undp/Ugly

* -
P* = £of (0,-05)
Hence, the equation set in dimensionless form becomes:

dE* . 3E* _ _ 3

ds* | S* - UFrJ R*Sine

dp *
dR* . 2R* 1/3 Fe
s+ T g% = (THE* / ds* °

along with appropriate dimensionless forms for equations (120), (121),

(122), and (123) if needed. Initial conditions are:
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at s* = s *: E*x =F * =]

e e
R = R* = 1
6 =8,
C*=C* = 1.

Here Se* is 5.6, based upon concentration profile establishment
for Frdzloo.
From equations (126) and {127), the obvious simplifications
are:
» Vertical buoyant plume: & = Const = 90°

+ Homogeneous medium: dp_*/ds* = 0.

These equations also reveal two similarity parameters (aside from

8):
U 2
B R -i
[ o J]Dg

Py
0, )
* « d |
dp * dp Po=Py

¥ 3 OV 9ZF T (/D)

For linear stratification:

4

where G is the stratification parameter, and Bpy = py-Py-

dpm*
e

Apm

L
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Numerous calculations have been carried out based on various

max
responding downstream distance x*max are plotted in Figure 16 for

values of G and FrJ. The dimensionless height of z* and cor-

parametized values FrJ and G, where 80=0°. Figure 17 illustrates

z* ax for a vertical jet as a function of Fr. for various values

m J

of G. These results are in excellent agreement with Fan's experi-
mental results, and may be used as a guide for ocean outfall diffuser
designs.
The information in Figure 17 may be approximated by the equa-

tion:

. 1 1/8 -3/8 ,

Z* o = 3—-FrJ G . (129)
For values of GZZx10-3 this equation begins to lose accuracy, as

illustrated by the dashed 1line in Figure 17.
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Figure 16. Maximum height of rise versus downstream distance for horizontal
plume in linearly stratified environment.
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Vertical Plumes - Crossflow

The previous discussions were concerned with plumes in either
stratified or nonstratified stagnant receiving waters. However,
the ocean is seldom stagnant and cross-currents can have a
dramatic effect on the dilution and height of rise of a buoyant
plume.

For analysis of the bent-over plume, simplifications and
assumptions associated with the vertical plume analysis are main-
tained. One must realize that in approaching the problem from
this viewpoint, gross approximations must be made. For instance,
the assumption of an axisymmetric Gaussian velocity profile along'
the plume axis is certainly not a characteristic of the bent-over
plume. In fact, a cross-section of the plume normal to the axis
of flow will reveal a variety of forms depending on the magnitude
of the current and the geometry and dynamic character of the plume.
Under most conditions the situation may be similar to Figure 18,
a situation which has been observed experimentally by a number of
investigators. The counter-rotating motion shown in section A-A
of Figure 18 has also been calculated numerically by Lilly (28)
for a line thermal. Casual observation of smoke issuing from a
chimney into a cross-wind has shown that when wind and plume
conditions are adjusted in some as-yet-undefined proportions, the
plume may disintegrate into two or even three distinguishable

streams (Figure 19).



SECTION A-A

Figure 18. Vortices associated with a bent-over plume.

Figure 19. Schematic representation of smoke plume separating into (a) two or (b) three
streams due to wind effects.
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The amount of analytical work carried out on bent-over plumes
is meager and in some cases quite flimsy - probably owing to the
difficulty of the analysis. Priestley (42) was evidently the
first to propose a working model for atmospheric plumes. Schmidt
(46) has also done some work on smoke plumes, among a few others.
However, Fan (14) presents what is considered here the most systematic
approach to the problem of buoyant plumes in ocean currents. For
this reason only Fan's work will be discussed.

Fan considered the problem of a vertical round port discharging
buoyant pollutant to a homogeneous ocean with a uniform (top to
bottom) cross-current (Figure 20).

The absolute velocity of the plume along the s-direction is
assumed to be axisymmetric, and composed of two parts: 1) the
component of the cross-current in the direction of s; 2) the
relative velocity which is assumed to be Gaussian with respect to
r and similar with respect to s. Thus the velocity along s with

respect to a fixed reference frame is
U*(s,r) = U _Cose + Umexp[-rz/bz], (131)
where Um is the relative velocity along the jet axis. Density

deficiency is given by

Pu-P(rss) = [ -p, Jexp[-r?/b]. (132)



U —>

(cross-current)

2 D §

Figure 20. Vertical jet issuing into uniform cross-current.
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The superscript * refers to the absolute velocity in the plume.
Again, the governing equations must satisfy the conditions of
continuity, momentum, and energy.

Continuity. Continuity is assumed to be satisfied
by:

gE-JA U*dA = 2mob

> >
UJ-Uoo ’

where the quantity under the absolute value sign is the relative
velocity between jet and environment. By integrating the component
of the environmental velocity in the direction of r from 0 to vZ b
(the nominal radius of the jet is assumed to be vZ b) and inte-
grating the Gaussian part of the profile from 0+, the continuity

relationship becomes:

' 1/2
& [b2(2u Cose+u )] = 20b(U,?Sin?6+y 2) . (133)
Momentum. Momentum components for both the z and x direction
must be considered. But unlike the case for a uniform environment,
some compensation must be made for drag on the plume, according to

Fan. This drag force is assumed to have the form:

p U_25in%e

where Cd is a coefficient of drag which must be found experi-

mentally. Then for x-directional momentum,

2
g-s-@—{ 2UmCose+Um)ZCos€{|

20bU_(U_?Sin%e+y 2)  + —— U ?bSin’s, (135)



and for z-directional momentum,

& [%— (2UmCose+Um) S1n%} = b g[ 5
Cd‘/z
i Umzb Sin26Coss. (]36)

Density deficiency. The relationship for density deficiency

for a non-stratified medium is

gg-JA U*(p_-p)dA = 0. (137)

Substituting the expressions (131) and (132) for U* and p, and

integrating from O-«~, yields

&5 [b2(20_Cose+y ) (o,-0,)] = 0. (138)

The geometric relationship between s-6 coordinates and x-z

coordinates are given as

dz _ <.
L Sine, (139)
dx _

and o Cose. (]40)

Initial conditions are referred to the origin of the s-6 coor-
dinate system and have the following values: Um(0)=UJ, b(0)
- = _D_ = = =YY= = i
—bo[b— {2}, pm(O)—pJ, 8(0) 8,s z=x=0 at s=0. Equation (138) can

be integrated immediately to yield:

bZ(ZUwCose+Um)(pw-pm) = constant, (141)
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but the five remaining differential equations ((133), (135), (136),
(137), and (138)) must be solved simultaneously. Since the ambient
medium is assumed non-stratified, concentration may be calculated
using equation (141) with (pm-pm) replaced by C,- Fan carried out
these computations numerically for various cases after normaliza-
tion of equations and non-dimensionalizing parameters. One other
point that should be mentioned here is that eo is no longer 90° from
the horizontal where established flow begins.

To calculate 6, at $%5, Fan uses the empirical relationship
6, = 90-T10K' (142)

where K' is a function of s/D (see reference 14, page 94).
A very brief and incomplete summary of Fan's work has been
presented here. Reference 14 should be consulted for the detailed

theory and results.

Negatively Buoyant Plumes

Plumes that have negative buoyancy result when heavier fluid
is discharged into lighter receiving water such as water with
heavy salt concentration rejected from a desalinization plant.

The dynamics are essentially the same as in the case of a buoyant
plume, except the sign of the buoyancy term is reversed. However,
in the case of the vertical plume the heavier fluid will cascade,
causing interaction between the initially formed plume and the
cascade flow. For cases where the fluid issues from an inclined

port, and in the same general direction as the ambient current,
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this interaction will not take place. Figure 21 illustrates

typical negative buoyancy flows.

plume flow Pw <Py

cascade U N
o

flow > \
7 R -

Vertical Discharge Inclined Discharge

Figure 21. Typical flow patterns for plumes with negative
buoyancy.

Analysis similar to the positively buoyant plume should hold
for the inclined discharge if the sign of the buoyancy term is
changed in the governing differential equation. However, with
the vertical discharge there is some question whether an adequate
similarity solution can be expected because of the interaction
between flows. It has been the practice thus far to assume that
there is no mixing between the two flows. In this way solutions
for the positive buoyancy plume can be fashioned into solutions
for the heavy plume.

Cederwall (11) gives the following comparisons of theoretical
ceiling heights for heavy fluids discharged vertically into homo-

geneous environments:
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Zoox = 1.94 FrJI/ZD Abraham
z =1.85 Fr /3 Priestly & Ball (143)
max * J y
_ 1/2
Z oy " 1.60 FrJ D Morton

The work by Trent et al. yields: Zoax = 1.80 FrJ1/ZD. The
length for flow establishment has been ignored in the above rela-
tionships.

Turner (54) carried out analysis and experiments of heavy jets
and plumes and found that the initial penetration of the fluid is

somewhat higher than the steady-state penetration height (Figure 22).

z
e ~= "~ initial transient height

steady state

n
— r/D

Figure 22. Initial and steady penetration heights of a vertical
heavy plume in homogeneous medium.



81

Turner's experimental results (for comparison with (143))
yield

= 1/2
max 1.74 FrJ D (steady state)

N
I

2.48 FrJ‘/ZD (initial transient). (144)

and z
max

The initial transient penetrates higher apparently because
there is no cascading flow to interact with, as is the case of
steady state. Turner's theoretical penetration height for steady

state is:

- 1/3
2oy = 2.9Fry’7D. | (145)

Horizontal Surface Discharge

There may be benefit in discharging certain pollutants at the
sea surface. For instance, thermal interchange with the atmosphere
would hasten the dissipation of heat and lower the overall heat-up
of the local sea. Also, shoreline discharge is economically
attractive because the cost of constructing an expensive marine
discharge line is eliminated.

Very little analysis has been carried out for this type of
discharge. The dynamics of the pollution field are again charac-
terized by a zone of initial dilution and a zone of drift flow.
However, the zone of initial dilution is influenced primarily by
the discharge momentum. If the pollutant is lighter than the
receiving water, a gravitational spread must be considered along

with the turbulent diffusion.
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In some cases, such as low velocity canal discharge of power
plant reject heat, initial momentum of the coolant may play only
a minor role on the overall pollution field dynamic behavior. In
such instances, the pollutant field dynamics must be treated by
methods discussed in chapters V and VI.

Jen et al. (24) have carried out analytical and experimental
investigations for horizontal surface jets having initial densi-
metric Froude numbers in the range of 324 to 32,400. The results
of this study showed that the surface temperature distribution
could be approximated by

% - exn[-3FrJ”4(§)2}, (186)
for x/D<100. In the above equation, T_ is the receiving water
temperature, Tm is the jet centerline temperature, x is the coor-
dinate along the jet axis, and y is normal to the jet axis.

For values of x/D<100 the centerline temperature is expressed
by

T -T

m o _ D
TJ—Ix = 7.0(;), (147)

where TJ is the effluent temperature.

The above equations were developed in a manner similar to the
methods used by Abraham. Also, these equations are only valid
where initial momentum is dominating the flow dynamics (large FrJ).

It is doubtful that the analysis presented by Jen et al. could

be applied to practical cases with a great deal of confidence,



because the range of Froude numbers covered by the investigation
does not correspond to most practical situations. For instance,
the densimetric Froude number for canal discharge of hot water
may be on the order of 10 or less.

Zeller (61) considered the surface jet from a viewpoint similar
to Fan's (14) analysis of the buoyant plume. However, unlike the
work of Jen et al., Zeller incorporates the effects of cross-currents
and wind stress.

Hayashi and Shuto (20) also studied the problem of hot water
spreading over colder receiving water. These authors considered
the case of a very low initial densimetric Froude number (FrJz1)
and ignored the non-linear terms in the equations of motion. Hence,
this work is not defined in the category of jet flow, but is dis-

cussed in Chapter V under "Surface Drift of a Buoyant Pollutant."
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ZONE OF DRIFT FLOW

The zone of drift flow is characterized by the pollutant field
drifting with the oceanic currents nearly as if it were a part of
the oceanic velocity field. In the dkift flow regime the pollutant
field continues to dilute and disperse into the oceanic environment
primarily by two possible mechanisms. The first of these mechanisms
is turbulent transport or eddy mixing; the second is a density
disparity between the pollutant flow field and the environment.
The first mechanism, turbulent mixing, will always be present in
the ocean, but spreading by virtue of a density disparity may not
be. Lateral spread of a pollution field under the action of gravity
is nearly entirely a surface phenomenon* and is characterized by the
polluted stream from an outfall reaching the ocean surface without
sufficient dilution so that it remains on the surface, with posi-
tive buoyancy (or on the bottom with negative buoyancy). As a
result of the density disparity, the action of gravity causes the
lighter pollution to spread laterally over the heavier receiving
water. At the same time lateral eddy diffusion is also acting.
Depending on the intensity of vertical turbulence, vertical dispersion
may not be significant. Figure 23 illustrates the different types of
drift flow schematically for a submerged horizontal discharge of

buoyant fluid in a density-stratified receiving water.

* Cederwall (11) points out that a submerged lateral density spread
will occur under certain conditions and may, in fact, become an
important consideration in some locales.
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Figure 23. Two types of drift flow resulting from submerged
horizontal discharge of buoyant fluid in a density
stratified ocean with current.
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Submerged or Neutrally Buoyant Drift Flow

Neutrally buoyant flow is by far the simplest type of motion

in the drift flow regime because gravitational forces need not be

considered.

Consider the momentum equation (8):

3. 3,
i i _ 1 3
5t T Y5 ot 285U by 3%
+ E‘”'p 1} R S (8)
D - 1|g8q * e .
Po i3 axj 1] 8%;

Since we are dealing with a neutrally buoyant pollutant field,

p=p

o

and equation (8) may be written as

au, oU,

1 1

3 3 Uy

- - gd. F o— ., — . (148)
Po axi i3 axj ij axj
Now, if the outfall discharge momentum does not perturb the
oceanic motion to any appreciable extent, solution of the above
equation is independent of the pollutant field.
The pollutant dispersion is governed by the mass diffusion

equation (10),

3C 3 _ 5 o TJaC . .
3t T U; 5?(3.“ - X, E”EM‘:]BXJ' tmo, (149)
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where C is concentration of the pollutant.
The quantity m represents a source or sink that is used to
account for BOD decay, growth of bacteria, sedimentation, etc.

For oceanic flow D<<€Mj’ so that

g%+ Uj§%=§??._[€Mj g%j-}+rh, (150)
where EM; is a function of the flow field and is not a fluid
property. To solve equation (150) for C, the quantities Um and
Mj must be known.

The velocity components, Uj’ may be calculated using equation
(148), or they may be determined by oceanographic measurements. The
eddy diffusion coefficients, EMj’ are determined by measurement and
may be constant or assumed to have some functional form (to be dis-
cussed later).

At any rate, the problem of calculating C from equation (150) is
considerably simplified since the velocity field is assumed to be
known beforehand. This situation contrasts the case of a buoyant
surface drift where the momentum equation (8) must be considered
simultaneously with equation (150) because of the interaction
between pollutant field concentration and momentum (i.e. density
disparity, p_-p, causing a gravity spread of the field).

Now if the coordinate system is assumed to move along with the

ocean current, then the convective terms in equation (150) vanish and

aC _ 3 aC . -
3t axj EMj axj +m. (151)
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If the ocean has a steady uniform velocity field, Uj, and
the pollutant has been issuing from a continuous source long enough

for steady-state conditions to prevail at downstream points, then

3C
=% - 0. (152)

Q

Hence, equation (150) becomes

o _ 3 LI
U:i ;. ax 5 E—Mj axj:{+ m. (153)

For the case of homogeneous, isotropic turbulence EMj is constant

with respect to spatial coordinates so that from equation (151),

aC _ 32C .
3t M 30X +m, | (154)

or, from equation (153),

2
T

X . M X.9Xs
Iy OX jOX 5

+m . (155)

Finally, if the substance is conserved, m=0, then

aC _ 22C
3t M axjaxj (156)

and

aC 32C

j 51; T M X.ax. (157)



Comments on the Eddy Transport Coefficient, v

In order to solve the above diffusion equations analytically,
the eddy diffusion coefficient, M must have some functional form.
Obviously, the simplest case is that of a homogeneous isotropic
turbulence field where EMj=EM’ a constant. However, it may not be
reasonable to assume the ocean turbulence is either homogeneous
or isotropic. For example, wind stress at the sea surface causes
ocean turbulence which diffuses with decreasing intensity to lower
depths. Also, density stratification depresses the component of
vertical mixing so that lateral turbulent transport is much greater
than the vertical transport.

Another complicating factor is that as the plume grows in size,
larger and larger scales of turbulence take part in the diffusion
process. In the ocean, turbulence of all scales can exist, from
the isotropic microscales to the highly anisotropic macroscales
which are limited in size by solid boundaries and the sea surface.
Various authors have attempted to account for this phenomena by
assuming that the diffusion coefficient is a function of the plume
size and/or is a function of diffusion time.

In the open sea (see Reference 36) measurements have shown
that the lateral eddy diffusion coefficient is proportional to

L 4/3

, where L is the scale size (the width of a dye plume, for
instance). However, in the open sea very large scales of turbulence
are possible, whereas in a coastal region the scales would be

limited in size by the coastline and bottom effects.
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Orlob (38) carried out various eddy diffusion studies in
open channel flow. From experiment he found that lateral dis-
persion patterns would not grow indefinitely according to the
4/3 power law, but would become parabolic in shape as governed
by the largest sized eddies participating in the diffusion process.
These findings indicate that when the pollution field is smaller
than the largest eddies, the eddy diffusion coefficient is propor-

tional to L‘V3

» but when the plume grows to a size larger than the
largest eddies, the eddy diffusion coefficient is constant (actually
there is a transition zone separating these two effects).

Cederwall (11) argues that in shallow coastal waters the growth
of turbulent eddies is limited, and at a distance not too far from
the source, the plume will grow to a size where the maximum possible
sized eddies are affecting the diffusion. Thereafter the eddy
diffusion coefficient is essentially constant - at least with regard
to maximum scale sizes. For this reason Cederwall maintains that
it is more reasonable to base diffusion models on a constant diffusion
coefficient. As an example, Harremoes (18) has found from radioactive
tracer studies off Hdlsingborg, Sweden, that the coefficient of
lateral eddy diffusion was essentially constant (eM lateral = 0.5
meters?/sec) in these waters. He also found that the vertical eddy

diffusion could be approximated by

5 -5 2
EMz = 5x10 iz meters?/sec,
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for the same region. Foxworthy et al. (15) also questions the
validity of using the 4/3 power law in coastal waters, based on
measurements off Southern California which indicated considerable
disagreement with calculations based on the 4/3 power law.

Ozmidov (39) has proposed a function, f(L/H), which corrects
the 4/3 power law for shallow coastal water. Using this correction

factor Ozmidov writes the coefficient of eddy diffusion as

4/3

EM(L,L/H) = kL' f(L/H),

where k is a proportionality constant. However, this proposal has
apparently not received general acceptance. A good surmary of
both lateral and vertical eddy transport coefficient models is
given by Koh and Fan (25).

The eddy diffusion coefficients are fundamental to the solu-
tion of the mass diffusion equation. At present there is no
general agreement as to the functional form of these coefficients
for applications in coastal water. Obviously, a good deal of
research is needed concerning large-scale turbulence in shallow

coastal waters.

Point Source Models

A number of solutions to the diffusion equation are possible
based on boundary effects and the assumed form of the diffusion
coefficient. A few of these proposed diffusion models are pre-

sented here for a conservative pollutant (m = 0).
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Fickian diffusion models* are based on a constant value of
eddy diffusion which are not necessarily isotropic.

For the case of an instantaneous release of an amount, M,
of pollutant in a uniform current having velocity components
U, Vo, and w“>in the x,y, and z directions, respectively, the

concentration at a point is given by

C(x,ys,2,t) =

M (X'Umt)z

exp - |——5— *+
172,32 Geyyt

3/2
(4) (EMxeMyEMz

+ (158)
4€Myt 4eMzt

(y-th)2 (z-wmt)z]

For a fixed source, a continuous volumetric discharge, q, of

pollutant into a uniform current flowing in the x-direction only,
results in

y2u_ 22U

C(x,y,z) = g exp - +
dﬂ_(EMyst)1/2x 4€Myx 4€MZX

In the above equation, turbulent transport in the x-direction
is ignored; specifically, ex/Umx<<1 is assumed.

To account for the sea surface boundary

* This work has been adapted from Reference 11.



(X.y,2) q [”zuw 2, }

Cix,y,z) = exp - +

N EY 1/2 de.. X 160
Zn(eMyeMz) / X 4€MyX EMz (160)

where z=0 may be taken as the sea surface (the plane of reflection).

Models Based on a Variable Diffusion Coefficient

For a conservative pollutant, the simple radial flow diffusion

equation takes the form

oC _ 13 oC
S——le:EMrréT;]. (]6])

Specifically, this equation is used to describe the diffusion of
the instantaneous release of an amount M of po1]utaht. The pollu-
tant is assumed to spread only in a radial plane and any solid
boundary effects are ignored. Different models may be derived from
equation (161) by assuming different functional forms for My
Okubo (37) has generalized these various solutions by assuming

that the eddy transport coefficient ey May be a function of space

and time, defined functionally by

eyr = eMof(t)rm. (162)

Then equation (161) may be written as

3C _ 13 m+1 3C
5t v ar EMof(t)‘” a—r:| (163)

where Mo and m are constants and f(t) is a function of time related

Q

to the concentration distribution.
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The general solution to (163) is:

p(2-m)
AR [ VEDECRTC)

2/(2—m)[w(t)]2/(2-m)

(2-m)M
2 n(2-m) (&)

C(r,t) =

(164)
I1(2 m) Mo

for 0<m<2. The symbol I' denotes the Gamma function and

t
o) = [ £(£)dE

o

¢(r,0) = ms(r)/ar (&(r) = Dirac delta function)

*

lim C(r,t) = 0,t20
r—)-co

c(r,t) = 0, for r<0, t20

’J C{r,t)2nrdr = M, for t20
)

Table I summarizes the models derived from equation (163)
(or (164)) proposed by various authors.

Brooks (reference 60) has presented solutions based on the
assumption that the coefficient of eddy diffusion is a function

of the pollution field width, L, alone. The results of this

work are:
C, (x) = M (-—4 ,» e=a,l
2v 611'0. i °°
-3/2 4/3
M R
Cp ) = 7587 —z @ et o
2



TABLE 1
RADIAL DIFFUSION MODELS FROM OKUBO (37)

Experimental Proposed

f(t) m Parameter by:
M exp[-zf———i
C(r,t)s —— Mot 1 0 ey "Fickian®
4mey, t 0
M exp[- rfﬂ
Clr,t)= ———E= 1 1 p:Diffusion  Joseph &
2mp?t? Velocity Sender
2/3
M exp[— ] |
C(r,t)= 1 4/3 a:Energy Ozmidov
6nadt? Dissipation
2
M exp[EQ%T
C(r,t)s ————— t 0 w:Diffusion  Pritchard &
mw?t? Velocity Okubo
rt/?
M exp[W]
C(r,t)= —z t 2/3 a:Energy Okubo
(3/8)w 1 a3t? Dissipation
M exp[géigﬂ
c(r,t)s ———— t2 0 B:Energy Obukhov

mR3t3 Dissipation
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where a, and o, are determined by experiment and L is the width

of the poliution field.

Line Source Models

Brooks (10) considered the dispersion of matter from an ocean
outfall line with pollutants issuing from a number of ports along
the 1ine. For analytical purposes, he considered the outfall
system a steady line source issuing horizontally in a uniform
stream U_. By neglecting vertical and longitudinal eddy transport,

Brooks writes eguation (153) as

3 .2 (. 3y, .
U, === (eM ay) 4+ m. (165)

Figure 24 illustrates the plan view of the idealized physical

system.
Y
| Uw
—
f‘ 3 :
1 Pollutant field
b {[ T C, L
Multiport 7 (y=o)}— C(x,y)
Qutfall ] - - -
Line Y
_,521~ JE
|

Figure 24. Brooks' line source model (for ported outfall line).
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Brooks assumes that for biological and/or solid pollutants
the die-off rate and/or sedimentation are proportional to the con-

centration, so that

m = kC.

This assumption has a net effect on the final solution of
multiplication of C by exp(-kx/U_). Since this is the only effect,
m can be ignored in solving the diffusion equation, keeping in mind
that the solution must be multiplied by this exponential factor.
Brooks also maintains that equation (165) may be solved considering

ey 25 2 function of x alone. Thus, equation (165) may be written as

' en(X) L2010
gg B 3 gyg : (166)

where C' is defined by C=C' exp(-kx/U_).

Now let eM(x) = eMof(x) where f(o) = 1, and define x' such that
dx' = f(x)dx.

The quantity Mo is the eddy diffusion coefficient at x = o.

Then equation (166) becomes:

' € 1
oC _ Mo BZC . (]67)

ax' U, 9y*

The solution for (167) is

C Jblz ( 1\2
C'(x,y) = —2— exp['4 = ] dy' (168)
2/ﬂeMot' “b/2 Mo
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where C0 is the concentration of the plume as it enters the zone
of drift flow, and t'= x'/U_.
Brooks defines the field width as
L=2/3 ¢

where o, the standard deviation, is defined by

a’= c_]b‘ r y2C(x,y)dy. | (169)

]
Brooks evaluates the solution for three different assumptions
of Ey- These cases are listed in Table II. In Table II, B is

defined by:

B = 125M0/Umb.

Yudelson (60) discusses the previous diffusion equation solu-
tions in somewhat more detail than given here, and he’a1so compares
theory with results from several experimental investigations (pri-
marily dye-patch experiments). These comparisons will not be
discussed in detail here except to point out that according to
Yudelson, Brooks' solution using the 4/3 power law seems to
yield reasonably accurate results. He also notes that Brooks'
solutions have been used in designing a number of ocean outfalls

in Southern California which are performing satisfactorily.



TABLE 2
LINE SOURCE SOLUTIONS

e(x) L X' ()
% 1/2 3
Mo (1+28 F) X Co erf TEx7b exp(-kt)
L X b X\ 2 3/2
1+8% 2 [(1+8H Cerf{|—4 -kt
€MO(H) ( B b) 28 [( B b) ] 0 er . (]+B %)2-] exp( )
4/3 3/2 3
L 2 . X b 2 , X 3/2
ey (F) (1+5871) = [(1 + %585 -1] C_erf — texp(-kt)

= x/U

0

66
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Surface Drift of a Buoyant Pollutant

A buoyant pollutant not only disperses by the action of
turbulent mixing, as in the case of neutrally buoyant drift, but
also spreads because of the density disparity between the plume and
surrounding water. This means that the velocity terms in equation
(9) (or (150)) are not independent of the plume temperature (or con-
centration) and cannot be established beforehand through oceano-
graphic measurement or by independent solution of the equations of
motion. This complication leads to the necessity of solving the
equations of motion and heat diffusion (or mass diffusion) simul-
taneously.

Consequently, the solution to the buoyant drift problem is

considerably more complicated than the neutrally buoyant drift

case. In fact, it is worthwhile investigating ways to determine
if for a specific case the gravity spread is negligible compared
to the turbulent diffusion. If this can be established, then
methods used for neutrally buoyant drift can be employed.

However, for the general case, gravitational effects which
cause the plume to spread laterally cannot be ignored and we are
left with a difficult problem of solving equations (8) and (9)

(or (150)) simultaneously.

Density profiles may show essentially a discontinuity between

the pollution field and the receiving water, giving rise to a two-

layer flow, or the profiles may be smooth, with the density becoming
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a minimum at the surface. Whether or not the layering effect
prevails depends on the density and miscibility of the pollutant
and the vertical eddy mixing of the receiving water. In either
case gravity will tend to spread the lighter material laterally
over the heavier receiving water, and air-sea interactions may
also have a significant effect on the dispersion of the pollutant.
Apparently, there has been very 1ittle analytical work done
for this type of flow, probably owing to the complexity of the mathe-
matics. Cederwall (11) presents a calculational method from Lar-
sen and Sorensen (26, not seen) for predicting the spread of
layered flow under the action of gravity only, in a current with
velocity U_ (see Figure 25). The procedure is based on the main
assumption that the two layers remain perfectly identified with
no frictional effects between layers, which implies: 1) no
vertical mixing, and 2) a homogeneous pollution field. Also, only
Tateral spreading is considered (normal to current flow). Thus,
the velocity of advance of the pollution front is given entirely

by conditions at the front. By continuity of the pollutant

a, = 2U_b(x)h(x), (170)
where 9 designates volumetric flow of the pollutant from the
source, U_ is the current velocity, b(x) is the half-width of the
field a distance x downstream from where the pollutant appears at

the surface, and h(x) is the average cross-sectional depth of the
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pollution field. By conservation of mechanical energy, the velocity

of spread of the pollution front, Uf, is given by

Ug = uSIZgE(x) é%-, (171)

where o, is a constant on the order of 1, and Ap is the density
disparity between layers. Because

db
f~ Yo dx*

2/3
3o Igqu
_ 3/2 3 0
b(X) = bO + 5 Bﬁ?— X (]72)

where2bo is the initial width of the pollution field. As an

Ueg = U

approximation,for bo<<b(x),

2/3 _
'99qu
b(X)z I{-)UTO X (]73)

Thus, equation (173) may be used to estimate the pollution
field width, 2b, at downstream points, x. However, this equation
was developed from a very crude model and considers only gravita-
tional effects. For these reasons, this model must be considered
only a very rough approximation of the actual dispersion process.

Akira Wada and colleagues in a series of Japanese papers
(55, 56, 29), have taken a more rigorous and realistic approach
in analyzing the recirculation of condenser cooling water for
nuclear power stations located on certain bays in Japan. The
approach taken by Wada is to consider the fundamental equations

of momentum and energy,
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ou au p P
i i _ 1 3P [ o ]
5+t U 2e, . Q.U -— -1|g
ot axj ijk™i k Py %5 Po i3
ou
9 €, 1
TP [ 13 oX . ]' (8)
J 1 J )
with molecular diffusivity, v, ignored, and
5T 3T _ 3 3T ) q
=+t U, — =2 l¢ . + , (9)
ot J xj axJ [ Hj aij pocp

subject to certain assumptions, and carry out the solutions numer-
ically. These assumptions are:
* steady flow;

aU,

« inertial terms Uj 5;%1 are small compared to turbulent
J

transport and pressure terms;
+ Coriolis forces are neglected;
. the motion is a two-dimensional lateral flow restricted to

the region above the thermocline.

Equations (8) and (9) are then written in x,y,z coordinates as:

x-direction momentum,

P _ U

X ax (e x ax) ( €y ay) (174)
y-direction momentum,

P 3 oV

3y 5;'( ) ( €y ay) (175)
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Energy,
L) 3T aT
UsxtVoy = ax (EHx §§J * 3y y (e €Hy ay)
Q
+ oz (e, o) + —2 (176)
pCph

where Qo is net surface heat transferu*cp is specific heat, and
h is the surface layer thickness. The quantity Qo, the net heat
exchange at the water surface, is composed of the net radiant

exchange, evaporation, and convection. Note that in contrast to the
single layer flow assumption for the equations of motion, heat

transfer is treated in three dimensions.
By assuming the eddy diffusivities of momentum, €y and Ey’

to be constant, and by cross-differentiation, equations (174)

and (175) become:

32p o (32U 5 (33U
3X3y ~ °x 3y [ax—z) T ey 3y {WJ (177)

aX3y X 39X {9x2 y 3x |dy2 (178)
Now a stream function, 1, may be defined such that

U = %%_ (179)
and v =-2, (180)

* Strictly speak1ng, the term Q /pCph should not be included in
equation (176) since this term is a boundary condition and
should be treated as such.



106

which automatically satisfy the continuity equation,

U,V
xSy c 0 (181)

By subtracting (178) from (177), the terms involving pressure
are eliminated. By replacing U and V with equations (179) and
(180) in this result, an equation for horizontal motion in terms

of the stream function may be written as

y 4 4
%;%-+ (1+5) 5;%5§%-+ 8 %y% = 0. (182)

The quantity & in equation (182) is the ratio ey/ex.

Wada solved equation (182) for the stream function, y, using
finite difference techniques. Velocity components U and V were
established using equations (179) and (180). Once the velocity
components were determined, solution to equation (176) was found
numerically, thus establishing the temperature distribution for
the particular bay.

The approach taken seems to be a reasonable one. However, the
hydraulics may be oversimplified by the single layer assumption.
Also, it is not clear that all inertial terms in the equations of |
motion can be neglected - especially in the vicinity of the hot water
source.

Hayashi and Shuto (20) also investigated the case of hot water
spreading over a colder stagnant receiving water. Their approach

was based on vertically integrated equations of motion and energy
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conservation, and similarity approximations concerning vertical
velocity and temperature profiles. Except for the inclusion of
vertical variations, these authors make the same flow field assump-
tions as did Wada et al. The governing equations become:

xX-momentum,

32, 3% d 3 d
EL[BX A }J Udz - *;—J Pdz = 0; (183)

y-momentum,

2 2 d d
eL[a + 9 ]J vdz - a—-j Pdz

xZ " 3y2 3y (184)

H
o
"

z-momentum,

z
P = J pgdz.
4

Here 2z is vertically downward, ¢ is the ordinate at the water
surface, d is the water depth, and €L is the lateral eddy viscosity
which is assumed to be the same for both the x and y directions.
The vertically integrated continuity equation is
3 [? s [* e
a—f Udz + & J Vdz = EVITHT (185)
X oy
4 g
where E' is the entrainment parameter (entrainment from lower depths,
Z direction).
The energy equation used by Hayashi and Shuto is written as
] d 9 d hs
oo + & [t vz = - T, (186)
4 4 op
In this equation T and TS are the temperatures of the receiving

water and hot water surface, respectively, and hS is an overall
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heat transfer coefficient at the air-sea interface. Note that
turbulent heat transport is not accounted for.

According to Hayashi and Shuto, at low values of FrJ (the

length term in the densimetric Froude number is based on the
thickness of the thermal layer), the entrainment parameter is

essentially zero, so that continuity is given by

s (% 3 [
5—-J Udz + ——-J vdz = 0. (187)
XU o Iy

Now a stream function may be defined such that

thy = OV
a'hU = =2 (188)
and  o'hV = - gl)% , (189)

where o'is a parameter related to the vertical velocity profile
and h is the thickness of the layer of motion.

It is now possible to arrive at equation (182) with 6=1(ex/ey=1),
so that the stream function is given by

Vg = 0 (190)

where v* is the biharmonic operator. For a simple geometry the
above equation may be solved analytically. Hayashi and Shuto
assumed the flow was issuing to a semi-infinite medium, as shown

in Figure 26. For this geometry,

Yy = ;%-gT-[Ey+])tan'](¥§lq-(y-1)tan'](xil{]. (191)

From this equation, velocities U and V may be obtained from the
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Figure 26. Planar view of flow issuing to a semi-infinite medium.
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definition of the stream function and applied in the energy equation

to arrive at the temperature distribution,

h, ’
T=T_+(T,-T, Jexp [ pC: o 407;32 {1+(§)2} (’[‘3—.)2]- (192)

The quantity 8' is a profile parameter associated with the vertical
temperature profile. The authors assume that o'/B' = 1, which is
apparently to state that the temperature and velocity profiles are
the same.

The preceding analysis is a very rough approximation of real
conditions. As presented in the reference cited, there was poor
agreement between theory and experiment.

The dynamic behavior of the drifting flow field is very com-
plicated when gravitation forces are acting in conjunction with
turbulent mixing and air-sea interactions, to disperse the pollutant.
Reliable analytical or semi-empirical models are nonexistent for
this case, and it appears that numerical simulation of the flow field

may be the most reasonable approach to this problem.
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NUMERICAL TECHNIQUES

Advances in computer technology during the past few years have
opened a new frontier in solving partial differential equations
such as those describing the motion and diffusion of pollutants in
coastal waters. Before the age of high-speed computers, numerical
techniques which had been set down in theory some years previous,
were impractical to carry out because of the monumental amount of
calculation involved. But today such techniques as finite differ-
ences, finite elements, and the Monte Carlo method are indeed prac-
tical and are being applied to a wide variety of practical engineering
problems. In some cases these methods are so successful that they
are used to save engineering time in spite of known analytic solu-
tions.

The most attractive feature of numerical solutions is that many
complexities associated with real physical phenomena do not have
to be ignored as in the case of analytical solutions. Compliex
boundary geometry and boundary conditions can be accounted for and
non-linear effects may be incorporated in the analysis. On the
other hand, numerical solutions are not without drawbacks. Such
problems as computation time and numerical stability in some cases
negate the attractiveness of the numerical approach. Nevertheless,
the numerical solution is a practical alternative to the oversimpli-
fied analytical solution.

The most complete treatment of numerical modeling would include

the following considerations:
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+ time dependence,

« computation of velocity and diffusion in three-space,

- interaction between the flow field and pollutant field,

- variable eddy diffusivity coefficients, and

- arbitrary boundary conditions such as irregular solid
boundaries, heat transfer and wind at the sea surface, and variable
currents and water levels at the flow boundaries.

At present, there is no computer program available which in-
cludes all of the above complications. Typically, computations
are carried out in two space dimensions, usually the horizontal
plane. However, diffusion computations are in some cases extended
to three dimensions. For instance, Wada (55 ) computed the velocity
field for certain bays in Japan, using the two-dimensional hydro-
dynamics equations, but considered heat transfer in three dimensions.

If one is to consider interactions between the flow field and
density distribution, which may be very important during initial
dilution, three space dimensions must be considered unless the
region of interest has symmetry to the extent that one space variable
may be realistically eliminated. In coastal situations, symmetry
is usually lacking because of irregular currents and boundaries.
Wada (56) considered a horizontal shoreline discharge of hot water
which included buoyancy interaction. However, the analysis was
carried out in two dimensions, vertical and parallel to the dis-

charge. Since no variation was considered parallel to the shoreline,
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the numerical model was not realistic in this respect. On the
other hand, fhé analysis demonstrated significant differences
in the flow and temperature fields between the cases of interac-
tion and no interaction.

For the drift flow regime lateral density gradients caused by
a contaminant are usually quite small. Thus, it is typical to
neglect the interaction between buoyancy and flow and thus analyze
the hydraulic problem separate from the pollutant diffusion.
Velocity distributions calculated from hydraulic analysis or
estimated from field measurements are then used as known input

to compute convective terms in the transport equation.

Numerical Models

A considerable amount of work has appeared in the Titerature
in recent years dealing with numerical methods for solving the
equations of motion and diffusion ((5), (17), (49), (50),(53), and
(57)). However, most of this work deals with specific cases and
is not directly suited for coastal pollution problems. At this
time there are only a few programs published and available for
coastal hydraulic computation, and there is no program generally
available as a complete package for predicting both coastal
hydraulics and dispersion.

The remainder of this section will be confined to a brief
discussion of published computer programs which under certain
conditions are suitable for predicting coastal hydraulics and/or

dispersion in the drift flow regime.
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Coastal Hydraulics - Leendertse's Model

The numerical model developed by Leendertse (27) is based on
a finite difference representation of the vertically integrated
equations of motion and continuity. The model is specifically
designed for tidal computations along a coast having arbitrary
geometry and bottom topography. An operational computer program
is listed in reference (27) along with input instructions.
Dronkers (13) gives a review of the numerical model.

Numerical modeling is based on the following partial differ-

ential equations:

Motion,
o, aU U _ _3;
3t + U +V3,V fV+g
1/2

U(U2+v2 X
t9g: H+C) - F00 (1%3)
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where U and V are the vertically averaged velocity components u and

v defined by
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F(x) and F(y) are forcing functions from wind stress and barometric
pressure fluctuations, Ch is the Chezy coefficient, and ¢ is the
fluctuating water height measured from a reference. This reference
plane is a distance H from the ocean bottom.

Continuity. The vertically integrated continuity equation
leads to the following expression for the fluctuating water level

g

ar , a{(H+z)u} |, a{(H+z)V} _
£+ e 5 0. (195)

d

The method of solution is what Leendertse terms a multi-opera-
tional technique. This technique is very closely associated with
the alternating direction method for two-dimensional partial differ-
ential equations first discussed by Peaceman and Rachford (40a)
concerning the heat equation. Details of the solution technique
Wwill not be discussed here; however, the interested reader may con-
sult Leendertse( 27 ) or Dronkers (13).

Leendertse has carried out detailed studies of the method
stability and has ascertained that the model is unconditionally
numerically stable. However, solution accuracy deteriorates as the
time step becomes large.

Input to the computation program includes system geometry-flow
boundary water levels as a function of time, and Chezy coefficients.

Output includes water level and vertically integrated velocity at

each grid point in the system as a function of time.
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Although the vertically integrated model may not yield the
velocity field detail that is required for studying localized
dispersion, it does provide flow information such that gross

transport and dispersion may be estimated.

Dispersion

Three available computer codes are briefly discussed
here:
1) NRDL codes (23) based on the mathematical solution of
the Carter-Okubo (10a) model;
2) Tetra-Tech code (25) used for studying long-term transport;
3) New York University, (30), based on the Monte Carlo method.
In each of the above codes’the velocity field must be estab-
lished independently, and each has limited application.

Naval Radiological Defense Laboratory Codes. The Naval

Radiological Defense Laboratory (NRDL) has developed computer
codes for estimating radicactivity levels which result from instan-
taneous and continuous point releases in the ocean. These models
are based on the analytical solution of the Carter-Okubo shear

flow model (10a):

aC ' v,y oC
3t (Uo - 8 y'y°Q zz) X

Q

- 3%C 92C 32C
* Chx oxz ' SHy 357 T SHz 372 (1%6)

The terms Q'y and Q'Z-are velocity gradients in the y and z direc-

tion and Uo ijs the mean current. These terms are assumed constant
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for a given solution to the above transport equation.

The computer programs calculate the dimensions and volume,
and amount of contaminant, in a dispersing patch caused by a
point or continuous release. Program input includes the empiri-

cal constants Uo, Q' s Q‘Z, €,» €, and e . This program is

y X y
not applicable where finite boundaries, such as the water surface
and coastline, affect dispersion.

Tetra-Tech Code. Koh and Fan (25) have developed a computer

program for estimating long-term transport for a pool of radio-
active debris submerged in the ocean, a problem similar to the one
investigated by NRDL, described above. However, Koh and Fan,
instead of using the analytical solution of the Carter-Okubo
transport equation as was done in the NRDL programs, sclve tre

basic diffusion equation,

aC 3C aC _ 3 aC

UV T o o)

9 9Cy ¢ 3 aC ¢
3y (EMy ay) * 5z (EMZ Ez)’ (197)

by the "method of moments.” The above equation does not include
vertical convective transport of the pollutant.

Details of the method of momentsare not discussed here (e.q.,
see reference 48), but it is a technique of lumping quantities in

a horizontal plane so that the concentration moments are 2 function
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of z and t alone. This method then greatly reduces the amount of

time necessary for numerical solutions to the transport equation.
The computer program application is limited to a submerged

pool with no coastline effects. Horizontal velocities are assumed

constant in a lateral plane, but may vary with depth. Velocities

must be supplied to the program as input. Also, no transport across

the water surface is allowed.

New York University Code. Mehr (30) has developed a dispersion

code based on the Monte Carlo method using random numbers. At this
time full detail concerning the program and solution technique has
not been published, but may be obtained from Mehr.

According to Mehr, the program will predict contaminant distri-
butions for a two-dimensional horizontal flow system having laterally
irregular solid boundaries. As in the case of previously discussed
dispersion codes, the velocity field must be suppiied by the program
user. The general ideé of the method is that a large number of
contaminant particles are tagged. Beginning with an initial distri-
bution of these tagged particles, they are convected through the
flow field according to the velocity distribution, and diffused
according to random number components. Solid boundaries reflect
these tagged particles and crossingover flow boundaries causes the
particles to be lost from the system. The program will accommodate

time dependent particle sources; hence, an outfall may be simulated.
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The following notations are used unless otherwise specified

in the text.

erf

NOMENCLATURE

Molecular thermal diffusivity
Characteristic plume radius
Half-width of pollution field
Concentration of pollutant
Coefficient of drag

Chezy coefficient

Concentration of pollutant at centerline
Specific heat

Diameter of discharge port
Molecular mass diffusivity

Cube of centerline velocity (Um3)

Permutation tensor (third order)
Unit vector, radial

Unit vector, east

Unit vector, north

Unit vector, vertical

Unit vector, angular

Error function
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f Function

f Coriolis parameter

Forcing function

Fd Drag force

Fr Densimetric Froude number

FrJ Densimetric Froude number at discharge port

g Gravitational constant

G Linear stratification parameter

h Average thickness of pollution field

hs Heat transfer coefficient

H Water depth

k Proportionality constant

K Entrainment parameter for momentum

L Lateral scale for drifting plume

1 Width of pollution field

m Mass species loss or production per unit volume
M Instantaneous source strength

Me Momentum of plume at beginning of established flow
Mj Momentum at orifice

P Pressure

Volumetric heat generation

Volumetric flow rate of pollutant

q

q

Q Volume flow rate
Q Surface heat transfer
Q

! Volumetric entrainment
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Radial coordinate

Product (UmAm)

Radius of plume boundary

Characteristic radial scale for plume

Reynolds stress tensor

Axis for curved plume

Dilution (1/C)

Source strength

Length to established flow, curved plume
Centerline dilution

Time

Length of time for averaging turbulent quantities
Temperature

Reference temperature (T_(o))

Temperature at plume centerline

Temperature of environment

Fluctuating velocity along 1Eb-coordinate (description
of turbulent flow)

Velocity (x-direction)

1£h-cbordinate

Velocity along
Centerline velocity (horizontal and inclined plumes)
Velocity (radial direction)

Environmental velocity, x-component

Velocity (angular)
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UO,UJ Orifice velocity

v Volume

v Velocity (y-direction)

v Environmental velocity, y-component

W Velocity (z-direction)

NJ Orifice velocity

wm Vertical velocity at centerline

W Environmental velocity, z-component

X Space coordinate

X5 izn-space coordinate

y Space coordinate

z Space coordinate, vertical

Zy%g Length for flow establishment

Z o ax Maximum height of rise at plume centerline
Greek

a Entrainment coefficient

B Temperature coefficient

A Density disparity parameter

Ay Buoyant force

8 Ratio, e:x/s»:.y

Gij Kronecker delta function (second order tensor)
C Water level

€43 Eddy momentum diffusivity tensor (second order)

€4j Eddy thermal diffusivity tensor (first order)
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Ej Eddy momentum diffusivity

0 Temperature disparity

6 Angular coordinate

K Thermal conductivity

A Entrainment coefficient for heat or matter (Morton, Fan)
n Entrainment parameter for heat or matter

v Molecular kinematic viscosity

) Density

Py Density of pollutant at orifice

P Plume centerline density

Po Density of environment at orifice

o Density of environment at surface

0.(2) Density of environment

ﬂ Pi, 3.141

T Fluid stress tensor (second order)

® Viscous dissipation term in energy equation
¢ Latitude

¢(xi) Function

w(xi) Function

Y Stream function

Q' Velocity gradient



